xref: /linux/mm/page_alloc.c (revision d8327c784b51b57dac2c26cfad87dce0d68dfd98)
1 /*
2  *  linux/mm/page_alloc.c
3  *
4  *  Manages the free list, the system allocates free pages here.
5  *  Note that kmalloc() lives in slab.c
6  *
7  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
8  *  Swap reorganised 29.12.95, Stephen Tweedie
9  *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10  *  Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11  *  Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12  *  Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13  *  Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14  *          (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15  */
16 
17 #include <linux/config.h>
18 #include <linux/stddef.h>
19 #include <linux/mm.h>
20 #include <linux/swap.h>
21 #include <linux/interrupt.h>
22 #include <linux/pagemap.h>
23 #include <linux/bootmem.h>
24 #include <linux/compiler.h>
25 #include <linux/kernel.h>
26 #include <linux/module.h>
27 #include <linux/suspend.h>
28 #include <linux/pagevec.h>
29 #include <linux/blkdev.h>
30 #include <linux/slab.h>
31 #include <linux/notifier.h>
32 #include <linux/topology.h>
33 #include <linux/sysctl.h>
34 #include <linux/cpu.h>
35 #include <linux/cpuset.h>
36 #include <linux/memory_hotplug.h>
37 #include <linux/nodemask.h>
38 #include <linux/vmalloc.h>
39 #include <linux/mempolicy.h>
40 
41 #include <asm/tlbflush.h>
42 #include "internal.h"
43 
44 /*
45  * MCD - HACK: Find somewhere to initialize this EARLY, or make this
46  * initializer cleaner
47  */
48 nodemask_t node_online_map __read_mostly = { { [0] = 1UL } };
49 EXPORT_SYMBOL(node_online_map);
50 nodemask_t node_possible_map __read_mostly = NODE_MASK_ALL;
51 EXPORT_SYMBOL(node_possible_map);
52 struct pglist_data *pgdat_list __read_mostly;
53 unsigned long totalram_pages __read_mostly;
54 unsigned long totalhigh_pages __read_mostly;
55 long nr_swap_pages;
56 int percpu_pagelist_fraction;
57 
58 static void fastcall free_hot_cold_page(struct page *page, int cold);
59 static void __free_pages_ok(struct page *page, unsigned int order);
60 
61 /*
62  * results with 256, 32 in the lowmem_reserve sysctl:
63  *	1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
64  *	1G machine -> (16M dma, 784M normal, 224M high)
65  *	NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
66  *	HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
67  *	HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
68  *
69  * TBD: should special case ZONE_DMA32 machines here - in those we normally
70  * don't need any ZONE_NORMAL reservation
71  */
72 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = { 256, 256, 32 };
73 
74 EXPORT_SYMBOL(totalram_pages);
75 
76 /*
77  * Used by page_zone() to look up the address of the struct zone whose
78  * id is encoded in the upper bits of page->flags
79  */
80 struct zone *zone_table[1 << ZONETABLE_SHIFT] __read_mostly;
81 EXPORT_SYMBOL(zone_table);
82 
83 static char *zone_names[MAX_NR_ZONES] = { "DMA", "DMA32", "Normal", "HighMem" };
84 int min_free_kbytes = 1024;
85 
86 unsigned long __initdata nr_kernel_pages;
87 unsigned long __initdata nr_all_pages;
88 
89 #ifdef CONFIG_DEBUG_VM
90 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
91 {
92 	int ret = 0;
93 	unsigned seq;
94 	unsigned long pfn = page_to_pfn(page);
95 
96 	do {
97 		seq = zone_span_seqbegin(zone);
98 		if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
99 			ret = 1;
100 		else if (pfn < zone->zone_start_pfn)
101 			ret = 1;
102 	} while (zone_span_seqretry(zone, seq));
103 
104 	return ret;
105 }
106 
107 static int page_is_consistent(struct zone *zone, struct page *page)
108 {
109 #ifdef CONFIG_HOLES_IN_ZONE
110 	if (!pfn_valid(page_to_pfn(page)))
111 		return 0;
112 #endif
113 	if (zone != page_zone(page))
114 		return 0;
115 
116 	return 1;
117 }
118 /*
119  * Temporary debugging check for pages not lying within a given zone.
120  */
121 static int bad_range(struct zone *zone, struct page *page)
122 {
123 	if (page_outside_zone_boundaries(zone, page))
124 		return 1;
125 	if (!page_is_consistent(zone, page))
126 		return 1;
127 
128 	return 0;
129 }
130 
131 #else
132 static inline int bad_range(struct zone *zone, struct page *page)
133 {
134 	return 0;
135 }
136 #endif
137 
138 static void bad_page(struct page *page)
139 {
140 	printk(KERN_EMERG "Bad page state in process '%s'\n"
141 		KERN_EMERG "page:%p flags:0x%0*lx mapping:%p mapcount:%d count:%d\n"
142 		KERN_EMERG "Trying to fix it up, but a reboot is needed\n"
143 		KERN_EMERG "Backtrace:\n",
144 		current->comm, page, (int)(2*sizeof(unsigned long)),
145 		(unsigned long)page->flags, page->mapping,
146 		page_mapcount(page), page_count(page));
147 	dump_stack();
148 	page->flags &= ~(1 << PG_lru	|
149 			1 << PG_private |
150 			1 << PG_locked	|
151 			1 << PG_active	|
152 			1 << PG_dirty	|
153 			1 << PG_reclaim |
154 			1 << PG_slab    |
155 			1 << PG_swapcache |
156 			1 << PG_writeback );
157 	set_page_count(page, 0);
158 	reset_page_mapcount(page);
159 	page->mapping = NULL;
160 	add_taint(TAINT_BAD_PAGE);
161 }
162 
163 /*
164  * Higher-order pages are called "compound pages".  They are structured thusly:
165  *
166  * The first PAGE_SIZE page is called the "head page".
167  *
168  * The remaining PAGE_SIZE pages are called "tail pages".
169  *
170  * All pages have PG_compound set.  All pages have their ->private pointing at
171  * the head page (even the head page has this).
172  *
173  * The first tail page's ->lru.next holds the address of the compound page's
174  * put_page() function.  Its ->lru.prev holds the order of allocation.
175  * This usage means that zero-order pages may not be compound.
176  */
177 
178 static void free_compound_page(struct page *page)
179 {
180 	__free_pages_ok(page, (unsigned long)page[1].lru.prev);
181 }
182 
183 static void prep_compound_page(struct page *page, unsigned long order)
184 {
185 	int i;
186 	int nr_pages = 1 << order;
187 
188 	page[1].lru.next = (void *)free_compound_page;	/* set dtor */
189 	page[1].lru.prev = (void *)order;
190 	for (i = 0; i < nr_pages; i++) {
191 		struct page *p = page + i;
192 
193 		SetPageCompound(p);
194 		set_page_private(p, (unsigned long)page);
195 	}
196 }
197 
198 static void destroy_compound_page(struct page *page, unsigned long order)
199 {
200 	int i;
201 	int nr_pages = 1 << order;
202 
203 	if (unlikely((unsigned long)page[1].lru.prev != order))
204 		bad_page(page);
205 
206 	for (i = 0; i < nr_pages; i++) {
207 		struct page *p = page + i;
208 
209 		if (unlikely(!PageCompound(p) |
210 				(page_private(p) != (unsigned long)page)))
211 			bad_page(page);
212 		ClearPageCompound(p);
213 	}
214 }
215 
216 /*
217  * function for dealing with page's order in buddy system.
218  * zone->lock is already acquired when we use these.
219  * So, we don't need atomic page->flags operations here.
220  */
221 static inline unsigned long page_order(struct page *page) {
222 	return page_private(page);
223 }
224 
225 static inline void set_page_order(struct page *page, int order) {
226 	set_page_private(page, order);
227 	__SetPagePrivate(page);
228 }
229 
230 static inline void rmv_page_order(struct page *page)
231 {
232 	__ClearPagePrivate(page);
233 	set_page_private(page, 0);
234 }
235 
236 /*
237  * Locate the struct page for both the matching buddy in our
238  * pair (buddy1) and the combined O(n+1) page they form (page).
239  *
240  * 1) Any buddy B1 will have an order O twin B2 which satisfies
241  * the following equation:
242  *     B2 = B1 ^ (1 << O)
243  * For example, if the starting buddy (buddy2) is #8 its order
244  * 1 buddy is #10:
245  *     B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
246  *
247  * 2) Any buddy B will have an order O+1 parent P which
248  * satisfies the following equation:
249  *     P = B & ~(1 << O)
250  *
251  * Assumption: *_mem_map is contigious at least up to MAX_ORDER
252  */
253 static inline struct page *
254 __page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order)
255 {
256 	unsigned long buddy_idx = page_idx ^ (1 << order);
257 
258 	return page + (buddy_idx - page_idx);
259 }
260 
261 static inline unsigned long
262 __find_combined_index(unsigned long page_idx, unsigned int order)
263 {
264 	return (page_idx & ~(1 << order));
265 }
266 
267 /*
268  * This function checks whether a page is free && is the buddy
269  * we can do coalesce a page and its buddy if
270  * (a) the buddy is not in a hole &&
271  * (b) the buddy is free &&
272  * (c) the buddy is on the buddy system &&
273  * (d) a page and its buddy have the same order.
274  * for recording page's order, we use page_private(page) and PG_private.
275  *
276  */
277 static inline int page_is_buddy(struct page *page, int order)
278 {
279 #ifdef CONFIG_HOLES_IN_ZONE
280 	if (!pfn_valid(page_to_pfn(page)))
281 		return 0;
282 #endif
283 
284        if (PagePrivate(page)           &&
285            (page_order(page) == order) &&
286             page_count(page) == 0)
287                return 1;
288        return 0;
289 }
290 
291 /*
292  * Freeing function for a buddy system allocator.
293  *
294  * The concept of a buddy system is to maintain direct-mapped table
295  * (containing bit values) for memory blocks of various "orders".
296  * The bottom level table contains the map for the smallest allocatable
297  * units of memory (here, pages), and each level above it describes
298  * pairs of units from the levels below, hence, "buddies".
299  * At a high level, all that happens here is marking the table entry
300  * at the bottom level available, and propagating the changes upward
301  * as necessary, plus some accounting needed to play nicely with other
302  * parts of the VM system.
303  * At each level, we keep a list of pages, which are heads of continuous
304  * free pages of length of (1 << order) and marked with PG_Private.Page's
305  * order is recorded in page_private(page) field.
306  * So when we are allocating or freeing one, we can derive the state of the
307  * other.  That is, if we allocate a small block, and both were
308  * free, the remainder of the region must be split into blocks.
309  * If a block is freed, and its buddy is also free, then this
310  * triggers coalescing into a block of larger size.
311  *
312  * -- wli
313  */
314 
315 static inline void __free_one_page(struct page *page,
316 		struct zone *zone, unsigned int order)
317 {
318 	unsigned long page_idx;
319 	int order_size = 1 << order;
320 
321 	if (unlikely(PageCompound(page)))
322 		destroy_compound_page(page, order);
323 
324 	page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
325 
326 	BUG_ON(page_idx & (order_size - 1));
327 	BUG_ON(bad_range(zone, page));
328 
329 	zone->free_pages += order_size;
330 	while (order < MAX_ORDER-1) {
331 		unsigned long combined_idx;
332 		struct free_area *area;
333 		struct page *buddy;
334 
335 		buddy = __page_find_buddy(page, page_idx, order);
336 		if (!page_is_buddy(buddy, order))
337 			break;		/* Move the buddy up one level. */
338 
339 		list_del(&buddy->lru);
340 		area = zone->free_area + order;
341 		area->nr_free--;
342 		rmv_page_order(buddy);
343 		combined_idx = __find_combined_index(page_idx, order);
344 		page = page + (combined_idx - page_idx);
345 		page_idx = combined_idx;
346 		order++;
347 	}
348 	set_page_order(page, order);
349 	list_add(&page->lru, &zone->free_area[order].free_list);
350 	zone->free_area[order].nr_free++;
351 }
352 
353 static inline int free_pages_check(struct page *page)
354 {
355 	if (unlikely(page_mapcount(page) |
356 		(page->mapping != NULL)  |
357 		(page_count(page) != 0)  |
358 		(page->flags & (
359 			1 << PG_lru	|
360 			1 << PG_private |
361 			1 << PG_locked	|
362 			1 << PG_active	|
363 			1 << PG_reclaim	|
364 			1 << PG_slab	|
365 			1 << PG_swapcache |
366 			1 << PG_writeback |
367 			1 << PG_reserved ))))
368 		bad_page(page);
369 	if (PageDirty(page))
370 		__ClearPageDirty(page);
371 	/*
372 	 * For now, we report if PG_reserved was found set, but do not
373 	 * clear it, and do not free the page.  But we shall soon need
374 	 * to do more, for when the ZERO_PAGE count wraps negative.
