1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/mm/page_alloc.c 4 * 5 * Manages the free list, the system allocates free pages here. 6 * Note that kmalloc() lives in slab.c 7 * 8 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 9 * Swap reorganised 29.12.95, Stephen Tweedie 10 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999 11 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999 12 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999 13 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000 14 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002 15 * (lots of bits borrowed from Ingo Molnar & Andrew Morton) 16 */ 17 18 #include <linux/stddef.h> 19 #include <linux/mm.h> 20 #include <linux/highmem.h> 21 #include <linux/swap.h> 22 #include <linux/interrupt.h> 23 #include <linux/pagemap.h> 24 #include <linux/jiffies.h> 25 #include <linux/memblock.h> 26 #include <linux/compiler.h> 27 #include <linux/kernel.h> 28 #include <linux/kasan.h> 29 #include <linux/module.h> 30 #include <linux/suspend.h> 31 #include <linux/pagevec.h> 32 #include <linux/blkdev.h> 33 #include <linux/slab.h> 34 #include <linux/ratelimit.h> 35 #include <linux/oom.h> 36 #include <linux/topology.h> 37 #include <linux/sysctl.h> 38 #include <linux/cpu.h> 39 #include <linux/cpuset.h> 40 #include <linux/memory_hotplug.h> 41 #include <linux/nodemask.h> 42 #include <linux/vmalloc.h> 43 #include <linux/vmstat.h> 44 #include <linux/mempolicy.h> 45 #include <linux/memremap.h> 46 #include <linux/stop_machine.h> 47 #include <linux/random.h> 48 #include <linux/sort.h> 49 #include <linux/pfn.h> 50 #include <linux/backing-dev.h> 51 #include <linux/fault-inject.h> 52 #include <linux/page-isolation.h> 53 #include <linux/debugobjects.h> 54 #include <linux/kmemleak.h> 55 #include <linux/compaction.h> 56 #include <trace/events/kmem.h> 57 #include <trace/events/oom.h> 58 #include <linux/prefetch.h> 59 #include <linux/mm_inline.h> 60 #include <linux/migrate.h> 61 #include <linux/hugetlb.h> 62 #include <linux/sched/rt.h> 63 #include <linux/sched/mm.h> 64 #include <linux/page_owner.h> 65 #include <linux/kthread.h> 66 #include <linux/memcontrol.h> 67 #include <linux/ftrace.h> 68 #include <linux/lockdep.h> 69 #include <linux/nmi.h> 70 #include <linux/psi.h> 71 72 #include <asm/sections.h> 73 #include <asm/tlbflush.h> 74 #include <asm/div64.h> 75 #include "internal.h" 76 #include "shuffle.h" 77 #include "page_reporting.h" 78 79 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */ 80 static DEFINE_MUTEX(pcp_batch_high_lock); 81 #define MIN_PERCPU_PAGELIST_FRACTION (8) 82 83 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID 84 DEFINE_PER_CPU(int, numa_node); 85 EXPORT_PER_CPU_SYMBOL(numa_node); 86 #endif 87 88 DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key); 89 90 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 91 /* 92 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly. 93 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined. 94 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem() 95 * defined in <linux/topology.h>. 96 */ 97 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */ 98 EXPORT_PER_CPU_SYMBOL(_numa_mem_); 99 #endif 100 101 /* work_structs for global per-cpu drains */ 102 struct pcpu_drain { 103 struct zone *zone; 104 struct work_struct work; 105 }; 106 static DEFINE_MUTEX(pcpu_drain_mutex); 107 static DEFINE_PER_CPU(struct pcpu_drain, pcpu_drain); 108 109 #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY 110 volatile unsigned long latent_entropy __latent_entropy; 111 EXPORT_SYMBOL(latent_entropy); 112 #endif 113 114 /* 115 * Array of node states. 116 */ 117 nodemask_t node_states[NR_NODE_STATES] __read_mostly = { 118 [N_POSSIBLE] = NODE_MASK_ALL, 119 [N_ONLINE] = { { [0] = 1UL } }, 120 #ifndef CONFIG_NUMA 121 [N_NORMAL_MEMORY] = { { [0] = 1UL } }, 122 #ifdef CONFIG_HIGHMEM 123 [N_HIGH_MEMORY] = { { [0] = 1UL } }, 124 #endif 125 [N_MEMORY] = { { [0] = 1UL } }, 126 [N_CPU] = { { [0] = 1UL } }, 127 #endif /* NUMA */ 128 }; 129 EXPORT_SYMBOL(node_states); 130 131 atomic_long_t _totalram_pages __read_mostly; 132 EXPORT_SYMBOL(_totalram_pages); 133 unsigned long totalreserve_pages __read_mostly; 134 unsigned long totalcma_pages __read_mostly; 135 136 int percpu_pagelist_fraction; 137 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK; 138 #ifdef CONFIG_INIT_ON_ALLOC_DEFAULT_ON 139 DEFINE_STATIC_KEY_TRUE(init_on_alloc); 140 #else 141 DEFINE_STATIC_KEY_FALSE(init_on_alloc); 142 #endif 143 EXPORT_SYMBOL(init_on_alloc); 144 145 #ifdef CONFIG_INIT_ON_FREE_DEFAULT_ON 146 DEFINE_STATIC_KEY_TRUE(init_on_free); 147 #else 148 DEFINE_STATIC_KEY_FALSE(init_on_free); 149 #endif 150 EXPORT_SYMBOL(init_on_free); 151 152 static int __init early_init_on_alloc(char *buf) 153 { 154 int ret; 155 bool bool_result; 156 157 if (!buf) 158 return -EINVAL; 159 ret = kstrtobool(buf, &bool_result); 160 if (bool_result && page_poisoning_enabled()) 161 pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, will take precedence over init_on_alloc\n"); 162 if (bool_result) 163 static_branch_enable(&init_on_alloc); 164 else 165 static_branch_disable(&init_on_alloc); 166 return ret; 167 } 168 early_param("init_on_alloc", early_init_on_alloc); 169 170 static int __init early_init_on_free(char *buf) 171 { 172 int ret; 173 bool bool_result; 174 175 if (!buf) 176 return -EINVAL; 177 ret = kstrtobool(buf, &bool_result); 178 if (bool_result && page_poisoning_enabled()) 179 pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, will take precedence over init_on_free\n"); 180 if (bool_result) 181 static_branch_enable(&init_on_free); 182 else 183 static_branch_disable(&init_on_free); 184 return ret; 185 } 186 early_param("init_on_free", early_init_on_free); 187 188 /* 189 * A cached value of the page's pageblock's migratetype, used when the page is 190 * put on a pcplist. Used to avoid the pageblock migratetype lookup when 191 * freeing from pcplists in most cases, at the cost of possibly becoming stale. 192 * Also the migratetype set in the page does not necessarily match the pcplist 193 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any 194 * other index - this ensures that it will be put on the correct CMA freelist. 195 */ 196 static inline int get_pcppage_migratetype(struct page *page) 197 { 198 return page->index; 199 } 200 201 static inline void set_pcppage_migratetype(struct page *page, int migratetype) 202 { 203 page->index = migratetype; 204 } 205 206 #ifdef CONFIG_PM_SLEEP 207 /* 208 * The following functions are used by the suspend/hibernate code to temporarily 209 * change gfp_allowed_mask in order to avoid using I/O during memory allocations 210 * while devices are suspended. To avoid races with the suspend/hibernate code, 211 * they should always be called with system_transition_mutex held 212 * (gfp_allowed_mask also should only be modified with system_transition_mutex 213 * held, unless the suspend/hibernate code is guaranteed not to run in parallel 214 * with that modification). 215 */ 216 217 static gfp_t saved_gfp_mask; 218 219 void pm_restore_gfp_mask(void) 220 { 221 WARN_ON(!mutex_is_locked(&system_transition_mutex)); 222 if (saved_gfp_mask) { 223 gfp_allowed_mask = saved_gfp_mask; 224 saved_gfp_mask = 0; 225 } 226 } 227 228 void pm_restrict_gfp_mask(void) 229 { 230 WARN_ON(!mutex_is_locked(&system_transition_mutex)); 231 WARN_ON(saved_gfp_mask); 232 saved_gfp_mask = gfp_allowed_mask; 233 gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS); 234 } 235 236 bool pm_suspended_storage(void) 237 { 238 if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS)) 239 return false; 240 return true; 241 } 242 #endif /* CONFIG_PM_SLEEP */ 243 244 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE 245 unsigned int pageblock_order __read_mostly; 246 #endif 247 248 static void __free_pages_ok(struct page *page, unsigned int order); 249 250 /* 251 * results with 256, 32 in the lowmem_reserve sysctl: 252 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high) 253 * 1G machine -> (16M dma, 784M normal, 224M high) 254 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA 255 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL 256 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA 257 * 258 * TBD: should special case ZONE_DMA32 machines here - in those we normally 259 * don't need any ZONE_NORMAL reservation 260 */ 261 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = { 262 #ifdef CONFIG_ZONE_DMA 263 [ZONE_DMA] = 256, 264 #endif 265 #ifdef CONFIG_ZONE_DMA32 266 [ZONE_DMA32] = 256, 267 #endif 268 [ZONE_NORMAL] = 32, 269 #ifdef CONFIG_HIGHMEM 270 [ZONE_HIGHMEM] = 0, 271 #endif 272 [ZONE_MOVABLE] = 0, 273 }; 274 275 static char * const zone_names[MAX_NR_ZONES] = { 276 #ifdef CONFIG_ZONE_DMA 277 "DMA", 278 #endif 279 #ifdef CONFIG_ZONE_DMA32 280 "DMA32", 281 #endif 282 "Normal", 283 #ifdef CONFIG_HIGHMEM 284 "HighMem", 285 #endif 286 "Movable", 287 #ifdef CONFIG_ZONE_DEVICE 288 "Device", 289 #endif 290 }; 291 292 const char * const migratetype_names[MIGRATE_TYPES] = { 293 "Unmovable", 294 "Movable", 295 "Reclaimable", 296 "HighAtomic", 297 #ifdef CONFIG_CMA 298 "CMA", 299 #endif 300 #ifdef CONFIG_MEMORY_ISOLATION 301 "Isolate", 302 #endif 303 }; 304 305 compound_page_dtor * const compound_page_dtors[] = { 306 NULL, 307 free_compound_page, 308 #ifdef CONFIG_HUGETLB_PAGE 309 free_huge_page, 310 #endif 311 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 312 free_transhuge_page, 313 #endif 314 }; 315 316 int min_free_kbytes = 1024; 317 int user_min_free_kbytes = -1; 318 #ifdef CONFIG_DISCONTIGMEM 319 /* 320 * DiscontigMem defines memory ranges as separate pg_data_t even if the ranges 321 * are not on separate NUMA nodes. Functionally this works but with 322 * watermark_boost_factor, it can reclaim prematurely as the ranges can be 323 * quite small. By default, do not boost watermarks on discontigmem as in 324 * many cases very high-order allocations like THP are likely to be 325 * unsupported and the premature reclaim offsets the advantage of long-term 326 * fragmentation avoidance. 327 */ 328 int watermark_boost_factor __read_mostly; 329 #else 330 int watermark_boost_factor __read_mostly = 15000; 331 #endif 332 int watermark_scale_factor = 10; 333 334 static unsigned long nr_kernel_pages __initdata; 335 static unsigned long nr_all_pages __initdata; 336 static unsigned long dma_reserve __initdata; 337 338 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 339 static unsigned long arch_zone_lowest_possible_pfn[MAX_NR_ZONES] __initdata; 340 static unsigned long arch_zone_highest_possible_pfn[MAX_NR_ZONES] __initdata; 341 static unsigned long required_kernelcore __initdata; 342 static unsigned long required_kernelcore_percent __initdata; 343 static unsigned long required_movablecore __initdata; 344 static unsigned long required_movablecore_percent __initdata; 345 static unsigned long zone_movable_pfn[MAX_NUMNODES] __initdata; 346 static bool mirrored_kernelcore __meminitdata; 347 348 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */ 349 int movable_zone; 350 EXPORT_SYMBOL(movable_zone); 351 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 352 353 #if MAX_NUMNODES > 1 354 unsigned int nr_node_ids __read_mostly = MAX_NUMNODES; 355 unsigned int nr_online_nodes __read_mostly = 1; 356 EXPORT_SYMBOL(nr_node_ids); 357 EXPORT_SYMBOL(nr_online_nodes); 358 #endif 359 360 int page_group_by_mobility_disabled __read_mostly; 361 362 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 363 /* 364 * During boot we initialize deferred pages on-demand, as needed, but once 365 * page_alloc_init_late() has finished, the deferred pages are all initialized, 366 * and we can permanently disable that path. 367 */ 368 static DEFINE_STATIC_KEY_TRUE(deferred_pages); 369 370 /* 371 * Calling kasan_free_pages() only after deferred memory initialization 372 * has completed. Poisoning pages during deferred memory init will greatly 373 * lengthen the process and cause problem in large memory systems as the 374 * deferred pages initialization is done with interrupt disabled. 375 * 376 * Assuming that there will be no reference to those newly initialized 377 * pages before they are ever allocated, this should have no effect on 378 * KASAN memory tracking as the poison will be properly inserted at page 379 * allocation time. The only corner case is when pages are allocated by 380 * on-demand allocation and then freed again before the deferred pages 381 * initialization is done, but this is not likely to happen. 382 */ 383 static inline void kasan_free_nondeferred_pages(struct page *page, int order) 384 { 385 if (!static_branch_unlikely(&deferred_pages)) 386 kasan_free_pages(page, order); 387 } 388 389 /* Returns true if the struct page for the pfn is uninitialised */ 390 static inline bool __meminit early_page_uninitialised(unsigned long pfn) 391 { 392 int nid = early_pfn_to_nid(pfn); 393 394 if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn) 395 return true; 396 397 return false; 398 } 399 400 /* 401 * Returns true when the remaining initialisation should be deferred until 402 * later in the boot cycle when it can be parallelised. 403 */ 404 static bool __meminit 405 defer_init(int nid, unsigned long pfn, unsigned long end_pfn) 406 { 407 static unsigned long prev_end_pfn, nr_initialised; 408 409 /* 410 * prev_end_pfn static that contains the end of previous zone 411 * No need to protect because called very early in boot before smp_init. 412 */ 413 if (prev_end_pfn != end_pfn) { 414 prev_end_pfn = end_pfn; 415 nr_initialised = 0; 416 } 417 418 /* Always populate low zones for address-constrained allocations */ 419 if (end_pfn < pgdat_end_pfn(NODE_DATA(nid))) 420 return false; 421 422 /* 423 * We start only with one section of pages, more pages are added as 424 * needed until the rest of deferred pages are initialized. 425 */ 426 nr_initialised++; 427 if ((nr_initialised > PAGES_PER_SECTION) && 428 (pfn & (PAGES_PER_SECTION - 1)) == 0) { 429 NODE_DATA(nid)->first_deferred_pfn = pfn; 430 return true; 431 } 432 return false; 433 } 434 #else 435 #define kasan_free_nondeferred_pages(p, o) kasan_free_pages(p, o) 436 437 static inline bool early_page_uninitialised(unsigned long pfn) 438 { 439 return false; 440 } 441 442 static inline bool defer_init(int nid, unsigned long pfn, unsigned long end_pfn) 443 { 444 return false; 445 } 446 #endif 447 448 /* Return a pointer to the bitmap storing bits affecting a block of pages */ 449 static inline unsigned long *get_pageblock_bitmap(struct page *page, 450 unsigned long pfn) 451 { 452 #ifdef CONFIG_SPARSEMEM 453 return section_to_usemap(__pfn_to_section(pfn)); 454 #else 455 return page_zone(page)->pageblock_flags; 456 #endif /* CONFIG_SPARSEMEM */ 457 } 458 459 static inline int pfn_to_bitidx(struct page *page, unsigned long pfn) 460 { 461 #ifdef CONFIG_SPARSEMEM 462 pfn &= (PAGES_PER_SECTION-1); 463 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS; 464 #else 465 pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages); 466 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS; 467 #endif /* CONFIG_SPARSEMEM */ 468 } 469 470 /** 471 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages 472 * @page: The page within the block of interest 473 * @pfn: The target page frame number 474 * @end_bitidx: The last bit of interest to retrieve 475 * @mask: mask of bits that the caller is interested in 476 * 477 * Return: pageblock_bits flags 478 */ 479 static __always_inline unsigned long __get_pfnblock_flags_mask(struct page *page, 480 unsigned long pfn, 481 unsigned long end_bitidx, 482 unsigned long mask) 483 { 484 unsigned long *bitmap; 485 unsigned long bitidx, word_bitidx; 486 unsigned long word; 487 488 bitmap = get_pageblock_bitmap(page, pfn); 489 bitidx = pfn_to_bitidx(page, pfn); 490 word_bitidx = bitidx / BITS_PER_LONG; 491 bitidx &= (BITS_PER_LONG-1); 492 493 word = bitmap[word_bitidx]; 494 bitidx += end_bitidx; 495 return (word >> (BITS_PER_LONG - bitidx - 1)) & mask; 496 } 497 498 unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn, 499 unsigned long end_bitidx, 500 unsigned long mask) 501 { 502 return __get_pfnblock_flags_mask(page, pfn, end_bitidx, mask); 503 } 504 505 static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn) 506 { 507 return __get_pfnblock_flags_mask(page, pfn, PB_migrate_end, MIGRATETYPE_MASK); 508 } 509 510 /** 511 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages 512 * @page: The page within the block of interest 513 * @flags: The flags to set 514 * @pfn: The target page frame number 515 * @end_bitidx: The last bit of interest 516 * @mask: mask of bits that the caller is interested in 517 */ 518 void set_pfnblock_flags_mask(struct page *page, unsigned long flags, 519 unsigned long pfn, 520 unsigned long end_bitidx, 521 unsigned long mask) 522 { 523 unsigned long *bitmap; 524 unsigned long bitidx, word_bitidx; 525 unsigned long old_word, word; 526 527 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4); 528 BUILD_BUG_ON(MIGRATE_TYPES > (1 << PB_migratetype_bits)); 529 530 bitmap = get_pageblock_bitmap(page, pfn); 531 bitidx = pfn_to_bitidx(page, pfn); 532 word_bitidx = bitidx / BITS_PER_LONG; 533 bitidx &= (BITS_PER_LONG-1); 534 535 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page); 536 537 bitidx += end_bitidx; 538 mask <<= (BITS_PER_LONG - bitidx - 1); 539 flags <<= (BITS_PER_LONG - bitidx - 1); 540 541 word = READ_ONCE(bitmap[word_bitidx]); 542 for (;;) { 543 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags); 544 if (word == old_word) 545 break; 546 word = old_word; 547 } 548 } 549 550 void set_pageblock_migratetype(struct page *page, int migratetype) 551 { 552 if (unlikely(page_group_by_mobility_disabled && 553 migratetype < MIGRATE_PCPTYPES)) 554 migratetype = MIGRATE_UNMOVABLE; 555 556 set_pageblock_flags_group(page, (unsigned long)migratetype, 557 PB_migrate, PB_migrate_end); 558 } 559 560 #ifdef CONFIG_DEBUG_VM 561 static int page_outside_zone_boundaries(struct zone *zone, struct page *page) 562 { 563 int ret = 0; 564 unsigned seq; 565 unsigned long pfn = page_to_pfn(page); 566 unsigned long sp, start_pfn; 567 568 do { 569 seq = zone_span_seqbegin(zone); 570 start_pfn = zone->zone_start_pfn; 571 sp = zone->spanned_pages; 572 if (!zone_spans_pfn(zone, pfn)) 573 ret = 1; 574 } while (zone_span_seqretry(zone, seq)); 575 576 if (ret) 577 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n", 578 pfn, zone_to_nid(zone), zone->name, 579 start_pfn, start_pfn + sp); 580 581 return ret; 582 } 583 584 static int page_is_consistent(struct zone *zone, struct page *page) 585 { 586 if (!pfn_valid_within(page_to_pfn(page))) 587 return 0; 588 if (zone != page_zone(page)) 589 return 0; 590 591 return 1; 592 } 593 /* 594 * Temporary debugging check for pages not lying within a given zone. 595 */ 596 static int __maybe_unused bad_range(struct zone *zone, struct page *page) 597 { 598 if (page_outside_zone_boundaries(zone, page)) 599 return 1; 600 if (!page_is_consistent(zone, page)) 601 return 1; 602 603 return 0; 604 } 605 #else 606 static inline int __maybe_unused bad_range(struct zone *zone, struct page *page) 607 { 608 return 0; 609 } 610 #endif 611 612 static void bad_page(struct page *page, const char *reason, 613 unsigned long bad_flags) 614 { 615 static unsigned long resume; 616 static unsigned long nr_shown; 617 static unsigned long nr_unshown; 618 619 /* 620 * Allow a burst of 60 reports, then keep quiet for that minute; 621 * or allow a steady drip of one report per second. 622 */ 623 if (nr_shown == 60) { 624 if (time_before(jiffies, resume)) { 625 nr_unshown++; 626 goto out; 627 } 628 if (nr_unshown) { 629 pr_alert( 630 "BUG: Bad page state: %lu messages suppressed\n", 631 nr_unshown); 632 nr_unshown = 0; 633 } 634 nr_shown = 0; 635 } 636 if (nr_shown++ == 0) 637 resume = jiffies + 60 * HZ; 638 639 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n", 640 current->comm, page_to_pfn(page)); 641 __dump_page(page, reason); 642 bad_flags &= page->flags; 643 if (bad_flags) 644 pr_alert("bad because of flags: %#lx(%pGp)\n", 645 bad_flags, &bad_flags); 646 dump_page_owner(page); 647 648 print_modules(); 649 dump_stack(); 650 out: 651 /* Leave bad fields for debug, except PageBuddy could make trouble */ 652 page_mapcount_reset(page); /* remove PageBuddy */ 653 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 654 } 655 656 /* 657 * Higher-order pages are called "compound pages". They are structured thusly: 658 * 659 * The first PAGE_SIZE page is called the "head page" and have PG_head set. 660 * 661 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded 662 * in bit 0 of page->compound_head. The rest of bits is pointer to head page. 663 * 664 * The first tail page's ->compound_dtor holds the offset in array of compound 665 * page destructors. See compound_page_dtors. 666 * 667 * The first tail page's ->compound_order holds the order of allocation. 668 * This usage means that zero-order pages may not be compound. 669 */ 670 671 void free_compound_page(struct page *page) 672 { 673 mem_cgroup_uncharge(page); 674 __free_pages_ok(page, compound_order(page)); 675 } 676 677 void prep_compound_page(struct page *page, unsigned int order) 678 { 679 int i; 680 int nr_pages = 1 << order; 681 682 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR); 683 set_compound_order(page, order); 684 __SetPageHead(page); 685 for (i = 1; i < nr_pages; i++) { 686 struct page *p = page + i; 687 set_page_count(p, 0); 688 p->mapping = TAIL_MAPPING; 689 set_compound_head(p, page); 690 } 691 atomic_set(compound_mapcount_ptr(page), -1); 692 if (hpage_pincount_available(page)) 693 atomic_set(compound_pincount_ptr(page), 0); 694 } 695 696 #ifdef CONFIG_DEBUG_PAGEALLOC 697 unsigned int _debug_guardpage_minorder; 698 699 bool _debug_pagealloc_enabled_early __read_mostly 700 = IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT); 701 EXPORT_SYMBOL(_debug_pagealloc_enabled_early); 702 DEFINE_STATIC_KEY_FALSE(_debug_pagealloc_enabled); 703 EXPORT_SYMBOL(_debug_pagealloc_enabled); 704 705 DEFINE_STATIC_KEY_FALSE(_debug_guardpage_enabled); 706 707 static int __init early_debug_pagealloc(char *buf) 708 { 709 return kstrtobool(buf, &_debug_pagealloc_enabled_early); 710 } 711 early_param("debug_pagealloc", early_debug_pagealloc); 712 713 void init_debug_pagealloc(void) 714 { 715 if (!debug_pagealloc_enabled()) 716 return; 717 718 static_branch_enable(&_debug_pagealloc_enabled); 719 720 if (!debug_guardpage_minorder()) 721 return; 722 723 static_branch_enable(&_debug_guardpage_enabled); 724 } 725 726 static int __init debug_guardpage_minorder_setup(char *buf) 727 { 728 unsigned long res; 729 730 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) { 731 pr_err("Bad debug_guardpage_minorder value\n"); 732 return 0; 733 } 734 _debug_guardpage_minorder = res; 735 pr_info("Setting debug_guardpage_minorder to %lu\n", res); 736 return 0; 737 } 738 early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup); 739 740 static inline bool set_page_guard(struct zone *zone, struct page *page, 741 unsigned int order, int migratetype) 742 { 743 if (!debug_guardpage_enabled()) 744 return false; 745 746 if (order >= debug_guardpage_minorder()) 747 return false; 748 749 __SetPageGuard(page); 750 INIT_LIST_HEAD(&page->lru); 751 set_page_private(page, order); 752 /* Guard pages are not available for any usage */ 753 __mod_zone_freepage_state(zone, -(1 << order), migratetype); 754 755 return true; 756 } 757 758 static inline void clear_page_guard(struct zone *zone, struct page *page, 759 unsigned int order, int migratetype) 760 { 761 if (!debug_guardpage_enabled()) 762 return; 763 764 __ClearPageGuard(page); 765 766 set_page_private(page, 0); 767 if (!is_migrate_isolate(migratetype)) 768 __mod_zone_freepage_state(zone, (1 << order), migratetype); 769 } 770 #else 771 static inline bool set_page_guard(struct zone *zone, struct page *page, 772 unsigned int order, int migratetype) { return false; } 773 static inline void clear_page_guard(struct zone *zone, struct page *page, 774 unsigned int order, int migratetype) {} 775 #endif 776 777 static inline void set_page_order(struct page *page, unsigned int order) 778 { 779 set_page_private(page, order); 780 __SetPageBuddy(page); 781 } 782 783 /* 784 * This function checks whether a page is free && is the buddy 785 * we can coalesce a page and its buddy if 786 * (a) the buddy is not in a hole (check before calling!) && 787 * (b) the buddy is in the buddy system && 788 * (c) a page and its buddy have the same order && 789 * (d) a page and its buddy are in the same zone. 790 * 791 * For recording whether a page is in the buddy system, we set PageBuddy. 792 * Setting, clearing, and testing PageBuddy is serialized by zone->lock. 793 * 794 * For recording page's order, we use page_private(page). 795 */ 796 static inline bool page_is_buddy(struct page *page, struct page *buddy, 797 unsigned int order) 798 { 799 if (!page_is_guard(buddy) && !PageBuddy(buddy)) 800 return false; 801 802 if (page_order(buddy) != order) 803 return false; 804 805 /* 806 * zone check is done late to avoid uselessly calculating 807 * zone/node ids for pages that could never merge. 808 */ 809 if (page_zone_id(page) != page_zone_id(buddy)) 810 return false; 811 812 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy); 813 814 return true; 815 } 816 817 #ifdef CONFIG_COMPACTION 818 static inline struct capture_control *task_capc(struct zone *zone) 819 { 820 struct capture_control *capc = current->capture_control; 821 822 return capc && 823 !(current->flags & PF_KTHREAD) && 824 !capc->page && 825 capc->cc->zone == zone && 826 capc->cc->direct_compaction ? capc : NULL; 827 } 828 829 static inline bool 830 compaction_capture(struct capture_control *capc, struct page *page, 831 int order, int migratetype) 832 { 833 if (!capc || order != capc->cc->order) 834 return false; 835 836 /* Do not accidentally pollute CMA or isolated regions*/ 837 if (is_migrate_cma(migratetype) || 838 is_migrate_isolate(migratetype)) 839 return false; 840 841 /* 842 * Do not let lower order allocations polluate a movable pageblock. 843 * This might let an unmovable request use a reclaimable pageblock 844 * and vice-versa but no more than normal fallback logic which can 845 * have trouble finding a high-order free page. 846 */ 847 if (order < pageblock_order && migratetype == MIGRATE_MOVABLE) 848 return false; 849 850 capc->page = page; 851 return true; 852 } 853 854 #else 855 static inline struct capture_control *task_capc(struct zone *zone) 856 { 857 return NULL; 858 } 859 860 static inline bool 861 compaction_capture(struct capture_control *capc, struct page *page, 862 int order, int migratetype) 863 { 864 return false; 865 } 866 #endif /* CONFIG_COMPACTION */ 867 868 /* Used for pages not on another list */ 869 static inline void add_to_free_list(struct page *page, struct zone *zone, 870 unsigned int order, int migratetype) 871 { 872 struct free_area *area = &zone->free_area[order]; 873 874 list_add(&page->lru, &area->free_list[migratetype]); 875 area->nr_free++; 876 } 877 878 /* Used for pages not on another list */ 879 static inline void add_to_free_list_tail(struct page *page, struct zone *zone, 880 unsigned int order, int migratetype) 881 { 882 struct free_area *area = &zone->free_area[order]; 883 884 list_add_tail(&page->lru, &area->free_list[migratetype]); 885 area->nr_free++; 886 } 887 888 /* Used for pages which are on another list */ 889 static inline void move_to_free_list(struct page *page, struct zone *zone, 890 unsigned int order, int migratetype) 891 { 892 struct free_area *area = &zone->free_area[order]; 893 894 list_move(&page->lru, &area->free_list[migratetype]); 895 } 896 897 static inline void del_page_from_free_list(struct page *page, struct zone *zone, 898 unsigned int order) 899 { 900 /* clear reported state and update reported page count */ 901 if (page_reported(page)) 902 __ClearPageReported(page); 903 904 list_del(&page->lru); 905 __ClearPageBuddy(page); 906 set_page_private(page, 0); 907 zone->free_area[order].nr_free--; 908 } 909 910 /* 911 * If this is not the largest possible page, check if the buddy 912 * of the next-highest order is free. If it is, it's possible 913 * that pages are being freed that will coalesce soon. In case, 914 * that is happening, add the free page to the tail of the list 915 * so it's less likely to be used soon and more likely to be merged 916 * as a higher order page 917 */ 918 static inline bool 919 buddy_merge_likely(unsigned long pfn, unsigned long buddy_pfn, 920 struct page *page, unsigned int order) 921 { 922 struct page *higher_page, *higher_buddy; 923 unsigned long combined_pfn; 924 925 if (order >= MAX_ORDER - 2) 926 return false; 927 928 if (!pfn_valid_within(buddy_pfn)) 929 return false; 930 931 combined_pfn = buddy_pfn & pfn; 932 higher_page = page + (combined_pfn - pfn); 933 buddy_pfn = __find_buddy_pfn(combined_pfn, order + 1); 934 higher_buddy = higher_page + (buddy_pfn - combined_pfn); 935 936 return pfn_valid_within(buddy_pfn) && 937 page_is_buddy(higher_page, higher_buddy, order + 1); 938 } 939 940 /* 941 * Freeing function for a buddy system allocator. 942 * 943 * The concept of a buddy system is to maintain direct-mapped table 944 * (containing bit values) for memory blocks of various "orders". 945 * The bottom level table contains the map for the smallest allocatable 946 * units of memory (here, pages), and each level above it describes 947 * pairs of units from the levels below, hence, "buddies". 948 * At a high level, all that happens here is marking the table entry 949 * at the bottom level available, and propagating the changes upward 950 * as necessary, plus some accounting needed to play nicely with other 951 * parts of the VM system. 952 * At each level, we keep a list of pages, which are heads of continuous 953 * free pages of length of (1 << order) and marked with PageBuddy. 954 * Page's order is recorded in page_private(page) field. 955 * So when we are allocating or freeing one, we can derive the state of the 956 * other. That is, if we allocate a small block, and both were 957 * free, the remainder of the region must be split into blocks. 958 * If a block is freed, and its buddy is also free, then this 959 * triggers coalescing into a block of larger size. 960 * 961 * -- nyc 962 */ 963 964 static inline void __free_one_page(struct page *page, 965 unsigned long pfn, 966 struct zone *zone, unsigned int order, 967 int migratetype, bool report) 968 { 969 struct capture_control *capc = task_capc(zone); 970 unsigned long uninitialized_var(buddy_pfn); 971 unsigned long combined_pfn; 972 unsigned int max_order; 973 struct page *buddy; 974 bool to_tail; 975 976 max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1); 977 978 VM_BUG_ON(!zone_is_initialized(zone)); 979 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page); 980 981 VM_BUG_ON(migratetype == -1); 982 if (likely(!is_migrate_isolate(migratetype))) 983 __mod_zone_freepage_state(zone, 1 << order, migratetype); 984 985 VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page); 986 VM_BUG_ON_PAGE(bad_range(zone, page), page); 987 988 continue_merging: 989 while (order < max_order - 1) { 990 if (compaction_capture(capc, page, order, migratetype)) { 991 __mod_zone_freepage_state(zone, -(1 << order), 992 migratetype); 993 return; 994 } 995 buddy_pfn = __find_buddy_pfn(pfn, order); 996 buddy = page + (buddy_pfn - pfn); 997 998 if (!pfn_valid_within(buddy_pfn)) 999 goto done_merging; 1000 if (!page_is_buddy(page, buddy, order)) 1001 goto done_merging; 1002 /* 1003 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page, 1004 * merge with it and move up one order. 1005 */ 1006 if (page_is_guard(buddy)) 1007 clear_page_guard(zone, buddy, order, migratetype); 1008 else 1009 del_page_from_free_list(buddy, zone, order); 1010 combined_pfn = buddy_pfn & pfn; 1011 page = page + (combined_pfn - pfn); 1012 pfn = combined_pfn; 1013 order++; 1014 } 1015 if (max_order < MAX_ORDER) { 1016 /* If we are here, it means order is >= pageblock_order. 1017 * We want to prevent merge between freepages on isolate 1018 * pageblock and normal pageblock. Without this, pageblock 1019 * isolation could cause incorrect freepage or CMA accounting. 1020 * 1021 * We don't want to hit this code for the more frequent 1022 * low-order merging. 1023 */ 1024 if (unlikely(has_isolate_pageblock(zone))) { 1025 int buddy_mt; 1026 1027 buddy_pfn = __find_buddy_pfn(pfn, order); 1028 buddy = page + (buddy_pfn - pfn); 1029 buddy_mt = get_pageblock_migratetype(buddy); 1030 1031 if (migratetype != buddy_mt 1032 && (is_migrate_isolate(migratetype) || 1033 is_migrate_isolate(buddy_mt))) 1034 goto done_merging; 1035 } 1036 max_order++; 1037 goto continue_merging; 1038 } 1039 1040 done_merging: 1041 set_page_order(page, order); 1042 1043 if (is_shuffle_order(order)) 1044 to_tail = shuffle_pick_tail(); 1045 else 1046 to_tail = buddy_merge_likely(pfn, buddy_pfn, page, order); 1047 1048 if (to_tail) 1049 add_to_free_list_tail(page, zone, order, migratetype); 1050 else 1051 add_to_free_list(page, zone, order, migratetype); 1052 1053 /* Notify page reporting subsystem of freed page */ 1054 if (report) 1055 page_reporting_notify_free(order); 1056 } 1057 1058 /* 1059 * A bad page could be due to a number of fields. Instead of multiple branches, 1060 * try and check multiple fields with one check. The caller must do a detailed 1061 * check if necessary. 1062 */ 1063 static inline bool page_expected_state(struct page *page, 1064 unsigned long check_flags) 1065 { 1066 if (unlikely(atomic_read(&page->_mapcount) != -1)) 1067 return false; 1068 1069 if (unlikely((unsigned long)page->mapping | 1070 page_ref_count(page) | 1071 #ifdef CONFIG_MEMCG 1072 (unsigned long)page->mem_cgroup | 1073 #endif 1074 (page->flags & check_flags))) 1075 return false; 1076 1077 return true; 1078 } 1079 1080 static void free_pages_check_bad(struct page *page) 1081 { 1082 const char *bad_reason; 1083 unsigned long bad_flags; 1084 1085 bad_reason = NULL; 1086 bad_flags = 0; 1087 1088 if (unlikely(atomic_read(&page->_mapcount) != -1)) 1089 bad_reason = "nonzero mapcount"; 1090 if (unlikely(page->mapping != NULL)) 1091 bad_reason = "non-NULL mapping"; 1092 if (unlikely(page_ref_count(page) != 0)) 1093 bad_reason = "nonzero _refcount"; 1094 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) { 1095 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set"; 1096 bad_flags = PAGE_FLAGS_CHECK_AT_FREE; 1097 } 1098 #ifdef CONFIG_MEMCG 1099 if (unlikely(page->mem_cgroup)) 1100 bad_reason = "page still charged to cgroup"; 1101 #endif 1102 bad_page(page, bad_reason, bad_flags); 1103 } 1104 1105 static inline int free_pages_check(struct page *page) 1106 { 1107 if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE))) 1108 return 0; 1109 1110 /* Something has gone sideways, find it */ 1111 free_pages_check_bad(page); 1112 return 1; 1113 } 1114 1115 static int free_tail_pages_check(struct page *head_page, struct page *page) 1116 { 1117 int ret = 1; 1118 1119 /* 1120 * We rely page->lru.next never has bit 0 set, unless the page 1121 * is PageTail(). Let's make sure that's true even for poisoned ->lru. 1122 */ 1123 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1); 1124 1125 if (!IS_ENABLED(CONFIG_DEBUG_VM)) { 1126 ret = 0; 1127 goto out; 1128 } 1129 switch (page - head_page) { 1130 case 1: 1131 /* the first tail page: ->mapping may be compound_mapcount() */ 1132 if (unlikely(compound_mapcount(page))) { 1133 bad_page(page, "nonzero compound_mapcount", 0); 1134 goto out; 1135 } 1136 break; 1137 case 2: 1138 /* 1139 * the second tail page: ->mapping is 1140 * deferred_list.next -- ignore value. 