1 /* 2 * linux/mm/page_alloc.c 3 * 4 * Manages the free list, the system allocates free pages here. 5 * Note that kmalloc() lives in slab.c 6 * 7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 8 * Swap reorganised 29.12.95, Stephen Tweedie 9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999 10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999 11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999 12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000 13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002 14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton) 15 */ 16 17 #include <linux/config.h> 18 #include <linux/stddef.h> 19 #include <linux/mm.h> 20 #include <linux/swap.h> 21 #include <linux/interrupt.h> 22 #include <linux/pagemap.h> 23 #include <linux/bootmem.h> 24 #include <linux/compiler.h> 25 #include <linux/kernel.h> 26 #include <linux/module.h> 27 #include <linux/suspend.h> 28 #include <linux/pagevec.h> 29 #include <linux/blkdev.h> 30 #include <linux/slab.h> 31 #include <linux/notifier.h> 32 #include <linux/topology.h> 33 #include <linux/sysctl.h> 34 #include <linux/cpu.h> 35 #include <linux/cpuset.h> 36 #include <linux/memory_hotplug.h> 37 #include <linux/nodemask.h> 38 #include <linux/vmalloc.h> 39 #include <linux/mempolicy.h> 40 41 #include <asm/tlbflush.h> 42 #include "internal.h" 43 44 /* 45 * MCD - HACK: Find somewhere to initialize this EARLY, or make this 46 * initializer cleaner 47 */ 48 nodemask_t node_online_map __read_mostly = { { [0] = 1UL } }; 49 EXPORT_SYMBOL(node_online_map); 50 nodemask_t node_possible_map __read_mostly = NODE_MASK_ALL; 51 EXPORT_SYMBOL(node_possible_map); 52 struct pglist_data *pgdat_list __read_mostly; 53 unsigned long totalram_pages __read_mostly; 54 unsigned long totalhigh_pages __read_mostly; 55 long nr_swap_pages; 56 int percpu_pagelist_fraction; 57 58 static void fastcall free_hot_cold_page(struct page *page, int cold); 59 static void __free_pages_ok(struct page *page, unsigned int order); 60 61 /* 62 * results with 256, 32 in the lowmem_reserve sysctl: 63 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high) 64 * 1G machine -> (16M dma, 784M normal, 224M high) 65 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA 66 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL 67 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA 68 * 69 * TBD: should special case ZONE_DMA32 machines here - in those we normally 70 * don't need any ZONE_NORMAL reservation 71 */ 72 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = { 256, 256, 32 }; 73 74 EXPORT_SYMBOL(totalram_pages); 75 76 /* 77 * Used by page_zone() to look up the address of the struct zone whose 78 * id is encoded in the upper bits of page->flags 79 */ 80 struct zone *zone_table[1 << ZONETABLE_SHIFT] __read_mostly; 81 EXPORT_SYMBOL(zone_table); 82 83 static char *zone_names[MAX_NR_ZONES] = { "DMA", "DMA32", "Normal", "HighMem" }; 84 int min_free_kbytes = 1024; 85 86 unsigned long __initdata nr_kernel_pages; 87 unsigned long __initdata nr_all_pages; 88 89 #ifdef CONFIG_DEBUG_VM 90 static int page_outside_zone_boundaries(struct zone *zone, struct page *page) 91 { 92 int ret = 0; 93 unsigned seq; 94 unsigned long pfn = page_to_pfn(page); 95 96 do { 97 seq = zone_span_seqbegin(zone); 98 if (pfn >= zone->zone_start_pfn + zone->spanned_pages) 99 ret = 1; 100 else if (pfn < zone->zone_start_pfn) 101 ret = 1; 102 } while (zone_span_seqretry(zone, seq)); 103 104 return ret; 105 } 106 107 static int page_is_consistent(struct zone *zone, struct page *page) 108 { 109 #ifdef CONFIG_HOLES_IN_ZONE 110 if (!pfn_valid(page_to_pfn(page))) 111 return 0; 112 #endif 113 if (zone != page_zone(page)) 114 return 0; 115 116 return 1; 117 } 118 /* 119 * Temporary debugging check for pages not lying within a given zone. 120 */ 121 static int bad_range(struct zone *zone, struct page *page) 122 { 123 if (page_outside_zone_boundaries(zone, page)) 124 return 1; 125 if (!page_is_consistent(zone, page)) 126 return 1; 127 128 return 0; 129 } 130 131 #else 132 static inline int bad_range(struct zone *zone, struct page *page) 133 { 134 return 0; 135 } 136 #endif 137 138 static void bad_page(struct page *page) 139 { 140 printk(KERN_EMERG "Bad page state in process '%s'\n" 141 KERN_EMERG "page:%p flags:0x%0*lx mapping:%p mapcount:%d count:%d\n" 142 KERN_EMERG "Trying to fix it up, but a reboot is needed\n" 143 KERN_EMERG "Backtrace:\n", 144 current->comm, page, (int)(2*sizeof(unsigned long)), 145 (unsigned long)page->flags, page->mapping, 146 page_mapcount(page), page_count(page)); 147 dump_stack(); 148 page->flags &= ~(1 << PG_lru | 149 1 << PG_private | 150 1 << PG_locked | 151 1 << PG_active | 152 1 << PG_dirty | 153 1 << PG_reclaim | 154 1 << PG_slab | 155 1 << PG_swapcache | 156 1 << PG_writeback ); 157 set_page_count(page, 0); 158 reset_page_mapcount(page); 159 page->mapping = NULL; 160 add_taint(TAINT_BAD_PAGE); 161 } 162 163 /* 164 * Higher-order pages are called "compound pages". They are structured thusly: 165 * 166 * The first PAGE_SIZE page is called the "head page". 167 * 168 * The remaining PAGE_SIZE pages are called "tail pages". 169 * 170 * All pages have PG_compound set. All pages have their ->private pointing at 171 * the head page (even the head page has this). 172 * 173 * The first tail page's ->lru.next holds the address of the compound page's 174 * put_page() function. Its ->lru.prev holds the order of allocation. 175 * This usage means that zero-order pages may not be compound. 176 */ 177 178 static void free_compound_page(struct page *page) 179 { 180 __free_pages_ok(page, (unsigned long)page[1].lru.prev); 181 } 182 183 static void prep_compound_page(struct page *page, unsigned long order) 184 { 185 int i; 186 int nr_pages = 1 << order; 187 188 page[1].lru.next = (void *)free_compound_page; /* set dtor */ 189 page[1].lru.prev = (void *)order; 190 for (i = 0; i < nr_pages; i++) { 191 struct page *p = page + i; 192 193 SetPageCompound(p); 194 set_page_private(p, (unsigned long)page); 195 } 196 } 197 198 static void destroy_compound_page(struct page *page, unsigned long order) 199 { 200 int i; 201 int nr_pages = 1 << order; 202 203 if (unlikely((unsigned long)page[1].lru.prev != order)) 204 bad_page(page); 205 206 for (i = 0; i < nr_pages; i++) { 207 struct page *p = page + i; 208 209 if (unlikely(!PageCompound(p) | 210 (page_private(p) != (unsigned long)page))) 211 bad_page(page); 212 ClearPageCompound(p); 213 } 214 } 215 216 /* 217 * function for dealing with page's order in buddy system. 218 * zone->lock is already acquired when we use these. 219 * So, we don't need atomic page->flags operations here. 220 */ 221 static inline unsigned long page_order(struct page *page) { 222 return page_private(page); 223 } 224 225 static inline void set_page_order(struct page *page, int order) { 226 set_page_private(page, order); 227 __SetPagePrivate(page); 228 } 229 230 static inline void rmv_page_order(struct page *page) 231 { 232 __ClearPagePrivate(page); 233 set_page_private(page, 0); 234 } 235 236 /* 237 * Locate the struct page for both the matching buddy in our 238 * pair (buddy1) and the combined O(n+1) page they form (page). 239 * 240 * 1) Any buddy B1 will have an order O twin B2 which satisfies 241 * the following equation: 242 * B2 = B1 ^ (1 << O) 243 * For example, if the starting buddy (buddy2) is #8 its order 244 * 1 buddy is #10: 245 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10 246 * 247 * 2) Any buddy B will have an order O+1 parent P which 248 * satisfies the following equation: 249 * P = B & ~(1 << O) 250 * 251 * Assumption: *_mem_map is contigious at least up to MAX_ORDER 252 */ 253 static inline struct page * 254 __page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order) 255 { 256 unsigned long buddy_idx = page_idx ^ (1 << order); 257 258 return page + (buddy_idx - page_idx); 259 } 260 261 static inline unsigned long 262 __find_combined_index(unsigned long page_idx, unsigned int order) 263 { 264 return (page_idx & ~(1 << order)); 265 } 266 267 /* 268 * This function checks whether a page is free && is the buddy 269 * we can do coalesce a page and its buddy if 270 * (a) the buddy is not in a hole && 271 * (b) the buddy is free && 272 * (c) the buddy is on the buddy system && 273 * (d) a page and its buddy have the same order. 274 * for recording page's order, we use page_private(page) and PG_private. 275 * 276 */ 277 static inline int page_is_buddy(struct page *page, int order) 278 { 279 #ifdef CONFIG_HOLES_IN_ZONE 280 if (!pfn_valid(page_to_pfn(page))) 281 return 0; 282 #endif 283 284 if (PagePrivate(page) && 285 (page_order(page) == order) && 286 page_count(page) == 0) 287 return 1; 288 return 0; 289 } 290 291 /* 292 * Freeing function for a buddy system allocator. 293 * 294 * The concept of a buddy system is to maintain direct-mapped table 295 * (containing bit values) for memory blocks of various "orders". 296 * The bottom level table contains the map for the smallest allocatable 297 * units of memory (here, pages), and each level above it describes 298 * pairs of units from the levels below, hence, "buddies". 299 * At a high level, all that happens here is marking the table entry 300 * at the bottom level available, and propagating the changes upward 301 * as necessary, plus some accounting needed to play nicely with other 302 * parts of the VM system. 303 * At each level, we keep a list of pages, which are heads of continuous 304 * free pages of length of (1 << order) and marked with PG_Private.Page's 305 * order is recorded in page_private(page) field. 