1 /* 2 * linux/mm/page_alloc.c 3 * 4 * Manages the free list, the system allocates free pages here. 5 * Note that kmalloc() lives in slab.c 6 * 7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 8 * Swap reorganised 29.12.95, Stephen Tweedie 9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999 10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999 11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999 12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000 13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002 14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton) 15 */ 16 17 #include <linux/stddef.h> 18 #include <linux/mm.h> 19 #include <linux/swap.h> 20 #include <linux/interrupt.h> 21 #include <linux/pagemap.h> 22 #include <linux/jiffies.h> 23 #include <linux/bootmem.h> 24 #include <linux/compiler.h> 25 #include <linux/kernel.h> 26 #include <linux/kmemcheck.h> 27 #include <linux/module.h> 28 #include <linux/suspend.h> 29 #include <linux/pagevec.h> 30 #include <linux/blkdev.h> 31 #include <linux/slab.h> 32 #include <linux/oom.h> 33 #include <linux/notifier.h> 34 #include <linux/topology.h> 35 #include <linux/sysctl.h> 36 #include <linux/cpu.h> 37 #include <linux/cpuset.h> 38 #include <linux/memory_hotplug.h> 39 #include <linux/nodemask.h> 40 #include <linux/vmalloc.h> 41 #include <linux/mempolicy.h> 42 #include <linux/stop_machine.h> 43 #include <linux/sort.h> 44 #include <linux/pfn.h> 45 #include <linux/backing-dev.h> 46 #include <linux/fault-inject.h> 47 #include <linux/page-isolation.h> 48 #include <linux/page_cgroup.h> 49 #include <linux/debugobjects.h> 50 #include <linux/kmemleak.h> 51 #include <linux/memory.h> 52 #include <linux/compaction.h> 53 #include <trace/events/kmem.h> 54 #include <linux/ftrace_event.h> 55 56 #include <asm/tlbflush.h> 57 #include <asm/div64.h> 58 #include "internal.h" 59 60 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID 61 DEFINE_PER_CPU(int, numa_node); 62 EXPORT_PER_CPU_SYMBOL(numa_node); 63 #endif 64 65 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 66 /* 67 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly. 68 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined. 69 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem() 70 * defined in <linux/topology.h>. 71 */ 72 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */ 73 EXPORT_PER_CPU_SYMBOL(_numa_mem_); 74 #endif 75 76 /* 77 * Array of node states. 78 */ 79 nodemask_t node_states[NR_NODE_STATES] __read_mostly = { 80 [N_POSSIBLE] = NODE_MASK_ALL, 81 [N_ONLINE] = { { [0] = 1UL } }, 82 #ifndef CONFIG_NUMA 83 [N_NORMAL_MEMORY] = { { [0] = 1UL } }, 84 #ifdef CONFIG_HIGHMEM 85 [N_HIGH_MEMORY] = { { [0] = 1UL } }, 86 #endif 87 [N_CPU] = { { [0] = 1UL } }, 88 #endif /* NUMA */ 89 }; 90 EXPORT_SYMBOL(node_states); 91 92 unsigned long totalram_pages __read_mostly; 93 unsigned long totalreserve_pages __read_mostly; 94 int percpu_pagelist_fraction; 95 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK; 96 97 #ifdef CONFIG_PM_SLEEP 98 /* 99 * The following functions are used by the suspend/hibernate code to temporarily 100 * change gfp_allowed_mask in order to avoid using I/O during memory allocations 101 * while devices are suspended. To avoid races with the suspend/hibernate code, 102 * they should always be called with pm_mutex held (gfp_allowed_mask also should 103 * only be modified with pm_mutex held, unless the suspend/hibernate code is 104 * guaranteed not to run in parallel with that modification). 105 */ 106 void set_gfp_allowed_mask(gfp_t mask) 107 { 108 WARN_ON(!mutex_is_locked(&pm_mutex)); 109 gfp_allowed_mask = mask; 110 } 111 112 gfp_t clear_gfp_allowed_mask(gfp_t mask) 113 { 114 gfp_t ret = gfp_allowed_mask; 115 116 WARN_ON(!mutex_is_locked(&pm_mutex)); 117 gfp_allowed_mask &= ~mask; 118 return ret; 119 } 120 #endif /* CONFIG_PM_SLEEP */ 121 122 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE 123 int pageblock_order __read_mostly; 124 #endif 125 126 static void __free_pages_ok(struct page *page, unsigned int order); 127 128 /* 129 * results with 256, 32 in the lowmem_reserve sysctl: 130 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high) 131 * 1G machine -> (16M dma, 784M normal, 224M high) 132 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA 133 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL 134 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA 135 * 136 * TBD: should special case ZONE_DMA32 machines here - in those we normally 137 * don't need any ZONE_NORMAL reservation 138 */ 139 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = { 140 #ifdef CONFIG_ZONE_DMA 141 256, 142 #endif 143 #ifdef CONFIG_ZONE_DMA32 144 256, 145 #endif 146 #ifdef CONFIG_HIGHMEM 147 32, 148 #endif 149 32, 150 }; 151 152 EXPORT_SYMBOL(totalram_pages); 153 154 static char * const zone_names[MAX_NR_ZONES] = { 155 #ifdef CONFIG_ZONE_DMA 156 "DMA", 157 #endif 158 #ifdef CONFIG_ZONE_DMA32 159 "DMA32", 160 #endif 161 "Normal", 162 #ifdef CONFIG_HIGHMEM 163 "HighMem", 164 #endif 165 "Movable", 166 }; 167 168 int min_free_kbytes = 1024; 169 170 static unsigned long __meminitdata nr_kernel_pages; 171 static unsigned long __meminitdata nr_all_pages; 172 static unsigned long __meminitdata dma_reserve; 173 174 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP 175 /* 176 * MAX_ACTIVE_REGIONS determines the maximum number of distinct 177 * ranges of memory (RAM) that may be registered with add_active_range(). 178 * Ranges passed to add_active_range() will be merged if possible 179 * so the number of times add_active_range() can be called is 180 * related to the number of nodes and the number of holes 181 */ 182 #ifdef CONFIG_MAX_ACTIVE_REGIONS 183 /* Allow an architecture to set MAX_ACTIVE_REGIONS to save memory */ 184 #define MAX_ACTIVE_REGIONS CONFIG_MAX_ACTIVE_REGIONS 185 #else 186 #if MAX_NUMNODES >= 32 187 /* If there can be many nodes, allow up to 50 holes per node */ 188 #define MAX_ACTIVE_REGIONS (MAX_NUMNODES*50) 189 #else 190 /* By default, allow up to 256 distinct regions */ 191 #define MAX_ACTIVE_REGIONS 256 192 #endif 193 #endif 194 195 static struct node_active_region __meminitdata early_node_map[MAX_ACTIVE_REGIONS]; 196 static int __meminitdata nr_nodemap_entries; 197 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES]; 198 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES]; 199 static unsigned long __initdata required_kernelcore; 200 static unsigned long __initdata required_movablecore; 201 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES]; 202 203 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */ 204 int movable_zone; 205 EXPORT_SYMBOL(movable_zone); 206 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */ 207 208 #if MAX_NUMNODES > 1 209 int nr_node_ids __read_mostly = MAX_NUMNODES; 210 int nr_online_nodes __read_mostly = 1; 211 EXPORT_SYMBOL(nr_node_ids); 212 EXPORT_SYMBOL(nr_online_nodes); 213 #endif 214 215 int page_group_by_mobility_disabled __read_mostly; 216 217 static void set_pageblock_migratetype(struct page *page, int migratetype) 218 { 219 220 if (unlikely(page_group_by_mobility_disabled)) 221 migratetype = MIGRATE_UNMOVABLE; 222 223 set_pageblock_flags_group(page, (unsigned long)migratetype, 224 PB_migrate, PB_migrate_end); 225 } 226 227 bool oom_killer_disabled __read_mostly; 228 229 #ifdef CONFIG_DEBUG_VM 230 static int page_outside_zone_boundaries(struct zone *zone, struct page *page) 231 { 232 int ret = 0; 233 unsigned seq; 234 unsigned long pfn = page_to_pfn(page); 235 236 do { 237 seq = zone_span_seqbegin(zone); 238 if (pfn >= zone->zone_start_pfn + zone->spanned_pages) 239 ret = 1; 240 else if (pfn < zone->zone_start_pfn) 241 ret = 1; 242 } while (zone_span_seqretry(zone, seq)); 243 244 return ret; 245 } 246 247 static int page_is_consistent(struct zone *zone, struct page *page) 248 { 249 if (!pfn_valid_within(page_to_pfn(page))) 250 return 0; 251 if (zone != page_zone(page)) 252 return 0; 253 254 return 1; 255 } 256 /* 257 * Temporary debugging check for pages not lying within a given zone. 258 */ 259 static int bad_range(struct zone *zone, struct page *page) 260 { 261 if (page_outside_zone_boundaries(zone, page)) 262 return 1; 263 if (!page_is_consistent(zone, page)) 264 return 1; 265 266 return 0; 267 } 268 #else 269 static inline int bad_range(struct zone *zone, struct page *page) 270 { 271 return 0; 272 } 273 #endif 274 275 static void bad_page(struct page *page) 276 { 277 static unsigned long resume; 278 static unsigned long nr_shown; 279 static unsigned long nr_unshown; 280 281 /* Don't complain about poisoned pages */ 282 if (PageHWPoison(page)) { 283 __ClearPageBuddy(page); 284 return; 285 } 286 287 /* 288 * Allow a burst of 60 reports, then keep quiet for that minute; 289 * or allow a steady drip of one report per second. 290 */ 291 if (nr_shown == 60) { 292 if (time_before(jiffies, resume)) { 293 nr_unshown++; 294 goto out; 295 } 296 if (nr_unshown) { 297 printk(KERN_ALERT 298 "BUG: Bad page state: %lu messages suppressed\n", 299 nr_unshown); 300 nr_unshown = 0; 301 } 302 nr_shown = 0; 303 } 304 if (nr_shown++ == 0) 305 resume = jiffies + 60 * HZ; 306 307 printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n", 308 current->comm, page_to_pfn(page)); 309 dump_page(page); 310 311 dump_stack(); 312 out: 313 /* Leave bad fields for debug, except PageBuddy could make trouble */ 314 __ClearPageBuddy(page); 315 add_taint(TAINT_BAD_PAGE); 316 } 317 318 /* 319 * Higher-order pages are called "compound pages". They are structured thusly: 320 * 321 * The first PAGE_SIZE page is called the "head page". 322 * 323 * The remaining PAGE_SIZE pages are called "tail pages". 324 * 325 * All pages have PG_compound set. All pages have their ->private pointing at 326 * the head page (even the head page has this). 327 * 328 * The first tail page's ->lru.next holds the address of the compound page's 329 * put_page() function. Its ->lru.prev holds the order of allocation. 330 * This usage means that zero-order pages may not be compound. 331 */ 332 333 static void free_compound_page(struct page *page) 334 { 335 __free_pages_ok(page, compound_order(page)); 336 } 337 338 void prep_compound_page(struct page *page, unsigned long order) 339 { 340 int i; 341 int nr_pages = 1 << order; 342 343 set_compound_page_dtor(page, free_compound_page); 344 set_compound_order(page, order); 345 __SetPageHead(page); 346 for (i = 1; i < nr_pages; i++) { 347 struct page *p = page + i; 348 349 __SetPageTail(p); 350 p->first_page = page; 351 } 352 } 353 354 static int destroy_compound_page(struct page *page, unsigned long order) 355 { 356 int i; 357 int nr_pages = 1 << order; 358 int bad = 0; 359 360 if (unlikely(compound_order(page) != order) || 361 unlikely(!PageHead(page))) { 362 bad_page(page); 363 bad++; 364 } 365 366 __ClearPageHead(page); 367 368 for (i = 1; i < nr_pages; i++) { 369 struct page *p = page + i; 370 371 if (unlikely(!PageTail(p) || (p->first_page != page))) { 372 bad_page(page); 373 bad++; 374 } 375 __ClearPageTail(p); 376 } 377 378 return bad; 379 } 380 381 static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags) 382 { 383 int i; 384 385 /* 386 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO 387 * and __GFP_HIGHMEM from hard or soft interrupt context. 388 */ 389 VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt()); 390 for (i = 0; i < (1 << order); i++) 391 clear_highpage(page + i); 392 } 393 394 static inline void set_page_order(struct page *page, int order) 395 { 396 set_page_private(page, order); 397 __SetPageBuddy(page); 398 } 399 400 static inline void rmv_page_order(struct page *page) 401 { 402 __ClearPageBuddy(page); 403 set_page_private(page, 0); 404 } 405 406 /* 407 * Locate the struct page for both the matching buddy in our 408 * pair (buddy1) and the combined O(n+1) page they form (page). 409 * 410 * 1) Any buddy B1 will have an order O twin B2 which satisfies 411 * the following equation: 412 * B2 = B1 ^ (1 << O) 413 * For example, if the starting buddy (buddy2) is #8 its order 414 * 1 buddy is #10: 415 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10 416 * 417 * 2) Any buddy B will have an order O+1 parent P which 418 * satisfies the following equation: 419 * P = B & ~(1 << O) 420 * 421 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER 422 */ 423 static inline struct page * 424 __page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order) 425 { 426 unsigned long buddy_idx = page_idx ^ (1 << order); 427 428 return page + (buddy_idx - page_idx); 429 } 430 431 static inline unsigned long 432 __find_combined_index(unsigned long page_idx, unsigned int order) 433 { 434 return (page_idx & ~(1 << order)); 435 } 436 437 /* 438 * This function checks whether a page is free && is the buddy 439 * we can do coalesce a page and its buddy if 440 * (a) the buddy is not in a hole && 441 * (b) the buddy is in the buddy system && 442 * (c) a page and its buddy have the same order && 443 * (d) a page and its buddy are in the same zone. 444 * 445 * For recording whether a page is in the buddy system, we use PG_buddy. 446 * Setting, clearing, and testing PG_buddy is serialized by zone->lock. 447 * 448 * For recording page's order, we use page_private(page). 449 */ 450 static inline int page_is_buddy(struct page *page, struct page *buddy, 451 int order) 452 { 453 if (!pfn_valid_within(page_to_pfn(buddy))) 454 return 0; 455 456 if (page_zone_id(page) != page_zone_id(buddy)) 457 return 0; 458 459 if (PageBuddy(buddy) && page_order(buddy) == order) { 460 VM_BUG_ON(page_count(buddy) != 0); 461 return 1; 462 } 463 return 0; 464 } 465 466 /* 467 * Freeing function for a buddy system allocator. 468 * 469 * The concept of a buddy system is to maintain direct-mapped table 470 * (containing bit values) for memory blocks of various "orders". 471 * The bottom level table contains the map for the smallest allocatable 472 * units of memory (here, pages), and each level above it describes 473 * pairs of units from the levels below, hence, "buddies". 474 * At a high level, all that happens here is marking the table entry 475 * at the bottom level available, and propagating the changes upward 476 * as necessary, plus some accounting needed to play nicely with other 477 * parts of the VM system. 478 * At each level, we keep a list of pages, which are heads of continuous 479 * free pages of length of (1 << order) and marked with PG_buddy. Page's 480 * order is recorded in page_private(page) field. 481 * So when we are allocating or freeing one, we can derive the state of the 482 * other. That is, if we allocate a small block, and both were 483 * free, the remainder of the region must be split into blocks. 484 * If a block is freed, and its buddy is also free, then this 485 * triggers coalescing into a block of larger size. 486 * 487 * -- wli 488 */ 489 490 static inline void __free_one_page(struct page *page, 491 struct zone *zone, unsigned int order, 492 int migratetype) 493 { 494 unsigned long page_idx; 495 unsigned long combined_idx; 496 struct page *buddy; 497 498 if (unlikely(PageCompound(page))) 499 if (unlikely(destroy_compound_page(page, order))) 500 return; 501 502 VM_BUG_ON(migratetype == -1); 503 504 page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1); 505 506 VM_BUG_ON(page_idx & ((1 << order) - 1)); 507 VM_BUG_ON(bad_range(zone, page)); 508 509 while (order < MAX_ORDER-1) { 510 buddy = __page_find_buddy(page, page_idx, order); 511 if (!page_is_buddy(page, buddy, order)) 512 break; 513 514 /* Our buddy is free, merge with it and move up one order. */ 515 list_del(&buddy->lru); 516 zone->free_area[order].nr_free--; 517 rmv_page_order(buddy); 518 combined_idx = __find_combined_index(page_idx, order); 519 page = page + (combined_idx - page_idx); 520 page_idx = combined_idx; 521 order++; 522 } 523 set_page_order(page, order); 524 525 /* 526 * If this is not the largest possible page, check if the buddy 527 * of the next-highest order is free. If it is, it's possible 528 * that pages are being freed that will coalesce soon. In case, 529 * that is happening, add the free page to the tail of the list 530 * so it's less likely to be used soon and more likely to be merged 531 * as a higher order page 532 */ 533 if ((order < MAX_ORDER-1) && pfn_valid_within(page_to_pfn(buddy))) { 534 struct page *higher_page, *higher_buddy; 535 combined_idx = __find_combined_index(page_idx, order); 536 higher_page = page + combined_idx - page_idx; 537 higher_buddy = __page_find_buddy(higher_page, combined_idx, order + 1); 538 if (page_is_buddy(higher_page, higher_buddy, order + 1)) { 539 list_add_tail(&page->lru, 540 &zone->free_area[order].free_list[migratetype]); 541 goto out; 542 } 543 } 544 545 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]); 546 out: 547 zone->free_area[order].nr_free++; 548 } 549 550 /* 551 * free_page_mlock() -- clean up attempts to free and mlocked() page. 552 * Page should not be on lru, so no need to fix that up. 553 * free_pages_check() will verify... 554 */ 555 static inline void free_page_mlock(struct page *page) 556 { 557 __dec_zone_page_state(page, NR_MLOCK); 558 __count_vm_event(UNEVICTABLE_MLOCKFREED); 559 } 560 561 static inline int free_pages_check(struct page *page) 562 { 563 if (unlikely(page_mapcount(page) | 564 (page->mapping != NULL) | 565 (atomic_read(&page->_count) != 0) | 566 (page->flags & PAGE_FLAGS_CHECK_AT_FREE))) { 567 bad_page(page); 568 return 1; 569 } 570 if (page->flags & PAGE_FLAGS_CHECK_AT_PREP) 571 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP; 572 return 0; 573 } 574 575 /* 576 * Frees a number of pages from the PCP lists 577 * Assumes all pages on list are in same zone, and of same order. 578 * count is the number of pages to free. 579 * 580 * If the zone was previously in an "all pages pinned" state then look to 581 * see if this freeing clears that state. 582 * 583 * And clear the zone's pages_scanned counter, to hold off the "all pages are 584 * pinned" detection logic. 585 */ 586 static void free_pcppages_bulk(struct zone *zone, int count, 587 struct per_cpu_pages *pcp) 588 { 589 int migratetype = 0; 590 int batch_free = 0; 591 592 spin_lock(&zone->lock); 593 zone->all_unreclaimable = 0; 594 zone->pages_scanned = 0; 595 596 __mod_zone_page_state(zone, NR_FREE_PAGES, count); 597 while (count) { 598 struct page *page; 599 struct list_head *list; 600 601 /* 602 * Remove pages from lists in a round-robin fashion. A 603 * batch_free count is maintained that is incremented when an 604 * empty list is encountered. This is so more pages are freed 605 * off fuller lists instead of spinning excessively around empty 606 * lists 607 */ 608 do { 609 batch_free++; 610 if (++migratetype == MIGRATE_PCPTYPES) 611 migratetype = 0; 612 list = &pcp->lists[migratetype]; 613 } while (list_empty(list)); 614 615 do { 616 page = list_entry(list->prev, struct page, lru); 617 /* must delete as __free_one_page list manipulates */ 618 list_del(&page->lru); 619 /* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */ 620 __free_one_page(page, zone, 0, page_private(page)); 621 trace_mm_page_pcpu_drain(page, 0, page_private(page)); 622 } while (--count && --batch_free && !list_empty(list)); 623 } 624 spin_unlock(&zone->lock); 625 } 626 627 static void free_one_page(struct zone *zone, struct page *page, int order, 628 int migratetype) 629 { 630 spin_lock(&zone->lock); 631 zone->all_unreclaimable = 0; 632 zone->pages_scanned = 0; 633 634 __mod_zone_page_state(zone, NR_FREE_PAGES, 1 << order); 635 __free_one_page(page, zone, order, migratetype); 636 spin_unlock(&zone->lock); 637 } 638 639 static bool free_pages_prepare(struct page *page, unsigned int order) 640 { 641 int i; 642 int bad = 0; 643 644 trace_mm_page_free_direct(page, order); 645 kmemcheck_free_shadow(page, order); 646 647 for (i = 0; i < (1 << order); i++) { 648 struct page *pg = page + i; 649 650 if (PageAnon(pg)) 651 pg->mapping = NULL; 652 bad += free_pages_check(pg); 653 } 654 if (bad) 655 return false; 656 657 if (!PageHighMem(page)) { 658 debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order); 659 debug_check_no_obj_freed(page_address(page), 660 PAGE_SIZE << order); 661 } 662 arch_free_page(page, order); 663 kernel_map_pages(page, 1 << order, 0); 664 665 return true; 666 } 667 668 static void __free_pages_ok(struct page *page, unsigned int order) 669 { 670 unsigned long flags; 671 int wasMlocked = __TestClearPageMlocked(page); 672 673 if (!free_pages_prepare(page, order)) 674 return; 675 676 local_irq_save(flags); 677 if (unlikely(wasMlocked)) 678 free_page_mlock(page); 679 __count_vm_events(PGFREE, 1 << order); 680 free_one_page(page_zone(page), page, order, 681 get_pageblock_migratetype(page)); 682 local_irq_restore(flags); 683 } 684 685 /* 686 * permit the bootmem allocator to evade page validation on high-order frees 687 */ 688 void __meminit __free_pages_bootmem(struct page *page, unsigned int order) 689 { 690 if (order == 0) { 691 __ClearPageReserved(page); 692 set_page_count(page, 0); 693 set_page_refcounted(page); 694 __free_page(page); 695 } else { 696 int loop; 697 698 prefetchw(page); 699 for (loop = 0; loop < BITS_PER_LONG; loop++) { 700 struct page *p = &page[loop]; 701 702 if (loop + 1 < BITS_PER_LONG) 703 prefetchw(p + 1); 704 __ClearPageReserved(p); 705 set_page_count(p, 0); 706 } 707 708 set_page_refcounted(page); 709 __free_pages(page, order); 710 } 711 } 712 713 714 /* 715 * The order of subdivision here is critical for the IO subsystem. 