1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/mm/page_alloc.c 4 * 5 * Manages the free list, the system allocates free pages here. 6 * Note that kmalloc() lives in slab.c 7 * 8 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 9 * Swap reorganised 29.12.95, Stephen Tweedie 10 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999 11 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999 12 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999 13 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000 14 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002 15 * (lots of bits borrowed from Ingo Molnar & Andrew Morton) 16 */ 17 18 #include <linux/stddef.h> 19 #include <linux/mm.h> 20 #include <linux/highmem.h> 21 #include <linux/swap.h> 22 #include <linux/interrupt.h> 23 #include <linux/pagemap.h> 24 #include <linux/jiffies.h> 25 #include <linux/memblock.h> 26 #include <linux/compiler.h> 27 #include <linux/kernel.h> 28 #include <linux/kasan.h> 29 #include <linux/module.h> 30 #include <linux/suspend.h> 31 #include <linux/pagevec.h> 32 #include <linux/blkdev.h> 33 #include <linux/slab.h> 34 #include <linux/ratelimit.h> 35 #include <linux/oom.h> 36 #include <linux/topology.h> 37 #include <linux/sysctl.h> 38 #include <linux/cpu.h> 39 #include <linux/cpuset.h> 40 #include <linux/memory_hotplug.h> 41 #include <linux/nodemask.h> 42 #include <linux/vmalloc.h> 43 #include <linux/vmstat.h> 44 #include <linux/mempolicy.h> 45 #include <linux/memremap.h> 46 #include <linux/stop_machine.h> 47 #include <linux/random.h> 48 #include <linux/sort.h> 49 #include <linux/pfn.h> 50 #include <linux/backing-dev.h> 51 #include <linux/fault-inject.h> 52 #include <linux/page-isolation.h> 53 #include <linux/debugobjects.h> 54 #include <linux/kmemleak.h> 55 #include <linux/compaction.h> 56 #include <trace/events/kmem.h> 57 #include <trace/events/oom.h> 58 #include <linux/prefetch.h> 59 #include <linux/mm_inline.h> 60 #include <linux/mmu_notifier.h> 61 #include <linux/migrate.h> 62 #include <linux/hugetlb.h> 63 #include <linux/sched/rt.h> 64 #include <linux/sched/mm.h> 65 #include <linux/page_owner.h> 66 #include <linux/kthread.h> 67 #include <linux/memcontrol.h> 68 #include <linux/ftrace.h> 69 #include <linux/lockdep.h> 70 #include <linux/nmi.h> 71 #include <linux/psi.h> 72 #include <linux/padata.h> 73 #include <linux/khugepaged.h> 74 #include <linux/buffer_head.h> 75 #include <asm/sections.h> 76 #include <asm/tlbflush.h> 77 #include <asm/div64.h> 78 #include "internal.h" 79 #include "shuffle.h" 80 #include "page_reporting.h" 81 82 /* Free Page Internal flags: for internal, non-pcp variants of free_pages(). */ 83 typedef int __bitwise fpi_t; 84 85 /* No special request */ 86 #define FPI_NONE ((__force fpi_t)0) 87 88 /* 89 * Skip free page reporting notification for the (possibly merged) page. 90 * This does not hinder free page reporting from grabbing the page, 91 * reporting it and marking it "reported" - it only skips notifying 92 * the free page reporting infrastructure about a newly freed page. For 93 * example, used when temporarily pulling a page from a freelist and 94 * putting it back unmodified. 95 */ 96 #define FPI_SKIP_REPORT_NOTIFY ((__force fpi_t)BIT(0)) 97 98 /* 99 * Place the (possibly merged) page to the tail of the freelist. Will ignore 100 * page shuffling (relevant code - e.g., memory onlining - is expected to 101 * shuffle the whole zone). 102 * 103 * Note: No code should rely on this flag for correctness - it's purely 104 * to allow for optimizations when handing back either fresh pages 105 * (memory onlining) or untouched pages (page isolation, free page 106 * reporting). 107 */ 108 #define FPI_TO_TAIL ((__force fpi_t)BIT(1)) 109 110 /* 111 * Don't poison memory with KASAN (only for the tag-based modes). 112 * During boot, all non-reserved memblock memory is exposed to page_alloc. 113 * Poisoning all that memory lengthens boot time, especially on systems with 114 * large amount of RAM. This flag is used to skip that poisoning. 115 * This is only done for the tag-based KASAN modes, as those are able to 116 * detect memory corruptions with the memory tags assigned by default. 117 * All memory allocated normally after boot gets poisoned as usual. 118 */ 119 #define FPI_SKIP_KASAN_POISON ((__force fpi_t)BIT(2)) 120 121 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */ 122 static DEFINE_MUTEX(pcp_batch_high_lock); 123 #define MIN_PERCPU_PAGELIST_HIGH_FRACTION (8) 124 125 struct pagesets { 126 local_lock_t lock; 127 }; 128 static DEFINE_PER_CPU(struct pagesets, pagesets) = { 129 .lock = INIT_LOCAL_LOCK(lock), 130 }; 131 132 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID 133 DEFINE_PER_CPU(int, numa_node); 134 EXPORT_PER_CPU_SYMBOL(numa_node); 135 #endif 136 137 DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key); 138 139 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 140 /* 141 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly. 142 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined. 143 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem() 144 * defined in <linux/topology.h>. 145 */ 146 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */ 147 EXPORT_PER_CPU_SYMBOL(_numa_mem_); 148 #endif 149 150 /* work_structs for global per-cpu drains */ 151 struct pcpu_drain { 152 struct zone *zone; 153 struct work_struct work; 154 }; 155 static DEFINE_MUTEX(pcpu_drain_mutex); 156 static DEFINE_PER_CPU(struct pcpu_drain, pcpu_drain); 157 158 #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY 159 volatile unsigned long latent_entropy __latent_entropy; 160 EXPORT_SYMBOL(latent_entropy); 161 #endif 162 163 /* 164 * Array of node states. 165 */ 166 nodemask_t node_states[NR_NODE_STATES] __read_mostly = { 167 [N_POSSIBLE] = NODE_MASK_ALL, 168 [N_ONLINE] = { { [0] = 1UL } }, 169 #ifndef CONFIG_NUMA 170 [N_NORMAL_MEMORY] = { { [0] = 1UL } }, 171 #ifdef CONFIG_HIGHMEM 172 [N_HIGH_MEMORY] = { { [0] = 1UL } }, 173 #endif 174 [N_MEMORY] = { { [0] = 1UL } }, 175 [N_CPU] = { { [0] = 1UL } }, 176 #endif /* NUMA */ 177 }; 178 EXPORT_SYMBOL(node_states); 179 180 atomic_long_t _totalram_pages __read_mostly; 181 EXPORT_SYMBOL(_totalram_pages); 182 unsigned long totalreserve_pages __read_mostly; 183 unsigned long totalcma_pages __read_mostly; 184 185 int percpu_pagelist_high_fraction; 186 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK; 187 DEFINE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, init_on_alloc); 188 EXPORT_SYMBOL(init_on_alloc); 189 190 DEFINE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_FREE_DEFAULT_ON, init_on_free); 191 EXPORT_SYMBOL(init_on_free); 192 193 static bool _init_on_alloc_enabled_early __read_mostly 194 = IS_ENABLED(CONFIG_INIT_ON_ALLOC_DEFAULT_ON); 195 static int __init early_init_on_alloc(char *buf) 196 { 197 198 return kstrtobool(buf, &_init_on_alloc_enabled_early); 199 } 200 early_param("init_on_alloc", early_init_on_alloc); 201 202 static bool _init_on_free_enabled_early __read_mostly 203 = IS_ENABLED(CONFIG_INIT_ON_FREE_DEFAULT_ON); 204 static int __init early_init_on_free(char *buf) 205 { 206 return kstrtobool(buf, &_init_on_free_enabled_early); 207 } 208 early_param("init_on_free", early_init_on_free); 209 210 /* 211 * A cached value of the page's pageblock's migratetype, used when the page is 212 * put on a pcplist. Used to avoid the pageblock migratetype lookup when 213 * freeing from pcplists in most cases, at the cost of possibly becoming stale. 214 * Also the migratetype set in the page does not necessarily match the pcplist 215 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any 216 * other index - this ensures that it will be put on the correct CMA freelist. 217 */ 218 static inline int get_pcppage_migratetype(struct page *page) 219 { 220 return page->index; 221 } 222 223 static inline void set_pcppage_migratetype(struct page *page, int migratetype) 224 { 225 page->index = migratetype; 226 } 227 228 #ifdef CONFIG_PM_SLEEP 229 /* 230 * The following functions are used by the suspend/hibernate code to temporarily 231 * change gfp_allowed_mask in order to avoid using I/O during memory allocations 232 * while devices are suspended. To avoid races with the suspend/hibernate code, 233 * they should always be called with system_transition_mutex held 234 * (gfp_allowed_mask also should only be modified with system_transition_mutex 235 * held, unless the suspend/hibernate code is guaranteed not to run in parallel 236 * with that modification). 237 */ 238 239 static gfp_t saved_gfp_mask; 240 241 void pm_restore_gfp_mask(void) 242 { 243 WARN_ON(!mutex_is_locked(&system_transition_mutex)); 244 if (saved_gfp_mask) { 245 gfp_allowed_mask = saved_gfp_mask; 246 saved_gfp_mask = 0; 247 } 248 } 249 250 void pm_restrict_gfp_mask(void) 251 { 252 WARN_ON(!mutex_is_locked(&system_transition_mutex)); 253 WARN_ON(saved_gfp_mask); 254 saved_gfp_mask = gfp_allowed_mask; 255 gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS); 256 } 257 258 bool pm_suspended_storage(void) 259 { 260 if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS)) 261 return false; 262 return true; 263 } 264 #endif /* CONFIG_PM_SLEEP */ 265 266 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE 267 unsigned int pageblock_order __read_mostly; 268 #endif 269 270 static void __free_pages_ok(struct page *page, unsigned int order, 271 fpi_t fpi_flags); 272 273 /* 274 * results with 256, 32 in the lowmem_reserve sysctl: 275 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high) 276 * 1G machine -> (16M dma, 784M normal, 224M high) 277 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA 278 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL 279 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA 280 * 281 * TBD: should special case ZONE_DMA32 machines here - in those we normally 282 * don't need any ZONE_NORMAL reservation 283 */ 284 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = { 285 #ifdef CONFIG_ZONE_DMA 286 [ZONE_DMA] = 256, 287 #endif 288 #ifdef CONFIG_ZONE_DMA32 289 [ZONE_DMA32] = 256, 290 #endif 291 [ZONE_NORMAL] = 32, 292 #ifdef CONFIG_HIGHMEM 293 [ZONE_HIGHMEM] = 0, 294 #endif 295 [ZONE_MOVABLE] = 0, 296 }; 297 298 static char * const zone_names[MAX_NR_ZONES] = { 299 #ifdef CONFIG_ZONE_DMA 300 "DMA", 301 #endif 302 #ifdef CONFIG_ZONE_DMA32 303 "DMA32", 304 #endif 305 "Normal", 306 #ifdef CONFIG_HIGHMEM 307 "HighMem", 308 #endif 309 "Movable", 310 #ifdef CONFIG_ZONE_DEVICE 311 "Device", 312 #endif 313 }; 314 315 const char * const migratetype_names[MIGRATE_TYPES] = { 316 "Unmovable", 317 "Movable", 318 "Reclaimable", 319 "HighAtomic", 320 #ifdef CONFIG_CMA 321 "CMA", 322 #endif 323 #ifdef CONFIG_MEMORY_ISOLATION 324 "Isolate", 325 #endif 326 }; 327 328 compound_page_dtor * const compound_page_dtors[NR_COMPOUND_DTORS] = { 329 [NULL_COMPOUND_DTOR] = NULL, 330 [COMPOUND_PAGE_DTOR] = free_compound_page, 331 #ifdef CONFIG_HUGETLB_PAGE 332 [HUGETLB_PAGE_DTOR] = free_huge_page, 333 #endif 334 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 335 [TRANSHUGE_PAGE_DTOR] = free_transhuge_page, 336 #endif 337 }; 338 339 int min_free_kbytes = 1024; 340 int user_min_free_kbytes = -1; 341 int watermark_boost_factor __read_mostly = 15000; 342 int watermark_scale_factor = 10; 343 344 static unsigned long nr_kernel_pages __initdata; 345 static unsigned long nr_all_pages __initdata; 346 static unsigned long dma_reserve __initdata; 347 348 static unsigned long arch_zone_lowest_possible_pfn[MAX_NR_ZONES] __initdata; 349 static unsigned long arch_zone_highest_possible_pfn[MAX_NR_ZONES] __initdata; 350 static unsigned long required_kernelcore __initdata; 351 static unsigned long required_kernelcore_percent __initdata; 352 static unsigned long required_movablecore __initdata; 353 static unsigned long required_movablecore_percent __initdata; 354 static unsigned long zone_movable_pfn[MAX_NUMNODES] __initdata; 355 static bool mirrored_kernelcore __meminitdata; 356 357 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */ 358 int movable_zone; 359 EXPORT_SYMBOL(movable_zone); 360 361 #if MAX_NUMNODES > 1 362 unsigned int nr_node_ids __read_mostly = MAX_NUMNODES; 363 unsigned int nr_online_nodes __read_mostly = 1; 364 EXPORT_SYMBOL(nr_node_ids); 365 EXPORT_SYMBOL(nr_online_nodes); 366 #endif 367 368 int page_group_by_mobility_disabled __read_mostly; 369 370 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 371 /* 372 * During boot we initialize deferred pages on-demand, as needed, but once 373 * page_alloc_init_late() has finished, the deferred pages are all initialized, 374 * and we can permanently disable that path. 375 */ 376 static DEFINE_STATIC_KEY_TRUE(deferred_pages); 377 378 /* 379 * Calling kasan_poison_pages() only after deferred memory initialization 380 * has completed. Poisoning pages during deferred memory init will greatly 381 * lengthen the process and cause problem in large memory systems as the 382 * deferred pages initialization is done with interrupt disabled. 383 * 384 * Assuming that there will be no reference to those newly initialized 385 * pages before they are ever allocated, this should have no effect on 386 * KASAN memory tracking as the poison will be properly inserted at page 387 * allocation time. The only corner case is when pages are allocated by 388 * on-demand allocation and then freed again before the deferred pages 389 * initialization is done, but this is not likely to happen. 390 */ 391 static inline bool should_skip_kasan_poison(struct page *page, fpi_t fpi_flags) 392 { 393 return static_branch_unlikely(&deferred_pages) || 394 (!IS_ENABLED(CONFIG_KASAN_GENERIC) && 395 (fpi_flags & FPI_SKIP_KASAN_POISON)) || 396 PageSkipKASanPoison(page); 397 } 398 399 /* Returns true if the struct page for the pfn is uninitialised */ 400 static inline bool __meminit early_page_uninitialised(unsigned long pfn) 401 { 402 int nid = early_pfn_to_nid(pfn); 403 404 if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn) 405 return true; 406 407 return false; 408 } 409 410 /* 411 * Returns true when the remaining initialisation should be deferred until 412 * later in the boot cycle when it can be parallelised. 413 */ 414 static bool __meminit 415 defer_init(int nid, unsigned long pfn, unsigned long end_pfn) 416 { 417 static unsigned long prev_end_pfn, nr_initialised; 418 419 /* 420 * prev_end_pfn static that contains the end of previous zone 421 * No need to protect because called very early in boot before smp_init. 422 */ 423 if (prev_end_pfn != end_pfn) { 424 prev_end_pfn = end_pfn; 425 nr_initialised = 0; 426 } 427 428 /* Always populate low zones for address-constrained allocations */ 429 if (end_pfn < pgdat_end_pfn(NODE_DATA(nid))) 430 return false; 431 432 if (NODE_DATA(nid)->first_deferred_pfn != ULONG_MAX) 433 return true; 434 /* 435 * We start only with one section of pages, more pages are added as 436 * needed until the rest of deferred pages are initialized. 437 */ 438 nr_initialised++; 439 if ((nr_initialised > PAGES_PER_SECTION) && 440 (pfn & (PAGES_PER_SECTION - 1)) == 0) { 441 NODE_DATA(nid)->first_deferred_pfn = pfn; 442 return true; 443 } 444 return false; 445 } 446 #else 447 static inline bool should_skip_kasan_poison(struct page *page, fpi_t fpi_flags) 448 { 449 return (!IS_ENABLED(CONFIG_KASAN_GENERIC) && 450 (fpi_flags & FPI_SKIP_KASAN_POISON)) || 451 PageSkipKASanPoison(page); 452 } 453 454 static inline bool early_page_uninitialised(unsigned long pfn) 455 { 456 return false; 457 } 458 459 static inline bool defer_init(int nid, unsigned long pfn, unsigned long end_pfn) 460 { 461 return false; 462 } 463 #endif 464 465 /* Return a pointer to the bitmap storing bits affecting a block of pages */ 466 static inline unsigned long *get_pageblock_bitmap(const struct page *page, 467 unsigned long pfn) 468 { 469 #ifdef CONFIG_SPARSEMEM 470 return section_to_usemap(__pfn_to_section(pfn)); 471 #else 472 return page_zone(page)->pageblock_flags; 473 #endif /* CONFIG_SPARSEMEM */ 474 } 475 476 static inline int pfn_to_bitidx(const struct page *page, unsigned long pfn) 477 { 478 #ifdef CONFIG_SPARSEMEM 479 pfn &= (PAGES_PER_SECTION-1); 480 #else 481 pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages); 482 #endif /* CONFIG_SPARSEMEM */ 483 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS; 484 } 485 486 static __always_inline 487 unsigned long __get_pfnblock_flags_mask(const struct page *page, 488 unsigned long pfn, 489 unsigned long mask) 490 { 491 unsigned long *bitmap; 492 unsigned long bitidx, word_bitidx; 493 unsigned long word; 494 495 bitmap = get_pageblock_bitmap(page, pfn); 496 bitidx = pfn_to_bitidx(page, pfn); 497 word_bitidx = bitidx / BITS_PER_LONG; 498 bitidx &= (BITS_PER_LONG-1); 499 500 word = bitmap[word_bitidx]; 501 return (word >> bitidx) & mask; 502 } 503 504 /** 505 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages 506 * @page: The page within the block of interest 507 * @pfn: The target page frame number 508 * @mask: mask of bits that the caller is interested in 509 * 510 * Return: pageblock_bits flags 511 */ 512 unsigned long get_pfnblock_flags_mask(const struct page *page, 513 unsigned long pfn, unsigned long mask) 514 { 515 return __get_pfnblock_flags_mask(page, pfn, mask); 516 } 517 518 static __always_inline int get_pfnblock_migratetype(const struct page *page, 519 unsigned long pfn) 520 { 521 return __get_pfnblock_flags_mask(page, pfn, MIGRATETYPE_MASK); 522 } 523 524 /** 525 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages 526 * @page: The page within the block of interest 527 * @flags: The flags to set 528 * @pfn: The target page frame number 529 * @mask: mask of bits that the caller is interested in 530 */ 531 void set_pfnblock_flags_mask(struct page *page, unsigned long flags, 532 unsigned long pfn, 533 unsigned long mask) 534 { 535 unsigned long *bitmap; 536 unsigned long bitidx, word_bitidx; 537 unsigned long old_word, word; 538 539 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4); 540 BUILD_BUG_ON(MIGRATE_TYPES > (1 << PB_migratetype_bits)); 541 542 bitmap = get_pageblock_bitmap(page, pfn); 543 bitidx = pfn_to_bitidx(page, pfn); 544 word_bitidx = bitidx / BITS_PER_LONG; 545 bitidx &= (BITS_PER_LONG-1); 546 547 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page); 548 549 mask <<= bitidx; 550 flags <<= bitidx; 551 552 word = READ_ONCE(bitmap[word_bitidx]); 553 for (;;) { 554 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags); 555 if (word == old_word) 556 break; 557 word = old_word; 558 } 559 } 560 561 void set_pageblock_migratetype(struct page *page, int migratetype) 562 { 563 if (unlikely(page_group_by_mobility_disabled && 564 migratetype < MIGRATE_PCPTYPES)) 565 migratetype = MIGRATE_UNMOVABLE; 566 567 set_pfnblock_flags_mask(page, (unsigned long)migratetype, 568 page_to_pfn(page), MIGRATETYPE_MASK); 569 } 570 571 #ifdef CONFIG_DEBUG_VM 572 static int page_outside_zone_boundaries(struct zone *zone, struct page *page) 573 { 574 int ret = 0; 575 unsigned seq; 576 unsigned long pfn = page_to_pfn(page); 577 unsigned long sp, start_pfn; 578 579 do { 580 seq = zone_span_seqbegin(zone); 581 start_pfn = zone->zone_start_pfn; 582 sp = zone->spanned_pages; 583 if (!zone_spans_pfn(zone, pfn)) 584 ret = 1; 585 } while (zone_span_seqretry(zone, seq)); 586 587 if (ret) 588 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n", 589 pfn, zone_to_nid(zone), zone->name, 590 start_pfn, start_pfn + sp); 591 592 return ret; 593 } 594 595 static int page_is_consistent(struct zone *zone, struct page *page) 596 { 597 if (!pfn_valid_within(page_to_pfn(page))) 598 return 0; 599 if (zone != page_zone(page)) 600 return 0; 601 602 return 1; 603 } 604 /* 605 * Temporary debugging check for pages not lying within a given zone. 606 */ 607 static int __maybe_unused bad_range(struct zone *zone, struct page *page) 608 { 609 if (page_outside_zone_boundaries(zone, page)) 610 return 1; 611 if (!page_is_consistent(zone, page)) 612 return 1; 613 614 return 0; 615 } 616 #else 617 static inline int __maybe_unused bad_range(struct zone *zone, struct page *page) 618 { 619 return 0; 620 } 621 #endif 622 623 static void bad_page(struct page *page, const char *reason) 624 { 625 static unsigned long resume; 626 static unsigned long nr_shown; 627 static unsigned long nr_unshown; 628 629 /* 630 * Allow a burst of 60 reports, then keep quiet for that minute; 631 * or allow a steady drip of one report per second. 632 */ 633 if (nr_shown == 60) { 634 if (time_before(jiffies, resume)) { 635 nr_unshown++; 636 goto out; 637 } 638 if (nr_unshown) { 639 pr_alert( 640 "BUG: Bad page state: %lu messages suppressed\n", 641 nr_unshown); 642 nr_unshown = 0; 643 } 644 nr_shown = 0; 645 } 646 if (nr_shown++ == 0) 647 resume = jiffies + 60 * HZ; 648 649 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n", 650 current->comm, page_to_pfn(page)); 651 dump_page(page, reason); 652 653 print_modules(); 654 dump_stack(); 655 out: 656 /* Leave bad fields for debug, except PageBuddy could make trouble */ 657 page_mapcount_reset(page); /* remove PageBuddy */ 658 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 659 } 660 661 static inline unsigned int order_to_pindex(int migratetype, int order) 662 { 663 int base = order; 664 665 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 666 if (order > PAGE_ALLOC_COSTLY_ORDER) { 667 VM_BUG_ON(order != pageblock_order); 668 base = PAGE_ALLOC_COSTLY_ORDER + 1; 669 } 670 #else 671 VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER); 672 #endif 673 674 return (MIGRATE_PCPTYPES * base) + migratetype; 675 } 676 677 static inline int pindex_to_order(unsigned int pindex) 678 { 679 int order = pindex / MIGRATE_PCPTYPES; 680 681 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 682 if (order > PAGE_ALLOC_COSTLY_ORDER) { 683 order = pageblock_order; 684 VM_BUG_ON(order != pageblock_order); 685 } 686 #else 687 VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER); 688 #endif 689 690 return order; 691 } 692 693 static inline bool pcp_allowed_order(unsigned int order) 694 { 695 if (order <= PAGE_ALLOC_COSTLY_ORDER) 696 return true; 697 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 698 if (order == pageblock_order) 699 return true; 700 #endif 701 return false; 702 } 703 704 static inline void free_the_page(struct page *page, unsigned int order) 705 { 706 if (pcp_allowed_order(order)) /* Via pcp? */ 707 free_unref_page(page, order); 708 else 709 __free_pages_ok(page, order, FPI_NONE); 710 } 711 712 /* 713 * Higher-order pages are called "compound pages". They are structured thusly: 714 * 715 * The first PAGE_SIZE page is called the "head page" and have PG_head set. 716 * 717 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded 718 * in bit 0 of page->compound_head. The rest of bits is pointer to head page. 719 * 720 * The first tail page's ->compound_dtor holds the offset in array of compound 721 * page destructors. See compound_page_dtors. 722 * 723 * The first tail page's ->compound_order holds the order of allocation. 724 * This usage means that zero-order pages may not be compound. 725 */ 726 727 void free_compound_page(struct page *page) 728 { 729 mem_cgroup_uncharge(page); 730 free_the_page(page, compound_order(page)); 731 } 732 733 void prep_compound_page(struct page *page, unsigned int order) 734 { 735 int i; 736 int nr_pages = 1 << order; 737 738 __SetPageHead(page); 739 for (i = 1; i < nr_pages; i++) { 740 struct page *p = page + i; 741 p->mapping = TAIL_MAPPING; 742 set_compound_head(p, page); 743 } 744 745 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR); 746 set_compound_order(page, order); 747 atomic_set(compound_mapcount_ptr(page), -1); 748 if (hpage_pincount_available(page)) 749 atomic_set(compound_pincount_ptr(page), 0); 750 } 751 752 #ifdef CONFIG_DEBUG_PAGEALLOC 753 unsigned int _debug_guardpage_minorder; 754 755 bool _debug_pagealloc_enabled_early __read_mostly 756 = IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT); 757 EXPORT_SYMBOL(_debug_pagealloc_enabled_early); 758 DEFINE_STATIC_KEY_FALSE(_debug_pagealloc_enabled); 759 EXPORT_SYMBOL(_debug_pagealloc_enabled); 760 761 DEFINE_STATIC_KEY_FALSE(_debug_guardpage_enabled); 762 763 static int __init early_debug_pagealloc(char *buf) 764 { 765 return kstrtobool(buf, &_debug_pagealloc_enabled_early); 766 } 767 early_param("debug_pagealloc", early_debug_pagealloc); 768 769 static int __init debug_guardpage_minorder_setup(char *buf) 770 { 771 unsigned long res; 772 773 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) { 774 pr_err("Bad debug_guardpage_minorder value\n"); 775 return 0; 776 } 777 _debug_guardpage_minorder = res; 778 pr_info("Setting debug_guardpage_minorder to %lu\n", res); 779 return 0; 780 } 781 early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup); 782 783 static inline bool set_page_guard(struct zone *zone, struct page *page, 784 unsigned int order, int migratetype) 785 { 786 if (!debug_guardpage_enabled()) 787 return false; 788 789 if (order >= debug_guardpage_minorder()) 790 return false; 791 792 __SetPageGuard(page); 793 INIT_LIST_HEAD(&page->lru); 794 set_page_private(page, order); 795 /* Guard pages are not available for any usage */ 796 __mod_zone_freepage_state(zone, -(1 << order), migratetype); 797 798 return true; 799 } 800 801 static inline void clear_page_guard(struct zone *zone, struct page *page, 802 unsigned int order, int migratetype) 803 { 804 if (!debug_guardpage_enabled()) 805 return; 806 807 __ClearPageGuard(page); 808 809 set_page_private(page, 0); 810 if (!is_migrate_isolate(migratetype)) 811 __mod_zone_freepage_state(zone, (1 << order), migratetype); 812 } 813 #else 814 static inline bool set_page_guard(struct zone *zone, struct page *page, 815 unsigned int order, int migratetype) { return false; } 816 static inline void clear_page_guard(struct zone *zone, struct page *page, 817 unsigned int order, int migratetype) {} 818 #endif 819 820 /* 821 * Enable static keys related to various memory debugging and hardening options. 822 * Some override others, and depend on early params that are evaluated in the 823 * order of appearance. So we need to first gather the full picture of what was 824 * enabled, and then make decisions. 825 */ 826 void init_mem_debugging_and_hardening(void) 827 { 828 bool page_poisoning_requested = false; 829 830 #ifdef CONFIG_PAGE_POISONING 831 /* 832 * Page poisoning is debug page alloc for some arches. If 833 * either of those options are enabled, enable poisoning. 834 */ 835 if (page_poisoning_enabled() || 836 (!IS_ENABLED(CONFIG_ARCH_SUPPORTS_DEBUG_PAGEALLOC) && 837 debug_pagealloc_enabled())) { 838 static_branch_enable(&_page_poisoning_enabled); 839 page_poisoning_requested = true; 840 } 841 #endif 842 843 if (_init_on_alloc_enabled_early) { 844 if (page_poisoning_requested) 845 pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, " 846 "will take precedence over init_on_alloc\n"); 847 else 848 static_branch_enable(&init_on_alloc); 849 } 850 if (_init_on_free_enabled_early) { 851 if (page_poisoning_requested) 852 pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, " 853 "will take precedence over init_on_free\n"); 854 else 855 static_branch_enable(&init_on_free); 856 } 857 858 #ifdef CONFIG_DEBUG_PAGEALLOC 859 if (!debug_pagealloc_enabled()) 860 return; 861 862 static_branch_enable(&_debug_pagealloc_enabled); 863 864 if (!debug_guardpage_minorder()) 865 return; 866 867 static_branch_enable(&_debug_guardpage_enabled); 868 #endif 869 } 870 871 static inline void set_buddy_order(struct page *page, unsigned int order) 872 { 873 set_page_private(page, order); 874 __SetPageBuddy(page); 875 } 876 877 /* 878 * This function checks whether a page is free && is the buddy 879 * we can coalesce a page and its buddy if 880 * (a) the buddy is not in a hole (check before calling!) && 881 * (b) the buddy is in the buddy system && 882 * (c) a page and its buddy have the same order && 883 * (d) a page and its buddy are in the same zone. 884 * 885 * For recording whether a page is in the buddy system, we set PageBuddy. 886 * Setting, clearing, and testing PageBuddy is serialized by zone->lock. 887 * 888 * For recording page's order, we use page_private(page). 889 */ 890 static inline bool page_is_buddy(struct page *page, struct page *buddy, 891 unsigned int order) 892 { 893 if (!page_is_guard(buddy) && !PageBuddy(buddy)) 894 return false; 895 896 if (buddy_order(buddy) != order) 897 return false; 898 899 /* 900 * zone check is done late to avoid uselessly calculating 901 * zone/node ids for pages that could never merge. 902 */ 903 if (page_zone_id(page) != page_zone_id(buddy)) 904 return false; 905 906 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy); 907 908 return true; 909 } 910 911 #ifdef CONFIG_COMPACTION 912 static inline struct capture_control *task_capc(struct zone *zone) 913 { 914 struct capture_control *capc = current->capture_control; 915 916 return unlikely(capc) && 917 !(current->flags & PF_KTHREAD) && 918 !capc->page && 919 capc->cc->zone == zone ? capc : NULL; 920 } 921 922 static inline bool 923 compaction_capture(struct capture_control *capc, struct page *page, 924 int order, int migratetype) 925 { 926 if (!capc || order != capc->cc->order) 927 return false; 928 929 /* Do not accidentally pollute CMA or isolated regions*/ 930 if (is_migrate_cma(migratetype) || 931 is_migrate_isolate(migratetype)) 932 return false; 933 934 /* 935 * Do not let lower order allocations pollute a movable pageblock. 936 * This might let an unmovable request use a reclaimable pageblock 937 * and vice-versa but no more than normal fallback logic which can 938 * have trouble finding a high-order free page. 939 */ 940 if (order < pageblock_order && migratetype == MIGRATE_MOVABLE) 941 return false; 942 943 capc->page = page; 944 return true; 945 } 946 947 #else 948 static inline struct capture_control *task_capc(struct zone *zone) 949 { 950 return NULL; 951 } 952 953 static inline bool 954 compaction_capture(struct capture_control *capc, struct page *page, 955 int order, int migratetype) 956 { 957 return false; 958 } 959 #endif /* CONFIG_COMPACTION */ 960 961 /* Used for pages not on another list */ 962 static inline void add_to_free_list(struct page *page, struct zone *zone, 963 unsigned int order, int migratetype) 964 { 965 struct free_area *area = &zone->free_area[order]; 966 967 list_add(&page->lru, &area->free_list[migratetype]); 968 area->nr_free++; 969 } 970 971 /* Used for pages not on another list */ 972 static inline void add_to_free_list_tail(struct page *page, struct zone *zone, 973 unsigned int order, int migratetype) 974 { 975 struct free_area *area = &zone->free_area[order]; 976 977 list_add_tail(&page->lru, &area->free_list[migratetype]); 978 area->nr_free++; 979 } 980 981 /* 982 * Used for pages which are on another list. Move the pages to the tail 983 * of the list - so the moved pages won't immediately be considered for 984 * allocation again (e.g., optimization for memory onlining). 985 */ 986 static inline void move_to_free_list(struct page *page, struct zone *zone, 987 unsigned int order, int migratetype) 988 { 989 struct free_area *area = &zone->free_area[order]; 990 991 list_move_tail(&page->lru, &area->free_list[migratetype]); 992 } 993 994 static inline void del_page_from_free_list(struct page *page, struct zone *zone, 995 unsigned int order) 996 { 997 /* clear reported state and update reported page count */ 998 if (page_reported(page)) 999 __ClearPageReported(page); 1000 1001 list_del(&page->lru); 1002 __ClearPageBuddy(page); 1003 set_page_private(page, 0); 1004 zone->free_area[order].nr_free--; 1005 } 1006 1007 /* 1008 * If this is not the largest possible page, check if the buddy 1009 * of the next-highest order is free. If it is, it's possible 1010 * that pages are being freed that will coalesce soon. In case, 1011 * that is happening, add the free page to the tail of the list 1012 * so it's less likely to be used soon and more likely to be merged 1013 * as a higher order page 1014 */ 1015 static inline bool 1016 buddy_merge_likely(unsigned long pfn, unsigned long buddy_pfn, 1017 struct page *page, unsigned int order) 1018 { 1019 struct page *higher_page, *higher_buddy; 1020 unsigned long combined_pfn; 1021 1022 if (order >= MAX_ORDER - 2) 1023 return false; 1024 1025 if (!pfn_valid_within(buddy_pfn)) 1026 return false; 1027 1028 combined_pfn = buddy_pfn & pfn; 1029 higher_page = page + (combined_pfn - pfn); 1030 buddy_pfn = __find_buddy_pfn(combined_pfn, order + 1); 1031 higher_buddy = higher_page + (buddy_pfn - combined_pfn); 1032 1033 return pfn_valid_within(buddy_pfn) && 1034 page_is_buddy(higher_page, higher_buddy, order + 1); 1035 } 1036 1037 /* 1038 * Freeing function for a buddy system allocator. 1039 * 1040 * The concept of a buddy system is to maintain direct-mapped table 1041 * (containing bit values) for memory blocks of various "orders". 1042 * The bottom level table contains the map for the smallest allocatable 1043 * units of memory (here, pages), and each level above it describes 1044 * pairs of units from the levels below, hence, "buddies". 1045 * At a high level, all that happens here is marking the table entry 1046 * at the bottom level available, and propagating the changes upward 1047 * as necessary, plus some accounting needed to play nicely with other 1048 * parts of the VM system. 1049 * At each level, we keep a list of pages, which are heads of continuous 1050 * free pages of length of (1 << order) and marked with PageBuddy. 1051 * Page's order is recorded in page_private(page) field. 1052 * So when we are allocating or freeing one, we can derive the state of the 1053 * other. That is, if we allocate a small block, and both were 1054 * free, the remainder of the region must be split into blocks. 1055 * If a block is freed, and its buddy is also free, then this 1056 * triggers coalescing into a block of larger size. 1057 * 1058 * -- nyc 1059 */ 1060 1061 static inline void __free_one_page(struct page *page, 1062 unsigned long pfn, 1063 struct zone *zone, unsigned int order, 1064 int migratetype, fpi_t fpi_flags) 1065 { 1066 struct capture_control *capc = task_capc(zone); 1067 unsigned long buddy_pfn; 1068 unsigned long combined_pfn; 1069 unsigned int max_order; 1070 struct page *buddy; 1071 bool to_tail; 1072 1073 max_order = min_t(unsigned int, MAX_ORDER - 1, pageblock_order); 1074 1075 VM_BUG_ON(!zone_is_initialized(zone)); 1076 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page); 1077 1078 VM_BUG_ON(migratetype == -1); 1079 if (likely(!is_migrate_isolate(migratetype))) 1080 __mod_zone_freepage_state(zone, 1 << order, migratetype); 1081 1082 VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page); 1083 VM_BUG_ON_PAGE(bad_range(zone, page), page); 1084 1085 continue_merging: 1086 while (order < max_order) { 1087 if (compaction_capture(capc, page, order, migratetype)) { 1088 __mod_zone_freepage_state(zone, -(1 << order), 1089 migratetype); 1090 return; 1091 } 1092 buddy_pfn = __find_buddy_pfn(pfn, order); 1093 buddy = page + (buddy_pfn - pfn); 1094 1095 if (!pfn_valid_within(buddy_pfn)) 1096 goto done_merging; 1097 if (!page_is_buddy(page, buddy, order)) 1098 goto done_merging; 1099 /* 1100 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page, 1101 * merge with it and move up one order. 1102 */ 1103 if (page_is_guard(buddy)) 1104 clear_page_guard(zone, buddy, order, migratetype); 1105 else 1106 del_page_from_free_list(buddy, zone, order); 1107 combined_pfn = buddy_pfn & pfn; 1108 page = page + (combined_pfn - pfn); 1109 pfn = combined_pfn; 1110 order++; 1111 } 1112 if (order < MAX_ORDER - 1) { 1113 /* If we are here, it means order is >= pageblock_order. 1114 * We want to prevent merge between freepages on isolate 1115 * pageblock and normal pageblock. Without this, pageblock 1116 * isolation could cause incorrect freepage or CMA accounting. 1117 * 1118 * We don't want to hit this code for the more frequent 1119 * low-order merging. 1120 */ 1121 if (unlikely(has_isolate_pageblock(zone))) { 1122 int buddy_mt; 1123 1124 buddy_pfn = __find_buddy_pfn(pfn, order); 1125 buddy = page + (buddy_pfn - pfn); 1126 buddy_mt = get_pageblock_migratetype(buddy); 1127 1128 if (migratetype != buddy_mt 1129 && (is_migrate_isolate(migratetype) || 1130 is_migrate_isolate(buddy_mt))) 1131 goto done_merging; 1132 } 1133 max_order = order + 1; 1134 goto continue_merging; 1135 } 1136 1137 done_merging: 1138 set_buddy_order(page, order); 1139 1140 if (fpi_flags & FPI_TO_TAIL) 1141 to_tail = true; 1142 else if (is_shuffle_order(order)) 1143 to_tail = shuffle_pick_tail(); 1144 else 1145 to_tail = buddy_merge_likely(pfn, buddy_pfn, page, order); 1146 1147 if (to_tail) 1148 add_to_free_list_tail(page, zone, order, migratetype); 1149 else 1150 add_to_free_list(page, zone, order, migratetype); 1151 1152 /* Notify page reporting subsystem of freed page */ 1153 if (!(fpi_flags & FPI_SKIP_REPORT_NOTIFY)) 1154 page_reporting_notify_free(order); 1155 } 1156 1157 /* 1158 * A bad page could be due to a number of fields. Instead of multiple branches, 1159 * try and check multiple fields with one check. The caller must do a detailed 1160 * check if necessary. 