375 	 */
376 	return PageReserved(page);
377 }
378 
379 /*
380  * Frees a list of pages.
381  * Assumes all pages on list are in same zone, and of same order.
382  * count is the number of pages to free.
383  *
384  * If the zone was previously in an "all pages pinned" state then look to
385  * see if this freeing clears that state.
386  *
387  * And clear the zone's pages_scanned counter, to hold off the "all pages are
388  * pinned" detection logic.
389  */
390 static void free_pages_bulk(struct zone *zone, int count,
391 					struct list_head *list, int order)
392 {
393 	spin_lock(&zone->lock);
394 	zone->all_unreclaimable = 0;
395 	zone->pages_scanned = 0;
396 	while (count--) {
397 		struct page *page;
398 
399 		BUG_ON(list_empty(list));
400 		page = list_entry(list->prev, struct page, lru);
401 		/* have to delete it as __free_one_page list manipulates */
402 		list_del(&page->lru);
403 		__free_one_page(page, zone, order);
404 	}
405 	spin_unlock(&zone->lock);
406 }
407 
408 static void free_one_page(struct zone *zone, struct page *page, int order)
409 {
410 	LIST_HEAD(list);
411 	list_add(&page->lru, &list);
412 	free_pages_bulk(zone, 1, &list, order);
413 }
414 
415 static void __free_pages_ok(struct page *page, unsigned int order)
416 {
417 	unsigned long flags;
418 	int i;
419 	int reserved = 0;
420 
421 	arch_free_page(page, order);
422 	if (!PageHighMem(page))
423 		mutex_debug_check_no_locks_freed(page_address(page),
424 						 PAGE_SIZE<<order);
425 
426 #ifndef CONFIG_MMU
427 	for (i = 1 ; i < (1 << order) ; ++i)
428 		__put_page(page + i);
429 #endif
430 
431 	for (i = 0 ; i < (1 << order) ; ++i)
432 		reserved += free_pages_check(page + i);
433 	if (reserved)
434 		return;
435 
436 	kernel_map_pages(page, 1 << order, 0);
437 	local_irq_save(flags);
438 	__mod_page_state(pgfree, 1 << order);
439 	free_one_page(page_zone(page), page, order);
440 	local_irq_restore(flags);
441 }
442 
443 /*
444  * permit the bootmem allocator to evade page validation on high-order frees
445  */
446 void fastcall __init __free_pages_bootmem(struct page *page, unsigned int order)
447 {
448 	if (order == 0) {
449 		__ClearPageReserved(page);
450 		set_page_count(page, 0);
451 
452 		free_hot_cold_page(page, 0);
453 	} else {
454 		LIST_HEAD(list);
455 		int loop;
456 
457 		for (loop = 0; loop < BITS_PER_LONG; loop++) {
458 			struct page *p = &page[loop];
459 
460 			if (loop + 16 < BITS_PER_LONG)
461 				prefetchw(p + 16);
462 			__ClearPageReserved(p);
463 			set_page_count(p, 0);
464 		}
465 
466 		arch_free_page(page, order);
467 
468 		mod_page_state(pgfree, 1 << order);
469 
470 		list_add(&page->lru, &list);
471 		kernel_map_pages(page, 1 << order, 0);
472 		free_pages_bulk(page_zone(page), 1, &list, order);
473 	}
474 }
475 
476 
477 /*
478  * The order of subdivision here is critical for the IO subsystem.
479  * Please do not alter this order without good reasons and regression
480  * testing. Specifically, as large blocks of memory are subdivided,
481  * the order in which smaller blocks are delivered depends on the order
482  * they're subdivided in this function. This is the primary factor
483  * influencing the order in which pages are delivered to the IO
484  * subsystem according to empirical testing, and this is also justified
485  * by considering the behavior of a buddy system containing a single
486  * large block of memory acted on by a series of small allocations.
487  * This behavior is a critical factor in sglist merging's success.
488  *
489  * -- wli
490  */
491 static inline void expand(struct zone *zone, struct page *page,
492  	int low, int high, struct free_area *area)
493 {
494 	unsigned long size = 1 << high;
495 
496 	while (high > low) {
497 		area--;
498 		high--;
499 		size >>= 1;
500 		BUG_ON(bad_range(zone, &page[size]));
501 		list_add(&page[size].lru, &area->free_list);
502 		area->nr_free++;
503 		set_page_order(&page[size], high);
504 	}
505 }
506 
507 /*
508  * This page is about to be returned from the page allocator
509  */
510 static int prep_new_page(struct page *page, int order)
511 {
512 	if (unlikely(page_mapcount(page) |
513 		(page->mapping != NULL)  |
514 		(page_count(page) != 0)  |
515 		(page->flags & (
516 			1 << PG_lru	|
517 			1 << PG_private	|
518 			1 << PG_locked	|
519 			1 << PG_active	|
520 			1 << PG_dirty	|
521 			1 << PG_reclaim	|
522 			1 << PG_slab    |
523 			1 << PG_swapcache |
524 			1 << PG_writeback |
525 			1 << PG_reserved ))))
526 		bad_page(page);
527 
528 	/*
529 	 * For now, we report if PG_reserved was found set, but do not
530 	 * clear it, and do not allocate the page: as a safety net.
531 	 */
532 	if (PageReserved(page))
533 		return 1;
534 
535 	page->flags &= ~(1 << PG_uptodate | 1 << PG_error |
536 			1 << PG_referenced | 1 << PG_arch_1 |
537 			1 << PG_checked | 1 << PG_mappedtodisk);
538 	set_page_private(page, 0);
539 	set_page_refs(page, order);
540 	kernel_map_pages(page, 1 << order, 1);
541 	return 0;
542 }
543 
544 /*
545  * Do the hard work of removing an element from the buddy allocator.
546  * Call me with the zone->lock already held.
547  */
548 static struct page *__rmqueue(struct zone *zone, unsigned int order)
549 {
550 	struct free_area * area;
551 	unsigned int current_order;
552 	struct page *page;
553 
554 	for (current_order = order; current_order < MAX_ORDER; ++current_order) {
555 		area = zone->free_area + current_order;
556 		if (list_empty(&area->free_list))
557 			continue;
558 
559 		page = list_entry(area->free_list.next, struct page, lru);
560 		list_del(&page->lru);
561 		rmv_page_order(page);
562 		area->nr_free--;
563 		zone->free_pages -= 1UL << order;
564 		expand(zone, page, order, current_order, area);
565 		return page;
566 	}
567 
568 	return NULL;
569 }
570 
571 /*
572  * Obtain a specified number of elements from the buddy allocator, all under
573  * a single hold of the lock, for efficiency.  Add them to the supplied list.
574  * Returns the number of new pages which were placed at *list.
575  */
576 static int rmqueue_bulk(struct zone *zone, unsigned int order,
577 			unsigned long count, struct list_head *list)
578 {
579 	int i;
580 
581 	spin_lock(&zone->lock);
582 	for (i = 0; i < count; ++i) {
583 		struct page *page = __rmqueue(zone, order);
584 		if (unlikely(page == NULL))
585 			break;
586 		list_add_tail(&page->lru, list);
587 	}
588 	spin_unlock(&zone->lock);
589 	return i;
590 }
591 
592 #ifdef CONFIG_NUMA
593 /*
594  * Called from the slab reaper to drain pagesets on a particular node that
595  * belong to the currently executing processor.
596  */
597 void drain_node_pages(int nodeid)
598 {
599 	int i, z;
600 	unsigned long flags;
601 
602 	local_irq_save(flags);
603 	for (z = 0; z < MAX_NR_ZONES; z++) {
604 		struct zone *zone = NODE_DATA(nodeid)->node_zones + z;
605 		struct per_cpu_pageset *pset;
606 
607 		pset = zone_pcp(zone, smp_processor_id());
608 		for (i = 0; i < ARRAY_SIZE(pset->pcp); i++) {
609 			struct per_cpu_pages *pcp;
610 
611 			pcp = &pset->pcp[i];
612 			free_pages_bulk(zone, pcp->count, &pcp->list, 0);
613 			pcp->count = 0;
614 		}
615 	}
616 	local_irq_restore(flags);
617 }
618 #endif
619 
620 #if defined(CONFIG_PM) || defined(CONFIG_HOTPLUG_CPU)
621 static void __drain_pages(unsigned int cpu)
622 {
623 	unsigned long flags;
624 	struct zone *zone;
625 	int i;
626 
627 	for_each_zone(zone) {
628 		struct per_cpu_pageset *pset;
629 
630 		pset = zone_pcp(zone, cpu);
631 		for (i = 0; i < ARRAY_SIZE(pset->pcp); i++) {
632 			struct per_cpu_pages *pcp;
633 
634 			pcp = &pset->pcp[i];
635 			local_irq_save(flags);
636 			free_pages_bulk(zone, pcp->count, &pcp->list, 0);
637 			pcp->count = 0;
638 			local_irq_restore(flags);
639 		}
640 	}
641 }
642 #endif /* CONFIG_PM || CONFIG_HOTPLUG_CPU */
643 
644 #ifdef CONFIG_PM
645 
646 void mark_free_pages(struct zone *zone)
647 {
648 	unsigned long zone_pfn, flags;
649 	int order;
650 	struct list_head *curr;
651 
652 	if (!zone->spanned_pages)
653 		return;
654 
655 	spin_lock_irqsave(&zone->lock, flags);
656 	for (zone_pfn = 0; zone_pfn < zone->spanned_pages; ++zone_pfn)
657 		ClearPageNosaveFree(pfn_to_page(zone_pfn + zone->zone_start_pfn));
658 
659 	for (order = MAX_ORDER - 1; order >= 0; --order)
660 		list_for_each(curr, &zone->free_area[order].free_list) {
661 			unsigned long start_pfn, i;
662 
663 			start_pfn = page_to_pfn(list_entry(curr, struct page, lru));
664 
665 			for (i=0; i < (1<<order); i++)
666 				SetPageNosaveFree(pfn_to_page(start_pfn+i));
667 	}
668 	spin_unlock_irqrestore(&zone->lock, flags);
669 }
670 
671 /*
672  * Spill all of this CPU's per-cpu pages back into the buddy allocator.