306 * So when we are allocating or freeing one, we can derive the state of the 307 * other. That is, if we allocate a small block, and both were 308 * free, the remainder of the region must be split into blocks. 309 * If a block is freed, and its buddy is also free, then this 310 * triggers coalescing into a block of larger size. 311 * 312 * -- wli 313 */ 314 315 static inline void __free_one_page(struct page *page, 316 struct zone *zone, unsigned int order) 317 { 318 unsigned long page_idx; 319 int order_size = 1 << order; 320 321 if (unlikely(PageCompound(page))) 322 destroy_compound_page(page, order); 323 324 page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1); 325 326 BUG_ON(page_idx & (order_size - 1)); 327 BUG_ON(bad_range(zone, page)); 328 329 zone->free_pages += order_size; 330 while (order < MAX_ORDER-1) { 331 unsigned long combined_idx; 332 struct free_area *area; 333 struct page *buddy; 334 335 buddy = __page_find_buddy(page, page_idx, order); 336 if (!page_is_buddy(buddy, order)) 337 break; /* Move the buddy up one level. */ 338 339 list_del(&buddy->lru); 340 area = zone->free_area + order; 341 area->nr_free--; 342 rmv_page_order(buddy); 343 combined_idx = __find_combined_index(page_idx, order); 344 page = page + (combined_idx - page_idx); 345 page_idx = combined_idx; 346 order++; 347 } 348 set_page_order(page, order); 349 list_add(&page->lru, &zone->free_area[order].free_list); 350 zone->free_area[order].nr_free++; 351 } 352 353 static inline int free_pages_check(struct page *page) 354 { 355 if (unlikely(page_mapcount(page) | 356 (page->mapping != NULL) | 357 (page_count(page) != 0) | 358 (page->flags & ( 359 1 << PG_lru | 360 1 << PG_private | 361 1 << PG_locked | 362 1 << PG_active | 363 1 << PG_reclaim | 364 1 << PG_slab | 365 1 << PG_swapcache | 366 1 << PG_writeback | 367 1 << PG_reserved )))) 368 bad_page(page); 369 if (PageDirty(page)) 370 __ClearPageDirty(page); 371 /* 372 * For now, we report if PG_reserved was found set, but do not 373 * clear it, and do not free the page. But we shall soon need 374 * to do more, for when the ZERO_PAGE count wraps negative. 375 */ 376 return PageReserved(page); 377 } 378 379 /* 380 * Frees a list of pages. 381 * Assumes all pages on list are in same zone, and of same order. 382 * count is the number of pages to free. 383 * 384 * If the zone was previously in an "all pages pinned" state then look to 385 * see if this freeing clears that state. 386 * 387 * And clear the zone's pages_scanned counter, to hold off the "all pages are 388 * pinned" detection logic. 389 */ 390 static void free_pages_bulk(struct zone *zone, int count, 391 struct list_head *list, int order) 392 { 393 spin_lock(&zone->lock); 394 zone->all_unreclaimable = 0; 395 zone->pages_scanned = 0; 396 while (count--) { 397 struct page *page; 398 399 BUG_ON(list_empty(list)); 400 page = list_entry(list->prev, struct page, lru); 401 /* have to delete it as __free_one_page list manipulates */ 402 list_del(&page->lru); 403 __free_one_page(page, zone, order); 404 } 405 spin_unlock(&zone->lock); 406 } 407 408 static void free_one_page(struct zone *zone, struct page *page, int order) 409 { 410 LIST_HEAD(list); 411 list_add(&page->lru, &list); 412 free_pages_bulk(zone, 1, &list, order); 413 } 414 415 static void __free_pages_ok(struct page *page, unsigned int order) 416 { 417 unsigned long flags; 418 int i; 419 int reserved = 0; 420 421 arch_free_page(page, order); 422 if (!PageHighMem(page)) 423 mutex_debug_check_no_locks_freed(page_address(page), 424 PAGE_SIZE<<order); 425 426 #ifndef CONFIG_MMU 427 for (i = 1 ; i < (1 << order) ; ++i) 428 __put_page(page + i); 429 #endif 430 431 for (i = 0 ; i < (1 << order) ; ++i) 432 reserved += free_pages_check(page + i); 433 if (reserved) 434 return; 435 436 kernel_map_pages(page, 1 << order, 0); 437 local_irq_save(flags); 438 __mod_page_state(pgfree, 1 << order); 439 free_one_page(page_zone(page), page, order); 440 local_irq_restore(flags); 441 } 442 443 /* 444 * permit the bootmem allocator to evade page validation on high-order frees 445 */ 446 void fastcall __init __free_pages_bootmem(struct page *page, unsigned int order) 447 { 448 if (order == 0) { 449 __ClearPageReserved(page); 450 set_page_count(page, 0); 451 452 free_hot_cold_page(page, 0); 453 } else { 454 LIST_HEAD(list); 455 int loop; 456 457 for (loop = 0; loop < BITS_PER_LONG; loop++) { 458 struct page *p = &page[loop]; 459 460 if (loop + 16 < BITS_PER_LONG) 461 prefetchw(p + 16); 462 __ClearPageReserved(p); 463 set_page_count(p, 0); 464 } 465 466 arch_free_page(page, order); 467 468 mod_page_state(pgfree, 1 << order); 469 470 list_add(&page->lru, &list); 471 kernel_map_pages(page, 1 << order, 0); 472 free_pages_bulk(page_zone(page), 1, &list, order); 473 } 474 } 475 476 477 /* 478 * The order of subdivision here is critical for the IO subsystem. 479 * Please do not alter this order without good reasons and regression 480 * testing. Specifically, as large blocks of memory are subdivided, 481 * the order in which smaller blocks are delivered depends on the order 482 * they're subdivided in this function. This is the primary factor 483 * influencing the order in which pages are delivered to the IO 484 * subsystem according to empirical testing, and this is also justified 485 * by considering the behavior of a buddy system containing a single 486 * large block of memory acted on by a series of small allocations. 487 * This behavior is a critical factor in sglist merging's success. 488 * 489 * -- wli 490 */ 491 static inline void expand(struct zone *zone, struct page *page, 492 int low, int high, struct free_area *area) 493 { 494 unsigned long size = 1 << high; 495 496 while (high > low) { 497 area--; 498 high--; 499 size >>= 1; 500 BUG_ON(bad_range(zone, &page[size])); 501 list_add(&page[size].lru, &area->free_list); 502 area->nr_free++; 503 set_page_order(&page[size], high); 504 } 505 } 506 507 /* 508 * This page is about to be returned from the page allocator 509 */ 510 static int prep_new_page(struct page *page, int order) 511 { 512 if (unlikely(page_mapcount(page) | 513 (page->mapping != NULL) | 514 (page_count(page) != 0) | 515 (page->flags & ( 516 1 << PG_lru | 517 1 << PG_private | 518 1 << PG_locked | 519 1 << PG_active | 520 1 << PG_dirty | 521 1 << PG_reclaim | 522 1 << PG_slab | 523 1 << PG_swapcache | 524 1 << PG_writeback | 525 1 << PG_reserved )))) 526 bad_page(page); 527 528 /* 529 * For now, we report if PG_reserved was found set, but do not 530 * clear it, and do not allocate the page: as a safety net. 531 */ 532 if (PageReserved(page)) 533 return 1; 534 535 page->flags &= ~(1 << PG_uptodate | 1 << PG_error | 536 1 << PG_referenced | 1 << PG_arch_1 | 537 1 << PG_checked | 1 << PG_mappedtodisk); 538 set_page_private(page, 0); 539 set_page_refs(page, order); 540 kernel_map_pages(page, 1 << order, 1); 541 return 0; 542 } 543 544 /* 545 * Do the hard work of removing an element from the buddy allocator. 546 * Call me with the zone->lock already held. 547 */ 548 static struct page *__rmqueue(struct zone *zone, unsigned int order) 549 { 550 struct free_area * area; 551 unsigned int current_order; 552 struct page *page; 553 554 for (current_order = order; current_order < MAX_ORDER; ++current_order) { 555 area = zone->free_area + current_order; 556 if (list_empty(&area->free_list)) 557 continue; 558 559 page = list_entry(area->free_list.next, struct page, lru); 560 list_del(&page->lru); 561 rmv_page_order(page); 562 area->nr_free--; 563 zone->free_pages -= 1UL << order; 564 expand(zone, page, order, current_order, area); 565 return page; 566 } 567 568 return NULL; 569 } 570 571 /* 572 * Obtain a specified number of elements from the buddy allocator, all under 573 * a single hold of the lock, for efficiency. Add them to the supplied list. 574 * Returns the number of new pages which were placed at *list. 575 */ 576 static int rmqueue_bulk(struct zone *zone, unsigned int order, 577 unsigned long count, struct list_head *list) 578 { 579 int i; 580 581 spin_lock(&zone->lock); 582 for (i = 0; i < count; ++i) { 583 struct page *page = __rmqueue(zone, order); 584 if (unlikely(page == NULL)) 585 break; 586 list_add_tail(&page->lru, list); 587 } 588 spin_unlock(&zone->lock); 589 return i; 590 } 591 592 #ifdef CONFIG_NUMA 593 /* 594 * Called from the slab reaper to drain pagesets on a particular node that 595 * belong to the currently executing processor. 596 */ 597 void drain_node_pages(int nodeid) 598 { 599 int i, z; 600 unsigned long flags; 601 602 local_irq_save(flags); 603 for (z = 0; z < MAX_NR_ZONES; z++) { 604 struct zone *zone = NODE_DATA(nodeid)->node_zones + z; 605 struct per_cpu_pageset *pset; 606 607 pset = zone_pcp(zone, smp_processor_id()); 608 for (i = 0; i < ARRAY_SIZE(pset->pcp); i++) { 609 struct per_cpu_pages *pcp; 610 611 pcp = &pset->pcp[i]; 612 free_pages_bulk(zone, pcp->count, &pcp->list, 0); 613 pcp->count = 0; 614 } 615 } 616 local_irq_restore(flags); 617 } 618 #endif 619 620 #if defined(CONFIG_PM) || defined(CONFIG_HOTPLUG_CPU) 621 static void __drain_pages(unsigned int cpu) 622 { 623 unsigned long flags; 624 struct zone *zone; 625 int i; 626 627 for_each_zone(zone) { 628 struct per_cpu_pageset *pset; 629 630 pset = zone_pcp(zone, cpu); 631 for (i = 0; i < ARRAY_SIZE(pset->pcp); i++) { 632 struct per_cpu_pages *pcp; 633 634 pcp = &pset->pcp[i]; 635 local_irq_save(flags); 636 free_pages_bulk(zone, pcp->count, &pcp->list, 0); 637 pcp->count = 0; 638 local_irq_restore(flags); 639 } 640 } 641 } 642 #endif /* CONFIG_PM || CONFIG_HOTPLUG_CPU */ 643 644 #ifdef CONFIG_PM 645 646 void mark_free_pages(struct zone *zone) 647 { 648 unsigned long zone_pfn, flags; 649 int order; 650 struct list_head *curr; 651 652 if (!zone->spanned_pages) 653 return; 654 655 spin_lock_irqsave(&zone->lock, flags); 656 for (zone_pfn = 0; zone_pfn < zone->spanned_pages; ++zone_pfn) 657 ClearPageNosaveFree(pfn_to_page(zone_pfn + zone->zone_start_pfn)); 658 659 for (order = MAX_ORDER - 1; order >= 0; --order) 660 list_for_each(curr, &zone->free_area[order].free_list) { 661 unsigned long start_pfn, i; 662 663 start_pfn = page_to_pfn(list_entry(curr, struct page, lru)); 664 665 for (i=0; i < (1<<order); i++) 666 SetPageNosaveFree(pfn_to_page(start_pfn+i)); 667 } 668 spin_unlock_irqrestore(&zone->lock, flags); 669 } 670 671 /* 672 * Spill all of this CPU's per-cpu pages back into the buddy allocator. 