1 /* 2 * linux/mm/page_alloc.c 3 * 4 * Manages the free list, the system allocates free pages here. 5 * Note that kmalloc() lives in slab.c 6 * 7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 8 * Swap reorganised 29.12.95, Stephen Tweedie 9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999 10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999 11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999 12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000 13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002 14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton) 15 */ 16 17 #include <linux/stddef.h> 18 #include <linux/mm.h> 19 #include <linux/swap.h> 20 #include <linux/interrupt.h> 21 #include <linux/pagemap.h> 22 #include <linux/jiffies.h> 23 #include <linux/bootmem.h> 24 #include <linux/compiler.h> 25 #include <linux/kernel.h> 26 #include <linux/kmemcheck.h> 27 #include <linux/module.h> 28 #include <linux/suspend.h> 29 #include <linux/pagevec.h> 30 #include <linux/blkdev.h> 31 #include <linux/slab.h> 32 #include <linux/oom.h> 33 #include <linux/notifier.h> 34 #include <linux/topology.h> 35 #include <linux/sysctl.h> 36 #include <linux/cpu.h> 37 #include <linux/cpuset.h> 38 #include <linux/memory_hotplug.h> 39 #include <linux/nodemask.h> 40 #include <linux/vmalloc.h> 41 #include <linux/mempolicy.h> 42 #include <linux/stop_machine.h> 43 #include <linux/sort.h> 44 #include <linux/pfn.h> 45 #include <linux/backing-dev.h> 46 #include <linux/fault-inject.h> 47 #include <linux/page-isolation.h> 48 #include <linux/page_cgroup.h> 49 #include <linux/debugobjects.h> 50 #include <linux/kmemleak.h> 51 52 #include <asm/tlbflush.h> 53 #include <asm/div64.h> 54 #include "internal.h" 55 56 /* 57 * Array of node states. 58 */ 59 nodemask_t node_states[NR_NODE_STATES] __read_mostly = { 60 [N_POSSIBLE] = NODE_MASK_ALL, 61 [N_ONLINE] = { { [0] = 1UL } }, 62 #ifndef CONFIG_NUMA 63 [N_NORMAL_MEMORY] = { { [0] = 1UL } }, 64 #ifdef CONFIG_HIGHMEM 65 [N_HIGH_MEMORY] = { { [0] = 1UL } }, 66 #endif 67 [N_CPU] = { { [0] = 1UL } }, 68 #endif /* NUMA */ 69 }; 70 EXPORT_SYMBOL(node_states); 71 72 unsigned long totalram_pages __read_mostly; 73 unsigned long totalreserve_pages __read_mostly; 74 unsigned long highest_memmap_pfn __read_mostly; 75 int percpu_pagelist_fraction; 76 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK; 77 78 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE 79 int pageblock_order __read_mostly; 80 #endif 81 82 static void __free_pages_ok(struct page *page, unsigned int order); 83 84 /* 85 * results with 256, 32 in the lowmem_reserve sysctl: 86 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high) 87 * 1G machine -> (16M dma, 784M normal, 224M high) 88 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA 89 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL 90 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA 91 * 92 * TBD: should special case ZONE_DMA32 machines here - in those we normally 93 * don't need any ZONE_NORMAL reservation 94 */ 95 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = { 96 #ifdef CONFIG_ZONE_DMA 97 256, 98 #endif 99 #ifdef CONFIG_ZONE_DMA32 100 256, 101 #endif 102 #ifdef CONFIG_HIGHMEM 103 32, 104 #endif 105 32, 106 }; 107 108 EXPORT_SYMBOL(totalram_pages); 109 110 static char * const zone_names[MAX_NR_ZONES] = { 111 #ifdef CONFIG_ZONE_DMA 112 "DMA", 113 #endif 114 #ifdef CONFIG_ZONE_DMA32 115 "DMA32", 116 #endif 117 "Normal", 118 #ifdef CONFIG_HIGHMEM 119 "HighMem", 120 #endif 121 "Movable", 122 }; 123 124 int min_free_kbytes = 1024; 125 126 unsigned long __meminitdata nr_kernel_pages; 127 unsigned long __meminitdata nr_all_pages; 128 static unsigned long __meminitdata dma_reserve; 129 130 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP 131 /* 132 * MAX_ACTIVE_REGIONS determines the maximum number of distinct 133 * ranges of memory (RAM) that may be registered with add_active_range(). 134 * Ranges passed to add_active_range() will be merged if possible 135 * so the number of times add_active_range() can be called is 136 * related to the number of nodes and the number of holes 137 */ 138 #ifdef CONFIG_MAX_ACTIVE_REGIONS 139 /* Allow an architecture to set MAX_ACTIVE_REGIONS to save memory */ 140 #define MAX_ACTIVE_REGIONS CONFIG_MAX_ACTIVE_REGIONS 141 #else 142 #if MAX_NUMNODES >= 32 143 /* If there can be many nodes, allow up to 50 holes per node */ 144 #define MAX_ACTIVE_REGIONS (MAX_NUMNODES*50) 145 #else 146 /* By default, allow up to 256 distinct regions */ 147 #define MAX_ACTIVE_REGIONS 256 148 #endif 149 #endif 150 151 static struct node_active_region __meminitdata early_node_map[MAX_ACTIVE_REGIONS]; 152 static int __meminitdata nr_nodemap_entries; 153 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES]; 154 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES]; 155 static unsigned long __initdata required_kernelcore; 156 static unsigned long __initdata required_movablecore; 157 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES]; 158 159 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */ 160 int movable_zone; 161 EXPORT_SYMBOL(movable_zone); 162 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */ 163 164 #if MAX_NUMNODES > 1 165 int nr_node_ids __read_mostly = MAX_NUMNODES; 166 int nr_online_nodes __read_mostly = 1; 167 EXPORT_SYMBOL(nr_node_ids); 168 EXPORT_SYMBOL(nr_online_nodes); 169 #endif 170 171 int page_group_by_mobility_disabled __read_mostly; 172 173 static void set_pageblock_migratetype(struct page *page, int migratetype) 174 { 175 176 if (unlikely(page_group_by_mobility_disabled)) 177 migratetype = MIGRATE_UNMOVABLE; 178 179 set_pageblock_flags_group(page, (unsigned long)migratetype, 180 PB_migrate, PB_migrate_end); 181 } 182 183 bool oom_killer_disabled __read_mostly; 184 185 #ifdef CONFIG_DEBUG_VM 186 static int page_outside_zone_boundaries(struct zone *zone, struct page *page) 187 { 188 int ret = 0; 189 unsigned seq; 190 unsigned long pfn = page_to_pfn(page); 191 192 do { 193 seq = zone_span_seqbegin(zone); 194 if (pfn >= zone->zone_start_pfn + zone->spanned_pages) 195 ret = 1; 196 else if (pfn < zone->zone_start_pfn) 197 ret = 1; 198 } while (zone_span_seqretry(zone, seq)); 199 200 return ret; 201 } 202 203 static int page_is_consistent(struct zone *zone, struct page *page) 204 { 205 if (!pfn_valid_within(page_to_pfn(page))) 206 return 0; 207 if (zone != page_zone(page)) 208 return 0; 209 210 return 1; 211 } 212 /* 213 * Temporary debugging check for pages not lying within a given zone. 214 */ 215 static int bad_range(struct zone *zone, struct page *page) 216 { 217 if (page_outside_zone_boundaries(zone, page)) 218 return 1; 219 if (!page_is_consistent(zone, page)) 220 return 1; 221 222 return 0; 223 } 224 #else 225 static inline int bad_range(struct zone *zone, struct page *page) 226 { 227 return 0; 228 } 229 #endif 230 231 static void bad_page(struct page *page) 232 { 233 static unsigned long resume; 234 static unsigned long nr_shown; 235 static unsigned long nr_unshown; 236 237 /* 238 * Allow a burst of 60 reports, then keep quiet for that minute; 239 * or allow a steady drip of one report per second. 240 */ 241 if (nr_shown == 60) { 242 if (time_before(jiffies, resume)) { 243 nr_unshown++; 244 goto out; 245 } 246 if (nr_unshown) { 247 printk(KERN_ALERT 248 "BUG: Bad page state: %lu messages suppressed\n", 249 nr_unshown); 250 nr_unshown = 0; 251 } 252 nr_shown = 0; 253 } 254 if (nr_shown++ == 0) 255 resume = jiffies + 60 * HZ; 256 257 printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n", 258 current->comm, page_to_pfn(page)); 259 printk(KERN_ALERT 260 "page:%p flags:%p count:%d mapcount:%d mapping:%p index:%lx\n", 261 page, (void *)page->flags, page_count(page), 262 page_mapcount(page), page->mapping, page->index); 263 264 dump_stack(); 265 out: 266 /* Leave bad fields for debug, except PageBuddy could make trouble */ 267 __ClearPageBuddy(page); 268 add_taint(TAINT_BAD_PAGE); 269 } 270 271 /* 272 * Higher-order pages are called "compound pages". They are structured thusly: 273 * 274 * The first PAGE_SIZE page is called the "head page". 275 * 276 * The remaining PAGE_SIZE pages are called "tail pages". 277 * 278 * All pages have PG_compound set. All pages have their ->private pointing at 279 * the head page (even the head page has this). 280 * 281 * The first tail page's ->lru.next holds the address of the compound page's 282 * put_page() function. Its ->lru.prev holds the order of allocation. 283 * This usage means that zero-order pages may not be compound. 284 */ 285 286 static void free_compound_page(struct page *page) 287 { 288 __free_pages_ok(page, compound_order(page)); 289 } 290 291 void prep_compound_page(struct page *page, unsigned long order) 292 { 293 int i; 294 int nr_pages = 1 << order; 295 296 set_compound_page_dtor(page, free_compound_page); 297 set_compound_order(page, order); 298 __SetPageHead(page); 299 for (i = 1; i < nr_pages; i++) { 300 struct page *p = page + i; 301 302 __SetPageTail(p); 303 p->first_page = page; 304 } 305 } 306 307 static int destroy_compound_page(struct page *page, unsigned long order) 308 { 309 int i; 310 int nr_pages = 1 << order; 311 int bad = 0; 312 313 if (unlikely(compound_order(page) != order) || 314 unlikely(!PageHead(page))) { 315 bad_page(page); 316 bad++; 317 } 318 319 __ClearPageHead(page); 320 321 for (i = 1; i < nr_pages; i++) { 322 struct page *p = page + i; 323 324 if (unlikely(!PageTail(p) || (p->first_page != page))) { 325 bad_page(page); 326 bad++; 327 } 328 __ClearPageTail(p); 329 } 330 331 return bad; 332 } 333 334 static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags) 335 { 336 int i; 337 338 /* 339 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO 340 * and __GFP_HIGHMEM from hard or soft interrupt context. 341 */ 342 VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt()); 343 for (i = 0; i < (1 << order); i++) 344 clear_highpage(page + i); 345 } 346 347 static inline void set_page_order(struct page *page, int order) 348 { 349 set_page_private(page, order); 350 __SetPageBuddy(page); 351 } 352 353 static inline void rmv_page_order(struct page *page) 354 { 355 __ClearPageBuddy(page); 356 set_page_private(page, 0); 357 } 358 359 /* 360 * Locate the struct page for both the matching buddy in our 361 * pair (buddy1) and the combined O(n+1) page they form (page). 362 * 363 * 1) Any buddy B1 will have an order O twin B2 which satisfies 364 * the following equation: 365 * B2 = B1 ^ (1 << O) 366 * For example, if the starting buddy (buddy2) is #8 its order 367 * 1 buddy is #10: 368 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10 369 * 370 * 2) Any buddy B will have an order O+1 parent P which 371 * satisfies the following equation: 372 * P = B & ~(1 << O) 373 * 374 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER 375 */ 376 static inline struct page * 377 __page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order) 378 { 379 unsigned long buddy_idx = page_idx ^ (1 << order); 380 381 return page + (buddy_idx - page_idx); 382 } 383 384 static inline unsigned long 385 __find_combined_index(unsigned long page_idx, unsigned int order) 386 { 387 return (page_idx & ~(1 << order)); 388 } 389 390 /* 391 * This function checks whether a page is free && is the buddy 392 * we can do coalesce a page and its buddy if 393 * (a) the buddy is not in a hole && 394 * (b) the buddy is in the buddy system && 395 * (c) a page and its buddy have the same order && 396 * (d) a page and its buddy are in the same zone. 397 * 398 * For recording whether a page is in the buddy system, we use PG_buddy. 399 * Setting, clearing, and testing PG_buddy is serialized by zone->lock. 400 * 401 * For recording page's order, we use page_private(page). 402 */ 403 static inline int page_is_buddy(struct page *page, struct page *buddy, 404 int order) 405 { 406 if (!pfn_valid_within(page_to_pfn(buddy))) 407 return 0; 408 409 if (page_zone_id(page) != page_zone_id(buddy)) 410 return 0; 411 412 if (PageBuddy(buddy) && page_order(buddy) == order) { 413 VM_BUG_ON(page_count(buddy) != 0); 414 return 1; 415 } 416 return 0; 417 } 418 419 /* 420 * Freeing function for a buddy system allocator. 421 * 422 * The concept of a buddy system is to maintain direct-mapped table 423 * (containing bit values) for memory blocks of various "orders". 424 * The bottom level table contains the map for the smallest allocatable 425 * units of memory (here, pages), and each level above it describes 426 * pairs of units from the levels below, hence, "buddies". 427 * At a high level, all that happens here is marking the table entry 428 * at the bottom level available, and propagating the changes upward 429 * as necessary, plus some accounting needed to play nicely with other 430 * parts of the VM system. 431 * At each level, we keep a list of pages, which are heads of continuous 432 * free pages of length of (1 << order) and marked with PG_buddy. Page's 433 * order is recorded in page_private(page) field. 434 * So when we are allocating or freeing one, we can derive the state of the 435 * other. That is, if we allocate a small block, and both were 436 * free, the remainder of the region must be split into blocks. 437 * If a block is freed, and its buddy is also free, then this 438 * triggers coalescing into a block of larger size. 439 * 440 * -- wli 441 */ 442 443 static inline void __free_one_page(struct page *page, 444 struct zone *zone, unsigned int order, 445 int migratetype) 446 { 447 unsigned long page_idx; 448 449 if (unlikely(PageCompound(page))) 450 if (unlikely(destroy_compound_page(page, order))) 451 return; 452 453 VM_BUG_ON(migratetype == -1); 454 455 page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1); 456 457 VM_BUG_ON(page_idx & ((1 << order) - 1)); 458 VM_BUG_ON(bad_range(zone, page)); 459 460 while (order < MAX_ORDER-1) { 461 unsigned long combined_idx; 462 struct page *buddy; 463 464 buddy = __page_find_buddy(page, page_idx, order); 465 if (!page_is_buddy(page, buddy, order)) 466 break; 467 468 /* Our buddy is free, merge with it and move up one order. */ 469 list_del(&buddy->lru); 470 zone->free_area[order].nr_free--; 471 rmv_page_order(buddy); 472 combined_idx = __find_combined_index(page_idx, order); 473 page = page + (combined_idx - page_idx); 474 page_idx = combined_idx; 475 order++; 476 } 477 set_page_order(page, order); 478 list_add(&page->lru, 479 &zone->free_area[order].free_list[migratetype]); 480 zone->free_area[order].nr_free++; 481 } 482 483 #ifdef CONFIG_HAVE_MLOCKED_PAGE_BIT 484 /* 485 * free_page_mlock() -- clean up attempts to free and mlocked() page. 486 * Page should not be on lru, so no need to fix that up. 487 * free_pages_check() will verify... 488 */ 489 static inline void free_page_mlock(struct page *page) 490 { 491 __dec_zone_page_state(page, NR_MLOCK); 492 __count_vm_event(UNEVICTABLE_MLOCKFREED); 493 } 494 #else 495 static void free_page_mlock(struct page *page) { } 496 #endif 497 498 static inline int free_pages_check(struct page *page) 499 { 500 if (unlikely(page_mapcount(page) | 501 (page->mapping != NULL) | 502 (atomic_read(&page->_count) != 0) | 503 (page->flags & PAGE_FLAGS_CHECK_AT_FREE))) { 504 bad_page(page); 505 return 1; 506 } 507 if (page->flags & PAGE_FLAGS_CHECK_AT_PREP) 508 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP; 509 return 0; 510 } 511 512 /* 513 * Frees a list of pages. 514 * Assumes all pages on list are in same zone, and of same order. 515 * count is the number of pages to free. 516 * 517 * If the zone was previously in an "all pages pinned" state then look to 518 * see if this freeing clears that state. 519 * 520 * And clear the zone's pages_scanned counter, to hold off the "all pages are 521 * pinned" detection logic. 522 */ 523 static void free_pages_bulk(struct zone *zone, int count, 524 struct list_head *list, int order) 525 { 526 spin_lock(&zone->lock); 527 zone_clear_flag(zone, ZONE_ALL_UNRECLAIMABLE); 528 zone->pages_scanned = 0; 529 530 __mod_zone_page_state(zone, NR_FREE_PAGES, count << order); 531 while (count--) { 532 struct page *page; 533 534 VM_BUG_ON(list_empty(list)); 535 page = list_entry(list->prev, struct page, lru); 536 /* have to delete it as __free_one_page list manipulates */ 537 list_del(&page->lru); 538 __free_one_page(page, zone, order, page_private(page)); 539 } 540 spin_unlock(&zone->lock); 541 } 542 543 static void free_one_page(struct zone *zone, struct page *page, int order, 544 int migratetype) 545 { 546 spin_lock(&zone->lock); 547 zone_clear_flag(zone, ZONE_ALL_UNRECLAIMABLE); 548 zone->pages_scanned = 0; 549 550 __mod_zone_page_state(zone, NR_FREE_PAGES, 1 << order); 551 __free_one_page(page, zone, order, migratetype); 552 spin_unlock(&zone->lock); 553 } 554 555 static void __free_pages_ok(struct page *page, unsigned int order) 556 { 557 unsigned long flags; 558 int i; 559 int bad = 0; 560 int wasMlocked = TestClearPageMlocked(page); 561 562 kmemcheck_free_shadow(page, order); 563 564 for (i = 0 ; i < (1 << order) ; ++i) 565 bad += free_pages_check(page + i); 566 if (bad) 567 return; 568 569 if (!PageHighMem(page)) { 570 debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order); 571 debug_check_no_obj_freed(page_address(page), 572 PAGE_SIZE << order); 573 } 574 arch_free_page(page, order); 575 kernel_map_pages(page, 1 << order, 0); 576 577 local_irq_save(flags); 578 if (unlikely(wasMlocked)) 579 free_page_mlock(page); 580 __count_vm_events(PGFREE, 1 << order); 581 free_one_page(page_zone(page), page, order, 582 get_pageblock_migratetype(page)); 583 local_irq_restore(flags); 584 } 585 586 /* 587 * permit the bootmem allocator to evade page validation on high-order frees 588 */ 589 void __meminit __free_pages_bootmem(struct page *page, unsigned int order) 590 { 591 if (order == 0) { 592 __ClearPageReserved(page); 593 set_page_count(page, 0); 594 set_page_refcounted(page); 595 __free_page(page); 596 } else { 597 int loop; 598 599 prefetchw(page); 600 for (loop = 0; loop < BITS_PER_LONG; loop++) { 601 struct page *p = &page[loop]; 602 603 if (loop + 1 < BITS_PER_LONG) 604 prefetchw(p + 1); 605 __ClearPageReserved(p); 606 set_page_count(p, 0); 607 } 608 609 set_page_refcounted(page); 610 __free_pages(page, order); 611 } 612 } 613 614 615 /* 616 * The order of subdivision here is critical for the IO subsystem. 617 * Please do not alter this order without good reasons and regression 618 * testing. Specifically, as large blocks of memory are subdivided, 619 * the order in which smaller blocks are delivered depends on the order 620 * they're subdivided in this function. This is the primary factor 621 * influencing the order in which pages are delivered to the IO 622 * subsystem according to empirical testing, and this is also justified 623 * by considering the behavior of a buddy system containing a single 624 * large block of memory acted on by a series of small allocations. 625 * This behavior is a critical factor in sglist merging's success. 