xref: /linux/mm/page_alloc.c (revision dcb8cbb58a218c99aab0dbf3f76cf06a04d44f37)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/page_alloc.c
4  *
5  *  Manages the free list, the system allocates free pages here.
6  *  Note that kmalloc() lives in slab.c
7  *
8  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
9  *  Swap reorganised 29.12.95, Stephen Tweedie
10  *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
11  *  Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
12  *  Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
13  *  Zone balancing, Kanoj Sarcar, SGI, Jan 2000
14  *  Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
15  *          (lots of bits borrowed from Ingo Molnar & Andrew Morton)
16  */
17 
18 #include <linux/stddef.h>
19 #include <linux/mm.h>
20 #include <linux/highmem.h>
21 #include <linux/interrupt.h>
22 #include <linux/jiffies.h>
23 #include <linux/compiler.h>
24 #include <linux/kernel.h>
25 #include <linux/kasan.h>
26 #include <linux/kmsan.h>
27 #include <linux/module.h>
28 #include <linux/suspend.h>
29 #include <linux/pagevec.h>
30 #include <linux/ratelimit.h>
31 #include <linux/oom.h>
32 #include <linux/topology.h>
33 #include <linux/sysctl.h>
34 #include <linux/cpu.h>
35 #include <linux/cpuset.h>
36 #include <linux/memory_hotplug.h>
37 #include <linux/nodemask.h>
38 #include <linux/vmstat.h>
39 #include <linux/sort.h>
40 #include <linux/pfn.h>
41 #include <linux/fault-inject.h>
42 #include <linux/compaction.h>
43 #include <trace/events/kmem.h>
44 #include <trace/events/oom.h>
45 #include <linux/prefetch.h>
46 #include <linux/mm_inline.h>
47 #include <linux/mmu_notifier.h>
48 #include <linux/migrate.h>
49 #include <linux/sched/mm.h>
50 #include <linux/page_owner.h>
51 #include <linux/page_table_check.h>
52 #include <linux/memcontrol.h>
53 #include <linux/ftrace.h>
54 #include <linux/lockdep.h>
55 #include <linux/nmi.h>
56 #include <linux/psi.h>
57 #include <linux/khugepaged.h>
58 #include <linux/delayacct.h>
59 #include <asm/div64.h>
60 #include "internal.h"
61 #include "shuffle.h"
62 #include "page_reporting.h"
63 
64 /* Free Page Internal flags: for internal, non-pcp variants of free_pages(). */
65 typedef int __bitwise fpi_t;
66 
67 /* No special request */
68 #define FPI_NONE		((__force fpi_t)0)
69 
70 /*
71  * Skip free page reporting notification for the (possibly merged) page.
72  * This does not hinder free page reporting from grabbing the page,
73  * reporting it and marking it "reported" -  it only skips notifying
74  * the free page reporting infrastructure about a newly freed page. For
75  * example, used when temporarily pulling a page from a freelist and
76  * putting it back unmodified.
77  */
78 #define FPI_SKIP_REPORT_NOTIFY	((__force fpi_t)BIT(0))
79 
80 /*
81  * Place the (possibly merged) page to the tail of the freelist. Will ignore
82  * page shuffling (relevant code - e.g., memory onlining - is expected to
83  * shuffle the whole zone).
84  *
85  * Note: No code should rely on this flag for correctness - it's purely
86  *       to allow for optimizations when handing back either fresh pages
87  *       (memory onlining) or untouched pages (page isolation, free page
88  *       reporting).
89  */
90 #define FPI_TO_TAIL		((__force fpi_t)BIT(1))
91 
92 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
93 static DEFINE_MUTEX(pcp_batch_high_lock);
94 #define MIN_PERCPU_PAGELIST_HIGH_FRACTION (8)
95 
96 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT_RT)
97 /*
98  * On SMP, spin_trylock is sufficient protection.
99  * On PREEMPT_RT, spin_trylock is equivalent on both SMP and UP.
100  */
101 #define pcp_trylock_prepare(flags)	do { } while (0)
102 #define pcp_trylock_finish(flag)	do { } while (0)
103 #else
104 
105 /* UP spin_trylock always succeeds so disable IRQs to prevent re-entrancy. */
106 #define pcp_trylock_prepare(flags)	local_irq_save(flags)
107 #define pcp_trylock_finish(flags)	local_irq_restore(flags)
108 #endif
109 
110 /*
111  * Locking a pcp requires a PCP lookup followed by a spinlock. To avoid
112  * a migration causing the wrong PCP to be locked and remote memory being
113  * potentially allocated, pin the task to the CPU for the lookup+lock.
114  * preempt_disable is used on !RT because it is faster than migrate_disable.
115  * migrate_disable is used on RT because otherwise RT spinlock usage is
116  * interfered with and a high priority task cannot preempt the allocator.
117  */
118 #ifndef CONFIG_PREEMPT_RT
119 #define pcpu_task_pin()		preempt_disable()
120 #define pcpu_task_unpin()	preempt_enable()
121 #else
122 #define pcpu_task_pin()		migrate_disable()
123 #define pcpu_task_unpin()	migrate_enable()
124 #endif
125 
126 /*
127  * Generic helper to lookup and a per-cpu variable with an embedded spinlock.
128  * Return value should be used with equivalent unlock helper.
129  */
130 #define pcpu_spin_lock(type, member, ptr)				\
131 ({									\
132 	type *_ret;							\
133 	pcpu_task_pin();						\
134 	_ret = this_cpu_ptr(ptr);					\
135 	spin_lock(&_ret->member);					\
136 	_ret;								\
137 })
138 
139 #define pcpu_spin_trylock(type, member, ptr)				\
140 ({									\
141 	type *_ret;							\
142 	pcpu_task_pin();						\
143 	_ret = this_cpu_ptr(ptr);					\
144 	if (!spin_trylock(&_ret->member)) {				\
145 		pcpu_task_unpin();					\
146 		_ret = NULL;						\
147 	}								\
148 	_ret;								\
149 })
150 
151 #define pcpu_spin_unlock(member, ptr)					\
152 ({									\
153 	spin_unlock(&ptr->member);					\
154 	pcpu_task_unpin();						\
155 })
156 
157 /* struct per_cpu_pages specific helpers. */
158 #define pcp_spin_lock(ptr)						\
159 	pcpu_spin_lock(struct per_cpu_pages, lock, ptr)
160 
161 #define pcp_spin_trylock(ptr)						\
162 	pcpu_spin_trylock(struct per_cpu_pages, lock, ptr)
163 
164 #define pcp_spin_unlock(ptr)						\
165 	pcpu_spin_unlock(lock, ptr)
166 
167 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
168 DEFINE_PER_CPU(int, numa_node);
169 EXPORT_PER_CPU_SYMBOL(numa_node);
170 #endif
171 
172 DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key);
173 
174 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
175 /*
176  * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
177  * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
178  * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
179  * defined in <linux/topology.h>.
180  */
181 DEFINE_PER_CPU(int, _numa_mem_);		/* Kernel "local memory" node */
182 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
183 #endif
184 
185 static DEFINE_MUTEX(pcpu_drain_mutex);
186 
187 #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
188 volatile unsigned long latent_entropy __latent_entropy;
189 EXPORT_SYMBOL(latent_entropy);
190 #endif
191 
192 /*
193  * Array of node states.
194  */
195 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
196 	[N_POSSIBLE] = NODE_MASK_ALL,
197 	[N_ONLINE] = { { [0] = 1UL } },
198 #ifndef CONFIG_NUMA
199 	[N_NORMAL_MEMORY] = { { [0] = 1UL } },
200 #ifdef CONFIG_HIGHMEM
201 	[N_HIGH_MEMORY] = { { [0] = 1UL } },
202 #endif
203 	[N_MEMORY] = { { [0] = 1UL } },
204 	[N_CPU] = { { [0] = 1UL } },
205 #endif	/* NUMA */
206 };
207 EXPORT_SYMBOL(node_states);
208 
209 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
210 
211 /*
212  * A cached value of the page's pageblock's migratetype, used when the page is
213  * put on a pcplist. Used to avoid the pageblock migratetype lookup when
214  * freeing from pcplists in most cases, at the cost of possibly becoming stale.
215  * Also the migratetype set in the page does not necessarily match the pcplist
216  * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
217  * other index - this ensures that it will be put on the correct CMA freelist.
218  */
219 static inline int get_pcppage_migratetype(struct page *page)
220 {
221 	return page->index;
222 }
223 
224 static inline void set_pcppage_migratetype(struct page *page, int migratetype)
225 {
226 	page->index = migratetype;
227 }
228 
229 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
230 unsigned int pageblock_order __read_mostly;
231 #endif
232 
233 static void __free_pages_ok(struct page *page, unsigned int order,
234 			    fpi_t fpi_flags);
235 
236 /*
237  * results with 256, 32 in the lowmem_reserve sysctl:
238  *	1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
239  *	1G machine -> (16M dma, 784M normal, 224M high)
240  *	NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
241  *	HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
242  *	HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
243  *
244  * TBD: should special case ZONE_DMA32 machines here - in those we normally
245  * don't need any ZONE_NORMAL reservation
246  */
247 static int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = {
248 #ifdef CONFIG_ZONE_DMA
249 	[ZONE_DMA] = 256,
250 #endif
251 #ifdef CONFIG_ZONE_DMA32
252 	[ZONE_DMA32] = 256,
253 #endif
254 	[ZONE_NORMAL] = 32,
255 #ifdef CONFIG_HIGHMEM
256 	[ZONE_HIGHMEM] = 0,
257 #endif
258 	[ZONE_MOVABLE] = 0,
259 };
260 
261 char * const zone_names[MAX_NR_ZONES] = {
262 #ifdef CONFIG_ZONE_DMA
263 	 "DMA",
264 #endif
265 #ifdef CONFIG_ZONE_DMA32
266 	 "DMA32",
267 #endif
268 	 "Normal",
269 #ifdef CONFIG_HIGHMEM
270 	 "HighMem",
271 #endif
272 	 "Movable",
273 #ifdef CONFIG_ZONE_DEVICE
274 	 "Device",
275 #endif
276 };
277 
278 const char * const migratetype_names[MIGRATE_TYPES] = {
279 	"Unmovable",
280 	"Movable",
281 	"Reclaimable",
282 	"HighAtomic",
283 #ifdef CONFIG_CMA
284 	"CMA",
285 #endif
286 #ifdef CONFIG_MEMORY_ISOLATION
287 	"Isolate",
288 #endif
289 };
290 
291 compound_page_dtor * const compound_page_dtors[NR_COMPOUND_DTORS] = {
292 	[NULL_COMPOUND_DTOR] = NULL,
293 	[COMPOUND_PAGE_DTOR] = free_compound_page,
294 #ifdef CONFIG_HUGETLB_PAGE
295 	[HUGETLB_PAGE_DTOR] = free_huge_page,
296 #endif
297 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
298 	[TRANSHUGE_PAGE_DTOR] = free_transhuge_page,
299 #endif
300 };
301 
302 int min_free_kbytes = 1024;
303 int user_min_free_kbytes = -1;
304 static int watermark_boost_factor __read_mostly = 15000;
305 static int watermark_scale_factor = 10;
306 
307 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
308 int movable_zone;
309 EXPORT_SYMBOL(movable_zone);
310 
311 #if MAX_NUMNODES > 1
312 unsigned int nr_node_ids __read_mostly = MAX_NUMNODES;
313 unsigned int nr_online_nodes __read_mostly = 1;
314 EXPORT_SYMBOL(nr_node_ids);
315 EXPORT_SYMBOL(nr_online_nodes);
316 #endif
317 
318 int page_group_by_mobility_disabled __read_mostly;
319 
320 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
321 /*
322  * During boot we initialize deferred pages on-demand, as needed, but once
323  * page_alloc_init_late() has finished, the deferred pages are all initialized,
324  * and we can permanently disable that path.
325  */
326 DEFINE_STATIC_KEY_TRUE(deferred_pages);
327 
328 static inline bool deferred_pages_enabled(void)
329 {
330 	return static_branch_unlikely(&deferred_pages);
331 }
332 
333 /*
334  * deferred_grow_zone() is __init, but it is called from
335  * get_page_from_freelist() during early boot until deferred_pages permanently
336  * disables this call. This is why we have refdata wrapper to avoid warning,
337  * and to ensure that the function body gets unloaded.
338  */
339 static bool __ref
340 _deferred_grow_zone(struct zone *zone, unsigned int order)
341 {
342        return deferred_grow_zone(zone, order);
343 }
344 #else
345 static inline bool deferred_pages_enabled(void)
346 {
347 	return false;
348 }
349 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
350 
351 /* Return a pointer to the bitmap storing bits affecting a block of pages */
352 static inline unsigned long *get_pageblock_bitmap(const struct page *page,
353 							unsigned long pfn)
354 {
355 #ifdef CONFIG_SPARSEMEM
356 	return section_to_usemap(__pfn_to_section(pfn));
357 #else
358 	return page_zone(page)->pageblock_flags;
359 #endif /* CONFIG_SPARSEMEM */
360 }
361 
362 static inline int pfn_to_bitidx(const struct page *page, unsigned long pfn)
363 {
364 #ifdef CONFIG_SPARSEMEM
365 	pfn &= (PAGES_PER_SECTION-1);
366 #else
367 	pfn = pfn - pageblock_start_pfn(page_zone(page)->zone_start_pfn);
368 #endif /* CONFIG_SPARSEMEM */
369 	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
370 }
371 
372 static __always_inline
373 unsigned long __get_pfnblock_flags_mask(const struct page *page,
374 					unsigned long pfn,
375 					unsigned long mask)
376 {
377 	unsigned long *bitmap;
378 	unsigned long bitidx, word_bitidx;
379 	unsigned long word;
380 
381 	bitmap = get_pageblock_bitmap(page, pfn);
382 	bitidx = pfn_to_bitidx(page, pfn);
383 	word_bitidx = bitidx / BITS_PER_LONG;
384 	bitidx &= (BITS_PER_LONG-1);
385 	/*
386 	 * This races, without locks, with set_pfnblock_flags_mask(). Ensure
387 	 * a consistent read of the memory array, so that results, even though
388 	 * racy, are not corrupted.
389 	 */
390 	word = READ_ONCE(bitmap[word_bitidx]);
391 	return (word >> bitidx) & mask;
392 }
393 
394 /**
395  * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
396  * @page: The page within the block of interest
397  * @pfn: The target page frame number
398  * @mask: mask of bits that the caller is interested in
399  *
400  * Return: pageblock_bits flags
401  */
402 unsigned long get_pfnblock_flags_mask(const struct page *page,
403 					unsigned long pfn, unsigned long mask)
404 {
405 	return __get_pfnblock_flags_mask(page, pfn, mask);
406 }
407 
408 static __always_inline int get_pfnblock_migratetype(const struct page *page,
409 					unsigned long pfn)
410 {
411 	return __get_pfnblock_flags_mask(page, pfn, MIGRATETYPE_MASK);
412 }
413 
414 /**
415  * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
416  * @page: The page within the block of interest
417  * @flags: The flags to set
418  * @pfn: The target page frame number
419  * @mask: mask of bits that the caller is interested in
420  */
421 void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
422 					unsigned long pfn,
423 					unsigned long mask)
424 {
425 	unsigned long *bitmap;
426 	unsigned long bitidx, word_bitidx;
427 	unsigned long word;
428 
429 	BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
430 	BUILD_BUG_ON(MIGRATE_TYPES > (1 << PB_migratetype_bits));
431 
432 	bitmap = get_pageblock_bitmap(page, pfn);
433 	bitidx = pfn_to_bitidx(page, pfn);
434 	word_bitidx = bitidx / BITS_PER_LONG;
435 	bitidx &= (BITS_PER_LONG-1);
436 
437 	VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
438 
439 	mask <<= bitidx;
440 	flags <<= bitidx;
441 
442 	word = READ_ONCE(bitmap[word_bitidx]);
443 	do {
444 	} while (!try_cmpxchg(&bitmap[word_bitidx], &word, (word & ~mask) | flags));
445 }
446 
447 void set_pageblock_migratetype(struct page *page, int migratetype)
448 {
449 	if (unlikely(page_group_by_mobility_disabled &&
450 		     migratetype < MIGRATE_PCPTYPES))
451 		migratetype = MIGRATE_UNMOVABLE;
452 
453 	set_pfnblock_flags_mask(page, (unsigned long)migratetype,
454 				page_to_pfn(page), MIGRATETYPE_MASK);
455 }
456 
457 #ifdef CONFIG_DEBUG_VM
458 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
459 {
460 	int ret = 0;
461 	unsigned seq;
462 	unsigned long pfn = page_to_pfn(page);
463 	unsigned long sp, start_pfn;
464 
465 	do {
466 		seq = zone_span_seqbegin(zone);
467 		start_pfn = zone->zone_start_pfn;
468 		sp = zone->spanned_pages;
469 		if (!zone_spans_pfn(zone, pfn))
470 			ret = 1;
471 	} while (zone_span_seqretry(zone, seq));
472 
473 	if (ret)
474 		pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
475 			pfn, zone_to_nid(zone), zone->name,
476 			start_pfn, start_pfn + sp);
477 
478 	return ret;
479 }
480 
481 /*
482  * Temporary debugging check for pages not lying within a given zone.
483  */
484 static int __maybe_unused bad_range(struct zone *zone, struct page *page)
485 {
486 	if (page_outside_zone_boundaries(zone, page))
487 		return 1;
488 	if (zone != page_zone(page))
489 		return 1;
490 
491 	return 0;
492 }
493 #else
494 static inline int __maybe_unused bad_range(struct zone *zone, struct page *page)
495 {
496 	return 0;
497 }
498 #endif
499 
500 static void bad_page(struct page *page, const char *reason)
501 {
502 	static unsigned long resume;
503 	static unsigned long nr_shown;
504 	static unsigned long nr_unshown;
505 
506 	/*
507 	 * Allow a burst of 60 reports, then keep quiet for that minute;
508 	 * or allow a steady drip of one report per second.
509 	 */
510 	if (nr_shown == 60) {
511 		if (time_before(jiffies, resume)) {
512 			nr_unshown++;
513 			goto out;
514 		}
515 		if (nr_unshown) {
516 			pr_alert(
517 			      "BUG: Bad page state: %lu messages suppressed\n",
518 				nr_unshown);
519 			nr_unshown = 0;
520 		}
521 		nr_shown = 0;
522 	}
523 	if (nr_shown++ == 0)
524 		resume = jiffies + 60 * HZ;
525 
526 	pr_alert("BUG: Bad page state in process %s  pfn:%05lx\n",
527 		current->comm, page_to_pfn(page));
528 	dump_page(page, reason);
529 
530 	print_modules();
531 	dump_stack();
532 out:
533 	/* Leave bad fields for debug, except PageBuddy could make trouble */
534 	page_mapcount_reset(page); /* remove PageBuddy */
535 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
536 }
537 
538 static inline unsigned int order_to_pindex(int migratetype, int order)
539 {
540 	int base = order;
541 
542 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
543 	if (order > PAGE_ALLOC_COSTLY_ORDER) {
544 		VM_BUG_ON(order != pageblock_order);
545 		return NR_LOWORDER_PCP_LISTS;
546 	}
547 #else
548 	VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER);
549 #endif
550 
551 	return (MIGRATE_PCPTYPES * base) + migratetype;
552 }
553 
554 static inline int pindex_to_order(unsigned int pindex)
555 {
556 	int order = pindex / MIGRATE_PCPTYPES;
557 
558 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
559 	if (pindex == NR_LOWORDER_PCP_LISTS)
560 		order = pageblock_order;
561 #else
562 	VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER);
563 #endif
564 
565 	return order;
566 }
567 
568 static inline bool pcp_allowed_order(unsigned int order)
569 {
570 	if (order <= PAGE_ALLOC_COSTLY_ORDER)
571 		return true;
572 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
573 	if (order == pageblock_order)
574 		return true;
575 #endif
576 	return false;
577 }
578 
579 static inline void free_the_page(struct page *page, unsigned int order)
580 {
581 	if (pcp_allowed_order(order))		/* Via pcp? */
582 		free_unref_page(page, order);
583 	else
584 		__free_pages_ok(page, order, FPI_NONE);
585 }
586 
587 /*
588  * Higher-order pages are called "compound pages".  They are structured thusly:
589  *
590  * The first PAGE_SIZE page is called the "head page" and have PG_head set.
591  *
592  * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
593  * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
594  *
595  * The first tail page's ->compound_dtor holds the offset in array of compound
596  * page destructors. See compound_page_dtors.
597  *
598  * The first tail page's ->compound_order holds the order of allocation.
599  * This usage means that zero-order pages may not be compound.
600  */
601 
602 void free_compound_page(struct page *page)
603 {
604 	mem_cgroup_uncharge(page_folio(page));
605 	free_the_page(page, compound_order(page));
606 }
607 
608 void prep_compound_page(struct page *page, unsigned int order)
609 {
610 	int i;
611 	int nr_pages = 1 << order;
612 
613 	__SetPageHead(page);
614 	for (i = 1; i < nr_pages; i++)
615 		prep_compound_tail(page, i);
616 
617 	prep_compound_head(page, order);
618 }
619 
620 void destroy_large_folio(struct folio *folio)
621 {
622 	enum compound_dtor_id dtor = folio->_folio_dtor;
623 
624 	VM_BUG_ON_FOLIO(dtor >= NR_COMPOUND_DTORS, folio);
625 	compound_page_dtors[dtor](&folio->page);
626 }
627 
628 static inline void set_buddy_order(struct page *page, unsigned int order)
629 {
630 	set_page_private(page, order);
631 	__SetPageBuddy(page);
632 }
633 
634 #ifdef CONFIG_COMPACTION
635 static inline struct capture_control *task_capc(struct zone *zone)
636 {
637 	struct capture_control *capc = current->capture_control;
638 
639 	return unlikely(capc) &&
640 		!(current->flags & PF_KTHREAD) &&
641 		!capc->page &&
642 		capc->cc->zone == zone ? capc : NULL;
643 }
644 
645 static inline bool
646 compaction_capture(struct capture_control *capc, struct page *page,
647 		   int order, int migratetype)
648 {
649 	if (!capc || order != capc->cc->order)
650 		return false;
651 
652 	/* Do not accidentally pollute CMA or isolated regions*/
653 	if (is_migrate_cma(migratetype) ||
654 	    is_migrate_isolate(migratetype))
655 		return false;
656 
657 	/*
658 	 * Do not let lower order allocations pollute a movable pageblock.
659 	 * This might let an unmovable request use a reclaimable pageblock
660 	 * and vice-versa but no more than normal fallback logic which can
661 	 * have trouble finding a high-order free page.
662 	 */
663 	if (order < pageblock_order && migratetype == MIGRATE_MOVABLE)
664 		return false;
665 
666 	capc->page = page;
667 	return true;
668 }
669 
670 #else
671 static inline struct capture_control *task_capc(struct zone *zone)
672 {
673 	return NULL;
674 }
675 
676 static inline bool
677 compaction_capture(struct capture_control *capc, struct page *page,
678 		   int order, int migratetype)
679 {
680 	return false;
681 }
682 #endif /* CONFIG_COMPACTION */
683 
684 /* Used for pages not on another list */
685 static inline void add_to_free_list(struct page *page, struct zone *zone,
686 				    unsigned int order, int migratetype)
687 {
688 	struct free_area *area = &zone->free_area[order];
689 
690 	list_add(&page->buddy_list, &area->free_list[migratetype]);
691 	area->nr_free++;
692 }
693 
694 /* Used for pages not on another list */
695 static inline void add_to_free_list_tail(struct page *page, struct zone *zone,
696 					 unsigned int order, int migratetype)
697 {
698 	struct free_area *area = &zone->free_area[order];
699 
700 	list_add_tail(&page->buddy_list, &area->free_list[migratetype]);
701 	area->nr_free++;
702 }
703 
704 /*
705  * Used for pages which are on another list. Move the pages to the tail
706  * of the list - so the moved pages won't immediately be considered for
707  * allocation again (e.g., optimization for memory onlining).
708  */
709 static inline void move_to_free_list(struct page *page, struct zone *zone,
710 				     unsigned int order, int migratetype)
711 {
712 	struct free_area *area = &zone->free_area[order];
713 
714 	list_move_tail(&page->buddy_list, &area->free_list[migratetype]);
715 }
716 
717 static inline void del_page_from_free_list(struct page *page, struct zone *zone,
718 					   unsigned int order)
719 {
720 	/* clear reported state and update reported page count */
721 	if (page_reported(page))
722 		__ClearPageReported(page);
723 
724 	list_del(&page->buddy_list);
725 	__ClearPageBuddy(page);
726 	set_page_private(page, 0);
727 	zone->free_area[order].nr_free--;
728 }
729 
730 static inline struct page *get_page_from_free_area(struct free_area *area,
731 					    int migratetype)
732 {
733 	return list_first_entry_or_null(&area->free_list[migratetype],
734 					struct page, lru);
735 }
736 
737 /*
738  * If this is not the largest possible page, check if the buddy
739  * of the next-highest order is free. If it is, it's possible
740  * that pages are being freed that will coalesce soon. In case,
741  * that is happening, add the free page to the tail of the list
742  * so it's less likely to be used soon and more likely to be merged
743  * as a higher order page
744  */
745 static inline bool
746 buddy_merge_likely(unsigned long pfn, unsigned long buddy_pfn,
747 		   struct page *page, unsigned int order)
748 {
749 	unsigned long higher_page_pfn;
750 	struct page *higher_page;
751 
752 	if (order >= MAX_ORDER - 1)
753 		return false;
754 
755 	higher_page_pfn = buddy_pfn & pfn;
756 	higher_page = page + (higher_page_pfn - pfn);
757 
758 	return find_buddy_page_pfn(higher_page, higher_page_pfn, order + 1,
759 			NULL) != NULL;
760 }
761 
762 /*
763  * Freeing function for a buddy system allocator.
764  *
765  * The concept of a buddy system is to maintain direct-mapped table
766  * (containing bit values) for memory blocks of various "orders".
767  * The bottom level table contains the map for the smallest allocatable
768  * units of memory (here, pages), and each level above it describes
769  * pairs of units from the levels below, hence, "buddies".
770  * At a high level, all that happens here is marking the table entry
771  * at the bottom level available, and propagating the changes upward
772  * as necessary, plus some accounting needed to play nicely with other
773  * parts of the VM system.
774  * At each level, we keep a list of pages, which are heads of continuous
775  * free pages of length of (1 << order) and marked with PageBuddy.
776  * Page's order is recorded in page_private(page) field.
777  * So when we are allocating or freeing one, we can derive the state of the
778  * other.  That is, if we allocate a small block, and both were
779  * free, the remainder of the region must be split into blocks.
780  * If a block is freed, and its buddy is also free, then this
781  * triggers coalescing into a block of larger size.
782  *
783  * -- nyc
784  */
785 
786 static inline void __free_one_page(struct page *page,
787 		unsigned long pfn,
788 		struct zone *zone, unsigned int order,
789 		int migratetype, fpi_t fpi_flags)
790 {
791 	struct capture_control *capc = task_capc(zone);
792 	unsigned long buddy_pfn = 0;
793 	unsigned long combined_pfn;
794 	struct page *buddy;
795 	bool to_tail;
796 
797 	VM_BUG_ON(!zone_is_initialized(zone));
798 	VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
799 
800 	VM_BUG_ON(migratetype == -1);
801 	if (likely(!is_migrate_isolate(migratetype)))
802 		__mod_zone_freepage_state(zone, 1 << order, migratetype);
803 
804 	VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
805 	VM_BUG_ON_PAGE(bad_range(zone, page), page);
806 
807 	while (order < MAX_ORDER) {
808 		if (compaction_capture(capc, page, order, migratetype)) {
809 			__mod_zone_freepage_state(zone, -(1 << order),
810 								migratetype);
811 			return;
812 		}
813 
814 		buddy = find_buddy_page_pfn(page, pfn, order, &buddy_pfn);
815 		if (!buddy)
816 			goto done_merging;
817 
818 		if (unlikely(order >= pageblock_order)) {
819 			/*
820 			 * We want to prevent merge between freepages on pageblock
821 			 * without fallbacks and normal pageblock. Without this,
822 			 * pageblock isolation could cause incorrect freepage or CMA
823 			 * accounting or HIGHATOMIC accounting.
824 			 */
825 			int buddy_mt = get_pageblock_migratetype(buddy);
826 
827 			if (migratetype != buddy_mt
828 					&& (!migratetype_is_mergeable(migratetype) ||
829 						!migratetype_is_mergeable(buddy_mt)))
830 				goto done_merging;
831 		}
832 
833 		/*
834 		 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
835 		 * merge with it and move up one order.
836 		 */
837 		if (page_is_guard(buddy))
838 			clear_page_guard(zone, buddy, order, migratetype);
839 		else
840 			del_page_from_free_list(buddy, zone, order);
841 		combined_pfn = buddy_pfn & pfn;
842 		page = page + (combined_pfn - pfn);
843 		pfn = combined_pfn;
844 		order++;
845 	}
846 
847 done_merging:
848 	set_buddy_order(page, order);
849 
850 	if (fpi_flags & FPI_TO_TAIL)
851 		to_tail = true;
852 	else if (is_shuffle_order(order))
853 		to_tail = shuffle_pick_tail();
854 	else
855 		to_tail = buddy_merge_likely(pfn, buddy_pfn, page, order);
856 
857 	if (to_tail)
858 		add_to_free_list_tail(page, zone, order, migratetype);
859 	else
860 		add_to_free_list(page, zone, order, migratetype);
861 
862 	/* Notify page reporting subsystem of freed page */
863 	if (!(fpi_flags & FPI_SKIP_REPORT_NOTIFY))
864 		page_reporting_notify_free(order);
865 }
866 
867 /**
868  * split_free_page() -- split a free page at split_pfn_offset
869  * @free_page:		the original free page
870  * @order:		the order of the page
871  * @split_pfn_offset:	split offset within the page
872  *
873  * Return -ENOENT if the free page is changed, otherwise 0
874  *
875  * It is used when the free page crosses two pageblocks with different migratetypes
876  * at split_pfn_offset within the page. The split free page will be put into
877  * separate migratetype lists afterwards. Otherwise, the function achieves
878  * nothing.
