xref: /linux/mm/page_alloc.c (revision de2fe5e07d58424bc286fff3fd3c1b0bf933cd58)
1 /*
2  *  linux/mm/page_alloc.c
3  *
4  *  Manages the free list, the system allocates free pages here.
5  *  Note that kmalloc() lives in slab.c
6  *
7  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
8  *  Swap reorganised 29.12.95, Stephen Tweedie
9  *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10  *  Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11  *  Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12  *  Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13  *  Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14  *          (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15  */
16 
17 #include <linux/config.h>
18 #include <linux/stddef.h>
19 #include <linux/mm.h>
20 #include <linux/swap.h>
21 #include <linux/interrupt.h>
22 #include <linux/pagemap.h>
23 #include <linux/bootmem.h>
24 #include <linux/compiler.h>
25 #include <linux/kernel.h>
26 #include <linux/module.h>
27 #include <linux/suspend.h>
28 #include <linux/pagevec.h>
29 #include <linux/blkdev.h>
30 #include <linux/slab.h>
31 #include <linux/notifier.h>
32 #include <linux/topology.h>
33 #include <linux/sysctl.h>
34 #include <linux/cpu.h>
35 #include <linux/cpuset.h>
36 #include <linux/memory_hotplug.h>
37 #include <linux/nodemask.h>
38 #include <linux/vmalloc.h>
39 #include <linux/mempolicy.h>
40 
41 #include <asm/tlbflush.h>
42 #include "internal.h"
43 
44 /*
45  * MCD - HACK: Find somewhere to initialize this EARLY, or make this
46  * initializer cleaner
47  */
48 nodemask_t node_online_map __read_mostly = { { [0] = 1UL } };
49 EXPORT_SYMBOL(node_online_map);
50 nodemask_t node_possible_map __read_mostly = NODE_MASK_ALL;
51 EXPORT_SYMBOL(node_possible_map);
52 unsigned long totalram_pages __read_mostly;
53 unsigned long totalhigh_pages __read_mostly;
54 long nr_swap_pages;
55 int percpu_pagelist_fraction;
56 
57 static void __free_pages_ok(struct page *page, unsigned int order);
58 
59 /*
60  * results with 256, 32 in the lowmem_reserve sysctl:
61  *	1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
62  *	1G machine -> (16M dma, 784M normal, 224M high)
63  *	NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
64  *	HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
65  *	HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
66  *
67  * TBD: should special case ZONE_DMA32 machines here - in those we normally
68  * don't need any ZONE_NORMAL reservation
69  */
70 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = { 256, 256, 32 };
71 
72 EXPORT_SYMBOL(totalram_pages);
73 
74 /*
75  * Used by page_zone() to look up the address of the struct zone whose
76  * id is encoded in the upper bits of page->flags
77  */
78 struct zone *zone_table[1 << ZONETABLE_SHIFT] __read_mostly;
79 EXPORT_SYMBOL(zone_table);
80 
81 static char *zone_names[MAX_NR_ZONES] = { "DMA", "DMA32", "Normal", "HighMem" };
82 int min_free_kbytes = 1024;
83 
84 unsigned long __initdata nr_kernel_pages;
85 unsigned long __initdata nr_all_pages;
86 
87 #ifdef CONFIG_DEBUG_VM
88 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
89 {
90 	int ret = 0;
91 	unsigned seq;
92 	unsigned long pfn = page_to_pfn(page);
93 
94 	do {
95 		seq = zone_span_seqbegin(zone);
96 		if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
97 			ret = 1;
98 		else if (pfn < zone->zone_start_pfn)
99 			ret = 1;
100 	} while (zone_span_seqretry(zone, seq));
101 
102 	return ret;
103 }
104 
105 static int page_is_consistent(struct zone *zone, struct page *page)
106 {
107 #ifdef CONFIG_HOLES_IN_ZONE
108 	if (!pfn_valid(page_to_pfn(page)))
109 		return 0;
110 #endif
111 	if (zone != page_zone(page))
112 		return 0;
113 
114 	return 1;
115 }
116 /*
117  * Temporary debugging check for pages not lying within a given zone.
118  */
119 static int bad_range(struct zone *zone, struct page *page)
120 {
121 	if (page_outside_zone_boundaries(zone, page))
122 		return 1;
123 	if (!page_is_consistent(zone, page))
124 		return 1;
125 
126 	return 0;
127 }
128 
129 #else
130 static inline int bad_range(struct zone *zone, struct page *page)
131 {
132 	return 0;
133 }
134 #endif
135 
136 static void bad_page(struct page *page)
137 {
138 	printk(KERN_EMERG "Bad page state in process '%s'\n"
139 		KERN_EMERG "page:%p flags:0x%0*lx mapping:%p mapcount:%d count:%d\n"
140 		KERN_EMERG "Trying to fix it up, but a reboot is needed\n"
141 		KERN_EMERG "Backtrace:\n",
142 		current->comm, page, (int)(2*sizeof(unsigned long)),
143 		(unsigned long)page->flags, page->mapping,
144 		page_mapcount(page), page_count(page));
145 	dump_stack();
146 	page->flags &= ~(1 << PG_lru	|
147 			1 << PG_private |
148 			1 << PG_locked	|
149 			1 << PG_active	|
150 			1 << PG_dirty	|
151 			1 << PG_reclaim |
152 			1 << PG_slab    |
153 			1 << PG_swapcache |
154 			1 << PG_writeback );
155 	set_page_count(page, 0);
156 	reset_page_mapcount(page);
157 	page->mapping = NULL;
158 	add_taint(TAINT_BAD_PAGE);
159 }
160 
161 /*
162  * Higher-order pages are called "compound pages".  They are structured thusly:
163  *
164  * The first PAGE_SIZE page is called the "head page".
165  *
166  * The remaining PAGE_SIZE pages are called "tail pages".
167  *
168  * All pages have PG_compound set.  All pages have their ->private pointing at
169  * the head page (even the head page has this).
170  *
171  * The first tail page's ->lru.next holds the address of the compound page's
172  * put_page() function.  Its ->lru.prev holds the order of allocation.
173  * This usage means that zero-order pages may not be compound.
174  */
175 
176 static void free_compound_page(struct page *page)
177 {
178 	__free_pages_ok(page, (unsigned long)page[1].lru.prev);
179 }
180 
181 static void prep_compound_page(struct page *page, unsigned long order)
182 {
183 	int i;
184 	int nr_pages = 1 << order;
185 
186 	page[1].lru.next = (void *)free_compound_page;	/* set dtor */
187 	page[1].lru.prev = (void *)order;
188 	for (i = 0; i < nr_pages; i++) {
189 		struct page *p = page + i;
190 
191 		__SetPageCompound(p);
192 		set_page_private(p, (unsigned long)page);
193 	}
194 }
195 
196 static void destroy_compound_page(struct page *page, unsigned long order)
197 {
198 	int i;
199 	int nr_pages = 1 << order;
200 
201 	if (unlikely((unsigned long)page[1].lru.prev != order))
202 		bad_page(page);
203 
204 	for (i = 0; i < nr_pages; i++) {
205 		struct page *p = page + i;
206 
207 		if (unlikely(!PageCompound(p) |
208 				(page_private(p) != (unsigned long)page)))
209 			bad_page(page);
210 		__ClearPageCompound(p);
211 	}
212 }
213 
214 static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
215 {
216 	int i;
217 
218 	BUG_ON((gfp_flags & (__GFP_WAIT | __GFP_HIGHMEM)) == __GFP_HIGHMEM);
219 	/*
220 	 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
221 	 * and __GFP_HIGHMEM from hard or soft interrupt context.
222 	 */
223 	BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
224 	for (i = 0; i < (1 << order); i++)
225 		clear_highpage(page + i);
226 }
227 
228 /*
229  * function for dealing with page's order in buddy system.
230  * zone->lock is already acquired when we use these.
231  * So, we don't need atomic page->flags operations here.
232  */
233 static inline unsigned long page_order(struct page *page) {
234 	return page_private(page);
235 }
236 
237 static inline void set_page_order(struct page *page, int order) {
238 	set_page_private(page, order);
239 	__SetPagePrivate(page);
240 }
241 
242 static inline void rmv_page_order(struct page *page)
243 {
244 	__ClearPagePrivate(page);
245 	set_page_private(page, 0);
246 }
247 
248 /*
249  * Locate the struct page for both the matching buddy in our
250  * pair (buddy1) and the combined O(n+1) page they form (page).
251  *
252  * 1) Any buddy B1 will have an order O twin B2 which satisfies
253  * the following equation:
254  *     B2 = B1 ^ (1 << O)
255  * For example, if the starting buddy (buddy2) is #8 its order
256  * 1 buddy is #10:
257  *     B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
258  *
259  * 2) Any buddy B will have an order O+1 parent P which
260  * satisfies the following equation:
261  *     P = B & ~(1 << O)
262  *
263  * Assumption: *_mem_map is contigious at least up to MAX_ORDER
264  */
265 static inline struct page *
266 __page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order)
267 {
268 	unsigned long buddy_idx = page_idx ^ (1 << order);
269 
270 	return page + (buddy_idx - page_idx);
271 }
272 
273 static inline unsigned long
274 __find_combined_index(unsigned long page_idx, unsigned int order)
275 {
276 	return (page_idx & ~(1 << order));
277 }
278 
279 /*
280  * This function checks whether a page is free && is the buddy
281  * we can do coalesce a page and its buddy if
282  * (a) the buddy is not in a hole &&
283  * (b) the buddy is free &&
284  * (c) the buddy is on the buddy system &&
285  * (d) a page and its buddy have the same order.
286  * for recording page's order, we use page_private(page) and PG_private.
287  *
288  */
289 static inline int page_is_buddy(struct page *page, int order)
290 {
291 #ifdef CONFIG_HOLES_IN_ZONE
292 	if (!pfn_valid(page_to_pfn(page)))
293 		return 0;
294 #endif
295 
296        if (PagePrivate(page)           &&
297            (page_order(page) == order) &&
298             page_count(page) == 0)
299                return 1;
300        return 0;
301 }
302 
303 /*
304  * Freeing function for a buddy system allocator.
305  *
306  * The concept of a buddy system is to maintain direct-mapped table
307  * (containing bit values) for memory blocks of various "orders".
308  * The bottom level table contains the map for the smallest allocatable
309  * units of memory (here, pages), and each level above it describes
310  * pairs of units from the levels below, hence, "buddies".
311  * At a high level, all that happens here is marking the table entry
312  * at the bottom level available, and propagating the changes upward
313  * as necessary, plus some accounting needed to play nicely with other
314  * parts of the VM system.
315  * At each level, we keep a list of pages, which are heads of continuous
316  * free pages of length of (1 << order) and marked with PG_Private.Page's
317  * order is recorded in page_private(page) field.
318  * So when we are allocating or freeing one, we can derive the state of the
319  * other.  That is, if we allocate a small block, and both were
320  * free, the remainder of the region must be split into blocks.
321  * If a block is freed, and its buddy is also free, then this
322  * triggers coalescing into a block of larger size.
323  *
324  * -- wli
325  */
326 
327 static inline void __free_one_page(struct page *page,
328 		struct zone *zone, unsigned int order)
329 {
330 	unsigned long page_idx;
331 	int order_size = 1 << order;
332 
333 	if (unlikely(PageCompound(page)))
334 		destroy_compound_page(page, order);
335 
336 	page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
337 
338 	BUG_ON(page_idx & (order_size - 1));
339 	BUG_ON(bad_range(zone, page));
340 
341 	zone->free_pages += order_size;
342 	while (order < MAX_ORDER-1) {
343 		unsigned long combined_idx;
344 		struct free_area *area;
345 		struct page *buddy;
346 
347 		buddy = __page_find_buddy(page, page_idx, order);
348 		if (!page_is_buddy(buddy, order))
349 			break;		/* Move the buddy up one level. */
350 
351 		list_del(&buddy->lru);
352 		area = zone->free_area + order;
353 		area->nr_free--;
354 		rmv_page_order(buddy);
355 		combined_idx = __find_combined_index(page_idx, order);
356 		page = page + (combined_idx - page_idx);
357 		page_idx = combined_idx;
358 		order++;
359 	}
360 	set_page_order(page, order);
361 	list_add(&page->lru, &zone->free_area[order].free_list);
362 	zone->free_area[order].nr_free++;
363 }
364 
365 static inline int free_pages_check(struct page *page)
366 {
367 	if (unlikely(page_mapcount(page) |
368 		(page->mapping != NULL)  |
369 		(page_count(page) != 0)  |
370 		(page->flags & (
371 			1 << PG_lru	|
372 			1 << PG_private |
373 			1 << PG_locked	|
374 			1 << PG_active	|
375 			1 << PG_reclaim	|
376 			1 << PG_slab	|
377 			1 << PG_swapcache |
378 			1 << PG_writeback |
379 			1 << PG_reserved ))))
380 		bad_page(page);
381 	if (PageDirty(page))
382 		__ClearPageDirty(page);
383 	/*
384 	 * For now, we report if PG_reserved was found set, but do not
385 	 * clear it, and do not free the page.  But we shall soon need
386 	 * to do more, for when the ZERO_PAGE count wraps negative.