626 * 627 * -- wli 628 */ 629 static inline void expand(struct zone *zone, struct page *page, 630 int low, int high, struct free_area *area, 631 int migratetype) 632 { 633 unsigned long size = 1 << high; 634 635 while (high > low) { 636 area--; 637 high--; 638 size >>= 1; 639 VM_BUG_ON(bad_range(zone, &page[size])); 640 list_add(&page[size].lru, &area->free_list[migratetype]); 641 area->nr_free++; 642 set_page_order(&page[size], high); 643 } 644 } 645 646 /* 647 * This page is about to be returned from the page allocator 648 */ 649 static int prep_new_page(struct page *page, int order, gfp_t gfp_flags) 650 { 651 if (unlikely(page_mapcount(page) | 652 (page->mapping != NULL) | 653 (atomic_read(&page->_count) != 0) | 654 (page->flags & PAGE_FLAGS_CHECK_AT_PREP))) { 655 bad_page(page); 656 return 1; 657 } 658 659 set_page_private(page, 0); 660 set_page_refcounted(page); 661 662 arch_alloc_page(page, order); 663 kernel_map_pages(page, 1 << order, 1); 664 665 if (gfp_flags & __GFP_ZERO) 666 prep_zero_page(page, order, gfp_flags); 667 668 if (order && (gfp_flags & __GFP_COMP)) 669 prep_compound_page(page, order); 670 671 return 0; 672 } 673 674 /* 675 * Go through the free lists for the given migratetype and remove 676 * the smallest available page from the freelists 677 */ 678 static inline 679 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order, 680 int migratetype) 681 { 682 unsigned int current_order; 683 struct free_area * area; 684 struct page *page; 685 686 /* Find a page of the appropriate size in the preferred list */ 687 for (current_order = order; current_order < MAX_ORDER; ++current_order) { 688 area = &(zone->free_area[current_order]); 689 if (list_empty(&area->free_list[migratetype])) 690 continue; 691 692 page = list_entry(area->free_list[migratetype].next, 693 struct page, lru); 694 list_del(&page->lru); 695 rmv_page_order(page); 696 area->nr_free--; 697 expand(zone, page, order, current_order, area, migratetype); 698 return page; 699 } 700 701 return NULL; 702 } 703 704 705 /* 706 * This array describes the order lists are fallen back to when 707 * the free lists for the desirable migrate type are depleted 708 */ 709 static int fallbacks[MIGRATE_TYPES][MIGRATE_TYPES-1] = { 710 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE }, 711 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE }, 712 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE }, 713 [MIGRATE_RESERVE] = { MIGRATE_RESERVE, MIGRATE_RESERVE, MIGRATE_RESERVE }, /* Never used */ 714 }; 715 716 /* 717 * Move the free pages in a range to the free lists of the requested type. 718 * Note that start_page and end_pages are not aligned on a pageblock 719 * boundary. If alignment is required, use move_freepages_block() 720 */ 721 static int move_freepages(struct zone *zone, 722 struct page *start_page, struct page *end_page, 723 int migratetype) 724 { 725 struct page *page; 726 unsigned long order; 727 int pages_moved = 0; 728 729 #ifndef CONFIG_HOLES_IN_ZONE 730 /* 731 * page_zone is not safe to call in this context when 732 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant 733 * anyway as we check zone boundaries in move_freepages_block(). 734 * Remove at a later date when no bug reports exist related to 735 * grouping pages by mobility 736 */ 737 BUG_ON(page_zone(start_page) != page_zone(end_page)); 738 #endif 739 740 for (page = start_page; page <= end_page;) { 741 /* Make sure we are not inadvertently changing nodes */ 742 VM_BUG_ON(page_to_nid(page) != zone_to_nid(zone)); 743 744 if (!pfn_valid_within(page_to_pfn(page))) { 745 page++; 746 continue; 747 } 748 749 if (!PageBuddy(page)) { 750 page++; 751 continue; 752 } 753 754 order = page_order(page); 755 list_del(&page->lru); 756 list_add(&page->lru, 757 &zone->free_area[order].free_list[migratetype]); 758 page += 1 << order; 759 pages_moved += 1 << order; 760 } 761 762 return pages_moved; 763 } 764 765 static int move_freepages_block(struct zone *zone, struct page *page, 766 int migratetype) 767 { 768 unsigned long start_pfn, end_pfn; 769 struct page *start_page, *end_page; 770 771 start_pfn = page_to_pfn(page); 772 start_pfn = start_pfn & ~(pageblock_nr_pages-1); 773 start_page = pfn_to_page(start_pfn); 774 end_page = start_page + pageblock_nr_pages - 1; 775 end_pfn = start_pfn + pageblock_nr_pages - 1; 776 777 /* Do not cross zone boundaries */ 778 if (start_pfn < zone->zone_start_pfn) 779 start_page = page; 780 if (end_pfn >= zone->zone_start_pfn + zone->spanned_pages) 781 return 0; 782 783 return move_freepages(zone, start_page, end_page, migratetype); 784 } 785 786 /* Remove an element from the buddy allocator from the fallback list */ 787 static inline struct page * 788 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype) 789 { 790 struct free_area * area; 791 int current_order; 792 struct page *page; 793 int migratetype, i; 794 795 /* Find the largest possible block of pages in the other list */ 796 for (current_order = MAX_ORDER-1; current_order >= order; 797 --current_order) { 798 for (i = 0; i < MIGRATE_TYPES - 1; i++) { 799 migratetype = fallbacks[start_migratetype][i]; 800 801 /* MIGRATE_RESERVE handled later if necessary */ 802 if (migratetype == MIGRATE_RESERVE) 803 continue; 804 805 area = &(zone->free_area[current_order]); 806 if (list_empty(&area->free_list[migratetype])) 807 continue; 808 809 page = list_entry(area->free_list[migratetype].next, 810 struct page, lru); 811 area->nr_free--; 812 813 /* 814 * If breaking a large block of pages, move all free 815 * pages to the preferred allocation list. If falling 816 * back for a reclaimable kernel allocation, be more 817 * agressive about taking ownership of free pages 818 */ 819 if (unlikely(current_order >= (pageblock_order >> 1)) || 820 start_migratetype == MIGRATE_RECLAIMABLE) { 821 unsigned long pages; 822 pages = move_freepages_block(zone, page, 823 start_migratetype); 824 825 /* Claim the whole block if over half of it is free */ 826 if (pages >= (1 << (pageblock_order-1))) 827 set_pageblock_migratetype(page, 828 start_migratetype); 829 830 migratetype = start_migratetype; 831 } 832 833 /* Remove the page from the freelists */ 834 list_del(&page->lru); 835 rmv_page_order(page); 836 837 if (current_order == pageblock_order) 838 set_pageblock_migratetype(page, 839 start_migratetype); 840 841 expand(zone, page, order, current_order, area, migratetype); 842 return page; 843 } 844 } 845 846 return NULL; 847 } 848 849 /* 850 * Do the hard work of removing an element from the buddy allocator. 851 * Call me with the zone->lock already held. 852 */ 853 static struct page *__rmqueue(struct zone *zone, unsigned int order, 854 int migratetype) 855 { 856 struct page *page; 857 858 retry_reserve: 859 page = __rmqueue_smallest(zone, order, migratetype); 860 861 if (unlikely(!page) && migratetype != MIGRATE_RESERVE) { 862 page = __rmqueue_fallback(zone, order, migratetype); 863 864 /* 865 * Use MIGRATE_RESERVE rather than fail an allocation. goto 866 * is used because __rmqueue_smallest is an inline function 867 * and we want just one call site 868 */ 869 if (!page) { 870 migratetype = MIGRATE_RESERVE; 871 goto retry_reserve; 872 } 873 } 874 875 return page; 876 } 877 878 /* 879 * Obtain a specified number of elements from the buddy allocator, all under 880 * a single hold of the lock, for efficiency. Add them to the supplied list. 881 * Returns the number of new pages which were placed at *list. 882 */ 883 static int rmqueue_bulk(struct zone *zone, unsigned int order, 884 unsigned long count, struct list_head *list, 885 int migratetype, int cold) 886 { 887 int i; 888 889 spin_lock(&zone->lock); 890 for (i = 0; i < count; ++i) { 891 struct page *page = __rmqueue(zone, order, migratetype); 892 if (unlikely(page == NULL)) 893 break; 894 895 /* 896 * Split buddy pages returned by expand() are received here 897 * in physical page order. The page is added to the callers and 898 * list and the list head then moves forward. From the callers 899 * perspective, the linked list is ordered by page number in 900 * some conditions. This is useful for IO devices that can 901 * merge IO requests if the physical pages are ordered 902 * properly. 903 */ 904 if (likely(cold == 0)) 905 list_add(&page->lru, list); 906 else 907 list_add_tail(&page->lru, list); 908 set_page_private(page, migratetype); 909 list = &page->lru; 910 } 911 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order)); 912 spin_unlock(&zone->lock); 913 return i; 914 } 915 916 #ifdef CONFIG_NUMA 917 /* 918 * Called from the vmstat counter updater to drain pagesets of this 919 * currently executing processor on remote nodes after they have 920 * expired. 921 * 922 * Note that this function must be called with the thread pinned to 923 * a single processor. 924 */ 925 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp) 926 { 927 unsigned long flags; 928 int to_drain; 929 930 local_irq_save(flags); 931 if (pcp->count >= pcp->batch) 932 to_drain = pcp->batch; 933 else 934 to_drain = pcp->count; 935 free_pages_bulk(zone, to_drain, &pcp->list, 0); 936 pcp->count -= to_drain; 937 local_irq_restore(flags); 938 } 939 #endif 940 941 /* 942 * Drain pages of the indicated processor. 943 * 944 * The processor must either be the current processor and the 945 * thread pinned to the current processor or a processor that 946 * is not online. 947 */ 948 static void drain_pages(unsigned int cpu) 949 { 950 unsigned long flags; 951 struct zone *zone; 952 953 for_each_populated_zone(zone) { 954 struct per_cpu_pageset *pset; 955 struct per_cpu_pages *pcp; 956 957 pset = zone_pcp(zone, cpu); 958 959 pcp = &pset->pcp; 960 local_irq_save(flags); 961 free_pages_bulk(zone, pcp->count, &pcp->list, 0); 962 pcp->count = 0; 963 local_irq_restore(flags); 964 } 965 } 966 967 /* 968 * Spill all of this CPU's per-cpu pages back into the buddy allocator. 969 */ 970 void drain_local_pages(void *arg) 971 { 972 drain_pages(smp_processor_id()); 973 } 974 975 /* 976 * Spill all the per-cpu pages from all CPUs back into the buddy allocator 977 */ 978 void drain_all_pages(void) 979 { 980 on_each_cpu(drain_local_pages, NULL, 1); 981 } 982 983 #ifdef CONFIG_HIBERNATION 984 985 void mark_free_pages(struct zone *zone) 986 { 987 unsigned long pfn, max_zone_pfn; 988 unsigned long flags; 989 int order, t; 990 struct list_head *curr; 991 992 if (!zone->spanned_pages) 993 return; 994 995 spin_lock_irqsave(&zone->lock, flags); 996 997 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages; 998 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) 999 if (pfn_valid(pfn)) { 1000 struct page *page = pfn_to_page(pfn); 1001 1002 if (!swsusp_page_is_forbidden(page)) 1003 swsusp_unset_page_free(page); 1004 } 1005 1006 for_each_migratetype_order(order, t) { 1007 list_for_each(curr, &zone->free_area[order].free_list[t]) { 1008 unsigned long i; 1009 1010 pfn = page_to_pfn(list_entry(curr, struct page, lru)); 1011 for (i = 0; i < (1UL << order); i++) 1012 swsusp_set_page_free(pfn_to_page(pfn + i)); 1013 } 1014 } 1015 spin_unlock_irqrestore(&zone->lock, flags); 1016 } 1017 #endif /* CONFIG_PM */ 1018 1019 /* 1020 * Free a 0-order page 1021 */ 1022 static void free_hot_cold_page(struct page *page, int cold) 1023 { 1024 struct zone *zone = page_zone(page); 1025 struct per_cpu_pages *pcp; 1026 unsigned long flags; 1027 int wasMlocked = TestClearPageMlocked(page); 1028 1029 kmemcheck_free_shadow(page, 0); 1030 1031 if (PageAnon(page)) 1032 page->mapping = NULL; 1033 if (free_pages_check(page)) 1034 return; 1035 1036 if (!PageHighMem(page)) { 1037 debug_check_no_locks_freed(page_address(page), PAGE_SIZE); 1038 debug_check_no_obj_freed(page_address(page), PAGE_SIZE); 1039 } 1040 arch_free_page(page, 0); 1041 kernel_map_pages(page, 1, 0); 1042 1043 pcp = &zone_pcp(zone, get_cpu())->pcp; 1044 set_page_private(page, get_pageblock_migratetype(page)); 1045 local_irq_save(flags); 1046 if (unlikely(wasMlocked)) 1047 free_page_mlock(page); 1048 __count_vm_event(PGFREE); 1049 1050 if (cold) 1051 list_add_tail(&page->lru, &pcp->list); 1052 else 1053 list_add(&page->lru, &pcp->list); 1054 pcp->count++; 1055 if (pcp->count >= pcp->high) { 1056 free_pages_bulk(zone, pcp->batch, &pcp->list, 0); 1057 pcp->count -= pcp->batch; 1058 } 1059 local_irq_restore(flags); 1060 put_cpu(); 1061 } 1062 1063 void free_hot_page(struct page *page) 1064 { 1065 free_hot_cold_page(page, 0); 1066 } 1067 1068 void free_cold_page(struct page *page) 1069 { 1070 free_hot_cold_page(page, 1); 1071 } 1072 1073 /* 1074 * split_page takes a non-compound higher-order page, and splits it into 1075 * n (1<<order) sub-pages: page[0..n] 1076 * Each sub-page must be freed individually. 1077 * 1078 * Note: this is probably too low level an operation for use in drivers. 1079 * Please consult with lkml before using this in your driver. 1080 */ 1081 void split_page(struct page *page, unsigned int order) 1082 { 1083 int i; 1084 1085 VM_BUG_ON(PageCompound(page)); 1086 VM_BUG_ON(!page_count(page)); 1087 1088 #ifdef CONFIG_KMEMCHECK 1089 /* 1090 * Split shadow pages too, because free(page[0]) would 1091 * otherwise free the whole shadow. 1092 */ 1093 if (kmemcheck_page_is_tracked(page)) 1094 split_page(virt_to_page(page[0].shadow), order); 1095 #endif 1096 1097 for (i = 1; i < (1 << order); i++) 1098 set_page_refcounted(page + i); 1099 } 1100 1101 /* 1102 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But 1103 * we cheat by calling it from here, in the order > 0 path. Saves a branch 1104 * or two. 1105 */ 1106 static inline 1107 struct page *buffered_rmqueue(struct zone *preferred_zone, 1108 struct zone *zone, int order, gfp_t gfp_flags, 1109 int migratetype) 1110 { 1111 unsigned long flags; 1112 struct page *page; 1113 int cold = !!(gfp_flags & __GFP_COLD); 1114 int cpu; 1115 1116 again: 1117 cpu = get_cpu(); 1118 if (likely(order == 0)) { 1119 struct per_cpu_pages *pcp; 1120 1121 pcp = &zone_pcp(zone, cpu)->pcp; 1122 local_irq_save(flags); 1123 if (!pcp->count) { 1124 pcp->count = rmqueue_bulk(zone, 0, 1125 pcp->batch, &pcp->list, 1126 migratetype, cold); 1127 if (unlikely(!pcp->count)) 1128 goto failed; 1129 } 1130 1131 /* Find a page of the appropriate migrate type */ 1132 if (cold) { 1133 list_for_each_entry_reverse(page, &pcp->list, lru) 1134 if (page_private(page) == migratetype) 1135 break; 1136 } else { 1137 list_for_each_entry(page, &pcp->list, lru) 1138 if (page_private(page) == migratetype) 1139 break; 1140 } 1141 1142 /* Allocate more to the pcp list if necessary */ 1143 if (unlikely(&page->lru == &pcp->list)) { 1144 pcp->count += rmqueue_bulk(zone, 0, 1145 pcp->batch, &pcp->list, 1146 migratetype, cold); 1147 page = list_entry(pcp->list.next, struct page, lru); 1148 } 1149 1150 list_del(&page->lru); 1151 pcp->count--; 1152 } else { 1153 if (unlikely(gfp_flags & __GFP_NOFAIL)) { 1154 /* 1155 * __GFP_NOFAIL is not to be used in new code. 1156 * 1157 * All __GFP_NOFAIL callers should be fixed so that they 1158 * properly detect and handle allocation failures. 1159 * 1160 * We most definitely don't want callers attempting to 1161 * allocate greater than order-1 page units with 1162 * __GFP_NOFAIL. 1163 */ 1164 WARN_ON_ONCE(order > 1); 1165 } 1166 spin_lock_irqsave(&zone->lock, flags); 1167 page = __rmqueue(zone, order, migratetype); 1168 __mod_zone_page_state(zone, NR_FREE_PAGES, -(1 << order)); 1169 spin_unlock(&zone->lock); 1170 if (!page) 1171 goto failed; 1172 } 1173 1174 __count_zone_vm_events(PGALLOC, zone, 1 << order); 1175 zone_statistics(preferred_zone, zone); 1176 local_irq_restore(flags); 1177 put_cpu(); 1178 1179 VM_BUG_ON(bad_range(zone, page)); 1180 if (prep_new_page(page, order, gfp_flags)) 1181 goto again; 1182 return page; 1183 1184 failed: 1185 local_irq_restore(flags); 1186 put_cpu(); 1187 return NULL; 1188 } 1189 1190 /* The ALLOC_WMARK bits are used as an index to zone->watermark */ 1191 #define ALLOC_WMARK_MIN WMARK_MIN 1192 #define ALLOC_WMARK_LOW WMARK_LOW 1193 #define ALLOC_WMARK_HIGH WMARK_HIGH 1194 #define ALLOC_NO_WATERMARKS 0x04 /* don't check watermarks at all */ 1195 1196 /* Mask to get the watermark bits */ 1197 #define ALLOC_WMARK_MASK (ALLOC_NO_WATERMARKS-1) 1198 1199 #define ALLOC_HARDER 0x10 /* try to alloc harder */ 1200 #define ALLOC_HIGH 0x20 /* __GFP_HIGH set */ 1201 #define ALLOC_CPUSET 0x40 /* check for correct cpuset */ 1202 1203 #ifdef CONFIG_FAIL_PAGE_ALLOC 1204 1205 static struct fail_page_alloc_attr { 1206 struct fault_attr attr; 1207 1208 u32 ignore_gfp_highmem; 1209 u32 ignore_gfp_wait; 1210 u32 min_order; 1211 1212 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS 1213 1214 struct dentry *ignore_gfp_highmem_file; 1215 struct dentry *ignore_gfp_wait_file; 1216 struct dentry *min_order_file; 1217 1218 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */ 1219 1220 } fail_page_alloc = { 1221 .attr = FAULT_ATTR_INITIALIZER, 1222 .ignore_gfp_wait = 1, 1223 .ignore_gfp_highmem = 1, 1224 .min_order = 1, 1225 }; 1226 1227 static int __init setup_fail_page_alloc(char *str) 1228 { 1229 return setup_fault_attr(&fail_page_alloc.attr, str); 1230 } 1231 __setup("fail_page_alloc=", setup_fail_page_alloc); 1232 1233 static int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) 1234 { 1235 if (order < fail_page_alloc.min_order) 1236 return 0; 1237 if (gfp_mask & __GFP_NOFAIL) 1238 return 0; 1239 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM)) 1240 return 0; 1241 if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT)) 1242 return 0; 1243 1244 return should_fail(&fail_page_alloc.attr, 1 << order); 1245 } 1246 1247 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS 1248 1249 static int __init fail_page_alloc_debugfs(void) 1250 { 1251 mode_t mode = S_IFREG | S_IRUSR | S_IWUSR; 1252 struct dentry *dir; 1253 int err; 1254 1255 err = init_fault_attr_dentries(&fail_page_alloc.attr, 1256 "fail_page_alloc"); 1257 if (err) 1258 return err; 1259 dir = fail_page_alloc.attr.dentries.dir; 1260 1261 fail_page_alloc.ignore_gfp_wait_file = 1262 debugfs_create_bool("ignore-gfp-wait", mode, dir, 1263 &fail_page_alloc.ignore_gfp_wait); 1264 1265 fail_page_alloc.ignore_gfp_highmem_file = 1266 debugfs_create_bool("ignore-gfp-highmem", mode, dir, 1267 &fail_page_alloc.ignore_gfp_highmem); 1268 fail_page_alloc.min_order_file = 1269 debugfs_create_u32("min-order", mode, dir, 1270 &fail_page_alloc.min_order); 1271 1272 if (!fail_page_alloc.ignore_gfp_wait_file || 1273 !fail_page_alloc.ignore_gfp_highmem_file || 1274 !fail_page_alloc.min_order_file) { 1275 err = -ENOMEM; 1276 debugfs_remove(fail_page_alloc.ignore_gfp_wait_file); 1277 debugfs_remove(fail_page_alloc.ignore_gfp_highmem_file); 1278 debugfs_remove(fail_page_alloc.min_order_file); 1279 cleanup_fault_attr_dentries(&fail_page_alloc.attr); 1280 } 1281 1282 return err; 1283 } 1284 1285 late_initcall(fail_page_alloc_debugfs); 1286 1287 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */ 1288 1289 #else /* CONFIG_FAIL_PAGE_ALLOC */ 1290 1291 static inline int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) 1292 { 1293 return 0; 1294 } 1295 1296 #endif /* CONFIG_FAIL_PAGE_ALLOC */ 1297 1298 /* 1299 * Return 1 if free pages are above 'mark'. This takes into account the order 1300 * of the allocation. 