716 * Please do not alter this order without good reasons and regression 717 * testing. Specifically, as large blocks of memory are subdivided, 718 * the order in which smaller blocks are delivered depends on the order 719 * they're subdivided in this function. This is the primary factor 720 * influencing the order in which pages are delivered to the IO 721 * subsystem according to empirical testing, and this is also justified 722 * by considering the behavior of a buddy system containing a single 723 * large block of memory acted on by a series of small allocations. 724 * This behavior is a critical factor in sglist merging's success. 725 * 726 * -- wli 727 */ 728 static inline void expand(struct zone *zone, struct page *page, 729 int low, int high, struct free_area *area, 730 int migratetype) 731 { 732 unsigned long size = 1 << high; 733 734 while (high > low) { 735 area--; 736 high--; 737 size >>= 1; 738 VM_BUG_ON(bad_range(zone, &page[size])); 739 list_add(&page[size].lru, &area->free_list[migratetype]); 740 area->nr_free++; 741 set_page_order(&page[size], high); 742 } 743 } 744 745 /* 746 * This page is about to be returned from the page allocator 747 */ 748 static inline int check_new_page(struct page *page) 749 { 750 if (unlikely(page_mapcount(page) | 751 (page->mapping != NULL) | 752 (atomic_read(&page->_count) != 0) | 753 (page->flags & PAGE_FLAGS_CHECK_AT_PREP))) { 754 bad_page(page); 755 return 1; 756 } 757 return 0; 758 } 759 760 static int prep_new_page(struct page *page, int order, gfp_t gfp_flags) 761 { 762 int i; 763 764 for (i = 0; i < (1 << order); i++) { 765 struct page *p = page + i; 766 if (unlikely(check_new_page(p))) 767 return 1; 768 } 769 770 set_page_private(page, 0); 771 set_page_refcounted(page); 772 773 arch_alloc_page(page, order); 774 kernel_map_pages(page, 1 << order, 1); 775 776 if (gfp_flags & __GFP_ZERO) 777 prep_zero_page(page, order, gfp_flags); 778 779 if (order && (gfp_flags & __GFP_COMP)) 780 prep_compound_page(page, order); 781 782 return 0; 783 } 784 785 /* 786 * Go through the free lists for the given migratetype and remove 787 * the smallest available page from the freelists 788 */ 789 static inline 790 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order, 791 int migratetype) 792 { 793 unsigned int current_order; 794 struct free_area * area; 795 struct page *page; 796 797 /* Find a page of the appropriate size in the preferred list */ 798 for (current_order = order; current_order < MAX_ORDER; ++current_order) { 799 area = &(zone->free_area[current_order]); 800 if (list_empty(&area->free_list[migratetype])) 801 continue; 802 803 page = list_entry(area->free_list[migratetype].next, 804 struct page, lru); 805 list_del(&page->lru); 806 rmv_page_order(page); 807 area->nr_free--; 808 expand(zone, page, order, current_order, area, migratetype); 809 return page; 810 } 811 812 return NULL; 813 } 814 815 816 /* 817 * This array describes the order lists are fallen back to when 818 * the free lists for the desirable migrate type are depleted 819 */ 820 static int fallbacks[MIGRATE_TYPES][MIGRATE_TYPES-1] = { 821 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE }, 822 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE }, 823 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE }, 824 [MIGRATE_RESERVE] = { MIGRATE_RESERVE, MIGRATE_RESERVE, MIGRATE_RESERVE }, /* Never used */ 825 }; 826 827 /* 828 * Move the free pages in a range to the free lists of the requested type. 829 * Note that start_page and end_pages are not aligned on a pageblock 830 * boundary. If alignment is required, use move_freepages_block() 831 */ 832 static int move_freepages(struct zone *zone, 833 struct page *start_page, struct page *end_page, 834 int migratetype) 835 { 836 struct page *page; 837 unsigned long order; 838 int pages_moved = 0; 839 840 #ifndef CONFIG_HOLES_IN_ZONE 841 /* 842 * page_zone is not safe to call in this context when 843 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant 844 * anyway as we check zone boundaries in move_freepages_block(). 845 * Remove at a later date when no bug reports exist related to 846 * grouping pages by mobility 847 */ 848 BUG_ON(page_zone(start_page) != page_zone(end_page)); 849 #endif 850 851 for (page = start_page; page <= end_page;) { 852 /* Make sure we are not inadvertently changing nodes */ 853 VM_BUG_ON(page_to_nid(page) != zone_to_nid(zone)); 854 855 if (!pfn_valid_within(page_to_pfn(page))) { 856 page++; 857 continue; 858 } 859 860 if (!PageBuddy(page)) { 861 page++; 862 continue; 863 } 864 865 order = page_order(page); 866 list_del(&page->lru); 867 list_add(&page->lru, 868 &zone->free_area[order].free_list[migratetype]); 869 page += 1 << order; 870 pages_moved += 1 << order; 871 } 872 873 return pages_moved; 874 } 875 876 static int move_freepages_block(struct zone *zone, struct page *page, 877 int migratetype) 878 { 879 unsigned long start_pfn, end_pfn; 880 struct page *start_page, *end_page; 881 882 start_pfn = page_to_pfn(page); 883 start_pfn = start_pfn & ~(pageblock_nr_pages-1); 884 start_page = pfn_to_page(start_pfn); 885 end_page = start_page + pageblock_nr_pages - 1; 886 end_pfn = start_pfn + pageblock_nr_pages - 1; 887 888 /* Do not cross zone boundaries */ 889 if (start_pfn < zone->zone_start_pfn) 890 start_page = page; 891 if (end_pfn >= zone->zone_start_pfn + zone->spanned_pages) 892 return 0; 893 894 return move_freepages(zone, start_page, end_page, migratetype); 895 } 896 897 static void change_pageblock_range(struct page *pageblock_page, 898 int start_order, int migratetype) 899 { 900 int nr_pageblocks = 1 << (start_order - pageblock_order); 901 902 while (nr_pageblocks--) { 903 set_pageblock_migratetype(pageblock_page, migratetype); 904 pageblock_page += pageblock_nr_pages; 905 } 906 } 907 908 /* Remove an element from the buddy allocator from the fallback list */ 909 static inline struct page * 910 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype) 911 { 912 struct free_area * area; 913 int current_order; 914 struct page *page; 915 int migratetype, i; 916 917 /* Find the largest possible block of pages in the other list */ 918 for (current_order = MAX_ORDER-1; current_order >= order; 919 --current_order) { 920 for (i = 0; i < MIGRATE_TYPES - 1; i++) { 921 migratetype = fallbacks[start_migratetype][i]; 922 923 /* MIGRATE_RESERVE handled later if necessary */ 924 if (migratetype == MIGRATE_RESERVE) 925 continue; 926 927 area = &(zone->free_area[current_order]); 928 if (list_empty(&area->free_list[migratetype])) 929 continue; 930 931 page = list_entry(area->free_list[migratetype].next, 932 struct page, lru); 933 area->nr_free--; 934 935 /* 936 * If breaking a large block of pages, move all free 937 * pages to the preferred allocation list. If falling 938 * back for a reclaimable kernel allocation, be more 939 * agressive about taking ownership of free pages 940 */ 941 if (unlikely(current_order >= (pageblock_order >> 1)) || 942 start_migratetype == MIGRATE_RECLAIMABLE || 943 page_group_by_mobility_disabled) { 944 unsigned long pages; 945 pages = move_freepages_block(zone, page, 946 start_migratetype); 947 948 /* Claim the whole block if over half of it is free */ 949 if (pages >= (1 << (pageblock_order-1)) || 950 page_group_by_mobility_disabled) 951 set_pageblock_migratetype(page, 952 start_migratetype); 953 954 migratetype = start_migratetype; 955 } 956 957 /* Remove the page from the freelists */ 958 list_del(&page->lru); 959 rmv_page_order(page); 960 961 /* Take ownership for orders >= pageblock_order */ 962 if (current_order >= pageblock_order) 963 change_pageblock_range(page, current_order, 964 start_migratetype); 965 966 expand(zone, page, order, current_order, area, migratetype); 967 968 trace_mm_page_alloc_extfrag(page, order, current_order, 969 start_migratetype, migratetype); 970 971 return page; 972 } 973 } 974 975 return NULL; 976 } 977 978 /* 979 * Do the hard work of removing an element from the buddy allocator. 980 * Call me with the zone->lock already held. 981 */ 982 static struct page *__rmqueue(struct zone *zone, unsigned int order, 983 int migratetype) 984 { 985 struct page *page; 986 987 retry_reserve: 988 page = __rmqueue_smallest(zone, order, migratetype); 989 990 if (unlikely(!page) && migratetype != MIGRATE_RESERVE) { 991 page = __rmqueue_fallback(zone, order, migratetype); 992 993 /* 994 * Use MIGRATE_RESERVE rather than fail an allocation. goto 995 * is used because __rmqueue_smallest is an inline function 996 * and we want just one call site 997 */ 998 if (!page) { 999 migratetype = MIGRATE_RESERVE; 1000 goto retry_reserve; 1001 } 1002 } 1003 1004 trace_mm_page_alloc_zone_locked(page, order, migratetype); 1005 return page; 1006 } 1007 1008 /* 1009 * Obtain a specified number of elements from the buddy allocator, all under 1010 * a single hold of the lock, for efficiency. Add them to the supplied list. 1011 * Returns the number of new pages which were placed at *list. 1012 */ 1013 static int rmqueue_bulk(struct zone *zone, unsigned int order, 1014 unsigned long count, struct list_head *list, 1015 int migratetype, int cold) 1016 { 1017 int i; 1018 1019 spin_lock(&zone->lock); 1020 for (i = 0; i < count; ++i) { 1021 struct page *page = __rmqueue(zone, order, migratetype); 1022 if (unlikely(page == NULL)) 1023 break; 1024 1025 /* 1026 * Split buddy pages returned by expand() are received here 1027 * in physical page order. The page is added to the callers and 1028 * list and the list head then moves forward. From the callers 1029 * perspective, the linked list is ordered by page number in 1030 * some conditions. This is useful for IO devices that can 1031 * merge IO requests if the physical pages are ordered 1032 * properly. 1033 */ 1034 if (likely(cold == 0)) 1035 list_add(&page->lru, list); 1036 else 1037 list_add_tail(&page->lru, list); 1038 set_page_private(page, migratetype); 1039 list = &page->lru; 1040 } 1041 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order)); 1042 spin_unlock(&zone->lock); 1043 return i; 1044 } 1045 1046 #ifdef CONFIG_NUMA 1047 /* 1048 * Called from the vmstat counter updater to drain pagesets of this 1049 * currently executing processor on remote nodes after they have 1050 * expired. 1051 * 1052 * Note that this function must be called with the thread pinned to 1053 * a single processor. 1054 */ 1055 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp) 1056 { 1057 unsigned long flags; 1058 int to_drain; 1059 1060 local_irq_save(flags); 1061 if (pcp->count >= pcp->batch) 1062 to_drain = pcp->batch; 1063 else 1064 to_drain = pcp->count; 1065 free_pcppages_bulk(zone, to_drain, pcp); 1066 pcp->count -= to_drain; 1067 local_irq_restore(flags); 1068 } 1069 #endif 1070 1071 /* 1072 * Drain pages of the indicated processor. 1073 * 1074 * The processor must either be the current processor and the 1075 * thread pinned to the current processor or a processor that 1076 * is not online. 1077 */ 1078 static void drain_pages(unsigned int cpu) 1079 { 1080 unsigned long flags; 1081 struct zone *zone; 1082 1083 for_each_populated_zone(zone) { 1084 struct per_cpu_pageset *pset; 1085 struct per_cpu_pages *pcp; 1086 1087 local_irq_save(flags); 1088 pset = per_cpu_ptr(zone->pageset, cpu); 1089 1090 pcp = &pset->pcp; 1091 free_pcppages_bulk(zone, pcp->count, pcp); 1092 pcp->count = 0; 1093 local_irq_restore(flags); 1094 } 1095 } 1096 1097 /* 1098 * Spill all of this CPU's per-cpu pages back into the buddy allocator. 1099 */ 1100 void drain_local_pages(void *arg) 1101 { 1102 drain_pages(smp_processor_id()); 1103 } 1104 1105 /* 1106 * Spill all the per-cpu pages from all CPUs back into the buddy allocator 1107 */ 1108 void drain_all_pages(void) 1109 { 1110 on_each_cpu(drain_local_pages, NULL, 1); 1111 } 1112 1113 #ifdef CONFIG_HIBERNATION 1114 1115 void mark_free_pages(struct zone *zone) 1116 { 1117 unsigned long pfn, max_zone_pfn; 1118 unsigned long flags; 1119 int order, t; 1120 struct list_head *curr; 1121 1122 if (!zone->spanned_pages) 1123 return; 1124 1125 spin_lock_irqsave(&zone->lock, flags); 1126 1127 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages; 1128 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) 1129 if (pfn_valid(pfn)) { 1130 struct page *page = pfn_to_page(pfn); 1131 1132 if (!swsusp_page_is_forbidden(page)) 1133 swsusp_unset_page_free(page); 1134 } 1135 1136 for_each_migratetype_order(order, t) { 1137 list_for_each(curr, &zone->free_area[order].free_list[t]) { 1138 unsigned long i; 1139 1140 pfn = page_to_pfn(list_entry(curr, struct page, lru)); 1141 for (i = 0; i < (1UL << order); i++) 1142 swsusp_set_page_free(pfn_to_page(pfn + i)); 1143 } 1144 } 1145 spin_unlock_irqrestore(&zone->lock, flags); 1146 } 1147 #endif /* CONFIG_PM */ 1148 1149 /* 1150 * Free a 0-order page 1151 * cold == 1 ? free a cold page : free a hot page 1152 */ 1153 void free_hot_cold_page(struct page *page, int cold) 1154 { 1155 struct zone *zone = page_zone(page); 1156 struct per_cpu_pages *pcp; 1157 unsigned long flags; 1158 int migratetype; 1159 int wasMlocked = __TestClearPageMlocked(page); 1160 1161 if (!free_pages_prepare(page, 0)) 1162 return; 1163 1164 migratetype = get_pageblock_migratetype(page); 1165 set_page_private(page, migratetype); 1166 local_irq_save(flags); 1167 if (unlikely(wasMlocked)) 1168 free_page_mlock(page); 1169 __count_vm_event(PGFREE); 1170 1171 /* 1172 * We only track unmovable, reclaimable and movable on pcp lists. 1173 * Free ISOLATE pages back to the allocator because they are being 1174 * offlined but treat RESERVE as movable pages so we can get those 1175 * areas back if necessary. Otherwise, we may have to free 1176 * excessively into the page allocator 1177 */ 1178 if (migratetype >= MIGRATE_PCPTYPES) { 1179 if (unlikely(migratetype == MIGRATE_ISOLATE)) { 1180 free_one_page(zone, page, 0, migratetype); 1181 goto out; 1182 } 1183 migratetype = MIGRATE_MOVABLE; 1184 } 1185 1186 pcp = &this_cpu_ptr(zone->pageset)->pcp; 1187 if (cold) 1188 list_add_tail(&page->lru, &pcp->lists[migratetype]); 1189 else 1190 list_add(&page->lru, &pcp->lists[migratetype]); 1191 pcp->count++; 1192 if (pcp->count >= pcp->high) { 1193 free_pcppages_bulk(zone, pcp->batch, pcp); 1194 pcp->count -= pcp->batch; 1195 } 1196 1197 out: 1198 local_irq_restore(flags); 1199 } 1200 1201 /* 1202 * split_page takes a non-compound higher-order page, and splits it into 1203 * n (1<<order) sub-pages: page[0..n] 1204 * Each sub-page must be freed individually. 1205 * 1206 * Note: this is probably too low level an operation for use in drivers. 1207 * Please consult with lkml before using this in your driver. 1208 */ 1209 void split_page(struct page *page, unsigned int order) 1210 { 1211 int i; 1212 1213 VM_BUG_ON(PageCompound(page)); 1214 VM_BUG_ON(!page_count(page)); 1215 1216 #ifdef CONFIG_KMEMCHECK 1217 /* 1218 * Split shadow pages too, because free(page[0]) would 1219 * otherwise free the whole shadow. 1220 */ 1221 if (kmemcheck_page_is_tracked(page)) 1222 split_page(virt_to_page(page[0].shadow), order); 1223 #endif 1224 1225 for (i = 1; i < (1 << order); i++) 1226 set_page_refcounted(page + i); 1227 } 1228 1229 /* 1230 * Similar to split_page except the page is already free. As this is only 1231 * being used for migration, the migratetype of the block also changes. 1232 * As this is called with interrupts disabled, the caller is responsible 1233 * for calling arch_alloc_page() and kernel_map_page() after interrupts 1234 * are enabled. 1235 * 1236 * Note: this is probably too low level an operation for use in drivers. 1237 * Please consult with lkml before using this in your driver. 1238 */ 1239 int split_free_page(struct page *page) 1240 { 1241 unsigned int order; 1242 unsigned long watermark; 1243 struct zone *zone; 1244 1245 BUG_ON(!PageBuddy(page)); 1246 1247 zone = page_zone(page); 1248 order = page_order(page); 1249 1250 /* Obey watermarks as if the page was being allocated */ 1251 watermark = low_wmark_pages(zone) + (1 << order); 1252 if (!zone_watermark_ok(zone, 0, watermark, 0, 0)) 1253 return 0; 1254 1255 /* Remove page from free list */ 1256 list_del(&page->lru); 1257 zone->free_area[order].nr_free--; 1258 rmv_page_order(page); 1259 __mod_zone_page_state(zone, NR_FREE_PAGES, -(1UL << order)); 1260 1261 /* Split into individual pages */ 1262 set_page_refcounted(page); 1263 split_page(page, order); 1264 1265 if (order >= pageblock_order - 1) { 1266 struct page *endpage = page + (1 << order) - 1; 1267 for (; page < endpage; page += pageblock_nr_pages) 1268 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 1269 } 1270 1271 return 1 << order; 1272 } 1273 1274 /* 1275 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But 1276 * we cheat by calling it from here, in the order > 0 path. Saves a branch 1277 * or two. 1278 */ 1279 static inline 1280 struct page *buffered_rmqueue(struct zone *preferred_zone, 1281 struct zone *zone, int order, gfp_t gfp_flags, 1282 int migratetype) 1283 { 1284 unsigned long flags; 1285 struct page *page; 1286 int cold = !!(gfp_flags & __GFP_COLD); 1287 1288 again: 1289 if (likely(order == 0)) { 1290 struct per_cpu_pages *pcp; 1291 struct list_head *list; 1292 1293 local_irq_save(flags); 1294 pcp = &this_cpu_ptr(zone->pageset)->pcp; 1295 list = &pcp->lists[migratetype]; 1296 if (list_empty(list)) { 1297 pcp->count += rmqueue_bulk(zone, 0, 1298 pcp->batch, list, 1299 migratetype, cold); 1300 if (unlikely(list_empty(list))) 1301 goto failed; 1302 } 1303 1304 if (cold) 1305 page = list_entry(list->prev, struct page, lru); 1306 else 1307 page = list_entry(list->next, struct page, lru); 1308 1309 list_del(&page->lru); 1310 pcp->count--; 1311 } else { 1312 if (unlikely(gfp_flags & __GFP_NOFAIL)) { 1313 /* 1314 * __GFP_NOFAIL is not to be used in new code. 1315 * 1316 * All __GFP_NOFAIL callers should be fixed so that they 1317 * properly detect and handle allocation failures. 1318 * 1319 * We most definitely don't want callers attempting to 1320 * allocate greater than order-1 page units with 1321 * __GFP_NOFAIL. 1322 */ 1323 WARN_ON_ONCE(order > 1); 1324 } 1325 spin_lock_irqsave(&zone->lock, flags); 1326 page = __rmqueue(zone, order, migratetype); 1327 spin_unlock(&zone->lock); 1328 if (!page) 1329 goto failed; 1330 __mod_zone_page_state(zone, NR_FREE_PAGES, -(1 << order)); 1331 } 1332 1333 __count_zone_vm_events(PGALLOC, zone, 1 << order); 1334 zone_statistics(preferred_zone, zone); 1335 local_irq_restore(flags); 1336 1337 VM_BUG_ON(bad_range(zone, page)); 1338 if (prep_new_page(page, order, gfp_flags)) 1339 goto again; 1340 return page; 1341 1342 failed: 1343 local_irq_restore(flags); 1344 return NULL; 1345 } 1346 1347 /* The ALLOC_WMARK bits are used as an index to zone->watermark */ 1348 #define ALLOC_WMARK_MIN WMARK_MIN 1349 #define ALLOC_WMARK_LOW WMARK_LOW 1350 #define ALLOC_WMARK_HIGH WMARK_HIGH 1351 #define ALLOC_NO_WATERMARKS 0x04 /* don't check watermarks at all */ 1352 1353 /* Mask to get the watermark bits */ 1354 #define ALLOC_WMARK_MASK (ALLOC_NO_WATERMARKS-1) 1355 1356 #define ALLOC_HARDER 0x10 /* try to alloc harder */ 1357 #define ALLOC_HIGH 0x20 /* __GFP_HIGH set */ 1358 #define ALLOC_CPUSET 0x40 /* check for correct cpuset */ 1359 1360 #ifdef CONFIG_FAIL_PAGE_ALLOC 1361 1362 static struct fail_page_alloc_attr { 1363 struct fault_attr attr; 1364 1365 u32 ignore_gfp_highmem; 1366 u32 ignore_gfp_wait; 1367 u32 min_order; 1368 1369 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS 1370 1371 struct dentry *ignore_gfp_highmem_file; 1372 struct dentry *ignore_gfp_wait_file; 1373 struct dentry *min_order_file; 1374 1375 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */ 1376 1377 } fail_page_alloc = { 1378 .attr = FAULT_ATTR_INITIALIZER, 1379 .ignore_gfp_wait = 1, 1380 .ignore_gfp_highmem = 1, 1381 .min_order = 1, 1382 }; 1383 1384 static int __init setup_fail_page_alloc(char *str) 1385 { 1386 return setup_fault_attr(&fail_page_alloc.attr, str); 1387 } 1388 __setup("fail_page_alloc=", setup_fail_page_alloc); 1389 1390 static int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) 1391 { 1392 if (order < fail_page_alloc.min_order) 1393 return 0; 1394 if (gfp_mask & __GFP_NOFAIL) 1395 return 0; 1396 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM)) 1397 return 0; 1398 if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT)) 1399 return 0; 1400 1401 return should_fail(&fail_page_alloc.attr, 1 << order); 1402 } 1403 1404 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS 1405 1406 static int __init fail_page_alloc_debugfs(void) 1407 { 1408 mode_t mode = S_IFREG | S_IRUSR | S_IWUSR; 1409 struct dentry *dir; 1410 int err; 1411 1412 err = init_fault_attr_dentries(&fail_page_alloc.attr, 1413 "fail_page_alloc"); 1414 if (err) 1415 return err; 1416 dir = fail_page_alloc.attr.dentries.dir; 1417 1418 fail_page_alloc.ignore_gfp_wait_file = 1419 debugfs_create_bool("ignore-gfp-wait", mode, dir, 1420 &fail_page_alloc.ignore_gfp_wait); 1421 1422 fail_page_alloc.ignore_gfp_highmem_file = 1423 debugfs_create_bool("ignore-gfp-highmem", mode, dir, 1424 &fail_page_alloc.ignore_gfp_highmem); 1425 fail_page_alloc.min_order_file = 1426 debugfs_create_u32("min-order", mode, dir, 1427 &fail_page_alloc.min_order); 1428 1429 if (!fail_page_alloc.ignore_gfp_wait_file || 1430 !fail_page_alloc.ignore_gfp_highmem_file || 1431 !fail_page_alloc.min_order_file) { 1432 err = -ENOMEM; 1433 debugfs_remove(fail_page_alloc.ignore_gfp_wait_file); 1434 debugfs_remove(fail_page_alloc.ignore_gfp_highmem_file); 1435 debugfs_remove(fail_page_alloc.min_order_file); 1436 cleanup_fault_attr_dentries(&fail_page_alloc.attr); 1437 } 1438 1439 return err; 1440 } 1441 1442 late_initcall(fail_page_alloc_debugfs); 1443 1444 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */ 1445 1446 #else /* CONFIG_FAIL_PAGE_ALLOC */ 1447 1448 static inline int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) 1449 { 1450 return 0; 1451 } 1452 1453 #endif /* CONFIG_FAIL_PAGE_ALLOC */ 1454 1455 /* 1456 * Return 1 if free pages are above 'mark'. This takes into account the order 1457 * of the allocation. 