1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/mm/page_alloc.c 4 * 5 * Manages the free list, the system allocates free pages here. 6 * Note that kmalloc() lives in slab.c 7 * 8 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 9 * Swap reorganised 29.12.95, Stephen Tweedie 10 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999 11 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999 12 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999 13 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000 14 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002 15 * (lots of bits borrowed from Ingo Molnar & Andrew Morton) 16 */ 17 18 #include <linux/stddef.h> 19 #include <linux/mm.h> 20 #include <linux/highmem.h> 21 #include <linux/interrupt.h> 22 #include <linux/jiffies.h> 23 #include <linux/compiler.h> 24 #include <linux/kernel.h> 25 #include <linux/kasan.h> 26 #include <linux/kmsan.h> 27 #include <linux/module.h> 28 #include <linux/suspend.h> 29 #include <linux/ratelimit.h> 30 #include <linux/oom.h> 31 #include <linux/topology.h> 32 #include <linux/sysctl.h> 33 #include <linux/cpu.h> 34 #include <linux/cpuset.h> 35 #include <linux/pagevec.h> 36 #include <linux/memory_hotplug.h> 37 #include <linux/nodemask.h> 38 #include <linux/vmstat.h> 39 #include <linux/fault-inject.h> 40 #include <linux/compaction.h> 41 #include <trace/events/kmem.h> 42 #include <trace/events/oom.h> 43 #include <linux/prefetch.h> 44 #include <linux/mm_inline.h> 45 #include <linux/mmu_notifier.h> 46 #include <linux/migrate.h> 47 #include <linux/sched/mm.h> 48 #include <linux/page_owner.h> 49 #include <linux/page_table_check.h> 50 #include <linux/memcontrol.h> 51 #include <linux/ftrace.h> 52 #include <linux/lockdep.h> 53 #include <linux/psi.h> 54 #include <linux/khugepaged.h> 55 #include <linux/delayacct.h> 56 #include <linux/cacheinfo.h> 57 #include <asm/div64.h> 58 #include "internal.h" 59 #include "shuffle.h" 60 #include "page_reporting.h" 61 62 /* Free Page Internal flags: for internal, non-pcp variants of free_pages(). */ 63 typedef int __bitwise fpi_t; 64 65 /* No special request */ 66 #define FPI_NONE ((__force fpi_t)0) 67 68 /* 69 * Skip free page reporting notification for the (possibly merged) page. 70 * This does not hinder free page reporting from grabbing the page, 71 * reporting it and marking it "reported" - it only skips notifying 72 * the free page reporting infrastructure about a newly freed page. For 73 * example, used when temporarily pulling a page from a freelist and 74 * putting it back unmodified. 75 */ 76 #define FPI_SKIP_REPORT_NOTIFY ((__force fpi_t)BIT(0)) 77 78 /* 79 * Place the (possibly merged) page to the tail of the freelist. Will ignore 80 * page shuffling (relevant code - e.g., memory onlining - is expected to 81 * shuffle the whole zone). 82 * 83 * Note: No code should rely on this flag for correctness - it's purely 84 * to allow for optimizations when handing back either fresh pages 85 * (memory onlining) or untouched pages (page isolation, free page 86 * reporting). 87 */ 88 #define FPI_TO_TAIL ((__force fpi_t)BIT(1)) 89 90 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */ 91 static DEFINE_MUTEX(pcp_batch_high_lock); 92 #define MIN_PERCPU_PAGELIST_HIGH_FRACTION (8) 93 94 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT_RT) 95 /* 96 * On SMP, spin_trylock is sufficient protection. 97 * On PREEMPT_RT, spin_trylock is equivalent on both SMP and UP. 98 */ 99 #define pcp_trylock_prepare(flags) do { } while (0) 100 #define pcp_trylock_finish(flag) do { } while (0) 101 #else 102 103 /* UP spin_trylock always succeeds so disable IRQs to prevent re-entrancy. */ 104 #define pcp_trylock_prepare(flags) local_irq_save(flags) 105 #define pcp_trylock_finish(flags) local_irq_restore(flags) 106 #endif 107 108 /* 109 * Locking a pcp requires a PCP lookup followed by a spinlock. To avoid 110 * a migration causing the wrong PCP to be locked and remote memory being 111 * potentially allocated, pin the task to the CPU for the lookup+lock. 112 * preempt_disable is used on !RT because it is faster than migrate_disable. 113 * migrate_disable is used on RT because otherwise RT spinlock usage is 114 * interfered with and a high priority task cannot preempt the allocator. 115 */ 116 #ifndef CONFIG_PREEMPT_RT 117 #define pcpu_task_pin() preempt_disable() 118 #define pcpu_task_unpin() preempt_enable() 119 #else 120 #define pcpu_task_pin() migrate_disable() 121 #define pcpu_task_unpin() migrate_enable() 122 #endif 123 124 /* 125 * Generic helper to lookup and a per-cpu variable with an embedded spinlock. 126 * Return value should be used with equivalent unlock helper. 127 */ 128 #define pcpu_spin_lock(type, member, ptr) \ 129 ({ \ 130 type *_ret; \ 131 pcpu_task_pin(); \ 132 _ret = this_cpu_ptr(ptr); \ 133 spin_lock(&_ret->member); \ 134 _ret; \ 135 }) 136 137 #define pcpu_spin_trylock(type, member, ptr) \ 138 ({ \ 139 type *_ret; \ 140 pcpu_task_pin(); \ 141 _ret = this_cpu_ptr(ptr); \ 142 if (!spin_trylock(&_ret->member)) { \ 143 pcpu_task_unpin(); \ 144 _ret = NULL; \ 145 } \ 146 _ret; \ 147 }) 148 149 #define pcpu_spin_unlock(member, ptr) \ 150 ({ \ 151 spin_unlock(&ptr->member); \ 152 pcpu_task_unpin(); \ 153 }) 154 155 /* struct per_cpu_pages specific helpers. */ 156 #define pcp_spin_lock(ptr) \ 157 pcpu_spin_lock(struct per_cpu_pages, lock, ptr) 158 159 #define pcp_spin_trylock(ptr) \ 160 pcpu_spin_trylock(struct per_cpu_pages, lock, ptr) 161 162 #define pcp_spin_unlock(ptr) \ 163 pcpu_spin_unlock(lock, ptr) 164 165 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID 166 DEFINE_PER_CPU(int, numa_node); 167 EXPORT_PER_CPU_SYMBOL(numa_node); 168 #endif 169 170 DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key); 171 172 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 173 /* 174 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly. 175 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined. 176 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem() 177 * defined in <linux/topology.h>. 178 */ 179 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */ 180 EXPORT_PER_CPU_SYMBOL(_numa_mem_); 181 #endif 182 183 static DEFINE_MUTEX(pcpu_drain_mutex); 184 185 #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY 186 volatile unsigned long latent_entropy __latent_entropy; 187 EXPORT_SYMBOL(latent_entropy); 188 #endif 189 190 /* 191 * Array of node states. 192 */ 193 nodemask_t node_states[NR_NODE_STATES] __read_mostly = { 194 [N_POSSIBLE] = NODE_MASK_ALL, 195 [N_ONLINE] = { { [0] = 1UL } }, 196 #ifndef CONFIG_NUMA 197 [N_NORMAL_MEMORY] = { { [0] = 1UL } }, 198 #ifdef CONFIG_HIGHMEM 199 [N_HIGH_MEMORY] = { { [0] = 1UL } }, 200 #endif 201 [N_MEMORY] = { { [0] = 1UL } }, 202 [N_CPU] = { { [0] = 1UL } }, 203 #endif /* NUMA */ 204 }; 205 EXPORT_SYMBOL(node_states); 206 207 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK; 208 209 /* 210 * A cached value of the page's pageblock's migratetype, used when the page is 211 * put on a pcplist. Used to avoid the pageblock migratetype lookup when 212 * freeing from pcplists in most cases, at the cost of possibly becoming stale. 213 * Also the migratetype set in the page does not necessarily match the pcplist 214 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any 215 * other index - this ensures that it will be put on the correct CMA freelist. 216 */ 217 static inline int get_pcppage_migratetype(struct page *page) 218 { 219 return page->index; 220 } 221 222 static inline void set_pcppage_migratetype(struct page *page, int migratetype) 223 { 224 page->index = migratetype; 225 } 226 227 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE 228 unsigned int pageblock_order __read_mostly; 229 #endif 230 231 static void __free_pages_ok(struct page *page, unsigned int order, 232 fpi_t fpi_flags); 233 234 /* 235 * results with 256, 32 in the lowmem_reserve sysctl: 236 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high) 237 * 1G machine -> (16M dma, 784M normal, 224M high) 238 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA 239 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL 240 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA 241 * 242 * TBD: should special case ZONE_DMA32 machines here - in those we normally 243 * don't need any ZONE_NORMAL reservation 244 */ 245 static int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = { 246 #ifdef CONFIG_ZONE_DMA 247 [ZONE_DMA] = 256, 248 #endif 249 #ifdef CONFIG_ZONE_DMA32 250 [ZONE_DMA32] = 256, 251 #endif 252 [ZONE_NORMAL] = 32, 253 #ifdef CONFIG_HIGHMEM 254 [ZONE_HIGHMEM] = 0, 255 #endif 256 [ZONE_MOVABLE] = 0, 257 }; 258 259 char * const zone_names[MAX_NR_ZONES] = { 260 #ifdef CONFIG_ZONE_DMA 261 "DMA", 262 #endif 263 #ifdef CONFIG_ZONE_DMA32 264 "DMA32", 265 #endif 266 "Normal", 267 #ifdef CONFIG_HIGHMEM 268 "HighMem", 269 #endif 270 "Movable", 271 #ifdef CONFIG_ZONE_DEVICE 272 "Device", 273 #endif 274 }; 275 276 const char * const migratetype_names[MIGRATE_TYPES] = { 277 "Unmovable", 278 "Movable", 279 "Reclaimable", 280 "HighAtomic", 281 #ifdef CONFIG_CMA 282 "CMA", 283 #endif 284 #ifdef CONFIG_MEMORY_ISOLATION 285 "Isolate", 286 #endif 287 }; 288 289 int min_free_kbytes = 1024; 290 int user_min_free_kbytes = -1; 291 static int watermark_boost_factor __read_mostly = 15000; 292 static int watermark_scale_factor = 10; 293 294 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */ 295 int movable_zone; 296 EXPORT_SYMBOL(movable_zone); 297 298 #if MAX_NUMNODES > 1 299 unsigned int nr_node_ids __read_mostly = MAX_NUMNODES; 300 unsigned int nr_online_nodes __read_mostly = 1; 301 EXPORT_SYMBOL(nr_node_ids); 302 EXPORT_SYMBOL(nr_online_nodes); 303 #endif 304 305 static bool page_contains_unaccepted(struct page *page, unsigned int order); 306 static void accept_page(struct page *page, unsigned int order); 307 static bool try_to_accept_memory(struct zone *zone, unsigned int order); 308 static inline bool has_unaccepted_memory(void); 309 static bool __free_unaccepted(struct page *page); 310 311 int page_group_by_mobility_disabled __read_mostly; 312 313 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 314 /* 315 * During boot we initialize deferred pages on-demand, as needed, but once 316 * page_alloc_init_late() has finished, the deferred pages are all initialized, 317 * and we can permanently disable that path. 318 */ 319 DEFINE_STATIC_KEY_TRUE(deferred_pages); 320 321 static inline bool deferred_pages_enabled(void) 322 { 323 return static_branch_unlikely(&deferred_pages); 324 } 325 326 /* 327 * deferred_grow_zone() is __init, but it is called from 328 * get_page_from_freelist() during early boot until deferred_pages permanently 329 * disables this call. This is why we have refdata wrapper to avoid warning, 330 * and to ensure that the function body gets unloaded. 331 */ 332 static bool __ref 333 _deferred_grow_zone(struct zone *zone, unsigned int order) 334 { 335 return deferred_grow_zone(zone, order); 336 } 337 #else 338 static inline bool deferred_pages_enabled(void) 339 { 340 return false; 341 } 342 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */ 343 344 /* Return a pointer to the bitmap storing bits affecting a block of pages */ 345 static inline unsigned long *get_pageblock_bitmap(const struct page *page, 346 unsigned long pfn) 347 { 348 #ifdef CONFIG_SPARSEMEM 349 return section_to_usemap(__pfn_to_section(pfn)); 350 #else 351 return page_zone(page)->pageblock_flags; 352 #endif /* CONFIG_SPARSEMEM */ 353 } 354 355 static inline int pfn_to_bitidx(const struct page *page, unsigned long pfn) 356 { 357 #ifdef CONFIG_SPARSEMEM 358 pfn &= (PAGES_PER_SECTION-1); 359 #else 360 pfn = pfn - pageblock_start_pfn(page_zone(page)->zone_start_pfn); 361 #endif /* CONFIG_SPARSEMEM */ 362 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS; 363 } 364 365 /** 366 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages 367 * @page: The page within the block of interest 368 * @pfn: The target page frame number 369 * @mask: mask of bits that the caller is interested in 370 * 371 * Return: pageblock_bits flags 372 */ 373 unsigned long get_pfnblock_flags_mask(const struct page *page, 374 unsigned long pfn, unsigned long mask) 375 { 376 unsigned long *bitmap; 377 unsigned long bitidx, word_bitidx; 378 unsigned long word; 379 380 bitmap = get_pageblock_bitmap(page, pfn); 381 bitidx = pfn_to_bitidx(page, pfn); 382 word_bitidx = bitidx / BITS_PER_LONG; 383 bitidx &= (BITS_PER_LONG-1); 384 /* 385 * This races, without locks, with set_pfnblock_flags_mask(). Ensure 386 * a consistent read of the memory array, so that results, even though 387 * racy, are not corrupted. 388 */ 389 word = READ_ONCE(bitmap[word_bitidx]); 390 return (word >> bitidx) & mask; 391 } 392 393 static __always_inline int get_pfnblock_migratetype(const struct page *page, 394 unsigned long pfn) 395 { 396 return get_pfnblock_flags_mask(page, pfn, MIGRATETYPE_MASK); 397 } 398 399 /** 400 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages 401 * @page: The page within the block of interest 402 * @flags: The flags to set 403 * @pfn: The target page frame number 404 * @mask: mask of bits that the caller is interested in 405 */ 406 void set_pfnblock_flags_mask(struct page *page, unsigned long flags, 407 unsigned long pfn, 408 unsigned long mask) 409 { 410 unsigned long *bitmap; 411 unsigned long bitidx, word_bitidx; 412 unsigned long word; 413 414 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4); 415 BUILD_BUG_ON(MIGRATE_TYPES > (1 << PB_migratetype_bits)); 416 417 bitmap = get_pageblock_bitmap(page, pfn); 418 bitidx = pfn_to_bitidx(page, pfn); 419 word_bitidx = bitidx / BITS_PER_LONG; 420 bitidx &= (BITS_PER_LONG-1); 421 422 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page); 423 424 mask <<= bitidx; 425 flags <<= bitidx; 426 427 word = READ_ONCE(bitmap[word_bitidx]); 428 do { 429 } while (!try_cmpxchg(&bitmap[word_bitidx], &word, (word & ~mask) | flags)); 430 } 431 432 void set_pageblock_migratetype(struct page *page, int migratetype) 433 { 434 if (unlikely(page_group_by_mobility_disabled && 435 migratetype < MIGRATE_PCPTYPES)) 436 migratetype = MIGRATE_UNMOVABLE; 437 438 set_pfnblock_flags_mask(page, (unsigned long)migratetype, 439 page_to_pfn(page), MIGRATETYPE_MASK); 440 } 441 442 #ifdef CONFIG_DEBUG_VM 443 static int page_outside_zone_boundaries(struct zone *zone, struct page *page) 444 { 445 int ret; 446 unsigned seq; 447 unsigned long pfn = page_to_pfn(page); 448 unsigned long sp, start_pfn; 449 450 do { 451 seq = zone_span_seqbegin(zone); 452 start_pfn = zone->zone_start_pfn; 453 sp = zone->spanned_pages; 454 ret = !zone_spans_pfn(zone, pfn); 455 } while (zone_span_seqretry(zone, seq)); 456 457 if (ret) 458 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n", 459 pfn, zone_to_nid(zone), zone->name, 460 start_pfn, start_pfn + sp); 461 462 return ret; 463 } 464 465 /* 466 * Temporary debugging check for pages not lying within a given zone. 467 */ 468 static bool __maybe_unused bad_range(struct zone *zone, struct page *page) 469 { 470 if (page_outside_zone_boundaries(zone, page)) 471 return true; 472 if (zone != page_zone(page)) 473 return true; 474 475 return false; 476 } 477 #else 478 static inline bool __maybe_unused bad_range(struct zone *zone, struct page *page) 479 { 480 return false; 481 } 482 #endif 483 484 static void bad_page(struct page *page, const char *reason) 485 { 486 static unsigned long resume; 487 static unsigned long nr_shown; 488 static unsigned long nr_unshown; 489 490 /* 491 * Allow a burst of 60 reports, then keep quiet for that minute; 492 * or allow a steady drip of one report per second. 493 */ 494 if (nr_shown == 60) { 495 if (time_before(jiffies, resume)) { 496 nr_unshown++; 497 goto out; 498 } 499 if (nr_unshown) { 500 pr_alert( 501 "BUG: Bad page state: %lu messages suppressed\n", 502 nr_unshown); 503 nr_unshown = 0; 504 } 505 nr_shown = 0; 506 } 507 if (nr_shown++ == 0) 508 resume = jiffies + 60 * HZ; 509 510 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n", 511 current->comm, page_to_pfn(page)); 512 dump_page(page, reason); 513 514 print_modules(); 515 dump_stack(); 516 out: 517 /* Leave bad fields for debug, except PageBuddy could make trouble */ 518 page_mapcount_reset(page); /* remove PageBuddy */ 519 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 520 } 521 522 static inline unsigned int order_to_pindex(int migratetype, int order) 523 { 524 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 525 if (order > PAGE_ALLOC_COSTLY_ORDER) { 526 VM_BUG_ON(order != pageblock_order); 527 return NR_LOWORDER_PCP_LISTS; 528 } 529 #else 530 VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER); 531 #endif 532 533 return (MIGRATE_PCPTYPES * order) + migratetype; 534 } 535 536 static inline int pindex_to_order(unsigned int pindex) 537 { 538 int order = pindex / MIGRATE_PCPTYPES; 539 540 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 541 if (pindex == NR_LOWORDER_PCP_LISTS) 542 order = pageblock_order; 543 #else 544 VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER); 545 #endif 546 547 return order; 548 } 549 550 static inline bool pcp_allowed_order(unsigned int order) 551 { 552 if (order <= PAGE_ALLOC_COSTLY_ORDER) 553 return true; 554 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 555 if (order == pageblock_order) 556 return true; 557 #endif 558 return false; 559 } 560 561 static inline void free_the_page(struct page *page, unsigned int order) 562 { 563 if (pcp_allowed_order(order)) /* Via pcp? */ 564 free_unref_page(page, order); 565 else 566 __free_pages_ok(page, order, FPI_NONE); 567 } 568 569 /* 570 * Higher-order pages are called "compound pages". They are structured thusly: 571 * 572 * The first PAGE_SIZE page is called the "head page" and have PG_head set. 573 * 574 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded 575 * in bit 0 of page->compound_head. The rest of bits is pointer to head page. 576 * 577 * The first tail page's ->compound_order holds the order of allocation. 578 * This usage means that zero-order pages may not be compound. 579 */ 580 581 void prep_compound_page(struct page *page, unsigned int order) 582 { 583 int i; 584 int nr_pages = 1 << order; 585 586 __SetPageHead(page); 587 for (i = 1; i < nr_pages; i++) 588 prep_compound_tail(page, i); 589 590 prep_compound_head(page, order); 591 } 592 593 void destroy_large_folio(struct folio *folio) 594 { 595 if (folio_test_hugetlb(folio)) { 596 free_huge_folio(folio); 597 return; 598 } 599 600 if (folio_test_large_rmappable(folio)) 601 folio_undo_large_rmappable(folio); 602 603 mem_cgroup_uncharge(folio); 604 free_the_page(&folio->page, folio_order(folio)); 605 } 606 607 static inline void set_buddy_order(struct page *page, unsigned int order) 608 { 609 set_page_private(page, order); 610 __SetPageBuddy(page); 611 } 612 613 #ifdef CONFIG_COMPACTION 614 static inline struct capture_control *task_capc(struct zone *zone) 615 { 616 struct capture_control *capc = current->capture_control; 617 618 return unlikely(capc) && 619 !(current->flags & PF_KTHREAD) && 620 !capc->page && 621 capc->cc->zone == zone ? capc : NULL; 622 } 623 624 static inline bool 625 compaction_capture(struct capture_control *capc, struct page *page, 626 int order, int migratetype) 627 { 628 if (!capc || order != capc->cc->order) 629 return false; 630 631 /* Do not accidentally pollute CMA or isolated regions*/ 632 if (is_migrate_cma(migratetype) || 633 is_migrate_isolate(migratetype)) 634 return false; 635 636 /* 637 * Do not let lower order allocations pollute a movable pageblock. 638 * This might let an unmovable request use a reclaimable pageblock 639 * and vice-versa but no more than normal fallback logic which can 640 * have trouble finding a high-order free page. 641 */ 642 if (order < pageblock_order && migratetype == MIGRATE_MOVABLE) 643 return false; 644 645 capc->page = page; 646 return true; 647 } 648 649 #else 650 static inline struct capture_control *task_capc(struct zone *zone) 651 { 652 return NULL; 653 } 654 655 static inline bool 656 compaction_capture(struct capture_control *capc, struct page *page, 657 int order, int migratetype) 658 { 659 return false; 660 } 661 #endif /* CONFIG_COMPACTION */ 662 663 /* Used for pages not on another list */ 664 static inline void add_to_free_list(struct page *page, struct zone *zone, 665 unsigned int order, int migratetype) 666 { 667 struct free_area *area = &zone->free_area[order]; 668 669 list_add(&page->buddy_list, &area->free_list[migratetype]); 670 area->nr_free++; 671 } 672 673 /* Used for pages not on another list */ 674 static inline void add_to_free_list_tail(struct page *page, struct zone *zone, 675 unsigned int order, int migratetype) 676 { 677 struct free_area *area = &zone->free_area[order]; 678 679 list_add_tail(&page->buddy_list, &area->free_list[migratetype]); 680 area->nr_free++; 681 } 682 683 /* 684 * Used for pages which are on another list. Move the pages to the tail 685 * of the list - so the moved pages won't immediately be considered for 686 * allocation again (e.g., optimization for memory onlining). 687 */ 688 static inline void move_to_free_list(struct page *page, struct zone *zone, 689 unsigned int order, int migratetype) 690 { 691 struct free_area *area = &zone->free_area[order]; 692 693 list_move_tail(&page->buddy_list, &area->free_list[migratetype]); 694 } 695 696 static inline void del_page_from_free_list(struct page *page, struct zone *zone, 697 unsigned int order) 698 { 699 /* clear reported state and update reported page count */ 700 if (page_reported(page)) 701 __ClearPageReported(page); 702 703 list_del(&page->buddy_list); 704 __ClearPageBuddy(page); 705 set_page_private(page, 0); 706 zone->free_area[order].nr_free--; 707 } 708 709 static inline struct page *get_page_from_free_area(struct free_area *area, 710 int migratetype) 711 { 712 return list_first_entry_or_null(&area->free_list[migratetype], 713 struct page, buddy_list); 714 } 715 716 /* 717 * If this is not the largest possible page, check if the buddy 718 * of the next-highest order is free. If it is, it's possible 719 * that pages are being freed that will coalesce soon. In case, 720 * that is happening, add the free page to the tail of the list 721 * so it's less likely to be used soon and more likely to be merged 722 * as a higher order page 723 */ 724 static inline bool 725 buddy_merge_likely(unsigned long pfn, unsigned long buddy_pfn, 726 struct page *page, unsigned int order) 727 { 728 unsigned long higher_page_pfn; 729 struct page *higher_page; 730 731 if (order >= MAX_PAGE_ORDER - 1) 732 return false; 733 734 higher_page_pfn = buddy_pfn & pfn; 735 higher_page = page + (higher_page_pfn - pfn); 736 737 return find_buddy_page_pfn(higher_page, higher_page_pfn, order + 1, 738 NULL) != NULL; 739 } 740 741 /* 742 * Freeing function for a buddy system allocator. 743 * 744 * The concept of a buddy system is to maintain direct-mapped table 745 * (containing bit values) for memory blocks of various "orders". 746 * The bottom level table contains the map for the smallest allocatable 747 * units of memory (here, pages), and each level above it describes 748 * pairs of units from the levels below, hence, "buddies". 749 * At a high level, all that happens here is marking the table entry 750 * at the bottom level available, and propagating the changes upward 751 * as necessary, plus some accounting needed to play nicely with other 752 * parts of the VM system. 753 * At each level, we keep a list of pages, which are heads of continuous 754 * free pages of length of (1 << order) and marked with PageBuddy. 755 * Page's order is recorded in page_private(page) field. 756 * So when we are allocating or freeing one, we can derive the state of the 757 * other. That is, if we allocate a small block, and both were 758 * free, the remainder of the region must be split into blocks. 759 * If a block is freed, and its buddy is also free, then this 760 * triggers coalescing into a block of larger size. 761 * 762 * -- nyc 763 */ 764 765 static inline void __free_one_page(struct page *page, 766 unsigned long pfn, 767 struct zone *zone, unsigned int order, 768 int migratetype, fpi_t fpi_flags) 769 { 770 struct capture_control *capc = task_capc(zone); 771 unsigned long buddy_pfn = 0; 772 unsigned long combined_pfn; 773 struct page *buddy; 774 bool to_tail; 775 776 VM_BUG_ON(!zone_is_initialized(zone)); 777 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page); 778 779 VM_BUG_ON(migratetype == -1); 780 if (likely(!is_migrate_isolate(migratetype))) 781 __mod_zone_freepage_state(zone, 1 << order, migratetype); 782 783 VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page); 784 VM_BUG_ON_PAGE(bad_range(zone, page), page); 785 786 while (order < MAX_PAGE_ORDER) { 787 if (compaction_capture(capc, page, order, migratetype)) { 788 __mod_zone_freepage_state(zone, -(1 << order), 789 migratetype); 790 return; 791 } 792 793 buddy = find_buddy_page_pfn(page, pfn, order, &buddy_pfn); 794 if (!buddy) 795 goto done_merging; 796 797 if (unlikely(order >= pageblock_order)) { 798 /* 799 * We want to prevent merge between freepages on pageblock 800 * without fallbacks and normal pageblock. Without this, 801 * pageblock isolation could cause incorrect freepage or CMA 802 * accounting or HIGHATOMIC accounting. 803 */ 804 int buddy_mt = get_pfnblock_migratetype(buddy, buddy_pfn); 805 806 if (migratetype != buddy_mt 807 && (!migratetype_is_mergeable(migratetype) || 808 !migratetype_is_mergeable(buddy_mt))) 809 goto done_merging; 810 } 811 812 /* 813 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page, 814 * merge with it and move up one order. 815 */ 816 if (page_is_guard(buddy)) 817 clear_page_guard(zone, buddy, order, migratetype); 818 else 819 del_page_from_free_list(buddy, zone, order); 820 combined_pfn = buddy_pfn & pfn; 821 page = page + (combined_pfn - pfn); 822 pfn = combined_pfn; 823 order++; 824 } 825 826 done_merging: 827 set_buddy_order(page, order); 828 829 if (fpi_flags & FPI_TO_TAIL) 830 to_tail = true; 831 else if (is_shuffle_order(order)) 832 to_tail = shuffle_pick_tail(); 833 else 834 to_tail = buddy_merge_likely(pfn, buddy_pfn, page, order); 835 836 if (to_tail) 837 add_to_free_list_tail(page, zone, order, migratetype); 838 else 839 add_to_free_list(page, zone, order, migratetype); 840 841 /* Notify page reporting subsystem of freed page */ 842 if (!(fpi_flags & FPI_SKIP_REPORT_NOTIFY)) 843 page_reporting_notify_free(order); 844 } 845 846 /** 847 * split_free_page() -- split a free page at split_pfn_offset 848 * @free_page: the original free page 849 * @order: the order of the page 850 * @split_pfn_offset: split offset within the page 851 * 852 * Return -ENOENT if the free page is changed, otherwise 0 853 * 854 * It is used when the free page crosses two pageblocks with different migratetypes 855 * at split_pfn_offset within the page. The split free page will be put into 856 * separate migratetype lists afterwards. Otherwise, the function achieves 857 * nothing. 