387 	 */
388 	return PageReserved(page);
389 }
390 
391 /*
392  * Frees a list of pages.
393  * Assumes all pages on list are in same zone, and of same order.
394  * count is the number of pages to free.
395  *
396  * If the zone was previously in an "all pages pinned" state then look to
397  * see if this freeing clears that state.
398  *
399  * And clear the zone's pages_scanned counter, to hold off the "all pages are
400  * pinned" detection logic.
401  */
402 static void free_pages_bulk(struct zone *zone, int count,
403 					struct list_head *list, int order)
404 {
405 	spin_lock(&zone->lock);
406 	zone->all_unreclaimable = 0;
407 	zone->pages_scanned = 0;
408 	while (count--) {
409 		struct page *page;
410 
411 		BUG_ON(list_empty(list));
412 		page = list_entry(list->prev, struct page, lru);
413 		/* have to delete it as __free_one_page list manipulates */
414 		list_del(&page->lru);
415 		__free_one_page(page, zone, order);
416 	}
417 	spin_unlock(&zone->lock);
418 }
419 
420 static void free_one_page(struct zone *zone, struct page *page, int order)
421 {
422 	LIST_HEAD(list);
423 	list_add(&page->lru, &list);
424 	free_pages_bulk(zone, 1, &list, order);
425 }
426 
427 static void __free_pages_ok(struct page *page, unsigned int order)
428 {
429 	unsigned long flags;
430 	int i;
431 	int reserved = 0;
432 
433 	arch_free_page(page, order);
434 	if (!PageHighMem(page))
435 		mutex_debug_check_no_locks_freed(page_address(page),
436 						 PAGE_SIZE<<order);
437 
438 	for (i = 0 ; i < (1 << order) ; ++i)
439 		reserved += free_pages_check(page + i);
440 	if (reserved)
441 		return;
442 
443 	kernel_map_pages(page, 1 << order, 0);
444 	local_irq_save(flags);
445 	__mod_page_state(pgfree, 1 << order);
446 	free_one_page(page_zone(page), page, order);
447 	local_irq_restore(flags);
448 }
449 
450 /*
451  * permit the bootmem allocator to evade page validation on high-order frees
452  */
453 void fastcall __init __free_pages_bootmem(struct page *page, unsigned int order)
454 {
455 	if (order == 0) {
456 		__ClearPageReserved(page);
457 		set_page_count(page, 0);
458 		set_page_refcounted(page);
459 		__free_page(page);
460 	} else {
461 		int loop;
462 
463 		prefetchw(page);
464 		for (loop = 0; loop < BITS_PER_LONG; loop++) {
465 			struct page *p = &page[loop];
466 
467 			if (loop + 1 < BITS_PER_LONG)
468 				prefetchw(p + 1);
469 			__ClearPageReserved(p);
470 			set_page_count(p, 0);
471 		}
472 
473 		set_page_refcounted(page);
474 		__free_pages(page, order);
475 	}
476 }
477 
478 
479 /*
480  * The order of subdivision here is critical for the IO subsystem.
481  * Please do not alter this order without good reasons and regression
482  * testing. Specifically, as large blocks of memory are subdivided,
483  * the order in which smaller blocks are delivered depends on the order
484  * they're subdivided in this function. This is the primary factor
485  * influencing the order in which pages are delivered to the IO
486  * subsystem according to empirical testing, and this is also justified
487  * by considering the behavior of a buddy system containing a single
488  * large block of memory acted on by a series of small allocations.
489  * This behavior is a critical factor in sglist merging's success.
490  *
491  * -- wli
492  */
493 static inline void expand(struct zone *zone, struct page *page,
494  	int low, int high, struct free_area *area)
495 {
496 	unsigned long size = 1 << high;
497 
498 	while (high > low) {
499 		area--;
500 		high--;
501 		size >>= 1;
502 		BUG_ON(bad_range(zone, &page[size]));
503 		list_add(&page[size].lru, &area->free_list);
504 		area->nr_free++;
505 		set_page_order(&page[size], high);
506 	}
507 }
508 
509 /*
510  * This page is about to be returned from the page allocator
511  */
512 static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
513 {
514 	if (unlikely(page_mapcount(page) |
515 		(page->mapping != NULL)  |
516 		(page_count(page) != 0)  |
517 		(page->flags & (
518 			1 << PG_lru	|
519 			1 << PG_private	|
520 			1 << PG_locked	|
521 			1 << PG_active	|
522 			1 << PG_dirty	|
523 			1 << PG_reclaim	|
524 			1 << PG_slab    |
525 			1 << PG_swapcache |
526 			1 << PG_writeback |
527 			1 << PG_reserved ))))
528 		bad_page(page);
529 
530 	/*
531 	 * For now, we report if PG_reserved was found set, but do not
532 	 * clear it, and do not allocate the page: as a safety net.
533 	 */
534 	if (PageReserved(page))
535 		return 1;
536 
537 	page->flags &= ~(1 << PG_uptodate | 1 << PG_error |
538 			1 << PG_referenced | 1 << PG_arch_1 |
539 			1 << PG_checked | 1 << PG_mappedtodisk);
540 	set_page_private(page, 0);
541 	set_page_refcounted(page);
542 	kernel_map_pages(page, 1 << order, 1);
543 
544 	if (gfp_flags & __GFP_ZERO)
545 		prep_zero_page(page, order, gfp_flags);
546 
547 	if (order && (gfp_flags & __GFP_COMP))
548 		prep_compound_page(page, order);
549 
550 	return 0;
551 }
552 
553 /*
554  * Do the hard work of removing an element from the buddy allocator.
555  * Call me with the zone->lock already held.
556  */
557 static struct page *__rmqueue(struct zone *zone, unsigned int order)
558 {
559 	struct free_area * area;
560 	unsigned int current_order;
561 	struct page *page;
562 
563 	for (current_order = order; current_order < MAX_ORDER; ++current_order) {
564 		area = zone->free_area + current_order;
565 		if (list_empty(&area->free_list))
566 			continue;
567 
568 		page = list_entry(area->free_list.next, struct page, lru);
569 		list_del(&page->lru);
570 		rmv_page_order(page);
571 		area->nr_free--;
572 		zone->free_pages -= 1UL << order;
573 		expand(zone, page, order, current_order, area);
574 		return page;
575 	}
576 
577 	return NULL;
578 }
579 
580 /*
581  * Obtain a specified number of elements from the buddy allocator, all under
582  * a single hold of the lock, for efficiency.  Add them to the supplied list.
583  * Returns the number of new pages which were placed at *list.
584  */
585 static int rmqueue_bulk(struct zone *zone, unsigned int order,
586 			unsigned long count, struct list_head *list)
587 {
588 	int i;
589 
590 	spin_lock(&zone->lock);
591 	for (i = 0; i < count; ++i) {
592 		struct page *page = __rmqueue(zone, order);
593 		if (unlikely(page == NULL))
594 			break;
595 		list_add_tail(&page->lru, list);
596 	}
597 	spin_unlock(&zone->lock);
598 	return i;
599 }
600 
601 #ifdef CONFIG_NUMA
602 /*
603  * Called from the slab reaper to drain pagesets on a particular node that
604  * belong to the currently executing processor.
605  * Note that this function must be called with the thread pinned to
606  * a single processor.
607  */
608 void drain_node_pages(int nodeid)
609 {
610 	int i, z;
611 	unsigned long flags;
612 
613 	for (z = 0; z < MAX_NR_ZONES; z++) {
614 		struct zone *zone = NODE_DATA(nodeid)->node_zones + z;
615 		struct per_cpu_pageset *pset;
616 
617 		pset = zone_pcp(zone, smp_processor_id());
618 		for (i = 0; i < ARRAY_SIZE(pset->pcp); i++) {
619 			struct per_cpu_pages *pcp;
620 
621 			pcp = &pset->pcp[i];
622 			if (pcp->count) {
623 				local_irq_save(flags);
624 				free_pages_bulk(zone, pcp->count, &pcp->list, 0);
625 				pcp->count = 0;
626 				local_irq_restore(flags);
627 			}
628 		}
629 	}
630 }
631 #endif
632 
633 #if defined(CONFIG_PM) || defined(CONFIG_HOTPLUG_CPU)
634 static void __drain_pages(unsigned int cpu)
635 {
636 	unsigned long flags;
637 	struct zone *zone;
638 	int i;
639 
640 	for_each_zone(zone) {
641 		struct per_cpu_pageset *pset;
642 
643 		pset = zone_pcp(zone, cpu);
644 		for (i = 0; i < ARRAY_SIZE(pset->pcp); i++) {
645 			struct per_cpu_pages *pcp;
646 
647 			pcp = &pset->pcp[i];
648 			local_irq_save(flags);
649 			free_pages_bulk(zone, pcp->count, &pcp->list, 0);
650 			pcp->count = 0;
651 			local_irq_restore(flags);
652 		}
653 	}
654 }
655 #endif /* CONFIG_PM || CONFIG_HOTPLUG_CPU */
656 
657 #ifdef CONFIG_PM
658 
659 void mark_free_pages(struct zone *zone)
660 {
661 	unsigned long zone_pfn, flags;
662 	int order;
663 	struct list_head *curr;
664 
665 	if (!zone->spanned_pages)
666 		return;
667 
668 	spin_lock_irqsave(&zone->lock, flags);
669 	for (zone_pfn = 0; zone_pfn < zone->spanned_pages; ++zone_pfn)
670 		ClearPageNosaveFree(pfn_to_page(zone_pfn + zone->zone_start_pfn));
671 
672 	for (order = MAX_ORDER - 1; order >= 0; --order)
673 		list_for_each(curr, &zone->free_area[order].free_list) {
674 			unsigned long start_pfn, i;
675 
676 			start_pfn = page_to_pfn(list_entry(curr, struct page, lru));
677 
678 			for (i=0; i < (1<<order); i++)
679 				SetPageNosaveFree(pfn_to_page(start_pfn+i));
680 	}
681 	spin_unlock_irqrestore(&zone->lock, flags);
682 }
683 
684 /*
685  * Spill all of this CPU's per-cpu pages back into the buddy allocator.
686  */
687 void drain_local_pages(void)
688 {
689 	unsigned long flags;
690 
691 	local_irq_save(flags);
692 	__drain_pages(smp_processor_id());
693 	local_irq_restore(flags);
694 }
695 #endif /* CONFIG_PM */
696 
697 static void zone_statistics(struct zonelist *zonelist, struct zone *z, int cpu)
698 {
699 #ifdef CONFIG_NUMA
700 	pg_data_t *pg = z->zone_pgdat;
701 	pg_data_t *orig = zonelist->zones[0]->zone_pgdat;
702 	struct per_cpu_pageset *p;
703 
704 	p = zone_pcp(z, cpu);
705 	if (pg == orig) {
706 		p->numa_hit++;
707 	} else {
708 		p->numa_miss++;
709 		zone_pcp(zonelist->zones[0], cpu)->numa_foreign++;
710 	}
711 	if (pg == NODE_DATA(numa_node_id()))
712 		p->local_node++;
713 	else
714 		p->other_node++;
715 #endif
716 }
717 
718 /*
719  * Free a 0-order page
720  */
721 static void fastcall free_hot_cold_page(struct page *page, int cold)
722 {
723 	struct zone *zone = page_zone(page);
724 	struct per_cpu_pages *pcp;
725 	unsigned long flags;
726 
727 	arch_free_page(page, 0);
728 
729 	if (PageAnon(page))
730 		page->mapping = NULL;
731 	if (free_pages_check(page))
732 		return;
733 
734 	kernel_map_pages(page, 1, 0);
735 
736 	pcp = &zone_pcp(zone, get_cpu())->pcp[cold];
737 	local_irq_save(flags);
738 	__inc_page_state(pgfree);
739 	list_add(&page->lru, &pcp->list);
740 	pcp->count++;
741 	if (pcp->count >= pcp->high) {
742 		free_pages_bulk(zone, pcp->batch, &pcp->list, 0);
743 		pcp->count -= pcp->batch;
744 	}
745 	local_irq_restore(flags);
746 	put_cpu();
747 }
748 
749 void fastcall free_hot_page(struct page *page)
750 {
751 	free_hot_cold_page(page, 0);
752 }
753 
754 void fastcall free_cold_page(struct page *page)
755 {
756 	free_hot_cold_page(page, 1);
757 }
758 
759 /*
760  * split_page takes a non-compound higher-order page, and splits it into
761  * n (1<<order) sub-pages: page[0..n]
762  * Each sub-page must be freed individually.