1458 */ 1459 int zone_watermark_ok(struct zone *z, int order, unsigned long mark, 1460 int classzone_idx, int alloc_flags) 1461 { 1462 /* free_pages my go negative - that's OK */ 1463 long min = mark; 1464 long free_pages = zone_page_state(z, NR_FREE_PAGES) - (1 << order) + 1; 1465 int o; 1466 1467 if (alloc_flags & ALLOC_HIGH) 1468 min -= min / 2; 1469 if (alloc_flags & ALLOC_HARDER) 1470 min -= min / 4; 1471 1472 if (free_pages <= min + z->lowmem_reserve[classzone_idx]) 1473 return 0; 1474 for (o = 0; o < order; o++) { 1475 /* At the next order, this order's pages become unavailable */ 1476 free_pages -= z->free_area[o].nr_free << o; 1477 1478 /* Require fewer higher order pages to be free */ 1479 min >>= 1; 1480 1481 if (free_pages <= min) 1482 return 0; 1483 } 1484 return 1; 1485 } 1486 1487 #ifdef CONFIG_NUMA 1488 /* 1489 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to 1490 * skip over zones that are not allowed by the cpuset, or that have 1491 * been recently (in last second) found to be nearly full. See further 1492 * comments in mmzone.h. Reduces cache footprint of zonelist scans 1493 * that have to skip over a lot of full or unallowed zones. 1494 * 1495 * If the zonelist cache is present in the passed in zonelist, then 1496 * returns a pointer to the allowed node mask (either the current 1497 * tasks mems_allowed, or node_states[N_HIGH_MEMORY].) 1498 * 1499 * If the zonelist cache is not available for this zonelist, does 1500 * nothing and returns NULL. 1501 * 1502 * If the fullzones BITMAP in the zonelist cache is stale (more than 1503 * a second since last zap'd) then we zap it out (clear its bits.) 1504 * 1505 * We hold off even calling zlc_setup, until after we've checked the 1506 * first zone in the zonelist, on the theory that most allocations will 1507 * be satisfied from that first zone, so best to examine that zone as 1508 * quickly as we can. 1509 */ 1510 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags) 1511 { 1512 struct zonelist_cache *zlc; /* cached zonelist speedup info */ 1513 nodemask_t *allowednodes; /* zonelist_cache approximation */ 1514 1515 zlc = zonelist->zlcache_ptr; 1516 if (!zlc) 1517 return NULL; 1518 1519 if (time_after(jiffies, zlc->last_full_zap + HZ)) { 1520 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST); 1521 zlc->last_full_zap = jiffies; 1522 } 1523 1524 allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ? 1525 &cpuset_current_mems_allowed : 1526 &node_states[N_HIGH_MEMORY]; 1527 return allowednodes; 1528 } 1529 1530 /* 1531 * Given 'z' scanning a zonelist, run a couple of quick checks to see 1532 * if it is worth looking at further for free memory: 1533 * 1) Check that the zone isn't thought to be full (doesn't have its 1534 * bit set in the zonelist_cache fullzones BITMAP). 1535 * 2) Check that the zones node (obtained from the zonelist_cache 1536 * z_to_n[] mapping) is allowed in the passed in allowednodes mask. 1537 * Return true (non-zero) if zone is worth looking at further, or 1538 * else return false (zero) if it is not. 1539 * 1540 * This check -ignores- the distinction between various watermarks, 1541 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is 1542 * found to be full for any variation of these watermarks, it will 1543 * be considered full for up to one second by all requests, unless 1544 * we are so low on memory on all allowed nodes that we are forced 1545 * into the second scan of the zonelist. 1546 * 1547 * In the second scan we ignore this zonelist cache and exactly 1548 * apply the watermarks to all zones, even it is slower to do so. 1549 * We are low on memory in the second scan, and should leave no stone 1550 * unturned looking for a free page. 1551 */ 1552 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z, 1553 nodemask_t *allowednodes) 1554 { 1555 struct zonelist_cache *zlc; /* cached zonelist speedup info */ 1556 int i; /* index of *z in zonelist zones */ 1557 int n; /* node that zone *z is on */ 1558 1559 zlc = zonelist->zlcache_ptr; 1560 if (!zlc) 1561 return 1; 1562 1563 i = z - zonelist->_zonerefs; 1564 n = zlc->z_to_n[i]; 1565 1566 /* This zone is worth trying if it is allowed but not full */ 1567 return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones); 1568 } 1569 1570 /* 1571 * Given 'z' scanning a zonelist, set the corresponding bit in 1572 * zlc->fullzones, so that subsequent attempts to allocate a page 1573 * from that zone don't waste time re-examining it. 1574 */ 1575 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z) 1576 { 1577 struct zonelist_cache *zlc; /* cached zonelist speedup info */ 1578 int i; /* index of *z in zonelist zones */ 1579 1580 zlc = zonelist->zlcache_ptr; 1581 if (!zlc) 1582 return; 1583 1584 i = z - zonelist->_zonerefs; 1585 1586 set_bit(i, zlc->fullzones); 1587 } 1588 1589 #else /* CONFIG_NUMA */ 1590 1591 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags) 1592 { 1593 return NULL; 1594 } 1595 1596 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z, 1597 nodemask_t *allowednodes) 1598 { 1599 return 1; 1600 } 1601 1602 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z) 1603 { 1604 } 1605 #endif /* CONFIG_NUMA */ 1606 1607 /* 1608 * get_page_from_freelist goes through the zonelist trying to allocate 1609 * a page. 1610 */ 1611 static struct page * 1612 get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order, 1613 struct zonelist *zonelist, int high_zoneidx, int alloc_flags, 1614 struct zone *preferred_zone, int migratetype) 1615 { 1616 struct zoneref *z; 1617 struct page *page = NULL; 1618 int classzone_idx; 1619 struct zone *zone; 1620 nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */ 1621 int zlc_active = 0; /* set if using zonelist_cache */ 1622 int did_zlc_setup = 0; /* just call zlc_setup() one time */ 1623 1624 classzone_idx = zone_idx(preferred_zone); 1625 zonelist_scan: 1626 /* 1627 * Scan zonelist, looking for a zone with enough free. 1628 * See also cpuset_zone_allowed() comment in kernel/cpuset.c. 1629 */ 1630 for_each_zone_zonelist_nodemask(zone, z, zonelist, 1631 high_zoneidx, nodemask) { 1632 if (NUMA_BUILD && zlc_active && 1633 !zlc_zone_worth_trying(zonelist, z, allowednodes)) 1634 continue; 1635 if ((alloc_flags & ALLOC_CPUSET) && 1636 !cpuset_zone_allowed_softwall(zone, gfp_mask)) 1637 goto try_next_zone; 1638 1639 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK); 1640 if (!(alloc_flags & ALLOC_NO_WATERMARKS)) { 1641 unsigned long mark; 1642 int ret; 1643 1644 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK]; 1645 if (zone_watermark_ok(zone, order, mark, 1646 classzone_idx, alloc_flags)) 1647 goto try_this_zone; 1648 1649 if (zone_reclaim_mode == 0) 1650 goto this_zone_full; 1651 1652 ret = zone_reclaim(zone, gfp_mask, order); 1653 switch (ret) { 1654 case ZONE_RECLAIM_NOSCAN: 1655 /* did not scan */ 1656 goto try_next_zone; 1657 case ZONE_RECLAIM_FULL: 1658 /* scanned but unreclaimable */ 1659 goto this_zone_full; 1660 default: 1661 /* did we reclaim enough */ 1662 if (!zone_watermark_ok(zone, order, mark, 1663 classzone_idx, alloc_flags)) 1664 goto this_zone_full; 1665 } 1666 } 1667 1668 try_this_zone: 1669 page = buffered_rmqueue(preferred_zone, zone, order, 1670 gfp_mask, migratetype); 1671 if (page) 1672 break; 1673 this_zone_full: 1674 if (NUMA_BUILD) 1675 zlc_mark_zone_full(zonelist, z); 1676 try_next_zone: 1677 if (NUMA_BUILD && !did_zlc_setup && nr_online_nodes > 1) { 1678 /* 1679 * we do zlc_setup after the first zone is tried but only 1680 * if there are multiple nodes make it worthwhile 1681 */ 1682 allowednodes = zlc_setup(zonelist, alloc_flags); 1683 zlc_active = 1; 1684 did_zlc_setup = 1; 1685 } 1686 } 1687 1688 if (unlikely(NUMA_BUILD && page == NULL && zlc_active)) { 1689 /* Disable zlc cache for second zonelist scan */ 1690 zlc_active = 0; 1691 goto zonelist_scan; 1692 } 1693 return page; 1694 } 1695 1696 static inline int 1697 should_alloc_retry(gfp_t gfp_mask, unsigned int order, 1698 unsigned long pages_reclaimed) 1699 { 1700 /* Do not loop if specifically requested */ 1701 if (gfp_mask & __GFP_NORETRY) 1702 return 0; 1703 1704 /* 1705 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER 1706 * means __GFP_NOFAIL, but that may not be true in other 1707 * implementations. 1708 */ 1709 if (order <= PAGE_ALLOC_COSTLY_ORDER) 1710 return 1; 1711 1712 /* 1713 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is 1714 * specified, then we retry until we no longer reclaim any pages 1715 * (above), or we've reclaimed an order of pages at least as 1716 * large as the allocation's order. In both cases, if the 1717 * allocation still fails, we stop retrying. 1718 */ 1719 if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order)) 1720 return 1; 1721 1722 /* 1723 * Don't let big-order allocations loop unless the caller 1724 * explicitly requests that. 1725 */ 1726 if (gfp_mask & __GFP_NOFAIL) 1727 return 1; 1728 1729 return 0; 1730 } 1731 1732 static inline struct page * 1733 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order, 1734 struct zonelist *zonelist, enum zone_type high_zoneidx, 1735 nodemask_t *nodemask, struct zone *preferred_zone, 1736 int migratetype) 1737 { 1738 struct page *page; 1739 1740 /* Acquire the OOM killer lock for the zones in zonelist */ 1741 if (!try_set_zonelist_oom(zonelist, gfp_mask)) { 1742 schedule_timeout_uninterruptible(1); 1743 return NULL; 1744 } 1745 1746 /* 1747 * Go through the zonelist yet one more time, keep very high watermark 1748 * here, this is only to catch a parallel oom killing, we must fail if 1749 * we're still under heavy pressure. 1750 */ 1751 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, 1752 order, zonelist, high_zoneidx, 1753 ALLOC_WMARK_HIGH|ALLOC_CPUSET, 1754 preferred_zone, migratetype); 1755 if (page) 1756 goto out; 1757 1758 if (!(gfp_mask & __GFP_NOFAIL)) { 1759 /* The OOM killer will not help higher order allocs */ 1760 if (order > PAGE_ALLOC_COSTLY_ORDER) 1761 goto out; 1762 /* The OOM killer does not needlessly kill tasks for lowmem */ 1763 if (high_zoneidx < ZONE_NORMAL) 1764 goto out; 1765 /* 1766 * GFP_THISNODE contains __GFP_NORETRY and we never hit this. 1767 * Sanity check for bare calls of __GFP_THISNODE, not real OOM. 1768 * The caller should handle page allocation failure by itself if 1769 * it specifies __GFP_THISNODE. 1770 * Note: Hugepage uses it but will hit PAGE_ALLOC_COSTLY_ORDER. 1771 */ 1772 if (gfp_mask & __GFP_THISNODE) 1773 goto out; 1774 } 1775 /* Exhausted what can be done so it's blamo time */ 1776 out_of_memory(zonelist, gfp_mask, order, nodemask); 1777 1778 out: 1779 clear_zonelist_oom(zonelist, gfp_mask); 1780 return page; 1781 } 1782 1783 #ifdef CONFIG_COMPACTION 1784 /* Try memory compaction for high-order allocations before reclaim */ 1785 static struct page * 1786 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order, 1787 struct zonelist *zonelist, enum zone_type high_zoneidx, 1788 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone, 1789 int migratetype, unsigned long *did_some_progress) 1790 { 1791 struct page *page; 1792 1793 if (!order || compaction_deferred(preferred_zone)) 1794 return NULL; 1795 1796 *did_some_progress = try_to_compact_pages(zonelist, order, gfp_mask, 1797 nodemask); 1798 if (*did_some_progress != COMPACT_SKIPPED) { 1799 1800 /* Page migration frees to the PCP lists but we want merging */ 1801 drain_pages(get_cpu()); 1802 put_cpu(); 1803 1804 page = get_page_from_freelist(gfp_mask, nodemask, 1805 order, zonelist, high_zoneidx, 1806 alloc_flags, preferred_zone, 1807 migratetype); 1808 if (page) { 1809 preferred_zone->compact_considered = 0; 1810 preferred_zone->compact_defer_shift = 0; 1811 count_vm_event(COMPACTSUCCESS); 1812 return page; 1813 } 1814 1815 /* 1816 * It's bad if compaction run occurs and fails. 1817 * The most likely reason is that pages exist, 1818 * but not enough to satisfy watermarks. 1819 */ 1820 count_vm_event(COMPACTFAIL); 1821 defer_compaction(preferred_zone); 1822 1823 cond_resched(); 1824 } 1825 1826 return NULL; 1827 } 1828 #else 1829 static inline struct page * 1830 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order, 1831 struct zonelist *zonelist, enum zone_type high_zoneidx, 1832 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone, 1833 int migratetype, unsigned long *did_some_progress) 1834 { 1835 return NULL; 1836 } 1837 #endif /* CONFIG_COMPACTION */ 1838 1839 /* The really slow allocator path where we enter direct reclaim */ 1840 static inline struct page * 1841 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order, 1842 struct zonelist *zonelist, enum zone_type high_zoneidx, 1843 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone, 1844 int migratetype, unsigned long *did_some_progress) 1845 { 1846 struct page *page = NULL; 1847 struct reclaim_state reclaim_state; 1848 struct task_struct *p = current; 1849 1850 cond_resched(); 1851 1852 /* We now go into synchronous reclaim */ 1853 cpuset_memory_pressure_bump(); 1854 p->flags |= PF_MEMALLOC; 1855 lockdep_set_current_reclaim_state(gfp_mask); 1856 reclaim_state.reclaimed_slab = 0; 1857 p->reclaim_state = &reclaim_state; 1858 1859 *did_some_progress = try_to_free_pages(zonelist, order, gfp_mask, nodemask); 1860 1861 p->reclaim_state = NULL; 1862 lockdep_clear_current_reclaim_state(); 1863 p->flags &= ~PF_MEMALLOC; 1864 1865 cond_resched(); 1866 1867 if (order != 0) 1868 drain_all_pages(); 1869 1870 if (likely(*did_some_progress)) 1871 page = get_page_from_freelist(gfp_mask, nodemask, order, 1872 zonelist, high_zoneidx, 1873 alloc_flags, preferred_zone, 1874 migratetype); 1875 return page; 1876 } 1877 1878 /* 1879 * This is called in the allocator slow-path if the allocation request is of 1880 * sufficient urgency to ignore watermarks and take other desperate measures 1881 */ 1882 static inline struct page * 1883 __alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order, 1884 struct zonelist *zonelist, enum zone_type high_zoneidx, 1885 nodemask_t *nodemask, struct zone *preferred_zone, 1886 int migratetype) 1887 { 1888 struct page *page; 1889 1890 do { 1891 page = get_page_from_freelist(gfp_mask, nodemask, order, 1892 zonelist, high_zoneidx, ALLOC_NO_WATERMARKS, 1893 preferred_zone, migratetype); 1894 1895 if (!page && gfp_mask & __GFP_NOFAIL) 1896 congestion_wait(BLK_RW_ASYNC, HZ/50); 1897 } while (!page && (gfp_mask & __GFP_NOFAIL)); 1898 1899 return page; 1900 } 1901 1902 static inline 1903 void wake_all_kswapd(unsigned int order, struct zonelist *zonelist, 1904 enum zone_type high_zoneidx) 1905 { 1906 struct zoneref *z; 1907 struct zone *zone; 1908 1909 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) 1910 wakeup_kswapd(zone, order); 1911 } 1912 1913 static inline int 1914 gfp_to_alloc_flags(gfp_t gfp_mask) 1915 { 1916 struct task_struct *p = current; 1917 int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET; 1918 const gfp_t wait = gfp_mask & __GFP_WAIT; 1919 1920 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */ 1921 BUILD_BUG_ON(__GFP_HIGH != ALLOC_HIGH); 1922 1923 /* 1924 * The caller may dip into page reserves a bit more if the caller 1925 * cannot run direct reclaim, or if the caller has realtime scheduling 1926 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will 1927 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH). 1928 */ 1929 alloc_flags |= (gfp_mask & __GFP_HIGH); 1930 1931 if (!wait) { 1932 alloc_flags |= ALLOC_HARDER; 1933 /* 1934 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc. 1935 * See also cpuset_zone_allowed() comment in kernel/cpuset.c. 1936 */ 1937 alloc_flags &= ~ALLOC_CPUSET; 1938 } else if (unlikely(rt_task(p)) && !in_interrupt()) 1939 alloc_flags |= ALLOC_HARDER; 1940 1941 if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) { 1942 if (!in_interrupt() && 1943 ((p->flags & PF_MEMALLOC) || 1944 unlikely(test_thread_flag(TIF_MEMDIE)))) 1945 alloc_flags |= ALLOC_NO_WATERMARKS; 1946 } 1947 1948 return alloc_flags; 1949 } 1950 1951 static inline struct page * 1952 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order, 1953 struct zonelist *zonelist, enum zone_type high_zoneidx, 1954 nodemask_t *nodemask, struct zone *preferred_zone, 1955 int migratetype) 1956 { 1957 const gfp_t wait = gfp_mask & __GFP_WAIT; 1958 struct page *page = NULL; 1959 int alloc_flags; 1960 unsigned long pages_reclaimed = 0; 1961 unsigned long did_some_progress; 1962 struct task_struct *p = current; 1963 1964 /* 1965 * In the slowpath, we sanity check order to avoid ever trying to 1966 * reclaim >= MAX_ORDER areas which will never succeed. Callers may 1967 * be using allocators in order of preference for an area that is 1968 * too large. 1969 */ 1970 if (order >= MAX_ORDER) { 1971 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN)); 1972 return NULL; 1973 } 1974 1975 /* 1976 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and 1977 * __GFP_NOWARN set) should not cause reclaim since the subsystem 1978 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim 1979 * using a larger set of nodes after it has established that the 1980 * allowed per node queues are empty and that nodes are 1981 * over allocated. 1982 */ 1983 if (NUMA_BUILD && (gfp_mask & GFP_THISNODE) == GFP_THISNODE) 1984 goto nopage; 1985 1986 restart: 1987 wake_all_kswapd(order, zonelist, high_zoneidx); 1988 1989 /* 1990 * OK, we're below the kswapd watermark and have kicked background 1991 * reclaim. Now things get more complex, so set up alloc_flags according 1992 * to how we want to proceed. 1993 */ 1994 alloc_flags = gfp_to_alloc_flags(gfp_mask); 1995 1996 /* This is the last chance, in general, before the goto nopage. */ 1997 page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist, 1998 high_zoneidx, alloc_flags & ~ALLOC_NO_WATERMARKS, 1999 preferred_zone, migratetype); 2000 if (page) 2001 goto got_pg; 2002 2003 rebalance: 2004 /* Allocate without watermarks if the context allows */ 2005 if (alloc_flags & ALLOC_NO_WATERMARKS) { 2006 page = __alloc_pages_high_priority(gfp_mask, order, 2007 zonelist, high_zoneidx, nodemask, 2008 preferred_zone, migratetype); 2009 if (page) 2010 goto got_pg; 2011 } 2012 2013 /* Atomic allocations - we can't balance anything */ 2014 if (!wait) 2015 goto nopage; 2016 2017 /* Avoid recursion of direct reclaim */ 2018 if (p->flags & PF_MEMALLOC) 2019 goto nopage; 2020 2021 /* Avoid allocations with no watermarks from looping endlessly */ 2022 if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL)) 2023 goto nopage; 2024 2025 /* Try direct compaction */ 2026 page = __alloc_pages_direct_compact(gfp_mask, order, 2027 zonelist, high_zoneidx, 2028 nodemask, 2029 alloc_flags, preferred_zone, 2030 migratetype, &did_some_progress); 2031 if (page) 2032 goto got_pg; 2033 2034 /* Try direct reclaim and then allocating */ 2035 page = __alloc_pages_direct_reclaim(gfp_mask, order, 2036 zonelist, high_zoneidx, 2037 nodemask, 2038 alloc_flags, preferred_zone, 2039 migratetype, &did_some_progress); 2040 if (page) 2041 goto got_pg; 2042 2043 /* 2044 * If we failed to make any progress reclaiming, then we are 2045 * running out of options and have to consider going OOM 2046 */ 2047 if (!did_some_progress) { 2048 if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) { 2049 if (oom_killer_disabled) 2050 goto nopage; 2051 page = __alloc_pages_may_oom(gfp_mask, order, 2052 zonelist, high_zoneidx, 2053 nodemask, preferred_zone, 2054 migratetype); 2055 if (page) 2056 goto got_pg; 2057 2058 if (!(gfp_mask & __GFP_NOFAIL)) { 2059 /* 2060 * The oom killer is not called for high-order 2061 * allocations that may fail, so if no progress 2062 * is being made, there are no other options and 2063 * retrying is unlikely to help. 2064 */ 2065 if (order > PAGE_ALLOC_COSTLY_ORDER) 2066 goto nopage; 2067 /* 2068 * The oom killer is not called for lowmem 2069 * allocations to prevent needlessly killing 2070 * innocent tasks. 2071 */ 2072 if (high_zoneidx < ZONE_NORMAL) 2073 goto nopage; 2074 } 2075 2076 goto restart; 2077 } 2078 } 2079 2080 /* Check if we should retry the allocation */ 2081 pages_reclaimed += did_some_progress; 2082 if (should_alloc_retry(gfp_mask, order, pages_reclaimed)) { 2083 /* Wait for some write requests to complete then retry */ 2084 congestion_wait(BLK_RW_ASYNC, HZ/50); 2085 goto rebalance; 2086 } 2087 2088 nopage: 2089 if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) { 2090 printk(KERN_WARNING "%s: page allocation failure." 