879  */
880 int split_free_page(struct page *free_page,
881 			unsigned int order, unsigned long split_pfn_offset)
882 {
883 	struct zone *zone = page_zone(free_page);
884 	unsigned long free_page_pfn = page_to_pfn(free_page);
885 	unsigned long pfn;
886 	unsigned long flags;
887 	int free_page_order;
888 	int mt;
889 	int ret = 0;
890 
891 	if (split_pfn_offset == 0)
892 		return ret;
893 
894 	spin_lock_irqsave(&zone->lock, flags);
895 
896 	if (!PageBuddy(free_page) || buddy_order(free_page) != order) {
897 		ret = -ENOENT;
898 		goto out;
899 	}
900 
901 	mt = get_pageblock_migratetype(free_page);
902 	if (likely(!is_migrate_isolate(mt)))
903 		__mod_zone_freepage_state(zone, -(1UL << order), mt);
904 
905 	del_page_from_free_list(free_page, zone, order);
906 	for (pfn = free_page_pfn;
907 	     pfn < free_page_pfn + (1UL << order);) {
908 		int mt = get_pfnblock_migratetype(pfn_to_page(pfn), pfn);
909 
910 		free_page_order = min_t(unsigned int,
911 					pfn ? __ffs(pfn) : order,
912 					__fls(split_pfn_offset));
913 		__free_one_page(pfn_to_page(pfn), pfn, zone, free_page_order,
914 				mt, FPI_NONE);
915 		pfn += 1UL << free_page_order;
916 		split_pfn_offset -= (1UL << free_page_order);
917 		/* we have done the first part, now switch to second part */
918 		if (split_pfn_offset == 0)
919 			split_pfn_offset = (1UL << order) - (pfn - free_page_pfn);
920 	}
921 out:
922 	spin_unlock_irqrestore(&zone->lock, flags);
923 	return ret;
924 }
925 /*
926  * A bad page could be due to a number of fields. Instead of multiple branches,
927  * try and check multiple fields with one check. The caller must do a detailed
928  * check if necessary.
929  */
930 static inline bool page_expected_state(struct page *page,
931 					unsigned long check_flags)
932 {
933 	if (unlikely(atomic_read(&page->_mapcount) != -1))
934 		return false;
935 
936 	if (unlikely((unsigned long)page->mapping |
937 			page_ref_count(page) |
938 #ifdef CONFIG_MEMCG
939 			page->memcg_data |
940 #endif
941 			(page->flags & check_flags)))
942 		return false;
943 
944 	return true;
945 }
946 
947 static const char *page_bad_reason(struct page *page, unsigned long flags)
948 {
949 	const char *bad_reason = NULL;
950 
951 	if (unlikely(atomic_read(&page->_mapcount) != -1))
952 		bad_reason = "nonzero mapcount";
953 	if (unlikely(page->mapping != NULL))
954 		bad_reason = "non-NULL mapping";
955 	if (unlikely(page_ref_count(page) != 0))
956 		bad_reason = "nonzero _refcount";
957 	if (unlikely(page->flags & flags)) {
958 		if (flags == PAGE_FLAGS_CHECK_AT_PREP)
959 			bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag(s) set";
960 		else
961 			bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
962 	}
963 #ifdef CONFIG_MEMCG
964 	if (unlikely(page->memcg_data))
965 		bad_reason = "page still charged to cgroup";
966 #endif
967 	return bad_reason;
968 }
969 
970 static void free_page_is_bad_report(struct page *page)
971 {
972 	bad_page(page,
973 		 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_FREE));
974 }
975 
976 static inline bool free_page_is_bad(struct page *page)
977 {
978 	if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
979 		return false;
980 
981 	/* Something has gone sideways, find it */
982 	free_page_is_bad_report(page);
983 	return true;
984 }
985 
986 static inline bool is_check_pages_enabled(void)
987 {
988 	return static_branch_unlikely(&check_pages_enabled);
989 }
990 
991 static int free_tail_page_prepare(struct page *head_page, struct page *page)
992 {
993 	struct folio *folio = (struct folio *)head_page;
994 	int ret = 1;
995 
996 	/*
997 	 * We rely page->lru.next never has bit 0 set, unless the page
998 	 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
999 	 */
1000 	BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
1001 
1002 	if (!is_check_pages_enabled()) {
1003 		ret = 0;
1004 		goto out;
1005 	}
1006 	switch (page - head_page) {
1007 	case 1:
1008 		/* the first tail page: these may be in place of ->mapping */
1009 		if (unlikely(folio_entire_mapcount(folio))) {
1010 			bad_page(page, "nonzero entire_mapcount");
1011 			goto out;
1012 		}
1013 		if (unlikely(atomic_read(&folio->_nr_pages_mapped))) {
1014 			bad_page(page, "nonzero nr_pages_mapped");
1015 			goto out;
1016 		}
1017 		if (unlikely(atomic_read(&folio->_pincount))) {
1018 			bad_page(page, "nonzero pincount");
1019 			goto out;
1020 		}
1021 		break;
1022 	case 2:
1023 		/*
1024 		 * the second tail page: ->mapping is
1025 		 * deferred_list.next -- ignore value.
1026 		 */
1027 		break;
1028 	default:
1029 		if (page->mapping != TAIL_MAPPING) {
1030 			bad_page(page, "corrupted mapping in tail page");
1031 			goto out;
1032 		}
1033 		break;
1034 	}
1035 	if (unlikely(!PageTail(page))) {
1036 		bad_page(page, "PageTail not set");
1037 		goto out;
1038 	}
1039 	if (unlikely(compound_head(page) != head_page)) {
1040 		bad_page(page, "compound_head not consistent");
1041 		goto out;
1042 	}
1043 	ret = 0;
1044 out:
1045 	page->mapping = NULL;
1046 	clear_compound_head(page);
1047 	return ret;
1048 }
1049 
1050 /*
1051  * Skip KASAN memory poisoning when either:
1052  *
1053  * 1. For generic KASAN: deferred memory initialization has not yet completed.
1054  *    Tag-based KASAN modes skip pages freed via deferred memory initialization
1055  *    using page tags instead (see below).
1056  * 2. For tag-based KASAN modes: the page has a match-all KASAN tag, indicating
1057  *    that error detection is disabled for accesses via the page address.
1058  *
1059  * Pages will have match-all tags in the following circumstances:
1060  *
1061  * 1. Pages are being initialized for the first time, including during deferred
1062  *    memory init; see the call to page_kasan_tag_reset in __init_single_page.
1063  * 2. The allocation was not unpoisoned due to __GFP_SKIP_KASAN, with the
1064  *    exception of pages unpoisoned by kasan_unpoison_vmalloc.
1065  * 3. The allocation was excluded from being checked due to sampling,
1066  *    see the call to kasan_unpoison_pages.
1067  *
1068  * Poisoning pages during deferred memory init will greatly lengthen the
1069  * process and cause problem in large memory systems as the deferred pages
1070  * initialization is done with interrupt disabled.
1071  *
1072  * Assuming that there will be no reference to those newly initialized
1073  * pages before they are ever allocated, this should have no effect on
1074  * KASAN memory tracking as the poison will be properly inserted at page
1075  * allocation time. The only corner case is when pages are allocated by
1076  * on-demand allocation and then freed again before the deferred pages
1077  * initialization is done, but this is not likely to happen.
1078  */
1079 static inline bool should_skip_kasan_poison(struct page *page, fpi_t fpi_flags)
1080 {
1081 	if (IS_ENABLED(CONFIG_KASAN_GENERIC))
1082 		return deferred_pages_enabled();
1083 
1084 	return page_kasan_tag(page) == 0xff;
1085 }
1086 
1087 static void kernel_init_pages(struct page *page, int numpages)
1088 {
1089 	int i;
1090 
1091 	/* s390's use of memset() could override KASAN redzones. */
1092 	kasan_disable_current();
1093 	for (i = 0; i < numpages; i++)
1094 		clear_highpage_kasan_tagged(page + i);
1095 	kasan_enable_current();
1096 }
1097 
1098 static __always_inline bool free_pages_prepare(struct page *page,
1099 			unsigned int order, fpi_t fpi_flags)
1100 {
1101 	int bad = 0;
1102 	bool skip_kasan_poison = should_skip_kasan_poison(page, fpi_flags);
1103 	bool init = want_init_on_free();
1104 
1105 	VM_BUG_ON_PAGE(PageTail(page), page);
1106 
1107 	trace_mm_page_free(page, order);
1108 	kmsan_free_page(page, order);
1109 
1110 	if (unlikely(PageHWPoison(page)) && !order) {
1111 		/*
1112 		 * Do not let hwpoison pages hit pcplists/buddy
1113 		 * Untie memcg state and reset page's owner
1114 		 */
1115 		if (memcg_kmem_online() && PageMemcgKmem(page))
1116 			__memcg_kmem_uncharge_page(page, order);
1117 		reset_page_owner(page, order);
1118 		page_table_check_free(page, order);
1119 		return false;
1120 	}
1121 
1122 	/*
1123 	 * Check tail pages before head page information is cleared to
1124 	 * avoid checking PageCompound for order-0 pages.
1125 	 */
1126 	if (unlikely(order)) {
1127 		bool compound = PageCompound(page);
1128 		int i;
1129 
1130 		VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
1131 
1132 		if (compound)
1133 			ClearPageHasHWPoisoned(page);
1134 		for (i = 1; i < (1 << order); i++) {
1135 			if (compound)
1136 				bad += free_tail_page_prepare(page, page + i);
1137 			if (is_check_pages_enabled()) {
1138 				if (free_page_is_bad(page + i)) {
1139 					bad++;
1140 					continue;
1141 				}
1142 			}
1143 			(page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1144 		}
1145 	}
1146 	if (PageMappingFlags(page))
1147 		page->mapping = NULL;
1148 	if (memcg_kmem_online() && PageMemcgKmem(page))
1149 		__memcg_kmem_uncharge_page(page, order);
1150 	if (is_check_pages_enabled()) {
1151 		if (free_page_is_bad(page))
1152 			bad++;
1153 		if (bad)
1154 			return false;
1155 	}
1156 
1157 	page_cpupid_reset_last(page);
1158 	page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1159 	reset_page_owner(page, order);
1160 	page_table_check_free(page, order);
1161 
1162 	if (!PageHighMem(page)) {
1163 		debug_check_no_locks_freed(page_address(page),
1164 					   PAGE_SIZE << order);
1165 		debug_check_no_obj_freed(page_address(page),
1166 					   PAGE_SIZE << order);
1167 	}
1168 
1169 	kernel_poison_pages(page, 1 << order);
1170 
1171 	/*
1172 	 * As memory initialization might be integrated into KASAN,
1173 	 * KASAN poisoning and memory initialization code must be
1174 	 * kept together to avoid discrepancies in behavior.
1175 	 *
1176 	 * With hardware tag-based KASAN, memory tags must be set before the
1177 	 * page becomes unavailable via debug_pagealloc or arch_free_page.
1178 	 */
1179 	if (!skip_kasan_poison) {
1180 		kasan_poison_pages(page, order, init);
1181 
1182 		/* Memory is already initialized if KASAN did it internally. */
1183 		if (kasan_has_integrated_init())
1184 			init = false;
1185 	}
1186 	if (init)
1187 		kernel_init_pages(page, 1 << order);
1188 
1189 	/*
1190 	 * arch_free_page() can make the page's contents inaccessible.  s390
1191 	 * does this.  So nothing which can access the page's contents should
1192 	 * happen after this.
1193 	 */
1194 	arch_free_page(page, order);
1195 
1196 	debug_pagealloc_unmap_pages(page, 1 << order);
1197 
1198 	return true;
1199 }
1200 
1201 /*
1202  * Frees a number of pages from the PCP lists
1203  * Assumes all pages on list are in same zone.
1204  * count is the number of pages to free.
1205  */
1206 static void free_pcppages_bulk(struct zone *zone, int count,
1207 					struct per_cpu_pages *pcp,
1208 					int pindex)
1209 {
1210 	unsigned long flags;
1211 	int min_pindex = 0;
1212 	int max_pindex = NR_PCP_LISTS - 1;
1213 	unsigned int order;
1214 	bool isolated_pageblocks;
1215 	struct page *page;
1216 
1217 	/*
1218 	 * Ensure proper count is passed which otherwise would stuck in the
1219 	 * below while (list_empty(list)) loop.
1220 	 */
1221 	count = min(pcp->count, count);
1222 
1223 	/* Ensure requested pindex is drained first. */
1224 	pindex = pindex - 1;
1225 
1226 	spin_lock_irqsave(&zone->lock, flags);
1227 	isolated_pageblocks = has_isolate_pageblock(zone);
1228 
1229 	while (count > 0) {
1230 		struct list_head *list;
1231 		int nr_pages;
1232 
1233 		/* Remove pages from lists in a round-robin fashion. */
1234 		do {
1235 			if (++pindex > max_pindex)
1236 				pindex = min_pindex;
1237 			list = &pcp->lists[pindex];
1238 			if (!list_empty(list))
1239 				break;
1240 
1241 			if (pindex == max_pindex)
1242 				max_pindex--;
1243 			if (pindex == min_pindex)
1244 				min_pindex++;
1245 		} while (1);
1246 
1247 		order = pindex_to_order(pindex);
1248 		nr_pages = 1 << order;
1249 		do {
1250 			int mt;
1251 
1252 			page = list_last_entry(list, struct page, pcp_list);
1253 			mt = get_pcppage_migratetype(page);
1254 
1255 			/* must delete to avoid corrupting pcp list */
1256 			list_del(&page->pcp_list);
1257 			count -= nr_pages;
1258 			pcp->count -= nr_pages;
1259 
1260 			/* MIGRATE_ISOLATE page should not go to pcplists */
1261 			VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1262 			/* Pageblock could have been isolated meanwhile */
1263 			if (unlikely(isolated_pageblocks))
1264 				mt = get_pageblock_migratetype(page);
1265 
1266 			__free_one_page(page, page_to_pfn(page), zone, order, mt, FPI_NONE);
1267 			trace_mm_page_pcpu_drain(page, order, mt);
1268 		} while (count > 0 && !list_empty(list));
1269 	}
1270 
1271 	spin_unlock_irqrestore(&zone->lock, flags);
1272 }
1273 
1274 static void free_one_page(struct zone *zone,
1275 				struct page *page, unsigned long pfn,
1276 				unsigned int order,
1277 				int migratetype, fpi_t fpi_flags)
1278 {
1279 	unsigned long flags;
1280 
1281 	spin_lock_irqsave(&zone->lock, flags);
1282 	if (unlikely(has_isolate_pageblock(zone) ||
1283 		is_migrate_isolate(migratetype))) {
1284 		migratetype = get_pfnblock_migratetype(page, pfn);
1285 	}
1286 	__free_one_page(page, pfn, zone, order, migratetype, fpi_flags);
1287 	spin_unlock_irqrestore(&zone->lock, flags);
1288 }
1289 
1290 static void __free_pages_ok(struct page *page, unsigned int order,
1291 			    fpi_t fpi_flags)
1292 {
1293 	unsigned long flags;
1294 	int migratetype;
1295 	unsigned long pfn = page_to_pfn(page);
1296 	struct zone *zone = page_zone(page);
1297 
1298 	if (!free_pages_prepare(page, order, fpi_flags))
1299 		return;
1300 
1301 	/*
1302 	 * Calling get_pfnblock_migratetype() without spin_lock_irqsave() here
1303 	 * is used to avoid calling get_pfnblock_migratetype() under the lock.
1304 	 * This will reduce the lock holding time.
1305 	 */
1306 	migratetype = get_pfnblock_migratetype(page, pfn);
1307 
1308 	spin_lock_irqsave(&zone->lock, flags);
1309 	if (unlikely(has_isolate_pageblock(zone) ||
1310 		is_migrate_isolate(migratetype))) {
1311 		migratetype = get_pfnblock_migratetype(page, pfn);
1312 	}
1313 	__free_one_page(page, pfn, zone, order, migratetype, fpi_flags);
1314 	spin_unlock_irqrestore(&zone->lock, flags);
1315 
1316 	__count_vm_events(PGFREE, 1 << order);
1317 }
1318 
1319 void __free_pages_core(struct page *page, unsigned int order)
1320 {
1321 	unsigned int nr_pages = 1 << order;
1322 	struct page *p = page;
1323 	unsigned int loop;
1324 
1325 	/*
1326 	 * When initializing the memmap, __init_single_page() sets the refcount
1327 	 * of all pages to 1 ("allocated"/"not free"). We have to set the
1328 	 * refcount of all involved pages to 0.
1329 	 */
1330 	prefetchw(p);
1331 	for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1332 		prefetchw(p + 1);
1333 		__ClearPageReserved(p);
1334 		set_page_count(p, 0);
1335 	}
1336 	__ClearPageReserved(p);
1337 	set_page_count(p, 0);
1338 
1339 	atomic_long_add(nr_pages, &page_zone(page)->managed_pages);
1340 
1341 	/*
1342 	 * Bypass PCP and place fresh pages right to the tail, primarily
1343 	 * relevant for memory onlining.
1344 	 */
1345 	__free_pages_ok(page, order, FPI_TO_TAIL);
1346 }
1347 
1348 /*
1349  * Check that the whole (or subset of) a pageblock given by the interval of
1350  * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1351  * with the migration of free compaction scanner.
1352  *
1353  * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1354  *
1355  * It's possible on some configurations to have a setup like node0 node1 node0
1356  * i.e. it's possible that all pages within a zones range of pages do not
1357  * belong to a single zone. We assume that a border between node0 and node1
1358  * can occur within a single pageblock, but not a node0 node1 node0
1359  * interleaving within a single pageblock. It is therefore sufficient to check
1360  * the first and last page of a pageblock and avoid checking each individual
1361  * page in a pageblock.
1362  *
1363  * Note: the function may return non-NULL struct page even for a page block
1364  * which contains a memory hole (i.e. there is no physical memory for a subset
1365  * of the pfn range). For example, if the pageblock order is MAX_ORDER, which
1366  * will fall into 2 sub-sections, and the end pfn of the pageblock may be hole
1367  * even though the start pfn is online and valid. This should be safe most of
1368  * the time because struct pages are still initialized via init_unavailable_range()
1369  * and pfn walkers shouldn't touch any physical memory range for which they do
1370  * not recognize any specific metadata in struct pages.
1371  */
1372 struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1373 				     unsigned long end_pfn, struct zone *zone)
1374 {
1375 	struct page *start_page;
1376 	struct page *end_page;
1377 
1378 	/* end_pfn is one past the range we are checking */
1379 	end_pfn--;
1380 
1381 	if (!pfn_valid(end_pfn))
1382 		return NULL;
1383 
1384 	start_page = pfn_to_online_page(start_pfn);
1385 	if (!start_page)
1386 		return NULL;
1387 
1388 	if (page_zone(start_page) != zone)
1389 		return NULL;
1390 
1391 	end_page = pfn_to_page(end_pfn);
1392 
1393 	/* This gives a shorter code than deriving page_zone(end_page) */
1394 	if (page_zone_id(start_page) != page_zone_id(end_page))
1395 		return NULL;
1396 
1397 	return start_page;
1398 }
1399 
1400 /*
1401  * The order of subdivision here is critical for the IO subsystem.
1402  * Please do not alter this order without good reasons and regression
1403  * testing. Specifically, as large blocks of memory are subdivided,
1404  * the order in which smaller blocks are delivered depends on the order
1405  * they're subdivided in this function. This is the primary factor
1406  * influencing the order in which pages are delivered to the IO
1407  * subsystem according to empirical testing, and this is also justified
1408  * by considering the behavior of a buddy system containing a single
1409  * large block of memory acted on by a series of small allocations.
1410  * This behavior is a critical factor in sglist merging's success.
1411  *
1412  * -- nyc
1413  */
1414 static inline void expand(struct zone *zone, struct page *page,
1415 	int low, int high, int migratetype)
1416 {
1417 	unsigned long size = 1 << high;
1418 
1419 	while (high > low) {
1420 		high--;
1421 		size >>= 1;
1422 		VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
1423 
1424 		/*
1425 		 * Mark as guard pages (or page), that will allow to
1426 		 * merge back to allocator when buddy will be freed.
1427 		 * Corresponding page table entries will not be touched,
1428 		 * pages will stay not present in virtual address space
1429 		 */
1430 		if (set_page_guard(zone, &page[size], high, migratetype))
1431 			continue;
1432 
1433 		add_to_free_list(&page[size], zone, high, migratetype);
1434 		set_buddy_order(&page[size], high);
1435 	}
1436 }
1437 
1438 static void check_new_page_bad(struct page *page)
1439 {
1440 	if (unlikely(page->flags & __PG_HWPOISON)) {
1441 		/* Don't complain about hwpoisoned pages */
1442 		page_mapcount_reset(page); /* remove PageBuddy */
1443 		return;
1444 	}
1445 
1446 	bad_page(page,
1447 		 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_PREP));
1448 }
1449 
1450 /*
1451  * This page is about to be returned from the page allocator
1452  */
1453 static int check_new_page(struct page *page)
1454 {
1455 	if (likely(page_expected_state(page,
1456 				PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
1457 		return 0;
1458 
1459 	check_new_page_bad(page);
1460 	return 1;
1461 }
1462 
1463 static inline bool check_new_pages(struct page *page, unsigned int order)
1464 {
1465 	if (is_check_pages_enabled()) {
1466 		for (int i = 0; i < (1 << order); i++) {
1467 			struct page *p = page + i;
1468 
1469 			if (check_new_page(p))
1470 				return true;
1471 		}
1472 	}
1473 
1474 	return false;
1475 }
1476 
1477 static inline bool should_skip_kasan_unpoison(gfp_t flags)
1478 {
1479 	/* Don't skip if a software KASAN mode is enabled. */
1480 	if (IS_ENABLED(CONFIG_KASAN_GENERIC) ||
1481 	    IS_ENABLED(CONFIG_KASAN_SW_TAGS))
1482 		return false;
1483 
1484 	/* Skip, if hardware tag-based KASAN is not enabled. */
1485 	if (!kasan_hw_tags_enabled())
1486 		return true;
1487 
1488 	/*
1489 	 * With hardware tag-based KASAN enabled, skip if this has been
1490 	 * requested via __GFP_SKIP_KASAN.
1491 	 */
1492 	return flags & __GFP_SKIP_KASAN;
1493 }
1494 
1495 static inline bool should_skip_init(gfp_t flags)
1496 {
1497 	/* Don't skip, if hardware tag-based KASAN is not enabled. */
1498 	if (!kasan_hw_tags_enabled())
1499 		return false;
1500 
1501 	/* For hardware tag-based KASAN, skip if requested. */
1502 	return (flags & __GFP_SKIP_ZERO);
1503 }
1504 
1505 inline void post_alloc_hook(struct page *page, unsigned int order,
1506 				gfp_t gfp_flags)
1507 {
1508 	bool init = !want_init_on_free() && want_init_on_alloc(gfp_flags) &&
1509 			!should_skip_init(gfp_flags);
1510 	bool zero_tags = init && (gfp_flags & __GFP_ZEROTAGS);
1511 	int i;
1512 
1513 	set_page_private(page, 0);
1514 	set_page_refcounted(page);
1515 
1516 	arch_alloc_page(page, order);
1517 	debug_pagealloc_map_pages(page, 1 << order);
1518 
1519 	/*
1520 	 * Page unpoisoning must happen before memory initialization.
1521 	 * Otherwise, the poison pattern will be overwritten for __GFP_ZERO
1522 	 * allocations and the page unpoisoning code will complain.
1523 	 */
1524 	kernel_unpoison_pages(page, 1 << order);
1525 
1526 	/*
1527 	 * As memory initialization might be integrated into KASAN,
1528 	 * KASAN unpoisoning and memory initializion code must be
1529 	 * kept together to avoid discrepancies in behavior.
1530 	 */
1531 
1532 	/*
1533 	 * If memory tags should be zeroed
1534 	 * (which happens only when memory should be initialized as well).
1535 	 */
1536 	if (zero_tags) {
1537 		/* Initialize both memory and memory tags. */
1538 		for (i = 0; i != 1 << order; ++i)
1539 			tag_clear_highpage(page + i);
1540 
1541 		/* Take note that memory was initialized by the loop above. */
1542 		init = false;
1543 	}
1544 	if (!should_skip_kasan_unpoison(gfp_flags) &&
1545 	    kasan_unpoison_pages(page, order, init)) {
1546 		/* Take note that memory was initialized by KASAN. */
1547 		if (kasan_has_integrated_init())
1548 			init = false;
1549 	} else {
1550 		/*
1551 		 * If memory tags have not been set by KASAN, reset the page
1552 		 * tags to ensure page_address() dereferencing does not fault.
1553 		 */
1554 		for (i = 0; i != 1 << order; ++i)
1555 			page_kasan_tag_reset(page + i);
1556 	}
1557 	/* If memory is still not initialized, initialize it now. */
1558 	if (init)
1559 		kernel_init_pages(page, 1 << order);
1560 
1561 	set_page_owner(page, order, gfp_flags);
1562 	page_table_check_alloc(page, order);
1563 }
1564 
1565 static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
1566 							unsigned int alloc_flags)
1567 {
1568 	post_alloc_hook(page, order, gfp_flags);
1569 
1570 	if (order && (gfp_flags & __GFP_COMP))
1571 		prep_compound_page(page, order);
1572 
1573 	/*
1574 	 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
1575 	 * allocate the page. The expectation is that the caller is taking
1576 	 * steps that will free more memory. The caller should avoid the page
1577 	 * being used for !PFMEMALLOC purposes.
1578 	 */
1579 	if (alloc_flags & ALLOC_NO_WATERMARKS)
1580 		set_page_pfmemalloc(page);
1581 	else
1582 		clear_page_pfmemalloc(page);
1583 }
1584 
1585 /*
1586  * Go through the free lists for the given migratetype and remove
1587  * the smallest available page from the freelists
1588  */
1589 static __always_inline
1590 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
1591 						int migratetype)
1592 {
1593 	unsigned int current_order;
1594 	struct free_area *area;
1595 	struct page *page;
1596 
1597 	/* Find a page of the appropriate size in the preferred list */
1598 	for (current_order = order; current_order <= MAX_ORDER; ++current_order) {
1599 		area = &(zone->free_area[current_order]);
1600 		page = get_page_from_free_area(area, migratetype);
1601 		if (!page)
1602 			continue;
1603 		del_page_from_free_list(page, zone, current_order);
1604 		expand(zone, page, order, current_order, migratetype);
1605 		set_pcppage_migratetype(page, migratetype);
1606 		trace_mm_page_alloc_zone_locked(page, order, migratetype,
1607 				pcp_allowed_order(order) &&
1608 				migratetype < MIGRATE_PCPTYPES);
1609 		return page;
1610 	}
1611 
1612 	return NULL;
1613 }
1614 
1615 
1616 /*
1617  * This array describes the order lists are fallen back to when
1618  * the free lists for the desirable migrate type are depleted
1619  *
1620  * The other migratetypes do not have fallbacks.
1621  */
1622 static int fallbacks[MIGRATE_TYPES][MIGRATE_PCPTYPES - 1] = {
1623 	[MIGRATE_UNMOVABLE]   = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE   },
1624 	[MIGRATE_MOVABLE]     = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE },
1625 	[MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE,   MIGRATE_MOVABLE   },
1626 };
1627 
1628 #ifdef CONFIG_CMA
1629 static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1630 					unsigned int order)
1631 {
1632 	return __rmqueue_smallest(zone, order, MIGRATE_CMA);
1633 }
1634 #else
1635 static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1636 					unsigned int order) { return NULL; }
1637 #endif
1638 
1639 /*
1640  * Move the free pages in a range to the freelist tail of the requested type.
1641  * Note that start_page and end_pages are not aligned on a pageblock
1642  * boundary. If alignment is required, use move_freepages_block()
1643  */
1644 static int move_freepages(struct zone *zone,
1645 			  unsigned long start_pfn, unsigned long end_pfn,
1646 			  int migratetype, int *num_movable)
1647 {
1648 	struct page *page;
1649 	unsigned long pfn;
1650 	unsigned int order;
1651 	int pages_moved = 0;
1652 
1653 	for (pfn = start_pfn; pfn <= end_pfn;) {
1654 		page = pfn_to_page(pfn);
1655 		if (!PageBuddy(page)) {
1656 			/*
1657 			 * We assume that pages that could be isolated for
1658 			 * migration are movable. But we don't actually try
1659 			 * isolating, as that would be expensive.
1660 			 */
1661 			if (num_movable &&
1662 					(PageLRU(page) || __PageMovable(page)))
1663 				(*num_movable)++;
1664 			pfn++;
1665 			continue;
1666 		}
1667 
1668 		/* Make sure we are not inadvertently changing nodes */
1669 		VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
1670 		VM_BUG_ON_PAGE(page_zone(page) != zone, page);
1671 
1672 		order = buddy_order(page);
1673 		move_to_free_list(page, zone, order, migratetype);
1674 		pfn += 1 << order;
1675 		pages_moved += 1 << order;
1676 	}
1677 
1678 	return pages_moved;
1679 }
1680 
1681 int move_freepages_block(struct zone *zone, struct page *page,
1682 				int migratetype, int *num_movable)
1683 {
1684 	unsigned long start_pfn, end_pfn, pfn;
1685 
1686 	if (num_movable)
1687 		*num_movable = 0;
1688 
1689 	pfn = page_to_pfn(page);
1690 	start_pfn = pageblock_start_pfn(pfn);
1691 	end_pfn = pageblock_end_pfn(pfn) - 1;
1692 
1693 	/* Do not cross zone boundaries */
1694 	if (!zone_spans_pfn(zone, start_pfn))
1695 		start_pfn = pfn;
1696 	if (!zone_spans_pfn(zone, end_pfn))
1697 		return 0;
1698 
1699 	return move_freepages(zone, start_pfn, end_pfn, migratetype,
1700 								num_movable);
1701 }
1702 
1703 static void change_pageblock_range(struct page *pageblock_page,
1704 					int start_order, int migratetype)
1705 {
1706 	int nr_pageblocks = 1 << (start_order - pageblock_order);
1707 
1708 	while (nr_pageblocks--) {
1709 		set_pageblock_migratetype(pageblock_page, migratetype);
1710 		pageblock_page += pageblock_nr_pages;
1711 	}
1712 }
1713 
1714 /*
1715  * When we are falling back to another migratetype during allocation, try to
1716  * steal extra free pages from the same pageblocks to satisfy further
1717  * allocations, instead of polluting multiple pageblocks.