763  *
764  * Note: this is probably too low level an operation for use in drivers.
765  * Please consult with lkml before using this in your driver.
766  */
767 void split_page(struct page *page, unsigned int order)
768 {
769 	int i;
770 
771 	BUG_ON(PageCompound(page));
772 	BUG_ON(!page_count(page));
773 	for (i = 1; i < (1 << order); i++)
774 		set_page_refcounted(page + i);
775 }
776 
777 /*
778  * Really, prep_compound_page() should be called from __rmqueue_bulk().  But
779  * we cheat by calling it from here, in the order > 0 path.  Saves a branch
780  * or two.
781  */
782 static struct page *buffered_rmqueue(struct zonelist *zonelist,
783 			struct zone *zone, int order, gfp_t gfp_flags)
784 {
785 	unsigned long flags;
786 	struct page *page;
787 	int cold = !!(gfp_flags & __GFP_COLD);
788 	int cpu;
789 
790 again:
791 	cpu  = get_cpu();
792 	if (likely(order == 0)) {
793 		struct per_cpu_pages *pcp;
794 
795 		pcp = &zone_pcp(zone, cpu)->pcp[cold];
796 		local_irq_save(flags);
797 		if (!pcp->count) {
798 			pcp->count += rmqueue_bulk(zone, 0,
799 						pcp->batch, &pcp->list);
800 			if (unlikely(!pcp->count))
801 				goto failed;
802 		}
803 		page = list_entry(pcp->list.next, struct page, lru);
804 		list_del(&page->lru);
805 		pcp->count--;
806 	} else {
807 		spin_lock_irqsave(&zone->lock, flags);
808 		page = __rmqueue(zone, order);
809 		spin_unlock(&zone->lock);
810 		if (!page)
811 			goto failed;
812 	}
813 
814 	__mod_page_state_zone(zone, pgalloc, 1 << order);
815 	zone_statistics(zonelist, zone, cpu);
816 	local_irq_restore(flags);
817 	put_cpu();
818 
819 	BUG_ON(bad_range(zone, page));
820 	if (prep_new_page(page, order, gfp_flags))
821 		goto again;
822 	return page;
823 
824 failed:
825 	local_irq_restore(flags);
826 	put_cpu();
827 	return NULL;
828 }
829 
830 #define ALLOC_NO_WATERMARKS	0x01 /* don't check watermarks at all */
831 #define ALLOC_WMARK_MIN		0x02 /* use pages_min watermark */
832 #define ALLOC_WMARK_LOW		0x04 /* use pages_low watermark */
833 #define ALLOC_WMARK_HIGH	0x08 /* use pages_high watermark */
834 #define ALLOC_HARDER		0x10 /* try to alloc harder */
835 #define ALLOC_HIGH		0x20 /* __GFP_HIGH set */
836 #define ALLOC_CPUSET		0x40 /* check for correct cpuset */
837 
838 /*
839  * Return 1 if free pages are above 'mark'. This takes into account the order
840  * of the allocation.
841  */
842 int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
843 		      int classzone_idx, int alloc_flags)
844 {
845 	/* free_pages my go negative - that's OK */
846 	long min = mark, free_pages = z->free_pages - (1 << order) + 1;
847 	int o;
848 
849 	if (alloc_flags & ALLOC_HIGH)
850 		min -= min / 2;
851 	if (alloc_flags & ALLOC_HARDER)
852 		min -= min / 4;
853 
854 	if (free_pages <= min + z->lowmem_reserve[classzone_idx])
855 		return 0;
856 	for (o = 0; o < order; o++) {
857 		/* At the next order, this order's pages become unavailable */
858 		free_pages -= z->free_area[o].nr_free << o;
859 
860 		/* Require fewer higher order pages to be free */
861 		min >>= 1;
862 
863 		if (free_pages <= min)
864 			return 0;
865 	}
866 	return 1;
867 }
868 
869 /*
870  * get_page_from_freeliest goes through the zonelist trying to allocate
871  * a page.
872  */
873 static struct page *
874 get_page_from_freelist(gfp_t gfp_mask, unsigned int order,
875 		struct zonelist *zonelist, int alloc_flags)
876 {
877 	struct zone **z = zonelist->zones;
878 	struct page *page = NULL;
879 	int classzone_idx = zone_idx(*z);
880 
881 	/*
882 	 * Go through the zonelist once, looking for a zone with enough free.
883 	 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
884 	 */
885 	do {
886 		if ((alloc_flags & ALLOC_CPUSET) &&
887 				!cpuset_zone_allowed(*z, gfp_mask))
888 			continue;
889 
890 		if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
891 			unsigned long mark;
892 			if (alloc_flags & ALLOC_WMARK_MIN)
893 				mark = (*z)->pages_min;
894 			else if (alloc_flags & ALLOC_WMARK_LOW)
895 				mark = (*z)->pages_low;
896 			else
897 				mark = (*z)->pages_high;
898 			if (!zone_watermark_ok(*z, order, mark,
899 				    classzone_idx, alloc_flags))
900 				if (!zone_reclaim_mode ||
901 				    !zone_reclaim(*z, gfp_mask, order))
902 					continue;
903 		}
904 
905 		page = buffered_rmqueue(zonelist, *z, order, gfp_mask);
906 		if (page) {
907 			break;
908 		}
909 	} while (*(++z) != NULL);
910 	return page;
911 }
912 
913 /*
914  * This is the 'heart' of the zoned buddy allocator.
915  */
916 struct page * fastcall
917 __alloc_pages(gfp_t gfp_mask, unsigned int order,
918 		struct zonelist *zonelist)
919 {
920 	const gfp_t wait = gfp_mask & __GFP_WAIT;
921 	struct zone **z;
922 	struct page *page;
923 	struct reclaim_state reclaim_state;
924 	struct task_struct *p = current;
925 	int do_retry;
926 	int alloc_flags;
927 	int did_some_progress;
928 
929 	might_sleep_if(wait);
930 
931 restart:
932 	z = zonelist->zones;  /* the list of zones suitable for gfp_mask */
933 
934 	if (unlikely(*z == NULL)) {
935 		/* Should this ever happen?? */
936 		return NULL;
937 	}
938 
939 	page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, order,
940 				zonelist, ALLOC_WMARK_LOW|ALLOC_CPUSET);
941 	if (page)
942 		goto got_pg;
943 
944 	do {
945 		if (cpuset_zone_allowed(*z, gfp_mask))
946 			wakeup_kswapd(*z, order);
947 	} while (*(++z));
948 
949 	/*
950 	 * OK, we're below the kswapd watermark and have kicked background
951 	 * reclaim. Now things get more complex, so set up alloc_flags according
952 	 * to how we want to proceed.
953 	 *
954 	 * The caller may dip into page reserves a bit more if the caller
955 	 * cannot run direct reclaim, or if the caller has realtime scheduling
956 	 * policy or is asking for __GFP_HIGH memory.  GFP_ATOMIC requests will
957 	 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
958 	 */
959 	alloc_flags = ALLOC_WMARK_MIN;
960 	if ((unlikely(rt_task(p)) && !in_interrupt()) || !wait)
961 		alloc_flags |= ALLOC_HARDER;
962 	if (gfp_mask & __GFP_HIGH)
963 		alloc_flags |= ALLOC_HIGH;
964 	alloc_flags |= ALLOC_CPUSET;
965 
966 	/*
967 	 * Go through the zonelist again. Let __GFP_HIGH and allocations
968 	 * coming from realtime tasks go deeper into reserves.
969 	 *
970 	 * This is the last chance, in general, before the goto nopage.
971 	 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
972 	 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
973 	 */
974 	page = get_page_from_freelist(gfp_mask, order, zonelist, alloc_flags);
975 	if (page)
976 		goto got_pg;
977 
978 	/* This allocation should allow future memory freeing. */
979 
980 	if (((p->flags & PF_MEMALLOC) || unlikely(test_thread_flag(TIF_MEMDIE)))
981 			&& !in_interrupt()) {
982 		if (!(gfp_mask & __GFP_NOMEMALLOC)) {
983 nofail_alloc:
984 			/* go through the zonelist yet again, ignoring mins */
985 			page = get_page_from_freelist(gfp_mask, order,
986 				zonelist, ALLOC_NO_WATERMARKS);
987 			if (page)
988 				goto got_pg;
989 			if (gfp_mask & __GFP_NOFAIL) {
990 				blk_congestion_wait(WRITE, HZ/50);
991 				goto nofail_alloc;
992 			}
993 		}
994 		goto nopage;
995 	}
996 
997 	/* Atomic allocations - we can't balance anything */
998 	if (!wait)
999 		goto nopage;
1000 
1001 rebalance:
1002 	cond_resched();
1003 
1004 	/* We now go into synchronous reclaim */
1005 	cpuset_memory_pressure_bump();
1006 	p->flags |= PF_MEMALLOC;
1007 	reclaim_state.reclaimed_slab = 0;
1008 	p->reclaim_state = &reclaim_state;
1009 
1010 	did_some_progress = try_to_free_pages(zonelist->zones, gfp_mask);
1011 
1012 	p->reclaim_state = NULL;
1013 	p->flags &= ~PF_MEMALLOC;
1014 
1015 	cond_resched();
1016 
1017 	if (likely(did_some_progress)) {
1018 		page = get_page_from_freelist(gfp_mask, order,
1019 						zonelist, alloc_flags);
1020 		if (page)
1021 			goto got_pg;
1022 	} else if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
1023 		/*
1024 		 * Go through the zonelist yet one more time, keep
1025 		 * very high watermark here, this is only to catch
1026 		 * a parallel oom killing, we must fail if we're still
1027 		 * under heavy pressure.
1028 		 */
1029 		page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, order,
1030 				zonelist, ALLOC_WMARK_HIGH|ALLOC_CPUSET);
1031 		if (page)
1032 			goto got_pg;
1033 
1034 		out_of_memory(zonelist, gfp_mask, order);
1035 		goto restart;
1036 	}
1037 
1038 	/*
1039 	 * Don't let big-order allocations loop unless the caller explicitly
1040 	 * requests that.  Wait for some write requests to complete then retry.
1041 	 *
1042 	 * In this implementation, __GFP_REPEAT means __GFP_NOFAIL for order
1043 	 * <= 3, but that may not be true in other implementations.
1044 	 */
1045 	do_retry = 0;
1046 	if (!(gfp_mask & __GFP_NORETRY)) {
1047 		if ((order <= 3) || (gfp_mask & __GFP_REPEAT))
1048 			do_retry = 1;
1049 		if (gfp_mask & __GFP_NOFAIL)
1050 			do_retry = 1;
1051 	}
1052 	if (do_retry) {
1053 		blk_congestion_wait(WRITE, HZ/50);
1054 		goto rebalance;
1055 	}
1056 
1057 nopage:
1058 	if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) {
1059 		printk(KERN_WARNING "%s: page allocation failure."
1060 			" order:%d, mode:0x%x\n",
1061 			p->comm, order, gfp_mask);
1062 		dump_stack();
1063 		show_mem();
1064 	}
1065 got_pg:
1066 	return page;
1067 }
1068 
1069 EXPORT_SYMBOL(__alloc_pages);
1070 
1071 /*
1072  * Common helper functions.