858 */ 859 int split_free_page(struct page *free_page, 860 unsigned int order, unsigned long split_pfn_offset) 861 { 862 struct zone *zone = page_zone(free_page); 863 unsigned long free_page_pfn = page_to_pfn(free_page); 864 unsigned long pfn; 865 unsigned long flags; 866 int free_page_order; 867 int mt; 868 int ret = 0; 869 870 if (split_pfn_offset == 0) 871 return ret; 872 873 spin_lock_irqsave(&zone->lock, flags); 874 875 if (!PageBuddy(free_page) || buddy_order(free_page) != order) { 876 ret = -ENOENT; 877 goto out; 878 } 879 880 mt = get_pfnblock_migratetype(free_page, free_page_pfn); 881 if (likely(!is_migrate_isolate(mt))) 882 __mod_zone_freepage_state(zone, -(1UL << order), mt); 883 884 del_page_from_free_list(free_page, zone, order); 885 for (pfn = free_page_pfn; 886 pfn < free_page_pfn + (1UL << order);) { 887 int mt = get_pfnblock_migratetype(pfn_to_page(pfn), pfn); 888 889 free_page_order = min_t(unsigned int, 890 pfn ? __ffs(pfn) : order, 891 __fls(split_pfn_offset)); 892 __free_one_page(pfn_to_page(pfn), pfn, zone, free_page_order, 893 mt, FPI_NONE); 894 pfn += 1UL << free_page_order; 895 split_pfn_offset -= (1UL << free_page_order); 896 /* we have done the first part, now switch to second part */ 897 if (split_pfn_offset == 0) 898 split_pfn_offset = (1UL << order) - (pfn - free_page_pfn); 899 } 900 out: 901 spin_unlock_irqrestore(&zone->lock, flags); 902 return ret; 903 } 904 /* 905 * A bad page could be due to a number of fields. Instead of multiple branches, 906 * try and check multiple fields with one check. The caller must do a detailed 907 * check if necessary. 908 */ 909 static inline bool page_expected_state(struct page *page, 910 unsigned long check_flags) 911 { 912 if (unlikely(atomic_read(&page->_mapcount) != -1)) 913 return false; 914 915 if (unlikely((unsigned long)page->mapping | 916 page_ref_count(page) | 917 #ifdef CONFIG_MEMCG 918 page->memcg_data | 919 #endif 920 #ifdef CONFIG_PAGE_POOL 921 ((page->pp_magic & ~0x3UL) == PP_SIGNATURE) | 922 #endif 923 (page->flags & check_flags))) 924 return false; 925 926 return true; 927 } 928 929 static const char *page_bad_reason(struct page *page, unsigned long flags) 930 { 931 const char *bad_reason = NULL; 932 933 if (unlikely(atomic_read(&page->_mapcount) != -1)) 934 bad_reason = "nonzero mapcount"; 935 if (unlikely(page->mapping != NULL)) 936 bad_reason = "non-NULL mapping"; 937 if (unlikely(page_ref_count(page) != 0)) 938 bad_reason = "nonzero _refcount"; 939 if (unlikely(page->flags & flags)) { 940 if (flags == PAGE_FLAGS_CHECK_AT_PREP) 941 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag(s) set"; 942 else 943 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set"; 944 } 945 #ifdef CONFIG_MEMCG 946 if (unlikely(page->memcg_data)) 947 bad_reason = "page still charged to cgroup"; 948 #endif 949 #ifdef CONFIG_PAGE_POOL 950 if (unlikely((page->pp_magic & ~0x3UL) == PP_SIGNATURE)) 951 bad_reason = "page_pool leak"; 952 #endif 953 return bad_reason; 954 } 955 956 static void free_page_is_bad_report(struct page *page) 957 { 958 bad_page(page, 959 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_FREE)); 960 } 961 962 static inline bool free_page_is_bad(struct page *page) 963 { 964 if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE))) 965 return false; 966 967 /* Something has gone sideways, find it */ 968 free_page_is_bad_report(page); 969 return true; 970 } 971 972 static inline bool is_check_pages_enabled(void) 973 { 974 return static_branch_unlikely(&check_pages_enabled); 975 } 976 977 static int free_tail_page_prepare(struct page *head_page, struct page *page) 978 { 979 struct folio *folio = (struct folio *)head_page; 980 int ret = 1; 981 982 /* 983 * We rely page->lru.next never has bit 0 set, unless the page 984 * is PageTail(). Let's make sure that's true even for poisoned ->lru. 985 */ 986 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1); 987 988 if (!is_check_pages_enabled()) { 989 ret = 0; 990 goto out; 991 } 992 switch (page - head_page) { 993 case 1: 994 /* the first tail page: these may be in place of ->mapping */ 995 if (unlikely(folio_entire_mapcount(folio))) { 996 bad_page(page, "nonzero entire_mapcount"); 997 goto out; 998 } 999 if (unlikely(atomic_read(&folio->_nr_pages_mapped))) { 1000 bad_page(page, "nonzero nr_pages_mapped"); 1001 goto out; 1002 } 1003 if (unlikely(atomic_read(&folio->_pincount))) { 1004 bad_page(page, "nonzero pincount"); 1005 goto out; 1006 } 1007 break; 1008 case 2: 1009 /* 1010 * the second tail page: ->mapping is 1011 * deferred_list.next -- ignore value. 1012 */ 1013 break; 1014 default: 1015 if (page->mapping != TAIL_MAPPING) { 1016 bad_page(page, "corrupted mapping in tail page"); 1017 goto out; 1018 } 1019 break; 1020 } 1021 if (unlikely(!PageTail(page))) { 1022 bad_page(page, "PageTail not set"); 1023 goto out; 1024 } 1025 if (unlikely(compound_head(page) != head_page)) { 1026 bad_page(page, "compound_head not consistent"); 1027 goto out; 1028 } 1029 ret = 0; 1030 out: 1031 page->mapping = NULL; 1032 clear_compound_head(page); 1033 return ret; 1034 } 1035 1036 /* 1037 * Skip KASAN memory poisoning when either: 1038 * 1039 * 1. For generic KASAN: deferred memory initialization has not yet completed. 1040 * Tag-based KASAN modes skip pages freed via deferred memory initialization 1041 * using page tags instead (see below). 1042 * 2. For tag-based KASAN modes: the page has a match-all KASAN tag, indicating 1043 * that error detection is disabled for accesses via the page address. 1044 * 1045 * Pages will have match-all tags in the following circumstances: 1046 * 1047 * 1. Pages are being initialized for the first time, including during deferred 1048 * memory init; see the call to page_kasan_tag_reset in __init_single_page. 1049 * 2. The allocation was not unpoisoned due to __GFP_SKIP_KASAN, with the 1050 * exception of pages unpoisoned by kasan_unpoison_vmalloc. 1051 * 3. The allocation was excluded from being checked due to sampling, 1052 * see the call to kasan_unpoison_pages. 1053 * 1054 * Poisoning pages during deferred memory init will greatly lengthen the 1055 * process and cause problem in large memory systems as the deferred pages 1056 * initialization is done with interrupt disabled. 1057 * 1058 * Assuming that there will be no reference to those newly initialized 1059 * pages before they are ever allocated, this should have no effect on 1060 * KASAN memory tracking as the poison will be properly inserted at page 1061 * allocation time. The only corner case is when pages are allocated by 1062 * on-demand allocation and then freed again before the deferred pages 1063 * initialization is done, but this is not likely to happen. 1064 */ 1065 static inline bool should_skip_kasan_poison(struct page *page) 1066 { 1067 if (IS_ENABLED(CONFIG_KASAN_GENERIC)) 1068 return deferred_pages_enabled(); 1069 1070 return page_kasan_tag(page) == KASAN_TAG_KERNEL; 1071 } 1072 1073 static void kernel_init_pages(struct page *page, int numpages) 1074 { 1075 int i; 1076 1077 /* s390's use of memset() could override KASAN redzones. */ 1078 kasan_disable_current(); 1079 for (i = 0; i < numpages; i++) 1080 clear_highpage_kasan_tagged(page + i); 1081 kasan_enable_current(); 1082 } 1083 1084 __always_inline bool free_pages_prepare(struct page *page, 1085 unsigned int order) 1086 { 1087 int bad = 0; 1088 bool skip_kasan_poison = should_skip_kasan_poison(page); 1089 bool init = want_init_on_free(); 1090 bool compound = PageCompound(page); 1091 1092 VM_BUG_ON_PAGE(PageTail(page), page); 1093 1094 trace_mm_page_free(page, order); 1095 kmsan_free_page(page, order); 1096 1097 if (memcg_kmem_online() && PageMemcgKmem(page)) 1098 __memcg_kmem_uncharge_page(page, order); 1099 1100 if (unlikely(PageHWPoison(page)) && !order) { 1101 /* Do not let hwpoison pages hit pcplists/buddy */ 1102 reset_page_owner(page, order); 1103 page_table_check_free(page, order); 1104 return false; 1105 } 1106 1107 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page); 1108 1109 /* 1110 * Check tail pages before head page information is cleared to 1111 * avoid checking PageCompound for order-0 pages. 1112 */ 1113 if (unlikely(order)) { 1114 int i; 1115 1116 if (compound) 1117 page[1].flags &= ~PAGE_FLAGS_SECOND; 1118 for (i = 1; i < (1 << order); i++) { 1119 if (compound) 1120 bad += free_tail_page_prepare(page, page + i); 1121 if (is_check_pages_enabled()) { 1122 if (free_page_is_bad(page + i)) { 1123 bad++; 1124 continue; 1125 } 1126 } 1127 (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP; 1128 } 1129 } 1130 if (PageMappingFlags(page)) 1131 page->mapping = NULL; 1132 if (is_check_pages_enabled()) { 1133 if (free_page_is_bad(page)) 1134 bad++; 1135 if (bad) 1136 return false; 1137 } 1138 1139 page_cpupid_reset_last(page); 1140 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP; 1141 reset_page_owner(page, order); 1142 page_table_check_free(page, order); 1143 1144 if (!PageHighMem(page)) { 1145 debug_check_no_locks_freed(page_address(page), 1146 PAGE_SIZE << order); 1147 debug_check_no_obj_freed(page_address(page), 1148 PAGE_SIZE << order); 1149 } 1150 1151 kernel_poison_pages(page, 1 << order); 1152 1153 /* 1154 * As memory initialization might be integrated into KASAN, 1155 * KASAN poisoning and memory initialization code must be 1156 * kept together to avoid discrepancies in behavior. 1157 * 1158 * With hardware tag-based KASAN, memory tags must be set before the 1159 * page becomes unavailable via debug_pagealloc or arch_free_page. 1160 */ 1161 if (!skip_kasan_poison) { 1162 kasan_poison_pages(page, order, init); 1163 1164 /* Memory is already initialized if KASAN did it internally. */ 1165 if (kasan_has_integrated_init()) 1166 init = false; 1167 } 1168 if (init) 1169 kernel_init_pages(page, 1 << order); 1170 1171 /* 1172 * arch_free_page() can make the page's contents inaccessible. s390 1173 * does this. So nothing which can access the page's contents should 1174 * happen after this. 1175 */ 1176 arch_free_page(page, order); 1177 1178 debug_pagealloc_unmap_pages(page, 1 << order); 1179 1180 return true; 1181 } 1182 1183 /* 1184 * Frees a number of pages from the PCP lists 1185 * Assumes all pages on list are in same zone. 1186 * count is the number of pages to free. 1187 */ 1188 static void free_pcppages_bulk(struct zone *zone, int count, 1189 struct per_cpu_pages *pcp, 1190 int pindex) 1191 { 1192 unsigned long flags; 1193 unsigned int order; 1194 bool isolated_pageblocks; 1195 struct page *page; 1196 1197 /* 1198 * Ensure proper count is passed which otherwise would stuck in the 1199 * below while (list_empty(list)) loop. 1200 */ 1201 count = min(pcp->count, count); 1202 1203 /* Ensure requested pindex is drained first. */ 1204 pindex = pindex - 1; 1205 1206 spin_lock_irqsave(&zone->lock, flags); 1207 isolated_pageblocks = has_isolate_pageblock(zone); 1208 1209 while (count > 0) { 1210 struct list_head *list; 1211 int nr_pages; 1212 1213 /* Remove pages from lists in a round-robin fashion. */ 1214 do { 1215 if (++pindex > NR_PCP_LISTS - 1) 1216 pindex = 0; 1217 list = &pcp->lists[pindex]; 1218 } while (list_empty(list)); 1219 1220 order = pindex_to_order(pindex); 1221 nr_pages = 1 << order; 1222 do { 1223 int mt; 1224 1225 page = list_last_entry(list, struct page, pcp_list); 1226 mt = get_pcppage_migratetype(page); 1227 1228 /* must delete to avoid corrupting pcp list */ 1229 list_del(&page->pcp_list); 1230 count -= nr_pages; 1231 pcp->count -= nr_pages; 1232 1233 /* MIGRATE_ISOLATE page should not go to pcplists */ 1234 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page); 1235 /* Pageblock could have been isolated meanwhile */ 1236 if (unlikely(isolated_pageblocks)) 1237 mt = get_pageblock_migratetype(page); 1238 1239 __free_one_page(page, page_to_pfn(page), zone, order, mt, FPI_NONE); 1240 trace_mm_page_pcpu_drain(page, order, mt); 1241 } while (count > 0 && !list_empty(list)); 1242 } 1243 1244 spin_unlock_irqrestore(&zone->lock, flags); 1245 } 1246 1247 static void free_one_page(struct zone *zone, 1248 struct page *page, unsigned long pfn, 1249 unsigned int order, 1250 int migratetype, fpi_t fpi_flags) 1251 { 1252 unsigned long flags; 1253 1254 spin_lock_irqsave(&zone->lock, flags); 1255 if (unlikely(has_isolate_pageblock(zone) || 1256 is_migrate_isolate(migratetype))) { 1257 migratetype = get_pfnblock_migratetype(page, pfn); 1258 } 1259 __free_one_page(page, pfn, zone, order, migratetype, fpi_flags); 1260 spin_unlock_irqrestore(&zone->lock, flags); 1261 } 1262 1263 static void __free_pages_ok(struct page *page, unsigned int order, 1264 fpi_t fpi_flags) 1265 { 1266 int migratetype; 1267 unsigned long pfn = page_to_pfn(page); 1268 struct zone *zone = page_zone(page); 1269 1270 if (!free_pages_prepare(page, order)) 1271 return; 1272 1273 /* 1274 * Calling get_pfnblock_migratetype() without spin_lock_irqsave() here 1275 * is used to avoid calling get_pfnblock_migratetype() under the lock. 1276 * This will reduce the lock holding time. 1277 */ 1278 migratetype = get_pfnblock_migratetype(page, pfn); 1279 1280 free_one_page(zone, page, pfn, order, migratetype, fpi_flags); 1281 1282 __count_vm_events(PGFREE, 1 << order); 1283 } 1284 1285 void __free_pages_core(struct page *page, unsigned int order) 1286 { 1287 unsigned int nr_pages = 1 << order; 1288 struct page *p = page; 1289 unsigned int loop; 1290 1291 /* 1292 * When initializing the memmap, __init_single_page() sets the refcount 1293 * of all pages to 1 ("allocated"/"not free"). We have to set the 1294 * refcount of all involved pages to 0. 1295 */ 1296 prefetchw(p); 1297 for (loop = 0; loop < (nr_pages - 1); loop++, p++) { 1298 prefetchw(p + 1); 1299 __ClearPageReserved(p); 1300 set_page_count(p, 0); 1301 } 1302 __ClearPageReserved(p); 1303 set_page_count(p, 0); 1304 1305 atomic_long_add(nr_pages, &page_zone(page)->managed_pages); 1306 1307 if (page_contains_unaccepted(page, order)) { 1308 if (order == MAX_PAGE_ORDER && __free_unaccepted(page)) 1309 return; 1310 1311 accept_page(page, order); 1312 } 1313 1314 /* 1315 * Bypass PCP and place fresh pages right to the tail, primarily 1316 * relevant for memory onlining. 1317 */ 1318 __free_pages_ok(page, order, FPI_TO_TAIL); 1319 } 1320 1321 /* 1322 * Check that the whole (or subset of) a pageblock given by the interval of 1323 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it 1324 * with the migration of free compaction scanner. 1325 * 1326 * Return struct page pointer of start_pfn, or NULL if checks were not passed. 1327 * 1328 * It's possible on some configurations to have a setup like node0 node1 node0 1329 * i.e. it's possible that all pages within a zones range of pages do not 1330 * belong to a single zone. We assume that a border between node0 and node1 1331 * can occur within a single pageblock, but not a node0 node1 node0 1332 * interleaving within a single pageblock. It is therefore sufficient to check 1333 * the first and last page of a pageblock and avoid checking each individual 1334 * page in a pageblock. 1335 * 1336 * Note: the function may return non-NULL struct page even for a page block 1337 * which contains a memory hole (i.e. there is no physical memory for a subset 1338 * of the pfn range). For example, if the pageblock order is MAX_PAGE_ORDER, which 1339 * will fall into 2 sub-sections, and the end pfn of the pageblock may be hole 1340 * even though the start pfn is online and valid. This should be safe most of 1341 * the time because struct pages are still initialized via init_unavailable_range() 1342 * and pfn walkers shouldn't touch any physical memory range for which they do 1343 * not recognize any specific metadata in struct pages. 1344 */ 1345 struct page *__pageblock_pfn_to_page(unsigned long start_pfn, 1346 unsigned long end_pfn, struct zone *zone) 1347 { 1348 struct page *start_page; 1349 struct page *end_page; 1350 1351 /* end_pfn is one past the range we are checking */ 1352 end_pfn--; 1353 1354 if (!pfn_valid(end_pfn)) 1355 return NULL; 1356 1357 start_page = pfn_to_online_page(start_pfn); 1358 if (!start_page) 1359 return NULL; 1360 1361 if (page_zone(start_page) != zone) 1362 return NULL; 1363 1364 end_page = pfn_to_page(end_pfn); 1365 1366 /* This gives a shorter code than deriving page_zone(end_page) */ 1367 if (page_zone_id(start_page) != page_zone_id(end_page)) 1368 return NULL; 1369 1370 return start_page; 1371 } 1372 1373 /* 1374 * The order of subdivision here is critical for the IO subsystem. 1375 * Please do not alter this order without good reasons and regression 1376 * testing. Specifically, as large blocks of memory are subdivided, 1377 * the order in which smaller blocks are delivered depends on the order 1378 * they're subdivided in this function. This is the primary factor 1379 * influencing the order in which pages are delivered to the IO 1380 * subsystem according to empirical testing, and this is also justified 1381 * by considering the behavior of a buddy system containing a single 1382 * large block of memory acted on by a series of small allocations. 1383 * This behavior is a critical factor in sglist merging's success. 1384 * 1385 * -- nyc 1386 */ 1387 static inline void expand(struct zone *zone, struct page *page, 1388 int low, int high, int migratetype) 1389 { 1390 unsigned long size = 1 << high; 1391 1392 while (high > low) { 1393 high--; 1394 size >>= 1; 1395 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]); 1396 1397 /* 1398 * Mark as guard pages (or page), that will allow to 1399 * merge back to allocator when buddy will be freed. 1400 * Corresponding page table entries will not be touched, 1401 * pages will stay not present in virtual address space 1402 */ 1403 if (set_page_guard(zone, &page[size], high, migratetype)) 1404 continue; 1405 1406 add_to_free_list(&page[size], zone, high, migratetype); 1407 set_buddy_order(&page[size], high); 1408 } 1409 } 1410 1411 static void check_new_page_bad(struct page *page) 1412 { 1413 if (unlikely(page->flags & __PG_HWPOISON)) { 1414 /* Don't complain about hwpoisoned pages */ 1415 page_mapcount_reset(page); /* remove PageBuddy */ 1416 return; 1417 } 1418 1419 bad_page(page, 1420 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_PREP)); 1421 } 1422 1423 /* 1424 * This page is about to be returned from the page allocator 1425 */ 1426 static bool check_new_page(struct page *page) 1427 { 1428 if (likely(page_expected_state(page, 1429 PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON))) 1430 return false; 1431 1432 check_new_page_bad(page); 1433 return true; 1434 } 1435 1436 static inline bool check_new_pages(struct page *page, unsigned int order) 1437 { 1438 if (is_check_pages_enabled()) { 1439 for (int i = 0; i < (1 << order); i++) { 1440 struct page *p = page + i; 1441 1442 if (check_new_page(p)) 1443 return true; 1444 } 1445 } 1446 1447 return false; 1448 } 1449 1450 static inline bool should_skip_kasan_unpoison(gfp_t flags) 1451 { 1452 /* Don't skip if a software KASAN mode is enabled. */ 1453 if (IS_ENABLED(CONFIG_KASAN_GENERIC) || 1454 IS_ENABLED(CONFIG_KASAN_SW_TAGS)) 1455 return false; 1456 1457 /* Skip, if hardware tag-based KASAN is not enabled. */ 1458 if (!kasan_hw_tags_enabled()) 1459 return true; 1460 1461 /* 1462 * With hardware tag-based KASAN enabled, skip if this has been 1463 * requested via __GFP_SKIP_KASAN. 1464 */ 1465 return flags & __GFP_SKIP_KASAN; 1466 } 1467 1468 static inline bool should_skip_init(gfp_t flags) 1469 { 1470 /* Don't skip, if hardware tag-based KASAN is not enabled. */ 1471 if (!kasan_hw_tags_enabled()) 1472 return false; 1473 1474 /* For hardware tag-based KASAN, skip if requested. */ 1475 return (flags & __GFP_SKIP_ZERO); 1476 } 1477 1478 inline void post_alloc_hook(struct page *page, unsigned int order, 1479 gfp_t gfp_flags) 1480 { 1481 bool init = !want_init_on_free() && want_init_on_alloc(gfp_flags) && 1482 !should_skip_init(gfp_flags); 1483 bool zero_tags = init && (gfp_flags & __GFP_ZEROTAGS); 1484 int i; 1485 1486 set_page_private(page, 0); 1487 set_page_refcounted(page); 1488 1489 arch_alloc_page(page, order); 1490 debug_pagealloc_map_pages(page, 1 << order); 1491 1492 /* 1493 * Page unpoisoning must happen before memory initialization. 1494 * Otherwise, the poison pattern will be overwritten for __GFP_ZERO 1495 * allocations and the page unpoisoning code will complain. 1496 */ 1497 kernel_unpoison_pages(page, 1 << order); 1498 1499 /* 1500 * As memory initialization might be integrated into KASAN, 1501 * KASAN unpoisoning and memory initializion code must be 1502 * kept together to avoid discrepancies in behavior. 1503 */ 1504 1505 /* 1506 * If memory tags should be zeroed 1507 * (which happens only when memory should be initialized as well). 1508 */ 1509 if (zero_tags) { 1510 /* Initialize both memory and memory tags. */ 1511 for (i = 0; i != 1 << order; ++i) 1512 tag_clear_highpage(page + i); 1513 1514 /* Take note that memory was initialized by the loop above. */ 1515 init = false; 1516 } 1517 if (!should_skip_kasan_unpoison(gfp_flags) && 1518 kasan_unpoison_pages(page, order, init)) { 1519 /* Take note that memory was initialized by KASAN. */ 1520 if (kasan_has_integrated_init()) 1521 init = false; 1522 } else { 1523 /* 1524 * If memory tags have not been set by KASAN, reset the page 1525 * tags to ensure page_address() dereferencing does not fault. 1526 */ 1527 for (i = 0; i != 1 << order; ++i) 1528 page_kasan_tag_reset(page + i); 1529 } 1530 /* If memory is still not initialized, initialize it now. */ 1531 if (init) 1532 kernel_init_pages(page, 1 << order); 1533 1534 set_page_owner(page, order, gfp_flags); 1535 page_table_check_alloc(page, order); 1536 } 1537 1538 static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags, 1539 unsigned int alloc_flags) 1540 { 1541 post_alloc_hook(page, order, gfp_flags); 1542 1543 if (order && (gfp_flags & __GFP_COMP)) 1544 prep_compound_page(page, order); 1545 1546 /* 1547 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to 1548 * allocate the page. The expectation is that the caller is taking 1549 * steps that will free more memory. The caller should avoid the page 1550 * being used for !PFMEMALLOC purposes. 1551 */ 1552 if (alloc_flags & ALLOC_NO_WATERMARKS) 1553 set_page_pfmemalloc(page); 1554 else 1555 clear_page_pfmemalloc(page); 1556 } 1557 1558 /* 1559 * Go through the free lists for the given migratetype and remove 1560 * the smallest available page from the freelists 1561 */ 1562 static __always_inline 1563 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order, 1564 int migratetype) 1565 { 1566 unsigned int current_order; 1567 struct free_area *area; 1568 struct page *page; 1569 1570 /* Find a page of the appropriate size in the preferred list */ 1571 for (current_order = order; current_order < NR_PAGE_ORDERS; ++current_order) { 1572 area = &(zone->free_area[current_order]); 1573 page = get_page_from_free_area(area, migratetype); 1574 if (!page) 1575 continue; 1576 del_page_from_free_list(page, zone, current_order); 1577 expand(zone, page, order, current_order, migratetype); 1578 set_pcppage_migratetype(page, migratetype); 1579 trace_mm_page_alloc_zone_locked(page, order, migratetype, 1580 pcp_allowed_order(order) && 1581 migratetype < MIGRATE_PCPTYPES); 1582 return page; 1583 } 1584 1585 return NULL; 1586 } 1587 1588 1589 /* 1590 * This array describes the order lists are fallen back to when 1591 * the free lists for the desirable migrate type are depleted 1592 * 1593 * The other migratetypes do not have fallbacks. 1594 */ 1595 static int fallbacks[MIGRATE_TYPES][MIGRATE_PCPTYPES - 1] = { 1596 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE }, 1597 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE }, 1598 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE }, 1599 }; 1600 1601 #ifdef CONFIG_CMA 1602 static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone, 1603 unsigned int order) 1604 { 1605 return __rmqueue_smallest(zone, order, MIGRATE_CMA); 1606 } 1607 #else 1608 static inline struct page *__rmqueue_cma_fallback(struct zone *zone, 1609 unsigned int order) { return NULL; } 1610 #endif 1611 1612 /* 1613 * Move the free pages in a range to the freelist tail of the requested type. 1614 * Note that start_page and end_pages are not aligned on a pageblock 1615 * boundary. If alignment is required, use move_freepages_block() 1616 */ 1617 static int move_freepages(struct zone *zone, 1618 unsigned long start_pfn, unsigned long end_pfn, 1619 int migratetype, int *num_movable) 1620 { 1621 struct page *page; 1622 unsigned long pfn; 1623 unsigned int order; 1624 int pages_moved = 0; 1625 1626 for (pfn = start_pfn; pfn <= end_pfn;) { 1627 page = pfn_to_page(pfn); 1628 if (!PageBuddy(page)) { 1629 /* 1630 * We assume that pages that could be isolated for 1631 * migration are movable. But we don't actually try 1632 * isolating, as that would be expensive. 1633 */ 1634 if (num_movable && 1635 (PageLRU(page) || __PageMovable(page))) 1636 (*num_movable)++; 1637 pfn++; 1638 continue; 1639 } 1640 1641 /* Make sure we are not inadvertently changing nodes */ 1642 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page); 1643 VM_BUG_ON_PAGE(page_zone(page) != zone, page); 1644 1645 order = buddy_order(page); 1646 move_to_free_list(page, zone, order, migratetype); 1647 pfn += 1 << order; 1648 pages_moved += 1 << order; 1649 } 1650 1651 return pages_moved; 1652 } 1653 1654 int move_freepages_block(struct zone *zone, struct page *page, 1655 int migratetype, int *num_movable) 1656 { 1657 unsigned long start_pfn, end_pfn, pfn; 1658 1659 if (num_movable) 1660 *num_movable = 0; 1661 1662 pfn = page_to_pfn(page); 1663 start_pfn = pageblock_start_pfn(pfn); 1664 end_pfn = pageblock_end_pfn(pfn) - 1; 1665 1666 /* Do not cross zone boundaries */ 1667 if (!zone_spans_pfn(zone, start_pfn)) 1668 start_pfn = pfn; 1669 if (!zone_spans_pfn(zone, end_pfn)) 1670 return 0; 1671 1672 return move_freepages(zone, start_pfn, end_pfn, migratetype, 1673 num_movable); 1674 } 1675 1676 static void change_pageblock_range(struct page *pageblock_page, 1677 int start_order, int migratetype) 1678 { 1679 int nr_pageblocks = 1 << (start_order - pageblock_order); 1680 1681 while (nr_pageblocks--) { 1682 set_pageblock_migratetype(pageblock_page, migratetype); 1683 pageblock_page += pageblock_nr_pages; 1684 } 1685 } 1686 1687 /* 1688 * When we are falling back to another migratetype during allocation, try to 1689 * steal extra free pages from the same pageblocks to satisfy further 1690 * allocations, instead of polluting multiple pageblocks. 1691 * 1692 * If we are stealing a relatively large buddy page, it is likely there will 1693 * be more free pages in the pageblock, so try to steal them all. For 1694 * reclaimable and unmovable allocations, we steal regardless of page size, 1695 * as fragmentation caused by those allocations polluting movable pageblocks 1696 * is worse than movable allocations stealing from unmovable and reclaimable 1697 * pageblocks. 1698 */ 1699 static bool can_steal_fallback(unsigned int order, int start_mt) 1700 { 1701 /* 1702 * Leaving this order check is intended, although there is 1703 * relaxed order check in next check. The reason is that 1704 * we can actually steal whole pageblock if this condition met, 1705 * but, below check doesn't guarantee it and that is just heuristic 1706 * so could be changed anytime. 1707 */ 1708 if (order >= pageblock_order) 1709 return true; 1710 1711 if (order >= pageblock_order / 2 || 1712 start_mt == MIGRATE_RECLAIMABLE || 1713 start_mt == MIGRATE_UNMOVABLE || 1714 page_group_by_mobility_disabled) 1715 return true; 1716 1717 return false; 1718 } 1719 1720 static inline bool boost_watermark(struct zone *zone) 1721 { 1722 unsigned long max_boost; 1723 1724 if (!watermark_boost_factor) 1725 return false; 1726 /* 1727 * Don't bother in zones that are unlikely to produce results. 