673  */
674 void drain_local_pages(void)
675 {
676 	unsigned long flags;
677 
678 	local_irq_save(flags);
679 	__drain_pages(smp_processor_id());
680 	local_irq_restore(flags);
681 }
682 #endif /* CONFIG_PM */
683 
684 static void zone_statistics(struct zonelist *zonelist, struct zone *z, int cpu)
685 {
686 #ifdef CONFIG_NUMA
687 	pg_data_t *pg = z->zone_pgdat;
688 	pg_data_t *orig = zonelist->zones[0]->zone_pgdat;
689 	struct per_cpu_pageset *p;
690 
691 	p = zone_pcp(z, cpu);
692 	if (pg == orig) {
693 		p->numa_hit++;
694 	} else {
695 		p->numa_miss++;
696 		zone_pcp(zonelist->zones[0], cpu)->numa_foreign++;
697 	}
698 	if (pg == NODE_DATA(numa_node_id()))
699 		p->local_node++;
700 	else
701 		p->other_node++;
702 #endif
703 }
704 
705 /*
706  * Free a 0-order page
707  */
708 static void fastcall free_hot_cold_page(struct page *page, int cold)
709 {
710 	struct zone *zone = page_zone(page);
711 	struct per_cpu_pages *pcp;
712 	unsigned long flags;
713 
714 	arch_free_page(page, 0);
715 
716 	if (PageAnon(page))
717 		page->mapping = NULL;
718 	if (free_pages_check(page))
719 		return;
720 
721 	kernel_map_pages(page, 1, 0);
722 
723 	pcp = &zone_pcp(zone, get_cpu())->pcp[cold];
724 	local_irq_save(flags);
725 	__inc_page_state(pgfree);
726 	list_add(&page->lru, &pcp->list);
727 	pcp->count++;
728 	if (pcp->count >= pcp->high) {
729 		free_pages_bulk(zone, pcp->batch, &pcp->list, 0);
730 		pcp->count -= pcp->batch;
731 	}
732 	local_irq_restore(flags);
733 	put_cpu();
734 }
735 
736 void fastcall free_hot_page(struct page *page)
737 {
738 	free_hot_cold_page(page, 0);
739 }
740 
741 void fastcall free_cold_page(struct page *page)
742 {
743 	free_hot_cold_page(page, 1);
744 }
745 
746 static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
747 {
748 	int i;
749 
750 	BUG_ON((gfp_flags & (__GFP_WAIT | __GFP_HIGHMEM)) == __GFP_HIGHMEM);
751 	for(i = 0; i < (1 << order); i++)
752 		clear_highpage(page + i);
753 }
754 
755 /*
756  * Really, prep_compound_page() should be called from __rmqueue_bulk().  But
757  * we cheat by calling it from here, in the order > 0 path.  Saves a branch
758  * or two.
759  */
760 static struct page *buffered_rmqueue(struct zonelist *zonelist,
761 			struct zone *zone, int order, gfp_t gfp_flags)
762 {
763 	unsigned long flags;
764 	struct page *page;
765 	int cold = !!(gfp_flags & __GFP_COLD);
766 	int cpu;
767 
768 again:
769 	cpu  = get_cpu();
770 	if (likely(order == 0)) {
771 		struct per_cpu_pages *pcp;
772 
773 		pcp = &zone_pcp(zone, cpu)->pcp[cold];
774 		local_irq_save(flags);
775 		if (!pcp->count) {
776 			pcp->count += rmqueue_bulk(zone, 0,
777 						pcp->batch, &pcp->list);
778 			if (unlikely(!pcp->count))
779 				goto failed;
780 		}
781 		page = list_entry(pcp->list.next, struct page, lru);
782 		list_del(&page->lru);
783 		pcp->count--;
784 	} else {
785 		spin_lock_irqsave(&zone->lock, flags);
786 		page = __rmqueue(zone, order);
787 		spin_unlock(&zone->lock);
788 		if (!page)
789 			goto failed;
790 	}
791 
792 	__mod_page_state_zone(zone, pgalloc, 1 << order);
793 	zone_statistics(zonelist, zone, cpu);
794 	local_irq_restore(flags);
795 	put_cpu();
796 
797 	BUG_ON(bad_range(zone, page));
798 	if (prep_new_page(page, order))
799 		goto again;
800 
801 	if (gfp_flags & __GFP_ZERO)
802 		prep_zero_page(page, order, gfp_flags);
803 
804 	if (order && (gfp_flags & __GFP_COMP))
805 		prep_compound_page(page, order);
806 	return page;
807 
808 failed:
809 	local_irq_restore(flags);
810 	put_cpu();
811 	return NULL;
812 }
813 
814 #define ALLOC_NO_WATERMARKS	0x01 /* don't check watermarks at all */
815 #define ALLOC_WMARK_MIN		0x02 /* use pages_min watermark */
816 #define ALLOC_WMARK_LOW		0x04 /* use pages_low watermark */
817 #define ALLOC_WMARK_HIGH	0x08 /* use pages_high watermark */
818 #define ALLOC_HARDER		0x10 /* try to alloc harder */
819 #define ALLOC_HIGH		0x20 /* __GFP_HIGH set */
820 #define ALLOC_CPUSET		0x40 /* check for correct cpuset */
821 
822 /*
823  * Return 1 if free pages are above 'mark'. This takes into account the order
824  * of the allocation.
825  */
826 int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
827 		      int classzone_idx, int alloc_flags)
828 {
829 	/* free_pages my go negative - that's OK */
830 	long min = mark, free_pages = z->free_pages - (1 << order) + 1;
831 	int o;
832 
833 	if (alloc_flags & ALLOC_HIGH)
834 		min -= min / 2;
835 	if (alloc_flags & ALLOC_HARDER)
836 		min -= min / 4;
837 
838 	if (free_pages <= min + z->lowmem_reserve[classzone_idx])
839 		return 0;
840 	for (o = 0; o < order; o++) {
841 		/* At the next order, this order's pages become unavailable */
842 		free_pages -= z->free_area[o].nr_free << o;
843 
844 		/* Require fewer higher order pages to be free */
845 		min >>= 1;
846 
847 		if (free_pages <= min)
848 			return 0;
849 	}
850 	return 1;
851 }
852 
853 /*
854  * get_page_from_freeliest goes through the zonelist trying to allocate
855  * a page.
856  */
857 static struct page *
858 get_page_from_freelist(gfp_t gfp_mask, unsigned int order,
859 		struct zonelist *zonelist, int alloc_flags)
860 {
861 	struct zone **z = zonelist->zones;
862 	struct page *page = NULL;
863 	int classzone_idx = zone_idx(*z);
864 
865 	/*
866 	 * Go through the zonelist once, looking for a zone with enough free.
867 	 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
868 	 */
869 	do {
870 		if ((alloc_flags & ALLOC_CPUSET) &&
871 				!cpuset_zone_allowed(*z, gfp_mask))
872 			continue;
873 
874 		if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
875 			unsigned long mark;
876 			if (alloc_flags & ALLOC_WMARK_MIN)
877 				mark = (*z)->pages_min;
878 			else if (alloc_flags & ALLOC_WMARK_LOW)
879 				mark = (*z)->pages_low;
880 			else
881 				mark = (*z)->pages_high;
882 			if (!zone_watermark_ok(*z, order, mark,
883 				    classzone_idx, alloc_flags))
884 				if (!zone_reclaim_mode ||
885 				    !zone_reclaim(*z, gfp_mask, order))
886 					continue;
887 		}
888 
889 		page = buffered_rmqueue(zonelist, *z, order, gfp_mask);
890 		if (page) {
891 			break;
892 		}
893 	} while (*(++z) != NULL);
894 	return page;
895 }
896 
897 /*
898  * This is the 'heart' of the zoned buddy allocator.
899  */
900 struct page * fastcall
901 __alloc_pages(gfp_t gfp_mask, unsigned int order,
902 		struct zonelist *zonelist)
903 {
904 	const gfp_t wait = gfp_mask & __GFP_WAIT;
905 	struct zone **z;
906 	struct page *page;
907 	struct reclaim_state reclaim_state;
908 	struct task_struct *p = current;
909 	int do_retry;
910 	int alloc_flags;
911 	int did_some_progress;
912 
913 	might_sleep_if(wait);
914 
915 restart:
916 	z = zonelist->zones;  /* the list of zones suitable for gfp_mask */
917 
918 	if (unlikely(*z == NULL)) {
919 		/* Should this ever happen?? */
920 		return NULL;
921 	}
922 
923 	page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, order,
924 				zonelist, ALLOC_WMARK_LOW|ALLOC_CPUSET);
925 	if (page)
926 		goto got_pg;
927 
928 	do {
929 		wakeup_kswapd(*z, order);
930 	} while (*(++z));
931 
932 	/*
933 	 * OK, we're below the kswapd watermark and have kicked background
934 	 * reclaim. Now things get more complex, so set up alloc_flags according
935 	 * to how we want to proceed.
936 	 *
937 	 * The caller may dip into page reserves a bit more if the caller
938 	 * cannot run direct reclaim, or if the caller has realtime scheduling
939 	 * policy or is asking for __GFP_HIGH memory.  GFP_ATOMIC requests will
940 	 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
941 	 */
942 	alloc_flags = ALLOC_WMARK_MIN;
943 	if ((unlikely(rt_task(p)) && !in_interrupt()) || !wait)
944 		alloc_flags |= ALLOC_HARDER;
945 	if (gfp_mask & __GFP_HIGH)
946 		alloc_flags |= ALLOC_HIGH;
947 	alloc_flags |= ALLOC_CPUSET;
948 
949 	/*
950 	 * Go through the zonelist again. Let __GFP_HIGH and allocations
951 	 * coming from realtime tasks go deeper into reserves.
952 	 *
953 	 * This is the last chance, in general, before the goto nopage.
954 	 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
955 	 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
956 	 */
957 	page = get_page_from_freelist(gfp_mask, order, zonelist, alloc_flags);
958 	if (page)
959 		goto got_pg;
960 
961 	/* This allocation should allow future memory freeing. */
962 
963 	if (((p->flags & PF_MEMALLOC) || unlikely(test_thread_flag(TIF_MEMDIE)))
964 			&& !in_interrupt()) {
965 		if (!(gfp_mask & __GFP_NOMEMALLOC)) {
966 nofail_alloc:
967 			/* go through the zonelist yet again, ignoring mins */
968 			page = get_page_from_freelist(gfp_mask, order,
969 				zonelist, ALLOC_NO_WATERMARKS);
970 			if (page)
971 				goto got_pg;
972 			if (gfp_mask & __GFP_NOFAIL) {
973 				blk_congestion_wait(WRITE, HZ/50);
974 				goto nofail_alloc;
975 			}
976 		}
977 		goto nopage;
978 	}
979 
980 	/* Atomic allocations - we can't balance anything */
981 	if (!wait)
982 		goto nopage;
983 
984 rebalance:
985 	cond_resched();
986 
987 	/* We now go into synchronous reclaim */
988 	cpuset_memory_pressure_bump();
989 	p->flags |= PF_MEMALLOC;
990 	reclaim_state.reclaimed_slab = 0;
991 	p->reclaim_state = &reclaim_state;
992 
993 	did_some_progress = try_to_free_pages(zonelist->zones, gfp_mask);
994 
995 	p->reclaim_state = NULL;
996 	p->flags &= ~PF_MEMALLOC;
997 
998 	cond_resched();
999 
1000 	if (likely(did_some_progress)) {
1001 		page = get_page_from_freelist(gfp_mask, order,
1002 						zonelist, alloc_flags);
1003 		if (page)
1004 			goto got_pg;
1005 	} else if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
1006 		/*
1007 		 * Go through the zonelist yet one more time, keep
1008 		 * very high watermark here, this is only to catch
1009 		 * a parallel oom killing, we must fail if we're still
1010 		 * under heavy pressure.
1011 		 */
1012 		page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, order,
1013 				zonelist, ALLOC_WMARK_HIGH|ALLOC_CPUSET);
1014 		if (page)
1015 			goto got_pg;
1016 
1017 		out_of_memory(zonelist, gfp_mask, order);
1018 		goto restart;
1019 	}
1020 
1021 	/*
1022 	 * Don't let big-order allocations loop unless the caller explicitly
1023 	 * requests that.  Wait for some write requests to complete then retry.
1024 	 *
1025 	 * In this implementation, __GFP_REPEAT means __GFP_NOFAIL for order
1026 	 * <= 3, but that may not be true in other implementations.
1027 	 */
1028 	do_retry = 0;
1029 	if (!(gfp_mask & __GFP_NORETRY)) {
1030 		if ((order <= 3) || (gfp_mask & __GFP_REPEAT))
1031 			do_retry = 1;
1032 		if (gfp_mask & __GFP_NOFAIL)
1033 			do_retry = 1;
1034 	}
1035 	if (do_retry) {
1036 		blk_congestion_wait(WRITE, HZ/50);
1037 		goto rebalance;
1038 	}
1039 
1040 nopage:
1041 	if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) {
1042 		printk(KERN_WARNING "%s: page allocation failure."
1043 			" order:%d, mode:0x%x\n",
1044 			p->comm, order, gfp_mask);
1045 		dump_stack();
1046 		show_mem();
1047 	}
1048 got_pg:
1049 	return page;
1050 }
1051 
1052 EXPORT_SYMBOL(__alloc_pages);
1053 
1054 /*
1055  * Common helper functions.