1301 */ 1302 int zone_watermark_ok(struct zone *z, int order, unsigned long mark, 1303 int classzone_idx, int alloc_flags) 1304 { 1305 /* free_pages my go negative - that's OK */ 1306 long min = mark; 1307 long free_pages = zone_page_state(z, NR_FREE_PAGES) - (1 << order) + 1; 1308 int o; 1309 1310 if (alloc_flags & ALLOC_HIGH) 1311 min -= min / 2; 1312 if (alloc_flags & ALLOC_HARDER) 1313 min -= min / 4; 1314 1315 if (free_pages <= min + z->lowmem_reserve[classzone_idx]) 1316 return 0; 1317 for (o = 0; o < order; o++) { 1318 /* At the next order, this order's pages become unavailable */ 1319 free_pages -= z->free_area[o].nr_free << o; 1320 1321 /* Require fewer higher order pages to be free */ 1322 min >>= 1; 1323 1324 if (free_pages <= min) 1325 return 0; 1326 } 1327 return 1; 1328 } 1329 1330 #ifdef CONFIG_NUMA 1331 /* 1332 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to 1333 * skip over zones that are not allowed by the cpuset, or that have 1334 * been recently (in last second) found to be nearly full. See further 1335 * comments in mmzone.h. Reduces cache footprint of zonelist scans 1336 * that have to skip over a lot of full or unallowed zones. 1337 * 1338 * If the zonelist cache is present in the passed in zonelist, then 1339 * returns a pointer to the allowed node mask (either the current 1340 * tasks mems_allowed, or node_states[N_HIGH_MEMORY].) 1341 * 1342 * If the zonelist cache is not available for this zonelist, does 1343 * nothing and returns NULL. 1344 * 1345 * If the fullzones BITMAP in the zonelist cache is stale (more than 1346 * a second since last zap'd) then we zap it out (clear its bits.) 1347 * 1348 * We hold off even calling zlc_setup, until after we've checked the 1349 * first zone in the zonelist, on the theory that most allocations will 1350 * be satisfied from that first zone, so best to examine that zone as 1351 * quickly as we can. 1352 */ 1353 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags) 1354 { 1355 struct zonelist_cache *zlc; /* cached zonelist speedup info */ 1356 nodemask_t *allowednodes; /* zonelist_cache approximation */ 1357 1358 zlc = zonelist->zlcache_ptr; 1359 if (!zlc) 1360 return NULL; 1361 1362 if (time_after(jiffies, zlc->last_full_zap + HZ)) { 1363 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST); 1364 zlc->last_full_zap = jiffies; 1365 } 1366 1367 allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ? 1368 &cpuset_current_mems_allowed : 1369 &node_states[N_HIGH_MEMORY]; 1370 return allowednodes; 1371 } 1372 1373 /* 1374 * Given 'z' scanning a zonelist, run a couple of quick checks to see 1375 * if it is worth looking at further for free memory: 1376 * 1) Check that the zone isn't thought to be full (doesn't have its 1377 * bit set in the zonelist_cache fullzones BITMAP). 1378 * 2) Check that the zones node (obtained from the zonelist_cache 1379 * z_to_n[] mapping) is allowed in the passed in allowednodes mask. 1380 * Return true (non-zero) if zone is worth looking at further, or 1381 * else return false (zero) if it is not. 1382 * 1383 * This check -ignores- the distinction between various watermarks, 1384 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is 1385 * found to be full for any variation of these watermarks, it will 1386 * be considered full for up to one second by all requests, unless 1387 * we are so low on memory on all allowed nodes that we are forced 1388 * into the second scan of the zonelist. 1389 * 1390 * In the second scan we ignore this zonelist cache and exactly 1391 * apply the watermarks to all zones, even it is slower to do so. 1392 * We are low on memory in the second scan, and should leave no stone 1393 * unturned looking for a free page. 1394 */ 1395 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z, 1396 nodemask_t *allowednodes) 1397 { 1398 struct zonelist_cache *zlc; /* cached zonelist speedup info */ 1399 int i; /* index of *z in zonelist zones */ 1400 int n; /* node that zone *z is on */ 1401 1402 zlc = zonelist->zlcache_ptr; 1403 if (!zlc) 1404 return 1; 1405 1406 i = z - zonelist->_zonerefs; 1407 n = zlc->z_to_n[i]; 1408 1409 /* This zone is worth trying if it is allowed but not full */ 1410 return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones); 1411 } 1412 1413 /* 1414 * Given 'z' scanning a zonelist, set the corresponding bit in 1415 * zlc->fullzones, so that subsequent attempts to allocate a page 1416 * from that zone don't waste time re-examining it. 1417 */ 1418 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z) 1419 { 1420 struct zonelist_cache *zlc; /* cached zonelist speedup info */ 1421 int i; /* index of *z in zonelist zones */ 1422 1423 zlc = zonelist->zlcache_ptr; 1424 if (!zlc) 1425 return; 1426 1427 i = z - zonelist->_zonerefs; 1428 1429 set_bit(i, zlc->fullzones); 1430 } 1431 1432 #else /* CONFIG_NUMA */ 1433 1434 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags) 1435 { 1436 return NULL; 1437 } 1438 1439 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z, 1440 nodemask_t *allowednodes) 1441 { 1442 return 1; 1443 } 1444 1445 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z) 1446 { 1447 } 1448 #endif /* CONFIG_NUMA */ 1449 1450 /* 1451 * get_page_from_freelist goes through the zonelist trying to allocate 1452 * a page. 1453 */ 1454 static struct page * 1455 get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order, 1456 struct zonelist *zonelist, int high_zoneidx, int alloc_flags, 1457 struct zone *preferred_zone, int migratetype) 1458 { 1459 struct zoneref *z; 1460 struct page *page = NULL; 1461 int classzone_idx; 1462 struct zone *zone; 1463 nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */ 1464 int zlc_active = 0; /* set if using zonelist_cache */ 1465 int did_zlc_setup = 0; /* just call zlc_setup() one time */ 1466 1467 classzone_idx = zone_idx(preferred_zone); 1468 zonelist_scan: 1469 /* 1470 * Scan zonelist, looking for a zone with enough free. 1471 * See also cpuset_zone_allowed() comment in kernel/cpuset.c. 1472 */ 1473 for_each_zone_zonelist_nodemask(zone, z, zonelist, 1474 high_zoneidx, nodemask) { 1475 if (NUMA_BUILD && zlc_active && 1476 !zlc_zone_worth_trying(zonelist, z, allowednodes)) 1477 continue; 1478 if ((alloc_flags & ALLOC_CPUSET) && 1479 !cpuset_zone_allowed_softwall(zone, gfp_mask)) 1480 goto try_next_zone; 1481 1482 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK); 1483 if (!(alloc_flags & ALLOC_NO_WATERMARKS)) { 1484 unsigned long mark; 1485 int ret; 1486 1487 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK]; 1488 if (zone_watermark_ok(zone, order, mark, 1489 classzone_idx, alloc_flags)) 1490 goto try_this_zone; 1491 1492 if (zone_reclaim_mode == 0) 1493 goto this_zone_full; 1494 1495 ret = zone_reclaim(zone, gfp_mask, order); 1496 switch (ret) { 1497 case ZONE_RECLAIM_NOSCAN: 1498 /* did not scan */ 1499 goto try_next_zone; 1500 case ZONE_RECLAIM_FULL: 1501 /* scanned but unreclaimable */ 1502 goto this_zone_full; 1503 default: 1504 /* did we reclaim enough */ 1505 if (!zone_watermark_ok(zone, order, mark, 1506 classzone_idx, alloc_flags)) 1507 goto this_zone_full; 1508 } 1509 } 1510 1511 try_this_zone: 1512 page = buffered_rmqueue(preferred_zone, zone, order, 1513 gfp_mask, migratetype); 1514 if (page) 1515 break; 1516 this_zone_full: 1517 if (NUMA_BUILD) 1518 zlc_mark_zone_full(zonelist, z); 1519 try_next_zone: 1520 if (NUMA_BUILD && !did_zlc_setup && nr_online_nodes > 1) { 1521 /* 1522 * we do zlc_setup after the first zone is tried but only 1523 * if there are multiple nodes make it worthwhile 1524 */ 1525 allowednodes = zlc_setup(zonelist, alloc_flags); 1526 zlc_active = 1; 1527 did_zlc_setup = 1; 1528 } 1529 } 1530 1531 if (unlikely(NUMA_BUILD && page == NULL && zlc_active)) { 1532 /* Disable zlc cache for second zonelist scan */ 1533 zlc_active = 0; 1534 goto zonelist_scan; 1535 } 1536 return page; 1537 } 1538 1539 static inline int 1540 should_alloc_retry(gfp_t gfp_mask, unsigned int order, 1541 unsigned long pages_reclaimed) 1542 { 1543 /* Do not loop if specifically requested */ 1544 if (gfp_mask & __GFP_NORETRY) 1545 return 0; 1546 1547 /* 1548 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER 1549 * means __GFP_NOFAIL, but that may not be true in other 1550 * implementations. 1551 */ 1552 if (order <= PAGE_ALLOC_COSTLY_ORDER) 1553 return 1; 1554 1555 /* 1556 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is 1557 * specified, then we retry until we no longer reclaim any pages 1558 * (above), or we've reclaimed an order of pages at least as 1559 * large as the allocation's order. In both cases, if the 1560 * allocation still fails, we stop retrying. 1561 */ 1562 if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order)) 1563 return 1; 1564 1565 /* 1566 * Don't let big-order allocations loop unless the caller 1567 * explicitly requests that. 1568 */ 1569 if (gfp_mask & __GFP_NOFAIL) 1570 return 1; 1571 1572 return 0; 1573 } 1574 1575 static inline struct page * 1576 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order, 1577 struct zonelist *zonelist, enum zone_type high_zoneidx, 1578 nodemask_t *nodemask, struct zone *preferred_zone, 1579 int migratetype) 1580 { 1581 struct page *page; 1582 1583 /* Acquire the OOM killer lock for the zones in zonelist */ 1584 if (!try_set_zone_oom(zonelist, gfp_mask)) { 1585 schedule_timeout_uninterruptible(1); 1586 return NULL; 1587 } 1588 1589 /* 1590 * Go through the zonelist yet one more time, keep very high watermark 1591 * here, this is only to catch a parallel oom killing, we must fail if 1592 * we're still under heavy pressure. 1593 */ 1594 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, 1595 order, zonelist, high_zoneidx, 1596 ALLOC_WMARK_HIGH|ALLOC_CPUSET, 1597 preferred_zone, migratetype); 1598 if (page) 1599 goto out; 1600 1601 /* The OOM killer will not help higher order allocs */ 1602 if (order > PAGE_ALLOC_COSTLY_ORDER && !(gfp_mask & __GFP_NOFAIL)) 1603 goto out; 1604 1605 /* Exhausted what can be done so it's blamo time */ 1606 out_of_memory(zonelist, gfp_mask, order); 1607 1608 out: 1609 clear_zonelist_oom(zonelist, gfp_mask); 1610 return page; 1611 } 1612 1613 /* The really slow allocator path where we enter direct reclaim */ 1614 static inline struct page * 1615 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order, 1616 struct zonelist *zonelist, enum zone_type high_zoneidx, 1617 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone, 1618 int migratetype, unsigned long *did_some_progress) 1619 { 1620 struct page *page = NULL; 1621 struct reclaim_state reclaim_state; 1622 struct task_struct *p = current; 1623 1624 cond_resched(); 1625 1626 /* We now go into synchronous reclaim */ 1627 cpuset_memory_pressure_bump(); 1628 1629 /* 1630 * The task's cpuset might have expanded its set of allowable nodes 1631 */ 1632 p->flags |= PF_MEMALLOC; 1633 lockdep_set_current_reclaim_state(gfp_mask); 1634 reclaim_state.reclaimed_slab = 0; 1635 p->reclaim_state = &reclaim_state; 1636 1637 *did_some_progress = try_to_free_pages(zonelist, order, gfp_mask, nodemask); 1638 1639 p->reclaim_state = NULL; 1640 lockdep_clear_current_reclaim_state(); 1641 p->flags &= ~PF_MEMALLOC; 1642 1643 cond_resched(); 1644 1645 if (order != 0) 1646 drain_all_pages(); 1647 1648 if (likely(*did_some_progress)) 1649 page = get_page_from_freelist(gfp_mask, nodemask, order, 1650 zonelist, high_zoneidx, 1651 alloc_flags, preferred_zone, 1652 migratetype); 1653 return page; 1654 } 1655 1656 /* 1657 * This is called in the allocator slow-path if the allocation request is of 1658 * sufficient urgency to ignore watermarks and take other desperate measures 1659 */ 1660 static inline struct page * 1661 __alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order, 1662 struct zonelist *zonelist, enum zone_type high_zoneidx, 1663 nodemask_t *nodemask, struct zone *preferred_zone, 1664 int migratetype) 1665 { 1666 struct page *page; 1667 1668 do { 1669 page = get_page_from_freelist(gfp_mask, nodemask, order, 1670 zonelist, high_zoneidx, ALLOC_NO_WATERMARKS, 1671 preferred_zone, migratetype); 1672 1673 if (!page && gfp_mask & __GFP_NOFAIL) 1674 congestion_wait(BLK_RW_ASYNC, HZ/50); 1675 } while (!page && (gfp_mask & __GFP_NOFAIL)); 1676 1677 return page; 1678 } 1679 1680 static inline 1681 void wake_all_kswapd(unsigned int order, struct zonelist *zonelist, 1682 enum zone_type high_zoneidx) 1683 { 1684 struct zoneref *z; 1685 struct zone *zone; 1686 1687 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) 1688 wakeup_kswapd(zone, order); 1689 } 1690 1691 static inline int 1692 gfp_to_alloc_flags(gfp_t gfp_mask) 1693 { 1694 struct task_struct *p = current; 1695 int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET; 1696 const gfp_t wait = gfp_mask & __GFP_WAIT; 1697 1698 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */ 1699 BUILD_BUG_ON(__GFP_HIGH != ALLOC_HIGH); 1700 1701 /* 1702 * The caller may dip into page reserves a bit more if the caller 1703 * cannot run direct reclaim, or if the caller has realtime scheduling 1704 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will 1705 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH). 1706 */ 1707 alloc_flags |= (gfp_mask & __GFP_HIGH); 1708 1709 if (!wait) { 1710 alloc_flags |= ALLOC_HARDER; 1711 /* 1712 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc. 1713 * See also cpuset_zone_allowed() comment in kernel/cpuset.c. 1714 */ 1715 alloc_flags &= ~ALLOC_CPUSET; 1716 } else if (unlikely(rt_task(p))) 1717 alloc_flags |= ALLOC_HARDER; 1718 1719 if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) { 1720 if (!in_interrupt() && 1721 ((p->flags & PF_MEMALLOC) || 1722 unlikely(test_thread_flag(TIF_MEMDIE)))) 1723 alloc_flags |= ALLOC_NO_WATERMARKS; 1724 } 1725 1726 return alloc_flags; 1727 } 1728 1729 static inline struct page * 1730 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order, 1731 struct zonelist *zonelist, enum zone_type high_zoneidx, 1732 nodemask_t *nodemask, struct zone *preferred_zone, 1733 int migratetype) 1734 { 1735 const gfp_t wait = gfp_mask & __GFP_WAIT; 1736 struct page *page = NULL; 1737 int alloc_flags; 1738 unsigned long pages_reclaimed = 0; 1739 unsigned long did_some_progress; 1740 struct task_struct *p = current; 1741 1742 /* 1743 * In the slowpath, we sanity check order to avoid ever trying to 1744 * reclaim >= MAX_ORDER areas which will never succeed. Callers may 1745 * be using allocators in order of preference for an area that is 1746 * too large. 1747 */ 1748 if (order >= MAX_ORDER) { 1749 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN)); 1750 return NULL; 1751 } 1752 1753 /* 1754 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and 1755 * __GFP_NOWARN set) should not cause reclaim since the subsystem 1756 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim 1757 * using a larger set of nodes after it has established that the 1758 * allowed per node queues are empty and that nodes are 1759 * over allocated. 1760 */ 1761 if (NUMA_BUILD && (gfp_mask & GFP_THISNODE) == GFP_THISNODE) 1762 goto nopage; 1763 1764 wake_all_kswapd(order, zonelist, high_zoneidx); 1765 1766 /* 1767 * OK, we're below the kswapd watermark and have kicked background 1768 * reclaim. Now things get more complex, so set up alloc_flags according 1769 * to how we want to proceed. 1770 */ 1771 alloc_flags = gfp_to_alloc_flags(gfp_mask); 1772 1773 restart: 1774 /* This is the last chance, in general, before the goto nopage. */ 1775 page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist, 1776 high_zoneidx, alloc_flags & ~ALLOC_NO_WATERMARKS, 1777 preferred_zone, migratetype); 1778 if (page) 1779 goto got_pg; 1780 1781 rebalance: 1782 /* Allocate without watermarks if the context allows */ 1783 if (alloc_flags & ALLOC_NO_WATERMARKS) { 1784 page = __alloc_pages_high_priority(gfp_mask, order, 1785 zonelist, high_zoneidx, nodemask, 1786 preferred_zone, migratetype); 1787 if (page) 1788 goto got_pg; 1789 } 1790 1791 /* Atomic allocations - we can't balance anything */ 1792 if (!wait) 1793 goto nopage; 1794 1795 /* Avoid recursion of direct reclaim */ 1796 if (p->flags & PF_MEMALLOC) 1797 goto nopage; 1798 1799 /* Avoid allocations with no watermarks from looping endlessly */ 1800 if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL)) 1801 goto nopage; 1802 1803 /* Try direct reclaim and then allocating */ 1804 page = __alloc_pages_direct_reclaim(gfp_mask, order, 1805 zonelist, high_zoneidx, 1806 nodemask, 1807 alloc_flags, preferred_zone, 1808 migratetype, &did_some_progress); 1809 if (page) 1810 goto got_pg; 1811 1812 /* 1813 * If we failed to make any progress reclaiming, then we are 1814 * running out of options and have to consider going OOM 1815 */ 1816 if (!did_some_progress) { 1817 if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) { 1818 if (oom_killer_disabled) 1819 goto nopage; 1820 page = __alloc_pages_may_oom(gfp_mask, order, 1821 zonelist, high_zoneidx, 1822 nodemask, preferred_zone, 1823 migratetype); 1824 if (page) 1825 goto got_pg; 1826 1827 /* 1828 * The OOM killer does not trigger for high-order 1829 * ~__GFP_NOFAIL allocations so if no progress is being 1830 * made, there are no other options and retrying is 1831 * unlikely to help. 1832 */ 1833 if (order > PAGE_ALLOC_COSTLY_ORDER && 1834 !(gfp_mask & __GFP_NOFAIL)) 1835 goto nopage; 1836 1837 goto restart; 1838 } 1839 } 1840 1841 /* Check if we should retry the allocation */ 1842 pages_reclaimed += did_some_progress; 1843 if (should_alloc_retry(gfp_mask, order, pages_reclaimed)) { 1844 /* Wait for some write requests to complete then retry */ 1845 congestion_wait(BLK_RW_ASYNC, HZ/50); 1846 goto rebalance; 1847 } 1848 1849 nopage: 1850 if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) { 1851 printk(KERN_WARNING "%s: page allocation failure." 1852 " order:%d, mode:0x%x\n", 1853 p->comm, order, gfp_mask); 1854 dump_stack(); 1855 show_mem(); 1856 } 1857 return page; 1858 got_pg: 1859 if (kmemcheck_enabled) 1860 kmemcheck_pagealloc_alloc(page, order, gfp_mask); 1861 return page; 1862 1863 } 1864 1865 /* 1866 * This is the 'heart' of the zoned buddy allocator. 1867 */ 1868 struct page * 1869 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order, 1870 struct zonelist *zonelist, nodemask_t *nodemask) 1871 { 1872 enum zone_type high_zoneidx = gfp_zone(gfp_mask); 1873 struct zone *preferred_zone; 1874 struct page *page; 1875 int migratetype = allocflags_to_migratetype(gfp_mask); 1876 1877 gfp_mask &= gfp_allowed_mask; 1878 1879 lockdep_trace_alloc(gfp_mask); 1880 1881 might_sleep_if(gfp_mask & __GFP_WAIT); 1882 1883 if (should_fail_alloc_page(gfp_mask, order)) 1884 return NULL; 1885 1886 /* 1887 * Check the zones suitable for the gfp_mask contain at least one 1888 * valid zone. It's possible to have an empty zonelist as a result 1889 * of GFP_THISNODE and a memoryless node 1890 */ 1891 if (unlikely(!zonelist->_zonerefs->zone)) 1892 return NULL; 1893 1894 /* The preferred zone is used for statistics later */ 1895 first_zones_zonelist(zonelist, high_zoneidx, nodemask, &preferred_zone); 1896 if (!preferred_zone) 1897 return NULL; 1898 1899 /* First allocation attempt */ 1900 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order, 1901 zonelist, high_zoneidx, ALLOC_WMARK_LOW|ALLOC_CPUSET, 1902 preferred_zone, migratetype); 1903 if (unlikely(!page)) 1904 page = __alloc_pages_slowpath(gfp_mask, order, 1905 zonelist, high_zoneidx, nodemask, 1906 preferred_zone, migratetype); 1907 1908 return page; 1909 } 1910 EXPORT_SYMBOL(__alloc_pages_nodemask); 1911 1912 /* 1913 * Common helper functions. 