1073  */
1074 fastcall unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1075 {
1076 	struct page * page;
1077 	page = alloc_pages(gfp_mask, order);
1078 	if (!page)
1079 		return 0;
1080 	return (unsigned long) page_address(page);
1081 }
1082 
1083 EXPORT_SYMBOL(__get_free_pages);
1084 
1085 fastcall unsigned long get_zeroed_page(gfp_t gfp_mask)
1086 {
1087 	struct page * page;
1088 
1089 	/*
1090 	 * get_zeroed_page() returns a 32-bit address, which cannot represent
1091 	 * a highmem page
1092 	 */
1093 	BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
1094 
1095 	page = alloc_pages(gfp_mask | __GFP_ZERO, 0);
1096 	if (page)
1097 		return (unsigned long) page_address(page);
1098 	return 0;
1099 }
1100 
1101 EXPORT_SYMBOL(get_zeroed_page);
1102 
1103 void __pagevec_free(struct pagevec *pvec)
1104 {
1105 	int i = pagevec_count(pvec);
1106 
1107 	while (--i >= 0)
1108 		free_hot_cold_page(pvec->pages[i], pvec->cold);
1109 }
1110 
1111 fastcall void __free_pages(struct page *page, unsigned int order)
1112 {
1113 	if (put_page_testzero(page)) {
1114 		if (order == 0)
1115 			free_hot_page(page);
1116 		else
1117 			__free_pages_ok(page, order);
1118 	}
1119 }
1120 
1121 EXPORT_SYMBOL(__free_pages);
1122 
1123 fastcall void free_pages(unsigned long addr, unsigned int order)
1124 {
1125 	if (addr != 0) {
1126 		BUG_ON(!virt_addr_valid((void *)addr));
1127 		__free_pages(virt_to_page((void *)addr), order);
1128 	}
1129 }
1130 
1131 EXPORT_SYMBOL(free_pages);
1132 
1133 /*
1134  * Total amount of free (allocatable) RAM:
1135  */
1136 unsigned int nr_free_pages(void)
1137 {
1138 	unsigned int sum = 0;
1139 	struct zone *zone;
1140 
1141 	for_each_zone(zone)
1142 		sum += zone->free_pages;
1143 
1144 	return sum;
1145 }
1146 
1147 EXPORT_SYMBOL(nr_free_pages);
1148 
1149 #ifdef CONFIG_NUMA
1150 unsigned int nr_free_pages_pgdat(pg_data_t *pgdat)
1151 {
1152 	unsigned int i, sum = 0;
1153 
1154 	for (i = 0; i < MAX_NR_ZONES; i++)
1155 		sum += pgdat->node_zones[i].free_pages;
1156 
1157 	return sum;
1158 }
1159 #endif
1160 
1161 static unsigned int nr_free_zone_pages(int offset)
1162 {
1163 	/* Just pick one node, since fallback list is circular */
1164 	pg_data_t *pgdat = NODE_DATA(numa_node_id());
1165 	unsigned int sum = 0;
1166 
1167 	struct zonelist *zonelist = pgdat->node_zonelists + offset;
1168 	struct zone **zonep = zonelist->zones;
1169 	struct zone *zone;
1170 
1171 	for (zone = *zonep++; zone; zone = *zonep++) {
1172 		unsigned long size = zone->present_pages;
1173 		unsigned long high = zone->pages_high;
1174 		if (size > high)
1175 			sum += size - high;
1176 	}
1177 
1178 	return sum;
1179 }
1180 
1181 /*
1182  * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
1183  */
1184 unsigned int nr_free_buffer_pages(void)
1185 {
1186 	return nr_free_zone_pages(gfp_zone(GFP_USER));
1187 }
1188 
1189 /*
1190  * Amount of free RAM allocatable within all zones
1191  */
1192 unsigned int nr_free_pagecache_pages(void)
1193 {
1194 	return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER));
1195 }
1196 
1197 #ifdef CONFIG_HIGHMEM
1198 unsigned int nr_free_highpages (void)
1199 {
1200 	pg_data_t *pgdat;
1201 	unsigned int pages = 0;
1202 
1203 	for_each_online_pgdat(pgdat)
1204 		pages += pgdat->node_zones[ZONE_HIGHMEM].free_pages;
1205 
1206 	return pages;
1207 }
1208 #endif
1209 
1210 #ifdef CONFIG_NUMA
1211 static void show_node(struct zone *zone)
1212 {
1213 	printk("Node %d ", zone->zone_pgdat->node_id);
1214 }
1215 #else
1216 #define show_node(zone)	do { } while (0)
1217 #endif
1218 
1219 /*
1220  * Accumulate the page_state information across all CPUs.
1221  * The result is unavoidably approximate - it can change
1222  * during and after execution of this function.
1223  */
1224 static DEFINE_PER_CPU(struct page_state, page_states) = {0};
1225 
1226 atomic_t nr_pagecache = ATOMIC_INIT(0);
1227 EXPORT_SYMBOL(nr_pagecache);
1228 #ifdef CONFIG_SMP
1229 DEFINE_PER_CPU(long, nr_pagecache_local) = 0;
1230 #endif
1231 
1232 static void __get_page_state(struct page_state *ret, int nr, cpumask_t *cpumask)
1233 {
1234 	unsigned cpu;
1235 
1236 	memset(ret, 0, nr * sizeof(unsigned long));
1237 	cpus_and(*cpumask, *cpumask, cpu_online_map);
1238 
1239 	for_each_cpu_mask(cpu, *cpumask) {
1240 		unsigned long *in;
1241 		unsigned long *out;
1242 		unsigned off;
1243 		unsigned next_cpu;
1244 
1245 		in = (unsigned long *)&per_cpu(page_states, cpu);
1246 
1247 		next_cpu = next_cpu(cpu, *cpumask);
1248 		if (likely(next_cpu < NR_CPUS))
1249 			prefetch(&per_cpu(page_states, next_cpu));
1250 
1251 		out = (unsigned long *)ret;
1252 		for (off = 0; off < nr; off++)
1253 			*out++ += *in++;
1254 	}
1255 }
1256 
1257 void get_page_state_node(struct page_state *ret, int node)
1258 {
1259 	int nr;
1260 	cpumask_t mask = node_to_cpumask(node);
1261 
1262 	nr = offsetof(struct page_state, GET_PAGE_STATE_LAST);
1263 	nr /= sizeof(unsigned long);
1264 
1265 	__get_page_state(ret, nr+1, &mask);
1266 }
1267 
1268 void get_page_state(struct page_state *ret)
1269 {
1270 	int nr;
1271 	cpumask_t mask = CPU_MASK_ALL;
1272 
1273 	nr = offsetof(struct page_state, GET_PAGE_STATE_LAST);
1274 	nr /= sizeof(unsigned long);
1275 
1276 	__get_page_state(ret, nr + 1, &mask);
1277 }
1278 
1279 void get_full_page_state(struct page_state *ret)
1280 {
1281 	cpumask_t mask = CPU_MASK_ALL;
1282 
1283 	__get_page_state(ret, sizeof(*ret) / sizeof(unsigned long), &mask);
1284 }
1285 
1286 unsigned long read_page_state_offset(unsigned long offset)
1287 {
1288 	unsigned long ret = 0;
1289 	int cpu;
1290 
1291 	for_each_online_cpu(cpu) {
1292 		unsigned long in;
1293 
1294 		in = (unsigned long)&per_cpu(page_states, cpu) + offset;
1295 		ret += *((unsigned long *)in);
1296 	}
1297 	return ret;
1298 }
1299 
1300 void __mod_page_state_offset(unsigned long offset, unsigned long delta)
1301 {
1302 	void *ptr;
1303 
1304 	ptr = &__get_cpu_var(page_states);
1305 	*(unsigned long *)(ptr + offset) += delta;
1306 }
1307 EXPORT_SYMBOL(__mod_page_state_offset);
1308 
1309 void mod_page_state_offset(unsigned long offset, unsigned long delta)
1310 {
1311 	unsigned long flags;
1312 	void *ptr;
1313 
1314 	local_irq_save(flags);
1315 	ptr = &__get_cpu_var(page_states);
1316 	*(unsigned long *)(ptr + offset) += delta;
1317 	local_irq_restore(flags);
1318 }
1319 EXPORT_SYMBOL(mod_page_state_offset);
1320 
1321 void __get_zone_counts(unsigned long *active, unsigned long *inactive,
1322 			unsigned long *free, struct pglist_data *pgdat)
1323 {
1324 	struct zone *zones = pgdat->node_zones;
1325 	int i;
1326 
1327 	*active = 0;
1328 	*inactive = 0;
1329 	*free = 0;
1330 	for (i = 0; i < MAX_NR_ZONES; i++) {
1331 		*active += zones[i].nr_active;
1332 		*inactive += zones[i].nr_inactive;
1333 		*free += zones[i].free_pages;
1334 	}
1335 }
1336 
1337 void get_zone_counts(unsigned long *active,
1338 		unsigned long *inactive, unsigned long *free)
1339 {
1340 	struct pglist_data *pgdat;
1341 
1342 	*active = 0;
1343 	*inactive = 0;
1344 	*free = 0;
1345 	for_each_online_pgdat(pgdat) {
1346 		unsigned long l, m, n;
1347 		__get_zone_counts(&l, &m, &n, pgdat);
1348 		*active += l;
1349 		*inactive += m;
1350 		*free += n;
1351 	}
1352 }
1353 
1354 void si_meminfo(struct sysinfo *val)
1355 {
1356 	val->totalram = totalram_pages;
1357 	val->sharedram = 0;
1358 	val->freeram = nr_free_pages();
1359 	val->bufferram = nr_blockdev_pages();
1360 #ifdef CONFIG_HIGHMEM
1361 	val->totalhigh = totalhigh_pages;
1362 	val->freehigh = nr_free_highpages();
1363 #else
1364 	val->totalhigh = 0;
1365 	val->freehigh = 0;
1366 #endif
1367 	val->mem_unit = PAGE_SIZE;
1368 }
1369 
1370 EXPORT_SYMBOL(si_meminfo);
1371 
1372 #ifdef CONFIG_NUMA
1373 void si_meminfo_node(struct sysinfo *val, int nid)
1374 {
1375 	pg_data_t *pgdat = NODE_DATA(nid);
1376 
1377 	val->totalram = pgdat->node_present_pages;
1378 	val->freeram = nr_free_pages_pgdat(pgdat);
1379 	val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
1380 	val->freehigh = pgdat->node_zones[ZONE_HIGHMEM].free_pages;
1381 	val->mem_unit = PAGE_SIZE;
1382 }
1383 #endif
1384 
1385 #define K(x) ((x) << (PAGE_SHIFT-10))
1386 
1387 /*
1388  * Show free area list (used inside shift_scroll-lock stuff)
1389  * We also calculate the percentage fragmentation. We do this by counting the
1390  * memory on each free list with the exception of the first item on the list.
1391  */
1392 void show_free_areas(void)
1393 {
1394 	struct page_state ps;
1395 	int cpu, temperature;
1396 	unsigned long active;
1397 	unsigned long inactive;
1398 	unsigned long free;
1399 	struct zone *zone;
1400 
1401 	for_each_zone(zone) {
1402 		show_node(zone);
1403 		printk("%s per-cpu:", zone->name);
1404 
1405 		if (!populated_zone(zone)) {
1406 			printk(" empty\n");
1407 			continue;
1408 		} else
1409 			printk("\n");
1410 
1411 		for_each_online_cpu(cpu) {
1412 			struct per_cpu_pageset *pageset;
1413 
1414 			pageset = zone_pcp(zone, cpu);
1415 
1416 			for (temperature = 0; temperature < 2; temperature++)
1417 				printk("cpu %d %s: high %d, batch %d used:%d\n",
1418 					cpu,
1419 					temperature ? "cold" : "hot",
1420 					pageset->pcp[temperature].high,
1421 					pageset->pcp[temperature].batch,
1422 					pageset->pcp[temperature].count);
1423 		}
1424 	}
1425 
1426 	get_page_state(&ps);
1427 	get_zone_counts(&active, &inactive, &free);
1428 
1429 	printk("Free pages: %11ukB (%ukB HighMem)\n",
1430 		K(nr_free_pages()),
1431 		K(nr_free_highpages()));
1432 
1433 	printk("Active:%lu inactive:%lu dirty:%lu writeback:%lu "
1434 		"unstable:%lu free:%u slab:%lu mapped:%lu pagetables:%lu\n",
1435 		active,
1436 		inactive,
1437 		ps.nr_dirty,
1438 		ps.nr_writeback,
1439 		ps.nr_unstable,
1440 		nr_free_pages(),
1441 		ps.nr_slab,
1442 		ps.nr_mapped,
1443 		ps.nr_page_table_pages);
1444 
1445 	for_each_zone(zone) {
1446 		int i;
1447 
1448 		show_node(zone);
1449 		printk("%s"
1450 			" free:%lukB"
1451 			" min:%lukB"
1452 			" low:%lukB"
1453 			" high:%lukB"
1454 			" active:%lukB"
1455 			" inactive:%lukB"
1456 			" present:%lukB"
1457 			" pages_scanned:%lu"
1458 			" all_unreclaimable? %s"
1459 			"\n",
1460 			zone->name,
1461 			K(zone->free_pages),
1462 			K(zone->pages_min),
1463 			K(zone->pages_low),
1464 			K(zone->pages_high),
1465 			K(zone->nr_active),
1466 			K(zone->nr_inactive),
1467 			K(zone->present_pages),
1468 			zone->pages_scanned,
1469 			(zone->all_unreclaimable ? "yes" : "no")
1470 			);
1471 		printk("lowmem_reserve[]:");
1472 		for (i = 0; i < MAX_NR_ZONES; i++)
1473 			printk(" %lu", zone->lowmem_reserve[i]);
1474 		printk("\n");
1475 	}
1476 
1477 	for_each_zone(zone) {
1478  		unsigned long nr, flags, order, total = 0;
1479 
1480 		show_node(zone);
1481 		printk("%s: ", zone->name);
1482 		if (!populated_zone(zone)) {
1483 			printk("empty\n");
1484 			continue;
1485 		}
1486 
1487 		spin_lock_irqsave(&zone->lock, flags);
1488 		for (order = 0; order < MAX_ORDER; order++) {
1489 			nr = zone->free_area[order].nr_free;
1490 			total += nr << order;
1491 			printk("%lu*%lukB ", nr, K(1UL) << order);
1492 		}
1493 		spin_unlock_irqrestore(&zone->lock, flags);
1494 		printk("= %lukB\n", K(total));
1495 	}
1496 
1497 	show_swap_cache_info();
1498 }
1499 
1500 /*
1501  * Builds allocation fallback zone lists.