673 */ 674 void drain_local_pages(void) 675 { 676 unsigned long flags; 677 678 local_irq_save(flags); 679 __drain_pages(smp_processor_id()); 680 local_irq_restore(flags); 681 } 682 #endif /* CONFIG_PM */ 683 684 static void zone_statistics(struct zonelist *zonelist, struct zone *z, int cpu) 685 { 686 #ifdef CONFIG_NUMA 687 pg_data_t *pg = z->zone_pgdat; 688 pg_data_t *orig = zonelist->zones[0]->zone_pgdat; 689 struct per_cpu_pageset *p; 690 691 p = zone_pcp(z, cpu); 692 if (pg == orig) { 693 p->numa_hit++; 694 } else { 695 p->numa_miss++; 696 zone_pcp(zonelist->zones[0], cpu)->numa_foreign++; 697 } 698 if (pg == NODE_DATA(numa_node_id())) 699 p->local_node++; 700 else 701 p->other_node++; 702 #endif 703 } 704 705 /* 706 * Free a 0-order page 707 */ 708 static void fastcall free_hot_cold_page(struct page *page, int cold) 709 { 710 struct zone *zone = page_zone(page); 711 struct per_cpu_pages *pcp; 712 unsigned long flags; 713 714 arch_free_page(page, 0); 715 716 if (PageAnon(page)) 717 page->mapping = NULL; 718 if (free_pages_check(page)) 719 return; 720 721 kernel_map_pages(page, 1, 0); 722 723 pcp = &zone_pcp(zone, get_cpu())->pcp[cold]; 724 local_irq_save(flags); 725 __inc_page_state(pgfree); 726 list_add(&page->lru, &pcp->list); 727 pcp->count++; 728 if (pcp->count >= pcp->high) { 729 free_pages_bulk(zone, pcp->batch, &pcp->list, 0); 730 pcp->count -= pcp->batch; 731 } 732 local_irq_restore(flags); 733 put_cpu(); 734 } 735 736 void fastcall free_hot_page(struct page *page) 737 { 738 free_hot_cold_page(page, 0); 739 } 740 741 void fastcall free_cold_page(struct page *page) 742 { 743 free_hot_cold_page(page, 1); 744 } 745 746 static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags) 747 { 748 int i; 749 750 BUG_ON((gfp_flags & (__GFP_WAIT | __GFP_HIGHMEM)) == __GFP_HIGHMEM); 751 for(i = 0; i < (1 << order); i++) 752 clear_highpage(page + i); 753 } 754 755 /* 756 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But 757 * we cheat by calling it from here, in the order > 0 path. Saves a branch 758 * or two. 759 */ 760 static struct page *buffered_rmqueue(struct zonelist *zonelist, 761 struct zone *zone, int order, gfp_t gfp_flags) 762 { 763 unsigned long flags; 764 struct page *page; 765 int cold = !!(gfp_flags & __GFP_COLD); 766 int cpu; 767 768 again: 769 cpu = get_cpu(); 770 if (likely(order == 0)) { 771 struct per_cpu_pages *pcp; 772 773 pcp = &zone_pcp(zone, cpu)->pcp[cold]; 774 local_irq_save(flags); 775 if (!pcp->count) { 776 pcp->count += rmqueue_bulk(zone, 0, 777 pcp->batch, &pcp->list); 778 if (unlikely(!pcp->count)) 779 goto failed; 780 } 781 page = list_entry(pcp->list.next, struct page, lru); 782 list_del(&page->lru); 783 pcp->count--; 784 } else { 785 spin_lock_irqsave(&zone->lock, flags); 786 page = __rmqueue(zone, order); 787 spin_unlock(&zone->lock); 788 if (!page) 789 goto failed; 790 } 791 792 __mod_page_state_zone(zone, pgalloc, 1 << order); 793 zone_statistics(zonelist, zone, cpu); 794 local_irq_restore(flags); 795 put_cpu(); 796 797 BUG_ON(bad_range(zone, page)); 798 if (prep_new_page(page, order)) 799 goto again; 800 801 if (gfp_flags & __GFP_ZERO) 802 prep_zero_page(page, order, gfp_flags); 803 804 if (order && (gfp_flags & __GFP_COMP)) 805 prep_compound_page(page, order); 806 return page; 807 808 failed: 809 local_irq_restore(flags); 810 put_cpu(); 811 return NULL; 812 } 813 814 #define ALLOC_NO_WATERMARKS 0x01 /* don't check watermarks at all */ 815 #define ALLOC_WMARK_MIN 0x02 /* use pages_min watermark */ 816 #define ALLOC_WMARK_LOW 0x04 /* use pages_low watermark */ 817 #define ALLOC_WMARK_HIGH 0x08 /* use pages_high watermark */ 818 #define ALLOC_HARDER 0x10 /* try to alloc harder */ 819 #define ALLOC_HIGH 0x20 /* __GFP_HIGH set */ 820 #define ALLOC_CPUSET 0x40 /* check for correct cpuset */ 821 822 /* 823 * Return 1 if free pages are above 'mark'. This takes into account the order 824 * of the allocation. 825 */ 826 int zone_watermark_ok(struct zone *z, int order, unsigned long mark, 827 int classzone_idx, int alloc_flags) 828 { 829 /* free_pages my go negative - that's OK */ 830 long min = mark, free_pages = z->free_pages - (1 << order) + 1; 831 int o; 832 833 if (alloc_flags & ALLOC_HIGH) 834 min -= min / 2; 835 if (alloc_flags & ALLOC_HARDER) 836 min -= min / 4; 837 838 if (free_pages <= min + z->lowmem_reserve[classzone_idx]) 839 return 0; 840 for (o = 0; o < order; o++) { 841 /* At the next order, this order's pages become unavailable */ 842 free_pages -= z->free_area[o].nr_free << o; 843 844 /* Require fewer higher order pages to be free */ 845 min >>= 1; 846 847 if (free_pages <= min) 848 return 0; 849 } 850 return 1; 851 } 852 853 /* 854 * get_page_from_freeliest goes through the zonelist trying to allocate 855 * a page. 856 */ 857 static struct page * 858 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, 859 struct zonelist *zonelist, int alloc_flags) 860 { 861 struct zone **z = zonelist->zones; 862 struct page *page = NULL; 863 int classzone_idx = zone_idx(*z); 864 865 /* 866 * Go through the zonelist once, looking for a zone with enough free. 867 * See also cpuset_zone_allowed() comment in kernel/cpuset.c. 868 */ 869 do { 870 if ((alloc_flags & ALLOC_CPUSET) && 871 !cpuset_zone_allowed(*z, gfp_mask)) 872 continue; 873 874 if (!(alloc_flags & ALLOC_NO_WATERMARKS)) { 875 unsigned long mark; 876 if (alloc_flags & ALLOC_WMARK_MIN) 877 mark = (*z)->pages_min; 878 else if (alloc_flags & ALLOC_WMARK_LOW) 879 mark = (*z)->pages_low; 880 else 881 mark = (*z)->pages_high; 882 if (!zone_watermark_ok(*z, order, mark, 883 classzone_idx, alloc_flags)) 884 if (!zone_reclaim_mode || 885 !zone_reclaim(*z, gfp_mask, order)) 886 continue; 887 } 888 889 page = buffered_rmqueue(zonelist, *z, order, gfp_mask); 890 if (page) { 891 break; 892 } 893 } while (*(++z) != NULL); 894 return page; 895 } 896 897 /* 898 * This is the 'heart' of the zoned buddy allocator. 899 */ 900 struct page * fastcall 901 __alloc_pages(gfp_t gfp_mask, unsigned int order, 902 struct zonelist *zonelist) 903 { 904 const gfp_t wait = gfp_mask & __GFP_WAIT; 905 struct zone **z; 906 struct page *page; 907 struct reclaim_state reclaim_state; 908 struct task_struct *p = current; 909 int do_retry; 910 int alloc_flags; 911 int did_some_progress; 912 913 might_sleep_if(wait); 914 915 restart: 916 z = zonelist->zones; /* the list of zones suitable for gfp_mask */ 917 918 if (unlikely(*z == NULL)) { 919 /* Should this ever happen?? */ 920 return NULL; 921 } 922 923 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, order, 924 zonelist, ALLOC_WMARK_LOW|ALLOC_CPUSET); 925 if (page) 926 goto got_pg; 927 928 do { 929 wakeup_kswapd(*z, order); 930 } while (*(++z)); 931 932 /* 933 * OK, we're below the kswapd watermark and have kicked background 934 * reclaim. Now things get more complex, so set up alloc_flags according 935 * to how we want to proceed. 936 * 937 * The caller may dip into page reserves a bit more if the caller 938 * cannot run direct reclaim, or if the caller has realtime scheduling 939 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will 940 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH). 941 */ 942 alloc_flags = ALLOC_WMARK_MIN; 943 if ((unlikely(rt_task(p)) && !in_interrupt()) || !wait) 944 alloc_flags |= ALLOC_HARDER; 945 if (gfp_mask & __GFP_HIGH) 946 alloc_flags |= ALLOC_HIGH; 947 alloc_flags |= ALLOC_CPUSET; 948 949 /* 950 * Go through the zonelist again. Let __GFP_HIGH and allocations 951 * coming from realtime tasks go deeper into reserves. 952 * 953 * This is the last chance, in general, before the goto nopage. 954 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc. 955 * See also cpuset_zone_allowed() comment in kernel/cpuset.c. 956 */ 957 page = get_page_from_freelist(gfp_mask, order, zonelist, alloc_flags); 958 if (page) 959 goto got_pg; 960 961 /* This allocation should allow future memory freeing. */ 962 963 if (((p->flags & PF_MEMALLOC) || unlikely(test_thread_flag(TIF_MEMDIE))) 964 && !in_interrupt()) { 965 if (!(gfp_mask & __GFP_NOMEMALLOC)) { 966 nofail_alloc: 967 /* go through the zonelist yet again, ignoring mins */ 968 page = get_page_from_freelist(gfp_mask, order, 969 zonelist, ALLOC_NO_WATERMARKS); 970 if (page) 971 goto got_pg; 972 if (gfp_mask & __GFP_NOFAIL) { 973 blk_congestion_wait(WRITE, HZ/50); 974 goto nofail_alloc; 975 } 976 } 977 goto nopage; 978 } 979 980 /* Atomic allocations - we can't balance anything */ 981 if (!wait) 982 goto nopage; 983 984 rebalance: 985 cond_resched(); 986 987 /* We now go into synchronous reclaim */ 988 cpuset_memory_pressure_bump(); 989 p->flags |= PF_MEMALLOC; 990 reclaim_state.reclaimed_slab = 0; 991 p->reclaim_state = &reclaim_state; 992 993 did_some_progress = try_to_free_pages(zonelist->zones, gfp_mask); 994 995 p->reclaim_state = NULL; 996 p->flags &= ~PF_MEMALLOC; 997 998 cond_resched(); 999 1000 if (likely(did_some_progress)) { 1001 page = get_page_from_freelist(gfp_mask, order, 1002 zonelist, alloc_flags); 1003 if (page) 1004 goto got_pg; 1005 } else if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) { 1006 /* 1007 * Go through the zonelist yet one more time, keep 1008 * very high watermark here, this is only to catch 1009 * a parallel oom killing, we must fail if we're still 1010 * under heavy pressure. 