1056  */
1057 fastcall unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1058 {
1059 	struct page * page;
1060 	page = alloc_pages(gfp_mask, order);
1061 	if (!page)
1062 		return 0;
1063 	return (unsigned long) page_address(page);
1064 }
1065 
1066 EXPORT_SYMBOL(__get_free_pages);
1067 
1068 fastcall unsigned long get_zeroed_page(gfp_t gfp_mask)
1069 {
1070 	struct page * page;
1071 
1072 	/*
1073 	 * get_zeroed_page() returns a 32-bit address, which cannot represent
1074 	 * a highmem page
1075 	 */
1076 	BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
1077 
1078 	page = alloc_pages(gfp_mask | __GFP_ZERO, 0);
1079 	if (page)
1080 		return (unsigned long) page_address(page);
1081 	return 0;
1082 }
1083 
1084 EXPORT_SYMBOL(get_zeroed_page);
1085 
1086 void __pagevec_free(struct pagevec *pvec)
1087 {
1088 	int i = pagevec_count(pvec);
1089 
1090 	while (--i >= 0)
1091 		free_hot_cold_page(pvec->pages[i], pvec->cold);
1092 }
1093 
1094 fastcall void __free_pages(struct page *page, unsigned int order)
1095 {
1096 	if (put_page_testzero(page)) {
1097 		if (order == 0)
1098 			free_hot_page(page);
1099 		else
1100 			__free_pages_ok(page, order);
1101 	}
1102 }
1103 
1104 EXPORT_SYMBOL(__free_pages);
1105 
1106 fastcall void free_pages(unsigned long addr, unsigned int order)
1107 {
1108 	if (addr != 0) {
1109 		BUG_ON(!virt_addr_valid((void *)addr));
1110 		__free_pages(virt_to_page((void *)addr), order);
1111 	}
1112 }
1113 
1114 EXPORT_SYMBOL(free_pages);
1115 
1116 /*
1117  * Total amount of free (allocatable) RAM:
1118  */
1119 unsigned int nr_free_pages(void)
1120 {
1121 	unsigned int sum = 0;
1122 	struct zone *zone;
1123 
1124 	for_each_zone(zone)
1125 		sum += zone->free_pages;
1126 
1127 	return sum;
1128 }
1129 
1130 EXPORT_SYMBOL(nr_free_pages);
1131 
1132 #ifdef CONFIG_NUMA
1133 unsigned int nr_free_pages_pgdat(pg_data_t *pgdat)
1134 {
1135 	unsigned int i, sum = 0;
1136 
1137 	for (i = 0; i < MAX_NR_ZONES; i++)
1138 		sum += pgdat->node_zones[i].free_pages;
1139 
1140 	return sum;
1141 }
1142 #endif
1143 
1144 static unsigned int nr_free_zone_pages(int offset)
1145 {
1146 	/* Just pick one node, since fallback list is circular */
1147 	pg_data_t *pgdat = NODE_DATA(numa_node_id());
1148 	unsigned int sum = 0;
1149 
1150 	struct zonelist *zonelist = pgdat->node_zonelists + offset;
1151 	struct zone **zonep = zonelist->zones;
1152 	struct zone *zone;
1153 
1154 	for (zone = *zonep++; zone; zone = *zonep++) {
1155 		unsigned long size = zone->present_pages;
1156 		unsigned long high = zone->pages_high;
1157 		if (size > high)
1158 			sum += size - high;
1159 	}
1160 
1161 	return sum;
1162 }
1163 
1164 /*
1165  * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
1166  */
1167 unsigned int nr_free_buffer_pages(void)
1168 {
1169 	return nr_free_zone_pages(gfp_zone(GFP_USER));
1170 }
1171 
1172 /*
1173  * Amount of free RAM allocatable within all zones
1174  */
1175 unsigned int nr_free_pagecache_pages(void)
1176 {
1177 	return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER));
1178 }
1179 
1180 #ifdef CONFIG_HIGHMEM
1181 unsigned int nr_free_highpages (void)
1182 {
1183 	pg_data_t *pgdat;
1184 	unsigned int pages = 0;
1185 
1186 	for_each_pgdat(pgdat)
1187 		pages += pgdat->node_zones[ZONE_HIGHMEM].free_pages;
1188 
1189 	return pages;
1190 }
1191 #endif
1192 
1193 #ifdef CONFIG_NUMA
1194 static void show_node(struct zone *zone)
1195 {
1196 	printk("Node %d ", zone->zone_pgdat->node_id);
1197 }
1198 #else
1199 #define show_node(zone)	do { } while (0)
1200 #endif
1201 
1202 /*
1203  * Accumulate the page_state information across all CPUs.
1204  * The result is unavoidably approximate - it can change
1205  * during and after execution of this function.
1206  */
1207 static DEFINE_PER_CPU(struct page_state, page_states) = {0};
1208 
1209 atomic_t nr_pagecache = ATOMIC_INIT(0);
1210 EXPORT_SYMBOL(nr_pagecache);
1211 #ifdef CONFIG_SMP
1212 DEFINE_PER_CPU(long, nr_pagecache_local) = 0;
1213 #endif
1214 
1215 static void __get_page_state(struct page_state *ret, int nr, cpumask_t *cpumask)
1216 {
1217 	int cpu = 0;
1218 
1219 	memset(ret, 0, nr * sizeof(unsigned long));
1220 	cpus_and(*cpumask, *cpumask, cpu_online_map);
1221 
1222 	cpu = first_cpu(*cpumask);
1223 	while (cpu < NR_CPUS) {
1224 		unsigned long *in, *out, off;
1225 
1226 		if (!cpu_isset(cpu, *cpumask))
1227 			continue;
1228 
1229 		in = (unsigned long *)&per_cpu(page_states, cpu);
1230 
1231 		cpu = next_cpu(cpu, *cpumask);
1232 
1233 		if (likely(cpu < NR_CPUS))
1234 			prefetch(&per_cpu(page_states, cpu));
1235 
1236 		out = (unsigned long *)ret;
1237 		for (off = 0; off < nr; off++)
1238 			*out++ += *in++;
1239 	}
1240 }
1241 
1242 void get_page_state_node(struct page_state *ret, int node)
1243 {
1244 	int nr;
1245 	cpumask_t mask = node_to_cpumask(node);
1246 
1247 	nr = offsetof(struct page_state, GET_PAGE_STATE_LAST);
1248 	nr /= sizeof(unsigned long);
1249 
1250 	__get_page_state(ret, nr+1, &mask);
1251 }
1252 
1253 void get_page_state(struct page_state *ret)
1254 {
1255 	int nr;
1256 	cpumask_t mask = CPU_MASK_ALL;
1257 
1258 	nr = offsetof(struct page_state, GET_PAGE_STATE_LAST);
1259 	nr /= sizeof(unsigned long);
1260 
1261 	__get_page_state(ret, nr + 1, &mask);
1262 }
1263 
1264 void get_full_page_state(struct page_state *ret)
1265 {
1266 	cpumask_t mask = CPU_MASK_ALL;
1267 
1268 	__get_page_state(ret, sizeof(*ret) / sizeof(unsigned long), &mask);
1269 }
1270 
1271 unsigned long read_page_state_offset(unsigned long offset)
1272 {
1273 	unsigned long ret = 0;
1274 	int cpu;
1275 
1276 	for_each_online_cpu(cpu) {
1277 		unsigned long in;
1278 
1279 		in = (unsigned long)&per_cpu(page_states, cpu) + offset;
1280 		ret += *((unsigned long *)in);
1281 	}
1282 	return ret;
1283 }
1284 
1285 void __mod_page_state_offset(unsigned long offset, unsigned long delta)
1286 {
1287 	void *ptr;
1288 
1289 	ptr = &__get_cpu_var(page_states);
1290 	*(unsigned long *)(ptr + offset) += delta;
1291 }
1292 EXPORT_SYMBOL(__mod_page_state_offset);
1293 
1294 void mod_page_state_offset(unsigned long offset, unsigned long delta)
1295 {
1296 	unsigned long flags;
1297 	void *ptr;
1298 
1299 	local_irq_save(flags);
1300 	ptr = &__get_cpu_var(page_states);
1301 	*(unsigned long *)(ptr + offset) += delta;
1302 	local_irq_restore(flags);
1303 }
1304 EXPORT_SYMBOL(mod_page_state_offset);
1305 
1306 void __get_zone_counts(unsigned long *active, unsigned long *inactive,
1307 			unsigned long *free, struct pglist_data *pgdat)
1308 {
1309 	struct zone *zones = pgdat->node_zones;
1310 	int i;
1311 
1312 	*active = 0;
1313 	*inactive = 0;
1314 	*free = 0;
1315 	for (i = 0; i < MAX_NR_ZONES; i++) {
1316 		*active += zones[i].nr_active;
1317 		*inactive += zones[i].nr_inactive;
1318 		*free += zones[i].free_pages;
1319 	}
1320 }
1321 
1322 void get_zone_counts(unsigned long *active,
1323 		unsigned long *inactive, unsigned long *free)
1324 {
1325 	struct pglist_data *pgdat;
1326 
1327 	*active = 0;
1328 	*inactive = 0;
1329 	*free = 0;
1330 	for_each_pgdat(pgdat) {
1331 		unsigned long l, m, n;
1332 		__get_zone_counts(&l, &m, &n, pgdat);
1333 		*active += l;
1334 		*inactive += m;
1335 		*free += n;
1336 	}
1337 }
1338 
1339 void si_meminfo(struct sysinfo *val)
1340 {
1341 	val->totalram = totalram_pages;
1342 	val->sharedram = 0;
1343 	val->freeram = nr_free_pages();
1344 	val->bufferram = nr_blockdev_pages();
1345 #ifdef CONFIG_HIGHMEM
1346 	val->totalhigh = totalhigh_pages;
1347 	val->freehigh = nr_free_highpages();
1348 #else
1349 	val->totalhigh = 0;
1350 	val->freehigh = 0;
1351 #endif
1352 	val->mem_unit = PAGE_SIZE;
1353 }
1354 
1355 EXPORT_SYMBOL(si_meminfo);
1356 
1357 #ifdef CONFIG_NUMA
1358 void si_meminfo_node(struct sysinfo *val, int nid)
1359 {
1360 	pg_data_t *pgdat = NODE_DATA(nid);
1361 
1362 	val->totalram = pgdat->node_present_pages;
1363 	val->freeram = nr_free_pages_pgdat(pgdat);
1364 	val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
1365 	val->freehigh = pgdat->node_zones[ZONE_HIGHMEM].free_pages;
1366 	val->mem_unit = PAGE_SIZE;
1367 }
1368 #endif
1369 
1370 #define K(x) ((x) << (PAGE_SHIFT-10))
1371 
1372 /*
1373  * Show free area list (used inside shift_scroll-lock stuff)
1374  * We also calculate the percentage fragmentation. We do this by counting the
1375  * memory on each free list with the exception of the first item on the list.