1718  *
1719  * If we are stealing a relatively large buddy page, it is likely there will
1720  * be more free pages in the pageblock, so try to steal them all. For
1721  * reclaimable and unmovable allocations, we steal regardless of page size,
1722  * as fragmentation caused by those allocations polluting movable pageblocks
1723  * is worse than movable allocations stealing from unmovable and reclaimable
1724  * pageblocks.
1725  */
1726 static bool can_steal_fallback(unsigned int order, int start_mt)
1727 {
1728 	/*
1729 	 * Leaving this order check is intended, although there is
1730 	 * relaxed order check in next check. The reason is that
1731 	 * we can actually steal whole pageblock if this condition met,
1732 	 * but, below check doesn't guarantee it and that is just heuristic
1733 	 * so could be changed anytime.
1734 	 */
1735 	if (order >= pageblock_order)
1736 		return true;
1737 
1738 	if (order >= pageblock_order / 2 ||
1739 		start_mt == MIGRATE_RECLAIMABLE ||
1740 		start_mt == MIGRATE_UNMOVABLE ||
1741 		page_group_by_mobility_disabled)
1742 		return true;
1743 
1744 	return false;
1745 }
1746 
1747 static inline bool boost_watermark(struct zone *zone)
1748 {
1749 	unsigned long max_boost;
1750 
1751 	if (!watermark_boost_factor)
1752 		return false;
1753 	/*
1754 	 * Don't bother in zones that are unlikely to produce results.
1755 	 * On small machines, including kdump capture kernels running
1756 	 * in a small area, boosting the watermark can cause an out of
1757 	 * memory situation immediately.
1758 	 */
1759 	if ((pageblock_nr_pages * 4) > zone_managed_pages(zone))
1760 		return false;
1761 
1762 	max_boost = mult_frac(zone->_watermark[WMARK_HIGH],
1763 			watermark_boost_factor, 10000);
1764 
1765 	/*
1766 	 * high watermark may be uninitialised if fragmentation occurs
1767 	 * very early in boot so do not boost. We do not fall
1768 	 * through and boost by pageblock_nr_pages as failing
1769 	 * allocations that early means that reclaim is not going
1770 	 * to help and it may even be impossible to reclaim the
1771 	 * boosted watermark resulting in a hang.
1772 	 */
1773 	if (!max_boost)
1774 		return false;
1775 
1776 	max_boost = max(pageblock_nr_pages, max_boost);
1777 
1778 	zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages,
1779 		max_boost);
1780 
1781 	return true;
1782 }
1783 
1784 /*
1785  * This function implements actual steal behaviour. If order is large enough,
1786  * we can steal whole pageblock. If not, we first move freepages in this
1787  * pageblock to our migratetype and determine how many already-allocated pages
1788  * are there in the pageblock with a compatible migratetype. If at least half
1789  * of pages are free or compatible, we can change migratetype of the pageblock
1790  * itself, so pages freed in the future will be put on the correct free list.
1791  */
1792 static void steal_suitable_fallback(struct zone *zone, struct page *page,
1793 		unsigned int alloc_flags, int start_type, bool whole_block)
1794 {
1795 	unsigned int current_order = buddy_order(page);
1796 	int free_pages, movable_pages, alike_pages;
1797 	int old_block_type;
1798 
1799 	old_block_type = get_pageblock_migratetype(page);
1800 
1801 	/*
1802 	 * This can happen due to races and we want to prevent broken
1803 	 * highatomic accounting.
1804 	 */
1805 	if (is_migrate_highatomic(old_block_type))
1806 		goto single_page;
1807 
1808 	/* Take ownership for orders >= pageblock_order */
1809 	if (current_order >= pageblock_order) {
1810 		change_pageblock_range(page, current_order, start_type);
1811 		goto single_page;
1812 	}
1813 
1814 	/*
1815 	 * Boost watermarks to increase reclaim pressure to reduce the
1816 	 * likelihood of future fallbacks. Wake kswapd now as the node
1817 	 * may be balanced overall and kswapd will not wake naturally.
1818 	 */
1819 	if (boost_watermark(zone) && (alloc_flags & ALLOC_KSWAPD))
1820 		set_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
1821 
1822 	/* We are not allowed to try stealing from the whole block */
1823 	if (!whole_block)
1824 		goto single_page;
1825 
1826 	free_pages = move_freepages_block(zone, page, start_type,
1827 						&movable_pages);
1828 	/*
1829 	 * Determine how many pages are compatible with our allocation.
1830 	 * For movable allocation, it's the number of movable pages which
1831 	 * we just obtained. For other types it's a bit more tricky.
1832 	 */
1833 	if (start_type == MIGRATE_MOVABLE) {
1834 		alike_pages = movable_pages;
1835 	} else {
1836 		/*
1837 		 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
1838 		 * to MOVABLE pageblock, consider all non-movable pages as
1839 		 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
1840 		 * vice versa, be conservative since we can't distinguish the
1841 		 * exact migratetype of non-movable pages.
1842 		 */
1843 		if (old_block_type == MIGRATE_MOVABLE)
1844 			alike_pages = pageblock_nr_pages
1845 						- (free_pages + movable_pages);
1846 		else
1847 			alike_pages = 0;
1848 	}
1849 
1850 	/* moving whole block can fail due to zone boundary conditions */
1851 	if (!free_pages)
1852 		goto single_page;
1853 
1854 	/*
1855 	 * If a sufficient number of pages in the block are either free or of
1856 	 * comparable migratability as our allocation, claim the whole block.
1857 	 */
1858 	if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
1859 			page_group_by_mobility_disabled)
1860 		set_pageblock_migratetype(page, start_type);
1861 
1862 	return;
1863 
1864 single_page:
1865 	move_to_free_list(page, zone, current_order, start_type);
1866 }
1867 
1868 /*
1869  * Check whether there is a suitable fallback freepage with requested order.
1870  * If only_stealable is true, this function returns fallback_mt only if
1871  * we can steal other freepages all together. This would help to reduce
1872  * fragmentation due to mixed migratetype pages in one pageblock.
1873  */
1874 int find_suitable_fallback(struct free_area *area, unsigned int order,
1875 			int migratetype, bool only_stealable, bool *can_steal)
1876 {
1877 	int i;
1878 	int fallback_mt;
1879 
1880 	if (area->nr_free == 0)
1881 		return -1;
1882 
1883 	*can_steal = false;
1884 	for (i = 0; i < MIGRATE_PCPTYPES - 1 ; i++) {
1885 		fallback_mt = fallbacks[migratetype][i];
1886 		if (free_area_empty(area, fallback_mt))
1887 			continue;
1888 
1889 		if (can_steal_fallback(order, migratetype))
1890 			*can_steal = true;
1891 
1892 		if (!only_stealable)
1893 			return fallback_mt;
1894 
1895 		if (*can_steal)
1896 			return fallback_mt;
1897 	}
1898 
1899 	return -1;
1900 }
1901 
1902 /*
1903  * Reserve a pageblock for exclusive use of high-order atomic allocations if
1904  * there are no empty page blocks that contain a page with a suitable order
1905  */
1906 static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
1907 				unsigned int alloc_order)
1908 {
1909 	int mt;
1910 	unsigned long max_managed, flags;
1911 
1912 	/*
1913 	 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
1914 	 * Check is race-prone but harmless.
1915 	 */
1916 	max_managed = (zone_managed_pages(zone) / 100) + pageblock_nr_pages;
1917 	if (zone->nr_reserved_highatomic >= max_managed)
1918 		return;
1919 
1920 	spin_lock_irqsave(&zone->lock, flags);
1921 
1922 	/* Recheck the nr_reserved_highatomic limit under the lock */
1923 	if (zone->nr_reserved_highatomic >= max_managed)
1924 		goto out_unlock;
1925 
1926 	/* Yoink! */
1927 	mt = get_pageblock_migratetype(page);
1928 	/* Only reserve normal pageblocks (i.e., they can merge with others) */
1929 	if (migratetype_is_mergeable(mt)) {
1930 		zone->nr_reserved_highatomic += pageblock_nr_pages;
1931 		set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
1932 		move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL);
1933 	}
1934 
1935 out_unlock:
1936 	spin_unlock_irqrestore(&zone->lock, flags);
1937 }
1938 
1939 /*
1940  * Used when an allocation is about to fail under memory pressure. This
1941  * potentially hurts the reliability of high-order allocations when under
1942  * intense memory pressure but failed atomic allocations should be easier
1943  * to recover from than an OOM.
1944  *
1945  * If @force is true, try to unreserve a pageblock even though highatomic
1946  * pageblock is exhausted.
1947  */
1948 static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
1949 						bool force)
1950 {
1951 	struct zonelist *zonelist = ac->zonelist;
1952 	unsigned long flags;
1953 	struct zoneref *z;
1954 	struct zone *zone;
1955 	struct page *page;
1956 	int order;
1957 	bool ret;
1958 
1959 	for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->highest_zoneidx,
1960 								ac->nodemask) {
1961 		/*
1962 		 * Preserve at least one pageblock unless memory pressure
1963 		 * is really high.
1964 		 */
1965 		if (!force && zone->nr_reserved_highatomic <=
1966 					pageblock_nr_pages)
1967 			continue;
1968 
1969 		spin_lock_irqsave(&zone->lock, flags);
1970 		for (order = 0; order <= MAX_ORDER; order++) {
1971 			struct free_area *area = &(zone->free_area[order]);
1972 
1973 			page = get_page_from_free_area(area, MIGRATE_HIGHATOMIC);
1974 			if (!page)
1975 				continue;
1976 
1977 			/*
1978 			 * In page freeing path, migratetype change is racy so
1979 			 * we can counter several free pages in a pageblock
1980 			 * in this loop although we changed the pageblock type
1981 			 * from highatomic to ac->migratetype. So we should
1982 			 * adjust the count once.
1983 			 */
1984 			if (is_migrate_highatomic_page(page)) {
1985 				/*
1986 				 * It should never happen but changes to
1987 				 * locking could inadvertently allow a per-cpu
1988 				 * drain to add pages to MIGRATE_HIGHATOMIC
1989 				 * while unreserving so be safe and watch for
1990 				 * underflows.
1991 				 */
1992 				zone->nr_reserved_highatomic -= min(
1993 						pageblock_nr_pages,
1994 						zone->nr_reserved_highatomic);
1995 			}
1996 
1997 			/*
1998 			 * Convert to ac->migratetype and avoid the normal
1999 			 * pageblock stealing heuristics. Minimally, the caller
2000 			 * is doing the work and needs the pages. More
2001 			 * importantly, if the block was always converted to
2002 			 * MIGRATE_UNMOVABLE or another type then the number
2003 			 * of pageblocks that cannot be completely freed
2004 			 * may increase.
2005 			 */
2006 			set_pageblock_migratetype(page, ac->migratetype);
2007 			ret = move_freepages_block(zone, page, ac->migratetype,
2008 									NULL);
2009 			if (ret) {
2010 				spin_unlock_irqrestore(&zone->lock, flags);
2011 				return ret;
2012 			}
2013 		}
2014 		spin_unlock_irqrestore(&zone->lock, flags);
2015 	}
2016 
2017 	return false;
2018 }
2019 
2020 /*
2021  * Try finding a free buddy page on the fallback list and put it on the free
2022  * list of requested migratetype, possibly along with other pages from the same
2023  * block, depending on fragmentation avoidance heuristics. Returns true if
2024  * fallback was found so that __rmqueue_smallest() can grab it.
2025  *
2026  * The use of signed ints for order and current_order is a deliberate
2027  * deviation from the rest of this file, to make the for loop
2028  * condition simpler.
2029  */
2030 static __always_inline bool
2031 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype,
2032 						unsigned int alloc_flags)
2033 {
2034 	struct free_area *area;
2035 	int current_order;
2036 	int min_order = order;
2037 	struct page *page;
2038 	int fallback_mt;
2039 	bool can_steal;
2040 
2041 	/*
2042 	 * Do not steal pages from freelists belonging to other pageblocks
2043 	 * i.e. orders < pageblock_order. If there are no local zones free,
2044 	 * the zonelists will be reiterated without ALLOC_NOFRAGMENT.
2045 	 */
2046 	if (order < pageblock_order && alloc_flags & ALLOC_NOFRAGMENT)
2047 		min_order = pageblock_order;
2048 
2049 	/*
2050 	 * Find the largest available free page in the other list. This roughly
2051 	 * approximates finding the pageblock with the most free pages, which
2052 	 * would be too costly to do exactly.
2053 	 */
2054 	for (current_order = MAX_ORDER; current_order >= min_order;
2055 				--current_order) {
2056 		area = &(zone->free_area[current_order]);
2057 		fallback_mt = find_suitable_fallback(area, current_order,
2058 				start_migratetype, false, &can_steal);
2059 		if (fallback_mt == -1)
2060 			continue;
2061 
2062 		/*
2063 		 * We cannot steal all free pages from the pageblock and the
2064 		 * requested migratetype is movable. In that case it's better to
2065 		 * steal and split the smallest available page instead of the
2066 		 * largest available page, because even if the next movable
2067 		 * allocation falls back into a different pageblock than this
2068 		 * one, it won't cause permanent fragmentation.
2069 		 */
2070 		if (!can_steal && start_migratetype == MIGRATE_MOVABLE
2071 					&& current_order > order)
2072 			goto find_smallest;
2073 
2074 		goto do_steal;
2075 	}
2076 
2077 	return false;
2078 
2079 find_smallest:
2080 	for (current_order = order; current_order <= MAX_ORDER;
2081 							current_order++) {
2082 		area = &(zone->free_area[current_order]);
2083 		fallback_mt = find_suitable_fallback(area, current_order,
2084 				start_migratetype, false, &can_steal);
2085 		if (fallback_mt != -1)
2086 			break;
2087 	}
2088 
2089 	/*
2090 	 * This should not happen - we already found a suitable fallback
2091 	 * when looking for the largest page.
2092 	 */
2093 	VM_BUG_ON(current_order > MAX_ORDER);
2094 
2095 do_steal:
2096 	page = get_page_from_free_area(area, fallback_mt);
2097 
2098 	steal_suitable_fallback(zone, page, alloc_flags, start_migratetype,
2099 								can_steal);
2100 
2101 	trace_mm_page_alloc_extfrag(page, order, current_order,
2102 		start_migratetype, fallback_mt);
2103 
2104 	return true;
2105 
2106 }
2107 
2108 /*
2109  * Do the hard work of removing an element from the buddy allocator.
2110  * Call me with the zone->lock already held.
2111  */
2112 static __always_inline struct page *
2113 __rmqueue(struct zone *zone, unsigned int order, int migratetype,
2114 						unsigned int alloc_flags)
2115 {
2116 	struct page *page;
2117 
2118 	if (IS_ENABLED(CONFIG_CMA)) {
2119 		/*
2120 		 * Balance movable allocations between regular and CMA areas by
2121 		 * allocating from CMA when over half of the zone's free memory
2122 		 * is in the CMA area.
2123 		 */
2124 		if (alloc_flags & ALLOC_CMA &&
2125 		    zone_page_state(zone, NR_FREE_CMA_PAGES) >
2126 		    zone_page_state(zone, NR_FREE_PAGES) / 2) {
2127 			page = __rmqueue_cma_fallback(zone, order);
2128 			if (page)
2129 				return page;
2130 		}
2131 	}
2132 retry:
2133 	page = __rmqueue_smallest(zone, order, migratetype);
2134 	if (unlikely(!page)) {
2135 		if (alloc_flags & ALLOC_CMA)
2136 			page = __rmqueue_cma_fallback(zone, order);
2137 
2138 		if (!page && __rmqueue_fallback(zone, order, migratetype,
2139 								alloc_flags))
2140 			goto retry;
2141 	}
2142 	return page;
2143 }
2144 
2145 /*
2146  * Obtain a specified number of elements from the buddy allocator, all under
2147  * a single hold of the lock, for efficiency.  Add them to the supplied list.
2148  * Returns the number of new pages which were placed at *list.
2149  */
2150 static int rmqueue_bulk(struct zone *zone, unsigned int order,
2151 			unsigned long count, struct list_head *list,
2152 			int migratetype, unsigned int alloc_flags)
2153 {
2154 	unsigned long flags;
2155 	int i;
2156 
2157 	spin_lock_irqsave(&zone->lock, flags);
2158 	for (i = 0; i < count; ++i) {
2159 		struct page *page = __rmqueue(zone, order, migratetype,
2160 								alloc_flags);
2161 		if (unlikely(page == NULL))
2162 			break;
2163 
2164 		/*
2165 		 * Split buddy pages returned by expand() are received here in
2166 		 * physical page order. The page is added to the tail of
2167 		 * caller's list. From the callers perspective, the linked list
2168 		 * is ordered by page number under some conditions. This is
2169 		 * useful for IO devices that can forward direction from the
2170 		 * head, thus also in the physical page order. This is useful
2171 		 * for IO devices that can merge IO requests if the physical
2172 		 * pages are ordered properly.
2173 		 */
2174 		list_add_tail(&page->pcp_list, list);
2175 		if (is_migrate_cma(get_pcppage_migratetype(page)))
2176 			__mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
2177 					      -(1 << order));
2178 	}
2179 
2180 	__mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
2181 	spin_unlock_irqrestore(&zone->lock, flags);
2182 
2183 	return i;
2184 }
2185 
2186 #ifdef CONFIG_NUMA
2187 /*
2188  * Called from the vmstat counter updater to drain pagesets of this
2189  * currently executing processor on remote nodes after they have
2190  * expired.
2191  */
2192 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
2193 {
2194 	int to_drain, batch;
2195 
2196 	batch = READ_ONCE(pcp->batch);
2197 	to_drain = min(pcp->count, batch);
2198 	if (to_drain > 0) {
2199 		spin_lock(&pcp->lock);
2200 		free_pcppages_bulk(zone, to_drain, pcp, 0);
2201 		spin_unlock(&pcp->lock);
2202 	}
2203 }
2204 #endif
2205 
2206 /*
2207  * Drain pcplists of the indicated processor and zone.
2208  */
2209 static void drain_pages_zone(unsigned int cpu, struct zone *zone)
2210 {
2211 	struct per_cpu_pages *pcp;
2212 
2213 	pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
2214 	if (pcp->count) {
2215 		spin_lock(&pcp->lock);
2216 		free_pcppages_bulk(zone, pcp->count, pcp, 0);
2217 		spin_unlock(&pcp->lock);
2218 	}
2219 }
2220 
2221 /*
2222  * Drain pcplists of all zones on the indicated processor.
2223  */
2224 static void drain_pages(unsigned int cpu)
2225 {
2226 	struct zone *zone;
2227 
2228 	for_each_populated_zone(zone) {
2229 		drain_pages_zone(cpu, zone);
2230 	}
2231 }
2232 
2233 /*
2234  * Spill all of this CPU's per-cpu pages back into the buddy allocator.
2235  */
2236 void drain_local_pages(struct zone *zone)
2237 {
2238 	int cpu = smp_processor_id();
2239 
2240 	if (zone)
2241 		drain_pages_zone(cpu, zone);
2242 	else
2243 		drain_pages(cpu);
2244 }
2245 
2246 /*
2247  * The implementation of drain_all_pages(), exposing an extra parameter to
2248  * drain on all cpus.
2249  *
2250  * drain_all_pages() is optimized to only execute on cpus where pcplists are
2251  * not empty. The check for non-emptiness can however race with a free to
2252  * pcplist that has not yet increased the pcp->count from 0 to 1. Callers
2253  * that need the guarantee that every CPU has drained can disable the
2254  * optimizing racy check.
2255  */
2256 static void __drain_all_pages(struct zone *zone, bool force_all_cpus)
2257 {
2258 	int cpu;
2259 
2260 	/*
2261 	 * Allocate in the BSS so we won't require allocation in
2262 	 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
2263 	 */
2264 	static cpumask_t cpus_with_pcps;
2265 
2266 	/*
2267 	 * Do not drain if one is already in progress unless it's specific to
2268 	 * a zone. Such callers are primarily CMA and memory hotplug and need
2269 	 * the drain to be complete when the call returns.
2270 	 */
2271 	if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
2272 		if (!zone)
2273 			return;
2274 		mutex_lock(&pcpu_drain_mutex);
2275 	}
2276 
2277 	/*
2278 	 * We don't care about racing with CPU hotplug event
2279 	 * as offline notification will cause the notified
2280 	 * cpu to drain that CPU pcps and on_each_cpu_mask
2281 	 * disables preemption as part of its processing
2282 	 */
2283 	for_each_online_cpu(cpu) {
2284 		struct per_cpu_pages *pcp;
2285 		struct zone *z;
2286 		bool has_pcps = false;
2287 
2288 		if (force_all_cpus) {
2289 			/*
2290 			 * The pcp.count check is racy, some callers need a
2291 			 * guarantee that no cpu is missed.
2292 			 */
2293 			has_pcps = true;
2294 		} else if (zone) {
2295 			pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
2296 			if (pcp->count)
2297 				has_pcps = true;
2298 		} else {
2299 			for_each_populated_zone(z) {
2300 				pcp = per_cpu_ptr(z->per_cpu_pageset, cpu);
2301 				if (pcp->count) {
2302 					has_pcps = true;
2303 					break;
2304 				}
2305 			}
2306 		}
2307 
2308 		if (has_pcps)
2309 			cpumask_set_cpu(cpu, &cpus_with_pcps);
2310 		else
2311 			cpumask_clear_cpu(cpu, &cpus_with_pcps);
2312 	}
2313 
2314 	for_each_cpu(cpu, &cpus_with_pcps) {
2315 		if (zone)
2316 			drain_pages_zone(cpu, zone);
2317 		else
2318 			drain_pages(cpu);
2319 	}
2320 
2321 	mutex_unlock(&pcpu_drain_mutex);
2322 }
2323 
2324 /*
2325  * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
2326  *
2327  * When zone parameter is non-NULL, spill just the single zone's pages.
2328  */
2329 void drain_all_pages(struct zone *zone)
2330 {
2331 	__drain_all_pages(zone, false);
2332 }
2333 
2334 static bool free_unref_page_prepare(struct page *page, unsigned long pfn,
2335 							unsigned int order)
2336 {
2337 	int migratetype;
2338 
2339 	if (!free_pages_prepare(page, order, FPI_NONE))
2340 		return false;
2341 
2342 	migratetype = get_pfnblock_migratetype(page, pfn);
2343 	set_pcppage_migratetype(page, migratetype);
2344 	return true;
2345 }
2346 
2347 static int nr_pcp_free(struct per_cpu_pages *pcp, int high, int batch,
2348 		       bool free_high)
2349 {
2350 	int min_nr_free, max_nr_free;
2351 
2352 	/* Free everything if batch freeing high-order pages. */
2353 	if (unlikely(free_high))
2354 		return pcp->count;
2355 
2356 	/* Check for PCP disabled or boot pageset */
2357 	if (unlikely(high < batch))
2358 		return 1;
2359 
2360 	/* Leave at least pcp->batch pages on the list */
2361 	min_nr_free = batch;
2362 	max_nr_free = high - batch;
2363 
2364 	/*
2365 	 * Double the number of pages freed each time there is subsequent
2366 	 * freeing of pages without any allocation.
2367 	 */
2368 	batch <<= pcp->free_factor;
2369 	if (batch < max_nr_free)
2370 		pcp->free_factor++;
2371 	batch = clamp(batch, min_nr_free, max_nr_free);
2372 
2373 	return batch;
2374 }
2375 
2376 static int nr_pcp_high(struct per_cpu_pages *pcp, struct zone *zone,
2377 		       bool free_high)
2378 {
2379 	int high = READ_ONCE(pcp->high);
2380 
2381 	if (unlikely(!high || free_high))
2382 		return 0;
2383 
2384 	if (!test_bit(ZONE_RECLAIM_ACTIVE, &zone->flags))
2385 		return high;
2386 
2387 	/*
2388 	 * If reclaim is active, limit the number of pages that can be
2389 	 * stored on pcp lists
2390 	 */
2391 	return min(READ_ONCE(pcp->batch) << 2, high);
2392 }
2393 
2394 static void free_unref_page_commit(struct zone *zone, struct per_cpu_pages *pcp,
2395 				   struct page *page, int migratetype,
2396 				   unsigned int order)
2397 {
2398 	int high;
2399 	int pindex;
2400 	bool free_high;
2401 
2402 	__count_vm_events(PGFREE, 1 << order);
2403 	pindex = order_to_pindex(migratetype, order);
2404 	list_add(&page->pcp_list, &pcp->lists[pindex]);
2405 	pcp->count += 1 << order;
2406 
2407 	/*
2408 	 * As high-order pages other than THP's stored on PCP can contribute
2409 	 * to fragmentation, limit the number stored when PCP is heavily
2410 	 * freeing without allocation. The remainder after bulk freeing
2411 	 * stops will be drained from vmstat refresh context.
2412 	 */
2413 	free_high = (pcp->free_factor && order && order <= PAGE_ALLOC_COSTLY_ORDER);
2414 
2415 	high = nr_pcp_high(pcp, zone, free_high);
2416 	if (pcp->count >= high) {
2417 		int batch = READ_ONCE(pcp->batch);
2418 
2419 		free_pcppages_bulk(zone, nr_pcp_free(pcp, high, batch, free_high), pcp, pindex);
2420 	}
2421 }
2422 
2423 /*
2424  * Free a pcp page
2425  */
2426 void free_unref_page(struct page *page, unsigned int order)
2427 {
2428 	unsigned long __maybe_unused UP_flags;
2429 	struct per_cpu_pages *pcp;
2430 	struct zone *zone;
2431 	unsigned long pfn = page_to_pfn(page);
2432 	int migratetype;
2433 
2434 	if (!free_unref_page_prepare(page, pfn, order))
2435 		return;
2436 
2437 	/*
2438 	 * We only track unmovable, reclaimable and movable on pcp lists.
2439 	 * Place ISOLATE pages on the isolated list because they are being
2440 	 * offlined but treat HIGHATOMIC as movable pages so we can get those
2441 	 * areas back if necessary. Otherwise, we may have to free
2442 	 * excessively into the page allocator
2443 	 */
2444 	migratetype = get_pcppage_migratetype(page);
2445 	if (unlikely(migratetype >= MIGRATE_PCPTYPES)) {
2446 		if (unlikely(is_migrate_isolate(migratetype))) {
2447 			free_one_page(page_zone(page), page, pfn, order, migratetype, FPI_NONE);
2448 			return;
2449 		}
2450 		migratetype = MIGRATE_MOVABLE;
2451 	}
2452 
2453 	zone = page_zone(page);
2454 	pcp_trylock_prepare(UP_flags);
2455 	pcp = pcp_spin_trylock(zone->per_cpu_pageset);
2456 	if (pcp) {
2457 		free_unref_page_commit(zone, pcp, page, migratetype, order);
2458 		pcp_spin_unlock(pcp);
2459 	} else {
2460 		free_one_page(zone, page, pfn, order, migratetype, FPI_NONE);
2461 	}
2462 	pcp_trylock_finish(UP_flags);
2463 }
2464 
2465 /*
2466  * Free a list of 0-order pages
2467  */
2468 void free_unref_page_list(struct list_head *list)
2469 {
2470 	unsigned long __maybe_unused UP_flags;
2471 	struct page *page, *next;
2472 	struct per_cpu_pages *pcp = NULL;
2473 	struct zone *locked_zone = NULL;
2474 	int batch_count = 0;
2475 	int migratetype;
2476 
2477 	/* Prepare pages for freeing */
2478 	list_for_each_entry_safe(page, next, list, lru) {
2479 		unsigned long pfn = page_to_pfn(page);
2480 		if (!free_unref_page_prepare(page, pfn, 0)) {
2481 			list_del(&page->lru);
2482 			continue;
2483 		}
2484 
2485 		/*
2486 		 * Free isolated pages directly to the allocator, see
2487 		 * comment in free_unref_page.
2488 		 */
2489 		migratetype = get_pcppage_migratetype(page);
2490 		if (unlikely(is_migrate_isolate(migratetype))) {
2491 			list_del(&page->lru);
2492 			free_one_page(page_zone(page), page, pfn, 0, migratetype, FPI_NONE);
2493 			continue;
2494 		}
2495 	}
2496 
2497 	list_for_each_entry_safe(page, next, list, lru) {
2498 		struct zone *zone = page_zone(page);
2499 
2500 		list_del(&page->lru);
2501 		migratetype = get_pcppage_migratetype(page);
2502 
2503 		/*
2504 		 * Either different zone requiring a different pcp lock or
2505 		 * excessive lock hold times when freeing a large list of
2506 		 * pages.
2507 		 */
2508 		if (zone != locked_zone || batch_count == SWAP_CLUSTER_MAX) {
2509 			if (pcp) {
2510 				pcp_spin_unlock(pcp);
2511 				pcp_trylock_finish(UP_flags);
2512 			}
2513 
2514 			batch_count = 0;
2515 
2516 			/*
2517 			 * trylock is necessary as pages may be getting freed
2518 			 * from IRQ or SoftIRQ context after an IO completion.
