1 /* 2 * linux/mm/page_alloc.c 3 * 4 * Manages the free list, the system allocates free pages here. 5 * Note that kmalloc() lives in slab.c 6 * 7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 8 * Swap reorganised 29.12.95, Stephen Tweedie 9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999 10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999 11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999 12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000 13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002 14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton) 15 */ 16 17 #include <linux/config.h> 18 #include <linux/stddef.h> 19 #include <linux/mm.h> 20 #include <linux/swap.h> 21 #include <linux/interrupt.h> 22 #include <linux/pagemap.h> 23 #include <linux/bootmem.h> 24 #include <linux/compiler.h> 25 #include <linux/kernel.h> 26 #include <linux/module.h> 27 #include <linux/suspend.h> 28 #include <linux/pagevec.h> 29 #include <linux/blkdev.h> 30 #include <linux/slab.h> 31 #include <linux/notifier.h> 32 #include <linux/topology.h> 33 #include <linux/sysctl.h> 34 #include <linux/cpu.h> 35 #include <linux/cpuset.h> 36 #include <linux/memory_hotplug.h> 37 #include <linux/nodemask.h> 38 #include <linux/vmalloc.h> 39 #include <linux/mempolicy.h> 40 41 #include <asm/tlbflush.h> 42 #include "internal.h" 43 44 /* 45 * MCD - HACK: Find somewhere to initialize this EARLY, or make this 46 * initializer cleaner 47 */ 48 nodemask_t node_online_map __read_mostly = { { [0] = 1UL } }; 49 EXPORT_SYMBOL(node_online_map); 50 nodemask_t node_possible_map __read_mostly = NODE_MASK_ALL; 51 EXPORT_SYMBOL(node_possible_map); 52 unsigned long totalram_pages __read_mostly; 53 unsigned long totalhigh_pages __read_mostly; 54 long nr_swap_pages; 55 int percpu_pagelist_fraction; 56 57 static void __free_pages_ok(struct page *page, unsigned int order); 58 59 /* 60 * results with 256, 32 in the lowmem_reserve sysctl: 61 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high) 62 * 1G machine -> (16M dma, 784M normal, 224M high) 63 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA 64 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL 65 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA 66 * 67 * TBD: should special case ZONE_DMA32 machines here - in those we normally 68 * don't need any ZONE_NORMAL reservation 69 */ 70 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = { 256, 256, 32 }; 71 72 EXPORT_SYMBOL(totalram_pages); 73 74 /* 75 * Used by page_zone() to look up the address of the struct zone whose 76 * id is encoded in the upper bits of page->flags 77 */ 78 struct zone *zone_table[1 << ZONETABLE_SHIFT] __read_mostly; 79 EXPORT_SYMBOL(zone_table); 80 81 static char *zone_names[MAX_NR_ZONES] = { "DMA", "DMA32", "Normal", "HighMem" }; 82 int min_free_kbytes = 1024; 83 84 unsigned long __initdata nr_kernel_pages; 85 unsigned long __initdata nr_all_pages; 86 87 #ifdef CONFIG_DEBUG_VM 88 static int page_outside_zone_boundaries(struct zone *zone, struct page *page) 89 { 90 int ret = 0; 91 unsigned seq; 92 unsigned long pfn = page_to_pfn(page); 93 94 do { 95 seq = zone_span_seqbegin(zone); 96 if (pfn >= zone->zone_start_pfn + zone->spanned_pages) 97 ret = 1; 98 else if (pfn < zone->zone_start_pfn) 99 ret = 1; 100 } while (zone_span_seqretry(zone, seq)); 101 102 return ret; 103 } 104 105 static int page_is_consistent(struct zone *zone, struct page *page) 106 { 107 #ifdef CONFIG_HOLES_IN_ZONE 108 if (!pfn_valid(page_to_pfn(page))) 109 return 0; 110 #endif 111 if (zone != page_zone(page)) 112 return 0; 113 114 return 1; 115 } 116 /* 117 * Temporary debugging check for pages not lying within a given zone. 118 */ 119 static int bad_range(struct zone *zone, struct page *page) 120 { 121 if (page_outside_zone_boundaries(zone, page)) 122 return 1; 123 if (!page_is_consistent(zone, page)) 124 return 1; 125 126 return 0; 127 } 128 129 #else 130 static inline int bad_range(struct zone *zone, struct page *page) 131 { 132 return 0; 133 } 134 #endif 135 136 static void bad_page(struct page *page) 137 { 138 printk(KERN_EMERG "Bad page state in process '%s'\n" 139 KERN_EMERG "page:%p flags:0x%0*lx mapping:%p mapcount:%d count:%d\n" 140 KERN_EMERG "Trying to fix it up, but a reboot is needed\n" 141 KERN_EMERG "Backtrace:\n", 142 current->comm, page, (int)(2*sizeof(unsigned long)), 143 (unsigned long)page->flags, page->mapping, 144 page_mapcount(page), page_count(page)); 145 dump_stack(); 146 page->flags &= ~(1 << PG_lru | 147 1 << PG_private | 148 1 << PG_locked | 149 1 << PG_active | 150 1 << PG_dirty | 151 1 << PG_reclaim | 152 1 << PG_slab | 153 1 << PG_swapcache | 154 1 << PG_writeback ); 155 set_page_count(page, 0); 156 reset_page_mapcount(page); 157 page->mapping = NULL; 158 add_taint(TAINT_BAD_PAGE); 159 } 160 161 /* 162 * Higher-order pages are called "compound pages". They are structured thusly: 163 * 164 * The first PAGE_SIZE page is called the "head page". 165 * 166 * The remaining PAGE_SIZE pages are called "tail pages". 167 * 168 * All pages have PG_compound set. All pages have their ->private pointing at 169 * the head page (even the head page has this). 170 * 171 * The first tail page's ->lru.next holds the address of the compound page's 172 * put_page() function. Its ->lru.prev holds the order of allocation. 173 * This usage means that zero-order pages may not be compound. 174 */ 175 176 static void free_compound_page(struct page *page) 177 { 178 __free_pages_ok(page, (unsigned long)page[1].lru.prev); 179 } 180 181 static void prep_compound_page(struct page *page, unsigned long order) 182 { 183 int i; 184 int nr_pages = 1 << order; 185 186 page[1].lru.next = (void *)free_compound_page; /* set dtor */ 187 page[1].lru.prev = (void *)order; 188 for (i = 0; i < nr_pages; i++) { 189 struct page *p = page + i; 190 191 __SetPageCompound(p); 192 set_page_private(p, (unsigned long)page); 193 } 194 } 195 196 static void destroy_compound_page(struct page *page, unsigned long order) 197 { 198 int i; 199 int nr_pages = 1 << order; 200 201 if (unlikely((unsigned long)page[1].lru.prev != order)) 202 bad_page(page); 203 204 for (i = 0; i < nr_pages; i++) { 205 struct page *p = page + i; 206 207 if (unlikely(!PageCompound(p) | 208 (page_private(p) != (unsigned long)page))) 209 bad_page(page); 210 __ClearPageCompound(p); 211 } 212 } 213 214 static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags) 215 { 216 int i; 217 218 BUG_ON((gfp_flags & (__GFP_WAIT | __GFP_HIGHMEM)) == __GFP_HIGHMEM); 219 /* 220 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO 221 * and __GFP_HIGHMEM from hard or soft interrupt context. 222 */ 223 BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt()); 224 for (i = 0; i < (1 << order); i++) 225 clear_highpage(page + i); 226 } 227 228 /* 229 * function for dealing with page's order in buddy system. 230 * zone->lock is already acquired when we use these. 231 * So, we don't need atomic page->flags operations here. 232 */ 233 static inline unsigned long page_order(struct page *page) { 234 return page_private(page); 235 } 236 237 static inline void set_page_order(struct page *page, int order) { 238 set_page_private(page, order); 239 __SetPagePrivate(page); 240 } 241 242 static inline void rmv_page_order(struct page *page) 243 { 244 __ClearPagePrivate(page); 245 set_page_private(page, 0); 246 } 247 248 /* 249 * Locate the struct page for both the matching buddy in our 250 * pair (buddy1) and the combined O(n+1) page they form (page). 251 * 252 * 1) Any buddy B1 will have an order O twin B2 which satisfies 253 * the following equation: 254 * B2 = B1 ^ (1 << O) 255 * For example, if the starting buddy (buddy2) is #8 its order 256 * 1 buddy is #10: 257 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10 258 * 259 * 2) Any buddy B will have an order O+1 parent P which 260 * satisfies the following equation: 261 * P = B & ~(1 << O) 262 * 263 * Assumption: *_mem_map is contigious at least up to MAX_ORDER 264 */ 265 static inline struct page * 266 __page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order) 267 { 268 unsigned long buddy_idx = page_idx ^ (1 << order); 269 270 return page + (buddy_idx - page_idx); 271 } 272 273 static inline unsigned long 274 __find_combined_index(unsigned long page_idx, unsigned int order) 275 { 276 return (page_idx & ~(1 << order)); 277 } 278 279 /* 280 * This function checks whether a page is free && is the buddy 281 * we can do coalesce a page and its buddy if 282 * (a) the buddy is not in a hole && 283 * (b) the buddy is free && 284 * (c) the buddy is on the buddy system && 285 * (d) a page and its buddy have the same order. 286 * for recording page's order, we use page_private(page) and PG_private. 287 * 288 */ 289 static inline int page_is_buddy(struct page *page, int order) 290 { 291 #ifdef CONFIG_HOLES_IN_ZONE 292 if (!pfn_valid(page_to_pfn(page))) 293 return 0; 294 #endif 295 296 if (PagePrivate(page) && 297 (page_order(page) == order) && 298 page_count(page) == 0) 299 return 1; 300 return 0; 301 } 302 303 /* 304 * Freeing function for a buddy system allocator. 305 * 306 * The concept of a buddy system is to maintain direct-mapped table 307 * (containing bit values) for memory blocks of various "orders". 308 * The bottom level table contains the map for the smallest allocatable 309 * units of memory (here, pages), and each level above it describes 310 * pairs of units from the levels below, hence, "buddies". 311 * At a high level, all that happens here is marking the table entry 312 * at the bottom level available, and propagating the changes upward 313 * as necessary, plus some accounting needed to play nicely with other 314 * parts of the VM system. 315 * At each level, we keep a list of pages, which are heads of continuous 316 * free pages of length of (1 << order) and marked with PG_Private.Page's 317 * order is recorded in page_private(page) field. 