1141 */ 1142 break; 1143 default: 1144 if (page->mapping != TAIL_MAPPING) { 1145 bad_page(page, "corrupted mapping in tail page", 0); 1146 goto out; 1147 } 1148 break; 1149 } 1150 if (unlikely(!PageTail(page))) { 1151 bad_page(page, "PageTail not set", 0); 1152 goto out; 1153 } 1154 if (unlikely(compound_head(page) != head_page)) { 1155 bad_page(page, "compound_head not consistent", 0); 1156 goto out; 1157 } 1158 ret = 0; 1159 out: 1160 page->mapping = NULL; 1161 clear_compound_head(page); 1162 return ret; 1163 } 1164 1165 static void kernel_init_free_pages(struct page *page, int numpages) 1166 { 1167 int i; 1168 1169 for (i = 0; i < numpages; i++) 1170 clear_highpage(page + i); 1171 } 1172 1173 static __always_inline bool free_pages_prepare(struct page *page, 1174 unsigned int order, bool check_free) 1175 { 1176 int bad = 0; 1177 1178 VM_BUG_ON_PAGE(PageTail(page), page); 1179 1180 trace_mm_page_free(page, order); 1181 1182 /* 1183 * Check tail pages before head page information is cleared to 1184 * avoid checking PageCompound for order-0 pages. 1185 */ 1186 if (unlikely(order)) { 1187 bool compound = PageCompound(page); 1188 int i; 1189 1190 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page); 1191 1192 if (compound) 1193 ClearPageDoubleMap(page); 1194 for (i = 1; i < (1 << order); i++) { 1195 if (compound) 1196 bad += free_tail_pages_check(page, page + i); 1197 if (unlikely(free_pages_check(page + i))) { 1198 bad++; 1199 continue; 1200 } 1201 (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP; 1202 } 1203 } 1204 if (PageMappingFlags(page)) 1205 page->mapping = NULL; 1206 if (memcg_kmem_enabled() && PageKmemcg(page)) 1207 __memcg_kmem_uncharge_page(page, order); 1208 if (check_free) 1209 bad += free_pages_check(page); 1210 if (bad) 1211 return false; 1212 1213 page_cpupid_reset_last(page); 1214 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP; 1215 reset_page_owner(page, order); 1216 1217 if (!PageHighMem(page)) { 1218 debug_check_no_locks_freed(page_address(page), 1219 PAGE_SIZE << order); 1220 debug_check_no_obj_freed(page_address(page), 1221 PAGE_SIZE << order); 1222 } 1223 if (want_init_on_free()) 1224 kernel_init_free_pages(page, 1 << order); 1225 1226 kernel_poison_pages(page, 1 << order, 0); 1227 /* 1228 * arch_free_page() can make the page's contents inaccessible. s390 1229 * does this. So nothing which can access the page's contents should 1230 * happen after this. 1231 */ 1232 arch_free_page(page, order); 1233 1234 if (debug_pagealloc_enabled_static()) 1235 kernel_map_pages(page, 1 << order, 0); 1236 1237 kasan_free_nondeferred_pages(page, order); 1238 1239 return true; 1240 } 1241 1242 #ifdef CONFIG_DEBUG_VM 1243 /* 1244 * With DEBUG_VM enabled, order-0 pages are checked immediately when being freed 1245 * to pcp lists. With debug_pagealloc also enabled, they are also rechecked when 1246 * moved from pcp lists to free lists. 1247 */ 1248 static bool free_pcp_prepare(struct page *page) 1249 { 1250 return free_pages_prepare(page, 0, true); 1251 } 1252 1253 static bool bulkfree_pcp_prepare(struct page *page) 1254 { 1255 if (debug_pagealloc_enabled_static()) 1256 return free_pages_check(page); 1257 else 1258 return false; 1259 } 1260 #else 1261 /* 1262 * With DEBUG_VM disabled, order-0 pages being freed are checked only when 1263 * moving from pcp lists to free list in order to reduce overhead. With 1264 * debug_pagealloc enabled, they are checked also immediately when being freed 1265 * to the pcp lists. 1266 */ 1267 static bool free_pcp_prepare(struct page *page) 1268 { 1269 if (debug_pagealloc_enabled_static()) 1270 return free_pages_prepare(page, 0, true); 1271 else 1272 return free_pages_prepare(page, 0, false); 1273 } 1274 1275 static bool bulkfree_pcp_prepare(struct page *page) 1276 { 1277 return free_pages_check(page); 1278 } 1279 #endif /* CONFIG_DEBUG_VM */ 1280 1281 static inline void prefetch_buddy(struct page *page) 1282 { 1283 unsigned long pfn = page_to_pfn(page); 1284 unsigned long buddy_pfn = __find_buddy_pfn(pfn, 0); 1285 struct page *buddy = page + (buddy_pfn - pfn); 1286 1287 prefetch(buddy); 1288 } 1289 1290 /* 1291 * Frees a number of pages from the PCP lists 1292 * Assumes all pages on list are in same zone, and of same order. 1293 * count is the number of pages to free. 1294 * 1295 * If the zone was previously in an "all pages pinned" state then look to 1296 * see if this freeing clears that state. 1297 * 1298 * And clear the zone's pages_scanned counter, to hold off the "all pages are 1299 * pinned" detection logic. 1300 */ 1301 static void free_pcppages_bulk(struct zone *zone, int count, 1302 struct per_cpu_pages *pcp) 1303 { 1304 int migratetype = 0; 1305 int batch_free = 0; 1306 int prefetch_nr = 0; 1307 bool isolated_pageblocks; 1308 struct page *page, *tmp; 1309 LIST_HEAD(head); 1310 1311 while (count) { 1312 struct list_head *list; 1313 1314 /* 1315 * Remove pages from lists in a round-robin fashion. A 1316 * batch_free count is maintained that is incremented when an 1317 * empty list is encountered. This is so more pages are freed 1318 * off fuller lists instead of spinning excessively around empty 1319 * lists 1320 */ 1321 do { 1322 batch_free++; 1323 if (++migratetype == MIGRATE_PCPTYPES) 1324 migratetype = 0; 1325 list = &pcp->lists[migratetype]; 1326 } while (list_empty(list)); 1327 1328 /* This is the only non-empty list. Free them all. */ 1329 if (batch_free == MIGRATE_PCPTYPES) 1330 batch_free = count; 1331 1332 do { 1333 page = list_last_entry(list, struct page, lru); 1334 /* must delete to avoid corrupting pcp list */ 1335 list_del(&page->lru); 1336 pcp->count--; 1337 1338 if (bulkfree_pcp_prepare(page)) 1339 continue; 1340 1341 list_add_tail(&page->lru, &head); 1342 1343 /* 1344 * We are going to put the page back to the global 1345 * pool, prefetch its buddy to speed up later access 1346 * under zone->lock. It is believed the overhead of 1347 * an additional test and calculating buddy_pfn here 1348 * can be offset by reduced memory latency later. To 1349 * avoid excessive prefetching due to large count, only 1350 * prefetch buddy for the first pcp->batch nr of pages. 1351 */ 1352 if (prefetch_nr++ < pcp->batch) 1353 prefetch_buddy(page); 1354 } while (--count && --batch_free && !list_empty(list)); 1355 } 1356 1357 spin_lock(&zone->lock); 1358 isolated_pageblocks = has_isolate_pageblock(zone); 1359 1360 /* 1361 * Use safe version since after __free_one_page(), 1362 * page->lru.next will not point to original list. 1363 */ 1364 list_for_each_entry_safe(page, tmp, &head, lru) { 1365 int mt = get_pcppage_migratetype(page); 1366 /* MIGRATE_ISOLATE page should not go to pcplists */ 1367 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page); 1368 /* Pageblock could have been isolated meanwhile */ 1369 if (unlikely(isolated_pageblocks)) 1370 mt = get_pageblock_migratetype(page); 1371 1372 __free_one_page(page, page_to_pfn(page), zone, 0, mt, true); 1373 trace_mm_page_pcpu_drain(page, 0, mt); 1374 } 1375 spin_unlock(&zone->lock); 1376 } 1377 1378 static void free_one_page(struct zone *zone, 1379 struct page *page, unsigned long pfn, 1380 unsigned int order, 1381 int migratetype) 1382 { 1383 spin_lock(&zone->lock); 1384 if (unlikely(has_isolate_pageblock(zone) || 1385 is_migrate_isolate(migratetype))) { 1386 migratetype = get_pfnblock_migratetype(page, pfn); 1387 } 1388 __free_one_page(page, pfn, zone, order, migratetype, true); 1389 spin_unlock(&zone->lock); 1390 } 1391 1392 static void __meminit __init_single_page(struct page *page, unsigned long pfn, 1393 unsigned long zone, int nid) 1394 { 1395 mm_zero_struct_page(page); 1396 set_page_links(page, zone, nid, pfn); 1397 init_page_count(page); 1398 page_mapcount_reset(page); 1399 page_cpupid_reset_last(page); 1400 page_kasan_tag_reset(page); 1401 1402 INIT_LIST_HEAD(&page->lru); 1403 #ifdef WANT_PAGE_VIRTUAL 1404 /* The shift won't overflow because ZONE_NORMAL is below 4G. */ 1405 if (!is_highmem_idx(zone)) 1406 set_page_address(page, __va(pfn << PAGE_SHIFT)); 1407 #endif 1408 } 1409 1410 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 1411 static void __meminit init_reserved_page(unsigned long pfn) 1412 { 1413 pg_data_t *pgdat; 1414 int nid, zid; 1415 1416 if (!early_page_uninitialised(pfn)) 1417 return; 1418 1419 nid = early_pfn_to_nid(pfn); 1420 pgdat = NODE_DATA(nid); 1421 1422 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 1423 struct zone *zone = &pgdat->node_zones[zid]; 1424 1425 if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone)) 1426 break; 1427 } 1428 __init_single_page(pfn_to_page(pfn), pfn, zid, nid); 1429 } 1430 #else 1431 static inline void init_reserved_page(unsigned long pfn) 1432 { 1433 } 1434 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */ 1435 1436 /* 1437 * Initialised pages do not have PageReserved set. This function is 1438 * called for each range allocated by the bootmem allocator and 1439 * marks the pages PageReserved. The remaining valid pages are later 1440 * sent to the buddy page allocator. 1441 */ 1442 void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end) 1443 { 1444 unsigned long start_pfn = PFN_DOWN(start); 1445 unsigned long end_pfn = PFN_UP(end); 1446 1447 for (; start_pfn < end_pfn; start_pfn++) { 1448 if (pfn_valid(start_pfn)) { 1449 struct page *page = pfn_to_page(start_pfn); 1450 1451 init_reserved_page(start_pfn); 1452 1453 /* Avoid false-positive PageTail() */ 1454 INIT_LIST_HEAD(&page->lru); 1455 1456 /* 1457 * no need for atomic set_bit because the struct 1458 * page is not visible yet so nobody should 1459 * access it yet. 1460 */ 1461 __SetPageReserved(page); 1462 } 1463 } 1464 } 1465 1466 static void __free_pages_ok(struct page *page, unsigned int order) 1467 { 1468 unsigned long flags; 1469 int migratetype; 1470 unsigned long pfn = page_to_pfn(page); 1471 1472 if (!free_pages_prepare(page, order, true)) 1473 return; 1474 1475 migratetype = get_pfnblock_migratetype(page, pfn); 1476 local_irq_save(flags); 1477 __count_vm_events(PGFREE, 1 << order); 1478 free_one_page(page_zone(page), page, pfn, order, migratetype); 1479 local_irq_restore(flags); 1480 } 1481 1482 void __free_pages_core(struct page *page, unsigned int order) 1483 { 1484 unsigned int nr_pages = 1 << order; 1485 struct page *p = page; 1486 unsigned int loop; 1487 1488 prefetchw(p); 1489 for (loop = 0; loop < (nr_pages - 1); loop++, p++) { 1490 prefetchw(p + 1); 1491 __ClearPageReserved(p); 1492 set_page_count(p, 0); 1493 } 1494 __ClearPageReserved(p); 1495 set_page_count(p, 0); 1496 1497 atomic_long_add(nr_pages, &page_zone(page)->managed_pages); 1498 set_page_refcounted(page); 1499 __free_pages(page, order); 1500 } 1501 1502 #if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \ 1503 defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) 1504 1505 static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata; 1506 1507 int __meminit early_pfn_to_nid(unsigned long pfn) 1508 { 1509 static DEFINE_SPINLOCK(early_pfn_lock); 1510 int nid; 1511 1512 spin_lock(&early_pfn_lock); 1513 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache); 1514 if (nid < 0) 1515 nid = first_online_node; 1516 spin_unlock(&early_pfn_lock); 1517 1518 return nid; 1519 } 1520 #endif 1521 1522 #ifdef CONFIG_NODES_SPAN_OTHER_NODES 1523 /* Only safe to use early in boot when initialisation is single-threaded */ 1524 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node) 1525 { 1526 int nid; 1527 1528 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache); 1529 if (nid >= 0 && nid != node) 1530 return false; 1531 return true; 1532 } 1533 1534 #else 1535 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node) 1536 { 1537 return true; 1538 } 1539 #endif 1540 1541 1542 void __init memblock_free_pages(struct page *page, unsigned long pfn, 1543 unsigned int order) 1544 { 1545 if (early_page_uninitialised(pfn)) 1546 return; 1547 __free_pages_core(page, order); 1548 } 1549 1550 /* 1551 * Check that the whole (or subset of) a pageblock given by the interval of 1552 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it 1553 * with the migration of free compaction scanner. The scanners then need to 1554 * use only pfn_valid_within() check for arches that allow holes within 1555 * pageblocks. 1556 * 1557 * Return struct page pointer of start_pfn, or NULL if checks were not passed. 1558 * 1559 * It's possible on some configurations to have a setup like node0 node1 node0 1560 * i.e. it's possible that all pages within a zones range of pages do not 1561 * belong to a single zone. We assume that a border between node0 and node1 1562 * can occur within a single pageblock, but not a node0 node1 node0 1563 * interleaving within a single pageblock. It is therefore sufficient to check 1564 * the first and last page of a pageblock and avoid checking each individual 1565 * page in a pageblock. 1566 */ 1567 struct page *__pageblock_pfn_to_page(unsigned long start_pfn, 1568 unsigned long end_pfn, struct zone *zone) 1569 { 1570 struct page *start_page; 1571 struct page *end_page; 1572 1573 /* end_pfn is one past the range we are checking */ 1574 end_pfn--; 1575 1576 if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn)) 1577 return NULL; 1578 1579 start_page = pfn_to_online_page(start_pfn); 1580 if (!start_page) 1581 return NULL; 1582 1583 if (page_zone(start_page) != zone) 1584 return NULL; 1585 1586 end_page = pfn_to_page(end_pfn); 1587 1588 /* This gives a shorter code than deriving page_zone(end_page) */ 1589 if (page_zone_id(start_page) != page_zone_id(end_page)) 1590 return NULL; 1591 1592 return start_page; 1593 } 1594 1595 void set_zone_contiguous(struct zone *zone) 1596 { 1597 unsigned long block_start_pfn = zone->zone_start_pfn; 1598 unsigned long block_end_pfn; 1599 1600 block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages); 1601 for (; block_start_pfn < zone_end_pfn(zone); 1602 block_start_pfn = block_end_pfn, 1603 block_end_pfn += pageblock_nr_pages) { 1604 1605 block_end_pfn = min(block_end_pfn, zone_end_pfn(zone)); 1606 1607 if (!__pageblock_pfn_to_page(block_start_pfn, 1608 block_end_pfn, zone)) 1609 return; 1610 cond_resched(); 1611 } 1612 1613 /* We confirm that there is no hole */ 1614 zone->contiguous = true; 1615 } 1616 1617 void clear_zone_contiguous(struct zone *zone) 1618 { 1619 zone->contiguous = false; 1620 } 1621 1622 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 1623 static void __init deferred_free_range(unsigned long pfn, 1624 unsigned long nr_pages) 1625 { 1626 struct page *page; 1627 unsigned long i; 1628 1629 if (!nr_pages) 1630 return; 1631 1632 page = pfn_to_page(pfn); 1633 1634 /* Free a large naturally-aligned chunk if possible */ 1635 if (nr_pages == pageblock_nr_pages && 1636 (pfn & (pageblock_nr_pages - 1)) == 0) { 1637 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 1638 __free_pages_core(page, pageblock_order); 1639 return; 1640 } 1641 1642 for (i = 0; i < nr_pages; i++, page++, pfn++) { 1643 if ((pfn & (pageblock_nr_pages - 1)) == 0) 1644 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 1645 __free_pages_core(page, 0); 1646 } 1647 } 1648 1649 /* Completion tracking for deferred_init_memmap() threads */ 1650 static atomic_t pgdat_init_n_undone __initdata; 1651 static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp); 1652 1653 static inline void __init pgdat_init_report_one_done(void) 1654 { 1655 if (atomic_dec_and_test(&pgdat_init_n_undone)) 1656 complete(&pgdat_init_all_done_comp); 1657 } 1658 1659 /* 1660 * Returns true if page needs to be initialized or freed to buddy allocator. 1661 * 1662 * First we check if pfn is valid on architectures where it is possible to have 1663 * holes within pageblock_nr_pages. On systems where it is not possible, this 1664 * function is optimized out. 1665 * 1666 * Then, we check if a current large page is valid by only checking the validity 1667 * of the head pfn. 1668 */ 1669 static inline bool __init deferred_pfn_valid(unsigned long pfn) 1670 { 1671 if (!pfn_valid_within(pfn)) 1672 return false; 1673 if (!(pfn & (pageblock_nr_pages - 1)) && !pfn_valid(pfn)) 1674 return false; 1675 return true; 1676 } 1677 1678 /* 1679 * Free pages to buddy allocator. Try to free aligned pages in 1680 * pageblock_nr_pages sizes. 1681 */ 1682 static void __init deferred_free_pages(unsigned long pfn, 1683 unsigned long end_pfn) 1684 { 1685 unsigned long nr_pgmask = pageblock_nr_pages - 1; 1686 unsigned long nr_free = 0; 1687 1688 for (; pfn < end_pfn; pfn++) { 1689 if (!deferred_pfn_valid(pfn)) { 1690 deferred_free_range(pfn - nr_free, nr_free); 1691 nr_free = 0; 1692 } else if (!(pfn & nr_pgmask)) { 1693 deferred_free_range(pfn - nr_free, nr_free); 1694 nr_free = 1; 1695 touch_nmi_watchdog(); 1696 } else { 1697 nr_free++; 1698 } 1699 } 1700 /* Free the last block of pages to allocator */ 1701 deferred_free_range(pfn - nr_free, nr_free); 1702 } 1703 1704 /* 1705 * Initialize struct pages. We minimize pfn page lookups and scheduler checks 1706 * by performing it only once every pageblock_nr_pages. 1707 * Return number of pages initialized. 1708 */ 1709 static unsigned long __init deferred_init_pages(struct zone *zone, 1710 unsigned long pfn, 1711 unsigned long end_pfn) 1712 { 1713 unsigned long nr_pgmask = pageblock_nr_pages - 1; 1714 int nid = zone_to_nid(zone); 1715 unsigned long nr_pages = 0; 1716 int zid = zone_idx(zone); 1717 struct page *page = NULL; 1718 1719 for (; pfn < end_pfn; pfn++) { 1720 if (!deferred_pfn_valid(pfn)) { 1721 page = NULL; 1722 continue; 1723 } else if (!page || !(pfn & nr_pgmask)) { 1724 page = pfn_to_page(pfn); 1725 touch_nmi_watchdog(); 1726 } else { 1727 page++; 1728 } 1729 __init_single_page(page, pfn, zid, nid); 1730 nr_pages++; 1731 } 1732 return (nr_pages); 1733 } 1734 1735 /* 1736 * This function is meant to pre-load the iterator for the zone init. 1737 * Specifically it walks through the ranges until we are caught up to the 1738 * first_init_pfn value and exits there. If we never encounter the value we 1739 * return false indicating there are no valid ranges left. 1740 */ 1741 static bool __init 1742 deferred_init_mem_pfn_range_in_zone(u64 *i, struct zone *zone, 1743 unsigned long *spfn, unsigned long *epfn, 1744 unsigned long first_init_pfn) 1745 { 1746 u64 j; 1747 1748 /* 1749 * Start out by walking through the ranges in this zone that have 1750 * already been initialized. We don't need to do anything with them 1751 * so we just need to flush them out of the system. 1752 */ 1753 for_each_free_mem_pfn_range_in_zone(j, zone, spfn, epfn) { 1754 if (*epfn <= first_init_pfn) 1755 continue; 1756 if (*spfn < first_init_pfn) 1757 *spfn = first_init_pfn; 1758 *i = j; 1759 return true; 1760 } 1761 1762 return false; 1763 } 1764 1765 /* 1766 * Initialize and free pages. We do it in two loops: first we initialize 1767 * struct page, then free to buddy allocator, because while we are 1768 * freeing pages we can access pages that are ahead (computing buddy 1769 * page in __free_one_page()). 1770 * 1771 * In order to try and keep some memory in the cache we have the loop 1772 * broken along max page order boundaries. This way we will not cause 1773 * any issues with the buddy page computation. 1774 */ 1775 static unsigned long __init 1776 deferred_init_maxorder(u64 *i, struct zone *zone, unsigned long *start_pfn, 1777 unsigned long *end_pfn) 1778 { 1779 unsigned long mo_pfn = ALIGN(*start_pfn + 1, MAX_ORDER_NR_PAGES); 1780 unsigned long spfn = *start_pfn, epfn = *end_pfn; 1781 unsigned long nr_pages = 0; 1782 u64 j = *i; 1783 1784 /* First we loop through and initialize the page values */ 1785 for_each_free_mem_pfn_range_in_zone_from(j, zone, start_pfn, end_pfn) { 1786 unsigned long t; 1787 1788 if (mo_pfn <= *start_pfn) 1789 break; 1790 1791 t = min(mo_pfn, *end_pfn); 1792 nr_pages += deferred_init_pages(zone, *start_pfn, t); 1793 1794 if (mo_pfn < *end_pfn) { 1795 *start_pfn = mo_pfn; 1796 break; 1797 } 1798 } 1799 1800 /* Reset values and now loop through freeing pages as needed */ 1801 swap(j, *i); 1802 1803 for_each_free_mem_pfn_range_in_zone_from(j, zone, &spfn, &epfn) { 1804 unsigned long t; 1805 1806 if (mo_pfn <= spfn) 1807 break; 1808 1809 t = min(mo_pfn, epfn); 1810 deferred_free_pages(spfn, t); 1811 1812 if (mo_pfn <= epfn) 1813 break; 1814 } 1815 1816 return nr_pages; 1817 } 1818 1819 /* Initialise remaining memory on a node */ 1820 static int __init deferred_init_memmap(void *data) 1821 { 1822 pg_data_t *pgdat = data; 1823 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id); 1824 unsigned long spfn = 0, epfn = 0, nr_pages = 0; 1825 unsigned long first_init_pfn, flags; 1826 unsigned long start = jiffies; 1827 struct zone *zone; 1828 int zid; 1829 u64 i; 1830 1831 /* Bind memory initialisation thread to a local node if possible */ 1832 if (!cpumask_empty(cpumask)) 1833 set_cpus_allowed_ptr(current, cpumask); 1834 1835 pgdat_resize_lock(pgdat, &flags); 1836 first_init_pfn = pgdat->first_deferred_pfn; 1837 if (first_init_pfn == ULONG_MAX) { 1838 pgdat_resize_unlock(pgdat, &flags); 1839 pgdat_init_report_one_done(); 1840 return 0; 1841 } 1842 1843 /* Sanity check boundaries */ 1844 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn); 1845 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat)); 1846 pgdat->first_deferred_pfn = ULONG_MAX; 1847 1848 /* Only the highest zone is deferred so find it */ 1849 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 1850 zone = pgdat->node_zones + zid; 1851 if (first_init_pfn < zone_end_pfn(zone)) 1852 break; 1853 } 1854 1855 /* If the zone is empty somebody else may have cleared out the zone */ 1856 if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, 1857 first_init_pfn)) 1858 goto zone_empty; 1859 1860 /* 1861 * Initialize and free pages in MAX_ORDER sized increments so 1862 * that we can avoid introducing any issues with the buddy 1863 * allocator. 1864 */ 1865 while (spfn < epfn) 1866 nr_pages += deferred_init_maxorder(&i, zone, &spfn, &epfn); 1867 zone_empty: 1868 pgdat_resize_unlock(pgdat, &flags); 1869 1870 /* Sanity check that the next zone really is unpopulated */ 1871 WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone)); 1872 1873 pr_info("node %d initialised, %lu pages in %ums\n", 1874 pgdat->node_id, nr_pages, jiffies_to_msecs(jiffies - start)); 1875 1876 pgdat_init_report_one_done(); 1877 return 0; 1878 } 1879 1880 /* 1881 * If this zone has deferred pages, try to grow it by initializing enough 1882 * deferred pages to satisfy the allocation specified by order, rounded up to 1883 * the nearest PAGES_PER_SECTION boundary. So we're adding memory in increments 1884 * of SECTION_SIZE bytes by initializing struct pages in increments of 1885 * PAGES_PER_SECTION * sizeof(struct page) bytes. 1886 * 1887 * Return true when zone was grown, otherwise return false. We return true even 1888 * when we grow less than requested, to let the caller decide if there are 1889 * enough pages to satisfy the allocation. 1890 * 1891 * Note: We use noinline because this function is needed only during boot, and 1892 * it is called from a __ref function _deferred_grow_zone. This way we are 1893 * making sure that it is not inlined into permanent text section. 1894 */ 1895 static noinline bool __init 1896 deferred_grow_zone(struct zone *zone, unsigned int order) 1897 { 1898 unsigned long nr_pages_needed = ALIGN(1 << order, PAGES_PER_SECTION); 1899 pg_data_t *pgdat = zone->zone_pgdat; 1900 unsigned long first_deferred_pfn = pgdat->first_deferred_pfn; 1901 unsigned long spfn, epfn, flags; 1902 unsigned long nr_pages = 0; 1903 u64 i; 1904 1905 /* Only the last zone may have deferred pages */ 1906 if (zone_end_pfn(zone) != pgdat_end_pfn(pgdat)) 1907 return false; 1908 1909 pgdat_resize_lock(pgdat, &flags); 1910 1911 /* 1912 * If deferred pages have been initialized while we were waiting for 1913 * the lock, return true, as the zone was grown. The caller will retry 1914 * this zone. We won't return to this function since the caller also 1915 * has this static branch. 1916 */ 1917 if (!static_branch_unlikely(&deferred_pages)) { 1918 pgdat_resize_unlock(pgdat, &flags); 1919 return true; 1920 } 1921 1922 /* 1923 * If someone grew this zone while we were waiting for spinlock, return 1924 * true, as there might be enough pages already. 1925 */ 1926 if (first_deferred_pfn != pgdat->first_deferred_pfn) { 1927 pgdat_resize_unlock(pgdat, &flags); 1928 return true; 1929 } 1930 1931 /* If the zone is empty somebody else may have cleared out the zone */ 1932 if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, 1933 first_deferred_pfn)) { 1934 pgdat->first_deferred_pfn = ULONG_MAX; 1935 pgdat_resize_unlock(pgdat, &flags); 1936 /* Retry only once. */ 1937 return first_deferred_pfn != ULONG_MAX; 1938 } 1939 1940 /* 1941 * Initialize and free pages in MAX_ORDER sized increments so 1942 * that we can avoid introducing any issues with the buddy 1943 * allocator. 1944 */ 1945 while (spfn < epfn) { 1946 /* update our first deferred PFN for this section */ 1947 first_deferred_pfn = spfn; 1948 1949 nr_pages += deferred_init_maxorder(&i, zone, &spfn, &epfn); 1950 1951 /* We should only stop along section boundaries */ 1952 if ((first_deferred_pfn ^ spfn) < PAGES_PER_SECTION) 1953 continue; 1954 1955 /* If our quota has been met we can stop here */ 1956 if (nr_pages >= nr_pages_needed) 1957 break; 1958 } 1959 1960 pgdat->first_deferred_pfn = spfn; 1961 pgdat_resize_unlock(pgdat, &flags); 1962 1963 return nr_pages > 0; 1964 } 1965 1966 /* 1967 * deferred_grow_zone() is __init, but it is called from 1968 * get_page_from_freelist() during early boot until deferred_pages permanently 1969 * disables this call. This is why we have refdata wrapper to avoid warning, 1970 * and to ensure that the function body gets unloaded. 1971 */ 1972 static bool __ref 1973 _deferred_grow_zone(struct zone *zone, unsigned int order) 1974 { 1975 return deferred_grow_zone(zone, order); 1976 } 1977 1978 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */ 1979 1980 void __init page_alloc_init_late(void) 1981 { 1982 struct zone *zone; 1983 int nid; 1984 1985 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 1986 1987 /* There will be num_node_state(N_MEMORY) threads */ 1988 atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY)); 1989 for_each_node_state(nid, N_MEMORY) { 1990 kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid); 1991 } 1992 1993 /* Block until all are initialised */ 1994 wait_for_completion(&pgdat_init_all_done_comp); 1995 1996 /* 1997 * The number of managed pages has changed due to the initialisation 1998 * so the pcpu batch and high limits needs to be updated or the limits 1999 * will be artificially small. 2000 */ 2001 for_each_populated_zone(zone) 2002 zone_pcp_update(zone); 2003 2004 /* 2005 * We initialized the rest of the deferred pages. Permanently disable 2006 * on-demand struct page initialization. 2007 */ 2008 static_branch_disable(&deferred_pages); 2009 2010 /* Reinit limits that are based on free pages after the kernel is up */ 2011 files_maxfiles_init(); 2012 #endif 2013 2014 /* Discard memblock private memory */ 2015 memblock_discard(); 2016 2017 for_each_node_state(nid, N_MEMORY) 2018 shuffle_free_memory(NODE_DATA(nid)); 2019 2020 for_each_populated_zone(zone) 2021 set_zone_contiguous(zone); 2022 } 2023 2024 #ifdef CONFIG_CMA 2025 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */ 2026 void __init init_cma_reserved_pageblock(struct page *page) 2027 { 2028 unsigned i = pageblock_nr_pages; 2029 struct page *p = page; 2030 2031 do { 2032 __ClearPageReserved(p); 2033 set_page_count(p, 0); 2034 } while (++p, --i); 2035 2036 set_pageblock_migratetype(page, MIGRATE_CMA); 2037 2038 if (pageblock_order >= MAX_ORDER) { 2039 i = pageblock_nr_pages; 2040 p = page; 2041 do { 2042 set_page_refcounted(p); 2043 __free_pages(p, MAX_ORDER - 1); 2044 p += MAX_ORDER_NR_PAGES; 2045 } while (i -= MAX_ORDER_NR_PAGES); 2046 } else { 2047 set_page_refcounted(page); 2048 __free_pages(page, pageblock_order); 2049 } 2050 2051 adjust_managed_page_count(page, pageblock_nr_pages); 2052 } 2053 #endif 2054 2055 /* 2056 * The order of subdivision here is critical for the IO subsystem. 2057 * Please do not alter this order without good reasons and regression 2058 * testing. Specifically, as large blocks of memory are subdivided, 2059 * the order in which smaller blocks are delivered depends on the order 2060 * they're subdivided in this function. This is the primary factor 2061 * influencing the order in which pages are delivered to the IO 2062 * subsystem according to empirical testing, and this is also justified 2063 * by considering the behavior of a buddy system containing a single 2064 * large block of memory acted on by a series of small allocations. 2065 * This behavior is a critical factor in sglist merging's success. 2066 * 2067 * -- nyc 2068 */ 2069 static inline void expand(struct zone *zone, struct page *page, 2070 int low, int high, int migratetype) 2071 { 2072 unsigned long size = 1 << high; 2073 2074 while (high > low) { 2075 high--; 2076 size >>= 1; 2077 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]); 2078 2079 /* 2080 * Mark as guard pages (or page), that will allow to 2081 * merge back to allocator when buddy will be freed. 2082 * Corresponding page table entries will not be touched, 2083 * pages will stay not present in virtual address space 2084 */ 2085 if (set_page_guard(zone, &page[size], high, migratetype)) 2086 continue; 2087 2088 add_to_free_list(&page[size], zone, high, migratetype); 2089 set_page_order(&page[size], high); 2090 } 2091 } 2092 2093 static void check_new_page_bad(struct page *page) 2094 { 2095 const char *bad_reason = NULL; 2096 unsigned long bad_flags = 0; 2097 2098 if (unlikely(atomic_read(&page->_mapcount) != -1)) 2099 bad_reason = "nonzero mapcount"; 2100 if (unlikely(page->mapping != NULL)) 2101 bad_reason = "non-NULL mapping"; 2102 if (unlikely(page_ref_count(page) != 0)) 2103 bad_reason = "nonzero _refcount"; 2104 if (unlikely(page->flags & __PG_HWPOISON)) { 2105 bad_reason = "HWPoisoned (hardware-corrupted)"; 2106 bad_flags = __PG_HWPOISON; 2107 /* Don't complain about hwpoisoned pages */ 2108 page_mapcount_reset(page); /* remove PageBuddy */ 2109 return; 2110 } 2111 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) { 2112 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set"; 2113 bad_flags = PAGE_FLAGS_CHECK_AT_PREP; 2114 } 2115 #ifdef CONFIG_MEMCG 2116 if (unlikely(page->mem_cgroup)) 2117 bad_reason = "page still charged to cgroup"; 2118 #endif 2119 bad_page(page, bad_reason, bad_flags); 2120 } 2121 2122 /* 2123 * This page is about to be returned from the page allocator 2124 */ 2125 static inline int check_new_page(struct page *page) 2126 { 2127 if (likely(page_expected_state(page, 2128 PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON))) 2129 return 0; 2130 2131 check_new_page_bad(page); 2132 return 1; 2133 } 2134 2135 static inline bool free_pages_prezeroed(void) 2136 { 2137 return (IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) && 2138 page_poisoning_enabled()) || want_init_on_free(); 2139 } 2140 2141 #ifdef CONFIG_DEBUG_VM 2142 /* 2143 * With DEBUG_VM enabled, order-0 pages are checked for expected state when 2144 * being allocated from pcp lists. With debug_pagealloc also enabled, they are 2145 * also checked when pcp lists are refilled from the free lists. 2146 */ 2147 static inline bool check_pcp_refill(struct page *page) 2148 { 2149 if (debug_pagealloc_enabled_static()) 2150 return check_new_page(page); 2151 else 2152 return false; 2153 } 2154 2155 static inline bool check_new_pcp(struct page *page) 2156 { 2157 return check_new_page(page); 2158 } 2159 #else 2160 /* 2161 * With DEBUG_VM disabled, free order-0 pages are checked for expected state 2162 * when pcp lists are being refilled from the free lists. With debug_pagealloc 2163 * enabled, they are also checked when being allocated from the pcp lists. 2164 */ 2165 static inline bool check_pcp_refill(struct page *page) 2166 { 2167 return check_new_page(page); 2168 } 2169 static inline bool check_new_pcp(struct page *page) 2170 { 2171 if (debug_pagealloc_enabled_static()) 2172 return check_new_page(page); 2173 else 2174 return false; 2175 } 2176 #endif /* CONFIG_DEBUG_VM */ 2177 2178 static bool check_new_pages(struct page *page, unsigned int order) 2179 { 2180 int i; 2181 for (i = 0; i < (1 << order); i++) { 2182 struct page *p = page + i; 2183 2184 if (unlikely(check_new_page(p))) 2185 return true; 2186 } 2187 2188 return false; 2189 } 2190 2191 inline void post_alloc_hook(struct page *page, unsigned int order, 2192 gfp_t gfp_flags) 2193 { 2194 set_page_private(page, 0); 2195 set_page_refcounted(page); 2196 2197 arch_alloc_page(page, order); 2198 if (debug_pagealloc_enabled_static()) 2199 kernel_map_pages(page, 1 << order, 1); 2200 kasan_alloc_pages(page, order); 2201 kernel_poison_pages(page, 1 << order, 1); 2202 set_page_owner(page, order, gfp_flags); 2203 } 2204 2205 static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags, 2206 unsigned int alloc_flags) 2207 { 2208 post_alloc_hook(page, order, gfp_flags); 2209 2210 if (!free_pages_prezeroed() && want_init_on_alloc(gfp_flags)) 2211 kernel_init_free_pages(page, 1 << order); 2212 2213 if (order && (gfp_flags & __GFP_COMP)) 2214 prep_compound_page(page, order); 2215 2216 /* 2217 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to 2218 * allocate the page. The expectation is that the caller is taking 2219 * steps that will free more memory. The caller should avoid the page 2220 * being used for !PFMEMALLOC purposes. 