1728 * On small machines, including kdump capture kernels running 1729 * in a small area, boosting the watermark can cause an out of 1730 * memory situation immediately. 1731 */ 1732 if ((pageblock_nr_pages * 4) > zone_managed_pages(zone)) 1733 return false; 1734 1735 max_boost = mult_frac(zone->_watermark[WMARK_HIGH], 1736 watermark_boost_factor, 10000); 1737 1738 /* 1739 * high watermark may be uninitialised if fragmentation occurs 1740 * very early in boot so do not boost. We do not fall 1741 * through and boost by pageblock_nr_pages as failing 1742 * allocations that early means that reclaim is not going 1743 * to help and it may even be impossible to reclaim the 1744 * boosted watermark resulting in a hang. 1745 */ 1746 if (!max_boost) 1747 return false; 1748 1749 max_boost = max(pageblock_nr_pages, max_boost); 1750 1751 zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages, 1752 max_boost); 1753 1754 return true; 1755 } 1756 1757 /* 1758 * This function implements actual steal behaviour. If order is large enough, 1759 * we can steal whole pageblock. If not, we first move freepages in this 1760 * pageblock to our migratetype and determine how many already-allocated pages 1761 * are there in the pageblock with a compatible migratetype. If at least half 1762 * of pages are free or compatible, we can change migratetype of the pageblock 1763 * itself, so pages freed in the future will be put on the correct free list. 1764 */ 1765 static void steal_suitable_fallback(struct zone *zone, struct page *page, 1766 unsigned int alloc_flags, int start_type, bool whole_block) 1767 { 1768 unsigned int current_order = buddy_order(page); 1769 int free_pages, movable_pages, alike_pages; 1770 int old_block_type; 1771 1772 old_block_type = get_pageblock_migratetype(page); 1773 1774 /* 1775 * This can happen due to races and we want to prevent broken 1776 * highatomic accounting. 1777 */ 1778 if (is_migrate_highatomic(old_block_type)) 1779 goto single_page; 1780 1781 /* Take ownership for orders >= pageblock_order */ 1782 if (current_order >= pageblock_order) { 1783 change_pageblock_range(page, current_order, start_type); 1784 goto single_page; 1785 } 1786 1787 /* 1788 * Boost watermarks to increase reclaim pressure to reduce the 1789 * likelihood of future fallbacks. Wake kswapd now as the node 1790 * may be balanced overall and kswapd will not wake naturally. 1791 */ 1792 if (boost_watermark(zone) && (alloc_flags & ALLOC_KSWAPD)) 1793 set_bit(ZONE_BOOSTED_WATERMARK, &zone->flags); 1794 1795 /* We are not allowed to try stealing from the whole block */ 1796 if (!whole_block) 1797 goto single_page; 1798 1799 free_pages = move_freepages_block(zone, page, start_type, 1800 &movable_pages); 1801 /* moving whole block can fail due to zone boundary conditions */ 1802 if (!free_pages) 1803 goto single_page; 1804 1805 /* 1806 * Determine how many pages are compatible with our allocation. 1807 * For movable allocation, it's the number of movable pages which 1808 * we just obtained. For other types it's a bit more tricky. 1809 */ 1810 if (start_type == MIGRATE_MOVABLE) { 1811 alike_pages = movable_pages; 1812 } else { 1813 /* 1814 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation 1815 * to MOVABLE pageblock, consider all non-movable pages as 1816 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or 1817 * vice versa, be conservative since we can't distinguish the 1818 * exact migratetype of non-movable pages. 1819 */ 1820 if (old_block_type == MIGRATE_MOVABLE) 1821 alike_pages = pageblock_nr_pages 1822 - (free_pages + movable_pages); 1823 else 1824 alike_pages = 0; 1825 } 1826 /* 1827 * If a sufficient number of pages in the block are either free or of 1828 * compatible migratability as our allocation, claim the whole block. 1829 */ 1830 if (free_pages + alike_pages >= (1 << (pageblock_order-1)) || 1831 page_group_by_mobility_disabled) 1832 set_pageblock_migratetype(page, start_type); 1833 1834 return; 1835 1836 single_page: 1837 move_to_free_list(page, zone, current_order, start_type); 1838 } 1839 1840 /* 1841 * Check whether there is a suitable fallback freepage with requested order. 1842 * If only_stealable is true, this function returns fallback_mt only if 1843 * we can steal other freepages all together. This would help to reduce 1844 * fragmentation due to mixed migratetype pages in one pageblock. 1845 */ 1846 int find_suitable_fallback(struct free_area *area, unsigned int order, 1847 int migratetype, bool only_stealable, bool *can_steal) 1848 { 1849 int i; 1850 int fallback_mt; 1851 1852 if (area->nr_free == 0) 1853 return -1; 1854 1855 *can_steal = false; 1856 for (i = 0; i < MIGRATE_PCPTYPES - 1 ; i++) { 1857 fallback_mt = fallbacks[migratetype][i]; 1858 if (free_area_empty(area, fallback_mt)) 1859 continue; 1860 1861 if (can_steal_fallback(order, migratetype)) 1862 *can_steal = true; 1863 1864 if (!only_stealable) 1865 return fallback_mt; 1866 1867 if (*can_steal) 1868 return fallback_mt; 1869 } 1870 1871 return -1; 1872 } 1873 1874 /* 1875 * Reserve a pageblock for exclusive use of high-order atomic allocations if 1876 * there are no empty page blocks that contain a page with a suitable order 1877 */ 1878 static void reserve_highatomic_pageblock(struct page *page, struct zone *zone) 1879 { 1880 int mt; 1881 unsigned long max_managed, flags; 1882 1883 /* 1884 * The number reserved as: minimum is 1 pageblock, maximum is 1885 * roughly 1% of a zone. But if 1% of a zone falls below a 1886 * pageblock size, then don't reserve any pageblocks. 1887 * Check is race-prone but harmless. 1888 */ 1889 if ((zone_managed_pages(zone) / 100) < pageblock_nr_pages) 1890 return; 1891 max_managed = ALIGN((zone_managed_pages(zone) / 100), pageblock_nr_pages); 1892 if (zone->nr_reserved_highatomic >= max_managed) 1893 return; 1894 1895 spin_lock_irqsave(&zone->lock, flags); 1896 1897 /* Recheck the nr_reserved_highatomic limit under the lock */ 1898 if (zone->nr_reserved_highatomic >= max_managed) 1899 goto out_unlock; 1900 1901 /* Yoink! */ 1902 mt = get_pageblock_migratetype(page); 1903 /* Only reserve normal pageblocks (i.e., they can merge with others) */ 1904 if (migratetype_is_mergeable(mt)) { 1905 zone->nr_reserved_highatomic += pageblock_nr_pages; 1906 set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC); 1907 move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL); 1908 } 1909 1910 out_unlock: 1911 spin_unlock_irqrestore(&zone->lock, flags); 1912 } 1913 1914 /* 1915 * Used when an allocation is about to fail under memory pressure. This 1916 * potentially hurts the reliability of high-order allocations when under 1917 * intense memory pressure but failed atomic allocations should be easier 1918 * to recover from than an OOM. 1919 * 1920 * If @force is true, try to unreserve a pageblock even though highatomic 1921 * pageblock is exhausted. 1922 */ 1923 static bool unreserve_highatomic_pageblock(const struct alloc_context *ac, 1924 bool force) 1925 { 1926 struct zonelist *zonelist = ac->zonelist; 1927 unsigned long flags; 1928 struct zoneref *z; 1929 struct zone *zone; 1930 struct page *page; 1931 int order; 1932 bool ret; 1933 1934 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->highest_zoneidx, 1935 ac->nodemask) { 1936 /* 1937 * Preserve at least one pageblock unless memory pressure 1938 * is really high. 1939 */ 1940 if (!force && zone->nr_reserved_highatomic <= 1941 pageblock_nr_pages) 1942 continue; 1943 1944 spin_lock_irqsave(&zone->lock, flags); 1945 for (order = 0; order < NR_PAGE_ORDERS; order++) { 1946 struct free_area *area = &(zone->free_area[order]); 1947 1948 page = get_page_from_free_area(area, MIGRATE_HIGHATOMIC); 1949 if (!page) 1950 continue; 1951 1952 /* 1953 * In page freeing path, migratetype change is racy so 1954 * we can counter several free pages in a pageblock 1955 * in this loop although we changed the pageblock type 1956 * from highatomic to ac->migratetype. So we should 1957 * adjust the count once. 1958 */ 1959 if (is_migrate_highatomic_page(page)) { 1960 /* 1961 * It should never happen but changes to 1962 * locking could inadvertently allow a per-cpu 1963 * drain to add pages to MIGRATE_HIGHATOMIC 1964 * while unreserving so be safe and watch for 1965 * underflows. 1966 */ 1967 zone->nr_reserved_highatomic -= min( 1968 pageblock_nr_pages, 1969 zone->nr_reserved_highatomic); 1970 } 1971 1972 /* 1973 * Convert to ac->migratetype and avoid the normal 1974 * pageblock stealing heuristics. Minimally, the caller 1975 * is doing the work and needs the pages. More 1976 * importantly, if the block was always converted to 1977 * MIGRATE_UNMOVABLE or another type then the number 1978 * of pageblocks that cannot be completely freed 1979 * may increase. 1980 */ 1981 set_pageblock_migratetype(page, ac->migratetype); 1982 ret = move_freepages_block(zone, page, ac->migratetype, 1983 NULL); 1984 if (ret) { 1985 spin_unlock_irqrestore(&zone->lock, flags); 1986 return ret; 1987 } 1988 } 1989 spin_unlock_irqrestore(&zone->lock, flags); 1990 } 1991 1992 return false; 1993 } 1994 1995 /* 1996 * Try finding a free buddy page on the fallback list and put it on the free 1997 * list of requested migratetype, possibly along with other pages from the same 1998 * block, depending on fragmentation avoidance heuristics. Returns true if 1999 * fallback was found so that __rmqueue_smallest() can grab it. 2000 * 2001 * The use of signed ints for order and current_order is a deliberate 2002 * deviation from the rest of this file, to make the for loop 2003 * condition simpler. 2004 */ 2005 static __always_inline bool 2006 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype, 2007 unsigned int alloc_flags) 2008 { 2009 struct free_area *area; 2010 int current_order; 2011 int min_order = order; 2012 struct page *page; 2013 int fallback_mt; 2014 bool can_steal; 2015 2016 /* 2017 * Do not steal pages from freelists belonging to other pageblocks 2018 * i.e. orders < pageblock_order. If there are no local zones free, 2019 * the zonelists will be reiterated without ALLOC_NOFRAGMENT. 2020 */ 2021 if (order < pageblock_order && alloc_flags & ALLOC_NOFRAGMENT) 2022 min_order = pageblock_order; 2023 2024 /* 2025 * Find the largest available free page in the other list. This roughly 2026 * approximates finding the pageblock with the most free pages, which 2027 * would be too costly to do exactly. 2028 */ 2029 for (current_order = MAX_PAGE_ORDER; current_order >= min_order; 2030 --current_order) { 2031 area = &(zone->free_area[current_order]); 2032 fallback_mt = find_suitable_fallback(area, current_order, 2033 start_migratetype, false, &can_steal); 2034 if (fallback_mt == -1) 2035 continue; 2036 2037 /* 2038 * We cannot steal all free pages from the pageblock and the 2039 * requested migratetype is movable. In that case it's better to 2040 * steal and split the smallest available page instead of the 2041 * largest available page, because even if the next movable 2042 * allocation falls back into a different pageblock than this 2043 * one, it won't cause permanent fragmentation. 2044 */ 2045 if (!can_steal && start_migratetype == MIGRATE_MOVABLE 2046 && current_order > order) 2047 goto find_smallest; 2048 2049 goto do_steal; 2050 } 2051 2052 return false; 2053 2054 find_smallest: 2055 for (current_order = order; current_order < NR_PAGE_ORDERS; current_order++) { 2056 area = &(zone->free_area[current_order]); 2057 fallback_mt = find_suitable_fallback(area, current_order, 2058 start_migratetype, false, &can_steal); 2059 if (fallback_mt != -1) 2060 break; 2061 } 2062 2063 /* 2064 * This should not happen - we already found a suitable fallback 2065 * when looking for the largest page. 2066 */ 2067 VM_BUG_ON(current_order > MAX_PAGE_ORDER); 2068 2069 do_steal: 2070 page = get_page_from_free_area(area, fallback_mt); 2071 2072 steal_suitable_fallback(zone, page, alloc_flags, start_migratetype, 2073 can_steal); 2074 2075 trace_mm_page_alloc_extfrag(page, order, current_order, 2076 start_migratetype, fallback_mt); 2077 2078 return true; 2079 2080 } 2081 2082 /* 2083 * Do the hard work of removing an element from the buddy allocator. 2084 * Call me with the zone->lock already held. 2085 */ 2086 static __always_inline struct page * 2087 __rmqueue(struct zone *zone, unsigned int order, int migratetype, 2088 unsigned int alloc_flags) 2089 { 2090 struct page *page; 2091 2092 if (IS_ENABLED(CONFIG_CMA)) { 2093 /* 2094 * Balance movable allocations between regular and CMA areas by 2095 * allocating from CMA when over half of the zone's free memory 2096 * is in the CMA area. 2097 */ 2098 if (alloc_flags & ALLOC_CMA && 2099 zone_page_state(zone, NR_FREE_CMA_PAGES) > 2100 zone_page_state(zone, NR_FREE_PAGES) / 2) { 2101 page = __rmqueue_cma_fallback(zone, order); 2102 if (page) 2103 return page; 2104 } 2105 } 2106 retry: 2107 page = __rmqueue_smallest(zone, order, migratetype); 2108 if (unlikely(!page)) { 2109 if (alloc_flags & ALLOC_CMA) 2110 page = __rmqueue_cma_fallback(zone, order); 2111 2112 if (!page && __rmqueue_fallback(zone, order, migratetype, 2113 alloc_flags)) 2114 goto retry; 2115 } 2116 return page; 2117 } 2118 2119 /* 2120 * Obtain a specified number of elements from the buddy allocator, all under 2121 * a single hold of the lock, for efficiency. Add them to the supplied list. 2122 * Returns the number of new pages which were placed at *list. 2123 */ 2124 static int rmqueue_bulk(struct zone *zone, unsigned int order, 2125 unsigned long count, struct list_head *list, 2126 int migratetype, unsigned int alloc_flags) 2127 { 2128 unsigned long flags; 2129 int i; 2130 2131 spin_lock_irqsave(&zone->lock, flags); 2132 for (i = 0; i < count; ++i) { 2133 struct page *page = __rmqueue(zone, order, migratetype, 2134 alloc_flags); 2135 if (unlikely(page == NULL)) 2136 break; 2137 2138 /* 2139 * Split buddy pages returned by expand() are received here in 2140 * physical page order. The page is added to the tail of 2141 * caller's list. From the callers perspective, the linked list 2142 * is ordered by page number under some conditions. This is 2143 * useful for IO devices that can forward direction from the 2144 * head, thus also in the physical page order. This is useful 2145 * for IO devices that can merge IO requests if the physical 2146 * pages are ordered properly. 2147 */ 2148 list_add_tail(&page->pcp_list, list); 2149 if (is_migrate_cma(get_pcppage_migratetype(page))) 2150 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES, 2151 -(1 << order)); 2152 } 2153 2154 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order)); 2155 spin_unlock_irqrestore(&zone->lock, flags); 2156 2157 return i; 2158 } 2159 2160 /* 2161 * Called from the vmstat counter updater to decay the PCP high. 2162 * Return whether there are addition works to do. 2163 */ 2164 int decay_pcp_high(struct zone *zone, struct per_cpu_pages *pcp) 2165 { 2166 int high_min, to_drain, batch; 2167 int todo = 0; 2168 2169 high_min = READ_ONCE(pcp->high_min); 2170 batch = READ_ONCE(pcp->batch); 2171 /* 2172 * Decrease pcp->high periodically to try to free possible 2173 * idle PCP pages. And, avoid to free too many pages to 2174 * control latency. This caps pcp->high decrement too. 2175 */ 2176 if (pcp->high > high_min) { 2177 pcp->high = max3(pcp->count - (batch << CONFIG_PCP_BATCH_SCALE_MAX), 2178 pcp->high - (pcp->high >> 3), high_min); 2179 if (pcp->high > high_min) 2180 todo++; 2181 } 2182 2183 to_drain = pcp->count - pcp->high; 2184 if (to_drain > 0) { 2185 spin_lock(&pcp->lock); 2186 free_pcppages_bulk(zone, to_drain, pcp, 0); 2187 spin_unlock(&pcp->lock); 2188 todo++; 2189 } 2190 2191 return todo; 2192 } 2193 2194 #ifdef CONFIG_NUMA 2195 /* 2196 * Called from the vmstat counter updater to drain pagesets of this 2197 * currently executing processor on remote nodes after they have 2198 * expired. 2199 */ 2200 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp) 2201 { 2202 int to_drain, batch; 2203 2204 batch = READ_ONCE(pcp->batch); 2205 to_drain = min(pcp->count, batch); 2206 if (to_drain > 0) { 2207 spin_lock(&pcp->lock); 2208 free_pcppages_bulk(zone, to_drain, pcp, 0); 2209 spin_unlock(&pcp->lock); 2210 } 2211 } 2212 #endif 2213 2214 /* 2215 * Drain pcplists of the indicated processor and zone. 2216 */ 2217 static void drain_pages_zone(unsigned int cpu, struct zone *zone) 2218 { 2219 struct per_cpu_pages *pcp; 2220 2221 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu); 2222 if (pcp->count) { 2223 spin_lock(&pcp->lock); 2224 free_pcppages_bulk(zone, pcp->count, pcp, 0); 2225 spin_unlock(&pcp->lock); 2226 } 2227 } 2228 2229 /* 2230 * Drain pcplists of all zones on the indicated processor. 2231 */ 2232 static void drain_pages(unsigned int cpu) 2233 { 2234 struct zone *zone; 2235 2236 for_each_populated_zone(zone) { 2237 drain_pages_zone(cpu, zone); 2238 } 2239 } 2240 2241 /* 2242 * Spill all of this CPU's per-cpu pages back into the buddy allocator. 2243 */ 2244 void drain_local_pages(struct zone *zone) 2245 { 2246 int cpu = smp_processor_id(); 2247 2248 if (zone) 2249 drain_pages_zone(cpu, zone); 2250 else 2251 drain_pages(cpu); 2252 } 2253 2254 /* 2255 * The implementation of drain_all_pages(), exposing an extra parameter to 2256 * drain on all cpus. 2257 * 2258 * drain_all_pages() is optimized to only execute on cpus where pcplists are 2259 * not empty. The check for non-emptiness can however race with a free to 2260 * pcplist that has not yet increased the pcp->count from 0 to 1. Callers 2261 * that need the guarantee that every CPU has drained can disable the 2262 * optimizing racy check. 2263 */ 2264 static void __drain_all_pages(struct zone *zone, bool force_all_cpus) 2265 { 2266 int cpu; 2267 2268 /* 2269 * Allocate in the BSS so we won't require allocation in 2270 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y 2271 */ 2272 static cpumask_t cpus_with_pcps; 2273 2274 /* 2275 * Do not drain if one is already in progress unless it's specific to 2276 * a zone. Such callers are primarily CMA and memory hotplug and need 2277 * the drain to be complete when the call returns. 2278 */ 2279 if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) { 2280 if (!zone) 2281 return; 2282 mutex_lock(&pcpu_drain_mutex); 2283 } 2284 2285 /* 2286 * We don't care about racing with CPU hotplug event 2287 * as offline notification will cause the notified 2288 * cpu to drain that CPU pcps and on_each_cpu_mask 2289 * disables preemption as part of its processing 2290 */ 2291 for_each_online_cpu(cpu) { 2292 struct per_cpu_pages *pcp; 2293 struct zone *z; 2294 bool has_pcps = false; 2295 2296 if (force_all_cpus) { 2297 /* 2298 * The pcp.count check is racy, some callers need a 2299 * guarantee that no cpu is missed. 2300 */ 2301 has_pcps = true; 2302 } else if (zone) { 2303 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu); 2304 if (pcp->count) 2305 has_pcps = true; 2306 } else { 2307 for_each_populated_zone(z) { 2308 pcp = per_cpu_ptr(z->per_cpu_pageset, cpu); 2309 if (pcp->count) { 2310 has_pcps = true; 2311 break; 2312 } 2313 } 2314 } 2315 2316 if (has_pcps) 2317 cpumask_set_cpu(cpu, &cpus_with_pcps); 2318 else 2319 cpumask_clear_cpu(cpu, &cpus_with_pcps); 2320 } 2321 2322 for_each_cpu(cpu, &cpus_with_pcps) { 2323 if (zone) 2324 drain_pages_zone(cpu, zone); 2325 else 2326 drain_pages(cpu); 2327 } 2328 2329 mutex_unlock(&pcpu_drain_mutex); 2330 } 2331 2332 /* 2333 * Spill all the per-cpu pages from all CPUs back into the buddy allocator. 2334 * 2335 * When zone parameter is non-NULL, spill just the single zone's pages. 2336 */ 2337 void drain_all_pages(struct zone *zone) 2338 { 2339 __drain_all_pages(zone, false); 2340 } 2341 2342 static bool free_unref_page_prepare(struct page *page, unsigned long pfn, 2343 unsigned int order) 2344 { 2345 int migratetype; 2346 2347 if (!free_pages_prepare(page, order)) 2348 return false; 2349 2350 migratetype = get_pfnblock_migratetype(page, pfn); 2351 set_pcppage_migratetype(page, migratetype); 2352 return true; 2353 } 2354 2355 static int nr_pcp_free(struct per_cpu_pages *pcp, int batch, int high, bool free_high) 2356 { 2357 int min_nr_free, max_nr_free; 2358 2359 /* Free as much as possible if batch freeing high-order pages. */ 2360 if (unlikely(free_high)) 2361 return min(pcp->count, batch << CONFIG_PCP_BATCH_SCALE_MAX); 2362 2363 /* Check for PCP disabled or boot pageset */ 2364 if (unlikely(high < batch)) 2365 return 1; 2366 2367 /* Leave at least pcp->batch pages on the list */ 2368 min_nr_free = batch; 2369 max_nr_free = high - batch; 2370 2371 /* 2372 * Increase the batch number to the number of the consecutive 2373 * freed pages to reduce zone lock contention. 2374 */ 2375 batch = clamp_t(int, pcp->free_count, min_nr_free, max_nr_free); 2376 2377 return batch; 2378 } 2379 2380 static int nr_pcp_high(struct per_cpu_pages *pcp, struct zone *zone, 2381 int batch, bool free_high) 2382 { 2383 int high, high_min, high_max; 2384 2385 high_min = READ_ONCE(pcp->high_min); 2386 high_max = READ_ONCE(pcp->high_max); 2387 high = pcp->high = clamp(pcp->high, high_min, high_max); 2388 2389 if (unlikely(!high)) 2390 return 0; 2391 2392 if (unlikely(free_high)) { 2393 pcp->high = max(high - (batch << CONFIG_PCP_BATCH_SCALE_MAX), 2394 high_min); 2395 return 0; 2396 } 2397 2398 /* 2399 * If reclaim is active, limit the number of pages that can be 2400 * stored on pcp lists 2401 */ 2402 if (test_bit(ZONE_RECLAIM_ACTIVE, &zone->flags)) { 2403 int free_count = max_t(int, pcp->free_count, batch); 2404 2405 pcp->high = max(high - free_count, high_min); 2406 return min(batch << 2, pcp->high); 2407 } 2408 2409 if (high_min == high_max) 2410 return high; 2411 2412 if (test_bit(ZONE_BELOW_HIGH, &zone->flags)) { 2413 int free_count = max_t(int, pcp->free_count, batch); 2414 2415 pcp->high = max(high - free_count, high_min); 2416 high = max(pcp->count, high_min); 2417 } else if (pcp->count >= high) { 2418 int need_high = pcp->free_count + batch; 2419 2420 /* pcp->high should be large enough to hold batch freed pages */ 2421 if (pcp->high < need_high) 2422 pcp->high = clamp(need_high, high_min, high_max); 2423 } 2424 2425 return high; 2426 } 2427 2428 static void free_unref_page_commit(struct zone *zone, struct per_cpu_pages *pcp, 2429 struct page *page, int migratetype, 2430 unsigned int order) 2431 { 2432 int high, batch; 2433 int pindex; 2434 bool free_high = false; 2435 2436 /* 2437 * On freeing, reduce the number of pages that are batch allocated. 2438 * See nr_pcp_alloc() where alloc_factor is increased for subsequent 2439 * allocations. 2440 */ 2441 pcp->alloc_factor >>= 1; 2442 __count_vm_events(PGFREE, 1 << order); 2443 pindex = order_to_pindex(migratetype, order); 2444 list_add(&page->pcp_list, &pcp->lists[pindex]); 2445 pcp->count += 1 << order; 2446 2447 batch = READ_ONCE(pcp->batch); 2448 /* 2449 * As high-order pages other than THP's stored on PCP can contribute 2450 * to fragmentation, limit the number stored when PCP is heavily 2451 * freeing without allocation. The remainder after bulk freeing 2452 * stops will be drained from vmstat refresh context. 2453 */ 2454 if (order && order <= PAGE_ALLOC_COSTLY_ORDER) { 2455 free_high = (pcp->free_count >= batch && 2456 (pcp->flags & PCPF_PREV_FREE_HIGH_ORDER) && 2457 (!(pcp->flags & PCPF_FREE_HIGH_BATCH) || 2458 pcp->count >= READ_ONCE(batch))); 2459 pcp->flags |= PCPF_PREV_FREE_HIGH_ORDER; 2460 } else if (pcp->flags & PCPF_PREV_FREE_HIGH_ORDER) { 2461 pcp->flags &= ~PCPF_PREV_FREE_HIGH_ORDER; 2462 } 2463 if (pcp->free_count < (batch << CONFIG_PCP_BATCH_SCALE_MAX)) 2464 pcp->free_count += (1 << order); 2465 high = nr_pcp_high(pcp, zone, batch, free_high); 2466 if (pcp->count >= high) { 2467 free_pcppages_bulk(zone, nr_pcp_free(pcp, batch, high, free_high), 2468 pcp, pindex); 2469 if (test_bit(ZONE_BELOW_HIGH, &zone->flags) && 2470 zone_watermark_ok(zone, 0, high_wmark_pages(zone), 2471 ZONE_MOVABLE, 0)) 2472 clear_bit(ZONE_BELOW_HIGH, &zone->flags); 2473 } 2474 } 2475 2476 /* 2477 * Free a pcp page 2478 */ 2479 void free_unref_page(struct page *page, unsigned int order) 2480 { 2481 unsigned long __maybe_unused UP_flags; 2482 struct per_cpu_pages *pcp; 2483 struct zone *zone; 2484 unsigned long pfn = page_to_pfn(page); 2485 int migratetype, pcpmigratetype; 2486 2487 if (!free_unref_page_prepare(page, pfn, order)) 2488 return; 2489 2490 /* 2491 * We only track unmovable, reclaimable and movable on pcp lists. 2492 * Place ISOLATE pages on the isolated list because they are being 2493 * offlined but treat HIGHATOMIC and CMA as movable pages so we can 2494 * get those areas back if necessary. Otherwise, we may have to free 2495 * excessively into the page allocator 2496 */ 2497 migratetype = pcpmigratetype = get_pcppage_migratetype(page); 2498 if (unlikely(migratetype >= MIGRATE_PCPTYPES)) { 2499 if (unlikely(is_migrate_isolate(migratetype))) { 2500 free_one_page(page_zone(page), page, pfn, order, migratetype, FPI_NONE); 2501 return; 2502 } 2503 pcpmigratetype = MIGRATE_MOVABLE; 2504 } 2505 2506 zone = page_zone(page); 2507 pcp_trylock_prepare(UP_flags); 2508 pcp = pcp_spin_trylock(zone->per_cpu_pageset); 2509 if (pcp) { 2510 free_unref_page_commit(zone, pcp, page, pcpmigratetype, order); 2511 pcp_spin_unlock(pcp); 2512 } else { 2513 free_one_page(zone, page, pfn, order, migratetype, FPI_NONE); 2514 } 2515 pcp_trylock_finish(UP_flags); 2516 } 2517 2518 /* 2519 * Free a batch of folios 2520 */ 2521 void free_unref_folios(struct folio_batch *folios) 2522 { 2523 unsigned long __maybe_unused UP_flags; 2524 struct per_cpu_pages *pcp = NULL; 2525 struct zone *locked_zone = NULL; 2526 int i, j, migratetype; 2527 2528 /* Prepare folios for freeing */ 2529 for (i = 0, j = 0; i < folios->nr; i++) { 2530 struct folio *folio = folios->folios[i]; 2531 unsigned long pfn = folio_pfn(folio); 2532 unsigned int order = folio_order(folio); 2533 2534 if (order > 0 && folio_test_large_rmappable(folio)) 2535 folio_undo_large_rmappable(folio); 2536 if (!free_unref_page_prepare(&folio->page, pfn, order)) 2537 continue; 2538 2539 /* 2540 * Free isolated folios and orders not handled on the PCP 2541 * directly to the allocator, see comment in free_unref_page. 2542 */ 2543 migratetype = get_pcppage_migratetype(&folio->page); 2544 if (!pcp_allowed_order(order) || 2545 is_migrate_isolate(migratetype)) { 2546 free_one_page(folio_zone(folio), &folio->page, pfn, 2547 order, migratetype, FPI_NONE); 2548 continue; 2549 } 2550 folio->private = (void *)(unsigned long)order; 2551 if (j != i) 2552 folios->folios[j] = folio; 2553 j++; 2554 } 2555 folios->nr = j; 2556 2557 for (i = 0; i < folios->nr; i++) { 2558 struct folio *folio = folios->folios[i]; 2559 struct zone *zone = folio_zone(folio); 2560 unsigned int order = (unsigned long)folio->private; 2561 2562 folio->private = NULL; 2563 migratetype = get_pcppage_migratetype(&folio->page); 2564 2565 /* Different zone requires a different pcp lock */ 2566 if (zone != locked_zone) { 2567 if (pcp) { 2568 pcp_spin_unlock(pcp); 2569 pcp_trylock_finish(UP_flags); 2570 } 2571 2572 /* 2573 * trylock is necessary as folios may be getting freed 2574 * from IRQ or SoftIRQ context after an IO completion. 