2519 			 */
2520 			pcp_trylock_prepare(UP_flags);
2521 			pcp = pcp_spin_trylock(zone->per_cpu_pageset);
2522 			if (unlikely(!pcp)) {
2523 				pcp_trylock_finish(UP_flags);
2524 				free_one_page(zone, page, page_to_pfn(page),
2525 					      0, migratetype, FPI_NONE);
2526 				locked_zone = NULL;
2527 				continue;
2528 			}
2529 			locked_zone = zone;
2530 		}
2531 
2532 		/*
2533 		 * Non-isolated types over MIGRATE_PCPTYPES get added
2534 		 * to the MIGRATE_MOVABLE pcp list.
2535 		 */
2536 		if (unlikely(migratetype >= MIGRATE_PCPTYPES))
2537 			migratetype = MIGRATE_MOVABLE;
2538 
2539 		trace_mm_page_free_batched(page);
2540 		free_unref_page_commit(zone, pcp, page, migratetype, 0);
2541 		batch_count++;
2542 	}
2543 
2544 	if (pcp) {
2545 		pcp_spin_unlock(pcp);
2546 		pcp_trylock_finish(UP_flags);
2547 	}
2548 }
2549 
2550 /*
2551  * split_page takes a non-compound higher-order page, and splits it into
2552  * n (1<<order) sub-pages: page[0..n]
2553  * Each sub-page must be freed individually.
2554  *
2555  * Note: this is probably too low level an operation for use in drivers.
2556  * Please consult with lkml before using this in your driver.
2557  */
2558 void split_page(struct page *page, unsigned int order)
2559 {
2560 	int i;
2561 
2562 	VM_BUG_ON_PAGE(PageCompound(page), page);
2563 	VM_BUG_ON_PAGE(!page_count(page), page);
2564 
2565 	for (i = 1; i < (1 << order); i++)
2566 		set_page_refcounted(page + i);
2567 	split_page_owner(page, 1 << order);
2568 	split_page_memcg(page, 1 << order);
2569 }
2570 EXPORT_SYMBOL_GPL(split_page);
2571 
2572 int __isolate_free_page(struct page *page, unsigned int order)
2573 {
2574 	struct zone *zone = page_zone(page);
2575 	int mt = get_pageblock_migratetype(page);
2576 
2577 	if (!is_migrate_isolate(mt)) {
2578 		unsigned long watermark;
2579 		/*
2580 		 * Obey watermarks as if the page was being allocated. We can
2581 		 * emulate a high-order watermark check with a raised order-0
2582 		 * watermark, because we already know our high-order page
2583 		 * exists.
2584 		 */
2585 		watermark = zone->_watermark[WMARK_MIN] + (1UL << order);
2586 		if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
2587 			return 0;
2588 
2589 		__mod_zone_freepage_state(zone, -(1UL << order), mt);
2590 	}
2591 
2592 	del_page_from_free_list(page, zone, order);
2593 
2594 	/*
2595 	 * Set the pageblock if the isolated page is at least half of a
2596 	 * pageblock
2597 	 */
2598 	if (order >= pageblock_order - 1) {
2599 		struct page *endpage = page + (1 << order) - 1;
2600 		for (; page < endpage; page += pageblock_nr_pages) {
2601 			int mt = get_pageblock_migratetype(page);
2602 			/*
2603 			 * Only change normal pageblocks (i.e., they can merge
2604 			 * with others)
2605 			 */
2606 			if (migratetype_is_mergeable(mt))
2607 				set_pageblock_migratetype(page,
2608 							  MIGRATE_MOVABLE);
2609 		}
2610 	}
2611 
2612 	return 1UL << order;
2613 }
2614 
2615 /**
2616  * __putback_isolated_page - Return a now-isolated page back where we got it
2617  * @page: Page that was isolated
2618  * @order: Order of the isolated page
2619  * @mt: The page's pageblock's migratetype
2620  *
2621  * This function is meant to return a page pulled from the free lists via
2622  * __isolate_free_page back to the free lists they were pulled from.
2623  */
2624 void __putback_isolated_page(struct page *page, unsigned int order, int mt)
2625 {
2626 	struct zone *zone = page_zone(page);
2627 
2628 	/* zone lock should be held when this function is called */
2629 	lockdep_assert_held(&zone->lock);
2630 
2631 	/* Return isolated page to tail of freelist. */
2632 	__free_one_page(page, page_to_pfn(page), zone, order, mt,
2633 			FPI_SKIP_REPORT_NOTIFY | FPI_TO_TAIL);
2634 }
2635 
2636 /*
2637  * Update NUMA hit/miss statistics
2638  */
2639 static inline void zone_statistics(struct zone *preferred_zone, struct zone *z,
2640 				   long nr_account)
2641 {
2642 #ifdef CONFIG_NUMA
2643 	enum numa_stat_item local_stat = NUMA_LOCAL;
2644 
2645 	/* skip numa counters update if numa stats is disabled */
2646 	if (!static_branch_likely(&vm_numa_stat_key))
2647 		return;
2648 
2649 	if (zone_to_nid(z) != numa_node_id())
2650 		local_stat = NUMA_OTHER;
2651 
2652 	if (zone_to_nid(z) == zone_to_nid(preferred_zone))
2653 		__count_numa_events(z, NUMA_HIT, nr_account);
2654 	else {
2655 		__count_numa_events(z, NUMA_MISS, nr_account);
2656 		__count_numa_events(preferred_zone, NUMA_FOREIGN, nr_account);
2657 	}
2658 	__count_numa_events(z, local_stat, nr_account);
2659 #endif
2660 }
2661 
2662 static __always_inline
2663 struct page *rmqueue_buddy(struct zone *preferred_zone, struct zone *zone,
2664 			   unsigned int order, unsigned int alloc_flags,
2665 			   int migratetype)
2666 {
2667 	struct page *page;
2668 	unsigned long flags;
2669 
2670 	do {
2671 		page = NULL;
2672 		spin_lock_irqsave(&zone->lock, flags);
2673 		/*
2674 		 * order-0 request can reach here when the pcplist is skipped
2675 		 * due to non-CMA allocation context. HIGHATOMIC area is
2676 		 * reserved for high-order atomic allocation, so order-0
2677 		 * request should skip it.
2678 		 */
2679 		if (alloc_flags & ALLOC_HIGHATOMIC)
2680 			page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
2681 		if (!page) {
2682 			page = __rmqueue(zone, order, migratetype, alloc_flags);
2683 
2684 			/*
2685 			 * If the allocation fails, allow OOM handling access
2686 			 * to HIGHATOMIC reserves as failing now is worse than
2687 			 * failing a high-order atomic allocation in the
2688 			 * future.
2689 			 */
2690 			if (!page && (alloc_flags & ALLOC_OOM))
2691 				page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
2692 
2693 			if (!page) {
2694 				spin_unlock_irqrestore(&zone->lock, flags);
2695 				return NULL;
2696 			}
2697 		}
2698 		__mod_zone_freepage_state(zone, -(1 << order),
2699 					  get_pcppage_migratetype(page));
2700 		spin_unlock_irqrestore(&zone->lock, flags);
2701 	} while (check_new_pages(page, order));
2702 
2703 	__count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
2704 	zone_statistics(preferred_zone, zone, 1);
2705 
2706 	return page;
2707 }
2708 
2709 /* Remove page from the per-cpu list, caller must protect the list */
2710 static inline
2711 struct page *__rmqueue_pcplist(struct zone *zone, unsigned int order,
2712 			int migratetype,
2713 			unsigned int alloc_flags,
2714 			struct per_cpu_pages *pcp,
2715 			struct list_head *list)
2716 {
2717 	struct page *page;
2718 
2719 	do {
2720 		if (list_empty(list)) {
2721 			int batch = READ_ONCE(pcp->batch);
2722 			int alloced;
2723 
2724 			/*
2725 			 * Scale batch relative to order if batch implies
2726 			 * free pages can be stored on the PCP. Batch can
2727 			 * be 1 for small zones or for boot pagesets which
2728 			 * should never store free pages as the pages may
2729 			 * belong to arbitrary zones.
2730 			 */
2731 			if (batch > 1)
2732 				batch = max(batch >> order, 2);
2733 			alloced = rmqueue_bulk(zone, order,
2734 					batch, list,
2735 					migratetype, alloc_flags);
2736 
2737 			pcp->count += alloced << order;
2738 			if (unlikely(list_empty(list)))
2739 				return NULL;
2740 		}
2741 
2742 		page = list_first_entry(list, struct page, pcp_list);
2743 		list_del(&page->pcp_list);
2744 		pcp->count -= 1 << order;
2745 	} while (check_new_pages(page, order));
2746 
2747 	return page;
2748 }
2749 
2750 /* Lock and remove page from the per-cpu list */
2751 static struct page *rmqueue_pcplist(struct zone *preferred_zone,
2752 			struct zone *zone, unsigned int order,
2753 			int migratetype, unsigned int alloc_flags)
2754 {
2755 	struct per_cpu_pages *pcp;
2756 	struct list_head *list;
2757 	struct page *page;
2758 	unsigned long __maybe_unused UP_flags;
2759 
2760 	/* spin_trylock may fail due to a parallel drain or IRQ reentrancy. */
2761 	pcp_trylock_prepare(UP_flags);
2762 	pcp = pcp_spin_trylock(zone->per_cpu_pageset);
2763 	if (!pcp) {
2764 		pcp_trylock_finish(UP_flags);
2765 		return NULL;
2766 	}
2767 
2768 	/*
2769 	 * On allocation, reduce the number of pages that are batch freed.
2770 	 * See nr_pcp_free() where free_factor is increased for subsequent
2771 	 * frees.
2772 	 */
2773 	pcp->free_factor >>= 1;
2774 	list = &pcp->lists[order_to_pindex(migratetype, order)];
2775 	page = __rmqueue_pcplist(zone, order, migratetype, alloc_flags, pcp, list);
2776 	pcp_spin_unlock(pcp);
2777 	pcp_trylock_finish(UP_flags);
2778 	if (page) {
2779 		__count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
2780 		zone_statistics(preferred_zone, zone, 1);
2781 	}
2782 	return page;
2783 }
2784 
2785 /*
2786  * Allocate a page from the given zone.
2787  * Use pcplists for THP or "cheap" high-order allocations.
2788  */
2789 
2790 /*
2791  * Do not instrument rmqueue() with KMSAN. This function may call
2792  * __msan_poison_alloca() through a call to set_pfnblock_flags_mask().
2793  * If __msan_poison_alloca() attempts to allocate pages for the stack depot, it
2794  * may call rmqueue() again, which will result in a deadlock.
2795  */
2796 __no_sanitize_memory
2797 static inline
2798 struct page *rmqueue(struct zone *preferred_zone,
2799 			struct zone *zone, unsigned int order,
2800 			gfp_t gfp_flags, unsigned int alloc_flags,
2801 			int migratetype)
2802 {
2803 	struct page *page;
2804 
2805 	/*
2806 	 * We most definitely don't want callers attempting to
2807 	 * allocate greater than order-1 page units with __GFP_NOFAIL.
2808 	 */
2809 	WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
2810 
2811 	if (likely(pcp_allowed_order(order))) {
2812 		/*
2813 		 * MIGRATE_MOVABLE pcplist could have the pages on CMA area and
2814 		 * we need to skip it when CMA area isn't allowed.
2815 		 */
2816 		if (!IS_ENABLED(CONFIG_CMA) || alloc_flags & ALLOC_CMA ||
2817 				migratetype != MIGRATE_MOVABLE) {
2818 			page = rmqueue_pcplist(preferred_zone, zone, order,
2819 					migratetype, alloc_flags);
2820 			if (likely(page))
2821 				goto out;
2822 		}
2823 	}
2824 
2825 	page = rmqueue_buddy(preferred_zone, zone, order, alloc_flags,
2826 							migratetype);
2827 
2828 out:
2829 	/* Separate test+clear to avoid unnecessary atomics */
2830 	if (unlikely(test_bit(ZONE_BOOSTED_WATERMARK, &zone->flags))) {
2831 		clear_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
2832 		wakeup_kswapd(zone, 0, 0, zone_idx(zone));
2833 	}
2834 
2835 	VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
2836 	return page;
2837 }
2838 
2839 noinline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
2840 {
2841 	return __should_fail_alloc_page(gfp_mask, order);
2842 }
2843 ALLOW_ERROR_INJECTION(should_fail_alloc_page, TRUE);
2844 
2845 static inline long __zone_watermark_unusable_free(struct zone *z,
2846 				unsigned int order, unsigned int alloc_flags)
2847 {
2848 	long unusable_free = (1 << order) - 1;
2849 
2850 	/*
2851 	 * If the caller does not have rights to reserves below the min
2852 	 * watermark then subtract the high-atomic reserves. This will
2853 	 * over-estimate the size of the atomic reserve but it avoids a search.
2854 	 */
2855 	if (likely(!(alloc_flags & ALLOC_RESERVES)))
2856 		unusable_free += z->nr_reserved_highatomic;
2857 
2858 #ifdef CONFIG_CMA
2859 	/* If allocation can't use CMA areas don't use free CMA pages */
2860 	if (!(alloc_flags & ALLOC_CMA))
2861 		unusable_free += zone_page_state(z, NR_FREE_CMA_PAGES);
2862 #endif
2863 
2864 	return unusable_free;
2865 }
2866 
2867 /*
2868  * Return true if free base pages are above 'mark'. For high-order checks it
2869  * will return true of the order-0 watermark is reached and there is at least
2870  * one free page of a suitable size. Checking now avoids taking the zone lock
2871  * to check in the allocation paths if no pages are free.
2872  */
2873 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
2874 			 int highest_zoneidx, unsigned int alloc_flags,
2875 			 long free_pages)
2876 {
2877 	long min = mark;
2878 	int o;
2879 
2880 	/* free_pages may go negative - that's OK */
2881 	free_pages -= __zone_watermark_unusable_free(z, order, alloc_flags);
2882 
2883 	if (unlikely(alloc_flags & ALLOC_RESERVES)) {
2884 		/*
2885 		 * __GFP_HIGH allows access to 50% of the min reserve as well
2886 		 * as OOM.
2887 		 */
2888 		if (alloc_flags & ALLOC_MIN_RESERVE) {
2889 			min -= min / 2;
2890 
2891 			/*
2892 			 * Non-blocking allocations (e.g. GFP_ATOMIC) can
2893 			 * access more reserves than just __GFP_HIGH. Other
2894 			 * non-blocking allocations requests such as GFP_NOWAIT
2895 			 * or (GFP_KERNEL & ~__GFP_DIRECT_RECLAIM) do not get
2896 			 * access to the min reserve.
2897 			 */
2898 			if (alloc_flags & ALLOC_NON_BLOCK)
2899 				min -= min / 4;
2900 		}
2901 
2902 		/*
2903 		 * OOM victims can try even harder than the normal reserve
2904 		 * users on the grounds that it's definitely going to be in
2905 		 * the exit path shortly and free memory. Any allocation it
2906 		 * makes during the free path will be small and short-lived.
2907 		 */
2908 		if (alloc_flags & ALLOC_OOM)
2909 			min -= min / 2;
2910 	}
2911 
2912 	/*
2913 	 * Check watermarks for an order-0 allocation request. If these
2914 	 * are not met, then a high-order request also cannot go ahead
2915 	 * even if a suitable page happened to be free.
2916 	 */
2917 	if (free_pages <= min + z->lowmem_reserve[highest_zoneidx])
2918 		return false;
2919 
2920 	/* If this is an order-0 request then the watermark is fine */
2921 	if (!order)
2922 		return true;
2923 
2924 	/* For a high-order request, check at least one suitable page is free */
2925 	for (o = order; o <= MAX_ORDER; o++) {
2926 		struct free_area *area = &z->free_area[o];
2927 		int mt;
2928 
2929 		if (!area->nr_free)
2930 			continue;
2931 
2932 		for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
2933 			if (!free_area_empty(area, mt))
2934 				return true;
2935 		}
2936 
2937 #ifdef CONFIG_CMA
2938 		if ((alloc_flags & ALLOC_CMA) &&
2939 		    !free_area_empty(area, MIGRATE_CMA)) {
2940 			return true;
2941 		}
2942 #endif
2943 		if ((alloc_flags & (ALLOC_HIGHATOMIC|ALLOC_OOM)) &&
2944 		    !free_area_empty(area, MIGRATE_HIGHATOMIC)) {
2945 			return true;
2946 		}
2947 	}
2948 	return false;
2949 }
2950 
2951 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
2952 		      int highest_zoneidx, unsigned int alloc_flags)
2953 {
2954 	return __zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
2955 					zone_page_state(z, NR_FREE_PAGES));
2956 }
2957 
2958 static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
2959 				unsigned long mark, int highest_zoneidx,
2960 				unsigned int alloc_flags, gfp_t gfp_mask)
2961 {
2962 	long free_pages;
2963 
2964 	free_pages = zone_page_state(z, NR_FREE_PAGES);
2965 
2966 	/*
2967 	 * Fast check for order-0 only. If this fails then the reserves
2968 	 * need to be calculated.
2969 	 */
2970 	if (!order) {
2971 		long usable_free;
2972 		long reserved;
2973 
2974 		usable_free = free_pages;
2975 		reserved = __zone_watermark_unusable_free(z, 0, alloc_flags);
2976 
2977 		/* reserved may over estimate high-atomic reserves. */
2978 		usable_free -= min(usable_free, reserved);
2979 		if (usable_free > mark + z->lowmem_reserve[highest_zoneidx])
2980 			return true;
2981 	}
2982 
2983 	if (__zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
2984 					free_pages))
2985 		return true;
2986 
2987 	/*
2988 	 * Ignore watermark boosting for __GFP_HIGH order-0 allocations
2989 	 * when checking the min watermark. The min watermark is the
2990 	 * point where boosting is ignored so that kswapd is woken up
2991 	 * when below the low watermark.
2992 	 */
2993 	if (unlikely(!order && (alloc_flags & ALLOC_MIN_RESERVE) && z->watermark_boost
2994 		&& ((alloc_flags & ALLOC_WMARK_MASK) == WMARK_MIN))) {
2995 		mark = z->_watermark[WMARK_MIN];
2996 		return __zone_watermark_ok(z, order, mark, highest_zoneidx,
2997 					alloc_flags, free_pages);
2998 	}
2999 
3000 	return false;
3001 }
3002 
3003 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
3004 			unsigned long mark, int highest_zoneidx)
3005 {
3006 	long free_pages = zone_page_state(z, NR_FREE_PAGES);
3007 
3008 	if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
3009 		free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
3010 
3011 	return __zone_watermark_ok(z, order, mark, highest_zoneidx, 0,
3012 								free_pages);
3013 }
3014 
3015 #ifdef CONFIG_NUMA
3016 int __read_mostly node_reclaim_distance = RECLAIM_DISTANCE;
3017 
3018 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3019 {
3020 	return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
3021 				node_reclaim_distance;
3022 }
3023 #else	/* CONFIG_NUMA */
3024 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3025 {
3026 	return true;
3027 }
3028 #endif	/* CONFIG_NUMA */
3029 
3030 /*
3031  * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid
3032  * fragmentation is subtle. If the preferred zone was HIGHMEM then
3033  * premature use of a lower zone may cause lowmem pressure problems that
3034  * are worse than fragmentation. If the next zone is ZONE_DMA then it is
3035  * probably too small. It only makes sense to spread allocations to avoid
3036  * fragmentation between the Normal and DMA32 zones.
3037  */
3038 static inline unsigned int
3039 alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask)
3040 {
3041 	unsigned int alloc_flags;
3042 
3043 	/*
3044 	 * __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
3045 	 * to save a branch.
3046 	 */
3047 	alloc_flags = (__force int) (gfp_mask & __GFP_KSWAPD_RECLAIM);
3048 
3049 #ifdef CONFIG_ZONE_DMA32
3050 	if (!zone)
3051 		return alloc_flags;
3052 
3053 	if (zone_idx(zone) != ZONE_NORMAL)
3054 		return alloc_flags;
3055 
3056 	/*
3057 	 * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and
3058 	 * the pointer is within zone->zone_pgdat->node_zones[]. Also assume
3059 	 * on UMA that if Normal is populated then so is DMA32.
3060 	 */
3061 	BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1);
3062 	if (nr_online_nodes > 1 && !populated_zone(--zone))
3063 		return alloc_flags;
3064 
3065 	alloc_flags |= ALLOC_NOFRAGMENT;
3066 #endif /* CONFIG_ZONE_DMA32 */
3067 	return alloc_flags;
3068 }
3069 
3070 /* Must be called after current_gfp_context() which can change gfp_mask */
3071 static inline unsigned int gfp_to_alloc_flags_cma(gfp_t gfp_mask,
3072 						  unsigned int alloc_flags)
3073 {
3074 #ifdef CONFIG_CMA
3075 	if (gfp_migratetype(gfp_mask) == MIGRATE_MOVABLE)
3076 		alloc_flags |= ALLOC_CMA;
3077 #endif
3078 	return alloc_flags;
3079 }
3080 
3081 /*
3082  * get_page_from_freelist goes through the zonelist trying to allocate
3083  * a page.
3084  */
3085 static struct page *
3086 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
3087 						const struct alloc_context *ac)
3088 {
3089 	struct zoneref *z;
3090 	struct zone *zone;
3091 	struct pglist_data *last_pgdat = NULL;
3092 	bool last_pgdat_dirty_ok = false;
3093 	bool no_fallback;
3094 
3095 retry:
3096 	/*
3097 	 * Scan zonelist, looking for a zone with enough free.
3098 	 * See also cpuset_node_allowed() comment in kernel/cgroup/cpuset.c.
3099 	 */
3100 	no_fallback = alloc_flags & ALLOC_NOFRAGMENT;
3101 	z = ac->preferred_zoneref;
3102 	for_next_zone_zonelist_nodemask(zone, z, ac->highest_zoneidx,
3103 					ac->nodemask) {
3104 		struct page *page;
3105 		unsigned long mark;
3106 
3107 		if (cpusets_enabled() &&
3108 			(alloc_flags & ALLOC_CPUSET) &&
3109 			!__cpuset_zone_allowed(zone, gfp_mask))
3110 				continue;
3111 		/*
3112 		 * When allocating a page cache page for writing, we
3113 		 * want to get it from a node that is within its dirty
3114 		 * limit, such that no single node holds more than its
3115 		 * proportional share of globally allowed dirty pages.
3116 		 * The dirty limits take into account the node's
3117 		 * lowmem reserves and high watermark so that kswapd
3118 		 * should be able to balance it without having to
3119 		 * write pages from its LRU list.
3120 		 *
3121 		 * XXX: For now, allow allocations to potentially
3122 		 * exceed the per-node dirty limit in the slowpath
3123 		 * (spread_dirty_pages unset) before going into reclaim,
3124 		 * which is important when on a NUMA setup the allowed
3125 		 * nodes are together not big enough to reach the
3126 		 * global limit.  The proper fix for these situations
3127 		 * will require awareness of nodes in the
3128 		 * dirty-throttling and the flusher threads.
3129 		 */
3130 		if (ac->spread_dirty_pages) {
3131 			if (last_pgdat != zone->zone_pgdat) {
3132 				last_pgdat = zone->zone_pgdat;
3133 				last_pgdat_dirty_ok = node_dirty_ok(zone->zone_pgdat);
3134 			}
3135 
3136 			if (!last_pgdat_dirty_ok)
3137 				continue;
3138 		}
3139 
3140 		if (no_fallback && nr_online_nodes > 1 &&
3141 		    zone != ac->preferred_zoneref->zone) {
3142 			int local_nid;
3143 
3144 			/*
3145 			 * If moving to a remote node, retry but allow
3146 			 * fragmenting fallbacks. Locality is more important
3147 			 * than fragmentation avoidance.
3148 			 */
3149 			local_nid = zone_to_nid(ac->preferred_zoneref->zone);
3150 			if (zone_to_nid(zone) != local_nid) {
3151 				alloc_flags &= ~ALLOC_NOFRAGMENT;
3152 				goto retry;
3153 			}
3154 		}
3155 
3156 		mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
3157 		if (!zone_watermark_fast(zone, order, mark,
3158 				       ac->highest_zoneidx, alloc_flags,
3159 				       gfp_mask)) {
3160 			int ret;
3161 
3162 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3163 			/*
3164 			 * Watermark failed for this zone, but see if we can
3165 			 * grow this zone if it contains deferred pages.
3166 			 */
3167 			if (deferred_pages_enabled()) {
3168 				if (_deferred_grow_zone(zone, order))
3169 					goto try_this_zone;
3170 			}
3171 #endif
3172 			/* Checked here to keep the fast path fast */
3173 			BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
3174 			if (alloc_flags & ALLOC_NO_WATERMARKS)
3175 				goto try_this_zone;
3176 
3177 			if (!node_reclaim_enabled() ||
3178 			    !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
3179 				continue;
3180 
3181 			ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
3182 			switch (ret) {
3183 			case NODE_RECLAIM_NOSCAN:
3184 				/* did not scan */
3185 				continue;
3186 			case NODE_RECLAIM_FULL:
3187 				/* scanned but unreclaimable */
3188 				continue;
3189 			default:
3190 				/* did we reclaim enough */
3191 				if (zone_watermark_ok(zone, order, mark,
3192 					ac->highest_zoneidx, alloc_flags))
3193 					goto try_this_zone;
3194 
3195 				continue;
3196 			}
3197 		}
3198 
3199 try_this_zone:
3200 		page = rmqueue(ac->preferred_zoneref->zone, zone, order,
3201 				gfp_mask, alloc_flags, ac->migratetype);
3202 		if (page) {
3203 			prep_new_page(page, order, gfp_mask, alloc_flags);
3204 
3205 			/*
3206 			 * If this is a high-order atomic allocation then check
3207 			 * if the pageblock should be reserved for the future
3208 			 */
3209 			if (unlikely(alloc_flags & ALLOC_HIGHATOMIC))
3210 				reserve_highatomic_pageblock(page, zone, order);
3211 
3212 			return page;
3213 		} else {
3214 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3215 			/* Try again if zone has deferred pages */
3216 			if (deferred_pages_enabled()) {
3217 				if (_deferred_grow_zone(zone, order))
3218 					goto try_this_zone;
3219 			}
3220 #endif
3221 		}
3222 	}
3223 
3224 	/*
3225 	 * It's possible on a UMA machine to get through all zones that are
3226 	 * fragmented. If avoiding fragmentation, reset and try again.
3227 	 */
3228 	if (no_fallback) {
3229 		alloc_flags &= ~ALLOC_NOFRAGMENT;
3230 		goto retry;
3231 	}
3232 
3233 	return NULL;
3234 }
3235 
3236 static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
3237 {
3238 	unsigned int filter = SHOW_MEM_FILTER_NODES;
3239 
3240 	/*
3241 	 * This documents exceptions given to allocations in certain
3242 	 * contexts that are allowed to allocate outside current's set
3243 	 * of allowed nodes.
3244 	 */
3245 	if (!(gfp_mask & __GFP_NOMEMALLOC))
3246 		if (tsk_is_oom_victim(current) ||
3247 		    (current->flags & (PF_MEMALLOC | PF_EXITING)))
3248 			filter &= ~SHOW_MEM_FILTER_NODES;
3249 	if (!in_task() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
3250 		filter &= ~SHOW_MEM_FILTER_NODES;
3251 
3252 	__show_mem(filter, nodemask, gfp_zone(gfp_mask));
3253 }
3254 
3255 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
3256 {
3257 	struct va_format vaf;
3258 	va_list args;
3259 	static DEFINE_RATELIMIT_STATE(nopage_rs, 10*HZ, 1);
3260 
3261 	if ((gfp_mask & __GFP_NOWARN) ||
3262 	     !__ratelimit(&nopage_rs) ||
3263 	     ((gfp_mask & __GFP_DMA) && !has_managed_dma()))
3264 		return;
3265 
3266 	va_start(args, fmt);
3267 	vaf.fmt = fmt;
3268 	vaf.va = &args;
3269 	pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl",
3270 			current->comm, &vaf, gfp_mask, &gfp_mask,
3271 			nodemask_pr_args(nodemask));
3272 	va_end(args);
3273 
3274 	cpuset_print_current_mems_allowed();
3275 	pr_cont("\n");
3276 	dump_stack();
3277 	warn_alloc_show_mem(gfp_mask, nodemask);
3278 }
3279 
3280 static inline struct page *
3281 __alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
3282 			      unsigned int alloc_flags,
3283 			      const struct alloc_context *ac)
3284 {
3285 	struct page *page;
3286 
3287 	page = get_page_from_freelist(gfp_mask, order,
3288 			alloc_flags|ALLOC_CPUSET, ac);
3289 	/*
3290 	 * fallback to ignore cpuset restriction if our nodes
3291 	 * are depleted
3292 	 */
3293 	if (!page)
3294 		page = get_page_from_freelist(gfp_mask, order,
3295 				alloc_flags, ac);
3296 
3297 	return page;
3298 }
3299 
3300 static inline struct page *
3301 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
3302 	const struct alloc_context *ac, unsigned long *did_some_progress)
3303 {
3304 	struct oom_control oc = {
3305 		.zonelist = ac->zonelist,
3306 		.nodemask = ac->nodemask,
3307 		.memcg = NULL,
3308 		.gfp_mask = gfp_mask,
3309 		.order = order,
3310 	};
3311 	struct page *page;
3312 
3313 	*did_some_progress = 0;
3314 
3315 	/*
3316 	 * Acquire the oom lock.  If that fails, somebody else is
3317 	 * making progress for us.
3318 	 */
3319 	if (!mutex_trylock(&oom_lock)) {
3320 		*did_some_progress = 1;
3321 		schedule_timeout_uninterruptible(1);
3322 		return NULL;
3323 	}
3324 
3325 	/*
3326 	 * Go through the zonelist yet one more time, keep very high watermark
3327 	 * here, this is only to catch a parallel oom killing, we must fail if
3328 	 * we're still under heavy pressure. But make sure that this reclaim
3329 	 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
3330 	 * allocation which will never fail due to oom_lock already held.