1376  */
1377 void show_free_areas(void)
1378 {
1379 	struct page_state ps;
1380 	int cpu, temperature;
1381 	unsigned long active;
1382 	unsigned long inactive;
1383 	unsigned long free;
1384 	struct zone *zone;
1385 
1386 	for_each_zone(zone) {
1387 		show_node(zone);
1388 		printk("%s per-cpu:", zone->name);
1389 
1390 		if (!populated_zone(zone)) {
1391 			printk(" empty\n");
1392 			continue;
1393 		} else
1394 			printk("\n");
1395 
1396 		for_each_online_cpu(cpu) {
1397 			struct per_cpu_pageset *pageset;
1398 
1399 			pageset = zone_pcp(zone, cpu);
1400 
1401 			for (temperature = 0; temperature < 2; temperature++)
1402 				printk("cpu %d %s: high %d, batch %d used:%d\n",
1403 					cpu,
1404 					temperature ? "cold" : "hot",
1405 					pageset->pcp[temperature].high,
1406 					pageset->pcp[temperature].batch,
1407 					pageset->pcp[temperature].count);
1408 		}
1409 	}
1410 
1411 	get_page_state(&ps);
1412 	get_zone_counts(&active, &inactive, &free);
1413 
1414 	printk("Free pages: %11ukB (%ukB HighMem)\n",
1415 		K(nr_free_pages()),
1416 		K(nr_free_highpages()));
1417 
1418 	printk("Active:%lu inactive:%lu dirty:%lu writeback:%lu "
1419 		"unstable:%lu free:%u slab:%lu mapped:%lu pagetables:%lu\n",
1420 		active,
1421 		inactive,
1422 		ps.nr_dirty,
1423 		ps.nr_writeback,
1424 		ps.nr_unstable,
1425 		nr_free_pages(),
1426 		ps.nr_slab,
1427 		ps.nr_mapped,
1428 		ps.nr_page_table_pages);
1429 
1430 	for_each_zone(zone) {
1431 		int i;
1432 
1433 		show_node(zone);
1434 		printk("%s"
1435 			" free:%lukB"
1436 			" min:%lukB"
1437 			" low:%lukB"
1438 			" high:%lukB"
1439 			" active:%lukB"
1440 			" inactive:%lukB"
1441 			" present:%lukB"
1442 			" pages_scanned:%lu"
1443 			" all_unreclaimable? %s"
1444 			"\n",
1445 			zone->name,
1446 			K(zone->free_pages),
1447 			K(zone->pages_min),
1448 			K(zone->pages_low),
1449 			K(zone->pages_high),
1450 			K(zone->nr_active),
1451 			K(zone->nr_inactive),
1452 			K(zone->present_pages),
1453 			zone->pages_scanned,
1454 			(zone->all_unreclaimable ? "yes" : "no")
1455 			);
1456 		printk("lowmem_reserve[]:");
1457 		for (i = 0; i < MAX_NR_ZONES; i++)
1458 			printk(" %lu", zone->lowmem_reserve[i]);
1459 		printk("\n");
1460 	}
1461 
1462 	for_each_zone(zone) {
1463  		unsigned long nr, flags, order, total = 0;
1464 
1465 		show_node(zone);
1466 		printk("%s: ", zone->name);
1467 		if (!populated_zone(zone)) {
1468 			printk("empty\n");
1469 			continue;
1470 		}
1471 
1472 		spin_lock_irqsave(&zone->lock, flags);
1473 		for (order = 0; order < MAX_ORDER; order++) {
1474 			nr = zone->free_area[order].nr_free;
1475 			total += nr << order;
1476 			printk("%lu*%lukB ", nr, K(1UL) << order);
1477 		}
1478 		spin_unlock_irqrestore(&zone->lock, flags);
1479 		printk("= %lukB\n", K(total));
1480 	}
1481 
1482 	show_swap_cache_info();
1483 }
1484 
1485 /*
1486  * Builds allocation fallback zone lists.
1487  *
1488  * Add all populated zones of a node to the zonelist.
1489  */
1490 static int __init build_zonelists_node(pg_data_t *pgdat,
1491 			struct zonelist *zonelist, int nr_zones, int zone_type)
1492 {
1493 	struct zone *zone;
1494 
1495 	BUG_ON(zone_type > ZONE_HIGHMEM);
1496 
1497 	do {
1498 		zone = pgdat->node_zones + zone_type;
1499 		if (populated_zone(zone)) {
1500 #ifndef CONFIG_HIGHMEM
1501 			BUG_ON(zone_type > ZONE_NORMAL);
1502 #endif
1503 			zonelist->zones[nr_zones++] = zone;
1504 			check_highest_zone(zone_type);
1505 		}
1506 		zone_type--;
1507 
1508 	} while (zone_type >= 0);
1509 	return nr_zones;
1510 }
1511 
1512 static inline int highest_zone(int zone_bits)
1513 {
1514 	int res = ZONE_NORMAL;
1515 	if (zone_bits & (__force int)__GFP_HIGHMEM)
1516 		res = ZONE_HIGHMEM;
1517 	if (zone_bits & (__force int)__GFP_DMA32)
1518 		res = ZONE_DMA32;
1519 	if (zone_bits & (__force int)__GFP_DMA)
1520 		res = ZONE_DMA;
1521 	return res;
1522 }
1523 
1524 #ifdef CONFIG_NUMA
1525 #define MAX_NODE_LOAD (num_online_nodes())
1526 static int __initdata node_load[MAX_NUMNODES];
1527 /**
1528  * find_next_best_node - find the next node that should appear in a given node's fallback list
1529  * @node: node whose fallback list we're appending
1530  * @used_node_mask: nodemask_t of already used nodes
1531  *
1532  * We use a number of factors to determine which is the next node that should
1533  * appear on a given node's fallback list.  The node should not have appeared
1534  * already in @node's fallback list, and it should be the next closest node
1535  * according to the distance array (which contains arbitrary distance values
1536  * from each node to each node in the system), and should also prefer nodes
1537  * with no CPUs, since presumably they'll have very little allocation pressure
1538  * on them otherwise.
1539  * It returns -1 if no node is found.
1540  */
1541 static int __init find_next_best_node(int node, nodemask_t *used_node_mask)
1542 {
1543 	int n, val;
1544 	int min_val = INT_MAX;
1545 	int best_node = -1;
1546 
1547 	/* Use the local node if we haven't already */
1548 	if (!node_isset(node, *used_node_mask)) {
1549 		node_set(node, *used_node_mask);
1550 		return node;
1551 	}
1552 
1553 	for_each_online_node(n) {
1554 		cpumask_t tmp;
1555 
1556 		/* Don't want a node to appear more than once */
1557 		if (node_isset(n, *used_node_mask))
1558 			continue;
1559 
1560 		/* Use the distance array to find the distance */
1561 		val = node_distance(node, n);
1562 
1563 		/* Penalize nodes under us ("prefer the next node") */
1564 		val += (n < node);
1565 
1566 		/* Give preference to headless and unused nodes */
1567 		tmp = node_to_cpumask(n);
1568 		if (!cpus_empty(tmp))
1569 			val += PENALTY_FOR_NODE_WITH_CPUS;
1570 
1571 		/* Slight preference for less loaded node */
1572 		val *= (MAX_NODE_LOAD*MAX_NUMNODES);
1573 		val += node_load[n];
1574 
1575 		if (val < min_val) {
1576 			min_val = val;
1577 			best_node = n;
1578 		}
1579 	}
1580 
1581 	if (best_node >= 0)
1582 		node_set(best_node, *used_node_mask);
1583 
1584 	return best_node;
1585 }
1586 
1587 static void __init build_zonelists(pg_data_t *pgdat)
1588 {
1589 	int i, j, k, node, local_node;
1590 	int prev_node, load;
1591 	struct zonelist *zonelist;
1592 	nodemask_t used_mask;
1593 
1594 	/* initialize zonelists */
1595 	for (i = 0; i < GFP_ZONETYPES; i++) {
1596 		zonelist = pgdat->node_zonelists + i;
1597 		zonelist->zones[0] = NULL;
1598 	}
1599 
1600 	/* NUMA-aware ordering of nodes */
1601 	local_node = pgdat->node_id;
1602 	load = num_online_nodes();
1603 	prev_node = local_node;
1604 	nodes_clear(used_mask);
1605 	while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
1606 		int distance = node_distance(local_node, node);
1607 
1608 		/*
1609 		 * If another node is sufficiently far away then it is better
1610 		 * to reclaim pages in a zone before going off node.
1611 		 */
1612 		if (distance > RECLAIM_DISTANCE)
1613 			zone_reclaim_mode = 1;
1614 
1615 		/*
1616 		 * We don't want to pressure a particular node.
1617 		 * So adding penalty to the first node in same
1618 		 * distance group to make it round-robin.
1619 		 */
1620 
1621 		if (distance != node_distance(local_node, prev_node))
1622 			node_load[node] += load;
1623 		prev_node = node;
1624 		load--;
1625 		for (i = 0; i < GFP_ZONETYPES; i++) {
1626 			zonelist = pgdat->node_zonelists + i;
1627 			for (j = 0; zonelist->zones[j] != NULL; j++);
1628 
1629 			k = highest_zone(i);
1630 
1631 	 		j = build_zonelists_node(NODE_DATA(node), zonelist, j, k);
1632 			zonelist->zones[j] = NULL;
1633 		}
1634 	}
1635 }
1636 
1637 #else	/* CONFIG_NUMA */
1638 
1639 static void __init build_zonelists(pg_data_t *pgdat)
1640 {
1641 	int i, j, k, node, local_node;
1642 
1643 	local_node = pgdat->node_id;
1644 	for (i = 0; i < GFP_ZONETYPES; i++) {
1645 		struct zonelist *zonelist;
1646 
1647 		zonelist = pgdat->node_zonelists + i;
1648 
1649 		j = 0;
1650 		k = highest_zone(i);
1651  		j = build_zonelists_node(pgdat, zonelist, j, k);
1652  		/*
1653  		 * Now we build the zonelist so that it contains the zones
1654  		 * of all the other nodes.
1655  		 * We don't want to pressure a particular node, so when
1656  		 * building the zones for node N, we make sure that the
1657  		 * zones coming right after the local ones are those from
1658  		 * node N+1 (modulo N)
1659  		 */
1660 		for (node = local_node + 1; node < MAX_NUMNODES; node++) {
1661 			if (!node_online(node))
1662 				continue;
1663 			j = build_zonelists_node(NODE_DATA(node), zonelist, j, k);
1664 		}
1665 		for (node = 0; node < local_node; node++) {
1666 			if (!node_online(node))
1667 				continue;
1668 			j = build_zonelists_node(NODE_DATA(node), zonelist, j, k);
1669 		}
1670 
1671 		zonelist->zones[j] = NULL;
1672 	}
1673 }
1674 
1675 #endif	/* CONFIG_NUMA */
1676 
1677 void __init build_all_zonelists(void)
1678 {
1679 	int i;
1680 
1681 	for_each_online_node(i)
1682 		build_zonelists(NODE_DATA(i));
1683 	printk("Built %i zonelists\n", num_online_nodes());
1684 	cpuset_init_current_mems_allowed();
1685 }
1686 
1687 /*
1688  * Helper functions to size the waitqueue hash table.
1689  * Essentially these want to choose hash table sizes sufficiently
1690  * large so that collisions trying to wait on pages are rare.
1691  * But in fact, the number of active page waitqueues on typical
1692  * systems is ridiculously low, less than 200. So this is even
1693  * conservative, even though it seems large.
1694  *
1695  * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
1696  * waitqueues, i.e. the size of the waitq table given the number of pages.
1697  */
1698 #define PAGES_PER_WAITQUEUE	256
1699 
1700 static inline unsigned long wait_table_size(unsigned long pages)
1701 {
1702 	unsigned long size = 1;
1703 
1704 	pages /= PAGES_PER_WAITQUEUE;
1705 
1706 	while (size < pages)
1707 		size <<= 1;
1708 
1709 	/*
1710 	 * Once we have dozens or even hundreds of threads sleeping
1711 	 * on IO we've got bigger problems than wait queue collision.
1712 	 * Limit the size of the wait table to a reasonable size.
1713 	 */
1714 	size = min(size, 4096UL);
1715 
1716 	return max(size, 4UL);
1717 }
1718 
1719 /*
1720  * This is an integer logarithm so that shifts can be used later
1721  * to extract the more random high bits from the multiplicative
1722  * hash function before the remainder is taken.
1723  */
1724 static inline unsigned long wait_table_bits(unsigned long size)
1725 {
1726 	return ffz(~size);
1727 }
1728 
1729 #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
1730 
1731 static void __init calculate_zone_totalpages(struct pglist_data *pgdat,
1732 		unsigned long *zones_size, unsigned long *zholes_size)
1733 {
1734 	unsigned long realtotalpages, totalpages = 0;
1735 	int i;
1736 
1737 	for (i = 0; i < MAX_NR_ZONES; i++)
1738 		totalpages += zones_size[i];
1739 	pgdat->node_spanned_pages = totalpages;
1740 
1741 	realtotalpages = totalpages;
1742 	if (zholes_size)
1743 		for (i = 0; i < MAX_NR_ZONES; i++)
1744 			realtotalpages -= zholes_size[i];
1745 	pgdat->node_present_pages = realtotalpages;
1746 	printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id, realtotalpages);
1747 }
1748 
1749 
1750 /*
1751  * Initially all pages are reserved - free ones are freed
1752  * up by free_all_bootmem() once the early boot process is
1753  * done. Non-atomic initialization, single-pass.