1161 */ 1162 static inline bool page_expected_state(struct page *page, 1163 unsigned long check_flags) 1164 { 1165 if (unlikely(atomic_read(&page->_mapcount) != -1)) 1166 return false; 1167 1168 if (unlikely((unsigned long)page->mapping | 1169 page_ref_count(page) | 1170 #ifdef CONFIG_MEMCG 1171 page->memcg_data | 1172 #endif 1173 (page->flags & check_flags))) 1174 return false; 1175 1176 return true; 1177 } 1178 1179 static const char *page_bad_reason(struct page *page, unsigned long flags) 1180 { 1181 const char *bad_reason = NULL; 1182 1183 if (unlikely(atomic_read(&page->_mapcount) != -1)) 1184 bad_reason = "nonzero mapcount"; 1185 if (unlikely(page->mapping != NULL)) 1186 bad_reason = "non-NULL mapping"; 1187 if (unlikely(page_ref_count(page) != 0)) 1188 bad_reason = "nonzero _refcount"; 1189 if (unlikely(page->flags & flags)) { 1190 if (flags == PAGE_FLAGS_CHECK_AT_PREP) 1191 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag(s) set"; 1192 else 1193 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set"; 1194 } 1195 #ifdef CONFIG_MEMCG 1196 if (unlikely(page->memcg_data)) 1197 bad_reason = "page still charged to cgroup"; 1198 #endif 1199 return bad_reason; 1200 } 1201 1202 static void check_free_page_bad(struct page *page) 1203 { 1204 bad_page(page, 1205 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_FREE)); 1206 } 1207 1208 static inline int check_free_page(struct page *page) 1209 { 1210 if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE))) 1211 return 0; 1212 1213 /* Something has gone sideways, find it */ 1214 check_free_page_bad(page); 1215 return 1; 1216 } 1217 1218 static int free_tail_pages_check(struct page *head_page, struct page *page) 1219 { 1220 int ret = 1; 1221 1222 /* 1223 * We rely page->lru.next never has bit 0 set, unless the page 1224 * is PageTail(). Let's make sure that's true even for poisoned ->lru. 1225 */ 1226 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1); 1227 1228 if (!IS_ENABLED(CONFIG_DEBUG_VM)) { 1229 ret = 0; 1230 goto out; 1231 } 1232 switch (page - head_page) { 1233 case 1: 1234 /* the first tail page: ->mapping may be compound_mapcount() */ 1235 if (unlikely(compound_mapcount(page))) { 1236 bad_page(page, "nonzero compound_mapcount"); 1237 goto out; 1238 } 1239 break; 1240 case 2: 1241 /* 1242 * the second tail page: ->mapping is 1243 * deferred_list.next -- ignore value. 1244 */ 1245 break; 1246 default: 1247 if (page->mapping != TAIL_MAPPING) { 1248 bad_page(page, "corrupted mapping in tail page"); 1249 goto out; 1250 } 1251 break; 1252 } 1253 if (unlikely(!PageTail(page))) { 1254 bad_page(page, "PageTail not set"); 1255 goto out; 1256 } 1257 if (unlikely(compound_head(page) != head_page)) { 1258 bad_page(page, "compound_head not consistent"); 1259 goto out; 1260 } 1261 ret = 0; 1262 out: 1263 page->mapping = NULL; 1264 clear_compound_head(page); 1265 return ret; 1266 } 1267 1268 static void kernel_init_free_pages(struct page *page, int numpages, bool zero_tags) 1269 { 1270 int i; 1271 1272 if (zero_tags) { 1273 for (i = 0; i < numpages; i++) 1274 tag_clear_highpage(page + i); 1275 return; 1276 } 1277 1278 /* s390's use of memset() could override KASAN redzones. */ 1279 kasan_disable_current(); 1280 for (i = 0; i < numpages; i++) { 1281 u8 tag = page_kasan_tag(page + i); 1282 page_kasan_tag_reset(page + i); 1283 clear_highpage(page + i); 1284 page_kasan_tag_set(page + i, tag); 1285 } 1286 kasan_enable_current(); 1287 } 1288 1289 static __always_inline bool free_pages_prepare(struct page *page, 1290 unsigned int order, bool check_free, fpi_t fpi_flags) 1291 { 1292 int bad = 0; 1293 bool skip_kasan_poison = should_skip_kasan_poison(page, fpi_flags); 1294 1295 VM_BUG_ON_PAGE(PageTail(page), page); 1296 1297 trace_mm_page_free(page, order); 1298 1299 if (unlikely(PageHWPoison(page)) && !order) { 1300 /* 1301 * Do not let hwpoison pages hit pcplists/buddy 1302 * Untie memcg state and reset page's owner 1303 */ 1304 if (memcg_kmem_enabled() && PageMemcgKmem(page)) 1305 __memcg_kmem_uncharge_page(page, order); 1306 reset_page_owner(page, order); 1307 return false; 1308 } 1309 1310 /* 1311 * Check tail pages before head page information is cleared to 1312 * avoid checking PageCompound for order-0 pages. 1313 */ 1314 if (unlikely(order)) { 1315 bool compound = PageCompound(page); 1316 int i; 1317 1318 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page); 1319 1320 if (compound) 1321 ClearPageDoubleMap(page); 1322 for (i = 1; i < (1 << order); i++) { 1323 if (compound) 1324 bad += free_tail_pages_check(page, page + i); 1325 if (unlikely(check_free_page(page + i))) { 1326 bad++; 1327 continue; 1328 } 1329 (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP; 1330 } 1331 } 1332 if (PageMappingFlags(page)) 1333 page->mapping = NULL; 1334 if (memcg_kmem_enabled() && PageMemcgKmem(page)) 1335 __memcg_kmem_uncharge_page(page, order); 1336 if (check_free) 1337 bad += check_free_page(page); 1338 if (bad) 1339 return false; 1340 1341 page_cpupid_reset_last(page); 1342 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP; 1343 reset_page_owner(page, order); 1344 1345 if (!PageHighMem(page)) { 1346 debug_check_no_locks_freed(page_address(page), 1347 PAGE_SIZE << order); 1348 debug_check_no_obj_freed(page_address(page), 1349 PAGE_SIZE << order); 1350 } 1351 1352 kernel_poison_pages(page, 1 << order); 1353 1354 /* 1355 * As memory initialization might be integrated into KASAN, 1356 * kasan_free_pages and kernel_init_free_pages must be 1357 * kept together to avoid discrepancies in behavior. 1358 * 1359 * With hardware tag-based KASAN, memory tags must be set before the 1360 * page becomes unavailable via debug_pagealloc or arch_free_page. 1361 */ 1362 if (kasan_has_integrated_init()) { 1363 if (!skip_kasan_poison) 1364 kasan_free_pages(page, order); 1365 } else { 1366 bool init = want_init_on_free(); 1367 1368 if (init) 1369 kernel_init_free_pages(page, 1 << order, false); 1370 if (!skip_kasan_poison) 1371 kasan_poison_pages(page, order, init); 1372 } 1373 1374 /* 1375 * arch_free_page() can make the page's contents inaccessible. s390 1376 * does this. So nothing which can access the page's contents should 1377 * happen after this. 1378 */ 1379 arch_free_page(page, order); 1380 1381 debug_pagealloc_unmap_pages(page, 1 << order); 1382 1383 return true; 1384 } 1385 1386 #ifdef CONFIG_DEBUG_VM 1387 /* 1388 * With DEBUG_VM enabled, order-0 pages are checked immediately when being freed 1389 * to pcp lists. With debug_pagealloc also enabled, they are also rechecked when 1390 * moved from pcp lists to free lists. 1391 */ 1392 static bool free_pcp_prepare(struct page *page, unsigned int order) 1393 { 1394 return free_pages_prepare(page, order, true, FPI_NONE); 1395 } 1396 1397 static bool bulkfree_pcp_prepare(struct page *page) 1398 { 1399 if (debug_pagealloc_enabled_static()) 1400 return check_free_page(page); 1401 else 1402 return false; 1403 } 1404 #else 1405 /* 1406 * With DEBUG_VM disabled, order-0 pages being freed are checked only when 1407 * moving from pcp lists to free list in order to reduce overhead. With 1408 * debug_pagealloc enabled, they are checked also immediately when being freed 1409 * to the pcp lists. 1410 */ 1411 static bool free_pcp_prepare(struct page *page, unsigned int order) 1412 { 1413 if (debug_pagealloc_enabled_static()) 1414 return free_pages_prepare(page, order, true, FPI_NONE); 1415 else 1416 return free_pages_prepare(page, order, false, FPI_NONE); 1417 } 1418 1419 static bool bulkfree_pcp_prepare(struct page *page) 1420 { 1421 return check_free_page(page); 1422 } 1423 #endif /* CONFIG_DEBUG_VM */ 1424 1425 static inline void prefetch_buddy(struct page *page) 1426 { 1427 unsigned long pfn = page_to_pfn(page); 1428 unsigned long buddy_pfn = __find_buddy_pfn(pfn, 0); 1429 struct page *buddy = page + (buddy_pfn - pfn); 1430 1431 prefetch(buddy); 1432 } 1433 1434 /* 1435 * Frees a number of pages from the PCP lists 1436 * Assumes all pages on list are in same zone, and of same order. 1437 * count is the number of pages to free. 1438 * 1439 * If the zone was previously in an "all pages pinned" state then look to 1440 * see if this freeing clears that state. 1441 * 1442 * And clear the zone's pages_scanned counter, to hold off the "all pages are 1443 * pinned" detection logic. 1444 */ 1445 static void free_pcppages_bulk(struct zone *zone, int count, 1446 struct per_cpu_pages *pcp) 1447 { 1448 int pindex = 0; 1449 int batch_free = 0; 1450 int nr_freed = 0; 1451 unsigned int order; 1452 int prefetch_nr = READ_ONCE(pcp->batch); 1453 bool isolated_pageblocks; 1454 struct page *page, *tmp; 1455 LIST_HEAD(head); 1456 1457 /* 1458 * Ensure proper count is passed which otherwise would stuck in the 1459 * below while (list_empty(list)) loop. 1460 */ 1461 count = min(pcp->count, count); 1462 while (count > 0) { 1463 struct list_head *list; 1464 1465 /* 1466 * Remove pages from lists in a round-robin fashion. A 1467 * batch_free count is maintained that is incremented when an 1468 * empty list is encountered. This is so more pages are freed 1469 * off fuller lists instead of spinning excessively around empty 1470 * lists 1471 */ 1472 do { 1473 batch_free++; 1474 if (++pindex == NR_PCP_LISTS) 1475 pindex = 0; 1476 list = &pcp->lists[pindex]; 1477 } while (list_empty(list)); 1478 1479 /* This is the only non-empty list. Free them all. */ 1480 if (batch_free == NR_PCP_LISTS) 1481 batch_free = count; 1482 1483 order = pindex_to_order(pindex); 1484 BUILD_BUG_ON(MAX_ORDER >= (1<<NR_PCP_ORDER_WIDTH)); 1485 do { 1486 page = list_last_entry(list, struct page, lru); 1487 /* must delete to avoid corrupting pcp list */ 1488 list_del(&page->lru); 1489 nr_freed += 1 << order; 1490 count -= 1 << order; 1491 1492 if (bulkfree_pcp_prepare(page)) 1493 continue; 1494 1495 /* Encode order with the migratetype */ 1496 page->index <<= NR_PCP_ORDER_WIDTH; 1497 page->index |= order; 1498 1499 list_add_tail(&page->lru, &head); 1500 1501 /* 1502 * We are going to put the page back to the global 1503 * pool, prefetch its buddy to speed up later access 1504 * under zone->lock. It is believed the overhead of 1505 * an additional test and calculating buddy_pfn here 1506 * can be offset by reduced memory latency later. To 1507 * avoid excessive prefetching due to large count, only 1508 * prefetch buddy for the first pcp->batch nr of pages. 1509 */ 1510 if (prefetch_nr) { 1511 prefetch_buddy(page); 1512 prefetch_nr--; 1513 } 1514 } while (count > 0 && --batch_free && !list_empty(list)); 1515 } 1516 pcp->count -= nr_freed; 1517 1518 /* 1519 * local_lock_irq held so equivalent to spin_lock_irqsave for 1520 * both PREEMPT_RT and non-PREEMPT_RT configurations. 1521 */ 1522 spin_lock(&zone->lock); 1523 isolated_pageblocks = has_isolate_pageblock(zone); 1524 1525 /* 1526 * Use safe version since after __free_one_page(), 1527 * page->lru.next will not point to original list. 1528 */ 1529 list_for_each_entry_safe(page, tmp, &head, lru) { 1530 int mt = get_pcppage_migratetype(page); 1531 1532 /* mt has been encoded with the order (see above) */ 1533 order = mt & NR_PCP_ORDER_MASK; 1534 mt >>= NR_PCP_ORDER_WIDTH; 1535 1536 /* MIGRATE_ISOLATE page should not go to pcplists */ 1537 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page); 1538 /* Pageblock could have been isolated meanwhile */ 1539 if (unlikely(isolated_pageblocks)) 1540 mt = get_pageblock_migratetype(page); 1541 1542 __free_one_page(page, page_to_pfn(page), zone, order, mt, FPI_NONE); 1543 trace_mm_page_pcpu_drain(page, order, mt); 1544 } 1545 spin_unlock(&zone->lock); 1546 } 1547 1548 static void free_one_page(struct zone *zone, 1549 struct page *page, unsigned long pfn, 1550 unsigned int order, 1551 int migratetype, fpi_t fpi_flags) 1552 { 1553 unsigned long flags; 1554 1555 spin_lock_irqsave(&zone->lock, flags); 1556 if (unlikely(has_isolate_pageblock(zone) || 1557 is_migrate_isolate(migratetype))) { 1558 migratetype = get_pfnblock_migratetype(page, pfn); 1559 } 1560 __free_one_page(page, pfn, zone, order, migratetype, fpi_flags); 1561 spin_unlock_irqrestore(&zone->lock, flags); 1562 } 1563 1564 static void __meminit __init_single_page(struct page *page, unsigned long pfn, 1565 unsigned long zone, int nid) 1566 { 1567 mm_zero_struct_page(page); 1568 set_page_links(page, zone, nid, pfn); 1569 init_page_count(page); 1570 page_mapcount_reset(page); 1571 page_cpupid_reset_last(page); 1572 page_kasan_tag_reset(page); 1573 1574 INIT_LIST_HEAD(&page->lru); 1575 #ifdef WANT_PAGE_VIRTUAL 1576 /* The shift won't overflow because ZONE_NORMAL is below 4G. */ 1577 if (!is_highmem_idx(zone)) 1578 set_page_address(page, __va(pfn << PAGE_SHIFT)); 1579 #endif 1580 } 1581 1582 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 1583 static void __meminit init_reserved_page(unsigned long pfn) 1584 { 1585 pg_data_t *pgdat; 1586 int nid, zid; 1587 1588 if (!early_page_uninitialised(pfn)) 1589 return; 1590 1591 nid = early_pfn_to_nid(pfn); 1592 pgdat = NODE_DATA(nid); 1593 1594 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 1595 struct zone *zone = &pgdat->node_zones[zid]; 1596 1597 if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone)) 1598 break; 1599 } 1600 __init_single_page(pfn_to_page(pfn), pfn, zid, nid); 1601 } 1602 #else 1603 static inline void init_reserved_page(unsigned long pfn) 1604 { 1605 } 1606 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */ 1607 1608 /* 1609 * Initialised pages do not have PageReserved set. This function is 1610 * called for each range allocated by the bootmem allocator and 1611 * marks the pages PageReserved. The remaining valid pages are later 1612 * sent to the buddy page allocator. 1613 */ 1614 void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end) 1615 { 1616 unsigned long start_pfn = PFN_DOWN(start); 1617 unsigned long end_pfn = PFN_UP(end); 1618 1619 for (; start_pfn < end_pfn; start_pfn++) { 1620 if (pfn_valid(start_pfn)) { 1621 struct page *page = pfn_to_page(start_pfn); 1622 1623 init_reserved_page(start_pfn); 1624 1625 /* Avoid false-positive PageTail() */ 1626 INIT_LIST_HEAD(&page->lru); 1627 1628 /* 1629 * no need for atomic set_bit because the struct 1630 * page is not visible yet so nobody should 1631 * access it yet. 1632 */ 1633 __SetPageReserved(page); 1634 } 1635 } 1636 } 1637 1638 static void __free_pages_ok(struct page *page, unsigned int order, 1639 fpi_t fpi_flags) 1640 { 1641 unsigned long flags; 1642 int migratetype; 1643 unsigned long pfn = page_to_pfn(page); 1644 struct zone *zone = page_zone(page); 1645 1646 if (!free_pages_prepare(page, order, true, fpi_flags)) 1647 return; 1648 1649 migratetype = get_pfnblock_migratetype(page, pfn); 1650 1651 spin_lock_irqsave(&zone->lock, flags); 1652 if (unlikely(has_isolate_pageblock(zone) || 1653 is_migrate_isolate(migratetype))) { 1654 migratetype = get_pfnblock_migratetype(page, pfn); 1655 } 1656 __free_one_page(page, pfn, zone, order, migratetype, fpi_flags); 1657 spin_unlock_irqrestore(&zone->lock, flags); 1658 1659 __count_vm_events(PGFREE, 1 << order); 1660 } 1661 1662 void __free_pages_core(struct page *page, unsigned int order) 1663 { 1664 unsigned int nr_pages = 1 << order; 1665 struct page *p = page; 1666 unsigned int loop; 1667 1668 /* 1669 * When initializing the memmap, __init_single_page() sets the refcount 1670 * of all pages to 1 ("allocated"/"not free"). We have to set the 1671 * refcount of all involved pages to 0. 1672 */ 1673 prefetchw(p); 1674 for (loop = 0; loop < (nr_pages - 1); loop++, p++) { 1675 prefetchw(p + 1); 1676 __ClearPageReserved(p); 1677 set_page_count(p, 0); 1678 } 1679 __ClearPageReserved(p); 1680 set_page_count(p, 0); 1681 1682 atomic_long_add(nr_pages, &page_zone(page)->managed_pages); 1683 1684 /* 1685 * Bypass PCP and place fresh pages right to the tail, primarily 1686 * relevant for memory onlining. 1687 */ 1688 __free_pages_ok(page, order, FPI_TO_TAIL | FPI_SKIP_KASAN_POISON); 1689 } 1690 1691 #ifdef CONFIG_NUMA 1692 1693 /* 1694 * During memory init memblocks map pfns to nids. The search is expensive and 1695 * this caches recent lookups. The implementation of __early_pfn_to_nid 1696 * treats start/end as pfns. 1697 */ 1698 struct mminit_pfnnid_cache { 1699 unsigned long last_start; 1700 unsigned long last_end; 1701 int last_nid; 1702 }; 1703 1704 static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata; 1705 1706 /* 1707 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on. 1708 */ 1709 static int __meminit __early_pfn_to_nid(unsigned long pfn, 1710 struct mminit_pfnnid_cache *state) 1711 { 1712 unsigned long start_pfn, end_pfn; 1713 int nid; 1714 1715 if (state->last_start <= pfn && pfn < state->last_end) 1716 return state->last_nid; 1717 1718 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn); 1719 if (nid != NUMA_NO_NODE) { 1720 state->last_start = start_pfn; 1721 state->last_end = end_pfn; 1722 state->last_nid = nid; 1723 } 1724 1725 return nid; 1726 } 1727 1728 int __meminit early_pfn_to_nid(unsigned long pfn) 1729 { 1730 static DEFINE_SPINLOCK(early_pfn_lock); 1731 int nid; 1732 1733 spin_lock(&early_pfn_lock); 1734 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache); 1735 if (nid < 0) 1736 nid = first_online_node; 1737 spin_unlock(&early_pfn_lock); 1738 1739 return nid; 1740 } 1741 #endif /* CONFIG_NUMA */ 1742 1743 void __init memblock_free_pages(struct page *page, unsigned long pfn, 1744 unsigned int order) 1745 { 1746 if (early_page_uninitialised(pfn)) 1747 return; 1748 __free_pages_core(page, order); 1749 } 1750 1751 /* 1752 * Check that the whole (or subset of) a pageblock given by the interval of 1753 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it 1754 * with the migration of free compaction scanner. The scanners then need to 1755 * use only pfn_valid_within() check for arches that allow holes within 1756 * pageblocks. 1757 * 1758 * Return struct page pointer of start_pfn, or NULL if checks were not passed. 1759 * 1760 * It's possible on some configurations to have a setup like node0 node1 node0 1761 * i.e. it's possible that all pages within a zones range of pages do not 1762 * belong to a single zone. We assume that a border between node0 and node1 1763 * can occur within a single pageblock, but not a node0 node1 node0 1764 * interleaving within a single pageblock. It is therefore sufficient to check 1765 * the first and last page of a pageblock and avoid checking each individual 1766 * page in a pageblock. 1767 */ 1768 struct page *__pageblock_pfn_to_page(unsigned long start_pfn, 1769 unsigned long end_pfn, struct zone *zone) 1770 { 1771 struct page *start_page; 1772 struct page *end_page; 1773 1774 /* end_pfn is one past the range we are checking */ 1775 end_pfn--; 1776 1777 if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn)) 1778 return NULL; 1779 1780 start_page = pfn_to_online_page(start_pfn); 1781 if (!start_page) 1782 return NULL; 1783 1784 if (page_zone(start_page) != zone) 1785 return NULL; 1786 1787 end_page = pfn_to_page(end_pfn); 1788 1789 /* This gives a shorter code than deriving page_zone(end_page) */ 1790 if (page_zone_id(start_page) != page_zone_id(end_page)) 1791 return NULL; 1792 1793 return start_page; 1794 } 1795 1796 void set_zone_contiguous(struct zone *zone) 1797 { 1798 unsigned long block_start_pfn = zone->zone_start_pfn; 1799 unsigned long block_end_pfn; 1800 1801 block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages); 1802 for (; block_start_pfn < zone_end_pfn(zone); 1803 block_start_pfn = block_end_pfn, 1804 block_end_pfn += pageblock_nr_pages) { 1805 1806 block_end_pfn = min(block_end_pfn, zone_end_pfn(zone)); 1807 1808 if (!__pageblock_pfn_to_page(block_start_pfn, 1809 block_end_pfn, zone)) 1810 return; 1811 cond_resched(); 1812 } 1813 1814 /* We confirm that there is no hole */ 1815 zone->contiguous = true; 1816 } 1817 1818 void clear_zone_contiguous(struct zone *zone) 1819 { 1820 zone->contiguous = false; 1821 } 1822 1823 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 1824 static void __init deferred_free_range(unsigned long pfn, 1825 unsigned long nr_pages) 1826 { 1827 struct page *page; 1828 unsigned long i; 1829 1830 if (!nr_pages) 1831 return; 1832 1833 page = pfn_to_page(pfn); 1834 1835 /* Free a large naturally-aligned chunk if possible */ 1836 if (nr_pages == pageblock_nr_pages && 1837 (pfn & (pageblock_nr_pages - 1)) == 0) { 1838 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 1839 __free_pages_core(page, pageblock_order); 1840 return; 1841 } 1842 1843 for (i = 0; i < nr_pages; i++, page++, pfn++) { 1844 if ((pfn & (pageblock_nr_pages - 1)) == 0) 1845 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 1846 __free_pages_core(page, 0); 1847 } 1848 } 1849 1850 /* Completion tracking for deferred_init_memmap() threads */ 1851 static atomic_t pgdat_init_n_undone __initdata; 1852 static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp); 1853 1854 static inline void __init pgdat_init_report_one_done(void) 1855 { 1856 if (atomic_dec_and_test(&pgdat_init_n_undone)) 1857 complete(&pgdat_init_all_done_comp); 1858 } 1859 1860 /* 1861 * Returns true if page needs to be initialized or freed to buddy allocator. 1862 * 1863 * First we check if pfn is valid on architectures where it is possible to have 1864 * holes within pageblock_nr_pages. On systems where it is not possible, this 1865 * function is optimized out. 1866 * 1867 * Then, we check if a current large page is valid by only checking the validity 1868 * of the head pfn. 1869 */ 1870 static inline bool __init deferred_pfn_valid(unsigned long pfn) 1871 { 1872 if (!pfn_valid_within(pfn)) 1873 return false; 1874 if (!(pfn & (pageblock_nr_pages - 1)) && !pfn_valid(pfn)) 1875 return false; 1876 return true; 1877 } 1878 1879 /* 1880 * Free pages to buddy allocator. Try to free aligned pages in 1881 * pageblock_nr_pages sizes. 1882 */ 1883 static void __init deferred_free_pages(unsigned long pfn, 1884 unsigned long end_pfn) 1885 { 1886 unsigned long nr_pgmask = pageblock_nr_pages - 1; 1887 unsigned long nr_free = 0; 1888 1889 for (; pfn < end_pfn; pfn++) { 1890 if (!deferred_pfn_valid(pfn)) { 1891 deferred_free_range(pfn - nr_free, nr_free); 1892 nr_free = 0; 1893 } else if (!(pfn & nr_pgmask)) { 1894 deferred_free_range(pfn - nr_free, nr_free); 1895 nr_free = 1; 1896 } else { 1897 nr_free++; 1898 } 1899 } 1900 /* Free the last block of pages to allocator */ 1901 deferred_free_range(pfn - nr_free, nr_free); 1902 } 1903 1904 /* 1905 * Initialize struct pages. We minimize pfn page lookups and scheduler checks 1906 * by performing it only once every pageblock_nr_pages. 1907 * Return number of pages initialized. 1908 */ 1909 static unsigned long __init deferred_init_pages(struct zone *zone, 1910 unsigned long pfn, 1911 unsigned long end_pfn) 1912 { 1913 unsigned long nr_pgmask = pageblock_nr_pages - 1; 1914 int nid = zone_to_nid(zone); 1915 unsigned long nr_pages = 0; 1916 int zid = zone_idx(zone); 1917 struct page *page = NULL; 1918 1919 for (; pfn < end_pfn; pfn++) { 1920 if (!deferred_pfn_valid(pfn)) { 1921 page = NULL; 1922 continue; 1923 } else if (!page || !(pfn & nr_pgmask)) { 1924 page = pfn_to_page(pfn); 1925 } else { 1926 page++; 1927 } 1928 __init_single_page(page, pfn, zid, nid); 1929 nr_pages++; 1930 } 1931 return (nr_pages); 1932 } 1933 1934 /* 1935 * This function is meant to pre-load the iterator for the zone init. 1936 * Specifically it walks through the ranges until we are caught up to the 1937 * first_init_pfn value and exits there. If we never encounter the value we 1938 * return false indicating there are no valid ranges left. 1939 */ 1940 static bool __init 1941 deferred_init_mem_pfn_range_in_zone(u64 *i, struct zone *zone, 1942 unsigned long *spfn, unsigned long *epfn, 1943 unsigned long first_init_pfn) 1944 { 1945 u64 j; 1946 1947 /* 1948 * Start out by walking through the ranges in this zone that have 1949 * already been initialized. We don't need to do anything with them 1950 * so we just need to flush them out of the system. 1951 */ 1952 for_each_free_mem_pfn_range_in_zone(j, zone, spfn, epfn) { 1953 if (*epfn <= first_init_pfn) 1954 continue; 1955 if (*spfn < first_init_pfn) 1956 *spfn = first_init_pfn; 1957 *i = j; 1958 return true; 1959 } 1960 1961 return false; 1962 } 1963 1964 /* 1965 * Initialize and free pages. We do it in two loops: first we initialize 1966 * struct page, then free to buddy allocator, because while we are 1967 * freeing pages we can access pages that are ahead (computing buddy 1968 * page in __free_one_page()). 1969 * 1970 * In order to try and keep some memory in the cache we have the loop 1971 * broken along max page order boundaries. This way we will not cause 1972 * any issues with the buddy page computation. 1973 */ 1974 static unsigned long __init 1975 deferred_init_maxorder(u64 *i, struct zone *zone, unsigned long *start_pfn, 1976 unsigned long *end_pfn) 1977 { 1978 unsigned long mo_pfn = ALIGN(*start_pfn + 1, MAX_ORDER_NR_PAGES); 1979 unsigned long spfn = *start_pfn, epfn = *end_pfn; 1980 unsigned long nr_pages = 0; 1981 u64 j = *i; 1982 1983 /* First we loop through and initialize the page values */ 1984 for_each_free_mem_pfn_range_in_zone_from(j, zone, start_pfn, end_pfn) { 1985 unsigned long t; 1986 1987 if (mo_pfn <= *start_pfn) 1988 break; 1989 1990 t = min(mo_pfn, *end_pfn); 1991 nr_pages += deferred_init_pages(zone, *start_pfn, t); 1992 1993 if (mo_pfn < *end_pfn) { 1994 *start_pfn = mo_pfn; 1995 break; 1996 } 1997 } 1998 1999 /* Reset values and now loop through freeing pages as needed */ 2000 swap(j, *i); 2001 2002 for_each_free_mem_pfn_range_in_zone_from(j, zone, &spfn, &epfn) { 2003 unsigned long t; 2004 2005 if (mo_pfn <= spfn) 2006 break; 2007 2008 t = min(mo_pfn, epfn); 2009 deferred_free_pages(spfn, t); 2010 2011 if (mo_pfn <= epfn) 2012 break; 2013 } 2014 2015 return nr_pages; 2016 } 2017 2018 static void __init 2019 deferred_init_memmap_chunk(unsigned long start_pfn, unsigned long end_pfn, 2020 void *arg) 2021 { 2022 unsigned long spfn, epfn; 2023 struct zone *zone = arg; 2024 u64 i; 2025 2026 deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, start_pfn); 2027 2028 /* 2029 * Initialize and free pages in MAX_ORDER sized increments so that we 2030 * can avoid introducing any issues with the buddy allocator. 2031 */ 2032 while (spfn < end_pfn) { 2033 deferred_init_maxorder(&i, zone, &spfn, &epfn); 2034 cond_resched(); 2035 } 2036 } 2037 2038 /* An arch may override for more concurrency. */ 2039 __weak int __init 2040 deferred_page_init_max_threads(const struct cpumask *node_cpumask) 2041 { 2042 return 1; 2043 } 2044 2045 /* Initialise remaining memory on a node */ 2046 static int __init deferred_init_memmap(void *data) 2047 { 2048 pg_data_t *pgdat = data; 2049 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id); 2050 unsigned long spfn = 0, epfn = 0; 2051 unsigned long first_init_pfn, flags; 2052 unsigned long start = jiffies; 2053 struct zone *zone; 2054 int zid, max_threads; 2055 u64 i; 2056 2057 /* Bind memory initialisation thread to a local node if possible */ 2058 if (!cpumask_empty(cpumask)) 2059 set_cpus_allowed_ptr(current, cpumask); 2060 2061 pgdat_resize_lock(pgdat, &flags); 2062 first_init_pfn = pgdat->first_deferred_pfn; 2063 if (first_init_pfn == ULONG_MAX) { 2064 pgdat_resize_unlock(pgdat, &flags); 2065 pgdat_init_report_one_done(); 2066 return 0; 2067 } 2068 2069 /* Sanity check boundaries */ 2070 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn); 2071 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat)); 2072 pgdat->first_deferred_pfn = ULONG_MAX; 2073 2074 /* 2075 * Once we unlock here, the zone cannot be grown anymore, thus if an 2076 * interrupt thread must allocate this early in boot, zone must be 2077 * pre-grown prior to start of deferred page initialization. 2078 */ 2079 pgdat_resize_unlock(pgdat, &flags); 2080 2081 /* Only the highest zone is deferred so find it */ 2082 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 2083 zone = pgdat->node_zones + zid; 2084 if (first_init_pfn < zone_end_pfn(zone)) 2085 break; 2086 } 2087 2088 /* If the zone is empty somebody else may have cleared out the zone */ 2089 if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, 2090 first_init_pfn)) 2091 goto zone_empty; 2092 2093 max_threads = deferred_page_init_max_threads(cpumask); 2094 2095 while (spfn < epfn) { 2096 unsigned long epfn_align = ALIGN(epfn, PAGES_PER_SECTION); 2097 struct padata_mt_job job = { 2098 .thread_fn = deferred_init_memmap_chunk, 2099 .fn_arg = zone, 2100 .start = spfn, 2101 .size = epfn_align - spfn, 2102 .align = PAGES_PER_SECTION, 2103 .min_chunk = PAGES_PER_SECTION, 2104 .max_threads = max_threads, 2105 }; 2106 2107 padata_do_multithreaded(&job); 2108 deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, 2109 epfn_align); 2110 } 2111 zone_empty: 2112 /* Sanity check that the next zone really is unpopulated */ 2113 WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone)); 2114 2115 pr_info("node %d deferred pages initialised in %ums\n", 2116 pgdat->node_id, jiffies_to_msecs(jiffies - start)); 2117 2118 pgdat_init_report_one_done(); 2119 return 0; 2120 } 2121 2122 /* 2123 * If this zone has deferred pages, try to grow it by initializing enough 2124 * deferred pages to satisfy the allocation specified by order, rounded up to 2125 * the nearest PAGES_PER_SECTION boundary. So we're adding memory in increments 2126 * of SECTION_SIZE bytes by initializing struct pages in increments of 2127 * PAGES_PER_SECTION * sizeof(struct page) bytes. 2128 * 2129 * Return true when zone was grown, otherwise return false. We return true even 2130 * when we grow less than requested, to let the caller decide if there are 2131 * enough pages to satisfy the allocation. 2132 * 2133 * Note: We use noinline because this function is needed only during boot, and 2134 * it is called from a __ref function _deferred_grow_zone. This way we are 2135 * making sure that it is not inlined into permanent text section. 2136 */ 2137 static noinline bool __init 2138 deferred_grow_zone(struct zone *zone, unsigned int order) 2139 { 2140 unsigned long nr_pages_needed = ALIGN(1 << order, PAGES_PER_SECTION); 2141 pg_data_t *pgdat = zone->zone_pgdat; 2142 unsigned long first_deferred_pfn = pgdat->first_deferred_pfn; 2143 unsigned long spfn, epfn, flags; 2144 unsigned long nr_pages = 0; 2145 u64 i; 2146 2147 /* Only the last zone may have deferred pages */ 2148 if (zone_end_pfn(zone) != pgdat_end_pfn(pgdat)) 2149 return false; 2150 2151 pgdat_resize_lock(pgdat, &flags); 2152 2153 /* 2154 * If someone grew this zone while we were waiting for spinlock, return 2155 * true, as there might be enough pages already. 2156 */ 2157 if (first_deferred_pfn != pgdat->first_deferred_pfn) { 2158 pgdat_resize_unlock(pgdat, &flags); 2159 return true; 2160 } 2161 2162 /* If the zone is empty somebody else may have cleared out the zone */ 2163 if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, 2164 first_deferred_pfn)) { 2165 pgdat->first_deferred_pfn = ULONG_MAX; 2166 pgdat_resize_unlock(pgdat, &flags); 2167 /* Retry only once. */ 2168 return first_deferred_pfn != ULONG_MAX; 2169 } 2170 2171 /* 2172 * Initialize and free pages in MAX_ORDER sized increments so 2173 * that we can avoid introducing any issues with the buddy 2174 * allocator. 2175 */ 2176 while (spfn < epfn) { 2177 /* update our first deferred PFN for this section */ 2178 first_deferred_pfn = spfn; 2179 2180 nr_pages += deferred_init_maxorder(&i, zone, &spfn, &epfn); 2181 touch_nmi_watchdog(); 2182 2183 /* We should only stop along section boundaries */ 2184 if ((first_deferred_pfn ^ spfn) < PAGES_PER_SECTION) 2185 continue; 2186 2187 /* If our quota has been met we can stop here */ 2188 if (nr_pages >= nr_pages_needed) 2189 break; 2190 } 2191 2192 pgdat->first_deferred_pfn = spfn; 2193 pgdat_resize_unlock(pgdat, &flags); 2194 2195 return nr_pages > 0; 2196 } 2197 2198 /* 2199 * deferred_grow_zone() is __init, but it is called from 2200 * get_page_from_freelist() during early boot until deferred_pages permanently 2201 * disables this call. This is why we have refdata wrapper to avoid warning, 2202 * and to ensure that the function body gets unloaded. 2203 */ 2204 static bool __ref 2205 _deferred_grow_zone(struct zone *zone, unsigned int order) 2206 { 2207 return deferred_grow_zone(zone, order); 2208 } 2209 2210 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */ 2211 2212 void __init page_alloc_init_late(void) 2213 { 2214 struct zone *zone; 2215 int nid; 2216 2217 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 2218 2219 /* There will be num_node_state(N_MEMORY) threads */ 2220 atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY)); 2221 for_each_node_state(nid, N_MEMORY) { 2222 kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid); 2223 } 2224 2225 /* Block until all are initialised */ 2226 wait_for_completion(&pgdat_init_all_done_comp); 2227 2228 /* 2229 * We initialized the rest of the deferred pages. Permanently disable 2230 * on-demand struct page initialization. 2231 */ 2232 static_branch_disable(&deferred_pages); 2233 2234 /* Reinit limits that are based on free pages after the kernel is up */ 2235 files_maxfiles_init(); 2236 #endif 2237 2238 buffer_init(); 2239 2240 /* Discard memblock private memory */ 2241 memblock_discard(); 2242 2243 for_each_node_state(nid, N_MEMORY) 2244 shuffle_free_memory(NODE_DATA(nid)); 2245 2246 for_each_populated_zone(zone) 2247 set_zone_contiguous(zone); 2248 } 2249 2250 #ifdef CONFIG_CMA 2251 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */ 2252 void __init init_cma_reserved_pageblock(struct page *page) 2253 { 2254 unsigned i = pageblock_nr_pages; 2255 struct page *p = page; 2256 2257 do { 2258 __ClearPageReserved(p); 2259 set_page_count(p, 0); 2260 } while (++p, --i); 2261 2262 set_pageblock_migratetype(page, MIGRATE_CMA); 2263 2264 if (pageblock_order >= MAX_ORDER) { 2265 i = pageblock_nr_pages; 2266 p = page; 2267 do { 2268 set_page_refcounted(p); 2269 __free_pages(p, MAX_ORDER - 1); 2270 p += MAX_ORDER_NR_PAGES; 2271 } while (i -= MAX_ORDER_NR_PAGES); 2272 } else { 2273 set_page_refcounted(page); 2274 __free_pages(page, pageblock_order); 2275 } 2276 2277 adjust_managed_page_count(page, pageblock_nr_pages); 2278 page_zone(page)->cma_pages += pageblock_nr_pages; 2279 } 2280 #endif 2281 2282 /* 2283 * The order of subdivision here is critical for the IO subsystem. 2284 * Please do not alter this order without good reasons and regression 2285 * testing. Specifically, as large blocks of memory are subdivided, 2286 * the order in which smaller blocks are delivered depends on the order 2287 * they're subdivided in this function. This is the primary factor 2288 * influencing the order in which pages are delivered to the IO 2289 * subsystem according to empirical testing, and this is also justified 2290 * by considering the behavior of a buddy system containing a single 2291 * large block of memory acted on by a series of small allocations. 2292 * This behavior is a critical factor in sglist merging's success. 2293 * 2294 * -- nyc 2295 */ 2296 static inline void expand(struct zone *zone, struct page *page, 2297 int low, int high, int migratetype) 2298 { 2299 unsigned long size = 1 << high; 2300 2301 while (high > low) { 2302 high--; 2303 size >>= 1; 2304 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]); 2305 2306 /* 2307 * Mark as guard pages (or page), that will allow to 2308 * merge back to allocator when buddy will be freed. 2309 * Corresponding page table entries will not be touched, 2310 * pages will stay not present in virtual address space 2311 */ 2312 if (set_page_guard(zone, &page[size], high, migratetype)) 2313 continue; 2314 2315 add_to_free_list(&page[size], zone, high, migratetype); 2316 set_buddy_order(&page[size], high); 2317 } 2318 } 2319 2320 static void check_new_page_bad(struct page *page) 2321 { 2322 if (unlikely(page->flags & __PG_HWPOISON)) { 2323 /* Don't complain about hwpoisoned pages */ 2324 page_mapcount_reset(page); /* remove PageBuddy */ 2325 return; 2326 } 2327 2328 bad_page(page, 2329 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_PREP)); 2330 } 2331 2332 /* 2333 * This page is about to be returned from the page allocator 2334 */ 2335 static inline int check_new_page(struct page *page) 2336 { 2337 if (likely(page_expected_state(page, 2338 PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON))) 2339 return 0; 2340 2341 check_new_page_bad(page); 2342 return 1; 2343 } 2344 2345 #ifdef CONFIG_DEBUG_VM 2346 /* 2347 * With DEBUG_VM enabled, order-0 pages are checked for expected state when 2348 * being allocated from pcp lists. With debug_pagealloc also enabled, they are 2349 * also checked when pcp lists are refilled from the free lists. 2350 */ 2351 static inline bool check_pcp_refill(struct page *page) 2352 { 2353 if (debug_pagealloc_enabled_static()) 2354 return check_new_page(page); 2355 else 2356 return false; 2357 } 2358 2359 static inline bool check_new_pcp(struct page *page) 2360 { 2361 return check_new_page(page); 2362 } 2363 #else 2364 /* 2365 * With DEBUG_VM disabled, free order-0 pages are checked for expected state 2366 * when pcp lists are being refilled from the free lists. With debug_pagealloc 2367 * enabled, they are also checked when being allocated from the pcp lists. 