2091 " order:%d, mode:0x%x\n", 2092 p->comm, order, gfp_mask); 2093 dump_stack(); 2094 show_mem(); 2095 } 2096 return page; 2097 got_pg: 2098 if (kmemcheck_enabled) 2099 kmemcheck_pagealloc_alloc(page, order, gfp_mask); 2100 return page; 2101 2102 } 2103 2104 /* 2105 * This is the 'heart' of the zoned buddy allocator. 2106 */ 2107 struct page * 2108 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order, 2109 struct zonelist *zonelist, nodemask_t *nodemask) 2110 { 2111 enum zone_type high_zoneidx = gfp_zone(gfp_mask); 2112 struct zone *preferred_zone; 2113 struct page *page; 2114 int migratetype = allocflags_to_migratetype(gfp_mask); 2115 2116 gfp_mask &= gfp_allowed_mask; 2117 2118 lockdep_trace_alloc(gfp_mask); 2119 2120 might_sleep_if(gfp_mask & __GFP_WAIT); 2121 2122 if (should_fail_alloc_page(gfp_mask, order)) 2123 return NULL; 2124 2125 /* 2126 * Check the zones suitable for the gfp_mask contain at least one 2127 * valid zone. It's possible to have an empty zonelist as a result 2128 * of GFP_THISNODE and a memoryless node 2129 */ 2130 if (unlikely(!zonelist->_zonerefs->zone)) 2131 return NULL; 2132 2133 get_mems_allowed(); 2134 /* The preferred zone is used for statistics later */ 2135 first_zones_zonelist(zonelist, high_zoneidx, nodemask, &preferred_zone); 2136 if (!preferred_zone) { 2137 put_mems_allowed(); 2138 return NULL; 2139 } 2140 2141 /* First allocation attempt */ 2142 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order, 2143 zonelist, high_zoneidx, ALLOC_WMARK_LOW|ALLOC_CPUSET, 2144 preferred_zone, migratetype); 2145 if (unlikely(!page)) 2146 page = __alloc_pages_slowpath(gfp_mask, order, 2147 zonelist, high_zoneidx, nodemask, 2148 preferred_zone, migratetype); 2149 put_mems_allowed(); 2150 2151 trace_mm_page_alloc(page, order, gfp_mask, migratetype); 2152 return page; 2153 } 2154 EXPORT_SYMBOL(__alloc_pages_nodemask); 2155 2156 /* 2157 * Common helper functions. 2158 */ 2159 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order) 2160 { 2161 struct page *page; 2162 2163 /* 2164 * __get_free_pages() returns a 32-bit address, which cannot represent 2165 * a highmem page 2166 */ 2167 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0); 2168 2169 page = alloc_pages(gfp_mask, order); 2170 if (!page) 2171 return 0; 2172 return (unsigned long) page_address(page); 2173 } 2174 EXPORT_SYMBOL(__get_free_pages); 2175 2176 unsigned long get_zeroed_page(gfp_t gfp_mask) 2177 { 2178 return __get_free_pages(gfp_mask | __GFP_ZERO, 0); 2179 } 2180 EXPORT_SYMBOL(get_zeroed_page); 2181 2182 void __pagevec_free(struct pagevec *pvec) 2183 { 2184 int i = pagevec_count(pvec); 2185 2186 while (--i >= 0) { 2187 trace_mm_pagevec_free(pvec->pages[i], pvec->cold); 2188 free_hot_cold_page(pvec->pages[i], pvec->cold); 2189 } 2190 } 2191 2192 void __free_pages(struct page *page, unsigned int order) 2193 { 2194 if (put_page_testzero(page)) { 2195 if (order == 0) 2196 free_hot_cold_page(page, 0); 2197 else 2198 __free_pages_ok(page, order); 2199 } 2200 } 2201 2202 EXPORT_SYMBOL(__free_pages); 2203 2204 void free_pages(unsigned long addr, unsigned int order) 2205 { 2206 if (addr != 0) { 2207 VM_BUG_ON(!virt_addr_valid((void *)addr)); 2208 __free_pages(virt_to_page((void *)addr), order); 2209 } 2210 } 2211 2212 EXPORT_SYMBOL(free_pages); 2213 2214 /** 2215 * alloc_pages_exact - allocate an exact number physically-contiguous pages. 2216 * @size: the number of bytes to allocate 2217 * @gfp_mask: GFP flags for the allocation 2218 * 2219 * This function is similar to alloc_pages(), except that it allocates the 2220 * minimum number of pages to satisfy the request. alloc_pages() can only 2221 * allocate memory in power-of-two pages. 2222 * 2223 * This function is also limited by MAX_ORDER. 2224 * 2225 * Memory allocated by this function must be released by free_pages_exact(). 2226 */ 2227 void *alloc_pages_exact(size_t size, gfp_t gfp_mask) 2228 { 2229 unsigned int order = get_order(size); 2230 unsigned long addr; 2231 2232 addr = __get_free_pages(gfp_mask, order); 2233 if (addr) { 2234 unsigned long alloc_end = addr + (PAGE_SIZE << order); 2235 unsigned long used = addr + PAGE_ALIGN(size); 2236 2237 split_page(virt_to_page((void *)addr), order); 2238 while (used < alloc_end) { 2239 free_page(used); 2240 used += PAGE_SIZE; 2241 } 2242 } 2243 2244 return (void *)addr; 2245 } 2246 EXPORT_SYMBOL(alloc_pages_exact); 2247 2248 /** 2249 * free_pages_exact - release memory allocated via alloc_pages_exact() 2250 * @virt: the value returned by alloc_pages_exact. 2251 * @size: size of allocation, same value as passed to alloc_pages_exact(). 2252 * 2253 * Release the memory allocated by a previous call to alloc_pages_exact. 2254 */ 2255 void free_pages_exact(void *virt, size_t size) 2256 { 2257 unsigned long addr = (unsigned long)virt; 2258 unsigned long end = addr + PAGE_ALIGN(size); 2259 2260 while (addr < end) { 2261 free_page(addr); 2262 addr += PAGE_SIZE; 2263 } 2264 } 2265 EXPORT_SYMBOL(free_pages_exact); 2266 2267 static unsigned int nr_free_zone_pages(int offset) 2268 { 2269 struct zoneref *z; 2270 struct zone *zone; 2271 2272 /* Just pick one node, since fallback list is circular */ 2273 unsigned int sum = 0; 2274 2275 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL); 2276 2277 for_each_zone_zonelist(zone, z, zonelist, offset) { 2278 unsigned long size = zone->present_pages; 2279 unsigned long high = high_wmark_pages(zone); 2280 if (size > high) 2281 sum += size - high; 2282 } 2283 2284 return sum; 2285 } 2286 2287 /* 2288 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL 2289 */ 2290 unsigned int nr_free_buffer_pages(void) 2291 { 2292 return nr_free_zone_pages(gfp_zone(GFP_USER)); 2293 } 2294 EXPORT_SYMBOL_GPL(nr_free_buffer_pages); 2295 2296 /* 2297 * Amount of free RAM allocatable within all zones 2298 */ 2299 unsigned int nr_free_pagecache_pages(void) 2300 { 2301 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE)); 2302 } 2303 2304 static inline void show_node(struct zone *zone) 2305 { 2306 if (NUMA_BUILD) 2307 printk("Node %d ", zone_to_nid(zone)); 2308 } 2309 2310 void si_meminfo(struct sysinfo *val) 2311 { 2312 val->totalram = totalram_pages; 2313 val->sharedram = 0; 2314 val->freeram = global_page_state(NR_FREE_PAGES); 2315 val->bufferram = nr_blockdev_pages(); 2316 val->totalhigh = totalhigh_pages; 2317 val->freehigh = nr_free_highpages(); 2318 val->mem_unit = PAGE_SIZE; 2319 } 2320 2321 EXPORT_SYMBOL(si_meminfo); 2322 2323 #ifdef CONFIG_NUMA 2324 void si_meminfo_node(struct sysinfo *val, int nid) 2325 { 2326 pg_data_t *pgdat = NODE_DATA(nid); 2327 2328 val->totalram = pgdat->node_present_pages; 2329 val->freeram = node_page_state(nid, NR_FREE_PAGES); 2330 #ifdef CONFIG_HIGHMEM 2331 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages; 2332 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM], 2333 NR_FREE_PAGES); 2334 #else 2335 val->totalhigh = 0; 2336 val->freehigh = 0; 2337 #endif 2338 val->mem_unit = PAGE_SIZE; 2339 } 2340 #endif 2341 2342 #define K(x) ((x) << (PAGE_SHIFT-10)) 2343 2344 /* 2345 * Show free area list (used inside shift_scroll-lock stuff) 2346 * We also calculate the percentage fragmentation. We do this by counting the 2347 * memory on each free list with the exception of the first item on the list. 2348 */ 2349 void show_free_areas(void) 2350 { 2351 int cpu; 2352 struct zone *zone; 2353 2354 for_each_populated_zone(zone) { 2355 show_node(zone); 2356 printk("%s per-cpu:\n", zone->name); 2357 2358 for_each_online_cpu(cpu) { 2359 struct per_cpu_pageset *pageset; 2360 2361 pageset = per_cpu_ptr(zone->pageset, cpu); 2362 2363 printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n", 2364 cpu, pageset->pcp.high, 2365 pageset->pcp.batch, pageset->pcp.count); 2366 } 2367 } 2368 2369 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n" 2370 " active_file:%lu inactive_file:%lu isolated_file:%lu\n" 2371 " unevictable:%lu" 2372 " dirty:%lu writeback:%lu unstable:%lu\n" 2373 " free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n" 2374 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n", 2375 global_page_state(NR_ACTIVE_ANON), 2376 global_page_state(NR_INACTIVE_ANON), 2377 global_page_state(NR_ISOLATED_ANON), 2378 global_page_state(NR_ACTIVE_FILE), 2379 global_page_state(NR_INACTIVE_FILE), 2380 global_page_state(NR_ISOLATED_FILE), 2381 global_page_state(NR_UNEVICTABLE), 2382 global_page_state(NR_FILE_DIRTY), 2383 global_page_state(NR_WRITEBACK), 2384 global_page_state(NR_UNSTABLE_NFS), 2385 global_page_state(NR_FREE_PAGES), 2386 global_page_state(NR_SLAB_RECLAIMABLE), 2387 global_page_state(NR_SLAB_UNRECLAIMABLE), 2388 global_page_state(NR_FILE_MAPPED), 2389 global_page_state(NR_SHMEM), 2390 global_page_state(NR_PAGETABLE), 2391 global_page_state(NR_BOUNCE)); 2392 2393 for_each_populated_zone(zone) { 2394 int i; 2395 2396 show_node(zone); 2397 printk("%s" 2398 " free:%lukB" 2399 " min:%lukB" 2400 " low:%lukB" 2401 " high:%lukB" 2402 " active_anon:%lukB" 2403 " inactive_anon:%lukB" 2404 " active_file:%lukB" 2405 " inactive_file:%lukB" 2406 " unevictable:%lukB" 2407 " isolated(anon):%lukB" 2408 " isolated(file):%lukB" 2409 " present:%lukB" 2410 " mlocked:%lukB" 2411 " dirty:%lukB" 2412 " writeback:%lukB" 2413 " mapped:%lukB" 2414 " shmem:%lukB" 2415 " slab_reclaimable:%lukB" 2416 " slab_unreclaimable:%lukB" 2417 " kernel_stack:%lukB" 2418 " pagetables:%lukB" 2419 " unstable:%lukB" 2420 " bounce:%lukB" 2421 " writeback_tmp:%lukB" 2422 " pages_scanned:%lu" 2423 " all_unreclaimable? %s" 2424 "\n", 2425 zone->name, 2426 K(zone_page_state(zone, NR_FREE_PAGES)), 2427 K(min_wmark_pages(zone)), 2428 K(low_wmark_pages(zone)), 2429 K(high_wmark_pages(zone)), 2430 K(zone_page_state(zone, NR_ACTIVE_ANON)), 2431 K(zone_page_state(zone, NR_INACTIVE_ANON)), 2432 K(zone_page_state(zone, NR_ACTIVE_FILE)), 2433 K(zone_page_state(zone, NR_INACTIVE_FILE)), 2434 K(zone_page_state(zone, NR_UNEVICTABLE)), 2435 K(zone_page_state(zone, NR_ISOLATED_ANON)), 2436 K(zone_page_state(zone, NR_ISOLATED_FILE)), 2437 K(zone->present_pages), 2438 K(zone_page_state(zone, NR_MLOCK)), 2439 K(zone_page_state(zone, NR_FILE_DIRTY)), 2440 K(zone_page_state(zone, NR_WRITEBACK)), 2441 K(zone_page_state(zone, NR_FILE_MAPPED)), 2442 K(zone_page_state(zone, NR_SHMEM)), 2443 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)), 2444 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)), 2445 zone_page_state(zone, NR_KERNEL_STACK) * 2446 THREAD_SIZE / 1024, 2447 K(zone_page_state(zone, NR_PAGETABLE)), 2448 K(zone_page_state(zone, NR_UNSTABLE_NFS)), 2449 K(zone_page_state(zone, NR_BOUNCE)), 2450 K(zone_page_state(zone, NR_WRITEBACK_TEMP)), 2451 zone->pages_scanned, 2452 (zone->all_unreclaimable ? "yes" : "no") 2453 ); 2454 printk("lowmem_reserve[]:"); 2455 for (i = 0; i < MAX_NR_ZONES; i++) 2456 printk(" %lu", zone->lowmem_reserve[i]); 2457 printk("\n"); 2458 } 2459 2460 for_each_populated_zone(zone) { 2461 unsigned long nr[MAX_ORDER], flags, order, total = 0; 2462 2463 show_node(zone); 2464 printk("%s: ", zone->name); 2465 2466 spin_lock_irqsave(&zone->lock, flags); 2467 for (order = 0; order < MAX_ORDER; order++) { 2468 nr[order] = zone->free_area[order].nr_free; 2469 total += nr[order] << order; 2470 } 2471 spin_unlock_irqrestore(&zone->lock, flags); 2472 for (order = 0; order < MAX_ORDER; order++) 2473 printk("%lu*%lukB ", nr[order], K(1UL) << order); 2474 printk("= %lukB\n", K(total)); 2475 } 2476 2477 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES)); 2478 2479 show_swap_cache_info(); 2480 } 2481 2482 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref) 2483 { 2484 zoneref->zone = zone; 2485 zoneref->zone_idx = zone_idx(zone); 2486 } 2487 2488 /* 2489 * Builds allocation fallback zone lists. 2490 * 2491 * Add all populated zones of a node to the zonelist. 2492 */ 2493 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist, 2494 int nr_zones, enum zone_type zone_type) 2495 { 2496 struct zone *zone; 2497 2498 BUG_ON(zone_type >= MAX_NR_ZONES); 2499 zone_type++; 2500 2501 do { 2502 zone_type--; 2503 zone = pgdat->node_zones + zone_type; 2504 if (populated_zone(zone)) { 2505 zoneref_set_zone(zone, 2506 &zonelist->_zonerefs[nr_zones++]); 2507 check_highest_zone(zone_type); 2508 } 2509 2510 } while (zone_type); 2511 return nr_zones; 2512 } 2513 2514 2515 /* 2516 * zonelist_order: 2517 * 0 = automatic detection of better ordering. 2518 * 1 = order by ([node] distance, -zonetype) 2519 * 2 = order by (-zonetype, [node] distance) 2520 * 2521 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create 2522 * the same zonelist. So only NUMA can configure this param. 2523 */ 2524 #define ZONELIST_ORDER_DEFAULT 0 2525 #define ZONELIST_ORDER_NODE 1 2526 #define ZONELIST_ORDER_ZONE 2 2527 2528 /* zonelist order in the kernel. 2529 * set_zonelist_order() will set this to NODE or ZONE. 2530 */ 2531 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT; 2532 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"}; 2533 2534 2535 #ifdef CONFIG_NUMA 2536 /* The value user specified ....changed by config */ 2537 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT; 2538 /* string for sysctl */ 2539 #define NUMA_ZONELIST_ORDER_LEN 16 2540 char numa_zonelist_order[16] = "default"; 2541 2542 /* 2543 * interface for configure zonelist ordering. 2544 * command line option "numa_zonelist_order" 2545 * = "[dD]efault - default, automatic configuration. 2546 * = "[nN]ode - order by node locality, then by zone within node 2547 * = "[zZ]one - order by zone, then by locality within zone 2548 */ 2549 2550 static int __parse_numa_zonelist_order(char *s) 2551 { 2552 if (*s == 'd' || *s == 'D') { 2553 user_zonelist_order = ZONELIST_ORDER_DEFAULT; 2554 } else if (*s == 'n' || *s == 'N') { 2555 user_zonelist_order = ZONELIST_ORDER_NODE; 2556 } else if (*s == 'z' || *s == 'Z') { 2557 user_zonelist_order = ZONELIST_ORDER_ZONE; 2558 } else { 2559 printk(KERN_WARNING 2560 "Ignoring invalid numa_zonelist_order value: " 2561 "%s\n", s); 2562 return -EINVAL; 2563 } 2564 return 0; 2565 } 2566 2567 static __init int setup_numa_zonelist_order(char *s) 2568 { 2569 if (s) 2570 return __parse_numa_zonelist_order(s); 2571 return 0; 2572 } 2573 early_param("numa_zonelist_order", setup_numa_zonelist_order); 2574 2575 /* 2576 * sysctl handler for numa_zonelist_order 2577 */ 2578 int numa_zonelist_order_handler(ctl_table *table, int write, 2579 void __user *buffer, size_t *length, 2580 loff_t *ppos) 2581 { 2582 char saved_string[NUMA_ZONELIST_ORDER_LEN]; 2583 int ret; 2584 static DEFINE_MUTEX(zl_order_mutex); 2585 2586 mutex_lock(&zl_order_mutex); 2587 if (write) 2588 strcpy(saved_string, (char*)table->data); 2589 ret = proc_dostring(table, write, buffer, length, ppos); 2590 if (ret) 2591 goto out; 2592 if (write) { 2593 int oldval = user_zonelist_order; 2594 if (__parse_numa_zonelist_order((char*)table->data)) { 2595 /* 2596 * bogus value. restore saved string 2597 */ 2598 strncpy((char*)table->data, saved_string, 2599 NUMA_ZONELIST_ORDER_LEN); 2600 user_zonelist_order = oldval; 2601 } else if (oldval != user_zonelist_order) { 2602 mutex_lock(&zonelists_mutex); 2603 build_all_zonelists(NULL); 2604 mutex_unlock(&zonelists_mutex); 2605 } 2606 } 2607 out: 2608 mutex_unlock(&zl_order_mutex); 2609 return ret; 2610 } 2611 2612 2613 #define MAX_NODE_LOAD (nr_online_nodes) 2614 static int node_load[MAX_NUMNODES]; 2615 2616 /** 2617 * find_next_best_node - find the next node that should appear in a given node's fallback list 2618 * @node: node whose fallback list we're appending 2619 * @used_node_mask: nodemask_t of already used nodes 2620 * 2621 * We use a number of factors to determine which is the next node that should 2622 * appear on a given node's fallback list. The node should not have appeared 2623 * already in @node's fallback list, and it should be the next closest node 2624 * according to the distance array (which contains arbitrary distance values 2625 * from each node to each node in the system), and should also prefer nodes 2626 * with no CPUs, since presumably they'll have very little allocation pressure 2627 * on them otherwise. 2628 * It returns -1 if no node is found. 2629 */ 2630 static int find_next_best_node(int node, nodemask_t *used_node_mask) 2631 { 2632 int n, val; 2633 int min_val = INT_MAX; 2634 int best_node = -1; 2635 const struct cpumask *tmp = cpumask_of_node(0); 2636 2637 /* Use the local node if we haven't already */ 2638 if (!node_isset(node, *used_node_mask)) { 2639 node_set(node, *used_node_mask); 2640 return node; 2641 } 2642 2643 for_each_node_state(n, N_HIGH_MEMORY) { 2644 2645 /* Don't want a node to appear more than once */ 2646 if (node_isset(n, *used_node_mask)) 2647 continue; 2648 2649 /* Use the distance array to find the distance */ 2650 val = node_distance(node, n); 2651 2652 /* Penalize nodes under us ("prefer the next node") */ 2653 val += (n < node); 2654 2655 /* Give preference to headless and unused nodes */ 2656 tmp = cpumask_of_node(n); 2657 if (!cpumask_empty(tmp)) 2658 val += PENALTY_FOR_NODE_WITH_CPUS; 2659 2660 /* Slight preference for less loaded node */ 2661 val *= (MAX_NODE_LOAD*MAX_NUMNODES); 2662 val += node_load[n]; 2663 2664 if (val < min_val) { 2665 min_val = val; 2666 best_node = n; 2667 } 2668 } 2669 2670 if (best_node >= 0) 2671 node_set(best_node, *used_node_mask); 2672 2673 return best_node; 2674 } 2675 2676 2677 /* 2678 * Build zonelists ordered by node and zones within node. 2679 * This results in maximum locality--normal zone overflows into local 2680 * DMA zone, if any--but risks exhausting DMA zone. 2681 */ 2682 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node) 2683 { 2684 int j; 2685 struct zonelist *zonelist; 2686 2687 zonelist = &pgdat->node_zonelists[0]; 2688 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++) 2689 ; 2690 j = build_zonelists_node(NODE_DATA(node), zonelist, j, 2691 MAX_NR_ZONES - 1); 2692 zonelist->_zonerefs[j].zone = NULL; 2693 zonelist->_zonerefs[j].zone_idx = 0; 2694 } 2695 2696 /* 2697 * Build gfp_thisnode zonelists 2698 */ 2699 static void build_thisnode_zonelists(pg_data_t *pgdat) 2700 { 2701 int j; 2702 struct zonelist *zonelist; 2703 2704 zonelist = &pgdat->node_zonelists[1]; 2705 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1); 2706 zonelist->_zonerefs[j].zone = NULL; 2707 zonelist->_zonerefs[j].zone_idx = 0; 2708 } 2709 2710 /* 2711 * Build zonelists ordered by zone and nodes within zones. 2712 * This results in conserving DMA zone[s] until all Normal memory is 2713 * exhausted, but results in overflowing to remote node while memory 2714 * may still exist in local DMA zone. 2715 */ 2716 static int node_order[MAX_NUMNODES]; 2717 2718 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes) 2719 { 2720 int pos, j, node; 2721 int zone_type; /* needs to be signed */ 2722 struct zone *z; 2723 struct zonelist *zonelist; 2724 2725 zonelist = &pgdat->node_zonelists[0]; 2726 pos = 0; 2727 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) { 2728 for (j = 0; j < nr_nodes; j++) { 2729 node = node_order[j]; 2730 z = &NODE_DATA(node)->node_zones[zone_type]; 2731 if (populated_zone(z)) { 2732 zoneref_set_zone(z, 2733 &zonelist->_zonerefs[pos++]); 2734 check_highest_zone(zone_type); 2735 } 2736 } 2737 } 2738 zonelist->_zonerefs[pos].zone = NULL; 2739 zonelist->_zonerefs[pos].zone_idx = 0; 2740 } 2741 2742 static int default_zonelist_order(void) 2743 { 2744 int nid, zone_type; 2745 unsigned long low_kmem_size,total_size; 2746 struct zone *z; 2747 int average_size; 2748 /* 2749 * ZONE_DMA and ZONE_DMA32 can be very small area in the system. 2750 * If they are really small and used heavily, the system can fall 2751 * into OOM very easily. 2752 * This function detect ZONE_DMA/DMA32 size and configures zone order. 2753 */ 2754 /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */ 2755 low_kmem_size = 0; 2756 total_size = 0; 2757 for_each_online_node(nid) { 2758 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) { 2759 z = &NODE_DATA(nid)->node_zones[zone_type]; 2760 if (populated_zone(z)) { 2761 if (zone_type < ZONE_NORMAL) 2762 low_kmem_size += z->present_pages; 2763 total_size += z->present_pages; 2764 } else if (zone_type == ZONE_NORMAL) { 2765 /* 2766 * If any node has only lowmem, then node order 2767 * is preferred to allow kernel allocations 2768 * locally; otherwise, they can easily infringe 2769 * on other nodes when there is an abundance of 2770 * lowmem available to allocate from. 2771 */ 2772 return ZONELIST_ORDER_NODE; 2773 } 2774 } 2775 } 2776 if (!low_kmem_size || /* there are no DMA area. */ 2777 low_kmem_size > total_size/2) /* DMA/DMA32 is big. */ 2778 return ZONELIST_ORDER_NODE; 2779 /* 2780 * look into each node's config. 2781 * If there is a node whose DMA/DMA32 memory is very big area on 2782 * local memory, NODE_ORDER may be suitable. 