1502  *
1503  * Add all populated zones of a node to the zonelist.
1504  */
1505 static int __init build_zonelists_node(pg_data_t *pgdat,
1506 			struct zonelist *zonelist, int nr_zones, int zone_type)
1507 {
1508 	struct zone *zone;
1509 
1510 	BUG_ON(zone_type > ZONE_HIGHMEM);
1511 
1512 	do {
1513 		zone = pgdat->node_zones + zone_type;
1514 		if (populated_zone(zone)) {
1515 #ifndef CONFIG_HIGHMEM
1516 			BUG_ON(zone_type > ZONE_NORMAL);
1517 #endif
1518 			zonelist->zones[nr_zones++] = zone;
1519 			check_highest_zone(zone_type);
1520 		}
1521 		zone_type--;
1522 
1523 	} while (zone_type >= 0);
1524 	return nr_zones;
1525 }
1526 
1527 static inline int highest_zone(int zone_bits)
1528 {
1529 	int res = ZONE_NORMAL;
1530 	if (zone_bits & (__force int)__GFP_HIGHMEM)
1531 		res = ZONE_HIGHMEM;
1532 	if (zone_bits & (__force int)__GFP_DMA32)
1533 		res = ZONE_DMA32;
1534 	if (zone_bits & (__force int)__GFP_DMA)
1535 		res = ZONE_DMA;
1536 	return res;
1537 }
1538 
1539 #ifdef CONFIG_NUMA
1540 #define MAX_NODE_LOAD (num_online_nodes())
1541 static int __initdata node_load[MAX_NUMNODES];
1542 /**
1543  * find_next_best_node - find the next node that should appear in a given node's fallback list
1544  * @node: node whose fallback list we're appending
1545  * @used_node_mask: nodemask_t of already used nodes
1546  *
1547  * We use a number of factors to determine which is the next node that should
1548  * appear on a given node's fallback list.  The node should not have appeared
1549  * already in @node's fallback list, and it should be the next closest node
1550  * according to the distance array (which contains arbitrary distance values
1551  * from each node to each node in the system), and should also prefer nodes
1552  * with no CPUs, since presumably they'll have very little allocation pressure
1553  * on them otherwise.
1554  * It returns -1 if no node is found.
1555  */
1556 static int __init find_next_best_node(int node, nodemask_t *used_node_mask)
1557 {
1558 	int n, val;
1559 	int min_val = INT_MAX;
1560 	int best_node = -1;
1561 
1562 	/* Use the local node if we haven't already */
1563 	if (!node_isset(node, *used_node_mask)) {
1564 		node_set(node, *used_node_mask);
1565 		return node;
1566 	}
1567 
1568 	for_each_online_node(n) {
1569 		cpumask_t tmp;
1570 
1571 		/* Don't want a node to appear more than once */
1572 		if (node_isset(n, *used_node_mask))
1573 			continue;
1574 
1575 		/* Use the distance array to find the distance */
1576 		val = node_distance(node, n);
1577 
1578 		/* Penalize nodes under us ("prefer the next node") */
1579 		val += (n < node);
1580 
1581 		/* Give preference to headless and unused nodes */
1582 		tmp = node_to_cpumask(n);
1583 		if (!cpus_empty(tmp))
1584 			val += PENALTY_FOR_NODE_WITH_CPUS;
1585 
1586 		/* Slight preference for less loaded node */
1587 		val *= (MAX_NODE_LOAD*MAX_NUMNODES);
1588 		val += node_load[n];
1589 
1590 		if (val < min_val) {
1591 			min_val = val;
1592 			best_node = n;
1593 		}
1594 	}
1595 
1596 	if (best_node >= 0)
1597 		node_set(best_node, *used_node_mask);
1598 
1599 	return best_node;
1600 }
1601 
1602 static void __init build_zonelists(pg_data_t *pgdat)
1603 {
1604 	int i, j, k, node, local_node;
1605 	int prev_node, load;
1606 	struct zonelist *zonelist;
1607 	nodemask_t used_mask;
1608 
1609 	/* initialize zonelists */
1610 	for (i = 0; i < GFP_ZONETYPES; i++) {
1611 		zonelist = pgdat->node_zonelists + i;
1612 		zonelist->zones[0] = NULL;
1613 	}
1614 
1615 	/* NUMA-aware ordering of nodes */
1616 	local_node = pgdat->node_id;
1617 	load = num_online_nodes();
1618 	prev_node = local_node;
1619 	nodes_clear(used_mask);
1620 	while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
1621 		int distance = node_distance(local_node, node);
1622 
1623 		/*
1624 		 * If another node is sufficiently far away then it is better
1625 		 * to reclaim pages in a zone before going off node.
1626 		 */
1627 		if (distance > RECLAIM_DISTANCE)
1628 			zone_reclaim_mode = 1;
1629 
1630 		/*
1631 		 * We don't want to pressure a particular node.
1632 		 * So adding penalty to the first node in same
1633 		 * distance group to make it round-robin.
1634 		 */
1635 
1636 		if (distance != node_distance(local_node, prev_node))
1637 			node_load[node] += load;
1638 		prev_node = node;
1639 		load--;
1640 		for (i = 0; i < GFP_ZONETYPES; i++) {
1641 			zonelist = pgdat->node_zonelists + i;
1642 			for (j = 0; zonelist->zones[j] != NULL; j++);
1643 
1644 			k = highest_zone(i);
1645 
1646 	 		j = build_zonelists_node(NODE_DATA(node), zonelist, j, k);
1647 			zonelist->zones[j] = NULL;
1648 		}
1649 	}
1650 }
1651 
1652 #else	/* CONFIG_NUMA */
1653 
1654 static void __init build_zonelists(pg_data_t *pgdat)
1655 {
1656 	int i, j, k, node, local_node;
1657 
1658 	local_node = pgdat->node_id;
1659 	for (i = 0; i < GFP_ZONETYPES; i++) {
1660 		struct zonelist *zonelist;
1661 
1662 		zonelist = pgdat->node_zonelists + i;
1663 
1664 		j = 0;
1665 		k = highest_zone(i);
1666  		j = build_zonelists_node(pgdat, zonelist, j, k);
1667  		/*
1668  		 * Now we build the zonelist so that it contains the zones
1669  		 * of all the other nodes.
1670  		 * We don't want to pressure a particular node, so when
1671  		 * building the zones for node N, we make sure that the
1672  		 * zones coming right after the local ones are those from
1673  		 * node N+1 (modulo N)
1674  		 */
1675 		for (node = local_node + 1; node < MAX_NUMNODES; node++) {
1676 			if (!node_online(node))
1677 				continue;
1678 			j = build_zonelists_node(NODE_DATA(node), zonelist, j, k);
1679 		}
1680 		for (node = 0; node < local_node; node++) {
1681 			if (!node_online(node))
1682 				continue;
1683 			j = build_zonelists_node(NODE_DATA(node), zonelist, j, k);
1684 		}
1685 
1686 		zonelist->zones[j] = NULL;
1687 	}
1688 }
1689 
1690 #endif	/* CONFIG_NUMA */
1691 
1692 void __init build_all_zonelists(void)
1693 {
1694 	int i;
1695 
1696 	for_each_online_node(i)
1697 		build_zonelists(NODE_DATA(i));
1698 	printk("Built %i zonelists\n", num_online_nodes());
1699 	cpuset_init_current_mems_allowed();
1700 }
1701 
1702 /*
1703  * Helper functions to size the waitqueue hash table.
1704  * Essentially these want to choose hash table sizes sufficiently
1705  * large so that collisions trying to wait on pages are rare.
1706  * But in fact, the number of active page waitqueues on typical
1707  * systems is ridiculously low, less than 200. So this is even
1708  * conservative, even though it seems large.
1709  *
1710  * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
1711  * waitqueues, i.e. the size of the waitq table given the number of pages.
1712  */
1713 #define PAGES_PER_WAITQUEUE	256
1714 
1715 static inline unsigned long wait_table_size(unsigned long pages)
1716 {
1717 	unsigned long size = 1;
1718 
1719 	pages /= PAGES_PER_WAITQUEUE;
1720 
1721 	while (size < pages)
1722 		size <<= 1;
1723 
1724 	/*
1725 	 * Once we have dozens or even hundreds of threads sleeping
1726 	 * on IO we've got bigger problems than wait queue collision.
1727 	 * Limit the size of the wait table to a reasonable size.
1728 	 */
1729 	size = min(size, 4096UL);
1730 
1731 	return max(size, 4UL);
1732 }
1733 
1734 /*
1735  * This is an integer logarithm so that shifts can be used later
1736  * to extract the more random high bits from the multiplicative
1737  * hash function before the remainder is taken.
1738  */
1739 static inline unsigned long wait_table_bits(unsigned long size)
1740 {
1741 	return ffz(~size);
1742 }
1743 
1744 #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
1745 
1746 static void __init calculate_zone_totalpages(struct pglist_data *pgdat,
1747 		unsigned long *zones_size, unsigned long *zholes_size)
1748 {
1749 	unsigned long realtotalpages, totalpages = 0;
1750 	int i;
1751 
1752 	for (i = 0; i < MAX_NR_ZONES; i++)
1753 		totalpages += zones_size[i];
1754 	pgdat->node_spanned_pages = totalpages;
1755 
1756 	realtotalpages = totalpages;
1757 	if (zholes_size)
1758 		for (i = 0; i < MAX_NR_ZONES; i++)
1759 			realtotalpages -= zholes_size[i];
1760 	pgdat->node_present_pages = realtotalpages;
1761 	printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id, realtotalpages);
1762 }
1763 
1764 
1765 /*
1766  * Initially all pages are reserved - free ones are freed
1767  * up by free_all_bootmem() once the early boot process is
1768  * done. Non-atomic initialization, single-pass.