2368 */ 2369 static inline bool check_pcp_refill(struct page *page) 2370 { 2371 return check_new_page(page); 2372 } 2373 static inline bool check_new_pcp(struct page *page) 2374 { 2375 if (debug_pagealloc_enabled_static()) 2376 return check_new_page(page); 2377 else 2378 return false; 2379 } 2380 #endif /* CONFIG_DEBUG_VM */ 2381 2382 static bool check_new_pages(struct page *page, unsigned int order) 2383 { 2384 int i; 2385 for (i = 0; i < (1 << order); i++) { 2386 struct page *p = page + i; 2387 2388 if (unlikely(check_new_page(p))) 2389 return true; 2390 } 2391 2392 return false; 2393 } 2394 2395 inline void post_alloc_hook(struct page *page, unsigned int order, 2396 gfp_t gfp_flags) 2397 { 2398 set_page_private(page, 0); 2399 set_page_refcounted(page); 2400 2401 arch_alloc_page(page, order); 2402 debug_pagealloc_map_pages(page, 1 << order); 2403 2404 /* 2405 * Page unpoisoning must happen before memory initialization. 2406 * Otherwise, the poison pattern will be overwritten for __GFP_ZERO 2407 * allocations and the page unpoisoning code will complain. 2408 */ 2409 kernel_unpoison_pages(page, 1 << order); 2410 2411 /* 2412 * As memory initialization might be integrated into KASAN, 2413 * kasan_alloc_pages and kernel_init_free_pages must be 2414 * kept together to avoid discrepancies in behavior. 2415 */ 2416 if (kasan_has_integrated_init()) { 2417 kasan_alloc_pages(page, order, gfp_flags); 2418 } else { 2419 bool init = !want_init_on_free() && want_init_on_alloc(gfp_flags); 2420 2421 kasan_unpoison_pages(page, order, init); 2422 if (init) 2423 kernel_init_free_pages(page, 1 << order, 2424 gfp_flags & __GFP_ZEROTAGS); 2425 } 2426 2427 set_page_owner(page, order, gfp_flags); 2428 } 2429 2430 static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags, 2431 unsigned int alloc_flags) 2432 { 2433 post_alloc_hook(page, order, gfp_flags); 2434 2435 if (order && (gfp_flags & __GFP_COMP)) 2436 prep_compound_page(page, order); 2437 2438 /* 2439 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to 2440 * allocate the page. The expectation is that the caller is taking 2441 * steps that will free more memory. The caller should avoid the page 2442 * being used for !PFMEMALLOC purposes. 2443 */ 2444 if (alloc_flags & ALLOC_NO_WATERMARKS) 2445 set_page_pfmemalloc(page); 2446 else 2447 clear_page_pfmemalloc(page); 2448 } 2449 2450 /* 2451 * Go through the free lists for the given migratetype and remove 2452 * the smallest available page from the freelists 2453 */ 2454 static __always_inline 2455 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order, 2456 int migratetype) 2457 { 2458 unsigned int current_order; 2459 struct free_area *area; 2460 struct page *page; 2461 2462 /* Find a page of the appropriate size in the preferred list */ 2463 for (current_order = order; current_order < MAX_ORDER; ++current_order) { 2464 area = &(zone->free_area[current_order]); 2465 page = get_page_from_free_area(area, migratetype); 2466 if (!page) 2467 continue; 2468 del_page_from_free_list(page, zone, current_order); 2469 expand(zone, page, order, current_order, migratetype); 2470 set_pcppage_migratetype(page, migratetype); 2471 return page; 2472 } 2473 2474 return NULL; 2475 } 2476 2477 2478 /* 2479 * This array describes the order lists are fallen back to when 2480 * the free lists for the desirable migrate type are depleted 2481 */ 2482 static int fallbacks[MIGRATE_TYPES][3] = { 2483 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_TYPES }, 2484 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES }, 2485 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_TYPES }, 2486 #ifdef CONFIG_CMA 2487 [MIGRATE_CMA] = { MIGRATE_TYPES }, /* Never used */ 2488 #endif 2489 #ifdef CONFIG_MEMORY_ISOLATION 2490 [MIGRATE_ISOLATE] = { MIGRATE_TYPES }, /* Never used */ 2491 #endif 2492 }; 2493 2494 #ifdef CONFIG_CMA 2495 static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone, 2496 unsigned int order) 2497 { 2498 return __rmqueue_smallest(zone, order, MIGRATE_CMA); 2499 } 2500 #else 2501 static inline struct page *__rmqueue_cma_fallback(struct zone *zone, 2502 unsigned int order) { return NULL; } 2503 #endif 2504 2505 /* 2506 * Move the free pages in a range to the freelist tail of the requested type. 2507 * Note that start_page and end_pages are not aligned on a pageblock 2508 * boundary. If alignment is required, use move_freepages_block() 2509 */ 2510 static int move_freepages(struct zone *zone, 2511 unsigned long start_pfn, unsigned long end_pfn, 2512 int migratetype, int *num_movable) 2513 { 2514 struct page *page; 2515 unsigned long pfn; 2516 unsigned int order; 2517 int pages_moved = 0; 2518 2519 for (pfn = start_pfn; pfn <= end_pfn;) { 2520 if (!pfn_valid_within(pfn)) { 2521 pfn++; 2522 continue; 2523 } 2524 2525 page = pfn_to_page(pfn); 2526 if (!PageBuddy(page)) { 2527 /* 2528 * We assume that pages that could be isolated for 2529 * migration are movable. But we don't actually try 2530 * isolating, as that would be expensive. 2531 */ 2532 if (num_movable && 2533 (PageLRU(page) || __PageMovable(page))) 2534 (*num_movable)++; 2535 pfn++; 2536 continue; 2537 } 2538 2539 /* Make sure we are not inadvertently changing nodes */ 2540 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page); 2541 VM_BUG_ON_PAGE(page_zone(page) != zone, page); 2542 2543 order = buddy_order(page); 2544 move_to_free_list(page, zone, order, migratetype); 2545 pfn += 1 << order; 2546 pages_moved += 1 << order; 2547 } 2548 2549 return pages_moved; 2550 } 2551 2552 int move_freepages_block(struct zone *zone, struct page *page, 2553 int migratetype, int *num_movable) 2554 { 2555 unsigned long start_pfn, end_pfn, pfn; 2556 2557 if (num_movable) 2558 *num_movable = 0; 2559 2560 pfn = page_to_pfn(page); 2561 start_pfn = pfn & ~(pageblock_nr_pages - 1); 2562 end_pfn = start_pfn + pageblock_nr_pages - 1; 2563 2564 /* Do not cross zone boundaries */ 2565 if (!zone_spans_pfn(zone, start_pfn)) 2566 start_pfn = pfn; 2567 if (!zone_spans_pfn(zone, end_pfn)) 2568 return 0; 2569 2570 return move_freepages(zone, start_pfn, end_pfn, migratetype, 2571 num_movable); 2572 } 2573 2574 static void change_pageblock_range(struct page *pageblock_page, 2575 int start_order, int migratetype) 2576 { 2577 int nr_pageblocks = 1 << (start_order - pageblock_order); 2578 2579 while (nr_pageblocks--) { 2580 set_pageblock_migratetype(pageblock_page, migratetype); 2581 pageblock_page += pageblock_nr_pages; 2582 } 2583 } 2584 2585 /* 2586 * When we are falling back to another migratetype during allocation, try to 2587 * steal extra free pages from the same pageblocks to satisfy further 2588 * allocations, instead of polluting multiple pageblocks. 2589 * 2590 * If we are stealing a relatively large buddy page, it is likely there will 2591 * be more free pages in the pageblock, so try to steal them all. For 2592 * reclaimable and unmovable allocations, we steal regardless of page size, 2593 * as fragmentation caused by those allocations polluting movable pageblocks 2594 * is worse than movable allocations stealing from unmovable and reclaimable 2595 * pageblocks. 2596 */ 2597 static bool can_steal_fallback(unsigned int order, int start_mt) 2598 { 2599 /* 2600 * Leaving this order check is intended, although there is 2601 * relaxed order check in next check. The reason is that 2602 * we can actually steal whole pageblock if this condition met, 2603 * but, below check doesn't guarantee it and that is just heuristic 2604 * so could be changed anytime. 2605 */ 2606 if (order >= pageblock_order) 2607 return true; 2608 2609 if (order >= pageblock_order / 2 || 2610 start_mt == MIGRATE_RECLAIMABLE || 2611 start_mt == MIGRATE_UNMOVABLE || 2612 page_group_by_mobility_disabled) 2613 return true; 2614 2615 return false; 2616 } 2617 2618 static inline bool boost_watermark(struct zone *zone) 2619 { 2620 unsigned long max_boost; 2621 2622 if (!watermark_boost_factor) 2623 return false; 2624 /* 2625 * Don't bother in zones that are unlikely to produce results. 2626 * On small machines, including kdump capture kernels running 2627 * in a small area, boosting the watermark can cause an out of 2628 * memory situation immediately. 2629 */ 2630 if ((pageblock_nr_pages * 4) > zone_managed_pages(zone)) 2631 return false; 2632 2633 max_boost = mult_frac(zone->_watermark[WMARK_HIGH], 2634 watermark_boost_factor, 10000); 2635 2636 /* 2637 * high watermark may be uninitialised if fragmentation occurs 2638 * very early in boot so do not boost. We do not fall 2639 * through and boost by pageblock_nr_pages as failing 2640 * allocations that early means that reclaim is not going 2641 * to help and it may even be impossible to reclaim the 2642 * boosted watermark resulting in a hang. 2643 */ 2644 if (!max_boost) 2645 return false; 2646 2647 max_boost = max(pageblock_nr_pages, max_boost); 2648 2649 zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages, 2650 max_boost); 2651 2652 return true; 2653 } 2654 2655 /* 2656 * This function implements actual steal behaviour. If order is large enough, 2657 * we can steal whole pageblock. If not, we first move freepages in this 2658 * pageblock to our migratetype and determine how many already-allocated pages 2659 * are there in the pageblock with a compatible migratetype. If at least half 2660 * of pages are free or compatible, we can change migratetype of the pageblock 2661 * itself, so pages freed in the future will be put on the correct free list. 2662 */ 2663 static void steal_suitable_fallback(struct zone *zone, struct page *page, 2664 unsigned int alloc_flags, int start_type, bool whole_block) 2665 { 2666 unsigned int current_order = buddy_order(page); 2667 int free_pages, movable_pages, alike_pages; 2668 int old_block_type; 2669 2670 old_block_type = get_pageblock_migratetype(page); 2671 2672 /* 2673 * This can happen due to races and we want to prevent broken 2674 * highatomic accounting. 2675 */ 2676 if (is_migrate_highatomic(old_block_type)) 2677 goto single_page; 2678 2679 /* Take ownership for orders >= pageblock_order */ 2680 if (current_order >= pageblock_order) { 2681 change_pageblock_range(page, current_order, start_type); 2682 goto single_page; 2683 } 2684 2685 /* 2686 * Boost watermarks to increase reclaim pressure to reduce the 2687 * likelihood of future fallbacks. Wake kswapd now as the node 2688 * may be balanced overall and kswapd will not wake naturally. 2689 */ 2690 if (boost_watermark(zone) && (alloc_flags & ALLOC_KSWAPD)) 2691 set_bit(ZONE_BOOSTED_WATERMARK, &zone->flags); 2692 2693 /* We are not allowed to try stealing from the whole block */ 2694 if (!whole_block) 2695 goto single_page; 2696 2697 free_pages = move_freepages_block(zone, page, start_type, 2698 &movable_pages); 2699 /* 2700 * Determine how many pages are compatible with our allocation. 2701 * For movable allocation, it's the number of movable pages which 2702 * we just obtained. For other types it's a bit more tricky. 2703 */ 2704 if (start_type == MIGRATE_MOVABLE) { 2705 alike_pages = movable_pages; 2706 } else { 2707 /* 2708 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation 2709 * to MOVABLE pageblock, consider all non-movable pages as 2710 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or 2711 * vice versa, be conservative since we can't distinguish the 2712 * exact migratetype of non-movable pages. 2713 */ 2714 if (old_block_type == MIGRATE_MOVABLE) 2715 alike_pages = pageblock_nr_pages 2716 - (free_pages + movable_pages); 2717 else 2718 alike_pages = 0; 2719 } 2720 2721 /* moving whole block can fail due to zone boundary conditions */ 2722 if (!free_pages) 2723 goto single_page; 2724 2725 /* 2726 * If a sufficient number of pages in the block are either free or of 2727 * comparable migratability as our allocation, claim the whole block. 2728 */ 2729 if (free_pages + alike_pages >= (1 << (pageblock_order-1)) || 2730 page_group_by_mobility_disabled) 2731 set_pageblock_migratetype(page, start_type); 2732 2733 return; 2734 2735 single_page: 2736 move_to_free_list(page, zone, current_order, start_type); 2737 } 2738 2739 /* 2740 * Check whether there is a suitable fallback freepage with requested order. 2741 * If only_stealable is true, this function returns fallback_mt only if 2742 * we can steal other freepages all together. This would help to reduce 2743 * fragmentation due to mixed migratetype pages in one pageblock. 2744 */ 2745 int find_suitable_fallback(struct free_area *area, unsigned int order, 2746 int migratetype, bool only_stealable, bool *can_steal) 2747 { 2748 int i; 2749 int fallback_mt; 2750 2751 if (area->nr_free == 0) 2752 return -1; 2753 2754 *can_steal = false; 2755 for (i = 0;; i++) { 2756 fallback_mt = fallbacks[migratetype][i]; 2757 if (fallback_mt == MIGRATE_TYPES) 2758 break; 2759 2760 if (free_area_empty(area, fallback_mt)) 2761 continue; 2762 2763 if (can_steal_fallback(order, migratetype)) 2764 *can_steal = true; 2765 2766 if (!only_stealable) 2767 return fallback_mt; 2768 2769 if (*can_steal) 2770 return fallback_mt; 2771 } 2772 2773 return -1; 2774 } 2775 2776 /* 2777 * Reserve a pageblock for exclusive use of high-order atomic allocations if 2778 * there are no empty page blocks that contain a page with a suitable order 2779 */ 2780 static void reserve_highatomic_pageblock(struct page *page, struct zone *zone, 2781 unsigned int alloc_order) 2782 { 2783 int mt; 2784 unsigned long max_managed, flags; 2785 2786 /* 2787 * Limit the number reserved to 1 pageblock or roughly 1% of a zone. 2788 * Check is race-prone but harmless. 2789 */ 2790 max_managed = (zone_managed_pages(zone) / 100) + pageblock_nr_pages; 2791 if (zone->nr_reserved_highatomic >= max_managed) 2792 return; 2793 2794 spin_lock_irqsave(&zone->lock, flags); 2795 2796 /* Recheck the nr_reserved_highatomic limit under the lock */ 2797 if (zone->nr_reserved_highatomic >= max_managed) 2798 goto out_unlock; 2799 2800 /* Yoink! */ 2801 mt = get_pageblock_migratetype(page); 2802 if (!is_migrate_highatomic(mt) && !is_migrate_isolate(mt) 2803 && !is_migrate_cma(mt)) { 2804 zone->nr_reserved_highatomic += pageblock_nr_pages; 2805 set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC); 2806 move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL); 2807 } 2808 2809 out_unlock: 2810 spin_unlock_irqrestore(&zone->lock, flags); 2811 } 2812 2813 /* 2814 * Used when an allocation is about to fail under memory pressure. This 2815 * potentially hurts the reliability of high-order allocations when under 2816 * intense memory pressure but failed atomic allocations should be easier 2817 * to recover from than an OOM. 2818 * 2819 * If @force is true, try to unreserve a pageblock even though highatomic 2820 * pageblock is exhausted. 2821 */ 2822 static bool unreserve_highatomic_pageblock(const struct alloc_context *ac, 2823 bool force) 2824 { 2825 struct zonelist *zonelist = ac->zonelist; 2826 unsigned long flags; 2827 struct zoneref *z; 2828 struct zone *zone; 2829 struct page *page; 2830 int order; 2831 bool ret; 2832 2833 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->highest_zoneidx, 2834 ac->nodemask) { 2835 /* 2836 * Preserve at least one pageblock unless memory pressure 2837 * is really high. 2838 */ 2839 if (!force && zone->nr_reserved_highatomic <= 2840 pageblock_nr_pages) 2841 continue; 2842 2843 spin_lock_irqsave(&zone->lock, flags); 2844 for (order = 0; order < MAX_ORDER; order++) { 2845 struct free_area *area = &(zone->free_area[order]); 2846 2847 page = get_page_from_free_area(area, MIGRATE_HIGHATOMIC); 2848 if (!page) 2849 continue; 2850 2851 /* 2852 * In page freeing path, migratetype change is racy so 2853 * we can counter several free pages in a pageblock 2854 * in this loop although we changed the pageblock type 2855 * from highatomic to ac->migratetype. So we should 2856 * adjust the count once. 2857 */ 2858 if (is_migrate_highatomic_page(page)) { 2859 /* 2860 * It should never happen but changes to 2861 * locking could inadvertently allow a per-cpu 2862 * drain to add pages to MIGRATE_HIGHATOMIC 2863 * while unreserving so be safe and watch for 2864 * underflows. 2865 */ 2866 zone->nr_reserved_highatomic -= min( 2867 pageblock_nr_pages, 2868 zone->nr_reserved_highatomic); 2869 } 2870 2871 /* 2872 * Convert to ac->migratetype and avoid the normal 2873 * pageblock stealing heuristics. Minimally, the caller 2874 * is doing the work and needs the pages. More 2875 * importantly, if the block was always converted to 2876 * MIGRATE_UNMOVABLE or another type then the number 2877 * of pageblocks that cannot be completely freed 2878 * may increase. 2879 */ 2880 set_pageblock_migratetype(page, ac->migratetype); 2881 ret = move_freepages_block(zone, page, ac->migratetype, 2882 NULL); 2883 if (ret) { 2884 spin_unlock_irqrestore(&zone->lock, flags); 2885 return ret; 2886 } 2887 } 2888 spin_unlock_irqrestore(&zone->lock, flags); 2889 } 2890 2891 return false; 2892 } 2893 2894 /* 2895 * Try finding a free buddy page on the fallback list and put it on the free 2896 * list of requested migratetype, possibly along with other pages from the same 2897 * block, depending on fragmentation avoidance heuristics. Returns true if 2898 * fallback was found so that __rmqueue_smallest() can grab it. 2899 * 2900 * The use of signed ints for order and current_order is a deliberate 2901 * deviation from the rest of this file, to make the for loop 2902 * condition simpler. 2903 */ 2904 static __always_inline bool 2905 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype, 2906 unsigned int alloc_flags) 2907 { 2908 struct free_area *area; 2909 int current_order; 2910 int min_order = order; 2911 struct page *page; 2912 int fallback_mt; 2913 bool can_steal; 2914 2915 /* 2916 * Do not steal pages from freelists belonging to other pageblocks 2917 * i.e. orders < pageblock_order. If there are no local zones free, 2918 * the zonelists will be reiterated without ALLOC_NOFRAGMENT. 2919 */ 2920 if (alloc_flags & ALLOC_NOFRAGMENT) 2921 min_order = pageblock_order; 2922 2923 /* 2924 * Find the largest available free page in the other list. This roughly 2925 * approximates finding the pageblock with the most free pages, which 2926 * would be too costly to do exactly. 2927 */ 2928 for (current_order = MAX_ORDER - 1; current_order >= min_order; 2929 --current_order) { 2930 area = &(zone->free_area[current_order]); 2931 fallback_mt = find_suitable_fallback(area, current_order, 2932 start_migratetype, false, &can_steal); 2933 if (fallback_mt == -1) 2934 continue; 2935 2936 /* 2937 * We cannot steal all free pages from the pageblock and the 2938 * requested migratetype is movable. In that case it's better to 2939 * steal and split the smallest available page instead of the 2940 * largest available page, because even if the next movable 2941 * allocation falls back into a different pageblock than this 2942 * one, it won't cause permanent fragmentation. 2943 */ 2944 if (!can_steal && start_migratetype == MIGRATE_MOVABLE 2945 && current_order > order) 2946 goto find_smallest; 2947 2948 goto do_steal; 2949 } 2950 2951 return false; 2952 2953 find_smallest: 2954 for (current_order = order; current_order < MAX_ORDER; 2955 current_order++) { 2956 area = &(zone->free_area[current_order]); 2957 fallback_mt = find_suitable_fallback(area, current_order, 2958 start_migratetype, false, &can_steal); 2959 if (fallback_mt != -1) 2960 break; 2961 } 2962 2963 /* 2964 * This should not happen - we already found a suitable fallback 2965 * when looking for the largest page. 2966 */ 2967 VM_BUG_ON(current_order == MAX_ORDER); 2968 2969 do_steal: 2970 page = get_page_from_free_area(area, fallback_mt); 2971 2972 steal_suitable_fallback(zone, page, alloc_flags, start_migratetype, 2973 can_steal); 2974 2975 trace_mm_page_alloc_extfrag(page, order, current_order, 2976 start_migratetype, fallback_mt); 2977 2978 return true; 2979 2980 } 2981 2982 /* 2983 * Do the hard work of removing an element from the buddy allocator. 2984 * Call me with the zone->lock already held. 2985 */ 2986 static __always_inline struct page * 2987 __rmqueue(struct zone *zone, unsigned int order, int migratetype, 2988 unsigned int alloc_flags) 2989 { 2990 struct page *page; 2991 2992 if (IS_ENABLED(CONFIG_CMA)) { 2993 /* 2994 * Balance movable allocations between regular and CMA areas by 2995 * allocating from CMA when over half of the zone's free memory 2996 * is in the CMA area. 2997 */ 2998 if (alloc_flags & ALLOC_CMA && 2999 zone_page_state(zone, NR_FREE_CMA_PAGES) > 3000 zone_page_state(zone, NR_FREE_PAGES) / 2) { 3001 page = __rmqueue_cma_fallback(zone, order); 3002 if (page) 3003 goto out; 3004 } 3005 } 3006 retry: 3007 page = __rmqueue_smallest(zone, order, migratetype); 3008 if (unlikely(!page)) { 3009 if (alloc_flags & ALLOC_CMA) 3010 page = __rmqueue_cma_fallback(zone, order); 3011 3012 if (!page && __rmqueue_fallback(zone, order, migratetype, 3013 alloc_flags)) 3014 goto retry; 3015 } 3016 out: 3017 if (page) 3018 trace_mm_page_alloc_zone_locked(page, order, migratetype); 3019 return page; 3020 } 3021 3022 /* 3023 * Obtain a specified number of elements from the buddy allocator, all under 3024 * a single hold of the lock, for efficiency. Add them to the supplied list. 3025 * Returns the number of new pages which were placed at *list. 3026 */ 3027 static int rmqueue_bulk(struct zone *zone, unsigned int order, 3028 unsigned long count, struct list_head *list, 3029 int migratetype, unsigned int alloc_flags) 3030 { 3031 int i, allocated = 0; 3032 3033 /* 3034 * local_lock_irq held so equivalent to spin_lock_irqsave for 3035 * both PREEMPT_RT and non-PREEMPT_RT configurations. 3036 */ 3037 spin_lock(&zone->lock); 3038 for (i = 0; i < count; ++i) { 3039 struct page *page = __rmqueue(zone, order, migratetype, 3040 alloc_flags); 3041 if (unlikely(page == NULL)) 3042 break; 3043 3044 if (unlikely(check_pcp_refill(page))) 3045 continue; 3046 3047 /* 3048 * Split buddy pages returned by expand() are received here in 3049 * physical page order. The page is added to the tail of 3050 * caller's list. From the callers perspective, the linked list 3051 * is ordered by page number under some conditions. This is 3052 * useful for IO devices that can forward direction from the 3053 * head, thus also in the physical page order. This is useful 3054 * for IO devices that can merge IO requests if the physical 3055 * pages are ordered properly. 3056 */ 3057 list_add_tail(&page->lru, list); 3058 allocated++; 3059 if (is_migrate_cma(get_pcppage_migratetype(page))) 3060 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES, 3061 -(1 << order)); 3062 } 3063 3064 /* 3065 * i pages were removed from the buddy list even if some leak due 3066 * to check_pcp_refill failing so adjust NR_FREE_PAGES based 3067 * on i. Do not confuse with 'allocated' which is the number of 3068 * pages added to the pcp list. 3069 */ 3070 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order)); 3071 spin_unlock(&zone->lock); 3072 return allocated; 3073 } 3074 3075 #ifdef CONFIG_NUMA 3076 /* 3077 * Called from the vmstat counter updater to drain pagesets of this 3078 * currently executing processor on remote nodes after they have 3079 * expired. 3080 * 3081 * Note that this function must be called with the thread pinned to 3082 * a single processor. 3083 */ 3084 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp) 3085 { 3086 unsigned long flags; 3087 int to_drain, batch; 3088 3089 local_lock_irqsave(&pagesets.lock, flags); 3090 batch = READ_ONCE(pcp->batch); 3091 to_drain = min(pcp->count, batch); 3092 if (to_drain > 0) 3093 free_pcppages_bulk(zone, to_drain, pcp); 3094 local_unlock_irqrestore(&pagesets.lock, flags); 3095 } 3096 #endif 3097 3098 /* 3099 * Drain pcplists of the indicated processor and zone. 3100 * 3101 * The processor must either be the current processor and the 3102 * thread pinned to the current processor or a processor that 3103 * is not online. 3104 */ 3105 static void drain_pages_zone(unsigned int cpu, struct zone *zone) 3106 { 3107 unsigned long flags; 3108 struct per_cpu_pages *pcp; 3109 3110 local_lock_irqsave(&pagesets.lock, flags); 3111 3112 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu); 3113 if (pcp->count) 3114 free_pcppages_bulk(zone, pcp->count, pcp); 3115 3116 local_unlock_irqrestore(&pagesets.lock, flags); 3117 } 3118 3119 /* 3120 * Drain pcplists of all zones on the indicated processor. 3121 * 3122 * The processor must either be the current processor and the 3123 * thread pinned to the current processor or a processor that 3124 * is not online. 3125 */ 3126 static void drain_pages(unsigned int cpu) 3127 { 3128 struct zone *zone; 3129 3130 for_each_populated_zone(zone) { 3131 drain_pages_zone(cpu, zone); 3132 } 3133 } 3134 3135 /* 3136 * Spill all of this CPU's per-cpu pages back into the buddy allocator. 3137 * 3138 * The CPU has to be pinned. When zone parameter is non-NULL, spill just 3139 * the single zone's pages. 3140 */ 3141 void drain_local_pages(struct zone *zone) 3142 { 3143 int cpu = smp_processor_id(); 3144 3145 if (zone) 3146 drain_pages_zone(cpu, zone); 3147 else 3148 drain_pages(cpu); 3149 } 3150 3151 static void drain_local_pages_wq(struct work_struct *work) 3152 { 3153 struct pcpu_drain *drain; 3154 3155 drain = container_of(work, struct pcpu_drain, work); 3156 3157 /* 3158 * drain_all_pages doesn't use proper cpu hotplug protection so 3159 * we can race with cpu offline when the WQ can move this from 3160 * a cpu pinned worker to an unbound one. We can operate on a different 3161 * cpu which is alright but we also have to make sure to not move to 3162 * a different one. 3163 */ 3164 preempt_disable(); 3165 drain_local_pages(drain->zone); 3166 preempt_enable(); 3167 } 3168 3169 /* 3170 * The implementation of drain_all_pages(), exposing an extra parameter to 3171 * drain on all cpus. 3172 * 3173 * drain_all_pages() is optimized to only execute on cpus where pcplists are 3174 * not empty. The check for non-emptiness can however race with a free to 3175 * pcplist that has not yet increased the pcp->count from 0 to 1. Callers 3176 * that need the guarantee that every CPU has drained can disable the 3177 * optimizing racy check. 3178 */ 3179 static void __drain_all_pages(struct zone *zone, bool force_all_cpus) 3180 { 3181 int cpu; 3182 3183 /* 3184 * Allocate in the BSS so we won't require allocation in 3185 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y 3186 */ 3187 static cpumask_t cpus_with_pcps; 3188 3189 /* 3190 * Make sure nobody triggers this path before mm_percpu_wq is fully 3191 * initialized. 3192 */ 3193 if (WARN_ON_ONCE(!mm_percpu_wq)) 3194 return; 3195 3196 /* 3197 * Do not drain if one is already in progress unless it's specific to 3198 * a zone. Such callers are primarily CMA and memory hotplug and need 3199 * the drain to be complete when the call returns. 3200 */ 3201 if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) { 3202 if (!zone) 3203 return; 3204 mutex_lock(&pcpu_drain_mutex); 3205 } 3206 3207 /* 3208 * We don't care about racing with CPU hotplug event 3209 * as offline notification will cause the notified 3210 * cpu to drain that CPU pcps and on_each_cpu_mask 3211 * disables preemption as part of its processing 3212 */ 3213 for_each_online_cpu(cpu) { 3214 struct per_cpu_pages *pcp; 3215 struct zone *z; 3216 bool has_pcps = false; 3217 3218 if (force_all_cpus) { 3219 /* 3220 * The pcp.count check is racy, some callers need a 3221 * guarantee that no cpu is missed. 3222 */ 3223 has_pcps = true; 3224 } else if (zone) { 3225 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu); 3226 if (pcp->count) 3227 has_pcps = true; 3228 } else { 3229 for_each_populated_zone(z) { 3230 pcp = per_cpu_ptr(z->per_cpu_pageset, cpu); 3231 if (pcp->count) { 3232 has_pcps = true; 3233 break; 3234 } 3235 } 3236 } 3237 3238 if (has_pcps) 3239 cpumask_set_cpu(cpu, &cpus_with_pcps); 3240 else 3241 cpumask_clear_cpu(cpu, &cpus_with_pcps); 3242 } 3243 3244 for_each_cpu(cpu, &cpus_with_pcps) { 3245 struct pcpu_drain *drain = per_cpu_ptr(&pcpu_drain, cpu); 3246 3247 drain->zone = zone; 3248 INIT_WORK(&drain->work, drain_local_pages_wq); 3249 queue_work_on(cpu, mm_percpu_wq, &drain->work); 3250 } 3251 for_each_cpu(cpu, &cpus_with_pcps) 3252 flush_work(&per_cpu_ptr(&pcpu_drain, cpu)->work); 3253 3254 mutex_unlock(&pcpu_drain_mutex); 3255 } 3256 3257 /* 3258 * Spill all the per-cpu pages from all CPUs back into the buddy allocator. 3259 * 3260 * When zone parameter is non-NULL, spill just the single zone's pages. 3261 * 3262 * Note that this can be extremely slow as the draining happens in a workqueue. 3263 */ 3264 void drain_all_pages(struct zone *zone) 3265 { 3266 __drain_all_pages(zone, false); 3267 } 3268 3269 #ifdef CONFIG_HIBERNATION 3270 3271 /* 3272 * Touch the watchdog for every WD_PAGE_COUNT pages. 3273 */ 3274 #define WD_PAGE_COUNT (128*1024) 3275 3276 void mark_free_pages(struct zone *zone) 3277 { 3278 unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT; 3279 unsigned long flags; 3280 unsigned int order, t; 3281 struct page *page; 3282 3283 if (zone_is_empty(zone)) 3284 return; 3285 3286 spin_lock_irqsave(&zone->lock, flags); 3287 3288 max_zone_pfn = zone_end_pfn(zone); 3289 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) 3290 if (pfn_valid(pfn)) { 3291 page = pfn_to_page(pfn); 3292 3293 if (!--page_count) { 3294 touch_nmi_watchdog(); 3295 page_count = WD_PAGE_COUNT; 3296 } 3297 3298 if (page_zone(page) != zone) 3299 continue; 3300 3301 if (!swsusp_page_is_forbidden(page)) 3302 swsusp_unset_page_free(page); 3303 } 3304 3305 for_each_migratetype_order(order, t) { 3306 list_for_each_entry(page, 3307 &zone->free_area[order].free_list[t], lru) { 3308 unsigned long i; 3309 3310 pfn = page_to_pfn(page); 3311 for (i = 0; i < (1UL << order); i++) { 3312 if (!--page_count) { 3313 touch_nmi_watchdog(); 3314 page_count = WD_PAGE_COUNT; 3315 } 3316 swsusp_set_page_free(pfn_to_page(pfn + i)); 3317 } 3318 } 3319 } 3320 spin_unlock_irqrestore(&zone->lock, flags); 3321 } 3322 #endif /* CONFIG_PM */ 3323 3324 static bool free_unref_page_prepare(struct page *page, unsigned long pfn, 3325 unsigned int order) 3326 { 3327 int migratetype; 3328 3329 if (!free_pcp_prepare(page, order)) 3330 return false; 3331 3332 migratetype = get_pfnblock_migratetype(page, pfn); 3333 set_pcppage_migratetype(page, migratetype); 3334 return true; 3335 } 3336 3337 static int nr_pcp_free(struct per_cpu_pages *pcp, int high, int batch) 3338 { 3339 int min_nr_free, max_nr_free; 3340 3341 /* Check for PCP disabled or boot pageset */ 3342 if (unlikely(high < batch)) 3343 return 1; 3344 3345 /* Leave at least pcp->batch pages on the list */ 3346 min_nr_free = batch; 3347 max_nr_free = high - batch; 3348 3349 /* 3350 * Double the number of pages freed each time there is subsequent 3351 * freeing of pages without any allocation. 3352 */ 3353 batch <<= pcp->free_factor; 3354 if (batch < max_nr_free) 3355 pcp->free_factor++; 3356 batch = clamp(batch, min_nr_free, max_nr_free); 3357 3358 return batch; 3359 } 3360 3361 static int nr_pcp_high(struct per_cpu_pages *pcp, struct zone *zone) 3362 { 3363 int high = READ_ONCE(pcp->high); 3364 3365 if (unlikely(!high)) 3366 return 0; 3367 3368 if (!test_bit(ZONE_RECLAIM_ACTIVE, &zone->flags)) 3369 return high; 3370 3371 /* 3372 * If reclaim is active, limit the number of pages that can be 3373 * stored on pcp lists 3374 */ 3375 return min(READ_ONCE(pcp->batch) << 2, high); 3376 } 3377 3378 static void free_unref_page_commit(struct page *page, unsigned long pfn, 3379 int migratetype, unsigned int order) 3380 { 3381 struct zone *zone = page_zone(page); 3382 struct per_cpu_pages *pcp; 3383 int high; 3384 int pindex; 3385 3386 __count_vm_event(PGFREE); 3387 pcp = this_cpu_ptr(zone->per_cpu_pageset); 3388 pindex = order_to_pindex(migratetype, order); 3389 list_add(&page->lru, &pcp->lists[pindex]); 3390 pcp->count += 1 << order; 3391 high = nr_pcp_high(pcp, zone); 3392 if (pcp->count >= high) { 3393 int batch = READ_ONCE(pcp->batch); 3394 3395 free_pcppages_bulk(zone, nr_pcp_free(pcp, high, batch), pcp); 3396 } 3397 } 3398 3399 /* 3400 * Free a pcp page 3401 */ 3402 void free_unref_page(struct page *page, unsigned int order) 3403 { 3404 unsigned long flags; 3405 unsigned long pfn = page_to_pfn(page); 3406 int migratetype; 3407 3408 if (!free_unref_page_prepare(page, pfn, order)) 3409 return; 3410 3411 /* 3412 * We only track unmovable, reclaimable and movable on pcp lists. 3413 * Place ISOLATE pages on the isolated list because they are being 3414 * offlined but treat HIGHATOMIC as movable pages so we can get those 3415 * areas back if necessary. Otherwise, we may have to free 3416 * excessively into the page allocator 3417 */ 3418 migratetype = get_pcppage_migratetype(page); 3419 if (unlikely(migratetype >= MIGRATE_PCPTYPES)) { 3420 if (unlikely(is_migrate_isolate(migratetype))) { 3421 free_one_page(page_zone(page), page, pfn, order, migratetype, FPI_NONE); 3422 return; 3423 } 3424 migratetype = MIGRATE_MOVABLE; 3425 } 3426 3427 local_lock_irqsave(&pagesets.lock, flags); 3428 free_unref_page_commit(page, pfn, migratetype, order); 3429 local_unlock_irqrestore(&pagesets.lock, flags); 3430 } 3431 3432 /* 3433 * Free a list of 0-order pages 3434 */ 3435 void free_unref_page_list(struct list_head *list) 3436 { 3437 struct page *page, *next; 3438 unsigned long flags, pfn; 3439 int batch_count = 0; 3440 int migratetype; 3441 3442 /* Prepare pages for freeing */ 3443 list_for_each_entry_safe(page, next, list, lru) { 3444 pfn = page_to_pfn(page); 3445 if (!free_unref_page_prepare(page, pfn, 0)) 3446 list_del(&page->lru); 3447 3448 /* 3449 * Free isolated pages directly to the allocator, see 3450 * comment in free_unref_page. 3451 */ 3452 migratetype = get_pcppage_migratetype(page); 3453 if (unlikely(migratetype >= MIGRATE_PCPTYPES)) { 3454 if (unlikely(is_migrate_isolate(migratetype))) { 3455 list_del(&page->lru); 3456 free_one_page(page_zone(page), page, pfn, 0, 3457 migratetype, FPI_NONE); 3458 continue; 3459 } 3460 3461 /* 3462 * Non-isolated types over MIGRATE_PCPTYPES get added 3463 * to the MIGRATE_MOVABLE pcp list. 3464 */ 3465 set_pcppage_migratetype(page, MIGRATE_MOVABLE); 3466 } 3467 3468 set_page_private(page, pfn); 3469 } 3470 3471 local_lock_irqsave(&pagesets.lock, flags); 3472 list_for_each_entry_safe(page, next, list, lru) { 3473 pfn = page_private(page); 3474 set_page_private(page, 0); 3475 migratetype = get_pcppage_migratetype(page); 3476 trace_mm_page_free_batched(page); 3477 free_unref_page_commit(page, pfn, migratetype, 0); 3478 3479 /* 3480 * Guard against excessive IRQ disabled times when we get 3481 * a large list of pages to free. 3482 */ 3483 if (++batch_count == SWAP_CLUSTER_MAX) { 3484 local_unlock_irqrestore(&pagesets.lock, flags); 3485 batch_count = 0; 3486 local_lock_irqsave(&pagesets.lock, flags); 3487 } 3488 } 3489 local_unlock_irqrestore(&pagesets.lock, flags); 3490 } 3491 3492 /* 3493 * split_page takes a non-compound higher-order page, and splits it into 3494 * n (1<<order) sub-pages: page[0..n] 3495 * Each sub-page must be freed individually. 3496 * 3497 * Note: this is probably too low level an operation for use in drivers. 3498 * Please consult with lkml before using this in your driver. 3499 */ 3500 void split_page(struct page *page, unsigned int order) 3501 { 3502 int i; 3503 3504 VM_BUG_ON_PAGE(PageCompound(page), page); 3505 VM_BUG_ON_PAGE(!page_count(page), page); 3506 3507 for (i = 1; i < (1 << order); i++) 3508 set_page_refcounted(page + i); 3509 split_page_owner(page, 1 << order); 3510 split_page_memcg(page, 1 << order); 3511 } 3512 EXPORT_SYMBOL_GPL(split_page); 3513 3514 int __isolate_free_page(struct page *page, unsigned int order) 3515 { 3516 unsigned long watermark; 3517 struct zone *zone; 3518 int mt; 3519 3520 BUG_ON(!PageBuddy(page)); 3521 3522 zone = page_zone(page); 3523 mt = get_pageblock_migratetype(page); 3524 3525 if (!is_migrate_isolate(mt)) { 3526 /* 3527 * Obey watermarks as if the page was being allocated. We can 3528 * emulate a high-order watermark check with a raised order-0 3529 * watermark, because we already know our high-order page 3530 * exists. 