1011 */ 1012 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, order, 1013 zonelist, ALLOC_WMARK_HIGH|ALLOC_CPUSET); 1014 if (page) 1015 goto got_pg; 1016 1017 out_of_memory(zonelist, gfp_mask, order); 1018 goto restart; 1019 } 1020 1021 /* 1022 * Don't let big-order allocations loop unless the caller explicitly 1023 * requests that. Wait for some write requests to complete then retry. 1024 * 1025 * In this implementation, __GFP_REPEAT means __GFP_NOFAIL for order 1026 * <= 3, but that may not be true in other implementations. 1027 */ 1028 do_retry = 0; 1029 if (!(gfp_mask & __GFP_NORETRY)) { 1030 if ((order <= 3) || (gfp_mask & __GFP_REPEAT)) 1031 do_retry = 1; 1032 if (gfp_mask & __GFP_NOFAIL) 1033 do_retry = 1; 1034 } 1035 if (do_retry) { 1036 blk_congestion_wait(WRITE, HZ/50); 1037 goto rebalance; 1038 } 1039 1040 nopage: 1041 if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) { 1042 printk(KERN_WARNING "%s: page allocation failure." 1043 " order:%d, mode:0x%x\n", 1044 p->comm, order, gfp_mask); 1045 dump_stack(); 1046 show_mem(); 1047 } 1048 got_pg: 1049 return page; 1050 } 1051 1052 EXPORT_SYMBOL(__alloc_pages); 1053 1054 /* 1055 * Common helper functions. 1056 */ 1057 fastcall unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order) 1058 { 1059 struct page * page; 1060 page = alloc_pages(gfp_mask, order); 1061 if (!page) 1062 return 0; 1063 return (unsigned long) page_address(page); 1064 } 1065 1066 EXPORT_SYMBOL(__get_free_pages); 1067 1068 fastcall unsigned long get_zeroed_page(gfp_t gfp_mask) 1069 { 1070 struct page * page; 1071 1072 /* 1073 * get_zeroed_page() returns a 32-bit address, which cannot represent 1074 * a highmem page 1075 */ 1076 BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0); 1077 1078 page = alloc_pages(gfp_mask | __GFP_ZERO, 0); 1079 if (page) 1080 return (unsigned long) page_address(page); 1081 return 0; 1082 } 1083 1084 EXPORT_SYMBOL(get_zeroed_page); 1085 1086 void __pagevec_free(struct pagevec *pvec) 1087 { 1088 int i = pagevec_count(pvec); 1089 1090 while (--i >= 0) 1091 free_hot_cold_page(pvec->pages[i], pvec->cold); 1092 } 1093 1094 fastcall void __free_pages(struct page *page, unsigned int order) 1095 { 1096 if (put_page_testzero(page)) { 1097 if (order == 0) 1098 free_hot_page(page); 1099 else 1100 __free_pages_ok(page, order); 1101 } 1102 } 1103 1104 EXPORT_SYMBOL(__free_pages); 1105 1106 fastcall void free_pages(unsigned long addr, unsigned int order) 1107 { 1108 if (addr != 0) { 1109 BUG_ON(!virt_addr_valid((void *)addr)); 1110 __free_pages(virt_to_page((void *)addr), order); 1111 } 1112 } 1113 1114 EXPORT_SYMBOL(free_pages); 1115 1116 /* 1117 * Total amount of free (allocatable) RAM: 1118 */ 1119 unsigned int nr_free_pages(void) 1120 { 1121 unsigned int sum = 0; 1122 struct zone *zone; 1123 1124 for_each_zone(zone) 1125 sum += zone->free_pages; 1126 1127 return sum; 1128 } 1129 1130 EXPORT_SYMBOL(nr_free_pages); 1131 1132 #ifdef CONFIG_NUMA 1133 unsigned int nr_free_pages_pgdat(pg_data_t *pgdat) 1134 { 1135 unsigned int i, sum = 0; 1136 1137 for (i = 0; i < MAX_NR_ZONES; i++) 1138 sum += pgdat->node_zones[i].free_pages; 1139 1140 return sum; 1141 } 1142 #endif 1143 1144 static unsigned int nr_free_zone_pages(int offset) 1145 { 1146 /* Just pick one node, since fallback list is circular */ 1147 pg_data_t *pgdat = NODE_DATA(numa_node_id()); 1148 unsigned int sum = 0; 1149 1150 struct zonelist *zonelist = pgdat->node_zonelists + offset; 1151 struct zone **zonep = zonelist->zones; 1152 struct zone *zone; 1153 1154 for (zone = *zonep++; zone; zone = *zonep++) { 1155 unsigned long size = zone->present_pages; 1156 unsigned long high = zone->pages_high; 1157 if (size > high) 1158 sum += size - high; 1159 } 1160 1161 return sum; 1162 } 1163 1164 /* 1165 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL 1166 */ 1167 unsigned int nr_free_buffer_pages(void) 1168 { 1169 return nr_free_zone_pages(gfp_zone(GFP_USER)); 1170 } 1171 1172 /* 1173 * Amount of free RAM allocatable within all zones 1174 */ 1175 unsigned int nr_free_pagecache_pages(void) 1176 { 1177 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER)); 1178 } 1179 1180 #ifdef CONFIG_HIGHMEM 1181 unsigned int nr_free_highpages (void) 1182 { 1183 pg_data_t *pgdat; 1184 unsigned int pages = 0; 1185 1186 for_each_pgdat(pgdat) 1187 pages += pgdat->node_zones[ZONE_HIGHMEM].free_pages; 1188 1189 return pages; 1190 } 1191 #endif 1192 1193 #ifdef CONFIG_NUMA 1194 static void show_node(struct zone *zone) 1195 { 1196 printk("Node %d ", zone->zone_pgdat->node_id); 1197 } 1198 #else 1199 #define show_node(zone) do { } while (0) 1200 #endif 1201 1202 /* 1203 * Accumulate the page_state information across all CPUs. 1204 * The result is unavoidably approximate - it can change 1205 * during and after execution of this function. 1206 */ 1207 static DEFINE_PER_CPU(struct page_state, page_states) = {0}; 1208 1209 atomic_t nr_pagecache = ATOMIC_INIT(0); 1210 EXPORT_SYMBOL(nr_pagecache); 1211 #ifdef CONFIG_SMP 1212 DEFINE_PER_CPU(long, nr_pagecache_local) = 0; 1213 #endif 1214 1215 static void __get_page_state(struct page_state *ret, int nr, cpumask_t *cpumask) 1216 { 1217 int cpu = 0; 1218 1219 memset(ret, 0, nr * sizeof(unsigned long)); 1220 cpus_and(*cpumask, *cpumask, cpu_online_map); 1221 1222 cpu = first_cpu(*cpumask); 1223 while (cpu < NR_CPUS) { 1224 unsigned long *in, *out, off; 1225 1226 if (!cpu_isset(cpu, *cpumask)) 1227 continue; 1228 1229 in = (unsigned long *)&per_cpu(page_states, cpu); 1230 1231 cpu = next_cpu(cpu, *cpumask); 1232 1233 if (likely(cpu < NR_CPUS)) 1234 prefetch(&per_cpu(page_states, cpu)); 1235 1236 out = (unsigned long *)ret; 1237 for (off = 0; off < nr; off++) 1238 *out++ += *in++; 1239 } 1240 } 1241 1242 void get_page_state_node(struct page_state *ret, int node) 1243 { 1244 int nr; 1245 cpumask_t mask = node_to_cpumask(node); 1246 1247 nr = offsetof(struct page_state, GET_PAGE_STATE_LAST); 1248 nr /= sizeof(unsigned long); 1249 1250 __get_page_state(ret, nr+1, &mask); 1251 } 1252 1253 void get_page_state(struct page_state *ret) 1254 { 1255 int nr; 1256 cpumask_t mask = CPU_MASK_ALL; 1257 1258 nr = offsetof(struct page_state, GET_PAGE_STATE_LAST); 1259 nr /= sizeof(unsigned long); 1260 1261 __get_page_state(ret, nr + 1, &mask); 1262 } 1263 1264 void get_full_page_state(struct page_state *ret) 1265 { 1266 cpumask_t mask = CPU_MASK_ALL; 1267 1268 __get_page_state(ret, sizeof(*ret) / sizeof(unsigned long), &mask); 1269 } 1270 1271 unsigned long read_page_state_offset(unsigned long offset) 1272 { 1273 unsigned long ret = 0; 1274 int cpu; 1275 1276 for_each_online_cpu(cpu) { 1277 unsigned long in; 1278 1279 in = (unsigned long)&per_cpu(page_states, cpu) + offset; 1280 ret += *((unsigned long *)in); 1281 } 1282 return ret; 1283 } 1284 1285 void __mod_page_state_offset(unsigned long offset, unsigned long delta) 1286 { 1287 void *ptr; 1288 1289 ptr = &__get_cpu_var(page_states); 1290 *(unsigned long *)(ptr + offset) += delta; 1291 } 1292 EXPORT_SYMBOL(__mod_page_state_offset); 1293 1294 void mod_page_state_offset(unsigned long offset, unsigned long delta) 1295 { 1296 unsigned long flags; 1297 void *ptr; 1298 1299 local_irq_save(flags); 1300 ptr = &__get_cpu_var(page_states); 1301 *(unsigned long *)(ptr + offset) += delta; 1302 local_irq_restore(flags); 1303 } 1304 EXPORT_SYMBOL(mod_page_state_offset); 1305 1306 void __get_zone_counts(unsigned long *active, unsigned long *inactive, 1307 unsigned long *free, struct pglist_data *pgdat) 1308 { 1309 struct zone *zones = pgdat->node_zones; 1310 int i; 1311 1312 *active = 0; 1313 *inactive = 0; 1314 *free = 0; 1315 for (i = 0; i < MAX_NR_ZONES; i++) { 1316 *active += zones[i].nr_active; 1317 *inactive += zones[i].nr_inactive; 1318 *free += zones[i].free_pages; 1319 } 1320 } 1321 1322 void get_zone_counts(unsigned long *active, 1323 unsigned long *inactive, unsigned long *free) 1324 { 1325 struct pglist_data *pgdat; 1326 1327 *active = 0; 1328 *inactive = 0; 1329 *free = 0; 1330 for_each_pgdat(pgdat) { 1331 unsigned long l, m, n; 1332 __get_zone_counts(&l, &m, &n, pgdat); 1333 *active += l; 1334 *inactive += m; 1335 *free += n; 1336 } 1337 } 1338 1339 void si_meminfo(struct sysinfo *val) 1340 { 1341 val->totalram = totalram_pages; 1342 val->sharedram = 0; 1343 val->freeram = nr_free_pages(); 1344 val->bufferram = nr_blockdev_pages(); 1345 #ifdef CONFIG_HIGHMEM 1346 val->totalhigh = totalhigh_pages; 1347 val->freehigh = nr_free_highpages(); 1348 #else 1349 val->totalhigh = 0; 1350 val->freehigh = 0; 1351 #endif 1352 val->mem_unit = PAGE_SIZE; 1353 } 1354 1355 EXPORT_SYMBOL(si_meminfo); 1356 1357 #ifdef CONFIG_NUMA 1358 void si_meminfo_node(struct sysinfo *val, int nid) 1359 { 1360 pg_data_t *pgdat = NODE_DATA(nid); 1361 1362 val->totalram = pgdat->node_present_pages; 1363 val->freeram = nr_free_pages_pgdat(pgdat); 1364 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages; 1365 val->freehigh = pgdat->node_zones[ZONE_HIGHMEM].free_pages; 1366 val->mem_unit = PAGE_SIZE; 1367 } 1368 #endif 1369 1370 #define