1914 */ 1915 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order) 1916 { 1917 struct page * page; 1918 page = alloc_pages(gfp_mask, order); 1919 if (!page) 1920 return 0; 1921 return (unsigned long) page_address(page); 1922 } 1923 1924 EXPORT_SYMBOL(__get_free_pages); 1925 1926 unsigned long get_zeroed_page(gfp_t gfp_mask) 1927 { 1928 struct page * page; 1929 1930 /* 1931 * get_zeroed_page() returns a 32-bit address, which cannot represent 1932 * a highmem page 1933 */ 1934 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0); 1935 1936 page = alloc_pages(gfp_mask | __GFP_ZERO, 0); 1937 if (page) 1938 return (unsigned long) page_address(page); 1939 return 0; 1940 } 1941 1942 EXPORT_SYMBOL(get_zeroed_page); 1943 1944 void __pagevec_free(struct pagevec *pvec) 1945 { 1946 int i = pagevec_count(pvec); 1947 1948 while (--i >= 0) 1949 free_hot_cold_page(pvec->pages[i], pvec->cold); 1950 } 1951 1952 void __free_pages(struct page *page, unsigned int order) 1953 { 1954 if (put_page_testzero(page)) { 1955 if (order == 0) 1956 free_hot_page(page); 1957 else 1958 __free_pages_ok(page, order); 1959 } 1960 } 1961 1962 EXPORT_SYMBOL(__free_pages); 1963 1964 void free_pages(unsigned long addr, unsigned int order) 1965 { 1966 if (addr != 0) { 1967 VM_BUG_ON(!virt_addr_valid((void *)addr)); 1968 __free_pages(virt_to_page((void *)addr), order); 1969 } 1970 } 1971 1972 EXPORT_SYMBOL(free_pages); 1973 1974 /** 1975 * alloc_pages_exact - allocate an exact number physically-contiguous pages. 1976 * @size: the number of bytes to allocate 1977 * @gfp_mask: GFP flags for the allocation 1978 * 1979 * This function is similar to alloc_pages(), except that it allocates the 1980 * minimum number of pages to satisfy the request. alloc_pages() can only 1981 * allocate memory in power-of-two pages. 1982 * 1983 * This function is also limited by MAX_ORDER. 1984 * 1985 * Memory allocated by this function must be released by free_pages_exact(). 1986 */ 1987 void *alloc_pages_exact(size_t size, gfp_t gfp_mask) 1988 { 1989 unsigned int order = get_order(size); 1990 unsigned long addr; 1991 1992 addr = __get_free_pages(gfp_mask, order); 1993 if (addr) { 1994 unsigned long alloc_end = addr + (PAGE_SIZE << order); 1995 unsigned long used = addr + PAGE_ALIGN(size); 1996 1997 split_page(virt_to_page((void *)addr), order); 1998 while (used < alloc_end) { 1999 free_page(used); 2000 used += PAGE_SIZE; 2001 } 2002 } 2003 2004 return (void *)addr; 2005 } 2006 EXPORT_SYMBOL(alloc_pages_exact); 2007 2008 /** 2009 * free_pages_exact - release memory allocated via alloc_pages_exact() 2010 * @virt: the value returned by alloc_pages_exact. 2011 * @size: size of allocation, same value as passed to alloc_pages_exact(). 2012 * 2013 * Release the memory allocated by a previous call to alloc_pages_exact. 2014 */ 2015 void free_pages_exact(void *virt, size_t size) 2016 { 2017 unsigned long addr = (unsigned long)virt; 2018 unsigned long end = addr + PAGE_ALIGN(size); 2019 2020 while (addr < end) { 2021 free_page(addr); 2022 addr += PAGE_SIZE; 2023 } 2024 } 2025 EXPORT_SYMBOL(free_pages_exact); 2026 2027 static unsigned int nr_free_zone_pages(int offset) 2028 { 2029 struct zoneref *z; 2030 struct zone *zone; 2031 2032 /* Just pick one node, since fallback list is circular */ 2033 unsigned int sum = 0; 2034 2035 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL); 2036 2037 for_each_zone_zonelist(zone, z, zonelist, offset) { 2038 unsigned long size = zone->present_pages; 2039 unsigned long high = high_wmark_pages(zone); 2040 if (size > high) 2041 sum += size - high; 2042 } 2043 2044 return sum; 2045 } 2046 2047 /* 2048 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL 2049 */ 2050 unsigned int nr_free_buffer_pages(void) 2051 { 2052 return nr_free_zone_pages(gfp_zone(GFP_USER)); 2053 } 2054 EXPORT_SYMBOL_GPL(nr_free_buffer_pages); 2055 2056 /* 2057 * Amount of free RAM allocatable within all zones 2058 */ 2059 unsigned int nr_free_pagecache_pages(void) 2060 { 2061 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE)); 2062 } 2063 2064 static inline void show_node(struct zone *zone) 2065 { 2066 if (NUMA_BUILD) 2067 printk("Node %d ", zone_to_nid(zone)); 2068 } 2069 2070 void si_meminfo(struct sysinfo *val) 2071 { 2072 val->totalram = totalram_pages; 2073 val->sharedram = 0; 2074 val->freeram = global_page_state(NR_FREE_PAGES); 2075 val->bufferram = nr_blockdev_pages(); 2076 val->totalhigh = totalhigh_pages; 2077 val->freehigh = nr_free_highpages(); 2078 val->mem_unit = PAGE_SIZE; 2079 } 2080 2081 EXPORT_SYMBOL(si_meminfo); 2082 2083 #ifdef CONFIG_NUMA 2084 void si_meminfo_node(struct sysinfo *val, int nid) 2085 { 2086 pg_data_t *pgdat = NODE_DATA(nid); 2087 2088 val->totalram = pgdat->node_present_pages; 2089 val->freeram = node_page_state(nid, NR_FREE_PAGES); 2090 #ifdef CONFIG_HIGHMEM 2091 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages; 2092 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM], 2093 NR_FREE_PAGES); 2094 #else 2095 val->totalhigh = 0; 2096 val->freehigh = 0; 2097 #endif 2098 val->mem_unit = PAGE_SIZE; 2099 } 2100 #endif 2101 2102 #define K(x) ((x) << (PAGE_SHIFT-10)) 2103 2104 /* 2105 * Show free area list (used inside shift_scroll-lock stuff) 2106 * We also calculate the percentage fragmentation. We do this by counting the 2107 * memory on each free list with the exception of the first item on the list. 2108 */ 2109 void show_free_areas(void) 2110 { 2111 int cpu; 2112 struct zone *zone; 2113 2114 for_each_populated_zone(zone) { 2115 show_node(zone); 2116 printk("%s per-cpu:\n", zone->name); 2117 2118 for_each_online_cpu(cpu) { 2119 struct per_cpu_pageset *pageset; 2120 2121 pageset = zone_pcp(zone, cpu); 2122 2123 printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n", 2124 cpu, pageset->pcp.high, 2125 pageset->pcp.batch, pageset->pcp.count); 2126 } 2127 } 2128 2129 printk("Active_anon:%lu active_file:%lu inactive_anon:%lu\n" 2130 " inactive_file:%lu" 2131 " unevictable:%lu" 2132 " dirty:%lu writeback:%lu unstable:%lu\n" 2133 " free:%lu slab:%lu mapped:%lu pagetables:%lu bounce:%lu\n", 2134 global_page_state(NR_ACTIVE_ANON), 2135 global_page_state(NR_ACTIVE_FILE), 2136 global_page_state(NR_INACTIVE_ANON), 2137 global_page_state(NR_INACTIVE_FILE), 2138 global_page_state(NR_UNEVICTABLE), 2139 global_page_state(NR_FILE_DIRTY), 2140 global_page_state(NR_WRITEBACK), 2141 global_page_state(NR_UNSTABLE_NFS), 2142 global_page_state(NR_FREE_PAGES), 2143 global_page_state(NR_SLAB_RECLAIMABLE) + 2144 global_page_state(NR_SLAB_UNRECLAIMABLE), 2145 global_page_state(NR_FILE_MAPPED), 2146 global_page_state(NR_PAGETABLE), 2147 global_page_state(NR_BOUNCE)); 2148 2149 for_each_populated_zone(zone) { 2150 int i; 2151 2152 show_node(zone); 2153 printk("%s" 2154 " free:%lukB" 2155 " min:%lukB" 2156 " low:%lukB" 2157 " high:%lukB" 2158 " active_anon:%lukB" 2159 " inactive_anon:%lukB" 2160 " active_file:%lukB" 2161 " inactive_file:%lukB" 2162 " unevictable:%lukB" 2163 " present:%lukB" 2164 " pages_scanned:%lu" 2165 " all_unreclaimable? %s" 2166 "\n", 2167 zone->name, 2168 K(zone_page_state(zone, NR_FREE_PAGES)), 2169 K(min_wmark_pages(zone)), 2170 K(low_wmark_pages(zone)), 2171 K(high_wmark_pages(zone)), 2172 K(zone_page_state(zone, NR_ACTIVE_ANON)), 2173 K(zone_page_state(zone, NR_INACTIVE_ANON)), 2174 K(zone_page_state(zone, NR_ACTIVE_FILE)), 2175 K(zone_page_state(zone, NR_INACTIVE_FILE)), 2176 K(zone_page_state(zone, NR_UNEVICTABLE)), 2177 K(zone->present_pages), 2178 zone->pages_scanned, 2179 (zone_is_all_unreclaimable(zone) ? "yes" : "no") 2180 ); 2181 printk("lowmem_reserve[]:"); 2182 for (i = 0; i < MAX_NR_ZONES; i++) 2183 printk(" %lu", zone->lowmem_reserve[i]); 2184 printk("\n"); 2185 } 2186 2187 for_each_populated_zone(zone) { 2188 unsigned long nr[MAX_ORDER], flags, order, total = 0; 2189 2190 show_node(zone); 2191 printk("%s: ", zone->name); 2192 2193 spin_lock_irqsave(&zone->lock, flags); 2194 for (order = 0; order < MAX_ORDER; order++) { 2195 nr[order] = zone->free_area[order].nr_free; 2196 total += nr[order] << order; 2197 } 2198 spin_unlock_irqrestore(&zone->lock, flags); 2199 for (order = 0; order < MAX_ORDER; order++) 2200 printk("%lu*%lukB ", nr[order], K(1UL) << order); 2201 printk("= %lukB\n", K(total)); 2202 } 2203 2204 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES)); 2205 2206 show_swap_cache_info(); 2207 } 2208 2209 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref) 2210 { 2211 zoneref->zone = zone; 2212 zoneref->zone_idx = zone_idx(zone); 2213 } 2214 2215 /* 2216 * Builds allocation fallback zone lists. 2217 * 2218 * Add all populated zones of a node to the zonelist. 2219 */ 2220 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist, 2221 int nr_zones, enum zone_type zone_type) 2222 { 2223 struct zone *zone; 2224 2225 BUG_ON(zone_type >= MAX_NR_ZONES); 2226 zone_type++; 2227 2228 do { 2229 zone_type--; 2230 zone = pgdat->node_zones + zone_type; 2231 if (populated_zone(zone)) { 2232 zoneref_set_zone(zone, 2233 &zonelist->_zonerefs[nr_zones++]); 2234 check_highest_zone(zone_type); 2235 } 2236 2237 } while (zone_type); 2238 return nr_zones; 2239 } 2240 2241 2242 /* 2243 * zonelist_order: 2244 * 0 = automatic detection of better ordering. 2245 * 1 = order by ([node] distance, -zonetype) 2246 * 2 = order by (-zonetype, [node] distance) 2247 * 2248 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create 2249 * the same zonelist. So only NUMA can configure this param. 2250 */ 2251 #define ZONELIST_ORDER_DEFAULT 0 2252 #define ZONELIST_ORDER_NODE 1 2253 #define ZONELIST_ORDER_ZONE 2 2254 2255 /* zonelist order in the kernel. 2256 * set_zonelist_order() will set this to NODE or ZONE. 2257 */ 2258 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT; 2259 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"}; 2260 2261 2262 #ifdef CONFIG_NUMA 2263 /* The value user specified ....changed by config */ 2264 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT; 2265 /* string for sysctl */ 2266 #define NUMA_ZONELIST_ORDER_LEN 16 2267 char numa_zonelist_order[16] = "default"; 2268 2269 /* 2270 * interface for configure zonelist ordering. 2271 * command line option "numa_zonelist_order" 2272 * = "[dD]efault - default, automatic configuration. 2273 * = "[nN]ode - order by node locality, then by zone within node 2274 * = "[zZ]one - order by zone, then by locality within zone 2275 */ 2276 2277 static int __parse_numa_zonelist_order(char *s) 2278 { 2279 if (*s == 'd' || *s == 'D') { 2280 user_zonelist_order = ZONELIST_ORDER_DEFAULT; 2281 } else if (*s == 'n' || *s == 'N') { 2282 user_zonelist_order = ZONELIST_ORDER_NODE; 2283 } else if (*s == 'z' || *s == 'Z') { 2284 user_zonelist_order = ZONELIST_ORDER_ZONE; 2285 } else { 2286 printk(KERN_WARNING 2287 "Ignoring invalid numa_zonelist_order value: " 2288 "%s\n", s); 2289 return -EINVAL; 2290 } 2291 return 0; 2292 } 2293 2294 static __init int setup_numa_zonelist_order(char *s) 2295 { 2296 if (s) 2297 return __parse_numa_zonelist_order(s); 2298 return 0; 2299 } 2300 early_param("numa_zonelist_order", setup_numa_zonelist_order); 2301 2302 /* 2303 * sysctl handler for numa_zonelist_order 2304 */ 2305 int numa_zonelist_order_handler(ctl_table *table, int write, 2306 struct file *file, void __user *buffer, size_t *length, 2307 loff_t *ppos) 2308 { 2309 char saved_string[NUMA_ZONELIST_ORDER_LEN]; 2310 int ret; 2311 2312 if (write) 2313 strncpy(saved_string, (char*)table->data, 2314 NUMA_ZONELIST_ORDER_LEN); 2315 ret = proc_dostring(table, write, file, buffer, length, ppos); 2316 if (ret) 2317 return ret; 2318 if (write) { 2319 int oldval = user_zonelist_order; 2320 if (__parse_numa_zonelist_order((char*)table->data)) { 2321 /* 2322 * bogus value. restore saved string 2323 */ 2324 strncpy((char*)table->data, saved_string, 2325 NUMA_ZONELIST_ORDER_LEN); 2326 user_zonelist_order = oldval; 2327 } else if (oldval != user_zonelist_order) 2328 build_all_zonelists(); 2329 } 2330 return 0; 2331 } 2332 2333 2334 #define MAX_NODE_LOAD (nr_online_nodes) 2335 static int node_load[MAX_NUMNODES]; 2336 2337 /** 2338 * find_next_best_node - find the next node that should appear in a given node's fallback list 2339 * @node: node whose fallback list we're appending 2340 * @used_node_mask: nodemask_t of already used nodes 2341 * 2342 * We use a number of factors to determine which is the next node that should 2343 * appear on a given node's fallback list. The node should not have appeared 2344 * already in @node's fallback list, and it should be the next closest node 2345 * according to the distance array (which contains arbitrary distance values 2346 * from each node to each node in the system), and should also prefer nodes 2347 * with no CPUs, since presumably they'll have very little allocation pressure 2348 * on them otherwise. 2349 * It returns -1 if no node is found. 2350 */ 2351 static int find_next_best_node(int node, nodemask_t *used_node_mask) 2352 { 2353 int n, val; 2354 int min_val = INT_MAX; 2355 int best_node = -1; 2356 const struct cpumask *tmp = cpumask_of_node(0); 2357 2358 /* Use the local node if we haven't already */ 2359 if (!node_isset(node, *used_node_mask)) { 2360 node_set(node, *used_node_mask); 2361 return node; 2362 } 2363 2364 for_each_node_state(n, N_HIGH_MEMORY) { 2365 2366 /* Don't want a node to appear more than once */ 2367 if (node_isset(n, *used_node_mask)) 2368 continue; 2369 2370 /* Use the distance array to find the distance */ 2371 val = node_distance(node, n); 2372 2373 /* Penalize nodes under us ("prefer the next node") */ 2374 val += (n < node); 2375 2376 /* Give preference to headless and unused nodes */ 2377 tmp = cpumask_of_node(n); 2378 if (!cpumask_empty(tmp)) 2379 val += PENALTY_FOR_NODE_WITH_CPUS; 2380 2381 /* Slight preference for less loaded node */ 2382 val *= (MAX_NODE_LOAD*MAX_NUMNODES); 2383 val += node_load[n]; 2384 2385 if (val < min_val) { 2386 min_val = val; 2387 best_node = n; 2388 } 2389 } 2390 2391 if (best_node >= 0) 2392 node_set(best_node, *used_node_mask); 2393 2394 return best_node; 2395 } 2396 2397 2398 /* 2399 * Build zonelists ordered by node and zones within node. 2400 * This results in maximum locality--normal zone overflows into local 2401 * DMA zone, if any--but risks exhausting DMA zone. 2402 */ 2403 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node) 2404 { 2405 int j; 2406 struct zonelist *zonelist; 2407 2408 zonelist = &pgdat->node_zonelists[0]; 2409 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++) 2410 ; 2411 j = build_zonelists_node(NODE_DATA(node), zonelist, j, 2412 MAX_NR_ZONES - 1); 2413 zonelist->_zonerefs[j].zone = NULL; 2414 zonelist->_zonerefs[j].zone_idx = 0; 2415 } 2416 2417 /* 2418 * Build gfp_thisnode zonelists 2419 */ 2420 static void build_thisnode_zonelists(pg_data_t *pgdat) 2421 { 2422 int j; 2423 struct zonelist *zonelist; 2424 2425 zonelist = &pgdat->node_zonelists[1]; 2426 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1); 2427 zonelist->_zonerefs[j].zone = NULL; 2428 zonelist->_zonerefs[j].zone_idx = 0; 2429 } 2430 2431 /* 2432 * Build zonelists ordered by zone and nodes within zones. 2433 * This results in conserving DMA zone[s] until all Normal memory is 2434 * exhausted, but results in overflowing to remote node while memory 2435 * may still exist in local DMA zone. 2436 */ 2437 static int node_order[MAX_NUMNODES]; 2438 2439 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes) 2440 { 2441 int pos, j, node; 2442 int zone_type; /* needs to be signed */ 2443 struct zone *z; 2444 struct zonelist *zonelist; 2445 2446 zonelist = &pgdat->node_zonelists[0]; 2447 pos = 0; 2448 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) { 2449 for (j = 0; j < nr_nodes; j++) { 2450 node = node_order[j]; 2451 z = &NODE_DATA(node)->node_zones[zone_type]; 2452 if (populated_zone(z)) { 2453 zoneref_set_zone(z, 2454 &zonelist->_zonerefs[pos++]); 2455 check_highest_zone(zone_type); 2456 } 2457 } 2458 } 2459 zonelist->_zonerefs[pos].zone = NULL; 2460 zonelist->_zonerefs[pos].zone_idx = 0; 2461 } 2462 2463 static int default_zonelist_order(void) 2464 { 2465 int nid, zone_type; 2466 unsigned long low_kmem_size,total_size; 2467 struct zone *z; 2468 int average_size; 2469 /* 2470 * ZONE_DMA and ZONE_DMA32 can be very small area in the sytem. 2471 * If they are really small and used heavily, the system can fall 2472 * into OOM very easily. 2473 * This function detect ZONE_DMA/DMA32 size and confgigures zone order. 2474 */ 2475 /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */ 2476 low_kmem_size = 0; 2477 total_size = 0; 2478 for_each_online_node(nid) { 2479 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) { 2480 z = &NODE_DATA(nid)->node_zones[zone_type]; 2481 if (populated_zone(z)) { 2482 if (zone_type < ZONE_NORMAL) 2483 low_kmem_size += z->present_pages; 2484 total_size += z->present_pages; 2485 } 2486 } 2487 } 2488 if (!low_kmem_size || /* there are no DMA area. */ 2489 low_kmem_size > total_size/2) /* DMA/DMA32 is big. */ 2490 return ZONELIST_ORDER_NODE; 2491 /* 2492 * look into each node's config. 2493 * If there is a node whose DMA/DMA32 memory is very big area on 2494 * local memory, NODE_ORDER may be suitable. 2495 */ 2496 average_size = total_size / 2497 (nodes_weight(node_states[N_HIGH_MEMORY]) + 1); 2498 for_each_online_node(nid) { 2499 low_kmem_size = 0; 2500 total_size = 0; 2501 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) { 2502 z = &NODE_DATA(nid)->node_zones[zone_type]; 2503 if (populated_zone(z)) { 2504 if (zone_type < ZONE_NORMAL) 2505 low_kmem_size += z->present_pages; 2506 total_size += z->present_pages; 2507 } 2508 } 2509 if (low_kmem_size && 2510 total_size > average_size && /* ignore small node */ 2511 low_kmem_size > total_size * 70/100) 2512 return ZONELIST_ORDER_NODE; 2513 } 2514 return ZONELIST_ORDER_ZONE; 2515 } 2516 2517 static void set_zonelist_order(void) 2518 { 2519 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT) 2520 current_zonelist_order = default_zonelist_order(); 2521 else 2522 current_zonelist_order = user_zonelist_order; 2523 } 2524 2525 static void build_zonelists(pg_data_t *pgdat) 2526 { 2527 int j, node, load; 2528 enum zone_type i; 2529 nodemask_t used_mask; 2530 int local_node, prev_node; 2531 struct zonelist *zonelist; 2532 int order = current_zonelist_order; 2533 2534 /* initialize zonelists */ 2535 for (i = 0; i < MAX_ZONELISTS; i++) { 2536 zonelist = pgdat->node_zonelists + i; 2537 zonelist->_zonerefs[0].zone = NULL; 2538 zonelist->_zonerefs[0].zone_idx = 0; 2539 } 2540 2541 /* NUMA-aware ordering of nodes */ 2542 local_node = pgdat->node_id; 2543 load = nr_online_nodes; 2544 prev_node = local_node; 2545 nodes_clear(used_mask); 2546 2547 memset(node_load, 0, sizeof(node_load)); 2548 memset(node_order, 0, sizeof(node_order)); 2549 j = 0; 2550 2551 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) { 2552 int distance = node_distance(local_node, node); 2553 2554 /* 2555 * If another node is sufficiently far away then it is better 2556 * to reclaim pages in a zone before going off node. 2557 */ 2558 if (distance > RECLAIM_DISTANCE) 2559 zone_reclaim_mode = 1; 2560 2561 /* 2562 * We don't want to pressure a particular node. 2563 * So adding penalty to the first node in same 2564 * distance group to make it round-robin. 