3331 	 */
3332 	page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) &
3333 				      ~__GFP_DIRECT_RECLAIM, order,
3334 				      ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
3335 	if (page)
3336 		goto out;
3337 
3338 	/* Coredumps can quickly deplete all memory reserves */
3339 	if (current->flags & PF_DUMPCORE)
3340 		goto out;
3341 	/* The OOM killer will not help higher order allocs */
3342 	if (order > PAGE_ALLOC_COSTLY_ORDER)
3343 		goto out;
3344 	/*
3345 	 * We have already exhausted all our reclaim opportunities without any
3346 	 * success so it is time to admit defeat. We will skip the OOM killer
3347 	 * because it is very likely that the caller has a more reasonable
3348 	 * fallback than shooting a random task.
3349 	 *
3350 	 * The OOM killer may not free memory on a specific node.
3351 	 */
3352 	if (gfp_mask & (__GFP_RETRY_MAYFAIL | __GFP_THISNODE))
3353 		goto out;
3354 	/* The OOM killer does not needlessly kill tasks for lowmem */
3355 	if (ac->highest_zoneidx < ZONE_NORMAL)
3356 		goto out;
3357 	if (pm_suspended_storage())
3358 		goto out;
3359 	/*
3360 	 * XXX: GFP_NOFS allocations should rather fail than rely on
3361 	 * other request to make a forward progress.
3362 	 * We are in an unfortunate situation where out_of_memory cannot
3363 	 * do much for this context but let's try it to at least get
3364 	 * access to memory reserved if the current task is killed (see
3365 	 * out_of_memory). Once filesystems are ready to handle allocation
3366 	 * failures more gracefully we should just bail out here.
3367 	 */
3368 
3369 	/* Exhausted what can be done so it's blame time */
3370 	if (out_of_memory(&oc) ||
3371 	    WARN_ON_ONCE_GFP(gfp_mask & __GFP_NOFAIL, gfp_mask)) {
3372 		*did_some_progress = 1;
3373 
3374 		/*
3375 		 * Help non-failing allocations by giving them access to memory
3376 		 * reserves
3377 		 */
3378 		if (gfp_mask & __GFP_NOFAIL)
3379 			page = __alloc_pages_cpuset_fallback(gfp_mask, order,
3380 					ALLOC_NO_WATERMARKS, ac);
3381 	}
3382 out:
3383 	mutex_unlock(&oom_lock);
3384 	return page;
3385 }
3386 
3387 /*
3388  * Maximum number of compaction retries with a progress before OOM
3389  * killer is consider as the only way to move forward.
3390  */
3391 #define MAX_COMPACT_RETRIES 16
3392 
3393 #ifdef CONFIG_COMPACTION
3394 /* Try memory compaction for high-order allocations before reclaim */
3395 static struct page *
3396 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3397 		unsigned int alloc_flags, const struct alloc_context *ac,
3398 		enum compact_priority prio, enum compact_result *compact_result)
3399 {
3400 	struct page *page = NULL;
3401 	unsigned long pflags;
3402 	unsigned int noreclaim_flag;
3403 
3404 	if (!order)
3405 		return NULL;
3406 
3407 	psi_memstall_enter(&pflags);
3408 	delayacct_compact_start();
3409 	noreclaim_flag = memalloc_noreclaim_save();
3410 
3411 	*compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
3412 								prio, &page);
3413 
3414 	memalloc_noreclaim_restore(noreclaim_flag);
3415 	psi_memstall_leave(&pflags);
3416 	delayacct_compact_end();
3417 
3418 	if (*compact_result == COMPACT_SKIPPED)
3419 		return NULL;
3420 	/*
3421 	 * At least in one zone compaction wasn't deferred or skipped, so let's
3422 	 * count a compaction stall
3423 	 */
3424 	count_vm_event(COMPACTSTALL);
3425 
3426 	/* Prep a captured page if available */
3427 	if (page)
3428 		prep_new_page(page, order, gfp_mask, alloc_flags);
3429 
3430 	/* Try get a page from the freelist if available */
3431 	if (!page)
3432 		page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3433 
3434 	if (page) {
3435 		struct zone *zone = page_zone(page);
3436 
3437 		zone->compact_blockskip_flush = false;
3438 		compaction_defer_reset(zone, order, true);
3439 		count_vm_event(COMPACTSUCCESS);
3440 		return page;
3441 	}
3442 
3443 	/*
3444 	 * It's bad if compaction run occurs and fails. The most likely reason
3445 	 * is that pages exist, but not enough to satisfy watermarks.
3446 	 */
3447 	count_vm_event(COMPACTFAIL);
3448 
3449 	cond_resched();
3450 
3451 	return NULL;
3452 }
3453 
3454 static inline bool
3455 should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
3456 		     enum compact_result compact_result,
3457 		     enum compact_priority *compact_priority,
3458 		     int *compaction_retries)
3459 {
3460 	int max_retries = MAX_COMPACT_RETRIES;
3461 	int min_priority;
3462 	bool ret = false;
3463 	int retries = *compaction_retries;
3464 	enum compact_priority priority = *compact_priority;
3465 
3466 	if (!order)
3467 		return false;
3468 
3469 	if (fatal_signal_pending(current))
3470 		return false;
3471 
3472 	/*
3473 	 * Compaction was skipped due to a lack of free order-0
3474 	 * migration targets. Continue if reclaim can help.
3475 	 */
3476 	if (compact_result == COMPACT_SKIPPED) {
3477 		ret = compaction_zonelist_suitable(ac, order, alloc_flags);
3478 		goto out;
3479 	}
3480 
3481 	/*
3482 	 * Compaction managed to coalesce some page blocks, but the
3483 	 * allocation failed presumably due to a race. Retry some.
3484 	 */
3485 	if (compact_result == COMPACT_SUCCESS) {
3486 		/*
3487 		 * !costly requests are much more important than
3488 		 * __GFP_RETRY_MAYFAIL costly ones because they are de
3489 		 * facto nofail and invoke OOM killer to move on while
3490 		 * costly can fail and users are ready to cope with
3491 		 * that. 1/4 retries is rather arbitrary but we would
3492 		 * need much more detailed feedback from compaction to
3493 		 * make a better decision.
3494 		 */
3495 		if (order > PAGE_ALLOC_COSTLY_ORDER)
3496 			max_retries /= 4;
3497 
3498 		if (++(*compaction_retries) <= max_retries) {
3499 			ret = true;
3500 			goto out;
3501 		}
3502 	}
3503 
3504 	/*
3505 	 * Compaction failed. Retry with increasing priority.
3506 	 */
3507 	min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
3508 			MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
3509 
3510 	if (*compact_priority > min_priority) {
3511 		(*compact_priority)--;
3512 		*compaction_retries = 0;
3513 		ret = true;
3514 	}
3515 out:
3516 	trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
3517 	return ret;
3518 }
3519 #else
3520 static inline struct page *
3521 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3522 		unsigned int alloc_flags, const struct alloc_context *ac,
3523 		enum compact_priority prio, enum compact_result *compact_result)
3524 {
3525 	*compact_result = COMPACT_SKIPPED;
3526 	return NULL;
3527 }
3528 
3529 static inline bool
3530 should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
3531 		     enum compact_result compact_result,
3532 		     enum compact_priority *compact_priority,
3533 		     int *compaction_retries)
3534 {
3535 	struct zone *zone;
3536 	struct zoneref *z;
3537 
3538 	if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
3539 		return false;
3540 
3541 	/*
3542 	 * There are setups with compaction disabled which would prefer to loop
3543 	 * inside the allocator rather than hit the oom killer prematurely.
3544 	 * Let's give them a good hope and keep retrying while the order-0
3545 	 * watermarks are OK.
3546 	 */
3547 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
3548 				ac->highest_zoneidx, ac->nodemask) {
3549 		if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
3550 					ac->highest_zoneidx, alloc_flags))
3551 			return true;
3552 	}
3553 	return false;
3554 }
3555 #endif /* CONFIG_COMPACTION */
3556 
3557 #ifdef CONFIG_LOCKDEP
3558 static struct lockdep_map __fs_reclaim_map =
3559 	STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map);
3560 
3561 static bool __need_reclaim(gfp_t gfp_mask)
3562 {
3563 	/* no reclaim without waiting on it */
3564 	if (!(gfp_mask & __GFP_DIRECT_RECLAIM))
3565 		return false;
3566 
3567 	/* this guy won't enter reclaim */
3568 	if (current->flags & PF_MEMALLOC)
3569 		return false;
3570 
3571 	if (gfp_mask & __GFP_NOLOCKDEP)
3572 		return false;
3573 
3574 	return true;
3575 }
3576 
3577 void __fs_reclaim_acquire(unsigned long ip)
3578 {
3579 	lock_acquire_exclusive(&__fs_reclaim_map, 0, 0, NULL, ip);
3580 }
3581 
3582 void __fs_reclaim_release(unsigned long ip)
3583 {
3584 	lock_release(&__fs_reclaim_map, ip);
3585 }
3586 
3587 void fs_reclaim_acquire(gfp_t gfp_mask)
3588 {
3589 	gfp_mask = current_gfp_context(gfp_mask);
3590 
3591 	if (__need_reclaim(gfp_mask)) {
3592 		if (gfp_mask & __GFP_FS)
3593 			__fs_reclaim_acquire(_RET_IP_);
3594 
3595 #ifdef CONFIG_MMU_NOTIFIER
3596 		lock_map_acquire(&__mmu_notifier_invalidate_range_start_map);
3597 		lock_map_release(&__mmu_notifier_invalidate_range_start_map);
3598 #endif
3599 
3600 	}
3601 }
3602 EXPORT_SYMBOL_GPL(fs_reclaim_acquire);
3603 
3604 void fs_reclaim_release(gfp_t gfp_mask)
3605 {
3606 	gfp_mask = current_gfp_context(gfp_mask);
3607 
3608 	if (__need_reclaim(gfp_mask)) {
3609 		if (gfp_mask & __GFP_FS)
3610 			__fs_reclaim_release(_RET_IP_);
3611 	}
3612 }
3613 EXPORT_SYMBOL_GPL(fs_reclaim_release);
3614 #endif
3615 
3616 /*
3617  * Zonelists may change due to hotplug during allocation. Detect when zonelists
3618  * have been rebuilt so allocation retries. Reader side does not lock and
3619  * retries the allocation if zonelist changes. Writer side is protected by the
3620  * embedded spin_lock.
3621  */
3622 static DEFINE_SEQLOCK(zonelist_update_seq);
3623 
3624 static unsigned int zonelist_iter_begin(void)
3625 {
3626 	if (IS_ENABLED(CONFIG_MEMORY_HOTREMOVE))
3627 		return read_seqbegin(&zonelist_update_seq);
3628 
3629 	return 0;
3630 }
3631 
3632 static unsigned int check_retry_zonelist(unsigned int seq)
3633 {
3634 	if (IS_ENABLED(CONFIG_MEMORY_HOTREMOVE))
3635 		return read_seqretry(&zonelist_update_seq, seq);
3636 
3637 	return seq;
3638 }
3639 
3640 /* Perform direct synchronous page reclaim */
3641 static unsigned long
3642 __perform_reclaim(gfp_t gfp_mask, unsigned int order,
3643 					const struct alloc_context *ac)
3644 {
3645 	unsigned int noreclaim_flag;
3646 	unsigned long progress;
3647 
3648 	cond_resched();
3649 
3650 	/* We now go into synchronous reclaim */
3651 	cpuset_memory_pressure_bump();
3652 	fs_reclaim_acquire(gfp_mask);
3653 	noreclaim_flag = memalloc_noreclaim_save();
3654 
3655 	progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
3656 								ac->nodemask);
3657 
3658 	memalloc_noreclaim_restore(noreclaim_flag);
3659 	fs_reclaim_release(gfp_mask);
3660 
3661 	cond_resched();
3662 
3663 	return progress;
3664 }
3665 
3666 /* The really slow allocator path where we enter direct reclaim */
3667 static inline struct page *
3668 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
3669 		unsigned int alloc_flags, const struct alloc_context *ac,
3670 		unsigned long *did_some_progress)
3671 {
3672 	struct page *page = NULL;
3673 	unsigned long pflags;
3674 	bool drained = false;
3675 
3676 	psi_memstall_enter(&pflags);
3677 	*did_some_progress = __perform_reclaim(gfp_mask, order, ac);
3678 	if (unlikely(!(*did_some_progress)))
3679 		goto out;
3680 
3681 retry:
3682 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3683 
3684 	/*
3685 	 * If an allocation failed after direct reclaim, it could be because
3686 	 * pages are pinned on the per-cpu lists or in high alloc reserves.
3687 	 * Shrink them and try again
3688 	 */
3689 	if (!page && !drained) {
3690 		unreserve_highatomic_pageblock(ac, false);
3691 		drain_all_pages(NULL);
3692 		drained = true;
3693 		goto retry;
3694 	}
3695 out:
3696 	psi_memstall_leave(&pflags);
3697 
3698 	return page;
3699 }
3700 
3701 static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask,
3702 			     const struct alloc_context *ac)
3703 {
3704 	struct zoneref *z;
3705 	struct zone *zone;
3706 	pg_data_t *last_pgdat = NULL;
3707 	enum zone_type highest_zoneidx = ac->highest_zoneidx;
3708 
3709 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, highest_zoneidx,
3710 					ac->nodemask) {
3711 		if (!managed_zone(zone))
3712 			continue;
3713 		if (last_pgdat != zone->zone_pgdat) {
3714 			wakeup_kswapd(zone, gfp_mask, order, highest_zoneidx);
3715 			last_pgdat = zone->zone_pgdat;
3716 		}
3717 	}
3718 }
3719 
3720 static inline unsigned int
3721 gfp_to_alloc_flags(gfp_t gfp_mask, unsigned int order)
3722 {
3723 	unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
3724 
3725 	/*
3726 	 * __GFP_HIGH is assumed to be the same as ALLOC_MIN_RESERVE
3727 	 * and __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
3728 	 * to save two branches.
3729 	 */
3730 	BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_MIN_RESERVE);
3731 	BUILD_BUG_ON(__GFP_KSWAPD_RECLAIM != (__force gfp_t) ALLOC_KSWAPD);
3732 
3733 	/*
3734 	 * The caller may dip into page reserves a bit more if the caller
3735 	 * cannot run direct reclaim, or if the caller has realtime scheduling
3736 	 * policy or is asking for __GFP_HIGH memory.  GFP_ATOMIC requests will
3737 	 * set both ALLOC_NON_BLOCK and ALLOC_MIN_RESERVE(__GFP_HIGH).
3738 	 */
3739 	alloc_flags |= (__force int)
3740 		(gfp_mask & (__GFP_HIGH | __GFP_KSWAPD_RECLAIM));
3741 
3742 	if (!(gfp_mask & __GFP_DIRECT_RECLAIM)) {
3743 		/*
3744 		 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
3745 		 * if it can't schedule.
3746 		 */
3747 		if (!(gfp_mask & __GFP_NOMEMALLOC)) {
3748 			alloc_flags |= ALLOC_NON_BLOCK;
3749 
3750 			if (order > 0)
3751 				alloc_flags |= ALLOC_HIGHATOMIC;
3752 		}
3753 
3754 		/*
3755 		 * Ignore cpuset mems for non-blocking __GFP_HIGH (probably
3756 		 * GFP_ATOMIC) rather than fail, see the comment for
3757 		 * cpuset_node_allowed().
3758 		 */
3759 		if (alloc_flags & ALLOC_MIN_RESERVE)
3760 			alloc_flags &= ~ALLOC_CPUSET;
3761 	} else if (unlikely(rt_task(current)) && in_task())
3762 		alloc_flags |= ALLOC_MIN_RESERVE;
3763 
3764 	alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, alloc_flags);
3765 
3766 	return alloc_flags;
3767 }
3768 
3769 static bool oom_reserves_allowed(struct task_struct *tsk)
3770 {
3771 	if (!tsk_is_oom_victim(tsk))
3772 		return false;
3773 
3774 	/*
3775 	 * !MMU doesn't have oom reaper so give access to memory reserves
3776 	 * only to the thread with TIF_MEMDIE set
3777 	 */
3778 	if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE))
3779 		return false;
3780 
3781 	return true;
3782 }
3783 
3784 /*
3785  * Distinguish requests which really need access to full memory
3786  * reserves from oom victims which can live with a portion of it
3787  */
3788 static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask)
3789 {
3790 	if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
3791 		return 0;
3792 	if (gfp_mask & __GFP_MEMALLOC)
3793 		return ALLOC_NO_WATERMARKS;
3794 	if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
3795 		return ALLOC_NO_WATERMARKS;
3796 	if (!in_interrupt()) {
3797 		if (current->flags & PF_MEMALLOC)
3798 			return ALLOC_NO_WATERMARKS;
3799 		else if (oom_reserves_allowed(current))
3800 			return ALLOC_OOM;
3801 	}
3802 
3803 	return 0;
3804 }
3805 
3806 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
3807 {
3808 	return !!__gfp_pfmemalloc_flags(gfp_mask);
3809 }
3810 
3811 /*
3812  * Checks whether it makes sense to retry the reclaim to make a forward progress
3813  * for the given allocation request.
3814  *
3815  * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
3816  * without success, or when we couldn't even meet the watermark if we
3817  * reclaimed all remaining pages on the LRU lists.
3818  *
3819  * Returns true if a retry is viable or false to enter the oom path.
3820  */
3821 static inline bool
3822 should_reclaim_retry(gfp_t gfp_mask, unsigned order,
3823 		     struct alloc_context *ac, int alloc_flags,
3824 		     bool did_some_progress, int *no_progress_loops)
3825 {
3826 	struct zone *zone;
3827 	struct zoneref *z;
3828 	bool ret = false;
3829 
3830 	/*
3831 	 * Costly allocations might have made a progress but this doesn't mean
3832 	 * their order will become available due to high fragmentation so
3833 	 * always increment the no progress counter for them
3834 	 */
3835 	if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
3836 		*no_progress_loops = 0;
3837 	else
3838 		(*no_progress_loops)++;
3839 
3840 	/*
3841 	 * Make sure we converge to OOM if we cannot make any progress
3842 	 * several times in the row.
3843 	 */
3844 	if (*no_progress_loops > MAX_RECLAIM_RETRIES) {
3845 		/* Before OOM, exhaust highatomic_reserve */
3846 		return unreserve_highatomic_pageblock(ac, true);
3847 	}
3848 
3849 	/*
3850 	 * Keep reclaiming pages while there is a chance this will lead
3851 	 * somewhere.  If none of the target zones can satisfy our allocation
3852 	 * request even if all reclaimable pages are considered then we are
3853 	 * screwed and have to go OOM.
3854 	 */
3855 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
3856 				ac->highest_zoneidx, ac->nodemask) {
3857 		unsigned long available;
3858 		unsigned long reclaimable;
3859 		unsigned long min_wmark = min_wmark_pages(zone);
3860 		bool wmark;
3861 
3862 		available = reclaimable = zone_reclaimable_pages(zone);
3863 		available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
3864 
3865 		/*
3866 		 * Would the allocation succeed if we reclaimed all
3867 		 * reclaimable pages?
3868 		 */
3869 		wmark = __zone_watermark_ok(zone, order, min_wmark,
3870 				ac->highest_zoneidx, alloc_flags, available);
3871 		trace_reclaim_retry_zone(z, order, reclaimable,
3872 				available, min_wmark, *no_progress_loops, wmark);
3873 		if (wmark) {
3874 			ret = true;
3875 			break;
3876 		}
3877 	}
3878 
3879 	/*
3880 	 * Memory allocation/reclaim might be called from a WQ context and the
3881 	 * current implementation of the WQ concurrency control doesn't
3882 	 * recognize that a particular WQ is congested if the worker thread is
3883 	 * looping without ever sleeping. Therefore we have to do a short sleep
3884 	 * here rather than calling cond_resched().
3885 	 */
3886 	if (current->flags & PF_WQ_WORKER)
3887 		schedule_timeout_uninterruptible(1);
3888 	else
3889 		cond_resched();
3890 	return ret;
3891 }
3892 
3893 static inline bool
3894 check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
3895 {
3896 	/*
3897 	 * It's possible that cpuset's mems_allowed and the nodemask from
3898 	 * mempolicy don't intersect. This should be normally dealt with by
3899 	 * policy_nodemask(), but it's possible to race with cpuset update in
3900 	 * such a way the check therein was true, and then it became false
3901 	 * before we got our cpuset_mems_cookie here.
3902 	 * This assumes that for all allocations, ac->nodemask can come only
3903 	 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
3904 	 * when it does not intersect with the cpuset restrictions) or the
3905 	 * caller can deal with a violated nodemask.
3906 	 */
3907 	if (cpusets_enabled() && ac->nodemask &&
3908 			!cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
3909 		ac->nodemask = NULL;
3910 		return true;
3911 	}
3912 
3913 	/*
3914 	 * When updating a task's mems_allowed or mempolicy nodemask, it is
3915 	 * possible to race with parallel threads in such a way that our
3916 	 * allocation can fail while the mask is being updated. If we are about
3917 	 * to fail, check if the cpuset changed during allocation and if so,
3918 	 * retry.
3919 	 */
3920 	if (read_mems_allowed_retry(cpuset_mems_cookie))
3921 		return true;
3922 
3923 	return false;
3924 }
3925 
3926 static inline struct page *
3927 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
3928 						struct alloc_context *ac)
3929 {
3930 	bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
3931 	const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
3932 	struct page *page = NULL;
3933 	unsigned int alloc_flags;
3934 	unsigned long did_some_progress;
3935 	enum compact_priority compact_priority;
3936 	enum compact_result compact_result;
3937 	int compaction_retries;
3938 	int no_progress_loops;
3939 	unsigned int cpuset_mems_cookie;
3940 	unsigned int zonelist_iter_cookie;
3941 	int reserve_flags;
3942 
3943 restart:
3944 	compaction_retries = 0;
3945 	no_progress_loops = 0;
3946 	compact_priority = DEF_COMPACT_PRIORITY;
3947 	cpuset_mems_cookie = read_mems_allowed_begin();
3948 	zonelist_iter_cookie = zonelist_iter_begin();
3949 
3950 	/*
3951 	 * The fast path uses conservative alloc_flags to succeed only until
3952 	 * kswapd needs to be woken up, and to avoid the cost of setting up
3953 	 * alloc_flags precisely. So we do that now.
3954 	 */
3955 	alloc_flags = gfp_to_alloc_flags(gfp_mask, order);
3956 
3957 	/*
3958 	 * We need to recalculate the starting point for the zonelist iterator
3959 	 * because we might have used different nodemask in the fast path, or
3960 	 * there was a cpuset modification and we are retrying - otherwise we
3961 	 * could end up iterating over non-eligible zones endlessly.
3962 	 */
3963 	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
3964 					ac->highest_zoneidx, ac->nodemask);
3965 	if (!ac->preferred_zoneref->zone)
3966 		goto nopage;
3967 
3968 	/*
3969 	 * Check for insane configurations where the cpuset doesn't contain
3970 	 * any suitable zone to satisfy the request - e.g. non-movable
3971 	 * GFP_HIGHUSER allocations from MOVABLE nodes only.
3972 	 */
3973 	if (cpusets_insane_config() && (gfp_mask & __GFP_HARDWALL)) {
3974 		struct zoneref *z = first_zones_zonelist(ac->zonelist,
3975 					ac->highest_zoneidx,
3976 					&cpuset_current_mems_allowed);
3977 		if (!z->zone)
3978 			goto nopage;
3979 	}
3980 
3981 	if (alloc_flags & ALLOC_KSWAPD)
3982 		wake_all_kswapds(order, gfp_mask, ac);
3983 
3984 	/*
3985 	 * The adjusted alloc_flags might result in immediate success, so try
3986 	 * that first
3987 	 */
3988 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3989 	if (page)
3990 		goto got_pg;
3991 
3992 	/*
3993 	 * For costly allocations, try direct compaction first, as it's likely
3994 	 * that we have enough base pages and don't need to reclaim. For non-
3995 	 * movable high-order allocations, do that as well, as compaction will
3996 	 * try prevent permanent fragmentation by migrating from blocks of the
3997 	 * same migratetype.
3998 	 * Don't try this for allocations that are allowed to ignore
3999 	 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
4000 	 */
4001 	if (can_direct_reclaim &&
4002 			(costly_order ||
4003 			   (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
4004 			&& !gfp_pfmemalloc_allowed(gfp_mask)) {
4005 		page = __alloc_pages_direct_compact(gfp_mask, order,
4006 						alloc_flags, ac,
4007 						INIT_COMPACT_PRIORITY,
4008 						&compact_result);
4009 		if (page)
4010 			goto got_pg;
4011 
4012 		/*
4013 		 * Checks for costly allocations with __GFP_NORETRY, which
4014 		 * includes some THP page fault allocations
4015 		 */
4016 		if (costly_order && (gfp_mask & __GFP_NORETRY)) {
4017 			/*
4018 			 * If allocating entire pageblock(s) and compaction
4019 			 * failed because all zones are below low watermarks
4020 			 * or is prohibited because it recently failed at this
4021 			 * order, fail immediately unless the allocator has
4022 			 * requested compaction and reclaim retry.
4023 			 *
4024 			 * Reclaim is
4025 			 *  - potentially very expensive because zones are far
4026 			 *    below their low watermarks or this is part of very
4027 			 *    bursty high order allocations,
4028 			 *  - not guaranteed to help because isolate_freepages()
4029 			 *    may not iterate over freed pages as part of its
4030 			 *    linear scan, and
4031 			 *  - unlikely to make entire pageblocks free on its
4032 			 *    own.
4033 			 */
4034 			if (compact_result == COMPACT_SKIPPED ||
4035 			    compact_result == COMPACT_DEFERRED)
4036 				goto nopage;
4037 
4038 			/*
4039 			 * Looks like reclaim/compaction is worth trying, but
4040 			 * sync compaction could be very expensive, so keep
4041 			 * using async compaction.
4042 			 */
4043 			compact_priority = INIT_COMPACT_PRIORITY;
4044 		}
4045 	}
4046 
4047 retry:
4048 	/* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
4049 	if (alloc_flags & ALLOC_KSWAPD)
4050 		wake_all_kswapds(order, gfp_mask, ac);
4051 
4052 	reserve_flags = __gfp_pfmemalloc_flags(gfp_mask);
4053 	if (reserve_flags)
4054 		alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, reserve_flags) |
4055 					  (alloc_flags & ALLOC_KSWAPD);
4056 
4057 	/*
4058 	 * Reset the nodemask and zonelist iterators if memory policies can be
4059 	 * ignored. These allocations are high priority and system rather than
4060 	 * user oriented.
4061 	 */
4062 	if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) {
4063 		ac->nodemask = NULL;
4064 		ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4065 					ac->highest_zoneidx, ac->nodemask);
4066 	}
4067 
4068 	/* Attempt with potentially adjusted zonelist and alloc_flags */
4069 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4070 	if (page)
4071 		goto got_pg;
4072 
4073 	/* Caller is not willing to reclaim, we can't balance anything */
4074 	if (!can_direct_reclaim)
4075 		goto nopage;
4076 
4077 	/* Avoid recursion of direct reclaim */
4078 	if (current->flags & PF_MEMALLOC)
4079 		goto nopage;
4080 
4081 	/* Try direct reclaim and then allocating */
4082 	page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
4083 							&did_some_progress);
4084 	if (page)
4085 		goto got_pg;
4086 
4087 	/* Try direct compaction and then allocating */
4088 	page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
4089 					compact_priority, &compact_result);
4090 	if (page)
4091 		goto got_pg;
4092 
4093 	/* Do not loop if specifically requested */
4094 	if (gfp_mask & __GFP_NORETRY)
4095 		goto nopage;
4096 
4097 	/*
4098 	 * Do not retry costly high order allocations unless they are
4099 	 * __GFP_RETRY_MAYFAIL
4100 	 */
4101 	if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL))
4102 		goto nopage;
4103 
4104 	if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
4105 				 did_some_progress > 0, &no_progress_loops))
4106 		goto retry;
4107 
4108 	/*
4109 	 * It doesn't make any sense to retry for the compaction if the order-0
4110 	 * reclaim is not able to make any progress because the current
4111 	 * implementation of the compaction depends on the sufficient amount
4112 	 * of free memory (see __compaction_suitable)
4113 	 */
4114 	if (did_some_progress > 0 &&
4115 			should_compact_retry(ac, order, alloc_flags,
4116 				compact_result, &compact_priority,
4117 				&compaction_retries))
4118 		goto retry;
4119 
4120 
4121 	/*
4122 	 * Deal with possible cpuset update races or zonelist updates to avoid
4123 	 * a unnecessary OOM kill.
4124 	 */
4125 	if (check_retry_cpuset(cpuset_mems_cookie, ac) ||
4126 	    check_retry_zonelist(zonelist_iter_cookie))
4127 		goto restart;
4128 
4129 	/* Reclaim has failed us, start killing things */
4130 	page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
4131 	if (page)
4132 		goto got_pg;
4133 
4134 	/* Avoid allocations with no watermarks from looping endlessly */
4135 	if (tsk_is_oom_victim(current) &&
4136 	    (alloc_flags & ALLOC_OOM ||
4137 	     (gfp_mask & __GFP_NOMEMALLOC)))
4138 		goto nopage;
4139 
4140 	/* Retry as long as the OOM killer is making progress */
4141 	if (did_some_progress) {
4142 		no_progress_loops = 0;
4143 		goto retry;
4144 	}
4145 
4146 nopage:
4147 	/*
4148 	 * Deal with possible cpuset update races or zonelist updates to avoid
4149 	 * a unnecessary OOM kill.