2575 */ 2576 pcp_trylock_prepare(UP_flags); 2577 pcp = pcp_spin_trylock(zone->per_cpu_pageset); 2578 if (unlikely(!pcp)) { 2579 pcp_trylock_finish(UP_flags); 2580 free_one_page(zone, &folio->page, 2581 folio_pfn(folio), order, 2582 migratetype, FPI_NONE); 2583 locked_zone = NULL; 2584 continue; 2585 } 2586 locked_zone = zone; 2587 } 2588 2589 /* 2590 * Non-isolated types over MIGRATE_PCPTYPES get added 2591 * to the MIGRATE_MOVABLE pcp list. 2592 */ 2593 if (unlikely(migratetype >= MIGRATE_PCPTYPES)) 2594 migratetype = MIGRATE_MOVABLE; 2595 2596 trace_mm_page_free_batched(&folio->page); 2597 free_unref_page_commit(zone, pcp, &folio->page, migratetype, 2598 order); 2599 } 2600 2601 if (pcp) { 2602 pcp_spin_unlock(pcp); 2603 pcp_trylock_finish(UP_flags); 2604 } 2605 folio_batch_reinit(folios); 2606 } 2607 2608 /* 2609 * split_page takes a non-compound higher-order page, and splits it into 2610 * n (1<<order) sub-pages: page[0..n] 2611 * Each sub-page must be freed individually. 2612 * 2613 * Note: this is probably too low level an operation for use in drivers. 2614 * Please consult with lkml before using this in your driver. 2615 */ 2616 void split_page(struct page *page, unsigned int order) 2617 { 2618 int i; 2619 2620 VM_BUG_ON_PAGE(PageCompound(page), page); 2621 VM_BUG_ON_PAGE(!page_count(page), page); 2622 2623 for (i = 1; i < (1 << order); i++) 2624 set_page_refcounted(page + i); 2625 split_page_owner(page, order, 0); 2626 split_page_memcg(page, order, 0); 2627 } 2628 EXPORT_SYMBOL_GPL(split_page); 2629 2630 int __isolate_free_page(struct page *page, unsigned int order) 2631 { 2632 struct zone *zone = page_zone(page); 2633 int mt = get_pageblock_migratetype(page); 2634 2635 if (!is_migrate_isolate(mt)) { 2636 unsigned long watermark; 2637 /* 2638 * Obey watermarks as if the page was being allocated. We can 2639 * emulate a high-order watermark check with a raised order-0 2640 * watermark, because we already know our high-order page 2641 * exists. 2642 */ 2643 watermark = zone->_watermark[WMARK_MIN] + (1UL << order); 2644 if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA)) 2645 return 0; 2646 2647 __mod_zone_freepage_state(zone, -(1UL << order), mt); 2648 } 2649 2650 del_page_from_free_list(page, zone, order); 2651 2652 /* 2653 * Set the pageblock if the isolated page is at least half of a 2654 * pageblock 2655 */ 2656 if (order >= pageblock_order - 1) { 2657 struct page *endpage = page + (1 << order) - 1; 2658 for (; page < endpage; page += pageblock_nr_pages) { 2659 int mt = get_pageblock_migratetype(page); 2660 /* 2661 * Only change normal pageblocks (i.e., they can merge 2662 * with others) 2663 */ 2664 if (migratetype_is_mergeable(mt)) 2665 set_pageblock_migratetype(page, 2666 MIGRATE_MOVABLE); 2667 } 2668 } 2669 2670 return 1UL << order; 2671 } 2672 2673 /** 2674 * __putback_isolated_page - Return a now-isolated page back where we got it 2675 * @page: Page that was isolated 2676 * @order: Order of the isolated page 2677 * @mt: The page's pageblock's migratetype 2678 * 2679 * This function is meant to return a page pulled from the free lists via 2680 * __isolate_free_page back to the free lists they were pulled from. 2681 */ 2682 void __putback_isolated_page(struct page *page, unsigned int order, int mt) 2683 { 2684 struct zone *zone = page_zone(page); 2685 2686 /* zone lock should be held when this function is called */ 2687 lockdep_assert_held(&zone->lock); 2688 2689 /* Return isolated page to tail of freelist. */ 2690 __free_one_page(page, page_to_pfn(page), zone, order, mt, 2691 FPI_SKIP_REPORT_NOTIFY | FPI_TO_TAIL); 2692 } 2693 2694 /* 2695 * Update NUMA hit/miss statistics 2696 */ 2697 static inline void zone_statistics(struct zone *preferred_zone, struct zone *z, 2698 long nr_account) 2699 { 2700 #ifdef CONFIG_NUMA 2701 enum numa_stat_item local_stat = NUMA_LOCAL; 2702 2703 /* skip numa counters update if numa stats is disabled */ 2704 if (!static_branch_likely(&vm_numa_stat_key)) 2705 return; 2706 2707 if (zone_to_nid(z) != numa_node_id()) 2708 local_stat = NUMA_OTHER; 2709 2710 if (zone_to_nid(z) == zone_to_nid(preferred_zone)) 2711 __count_numa_events(z, NUMA_HIT, nr_account); 2712 else { 2713 __count_numa_events(z, NUMA_MISS, nr_account); 2714 __count_numa_events(preferred_zone, NUMA_FOREIGN, nr_account); 2715 } 2716 __count_numa_events(z, local_stat, nr_account); 2717 #endif 2718 } 2719 2720 static __always_inline 2721 struct page *rmqueue_buddy(struct zone *preferred_zone, struct zone *zone, 2722 unsigned int order, unsigned int alloc_flags, 2723 int migratetype) 2724 { 2725 struct page *page; 2726 unsigned long flags; 2727 2728 do { 2729 page = NULL; 2730 spin_lock_irqsave(&zone->lock, flags); 2731 if (alloc_flags & ALLOC_HIGHATOMIC) 2732 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC); 2733 if (!page) { 2734 page = __rmqueue(zone, order, migratetype, alloc_flags); 2735 2736 /* 2737 * If the allocation fails, allow OOM handling access 2738 * to HIGHATOMIC reserves as failing now is worse than 2739 * failing a high-order atomic allocation in the 2740 * future. 2741 */ 2742 if (!page && (alloc_flags & ALLOC_OOM)) 2743 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC); 2744 2745 if (!page) { 2746 spin_unlock_irqrestore(&zone->lock, flags); 2747 return NULL; 2748 } 2749 } 2750 __mod_zone_freepage_state(zone, -(1 << order), 2751 get_pcppage_migratetype(page)); 2752 spin_unlock_irqrestore(&zone->lock, flags); 2753 } while (check_new_pages(page, order)); 2754 2755 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order); 2756 zone_statistics(preferred_zone, zone, 1); 2757 2758 return page; 2759 } 2760 2761 static int nr_pcp_alloc(struct per_cpu_pages *pcp, struct zone *zone, int order) 2762 { 2763 int high, base_batch, batch, max_nr_alloc; 2764 int high_max, high_min; 2765 2766 base_batch = READ_ONCE(pcp->batch); 2767 high_min = READ_ONCE(pcp->high_min); 2768 high_max = READ_ONCE(pcp->high_max); 2769 high = pcp->high = clamp(pcp->high, high_min, high_max); 2770 2771 /* Check for PCP disabled or boot pageset */ 2772 if (unlikely(high < base_batch)) 2773 return 1; 2774 2775 if (order) 2776 batch = base_batch; 2777 else 2778 batch = (base_batch << pcp->alloc_factor); 2779 2780 /* 2781 * If we had larger pcp->high, we could avoid to allocate from 2782 * zone. 2783 */ 2784 if (high_min != high_max && !test_bit(ZONE_BELOW_HIGH, &zone->flags)) 2785 high = pcp->high = min(high + batch, high_max); 2786 2787 if (!order) { 2788 max_nr_alloc = max(high - pcp->count - base_batch, base_batch); 2789 /* 2790 * Double the number of pages allocated each time there is 2791 * subsequent allocation of order-0 pages without any freeing. 2792 */ 2793 if (batch <= max_nr_alloc && 2794 pcp->alloc_factor < CONFIG_PCP_BATCH_SCALE_MAX) 2795 pcp->alloc_factor++; 2796 batch = min(batch, max_nr_alloc); 2797 } 2798 2799 /* 2800 * Scale batch relative to order if batch implies free pages 2801 * can be stored on the PCP. Batch can be 1 for small zones or 2802 * for boot pagesets which should never store free pages as 2803 * the pages may belong to arbitrary zones. 2804 */ 2805 if (batch > 1) 2806 batch = max(batch >> order, 2); 2807 2808 return batch; 2809 } 2810 2811 /* Remove page from the per-cpu list, caller must protect the list */ 2812 static inline 2813 struct page *__rmqueue_pcplist(struct zone *zone, unsigned int order, 2814 int migratetype, 2815 unsigned int alloc_flags, 2816 struct per_cpu_pages *pcp, 2817 struct list_head *list) 2818 { 2819 struct page *page; 2820 2821 do { 2822 if (list_empty(list)) { 2823 int batch = nr_pcp_alloc(pcp, zone, order); 2824 int alloced; 2825 2826 alloced = rmqueue_bulk(zone, order, 2827 batch, list, 2828 migratetype, alloc_flags); 2829 2830 pcp->count += alloced << order; 2831 if (unlikely(list_empty(list))) 2832 return NULL; 2833 } 2834 2835 page = list_first_entry(list, struct page, pcp_list); 2836 list_del(&page->pcp_list); 2837 pcp->count -= 1 << order; 2838 } while (check_new_pages(page, order)); 2839 2840 return page; 2841 } 2842 2843 /* Lock and remove page from the per-cpu list */ 2844 static struct page *rmqueue_pcplist(struct zone *preferred_zone, 2845 struct zone *zone, unsigned int order, 2846 int migratetype, unsigned int alloc_flags) 2847 { 2848 struct per_cpu_pages *pcp; 2849 struct list_head *list; 2850 struct page *page; 2851 unsigned long __maybe_unused UP_flags; 2852 2853 /* spin_trylock may fail due to a parallel drain or IRQ reentrancy. */ 2854 pcp_trylock_prepare(UP_flags); 2855 pcp = pcp_spin_trylock(zone->per_cpu_pageset); 2856 if (!pcp) { 2857 pcp_trylock_finish(UP_flags); 2858 return NULL; 2859 } 2860 2861 /* 2862 * On allocation, reduce the number of pages that are batch freed. 2863 * See nr_pcp_free() where free_factor is increased for subsequent 2864 * frees. 2865 */ 2866 pcp->free_count >>= 1; 2867 list = &pcp->lists[order_to_pindex(migratetype, order)]; 2868 page = __rmqueue_pcplist(zone, order, migratetype, alloc_flags, pcp, list); 2869 pcp_spin_unlock(pcp); 2870 pcp_trylock_finish(UP_flags); 2871 if (page) { 2872 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order); 2873 zone_statistics(preferred_zone, zone, 1); 2874 } 2875 return page; 2876 } 2877 2878 /* 2879 * Allocate a page from the given zone. 2880 * Use pcplists for THP or "cheap" high-order allocations. 2881 */ 2882 2883 /* 2884 * Do not instrument rmqueue() with KMSAN. This function may call 2885 * __msan_poison_alloca() through a call to set_pfnblock_flags_mask(). 2886 * If __msan_poison_alloca() attempts to allocate pages for the stack depot, it 2887 * may call rmqueue() again, which will result in a deadlock. 2888 */ 2889 __no_sanitize_memory 2890 static inline 2891 struct page *rmqueue(struct zone *preferred_zone, 2892 struct zone *zone, unsigned int order, 2893 gfp_t gfp_flags, unsigned int alloc_flags, 2894 int migratetype) 2895 { 2896 struct page *page; 2897 2898 /* 2899 * We most definitely don't want callers attempting to 2900 * allocate greater than order-1 page units with __GFP_NOFAIL. 2901 */ 2902 WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1)); 2903 2904 if (likely(pcp_allowed_order(order))) { 2905 page = rmqueue_pcplist(preferred_zone, zone, order, 2906 migratetype, alloc_flags); 2907 if (likely(page)) 2908 goto out; 2909 } 2910 2911 page = rmqueue_buddy(preferred_zone, zone, order, alloc_flags, 2912 migratetype); 2913 2914 out: 2915 /* Separate test+clear to avoid unnecessary atomics */ 2916 if ((alloc_flags & ALLOC_KSWAPD) && 2917 unlikely(test_bit(ZONE_BOOSTED_WATERMARK, &zone->flags))) { 2918 clear_bit(ZONE_BOOSTED_WATERMARK, &zone->flags); 2919 wakeup_kswapd(zone, 0, 0, zone_idx(zone)); 2920 } 2921 2922 VM_BUG_ON_PAGE(page && bad_range(zone, page), page); 2923 return page; 2924 } 2925 2926 noinline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) 2927 { 2928 return __should_fail_alloc_page(gfp_mask, order); 2929 } 2930 ALLOW_ERROR_INJECTION(should_fail_alloc_page, TRUE); 2931 2932 static inline long __zone_watermark_unusable_free(struct zone *z, 2933 unsigned int order, unsigned int alloc_flags) 2934 { 2935 long unusable_free = (1 << order) - 1; 2936 2937 /* 2938 * If the caller does not have rights to reserves below the min 2939 * watermark then subtract the high-atomic reserves. This will 2940 * over-estimate the size of the atomic reserve but it avoids a search. 2941 */ 2942 if (likely(!(alloc_flags & ALLOC_RESERVES))) 2943 unusable_free += z->nr_reserved_highatomic; 2944 2945 #ifdef CONFIG_CMA 2946 /* If allocation can't use CMA areas don't use free CMA pages */ 2947 if (!(alloc_flags & ALLOC_CMA)) 2948 unusable_free += zone_page_state(z, NR_FREE_CMA_PAGES); 2949 #endif 2950 #ifdef CONFIG_UNACCEPTED_MEMORY 2951 unusable_free += zone_page_state(z, NR_UNACCEPTED); 2952 #endif 2953 2954 return unusable_free; 2955 } 2956 2957 /* 2958 * Return true if free base pages are above 'mark'. For high-order checks it 2959 * will return true of the order-0 watermark is reached and there is at least 2960 * one free page of a suitable size. Checking now avoids taking the zone lock 2961 * to check in the allocation paths if no pages are free. 2962 */ 2963 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark, 2964 int highest_zoneidx, unsigned int alloc_flags, 2965 long free_pages) 2966 { 2967 long min = mark; 2968 int o; 2969 2970 /* free_pages may go negative - that's OK */ 2971 free_pages -= __zone_watermark_unusable_free(z, order, alloc_flags); 2972 2973 if (unlikely(alloc_flags & ALLOC_RESERVES)) { 2974 /* 2975 * __GFP_HIGH allows access to 50% of the min reserve as well 2976 * as OOM. 2977 */ 2978 if (alloc_flags & ALLOC_MIN_RESERVE) { 2979 min -= min / 2; 2980 2981 /* 2982 * Non-blocking allocations (e.g. GFP_ATOMIC) can 2983 * access more reserves than just __GFP_HIGH. Other 2984 * non-blocking allocations requests such as GFP_NOWAIT 2985 * or (GFP_KERNEL & ~__GFP_DIRECT_RECLAIM) do not get 2986 * access to the min reserve. 2987 */ 2988 if (alloc_flags & ALLOC_NON_BLOCK) 2989 min -= min / 4; 2990 } 2991 2992 /* 2993 * OOM victims can try even harder than the normal reserve 2994 * users on the grounds that it's definitely going to be in 2995 * the exit path shortly and free memory. Any allocation it 2996 * makes during the free path will be small and short-lived. 2997 */ 2998 if (alloc_flags & ALLOC_OOM) 2999 min -= min / 2; 3000 } 3001 3002 /* 3003 * Check watermarks for an order-0 allocation request. If these 3004 * are not met, then a high-order request also cannot go ahead 3005 * even if a suitable page happened to be free. 3006 */ 3007 if (free_pages <= min + z->lowmem_reserve[highest_zoneidx]) 3008 return false; 3009 3010 /* If this is an order-0 request then the watermark is fine */ 3011 if (!order) 3012 return true; 3013 3014 /* For a high-order request, check at least one suitable page is free */ 3015 for (o = order; o < NR_PAGE_ORDERS; o++) { 3016 struct free_area *area = &z->free_area[o]; 3017 int mt; 3018 3019 if (!area->nr_free) 3020 continue; 3021 3022 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) { 3023 if (!free_area_empty(area, mt)) 3024 return true; 3025 } 3026 3027 #ifdef CONFIG_CMA 3028 if ((alloc_flags & ALLOC_CMA) && 3029 !free_area_empty(area, MIGRATE_CMA)) { 3030 return true; 3031 } 3032 #endif 3033 if ((alloc_flags & (ALLOC_HIGHATOMIC|ALLOC_OOM)) && 3034 !free_area_empty(area, MIGRATE_HIGHATOMIC)) { 3035 return true; 3036 } 3037 } 3038 return false; 3039 } 3040 3041 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark, 3042 int highest_zoneidx, unsigned int alloc_flags) 3043 { 3044 return __zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags, 3045 zone_page_state(z, NR_FREE_PAGES)); 3046 } 3047 3048 static inline bool zone_watermark_fast(struct zone *z, unsigned int order, 3049 unsigned long mark, int highest_zoneidx, 3050 unsigned int alloc_flags, gfp_t gfp_mask) 3051 { 3052 long free_pages; 3053 3054 free_pages = zone_page_state(z, NR_FREE_PAGES); 3055 3056 /* 3057 * Fast check for order-0 only. If this fails then the reserves 3058 * need to be calculated. 3059 */ 3060 if (!order) { 3061 long usable_free; 3062 long reserved; 3063 3064 usable_free = free_pages; 3065 reserved = __zone_watermark_unusable_free(z, 0, alloc_flags); 3066 3067 /* reserved may over estimate high-atomic reserves. */ 3068 usable_free -= min(usable_free, reserved); 3069 if (usable_free > mark + z->lowmem_reserve[highest_zoneidx]) 3070 return true; 3071 } 3072 3073 if (__zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags, 3074 free_pages)) 3075 return true; 3076 3077 /* 3078 * Ignore watermark boosting for __GFP_HIGH order-0 allocations 3079 * when checking the min watermark. The min watermark is the 3080 * point where boosting is ignored so that kswapd is woken up 3081 * when below the low watermark. 3082 */ 3083 if (unlikely(!order && (alloc_flags & ALLOC_MIN_RESERVE) && z->watermark_boost 3084 && ((alloc_flags & ALLOC_WMARK_MASK) == WMARK_MIN))) { 3085 mark = z->_watermark[WMARK_MIN]; 3086 return __zone_watermark_ok(z, order, mark, highest_zoneidx, 3087 alloc_flags, free_pages); 3088 } 3089 3090 return false; 3091 } 3092 3093 bool zone_watermark_ok_safe(struct zone *z, unsigned int order, 3094 unsigned long mark, int highest_zoneidx) 3095 { 3096 long free_pages = zone_page_state(z, NR_FREE_PAGES); 3097 3098 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark) 3099 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES); 3100 3101 return __zone_watermark_ok(z, order, mark, highest_zoneidx, 0, 3102 free_pages); 3103 } 3104 3105 #ifdef CONFIG_NUMA 3106 int __read_mostly node_reclaim_distance = RECLAIM_DISTANCE; 3107 3108 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone) 3109 { 3110 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <= 3111 node_reclaim_distance; 3112 } 3113 #else /* CONFIG_NUMA */ 3114 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone) 3115 { 3116 return true; 3117 } 3118 #endif /* CONFIG_NUMA */ 3119 3120 /* 3121 * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid 3122 * fragmentation is subtle. If the preferred zone was HIGHMEM then 3123 * premature use of a lower zone may cause lowmem pressure problems that 3124 * are worse than fragmentation. If the next zone is ZONE_DMA then it is 3125 * probably too small. It only makes sense to spread allocations to avoid 3126 * fragmentation between the Normal and DMA32 zones. 3127 */ 3128 static inline unsigned int 3129 alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask) 3130 { 3131 unsigned int alloc_flags; 3132 3133 /* 3134 * __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD 3135 * to save a branch. 3136 */ 3137 alloc_flags = (__force int) (gfp_mask & __GFP_KSWAPD_RECLAIM); 3138 3139 #ifdef CONFIG_ZONE_DMA32 3140 if (!zone) 3141 return alloc_flags; 3142 3143 if (zone_idx(zone) != ZONE_NORMAL) 3144 return alloc_flags; 3145 3146 /* 3147 * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and 3148 * the pointer is within zone->zone_pgdat->node_zones[]. Also assume 3149 * on UMA that if Normal is populated then so is DMA32. 3150 */ 3151 BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1); 3152 if (nr_online_nodes > 1 && !populated_zone(--zone)) 3153 return alloc_flags; 3154 3155 alloc_flags |= ALLOC_NOFRAGMENT; 3156 #endif /* CONFIG_ZONE_DMA32 */ 3157 return alloc_flags; 3158 } 3159 3160 /* Must be called after current_gfp_context() which can change gfp_mask */ 3161 static inline unsigned int gfp_to_alloc_flags_cma(gfp_t gfp_mask, 3162 unsigned int alloc_flags) 3163 { 3164 #ifdef CONFIG_CMA 3165 if (gfp_migratetype(gfp_mask) == MIGRATE_MOVABLE) 3166 alloc_flags |= ALLOC_CMA; 3167 #endif 3168 return alloc_flags; 3169 } 3170 3171 /* 3172 * get_page_from_freelist goes through the zonelist trying to allocate 3173 * a page. 3174 */ 3175 static struct page * 3176 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags, 3177 const struct alloc_context *ac) 3178 { 3179 struct zoneref *z; 3180 struct zone *zone; 3181 struct pglist_data *last_pgdat = NULL; 3182 bool last_pgdat_dirty_ok = false; 3183 bool no_fallback; 3184 3185 retry: 3186 /* 3187 * Scan zonelist, looking for a zone with enough free. 3188 * See also cpuset_node_allowed() comment in kernel/cgroup/cpuset.c. 3189 */ 3190 no_fallback = alloc_flags & ALLOC_NOFRAGMENT; 3191 z = ac->preferred_zoneref; 3192 for_next_zone_zonelist_nodemask(zone, z, ac->highest_zoneidx, 3193 ac->nodemask) { 3194 struct page *page; 3195 unsigned long mark; 3196 3197 if (cpusets_enabled() && 3198 (alloc_flags & ALLOC_CPUSET) && 3199 !__cpuset_zone_allowed(zone, gfp_mask)) 3200 continue; 3201 /* 3202 * When allocating a page cache page for writing, we 3203 * want to get it from a node that is within its dirty 3204 * limit, such that no single node holds more than its 3205 * proportional share of globally allowed dirty pages. 3206 * The dirty limits take into account the node's 3207 * lowmem reserves and high watermark so that kswapd 3208 * should be able to balance it without having to 3209 * write pages from its LRU list. 3210 * 3211 * XXX: For now, allow allocations to potentially 3212 * exceed the per-node dirty limit in the slowpath 3213 * (spread_dirty_pages unset) before going into reclaim, 3214 * which is important when on a NUMA setup the allowed 3215 * nodes are together not big enough to reach the 3216 * global limit. The proper fix for these situations 3217 * will require awareness of nodes in the 3218 * dirty-throttling and the flusher threads. 3219 */ 3220 if (ac->spread_dirty_pages) { 3221 if (last_pgdat != zone->zone_pgdat) { 3222 last_pgdat = zone->zone_pgdat; 3223 last_pgdat_dirty_ok = node_dirty_ok(zone->zone_pgdat); 3224 } 3225 3226 if (!last_pgdat_dirty_ok) 3227 continue; 3228 } 3229 3230 if (no_fallback && nr_online_nodes > 1 && 3231 zone != ac->preferred_zoneref->zone) { 3232 int local_nid; 3233 3234 /* 3235 * If moving to a remote node, retry but allow 3236 * fragmenting fallbacks. Locality is more important 3237 * than fragmentation avoidance. 3238 */ 3239 local_nid = zone_to_nid(ac->preferred_zoneref->zone); 3240 if (zone_to_nid(zone) != local_nid) { 3241 alloc_flags &= ~ALLOC_NOFRAGMENT; 3242 goto retry; 3243 } 3244 } 3245 3246 /* 3247 * Detect whether the number of free pages is below high 3248 * watermark. If so, we will decrease pcp->high and free 3249 * PCP pages in free path to reduce the possibility of 3250 * premature page reclaiming. Detection is done here to 3251 * avoid to do that in hotter free path. 3252 */ 3253 if (test_bit(ZONE_BELOW_HIGH, &zone->flags)) 3254 goto check_alloc_wmark; 3255 3256 mark = high_wmark_pages(zone); 3257 if (zone_watermark_fast(zone, order, mark, 3258 ac->highest_zoneidx, alloc_flags, 3259 gfp_mask)) 3260 goto try_this_zone; 3261 else 3262 set_bit(ZONE_BELOW_HIGH, &zone->flags); 3263 3264 check_alloc_wmark: 3265 mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK); 3266 if (!zone_watermark_fast(zone, order, mark, 3267 ac->highest_zoneidx, alloc_flags, 3268 gfp_mask)) { 3269 int ret; 3270 3271 if (has_unaccepted_memory()) { 3272 if (try_to_accept_memory(zone, order)) 3273 goto try_this_zone; 3274 } 3275 3276 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 3277 /* 3278 * Watermark failed for this zone, but see if we can 3279 * grow this zone if it contains deferred pages. 3280 */ 3281 if (deferred_pages_enabled()) { 3282 if (_deferred_grow_zone(zone, order)) 3283 goto try_this_zone; 3284 } 3285 #endif 3286 /* Checked here to keep the fast path fast */ 3287 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK); 3288 if (alloc_flags & ALLOC_NO_WATERMARKS) 3289 goto try_this_zone; 3290 3291 if (!node_reclaim_enabled() || 3292 !zone_allows_reclaim(ac->preferred_zoneref->zone, zone)) 3293 continue; 3294 3295 ret = node_reclaim(zone->zone_pgdat, gfp_mask, order); 3296 switch (ret) { 3297 case NODE_RECLAIM_NOSCAN: 3298 /* did not scan */ 3299 continue; 3300 case NODE_RECLAIM_FULL: 3301 /* scanned but unreclaimable */ 3302 continue; 3303 default: 3304 /* did we reclaim enough */ 3305 if (zone_watermark_ok(zone, order, mark, 3306 ac->highest_zoneidx, alloc_flags)) 3307 goto try_this_zone; 3308 3309 continue; 3310 } 3311 } 3312 3313 try_this_zone: 3314 page = rmqueue(ac->preferred_zoneref->zone, zone, order, 3315 gfp_mask, alloc_flags, ac->migratetype); 3316 if (page) { 3317 prep_new_page(page, order, gfp_mask, alloc_flags); 3318 3319 /* 3320 * If this is a high-order atomic allocation then check 3321 * if the pageblock should be reserved for the future 3322 */ 3323 if (unlikely(alloc_flags & ALLOC_HIGHATOMIC)) 3324 reserve_highatomic_pageblock(page, zone); 3325 3326 return page; 3327 } else { 3328 if (has_unaccepted_memory()) { 3329 if (try_to_accept_memory(zone, order)) 3330 goto try_this_zone; 3331 } 3332 3333 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 3334 /* Try again if zone has deferred pages */ 3335 if (deferred_pages_enabled()) { 3336 if (_deferred_grow_zone(zone, order)) 3337 goto try_this_zone; 3338 } 3339 #endif 3340 } 3341 } 3342 3343 /* 3344 * It's possible on a UMA machine to get through all zones that are 3345 * fragmented. If avoiding fragmentation, reset and try again. 3346 */ 3347 if (no_fallback) { 3348 alloc_flags &= ~ALLOC_NOFRAGMENT; 3349 goto retry; 3350 } 3351 3352 return NULL; 3353 } 3354 3355 static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask) 3356 { 3357 unsigned int filter = SHOW_MEM_FILTER_NODES; 3358 3359 /* 3360 * This documents exceptions given to allocations in certain 3361 * contexts that are allowed to allocate outside current's set 3362 * of allowed nodes. 3363 */ 3364 if (!(gfp_mask & __GFP_NOMEMALLOC)) 3365 if (tsk_is_oom_victim(current) || 3366 (current->flags & (PF_MEMALLOC | PF_EXITING))) 3367 filter &= ~SHOW_MEM_FILTER_NODES; 3368 if (!in_task() || !(gfp_mask & __GFP_DIRECT_RECLAIM)) 3369 filter &= ~SHOW_MEM_FILTER_NODES; 3370 3371 __show_mem(filter, nodemask, gfp_zone(gfp_mask)); 3372 } 3373 3374 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...) 3375 { 3376 struct va_format vaf; 3377 va_list args; 3378 static DEFINE_RATELIMIT_STATE(nopage_rs, 10*HZ, 1); 3379 3380 if ((gfp_mask & __GFP_NOWARN) || 3381 !__ratelimit(&nopage_rs) || 3382 ((gfp_mask & __GFP_DMA) && !has_managed_dma())) 3383 return; 3384 3385 va_start(args, fmt); 3386 vaf.fmt = fmt; 3387 vaf.va = &args; 3388 pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl", 3389 current->comm, &vaf, gfp_mask, &gfp_mask, 3390 nodemask_pr_args(nodemask)); 3391 va_end(args); 3392 3393 cpuset_print_current_mems_allowed(); 3394 pr_cont("\n"); 3395 dump_stack(); 3396 warn_alloc_show_mem(gfp_mask, nodemask); 3397 } 3398 3399 static inline struct page * 3400 __alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order, 3401 unsigned int alloc_flags, 3402 const struct alloc_context *ac) 3403 { 3404 struct page *page; 3405 3406 page = get_page_from_freelist(gfp_mask, order, 3407 alloc_flags|ALLOC_CPUSET, ac); 3408 /* 3409 * fallback to ignore cpuset restriction if our nodes 3410 * are depleted 3411 */ 3412 if (!page) 3413 page = get_page_from_freelist(gfp_mask, order, 3414 alloc_flags, ac); 3415 3416 return page; 3417 } 3418 3419 static inline struct page * 3420 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order, 3421 const struct alloc_context *ac, unsigned long *did_some_progress) 3422 { 3423 struct oom_control oc = { 3424 .zonelist = ac->zonelist, 3425 .nodemask = ac->nodemask, 3426 .memcg = NULL, 3427 .gfp_mask = gfp_mask, 3428 .order = order, 3429 }; 3430 struct page *page; 3431 3432 *did_some_progress = 0; 3433 3434 /* 3435 * Acquire the oom lock. If that fails, somebody else is 3436 * making progress for us. 3437 */ 3438 if (!mutex_trylock(&oom_lock)) { 3439 *did_some_progress = 1; 3440 schedule_timeout_uninterruptible(1); 3441 return NULL; 3442 } 3443 3444 /* 3445 * Go through the zonelist yet one more time, keep very high watermark 3446 * here, this is only to catch a parallel oom killing, we must fail if 3447 * we're still under heavy pressure. But make sure that this reclaim 3448 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY 3449 * allocation which will never fail due to oom_lock already held. 3450 */ 3451 page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) & 3452 ~__GFP_DIRECT_RECLAIM, order, 3453 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac); 3454 if (page) 3455 goto out; 3456 3457 /* Coredumps can quickly deplete all memory reserves */ 3458 if (current->flags & PF_DUMPCORE) 3459 goto out; 3460 /* The OOM killer will not help higher order allocs */ 3461 if (order > PAGE_ALLOC_COSTLY_ORDER) 3462 goto out; 3463 /* 3464 * We have already exhausted all our reclaim opportunities without any 3465 * success so it is time to admit defeat. We will skip the OOM killer 3466 * because it is very likely that the caller has a more reasonable 3467 * fallback than shooting a random task. 3468 * 3469 * The OOM killer may not free memory on a specific node. 3470 */ 3471 if (gfp_mask & (__GFP_RETRY_MAYFAIL | __GFP_THISNODE)) 3472 goto out; 3473 /* The OOM killer does not needlessly kill tasks for lowmem */ 3474 if (ac->highest_zoneidx < ZONE_NORMAL) 3475 goto out; 3476 if (pm_suspended_storage()) 3477 goto out; 3478 /* 3479 * XXX: GFP_NOFS allocations should rather fail than rely on 3480 * other request to make a forward progress. 