318 * So when we are allocating or freeing one, we can derive the state of the 319 * other. That is, if we allocate a small block, and both were 320 * free, the remainder of the region must be split into blocks. 321 * If a block is freed, and its buddy is also free, then this 322 * triggers coalescing into a block of larger size. 323 * 324 * -- wli 325 */ 326 327 static inline void __free_one_page(struct page *page, 328 struct zone *zone, unsigned int order) 329 { 330 unsigned long page_idx; 331 int order_size = 1 << order; 332 333 if (unlikely(PageCompound(page))) 334 destroy_compound_page(page, order); 335 336 page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1); 337 338 BUG_ON(page_idx & (order_size - 1)); 339 BUG_ON(bad_range(zone, page)); 340 341 zone->free_pages += order_size; 342 while (order < MAX_ORDER-1) { 343 unsigned long combined_idx; 344 struct free_area *area; 345 struct page *buddy; 346 347 buddy = __page_find_buddy(page, page_idx, order); 348 if (!page_is_buddy(buddy, order)) 349 break; /* Move the buddy up one level. */ 350 351 list_del(&buddy->lru); 352 area = zone->free_area + order; 353 area->nr_free--; 354 rmv_page_order(buddy); 355 combined_idx = __find_combined_index(page_idx, order); 356 page = page + (combined_idx - page_idx); 357 page_idx = combined_idx; 358 order++; 359 } 360 set_page_order(page, order); 361 list_add(&page->lru, &zone->free_area[order].free_list); 362 zone->free_area[order].nr_free++; 363 } 364 365 static inline int free_pages_check(struct page *page) 366 { 367 if (unlikely(page_mapcount(page) | 368 (page->mapping != NULL) | 369 (page_count(page) != 0) | 370 (page->flags & ( 371 1 << PG_lru | 372 1 << PG_private | 373 1 << PG_locked | 374 1 << PG_active | 375 1 << PG_reclaim | 376 1 << PG_slab | 377 1 << PG_swapcache | 378 1 << PG_writeback | 379 1 << PG_reserved )))) 380 bad_page(page); 381 if (PageDirty(page)) 382 __ClearPageDirty(page); 383 /* 384 * For now, we report if PG_reserved was found set, but do not 385 * clear it, and do not free the page. But we shall soon need 386 * to do more, for when the ZERO_PAGE count wraps negative. 387 */ 388 return PageReserved(page); 389 } 390 391 /* 392 * Frees a list of pages. 393 * Assumes all pages on list are in same zone, and of same order. 394 * count is the number of pages to free. 395 * 396 * If the zone was previously in an "all pages pinned" state then look to 397 * see if this freeing clears that state. 398 * 399 * And clear the zone's pages_scanned counter, to hold off the "all pages are 400 * pinned" detection logic. 401 */ 402 static void free_pages_bulk(struct zone *zone, int count, 403 struct list_head *list, int order) 404 { 405 spin_lock(&zone->lock); 406 zone->all_unreclaimable = 0; 407 zone->pages_scanned = 0; 408 while (count--) { 409 struct page *page; 410 411 BUG_ON(list_empty(list)); 412 page = list_entry(list->prev, struct page, lru); 413 /* have to delete it as __free_one_page list manipulates */ 414 list_del(&page->lru); 415 __free_one_page(page, zone, order); 416 } 417 spin_unlock(&zone->lock); 418 } 419 420 static void free_one_page(struct zone *zone, struct page *page, int order) 421 { 422 LIST_HEAD(list); 423 list_add(&page->lru, &list); 424 free_pages_bulk(zone, 1, &list, order); 425 } 426 427 static void __free_pages_ok(struct page *page, unsigned int order) 428 { 429 unsigned long flags; 430 int i; 431 int reserved = 0; 432 433 arch_free_page(page, order); 434 if (!PageHighMem(page)) 435 mutex_debug_check_no_locks_freed(page_address(page), 436 PAGE_SIZE<<order); 437 438 for (i = 0 ; i < (1 << order) ; ++i) 439 reserved += free_pages_check(page + i); 440 if (reserved) 441 return; 442 443 kernel_map_pages(page, 1 << order, 0); 444 local_irq_save(flags); 445 __mod_page_state(pgfree, 1 << order); 446 free_one_page(page_zone(page), page, order); 447 local_irq_restore(flags); 448 } 449 450 /* 451 * permit the bootmem allocator to evade page validation on high-order frees 452 */ 453 void fastcall __init __free_pages_bootmem(struct page *page, unsigned int order) 454 { 455 if (order == 0) { 456 __ClearPageReserved(page); 457 set_page_count(page, 0); 458 set_page_refcounted(page); 459 __free_page(page); 460 } else { 461 int loop; 462 463 prefetchw(page); 464 for (loop = 0; loop < BITS_PER_LONG; loop++) { 465 struct page *p = &page[loop]; 466 467 if (loop + 1 < BITS_PER_LONG) 468 prefetchw(p + 1); 469 __ClearPageReserved(p); 470 set_page_count(p, 0); 471 } 472 473 set_page_refcounted(page); 474 __free_pages(page, order); 475 } 476 } 477 478 479 /* 480 * The order of subdivision here is critical for the IO subsystem. 481 * Please do not alter this order without good reasons and regression 482 * testing. Specifically, as large blocks of memory are subdivided, 483 * the order in which smaller blocks are delivered depends on the order 484 * they're subdivided in this function. This is the primary factor 485 * influencing the order in which pages are delivered to the IO 486 * subsystem according to empirical testing, and this is also justified 487 * by considering the behavior of a buddy system containing a single 488 * large block of memory acted on by a series of small allocations. 489 * This behavior is a critical factor in sglist merging's success. 490 * 491 * -- wli 492 */ 493 static inline void expand(struct zone *zone, struct page *page, 494 int low, int high, struct free_area *area) 495 { 496 unsigned long size = 1 << high; 497 498 while (high > low) { 499 area--; 500 high--; 501 size >>= 1; 502 BUG_ON(bad_range(zone, &page[size])); 503 list_add(&page[size].lru, &area->free_list); 504 area->nr_free++; 505 set_page_order(&page[size], high); 506 } 507 } 508 509 /* 510 * This page is about to be returned from the page allocator 511 */ 512 static int prep_new_page(struct page *page, int order, gfp_t gfp_flags) 513 { 514 if (unlikely(page_mapcount(page) | 515 (page->mapping != NULL) | 516 (page_count(page) != 0) | 517 (page->flags & ( 518 1 << PG_lru | 519 1 << PG_private | 520 1 << PG_locked | 521 1 << PG_active | 522 1 << PG_dirty | 523 1 << PG_reclaim | 524 1 << PG_slab | 525 1 << PG_swapcache | 526 1 << PG_writeback | 527 1 << PG_reserved )))) 528 bad_page(page); 529 530 /* 531 * For now, we report if PG_reserved was found set, but do not 532 * clear it, and do not allocate the page: as a safety net. 533 */ 534 if (PageReserved(page)) 535 return 1; 536 537 page->flags &= ~(1 << PG_uptodate | 1 << PG_error | 538 1 << PG_referenced | 1 << PG_arch_1 | 539 1 << PG_checked | 1 << PG_mappedtodisk); 540 set_page_private(page, 0); 541 set_page_refcounted(page); 542 kernel_map_pages(page, 1 << order, 1); 543 544 if (gfp_flags & __GFP_ZERO) 545 prep_zero_page(page, order, gfp_flags); 546 547 if (order && (gfp_flags & __GFP_COMP)) 548 prep_compound_page(page, order); 549 550 return 0; 551 } 552 553 /* 554 * Do the hard work of removing an element from the buddy allocator. 555 * Call me with the zone->lock already held. 556 */ 557 static struct page *__rmqueue(struct zone *zone, unsigned int order) 558 { 559 struct free_area * area; 560 unsigned int current_order; 561 struct page *page; 562 563 for (current_order = order; current_order < MAX_ORDER; ++current_order) { 564 area = zone->free_area + current_order; 565 if (list_empty(&area->free_list)) 566 continue; 567 568 page = list_entry(area->free_list.next, struct page, lru); 569 list_del(&page->lru); 570 rmv_page_order(page); 571 area->nr_free--; 572 zone->free_pages -= 1UL << order; 573 expand(zone, page, order, current_order, area); 574 return page; 575 } 576 577 return NULL; 578 } 579 580 /* 581 * Obtain a specified number of elements from the buddy allocator, all under 582 * a single hold of the lock, for efficiency. Add them to the supplied list. 583 * Returns the number of new pages which were placed at *list. 584 */ 585 static int rmqueue_bulk(struct zone *zone, unsigned int order, 586 unsigned long count, struct list_head *list) 587 { 588 int i; 589 590 spin_lock(&zone->lock); 591 for (i = 0; i < count; ++i) { 592 struct page *page = __rmqueue(zone, order); 593 if (unlikely(page == NULL)) 594 break; 595 list_add_tail(&page->lru, list); 596 } 597 spin_unlock(&zone->lock); 598 return i; 599 } 600 601 #ifdef CONFIG_NUMA 602 /* 603 * Called from the slab reaper to drain pagesets on a particular node that 604 * belong to the currently executing processor. 605 * Note that this function must be called with the thread pinned to 606 * a single processor. 607 */ 608 void drain_node_pages(int nodeid) 609 { 610 int i, z; 611 unsigned long flags; 612 613 for (z = 0; z < MAX_NR_ZONES; z++) { 614 struct zone *zone = NODE_DATA(nodeid)->node_zones + z; 615 struct per_cpu_pageset *pset; 616 617 pset = zone_pcp(zone, smp_processor_id()); 618 for (i = 0; i < ARRAY_SIZE(pset->pcp); i++) { 619 struct per_cpu_pages *pcp; 620 621 pcp = &pset->pcp[i]; 622 if (pcp->count) { 623 local_irq_save(flags); 624 free_pages_bulk(zone, pcp->count, &pcp->list, 0); 625 pcp->count = 0; 626 local_irq_restore(flags); 627 } 628 } 629 } 630 } 631 #endif 632 633 #if defined(CONFIG_PM) || defined(CONFIG_HOTPLUG_CPU) 634 static void __drain_pages(unsigned int cpu) 635 { 636 unsigned long flags; 637 struct zone *zone; 638 int i; 639 640 for_each_zone(zone) { 641 struct per_cpu_pageset *pset; 642 643 pset = zone_pcp(zone, cpu); 644 for (i = 0; i < ARRAY_SIZE(pset->pcp); i++) { 645 struct per_cpu_pages *pcp; 646 647 pcp = &pset->pcp[i]; 648 local_irq_save(flags); 649 free_pages_bulk(zone, pcp->count, &pcp->list, 0); 650 pcp->count = 0; 651 local_irq_restore(flags); 652 } 653 } 654 } 655 #endif /* CONFIG_PM || CONFIG_HOTPLUG_CPU */ 656 657 #ifdef CONFIG_PM 658 659 void mark_free_pages(struct zone *zone) 660 { 661 unsigned long zone_pfn, flags; 662 int order; 663 struct list_head *curr; 664 665 if (!zone->spanned_pages) 666 return; 667 668 spin_lock_irqsave(&zone->lock, flags); 669 for (zone_pfn = 0; zone_pfn < zone->spanned_pages; ++zone_pfn) 670 ClearPageNosaveFree(pfn_to_page(zone_pfn + zone->zone_start_pfn)); 671 672 for (order = MAX_ORDER - 1; order >= 0; --order) 673 list_for_each(curr, &zone->free_area[order].free_list) { 674 unsigned long start_pfn, i; 675 676 start_pfn = page_to_pfn(list_entry(curr, struct page, lru)); 677 678 for (i=0; i < (1<<order); i++) 679 SetPageNosaveFree(pfn_to_page(start_pfn+i)); 680 } 681 spin_unlock_irqrestore(&zone->lock, flags); 682 } 683 684 /* 685 * Spill all of this CPU's per-cpu pages back into the buddy allocator. 