2565 */ 2566 if (distance != node_distance(local_node, prev_node)) 2567 node_load[node] = load; 2568 2569 prev_node = node; 2570 load--; 2571 if (order == ZONELIST_ORDER_NODE) 2572 build_zonelists_in_node_order(pgdat, node); 2573 else 2574 node_order[j++] = node; /* remember order */ 2575 } 2576 2577 if (order == ZONELIST_ORDER_ZONE) { 2578 /* calculate node order -- i.e., DMA last! */ 2579 build_zonelists_in_zone_order(pgdat, j); 2580 } 2581 2582 build_thisnode_zonelists(pgdat); 2583 } 2584 2585 /* Construct the zonelist performance cache - see further mmzone.h */ 2586 static void build_zonelist_cache(pg_data_t *pgdat) 2587 { 2588 struct zonelist *zonelist; 2589 struct zonelist_cache *zlc; 2590 struct zoneref *z; 2591 2592 zonelist = &pgdat->node_zonelists[0]; 2593 zonelist->zlcache_ptr = zlc = &zonelist->zlcache; 2594 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST); 2595 for (z = zonelist->_zonerefs; z->zone; z++) 2596 zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z); 2597 } 2598 2599 2600 #else /* CONFIG_NUMA */ 2601 2602 static void set_zonelist_order(void) 2603 { 2604 current_zonelist_order = ZONELIST_ORDER_ZONE; 2605 } 2606 2607 static void build_zonelists(pg_data_t *pgdat) 2608 { 2609 int node, local_node; 2610 enum zone_type j; 2611 struct zonelist *zonelist; 2612 2613 local_node = pgdat->node_id; 2614 2615 zonelist = &pgdat->node_zonelists[0]; 2616 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1); 2617 2618 /* 2619 * Now we build the zonelist so that it contains the zones 2620 * of all the other nodes. 2621 * We don't want to pressure a particular node, so when 2622 * building the zones for node N, we make sure that the 2623 * zones coming right after the local ones are those from 2624 * node N+1 (modulo N) 2625 */ 2626 for (node = local_node + 1; node < MAX_NUMNODES; node++) { 2627 if (!node_online(node)) 2628 continue; 2629 j = build_zonelists_node(NODE_DATA(node), zonelist, j, 2630 MAX_NR_ZONES - 1); 2631 } 2632 for (node = 0; node < local_node; node++) { 2633 if (!node_online(node)) 2634 continue; 2635 j = build_zonelists_node(NODE_DATA(node), zonelist, j, 2636 MAX_NR_ZONES - 1); 2637 } 2638 2639 zonelist->_zonerefs[j].zone = NULL; 2640 zonelist->_zonerefs[j].zone_idx = 0; 2641 } 2642 2643 /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */ 2644 static void build_zonelist_cache(pg_data_t *pgdat) 2645 { 2646 pgdat->node_zonelists[0].zlcache_ptr = NULL; 2647 } 2648 2649 #endif /* CONFIG_NUMA */ 2650 2651 /* return values int ....just for stop_machine() */ 2652 static int __build_all_zonelists(void *dummy) 2653 { 2654 int nid; 2655 2656 for_each_online_node(nid) { 2657 pg_data_t *pgdat = NODE_DATA(nid); 2658 2659 build_zonelists(pgdat); 2660 build_zonelist_cache(pgdat); 2661 } 2662 return 0; 2663 } 2664 2665 void build_all_zonelists(void) 2666 { 2667 set_zonelist_order(); 2668 2669 if (system_state == SYSTEM_BOOTING) { 2670 __build_all_zonelists(NULL); 2671 mminit_verify_zonelist(); 2672 cpuset_init_current_mems_allowed(); 2673 } else { 2674 /* we have to stop all cpus to guarantee there is no user 2675 of zonelist */ 2676 stop_machine(__build_all_zonelists, NULL, NULL); 2677 /* cpuset refresh routine should be here */ 2678 } 2679 vm_total_pages = nr_free_pagecache_pages(); 2680 /* 2681 * Disable grouping by mobility if the number of pages in the 2682 * system is too low to allow the mechanism to work. It would be 2683 * more accurate, but expensive to check per-zone. This check is 2684 * made on memory-hotadd so a system can start with mobility 2685 * disabled and enable it later 2686 */ 2687 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES)) 2688 page_group_by_mobility_disabled = 1; 2689 else 2690 page_group_by_mobility_disabled = 0; 2691 2692 printk("Built %i zonelists in %s order, mobility grouping %s. " 2693 "Total pages: %ld\n", 2694 nr_online_nodes, 2695 zonelist_order_name[current_zonelist_order], 2696 page_group_by_mobility_disabled ? "off" : "on", 2697 vm_total_pages); 2698 #ifdef CONFIG_NUMA 2699 printk("Policy zone: %s\n", zone_names[policy_zone]); 2700 #endif 2701 } 2702 2703 /* 2704 * Helper functions to size the waitqueue hash table. 2705 * Essentially these want to choose hash table sizes sufficiently 2706 * large so that collisions trying to wait on pages are rare. 2707 * But in fact, the number of active page waitqueues on typical 2708 * systems is ridiculously low, less than 200. So this is even 2709 * conservative, even though it seems large. 2710 * 2711 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to 2712 * waitqueues, i.e. the size of the waitq table given the number of pages. 2713 */ 2714 #define PAGES_PER_WAITQUEUE 256 2715 2716 #ifndef CONFIG_MEMORY_HOTPLUG 2717 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages) 2718 { 2719 unsigned long size = 1; 2720 2721 pages /= PAGES_PER_WAITQUEUE; 2722 2723 while (size < pages) 2724 size <<= 1; 2725 2726 /* 2727 * Once we have dozens or even hundreds of threads sleeping 2728 * on IO we've got bigger problems than wait queue collision. 2729 * Limit the size of the wait table to a reasonable size. 2730 */ 2731 size = min(size, 4096UL); 2732 2733 return max(size, 4UL); 2734 } 2735 #else 2736 /* 2737 * A zone's size might be changed by hot-add, so it is not possible to determine 2738 * a suitable size for its wait_table. So we use the maximum size now. 2739 * 2740 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie: 2741 * 2742 * i386 (preemption config) : 4096 x 16 = 64Kbyte. 2743 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte. 2744 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte. 2745 * 2746 * The maximum entries are prepared when a zone's memory is (512K + 256) pages 2747 * or more by the traditional way. (See above). It equals: 2748 * 2749 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte. 2750 * ia64(16K page size) : = ( 8G + 4M)byte. 2751 * powerpc (64K page size) : = (32G +16M)byte. 2752 */ 2753 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages) 2754 { 2755 return 4096UL; 2756 } 2757 #endif 2758 2759 /* 2760 * This is an integer logarithm so that shifts can be used later 2761 * to extract the more random high bits from the multiplicative 2762 * hash function before the remainder is taken. 2763 */ 2764 static inline unsigned long wait_table_bits(unsigned long size) 2765 { 2766 return ffz(~size); 2767 } 2768 2769 #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1)) 2770 2771 /* 2772 * Mark a number of pageblocks as MIGRATE_RESERVE. The number 2773 * of blocks reserved is based on min_wmark_pages(zone). The memory within 2774 * the reserve will tend to store contiguous free pages. Setting min_free_kbytes 2775 * higher will lead to a bigger reserve which will get freed as contiguous 2776 * blocks as reclaim kicks in 2777 */ 2778 static void setup_zone_migrate_reserve(struct zone *zone) 2779 { 2780 unsigned long start_pfn, pfn, end_pfn; 2781 struct page *page; 2782 unsigned long reserve, block_migratetype; 2783 2784 /* Get the start pfn, end pfn and the number of blocks to reserve */ 2785 start_pfn = zone->zone_start_pfn; 2786 end_pfn = start_pfn + zone->spanned_pages; 2787 reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >> 2788 pageblock_order; 2789 2790 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) { 2791 if (!pfn_valid(pfn)) 2792 continue; 2793 page = pfn_to_page(pfn); 2794 2795 /* Watch out for overlapping nodes */ 2796 if (page_to_nid(page) != zone_to_nid(zone)) 2797 continue; 2798 2799 /* Blocks with reserved pages will never free, skip them. */ 2800 if (PageReserved(page)) 2801 continue; 2802 2803 block_migratetype = get_pageblock_migratetype(page); 2804 2805 /* If this block is reserved, account for it */ 2806 if (reserve > 0 && block_migratetype == MIGRATE_RESERVE) { 2807 reserve--; 2808 continue; 2809 } 2810 2811 /* Suitable for reserving if this block is movable */ 2812 if (reserve > 0 && block_migratetype == MIGRATE_MOVABLE) { 2813 set_pageblock_migratetype(page, MIGRATE_RESERVE); 2814 move_freepages_block(zone, page, MIGRATE_RESERVE); 2815 reserve--; 2816 continue; 2817 } 2818 2819 /* 2820 * If the reserve is met and this is a previous reserved block, 2821 * take it back 2822 */ 2823 if (block_migratetype == MIGRATE_RESERVE) { 2824 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 2825 move_freepages_block(zone, page, MIGRATE_MOVABLE); 2826 } 2827 } 2828 } 2829 2830 /* 2831 * Initially all pages are reserved - free ones are freed 2832 * up by free_all_bootmem() once the early boot process is 2833 * done. Non-atomic initialization, single-pass. 2834 */ 2835 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone, 2836 unsigned long start_pfn, enum memmap_context context) 2837 { 2838 struct page *page; 2839 unsigned long end_pfn = start_pfn + size; 2840 unsigned long pfn; 2841 struct zone *z; 2842 2843 if (highest_memmap_pfn < end_pfn - 1) 2844 highest_memmap_pfn = end_pfn - 1; 2845 2846 z = &NODE_DATA(nid)->node_zones[zone]; 2847 for (pfn = start_pfn; pfn < end_pfn; pfn++) { 2848 /* 2849 * There can be holes in boot-time mem_map[]s 2850 * handed to this function. They do not 2851 * exist on hotplugged memory. 2852 */ 2853 if (context == MEMMAP_EARLY) { 2854 if (!early_pfn_valid(pfn)) 2855 continue; 2856 if (!early_pfn_in_nid(pfn, nid)) 2857 continue; 2858 } 2859 page = pfn_to_page(pfn); 2860 set_page_links(page, zone, nid, pfn); 2861 mminit_verify_page_links(page, zone, nid, pfn); 2862 init_page_count(page); 2863 reset_page_mapcount(page); 2864 SetPageReserved(page); 2865 /* 2866 * Mark the block movable so that blocks are reserved for 2867 * movable at startup. This will force kernel allocations 2868 * to reserve their blocks rather than leaking throughout 2869 * the address space during boot when many long-lived 2870 * kernel allocations are made. Later some blocks near 2871 * the start are marked MIGRATE_RESERVE by 2872 * setup_zone_migrate_reserve() 2873 * 2874 * bitmap is created for zone's valid pfn range. but memmap 2875 * can be created for invalid pages (for alignment) 2876 * check here not to call set_pageblock_migratetype() against 2877 * pfn out of zone. 2878 */ 2879 if ((z->zone_start_pfn <= pfn) 2880 && (pfn < z->zone_start_pfn + z->spanned_pages) 2881 && !(pfn & (pageblock_nr_pages - 1))) 2882 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 2883 2884 INIT_LIST_HEAD(&page->lru); 2885 #ifdef WANT_PAGE_VIRTUAL 2886 /* The shift won't overflow because ZONE_NORMAL is below 4G. */ 2887 if (!is_highmem_idx(zone)) 2888 set_page_address(page, __va(pfn << PAGE_SHIFT)); 2889 #endif 2890 } 2891 } 2892 2893 static void __meminit zone_init_free_lists(struct zone *zone) 2894 { 2895 int order, t; 2896 for_each_migratetype_order(order, t) { 2897 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]); 2898 zone->free_area[order].nr_free = 0; 2899 } 2900 } 2901 2902 #ifndef __HAVE_ARCH_MEMMAP_INIT 2903 #define memmap_init(size, nid, zone, start_pfn) \ 2904 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY) 2905 #endif 2906 2907 static int zone_batchsize(struct zone *zone) 2908 { 2909 #ifdef CONFIG_MMU 2910 int batch; 2911 2912 /* 2913 * The per-cpu-pages pools are set to around 1000th of the 2914 * size of the zone. But no more than 1/2 of a meg. 2915 * 2916 * OK, so we don't know how big the cache is. So guess. 2917 */ 2918 batch = zone->present_pages / 1024; 2919 if (batch * PAGE_SIZE > 512 * 1024) 2920 batch = (512 * 1024) / PAGE_SIZE; 2921 batch /= 4; /* We effectively *= 4 below */ 2922 if (batch < 1) 2923 batch = 1; 2924 2925 /* 2926 * Clamp the batch to a 2^n - 1 value. Having a power 2927 * of 2 value was found to be more likely to have 2928 * suboptimal cache aliasing properties in some cases. 2929 * 2930 * For example if 2 tasks are alternately allocating 2931 * batches of pages, one task can end up with a lot 2932 * of pages of one half of the possible page colors 2933 * and the other with pages of the other colors. 2934 */ 2935 batch = rounddown_pow_of_two(batch + batch/2) - 1; 2936 2937 return batch; 2938 2939 #else 2940 /* The deferral and batching of frees should be suppressed under NOMMU 2941 * conditions. 2942 * 2943 * The problem is that NOMMU needs to be able to allocate large chunks 2944 * of contiguous memory as there's no hardware page translation to 2945 * assemble apparent contiguous memory from discontiguous pages. 2946 * 2947 * Queueing large contiguous runs of pages for batching, however, 2948 * causes the pages to actually be freed in smaller chunks. As there 2949 * can be a significant delay between the individual batches being 2950 * recycled, this leads to the once large chunks of space being 2951 * fragmented and becoming unavailable for high-order allocations. 2952 */ 2953 return 0; 2954 #endif 2955 } 2956 2957 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch) 2958 { 2959 struct per_cpu_pages *pcp; 2960 2961 memset(p, 0, sizeof(*p)); 2962 2963 pcp = &p->pcp; 2964 pcp->count = 0; 2965 pcp->high = 6 * batch; 2966 pcp->batch = max(1UL, 1 * batch); 2967 INIT_LIST_HEAD(&pcp->list); 2968 } 2969 2970 /* 2971 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist 2972 * to the value high for the pageset p. 2973 */ 2974 2975 static void setup_pagelist_highmark(struct per_cpu_pageset *p, 2976 unsigned long high) 2977 { 2978 struct per_cpu_pages *pcp; 2979 2980 pcp = &p->pcp; 2981 pcp->high = high; 2982 pcp->batch = max(1UL, high/4); 2983 if ((high/4) > (PAGE_SHIFT * 8)) 2984 pcp->batch = PAGE_SHIFT * 8; 2985 } 2986 2987 2988 #ifdef CONFIG_NUMA 2989 /* 2990 * Boot pageset table. One per cpu which is going to be used for all 2991 * zones and all nodes. The parameters will be set in such a way 2992 * that an item put on a list will immediately be handed over to 2993 * the buddy list. This is safe since pageset manipulation is done 2994 * with interrupts disabled. 2995 * 2996 * Some NUMA counter updates may also be caught by the boot pagesets. 2997 * 2998 * The boot_pagesets must be kept even after bootup is complete for 2999 * unused processors and/or zones. They do play a role for bootstrapping 3000 * hotplugged processors. 3001 * 3002 * zoneinfo_show() and maybe other functions do 3003 * not check if the processor is online before following the pageset pointer. 3004 * Other parts of the kernel may not check if the zone is available. 3005 */ 3006 static struct per_cpu_pageset boot_pageset[NR_CPUS]; 3007 3008 /* 3009 * Dynamically allocate memory for the 3010 * per cpu pageset array in struct zone. 3011 */ 3012 static int __cpuinit process_zones(int cpu) 3013 { 3014 struct zone *zone, *dzone; 3015 int node = cpu_to_node(cpu); 3016 3017 node_set_state(node, N_CPU); /* this node has a cpu */ 3018 3019 for_each_populated_zone(zone) { 3020 zone_pcp(zone, cpu) = kmalloc_node(sizeof(struct per_cpu_pageset), 3021 GFP_KERNEL, node); 3022 if (!zone_pcp(zone, cpu)) 3023 goto bad; 3024 3025 setup_pageset(zone_pcp(zone, cpu), zone_batchsize(zone)); 3026 3027 if (percpu_pagelist_fraction) 3028 setup_pagelist_highmark(zone_pcp(zone, cpu), 3029 (zone->present_pages / percpu_pagelist_fraction)); 3030 } 3031 3032 return 0; 3033 bad: 3034 for_each_zone(dzone) { 3035 if (!populated_zone(dzone)) 3036 continue; 3037 if (dzone == zone) 3038 break; 3039 kfree(zone_pcp(dzone, cpu)); 3040 zone_pcp(dzone, cpu) = &boot_pageset[cpu]; 3041 } 3042 return -ENOMEM; 3043 } 3044 3045 static inline void free_zone_pagesets(int cpu) 3046 { 3047 struct zone *zone; 3048 3049 for_each_zone(zone) { 3050 struct per_cpu_pageset *pset = zone_pcp(zone, cpu); 3051 3052 /* Free per_cpu_pageset if it is slab allocated */ 3053 if (pset != &boot_pageset[cpu]) 3054 kfree(pset); 3055 zone_pcp(zone, cpu) = &boot_pageset[cpu]; 3056 } 3057 } 3058 3059 static int __cpuinit pageset_cpuup_callback(struct notifier_block *nfb, 3060 unsigned long action, 3061 void *hcpu) 3062 { 3063 int cpu = (long)hcpu; 3064 int ret = NOTIFY_OK; 3065 3066 switch (action) { 3067 case CPU_UP_PREPARE: 3068 case CPU_UP_PREPARE_FROZEN: 3069 if (process_zones(cpu)) 3070 ret = NOTIFY_BAD; 3071 break; 3072 case CPU_UP_CANCELED: 3073 case CPU_UP_CANCELED_FROZEN: 3074 case CPU_DEAD: 3075 case CPU_DEAD_FROZEN: 3076 free_zone_pagesets(cpu); 3077 break; 3078 default: 3079 break; 3080 } 3081 return ret; 3082 } 3083 3084 static struct notifier_block __cpuinitdata pageset_notifier = 3085 { &pageset_cpuup_callback, NULL, 0 }; 3086 3087 void __init setup_per_cpu_pageset(void) 3088 { 3089 int err; 3090 3091 /* Initialize per_cpu_pageset for cpu 0. 3092 * A cpuup callback will do this for every cpu 3093 * as it comes online 3094 */ 3095 err = process_zones(smp_processor_id()); 3096 BUG_ON(err); 3097 register_cpu_notifier(&pageset_notifier); 3098 } 3099 3100 #endif 3101 3102 static noinline __init_refok 3103 int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages) 3104 { 3105 int i; 3106 struct pglist_data *pgdat = zone->zone_pgdat; 3107 size_t alloc_size; 3108 3109 /* 3110 * The per-page waitqueue mechanism uses hashed waitqueues 3111 * per zone. 3112 */ 3113 zone->wait_table_hash_nr_entries = 3114 wait_table_hash_nr_entries(zone_size_pages); 3115 zone->wait_table_bits = 3116 wait_table_bits(zone->wait_table_hash_nr_entries); 3117 alloc_size = zone->wait_table_hash_nr_entries 3118 * sizeof(wait_queue_head_t); 3119 3120 if (!slab_is_available()) { 3121 zone->wait_table = (wait_queue_head_t *) 3122 alloc_bootmem_node(pgdat, alloc_size); 3123 } else { 3124 /* 3125 * This case means that a zone whose size was 0 gets new memory 3126 * via memory hot-add. 3127 * But it may be the case that a new node was hot-added. In 3128 * this case vmalloc() will not be able to use this new node's 3129 * memory - this wait_table must be initialized to use this new 3130 * node itself as well. 3131 * To use this new node's memory, further consideration will be 3132 * necessary. 