4150 	 */
4151 	if (check_retry_cpuset(cpuset_mems_cookie, ac) ||
4152 	    check_retry_zonelist(zonelist_iter_cookie))
4153 		goto restart;
4154 
4155 	/*
4156 	 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
4157 	 * we always retry
4158 	 */
4159 	if (gfp_mask & __GFP_NOFAIL) {
4160 		/*
4161 		 * All existing users of the __GFP_NOFAIL are blockable, so warn
4162 		 * of any new users that actually require GFP_NOWAIT
4163 		 */
4164 		if (WARN_ON_ONCE_GFP(!can_direct_reclaim, gfp_mask))
4165 			goto fail;
4166 
4167 		/*
4168 		 * PF_MEMALLOC request from this context is rather bizarre
4169 		 * because we cannot reclaim anything and only can loop waiting
4170 		 * for somebody to do a work for us
4171 		 */
4172 		WARN_ON_ONCE_GFP(current->flags & PF_MEMALLOC, gfp_mask);
4173 
4174 		/*
4175 		 * non failing costly orders are a hard requirement which we
4176 		 * are not prepared for much so let's warn about these users
4177 		 * so that we can identify them and convert them to something
4178 		 * else.
4179 		 */
4180 		WARN_ON_ONCE_GFP(costly_order, gfp_mask);
4181 
4182 		/*
4183 		 * Help non-failing allocations by giving some access to memory
4184 		 * reserves normally used for high priority non-blocking
4185 		 * allocations but do not use ALLOC_NO_WATERMARKS because this
4186 		 * could deplete whole memory reserves which would just make
4187 		 * the situation worse.
4188 		 */
4189 		page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_MIN_RESERVE, ac);
4190 		if (page)
4191 			goto got_pg;
4192 
4193 		cond_resched();
4194 		goto retry;
4195 	}
4196 fail:
4197 	warn_alloc(gfp_mask, ac->nodemask,
4198 			"page allocation failure: order:%u", order);
4199 got_pg:
4200 	return page;
4201 }
4202 
4203 static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
4204 		int preferred_nid, nodemask_t *nodemask,
4205 		struct alloc_context *ac, gfp_t *alloc_gfp,
4206 		unsigned int *alloc_flags)
4207 {
4208 	ac->highest_zoneidx = gfp_zone(gfp_mask);
4209 	ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
4210 	ac->nodemask = nodemask;
4211 	ac->migratetype = gfp_migratetype(gfp_mask);
4212 
4213 	if (cpusets_enabled()) {
4214 		*alloc_gfp |= __GFP_HARDWALL;
4215 		/*
4216 		 * When we are in the interrupt context, it is irrelevant
4217 		 * to the current task context. It means that any node ok.
4218 		 */
4219 		if (in_task() && !ac->nodemask)
4220 			ac->nodemask = &cpuset_current_mems_allowed;
4221 		else
4222 			*alloc_flags |= ALLOC_CPUSET;
4223 	}
4224 
4225 	might_alloc(gfp_mask);
4226 
4227 	if (should_fail_alloc_page(gfp_mask, order))
4228 		return false;
4229 
4230 	*alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, *alloc_flags);
4231 
4232 	/* Dirty zone balancing only done in the fast path */
4233 	ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
4234 
4235 	/*
4236 	 * The preferred zone is used for statistics but crucially it is
4237 	 * also used as the starting point for the zonelist iterator. It
4238 	 * may get reset for allocations that ignore memory policies.
4239 	 */
4240 	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4241 					ac->highest_zoneidx, ac->nodemask);
4242 
4243 	return true;
4244 }
4245 
4246 /*
4247  * __alloc_pages_bulk - Allocate a number of order-0 pages to a list or array
4248  * @gfp: GFP flags for the allocation
4249  * @preferred_nid: The preferred NUMA node ID to allocate from
4250  * @nodemask: Set of nodes to allocate from, may be NULL
4251  * @nr_pages: The number of pages desired on the list or array
4252  * @page_list: Optional list to store the allocated pages
4253  * @page_array: Optional array to store the pages
4254  *
4255  * This is a batched version of the page allocator that attempts to
4256  * allocate nr_pages quickly. Pages are added to page_list if page_list
4257  * is not NULL, otherwise it is assumed that the page_array is valid.
4258  *
4259  * For lists, nr_pages is the number of pages that should be allocated.
4260  *
4261  * For arrays, only NULL elements are populated with pages and nr_pages
4262  * is the maximum number of pages that will be stored in the array.
4263  *
4264  * Returns the number of pages on the list or array.
4265  */
4266 unsigned long __alloc_pages_bulk(gfp_t gfp, int preferred_nid,
4267 			nodemask_t *nodemask, int nr_pages,
4268 			struct list_head *page_list,
4269 			struct page **page_array)
4270 {
4271 	struct page *page;
4272 	unsigned long __maybe_unused UP_flags;
4273 	struct zone *zone;
4274 	struct zoneref *z;
4275 	struct per_cpu_pages *pcp;
4276 	struct list_head *pcp_list;
4277 	struct alloc_context ac;
4278 	gfp_t alloc_gfp;
4279 	unsigned int alloc_flags = ALLOC_WMARK_LOW;
4280 	int nr_populated = 0, nr_account = 0;
4281 
4282 	/*
4283 	 * Skip populated array elements to determine if any pages need
4284 	 * to be allocated before disabling IRQs.
4285 	 */
4286 	while (page_array && nr_populated < nr_pages && page_array[nr_populated])
4287 		nr_populated++;
4288 
4289 	/* No pages requested? */
4290 	if (unlikely(nr_pages <= 0))
4291 		goto out;
4292 
4293 	/* Already populated array? */
4294 	if (unlikely(page_array && nr_pages - nr_populated == 0))
4295 		goto out;
4296 
4297 	/* Bulk allocator does not support memcg accounting. */
4298 	if (memcg_kmem_online() && (gfp & __GFP_ACCOUNT))
4299 		goto failed;
4300 
4301 	/* Use the single page allocator for one page. */
4302 	if (nr_pages - nr_populated == 1)
4303 		goto failed;
4304 
4305 #ifdef CONFIG_PAGE_OWNER
4306 	/*
4307 	 * PAGE_OWNER may recurse into the allocator to allocate space to
4308 	 * save the stack with pagesets.lock held. Releasing/reacquiring
4309 	 * removes much of the performance benefit of bulk allocation so
4310 	 * force the caller to allocate one page at a time as it'll have
4311 	 * similar performance to added complexity to the bulk allocator.
4312 	 */
4313 	if (static_branch_unlikely(&page_owner_inited))
4314 		goto failed;
4315 #endif
4316 
4317 	/* May set ALLOC_NOFRAGMENT, fragmentation will return 1 page. */
4318 	gfp &= gfp_allowed_mask;
4319 	alloc_gfp = gfp;
4320 	if (!prepare_alloc_pages(gfp, 0, preferred_nid, nodemask, &ac, &alloc_gfp, &alloc_flags))
4321 		goto out;
4322 	gfp = alloc_gfp;
4323 
4324 	/* Find an allowed local zone that meets the low watermark. */
4325 	for_each_zone_zonelist_nodemask(zone, z, ac.zonelist, ac.highest_zoneidx, ac.nodemask) {
4326 		unsigned long mark;
4327 
4328 		if (cpusets_enabled() && (alloc_flags & ALLOC_CPUSET) &&
4329 		    !__cpuset_zone_allowed(zone, gfp)) {
4330 			continue;
4331 		}
4332 
4333 		if (nr_online_nodes > 1 && zone != ac.preferred_zoneref->zone &&
4334 		    zone_to_nid(zone) != zone_to_nid(ac.preferred_zoneref->zone)) {
4335 			goto failed;
4336 		}
4337 
4338 		mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK) + nr_pages;
4339 		if (zone_watermark_fast(zone, 0,  mark,
4340 				zonelist_zone_idx(ac.preferred_zoneref),
4341 				alloc_flags, gfp)) {
4342 			break;
4343 		}
4344 	}
4345 
4346 	/*
4347 	 * If there are no allowed local zones that meets the watermarks then
4348 	 * try to allocate a single page and reclaim if necessary.
4349 	 */
4350 	if (unlikely(!zone))
4351 		goto failed;
4352 
4353 	/* spin_trylock may fail due to a parallel drain or IRQ reentrancy. */
4354 	pcp_trylock_prepare(UP_flags);
4355 	pcp = pcp_spin_trylock(zone->per_cpu_pageset);
4356 	if (!pcp)
4357 		goto failed_irq;
4358 
4359 	/* Attempt the batch allocation */
4360 	pcp_list = &pcp->lists[order_to_pindex(ac.migratetype, 0)];
4361 	while (nr_populated < nr_pages) {
4362 
4363 		/* Skip existing pages */
4364 		if (page_array && page_array[nr_populated]) {
4365 			nr_populated++;
4366 			continue;
4367 		}
4368 
4369 		page = __rmqueue_pcplist(zone, 0, ac.migratetype, alloc_flags,
4370 								pcp, pcp_list);
4371 		if (unlikely(!page)) {
4372 			/* Try and allocate at least one page */
4373 			if (!nr_account) {
4374 				pcp_spin_unlock(pcp);
4375 				goto failed_irq;
4376 			}
4377 			break;
4378 		}
4379 		nr_account++;
4380 
4381 		prep_new_page(page, 0, gfp, 0);
4382 		if (page_list)
4383 			list_add(&page->lru, page_list);
4384 		else
4385 			page_array[nr_populated] = page;
4386 		nr_populated++;
4387 	}
4388 
4389 	pcp_spin_unlock(pcp);
4390 	pcp_trylock_finish(UP_flags);
4391 
4392 	__count_zid_vm_events(PGALLOC, zone_idx(zone), nr_account);
4393 	zone_statistics(ac.preferred_zoneref->zone, zone, nr_account);
4394 
4395 out:
4396 	return nr_populated;
4397 
4398 failed_irq:
4399 	pcp_trylock_finish(UP_flags);
4400 
4401 failed:
4402 	page = __alloc_pages(gfp, 0, preferred_nid, nodemask);
4403 	if (page) {
4404 		if (page_list)
4405 			list_add(&page->lru, page_list);
4406 		else
4407 			page_array[nr_populated] = page;
4408 		nr_populated++;
4409 	}
4410 
4411 	goto out;
4412 }
4413 EXPORT_SYMBOL_GPL(__alloc_pages_bulk);
4414 
4415 /*
4416  * This is the 'heart' of the zoned buddy allocator.
4417  */
4418 struct page *__alloc_pages(gfp_t gfp, unsigned int order, int preferred_nid,
4419 							nodemask_t *nodemask)
4420 {
4421 	struct page *page;
4422 	unsigned int alloc_flags = ALLOC_WMARK_LOW;
4423 	gfp_t alloc_gfp; /* The gfp_t that was actually used for allocation */
4424 	struct alloc_context ac = { };
4425 
4426 	/*
4427 	 * There are several places where we assume that the order value is sane
4428 	 * so bail out early if the request is out of bound.
4429 	 */
4430 	if (WARN_ON_ONCE_GFP(order > MAX_ORDER, gfp))
4431 		return NULL;
4432 
4433 	gfp &= gfp_allowed_mask;
4434 	/*
4435 	 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
4436 	 * resp. GFP_NOIO which has to be inherited for all allocation requests
4437 	 * from a particular context which has been marked by
4438 	 * memalloc_no{fs,io}_{save,restore}. And PF_MEMALLOC_PIN which ensures
4439 	 * movable zones are not used during allocation.
4440 	 */
4441 	gfp = current_gfp_context(gfp);
4442 	alloc_gfp = gfp;
4443 	if (!prepare_alloc_pages(gfp, order, preferred_nid, nodemask, &ac,
4444 			&alloc_gfp, &alloc_flags))
4445 		return NULL;
4446 
4447 	/*
4448 	 * Forbid the first pass from falling back to types that fragment
4449 	 * memory until all local zones are considered.
4450 	 */
4451 	alloc_flags |= alloc_flags_nofragment(ac.preferred_zoneref->zone, gfp);
4452 
4453 	/* First allocation attempt */
4454 	page = get_page_from_freelist(alloc_gfp, order, alloc_flags, &ac);
4455 	if (likely(page))
4456 		goto out;
4457 
4458 	alloc_gfp = gfp;
4459 	ac.spread_dirty_pages = false;
4460 
4461 	/*
4462 	 * Restore the original nodemask if it was potentially replaced with
4463 	 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
4464 	 */
4465 	ac.nodemask = nodemask;
4466 
4467 	page = __alloc_pages_slowpath(alloc_gfp, order, &ac);
4468 
4469 out:
4470 	if (memcg_kmem_online() && (gfp & __GFP_ACCOUNT) && page &&
4471 	    unlikely(__memcg_kmem_charge_page(page, gfp, order) != 0)) {
4472 		__free_pages(page, order);
4473 		page = NULL;
4474 	}
4475 
4476 	trace_mm_page_alloc(page, order, alloc_gfp, ac.migratetype);
4477 	kmsan_alloc_page(page, order, alloc_gfp);
4478 
4479 	return page;
4480 }
4481 EXPORT_SYMBOL(__alloc_pages);
4482 
4483 struct folio *__folio_alloc(gfp_t gfp, unsigned int order, int preferred_nid,
4484 		nodemask_t *nodemask)
4485 {
4486 	struct page *page = __alloc_pages(gfp | __GFP_COMP, order,
4487 			preferred_nid, nodemask);
4488 
4489 	if (page && order > 1)
4490 		prep_transhuge_page(page);
4491 	return (struct folio *)page;
4492 }
4493 EXPORT_SYMBOL(__folio_alloc);
4494 
4495 /*
4496  * Common helper functions. Never use with __GFP_HIGHMEM because the returned
4497  * address cannot represent highmem pages. Use alloc_pages and then kmap if
4498  * you need to access high mem.
4499  */
4500 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
4501 {
4502 	struct page *page;
4503 
4504 	page = alloc_pages(gfp_mask & ~__GFP_HIGHMEM, order);
4505 	if (!page)
4506 		return 0;
4507 	return (unsigned long) page_address(page);
4508 }
4509 EXPORT_SYMBOL(__get_free_pages);
4510 
4511 unsigned long get_zeroed_page(gfp_t gfp_mask)
4512 {
4513 	return __get_free_page(gfp_mask | __GFP_ZERO);
4514 }
4515 EXPORT_SYMBOL(get_zeroed_page);
4516 
4517 /**
4518  * __free_pages - Free pages allocated with alloc_pages().
4519  * @page: The page pointer returned from alloc_pages().
4520  * @order: The order of the allocation.
4521  *
4522  * This function can free multi-page allocations that are not compound
4523  * pages.  It does not check that the @order passed in matches that of
4524  * the allocation, so it is easy to leak memory.  Freeing more memory
4525  * than was allocated will probably emit a warning.
4526  *
4527  * If the last reference to this page is speculative, it will be released
4528  * by put_page() which only frees the first page of a non-compound
4529  * allocation.  To prevent the remaining pages from being leaked, we free
4530  * the subsequent pages here.  If you want to use the page's reference
4531  * count to decide when to free the allocation, you should allocate a
4532  * compound page, and use put_page() instead of __free_pages().
4533  *
4534  * Context: May be called in interrupt context or while holding a normal
4535  * spinlock, but not in NMI context or while holding a raw spinlock.
4536  */
4537 void __free_pages(struct page *page, unsigned int order)
4538 {
4539 	/* get PageHead before we drop reference */
4540 	int head = PageHead(page);
4541 
4542 	if (put_page_testzero(page))
4543 		free_the_page(page, order);
4544 	else if (!head)
4545 		while (order-- > 0)
4546 			free_the_page(page + (1 << order), order);
4547 }
4548 EXPORT_SYMBOL(__free_pages);
4549 
4550 void free_pages(unsigned long addr, unsigned int order)
4551 {
4552 	if (addr != 0) {
4553 		VM_BUG_ON(!virt_addr_valid((void *)addr));
4554 		__free_pages(virt_to_page((void *)addr), order);
4555 	}
4556 }
4557 
4558 EXPORT_SYMBOL(free_pages);
4559 
4560 /*
4561  * Page Fragment:
4562  *  An arbitrary-length arbitrary-offset area of memory which resides
4563  *  within a 0 or higher order page.  Multiple fragments within that page
4564  *  are individually refcounted, in the page's reference counter.
4565  *
4566  * The page_frag functions below provide a simple allocation framework for
4567  * page fragments.  This is used by the network stack and network device
4568  * drivers to provide a backing region of memory for use as either an
4569  * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
4570  */
4571 static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
4572 					     gfp_t gfp_mask)
4573 {
4574 	struct page *page = NULL;
4575 	gfp_t gfp = gfp_mask;
4576 
4577 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4578 	gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
4579 		    __GFP_NOMEMALLOC;
4580 	page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
4581 				PAGE_FRAG_CACHE_MAX_ORDER);
4582 	nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
4583 #endif
4584 	if (unlikely(!page))
4585 		page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
4586 
4587 	nc->va = page ? page_address(page) : NULL;
4588 
4589 	return page;
4590 }
4591 
4592 void __page_frag_cache_drain(struct page *page, unsigned int count)
4593 {
4594 	VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
4595 
4596 	if (page_ref_sub_and_test(page, count))
4597 		free_the_page(page, compound_order(page));
4598 }
4599 EXPORT_SYMBOL(__page_frag_cache_drain);
4600 
4601 void *page_frag_alloc_align(struct page_frag_cache *nc,
4602 		      unsigned int fragsz, gfp_t gfp_mask,
4603 		      unsigned int align_mask)
4604 {
4605 	unsigned int size = PAGE_SIZE;
4606 	struct page *page;
4607 	int offset;
4608 
4609 	if (unlikely(!nc->va)) {
4610 refill:
4611 		page = __page_frag_cache_refill(nc, gfp_mask);
4612 		if (!page)
4613 			return NULL;
4614 
4615 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4616 		/* if size can vary use size else just use PAGE_SIZE */
4617 		size = nc->size;
4618 #endif
4619 		/* Even if we own the page, we do not use atomic_set().
4620 		 * This would break get_page_unless_zero() users.
4621 		 */
4622 		page_ref_add(page, PAGE_FRAG_CACHE_MAX_SIZE);
4623 
4624 		/* reset page count bias and offset to start of new frag */
4625 		nc->pfmemalloc = page_is_pfmemalloc(page);
4626 		nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
4627 		nc->offset = size;
4628 	}
4629 
4630 	offset = nc->offset - fragsz;
4631 	if (unlikely(offset < 0)) {
4632 		page = virt_to_page(nc->va);
4633 
4634 		if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
4635 			goto refill;
4636 
4637 		if (unlikely(nc->pfmemalloc)) {
4638 			free_the_page(page, compound_order(page));
4639 			goto refill;
4640 		}
4641 
4642 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4643 		/* if size can vary use size else just use PAGE_SIZE */
4644 		size = nc->size;
4645 #endif
4646 		/* OK, page count is 0, we can safely set it */
4647 		set_page_count(page, PAGE_FRAG_CACHE_MAX_SIZE + 1);
4648 
4649 		/* reset page count bias and offset to start of new frag */
4650 		nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
4651 		offset = size - fragsz;
4652 		if (unlikely(offset < 0)) {
4653 			/*
4654 			 * The caller is trying to allocate a fragment
4655 			 * with fragsz > PAGE_SIZE but the cache isn't big
4656 			 * enough to satisfy the request, this may
4657 			 * happen in low memory conditions.
4658 			 * We don't release the cache page because
4659 			 * it could make memory pressure worse
4660 			 * so we simply return NULL here.
4661 			 */
4662 			return NULL;
4663 		}
4664 	}
4665 
4666 	nc->pagecnt_bias--;
4667 	offset &= align_mask;
4668 	nc->offset = offset;
4669 
4670 	return nc->va + offset;
4671 }
4672 EXPORT_SYMBOL(page_frag_alloc_align);
4673 
4674 /*
4675  * Frees a page fragment allocated out of either a compound or order 0 page.
4676  */
4677 void page_frag_free(void *addr)
4678 {
4679 	struct page *page = virt_to_head_page(addr);
4680 
4681 	if (unlikely(put_page_testzero(page)))
4682 		free_the_page(page, compound_order(page));
4683 }
4684 EXPORT_SYMBOL(page_frag_free);
4685 
4686 static void *make_alloc_exact(unsigned long addr, unsigned int order,
4687 		size_t size)
4688 {
4689 	if (addr) {
4690 		unsigned long nr = DIV_ROUND_UP(size, PAGE_SIZE);
4691 		struct page *page = virt_to_page((void *)addr);
4692 		struct page *last = page + nr;
4693 
4694 		split_page_owner(page, 1 << order);
4695 		split_page_memcg(page, 1 << order);
4696 		while (page < --last)
4697 			set_page_refcounted(last);
4698 
4699 		last = page + (1UL << order);
4700 		for (page += nr; page < last; page++)
4701 			__free_pages_ok(page, 0, FPI_TO_TAIL);
4702 	}
4703 	return (void *)addr;
4704 }
4705 
4706 /**
4707  * alloc_pages_exact - allocate an exact number physically-contiguous pages.
4708  * @size: the number of bytes to allocate
4709  * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
4710  *
4711  * This function is similar to alloc_pages(), except that it allocates the
4712  * minimum number of pages to satisfy the request.  alloc_pages() can only
4713  * allocate memory in power-of-two pages.
4714  *
4715  * This function is also limited by MAX_ORDER.
4716  *
4717  * Memory allocated by this function must be released by free_pages_exact().
4718  *
4719  * Return: pointer to the allocated area or %NULL in case of error.
4720  */
4721 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
4722 {
4723 	unsigned int order = get_order(size);
4724 	unsigned long addr;
4725 
4726 	if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM)))
4727 		gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM);
4728 
4729 	addr = __get_free_pages(gfp_mask, order);
4730 	return make_alloc_exact(addr, order, size);
4731 }
4732 EXPORT_SYMBOL(alloc_pages_exact);
4733 
4734 /**
4735  * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
4736  *			   pages on a node.
4737  * @nid: the preferred node ID where memory should be allocated
4738  * @size: the number of bytes to allocate
4739  * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
4740  *
4741  * Like alloc_pages_exact(), but try to allocate on node nid first before falling
4742  * back.
4743  *
4744  * Return: pointer to the allocated area or %NULL in case of error.
4745  */
4746 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
4747 {
4748 	unsigned int order = get_order(size);
4749 	struct page *p;
4750 
4751 	if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM)))
4752 		gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM);
4753 
4754 	p = alloc_pages_node(nid, gfp_mask, order);
4755 	if (!p)
4756 		return NULL;
4757 	return make_alloc_exact((unsigned long)page_address(p), order, size);
4758 }
4759 
4760 /**
4761  * free_pages_exact - release memory allocated via alloc_pages_exact()
4762  * @virt: the value returned by alloc_pages_exact.
4763  * @size: size of allocation, same value as passed to alloc_pages_exact().
4764  *
4765  * Release the memory allocated by a previous call to alloc_pages_exact.
4766  */
4767 void free_pages_exact(void *virt, size_t size)
4768 {
4769 	unsigned long addr = (unsigned long)virt;
4770 	unsigned long end = addr + PAGE_ALIGN(size);
4771 
4772 	while (addr < end) {
4773 		free_page(addr);
4774 		addr += PAGE_SIZE;
4775 	}
4776 }
4777 EXPORT_SYMBOL(free_pages_exact);
4778 
4779 /**
4780  * nr_free_zone_pages - count number of pages beyond high watermark
4781  * @offset: The zone index of the highest zone
4782  *
4783  * nr_free_zone_pages() counts the number of pages which are beyond the
4784  * high watermark within all zones at or below a given zone index.  For each
4785  * zone, the number of pages is calculated as:
4786  *
4787  *     nr_free_zone_pages = managed_pages - high_pages
4788  *
4789  * Return: number of pages beyond high watermark.
4790  */
4791 static unsigned long nr_free_zone_pages(int offset)
4792 {
4793 	struct zoneref *z;
4794 	struct zone *zone;
4795 
4796 	/* Just pick one node, since fallback list is circular */
4797 	unsigned long sum = 0;
4798 
4799 	struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
4800 
4801 	for_each_zone_zonelist(zone, z, zonelist, offset) {
4802 		unsigned long size = zone_managed_pages(zone);
4803 		unsigned long high = high_wmark_pages(zone);
4804 		if (size > high)
4805 			sum += size - high;
4806 	}
4807 
4808 	return sum;
4809 }
4810 
4811 /**
4812  * nr_free_buffer_pages - count number of pages beyond high watermark
4813  *
4814  * nr_free_buffer_pages() counts the number of pages which are beyond the high
4815  * watermark within ZONE_DMA and ZONE_NORMAL.
4816  *
4817  * Return: number of pages beyond high watermark within ZONE_DMA and
4818  * ZONE_NORMAL.
4819  */
4820 unsigned long nr_free_buffer_pages(void)
4821 {
4822 	return nr_free_zone_pages(gfp_zone(GFP_USER));
4823 }
4824 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
4825 
4826 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
4827 {
4828 	zoneref->zone = zone;
4829 	zoneref->zone_idx = zone_idx(zone);
4830 }
4831 
4832 /*
4833  * Builds allocation fallback zone lists.
4834  *
4835  * Add all populated zones of a node to the zonelist.
4836  */
4837 static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs)
4838 {
4839 	struct zone *zone;
4840 	enum zone_type zone_type = MAX_NR_ZONES;
4841 	int nr_zones = 0;
4842 
4843 	do {
4844 		zone_type--;
4845 		zone = pgdat->node_zones + zone_type;
4846 		if (populated_zone(zone)) {
4847 			zoneref_set_zone(zone, &zonerefs[nr_zones++]);
4848 			check_highest_zone(zone_type);
4849 		}
4850 	} while (zone_type);
4851 
4852 	return nr_zones;
4853 }
4854 
4855 #ifdef CONFIG_NUMA
4856 
4857 static int __parse_numa_zonelist_order(char *s)
4858 {
4859 	/*
4860 	 * We used to support different zonelists modes but they turned
4861 	 * out to be just not useful. Let's keep the warning in place
4862 	 * if somebody still use the cmd line parameter so that we do
4863 	 * not fail it silently
4864 	 */
4865 	if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) {
4866 		pr_warn("Ignoring unsupported numa_zonelist_order value:  %s\n", s);
4867 		return -EINVAL;
4868 	}
4869 	return 0;
4870 }
4871 
4872 static char numa_zonelist_order[] = "Node";
4873 #define NUMA_ZONELIST_ORDER_LEN	16
4874 /*
4875  * sysctl handler for numa_zonelist_order
4876  */
4877 static int numa_zonelist_order_handler(struct ctl_table *table, int write,
4878 		void *buffer, size_t *length, loff_t *ppos)
4879 {
4880 	if (write)
4881 		return __parse_numa_zonelist_order(buffer);
4882 	return proc_dostring(table, write, buffer, length, ppos);
4883 }
4884 
4885 static int node_load[MAX_NUMNODES];
4886 
4887 /**
4888  * find_next_best_node - find the next node that should appear in a given node's fallback list
4889  * @node: node whose fallback list we're appending
4890  * @used_node_mask: nodemask_t of already used nodes
4891  *
4892  * We use a number of factors to determine which is the next node that should
4893  * appear on a given node's fallback list.  The node should not have appeared
4894  * already in @node's fallback list, and it should be the next closest node
4895  * according to the distance array (which contains arbitrary distance values
4896  * from each node to each node in the system), and should also prefer nodes
4897  * with no CPUs, since presumably they'll have very little allocation pressure
4898  * on them otherwise.
4899  *
4900  * Return: node id of the found node or %NUMA_NO_NODE if no node is found.
4901  */
4902 int find_next_best_node(int node, nodemask_t *used_node_mask)
4903 {
4904 	int n, val;
4905 	int min_val = INT_MAX;
4906 	int best_node = NUMA_NO_NODE;
4907 
4908 	/* Use the local node if we haven't already */
4909 	if (!node_isset(node, *used_node_mask)) {
4910 		node_set(node, *used_node_mask);
4911 		return node;
4912 	}
4913 
4914 	for_each_node_state(n, N_MEMORY) {
4915 
4916 		/* Don't want a node to appear more than once */
4917 		if (node_isset(n, *used_node_mask))
4918 			continue;
4919 
4920 		/* Use the distance array to find the distance */
4921 		val = node_distance(node, n);
4922 
4923 		/* Penalize nodes under us ("prefer the next node") */
4924 		val += (n < node);
4925 
4926 		/* Give preference to headless and unused nodes */
4927 		if (!cpumask_empty(cpumask_of_node(n)))
4928 			val += PENALTY_FOR_NODE_WITH_CPUS;
4929 
4930 		/* Slight preference for less loaded node */
4931 		val *= MAX_NUMNODES;
4932 		val += node_load[n];
4933 
4934 		if (val < min_val) {
4935 			min_val = val;
4936 			best_node = n;
4937 		}
4938 	}
4939 
4940 	if (best_node >= 0)
4941 		node_set(best_node, *used_node_mask);
4942 
4943 	return best_node;
4944 }
4945 
4946 
4947 /*
4948  * Build zonelists ordered by node and zones within node.
4949  * This results in maximum locality--normal zone overflows into local
4950  * DMA zone, if any--but risks exhausting DMA zone.
4951  */
4952 static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order,
4953 		unsigned nr_nodes)
4954 {
4955 	struct zoneref *zonerefs;
4956 	int i;
4957 
4958 	zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
4959 
4960 	for (i = 0; i < nr_nodes; i++) {
4961 		int nr_zones;
4962 
4963 		pg_data_t *node = NODE_DATA(node_order[i]);
4964 
4965 		nr_zones = build_zonerefs_node(node, zonerefs);
4966 		zonerefs += nr_zones;
4967 	}
4968 	zonerefs->zone = NULL;
4969 	zonerefs->zone_idx = 0;
4970 }
4971 
4972 /*
4973  * Build gfp_thisnode zonelists
4974  */
4975 static void build_thisnode_zonelists(pg_data_t *pgdat)
4976 {
4977 	struct zoneref *zonerefs;
4978 	int nr_zones;
4979 
4980 	zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs;
4981 	nr_zones = build_zonerefs_node(pgdat, zonerefs);
4982 	zonerefs += nr_zones;
4983 	zonerefs->zone = NULL;
4984 	zonerefs->zone_idx = 0;
4985 }
4986 
4987 /*
4988  * Build zonelists ordered by zone and nodes within zones.