1769  */
1770 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
1771 		unsigned long start_pfn)
1772 {
1773 	struct page *page;
1774 	unsigned long end_pfn = start_pfn + size;
1775 	unsigned long pfn;
1776 
1777 	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
1778 		if (!early_pfn_valid(pfn))
1779 			continue;
1780 		page = pfn_to_page(pfn);
1781 		set_page_links(page, zone, nid, pfn);
1782 		init_page_count(page);
1783 		reset_page_mapcount(page);
1784 		SetPageReserved(page);
1785 		INIT_LIST_HEAD(&page->lru);
1786 #ifdef WANT_PAGE_VIRTUAL
1787 		/* The shift won't overflow because ZONE_NORMAL is below 4G. */
1788 		if (!is_highmem_idx(zone))
1789 			set_page_address(page, __va(pfn << PAGE_SHIFT));
1790 #endif
1791 	}
1792 }
1793 
1794 void zone_init_free_lists(struct pglist_data *pgdat, struct zone *zone,
1795 				unsigned long size)
1796 {
1797 	int order;
1798 	for (order = 0; order < MAX_ORDER ; order++) {
1799 		INIT_LIST_HEAD(&zone->free_area[order].free_list);
1800 		zone->free_area[order].nr_free = 0;
1801 	}
1802 }
1803 
1804 #define ZONETABLE_INDEX(x, zone_nr)	((x << ZONES_SHIFT) | zone_nr)
1805 void zonetable_add(struct zone *zone, int nid, int zid, unsigned long pfn,
1806 		unsigned long size)
1807 {
1808 	unsigned long snum = pfn_to_section_nr(pfn);
1809 	unsigned long end = pfn_to_section_nr(pfn + size);
1810 
1811 	if (FLAGS_HAS_NODE)
1812 		zone_table[ZONETABLE_INDEX(nid, zid)] = zone;
1813 	else
1814 		for (; snum <= end; snum++)
1815 			zone_table[ZONETABLE_INDEX(snum, zid)] = zone;
1816 }
1817 
1818 #ifndef __HAVE_ARCH_MEMMAP_INIT
1819 #define memmap_init(size, nid, zone, start_pfn) \
1820 	memmap_init_zone((size), (nid), (zone), (start_pfn))
1821 #endif
1822 
1823 static int __cpuinit zone_batchsize(struct zone *zone)
1824 {
1825 	int batch;
1826 
1827 	/*
1828 	 * The per-cpu-pages pools are set to around 1000th of the
1829 	 * size of the zone.  But no more than 1/2 of a meg.
1830 	 *
1831 	 * OK, so we don't know how big the cache is.  So guess.
1832 	 */
1833 	batch = zone->present_pages / 1024;
1834 	if (batch * PAGE_SIZE > 512 * 1024)
1835 		batch = (512 * 1024) / PAGE_SIZE;
1836 	batch /= 4;		/* We effectively *= 4 below */
1837 	if (batch < 1)
1838 		batch = 1;
1839 
1840 	/*
1841 	 * Clamp the batch to a 2^n - 1 value. Having a power
1842 	 * of 2 value was found to be more likely to have
1843 	 * suboptimal cache aliasing properties in some cases.
1844 	 *
1845 	 * For example if 2 tasks are alternately allocating
1846 	 * batches of pages, one task can end up with a lot
1847 	 * of pages of one half of the possible page colors
1848 	 * and the other with pages of the other colors.
1849 	 */
1850 	batch = (1 << (fls(batch + batch/2)-1)) - 1;
1851 
1852 	return batch;
1853 }
1854 
1855 inline void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
1856 {
1857 	struct per_cpu_pages *pcp;
1858 
1859 	memset(p, 0, sizeof(*p));
1860 
1861 	pcp = &p->pcp[0];		/* hot */
1862 	pcp->count = 0;
1863 	pcp->high = 6 * batch;
1864 	pcp->batch = max(1UL, 1 * batch);
1865 	INIT_LIST_HEAD(&pcp->list);
1866 
1867 	pcp = &p->pcp[1];		/* cold*/
1868 	pcp->count = 0;
1869 	pcp->high = 2 * batch;
1870 	pcp->batch = max(1UL, batch/2);
1871 	INIT_LIST_HEAD(&pcp->list);
1872 }
1873 
1874 /*
1875  * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
1876  * to the value high for the pageset p.
1877  */
1878 
1879 static void setup_pagelist_highmark(struct per_cpu_pageset *p,
1880 				unsigned long high)
1881 {
1882 	struct per_cpu_pages *pcp;
1883 
1884 	pcp = &p->pcp[0]; /* hot list */
1885 	pcp->high = high;
1886 	pcp->batch = max(1UL, high/4);
1887 	if ((high/4) > (PAGE_SHIFT * 8))
1888 		pcp->batch = PAGE_SHIFT * 8;
1889 }
1890 
1891 
1892 #ifdef CONFIG_NUMA
1893 /*
1894  * Boot pageset table. One per cpu which is going to be used for all
1895  * zones and all nodes. The parameters will be set in such a way
1896  * that an item put on a list will immediately be handed over to
1897  * the buddy list. This is safe since pageset manipulation is done
1898  * with interrupts disabled.
1899  *
1900  * Some NUMA counter updates may also be caught by the boot pagesets.
1901  *
1902  * The boot_pagesets must be kept even after bootup is complete for
1903  * unused processors and/or zones. They do play a role for bootstrapping
1904  * hotplugged processors.
1905  *
1906  * zoneinfo_show() and maybe other functions do
1907  * not check if the processor is online before following the pageset pointer.
1908  * Other parts of the kernel may not check if the zone is available.
1909  */
1910 static struct per_cpu_pageset boot_pageset[NR_CPUS];
1911 
1912 /*
1913  * Dynamically allocate memory for the
1914  * per cpu pageset array in struct zone.
1915  */
1916 static int __cpuinit process_zones(int cpu)
1917 {
1918 	struct zone *zone, *dzone;
1919 
1920 	for_each_zone(zone) {
1921 
1922 		zone_pcp(zone, cpu) = kmalloc_node(sizeof(struct per_cpu_pageset),
1923 					 GFP_KERNEL, cpu_to_node(cpu));
1924 		if (!zone_pcp(zone, cpu))
1925 			goto bad;
1926 
1927 		setup_pageset(zone_pcp(zone, cpu), zone_batchsize(zone));
1928 
1929 		if (percpu_pagelist_fraction)
1930 			setup_pagelist_highmark(zone_pcp(zone, cpu),
1931 			 	(zone->present_pages / percpu_pagelist_fraction));
1932 	}
1933 
1934 	return 0;
1935 bad:
1936 	for_each_zone(dzone) {
1937 		if (dzone == zone)
1938 			break;
1939 		kfree(zone_pcp(dzone, cpu));
1940 		zone_pcp(dzone, cpu) = NULL;
1941 	}
1942 	return -ENOMEM;
1943 }
1944 
1945 static inline void free_zone_pagesets(int cpu)
1946 {
1947 	struct zone *zone;
1948 
1949 	for_each_zone(zone) {
1950 		struct per_cpu_pageset *pset = zone_pcp(zone, cpu);
1951 
1952 		zone_pcp(zone, cpu) = NULL;
1953 		kfree(pset);
1954 	}
1955 }
1956 
1957 static int __cpuinit pageset_cpuup_callback(struct notifier_block *nfb,
1958 		unsigned long action,
1959 		void *hcpu)
1960 {
1961 	int cpu = (long)hcpu;
1962 	int ret = NOTIFY_OK;
1963 
1964 	switch (action) {
1965 		case CPU_UP_PREPARE:
1966 			if (process_zones(cpu))
1967 				ret = NOTIFY_BAD;
1968 			break;
1969 		case CPU_UP_CANCELED:
1970 		case CPU_DEAD:
1971 			free_zone_pagesets(cpu);
1972 			break;
1973 		default:
1974 			break;
1975 	}
1976 	return ret;
1977 }
1978 
1979 static struct notifier_block pageset_notifier =
1980 	{ &pageset_cpuup_callback, NULL, 0 };
1981 
1982 void __init setup_per_cpu_pageset(void)
1983 {
1984 	int err;
1985 
1986 	/* Initialize per_cpu_pageset for cpu 0.
1987 	 * A cpuup callback will do this for every cpu
1988 	 * as it comes online
1989 	 */
1990 	err = process_zones(smp_processor_id());
1991 	BUG_ON(err);
1992 	register_cpu_notifier(&pageset_notifier);
1993 }
1994 
1995 #endif
1996 
1997 static __meminit
1998 void zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
1999 {
2000 	int i;
2001 	struct pglist_data *pgdat = zone->zone_pgdat;
2002 
2003 	/*
2004 	 * The per-page waitqueue mechanism uses hashed waitqueues
2005 	 * per zone.
2006 	 */
2007 	zone->wait_table_size = wait_table_size(zone_size_pages);
2008 	zone->wait_table_bits =	wait_table_bits(zone->wait_table_size);
2009 	zone->wait_table = (wait_queue_head_t *)
2010 		alloc_bootmem_node(pgdat, zone->wait_table_size
2011 					* sizeof(wait_queue_head_t));
2012 
2013 	for(i = 0; i < zone->wait_table_size; ++i)
2014 		init_waitqueue_head(zone->wait_table + i);
2015 }
2016 
2017 static __meminit void zone_pcp_init(struct zone *zone)
2018 {
2019 	int cpu;
2020 	unsigned long batch = zone_batchsize(zone);
2021 
2022 	for (cpu = 0; cpu < NR_CPUS; cpu++) {
2023 #ifdef CONFIG_NUMA
2024 		/* Early boot. Slab allocator not functional yet */
2025 		zone_pcp(zone, cpu) = &boot_pageset[cpu];
2026 		setup_pageset(&boot_pageset[cpu],0);
2027 #else
2028 		setup_pageset(zone_pcp(zone,cpu), batch);
2029 #endif
2030 	}
2031 	if (zone->present_pages)
2032 		printk(KERN_DEBUG "  %s zone: %lu pages, LIFO batch:%lu\n",
2033 			zone->name, zone->present_pages, batch);
2034 }
2035 
2036 static __meminit void init_currently_empty_zone(struct zone *zone,
2037 		unsigned long zone_start_pfn, unsigned long size)
2038 {
2039 	struct pglist_data *pgdat = zone->zone_pgdat;
2040 
2041 	zone_wait_table_init(zone, size);
2042 	pgdat->nr_zones = zone_idx(zone) + 1;
2043 
2044 	zone->zone_start_pfn = zone_start_pfn;
2045 
2046 	memmap_init(size, pgdat->node_id, zone_idx(zone), zone_start_pfn);
2047 
2048 	zone_init_free_lists(pgdat, zone, zone->spanned_pages);
2049 }
2050 
2051 /*
2052  * Set up the zone data structures:
2053  *   - mark all pages reserved
2054  *   - mark all memory queues empty
2055  *   - clear the memory bitmaps
2056  */
2057 static void __init free_area_init_core(struct pglist_data *pgdat,
2058 		unsigned long *zones_size, unsigned long *zholes_size)
2059 {
2060 	unsigned long j;
2061 	int nid = pgdat->node_id;
2062 	unsigned long zone_start_pfn = pgdat->node_start_pfn;
2063 
2064 	pgdat_resize_init(pgdat);
2065 	pgdat->nr_zones = 0;
2066 	init_waitqueue_head(&pgdat->kswapd_wait);
2067 	pgdat->kswapd_max_order = 0;
2068 
2069 	for (j = 0; j < MAX_NR_ZONES; j++) {
2070 		struct zone *zone = pgdat->node_zones + j;
2071 		unsigned long size, realsize;
2072 
2073 		realsize = size = zones_size[j];
2074 		if (zholes_size)
2075 			realsize -= zholes_size[j];
2076 
2077 		if (j < ZONE_HIGHMEM)
2078 			nr_kernel_pages += realsize;
2079 		nr_all_pages += realsize;
2080 
2081 		zone->spanned_pages = size;
2082 		zone->present_pages = realsize;
2083 		zone->name = zone_names[j];
2084 		spin_lock_init(&zone->lock);
2085 		spin_lock_init(&zone->lru_lock);
2086 		zone_seqlock_init(zone);
2087 		zone->zone_pgdat = pgdat;
2088 		zone->free_pages = 0;
2089 
2090 		zone->temp_priority = zone->prev_priority = DEF_PRIORITY;
2091 
2092 		zone_pcp_init(zone);
2093 		INIT_LIST_HEAD(&zone->active_list);
2094 		INIT_LIST_HEAD(&zone->inactive_list);
2095 		zone->nr_scan_active = 0;
2096 		zone->nr_scan_inactive = 0;
2097 		zone->nr_active = 0;
2098 		zone->nr_inactive = 0;
2099 		atomic_set(&zone->reclaim_in_progress, 0);
2100 		if (!size)
2101 			continue;
2102 
2103 		zonetable_add(zone, nid, j, zone_start_pfn, size);
2104 		init_currently_empty_zone(zone, zone_start_pfn, size);
2105 		zone_start_pfn += size;
2106 	}
2107 }
2108 
2109 static void __init alloc_node_mem_map(struct pglist_data *pgdat)
2110 {
2111 	/* Skip empty nodes */
2112 	if (!pgdat->node_spanned_pages)
2113 		return;
2114 
2115 #ifdef CONFIG_FLAT_NODE_MEM_MAP
2116 	/* ia64 gets its own node_mem_map, before this, without bootmem */
2117 	if (!pgdat->node_mem_map) {
2118 		unsigned long size;
2119 		struct page *map;
2120 
2121 		size = (pgdat->node_spanned_pages + 1) * sizeof(struct page);
2122 		map = alloc_remap(pgdat->node_id, size);
2123 		if (!map)
2124 			map = alloc_bootmem_node(pgdat, size);
2125 		pgdat->node_mem_map = map;
2126 	}
2127 #ifdef CONFIG_FLATMEM
2128 	/*
2129 	 * With no DISCONTIG, the global mem_map is just set as node 0's
2130 	 */
2131 	if (pgdat == NODE_DATA(0))
2132 		mem_map = NODE_DATA(0)->node_mem_map;
2133 #endif
2134 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
2135 }
2136 
2137 void __init free_area_init_node(int nid, struct pglist_data *pgdat,
2138 		unsigned long *zones_size, unsigned long node_start_pfn,
2139 		unsigned long *zholes_size)
2140 {
2141 	pgdat->node_id = nid;
2142 	pgdat->node_start_pfn = node_start_pfn;
2143 	calculate_zone_totalpages(pgdat, zones_size, zholes_size);
2144 
2145 	alloc_node_mem_map(pgdat);
2146 
2147 	free_area_init_core(pgdat, zones_size, zholes_size);
2148 }
2149 
2150 #ifndef CONFIG_NEED_MULTIPLE_NODES
2151 static bootmem_data_t contig_bootmem_data;
2152 struct pglist_data contig_page_data = { .bdata = &contig_bootmem_data };
2153 
2154 EXPORT_SYMBOL(contig_page_data);
2155 #endif
2156 
2157 void __init free_area_init(unsigned long *zones_size)
2158 {
2159 	free_area_init_node(0, NODE_DATA(0), zones_size,
2160 			__pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
2161 }
2162 
2163 #ifdef CONFIG_PROC_FS
2164 
2165 #include <linux/seq_file.h>
2166 
2167 static void *frag_start(struct seq_file *m, loff_t *pos)
2168 {
2169 	pg_data_t *pgdat;
2170 	loff_t node = *pos;
2171 	for (pgdat = first_online_pgdat();
2172 	     pgdat && node;
2173 	     pgdat = next_online_pgdat(pgdat))
2174 		--node;
2175 
2176 	return pgdat;
2177 }
2178 
2179 static void *frag_next(struct seq_file *m, void *arg, loff_t *pos)
2180 {
2181 	pg_data_t *pgdat = (pg_data_t *)arg;
2182 
2183 	(*pos)++;
2184 	return next_online_pgdat(pgdat);
2185 }
2186 
2187 static void frag_stop(struct seq_file *m, void *arg)
2188 {
2189 }
2190 
2191 /*
2192  * This walks the free areas for each zone.