2221 */ 2222 if (alloc_flags & ALLOC_NO_WATERMARKS) 2223 set_page_pfmemalloc(page); 2224 else 2225 clear_page_pfmemalloc(page); 2226 } 2227 2228 /* 2229 * Go through the free lists for the given migratetype and remove 2230 * the smallest available page from the freelists 2231 */ 2232 static __always_inline 2233 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order, 2234 int migratetype) 2235 { 2236 unsigned int current_order; 2237 struct free_area *area; 2238 struct page *page; 2239 2240 /* Find a page of the appropriate size in the preferred list */ 2241 for (current_order = order; current_order < MAX_ORDER; ++current_order) { 2242 area = &(zone->free_area[current_order]); 2243 page = get_page_from_free_area(area, migratetype); 2244 if (!page) 2245 continue; 2246 del_page_from_free_list(page, zone, current_order); 2247 expand(zone, page, order, current_order, migratetype); 2248 set_pcppage_migratetype(page, migratetype); 2249 return page; 2250 } 2251 2252 return NULL; 2253 } 2254 2255 2256 /* 2257 * This array describes the order lists are fallen back to when 2258 * the free lists for the desirable migrate type are depleted 2259 */ 2260 static int fallbacks[MIGRATE_TYPES][4] = { 2261 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_TYPES }, 2262 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES }, 2263 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_TYPES }, 2264 #ifdef CONFIG_CMA 2265 [MIGRATE_CMA] = { MIGRATE_TYPES }, /* Never used */ 2266 #endif 2267 #ifdef CONFIG_MEMORY_ISOLATION 2268 [MIGRATE_ISOLATE] = { MIGRATE_TYPES }, /* Never used */ 2269 #endif 2270 }; 2271 2272 #ifdef CONFIG_CMA 2273 static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone, 2274 unsigned int order) 2275 { 2276 return __rmqueue_smallest(zone, order, MIGRATE_CMA); 2277 } 2278 #else 2279 static inline struct page *__rmqueue_cma_fallback(struct zone *zone, 2280 unsigned int order) { return NULL; } 2281 #endif 2282 2283 /* 2284 * Move the free pages in a range to the free lists of the requested type. 2285 * Note that start_page and end_pages are not aligned on a pageblock 2286 * boundary. If alignment is required, use move_freepages_block() 2287 */ 2288 static int move_freepages(struct zone *zone, 2289 struct page *start_page, struct page *end_page, 2290 int migratetype, int *num_movable) 2291 { 2292 struct page *page; 2293 unsigned int order; 2294 int pages_moved = 0; 2295 2296 for (page = start_page; page <= end_page;) { 2297 if (!pfn_valid_within(page_to_pfn(page))) { 2298 page++; 2299 continue; 2300 } 2301 2302 if (!PageBuddy(page)) { 2303 /* 2304 * We assume that pages that could be isolated for 2305 * migration are movable. But we don't actually try 2306 * isolating, as that would be expensive. 2307 */ 2308 if (num_movable && 2309 (PageLRU(page) || __PageMovable(page))) 2310 (*num_movable)++; 2311 2312 page++; 2313 continue; 2314 } 2315 2316 /* Make sure we are not inadvertently changing nodes */ 2317 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page); 2318 VM_BUG_ON_PAGE(page_zone(page) != zone, page); 2319 2320 order = page_order(page); 2321 move_to_free_list(page, zone, order, migratetype); 2322 page += 1 << order; 2323 pages_moved += 1 << order; 2324 } 2325 2326 return pages_moved; 2327 } 2328 2329 int move_freepages_block(struct zone *zone, struct page *page, 2330 int migratetype, int *num_movable) 2331 { 2332 unsigned long start_pfn, end_pfn; 2333 struct page *start_page, *end_page; 2334 2335 if (num_movable) 2336 *num_movable = 0; 2337 2338 start_pfn = page_to_pfn(page); 2339 start_pfn = start_pfn & ~(pageblock_nr_pages-1); 2340 start_page = pfn_to_page(start_pfn); 2341 end_page = start_page + pageblock_nr_pages - 1; 2342 end_pfn = start_pfn + pageblock_nr_pages - 1; 2343 2344 /* Do not cross zone boundaries */ 2345 if (!zone_spans_pfn(zone, start_pfn)) 2346 start_page = page; 2347 if (!zone_spans_pfn(zone, end_pfn)) 2348 return 0; 2349 2350 return move_freepages(zone, start_page, end_page, migratetype, 2351 num_movable); 2352 } 2353 2354 static void change_pageblock_range(struct page *pageblock_page, 2355 int start_order, int migratetype) 2356 { 2357 int nr_pageblocks = 1 << (start_order - pageblock_order); 2358 2359 while (nr_pageblocks--) { 2360 set_pageblock_migratetype(pageblock_page, migratetype); 2361 pageblock_page += pageblock_nr_pages; 2362 } 2363 } 2364 2365 /* 2366 * When we are falling back to another migratetype during allocation, try to 2367 * steal extra free pages from the same pageblocks to satisfy further 2368 * allocations, instead of polluting multiple pageblocks. 2369 * 2370 * If we are stealing a relatively large buddy page, it is likely there will 2371 * be more free pages in the pageblock, so try to steal them all. For 2372 * reclaimable and unmovable allocations, we steal regardless of page size, 2373 * as fragmentation caused by those allocations polluting movable pageblocks 2374 * is worse than movable allocations stealing from unmovable and reclaimable 2375 * pageblocks. 2376 */ 2377 static bool can_steal_fallback(unsigned int order, int start_mt) 2378 { 2379 /* 2380 * Leaving this order check is intended, although there is 2381 * relaxed order check in next check. The reason is that 2382 * we can actually steal whole pageblock if this condition met, 2383 * but, below check doesn't guarantee it and that is just heuristic 2384 * so could be changed anytime. 2385 */ 2386 if (order >= pageblock_order) 2387 return true; 2388 2389 if (order >= pageblock_order / 2 || 2390 start_mt == MIGRATE_RECLAIMABLE || 2391 start_mt == MIGRATE_UNMOVABLE || 2392 page_group_by_mobility_disabled) 2393 return true; 2394 2395 return false; 2396 } 2397 2398 static inline void boost_watermark(struct zone *zone) 2399 { 2400 unsigned long max_boost; 2401 2402 if (!watermark_boost_factor) 2403 return; 2404 /* 2405 * Don't bother in zones that are unlikely to produce results. 2406 * On small machines, including kdump capture kernels running 2407 * in a small area, boosting the watermark can cause an out of 2408 * memory situation immediately. 2409 */ 2410 if ((pageblock_nr_pages * 4) > zone_managed_pages(zone)) 2411 return; 2412 2413 max_boost = mult_frac(zone->_watermark[WMARK_HIGH], 2414 watermark_boost_factor, 10000); 2415 2416 /* 2417 * high watermark may be uninitialised if fragmentation occurs 2418 * very early in boot so do not boost. We do not fall 2419 * through and boost by pageblock_nr_pages as failing 2420 * allocations that early means that reclaim is not going 2421 * to help and it may even be impossible to reclaim the 2422 * boosted watermark resulting in a hang. 2423 */ 2424 if (!max_boost) 2425 return; 2426 2427 max_boost = max(pageblock_nr_pages, max_boost); 2428 2429 zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages, 2430 max_boost); 2431 } 2432 2433 /* 2434 * This function implements actual steal behaviour. If order is large enough, 2435 * we can steal whole pageblock. If not, we first move freepages in this 2436 * pageblock to our migratetype and determine how many already-allocated pages 2437 * are there in the pageblock with a compatible migratetype. If at least half 2438 * of pages are free or compatible, we can change migratetype of the pageblock 2439 * itself, so pages freed in the future will be put on the correct free list. 2440 */ 2441 static void steal_suitable_fallback(struct zone *zone, struct page *page, 2442 unsigned int alloc_flags, int start_type, bool whole_block) 2443 { 2444 unsigned int current_order = page_order(page); 2445 int free_pages, movable_pages, alike_pages; 2446 int old_block_type; 2447 2448 old_block_type = get_pageblock_migratetype(page); 2449 2450 /* 2451 * This can happen due to races and we want to prevent broken 2452 * highatomic accounting. 2453 */ 2454 if (is_migrate_highatomic(old_block_type)) 2455 goto single_page; 2456 2457 /* Take ownership for orders >= pageblock_order */ 2458 if (current_order >= pageblock_order) { 2459 change_pageblock_range(page, current_order, start_type); 2460 goto single_page; 2461 } 2462 2463 /* 2464 * Boost watermarks to increase reclaim pressure to reduce the 2465 * likelihood of future fallbacks. Wake kswapd now as the node 2466 * may be balanced overall and kswapd will not wake naturally. 2467 */ 2468 boost_watermark(zone); 2469 if (alloc_flags & ALLOC_KSWAPD) 2470 set_bit(ZONE_BOOSTED_WATERMARK, &zone->flags); 2471 2472 /* We are not allowed to try stealing from the whole block */ 2473 if (!whole_block) 2474 goto single_page; 2475 2476 free_pages = move_freepages_block(zone, page, start_type, 2477 &movable_pages); 2478 /* 2479 * Determine how many pages are compatible with our allocation. 2480 * For movable allocation, it's the number of movable pages which 2481 * we just obtained. For other types it's a bit more tricky. 2482 */ 2483 if (start_type == MIGRATE_MOVABLE) { 2484 alike_pages = movable_pages; 2485 } else { 2486 /* 2487 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation 2488 * to MOVABLE pageblock, consider all non-movable pages as 2489 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or 2490 * vice versa, be conservative since we can't distinguish the 2491 * exact migratetype of non-movable pages. 2492 */ 2493 if (old_block_type == MIGRATE_MOVABLE) 2494 alike_pages = pageblock_nr_pages 2495 - (free_pages + movable_pages); 2496 else 2497 alike_pages = 0; 2498 } 2499 2500 /* moving whole block can fail due to zone boundary conditions */ 2501 if (!free_pages) 2502 goto single_page; 2503 2504 /* 2505 * If a sufficient number of pages in the block are either free or of 2506 * comparable migratability as our allocation, claim the whole block. 2507 */ 2508 if (free_pages + alike_pages >= (1 << (pageblock_order-1)) || 2509 page_group_by_mobility_disabled) 2510 set_pageblock_migratetype(page, start_type); 2511 2512 return; 2513 2514 single_page: 2515 move_to_free_list(page, zone, current_order, start_type); 2516 } 2517 2518 /* 2519 * Check whether there is a suitable fallback freepage with requested order. 2520 * If only_stealable is true, this function returns fallback_mt only if 2521 * we can steal other freepages all together. This would help to reduce 2522 * fragmentation due to mixed migratetype pages in one pageblock. 2523 */ 2524 int find_suitable_fallback(struct free_area *area, unsigned int order, 2525 int migratetype, bool only_stealable, bool *can_steal) 2526 { 2527 int i; 2528 int fallback_mt; 2529 2530 if (area->nr_free == 0) 2531 return -1; 2532 2533 *can_steal = false; 2534 for (i = 0;; i++) { 2535 fallback_mt = fallbacks[migratetype][i]; 2536 if (fallback_mt == MIGRATE_TYPES) 2537 break; 2538 2539 if (free_area_empty(area, fallback_mt)) 2540 continue; 2541 2542 if (can_steal_fallback(order, migratetype)) 2543 *can_steal = true; 2544 2545 if (!only_stealable) 2546 return fallback_mt; 2547 2548 if (*can_steal) 2549 return fallback_mt; 2550 } 2551 2552 return -1; 2553 } 2554 2555 /* 2556 * Reserve a pageblock for exclusive use of high-order atomic allocations if 2557 * there are no empty page blocks that contain a page with a suitable order 2558 */ 2559 static void reserve_highatomic_pageblock(struct page *page, struct zone *zone, 2560 unsigned int alloc_order) 2561 { 2562 int mt; 2563 unsigned long max_managed, flags; 2564 2565 /* 2566 * Limit the number reserved to 1 pageblock or roughly 1% of a zone. 2567 * Check is race-prone but harmless. 2568 */ 2569 max_managed = (zone_managed_pages(zone) / 100) + pageblock_nr_pages; 2570 if (zone->nr_reserved_highatomic >= max_managed) 2571 return; 2572 2573 spin_lock_irqsave(&zone->lock, flags); 2574 2575 /* Recheck the nr_reserved_highatomic limit under the lock */ 2576 if (zone->nr_reserved_highatomic >= max_managed) 2577 goto out_unlock; 2578 2579 /* Yoink! */ 2580 mt = get_pageblock_migratetype(page); 2581 if (!is_migrate_highatomic(mt) && !is_migrate_isolate(mt) 2582 && !is_migrate_cma(mt)) { 2583 zone->nr_reserved_highatomic += pageblock_nr_pages; 2584 set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC); 2585 move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL); 2586 } 2587 2588 out_unlock: 2589 spin_unlock_irqrestore(&zone->lock, flags); 2590 } 2591 2592 /* 2593 * Used when an allocation is about to fail under memory pressure. This 2594 * potentially hurts the reliability of high-order allocations when under 2595 * intense memory pressure but failed atomic allocations should be easier 2596 * to recover from than an OOM. 2597 * 2598 * If @force is true, try to unreserve a pageblock even though highatomic 2599 * pageblock is exhausted. 2600 */ 2601 static bool unreserve_highatomic_pageblock(const struct alloc_context *ac, 2602 bool force) 2603 { 2604 struct zonelist *zonelist = ac->zonelist; 2605 unsigned long flags; 2606 struct zoneref *z; 2607 struct zone *zone; 2608 struct page *page; 2609 int order; 2610 bool ret; 2611 2612 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx, 2613 ac->nodemask) { 2614 /* 2615 * Preserve at least one pageblock unless memory pressure 2616 * is really high. 2617 */ 2618 if (!force && zone->nr_reserved_highatomic <= 2619 pageblock_nr_pages) 2620 continue; 2621 2622 spin_lock_irqsave(&zone->lock, flags); 2623 for (order = 0; order < MAX_ORDER; order++) { 2624 struct free_area *area = &(zone->free_area[order]); 2625 2626 page = get_page_from_free_area(area, MIGRATE_HIGHATOMIC); 2627 if (!page) 2628 continue; 2629 2630 /* 2631 * In page freeing path, migratetype change is racy so 2632 * we can counter several free pages in a pageblock 2633 * in this loop althoug we changed the pageblock type 2634 * from highatomic to ac->migratetype. So we should 2635 * adjust the count once. 2636 */ 2637 if (is_migrate_highatomic_page(page)) { 2638 /* 2639 * It should never happen but changes to 2640 * locking could inadvertently allow a per-cpu 2641 * drain to add pages to MIGRATE_HIGHATOMIC 2642 * while unreserving so be safe and watch for 2643 * underflows. 2644 */ 2645 zone->nr_reserved_highatomic -= min( 2646 pageblock_nr_pages, 2647 zone->nr_reserved_highatomic); 2648 } 2649 2650 /* 2651 * Convert to ac->migratetype and avoid the normal 2652 * pageblock stealing heuristics. Minimally, the caller 2653 * is doing the work and needs the pages. More 2654 * importantly, if the block was always converted to 2655 * MIGRATE_UNMOVABLE or another type then the number 2656 * of pageblocks that cannot be completely freed 2657 * may increase. 2658 */ 2659 set_pageblock_migratetype(page, ac->migratetype); 2660 ret = move_freepages_block(zone, page, ac->migratetype, 2661 NULL); 2662 if (ret) { 2663 spin_unlock_irqrestore(&zone->lock, flags); 2664 return ret; 2665 } 2666 } 2667 spin_unlock_irqrestore(&zone->lock, flags); 2668 } 2669 2670 return false; 2671 } 2672 2673 /* 2674 * Try finding a free buddy page on the fallback list and put it on the free 2675 * list of requested migratetype, possibly along with other pages from the same 2676 * block, depending on fragmentation avoidance heuristics. Returns true if 2677 * fallback was found so that __rmqueue_smallest() can grab it. 2678 * 2679 * The use of signed ints for order and current_order is a deliberate 2680 * deviation from the rest of this file, to make the for loop 2681 * condition simpler. 2682 */ 2683 static __always_inline bool 2684 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype, 2685 unsigned int alloc_flags) 2686 { 2687 struct free_area *area; 2688 int current_order; 2689 int min_order = order; 2690 struct page *page; 2691 int fallback_mt; 2692 bool can_steal; 2693 2694 /* 2695 * Do not steal pages from freelists belonging to other pageblocks 2696 * i.e. orders < pageblock_order. If there are no local zones free, 2697 * the zonelists will be reiterated without ALLOC_NOFRAGMENT. 2698 */ 2699 if (alloc_flags & ALLOC_NOFRAGMENT) 2700 min_order = pageblock_order; 2701 2702 /* 2703 * Find the largest available free page in the other list. This roughly 2704 * approximates finding the pageblock with the most free pages, which 2705 * would be too costly to do exactly. 2706 */ 2707 for (current_order = MAX_ORDER - 1; current_order >= min_order; 2708 --current_order) { 2709 area = &(zone->free_area[current_order]); 2710 fallback_mt = find_suitable_fallback(area, current_order, 2711 start_migratetype, false, &can_steal); 2712 if (fallback_mt == -1) 2713 continue; 2714 2715 /* 2716 * We cannot steal all free pages from the pageblock and the 2717 * requested migratetype is movable. In that case it's better to 2718 * steal and split the smallest available page instead of the 2719 * largest available page, because even if the next movable 2720 * allocation falls back into a different pageblock than this 2721 * one, it won't cause permanent fragmentation. 2722 */ 2723 if (!can_steal && start_migratetype == MIGRATE_MOVABLE 2724 && current_order > order) 2725 goto find_smallest; 2726 2727 goto do_steal; 2728 } 2729 2730 return false; 2731 2732 find_smallest: 2733 for (current_order = order; current_order < MAX_ORDER; 2734 current_order++) { 2735 area = &(zone->free_area[current_order]); 2736 fallback_mt = find_suitable_fallback(area, current_order, 2737 start_migratetype, false, &can_steal); 2738 if (fallback_mt != -1) 2739 break; 2740 } 2741 2742 /* 2743 * This should not happen - we already found a suitable fallback 2744 * when looking for the largest page. 2745 */ 2746 VM_BUG_ON(current_order == MAX_ORDER); 2747 2748 do_steal: 2749 page = get_page_from_free_area(area, fallback_mt); 2750 2751 steal_suitable_fallback(zone, page, alloc_flags, start_migratetype, 2752 can_steal); 2753 2754 trace_mm_page_alloc_extfrag(page, order, current_order, 2755 start_migratetype, fallback_mt); 2756 2757 return true; 2758 2759 } 2760 2761 /* 2762 * Do the hard work of removing an element from the buddy allocator. 2763 * Call me with the zone->lock already held. 2764 */ 2765 static __always_inline struct page * 2766 __rmqueue(struct zone *zone, unsigned int order, int migratetype, 2767 unsigned int alloc_flags) 2768 { 2769 struct page *page; 2770 2771 retry: 2772 page = __rmqueue_smallest(zone, order, migratetype); 2773 if (unlikely(!page)) { 2774 if (migratetype == MIGRATE_MOVABLE) 2775 page = __rmqueue_cma_fallback(zone, order); 2776 2777 if (!page && __rmqueue_fallback(zone, order, migratetype, 2778 alloc_flags)) 2779 goto retry; 2780 } 2781 2782 trace_mm_page_alloc_zone_locked(page, order, migratetype); 2783 return page; 2784 } 2785 2786 /* 2787 * Obtain a specified number of elements from the buddy allocator, all under 2788 * a single hold of the lock, for efficiency. Add them to the supplied list. 2789 * Returns the number of new pages which were placed at *list. 2790 */ 2791 static int rmqueue_bulk(struct zone *zone, unsigned int order, 2792 unsigned long count, struct list_head *list, 2793 int migratetype, unsigned int alloc_flags) 2794 { 2795 int i, alloced = 0; 2796 2797 spin_lock(&zone->lock); 2798 for (i = 0; i < count; ++i) { 2799 struct page *page = __rmqueue(zone, order, migratetype, 2800 alloc_flags); 2801 if (unlikely(page == NULL)) 2802 break; 2803 2804 if (unlikely(check_pcp_refill(page))) 2805 continue; 2806 2807 /* 2808 * Split buddy pages returned by expand() are received here in 2809 * physical page order. The page is added to the tail of 2810 * caller's list. From the callers perspective, the linked list 2811 * is ordered by page number under some conditions. This is 2812 * useful for IO devices that can forward direction from the 2813 * head, thus also in the physical page order. This is useful 2814 * for IO devices that can merge IO requests if the physical 2815 * pages are ordered properly. 2816 */ 2817 list_add_tail(&page->lru, list); 2818 alloced++; 2819 if (is_migrate_cma(get_pcppage_migratetype(page))) 2820 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES, 2821 -(1 << order)); 2822 } 2823 2824 /* 2825 * i pages were removed from the buddy list even if some leak due 2826 * to check_pcp_refill failing so adjust NR_FREE_PAGES based 2827 * on i. Do not confuse with 'alloced' which is the number of 2828 * pages added to the pcp list. 2829 */ 2830 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order)); 2831 spin_unlock(&zone->lock); 2832 return alloced; 2833 } 2834 2835 #ifdef CONFIG_NUMA 2836 /* 2837 * Called from the vmstat counter updater to drain pagesets of this 2838 * currently executing processor on remote nodes after they have 2839 * expired. 2840 * 2841 * Note that this function must be called with the thread pinned to 2842 * a single processor. 2843 */ 2844 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp) 2845 { 2846 unsigned long flags; 2847 int to_drain, batch; 2848 2849 local_irq_save(flags); 2850 batch = READ_ONCE(pcp->batch); 2851 to_drain = min(pcp->count, batch); 2852 if (to_drain > 0) 2853 free_pcppages_bulk(zone, to_drain, pcp); 2854 local_irq_restore(flags); 2855 } 2856 #endif 2857 2858 /* 2859 * Drain pcplists of the indicated processor and zone. 2860 * 2861 * The processor must either be the current processor and the 2862 * thread pinned to the current processor or a processor that 2863 * is not online. 2864 */ 2865 static void drain_pages_zone(unsigned int cpu, struct zone *zone) 2866 { 2867 unsigned long flags; 2868 struct per_cpu_pageset *pset; 2869 struct per_cpu_pages *pcp; 2870 2871 local_irq_save(flags); 2872 pset = per_cpu_ptr(zone->pageset, cpu); 2873 2874 pcp = &pset->pcp; 2875 if (pcp->count) 2876 free_pcppages_bulk(zone, pcp->count, pcp); 2877 local_irq_restore(flags); 2878 } 2879 2880 /* 2881 * Drain pcplists of all zones on the indicated processor. 2882 * 2883 * The processor must either be the current processor and the 2884 * thread pinned to the current processor or a processor that 2885 * is not online. 2886 */ 2887 static void drain_pages(unsigned int cpu) 2888 { 2889 struct zone *zone; 2890 2891 for_each_populated_zone(zone) { 2892 drain_pages_zone(cpu, zone); 2893 } 2894 } 2895 2896 /* 2897 * Spill all of this CPU's per-cpu pages back into the buddy allocator. 2898 * 2899 * The CPU has to be pinned. When zone parameter is non-NULL, spill just 2900 * the single zone's pages. 2901 */ 2902 void drain_local_pages(struct zone *zone) 2903 { 2904 int cpu = smp_processor_id(); 2905 2906 if (zone) 2907 drain_pages_zone(cpu, zone); 2908 else 2909 drain_pages(cpu); 2910 } 2911 2912 static void drain_local_pages_wq(struct work_struct *work) 2913 { 2914 struct pcpu_drain *drain; 2915 2916 drain = container_of(work, struct pcpu_drain, work); 2917 2918 /* 2919 * drain_all_pages doesn't use proper cpu hotplug protection so 2920 * we can race with cpu offline when the WQ can move this from 2921 * a cpu pinned worker to an unbound one. We can operate on a different 2922 * cpu which is allright but we also have to make sure to not move to 2923 * a different one. 2924 */ 2925 preempt_disable(); 2926 drain_local_pages(drain->zone); 2927 preempt_enable(); 2928 } 2929 2930 /* 2931 * Spill all the per-cpu pages from all CPUs back into the buddy allocator. 2932 * 2933 * When zone parameter is non-NULL, spill just the single zone's pages. 2934 * 2935 * Note that this can be extremely slow as the draining happens in a workqueue. 2936 */ 2937 void drain_all_pages(struct zone *zone) 2938 { 2939 int cpu; 2940 2941 /* 2942 * Allocate in the BSS so we wont require allocation in 2943 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y 2944 */ 2945 static cpumask_t cpus_with_pcps; 2946 2947 /* 2948 * Make sure nobody triggers this path before mm_percpu_wq is fully 2949 * initialized. 2950 */ 2951 if (WARN_ON_ONCE(!mm_percpu_wq)) 2952 return; 2953 2954 /* 2955 * Do not drain if one is already in progress unless it's specific to 2956 * a zone. Such callers are primarily CMA and memory hotplug and need 2957 * the drain to be complete when the call returns. 2958 */ 2959 if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) { 2960 if (!zone) 2961 return; 2962 mutex_lock(&pcpu_drain_mutex); 2963 } 2964 2965 /* 2966 * We don't care about racing with CPU hotplug event 2967 * as offline notification will cause the notified 2968 * cpu to drain that CPU pcps and on_each_cpu_mask 2969 * disables preemption as part of its processing 2970 */ 2971 for_each_online_cpu(cpu) { 2972 struct per_cpu_pageset *pcp; 2973 struct zone *z; 2974 bool has_pcps = false; 2975 2976 if (zone) { 2977 pcp = per_cpu_ptr(zone->pageset, cpu); 2978 if (pcp->pcp.count) 2979 has_pcps = true; 2980 } else { 2981 for_each_populated_zone(z) { 2982 pcp = per_cpu_ptr(z->pageset, cpu); 2983 if (pcp->pcp.count) { 2984 has_pcps = true; 2985 break; 2986 } 2987 } 2988 } 2989 2990 if (has_pcps) 2991 cpumask_set_cpu(cpu, &cpus_with_pcps); 2992 else 2993 cpumask_clear_cpu(cpu, &cpus_with_pcps); 2994 } 2995 2996 for_each_cpu(cpu, &cpus_with_pcps) { 2997 struct pcpu_drain *drain = per_cpu_ptr(&pcpu_drain, cpu); 2998 2999 drain->zone = zone; 3000 INIT_WORK(&drain->work, drain_local_pages_wq); 3001 queue_work_on(cpu, mm_percpu_wq, &drain->work); 3002 } 3003 for_each_cpu(cpu, &cpus_with_pcps) 3004 flush_work(&per_cpu_ptr(&pcpu_drain, cpu)->work); 3005 3006 mutex_unlock(&pcpu_drain_mutex); 3007 } 3008 3009 #ifdef CONFIG_HIBERNATION 3010 3011 /* 3012 * Touch the watchdog for every WD_PAGE_COUNT pages. 3013 */ 3014 #define WD_PAGE_COUNT (128*1024) 3015 3016 void mark_free_pages(struct zone *zone) 3017 { 3018 unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT; 3019 unsigned long flags; 3020 unsigned int order, t; 3021 struct page *page; 3022 3023 if (zone_is_empty(zone)) 3024 return; 3025 3026 spin_lock_irqsave(&zone->lock, flags); 3027 3028 max_zone_pfn = zone_end_pfn(zone); 3029 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) 3030 if (pfn_valid(pfn)) { 3031 page = pfn_to_page(pfn); 3032 3033 if (!--page_count) { 3034 touch_nmi_watchdog(); 3035 page_count = WD_PAGE_COUNT; 3036 } 3037 3038 if (page_zone(page) != zone) 3039 continue; 3040 3041 if (!swsusp_page_is_forbidden(page)) 3042 swsusp_unset_page_free(page); 3043 } 3044 3045 for_each_migratetype_order(order, t) { 3046 list_for_each_entry(page, 3047 &zone->free_area[order].free_list[t], lru) { 3048 unsigned long i; 3049 3050 pfn = page_to_pfn(page); 3051 for (i = 0; i < (1UL << order); i++) { 3052 if (!--page_count) { 3053 touch_nmi_watchdog(); 3054 page_count = WD_PAGE_COUNT; 3055 } 3056 swsusp_set_page_free(pfn_to_page(pfn + i)); 3057 } 3058 } 3059 } 3060 spin_unlock_irqrestore(&zone->lock, flags); 3061 } 3062 #endif /* CONFIG_PM */ 3063 3064 static bool free_unref_page_prepare(struct page *page, unsigned long pfn) 3065 { 3066 int migratetype; 3067 3068 if (!free_pcp_prepare(page)) 3069 return false; 3070 3071 migratetype = get_pfnblock_migratetype(page, pfn); 3072 set_pcppage_migratetype(page, migratetype); 3073 return true; 3074 } 3075 3076 static void free_unref_page_commit(struct page *page, unsigned long pfn) 3077 { 3078 struct zone *zone = page_zone(page); 3079 struct per_cpu_pages *pcp; 3080 int migratetype; 3081 3082 migratetype = get_pcppage_migratetype(page); 3083 __count_vm_event(PGFREE); 3084 3085 /* 3086 * We only track unmovable, reclaimable and movable on pcp lists. 3087 * Free ISOLATE pages back to the allocator because they are being 3088 * offlined but treat HIGHATOMIC as movable pages so we can get those 3089 * areas back if necessary. Otherwise, we may have to free 3090 * excessively into the page allocator 3091 */ 3092 if (migratetype >= MIGRATE_PCPTYPES) { 3093 if (unlikely(is_migrate_isolate(migratetype))) { 3094 free_one_page(zone, page, pfn, 0, migratetype); 3095 return; 3096 } 3097 migratetype = MIGRATE_MOVABLE; 3098 } 3099 3100 pcp = &this_cpu_ptr(zone->pageset)->pcp; 3101 list_add(&page->lru, &pcp->lists[migratetype]); 3102 pcp->count++; 3103 if (pcp->count >= pcp->high) { 3104 unsigned long batch = READ_ONCE(pcp->batch); 3105 free_pcppages_bulk(zone, batch, pcp); 3106 } 3107 } 3108 3109 /* 3110 * Free a 0-order page 3111 */ 3112 void free_unref_page(struct page *page) 3113 { 3114 unsigned long flags; 3115 unsigned long pfn = page_to_pfn(page); 3116 3117 if (!free_unref_page_prepare(page, pfn)) 3118 return; 3119 3120 local_irq_save(flags); 3121 free_unref_page_commit(page, pfn); 3122 local_irq_restore(flags); 3123 } 3124 3125 /* 3126 * Free a list of 0-order pages 3127 */ 3128 void free_unref_page_list(struct list_head *list) 3129 { 3130 struct page *page, *next; 3131 unsigned long flags, pfn; 3132 int batch_count = 0; 3133 3134 /* Prepare pages for freeing */ 3135 list_for_each_entry_safe(page, next, list, lru) { 3136 pfn = page_to_pfn(page); 3137 if (!free_unref_page_prepare(page, pfn)) 3138 list_del(&page->lru); 3139 set_page_private(page, pfn); 3140 } 3141 3142 local_irq_save(flags); 3143 list_for_each_entry_safe(page, next, list, lru) { 3144 unsigned long pfn = page_private(page); 3145 3146 set_page_private(page, 0); 3147 trace_mm_page_free_batched(page); 3148 free_unref_page_commit(page, pfn); 3149 3150 /* 3151 * Guard against excessive IRQ disabled times when we get 3152 * a large list of pages to free. 3153 */ 3154 if (++batch_count == SWAP_CLUSTER_MAX) { 3155 local_irq_restore(flags); 3156 batch_count = 0; 3157 local_irq_save(flags); 3158 } 3159 } 3160 local_irq_restore(flags); 3161 } 3162 3163 /* 3164 * split_page takes a non-compound higher-order page, and splits it into 3165 * n (1<<order) sub-pages: page[0..n] 3166 * Each sub-page must be freed individually. 3167 * 3168 * Note: this is probably too low level an operation for use in drivers. 3169 * Please consult with lkml before using this in your driver. 3170 */ 3171 void split_page(struct page *page, unsigned int order) 3172 { 3173 int i; 3174 3175 VM_BUG_ON_PAGE(PageCompound(page), page); 3176 VM_BUG_ON_PAGE(!page_count(page), page); 3177 3178 for (i = 1; i < (1 << order); i++) 3179 set_page_refcounted(page + i); 3180 split_page_owner(page, order); 3181 } 3182 EXPORT_SYMBOL_GPL(split_page); 3183 3184 int __isolate_free_page(struct page *page, unsigned int order) 3185 { 3186 unsigned long watermark; 3187 struct zone *zone; 3188 int mt; 3189 3190 BUG_ON(!PageBuddy(page)); 3191 3192 zone = page_zone(page); 3193 mt = get_pageblock_migratetype(page); 3194 3195 if (!is_migrate_isolate(mt)) { 3196 /* 3197 * Obey watermarks as if the page was being allocated. We can 3198 * emulate a high-order watermark check with a raised order-0 3199 * watermark, because we already know our high-order page 3200 * exists. 3201 */ 3202 watermark = zone->_watermark[WMARK_MIN] + (1UL << order); 3203 if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA)) 3204 return 0; 3205 3206 __mod_zone_freepage_state(zone, -(1UL << order), mt); 3207 } 3208 3209 /* Remove page from free list */ 3210 3211 del_page_from_free_list(page, zone, order); 3212 3213 /* 3214 * Set the pageblock if the isolated page is at least half of a 3215 * pageblock 3216 */ 3217 if (order >= pageblock_order - 1) { 3218 struct page *endpage = page + (1 << order) - 1; 3219 for (; page < endpage; page += pageblock_nr_pages) { 3220 int mt = get_pageblock_migratetype(page); 3221 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt) 3222 && !is_migrate_highatomic(mt)) 3223 set_pageblock_migratetype(page, 3224 MIGRATE_MOVABLE); 3225 } 3226 } 3227 3228 3229 return 1UL << order; 3230 } 3231 3232 /** 3233 * __putback_isolated_page - Return a now-isolated page back where we got it 3234 * @page: Page that was isolated 3235 * @order: Order of the isolated page 3236 * @mt: The page's pageblock's migratetype 3237 * 3238 * This function is meant to return a page pulled from the free lists via 3239 * __isolate_free_page back to the free lists they were pulled from. 3240 */ 3241 void __putback_isolated_page(struct page *page, unsigned int order, int mt) 3242 { 3243 struct zone *zone = page_zone(page); 3244 3245 /* zone lock should be held when this function is called */ 3246 lockdep_assert_held(&zone->lock); 3247 3248 /* Return isolated page to tail of freelist. */ 3249 __free_one_page(page, page_to_pfn(page), zone, order, mt, false); 3250 } 3251 3252 /* 3253 * Update NUMA hit/miss statistics 3254 * 3255 * Must be called with interrupts disabled. 3256 */ 3257 static inline void zone_statistics(struct zone *preferred_zone, struct zone *z) 3258 { 3259 #ifdef CONFIG_NUMA 3260 enum numa_stat_item local_stat = NUMA_LOCAL; 3261 3262 /* skip numa counters update if numa stats is disabled */ 3263 if (!static_branch_likely(&vm_numa_stat_key)) 3264 return; 3265 3266 if (zone_to_nid(z) != numa_node_id()) 3267 local_stat = NUMA_OTHER; 3268 3269 if (zone_to_nid(z) == zone_to_nid(preferred_zone)) 3270 __inc_numa_state(z, NUMA_HIT); 3271 else { 3272 __inc_numa_state(z, NUMA_MISS); 3273 __inc_numa_state(preferred_zone, NUMA_FOREIGN); 3274 } 3275 __inc_numa_state(z, local_stat); 3276 #endif 3277 } 3278 3279 /* Remove page from the per-cpu list, caller must protect the list */ 3280 static struct page *__rmqueue_pcplist(struct zone *zone, int migratetype, 3281 unsigned int alloc_flags, 3282 struct per_cpu_pages *pcp, 3283 struct list_head *list) 3284 { 3285 struct page *page; 3286 3287 do { 3288 if (list_empty(list)) { 3289 pcp->count += rmqueue_bulk(zone, 0, 3290 pcp->batch, list, 3291 migratetype, alloc_flags); 3292 if (unlikely(list_empty(list))) 3293 return NULL; 3294 } 3295 3296 page = list_first_entry(list, struct page, lru); 3297 list_del(&page->lru); 3298 pcp->count--; 3299 } while (check_new_pcp(page)); 3300 3301 return page; 3302 } 3303 3304 /* Lock and remove page from the per-cpu list */ 3305 static struct page *rmqueue_pcplist(struct zone *preferred_zone, 3306 struct zone *zone, gfp_t gfp_flags, 3307 int migratetype, unsigned int alloc_flags) 3308 { 3309 struct per_cpu_pages *pcp; 3310 struct list_head *list; 3311 struct page *page; 3312 unsigned long flags; 3313 3314 local_irq_save(flags); 3315 pcp = &this_cpu_ptr(zone->pageset)->pcp; 3316 list = &pcp->lists[migratetype]; 3317 page = __rmqueue_pcplist(zone, migratetype, alloc_flags, pcp, list); 3318 if (page) { 3319 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1); 3320 zone_statistics(preferred_zone, zone); 3321 } 3322 local_irq_restore(flags); 3323 return page; 3324 } 3325 3326 /* 3327 * Allocate a page from the given zone. Use pcplists for order-0 allocations. 3328 */ 3329 static inline 3330 struct page *rmqueue(struct zone *preferred_zone, 3331 struct zone *zone, unsigned int order, 3332 gfp_t gfp_flags, unsigned int alloc_flags, 3333 int migratetype) 3334 { 3335 unsigned long flags; 3336 struct page *page; 3337 3338 if (likely(order == 0)) { 3339 page = rmqueue_pcplist(preferred_zone, zone, gfp_flags, 3340 migratetype, alloc_flags); 3341 goto out; 3342 } 3343 3344 /* 3345 * We most definitely don't want callers attempting to 3346 * allocate greater than order-1 page units with __GFP_NOFAIL. 