686 */ 687 void drain_local_pages(void) 688 { 689 unsigned long flags; 690 691 local_irq_save(flags); 692 __drain_pages(smp_processor_id()); 693 local_irq_restore(flags); 694 } 695 #endif /* CONFIG_PM */ 696 697 static void zone_statistics(struct zonelist *zonelist, struct zone *z, int cpu) 698 { 699 #ifdef CONFIG_NUMA 700 pg_data_t *pg = z->zone_pgdat; 701 pg_data_t *orig = zonelist->zones[0]->zone_pgdat; 702 struct per_cpu_pageset *p; 703 704 p = zone_pcp(z, cpu); 705 if (pg == orig) { 706 p->numa_hit++; 707 } else { 708 p->numa_miss++; 709 zone_pcp(zonelist->zones[0], cpu)->numa_foreign++; 710 } 711 if (pg == NODE_DATA(numa_node_id())) 712 p->local_node++; 713 else 714 p->other_node++; 715 #endif 716 } 717 718 /* 719 * Free a 0-order page 720 */ 721 static void fastcall free_hot_cold_page(struct page *page, int cold) 722 { 723 struct zone *zone = page_zone(page); 724 struct per_cpu_pages *pcp; 725 unsigned long flags; 726 727 arch_free_page(page, 0); 728 729 if (PageAnon(page)) 730 page->mapping = NULL; 731 if (free_pages_check(page)) 732 return; 733 734 kernel_map_pages(page, 1, 0); 735 736 pcp = &zone_pcp(zone, get_cpu())->pcp[cold]; 737 local_irq_save(flags); 738 __inc_page_state(pgfree); 739 list_add(&page->lru, &pcp->list); 740 pcp->count++; 741 if (pcp->count >= pcp->high) { 742 free_pages_bulk(zone, pcp->batch, &pcp->list, 0); 743 pcp->count -= pcp->batch; 744 } 745 local_irq_restore(flags); 746 put_cpu(); 747 } 748 749 void fastcall free_hot_page(struct page *page) 750 { 751 free_hot_cold_page(page, 0); 752 } 753 754 void fastcall free_cold_page(struct page *page) 755 { 756 free_hot_cold_page(page, 1); 757 } 758 759 /* 760 * split_page takes a non-compound higher-order page, and splits it into 761 * n (1<<order) sub-pages: page[0..n] 762 * Each sub-page must be freed individually. 763 * 764 * Note: this is probably too low level an operation for use in drivers. 765 * Please consult with lkml before using this in your driver. 766 */ 767 void split_page(struct page *page, unsigned int order) 768 { 769 int i; 770 771 BUG_ON(PageCompound(page)); 772 BUG_ON(!page_count(page)); 773 for (i = 1; i < (1 << order); i++) 774 set_page_refcounted(page + i); 775 } 776 777 /* 778 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But 779 * we cheat by calling it from here, in the order > 0 path. Saves a branch 780 * or two. 781 */ 782 static struct page *buffered_rmqueue(struct zonelist *zonelist, 783 struct zone *zone, int order, gfp_t gfp_flags) 784 { 785 unsigned long flags; 786 struct page *page; 787 int cold = !!(gfp_flags & __GFP_COLD); 788 int cpu; 789 790 again: 791 cpu = get_cpu(); 792 if (likely(order == 0)) { 793 struct per_cpu_pages *pcp; 794 795 pcp = &zone_pcp(zone, cpu)->pcp[cold]; 796 local_irq_save(flags); 797 if (!pcp->count) { 798 pcp->count += rmqueue_bulk(zone, 0, 799 pcp->batch, &pcp->list); 800 if (unlikely(!pcp->count)) 801 goto failed; 802 } 803 page = list_entry(pcp->list.next, struct page, lru); 804 list_del(&page->lru); 805 pcp->count--; 806 } else { 807 spin_lock_irqsave(&zone->lock, flags); 808 page = __rmqueue(zone, order); 809 spin_unlock(&zone->lock); 810 if (!page) 811 goto failed; 812 } 813 814 __mod_page_state_zone(zone, pgalloc, 1 << order); 815 zone_statistics(zonelist, zone, cpu); 816 local_irq_restore(flags); 817 put_cpu(); 818 819 BUG_ON(bad_range(zone, page)); 820 if (prep_new_page(page, order, gfp_flags)) 821 goto again; 822 return page; 823 824 failed: 825 local_irq_restore(flags); 826 put_cpu(); 827 return NULL; 828 } 829 830 #define ALLOC_NO_WATERMARKS 0x01 /* don't check watermarks at all */ 831 #define ALLOC_WMARK_MIN 0x02 /* use pages_min watermark */ 832 #define ALLOC_WMARK_LOW 0x04 /* use pages_low watermark */ 833 #define ALLOC_WMARK_HIGH 0x08 /* use pages_high watermark */ 834 #define ALLOC_HARDER 0x10 /* try to alloc harder */ 835 #define ALLOC_HIGH 0x20 /* __GFP_HIGH set */ 836 #define ALLOC_CPUSET 0x40 /* check for correct cpuset */ 837 838 /* 839 * Return 1 if free pages are above 'mark'. This takes into account the order 840 * of the allocation. 841 */ 842 int zone_watermark_ok(struct zone *z, int order, unsigned long mark, 843 int classzone_idx, int alloc_flags) 844 { 845 /* free_pages my go negative - that's OK */ 846 long min = mark, free_pages = z->free_pages - (1 << order) + 1; 847 int o; 848 849 if (alloc_flags & ALLOC_HIGH) 850 min -= min / 2; 851 if (alloc_flags & ALLOC_HARDER) 852 min -= min / 4; 853 854 if (free_pages <= min + z->lowmem_reserve[classzone_idx]) 855 return 0; 856 for (o = 0; o < order; o++) { 857 /* At the next order, this order's pages become unavailable */ 858 free_pages -= z->free_area[o].nr_free << o; 859 860 /* Require fewer higher order pages to be free */ 861 min >>= 1; 862 863 if (free_pages <= min) 864 return 0; 865 } 866 return 1; 867 } 868 869 /* 870 * get_page_from_freeliest goes through the zonelist trying to allocate 871 * a page. 872 */ 873 static struct page * 874 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, 875 struct zonelist *zonelist, int alloc_flags) 876 { 877 struct zone **z = zonelist->zones; 878 struct page *page = NULL; 879 int classzone_idx = zone_idx(*z); 880 881 /* 882 * Go through the zonelist once, looking for a zone with enough free. 883 * See also cpuset_zone_allowed() comment in kernel/cpuset.c. 884 */ 885 do { 886 if ((alloc_flags & ALLOC_CPUSET) && 887 !cpuset_zone_allowed(*z, gfp_mask)) 888 continue; 889 890 if (!(alloc_flags & ALLOC_NO_WATERMARKS)) { 891 unsigned long mark; 892 if (alloc_flags & ALLOC_WMARK_MIN) 893 mark = (*z)->pages_min; 894 else if (alloc_flags & ALLOC_WMARK_LOW) 895 mark = (*z)->pages_low; 896 else 897 mark = (*z)->pages_high; 898 if (!zone_watermark_ok(*z, order, mark, 899 classzone_idx, alloc_flags)) 900 if (!zone_reclaim_mode || 901 !zone_reclaim(*z, gfp_mask, order)) 902 continue; 903 } 904 905 page = buffered_rmqueue(zonelist, *z, order, gfp_mask); 906 if (page) { 907 break; 908 } 909 } while (*(++z) != NULL); 910 return page; 911 } 912 913 /* 914 * This is the 'heart' of the zoned buddy allocator. 915 */ 916 struct page * fastcall 917 __alloc_pages(gfp_t gfp_mask, unsigned int order, 918 struct zonelist *zonelist) 919 { 920 const gfp_t wait = gfp_mask & __GFP_WAIT; 921 struct zone **z; 922 struct page *page; 923 struct reclaim_state reclaim_state; 924 struct task_struct *p = current; 925 int do_retry; 926 int alloc_flags; 927 int did_some_progress; 928 929 might_sleep_if(wait); 930 931 restart: 932 z = zonelist->zones; /* the list of zones suitable for gfp_mask */ 933 934 if (unlikely(*z == NULL)) { 935 /* Should this ever happen?? */ 936 return NULL; 937 } 938 939 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, order, 940 zonelist, ALLOC_WMARK_LOW|ALLOC_CPUSET); 941 if (page) 942 goto got_pg; 943 944 do { 945 if (cpuset_zone_allowed(*z, gfp_mask)) 946 wakeup_kswapd(*z, order); 947 } while (*(++z)); 948 949 /* 950 * OK, we're below the kswapd watermark and have kicked background 951 * reclaim. Now things get more complex, so set up alloc_flags according 952 * to how we want to proceed. 953 * 954 * The caller may dip into page reserves a bit more if the caller 955 * cannot run direct reclaim, or if the caller has realtime scheduling 956 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will 957 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH). 958 */ 959 alloc_flags = ALLOC_WMARK_MIN; 960 if ((unlikely(rt_task(p)) && !in_interrupt()) || !wait) 961 alloc_flags |= ALLOC_HARDER; 962 if (gfp_mask & __GFP_HIGH) 963 alloc_flags |= ALLOC_HIGH; 964 alloc_flags |= ALLOC_CPUSET; 965 966 /* 967 * Go through the zonelist again. Let __GFP_HIGH and allocations 968 * coming from realtime tasks go deeper into reserves. 969 * 970 * This is the last chance, in general, before the goto nopage. 971 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc. 972 * See also cpuset_zone_allowed() comment in kernel/cpuset.c. 973 */ 974 page = get_page_from_freelist(gfp_mask, order, zonelist, alloc_flags); 975 if (page) 976 goto got_pg; 977 978 /* This allocation should allow future memory freeing. */ 979 980 if (((p->flags & PF_MEMALLOC) || unlikely(test_thread_flag(TIF_MEMDIE))) 981 && !in_interrupt()) { 982 if (!(gfp_mask & __GFP_NOMEMALLOC)) { 983 nofail_alloc: 984 /* go through the zonelist yet again, ignoring mins */ 985 page = get_page_from_freelist(gfp_mask, order, 986 zonelist, ALLOC_NO_WATERMARKS); 987 if (page) 988 goto got_pg; 989 if (gfp_mask & __GFP_NOFAIL) { 990 blk_congestion_wait(WRITE, HZ/50); 991 goto nofail_alloc; 992 } 993 } 994 goto nopage; 995 } 996 997 /* Atomic allocations - we can't balance anything */ 998 if (!wait) 999 goto nopage; 1000 1001 rebalance: 1002 cond_resched(); 1003 1004 /* We now go into synchronous reclaim */ 1005 cpuset_memory_pressure_bump(); 1006 p->flags |= PF_MEMALLOC; 1007 reclaim_state.reclaimed_slab = 0; 1008 p->reclaim_state = &reclaim_state; 1009 1010 did_some_progress = try_to_free_pages(zonelist->zones, gfp_mask); 1011 1012 p->reclaim_state = NULL; 1013 p->flags &= ~PF_MEMALLOC; 1014 1015 cond_resched(); 1016 1017 if (likely(did_some_progress)) { 1018 page = get_page_from_freelist(gfp_mask, order, 1019 zonelist, alloc_flags); 1020 if (page) 1021 goto got_pg; 1022 } else if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) { 1023 /* 1024 * Go through the zonelist yet one more time, keep 1025 * very high watermark here, this is only to catch 1026 * a parallel oom killing, we must fail if we're still 1027 * under heavy pressure. 