3481 * We are in an unfortunate situation where out_of_memory cannot 3482 * do much for this context but let's try it to at least get 3483 * access to memory reserved if the current task is killed (see 3484 * out_of_memory). Once filesystems are ready to handle allocation 3485 * failures more gracefully we should just bail out here. 3486 */ 3487 3488 /* Exhausted what can be done so it's blame time */ 3489 if (out_of_memory(&oc) || 3490 WARN_ON_ONCE_GFP(gfp_mask & __GFP_NOFAIL, gfp_mask)) { 3491 *did_some_progress = 1; 3492 3493 /* 3494 * Help non-failing allocations by giving them access to memory 3495 * reserves 3496 */ 3497 if (gfp_mask & __GFP_NOFAIL) 3498 page = __alloc_pages_cpuset_fallback(gfp_mask, order, 3499 ALLOC_NO_WATERMARKS, ac); 3500 } 3501 out: 3502 mutex_unlock(&oom_lock); 3503 return page; 3504 } 3505 3506 /* 3507 * Maximum number of compaction retries with a progress before OOM 3508 * killer is consider as the only way to move forward. 3509 */ 3510 #define MAX_COMPACT_RETRIES 16 3511 3512 #ifdef CONFIG_COMPACTION 3513 /* Try memory compaction for high-order allocations before reclaim */ 3514 static struct page * 3515 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order, 3516 unsigned int alloc_flags, const struct alloc_context *ac, 3517 enum compact_priority prio, enum compact_result *compact_result) 3518 { 3519 struct page *page = NULL; 3520 unsigned long pflags; 3521 unsigned int noreclaim_flag; 3522 3523 if (!order) 3524 return NULL; 3525 3526 psi_memstall_enter(&pflags); 3527 delayacct_compact_start(); 3528 noreclaim_flag = memalloc_noreclaim_save(); 3529 3530 *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac, 3531 prio, &page); 3532 3533 memalloc_noreclaim_restore(noreclaim_flag); 3534 psi_memstall_leave(&pflags); 3535 delayacct_compact_end(); 3536 3537 if (*compact_result == COMPACT_SKIPPED) 3538 return NULL; 3539 /* 3540 * At least in one zone compaction wasn't deferred or skipped, so let's 3541 * count a compaction stall 3542 */ 3543 count_vm_event(COMPACTSTALL); 3544 3545 /* Prep a captured page if available */ 3546 if (page) 3547 prep_new_page(page, order, gfp_mask, alloc_flags); 3548 3549 /* Try get a page from the freelist if available */ 3550 if (!page) 3551 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 3552 3553 if (page) { 3554 struct zone *zone = page_zone(page); 3555 3556 zone->compact_blockskip_flush = false; 3557 compaction_defer_reset(zone, order, true); 3558 count_vm_event(COMPACTSUCCESS); 3559 return page; 3560 } 3561 3562 /* 3563 * It's bad if compaction run occurs and fails. The most likely reason 3564 * is that pages exist, but not enough to satisfy watermarks. 3565 */ 3566 count_vm_event(COMPACTFAIL); 3567 3568 cond_resched(); 3569 3570 return NULL; 3571 } 3572 3573 static inline bool 3574 should_compact_retry(struct alloc_context *ac, int order, int alloc_flags, 3575 enum compact_result compact_result, 3576 enum compact_priority *compact_priority, 3577 int *compaction_retries) 3578 { 3579 int max_retries = MAX_COMPACT_RETRIES; 3580 int min_priority; 3581 bool ret = false; 3582 int retries = *compaction_retries; 3583 enum compact_priority priority = *compact_priority; 3584 3585 if (!order) 3586 return false; 3587 3588 if (fatal_signal_pending(current)) 3589 return false; 3590 3591 /* 3592 * Compaction was skipped due to a lack of free order-0 3593 * migration targets. Continue if reclaim can help. 3594 */ 3595 if (compact_result == COMPACT_SKIPPED) { 3596 ret = compaction_zonelist_suitable(ac, order, alloc_flags); 3597 goto out; 3598 } 3599 3600 /* 3601 * Compaction managed to coalesce some page blocks, but the 3602 * allocation failed presumably due to a race. Retry some. 3603 */ 3604 if (compact_result == COMPACT_SUCCESS) { 3605 /* 3606 * !costly requests are much more important than 3607 * __GFP_RETRY_MAYFAIL costly ones because they are de 3608 * facto nofail and invoke OOM killer to move on while 3609 * costly can fail and users are ready to cope with 3610 * that. 1/4 retries is rather arbitrary but we would 3611 * need much more detailed feedback from compaction to 3612 * make a better decision. 3613 */ 3614 if (order > PAGE_ALLOC_COSTLY_ORDER) 3615 max_retries /= 4; 3616 3617 if (++(*compaction_retries) <= max_retries) { 3618 ret = true; 3619 goto out; 3620 } 3621 } 3622 3623 /* 3624 * Compaction failed. Retry with increasing priority. 3625 */ 3626 min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ? 3627 MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY; 3628 3629 if (*compact_priority > min_priority) { 3630 (*compact_priority)--; 3631 *compaction_retries = 0; 3632 ret = true; 3633 } 3634 out: 3635 trace_compact_retry(order, priority, compact_result, retries, max_retries, ret); 3636 return ret; 3637 } 3638 #else 3639 static inline struct page * 3640 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order, 3641 unsigned int alloc_flags, const struct alloc_context *ac, 3642 enum compact_priority prio, enum compact_result *compact_result) 3643 { 3644 *compact_result = COMPACT_SKIPPED; 3645 return NULL; 3646 } 3647 3648 static inline bool 3649 should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags, 3650 enum compact_result compact_result, 3651 enum compact_priority *compact_priority, 3652 int *compaction_retries) 3653 { 3654 struct zone *zone; 3655 struct zoneref *z; 3656 3657 if (!order || order > PAGE_ALLOC_COSTLY_ORDER) 3658 return false; 3659 3660 /* 3661 * There are setups with compaction disabled which would prefer to loop 3662 * inside the allocator rather than hit the oom killer prematurely. 3663 * Let's give them a good hope and keep retrying while the order-0 3664 * watermarks are OK. 3665 */ 3666 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, 3667 ac->highest_zoneidx, ac->nodemask) { 3668 if (zone_watermark_ok(zone, 0, min_wmark_pages(zone), 3669 ac->highest_zoneidx, alloc_flags)) 3670 return true; 3671 } 3672 return false; 3673 } 3674 #endif /* CONFIG_COMPACTION */ 3675 3676 #ifdef CONFIG_LOCKDEP 3677 static struct lockdep_map __fs_reclaim_map = 3678 STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map); 3679 3680 static bool __need_reclaim(gfp_t gfp_mask) 3681 { 3682 /* no reclaim without waiting on it */ 3683 if (!(gfp_mask & __GFP_DIRECT_RECLAIM)) 3684 return false; 3685 3686 /* this guy won't enter reclaim */ 3687 if (current->flags & PF_MEMALLOC) 3688 return false; 3689 3690 if (gfp_mask & __GFP_NOLOCKDEP) 3691 return false; 3692 3693 return true; 3694 } 3695 3696 void __fs_reclaim_acquire(unsigned long ip) 3697 { 3698 lock_acquire_exclusive(&__fs_reclaim_map, 0, 0, NULL, ip); 3699 } 3700 3701 void __fs_reclaim_release(unsigned long ip) 3702 { 3703 lock_release(&__fs_reclaim_map, ip); 3704 } 3705 3706 void fs_reclaim_acquire(gfp_t gfp_mask) 3707 { 3708 gfp_mask = current_gfp_context(gfp_mask); 3709 3710 if (__need_reclaim(gfp_mask)) { 3711 if (gfp_mask & __GFP_FS) 3712 __fs_reclaim_acquire(_RET_IP_); 3713 3714 #ifdef CONFIG_MMU_NOTIFIER 3715 lock_map_acquire(&__mmu_notifier_invalidate_range_start_map); 3716 lock_map_release(&__mmu_notifier_invalidate_range_start_map); 3717 #endif 3718 3719 } 3720 } 3721 EXPORT_SYMBOL_GPL(fs_reclaim_acquire); 3722 3723 void fs_reclaim_release(gfp_t gfp_mask) 3724 { 3725 gfp_mask = current_gfp_context(gfp_mask); 3726 3727 if (__need_reclaim(gfp_mask)) { 3728 if (gfp_mask & __GFP_FS) 3729 __fs_reclaim_release(_RET_IP_); 3730 } 3731 } 3732 EXPORT_SYMBOL_GPL(fs_reclaim_release); 3733 #endif 3734 3735 /* 3736 * Zonelists may change due to hotplug during allocation. Detect when zonelists 3737 * have been rebuilt so allocation retries. Reader side does not lock and 3738 * retries the allocation if zonelist changes. Writer side is protected by the 3739 * embedded spin_lock. 3740 */ 3741 static DEFINE_SEQLOCK(zonelist_update_seq); 3742 3743 static unsigned int zonelist_iter_begin(void) 3744 { 3745 if (IS_ENABLED(CONFIG_MEMORY_HOTREMOVE)) 3746 return read_seqbegin(&zonelist_update_seq); 3747 3748 return 0; 3749 } 3750 3751 static unsigned int check_retry_zonelist(unsigned int seq) 3752 { 3753 if (IS_ENABLED(CONFIG_MEMORY_HOTREMOVE)) 3754 return read_seqretry(&zonelist_update_seq, seq); 3755 3756 return seq; 3757 } 3758 3759 /* Perform direct synchronous page reclaim */ 3760 static unsigned long 3761 __perform_reclaim(gfp_t gfp_mask, unsigned int order, 3762 const struct alloc_context *ac) 3763 { 3764 unsigned int noreclaim_flag; 3765 unsigned long progress; 3766 3767 cond_resched(); 3768 3769 /* We now go into synchronous reclaim */ 3770 cpuset_memory_pressure_bump(); 3771 fs_reclaim_acquire(gfp_mask); 3772 noreclaim_flag = memalloc_noreclaim_save(); 3773 3774 progress = try_to_free_pages(ac->zonelist, order, gfp_mask, 3775 ac->nodemask); 3776 3777 memalloc_noreclaim_restore(noreclaim_flag); 3778 fs_reclaim_release(gfp_mask); 3779 3780 cond_resched(); 3781 3782 return progress; 3783 } 3784 3785 /* The really slow allocator path where we enter direct reclaim */ 3786 static inline struct page * 3787 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order, 3788 unsigned int alloc_flags, const struct alloc_context *ac, 3789 unsigned long *did_some_progress) 3790 { 3791 struct page *page = NULL; 3792 unsigned long pflags; 3793 bool drained = false; 3794 3795 psi_memstall_enter(&pflags); 3796 *did_some_progress = __perform_reclaim(gfp_mask, order, ac); 3797 if (unlikely(!(*did_some_progress))) 3798 goto out; 3799 3800 retry: 3801 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 3802 3803 /* 3804 * If an allocation failed after direct reclaim, it could be because 3805 * pages are pinned on the per-cpu lists or in high alloc reserves. 3806 * Shrink them and try again 3807 */ 3808 if (!page && !drained) { 3809 unreserve_highatomic_pageblock(ac, false); 3810 drain_all_pages(NULL); 3811 drained = true; 3812 goto retry; 3813 } 3814 out: 3815 psi_memstall_leave(&pflags); 3816 3817 return page; 3818 } 3819 3820 static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask, 3821 const struct alloc_context *ac) 3822 { 3823 struct zoneref *z; 3824 struct zone *zone; 3825 pg_data_t *last_pgdat = NULL; 3826 enum zone_type highest_zoneidx = ac->highest_zoneidx; 3827 3828 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, highest_zoneidx, 3829 ac->nodemask) { 3830 if (!managed_zone(zone)) 3831 continue; 3832 if (last_pgdat != zone->zone_pgdat) { 3833 wakeup_kswapd(zone, gfp_mask, order, highest_zoneidx); 3834 last_pgdat = zone->zone_pgdat; 3835 } 3836 } 3837 } 3838 3839 static inline unsigned int 3840 gfp_to_alloc_flags(gfp_t gfp_mask, unsigned int order) 3841 { 3842 unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET; 3843 3844 /* 3845 * __GFP_HIGH is assumed to be the same as ALLOC_MIN_RESERVE 3846 * and __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD 3847 * to save two branches. 3848 */ 3849 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_MIN_RESERVE); 3850 BUILD_BUG_ON(__GFP_KSWAPD_RECLAIM != (__force gfp_t) ALLOC_KSWAPD); 3851 3852 /* 3853 * The caller may dip into page reserves a bit more if the caller 3854 * cannot run direct reclaim, or if the caller has realtime scheduling 3855 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will 3856 * set both ALLOC_NON_BLOCK and ALLOC_MIN_RESERVE(__GFP_HIGH). 3857 */ 3858 alloc_flags |= (__force int) 3859 (gfp_mask & (__GFP_HIGH | __GFP_KSWAPD_RECLAIM)); 3860 3861 if (!(gfp_mask & __GFP_DIRECT_RECLAIM)) { 3862 /* 3863 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even 3864 * if it can't schedule. 3865 */ 3866 if (!(gfp_mask & __GFP_NOMEMALLOC)) { 3867 alloc_flags |= ALLOC_NON_BLOCK; 3868 3869 if (order > 0) 3870 alloc_flags |= ALLOC_HIGHATOMIC; 3871 } 3872 3873 /* 3874 * Ignore cpuset mems for non-blocking __GFP_HIGH (probably 3875 * GFP_ATOMIC) rather than fail, see the comment for 3876 * cpuset_node_allowed(). 3877 */ 3878 if (alloc_flags & ALLOC_MIN_RESERVE) 3879 alloc_flags &= ~ALLOC_CPUSET; 3880 } else if (unlikely(rt_task(current)) && in_task()) 3881 alloc_flags |= ALLOC_MIN_RESERVE; 3882 3883 alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, alloc_flags); 3884 3885 return alloc_flags; 3886 } 3887 3888 static bool oom_reserves_allowed(struct task_struct *tsk) 3889 { 3890 if (!tsk_is_oom_victim(tsk)) 3891 return false; 3892 3893 /* 3894 * !MMU doesn't have oom reaper so give access to memory reserves 3895 * only to the thread with TIF_MEMDIE set 3896 */ 3897 if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE)) 3898 return false; 3899 3900 return true; 3901 } 3902 3903 /* 3904 * Distinguish requests which really need access to full memory 3905 * reserves from oom victims which can live with a portion of it 3906 */ 3907 static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask) 3908 { 3909 if (unlikely(gfp_mask & __GFP_NOMEMALLOC)) 3910 return 0; 3911 if (gfp_mask & __GFP_MEMALLOC) 3912 return ALLOC_NO_WATERMARKS; 3913 if (in_serving_softirq() && (current->flags & PF_MEMALLOC)) 3914 return ALLOC_NO_WATERMARKS; 3915 if (!in_interrupt()) { 3916 if (current->flags & PF_MEMALLOC) 3917 return ALLOC_NO_WATERMARKS; 3918 else if (oom_reserves_allowed(current)) 3919 return ALLOC_OOM; 3920 } 3921 3922 return 0; 3923 } 3924 3925 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask) 3926 { 3927 return !!__gfp_pfmemalloc_flags(gfp_mask); 3928 } 3929 3930 /* 3931 * Checks whether it makes sense to retry the reclaim to make a forward progress 3932 * for the given allocation request. 3933 * 3934 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row 3935 * without success, or when we couldn't even meet the watermark if we 3936 * reclaimed all remaining pages on the LRU lists. 3937 * 3938 * Returns true if a retry is viable or false to enter the oom path. 3939 */ 3940 static inline bool 3941 should_reclaim_retry(gfp_t gfp_mask, unsigned order, 3942 struct alloc_context *ac, int alloc_flags, 3943 bool did_some_progress, int *no_progress_loops) 3944 { 3945 struct zone *zone; 3946 struct zoneref *z; 3947 bool ret = false; 3948 3949 /* 3950 * Costly allocations might have made a progress but this doesn't mean 3951 * their order will become available due to high fragmentation so 3952 * always increment the no progress counter for them 3953 */ 3954 if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER) 3955 *no_progress_loops = 0; 3956 else 3957 (*no_progress_loops)++; 3958 3959 if (*no_progress_loops > MAX_RECLAIM_RETRIES) 3960 goto out; 3961 3962 3963 /* 3964 * Keep reclaiming pages while there is a chance this will lead 3965 * somewhere. If none of the target zones can satisfy our allocation 3966 * request even if all reclaimable pages are considered then we are 3967 * screwed and have to go OOM. 3968 */ 3969 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, 3970 ac->highest_zoneidx, ac->nodemask) { 3971 unsigned long available; 3972 unsigned long reclaimable; 3973 unsigned long min_wmark = min_wmark_pages(zone); 3974 bool wmark; 3975 3976 available = reclaimable = zone_reclaimable_pages(zone); 3977 available += zone_page_state_snapshot(zone, NR_FREE_PAGES); 3978 3979 /* 3980 * Would the allocation succeed if we reclaimed all 3981 * reclaimable pages? 3982 */ 3983 wmark = __zone_watermark_ok(zone, order, min_wmark, 3984 ac->highest_zoneidx, alloc_flags, available); 3985 trace_reclaim_retry_zone(z, order, reclaimable, 3986 available, min_wmark, *no_progress_loops, wmark); 3987 if (wmark) { 3988 ret = true; 3989 break; 3990 } 3991 } 3992 3993 /* 3994 * Memory allocation/reclaim might be called from a WQ context and the 3995 * current implementation of the WQ concurrency control doesn't 3996 * recognize that a particular WQ is congested if the worker thread is 3997 * looping without ever sleeping. Therefore we have to do a short sleep 3998 * here rather than calling cond_resched(). 3999 */ 4000 if (current->flags & PF_WQ_WORKER) 4001 schedule_timeout_uninterruptible(1); 4002 else 4003 cond_resched(); 4004 out: 4005 /* Before OOM, exhaust highatomic_reserve */ 4006 if (!ret) 4007 return unreserve_highatomic_pageblock(ac, true); 4008 4009 return ret; 4010 } 4011 4012 static inline bool 4013 check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac) 4014 { 4015 /* 4016 * It's possible that cpuset's mems_allowed and the nodemask from 4017 * mempolicy don't intersect. This should be normally dealt with by 4018 * policy_nodemask(), but it's possible to race with cpuset update in 4019 * such a way the check therein was true, and then it became false 4020 * before we got our cpuset_mems_cookie here. 4021 * This assumes that for all allocations, ac->nodemask can come only 4022 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored 4023 * when it does not intersect with the cpuset restrictions) or the 4024 * caller can deal with a violated nodemask. 4025 */ 4026 if (cpusets_enabled() && ac->nodemask && 4027 !cpuset_nodemask_valid_mems_allowed(ac->nodemask)) { 4028 ac->nodemask = NULL; 4029 return true; 4030 } 4031 4032 /* 4033 * When updating a task's mems_allowed or mempolicy nodemask, it is 4034 * possible to race with parallel threads in such a way that our 4035 * allocation can fail while the mask is being updated. If we are about 4036 * to fail, check if the cpuset changed during allocation and if so, 4037 * retry. 4038 */ 4039 if (read_mems_allowed_retry(cpuset_mems_cookie)) 4040 return true; 4041 4042 return false; 4043 } 4044 4045 static inline struct page * 4046 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order, 4047 struct alloc_context *ac) 4048 { 4049 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM; 4050 bool can_compact = gfp_compaction_allowed(gfp_mask); 4051 const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER; 4052 struct page *page = NULL; 4053 unsigned int alloc_flags; 4054 unsigned long did_some_progress; 4055 enum compact_priority compact_priority; 4056 enum compact_result compact_result; 4057 int compaction_retries; 4058 int no_progress_loops; 4059 unsigned int cpuset_mems_cookie; 4060 unsigned int zonelist_iter_cookie; 4061 int reserve_flags; 4062 4063 restart: 4064 compaction_retries = 0; 4065 no_progress_loops = 0; 4066 compact_priority = DEF_COMPACT_PRIORITY; 4067 cpuset_mems_cookie = read_mems_allowed_begin(); 4068 zonelist_iter_cookie = zonelist_iter_begin(); 4069 4070 /* 4071 * The fast path uses conservative alloc_flags to succeed only until 4072 * kswapd needs to be woken up, and to avoid the cost of setting up 4073 * alloc_flags precisely. So we do that now. 4074 */ 4075 alloc_flags = gfp_to_alloc_flags(gfp_mask, order); 4076 4077 /* 4078 * We need to recalculate the starting point for the zonelist iterator 4079 * because we might have used different nodemask in the fast path, or 4080 * there was a cpuset modification and we are retrying - otherwise we 4081 * could end up iterating over non-eligible zones endlessly. 4082 */ 4083 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist, 4084 ac->highest_zoneidx, ac->nodemask); 4085 if (!ac->preferred_zoneref->zone) 4086 goto nopage; 4087 4088 /* 4089 * Check for insane configurations where the cpuset doesn't contain 4090 * any suitable zone to satisfy the request - e.g. non-movable 4091 * GFP_HIGHUSER allocations from MOVABLE nodes only. 4092 */ 4093 if (cpusets_insane_config() && (gfp_mask & __GFP_HARDWALL)) { 4094 struct zoneref *z = first_zones_zonelist(ac->zonelist, 4095 ac->highest_zoneidx, 4096 &cpuset_current_mems_allowed); 4097 if (!z->zone) 4098 goto nopage; 4099 } 4100 4101 if (alloc_flags & ALLOC_KSWAPD) 4102 wake_all_kswapds(order, gfp_mask, ac); 4103 4104 /* 4105 * The adjusted alloc_flags might result in immediate success, so try 4106 * that first 4107 */ 4108 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 4109 if (page) 4110 goto got_pg; 4111 4112 /* 4113 * For costly allocations, try direct compaction first, as it's likely 4114 * that we have enough base pages and don't need to reclaim. For non- 4115 * movable high-order allocations, do that as well, as compaction will 4116 * try prevent permanent fragmentation by migrating from blocks of the 4117 * same migratetype. 4118 * Don't try this for allocations that are allowed to ignore 4119 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen. 4120 */ 4121 if (can_direct_reclaim && can_compact && 4122 (costly_order || 4123 (order > 0 && ac->migratetype != MIGRATE_MOVABLE)) 4124 && !gfp_pfmemalloc_allowed(gfp_mask)) { 4125 page = __alloc_pages_direct_compact(gfp_mask, order, 4126 alloc_flags, ac, 4127 INIT_COMPACT_PRIORITY, 4128 &compact_result); 4129 if (page) 4130 goto got_pg; 4131 4132 /* 4133 * Checks for costly allocations with __GFP_NORETRY, which 4134 * includes some THP page fault allocations 4135 */ 4136 if (costly_order && (gfp_mask & __GFP_NORETRY)) { 4137 /* 4138 * If allocating entire pageblock(s) and compaction 4139 * failed because all zones are below low watermarks 4140 * or is prohibited because it recently failed at this 4141 * order, fail immediately unless the allocator has 4142 * requested compaction and reclaim retry. 4143 * 4144 * Reclaim is 4145 * - potentially very expensive because zones are far 4146 * below their low watermarks or this is part of very 4147 * bursty high order allocations, 4148 * - not guaranteed to help because isolate_freepages() 4149 * may not iterate over freed pages as part of its 4150 * linear scan, and 4151 * - unlikely to make entire pageblocks free on its 4152 * own. 4153 */ 4154 if (compact_result == COMPACT_SKIPPED || 4155 compact_result == COMPACT_DEFERRED) 4156 goto nopage; 4157 4158 /* 4159 * Looks like reclaim/compaction is worth trying, but 4160 * sync compaction could be very expensive, so keep 4161 * using async compaction. 4162 */ 4163 compact_priority = INIT_COMPACT_PRIORITY; 4164 } 4165 } 4166 4167 retry: 4168 /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */ 4169 if (alloc_flags & ALLOC_KSWAPD) 4170 wake_all_kswapds(order, gfp_mask, ac); 4171 4172 reserve_flags = __gfp_pfmemalloc_flags(gfp_mask); 4173 if (reserve_flags) 4174 alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, reserve_flags) | 4175 (alloc_flags & ALLOC_KSWAPD); 4176 4177 /* 4178 * Reset the nodemask and zonelist iterators if memory policies can be 4179 * ignored. These allocations are high priority and system rather than 4180 * user oriented. 4181 */ 4182 if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) { 4183 ac->nodemask = NULL; 4184 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist, 4185 ac->highest_zoneidx, ac->nodemask); 4186 } 4187 4188 /* Attempt with potentially adjusted zonelist and alloc_flags */ 4189 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 4190 if (page) 4191 goto got_pg; 4192 4193 /* Caller is not willing to reclaim, we can't balance anything */ 4194 if (!can_direct_reclaim) 4195 goto nopage; 4196 4197 /* Avoid recursion of direct reclaim */ 4198 if (current->flags & PF_MEMALLOC) 4199 goto nopage; 4200 4201 /* Try direct reclaim and then allocating */ 4202 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac, 4203 &did_some_progress); 4204 if (page) 4205 goto got_pg; 4206 4207 /* Try direct compaction and then allocating */ 4208 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac, 4209 compact_priority, &compact_result); 4210 if (page) 4211 goto got_pg; 4212 4213 /* Do not loop if specifically requested */ 4214 if (gfp_mask & __GFP_NORETRY) 4215 goto nopage; 4216 4217 /* 4218 * Do not retry costly high order allocations unless they are 4219 * __GFP_RETRY_MAYFAIL and we can compact 4220 */ 4221 if (costly_order && (!can_compact || 4222 !(gfp_mask & __GFP_RETRY_MAYFAIL))) 4223 goto nopage; 4224 4225 if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags, 4226 did_some_progress > 0, &no_progress_loops)) 4227 goto retry; 4228 4229 /* 4230 * It doesn't make any sense to retry for the compaction if the order-0 4231 * reclaim is not able to make any progress because the current 4232 * implementation of the compaction depends on the sufficient amount 4233 * of free memory (see __compaction_suitable) 4234 */ 4235 if (did_some_progress > 0 && can_compact && 4236 should_compact_retry(ac, order, alloc_flags, 4237 compact_result, &compact_priority, 4238 &compaction_retries)) 4239 goto retry; 4240 4241 4242 /* 4243 * Deal with possible cpuset update races or zonelist updates to avoid 4244 * a unnecessary OOM kill. 4245 */ 4246 if (check_retry_cpuset(cpuset_mems_cookie, ac) || 4247 check_retry_zonelist(zonelist_iter_cookie)) 4248 goto restart; 4249 4250 /* Reclaim has failed us, start killing things */ 4251 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress); 4252 if (page) 4253 goto got_pg; 4254 4255 /* Avoid allocations with no watermarks from looping endlessly */ 4256 if (tsk_is_oom_victim(current) && 4257 (alloc_flags & ALLOC_OOM || 4258 (gfp_mask & __GFP_NOMEMALLOC))) 4259 goto nopage; 4260 4261 /* Retry as long as the OOM killer is making progress */ 4262 if (did_some_progress) { 4263 no_progress_loops = 0; 4264 goto retry; 4265 } 4266 4267 nopage: 4268 /* 4269 * Deal with possible cpuset update races or zonelist updates to avoid 4270 * a unnecessary OOM kill. 4271 */ 4272 if (check_retry_cpuset(cpuset_mems_cookie, ac) || 4273 check_retry_zonelist(zonelist_iter_cookie)) 4274 goto restart; 4275 4276 /* 4277 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure 4278 * we always retry 4279 */ 4280 if (gfp_mask & __GFP_NOFAIL) { 4281 /* 4282 * All existing users of the __GFP_NOFAIL are blockable, so warn 4283 * of any new users that actually require GFP_NOWAIT 4284 */ 4285 if (WARN_ON_ONCE_GFP(!can_direct_reclaim, gfp_mask)) 4286 goto fail; 4287 4288 /* 4289 * PF_MEMALLOC request from this context is rather bizarre 4290 * because we cannot reclaim anything and only can loop waiting 4291 * for somebody to do a work for us 4292 */ 4293 WARN_ON_ONCE_GFP(current->flags & PF_MEMALLOC, gfp_mask); 4294 4295 /* 4296 * non failing costly orders are a hard requirement which we 4297 * are not prepared for much so let's warn about these users 4298 * so that we can identify them and convert them to something 4299 * else. 4300 */ 4301 WARN_ON_ONCE_GFP(costly_order, gfp_mask); 4302 4303 /* 4304 * Help non-failing allocations by giving some access to memory 4305 * reserves normally used for high priority non-blocking 4306 * allocations but do not use ALLOC_NO_WATERMARKS because this 4307 * could deplete whole memory reserves which would just make 4308 * the situation worse. 