3347 */ 3348 WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1)); 3349 spin_lock_irqsave(&zone->lock, flags); 3350 3351 do { 3352 page = NULL; 3353 if (alloc_flags & ALLOC_HARDER) { 3354 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC); 3355 if (page) 3356 trace_mm_page_alloc_zone_locked(page, order, migratetype); 3357 } 3358 if (!page) 3359 page = __rmqueue(zone, order, migratetype, alloc_flags); 3360 } while (page && check_new_pages(page, order)); 3361 spin_unlock(&zone->lock); 3362 if (!page) 3363 goto failed; 3364 __mod_zone_freepage_state(zone, -(1 << order), 3365 get_pcppage_migratetype(page)); 3366 3367 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order); 3368 zone_statistics(preferred_zone, zone); 3369 local_irq_restore(flags); 3370 3371 out: 3372 /* Separate test+clear to avoid unnecessary atomics */ 3373 if (test_bit(ZONE_BOOSTED_WATERMARK, &zone->flags)) { 3374 clear_bit(ZONE_BOOSTED_WATERMARK, &zone->flags); 3375 wakeup_kswapd(zone, 0, 0, zone_idx(zone)); 3376 } 3377 3378 VM_BUG_ON_PAGE(page && bad_range(zone, page), page); 3379 return page; 3380 3381 failed: 3382 local_irq_restore(flags); 3383 return NULL; 3384 } 3385 3386 #ifdef CONFIG_FAIL_PAGE_ALLOC 3387 3388 static struct { 3389 struct fault_attr attr; 3390 3391 bool ignore_gfp_highmem; 3392 bool ignore_gfp_reclaim; 3393 u32 min_order; 3394 } fail_page_alloc = { 3395 .attr = FAULT_ATTR_INITIALIZER, 3396 .ignore_gfp_reclaim = true, 3397 .ignore_gfp_highmem = true, 3398 .min_order = 1, 3399 }; 3400 3401 static int __init setup_fail_page_alloc(char *str) 3402 { 3403 return setup_fault_attr(&fail_page_alloc.attr, str); 3404 } 3405 __setup("fail_page_alloc=", setup_fail_page_alloc); 3406 3407 static bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) 3408 { 3409 if (order < fail_page_alloc.min_order) 3410 return false; 3411 if (gfp_mask & __GFP_NOFAIL) 3412 return false; 3413 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM)) 3414 return false; 3415 if (fail_page_alloc.ignore_gfp_reclaim && 3416 (gfp_mask & __GFP_DIRECT_RECLAIM)) 3417 return false; 3418 3419 return should_fail(&fail_page_alloc.attr, 1 << order); 3420 } 3421 3422 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS 3423 3424 static int __init fail_page_alloc_debugfs(void) 3425 { 3426 umode_t mode = S_IFREG | 0600; 3427 struct dentry *dir; 3428 3429 dir = fault_create_debugfs_attr("fail_page_alloc", NULL, 3430 &fail_page_alloc.attr); 3431 3432 debugfs_create_bool("ignore-gfp-wait", mode, dir, 3433 &fail_page_alloc.ignore_gfp_reclaim); 3434 debugfs_create_bool("ignore-gfp-highmem", mode, dir, 3435 &fail_page_alloc.ignore_gfp_highmem); 3436 debugfs_create_u32("min-order", mode, dir, &fail_page_alloc.min_order); 3437 3438 return 0; 3439 } 3440 3441 late_initcall(fail_page_alloc_debugfs); 3442 3443 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */ 3444 3445 #else /* CONFIG_FAIL_PAGE_ALLOC */ 3446 3447 static inline bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) 3448 { 3449 return false; 3450 } 3451 3452 #endif /* CONFIG_FAIL_PAGE_ALLOC */ 3453 3454 static noinline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) 3455 { 3456 return __should_fail_alloc_page(gfp_mask, order); 3457 } 3458 ALLOW_ERROR_INJECTION(should_fail_alloc_page, TRUE); 3459 3460 /* 3461 * Return true if free base pages are above 'mark'. For high-order checks it 3462 * will return true of the order-0 watermark is reached and there is at least 3463 * one free page of a suitable size. Checking now avoids taking the zone lock 3464 * to check in the allocation paths if no pages are free. 3465 */ 3466 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark, 3467 int classzone_idx, unsigned int alloc_flags, 3468 long free_pages) 3469 { 3470 long min = mark; 3471 int o; 3472 const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM)); 3473 3474 /* free_pages may go negative - that's OK */ 3475 free_pages -= (1 << order) - 1; 3476 3477 if (alloc_flags & ALLOC_HIGH) 3478 min -= min / 2; 3479 3480 /* 3481 * If the caller does not have rights to ALLOC_HARDER then subtract 3482 * the high-atomic reserves. This will over-estimate the size of the 3483 * atomic reserve but it avoids a search. 3484 */ 3485 if (likely(!alloc_harder)) { 3486 free_pages -= z->nr_reserved_highatomic; 3487 } else { 3488 /* 3489 * OOM victims can try even harder than normal ALLOC_HARDER 3490 * users on the grounds that it's definitely going to be in 3491 * the exit path shortly and free memory. Any allocation it 3492 * makes during the free path will be small and short-lived. 3493 */ 3494 if (alloc_flags & ALLOC_OOM) 3495 min -= min / 2; 3496 else 3497 min -= min / 4; 3498 } 3499 3500 3501 #ifdef CONFIG_CMA 3502 /* If allocation can't use CMA areas don't use free CMA pages */ 3503 if (!(alloc_flags & ALLOC_CMA)) 3504 free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES); 3505 #endif 3506 3507 /* 3508 * Check watermarks for an order-0 allocation request. If these 3509 * are not met, then a high-order request also cannot go ahead 3510 * even if a suitable page happened to be free. 3511 */ 3512 if (free_pages <= min + z->lowmem_reserve[classzone_idx]) 3513 return false; 3514 3515 /* If this is an order-0 request then the watermark is fine */ 3516 if (!order) 3517 return true; 3518 3519 /* For a high-order request, check at least one suitable page is free */ 3520 for (o = order; o < MAX_ORDER; o++) { 3521 struct free_area *area = &z->free_area[o]; 3522 int mt; 3523 3524 if (!area->nr_free) 3525 continue; 3526 3527 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) { 3528 if (!free_area_empty(area, mt)) 3529 return true; 3530 } 3531 3532 #ifdef CONFIG_CMA 3533 if ((alloc_flags & ALLOC_CMA) && 3534 !free_area_empty(area, MIGRATE_CMA)) { 3535 return true; 3536 } 3537 #endif 3538 if (alloc_harder && !free_area_empty(area, MIGRATE_HIGHATOMIC)) 3539 return true; 3540 } 3541 return false; 3542 } 3543 3544 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark, 3545 int classzone_idx, unsigned int alloc_flags) 3546 { 3547 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags, 3548 zone_page_state(z, NR_FREE_PAGES)); 3549 } 3550 3551 static inline bool zone_watermark_fast(struct zone *z, unsigned int order, 3552 unsigned long mark, int classzone_idx, unsigned int alloc_flags) 3553 { 3554 long free_pages = zone_page_state(z, NR_FREE_PAGES); 3555 long cma_pages = 0; 3556 3557 #ifdef CONFIG_CMA 3558 /* If allocation can't use CMA areas don't use free CMA pages */ 3559 if (!(alloc_flags & ALLOC_CMA)) 3560 cma_pages = zone_page_state(z, NR_FREE_CMA_PAGES); 3561 #endif 3562 3563 /* 3564 * Fast check for order-0 only. If this fails then the reserves 3565 * need to be calculated. There is a corner case where the check 3566 * passes but only the high-order atomic reserve are free. If 3567 * the caller is !atomic then it'll uselessly search the free 3568 * list. That corner case is then slower but it is harmless. 3569 */ 3570 if (!order && (free_pages - cma_pages) > mark + z->lowmem_reserve[classzone_idx]) 3571 return true; 3572 3573 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags, 3574 free_pages); 3575 } 3576 3577 bool zone_watermark_ok_safe(struct zone *z, unsigned int order, 3578 unsigned long mark, int classzone_idx) 3579 { 3580 long free_pages = zone_page_state(z, NR_FREE_PAGES); 3581 3582 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark) 3583 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES); 3584 3585 return __zone_watermark_ok(z, order, mark, classzone_idx, 0, 3586 free_pages); 3587 } 3588 3589 #ifdef CONFIG_NUMA 3590 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone) 3591 { 3592 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <= 3593 node_reclaim_distance; 3594 } 3595 #else /* CONFIG_NUMA */ 3596 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone) 3597 { 3598 return true; 3599 } 3600 #endif /* CONFIG_NUMA */ 3601 3602 /* 3603 * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid 3604 * fragmentation is subtle. If the preferred zone was HIGHMEM then 3605 * premature use of a lower zone may cause lowmem pressure problems that 3606 * are worse than fragmentation. If the next zone is ZONE_DMA then it is 3607 * probably too small. It only makes sense to spread allocations to avoid 3608 * fragmentation between the Normal and DMA32 zones. 3609 */ 3610 static inline unsigned int 3611 alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask) 3612 { 3613 unsigned int alloc_flags; 3614 3615 /* 3616 * __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD 3617 * to save a branch. 3618 */ 3619 alloc_flags = (__force int) (gfp_mask & __GFP_KSWAPD_RECLAIM); 3620 3621 #ifdef CONFIG_ZONE_DMA32 3622 if (!zone) 3623 return alloc_flags; 3624 3625 if (zone_idx(zone) != ZONE_NORMAL) 3626 return alloc_flags; 3627 3628 /* 3629 * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and 3630 * the pointer is within zone->zone_pgdat->node_zones[]. Also assume 3631 * on UMA that if Normal is populated then so is DMA32. 3632 */ 3633 BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1); 3634 if (nr_online_nodes > 1 && !populated_zone(--zone)) 3635 return alloc_flags; 3636 3637 alloc_flags |= ALLOC_NOFRAGMENT; 3638 #endif /* CONFIG_ZONE_DMA32 */ 3639 return alloc_flags; 3640 } 3641 3642 /* 3643 * get_page_from_freelist goes through the zonelist trying to allocate 3644 * a page. 3645 */ 3646 static struct page * 3647 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags, 3648 const struct alloc_context *ac) 3649 { 3650 struct zoneref *z; 3651 struct zone *zone; 3652 struct pglist_data *last_pgdat_dirty_limit = NULL; 3653 bool no_fallback; 3654 3655 retry: 3656 /* 3657 * Scan zonelist, looking for a zone with enough free. 3658 * See also __cpuset_node_allowed() comment in kernel/cpuset.c. 3659 */ 3660 no_fallback = alloc_flags & ALLOC_NOFRAGMENT; 3661 z = ac->preferred_zoneref; 3662 for_next_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx, 3663 ac->nodemask) { 3664 struct page *page; 3665 unsigned long mark; 3666 3667 if (cpusets_enabled() && 3668 (alloc_flags & ALLOC_CPUSET) && 3669 !__cpuset_zone_allowed(zone, gfp_mask)) 3670 continue; 3671 /* 3672 * When allocating a page cache page for writing, we 3673 * want to get it from a node that is within its dirty 3674 * limit, such that no single node holds more than its 3675 * proportional share of globally allowed dirty pages. 3676 * The dirty limits take into account the node's 3677 * lowmem reserves and high watermark so that kswapd 3678 * should be able to balance it without having to 3679 * write pages from its LRU list. 3680 * 3681 * XXX: For now, allow allocations to potentially 3682 * exceed the per-node dirty limit in the slowpath 3683 * (spread_dirty_pages unset) before going into reclaim, 3684 * which is important when on a NUMA setup the allowed 3685 * nodes are together not big enough to reach the 3686 * global limit. The proper fix for these situations 3687 * will require awareness of nodes in the 3688 * dirty-throttling and the flusher threads. 3689 */ 3690 if (ac->spread_dirty_pages) { 3691 if (last_pgdat_dirty_limit == zone->zone_pgdat) 3692 continue; 3693 3694 if (!node_dirty_ok(zone->zone_pgdat)) { 3695 last_pgdat_dirty_limit = zone->zone_pgdat; 3696 continue; 3697 } 3698 } 3699 3700 if (no_fallback && nr_online_nodes > 1 && 3701 zone != ac->preferred_zoneref->zone) { 3702 int local_nid; 3703 3704 /* 3705 * If moving to a remote node, retry but allow 3706 * fragmenting fallbacks. Locality is more important 3707 * than fragmentation avoidance. 3708 */ 3709 local_nid = zone_to_nid(ac->preferred_zoneref->zone); 3710 if (zone_to_nid(zone) != local_nid) { 3711 alloc_flags &= ~ALLOC_NOFRAGMENT; 3712 goto retry; 3713 } 3714 } 3715 3716 mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK); 3717 if (!zone_watermark_fast(zone, order, mark, 3718 ac_classzone_idx(ac), alloc_flags)) { 3719 int ret; 3720 3721 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 3722 /* 3723 * Watermark failed for this zone, but see if we can 3724 * grow this zone if it contains deferred pages. 3725 */ 3726 if (static_branch_unlikely(&deferred_pages)) { 3727 if (_deferred_grow_zone(zone, order)) 3728 goto try_this_zone; 3729 } 3730 #endif 3731 /* Checked here to keep the fast path fast */ 3732 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK); 3733 if (alloc_flags & ALLOC_NO_WATERMARKS) 3734 goto try_this_zone; 3735 3736 if (node_reclaim_mode == 0 || 3737 !zone_allows_reclaim(ac->preferred_zoneref->zone, zone)) 3738 continue; 3739 3740 ret = node_reclaim(zone->zone_pgdat, gfp_mask, order); 3741 switch (ret) { 3742 case NODE_RECLAIM_NOSCAN: 3743 /* did not scan */ 3744 continue; 3745 case NODE_RECLAIM_FULL: 3746 /* scanned but unreclaimable */ 3747 continue; 3748 default: 3749 /* did we reclaim enough */ 3750 if (zone_watermark_ok(zone, order, mark, 3751 ac_classzone_idx(ac), alloc_flags)) 3752 goto try_this_zone; 3753 3754 continue; 3755 } 3756 } 3757 3758 try_this_zone: 3759 page = rmqueue(ac->preferred_zoneref->zone, zone, order, 3760 gfp_mask, alloc_flags, ac->migratetype); 3761 if (page) { 3762 prep_new_page(page, order, gfp_mask, alloc_flags); 3763 3764 /* 3765 * If this is a high-order atomic allocation then check 3766 * if the pageblock should be reserved for the future 3767 */ 3768 if (unlikely(order && (alloc_flags & ALLOC_HARDER))) 3769 reserve_highatomic_pageblock(page, zone, order); 3770 3771 return page; 3772 } else { 3773 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 3774 /* Try again if zone has deferred pages */ 3775 if (static_branch_unlikely(&deferred_pages)) { 3776 if (_deferred_grow_zone(zone, order)) 3777 goto try_this_zone; 3778 } 3779 #endif 3780 } 3781 } 3782 3783 /* 3784 * It's possible on a UMA machine to get through all zones that are 3785 * fragmented. If avoiding fragmentation, reset and try again. 3786 */ 3787 if (no_fallback) { 3788 alloc_flags &= ~ALLOC_NOFRAGMENT; 3789 goto retry; 3790 } 3791 3792 return NULL; 3793 } 3794 3795 static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask) 3796 { 3797 unsigned int filter = SHOW_MEM_FILTER_NODES; 3798 3799 /* 3800 * This documents exceptions given to allocations in certain 3801 * contexts that are allowed to allocate outside current's set 3802 * of allowed nodes. 3803 */ 3804 if (!(gfp_mask & __GFP_NOMEMALLOC)) 3805 if (tsk_is_oom_victim(current) || 3806 (current->flags & (PF_MEMALLOC | PF_EXITING))) 3807 filter &= ~SHOW_MEM_FILTER_NODES; 3808 if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM)) 3809 filter &= ~SHOW_MEM_FILTER_NODES; 3810 3811 show_mem(filter, nodemask); 3812 } 3813 3814 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...) 3815 { 3816 struct va_format vaf; 3817 va_list args; 3818 static DEFINE_RATELIMIT_STATE(nopage_rs, 10*HZ, 1); 3819 3820 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs)) 3821 return; 3822 3823 va_start(args, fmt); 3824 vaf.fmt = fmt; 3825 vaf.va = &args; 3826 pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl", 3827 current->comm, &vaf, gfp_mask, &gfp_mask, 3828 nodemask_pr_args(nodemask)); 3829 va_end(args); 3830 3831 cpuset_print_current_mems_allowed(); 3832 pr_cont("\n"); 3833 dump_stack(); 3834 warn_alloc_show_mem(gfp_mask, nodemask); 3835 } 3836 3837 static inline struct page * 3838 __alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order, 3839 unsigned int alloc_flags, 3840 const struct alloc_context *ac) 3841 { 3842 struct page *page; 3843 3844 page = get_page_from_freelist(gfp_mask, order, 3845 alloc_flags|ALLOC_CPUSET, ac); 3846 /* 3847 * fallback to ignore cpuset restriction if our nodes 3848 * are depleted 3849 */ 3850 if (!page) 3851 page = get_page_from_freelist(gfp_mask, order, 3852 alloc_flags, ac); 3853 3854 return page; 3855 } 3856 3857 static inline struct page * 3858 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order, 3859 const struct alloc_context *ac, unsigned long *did_some_progress) 3860 { 3861 struct oom_control oc = { 3862 .zonelist = ac->zonelist, 3863 .nodemask = ac->nodemask, 3864 .memcg = NULL, 3865 .gfp_mask = gfp_mask, 3866 .order = order, 3867 }; 3868 struct page *page; 3869 3870 *did_some_progress = 0; 3871 3872 /* 3873 * Acquire the oom lock. If that fails, somebody else is 3874 * making progress for us. 3875 */ 3876 if (!mutex_trylock(&oom_lock)) { 3877 *did_some_progress = 1; 3878 schedule_timeout_uninterruptible(1); 3879 return NULL; 3880 } 3881 3882 /* 3883 * Go through the zonelist yet one more time, keep very high watermark 3884 * here, this is only to catch a parallel oom killing, we must fail if 3885 * we're still under heavy pressure. But make sure that this reclaim 3886 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY 3887 * allocation which will never fail due to oom_lock already held. 3888 */ 3889 page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) & 3890 ~__GFP_DIRECT_RECLAIM, order, 3891 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac); 3892 if (page) 3893 goto out; 3894 3895 /* Coredumps can quickly deplete all memory reserves */ 3896 if (current->flags & PF_DUMPCORE) 3897 goto out; 3898 /* The OOM killer will not help higher order allocs */ 3899 if (order > PAGE_ALLOC_COSTLY_ORDER) 3900 goto out; 3901 /* 3902 * We have already exhausted all our reclaim opportunities without any 3903 * success so it is time to admit defeat. We will skip the OOM killer 3904 * because it is very likely that the caller has a more reasonable 3905 * fallback than shooting a random task. 3906 */ 3907 if (gfp_mask & __GFP_RETRY_MAYFAIL) 3908 goto out; 3909 /* The OOM killer does not needlessly kill tasks for lowmem */ 3910 if (ac->high_zoneidx < ZONE_NORMAL) 3911 goto out; 3912 if (pm_suspended_storage()) 3913 goto out; 3914 /* 3915 * XXX: GFP_NOFS allocations should rather fail than rely on 3916 * other request to make a forward progress. 3917 * We are in an unfortunate situation where out_of_memory cannot 3918 * do much for this context but let's try it to at least get 3919 * access to memory reserved if the current task is killed (see 3920 * out_of_memory). Once filesystems are ready to handle allocation 3921 * failures more gracefully we should just bail out here. 3922 */ 3923 3924 /* The OOM killer may not free memory on a specific node */ 3925 if (gfp_mask & __GFP_THISNODE) 3926 goto out; 3927 3928 /* Exhausted what can be done so it's blame time */ 3929 if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) { 3930 *did_some_progress = 1; 3931 3932 /* 3933 * Help non-failing allocations by giving them access to memory 3934 * reserves 3935 */ 3936 if (gfp_mask & __GFP_NOFAIL) 3937 page = __alloc_pages_cpuset_fallback(gfp_mask, order, 3938 ALLOC_NO_WATERMARKS, ac); 3939 } 3940 out: 3941 mutex_unlock(&oom_lock); 3942 return page; 3943 } 3944 3945 /* 3946 * Maximum number of compaction retries wit a progress before OOM 3947 * killer is consider as the only way to move forward. 3948 */ 3949 #define MAX_COMPACT_RETRIES 16 3950 3951 #ifdef CONFIG_COMPACTION 3952 /* Try memory compaction for high-order allocations before reclaim */ 3953 static struct page * 3954 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order, 3955 unsigned int alloc_flags, const struct alloc_context *ac, 3956 enum compact_priority prio, enum compact_result *compact_result) 3957 { 3958 struct page *page = NULL; 3959 unsigned long pflags; 3960 unsigned int noreclaim_flag; 3961 3962 if (!order) 3963 return NULL; 3964 3965 psi_memstall_enter(&pflags); 3966 noreclaim_flag = memalloc_noreclaim_save(); 3967 3968 *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac, 3969 prio, &page); 3970 3971 memalloc_noreclaim_restore(noreclaim_flag); 3972 psi_memstall_leave(&pflags); 3973 3974 /* 3975 * At least in one zone compaction wasn't deferred or skipped, so let's 3976 * count a compaction stall 3977 */ 3978 count_vm_event(COMPACTSTALL); 3979 3980 /* Prep a captured page if available */ 3981 if (page) 3982 prep_new_page(page, order, gfp_mask, alloc_flags); 3983 3984 /* Try get a page from the freelist if available */ 3985 if (!page) 3986 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 3987 3988 if (page) { 3989 struct zone *zone = page_zone(page); 3990 3991 zone->compact_blockskip_flush = false; 3992 compaction_defer_reset(zone, order, true); 3993 count_vm_event(COMPACTSUCCESS); 3994 return page; 3995 } 3996 3997 /* 3998 * It's bad if compaction run occurs and fails. The most likely reason 3999 * is that pages exist, but not enough to satisfy watermarks. 4000 */ 4001 count_vm_event(COMPACTFAIL); 4002 4003 cond_resched(); 4004 4005 return NULL; 4006 } 4007 4008 static inline bool 4009 should_compact_retry(struct alloc_context *ac, int order, int alloc_flags, 4010 enum compact_result compact_result, 4011 enum compact_priority *compact_priority, 4012 int *compaction_retries) 4013 { 4014 int max_retries = MAX_COMPACT_RETRIES; 4015 int min_priority; 4016 bool ret = false; 4017 int retries = *compaction_retries; 4018 enum compact_priority priority = *compact_priority; 4019 4020 if (!order) 4021 return false; 4022 4023 if (compaction_made_progress(compact_result)) 4024 (*compaction_retries)++; 4025 4026 /* 4027 * compaction considers all the zone as desperately out of memory 4028 * so it doesn't really make much sense to retry except when the 4029 * failure could be caused by insufficient priority 4030 */ 4031 if (compaction_failed(compact_result)) 4032 goto check_priority; 4033 4034 /* 4035 * compaction was skipped because there are not enough order-0 pages 4036 * to work with, so we retry only if it looks like reclaim can help. 4037 */ 4038 if (compaction_needs_reclaim(compact_result)) { 4039 ret = compaction_zonelist_suitable(ac, order, alloc_flags); 4040 goto out; 4041 } 4042 4043 /* 4044 * make sure the compaction wasn't deferred or didn't bail out early 4045 * due to locks contention before we declare that we should give up. 4046 * But the next retry should use a higher priority if allowed, so 4047 * we don't just keep bailing out endlessly. 4048 */ 4049 if (compaction_withdrawn(compact_result)) { 4050 goto check_priority; 4051 } 4052 4053 /* 4054 * !costly requests are much more important than __GFP_RETRY_MAYFAIL 4055 * costly ones because they are de facto nofail and invoke OOM 4056 * killer to move on while costly can fail and users are ready 4057 * to cope with that. 1/4 retries is rather arbitrary but we 4058 * would need much more detailed feedback from compaction to 4059 * make a better decision. 4060 */ 4061 if (order > PAGE_ALLOC_COSTLY_ORDER) 4062 max_retries /= 4; 4063 if (*compaction_retries <= max_retries) { 4064 ret = true; 4065 goto out; 4066 } 4067 4068 /* 4069 * Make sure there are attempts at the highest priority if we exhausted 4070 * all retries or failed at the lower priorities. 4071 */ 4072 check_priority: 4073 min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ? 4074 MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY; 4075 4076 if (*compact_priority > min_priority) { 4077 (*compact_priority)--; 4078 *compaction_retries = 0; 4079 ret = true; 4080 } 4081 out: 4082 trace_compact_retry(order, priority, compact_result, retries, max_retries, ret); 4083 return ret; 4084 } 4085 #else 4086 static inline struct page * 4087 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order, 4088 unsigned int alloc_flags, const struct alloc_context *ac, 4089 enum compact_priority prio, enum compact_result *compact_result) 4090 { 4091 *compact_result = COMPACT_SKIPPED; 4092 return NULL; 4093 } 4094 4095 static inline bool 4096 should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags, 4097 enum compact_result compact_result, 4098 enum compact_priority *compact_priority, 4099 int *compaction_retries) 4100 { 4101 struct zone *zone; 4102 struct zoneref *z; 4103 4104 if (!order || order > PAGE_ALLOC_COSTLY_ORDER) 4105 return false; 4106 4107 /* 4108 * There are setups with compaction disabled which would prefer to loop 4109 * inside the allocator rather than hit the oom killer prematurely. 4110 * Let's give them a good hope and keep retrying while the order-0 4111 * watermarks are OK. 4112 */ 4113 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx, 4114 ac->nodemask) { 4115 if (zone_watermark_ok(zone, 0, min_wmark_pages(zone), 4116 ac_classzone_idx(ac), alloc_flags)) 4117 return true; 4118 } 4119 return false; 4120 } 4121 #endif /* CONFIG_COMPACTION */ 4122 4123 #ifdef CONFIG_LOCKDEP 4124 static struct lockdep_map __fs_reclaim_map = 4125 STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map); 4126 4127 static bool __need_fs_reclaim(gfp_t gfp_mask) 4128 { 4129 gfp_mask = current_gfp_context(gfp_mask); 4130 4131 /* no reclaim without waiting on it */ 4132 if (!(gfp_mask & __GFP_DIRECT_RECLAIM)) 4133 return false; 4134 4135 /* this guy won't enter reclaim */ 4136 if (current->flags & PF_MEMALLOC) 4137 return false; 4138 4139 /* We're only interested __GFP_FS allocations for now */ 4140 if (!(gfp_mask & __GFP_FS)) 4141 return false; 4142 4143 if (gfp_mask & __GFP_NOLOCKDEP) 4144 return false; 4145 4146 return true; 4147 } 4148 4149 void __fs_reclaim_acquire(void) 4150 { 4151 lock_map_acquire(&__fs_reclaim_map); 4152 } 4153 4154 void __fs_reclaim_release(void) 4155 { 4156 lock_map_release(&__fs_reclaim_map); 4157 } 4158 4159 void fs_reclaim_acquire(gfp_t gfp_mask) 4160 { 4161 if (__need_fs_reclaim(gfp_mask)) 4162 __fs_reclaim_acquire(); 4163 } 4164 EXPORT_SYMBOL_GPL(fs_reclaim_acquire); 4165 4166 void fs_reclaim_release(gfp_t gfp_mask) 4167 { 4168 if (__need_fs_reclaim(gfp_mask)) 4169 __fs_reclaim_release(); 4170 } 4171 EXPORT_SYMBOL_GPL(fs_reclaim_release); 4172 #endif 4173 4174 /* Perform direct synchronous page reclaim */ 4175 static int 4176 __perform_reclaim(gfp_t gfp_mask, unsigned int order, 4177 const struct alloc_context *ac) 4178 { 4179 int progress; 4180 unsigned int noreclaim_flag; 4181 unsigned long pflags; 4182 4183 cond_resched(); 4184 4185 /* We now go into synchronous reclaim */ 4186 cpuset_memory_pressure_bump(); 4187 psi_memstall_enter(&pflags); 4188 fs_reclaim_acquire(gfp_mask); 4189 noreclaim_flag = memalloc_noreclaim_save(); 4190 4191 progress = try_to_free_pages(ac->zonelist, order, gfp_mask, 4192 ac->nodemask); 4193 4194 memalloc_noreclaim_restore(noreclaim_flag); 4195 fs_reclaim_release(gfp_mask); 4196 psi_memstall_leave(&pflags); 4197 4198 cond_resched(); 4199 4200 return progress; 4201 } 4202 4203 /* The really slow allocator path where we enter direct reclaim */ 4204 static inline struct page * 4205 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order, 4206 unsigned int alloc_flags, const struct alloc_context *ac, 4207 unsigned long *did_some_progress) 4208 { 4209 struct page *page = NULL; 4210 bool drained = false; 4211 4212 *did_some_progress = __perform_reclaim(gfp_mask, order, ac); 4213 if (unlikely(!(*did_some_progress))) 4214 return NULL; 4215 4216 retry: 4217 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 4218 4219 /* 4220 * If an allocation failed after direct reclaim, it could be because 4221 * pages are pinned on the per-cpu lists or in high alloc reserves. 4222 * Shrink them them and try again 4223 */ 4224 if (!page && !drained) { 4225 unreserve_highatomic_pageblock(ac, false); 4226 drain_all_pages(NULL); 4227 drained = true; 4228 goto retry; 4229 } 4230 4231 return page; 4232 } 4233 4234 static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask, 4235 const struct alloc_context *ac) 4236 { 4237 struct zoneref *z; 4238 struct zone *zone; 4239 pg_data_t *last_pgdat = NULL; 4240 enum zone_type high_zoneidx = ac->high_zoneidx; 4241 4242 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, high_zoneidx, 4243 ac->nodemask) { 4244 if (last_pgdat != zone->zone_pgdat) 4245 wakeup_kswapd(zone, gfp_mask, order, high_zoneidx); 4246 last_pgdat = zone->zone_pgdat; 4247 } 4248 } 4249 4250 static inline unsigned int 4251 gfp_to_alloc_flags(gfp_t gfp_mask) 4252 { 4253 unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET; 4254 4255 /* 4256 * __GFP_HIGH is assumed to be the same as ALLOC_HIGH 4257 * and __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD 4258 * to save two branches. 4259 */ 4260 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH); 4261 BUILD_BUG_ON(__GFP_KSWAPD_RECLAIM != (__force gfp_t) ALLOC_KSWAPD); 4262 4263 /* 4264 * The caller may dip into page reserves a bit more if the caller 4265 * cannot run direct reclaim, or if the caller has realtime scheduling 4266 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will 4267 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH). 4268 */ 4269 alloc_flags |= (__force int) 4270 (gfp_mask & (__GFP_HIGH | __GFP_KSWAPD_RECLAIM)); 4271 4272 if (gfp_mask & __GFP_ATOMIC) { 4273 /* 4274 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even 4275 * if it can't schedule. 4276 */ 4277 if (!(gfp_mask & __GFP_NOMEMALLOC)) 4278 alloc_flags |= ALLOC_HARDER; 4279 /* 4280 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the 4281 * comment for __cpuset_node_allowed(). 4282 */ 4283 alloc_flags &= ~ALLOC_CPUSET; 4284 } else if (unlikely(rt_task(current)) && !in_interrupt()) 4285 alloc_flags |= ALLOC_HARDER; 4286 4287 #ifdef CONFIG_CMA 4288 if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE) 4289 alloc_flags |= ALLOC_CMA; 4290 #endif 4291 return alloc_flags; 4292 } 4293 4294 static bool oom_reserves_allowed(struct task_struct *tsk) 4295 { 4296 if (!tsk_is_oom_victim(tsk)) 4297 return false; 4298 4299 /* 4300 * !MMU doesn't have oom reaper so give access to memory reserves 4301 * only to the thread with TIF_MEMDIE set 4302 */ 4303 if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE)) 4304 return false; 4305 4306 return true; 4307 } 4308 4309 /* 4310 * Distinguish requests which really need access to full memory 4311 * reserves from oom victims which can live with a portion of it 4312 */ 4313 static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask) 4314 { 4315 if (unlikely(gfp_mask & __GFP_NOMEMALLOC)) 4316 return 0; 4317 if (gfp_mask & __GFP_MEMALLOC) 4318 return ALLOC_NO_WATERMARKS; 4319 if (in_serving_softirq() && (current->flags & PF_MEMALLOC)) 4320 return ALLOC_NO_WATERMARKS; 4321 if (!in_interrupt()) { 4322 if (current->flags & PF_MEMALLOC) 4323 return ALLOC_NO_WATERMARKS; 4324 else if (oom_reserves_allowed(current)) 4325 return ALLOC_OOM; 4326 } 4327 4328 return 0; 4329 } 4330 4331 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask) 4332 { 4333 return !!__gfp_pfmemalloc_flags(gfp_mask); 4334 } 4335 4336 /* 4337 * Checks whether it makes sense to retry the reclaim to make a forward progress 4338 * for the given allocation request. 4339 * 4340 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row 4341 * without success, or when we couldn't even meet the watermark if we 4342 * reclaimed all remaining pages on the LRU lists. 4343 * 4344 * Returns true if a retry is viable or false to enter the oom path. 4345 */ 4346 static inline bool 4347 should_reclaim_retry(gfp_t gfp_mask, unsigned order, 4348 struct alloc_context *ac, int alloc_flags, 4349 bool did_some_progress, int *no_progress_loops) 4350 { 4351 struct zone *zone; 4352 struct zoneref *z; 4353 bool ret = false; 4354 4355 /* 4356 * Costly allocations might have made a progress but this doesn't mean 4357 * their order will become available due to high fragmentation so 4358 * always increment the no progress counter for them 4359 */ 4360 if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER) 4361 *no_progress_loops = 0; 4362 else 4363 (*no_progress_loops)++; 4364 4365 /* 4366 * Make sure we converge to OOM if we cannot make any progress 4367 * several times in the row. 4368 */ 4369 if (*no_progress_loops > MAX_RECLAIM_RETRIES) { 4370 /* Before OOM, exhaust highatomic_reserve */ 4371 return unreserve_highatomic_pageblock(ac, true); 4372 } 4373 4374 /* 4375 * Keep reclaiming pages while there is a chance this will lead 4376 * somewhere. If none of the target zones can satisfy our allocation 4377 * request even if all reclaimable pages are considered then we are 4378 * screwed and have to go OOM. 4379 */ 4380 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx, 4381 ac->nodemask) { 4382 unsigned long available; 4383 unsigned long reclaimable; 4384 unsigned long min_wmark = min_wmark_pages(zone); 4385 bool wmark; 4386 4387 available = reclaimable = zone_reclaimable_pages(zone); 4388 available += zone_page_state_snapshot(zone, NR_FREE_PAGES); 4389 4390 /* 4391 * Would the allocation succeed if we reclaimed all 4392 * reclaimable pages? 4393 */ 4394 wmark = __zone_watermark_ok(zone, order, min_wmark, 4395 ac_classzone_idx(ac), alloc_flags, available); 4396 trace_reclaim_retry_zone(z, order, reclaimable, 4397 available, min_wmark, *no_progress_loops, wmark); 4398 if (wmark) { 4399 /* 4400 * If we didn't make any progress and have a lot of 4401 * dirty + writeback pages then we should wait for 4402 * an IO to complete to slow down the reclaim and 4403 * prevent from pre mature OOM 4404 */ 4405 if (!did_some_progress) { 4406 unsigned long write_pending; 4407 4408 write_pending = zone_page_state_snapshot(zone, 4409 NR_ZONE_WRITE_PENDING); 4410 4411 if (2 * write_pending > reclaimable) { 4412 congestion_wait(BLK_RW_ASYNC, HZ/10); 4413 return true; 4414 } 4415 } 4416 4417 ret = true; 4418 goto out; 4419 } 4420 } 4421 4422 out: 4423 /* 4424 * Memory allocation/reclaim might be called from a WQ context and the 4425 * current implementation of the WQ concurrency control doesn't 4426 * recognize that a particular WQ is congested if the worker thread is 4427 * looping without ever sleeping. Therefore we have to do a short sleep 4428 * here rather than calling cond_resched(). 4429 */ 4430 if (current->flags & PF_WQ_WORKER) 4431 schedule_timeout_uninterruptible(1); 4432 else 4433 cond_resched(); 4434 return ret; 4435 } 4436 4437 static inline bool 4438 check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac) 4439 { 4440 /* 4441 * It's possible that cpuset's mems_allowed and the nodemask from 4442 * mempolicy don't intersect. This should be normally dealt with by 4443 * policy_nodemask(), but it's possible to race with cpuset update in 4444 * such a way the check therein was true, and then it became false 4445 * before we got our cpuset_mems_cookie here. 4446 * This assumes that for all allocations, ac->nodemask can come only 4447 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored 4448 * when it does not intersect with the cpuset restrictions) or the 4449 * caller can deal with a violated nodemask. 4450 */ 4451 if (cpusets_enabled() && ac->nodemask && 4452 !cpuset_nodemask_valid_mems_allowed(ac->nodemask)) { 4453 ac->nodemask = NULL; 4454 return true; 4455 } 4456 4457 /* 4458 * When updating a task's mems_allowed or mempolicy nodemask, it is 4459 * possible to race with parallel threads in such a way that our 4460 * allocation can fail while the mask is being updated. If we are about 4461 * to fail, check if the cpuset changed during allocation and if so, 4462 * retry. 