K(x) ((x) << (PAGE_SHIFT-10)) 1371 1372 /* 1373 * Show free area list (used inside shift_scroll-lock stuff) 1374 * We also calculate the percentage fragmentation. We do this by counting the 1375 * memory on each free list with the exception of the first item on the list. 1376 */ 1377 void show_free_areas(void) 1378 { 1379 struct page_state ps; 1380 int cpu, temperature; 1381 unsigned long active; 1382 unsigned long inactive; 1383 unsigned long free; 1384 struct zone *zone; 1385 1386 for_each_zone(zone) { 1387 show_node(zone); 1388 printk("%s per-cpu:", zone->name); 1389 1390 if (!populated_zone(zone)) { 1391 printk(" empty\n"); 1392 continue; 1393 } else 1394 printk("\n"); 1395 1396 for_each_online_cpu(cpu) { 1397 struct per_cpu_pageset *pageset; 1398 1399 pageset = zone_pcp(zone, cpu); 1400 1401 for (temperature = 0; temperature < 2; temperature++) 1402 printk("cpu %d %s: high %d, batch %d used:%d\n", 1403 cpu, 1404 temperature ? "cold" : "hot", 1405 pageset->pcp[temperature].high, 1406 pageset->pcp[temperature].batch, 1407 pageset->pcp[temperature].count); 1408 } 1409 } 1410 1411 get_page_state(&ps); 1412 get_zone_counts(&active, &inactive, &free); 1413 1414 printk("Free pages: %11ukB (%ukB HighMem)\n", 1415 K(nr_free_pages()), 1416 K(nr_free_highpages())); 1417 1418 printk("Active:%lu inactive:%lu dirty:%lu writeback:%lu " 1419 "unstable:%lu free:%u slab:%lu mapped:%lu pagetables:%lu\n", 1420 active, 1421 inactive, 1422 ps.nr_dirty, 1423 ps.nr_writeback, 1424 ps.nr_unstable, 1425 nr_free_pages(), 1426 ps.nr_slab, 1427 ps.nr_mapped, 1428 ps.nr_page_table_pages); 1429 1430 for_each_zone(zone) { 1431 int i; 1432 1433 show_node(zone); 1434 printk("%s" 1435 " free:%lukB" 1436 " min:%lukB" 1437 " low:%lukB" 1438 " high:%lukB" 1439 " active:%lukB" 1440 " inactive:%lukB" 1441 " present:%lukB" 1442 " pages_scanned:%lu" 1443 " all_unreclaimable? %s" 1444 "\n", 1445 zone->name, 1446 K(zone->free_pages), 1447 K(zone->pages_min), 1448 K(zone->pages_low), 1449 K(zone->pages_high), 1450 K(zone->nr_active), 1451 K(zone->nr_inactive), 1452 K(zone->present_pages), 1453 zone->pages_scanned, 1454 (zone->all_unreclaimable ? "yes" : "no") 1455 ); 1456 printk("lowmem_reserve[]:"); 1457 for (i = 0; i < MAX_NR_ZONES; i++) 1458 printk(" %lu", zone->lowmem_reserve[i]); 1459 printk("\n"); 1460 } 1461 1462 for_each_zone(zone) { 1463 unsigned long nr, flags, order, total = 0; 1464 1465 show_node(zone); 1466 printk("%s: ", zone->name); 1467 if (!populated_zone(zone)) { 1468 printk("empty\n"); 1469 continue; 1470 } 1471 1472 spin_lock_irqsave(&zone->lock, flags); 1473 for (order = 0; order < MAX_ORDER; order++) { 1474 nr = zone->free_area[order].nr_free; 1475 total += nr << order; 1476 printk("%lu*%lukB ", nr, K(1UL) << order); 1477 } 1478 spin_unlock_irqrestore(&zone->lock, flags); 1479 printk("= %lukB\n", K(total)); 1480 } 1481 1482 show_swap_cache_info(); 1483 } 1484 1485 /* 1486 * Builds allocation fallback zone lists. 1487 * 1488 * Add all populated zones of a node to the zonelist. 1489 */ 1490 static int __init build_zonelists_node(pg_data_t *pgdat, 1491 struct zonelist *zonelist, int nr_zones, int zone_type) 1492 { 1493 struct zone *zone; 1494 1495 BUG_ON(zone_type > ZONE_HIGHMEM); 1496 1497 do { 1498 zone = pgdat->node_zones + zone_type; 1499 if (populated_zone(zone)) { 1500 #ifndef CONFIG_HIGHMEM 1501 BUG_ON(zone_type > ZONE_NORMAL); 1502 #endif 1503 zonelist->zones[nr_zones++] = zone; 1504 check_highest_zone(zone_type); 1505 } 1506 zone_type--; 1507 1508 } while (zone_type >= 0); 1509 return nr_zones; 1510 } 1511 1512 static inline int highest_zone(int zone_bits) 1513 { 1514 int res = ZONE_NORMAL; 1515 if (zone_bits & (__force int)__GFP_HIGHMEM) 1516 res = ZONE_HIGHMEM; 1517 if (zone_bits & (__force int)__GFP_DMA32) 1518 res = ZONE_DMA32; 1519 if (zone_bits & (__force int)__GFP_DMA) 1520 res = ZONE_DMA; 1521 return res; 1522 } 1523 1524 #ifdef CONFIG_NUMA 1525 #define MAX_NODE_LOAD (num_online_nodes()) 1526 static int __initdata node_load[MAX_NUMNODES]; 1527 /** 1528 * find_next_best_node - find the next node that should appear in a given node's fallback list 1529 * @node: node whose fallback list we're appending 1530 * @used_node_mask: nodemask_t of already used nodes 1531 * 1532 * We use a number of factors to determine which is the next node that should 1533 * appear on a given node's fallback list. The node should not have appeared 1534 * already in @node's fallback list, and it should be the next closest node 1535 * according to the distance array (which contains arbitrary distance values 1536 * from each node to each node in the system), and should also prefer nodes 1537 * with no CPUs, since presumably they'll have very little allocation pressure 1538 * on them otherwise. 1539 * It returns -1 if no node is found. 1540 */ 1541 static int __init find_next_best_node(int node, nodemask_t *used_node_mask) 1542 { 1543 int n, val; 1544 int min_val = INT_MAX; 1545 int best_node = -1; 1546 1547 /* Use the local node if we haven't already */ 1548 if (!node_isset(node, *used_node_mask)) { 1549 node_set(node, *used_node_mask); 1550 return node; 1551 } 1552 1553 for_each_online_node(n) { 1554 cpumask_t tmp; 1555 1556 /* Don't want a node to appear more than once */ 1557 if (node_isset(n, *used_node_mask)) 1558 continue; 1559 1560 /* Use the distance array to find the distance */ 1561 val = node_distance(node, n); 1562 1563 /* Penalize nodes under us ("prefer the next node") */ 1564 val += (n < node); 1565 1566 /* Give preference to headless and unused nodes */ 1567 tmp = node_to_cpumask(n); 1568 if (!cpus_empty(tmp)) 1569 val += PENALTY_FOR_NODE_WITH_CPUS; 1570 1571 /* Slight preference for less loaded node */ 1572 val *= (MAX_NODE_LOAD*MAX_NUMNODES); 1573 val += node_load[n]; 1574 1575 if (val < min_val) { 1576 min_val = val; 1577 best_node = n; 1578 } 1579 } 1580 1581 if (best_node >= 0) 1582 node_set(best_node, *used_node_mask); 1583 1584 return best_node; 1585 } 1586 1587 static void __init build_zonelists(pg_data_t *pgdat) 1588 { 1589 int i, j, k, node, local_node; 1590 int prev_node, load; 1591 struct zonelist *zonelist; 1592 nodemask_t used_mask; 1593 1594 /* initialize zonelists */ 1595 for (i = 0; i < GFP_ZONETYPES; i++) { 1596 zonelist = pgdat->node_zonelists + i; 1597 zonelist->zones[0] = NULL; 1598 } 1599 1600 /* NUMA-aware ordering of nodes */ 1601 local_node = pgdat->node_id; 1602 load = num_online_nodes(); 1603 prev_node = local_node; 1604 nodes_clear(used_mask); 1605 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) { 1606 int distance = node_distance(local_node, node); 1607 1608 /* 1609 * If another node is sufficiently far away then it is better 1610 * to reclaim pages in a zone before going off node. 1611 */ 1612 if (distance > RECLAIM_DISTANCE) 1613 zone_reclaim_mode = 1; 1614 1615 /* 1616 * We don't want to pressure a particular node. 1617 * So adding penalty to the first node in same 1618 * distance group to make it round-robin. 1619 */ 1620 1621 if (distance != node_distance(local_node, prev_node)) 1622 node_load[node] += load; 1623 prev_node = node; 1624 load--; 1625 for (i = 0; i < GFP_ZONETYPES; i++) { 1626 zonelist = pgdat->node_zonelists + i; 1627 for (j = 0; zonelist->zones[j] != NULL; j++); 1628 1629 k = highest_zone(i); 1630 1631 j = build_zonelists_node(NODE_DATA(node), zonelist, j, k); 1632 zonelist->zones[j] = NULL; 1633 } 1634 } 1635 } 1636 1637 #else /* CONFIG_NUMA */ 1638 1639 static void __init build_zonelists(pg_data_t *pgdat) 1640 { 1641 int i, j, k, node, local_node; 1642 1643 local_node = pgdat->node_id; 1644 for (i = 0; i < GFP_ZONETYPES; i++) { 1645 struct zonelist *zonelist; 1646 1647 zonelist = pgdat->node_zonelists + i; 1648 1649 j = 0; 1650 k = highest_zone(i); 1651 j = build_zonelists_node(pgdat, zonelist, j, k); 1652 /* 1653 * Now we build the zonelist so that it contains the zones 1654 * of all the other nodes. 1655 * We don't want to pressure a particular node, so when 1656 * building the zones for node N, we make sure that the 1657 * zones coming right after the local ones are those from 1658 * node N+1 (modulo N) 1659 */ 1660 for (node = local_node + 1; node < MAX_NUMNODES; node++) { 1661 if (!node_online(node)) 1662 continue; 1663 j = build_zonelists_node(NODE_DATA(node), zonelist, j, k); 1664 } 1665 for (node = 0; node < local_node; node++) { 1666 if (!node_online(node)) 1667 continue; 1668 j = build_zonelists_node(NODE_DATA(node), zonelist, j, k); 1669 } 1670 1671 zonelist->zones[j] = NULL; 1672 } 1673 } 1674 1675 #endif /* CONFIG_NUMA */ 1676 1677 void __init build_all_zonelists(void) 1678 { 1679 int i; 1680 1681 for_each_online_node(i) 1682 build_zonelists(NODE_DATA(i)); 1683 printk("Built %i zonelists\n", num_online_nodes()); 1684 cpuset_init_current_mems_allowed(); 1685 } 1686 1687 /* 1688 * Helper functions to size the waitqueue hash table. 1689 * Essentially these want to choose hash table sizes sufficiently 1690 * large so that collisions trying to wait on pages are rare. 1691 * But in fact, the number of active page waitqueues on typical 1692 * systems is ridiculously low, less than 200. So this is even 1693 * conservative, even though it seems large. 1694 * 1695 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to 1696 * waitqueues, i.e. the size of the waitq table given the number of pages. 1697 */ 1698 #define PAGES_PER_WAITQUEUE 256 1699 1700 static inline unsigned long wait_table_size(unsigned long pages) 1701 { 1702 unsigned long size = 1; 1703 1704 pages /= PAGES_PER_WAITQUEUE; 1705 1706 while (size < pages) 1707 size <<= 1; 1708 1709 /* 1710 * Once we have dozens or even hundreds of threads sleeping 1711 * on IO we've got bigger problems than wait queue collision. 