3531 */ 3532 watermark = zone->_watermark[WMARK_MIN] + (1UL << order); 3533 if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA)) 3534 return 0; 3535 3536 __mod_zone_freepage_state(zone, -(1UL << order), mt); 3537 } 3538 3539 /* Remove page from free list */ 3540 3541 del_page_from_free_list(page, zone, order); 3542 3543 /* 3544 * Set the pageblock if the isolated page is at least half of a 3545 * pageblock 3546 */ 3547 if (order >= pageblock_order - 1) { 3548 struct page *endpage = page + (1 << order) - 1; 3549 for (; page < endpage; page += pageblock_nr_pages) { 3550 int mt = get_pageblock_migratetype(page); 3551 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt) 3552 && !is_migrate_highatomic(mt)) 3553 set_pageblock_migratetype(page, 3554 MIGRATE_MOVABLE); 3555 } 3556 } 3557 3558 3559 return 1UL << order; 3560 } 3561 3562 /** 3563 * __putback_isolated_page - Return a now-isolated page back where we got it 3564 * @page: Page that was isolated 3565 * @order: Order of the isolated page 3566 * @mt: The page's pageblock's migratetype 3567 * 3568 * This function is meant to return a page pulled from the free lists via 3569 * __isolate_free_page back to the free lists they were pulled from. 3570 */ 3571 void __putback_isolated_page(struct page *page, unsigned int order, int mt) 3572 { 3573 struct zone *zone = page_zone(page); 3574 3575 /* zone lock should be held when this function is called */ 3576 lockdep_assert_held(&zone->lock); 3577 3578 /* Return isolated page to tail of freelist. */ 3579 __free_one_page(page, page_to_pfn(page), zone, order, mt, 3580 FPI_SKIP_REPORT_NOTIFY | FPI_TO_TAIL); 3581 } 3582 3583 /* 3584 * Update NUMA hit/miss statistics 3585 * 3586 * Must be called with interrupts disabled. 3587 */ 3588 static inline void zone_statistics(struct zone *preferred_zone, struct zone *z, 3589 long nr_account) 3590 { 3591 #ifdef CONFIG_NUMA 3592 enum numa_stat_item local_stat = NUMA_LOCAL; 3593 3594 /* skip numa counters update if numa stats is disabled */ 3595 if (!static_branch_likely(&vm_numa_stat_key)) 3596 return; 3597 3598 if (zone_to_nid(z) != numa_node_id()) 3599 local_stat = NUMA_OTHER; 3600 3601 if (zone_to_nid(z) == zone_to_nid(preferred_zone)) 3602 __count_numa_events(z, NUMA_HIT, nr_account); 3603 else { 3604 __count_numa_events(z, NUMA_MISS, nr_account); 3605 __count_numa_events(preferred_zone, NUMA_FOREIGN, nr_account); 3606 } 3607 __count_numa_events(z, local_stat, nr_account); 3608 #endif 3609 } 3610 3611 /* Remove page from the per-cpu list, caller must protect the list */ 3612 static inline 3613 struct page *__rmqueue_pcplist(struct zone *zone, unsigned int order, 3614 int migratetype, 3615 unsigned int alloc_flags, 3616 struct per_cpu_pages *pcp, 3617 struct list_head *list) 3618 { 3619 struct page *page; 3620 3621 do { 3622 if (list_empty(list)) { 3623 int batch = READ_ONCE(pcp->batch); 3624 int alloced; 3625 3626 /* 3627 * Scale batch relative to order if batch implies 3628 * free pages can be stored on the PCP. Batch can 3629 * be 1 for small zones or for boot pagesets which 3630 * should never store free pages as the pages may 3631 * belong to arbitrary zones. 3632 */ 3633 if (batch > 1) 3634 batch = max(batch >> order, 2); 3635 alloced = rmqueue_bulk(zone, order, 3636 batch, list, 3637 migratetype, alloc_flags); 3638 3639 pcp->count += alloced << order; 3640 if (unlikely(list_empty(list))) 3641 return NULL; 3642 } 3643 3644 page = list_first_entry(list, struct page, lru); 3645 list_del(&page->lru); 3646 pcp->count -= 1 << order; 3647 } while (check_new_pcp(page)); 3648 3649 return page; 3650 } 3651 3652 /* Lock and remove page from the per-cpu list */ 3653 static struct page *rmqueue_pcplist(struct zone *preferred_zone, 3654 struct zone *zone, unsigned int order, 3655 gfp_t gfp_flags, int migratetype, 3656 unsigned int alloc_flags) 3657 { 3658 struct per_cpu_pages *pcp; 3659 struct list_head *list; 3660 struct page *page; 3661 unsigned long flags; 3662 3663 local_lock_irqsave(&pagesets.lock, flags); 3664 3665 /* 3666 * On allocation, reduce the number of pages that are batch freed. 3667 * See nr_pcp_free() where free_factor is increased for subsequent 3668 * frees. 3669 */ 3670 pcp = this_cpu_ptr(zone->per_cpu_pageset); 3671 pcp->free_factor >>= 1; 3672 list = &pcp->lists[order_to_pindex(migratetype, order)]; 3673 page = __rmqueue_pcplist(zone, order, migratetype, alloc_flags, pcp, list); 3674 local_unlock_irqrestore(&pagesets.lock, flags); 3675 if (page) { 3676 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1); 3677 zone_statistics(preferred_zone, zone, 1); 3678 } 3679 return page; 3680 } 3681 3682 /* 3683 * Allocate a page from the given zone. Use pcplists for order-0 allocations. 3684 */ 3685 static inline 3686 struct page *rmqueue(struct zone *preferred_zone, 3687 struct zone *zone, unsigned int order, 3688 gfp_t gfp_flags, unsigned int alloc_flags, 3689 int migratetype) 3690 { 3691 unsigned long flags; 3692 struct page *page; 3693 3694 if (likely(pcp_allowed_order(order))) { 3695 /* 3696 * MIGRATE_MOVABLE pcplist could have the pages on CMA area and 3697 * we need to skip it when CMA area isn't allowed. 3698 */ 3699 if (!IS_ENABLED(CONFIG_CMA) || alloc_flags & ALLOC_CMA || 3700 migratetype != MIGRATE_MOVABLE) { 3701 page = rmqueue_pcplist(preferred_zone, zone, order, 3702 gfp_flags, migratetype, alloc_flags); 3703 goto out; 3704 } 3705 } 3706 3707 /* 3708 * We most definitely don't want callers attempting to 3709 * allocate greater than order-1 page units with __GFP_NOFAIL. 3710 */ 3711 WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1)); 3712 spin_lock_irqsave(&zone->lock, flags); 3713 3714 do { 3715 page = NULL; 3716 /* 3717 * order-0 request can reach here when the pcplist is skipped 3718 * due to non-CMA allocation context. HIGHATOMIC area is 3719 * reserved for high-order atomic allocation, so order-0 3720 * request should skip it. 3721 */ 3722 if (order > 0 && alloc_flags & ALLOC_HARDER) { 3723 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC); 3724 if (page) 3725 trace_mm_page_alloc_zone_locked(page, order, migratetype); 3726 } 3727 if (!page) 3728 page = __rmqueue(zone, order, migratetype, alloc_flags); 3729 } while (page && check_new_pages(page, order)); 3730 if (!page) 3731 goto failed; 3732 3733 __mod_zone_freepage_state(zone, -(1 << order), 3734 get_pcppage_migratetype(page)); 3735 spin_unlock_irqrestore(&zone->lock, flags); 3736 3737 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order); 3738 zone_statistics(preferred_zone, zone, 1); 3739 3740 out: 3741 /* Separate test+clear to avoid unnecessary atomics */ 3742 if (test_bit(ZONE_BOOSTED_WATERMARK, &zone->flags)) { 3743 clear_bit(ZONE_BOOSTED_WATERMARK, &zone->flags); 3744 wakeup_kswapd(zone, 0, 0, zone_idx(zone)); 3745 } 3746 3747 VM_BUG_ON_PAGE(page && bad_range(zone, page), page); 3748 return page; 3749 3750 failed: 3751 spin_unlock_irqrestore(&zone->lock, flags); 3752 return NULL; 3753 } 3754 3755 #ifdef CONFIG_FAIL_PAGE_ALLOC 3756 3757 static struct { 3758 struct fault_attr attr; 3759 3760 bool ignore_gfp_highmem; 3761 bool ignore_gfp_reclaim; 3762 u32 min_order; 3763 } fail_page_alloc = { 3764 .attr = FAULT_ATTR_INITIALIZER, 3765 .ignore_gfp_reclaim = true, 3766 .ignore_gfp_highmem = true, 3767 .min_order = 1, 3768 }; 3769 3770 static int __init setup_fail_page_alloc(char *str) 3771 { 3772 return setup_fault_attr(&fail_page_alloc.attr, str); 3773 } 3774 __setup("fail_page_alloc=", setup_fail_page_alloc); 3775 3776 static bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) 3777 { 3778 if (order < fail_page_alloc.min_order) 3779 return false; 3780 if (gfp_mask & __GFP_NOFAIL) 3781 return false; 3782 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM)) 3783 return false; 3784 if (fail_page_alloc.ignore_gfp_reclaim && 3785 (gfp_mask & __GFP_DIRECT_RECLAIM)) 3786 return false; 3787 3788 return should_fail(&fail_page_alloc.attr, 1 << order); 3789 } 3790 3791 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS 3792 3793 static int __init fail_page_alloc_debugfs(void) 3794 { 3795 umode_t mode = S_IFREG | 0600; 3796 struct dentry *dir; 3797 3798 dir = fault_create_debugfs_attr("fail_page_alloc", NULL, 3799 &fail_page_alloc.attr); 3800 3801 debugfs_create_bool("ignore-gfp-wait", mode, dir, 3802 &fail_page_alloc.ignore_gfp_reclaim); 3803 debugfs_create_bool("ignore-gfp-highmem", mode, dir, 3804 &fail_page_alloc.ignore_gfp_highmem); 3805 debugfs_create_u32("min-order", mode, dir, &fail_page_alloc.min_order); 3806 3807 return 0; 3808 } 3809 3810 late_initcall(fail_page_alloc_debugfs); 3811 3812 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */ 3813 3814 #else /* CONFIG_FAIL_PAGE_ALLOC */ 3815 3816 static inline bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) 3817 { 3818 return false; 3819 } 3820 3821 #endif /* CONFIG_FAIL_PAGE_ALLOC */ 3822 3823 static noinline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) 3824 { 3825 return __should_fail_alloc_page(gfp_mask, order); 3826 } 3827 ALLOW_ERROR_INJECTION(should_fail_alloc_page, TRUE); 3828 3829 static inline long __zone_watermark_unusable_free(struct zone *z, 3830 unsigned int order, unsigned int alloc_flags) 3831 { 3832 const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM)); 3833 long unusable_free = (1 << order) - 1; 3834 3835 /* 3836 * If the caller does not have rights to ALLOC_HARDER then subtract 3837 * the high-atomic reserves. This will over-estimate the size of the 3838 * atomic reserve but it avoids a search. 3839 */ 3840 if (likely(!alloc_harder)) 3841 unusable_free += z->nr_reserved_highatomic; 3842 3843 #ifdef CONFIG_CMA 3844 /* If allocation can't use CMA areas don't use free CMA pages */ 3845 if (!(alloc_flags & ALLOC_CMA)) 3846 unusable_free += zone_page_state(z, NR_FREE_CMA_PAGES); 3847 #endif 3848 3849 return unusable_free; 3850 } 3851 3852 /* 3853 * Return true if free base pages are above 'mark'. For high-order checks it 3854 * will return true of the order-0 watermark is reached and there is at least 3855 * one free page of a suitable size. Checking now avoids taking the zone lock 3856 * to check in the allocation paths if no pages are free. 3857 */ 3858 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark, 3859 int highest_zoneidx, unsigned int alloc_flags, 3860 long free_pages) 3861 { 3862 long min = mark; 3863 int o; 3864 const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM)); 3865 3866 /* free_pages may go negative - that's OK */ 3867 free_pages -= __zone_watermark_unusable_free(z, order, alloc_flags); 3868 3869 if (alloc_flags & ALLOC_HIGH) 3870 min -= min / 2; 3871 3872 if (unlikely(alloc_harder)) { 3873 /* 3874 * OOM victims can try even harder than normal ALLOC_HARDER 3875 * users on the grounds that it's definitely going to be in 3876 * the exit path shortly and free memory. Any allocation it 3877 * makes during the free path will be small and short-lived. 3878 */ 3879 if (alloc_flags & ALLOC_OOM) 3880 min -= min / 2; 3881 else 3882 min -= min / 4; 3883 } 3884 3885 /* 3886 * Check watermarks for an order-0 allocation request. If these 3887 * are not met, then a high-order request also cannot go ahead 3888 * even if a suitable page happened to be free. 3889 */ 3890 if (free_pages <= min + z->lowmem_reserve[highest_zoneidx]) 3891 return false; 3892 3893 /* If this is an order-0 request then the watermark is fine */ 3894 if (!order) 3895 return true; 3896 3897 /* For a high-order request, check at least one suitable page is free */ 3898 for (o = order; o < MAX_ORDER; o++) { 3899 struct free_area *area = &z->free_area[o]; 3900 int mt; 3901 3902 if (!area->nr_free) 3903 continue; 3904 3905 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) { 3906 if (!free_area_empty(area, mt)) 3907 return true; 3908 } 3909 3910 #ifdef CONFIG_CMA 3911 if ((alloc_flags & ALLOC_CMA) && 3912 !free_area_empty(area, MIGRATE_CMA)) { 3913 return true; 3914 } 3915 #endif 3916 if (alloc_harder && !free_area_empty(area, MIGRATE_HIGHATOMIC)) 3917 return true; 3918 } 3919 return false; 3920 } 3921 3922 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark, 3923 int highest_zoneidx, unsigned int alloc_flags) 3924 { 3925 return __zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags, 3926 zone_page_state(z, NR_FREE_PAGES)); 3927 } 3928 3929 static inline bool zone_watermark_fast(struct zone *z, unsigned int order, 3930 unsigned long mark, int highest_zoneidx, 3931 unsigned int alloc_flags, gfp_t gfp_mask) 3932 { 3933 long free_pages; 3934 3935 free_pages = zone_page_state(z, NR_FREE_PAGES); 3936 3937 /* 3938 * Fast check for order-0 only. If this fails then the reserves 3939 * need to be calculated. 3940 */ 3941 if (!order) { 3942 long fast_free; 3943 3944 fast_free = free_pages; 3945 fast_free -= __zone_watermark_unusable_free(z, 0, alloc_flags); 3946 if (fast_free > mark + z->lowmem_reserve[highest_zoneidx]) 3947 return true; 3948 } 3949 3950 if (__zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags, 3951 free_pages)) 3952 return true; 3953 /* 3954 * Ignore watermark boosting for GFP_ATOMIC order-0 allocations 3955 * when checking the min watermark. The min watermark is the 3956 * point where boosting is ignored so that kswapd is woken up 3957 * when below the low watermark. 3958 */ 3959 if (unlikely(!order && (gfp_mask & __GFP_ATOMIC) && z->watermark_boost 3960 && ((alloc_flags & ALLOC_WMARK_MASK) == WMARK_MIN))) { 3961 mark = z->_watermark[WMARK_MIN]; 3962 return __zone_watermark_ok(z, order, mark, highest_zoneidx, 3963 alloc_flags, free_pages); 3964 } 3965 3966 return false; 3967 } 3968 3969 bool zone_watermark_ok_safe(struct zone *z, unsigned int order, 3970 unsigned long mark, int highest_zoneidx) 3971 { 3972 long free_pages = zone_page_state(z, NR_FREE_PAGES); 3973 3974 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark) 3975 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES); 3976 3977 return __zone_watermark_ok(z, order, mark, highest_zoneidx, 0, 3978 free_pages); 3979 } 3980 3981 #ifdef CONFIG_NUMA 3982 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone) 3983 { 3984 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <= 3985 node_reclaim_distance; 3986 } 3987 #else /* CONFIG_NUMA */ 3988 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone) 3989 { 3990 return true; 3991 } 3992 #endif /* CONFIG_NUMA */ 3993 3994 /* 3995 * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid 3996 * fragmentation is subtle. If the preferred zone was HIGHMEM then 3997 * premature use of a lower zone may cause lowmem pressure problems that 3998 * are worse than fragmentation. If the next zone is ZONE_DMA then it is 3999 * probably too small. It only makes sense to spread allocations to avoid 4000 * fragmentation between the Normal and DMA32 zones. 4001 */ 4002 static inline unsigned int 4003 alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask) 4004 { 4005 unsigned int alloc_flags; 4006 4007 /* 4008 * __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD 4009 * to save a branch. 4010 */ 4011 alloc_flags = (__force int) (gfp_mask & __GFP_KSWAPD_RECLAIM); 4012 4013 #ifdef CONFIG_ZONE_DMA32 4014 if (!zone) 4015 return alloc_flags; 4016 4017 if (zone_idx(zone) != ZONE_NORMAL) 4018 return alloc_flags; 4019 4020 /* 4021 * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and 4022 * the pointer is within zone->zone_pgdat->node_zones[]. Also assume 4023 * on UMA that if Normal is populated then so is DMA32. 4024 */ 4025 BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1); 4026 if (nr_online_nodes > 1 && !populated_zone(--zone)) 4027 return alloc_flags; 4028 4029 alloc_flags |= ALLOC_NOFRAGMENT; 4030 #endif /* CONFIG_ZONE_DMA32 */ 4031 return alloc_flags; 4032 } 4033 4034 /* Must be called after current_gfp_context() which can change gfp_mask */ 4035 static inline unsigned int gfp_to_alloc_flags_cma(gfp_t gfp_mask, 4036 unsigned int alloc_flags) 4037 { 4038 #ifdef CONFIG_CMA 4039 if (gfp_migratetype(gfp_mask) == MIGRATE_MOVABLE) 4040 alloc_flags |= ALLOC_CMA; 4041 #endif 4042 return alloc_flags; 4043 } 4044 4045 /* 4046 * get_page_from_freelist goes through the zonelist trying to allocate 4047 * a page. 4048 */ 4049 static struct page * 4050 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags, 4051 const struct alloc_context *ac) 4052 { 4053 struct zoneref *z; 4054 struct zone *zone; 4055 struct pglist_data *last_pgdat_dirty_limit = NULL; 4056 bool no_fallback; 4057 4058 retry: 4059 /* 4060 * Scan zonelist, looking for a zone with enough free. 4061 * See also __cpuset_node_allowed() comment in kernel/cpuset.c. 4062 */ 4063 no_fallback = alloc_flags & ALLOC_NOFRAGMENT; 4064 z = ac->preferred_zoneref; 4065 for_next_zone_zonelist_nodemask(zone, z, ac->highest_zoneidx, 4066 ac->nodemask) { 4067 struct page *page; 4068 unsigned long mark; 4069 4070 if (cpusets_enabled() && 4071 (alloc_flags & ALLOC_CPUSET) && 4072 !__cpuset_zone_allowed(zone, gfp_mask)) 4073 continue; 4074 /* 4075 * When allocating a page cache page for writing, we 4076 * want to get it from a node that is within its dirty 4077 * limit, such that no single node holds more than its 4078 * proportional share of globally allowed dirty pages. 4079 * The dirty limits take into account the node's 4080 * lowmem reserves and high watermark so that kswapd 4081 * should be able to balance it without having to 4082 * write pages from its LRU list. 4083 * 4084 * XXX: For now, allow allocations to potentially 4085 * exceed the per-node dirty limit in the slowpath 4086 * (spread_dirty_pages unset) before going into reclaim, 4087 * which is important when on a NUMA setup the allowed 4088 * nodes are together not big enough to reach the 4089 * global limit. The proper fix for these situations 4090 * will require awareness of nodes in the 4091 * dirty-throttling and the flusher threads. 4092 */ 4093 if (ac->spread_dirty_pages) { 4094 if (last_pgdat_dirty_limit == zone->zone_pgdat) 4095 continue; 4096 4097 if (!node_dirty_ok(zone->zone_pgdat)) { 4098 last_pgdat_dirty_limit = zone->zone_pgdat; 4099 continue; 4100 } 4101 } 4102 4103 if (no_fallback && nr_online_nodes > 1 && 4104 zone != ac->preferred_zoneref->zone) { 4105 int local_nid; 4106 4107 /* 4108 * If moving to a remote node, retry but allow 4109 * fragmenting fallbacks. Locality is more important 4110 * than fragmentation avoidance. 4111 */ 4112 local_nid = zone_to_nid(ac->preferred_zoneref->zone); 4113 if (zone_to_nid(zone) != local_nid) { 4114 alloc_flags &= ~ALLOC_NOFRAGMENT; 4115 goto retry; 4116 } 4117 } 4118 4119 mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK); 4120 if (!zone_watermark_fast(zone, order, mark, 4121 ac->highest_zoneidx, alloc_flags, 4122 gfp_mask)) { 4123 int ret; 4124 4125 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 4126 /* 4127 * Watermark failed for this zone, but see if we can 4128 * grow this zone if it contains deferred pages. 4129 */ 4130 if (static_branch_unlikely(&deferred_pages)) { 4131 if (_deferred_grow_zone(zone, order)) 4132 goto try_this_zone; 4133 } 4134 #endif 4135 /* Checked here to keep the fast path fast */ 4136 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK); 4137 if (alloc_flags & ALLOC_NO_WATERMARKS) 4138 goto try_this_zone; 4139 4140 if (!node_reclaim_enabled() || 4141 !zone_allows_reclaim(ac->preferred_zoneref->zone, zone)) 4142 continue; 4143 4144 ret = node_reclaim(zone->zone_pgdat, gfp_mask, order); 4145 switch (ret) { 4146 case NODE_RECLAIM_NOSCAN: 4147 /* did not scan */ 4148 continue; 4149 case NODE_RECLAIM_FULL: 4150 /* scanned but unreclaimable */ 4151 continue; 4152 default: 4153 /* did we reclaim enough */ 4154 if (zone_watermark_ok(zone, order, mark, 4155 ac->highest_zoneidx, alloc_flags)) 4156 goto try_this_zone; 4157 4158 continue; 4159 } 4160 } 4161 4162 try_this_zone: 4163 page = rmqueue(ac->preferred_zoneref->zone, zone, order, 4164 gfp_mask, alloc_flags, ac->migratetype); 4165 if (page) { 4166 prep_new_page(page, order, gfp_mask, alloc_flags); 4167 4168 /* 4169 * If this is a high-order atomic allocation then check 4170 * if the pageblock should be reserved for the future 4171 */ 4172 if (unlikely(order && (alloc_flags & ALLOC_HARDER))) 4173 reserve_highatomic_pageblock(page, zone, order); 4174 4175 return page; 4176 } else { 4177 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 4178 /* Try again if zone has deferred pages */ 4179 if (static_branch_unlikely(&deferred_pages)) { 4180 if (_deferred_grow_zone(zone, order)) 4181 goto try_this_zone; 4182 } 4183 #endif 4184 } 4185 } 4186 4187 /* 4188 * It's possible on a UMA machine to get through all zones that are 4189 * fragmented. If avoiding fragmentation, reset and try again. 4190 */ 4191 if (no_fallback) { 4192 alloc_flags &= ~ALLOC_NOFRAGMENT; 4193 goto retry; 4194 } 4195 4196 return NULL; 4197 } 4198 4199 static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask) 4200 { 4201 unsigned int filter = SHOW_MEM_FILTER_NODES; 4202 4203 /* 4204 * This documents exceptions given to allocations in certain 4205 * contexts that are allowed to allocate outside current's set 4206 * of allowed nodes. 4207 */ 4208 if (!(gfp_mask & __GFP_NOMEMALLOC)) 4209 if (tsk_is_oom_victim(current) || 4210 (current->flags & (PF_MEMALLOC | PF_EXITING))) 4211 filter &= ~SHOW_MEM_FILTER_NODES; 4212 if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM)) 4213 filter &= ~SHOW_MEM_FILTER_NODES; 4214 4215 show_mem(filter, nodemask); 4216 } 4217 4218 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...) 4219 { 4220 struct va_format vaf; 4221 va_list args; 4222 static DEFINE_RATELIMIT_STATE(nopage_rs, 10*HZ, 1); 4223 4224 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs)) 4225 return; 4226 4227 va_start(args, fmt); 4228 vaf.fmt = fmt; 4229 vaf.va = &args; 4230 pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl", 4231 current->comm, &vaf, gfp_mask, &gfp_mask, 4232 nodemask_pr_args(nodemask)); 4233 va_end(args); 4234 4235 cpuset_print_current_mems_allowed(); 4236 pr_cont("\n"); 4237 dump_stack(); 4238 warn_alloc_show_mem(gfp_mask, nodemask); 4239 } 4240 4241 static inline struct page * 4242 __alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order, 4243 unsigned int alloc_flags, 4244 const struct alloc_context *ac) 4245 { 4246 struct page *page; 4247 4248 page = get_page_from_freelist(gfp_mask, order, 4249 alloc_flags|ALLOC_CPUSET, ac); 4250 /* 4251 * fallback to ignore cpuset restriction if our nodes 4252 * are depleted 4253 */ 4254 if (!page) 4255 page = get_page_from_freelist(gfp_mask, order, 4256 alloc_flags, ac); 4257 4258 return page; 4259 } 4260 4261 static inline struct page * 4262 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order, 4263 const struct alloc_context *ac, unsigned long *did_some_progress) 4264 { 4265 struct oom_control oc = { 4266 .zonelist = ac->zonelist, 4267 .nodemask = ac->nodemask, 4268 .memcg = NULL, 4269 .gfp_mask = gfp_mask, 4270 .order = order, 4271 }; 4272 struct page *page; 4273 4274 *did_some_progress = 0; 4275 4276 /* 4277 * Acquire the oom lock. If that fails, somebody else is 4278 * making progress for us. 4279 */ 4280 if (!mutex_trylock(&oom_lock)) { 4281 *did_some_progress = 1; 4282 schedule_timeout_uninterruptible(1); 4283 return NULL; 4284 } 4285 4286 /* 4287 * Go through the zonelist yet one more time, keep very high watermark 4288 * here, this is only to catch a parallel oom killing, we must fail if 4289 * we're still under heavy pressure. But make sure that this reclaim 4290 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY 4291 * allocation which will never fail due to oom_lock already held. 4292 */ 4293 page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) & 4294 ~__GFP_DIRECT_RECLAIM, order, 4295 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac); 4296 if (page) 4297 goto out; 4298 4299 /* Coredumps can quickly deplete all memory reserves */ 4300 if (current->flags & PF_DUMPCORE) 4301 goto out; 4302 /* The OOM killer will not help higher order allocs */ 4303 if (order > PAGE_ALLOC_COSTLY_ORDER) 4304 goto out; 4305 /* 4306 * We have already exhausted all our reclaim opportunities without any 4307 * success so it is time to admit defeat. We will skip the OOM killer 4308 * because it is very likely that the caller has a more reasonable 4309 * fallback than shooting a random task. 4310 * 4311 * The OOM killer may not free memory on a specific node. 4312 */ 4313 if (gfp_mask & (__GFP_RETRY_MAYFAIL | __GFP_THISNODE)) 4314 goto out; 4315 /* The OOM killer does not needlessly kill tasks for lowmem */ 4316 if (ac->highest_zoneidx < ZONE_NORMAL) 4317 goto out; 4318 if (pm_suspended_storage()) 4319 goto out; 4320 /* 4321 * XXX: GFP_NOFS allocations should rather fail than rely on 4322 * other request to make a forward progress. 4323 * We are in an unfortunate situation where out_of_memory cannot 4324 * do much for this context but let's try it to at least get 4325 * access to memory reserved if the current task is killed (see 4326 * out_of_memory). Once filesystems are ready to handle allocation 4327 * failures more gracefully we should just bail out here. 4328 */ 4329 4330 /* Exhausted what can be done so it's blame time */ 4331 if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) { 4332 *did_some_progress = 1; 4333 4334 /* 4335 * Help non-failing allocations by giving them access to memory 4336 * reserves 4337 */ 4338 if (gfp_mask & __GFP_NOFAIL) 4339 page = __alloc_pages_cpuset_fallback(gfp_mask, order, 4340 ALLOC_NO_WATERMARKS, ac); 4341 } 4342 out: 4343 mutex_unlock(&oom_lock); 4344 return page; 4345 } 4346 4347 /* 4348 * Maximum number of compaction retries with a progress before OOM 4349 * killer is consider as the only way to move forward. 4350 */ 4351 #define MAX_COMPACT_RETRIES 16 4352 4353 #ifdef CONFIG_COMPACTION 4354 /* Try memory compaction for high-order allocations before reclaim */ 4355 static struct page * 4356 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order, 4357 unsigned int alloc_flags, const struct alloc_context *ac, 4358 enum compact_priority prio, enum compact_result *compact_result) 4359 { 4360 struct page *page = NULL; 4361 unsigned long pflags; 4362 unsigned int noreclaim_flag; 4363 4364 if (!order) 4365 return NULL; 4366 4367 psi_memstall_enter(&pflags); 4368 noreclaim_flag = memalloc_noreclaim_save(); 4369 4370 *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac, 4371 prio, &page); 4372 4373 memalloc_noreclaim_restore(noreclaim_flag); 4374 psi_memstall_leave(&pflags); 4375 4376 if (*compact_result == COMPACT_SKIPPED) 4377 return NULL; 4378 /* 4379 * At least in one zone compaction wasn't deferred or skipped, so let's 4380 * count a compaction stall 4381 */ 4382 count_vm_event(COMPACTSTALL); 4383 4384 /* Prep a captured page if available */ 4385 if (page) 4386 prep_new_page(page, order, gfp_mask, alloc_flags); 4387 4388 /* Try get a page from the freelist if available */ 4389 if (!page) 4390 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 4391 4392 if (page) { 4393 struct zone *zone = page_zone(page); 4394 4395 zone->compact_blockskip_flush = false; 4396 compaction_defer_reset(zone, order, true); 4397 count_vm_event(COMPACTSUCCESS); 4398 return page; 4399 } 4400 4401 /* 4402 * It's bad if compaction run occurs and fails. The most likely reason 4403 * is that pages exist, but not enough to satisfy watermarks. 4404 */ 4405 count_vm_event(COMPACTFAIL); 4406 4407 cond_resched(); 4408 4409 return NULL; 4410 } 4411 4412 static inline bool 4413 should_compact_retry(struct alloc_context *ac, int order, int alloc_flags, 4414 enum compact_result compact_result, 4415 enum compact_priority *compact_priority, 4416 int *compaction_retries) 4417 { 4418 int max_retries = MAX_COMPACT_RETRIES; 4419 int min_priority; 4420 bool ret = false; 4421 int retries = *compaction_retries; 4422 enum compact_priority priority = *compact_priority; 4423 4424 if (!order) 4425 return false; 4426 4427 if (fatal_signal_pending(current)) 4428 return false; 4429 4430 if (compaction_made_progress(compact_result)) 4431 (*compaction_retries)++; 4432 4433 /* 4434 * compaction considers all the zone as desperately out of memory 4435 * so it doesn't really make much sense to retry except when the 4436 * failure could be caused by insufficient priority 4437 */ 4438 if (compaction_failed(compact_result)) 4439 goto check_priority; 4440 4441 /* 4442 * compaction was skipped because there are not enough order-0 pages 4443 * to work with, so we retry only if it looks like reclaim can help. 4444 */ 4445 if (compaction_needs_reclaim(compact_result)) { 4446 ret = compaction_zonelist_suitable(ac, order, alloc_flags); 4447 goto out; 4448 } 4449 4450 /* 4451 * make sure the compaction wasn't deferred or didn't bail out early 4452 * due to locks contention before we declare that we should give up. 4453 * But the next retry should use a higher priority if allowed, so 4454 * we don't just keep bailing out endlessly. 4455 */ 4456 if (compaction_withdrawn(compact_result)) { 4457 goto check_priority; 4458 } 4459 4460 /* 4461 * !costly requests are much more important than __GFP_RETRY_MAYFAIL 4462 * costly ones because they are de facto nofail and invoke OOM 4463 * killer to move on while costly can fail and users are ready 4464 * to cope with that. 1/4 retries is rather arbitrary but we 4465 * would need much more detailed feedback from compaction to 4466 * make a better decision. 4467 */ 4468 if (order > PAGE_ALLOC_COSTLY_ORDER) 4469 max_retries /= 4; 4470 if (*compaction_retries <= max_retries) { 4471 ret = true; 4472 goto out; 4473 } 4474 4475 /* 4476 * Make sure there are attempts at the highest priority if we exhausted 4477 * all retries or failed at the lower priorities. 4478 */ 4479 check_priority: 4480 min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ? 4481 MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY; 4482 4483 if (*compact_priority > min_priority) { 4484 (*compact_priority)--; 4485 *compaction_retries = 0; 4486 ret = true; 4487 } 4488 out: 4489 trace_compact_retry(order, priority, compact_result, retries, max_retries, ret); 4490 return ret; 4491 } 4492 #else 4493 static inline struct page * 4494 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order, 4495 unsigned int alloc_flags, const struct alloc_context *ac, 4496 enum compact_priority prio, enum compact_result *compact_result) 4497 { 4498 *compact_result = COMPACT_SKIPPED; 4499 return NULL; 4500 } 4501 4502 static inline bool 4503 should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags, 4504 enum compact_result compact_result, 4505 enum compact_priority *compact_priority, 4506 int *compaction_retries) 4507 { 4508 struct zone *zone; 4509 struct zoneref *z; 4510 4511 if (!order || order > PAGE_ALLOC_COSTLY_ORDER) 4512 return false; 4513 4514 /* 4515 * There are setups with compaction disabled which would prefer to loop 4516 * inside the allocator rather than hit the oom killer prematurely. 4517 * Let's give them a good hope and keep retrying while the order-0 4518 * watermarks are OK. 4519 */ 4520 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, 4521 ac->highest_zoneidx, ac->nodemask) { 4522 if (zone_watermark_ok(zone, 0, min_wmark_pages(zone), 4523 ac->highest_zoneidx, alloc_flags)) 4524 return true; 4525 } 4526 return false; 4527 } 4528 #endif /* CONFIG_COMPACTION */ 4529 4530 #ifdef CONFIG_LOCKDEP 4531 static struct lockdep_map __fs_reclaim_map = 4532 STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map); 4533 4534 static bool __need_reclaim(gfp_t gfp_mask) 4535 { 4536 /* no reclaim without waiting on it */ 4537 if (!(gfp_mask & __GFP_DIRECT_RECLAIM)) 4538 return false; 4539 4540 /* this guy won't enter reclaim */ 4541 if (current->flags & PF_MEMALLOC) 4542 return false; 4543 4544 if (gfp_mask & __GFP_NOLOCKDEP) 4545 return false; 4546 4547 return true; 4548 } 4549 4550 void __fs_reclaim_acquire(void) 4551 { 4552 lock_map_acquire(&__fs_reclaim_map); 4553 } 4554 4555 void __fs_reclaim_release(void) 4556 { 4557 lock_map_release(&__fs_reclaim_map); 4558 } 4559 4560 void fs_reclaim_acquire(gfp_t gfp_mask) 4561 { 4562 gfp_mask = current_gfp_context(gfp_mask); 4563 4564 if (__need_reclaim(gfp_mask)) { 4565 if (gfp_mask & __GFP_FS) 4566 __fs_reclaim_acquire(); 4567 4568 #ifdef CONFIG_MMU_NOTIFIER 4569 lock_map_acquire(&__mmu_notifier_invalidate_range_start_map); 4570 lock_map_release(&__mmu_notifier_invalidate_range_start_map); 4571 #endif 4572 4573 } 4574 } 4575 EXPORT_SYMBOL_GPL(fs_reclaim_acquire); 4576 4577 void fs_reclaim_release(gfp_t gfp_mask) 4578 { 4579 gfp_mask = current_gfp_context(gfp_mask); 4580 4581 if (__need_reclaim(gfp_mask)) { 4582 if (gfp_mask & __GFP_FS) 4583 __fs_reclaim_release(); 4584 } 4585 } 4586 EXPORT_SYMBOL_GPL(fs_reclaim_release); 4587 #endif 4588 4589 /* Perform direct synchronous page reclaim */ 4590 static unsigned long 4591 __perform_reclaim(gfp_t gfp_mask, unsigned int order, 4592 const struct alloc_context *ac) 4593 { 4594 unsigned int noreclaim_flag; 4595 unsigned long pflags, progress; 4596 4597 cond_resched(); 4598 4599 /* We now go into synchronous reclaim */ 4600 cpuset_memory_pressure_bump(); 4601 psi_memstall_enter(&pflags); 4602 fs_reclaim_acquire(gfp_mask); 4603 noreclaim_flag = memalloc_noreclaim_save(); 4604 4605 progress = try_to_free_pages(ac->zonelist, order, gfp_mask, 4606 ac->nodemask); 4607 4608 memalloc_noreclaim_restore(noreclaim_flag); 4609 fs_reclaim_release(gfp_mask); 4610 psi_memstall_leave(&pflags); 4611 4612 cond_resched(); 4613 4614 return progress; 4615 } 4616 4617 /* The really slow allocator path where we enter direct reclaim */ 4618 static inline struct page * 4619 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order, 4620 unsigned int alloc_flags, const struct alloc_context *ac, 4621 unsigned long *did_some_progress) 4622 { 4623 struct page *page = NULL; 4624 bool drained = false; 4625 4626 *did_some_progress = __perform_reclaim(gfp_mask, order, ac); 4627 if (unlikely(!(*did_some_progress))) 4628 return NULL; 4629 4630 retry: 4631 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 4632 4633 /* 4634 * If an allocation failed after direct reclaim, it could be because 4635 * pages are pinned on the per-cpu lists or in high alloc reserves. 4636 * Shrink them and try again 4637 */ 4638 if (!page && !drained) { 4639 unreserve_highatomic_pageblock(ac, false); 4640 drain_all_pages(NULL); 4641 drained = true; 4642 goto retry; 4643 } 4644 4645 return page; 4646 } 4647 4648 static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask, 4649 const struct alloc_context *ac) 4650 { 4651 struct zoneref *z; 4652 struct zone *zone; 4653 pg_data_t *last_pgdat = NULL; 4654 enum zone_type highest_zoneidx = ac->highest_zoneidx; 4655 4656 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, highest_zoneidx, 4657 ac->nodemask) { 4658 if (last_pgdat != zone->zone_pgdat) 4659 wakeup_kswapd(zone, gfp_mask, order, highest_zoneidx); 4660 last_pgdat = zone->zone_pgdat; 4661 } 4662 } 4663 4664 static inline unsigned int 4665 gfp_to_alloc_flags(gfp_t gfp_mask) 4666 { 4667 unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET; 4668 4669 /* 4670 * __GFP_HIGH is assumed to be the same as ALLOC_HIGH 4671 * and __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD 4672 * to save two branches. 4673 */ 4674 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH); 4675 BUILD_BUG_ON(__GFP_KSWAPD_RECLAIM != (__force gfp_t) ALLOC_KSWAPD); 4676 4677 /* 4678 * The caller may dip into page reserves a bit more if the caller 4679 * cannot run direct reclaim, or if the caller has realtime scheduling 4680 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will 4681 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH). 4682 */ 4683 alloc_flags |= (__force int) 4684 (gfp_mask & (__GFP_HIGH | __GFP_KSWAPD_RECLAIM)); 4685 4686 if (gfp_mask & __GFP_ATOMIC) { 4687 /* 4688 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even 4689 * if it can't schedule. 4690 */ 4691 if (!(gfp_mask & __GFP_NOMEMALLOC)) 4692 alloc_flags |= ALLOC_HARDER; 4693 /* 4694 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the 4695 * comment for __cpuset_node_allowed(). 4696 */ 4697 alloc_flags &= ~ALLOC_CPUSET; 4698 } else if (unlikely(rt_task(current)) && !in_interrupt()) 4699 alloc_flags |= ALLOC_HARDER; 4700 4701 alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, alloc_flags); 4702 4703 return alloc_flags; 4704 } 4705 4706 static bool oom_reserves_allowed(struct task_struct *tsk) 4707 { 4708 if (!tsk_is_oom_victim(tsk)) 4709 return false; 4710 4711 /* 4712 * !MMU doesn't have oom reaper so give access to memory reserves 4713 * only to the thread with TIF_MEMDIE set 4714 */ 4715 if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE)) 4716 return false; 4717 4718 return true; 4719 } 4720 4721 /* 4722 * Distinguish requests which really need access to full memory 4723 * reserves from oom victims which can live with a portion of it 4724 */ 4725 static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask) 4726 { 4727 if (unlikely(gfp_mask & __GFP_NOMEMALLOC)) 4728 return 0; 4729 if (gfp_mask & __GFP_MEMALLOC) 4730 return ALLOC_NO_WATERMARKS; 4731 if (in_serving_softirq() && (current->flags & PF_MEMALLOC)) 4732 return ALLOC_NO_WATERMARKS; 4733 if (!in_interrupt()) { 4734 if (current->flags & PF_MEMALLOC) 4735 return ALLOC_NO_WATERMARKS; 4736 else if (oom_reserves_allowed(current)) 4737 return ALLOC_OOM; 4738 } 4739 4740 return 0; 4741 } 4742 4743 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask) 4744 { 4745 return !!__gfp_pfmemalloc_flags(gfp_mask); 4746 } 4747 4748 /* 4749 * Checks whether it makes sense to retry the reclaim to make a forward progress 4750 * for the given allocation request. 4751 * 4752 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row 4753 * without success, or when we couldn't even meet the watermark if we 4754 * reclaimed all remaining pages on the LRU lists. 