3133 */ 3134 zone->wait_table = vmalloc(alloc_size); 3135 } 3136 if (!zone->wait_table) 3137 return -ENOMEM; 3138 3139 for(i = 0; i < zone->wait_table_hash_nr_entries; ++i) 3140 init_waitqueue_head(zone->wait_table + i); 3141 3142 return 0; 3143 } 3144 3145 static __meminit void zone_pcp_init(struct zone *zone) 3146 { 3147 int cpu; 3148 unsigned long batch = zone_batchsize(zone); 3149 3150 for (cpu = 0; cpu < NR_CPUS; cpu++) { 3151 #ifdef CONFIG_NUMA 3152 /* Early boot. Slab allocator not functional yet */ 3153 zone_pcp(zone, cpu) = &boot_pageset[cpu]; 3154 setup_pageset(&boot_pageset[cpu],0); 3155 #else 3156 setup_pageset(zone_pcp(zone,cpu), batch); 3157 #endif 3158 } 3159 if (zone->present_pages) 3160 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%lu\n", 3161 zone->name, zone->present_pages, batch); 3162 } 3163 3164 __meminit int init_currently_empty_zone(struct zone *zone, 3165 unsigned long zone_start_pfn, 3166 unsigned long size, 3167 enum memmap_context context) 3168 { 3169 struct pglist_data *pgdat = zone->zone_pgdat; 3170 int ret; 3171 ret = zone_wait_table_init(zone, size); 3172 if (ret) 3173 return ret; 3174 pgdat->nr_zones = zone_idx(zone) + 1; 3175 3176 zone->zone_start_pfn = zone_start_pfn; 3177 3178 mminit_dprintk(MMINIT_TRACE, "memmap_init", 3179 "Initialising map node %d zone %lu pfns %lu -> %lu\n", 3180 pgdat->node_id, 3181 (unsigned long)zone_idx(zone), 3182 zone_start_pfn, (zone_start_pfn + size)); 3183 3184 zone_init_free_lists(zone); 3185 3186 return 0; 3187 } 3188 3189 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP 3190 /* 3191 * Basic iterator support. Return the first range of PFNs for a node 3192 * Note: nid == MAX_NUMNODES returns first region regardless of node 3193 */ 3194 static int __meminit first_active_region_index_in_nid(int nid) 3195 { 3196 int i; 3197 3198 for (i = 0; i < nr_nodemap_entries; i++) 3199 if (nid == MAX_NUMNODES || early_node_map[i].nid == nid) 3200 return i; 3201 3202 return -1; 3203 } 3204 3205 /* 3206 * Basic iterator support. Return the next active range of PFNs for a node 3207 * Note: nid == MAX_NUMNODES returns next region regardless of node 3208 */ 3209 static int __meminit next_active_region_index_in_nid(int index, int nid) 3210 { 3211 for (index = index + 1; index < nr_nodemap_entries; index++) 3212 if (nid == MAX_NUMNODES || early_node_map[index].nid == nid) 3213 return index; 3214 3215 return -1; 3216 } 3217 3218 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID 3219 /* 3220 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on. 3221 * Architectures may implement their own version but if add_active_range() 3222 * was used and there are no special requirements, this is a convenient 3223 * alternative 3224 */ 3225 int __meminit __early_pfn_to_nid(unsigned long pfn) 3226 { 3227 int i; 3228 3229 for (i = 0; i < nr_nodemap_entries; i++) { 3230 unsigned long start_pfn = early_node_map[i].start_pfn; 3231 unsigned long end_pfn = early_node_map[i].end_pfn; 3232 3233 if (start_pfn <= pfn && pfn < end_pfn) 3234 return early_node_map[i].nid; 3235 } 3236 /* This is a memory hole */ 3237 return -1; 3238 } 3239 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */ 3240 3241 int __meminit early_pfn_to_nid(unsigned long pfn) 3242 { 3243 int nid; 3244 3245 nid = __early_pfn_to_nid(pfn); 3246 if (nid >= 0) 3247 return nid; 3248 /* just returns 0 */ 3249 return 0; 3250 } 3251 3252 #ifdef CONFIG_NODES_SPAN_OTHER_NODES 3253 bool __meminit early_pfn_in_nid(unsigned long pfn, int node) 3254 { 3255 int nid; 3256 3257 nid = __early_pfn_to_nid(pfn); 3258 if (nid >= 0 && nid != node) 3259 return false; 3260 return true; 3261 } 3262 #endif 3263 3264 /* Basic iterator support to walk early_node_map[] */ 3265 #define for_each_active_range_index_in_nid(i, nid) \ 3266 for (i = first_active_region_index_in_nid(nid); i != -1; \ 3267 i = next_active_region_index_in_nid(i, nid)) 3268 3269 /** 3270 * free_bootmem_with_active_regions - Call free_bootmem_node for each active range 3271 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed. 3272 * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node 3273 * 3274 * If an architecture guarantees that all ranges registered with 3275 * add_active_ranges() contain no holes and may be freed, this 3276 * this function may be used instead of calling free_bootmem() manually. 3277 */ 3278 void __init free_bootmem_with_active_regions(int nid, 3279 unsigned long max_low_pfn) 3280 { 3281 int i; 3282 3283 for_each_active_range_index_in_nid(i, nid) { 3284 unsigned long size_pages = 0; 3285 unsigned long end_pfn = early_node_map[i].end_pfn; 3286 3287 if (early_node_map[i].start_pfn >= max_low_pfn) 3288 continue; 3289 3290 if (end_pfn > max_low_pfn) 3291 end_pfn = max_low_pfn; 3292 3293 size_pages = end_pfn - early_node_map[i].start_pfn; 3294 free_bootmem_node(NODE_DATA(early_node_map[i].nid), 3295 PFN_PHYS(early_node_map[i].start_pfn), 3296 size_pages << PAGE_SHIFT); 3297 } 3298 } 3299 3300 void __init work_with_active_regions(int nid, work_fn_t work_fn, void *data) 3301 { 3302 int i; 3303 int ret; 3304 3305 for_each_active_range_index_in_nid(i, nid) { 3306 ret = work_fn(early_node_map[i].start_pfn, 3307 early_node_map[i].end_pfn, data); 3308 if (ret) 3309 break; 3310 } 3311 } 3312 /** 3313 * sparse_memory_present_with_active_regions - Call memory_present for each active range 3314 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used. 3315 * 3316 * If an architecture guarantees that all ranges registered with 3317 * add_active_ranges() contain no holes and may be freed, this 3318 * function may be used instead of calling memory_present() manually. 3319 */ 3320 void __init sparse_memory_present_with_active_regions(int nid) 3321 { 3322 int i; 3323 3324 for_each_active_range_index_in_nid(i, nid) 3325 memory_present(early_node_map[i].nid, 3326 early_node_map[i].start_pfn, 3327 early_node_map[i].end_pfn); 3328 } 3329 3330 /** 3331 * get_pfn_range_for_nid - Return the start and end page frames for a node 3332 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned. 3333 * @start_pfn: Passed by reference. On return, it will have the node start_pfn. 3334 * @end_pfn: Passed by reference. On return, it will have the node end_pfn. 3335 * 3336 * It returns the start and end page frame of a node based on information 3337 * provided by an arch calling add_active_range(). If called for a node 3338 * with no available memory, a warning is printed and the start and end 3339 * PFNs will be 0. 3340 */ 3341 void __meminit get_pfn_range_for_nid(unsigned int nid, 3342 unsigned long *start_pfn, unsigned long *end_pfn) 3343 { 3344 int i; 3345 *start_pfn = -1UL; 3346 *end_pfn = 0; 3347 3348 for_each_active_range_index_in_nid(i, nid) { 3349 *start_pfn = min(*start_pfn, early_node_map[i].start_pfn); 3350 *end_pfn = max(*end_pfn, early_node_map[i].end_pfn); 3351 } 3352 3353 if (*start_pfn == -1UL) 3354 *start_pfn = 0; 3355 } 3356 3357 /* 3358 * This finds a zone that can be used for ZONE_MOVABLE pages. The 3359 * assumption is made that zones within a node are ordered in monotonic 3360 * increasing memory addresses so that the "highest" populated zone is used 3361 */ 3362 static void __init find_usable_zone_for_movable(void) 3363 { 3364 int zone_index; 3365 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) { 3366 if (zone_index == ZONE_MOVABLE) 3367 continue; 3368 3369 if (arch_zone_highest_possible_pfn[zone_index] > 3370 arch_zone_lowest_possible_pfn[zone_index]) 3371 break; 3372 } 3373 3374 VM_BUG_ON(zone_index == -1); 3375 movable_zone = zone_index; 3376 } 3377 3378 /* 3379 * The zone ranges provided by the architecture do not include ZONE_MOVABLE 3380 * because it is sized independant of architecture. Unlike the other zones, 3381 * the starting point for ZONE_MOVABLE is not fixed. It may be different 3382 * in each node depending on the size of each node and how evenly kernelcore 3383 * is distributed. This helper function adjusts the zone ranges 3384 * provided by the architecture for a given node by using the end of the 3385 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that 3386 * zones within a node are in order of monotonic increases memory addresses 3387 */ 3388 static void __meminit adjust_zone_range_for_zone_movable(int nid, 3389 unsigned long zone_type, 3390 unsigned long node_start_pfn, 3391 unsigned long node_end_pfn, 3392 unsigned long *zone_start_pfn, 3393 unsigned long *zone_end_pfn) 3394 { 3395 /* Only adjust if ZONE_MOVABLE is on this node */ 3396 if (zone_movable_pfn[nid]) { 3397 /* Size ZONE_MOVABLE */ 3398 if (zone_type == ZONE_MOVABLE) { 3399 *zone_start_pfn = zone_movable_pfn[nid]; 3400 *zone_end_pfn = min(node_end_pfn, 3401 arch_zone_highest_possible_pfn[movable_zone]); 3402 3403 /* Adjust for ZONE_MOVABLE starting within this range */ 3404 } else if (*zone_start_pfn < zone_movable_pfn[nid] && 3405 *zone_end_pfn > zone_movable_pfn[nid]) { 3406 *zone_end_pfn = zone_movable_pfn[nid]; 3407 3408 /* Check if this whole range is within ZONE_MOVABLE */ 3409 } else if (*zone_start_pfn >= zone_movable_pfn[nid]) 3410 *zone_start_pfn = *zone_end_pfn; 3411 } 3412 } 3413 3414 /* 3415 * Return the number of pages a zone spans in a node, including holes 3416 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node() 3417 */ 3418 static unsigned long __meminit zone_spanned_pages_in_node(int nid, 3419 unsigned long zone_type, 3420 unsigned long *ignored) 3421 { 3422 unsigned long node_start_pfn, node_end_pfn; 3423 unsigned long zone_start_pfn, zone_end_pfn; 3424 3425 /* Get the start and end of the node and zone */ 3426 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn); 3427 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type]; 3428 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type]; 3429 adjust_zone_range_for_zone_movable(nid, zone_type, 3430 node_start_pfn, node_end_pfn, 3431 &zone_start_pfn, &zone_end_pfn); 3432 3433 /* Check that this node has pages within the zone's required range */ 3434 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn) 3435 return 0; 3436 3437 /* Move the zone boundaries inside the node if necessary */ 3438 zone_end_pfn = min(zone_end_pfn, node_end_pfn); 3439 zone_start_pfn = max(zone_start_pfn, node_start_pfn); 3440 3441 /* Return the spanned pages */ 3442 return zone_end_pfn - zone_start_pfn; 3443 } 3444 3445 /* 3446 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES, 3447 * then all holes in the requested range will be accounted for. 3448 */ 3449 static unsigned long __meminit __absent_pages_in_range(int nid, 3450 unsigned long range_start_pfn, 3451 unsigned long range_end_pfn) 3452 { 3453 int i = 0; 3454 unsigned long prev_end_pfn = 0, hole_pages = 0; 3455 unsigned long start_pfn; 3456 3457 /* Find the end_pfn of the first active range of pfns in the node */ 3458 i = first_active_region_index_in_nid(nid); 3459 if (i == -1) 3460 return 0; 3461 3462 prev_end_pfn = min(early_node_map[i].start_pfn, range_end_pfn); 3463 3464 /* Account for ranges before physical memory on this node */ 3465 if (early_node_map[i].start_pfn > range_start_pfn) 3466 hole_pages = prev_end_pfn - range_start_pfn; 3467 3468 /* Find all holes for the zone within the node */ 3469 for (; i != -1; i = next_active_region_index_in_nid(i, nid)) { 3470 3471 /* No need to continue if prev_end_pfn is outside the zone */ 3472 if (prev_end_pfn >= range_end_pfn) 3473 break; 3474 3475 /* Make sure the end of the zone is not within the hole */ 3476 start_pfn = min(early_node_map[i].start_pfn, range_end_pfn); 3477 prev_end_pfn = max(prev_end_pfn, range_start_pfn); 3478 3479 /* Update the hole size cound and move on */ 3480 if (start_pfn > range_start_pfn) { 3481 BUG_ON(prev_end_pfn > start_pfn); 3482 hole_pages += start_pfn - prev_end_pfn; 3483 } 3484 prev_end_pfn = early_node_map[i].end_pfn; 3485 } 3486 3487 /* Account for ranges past physical memory on this node */ 3488 if (range_end_pfn > prev_end_pfn) 3489 hole_pages += range_end_pfn - 3490 max(range_start_pfn, prev_end_pfn); 3491 3492 return hole_pages; 3493 } 3494 3495 /** 3496 * absent_pages_in_range - Return number of page frames in holes within a range 3497 * @start_pfn: The start PFN to start searching for holes 3498 * @end_pfn: The end PFN to stop searching for holes 3499 * 3500 * It returns the number of pages frames in memory holes within a range. 3501 */ 3502 unsigned long __init absent_pages_in_range(unsigned long start_pfn, 3503 unsigned long end_pfn) 3504 { 3505 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn); 3506 } 3507 3508 /* Return the number of page frames in holes in a zone on a node */ 3509 static unsigned long __meminit zone_absent_pages_in_node(int nid, 3510 unsigned long zone_type, 3511 unsigned long *ignored) 3512 { 3513 unsigned long node_start_pfn, node_end_pfn; 3514 unsigned long zone_start_pfn, zone_end_pfn; 3515 3516 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn); 3517 zone_start_pfn = max(arch_zone_lowest_possible_pfn[zone_type], 3518 node_start_pfn); 3519 zone_end_pfn = min(arch_zone_highest_possible_pfn[zone_type], 3520 node_end_pfn); 3521 3522 adjust_zone_range_for_zone_movable(nid, zone_type, 3523 node_start_pfn, node_end_pfn, 3524 &zone_start_pfn, &zone_end_pfn); 3525 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn); 3526 } 3527 3528 #else 3529 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid, 3530 unsigned long zone_type, 3531 unsigned long *zones_size) 3532 { 3533 return zones_size[zone_type]; 3534 } 3535 3536 static inline unsigned long __meminit zone_absent_pages_in_node(int nid, 3537 unsigned long zone_type, 3538 unsigned long *zholes_size) 3539 { 3540 if (!zholes_size) 3541 return 0; 3542 3543 return zholes_size[zone_type]; 3544 } 3545 3546 #endif 3547 3548 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat, 3549 unsigned long *zones_size, unsigned long *zholes_size) 3550 { 3551 unsigned long realtotalpages, totalpages = 0; 3552 enum zone_type i; 3553 3554 for (i = 0; i < MAX_NR_ZONES; i++) 3555 totalpages += zone_spanned_pages_in_node(pgdat->node_id, i, 3556 zones_size); 3557 pgdat->node_spanned_pages = totalpages; 3558 3559 realtotalpages = totalpages; 3560 for (i = 0; i < MAX_NR_ZONES; i++) 3561 realtotalpages -= 3562 zone_absent_pages_in_node(pgdat->node_id, i, 3563 zholes_size); 3564 pgdat->node_present_pages = realtotalpages; 3565 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id, 3566 realtotalpages); 3567 } 3568 3569 #ifndef CONFIG_SPARSEMEM 3570 /* 3571 * Calculate the size of the zone->blockflags rounded to an unsigned long 3572 * Start by making sure zonesize is a multiple of pageblock_order by rounding 3573 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally 3574 * round what is now in bits to nearest long in bits, then return it in 3575 * bytes. 3576 */ 3577 static unsigned long __init usemap_size(unsigned long zonesize) 3578 { 3579 unsigned long usemapsize; 3580 3581 usemapsize = roundup(zonesize, pageblock_nr_pages); 3582 usemapsize = usemapsize >> pageblock_order; 3583 usemapsize *= NR_PAGEBLOCK_BITS; 3584 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long)); 3585 3586 return usemapsize / 8; 3587 } 3588 3589 static void __init setup_usemap(struct pglist_data *pgdat, 3590 struct zone *zone, unsigned long zonesize) 3591 { 3592 unsigned long usemapsize = usemap_size(zonesize); 3593 zone->pageblock_flags = NULL; 3594 if (usemapsize) 3595 zone->pageblock_flags = alloc_bootmem_node(pgdat, usemapsize); 3596 } 3597 #else 3598 static void inline setup_usemap(struct pglist_data *pgdat, 3599 struct zone *zone, unsigned long zonesize) {} 3600 #endif /* CONFIG_SPARSEMEM */ 3601 3602 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE 3603 3604 /* Return a sensible default order for the pageblock size. */ 3605 static inline int pageblock_default_order(void) 3606 { 3607 if (HPAGE_SHIFT > PAGE_SHIFT) 3608 return HUGETLB_PAGE_ORDER; 3609 3610 return MAX_ORDER-1; 3611 } 3612 3613 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */ 3614 static inline void __init set_pageblock_order(unsigned int order) 3615 { 3616 /* Check that pageblock_nr_pages has not already been setup */ 3617 if (pageblock_order) 3618 return; 3619 3620 /* 3621 * Assume the largest contiguous order of interest is a huge page. 3622 * This value may be variable depending on boot parameters on IA64 3623 */ 3624 pageblock_order = order; 3625 } 3626 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */ 3627 3628 /* 3629 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order() 3630 * and pageblock_default_order() are unused as pageblock_order is set 3631 * at compile-time. See include/linux/pageblock-flags.h for the values of 3632 * pageblock_order based on the kernel config 3633 */ 3634 static inline int pageblock_default_order(unsigned int order) 3635 { 3636 return MAX_ORDER-1; 3637 } 3638 #define set_pageblock_order(x) do {} while (0) 3639 3640 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */ 3641 3642 /* 3643 * Set up the zone data structures: 3644 * - mark all pages reserved 3645 * - mark all memory queues empty 3646 * - clear the memory bitmaps 3647 */ 3648 static void __paginginit free_area_init_core(struct pglist_data *pgdat, 3649 unsigned long *zones_size, unsigned long *zholes_size) 3650 { 3651 enum zone_type j; 3652 int nid = pgdat->node_id; 3653 unsigned long zone_start_pfn = pgdat->node_start_pfn; 3654 int ret; 3655 3656 pgdat_resize_init(pgdat); 3657 pgdat->nr_zones = 0; 3658 init_waitqueue_head(&pgdat->kswapd_wait); 3659 pgdat->kswapd_max_order = 0; 3660 pgdat_page_cgroup_init(pgdat); 3661 3662 for (j = 0; j < MAX_NR_ZONES; j++) { 3663 struct zone *zone = pgdat->node_zones + j; 3664 unsigned long size, realsize, memmap_pages; 3665 enum lru_list l; 3666 3667 size = zone_spanned_pages_in_node(nid, j, zones_size); 3668 realsize = size - zone_absent_pages_in_node(nid, j, 3669 zholes_size); 3670 3671 /* 3672 * Adjust realsize so that it accounts for how much memory 3673 * is used by this zone for memmap. This affects the watermark 3674 * and per-cpu initialisations 3675 */ 3676 memmap_pages = 3677 PAGE_ALIGN(size * sizeof(struct page)) >> PAGE_SHIFT; 3678 if (realsize >= memmap_pages) { 3679 realsize -= memmap_pages; 3680 if (memmap_pages) 3681 printk(KERN_DEBUG 3682 " %s zone: %lu pages used for memmap\n", 3683 zone_names[j], memmap_pages); 3684 } else 3685 printk(KERN_WARNING 3686 " %s zone: %lu pages exceeds realsize %lu\n", 3687 zone_names[j], memmap_pages, realsize); 3688 3689 /* Account for reserved pages */ 3690 if (j == 0 && realsize > dma_reserve) { 3691 realsize -= dma_reserve; 3692 printk(KERN_DEBUG " %s zone: %lu pages reserved\n", 3693 zone_names[0], dma_reserve); 3694 } 3695 3696 if (!is_highmem_idx(j)) 3697 nr_kernel_pages += realsize; 3698 nr_all_pages += realsize; 3699 3700 zone->spanned_pages = size; 3701 zone->present_pages = realsize; 3702 #ifdef CONFIG_NUMA 3703 zone->node = nid; 3704 zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio) 3705 / 100; 3706 zone->min_slab_pages = (realsize * sysctl_min_slab_ratio) / 100; 3707 #endif 3708 zone->name = zone_names[j]; 3709 spin_lock_init(&zone->lock); 3710 spin_lock_init(&zone->lru_lock); 3711 zone_seqlock_init(zone); 3712 zone->zone_pgdat = pgdat; 3713 3714 zone->prev_priority = DEF_PRIORITY; 3715 3716 zone_pcp_init(zone); 3717 for_each_lru(l) { 3718 INIT_LIST_HEAD(&zone->lru[l].list); 3719 zone->lru[l].nr_saved_scan = 0; 3720 } 3721 zone->reclaim_stat.recent_rotated[0] = 0; 3722 zone->reclaim_stat.recent_rotated[1] = 0; 3723 zone->reclaim_stat.recent_scanned[0] = 0; 3724 zone->reclaim_stat.recent_scanned[1] = 0; 3725 zap_zone_vm_stats(zone); 3726 zone->flags = 0; 3727 if (!size) 3728 continue; 3729 3730 set_pageblock_order(pageblock_default_order()); 3731 setup_usemap(pgdat, zone, size); 3732 ret = init_currently_empty_zone(zone, zone_start_pfn, 3733 size, MEMMAP_EARLY); 3734 BUG_ON(ret); 3735 memmap_init(size, nid, j, zone_start_pfn); 3736 zone_start_pfn += size; 3737 } 3738 } 3739 3740 static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat) 3741 { 3742 /* Skip empty nodes */ 3743 if (!pgdat->node_spanned_pages) 3744 return; 3745 3746 #ifdef CONFIG_FLAT_NODE_MEM_MAP 3747 /* ia64 gets its own node_mem_map, before this, without bootmem */ 3748 if (!pgdat->node_mem_map) { 3749 unsigned long size, start, end; 3750 struct page *map; 3751 3752 /* 3753 * The zone's endpoints aren't required to be MAX_ORDER 3754 * aligned but the node_mem_map endpoints must be in order 3755 * for the buddy allocator to function correctly. 