4463 */ 4464 if (read_mems_allowed_retry(cpuset_mems_cookie)) 4465 return true; 4466 4467 return false; 4468 } 4469 4470 static inline struct page * 4471 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order, 4472 struct alloc_context *ac) 4473 { 4474 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM; 4475 const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER; 4476 struct page *page = NULL; 4477 unsigned int alloc_flags; 4478 unsigned long did_some_progress; 4479 enum compact_priority compact_priority; 4480 enum compact_result compact_result; 4481 int compaction_retries; 4482 int no_progress_loops; 4483 unsigned int cpuset_mems_cookie; 4484 int reserve_flags; 4485 4486 /* 4487 * We also sanity check to catch abuse of atomic reserves being used by 4488 * callers that are not in atomic context. 4489 */ 4490 if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) == 4491 (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM))) 4492 gfp_mask &= ~__GFP_ATOMIC; 4493 4494 retry_cpuset: 4495 compaction_retries = 0; 4496 no_progress_loops = 0; 4497 compact_priority = DEF_COMPACT_PRIORITY; 4498 cpuset_mems_cookie = read_mems_allowed_begin(); 4499 4500 /* 4501 * The fast path uses conservative alloc_flags to succeed only until 4502 * kswapd needs to be woken up, and to avoid the cost of setting up 4503 * alloc_flags precisely. So we do that now. 4504 */ 4505 alloc_flags = gfp_to_alloc_flags(gfp_mask); 4506 4507 /* 4508 * We need to recalculate the starting point for the zonelist iterator 4509 * because we might have used different nodemask in the fast path, or 4510 * there was a cpuset modification and we are retrying - otherwise we 4511 * could end up iterating over non-eligible zones endlessly. 4512 */ 4513 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist, 4514 ac->high_zoneidx, ac->nodemask); 4515 if (!ac->preferred_zoneref->zone) 4516 goto nopage; 4517 4518 if (alloc_flags & ALLOC_KSWAPD) 4519 wake_all_kswapds(order, gfp_mask, ac); 4520 4521 /* 4522 * The adjusted alloc_flags might result in immediate success, so try 4523 * that first 4524 */ 4525 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 4526 if (page) 4527 goto got_pg; 4528 4529 /* 4530 * For costly allocations, try direct compaction first, as it's likely 4531 * that we have enough base pages and don't need to reclaim. For non- 4532 * movable high-order allocations, do that as well, as compaction will 4533 * try prevent permanent fragmentation by migrating from blocks of the 4534 * same migratetype. 4535 * Don't try this for allocations that are allowed to ignore 4536 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen. 4537 */ 4538 if (can_direct_reclaim && 4539 (costly_order || 4540 (order > 0 && ac->migratetype != MIGRATE_MOVABLE)) 4541 && !gfp_pfmemalloc_allowed(gfp_mask)) { 4542 page = __alloc_pages_direct_compact(gfp_mask, order, 4543 alloc_flags, ac, 4544 INIT_COMPACT_PRIORITY, 4545 &compact_result); 4546 if (page) 4547 goto got_pg; 4548 4549 /* 4550 * Checks for costly allocations with __GFP_NORETRY, which 4551 * includes some THP page fault allocations 4552 */ 4553 if (costly_order && (gfp_mask & __GFP_NORETRY)) { 4554 /* 4555 * If allocating entire pageblock(s) and compaction 4556 * failed because all zones are below low watermarks 4557 * or is prohibited because it recently failed at this 4558 * order, fail immediately unless the allocator has 4559 * requested compaction and reclaim retry. 4560 * 4561 * Reclaim is 4562 * - potentially very expensive because zones are far 4563 * below their low watermarks or this is part of very 4564 * bursty high order allocations, 4565 * - not guaranteed to help because isolate_freepages() 4566 * may not iterate over freed pages as part of its 4567 * linear scan, and 4568 * - unlikely to make entire pageblocks free on its 4569 * own. 4570 */ 4571 if (compact_result == COMPACT_SKIPPED || 4572 compact_result == COMPACT_DEFERRED) 4573 goto nopage; 4574 4575 /* 4576 * Looks like reclaim/compaction is worth trying, but 4577 * sync compaction could be very expensive, so keep 4578 * using async compaction. 4579 */ 4580 compact_priority = INIT_COMPACT_PRIORITY; 4581 } 4582 } 4583 4584 retry: 4585 /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */ 4586 if (alloc_flags & ALLOC_KSWAPD) 4587 wake_all_kswapds(order, gfp_mask, ac); 4588 4589 reserve_flags = __gfp_pfmemalloc_flags(gfp_mask); 4590 if (reserve_flags) 4591 alloc_flags = reserve_flags; 4592 4593 /* 4594 * Reset the nodemask and zonelist iterators if memory policies can be 4595 * ignored. These allocations are high priority and system rather than 4596 * user oriented. 4597 */ 4598 if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) { 4599 ac->nodemask = NULL; 4600 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist, 4601 ac->high_zoneidx, ac->nodemask); 4602 } 4603 4604 /* Attempt with potentially adjusted zonelist and alloc_flags */ 4605 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 4606 if (page) 4607 goto got_pg; 4608 4609 /* Caller is not willing to reclaim, we can't balance anything */ 4610 if (!can_direct_reclaim) 4611 goto nopage; 4612 4613 /* Avoid recursion of direct reclaim */ 4614 if (current->flags & PF_MEMALLOC) 4615 goto nopage; 4616 4617 /* Try direct reclaim and then allocating */ 4618 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac, 4619 &did_some_progress); 4620 if (page) 4621 goto got_pg; 4622 4623 /* Try direct compaction and then allocating */ 4624 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac, 4625 compact_priority, &compact_result); 4626 if (page) 4627 goto got_pg; 4628 4629 /* Do not loop if specifically requested */ 4630 if (gfp_mask & __GFP_NORETRY) 4631 goto nopage; 4632 4633 /* 4634 * Do not retry costly high order allocations unless they are 4635 * __GFP_RETRY_MAYFAIL 4636 */ 4637 if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL)) 4638 goto nopage; 4639 4640 if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags, 4641 did_some_progress > 0, &no_progress_loops)) 4642 goto retry; 4643 4644 /* 4645 * It doesn't make any sense to retry for the compaction if the order-0 4646 * reclaim is not able to make any progress because the current 4647 * implementation of the compaction depends on the sufficient amount 4648 * of free memory (see __compaction_suitable) 4649 */ 4650 if (did_some_progress > 0 && 4651 should_compact_retry(ac, order, alloc_flags, 4652 compact_result, &compact_priority, 4653 &compaction_retries)) 4654 goto retry; 4655 4656 4657 /* Deal with possible cpuset update races before we start OOM killing */ 4658 if (check_retry_cpuset(cpuset_mems_cookie, ac)) 4659 goto retry_cpuset; 4660 4661 /* Reclaim has failed us, start killing things */ 4662 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress); 4663 if (page) 4664 goto got_pg; 4665 4666 /* Avoid allocations with no watermarks from looping endlessly */ 4667 if (tsk_is_oom_victim(current) && 4668 (alloc_flags == ALLOC_OOM || 4669 (gfp_mask & __GFP_NOMEMALLOC))) 4670 goto nopage; 4671 4672 /* Retry as long as the OOM killer is making progress */ 4673 if (did_some_progress) { 4674 no_progress_loops = 0; 4675 goto retry; 4676 } 4677 4678 nopage: 4679 /* Deal with possible cpuset update races before we fail */ 4680 if (check_retry_cpuset(cpuset_mems_cookie, ac)) 4681 goto retry_cpuset; 4682 4683 /* 4684 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure 4685 * we always retry 4686 */ 4687 if (gfp_mask & __GFP_NOFAIL) { 4688 /* 4689 * All existing users of the __GFP_NOFAIL are blockable, so warn 4690 * of any new users that actually require GFP_NOWAIT 4691 */ 4692 if (WARN_ON_ONCE(!can_direct_reclaim)) 4693 goto fail; 4694 4695 /* 4696 * PF_MEMALLOC request from this context is rather bizarre 4697 * because we cannot reclaim anything and only can loop waiting 4698 * for somebody to do a work for us 4699 */ 4700 WARN_ON_ONCE(current->flags & PF_MEMALLOC); 4701 4702 /* 4703 * non failing costly orders are a hard requirement which we 4704 * are not prepared for much so let's warn about these users 4705 * so that we can identify them and convert them to something 4706 * else. 4707 */ 4708 WARN_ON_ONCE(order > PAGE_ALLOC_COSTLY_ORDER); 4709 4710 /* 4711 * Help non-failing allocations by giving them access to memory 4712 * reserves but do not use ALLOC_NO_WATERMARKS because this 4713 * could deplete whole memory reserves which would just make 4714 * the situation worse 4715 */ 4716 page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac); 4717 if (page) 4718 goto got_pg; 4719 4720 cond_resched(); 4721 goto retry; 4722 } 4723 fail: 4724 warn_alloc(gfp_mask, ac->nodemask, 4725 "page allocation failure: order:%u", order); 4726 got_pg: 4727 return page; 4728 } 4729 4730 static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order, 4731 int preferred_nid, nodemask_t *nodemask, 4732 struct alloc_context *ac, gfp_t *alloc_mask, 4733 unsigned int *alloc_flags) 4734 { 4735 ac->high_zoneidx = gfp_zone(gfp_mask); 4736 ac->zonelist = node_zonelist(preferred_nid, gfp_mask); 4737 ac->nodemask = nodemask; 4738 ac->migratetype = gfpflags_to_migratetype(gfp_mask); 4739 4740 if (cpusets_enabled()) { 4741 *alloc_mask |= __GFP_HARDWALL; 4742 if (!ac->nodemask) 4743 ac->nodemask = &cpuset_current_mems_allowed; 4744 else 4745 *alloc_flags |= ALLOC_CPUSET; 4746 } 4747 4748 fs_reclaim_acquire(gfp_mask); 4749 fs_reclaim_release(gfp_mask); 4750 4751 might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM); 4752 4753 if (should_fail_alloc_page(gfp_mask, order)) 4754 return false; 4755 4756 if (IS_ENABLED(CONFIG_CMA) && ac->migratetype == MIGRATE_MOVABLE) 4757 *alloc_flags |= ALLOC_CMA; 4758 4759 return true; 4760 } 4761 4762 /* Determine whether to spread dirty pages and what the first usable zone */ 4763 static inline void finalise_ac(gfp_t gfp_mask, struct alloc_context *ac) 4764 { 4765 /* Dirty zone balancing only done in the fast path */ 4766 ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE); 4767 4768 /* 4769 * The preferred zone is used for statistics but crucially it is 4770 * also used as the starting point for the zonelist iterator. It 4771 * may get reset for allocations that ignore memory policies. 4772 */ 4773 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist, 4774 ac->high_zoneidx, ac->nodemask); 4775 } 4776 4777 /* 4778 * This is the 'heart' of the zoned buddy allocator. 4779 */ 4780 struct page * 4781 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order, int preferred_nid, 4782 nodemask_t *nodemask) 4783 { 4784 struct page *page; 4785 unsigned int alloc_flags = ALLOC_WMARK_LOW; 4786 gfp_t alloc_mask; /* The gfp_t that was actually used for allocation */ 4787 struct alloc_context ac = { }; 4788 4789 /* 4790 * There are several places where we assume that the order value is sane 4791 * so bail out early if the request is out of bound. 4792 */ 4793 if (unlikely(order >= MAX_ORDER)) { 4794 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN)); 4795 return NULL; 4796 } 4797 4798 gfp_mask &= gfp_allowed_mask; 4799 alloc_mask = gfp_mask; 4800 if (!prepare_alloc_pages(gfp_mask, order, preferred_nid, nodemask, &ac, &alloc_mask, &alloc_flags)) 4801 return NULL; 4802 4803 finalise_ac(gfp_mask, &ac); 4804 4805 /* 4806 * Forbid the first pass from falling back to types that fragment 4807 * memory until all local zones are considered. 4808 */ 4809 alloc_flags |= alloc_flags_nofragment(ac.preferred_zoneref->zone, gfp_mask); 4810 4811 /* First allocation attempt */ 4812 page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac); 4813 if (likely(page)) 4814 goto out; 4815 4816 /* 4817 * Apply scoped allocation constraints. This is mainly about GFP_NOFS 4818 * resp. GFP_NOIO which has to be inherited for all allocation requests 4819 * from a particular context which has been marked by 4820 * memalloc_no{fs,io}_{save,restore}. 4821 */ 4822 alloc_mask = current_gfp_context(gfp_mask); 4823 ac.spread_dirty_pages = false; 4824 4825 /* 4826 * Restore the original nodemask if it was potentially replaced with 4827 * &cpuset_current_mems_allowed to optimize the fast-path attempt. 4828 */ 4829 ac.nodemask = nodemask; 4830 4831 page = __alloc_pages_slowpath(alloc_mask, order, &ac); 4832 4833 out: 4834 if (memcg_kmem_enabled() && (gfp_mask & __GFP_ACCOUNT) && page && 4835 unlikely(__memcg_kmem_charge_page(page, gfp_mask, order) != 0)) { 4836 __free_pages(page, order); 4837 page = NULL; 4838 } 4839 4840 trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype); 4841 4842 return page; 4843 } 4844 EXPORT_SYMBOL(__alloc_pages_nodemask); 4845 4846 /* 4847 * Common helper functions. Never use with __GFP_HIGHMEM because the returned 4848 * address cannot represent highmem pages. Use alloc_pages and then kmap if 4849 * you need to access high mem. 4850 */ 4851 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order) 4852 { 4853 struct page *page; 4854 4855 page = alloc_pages(gfp_mask & ~__GFP_HIGHMEM, order); 4856 if (!page) 4857 return 0; 4858 return (unsigned long) page_address(page); 4859 } 4860 EXPORT_SYMBOL(__get_free_pages); 4861 4862 unsigned long get_zeroed_page(gfp_t gfp_mask) 4863 { 4864 return __get_free_pages(gfp_mask | __GFP_ZERO, 0); 4865 } 4866 EXPORT_SYMBOL(get_zeroed_page); 4867 4868 static inline void free_the_page(struct page *page, unsigned int order) 4869 { 4870 if (order == 0) /* Via pcp? */ 4871 free_unref_page(page); 4872 else 4873 __free_pages_ok(page, order); 4874 } 4875 4876 void __free_pages(struct page *page, unsigned int order) 4877 { 4878 if (put_page_testzero(page)) 4879 free_the_page(page, order); 4880 } 4881 EXPORT_SYMBOL(__free_pages); 4882 4883 void free_pages(unsigned long addr, unsigned int order) 4884 { 4885 if (addr != 0) { 4886 VM_BUG_ON(!virt_addr_valid((void *)addr)); 4887 __free_pages(virt_to_page((void *)addr), order); 4888 } 4889 } 4890 4891 EXPORT_SYMBOL(free_pages); 4892 4893 /* 4894 * Page Fragment: 4895 * An arbitrary-length arbitrary-offset area of memory which resides 4896 * within a 0 or higher order page. Multiple fragments within that page 4897 * are individually refcounted, in the page's reference counter. 4898 * 4899 * The page_frag functions below provide a simple allocation framework for 4900 * page fragments. This is used by the network stack and network device 4901 * drivers to provide a backing region of memory for use as either an 4902 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info. 4903 */ 4904 static struct page *__page_frag_cache_refill(struct page_frag_cache *nc, 4905 gfp_t gfp_mask) 4906 { 4907 struct page *page = NULL; 4908 gfp_t gfp = gfp_mask; 4909 4910 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE) 4911 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY | 4912 __GFP_NOMEMALLOC; 4913 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask, 4914 PAGE_FRAG_CACHE_MAX_ORDER); 4915 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE; 4916 #endif 4917 if (unlikely(!page)) 4918 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0); 4919 4920 nc->va = page ? page_address(page) : NULL; 4921 4922 return page; 4923 } 4924 4925 void __page_frag_cache_drain(struct page *page, unsigned int count) 4926 { 4927 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page); 4928 4929 if (page_ref_sub_and_test(page, count)) 4930 free_the_page(page, compound_order(page)); 4931 } 4932 EXPORT_SYMBOL(__page_frag_cache_drain); 4933 4934 void *page_frag_alloc(struct page_frag_cache *nc, 4935 unsigned int fragsz, gfp_t gfp_mask) 4936 { 4937 unsigned int size = PAGE_SIZE; 4938 struct page *page; 4939 int offset; 4940 4941 if (unlikely(!nc->va)) { 4942 refill: 4943 page = __page_frag_cache_refill(nc, gfp_mask); 4944 if (!page) 4945 return NULL; 4946 4947 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE) 4948 /* if size can vary use size else just use PAGE_SIZE */ 4949 size = nc->size; 4950 #endif 4951 /* Even if we own the page, we do not use atomic_set(). 4952 * This would break get_page_unless_zero() users. 4953 */ 4954 page_ref_add(page, PAGE_FRAG_CACHE_MAX_SIZE); 4955 4956 /* reset page count bias and offset to start of new frag */ 4957 nc->pfmemalloc = page_is_pfmemalloc(page); 4958 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1; 4959 nc->offset = size; 4960 } 4961 4962 offset = nc->offset - fragsz; 4963 if (unlikely(offset < 0)) { 4964 page = virt_to_page(nc->va); 4965 4966 if (!page_ref_sub_and_test(page, nc->pagecnt_bias)) 4967 goto refill; 4968 4969 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE) 4970 /* if size can vary use size else just use PAGE_SIZE */ 4971 size = nc->size; 4972 #endif 4973 /* OK, page count is 0, we can safely set it */ 4974 set_page_count(page, PAGE_FRAG_CACHE_MAX_SIZE + 1); 4975 4976 /* reset page count bias and offset to start of new frag */ 4977 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1; 4978 offset = size - fragsz; 4979 } 4980 4981 nc->pagecnt_bias--; 4982 nc->offset = offset; 4983 4984 return nc->va + offset; 4985 } 4986 EXPORT_SYMBOL(page_frag_alloc); 4987 4988 /* 4989 * Frees a page fragment allocated out of either a compound or order 0 page. 4990 */ 4991 void page_frag_free(void *addr) 4992 { 4993 struct page *page = virt_to_head_page(addr); 4994 4995 if (unlikely(put_page_testzero(page))) 4996 free_the_page(page, compound_order(page)); 4997 } 4998 EXPORT_SYMBOL(page_frag_free); 4999 5000 static void *make_alloc_exact(unsigned long addr, unsigned int order, 5001 size_t size) 5002 { 5003 if (addr) { 5004 unsigned long alloc_end = addr + (PAGE_SIZE << order); 5005 unsigned long used = addr + PAGE_ALIGN(size); 5006 5007 split_page(virt_to_page((void *)addr), order); 5008 while (used < alloc_end) { 5009 free_page(used); 5010 used += PAGE_SIZE; 5011 } 5012 } 5013 return (void *)addr; 5014 } 5015 5016 /** 5017 * alloc_pages_exact - allocate an exact number physically-contiguous pages. 5018 * @size: the number of bytes to allocate 5019 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP 5020 * 5021 * This function is similar to alloc_pages(), except that it allocates the 5022 * minimum number of pages to satisfy the request. alloc_pages() can only 5023 * allocate memory in power-of-two pages. 5024 * 5025 * This function is also limited by MAX_ORDER. 5026 * 5027 * Memory allocated by this function must be released by free_pages_exact(). 5028 * 5029 * Return: pointer to the allocated area or %NULL in case of error. 5030 */ 5031 void *alloc_pages_exact(size_t size, gfp_t gfp_mask) 5032 { 5033 unsigned int order = get_order(size); 5034 unsigned long addr; 5035 5036 if (WARN_ON_ONCE(gfp_mask & __GFP_COMP)) 5037 gfp_mask &= ~__GFP_COMP; 5038 5039 addr = __get_free_pages(gfp_mask, order); 5040 return make_alloc_exact(addr, order, size); 5041 } 5042 EXPORT_SYMBOL(alloc_pages_exact); 5043 5044 /** 5045 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous 5046 * pages on a node. 5047 * @nid: the preferred node ID where memory should be allocated 5048 * @size: the number of bytes to allocate 5049 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP 5050 * 5051 * Like alloc_pages_exact(), but try to allocate on node nid first before falling 5052 * back. 5053 * 5054 * Return: pointer to the allocated area or %NULL in case of error. 5055 */ 5056 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask) 5057 { 5058 unsigned int order = get_order(size); 5059 struct page *p; 5060 5061 if (WARN_ON_ONCE(gfp_mask & __GFP_COMP)) 5062 gfp_mask &= ~__GFP_COMP; 5063 5064 p = alloc_pages_node(nid, gfp_mask, order); 5065 if (!p) 5066 return NULL; 5067 return make_alloc_exact((unsigned long)page_address(p), order, size); 5068 } 5069 5070 /** 5071 * free_pages_exact - release memory allocated via alloc_pages_exact() 5072 * @virt: the value returned by alloc_pages_exact. 5073 * @size: size of allocation, same value as passed to alloc_pages_exact(). 5074 * 5075 * Release the memory allocated by a previous call to alloc_pages_exact. 5076 */ 5077 void free_pages_exact(void *virt, size_t size) 5078 { 5079 unsigned long addr = (unsigned long)virt; 5080 unsigned long end = addr + PAGE_ALIGN(size); 5081 5082 while (addr < end) { 5083 free_page(addr); 5084 addr += PAGE_SIZE; 5085 } 5086 } 5087 EXPORT_SYMBOL(free_pages_exact); 5088 5089 /** 5090 * nr_free_zone_pages - count number of pages beyond high watermark 5091 * @offset: The zone index of the highest zone 5092 * 5093 * nr_free_zone_pages() counts the number of pages which are beyond the 5094 * high watermark within all zones at or below a given zone index. For each 5095 * zone, the number of pages is calculated as: 5096 * 5097 * nr_free_zone_pages = managed_pages - high_pages 5098 * 5099 * Return: number of pages beyond high watermark. 5100 */ 5101 static unsigned long nr_free_zone_pages(int offset) 5102 { 5103 struct zoneref *z; 5104 struct zone *zone; 5105 5106 /* Just pick one node, since fallback list is circular */ 5107 unsigned long sum = 0; 5108 5109 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL); 5110 5111 for_each_zone_zonelist(zone, z, zonelist, offset) { 5112 unsigned long size = zone_managed_pages(zone); 5113 unsigned long high = high_wmark_pages(zone); 5114 if (size > high) 5115 sum += size - high; 5116 } 5117 5118 return sum; 5119 } 5120 5121 /** 5122 * nr_free_buffer_pages - count number of pages beyond high watermark 5123 * 5124 * nr_free_buffer_pages() counts the number of pages which are beyond the high 5125 * watermark within ZONE_DMA and ZONE_NORMAL. 5126 * 5127 * Return: number of pages beyond high watermark within ZONE_DMA and 5128 * ZONE_NORMAL. 5129 */ 5130 unsigned long nr_free_buffer_pages(void) 5131 { 5132 return nr_free_zone_pages(gfp_zone(GFP_USER)); 5133 } 5134 EXPORT_SYMBOL_GPL(nr_free_buffer_pages); 5135 5136 /** 5137 * nr_free_pagecache_pages - count number of pages beyond high watermark 5138 * 5139 * nr_free_pagecache_pages() counts the number of pages which are beyond the 5140 * high watermark within all zones. 5141 * 5142 * Return: number of pages beyond high watermark within all zones. 5143 */ 5144 unsigned long nr_free_pagecache_pages(void) 5145 { 5146 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE)); 5147 } 5148 5149 static inline void show_node(struct zone *zone) 5150 { 5151 if (IS_ENABLED(CONFIG_NUMA)) 5152 printk("Node %d ", zone_to_nid(zone)); 5153 } 5154 5155 long si_mem_available(void) 5156 { 5157 long available; 5158 unsigned long pagecache; 5159 unsigned long wmark_low = 0; 5160 unsigned long pages[NR_LRU_LISTS]; 5161 unsigned long reclaimable; 5162 struct zone *zone; 5163 int lru; 5164 5165 for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++) 5166 pages[lru] = global_node_page_state(NR_LRU_BASE + lru); 5167 5168 for_each_zone(zone) 5169 wmark_low += low_wmark_pages(zone); 5170 5171 /* 5172 * Estimate the amount of memory available for userspace allocations, 5173 * without causing swapping. 5174 */ 5175 available = global_zone_page_state(NR_FREE_PAGES) - totalreserve_pages; 5176 5177 /* 5178 * Not all the page cache can be freed, otherwise the system will 5179 * start swapping. Assume at least half of the page cache, or the 5180 * low watermark worth of cache, needs to stay. 5181 */ 5182 pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE]; 5183 pagecache -= min(pagecache / 2, wmark_low); 5184 available += pagecache; 5185 5186 /* 5187 * Part of the reclaimable slab and other kernel memory consists of 5188 * items that are in use, and cannot be freed. Cap this estimate at the 5189 * low watermark. 5190 */ 5191 reclaimable = global_node_page_state(NR_SLAB_RECLAIMABLE) + 5192 global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE); 5193 available += reclaimable - min(reclaimable / 2, wmark_low); 5194 5195 if (available < 0) 5196 available = 0; 5197 return available; 5198 } 5199 EXPORT_SYMBOL_GPL(si_mem_available); 5200 5201 void si_meminfo(struct sysinfo *val) 5202 { 5203 val->totalram = totalram_pages(); 5204 val->sharedram = global_node_page_state(NR_SHMEM); 5205 val->freeram = global_zone_page_state(NR_FREE_PAGES); 5206 val->bufferram = nr_blockdev_pages(); 5207 val->totalhigh = totalhigh_pages(); 5208 val->freehigh = nr_free_highpages(); 5209 val->mem_unit = PAGE_SIZE; 5210 } 5211 5212 EXPORT_SYMBOL(si_meminfo); 5213 5214 #ifdef CONFIG_NUMA 5215 void si_meminfo_node(struct sysinfo *val, int nid) 5216 { 5217 int zone_type; /* needs to be signed */ 5218 unsigned long managed_pages = 0; 5219 unsigned long managed_highpages = 0; 5220 unsigned long free_highpages = 0; 5221 pg_data_t *pgdat = NODE_DATA(nid); 5222 5223 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) 5224 managed_pages += zone_managed_pages(&pgdat->node_zones[zone_type]); 5225 val->totalram = managed_pages; 5226 val->sharedram = node_page_state(pgdat, NR_SHMEM); 5227 val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES); 5228 #ifdef CONFIG_HIGHMEM 5229 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) { 5230 struct zone *zone = &pgdat->node_zones[zone_type]; 5231 5232 if (is_highmem(zone)) { 5233 managed_highpages += zone_managed_pages(zone); 5234 free_highpages += zone_page_state(zone, NR_FREE_PAGES); 5235 } 5236 } 5237 val->totalhigh = managed_highpages; 5238 val->freehigh = free_highpages; 5239 #else 5240 val->totalhigh = managed_highpages; 5241 val->freehigh = free_highpages; 5242 #endif 5243 val->mem_unit = PAGE_SIZE; 5244 } 5245 #endif 5246 5247 /* 5248 * Determine whether the node should be displayed or not, depending on whether 5249 * SHOW_MEM_FILTER_NODES was passed to show_free_areas(). 5250 */ 5251 static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask) 5252 { 5253 if (!(flags & SHOW_MEM_FILTER_NODES)) 5254 return false; 5255 5256 /* 5257 * no node mask - aka implicit memory numa policy. Do not bother with 5258 * the synchronization - read_mems_allowed_begin - because we do not 5259 * have to be precise here. 5260 */ 5261 if (!nodemask) 5262 nodemask = &cpuset_current_mems_allowed; 5263 5264 return !node_isset(nid, *nodemask); 5265 } 5266 5267 #define K(x) ((x) << (PAGE_SHIFT-10)) 5268 5269 static void show_migration_types(unsigned char type) 5270 { 5271 static const char types[MIGRATE_TYPES] = { 5272 [MIGRATE_UNMOVABLE] = 'U', 5273 [MIGRATE_MOVABLE] = 'M', 5274 [MIGRATE_RECLAIMABLE] = 'E', 5275 [MIGRATE_HIGHATOMIC] = 'H', 5276 #ifdef CONFIG_CMA 5277 [MIGRATE_CMA] = 'C', 5278 #endif 5279 #ifdef CONFIG_MEMORY_ISOLATION 5280 [MIGRATE_ISOLATE] = 'I', 5281 #endif 5282 }; 5283 char tmp[MIGRATE_TYPES + 1]; 5284 char *p = tmp; 5285 int i; 5286 5287 for (i = 0; i < MIGRATE_TYPES; i++) { 5288 if (type & (1 << i)) 5289 *p++ = types[i]; 5290 } 5291 5292 *p = '\0'; 5293 printk(KERN_CONT "(%s) ", tmp); 5294 } 5295 5296 /* 5297 * Show free area list (used inside shift_scroll-lock stuff) 5298 * We also calculate the percentage fragmentation. We do this by counting the 5299 * memory on each free list with the exception of the first item on the list. 5300 * 5301 * Bits in @filter: 5302 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's 5303 * cpuset. 5304 */ 5305 void show_free_areas(unsigned int filter, nodemask_t *nodemask) 5306 { 5307 unsigned long free_pcp = 0; 5308 int cpu; 5309 struct zone *zone; 5310 pg_data_t *pgdat; 5311 5312 for_each_populated_zone(zone) { 5313 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask)) 5314 continue; 5315 5316 for_each_online_cpu(cpu) 5317 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count; 5318 } 5319 5320 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n" 5321 " active_file:%lu inactive_file:%lu isolated_file:%lu\n" 5322 " unevictable:%lu dirty:%lu writeback:%lu\n" 5323 " slab_reclaimable:%lu slab_unreclaimable:%lu\n" 5324 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n" 5325 " free:%lu free_pcp:%lu free_cma:%lu\n", 5326 global_node_page_state(NR_ACTIVE_ANON), 5327 global_node_page_state(NR_INACTIVE_ANON), 5328 global_node_page_state(NR_ISOLATED_ANON), 5329 global_node_page_state(NR_ACTIVE_FILE), 5330 global_node_page_state(NR_INACTIVE_FILE), 5331 global_node_page_state(NR_ISOLATED_FILE), 5332 global_node_page_state(NR_UNEVICTABLE), 5333 global_node_page_state(NR_FILE_DIRTY), 5334 global_node_page_state(NR_WRITEBACK), 5335 global_node_page_state(NR_SLAB_RECLAIMABLE), 5336 global_node_page_state(NR_SLAB_UNRECLAIMABLE), 5337 global_node_page_state(NR_FILE_MAPPED), 5338 global_node_page_state(NR_SHMEM), 5339 global_zone_page_state(NR_PAGETABLE), 5340 global_zone_page_state(NR_BOUNCE), 5341 global_zone_page_state(NR_FREE_PAGES), 5342 free_pcp, 5343 global_zone_page_state(NR_FREE_CMA_PAGES)); 5344 5345 for_each_online_pgdat(pgdat) { 5346 if (show_mem_node_skip(filter, pgdat->node_id, nodemask)) 5347 continue; 5348 5349 printk("Node %d" 5350 " active_anon:%lukB" 5351 " inactive_anon:%lukB" 5352 " active_file:%lukB" 5353 " inactive_file:%lukB" 5354 " unevictable:%lukB" 5355 " isolated(anon):%lukB" 5356 " isolated(file):%lukB" 5357 " mapped:%lukB" 5358 " dirty:%lukB" 5359 " writeback:%lukB" 5360 " shmem:%lukB" 5361 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 5362 " shmem_thp: %lukB" 5363 " shmem_pmdmapped: %lukB" 5364 " anon_thp: %lukB" 5365 #endif 5366 " writeback_tmp:%lukB" 5367 " all_unreclaimable? %s" 5368 "\n", 5369 pgdat->node_id, 5370 K(node_page_state(pgdat, NR_ACTIVE_ANON)), 5371 K(node_page_state(pgdat, NR_INACTIVE_ANON)), 5372 K(node_page_state(pgdat, NR_ACTIVE_FILE)), 5373 K(node_page_state(pgdat, NR_INACTIVE_FILE)), 5374 K(node_page_state(pgdat, NR_UNEVICTABLE)), 5375 K(node_page_state(pgdat, NR_ISOLATED_ANON)), 5376 K(node_page_state(pgdat, NR_ISOLATED_FILE)), 5377 K(node_page_state(pgdat, NR_FILE_MAPPED)), 5378 K(node_page_state(pgdat, NR_FILE_DIRTY)), 5379 K(node_page_state(pgdat, NR_WRITEBACK)), 5380 K(node_page_state(pgdat, NR_SHMEM)), 5381 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 5382 K(node_page_state(pgdat, NR_SHMEM_THPS) * HPAGE_PMD_NR), 5383 K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED) 5384 * HPAGE_PMD_NR), 5385 K(node_page_state(pgdat, NR_ANON_THPS) * HPAGE_PMD_NR), 5386 #endif 5387 K(node_page_state(pgdat, NR_WRITEBACK_TEMP)), 5388 pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ? 5389 "yes" : "no"); 5390 } 5391 5392 for_each_populated_zone(zone) { 5393 int i; 5394 5395 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask)) 5396 continue; 5397 5398 free_pcp = 0; 5399 for_each_online_cpu(cpu) 5400 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count; 5401 5402 show_node(zone); 5403 printk(KERN_CONT 5404 "%s" 5405 " free:%lukB" 5406 " min:%lukB" 5407 " low:%lukB" 5408 " high:%lukB" 5409 " reserved_highatomic:%luKB" 5410 " active_anon:%lukB" 5411 " inactive_anon:%lukB" 5412 " active_file:%lukB" 5413 " inactive_file:%lukB" 5414 " unevictable:%lukB" 5415 " writepending:%lukB" 5416 " present:%lukB" 5417 " managed:%lukB" 5418 " mlocked:%lukB" 5419 " kernel_stack:%lukB" 5420 #ifdef CONFIG_SHADOW_CALL_STACK 5421 " shadow_call_stack:%lukB" 5422 #endif 5423 " pagetables:%lukB" 5424 " bounce:%lukB" 5425 " free_pcp:%lukB" 5426 " local_pcp:%ukB" 5427 " free_cma:%lukB" 5428 "\n", 5429 zone->name, 5430 K(zone_page_state(zone, NR_FREE_PAGES)), 5431 K(min_wmark_pages(zone)), 5432 K(low_wmark_pages(zone)), 5433 K(high_wmark_pages(zone)), 5434 K(zone->nr_reserved_highatomic), 5435 K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)), 5436 K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)), 5437 K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)), 5438 K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)), 5439 K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)), 5440 K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)), 5441 K(zone->present_pages), 5442 K(zone_managed_pages(zone)), 5443 K(zone_page_state(zone, NR_MLOCK)), 5444 zone_page_state(zone, NR_KERNEL_STACK_KB), 5445 #ifdef CONFIG_SHADOW_CALL_STACK 5446 zone_page_state(zone, NR_KERNEL_SCS_KB), 5447 #endif 5448 K(zone_page_state(zone, NR_PAGETABLE)), 5449 K(zone_page_state(zone, NR_BOUNCE)), 5450 K(free_pcp), 5451 K(this_cpu_read(zone->pageset->pcp.count)), 5452 K(zone_page_state(zone, NR_FREE_CMA_PAGES))); 5453 printk("lowmem_reserve[]:"); 5454 for (i = 0; i < MAX_NR_ZONES; i++) 5455 printk(KERN_CONT " %ld", zone->lowmem_reserve[i]); 5456 printk(KERN_CONT "\n"); 5457 } 5458 5459 for_each_populated_zone(zone) { 5460 unsigned int order; 5461 unsigned long nr[MAX_ORDER], flags, total = 0; 5462 unsigned char types[MAX_ORDER]; 5463 5464 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask)) 5465 continue; 5466 show_node(zone); 5467 printk(KERN_CONT "%s: ", zone->name); 5468 5469 spin_lock_irqsave(&zone->lock, flags); 5470 for (order = 0; order < MAX_ORDER; order++) { 5471 struct free_area *area = &zone->free_area[order]; 5472 int type; 5473 5474 nr[order] = area->nr_free; 5475 total += nr[order] << order; 5476 5477 types[order] = 0; 5478 for (type = 0; type < MIGRATE_TYPES; type++) { 5479 if (!free_area_empty(area, type)) 5480 types[order] |= 1 << type; 5481 } 5482 } 5483 spin_unlock_irqrestore(&zone->lock, flags); 5484 for (order = 0; order < MAX_ORDER; order++) { 5485 printk(KERN_CONT "%lu*%lukB ", 5486 nr[order], K(1UL) << order); 5487 if (nr[order]) 5488 show_migration_types(types[order]); 5489 } 5490 printk(KERN_CONT "= %lukB\n", K(total)); 5491 } 5492 5493 hugetlb_show_meminfo(); 5494 5495 printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES)); 5496 5497 show_swap_cache_info(); 5498 } 5499 5500 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref) 5501 { 5502 zoneref->zone = zone; 5503 zoneref->zone_idx = zone_idx(zone); 5504 } 5505 5506 /* 5507 * Builds allocation fallback zone lists. 5508 * 5509 * Add all populated zones of a node to the zonelist. 