4755 * 4756 * Returns true if a retry is viable or false to enter the oom path. 4757 */ 4758 static inline bool 4759 should_reclaim_retry(gfp_t gfp_mask, unsigned order, 4760 struct alloc_context *ac, int alloc_flags, 4761 bool did_some_progress, int *no_progress_loops) 4762 { 4763 struct zone *zone; 4764 struct zoneref *z; 4765 bool ret = false; 4766 4767 /* 4768 * Costly allocations might have made a progress but this doesn't mean 4769 * their order will become available due to high fragmentation so 4770 * always increment the no progress counter for them 4771 */ 4772 if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER) 4773 *no_progress_loops = 0; 4774 else 4775 (*no_progress_loops)++; 4776 4777 /* 4778 * Make sure we converge to OOM if we cannot make any progress 4779 * several times in the row. 4780 */ 4781 if (*no_progress_loops > MAX_RECLAIM_RETRIES) { 4782 /* Before OOM, exhaust highatomic_reserve */ 4783 return unreserve_highatomic_pageblock(ac, true); 4784 } 4785 4786 /* 4787 * Keep reclaiming pages while there is a chance this will lead 4788 * somewhere. If none of the target zones can satisfy our allocation 4789 * request even if all reclaimable pages are considered then we are 4790 * screwed and have to go OOM. 4791 */ 4792 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, 4793 ac->highest_zoneidx, ac->nodemask) { 4794 unsigned long available; 4795 unsigned long reclaimable; 4796 unsigned long min_wmark = min_wmark_pages(zone); 4797 bool wmark; 4798 4799 available = reclaimable = zone_reclaimable_pages(zone); 4800 available += zone_page_state_snapshot(zone, NR_FREE_PAGES); 4801 4802 /* 4803 * Would the allocation succeed if we reclaimed all 4804 * reclaimable pages? 4805 */ 4806 wmark = __zone_watermark_ok(zone, order, min_wmark, 4807 ac->highest_zoneidx, alloc_flags, available); 4808 trace_reclaim_retry_zone(z, order, reclaimable, 4809 available, min_wmark, *no_progress_loops, wmark); 4810 if (wmark) { 4811 /* 4812 * If we didn't make any progress and have a lot of 4813 * dirty + writeback pages then we should wait for 4814 * an IO to complete to slow down the reclaim and 4815 * prevent from pre mature OOM 4816 */ 4817 if (!did_some_progress) { 4818 unsigned long write_pending; 4819 4820 write_pending = zone_page_state_snapshot(zone, 4821 NR_ZONE_WRITE_PENDING); 4822 4823 if (2 * write_pending > reclaimable) { 4824 congestion_wait(BLK_RW_ASYNC, HZ/10); 4825 return true; 4826 } 4827 } 4828 4829 ret = true; 4830 goto out; 4831 } 4832 } 4833 4834 out: 4835 /* 4836 * Memory allocation/reclaim might be called from a WQ context and the 4837 * current implementation of the WQ concurrency control doesn't 4838 * recognize that a particular WQ is congested if the worker thread is 4839 * looping without ever sleeping. Therefore we have to do a short sleep 4840 * here rather than calling cond_resched(). 4841 */ 4842 if (current->flags & PF_WQ_WORKER) 4843 schedule_timeout_uninterruptible(1); 4844 else 4845 cond_resched(); 4846 return ret; 4847 } 4848 4849 static inline bool 4850 check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac) 4851 { 4852 /* 4853 * It's possible that cpuset's mems_allowed and the nodemask from 4854 * mempolicy don't intersect. This should be normally dealt with by 4855 * policy_nodemask(), but it's possible to race with cpuset update in 4856 * such a way the check therein was true, and then it became false 4857 * before we got our cpuset_mems_cookie here. 4858 * This assumes that for all allocations, ac->nodemask can come only 4859 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored 4860 * when it does not intersect with the cpuset restrictions) or the 4861 * caller can deal with a violated nodemask. 4862 */ 4863 if (cpusets_enabled() && ac->nodemask && 4864 !cpuset_nodemask_valid_mems_allowed(ac->nodemask)) { 4865 ac->nodemask = NULL; 4866 return true; 4867 } 4868 4869 /* 4870 * When updating a task's mems_allowed or mempolicy nodemask, it is 4871 * possible to race with parallel threads in such a way that our 4872 * allocation can fail while the mask is being updated. If we are about 4873 * to fail, check if the cpuset changed during allocation and if so, 4874 * retry. 4875 */ 4876 if (read_mems_allowed_retry(cpuset_mems_cookie)) 4877 return true; 4878 4879 return false; 4880 } 4881 4882 static inline struct page * 4883 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order, 4884 struct alloc_context *ac) 4885 { 4886 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM; 4887 const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER; 4888 struct page *page = NULL; 4889 unsigned int alloc_flags; 4890 unsigned long did_some_progress; 4891 enum compact_priority compact_priority; 4892 enum compact_result compact_result; 4893 int compaction_retries; 4894 int no_progress_loops; 4895 unsigned int cpuset_mems_cookie; 4896 int reserve_flags; 4897 4898 /* 4899 * We also sanity check to catch abuse of atomic reserves being used by 4900 * callers that are not in atomic context. 4901 */ 4902 if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) == 4903 (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM))) 4904 gfp_mask &= ~__GFP_ATOMIC; 4905 4906 retry_cpuset: 4907 compaction_retries = 0; 4908 no_progress_loops = 0; 4909 compact_priority = DEF_COMPACT_PRIORITY; 4910 cpuset_mems_cookie = read_mems_allowed_begin(); 4911 4912 /* 4913 * The fast path uses conservative alloc_flags to succeed only until 4914 * kswapd needs to be woken up, and to avoid the cost of setting up 4915 * alloc_flags precisely. So we do that now. 4916 */ 4917 alloc_flags = gfp_to_alloc_flags(gfp_mask); 4918 4919 /* 4920 * We need to recalculate the starting point for the zonelist iterator 4921 * because we might have used different nodemask in the fast path, or 4922 * there was a cpuset modification and we are retrying - otherwise we 4923 * could end up iterating over non-eligible zones endlessly. 4924 */ 4925 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist, 4926 ac->highest_zoneidx, ac->nodemask); 4927 if (!ac->preferred_zoneref->zone) 4928 goto nopage; 4929 4930 if (alloc_flags & ALLOC_KSWAPD) 4931 wake_all_kswapds(order, gfp_mask, ac); 4932 4933 /* 4934 * The adjusted alloc_flags might result in immediate success, so try 4935 * that first 4936 */ 4937 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 4938 if (page) 4939 goto got_pg; 4940 4941 /* 4942 * For costly allocations, try direct compaction first, as it's likely 4943 * that we have enough base pages and don't need to reclaim. For non- 4944 * movable high-order allocations, do that as well, as compaction will 4945 * try prevent permanent fragmentation by migrating from blocks of the 4946 * same migratetype. 4947 * Don't try this for allocations that are allowed to ignore 4948 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen. 4949 */ 4950 if (can_direct_reclaim && 4951 (costly_order || 4952 (order > 0 && ac->migratetype != MIGRATE_MOVABLE)) 4953 && !gfp_pfmemalloc_allowed(gfp_mask)) { 4954 page = __alloc_pages_direct_compact(gfp_mask, order, 4955 alloc_flags, ac, 4956 INIT_COMPACT_PRIORITY, 4957 &compact_result); 4958 if (page) 4959 goto got_pg; 4960 4961 /* 4962 * Checks for costly allocations with __GFP_NORETRY, which 4963 * includes some THP page fault allocations 4964 */ 4965 if (costly_order && (gfp_mask & __GFP_NORETRY)) { 4966 /* 4967 * If allocating entire pageblock(s) and compaction 4968 * failed because all zones are below low watermarks 4969 * or is prohibited because it recently failed at this 4970 * order, fail immediately unless the allocator has 4971 * requested compaction and reclaim retry. 4972 * 4973 * Reclaim is 4974 * - potentially very expensive because zones are far 4975 * below their low watermarks or this is part of very 4976 * bursty high order allocations, 4977 * - not guaranteed to help because isolate_freepages() 4978 * may not iterate over freed pages as part of its 4979 * linear scan, and 4980 * - unlikely to make entire pageblocks free on its 4981 * own. 4982 */ 4983 if (compact_result == COMPACT_SKIPPED || 4984 compact_result == COMPACT_DEFERRED) 4985 goto nopage; 4986 4987 /* 4988 * Looks like reclaim/compaction is worth trying, but 4989 * sync compaction could be very expensive, so keep 4990 * using async compaction. 4991 */ 4992 compact_priority = INIT_COMPACT_PRIORITY; 4993 } 4994 } 4995 4996 retry: 4997 /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */ 4998 if (alloc_flags & ALLOC_KSWAPD) 4999 wake_all_kswapds(order, gfp_mask, ac); 5000 5001 reserve_flags = __gfp_pfmemalloc_flags(gfp_mask); 5002 if (reserve_flags) 5003 alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, reserve_flags); 5004 5005 /* 5006 * Reset the nodemask and zonelist iterators if memory policies can be 5007 * ignored. These allocations are high priority and system rather than 5008 * user oriented. 5009 */ 5010 if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) { 5011 ac->nodemask = NULL; 5012 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist, 5013 ac->highest_zoneidx, ac->nodemask); 5014 } 5015 5016 /* Attempt with potentially adjusted zonelist and alloc_flags */ 5017 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 5018 if (page) 5019 goto got_pg; 5020 5021 /* Caller is not willing to reclaim, we can't balance anything */ 5022 if (!can_direct_reclaim) 5023 goto nopage; 5024 5025 /* Avoid recursion of direct reclaim */ 5026 if (current->flags & PF_MEMALLOC) 5027 goto nopage; 5028 5029 /* Try direct reclaim and then allocating */ 5030 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac, 5031 &did_some_progress); 5032 if (page) 5033 goto got_pg; 5034 5035 /* Try direct compaction and then allocating */ 5036 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac, 5037 compact_priority, &compact_result); 5038 if (page) 5039 goto got_pg; 5040 5041 /* Do not loop if specifically requested */ 5042 if (gfp_mask & __GFP_NORETRY) 5043 goto nopage; 5044 5045 /* 5046 * Do not retry costly high order allocations unless they are 5047 * __GFP_RETRY_MAYFAIL 5048 */ 5049 if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL)) 5050 goto nopage; 5051 5052 if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags, 5053 did_some_progress > 0, &no_progress_loops)) 5054 goto retry; 5055 5056 /* 5057 * It doesn't make any sense to retry for the compaction if the order-0 5058 * reclaim is not able to make any progress because the current 5059 * implementation of the compaction depends on the sufficient amount 5060 * of free memory (see __compaction_suitable) 5061 */ 5062 if (did_some_progress > 0 && 5063 should_compact_retry(ac, order, alloc_flags, 5064 compact_result, &compact_priority, 5065 &compaction_retries)) 5066 goto retry; 5067 5068 5069 /* Deal with possible cpuset update races before we start OOM killing */ 5070 if (check_retry_cpuset(cpuset_mems_cookie, ac)) 5071 goto retry_cpuset; 5072 5073 /* Reclaim has failed us, start killing things */ 5074 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress); 5075 if (page) 5076 goto got_pg; 5077 5078 /* Avoid allocations with no watermarks from looping endlessly */ 5079 if (tsk_is_oom_victim(current) && 5080 (alloc_flags & ALLOC_OOM || 5081 (gfp_mask & __GFP_NOMEMALLOC))) 5082 goto nopage; 5083 5084 /* Retry as long as the OOM killer is making progress */ 5085 if (did_some_progress) { 5086 no_progress_loops = 0; 5087 goto retry; 5088 } 5089 5090 nopage: 5091 /* Deal with possible cpuset update races before we fail */ 5092 if (check_retry_cpuset(cpuset_mems_cookie, ac)) 5093 goto retry_cpuset; 5094 5095 /* 5096 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure 5097 * we always retry 5098 */ 5099 if (gfp_mask & __GFP_NOFAIL) { 5100 /* 5101 * All existing users of the __GFP_NOFAIL are blockable, so warn 5102 * of any new users that actually require GFP_NOWAIT 5103 */ 5104 if (WARN_ON_ONCE(!can_direct_reclaim)) 5105 goto fail; 5106 5107 /* 5108 * PF_MEMALLOC request from this context is rather bizarre 5109 * because we cannot reclaim anything and only can loop waiting 5110 * for somebody to do a work for us 5111 */ 5112 WARN_ON_ONCE(current->flags & PF_MEMALLOC); 5113 5114 /* 5115 * non failing costly orders are a hard requirement which we 5116 * are not prepared for much so let's warn about these users 5117 * so that we can identify them and convert them to something 5118 * else. 5119 */ 5120 WARN_ON_ONCE(order > PAGE_ALLOC_COSTLY_ORDER); 5121 5122 /* 5123 * Help non-failing allocations by giving them access to memory 5124 * reserves but do not use ALLOC_NO_WATERMARKS because this 5125 * could deplete whole memory reserves which would just make 5126 * the situation worse 5127 */ 5128 page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac); 5129 if (page) 5130 goto got_pg; 5131 5132 cond_resched(); 5133 goto retry; 5134 } 5135 fail: 5136 warn_alloc(gfp_mask, ac->nodemask, 5137 "page allocation failure: order:%u", order); 5138 got_pg: 5139 return page; 5140 } 5141 5142 static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order, 5143 int preferred_nid, nodemask_t *nodemask, 5144 struct alloc_context *ac, gfp_t *alloc_gfp, 5145 unsigned int *alloc_flags) 5146 { 5147 ac->highest_zoneidx = gfp_zone(gfp_mask); 5148 ac->zonelist = node_zonelist(preferred_nid, gfp_mask); 5149 ac->nodemask = nodemask; 5150 ac->migratetype = gfp_migratetype(gfp_mask); 5151 5152 if (cpusets_enabled()) { 5153 *alloc_gfp |= __GFP_HARDWALL; 5154 /* 5155 * When we are in the interrupt context, it is irrelevant 5156 * to the current task context. It means that any node ok. 5157 */ 5158 if (!in_interrupt() && !ac->nodemask) 5159 ac->nodemask = &cpuset_current_mems_allowed; 5160 else 5161 *alloc_flags |= ALLOC_CPUSET; 5162 } 5163 5164 fs_reclaim_acquire(gfp_mask); 5165 fs_reclaim_release(gfp_mask); 5166 5167 might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM); 5168 5169 if (should_fail_alloc_page(gfp_mask, order)) 5170 return false; 5171 5172 *alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, *alloc_flags); 5173 5174 /* Dirty zone balancing only done in the fast path */ 5175 ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE); 5176 5177 /* 5178 * The preferred zone is used for statistics but crucially it is 5179 * also used as the starting point for the zonelist iterator. It 5180 * may get reset for allocations that ignore memory policies. 5181 */ 5182 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist, 5183 ac->highest_zoneidx, ac->nodemask); 5184 5185 return true; 5186 } 5187 5188 /* 5189 * __alloc_pages_bulk - Allocate a number of order-0 pages to a list or array 5190 * @gfp: GFP flags for the allocation 5191 * @preferred_nid: The preferred NUMA node ID to allocate from 5192 * @nodemask: Set of nodes to allocate from, may be NULL 5193 * @nr_pages: The number of pages desired on the list or array 5194 * @page_list: Optional list to store the allocated pages 5195 * @page_array: Optional array to store the pages 5196 * 5197 * This is a batched version of the page allocator that attempts to 5198 * allocate nr_pages quickly. Pages are added to page_list if page_list 5199 * is not NULL, otherwise it is assumed that the page_array is valid. 5200 * 5201 * For lists, nr_pages is the number of pages that should be allocated. 5202 * 5203 * For arrays, only NULL elements are populated with pages and nr_pages 5204 * is the maximum number of pages that will be stored in the array. 5205 * 5206 * Returns the number of pages on the list or array. 5207 */ 5208 unsigned long __alloc_pages_bulk(gfp_t gfp, int preferred_nid, 5209 nodemask_t *nodemask, int nr_pages, 5210 struct list_head *page_list, 5211 struct page **page_array) 5212 { 5213 struct page *page; 5214 unsigned long flags; 5215 struct zone *zone; 5216 struct zoneref *z; 5217 struct per_cpu_pages *pcp; 5218 struct list_head *pcp_list; 5219 struct alloc_context ac; 5220 gfp_t alloc_gfp; 5221 unsigned int alloc_flags = ALLOC_WMARK_LOW; 5222 int nr_populated = 0, nr_account = 0; 5223 5224 if (unlikely(nr_pages <= 0)) 5225 return 0; 5226 5227 /* 5228 * Skip populated array elements to determine if any pages need 5229 * to be allocated before disabling IRQs. 5230 */ 5231 while (page_array && nr_populated < nr_pages && page_array[nr_populated]) 5232 nr_populated++; 5233 5234 /* Already populated array? */ 5235 if (unlikely(page_array && nr_pages - nr_populated == 0)) 5236 return nr_populated; 5237 5238 /* Use the single page allocator for one page. */ 5239 if (nr_pages - nr_populated == 1) 5240 goto failed; 5241 5242 /* May set ALLOC_NOFRAGMENT, fragmentation will return 1 page. */ 5243 gfp &= gfp_allowed_mask; 5244 alloc_gfp = gfp; 5245 if (!prepare_alloc_pages(gfp, 0, preferred_nid, nodemask, &ac, &alloc_gfp, &alloc_flags)) 5246 return 0; 5247 gfp = alloc_gfp; 5248 5249 /* Find an allowed local zone that meets the low watermark. */ 5250 for_each_zone_zonelist_nodemask(zone, z, ac.zonelist, ac.highest_zoneidx, ac.nodemask) { 5251 unsigned long mark; 5252 5253 if (cpusets_enabled() && (alloc_flags & ALLOC_CPUSET) && 5254 !__cpuset_zone_allowed(zone, gfp)) { 5255 continue; 5256 } 5257 5258 if (nr_online_nodes > 1 && zone != ac.preferred_zoneref->zone && 5259 zone_to_nid(zone) != zone_to_nid(ac.preferred_zoneref->zone)) { 5260 goto failed; 5261 } 5262 5263 mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK) + nr_pages; 5264 if (zone_watermark_fast(zone, 0, mark, 5265 zonelist_zone_idx(ac.preferred_zoneref), 5266 alloc_flags, gfp)) { 5267 break; 5268 } 5269 } 5270 5271 /* 5272 * If there are no allowed local zones that meets the watermarks then 5273 * try to allocate a single page and reclaim if necessary. 5274 */ 5275 if (unlikely(!zone)) 5276 goto failed; 5277 5278 /* Attempt the batch allocation */ 5279 local_lock_irqsave(&pagesets.lock, flags); 5280 pcp = this_cpu_ptr(zone->per_cpu_pageset); 5281 pcp_list = &pcp->lists[order_to_pindex(ac.migratetype, 0)]; 5282 5283 while (nr_populated < nr_pages) { 5284 5285 /* Skip existing pages */ 5286 if (page_array && page_array[nr_populated]) { 5287 nr_populated++; 5288 continue; 5289 } 5290 5291 page = __rmqueue_pcplist(zone, 0, ac.migratetype, alloc_flags, 5292 pcp, pcp_list); 5293 if (unlikely(!page)) { 5294 /* Try and get at least one page */ 5295 if (!nr_populated) 5296 goto failed_irq; 5297 break; 5298 } 5299 nr_account++; 5300 5301 prep_new_page(page, 0, gfp, 0); 5302 if (page_list) 5303 list_add(&page->lru, page_list); 5304 else 5305 page_array[nr_populated] = page; 5306 nr_populated++; 5307 } 5308 5309 local_unlock_irqrestore(&pagesets.lock, flags); 5310 5311 __count_zid_vm_events(PGALLOC, zone_idx(zone), nr_account); 5312 zone_statistics(ac.preferred_zoneref->zone, zone, nr_account); 5313 5314 return nr_populated; 5315 5316 failed_irq: 5317 local_unlock_irqrestore(&pagesets.lock, flags); 5318 5319 failed: 5320 page = __alloc_pages(gfp, 0, preferred_nid, nodemask); 5321 if (page) { 5322 if (page_list) 5323 list_add(&page->lru, page_list); 5324 else 5325 page_array[nr_populated] = page; 5326 nr_populated++; 5327 } 5328 5329 return nr_populated; 5330 } 5331 EXPORT_SYMBOL_GPL(__alloc_pages_bulk); 5332 5333 /* 5334 * This is the 'heart' of the zoned buddy allocator. 5335 */ 5336 struct page *__alloc_pages(gfp_t gfp, unsigned int order, int preferred_nid, 5337 nodemask_t *nodemask) 5338 { 5339 struct page *page; 5340 unsigned int alloc_flags = ALLOC_WMARK_LOW; 5341 gfp_t alloc_gfp; /* The gfp_t that was actually used for allocation */ 5342 struct alloc_context ac = { }; 5343 5344 /* 5345 * There are several places where we assume that the order value is sane 5346 * so bail out early if the request is out of bound. 5347 */ 5348 if (unlikely(order >= MAX_ORDER)) { 5349 WARN_ON_ONCE(!(gfp & __GFP_NOWARN)); 5350 return NULL; 5351 } 5352 5353 gfp &= gfp_allowed_mask; 5354 /* 5355 * Apply scoped allocation constraints. This is mainly about GFP_NOFS 5356 * resp. GFP_NOIO which has to be inherited for all allocation requests 5357 * from a particular context which has been marked by 5358 * memalloc_no{fs,io}_{save,restore}. And PF_MEMALLOC_PIN which ensures 5359 * movable zones are not used during allocation. 5360 */ 5361 gfp = current_gfp_context(gfp); 5362 alloc_gfp = gfp; 5363 if (!prepare_alloc_pages(gfp, order, preferred_nid, nodemask, &ac, 5364 &alloc_gfp, &alloc_flags)) 5365 return NULL; 5366 5367 /* 5368 * Forbid the first pass from falling back to types that fragment 5369 * memory until all local zones are considered. 5370 */ 5371 alloc_flags |= alloc_flags_nofragment(ac.preferred_zoneref->zone, gfp); 5372 5373 /* First allocation attempt */ 5374 page = get_page_from_freelist(alloc_gfp, order, alloc_flags, &ac); 5375 if (likely(page)) 5376 goto out; 5377 5378 alloc_gfp = gfp; 5379 ac.spread_dirty_pages = false; 5380 5381 /* 5382 * Restore the original nodemask if it was potentially replaced with 5383 * &cpuset_current_mems_allowed to optimize the fast-path attempt. 5384 */ 5385 ac.nodemask = nodemask; 5386 5387 page = __alloc_pages_slowpath(alloc_gfp, order, &ac); 5388 5389 out: 5390 if (memcg_kmem_enabled() && (gfp & __GFP_ACCOUNT) && page && 5391 unlikely(__memcg_kmem_charge_page(page, gfp, order) != 0)) { 5392 __free_pages(page, order); 5393 page = NULL; 5394 } 5395 5396 trace_mm_page_alloc(page, order, alloc_gfp, ac.migratetype); 5397 5398 return page; 5399 } 5400 EXPORT_SYMBOL(__alloc_pages); 5401 5402 /* 5403 * Common helper functions. Never use with __GFP_HIGHMEM because the returned 5404 * address cannot represent highmem pages. Use alloc_pages and then kmap if 5405 * you need to access high mem. 5406 */ 5407 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order) 5408 { 5409 struct page *page; 5410 5411 page = alloc_pages(gfp_mask & ~__GFP_HIGHMEM, order); 5412 if (!page) 5413 return 0; 5414 return (unsigned long) page_address(page); 5415 } 5416 EXPORT_SYMBOL(__get_free_pages); 5417 5418 unsigned long get_zeroed_page(gfp_t gfp_mask) 5419 { 5420 return __get_free_pages(gfp_mask | __GFP_ZERO, 0); 5421 } 5422 EXPORT_SYMBOL(get_zeroed_page); 5423 5424 /** 5425 * __free_pages - Free pages allocated with alloc_pages(). 5426 * @page: The page pointer returned from alloc_pages(). 5427 * @order: The order of the allocation. 5428 * 5429 * This function can free multi-page allocations that are not compound 5430 * pages. It does not check that the @order passed in matches that of 5431 * the allocation, so it is easy to leak memory. Freeing more memory 5432 * than was allocated will probably emit a warning. 5433 * 5434 * If the last reference to this page is speculative, it will be released 5435 * by put_page() which only frees the first page of a non-compound 5436 * allocation. To prevent the remaining pages from being leaked, we free 5437 * the subsequent pages here. If you want to use the page's reference 5438 * count to decide when to free the allocation, you should allocate a 5439 * compound page, and use put_page() instead of __free_pages(). 5440 * 5441 * Context: May be called in interrupt context or while holding a normal 5442 * spinlock, but not in NMI context or while holding a raw spinlock. 5443 */ 5444 void __free_pages(struct page *page, unsigned int order) 5445 { 5446 if (put_page_testzero(page)) 5447 free_the_page(page, order); 5448 else if (!PageHead(page)) 5449 while (order-- > 0) 5450 free_the_page(page + (1 << order), order); 5451 } 5452 EXPORT_SYMBOL(__free_pages); 5453 5454 void free_pages(unsigned long addr, unsigned int order) 5455 { 5456 if (addr != 0) { 5457 VM_BUG_ON(!virt_addr_valid((void *)addr)); 5458 __free_pages(virt_to_page((void *)addr), order); 5459 } 5460 } 5461 5462 EXPORT_SYMBOL(free_pages); 5463 5464 /* 5465 * Page Fragment: 5466 * An arbitrary-length arbitrary-offset area of memory which resides 5467 * within a 0 or higher order page. Multiple fragments within that page 5468 * are individually refcounted, in the page's reference counter. 5469 * 5470 * The page_frag functions below provide a simple allocation framework for 5471 * page fragments. This is used by the network stack and network device 5472 * drivers to provide a backing region of memory for use as either an 5473 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info. 5474 */ 5475 static struct page *__page_frag_cache_refill(struct page_frag_cache *nc, 5476 gfp_t gfp_mask) 5477 { 5478 struct page *page = NULL; 5479 gfp_t gfp = gfp_mask; 5480 5481 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE) 5482 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY | 5483 __GFP_NOMEMALLOC; 5484 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask, 5485 PAGE_FRAG_CACHE_MAX_ORDER); 5486 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE; 5487 #endif 5488 if (unlikely(!page)) 5489 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0); 5490 5491 nc->va = page ? page_address(page) : NULL; 5492 5493 return page; 5494 } 5495 5496 void __page_frag_cache_drain(struct page *page, unsigned int count) 5497 { 5498 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page); 5499 5500 if (page_ref_sub_and_test(page, count)) 5501 free_the_page(page, compound_order(page)); 5502 } 5503 EXPORT_SYMBOL(__page_frag_cache_drain); 5504 5505 void *page_frag_alloc_align(struct page_frag_cache *nc, 5506 unsigned int fragsz, gfp_t gfp_mask, 5507 unsigned int align_mask) 5508 { 5509 unsigned int size = PAGE_SIZE; 5510 struct page *page; 5511 int offset; 5512 5513 if (unlikely(!nc->va)) { 5514 refill: 5515 page = __page_frag_cache_refill(nc, gfp_mask); 5516 if (!page) 5517 return NULL; 5518 5519 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE) 5520 /* if size can vary use size else just use PAGE_SIZE */ 5521 size = nc->size; 5522 #endif 5523 /* Even if we own the page, we do not use atomic_set(). 5524 * This would break get_page_unless_zero() users. 5525 */ 5526 page_ref_add(page, PAGE_FRAG_CACHE_MAX_SIZE); 5527 5528 /* reset page count bias and offset to start of new frag */ 5529 nc->pfmemalloc = page_is_pfmemalloc(page); 5530 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1; 5531 nc->offset = size; 5532 } 5533 5534 offset = nc->offset - fragsz; 5535 if (unlikely(offset < 0)) { 5536 page = virt_to_page(nc->va); 5537 5538 if (!page_ref_sub_and_test(page, nc->pagecnt_bias)) 5539 goto refill; 5540 5541 if (unlikely(nc->pfmemalloc)) { 5542 free_the_page(page, compound_order(page)); 5543 goto refill; 5544 } 5545 5546 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE) 5547 /* if size can vary use size else just use PAGE_SIZE */ 5548 size = nc->size; 5549 #endif 5550 /* OK, page count is 0, we can safely set it */ 5551 set_page_count(page, PAGE_FRAG_CACHE_MAX_SIZE + 1); 5552 5553 /* reset page count bias and offset to start of new frag */ 5554 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1; 5555 offset = size - fragsz; 5556 } 5557 5558 nc->pagecnt_bias--; 5559 offset &= align_mask; 5560 nc->offset = offset; 5561 5562 return nc->va + offset; 5563 } 5564 EXPORT_SYMBOL(page_frag_alloc_align); 5565 5566 /* 5567 * Frees a page fragment allocated out of either a compound or order 0 page. 5568 */ 5569 void page_frag_free(void *addr) 5570 { 5571 struct page *page = virt_to_head_page(addr); 5572 5573 if (unlikely(put_page_testzero(page))) 5574 free_the_page(page, compound_order(page)); 5575 } 5576 EXPORT_SYMBOL(page_frag_free); 5577 5578 static void *make_alloc_exact(unsigned long addr, unsigned int order, 5579 size_t size) 5580 { 5581 if (addr) { 5582 unsigned long alloc_end = addr + (PAGE_SIZE << order); 5583 unsigned long used = addr + PAGE_ALIGN(size); 5584 5585 split_page(virt_to_page((void *)addr), order); 5586 while (used < alloc_end) { 5587 free_page(used); 5588 used += PAGE_SIZE; 5589 } 5590 } 5591 return (void *)addr; 5592 } 5593 5594 /** 5595 * alloc_pages_exact - allocate an exact number physically-contiguous pages. 5596 * @size: the number of bytes to allocate 5597 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP 5598 * 5599 * This function is similar to alloc_pages(), except that it allocates the 5600 * minimum number of pages to satisfy the request. alloc_pages() can only 5601 * allocate memory in power-of-two pages. 5602 * 5603 * This function is also limited by MAX_ORDER. 5604 * 5605 * Memory allocated by this function must be released by free_pages_exact(). 5606 * 5607 * Return: pointer to the allocated area or %NULL in case of error. 5608 */ 5609 void *alloc_pages_exact(size_t size, gfp_t gfp_mask) 5610 { 5611 unsigned int order = get_order(size); 5612 unsigned long addr; 5613 5614 if (WARN_ON_ONCE(gfp_mask & __GFP_COMP)) 5615 gfp_mask &= ~__GFP_COMP; 5616 5617 addr = __get_free_pages(gfp_mask, order); 5618 return make_alloc_exact(addr, order, size); 5619 } 5620 EXPORT_SYMBOL(alloc_pages_exact); 5621 5622 /** 5623 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous 5624 * pages on a node. 5625 * @nid: the preferred node ID where memory should be allocated 5626 * @size: the number of bytes to allocate 5627 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP 5628 * 5629 * Like alloc_pages_exact(), but try to allocate on node nid first before falling 5630 * back. 5631 * 5632 * Return: pointer to the allocated area or %NULL in case of error. 5633 */ 5634 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask) 5635 { 5636 unsigned int order = get_order(size); 5637 struct page *p; 5638 5639 if (WARN_ON_ONCE(gfp_mask & __GFP_COMP)) 5640 gfp_mask &= ~__GFP_COMP; 5641 5642 p = alloc_pages_node(nid, gfp_mask, order); 5643 if (!p) 5644 return NULL; 5645 return make_alloc_exact((unsigned long)page_address(p), order, size); 5646 } 5647 5648 /** 5649 * free_pages_exact - release memory allocated via alloc_pages_exact() 5650 * @virt: the value returned by alloc_pages_exact. 5651 * @size: size of allocation, same value as passed to alloc_pages_exact(). 5652 * 5653 * Release the memory allocated by a previous call to alloc_pages_exact. 5654 */ 5655 void free_pages_exact(void *virt, size_t size) 5656 { 5657 unsigned long addr = (unsigned long)virt; 5658 unsigned long end = addr + PAGE_ALIGN(size); 5659 5660 while (addr < end) { 5661 free_page(addr); 5662 addr += PAGE_SIZE; 5663 } 5664 } 5665 EXPORT_SYMBOL(free_pages_exact); 5666 5667 /** 5668 * nr_free_zone_pages - count number of pages beyond high watermark 5669 * @offset: The zone index of the highest zone 5670 * 5671 * nr_free_zone_pages() counts the number of pages which are beyond the 5672 * high watermark within all zones at or below a given zone index. For each 5673 * zone, the number of pages is calculated as: 5674 * 5675 * nr_free_zone_pages = managed_pages - high_pages 5676 * 5677 * Return: number of pages beyond high watermark. 5678 */ 5679 static unsigned long nr_free_zone_pages(int offset) 5680 { 5681 struct zoneref *z; 5682 struct zone *zone; 5683 5684 /* Just pick one node, since fallback list is circular */ 5685 unsigned long sum = 0; 5686 5687 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL); 5688 5689 for_each_zone_zonelist(zone, z, zonelist, offset) { 5690 unsigned long size = zone_managed_pages(zone); 5691 unsigned long high = high_wmark_pages(zone); 5692 if (size > high) 5693 sum += size - high; 5694 } 5695 5696 return sum; 5697 } 5698 5699 /** 5700 * nr_free_buffer_pages - count number of pages beyond high watermark 5701 * 5702 * nr_free_buffer_pages() counts the number of pages which are beyond the high 5703 * watermark within ZONE_DMA and ZONE_NORMAL. 5704 * 5705 * Return: number of pages beyond high watermark within ZONE_DMA and 5706 * ZONE_NORMAL. 5707 */ 5708 unsigned long nr_free_buffer_pages(void) 5709 { 5710 return nr_free_zone_pages(gfp_zone(GFP_USER)); 5711 } 5712 EXPORT_SYMBOL_GPL(nr_free_buffer_pages); 5713 5714 static inline void show_node(struct zone *zone) 5715 { 5716 if (IS_ENABLED(CONFIG_NUMA)) 5717 printk("Node %d ", zone_to_nid(zone)); 5718 } 5719 5720 long si_mem_available(void) 5721 { 5722 long available; 5723 unsigned long pagecache; 5724 unsigned long wmark_low = 0; 5725 unsigned long pages[NR_LRU_LISTS]; 5726 unsigned long reclaimable; 5727 struct zone *zone; 5728 int lru; 5729 5730 for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++) 5731 pages[lru] = global_node_page_state(NR_LRU_BASE + lru); 5732 5733 for_each_zone(zone) 5734 wmark_low += low_wmark_pages(zone); 5735 5736 /* 5737 * Estimate the amount of memory available for userspace allocations, 5738 * without causing swapping. 5739 */ 5740 available = global_zone_page_state(NR_FREE_PAGES) - totalreserve_pages; 5741 5742 /* 5743 * Not all the page cache can be freed, otherwise the system will 5744 * start swapping. Assume at least half of the page cache, or the 5745 * low watermark worth of cache, needs to stay. 5746 */ 5747 pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE]; 5748 pagecache -= min(pagecache / 2, wmark_low); 5749 available += pagecache; 5750 5751 /* 5752 * Part of the reclaimable slab and other kernel memory consists of 5753 * items that are in use, and cannot be freed. Cap this estimate at the 5754 * low watermark. 5755 */ 5756 reclaimable = global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B) + 5757 global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE); 5758 available += reclaimable - min(reclaimable / 2, wmark_low); 5759 5760 if (available < 0) 5761 available = 0; 5762 return available; 5763 } 5764 EXPORT_SYMBOL_GPL(si_mem_available); 5765 5766 void si_meminfo(struct sysinfo *val) 5767 { 5768 val->totalram = totalram_pages(); 5769 val->sharedram = global_node_page_state(NR_SHMEM); 5770 val->freeram = global_zone_page_state(NR_FREE_PAGES); 5771 val->bufferram = nr_blockdev_pages(); 5772 val->totalhigh = totalhigh_pages(); 5773 val->freehigh = nr_free_highpages(); 5774 val->mem_unit = PAGE_SIZE; 5775 } 5776 5777 EXPORT_SYMBOL(si_meminfo); 5778 5779 #ifdef CONFIG_NUMA 5780 void si_meminfo_node(struct sysinfo *val, int nid) 5781 { 5782 int zone_type; /* needs to be signed */ 5783 unsigned long managed_pages = 0; 5784 unsigned long managed_highpages = 0; 5785 unsigned long free_highpages = 0; 5786 pg_data_t *pgdat = NODE_DATA(nid); 5787 5788 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) 5789 managed_pages += zone_managed_pages(&pgdat->node_zones[zone_type]); 5790 val->totalram = managed_pages; 5791 val->sharedram = node_page_state(pgdat, NR_SHMEM); 5792 val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES); 5793 #ifdef CONFIG_HIGHMEM 5794 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) { 5795 struct zone *zone = &pgdat->node_zones[zone_type]; 5796 5797 if (is_highmem(zone)) { 5798 managed_highpages += zone_managed_pages(zone); 5799 free_highpages += zone_page_state(zone, NR_FREE_PAGES); 5800 } 5801 } 5802 val->totalhigh = managed_highpages; 5803 val->freehigh = free_highpages; 5804 #else 5805 val->totalhigh = managed_highpages; 5806 val->freehigh = free_highpages; 5807 #endif 5808 val->mem_unit = PAGE_SIZE; 5809 } 5810 #endif 5811 5812 /* 5813 * Determine whether the node should be displayed or not, depending on whether 5814 * SHOW_MEM_FILTER_NODES was passed to show_free_areas(). 5815 */ 5816 static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask) 5817 { 5818 if (!(flags & SHOW_MEM_FILTER_NODES)) 5819 return false; 5820 5821 /* 5822 * no node mask - aka implicit memory numa policy. Do not bother with 5823 * the synchronization - read_mems_allowed_begin - because we do not 5824 * have to be precise here. 5825 */ 5826 if (!nodemask) 5827 nodemask = &cpuset_current_mems_allowed; 5828 5829 return !node_isset(nid, *nodemask); 5830 } 5831 5832 #define K(x) ((x) << (PAGE_SHIFT-10)) 5833 5834 static void show_migration_types(unsigned char type) 5835 { 5836 static const char types[MIGRATE_TYPES] = { 5837 [MIGRATE_UNMOVABLE] = 'U', 5838 [MIGRATE_MOVABLE] = 'M', 5839 [MIGRATE_RECLAIMABLE] = 'E', 5840 [MIGRATE_HIGHATOMIC] = 'H', 5841 #ifdef CONFIG_CMA 5842 [MIGRATE_CMA] = 'C', 5843 #endif 5844 #ifdef CONFIG_MEMORY_ISOLATION 5845 [MIGRATE_ISOLATE] = 'I', 5846 #endif 5847 }; 5848 char tmp[MIGRATE_TYPES + 1]; 5849 char *p = tmp; 5850 int i; 5851 5852 for (i = 0; i < MIGRATE_TYPES; i++) { 5853 if (type & (1 << i)) 5854 *p++ = types[i]; 5855 } 5856 5857 *p = '\0'; 5858 printk(KERN_CONT "(%s) ", tmp); 5859 } 5860 5861 /* 5862 * Show free area list (used inside shift_scroll-lock stuff) 5863 * We also calculate the percentage fragmentation. We do this by counting the 5864 * memory on each free list with the exception of the first item on the list. 5865 * 5866 * Bits in @filter: 5867 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's 5868 * cpuset. 