2193  */
2194 static int frag_show(struct seq_file *m, void *arg)
2195 {
2196 	pg_data_t *pgdat = (pg_data_t *)arg;
2197 	struct zone *zone;
2198 	struct zone *node_zones = pgdat->node_zones;
2199 	unsigned long flags;
2200 	int order;
2201 
2202 	for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
2203 		if (!populated_zone(zone))
2204 			continue;
2205 
2206 		spin_lock_irqsave(&zone->lock, flags);
2207 		seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
2208 		for (order = 0; order < MAX_ORDER; ++order)
2209 			seq_printf(m, "%6lu ", zone->free_area[order].nr_free);
2210 		spin_unlock_irqrestore(&zone->lock, flags);
2211 		seq_putc(m, '\n');
2212 	}
2213 	return 0;
2214 }
2215 
2216 struct seq_operations fragmentation_op = {
2217 	.start	= frag_start,
2218 	.next	= frag_next,
2219 	.stop	= frag_stop,
2220 	.show	= frag_show,
2221 };
2222 
2223 /*
2224  * Output information about zones in @pgdat.
2225  */
2226 static int zoneinfo_show(struct seq_file *m, void *arg)
2227 {
2228 	pg_data_t *pgdat = arg;
2229 	struct zone *zone;
2230 	struct zone *node_zones = pgdat->node_zones;
2231 	unsigned long flags;
2232 
2233 	for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; zone++) {
2234 		int i;
2235 
2236 		if (!populated_zone(zone))
2237 			continue;
2238 
2239 		spin_lock_irqsave(&zone->lock, flags);
2240 		seq_printf(m, "Node %d, zone %8s", pgdat->node_id, zone->name);
2241 		seq_printf(m,
2242 			   "\n  pages free     %lu"
2243 			   "\n        min      %lu"
2244 			   "\n        low      %lu"
2245 			   "\n        high     %lu"
2246 			   "\n        active   %lu"
2247 			   "\n        inactive %lu"
2248 			   "\n        scanned  %lu (a: %lu i: %lu)"
2249 			   "\n        spanned  %lu"
2250 			   "\n        present  %lu",
2251 			   zone->free_pages,
2252 			   zone->pages_min,
2253 			   zone->pages_low,
2254 			   zone->pages_high,
2255 			   zone->nr_active,
2256 			   zone->nr_inactive,
2257 			   zone->pages_scanned,
2258 			   zone->nr_scan_active, zone->nr_scan_inactive,
2259 			   zone->spanned_pages,
2260 			   zone->present_pages);
2261 		seq_printf(m,
2262 			   "\n        protection: (%lu",
2263 			   zone->lowmem_reserve[0]);
2264 		for (i = 1; i < ARRAY_SIZE(zone->lowmem_reserve); i++)
2265 			seq_printf(m, ", %lu", zone->lowmem_reserve[i]);
2266 		seq_printf(m,
2267 			   ")"
2268 			   "\n  pagesets");
2269 		for_each_online_cpu(i) {
2270 			struct per_cpu_pageset *pageset;
2271 			int j;
2272 
2273 			pageset = zone_pcp(zone, i);
2274 			for (j = 0; j < ARRAY_SIZE(pageset->pcp); j++) {
2275 				if (pageset->pcp[j].count)
2276 					break;
2277 			}
2278 			if (j == ARRAY_SIZE(pageset->pcp))
2279 				continue;
2280 			for (j = 0; j < ARRAY_SIZE(pageset->pcp); j++) {
2281 				seq_printf(m,
2282 					   "\n    cpu: %i pcp: %i"
2283 					   "\n              count: %i"
2284 					   "\n              high:  %i"
2285 					   "\n              batch: %i",
2286 					   i, j,
2287 					   pageset->pcp[j].count,
2288 					   pageset->pcp[j].high,
2289 					   pageset->pcp[j].batch);
2290 			}
2291 #ifdef CONFIG_NUMA
2292 			seq_printf(m,
2293 				   "\n            numa_hit:       %lu"
2294 				   "\n            numa_miss:      %lu"
2295 				   "\n            numa_foreign:   %lu"
2296 				   "\n            interleave_hit: %lu"
2297 				   "\n            local_node:     %lu"
2298 				   "\n            other_node:     %lu",
2299 				   pageset->numa_hit,
2300 				   pageset->numa_miss,
2301 				   pageset->numa_foreign,
2302 				   pageset->interleave_hit,
2303 				   pageset->local_node,
2304 				   pageset->other_node);
2305 #endif
2306 		}
2307 		seq_printf(m,
2308 			   "\n  all_unreclaimable: %u"
2309 			   "\n  prev_priority:     %i"
2310 			   "\n  temp_priority:     %i"
2311 			   "\n  start_pfn:         %lu",
2312 			   zone->all_unreclaimable,
2313 			   zone->prev_priority,
2314 			   zone->temp_priority,
2315 			   zone->zone_start_pfn);
2316 		spin_unlock_irqrestore(&zone->lock, flags);
2317 		seq_putc(m, '\n');
2318 	}
2319 	return 0;
2320 }
2321 
2322 struct seq_operations zoneinfo_op = {
2323 	.start	= frag_start, /* iterate over all zones. The same as in
2324 			       * fragmentation. */
2325 	.next	= frag_next,
2326 	.stop	= frag_stop,
2327 	.show	= zoneinfo_show,
2328 };
2329 
2330 static char *vmstat_text[] = {
2331 	"nr_dirty",
2332 	"nr_writeback",
2333 	"nr_unstable",
2334 	"nr_page_table_pages",
2335 	"nr_mapped",
2336 	"nr_slab",
2337 
2338 	"pgpgin",
2339 	"pgpgout",
2340 	"pswpin",
2341 	"pswpout",
2342 
2343 	"pgalloc_high",
2344 	"pgalloc_normal",
2345 	"pgalloc_dma32",
2346 	"pgalloc_dma",
2347 
2348 	"pgfree",
2349 	"pgactivate",
2350 	"pgdeactivate",
2351 
2352 	"pgfault",
2353 	"pgmajfault",
2354 
2355 	"pgrefill_high",
2356 	"pgrefill_normal",
2357 	"pgrefill_dma32",
2358 	"pgrefill_dma",
2359 
2360 	"pgsteal_high",
2361 	"pgsteal_normal",
2362 	"pgsteal_dma32",
2363 	"pgsteal_dma",
2364 
2365 	"pgscan_kswapd_high",
2366 	"pgscan_kswapd_normal",
2367 	"pgscan_kswapd_dma32",
2368 	"pgscan_kswapd_dma",
2369 
2370 	"pgscan_direct_high",
2371 	"pgscan_direct_normal",
2372 	"pgscan_direct_dma32",
2373 	"pgscan_direct_dma",
2374 
2375 	"pginodesteal",
2376 	"slabs_scanned",
2377 	"kswapd_steal",
2378 	"kswapd_inodesteal",
2379 	"pageoutrun",
2380 	"allocstall",
2381 
2382 	"pgrotated",
2383 	"nr_bounce",
2384 };
2385 
2386 static void *vmstat_start(struct seq_file *m, loff_t *pos)
2387 {
2388 	struct page_state *ps;
2389 
2390 	if (*pos >= ARRAY_SIZE(vmstat_text))
2391 		return NULL;
2392 
2393 	ps = kmalloc(sizeof(*ps), GFP_KERNEL);
2394 	m->private = ps;
2395 	if (!ps)
2396 		return ERR_PTR(-ENOMEM);
2397 	get_full_page_state(ps);
2398 	ps->pgpgin /= 2;		/* sectors -> kbytes */
2399 	ps->pgpgout /= 2;
2400 	return (unsigned long *)ps + *pos;
2401 }
2402 
2403 static void *vmstat_next(struct seq_file *m, void *arg, loff_t *pos)
2404 {
2405 	(*pos)++;
2406 	if (*pos >= ARRAY_SIZE(vmstat_text))
2407 		return NULL;
2408 	return (unsigned long *)m->private + *pos;
2409 }
2410 
2411 static int vmstat_show(struct seq_file *m, void *arg)
2412 {
2413 	unsigned long *l = arg;
2414 	unsigned long off = l - (unsigned long *)m->private;
2415 
2416 	seq_printf(m, "%s %lu\n", vmstat_text[off], *l);
2417 	return 0;
2418 }
2419 
2420 static void vmstat_stop(struct seq_file *m, void *arg)
2421 {
2422 	kfree(m->private);
2423 	m->private = NULL;
2424 }
2425 
2426 struct seq_operations vmstat_op = {
2427 	.start	= vmstat_start,
2428 	.next	= vmstat_next,
2429 	.stop	= vmstat_stop,
2430 	.show	= vmstat_show,
2431 };
2432 
2433 #endif /* CONFIG_PROC_FS */
2434 
2435 #ifdef CONFIG_HOTPLUG_CPU
2436 static int page_alloc_cpu_notify(struct notifier_block *self,
2437 				 unsigned long action, void *hcpu)
2438 {
2439 	int cpu = (unsigned long)hcpu;
2440 	long *count;
2441 	unsigned long *src, *dest;
2442 
2443 	if (action == CPU_DEAD) {
2444 		int i;
2445 
2446 		/* Drain local pagecache count. */
2447 		count = &per_cpu(nr_pagecache_local, cpu);
2448 		atomic_add(*count, &nr_pagecache);
2449 		*count = 0;
2450 		local_irq_disable();
2451 		__drain_pages(cpu);
2452 
2453 		/* Add dead cpu's page_states to our own. */
2454 		dest = (unsigned long *)&__get_cpu_var(page_states);
2455 		src = (unsigned long *)&per_cpu(page_states, cpu);
2456 
2457 		for (i = 0; i < sizeof(struct page_state)/sizeof(unsigned long);
2458 				i++) {
2459 			dest[i] += src[i];
2460 			src[i] = 0;
2461 		}
2462 
2463 		local_irq_enable();
2464 	}
2465 	return NOTIFY_OK;
2466 }
2467 #endif /* CONFIG_HOTPLUG_CPU */
2468 
2469 void __init page_alloc_init(void)
2470 {
2471 	hotcpu_notifier(page_alloc_cpu_notify, 0);
2472 }
2473 
2474 /*
2475  * setup_per_zone_lowmem_reserve - called whenever
2476  *	sysctl_lower_zone_reserve_ratio changes.  Ensures that each zone
2477  *	has a correct pages reserved value, so an adequate number of
2478  *	pages are left in the zone after a successful __alloc_pages().