5510 */ 5511 static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs) 5512 { 5513 struct zone *zone; 5514 enum zone_type zone_type = MAX_NR_ZONES; 5515 int nr_zones = 0; 5516 5517 do { 5518 zone_type--; 5519 zone = pgdat->node_zones + zone_type; 5520 if (managed_zone(zone)) { 5521 zoneref_set_zone(zone, &zonerefs[nr_zones++]); 5522 check_highest_zone(zone_type); 5523 } 5524 } while (zone_type); 5525 5526 return nr_zones; 5527 } 5528 5529 #ifdef CONFIG_NUMA 5530 5531 static int __parse_numa_zonelist_order(char *s) 5532 { 5533 /* 5534 * We used to support different zonlists modes but they turned 5535 * out to be just not useful. Let's keep the warning in place 5536 * if somebody still use the cmd line parameter so that we do 5537 * not fail it silently 5538 */ 5539 if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) { 5540 pr_warn("Ignoring unsupported numa_zonelist_order value: %s\n", s); 5541 return -EINVAL; 5542 } 5543 return 0; 5544 } 5545 5546 static __init int setup_numa_zonelist_order(char *s) 5547 { 5548 if (!s) 5549 return 0; 5550 5551 return __parse_numa_zonelist_order(s); 5552 } 5553 early_param("numa_zonelist_order", setup_numa_zonelist_order); 5554 5555 char numa_zonelist_order[] = "Node"; 5556 5557 /* 5558 * sysctl handler for numa_zonelist_order 5559 */ 5560 int numa_zonelist_order_handler(struct ctl_table *table, int write, 5561 void __user *buffer, size_t *length, 5562 loff_t *ppos) 5563 { 5564 char *str; 5565 int ret; 5566 5567 if (!write) 5568 return proc_dostring(table, write, buffer, length, ppos); 5569 str = memdup_user_nul(buffer, 16); 5570 if (IS_ERR(str)) 5571 return PTR_ERR(str); 5572 5573 ret = __parse_numa_zonelist_order(str); 5574 kfree(str); 5575 return ret; 5576 } 5577 5578 5579 #define MAX_NODE_LOAD (nr_online_nodes) 5580 static int node_load[MAX_NUMNODES]; 5581 5582 /** 5583 * find_next_best_node - find the next node that should appear in a given node's fallback list 5584 * @node: node whose fallback list we're appending 5585 * @used_node_mask: nodemask_t of already used nodes 5586 * 5587 * We use a number of factors to determine which is the next node that should 5588 * appear on a given node's fallback list. The node should not have appeared 5589 * already in @node's fallback list, and it should be the next closest node 5590 * according to the distance array (which contains arbitrary distance values 5591 * from each node to each node in the system), and should also prefer nodes 5592 * with no CPUs, since presumably they'll have very little allocation pressure 5593 * on them otherwise. 5594 * 5595 * Return: node id of the found node or %NUMA_NO_NODE if no node is found. 5596 */ 5597 static int find_next_best_node(int node, nodemask_t *used_node_mask) 5598 { 5599 int n, val; 5600 int min_val = INT_MAX; 5601 int best_node = NUMA_NO_NODE; 5602 const struct cpumask *tmp = cpumask_of_node(0); 5603 5604 /* Use the local node if we haven't already */ 5605 if (!node_isset(node, *used_node_mask)) { 5606 node_set(node, *used_node_mask); 5607 return node; 5608 } 5609 5610 for_each_node_state(n, N_MEMORY) { 5611 5612 /* Don't want a node to appear more than once */ 5613 if (node_isset(n, *used_node_mask)) 5614 continue; 5615 5616 /* Use the distance array to find the distance */ 5617 val = node_distance(node, n); 5618 5619 /* Penalize nodes under us ("prefer the next node") */ 5620 val += (n < node); 5621 5622 /* Give preference to headless and unused nodes */ 5623 tmp = cpumask_of_node(n); 5624 if (!cpumask_empty(tmp)) 5625 val += PENALTY_FOR_NODE_WITH_CPUS; 5626 5627 /* Slight preference for less loaded node */ 5628 val *= (MAX_NODE_LOAD*MAX_NUMNODES); 5629 val += node_load[n]; 5630 5631 if (val < min_val) { 5632 min_val = val; 5633 best_node = n; 5634 } 5635 } 5636 5637 if (best_node >= 0) 5638 node_set(best_node, *used_node_mask); 5639 5640 return best_node; 5641 } 5642 5643 5644 /* 5645 * Build zonelists ordered by node and zones within node. 5646 * This results in maximum locality--normal zone overflows into local 5647 * DMA zone, if any--but risks exhausting DMA zone. 5648 */ 5649 static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order, 5650 unsigned nr_nodes) 5651 { 5652 struct zoneref *zonerefs; 5653 int i; 5654 5655 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs; 5656 5657 for (i = 0; i < nr_nodes; i++) { 5658 int nr_zones; 5659 5660 pg_data_t *node = NODE_DATA(node_order[i]); 5661 5662 nr_zones = build_zonerefs_node(node, zonerefs); 5663 zonerefs += nr_zones; 5664 } 5665 zonerefs->zone = NULL; 5666 zonerefs->zone_idx = 0; 5667 } 5668 5669 /* 5670 * Build gfp_thisnode zonelists 5671 */ 5672 static void build_thisnode_zonelists(pg_data_t *pgdat) 5673 { 5674 struct zoneref *zonerefs; 5675 int nr_zones; 5676 5677 zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs; 5678 nr_zones = build_zonerefs_node(pgdat, zonerefs); 5679 zonerefs += nr_zones; 5680 zonerefs->zone = NULL; 5681 zonerefs->zone_idx = 0; 5682 } 5683 5684 /* 5685 * Build zonelists ordered by zone and nodes within zones. 5686 * This results in conserving DMA zone[s] until all Normal memory is 5687 * exhausted, but results in overflowing to remote node while memory 5688 * may still exist in local DMA zone. 5689 */ 5690 5691 static void build_zonelists(pg_data_t *pgdat) 5692 { 5693 static int node_order[MAX_NUMNODES]; 5694 int node, load, nr_nodes = 0; 5695 nodemask_t used_mask; 5696 int local_node, prev_node; 5697 5698 /* NUMA-aware ordering of nodes */ 5699 local_node = pgdat->node_id; 5700 load = nr_online_nodes; 5701 prev_node = local_node; 5702 nodes_clear(used_mask); 5703 5704 memset(node_order, 0, sizeof(node_order)); 5705 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) { 5706 /* 5707 * We don't want to pressure a particular node. 5708 * So adding penalty to the first node in same 5709 * distance group to make it round-robin. 5710 */ 5711 if (node_distance(local_node, node) != 5712 node_distance(local_node, prev_node)) 5713 node_load[node] = load; 5714 5715 node_order[nr_nodes++] = node; 5716 prev_node = node; 5717 load--; 5718 } 5719 5720 build_zonelists_in_node_order(pgdat, node_order, nr_nodes); 5721 build_thisnode_zonelists(pgdat); 5722 } 5723 5724 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 5725 /* 5726 * Return node id of node used for "local" allocations. 5727 * I.e., first node id of first zone in arg node's generic zonelist. 5728 * Used for initializing percpu 'numa_mem', which is used primarily 5729 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist. 5730 */ 5731 int local_memory_node(int node) 5732 { 5733 struct zoneref *z; 5734 5735 z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL), 5736 gfp_zone(GFP_KERNEL), 5737 NULL); 5738 return zone_to_nid(z->zone); 5739 } 5740 #endif 5741 5742 static void setup_min_unmapped_ratio(void); 5743 static void setup_min_slab_ratio(void); 5744 #else /* CONFIG_NUMA */ 5745 5746 static void build_zonelists(pg_data_t *pgdat) 5747 { 5748 int node, local_node; 5749 struct zoneref *zonerefs; 5750 int nr_zones; 5751 5752 local_node = pgdat->node_id; 5753 5754 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs; 5755 nr_zones = build_zonerefs_node(pgdat, zonerefs); 5756 zonerefs += nr_zones; 5757 5758 /* 5759 * Now we build the zonelist so that it contains the zones 5760 * of all the other nodes. 5761 * We don't want to pressure a particular node, so when 5762 * building the zones for node N, we make sure that the 5763 * zones coming right after the local ones are those from 5764 * node N+1 (modulo N) 5765 */ 5766 for (node = local_node + 1; node < MAX_NUMNODES; node++) { 5767 if (!node_online(node)) 5768 continue; 5769 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs); 5770 zonerefs += nr_zones; 5771 } 5772 for (node = 0; node < local_node; node++) { 5773 if (!node_online(node)) 5774 continue; 5775 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs); 5776 zonerefs += nr_zones; 5777 } 5778 5779 zonerefs->zone = NULL; 5780 zonerefs->zone_idx = 0; 5781 } 5782 5783 #endif /* CONFIG_NUMA */ 5784 5785 /* 5786 * Boot pageset table. One per cpu which is going to be used for all 5787 * zones and all nodes. The parameters will be set in such a way 5788 * that an item put on a list will immediately be handed over to 5789 * the buddy list. This is safe since pageset manipulation is done 5790 * with interrupts disabled. 5791 * 5792 * The boot_pagesets must be kept even after bootup is complete for 5793 * unused processors and/or zones. They do play a role for bootstrapping 5794 * hotplugged processors. 5795 * 5796 * zoneinfo_show() and maybe other functions do 5797 * not check if the processor is online before following the pageset pointer. 5798 * Other parts of the kernel may not check if the zone is available. 5799 */ 5800 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch); 5801 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset); 5802 static DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats); 5803 5804 static void __build_all_zonelists(void *data) 5805 { 5806 int nid; 5807 int __maybe_unused cpu; 5808 pg_data_t *self = data; 5809 static DEFINE_SPINLOCK(lock); 5810 5811 spin_lock(&lock); 5812 5813 #ifdef CONFIG_NUMA 5814 memset(node_load, 0, sizeof(node_load)); 5815 #endif 5816 5817 /* 5818 * This node is hotadded and no memory is yet present. So just 5819 * building zonelists is fine - no need to touch other nodes. 5820 */ 5821 if (self && !node_online(self->node_id)) { 5822 build_zonelists(self); 5823 } else { 5824 for_each_online_node(nid) { 5825 pg_data_t *pgdat = NODE_DATA(nid); 5826 5827 build_zonelists(pgdat); 5828 } 5829 5830 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 5831 /* 5832 * We now know the "local memory node" for each node-- 5833 * i.e., the node of the first zone in the generic zonelist. 5834 * Set up numa_mem percpu variable for on-line cpus. During 5835 * boot, only the boot cpu should be on-line; we'll init the 5836 * secondary cpus' numa_mem as they come on-line. During 5837 * node/memory hotplug, we'll fixup all on-line cpus. 5838 */ 5839 for_each_online_cpu(cpu) 5840 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu))); 5841 #endif 5842 } 5843 5844 spin_unlock(&lock); 5845 } 5846 5847 static noinline void __init 5848 build_all_zonelists_init(void) 5849 { 5850 int cpu; 5851 5852 __build_all_zonelists(NULL); 5853 5854 /* 5855 * Initialize the boot_pagesets that are going to be used 5856 * for bootstrapping processors. The real pagesets for 5857 * each zone will be allocated later when the per cpu 5858 * allocator is available. 5859 * 5860 * boot_pagesets are used also for bootstrapping offline 5861 * cpus if the system is already booted because the pagesets 5862 * are needed to initialize allocators on a specific cpu too. 5863 * F.e. the percpu allocator needs the page allocator which 5864 * needs the percpu allocator in order to allocate its pagesets 5865 * (a chicken-egg dilemma). 5866 */ 5867 for_each_possible_cpu(cpu) 5868 setup_pageset(&per_cpu(boot_pageset, cpu), 0); 5869 5870 mminit_verify_zonelist(); 5871 cpuset_init_current_mems_allowed(); 5872 } 5873 5874 /* 5875 * unless system_state == SYSTEM_BOOTING. 5876 * 5877 * __ref due to call of __init annotated helper build_all_zonelists_init 5878 * [protected by SYSTEM_BOOTING]. 5879 */ 5880 void __ref build_all_zonelists(pg_data_t *pgdat) 5881 { 5882 if (system_state == SYSTEM_BOOTING) { 5883 build_all_zonelists_init(); 5884 } else { 5885 __build_all_zonelists(pgdat); 5886 /* cpuset refresh routine should be here */ 5887 } 5888 vm_total_pages = nr_free_pagecache_pages(); 5889 /* 5890 * Disable grouping by mobility if the number of pages in the 5891 * system is too low to allow the mechanism to work. It would be 5892 * more accurate, but expensive to check per-zone. This check is 5893 * made on memory-hotadd so a system can start with mobility 5894 * disabled and enable it later 5895 */ 5896 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES)) 5897 page_group_by_mobility_disabled = 1; 5898 else 5899 page_group_by_mobility_disabled = 0; 5900 5901 pr_info("Built %u zonelists, mobility grouping %s. Total pages: %ld\n", 5902 nr_online_nodes, 5903 page_group_by_mobility_disabled ? "off" : "on", 5904 vm_total_pages); 5905 #ifdef CONFIG_NUMA 5906 pr_info("Policy zone: %s\n", zone_names[policy_zone]); 5907 #endif 5908 } 5909 5910 /* If zone is ZONE_MOVABLE but memory is mirrored, it is an overlapped init */ 5911 static bool __meminit 5912 overlap_memmap_init(unsigned long zone, unsigned long *pfn) 5913 { 5914 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 5915 static struct memblock_region *r; 5916 5917 if (mirrored_kernelcore && zone == ZONE_MOVABLE) { 5918 if (!r || *pfn >= memblock_region_memory_end_pfn(r)) { 5919 for_each_memblock(memory, r) { 5920 if (*pfn < memblock_region_memory_end_pfn(r)) 5921 break; 5922 } 5923 } 5924 if (*pfn >= memblock_region_memory_base_pfn(r) && 5925 memblock_is_mirror(r)) { 5926 *pfn = memblock_region_memory_end_pfn(r); 5927 return true; 5928 } 5929 } 5930 #endif 5931 return false; 5932 } 5933 5934 #ifdef CONFIG_SPARSEMEM 5935 /* Skip PFNs that belong to non-present sections */ 5936 static inline __meminit unsigned long next_pfn(unsigned long pfn) 5937 { 5938 const unsigned long section_nr = pfn_to_section_nr(++pfn); 5939 5940 if (present_section_nr(section_nr)) 5941 return pfn; 5942 return section_nr_to_pfn(next_present_section_nr(section_nr)); 5943 } 5944 #else 5945 static inline __meminit unsigned long next_pfn(unsigned long pfn) 5946 { 5947 return pfn++; 5948 } 5949 #endif 5950 5951 /* 5952 * Initially all pages are reserved - free ones are freed 5953 * up by memblock_free_all() once the early boot process is 5954 * done. Non-atomic initialization, single-pass. 5955 */ 5956 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone, 5957 unsigned long start_pfn, enum memmap_context context, 5958 struct vmem_altmap *altmap) 5959 { 5960 unsigned long pfn, end_pfn = start_pfn + size; 5961 struct page *page; 5962 5963 if (highest_memmap_pfn < end_pfn - 1) 5964 highest_memmap_pfn = end_pfn - 1; 5965 5966 #ifdef CONFIG_ZONE_DEVICE 5967 /* 5968 * Honor reservation requested by the driver for this ZONE_DEVICE 5969 * memory. We limit the total number of pages to initialize to just 5970 * those that might contain the memory mapping. We will defer the 5971 * ZONE_DEVICE page initialization until after we have released 5972 * the hotplug lock. 5973 */ 5974 if (zone == ZONE_DEVICE) { 5975 if (!altmap) 5976 return; 5977 5978 if (start_pfn == altmap->base_pfn) 5979 start_pfn += altmap->reserve; 5980 end_pfn = altmap->base_pfn + vmem_altmap_offset(altmap); 5981 } 5982 #endif 5983 5984 for (pfn = start_pfn; pfn < end_pfn; ) { 5985 /* 5986 * There can be holes in boot-time mem_map[]s handed to this 5987 * function. They do not exist on hotplugged memory. 5988 */ 5989 if (context == MEMMAP_EARLY) { 5990 if (!early_pfn_valid(pfn)) { 5991 pfn = next_pfn(pfn); 5992 continue; 5993 } 5994 if (!early_pfn_in_nid(pfn, nid)) { 5995 pfn++; 5996 continue; 5997 } 5998 if (overlap_memmap_init(zone, &pfn)) 5999 continue; 6000 if (defer_init(nid, pfn, end_pfn)) 6001 break; 6002 } 6003 6004 page = pfn_to_page(pfn); 6005 __init_single_page(page, pfn, zone, nid); 6006 if (context == MEMMAP_HOTPLUG) 6007 __SetPageReserved(page); 6008 6009 /* 6010 * Mark the block movable so that blocks are reserved for 6011 * movable at startup. This will force kernel allocations 6012 * to reserve their blocks rather than leaking throughout 6013 * the address space during boot when many long-lived 6014 * kernel allocations are made. 6015 * 6016 * bitmap is created for zone's valid pfn range. but memmap 6017 * can be created for invalid pages (for alignment) 6018 * check here not to call set_pageblock_migratetype() against 6019 * pfn out of zone. 6020 */ 6021 if (!(pfn & (pageblock_nr_pages - 1))) { 6022 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 6023 cond_resched(); 6024 } 6025 pfn++; 6026 } 6027 } 6028 6029 #ifdef CONFIG_ZONE_DEVICE 6030 void __ref memmap_init_zone_device(struct zone *zone, 6031 unsigned long start_pfn, 6032 unsigned long nr_pages, 6033 struct dev_pagemap *pgmap) 6034 { 6035 unsigned long pfn, end_pfn = start_pfn + nr_pages; 6036 struct pglist_data *pgdat = zone->zone_pgdat; 6037 struct vmem_altmap *altmap = pgmap_altmap(pgmap); 6038 unsigned long zone_idx = zone_idx(zone); 6039 unsigned long start = jiffies; 6040 int nid = pgdat->node_id; 6041 6042 if (WARN_ON_ONCE(!pgmap || zone_idx(zone) != ZONE_DEVICE)) 6043 return; 6044 6045 /* 6046 * The call to memmap_init_zone should have already taken care 6047 * of the pages reserved for the memmap, so we can just jump to 6048 * the end of that region and start processing the device pages. 6049 */ 6050 if (altmap) { 6051 start_pfn = altmap->base_pfn + vmem_altmap_offset(altmap); 6052 nr_pages = end_pfn - start_pfn; 6053 } 6054 6055 for (pfn = start_pfn; pfn < end_pfn; pfn++) { 6056 struct page *page = pfn_to_page(pfn); 6057 6058 __init_single_page(page, pfn, zone_idx, nid); 6059 6060 /* 6061 * Mark page reserved as it will need to wait for onlining 6062 * phase for it to be fully associated with a zone. 6063 * 6064 * We can use the non-atomic __set_bit operation for setting 6065 * the flag as we are still initializing the pages. 6066 */ 6067 __SetPageReserved(page); 6068 6069 /* 6070 * ZONE_DEVICE pages union ->lru with a ->pgmap back pointer 6071 * and zone_device_data. It is a bug if a ZONE_DEVICE page is 6072 * ever freed or placed on a driver-private list. 6073 */ 6074 page->pgmap = pgmap; 6075 page->zone_device_data = NULL; 6076 6077 /* 6078 * Mark the block movable so that blocks are reserved for 6079 * movable at startup. This will force kernel allocations 6080 * to reserve their blocks rather than leaking throughout 6081 * the address space during boot when many long-lived 6082 * kernel allocations are made. 6083 * 6084 * bitmap is created for zone's valid pfn range. but memmap 6085 * can be created for invalid pages (for alignment) 6086 * check here not to call set_pageblock_migratetype() against 6087 * pfn out of zone. 6088 * 6089 * Please note that MEMMAP_HOTPLUG path doesn't clear memmap 6090 * because this is done early in section_activate() 6091 */ 6092 if (!(pfn & (pageblock_nr_pages - 1))) { 6093 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 6094 cond_resched(); 6095 } 6096 } 6097 6098 pr_info("%s initialised %lu pages in %ums\n", __func__, 6099 nr_pages, jiffies_to_msecs(jiffies - start)); 6100 } 6101 6102 #endif 6103 static void __meminit zone_init_free_lists(struct zone *zone) 6104 { 6105 unsigned int order, t; 6106 for_each_migratetype_order(order, t) { 6107 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]); 6108 zone->free_area[order].nr_free = 0; 6109 } 6110 } 6111 6112 void __meminit __weak memmap_init(unsigned long size, int nid, 6113 unsigned long zone, unsigned long start_pfn) 6114 { 6115 memmap_init_zone(size, nid, zone, start_pfn, MEMMAP_EARLY, NULL); 6116 } 6117 6118 static int zone_batchsize(struct zone *zone) 6119 { 6120 #ifdef CONFIG_MMU 6121 int batch; 6122 6123 /* 6124 * The per-cpu-pages pools are set to around 1000th of the 6125 * size of the zone. 6126 */ 6127 batch = zone_managed_pages(zone) / 1024; 6128 /* But no more than a meg. */ 6129 if (batch * PAGE_SIZE > 1024 * 1024) 6130 batch = (1024 * 1024) / PAGE_SIZE; 6131 batch /= 4; /* We effectively *= 4 below */ 6132 if (batch < 1) 6133 batch = 1; 6134 6135 /* 6136 * Clamp the batch to a 2^n - 1 value. Having a power 6137 * of 2 value was found to be more likely to have 6138 * suboptimal cache aliasing properties in some cases. 6139 * 6140 * For example if 2 tasks are alternately allocating 6141 * batches of pages, one task can end up with a lot 6142 * of pages of one half of the possible page colors 6143 * and the other with pages of the other colors. 6144 */ 6145 batch = rounddown_pow_of_two(batch + batch/2) - 1; 6146 6147 return batch; 6148 6149 #else 6150 /* The deferral and batching of frees should be suppressed under NOMMU 6151 * conditions. 6152 * 6153 * The problem is that NOMMU needs to be able to allocate large chunks 6154 * of contiguous memory as there's no hardware page translation to 6155 * assemble apparent contiguous memory from discontiguous pages. 6156 * 6157 * Queueing large contiguous runs of pages for batching, however, 6158 * causes the pages to actually be freed in smaller chunks. As there 6159 * can be a significant delay between the individual batches being 6160 * recycled, this leads to the once large chunks of space being 6161 * fragmented and becoming unavailable for high-order allocations. 6162 */ 6163 return 0; 6164 #endif 6165 } 6166 6167 /* 6168 * pcp->high and pcp->batch values are related and dependent on one another: 6169 * ->batch must never be higher then ->high. 6170 * The following function updates them in a safe manner without read side 6171 * locking. 6172 * 6173 * Any new users of pcp->batch and pcp->high should ensure they can cope with 6174 * those fields changing asynchronously (acording the the above rule). 6175 * 6176 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function 6177 * outside of boot time (or some other assurance that no concurrent updaters 6178 * exist). 6179 */ 6180 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high, 6181 unsigned long batch) 6182 { 6183 /* start with a fail safe value for batch */ 6184 pcp->batch = 1; 6185 smp_wmb(); 6186 6187 /* Update high, then batch, in order */ 6188 pcp->high = high; 6189 smp_wmb(); 6190 6191 pcp->batch = batch; 6192 } 6193 6194 /* a companion to pageset_set_high() */ 6195 static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch) 6196 { 6197 pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch)); 6198 } 6199 6200 static void pageset_init(struct per_cpu_pageset *p) 6201 { 6202 struct per_cpu_pages *pcp; 6203 int migratetype; 6204 6205 memset(p, 0, sizeof(*p)); 6206 6207 pcp = &p->pcp; 6208 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++) 6209 INIT_LIST_HEAD(&pcp->lists[migratetype]); 6210 } 6211 6212 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch) 6213 { 6214 pageset_init(p); 6215 pageset_set_batch(p, batch); 6216 } 6217 6218 /* 6219 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist 6220 * to the value high for the pageset p. 6221 */ 6222 static void pageset_set_high(struct per_cpu_pageset *p, 6223 unsigned long high) 6224 { 6225 unsigned long batch = max(1UL, high / 4); 6226 if ((high / 4) > (PAGE_SHIFT * 8)) 6227 batch = PAGE_SHIFT * 8; 6228 6229 pageset_update(&p->pcp, high, batch); 6230 } 6231 6232 static void pageset_set_high_and_batch(struct zone *zone, 6233 struct per_cpu_pageset *pcp) 6234 { 6235 if (percpu_pagelist_fraction) 6236 pageset_set_high(pcp, 6237 (zone_managed_pages(zone) / 6238 percpu_pagelist_fraction)); 6239 else 6240 pageset_set_batch(pcp, zone_batchsize(zone)); 6241 } 6242 6243 static void __meminit zone_pageset_init(struct zone *zone, int cpu) 6244 { 6245 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu); 6246 6247 pageset_init(pcp); 6248 pageset_set_high_and_batch(zone, pcp); 6249 } 6250 6251 void __meminit setup_zone_pageset(struct zone *zone) 6252 { 6253 int cpu; 6254 zone->pageset = alloc_percpu(struct per_cpu_pageset); 6255 for_each_possible_cpu(cpu) 6256 zone_pageset_init(zone, cpu); 6257 } 6258 6259 /* 6260 * Allocate per cpu pagesets and initialize them. 6261 * Before this call only boot pagesets were available. 6262 */ 6263 void __init setup_per_cpu_pageset(void) 6264 { 6265 struct pglist_data *pgdat; 6266 struct zone *zone; 6267 6268 for_each_populated_zone(zone) 6269 setup_zone_pageset(zone); 6270 6271 for_each_online_pgdat(pgdat) 6272 pgdat->per_cpu_nodestats = 6273 alloc_percpu(struct per_cpu_nodestat); 6274 } 6275 6276 static __meminit void zone_pcp_init(struct zone *zone) 6277 { 6278 /* 6279 * per cpu subsystem is not up at this point. The following code 6280 * relies on the ability of the linker to provide the 6281 * offset of a (static) per cpu variable into the per cpu area. 6282 */ 6283 zone->pageset = &boot_pageset; 6284 6285 if (populated_zone(zone)) 6286 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n", 6287 zone->name, zone->present_pages, 6288 zone_batchsize(zone)); 6289 } 6290 6291 void __meminit init_currently_empty_zone(struct zone *zone, 6292 unsigned long zone_start_pfn, 6293 unsigned long size) 6294 { 6295 struct pglist_data *pgdat = zone->zone_pgdat; 6296 int zone_idx = zone_idx(zone) + 1; 6297 6298 if (zone_idx > pgdat->nr_zones) 6299 pgdat->nr_zones = zone_idx; 6300 6301 zone->zone_start_pfn = zone_start_pfn; 6302 6303 mminit_dprintk(MMINIT_TRACE, "memmap_init", 6304 "Initialising map node %d zone %lu pfns %lu -> %lu\n", 6305 pgdat->node_id, 6306 (unsigned long)zone_idx(zone), 6307 zone_start_pfn, (zone_start_pfn + size)); 6308 6309 zone_init_free_lists(zone); 6310 zone->initialized = 1; 6311 } 6312 6313 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 6314 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID 6315 6316 /* 6317 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on. 6318 */ 6319 int __meminit __early_pfn_to_nid(unsigned long pfn, 6320 struct mminit_pfnnid_cache *state) 6321 { 6322 unsigned long start_pfn, end_pfn; 6323 int nid; 6324 6325 if (state->last_start <= pfn && pfn < state->last_end) 6326 return state->last_nid; 6327 6328 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn); 6329 if (nid != NUMA_NO_NODE) { 6330 state->last_start = start_pfn; 6331 state->last_end = end_pfn; 6332 state->last_nid = nid; 6333 } 6334 6335 return nid; 6336 } 6337 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */ 6338 6339 /** 6340 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range 6341 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed. 6342 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid 6343 * 6344 * If an architecture guarantees that all ranges registered contain no holes 6345 * and may be freed, this this function may be used instead of calling 6346 * memblock_free_early_nid() manually. 6347 */ 6348 void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn) 6349 { 6350 unsigned long start_pfn, end_pfn; 6351 int i, this_nid; 6352 6353 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) { 6354 start_pfn = min(start_pfn, max_low_pfn); 6355 end_pfn = min(end_pfn, max_low_pfn); 6356 6357 if (start_pfn < end_pfn) 6358 memblock_free_early_nid(PFN_PHYS(start_pfn), 6359 (end_pfn - start_pfn) << PAGE_SHIFT, 6360 this_nid); 6361 } 6362 } 6363 6364 /** 6365 * sparse_memory_present_with_active_regions - Call memory_present for each active range 6366 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used. 6367 * 6368 * If an architecture guarantees that all ranges registered contain no holes and may 6369 * be freed, this function may be used instead of calling memory_present() manually. 6370 */ 6371 void __init sparse_memory_present_with_active_regions(int nid) 6372 { 6373 unsigned long start_pfn, end_pfn; 6374 int i, this_nid; 6375 6376 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) 6377 memory_present(this_nid, start_pfn, end_pfn); 6378 } 6379 6380 /** 6381 * get_pfn_range_for_nid - Return the start and end page frames for a node 6382 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned. 6383 * @start_pfn: Passed by reference. On return, it will have the node start_pfn. 6384 * @end_pfn: Passed by reference. On return, it will have the node end_pfn. 6385 * 6386 * It returns the start and end page frame of a node based on information 6387 * provided by memblock_set_node(). If called for a node 6388 * with no available memory, a warning is printed and the start and end 6389 * PFNs will be 0. 6390 */ 6391 void __init get_pfn_range_for_nid(unsigned int nid, 6392 unsigned long *start_pfn, unsigned long *end_pfn) 6393 { 6394 unsigned long this_start_pfn, this_end_pfn; 6395 int i; 6396 6397 *start_pfn = -1UL; 6398 *end_pfn = 0; 6399 6400 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) { 6401 *start_pfn = min(*start_pfn, this_start_pfn); 6402 *end_pfn = max(*end_pfn, this_end_pfn); 6403 } 6404 6405 if (*start_pfn == -1UL) 6406 *start_pfn = 0; 6407 } 6408 6409 /* 6410 * This finds a zone that can be used for ZONE_MOVABLE pages. The 6411 * assumption is made that zones within a node are ordered in monotonic 6412 * increasing memory addresses so that the "highest" populated zone is used 6413 */ 6414 static void __init find_usable_zone_for_movable(void) 6415 { 6416 int zone_index; 6417 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) { 6418 if (zone_index == ZONE_MOVABLE) 6419 continue; 6420 6421 if (arch_zone_highest_possible_pfn[zone_index] > 6422 arch_zone_lowest_possible_pfn[zone_index]) 6423 break; 6424 } 6425 6426 VM_BUG_ON(zone_index == -1); 6427 movable_zone = zone_index; 6428 } 6429 6430 /* 6431 * The zone ranges provided by the architecture do not include ZONE_MOVABLE 6432 * because it is sized independent of architecture. Unlike the other zones, 6433 * the starting point for ZONE_MOVABLE is not fixed. It may be different 6434 * in each node depending on the size of each node and how evenly kernelcore 6435 * is distributed. This helper function adjusts the zone ranges 6436 * provided by the architecture for a given node by using the end of the 6437 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that 6438 * zones within a node are in order of monotonic increases memory addresses 6439 */ 6440 static void __init adjust_zone_range_for_zone_movable(int nid, 6441 unsigned long zone_type, 6442 unsigned long node_start_pfn, 6443 unsigned long node_end_pfn, 6444 unsigned long *zone_start_pfn, 6445 unsigned long *zone_end_pfn) 6446 { 6447 /* Only adjust if ZONE_MOVABLE is on this node */ 6448 if (zone_movable_pfn[nid]) { 6449 /* Size ZONE_MOVABLE */ 6450 if (zone_type == ZONE_MOVABLE) { 6451 *zone_start_pfn = zone_movable_pfn[nid]; 6452 *zone_end_pfn = min(node_end_pfn, 6453 arch_zone_highest_possible_pfn[movable_zone]); 6454 6455 /* Adjust for ZONE_MOVABLE starting within this range */ 6456 } else if (!mirrored_kernelcore && 6457 *zone_start_pfn < zone_movable_pfn[nid] && 6458 *zone_end_pfn > zone_movable_pfn[nid]) { 6459 *zone_end_pfn = zone_movable_pfn[nid]; 6460 6461 /* Check if this whole range is within ZONE_MOVABLE */ 6462 } else if (*zone_start_pfn >= zone_movable_pfn[nid]) 6463 *zone_start_pfn = *zone_end_pfn; 6464 } 6465 } 6466 6467 /* 6468 * Return the number of pages a zone spans in a node, including holes 6469 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node() 6470 */ 6471 static unsigned long __init zone_spanned_pages_in_node(int nid, 6472 unsigned long zone_type, 6473 unsigned long node_start_pfn, 6474 unsigned long node_end_pfn, 6475 unsigned long *zone_start_pfn, 6476 unsigned long *zone_end_pfn, 6477 unsigned long *ignored) 6478 { 6479 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type]; 6480 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type]; 6481 /* When hotadd a new node from cpu_up(), the node should be empty */ 6482 if (!node_start_pfn && !node_end_pfn) 6483 return 0; 6484 6485 /* Get the start and end of the zone */ 6486 *zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high); 6487 *zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high); 6488 adjust_zone_range_for_zone_movable(nid, zone_type, 6489 node_start_pfn, node_end_pfn, 6490 zone_start_pfn, zone_end_pfn); 6491 6492 /* Check that this node has pages within the zone's required range */ 6493 if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn) 6494 return 0; 6495 6496 /* Move the zone boundaries inside the node if necessary */ 6497 *zone_end_pfn = min(*zone_end_pfn, node_end_pfn); 6498 *zone_start_pfn = max(*zone_start_pfn, node_start_pfn); 6499 6500 /* Return the spanned pages */ 6501 return *zone_end_pfn - *zone_start_pfn; 6502 } 6503 6504 /* 6505 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES, 6506 * then all holes in the requested range will be accounted for. 6507 */ 6508 unsigned long __init __absent_pages_in_range(int nid, 6509 unsigned long range_start_pfn, 6510 unsigned long range_end_pfn) 6511 { 6512 unsigned long nr_absent = range_end_pfn - range_start_pfn; 6513 unsigned long start_pfn, end_pfn; 6514 int i; 6515 6516 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) { 6517 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn); 6518 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn); 6519 nr_absent -= end_pfn - start_pfn; 6520 } 6521 return nr_absent; 6522 } 6523 6524 /** 6525 * absent_pages_in_range - Return number of page frames in holes within a range 6526 * @start_pfn: The start PFN to start searching for holes 6527 * @end_pfn: The end PFN to stop searching for holes 6528 * 6529 * Return: the number of pages frames in memory holes within a range. 6530 */ 6531 unsigned long __init absent_pages_in_range(unsigned long start_pfn, 6532 unsigned long end_pfn) 6533 { 6534 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn); 6535 } 6536 6537 /* Return the number of page frames in holes in a zone on a node */ 6538 static unsigned long __init zone_absent_pages_in_node(int nid, 6539 unsigned long zone_type, 6540 unsigned long node_start_pfn, 6541 unsigned long node_end_pfn, 6542 unsigned long *ignored) 6543 { 6544 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type]; 6545 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type]; 6546 unsigned long zone_start_pfn, zone_end_pfn; 6547 unsigned long nr_absent; 6548 6549 /* When hotadd a new node from cpu_up(), the node should be empty */ 6550 if (!node_start_pfn && !node_end_pfn) 6551 return 0; 6552 6553 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high); 6554 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high); 6555 6556 adjust_zone_range_for_zone_movable(nid, zone_type, 6557 node_start_pfn, node_end_pfn, 6558 &zone_start_pfn, &zone_end_pfn); 6559 nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn); 6560 6561 /* 6562 * ZONE_MOVABLE handling. 6563 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages 6564 * and vice versa. 6565 */ 6566 if (mirrored_kernelcore && zone_movable_pfn[nid]) { 6567 unsigned long start_pfn, end_pfn; 6568 struct memblock_region *r; 6569 6570 for_each_memblock(memory, r) { 6571 start_pfn = clamp(memblock_region_memory_base_pfn(r), 6572 zone_start_pfn, zone_end_pfn); 6573 end_pfn = clamp(memblock_region_memory_end_pfn(r), 6574 zone_start_pfn, zone_end_pfn); 6575 6576 if (zone_type == ZONE_MOVABLE && 6577 memblock_is_mirror(r)) 6578 nr_absent += end_pfn - start_pfn; 6579 6580 if (zone_type == ZONE_NORMAL && 6581 !memblock_is_mirror(r)) 6582 nr_absent += end_pfn - start_pfn; 6583 } 6584 } 6585 6586 return nr_absent; 6587 } 6588 6589 #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 6590 static inline unsigned long __init zone_spanned_pages_in_node(int nid, 6591 unsigned long zone_type, 6592 unsigned long node_start_pfn, 6593 unsigned long node_end_pfn, 6594 unsigned long *zone_start_pfn, 6595 unsigned long *zone_end_pfn, 6596 unsigned long *zones_size) 6597 { 6598 unsigned int zone; 6599 6600 *zone_start_pfn = node_start_pfn; 6601 for (zone = 0; zone < zone_type; zone++) 6602 *zone_start_pfn += zones_size[zone]; 6603 6604 *zone_end_pfn = *zone_start_pfn + zones_size[zone_type]; 6605 6606 return zones_size[zone_type]; 6607 } 6608 6609 static inline unsigned long __init zone_absent_pages_in_node(int nid, 6610 unsigned long zone_type, 6611 unsigned long node_start_pfn, 6612 unsigned long node_end_pfn, 6613 unsigned long *zholes_size) 6614 { 6615 if (!zholes_size) 6616 return 0; 6617 6618 return zholes_size[zone_type]; 6619 } 6620 6621 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 6622 6623 static void __init calculate_node_totalpages(struct pglist_data *pgdat, 6624 unsigned long node_start_pfn, 6625 unsigned long node_end_pfn, 6626 unsigned long *zones_size, 6627 unsigned long *zholes_size) 6628 { 6629 unsigned long realtotalpages = 0, totalpages = 0; 6630 enum zone_type i; 6631 6632 for (i = 0; i < MAX_NR_ZONES; i++) { 6633 struct zone *zone = pgdat->node_zones + i; 6634 unsigned long zone_start_pfn, zone_end_pfn; 6635 unsigned long size, real_size; 6636 6637 size = zone_spanned_pages_in_node(pgdat->node_id, i, 6638 node_start_pfn, 6639 node_end_pfn, 6640 &zone_start_pfn, 6641 &zone_end_pfn, 6642 zones_size); 6643 real_size = size - zone_absent_pages_in_node(pgdat->node_id, i, 6644 node_start_pfn, node_end_pfn, 6645 zholes_size); 6646 if (size) 6647 zone->zone_start_pfn = zone_start_pfn; 6648 else 6649 zone->zone_start_pfn = 0; 6650 zone->spanned_pages = size; 6651 zone->present_pages = real_size; 6652 6653 totalpages += size; 6654 realtotalpages += real_size; 6655 } 6656 6657 pgdat->node_spanned_pages = totalpages; 6658 pgdat->node_present_pages = realtotalpages; 6659 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id, 6660 realtotalpages); 6661 } 6662 6663 #ifndef CONFIG_SPARSEMEM 6664 /* 6665 * Calculate the size of the zone->blockflags rounded to an unsigned long 6666 * Start by making sure zonesize is a multiple of pageblock_order by rounding 6667 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally 6668 * round what is now in bits to nearest long in bits, then return it in 6669 * bytes. 