5869 */ 5870 void show_free_areas(unsigned int filter, nodemask_t *nodemask) 5871 { 5872 unsigned long free_pcp = 0; 5873 int cpu; 5874 struct zone *zone; 5875 pg_data_t *pgdat; 5876 5877 for_each_populated_zone(zone) { 5878 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask)) 5879 continue; 5880 5881 for_each_online_cpu(cpu) 5882 free_pcp += per_cpu_ptr(zone->per_cpu_pageset, cpu)->count; 5883 } 5884 5885 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n" 5886 " active_file:%lu inactive_file:%lu isolated_file:%lu\n" 5887 " unevictable:%lu dirty:%lu writeback:%lu\n" 5888 " slab_reclaimable:%lu slab_unreclaimable:%lu\n" 5889 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n" 5890 " free:%lu free_pcp:%lu free_cma:%lu\n", 5891 global_node_page_state(NR_ACTIVE_ANON), 5892 global_node_page_state(NR_INACTIVE_ANON), 5893 global_node_page_state(NR_ISOLATED_ANON), 5894 global_node_page_state(NR_ACTIVE_FILE), 5895 global_node_page_state(NR_INACTIVE_FILE), 5896 global_node_page_state(NR_ISOLATED_FILE), 5897 global_node_page_state(NR_UNEVICTABLE), 5898 global_node_page_state(NR_FILE_DIRTY), 5899 global_node_page_state(NR_WRITEBACK), 5900 global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B), 5901 global_node_page_state_pages(NR_SLAB_UNRECLAIMABLE_B), 5902 global_node_page_state(NR_FILE_MAPPED), 5903 global_node_page_state(NR_SHMEM), 5904 global_node_page_state(NR_PAGETABLE), 5905 global_zone_page_state(NR_BOUNCE), 5906 global_zone_page_state(NR_FREE_PAGES), 5907 free_pcp, 5908 global_zone_page_state(NR_FREE_CMA_PAGES)); 5909 5910 for_each_online_pgdat(pgdat) { 5911 if (show_mem_node_skip(filter, pgdat->node_id, nodemask)) 5912 continue; 5913 5914 printk("Node %d" 5915 " active_anon:%lukB" 5916 " inactive_anon:%lukB" 5917 " active_file:%lukB" 5918 " inactive_file:%lukB" 5919 " unevictable:%lukB" 5920 " isolated(anon):%lukB" 5921 " isolated(file):%lukB" 5922 " mapped:%lukB" 5923 " dirty:%lukB" 5924 " writeback:%lukB" 5925 " shmem:%lukB" 5926 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 5927 " shmem_thp: %lukB" 5928 " shmem_pmdmapped: %lukB" 5929 " anon_thp: %lukB" 5930 #endif 5931 " writeback_tmp:%lukB" 5932 " kernel_stack:%lukB" 5933 #ifdef CONFIG_SHADOW_CALL_STACK 5934 " shadow_call_stack:%lukB" 5935 #endif 5936 " pagetables:%lukB" 5937 " all_unreclaimable? %s" 5938 "\n", 5939 pgdat->node_id, 5940 K(node_page_state(pgdat, NR_ACTIVE_ANON)), 5941 K(node_page_state(pgdat, NR_INACTIVE_ANON)), 5942 K(node_page_state(pgdat, NR_ACTIVE_FILE)), 5943 K(node_page_state(pgdat, NR_INACTIVE_FILE)), 5944 K(node_page_state(pgdat, NR_UNEVICTABLE)), 5945 K(node_page_state(pgdat, NR_ISOLATED_ANON)), 5946 K(node_page_state(pgdat, NR_ISOLATED_FILE)), 5947 K(node_page_state(pgdat, NR_FILE_MAPPED)), 5948 K(node_page_state(pgdat, NR_FILE_DIRTY)), 5949 K(node_page_state(pgdat, NR_WRITEBACK)), 5950 K(node_page_state(pgdat, NR_SHMEM)), 5951 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 5952 K(node_page_state(pgdat, NR_SHMEM_THPS)), 5953 K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)), 5954 K(node_page_state(pgdat, NR_ANON_THPS)), 5955 #endif 5956 K(node_page_state(pgdat, NR_WRITEBACK_TEMP)), 5957 node_page_state(pgdat, NR_KERNEL_STACK_KB), 5958 #ifdef CONFIG_SHADOW_CALL_STACK 5959 node_page_state(pgdat, NR_KERNEL_SCS_KB), 5960 #endif 5961 K(node_page_state(pgdat, NR_PAGETABLE)), 5962 pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ? 5963 "yes" : "no"); 5964 } 5965 5966 for_each_populated_zone(zone) { 5967 int i; 5968 5969 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask)) 5970 continue; 5971 5972 free_pcp = 0; 5973 for_each_online_cpu(cpu) 5974 free_pcp += per_cpu_ptr(zone->per_cpu_pageset, cpu)->count; 5975 5976 show_node(zone); 5977 printk(KERN_CONT 5978 "%s" 5979 " free:%lukB" 5980 " min:%lukB" 5981 " low:%lukB" 5982 " high:%lukB" 5983 " reserved_highatomic:%luKB" 5984 " active_anon:%lukB" 5985 " inactive_anon:%lukB" 5986 " active_file:%lukB" 5987 " inactive_file:%lukB" 5988 " unevictable:%lukB" 5989 " writepending:%lukB" 5990 " present:%lukB" 5991 " managed:%lukB" 5992 " mlocked:%lukB" 5993 " bounce:%lukB" 5994 " free_pcp:%lukB" 5995 " local_pcp:%ukB" 5996 " free_cma:%lukB" 5997 "\n", 5998 zone->name, 5999 K(zone_page_state(zone, NR_FREE_PAGES)), 6000 K(min_wmark_pages(zone)), 6001 K(low_wmark_pages(zone)), 6002 K(high_wmark_pages(zone)), 6003 K(zone->nr_reserved_highatomic), 6004 K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)), 6005 K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)), 6006 K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)), 6007 K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)), 6008 K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)), 6009 K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)), 6010 K(zone->present_pages), 6011 K(zone_managed_pages(zone)), 6012 K(zone_page_state(zone, NR_MLOCK)), 6013 K(zone_page_state(zone, NR_BOUNCE)), 6014 K(free_pcp), 6015 K(this_cpu_read(zone->per_cpu_pageset->count)), 6016 K(zone_page_state(zone, NR_FREE_CMA_PAGES))); 6017 printk("lowmem_reserve[]:"); 6018 for (i = 0; i < MAX_NR_ZONES; i++) 6019 printk(KERN_CONT " %ld", zone->lowmem_reserve[i]); 6020 printk(KERN_CONT "\n"); 6021 } 6022 6023 for_each_populated_zone(zone) { 6024 unsigned int order; 6025 unsigned long nr[MAX_ORDER], flags, total = 0; 6026 unsigned char types[MAX_ORDER]; 6027 6028 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask)) 6029 continue; 6030 show_node(zone); 6031 printk(KERN_CONT "%s: ", zone->name); 6032 6033 spin_lock_irqsave(&zone->lock, flags); 6034 for (order = 0; order < MAX_ORDER; order++) { 6035 struct free_area *area = &zone->free_area[order]; 6036 int type; 6037 6038 nr[order] = area->nr_free; 6039 total += nr[order] << order; 6040 6041 types[order] = 0; 6042 for (type = 0; type < MIGRATE_TYPES; type++) { 6043 if (!free_area_empty(area, type)) 6044 types[order] |= 1 << type; 6045 } 6046 } 6047 spin_unlock_irqrestore(&zone->lock, flags); 6048 for (order = 0; order < MAX_ORDER; order++) { 6049 printk(KERN_CONT "%lu*%lukB ", 6050 nr[order], K(1UL) << order); 6051 if (nr[order]) 6052 show_migration_types(types[order]); 6053 } 6054 printk(KERN_CONT "= %lukB\n", K(total)); 6055 } 6056 6057 hugetlb_show_meminfo(); 6058 6059 printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES)); 6060 6061 show_swap_cache_info(); 6062 } 6063 6064 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref) 6065 { 6066 zoneref->zone = zone; 6067 zoneref->zone_idx = zone_idx(zone); 6068 } 6069 6070 /* 6071 * Builds allocation fallback zone lists. 6072 * 6073 * Add all populated zones of a node to the zonelist. 6074 */ 6075 static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs) 6076 { 6077 struct zone *zone; 6078 enum zone_type zone_type = MAX_NR_ZONES; 6079 int nr_zones = 0; 6080 6081 do { 6082 zone_type--; 6083 zone = pgdat->node_zones + zone_type; 6084 if (managed_zone(zone)) { 6085 zoneref_set_zone(zone, &zonerefs[nr_zones++]); 6086 check_highest_zone(zone_type); 6087 } 6088 } while (zone_type); 6089 6090 return nr_zones; 6091 } 6092 6093 #ifdef CONFIG_NUMA 6094 6095 static int __parse_numa_zonelist_order(char *s) 6096 { 6097 /* 6098 * We used to support different zonelists modes but they turned 6099 * out to be just not useful. Let's keep the warning in place 6100 * if somebody still use the cmd line parameter so that we do 6101 * not fail it silently 6102 */ 6103 if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) { 6104 pr_warn("Ignoring unsupported numa_zonelist_order value: %s\n", s); 6105 return -EINVAL; 6106 } 6107 return 0; 6108 } 6109 6110 char numa_zonelist_order[] = "Node"; 6111 6112 /* 6113 * sysctl handler for numa_zonelist_order 6114 */ 6115 int numa_zonelist_order_handler(struct ctl_table *table, int write, 6116 void *buffer, size_t *length, loff_t *ppos) 6117 { 6118 if (write) 6119 return __parse_numa_zonelist_order(buffer); 6120 return proc_dostring(table, write, buffer, length, ppos); 6121 } 6122 6123 6124 #define MAX_NODE_LOAD (nr_online_nodes) 6125 static int node_load[MAX_NUMNODES]; 6126 6127 /** 6128 * find_next_best_node - find the next node that should appear in a given node's fallback list 6129 * @node: node whose fallback list we're appending 6130 * @used_node_mask: nodemask_t of already used nodes 6131 * 6132 * We use a number of factors to determine which is the next node that should 6133 * appear on a given node's fallback list. The node should not have appeared 6134 * already in @node's fallback list, and it should be the next closest node 6135 * according to the distance array (which contains arbitrary distance values 6136 * from each node to each node in the system), and should also prefer nodes 6137 * with no CPUs, since presumably they'll have very little allocation pressure 6138 * on them otherwise. 6139 * 6140 * Return: node id of the found node or %NUMA_NO_NODE if no node is found. 6141 */ 6142 static int find_next_best_node(int node, nodemask_t *used_node_mask) 6143 { 6144 int n, val; 6145 int min_val = INT_MAX; 6146 int best_node = NUMA_NO_NODE; 6147 6148 /* Use the local node if we haven't already */ 6149 if (!node_isset(node, *used_node_mask)) { 6150 node_set(node, *used_node_mask); 6151 return node; 6152 } 6153 6154 for_each_node_state(n, N_MEMORY) { 6155 6156 /* Don't want a node to appear more than once */ 6157 if (node_isset(n, *used_node_mask)) 6158 continue; 6159 6160 /* Use the distance array to find the distance */ 6161 val = node_distance(node, n); 6162 6163 /* Penalize nodes under us ("prefer the next node") */ 6164 val += (n < node); 6165 6166 /* Give preference to headless and unused nodes */ 6167 if (!cpumask_empty(cpumask_of_node(n))) 6168 val += PENALTY_FOR_NODE_WITH_CPUS; 6169 6170 /* Slight preference for less loaded node */ 6171 val *= (MAX_NODE_LOAD*MAX_NUMNODES); 6172 val += node_load[n]; 6173 6174 if (val < min_val) { 6175 min_val = val; 6176 best_node = n; 6177 } 6178 } 6179 6180 if (best_node >= 0) 6181 node_set(best_node, *used_node_mask); 6182 6183 return best_node; 6184 } 6185 6186 6187 /* 6188 * Build zonelists ordered by node and zones within node. 6189 * This results in maximum locality--normal zone overflows into local 6190 * DMA zone, if any--but risks exhausting DMA zone. 6191 */ 6192 static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order, 6193 unsigned nr_nodes) 6194 { 6195 struct zoneref *zonerefs; 6196 int i; 6197 6198 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs; 6199 6200 for (i = 0; i < nr_nodes; i++) { 6201 int nr_zones; 6202 6203 pg_data_t *node = NODE_DATA(node_order[i]); 6204 6205 nr_zones = build_zonerefs_node(node, zonerefs); 6206 zonerefs += nr_zones; 6207 } 6208 zonerefs->zone = NULL; 6209 zonerefs->zone_idx = 0; 6210 } 6211 6212 /* 6213 * Build gfp_thisnode zonelists 6214 */ 6215 static void build_thisnode_zonelists(pg_data_t *pgdat) 6216 { 6217 struct zoneref *zonerefs; 6218 int nr_zones; 6219 6220 zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs; 6221 nr_zones = build_zonerefs_node(pgdat, zonerefs); 6222 zonerefs += nr_zones; 6223 zonerefs->zone = NULL; 6224 zonerefs->zone_idx = 0; 6225 } 6226 6227 /* 6228 * Build zonelists ordered by zone and nodes within zones. 6229 * This results in conserving DMA zone[s] until all Normal memory is 6230 * exhausted, but results in overflowing to remote node while memory 6231 * may still exist in local DMA zone. 6232 */ 6233 6234 static void build_zonelists(pg_data_t *pgdat) 6235 { 6236 static int node_order[MAX_NUMNODES]; 6237 int node, load, nr_nodes = 0; 6238 nodemask_t used_mask = NODE_MASK_NONE; 6239 int local_node, prev_node; 6240 6241 /* NUMA-aware ordering of nodes */ 6242 local_node = pgdat->node_id; 6243 load = nr_online_nodes; 6244 prev_node = local_node; 6245 6246 memset(node_order, 0, sizeof(node_order)); 6247 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) { 6248 /* 6249 * We don't want to pressure a particular node. 6250 * So adding penalty to the first node in same 6251 * distance group to make it round-robin. 6252 */ 6253 if (node_distance(local_node, node) != 6254 node_distance(local_node, prev_node)) 6255 node_load[node] = load; 6256 6257 node_order[nr_nodes++] = node; 6258 prev_node = node; 6259 load--; 6260 } 6261 6262 build_zonelists_in_node_order(pgdat, node_order, nr_nodes); 6263 build_thisnode_zonelists(pgdat); 6264 } 6265 6266 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 6267 /* 6268 * Return node id of node used for "local" allocations. 6269 * I.e., first node id of first zone in arg node's generic zonelist. 6270 * Used for initializing percpu 'numa_mem', which is used primarily 6271 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist. 6272 */ 6273 int local_memory_node(int node) 6274 { 6275 struct zoneref *z; 6276 6277 z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL), 6278 gfp_zone(GFP_KERNEL), 6279 NULL); 6280 return zone_to_nid(z->zone); 6281 } 6282 #endif 6283 6284 static void setup_min_unmapped_ratio(void); 6285 static void setup_min_slab_ratio(void); 6286 #else /* CONFIG_NUMA */ 6287 6288 static void build_zonelists(pg_data_t *pgdat) 6289 { 6290 int node, local_node; 6291 struct zoneref *zonerefs; 6292 int nr_zones; 6293 6294 local_node = pgdat->node_id; 6295 6296 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs; 6297 nr_zones = build_zonerefs_node(pgdat, zonerefs); 6298 zonerefs += nr_zones; 6299 6300 /* 6301 * Now we build the zonelist so that it contains the zones 6302 * of all the other nodes. 6303 * We don't want to pressure a particular node, so when 6304 * building the zones for node N, we make sure that the 6305 * zones coming right after the local ones are those from 6306 * node N+1 (modulo N) 6307 */ 6308 for (node = local_node + 1; node < MAX_NUMNODES; node++) { 6309 if (!node_online(node)) 6310 continue; 6311 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs); 6312 zonerefs += nr_zones; 6313 } 6314 for (node = 0; node < local_node; node++) { 6315 if (!node_online(node)) 6316 continue; 6317 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs); 6318 zonerefs += nr_zones; 6319 } 6320 6321 zonerefs->zone = NULL; 6322 zonerefs->zone_idx = 0; 6323 } 6324 6325 #endif /* CONFIG_NUMA */ 6326 6327 /* 6328 * Boot pageset table. One per cpu which is going to be used for all 6329 * zones and all nodes. The parameters will be set in such a way 6330 * that an item put on a list will immediately be handed over to 6331 * the buddy list. This is safe since pageset manipulation is done 6332 * with interrupts disabled. 6333 * 6334 * The boot_pagesets must be kept even after bootup is complete for 6335 * unused processors and/or zones. They do play a role for bootstrapping 6336 * hotplugged processors. 6337 * 6338 * zoneinfo_show() and maybe other functions do 6339 * not check if the processor is online before following the pageset pointer. 6340 * Other parts of the kernel may not check if the zone is available. 6341 */ 6342 static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats); 6343 /* These effectively disable the pcplists in the boot pageset completely */ 6344 #define BOOT_PAGESET_HIGH 0 6345 #define BOOT_PAGESET_BATCH 1 6346 static DEFINE_PER_CPU(struct per_cpu_pages, boot_pageset); 6347 static DEFINE_PER_CPU(struct per_cpu_zonestat, boot_zonestats); 6348 static DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats); 6349 6350 static void __build_all_zonelists(void *data) 6351 { 6352 int nid; 6353 int __maybe_unused cpu; 6354 pg_data_t *self = data; 6355 static DEFINE_SPINLOCK(lock); 6356 6357 spin_lock(&lock); 6358 6359 #ifdef CONFIG_NUMA 6360 memset(node_load, 0, sizeof(node_load)); 6361 #endif 6362 6363 /* 6364 * This node is hotadded and no memory is yet present. So just 6365 * building zonelists is fine - no need to touch other nodes. 6366 */ 6367 if (self && !node_online(self->node_id)) { 6368 build_zonelists(self); 6369 } else { 6370 for_each_online_node(nid) { 6371 pg_data_t *pgdat = NODE_DATA(nid); 6372 6373 build_zonelists(pgdat); 6374 } 6375 6376 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 6377 /* 6378 * We now know the "local memory node" for each node-- 6379 * i.e., the node of the first zone in the generic zonelist. 6380 * Set up numa_mem percpu variable for on-line cpus. During 6381 * boot, only the boot cpu should be on-line; we'll init the 6382 * secondary cpus' numa_mem as they come on-line. During 6383 * node/memory hotplug, we'll fixup all on-line cpus. 6384 */ 6385 for_each_online_cpu(cpu) 6386 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu))); 6387 #endif 6388 } 6389 6390 spin_unlock(&lock); 6391 } 6392 6393 static noinline void __init 6394 build_all_zonelists_init(void) 6395 { 6396 int cpu; 6397 6398 __build_all_zonelists(NULL); 6399 6400 /* 6401 * Initialize the boot_pagesets that are going to be used 6402 * for bootstrapping processors. The real pagesets for 6403 * each zone will be allocated later when the per cpu 6404 * allocator is available. 6405 * 6406 * boot_pagesets are used also for bootstrapping offline 6407 * cpus if the system is already booted because the pagesets 6408 * are needed to initialize allocators on a specific cpu too. 6409 * F.e. the percpu allocator needs the page allocator which 6410 * needs the percpu allocator in order to allocate its pagesets 6411 * (a chicken-egg dilemma). 6412 */ 6413 for_each_possible_cpu(cpu) 6414 per_cpu_pages_init(&per_cpu(boot_pageset, cpu), &per_cpu(boot_zonestats, cpu)); 6415 6416 mminit_verify_zonelist(); 6417 cpuset_init_current_mems_allowed(); 6418 } 6419 6420 /* 6421 * unless system_state == SYSTEM_BOOTING. 6422 * 6423 * __ref due to call of __init annotated helper build_all_zonelists_init 6424 * [protected by SYSTEM_BOOTING]. 6425 */ 6426 void __ref build_all_zonelists(pg_data_t *pgdat) 6427 { 6428 unsigned long vm_total_pages; 6429 6430 if (system_state == SYSTEM_BOOTING) { 6431 build_all_zonelists_init(); 6432 } else { 6433 __build_all_zonelists(pgdat); 6434 /* cpuset refresh routine should be here */ 6435 } 6436 /* Get the number of free pages beyond high watermark in all zones. */ 6437 vm_total_pages = nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE)); 6438 /* 6439 * Disable grouping by mobility if the number of pages in the 6440 * system is too low to allow the mechanism to work. It would be 6441 * more accurate, but expensive to check per-zone. This check is 6442 * made on memory-hotadd so a system can start with mobility 6443 * disabled and enable it later 6444 */ 6445 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES)) 6446 page_group_by_mobility_disabled = 1; 6447 else 6448 page_group_by_mobility_disabled = 0; 6449 6450 pr_info("Built %u zonelists, mobility grouping %s. Total pages: %ld\n", 6451 nr_online_nodes, 6452 page_group_by_mobility_disabled ? "off" : "on", 6453 vm_total_pages); 6454 #ifdef CONFIG_NUMA 6455 pr_info("Policy zone: %s\n", zone_names[policy_zone]); 6456 #endif 6457 } 6458 6459 /* If zone is ZONE_MOVABLE but memory is mirrored, it is an overlapped init */ 6460 static bool __meminit 6461 overlap_memmap_init(unsigned long zone, unsigned long *pfn) 6462 { 6463 static struct memblock_region *r; 6464 6465 if (mirrored_kernelcore && zone == ZONE_MOVABLE) { 6466 if (!r || *pfn >= memblock_region_memory_end_pfn(r)) { 6467 for_each_mem_region(r) { 6468 if (*pfn < memblock_region_memory_end_pfn(r)) 6469 break; 6470 } 6471 } 6472 if (*pfn >= memblock_region_memory_base_pfn(r) && 6473 memblock_is_mirror(r)) { 6474 *pfn = memblock_region_memory_end_pfn(r); 6475 return true; 6476 } 6477 } 6478 return false; 6479 } 6480 6481 /* 6482 * Initially all pages are reserved - free ones are freed 6483 * up by memblock_free_all() once the early boot process is 6484 * done. Non-atomic initialization, single-pass. 6485 * 6486 * All aligned pageblocks are initialized to the specified migratetype 6487 * (usually MIGRATE_MOVABLE). Besides setting the migratetype, no related 6488 * zone stats (e.g., nr_isolate_pageblock) are touched. 6489 */ 6490 void __meminit memmap_init_range(unsigned long size, int nid, unsigned long zone, 6491 unsigned long start_pfn, unsigned long zone_end_pfn, 6492 enum meminit_context context, 6493 struct vmem_altmap *altmap, int migratetype) 6494 { 6495 unsigned long pfn, end_pfn = start_pfn + size; 6496 struct page *page; 6497 6498 if (highest_memmap_pfn < end_pfn - 1) 6499 highest_memmap_pfn = end_pfn - 1; 6500 6501 #ifdef CONFIG_ZONE_DEVICE 6502 /* 6503 * Honor reservation requested by the driver for this ZONE_DEVICE 6504 * memory. We limit the total number of pages to initialize to just 6505 * those that might contain the memory mapping. We will defer the 6506 * ZONE_DEVICE page initialization until after we have released 6507 * the hotplug lock. 6508 */ 6509 if (zone == ZONE_DEVICE) { 6510 if (!altmap) 6511 return; 6512 6513 if (start_pfn == altmap->base_pfn) 6514 start_pfn += altmap->reserve; 6515 end_pfn = altmap->base_pfn + vmem_altmap_offset(altmap); 6516 } 6517 #endif 6518 6519 for (pfn = start_pfn; pfn < end_pfn; ) { 6520 /* 6521 * There can be holes in boot-time mem_map[]s handed to this 6522 * function. They do not exist on hotplugged memory. 6523 */ 6524 if (context == MEMINIT_EARLY) { 6525 if (overlap_memmap_init(zone, &pfn)) 6526 continue; 6527 if (defer_init(nid, pfn, zone_end_pfn)) 6528 break; 6529 } 6530 6531 page = pfn_to_page(pfn); 6532 __init_single_page(page, pfn, zone, nid); 6533 if (context == MEMINIT_HOTPLUG) 6534 __SetPageReserved(page); 6535 6536 /* 6537 * Usually, we want to mark the pageblock MIGRATE_MOVABLE, 6538 * such that unmovable allocations won't be scattered all 6539 * over the place during system boot. 6540 */ 6541 if (IS_ALIGNED(pfn, pageblock_nr_pages)) { 6542 set_pageblock_migratetype(page, migratetype); 6543 cond_resched(); 6544 } 6545 pfn++; 6546 } 6547 } 6548 6549 #ifdef CONFIG_ZONE_DEVICE 6550 void __ref memmap_init_zone_device(struct zone *zone, 6551 unsigned long start_pfn, 6552 unsigned long nr_pages, 6553 struct dev_pagemap *pgmap) 6554 { 6555 unsigned long pfn, end_pfn = start_pfn + nr_pages; 6556 struct pglist_data *pgdat = zone->zone_pgdat; 6557 struct vmem_altmap *altmap = pgmap_altmap(pgmap); 6558 unsigned long zone_idx = zone_idx(zone); 6559 unsigned long start = jiffies; 6560 int nid = pgdat->node_id; 6561 6562 if (WARN_ON_ONCE(!pgmap || zone_idx(zone) != ZONE_DEVICE)) 6563 return; 6564 6565 /* 6566 * The call to memmap_init should have already taken care 6567 * of the pages reserved for the memmap, so we can just jump to 6568 * the end of that region and start processing the device pages. 6569 */ 6570 if (altmap) { 6571 start_pfn = altmap->base_pfn + vmem_altmap_offset(altmap); 6572 nr_pages = end_pfn - start_pfn; 6573 } 6574 6575 for (pfn = start_pfn; pfn < end_pfn; pfn++) { 6576 struct page *page = pfn_to_page(pfn); 6577 6578 __init_single_page(page, pfn, zone_idx, nid); 6579 6580 /* 6581 * Mark page reserved as it will need to wait for onlining 6582 * phase for it to be fully associated with a zone. 6583 * 6584 * We can use the non-atomic __set_bit operation for setting 6585 * the flag as we are still initializing the pages. 6586 */ 6587 __SetPageReserved(page); 6588 6589 /* 6590 * ZONE_DEVICE pages union ->lru with a ->pgmap back pointer 6591 * and zone_device_data. It is a bug if a ZONE_DEVICE page is 6592 * ever freed or placed on a driver-private list. 6593 */ 6594 page->pgmap = pgmap; 6595 page->zone_device_data = NULL; 6596 6597 /* 6598 * Mark the block movable so that blocks are reserved for 6599 * movable at startup. This will force kernel allocations 6600 * to reserve their blocks rather than leaking throughout 6601 * the address space during boot when many long-lived 6602 * kernel allocations are made. 6603 * 6604 * Please note that MEMINIT_HOTPLUG path doesn't clear memmap 6605 * because this is done early in section_activate() 6606 */ 6607 if (IS_ALIGNED(pfn, pageblock_nr_pages)) { 6608 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 6609 cond_resched(); 6610 } 6611 } 6612 6613 pr_info("%s initialised %lu pages in %ums\n", __func__, 6614 nr_pages, jiffies_to_msecs(jiffies - start)); 6615 } 6616 6617 #endif 6618 static void __meminit zone_init_free_lists(struct zone *zone) 6619 { 6620 unsigned int order, t; 6621 for_each_migratetype_order(order, t) { 6622 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]); 6623 zone->free_area[order].nr_free = 0; 6624 } 6625 } 6626 6627 #if !defined(CONFIG_FLATMEM) 6628 /* 6629 * Only struct pages that correspond to ranges defined by memblock.memory 6630 * are zeroed and initialized by going through __init_single_page() during 6631 * memmap_init_zone_range(). 6632 * 6633 * But, there could be struct pages that correspond to holes in 6634 * memblock.memory. This can happen because of the following reasons: 6635 * - physical memory bank size is not necessarily the exact multiple of the 6636 * arbitrary section size 6637 * - early reserved memory may not be listed in memblock.memory 6638 * - memory layouts defined with memmap= kernel parameter may not align 6639 * nicely with memmap sections 6640 * 6641 * Explicitly initialize those struct pages so that: 6642 * - PG_Reserved is set 6643 * - zone and node links point to zone and node that span the page if the 6644 * hole is in the middle of a zone 6645 * - zone and node links point to adjacent zone/node if the hole falls on 6646 * the zone boundary; the pages in such holes will be prepended to the 6647 * zone/node above the hole except for the trailing pages in the last 6648 * section that will be appended to the zone/node below. 6649 */ 6650 static void __init init_unavailable_range(unsigned long spfn, 6651 unsigned long epfn, 6652 int zone, int node) 6653 { 6654 unsigned long pfn; 6655 u64 pgcnt = 0; 6656 6657 for (pfn = spfn; pfn < epfn; pfn++) { 6658 if (!pfn_valid(ALIGN_DOWN(pfn, pageblock_nr_pages))) { 6659 pfn = ALIGN_DOWN(pfn, pageblock_nr_pages) 6660 + pageblock_nr_pages - 1; 6661 continue; 6662 } 6663 __init_single_page(pfn_to_page(pfn), pfn, zone, node); 6664 __SetPageReserved(pfn_to_page(pfn)); 6665 pgcnt++; 6666 } 6667 6668 if (pgcnt) 6669 pr_info("On node %d, zone %s: %lld pages in unavailable ranges", 6670 node, zone_names[zone], pgcnt); 6671 } 6672 #else 6673 static inline void init_unavailable_range(unsigned long spfn, 6674 unsigned long epfn, 6675 int zone, int node) 6676 { 6677 } 6678 #endif 6679 6680 static void __init memmap_init_zone_range(struct zone *zone, 6681 unsigned long start_pfn, 6682 unsigned long end_pfn, 6683 unsigned long *hole_pfn) 6684 { 6685 unsigned long zone_start_pfn = zone->zone_start_pfn; 6686 unsigned long zone_end_pfn = zone_start_pfn + zone->spanned_pages; 6687 int nid = zone_to_nid(zone), zone_id = zone_idx(zone); 6688 6689 start_pfn = clamp(start_pfn, zone_start_pfn, zone_end_pfn); 6690 end_pfn = clamp(end_pfn, zone_start_pfn, zone_end_pfn); 6691 6692 if (start_pfn >= end_pfn) 6693 return; 6694 6695 memmap_init_range(end_pfn - start_pfn, nid, zone_id, start_pfn, 6696 zone_end_pfn, MEMINIT_EARLY, NULL, MIGRATE_MOVABLE); 6697 6698 if (*hole_pfn < start_pfn) 6699 init_unavailable_range(*hole_pfn, start_pfn, zone_id, nid); 6700 6701 *hole_pfn = end_pfn; 6702 } 6703 6704 static void __init memmap_init(void) 6705 { 6706 unsigned long start_pfn, end_pfn; 6707 unsigned long hole_pfn = 0; 6708 int i, j, zone_id, nid; 6709 6710 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) { 6711 struct pglist_data *node = NODE_DATA(nid); 6712 6713 for (j = 0; j < MAX_NR_ZONES; j++) { 6714 struct zone *zone = node->node_zones + j; 6715 6716 if (!populated_zone(zone)) 6717 continue; 6718 6719 memmap_init_zone_range(zone, start_pfn, end_pfn, 6720 &hole_pfn); 6721 zone_id = j; 6722 } 6723 } 6724 6725 #ifdef CONFIG_SPARSEMEM 6726 /* 6727 * Initialize the memory map for hole in the range [memory_end, 6728 * section_end]. 6729 * Append the pages in this hole to the highest zone in the last 6730 * node. 6731 * The call to init_unavailable_range() is outside the ifdef to 6732 * silence the compiler warining about zone_id set but not used; 6733 * for FLATMEM it is a nop anyway 6734 */ 6735 end_pfn = round_up(end_pfn, PAGES_PER_SECTION); 6736 if (hole_pfn < end_pfn) 6737 #endif 6738 init_unavailable_range(hole_pfn, end_pfn, zone_id, nid); 6739 } 6740 6741 static int zone_batchsize(struct zone *zone) 6742 { 6743 #ifdef CONFIG_MMU 6744 int batch; 6745 6746 /* 6747 * The number of pages to batch allocate is either ~0.1% 6748 * of the zone or 1MB, whichever is smaller. The batch 6749 * size is striking a balance between allocation latency 6750 * and zone lock contention. 6751 */ 6752 batch = min(zone_managed_pages(zone) >> 10, (1024 * 1024) / PAGE_SIZE); 6753 batch /= 4; /* We effectively *= 4 below */ 6754 if (batch < 1) 6755 batch = 1; 6756 6757 /* 6758 * Clamp the batch to a 2^n - 1 value. Having a power 6759 * of 2 value was found to be more likely to have 6760 * suboptimal cache aliasing properties in some cases. 6761 * 6762 * For example if 2 tasks are alternately allocating 6763 * batches of pages, one task can end up with a lot 6764 * of pages of one half of the possible page colors 6765 * and the other with pages of the other colors. 6766 */ 6767 batch = rounddown_pow_of_two(batch + batch/2) - 1; 6768 6769 return batch; 6770 6771 #else 6772 /* The deferral and batching of frees should be suppressed under NOMMU 6773 * conditions. 6774 * 6775 * The problem is that NOMMU needs to be able to allocate large chunks 6776 * of contiguous memory as there's no hardware page translation to 6777 * assemble apparent contiguous memory from discontiguous pages. 6778 * 6779 * Queueing large contiguous runs of pages for batching, however, 6780 * causes the pages to actually be freed in smaller chunks. As there 6781 * can be a significant delay between the individual batches being 6782 * recycled, this leads to the once large chunks of space being 6783 * fragmented and becoming unavailable for high-order allocations. 6784 */ 6785 return 0; 6786 #endif 6787 } 6788 6789 static int zone_highsize(struct zone *zone, int batch, int cpu_online) 6790 { 6791 #ifdef CONFIG_MMU 6792 int high; 6793 int nr_split_cpus; 6794 unsigned long total_pages; 6795 6796 if (!percpu_pagelist_high_fraction) { 6797 /* 6798 * By default, the high value of the pcp is based on the zone 6799 * low watermark so that if they are full then background 6800 * reclaim will not be started prematurely. 6801 */ 6802 total_pages = low_wmark_pages(zone); 6803 } else { 6804 /* 6805 * If percpu_pagelist_high_fraction is configured, the high 6806 * value is based on a fraction of the managed pages in the 6807 * zone. 6808 */ 6809 total_pages = zone_managed_pages(zone) / percpu_pagelist_high_fraction; 6810 } 6811 6812 /* 6813 * Split the high value across all online CPUs local to the zone. Note 6814 * that early in boot that CPUs may not be online yet and that during 6815 * CPU hotplug that the cpumask is not yet updated when a CPU is being 6816 * onlined. For memory nodes that have no CPUs, split pcp->high across 6817 * all online CPUs to mitigate the risk that reclaim is triggered 6818 * prematurely due to pages stored on pcp lists. 6819 */ 6820 nr_split_cpus = cpumask_weight(cpumask_of_node(zone_to_nid(zone))) + cpu_online; 6821 if (!nr_split_cpus) 6822 nr_split_cpus = num_online_cpus(); 6823 high = total_pages / nr_split_cpus; 6824 6825 /* 6826 * Ensure high is at least batch*4. The multiple is based on the 6827 * historical relationship between high and batch. 6828 */ 6829 high = max(high, batch << 2); 6830 6831 return high; 6832 #else 6833 return 0; 6834 #endif 6835 } 6836 6837 /* 6838 * pcp->high and pcp->batch values are related and generally batch is lower 6839 * than high. They are also related to pcp->count such that count is lower 6840 * than high, and as soon as it reaches high, the pcplist is flushed. 6841 * 6842 * However, guaranteeing these relations at all times would require e.g. write 6843 * barriers here but also careful usage of read barriers at the read side, and 6844 * thus be prone to error and bad for performance. Thus the update only prevents 6845 * store tearing. Any new users of pcp->batch and pcp->high should ensure they 6846 * can cope with those fields changing asynchronously, and fully trust only the 6847 * pcp->count field on the local CPU with interrupts disabled. 6848 * 6849 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function 6850 * outside of boot time (or some other assurance that no concurrent updaters 6851 * exist). 6852 */ 6853 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high, 6854 unsigned long batch) 6855 { 6856 WRITE_ONCE(pcp->batch, batch); 6857 WRITE_ONCE(pcp->high, high); 6858 } 6859 6860 static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats) 6861 { 6862 int pindex; 6863 6864 memset(pcp, 0, sizeof(*pcp)); 6865 memset(pzstats, 0, sizeof(*pzstats)); 6866 6867 for (pindex = 0; pindex < NR_PCP_LISTS; pindex++) 6868 INIT_LIST_HEAD(&pcp->lists[pindex]); 6869 6870 /* 6871 * Set batch and high values safe for a boot pageset. A true percpu 6872 * pageset's initialization will update them subsequently. Here we don't 6873 * need to be as careful as pageset_update() as nobody can access the 6874 * pageset yet. 6875 */ 6876 pcp->high = BOOT_PAGESET_HIGH; 6877 pcp->batch = BOOT_PAGESET_BATCH; 6878 pcp->free_factor = 0; 6879 } 6880 6881 static void __zone_set_pageset_high_and_batch(struct zone *zone, unsigned long high, 6882 unsigned long batch) 6883 { 6884 struct per_cpu_pages *pcp; 6885 int cpu; 6886 6887 for_each_possible_cpu(cpu) { 6888 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu); 6889 pageset_update(pcp, high, batch); 6890 } 6891 } 6892 6893 /* 6894 * Calculate and set new high and batch values for all per-cpu pagesets of a 6895 * zone based on the zone's size. 6896 */ 6897 static void zone_set_pageset_high_and_batch(struct zone *zone, int cpu_online) 6898 { 6899 int new_high, new_batch; 6900 6901 new_batch = max(1, zone_batchsize(zone)); 6902 new_high = zone_highsize(zone, new_batch, cpu_online); 6903 6904 if (zone->pageset_high == new_high && 6905 zone->pageset_batch == new_batch) 6906 return; 6907 6908 zone->pageset_high = new_high; 6909 zone->pageset_batch = new_batch; 6910 6911 __zone_set_pageset_high_and_batch(zone, new_high, new_batch); 6912 } 6913 6914 void __meminit setup_zone_pageset(struct zone *zone) 6915 { 6916 int cpu; 6917 6918 /* Size may be 0 on !SMP && !NUMA */ 6919 if (sizeof(struct per_cpu_zonestat) > 0) 6920 zone->per_cpu_zonestats = alloc_percpu(struct per_cpu_zonestat); 6921 6922 zone->per_cpu_pageset = alloc_percpu(struct per_cpu_pages); 6923 for_each_possible_cpu(cpu) { 6924 struct per_cpu_pages *pcp; 6925 struct per_cpu_zonestat *pzstats; 6926 6927 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu); 6928 pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu); 6929 per_cpu_pages_init(pcp, pzstats); 6930 } 6931 6932 zone_set_pageset_high_and_batch(zone, 0); 6933 } 6934 6935 /* 6936 * Allocate per cpu pagesets and initialize them. 6937 * Before this call only boot pagesets were available. 6938 */ 6939 void __init setup_per_cpu_pageset(void) 6940 { 6941 struct pglist_data *pgdat; 6942 struct zone *zone; 6943 int __maybe_unused cpu; 6944 6945 for_each_populated_zone(zone) 6946 setup_zone_pageset(zone); 6947 6948 #ifdef CONFIG_NUMA 6949 /* 6950 * Unpopulated zones continue using the boot pagesets. 6951 * The numa stats for these pagesets need to be reset. 6952 * Otherwise, they will end up skewing the stats of 6953 * the nodes these zones are associated with. 6954 */ 6955 for_each_possible_cpu(cpu) { 6956 struct per_cpu_zonestat *pzstats = &per_cpu(boot_zonestats, cpu); 6957 memset(pzstats->vm_numa_event, 0, 6958 sizeof(pzstats->vm_numa_event)); 6959 } 6960 #endif 6961 6962 for_each_online_pgdat(pgdat) 6963 pgdat->per_cpu_nodestats = 6964 alloc_percpu(struct per_cpu_nodestat); 6965 } 6966 6967 static __meminit void zone_pcp_init(struct zone *zone) 6968 { 6969 /* 6970 * per cpu subsystem is not up at this point. The following code 6971 * relies on the ability of the linker to provide the 6972 * offset of a (static) per cpu variable into the per cpu area. 6973 */ 6974 zone->per_cpu_pageset = &boot_pageset; 6975 zone->per_cpu_zonestats = &boot_zonestats; 6976 zone->pageset_high = BOOT_PAGESET_HIGH; 6977 zone->pageset_batch = BOOT_PAGESET_BATCH; 6978 6979 if (populated_zone(zone)) 6980 pr_debug(" %s zone: %lu pages, LIFO batch:%u\n", zone->name, 6981 zone->present_pages, zone_batchsize(zone)); 6982 } 6983 6984 void __meminit init_currently_empty_zone(struct zone *zone, 6985 unsigned long zone_start_pfn, 6986 unsigned long size) 6987 { 6988 struct pglist_data *pgdat = zone->zone_pgdat; 6989 int zone_idx = zone_idx(zone) + 1; 6990 6991 if (zone_idx > pgdat->nr_zones) 6992 pgdat->nr_zones = zone_idx; 6993 6994 zone->zone_start_pfn = zone_start_pfn; 6995 6996 mminit_dprintk(MMINIT_TRACE, "memmap_init", 6997 "Initialising map node %d zone %lu pfns %lu -> %lu\n", 6998 pgdat->node_id, 6999 (unsigned long)zone_idx(zone), 7000 zone_start_pfn, (zone_start_pfn + size)); 7001 7002 zone_init_free_lists(zone); 7003 zone->initialized = 1; 7004 } 7005 7006 /** 7007 * get_pfn_range_for_nid - Return the start and end page frames for a node 7008 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned. 7009 * @start_pfn: Passed by reference. On return, it will have the node start_pfn. 7010 * @end_pfn: Passed by reference. On return, it will have the node end_pfn. 7011 * 7012 * It returns the start and end page frame of a node based on information 7013 * provided by memblock_set_node(). If called for a node 7014 * with no available memory, a warning is printed and the start and end 7015 * PFNs will be 0. 