1754  */
1755 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
1756 		unsigned long start_pfn)
1757 {
1758 	struct page *page;
1759 	unsigned long end_pfn = start_pfn + size;
1760 	unsigned long pfn;
1761 
1762 	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
1763 		if (!early_pfn_valid(pfn))
1764 			continue;
1765 		page = pfn_to_page(pfn);
1766 		set_page_links(page, zone, nid, pfn);
1767 		set_page_count(page, 1);
1768 		reset_page_mapcount(page);
1769 		SetPageReserved(page);
1770 		INIT_LIST_HEAD(&page->lru);
1771 #ifdef WANT_PAGE_VIRTUAL
1772 		/* The shift won't overflow because ZONE_NORMAL is below 4G. */
1773 		if (!is_highmem_idx(zone))
1774 			set_page_address(page, __va(pfn << PAGE_SHIFT));
1775 #endif
1776 	}
1777 }
1778 
1779 void zone_init_free_lists(struct pglist_data *pgdat, struct zone *zone,
1780 				unsigned long size)
1781 {
1782 	int order;
1783 	for (order = 0; order < MAX_ORDER ; order++) {
1784 		INIT_LIST_HEAD(&zone->free_area[order].free_list);
1785 		zone->free_area[order].nr_free = 0;
1786 	}
1787 }
1788 
1789 #define ZONETABLE_INDEX(x, zone_nr)	((x << ZONES_SHIFT) | zone_nr)
1790 void zonetable_add(struct zone *zone, int nid, int zid, unsigned long pfn,
1791 		unsigned long size)
1792 {
1793 	unsigned long snum = pfn_to_section_nr(pfn);
1794 	unsigned long end = pfn_to_section_nr(pfn + size);
1795 
1796 	if (FLAGS_HAS_NODE)
1797 		zone_table[ZONETABLE_INDEX(nid, zid)] = zone;
1798 	else
1799 		for (; snum <= end; snum++)
1800 			zone_table[ZONETABLE_INDEX(snum, zid)] = zone;
1801 }
1802 
1803 #ifndef __HAVE_ARCH_MEMMAP_INIT
1804 #define memmap_init(size, nid, zone, start_pfn) \
1805 	memmap_init_zone((size), (nid), (zone), (start_pfn))
1806 #endif
1807 
1808 static int __cpuinit zone_batchsize(struct zone *zone)
1809 {
1810 	int batch;
1811 
1812 	/*
1813 	 * The per-cpu-pages pools are set to around 1000th of the
1814 	 * size of the zone.  But no more than 1/2 of a meg.
1815 	 *
1816 	 * OK, so we don't know how big the cache is.  So guess.
1817 	 */
1818 	batch = zone->present_pages / 1024;
1819 	if (batch * PAGE_SIZE > 512 * 1024)
1820 		batch = (512 * 1024) / PAGE_SIZE;
1821 	batch /= 4;		/* We effectively *= 4 below */
1822 	if (batch < 1)
1823 		batch = 1;
1824 
1825 	/*
1826 	 * Clamp the batch to a 2^n - 1 value. Having a power
1827 	 * of 2 value was found to be more likely to have
1828 	 * suboptimal cache aliasing properties in some cases.
1829 	 *
1830 	 * For example if 2 tasks are alternately allocating
1831 	 * batches of pages, one task can end up with a lot
1832 	 * of pages of one half of the possible page colors
1833 	 * and the other with pages of the other colors.
1834 	 */
1835 	batch = (1 << (fls(batch + batch/2)-1)) - 1;
1836 
1837 	return batch;
1838 }
1839 
1840 inline void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
1841 {
1842 	struct per_cpu_pages *pcp;
1843 
1844 	memset(p, 0, sizeof(*p));
1845 
1846 	pcp = &p->pcp[0];		/* hot */
1847 	pcp->count = 0;
1848 	pcp->high = 6 * batch;
1849 	pcp->batch = max(1UL, 1 * batch);
1850 	INIT_LIST_HEAD(&pcp->list);
1851 
1852 	pcp = &p->pcp[1];		/* cold*/
1853 	pcp->count = 0;
1854 	pcp->high = 2 * batch;
1855 	pcp->batch = max(1UL, batch/2);
1856 	INIT_LIST_HEAD(&pcp->list);
1857 }
1858 
1859 /*
1860  * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
1861  * to the value high for the pageset p.
1862  */
1863 
1864 static void setup_pagelist_highmark(struct per_cpu_pageset *p,
1865 				unsigned long high)
1866 {
1867 	struct per_cpu_pages *pcp;
1868 
1869 	pcp = &p->pcp[0]; /* hot list */
1870 	pcp->high = high;
1871 	pcp->batch = max(1UL, high/4);
1872 	if ((high/4) > (PAGE_SHIFT * 8))
1873 		pcp->batch = PAGE_SHIFT * 8;
1874 }
1875 
1876 
1877 #ifdef CONFIG_NUMA
1878 /*
1879  * Boot pageset table. One per cpu which is going to be used for all
1880  * zones and all nodes. The parameters will be set in such a way
1881  * that an item put on a list will immediately be handed over to
1882  * the buddy list. This is safe since pageset manipulation is done
1883  * with interrupts disabled.
1884  *
1885  * Some NUMA counter updates may also be caught by the boot pagesets.
1886  *
1887  * The boot_pagesets must be kept even after bootup is complete for
1888  * unused processors and/or zones. They do play a role for bootstrapping
1889  * hotplugged processors.
1890  *
1891  * zoneinfo_show() and maybe other functions do
1892  * not check if the processor is online before following the pageset pointer.
1893  * Other parts of the kernel may not check if the zone is available.
1894  */
1895 static struct per_cpu_pageset boot_pageset[NR_CPUS];
1896 
1897 /*
1898  * Dynamically allocate memory for the
1899  * per cpu pageset array in struct zone.
1900  */
1901 static int __cpuinit process_zones(int cpu)
1902 {
1903 	struct zone *zone, *dzone;
1904 
1905 	for_each_zone(zone) {
1906 
1907 		zone_pcp(zone, cpu) = kmalloc_node(sizeof(struct per_cpu_pageset),
1908 					 GFP_KERNEL, cpu_to_node(cpu));
1909 		if (!zone_pcp(zone, cpu))
1910 			goto bad;
1911 
1912 		setup_pageset(zone_pcp(zone, cpu), zone_batchsize(zone));
1913 
1914 		if (percpu_pagelist_fraction)
1915 			setup_pagelist_highmark(zone_pcp(zone, cpu),
1916 			 	(zone->present_pages / percpu_pagelist_fraction));
1917 	}
1918 
1919 	return 0;
1920 bad:
1921 	for_each_zone(dzone) {
1922 		if (dzone == zone)
1923 			break;
1924 		kfree(zone_pcp(dzone, cpu));
1925 		zone_pcp(dzone, cpu) = NULL;
1926 	}
1927 	return -ENOMEM;
1928 }
1929 
1930 static inline void free_zone_pagesets(int cpu)
1931 {
1932 	struct zone *zone;
1933 
1934 	for_each_zone(zone) {
1935 		struct per_cpu_pageset *pset = zone_pcp(zone, cpu);
1936 
1937 		zone_pcp(zone, cpu) = NULL;
1938 		kfree(pset);
1939 	}
1940 }
1941 
1942 static int __cpuinit pageset_cpuup_callback(struct notifier_block *nfb,
1943 		unsigned long action,
1944 		void *hcpu)
1945 {
1946 	int cpu = (long)hcpu;
1947 	int ret = NOTIFY_OK;
1948 
1949 	switch (action) {
1950 		case CPU_UP_PREPARE:
1951 			if (process_zones(cpu))
1952 				ret = NOTIFY_BAD;
1953 			break;
1954 		case CPU_UP_CANCELED:
1955 		case CPU_DEAD:
1956 			free_zone_pagesets(cpu);
1957 			break;
1958 		default:
1959 			break;
1960 	}
1961 	return ret;
1962 }
1963 
1964 static struct notifier_block pageset_notifier =
1965 	{ &pageset_cpuup_callback, NULL, 0 };
1966 
1967 void __init setup_per_cpu_pageset(void)
1968 {
1969 	int err;
1970 
1971 	/* Initialize per_cpu_pageset for cpu 0.
1972 	 * A cpuup callback will do this for every cpu
1973 	 * as it comes online
1974 	 */
1975 	err = process_zones(smp_processor_id());
1976 	BUG_ON(err);
1977 	register_cpu_notifier(&pageset_notifier);
1978 }
1979 
1980 #endif
1981 
1982 static __meminit
1983 void zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
1984 {
1985 	int i;
1986 	struct pglist_data *pgdat = zone->zone_pgdat;
1987 
1988 	/*
1989 	 * The per-page waitqueue mechanism uses hashed waitqueues
1990 	 * per zone.