6670 */ 6671 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize) 6672 { 6673 unsigned long usemapsize; 6674 6675 zonesize += zone_start_pfn & (pageblock_nr_pages-1); 6676 usemapsize = roundup(zonesize, pageblock_nr_pages); 6677 usemapsize = usemapsize >> pageblock_order; 6678 usemapsize *= NR_PAGEBLOCK_BITS; 6679 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long)); 6680 6681 return usemapsize / 8; 6682 } 6683 6684 static void __ref setup_usemap(struct pglist_data *pgdat, 6685 struct zone *zone, 6686 unsigned long zone_start_pfn, 6687 unsigned long zonesize) 6688 { 6689 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize); 6690 zone->pageblock_flags = NULL; 6691 if (usemapsize) { 6692 zone->pageblock_flags = 6693 memblock_alloc_node(usemapsize, SMP_CACHE_BYTES, 6694 pgdat->node_id); 6695 if (!zone->pageblock_flags) 6696 panic("Failed to allocate %ld bytes for zone %s pageblock flags on node %d\n", 6697 usemapsize, zone->name, pgdat->node_id); 6698 } 6699 } 6700 #else 6701 static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone, 6702 unsigned long zone_start_pfn, unsigned long zonesize) {} 6703 #endif /* CONFIG_SPARSEMEM */ 6704 6705 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE 6706 6707 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */ 6708 void __init set_pageblock_order(void) 6709 { 6710 unsigned int order; 6711 6712 /* Check that pageblock_nr_pages has not already been setup */ 6713 if (pageblock_order) 6714 return; 6715 6716 if (HPAGE_SHIFT > PAGE_SHIFT) 6717 order = HUGETLB_PAGE_ORDER; 6718 else 6719 order = MAX_ORDER - 1; 6720 6721 /* 6722 * Assume the largest contiguous order of interest is a huge page. 6723 * This value may be variable depending on boot parameters on IA64 and 6724 * powerpc. 6725 */ 6726 pageblock_order = order; 6727 } 6728 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */ 6729 6730 /* 6731 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order() 6732 * is unused as pageblock_order is set at compile-time. See 6733 * include/linux/pageblock-flags.h for the values of pageblock_order based on 6734 * the kernel config 6735 */ 6736 void __init set_pageblock_order(void) 6737 { 6738 } 6739 6740 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */ 6741 6742 static unsigned long __init calc_memmap_size(unsigned long spanned_pages, 6743 unsigned long present_pages) 6744 { 6745 unsigned long pages = spanned_pages; 6746 6747 /* 6748 * Provide a more accurate estimation if there are holes within 6749 * the zone and SPARSEMEM is in use. If there are holes within the 6750 * zone, each populated memory region may cost us one or two extra 6751 * memmap pages due to alignment because memmap pages for each 6752 * populated regions may not be naturally aligned on page boundary. 6753 * So the (present_pages >> 4) heuristic is a tradeoff for that. 6754 */ 6755 if (spanned_pages > present_pages + (present_pages >> 4) && 6756 IS_ENABLED(CONFIG_SPARSEMEM)) 6757 pages = present_pages; 6758 6759 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT; 6760 } 6761 6762 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 6763 static void pgdat_init_split_queue(struct pglist_data *pgdat) 6764 { 6765 struct deferred_split *ds_queue = &pgdat->deferred_split_queue; 6766 6767 spin_lock_init(&ds_queue->split_queue_lock); 6768 INIT_LIST_HEAD(&ds_queue->split_queue); 6769 ds_queue->split_queue_len = 0; 6770 } 6771 #else 6772 static void pgdat_init_split_queue(struct pglist_data *pgdat) {} 6773 #endif 6774 6775 #ifdef CONFIG_COMPACTION 6776 static void pgdat_init_kcompactd(struct pglist_data *pgdat) 6777 { 6778 init_waitqueue_head(&pgdat->kcompactd_wait); 6779 } 6780 #else 6781 static void pgdat_init_kcompactd(struct pglist_data *pgdat) {} 6782 #endif 6783 6784 static void __meminit pgdat_init_internals(struct pglist_data *pgdat) 6785 { 6786 pgdat_resize_init(pgdat); 6787 6788 pgdat_init_split_queue(pgdat); 6789 pgdat_init_kcompactd(pgdat); 6790 6791 init_waitqueue_head(&pgdat->kswapd_wait); 6792 init_waitqueue_head(&pgdat->pfmemalloc_wait); 6793 6794 pgdat_page_ext_init(pgdat); 6795 spin_lock_init(&pgdat->lru_lock); 6796 lruvec_init(&pgdat->__lruvec); 6797 } 6798 6799 static void __meminit zone_init_internals(struct zone *zone, enum zone_type idx, int nid, 6800 unsigned long remaining_pages) 6801 { 6802 atomic_long_set(&zone->managed_pages, remaining_pages); 6803 zone_set_nid(zone, nid); 6804 zone->name = zone_names[idx]; 6805 zone->zone_pgdat = NODE_DATA(nid); 6806 spin_lock_init(&zone->lock); 6807 zone_seqlock_init(zone); 6808 zone_pcp_init(zone); 6809 } 6810 6811 /* 6812 * Set up the zone data structures 6813 * - init pgdat internals 6814 * - init all zones belonging to this node 6815 * 6816 * NOTE: this function is only called during memory hotplug 6817 */ 6818 #ifdef CONFIG_MEMORY_HOTPLUG 6819 void __ref free_area_init_core_hotplug(int nid) 6820 { 6821 enum zone_type z; 6822 pg_data_t *pgdat = NODE_DATA(nid); 6823 6824 pgdat_init_internals(pgdat); 6825 for (z = 0; z < MAX_NR_ZONES; z++) 6826 zone_init_internals(&pgdat->node_zones[z], z, nid, 0); 6827 } 6828 #endif 6829 6830 /* 6831 * Set up the zone data structures: 6832 * - mark all pages reserved 6833 * - mark all memory queues empty 6834 * - clear the memory bitmaps 6835 * 6836 * NOTE: pgdat should get zeroed by caller. 6837 * NOTE: this function is only called during early init. 6838 */ 6839 static void __init free_area_init_core(struct pglist_data *pgdat) 6840 { 6841 enum zone_type j; 6842 int nid = pgdat->node_id; 6843 6844 pgdat_init_internals(pgdat); 6845 pgdat->per_cpu_nodestats = &boot_nodestats; 6846 6847 for (j = 0; j < MAX_NR_ZONES; j++) { 6848 struct zone *zone = pgdat->node_zones + j; 6849 unsigned long size, freesize, memmap_pages; 6850 unsigned long zone_start_pfn = zone->zone_start_pfn; 6851 6852 size = zone->spanned_pages; 6853 freesize = zone->present_pages; 6854 6855 /* 6856 * Adjust freesize so that it accounts for how much memory 6857 * is used by this zone for memmap. This affects the watermark 6858 * and per-cpu initialisations 6859 */ 6860 memmap_pages = calc_memmap_size(size, freesize); 6861 if (!is_highmem_idx(j)) { 6862 if (freesize >= memmap_pages) { 6863 freesize -= memmap_pages; 6864 if (memmap_pages) 6865 printk(KERN_DEBUG 6866 " %s zone: %lu pages used for memmap\n", 6867 zone_names[j], memmap_pages); 6868 } else 6869 pr_warn(" %s zone: %lu pages exceeds freesize %lu\n", 6870 zone_names[j], memmap_pages, freesize); 6871 } 6872 6873 /* Account for reserved pages */ 6874 if (j == 0 && freesize > dma_reserve) { 6875 freesize -= dma_reserve; 6876 printk(KERN_DEBUG " %s zone: %lu pages reserved\n", 6877 zone_names[0], dma_reserve); 6878 } 6879 6880 if (!is_highmem_idx(j)) 6881 nr_kernel_pages += freesize; 6882 /* Charge for highmem memmap if there are enough kernel pages */ 6883 else if (nr_kernel_pages > memmap_pages * 2) 6884 nr_kernel_pages -= memmap_pages; 6885 nr_all_pages += freesize; 6886 6887 /* 6888 * Set an approximate value for lowmem here, it will be adjusted 6889 * when the bootmem allocator frees pages into the buddy system. 6890 * And all highmem pages will be managed by the buddy system. 6891 */ 6892 zone_init_internals(zone, j, nid, freesize); 6893 6894 if (!size) 6895 continue; 6896 6897 set_pageblock_order(); 6898 setup_usemap(pgdat, zone, zone_start_pfn, size); 6899 init_currently_empty_zone(zone, zone_start_pfn, size); 6900 memmap_init(size, nid, j, zone_start_pfn); 6901 } 6902 } 6903 6904 #ifdef CONFIG_FLAT_NODE_MEM_MAP 6905 static void __ref alloc_node_mem_map(struct pglist_data *pgdat) 6906 { 6907 unsigned long __maybe_unused start = 0; 6908 unsigned long __maybe_unused offset = 0; 6909 6910 /* Skip empty nodes */ 6911 if (!pgdat->node_spanned_pages) 6912 return; 6913 6914 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1); 6915 offset = pgdat->node_start_pfn - start; 6916 /* ia64 gets its own node_mem_map, before this, without bootmem */ 6917 if (!pgdat->node_mem_map) { 6918 unsigned long size, end; 6919 struct page *map; 6920 6921 /* 6922 * The zone's endpoints aren't required to be MAX_ORDER 6923 * aligned but the node_mem_map endpoints must be in order 6924 * for the buddy allocator to function correctly. 6925 */ 6926 end = pgdat_end_pfn(pgdat); 6927 end = ALIGN(end, MAX_ORDER_NR_PAGES); 6928 size = (end - start) * sizeof(struct page); 6929 map = memblock_alloc_node(size, SMP_CACHE_BYTES, 6930 pgdat->node_id); 6931 if (!map) 6932 panic("Failed to allocate %ld bytes for node %d memory map\n", 6933 size, pgdat->node_id); 6934 pgdat->node_mem_map = map + offset; 6935 } 6936 pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n", 6937 __func__, pgdat->node_id, (unsigned long)pgdat, 6938 (unsigned long)pgdat->node_mem_map); 6939 #ifndef CONFIG_NEED_MULTIPLE_NODES 6940 /* 6941 * With no DISCONTIG, the global mem_map is just set as node 0's 6942 */ 6943 if (pgdat == NODE_DATA(0)) { 6944 mem_map = NODE_DATA(0)->node_mem_map; 6945 #if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM) 6946 if (page_to_pfn(mem_map) != pgdat->node_start_pfn) 6947 mem_map -= offset; 6948 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 6949 } 6950 #endif 6951 } 6952 #else 6953 static void __ref alloc_node_mem_map(struct pglist_data *pgdat) { } 6954 #endif /* CONFIG_FLAT_NODE_MEM_MAP */ 6955 6956 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 6957 static inline void pgdat_set_deferred_range(pg_data_t *pgdat) 6958 { 6959 pgdat->first_deferred_pfn = ULONG_MAX; 6960 } 6961 #else 6962 static inline void pgdat_set_deferred_range(pg_data_t *pgdat) {} 6963 #endif 6964 6965 void __init free_area_init_node(int nid, unsigned long *zones_size, 6966 unsigned long node_start_pfn, 6967 unsigned long *zholes_size) 6968 { 6969 pg_data_t *pgdat = NODE_DATA(nid); 6970 unsigned long start_pfn = 0; 6971 unsigned long end_pfn = 0; 6972 6973 /* pg_data_t should be reset to zero when it's allocated */ 6974 WARN_ON(pgdat->nr_zones || pgdat->kswapd_classzone_idx); 6975 6976 pgdat->node_id = nid; 6977 pgdat->node_start_pfn = node_start_pfn; 6978 pgdat->per_cpu_nodestats = NULL; 6979 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 6980 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn); 6981 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid, 6982 (u64)start_pfn << PAGE_SHIFT, 6983 end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0); 6984 #else 6985 start_pfn = node_start_pfn; 6986 #endif 6987 calculate_node_totalpages(pgdat, start_pfn, end_pfn, 6988 zones_size, zholes_size); 6989 6990 alloc_node_mem_map(pgdat); 6991 pgdat_set_deferred_range(pgdat); 6992 6993 free_area_init_core(pgdat); 6994 } 6995 6996 #if !defined(CONFIG_FLAT_NODE_MEM_MAP) 6997 /* 6998 * Initialize all valid struct pages in the range [spfn, epfn) and mark them 6999 * PageReserved(). Return the number of struct pages that were initialized. 7000 */ 7001 static u64 __init init_unavailable_range(unsigned long spfn, unsigned long epfn) 7002 { 7003 unsigned long pfn; 7004 u64 pgcnt = 0; 7005 7006 for (pfn = spfn; pfn < epfn; pfn++) { 7007 if (!pfn_valid(ALIGN_DOWN(pfn, pageblock_nr_pages))) { 7008 pfn = ALIGN_DOWN(pfn, pageblock_nr_pages) 7009 + pageblock_nr_pages - 1; 7010 continue; 7011 } 7012 /* 7013 * Use a fake node/zone (0) for now. Some of these pages 7014 * (in memblock.reserved but not in memblock.memory) will 7015 * get re-initialized via reserve_bootmem_region() later. 7016 */ 7017 __init_single_page(pfn_to_page(pfn), pfn, 0, 0); 7018 __SetPageReserved(pfn_to_page(pfn)); 7019 pgcnt++; 7020 } 7021 7022 return pgcnt; 7023 } 7024 7025 /* 7026 * Only struct pages that are backed by physical memory are zeroed and 7027 * initialized by going through __init_single_page(). But, there are some 7028 * struct pages which are reserved in memblock allocator and their fields 7029 * may be accessed (for example page_to_pfn() on some configuration accesses 7030 * flags). We must explicitly initialize those struct pages. 7031 * 7032 * This function also addresses a similar issue where struct pages are left 7033 * uninitialized because the physical address range is not covered by 7034 * memblock.memory or memblock.reserved. That could happen when memblock 7035 * layout is manually configured via memmap=, or when the highest physical 7036 * address (max_pfn) does not end on a section boundary. 7037 */ 7038 static void __init init_unavailable_mem(void) 7039 { 7040 phys_addr_t start, end; 7041 u64 i, pgcnt; 7042 phys_addr_t next = 0; 7043 7044 /* 7045 * Loop through unavailable ranges not covered by memblock.memory. 7046 */ 7047 pgcnt = 0; 7048 for_each_mem_range(i, &memblock.memory, NULL, 7049 NUMA_NO_NODE, MEMBLOCK_NONE, &start, &end, NULL) { 7050 if (next < start) 7051 pgcnt += init_unavailable_range(PFN_DOWN(next), 7052 PFN_UP(start)); 7053 next = end; 7054 } 7055 7056 /* 7057 * Early sections always have a fully populated memmap for the whole 7058 * section - see pfn_valid(). If the last section has holes at the 7059 * end and that section is marked "online", the memmap will be 7060 * considered initialized. Make sure that memmap has a well defined 7061 * state. 7062 */ 7063 pgcnt += init_unavailable_range(PFN_DOWN(next), 7064 round_up(max_pfn, PAGES_PER_SECTION)); 7065 7066 /* 7067 * Struct pages that do not have backing memory. This could be because 7068 * firmware is using some of this memory, or for some other reasons. 7069 */ 7070 if (pgcnt) 7071 pr_info("Zeroed struct page in unavailable ranges: %lld pages", pgcnt); 7072 } 7073 #else 7074 static inline void __init init_unavailable_mem(void) 7075 { 7076 } 7077 #endif /* !CONFIG_FLAT_NODE_MEM_MAP */ 7078 7079 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 7080 7081 #if MAX_NUMNODES > 1 7082 /* 7083 * Figure out the number of possible node ids. 7084 */ 7085 void __init setup_nr_node_ids(void) 7086 { 7087 unsigned int highest; 7088 7089 highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES); 7090 nr_node_ids = highest + 1; 7091 } 7092 #endif 7093 7094 /** 7095 * node_map_pfn_alignment - determine the maximum internode alignment 7096 * 7097 * This function should be called after node map is populated and sorted. 7098 * It calculates the maximum power of two alignment which can distinguish 7099 * all the nodes. 7100 * 7101 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value 7102 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the 7103 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is 7104 * shifted, 1GiB is enough and this function will indicate so. 7105 * 7106 * This is used to test whether pfn -> nid mapping of the chosen memory 7107 * model has fine enough granularity to avoid incorrect mapping for the 7108 * populated node map. 7109 * 7110 * Return: the determined alignment in pfn's. 0 if there is no alignment 7111 * requirement (single node). 7112 */ 7113 unsigned long __init node_map_pfn_alignment(void) 7114 { 7115 unsigned long accl_mask = 0, last_end = 0; 7116 unsigned long start, end, mask; 7117 int last_nid = NUMA_NO_NODE; 7118 int i, nid; 7119 7120 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) { 7121 if (!start || last_nid < 0 || last_nid == nid) { 7122 last_nid = nid; 7123 last_end = end; 7124 continue; 7125 } 7126 7127 /* 7128 * Start with a mask granular enough to pin-point to the 7129 * start pfn and tick off bits one-by-one until it becomes 7130 * too coarse to separate the current node from the last. 7131 */ 7132 mask = ~((1 << __ffs(start)) - 1); 7133 while (mask && last_end <= (start & (mask << 1))) 7134 mask <<= 1; 7135 7136 /* accumulate all internode masks */ 7137 accl_mask |= mask; 7138 } 7139 7140 /* convert mask to number of pages */ 7141 return ~accl_mask + 1; 7142 } 7143 7144 /* Find the lowest pfn for a node */ 7145 static unsigned long __init find_min_pfn_for_node(int nid) 7146 { 7147 unsigned long min_pfn = ULONG_MAX; 7148 unsigned long start_pfn; 7149 int i; 7150 7151 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL) 7152 min_pfn = min(min_pfn, start_pfn); 7153 7154 if (min_pfn == ULONG_MAX) { 7155 pr_warn("Could not find start_pfn for node %d\n", nid); 7156 return 0; 7157 } 7158 7159 return min_pfn; 7160 } 7161 7162 /** 7163 * find_min_pfn_with_active_regions - Find the minimum PFN registered 7164 * 7165 * Return: the minimum PFN based on information provided via 7166 * memblock_set_node(). 7167 */ 7168 unsigned long __init find_min_pfn_with_active_regions(void) 7169 { 7170 return find_min_pfn_for_node(MAX_NUMNODES); 7171 } 7172 7173 /* 7174 * early_calculate_totalpages() 7175 * Sum pages in active regions for movable zone. 7176 * Populate N_MEMORY for calculating usable_nodes. 7177 */ 7178 static unsigned long __init early_calculate_totalpages(void) 7179 { 7180 unsigned long totalpages = 0; 7181 unsigned long start_pfn, end_pfn; 7182 int i, nid; 7183 7184 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) { 7185 unsigned long pages = end_pfn - start_pfn; 7186 7187 totalpages += pages; 7188 if (pages) 7189 node_set_state(nid, N_MEMORY); 7190 } 7191 return totalpages; 7192 } 7193 7194 /* 7195 * Find the PFN the Movable zone begins in each node. Kernel memory 7196 * is spread evenly between nodes as long as the nodes have enough 7197 * memory. When they don't, some nodes will have more kernelcore than 7198 * others 7199 */ 7200 static void __init find_zone_movable_pfns_for_nodes(void) 7201 { 7202 int i, nid; 7203 unsigned long usable_startpfn; 7204 unsigned long kernelcore_node, kernelcore_remaining; 7205 /* save the state before borrow the nodemask */ 7206 nodemask_t saved_node_state = node_states[N_MEMORY]; 7207 unsigned long totalpages = early_calculate_totalpages(); 7208 int usable_nodes = nodes_weight(node_states[N_MEMORY]); 7209 struct memblock_region *r; 7210 7211 /* Need to find movable_zone earlier when movable_node is specified. */ 7212 find_usable_zone_for_movable(); 7213 7214 /* 7215 * If movable_node is specified, ignore kernelcore and movablecore 7216 * options. 7217 */ 7218 if (movable_node_is_enabled()) { 7219 for_each_memblock(memory, r) { 7220 if (!memblock_is_hotpluggable(r)) 7221 continue; 7222 7223 nid = r->nid; 7224 7225 usable_startpfn = PFN_DOWN(r->base); 7226 zone_movable_pfn[nid] = zone_movable_pfn[nid] ? 7227 min(usable_startpfn, zone_movable_pfn[nid]) : 7228 usable_startpfn; 7229 } 7230 7231 goto out2; 7232 } 7233 7234 /* 7235 * If kernelcore=mirror is specified, ignore movablecore option 7236 */ 7237 if (mirrored_kernelcore) { 7238 bool mem_below_4gb_not_mirrored = false; 7239 7240 for_each_memblock(memory, r) { 7241 if (memblock_is_mirror(r)) 7242 continue; 7243 7244 nid = r->nid; 7245 7246 usable_startpfn = memblock_region_memory_base_pfn(r); 7247 7248 if (usable_startpfn < 0x100000) { 7249 mem_below_4gb_not_mirrored = true; 7250 continue; 7251 } 7252 7253 zone_movable_pfn[nid] = zone_movable_pfn[nid] ? 7254 min(usable_startpfn, zone_movable_pfn[nid]) : 7255 usable_startpfn; 7256 } 7257 7258 if (mem_below_4gb_not_mirrored) 7259 pr_warn("This configuration results in unmirrored kernel memory."); 7260 7261 goto out2; 7262 } 7263 7264 /* 7265 * If kernelcore=nn% or movablecore=nn% was specified, calculate the 7266 * amount of necessary memory. 7267 */ 7268 if (required_kernelcore_percent) 7269 required_kernelcore = (totalpages * 100 * required_kernelcore_percent) / 7270 10000UL; 7271 if (required_movablecore_percent) 7272 required_movablecore = (totalpages * 100 * required_movablecore_percent) / 7273 10000UL; 7274 7275 /* 7276 * If movablecore= was specified, calculate what size of 7277 * kernelcore that corresponds so that memory usable for 7278 * any allocation type is evenly spread. If both kernelcore 7279 * and movablecore are specified, then the value of kernelcore 7280 * will be used for required_kernelcore if it's greater than 7281 * what movablecore would have allowed. 7282 */ 7283 if (required_movablecore) { 7284 unsigned long corepages; 7285 7286 /* 7287 * Round-up so that ZONE_MOVABLE is at least as large as what 7288 * was requested by the user 7289 */ 7290 required_movablecore = 7291 roundup(required_movablecore, MAX_ORDER_NR_PAGES); 7292 required_movablecore = min(totalpages, required_movablecore); 7293 corepages = totalpages - required_movablecore; 7294 7295 required_kernelcore = max(required_kernelcore, corepages); 7296 } 7297 7298 /* 7299 * If kernelcore was not specified or kernelcore size is larger 7300 * than totalpages, there is no ZONE_MOVABLE. 7301 */ 7302 if (!required_kernelcore || required_kernelcore >= totalpages) 7303 goto out; 7304 7305 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */ 7306 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone]; 7307 7308 restart: 7309 /* Spread kernelcore memory as evenly as possible throughout nodes */ 7310 kernelcore_node = required_kernelcore / usable_nodes; 7311 for_each_node_state(nid, N_MEMORY) { 7312 unsigned long start_pfn, end_pfn; 7313 7314 /* 7315 * Recalculate kernelcore_node if the division per node 7316 * now exceeds what is necessary to satisfy the requested 7317 * amount of memory for the kernel 7318 */ 7319 if (required_kernelcore < kernelcore_node) 7320 kernelcore_node = required_kernelcore / usable_nodes; 7321 7322 /* 7323 * As the map is walked, we track how much memory is usable 7324 * by the kernel using kernelcore_remaining. When it is 7325 * 0, the rest of the node is usable by ZONE_MOVABLE 7326 */ 7327 kernelcore_remaining = kernelcore_node; 7328 7329 /* Go through each range of PFNs within this node */ 7330 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) { 7331 unsigned long size_pages; 7332 7333 start_pfn = max(start_pfn, zone_movable_pfn[nid]); 7334 if (start_pfn >= end_pfn) 7335 continue; 7336 7337 /* Account for what is only usable for kernelcore */ 7338 if (start_pfn < usable_startpfn) { 7339 unsigned long kernel_pages; 7340 kernel_pages = min(end_pfn, usable_startpfn) 7341 - start_pfn; 7342 7343 kernelcore_remaining -= min(kernel_pages, 7344 kernelcore_remaining); 7345 required_kernelcore -= min(kernel_pages, 7346 required_kernelcore); 7347 7348 /* Continue if range is now fully accounted */ 7349 if (end_pfn <= usable_startpfn) { 7350 7351 /* 7352 * Push zone_movable_pfn to the end so 7353 * that if we have to rebalance 7354 * kernelcore across nodes, we will 7355 * not double account here 7356 */ 7357 zone_movable_pfn[nid] = end_pfn; 7358 continue; 7359 } 7360 start_pfn = usable_startpfn; 7361 } 7362 7363 /* 7364 * The usable PFN range for ZONE_MOVABLE is from 7365 * start_pfn->end_pfn. Calculate size_pages as the 7366 * number of pages used as kernelcore 7367 */ 7368 size_pages = end_pfn - start_pfn; 7369 if (size_pages > kernelcore_remaining) 7370 size_pages = kernelcore_remaining; 7371 zone_movable_pfn[nid] = start_pfn + size_pages; 7372 7373 /* 7374 * Some kernelcore has been met, update counts and 7375 * break if the kernelcore for this node has been 7376 * satisfied 7377 */ 7378 required_kernelcore -= min(required_kernelcore, 7379 size_pages); 7380 kernelcore_remaining -= size_pages; 7381 if (!kernelcore_remaining) 7382 break; 7383 } 7384 } 7385 7386 /* 7387 * If there is still required_kernelcore, we do another pass with one 7388 * less node in the count. This will push zone_movable_pfn[nid] further 7389 * along on the nodes that still have memory until kernelcore is 7390 * satisfied 7391 */ 7392 usable_nodes--; 7393 if (usable_nodes && required_kernelcore > usable_nodes) 7394 goto restart; 7395 7396 out2: 7397 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */ 7398 for (nid = 0; nid < MAX_NUMNODES; nid++) 7399 zone_movable_pfn[nid] = 7400 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES); 7401 7402 out: 7403 /* restore the node_state */ 7404 node_states[N_MEMORY] = saved_node_state; 7405 } 7406 7407 /* Any regular or high memory on that node ? */ 7408 static void check_for_memory(pg_data_t *pgdat, int nid) 7409 { 7410 enum zone_type zone_type; 7411 7412 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) { 7413 struct zone *zone = &pgdat->node_zones[zone_type]; 7414 if (populated_zone(zone)) { 7415 if (IS_ENABLED(CONFIG_HIGHMEM)) 7416 node_set_state(nid, N_HIGH_MEMORY); 7417 if (zone_type <= ZONE_NORMAL) 7418 node_set_state(nid, N_NORMAL_MEMORY); 7419 break; 7420 } 7421 } 7422 } 7423 7424 /** 7425 * free_area_init_nodes - Initialise all pg_data_t and zone data 7426 * @max_zone_pfn: an array of max PFNs for each zone 7427 * 7428 * This will call free_area_init_node() for each active node in the system. 7429 * Using the page ranges provided by memblock_set_node(), the size of each 7430 * zone in each node and their holes is calculated. If the maximum PFN 7431 * between two adjacent zones match, it is assumed that the zone is empty. 7432 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed 7433 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone 7434 * starts where the previous one ended. For example, ZONE_DMA32 starts 7435 * at arch_max_dma_pfn. 7436 */ 7437 void __init free_area_init_nodes(unsigned long *max_zone_pfn) 7438 { 7439 unsigned long start_pfn, end_pfn; 7440 int i, nid; 7441 7442 /* Record where the zone boundaries are */ 7443 memset(arch_zone_lowest_possible_pfn, 0, 7444 sizeof(arch_zone_lowest_possible_pfn)); 7445 memset(arch_zone_highest_possible_pfn, 0, 7446 sizeof(arch_zone_highest_possible_pfn)); 7447 7448 start_pfn = find_min_pfn_with_active_regions(); 7449 7450 for (i = 0; i < MAX_NR_ZONES; i++) { 7451 if (i == ZONE_MOVABLE) 7452 continue; 7453 7454 end_pfn = max(max_zone_pfn[i], start_pfn); 7455 arch_zone_lowest_possible_pfn[i] = start_pfn; 7456 arch_zone_highest_possible_pfn[i] = end_pfn; 7457 7458 start_pfn = end_pfn; 7459 } 7460 7461 /* Find the PFNs that ZONE_MOVABLE begins at in each node */ 7462 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn)); 7463 find_zone_movable_pfns_for_nodes(); 7464 7465 /* Print out the zone ranges */ 7466 pr_info("Zone ranges:\n"); 7467 for (i = 0; i < MAX_NR_ZONES; i++) { 7468 if (i == ZONE_MOVABLE) 7469 continue; 7470 pr_info(" %-8s ", zone_names[i]); 7471 if (arch_zone_lowest_possible_pfn[i] == 7472 arch_zone_highest_possible_pfn[i]) 7473 pr_cont("empty\n"); 7474 else 7475 pr_cont("[mem %#018Lx-%#018Lx]\n", 7476 (u64)arch_zone_lowest_possible_pfn[i] 7477 << PAGE_SHIFT, 7478 ((u64)arch_zone_highest_possible_pfn[i] 7479 << PAGE_SHIFT) - 1); 7480 } 7481 7482 /* Print out the PFNs ZONE_MOVABLE begins at in each node */ 7483 pr_info("Movable zone start for each node\n"); 7484 for (i = 0; i < MAX_NUMNODES; i++) { 7485 if (zone_movable_pfn[i]) 7486 pr_info(" Node %d: %#018Lx\n", i, 7487 (u64)zone_movable_pfn[i] << PAGE_SHIFT); 7488 } 7489 7490 /* 7491 * Print out the early node map, and initialize the 7492 * subsection-map relative to active online memory ranges to 7493 * enable future "sub-section" extensions of the memory map. 7494 */ 7495 pr_info("Early memory node ranges\n"); 7496 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) { 7497 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid, 7498 (u64)start_pfn << PAGE_SHIFT, 7499 ((u64)end_pfn << PAGE_SHIFT) - 1); 7500 subsection_map_init(start_pfn, end_pfn - start_pfn); 7501 } 7502 7503 /* Initialise every node */ 7504 mminit_verify_pageflags_layout(); 7505 setup_nr_node_ids(); 7506 init_unavailable_mem(); 7507 for_each_online_node(nid) { 7508 pg_data_t *pgdat = NODE_DATA(nid); 7509 free_area_init_node(nid, NULL, 7510 find_min_pfn_for_node(nid), NULL); 7511 7512 /* Any memory on that node */ 7513 if (pgdat->node_present_pages) 7514 node_set_state(nid, N_MEMORY); 7515 check_for_memory(pgdat, nid); 7516 } 7517 } 7518 7519 static int __init cmdline_parse_core(char *p, unsigned long *core, 7520 unsigned long *percent) 7521 { 7522 unsigned long long coremem; 7523 char *endptr; 7524 7525 if (!p) 7526 return -EINVAL; 7527 7528 /* Value may be a percentage of total memory, otherwise bytes */ 7529 coremem = simple_strtoull(p, &endptr, 0); 7530 if (*endptr == '%') { 7531 /* Paranoid check for percent values greater than 100 */ 7532 WARN_ON(coremem > 100); 7533 7534 *percent = coremem; 7535 } else { 7536 coremem = memparse(p, &p); 7537 /* Paranoid check that UL is enough for the coremem value */ 7538 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX); 7539 7540 *core = coremem >> PAGE_SHIFT; 7541 *percent = 0UL; 7542 } 7543 return 0; 7544 } 7545 7546 /* 7547 * kernelcore=size sets the amount of memory for use for allocations that 7548 * cannot be reclaimed or migrated. 7549 */ 7550 static int __init cmdline_parse_kernelcore(char *p) 7551 { 7552 /* parse kernelcore=mirror */ 7553 if (parse_option_str(p, "mirror")) { 7554 mirrored_kernelcore = true; 7555 return 0; 7556 } 7557 7558 return cmdline_parse_core(p, &required_kernelcore, 7559 &required_kernelcore_percent); 7560 } 7561 7562 /* 7563 * movablecore=size sets the amount of memory for use for allocations that 7564 * can be reclaimed or migrated. 7565 */ 7566 static int __init cmdline_parse_movablecore(char *p) 7567 { 7568 return cmdline_parse_core(p, &required_movablecore, 7569 &required_movablecore_percent); 7570 } 7571 7572 early_param("kernelcore", cmdline_parse_kernelcore); 7573 early_param("movablecore", cmdline_parse_movablecore); 7574 7575 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 7576 7577 void adjust_managed_page_count(struct page *page, long count) 7578 { 7579 atomic_long_add(count, &page_zone(page)->managed_pages); 7580 totalram_pages_add(count); 7581 #ifdef CONFIG_HIGHMEM 7582 if (PageHighMem(page)) 7583 totalhigh_pages_add(count); 7584 #endif 7585 } 7586 EXPORT_SYMBOL(adjust_managed_page_count); 7587 7588 unsigned long free_reserved_area(void *start, void *end, int poison, const char *s) 7589 { 7590 void *pos; 7591 unsigned long pages = 0; 7592 7593 start = (void *)PAGE_ALIGN((unsigned long)start); 7594 end = (void *)((unsigned long)end & PAGE_MASK); 7595 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) { 7596 struct page *page = virt_to_page(pos); 7597 void *direct_map_addr; 7598 7599 /* 7600 * 'direct_map_addr' might be different from 'pos' 7601 * because some architectures' virt_to_page() 7602 * work with aliases. Getting the direct map 7603 * address ensures that we get a _writeable_ 7604 * alias for the memset(). 7605 */ 7606 direct_map_addr = page_address(page); 7607 if ((unsigned int)poison <= 0xFF) 7608 memset(direct_map_addr, poison, PAGE_SIZE); 7609 7610 free_reserved_page(page); 7611 } 7612 7613 if (pages && s) 7614 pr_info("Freeing %s memory: %ldK\n", 7615 s, pages << (PAGE_SHIFT - 10)); 7616 7617 return pages; 7618 } 7619 7620 #ifdef CONFIG_HIGHMEM 7621 void free_highmem_page(struct page *page) 7622 { 7623 __free_reserved_page(page); 7624 totalram_pages_inc(); 7625 atomic_long_inc(&page_zone(page)->managed_pages); 7626 totalhigh_pages_inc(); 7627 } 7628 #endif 7629 7630 7631 void __init mem_init_print_info(const char *str) 7632 { 7633 unsigned long physpages, codesize, datasize, rosize, bss_size; 7634 unsigned long init_code_size, init_data_size; 7635 7636 physpages = get_num_physpages(); 7637 codesize = _etext - _stext; 7638 datasize = _edata - _sdata; 7639 rosize = __end_rodata - __start_rodata; 7640 bss_size = __bss_stop - __bss_start; 7641 init_data_size = __init_end - __init_begin; 7642 init_code_size = _einittext - _sinittext; 7643 7644 /* 7645 * Detect special cases and adjust section sizes accordingly: 7646 * 1) .init.* may be embedded into .data sections 7647 * 2) .init.text.* may be out of [__init_begin, __init_end], 7648 * please refer to arch/tile/kernel/vmlinux.lds.S. 7649 * 3) .rodata.* may be embedded into .text or .data sections. 7650 */ 7651 #define adj_init_size(start, end, size, pos, adj) \ 7652 do { \ 7653 if (start <= pos && pos < end && size > adj) \ 7654 size -= adj; \ 7655 } while (0) 7656 7657 adj_init_size(__init_begin, __init_end, init_data_size, 7658 _sinittext, init_code_size); 7659 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size); 7660 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size); 7661 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize); 7662 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize); 7663 7664 #undef adj_init_size 7665 7666 pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved" 7667 #ifdef CONFIG_HIGHMEM 7668 ", %luK highmem" 7669 #endif 7670 "%s%s)\n", 7671 nr_free_pages() << (PAGE_SHIFT - 10), 7672 physpages << (PAGE_SHIFT - 10), 7673 codesize >> 10, datasize >> 10, rosize >> 10, 7674 (init_data_size + init_code_size) >> 10, bss_size >> 10, 7675 (physpages - totalram_pages() - totalcma_pages) << (PAGE_SHIFT - 10), 7676 totalcma_pages << (PAGE_SHIFT - 10), 7677 #ifdef CONFIG_HIGHMEM 7678 totalhigh_pages() << (PAGE_SHIFT - 10), 7679 #endif 7680 str ? ", " : "", str ? str : ""); 7681 } 7682 7683 /** 7684 * set_dma_reserve - set the specified number of pages reserved in the first zone 7685 * @new_dma_reserve: The number of pages to mark reserved 7686 * 7687 * The per-cpu batchsize and zone watermarks are determined by managed_pages. 7688 * In the DMA zone, a significant percentage may be consumed by kernel image 7689 * and other unfreeable allocations which can skew the watermarks badly. This 7690 * function may optionally be used to account for unfreeable pages in the 7691 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and 7692 * smaller per-cpu batchsize. 