2783 */ 2784 average_size = total_size / 2785 (nodes_weight(node_states[N_HIGH_MEMORY]) + 1); 2786 for_each_online_node(nid) { 2787 low_kmem_size = 0; 2788 total_size = 0; 2789 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) { 2790 z = &NODE_DATA(nid)->node_zones[zone_type]; 2791 if (populated_zone(z)) { 2792 if (zone_type < ZONE_NORMAL) 2793 low_kmem_size += z->present_pages; 2794 total_size += z->present_pages; 2795 } 2796 } 2797 if (low_kmem_size && 2798 total_size > average_size && /* ignore small node */ 2799 low_kmem_size > total_size * 70/100) 2800 return ZONELIST_ORDER_NODE; 2801 } 2802 return ZONELIST_ORDER_ZONE; 2803 } 2804 2805 static void set_zonelist_order(void) 2806 { 2807 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT) 2808 current_zonelist_order = default_zonelist_order(); 2809 else 2810 current_zonelist_order = user_zonelist_order; 2811 } 2812 2813 static void build_zonelists(pg_data_t *pgdat) 2814 { 2815 int j, node, load; 2816 enum zone_type i; 2817 nodemask_t used_mask; 2818 int local_node, prev_node; 2819 struct zonelist *zonelist; 2820 int order = current_zonelist_order; 2821 2822 /* initialize zonelists */ 2823 for (i = 0; i < MAX_ZONELISTS; i++) { 2824 zonelist = pgdat->node_zonelists + i; 2825 zonelist->_zonerefs[0].zone = NULL; 2826 zonelist->_zonerefs[0].zone_idx = 0; 2827 } 2828 2829 /* NUMA-aware ordering of nodes */ 2830 local_node = pgdat->node_id; 2831 load = nr_online_nodes; 2832 prev_node = local_node; 2833 nodes_clear(used_mask); 2834 2835 memset(node_order, 0, sizeof(node_order)); 2836 j = 0; 2837 2838 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) { 2839 int distance = node_distance(local_node, node); 2840 2841 /* 2842 * If another node is sufficiently far away then it is better 2843 * to reclaim pages in a zone before going off node. 2844 */ 2845 if (distance > RECLAIM_DISTANCE) 2846 zone_reclaim_mode = 1; 2847 2848 /* 2849 * We don't want to pressure a particular node. 2850 * So adding penalty to the first node in same 2851 * distance group to make it round-robin. 2852 */ 2853 if (distance != node_distance(local_node, prev_node)) 2854 node_load[node] = load; 2855 2856 prev_node = node; 2857 load--; 2858 if (order == ZONELIST_ORDER_NODE) 2859 build_zonelists_in_node_order(pgdat, node); 2860 else 2861 node_order[j++] = node; /* remember order */ 2862 } 2863 2864 if (order == ZONELIST_ORDER_ZONE) { 2865 /* calculate node order -- i.e., DMA last! */ 2866 build_zonelists_in_zone_order(pgdat, j); 2867 } 2868 2869 build_thisnode_zonelists(pgdat); 2870 } 2871 2872 /* Construct the zonelist performance cache - see further mmzone.h */ 2873 static void build_zonelist_cache(pg_data_t *pgdat) 2874 { 2875 struct zonelist *zonelist; 2876 struct zonelist_cache *zlc; 2877 struct zoneref *z; 2878 2879 zonelist = &pgdat->node_zonelists[0]; 2880 zonelist->zlcache_ptr = zlc = &zonelist->zlcache; 2881 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST); 2882 for (z = zonelist->_zonerefs; z->zone; z++) 2883 zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z); 2884 } 2885 2886 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 2887 /* 2888 * Return node id of node used for "local" allocations. 2889 * I.e., first node id of first zone in arg node's generic zonelist. 2890 * Used for initializing percpu 'numa_mem', which is used primarily 2891 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist. 2892 */ 2893 int local_memory_node(int node) 2894 { 2895 struct zone *zone; 2896 2897 (void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL), 2898 gfp_zone(GFP_KERNEL), 2899 NULL, 2900 &zone); 2901 return zone->node; 2902 } 2903 #endif 2904 2905 #else /* CONFIG_NUMA */ 2906 2907 static void set_zonelist_order(void) 2908 { 2909 current_zonelist_order = ZONELIST_ORDER_ZONE; 2910 } 2911 2912 static void build_zonelists(pg_data_t *pgdat) 2913 { 2914 int node, local_node; 2915 enum zone_type j; 2916 struct zonelist *zonelist; 2917 2918 local_node = pgdat->node_id; 2919 2920 zonelist = &pgdat->node_zonelists[0]; 2921 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1); 2922 2923 /* 2924 * Now we build the zonelist so that it contains the zones 2925 * of all the other nodes. 2926 * We don't want to pressure a particular node, so when 2927 * building the zones for node N, we make sure that the 2928 * zones coming right after the local ones are those from 2929 * node N+1 (modulo N) 2930 */ 2931 for (node = local_node + 1; node < MAX_NUMNODES; node++) { 2932 if (!node_online(node)) 2933 continue; 2934 j = build_zonelists_node(NODE_DATA(node), zonelist, j, 2935 MAX_NR_ZONES - 1); 2936 } 2937 for (node = 0; node < local_node; node++) { 2938 if (!node_online(node)) 2939 continue; 2940 j = build_zonelists_node(NODE_DATA(node), zonelist, j, 2941 MAX_NR_ZONES - 1); 2942 } 2943 2944 zonelist->_zonerefs[j].zone = NULL; 2945 zonelist->_zonerefs[j].zone_idx = 0; 2946 } 2947 2948 /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */ 2949 static void build_zonelist_cache(pg_data_t *pgdat) 2950 { 2951 pgdat->node_zonelists[0].zlcache_ptr = NULL; 2952 } 2953 2954 #endif /* CONFIG_NUMA */ 2955 2956 /* 2957 * Boot pageset table. One per cpu which is going to be used for all 2958 * zones and all nodes. The parameters will be set in such a way 2959 * that an item put on a list will immediately be handed over to 2960 * the buddy list. This is safe since pageset manipulation is done 2961 * with interrupts disabled. 2962 * 2963 * The boot_pagesets must be kept even after bootup is complete for 2964 * unused processors and/or zones. They do play a role for bootstrapping 2965 * hotplugged processors. 2966 * 2967 * zoneinfo_show() and maybe other functions do 2968 * not check if the processor is online before following the pageset pointer. 2969 * Other parts of the kernel may not check if the zone is available. 2970 */ 2971 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch); 2972 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset); 2973 static void setup_zone_pageset(struct zone *zone); 2974 2975 /* 2976 * Global mutex to protect against size modification of zonelists 2977 * as well as to serialize pageset setup for the new populated zone. 2978 */ 2979 DEFINE_MUTEX(zonelists_mutex); 2980 2981 /* return values int ....just for stop_machine() */ 2982 static __init_refok int __build_all_zonelists(void *data) 2983 { 2984 int nid; 2985 int cpu; 2986 2987 #ifdef CONFIG_NUMA 2988 memset(node_load, 0, sizeof(node_load)); 2989 #endif 2990 for_each_online_node(nid) { 2991 pg_data_t *pgdat = NODE_DATA(nid); 2992 2993 build_zonelists(pgdat); 2994 build_zonelist_cache(pgdat); 2995 } 2996 2997 #ifdef CONFIG_MEMORY_HOTPLUG 2998 /* Setup real pagesets for the new zone */ 2999 if (data) { 3000 struct zone *zone = data; 3001 setup_zone_pageset(zone); 3002 } 3003 #endif 3004 3005 /* 3006 * Initialize the boot_pagesets that are going to be used 3007 * for bootstrapping processors. The real pagesets for 3008 * each zone will be allocated later when the per cpu 3009 * allocator is available. 3010 * 3011 * boot_pagesets are used also for bootstrapping offline 3012 * cpus if the system is already booted because the pagesets 3013 * are needed to initialize allocators on a specific cpu too. 3014 * F.e. the percpu allocator needs the page allocator which 3015 * needs the percpu allocator in order to allocate its pagesets 3016 * (a chicken-egg dilemma). 3017 */ 3018 for_each_possible_cpu(cpu) { 3019 setup_pageset(&per_cpu(boot_pageset, cpu), 0); 3020 3021 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 3022 /* 3023 * We now know the "local memory node" for each node-- 3024 * i.e., the node of the first zone in the generic zonelist. 3025 * Set up numa_mem percpu variable for on-line cpus. During 3026 * boot, only the boot cpu should be on-line; we'll init the 3027 * secondary cpus' numa_mem as they come on-line. During 3028 * node/memory hotplug, we'll fixup all on-line cpus. 3029 */ 3030 if (cpu_online(cpu)) 3031 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu))); 3032 #endif 3033 } 3034 3035 return 0; 3036 } 3037 3038 /* 3039 * Called with zonelists_mutex held always 3040 * unless system_state == SYSTEM_BOOTING. 3041 */ 3042 void build_all_zonelists(void *data) 3043 { 3044 set_zonelist_order(); 3045 3046 if (system_state == SYSTEM_BOOTING) { 3047 __build_all_zonelists(NULL); 3048 mminit_verify_zonelist(); 3049 cpuset_init_current_mems_allowed(); 3050 } else { 3051 /* we have to stop all cpus to guarantee there is no user 3052 of zonelist */ 3053 stop_machine(__build_all_zonelists, data, NULL); 3054 /* cpuset refresh routine should be here */ 3055 } 3056 vm_total_pages = nr_free_pagecache_pages(); 3057 /* 3058 * Disable grouping by mobility if the number of pages in the 3059 * system is too low to allow the mechanism to work. It would be 3060 * more accurate, but expensive to check per-zone. This check is 3061 * made on memory-hotadd so a system can start with mobility 3062 * disabled and enable it later 3063 */ 3064 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES)) 3065 page_group_by_mobility_disabled = 1; 3066 else 3067 page_group_by_mobility_disabled = 0; 3068 3069 printk("Built %i zonelists in %s order, mobility grouping %s. " 3070 "Total pages: %ld\n", 3071 nr_online_nodes, 3072 zonelist_order_name[current_zonelist_order], 3073 page_group_by_mobility_disabled ? "off" : "on", 3074 vm_total_pages); 3075 #ifdef CONFIG_NUMA 3076 printk("Policy zone: %s\n", zone_names[policy_zone]); 3077 #endif 3078 } 3079 3080 /* 3081 * Helper functions to size the waitqueue hash table. 3082 * Essentially these want to choose hash table sizes sufficiently 3083 * large so that collisions trying to wait on pages are rare. 3084 * But in fact, the number of active page waitqueues on typical 3085 * systems is ridiculously low, less than 200. So this is even 3086 * conservative, even though it seems large. 3087 * 3088 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to 3089 * waitqueues, i.e. the size of the waitq table given the number of pages. 3090 */ 3091 #define PAGES_PER_WAITQUEUE 256 3092 3093 #ifndef CONFIG_MEMORY_HOTPLUG 3094 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages) 3095 { 3096 unsigned long size = 1; 3097 3098 pages /= PAGES_PER_WAITQUEUE; 3099 3100 while (size < pages) 3101 size <<= 1; 3102 3103 /* 3104 * Once we have dozens or even hundreds of threads sleeping 3105 * on IO we've got bigger problems than wait queue collision. 3106 * Limit the size of the wait table to a reasonable size. 3107 */ 3108 size = min(size, 4096UL); 3109 3110 return max(size, 4UL); 3111 } 3112 #else 3113 /* 3114 * A zone's size might be changed by hot-add, so it is not possible to determine 3115 * a suitable size for its wait_table. So we use the maximum size now. 3116 * 3117 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie: 3118 * 3119 * i386 (preemption config) : 4096 x 16 = 64Kbyte. 3120 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte. 3121 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte. 3122 * 3123 * The maximum entries are prepared when a zone's memory is (512K + 256) pages 3124 * or more by the traditional way. (See above). It equals: 3125 * 3126 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte. 3127 * ia64(16K page size) : = ( 8G + 4M)byte. 3128 * powerpc (64K page size) : = (32G +16M)byte. 3129 */ 3130 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages) 3131 { 3132 return 4096UL; 3133 } 3134 #endif 3135 3136 /* 3137 * This is an integer logarithm so that shifts can be used later 3138 * to extract the more random high bits from the multiplicative 3139 * hash function before the remainder is taken. 3140 */ 3141 static inline unsigned long wait_table_bits(unsigned long size) 3142 { 3143 return ffz(~size); 3144 } 3145 3146 #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1)) 3147 3148 /* 3149 * Mark a number of pageblocks as MIGRATE_RESERVE. The number 3150 * of blocks reserved is based on min_wmark_pages(zone). The memory within 3151 * the reserve will tend to store contiguous free pages. Setting min_free_kbytes 3152 * higher will lead to a bigger reserve which will get freed as contiguous 3153 * blocks as reclaim kicks in 3154 */ 3155 static void setup_zone_migrate_reserve(struct zone *zone) 3156 { 3157 unsigned long start_pfn, pfn, end_pfn; 3158 struct page *page; 3159 unsigned long block_migratetype; 3160 int reserve; 3161 3162 /* Get the start pfn, end pfn and the number of blocks to reserve */ 3163 start_pfn = zone->zone_start_pfn; 3164 end_pfn = start_pfn + zone->spanned_pages; 3165 reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >> 3166 pageblock_order; 3167 3168 /* 3169 * Reserve blocks are generally in place to help high-order atomic 3170 * allocations that are short-lived. A min_free_kbytes value that 3171 * would result in more than 2 reserve blocks for atomic allocations 3172 * is assumed to be in place to help anti-fragmentation for the 3173 * future allocation of hugepages at runtime. 3174 */ 3175 reserve = min(2, reserve); 3176 3177 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) { 3178 if (!pfn_valid(pfn)) 3179 continue; 3180 page = pfn_to_page(pfn); 3181 3182 /* Watch out for overlapping nodes */ 3183 if (page_to_nid(page) != zone_to_nid(zone)) 3184 continue; 3185 3186 /* Blocks with reserved pages will never free, skip them. */ 3187 if (PageReserved(page)) 3188 continue; 3189 3190 block_migratetype = get_pageblock_migratetype(page); 3191 3192 /* If this block is reserved, account for it */ 3193 if (reserve > 0 && block_migratetype == MIGRATE_RESERVE) { 3194 reserve--; 3195 continue; 3196 } 3197 3198 /* Suitable for reserving if this block is movable */ 3199 if (reserve > 0 && block_migratetype == MIGRATE_MOVABLE) { 3200 set_pageblock_migratetype(page, MIGRATE_RESERVE); 3201 move_freepages_block(zone, page, MIGRATE_RESERVE); 3202 reserve--; 3203 continue; 3204 } 3205 3206 /* 3207 * If the reserve is met and this is a previous reserved block, 3208 * take it back 3209 */ 3210 if (block_migratetype == MIGRATE_RESERVE) { 3211 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 3212 move_freepages_block(zone, page, MIGRATE_MOVABLE); 3213 } 3214 } 3215 } 3216 3217 /* 3218 * Initially all pages are reserved - free ones are freed 3219 * up by free_all_bootmem() once the early boot process is 3220 * done. Non-atomic initialization, single-pass. 3221 */ 3222 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone, 3223 unsigned long start_pfn, enum memmap_context context) 3224 { 3225 struct page *page; 3226 unsigned long end_pfn = start_pfn + size; 3227 unsigned long pfn; 3228 struct zone *z; 3229 3230 if (highest_memmap_pfn < end_pfn - 1) 3231 highest_memmap_pfn = end_pfn - 1; 3232 3233 z = &NODE_DATA(nid)->node_zones[zone]; 3234 for (pfn = start_pfn; pfn < end_pfn; pfn++) { 3235 /* 3236 * There can be holes in boot-time mem_map[]s 3237 * handed to this function. They do not 3238 * exist on hotplugged memory. 3239 */ 3240 if (context == MEMMAP_EARLY) { 3241 if (!early_pfn_valid(pfn)) 3242 continue; 3243 if (!early_pfn_in_nid(pfn, nid)) 3244 continue; 3245 } 3246 page = pfn_to_page(pfn); 3247 set_page_links(page, zone, nid, pfn); 3248 mminit_verify_page_links(page, zone, nid, pfn); 3249 init_page_count(page); 3250 reset_page_mapcount(page); 3251 SetPageReserved(page); 3252 /* 3253 * Mark the block movable so that blocks are reserved for 3254 * movable at startup. This will force kernel allocations 3255 * to reserve their blocks rather than leaking throughout 3256 * the address space during boot when many long-lived 3257 * kernel allocations are made. Later some blocks near 3258 * the start are marked MIGRATE_RESERVE by 3259 * setup_zone_migrate_reserve() 3260 * 3261 * bitmap is created for zone's valid pfn range. but memmap 3262 * can be created for invalid pages (for alignment) 3263 * check here not to call set_pageblock_migratetype() against 3264 * pfn out of zone. 3265 */ 3266 if ((z->zone_start_pfn <= pfn) 3267 && (pfn < z->zone_start_pfn + z->spanned_pages) 3268 && !(pfn & (pageblock_nr_pages - 1))) 3269 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 3270 3271 INIT_LIST_HEAD(&page->lru); 3272 #ifdef WANT_PAGE_VIRTUAL 3273 /* The shift won't overflow because ZONE_NORMAL is below 4G. */ 3274 if (!is_highmem_idx(zone)) 3275 set_page_address(page, __va(pfn << PAGE_SHIFT)); 3276 #endif 3277 } 3278 } 3279 3280 static void __meminit zone_init_free_lists(struct zone *zone) 3281 { 3282 int order, t; 3283 for_each_migratetype_order(order, t) { 3284 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]); 3285 zone->free_area[order].nr_free = 0; 3286 } 3287 } 3288 3289 #ifndef __HAVE_ARCH_MEMMAP_INIT 3290 #define memmap_init(size, nid, zone, start_pfn) \ 3291 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY) 3292 #endif 3293 3294 static int zone_batchsize(struct zone *zone) 3295 { 3296 #ifdef CONFIG_MMU 3297 int batch; 3298 3299 /* 3300 * The per-cpu-pages pools are set to around 1000th of the 3301 * size of the zone. But no more than 1/2 of a meg. 3302 * 3303 * OK, so we don't know how big the cache is. So guess. 3304 */ 3305 batch = zone->present_pages / 1024; 3306 if (batch * PAGE_SIZE > 512 * 1024) 3307 batch = (512 * 1024) / PAGE_SIZE; 3308 batch /= 4; /* We effectively *= 4 below */ 3309 if (batch < 1) 3310 batch = 1; 3311 3312 /* 3313 * Clamp the batch to a 2^n - 1 value. Having a power 3314 * of 2 value was found to be more likely to have 3315 * suboptimal cache aliasing properties in some cases. 3316 * 3317 * For example if 2 tasks are alternately allocating 3318 * batches of pages, one task can end up with a lot 3319 * of pages of one half of the possible page colors 3320 * and the other with pages of the other colors. 3321 */ 3322 batch = rounddown_pow_of_two(batch + batch/2) - 1; 3323 3324 return batch; 3325 3326 #else 3327 /* The deferral and batching of frees should be suppressed under NOMMU 3328 * conditions. 3329 * 3330 * The problem is that NOMMU needs to be able to allocate large chunks 3331 * of contiguous memory as there's no hardware page translation to 3332 * assemble apparent contiguous memory from discontiguous pages. 3333 * 3334 * Queueing large contiguous runs of pages for batching, however, 3335 * causes the pages to actually be freed in smaller chunks. As there 3336 * can be a significant delay between the individual batches being 3337 * recycled, this leads to the once large chunks of space being 3338 * fragmented and becoming unavailable for high-order allocations. 3339 */ 3340 return 0; 3341 #endif 3342 } 3343 3344 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch) 3345 { 3346 struct per_cpu_pages *pcp; 3347 int migratetype; 3348 3349 memset(p, 0, sizeof(*p)); 3350 3351 pcp = &p->pcp; 3352 pcp->count = 0; 3353 pcp->high = 6 * batch; 3354 pcp->batch = max(1UL, 1 * batch); 3355 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++) 3356 INIT_LIST_HEAD(&pcp->lists[migratetype]); 3357 } 3358 3359 /* 3360 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist 3361 * to the value high for the pageset p. 3362 */ 3363 3364 static void setup_pagelist_highmark(struct per_cpu_pageset *p, 3365 unsigned long high) 3366 { 3367 struct per_cpu_pages *pcp; 3368 3369 pcp = &p->pcp; 3370 pcp->high = high; 3371 pcp->batch = max(1UL, high/4); 3372 if ((high/4) > (PAGE_SHIFT * 8)) 3373 pcp->batch = PAGE_SHIFT * 8; 3374 } 3375 3376 static __meminit void setup_zone_pageset(struct zone *zone) 3377 { 3378 int cpu; 3379 3380 zone->pageset = alloc_percpu(struct per_cpu_pageset); 3381 3382 for_each_possible_cpu(cpu) { 3383 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu); 3384 3385 setup_pageset(pcp, zone_batchsize(zone)); 3386 3387 if (percpu_pagelist_fraction) 3388 setup_pagelist_highmark(pcp, 3389 (zone->present_pages / 3390 percpu_pagelist_fraction)); 3391 } 3392 } 3393 3394 /* 3395 * Allocate per cpu pagesets and initialize them. 3396 * Before this call only boot pagesets were available. 3397 */ 3398 void __init setup_per_cpu_pageset(void) 3399 { 3400 struct zone *zone; 3401 3402 for_each_populated_zone(zone) 3403 setup_zone_pageset(zone); 3404 } 3405 3406 static noinline __init_refok 3407 int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages) 3408 { 3409 int i; 3410 struct pglist_data *pgdat = zone->zone_pgdat; 3411 size_t alloc_size; 3412 3413 /* 3414 * The per-page waitqueue mechanism uses hashed waitqueues 3415 * per zone. 3416 */ 3417 zone->wait_table_hash_nr_entries = 3418 wait_table_hash_nr_entries(zone_size_pages); 3419 zone->wait_table_bits = 3420 wait_table_bits(zone->wait_table_hash_nr_entries); 3421 alloc_size = zone->wait_table_hash_nr_entries 3422 * sizeof(wait_queue_head_t); 3423 3424 if (!slab_is_available()) { 3425 zone->wait_table = (wait_queue_head_t *) 3426 alloc_bootmem_node(pgdat, alloc_size); 3427 } else { 3428 /* 3429 * This case means that a zone whose size was 0 gets new memory 3430 * via memory hot-add. 3431 * But it may be the case that a new node was hot-added. In 3432 * this case vmalloc() will not be able to use this new node's 3433 * memory - this wait_table must be initialized to use this new 3434 * node itself as well. 3435 * To use this new node's memory, further consideration will be 3436 * necessary. 