1712 * Limit the size of the wait table to a reasonable size. 1713 */ 1714 size = min(size, 4096UL); 1715 1716 return max(size, 4UL); 1717 } 1718 1719 /* 1720 * This is an integer logarithm so that shifts can be used later 1721 * to extract the more random high bits from the multiplicative 1722 * hash function before the remainder is taken. 1723 */ 1724 static inline unsigned long wait_table_bits(unsigned long size) 1725 { 1726 return ffz(~size); 1727 } 1728 1729 #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1)) 1730 1731 static void __init calculate_zone_totalpages(struct pglist_data *pgdat, 1732 unsigned long *zones_size, unsigned long *zholes_size) 1733 { 1734 unsigned long realtotalpages, totalpages = 0; 1735 int i; 1736 1737 for (i = 0; i < MAX_NR_ZONES; i++) 1738 totalpages += zones_size[i]; 1739 pgdat->node_spanned_pages = totalpages; 1740 1741 realtotalpages = totalpages; 1742 if (zholes_size) 1743 for (i = 0; i < MAX_NR_ZONES; i++) 1744 realtotalpages -= zholes_size[i]; 1745 pgdat->node_present_pages = realtotalpages; 1746 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id, realtotalpages); 1747 } 1748 1749 1750 /* 1751 * Initially all pages are reserved - free ones are freed 1752 * up by free_all_bootmem() once the early boot process is 1753 * done. Non-atomic initialization, single-pass. 1754 */ 1755 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone, 1756 unsigned long start_pfn) 1757 { 1758 struct page *page; 1759 unsigned long end_pfn = start_pfn + size; 1760 unsigned long pfn; 1761 1762 for (pfn = start_pfn; pfn < end_pfn; pfn++) { 1763 if (!early_pfn_valid(pfn)) 1764 continue; 1765 page = pfn_to_page(pfn); 1766 set_page_links(page, zone, nid, pfn); 1767 set_page_count(page, 1); 1768 reset_page_mapcount(page); 1769 SetPageReserved(page); 1770 INIT_LIST_HEAD(&page->lru); 1771 #ifdef WANT_PAGE_VIRTUAL 1772 /* The shift won't overflow because ZONE_NORMAL is below 4G. */ 1773 if (!is_highmem_idx(zone)) 1774 set_page_address(page, __va(pfn << PAGE_SHIFT)); 1775 #endif 1776 } 1777 } 1778 1779 void zone_init_free_lists(struct pglist_data *pgdat, struct zone *zone, 1780 unsigned long size) 1781 { 1782 int order; 1783 for (order = 0; order < MAX_ORDER ; order++) { 1784 INIT_LIST_HEAD(&zone->free_area[order].free_list); 1785 zone->free_area[order].nr_free = 0; 1786 } 1787 } 1788 1789 #define ZONETABLE_INDEX(x, zone_nr) ((x << ZONES_SHIFT) | zone_nr) 1790 void zonetable_add(struct zone *zone, int nid, int zid, unsigned long pfn, 1791 unsigned long size) 1792 { 1793 unsigned long snum = pfn_to_section_nr(pfn); 1794 unsigned long end = pfn_to_section_nr(pfn + size); 1795 1796 if (FLAGS_HAS_NODE) 1797 zone_table[ZONETABLE_INDEX(nid, zid)] = zone; 1798 else 1799 for (; snum <= end; snum++) 1800 zone_table[ZONETABLE_INDEX(snum, zid)] = zone; 1801 } 1802 1803 #ifndef __HAVE_ARCH_MEMMAP_INIT 1804 #define memmap_init(size, nid, zone, start_pfn) \ 1805 memmap_init_zone((size), (nid), (zone), (start_pfn)) 1806 #endif 1807 1808 static int __cpuinit zone_batchsize(struct zone *zone) 1809 { 1810 int batch; 1811 1812 /* 1813 * The per-cpu-pages pools are set to around 1000th of the 1814 * size of the zone. But no more than 1/2 of a meg. 1815 * 1816 * OK, so we don't know how big the cache is. So guess. 1817 */ 1818 batch = zone->present_pages / 1024; 1819 if (batch * PAGE_SIZE > 512 * 1024) 1820 batch = (512 * 1024) / PAGE_SIZE; 1821 batch /= 4; /* We effectively *= 4 below */ 1822 if (batch < 1) 1823 batch = 1; 1824 1825 /* 1826 * Clamp the batch to a 2^n - 1 value. Having a power 1827 * of 2 value was found to be more likely to have 1828 * suboptimal cache aliasing properties in some cases. 1829 * 1830 * For example if 2 tasks are alternately allocating 1831 * batches of pages, one task can end up with a lot 1832 * of pages of one half of the possible page colors 1833 * and the other with pages of the other colors. 1834 */ 1835 batch = (1 << (fls(batch + batch/2)-1)) - 1; 1836 1837 return batch; 1838 } 1839 1840 inline void setup_pageset(struct per_cpu_pageset *p, unsigned long batch) 1841 { 1842 struct per_cpu_pages *pcp; 1843 1844 memset(p, 0, sizeof(*p)); 1845 1846 pcp = &p->pcp[0]; /* hot */ 1847 pcp->count = 0; 1848 pcp->high = 6 * batch; 1849 pcp->batch = max(1UL, 1 * batch); 1850 INIT_LIST_HEAD(&pcp->list); 1851 1852 pcp = &p->pcp[1]; /* cold*/ 1853 pcp->count = 0; 1854 pcp->high = 2 * batch; 1855 pcp->batch = max(1UL, batch/2); 1856 INIT_LIST_HEAD(&pcp->list); 1857 } 1858 1859 /* 1860 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist 1861 * to the value high for the pageset p. 1862 */ 1863 1864 static void setup_pagelist_highmark(struct per_cpu_pageset *p, 1865 unsigned long high) 1866 { 1867 struct per_cpu_pages *pcp; 1868 1869 pcp = &p->pcp[0]; /* hot list */ 1870 pcp->high = high; 1871 pcp->batch = max(1UL, high/4); 1872 if ((high/4) > (PAGE_SHIFT * 8)) 1873 pcp->batch = PAGE_SHIFT * 8; 1874 } 1875 1876 1877 #ifdef CONFIG_NUMA 1878 /* 1879 * Boot pageset table. One per cpu which is going to be used for all 1880 * zones and all nodes. The parameters will be set in such a way 1881 * that an item put on a list will immediately be handed over to 1882 * the buddy list. This is safe since pageset manipulation is done 1883 * with interrupts disabled. 1884 * 1885 * Some NUMA counter updates may also be caught by the boot pagesets. 1886 * 1887 * The boot_pagesets must be kept even after bootup is complete for 1888 * unused processors and/or zones. They do play a role for bootstrapping 1889 * hotplugged processors. 1890 * 1891 * zoneinfo_show() and maybe other functions do 1892 * not check if the processor is online before following the pageset pointer. 1893 * Other parts of the kernel may not check if the zone is available. 1894 */ 1895 static struct per_cpu_pageset boot_pageset[NR_CPUS]; 1896 1897 /* 1898 * Dynamically allocate memory for the 1899 * per cpu pageset array in struct zone. 1900 */ 1901 static int __cpuinit process_zones(int cpu) 1902 { 1903 struct zone *zone, *dzone; 1904 1905 for_each_zone(zone) { 1906 1907 zone_pcp(zone, cpu) = kmalloc_node(sizeof(struct per_cpu_pageset), 1908 GFP_KERNEL, cpu_to_node(cpu)); 1909 if (!zone_pcp(zone, cpu)) 1910 goto bad; 1911 1912 setup_pageset(zone_pcp(zone, cpu), zone_batchsize(zone)); 1913 1914 if (percpu_pagelist_fraction) 1915 setup_pagelist_highmark(zone_pcp(zone, cpu), 1916 (zone->present_pages / percpu_pagelist_fraction)); 1917 } 1918 1919 return 0; 1920 bad: 1921 for_each_zone(dzone) { 1922 if (dzone == zone) 1923 break; 1924 kfree(zone_pcp(dzone, cpu)); 1925 zone_pcp(dzone, cpu) = NULL; 1926 } 1927 return -ENOMEM; 1928 } 1929 1930 static inline void free_zone_pagesets(int cpu) 1931 { 1932 struct zone *zone; 1933 1934 for_each_zone(zone) { 1935 struct per_cpu_pageset *pset = zone_pcp(zone, cpu); 1936 1937 zone_pcp(zone, cpu) = NULL; 1938 kfree(pset); 1939 } 1940 } 1941 1942 static int __cpuinit pageset_cpuup_callback(struct notifier_block *nfb, 1943 unsigned long action, 1944 void *hcpu) 1945 { 1946 int cpu = (long)hcpu; 1947 int ret = NOTIFY_OK; 1948 1949 switch (action) { 1950 case CPU_UP_PREPARE: 1951 if (process_zones(cpu)) 1952 ret = NOTIFY_BAD; 1953 break; 1954 case CPU_UP_CANCELED: 1955 case CPU_DEAD: 1956 free_zone_pagesets(cpu); 1957 break; 1958 default: 1959 break; 1960 } 1961 return ret; 1962 } 1963 1964 static struct notifier_block pageset_notifier = 1965 { &pageset_cpuup_callback, NULL, 0 }; 1966 1967 void __init setup_per_cpu_pageset(void) 1968 { 1969 int err; 1970 1971 /* Initialize per_cpu_pageset for cpu 0. 1972 * A cpuup callback will do this for every cpu 1973 * as it comes online 1974 */ 1975 err = process_zones(smp_processor_id()); 1976 BUG_ON(err); 1977 register_cpu_notifier(&pageset_notifier); 1978 } 1979 1980 #endif 1981 1982 static __meminit 1983 void zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages) 1984 { 1985 int i; 1986 struct pglist_data *pgdat = zone->zone_pgdat; 1987 1988 /* 1989 * The per-page waitqueue mechanism uses hashed waitqueues 1990 * per zone. 1991 */ 1992 zone->wait_table_size = wait_table_size(zone_size_pages); 1993 zone->wait_table_bits = wait_table_bits(zone->wait_table_size); 1994 zone->wait_table = (wait_queue_head_t *) 1995 alloc_bootmem_node(pgdat, zone->wait_table_size 1996 * sizeof(wait_queue_head_t)); 1997 1998 for(i = 0; i < zone->wait_table_size; ++i) 1999 init_waitqueue_head(zone->wait_table + i); 2000 } 2001 2002 static __meminit void zone_pcp_init(struct zone *zone) 2003 { 2004 int cpu; 2005 unsigned long batch = zone_batchsize(zone); 2006 2007 for (cpu = 0; cpu < NR_CPUS; cpu++) { 2008 #ifdef CONFIG_NUMA 2009 /* Early boot. Slab allocator not functional yet */ 2010 zone_pcp(zone, cpu) = &boot_pageset[cpu]; 2011 setup_pageset(&boot_pageset[cpu],0); 2012 #else 2013 setup_pageset(zone_pcp(zone,cpu), batch); 2014 #endif 2015 } 2016 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%lu\n", 2017 zone->name, zone->present_pages, batch); 2018 } 2019 2020 static __meminit void init_currently_empty_zone(struct zone *zone, 2021 unsigned long zone_start_pfn, unsigned long size) 2022 { 2023 struct pglist_data *pgdat = zone->zone_pgdat; 2024 2025 zone_wait_table_init(zone, size); 2026 pgdat->nr_zones = zone_idx(zone) + 1; 2027 2028 zone->zone_mem_map = pfn_to_page(zone_start_pfn); 2029 zone->zone_start_pfn = zone_start_pfn; 2030 2031 memmap_init(size, pgdat->node_id, zone_idx(zone), zone_start_pfn); 2032 2033 zone_init_free_lists(pgdat, zone, zone->spanned_pages); 