1028 */ 1029 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, order, 1030 zonelist, ALLOC_WMARK_HIGH|ALLOC_CPUSET); 1031 if (page) 1032 goto got_pg; 1033 1034 out_of_memory(zonelist, gfp_mask, order); 1035 goto restart; 1036 } 1037 1038 /* 1039 * Don't let big-order allocations loop unless the caller explicitly 1040 * requests that. Wait for some write requests to complete then retry. 1041 * 1042 * In this implementation, __GFP_REPEAT means __GFP_NOFAIL for order 1043 * <= 3, but that may not be true in other implementations. 1044 */ 1045 do_retry = 0; 1046 if (!(gfp_mask & __GFP_NORETRY)) { 1047 if ((order <= 3) || (gfp_mask & __GFP_REPEAT)) 1048 do_retry = 1; 1049 if (gfp_mask & __GFP_NOFAIL) 1050 do_retry = 1; 1051 } 1052 if (do_retry) { 1053 blk_congestion_wait(WRITE, HZ/50); 1054 goto rebalance; 1055 } 1056 1057 nopage: 1058 if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) { 1059 printk(KERN_WARNING "%s: page allocation failure." 1060 " order:%d, mode:0x%x\n", 1061 p->comm, order, gfp_mask); 1062 dump_stack(); 1063 show_mem(); 1064 } 1065 got_pg: 1066 return page; 1067 } 1068 1069 EXPORT_SYMBOL(__alloc_pages); 1070 1071 /* 1072 * Common helper functions. 1073 */ 1074 fastcall unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order) 1075 { 1076 struct page * page; 1077 page = alloc_pages(gfp_mask, order); 1078 if (!page) 1079 return 0; 1080 return (unsigned long) page_address(page); 1081 } 1082 1083 EXPORT_SYMBOL(__get_free_pages); 1084 1085 fastcall unsigned long get_zeroed_page(gfp_t gfp_mask) 1086 { 1087 struct page * page; 1088 1089 /* 1090 * get_zeroed_page() returns a 32-bit address, which cannot represent 1091 * a highmem page 1092 */ 1093 BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0); 1094 1095 page = alloc_pages(gfp_mask | __GFP_ZERO, 0); 1096 if (page) 1097 return (unsigned long) page_address(page); 1098 return 0; 1099 } 1100 1101 EXPORT_SYMBOL(get_zeroed_page); 1102 1103 void __pagevec_free(struct pagevec *pvec) 1104 { 1105 int i = pagevec_count(pvec); 1106 1107 while (--i >= 0) 1108 free_hot_cold_page(pvec->pages[i], pvec->cold); 1109 } 1110 1111 fastcall void __free_pages(struct page *page, unsigned int order) 1112 { 1113 if (put_page_testzero(page)) { 1114 if (order == 0) 1115 free_hot_page(page); 1116 else 1117 __free_pages_ok(page, order); 1118 } 1119 } 1120 1121 EXPORT_SYMBOL(__free_pages); 1122 1123 fastcall void free_pages(unsigned long addr, unsigned int order) 1124 { 1125 if (addr != 0) { 1126 BUG_ON(!virt_addr_valid((void *)addr)); 1127 __free_pages(virt_to_page((void *)addr), order); 1128 } 1129 } 1130 1131 EXPORT_SYMBOL(free_pages); 1132 1133 /* 1134 * Total amount of free (allocatable) RAM: 1135 */ 1136 unsigned int nr_free_pages(void) 1137 { 1138 unsigned int sum = 0; 1139 struct zone *zone; 1140 1141 for_each_zone(zone) 1142 sum += zone->free_pages; 1143 1144 return sum; 1145 } 1146 1147 EXPORT_SYMBOL(nr_free_pages); 1148 1149 #ifdef CONFIG_NUMA 1150 unsigned int nr_free_pages_pgdat(pg_data_t *pgdat) 1151 { 1152 unsigned int i, sum = 0; 1153 1154 for (i = 0; i < MAX_NR_ZONES; i++) 1155 sum += pgdat->node_zones[i].free_pages; 1156 1157 return sum; 1158 } 1159 #endif 1160 1161 static unsigned int nr_free_zone_pages(int offset) 1162 { 1163 /* Just pick one node, since fallback list is circular */ 1164 pg_data_t *pgdat = NODE_DATA(numa_node_id()); 1165 unsigned int sum = 0; 1166 1167 struct zonelist *zonelist = pgdat->node_zonelists + offset; 1168 struct zone **zonep = zonelist->zones; 1169 struct zone *zone; 1170 1171 for (zone = *zonep++; zone; zone = *zonep++) { 1172 unsigned long size = zone->present_pages; 1173 unsigned long high = zone->pages_high; 1174 if (size > high) 1175 sum += size - high; 1176 } 1177 1178 return sum; 1179 } 1180 1181 /* 1182 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL 1183 */ 1184 unsigned int nr_free_buffer_pages(void) 1185 { 1186 return nr_free_zone_pages(gfp_zone(GFP_USER)); 1187 } 1188 1189 /* 1190 * Amount of free RAM allocatable within all zones 1191 */ 1192 unsigned int nr_free_pagecache_pages(void) 1193 { 1194 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER)); 1195 } 1196 1197 #ifdef CONFIG_HIGHMEM 1198 unsigned int nr_free_highpages (void) 1199 { 1200 pg_data_t *pgdat; 1201 unsigned int pages = 0; 1202 1203 for_each_online_pgdat(pgdat) 1204 pages += pgdat->node_zones[ZONE_HIGHMEM].free_pages; 1205 1206 return pages; 1207 } 1208 #endif 1209 1210 #ifdef CONFIG_NUMA 1211 static void show_node(struct zone *zone) 1212 { 1213 printk("Node %d ", zone->zone_pgdat->node_id); 1214 } 1215 #else 1216 #define show_node(zone) do { } while (0) 1217 #endif 1218 1219 /* 1220 * Accumulate the page_state information across all CPUs. 1221 * The result is unavoidably approximate - it can change 1222 * during and after execution of this function. 1223 */ 1224 static DEFINE_PER_CPU(struct page_state, page_states) = {0}; 1225 1226 atomic_t nr_pagecache = ATOMIC_INIT(0); 1227 EXPORT_SYMBOL(nr_pagecache); 1228 #ifdef CONFIG_SMP 1229 DEFINE_PER_CPU(long, nr_pagecache_local) = 0; 1230 #endif 1231 1232 static void __get_page_state(struct page_state *ret, int nr, cpumask_t *cpumask) 1233 { 1234 unsigned cpu; 1235 1236 memset(ret, 0, nr * sizeof(unsigned long)); 1237 cpus_and(*cpumask, *cpumask, cpu_online_map); 1238 1239 for_each_cpu_mask(cpu, *cpumask) { 1240 unsigned long *in; 1241 unsigned long *out; 1242 unsigned off; 1243 unsigned next_cpu; 1244 1245 in = (unsigned long *)&per_cpu(page_states, cpu); 1246 1247 next_cpu = next_cpu(cpu, *cpumask); 1248 if (likely(next_cpu < NR_CPUS)) 1249 prefetch(&per_cpu(page_states, next_cpu)); 1250 1251 out = (unsigned long *)ret; 1252 for (off = 0; off < nr; off++) 1253 *out++ += *in++; 1254 } 1255 } 1256 1257 void get_page_state_node(struct page_state *ret, int node) 1258 { 1259 int nr; 1260 cpumask_t mask = node_to_cpumask(node); 1261 1262 nr = offsetof(struct page_state, GET_PAGE_STATE_LAST); 1263 nr /= sizeof(unsigned long); 1264 1265 __get_page_state(ret, nr+1, &mask); 1266 } 1267 1268 void get_page_state(struct page_state *ret) 1269 { 1270 int nr; 1271 cpumask_t mask = CPU_MASK_ALL; 1272 1273 nr = offsetof(struct page_state, GET_PAGE_STATE_LAST); 1274 nr /= sizeof(unsigned long); 1275 1276 __get_page_state(ret, nr + 1, &mask); 1277 } 1278 1279 void get_full_page_state(struct page_state *ret) 1280 { 1281 cpumask_t mask = CPU_MASK_ALL; 1282 1283 __get_page_state(ret, sizeof(*ret) / sizeof(unsigned long), &mask); 1284 } 1285 1286 unsigned long read_page_state_offset(unsigned long offset) 1287 { 1288 unsigned long ret = 0; 1289 int cpu; 1290 1291 for_each_online_cpu(cpu) { 1292 unsigned long in; 1293 1294 in = (unsigned long)&per_cpu(page_states, cpu) + offset; 1295 ret += *((unsigned long *)in); 1296 } 1297 return ret; 1298 } 1299 1300 void __mod_page_state_offset(unsigned long offset, unsigned long delta) 1301 { 1302 void *ptr; 1303 1304 ptr = &__get_cpu_var(page_states); 1305 *(unsigned long *)(ptr + offset) += delta; 1306 } 1307 EXPORT_SYMBOL(__mod_page_state_offset); 1308 1309 void mod_page_state_offset(unsigned long offset, unsigned long delta) 1310 { 1311 unsigned long flags; 1312 void *ptr; 1313 1314 local_irq_save(flags); 1315 ptr = &__get_cpu_var(page_states); 1316 *(unsigned long *)(ptr + offset) += delta; 1317 local_irq_restore(flags); 1318 } 1319 EXPORT_SYMBOL(mod_page_state_offset); 1320 1321 void __get_zone_counts(unsigned long *active, unsigned long *inactive, 1322 unsigned long *free, struct pglist_data *pgdat) 1323 { 1324 struct zone *zones = pgdat->node_zones; 1325 int i; 1326 1327 *active = 0; 1328 *inactive = 0; 1329 *free = 0; 1330 for (i = 0; i < MAX_NR_ZONES; i++) { 1331 *active += zones[i].nr_active; 1332 *inactive += zones[i].nr_inactive; 1333 *free += zones[i].free_pages; 1334 } 1335 } 1336 1337 void get_zone_counts(unsigned long *active, 1338 unsigned long *inactive, unsigned long *free) 1339 { 1340 struct pglist_data *pgdat; 1341 1342 *active = 0; 1343 *inactive = 0; 1344 *free = 0; 1345 for_each_online_pgdat(pgdat) { 1346 unsigned long l, m, n; 1347 __get_zone_counts(&l, &m, &n, pgdat); 1348 *active += l; 1349 *inactive += m; 1350 *free += n; 1351 } 1352 } 1353 1354 void si_meminfo(struct sysinfo *val) 1355 { 1356 val->totalram = totalram_pages; 1357 val->sharedram = 0; 1358 val->freeram = nr_free_pages(); 1359 val->bufferram = nr_blockdev_pages(); 1360 #ifdef CONFIG_HIGHMEM 1361 val->totalhigh = totalhigh_pages; 1362 val->freehigh = nr_free_highpages(); 1363 #else 1364 val->totalhigh = 0; 1365 val->freehigh = 0; 1366 #endif 1367 val->mem_unit = PAGE_SIZE; 1368 } 1369 1370 EXPORT_SYMBOL(si_meminfo); 1371 1372 #ifdef CONFIG_NUMA 1373 void si_meminfo_node(struct sysinfo *val, int nid) 1374 { 1375 pg_data_t *pgdat = NODE_DATA(nid); 1376 1377 val->totalram = pgdat->node_present_pages; 1378 val->freeram = nr_free_pages_pgdat(pgdat); 1379 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages; 1380 val->freehigh = pgdat->node_zones[ZONE_HIGHMEM].free_pages; 1381 val->mem_unit = PAGE_SIZE; 1382 } 1383 #endif 1384 1385 #define K(x) ((x) << (PAGE_SHIFT-10)) 1386 1387 /* 1388 * Show free area list (used inside shift_scroll-lock stuff) 1389 * We also calculate the percentage fragmentation. We do this by counting the 1390 * memory on each free list with the exception of the first item on the list. 1391 */ 1392 void show_free_areas(void) 1393 { 1394 struct page_state ps; 1395 