3437 */ 3438 zone->wait_table = vmalloc(alloc_size); 3439 } 3440 if (!zone->wait_table) 3441 return -ENOMEM; 3442 3443 for(i = 0; i < zone->wait_table_hash_nr_entries; ++i) 3444 init_waitqueue_head(zone->wait_table + i); 3445 3446 return 0; 3447 } 3448 3449 static int __zone_pcp_update(void *data) 3450 { 3451 struct zone *zone = data; 3452 int cpu; 3453 unsigned long batch = zone_batchsize(zone), flags; 3454 3455 for_each_possible_cpu(cpu) { 3456 struct per_cpu_pageset *pset; 3457 struct per_cpu_pages *pcp; 3458 3459 pset = per_cpu_ptr(zone->pageset, cpu); 3460 pcp = &pset->pcp; 3461 3462 local_irq_save(flags); 3463 free_pcppages_bulk(zone, pcp->count, pcp); 3464 setup_pageset(pset, batch); 3465 local_irq_restore(flags); 3466 } 3467 return 0; 3468 } 3469 3470 void zone_pcp_update(struct zone *zone) 3471 { 3472 stop_machine(__zone_pcp_update, zone, NULL); 3473 } 3474 3475 static __meminit void zone_pcp_init(struct zone *zone) 3476 { 3477 /* 3478 * per cpu subsystem is not up at this point. The following code 3479 * relies on the ability of the linker to provide the 3480 * offset of a (static) per cpu variable into the per cpu area. 3481 */ 3482 zone->pageset = &boot_pageset; 3483 3484 if (zone->present_pages) 3485 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n", 3486 zone->name, zone->present_pages, 3487 zone_batchsize(zone)); 3488 } 3489 3490 __meminit int init_currently_empty_zone(struct zone *zone, 3491 unsigned long zone_start_pfn, 3492 unsigned long size, 3493 enum memmap_context context) 3494 { 3495 struct pglist_data *pgdat = zone->zone_pgdat; 3496 int ret; 3497 ret = zone_wait_table_init(zone, size); 3498 if (ret) 3499 return ret; 3500 pgdat->nr_zones = zone_idx(zone) + 1; 3501 3502 zone->zone_start_pfn = zone_start_pfn; 3503 3504 mminit_dprintk(MMINIT_TRACE, "memmap_init", 3505 "Initialising map node %d zone %lu pfns %lu -> %lu\n", 3506 pgdat->node_id, 3507 (unsigned long)zone_idx(zone), 3508 zone_start_pfn, (zone_start_pfn + size)); 3509 3510 zone_init_free_lists(zone); 3511 3512 return 0; 3513 } 3514 3515 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP 3516 /* 3517 * Basic iterator support. Return the first range of PFNs for a node 3518 * Note: nid == MAX_NUMNODES returns first region regardless of node 3519 */ 3520 static int __meminit first_active_region_index_in_nid(int nid) 3521 { 3522 int i; 3523 3524 for (i = 0; i < nr_nodemap_entries; i++) 3525 if (nid == MAX_NUMNODES || early_node_map[i].nid == nid) 3526 return i; 3527 3528 return -1; 3529 } 3530 3531 /* 3532 * Basic iterator support. Return the next active range of PFNs for a node 3533 * Note: nid == MAX_NUMNODES returns next region regardless of node 3534 */ 3535 static int __meminit next_active_region_index_in_nid(int index, int nid) 3536 { 3537 for (index = index + 1; index < nr_nodemap_entries; index++) 3538 if (nid == MAX_NUMNODES || early_node_map[index].nid == nid) 3539 return index; 3540 3541 return -1; 3542 } 3543 3544 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID 3545 /* 3546 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on. 3547 * Architectures may implement their own version but if add_active_range() 3548 * was used and there are no special requirements, this is a convenient 3549 * alternative 3550 */ 3551 int __meminit __early_pfn_to_nid(unsigned long pfn) 3552 { 3553 int i; 3554 3555 for (i = 0; i < nr_nodemap_entries; i++) { 3556 unsigned long start_pfn = early_node_map[i].start_pfn; 3557 unsigned long end_pfn = early_node_map[i].end_pfn; 3558 3559 if (start_pfn <= pfn && pfn < end_pfn) 3560 return early_node_map[i].nid; 3561 } 3562 /* This is a memory hole */ 3563 return -1; 3564 } 3565 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */ 3566 3567 int __meminit early_pfn_to_nid(unsigned long pfn) 3568 { 3569 int nid; 3570 3571 nid = __early_pfn_to_nid(pfn); 3572 if (nid >= 0) 3573 return nid; 3574 /* just returns 0 */ 3575 return 0; 3576 } 3577 3578 #ifdef CONFIG_NODES_SPAN_OTHER_NODES 3579 bool __meminit early_pfn_in_nid(unsigned long pfn, int node) 3580 { 3581 int nid; 3582 3583 nid = __early_pfn_to_nid(pfn); 3584 if (nid >= 0 && nid != node) 3585 return false; 3586 return true; 3587 } 3588 #endif 3589 3590 /* Basic iterator support to walk early_node_map[] */ 3591 #define for_each_active_range_index_in_nid(i, nid) \ 3592 for (i = first_active_region_index_in_nid(nid); i != -1; \ 3593 i = next_active_region_index_in_nid(i, nid)) 3594 3595 /** 3596 * free_bootmem_with_active_regions - Call free_bootmem_node for each active range 3597 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed. 3598 * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node 3599 * 3600 * If an architecture guarantees that all ranges registered with 3601 * add_active_ranges() contain no holes and may be freed, this 3602 * this function may be used instead of calling free_bootmem() manually. 3603 */ 3604 void __init free_bootmem_with_active_regions(int nid, 3605 unsigned long max_low_pfn) 3606 { 3607 int i; 3608 3609 for_each_active_range_index_in_nid(i, nid) { 3610 unsigned long size_pages = 0; 3611 unsigned long end_pfn = early_node_map[i].end_pfn; 3612 3613 if (early_node_map[i].start_pfn >= max_low_pfn) 3614 continue; 3615 3616 if (end_pfn > max_low_pfn) 3617 end_pfn = max_low_pfn; 3618 3619 size_pages = end_pfn - early_node_map[i].start_pfn; 3620 free_bootmem_node(NODE_DATA(early_node_map[i].nid), 3621 PFN_PHYS(early_node_map[i].start_pfn), 3622 size_pages << PAGE_SHIFT); 3623 } 3624 } 3625 3626 int __init add_from_early_node_map(struct range *range, int az, 3627 int nr_range, int nid) 3628 { 3629 int i; 3630 u64 start, end; 3631 3632 /* need to go over early_node_map to find out good range for node */ 3633 for_each_active_range_index_in_nid(i, nid) { 3634 start = early_node_map[i].start_pfn; 3635 end = early_node_map[i].end_pfn; 3636 nr_range = add_range(range, az, nr_range, start, end); 3637 } 3638 return nr_range; 3639 } 3640 3641 #ifdef CONFIG_NO_BOOTMEM 3642 void * __init __alloc_memory_core_early(int nid, u64 size, u64 align, 3643 u64 goal, u64 limit) 3644 { 3645 int i; 3646 void *ptr; 3647 3648 if (limit > get_max_mapped()) 3649 limit = get_max_mapped(); 3650 3651 /* need to go over early_node_map to find out good range for node */ 3652 for_each_active_range_index_in_nid(i, nid) { 3653 u64 addr; 3654 u64 ei_start, ei_last; 3655 3656 ei_last = early_node_map[i].end_pfn; 3657 ei_last <<= PAGE_SHIFT; 3658 ei_start = early_node_map[i].start_pfn; 3659 ei_start <<= PAGE_SHIFT; 3660 addr = find_early_area(ei_start, ei_last, 3661 goal, limit, size, align); 3662 3663 if (addr == -1ULL) 3664 continue; 3665 3666 #if 0 3667 printk(KERN_DEBUG "alloc (nid=%d %llx - %llx) (%llx - %llx) %llx %llx => %llx\n", 3668 nid, 3669 ei_start, ei_last, goal, limit, size, 3670 align, addr); 3671 #endif 3672 3673 ptr = phys_to_virt(addr); 3674 memset(ptr, 0, size); 3675 reserve_early_without_check(addr, addr + size, "BOOTMEM"); 3676 /* 3677 * The min_count is set to 0 so that bootmem allocated blocks 3678 * are never reported as leaks. 3679 */ 3680 kmemleak_alloc(ptr, size, 0, 0); 3681 return ptr; 3682 } 3683 3684 return NULL; 3685 } 3686 #endif 3687 3688 3689 void __init work_with_active_regions(int nid, work_fn_t work_fn, void *data) 3690 { 3691 int i; 3692 int ret; 3693 3694 for_each_active_range_index_in_nid(i, nid) { 3695 ret = work_fn(early_node_map[i].start_pfn, 3696 early_node_map[i].end_pfn, data); 3697 if (ret) 3698 break; 3699 } 3700 } 3701 /** 3702 * sparse_memory_present_with_active_regions - Call memory_present for each active range 3703 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used. 3704 * 3705 * If an architecture guarantees that all ranges registered with 3706 * add_active_ranges() contain no holes and may be freed, this 3707 * function may be used instead of calling memory_present() manually. 3708 */ 3709 void __init sparse_memory_present_with_active_regions(int nid) 3710 { 3711 int i; 3712 3713 for_each_active_range_index_in_nid(i, nid) 3714 memory_present(early_node_map[i].nid, 3715 early_node_map[i].start_pfn, 3716 early_node_map[i].end_pfn); 3717 } 3718 3719 /** 3720 * get_pfn_range_for_nid - Return the start and end page frames for a node 3721 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned. 3722 * @start_pfn: Passed by reference. On return, it will have the node start_pfn. 3723 * @end_pfn: Passed by reference. On return, it will have the node end_pfn. 3724 * 3725 * It returns the start and end page frame of a node based on information 3726 * provided by an arch calling add_active_range(). If called for a node 3727 * with no available memory, a warning is printed and the start and end 3728 * PFNs will be 0. 3729 */ 3730 void __meminit get_pfn_range_for_nid(unsigned int nid, 3731 unsigned long *start_pfn, unsigned long *end_pfn) 3732 { 3733 int i; 3734 *start_pfn = -1UL; 3735 *end_pfn = 0; 3736 3737 for_each_active_range_index_in_nid(i, nid) { 3738 *start_pfn = min(*start_pfn, early_node_map[i].start_pfn); 3739 *end_pfn = max(*end_pfn, early_node_map[i].end_pfn); 3740 } 3741 3742 if (*start_pfn == -1UL) 3743 *start_pfn = 0; 3744 } 3745 3746 /* 3747 * This finds a zone that can be used for ZONE_MOVABLE pages. The 3748 * assumption is made that zones within a node are ordered in monotonic 3749 * increasing memory addresses so that the "highest" populated zone is used 3750 */ 3751 static void __init find_usable_zone_for_movable(void) 3752 { 3753 int zone_index; 3754 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) { 3755 if (zone_index == ZONE_MOVABLE) 3756 continue; 3757 3758 if (arch_zone_highest_possible_pfn[zone_index] > 3759 arch_zone_lowest_possible_pfn[zone_index]) 3760 break; 3761 } 3762 3763 VM_BUG_ON(zone_index == -1); 3764 movable_zone = zone_index; 3765 } 3766 3767 /* 3768 * The zone ranges provided by the architecture do not include ZONE_MOVABLE 3769 * because it is sized independant of architecture. Unlike the other zones, 3770 * the starting point for ZONE_MOVABLE is not fixed. It may be different 3771 * in each node depending on the size of each node and how evenly kernelcore 3772 * is distributed. This helper function adjusts the zone ranges 3773 * provided by the architecture for a given node by using the end of the 3774 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that 3775 * zones within a node are in order of monotonic increases memory addresses 3776 */ 3777 static void __meminit adjust_zone_range_for_zone_movable(int nid, 3778 unsigned long zone_type, 3779 unsigned long node_start_pfn, 3780 unsigned long node_end_pfn, 3781 unsigned long *zone_start_pfn, 3782 unsigned long *zone_end_pfn) 3783 { 3784 /* Only adjust if ZONE_MOVABLE is on this node */ 3785 if (zone_movable_pfn[nid]) { 3786 /* Size ZONE_MOVABLE */ 3787 if (zone_type == ZONE_MOVABLE) { 3788 *zone_start_pfn = zone_movable_pfn[nid]; 3789 *zone_end_pfn = min(node_end_pfn, 3790 arch_zone_highest_possible_pfn[movable_zone]); 3791 3792 /* Adjust for ZONE_MOVABLE starting within this range */ 3793 } else if (*zone_start_pfn < zone_movable_pfn[nid] && 3794 *zone_end_pfn > zone_movable_pfn[nid]) { 3795 *zone_end_pfn = zone_movable_pfn[nid]; 3796 3797 /* Check if this whole range is within ZONE_MOVABLE */ 3798 } else if (*zone_start_pfn >= zone_movable_pfn[nid]) 3799 *zone_start_pfn = *zone_end_pfn; 3800 } 3801 } 3802 3803 /* 3804 * Return the number of pages a zone spans in a node, including holes 3805 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node() 3806 */ 3807 static unsigned long __meminit zone_spanned_pages_in_node(int nid, 3808 unsigned long zone_type, 3809 unsigned long *ignored) 3810 { 3811 unsigned long node_start_pfn, node_end_pfn; 3812 unsigned long zone_start_pfn, zone_end_pfn; 3813 3814 /* Get the start and end of the node and zone */ 3815 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn); 3816 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type]; 3817 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type]; 3818 adjust_zone_range_for_zone_movable(nid, zone_type, 3819 node_start_pfn, node_end_pfn, 3820 &zone_start_pfn, &zone_end_pfn); 3821 3822 /* Check that this node has pages within the zone's required range */ 3823 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn) 3824 return 0; 3825 3826 /* Move the zone boundaries inside the node if necessary */ 3827 zone_end_pfn = min(zone_end_pfn, node_end_pfn); 3828 zone_start_pfn = max(zone_start_pfn, node_start_pfn); 3829 3830 /* Return the spanned pages */ 3831 return zone_end_pfn - zone_start_pfn; 3832 } 3833 3834 /* 3835 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES, 3836 * then all holes in the requested range will be accounted for. 3837 */ 3838 unsigned long __meminit __absent_pages_in_range(int nid, 3839 unsigned long range_start_pfn, 3840 unsigned long range_end_pfn) 3841 { 3842 int i = 0; 3843 unsigned long prev_end_pfn = 0, hole_pages = 0; 3844 unsigned long start_pfn; 3845 3846 /* Find the end_pfn of the first active range of pfns in the node */ 3847 i = first_active_region_index_in_nid(nid); 3848 if (i == -1) 3849 return 0; 3850 3851 prev_end_pfn = min(early_node_map[i].start_pfn, range_end_pfn); 3852 3853 /* Account for ranges before physical memory on this node */ 3854 if (early_node_map[i].start_pfn > range_start_pfn) 3855 hole_pages = prev_end_pfn - range_start_pfn; 3856 3857 /* Find all holes for the zone within the node */ 3858 for (; i != -1; i = next_active_region_index_in_nid(i, nid)) { 3859 3860 /* No need to continue if prev_end_pfn is outside the zone */ 3861 if (prev_end_pfn >= range_end_pfn) 3862 break; 3863 3864 /* Make sure the end of the zone is not within the hole */ 3865 start_pfn = min(early_node_map[i].start_pfn, range_end_pfn); 3866 prev_end_pfn = max(prev_end_pfn, range_start_pfn); 3867 3868 /* Update the hole size cound and move on */ 3869 if (start_pfn > range_start_pfn) { 3870 BUG_ON(prev_end_pfn > start_pfn); 3871 hole_pages += start_pfn - prev_end_pfn; 3872 } 3873 prev_end_pfn = early_node_map[i].end_pfn; 3874 } 3875 3876 /* Account for ranges past physical memory on this node */ 3877 if (range_end_pfn > prev_end_pfn) 3878 hole_pages += range_end_pfn - 3879 max(range_start_pfn, prev_end_pfn); 3880 3881 return hole_pages; 3882 } 3883 3884 /** 3885 * absent_pages_in_range - Return number of page frames in holes within a range 3886 * @start_pfn: The start PFN to start searching for holes 3887 * @end_pfn: The end PFN to stop searching for holes 3888 * 3889 * It returns the number of pages frames in memory holes within a range. 3890 */ 3891 unsigned long __init absent_pages_in_range(unsigned long start_pfn, 3892 unsigned long end_pfn) 3893 { 3894 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn); 3895 } 3896 3897 /* Return the number of page frames in holes in a zone on a node */ 3898 static unsigned long __meminit zone_absent_pages_in_node(int nid, 3899 unsigned long zone_type, 3900 unsigned long *ignored) 3901 { 3902 unsigned long node_start_pfn, node_end_pfn; 3903 unsigned long zone_start_pfn, zone_end_pfn; 3904 3905 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn); 3906 zone_start_pfn = max(arch_zone_lowest_possible_pfn[zone_type], 3907 node_start_pfn); 3908 zone_end_pfn = min(arch_zone_highest_possible_pfn[zone_type], 3909 node_end_pfn); 3910 3911 adjust_zone_range_for_zone_movable(nid, zone_type, 3912 node_start_pfn, node_end_pfn, 3913 &zone_start_pfn, &zone_end_pfn); 3914 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn); 3915 } 3916 3917 #else 3918 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid, 3919 unsigned long zone_type, 3920 unsigned long *zones_size) 3921 { 3922 return zones_size[zone_type]; 3923 } 3924 3925 static inline unsigned long __meminit zone_absent_pages_in_node(int nid, 3926 unsigned long zone_type, 3927 unsigned long *zholes_size) 3928 { 3929 if (!zholes_size) 3930 return 0; 3931 3932 return zholes_size[zone_type]; 3933 } 3934 3935 #endif 3936 3937 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat, 3938 unsigned long *zones_size, unsigned long *zholes_size) 3939 { 3940 unsigned long realtotalpages, totalpages = 0; 3941 enum zone_type i; 3942 3943 for (i = 0; i < MAX_NR_ZONES; i++) 3944 totalpages += zone_spanned_pages_in_node(pgdat->node_id, i, 3945 zones_size); 3946 pgdat->node_spanned_pages = totalpages; 3947 3948 realtotalpages = totalpages; 3949 for (i = 0; i < MAX_NR_ZONES; i++) 3950 realtotalpages -= 3951 zone_absent_pages_in_node(pgdat->node_id, i, 3952 zholes_size); 3953 pgdat->node_present_pages = realtotalpages; 3954 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id, 3955 realtotalpages); 3956 } 3957 3958 #ifndef CONFIG_SPARSEMEM 3959 /* 3960 * Calculate the size of the zone->blockflags rounded to an unsigned long 3961 * Start by making sure zonesize is a multiple of pageblock_order by rounding 3962 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally 3963 * round what is now in bits to nearest long in bits, then return it in 3964 * bytes. 3965 */ 3966 static unsigned long __init usemap_size(unsigned long zonesize) 3967 { 3968 unsigned long usemapsize; 3969 3970 usemapsize = roundup(zonesize, pageblock_nr_pages); 3971 usemapsize = usemapsize >> pageblock_order; 3972 usemapsize *= NR_PAGEBLOCK_BITS; 3973 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long)); 3974 3975 return usemapsize / 8; 3976 } 3977 3978 static void __init setup_usemap(struct pglist_data *pgdat, 3979 struct zone *zone, unsigned long zonesize) 3980 { 3981 unsigned long usemapsize = usemap_size(zonesize); 3982 zone->pageblock_flags = NULL; 3983 if (usemapsize) 3984 zone->pageblock_flags = alloc_bootmem_node(pgdat, usemapsize); 3985 } 3986 #else 3987 static void inline setup_usemap(struct pglist_data *pgdat, 3988 struct zone *zone, unsigned long zonesize) {} 3989 #endif /* CONFIG_SPARSEMEM */ 3990 3991 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE 3992 3993 /* Return a sensible default order for the pageblock size. */ 3994 static inline int pageblock_default_order(void) 3995 { 3996 if (HPAGE_SHIFT > PAGE_SHIFT) 3997 return HUGETLB_PAGE_ORDER; 3998 3999 return MAX_ORDER-1; 4000 } 4001 4002 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */ 4003 static inline void __init set_pageblock_order(unsigned int order) 4004 { 4005 /* Check that pageblock_nr_pages has not already been setup */ 4006 if (pageblock_order) 4007 return; 4008 4009 /* 4010 * Assume the largest contiguous order of interest is a huge page. 4011 * This value may be variable depending on boot parameters on IA64 4012 */ 4013 pageblock_order = order; 4014 } 4015 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */ 4016 4017 /* 4018 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order() 4019 * and pageblock_default_order() are unused as pageblock_order is set 4020 * at compile-time. See include/linux/pageblock-flags.h for the values of 4021 * pageblock_order based on the kernel config 4022 */ 4023 static inline int pageblock_default_order(unsigned int order) 4024 { 4025 return MAX_ORDER-1; 4026 } 4027 #define set_pageblock_order(x) do {} while (0) 4028 4029 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */ 4030 4031 /* 4032 * Set up the zone data structures: 4033 * - mark all pages reserved 4034 * - mark all memory queues empty 4035 * - clear the memory bitmaps 4036 */ 4037 static void __paginginit free_area_init_core(struct pglist_data *pgdat, 4038 unsigned long *zones_size, unsigned long *zholes_size) 4039 { 4040 enum zone_type j; 4041 int nid = pgdat->node_id; 4042 unsigned long zone_start_pfn = pgdat->node_start_pfn; 4043 int ret; 4044 4045 pgdat_resize_init(pgdat); 4046 pgdat->nr_zones = 0; 4047 init_waitqueue_head(&pgdat->kswapd_wait); 4048 pgdat->kswapd_max_order = 0; 4049 pgdat_page_cgroup_init(pgdat); 4050 4051 for (j = 0; j < MAX_NR_ZONES; j++) { 4052 struct zone *zone = pgdat->node_zones + j; 4053 unsigned long size, realsize, memmap_pages; 4054 enum lru_list l; 4055 4056 size = zone_spanned_pages_in_node(nid, j, zones_size); 4057 realsize = size - zone_absent_pages_in_node(nid, j, 4058 zholes_size); 4059 4060 /* 4061 * Adjust realsize so that it accounts for how much memory 4062 * is used by this zone for memmap. This affects the watermark 4063 * and per-cpu initialisations 4064 */ 4065 memmap_pages = 4066 PAGE_ALIGN(size * sizeof(struct page)) >> PAGE_SHIFT; 4067 if (realsize >= memmap_pages) { 4068 realsize -= memmap_pages; 4069 if (memmap_pages) 4070 printk(KERN_DEBUG 4071 " %s zone: %lu pages used for memmap\n", 4072 zone_names[j], memmap_pages); 4073 } else 4074 printk(KERN_WARNING 4075 " %s zone: %lu pages exceeds realsize %lu\n", 4076 zone_names[j], memmap_pages, realsize); 4077 4078 /* Account for reserved pages */ 4079 if (j == 0 && realsize > dma_reserve) { 4080 realsize -= dma_reserve; 4081 printk(KERN_DEBUG " %s zone: %lu pages reserved\n", 4082 zone_names[0], dma_reserve); 4083 } 4084 4085 if (!is_highmem_idx(j)) 4086 nr_kernel_pages += realsize; 4087 nr_all_pages += realsize; 4088 4089 zone->spanned_pages = size; 4090 zone->present_pages = realsize; 4091 #ifdef CONFIG_NUMA 4092 zone->node = nid; 4093 zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio) 4094 / 100; 4095 zone->min_slab_pages = (realsize * sysctl_min_slab_ratio) / 100; 4096 #endif 4097 zone->name = zone_names[j]; 4098 spin_lock_init(&zone->lock); 4099 spin_lock_init(&zone->lru_lock); 4100 zone_seqlock_init(zone); 4101 zone->zone_pgdat = pgdat; 4102 4103 zone_pcp_init(zone); 4104 for_each_lru(l) { 4105 INIT_LIST_HEAD(&zone->lru[l].list); 4106 zone->reclaim_stat.nr_saved_scan[l] = 0; 4107 } 4108 zone->reclaim_stat.recent_rotated[0] = 0; 4109 zone->reclaim_stat.recent_rotated[1] = 0; 4110 zone->reclaim_stat.recent_scanned[0] = 0; 4111 zone->reclaim_stat.recent_scanned[1] = 0; 4112 zap_zone_vm_stats(zone); 4113 zone->flags = 0; 4114 if (!size) 4115 continue; 4116 4117 set_pageblock_order(pageblock_default_order()); 4118 setup_usemap(pgdat, zone, size); 4119 ret = init_currently_empty_zone(zone, zone_start_pfn, 4120 size, MEMMAP_EARLY); 4121 BUG_ON(ret); 4122 memmap_init(size, nid, j, zone_start_pfn); 4123 zone_start_pfn += size; 4124 } 4125 } 4126 4127 static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat) 4128 { 4129 /* Skip empty nodes */ 4130 if (!pgdat->node_spanned_pages) 4131 return; 4132 4133 #ifdef CONFIG_FLAT_NODE_MEM_MAP 4134 /* ia64 gets its own node_mem_map, before this, without bootmem */ 4135 if (!pgdat->node_mem_map) { 4136 unsigned long size, start, end; 4137 struct page *map; 4138 4139 /* 4140 * The zone's endpoints aren't required to be MAX_ORDER 4141 * aligned but the node_mem_map endpoints must be in order 4142 * for the buddy allocator to function correctly. 