2479  */
2480 static void setup_per_zone_lowmem_reserve(void)
2481 {
2482 	struct pglist_data *pgdat;
2483 	int j, idx;
2484 
2485 	for_each_online_pgdat(pgdat) {
2486 		for (j = 0; j < MAX_NR_ZONES; j++) {
2487 			struct zone *zone = pgdat->node_zones + j;
2488 			unsigned long present_pages = zone->present_pages;
2489 
2490 			zone->lowmem_reserve[j] = 0;
2491 
2492 			for (idx = j-1; idx >= 0; idx--) {
2493 				struct zone *lower_zone;
2494 
2495 				if (sysctl_lowmem_reserve_ratio[idx] < 1)
2496 					sysctl_lowmem_reserve_ratio[idx] = 1;
2497 
2498 				lower_zone = pgdat->node_zones + idx;
2499 				lower_zone->lowmem_reserve[j] = present_pages /
2500 					sysctl_lowmem_reserve_ratio[idx];
2501 				present_pages += lower_zone->present_pages;
2502 			}
2503 		}
2504 	}
2505 }
2506 
2507 /*
2508  * setup_per_zone_pages_min - called when min_free_kbytes changes.  Ensures
2509  *	that the pages_{min,low,high} values for each zone are set correctly
2510  *	with respect to min_free_kbytes.
2511  */
2512 void setup_per_zone_pages_min(void)
2513 {
2514 	unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
2515 	unsigned long lowmem_pages = 0;
2516 	struct zone *zone;
2517 	unsigned long flags;
2518 
2519 	/* Calculate total number of !ZONE_HIGHMEM pages */
2520 	for_each_zone(zone) {
2521 		if (!is_highmem(zone))
2522 			lowmem_pages += zone->present_pages;
2523 	}
2524 
2525 	for_each_zone(zone) {
2526 		unsigned long tmp;
2527 		spin_lock_irqsave(&zone->lru_lock, flags);
2528 		tmp = (pages_min * zone->present_pages) / lowmem_pages;
2529 		if (is_highmem(zone)) {
2530 			/*
2531 			 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
2532 			 * need highmem pages, so cap pages_min to a small
2533 			 * value here.
2534 			 *
2535 			 * The (pages_high-pages_low) and (pages_low-pages_min)
2536 			 * deltas controls asynch page reclaim, and so should
2537 			 * not be capped for highmem.
2538 			 */
2539 			int min_pages;
2540 
2541 			min_pages = zone->present_pages / 1024;
2542 			if (min_pages < SWAP_CLUSTER_MAX)
2543 				min_pages = SWAP_CLUSTER_MAX;
2544 			if (min_pages > 128)
2545 				min_pages = 128;
2546 			zone->pages_min = min_pages;
2547 		} else {
2548 			/*
2549 			 * If it's a lowmem zone, reserve a number of pages
2550 			 * proportionate to the zone's size.
2551 			 */
2552 			zone->pages_min = tmp;
2553 		}
2554 
2555 		zone->pages_low   = zone->pages_min + tmp / 4;
2556 		zone->pages_high  = zone->pages_min + tmp / 2;
2557 		spin_unlock_irqrestore(&zone->lru_lock, flags);
2558 	}
2559 }
2560 
2561 /*
2562  * Initialise min_free_kbytes.
2563  *
2564  * For small machines we want it small (128k min).  For large machines
2565  * we want it large (64MB max).  But it is not linear, because network
2566  * bandwidth does not increase linearly with machine size.  We use
2567  *
2568  * 	min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
2569  *	min_free_kbytes = sqrt(lowmem_kbytes * 16)
2570  *
2571  * which yields
2572  *
2573  * 16MB:	512k
2574  * 32MB:	724k
2575  * 64MB:	1024k
2576  * 128MB:	1448k
2577  * 256MB:	2048k
2578  * 512MB:	2896k
2579  * 1024MB:	4096k
2580  * 2048MB:	5792k
2581  * 4096MB:	8192k
2582  * 8192MB:	11584k
2583  * 16384MB:	16384k
2584  */
2585 static int __init init_per_zone_pages_min(void)
2586 {
2587 	unsigned long lowmem_kbytes;
2588 
2589 	lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
2590 
2591 	min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
2592 	if (min_free_kbytes < 128)
2593 		min_free_kbytes = 128;
2594 	if (min_free_kbytes > 65536)
2595 		min_free_kbytes = 65536;
2596 	setup_per_zone_pages_min();
2597 	setup_per_zone_lowmem_reserve();
2598 	return 0;
2599 }
2600 module_init(init_per_zone_pages_min)
2601 
2602 /*
2603  * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
2604  *	that we can call two helper functions whenever min_free_kbytes
2605  *	changes.
2606  */
2607 int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
2608 	struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
2609 {
2610 	proc_dointvec(table, write, file, buffer, length, ppos);
2611 	setup_per_zone_pages_min();
2612 	return 0;
2613 }
2614 
2615 /*
2616  * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
2617  *	proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
2618  *	whenever sysctl_lowmem_reserve_ratio changes.
2619  *
2620  * The reserve ratio obviously has absolutely no relation with the
2621  * pages_min watermarks. The lowmem reserve ratio can only make sense
2622  * if in function of the boot time zone sizes.
2623  */
2624 int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
2625 	struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
2626 {
2627 	proc_dointvec_minmax(table, write, file, buffer, length, ppos);
2628 	setup_per_zone_lowmem_reserve();
2629 	return 0;
2630 }
2631 
2632 /*
2633  * percpu_pagelist_fraction - changes the pcp->high for each zone on each
2634  * cpu.  It is the fraction of total pages in each zone that a hot per cpu pagelist
2635  * can have before it gets flushed back to buddy allocator.
2636  */
2637 
2638 int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
2639 	struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
2640 {
2641 	struct zone *zone;
2642 	unsigned int cpu;
2643 	int ret;
2644 
2645 	ret = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
2646 	if (!write || (ret == -EINVAL))
2647 		return ret;
2648 	for_each_zone(zone) {
2649 		for_each_online_cpu(cpu) {
2650 			unsigned long  high;
2651 			high = zone->present_pages / percpu_pagelist_fraction;
2652 			setup_pagelist_highmark(zone_pcp(zone, cpu), high);
2653 		}
2654 	}
2655 	return 0;
2656 }
2657 
2658 __initdata int hashdist = HASHDIST_DEFAULT;
2659 
2660 #ifdef CONFIG_NUMA
2661 static int __init set_hashdist(char *str)
2662 {
2663 	if (!str)
2664 		return 0;
2665 	hashdist = simple_strtoul(str, &str, 0);
2666 	return 1;
2667 }
2668 __setup("hashdist=", set_hashdist);
2669 #endif
2670 
2671 /*
2672  * allocate a large system hash table from bootmem
2673  * - it is assumed that the hash table must contain an exact power-of-2
2674  *   quantity of entries
2675  * - limit is the number of hash buckets, not the total allocation size
2676  */
2677 void *__init alloc_large_system_hash(const char *tablename,
2678 				     unsigned long bucketsize,
2679 				     unsigned long numentries,
2680 				     int scale,
2681 				     int flags,
2682 				     unsigned int *_hash_shift,
2683 				     unsigned int *_hash_mask,
2684 				     unsigned long limit)
2685 {
2686 	unsigned long long max = limit;
2687 	unsigned long log2qty, size;
2688 	void *table = NULL;
2689 
2690 	/* allow the kernel cmdline to have a say */
2691 	if (!numentries) {
2692 		/* round applicable memory size up to nearest megabyte */
2693 		numentries = (flags & HASH_HIGHMEM) ? nr_all_pages : nr_kernel_pages;
2694 		numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
2695 		numentries >>= 20 - PAGE_SHIFT;
2696 		numentries <<= 20 - PAGE_SHIFT;
2697 
2698 		/* limit to 1 bucket per 2^scale bytes of low memory */
2699 		if (scale > PAGE_SHIFT)
2700 			numentries >>= (scale - PAGE_SHIFT);
2701 		else
2702 			numentries <<= (PAGE_SHIFT - scale);
2703 	}
2704 	numentries = roundup_pow_of_two(numentries);
2705 
2706 	/* limit allocation size to 1/16 total memory by default */
2707 	if (max == 0) {
2708 		max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
2709 		do_div(max, bucketsize);
2710 	}
2711 
2712 	if (numentries > max)
2713 		numentries = max;
2714 
2715 	log2qty = long_log2(numentries);
2716 
2717 	do {
2718 		size = bucketsize << log2qty;
2719 		if (flags & HASH_EARLY)
2720 			table = alloc_bootmem(size);
2721 		else if (hashdist)
2722 			table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
2723 		else {
2724 			unsigned long order;
2725 			for (order = 0; ((1UL << order) << PAGE_SHIFT) < size; order++)
2726 				;
2727 			table = (void*) __get_free_pages(GFP_ATOMIC, order);
2728 		}
2729 	} while (!table && size > PAGE_SIZE && --log2qty);
2730 
2731 	if (!table)
2732 		panic("Failed to allocate %s hash table\n", tablename);
2733 
2734 	printk("%s hash table entries: %d (order: %d, %lu bytes)\n",
2735 	       tablename,
2736 	       (1U << log2qty),
2737 	       long_log2(size) - PAGE_SHIFT,
2738 	       size);
2739 
2740 	if (_hash_shift)
2741 		*_hash_shift = log2qty;
2742 	if (_hash_mask)
2743 		*_hash_mask = (1 << log2qty) - 1;
2744 
2745 	return table;
2746 }
2747 
2748 #ifdef CONFIG_OUT_OF_LINE_PFN_TO_PAGE
2749 /*
2750  * pfn <-> page translation. out-of-line version.
2751  * (see asm-generic/memory_model.h)
2752  */
2753 #if defined(CONFIG_FLATMEM)
2754 struct page *pfn_to_page(unsigned long pfn)
2755 {
2756 	return mem_map + (pfn - ARCH_PFN_OFFSET);
2757 }
2758 unsigned long page_to_pfn(struct page *page)
2759 {
2760 	return (page - mem_map) + ARCH_PFN_OFFSET;
2761 }
2762 #elif defined(CONFIG_DISCONTIGMEM)
2763 struct page *pfn_to_page(unsigned long pfn)
2764 {
2765 	int nid = arch_pfn_to_nid(pfn);
2766 	return NODE_DATA(nid)->node_mem_map + arch_local_page_offset(pfn,nid);
2767 }
2768 unsigned long page_to_pfn(struct page *page)
2769 {
2770 	struct pglist_data *pgdat = NODE_DATA(page_to_nid(page));
2771 	return (page - pgdat->node_mem_map) + pgdat->node_start_pfn;
2772 }
2773 #elif defined(CONFIG_SPARSEMEM)
2774 struct page *pfn_to_page(unsigned long pfn)
2775 {
2776 	return __section_mem_map_addr(__pfn_to_section(pfn)) + pfn;
2777 }
2778 
2779 unsigned long page_to_pfn(struct page *page)
2780 {
2781 	long section_id = page_to_section(page);
2782 	return page - __section_mem_map_addr(__nr_to_section(section_id));
2783 }
2784 #endif /* CONFIG_FLATMEM/DISCONTIGMME/SPARSEMEM */
2785 EXPORT_SYMBOL(pfn_to_page);
2786 EXPORT_SYMBOL(page_to_pfn);
2787 #endif /* CONFIG_OUT_OF_LINE_PFN_TO_PAGE */
2788