int cpu, temperature; 1396 unsigned long active; 1397 unsigned long inactive; 1398 unsigned long free; 1399 struct zone *zone; 1400 1401 for_each_zone(zone) { 1402 show_node(zone); 1403 printk("%s per-cpu:", zone->name); 1404 1405 if (!populated_zone(zone)) { 1406 printk(" empty\n"); 1407 continue; 1408 } else 1409 printk("\n"); 1410 1411 for_each_online_cpu(cpu) { 1412 struct per_cpu_pageset *pageset; 1413 1414 pageset = zone_pcp(zone, cpu); 1415 1416 for (temperature = 0; temperature < 2; temperature++) 1417 printk("cpu %d %s: high %d, batch %d used:%d\n", 1418 cpu, 1419 temperature ? "cold" : "hot", 1420 pageset->pcp[temperature].high, 1421 pageset->pcp[temperature].batch, 1422 pageset->pcp[temperature].count); 1423 } 1424 } 1425 1426 get_page_state(&ps); 1427 get_zone_counts(&active, &inactive, &free); 1428 1429 printk("Free pages: %11ukB (%ukB HighMem)\n", 1430 K(nr_free_pages()), 1431 K(nr_free_highpages())); 1432 1433 printk("Active:%lu inactive:%lu dirty:%lu writeback:%lu " 1434 "unstable:%lu free:%u slab:%lu mapped:%lu pagetables:%lu\n", 1435 active, 1436 inactive, 1437 ps.nr_dirty, 1438 ps.nr_writeback, 1439 ps.nr_unstable, 1440 nr_free_pages(), 1441 ps.nr_slab, 1442 ps.nr_mapped, 1443 ps.nr_page_table_pages); 1444 1445 for_each_zone(zone) { 1446 int i; 1447 1448 show_node(zone); 1449 printk("%s" 1450 " free:%lukB" 1451 " min:%lukB" 1452 " low:%lukB" 1453 " high:%lukB" 1454 " active:%lukB" 1455 " inactive:%lukB" 1456 " present:%lukB" 1457 " pages_scanned:%lu" 1458 " all_unreclaimable? %s" 1459 "\n", 1460 zone->name, 1461 K(zone->free_pages), 1462 K(zone->pages_min), 1463 K(zone->pages_low), 1464 K(zone->pages_high), 1465 K(zone->nr_active), 1466 K(zone->nr_inactive), 1467 K(zone->present_pages), 1468 zone->pages_scanned, 1469 (zone->all_unreclaimable ? "yes" : "no") 1470 ); 1471 printk("lowmem_reserve[]:"); 1472 for (i = 0; i < MAX_NR_ZONES; i++) 1473 printk(" %lu", zone->lowmem_reserve[i]); 1474 printk("\n"); 1475 } 1476 1477 for_each_zone(zone) { 1478 unsigned long nr, flags, order, total = 0; 1479 1480 show_node(zone); 1481 printk("%s: ", zone->name); 1482 if (!populated_zone(zone)) { 1483 printk("empty\n"); 1484 continue; 1485 } 1486 1487 spin_lock_irqsave(&zone->lock, flags); 1488 for (order = 0; order < MAX_ORDER; order++) { 1489 nr = zone->free_area[order].nr_free; 1490 total += nr << order; 1491 printk("%lu*%lukB ", nr, K(1UL) << order); 1492 } 1493 spin_unlock_irqrestore(&zone->lock, flags); 1494 printk("= %lukB\n", K(total)); 1495 } 1496 1497 show_swap_cache_info(); 1498 } 1499 1500 /* 1501 * Builds allocation fallback zone lists. 1502 * 1503 * Add all populated zones of a node to the zonelist. 1504 */ 1505 static int __init build_zonelists_node(pg_data_t *pgdat, 1506 struct zonelist *zonelist, int nr_zones, int zone_type) 1507 { 1508 struct zone *zone; 1509 1510 BUG_ON(zone_type > ZONE_HIGHMEM); 1511 1512 do { 1513 zone = pgdat->node_zones + zone_type; 1514 if (populated_zone(zone)) { 1515 #ifndef CONFIG_HIGHMEM 1516 BUG_ON(zone_type > ZONE_NORMAL); 1517 #endif 1518 zonelist->zones[nr_zones++] = zone; 1519 check_highest_zone(zone_type); 1520 } 1521 zone_type--; 1522 1523 } while (zone_type >= 0); 1524 return nr_zones; 1525 } 1526 1527 static inline int highest_zone(int zone_bits) 1528 { 1529 int res = ZONE_NORMAL; 1530 if (zone_bits & (__force int)__GFP_HIGHMEM) 1531 res = ZONE_HIGHMEM; 1532 if (zone_bits & (__force int)__GFP_DMA32) 1533 res = ZONE_DMA32; 1534 if (zone_bits & (__force int)__GFP_DMA) 1535 res = ZONE_DMA; 1536 return res; 1537 } 1538 1539 #ifdef CONFIG_NUMA 1540 #define MAX_NODE_LOAD (num_online_nodes()) 1541 static int __initdata node_load[MAX_NUMNODES]; 1542 /** 1543 * find_next_best_node - find the next node that should appear in a given node's fallback list 1544 * @node: node whose fallback list we're appending 1545 * @used_node_mask: nodemask_t of already used nodes 1546 * 1547 * We use a number of factors to determine which is the next node that should 1548 * appear on a given node's fallback list. The node should not have appeared 1549 * already in @node's fallback list, and it should be the next closest node 1550 * according to the distance array (which contains arbitrary distance values 1551 * from each node to each node in the system), and should also prefer nodes 1552 * with no CPUs, since presumably they'll have very little allocation pressure 1553 * on them otherwise. 1554 * It returns -1 if no node is found. 1555 */ 1556 static int __init find_next_best_node(int node, nodemask_t *used_node_mask) 1557 { 1558 int n, val; 1559 int min_val = INT_MAX; 1560 int best_node = -1; 1561 1562 /* Use the local node if we haven't already */ 1563 if (!node_isset(node, *used_node_mask)) { 1564 node_set(node, *used_node_mask); 1565 return node; 1566 } 1567 1568 for_each_online_node(n) { 1569 cpumask_t tmp; 1570 1571 /* Don't want a node to appear more than once */ 1572 if (node_isset(n, *used_node_mask)) 1573 continue; 1574 1575 /* Use the distance array to find the distance */ 1576 val = node_distance(node, n); 1577 1578 /* Penalize nodes under us ("prefer the next node") */ 1579 val += (n < node); 1580 1581 /* Give preference to headless and unused nodes */ 1582 tmp = node_to_cpumask(n); 1583 if (!cpus_empty(tmp)) 1584 val += PENALTY_FOR_NODE_WITH_CPUS; 1585 1586 /* Slight preference for less loaded node */ 1587 val *= (MAX_NODE_LOAD*MAX_NUMNODES); 1588 val += node_load[n]; 1589 1590 if (val < min_val) { 1591 min_val = val; 1592 best_node = n; 1593 } 1594 } 1595 1596 if (best_node >= 0) 1597 node_set(best_node, *used_node_mask); 1598 1599 return best_node; 1600 } 1601 1602 static void __init build_zonelists(pg_data_t *pgdat) 1603 { 1604 int i, j, k, node, local_node; 1605 int prev_node, load; 1606 struct zonelist *zonelist; 1607 nodemask_t used_mask; 1608 1609 /* initialize zonelists */ 1610 for (i = 0; i < GFP_ZONETYPES; i++) { 1611 zonelist = pgdat->node_zonelists + i; 1612 zonelist->zones[0] = NULL; 1613 } 1614 1615 /* NUMA-aware ordering of nodes */ 1616 local_node = pgdat->node_id; 1617 load = num_online_nodes(); 1618 prev_node = local_node; 1619 nodes_clear(used_mask); 1620 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) { 1621 int distance = node_distance(local_node, node); 1622 1623 /* 1624 * If another node is sufficiently far away then it is better 1625 * to reclaim pages in a zone before going off node. 1626 */ 1627 if (distance > RECLAIM_DISTANCE) 1628 zone_reclaim_mode = 1; 1629 1630 /* 1631 * We don't want to pressure a particular node. 1632 * So adding penalty to the first node in same 1633 * distance group to make it round-robin. 1634 */ 1635 1636 if (distance != node_distance(local_node, prev_node)) 1637 node_load[node] += load; 1638 prev_node = node; 1639 load--; 1640 for (i = 0; i < GFP_ZONETYPES; i++) { 1641 zonelist = pgdat->node_zonelists + i; 1642 for (j = 0; zonelist->zones[j] != NULL; j++); 1643 1644 k = highest_zone(i); 1645 1646 j = build_zonelists_node(NODE_DATA(node), zonelist, j, k); 1647 zonelist->zones[j] = NULL; 1648 } 1649 } 1650 } 1651 1652 #else /* CONFIG_NUMA */ 1653 1654 static void __init build_zonelists(pg_data_t *pgdat) 1655 { 1656 int i, j, k, node, local_node; 1657 1658 local_node = pgdat->node_id; 1659 for (i = 0; i < GFP_ZONETYPES; i++) { 1660 struct zonelist *zonelist; 1661 1662 zonelist = pgdat->node_zonelists + i; 1663 1664 j = 0; 1665 k = highest_zone(i); 1666 j = build_zonelists_node(pgdat, zonelist, j, k); 1667 /* 1668 * Now we build the zonelist so that it contains the zones 1669 * of all the other nodes. 1670 * We don't want to pressure a particular node, so when 1671 * building the zones for node N, we make sure that the 1672 * zones coming right after the local ones are those from 1673 * node N+1 (modulo N) 1674 */ 1675 for (node = local_node + 1; node < MAX_NUMNODES; node++) { 1676 if (!node_online(node)) 1677 continue; 1678 j = build_zonelists_node(NODE_DATA(node), zonelist, j, k); 1679 } 1680 for (node = 0; node < local_node; node++) { 1681 if (!node_online(node)) 1682 continue; 1683 j = build_zonelists_node(NODE_DATA(node), zonelist, j, k); 1684 } 1685 1686 zonelist->zones[j] = NULL; 1687 } 1688 } 1689 1690 #endif /* CONFIG_NUMA */ 1691 1692 void __init build_all_zonelists(void) 1693 { 1694 int i; 1695 1696 for_each_online_node(i) 1697 build_zonelists(NODE_DATA(i)); 1698 printk("Built %i zonelists\n", num_online_nodes()); 1699 cpuset_init_current_mems_allowed(); 1700 } 1701 1702 /* 1703 * Helper functions to size the waitqueue hash table. 1704 * Essentially these want to choose hash table sizes sufficiently 1705 * large so that collisions trying to wait on pages are rare. 1706 * But in fact, the number of active page waitqueues on typical 1707 * systems is ridiculously low, less than 200. So this is even 1708 * conservative, even though it seems large. 1709 * 1710 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to 1711 * waitqueues, i.e. the size of the waitq table given the number of pages. 1712 */ 1713 #define PAGES_PER_WAITQUEUE 256 1714 1715 static inline unsigned long wait_table_size(unsigned long pages) 1716 { 1717 unsigned long size = 1; 1718 1719 pages /= PAGES_PER_WAITQUEUE; 1720 1721 while (size < pages) 1722 size <<= 1; 1723 1724 /* 1725 * Once we have dozens or even hundreds of threads sleeping 1726 * on IO we've got bigger problems than wait queue collision. 1727 * Limit the size of the wait table to a reasonable size. 1728 */ 1729 size = min(size, 4096UL); 1730 1731 return max(size, 4UL); 1732 } 1733 1734 /* 1735 * This is an integer logarithm so that shifts can be used later 1736 * to extract the more random high bits from the multiplicative 1737 * hash function before the remainder is taken. 