4143 */ 4144 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1); 4145 end = pgdat->node_start_pfn + pgdat->node_spanned_pages; 4146 end = ALIGN(end, MAX_ORDER_NR_PAGES); 4147 size = (end - start) * sizeof(struct page); 4148 map = alloc_remap(pgdat->node_id, size); 4149 if (!map) 4150 map = alloc_bootmem_node(pgdat, size); 4151 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start); 4152 } 4153 #ifndef CONFIG_NEED_MULTIPLE_NODES 4154 /* 4155 * With no DISCONTIG, the global mem_map is just set as node 0's 4156 */ 4157 if (pgdat == NODE_DATA(0)) { 4158 mem_map = NODE_DATA(0)->node_mem_map; 4159 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP 4160 if (page_to_pfn(mem_map) != pgdat->node_start_pfn) 4161 mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET); 4162 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */ 4163 } 4164 #endif 4165 #endif /* CONFIG_FLAT_NODE_MEM_MAP */ 4166 } 4167 4168 void __paginginit free_area_init_node(int nid, unsigned long *zones_size, 4169 unsigned long node_start_pfn, unsigned long *zholes_size) 4170 { 4171 pg_data_t *pgdat = NODE_DATA(nid); 4172 4173 pgdat->node_id = nid; 4174 pgdat->node_start_pfn = node_start_pfn; 4175 calculate_node_totalpages(pgdat, zones_size, zholes_size); 4176 4177 alloc_node_mem_map(pgdat); 4178 #ifdef CONFIG_FLAT_NODE_MEM_MAP 4179 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n", 4180 nid, (unsigned long)pgdat, 4181 (unsigned long)pgdat->node_mem_map); 4182 #endif 4183 4184 free_area_init_core(pgdat, zones_size, zholes_size); 4185 } 4186 4187 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP 4188 4189 #if MAX_NUMNODES > 1 4190 /* 4191 * Figure out the number of possible node ids. 4192 */ 4193 static void __init setup_nr_node_ids(void) 4194 { 4195 unsigned int node; 4196 unsigned int highest = 0; 4197 4198 for_each_node_mask(node, node_possible_map) 4199 highest = node; 4200 nr_node_ids = highest + 1; 4201 } 4202 #else 4203 static inline void setup_nr_node_ids(void) 4204 { 4205 } 4206 #endif 4207 4208 /** 4209 * add_active_range - Register a range of PFNs backed by physical memory 4210 * @nid: The node ID the range resides on 4211 * @start_pfn: The start PFN of the available physical memory 4212 * @end_pfn: The end PFN of the available physical memory 4213 * 4214 * These ranges are stored in an early_node_map[] and later used by 4215 * free_area_init_nodes() to calculate zone sizes and holes. If the 4216 * range spans a memory hole, it is up to the architecture to ensure 4217 * the memory is not freed by the bootmem allocator. If possible 4218 * the range being registered will be merged with existing ranges. 4219 */ 4220 void __init add_active_range(unsigned int nid, unsigned long start_pfn, 4221 unsigned long end_pfn) 4222 { 4223 int i; 4224 4225 mminit_dprintk(MMINIT_TRACE, "memory_register", 4226 "Entering add_active_range(%d, %#lx, %#lx) " 4227 "%d entries of %d used\n", 4228 nid, start_pfn, end_pfn, 4229 nr_nodemap_entries, MAX_ACTIVE_REGIONS); 4230 4231 mminit_validate_memmodel_limits(&start_pfn, &end_pfn); 4232 4233 /* Merge with existing active regions if possible */ 4234 for (i = 0; i < nr_nodemap_entries; i++) { 4235 if (early_node_map[i].nid != nid) 4236 continue; 4237 4238 /* Skip if an existing region covers this new one */ 4239 if (start_pfn >= early_node_map[i].start_pfn && 4240 end_pfn <= early_node_map[i].end_pfn) 4241 return; 4242 4243 /* Merge forward if suitable */ 4244 if (start_pfn <= early_node_map[i].end_pfn && 4245 end_pfn > early_node_map[i].end_pfn) { 4246 early_node_map[i].end_pfn = end_pfn; 4247 return; 4248 } 4249 4250 /* Merge backward if suitable */ 4251 if (start_pfn < early_node_map[i].start_pfn && 4252 end_pfn >= early_node_map[i].start_pfn) { 4253 early_node_map[i].start_pfn = start_pfn; 4254 return; 4255 } 4256 } 4257 4258 /* Check that early_node_map is large enough */ 4259 if (i >= MAX_ACTIVE_REGIONS) { 4260 printk(KERN_CRIT "More than %d memory regions, truncating\n", 4261 MAX_ACTIVE_REGIONS); 4262 return; 4263 } 4264 4265 early_node_map[i].nid = nid; 4266 early_node_map[i].start_pfn = start_pfn; 4267 early_node_map[i].end_pfn = end_pfn; 4268 nr_nodemap_entries = i + 1; 4269 } 4270 4271 /** 4272 * remove_active_range - Shrink an existing registered range of PFNs 4273 * @nid: The node id the range is on that should be shrunk 4274 * @start_pfn: The new PFN of the range 4275 * @end_pfn: The new PFN of the range 4276 * 4277 * i386 with NUMA use alloc_remap() to store a node_mem_map on a local node. 4278 * The map is kept near the end physical page range that has already been 4279 * registered. This function allows an arch to shrink an existing registered 4280 * range. 4281 */ 4282 void __init remove_active_range(unsigned int nid, unsigned long start_pfn, 4283 unsigned long end_pfn) 4284 { 4285 int i, j; 4286 int removed = 0; 4287 4288 printk(KERN_DEBUG "remove_active_range (%d, %lu, %lu)\n", 4289 nid, start_pfn, end_pfn); 4290 4291 /* Find the old active region end and shrink */ 4292 for_each_active_range_index_in_nid(i, nid) { 4293 if (early_node_map[i].start_pfn >= start_pfn && 4294 early_node_map[i].end_pfn <= end_pfn) { 4295 /* clear it */ 4296 early_node_map[i].start_pfn = 0; 4297 early_node_map[i].end_pfn = 0; 4298 removed = 1; 4299 continue; 4300 } 4301 if (early_node_map[i].start_pfn < start_pfn && 4302 early_node_map[i].end_pfn > start_pfn) { 4303 unsigned long temp_end_pfn = early_node_map[i].end_pfn; 4304 early_node_map[i].end_pfn = start_pfn; 4305 if (temp_end_pfn > end_pfn) 4306 add_active_range(nid, end_pfn, temp_end_pfn); 4307 continue; 4308 } 4309 if (early_node_map[i].start_pfn >= start_pfn && 4310 early_node_map[i].end_pfn > end_pfn && 4311 early_node_map[i].start_pfn < end_pfn) { 4312 early_node_map[i].start_pfn = end_pfn; 4313 continue; 4314 } 4315 } 4316 4317 if (!removed) 4318 return; 4319 4320 /* remove the blank ones */ 4321 for (i = nr_nodemap_entries - 1; i > 0; i--) { 4322 if (early_node_map[i].nid != nid) 4323 continue; 4324 if (early_node_map[i].end_pfn) 4325 continue; 4326 /* we found it, get rid of it */ 4327 for (j = i; j < nr_nodemap_entries - 1; j++) 4328 memcpy(&early_node_map[j], &early_node_map[j+1], 4329 sizeof(early_node_map[j])); 4330 j = nr_nodemap_entries - 1; 4331 memset(&early_node_map[j], 0, sizeof(early_node_map[j])); 4332 nr_nodemap_entries--; 4333 } 4334 } 4335 4336 /** 4337 * remove_all_active_ranges - Remove all currently registered regions 4338 * 4339 * During discovery, it may be found that a table like SRAT is invalid 4340 * and an alternative discovery method must be used. This function removes 4341 * all currently registered regions. 4342 */ 4343 void __init remove_all_active_ranges(void) 4344 { 4345 memset(early_node_map, 0, sizeof(early_node_map)); 4346 nr_nodemap_entries = 0; 4347 } 4348 4349 /* Compare two active node_active_regions */ 4350 static int __init cmp_node_active_region(const void *a, const void *b) 4351 { 4352 struct node_active_region *arange = (struct node_active_region *)a; 4353 struct node_active_region *brange = (struct node_active_region *)b; 4354 4355 /* Done this way to avoid overflows */ 4356 if (arange->start_pfn > brange->start_pfn) 4357 return 1; 4358 if (arange->start_pfn < brange->start_pfn) 4359 return -1; 4360 4361 return 0; 4362 } 4363 4364 /* sort the node_map by start_pfn */ 4365 void __init sort_node_map(void) 4366 { 4367 sort(early_node_map, (size_t)nr_nodemap_entries, 4368 sizeof(struct node_active_region), 4369 cmp_node_active_region, NULL); 4370 } 4371 4372 /* Find the lowest pfn for a node */ 4373 static unsigned long __init find_min_pfn_for_node(int nid) 4374 { 4375 int i; 4376 unsigned long min_pfn = ULONG_MAX; 4377 4378 /* Assuming a sorted map, the first range found has the starting pfn */ 4379 for_each_active_range_index_in_nid(i, nid) 4380 min_pfn = min(min_pfn, early_node_map[i].start_pfn); 4381 4382 if (min_pfn == ULONG_MAX) { 4383 printk(KERN_WARNING 4384 "Could not find start_pfn for node %d\n", nid); 4385 return 0; 4386 } 4387 4388 return min_pfn; 4389 } 4390 4391 /** 4392 * find_min_pfn_with_active_regions - Find the minimum PFN registered 4393 * 4394 * It returns the minimum PFN based on information provided via 4395 * add_active_range(). 4396 */ 4397 unsigned long __init find_min_pfn_with_active_regions(void) 4398 { 4399 return find_min_pfn_for_node(MAX_NUMNODES); 4400 } 4401 4402 /* 4403 * early_calculate_totalpages() 4404 * Sum pages in active regions for movable zone. 4405 * Populate N_HIGH_MEMORY for calculating usable_nodes. 4406 */ 4407 static unsigned long __init early_calculate_totalpages(void) 4408 { 4409 int i; 4410 unsigned long totalpages = 0; 4411 4412 for (i = 0; i < nr_nodemap_entries; i++) { 4413 unsigned long pages = early_node_map[i].end_pfn - 4414 early_node_map[i].start_pfn; 4415 totalpages += pages; 4416 if (pages) 4417 node_set_state(early_node_map[i].nid, N_HIGH_MEMORY); 4418 } 4419 return totalpages; 4420 } 4421 4422 /* 4423 * Find the PFN the Movable zone begins in each node. Kernel memory 4424 * is spread evenly between nodes as long as the nodes have enough 4425 * memory. When they don't, some nodes will have more kernelcore than 4426 * others 4427 */ 4428 static void __init find_zone_movable_pfns_for_nodes(unsigned long *movable_pfn) 4429 { 4430 int i, nid; 4431 unsigned long usable_startpfn; 4432 unsigned long kernelcore_node, kernelcore_remaining; 4433 /* save the state before borrow the nodemask */ 4434 nodemask_t saved_node_state = node_states[N_HIGH_MEMORY]; 4435 unsigned long totalpages = early_calculate_totalpages(); 4436 int usable_nodes = nodes_weight(node_states[N_HIGH_MEMORY]); 4437 4438 /* 4439 * If movablecore was specified, calculate what size of 4440 * kernelcore that corresponds so that memory usable for 4441 * any allocation type is evenly spread. If both kernelcore 4442 * and movablecore are specified, then the value of kernelcore 4443 * will be used for required_kernelcore if it's greater than 4444 * what movablecore would have allowed. 4445 */ 4446 if (required_movablecore) { 4447 unsigned long corepages; 4448 4449 /* 4450 * Round-up so that ZONE_MOVABLE is at least as large as what 4451 * was requested by the user 4452 */ 4453 required_movablecore = 4454 roundup(required_movablecore, MAX_ORDER_NR_PAGES); 4455 corepages = totalpages - required_movablecore; 4456 4457 required_kernelcore = max(required_kernelcore, corepages); 4458 } 4459 4460 /* If kernelcore was not specified, there is no ZONE_MOVABLE */ 4461 if (!required_kernelcore) 4462 goto out; 4463 4464 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */ 4465 find_usable_zone_for_movable(); 4466 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone]; 4467 4468 restart: 4469 /* Spread kernelcore memory as evenly as possible throughout nodes */ 4470 kernelcore_node = required_kernelcore / usable_nodes; 4471 for_each_node_state(nid, N_HIGH_MEMORY) { 4472 /* 4473 * Recalculate kernelcore_node if the division per node 4474 * now exceeds what is necessary to satisfy the requested 4475 * amount of memory for the kernel 4476 */ 4477 if (required_kernelcore < kernelcore_node) 4478 kernelcore_node = required_kernelcore / usable_nodes; 4479 4480 /* 4481 * As the map is walked, we track how much memory is usable 4482 * by the kernel using kernelcore_remaining. When it is 4483 * 0, the rest of the node is usable by ZONE_MOVABLE 4484 */ 4485 kernelcore_remaining = kernelcore_node; 4486 4487 /* Go through each range of PFNs within this node */ 4488 for_each_active_range_index_in_nid(i, nid) { 4489 unsigned long start_pfn, end_pfn; 4490 unsigned long size_pages; 4491 4492 start_pfn = max(early_node_map[i].start_pfn, 4493 zone_movable_pfn[nid]); 4494 end_pfn = early_node_map[i].end_pfn; 4495 if (start_pfn >= end_pfn) 4496 continue; 4497 4498 /* Account for what is only usable for kernelcore */ 4499 if (start_pfn < usable_startpfn) { 4500 unsigned long kernel_pages; 4501 kernel_pages = min(end_pfn, usable_startpfn) 4502 - start_pfn; 4503 4504 kernelcore_remaining -= min(kernel_pages, 4505 kernelcore_remaining); 4506 required_kernelcore -= min(kernel_pages, 4507 required_kernelcore); 4508 4509 /* Continue if range is now fully accounted */ 4510 if (end_pfn <= usable_startpfn) { 4511 4512 /* 4513 * Push zone_movable_pfn to the end so 4514 * that if we have to rebalance 4515 * kernelcore across nodes, we will 4516 * not double account here 4517 */ 4518 zone_movable_pfn[nid] = end_pfn; 4519 continue; 4520 } 4521 start_pfn = usable_startpfn; 4522 } 4523 4524 /* 4525 * The usable PFN range for ZONE_MOVABLE is from 4526 * start_pfn->end_pfn. Calculate size_pages as the 4527 * number of pages used as kernelcore 4528 */ 4529 size_pages = end_pfn - start_pfn; 4530 if (size_pages > kernelcore_remaining) 4531 size_pages = kernelcore_remaining; 4532 zone_movable_pfn[nid] = start_pfn + size_pages; 4533 4534 /* 4535 * Some kernelcore has been met, update counts and 4536 * break if the kernelcore for this node has been 4537 * satisified 4538 */ 4539 required_kernelcore -= min(required_kernelcore, 4540 size_pages); 4541 kernelcore_remaining -= size_pages; 4542 if (!kernelcore_remaining) 4543 break; 4544 } 4545 } 4546 4547 /* 4548 * If there is still required_kernelcore, we do another pass with one 4549 * less node in the count. This will push zone_movable_pfn[nid] further 4550 * along on the nodes that still have memory until kernelcore is 4551 * satisified 4552 */ 4553 usable_nodes--; 4554 if (usable_nodes && required_kernelcore > usable_nodes) 4555 goto restart; 4556 4557 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */ 4558 for (nid = 0; nid < MAX_NUMNODES; nid++) 4559 zone_movable_pfn[nid] = 4560 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES); 4561 4562 out: 4563 /* restore the node_state */ 4564 node_states[N_HIGH_MEMORY] = saved_node_state; 4565 } 4566 4567 /* Any regular memory on that node ? */ 4568 static void check_for_regular_memory(pg_data_t *pgdat) 4569 { 4570 #ifdef CONFIG_HIGHMEM 4571 enum zone_type zone_type; 4572 4573 for (zone_type = 0; zone_type <= ZONE_NORMAL; zone_type++) { 4574 struct zone *zone = &pgdat->node_zones[zone_type]; 4575 if (zone->present_pages) 4576 node_set_state(zone_to_nid(zone), N_NORMAL_MEMORY); 4577 } 4578 #endif 4579 } 4580 4581 /** 4582 * free_area_init_nodes - Initialise all pg_data_t and zone data 4583 * @max_zone_pfn: an array of max PFNs for each zone 4584 * 4585 * This will call free_area_init_node() for each active node in the system. 4586 * Using the page ranges provided by add_active_range(), the size of each 4587 * zone in each node and their holes is calculated. If the maximum PFN 4588 * between two adjacent zones match, it is assumed that the zone is empty. 4589 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed 4590 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone 4591 * starts where the previous one ended. For example, ZONE_DMA32 starts 4592 * at arch_max_dma_pfn. 4593 */ 4594 void __init free_area_init_nodes(unsigned long *max_zone_pfn) 4595 { 4596 unsigned long nid; 4597 int i; 4598 4599 /* Sort early_node_map as initialisation assumes it is sorted */ 4600 sort_node_map(); 4601 4602 /* Record where the zone boundaries are */ 4603 memset(arch_zone_lowest_possible_pfn, 0, 4604 sizeof(arch_zone_lowest_possible_pfn)); 4605 memset(arch_zone_highest_possible_pfn, 0, 4606 sizeof(arch_zone_highest_possible_pfn)); 4607 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions(); 4608 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0]; 4609 for (i = 1; i < MAX_NR_ZONES; i++) { 4610 if (i == ZONE_MOVABLE) 4611 continue; 4612 arch_zone_lowest_possible_pfn[i] = 4613 arch_zone_highest_possible_pfn[i-1]; 4614 arch_zone_highest_possible_pfn[i] = 4615 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]); 4616 } 4617 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0; 4618 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0; 4619 4620 /* Find the PFNs that ZONE_MOVABLE begins at in each node */ 4621 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn)); 4622 find_zone_movable_pfns_for_nodes(zone_movable_pfn); 4623 4624 /* Print out the zone ranges */ 4625 printk("Zone PFN ranges:\n"); 4626 for (i = 0; i < MAX_NR_ZONES; i++) { 4627 if (i == ZONE_MOVABLE) 4628 continue; 4629 printk(" %-8s ", zone_names[i]); 4630 if (arch_zone_lowest_possible_pfn[i] == 4631 arch_zone_highest_possible_pfn[i]) 4632 printk("empty\n"); 4633 else 4634 printk("%0#10lx -> %0#10lx\n", 4635 arch_zone_lowest_possible_pfn[i], 4636 arch_zone_highest_possible_pfn[i]); 4637 } 4638 4639 /* Print out the PFNs ZONE_MOVABLE begins at in each node */ 4640 printk("Movable zone start PFN for each node\n"); 4641 for (i = 0; i < MAX_NUMNODES; i++) { 4642 if (zone_movable_pfn[i]) 4643 printk(" Node %d: %lu\n", i, zone_movable_pfn[i]); 4644 } 4645 4646 /* Print out the early_node_map[] */ 4647 printk("early_node_map[%d] active PFN ranges\n", nr_nodemap_entries); 4648 for (i = 0; i < nr_nodemap_entries; i++) 4649 printk(" %3d: %0#10lx -> %0#10lx\n", early_node_map[i].nid, 4650 early_node_map[i].start_pfn, 4651 early_node_map[i].end_pfn); 4652 4653 /* Initialise every node */ 4654 mminit_verify_pageflags_layout(); 4655 setup_nr_node_ids(); 4656 for_each_online_node(nid) { 4657 pg_data_t *pgdat = NODE_DATA(nid); 4658 free_area_init_node(nid, NULL, 4659 find_min_pfn_for_node(nid), NULL); 4660 4661 /* Any memory on that node */ 4662 if (pgdat->node_present_pages) 4663 node_set_state(nid, N_HIGH_MEMORY); 4664 check_for_regular_memory(pgdat); 4665 } 4666 } 4667 4668 static int __init cmdline_parse_core(char *p, unsigned long *core) 4669 { 4670 unsigned long long coremem; 4671 if (!p) 4672 return -EINVAL; 4673 4674 coremem = memparse(p, &p); 4675 *core = coremem >> PAGE_SHIFT; 4676 4677 /* Paranoid check that UL is enough for the coremem value */ 4678 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX); 4679 4680 return 0; 4681 } 4682 4683 /* 4684 * kernelcore=size sets the amount of memory for use for allocations that 4685 * cannot be reclaimed or migrated. 4686 */ 4687 static int __init cmdline_parse_kernelcore(char *p) 4688 { 4689 return cmdline_parse_core(p, &required_kernelcore); 4690 } 4691 4692 /* 4693 * movablecore=size sets the amount of memory for use for allocations that 4694 * can be reclaimed or migrated. 4695 */ 4696 static int __init cmdline_parse_movablecore(char *p) 4697 { 4698 return cmdline_parse_core(p, &required_movablecore); 4699 } 4700 4701 early_param("kernelcore", cmdline_parse_kernelcore); 4702 early_param("movablecore", cmdline_parse_movablecore); 4703 4704 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */ 4705 4706 /** 4707 * set_dma_reserve - set the specified number of pages reserved in the first zone 4708 * @new_dma_reserve: The number of pages to mark reserved 4709 * 4710 * The per-cpu batchsize and zone watermarks are determined by present_pages. 4711 * In the DMA zone, a significant percentage may be consumed by kernel image 4712 * and other unfreeable allocations which can skew the watermarks badly. This 4713 * function may optionally be used to account for unfreeable pages in the 4714 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and 4715 * smaller per-cpu batchsize. 4716 */ 4717 void __init set_dma_reserve(unsigned long new_dma_reserve) 4718 { 4719 dma_reserve = new_dma_reserve; 4720 } 4721 4722 #ifndef CONFIG_NEED_MULTIPLE_NODES 4723 struct pglist_data __refdata contig_page_data = { 4724 #ifndef CONFIG_NO_BOOTMEM 4725 .bdata = &bootmem_node_data[0] 4726 #endif 4727 }; 4728 EXPORT_SYMBOL(contig_page_data); 4729 #endif 4730 4731 void __init free_area_init(unsigned long *zones_size) 4732 { 4733 free_area_init_node(0, zones_size, 4734 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL); 4735 } 4736 4737 static int page_alloc_cpu_notify(struct notifier_block *self, 4738 unsigned long action, void *hcpu) 4739 { 4740 int cpu = (unsigned long)hcpu; 4741 4742 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) { 4743 drain_pages(cpu); 4744 4745 /* 4746 * Spill the event counters of the dead processor 4747 * into the current processors event counters. 4748 * This artificially elevates the count of the current 4749 * processor. 4750 */ 4751 vm_events_fold_cpu(cpu); 4752 4753 /* 4754 * Zero the differential counters of the dead processor 4755 * so that the vm statistics are consistent. 4756 * 4757 * This is only okay since the processor is dead and cannot 4758 * race with what we are doing. 4759 */ 4760 refresh_cpu_vm_stats(cpu); 4761 } 4762 return NOTIFY_OK; 4763 } 4764 4765 void __init page_alloc_init(void) 4766 { 4767 hotcpu_notifier(page_alloc_cpu_notify, 0); 4768 } 4769 4770 /* 4771 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio 4772 * or min_free_kbytes changes. 