3756 */ 3757 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1); 3758 end = pgdat->node_start_pfn + pgdat->node_spanned_pages; 3759 end = ALIGN(end, MAX_ORDER_NR_PAGES); 3760 size = (end - start) * sizeof(struct page); 3761 map = alloc_remap(pgdat->node_id, size); 3762 if (!map) 3763 map = alloc_bootmem_node(pgdat, size); 3764 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start); 3765 } 3766 #ifndef CONFIG_NEED_MULTIPLE_NODES 3767 /* 3768 * With no DISCONTIG, the global mem_map is just set as node 0's 3769 */ 3770 if (pgdat == NODE_DATA(0)) { 3771 mem_map = NODE_DATA(0)->node_mem_map; 3772 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP 3773 if (page_to_pfn(mem_map) != pgdat->node_start_pfn) 3774 mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET); 3775 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */ 3776 } 3777 #endif 3778 #endif /* CONFIG_FLAT_NODE_MEM_MAP */ 3779 } 3780 3781 void __paginginit free_area_init_node(int nid, unsigned long *zones_size, 3782 unsigned long node_start_pfn, unsigned long *zholes_size) 3783 { 3784 pg_data_t *pgdat = NODE_DATA(nid); 3785 3786 pgdat->node_id = nid; 3787 pgdat->node_start_pfn = node_start_pfn; 3788 calculate_node_totalpages(pgdat, zones_size, zholes_size); 3789 3790 alloc_node_mem_map(pgdat); 3791 #ifdef CONFIG_FLAT_NODE_MEM_MAP 3792 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n", 3793 nid, (unsigned long)pgdat, 3794 (unsigned long)pgdat->node_mem_map); 3795 #endif 3796 3797 free_area_init_core(pgdat, zones_size, zholes_size); 3798 } 3799 3800 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP 3801 3802 #if MAX_NUMNODES > 1 3803 /* 3804 * Figure out the number of possible node ids. 3805 */ 3806 static void __init setup_nr_node_ids(void) 3807 { 3808 unsigned int node; 3809 unsigned int highest = 0; 3810 3811 for_each_node_mask(node, node_possible_map) 3812 highest = node; 3813 nr_node_ids = highest + 1; 3814 } 3815 #else 3816 static inline void setup_nr_node_ids(void) 3817 { 3818 } 3819 #endif 3820 3821 /** 3822 * add_active_range - Register a range of PFNs backed by physical memory 3823 * @nid: The node ID the range resides on 3824 * @start_pfn: The start PFN of the available physical memory 3825 * @end_pfn: The end PFN of the available physical memory 3826 * 3827 * These ranges are stored in an early_node_map[] and later used by 3828 * free_area_init_nodes() to calculate zone sizes and holes. If the 3829 * range spans a memory hole, it is up to the architecture to ensure 3830 * the memory is not freed by the bootmem allocator. If possible 3831 * the range being registered will be merged with existing ranges. 3832 */ 3833 void __init add_active_range(unsigned int nid, unsigned long start_pfn, 3834 unsigned long end_pfn) 3835 { 3836 int i; 3837 3838 mminit_dprintk(MMINIT_TRACE, "memory_register", 3839 "Entering add_active_range(%d, %#lx, %#lx) " 3840 "%d entries of %d used\n", 3841 nid, start_pfn, end_pfn, 3842 nr_nodemap_entries, MAX_ACTIVE_REGIONS); 3843 3844 mminit_validate_memmodel_limits(&start_pfn, &end_pfn); 3845 3846 /* Merge with existing active regions if possible */ 3847 for (i = 0; i < nr_nodemap_entries; i++) { 3848 if (early_node_map[i].nid != nid) 3849 continue; 3850 3851 /* Skip if an existing region covers this new one */ 3852 if (start_pfn >= early_node_map[i].start_pfn && 3853 end_pfn <= early_node_map[i].end_pfn) 3854 return; 3855 3856 /* Merge forward if suitable */ 3857 if (start_pfn <= early_node_map[i].end_pfn && 3858 end_pfn > early_node_map[i].end_pfn) { 3859 early_node_map[i].end_pfn = end_pfn; 3860 return; 3861 } 3862 3863 /* Merge backward if suitable */ 3864 if (start_pfn < early_node_map[i].end_pfn && 3865 end_pfn >= early_node_map[i].start_pfn) { 3866 early_node_map[i].start_pfn = start_pfn; 3867 return; 3868 } 3869 } 3870 3871 /* Check that early_node_map is large enough */ 3872 if (i >= MAX_ACTIVE_REGIONS) { 3873 printk(KERN_CRIT "More than %d memory regions, truncating\n", 3874 MAX_ACTIVE_REGIONS); 3875 return; 3876 } 3877 3878 early_node_map[i].nid = nid; 3879 early_node_map[i].start_pfn = start_pfn; 3880 early_node_map[i].end_pfn = end_pfn; 3881 nr_nodemap_entries = i + 1; 3882 } 3883 3884 /** 3885 * remove_active_range - Shrink an existing registered range of PFNs 3886 * @nid: The node id the range is on that should be shrunk 3887 * @start_pfn: The new PFN of the range 3888 * @end_pfn: The new PFN of the range 3889 * 3890 * i386 with NUMA use alloc_remap() to store a node_mem_map on a local node. 3891 * The map is kept near the end physical page range that has already been 3892 * registered. This function allows an arch to shrink an existing registered 3893 * range. 3894 */ 3895 void __init remove_active_range(unsigned int nid, unsigned long start_pfn, 3896 unsigned long end_pfn) 3897 { 3898 int i, j; 3899 int removed = 0; 3900 3901 printk(KERN_DEBUG "remove_active_range (%d, %lu, %lu)\n", 3902 nid, start_pfn, end_pfn); 3903 3904 /* Find the old active region end and shrink */ 3905 for_each_active_range_index_in_nid(i, nid) { 3906 if (early_node_map[i].start_pfn >= start_pfn && 3907 early_node_map[i].end_pfn <= end_pfn) { 3908 /* clear it */ 3909 early_node_map[i].start_pfn = 0; 3910 early_node_map[i].end_pfn = 0; 3911 removed = 1; 3912 continue; 3913 } 3914 if (early_node_map[i].start_pfn < start_pfn && 3915 early_node_map[i].end_pfn > start_pfn) { 3916 unsigned long temp_end_pfn = early_node_map[i].end_pfn; 3917 early_node_map[i].end_pfn = start_pfn; 3918 if (temp_end_pfn > end_pfn) 3919 add_active_range(nid, end_pfn, temp_end_pfn); 3920 continue; 3921 } 3922 if (early_node_map[i].start_pfn >= start_pfn && 3923 early_node_map[i].end_pfn > end_pfn && 3924 early_node_map[i].start_pfn < end_pfn) { 3925 early_node_map[i].start_pfn = end_pfn; 3926 continue; 3927 } 3928 } 3929 3930 if (!removed) 3931 return; 3932 3933 /* remove the blank ones */ 3934 for (i = nr_nodemap_entries - 1; i > 0; i--) { 3935 if (early_node_map[i].nid != nid) 3936 continue; 3937 if (early_node_map[i].end_pfn) 3938 continue; 3939 /* we found it, get rid of it */ 3940 for (j = i; j < nr_nodemap_entries - 1; j++) 3941 memcpy(&early_node_map[j], &early_node_map[j+1], 3942 sizeof(early_node_map[j])); 3943 j = nr_nodemap_entries - 1; 3944 memset(&early_node_map[j], 0, sizeof(early_node_map[j])); 3945 nr_nodemap_entries--; 3946 } 3947 } 3948 3949 /** 3950 * remove_all_active_ranges - Remove all currently registered regions 3951 * 3952 * During discovery, it may be found that a table like SRAT is invalid 3953 * and an alternative discovery method must be used. This function removes 3954 * all currently registered regions. 3955 */ 3956 void __init remove_all_active_ranges(void) 3957 { 3958 memset(early_node_map, 0, sizeof(early_node_map)); 3959 nr_nodemap_entries = 0; 3960 } 3961 3962 /* Compare two active node_active_regions */ 3963 static int __init cmp_node_active_region(const void *a, const void *b) 3964 { 3965 struct node_active_region *arange = (struct node_active_region *)a; 3966 struct node_active_region *brange = (struct node_active_region *)b; 3967 3968 /* Done this way to avoid overflows */ 3969 if (arange->start_pfn > brange->start_pfn) 3970 return 1; 3971 if (arange->start_pfn < brange->start_pfn) 3972 return -1; 3973 3974 return 0; 3975 } 3976 3977 /* sort the node_map by start_pfn */ 3978 static void __init sort_node_map(void) 3979 { 3980 sort(early_node_map, (size_t)nr_nodemap_entries, 3981 sizeof(struct node_active_region), 3982 cmp_node_active_region, NULL); 3983 } 3984 3985 /* Find the lowest pfn for a node */ 3986 static unsigned long __init find_min_pfn_for_node(int nid) 3987 { 3988 int i; 3989 unsigned long min_pfn = ULONG_MAX; 3990 3991 /* Assuming a sorted map, the first range found has the starting pfn */ 3992 for_each_active_range_index_in_nid(i, nid) 3993 min_pfn = min(min_pfn, early_node_map[i].start_pfn); 3994 3995 if (min_pfn == ULONG_MAX) { 3996 printk(KERN_WARNING 3997 "Could not find start_pfn for node %d\n", nid); 3998 return 0; 3999 } 4000 4001 return min_pfn; 4002 } 4003 4004 /** 4005 * find_min_pfn_with_active_regions - Find the minimum PFN registered 4006 * 4007 * It returns the minimum PFN based on information provided via 4008 * add_active_range(). 4009 */ 4010 unsigned long __init find_min_pfn_with_active_regions(void) 4011 { 4012 return find_min_pfn_for_node(MAX_NUMNODES); 4013 } 4014 4015 /* 4016 * early_calculate_totalpages() 4017 * Sum pages in active regions for movable zone. 4018 * Populate N_HIGH_MEMORY for calculating usable_nodes. 4019 */ 4020 static unsigned long __init early_calculate_totalpages(void) 4021 { 4022 int i; 4023 unsigned long totalpages = 0; 4024 4025 for (i = 0; i < nr_nodemap_entries; i++) { 4026 unsigned long pages = early_node_map[i].end_pfn - 4027 early_node_map[i].start_pfn; 4028 totalpages += pages; 4029 if (pages) 4030 node_set_state(early_node_map[i].nid, N_HIGH_MEMORY); 4031 } 4032 return totalpages; 4033 } 4034 4035 /* 4036 * Find the PFN the Movable zone begins in each node. Kernel memory 4037 * is spread evenly between nodes as long as the nodes have enough 4038 * memory. When they don't, some nodes will have more kernelcore than 4039 * others 4040 */ 4041 static void __init find_zone_movable_pfns_for_nodes(unsigned long *movable_pfn) 4042 { 4043 int i, nid; 4044 unsigned long usable_startpfn; 4045 unsigned long kernelcore_node, kernelcore_remaining; 4046 /* save the state before borrow the nodemask */ 4047 nodemask_t saved_node_state = node_states[N_HIGH_MEMORY]; 4048 unsigned long totalpages = early_calculate_totalpages(); 4049 int usable_nodes = nodes_weight(node_states[N_HIGH_MEMORY]); 4050 4051 /* 4052 * If movablecore was specified, calculate what size of 4053 * kernelcore that corresponds so that memory usable for 4054 * any allocation type is evenly spread. If both kernelcore 4055 * and movablecore are specified, then the value of kernelcore 4056 * will be used for required_kernelcore if it's greater than 4057 * what movablecore would have allowed. 4058 */ 4059 if (required_movablecore) { 4060 unsigned long corepages; 4061 4062 /* 4063 * Round-up so that ZONE_MOVABLE is at least as large as what 4064 * was requested by the user 4065 */ 4066 required_movablecore = 4067 roundup(required_movablecore, MAX_ORDER_NR_PAGES); 4068 corepages = totalpages - required_movablecore; 4069 4070 required_kernelcore = max(required_kernelcore, corepages); 4071 } 4072 4073 /* If kernelcore was not specified, there is no ZONE_MOVABLE */ 4074 if (!required_kernelcore) 4075 goto out; 4076 4077 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */ 4078 find_usable_zone_for_movable(); 4079 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone]; 4080 4081 restart: 4082 /* Spread kernelcore memory as evenly as possible throughout nodes */ 4083 kernelcore_node = required_kernelcore / usable_nodes; 4084 for_each_node_state(nid, N_HIGH_MEMORY) { 4085 /* 4086 * Recalculate kernelcore_node if the division per node 4087 * now exceeds what is necessary to satisfy the requested 4088 * amount of memory for the kernel 4089 */ 4090 if (required_kernelcore < kernelcore_node) 4091 kernelcore_node = required_kernelcore / usable_nodes; 4092 4093 /* 4094 * As the map is walked, we track how much memory is usable 4095 * by the kernel using kernelcore_remaining. When it is 4096 * 0, the rest of the node is usable by ZONE_MOVABLE 4097 */ 4098 kernelcore_remaining = kernelcore_node; 4099 4100 /* Go through each range of PFNs within this node */ 4101 for_each_active_range_index_in_nid(i, nid) { 4102 unsigned long start_pfn, end_pfn; 4103 unsigned long size_pages; 4104 4105 start_pfn = max(early_node_map[i].start_pfn, 4106 zone_movable_pfn[nid]); 4107 end_pfn = early_node_map[i].end_pfn; 4108 if (start_pfn >= end_pfn) 4109 continue; 4110 4111 /* Account for what is only usable for kernelcore */ 4112 if (start_pfn < usable_startpfn) { 4113 unsigned long kernel_pages; 4114 kernel_pages = min(end_pfn, usable_startpfn) 4115 - start_pfn; 4116 4117 kernelcore_remaining -= min(kernel_pages, 4118 kernelcore_remaining); 4119 required_kernelcore -= min(kernel_pages, 4120 required_kernelcore); 4121 4122 /* Continue if range is now fully accounted */ 4123 if (end_pfn <= usable_startpfn) { 4124 4125 /* 4126 * Push zone_movable_pfn to the end so 4127 * that if we have to rebalance 4128 * kernelcore across nodes, we will 4129 * not double account here 4130 */ 4131 zone_movable_pfn[nid] = end_pfn; 4132 continue; 4133 } 4134 start_pfn = usable_startpfn; 4135 } 4136 4137 /* 4138 * The usable PFN range for ZONE_MOVABLE is from 4139 * start_pfn->end_pfn. Calculate size_pages as the 4140 * number of pages used as kernelcore 4141 */ 4142 size_pages = end_pfn - start_pfn; 4143 if (size_pages > kernelcore_remaining) 4144 size_pages = kernelcore_remaining; 4145 zone_movable_pfn[nid] = start_pfn + size_pages; 4146 4147 /* 4148 * Some kernelcore has been met, update counts and 4149 * break if the kernelcore for this node has been 4150 * satisified 4151 */ 4152 required_kernelcore -= min(required_kernelcore, 4153 size_pages); 4154 kernelcore_remaining -= size_pages; 4155 if (!kernelcore_remaining) 4156 break; 4157 } 4158 } 4159 4160 /* 4161 * If there is still required_kernelcore, we do another pass with one 4162 * less node in the count. This will push zone_movable_pfn[nid] further 4163 * along on the nodes that still have memory until kernelcore is 4164 * satisified 4165 */ 4166 usable_nodes--; 4167 if (usable_nodes && required_kernelcore > usable_nodes) 4168 goto restart; 4169 4170 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */ 4171 for (nid = 0; nid < MAX_NUMNODES; nid++) 4172 zone_movable_pfn[nid] = 4173 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES); 4174 4175 out: 4176 /* restore the node_state */ 4177 node_states[N_HIGH_MEMORY] = saved_node_state; 4178 } 4179 4180 /* Any regular memory on that node ? */ 4181 static void check_for_regular_memory(pg_data_t *pgdat) 4182 { 4183 #ifdef CONFIG_HIGHMEM 4184 enum zone_type zone_type; 4185 4186 for (zone_type = 0; zone_type <= ZONE_NORMAL; zone_type++) { 4187 struct zone *zone = &pgdat->node_zones[zone_type]; 4188 if (zone->present_pages) 4189 node_set_state(zone_to_nid(zone), N_NORMAL_MEMORY); 4190 } 4191 #endif 4192 } 4193 4194 /** 4195 * free_area_init_nodes - Initialise all pg_data_t and zone data 4196 * @max_zone_pfn: an array of max PFNs for each zone 4197 * 4198 * This will call free_area_init_node() for each active node in the system. 4199 * Using the page ranges provided by add_active_range(), the size of each 4200 * zone in each node and their holes is calculated. If the maximum PFN 4201 * between two adjacent zones match, it is assumed that the zone is empty. 4202 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed 4203 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone 4204 * starts where the previous one ended. For example, ZONE_DMA32 starts 4205 * at arch_max_dma_pfn. 4206 */ 4207 void __init free_area_init_nodes(unsigned long *max_zone_pfn) 4208 { 4209 unsigned long nid; 4210 int i; 4211 4212 /* Sort early_node_map as initialisation assumes it is sorted */ 4213 sort_node_map(); 4214 4215 /* Record where the zone boundaries are */ 4216 memset(arch_zone_lowest_possible_pfn, 0, 4217 sizeof(arch_zone_lowest_possible_pfn)); 4218 memset(arch_zone_highest_possible_pfn, 0, 4219 sizeof(arch_zone_highest_possible_pfn)); 4220 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions(); 4221 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0]; 4222 for (i = 1; i < MAX_NR_ZONES; i++) { 4223 if (i == ZONE_MOVABLE) 4224 continue; 4225 arch_zone_lowest_possible_pfn[i] = 4226 arch_zone_highest_possible_pfn[i-1]; 4227 arch_zone_highest_possible_pfn[i] = 4228 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]); 4229 } 4230 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0; 4231 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0; 4232 4233 /* Find the PFNs that ZONE_MOVABLE begins at in each node */ 4234 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn)); 4235 find_zone_movable_pfns_for_nodes(zone_movable_pfn); 4236 4237 /* Print out the zone ranges */ 4238 printk("Zone PFN ranges:\n"); 4239 for (i = 0; i < MAX_NR_ZONES; i++) { 4240 if (i == ZONE_MOVABLE) 4241 continue; 4242 printk(" %-8s %0#10lx -> %0#10lx\n", 4243 zone_names[i], 4244 arch_zone_lowest_possible_pfn[i], 4245 arch_zone_highest_possible_pfn[i]); 4246 } 4247 4248 /* Print out the PFNs ZONE_MOVABLE begins at in each node */ 4249 printk("Movable zone start PFN for each node\n"); 4250 for (i = 0; i < MAX_NUMNODES; i++) { 4251 if (zone_movable_pfn[i]) 4252 printk(" Node %d: %lu\n", i, zone_movable_pfn[i]); 4253 } 4254 4255 /* Print out the early_node_map[] */ 4256 printk("early_node_map[%d] active PFN ranges\n", nr_nodemap_entries); 4257 for (i = 0; i < nr_nodemap_entries; i++) 4258 printk(" %3d: %0#10lx -> %0#10lx\n", early_node_map[i].nid, 4259 early_node_map[i].start_pfn, 4260 early_node_map[i].end_pfn); 4261 4262 /* Initialise every node */ 4263 mminit_verify_pageflags_layout(); 4264 setup_nr_node_ids(); 4265 for_each_online_node(nid) { 4266 pg_data_t *pgdat = NODE_DATA(nid); 4267 free_area_init_node(nid, NULL, 4268 find_min_pfn_for_node(nid), NULL); 4269 4270 /* Any memory on that node */ 4271 if (pgdat->node_present_pages) 4272 node_set_state(nid, N_HIGH_MEMORY); 4273 check_for_regular_memory(pgdat); 4274 } 4275 } 4276 4277 static int __init cmdline_parse_core(char *p, unsigned long *core) 4278 { 4279 unsigned long long coremem; 4280 if (!p) 4281 return -EINVAL; 4282 4283 coremem = memparse(p, &p); 4284 *core = coremem >> PAGE_SHIFT; 4285 4286 /* Paranoid check that UL is enough for the coremem value */ 4287 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX); 4288 4289 return 0; 4290 } 4291 4292 /* 4293 * kernelcore=size sets the amount of memory for use for allocations that 4294 * cannot be reclaimed or migrated. 4295 */ 4296 static int __init cmdline_parse_kernelcore(char *p) 4297 { 4298 return cmdline_parse_core(p, &required_kernelcore); 4299 } 4300 4301 /* 4302 * movablecore=size sets the amount of memory for use for allocations that 4303 * can be reclaimed or migrated. 