4989  * This results in conserving DMA zone[s] until all Normal memory is
4990  * exhausted, but results in overflowing to remote node while memory
4991  * may still exist in local DMA zone.
4992  */
4993 
4994 static void build_zonelists(pg_data_t *pgdat)
4995 {
4996 	static int node_order[MAX_NUMNODES];
4997 	int node, nr_nodes = 0;
4998 	nodemask_t used_mask = NODE_MASK_NONE;
4999 	int local_node, prev_node;
5000 
5001 	/* NUMA-aware ordering of nodes */
5002 	local_node = pgdat->node_id;
5003 	prev_node = local_node;
5004 
5005 	memset(node_order, 0, sizeof(node_order));
5006 	while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
5007 		/*
5008 		 * We don't want to pressure a particular node.
5009 		 * So adding penalty to the first node in same
5010 		 * distance group to make it round-robin.
5011 		 */
5012 		if (node_distance(local_node, node) !=
5013 		    node_distance(local_node, prev_node))
5014 			node_load[node] += 1;
5015 
5016 		node_order[nr_nodes++] = node;
5017 		prev_node = node;
5018 	}
5019 
5020 	build_zonelists_in_node_order(pgdat, node_order, nr_nodes);
5021 	build_thisnode_zonelists(pgdat);
5022 	pr_info("Fallback order for Node %d: ", local_node);
5023 	for (node = 0; node < nr_nodes; node++)
5024 		pr_cont("%d ", node_order[node]);
5025 	pr_cont("\n");
5026 }
5027 
5028 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
5029 /*
5030  * Return node id of node used for "local" allocations.
5031  * I.e., first node id of first zone in arg node's generic zonelist.
5032  * Used for initializing percpu 'numa_mem', which is used primarily
5033  * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
5034  */
5035 int local_memory_node(int node)
5036 {
5037 	struct zoneref *z;
5038 
5039 	z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
5040 				   gfp_zone(GFP_KERNEL),
5041 				   NULL);
5042 	return zone_to_nid(z->zone);
5043 }
5044 #endif
5045 
5046 static void setup_min_unmapped_ratio(void);
5047 static void setup_min_slab_ratio(void);
5048 #else	/* CONFIG_NUMA */
5049 
5050 static void build_zonelists(pg_data_t *pgdat)
5051 {
5052 	int node, local_node;
5053 	struct zoneref *zonerefs;
5054 	int nr_zones;
5055 
5056 	local_node = pgdat->node_id;
5057 
5058 	zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5059 	nr_zones = build_zonerefs_node(pgdat, zonerefs);
5060 	zonerefs += nr_zones;
5061 
5062 	/*
5063 	 * Now we build the zonelist so that it contains the zones
5064 	 * of all the other nodes.
5065 	 * We don't want to pressure a particular node, so when
5066 	 * building the zones for node N, we make sure that the
5067 	 * zones coming right after the local ones are those from
5068 	 * node N+1 (modulo N)
5069 	 */
5070 	for (node = local_node + 1; node < MAX_NUMNODES; node++) {
5071 		if (!node_online(node))
5072 			continue;
5073 		nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5074 		zonerefs += nr_zones;
5075 	}
5076 	for (node = 0; node < local_node; node++) {
5077 		if (!node_online(node))
5078 			continue;
5079 		nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5080 		zonerefs += nr_zones;
5081 	}
5082 
5083 	zonerefs->zone = NULL;
5084 	zonerefs->zone_idx = 0;
5085 }
5086 
5087 #endif	/* CONFIG_NUMA */
5088 
5089 /*
5090  * Boot pageset table. One per cpu which is going to be used for all
5091  * zones and all nodes. The parameters will be set in such a way
5092  * that an item put on a list will immediately be handed over to
5093  * the buddy list. This is safe since pageset manipulation is done
5094  * with interrupts disabled.
5095  *
5096  * The boot_pagesets must be kept even after bootup is complete for
5097  * unused processors and/or zones. They do play a role for bootstrapping
5098  * hotplugged processors.
5099  *
5100  * zoneinfo_show() and maybe other functions do
5101  * not check if the processor is online before following the pageset pointer.
5102  * Other parts of the kernel may not check if the zone is available.
5103  */
5104 static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats);
5105 /* These effectively disable the pcplists in the boot pageset completely */
5106 #define BOOT_PAGESET_HIGH	0
5107 #define BOOT_PAGESET_BATCH	1
5108 static DEFINE_PER_CPU(struct per_cpu_pages, boot_pageset);
5109 static DEFINE_PER_CPU(struct per_cpu_zonestat, boot_zonestats);
5110 
5111 static void __build_all_zonelists(void *data)
5112 {
5113 	int nid;
5114 	int __maybe_unused cpu;
5115 	pg_data_t *self = data;
5116 	unsigned long flags;
5117 
5118 	/*
5119 	 * Explicitly disable this CPU's interrupts before taking seqlock
5120 	 * to prevent any IRQ handler from calling into the page allocator
5121 	 * (e.g. GFP_ATOMIC) that could hit zonelist_iter_begin and livelock.
5122 	 */
5123 	local_irq_save(flags);
5124 	/*
5125 	 * Explicitly disable this CPU's synchronous printk() before taking
5126 	 * seqlock to prevent any printk() from trying to hold port->lock, for
5127 	 * tty_insert_flip_string_and_push_buffer() on other CPU might be
5128 	 * calling kmalloc(GFP_ATOMIC | __GFP_NOWARN) with port->lock held.
5129 	 */
5130 	printk_deferred_enter();
5131 	write_seqlock(&zonelist_update_seq);
5132 
5133 #ifdef CONFIG_NUMA
5134 	memset(node_load, 0, sizeof(node_load));
5135 #endif
5136 
5137 	/*
5138 	 * This node is hotadded and no memory is yet present.   So just
5139 	 * building zonelists is fine - no need to touch other nodes.
5140 	 */
5141 	if (self && !node_online(self->node_id)) {
5142 		build_zonelists(self);
5143 	} else {
5144 		/*
5145 		 * All possible nodes have pgdat preallocated
5146 		 * in free_area_init
5147 		 */
5148 		for_each_node(nid) {
5149 			pg_data_t *pgdat = NODE_DATA(nid);
5150 
5151 			build_zonelists(pgdat);
5152 		}
5153 
5154 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
5155 		/*
5156 		 * We now know the "local memory node" for each node--
5157 		 * i.e., the node of the first zone in the generic zonelist.
5158 		 * Set up numa_mem percpu variable for on-line cpus.  During
5159 		 * boot, only the boot cpu should be on-line;  we'll init the
5160 		 * secondary cpus' numa_mem as they come on-line.  During
5161 		 * node/memory hotplug, we'll fixup all on-line cpus.
5162 		 */
5163 		for_each_online_cpu(cpu)
5164 			set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
5165 #endif
5166 	}
5167 
5168 	write_sequnlock(&zonelist_update_seq);
5169 	printk_deferred_exit();
5170 	local_irq_restore(flags);
5171 }
5172 
5173 static noinline void __init
5174 build_all_zonelists_init(void)
5175 {
5176 	int cpu;
5177 
5178 	__build_all_zonelists(NULL);
5179 
5180 	/*
5181 	 * Initialize the boot_pagesets that are going to be used
5182 	 * for bootstrapping processors. The real pagesets for
5183 	 * each zone will be allocated later when the per cpu
5184 	 * allocator is available.
5185 	 *
5186 	 * boot_pagesets are used also for bootstrapping offline
5187 	 * cpus if the system is already booted because the pagesets
5188 	 * are needed to initialize allocators on a specific cpu too.
5189 	 * F.e. the percpu allocator needs the page allocator which
5190 	 * needs the percpu allocator in order to allocate its pagesets
5191 	 * (a chicken-egg dilemma).
5192 	 */
5193 	for_each_possible_cpu(cpu)
5194 		per_cpu_pages_init(&per_cpu(boot_pageset, cpu), &per_cpu(boot_zonestats, cpu));
5195 
5196 	mminit_verify_zonelist();
5197 	cpuset_init_current_mems_allowed();
5198 }
5199 
5200 /*
5201  * unless system_state == SYSTEM_BOOTING.
5202  *
5203  * __ref due to call of __init annotated helper build_all_zonelists_init
5204  * [protected by SYSTEM_BOOTING].
5205  */
5206 void __ref build_all_zonelists(pg_data_t *pgdat)
5207 {
5208 	unsigned long vm_total_pages;
5209 
5210 	if (system_state == SYSTEM_BOOTING) {
5211 		build_all_zonelists_init();
5212 	} else {
5213 		__build_all_zonelists(pgdat);
5214 		/* cpuset refresh routine should be here */
5215 	}
5216 	/* Get the number of free pages beyond high watermark in all zones. */
5217 	vm_total_pages = nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
5218 	/*
5219 	 * Disable grouping by mobility if the number of pages in the
5220 	 * system is too low to allow the mechanism to work. It would be
5221 	 * more accurate, but expensive to check per-zone. This check is
5222 	 * made on memory-hotadd so a system can start with mobility
5223 	 * disabled and enable it later
5224 	 */
5225 	if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
5226 		page_group_by_mobility_disabled = 1;
5227 	else
5228 		page_group_by_mobility_disabled = 0;
5229 
5230 	pr_info("Built %u zonelists, mobility grouping %s.  Total pages: %ld\n",
5231 		nr_online_nodes,
5232 		page_group_by_mobility_disabled ? "off" : "on",
5233 		vm_total_pages);
5234 #ifdef CONFIG_NUMA
5235 	pr_info("Policy zone: %s\n", zone_names[policy_zone]);
5236 #endif
5237 }
5238 
5239 static int zone_batchsize(struct zone *zone)
5240 {
5241 #ifdef CONFIG_MMU
5242 	int batch;
5243 
5244 	/*
5245 	 * The number of pages to batch allocate is either ~0.1%
5246 	 * of the zone or 1MB, whichever is smaller. The batch
5247 	 * size is striking a balance between allocation latency
5248 	 * and zone lock contention.
5249 	 */
5250 	batch = min(zone_managed_pages(zone) >> 10, SZ_1M / PAGE_SIZE);
5251 	batch /= 4;		/* We effectively *= 4 below */
5252 	if (batch < 1)
5253 		batch = 1;
5254 
5255 	/*
5256 	 * Clamp the batch to a 2^n - 1 value. Having a power
5257 	 * of 2 value was found to be more likely to have
5258 	 * suboptimal cache aliasing properties in some cases.
5259 	 *
5260 	 * For example if 2 tasks are alternately allocating
5261 	 * batches of pages, one task can end up with a lot
5262 	 * of pages of one half of the possible page colors
5263 	 * and the other with pages of the other colors.
5264 	 */
5265 	batch = rounddown_pow_of_two(batch + batch/2) - 1;
5266 
5267 	return batch;
5268 
5269 #else
5270 	/* The deferral and batching of frees should be suppressed under NOMMU
5271 	 * conditions.
5272 	 *
5273 	 * The problem is that NOMMU needs to be able to allocate large chunks
5274 	 * of contiguous memory as there's no hardware page translation to
5275 	 * assemble apparent contiguous memory from discontiguous pages.
5276 	 *
5277 	 * Queueing large contiguous runs of pages for batching, however,
5278 	 * causes the pages to actually be freed in smaller chunks.  As there
5279 	 * can be a significant delay between the individual batches being
5280 	 * recycled, this leads to the once large chunks of space being
5281 	 * fragmented and becoming unavailable for high-order allocations.
5282 	 */
5283 	return 0;
5284 #endif
5285 }
5286 
5287 static int percpu_pagelist_high_fraction;
5288 static int zone_highsize(struct zone *zone, int batch, int cpu_online)
5289 {
5290 #ifdef CONFIG_MMU
5291 	int high;
5292 	int nr_split_cpus;
5293 	unsigned long total_pages;
5294 
5295 	if (!percpu_pagelist_high_fraction) {
5296 		/*
5297 		 * By default, the high value of the pcp is based on the zone
5298 		 * low watermark so that if they are full then background
5299 		 * reclaim will not be started prematurely.
5300 		 */
5301 		total_pages = low_wmark_pages(zone);
5302 	} else {
5303 		/*
5304 		 * If percpu_pagelist_high_fraction is configured, the high
5305 		 * value is based on a fraction of the managed pages in the
5306 		 * zone.
5307 		 */
5308 		total_pages = zone_managed_pages(zone) / percpu_pagelist_high_fraction;
5309 	}
5310 
5311 	/*
5312 	 * Split the high value across all online CPUs local to the zone. Note
5313 	 * that early in boot that CPUs may not be online yet and that during
5314 	 * CPU hotplug that the cpumask is not yet updated when a CPU is being
5315 	 * onlined. For memory nodes that have no CPUs, split pcp->high across
5316 	 * all online CPUs to mitigate the risk that reclaim is triggered
5317 	 * prematurely due to pages stored on pcp lists.
5318 	 */
5319 	nr_split_cpus = cpumask_weight(cpumask_of_node(zone_to_nid(zone))) + cpu_online;
5320 	if (!nr_split_cpus)
5321 		nr_split_cpus = num_online_cpus();
5322 	high = total_pages / nr_split_cpus;
5323 
5324 	/*
5325 	 * Ensure high is at least batch*4. The multiple is based on the
5326 	 * historical relationship between high and batch.
5327 	 */
5328 	high = max(high, batch << 2);
5329 
5330 	return high;
5331 #else
5332 	return 0;
5333 #endif
5334 }
5335 
5336 /*
5337  * pcp->high and pcp->batch values are related and generally batch is lower
5338  * than high. They are also related to pcp->count such that count is lower
5339  * than high, and as soon as it reaches high, the pcplist is flushed.
5340  *
5341  * However, guaranteeing these relations at all times would require e.g. write
5342  * barriers here but also careful usage of read barriers at the read side, and
5343  * thus be prone to error and bad for performance. Thus the update only prevents
5344  * store tearing. Any new users of pcp->batch and pcp->high should ensure they
5345  * can cope with those fields changing asynchronously, and fully trust only the
5346  * pcp->count field on the local CPU with interrupts disabled.
5347  *
5348  * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
5349  * outside of boot time (or some other assurance that no concurrent updaters
5350  * exist).
5351  */
5352 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
5353 		unsigned long batch)
5354 {
5355 	WRITE_ONCE(pcp->batch, batch);
5356 	WRITE_ONCE(pcp->high, high);
5357 }
5358 
5359 static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats)
5360 {
5361 	int pindex;
5362 
5363 	memset(pcp, 0, sizeof(*pcp));
5364 	memset(pzstats, 0, sizeof(*pzstats));
5365 
5366 	spin_lock_init(&pcp->lock);
5367 	for (pindex = 0; pindex < NR_PCP_LISTS; pindex++)
5368 		INIT_LIST_HEAD(&pcp->lists[pindex]);
5369 
5370 	/*
5371 	 * Set batch and high values safe for a boot pageset. A true percpu
5372 	 * pageset's initialization will update them subsequently. Here we don't
5373 	 * need to be as careful as pageset_update() as nobody can access the
5374 	 * pageset yet.
5375 	 */
5376 	pcp->high = BOOT_PAGESET_HIGH;
5377 	pcp->batch = BOOT_PAGESET_BATCH;
5378 	pcp->free_factor = 0;
5379 }
5380 
5381 static void __zone_set_pageset_high_and_batch(struct zone *zone, unsigned long high,
5382 		unsigned long batch)
5383 {
5384 	struct per_cpu_pages *pcp;
5385 	int cpu;
5386 
5387 	for_each_possible_cpu(cpu) {
5388 		pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
5389 		pageset_update(pcp, high, batch);
5390 	}
5391 }
5392 
5393 /*
5394  * Calculate and set new high and batch values for all per-cpu pagesets of a
5395  * zone based on the zone's size.
5396  */
5397 static void zone_set_pageset_high_and_batch(struct zone *zone, int cpu_online)
5398 {
5399 	int new_high, new_batch;
5400 
5401 	new_batch = max(1, zone_batchsize(zone));
5402 	new_high = zone_highsize(zone, new_batch, cpu_online);
5403 
5404 	if (zone->pageset_high == new_high &&
5405 	    zone->pageset_batch == new_batch)
5406 		return;
5407 
5408 	zone->pageset_high = new_high;
5409 	zone->pageset_batch = new_batch;
5410 
5411 	__zone_set_pageset_high_and_batch(zone, new_high, new_batch);
5412 }
5413 
5414 void __meminit setup_zone_pageset(struct zone *zone)
5415 {
5416 	int cpu;
5417 
5418 	/* Size may be 0 on !SMP && !NUMA */
5419 	if (sizeof(struct per_cpu_zonestat) > 0)
5420 		zone->per_cpu_zonestats = alloc_percpu(struct per_cpu_zonestat);
5421 
5422 	zone->per_cpu_pageset = alloc_percpu(struct per_cpu_pages);
5423 	for_each_possible_cpu(cpu) {
5424 		struct per_cpu_pages *pcp;
5425 		struct per_cpu_zonestat *pzstats;
5426 
5427 		pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
5428 		pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
5429 		per_cpu_pages_init(pcp, pzstats);
5430 	}
5431 
5432 	zone_set_pageset_high_and_batch(zone, 0);
5433 }
5434 
5435 /*
5436  * The zone indicated has a new number of managed_pages; batch sizes and percpu
5437  * page high values need to be recalculated.
5438  */
5439 static void zone_pcp_update(struct zone *zone, int cpu_online)
5440 {
5441 	mutex_lock(&pcp_batch_high_lock);
5442 	zone_set_pageset_high_and_batch(zone, cpu_online);
5443 	mutex_unlock(&pcp_batch_high_lock);
5444 }
5445 
5446 /*
5447  * Allocate per cpu pagesets and initialize them.
5448  * Before this call only boot pagesets were available.
5449  */
5450 void __init setup_per_cpu_pageset(void)
5451 {
5452 	struct pglist_data *pgdat;
5453 	struct zone *zone;
5454 	int __maybe_unused cpu;
5455 
5456 	for_each_populated_zone(zone)
5457 		setup_zone_pageset(zone);
5458 
5459 #ifdef CONFIG_NUMA
5460 	/*
5461 	 * Unpopulated zones continue using the boot pagesets.
5462 	 * The numa stats for these pagesets need to be reset.
5463 	 * Otherwise, they will end up skewing the stats of
5464 	 * the nodes these zones are associated with.
5465 	 */
5466 	for_each_possible_cpu(cpu) {
5467 		struct per_cpu_zonestat *pzstats = &per_cpu(boot_zonestats, cpu);
5468 		memset(pzstats->vm_numa_event, 0,
5469 		       sizeof(pzstats->vm_numa_event));
5470 	}
5471 #endif
5472 
5473 	for_each_online_pgdat(pgdat)
5474 		pgdat->per_cpu_nodestats =
5475 			alloc_percpu(struct per_cpu_nodestat);
5476 }
5477 
5478 __meminit void zone_pcp_init(struct zone *zone)
5479 {
5480 	/*
5481 	 * per cpu subsystem is not up at this point. The following code
5482 	 * relies on the ability of the linker to provide the
5483 	 * offset of a (static) per cpu variable into the per cpu area.
5484 	 */
5485 	zone->per_cpu_pageset = &boot_pageset;
5486 	zone->per_cpu_zonestats = &boot_zonestats;
5487 	zone->pageset_high = BOOT_PAGESET_HIGH;
5488 	zone->pageset_batch = BOOT_PAGESET_BATCH;
5489 
5490 	if (populated_zone(zone))
5491 		pr_debug("  %s zone: %lu pages, LIFO batch:%u\n", zone->name,
5492 			 zone->present_pages, zone_batchsize(zone));
5493 }
5494 
5495 void adjust_managed_page_count(struct page *page, long count)
5496 {
5497 	atomic_long_add(count, &page_zone(page)->managed_pages);
5498 	totalram_pages_add(count);
5499 #ifdef CONFIG_HIGHMEM
5500 	if (PageHighMem(page))
5501 		totalhigh_pages_add(count);
5502 #endif
5503 }
5504 EXPORT_SYMBOL(adjust_managed_page_count);
5505 
5506 unsigned long free_reserved_area(void *start, void *end, int poison, const char *s)
5507 {
5508 	void *pos;
5509 	unsigned long pages = 0;
5510 
5511 	start = (void *)PAGE_ALIGN((unsigned long)start);
5512 	end = (void *)((unsigned long)end & PAGE_MASK);
5513 	for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
5514 		struct page *page = virt_to_page(pos);
5515 		void *direct_map_addr;
5516 
5517 		/*
5518 		 * 'direct_map_addr' might be different from 'pos'
5519 		 * because some architectures' virt_to_page()
5520 		 * work with aliases.  Getting the direct map
5521 		 * address ensures that we get a _writeable_
5522 		 * alias for the memset().
5523 		 */
5524 		direct_map_addr = page_address(page);
5525 		/*
5526 		 * Perform a kasan-unchecked memset() since this memory
5527 		 * has not been initialized.
5528 		 */
5529 		direct_map_addr = kasan_reset_tag(direct_map_addr);
5530 		if ((unsigned int)poison <= 0xFF)
5531 			memset(direct_map_addr, poison, PAGE_SIZE);
5532 
5533 		free_reserved_page(page);
5534 	}
5535 
5536 	if (pages && s)
5537 		pr_info("Freeing %s memory: %ldK\n", s, K(pages));
5538 
5539 	return pages;
5540 }
5541 
5542 static int page_alloc_cpu_dead(unsigned int cpu)
5543 {
5544 	struct zone *zone;
5545 
5546 	lru_add_drain_cpu(cpu);
5547 	mlock_drain_remote(cpu);
5548 	drain_pages(cpu);
5549 
5550 	/*
5551 	 * Spill the event counters of the dead processor
5552 	 * into the current processors event counters.
5553 	 * This artificially elevates the count of the current
5554 	 * processor.
5555 	 */
5556 	vm_events_fold_cpu(cpu);
5557 
5558 	/*
5559 	 * Zero the differential counters of the dead processor
5560 	 * so that the vm statistics are consistent.
5561 	 *
5562 	 * This is only okay since the processor is dead and cannot
5563 	 * race with what we are doing.
5564 	 */
5565 	cpu_vm_stats_fold(cpu);
5566 
5567 	for_each_populated_zone(zone)
5568 		zone_pcp_update(zone, 0);
5569 
5570 	return 0;
5571 }
5572 
5573 static int page_alloc_cpu_online(unsigned int cpu)
5574 {
5575 	struct zone *zone;
5576 
5577 	for_each_populated_zone(zone)
5578 		zone_pcp_update(zone, 1);
5579 	return 0;
5580 }
5581 
5582 void __init page_alloc_init_cpuhp(void)
5583 {
5584 	int ret;
5585 
5586 	ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC,
5587 					"mm/page_alloc:pcp",
5588 					page_alloc_cpu_online,
5589 					page_alloc_cpu_dead);
5590 	WARN_ON(ret < 0);
5591 }
5592 
5593 /*
5594  * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
5595  *	or min_free_kbytes changes.
5596  */
5597 static void calculate_totalreserve_pages(void)
5598 {
5599 	struct pglist_data *pgdat;
5600 	unsigned long reserve_pages = 0;
5601 	enum zone_type i, j;
5602 
5603 	for_each_online_pgdat(pgdat) {
5604 
5605 		pgdat->totalreserve_pages = 0;
5606 
5607 		for (i = 0; i < MAX_NR_ZONES; i++) {
5608 			struct zone *zone = pgdat->node_zones + i;
5609 			long max = 0;
5610 			unsigned long managed_pages = zone_managed_pages(zone);
5611 
5612 			/* Find valid and maximum lowmem_reserve in the zone */
5613 			for (j = i; j < MAX_NR_ZONES; j++) {
5614 				if (zone->lowmem_reserve[j] > max)
5615 					max = zone->lowmem_reserve[j];
5616 			}
5617 
5618 			/* we treat the high watermark as reserved pages. */
5619 			max += high_wmark_pages(zone);
5620 
5621 			if (max > managed_pages)
5622 				max = managed_pages;
5623 
5624 			pgdat->totalreserve_pages += max;
5625 
5626 			reserve_pages += max;
5627 		}
5628 	}
5629 	totalreserve_pages = reserve_pages;
5630 }
5631 
5632 /*
5633  * setup_per_zone_lowmem_reserve - called whenever
5634  *	sysctl_lowmem_reserve_ratio changes.  Ensures that each zone
5635  *	has a correct pages reserved value, so an adequate number of
5636  *	pages are left in the zone after a successful __alloc_pages().
5637  */
5638 static void setup_per_zone_lowmem_reserve(void)
5639 {
5640 	struct pglist_data *pgdat;
5641 	enum zone_type i, j;
5642 
5643 	for_each_online_pgdat(pgdat) {
5644 		for (i = 0; i < MAX_NR_ZONES - 1; i++) {
5645 			struct zone *zone = &pgdat->node_zones[i];
5646 			int ratio = sysctl_lowmem_reserve_ratio[i];
5647 			bool clear = !ratio || !zone_managed_pages(zone);
5648 			unsigned long managed_pages = 0;
5649 
5650 			for (j = i + 1; j < MAX_NR_ZONES; j++) {
5651 				struct zone *upper_zone = &pgdat->node_zones[j];
5652 
5653 				managed_pages += zone_managed_pages(upper_zone);
5654 
5655 				if (clear)
5656 					zone->lowmem_reserve[j] = 0;
5657 				else
5658 					zone->lowmem_reserve[j] = managed_pages / ratio;
5659 			}
5660 		}
5661 	}
5662 
5663 	/* update totalreserve_pages */
5664 	calculate_totalreserve_pages();
5665 }
5666 
5667 static void __setup_per_zone_wmarks(void)
5668 {
5669 	unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
5670 	unsigned long lowmem_pages = 0;
5671 	struct zone *zone;
5672 	unsigned long flags;
5673 
5674 	/* Calculate total number of !ZONE_HIGHMEM pages */
5675 	for_each_zone(zone) {
5676 		if (!is_highmem(zone))
5677 			lowmem_pages += zone_managed_pages(zone);
5678 	}
5679 
5680 	for_each_zone(zone) {
5681 		u64 tmp;
5682 
5683 		spin_lock_irqsave(&zone->lock, flags);
5684 		tmp = (u64)pages_min * zone_managed_pages(zone);
5685 		do_div(tmp, lowmem_pages);
5686 		if (is_highmem(zone)) {
5687 			/*
5688 			 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
5689 			 * need highmem pages, so cap pages_min to a small
5690 			 * value here.
5691 			 *
5692 			 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
5693 			 * deltas control async page reclaim, and so should
5694 			 * not be capped for highmem.
5695 			 */
5696 			unsigned long min_pages;
5697 
5698 			min_pages = zone_managed_pages(zone) / 1024;
5699 			min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
5700 			zone->_watermark[WMARK_MIN] = min_pages;
5701 		} else {
5702 			/*
5703 			 * If it's a lowmem zone, reserve a number of pages
5704 			 * proportionate to the zone's size.
5705 			 */
5706 			zone->_watermark[WMARK_MIN] = tmp;
5707 		}
5708 
5709 		/*
5710 		 * Set the kswapd watermarks distance according to the
5711 		 * scale factor in proportion to available memory, but
5712 		 * ensure a minimum size on small systems.
5713 		 */
5714 		tmp = max_t(u64, tmp >> 2,
5715 			    mult_frac(zone_managed_pages(zone),
5716 				      watermark_scale_factor, 10000));
5717 
5718 		zone->watermark_boost = 0;
5719 		zone->_watermark[WMARK_LOW]  = min_wmark_pages(zone) + tmp;
5720 		zone->_watermark[WMARK_HIGH] = low_wmark_pages(zone) + tmp;
5721 		zone->_watermark[WMARK_PROMO] = high_wmark_pages(zone) + tmp;
5722 
5723 		spin_unlock_irqrestore(&zone->lock, flags);
5724 	}
5725 
5726 	/* update totalreserve_pages */
5727 	calculate_totalreserve_pages();
5728 }
5729 
5730 /**
5731  * setup_per_zone_wmarks - called when min_free_kbytes changes
5732  * or when memory is hot-{added|removed}
5733  *
5734  * Ensures that the watermark[min,low,high] values for each zone are set
5735  * correctly with respect to min_free_kbytes.
5736  */
5737 void setup_per_zone_wmarks(void)
5738 {
5739 	struct zone *zone;
5740 	static DEFINE_SPINLOCK(lock);
5741 
5742 	spin_lock(&lock);
5743 	__setup_per_zone_wmarks();
5744 	spin_unlock(&lock);
5745 
5746 	/*
5747 	 * The watermark size have changed so update the pcpu batch
5748 	 * and high limits or the limits may be inappropriate.
5749 	 */
5750 	for_each_zone(zone)
5751 		zone_pcp_update(zone, 0);
5752 }
5753 
5754 /*
5755  * Initialise min_free_kbytes.
5756  *
5757  * For small machines we want it small (128k min).  For large machines
5758  * we want it large (256MB max).  But it is not linear, because network
5759  * bandwidth does not increase linearly with machine size.  We use
5760  *
5761  *	min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
5762  *	min_free_kbytes = sqrt(lowmem_kbytes * 16)
5763  *
5764  * which yields
5765  *
5766  * 16MB:	512k
5767  * 32MB:	724k
5768  * 64MB:	1024k
5769  * 128MB:	1448k
5770  * 256MB:	2048k
5771  * 512MB:	2896k
5772  * 1024MB:	4096k
5773  * 2048MB:	5792k
5774  * 4096MB:	8192k
5775  * 8192MB:	11584k
5776  * 16384MB:	16384k
5777  */
5778 void calculate_min_free_kbytes(void)
5779 {
5780 	unsigned long lowmem_kbytes;
5781 	int new_min_free_kbytes;
5782 
5783 	lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5784 	new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
5785 
5786 	if (new_min_free_kbytes > user_min_free_kbytes)
5787 		min_free_kbytes = clamp(new_min_free_kbytes, 128, 262144);
5788 	else
5789 		pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
5790 				new_min_free_kbytes, user_min_free_kbytes);
5791 
5792 }
5793 
5794 int __meminit init_per_zone_wmark_min(void)
5795 {
5796 	calculate_min_free_kbytes();
5797 	setup_per_zone_wmarks();
5798 	refresh_zone_stat_thresholds();
5799 	setup_per_zone_lowmem_reserve();
5800 
5801 #ifdef CONFIG_NUMA
5802 	setup_min_unmapped_ratio();
5803 	setup_min_slab_ratio();
5804 #endif
5805 
5806 	khugepaged_min_free_kbytes_update();
5807 
5808 	return 0;
5809 }
5810 postcore_initcall(init_per_zone_wmark_min)
5811 
5812 /*
5813  * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
5814  *	that we can call two helper functions whenever min_free_kbytes
5815  *	changes.