2034 } 2035 2036 /* 2037 * Set up the zone data structures: 2038 * - mark all pages reserved 2039 * - mark all memory queues empty 2040 * - clear the memory bitmaps 2041 */ 2042 static void __init free_area_init_core(struct pglist_data *pgdat, 2043 unsigned long *zones_size, unsigned long *zholes_size) 2044 { 2045 unsigned long j; 2046 int nid = pgdat->node_id; 2047 unsigned long zone_start_pfn = pgdat->node_start_pfn; 2048 2049 pgdat_resize_init(pgdat); 2050 pgdat->nr_zones = 0; 2051 init_waitqueue_head(&pgdat->kswapd_wait); 2052 pgdat->kswapd_max_order = 0; 2053 2054 for (j = 0; j < MAX_NR_ZONES; j++) { 2055 struct zone *zone = pgdat->node_zones + j; 2056 unsigned long size, realsize; 2057 2058 realsize = size = zones_size[j]; 2059 if (zholes_size) 2060 realsize -= zholes_size[j]; 2061 2062 if (j < ZONE_HIGHMEM) 2063 nr_kernel_pages += realsize; 2064 nr_all_pages += realsize; 2065 2066 zone->spanned_pages = size; 2067 zone->present_pages = realsize; 2068 zone->name = zone_names[j]; 2069 spin_lock_init(&zone->lock); 2070 spin_lock_init(&zone->lru_lock); 2071 zone_seqlock_init(zone); 2072 zone->zone_pgdat = pgdat; 2073 zone->free_pages = 0; 2074 2075 zone->temp_priority = zone->prev_priority = DEF_PRIORITY; 2076 2077 zone_pcp_init(zone); 2078 INIT_LIST_HEAD(&zone->active_list); 2079 INIT_LIST_HEAD(&zone->inactive_list); 2080 zone->nr_scan_active = 0; 2081 zone->nr_scan_inactive = 0; 2082 zone->nr_active = 0; 2083 zone->nr_inactive = 0; 2084 atomic_set(&zone->reclaim_in_progress, 0); 2085 if (!size) 2086 continue; 2087 2088 zonetable_add(zone, nid, j, zone_start_pfn, size); 2089 init_currently_empty_zone(zone, zone_start_pfn, size); 2090 zone_start_pfn += size; 2091 } 2092 } 2093 2094 static void __init alloc_node_mem_map(struct pglist_data *pgdat) 2095 { 2096 /* Skip empty nodes */ 2097 if (!pgdat->node_spanned_pages) 2098 return; 2099 2100 #ifdef CONFIG_FLAT_NODE_MEM_MAP 2101 /* ia64 gets its own node_mem_map, before this, without bootmem */ 2102 if (!pgdat->node_mem_map) { 2103 unsigned long size; 2104 struct page *map; 2105 2106 size = (pgdat->node_spanned_pages + 1) * sizeof(struct page); 2107 map = alloc_remap(pgdat->node_id, size); 2108 if (!map) 2109 map = alloc_bootmem_node(pgdat, size); 2110 pgdat->node_mem_map = map; 2111 } 2112 #ifdef CONFIG_FLATMEM 2113 /* 2114 * With no DISCONTIG, the global mem_map is just set as node 0's 2115 */ 2116 if (pgdat == NODE_DATA(0)) 2117 mem_map = NODE_DATA(0)->node_mem_map; 2118 #endif 2119 #endif /* CONFIG_FLAT_NODE_MEM_MAP */ 2120 } 2121 2122 void __init free_area_init_node(int nid, struct pglist_data *pgdat, 2123 unsigned long *zones_size, unsigned long node_start_pfn, 2124 unsigned long *zholes_size) 2125 { 2126 pgdat->node_id = nid; 2127 pgdat->node_start_pfn = node_start_pfn; 2128 calculate_zone_totalpages(pgdat, zones_size, zholes_size); 2129 2130 alloc_node_mem_map(pgdat); 2131 2132 free_area_init_core(pgdat, zones_size, zholes_size); 2133 } 2134 2135 #ifndef CONFIG_NEED_MULTIPLE_NODES 2136 static bootmem_data_t contig_bootmem_data; 2137 struct pglist_data contig_page_data = { .bdata = &contig_bootmem_data }; 2138 2139 EXPORT_SYMBOL(contig_page_data); 2140 #endif 2141 2142 void __init free_area_init(unsigned long *zones_size) 2143 { 2144 free_area_init_node(0, NODE_DATA(0), zones_size, 2145 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL); 2146 } 2147 2148 #ifdef CONFIG_PROC_FS 2149 2150 #include <linux/seq_file.h> 2151 2152 static void *frag_start(struct seq_file *m, loff_t *pos) 2153 { 2154 pg_data_t *pgdat; 2155 loff_t node = *pos; 2156 2157 for (pgdat = pgdat_list; pgdat && node; pgdat = pgdat->pgdat_next) 2158 --node; 2159 2160 return pgdat; 2161 } 2162 2163 static void *frag_next(struct seq_file *m, void *arg, loff_t *pos) 2164 { 2165 pg_data_t *pgdat = (pg_data_t *)arg; 2166 2167 (*pos)++; 2168 return pgdat->pgdat_next; 2169 } 2170 2171 static void frag_stop(struct seq_file *m, void *arg) 2172 { 2173 } 2174 2175 /* 2176 * This walks the free areas for each zone. 2177 */ 2178 static int frag_show(struct seq_file *m, void *arg) 2179 { 2180 pg_data_t *pgdat = (pg_data_t *)arg; 2181 struct zone *zone; 2182 struct zone *node_zones = pgdat->node_zones; 2183 unsigned long flags; 2184 int order; 2185 2186 for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) { 2187 if (!populated_zone(zone)) 2188 continue; 2189 2190 spin_lock_irqsave(&zone->lock, flags); 2191 seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name); 2192 for (order = 0; order < MAX_ORDER; ++order) 2193 seq_printf(m, "%6lu ", zone->free_area[order].nr_free); 2194 spin_unlock_irqrestore(&zone->lock, flags); 2195 seq_putc(m, '\n'); 2196 } 2197 return 0; 2198 } 2199 2200 struct seq_operations fragmentation_op = { 2201 .start = frag_start, 2202 .next = frag_next, 2203 .stop = frag_stop, 2204 .show = frag_show, 2205 }; 2206 2207 /* 2208 * Output information about zones in @pgdat. 2209 */ 2210 static int zoneinfo_show(struct seq_file *m, void *arg) 2211 { 2212 pg_data_t *pgdat = arg; 2213 struct zone *zone; 2214 struct zone *node_zones = pgdat->node_zones; 2215 unsigned long flags; 2216 2217 for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; zone++) { 2218 int i; 2219 2220 if (!populated_zone(zone)) 2221 continue; 2222 2223 spin_lock_irqsave(&zone->lock, flags); 2224 seq_printf(m, "Node %d, zone %8s", pgdat->node_id, zone->name); 2225 seq_printf(m, 2226 "\n pages free %lu" 2227 "\n min %lu" 2228 "\n low %lu" 2229 "\n high %lu" 2230 "\n active %lu" 2231 "\n inactive %lu" 2232 "\n scanned %lu (a: %lu i: %lu)" 2233 "\n spanned %lu" 2234 "\n present %lu", 2235 zone->free_pages, 2236 zone->pages_min, 2237 zone->pages_low, 2238 zone->pages_high, 2239 zone->nr_active, 2240 zone->nr_inactive, 2241 zone->pages_scanned, 2242 zone->nr_scan_active, zone->nr_scan_inactive, 2243 zone->spanned_pages, 2244 zone->present_pages); 2245 seq_printf(m, 2246 "\n protection: (%lu", 2247 zone->lowmem_reserve[0]); 2248 for (i = 1; i < ARRAY_SIZE(zone->lowmem_reserve); i++) 2249 seq_printf(m, ", %lu", zone->lowmem_reserve[i]); 2250 seq_printf(m, 2251 ")" 2252 "\n pagesets"); 2253 for_each_online_cpu(i) { 2254 struct per_cpu_pageset *pageset; 2255 int j; 2256 2257 pageset = zone_pcp(zone, i); 2258 for (j = 0; j < ARRAY_SIZE(pageset->pcp); j++) { 2259 if (pageset->pcp[j].count) 2260 break; 2261 } 2262 if (j == ARRAY_SIZE(pageset->pcp)) 2263 continue; 2264 for (j = 0; j < ARRAY_SIZE(pageset->pcp); j++) { 2265 seq_printf(m, 2266 "\n cpu: %i pcp: %i" 2267 "\n count: %i" 2268 "\n high: %i" 2269 "\n batch: %i", 2270 i, j, 2271 pageset->pcp[j].count, 2272 pageset->pcp[j].high, 2273 pageset->pcp[j].batch); 2274 } 2275 #ifdef CONFIG_NUMA 2276 seq_printf(m, 2277 "\n numa_hit: %lu" 2278 "\n numa_miss: %lu" 2279 "\n numa_foreign: %lu" 2280 "\n interleave_hit: %lu" 2281 "\n local_node: %lu" 2282 "\n other_node: %lu", 2283 pageset->numa_hit, 2284 pageset->numa_miss, 2285 pageset->numa_foreign, 2286 pageset->interleave_hit, 2287 pageset->local_node, 2288 pageset->other_node); 2289 #endif 2290 } 2291 seq_printf(m, 2292 "\n all_unreclaimable: %u" 2293 "\n prev_priority: %i" 2294 "\n temp_priority: %i" 2295 "\n start_pfn: %lu", 2296 zone->all_unreclaimable, 2297 zone->prev_priority, 2298 zone->temp_priority, 2299 zone->zone_start_pfn); 2300 spin_unlock_irqrestore(&zone->lock, flags); 2301 seq_putc(m, '\n'); 2302 } 2303 return 0; 2304 } 2305 2306 struct seq_operations zoneinfo_op = { 2307 .start = frag_start, /* iterate over all zones. The same as in 2308 * fragmentation. */ 2309 .next = frag_next, 2310 .stop = frag_stop, 2311 .show = zoneinfo_show, 2312 }; 2313 2314 static char *vmstat_text[] = { 2315 "nr_dirty", 2316 "nr_writeback", 2317 "nr_unstable", 2318 "nr_page_table_pages", 2319 "nr_mapped", 2320 "nr_slab", 2321 2322 "pgpgin", 2323 "pgpgout", 2324 "pswpin", 2325 "pswpout", 2326 2327 "pgalloc_high", 2328 "pgalloc_normal", 2329 "pgalloc_dma32", 2330 "pgalloc_dma", 2331 2332 "pgfree", 2333 "pgactivate", 2334 "pgdeactivate", 2335 2336 "pgfault", 2337 "pgmajfault", 2338 2339 "pgrefill_high", 2340 "pgrefill_normal", 2341 "pgrefill_dma32", 2342 "pgrefill_dma", 2343 2344 "pgsteal_high", 2345 "pgsteal_normal", 2346 "pgsteal_dma32", 2347 "pgsteal_dma", 2348 2349 "pgscan_kswapd_high", 2350 "pgscan_kswapd_normal", 2351 "pgscan_kswapd_dma32", 2352 "pgscan_kswapd_dma", 2353 2354 "pgscan_direct_high", 2355 "pgscan_direct_normal", 2356 "pgscan_direct_dma32", 2357 "pgscan_direct_dma", 2358 2359 "pginodesteal", 2360 "slabs_scanned", 2361 "kswapd_steal", 2362 "kswapd_inodesteal", 2363 "pageoutrun", 2364 "allocstall", 2365 2366 "pgrotated", 2367 "nr_bounce", 2368 }; 2369 2370 static void *vmstat_start(struct seq_file *m, loff_t *pos) 2371 { 2372 struct page_state *ps; 2373 2374 if (*pos >= ARRAY_SIZE(vmstat_text)) 2375 return NULL; 2376 2377 ps = kmalloc(sizeof(*ps), GFP_KERNEL); 2378 m->private = ps; 2379 if (!ps) 2380 return ERR_PTR(-ENOMEM); 2381 get_full_page_state(ps); 2382 ps->pgpgin /= 2; /* sectors -> kbytes */ 2383 ps->pgpgout /= 2; 2384 return (unsigned long *)ps + *pos; 2385 } 2386 2387 static void *vmstat_next(struct seq_file *m, void *arg, loff_t *pos) 2388 { 2389 (*pos)++; 2390 if (*pos >= ARRAY_SIZE(vmstat_text)) 2391 return NULL; 2392 return (unsigned long *)m->private + *pos; 2393 } 2394 2395 static int vmstat_show(struct seq_file *m, void *arg) 2396 { 2397 unsigned long *l = arg; 2398 unsigned long off = l - (unsigned long *)m->private; 2399 2400 seq_printf(m, "%s %lu\n", vmstat_text[off], *l); 2401 return 0; 2402 } 2403 2404 static void vmstat_stop(struct seq_file *m, void *arg) 2405 { 2406 kfree(m->private); 