4309 */ 4310 page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_MIN_RESERVE, ac); 4311 if (page) 4312 goto got_pg; 4313 4314 cond_resched(); 4315 goto retry; 4316 } 4317 fail: 4318 warn_alloc(gfp_mask, ac->nodemask, 4319 "page allocation failure: order:%u", order); 4320 got_pg: 4321 return page; 4322 } 4323 4324 static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order, 4325 int preferred_nid, nodemask_t *nodemask, 4326 struct alloc_context *ac, gfp_t *alloc_gfp, 4327 unsigned int *alloc_flags) 4328 { 4329 ac->highest_zoneidx = gfp_zone(gfp_mask); 4330 ac->zonelist = node_zonelist(preferred_nid, gfp_mask); 4331 ac->nodemask = nodemask; 4332 ac->migratetype = gfp_migratetype(gfp_mask); 4333 4334 if (cpusets_enabled()) { 4335 *alloc_gfp |= __GFP_HARDWALL; 4336 /* 4337 * When we are in the interrupt context, it is irrelevant 4338 * to the current task context. It means that any node ok. 4339 */ 4340 if (in_task() && !ac->nodemask) 4341 ac->nodemask = &cpuset_current_mems_allowed; 4342 else 4343 *alloc_flags |= ALLOC_CPUSET; 4344 } 4345 4346 might_alloc(gfp_mask); 4347 4348 if (should_fail_alloc_page(gfp_mask, order)) 4349 return false; 4350 4351 *alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, *alloc_flags); 4352 4353 /* Dirty zone balancing only done in the fast path */ 4354 ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE); 4355 4356 /* 4357 * The preferred zone is used for statistics but crucially it is 4358 * also used as the starting point for the zonelist iterator. It 4359 * may get reset for allocations that ignore memory policies. 4360 */ 4361 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist, 4362 ac->highest_zoneidx, ac->nodemask); 4363 4364 return true; 4365 } 4366 4367 /* 4368 * __alloc_pages_bulk - Allocate a number of order-0 pages to a list or array 4369 * @gfp: GFP flags for the allocation 4370 * @preferred_nid: The preferred NUMA node ID to allocate from 4371 * @nodemask: Set of nodes to allocate from, may be NULL 4372 * @nr_pages: The number of pages desired on the list or array 4373 * @page_list: Optional list to store the allocated pages 4374 * @page_array: Optional array to store the pages 4375 * 4376 * This is a batched version of the page allocator that attempts to 4377 * allocate nr_pages quickly. Pages are added to page_list if page_list 4378 * is not NULL, otherwise it is assumed that the page_array is valid. 4379 * 4380 * For lists, nr_pages is the number of pages that should be allocated. 4381 * 4382 * For arrays, only NULL elements are populated with pages and nr_pages 4383 * is the maximum number of pages that will be stored in the array. 4384 * 4385 * Returns the number of pages on the list or array. 4386 */ 4387 unsigned long __alloc_pages_bulk(gfp_t gfp, int preferred_nid, 4388 nodemask_t *nodemask, int nr_pages, 4389 struct list_head *page_list, 4390 struct page **page_array) 4391 { 4392 struct page *page; 4393 unsigned long __maybe_unused UP_flags; 4394 struct zone *zone; 4395 struct zoneref *z; 4396 struct per_cpu_pages *pcp; 4397 struct list_head *pcp_list; 4398 struct alloc_context ac; 4399 gfp_t alloc_gfp; 4400 unsigned int alloc_flags = ALLOC_WMARK_LOW; 4401 int nr_populated = 0, nr_account = 0; 4402 4403 /* 4404 * Skip populated array elements to determine if any pages need 4405 * to be allocated before disabling IRQs. 4406 */ 4407 while (page_array && nr_populated < nr_pages && page_array[nr_populated]) 4408 nr_populated++; 4409 4410 /* No pages requested? */ 4411 if (unlikely(nr_pages <= 0)) 4412 goto out; 4413 4414 /* Already populated array? */ 4415 if (unlikely(page_array && nr_pages - nr_populated == 0)) 4416 goto out; 4417 4418 /* Bulk allocator does not support memcg accounting. */ 4419 if (memcg_kmem_online() && (gfp & __GFP_ACCOUNT)) 4420 goto failed; 4421 4422 /* Use the single page allocator for one page. */ 4423 if (nr_pages - nr_populated == 1) 4424 goto failed; 4425 4426 #ifdef CONFIG_PAGE_OWNER 4427 /* 4428 * PAGE_OWNER may recurse into the allocator to allocate space to 4429 * save the stack with pagesets.lock held. Releasing/reacquiring 4430 * removes much of the performance benefit of bulk allocation so 4431 * force the caller to allocate one page at a time as it'll have 4432 * similar performance to added complexity to the bulk allocator. 4433 */ 4434 if (static_branch_unlikely(&page_owner_inited)) 4435 goto failed; 4436 #endif 4437 4438 /* May set ALLOC_NOFRAGMENT, fragmentation will return 1 page. */ 4439 gfp &= gfp_allowed_mask; 4440 alloc_gfp = gfp; 4441 if (!prepare_alloc_pages(gfp, 0, preferred_nid, nodemask, &ac, &alloc_gfp, &alloc_flags)) 4442 goto out; 4443 gfp = alloc_gfp; 4444 4445 /* Find an allowed local zone that meets the low watermark. */ 4446 for_each_zone_zonelist_nodemask(zone, z, ac.zonelist, ac.highest_zoneidx, ac.nodemask) { 4447 unsigned long mark; 4448 4449 if (cpusets_enabled() && (alloc_flags & ALLOC_CPUSET) && 4450 !__cpuset_zone_allowed(zone, gfp)) { 4451 continue; 4452 } 4453 4454 if (nr_online_nodes > 1 && zone != ac.preferred_zoneref->zone && 4455 zone_to_nid(zone) != zone_to_nid(ac.preferred_zoneref->zone)) { 4456 goto failed; 4457 } 4458 4459 mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK) + nr_pages; 4460 if (zone_watermark_fast(zone, 0, mark, 4461 zonelist_zone_idx(ac.preferred_zoneref), 4462 alloc_flags, gfp)) { 4463 break; 4464 } 4465 } 4466 4467 /* 4468 * If there are no allowed local zones that meets the watermarks then 4469 * try to allocate a single page and reclaim if necessary. 4470 */ 4471 if (unlikely(!zone)) 4472 goto failed; 4473 4474 /* spin_trylock may fail due to a parallel drain or IRQ reentrancy. */ 4475 pcp_trylock_prepare(UP_flags); 4476 pcp = pcp_spin_trylock(zone->per_cpu_pageset); 4477 if (!pcp) 4478 goto failed_irq; 4479 4480 /* Attempt the batch allocation */ 4481 pcp_list = &pcp->lists[order_to_pindex(ac.migratetype, 0)]; 4482 while (nr_populated < nr_pages) { 4483 4484 /* Skip existing pages */ 4485 if (page_array && page_array[nr_populated]) { 4486 nr_populated++; 4487 continue; 4488 } 4489 4490 page = __rmqueue_pcplist(zone, 0, ac.migratetype, alloc_flags, 4491 pcp, pcp_list); 4492 if (unlikely(!page)) { 4493 /* Try and allocate at least one page */ 4494 if (!nr_account) { 4495 pcp_spin_unlock(pcp); 4496 goto failed_irq; 4497 } 4498 break; 4499 } 4500 nr_account++; 4501 4502 prep_new_page(page, 0, gfp, 0); 4503 if (page_list) 4504 list_add(&page->lru, page_list); 4505 else 4506 page_array[nr_populated] = page; 4507 nr_populated++; 4508 } 4509 4510 pcp_spin_unlock(pcp); 4511 pcp_trylock_finish(UP_flags); 4512 4513 __count_zid_vm_events(PGALLOC, zone_idx(zone), nr_account); 4514 zone_statistics(ac.preferred_zoneref->zone, zone, nr_account); 4515 4516 out: 4517 return nr_populated; 4518 4519 failed_irq: 4520 pcp_trylock_finish(UP_flags); 4521 4522 failed: 4523 page = __alloc_pages(gfp, 0, preferred_nid, nodemask); 4524 if (page) { 4525 if (page_list) 4526 list_add(&page->lru, page_list); 4527 else 4528 page_array[nr_populated] = page; 4529 nr_populated++; 4530 } 4531 4532 goto out; 4533 } 4534 EXPORT_SYMBOL_GPL(__alloc_pages_bulk); 4535 4536 /* 4537 * This is the 'heart' of the zoned buddy allocator. 4538 */ 4539 struct page *__alloc_pages(gfp_t gfp, unsigned int order, int preferred_nid, 4540 nodemask_t *nodemask) 4541 { 4542 struct page *page; 4543 unsigned int alloc_flags = ALLOC_WMARK_LOW; 4544 gfp_t alloc_gfp; /* The gfp_t that was actually used for allocation */ 4545 struct alloc_context ac = { }; 4546 4547 /* 4548 * There are several places where we assume that the order value is sane 4549 * so bail out early if the request is out of bound. 4550 */ 4551 if (WARN_ON_ONCE_GFP(order > MAX_PAGE_ORDER, gfp)) 4552 return NULL; 4553 4554 gfp &= gfp_allowed_mask; 4555 /* 4556 * Apply scoped allocation constraints. This is mainly about GFP_NOFS 4557 * resp. GFP_NOIO which has to be inherited for all allocation requests 4558 * from a particular context which has been marked by 4559 * memalloc_no{fs,io}_{save,restore}. And PF_MEMALLOC_PIN which ensures 4560 * movable zones are not used during allocation. 4561 */ 4562 gfp = current_gfp_context(gfp); 4563 alloc_gfp = gfp; 4564 if (!prepare_alloc_pages(gfp, order, preferred_nid, nodemask, &ac, 4565 &alloc_gfp, &alloc_flags)) 4566 return NULL; 4567 4568 /* 4569 * Forbid the first pass from falling back to types that fragment 4570 * memory until all local zones are considered. 4571 */ 4572 alloc_flags |= alloc_flags_nofragment(ac.preferred_zoneref->zone, gfp); 4573 4574 /* First allocation attempt */ 4575 page = get_page_from_freelist(alloc_gfp, order, alloc_flags, &ac); 4576 if (likely(page)) 4577 goto out; 4578 4579 alloc_gfp = gfp; 4580 ac.spread_dirty_pages = false; 4581 4582 /* 4583 * Restore the original nodemask if it was potentially replaced with 4584 * &cpuset_current_mems_allowed to optimize the fast-path attempt. 4585 */ 4586 ac.nodemask = nodemask; 4587 4588 page = __alloc_pages_slowpath(alloc_gfp, order, &ac); 4589 4590 out: 4591 if (memcg_kmem_online() && (gfp & __GFP_ACCOUNT) && page && 4592 unlikely(__memcg_kmem_charge_page(page, gfp, order) != 0)) { 4593 __free_pages(page, order); 4594 page = NULL; 4595 } 4596 4597 trace_mm_page_alloc(page, order, alloc_gfp, ac.migratetype); 4598 kmsan_alloc_page(page, order, alloc_gfp); 4599 4600 return page; 4601 } 4602 EXPORT_SYMBOL(__alloc_pages); 4603 4604 struct folio *__folio_alloc(gfp_t gfp, unsigned int order, int preferred_nid, 4605 nodemask_t *nodemask) 4606 { 4607 struct page *page = __alloc_pages(gfp | __GFP_COMP, order, 4608 preferred_nid, nodemask); 4609 return page_rmappable_folio(page); 4610 } 4611 EXPORT_SYMBOL(__folio_alloc); 4612 4613 /* 4614 * Common helper functions. Never use with __GFP_HIGHMEM because the returned 4615 * address cannot represent highmem pages. Use alloc_pages and then kmap if 4616 * you need to access high mem. 4617 */ 4618 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order) 4619 { 4620 struct page *page; 4621 4622 page = alloc_pages(gfp_mask & ~__GFP_HIGHMEM, order); 4623 if (!page) 4624 return 0; 4625 return (unsigned long) page_address(page); 4626 } 4627 EXPORT_SYMBOL(__get_free_pages); 4628 4629 unsigned long get_zeroed_page(gfp_t gfp_mask) 4630 { 4631 return __get_free_page(gfp_mask | __GFP_ZERO); 4632 } 4633 EXPORT_SYMBOL(get_zeroed_page); 4634 4635 /** 4636 * __free_pages - Free pages allocated with alloc_pages(). 4637 * @page: The page pointer returned from alloc_pages(). 4638 * @order: The order of the allocation. 4639 * 4640 * This function can free multi-page allocations that are not compound 4641 * pages. It does not check that the @order passed in matches that of 4642 * the allocation, so it is easy to leak memory. Freeing more memory 4643 * than was allocated will probably emit a warning. 4644 * 4645 * If the last reference to this page is speculative, it will be released 4646 * by put_page() which only frees the first page of a non-compound 4647 * allocation. To prevent the remaining pages from being leaked, we free 4648 * the subsequent pages here. If you want to use the page's reference 4649 * count to decide when to free the allocation, you should allocate a 4650 * compound page, and use put_page() instead of __free_pages(). 4651 * 4652 * Context: May be called in interrupt context or while holding a normal 4653 * spinlock, but not in NMI context or while holding a raw spinlock. 4654 */ 4655 void __free_pages(struct page *page, unsigned int order) 4656 { 4657 /* get PageHead before we drop reference */ 4658 int head = PageHead(page); 4659 4660 if (put_page_testzero(page)) 4661 free_the_page(page, order); 4662 else if (!head) 4663 while (order-- > 0) 4664 free_the_page(page + (1 << order), order); 4665 } 4666 EXPORT_SYMBOL(__free_pages); 4667 4668 void free_pages(unsigned long addr, unsigned int order) 4669 { 4670 if (addr != 0) { 4671 VM_BUG_ON(!virt_addr_valid((void *)addr)); 4672 __free_pages(virt_to_page((void *)addr), order); 4673 } 4674 } 4675 4676 EXPORT_SYMBOL(free_pages); 4677 4678 /* 4679 * Page Fragment: 4680 * An arbitrary-length arbitrary-offset area of memory which resides 4681 * within a 0 or higher order page. Multiple fragments within that page 4682 * are individually refcounted, in the page's reference counter. 4683 * 4684 * The page_frag functions below provide a simple allocation framework for 4685 * page fragments. This is used by the network stack and network device 4686 * drivers to provide a backing region of memory for use as either an 4687 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info. 4688 */ 4689 static struct page *__page_frag_cache_refill(struct page_frag_cache *nc, 4690 gfp_t gfp_mask) 4691 { 4692 struct page *page = NULL; 4693 gfp_t gfp = gfp_mask; 4694 4695 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE) 4696 gfp_mask = (gfp_mask & ~__GFP_DIRECT_RECLAIM) | __GFP_COMP | 4697 __GFP_NOWARN | __GFP_NORETRY | __GFP_NOMEMALLOC; 4698 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask, 4699 PAGE_FRAG_CACHE_MAX_ORDER); 4700 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE; 4701 #endif 4702 if (unlikely(!page)) 4703 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0); 4704 4705 nc->va = page ? page_address(page) : NULL; 4706 4707 return page; 4708 } 4709 4710 void page_frag_cache_drain(struct page_frag_cache *nc) 4711 { 4712 if (!nc->va) 4713 return; 4714 4715 __page_frag_cache_drain(virt_to_head_page(nc->va), nc->pagecnt_bias); 4716 nc->va = NULL; 4717 } 4718 EXPORT_SYMBOL(page_frag_cache_drain); 4719 4720 void __page_frag_cache_drain(struct page *page, unsigned int count) 4721 { 4722 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page); 4723 4724 if (page_ref_sub_and_test(page, count)) 4725 free_the_page(page, compound_order(page)); 4726 } 4727 EXPORT_SYMBOL(__page_frag_cache_drain); 4728 4729 void *__page_frag_alloc_align(struct page_frag_cache *nc, 4730 unsigned int fragsz, gfp_t gfp_mask, 4731 unsigned int align_mask) 4732 { 4733 unsigned int size = PAGE_SIZE; 4734 struct page *page; 4735 int offset; 4736 4737 if (unlikely(!nc->va)) { 4738 refill: 4739 page = __page_frag_cache_refill(nc, gfp_mask); 4740 if (!page) 4741 return NULL; 4742 4743 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE) 4744 /* if size can vary use size else just use PAGE_SIZE */ 4745 size = nc->size; 4746 #endif 4747 /* Even if we own the page, we do not use atomic_set(). 4748 * This would break get_page_unless_zero() users. 4749 */ 4750 page_ref_add(page, PAGE_FRAG_CACHE_MAX_SIZE); 4751 4752 /* reset page count bias and offset to start of new frag */ 4753 nc->pfmemalloc = page_is_pfmemalloc(page); 4754 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1; 4755 nc->offset = size; 4756 } 4757 4758 offset = nc->offset - fragsz; 4759 if (unlikely(offset < 0)) { 4760 page = virt_to_page(nc->va); 4761 4762 if (!page_ref_sub_and_test(page, nc->pagecnt_bias)) 4763 goto refill; 4764 4765 if (unlikely(nc->pfmemalloc)) { 4766 free_the_page(page, compound_order(page)); 4767 goto refill; 4768 } 4769 4770 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE) 4771 /* if size can vary use size else just use PAGE_SIZE */ 4772 size = nc->size; 4773 #endif 4774 /* OK, page count is 0, we can safely set it */ 4775 set_page_count(page, PAGE_FRAG_CACHE_MAX_SIZE + 1); 4776 4777 /* reset page count bias and offset to start of new frag */ 4778 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1; 4779 offset = size - fragsz; 4780 if (unlikely(offset < 0)) { 4781 /* 4782 * The caller is trying to allocate a fragment 4783 * with fragsz > PAGE_SIZE but the cache isn't big 4784 * enough to satisfy the request, this may 4785 * happen in low memory conditions. 4786 * We don't release the cache page because 4787 * it could make memory pressure worse 4788 * so we simply return NULL here. 4789 */ 4790 return NULL; 4791 } 4792 } 4793 4794 nc->pagecnt_bias--; 4795 offset &= align_mask; 4796 nc->offset = offset; 4797 4798 return nc->va + offset; 4799 } 4800 EXPORT_SYMBOL(__page_frag_alloc_align); 4801 4802 /* 4803 * Frees a page fragment allocated out of either a compound or order 0 page. 4804 */ 4805 void page_frag_free(void *addr) 4806 { 4807 struct page *page = virt_to_head_page(addr); 4808 4809 if (unlikely(put_page_testzero(page))) 4810 free_the_page(page, compound_order(page)); 4811 } 4812 EXPORT_SYMBOL(page_frag_free); 4813 4814 static void *make_alloc_exact(unsigned long addr, unsigned int order, 4815 size_t size) 4816 { 4817 if (addr) { 4818 unsigned long nr = DIV_ROUND_UP(size, PAGE_SIZE); 4819 struct page *page = virt_to_page((void *)addr); 4820 struct page *last = page + nr; 4821 4822 split_page_owner(page, order, 0); 4823 split_page_memcg(page, order, 0); 4824 while (page < --last) 4825 set_page_refcounted(last); 4826 4827 last = page + (1UL << order); 4828 for (page += nr; page < last; page++) 4829 __free_pages_ok(page, 0, FPI_TO_TAIL); 4830 } 4831 return (void *)addr; 4832 } 4833 4834 /** 4835 * alloc_pages_exact - allocate an exact number physically-contiguous pages. 4836 * @size: the number of bytes to allocate 4837 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP 4838 * 4839 * This function is similar to alloc_pages(), except that it allocates the 4840 * minimum number of pages to satisfy the request. alloc_pages() can only 4841 * allocate memory in power-of-two pages. 4842 * 4843 * This function is also limited by MAX_PAGE_ORDER. 4844 * 4845 * Memory allocated by this function must be released by free_pages_exact(). 4846 * 4847 * Return: pointer to the allocated area or %NULL in case of error. 4848 */ 4849 void *alloc_pages_exact(size_t size, gfp_t gfp_mask) 4850 { 4851 unsigned int order = get_order(size); 4852 unsigned long addr; 4853 4854 if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM))) 4855 gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM); 4856 4857 addr = __get_free_pages(gfp_mask, order); 4858 return make_alloc_exact(addr, order, size); 4859 } 4860 EXPORT_SYMBOL(alloc_pages_exact); 4861 4862 /** 4863 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous 4864 * pages on a node. 4865 * @nid: the preferred node ID where memory should be allocated 4866 * @size: the number of bytes to allocate 4867 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP 4868 * 4869 * Like alloc_pages_exact(), but try to allocate on node nid first before falling 4870 * back. 4871 * 4872 * Return: pointer to the allocated area or %NULL in case of error. 4873 */ 4874 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask) 4875 { 4876 unsigned int order = get_order(size); 4877 struct page *p; 4878 4879 if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM))) 4880 gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM); 4881 4882 p = alloc_pages_node(nid, gfp_mask, order); 4883 if (!p) 4884 return NULL; 4885 return make_alloc_exact((unsigned long)page_address(p), order, size); 4886 } 4887 4888 /** 4889 * free_pages_exact - release memory allocated via alloc_pages_exact() 4890 * @virt: the value returned by alloc_pages_exact. 4891 * @size: size of allocation, same value as passed to alloc_pages_exact(). 4892 * 4893 * Release the memory allocated by a previous call to alloc_pages_exact. 4894 */ 4895 void free_pages_exact(void *virt, size_t size) 4896 { 4897 unsigned long addr = (unsigned long)virt; 4898 unsigned long end = addr + PAGE_ALIGN(size); 4899 4900 while (addr < end) { 4901 free_page(addr); 4902 addr += PAGE_SIZE; 4903 } 4904 } 4905 EXPORT_SYMBOL(free_pages_exact); 4906 4907 /** 4908 * nr_free_zone_pages - count number of pages beyond high watermark 4909 * @offset: The zone index of the highest zone 4910 * 4911 * nr_free_zone_pages() counts the number of pages which are beyond the 4912 * high watermark within all zones at or below a given zone index. For each 4913 * zone, the number of pages is calculated as: 4914 * 4915 * nr_free_zone_pages = managed_pages - high_pages 4916 * 4917 * Return: number of pages beyond high watermark. 4918 */ 4919 static unsigned long nr_free_zone_pages(int offset) 4920 { 4921 struct zoneref *z; 4922 struct zone *zone; 4923 4924 /* Just pick one node, since fallback list is circular */ 4925 unsigned long sum = 0; 4926 4927 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL); 4928 4929 for_each_zone_zonelist(zone, z, zonelist, offset) { 4930 unsigned long size = zone_managed_pages(zone); 4931 unsigned long high = high_wmark_pages(zone); 4932 if (size > high) 4933 sum += size - high; 4934 } 4935 4936 return sum; 4937 } 4938 4939 /** 4940 * nr_free_buffer_pages - count number of pages beyond high watermark 4941 * 4942 * nr_free_buffer_pages() counts the number of pages which are beyond the high 4943 * watermark within ZONE_DMA and ZONE_NORMAL. 4944 * 4945 * Return: number of pages beyond high watermark within ZONE_DMA and 4946 * ZONE_NORMAL. 4947 */ 4948 unsigned long nr_free_buffer_pages(void) 4949 { 4950 return nr_free_zone_pages(gfp_zone(GFP_USER)); 4951 } 4952 EXPORT_SYMBOL_GPL(nr_free_buffer_pages); 4953 4954 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref) 4955 { 4956 zoneref->zone = zone; 4957 zoneref->zone_idx = zone_idx(zone); 4958 } 4959 4960 /* 4961 * Builds allocation fallback zone lists. 4962 * 4963 * Add all populated zones of a node to the zonelist. 4964 */ 4965 static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs) 4966 { 4967 struct zone *zone; 4968 enum zone_type zone_type = MAX_NR_ZONES; 4969 int nr_zones = 0; 4970 4971 do { 4972 zone_type--; 4973 zone = pgdat->node_zones + zone_type; 4974 if (populated_zone(zone)) { 4975 zoneref_set_zone(zone, &zonerefs[nr_zones++]); 4976 check_highest_zone(zone_type); 4977 } 4978 } while (zone_type); 4979 4980 return nr_zones; 4981 } 4982 4983 #ifdef CONFIG_NUMA 4984 4985 static int __parse_numa_zonelist_order(char *s) 4986 { 4987 /* 4988 * We used to support different zonelists modes but they turned 4989 * out to be just not useful. Let's keep the warning in place 4990 * if somebody still use the cmd line parameter so that we do 4991 * not fail it silently 4992 */ 4993 if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) { 4994 pr_warn("Ignoring unsupported numa_zonelist_order value: %s\n", s); 4995 return -EINVAL; 4996 } 4997 return 0; 4998 } 4999 5000 static char numa_zonelist_order[] = "Node"; 5001 #define NUMA_ZONELIST_ORDER_LEN 16 5002 /* 5003 * sysctl handler for numa_zonelist_order 5004 */ 5005 static int numa_zonelist_order_handler(struct ctl_table *table, int write, 5006 void *buffer, size_t *length, loff_t *ppos) 5007 { 5008 if (write) 5009 return __parse_numa_zonelist_order(buffer); 5010 return proc_dostring(table, write, buffer, length, ppos); 5011 } 5012 5013 static int node_load[MAX_NUMNODES]; 5014 5015 /** 5016 * find_next_best_node - find the next node that should appear in a given node's fallback list 5017 * @node: node whose fallback list we're appending 5018 * @used_node_mask: nodemask_t of already used nodes 5019 * 5020 * We use a number of factors to determine which is the next node that should 5021 * appear on a given node's fallback list. The node should not have appeared 5022 * already in @node's fallback list, and it should be the next closest node 5023 * according to the distance array (which contains arbitrary distance values 5024 * from each node to each node in the system), and should also prefer nodes 5025 * with no CPUs, since presumably they'll have very little allocation pressure 5026 * on them otherwise. 5027 * 5028 * Return: node id of the found node or %NUMA_NO_NODE if no node is found. 5029 */ 5030 int find_next_best_node(int node, nodemask_t *used_node_mask) 5031 { 5032 int n, val; 5033 int min_val = INT_MAX; 5034 int best_node = NUMA_NO_NODE; 5035 5036 /* 5037 * Use the local node if we haven't already, but for memoryless local 5038 * node, we should skip it and fall back to other nodes. 5039 */ 5040 if (!node_isset(node, *used_node_mask) && node_state(node, N_MEMORY)) { 5041 node_set(node, *used_node_mask); 5042 return node; 5043 } 5044 5045 for_each_node_state(n, N_MEMORY) { 5046 5047 /* Don't want a node to appear more than once */ 5048 if (node_isset(n, *used_node_mask)) 5049 continue; 5050 5051 /* Use the distance array to find the distance */ 5052 val = node_distance(node, n); 5053 5054 /* Penalize nodes under us ("prefer the next node") */ 5055 val += (n < node); 5056 5057 /* Give preference to headless and unused nodes */ 5058 if (!cpumask_empty(cpumask_of_node(n))) 5059 val += PENALTY_FOR_NODE_WITH_CPUS; 5060 5061 /* Slight preference for less loaded node */ 5062 val *= MAX_NUMNODES; 5063 val += node_load[n]; 5064 5065 if (val < min_val) { 5066 min_val = val; 5067 best_node = n; 5068 } 5069 } 5070 5071 if (best_node >= 0) 5072 node_set(best_node, *used_node_mask); 5073 5074 return best_node; 5075 } 5076 5077 5078 /* 5079 * Build zonelists ordered by node and zones within node. 5080 * This results in maximum locality--normal zone overflows into local 5081 * DMA zone, if any--but risks exhausting DMA zone. 5082 */ 5083 static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order, 5084 unsigned nr_nodes) 5085 { 5086 struct zoneref *zonerefs; 5087 int i; 5088 5089 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs; 5090 5091 for (i = 0; i < nr_nodes; i++) { 5092 int nr_zones; 5093 5094 pg_data_t *node = NODE_DATA(node_order[i]); 5095 5096 nr_zones = build_zonerefs_node(node, zonerefs); 5097 zonerefs += nr_zones; 5098 } 5099 zonerefs->zone = NULL; 5100 zonerefs->zone_idx = 0; 5101 } 5102 5103 /* 5104 * Build gfp_thisnode zonelists 5105 */ 5106 static void build_thisnode_zonelists(pg_data_t *pgdat) 5107 { 5108 struct zoneref *zonerefs; 5109 int nr_zones; 5110 5111 zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs; 5112 nr_zones = build_zonerefs_node(pgdat, zonerefs); 5113 zonerefs += nr_zones; 5114 zonerefs->zone = NULL; 5115 zonerefs->zone_idx = 0; 5116 } 5117 5118 /* 5119 * Build zonelists ordered by zone and nodes within zones. 5120 * This results in conserving DMA zone[s] until all Normal memory is 5121 * exhausted, but results in overflowing to remote node while memory 5122 * may still exist in local DMA zone. 5123 */ 5124 5125 static void build_zonelists(pg_data_t *pgdat) 5126 { 5127 static int node_order[MAX_NUMNODES]; 5128 int node, nr_nodes = 0; 5129 nodemask_t used_mask = NODE_MASK_NONE; 5130 int local_node, prev_node; 5131 5132 /* NUMA-aware ordering of nodes */ 5133 local_node = pgdat->node_id; 5134 prev_node = local_node; 5135 5136 memset(node_order, 0, sizeof(node_order)); 5137 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) { 5138 /* 5139 * We don't want to pressure a particular node. 5140 * So adding penalty to the first node in same 5141 * distance group to make it round-robin. 5142 */ 5143 if (node_distance(local_node, node) != 5144 node_distance(local_node, prev_node)) 5145 node_load[node] += 1; 5146 5147 node_order[nr_nodes++] = node; 5148 prev_node = node; 5149 } 5150 5151 build_zonelists_in_node_order(pgdat, node_order, nr_nodes); 5152 build_thisnode_zonelists(pgdat); 5153 pr_info("Fallback order for Node %d: ", local_node); 5154 for (node = 0; node < nr_nodes; node++) 5155 pr_cont("%d ", node_order[node]); 5156 pr_cont("\n"); 5157 } 5158 5159 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 5160 /* 5161 * Return node id of node used for "local" allocations. 5162 * I.e., first node id of first zone in arg node's generic zonelist. 