7693 */ 7694 void __init set_dma_reserve(unsigned long new_dma_reserve) 7695 { 7696 dma_reserve = new_dma_reserve; 7697 } 7698 7699 void __init free_area_init(unsigned long *zones_size) 7700 { 7701 init_unavailable_mem(); 7702 free_area_init_node(0, zones_size, 7703 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL); 7704 } 7705 7706 static int page_alloc_cpu_dead(unsigned int cpu) 7707 { 7708 7709 lru_add_drain_cpu(cpu); 7710 drain_pages(cpu); 7711 7712 /* 7713 * Spill the event counters of the dead processor 7714 * into the current processors event counters. 7715 * This artificially elevates the count of the current 7716 * processor. 7717 */ 7718 vm_events_fold_cpu(cpu); 7719 7720 /* 7721 * Zero the differential counters of the dead processor 7722 * so that the vm statistics are consistent. 7723 * 7724 * This is only okay since the processor is dead and cannot 7725 * race with what we are doing. 7726 */ 7727 cpu_vm_stats_fold(cpu); 7728 return 0; 7729 } 7730 7731 #ifdef CONFIG_NUMA 7732 int hashdist = HASHDIST_DEFAULT; 7733 7734 static int __init set_hashdist(char *str) 7735 { 7736 if (!str) 7737 return 0; 7738 hashdist = simple_strtoul(str, &str, 0); 7739 return 1; 7740 } 7741 __setup("hashdist=", set_hashdist); 7742 #endif 7743 7744 void __init page_alloc_init(void) 7745 { 7746 int ret; 7747 7748 #ifdef CONFIG_NUMA 7749 if (num_node_state(N_MEMORY) == 1) 7750 hashdist = 0; 7751 #endif 7752 7753 ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC_DEAD, 7754 "mm/page_alloc:dead", NULL, 7755 page_alloc_cpu_dead); 7756 WARN_ON(ret < 0); 7757 } 7758 7759 /* 7760 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio 7761 * or min_free_kbytes changes. 7762 */ 7763 static void calculate_totalreserve_pages(void) 7764 { 7765 struct pglist_data *pgdat; 7766 unsigned long reserve_pages = 0; 7767 enum zone_type i, j; 7768 7769 for_each_online_pgdat(pgdat) { 7770 7771 pgdat->totalreserve_pages = 0; 7772 7773 for (i = 0; i < MAX_NR_ZONES; i++) { 7774 struct zone *zone = pgdat->node_zones + i; 7775 long max = 0; 7776 unsigned long managed_pages = zone_managed_pages(zone); 7777 7778 /* Find valid and maximum lowmem_reserve in the zone */ 7779 for (j = i; j < MAX_NR_ZONES; j++) { 7780 if (zone->lowmem_reserve[j] > max) 7781 max = zone->lowmem_reserve[j]; 7782 } 7783 7784 /* we treat the high watermark as reserved pages. */ 7785 max += high_wmark_pages(zone); 7786 7787 if (max > managed_pages) 7788 max = managed_pages; 7789 7790 pgdat->totalreserve_pages += max; 7791 7792 reserve_pages += max; 7793 } 7794 } 7795 totalreserve_pages = reserve_pages; 7796 } 7797 7798 /* 7799 * setup_per_zone_lowmem_reserve - called whenever 7800 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone 7801 * has a correct pages reserved value, so an adequate number of 7802 * pages are left in the zone after a successful __alloc_pages(). 7803 */ 7804 static void setup_per_zone_lowmem_reserve(void) 7805 { 7806 struct pglist_data *pgdat; 7807 enum zone_type j, idx; 7808 7809 for_each_online_pgdat(pgdat) { 7810 for (j = 0; j < MAX_NR_ZONES; j++) { 7811 struct zone *zone = pgdat->node_zones + j; 7812 unsigned long managed_pages = zone_managed_pages(zone); 7813 7814 zone->lowmem_reserve[j] = 0; 7815 7816 idx = j; 7817 while (idx) { 7818 struct zone *lower_zone; 7819 7820 idx--; 7821 lower_zone = pgdat->node_zones + idx; 7822 7823 if (sysctl_lowmem_reserve_ratio[idx] < 1) { 7824 sysctl_lowmem_reserve_ratio[idx] = 0; 7825 lower_zone->lowmem_reserve[j] = 0; 7826 } else { 7827 lower_zone->lowmem_reserve[j] = 7828 managed_pages / sysctl_lowmem_reserve_ratio[idx]; 7829 } 7830 managed_pages += zone_managed_pages(lower_zone); 7831 } 7832 } 7833 } 7834 7835 /* update totalreserve_pages */ 7836 calculate_totalreserve_pages(); 7837 } 7838 7839 static void __setup_per_zone_wmarks(void) 7840 { 7841 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10); 7842 unsigned long lowmem_pages = 0; 7843 struct zone *zone; 7844 unsigned long flags; 7845 7846 /* Calculate total number of !ZONE_HIGHMEM pages */ 7847 for_each_zone(zone) { 7848 if (!is_highmem(zone)) 7849 lowmem_pages += zone_managed_pages(zone); 7850 } 7851 7852 for_each_zone(zone) { 7853 u64 tmp; 7854 7855 spin_lock_irqsave(&zone->lock, flags); 7856 tmp = (u64)pages_min * zone_managed_pages(zone); 7857 do_div(tmp, lowmem_pages); 7858 if (is_highmem(zone)) { 7859 /* 7860 * __GFP_HIGH and PF_MEMALLOC allocations usually don't 7861 * need highmem pages, so cap pages_min to a small 7862 * value here. 7863 * 7864 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN) 7865 * deltas control async page reclaim, and so should 7866 * not be capped for highmem. 7867 */ 7868 unsigned long min_pages; 7869 7870 min_pages = zone_managed_pages(zone) / 1024; 7871 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL); 7872 zone->_watermark[WMARK_MIN] = min_pages; 7873 } else { 7874 /* 7875 * If it's a lowmem zone, reserve a number of pages 7876 * proportionate to the zone's size. 7877 */ 7878 zone->_watermark[WMARK_MIN] = tmp; 7879 } 7880 7881 /* 7882 * Set the kswapd watermarks distance according to the 7883 * scale factor in proportion to available memory, but 7884 * ensure a minimum size on small systems. 7885 */ 7886 tmp = max_t(u64, tmp >> 2, 7887 mult_frac(zone_managed_pages(zone), 7888 watermark_scale_factor, 10000)); 7889 7890 zone->_watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp; 7891 zone->_watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2; 7892 zone->watermark_boost = 0; 7893 7894 spin_unlock_irqrestore(&zone->lock, flags); 7895 } 7896 7897 /* update totalreserve_pages */ 7898 calculate_totalreserve_pages(); 7899 } 7900 7901 /** 7902 * setup_per_zone_wmarks - called when min_free_kbytes changes 7903 * or when memory is hot-{added|removed} 7904 * 7905 * Ensures that the watermark[min,low,high] values for each zone are set 7906 * correctly with respect to min_free_kbytes. 7907 */ 7908 void setup_per_zone_wmarks(void) 7909 { 7910 static DEFINE_SPINLOCK(lock); 7911 7912 spin_lock(&lock); 7913 __setup_per_zone_wmarks(); 7914 spin_unlock(&lock); 7915 } 7916 7917 /* 7918 * Initialise min_free_kbytes. 7919 * 7920 * For small machines we want it small (128k min). For large machines 7921 * we want it large (64MB max). But it is not linear, because network 7922 * bandwidth does not increase linearly with machine size. We use 7923 * 7924 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy: 7925 * min_free_kbytes = sqrt(lowmem_kbytes * 16) 7926 * 7927 * which yields 7928 * 7929 * 16MB: 512k 7930 * 32MB: 724k 7931 * 64MB: 1024k 7932 * 128MB: 1448k 7933 * 256MB: 2048k 7934 * 512MB: 2896k 7935 * 1024MB: 4096k 7936 * 2048MB: 5792k 7937 * 4096MB: 8192k 7938 * 8192MB: 11584k 7939 * 16384MB: 16384k 7940 */ 7941 int __meminit init_per_zone_wmark_min(void) 7942 { 7943 unsigned long lowmem_kbytes; 7944 int new_min_free_kbytes; 7945 7946 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10); 7947 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16); 7948 7949 if (new_min_free_kbytes > user_min_free_kbytes) { 7950 min_free_kbytes = new_min_free_kbytes; 7951 if (min_free_kbytes < 128) 7952 min_free_kbytes = 128; 7953 if (min_free_kbytes > 262144) 7954 min_free_kbytes = 262144; 7955 } else { 7956 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n", 7957 new_min_free_kbytes, user_min_free_kbytes); 7958 } 7959 setup_per_zone_wmarks(); 7960 refresh_zone_stat_thresholds(); 7961 setup_per_zone_lowmem_reserve(); 7962 7963 #ifdef CONFIG_NUMA 7964 setup_min_unmapped_ratio(); 7965 setup_min_slab_ratio(); 7966 #endif 7967 7968 return 0; 7969 } 7970 core_initcall(init_per_zone_wmark_min) 7971 7972 /* 7973 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so 7974 * that we can call two helper functions whenever min_free_kbytes 7975 * changes. 7976 */ 7977 int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write, 7978 void __user *buffer, size_t *length, loff_t *ppos) 7979 { 7980 int rc; 7981 7982 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 7983 if (rc) 7984 return rc; 7985 7986 if (write) { 7987 user_min_free_kbytes = min_free_kbytes; 7988 setup_per_zone_wmarks(); 7989 } 7990 return 0; 7991 } 7992 7993 int watermark_boost_factor_sysctl_handler(struct ctl_table *table, int write, 7994 void __user *buffer, size_t *length, loff_t *ppos) 7995 { 7996 int rc; 7997 7998 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 7999 if (rc) 8000 return rc; 8001 8002 return 0; 8003 } 8004 8005 int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write, 8006 void __user *buffer, size_t *length, loff_t *ppos) 8007 { 8008 int rc; 8009 8010 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 8011 if (rc) 8012 return rc; 8013 8014 if (write) 8015 setup_per_zone_wmarks(); 8016 8017 return 0; 8018 } 8019 8020 #ifdef CONFIG_NUMA 8021 static void setup_min_unmapped_ratio(void) 8022 { 8023 pg_data_t *pgdat; 8024 struct zone *zone; 8025 8026 for_each_online_pgdat(pgdat) 8027 pgdat->min_unmapped_pages = 0; 8028 8029 for_each_zone(zone) 8030 zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) * 8031 sysctl_min_unmapped_ratio) / 100; 8032 } 8033 8034 8035 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write, 8036 void __user *buffer, size_t *length, loff_t *ppos) 8037 { 8038 int rc; 8039 8040 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 8041 if (rc) 8042 return rc; 8043 8044 setup_min_unmapped_ratio(); 8045 8046 return 0; 8047 } 8048 8049 static void setup_min_slab_ratio(void) 8050 { 8051 pg_data_t *pgdat; 8052 struct zone *zone; 8053 8054 for_each_online_pgdat(pgdat) 8055 pgdat->min_slab_pages = 0; 8056 8057 for_each_zone(zone) 8058 zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) * 8059 sysctl_min_slab_ratio) / 100; 8060 } 8061 8062 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write, 8063 void __user *buffer, size_t *length, loff_t *ppos) 8064 { 8065 int rc; 8066 8067 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 8068 if (rc) 8069 return rc; 8070 8071 setup_min_slab_ratio(); 8072 8073 return 0; 8074 } 8075 #endif 8076 8077 /* 8078 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around 8079 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve() 8080 * whenever sysctl_lowmem_reserve_ratio changes. 8081 * 8082 * The reserve ratio obviously has absolutely no relation with the 8083 * minimum watermarks. The lowmem reserve ratio can only make sense 8084 * if in function of the boot time zone sizes. 8085 */ 8086 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write, 8087 void __user *buffer, size_t *length, loff_t *ppos) 8088 { 8089 proc_dointvec_minmax(table, write, buffer, length, ppos); 8090 setup_per_zone_lowmem_reserve(); 8091 return 0; 8092 } 8093 8094 static void __zone_pcp_update(struct zone *zone) 8095 { 8096 unsigned int cpu; 8097 8098 for_each_possible_cpu(cpu) 8099 pageset_set_high_and_batch(zone, 8100 per_cpu_ptr(zone->pageset, cpu)); 8101 } 8102 8103 /* 8104 * percpu_pagelist_fraction - changes the pcp->high for each zone on each 8105 * cpu. It is the fraction of total pages in each zone that a hot per cpu 8106 * pagelist can have before it gets flushed back to buddy allocator. 8107 */ 8108 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write, 8109 void __user *buffer, size_t *length, loff_t *ppos) 8110 { 8111 struct zone *zone; 8112 int old_percpu_pagelist_fraction; 8113 int ret; 8114 8115 mutex_lock(&pcp_batch_high_lock); 8116 old_percpu_pagelist_fraction = percpu_pagelist_fraction; 8117 8118 ret = proc_dointvec_minmax(table, write, buffer, length, ppos); 8119 if (!write || ret < 0) 8120 goto out; 8121 8122 /* Sanity checking to avoid pcp imbalance */ 8123 if (percpu_pagelist_fraction && 8124 percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) { 8125 percpu_pagelist_fraction = old_percpu_pagelist_fraction; 8126 ret = -EINVAL; 8127 goto out; 8128 } 8129 8130 /* No change? */ 8131 if (percpu_pagelist_fraction == old_percpu_pagelist_fraction) 8132 goto out; 8133 8134 for_each_populated_zone(zone) 8135 __zone_pcp_update(zone); 8136 out: 8137 mutex_unlock(&pcp_batch_high_lock); 8138 return ret; 8139 } 8140 8141 #ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES 8142 /* 8143 * Returns the number of pages that arch has reserved but 8144 * is not known to alloc_large_system_hash(). 8145 */ 8146 static unsigned long __init arch_reserved_kernel_pages(void) 8147 { 8148 return 0; 8149 } 8150 #endif 8151 8152 /* 8153 * Adaptive scale is meant to reduce sizes of hash tables on large memory 8154 * machines. As memory size is increased the scale is also increased but at 8155 * slower pace. Starting from ADAPT_SCALE_BASE (64G), every time memory 8156 * quadruples the scale is increased by one, which means the size of hash table 8157 * only doubles, instead of quadrupling as well. 8158 * Because 32-bit systems cannot have large physical memory, where this scaling 8159 * makes sense, it is disabled on such platforms. 8160 */ 8161 #if __BITS_PER_LONG > 32 8162 #define ADAPT_SCALE_BASE (64ul << 30) 8163 #define ADAPT_SCALE_SHIFT 2 8164 #define ADAPT_SCALE_NPAGES (ADAPT_SCALE_BASE >> PAGE_SHIFT) 8165 #endif 8166 8167 /* 8168 * allocate a large system hash table from bootmem 8169 * - it is assumed that the hash table must contain an exact power-of-2 8170 * quantity of entries 8171 * - limit is the number of hash buckets, not the total allocation size 8172 */ 8173 void *__init alloc_large_system_hash(const char *tablename, 8174 unsigned long bucketsize, 8175 unsigned long numentries, 8176 int scale, 8177 int flags, 8178 unsigned int *_hash_shift, 8179 unsigned int *_hash_mask, 8180 unsigned long low_limit, 8181 unsigned long high_limit) 8182 { 8183 unsigned long long max = high_limit; 8184 unsigned long log2qty, size; 8185 void *table = NULL; 8186 gfp_t gfp_flags; 8187 bool virt; 8188 8189 /* allow the kernel cmdline to have a say */ 8190 if (!numentries) { 8191 /* round applicable memory size up to nearest megabyte */ 8192 numentries = nr_kernel_pages; 8193 numentries -= arch_reserved_kernel_pages(); 8194 8195 /* It isn't necessary when PAGE_SIZE >= 1MB */ 8196 if (PAGE_SHIFT < 20) 8197 numentries = round_up(numentries, (1<<20)/PAGE_SIZE); 8198 8199 #if __BITS_PER_LONG > 32 8200 if (!high_limit) { 8201 unsigned long adapt; 8202 8203 for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries; 8204 adapt <<= ADAPT_SCALE_SHIFT) 8205 scale++; 8206 } 8207 #endif 8208 8209 /* limit to 1 bucket per 2^scale bytes of low memory */ 8210 if (scale > PAGE_SHIFT) 8211 numentries >>= (scale - PAGE_SHIFT); 8212 else 8213 numentries <<= (PAGE_SHIFT - scale); 8214 8215 /* Make sure we've got at least a 0-order allocation.. */ 8216 if (unlikely(flags & HASH_SMALL)) { 8217 /* Makes no sense without HASH_EARLY */ 8218 WARN_ON(!(flags & HASH_EARLY)); 8219 if (!(numentries >> *_hash_shift)) { 8220 numentries = 1UL << *_hash_shift; 8221 BUG_ON(!numentries); 8222 } 8223 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE)) 8224 numentries = PAGE_SIZE / bucketsize; 8225 } 8226 numentries = roundup_pow_of_two(numentries); 8227 8228 /* limit allocation size to 1/16 total memory by default */ 8229 if (max == 0) { 8230 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4; 8231 do_div(max, bucketsize); 8232 } 8233 max = min(max, 0x80000000ULL); 8234 8235 if (numentries < low_limit) 8236 numentries = low_limit; 8237 if (numentries > max) 8238 numentries = max; 8239 8240 log2qty = ilog2(numentries); 8241 8242 gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC; 8243 do { 8244 virt = false; 8245 size = bucketsize << log2qty; 8246 if (flags & HASH_EARLY) { 8247 if (flags & HASH_ZERO) 8248 table = memblock_alloc(size, SMP_CACHE_BYTES); 8249 else 8250 table = memblock_alloc_raw(size, 8251 SMP_CACHE_BYTES); 8252 } else if (get_order(size) >= MAX_ORDER || hashdist) { 8253 table = __vmalloc(size, gfp_flags); 8254 virt = true; 8255 } else { 8256 /* 8257 * If bucketsize is not a power-of-two, we may free 8258 * some pages at the end of hash table which 8259 * alloc_pages_exact() automatically does 8260 */ 8261 table = alloc_pages_exact(size, gfp_flags); 8262 kmemleak_alloc(table, size, 1, gfp_flags); 8263 } 8264 } while (!table && size > PAGE_SIZE && --log2qty); 8265 8266 if (!table) 8267 panic("Failed to allocate %s hash table\n", tablename); 8268 8269 pr_info("%s hash table entries: %ld (order: %d, %lu bytes, %s)\n", 8270 tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size, 8271 virt ? "vmalloc" : "linear"); 8272 8273 if (_hash_shift) 8274 *_hash_shift = log2qty; 8275 if (_hash_mask) 8276 *_hash_mask = (1 << log2qty) - 1; 8277 8278 return table; 8279 } 8280 8281 /* 8282 * This function checks whether pageblock includes unmovable pages or not. 8283 * 8284 * PageLRU check without isolation or lru_lock could race so that 8285 * MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable 8286 * check without lock_page also may miss some movable non-lru pages at 8287 * race condition. So you can't expect this function should be exact. 8288 * 8289 * Returns a page without holding a reference. If the caller wants to 8290 * dereference that page (e.g., dumping), it has to make sure that that it 8291 * cannot get removed (e.g., via memory unplug) concurrently. 8292 * 8293 */ 8294 struct page *has_unmovable_pages(struct zone *zone, struct page *page, 8295 int migratetype, int flags) 8296 { 8297 unsigned long iter = 0; 8298 unsigned long pfn = page_to_pfn(page); 8299 8300 /* 8301 * TODO we could make this much more efficient by not checking every 8302 * page in the range if we know all of them are in MOVABLE_ZONE and 8303 * that the movable zone guarantees that pages are migratable but 8304 * the later is not the case right now unfortunatelly. E.g. movablecore 8305 * can still lead to having bootmem allocations in zone_movable. 8306 */ 8307 8308 if (is_migrate_cma_page(page)) { 8309 /* 8310 * CMA allocations (alloc_contig_range) really need to mark 8311 * isolate CMA pageblocks even when they are not movable in fact 8312 * so consider them movable here. 8313 */ 8314 if (is_migrate_cma(migratetype)) 8315 return NULL; 8316 8317 return page; 8318 } 8319 8320 for (; iter < pageblock_nr_pages; iter++) { 8321 if (!pfn_valid_within(pfn + iter)) 8322 continue; 8323 8324 page = pfn_to_page(pfn + iter); 8325 8326 if (PageReserved(page)) 8327 return page; 8328 8329 /* 8330 * If the zone is movable and we have ruled out all reserved 8331 * pages then it should be reasonably safe to assume the rest 8332 * is movable. 8333 */ 8334 if (zone_idx(zone) == ZONE_MOVABLE) 8335 continue; 8336 8337 /* 8338 * Hugepages are not in LRU lists, but they're movable. 8339 * THPs are on the LRU, but need to be counted as #small pages. 8340 * We need not scan over tail pages because we don't 8341 * handle each tail page individually in migration. 8342 */ 8343 if (PageHuge(page) || PageTransCompound(page)) { 8344 struct page *head = compound_head(page); 8345 unsigned int skip_pages; 8346 8347 if (PageHuge(page)) { 8348 if (!hugepage_migration_supported(page_hstate(head))) 8349 return page; 8350 } else if (!PageLRU(head) && !__PageMovable(head)) { 8351 return page; 8352 } 8353 8354 skip_pages = compound_nr(head) - (page - head); 8355 iter += skip_pages - 1; 8356 continue; 8357 } 8358 8359 /* 8360 * We can't use page_count without pin a page 8361 * because another CPU can free compound page. 8362 * This check already skips compound tails of THP 8363 * because their page->_refcount is zero at all time. 8364 */ 8365 if (!page_ref_count(page)) { 8366 if (PageBuddy(page)) 8367 iter += (1 << page_order(page)) - 1; 8368 continue; 8369 } 8370 8371 /* 8372 * The HWPoisoned page may be not in buddy system, and 8373 * page_count() is not 0. 8374 */ 8375 if ((flags & MEMORY_OFFLINE) && PageHWPoison(page)) 8376 continue; 8377 8378 if (__PageMovable(page) || PageLRU(page)) 8379 continue; 8380 8381 /* 8382 * If there are RECLAIMABLE pages, we need to check 8383 * it. But now, memory offline itself doesn't call 8384 * shrink_node_slabs() and it still to be fixed. 8385 */ 8386 /* 8387 * If the page is not RAM, page_count()should be 0. 8388 * we don't need more check. This is an _used_ not-movable page. 8389 * 8390 * The problematic thing here is PG_reserved pages. PG_reserved 8391 * is set to both of a memory hole page and a _used_ kernel 8392 * page at boot. 8393 */ 8394 return page; 8395 } 8396 return NULL; 8397 } 8398 8399 #ifdef CONFIG_CONTIG_ALLOC 8400 static unsigned long pfn_max_align_down(unsigned long pfn) 8401 { 8402 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES, 8403 pageblock_nr_pages) - 1); 8404 } 8405 8406 static unsigned long pfn_max_align_up(unsigned long pfn) 8407 { 8408 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES, 8409 pageblock_nr_pages)); 8410 } 8411 8412 /* [start, end) must belong to a single zone. */ 8413 static int __alloc_contig_migrate_range(struct compact_control *cc, 8414 unsigned long start, unsigned long end) 8415 { 8416 /* This function is based on compact_zone() from compaction.c. */ 8417 unsigned long nr_reclaimed; 8418 unsigned long pfn = start; 8419 unsigned int tries = 0; 8420 int ret = 0; 8421 8422 migrate_prep(); 8423 8424 while (pfn < end || !list_empty(&cc->migratepages)) { 8425 if (fatal_signal_pending(current)) { 8426 ret = -EINTR; 8427 break; 8428 } 8429 8430 if (list_empty(&cc->migratepages)) { 8431 cc->nr_migratepages = 0; 8432 pfn = isolate_migratepages_range(cc, pfn, end); 8433 if (!pfn) { 8434 ret = -EINTR; 8435 break; 8436 } 8437 tries = 0; 8438 } else if (++tries == 5) { 8439 ret = ret < 0 ? ret : -EBUSY; 8440 break; 8441 } 8442 8443 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone, 8444 &cc->migratepages); 8445 cc->nr_migratepages -= nr_reclaimed; 8446 8447 ret = migrate_pages(&cc->migratepages, alloc_migrate_target, 8448 NULL, 0, cc->mode, MR_CONTIG_RANGE); 8449 } 8450 if (ret < 0) { 8451 putback_movable_pages(&cc->migratepages); 8452 return ret; 8453 } 8454 return 0; 8455 } 8456 8457 /** 8458 * alloc_contig_range() -- tries to allocate given range of pages 8459 * @start: start PFN to allocate 8460 * @end: one-past-the-last PFN to allocate 8461 * @migratetype: migratetype of the underlaying pageblocks (either 8462 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks 8463 * in range must have the same migratetype and it must 8464 * be either of the two. 8465 * @gfp_mask: GFP mask to use during compaction 8466 * 8467 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES 8468 * aligned. The PFN range must belong to a single zone. 8469 * 8470 * The first thing this routine does is attempt to MIGRATE_ISOLATE all 8471 * pageblocks in the range. Once isolated, the pageblocks should not 8472 * be modified by others. 8473 * 8474 * Return: zero on success or negative error code. On success all 8475 * pages which PFN is in [start, end) are allocated for the caller and 8476 * need to be freed with free_contig_range(). 8477 */ 8478 int alloc_contig_range(unsigned long start, unsigned long end, 8479 unsigned migratetype, gfp_t gfp_mask) 8480 { 8481 unsigned long outer_start, outer_end; 8482 unsigned int order; 8483 int ret = 0; 8484 8485 struct compact_control cc = { 8486 .nr_migratepages = 0, 8487 .order = -1, 8488 .zone = page_zone(pfn_to_page(start)), 8489 .mode = MIGRATE_SYNC, 8490 .ignore_skip_hint = true, 8491 .no_set_skip_hint = true, 8492 .gfp_mask = current_gfp_context(gfp_mask), 8493 .alloc_contig = true, 8494 }; 8495 INIT_LIST_HEAD(&cc.migratepages); 8496 8497 /* 8498 * What we do here is we mark all pageblocks in range as 8499 * MIGRATE_ISOLATE. Because pageblock and max order pages may 8500 * have different sizes, and due to the way page allocator 8501 * work, we align the range to biggest of the two pages so 8502 * that page allocator won't try to merge buddies from 8503 * different pageblocks and change MIGRATE_ISOLATE to some 8504 * other migration type. 8505 * 8506 * Once the pageblocks are marked as MIGRATE_ISOLATE, we 8507 * migrate the pages from an unaligned range (ie. pages that 8508 * we are interested in). This will put all the pages in 8509 * range back to page allocator as MIGRATE_ISOLATE. 8510 * 8511 * When this is done, we take the pages in range from page 8512 * allocator removing them from the buddy system. This way 8513 * page allocator will never consider using them. 8514 * 8515 * This lets us mark the pageblocks back as 8516 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the 8517 * aligned range but not in the unaligned, original range are 8518 * put back to page allocator so that buddy can use them. 8519 */ 8520 8521 ret = start_isolate_page_range(pfn_max_align_down(start), 8522 pfn_max_align_up(end), migratetype, 0); 8523 if (ret < 0) 8524 return ret; 8525 8526 /* 8527 * In case of -EBUSY, we'd like to know which page causes problem. 8528 * So, just fall through. test_pages_isolated() has a tracepoint 8529 * which will report the busy page. 8530 * 8531 * It is possible that busy pages could become available before 8532 * the call to test_pages_isolated, and the range will actually be 8533 * allocated. So, if we fall through be sure to clear ret so that 8534 * -EBUSY is not accidentally used or returned to caller. 8535 */ 8536 ret = __alloc_contig_migrate_range(&cc, start, end); 8537 if (ret && ret != -EBUSY) 8538 goto done; 8539 ret =0; 8540 8541 /* 8542 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES 8543 * aligned blocks that are marked as MIGRATE_ISOLATE. What's 8544 * more, all pages in [start, end) are free in page allocator. 8545 * What we are going to do is to allocate all pages from 8546 * [start, end) (that is remove them from page allocator). 8547 * 8548 * The only problem is that pages at the beginning and at the 8549 * end of interesting range may be not aligned with pages that 8550 * page allocator holds, ie. they can be part of higher order 8551 * pages. Because of this, we reserve the bigger range and 8552 * once this is done free the pages we are not interested in. 8553 * 8554 * We don't have to hold zone->lock here because the pages are 8555 * isolated thus they won't get removed from buddy. 8556 */ 8557 8558 lru_add_drain_all(); 8559 8560 order = 0; 8561 outer_start = start; 8562 while (!PageBuddy(pfn_to_page(outer_start))) { 8563 if (++order >= MAX_ORDER) { 8564 outer_start = start; 8565 break; 8566 } 8567 outer_start &= ~0UL << order; 8568 } 8569 8570 if (outer_start != start) { 8571 order = page_order(pfn_to_page(outer_start)); 8572 8573 /* 8574 * outer_start page could be small order buddy page and 8575 * it doesn't include start page. Adjust outer_start 8576 * in this case to report failed page properly 8577 * on tracepoint in test_pages_isolated() 8578 */ 8579 if (outer_start + (1UL << order) <= start) 8580 outer_start = start; 8581 } 8582 8583 /* Make sure the range is really isolated. */ 8584 if (test_pages_isolated(outer_start, end, 0)) { 8585 pr_info_ratelimited("%s: [%lx, %lx) PFNs busy\n", 8586 __func__, outer_start, end); 8587 ret = -EBUSY; 8588 goto done; 8589 } 8590 8591 /* Grab isolated pages from freelists. */ 8592 outer_end = isolate_freepages_range(&cc, outer_start, end); 8593 if (!outer_end) { 8594 ret = -EBUSY; 8595 goto done; 8596 } 8597 8598 /* Free head and tail (if any) */ 8599 if (start != outer_start) 8600 free_contig_range(outer_start, start - outer_start); 8601 if (end != outer_end) 8602 free_contig_range(end, outer_end - end); 8603 8604 done: 8605 undo_isolate_page_range(pfn_max_align_down(start), 8606 pfn_max_align_up(end), migratetype); 8607 return ret; 8608 } 8609 8610 static int __alloc_contig_pages(unsigned long start_pfn, 8611 unsigned long nr_pages, gfp_t gfp_mask) 8612 { 8613 unsigned long end_pfn = start_pfn + nr_pages; 8614 8615 return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE, 8616 gfp_mask); 8617 } 8618 8619 static bool pfn_range_valid_contig(struct zone *z, unsigned long start_pfn, 8620 unsigned long nr_pages) 8621 { 8622 unsigned long i, end_pfn = start_pfn + nr_pages; 8623 struct page *page; 8624 8625 for (i = start_pfn; i < end_pfn; i++) { 8626 page = pfn_to_online_page(i); 8627 if (!page) 8628 return false; 8629 8630 if (page_zone(page) != z) 8631 return false; 8632 8633 if (PageReserved(page)) 8634 return false; 8635 8636 if (page_count(page) > 0) 8637 return false; 8638 8639 if (PageHuge(page)) 8640 return false; 8641 } 8642 return true; 8643 } 8644 8645 static bool zone_spans_last_pfn(const struct zone *zone, 8646 unsigned long start_pfn, unsigned long nr_pages) 8647 { 8648 unsigned long last_pfn = start_pfn + nr_pages - 1; 8649 8650 return zone_spans_pfn(zone, last_pfn); 8651 } 8652 8653 /** 8654 * alloc_contig_pages() -- tries to find and allocate contiguous range of pages 8655 * @nr_pages: Number of contiguous pages to allocate 8656 * @gfp_mask: GFP mask to limit search and used during compaction 8657 * @nid: Target node 8658 * @nodemask: Mask for other possible nodes 8659 * 8660 * This routine is a wrapper around alloc_contig_range(). It scans over zones 8661 * on an applicable zonelist to find a contiguous pfn range which can then be 8662 * tried for allocation with alloc_contig_range(). This routine is intended 8663 * for allocation requests which can not be fulfilled with the buddy allocator. 8664 * 8665 * The allocated memory is always aligned to a page boundary. If nr_pages is a 8666 * power of two then the alignment is guaranteed to be to the given nr_pages 8667 * (e.g. 1GB request would be aligned to 1GB). 8668 * 8669 * Allocated pages can be freed with free_contig_range() or by manually calling 8670 * __free_page() on each allocated page. 8671 * 8672 * Return: pointer to contiguous pages on success, or NULL if not successful. 8673 */ 8674 struct page *alloc_contig_pages(unsigned long nr_pages, gfp_t gfp_mask, 8675 int nid, nodemask_t *nodemask) 8676 { 8677 unsigned long ret, pfn, flags; 8678 struct zonelist *zonelist; 8679 struct zone *zone; 8680 struct zoneref *z; 8681 8682 zonelist = node_zonelist(nid, gfp_mask); 8683 for_each_zone_zonelist_nodemask(zone, z, zonelist, 8684 gfp_zone(gfp_mask), nodemask) { 8685 spin_lock_irqsave(&zone->lock, flags); 8686 8687 pfn = ALIGN(zone->zone_start_pfn, nr_pages); 8688 while (zone_spans_last_pfn(zone, pfn, nr_pages)) { 8689 if (pfn_range_valid_contig(zone, pfn, nr_pages)) { 8690 /* 8691 * We release the zone lock here because 8692 * alloc_contig_range() will also lock the zone 8693 * at some point. If there's an allocation 8694 * spinning on this lock, it may win the race 8695 * and cause alloc_contig_range() to fail... 8696 */ 8697 spin_unlock_irqrestore(&zone->lock, flags); 8698 ret = __alloc_contig_pages(pfn, nr_pages, 8699 gfp_mask); 8700 if (!ret) 8701 return pfn_to_page(pfn); 8702 spin_lock_irqsave(&zone->lock, flags); 8703 } 8704 pfn += nr_pages; 8705 } 8706 spin_unlock_irqrestore(&zone->lock, flags); 8707 } 8708 return NULL; 8709 } 8710 #endif /* CONFIG_CONTIG_ALLOC */ 8711 8712 void free_contig_range(unsigned long pfn, unsigned int nr_pages) 8713 { 8714 unsigned int count = 0; 8715 8716 for (; nr_pages--; pfn++) { 8717 struct page *page = pfn_to_page(pfn); 8718 8719 count += page_count(page) != 1; 8720 __free_page(page); 8721 } 8722 WARN(count != 0, "%d pages are still in use!\n", count); 8723 } 8724 8725 /* 8726 * The zone indicated has a new number of managed_pages; batch sizes and percpu 8727 * page high values need to be recalulated. 8728 */ 8729 void __meminit zone_pcp_update(struct zone *zone) 8730 { 8731 mutex_lock(&pcp_batch_high_lock); 8732 __zone_pcp_update(zone); 8733 mutex_unlock(&pcp_batch_high_lock); 8734 } 8735 8736 void zone_pcp_reset(struct zone *zone) 8737 { 8738 unsigned long flags; 8739 int cpu; 8740 struct per_cpu_pageset *pset; 8741 8742 /* avoid races with drain_pages() */ 8743 local_irq_save(flags); 8744 if (zone->pageset != &boot_pageset) { 8745 for_each_online_cpu(cpu) { 8746 pset = per_cpu_ptr(zone->pageset, cpu); 8747 drain_zonestat(zone, pset); 8748 } 8749 free_percpu(zone->pageset); 8750 zone->pageset = &boot_pageset; 8751 } 8752 local_irq_restore(flags); 8753 } 8754 8755 #ifdef CONFIG_MEMORY_HOTREMOVE 8756 /* 8757 * All pages in the range must be in a single zone and isolated 8758 * before calling this. 8759 */ 8760 unsigned long 8761 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn) 8762 { 8763 struct page *page; 8764 struct zone *zone; 8765 unsigned int order; 8766 unsigned long pfn; 8767 unsigned long flags; 8768 unsigned long offlined_pages = 0; 8769 8770 /* find the first valid pfn */ 8771 for (pfn = start_pfn; pfn < end_pfn; pfn++) 8772 if (pfn_valid(pfn)) 8773 break; 8774 if (pfn == end_pfn) 8775 return offlined_pages; 8776 8777 offline_mem_sections(pfn, end_pfn); 8778 zone = page_zone(pfn_to_page(pfn)); 8779 spin_lock_irqsave(&zone->lock, flags); 8780 pfn = start_pfn; 8781 while (pfn < end_pfn) { 8782 if (!pfn_valid(pfn)) { 8783 pfn++; 8784 continue; 8785 } 8786 page = pfn_to_page(pfn); 8787 /* 8788 * The HWPoisoned page may be not in buddy system, and 8789 * page_count() is not 0. 8790 */ 8791 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) { 8792 pfn++; 8793 offlined_pages++; 8794 continue; 8795 } 8796 8797 BUG_ON(page_count(page)); 8798 BUG_ON(!PageBuddy(page)); 8799 order = page_order(page); 8800 offlined_pages += 1 << order; 8801 del_page_from_free_list(page, zone, order); 8802 pfn += (1 << order); 8803 } 8804 spin_unlock_irqrestore(&zone->lock, flags); 8805 8806 return offlined_pages; 8807 } 8808 #endif 8809 8810 bool is_free_buddy_page(struct page *page) 8811 { 8812 struct zone *zone = page_zone(page); 8813 unsigned long pfn = page_to_pfn(page); 8814 unsigned long flags; 8815 unsigned int order; 8816 8817 spin_lock_irqsave(&zone->lock, flags); 8818 for (order = 0; order < MAX_ORDER; order++) { 8819 struct page *page_head = page - (pfn & ((1 << order) - 1)); 8820 8821 if (PageBuddy(page_head) && page_order(page_head) >= order) 8822 break; 8823 } 8824 spin_unlock_irqrestore(&zone->lock, flags); 8825 8826 return order < MAX_ORDER; 8827 } 8828 8829 #ifdef CONFIG_MEMORY_FAILURE 8830 /* 8831 * Set PG_hwpoison flag if a given page is confirmed to be a free page. This 8832 * test is performed under the zone lock to prevent a race against page 8833 * allocation. 8834 */ 8835 bool set_hwpoison_free_buddy_page(struct page *page) 8836 { 8837 struct zone *zone = page_zone(page); 8838 unsigned long pfn = page_to_pfn(page); 8839 unsigned long flags; 8840 unsigned int order; 8841 bool hwpoisoned = false; 8842 8843 spin_lock_irqsave(&zone->lock, flags); 8844 for (order = 0; order < MAX_ORDER; order++) { 8845 struct page *page_head = page - (pfn & ((1 << order) - 1)); 8846 8847 if (PageBuddy(page_head) && page_order(page_head) >= order) { 8848 if (!TestSetPageHWPoison(page)) 8849 hwpoisoned = true; 8850 break; 8851 } 8852 } 8853 spin_unlock_irqrestore(&zone->lock, flags); 8854 8855 return hwpoisoned; 8856 } 8857 #endif 8858