1738 */ 1739 static inline unsigned long wait_table_bits(unsigned long size) 1740 { 1741 return ffz(~size); 1742 } 1743 1744 #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1)) 1745 1746 static void __init calculate_zone_totalpages(struct pglist_data *pgdat, 1747 unsigned long *zones_size, unsigned long *zholes_size) 1748 { 1749 unsigned long realtotalpages, totalpages = 0; 1750 int i; 1751 1752 for (i = 0; i < MAX_NR_ZONES; i++) 1753 totalpages += zones_size[i]; 1754 pgdat->node_spanned_pages = totalpages; 1755 1756 realtotalpages = totalpages; 1757 if (zholes_size) 1758 for (i = 0; i < MAX_NR_ZONES; i++) 1759 realtotalpages -= zholes_size[i]; 1760 pgdat->node_present_pages = realtotalpages; 1761 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id, realtotalpages); 1762 } 1763 1764 1765 /* 1766 * Initially all pages are reserved - free ones are freed 1767 * up by free_all_bootmem() once the early boot process is 1768 * done. Non-atomic initialization, single-pass. 1769 */ 1770 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone, 1771 unsigned long start_pfn) 1772 { 1773 struct page *page; 1774 unsigned long end_pfn = start_pfn + size; 1775 unsigned long pfn; 1776 1777 for (pfn = start_pfn; pfn < end_pfn; pfn++) { 1778 if (!early_pfn_valid(pfn)) 1779 continue; 1780 page = pfn_to_page(pfn); 1781 set_page_links(page, zone, nid, pfn); 1782 init_page_count(page); 1783 reset_page_mapcount(page); 1784 SetPageReserved(page); 1785 INIT_LIST_HEAD(&page->lru); 1786 #ifdef WANT_PAGE_VIRTUAL 1787 /* The shift won't overflow because ZONE_NORMAL is below 4G. */ 1788 if (!is_highmem_idx(zone)) 1789 set_page_address(page, __va(pfn << PAGE_SHIFT)); 1790 #endif 1791 } 1792 } 1793 1794 void zone_init_free_lists(struct pglist_data *pgdat, struct zone *zone, 1795 unsigned long size) 1796 { 1797 int order; 1798 for (order = 0; order < MAX_ORDER ; order++) { 1799 INIT_LIST_HEAD(&zone->free_area[order].free_list); 1800 zone->free_area[order].nr_free = 0; 1801 } 1802 } 1803 1804 #define ZONETABLE_INDEX(x, zone_nr) ((x << ZONES_SHIFT) | zone_nr) 1805 void zonetable_add(struct zone *zone, int nid, int zid, unsigned long pfn, 1806 unsigned long size) 1807 { 1808 unsigned long snum = pfn_to_section_nr(pfn); 1809 unsigned long end = pfn_to_section_nr(pfn + size); 1810 1811 if (FLAGS_HAS_NODE) 1812 zone_table[ZONETABLE_INDEX(nid, zid)] = zone; 1813 else 1814 for (; snum <= end; snum++) 1815 zone_table[ZONETABLE_INDEX(snum, zid)] = zone; 1816 } 1817 1818 #ifndef __HAVE_ARCH_MEMMAP_INIT 1819 #define memmap_init(size, nid, zone, start_pfn) \ 1820 memmap_init_zone((size), (nid), (zone), (start_pfn)) 1821 #endif 1822 1823 static int __cpuinit zone_batchsize(struct zone *zone) 1824 { 1825 int batch; 1826 1827 /* 1828 * The per-cpu-pages pools are set to around 1000th of the 1829 * size of the zone. But no more than 1/2 of a meg. 1830 * 1831 * OK, so we don't know how big the cache is. So guess. 1832 */ 1833 batch = zone->present_pages / 1024; 1834 if (batch * PAGE_SIZE > 512 * 1024) 1835 batch = (512 * 1024) / PAGE_SIZE; 1836 batch /= 4; /* We effectively *= 4 below */ 1837 if (batch < 1) 1838 batch = 1; 1839 1840 /* 1841 * Clamp the batch to a 2^n - 1 value. Having a power 1842 * of 2 value was found to be more likely to have 1843 * suboptimal cache aliasing properties in some cases. 1844 * 1845 * For example if 2 tasks are alternately allocating 1846 * batches of pages, one task can end up with a lot 1847 * of pages of one half of the possible page colors 1848 * and the other with pages of the other colors. 1849 */ 1850 batch = (1 << (fls(batch + batch/2)-1)) - 1; 1851 1852 return batch; 1853 } 1854 1855 inline void setup_pageset(struct per_cpu_pageset *p, unsigned long batch) 1856 { 1857 struct per_cpu_pages *pcp; 1858 1859 memset(p, 0, sizeof(*p)); 1860 1861 pcp = &p->pcp[0]; /* hot */ 1862 pcp->count = 0; 1863 pcp->high = 6 * batch; 1864 pcp->batch = max(1UL, 1 * batch); 1865 INIT_LIST_HEAD(&pcp->list); 1866 1867 pcp = &p->pcp[1]; /* cold*/ 1868 pcp->count = 0; 1869 pcp->high = 2 * batch; 1870 pcp->batch = max(1UL, batch/2); 1871 INIT_LIST_HEAD(&pcp->list); 1872 } 1873 1874 /* 1875 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist 1876 * to the value high for the pageset p. 1877 */ 1878 1879 static void setup_pagelist_highmark(struct per_cpu_pageset *p, 1880 unsigned long high) 1881 { 1882 struct per_cpu_pages *pcp; 1883 1884 pcp = &p->pcp[0]; /* hot list */ 1885 pcp->high = high; 1886 pcp->batch = max(1UL, high/4); 1887 if ((high/4) > (PAGE_SHIFT * 8)) 1888 pcp->batch = PAGE_SHIFT * 8; 1889 } 1890 1891 1892 #ifdef CONFIG_NUMA 1893 /* 1894 * Boot pageset table. One per cpu which is going to be used for all 1895 * zones and all nodes. The parameters will be set in such a way 1896 * that an item put on a list will immediately be handed over to 1897 * the buddy list. This is safe since pageset manipulation is done 1898 * with interrupts disabled. 1899 * 1900 * Some NUMA counter updates may also be caught by the boot pagesets. 1901 * 1902 * The boot_pagesets must be kept even after bootup is complete for 1903 * unused processors and/or zones. They do play a role for bootstrapping 1904 * hotplugged processors. 1905 * 1906 * zoneinfo_show() and maybe other functions do 1907 * not check if the processor is online before following the pageset pointer. 1908 * Other parts of the kernel may not check if the zone is available. 1909 */ 1910 static struct per_cpu_pageset boot_pageset[NR_CPUS]; 1911 1912 /* 1913 * Dynamically allocate memory for the 1914 * per cpu pageset array in struct zone. 1915 */ 1916 static int __cpuinit process_zones(int cpu) 1917 { 1918 struct zone *zone, *dzone; 1919 1920 for_each_zone(zone) { 1921 1922 zone_pcp(zone, cpu) = kmalloc_node(sizeof(struct per_cpu_pageset), 1923 GFP_KERNEL, cpu_to_node(cpu)); 1924 if (!zone_pcp(zone, cpu)) 1925 goto bad; 1926 1927 setup_pageset(zone_pcp(zone, cpu), zone_batchsize(zone)); 1928 1929 if (percpu_pagelist_fraction) 1930 setup_pagelist_highmark(zone_pcp(zone, cpu), 1931 (zone->present_pages / percpu_pagelist_fraction)); 1932 } 1933 1934 return 0; 1935 bad: 1936 for_each_zone(dzone) { 1937 if (dzone == zone) 1938 break; 1939 kfree(zone_pcp(dzone, cpu)); 1940 zone_pcp(dzone, cpu) = NULL; 1941 } 1942 return -ENOMEM; 1943 } 1944 1945 static inline void free_zone_pagesets(int cpu) 1946 { 1947 struct zone *zone; 1948 1949 for_each_zone(zone) { 1950 struct per_cpu_pageset *pset = zone_pcp(zone, cpu); 1951 1952 zone_pcp(zone, cpu) = NULL; 1953 kfree(pset); 1954 } 1955 } 1956 1957 static int __cpuinit pageset_cpuup_callback(struct notifier_block *nfb, 1958 unsigned long action, 1959 void *hcpu) 1960 { 1961 int cpu = (long)hcpu; 1962 int ret = NOTIFY_OK; 1963 1964 switch (action) { 1965 case CPU_UP_PREPARE: 1966 if (process_zones(cpu)) 1967 ret = NOTIFY_BAD; 1968 break; 1969 case CPU_UP_CANCELED: 1970 case CPU_DEAD: 1971 free_zone_pagesets(cpu); 1972 break; 1973 default: 1974 break; 1975 } 1976 return ret; 1977 } 1978 1979 static struct notifier_block pageset_notifier = 1980 { &pageset_cpuup_callback, NULL, 0 }; 1981 1982 void __init setup_per_cpu_pageset(void) 1983 { 1984 int err; 1985 1986 /* Initialize per_cpu_pageset for cpu 0. 1987 * A cpuup callback will do this for every cpu 1988 * as it comes online 1989 */ 1990 err = process_zones(smp_processor_id()); 1991 BUG_ON(err); 1992 register_cpu_notifier(&pageset_notifier); 1993 } 1994 1995 #endif 1996 1997 static __meminit 1998 void zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages) 1999 { 2000 int i; 2001 struct pglist_data *pgdat = zone->zone_pgdat; 2002 2003 /* 2004 * The per-page waitqueue mechanism uses hashed waitqueues 2005 * per zone. 2006 */ 2007 zone->wait_table_size = wait_table_size(zone_size_pages); 2008 zone->wait_table_bits = wait_table_bits(zone->wait_table_size); 2009 zone->wait_table = (wait_queue_head_t *) 2010 alloc_bootmem_node(pgdat, zone->wait_table_size 2011 * sizeof(wait_queue_head_t)); 2012 2013 for(i = 0; i < zone->wait_table_size; ++i) 2014 init_waitqueue_head(zone->wait_table + i); 2015 } 2016 2017 static __meminit void zone_pcp_init(struct zone *zone) 2018 { 2019 int cpu; 2020 unsigned long batch = zone_batchsize(zone); 2021 2022 for (cpu = 0; cpu < NR_CPUS; cpu++) { 2023 #ifdef CONFIG_NUMA 2024 /* Early boot. Slab allocator not functional yet */ 2025 zone_pcp(zone, cpu) = &boot_pageset[cpu]; 2026 setup_pageset(&boot_pageset[cpu],0); 2027 #else 2028 setup_pageset(zone_pcp(zone,cpu), batch); 2029 #endif 2030 } 2031 if (zone->present_pages) 2032 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%lu\n", 2033 zone->name, zone->present_pages, batch); 2034 } 2035 2036 static __meminit void init_currently_empty_zone(struct zone *zone, 2037 unsigned long zone_start_pfn, unsigned long size) 2038 { 2039 struct pglist_data *pgdat = zone->zone_pgdat; 2040 2041 zone_wait_table_init(zone, size); 2042 pgdat->nr_zones = zone_idx(zone) + 1; 2043 2044 zone->zone_start_pfn = zone_start_pfn; 2045 2046 memmap_init(size, pgdat->node_id, zone_idx(zone), zone_start_pfn); 2047 2048 zone_init_free_lists(pgdat, zone, zone->spanned_pages); 2049 } 2050 2051 /* 2052 * Set up the zone data structures: 2053 * - mark all pages reserved 2054 * - mark all memory queues empty 2055 * - clear the memory bitmaps 2056 */ 2057 static void __init free_area_init_core(struct pglist_data *pgdat, 2058 unsigned long *zones_size, unsigned long *zholes_size) 2059 { 2060 unsigned long j; 2061 int nid = pgdat->node_id; 2062 unsigned long zone_start_pfn = pgdat->node_start_pfn; 2063 2064 pgdat_resize_init(pgdat); 2065 pgdat->nr_zones = 0; 2066 init_waitqueue_head(&pgdat->kswapd_wait); 2067 pgdat->kswapd_max_order = 0; 2068 2069 for (j = 0; j < MAX_NR_ZONES; j++) { 2070 struct zone *zone = pgdat->node_zones + j; 2071 unsigned long size, realsize; 2072 2073 realsize = size = zones_size[j]; 2074 if (zholes_size) 2075 realsize -= zholes_size[j]; 2076 2077 if (j < ZONE_HIGHMEM) 2078 nr_kernel_pages += realsize; 2079 nr_all_pages += realsize; 2080 2081 zone->spanned_pages = size; 2082 zone->present_pages = realsize; 2083 zone->name = zone_names[j]; 2084 spin_lock_init(&zone->lock); 2085 spin_lock_init(&zone->lru_lock); 2086 zone_seqlock_init(zone); 2087 zone->zone_pgdat = pgdat; 2088 zone->free_pages = 0; 2089 2090 zone->temp_priority = zone->prev_priority = DEF_PRIORITY; 2091 2092 zone_pcp_init(zone); 2093 INIT_LIST_HEAD(&zone->active_list); 2094 INIT_LIST_HEAD(&zone->inactive_list); 2095 zone->nr_scan_active = 0; 2096 zone->nr_scan_inactive = 0; 2097 zone->nr_active = 0; 2098 zone->nr_inactive = 0; 2099 atomic_set(&zone->reclaim_in_progress, 0); 2100 if (!size) 2101 continue; 2102 2103 zonetable_add(zone, nid, j, zone_start_pfn, size); 2104 init_currently_empty_zone(zone, zone_start_pfn, size); 2105 zone_start_pfn += size; 2106 } 2107 } 2108 2109 static void __init alloc_node_mem_map(struct pglist_data *pgdat) 2110 { 2111 /* Skip empty nodes */ 2112 if (!pgdat->node_spanned_pages) 2113 return; 2114 2115 #ifdef CONFIG_FLAT_NODE_MEM_MAP 2116 /* ia64 gets its own node_mem_map, before this, without bootmem */ 2117 if (!pgdat->node_mem_map) { 2118 unsigned long size; 2119 struct page *map; 2120 2121 size = (pgdat->node_spanned_pages + 1) * sizeof(struct page); 2122 map = alloc_remap(pgdat->node_id, size); 2123 if (!map) 2124 map = alloc_bootmem_node(pgdat, size); 2125 pgdat->node_mem_map = map; 2126 } 2127 #ifdef CONFIG_FLATMEM 2128 /* 2129 * With no DISCONTIG, the global mem_map is just set as node 0's 2130 */ 2131 if (pgdat == NODE_DATA(0)) 2132 mem_map = NODE_DATA(0)->node_mem_map; 2133 #endif 2134 #endif /* CONFIG_FLAT_NODE_MEM_MAP */ 2135 } 2136 2137 void __init free_area_init_node(int nid, struct pglist_data *pgdat, 2138 unsigned long *zones_size, unsigned long node_start_pfn, 2139 unsigned long *zholes_size) 2140 { 2141 pgdat->node_id = nid; 2142 pgdat->node_start_pfn = node_start_pfn; 2143 calculate_zone_totalpages(pgdat, zones_size, zholes_size); 2144 2145 alloc_node_mem_map(pgdat); 2146 2147 free_area_init_core(pgdat, zones_size, zholes_size); 2148 } 2149 2150 #ifndef CONFIG_NEED_MULTIPLE_NODES 2151 static bootmem_data_t contig_bootmem_data; 2152 struct pglist_data contig_page_data = { .bdata = &contig_bootmem_data }; 2153 2154 EXPORT_SYMBOL(contig_page_data); 2155 #endif 2156 2157 void __init free_area_init(unsigned long *zones_size) 2158 { 2159 free_area_init_node(0, NODE_DATA(0), zones_size, 2160 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL); 2161 } 2162 2163 #ifdef CONFIG_PROC_FS 2164 2165 #include <linux/seq_file.h> 2166 2167 static void *frag_start(struct seq_file *m, loff_t *pos) 2168 { 2169 pg_data_t *pgdat; 2170 loff_t node = *pos; 2171 for (pgdat = first_online_pgdat(); 2172 pgdat && node; 2173 pgdat = next_online_pgdat(pgdat)) 2174 --node; 2175 2176 return pgdat; 2177 } 2178 2179 static void *frag_next(struct seq_file *m, void *arg, loff_t *pos) 2180 { 2181 pg_data_t *pgdat = (pg_data_t *)arg; 2182 2183 (*pos)++; 2184 return next_online_pgdat(pgdat); 2185 } 2186 2187 static void frag_stop(struct seq_file *m, void *arg) 2188 { 2189 } 2190 2191 /* 2192 * This walks the free areas for each zone. 2193 */ 2194 static int frag_show(struct seq_file *m, void *arg) 2195 { 2196 pg_data_t *pgdat = (pg_data_t *)arg; 2197 struct zone *zone; 2198 struct zone *node_zones = pgdat->node_zones; 2199 unsigned long flags; 2200 int order; 2201 2202 for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) { 2203 if (!populated_zone(zone)) 2204 continue; 2205 2206 spin_lock_irqsave(&zone->lock, flags); 2207 seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name); 2208 for (order = 0; order < MAX_ORDER; ++order) 2209 seq_printf(m, "%6lu ", zone->free_area[order].nr_free); 2210 spin_unlock_irqrestore(&zone->lock, flags); 2211 seq_putc(m, '\n'); 2212 } 2213 return 0; 2214 } 2215 2216 struct seq_operations fragmentation_op = { 2217 .start = frag_start, 2218 .next = frag_next, 2219 .stop = frag_stop, 2220 .show = frag_show, 2221 }; 2222 2223 /* 2224 * Output information about zones in @pgdat. 2225 */ 2226 static int zoneinfo_show(struct seq_file *m, void *arg) 2227 { 2228 pg_data_t *pgdat = arg; 2229 struct zone *zone; 2230 struct zone *node_zones = pgdat->node_zones; 2231 unsigned long flags; 2232 2233 for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; zone++) { 2234 int i; 2235 2236 if (!populated_zone(zone)) 2237 continue; 2238 2239 spin_lock_irqsave(&zone->lock, flags); 2240 seq_printf(m, "Node %d, zone %8s", pgdat->node_id, zone->name); 2241 seq_printf(m, 2242 "\n pages free %lu" 2243 "\n min %lu" 2244 "\n low %lu" 2245 "\n high %lu" 2246 "\n active %lu" 2247 "\n inactive %lu" 2248 "\n scanned %lu (a: %lu i: %lu)" 2249 "\n spanned %lu" 2250 "\n present %lu", 2251 zone->free_pages, 2252 zone->pages_min, 2253 zone->pages_low, 2254 zone->pages_high, 2255 zone->nr_active, 2256 zone->nr_inactive, 2257 zone->pages_scanned, 2258 zone->nr_scan_active, zone->nr_scan_inactive, 2259 zone->spanned_pages, 2260 zone->present_pages); 2261 seq_printf(m, 2262 "\n protection: (%lu", 2263 zone->lowmem_reserve[0]); 2264 for (i = 1; i < ARRAY_SIZE(zone->lowmem_reserve); i++) 2265 seq_printf(m, ", %lu", zone->lowmem_reserve[i]); 2266 seq_printf(m, 2267 ")" 2268 "\n pagesets"); 2269 for_each_online_cpu(i) { 2270 struct per_cpu_pageset *pageset; 2271 int j; 2272 2273 pageset = zone_pcp(zone, i); 2274 for (j = 0; j < ARRAY_SIZE(pageset->pcp); j++) { 2275 if (pageset->pcp[j].count) 2276 break; 2277 } 2278 if (j == ARRAY_SIZE(pageset->pcp)) 2279 continue; 2280 for (j = 0; j < ARRAY_SIZE(pageset->pcp); j++) { 2281 seq_printf(m, 2282 "\n cpu: %i pcp: %i" 2283 "\n count: %i" 2284 "\n high: %i" 2285 "\n batch: %i", 2286 i, j, 2287 pageset->pcp[j].count, 2288 pageset->pcp[j].high, 2289 pageset->pcp[j].batch); 2290 } 2291 #ifdef CONFIG_NUMA 2292 seq_printf(m, 2293 "\n numa_hit: %lu" 2294 "\n numa_miss: %lu" 2295 "\n numa_foreign: %lu" 2296 "\n interleave_hit: %lu" 2297 "\n local_node: %lu" 2298 "\n other_node: %lu", 2299 pageset->numa_hit, 2300 pageset->numa_miss, 2301 pageset->numa_foreign, 2302 pageset->interleave_hit, 2303 pageset->local_node, 2304 pageset->other_node); 2305 #endif 2306 } 2307 seq_printf(m, 2308 "\n all_unreclaimable: %u" 2309 "\n prev_priority: %i" 2310 "\n temp_priority: %i" 2311 "\n start_pfn: %lu", 2312 zone->all_unreclaimable, 2313 zone->prev_priority, 2314 zone->temp_priority, 2315 zone->zone_start_pfn); 2316 spin_unlock_irqrestore(&zone->lock, flags); 2317 seq_putc(m, '\n'); 2318 } 2319 return 0; 2320 } 2321 2322 struct seq_operations zoneinfo_op = { 2323 .start = frag_start, /* iterate over all zones. The same as in 2324 * fragmentation. */ 2325 .next = frag_next, 2326 .stop = frag_stop, 2327 .show = zoneinfo_show, 2328 }; 2329 2330 static char *vmstat_text[] = { 2331 "nr_dirty", 2332 "nr_writeback", 2333 "nr_unstable", 2334 "nr_page_table_pages", 2335 "nr_mapped", 2336 "nr_slab", 2337 2338 "pgpgin", 2339 "pgpgout", 2340 "pswpin", 2341 "pswpout", 2342 2343 "pgalloc_high", 2344 "pgalloc_normal", 2345 "pgalloc_dma32", 2346 "pgalloc_dma", 2347 2348 "pgfree", 2349 "pgactivate", 2350 "pgdeactivate", 2351 2352 "pgfault", 2353 "pgmajfault", 2354 2355 "pgrefill_high", 2356 "pgrefill_normal", 2357 "pgrefill_dma32", 2358 "pgrefill_dma", 2359 2360 "pgsteal_high", 2361 "pgsteal_normal", 2362 "pgsteal_dma32", 2363 "pgsteal_dma", 2364 2365 "pgscan_kswapd_high", 2366 "pgscan_kswapd_normal", 2367 "pgscan_kswapd_dma32", 2368 "pgscan_kswapd_dma", 2369 2370 "pgscan_direct_high", 2371 "pgscan_direct_normal", 2372 "pgscan_direct_dma32", 2373 "pgscan_direct_dma", 2374 2375 "pginodesteal", 2376 "slabs_scanned", 2377 "kswapd_steal", 2378 "kswapd_inodesteal", 2379 "pageoutrun", 2380 "allocstall", 2381 2382 "pgrotated", 2383 "nr_bounce", 2384 }; 2385 2386 static void *vmstat_start(struct seq_file *m, loff_t *pos) 2387 { 2388 struct page_state *ps; 2389 2390 if (*pos >= ARRAY_SIZE(vmstat_text)) 2391 return NULL; 2392 2393 ps = kmalloc(sizeof(*ps), GFP_KERNEL); 2394 m->private = ps; 2395 if (!ps) 2396 return ERR_PTR(-ENOMEM); 2397 get_full_page_state(ps); 2398 ps->pgpgin /= 2; /* sectors -> kbytes */ 2399 ps->pgpgout /= 2; 2400 return (unsigned long *)ps + *pos; 2401 } 2402 2403 static void *vmstat_next(struct seq_file *m, void *arg, loff_t *pos) 2404 { 2405 (*pos)++; 2406 if (*pos >= ARRAY_SIZE(vmstat_text)) 2407 return NULL; 2408 return (unsigned long *)m->private + *pos; 2409 } 2410 2411 static int vmstat_show(struct seq_file *m, void *arg) 2412 { 2413 unsigned long *l = arg; 2414 unsigned long off = l - (unsigned long *)m->private; 2415 2416 seq_printf(m, "%s %lu\n", vmstat_text[off], *l); 2417 return 0; 2418 } 2419 2420 static void vmstat_stop(struct seq_file *m, void *arg) 2421 { 2422 kfree(m->private); 2423 m->private = NULL; 2424 } 2425 2426 struct seq_operations vmstat_op = { 2427 .start = vmstat_start, 2428 .next = vmstat_next, 2429 .stop = vmstat_stop, 2430 .show = vmstat_show, 2431 }; 2432 2433 #endif /* CONFIG_PROC_FS */ 2434 2435 #ifdef CONFIG_HOTPLUG_CPU 2436 static int page_alloc_cpu_notify(struct notifier_block *self, 2437 unsigned long action, void *hcpu) 2438 { 2439 int cpu = (unsigned long)hcpu; 2440 long *count; 2441 unsigned long *src, *dest; 2442 2443 if (action == CPU_DEAD) { 2444 int i; 2445 2446 /* Drain local pagecache count. */ 2447 count = &per_cpu(nr_pagecache_local, cpu); 2448 atomic_add(*count, &nr_pagecache); 2449 *count = 0; 2450 local_irq_disable(); 2451 __drain_pages(cpu); 2452 2453 /* Add dead cpu's page_states to our own. */ 2454 dest = (unsigned long *)&__get_cpu_var(page_states); 2455 src = (unsigned long *)&per_cpu(page_states, cpu); 2456 2457 for (i = 0; i < sizeof(struct page_state)/sizeof(unsigned long); 2458 i++) { 2459 dest[i] += src[i]; 2460 src[i] = 0; 2461 } 2462 2463 local_irq_enable(); 2464 } 2465 return NOTIFY_OK; 2466 } 2467 #endif /* CONFIG_HOTPLUG_CPU */ 2468 2469 void __init page_alloc_init(void) 2470 { 2471 hotcpu_notifier(page_alloc_cpu_notify, 0); 2472 } 2473 2474 /* 2475 * setup_per_zone_lowmem_reserve - called whenever 2476 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone 2477 * has a correct pages reserved value, so an adequate number of 2478 * pages are left in the zone after a successful __alloc_pages(). 