5163 * Used for initializing percpu 'numa_mem', which is used primarily 5164 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist. 5165 */ 5166 int local_memory_node(int node) 5167 { 5168 struct zoneref *z; 5169 5170 z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL), 5171 gfp_zone(GFP_KERNEL), 5172 NULL); 5173 return zone_to_nid(z->zone); 5174 } 5175 #endif 5176 5177 static void setup_min_unmapped_ratio(void); 5178 static void setup_min_slab_ratio(void); 5179 #else /* CONFIG_NUMA */ 5180 5181 static void build_zonelists(pg_data_t *pgdat) 5182 { 5183 int node, local_node; 5184 struct zoneref *zonerefs; 5185 int nr_zones; 5186 5187 local_node = pgdat->node_id; 5188 5189 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs; 5190 nr_zones = build_zonerefs_node(pgdat, zonerefs); 5191 zonerefs += nr_zones; 5192 5193 /* 5194 * Now we build the zonelist so that it contains the zones 5195 * of all the other nodes. 5196 * We don't want to pressure a particular node, so when 5197 * building the zones for node N, we make sure that the 5198 * zones coming right after the local ones are those from 5199 * node N+1 (modulo N) 5200 */ 5201 for (node = local_node + 1; node < MAX_NUMNODES; node++) { 5202 if (!node_online(node)) 5203 continue; 5204 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs); 5205 zonerefs += nr_zones; 5206 } 5207 for (node = 0; node < local_node; node++) { 5208 if (!node_online(node)) 5209 continue; 5210 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs); 5211 zonerefs += nr_zones; 5212 } 5213 5214 zonerefs->zone = NULL; 5215 zonerefs->zone_idx = 0; 5216 } 5217 5218 #endif /* CONFIG_NUMA */ 5219 5220 /* 5221 * Boot pageset table. One per cpu which is going to be used for all 5222 * zones and all nodes. The parameters will be set in such a way 5223 * that an item put on a list will immediately be handed over to 5224 * the buddy list. This is safe since pageset manipulation is done 5225 * with interrupts disabled. 5226 * 5227 * The boot_pagesets must be kept even after bootup is complete for 5228 * unused processors and/or zones. They do play a role for bootstrapping 5229 * hotplugged processors. 5230 * 5231 * zoneinfo_show() and maybe other functions do 5232 * not check if the processor is online before following the pageset pointer. 5233 * Other parts of the kernel may not check if the zone is available. 5234 */ 5235 static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats); 5236 /* These effectively disable the pcplists in the boot pageset completely */ 5237 #define BOOT_PAGESET_HIGH 0 5238 #define BOOT_PAGESET_BATCH 1 5239 static DEFINE_PER_CPU(struct per_cpu_pages, boot_pageset); 5240 static DEFINE_PER_CPU(struct per_cpu_zonestat, boot_zonestats); 5241 5242 static void __build_all_zonelists(void *data) 5243 { 5244 int nid; 5245 int __maybe_unused cpu; 5246 pg_data_t *self = data; 5247 unsigned long flags; 5248 5249 /* 5250 * The zonelist_update_seq must be acquired with irqsave because the 5251 * reader can be invoked from IRQ with GFP_ATOMIC. 5252 */ 5253 write_seqlock_irqsave(&zonelist_update_seq, flags); 5254 /* 5255 * Also disable synchronous printk() to prevent any printk() from 5256 * trying to hold port->lock, for 5257 * tty_insert_flip_string_and_push_buffer() on other CPU might be 5258 * calling kmalloc(GFP_ATOMIC | __GFP_NOWARN) with port->lock held. 5259 */ 5260 printk_deferred_enter(); 5261 5262 #ifdef CONFIG_NUMA 5263 memset(node_load, 0, sizeof(node_load)); 5264 #endif 5265 5266 /* 5267 * This node is hotadded and no memory is yet present. So just 5268 * building zonelists is fine - no need to touch other nodes. 5269 */ 5270 if (self && !node_online(self->node_id)) { 5271 build_zonelists(self); 5272 } else { 5273 /* 5274 * All possible nodes have pgdat preallocated 5275 * in free_area_init 5276 */ 5277 for_each_node(nid) { 5278 pg_data_t *pgdat = NODE_DATA(nid); 5279 5280 build_zonelists(pgdat); 5281 } 5282 5283 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 5284 /* 5285 * We now know the "local memory node" for each node-- 5286 * i.e., the node of the first zone in the generic zonelist. 5287 * Set up numa_mem percpu variable for on-line cpus. During 5288 * boot, only the boot cpu should be on-line; we'll init the 5289 * secondary cpus' numa_mem as they come on-line. During 5290 * node/memory hotplug, we'll fixup all on-line cpus. 5291 */ 5292 for_each_online_cpu(cpu) 5293 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu))); 5294 #endif 5295 } 5296 5297 printk_deferred_exit(); 5298 write_sequnlock_irqrestore(&zonelist_update_seq, flags); 5299 } 5300 5301 static noinline void __init 5302 build_all_zonelists_init(void) 5303 { 5304 int cpu; 5305 5306 __build_all_zonelists(NULL); 5307 5308 /* 5309 * Initialize the boot_pagesets that are going to be used 5310 * for bootstrapping processors. The real pagesets for 5311 * each zone will be allocated later when the per cpu 5312 * allocator is available. 5313 * 5314 * boot_pagesets are used also for bootstrapping offline 5315 * cpus if the system is already booted because the pagesets 5316 * are needed to initialize allocators on a specific cpu too. 5317 * F.e. the percpu allocator needs the page allocator which 5318 * needs the percpu allocator in order to allocate its pagesets 5319 * (a chicken-egg dilemma). 5320 */ 5321 for_each_possible_cpu(cpu) 5322 per_cpu_pages_init(&per_cpu(boot_pageset, cpu), &per_cpu(boot_zonestats, cpu)); 5323 5324 mminit_verify_zonelist(); 5325 cpuset_init_current_mems_allowed(); 5326 } 5327 5328 /* 5329 * unless system_state == SYSTEM_BOOTING. 5330 * 5331 * __ref due to call of __init annotated helper build_all_zonelists_init 5332 * [protected by SYSTEM_BOOTING]. 5333 */ 5334 void __ref build_all_zonelists(pg_data_t *pgdat) 5335 { 5336 unsigned long vm_total_pages; 5337 5338 if (system_state == SYSTEM_BOOTING) { 5339 build_all_zonelists_init(); 5340 } else { 5341 __build_all_zonelists(pgdat); 5342 /* cpuset refresh routine should be here */ 5343 } 5344 /* Get the number of free pages beyond high watermark in all zones. */ 5345 vm_total_pages = nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE)); 5346 /* 5347 * Disable grouping by mobility if the number of pages in the 5348 * system is too low to allow the mechanism to work. It would be 5349 * more accurate, but expensive to check per-zone. This check is 5350 * made on memory-hotadd so a system can start with mobility 5351 * disabled and enable it later 5352 */ 5353 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES)) 5354 page_group_by_mobility_disabled = 1; 5355 else 5356 page_group_by_mobility_disabled = 0; 5357 5358 pr_info("Built %u zonelists, mobility grouping %s. Total pages: %ld\n", 5359 nr_online_nodes, 5360 page_group_by_mobility_disabled ? "off" : "on", 5361 vm_total_pages); 5362 #ifdef CONFIG_NUMA 5363 pr_info("Policy zone: %s\n", zone_names[policy_zone]); 5364 #endif 5365 } 5366 5367 static int zone_batchsize(struct zone *zone) 5368 { 5369 #ifdef CONFIG_MMU 5370 int batch; 5371 5372 /* 5373 * The number of pages to batch allocate is either ~0.1% 5374 * of the zone or 1MB, whichever is smaller. The batch 5375 * size is striking a balance between allocation latency 5376 * and zone lock contention. 5377 */ 5378 batch = min(zone_managed_pages(zone) >> 10, SZ_1M / PAGE_SIZE); 5379 batch /= 4; /* We effectively *= 4 below */ 5380 if (batch < 1) 5381 batch = 1; 5382 5383 /* 5384 * Clamp the batch to a 2^n - 1 value. Having a power 5385 * of 2 value was found to be more likely to have 5386 * suboptimal cache aliasing properties in some cases. 5387 * 5388 * For example if 2 tasks are alternately allocating 5389 * batches of pages, one task can end up with a lot 5390 * of pages of one half of the possible page colors 5391 * and the other with pages of the other colors. 5392 */ 5393 batch = rounddown_pow_of_two(batch + batch/2) - 1; 5394 5395 return batch; 5396 5397 #else 5398 /* The deferral and batching of frees should be suppressed under NOMMU 5399 * conditions. 5400 * 5401 * The problem is that NOMMU needs to be able to allocate large chunks 5402 * of contiguous memory as there's no hardware page translation to 5403 * assemble apparent contiguous memory from discontiguous pages. 5404 * 5405 * Queueing large contiguous runs of pages for batching, however, 5406 * causes the pages to actually be freed in smaller chunks. As there 5407 * can be a significant delay between the individual batches being 5408 * recycled, this leads to the once large chunks of space being 5409 * fragmented and becoming unavailable for high-order allocations. 5410 */ 5411 return 0; 5412 #endif 5413 } 5414 5415 static int percpu_pagelist_high_fraction; 5416 static int zone_highsize(struct zone *zone, int batch, int cpu_online, 5417 int high_fraction) 5418 { 5419 #ifdef CONFIG_MMU 5420 int high; 5421 int nr_split_cpus; 5422 unsigned long total_pages; 5423 5424 if (!high_fraction) { 5425 /* 5426 * By default, the high value of the pcp is based on the zone 5427 * low watermark so that if they are full then background 5428 * reclaim will not be started prematurely. 5429 */ 5430 total_pages = low_wmark_pages(zone); 5431 } else { 5432 /* 5433 * If percpu_pagelist_high_fraction is configured, the high 5434 * value is based on a fraction of the managed pages in the 5435 * zone. 5436 */ 5437 total_pages = zone_managed_pages(zone) / high_fraction; 5438 } 5439 5440 /* 5441 * Split the high value across all online CPUs local to the zone. Note 5442 * that early in boot that CPUs may not be online yet and that during 5443 * CPU hotplug that the cpumask is not yet updated when a CPU is being 5444 * onlined. For memory nodes that have no CPUs, split the high value 5445 * across all online CPUs to mitigate the risk that reclaim is triggered 5446 * prematurely due to pages stored on pcp lists. 5447 */ 5448 nr_split_cpus = cpumask_weight(cpumask_of_node(zone_to_nid(zone))) + cpu_online; 5449 if (!nr_split_cpus) 5450 nr_split_cpus = num_online_cpus(); 5451 high = total_pages / nr_split_cpus; 5452 5453 /* 5454 * Ensure high is at least batch*4. The multiple is based on the 5455 * historical relationship between high and batch. 5456 */ 5457 high = max(high, batch << 2); 5458 5459 return high; 5460 #else 5461 return 0; 5462 #endif 5463 } 5464 5465 /* 5466 * pcp->high and pcp->batch values are related and generally batch is lower 5467 * than high. They are also related to pcp->count such that count is lower 5468 * than high, and as soon as it reaches high, the pcplist is flushed. 5469 * 5470 * However, guaranteeing these relations at all times would require e.g. write 5471 * barriers here but also careful usage of read barriers at the read side, and 5472 * thus be prone to error and bad for performance. Thus the update only prevents 5473 * store tearing. Any new users of pcp->batch, pcp->high_min and pcp->high_max 5474 * should ensure they can cope with those fields changing asynchronously, and 5475 * fully trust only the pcp->count field on the local CPU with interrupts 5476 * disabled. 5477 * 5478 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function 5479 * outside of boot time (or some other assurance that no concurrent updaters 5480 * exist). 5481 */ 5482 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high_min, 5483 unsigned long high_max, unsigned long batch) 5484 { 5485 WRITE_ONCE(pcp->batch, batch); 5486 WRITE_ONCE(pcp->high_min, high_min); 5487 WRITE_ONCE(pcp->high_max, high_max); 5488 } 5489 5490 static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats) 5491 { 5492 int pindex; 5493 5494 memset(pcp, 0, sizeof(*pcp)); 5495 memset(pzstats, 0, sizeof(*pzstats)); 5496 5497 spin_lock_init(&pcp->lock); 5498 for (pindex = 0; pindex < NR_PCP_LISTS; pindex++) 5499 INIT_LIST_HEAD(&pcp->lists[pindex]); 5500 5501 /* 5502 * Set batch and high values safe for a boot pageset. A true percpu 5503 * pageset's initialization will update them subsequently. Here we don't 5504 * need to be as careful as pageset_update() as nobody can access the 5505 * pageset yet. 5506 */ 5507 pcp->high_min = BOOT_PAGESET_HIGH; 5508 pcp->high_max = BOOT_PAGESET_HIGH; 5509 pcp->batch = BOOT_PAGESET_BATCH; 5510 pcp->free_count = 0; 5511 } 5512 5513 static void __zone_set_pageset_high_and_batch(struct zone *zone, unsigned long high_min, 5514 unsigned long high_max, unsigned long batch) 5515 { 5516 struct per_cpu_pages *pcp; 5517 int cpu; 5518 5519 for_each_possible_cpu(cpu) { 5520 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu); 5521 pageset_update(pcp, high_min, high_max, batch); 5522 } 5523 } 5524 5525 /* 5526 * Calculate and set new high and batch values for all per-cpu pagesets of a 5527 * zone based on the zone's size. 5528 */ 5529 static void zone_set_pageset_high_and_batch(struct zone *zone, int cpu_online) 5530 { 5531 int new_high_min, new_high_max, new_batch; 5532 5533 new_batch = max(1, zone_batchsize(zone)); 5534 if (percpu_pagelist_high_fraction) { 5535 new_high_min = zone_highsize(zone, new_batch, cpu_online, 5536 percpu_pagelist_high_fraction); 5537 /* 5538 * PCP high is tuned manually, disable auto-tuning via 5539 * setting high_min and high_max to the manual value. 5540 */ 5541 new_high_max = new_high_min; 5542 } else { 5543 new_high_min = zone_highsize(zone, new_batch, cpu_online, 0); 5544 new_high_max = zone_highsize(zone, new_batch, cpu_online, 5545 MIN_PERCPU_PAGELIST_HIGH_FRACTION); 5546 } 5547 5548 if (zone->pageset_high_min == new_high_min && 5549 zone->pageset_high_max == new_high_max && 5550 zone->pageset_batch == new_batch) 5551 return; 5552 5553 zone->pageset_high_min = new_high_min; 5554 zone->pageset_high_max = new_high_max; 5555 zone->pageset_batch = new_batch; 5556 5557 __zone_set_pageset_high_and_batch(zone, new_high_min, new_high_max, 5558 new_batch); 5559 } 5560 5561 void __meminit setup_zone_pageset(struct zone *zone) 5562 { 5563 int cpu; 5564 5565 /* Size may be 0 on !SMP && !NUMA */ 5566 if (sizeof(struct per_cpu_zonestat) > 0) 5567 zone->per_cpu_zonestats = alloc_percpu(struct per_cpu_zonestat); 5568 5569 zone->per_cpu_pageset = alloc_percpu(struct per_cpu_pages); 5570 for_each_possible_cpu(cpu) { 5571 struct per_cpu_pages *pcp; 5572 struct per_cpu_zonestat *pzstats; 5573 5574 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu); 5575 pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu); 5576 per_cpu_pages_init(pcp, pzstats); 5577 } 5578 5579 zone_set_pageset_high_and_batch(zone, 0); 5580 } 5581 5582 /* 5583 * The zone indicated has a new number of managed_pages; batch sizes and percpu 5584 * page high values need to be recalculated. 5585 */ 5586 static void zone_pcp_update(struct zone *zone, int cpu_online) 5587 { 5588 mutex_lock(&pcp_batch_high_lock); 5589 zone_set_pageset_high_and_batch(zone, cpu_online); 5590 mutex_unlock(&pcp_batch_high_lock); 5591 } 5592 5593 static void zone_pcp_update_cacheinfo(struct zone *zone, unsigned int cpu) 5594 { 5595 struct per_cpu_pages *pcp; 5596 struct cpu_cacheinfo *cci; 5597 5598 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu); 5599 cci = get_cpu_cacheinfo(cpu); 5600 /* 5601 * If data cache slice of CPU is large enough, "pcp->batch" 5602 * pages can be preserved in PCP before draining PCP for 5603 * consecutive high-order pages freeing without allocation. 5604 * This can reduce zone lock contention without hurting 5605 * cache-hot pages sharing. 5606 */ 5607 spin_lock(&pcp->lock); 5608 if ((cci->per_cpu_data_slice_size >> PAGE_SHIFT) > 3 * pcp->batch) 5609 pcp->flags |= PCPF_FREE_HIGH_BATCH; 5610 else 5611 pcp->flags &= ~PCPF_FREE_HIGH_BATCH; 5612 spin_unlock(&pcp->lock); 5613 } 5614 5615 void setup_pcp_cacheinfo(unsigned int cpu) 5616 { 5617 struct zone *zone; 5618 5619 for_each_populated_zone(zone) 5620 zone_pcp_update_cacheinfo(zone, cpu); 5621 } 5622 5623 /* 5624 * Allocate per cpu pagesets and initialize them. 5625 * Before this call only boot pagesets were available. 5626 */ 5627 void __init setup_per_cpu_pageset(void) 5628 { 5629 struct pglist_data *pgdat; 5630 struct zone *zone; 5631 int __maybe_unused cpu; 5632 5633 for_each_populated_zone(zone) 5634 setup_zone_pageset(zone); 5635 5636 #ifdef CONFIG_NUMA 5637 /* 5638 * Unpopulated zones continue using the boot pagesets. 5639 * The numa stats for these pagesets need to be reset. 5640 * Otherwise, they will end up skewing the stats of 5641 * the nodes these zones are associated with. 5642 */ 5643 for_each_possible_cpu(cpu) { 5644 struct per_cpu_zonestat *pzstats = &per_cpu(boot_zonestats, cpu); 5645 memset(pzstats->vm_numa_event, 0, 5646 sizeof(pzstats->vm_numa_event)); 5647 } 5648 #endif 5649 5650 for_each_online_pgdat(pgdat) 5651 pgdat->per_cpu_nodestats = 5652 alloc_percpu(struct per_cpu_nodestat); 5653 } 5654 5655 __meminit void zone_pcp_init(struct zone *zone) 5656 { 5657 /* 5658 * per cpu subsystem is not up at this point. The following code 5659 * relies on the ability of the linker to provide the 5660 * offset of a (static) per cpu variable into the per cpu area. 5661 */ 5662 zone->per_cpu_pageset = &boot_pageset; 5663 zone->per_cpu_zonestats = &boot_zonestats; 5664 zone->pageset_high_min = BOOT_PAGESET_HIGH; 5665 zone->pageset_high_max = BOOT_PAGESET_HIGH; 5666 zone->pageset_batch = BOOT_PAGESET_BATCH; 5667 5668 if (populated_zone(zone)) 5669 pr_debug(" %s zone: %lu pages, LIFO batch:%u\n", zone->name, 5670 zone->present_pages, zone_batchsize(zone)); 5671 } 5672 5673 void adjust_managed_page_count(struct page *page, long count) 5674 { 5675 atomic_long_add(count, &page_zone(page)->managed_pages); 5676 totalram_pages_add(count); 5677 #ifdef CONFIG_HIGHMEM 5678 if (PageHighMem(page)) 5679 totalhigh_pages_add(count); 5680 #endif 5681 } 5682 EXPORT_SYMBOL(adjust_managed_page_count); 5683 5684 unsigned long free_reserved_area(void *start, void *end, int poison, const char *s) 5685 { 5686 void *pos; 5687 unsigned long pages = 0; 5688 5689 start = (void *)PAGE_ALIGN((unsigned long)start); 5690 end = (void *)((unsigned long)end & PAGE_MASK); 5691 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) { 5692 struct page *page = virt_to_page(pos); 5693 void *direct_map_addr; 5694 5695 /* 5696 * 'direct_map_addr' might be different from 'pos' 5697 * because some architectures' virt_to_page() 5698 * work with aliases. Getting the direct map 5699 * address ensures that we get a _writeable_ 5700 * alias for the memset(). 5701 */ 5702 direct_map_addr = page_address(page); 5703 /* 5704 * Perform a kasan-unchecked memset() since this memory 5705 * has not been initialized. 5706 */ 5707 direct_map_addr = kasan_reset_tag(direct_map_addr); 5708 if ((unsigned int)poison <= 0xFF) 5709 memset(direct_map_addr, poison, PAGE_SIZE); 5710 5711 free_reserved_page(page); 5712 } 5713 5714 if (pages && s) 5715 pr_info("Freeing %s memory: %ldK\n", s, K(pages)); 5716 5717 return pages; 5718 } 5719 5720 static int page_alloc_cpu_dead(unsigned int cpu) 5721 { 5722 struct zone *zone; 5723 5724 lru_add_drain_cpu(cpu); 5725 mlock_drain_remote(cpu); 5726 drain_pages(cpu); 5727 5728 /* 5729 * Spill the event counters of the dead processor 5730 * into the current processors event counters. 5731 * This artificially elevates the count of the current 5732 * processor. 5733 */ 5734 vm_events_fold_cpu(cpu); 5735 5736 /* 5737 * Zero the differential counters of the dead processor 5738 * so that the vm statistics are consistent. 5739 * 5740 * This is only okay since the processor is dead and cannot 5741 * race with what we are doing. 5742 */ 5743 cpu_vm_stats_fold(cpu); 5744 5745 for_each_populated_zone(zone) 5746 zone_pcp_update(zone, 0); 5747 5748 return 0; 5749 } 5750 5751 static int page_alloc_cpu_online(unsigned int cpu) 5752 { 5753 struct zone *zone; 5754 5755 for_each_populated_zone(zone) 5756 zone_pcp_update(zone, 1); 5757 return 0; 5758 } 5759 5760 void __init page_alloc_init_cpuhp(void) 5761 { 5762 int ret; 5763 5764 ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC, 5765 "mm/page_alloc:pcp", 5766 page_alloc_cpu_online, 5767 page_alloc_cpu_dead); 5768 WARN_ON(ret < 0); 5769 } 5770 5771 /* 5772 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio 5773 * or min_free_kbytes changes. 5774 */ 5775 static void calculate_totalreserve_pages(void) 5776 { 5777 struct pglist_data *pgdat; 5778 unsigned long reserve_pages = 0; 5779 enum zone_type i, j; 5780 5781 for_each_online_pgdat(pgdat) { 5782 5783 pgdat->totalreserve_pages = 0; 5784 5785 for (i = 0; i < MAX_NR_ZONES; i++) { 5786 struct zone *zone = pgdat->node_zones + i; 5787 long max = 0; 5788 unsigned long managed_pages = zone_managed_pages(zone); 5789 5790 /* Find valid and maximum lowmem_reserve in the zone */ 5791 for (j = i; j < MAX_NR_ZONES; j++) { 5792 if (zone->lowmem_reserve[j] > max) 5793 max = zone->lowmem_reserve[j]; 5794 } 5795 5796 /* we treat the high watermark as reserved pages. */ 5797 max += high_wmark_pages(zone); 5798 5799 if (max > managed_pages) 5800 max = managed_pages; 5801 5802 pgdat->totalreserve_pages += max; 5803 5804 reserve_pages += max; 5805 } 5806 } 5807 totalreserve_pages = reserve_pages; 5808 } 5809 5810 /* 5811 * setup_per_zone_lowmem_reserve - called whenever 5812 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone 5813 * has a correct pages reserved value, so an adequate number of 5814 * pages are left in the zone after a successful __alloc_pages(). 5815 */ 5816 static void setup_per_zone_lowmem_reserve(void) 5817 { 5818 struct pglist_data *pgdat; 5819 enum zone_type i, j; 5820 5821 for_each_online_pgdat(pgdat) { 5822 for (i = 0; i < MAX_NR_ZONES - 1; i++) { 5823 struct zone *zone = &pgdat->node_zones[i]; 5824 int ratio = sysctl_lowmem_reserve_ratio[i]; 5825 bool clear = !ratio || !zone_managed_pages(zone); 5826 unsigned long managed_pages = 0; 5827 5828 for (j = i + 1; j < MAX_NR_ZONES; j++) { 5829 struct zone *upper_zone = &pgdat->node_zones[j]; 5830 5831 managed_pages += zone_managed_pages(upper_zone); 5832 5833 if (clear) 5834 zone->lowmem_reserve[j] = 0; 5835 else 5836 zone->lowmem_reserve[j] = managed_pages / ratio; 5837 } 5838 } 5839 } 5840 5841 /* update totalreserve_pages */ 5842 calculate_totalreserve_pages(); 5843 } 5844 5845 static void __setup_per_zone_wmarks(void) 5846 { 5847 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10); 5848 unsigned long lowmem_pages = 0; 5849 struct zone *zone; 5850 unsigned long flags; 5851 5852 /* Calculate total number of !ZONE_HIGHMEM and !ZONE_MOVABLE pages */ 5853 for_each_zone(zone) { 5854 if (!is_highmem(zone) && zone_idx(zone) != ZONE_MOVABLE) 5855 lowmem_pages += zone_managed_pages(zone); 5856 } 5857 5858 for_each_zone(zone) { 5859 u64 tmp; 5860 5861 spin_lock_irqsave(&zone->lock, flags); 5862 tmp = (u64)pages_min * zone_managed_pages(zone); 5863 tmp = div64_ul(tmp, lowmem_pages); 5864 if (is_highmem(zone) || zone_idx(zone) == ZONE_MOVABLE) { 5865 /* 5866 * __GFP_HIGH and PF_MEMALLOC allocations usually don't 5867 * need highmem and movable zones pages, so cap pages_min 5868 * to a small value here. 5869 * 5870 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN) 5871 * deltas control async page reclaim, and so should 5872 * not be capped for highmem and movable zones. 5873 */ 5874 unsigned long min_pages; 5875 5876 min_pages = zone_managed_pages(zone) / 1024; 5877 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL); 5878 zone->_watermark[WMARK_MIN] = min_pages; 5879 } else { 5880 /* 5881 * If it's a lowmem zone, reserve a number of pages 5882 * proportionate to the zone's size. 5883 */ 5884 zone->_watermark[WMARK_MIN] = tmp; 5885 } 5886 5887 /* 5888 * Set the kswapd watermarks distance according to the 5889 * scale factor in proportion to available memory, but 5890 * ensure a minimum size on small systems. 5891 */ 5892 tmp = max_t(u64, tmp >> 2, 5893 mult_frac(zone_managed_pages(zone), 5894 watermark_scale_factor, 10000)); 5895 5896 zone->watermark_boost = 0; 5897 zone->_watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp; 5898 zone->_watermark[WMARK_HIGH] = low_wmark_pages(zone) + tmp; 5899 zone->_watermark[WMARK_PROMO] = high_wmark_pages(zone) + tmp; 5900 5901 spin_unlock_irqrestore(&zone->lock, flags); 5902 } 5903 5904 /* update totalreserve_pages */ 5905 calculate_totalreserve_pages(); 5906 } 5907 5908 /** 5909 * setup_per_zone_wmarks - called when min_free_kbytes changes 5910 * or when memory is hot-{added|removed} 5911 * 5912 * Ensures that the watermark[min,low,high] values for each zone are set 5913 * correctly with respect to min_free_kbytes. 5914 */ 5915 void setup_per_zone_wmarks(void) 5916 { 5917 struct zone *zone; 5918 static DEFINE_SPINLOCK(lock); 5919 5920 spin_lock(&lock); 5921 __setup_per_zone_wmarks(); 5922 spin_unlock(&lock); 5923 5924 /* 5925 * The watermark size have changed so update the pcpu batch 5926 * and high limits or the limits may be inappropriate. 5927 */ 5928 for_each_zone(zone) 5929 zone_pcp_update(zone, 0); 5930 } 5931 5932 /* 5933 * Initialise min_free_kbytes. 5934 * 5935 * For small machines we want it small (128k min). For large machines 5936 * we want it large (256MB max). But it is not linear, because network 5937 * bandwidth does not increase linearly with machine size. We use 5938 * 5939 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy: 5940 * min_free_kbytes = sqrt(lowmem_kbytes * 16) 5941 * 5942 * which yields 5943 * 5944 * 16MB: 512k 5945 * 32MB: 724k 5946 * 64MB: 1024k 5947 * 128MB: 1448k 5948 * 256MB: 2048k 5949 * 512MB: 2896k 5950 * 1024MB: 4096k 5951 * 2048MB: 5792k 5952 * 4096MB: 8192k 5953 * 8192MB: 11584k 5954 * 16384MB: 16384k 5955 */ 5956 void calculate_min_free_kbytes(void) 5957 { 5958 unsigned long lowmem_kbytes; 5959 int new_min_free_kbytes; 5960 5961 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10); 5962 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16); 5963 5964 if (new_min_free_kbytes > user_min_free_kbytes) 5965 min_free_kbytes = clamp(new_min_free_kbytes, 128, 262144); 5966 else 5967 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n", 5968 new_min_free_kbytes, user_min_free_kbytes); 5969 5970 } 5971 5972 int __meminit init_per_zone_wmark_min(void) 5973 { 5974 calculate_min_free_kbytes(); 5975 setup_per_zone_wmarks(); 5976 refresh_zone_stat_thresholds(); 5977 setup_per_zone_lowmem_reserve(); 5978 5979 #ifdef CONFIG_NUMA 5980 setup_min_unmapped_ratio(); 5981 setup_min_slab_ratio(); 5982 #endif 5983 5984 khugepaged_min_free_kbytes_update(); 5985 5986 return 0; 5987 } 5988 postcore_initcall(init_per_zone_wmark_min) 5989 5990 /* 5991 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so 5992 * that we can call two helper functions whenever min_free_kbytes 5993 * changes. 