7016 */ 7017 void __init get_pfn_range_for_nid(unsigned int nid, 7018 unsigned long *start_pfn, unsigned long *end_pfn) 7019 { 7020 unsigned long this_start_pfn, this_end_pfn; 7021 int i; 7022 7023 *start_pfn = -1UL; 7024 *end_pfn = 0; 7025 7026 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) { 7027 *start_pfn = min(*start_pfn, this_start_pfn); 7028 *end_pfn = max(*end_pfn, this_end_pfn); 7029 } 7030 7031 if (*start_pfn == -1UL) 7032 *start_pfn = 0; 7033 } 7034 7035 /* 7036 * This finds a zone that can be used for ZONE_MOVABLE pages. The 7037 * assumption is made that zones within a node are ordered in monotonic 7038 * increasing memory addresses so that the "highest" populated zone is used 7039 */ 7040 static void __init find_usable_zone_for_movable(void) 7041 { 7042 int zone_index; 7043 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) { 7044 if (zone_index == ZONE_MOVABLE) 7045 continue; 7046 7047 if (arch_zone_highest_possible_pfn[zone_index] > 7048 arch_zone_lowest_possible_pfn[zone_index]) 7049 break; 7050 } 7051 7052 VM_BUG_ON(zone_index == -1); 7053 movable_zone = zone_index; 7054 } 7055 7056 /* 7057 * The zone ranges provided by the architecture do not include ZONE_MOVABLE 7058 * because it is sized independent of architecture. Unlike the other zones, 7059 * the starting point for ZONE_MOVABLE is not fixed. It may be different 7060 * in each node depending on the size of each node and how evenly kernelcore 7061 * is distributed. This helper function adjusts the zone ranges 7062 * provided by the architecture for a given node by using the end of the 7063 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that 7064 * zones within a node are in order of monotonic increases memory addresses 7065 */ 7066 static void __init adjust_zone_range_for_zone_movable(int nid, 7067 unsigned long zone_type, 7068 unsigned long node_start_pfn, 7069 unsigned long node_end_pfn, 7070 unsigned long *zone_start_pfn, 7071 unsigned long *zone_end_pfn) 7072 { 7073 /* Only adjust if ZONE_MOVABLE is on this node */ 7074 if (zone_movable_pfn[nid]) { 7075 /* Size ZONE_MOVABLE */ 7076 if (zone_type == ZONE_MOVABLE) { 7077 *zone_start_pfn = zone_movable_pfn[nid]; 7078 *zone_end_pfn = min(node_end_pfn, 7079 arch_zone_highest_possible_pfn[movable_zone]); 7080 7081 /* Adjust for ZONE_MOVABLE starting within this range */ 7082 } else if (!mirrored_kernelcore && 7083 *zone_start_pfn < zone_movable_pfn[nid] && 7084 *zone_end_pfn > zone_movable_pfn[nid]) { 7085 *zone_end_pfn = zone_movable_pfn[nid]; 7086 7087 /* Check if this whole range is within ZONE_MOVABLE */ 7088 } else if (*zone_start_pfn >= zone_movable_pfn[nid]) 7089 *zone_start_pfn = *zone_end_pfn; 7090 } 7091 } 7092 7093 /* 7094 * Return the number of pages a zone spans in a node, including holes 7095 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node() 7096 */ 7097 static unsigned long __init zone_spanned_pages_in_node(int nid, 7098 unsigned long zone_type, 7099 unsigned long node_start_pfn, 7100 unsigned long node_end_pfn, 7101 unsigned long *zone_start_pfn, 7102 unsigned long *zone_end_pfn) 7103 { 7104 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type]; 7105 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type]; 7106 /* When hotadd a new node from cpu_up(), the node should be empty */ 7107 if (!node_start_pfn && !node_end_pfn) 7108 return 0; 7109 7110 /* Get the start and end of the zone */ 7111 *zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high); 7112 *zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high); 7113 adjust_zone_range_for_zone_movable(nid, zone_type, 7114 node_start_pfn, node_end_pfn, 7115 zone_start_pfn, zone_end_pfn); 7116 7117 /* Check that this node has pages within the zone's required range */ 7118 if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn) 7119 return 0; 7120 7121 /* Move the zone boundaries inside the node if necessary */ 7122 *zone_end_pfn = min(*zone_end_pfn, node_end_pfn); 7123 *zone_start_pfn = max(*zone_start_pfn, node_start_pfn); 7124 7125 /* Return the spanned pages */ 7126 return *zone_end_pfn - *zone_start_pfn; 7127 } 7128 7129 /* 7130 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES, 7131 * then all holes in the requested range will be accounted for. 7132 */ 7133 unsigned long __init __absent_pages_in_range(int nid, 7134 unsigned long range_start_pfn, 7135 unsigned long range_end_pfn) 7136 { 7137 unsigned long nr_absent = range_end_pfn - range_start_pfn; 7138 unsigned long start_pfn, end_pfn; 7139 int i; 7140 7141 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) { 7142 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn); 7143 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn); 7144 nr_absent -= end_pfn - start_pfn; 7145 } 7146 return nr_absent; 7147 } 7148 7149 /** 7150 * absent_pages_in_range - Return number of page frames in holes within a range 7151 * @start_pfn: The start PFN to start searching for holes 7152 * @end_pfn: The end PFN to stop searching for holes 7153 * 7154 * Return: the number of pages frames in memory holes within a range. 7155 */ 7156 unsigned long __init absent_pages_in_range(unsigned long start_pfn, 7157 unsigned long end_pfn) 7158 { 7159 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn); 7160 } 7161 7162 /* Return the number of page frames in holes in a zone on a node */ 7163 static unsigned long __init zone_absent_pages_in_node(int nid, 7164 unsigned long zone_type, 7165 unsigned long node_start_pfn, 7166 unsigned long node_end_pfn) 7167 { 7168 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type]; 7169 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type]; 7170 unsigned long zone_start_pfn, zone_end_pfn; 7171 unsigned long nr_absent; 7172 7173 /* When hotadd a new node from cpu_up(), the node should be empty */ 7174 if (!node_start_pfn && !node_end_pfn) 7175 return 0; 7176 7177 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high); 7178 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high); 7179 7180 adjust_zone_range_for_zone_movable(nid, zone_type, 7181 node_start_pfn, node_end_pfn, 7182 &zone_start_pfn, &zone_end_pfn); 7183 nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn); 7184 7185 /* 7186 * ZONE_MOVABLE handling. 7187 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages 7188 * and vice versa. 7189 */ 7190 if (mirrored_kernelcore && zone_movable_pfn[nid]) { 7191 unsigned long start_pfn, end_pfn; 7192 struct memblock_region *r; 7193 7194 for_each_mem_region(r) { 7195 start_pfn = clamp(memblock_region_memory_base_pfn(r), 7196 zone_start_pfn, zone_end_pfn); 7197 end_pfn = clamp(memblock_region_memory_end_pfn(r), 7198 zone_start_pfn, zone_end_pfn); 7199 7200 if (zone_type == ZONE_MOVABLE && 7201 memblock_is_mirror(r)) 7202 nr_absent += end_pfn - start_pfn; 7203 7204 if (zone_type == ZONE_NORMAL && 7205 !memblock_is_mirror(r)) 7206 nr_absent += end_pfn - start_pfn; 7207 } 7208 } 7209 7210 return nr_absent; 7211 } 7212 7213 static void __init calculate_node_totalpages(struct pglist_data *pgdat, 7214 unsigned long node_start_pfn, 7215 unsigned long node_end_pfn) 7216 { 7217 unsigned long realtotalpages = 0, totalpages = 0; 7218 enum zone_type i; 7219 7220 for (i = 0; i < MAX_NR_ZONES; i++) { 7221 struct zone *zone = pgdat->node_zones + i; 7222 unsigned long zone_start_pfn, zone_end_pfn; 7223 unsigned long spanned, absent; 7224 unsigned long size, real_size; 7225 7226 spanned = zone_spanned_pages_in_node(pgdat->node_id, i, 7227 node_start_pfn, 7228 node_end_pfn, 7229 &zone_start_pfn, 7230 &zone_end_pfn); 7231 absent = zone_absent_pages_in_node(pgdat->node_id, i, 7232 node_start_pfn, 7233 node_end_pfn); 7234 7235 size = spanned; 7236 real_size = size - absent; 7237 7238 if (size) 7239 zone->zone_start_pfn = zone_start_pfn; 7240 else 7241 zone->zone_start_pfn = 0; 7242 zone->spanned_pages = size; 7243 zone->present_pages = real_size; 7244 7245 totalpages += size; 7246 realtotalpages += real_size; 7247 } 7248 7249 pgdat->node_spanned_pages = totalpages; 7250 pgdat->node_present_pages = realtotalpages; 7251 pr_debug("On node %d totalpages: %lu\n", pgdat->node_id, realtotalpages); 7252 } 7253 7254 #ifndef CONFIG_SPARSEMEM 7255 /* 7256 * Calculate the size of the zone->blockflags rounded to an unsigned long 7257 * Start by making sure zonesize is a multiple of pageblock_order by rounding 7258 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally 7259 * round what is now in bits to nearest long in bits, then return it in 7260 * bytes. 7261 */ 7262 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize) 7263 { 7264 unsigned long usemapsize; 7265 7266 zonesize += zone_start_pfn & (pageblock_nr_pages-1); 7267 usemapsize = roundup(zonesize, pageblock_nr_pages); 7268 usemapsize = usemapsize >> pageblock_order; 7269 usemapsize *= NR_PAGEBLOCK_BITS; 7270 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long)); 7271 7272 return usemapsize / 8; 7273 } 7274 7275 static void __ref setup_usemap(struct zone *zone) 7276 { 7277 unsigned long usemapsize = usemap_size(zone->zone_start_pfn, 7278 zone->spanned_pages); 7279 zone->pageblock_flags = NULL; 7280 if (usemapsize) { 7281 zone->pageblock_flags = 7282 memblock_alloc_node(usemapsize, SMP_CACHE_BYTES, 7283 zone_to_nid(zone)); 7284 if (!zone->pageblock_flags) 7285 panic("Failed to allocate %ld bytes for zone %s pageblock flags on node %d\n", 7286 usemapsize, zone->name, zone_to_nid(zone)); 7287 } 7288 } 7289 #else 7290 static inline void setup_usemap(struct zone *zone) {} 7291 #endif /* CONFIG_SPARSEMEM */ 7292 7293 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE 7294 7295 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */ 7296 void __init set_pageblock_order(void) 7297 { 7298 unsigned int order; 7299 7300 /* Check that pageblock_nr_pages has not already been setup */ 7301 if (pageblock_order) 7302 return; 7303 7304 if (HPAGE_SHIFT > PAGE_SHIFT) 7305 order = HUGETLB_PAGE_ORDER; 7306 else 7307 order = MAX_ORDER - 1; 7308 7309 /* 7310 * Assume the largest contiguous order of interest is a huge page. 7311 * This value may be variable depending on boot parameters on IA64 and 7312 * powerpc. 7313 */ 7314 pageblock_order = order; 7315 } 7316 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */ 7317 7318 /* 7319 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order() 7320 * is unused as pageblock_order is set at compile-time. See 7321 * include/linux/pageblock-flags.h for the values of pageblock_order based on 7322 * the kernel config 7323 */ 7324 void __init set_pageblock_order(void) 7325 { 7326 } 7327 7328 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */ 7329 7330 static unsigned long __init calc_memmap_size(unsigned long spanned_pages, 7331 unsigned long present_pages) 7332 { 7333 unsigned long pages = spanned_pages; 7334 7335 /* 7336 * Provide a more accurate estimation if there are holes within 7337 * the zone and SPARSEMEM is in use. If there are holes within the 7338 * zone, each populated memory region may cost us one or two extra 7339 * memmap pages due to alignment because memmap pages for each 7340 * populated regions may not be naturally aligned on page boundary. 7341 * So the (present_pages >> 4) heuristic is a tradeoff for that. 7342 */ 7343 if (spanned_pages > present_pages + (present_pages >> 4) && 7344 IS_ENABLED(CONFIG_SPARSEMEM)) 7345 pages = present_pages; 7346 7347 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT; 7348 } 7349 7350 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 7351 static void pgdat_init_split_queue(struct pglist_data *pgdat) 7352 { 7353 struct deferred_split *ds_queue = &pgdat->deferred_split_queue; 7354 7355 spin_lock_init(&ds_queue->split_queue_lock); 7356 INIT_LIST_HEAD(&ds_queue->split_queue); 7357 ds_queue->split_queue_len = 0; 7358 } 7359 #else 7360 static void pgdat_init_split_queue(struct pglist_data *pgdat) {} 7361 #endif 7362 7363 #ifdef CONFIG_COMPACTION 7364 static void pgdat_init_kcompactd(struct pglist_data *pgdat) 7365 { 7366 init_waitqueue_head(&pgdat->kcompactd_wait); 7367 } 7368 #else 7369 static void pgdat_init_kcompactd(struct pglist_data *pgdat) {} 7370 #endif 7371 7372 static void __meminit pgdat_init_internals(struct pglist_data *pgdat) 7373 { 7374 pgdat_resize_init(pgdat); 7375 7376 pgdat_init_split_queue(pgdat); 7377 pgdat_init_kcompactd(pgdat); 7378 7379 init_waitqueue_head(&pgdat->kswapd_wait); 7380 init_waitqueue_head(&pgdat->pfmemalloc_wait); 7381 7382 pgdat_page_ext_init(pgdat); 7383 lruvec_init(&pgdat->__lruvec); 7384 } 7385 7386 static void __meminit zone_init_internals(struct zone *zone, enum zone_type idx, int nid, 7387 unsigned long remaining_pages) 7388 { 7389 atomic_long_set(&zone->managed_pages, remaining_pages); 7390 zone_set_nid(zone, nid); 7391 zone->name = zone_names[idx]; 7392 zone->zone_pgdat = NODE_DATA(nid); 7393 spin_lock_init(&zone->lock); 7394 zone_seqlock_init(zone); 7395 zone_pcp_init(zone); 7396 } 7397 7398 /* 7399 * Set up the zone data structures 7400 * - init pgdat internals 7401 * - init all zones belonging to this node 7402 * 7403 * NOTE: this function is only called during memory hotplug 7404 */ 7405 #ifdef CONFIG_MEMORY_HOTPLUG 7406 void __ref free_area_init_core_hotplug(int nid) 7407 { 7408 enum zone_type z; 7409 pg_data_t *pgdat = NODE_DATA(nid); 7410 7411 pgdat_init_internals(pgdat); 7412 for (z = 0; z < MAX_NR_ZONES; z++) 7413 zone_init_internals(&pgdat->node_zones[z], z, nid, 0); 7414 } 7415 #endif 7416 7417 /* 7418 * Set up the zone data structures: 7419 * - mark all pages reserved 7420 * - mark all memory queues empty 7421 * - clear the memory bitmaps 7422 * 7423 * NOTE: pgdat should get zeroed by caller. 7424 * NOTE: this function is only called during early init. 7425 */ 7426 static void __init free_area_init_core(struct pglist_data *pgdat) 7427 { 7428 enum zone_type j; 7429 int nid = pgdat->node_id; 7430 7431 pgdat_init_internals(pgdat); 7432 pgdat->per_cpu_nodestats = &boot_nodestats; 7433 7434 for (j = 0; j < MAX_NR_ZONES; j++) { 7435 struct zone *zone = pgdat->node_zones + j; 7436 unsigned long size, freesize, memmap_pages; 7437 7438 size = zone->spanned_pages; 7439 freesize = zone->present_pages; 7440 7441 /* 7442 * Adjust freesize so that it accounts for how much memory 7443 * is used by this zone for memmap. This affects the watermark 7444 * and per-cpu initialisations 7445 */ 7446 memmap_pages = calc_memmap_size(size, freesize); 7447 if (!is_highmem_idx(j)) { 7448 if (freesize >= memmap_pages) { 7449 freesize -= memmap_pages; 7450 if (memmap_pages) 7451 pr_debug(" %s zone: %lu pages used for memmap\n", 7452 zone_names[j], memmap_pages); 7453 } else 7454 pr_warn(" %s zone: %lu memmap pages exceeds freesize %lu\n", 7455 zone_names[j], memmap_pages, freesize); 7456 } 7457 7458 /* Account for reserved pages */ 7459 if (j == 0 && freesize > dma_reserve) { 7460 freesize -= dma_reserve; 7461 pr_debug(" %s zone: %lu pages reserved\n", zone_names[0], dma_reserve); 7462 } 7463 7464 if (!is_highmem_idx(j)) 7465 nr_kernel_pages += freesize; 7466 /* Charge for highmem memmap if there are enough kernel pages */ 7467 else if (nr_kernel_pages > memmap_pages * 2) 7468 nr_kernel_pages -= memmap_pages; 7469 nr_all_pages += freesize; 7470 7471 /* 7472 * Set an approximate value for lowmem here, it will be adjusted 7473 * when the bootmem allocator frees pages into the buddy system. 7474 * And all highmem pages will be managed by the buddy system. 7475 */ 7476 zone_init_internals(zone, j, nid, freesize); 7477 7478 if (!size) 7479 continue; 7480 7481 set_pageblock_order(); 7482 setup_usemap(zone); 7483 init_currently_empty_zone(zone, zone->zone_start_pfn, size); 7484 } 7485 } 7486 7487 #ifdef CONFIG_FLATMEM 7488 static void __ref alloc_node_mem_map(struct pglist_data *pgdat) 7489 { 7490 unsigned long __maybe_unused start = 0; 7491 unsigned long __maybe_unused offset = 0; 7492 7493 /* Skip empty nodes */ 7494 if (!pgdat->node_spanned_pages) 7495 return; 7496 7497 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1); 7498 offset = pgdat->node_start_pfn - start; 7499 /* ia64 gets its own node_mem_map, before this, without bootmem */ 7500 if (!pgdat->node_mem_map) { 7501 unsigned long size, end; 7502 struct page *map; 7503 7504 /* 7505 * The zone's endpoints aren't required to be MAX_ORDER 7506 * aligned but the node_mem_map endpoints must be in order 7507 * for the buddy allocator to function correctly. 7508 */ 7509 end = pgdat_end_pfn(pgdat); 7510 end = ALIGN(end, MAX_ORDER_NR_PAGES); 7511 size = (end - start) * sizeof(struct page); 7512 map = memblock_alloc_node(size, SMP_CACHE_BYTES, 7513 pgdat->node_id); 7514 if (!map) 7515 panic("Failed to allocate %ld bytes for node %d memory map\n", 7516 size, pgdat->node_id); 7517 pgdat->node_mem_map = map + offset; 7518 } 7519 pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n", 7520 __func__, pgdat->node_id, (unsigned long)pgdat, 7521 (unsigned long)pgdat->node_mem_map); 7522 #ifndef CONFIG_NUMA 7523 /* 7524 * With no DISCONTIG, the global mem_map is just set as node 0's 7525 */ 7526 if (pgdat == NODE_DATA(0)) { 7527 mem_map = NODE_DATA(0)->node_mem_map; 7528 if (page_to_pfn(mem_map) != pgdat->node_start_pfn) 7529 mem_map -= offset; 7530 } 7531 #endif 7532 } 7533 #else 7534 static void __ref alloc_node_mem_map(struct pglist_data *pgdat) { } 7535 #endif /* CONFIG_FLATMEM */ 7536 7537 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 7538 static inline void pgdat_set_deferred_range(pg_data_t *pgdat) 7539 { 7540 pgdat->first_deferred_pfn = ULONG_MAX; 7541 } 7542 #else 7543 static inline void pgdat_set_deferred_range(pg_data_t *pgdat) {} 7544 #endif 7545 7546 static void __init free_area_init_node(int nid) 7547 { 7548 pg_data_t *pgdat = NODE_DATA(nid); 7549 unsigned long start_pfn = 0; 7550 unsigned long end_pfn = 0; 7551 7552 /* pg_data_t should be reset to zero when it's allocated */ 7553 WARN_ON(pgdat->nr_zones || pgdat->kswapd_highest_zoneidx); 7554 7555 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn); 7556 7557 pgdat->node_id = nid; 7558 pgdat->node_start_pfn = start_pfn; 7559 pgdat->per_cpu_nodestats = NULL; 7560 7561 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid, 7562 (u64)start_pfn << PAGE_SHIFT, 7563 end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0); 7564 calculate_node_totalpages(pgdat, start_pfn, end_pfn); 7565 7566 alloc_node_mem_map(pgdat); 7567 pgdat_set_deferred_range(pgdat); 7568 7569 free_area_init_core(pgdat); 7570 } 7571 7572 void __init free_area_init_memoryless_node(int nid) 7573 { 7574 free_area_init_node(nid); 7575 } 7576 7577 #if MAX_NUMNODES > 1 7578 /* 7579 * Figure out the number of possible node ids. 7580 */ 7581 void __init setup_nr_node_ids(void) 7582 { 7583 unsigned int highest; 7584 7585 highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES); 7586 nr_node_ids = highest + 1; 7587 } 7588 #endif 7589 7590 /** 7591 * node_map_pfn_alignment - determine the maximum internode alignment 7592 * 7593 * This function should be called after node map is populated and sorted. 7594 * It calculates the maximum power of two alignment which can distinguish 7595 * all the nodes. 7596 * 7597 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value 7598 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the 7599 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is 7600 * shifted, 1GiB is enough and this function will indicate so. 7601 * 7602 * This is used to test whether pfn -> nid mapping of the chosen memory 7603 * model has fine enough granularity to avoid incorrect mapping for the 7604 * populated node map. 7605 * 7606 * Return: the determined alignment in pfn's. 0 if there is no alignment 7607 * requirement (single node). 7608 */ 7609 unsigned long __init node_map_pfn_alignment(void) 7610 { 7611 unsigned long accl_mask = 0, last_end = 0; 7612 unsigned long start, end, mask; 7613 int last_nid = NUMA_NO_NODE; 7614 int i, nid; 7615 7616 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) { 7617 if (!start || last_nid < 0 || last_nid == nid) { 7618 last_nid = nid; 7619 last_end = end; 7620 continue; 7621 } 7622 7623 /* 7624 * Start with a mask granular enough to pin-point to the 7625 * start pfn and tick off bits one-by-one until it becomes 7626 * too coarse to separate the current node from the last. 7627 */ 7628 mask = ~((1 << __ffs(start)) - 1); 7629 while (mask && last_end <= (start & (mask << 1))) 7630 mask <<= 1; 7631 7632 /* accumulate all internode masks */ 7633 accl_mask |= mask; 7634 } 7635 7636 /* convert mask to number of pages */ 7637 return ~accl_mask + 1; 7638 } 7639 7640 /** 7641 * find_min_pfn_with_active_regions - Find the minimum PFN registered 7642 * 7643 * Return: the minimum PFN based on information provided via 7644 * memblock_set_node(). 7645 */ 7646 unsigned long __init find_min_pfn_with_active_regions(void) 7647 { 7648 return PHYS_PFN(memblock_start_of_DRAM()); 7649 } 7650 7651 /* 7652 * early_calculate_totalpages() 7653 * Sum pages in active regions for movable zone. 7654 * Populate N_MEMORY for calculating usable_nodes. 7655 */ 7656 static unsigned long __init early_calculate_totalpages(void) 7657 { 7658 unsigned long totalpages = 0; 7659 unsigned long start_pfn, end_pfn; 7660 int i, nid; 7661 7662 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) { 7663 unsigned long pages = end_pfn - start_pfn; 7664 7665 totalpages += pages; 7666 if (pages) 7667 node_set_state(nid, N_MEMORY); 7668 } 7669 return totalpages; 7670 } 7671 7672 /* 7673 * Find the PFN the Movable zone begins in each node. Kernel memory 7674 * is spread evenly between nodes as long as the nodes have enough 7675 * memory. When they don't, some nodes will have more kernelcore than 7676 * others 7677 */ 7678 static void __init find_zone_movable_pfns_for_nodes(void) 7679 { 7680 int i, nid; 7681 unsigned long usable_startpfn; 7682 unsigned long kernelcore_node, kernelcore_remaining; 7683 /* save the state before borrow the nodemask */ 7684 nodemask_t saved_node_state = node_states[N_MEMORY]; 7685 unsigned long totalpages = early_calculate_totalpages(); 7686 int usable_nodes = nodes_weight(node_states[N_MEMORY]); 7687 struct memblock_region *r; 7688 7689 /* Need to find movable_zone earlier when movable_node is specified. */ 7690 find_usable_zone_for_movable(); 7691 7692 /* 7693 * If movable_node is specified, ignore kernelcore and movablecore 7694 * options. 7695 */ 7696 if (movable_node_is_enabled()) { 7697 for_each_mem_region(r) { 7698 if (!memblock_is_hotpluggable(r)) 7699 continue; 7700 7701 nid = memblock_get_region_node(r); 7702 7703 usable_startpfn = PFN_DOWN(r->base); 7704 zone_movable_pfn[nid] = zone_movable_pfn[nid] ? 7705 min(usable_startpfn, zone_movable_pfn[nid]) : 7706 usable_startpfn; 7707 } 7708 7709 goto out2; 7710 } 7711 7712 /* 7713 * If kernelcore=mirror is specified, ignore movablecore option 7714 */ 7715 if (mirrored_kernelcore) { 7716 bool mem_below_4gb_not_mirrored = false; 7717 7718 for_each_mem_region(r) { 7719 if (memblock_is_mirror(r)) 7720 continue; 7721 7722 nid = memblock_get_region_node(r); 7723 7724 usable_startpfn = memblock_region_memory_base_pfn(r); 7725 7726 if (usable_startpfn < 0x100000) { 7727 mem_below_4gb_not_mirrored = true; 7728 continue; 7729 } 7730 7731 zone_movable_pfn[nid] = zone_movable_pfn[nid] ? 7732 min(usable_startpfn, zone_movable_pfn[nid]) : 7733 usable_startpfn; 7734 } 7735 7736 if (mem_below_4gb_not_mirrored) 7737 pr_warn("This configuration results in unmirrored kernel memory.\n"); 7738 7739 goto out2; 7740 } 7741 7742 /* 7743 * If kernelcore=nn% or movablecore=nn% was specified, calculate the 7744 * amount of necessary memory. 7745 */ 7746 if (required_kernelcore_percent) 7747 required_kernelcore = (totalpages * 100 * required_kernelcore_percent) / 7748 10000UL; 7749 if (required_movablecore_percent) 7750 required_movablecore = (totalpages * 100 * required_movablecore_percent) / 7751 10000UL; 7752 7753 /* 7754 * If movablecore= was specified, calculate what size of 7755 * kernelcore that corresponds so that memory usable for 7756 * any allocation type is evenly spread. If both kernelcore 7757 * and movablecore are specified, then the value of kernelcore 7758 * will be used for required_kernelcore if it's greater than 7759 * what movablecore would have allowed. 7760 */ 7761 if (required_movablecore) { 7762 unsigned long corepages; 7763 7764 /* 7765 * Round-up so that ZONE_MOVABLE is at least as large as what 7766 * was requested by the user 7767 */ 7768 required_movablecore = 7769 roundup(required_movablecore, MAX_ORDER_NR_PAGES); 7770 required_movablecore = min(totalpages, required_movablecore); 7771 corepages = totalpages - required_movablecore; 7772 7773 required_kernelcore = max(required_kernelcore, corepages); 7774 } 7775 7776 /* 7777 * If kernelcore was not specified or kernelcore size is larger 7778 * than totalpages, there is no ZONE_MOVABLE. 7779 */ 7780 if (!required_kernelcore || required_kernelcore >= totalpages) 7781 goto out; 7782 7783 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */ 7784 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone]; 7785 7786 restart: 7787 /* Spread kernelcore memory as evenly as possible throughout nodes */ 7788 kernelcore_node = required_kernelcore / usable_nodes; 7789 for_each_node_state(nid, N_MEMORY) { 7790 unsigned long start_pfn, end_pfn; 7791 7792 /* 7793 * Recalculate kernelcore_node if the division per node 7794 * now exceeds what is necessary to satisfy the requested 7795 * amount of memory for the kernel 7796 */ 7797 if (required_kernelcore < kernelcore_node) 7798 kernelcore_node = required_kernelcore / usable_nodes; 7799 7800 /* 7801 * As the map is walked, we track how much memory is usable 7802 * by the kernel using kernelcore_remaining. When it is 7803 * 0, the rest of the node is usable by ZONE_MOVABLE 7804 */ 7805 kernelcore_remaining = kernelcore_node; 7806 7807 /* Go through each range of PFNs within this node */ 7808 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) { 7809 unsigned long size_pages; 7810 7811 start_pfn = max(start_pfn, zone_movable_pfn[nid]); 7812 if (start_pfn >= end_pfn) 7813 continue; 7814 7815 /* Account for what is only usable for kernelcore */ 7816 if (start_pfn < usable_startpfn) { 7817 unsigned long kernel_pages; 7818 kernel_pages = min(end_pfn, usable_startpfn) 7819 - start_pfn; 7820 7821 kernelcore_remaining -= min(kernel_pages, 7822 kernelcore_remaining); 7823 required_kernelcore -= min(kernel_pages, 7824 required_kernelcore); 7825 7826 /* Continue if range is now fully accounted */ 7827 if (end_pfn <= usable_startpfn) { 7828 7829 /* 7830 * Push zone_movable_pfn to the end so 7831 * that if we have to rebalance 7832 * kernelcore across nodes, we will 7833 * not double account here 7834 */ 7835 zone_movable_pfn[nid] = end_pfn; 7836 continue; 7837 } 7838 start_pfn = usable_startpfn; 7839 } 7840 7841 /* 7842 * The usable PFN range for ZONE_MOVABLE is from 7843 * start_pfn->end_pfn. Calculate size_pages as the 7844 * number of pages used as kernelcore 7845 */ 7846 size_pages = end_pfn - start_pfn; 7847 if (size_pages > kernelcore_remaining) 7848 size_pages = kernelcore_remaining; 7849 zone_movable_pfn[nid] = start_pfn + size_pages; 7850 7851 /* 7852 * Some kernelcore has been met, update counts and 7853 * break if the kernelcore for this node has been 7854 * satisfied 7855 */ 7856 required_kernelcore -= min(required_kernelcore, 7857 size_pages); 7858 kernelcore_remaining -= size_pages; 7859 if (!kernelcore_remaining) 7860 break; 7861 } 7862 } 7863 7864 /* 7865 * If there is still required_kernelcore, we do another pass with one 7866 * less node in the count. This will push zone_movable_pfn[nid] further 7867 * along on the nodes that still have memory until kernelcore is 7868 * satisfied 7869 */ 7870 usable_nodes--; 7871 if (usable_nodes && required_kernelcore > usable_nodes) 7872 goto restart; 7873 7874 out2: 7875 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */ 7876 for (nid = 0; nid < MAX_NUMNODES; nid++) 7877 zone_movable_pfn[nid] = 7878 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES); 7879 7880 out: 7881 /* restore the node_state */ 7882 node_states[N_MEMORY] = saved_node_state; 7883 } 7884 7885 /* Any regular or high memory on that node ? */ 7886 static void check_for_memory(pg_data_t *pgdat, int nid) 7887 { 7888 enum zone_type zone_type; 7889 7890 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) { 7891 struct zone *zone = &pgdat->node_zones[zone_type]; 7892 if (populated_zone(zone)) { 7893 if (IS_ENABLED(CONFIG_HIGHMEM)) 7894 node_set_state(nid, N_HIGH_MEMORY); 7895 if (zone_type <= ZONE_NORMAL) 7896 node_set_state(nid, N_NORMAL_MEMORY); 7897 break; 7898 } 7899 } 7900 } 7901 7902 /* 7903 * Some architectures, e.g. ARC may have ZONE_HIGHMEM below ZONE_NORMAL. For 7904 * such cases we allow max_zone_pfn sorted in the descending order 7905 */ 7906 bool __weak arch_has_descending_max_zone_pfns(void) 7907 { 7908 return false; 7909 } 7910 7911 /** 7912 * free_area_init - Initialise all pg_data_t and zone data 7913 * @max_zone_pfn: an array of max PFNs for each zone 7914 * 7915 * This will call free_area_init_node() for each active node in the system. 7916 * Using the page ranges provided by memblock_set_node(), the size of each 7917 * zone in each node and their holes is calculated. If the maximum PFN 7918 * between two adjacent zones match, it is assumed that the zone is empty. 7919 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed 7920 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone 7921 * starts where the previous one ended. For example, ZONE_DMA32 starts 7922 * at arch_max_dma_pfn. 7923 */ 7924 void __init free_area_init(unsigned long *max_zone_pfn) 7925 { 7926 unsigned long start_pfn, end_pfn; 7927 int i, nid, zone; 7928 bool descending; 7929 7930 /* Record where the zone boundaries are */ 7931 memset(arch_zone_lowest_possible_pfn, 0, 7932 sizeof(arch_zone_lowest_possible_pfn)); 7933 memset(arch_zone_highest_possible_pfn, 0, 7934 sizeof(arch_zone_highest_possible_pfn)); 7935 7936 start_pfn = find_min_pfn_with_active_regions(); 7937 descending = arch_has_descending_max_zone_pfns(); 7938 7939 for (i = 0; i < MAX_NR_ZONES; i++) { 7940 if (descending) 7941 zone = MAX_NR_ZONES - i - 1; 7942 else 7943 zone = i; 7944 7945 if (zone == ZONE_MOVABLE) 7946 continue; 7947 7948 end_pfn = max(max_zone_pfn[zone], start_pfn); 7949 arch_zone_lowest_possible_pfn[zone] = start_pfn; 7950 arch_zone_highest_possible_pfn[zone] = end_pfn; 7951 7952 start_pfn = end_pfn; 7953 } 7954 7955 /* Find the PFNs that ZONE_MOVABLE begins at in each node */ 7956 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn)); 7957 find_zone_movable_pfns_for_nodes(); 7958 7959 /* Print out the zone ranges */ 7960 pr_info("Zone ranges:\n"); 7961 for (i = 0; i < MAX_NR_ZONES; i++) { 7962 if (i == ZONE_MOVABLE) 7963 continue; 7964 pr_info(" %-8s ", zone_names[i]); 7965 if (arch_zone_lowest_possible_pfn[i] == 7966 arch_zone_highest_possible_pfn[i]) 7967 pr_cont("empty\n"); 7968 else 7969 pr_cont("[mem %#018Lx-%#018Lx]\n", 7970 (u64)arch_zone_lowest_possible_pfn[i] 7971 << PAGE_SHIFT, 7972 ((u64)arch_zone_highest_possible_pfn[i] 7973 << PAGE_SHIFT) - 1); 7974 } 7975 7976 /* Print out the PFNs ZONE_MOVABLE begins at in each node */ 7977 pr_info("Movable zone start for each node\n"); 7978 for (i = 0; i < MAX_NUMNODES; i++) { 7979 if (zone_movable_pfn[i]) 7980 pr_info(" Node %d: %#018Lx\n", i, 7981 (u64)zone_movable_pfn[i] << PAGE_SHIFT); 7982 } 7983 7984 /* 7985 * Print out the early node map, and initialize the 7986 * subsection-map relative to active online memory ranges to 7987 * enable future "sub-section" extensions of the memory map. 7988 */ 7989 pr_info("Early memory node ranges\n"); 7990 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) { 7991 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid, 7992 (u64)start_pfn << PAGE_SHIFT, 7993 ((u64)end_pfn << PAGE_SHIFT) - 1); 7994 subsection_map_init(start_pfn, end_pfn - start_pfn); 7995 } 7996 7997 /* Initialise every node */ 7998 mminit_verify_pageflags_layout(); 7999 setup_nr_node_ids(); 8000 for_each_online_node(nid) { 8001 pg_data_t *pgdat = NODE_DATA(nid); 8002 free_area_init_node(nid); 8003 8004 /* Any memory on that node */ 8005 if (pgdat->node_present_pages) 8006 node_set_state(nid, N_MEMORY); 8007 check_for_memory(pgdat, nid); 8008 } 8009 8010 memmap_init(); 8011 } 8012 8013 static int __init cmdline_parse_core(char *p, unsigned long *core, 8014 unsigned long *percent) 8015 { 8016 unsigned long long coremem; 8017 char *endptr; 8018 8019 if (!p) 8020 return -EINVAL; 8021 8022 /* Value may be a percentage of total memory, otherwise bytes */ 8023 coremem = simple_strtoull(p, &endptr, 0); 8024 if (*endptr == '%') { 8025 /* Paranoid check for percent values greater than 100 */ 8026 WARN_ON(coremem > 100); 8027 8028 *percent = coremem; 8029 } else { 8030 coremem = memparse(p, &p); 8031 /* Paranoid check that UL is enough for the coremem value */ 8032 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX); 8033 8034 *core = coremem >> PAGE_SHIFT; 8035 *percent = 0UL; 8036 } 8037 return 0; 8038 } 8039 8040 /* 8041 * kernelcore=size sets the amount of memory for use for allocations that 8042 * cannot be reclaimed or migrated. 8043 */ 8044 static int __init cmdline_parse_kernelcore(char *p) 8045 { 8046 /* parse kernelcore=mirror */ 8047 if (parse_option_str(p, "mirror")) { 8048 mirrored_kernelcore = true; 8049 return 0; 8050 } 8051 8052 return cmdline_parse_core(p, &required_kernelcore, 8053 &required_kernelcore_percent); 8054 } 8055 8056 /* 8057 * movablecore=size sets the amount of memory for use for allocations that 8058 * can be reclaimed or migrated. 8059 */ 8060 static int __init cmdline_parse_movablecore(char *p) 8061 { 8062 return cmdline_parse_core(p, &required_movablecore, 8063 &required_movablecore_percent); 8064 } 8065 8066 early_param("kernelcore", cmdline_parse_kernelcore); 8067 early_param("movablecore", cmdline_parse_movablecore); 8068 8069 void adjust_managed_page_count(struct page *page, long count) 8070 { 8071 atomic_long_add(count, &page_zone(page)->managed_pages); 8072 totalram_pages_add(count); 8073 #ifdef CONFIG_HIGHMEM 8074 if (PageHighMem(page)) 8075 totalhigh_pages_add(count); 8076 #endif 8077 } 8078 EXPORT_SYMBOL(adjust_managed_page_count); 8079 8080 unsigned long free_reserved_area(void *start, void *end, int poison, const char *s) 8081 { 8082 void *pos; 8083 unsigned long pages = 0; 8084 8085 start = (void *)PAGE_ALIGN((unsigned long)start); 8086 end = (void *)((unsigned long)end & PAGE_MASK); 8087 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) { 8088 struct page *page = virt_to_page(pos); 8089 void *direct_map_addr; 8090 8091 /* 8092 * 'direct_map_addr' might be different from 'pos' 8093 * because some architectures' virt_to_page() 8094 * work with aliases. Getting the direct map 8095 * address ensures that we get a _writeable_ 8096 * alias for the memset(). 8097 */ 8098 direct_map_addr = page_address(page); 8099 /* 8100 * Perform a kasan-unchecked memset() since this memory 8101 * has not been initialized. 8102 */ 8103 direct_map_addr = kasan_reset_tag(direct_map_addr); 8104 if ((unsigned int)poison <= 0xFF) 8105 memset(direct_map_addr, poison, PAGE_SIZE); 8106 8107 free_reserved_page(page); 8108 } 8109 8110 if (pages && s) 8111 pr_info("Freeing %s memory: %ldK\n", 8112 s, pages << (PAGE_SHIFT - 10)); 8113 8114 return pages; 8115 } 8116 8117 void __init mem_init_print_info(void) 8118 { 8119 unsigned long physpages, codesize, datasize, rosize, bss_size; 8120 unsigned long init_code_size, init_data_size; 8121 8122 physpages = get_num_physpages(); 8123 codesize = _etext - _stext; 8124 datasize = _edata - _sdata; 8125 rosize = __end_rodata - __start_rodata; 8126 bss_size = __bss_stop - __bss_start; 8127 init_data_size = __init_end - __init_begin; 8128 init_code_size = _einittext - _sinittext; 8129 8130 /* 8131 * Detect special cases and adjust section sizes accordingly: 8132 * 1) .init.* may be embedded into .data sections 8133 * 2) .init.text.* may be out of [__init_begin, __init_end], 8134 * please refer to arch/tile/kernel/vmlinux.lds.S. 8135 * 3) .rodata.* may be embedded into .text or .data sections. 8136 */ 8137 #define adj_init_size(start, end, size, pos, adj) \ 8138 do { \ 8139 if (start <= pos && pos < end && size > adj) \ 8140 size -= adj; \ 8141 } while (0) 8142 8143 adj_init_size(__init_begin, __init_end, init_data_size, 8144 _sinittext, init_code_size); 8145 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size); 8146 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size); 8147 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize); 8148 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize); 8149 8150 #undef adj_init_size 8151 8152 pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved" 8153 #ifdef CONFIG_HIGHMEM 8154 ", %luK highmem" 8155 #endif 8156 ")\n", 8157 nr_free_pages() << (PAGE_SHIFT - 10), 8158 physpages << (PAGE_SHIFT - 10), 8159 codesize >> 10, datasize >> 10, rosize >> 10, 8160 (init_data_size + init_code_size) >> 10, bss_size >> 10, 8161 (physpages - totalram_pages() - totalcma_pages) << (PAGE_SHIFT - 10), 8162 totalcma_pages << (PAGE_SHIFT - 10) 8163 #ifdef CONFIG_HIGHMEM 8164 , totalhigh_pages() << (PAGE_SHIFT - 10) 8165 #endif 8166 ); 8167 } 8168 8169 /** 8170 * set_dma_reserve - set the specified number of pages reserved in the first zone 8171 * @new_dma_reserve: The number of pages to mark reserved 8172 * 8173 * The per-cpu batchsize and zone watermarks are determined by managed_pages. 