4773 */ 4774 static void calculate_totalreserve_pages(void) 4775 { 4776 struct pglist_data *pgdat; 4777 unsigned long reserve_pages = 0; 4778 enum zone_type i, j; 4779 4780 for_each_online_pgdat(pgdat) { 4781 for (i = 0; i < MAX_NR_ZONES; i++) { 4782 struct zone *zone = pgdat->node_zones + i; 4783 unsigned long max = 0; 4784 4785 /* Find valid and maximum lowmem_reserve in the zone */ 4786 for (j = i; j < MAX_NR_ZONES; j++) { 4787 if (zone->lowmem_reserve[j] > max) 4788 max = zone->lowmem_reserve[j]; 4789 } 4790 4791 /* we treat the high watermark as reserved pages. */ 4792 max += high_wmark_pages(zone); 4793 4794 if (max > zone->present_pages) 4795 max = zone->present_pages; 4796 reserve_pages += max; 4797 } 4798 } 4799 totalreserve_pages = reserve_pages; 4800 } 4801 4802 /* 4803 * setup_per_zone_lowmem_reserve - called whenever 4804 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone 4805 * has a correct pages reserved value, so an adequate number of 4806 * pages are left in the zone after a successful __alloc_pages(). 4807 */ 4808 static void setup_per_zone_lowmem_reserve(void) 4809 { 4810 struct pglist_data *pgdat; 4811 enum zone_type j, idx; 4812 4813 for_each_online_pgdat(pgdat) { 4814 for (j = 0; j < MAX_NR_ZONES; j++) { 4815 struct zone *zone = pgdat->node_zones + j; 4816 unsigned long present_pages = zone->present_pages; 4817 4818 zone->lowmem_reserve[j] = 0; 4819 4820 idx = j; 4821 while (idx) { 4822 struct zone *lower_zone; 4823 4824 idx--; 4825 4826 if (sysctl_lowmem_reserve_ratio[idx] < 1) 4827 sysctl_lowmem_reserve_ratio[idx] = 1; 4828 4829 lower_zone = pgdat->node_zones + idx; 4830 lower_zone->lowmem_reserve[j] = present_pages / 4831 sysctl_lowmem_reserve_ratio[idx]; 4832 present_pages += lower_zone->present_pages; 4833 } 4834 } 4835 } 4836 4837 /* update totalreserve_pages */ 4838 calculate_totalreserve_pages(); 4839 } 4840 4841 /** 4842 * setup_per_zone_wmarks - called when min_free_kbytes changes 4843 * or when memory is hot-{added|removed} 4844 * 4845 * Ensures that the watermark[min,low,high] values for each zone are set 4846 * correctly with respect to min_free_kbytes. 4847 */ 4848 void setup_per_zone_wmarks(void) 4849 { 4850 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10); 4851 unsigned long lowmem_pages = 0; 4852 struct zone *zone; 4853 unsigned long flags; 4854 4855 /* Calculate total number of !ZONE_HIGHMEM pages */ 4856 for_each_zone(zone) { 4857 if (!is_highmem(zone)) 4858 lowmem_pages += zone->present_pages; 4859 } 4860 4861 for_each_zone(zone) { 4862 u64 tmp; 4863 4864 spin_lock_irqsave(&zone->lock, flags); 4865 tmp = (u64)pages_min * zone->present_pages; 4866 do_div(tmp, lowmem_pages); 4867 if (is_highmem(zone)) { 4868 /* 4869 * __GFP_HIGH and PF_MEMALLOC allocations usually don't 4870 * need highmem pages, so cap pages_min to a small 4871 * value here. 4872 * 4873 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN) 4874 * deltas controls asynch page reclaim, and so should 4875 * not be capped for highmem. 4876 */ 4877 int min_pages; 4878 4879 min_pages = zone->present_pages / 1024; 4880 if (min_pages < SWAP_CLUSTER_MAX) 4881 min_pages = SWAP_CLUSTER_MAX; 4882 if (min_pages > 128) 4883 min_pages = 128; 4884 zone->watermark[WMARK_MIN] = min_pages; 4885 } else { 4886 /* 4887 * If it's a lowmem zone, reserve a number of pages 4888 * proportionate to the zone's size. 4889 */ 4890 zone->watermark[WMARK_MIN] = tmp; 4891 } 4892 4893 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + (tmp >> 2); 4894 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1); 4895 setup_zone_migrate_reserve(zone); 4896 spin_unlock_irqrestore(&zone->lock, flags); 4897 } 4898 4899 /* update totalreserve_pages */ 4900 calculate_totalreserve_pages(); 4901 } 4902 4903 /* 4904 * The inactive anon list should be small enough that the VM never has to 4905 * do too much work, but large enough that each inactive page has a chance 4906 * to be referenced again before it is swapped out. 4907 * 4908 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to 4909 * INACTIVE_ANON pages on this zone's LRU, maintained by the 4910 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of 4911 * the anonymous pages are kept on the inactive list. 4912 * 4913 * total target max 4914 * memory ratio inactive anon 4915 * ------------------------------------- 4916 * 10MB 1 5MB 4917 * 100MB 1 50MB 4918 * 1GB 3 250MB 4919 * 10GB 10 0.9GB 4920 * 100GB 31 3GB 4921 * 1TB 101 10GB 4922 * 10TB 320 32GB 4923 */ 4924 void calculate_zone_inactive_ratio(struct zone *zone) 4925 { 4926 unsigned int gb, ratio; 4927 4928 /* Zone size in gigabytes */ 4929 gb = zone->present_pages >> (30 - PAGE_SHIFT); 4930 if (gb) 4931 ratio = int_sqrt(10 * gb); 4932 else 4933 ratio = 1; 4934 4935 zone->inactive_ratio = ratio; 4936 } 4937 4938 static void __init setup_per_zone_inactive_ratio(void) 4939 { 4940 struct zone *zone; 4941 4942 for_each_zone(zone) 4943 calculate_zone_inactive_ratio(zone); 4944 } 4945 4946 /* 4947 * Initialise min_free_kbytes. 4948 * 4949 * For small machines we want it small (128k min). For large machines 4950 * we want it large (64MB max). But it is not linear, because network 4951 * bandwidth does not increase linearly with machine size. We use 4952 * 4953 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy: 4954 * min_free_kbytes = sqrt(lowmem_kbytes * 16) 4955 * 4956 * which yields 4957 * 4958 * 16MB: 512k 4959 * 32MB: 724k 4960 * 64MB: 1024k 4961 * 128MB: 1448k 4962 * 256MB: 2048k 4963 * 512MB: 2896k 4964 * 1024MB: 4096k 4965 * 2048MB: 5792k 4966 * 4096MB: 8192k 4967 * 8192MB: 11584k 4968 * 16384MB: 16384k 4969 */ 4970 static int __init init_per_zone_wmark_min(void) 4971 { 4972 unsigned long lowmem_kbytes; 4973 4974 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10); 4975 4976 min_free_kbytes = int_sqrt(lowmem_kbytes * 16); 4977 if (min_free_kbytes < 128) 4978 min_free_kbytes = 128; 4979 if (min_free_kbytes > 65536) 4980 min_free_kbytes = 65536; 4981 setup_per_zone_wmarks(); 4982 setup_per_zone_lowmem_reserve(); 4983 setup_per_zone_inactive_ratio(); 4984 return 0; 4985 } 4986 module_init(init_per_zone_wmark_min) 4987 4988 /* 4989 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so 4990 * that we can call two helper functions whenever min_free_kbytes 4991 * changes. 4992 */ 4993 int min_free_kbytes_sysctl_handler(ctl_table *table, int write, 4994 void __user *buffer, size_t *length, loff_t *ppos) 4995 { 4996 proc_dointvec(table, write, buffer, length, ppos); 4997 if (write) 4998 setup_per_zone_wmarks(); 4999 return 0; 5000 } 5001 5002 #ifdef CONFIG_NUMA 5003 int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write, 5004 void __user *buffer, size_t *length, loff_t *ppos) 5005 { 5006 struct zone *zone; 5007 int rc; 5008 5009 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 5010 if (rc) 5011 return rc; 5012 5013 for_each_zone(zone) 5014 zone->min_unmapped_pages = (zone->present_pages * 5015 sysctl_min_unmapped_ratio) / 100; 5016 return 0; 5017 } 5018 5019 int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write, 5020 void __user *buffer, size_t *length, loff_t *ppos) 5021 { 5022 struct zone *zone; 5023 int rc; 5024 5025 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 5026 if (rc) 5027 return rc; 5028 5029 for_each_zone(zone) 5030 zone->min_slab_pages = (zone->present_pages * 5031 sysctl_min_slab_ratio) / 100; 5032 return 0; 5033 } 5034 #endif 5035 5036 /* 5037 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around 5038 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve() 5039 * whenever sysctl_lowmem_reserve_ratio changes. 5040 * 5041 * The reserve ratio obviously has absolutely no relation with the 5042 * minimum watermarks. The lowmem reserve ratio can only make sense 5043 * if in function of the boot time zone sizes. 5044 */ 5045 int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write, 5046 void __user *buffer, size_t *length, loff_t *ppos) 5047 { 5048 proc_dointvec_minmax(table, write, buffer, length, ppos); 5049 setup_per_zone_lowmem_reserve(); 5050 return 0; 5051 } 5052 5053 /* 5054 * percpu_pagelist_fraction - changes the pcp->high for each zone on each 5055 * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist 5056 * can have before it gets flushed back to buddy allocator. 5057 */ 5058 5059 int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write, 5060 void __user *buffer, size_t *length, loff_t *ppos) 5061 { 5062 struct zone *zone; 5063 unsigned int cpu; 5064 int ret; 5065 5066 ret = proc_dointvec_minmax(table, write, buffer, length, ppos); 5067 if (!write || (ret == -EINVAL)) 5068 return ret; 5069 for_each_populated_zone(zone) { 5070 for_each_possible_cpu(cpu) { 5071 unsigned long high; 5072 high = zone->present_pages / percpu_pagelist_fraction; 5073 setup_pagelist_highmark( 5074 per_cpu_ptr(zone->pageset, cpu), high); 5075 } 5076 } 5077 return 0; 5078 } 5079 5080 int hashdist = HASHDIST_DEFAULT; 5081 5082 #ifdef CONFIG_NUMA 5083 static int __init set_hashdist(char *str) 5084 { 5085 if (!str) 5086 return 0; 5087 hashdist = simple_strtoul(str, &str, 0); 5088 return 1; 5089 } 5090 __setup("hashdist=", set_hashdist); 5091 #endif 5092 5093 /* 5094 * allocate a large system hash table from bootmem 5095 * - it is assumed that the hash table must contain an exact power-of-2 5096 * quantity of entries 5097 * - limit is the number of hash buckets, not the total allocation size 5098 */ 5099 void *__init alloc_large_system_hash(const char *tablename, 5100 unsigned long bucketsize, 5101 unsigned long numentries, 5102 int scale, 5103 int flags, 5104 unsigned int *_hash_shift, 5105 unsigned int *_hash_mask, 5106 unsigned long limit) 5107 { 5108 unsigned long long max = limit; 5109 unsigned long log2qty, size; 5110 void *table = NULL; 5111 5112 /* allow the kernel cmdline to have a say */ 5113 if (!numentries) { 5114 /* round applicable memory size up to nearest megabyte */ 5115 numentries = nr_kernel_pages; 5116 numentries += (1UL << (20 - PAGE_SHIFT)) - 1; 5117 numentries >>= 20 - PAGE_SHIFT; 5118 numentries <<= 20 - PAGE_SHIFT; 5119 5120 /* limit to 1 bucket per 2^scale bytes of low memory */ 5121 if (scale > PAGE_SHIFT) 5122 numentries >>= (scale - PAGE_SHIFT); 5123 else 5124 numentries <<= (PAGE_SHIFT - scale); 5125 5126 /* Make sure we've got at least a 0-order allocation.. */ 5127 if (unlikely(flags & HASH_SMALL)) { 5128 /* Makes no sense without HASH_EARLY */ 5129 WARN_ON(!(flags & HASH_EARLY)); 5130 if (!(numentries >> *_hash_shift)) { 5131 numentries = 1UL << *_hash_shift; 5132 BUG_ON(!numentries); 5133 } 5134 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE)) 5135 numentries = PAGE_SIZE / bucketsize; 5136 } 5137 numentries = roundup_pow_of_two(numentries); 5138 5139 /* limit allocation size to 1/16 total memory by default */ 5140 if (max == 0) { 5141 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4; 5142 do_div(max, bucketsize); 5143 } 5144 5145 if (numentries > max) 5146 numentries = max; 5147 5148 log2qty = ilog2(numentries); 5149 5150 do { 5151 size = bucketsize << log2qty; 5152 if (flags & HASH_EARLY) 5153 table = alloc_bootmem_nopanic(size); 5154 else if (hashdist) 5155 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL); 5156 else { 5157 /* 5158 * If bucketsize is not a power-of-two, we may free 5159 * some pages at the end of hash table which 5160 * alloc_pages_exact() automatically does 5161 */ 5162 if (get_order(size) < MAX_ORDER) { 5163 table = alloc_pages_exact(size, GFP_ATOMIC); 5164 kmemleak_alloc(table, size, 1, GFP_ATOMIC); 5165 } 5166 } 5167 } while (!table && size > PAGE_SIZE && --log2qty); 5168 5169 if (!table) 5170 panic("Failed to allocate %s hash table\n", tablename); 5171 5172 printk(KERN_INFO "%s hash table entries: %d (order: %d, %lu bytes)\n", 5173 tablename, 5174 (1U << log2qty), 5175 ilog2(size) - PAGE_SHIFT, 5176 size); 5177 5178 if (_hash_shift) 5179 *_hash_shift = log2qty; 5180 if (_hash_mask) 5181 *_hash_mask = (1 << log2qty) - 1; 5182 5183 return table; 5184 } 5185 5186 /* Return a pointer to the bitmap storing bits affecting a block of pages */ 5187 static inline unsigned long *get_pageblock_bitmap(struct zone *zone, 5188 unsigned long pfn) 5189 { 5190 #ifdef CONFIG_SPARSEMEM 5191 return __pfn_to_section(pfn)->pageblock_flags; 5192 #else 5193 return zone->pageblock_flags; 5194 #endif /* CONFIG_SPARSEMEM */ 5195 } 5196 5197 static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn) 5198 { 5199 #ifdef CONFIG_SPARSEMEM 5200 pfn &= (PAGES_PER_SECTION-1); 5201 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS; 5202 #else 5203 pfn = pfn - zone->zone_start_pfn; 5204 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS; 5205 #endif /* CONFIG_SPARSEMEM */ 5206 } 5207 5208 /** 5209 * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages 5210 * @page: The page within the block of interest 5211 * @start_bitidx: The first bit of interest to retrieve 5212 * @end_bitidx: The last bit of interest 5213 * returns pageblock_bits flags 5214 */ 5215 unsigned long get_pageblock_flags_group(struct page *page, 5216 int start_bitidx, int end_bitidx) 5217 { 5218 struct zone *zone; 5219 unsigned long *bitmap; 5220 unsigned long pfn, bitidx; 5221 unsigned long flags = 0; 5222 unsigned long value = 1; 5223 5224 zone = page_zone(page); 5225 pfn = page_to_pfn(page); 5226 bitmap = get_pageblock_bitmap(zone, pfn); 5227 bitidx = pfn_to_bitidx(zone, pfn); 5228 5229 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1) 5230 if (test_bit(bitidx + start_bitidx, bitmap)) 5231 flags |= value; 5232 5233 return flags; 5234 } 5235 5236 /** 5237 * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages 5238 * @page: The page within the block of interest 5239 * @start_bitidx: The first bit of interest 5240 * @end_bitidx: The last bit of interest 5241 * @flags: The flags to set 5242 */ 5243 void set_pageblock_flags_group(struct page *page, unsigned long flags, 5244 int start_bitidx, int end_bitidx) 5245 { 5246 struct zone *zone; 5247 unsigned long *bitmap; 5248 unsigned long pfn, bitidx; 5249 unsigned long value = 1; 5250 5251 zone = page_zone(page); 5252 pfn = page_to_pfn(page); 5253 bitmap = get_pageblock_bitmap(zone, pfn); 5254 bitidx = pfn_to_bitidx(zone, pfn); 5255 VM_BUG_ON(pfn < zone->zone_start_pfn); 5256 VM_BUG_ON(pfn >= zone->zone_start_pfn + zone->spanned_pages); 5257 5258 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1) 5259 if (flags & value) 5260 __set_bit(bitidx + start_bitidx, bitmap); 5261 else 5262 __clear_bit(bitidx + start_bitidx, bitmap); 5263 } 5264 5265 /* 5266 * This is designed as sub function...plz see page_isolation.c also. 5267 * set/clear page block's type to be ISOLATE. 5268 * page allocater never alloc memory from ISOLATE block. 5269 */ 5270 5271 int set_migratetype_isolate(struct page *page) 5272 { 5273 struct zone *zone; 5274 struct page *curr_page; 5275 unsigned long flags, pfn, iter; 5276 unsigned long immobile = 0; 5277 struct memory_isolate_notify arg; 5278 int notifier_ret; 5279 int ret = -EBUSY; 5280 int zone_idx; 5281 5282 zone = page_zone(page); 5283 zone_idx = zone_idx(zone); 5284 5285 spin_lock_irqsave(&zone->lock, flags); 5286 if (get_pageblock_migratetype(page) == MIGRATE_MOVABLE || 5287 zone_idx == ZONE_MOVABLE) { 5288 ret = 0; 5289 goto out; 5290 } 5291 5292 pfn = page_to_pfn(page); 5293 arg.start_pfn = pfn; 5294 arg.nr_pages = pageblock_nr_pages; 5295 arg.pages_found = 0; 5296 5297 /* 5298 * It may be possible to isolate a pageblock even if the 5299 * migratetype is not MIGRATE_MOVABLE. The memory isolation 5300 * notifier chain is used by balloon drivers to return the 5301 * number of pages in a range that are held by the balloon 5302 * driver to shrink memory. If all the pages are accounted for 5303 * by balloons, are free, or on the LRU, isolation can continue. 5304 * Later, for example, when memory hotplug notifier runs, these 5305 * pages reported as "can be isolated" should be isolated(freed) 5306 * by the balloon driver through the memory notifier chain. 5307 */ 5308 notifier_ret = memory_isolate_notify(MEM_ISOLATE_COUNT, &arg); 5309 notifier_ret = notifier_to_errno(notifier_ret); 5310 if (notifier_ret || !arg.pages_found) 5311 goto out; 5312 5313 for (iter = pfn; iter < (pfn + pageblock_nr_pages); iter++) { 5314 if (!pfn_valid_within(pfn)) 5315 continue; 5316 5317 curr_page = pfn_to_page(iter); 5318 if (!page_count(curr_page) || PageLRU(curr_page)) 5319 continue; 5320 5321 immobile++; 5322 } 5323 5324 if (arg.pages_found == immobile) 5325 ret = 0; 5326 5327 out: 5328 if (!ret) { 5329 set_pageblock_migratetype(page, MIGRATE_ISOLATE); 5330 move_freepages_block(zone, page, MIGRATE_ISOLATE); 5331 } 5332 5333 spin_unlock_irqrestore(&zone->lock, flags); 5334 if (!ret) 5335 drain_all_pages(); 5336 return ret; 5337 } 5338 5339 void unset_migratetype_isolate(struct page *page) 5340 { 5341 struct zone *zone; 5342 unsigned long flags; 5343 zone = page_zone(page); 5344 spin_lock_irqsave(&zone->lock, flags); 5345 if (get_pageblock_migratetype(page) != MIGRATE_ISOLATE) 5346 goto out; 5347 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 5348 move_freepages_block(zone, page, MIGRATE_MOVABLE); 5349 out: 5350 spin_unlock_irqrestore(&zone->lock, flags); 5351 } 5352 5353 #ifdef CONFIG_MEMORY_HOTREMOVE 5354 /* 5355 * All pages in the range must be isolated before calling this. 5356 */ 5357 void 5358 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn) 5359 { 5360 struct page *page; 5361 struct zone *zone; 5362 int order, i; 5363 unsigned long pfn; 5364 unsigned long flags; 5365 /* find the first valid pfn */ 5366 for (pfn = start_pfn; pfn < end_pfn; pfn++) 5367 if (pfn_valid(pfn)) 5368 break; 5369 if (pfn == end_pfn) 5370 return; 5371 zone = page_zone(pfn_to_page(pfn)); 5372 spin_lock_irqsave(&zone->lock, flags); 5373 pfn = start_pfn; 5374 while (pfn < end_pfn) { 5375 if (!pfn_valid(pfn)) { 5376 pfn++; 5377 continue; 5378 } 5379 page = pfn_to_page(pfn); 5380 BUG_ON(page_count(page)); 5381 BUG_ON(!PageBuddy(page)); 5382 order = page_order(page); 5383 #ifdef CONFIG_DEBUG_VM 5384 printk(KERN_INFO "remove from free list %lx %d %lx\n", 5385 pfn, 1 << order, end_pfn); 5386 #endif 5387 list_del(&page->lru); 5388 rmv_page_order(page); 5389 zone->free_area[order].nr_free--; 5390 __mod_zone_page_state(zone, NR_FREE_PAGES, 5391 - (1UL << order)); 5392 for (i = 0; i < (1 << order); i++) 5393 SetPageReserved((page+i)); 5394 pfn += (1 << order); 5395 } 5396 spin_unlock_irqrestore(&zone->lock, flags); 5397 } 5398 #endif 5399 5400 #ifdef CONFIG_MEMORY_FAILURE 5401 bool is_free_buddy_page(struct page *page) 5402 { 5403 struct zone *zone = page_zone(page); 5404 unsigned long pfn = page_to_pfn(page); 5405 unsigned long flags; 5406 int order; 5407 5408 spin_lock_irqsave(&zone->lock, flags); 5409 for (order = 0; order < MAX_ORDER; order++) { 5410 struct page *page_head = page - (pfn & ((1 << order) - 1)); 5411 5412 if (PageBuddy(page_head) && page_order(page_head) >= order) 5413 break; 5414 } 5415 spin_unlock_irqrestore(&zone->lock, flags); 5416 5417 return order < MAX_ORDER; 5418 } 5419 #endif 5420 5421 static struct trace_print_flags pageflag_names[] = { 5422 {1UL << PG_locked, "locked" }, 5423 {1UL << PG_error, "error" }, 5424 {1UL << PG_referenced, "referenced" }, 5425 {1UL << PG_uptodate, "uptodate" }, 5426 {1UL << PG_dirty, "dirty" }, 5427 {1UL << PG_lru, "lru" }, 5428 {1UL << PG_active, "active" }, 5429 {1UL << PG_slab, "slab" }, 5430 {1UL << PG_owner_priv_1, "owner_priv_1" }, 5431 {1UL << PG_arch_1, "arch_1" }, 5432 {1UL << PG_reserved, "reserved" }, 5433 {1UL << PG_private, "private" }, 5434 {1UL << PG_private_2, "private_2" }, 5435 {1UL << PG_writeback, "writeback" }, 5436 #ifdef CONFIG_PAGEFLAGS_EXTENDED 5437 {1UL << PG_head, "head" }, 5438 {1UL << PG_tail, "tail" }, 5439 #else 5440 {1UL << PG_compound, "compound" }, 5441 #endif 5442 {1UL << PG_swapcache, "swapcache" }, 5443 {1UL << PG_mappedtodisk, "mappedtodisk" }, 5444 {1UL << PG_reclaim, "reclaim" }, 5445 {1UL << PG_buddy, "buddy" }, 5446 {1UL << PG_swapbacked, "swapbacked" }, 5447 {1UL << PG_unevictable, "unevictable" }, 5448 #ifdef CONFIG_MMU 5449 {1UL << PG_mlocked, "mlocked" }, 5450 #endif 5451 #ifdef CONFIG_ARCH_USES_PG_UNCACHED 5452 {1UL << PG_uncached, "uncached" }, 5453 #endif 5454 #ifdef CONFIG_MEMORY_FAILURE 5455 {1UL << PG_hwpoison, "hwpoison" }, 5456 #endif 5457 {-1UL, NULL }, 5458 }; 5459 5460 static void dump_page_flags(unsigned long flags) 5461 { 5462 const char *delim = ""; 5463 unsigned long mask; 5464 int i; 5465 5466 printk(KERN_ALERT "page flags: %#lx(", flags); 5467 5468 /* remove zone id */ 5469 flags &= (1UL << NR_PAGEFLAGS) - 1; 5470 5471 for (i = 0; pageflag_names[i].name && flags; i++) { 5472 5473 mask = pageflag_names[i].mask; 5474 if ((flags & mask) != mask) 5475 continue; 5476 5477 flags &= ~mask; 5478 printk("%s%s", delim, pageflag_names[i].name); 5479 delim = "|"; 5480 } 5481 5482 /* check for left over flags */ 5483 if (flags) 5484 printk("%s%#lx", delim, flags); 5485 5486 printk(")\n"); 5487 } 5488 5489 void dump_page(struct page *page) 5490 { 5491 printk(KERN_ALERT 5492 "page:%p count:%d mapcount:%d mapping:%p index:%#lx\n", 5493 page, page_count(page), page_mapcount(page), 5494 page->mapping, page->index); 5495 dump_page_flags(page->flags); 5496 } 5497