4304 */ 4305 static int __init cmdline_parse_movablecore(char *p) 4306 { 4307 return cmdline_parse_core(p, &required_movablecore); 4308 } 4309 4310 early_param("kernelcore", cmdline_parse_kernelcore); 4311 early_param("movablecore", cmdline_parse_movablecore); 4312 4313 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */ 4314 4315 /** 4316 * set_dma_reserve - set the specified number of pages reserved in the first zone 4317 * @new_dma_reserve: The number of pages to mark reserved 4318 * 4319 * The per-cpu batchsize and zone watermarks are determined by present_pages. 4320 * In the DMA zone, a significant percentage may be consumed by kernel image 4321 * and other unfreeable allocations which can skew the watermarks badly. This 4322 * function may optionally be used to account for unfreeable pages in the 4323 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and 4324 * smaller per-cpu batchsize. 4325 */ 4326 void __init set_dma_reserve(unsigned long new_dma_reserve) 4327 { 4328 dma_reserve = new_dma_reserve; 4329 } 4330 4331 #ifndef CONFIG_NEED_MULTIPLE_NODES 4332 struct pglist_data __refdata contig_page_data = { .bdata = &bootmem_node_data[0] }; 4333 EXPORT_SYMBOL(contig_page_data); 4334 #endif 4335 4336 void __init free_area_init(unsigned long *zones_size) 4337 { 4338 free_area_init_node(0, zones_size, 4339 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL); 4340 } 4341 4342 static int page_alloc_cpu_notify(struct notifier_block *self, 4343 unsigned long action, void *hcpu) 4344 { 4345 int cpu = (unsigned long)hcpu; 4346 4347 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) { 4348 drain_pages(cpu); 4349 4350 /* 4351 * Spill the event counters of the dead processor 4352 * into the current processors event counters. 4353 * This artificially elevates the count of the current 4354 * processor. 4355 */ 4356 vm_events_fold_cpu(cpu); 4357 4358 /* 4359 * Zero the differential counters of the dead processor 4360 * so that the vm statistics are consistent. 4361 * 4362 * This is only okay since the processor is dead and cannot 4363 * race with what we are doing. 4364 */ 4365 refresh_cpu_vm_stats(cpu); 4366 } 4367 return NOTIFY_OK; 4368 } 4369 4370 void __init page_alloc_init(void) 4371 { 4372 hotcpu_notifier(page_alloc_cpu_notify, 0); 4373 } 4374 4375 /* 4376 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio 4377 * or min_free_kbytes changes. 4378 */ 4379 static void calculate_totalreserve_pages(void) 4380 { 4381 struct pglist_data *pgdat; 4382 unsigned long reserve_pages = 0; 4383 enum zone_type i, j; 4384 4385 for_each_online_pgdat(pgdat) { 4386 for (i = 0; i < MAX_NR_ZONES; i++) { 4387 struct zone *zone = pgdat->node_zones + i; 4388 unsigned long max = 0; 4389 4390 /* Find valid and maximum lowmem_reserve in the zone */ 4391 for (j = i; j < MAX_NR_ZONES; j++) { 4392 if (zone->lowmem_reserve[j] > max) 4393 max = zone->lowmem_reserve[j]; 4394 } 4395 4396 /* we treat the high watermark as reserved pages. */ 4397 max += high_wmark_pages(zone); 4398 4399 if (max > zone->present_pages) 4400 max = zone->present_pages; 4401 reserve_pages += max; 4402 } 4403 } 4404 totalreserve_pages = reserve_pages; 4405 } 4406 4407 /* 4408 * setup_per_zone_lowmem_reserve - called whenever 4409 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone 4410 * has a correct pages reserved value, so an adequate number of 4411 * pages are left in the zone after a successful __alloc_pages(). 4412 */ 4413 static void setup_per_zone_lowmem_reserve(void) 4414 { 4415 struct pglist_data *pgdat; 4416 enum zone_type j, idx; 4417 4418 for_each_online_pgdat(pgdat) { 4419 for (j = 0; j < MAX_NR_ZONES; j++) { 4420 struct zone *zone = pgdat->node_zones + j; 4421 unsigned long present_pages = zone->present_pages; 4422 4423 zone->lowmem_reserve[j] = 0; 4424 4425 idx = j; 4426 while (idx) { 4427 struct zone *lower_zone; 4428 4429 idx--; 4430 4431 if (sysctl_lowmem_reserve_ratio[idx] < 1) 4432 sysctl_lowmem_reserve_ratio[idx] = 1; 4433 4434 lower_zone = pgdat->node_zones + idx; 4435 lower_zone->lowmem_reserve[j] = present_pages / 4436 sysctl_lowmem_reserve_ratio[idx]; 4437 present_pages += lower_zone->present_pages; 4438 } 4439 } 4440 } 4441 4442 /* update totalreserve_pages */ 4443 calculate_totalreserve_pages(); 4444 } 4445 4446 /** 4447 * setup_per_zone_wmarks - called when min_free_kbytes changes 4448 * or when memory is hot-{added|removed} 4449 * 4450 * Ensures that the watermark[min,low,high] values for each zone are set 4451 * correctly with respect to min_free_kbytes. 4452 */ 4453 void setup_per_zone_wmarks(void) 4454 { 4455 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10); 4456 unsigned long lowmem_pages = 0; 4457 struct zone *zone; 4458 unsigned long flags; 4459 4460 /* Calculate total number of !ZONE_HIGHMEM pages */ 4461 for_each_zone(zone) { 4462 if (!is_highmem(zone)) 4463 lowmem_pages += zone->present_pages; 4464 } 4465 4466 for_each_zone(zone) { 4467 u64 tmp; 4468 4469 spin_lock_irqsave(&zone->lock, flags); 4470 tmp = (u64)pages_min * zone->present_pages; 4471 do_div(tmp, lowmem_pages); 4472 if (is_highmem(zone)) { 4473 /* 4474 * __GFP_HIGH and PF_MEMALLOC allocations usually don't 4475 * need highmem pages, so cap pages_min to a small 4476 * value here. 4477 * 4478 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN) 4479 * deltas controls asynch page reclaim, and so should 4480 * not be capped for highmem. 4481 */ 4482 int min_pages; 4483 4484 min_pages = zone->present_pages / 1024; 4485 if (min_pages < SWAP_CLUSTER_MAX) 4486 min_pages = SWAP_CLUSTER_MAX; 4487 if (min_pages > 128) 4488 min_pages = 128; 4489 zone->watermark[WMARK_MIN] = min_pages; 4490 } else { 4491 /* 4492 * If it's a lowmem zone, reserve a number of pages 4493 * proportionate to the zone's size. 4494 */ 4495 zone->watermark[WMARK_MIN] = tmp; 4496 } 4497 4498 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + (tmp >> 2); 4499 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1); 4500 setup_zone_migrate_reserve(zone); 4501 spin_unlock_irqrestore(&zone->lock, flags); 4502 } 4503 4504 /* update totalreserve_pages */ 4505 calculate_totalreserve_pages(); 4506 } 4507 4508 /** 4509 * The inactive anon list should be small enough that the VM never has to 4510 * do too much work, but large enough that each inactive page has a chance 4511 * to be referenced again before it is swapped out. 4512 * 4513 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to 4514 * INACTIVE_ANON pages on this zone's LRU, maintained by the 4515 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of 4516 * the anonymous pages are kept on the inactive list. 4517 * 4518 * total target max 4519 * memory ratio inactive anon 4520 * ------------------------------------- 4521 * 10MB 1 5MB 4522 * 100MB 1 50MB 4523 * 1GB 3 250MB 4524 * 10GB 10 0.9GB 4525 * 100GB 31 3GB 4526 * 1TB 101 10GB 4527 * 10TB 320 32GB 4528 */ 4529 void calculate_zone_inactive_ratio(struct zone *zone) 4530 { 4531 unsigned int gb, ratio; 4532 4533 /* Zone size in gigabytes */ 4534 gb = zone->present_pages >> (30 - PAGE_SHIFT); 4535 if (gb) 4536 ratio = int_sqrt(10 * gb); 4537 else 4538 ratio = 1; 4539 4540 zone->inactive_ratio = ratio; 4541 } 4542 4543 static void __init setup_per_zone_inactive_ratio(void) 4544 { 4545 struct zone *zone; 4546 4547 for_each_zone(zone) 4548 calculate_zone_inactive_ratio(zone); 4549 } 4550 4551 /* 4552 * Initialise min_free_kbytes. 4553 * 4554 * For small machines we want it small (128k min). For large machines 4555 * we want it large (64MB max). But it is not linear, because network 4556 * bandwidth does not increase linearly with machine size. We use 4557 * 4558 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy: 4559 * min_free_kbytes = sqrt(lowmem_kbytes * 16) 4560 * 4561 * which yields 4562 * 4563 * 16MB: 512k 4564 * 32MB: 724k 4565 * 64MB: 1024k 4566 * 128MB: 1448k 4567 * 256MB: 2048k 4568 * 512MB: 2896k 4569 * 1024MB: 4096k 4570 * 2048MB: 5792k 4571 * 4096MB: 8192k 4572 * 8192MB: 11584k 4573 * 16384MB: 16384k 4574 */ 4575 static int __init init_per_zone_wmark_min(void) 4576 { 4577 unsigned long lowmem_kbytes; 4578 4579 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10); 4580 4581 min_free_kbytes = int_sqrt(lowmem_kbytes * 16); 4582 if (min_free_kbytes < 128) 4583 min_free_kbytes = 128; 4584 if (min_free_kbytes > 65536) 4585 min_free_kbytes = 65536; 4586 setup_per_zone_wmarks(); 4587 setup_per_zone_lowmem_reserve(); 4588 setup_per_zone_inactive_ratio(); 4589 return 0; 4590 } 4591 module_init(init_per_zone_wmark_min) 4592 4593 /* 4594 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so 4595 * that we can call two helper functions whenever min_free_kbytes 4596 * changes. 4597 */ 4598 int min_free_kbytes_sysctl_handler(ctl_table *table, int write, 4599 struct file *file, void __user *buffer, size_t *length, loff_t *ppos) 4600 { 4601 proc_dointvec(table, write, file, buffer, length, ppos); 4602 if (write) 4603 setup_per_zone_wmarks(); 4604 return 0; 4605 } 4606 4607 #ifdef CONFIG_NUMA 4608 int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write, 4609 struct file *file, void __user *buffer, size_t *length, loff_t *ppos) 4610 { 4611 struct zone *zone; 4612 int rc; 4613 4614 rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos); 4615 if (rc) 4616 return rc; 4617 4618 for_each_zone(zone) 4619 zone->min_unmapped_pages = (zone->present_pages * 4620 sysctl_min_unmapped_ratio) / 100; 4621 return 0; 4622 } 4623 4624 int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write, 4625 struct file *file, void __user *buffer, size_t *length, loff_t *ppos) 4626 { 4627 struct zone *zone; 4628 int rc; 4629 4630 rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos); 4631 if (rc) 4632 return rc; 4633 4634 for_each_zone(zone) 4635 zone->min_slab_pages = (zone->present_pages * 4636 sysctl_min_slab_ratio) / 100; 4637 return 0; 4638 } 4639 #endif 4640 4641 /* 4642 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around 4643 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve() 4644 * whenever sysctl_lowmem_reserve_ratio changes. 4645 * 4646 * The reserve ratio obviously has absolutely no relation with the 4647 * minimum watermarks. The lowmem reserve ratio can only make sense 4648 * if in function of the boot time zone sizes. 4649 */ 4650 int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write, 4651 struct file *file, void __user *buffer, size_t *length, loff_t *ppos) 4652 { 4653 proc_dointvec_minmax(table, write, file, buffer, length, ppos); 4654 setup_per_zone_lowmem_reserve(); 4655 return 0; 4656 } 4657 4658 /* 4659 * percpu_pagelist_fraction - changes the pcp->high for each zone on each 4660 * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist 4661 * can have before it gets flushed back to buddy allocator. 4662 */ 4663 4664 int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write, 4665 struct file *file, void __user *buffer, size_t *length, loff_t *ppos) 4666 { 4667 struct zone *zone; 4668 unsigned int cpu; 4669 int ret; 4670 4671 ret = proc_dointvec_minmax(table, write, file, buffer, length, ppos); 4672 if (!write || (ret == -EINVAL)) 4673 return ret; 4674 for_each_populated_zone(zone) { 4675 for_each_online_cpu(cpu) { 4676 unsigned long high; 4677 high = zone->present_pages / percpu_pagelist_fraction; 4678 setup_pagelist_highmark(zone_pcp(zone, cpu), high); 4679 } 4680 } 4681 return 0; 4682 } 4683 4684 int hashdist = HASHDIST_DEFAULT; 4685 4686 #ifdef CONFIG_NUMA 4687 static int __init set_hashdist(char *str) 4688 { 4689 if (!str) 4690 return 0; 4691 hashdist = simple_strtoul(str, &str, 0); 4692 return 1; 4693 } 4694 __setup("hashdist=", set_hashdist); 4695 #endif 4696 4697 /* 4698 * allocate a large system hash table from bootmem 4699 * - it is assumed that the hash table must contain an exact power-of-2 4700 * quantity of entries 4701 * - limit is the number of hash buckets, not the total allocation size 4702 */ 4703 void *__init alloc_large_system_hash(const char *tablename, 4704 unsigned long bucketsize, 4705 unsigned long numentries, 4706 int scale, 4707 int flags, 4708 unsigned int *_hash_shift, 4709 unsigned int *_hash_mask, 4710 unsigned long limit) 4711 { 4712 unsigned long long max = limit; 4713 unsigned long log2qty, size; 4714 void *table = NULL; 4715 4716 /* allow the kernel cmdline to have a say */ 4717 if (!numentries) { 4718 /* round applicable memory size up to nearest megabyte */ 4719 numentries = nr_kernel_pages; 4720 numentries += (1UL << (20 - PAGE_SHIFT)) - 1; 4721 numentries >>= 20 - PAGE_SHIFT; 4722 numentries <<= 20 - PAGE_SHIFT; 4723 4724 /* limit to 1 bucket per 2^scale bytes of low memory */ 4725 if (scale > PAGE_SHIFT) 4726 numentries >>= (scale - PAGE_SHIFT); 4727 else 4728 numentries <<= (PAGE_SHIFT - scale); 4729 4730 /* Make sure we've got at least a 0-order allocation.. */ 4731 if (unlikely((numentries * bucketsize) < PAGE_SIZE)) 4732 numentries = PAGE_SIZE / bucketsize; 4733 } 4734 numentries = roundup_pow_of_two(numentries); 4735 4736 /* limit allocation size to 1/16 total memory by default */ 4737 if (max == 0) { 4738 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4; 4739 do_div(max, bucketsize); 4740 } 4741 4742 if (numentries > max) 4743 numentries = max; 4744 4745 log2qty = ilog2(numentries); 4746 4747 do { 4748 size = bucketsize << log2qty; 4749 if (flags & HASH_EARLY) 4750 table = alloc_bootmem_nopanic(size); 4751 else if (hashdist) 4752 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL); 4753 else { 4754 /* 4755 * If bucketsize is not a power-of-two, we may free 4756 * some pages at the end of hash table which 4757 * alloc_pages_exact() automatically does 4758 */ 4759 if (get_order(size) < MAX_ORDER) { 4760 table = alloc_pages_exact(size, GFP_ATOMIC); 4761 kmemleak_alloc(table, size, 1, GFP_ATOMIC); 4762 } 4763 } 4764 } while (!table && size > PAGE_SIZE && --log2qty); 4765 4766 if (!table) 4767 panic("Failed to allocate %s hash table\n", tablename); 4768 4769 printk(KERN_INFO "%s hash table entries: %d (order: %d, %lu bytes)\n", 4770 tablename, 4771 (1U << log2qty), 4772 ilog2(size) - PAGE_SHIFT, 4773 size); 4774 4775 if (_hash_shift) 4776 *_hash_shift = log2qty; 4777 if (_hash_mask) 4778 *_hash_mask = (1 << log2qty) - 1; 4779 4780 return table; 4781 } 4782 4783 /* Return a pointer to the bitmap storing bits affecting a block of pages */ 4784 static inline unsigned long *get_pageblock_bitmap(struct zone *zone, 4785 unsigned long pfn) 4786 { 4787 #ifdef CONFIG_SPARSEMEM 4788 return __pfn_to_section(pfn)->pageblock_flags; 4789 #else 4790 return zone->pageblock_flags; 4791 #endif /* CONFIG_SPARSEMEM */ 4792 } 4793 4794 static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn) 4795 { 4796 #ifdef CONFIG_SPARSEMEM 4797 pfn &= (PAGES_PER_SECTION-1); 4798 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS; 4799 #else 4800 pfn = pfn - zone->zone_start_pfn; 4801 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS; 4802 #endif /* CONFIG_SPARSEMEM */ 4803 } 4804 4805 /** 4806 * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages 4807 * @page: The page within the block of interest 4808 * @start_bitidx: The first bit of interest to retrieve 4809 * @end_bitidx: The last bit of interest 4810 * returns pageblock_bits flags 4811 */ 4812 unsigned long get_pageblock_flags_group(struct page *page, 4813 int start_bitidx, int end_bitidx) 4814 { 4815 struct zone *zone; 4816 unsigned long *bitmap; 4817 unsigned long pfn, bitidx; 4818 unsigned long flags = 0; 4819 unsigned long value = 1; 4820 4821 zone = page_zone(page); 4822 pfn = page_to_pfn(page); 4823 bitmap = get_pageblock_bitmap(zone, pfn); 4824 bitidx = pfn_to_bitidx(zone, pfn); 4825 4826 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1) 4827 if (test_bit(bitidx + start_bitidx, bitmap)) 4828 flags |= value; 4829 4830 return flags; 4831 } 4832 4833 /** 4834 * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages 4835 * @page: The page within the block of interest 4836 * @start_bitidx: The first bit of interest 4837 * @end_bitidx: The last bit of interest 4838 * @flags: The flags to set 4839 */ 4840 void set_pageblock_flags_group(struct page *page, unsigned long flags, 4841 int start_bitidx, int end_bitidx) 4842 { 4843 struct zone *zone; 4844 unsigned long *bitmap; 4845 unsigned long pfn, bitidx; 4846 unsigned long value = 1; 4847 4848 zone = page_zone(page); 4849 pfn = page_to_pfn(page); 4850 bitmap = get_pageblock_bitmap(zone, pfn); 4851 bitidx = pfn_to_bitidx(zone, pfn); 4852 VM_BUG_ON(pfn < zone->zone_start_pfn); 4853 VM_BUG_ON(pfn >= zone->zone_start_pfn + zone->spanned_pages); 4854 4855 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1) 4856 if (flags & value) 4857 __set_bit(bitidx + start_bitidx, bitmap); 4858 else 4859 __clear_bit(bitidx + start_bitidx, bitmap); 4860 } 4861 4862 /* 4863 * This is designed as sub function...plz see page_isolation.c also. 4864 * set/clear page block's type to be ISOLATE. 4865 * page allocater never alloc memory from ISOLATE block. 4866 */ 4867 4868 int set_migratetype_isolate(struct page *page) 4869 { 4870 struct zone *zone; 4871 unsigned long flags; 4872 int ret = -EBUSY; 4873 4874 zone = page_zone(page); 4875 spin_lock_irqsave(&zone->lock, flags); 4876 /* 4877 * In future, more migrate types will be able to be isolation target. 4878 */ 4879 if (get_pageblock_migratetype(page) != MIGRATE_MOVABLE) 4880 goto out; 4881 set_pageblock_migratetype(page, MIGRATE_ISOLATE); 4882 move_freepages_block(zone, page, MIGRATE_ISOLATE); 4883 ret = 0; 4884 out: 4885 spin_unlock_irqrestore(&zone->lock, flags); 4886 if (!ret) 4887 drain_all_pages(); 4888 return ret; 4889 } 4890 4891 void unset_migratetype_isolate(struct page *page) 4892 { 4893 struct zone *zone; 4894 unsigned long flags; 4895 zone = page_zone(page); 4896 spin_lock_irqsave(&zone->lock, flags); 4897 if (get_pageblock_migratetype(page) != MIGRATE_ISOLATE) 4898 goto out; 4899 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 4900 move_freepages_block(zone, page, MIGRATE_MOVABLE); 4901 out: 4902 spin_unlock_irqrestore(&zone->lock, flags); 4903 } 4904 4905 #ifdef CONFIG_MEMORY_HOTREMOVE 4906 /* 4907 * All pages in the range must be isolated before calling this. 4908 */ 4909 void 4910 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn) 4911 { 4912 struct page *page; 4913 struct zone *zone; 4914 int order, i; 4915 unsigned long pfn; 4916 unsigned long flags; 4917 /* find the first valid pfn */ 4918 for (pfn = start_pfn; pfn < end_pfn; pfn++) 4919 if (pfn_valid(pfn)) 4920 break; 4921 if (pfn == end_pfn) 4922 return; 4923 zone = page_zone(pfn_to_page(pfn)); 4924 spin_lock_irqsave(&zone->lock, flags); 4925 pfn = start_pfn; 4926 while (pfn < end_pfn) { 4927 if (!pfn_valid(pfn)) { 4928 pfn++; 4929 continue; 4930 } 4931 page = pfn_to_page(pfn); 4932 BUG_ON(page_count(page)); 4933 BUG_ON(!PageBuddy(page)); 4934 order = page_order(page); 4935 #ifdef CONFIG_DEBUG_VM 4936 printk(KERN_INFO "remove from free list %lx %d %lx\n", 4937 pfn, 1 << order, end_pfn); 4938 #endif 4939 list_del(&page->lru); 4940 rmv_page_order(page); 4941 zone->free_area[order].nr_free--; 4942 __mod_zone_page_state(zone, NR_FREE_PAGES, 4943 - (1UL << order)); 4944 for (i = 0; i < (1 << order); i++) 4945 SetPageReserved((page+i)); 4946 pfn += (1 << order); 4947 } 4948 spin_unlock_irqrestore(&zone->lock, flags); 4949 } 4950 #endif 4951