5994 */ 5995 static int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write, 5996 void *buffer, size_t *length, loff_t *ppos) 5997 { 5998 int rc; 5999 6000 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 6001 if (rc) 6002 return rc; 6003 6004 if (write) { 6005 user_min_free_kbytes = min_free_kbytes; 6006 setup_per_zone_wmarks(); 6007 } 6008 return 0; 6009 } 6010 6011 static int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write, 6012 void *buffer, size_t *length, loff_t *ppos) 6013 { 6014 int rc; 6015 6016 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 6017 if (rc) 6018 return rc; 6019 6020 if (write) 6021 setup_per_zone_wmarks(); 6022 6023 return 0; 6024 } 6025 6026 #ifdef CONFIG_NUMA 6027 static void setup_min_unmapped_ratio(void) 6028 { 6029 pg_data_t *pgdat; 6030 struct zone *zone; 6031 6032 for_each_online_pgdat(pgdat) 6033 pgdat->min_unmapped_pages = 0; 6034 6035 for_each_zone(zone) 6036 zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) * 6037 sysctl_min_unmapped_ratio) / 100; 6038 } 6039 6040 6041 static int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write, 6042 void *buffer, size_t *length, loff_t *ppos) 6043 { 6044 int rc; 6045 6046 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 6047 if (rc) 6048 return rc; 6049 6050 setup_min_unmapped_ratio(); 6051 6052 return 0; 6053 } 6054 6055 static void setup_min_slab_ratio(void) 6056 { 6057 pg_data_t *pgdat; 6058 struct zone *zone; 6059 6060 for_each_online_pgdat(pgdat) 6061 pgdat->min_slab_pages = 0; 6062 6063 for_each_zone(zone) 6064 zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) * 6065 sysctl_min_slab_ratio) / 100; 6066 } 6067 6068 static int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write, 6069 void *buffer, size_t *length, loff_t *ppos) 6070 { 6071 int rc; 6072 6073 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 6074 if (rc) 6075 return rc; 6076 6077 setup_min_slab_ratio(); 6078 6079 return 0; 6080 } 6081 #endif 6082 6083 /* 6084 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around 6085 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve() 6086 * whenever sysctl_lowmem_reserve_ratio changes. 6087 * 6088 * The reserve ratio obviously has absolutely no relation with the 6089 * minimum watermarks. The lowmem reserve ratio can only make sense 6090 * if in function of the boot time zone sizes. 6091 */ 6092 static int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, 6093 int write, void *buffer, size_t *length, loff_t *ppos) 6094 { 6095 int i; 6096 6097 proc_dointvec_minmax(table, write, buffer, length, ppos); 6098 6099 for (i = 0; i < MAX_NR_ZONES; i++) { 6100 if (sysctl_lowmem_reserve_ratio[i] < 1) 6101 sysctl_lowmem_reserve_ratio[i] = 0; 6102 } 6103 6104 setup_per_zone_lowmem_reserve(); 6105 return 0; 6106 } 6107 6108 /* 6109 * percpu_pagelist_high_fraction - changes the pcp->high for each zone on each 6110 * cpu. It is the fraction of total pages in each zone that a hot per cpu 6111 * pagelist can have before it gets flushed back to buddy allocator. 6112 */ 6113 static int percpu_pagelist_high_fraction_sysctl_handler(struct ctl_table *table, 6114 int write, void *buffer, size_t *length, loff_t *ppos) 6115 { 6116 struct zone *zone; 6117 int old_percpu_pagelist_high_fraction; 6118 int ret; 6119 6120 mutex_lock(&pcp_batch_high_lock); 6121 old_percpu_pagelist_high_fraction = percpu_pagelist_high_fraction; 6122 6123 ret = proc_dointvec_minmax(table, write, buffer, length, ppos); 6124 if (!write || ret < 0) 6125 goto out; 6126 6127 /* Sanity checking to avoid pcp imbalance */ 6128 if (percpu_pagelist_high_fraction && 6129 percpu_pagelist_high_fraction < MIN_PERCPU_PAGELIST_HIGH_FRACTION) { 6130 percpu_pagelist_high_fraction = old_percpu_pagelist_high_fraction; 6131 ret = -EINVAL; 6132 goto out; 6133 } 6134 6135 /* No change? */ 6136 if (percpu_pagelist_high_fraction == old_percpu_pagelist_high_fraction) 6137 goto out; 6138 6139 for_each_populated_zone(zone) 6140 zone_set_pageset_high_and_batch(zone, 0); 6141 out: 6142 mutex_unlock(&pcp_batch_high_lock); 6143 return ret; 6144 } 6145 6146 static struct ctl_table page_alloc_sysctl_table[] = { 6147 { 6148 .procname = "min_free_kbytes", 6149 .data = &min_free_kbytes, 6150 .maxlen = sizeof(min_free_kbytes), 6151 .mode = 0644, 6152 .proc_handler = min_free_kbytes_sysctl_handler, 6153 .extra1 = SYSCTL_ZERO, 6154 }, 6155 { 6156 .procname = "watermark_boost_factor", 6157 .data = &watermark_boost_factor, 6158 .maxlen = sizeof(watermark_boost_factor), 6159 .mode = 0644, 6160 .proc_handler = proc_dointvec_minmax, 6161 .extra1 = SYSCTL_ZERO, 6162 }, 6163 { 6164 .procname = "watermark_scale_factor", 6165 .data = &watermark_scale_factor, 6166 .maxlen = sizeof(watermark_scale_factor), 6167 .mode = 0644, 6168 .proc_handler = watermark_scale_factor_sysctl_handler, 6169 .extra1 = SYSCTL_ONE, 6170 .extra2 = SYSCTL_THREE_THOUSAND, 6171 }, 6172 { 6173 .procname = "percpu_pagelist_high_fraction", 6174 .data = &percpu_pagelist_high_fraction, 6175 .maxlen = sizeof(percpu_pagelist_high_fraction), 6176 .mode = 0644, 6177 .proc_handler = percpu_pagelist_high_fraction_sysctl_handler, 6178 .extra1 = SYSCTL_ZERO, 6179 }, 6180 { 6181 .procname = "lowmem_reserve_ratio", 6182 .data = &sysctl_lowmem_reserve_ratio, 6183 .maxlen = sizeof(sysctl_lowmem_reserve_ratio), 6184 .mode = 0644, 6185 .proc_handler = lowmem_reserve_ratio_sysctl_handler, 6186 }, 6187 #ifdef CONFIG_NUMA 6188 { 6189 .procname = "numa_zonelist_order", 6190 .data = &numa_zonelist_order, 6191 .maxlen = NUMA_ZONELIST_ORDER_LEN, 6192 .mode = 0644, 6193 .proc_handler = numa_zonelist_order_handler, 6194 }, 6195 { 6196 .procname = "min_unmapped_ratio", 6197 .data = &sysctl_min_unmapped_ratio, 6198 .maxlen = sizeof(sysctl_min_unmapped_ratio), 6199 .mode = 0644, 6200 .proc_handler = sysctl_min_unmapped_ratio_sysctl_handler, 6201 .extra1 = SYSCTL_ZERO, 6202 .extra2 = SYSCTL_ONE_HUNDRED, 6203 }, 6204 { 6205 .procname = "min_slab_ratio", 6206 .data = &sysctl_min_slab_ratio, 6207 .maxlen = sizeof(sysctl_min_slab_ratio), 6208 .mode = 0644, 6209 .proc_handler = sysctl_min_slab_ratio_sysctl_handler, 6210 .extra1 = SYSCTL_ZERO, 6211 .extra2 = SYSCTL_ONE_HUNDRED, 6212 }, 6213 #endif 6214 {} 6215 }; 6216 6217 void __init page_alloc_sysctl_init(void) 6218 { 6219 register_sysctl_init("vm", page_alloc_sysctl_table); 6220 } 6221 6222 #ifdef CONFIG_CONTIG_ALLOC 6223 /* Usage: See admin-guide/dynamic-debug-howto.rst */ 6224 static void alloc_contig_dump_pages(struct list_head *page_list) 6225 { 6226 DEFINE_DYNAMIC_DEBUG_METADATA(descriptor, "migrate failure"); 6227 6228 if (DYNAMIC_DEBUG_BRANCH(descriptor)) { 6229 struct page *page; 6230 6231 dump_stack(); 6232 list_for_each_entry(page, page_list, lru) 6233 dump_page(page, "migration failure"); 6234 } 6235 } 6236 6237 /* 6238 * [start, end) must belong to a single zone. 6239 * @migratetype: using migratetype to filter the type of migration in 6240 * trace_mm_alloc_contig_migrate_range_info. 6241 */ 6242 int __alloc_contig_migrate_range(struct compact_control *cc, 6243 unsigned long start, unsigned long end, 6244 int migratetype) 6245 { 6246 /* This function is based on compact_zone() from compaction.c. */ 6247 unsigned int nr_reclaimed; 6248 unsigned long pfn = start; 6249 unsigned int tries = 0; 6250 int ret = 0; 6251 struct migration_target_control mtc = { 6252 .nid = zone_to_nid(cc->zone), 6253 .gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL, 6254 }; 6255 struct page *page; 6256 unsigned long total_mapped = 0; 6257 unsigned long total_migrated = 0; 6258 unsigned long total_reclaimed = 0; 6259 6260 lru_cache_disable(); 6261 6262 while (pfn < end || !list_empty(&cc->migratepages)) { 6263 if (fatal_signal_pending(current)) { 6264 ret = -EINTR; 6265 break; 6266 } 6267 6268 if (list_empty(&cc->migratepages)) { 6269 cc->nr_migratepages = 0; 6270 ret = isolate_migratepages_range(cc, pfn, end); 6271 if (ret && ret != -EAGAIN) 6272 break; 6273 pfn = cc->migrate_pfn; 6274 tries = 0; 6275 } else if (++tries == 5) { 6276 ret = -EBUSY; 6277 break; 6278 } 6279 6280 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone, 6281 &cc->migratepages); 6282 cc->nr_migratepages -= nr_reclaimed; 6283 6284 if (trace_mm_alloc_contig_migrate_range_info_enabled()) { 6285 total_reclaimed += nr_reclaimed; 6286 list_for_each_entry(page, &cc->migratepages, lru) 6287 total_mapped += page_mapcount(page); 6288 } 6289 6290 ret = migrate_pages(&cc->migratepages, alloc_migration_target, 6291 NULL, (unsigned long)&mtc, cc->mode, MR_CONTIG_RANGE, NULL); 6292 6293 if (trace_mm_alloc_contig_migrate_range_info_enabled() && !ret) 6294 total_migrated += cc->nr_migratepages; 6295 6296 /* 6297 * On -ENOMEM, migrate_pages() bails out right away. It is pointless 6298 * to retry again over this error, so do the same here. 6299 */ 6300 if (ret == -ENOMEM) 6301 break; 6302 } 6303 6304 lru_cache_enable(); 6305 if (ret < 0) { 6306 if (!(cc->gfp_mask & __GFP_NOWARN) && ret == -EBUSY) 6307 alloc_contig_dump_pages(&cc->migratepages); 6308 putback_movable_pages(&cc->migratepages); 6309 } 6310 6311 trace_mm_alloc_contig_migrate_range_info(start, end, migratetype, 6312 total_migrated, 6313 total_reclaimed, 6314 total_mapped); 6315 return (ret < 0) ? ret : 0; 6316 } 6317 6318 /** 6319 * alloc_contig_range() -- tries to allocate given range of pages 6320 * @start: start PFN to allocate 6321 * @end: one-past-the-last PFN to allocate 6322 * @migratetype: migratetype of the underlying pageblocks (either 6323 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks 6324 * in range must have the same migratetype and it must 6325 * be either of the two. 6326 * @gfp_mask: GFP mask to use during compaction 6327 * 6328 * The PFN range does not have to be pageblock aligned. The PFN range must 6329 * belong to a single zone. 6330 * 6331 * The first thing this routine does is attempt to MIGRATE_ISOLATE all 6332 * pageblocks in the range. Once isolated, the pageblocks should not 6333 * be modified by others. 6334 * 6335 * Return: zero on success or negative error code. On success all 6336 * pages which PFN is in [start, end) are allocated for the caller and 6337 * need to be freed with free_contig_range(). 6338 */ 6339 int alloc_contig_range(unsigned long start, unsigned long end, 6340 unsigned migratetype, gfp_t gfp_mask) 6341 { 6342 unsigned long outer_start, outer_end; 6343 int order; 6344 int ret = 0; 6345 6346 struct compact_control cc = { 6347 .nr_migratepages = 0, 6348 .order = -1, 6349 .zone = page_zone(pfn_to_page(start)), 6350 .mode = MIGRATE_SYNC, 6351 .ignore_skip_hint = true, 6352 .no_set_skip_hint = true, 6353 .gfp_mask = current_gfp_context(gfp_mask), 6354 .alloc_contig = true, 6355 }; 6356 INIT_LIST_HEAD(&cc.migratepages); 6357 6358 /* 6359 * What we do here is we mark all pageblocks in range as 6360 * MIGRATE_ISOLATE. Because pageblock and max order pages may 6361 * have different sizes, and due to the way page allocator 6362 * work, start_isolate_page_range() has special handlings for this. 6363 * 6364 * Once the pageblocks are marked as MIGRATE_ISOLATE, we 6365 * migrate the pages from an unaligned range (ie. pages that 6366 * we are interested in). This will put all the pages in 6367 * range back to page allocator as MIGRATE_ISOLATE. 6368 * 6369 * When this is done, we take the pages in range from page 6370 * allocator removing them from the buddy system. This way 6371 * page allocator will never consider using them. 6372 * 6373 * This lets us mark the pageblocks back as 6374 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the 6375 * aligned range but not in the unaligned, original range are 6376 * put back to page allocator so that buddy can use them. 6377 */ 6378 6379 ret = start_isolate_page_range(start, end, migratetype, 0, gfp_mask); 6380 if (ret) 6381 goto done; 6382 6383 drain_all_pages(cc.zone); 6384 6385 /* 6386 * In case of -EBUSY, we'd like to know which page causes problem. 6387 * So, just fall through. test_pages_isolated() has a tracepoint 6388 * which will report the busy page. 6389 * 6390 * It is possible that busy pages could become available before 6391 * the call to test_pages_isolated, and the range will actually be 6392 * allocated. So, if we fall through be sure to clear ret so that 6393 * -EBUSY is not accidentally used or returned to caller. 6394 */ 6395 ret = __alloc_contig_migrate_range(&cc, start, end, migratetype); 6396 if (ret && ret != -EBUSY) 6397 goto done; 6398 ret = 0; 6399 6400 /* 6401 * Pages from [start, end) are within a pageblock_nr_pages 6402 * aligned blocks that are marked as MIGRATE_ISOLATE. What's 6403 * more, all pages in [start, end) are free in page allocator. 6404 * What we are going to do is to allocate all pages from 6405 * [start, end) (that is remove them from page allocator). 6406 * 6407 * The only problem is that pages at the beginning and at the 6408 * end of interesting range may be not aligned with pages that 6409 * page allocator holds, ie. they can be part of higher order 6410 * pages. Because of this, we reserve the bigger range and 6411 * once this is done free the pages we are not interested in. 6412 * 6413 * We don't have to hold zone->lock here because the pages are 6414 * isolated thus they won't get removed from buddy. 6415 */ 6416 6417 order = 0; 6418 outer_start = start; 6419 while (!PageBuddy(pfn_to_page(outer_start))) { 6420 if (++order > MAX_PAGE_ORDER) { 6421 outer_start = start; 6422 break; 6423 } 6424 outer_start &= ~0UL << order; 6425 } 6426 6427 if (outer_start != start) { 6428 order = buddy_order(pfn_to_page(outer_start)); 6429 6430 /* 6431 * outer_start page could be small order buddy page and 6432 * it doesn't include start page. Adjust outer_start 6433 * in this case to report failed page properly 6434 * on tracepoint in test_pages_isolated() 6435 */ 6436 if (outer_start + (1UL << order) <= start) 6437 outer_start = start; 6438 } 6439 6440 /* Make sure the range is really isolated. */ 6441 if (test_pages_isolated(outer_start, end, 0)) { 6442 ret = -EBUSY; 6443 goto done; 6444 } 6445 6446 /* Grab isolated pages from freelists. */ 6447 outer_end = isolate_freepages_range(&cc, outer_start, end); 6448 if (!outer_end) { 6449 ret = -EBUSY; 6450 goto done; 6451 } 6452 6453 /* Free head and tail (if any) */ 6454 if (start != outer_start) 6455 free_contig_range(outer_start, start - outer_start); 6456 if (end != outer_end) 6457 free_contig_range(end, outer_end - end); 6458 6459 done: 6460 undo_isolate_page_range(start, end, migratetype); 6461 return ret; 6462 } 6463 EXPORT_SYMBOL(alloc_contig_range); 6464 6465 static int __alloc_contig_pages(unsigned long start_pfn, 6466 unsigned long nr_pages, gfp_t gfp_mask) 6467 { 6468 unsigned long end_pfn = start_pfn + nr_pages; 6469 6470 return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE, 6471 gfp_mask); 6472 } 6473 6474 static bool pfn_range_valid_contig(struct zone *z, unsigned long start_pfn, 6475 unsigned long nr_pages) 6476 { 6477 unsigned long i, end_pfn = start_pfn + nr_pages; 6478 struct page *page; 6479 6480 for (i = start_pfn; i < end_pfn; i++) { 6481 page = pfn_to_online_page(i); 6482 if (!page) 6483 return false; 6484 6485 if (page_zone(page) != z) 6486 return false; 6487 6488 if (PageReserved(page)) 6489 return false; 6490 6491 if (PageHuge(page)) 6492 return false; 6493 } 6494 return true; 6495 } 6496 6497 static bool zone_spans_last_pfn(const struct zone *zone, 6498 unsigned long start_pfn, unsigned long nr_pages) 6499 { 6500 unsigned long last_pfn = start_pfn + nr_pages - 1; 6501 6502 return zone_spans_pfn(zone, last_pfn); 6503 } 6504 6505 /** 6506 * alloc_contig_pages() -- tries to find and allocate contiguous range of pages 6507 * @nr_pages: Number of contiguous pages to allocate 6508 * @gfp_mask: GFP mask to limit search and used during compaction 6509 * @nid: Target node 6510 * @nodemask: Mask for other possible nodes 6511 * 6512 * This routine is a wrapper around alloc_contig_range(). It scans over zones 6513 * on an applicable zonelist to find a contiguous pfn range which can then be 6514 * tried for allocation with alloc_contig_range(). This routine is intended 6515 * for allocation requests which can not be fulfilled with the buddy allocator. 6516 * 6517 * The allocated memory is always aligned to a page boundary. If nr_pages is a 6518 * power of two, then allocated range is also guaranteed to be aligned to same 6519 * nr_pages (e.g. 1GB request would be aligned to 1GB). 6520 * 6521 * Allocated pages can be freed with free_contig_range() or by manually calling 6522 * __free_page() on each allocated page. 6523 * 6524 * Return: pointer to contiguous pages on success, or NULL if not successful. 6525 */ 6526 struct page *alloc_contig_pages(unsigned long nr_pages, gfp_t gfp_mask, 6527 int nid, nodemask_t *nodemask) 6528 { 6529 unsigned long ret, pfn, flags; 6530 struct zonelist *zonelist; 6531 struct zone *zone; 6532 struct zoneref *z; 6533 6534 zonelist = node_zonelist(nid, gfp_mask); 6535 for_each_zone_zonelist_nodemask(zone, z, zonelist, 6536 gfp_zone(gfp_mask), nodemask) { 6537 spin_lock_irqsave(&zone->lock, flags); 6538 6539 pfn = ALIGN(zone->zone_start_pfn, nr_pages); 6540 while (zone_spans_last_pfn(zone, pfn, nr_pages)) { 6541 if (pfn_range_valid_contig(zone, pfn, nr_pages)) { 6542 /* 6543 * We release the zone lock here because 6544 * alloc_contig_range() will also lock the zone 6545 * at some point. If there's an allocation 6546 * spinning on this lock, it may win the race 6547 * and cause alloc_contig_range() to fail... 6548 */ 6549 spin_unlock_irqrestore(&zone->lock, flags); 6550 ret = __alloc_contig_pages(pfn, nr_pages, 6551 gfp_mask); 6552 if (!ret) 6553 return pfn_to_page(pfn); 6554 spin_lock_irqsave(&zone->lock, flags); 6555 } 6556 pfn += nr_pages; 6557 } 6558 spin_unlock_irqrestore(&zone->lock, flags); 6559 } 6560 return NULL; 6561 } 6562 #endif /* CONFIG_CONTIG_ALLOC */ 6563 6564 void free_contig_range(unsigned long pfn, unsigned long nr_pages) 6565 { 6566 unsigned long count = 0; 6567 6568 for (; nr_pages--; pfn++) { 6569 struct page *page = pfn_to_page(pfn); 6570 6571 count += page_count(page) != 1; 6572 __free_page(page); 6573 } 6574 WARN(count != 0, "%lu pages are still in use!\n", count); 6575 } 6576 EXPORT_SYMBOL(free_contig_range); 6577 6578 /* 6579 * Effectively disable pcplists for the zone by setting the high limit to 0 6580 * and draining all cpus. A concurrent page freeing on another CPU that's about 6581 * to put the page on pcplist will either finish before the drain and the page 6582 * will be drained, or observe the new high limit and skip the pcplist. 6583 * 6584 * Must be paired with a call to zone_pcp_enable(). 6585 */ 6586 void zone_pcp_disable(struct zone *zone) 6587 { 6588 mutex_lock(&pcp_batch_high_lock); 6589 __zone_set_pageset_high_and_batch(zone, 0, 0, 1); 6590 __drain_all_pages(zone, true); 6591 } 6592 6593 void zone_pcp_enable(struct zone *zone) 6594 { 6595 __zone_set_pageset_high_and_batch(zone, zone->pageset_high_min, 6596 zone->pageset_high_max, zone->pageset_batch); 6597 mutex_unlock(&pcp_batch_high_lock); 6598 } 6599 6600 void zone_pcp_reset(struct zone *zone) 6601 { 6602 int cpu; 6603 struct per_cpu_zonestat *pzstats; 6604 6605 if (zone->per_cpu_pageset != &boot_pageset) { 6606 for_each_online_cpu(cpu) { 6607 pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu); 6608 drain_zonestat(zone, pzstats); 6609 } 6610 free_percpu(zone->per_cpu_pageset); 6611 zone->per_cpu_pageset = &boot_pageset; 6612 if (zone->per_cpu_zonestats != &boot_zonestats) { 6613 free_percpu(zone->per_cpu_zonestats); 6614 zone->per_cpu_zonestats = &boot_zonestats; 6615 } 6616 } 6617 } 6618 6619 #ifdef CONFIG_MEMORY_HOTREMOVE 6620 /* 6621 * All pages in the range must be in a single zone, must not contain holes, 6622 * must span full sections, and must be isolated before calling this function. 6623 */ 6624 void __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn) 6625 { 6626 unsigned long pfn = start_pfn; 6627 struct page *page; 6628 struct zone *zone; 6629 unsigned int order; 6630 unsigned long flags; 6631 6632 offline_mem_sections(pfn, end_pfn); 6633 zone = page_zone(pfn_to_page(pfn)); 6634 spin_lock_irqsave(&zone->lock, flags); 6635 while (pfn < end_pfn) { 6636 page = pfn_to_page(pfn); 6637 /* 6638 * The HWPoisoned page may be not in buddy system, and 6639 * page_count() is not 0. 6640 */ 6641 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) { 6642 pfn++; 6643 continue; 6644 } 6645 /* 6646 * At this point all remaining PageOffline() pages have a 6647 * reference count of 0 and can simply be skipped. 6648 */ 6649 if (PageOffline(page)) { 6650 BUG_ON(page_count(page)); 6651 BUG_ON(PageBuddy(page)); 6652 pfn++; 6653 continue; 6654 } 6655 6656 BUG_ON(page_count(page)); 6657 BUG_ON(!PageBuddy(page)); 6658 order = buddy_order(page); 6659 del_page_from_free_list(page, zone, order); 6660 pfn += (1 << order); 6661 } 6662 spin_unlock_irqrestore(&zone->lock, flags); 6663 } 6664 #endif 6665 6666 /* 6667 * This function returns a stable result only if called under zone lock. 6668 */ 6669 bool is_free_buddy_page(struct page *page) 6670 { 6671 unsigned long pfn = page_to_pfn(page); 6672 unsigned int order; 6673 6674 for (order = 0; order < NR_PAGE_ORDERS; order++) { 6675 struct page *page_head = page - (pfn & ((1 << order) - 1)); 6676 6677 if (PageBuddy(page_head) && 6678 buddy_order_unsafe(page_head) >= order) 6679 break; 6680 } 6681 6682 return order <= MAX_PAGE_ORDER; 6683 } 6684 EXPORT_SYMBOL(is_free_buddy_page); 6685 6686 #ifdef CONFIG_MEMORY_FAILURE 6687 /* 6688 * Break down a higher-order page in sub-pages, and keep our target out of 6689 * buddy allocator. 6690 */ 6691 static void break_down_buddy_pages(struct zone *zone, struct page *page, 6692 struct page *target, int low, int high, 6693 int migratetype) 6694 { 6695 unsigned long size = 1 << high; 6696 struct page *current_buddy; 6697 6698 while (high > low) { 6699 high--; 6700 size >>= 1; 6701 6702 if (target >= &page[size]) { 6703 current_buddy = page; 6704 page = page + size; 6705 } else { 6706 current_buddy = page + size; 6707 } 6708 6709 if (set_page_guard(zone, current_buddy, high, migratetype)) 6710 continue; 6711 6712 add_to_free_list(current_buddy, zone, high, migratetype); 6713 set_buddy_order(current_buddy, high); 6714 } 6715 } 6716 6717 /* 6718 * Take a page that will be marked as poisoned off the buddy allocator. 6719 */ 6720 bool take_page_off_buddy(struct page *page) 6721 { 6722 struct zone *zone = page_zone(page); 6723 unsigned long pfn = page_to_pfn(page); 6724 unsigned long flags; 6725 unsigned int order; 6726 bool ret = false; 6727 6728 spin_lock_irqsave(&zone->lock, flags); 6729 for (order = 0; order < NR_PAGE_ORDERS; order++) { 6730 struct page *page_head = page - (pfn & ((1 << order) - 1)); 6731 int page_order = buddy_order(page_head); 6732 6733 if (PageBuddy(page_head) && page_order >= order) { 6734 unsigned long pfn_head = page_to_pfn(page_head); 6735 int migratetype = get_pfnblock_migratetype(page_head, 6736 pfn_head); 6737 6738 del_page_from_free_list(page_head, zone, page_order); 6739 break_down_buddy_pages(zone, page_head, page, 0, 6740 page_order, migratetype); 6741 SetPageHWPoisonTakenOff(page); 6742 if (!is_migrate_isolate(migratetype)) 6743 __mod_zone_freepage_state(zone, -1, migratetype); 6744 ret = true; 6745 break; 6746 } 6747 if (page_count(page_head) > 0) 6748 break; 6749 } 6750 spin_unlock_irqrestore(&zone->lock, flags); 6751 return ret; 6752 } 6753 6754 /* 6755 * Cancel takeoff done by take_page_off_buddy(). 6756 */ 6757 bool put_page_back_buddy(struct page *page) 6758 { 6759 struct zone *zone = page_zone(page); 6760 unsigned long pfn = page_to_pfn(page); 6761 unsigned long flags; 6762 int migratetype = get_pfnblock_migratetype(page, pfn); 6763 bool ret = false; 6764 6765 spin_lock_irqsave(&zone->lock, flags); 6766 if (put_page_testzero(page)) { 6767 ClearPageHWPoisonTakenOff(page); 6768 __free_one_page(page, pfn, zone, 0, migratetype, FPI_NONE); 6769 if (TestClearPageHWPoison(page)) { 6770 ret = true; 6771 } 6772 } 6773 spin_unlock_irqrestore(&zone->lock, flags); 6774 6775 return ret; 6776 } 6777 #endif 6778 6779 #ifdef CONFIG_ZONE_DMA 6780 bool has_managed_dma(void) 6781 { 6782 struct pglist_data *pgdat; 6783 6784 for_each_online_pgdat(pgdat) { 6785 struct zone *zone = &pgdat->node_zones[ZONE_DMA]; 6786 6787 if (managed_zone(zone)) 6788 return true; 6789 } 6790 return false; 6791 } 6792 #endif /* CONFIG_ZONE_DMA */ 6793 6794 #ifdef CONFIG_UNACCEPTED_MEMORY 6795 6796 /* Counts number of zones with unaccepted pages. */ 6797 static DEFINE_STATIC_KEY_FALSE(zones_with_unaccepted_pages); 6798 6799 static bool lazy_accept = true; 6800 6801 static int __init accept_memory_parse(char *p) 6802 { 6803 if (!strcmp(p, "lazy")) { 6804 lazy_accept = true; 6805 return 0; 6806 } else if (!strcmp(p, "eager")) { 6807 lazy_accept = false; 6808 return 0; 6809 } else { 6810 return -EINVAL; 6811 } 6812 } 6813 early_param("accept_memory", accept_memory_parse); 6814 6815 static bool page_contains_unaccepted(struct page *page, unsigned int order) 6816 { 6817 phys_addr_t start = page_to_phys(page); 6818 phys_addr_t end = start + (PAGE_SIZE << order); 6819 6820 return range_contains_unaccepted_memory(start, end); 6821 } 6822 6823 static void accept_page(struct page *page, unsigned int order) 6824 { 6825 phys_addr_t start = page_to_phys(page); 6826 6827 accept_memory(start, start + (PAGE_SIZE << order)); 6828 } 6829 6830 static bool try_to_accept_memory_one(struct zone *zone) 6831 { 6832 unsigned long flags; 6833 struct page *page; 6834 bool last; 6835 6836 if (list_empty(&zone->unaccepted_pages)) 6837 return false; 6838 6839 spin_lock_irqsave(&zone->lock, flags); 6840 page = list_first_entry_or_null(&zone->unaccepted_pages, 6841 struct page, lru); 6842 if (!page) { 6843 spin_unlock_irqrestore(&zone->lock, flags); 6844 return false; 6845 } 6846 6847 list_del(&page->lru); 6848 last = list_empty(&zone->unaccepted_pages); 6849 6850 __mod_zone_freepage_state(zone, -MAX_ORDER_NR_PAGES, MIGRATE_MOVABLE); 6851 __mod_zone_page_state(zone, NR_UNACCEPTED, -MAX_ORDER_NR_PAGES); 6852 spin_unlock_irqrestore(&zone->lock, flags); 6853 6854 accept_page(page, MAX_PAGE_ORDER); 6855 6856 __free_pages_ok(page, MAX_PAGE_ORDER, FPI_TO_TAIL); 6857 6858 if (last) 6859 static_branch_dec(&zones_with_unaccepted_pages); 6860 6861 return true; 6862 } 6863 6864 static bool try_to_accept_memory(struct zone *zone, unsigned int order) 6865 { 6866 long to_accept; 6867 int ret = false; 6868 6869 /* How much to accept to get to high watermark? */ 6870 to_accept = high_wmark_pages(zone) - 6871 (zone_page_state(zone, NR_FREE_PAGES) - 6872 __zone_watermark_unusable_free(zone, order, 0)); 6873 6874 /* Accept at least one page */ 6875 do { 6876 if (!try_to_accept_memory_one(zone)) 6877 break; 6878 ret = true; 6879 to_accept -= MAX_ORDER_NR_PAGES; 6880 } while (to_accept > 0); 6881 6882 return ret; 6883 } 6884 6885 static inline bool has_unaccepted_memory(void) 6886 { 6887 return static_branch_unlikely(&zones_with_unaccepted_pages); 6888 } 6889 6890 static bool __free_unaccepted(struct page *page) 6891 { 6892 struct zone *zone = page_zone(page); 6893 unsigned long flags; 6894 bool first = false; 6895 6896 if (!lazy_accept) 6897 return false; 6898 6899 spin_lock_irqsave(&zone->lock, flags); 6900 first = list_empty(&zone->unaccepted_pages); 6901 list_add_tail(&page->lru, &zone->unaccepted_pages); 6902 __mod_zone_freepage_state(zone, MAX_ORDER_NR_PAGES, MIGRATE_MOVABLE); 6903 __mod_zone_page_state(zone, NR_UNACCEPTED, MAX_ORDER_NR_PAGES); 6904 spin_unlock_irqrestore(&zone->lock, flags); 6905 6906 if (first) 6907 static_branch_inc(&zones_with_unaccepted_pages); 6908 6909 return true; 6910 } 6911 6912 #else 6913 6914 static bool page_contains_unaccepted(struct page *page, unsigned int order) 6915 { 6916 return false; 6917 } 6918 6919 static void accept_page(struct page *page, unsigned int order) 6920 { 6921 } 6922 6923 static bool try_to_accept_memory(struct zone *zone, unsigned int order) 6924 { 6925 return false; 6926 } 6927 6928 static inline bool has_unaccepted_memory(void) 6929 { 6930 return false; 6931 } 6932 6933 static bool __free_unaccepted(struct page *page) 6934 { 6935 BUILD_BUG(); 6936 return false; 6937 } 6938 6939 #endif /* CONFIG_UNACCEPTED_MEMORY */ 6940