1991 	 */
1992 	zone->wait_table_size = wait_table_size(zone_size_pages);
1993 	zone->wait_table_bits =	wait_table_bits(zone->wait_table_size);
1994 	zone->wait_table = (wait_queue_head_t *)
1995 		alloc_bootmem_node(pgdat, zone->wait_table_size
1996 					* sizeof(wait_queue_head_t));
1997 
1998 	for(i = 0; i < zone->wait_table_size; ++i)
1999 		init_waitqueue_head(zone->wait_table + i);
2000 }
2001 
2002 static __meminit void zone_pcp_init(struct zone *zone)
2003 {
2004 	int cpu;
2005 	unsigned long batch = zone_batchsize(zone);
2006 
2007 	for (cpu = 0; cpu < NR_CPUS; cpu++) {
2008 #ifdef CONFIG_NUMA
2009 		/* Early boot. Slab allocator not functional yet */
2010 		zone_pcp(zone, cpu) = &boot_pageset[cpu];
2011 		setup_pageset(&boot_pageset[cpu],0);
2012 #else
2013 		setup_pageset(zone_pcp(zone,cpu), batch);
2014 #endif
2015 	}
2016 	printk(KERN_DEBUG "  %s zone: %lu pages, LIFO batch:%lu\n",
2017 		zone->name, zone->present_pages, batch);
2018 }
2019 
2020 static __meminit void init_currently_empty_zone(struct zone *zone,
2021 		unsigned long zone_start_pfn, unsigned long size)
2022 {
2023 	struct pglist_data *pgdat = zone->zone_pgdat;
2024 
2025 	zone_wait_table_init(zone, size);
2026 	pgdat->nr_zones = zone_idx(zone) + 1;
2027 
2028 	zone->zone_mem_map = pfn_to_page(zone_start_pfn);
2029 	zone->zone_start_pfn = zone_start_pfn;
2030 
2031 	memmap_init(size, pgdat->node_id, zone_idx(zone), zone_start_pfn);
2032 
2033 	zone_init_free_lists(pgdat, zone, zone->spanned_pages);
2034 }
2035 
2036 /*
2037  * Set up the zone data structures:
2038  *   - mark all pages reserved
2039  *   - mark all memory queues empty
2040  *   - clear the memory bitmaps
2041  */
2042 static void __init free_area_init_core(struct pglist_data *pgdat,
2043 		unsigned long *zones_size, unsigned long *zholes_size)
2044 {
2045 	unsigned long j;
2046 	int nid = pgdat->node_id;
2047 	unsigned long zone_start_pfn = pgdat->node_start_pfn;
2048 
2049 	pgdat_resize_init(pgdat);
2050 	pgdat->nr_zones = 0;
2051 	init_waitqueue_head(&pgdat->kswapd_wait);
2052 	pgdat->kswapd_max_order = 0;
2053 
2054 	for (j = 0; j < MAX_NR_ZONES; j++) {
2055 		struct zone *zone = pgdat->node_zones + j;
2056 		unsigned long size, realsize;
2057 
2058 		realsize = size = zones_size[j];
2059 		if (zholes_size)
2060 			realsize -= zholes_size[j];
2061 
2062 		if (j < ZONE_HIGHMEM)
2063 			nr_kernel_pages += realsize;
2064 		nr_all_pages += realsize;
2065 
2066 		zone->spanned_pages = size;
2067 		zone->present_pages = realsize;
2068 		zone->name = zone_names[j];
2069 		spin_lock_init(&zone->lock);
2070 		spin_lock_init(&zone->lru_lock);
2071 		zone_seqlock_init(zone);
2072 		zone->zone_pgdat = pgdat;
2073 		zone->free_pages = 0;
2074 
2075 		zone->temp_priority = zone->prev_priority = DEF_PRIORITY;
2076 
2077 		zone_pcp_init(zone);
2078 		INIT_LIST_HEAD(&zone->active_list);
2079 		INIT_LIST_HEAD(&zone->inactive_list);
2080 		zone->nr_scan_active = 0;
2081 		zone->nr_scan_inactive = 0;
2082 		zone->nr_active = 0;
2083 		zone->nr_inactive = 0;
2084 		atomic_set(&zone->reclaim_in_progress, 0);
2085 		if (!size)
2086 			continue;
2087 
2088 		zonetable_add(zone, nid, j, zone_start_pfn, size);
2089 		init_currently_empty_zone(zone, zone_start_pfn, size);
2090 		zone_start_pfn += size;
2091 	}
2092 }
2093 
2094 static void __init alloc_node_mem_map(struct pglist_data *pgdat)
2095 {
2096 	/* Skip empty nodes */
2097 	if (!pgdat->node_spanned_pages)
2098 		return;
2099 
2100 #ifdef CONFIG_FLAT_NODE_MEM_MAP
2101 	/* ia64 gets its own node_mem_map, before this, without bootmem */
2102 	if (!pgdat->node_mem_map) {
2103 		unsigned long size;
2104 		struct page *map;
2105 
2106 		size = (pgdat->node_spanned_pages + 1) * sizeof(struct page);
2107 		map = alloc_remap(pgdat->node_id, size);
2108 		if (!map)
2109 			map = alloc_bootmem_node(pgdat, size);
2110 		pgdat->node_mem_map = map;
2111 	}
2112 #ifdef CONFIG_FLATMEM
2113 	/*
2114 	 * With no DISCONTIG, the global mem_map is just set as node 0's
2115 	 */
2116 	if (pgdat == NODE_DATA(0))
2117 		mem_map = NODE_DATA(0)->node_mem_map;
2118 #endif
2119 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
2120 }
2121 
2122 void __init free_area_init_node(int nid, struct pglist_data *pgdat,
2123 		unsigned long *zones_size, unsigned long node_start_pfn,
2124 		unsigned long *zholes_size)
2125 {
2126 	pgdat->node_id = nid;
2127 	pgdat->node_start_pfn = node_start_pfn;
2128 	calculate_zone_totalpages(pgdat, zones_size, zholes_size);
2129 
2130 	alloc_node_mem_map(pgdat);
2131 
2132 	free_area_init_core(pgdat, zones_size, zholes_size);
2133 }
2134 
2135 #ifndef CONFIG_NEED_MULTIPLE_NODES
2136 static bootmem_data_t contig_bootmem_data;
2137 struct pglist_data contig_page_data = { .bdata = &contig_bootmem_data };
2138 
2139 EXPORT_SYMBOL(contig_page_data);
2140 #endif
2141 
2142 void __init free_area_init(unsigned long *zones_size)
2143 {
2144 	free_area_init_node(0, NODE_DATA(0), zones_size,
2145 			__pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
2146 }
2147 
2148 #ifdef CONFIG_PROC_FS
2149 
2150 #include <linux/seq_file.h>
2151 
2152 static void *frag_start(struct seq_file *m, loff_t *pos)
2153 {
2154 	pg_data_t *pgdat;
2155 	loff_t node = *pos;
2156 
2157 	for (pgdat = pgdat_list; pgdat && node; pgdat = pgdat->pgdat_next)
2158 		--node;
2159 
2160 	return pgdat;
2161 }
2162 
2163 static void *frag_next(struct seq_file *m, void *arg, loff_t *pos)
2164 {
2165 	pg_data_t *pgdat = (pg_data_t *)arg;
2166 
2167 	(*pos)++;
2168 	return pgdat->pgdat_next;
2169 }
2170 
2171 static void frag_stop(struct seq_file *m, void *arg)
2172 {
2173 }
2174 
2175 /*
2176  * This walks the free areas for each zone.
2177  */
2178 static int frag_show(struct seq_file *m, void *arg)
2179 {
2180 	pg_data_t *pgdat = (pg_data_t *)arg;
2181 	struct zone *zone;
2182 	struct zone *node_zones = pgdat->node_zones;
2183 	unsigned long flags;
2184 	int order;
2185 
2186 	for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
2187 		if (!populated_zone(zone))
2188 			continue;
2189 
2190 		spin_lock_irqsave(&zone->lock, flags);
2191 		seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
2192 		for (order = 0; order < MAX_ORDER; ++order)
2193 			seq_printf(m, "%6lu ", zone->free_area[order].nr_free);
2194 		spin_unlock_irqrestore(&zone->lock, flags);
2195 		seq_putc(m, '\n');
2196 	}
2197 	return 0;
2198 }
2199 
2200 struct seq_operations fragmentation_op = {
2201 	.start	= frag_start,
2202 	.next	= frag_next,
2203 	.stop	= frag_stop,
2204 	.show	= frag_show,
2205 };
2206 
2207 /*
2208  * Output information about zones in @pgdat.
2209  */
2210 static int zoneinfo_show(struct seq_file *m, void *arg)
2211 {
2212 	pg_data_t *pgdat = arg;
2213 	struct zone *zone;
2214 	struct zone *node_zones = pgdat->node_zones;
2215 	unsigned long flags;
2216 
2217 	for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; zone++) {
2218 		int i;
2219 
2220 		if (!populated_zone(zone))
2221 			continue;
2222 
2223 		spin_lock_irqsave(&zone->lock, flags);
2224 		seq_printf(m, "Node %d, zone %8s", pgdat->node_id, zone->name);
2225 		seq_printf(m,
2226 			   "\n  pages free     %lu"
2227 			   "\n        min      %lu"
2228 			   "\n        low      %lu"
2229 			   "\n        high     %lu"
2230 			   "\n        active   %lu"
2231 			   "\n        inactive %lu"
2232 			   "\n        scanned  %lu (a: %lu i: %lu)"
2233 			   "\n        spanned  %lu"
2234 			   "\n        present  %lu",
2235 			   zone->free_pages,
2236 			   zone->pages_min,
2237 			   zone->pages_low,
2238 			   zone->pages_high,
2239 			   zone->nr_active,
2240 			   zone->nr_inactive,
2241 			   zone->pages_scanned,
2242 			   zone->nr_scan_active, zone->nr_scan_inactive,
2243 			   zone->spanned_pages,
2244 			   zone->present_pages);
2245 		seq_printf(m,
2246 			   "\n        protection: (%lu",
2247 			   zone->lowmem_reserve[0]);
2248 		for (i = 1; i < ARRAY_SIZE(zone->lowmem_reserve); i++)
2249 			seq_printf(m, ", %lu", zone->lowmem_reserve[i]);
2250 		seq_printf(m,
2251 			   ")"
2252 			   "\n  pagesets");
2253 		for_each_online_cpu(i) {
2254 			struct per_cpu_pageset *pageset;
2255 			int j;
2256 
2257 			pageset = zone_pcp(zone, i);
2258 			for (j = 0; j < ARRAY_SIZE(pageset->pcp); j++) {
2259 				if (pageset->pcp[j].count)
2260 					break;
2261 			}
2262 			if (j == ARRAY_SIZE(pageset->pcp))
2263 				continue;
2264 			for (j = 0; j < ARRAY_SIZE(pageset->pcp); j++) {
2265 				seq_printf(m,
2266 					   "\n    cpu: %i pcp: %i"
2267 					   "\n              count: %i"
2268 					   "\n              high:  %i"
2269 					   "\n              batch: %i",
2270 					   i, j,
2271 					   pageset->pcp[j].count,
2272 					   pageset->pcp[j].high,
2273 					   pageset->pcp[j].batch);
2274 			}
2275 #ifdef CONFIG_NUMA
2276 			seq_printf(m,
2277 				   "\n            numa_hit:       %lu"
2278 				   "\n            numa_miss:      %lu"
2279 				   "\n            numa_foreign:   %lu"
2280 				   "\n            interleave_hit: %lu"
2281 				   "\n            local_node:     %lu"
2282 				   "\n            other_node:     %lu",
2283 				   pageset->numa_hit,
2284 				   pageset->numa_miss,
2285 				   pageset->numa_foreign,
2286 				   pageset->interleave_hit,
2287 				   pageset->local_node,
2288 				   pageset->other_node);
2289 #endif
2290 		}
2291 		seq_printf(m,
2292 			   "\n  all_unreclaimable: %u"
2293 			   "\n  prev_priority:     %i"
2294 			   "\n  temp_priority:     %i"
2295 			   "\n  start_pfn:         %lu",
2296 			   zone->all_unreclaimable,
2297 			   zone->prev_priority,
2298 			   zone->temp_priority,
2299 			   zone->zone_start_pfn);
2300 		spin_unlock_irqrestore(&zone->lock, flags);
2301 		seq_putc(m, '\n');
2302 	}
2303 	return 0;
2304 }
2305 
2306 struct seq_operations zoneinfo_op = {
2307 	.start	= frag_start, /* iterate over all zones. The same as in
2308 			       * fragmentation. */
2309 	.next	= frag_next,
2310 	.stop	= frag_stop,
2311 	.show	= zoneinfo_show,
2312 };
2313 
2314 static char *vmstat_text[] = {
2315 	"nr_dirty",
2316 	"nr_writeback",
2317 	"nr_unstable",
2318 	"nr_page_table_pages",
2319 	"nr_mapped",
2320 	"nr_slab",
2321 
2322 	"pgpgin",
2323 	"pgpgout",
2324 	"pswpin",
2325 	"pswpout",
2326 
2327 	"pgalloc_high",
2328 	"pgalloc_normal",
2329 	"pgalloc_dma32",
2330 	"pgalloc_dma",
2331 
2332 	"pgfree",
2333 	"pgactivate",
2334 	"pgdeactivate",
2335 
2336 	"pgfault",
2337 	"pgmajfault",
2338 
2339 	"pgrefill_high",
2340 	"pgrefill_normal",
2341 	"pgrefill_dma32",
2342 	"pgrefill_dma",
2343 
2344 	"pgsteal_high",
2345 	"pgsteal_normal",
2346 	"pgsteal_dma32",
2347 	"pgsteal_dma",
2348 
2349 	"pgscan_kswapd_high",
2350 	"pgscan_kswapd_normal",
2351 	"pgscan_kswapd_dma32",
2352 	"pgscan_kswapd_dma",
2353 
2354 	"pgscan_direct_high",
2355 	"pgscan_direct_normal",
2356 	"pgscan_direct_dma32",
2357 	"pgscan_direct_dma",
2358 
2359 	"pginodesteal",
2360 	"slabs_scanned",
2361 	"kswapd_steal",
2362 	"kswapd_inodesteal",
2363 	"pageoutrun",
2364 	"allocstall",
2365 
2366 	"pgrotated",
2367 	"nr_bounce",
2368 };
2369 
2370 static void *vmstat_start(struct seq_file *m, loff_t *pos)
2371 {
2372 	struct page_state *ps;
2373 
2374 	if (*pos >= ARRAY_SIZE(vmstat_text))
2375 		return NULL;
2376 
2377 	ps = kmalloc(sizeof(*ps), GFP_KERNEL);
2378 	m->private = ps;
2379 	if (!ps)
2380 		return ERR_PTR(-ENOMEM);
2381 	get_full_page_state(ps);
2382 	ps->pgpgin /= 2;		/* sectors -> kbytes */
2383 	ps->pgpgout /= 2;
2384 	return (unsigned long *)ps + *pos;
2385 }
2386 
2387 static void *vmstat_next(struct seq_file *m, void *arg, loff_t *pos)
2388 {
2389 	(*pos)++;
2390 	if (*pos >= ARRAY_SIZE(vmstat_text))
2391 		return NULL;
2392 	return (unsigned long *)m->private + *pos;
2393 }
2394 
2395 static int vmstat_show(struct seq_file *m, void *arg)
2396 {
2397 	unsigned long *l = arg;
2398 	unsigned long off = l - (unsigned long *)m->private;
2399 
2400 	seq_printf(m, "%s %lu\n", vmstat_text[off], *l);
2401 	return 0;
2402 }
2403 
2404 static void vmstat_stop(struct seq_file *m, void *arg)
2405 {
2406 	kfree(m->private);
2407 	m->private = NULL;
2408 }
2409 
2410 struct seq_operations vmstat_op = {
2411 	.start	= vmstat_start,
2412 	.next	= vmstat_next,
2413 	.stop	= vmstat_stop,
2414 	.show	= vmstat_show,
2415 };
2416 
2417 #endif /* CONFIG_PROC_FS */
2418 
2419 #ifdef CONFIG_HOTPLUG_CPU
2420 static int page_alloc_cpu_notify(struct notifier_block *self,
2421 				 unsigned long action, void *hcpu)
2422 {
2423 	int cpu = (unsigned long)hcpu;
2424 	long *count;
2425 	unsigned long *src, *dest;
2426 
2427 	if (action == CPU_DEAD) {
2428 		int i;
2429 
2430 		/* Drain local pagecache count. */
2431 		count = &per_cpu(nr_pagecache_local, cpu);
2432 		atomic_add(*count, &nr_pagecache);
2433 		*count = 0;
2434 		local_irq_disable();
2435 		__drain_pages(cpu);
2436 
2437 		/* Add dead cpu's page_states to our own. */
2438 		dest = (unsigned long *)&__get_cpu_var(page_states);
2439 		src = (unsigned long *)&per_cpu(page_states, cpu);
2440 
2441 		for (i = 0; i < sizeof(struct page_state)/sizeof(unsigned long);
2442 				i++) {
2443 			dest[i] += src[i];
2444 			src[i] = 0;
2445 		}
2446 
2447 		local_irq_enable();
2448 	}
2449 	return NOTIFY_OK;
2450 }
2451 #endif /* CONFIG_HOTPLUG_CPU */
2452 
2453 void __init page_alloc_init(void)
2454 {
2455 	hotcpu_notifier(page_alloc_cpu_notify, 0);
2456 }
2457 
2458 /*
2459  * setup_per_zone_lowmem_reserve - called whenever
2460  *	sysctl_lower_zone_reserve_ratio changes.  Ensures that each zone
2461  *	has a correct pages reserved value, so an adequate number of
2462  *	pages are left in the zone after a successful __alloc_pages().