2407 m->private = NULL; 2408 } 2409 2410 struct seq_operations vmstat_op = { 2411 .start = vmstat_start, 2412 .next = vmstat_next, 2413 .stop = vmstat_stop, 2414 .show = vmstat_show, 2415 }; 2416 2417 #endif /* CONFIG_PROC_FS */ 2418 2419 #ifdef CONFIG_HOTPLUG_CPU 2420 static int page_alloc_cpu_notify(struct notifier_block *self, 2421 unsigned long action, void *hcpu) 2422 { 2423 int cpu = (unsigned long)hcpu; 2424 long *count; 2425 unsigned long *src, *dest; 2426 2427 if (action == CPU_DEAD) { 2428 int i; 2429 2430 /* Drain local pagecache count. */ 2431 count = &per_cpu(nr_pagecache_local, cpu); 2432 atomic_add(*count, &nr_pagecache); 2433 *count = 0; 2434 local_irq_disable(); 2435 __drain_pages(cpu); 2436 2437 /* Add dead cpu's page_states to our own. */ 2438 dest = (unsigned long *)&__get_cpu_var(page_states); 2439 src = (unsigned long *)&per_cpu(page_states, cpu); 2440 2441 for (i = 0; i < sizeof(struct page_state)/sizeof(unsigned long); 2442 i++) { 2443 dest[i] += src[i]; 2444 src[i] = 0; 2445 } 2446 2447 local_irq_enable(); 2448 } 2449 return NOTIFY_OK; 2450 } 2451 #endif /* CONFIG_HOTPLUG_CPU */ 2452 2453 void __init page_alloc_init(void) 2454 { 2455 hotcpu_notifier(page_alloc_cpu_notify, 0); 2456 } 2457 2458 /* 2459 * setup_per_zone_lowmem_reserve - called whenever 2460 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone 2461 * has a correct pages reserved value, so an adequate number of 2462 * pages are left in the zone after a successful __alloc_pages(). 2463 */ 2464 static void setup_per_zone_lowmem_reserve(void) 2465 { 2466 struct pglist_data *pgdat; 2467 int j, idx; 2468 2469 for_each_pgdat(pgdat) { 2470 for (j = 0; j < MAX_NR_ZONES; j++) { 2471 struct zone *zone = pgdat->node_zones + j; 2472 unsigned long present_pages = zone->present_pages; 2473 2474 zone->lowmem_reserve[j] = 0; 2475 2476 for (idx = j-1; idx >= 0; idx--) { 2477 struct zone *lower_zone; 2478 2479 if (sysctl_lowmem_reserve_ratio[idx] < 1) 2480 sysctl_lowmem_reserve_ratio[idx] = 1; 2481 2482 lower_zone = pgdat->node_zones + idx; 2483 lower_zone->lowmem_reserve[j] = present_pages / 2484 sysctl_lowmem_reserve_ratio[idx]; 2485 present_pages += lower_zone->present_pages; 2486 } 2487 } 2488 } 2489 } 2490 2491 /* 2492 * setup_per_zone_pages_min - called when min_free_kbytes changes. Ensures 2493 * that the pages_{min,low,high} values for each zone are set correctly 2494 * with respect to min_free_kbytes. 2495 */ 2496 void setup_per_zone_pages_min(void) 2497 { 2498 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10); 2499 unsigned long lowmem_pages = 0; 2500 struct zone *zone; 2501 unsigned long flags; 2502 2503 /* Calculate total number of !ZONE_HIGHMEM pages */ 2504 for_each_zone(zone) { 2505 if (!is_highmem(zone)) 2506 lowmem_pages += zone->present_pages; 2507 } 2508 2509 for_each_zone(zone) { 2510 unsigned long tmp; 2511 spin_lock_irqsave(&zone->lru_lock, flags); 2512 tmp = (pages_min * zone->present_pages) / lowmem_pages; 2513 if (is_highmem(zone)) { 2514 /* 2515 * __GFP_HIGH and PF_MEMALLOC allocations usually don't 2516 * need highmem pages, so cap pages_min to a small 2517 * value here. 2518 * 2519 * The (pages_high-pages_low) and (pages_low-pages_min) 2520 * deltas controls asynch page reclaim, and so should 2521 * not be capped for highmem. 2522 */ 2523 int min_pages; 2524 2525 min_pages = zone->present_pages / 1024; 2526 if (min_pages < SWAP_CLUSTER_MAX) 2527 min_pages = SWAP_CLUSTER_MAX; 2528 if (min_pages > 128) 2529 min_pages = 128; 2530 zone->pages_min = min_pages; 2531 } else { 2532 /* 2533 * If it's a lowmem zone, reserve a number of pages 2534 * proportionate to the zone's size. 2535 */ 2536 zone->pages_min = tmp; 2537 } 2538 2539 zone->pages_low = zone->pages_min + tmp / 4; 2540 zone->pages_high = zone->pages_min + tmp / 2; 2541 spin_unlock_irqrestore(&zone->lru_lock, flags); 2542 } 2543 } 2544 2545 /* 2546 * Initialise min_free_kbytes. 2547 * 2548 * For small machines we want it small (128k min). For large machines 2549 * we want it large (64MB max). But it is not linear, because network 2550 * bandwidth does not increase linearly with machine size. We use 2551 * 2552 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy: 2553 * min_free_kbytes = sqrt(lowmem_kbytes * 16) 2554 * 2555 * which yields 2556 * 2557 * 16MB: 512k 2558 * 32MB: 724k 2559 * 64MB: 1024k 2560 * 128MB: 1448k 2561 * 256MB: 2048k 2562 * 512MB: 2896k 2563 * 1024MB: 4096k 2564 * 2048MB: 5792k 2565 * 4096MB: 8192k 2566 * 8192MB: 11584k 2567 * 16384MB: 16384k 2568 */ 2569 static int __init init_per_zone_pages_min(void) 2570 { 2571 unsigned long lowmem_kbytes; 2572 2573 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10); 2574 2575 min_free_kbytes = int_sqrt(lowmem_kbytes * 16); 2576 if (min_free_kbytes < 128) 2577 min_free_kbytes = 128; 2578 if (min_free_kbytes > 65536) 2579 min_free_kbytes = 65536; 2580 setup_per_zone_pages_min(); 2581 setup_per_zone_lowmem_reserve(); 2582 return 0; 2583 } 2584 module_init(init_per_zone_pages_min) 2585 2586 /* 2587 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so 2588 * that we can call two helper functions whenever min_free_kbytes 2589 * changes. 2590 */ 2591 int min_free_kbytes_sysctl_handler(ctl_table *table, int write, 2592 struct file *file, void __user *buffer, size_t *length, loff_t *ppos) 2593 { 2594 proc_dointvec(table, write, file, buffer, length, ppos); 2595 setup_per_zone_pages_min(); 2596 return 0; 2597 } 2598 2599 /* 2600 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around 2601 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve() 2602 * whenever sysctl_lowmem_reserve_ratio changes. 2603 * 2604 * The reserve ratio obviously has absolutely no relation with the 2605 * pages_min watermarks. The lowmem reserve ratio can only make sense 2606 * if in function of the boot time zone sizes. 2607 */ 2608 int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write, 2609 struct file *file, void __user *buffer, size_t *length, loff_t *ppos) 2610 { 2611 proc_dointvec_minmax(table, write, file, buffer, length, ppos); 2612 setup_per_zone_lowmem_reserve(); 2613 return 0; 2614 } 2615 2616 /* 2617 * percpu_pagelist_fraction - changes the pcp->high for each zone on each 2618 * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist 2619 * can have before it gets flushed back to buddy allocator. 2620 */ 2621 2622 int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write, 2623 struct file *file, void __user *buffer, size_t *length, loff_t *ppos) 2624 { 2625 struct zone *zone; 2626 unsigned int cpu; 2627 int ret; 2628 2629 ret = proc_dointvec_minmax(table, write, file, buffer, length, ppos); 2630 if (!write || (ret == -EINVAL)) 2631 return ret; 2632 for_each_zone(zone) { 2633 for_each_online_cpu(cpu) { 2634 unsigned long high; 2635 high = zone->present_pages / percpu_pagelist_fraction; 2636 setup_pagelist_highmark(zone_pcp(zone, cpu), high); 2637 } 2638 } 2639 return 0; 2640 } 2641 2642 __initdata int hashdist = HASHDIST_DEFAULT; 2643 2644 #ifdef CONFIG_NUMA 2645 static int __init set_hashdist(char *str) 2646 { 2647 if (!str) 2648 return 0; 2649 hashdist = simple_strtoul(str, &str, 0); 2650 return 1; 2651 } 2652 __setup("hashdist=", set_hashdist); 2653 #endif 2654 2655 /* 2656 * allocate a large system hash table from bootmem 2657 * - it is assumed that the hash table must contain an exact power-of-2 2658 * quantity of entries 2659 * - limit is the number of hash buckets, not the total allocation size 2660 */ 2661 void *__init alloc_large_system_hash(const char *tablename, 2662 unsigned long bucketsize, 2663 unsigned long numentries, 2664 int scale, 2665 int flags, 2666 unsigned int *_hash_shift, 2667 unsigned int *_hash_mask, 2668 unsigned long limit) 2669 { 2670 unsigned long long max = limit; 2671 unsigned long log2qty, size; 2672 void *table = NULL; 2673 2674 /* allow the kernel cmdline to have a say */ 2675 if (!numentries) { 2676 /* round applicable memory size up to nearest megabyte */ 2677 numentries = (flags & HASH_HIGHMEM) ? nr_all_pages : nr_kernel_pages; 2678 numentries += (1UL << (20 - PAGE_SHIFT)) - 1; 2679 numentries >>= 20 - PAGE_SHIFT; 2680 numentries <<= 20 - PAGE_SHIFT; 2681 2682 /* limit to 1 bucket per 2^scale bytes of low memory */ 2683 if (scale > PAGE_SHIFT) 2684 numentries >>= (scale - PAGE_SHIFT); 2685 else 2686 numentries <<= (PAGE_SHIFT - scale); 2687 } 2688 /* rounded up to nearest power of 2 in size */ 2689 numentries = 1UL << (long_log2(numentries) + 1); 2690 2691 /* limit allocation size to 1/16 total memory by default */ 2692 if (max == 0) { 2693 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4; 2694 do_div(max, bucketsize); 2695 } 2696 2697 if (numentries > max) 2698 numentries = max; 2699 2700 log2qty = long_log2(numentries); 2701 2702 do { 2703 size = bucketsize << log2qty; 2704 if (flags & HASH_EARLY) 2705 table = alloc_bootmem(size); 2706 else if (hashdist) 2707 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL); 2708 else { 2709 unsigned long order; 2710 for (order = 0; ((1UL << order) << PAGE_SHIFT) < size; order++) 2711 ; 2712 table = (void*) __get_free_pages(GFP_ATOMIC, order); 2713 } 2714 } while (!table && size > PAGE_SIZE && --log2qty); 2715 2716 if (!table) 2717 panic("Failed to allocate %s hash table\n", tablename); 2718 2719 printk("%s hash table entries: %d (order: %d, %lu bytes)\n", 2720 tablename, 2721 (1U << log2qty), 2722 long_log2(size) - PAGE_SHIFT, 2723 size); 2724 2725 if (_hash_shift) 2726 *_hash_shift = log2qty; 2727 if (_hash_mask) 2728 *_hash_mask = (1 << log2qty) - 1; 2729 2730 return table; 2731 } 2732