2479 */ 2480 static void setup_per_zone_lowmem_reserve(void) 2481 { 2482 struct pglist_data *pgdat; 2483 int j, idx; 2484 2485 for_each_online_pgdat(pgdat) { 2486 for (j = 0; j < MAX_NR_ZONES; j++) { 2487 struct zone *zone = pgdat->node_zones + j; 2488 unsigned long present_pages = zone->present_pages; 2489 2490 zone->lowmem_reserve[j] = 0; 2491 2492 for (idx = j-1; idx >= 0; idx--) { 2493 struct zone *lower_zone; 2494 2495 if (sysctl_lowmem_reserve_ratio[idx] < 1) 2496 sysctl_lowmem_reserve_ratio[idx] = 1; 2497 2498 lower_zone = pgdat->node_zones + idx; 2499 lower_zone->lowmem_reserve[j] = present_pages / 2500 sysctl_lowmem_reserve_ratio[idx]; 2501 present_pages += lower_zone->present_pages; 2502 } 2503 } 2504 } 2505 } 2506 2507 /* 2508 * setup_per_zone_pages_min - called when min_free_kbytes changes. Ensures 2509 * that the pages_{min,low,high} values for each zone are set correctly 2510 * with respect to min_free_kbytes. 2511 */ 2512 void setup_per_zone_pages_min(void) 2513 { 2514 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10); 2515 unsigned long lowmem_pages = 0; 2516 struct zone *zone; 2517 unsigned long flags; 2518 2519 /* Calculate total number of !ZONE_HIGHMEM pages */ 2520 for_each_zone(zone) { 2521 if (!is_highmem(zone)) 2522 lowmem_pages += zone->present_pages; 2523 } 2524 2525 for_each_zone(zone) { 2526 unsigned long tmp; 2527 spin_lock_irqsave(&zone->lru_lock, flags); 2528 tmp = (pages_min * zone->present_pages) / lowmem_pages; 2529 if (is_highmem(zone)) { 2530 /* 2531 * __GFP_HIGH and PF_MEMALLOC allocations usually don't 2532 * need highmem pages, so cap pages_min to a small 2533 * value here. 2534 * 2535 * The (pages_high-pages_low) and (pages_low-pages_min) 2536 * deltas controls asynch page reclaim, and so should 2537 * not be capped for highmem. 2538 */ 2539 int min_pages; 2540 2541 min_pages = zone->present_pages / 1024; 2542 if (min_pages < SWAP_CLUSTER_MAX) 2543 min_pages = SWAP_CLUSTER_MAX; 2544 if (min_pages > 128) 2545 min_pages = 128; 2546 zone->pages_min = min_pages; 2547 } else { 2548 /* 2549 * If it's a lowmem zone, reserve a number of pages 2550 * proportionate to the zone's size. 2551 */ 2552 zone->pages_min = tmp; 2553 } 2554 2555 zone->pages_low = zone->pages_min + tmp / 4; 2556 zone->pages_high = zone->pages_min + tmp / 2; 2557 spin_unlock_irqrestore(&zone->lru_lock, flags); 2558 } 2559 } 2560 2561 /* 2562 * Initialise min_free_kbytes. 2563 * 2564 * For small machines we want it small (128k min). For large machines 2565 * we want it large (64MB max). But it is not linear, because network 2566 * bandwidth does not increase linearly with machine size. We use 2567 * 2568 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy: 2569 * min_free_kbytes = sqrt(lowmem_kbytes * 16) 2570 * 2571 * which yields 2572 * 2573 * 16MB: 512k 2574 * 32MB: 724k 2575 * 64MB: 1024k 2576 * 128MB: 1448k 2577 * 256MB: 2048k 2578 * 512MB: 2896k 2579 * 1024MB: 4096k 2580 * 2048MB: 5792k 2581 * 4096MB: 8192k 2582 * 8192MB: 11584k 2583 * 16384MB: 16384k 2584 */ 2585 static int __init init_per_zone_pages_min(void) 2586 { 2587 unsigned long lowmem_kbytes; 2588 2589 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10); 2590 2591 min_free_kbytes = int_sqrt(lowmem_kbytes * 16); 2592 if (min_free_kbytes < 128) 2593 min_free_kbytes = 128; 2594 if (min_free_kbytes > 65536) 2595 min_free_kbytes = 65536; 2596 setup_per_zone_pages_min(); 2597 setup_per_zone_lowmem_reserve(); 2598 return 0; 2599 } 2600 module_init(init_per_zone_pages_min) 2601 2602 /* 2603 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so 2604 * that we can call two helper functions whenever min_free_kbytes 2605 * changes. 2606 */ 2607 int min_free_kbytes_sysctl_handler(ctl_table *table, int write, 2608 struct file *file, void __user *buffer, size_t *length, loff_t *ppos) 2609 { 2610 proc_dointvec(table, write, file, buffer, length, ppos); 2611 setup_per_zone_pages_min(); 2612 return 0; 2613 } 2614 2615 /* 2616 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around 2617 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve() 2618 * whenever sysctl_lowmem_reserve_ratio changes. 2619 * 2620 * The reserve ratio obviously has absolutely no relation with the 2621 * pages_min watermarks. The lowmem reserve ratio can only make sense 2622 * if in function of the boot time zone sizes. 2623 */ 2624 int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write, 2625 struct file *file, void __user *buffer, size_t *length, loff_t *ppos) 2626 { 2627 proc_dointvec_minmax(table, write, file, buffer, length, ppos); 2628 setup_per_zone_lowmem_reserve(); 2629 return 0; 2630 } 2631 2632 /* 2633 * percpu_pagelist_fraction - changes the pcp->high for each zone on each 2634 * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist 2635 * can have before it gets flushed back to buddy allocator. 2636 */ 2637 2638 int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write, 2639 struct file *file, void __user *buffer, size_t *length, loff_t *ppos) 2640 { 2641 struct zone *zone; 2642 unsigned int cpu; 2643 int ret; 2644 2645 ret = proc_dointvec_minmax(table, write, file, buffer, length, ppos); 2646 if (!write || (ret == -EINVAL)) 2647 return ret; 2648 for_each_zone(zone) { 2649 for_each_online_cpu(cpu) { 2650 unsigned long high; 2651 high = zone->present_pages / percpu_pagelist_fraction; 2652 setup_pagelist_highmark(zone_pcp(zone, cpu), high); 2653 } 2654 } 2655 return 0; 2656 } 2657 2658 __initdata int hashdist = HASHDIST_DEFAULT; 2659 2660 #ifdef CONFIG_NUMA 2661 static int __init set_hashdist(char *str) 2662 { 2663 if (!str) 2664 return 0; 2665 hashdist = simple_strtoul(str, &str, 0); 2666 return 1; 2667 } 2668 __setup("hashdist=", set_hashdist); 2669 #endif 2670 2671 /* 2672 * allocate a large system hash table from bootmem 2673 * - it is assumed that the hash table must contain an exact power-of-2 2674 * quantity of entries 2675 * - limit is the number of hash buckets, not the total allocation size 2676 */ 2677 void *__init alloc_large_system_hash(const char *tablename, 2678 unsigned long bucketsize, 2679 unsigned long numentries, 2680 int scale, 2681 int flags, 2682 unsigned int *_hash_shift, 2683 unsigned int *_hash_mask, 2684 unsigned long limit) 2685 { 2686 unsigned long long max = limit; 2687 unsigned long log2qty, size; 2688 void *table = NULL; 2689 2690 /* allow the kernel cmdline to have a say */ 2691 if (!numentries) { 2692 /* round applicable memory size up to nearest megabyte */ 2693 numentries = (flags & HASH_HIGHMEM) ? nr_all_pages : nr_kernel_pages; 2694 numentries += (1UL << (20 - PAGE_SHIFT)) - 1; 2695 numentries >>= 20 - PAGE_SHIFT; 2696 numentries <<= 20 - PAGE_SHIFT; 2697 2698 /* limit to 1 bucket per 2^scale bytes of low memory */ 2699 if (scale > PAGE_SHIFT) 2700 numentries >>= (scale - PAGE_SHIFT); 2701 else 2702 numentries <<= (PAGE_SHIFT - scale); 2703 } 2704 numentries = roundup_pow_of_two(numentries); 2705 2706 /* limit allocation size to 1/16 total memory by default */ 2707 if (max == 0) { 2708 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4; 2709 do_div(max, bucketsize); 2710 } 2711 2712 if (numentries > max) 2713 numentries = max; 2714 2715 log2qty = long_log2(numentries); 2716 2717 do { 2718 size = bucketsize << log2qty; 2719 if (flags & HASH_EARLY) 2720 table = alloc_bootmem(size); 2721 else if (hashdist) 2722 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL); 2723 else { 2724 unsigned long order; 2725 for (order = 0; ((1UL << order) << PAGE_SHIFT) < size; order++) 2726 ; 2727 table = (void*) __get_free_pages(GFP_ATOMIC, order); 2728 } 2729 } while (!table && size > PAGE_SIZE && --log2qty); 2730 2731 if (!table) 2732 panic("Failed to allocate %s hash table\n", tablename); 2733 2734 printk("%s hash table entries: %d (order: %d, %lu bytes)\n", 2735 tablename, 2736 (1U << log2qty), 2737 long_log2(size) - PAGE_SHIFT, 2738 size); 2739 2740 if (_hash_shift) 2741 *_hash_shift = log2qty; 2742 if (_hash_mask) 2743 *_hash_mask = (1 << log2qty) - 1; 2744 2745 return table; 2746 } 2747 2748 #ifdef CONFIG_OUT_OF_LINE_PFN_TO_PAGE 2749 /* 2750 * pfn <-> page translation. out-of-line version. 2751 * (see asm-generic/memory_model.h) 2752 */ 2753 #if defined(CONFIG_FLATMEM) 2754 struct page *pfn_to_page(unsigned long pfn) 2755 { 2756 return mem_map + (pfn - ARCH_PFN_OFFSET); 2757 } 2758 unsigned long page_to_pfn(struct page *page) 2759 { 2760 return (page - mem_map) + ARCH_PFN_OFFSET; 2761 } 2762 #elif defined(CONFIG_DISCONTIGMEM) 2763 struct page *pfn_to_page(unsigned long pfn) 2764 { 2765 int nid = arch_pfn_to_nid(pfn); 2766 return NODE_DATA(nid)->node_mem_map + arch_local_page_offset(pfn,nid); 2767 } 2768 unsigned long page_to_pfn(struct page *page) 2769 { 2770 struct pglist_data *pgdat = NODE_DATA(page_to_nid(page)); 2771 return (page - pgdat->node_mem_map) + pgdat->node_start_pfn; 2772 } 2773 #elif defined(CONFIG_SPARSEMEM) 2774 struct page *pfn_to_page(unsigned long pfn) 2775 { 2776 return __section_mem_map_addr(__pfn_to_section(pfn)) + pfn; 2777 } 2778 2779 unsigned long page_to_pfn(struct page *page) 2780 { 2781 long section_id = page_to_section(page); 2782 return page - __section_mem_map_addr(__nr_to_section(section_id)); 2783 } 2784 #endif /* CONFIG_FLATMEM/DISCONTIGMME/SPARSEMEM */ 2785 EXPORT_SYMBOL(pfn_to_page); 2786 EXPORT_SYMBOL(page_to_pfn); 2787 #endif /* CONFIG_OUT_OF_LINE_PFN_TO_PAGE */ 2788