5816  */
5817 static int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
5818 		void *buffer, size_t *length, loff_t *ppos)
5819 {
5820 	int rc;
5821 
5822 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5823 	if (rc)
5824 		return rc;
5825 
5826 	if (write) {
5827 		user_min_free_kbytes = min_free_kbytes;
5828 		setup_per_zone_wmarks();
5829 	}
5830 	return 0;
5831 }
5832 
5833 static int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
5834 		void *buffer, size_t *length, loff_t *ppos)
5835 {
5836 	int rc;
5837 
5838 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5839 	if (rc)
5840 		return rc;
5841 
5842 	if (write)
5843 		setup_per_zone_wmarks();
5844 
5845 	return 0;
5846 }
5847 
5848 #ifdef CONFIG_NUMA
5849 static void setup_min_unmapped_ratio(void)
5850 {
5851 	pg_data_t *pgdat;
5852 	struct zone *zone;
5853 
5854 	for_each_online_pgdat(pgdat)
5855 		pgdat->min_unmapped_pages = 0;
5856 
5857 	for_each_zone(zone)
5858 		zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) *
5859 						         sysctl_min_unmapped_ratio) / 100;
5860 }
5861 
5862 
5863 static int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
5864 		void *buffer, size_t *length, loff_t *ppos)
5865 {
5866 	int rc;
5867 
5868 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5869 	if (rc)
5870 		return rc;
5871 
5872 	setup_min_unmapped_ratio();
5873 
5874 	return 0;
5875 }
5876 
5877 static void setup_min_slab_ratio(void)
5878 {
5879 	pg_data_t *pgdat;
5880 	struct zone *zone;
5881 
5882 	for_each_online_pgdat(pgdat)
5883 		pgdat->min_slab_pages = 0;
5884 
5885 	for_each_zone(zone)
5886 		zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) *
5887 						     sysctl_min_slab_ratio) / 100;
5888 }
5889 
5890 static int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
5891 		void *buffer, size_t *length, loff_t *ppos)
5892 {
5893 	int rc;
5894 
5895 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5896 	if (rc)
5897 		return rc;
5898 
5899 	setup_min_slab_ratio();
5900 
5901 	return 0;
5902 }
5903 #endif
5904 
5905 /*
5906  * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
5907  *	proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
5908  *	whenever sysctl_lowmem_reserve_ratio changes.
5909  *
5910  * The reserve ratio obviously has absolutely no relation with the
5911  * minimum watermarks. The lowmem reserve ratio can only make sense
5912  * if in function of the boot time zone sizes.
5913  */
5914 static int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table,
5915 		int write, void *buffer, size_t *length, loff_t *ppos)
5916 {
5917 	int i;
5918 
5919 	proc_dointvec_minmax(table, write, buffer, length, ppos);
5920 
5921 	for (i = 0; i < MAX_NR_ZONES; i++) {
5922 		if (sysctl_lowmem_reserve_ratio[i] < 1)
5923 			sysctl_lowmem_reserve_ratio[i] = 0;
5924 	}
5925 
5926 	setup_per_zone_lowmem_reserve();
5927 	return 0;
5928 }
5929 
5930 /*
5931  * percpu_pagelist_high_fraction - changes the pcp->high for each zone on each
5932  * cpu. It is the fraction of total pages in each zone that a hot per cpu
5933  * pagelist can have before it gets flushed back to buddy allocator.
5934  */
5935 static int percpu_pagelist_high_fraction_sysctl_handler(struct ctl_table *table,
5936 		int write, void *buffer, size_t *length, loff_t *ppos)
5937 {
5938 	struct zone *zone;
5939 	int old_percpu_pagelist_high_fraction;
5940 	int ret;
5941 
5942 	mutex_lock(&pcp_batch_high_lock);
5943 	old_percpu_pagelist_high_fraction = percpu_pagelist_high_fraction;
5944 
5945 	ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
5946 	if (!write || ret < 0)
5947 		goto out;
5948 
5949 	/* Sanity checking to avoid pcp imbalance */
5950 	if (percpu_pagelist_high_fraction &&
5951 	    percpu_pagelist_high_fraction < MIN_PERCPU_PAGELIST_HIGH_FRACTION) {
5952 		percpu_pagelist_high_fraction = old_percpu_pagelist_high_fraction;
5953 		ret = -EINVAL;
5954 		goto out;
5955 	}
5956 
5957 	/* No change? */
5958 	if (percpu_pagelist_high_fraction == old_percpu_pagelist_high_fraction)
5959 		goto out;
5960 
5961 	for_each_populated_zone(zone)
5962 		zone_set_pageset_high_and_batch(zone, 0);
5963 out:
5964 	mutex_unlock(&pcp_batch_high_lock);
5965 	return ret;
5966 }
5967 
5968 static struct ctl_table page_alloc_sysctl_table[] = {
5969 	{
5970 		.procname	= "min_free_kbytes",
5971 		.data		= &min_free_kbytes,
5972 		.maxlen		= sizeof(min_free_kbytes),
5973 		.mode		= 0644,
5974 		.proc_handler	= min_free_kbytes_sysctl_handler,
5975 		.extra1		= SYSCTL_ZERO,
5976 	},
5977 	{
5978 		.procname	= "watermark_boost_factor",
5979 		.data		= &watermark_boost_factor,
5980 		.maxlen		= sizeof(watermark_boost_factor),
5981 		.mode		= 0644,
5982 		.proc_handler	= proc_dointvec_minmax,
5983 		.extra1		= SYSCTL_ZERO,
5984 	},
5985 	{
5986 		.procname	= "watermark_scale_factor",
5987 		.data		= &watermark_scale_factor,
5988 		.maxlen		= sizeof(watermark_scale_factor),
5989 		.mode		= 0644,
5990 		.proc_handler	= watermark_scale_factor_sysctl_handler,
5991 		.extra1		= SYSCTL_ONE,
5992 		.extra2		= SYSCTL_THREE_THOUSAND,
5993 	},
5994 	{
5995 		.procname	= "percpu_pagelist_high_fraction",
5996 		.data		= &percpu_pagelist_high_fraction,
5997 		.maxlen		= sizeof(percpu_pagelist_high_fraction),
5998 		.mode		= 0644,
5999 		.proc_handler	= percpu_pagelist_high_fraction_sysctl_handler,
6000 		.extra1		= SYSCTL_ZERO,
6001 	},
6002 	{
6003 		.procname	= "lowmem_reserve_ratio",
6004 		.data		= &sysctl_lowmem_reserve_ratio,
6005 		.maxlen		= sizeof(sysctl_lowmem_reserve_ratio),
6006 		.mode		= 0644,
6007 		.proc_handler	= lowmem_reserve_ratio_sysctl_handler,
6008 	},
6009 #ifdef CONFIG_NUMA
6010 	{
6011 		.procname	= "numa_zonelist_order",
6012 		.data		= &numa_zonelist_order,
6013 		.maxlen		= NUMA_ZONELIST_ORDER_LEN,
6014 		.mode		= 0644,
6015 		.proc_handler	= numa_zonelist_order_handler,
6016 	},
6017 	{
6018 		.procname	= "min_unmapped_ratio",
6019 		.data		= &sysctl_min_unmapped_ratio,
6020 		.maxlen		= sizeof(sysctl_min_unmapped_ratio),
6021 		.mode		= 0644,
6022 		.proc_handler	= sysctl_min_unmapped_ratio_sysctl_handler,
6023 		.extra1		= SYSCTL_ZERO,
6024 		.extra2		= SYSCTL_ONE_HUNDRED,
6025 	},
6026 	{
6027 		.procname	= "min_slab_ratio",
6028 		.data		= &sysctl_min_slab_ratio,
6029 		.maxlen		= sizeof(sysctl_min_slab_ratio),
6030 		.mode		= 0644,
6031 		.proc_handler	= sysctl_min_slab_ratio_sysctl_handler,
6032 		.extra1		= SYSCTL_ZERO,
6033 		.extra2		= SYSCTL_ONE_HUNDRED,
6034 	},
6035 #endif
6036 	{}
6037 };
6038 
6039 void __init page_alloc_sysctl_init(void)
6040 {
6041 	register_sysctl_init("vm", page_alloc_sysctl_table);
6042 }
6043 
6044 #ifdef CONFIG_CONTIG_ALLOC
6045 /* Usage: See admin-guide/dynamic-debug-howto.rst */
6046 static void alloc_contig_dump_pages(struct list_head *page_list)
6047 {
6048 	DEFINE_DYNAMIC_DEBUG_METADATA(descriptor, "migrate failure");
6049 
6050 	if (DYNAMIC_DEBUG_BRANCH(descriptor)) {
6051 		struct page *page;
6052 
6053 		dump_stack();
6054 		list_for_each_entry(page, page_list, lru)
6055 			dump_page(page, "migration failure");
6056 	}
6057 }
6058 
6059 /* [start, end) must belong to a single zone. */
6060 int __alloc_contig_migrate_range(struct compact_control *cc,
6061 					unsigned long start, unsigned long end)
6062 {
6063 	/* This function is based on compact_zone() from compaction.c. */
6064 	unsigned int nr_reclaimed;
6065 	unsigned long pfn = start;
6066 	unsigned int tries = 0;
6067 	int ret = 0;
6068 	struct migration_target_control mtc = {
6069 		.nid = zone_to_nid(cc->zone),
6070 		.gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL,
6071 	};
6072 
6073 	lru_cache_disable();
6074 
6075 	while (pfn < end || !list_empty(&cc->migratepages)) {
6076 		if (fatal_signal_pending(current)) {
6077 			ret = -EINTR;
6078 			break;
6079 		}
6080 
6081 		if (list_empty(&cc->migratepages)) {
6082 			cc->nr_migratepages = 0;
6083 			ret = isolate_migratepages_range(cc, pfn, end);
6084 			if (ret && ret != -EAGAIN)
6085 				break;
6086 			pfn = cc->migrate_pfn;
6087 			tries = 0;
6088 		} else if (++tries == 5) {
6089 			ret = -EBUSY;
6090 			break;
6091 		}
6092 
6093 		nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
6094 							&cc->migratepages);
6095 		cc->nr_migratepages -= nr_reclaimed;
6096 
6097 		ret = migrate_pages(&cc->migratepages, alloc_migration_target,
6098 			NULL, (unsigned long)&mtc, cc->mode, MR_CONTIG_RANGE, NULL);
6099 
6100 		/*
6101 		 * On -ENOMEM, migrate_pages() bails out right away. It is pointless
6102 		 * to retry again over this error, so do the same here.
6103 		 */
6104 		if (ret == -ENOMEM)
6105 			break;
6106 	}
6107 
6108 	lru_cache_enable();
6109 	if (ret < 0) {
6110 		if (!(cc->gfp_mask & __GFP_NOWARN) && ret == -EBUSY)
6111 			alloc_contig_dump_pages(&cc->migratepages);
6112 		putback_movable_pages(&cc->migratepages);
6113 		return ret;
6114 	}
6115 	return 0;
6116 }
6117 
6118 /**
6119  * alloc_contig_range() -- tries to allocate given range of pages
6120  * @start:	start PFN to allocate
6121  * @end:	one-past-the-last PFN to allocate
6122  * @migratetype:	migratetype of the underlying pageblocks (either
6123  *			#MIGRATE_MOVABLE or #MIGRATE_CMA).  All pageblocks
6124  *			in range must have the same migratetype and it must
6125  *			be either of the two.
6126  * @gfp_mask:	GFP mask to use during compaction
6127  *
6128  * The PFN range does not have to be pageblock aligned. The PFN range must
6129  * belong to a single zone.
6130  *
6131  * The first thing this routine does is attempt to MIGRATE_ISOLATE all
6132  * pageblocks in the range.  Once isolated, the pageblocks should not
6133  * be modified by others.
6134  *
6135  * Return: zero on success or negative error code.  On success all
6136  * pages which PFN is in [start, end) are allocated for the caller and
6137  * need to be freed with free_contig_range().
6138  */
6139 int alloc_contig_range(unsigned long start, unsigned long end,
6140 		       unsigned migratetype, gfp_t gfp_mask)
6141 {
6142 	unsigned long outer_start, outer_end;
6143 	int order;
6144 	int ret = 0;
6145 
6146 	struct compact_control cc = {
6147 		.nr_migratepages = 0,
6148 		.order = -1,
6149 		.zone = page_zone(pfn_to_page(start)),
6150 		.mode = MIGRATE_SYNC,
6151 		.ignore_skip_hint = true,
6152 		.no_set_skip_hint = true,
6153 		.gfp_mask = current_gfp_context(gfp_mask),
6154 		.alloc_contig = true,
6155 	};
6156 	INIT_LIST_HEAD(&cc.migratepages);
6157 
6158 	/*
6159 	 * What we do here is we mark all pageblocks in range as
6160 	 * MIGRATE_ISOLATE.  Because pageblock and max order pages may
6161 	 * have different sizes, and due to the way page allocator
6162 	 * work, start_isolate_page_range() has special handlings for this.
6163 	 *
6164 	 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
6165 	 * migrate the pages from an unaligned range (ie. pages that
6166 	 * we are interested in). This will put all the pages in
6167 	 * range back to page allocator as MIGRATE_ISOLATE.
6168 	 *
6169 	 * When this is done, we take the pages in range from page
6170 	 * allocator removing them from the buddy system.  This way
6171 	 * page allocator will never consider using them.
6172 	 *
6173 	 * This lets us mark the pageblocks back as
6174 	 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
6175 	 * aligned range but not in the unaligned, original range are
6176 	 * put back to page allocator so that buddy can use them.
6177 	 */
6178 
6179 	ret = start_isolate_page_range(start, end, migratetype, 0, gfp_mask);
6180 	if (ret)
6181 		goto done;
6182 
6183 	drain_all_pages(cc.zone);
6184 
6185 	/*
6186 	 * In case of -EBUSY, we'd like to know which page causes problem.
6187 	 * So, just fall through. test_pages_isolated() has a tracepoint
6188 	 * which will report the busy page.
6189 	 *
6190 	 * It is possible that busy pages could become available before
6191 	 * the call to test_pages_isolated, and the range will actually be
6192 	 * allocated.  So, if we fall through be sure to clear ret so that
6193 	 * -EBUSY is not accidentally used or returned to caller.
6194 	 */
6195 	ret = __alloc_contig_migrate_range(&cc, start, end);
6196 	if (ret && ret != -EBUSY)
6197 		goto done;
6198 	ret = 0;
6199 
6200 	/*
6201 	 * Pages from [start, end) are within a pageblock_nr_pages
6202 	 * aligned blocks that are marked as MIGRATE_ISOLATE.  What's
6203 	 * more, all pages in [start, end) are free in page allocator.
6204 	 * What we are going to do is to allocate all pages from
6205 	 * [start, end) (that is remove them from page allocator).
6206 	 *
6207 	 * The only problem is that pages at the beginning and at the
6208 	 * end of interesting range may be not aligned with pages that
6209 	 * page allocator holds, ie. they can be part of higher order
6210 	 * pages.  Because of this, we reserve the bigger range and
6211 	 * once this is done free the pages we are not interested in.
6212 	 *
6213 	 * We don't have to hold zone->lock here because the pages are
6214 	 * isolated thus they won't get removed from buddy.
6215 	 */
6216 
6217 	order = 0;
6218 	outer_start = start;
6219 	while (!PageBuddy(pfn_to_page(outer_start))) {
6220 		if (++order > MAX_ORDER) {
6221 			outer_start = start;
6222 			break;
6223 		}
6224 		outer_start &= ~0UL << order;
6225 	}
6226 
6227 	if (outer_start != start) {
6228 		order = buddy_order(pfn_to_page(outer_start));
6229 
6230 		/*
6231 		 * outer_start page could be small order buddy page and
6232 		 * it doesn't include start page. Adjust outer_start
6233 		 * in this case to report failed page properly
6234 		 * on tracepoint in test_pages_isolated()
6235 		 */
6236 		if (outer_start + (1UL << order) <= start)
6237 			outer_start = start;
6238 	}
6239 
6240 	/* Make sure the range is really isolated. */
6241 	if (test_pages_isolated(outer_start, end, 0)) {
6242 		ret = -EBUSY;
6243 		goto done;
6244 	}
6245 
6246 	/* Grab isolated pages from freelists. */
6247 	outer_end = isolate_freepages_range(&cc, outer_start, end);
6248 	if (!outer_end) {
6249 		ret = -EBUSY;
6250 		goto done;
6251 	}
6252 
6253 	/* Free head and tail (if any) */
6254 	if (start != outer_start)
6255 		free_contig_range(outer_start, start - outer_start);
6256 	if (end != outer_end)
6257 		free_contig_range(end, outer_end - end);
6258 
6259 done:
6260 	undo_isolate_page_range(start, end, migratetype);
6261 	return ret;
6262 }
6263 EXPORT_SYMBOL(alloc_contig_range);
6264 
6265 static int __alloc_contig_pages(unsigned long start_pfn,
6266 				unsigned long nr_pages, gfp_t gfp_mask)
6267 {
6268 	unsigned long end_pfn = start_pfn + nr_pages;
6269 
6270 	return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE,
6271 				  gfp_mask);
6272 }
6273 
6274 static bool pfn_range_valid_contig(struct zone *z, unsigned long start_pfn,
6275 				   unsigned long nr_pages)
6276 {
6277 	unsigned long i, end_pfn = start_pfn + nr_pages;
6278 	struct page *page;
6279 
6280 	for (i = start_pfn; i < end_pfn; i++) {
6281 		page = pfn_to_online_page(i);
6282 		if (!page)
6283 			return false;
6284 
6285 		if (page_zone(page) != z)
6286 			return false;
6287 
6288 		if (PageReserved(page))
6289 			return false;
6290 
6291 		if (PageHuge(page))
6292 			return false;
6293 	}
6294 	return true;
6295 }
6296 
6297 static bool zone_spans_last_pfn(const struct zone *zone,
6298 				unsigned long start_pfn, unsigned long nr_pages)
6299 {
6300 	unsigned long last_pfn = start_pfn + nr_pages - 1;
6301 
6302 	return zone_spans_pfn(zone, last_pfn);
6303 }
6304 
6305 /**
6306  * alloc_contig_pages() -- tries to find and allocate contiguous range of pages
6307  * @nr_pages:	Number of contiguous pages to allocate
6308  * @gfp_mask:	GFP mask to limit search and used during compaction
6309  * @nid:	Target node
6310  * @nodemask:	Mask for other possible nodes
6311  *
6312  * This routine is a wrapper around alloc_contig_range(). It scans over zones
6313  * on an applicable zonelist to find a contiguous pfn range which can then be
6314  * tried for allocation with alloc_contig_range(). This routine is intended
6315  * for allocation requests which can not be fulfilled with the buddy allocator.
6316  *
6317  * The allocated memory is always aligned to a page boundary. If nr_pages is a
6318  * power of two, then allocated range is also guaranteed to be aligned to same
6319  * nr_pages (e.g. 1GB request would be aligned to 1GB).
6320  *
6321  * Allocated pages can be freed with free_contig_range() or by manually calling
6322  * __free_page() on each allocated page.
6323  *
6324  * Return: pointer to contiguous pages on success, or NULL if not successful.
6325  */
6326 struct page *alloc_contig_pages(unsigned long nr_pages, gfp_t gfp_mask,
6327 				int nid, nodemask_t *nodemask)
6328 {
6329 	unsigned long ret, pfn, flags;
6330 	struct zonelist *zonelist;
6331 	struct zone *zone;
6332 	struct zoneref *z;
6333 
6334 	zonelist = node_zonelist(nid, gfp_mask);
6335 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
6336 					gfp_zone(gfp_mask), nodemask) {
6337 		spin_lock_irqsave(&zone->lock, flags);
6338 
6339 		pfn = ALIGN(zone->zone_start_pfn, nr_pages);
6340 		while (zone_spans_last_pfn(zone, pfn, nr_pages)) {
6341 			if (pfn_range_valid_contig(zone, pfn, nr_pages)) {
6342 				/*
6343 				 * We release the zone lock here because
6344 				 * alloc_contig_range() will also lock the zone
6345 				 * at some point. If there's an allocation
6346 				 * spinning on this lock, it may win the race
6347 				 * and cause alloc_contig_range() to fail...
6348 				 */
6349 				spin_unlock_irqrestore(&zone->lock, flags);
6350 				ret = __alloc_contig_pages(pfn, nr_pages,
6351 							gfp_mask);
6352 				if (!ret)
6353 					return pfn_to_page(pfn);
6354 				spin_lock_irqsave(&zone->lock, flags);
6355 			}
6356 			pfn += nr_pages;
6357 		}
6358 		spin_unlock_irqrestore(&zone->lock, flags);
6359 	}
6360 	return NULL;
6361 }
6362 #endif /* CONFIG_CONTIG_ALLOC */
6363 
6364 void free_contig_range(unsigned long pfn, unsigned long nr_pages)
6365 {
6366 	unsigned long count = 0;
6367 
6368 	for (; nr_pages--; pfn++) {
6369 		struct page *page = pfn_to_page(pfn);
6370 
6371 		count += page_count(page) != 1;
6372 		__free_page(page);
6373 	}
6374 	WARN(count != 0, "%lu pages are still in use!\n", count);
6375 }
6376 EXPORT_SYMBOL(free_contig_range);
6377 
6378 /*
6379  * Effectively disable pcplists for the zone by setting the high limit to 0
6380  * and draining all cpus. A concurrent page freeing on another CPU that's about
6381  * to put the page on pcplist will either finish before the drain and the page
6382  * will be drained, or observe the new high limit and skip the pcplist.
6383  *
6384  * Must be paired with a call to zone_pcp_enable().
6385  */
6386 void zone_pcp_disable(struct zone *zone)
6387 {
6388 	mutex_lock(&pcp_batch_high_lock);
6389 	__zone_set_pageset_high_and_batch(zone, 0, 1);
6390 	__drain_all_pages(zone, true);
6391 }
6392 
6393 void zone_pcp_enable(struct zone *zone)
6394 {
6395 	__zone_set_pageset_high_and_batch(zone, zone->pageset_high, zone->pageset_batch);
6396 	mutex_unlock(&pcp_batch_high_lock);
6397 }
6398 
6399 void zone_pcp_reset(struct zone *zone)
6400 {
6401 	int cpu;
6402 	struct per_cpu_zonestat *pzstats;
6403 
6404 	if (zone->per_cpu_pageset != &boot_pageset) {
6405 		for_each_online_cpu(cpu) {
6406 			pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
6407 			drain_zonestat(zone, pzstats);
6408 		}
6409 		free_percpu(zone->per_cpu_pageset);
6410 		zone->per_cpu_pageset = &boot_pageset;
6411 		if (zone->per_cpu_zonestats != &boot_zonestats) {
6412 			free_percpu(zone->per_cpu_zonestats);
6413 			zone->per_cpu_zonestats = &boot_zonestats;
6414 		}
6415 	}
6416 }
6417 
6418 #ifdef CONFIG_MEMORY_HOTREMOVE
6419 /*
6420  * All pages in the range must be in a single zone, must not contain holes,
6421  * must span full sections, and must be isolated before calling this function.
6422  */
6423 void __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
6424 {
6425 	unsigned long pfn = start_pfn;
6426 	struct page *page;
6427 	struct zone *zone;
6428 	unsigned int order;
6429 	unsigned long flags;
6430 
6431 	offline_mem_sections(pfn, end_pfn);
6432 	zone = page_zone(pfn_to_page(pfn));
6433 	spin_lock_irqsave(&zone->lock, flags);
6434 	while (pfn < end_pfn) {
6435 		page = pfn_to_page(pfn);
6436 		/*
6437 		 * The HWPoisoned page may be not in buddy system, and
6438 		 * page_count() is not 0.
6439 		 */
6440 		if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
6441 			pfn++;
6442 			continue;
6443 		}
6444 		/*
6445 		 * At this point all remaining PageOffline() pages have a
6446 		 * reference count of 0 and can simply be skipped.
6447 		 */
6448 		if (PageOffline(page)) {
6449 			BUG_ON(page_count(page));
6450 			BUG_ON(PageBuddy(page));
6451 			pfn++;
6452 			continue;
6453 		}
6454 
6455 		BUG_ON(page_count(page));
6456 		BUG_ON(!PageBuddy(page));
6457 		order = buddy_order(page);
6458 		del_page_from_free_list(page, zone, order);
6459 		pfn += (1 << order);
6460 	}
6461 	spin_unlock_irqrestore(&zone->lock, flags);
6462 }
6463 #endif
6464 
6465 /*
6466  * This function returns a stable result only if called under zone lock.
6467  */
6468 bool is_free_buddy_page(struct page *page)
6469 {
6470 	unsigned long pfn = page_to_pfn(page);
6471 	unsigned int order;
6472 
6473 	for (order = 0; order <= MAX_ORDER; order++) {
6474 		struct page *page_head = page - (pfn & ((1 << order) - 1));
6475 
6476 		if (PageBuddy(page_head) &&
6477 		    buddy_order_unsafe(page_head) >= order)
6478 			break;
6479 	}
6480 
6481 	return order <= MAX_ORDER;
6482 }
6483 EXPORT_SYMBOL(is_free_buddy_page);
6484 
6485 #ifdef CONFIG_MEMORY_FAILURE
6486 /*
6487  * Break down a higher-order page in sub-pages, and keep our target out of
6488  * buddy allocator.
6489  */
6490 static void break_down_buddy_pages(struct zone *zone, struct page *page,
6491 				   struct page *target, int low, int high,
6492 				   int migratetype)
6493 {
6494 	unsigned long size = 1 << high;
6495 	struct page *current_buddy, *next_page;
6496 
6497 	while (high > low) {
6498 		high--;
6499 		size >>= 1;
6500 
6501 		if (target >= &page[size]) {
6502 			next_page = page + size;
6503 			current_buddy = page;
6504 		} else {
6505 			next_page = page;
6506 			current_buddy = page + size;
6507 		}
6508 
6509 		if (set_page_guard(zone, current_buddy, high, migratetype))
6510 			continue;
6511 
6512 		if (current_buddy != target) {
6513 			add_to_free_list(current_buddy, zone, high, migratetype);
6514 			set_buddy_order(current_buddy, high);
6515 			page = next_page;
6516 		}
6517 	}
6518 }
6519 
6520 /*
6521  * Take a page that will be marked as poisoned off the buddy allocator.
6522  */
6523 bool take_page_off_buddy(struct page *page)
6524 {
6525 	struct zone *zone = page_zone(page);
6526 	unsigned long pfn = page_to_pfn(page);
6527 	unsigned long flags;
6528 	unsigned int order;
6529 	bool ret = false;
6530 
6531 	spin_lock_irqsave(&zone->lock, flags);
6532 	for (order = 0; order <= MAX_ORDER; order++) {
6533 		struct page *page_head = page - (pfn & ((1 << order) - 1));
6534 		int page_order = buddy_order(page_head);
6535 
6536 		if (PageBuddy(page_head) && page_order >= order) {
6537 			unsigned long pfn_head = page_to_pfn(page_head);
6538 			int migratetype = get_pfnblock_migratetype(page_head,
6539 								   pfn_head);
6540 
6541 			del_page_from_free_list(page_head, zone, page_order);
6542 			break_down_buddy_pages(zone, page_head, page, 0,
6543 						page_order, migratetype);
6544 			SetPageHWPoisonTakenOff(page);
6545 			if (!is_migrate_isolate(migratetype))
6546 				__mod_zone_freepage_state(zone, -1, migratetype);
6547 			ret = true;
6548 			break;
6549 		}
6550 		if (page_count(page_head) > 0)
6551 			break;
6552 	}
6553 	spin_unlock_irqrestore(&zone->lock, flags);
6554 	return ret;
6555 }
6556 
6557 /*
6558  * Cancel takeoff done by take_page_off_buddy().
6559  */
6560 bool put_page_back_buddy(struct page *page)
6561 {
6562 	struct zone *zone = page_zone(page);
6563 	unsigned long pfn = page_to_pfn(page);
6564 	unsigned long flags;
6565 	int migratetype = get_pfnblock_migratetype(page, pfn);
6566 	bool ret = false;
6567 
6568 	spin_lock_irqsave(&zone->lock, flags);
6569 	if (put_page_testzero(page)) {
6570 		ClearPageHWPoisonTakenOff(page);
6571 		__free_one_page(page, pfn, zone, 0, migratetype, FPI_NONE);
6572 		if (TestClearPageHWPoison(page)) {
6573 			ret = true;
6574 		}
6575 	}
6576 	spin_unlock_irqrestore(&zone->lock, flags);
6577 
6578 	return ret;
6579 }
6580 #endif
6581 
6582 #ifdef CONFIG_ZONE_DMA
6583 bool has_managed_dma(void)
6584 {
6585 	struct pglist_data *pgdat;
6586 
6587 	for_each_online_pgdat(pgdat) {
6588 		struct zone *zone = &pgdat->node_zones[ZONE_DMA];
6589 
6590 		if (managed_zone(zone))
6591 			return true;
6592 	}
6593 	return false;
6594 }
6595 #endif /* CONFIG_ZONE_DMA */
6596