2463  */
2464 static void setup_per_zone_lowmem_reserve(void)
2465 {
2466 	struct pglist_data *pgdat;
2467 	int j, idx;
2468 
2469 	for_each_pgdat(pgdat) {
2470 		for (j = 0; j < MAX_NR_ZONES; j++) {
2471 			struct zone *zone = pgdat->node_zones + j;
2472 			unsigned long present_pages = zone->present_pages;
2473 
2474 			zone->lowmem_reserve[j] = 0;
2475 
2476 			for (idx = j-1; idx >= 0; idx--) {
2477 				struct zone *lower_zone;
2478 
2479 				if (sysctl_lowmem_reserve_ratio[idx] < 1)
2480 					sysctl_lowmem_reserve_ratio[idx] = 1;
2481 
2482 				lower_zone = pgdat->node_zones + idx;
2483 				lower_zone->lowmem_reserve[j] = present_pages /
2484 					sysctl_lowmem_reserve_ratio[idx];
2485 				present_pages += lower_zone->present_pages;
2486 			}
2487 		}
2488 	}
2489 }
2490 
2491 /*
2492  * setup_per_zone_pages_min - called when min_free_kbytes changes.  Ensures
2493  *	that the pages_{min,low,high} values for each zone are set correctly
2494  *	with respect to min_free_kbytes.
2495  */
2496 void setup_per_zone_pages_min(void)
2497 {
2498 	unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
2499 	unsigned long lowmem_pages = 0;
2500 	struct zone *zone;
2501 	unsigned long flags;
2502 
2503 	/* Calculate total number of !ZONE_HIGHMEM pages */
2504 	for_each_zone(zone) {
2505 		if (!is_highmem(zone))
2506 			lowmem_pages += zone->present_pages;
2507 	}
2508 
2509 	for_each_zone(zone) {
2510 		unsigned long tmp;
2511 		spin_lock_irqsave(&zone->lru_lock, flags);
2512 		tmp = (pages_min * zone->present_pages) / lowmem_pages;
2513 		if (is_highmem(zone)) {
2514 			/*
2515 			 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
2516 			 * need highmem pages, so cap pages_min to a small
2517 			 * value here.
2518 			 *
2519 			 * The (pages_high-pages_low) and (pages_low-pages_min)
2520 			 * deltas controls asynch page reclaim, and so should
2521 			 * not be capped for highmem.
2522 			 */
2523 			int min_pages;
2524 
2525 			min_pages = zone->present_pages / 1024;
2526 			if (min_pages < SWAP_CLUSTER_MAX)
2527 				min_pages = SWAP_CLUSTER_MAX;
2528 			if (min_pages > 128)
2529 				min_pages = 128;
2530 			zone->pages_min = min_pages;
2531 		} else {
2532 			/*
2533 			 * If it's a lowmem zone, reserve a number of pages
2534 			 * proportionate to the zone's size.
2535 			 */
2536 			zone->pages_min = tmp;
2537 		}
2538 
2539 		zone->pages_low   = zone->pages_min + tmp / 4;
2540 		zone->pages_high  = zone->pages_min + tmp / 2;
2541 		spin_unlock_irqrestore(&zone->lru_lock, flags);
2542 	}
2543 }
2544 
2545 /*
2546  * Initialise min_free_kbytes.
2547  *
2548  * For small machines we want it small (128k min).  For large machines
2549  * we want it large (64MB max).  But it is not linear, because network
2550  * bandwidth does not increase linearly with machine size.  We use
2551  *
2552  * 	min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
2553  *	min_free_kbytes = sqrt(lowmem_kbytes * 16)
2554  *
2555  * which yields
2556  *
2557  * 16MB:	512k
2558  * 32MB:	724k
2559  * 64MB:	1024k
2560  * 128MB:	1448k
2561  * 256MB:	2048k
2562  * 512MB:	2896k
2563  * 1024MB:	4096k
2564  * 2048MB:	5792k
2565  * 4096MB:	8192k
2566  * 8192MB:	11584k
2567  * 16384MB:	16384k
2568  */
2569 static int __init init_per_zone_pages_min(void)
2570 {
2571 	unsigned long lowmem_kbytes;
2572 
2573 	lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
2574 
2575 	min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
2576 	if (min_free_kbytes < 128)
2577 		min_free_kbytes = 128;
2578 	if (min_free_kbytes > 65536)
2579 		min_free_kbytes = 65536;
2580 	setup_per_zone_pages_min();
2581 	setup_per_zone_lowmem_reserve();
2582 	return 0;
2583 }
2584 module_init(init_per_zone_pages_min)
2585 
2586 /*
2587  * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
2588  *	that we can call two helper functions whenever min_free_kbytes
2589  *	changes.
2590  */
2591 int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
2592 	struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
2593 {
2594 	proc_dointvec(table, write, file, buffer, length, ppos);
2595 	setup_per_zone_pages_min();
2596 	return 0;
2597 }
2598 
2599 /*
2600  * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
2601  *	proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
2602  *	whenever sysctl_lowmem_reserve_ratio changes.
2603  *
2604  * The reserve ratio obviously has absolutely no relation with the
2605  * pages_min watermarks. The lowmem reserve ratio can only make sense
2606  * if in function of the boot time zone sizes.
2607  */
2608 int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
2609 	struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
2610 {
2611 	proc_dointvec_minmax(table, write, file, buffer, length, ppos);
2612 	setup_per_zone_lowmem_reserve();
2613 	return 0;
2614 }
2615 
2616 /*
2617  * percpu_pagelist_fraction - changes the pcp->high for each zone on each
2618  * cpu.  It is the fraction of total pages in each zone that a hot per cpu pagelist
2619  * can have before it gets flushed back to buddy allocator.
2620  */
2621 
2622 int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
2623 	struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
2624 {
2625 	struct zone *zone;
2626 	unsigned int cpu;
2627 	int ret;
2628 
2629 	ret = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
2630 	if (!write || (ret == -EINVAL))
2631 		return ret;
2632 	for_each_zone(zone) {
2633 		for_each_online_cpu(cpu) {
2634 			unsigned long  high;
2635 			high = zone->present_pages / percpu_pagelist_fraction;
2636 			setup_pagelist_highmark(zone_pcp(zone, cpu), high);
2637 		}
2638 	}
2639 	return 0;
2640 }
2641 
2642 __initdata int hashdist = HASHDIST_DEFAULT;
2643 
2644 #ifdef CONFIG_NUMA
2645 static int __init set_hashdist(char *str)
2646 {
2647 	if (!str)
2648 		return 0;
2649 	hashdist = simple_strtoul(str, &str, 0);
2650 	return 1;
2651 }
2652 __setup("hashdist=", set_hashdist);
2653 #endif
2654 
2655 /*
2656  * allocate a large system hash table from bootmem
2657  * - it is assumed that the hash table must contain an exact power-of-2
2658  *   quantity of entries
2659  * - limit is the number of hash buckets, not the total allocation size
2660  */
2661 void *__init alloc_large_system_hash(const char *tablename,
2662 				     unsigned long bucketsize,
2663 				     unsigned long numentries,
2664 				     int scale,
2665 				     int flags,
2666 				     unsigned int *_hash_shift,
2667 				     unsigned int *_hash_mask,
2668 				     unsigned long limit)
2669 {
2670 	unsigned long long max = limit;
2671 	unsigned long log2qty, size;
2672 	void *table = NULL;
2673 
2674 	/* allow the kernel cmdline to have a say */
2675 	if (!numentries) {
2676 		/* round applicable memory size up to nearest megabyte */
2677 		numentries = (flags & HASH_HIGHMEM) ? nr_all_pages : nr_kernel_pages;
2678 		numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
2679 		numentries >>= 20 - PAGE_SHIFT;
2680 		numentries <<= 20 - PAGE_SHIFT;
2681 
2682 		/* limit to 1 bucket per 2^scale bytes of low memory */
2683 		if (scale > PAGE_SHIFT)
2684 			numentries >>= (scale - PAGE_SHIFT);
2685 		else
2686 			numentries <<= (PAGE_SHIFT - scale);
2687 	}
2688 	/* rounded up to nearest power of 2 in size */
2689 	numentries = 1UL << (long_log2(numentries) + 1);
2690 
2691 	/* limit allocation size to 1/16 total memory by default */
2692 	if (max == 0) {
2693 		max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
2694 		do_div(max, bucketsize);
2695 	}
2696 
2697 	if (numentries > max)
2698 		numentries = max;
2699 
2700 	log2qty = long_log2(numentries);
2701 
2702 	do {
2703 		size = bucketsize << log2qty;
2704 		if (flags & HASH_EARLY)
2705 			table = alloc_bootmem(size);
2706 		else if (hashdist)
2707 			table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
2708 		else {
2709 			unsigned long order;
2710 			for (order = 0; ((1UL << order) << PAGE_SHIFT) < size; order++)
2711 				;
2712 			table = (void*) __get_free_pages(GFP_ATOMIC, order);
2713 		}
2714 	} while (!table && size > PAGE_SIZE && --log2qty);
2715 
2716 	if (!table)
2717 		panic("Failed to allocate %s hash table\n", tablename);
2718 
2719 	printk("%s hash table entries: %d (order: %d, %lu bytes)\n",
2720 	       tablename,
2721 	       (1U << log2qty),
2722 	       long_log2(size) - PAGE_SHIFT,
2723 	       size);
2724 
2725 	if (_hash_shift)
2726 		*_hash_shift = log2qty;
2727 	if (_hash_mask)
2728 		*_hash_mask = (1 << log2qty) - 1;
2729 
2730 	return table;
2731 }
2732