8174 * In the DMA zone, a significant percentage may be consumed by kernel image 8175 * and other unfreeable allocations which can skew the watermarks badly. This 8176 * function may optionally be used to account for unfreeable pages in the 8177 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and 8178 * smaller per-cpu batchsize. 8179 */ 8180 void __init set_dma_reserve(unsigned long new_dma_reserve) 8181 { 8182 dma_reserve = new_dma_reserve; 8183 } 8184 8185 static int page_alloc_cpu_dead(unsigned int cpu) 8186 { 8187 struct zone *zone; 8188 8189 lru_add_drain_cpu(cpu); 8190 drain_pages(cpu); 8191 8192 /* 8193 * Spill the event counters of the dead processor 8194 * into the current processors event counters. 8195 * This artificially elevates the count of the current 8196 * processor. 8197 */ 8198 vm_events_fold_cpu(cpu); 8199 8200 /* 8201 * Zero the differential counters of the dead processor 8202 * so that the vm statistics are consistent. 8203 * 8204 * This is only okay since the processor is dead and cannot 8205 * race with what we are doing. 8206 */ 8207 cpu_vm_stats_fold(cpu); 8208 8209 for_each_populated_zone(zone) 8210 zone_pcp_update(zone, 0); 8211 8212 return 0; 8213 } 8214 8215 static int page_alloc_cpu_online(unsigned int cpu) 8216 { 8217 struct zone *zone; 8218 8219 for_each_populated_zone(zone) 8220 zone_pcp_update(zone, 1); 8221 return 0; 8222 } 8223 8224 #ifdef CONFIG_NUMA 8225 int hashdist = HASHDIST_DEFAULT; 8226 8227 static int __init set_hashdist(char *str) 8228 { 8229 if (!str) 8230 return 0; 8231 hashdist = simple_strtoul(str, &str, 0); 8232 return 1; 8233 } 8234 __setup("hashdist=", set_hashdist); 8235 #endif 8236 8237 void __init page_alloc_init(void) 8238 { 8239 int ret; 8240 8241 #ifdef CONFIG_NUMA 8242 if (num_node_state(N_MEMORY) == 1) 8243 hashdist = 0; 8244 #endif 8245 8246 ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC, 8247 "mm/page_alloc:pcp", 8248 page_alloc_cpu_online, 8249 page_alloc_cpu_dead); 8250 WARN_ON(ret < 0); 8251 } 8252 8253 /* 8254 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio 8255 * or min_free_kbytes changes. 8256 */ 8257 static void calculate_totalreserve_pages(void) 8258 { 8259 struct pglist_data *pgdat; 8260 unsigned long reserve_pages = 0; 8261 enum zone_type i, j; 8262 8263 for_each_online_pgdat(pgdat) { 8264 8265 pgdat->totalreserve_pages = 0; 8266 8267 for (i = 0; i < MAX_NR_ZONES; i++) { 8268 struct zone *zone = pgdat->node_zones + i; 8269 long max = 0; 8270 unsigned long managed_pages = zone_managed_pages(zone); 8271 8272 /* Find valid and maximum lowmem_reserve in the zone */ 8273 for (j = i; j < MAX_NR_ZONES; j++) { 8274 if (zone->lowmem_reserve[j] > max) 8275 max = zone->lowmem_reserve[j]; 8276 } 8277 8278 /* we treat the high watermark as reserved pages. */ 8279 max += high_wmark_pages(zone); 8280 8281 if (max > managed_pages) 8282 max = managed_pages; 8283 8284 pgdat->totalreserve_pages += max; 8285 8286 reserve_pages += max; 8287 } 8288 } 8289 totalreserve_pages = reserve_pages; 8290 } 8291 8292 /* 8293 * setup_per_zone_lowmem_reserve - called whenever 8294 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone 8295 * has a correct pages reserved value, so an adequate number of 8296 * pages are left in the zone after a successful __alloc_pages(). 8297 */ 8298 static void setup_per_zone_lowmem_reserve(void) 8299 { 8300 struct pglist_data *pgdat; 8301 enum zone_type i, j; 8302 8303 for_each_online_pgdat(pgdat) { 8304 for (i = 0; i < MAX_NR_ZONES - 1; i++) { 8305 struct zone *zone = &pgdat->node_zones[i]; 8306 int ratio = sysctl_lowmem_reserve_ratio[i]; 8307 bool clear = !ratio || !zone_managed_pages(zone); 8308 unsigned long managed_pages = 0; 8309 8310 for (j = i + 1; j < MAX_NR_ZONES; j++) { 8311 struct zone *upper_zone = &pgdat->node_zones[j]; 8312 8313 managed_pages += zone_managed_pages(upper_zone); 8314 8315 if (clear) 8316 zone->lowmem_reserve[j] = 0; 8317 else 8318 zone->lowmem_reserve[j] = managed_pages / ratio; 8319 } 8320 } 8321 } 8322 8323 /* update totalreserve_pages */ 8324 calculate_totalreserve_pages(); 8325 } 8326 8327 static void __setup_per_zone_wmarks(void) 8328 { 8329 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10); 8330 unsigned long lowmem_pages = 0; 8331 struct zone *zone; 8332 unsigned long flags; 8333 8334 /* Calculate total number of !ZONE_HIGHMEM pages */ 8335 for_each_zone(zone) { 8336 if (!is_highmem(zone)) 8337 lowmem_pages += zone_managed_pages(zone); 8338 } 8339 8340 for_each_zone(zone) { 8341 u64 tmp; 8342 8343 spin_lock_irqsave(&zone->lock, flags); 8344 tmp = (u64)pages_min * zone_managed_pages(zone); 8345 do_div(tmp, lowmem_pages); 8346 if (is_highmem(zone)) { 8347 /* 8348 * __GFP_HIGH and PF_MEMALLOC allocations usually don't 8349 * need highmem pages, so cap pages_min to a small 8350 * value here. 8351 * 8352 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN) 8353 * deltas control async page reclaim, and so should 8354 * not be capped for highmem. 8355 */ 8356 unsigned long min_pages; 8357 8358 min_pages = zone_managed_pages(zone) / 1024; 8359 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL); 8360 zone->_watermark[WMARK_MIN] = min_pages; 8361 } else { 8362 /* 8363 * If it's a lowmem zone, reserve a number of pages 8364 * proportionate to the zone's size. 8365 */ 8366 zone->_watermark[WMARK_MIN] = tmp; 8367 } 8368 8369 /* 8370 * Set the kswapd watermarks distance according to the 8371 * scale factor in proportion to available memory, but 8372 * ensure a minimum size on small systems. 8373 */ 8374 tmp = max_t(u64, tmp >> 2, 8375 mult_frac(zone_managed_pages(zone), 8376 watermark_scale_factor, 10000)); 8377 8378 zone->watermark_boost = 0; 8379 zone->_watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp; 8380 zone->_watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2; 8381 8382 spin_unlock_irqrestore(&zone->lock, flags); 8383 } 8384 8385 /* update totalreserve_pages */ 8386 calculate_totalreserve_pages(); 8387 } 8388 8389 /** 8390 * setup_per_zone_wmarks - called when min_free_kbytes changes 8391 * or when memory is hot-{added|removed} 8392 * 8393 * Ensures that the watermark[min,low,high] values for each zone are set 8394 * correctly with respect to min_free_kbytes. 8395 */ 8396 void setup_per_zone_wmarks(void) 8397 { 8398 struct zone *zone; 8399 static DEFINE_SPINLOCK(lock); 8400 8401 spin_lock(&lock); 8402 __setup_per_zone_wmarks(); 8403 spin_unlock(&lock); 8404 8405 /* 8406 * The watermark size have changed so update the pcpu batch 8407 * and high limits or the limits may be inappropriate. 8408 */ 8409 for_each_zone(zone) 8410 zone_pcp_update(zone, 0); 8411 } 8412 8413 /* 8414 * Initialise min_free_kbytes. 8415 * 8416 * For small machines we want it small (128k min). For large machines 8417 * we want it large (256MB max). But it is not linear, because network 8418 * bandwidth does not increase linearly with machine size. We use 8419 * 8420 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy: 8421 * min_free_kbytes = sqrt(lowmem_kbytes * 16) 8422 * 8423 * which yields 8424 * 8425 * 16MB: 512k 8426 * 32MB: 724k 8427 * 64MB: 1024k 8428 * 128MB: 1448k 8429 * 256MB: 2048k 8430 * 512MB: 2896k 8431 * 1024MB: 4096k 8432 * 2048MB: 5792k 8433 * 4096MB: 8192k 8434 * 8192MB: 11584k 8435 * 16384MB: 16384k 8436 */ 8437 int __meminit init_per_zone_wmark_min(void) 8438 { 8439 unsigned long lowmem_kbytes; 8440 int new_min_free_kbytes; 8441 8442 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10); 8443 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16); 8444 8445 if (new_min_free_kbytes > user_min_free_kbytes) { 8446 min_free_kbytes = new_min_free_kbytes; 8447 if (min_free_kbytes < 128) 8448 min_free_kbytes = 128; 8449 if (min_free_kbytes > 262144) 8450 min_free_kbytes = 262144; 8451 } else { 8452 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n", 8453 new_min_free_kbytes, user_min_free_kbytes); 8454 } 8455 setup_per_zone_wmarks(); 8456 refresh_zone_stat_thresholds(); 8457 setup_per_zone_lowmem_reserve(); 8458 8459 #ifdef CONFIG_NUMA 8460 setup_min_unmapped_ratio(); 8461 setup_min_slab_ratio(); 8462 #endif 8463 8464 khugepaged_min_free_kbytes_update(); 8465 8466 return 0; 8467 } 8468 postcore_initcall(init_per_zone_wmark_min) 8469 8470 /* 8471 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so 8472 * that we can call two helper functions whenever min_free_kbytes 8473 * changes. 8474 */ 8475 int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write, 8476 void *buffer, size_t *length, loff_t *ppos) 8477 { 8478 int rc; 8479 8480 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 8481 if (rc) 8482 return rc; 8483 8484 if (write) { 8485 user_min_free_kbytes = min_free_kbytes; 8486 setup_per_zone_wmarks(); 8487 } 8488 return 0; 8489 } 8490 8491 int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write, 8492 void *buffer, size_t *length, loff_t *ppos) 8493 { 8494 int rc; 8495 8496 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 8497 if (rc) 8498 return rc; 8499 8500 if (write) 8501 setup_per_zone_wmarks(); 8502 8503 return 0; 8504 } 8505 8506 #ifdef CONFIG_NUMA 8507 static void setup_min_unmapped_ratio(void) 8508 { 8509 pg_data_t *pgdat; 8510 struct zone *zone; 8511 8512 for_each_online_pgdat(pgdat) 8513 pgdat->min_unmapped_pages = 0; 8514 8515 for_each_zone(zone) 8516 zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) * 8517 sysctl_min_unmapped_ratio) / 100; 8518 } 8519 8520 8521 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write, 8522 void *buffer, size_t *length, loff_t *ppos) 8523 { 8524 int rc; 8525 8526 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 8527 if (rc) 8528 return rc; 8529 8530 setup_min_unmapped_ratio(); 8531 8532 return 0; 8533 } 8534 8535 static void setup_min_slab_ratio(void) 8536 { 8537 pg_data_t *pgdat; 8538 struct zone *zone; 8539 8540 for_each_online_pgdat(pgdat) 8541 pgdat->min_slab_pages = 0; 8542 8543 for_each_zone(zone) 8544 zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) * 8545 sysctl_min_slab_ratio) / 100; 8546 } 8547 8548 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write, 8549 void *buffer, size_t *length, loff_t *ppos) 8550 { 8551 int rc; 8552 8553 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 8554 if (rc) 8555 return rc; 8556 8557 setup_min_slab_ratio(); 8558 8559 return 0; 8560 } 8561 #endif 8562 8563 /* 8564 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around 8565 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve() 8566 * whenever sysctl_lowmem_reserve_ratio changes. 8567 * 8568 * The reserve ratio obviously has absolutely no relation with the 8569 * minimum watermarks. The lowmem reserve ratio can only make sense 8570 * if in function of the boot time zone sizes. 8571 */ 8572 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write, 8573 void *buffer, size_t *length, loff_t *ppos) 8574 { 8575 int i; 8576 8577 proc_dointvec_minmax(table, write, buffer, length, ppos); 8578 8579 for (i = 0; i < MAX_NR_ZONES; i++) { 8580 if (sysctl_lowmem_reserve_ratio[i] < 1) 8581 sysctl_lowmem_reserve_ratio[i] = 0; 8582 } 8583 8584 setup_per_zone_lowmem_reserve(); 8585 return 0; 8586 } 8587 8588 /* 8589 * percpu_pagelist_high_fraction - changes the pcp->high for each zone on each 8590 * cpu. It is the fraction of total pages in each zone that a hot per cpu 8591 * pagelist can have before it gets flushed back to buddy allocator. 8592 */ 8593 int percpu_pagelist_high_fraction_sysctl_handler(struct ctl_table *table, 8594 int write, void *buffer, size_t *length, loff_t *ppos) 8595 { 8596 struct zone *zone; 8597 int old_percpu_pagelist_high_fraction; 8598 int ret; 8599 8600 mutex_lock(&pcp_batch_high_lock); 8601 old_percpu_pagelist_high_fraction = percpu_pagelist_high_fraction; 8602 8603 ret = proc_dointvec_minmax(table, write, buffer, length, ppos); 8604 if (!write || ret < 0) 8605 goto out; 8606 8607 /* Sanity checking to avoid pcp imbalance */ 8608 if (percpu_pagelist_high_fraction && 8609 percpu_pagelist_high_fraction < MIN_PERCPU_PAGELIST_HIGH_FRACTION) { 8610 percpu_pagelist_high_fraction = old_percpu_pagelist_high_fraction; 8611 ret = -EINVAL; 8612 goto out; 8613 } 8614 8615 /* No change? */ 8616 if (percpu_pagelist_high_fraction == old_percpu_pagelist_high_fraction) 8617 goto out; 8618 8619 for_each_populated_zone(zone) 8620 zone_set_pageset_high_and_batch(zone, 0); 8621 out: 8622 mutex_unlock(&pcp_batch_high_lock); 8623 return ret; 8624 } 8625 8626 #ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES 8627 /* 8628 * Returns the number of pages that arch has reserved but 8629 * is not known to alloc_large_system_hash(). 8630 */ 8631 static unsigned long __init arch_reserved_kernel_pages(void) 8632 { 8633 return 0; 8634 } 8635 #endif 8636 8637 /* 8638 * Adaptive scale is meant to reduce sizes of hash tables on large memory 8639 * machines. As memory size is increased the scale is also increased but at 8640 * slower pace. Starting from ADAPT_SCALE_BASE (64G), every time memory 8641 * quadruples the scale is increased by one, which means the size of hash table 8642 * only doubles, instead of quadrupling as well. 8643 * Because 32-bit systems cannot have large physical memory, where this scaling 8644 * makes sense, it is disabled on such platforms. 8645 */ 8646 #if __BITS_PER_LONG > 32 8647 #define ADAPT_SCALE_BASE (64ul << 30) 8648 #define ADAPT_SCALE_SHIFT 2 8649 #define ADAPT_SCALE_NPAGES (ADAPT_SCALE_BASE >> PAGE_SHIFT) 8650 #endif 8651 8652 /* 8653 * allocate a large system hash table from bootmem 8654 * - it is assumed that the hash table must contain an exact power-of-2 8655 * quantity of entries 8656 * - limit is the number of hash buckets, not the total allocation size 8657 */ 8658 void *__init alloc_large_system_hash(const char *tablename, 8659 unsigned long bucketsize, 8660 unsigned long numentries, 8661 int scale, 8662 int flags, 8663 unsigned int *_hash_shift, 8664 unsigned int *_hash_mask, 8665 unsigned long low_limit, 8666 unsigned long high_limit) 8667 { 8668 unsigned long long max = high_limit; 8669 unsigned long log2qty, size; 8670 void *table = NULL; 8671 gfp_t gfp_flags; 8672 bool virt; 8673 bool huge; 8674 8675 /* allow the kernel cmdline to have a say */ 8676 if (!numentries) { 8677 /* round applicable memory size up to nearest megabyte */ 8678 numentries = nr_kernel_pages; 8679 numentries -= arch_reserved_kernel_pages(); 8680 8681 /* It isn't necessary when PAGE_SIZE >= 1MB */ 8682 if (PAGE_SHIFT < 20) 8683 numentries = round_up(numentries, (1<<20)/PAGE_SIZE); 8684 8685 #if __BITS_PER_LONG > 32 8686 if (!high_limit) { 8687 unsigned long adapt; 8688 8689 for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries; 8690 adapt <<= ADAPT_SCALE_SHIFT) 8691 scale++; 8692 } 8693 #endif 8694 8695 /* limit to 1 bucket per 2^scale bytes of low memory */ 8696 if (scale > PAGE_SHIFT) 8697 numentries >>= (scale - PAGE_SHIFT); 8698 else 8699 numentries <<= (PAGE_SHIFT - scale); 8700 8701 /* Make sure we've got at least a 0-order allocation.. */ 8702 if (unlikely(flags & HASH_SMALL)) { 8703 /* Makes no sense without HASH_EARLY */ 8704 WARN_ON(!(flags & HASH_EARLY)); 8705 if (!(numentries >> *_hash_shift)) { 8706 numentries = 1UL << *_hash_shift; 8707 BUG_ON(!numentries); 8708 } 8709 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE)) 8710 numentries = PAGE_SIZE / bucketsize; 8711 } 8712 numentries = roundup_pow_of_two(numentries); 8713 8714 /* limit allocation size to 1/16 total memory by default */ 8715 if (max == 0) { 8716 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4; 8717 do_div(max, bucketsize); 8718 } 8719 max = min(max, 0x80000000ULL); 8720 8721 if (numentries < low_limit) 8722 numentries = low_limit; 8723 if (numentries > max) 8724 numentries = max; 8725 8726 log2qty = ilog2(numentries); 8727 8728 gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC; 8729 do { 8730 virt = false; 8731 size = bucketsize << log2qty; 8732 if (flags & HASH_EARLY) { 8733 if (flags & HASH_ZERO) 8734 table = memblock_alloc(size, SMP_CACHE_BYTES); 8735 else 8736 table = memblock_alloc_raw(size, 8737 SMP_CACHE_BYTES); 8738 } else if (get_order(size) >= MAX_ORDER || hashdist) { 8739 table = __vmalloc(size, gfp_flags); 8740 virt = true; 8741 huge = is_vm_area_hugepages(table); 8742 } else { 8743 /* 8744 * If bucketsize is not a power-of-two, we may free 8745 * some pages at the end of hash table which 8746 * alloc_pages_exact() automatically does 8747 */ 8748 table = alloc_pages_exact(size, gfp_flags); 8749 kmemleak_alloc(table, size, 1, gfp_flags); 8750 } 8751 } while (!table && size > PAGE_SIZE && --log2qty); 8752 8753 if (!table) 8754 panic("Failed to allocate %s hash table\n", tablename); 8755 8756 pr_info("%s hash table entries: %ld (order: %d, %lu bytes, %s)\n", 8757 tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size, 8758 virt ? (huge ? "vmalloc hugepage" : "vmalloc") : "linear"); 8759 8760 if (_hash_shift) 8761 *_hash_shift = log2qty; 8762 if (_hash_mask) 8763 *_hash_mask = (1 << log2qty) - 1; 8764 8765 return table; 8766 } 8767 8768 /* 8769 * This function checks whether pageblock includes unmovable pages or not. 8770 * 8771 * PageLRU check without isolation or lru_lock could race so that 8772 * MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable 8773 * check without lock_page also may miss some movable non-lru pages at 8774 * race condition. So you can't expect this function should be exact. 8775 * 8776 * Returns a page without holding a reference. If the caller wants to 8777 * dereference that page (e.g., dumping), it has to make sure that it 8778 * cannot get removed (e.g., via memory unplug) concurrently. 8779 * 8780 */ 8781 struct page *has_unmovable_pages(struct zone *zone, struct page *page, 8782 int migratetype, int flags) 8783 { 8784 unsigned long iter = 0; 8785 unsigned long pfn = page_to_pfn(page); 8786 unsigned long offset = pfn % pageblock_nr_pages; 8787 8788 if (is_migrate_cma_page(page)) { 8789 /* 8790 * CMA allocations (alloc_contig_range) really need to mark 8791 * isolate CMA pageblocks even when they are not movable in fact 8792 * so consider them movable here. 8793 */ 8794 if (is_migrate_cma(migratetype)) 8795 return NULL; 8796 8797 return page; 8798 } 8799 8800 for (; iter < pageblock_nr_pages - offset; iter++) { 8801 if (!pfn_valid_within(pfn + iter)) 8802 continue; 8803 8804 page = pfn_to_page(pfn + iter); 8805 8806 /* 8807 * Both, bootmem allocations and memory holes are marked 8808 * PG_reserved and are unmovable. We can even have unmovable 8809 * allocations inside ZONE_MOVABLE, for example when 8810 * specifying "movablecore". 8811 */ 8812 if (PageReserved(page)) 8813 return page; 8814 8815 /* 8816 * If the zone is movable and we have ruled out all reserved 8817 * pages then it should be reasonably safe to assume the rest 8818 * is movable. 8819 */ 8820 if (zone_idx(zone) == ZONE_MOVABLE) 8821 continue; 8822 8823 /* 8824 * Hugepages are not in LRU lists, but they're movable. 8825 * THPs are on the LRU, but need to be counted as #small pages. 8826 * We need not scan over tail pages because we don't 8827 * handle each tail page individually in migration. 8828 */ 8829 if (PageHuge(page) || PageTransCompound(page)) { 8830 struct page *head = compound_head(page); 8831 unsigned int skip_pages; 8832 8833 if (PageHuge(page)) { 8834 if (!hugepage_migration_supported(page_hstate(head))) 8835 return page; 8836 } else if (!PageLRU(head) && !__PageMovable(head)) { 8837 return page; 8838 } 8839 8840 skip_pages = compound_nr(head) - (page - head); 8841 iter += skip_pages - 1; 8842 continue; 8843 } 8844 8845 /* 8846 * We can't use page_count without pin a page 8847 * because another CPU can free compound page. 8848 * This check already skips compound tails of THP 8849 * because their page->_refcount is zero at all time. 8850 */ 8851 if (!page_ref_count(page)) { 8852 if (PageBuddy(page)) 8853 iter += (1 << buddy_order(page)) - 1; 8854 continue; 8855 } 8856 8857 /* 8858 * The HWPoisoned page may be not in buddy system, and 8859 * page_count() is not 0. 8860 */ 8861 if ((flags & MEMORY_OFFLINE) && PageHWPoison(page)) 8862 continue; 8863 8864 /* 8865 * We treat all PageOffline() pages as movable when offlining 8866 * to give drivers a chance to decrement their reference count 8867 * in MEM_GOING_OFFLINE in order to indicate that these pages 8868 * can be offlined as there are no direct references anymore. 8869 * For actually unmovable PageOffline() where the driver does 8870 * not support this, we will fail later when trying to actually 8871 * move these pages that still have a reference count > 0. 8872 * (false negatives in this function only) 8873 */ 8874 if ((flags & MEMORY_OFFLINE) && PageOffline(page)) 8875 continue; 8876 8877 if (__PageMovable(page) || PageLRU(page)) 8878 continue; 8879 8880 /* 8881 * If there are RECLAIMABLE pages, we need to check 8882 * it. But now, memory offline itself doesn't call 8883 * shrink_node_slabs() and it still to be fixed. 8884 */ 8885 return page; 8886 } 8887 return NULL; 8888 } 8889 8890 #ifdef CONFIG_CONTIG_ALLOC 8891 static unsigned long pfn_max_align_down(unsigned long pfn) 8892 { 8893 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES, 8894 pageblock_nr_pages) - 1); 8895 } 8896 8897 static unsigned long pfn_max_align_up(unsigned long pfn) 8898 { 8899 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES, 8900 pageblock_nr_pages)); 8901 } 8902 8903 #if defined(CONFIG_DYNAMIC_DEBUG) || \ 8904 (defined(CONFIG_DYNAMIC_DEBUG_CORE) && defined(DYNAMIC_DEBUG_MODULE)) 8905 /* Usage: See admin-guide/dynamic-debug-howto.rst */ 8906 static void alloc_contig_dump_pages(struct list_head *page_list) 8907 { 8908 DEFINE_DYNAMIC_DEBUG_METADATA(descriptor, "migrate failure"); 8909 8910 if (DYNAMIC_DEBUG_BRANCH(descriptor)) { 8911 struct page *page; 8912 8913 dump_stack(); 8914 list_for_each_entry(page, page_list, lru) 8915 dump_page(page, "migration failure"); 8916 } 8917 } 8918 #else 8919 static inline void alloc_contig_dump_pages(struct list_head *page_list) 8920 { 8921 } 8922 #endif 8923 8924 /* [start, end) must belong to a single zone. */ 8925 static int __alloc_contig_migrate_range(struct compact_control *cc, 8926 unsigned long start, unsigned long end) 8927 { 8928 /* This function is based on compact_zone() from compaction.c. */ 8929 unsigned int nr_reclaimed; 8930 unsigned long pfn = start; 8931 unsigned int tries = 0; 8932 int ret = 0; 8933 struct migration_target_control mtc = { 8934 .nid = zone_to_nid(cc->zone), 8935 .gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL, 8936 }; 8937 8938 lru_cache_disable(); 8939 8940 while (pfn < end || !list_empty(&cc->migratepages)) { 8941 if (fatal_signal_pending(current)) { 8942 ret = -EINTR; 8943 break; 8944 } 8945 8946 if (list_empty(&cc->migratepages)) { 8947 cc->nr_migratepages = 0; 8948 ret = isolate_migratepages_range(cc, pfn, end); 8949 if (ret && ret != -EAGAIN) 8950 break; 8951 pfn = cc->migrate_pfn; 8952 tries = 0; 8953 } else if (++tries == 5) { 8954 ret = -EBUSY; 8955 break; 8956 } 8957 8958 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone, 8959 &cc->migratepages); 8960 cc->nr_migratepages -= nr_reclaimed; 8961 8962 ret = migrate_pages(&cc->migratepages, alloc_migration_target, 8963 NULL, (unsigned long)&mtc, cc->mode, MR_CONTIG_RANGE); 8964 8965 /* 8966 * On -ENOMEM, migrate_pages() bails out right away. It is pointless 8967 * to retry again over this error, so do the same here. 8968 */ 8969 if (ret == -ENOMEM) 8970 break; 8971 } 8972 8973 lru_cache_enable(); 8974 if (ret < 0) { 8975 if (ret == -EBUSY) 8976 alloc_contig_dump_pages(&cc->migratepages); 8977 putback_movable_pages(&cc->migratepages); 8978 return ret; 8979 } 8980 return 0; 8981 } 8982 8983 /** 8984 * alloc_contig_range() -- tries to allocate given range of pages 8985 * @start: start PFN to allocate 8986 * @end: one-past-the-last PFN to allocate 8987 * @migratetype: migratetype of the underlying pageblocks (either 8988 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks 8989 * in range must have the same migratetype and it must 8990 * be either of the two. 8991 * @gfp_mask: GFP mask to use during compaction 8992 * 8993 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES 8994 * aligned. The PFN range must belong to a single zone. 8995 * 8996 * The first thing this routine does is attempt to MIGRATE_ISOLATE all 8997 * pageblocks in the range. Once isolated, the pageblocks should not 8998 * be modified by others. 8999 * 9000 * Return: zero on success or negative error code. On success all 9001 * pages which PFN is in [start, end) are allocated for the caller and 9002 * need to be freed with free_contig_range(). 9003 */ 9004 int alloc_contig_range(unsigned long start, unsigned long end, 9005 unsigned migratetype, gfp_t gfp_mask) 9006 { 9007 unsigned long outer_start, outer_end; 9008 unsigned int order; 9009 int ret = 0; 9010 9011 struct compact_control cc = { 9012 .nr_migratepages = 0, 9013 .order = -1, 9014 .zone = page_zone(pfn_to_page(start)), 9015 .mode = MIGRATE_SYNC, 9016 .ignore_skip_hint = true, 9017 .no_set_skip_hint = true, 9018 .gfp_mask = current_gfp_context(gfp_mask), 9019 .alloc_contig = true, 9020 }; 9021 INIT_LIST_HEAD(&cc.migratepages); 9022 9023 /* 9024 * What we do here is we mark all pageblocks in range as 9025 * MIGRATE_ISOLATE. Because pageblock and max order pages may 9026 * have different sizes, and due to the way page allocator 9027 * work, we align the range to biggest of the two pages so 9028 * that page allocator won't try to merge buddies from 9029 * different pageblocks and change MIGRATE_ISOLATE to some 9030 * other migration type. 9031 * 9032 * Once the pageblocks are marked as MIGRATE_ISOLATE, we 9033 * migrate the pages from an unaligned range (ie. pages that 9034 * we are interested in). This will put all the pages in 9035 * range back to page allocator as MIGRATE_ISOLATE. 9036 * 9037 * When this is done, we take the pages in range from page 9038 * allocator removing them from the buddy system. This way 9039 * page allocator will never consider using them. 9040 * 9041 * This lets us mark the pageblocks back as 9042 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the 9043 * aligned range but not in the unaligned, original range are 9044 * put back to page allocator so that buddy can use them. 9045 */ 9046 9047 ret = start_isolate_page_range(pfn_max_align_down(start), 9048 pfn_max_align_up(end), migratetype, 0); 9049 if (ret) 9050 return ret; 9051 9052 drain_all_pages(cc.zone); 9053 9054 /* 9055 * In case of -EBUSY, we'd like to know which page causes problem. 9056 * So, just fall through. test_pages_isolated() has a tracepoint 9057 * which will report the busy page. 9058 * 9059 * It is possible that busy pages could become available before 9060 * the call to test_pages_isolated, and the range will actually be 9061 * allocated. So, if we fall through be sure to clear ret so that 9062 * -EBUSY is not accidentally used or returned to caller. 9063 */ 9064 ret = __alloc_contig_migrate_range(&cc, start, end); 9065 if (ret && ret != -EBUSY) 9066 goto done; 9067 ret = 0; 9068 9069 /* 9070 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES 9071 * aligned blocks that are marked as MIGRATE_ISOLATE. What's 9072 * more, all pages in [start, end) are free in page allocator. 9073 * What we are going to do is to allocate all pages from 9074 * [start, end) (that is remove them from page allocator). 9075 * 9076 * The only problem is that pages at the beginning and at the 9077 * end of interesting range may be not aligned with pages that 9078 * page allocator holds, ie. they can be part of higher order 9079 * pages. Because of this, we reserve the bigger range and 9080 * once this is done free the pages we are not interested in. 9081 * 9082 * We don't have to hold zone->lock here because the pages are 9083 * isolated thus they won't get removed from buddy. 9084 */ 9085 9086 order = 0; 9087 outer_start = start; 9088 while (!PageBuddy(pfn_to_page(outer_start))) { 9089 if (++order >= MAX_ORDER) { 9090 outer_start = start; 9091 break; 9092 } 9093 outer_start &= ~0UL << order; 9094 } 9095 9096 if (outer_start != start) { 9097 order = buddy_order(pfn_to_page(outer_start)); 9098 9099 /* 9100 * outer_start page could be small order buddy page and 9101 * it doesn't include start page. Adjust outer_start 9102 * in this case to report failed page properly 9103 * on tracepoint in test_pages_isolated() 9104 */ 9105 if (outer_start + (1UL << order) <= start) 9106 outer_start = start; 9107 } 9108 9109 /* Make sure the range is really isolated. */ 9110 if (test_pages_isolated(outer_start, end, 0)) { 9111 ret = -EBUSY; 9112 goto done; 9113 } 9114 9115 /* Grab isolated pages from freelists. */ 9116 outer_end = isolate_freepages_range(&cc, outer_start, end); 9117 if (!outer_end) { 9118 ret = -EBUSY; 9119 goto done; 9120 } 9121 9122 /* Free head and tail (if any) */ 9123 if (start != outer_start) 9124 free_contig_range(outer_start, start - outer_start); 9125 if (end != outer_end) 9126 free_contig_range(end, outer_end - end); 9127 9128 done: 9129 undo_isolate_page_range(pfn_max_align_down(start), 9130 pfn_max_align_up(end), migratetype); 9131 return ret; 9132 } 9133 EXPORT_SYMBOL(alloc_contig_range); 9134 9135 static int __alloc_contig_pages(unsigned long start_pfn, 9136 unsigned long nr_pages, gfp_t gfp_mask) 9137 { 9138 unsigned long end_pfn = start_pfn + nr_pages; 9139 9140 return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE, 9141 gfp_mask); 9142 } 9143 9144 static bool pfn_range_valid_contig(struct zone *z, unsigned long start_pfn, 9145 unsigned long nr_pages) 9146 { 9147 unsigned long i, end_pfn = start_pfn + nr_pages; 9148 struct page *page; 9149 9150 for (i = start_pfn; i < end_pfn; i++) { 9151 page = pfn_to_online_page(i); 9152 if (!page) 9153 return false; 9154 9155 if (page_zone(page) != z) 9156 return false; 9157 9158 if (PageReserved(page)) 9159 return false; 9160 } 9161 return true; 9162 } 9163 9164 static bool zone_spans_last_pfn(const struct zone *zone, 9165 unsigned long start_pfn, unsigned long nr_pages) 9166 { 9167 unsigned long last_pfn = start_pfn + nr_pages - 1; 9168 9169 return zone_spans_pfn(zone, last_pfn); 9170 } 9171 9172 /** 9173 * alloc_contig_pages() -- tries to find and allocate contiguous range of pages 9174 * @nr_pages: Number of contiguous pages to allocate 9175 * @gfp_mask: GFP mask to limit search and used during compaction 9176 * @nid: Target node 9177 * @nodemask: Mask for other possible nodes 9178 * 9179 * This routine is a wrapper around alloc_contig_range(). It scans over zones 9180 * on an applicable zonelist to find a contiguous pfn range which can then be 9181 * tried for allocation with alloc_contig_range(). This routine is intended 9182 * for allocation requests which can not be fulfilled with the buddy allocator. 9183 * 9184 * The allocated memory is always aligned to a page boundary. If nr_pages is a 9185 * power of two then the alignment is guaranteed to be to the given nr_pages 9186 * (e.g. 1GB request would be aligned to 1GB). 9187 * 9188 * Allocated pages can be freed with free_contig_range() or by manually calling 9189 * __free_page() on each allocated page. 9190 * 9191 * Return: pointer to contiguous pages on success, or NULL if not successful. 9192 */ 9193 struct page *alloc_contig_pages(unsigned long nr_pages, gfp_t gfp_mask, 9194 int nid, nodemask_t *nodemask) 9195 { 9196 unsigned long ret, pfn, flags; 9197 struct zonelist *zonelist; 9198 struct zone *zone; 9199 struct zoneref *z; 9200 9201 zonelist = node_zonelist(nid, gfp_mask); 9202 for_each_zone_zonelist_nodemask(zone, z, zonelist, 9203 gfp_zone(gfp_mask), nodemask) { 9204 spin_lock_irqsave(&zone->lock, flags); 9205 9206 pfn = ALIGN(zone->zone_start_pfn, nr_pages); 9207 while (zone_spans_last_pfn(zone, pfn, nr_pages)) { 9208 if (pfn_range_valid_contig(zone, pfn, nr_pages)) { 9209 /* 9210 * We release the zone lock here because 9211 * alloc_contig_range() will also lock the zone 9212 * at some point. If there's an allocation 9213 * spinning on this lock, it may win the race 9214 * and cause alloc_contig_range() to fail... 9215 */ 9216 spin_unlock_irqrestore(&zone->lock, flags); 9217 ret = __alloc_contig_pages(pfn, nr_pages, 9218 gfp_mask); 9219 if (!ret) 9220 return pfn_to_page(pfn); 9221 spin_lock_irqsave(&zone->lock, flags); 9222 } 9223 pfn += nr_pages; 9224 } 9225 spin_unlock_irqrestore(&zone->lock, flags); 9226 } 9227 return NULL; 9228 } 9229 #endif /* CONFIG_CONTIG_ALLOC */ 9230 9231 void free_contig_range(unsigned long pfn, unsigned long nr_pages) 9232 { 9233 unsigned long count = 0; 9234 9235 for (; nr_pages--; pfn++) { 9236 struct page *page = pfn_to_page(pfn); 9237 9238 count += page_count(page) != 1; 9239 __free_page(page); 9240 } 9241 WARN(count != 0, "%lu pages are still in use!\n", count); 9242 } 9243 EXPORT_SYMBOL(free_contig_range); 9244 9245 /* 9246 * The zone indicated has a new number of managed_pages; batch sizes and percpu 9247 * page high values need to be recalculated. 9248 */ 9249 void zone_pcp_update(struct zone *zone, int cpu_online) 9250 { 9251 mutex_lock(&pcp_batch_high_lock); 9252 zone_set_pageset_high_and_batch(zone, cpu_online); 9253 mutex_unlock(&pcp_batch_high_lock); 9254 } 9255 9256 /* 9257 * Effectively disable pcplists for the zone by setting the high limit to 0 9258 * and draining all cpus. A concurrent page freeing on another CPU that's about 9259 * to put the page on pcplist will either finish before the drain and the page 9260 * will be drained, or observe the new high limit and skip the pcplist. 9261 * 9262 * Must be paired with a call to zone_pcp_enable(). 9263 */ 9264 void zone_pcp_disable(struct zone *zone) 9265 { 9266 mutex_lock(&pcp_batch_high_lock); 9267 __zone_set_pageset_high_and_batch(zone, 0, 1); 9268 __drain_all_pages(zone, true); 9269 } 9270 9271 void zone_pcp_enable(struct zone *zone) 9272 { 9273 __zone_set_pageset_high_and_batch(zone, zone->pageset_high, zone->pageset_batch); 9274 mutex_unlock(&pcp_batch_high_lock); 9275 } 9276 9277 void zone_pcp_reset(struct zone *zone) 9278 { 9279 int cpu; 9280 struct per_cpu_zonestat *pzstats; 9281 9282 if (zone->per_cpu_pageset != &boot_pageset) { 9283 for_each_online_cpu(cpu) { 9284 pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu); 9285 drain_zonestat(zone, pzstats); 9286 } 9287 free_percpu(zone->per_cpu_pageset); 9288 free_percpu(zone->per_cpu_zonestats); 9289 zone->per_cpu_pageset = &boot_pageset; 9290 zone->per_cpu_zonestats = &boot_zonestats; 9291 } 9292 } 9293 9294 #ifdef CONFIG_MEMORY_HOTREMOVE 9295 /* 9296 * All pages in the range must be in a single zone, must not contain holes, 9297 * must span full sections, and must be isolated before calling this function. 9298 */ 9299 void __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn) 9300 { 9301 unsigned long pfn = start_pfn; 9302 struct page *page; 9303 struct zone *zone; 9304 unsigned int order; 9305 unsigned long flags; 9306 9307 offline_mem_sections(pfn, end_pfn); 9308 zone = page_zone(pfn_to_page(pfn)); 9309 spin_lock_irqsave(&zone->lock, flags); 9310 while (pfn < end_pfn) { 9311 page = pfn_to_page(pfn); 9312 /* 9313 * The HWPoisoned page may be not in buddy system, and 9314 * page_count() is not 0. 9315 */ 9316 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) { 9317 pfn++; 9318 continue; 9319 } 9320 /* 9321 * At this point all remaining PageOffline() pages have a 9322 * reference count of 0 and can simply be skipped. 9323 */ 9324 if (PageOffline(page)) { 9325 BUG_ON(page_count(page)); 9326 BUG_ON(PageBuddy(page)); 9327 pfn++; 9328 continue; 9329 } 9330 9331 BUG_ON(page_count(page)); 9332 BUG_ON(!PageBuddy(page)); 9333 order = buddy_order(page); 9334 del_page_from_free_list(page, zone, order); 9335 pfn += (1 << order); 9336 } 9337 spin_unlock_irqrestore(&zone->lock, flags); 9338 } 9339 #endif 9340 9341 bool is_free_buddy_page(struct page *page) 9342 { 9343 struct zone *zone = page_zone(page); 9344 unsigned long pfn = page_to_pfn(page); 9345 unsigned long flags; 9346 unsigned int order; 9347 9348 spin_lock_irqsave(&zone->lock, flags); 9349 for (order = 0; order < MAX_ORDER; order++) { 9350 struct page *page_head = page - (pfn & ((1 << order) - 1)); 9351 9352 if (PageBuddy(page_head) && buddy_order(page_head) >= order) 9353 break; 9354 } 9355 spin_unlock_irqrestore(&zone->lock, flags); 9356 9357 return order < MAX_ORDER; 9358 } 9359 9360 #ifdef CONFIG_MEMORY_FAILURE 9361 /* 9362 * Break down a higher-order page in sub-pages, and keep our target out of 9363 * buddy allocator. 9364 */ 9365 static void break_down_buddy_pages(struct zone *zone, struct page *page, 9366 struct page *target, int low, int high, 9367 int migratetype) 9368 { 9369 unsigned long size = 1 << high; 9370 struct page *current_buddy, *next_page; 9371 9372 while (high > low) { 9373 high--; 9374 size >>= 1; 9375 9376 if (target >= &page[size]) { 9377 next_page = page + size; 9378 current_buddy = page; 9379 } else { 9380 next_page = page; 9381 current_buddy = page + size; 9382 } 9383 9384 if (set_page_guard(zone, current_buddy, high, migratetype)) 9385 continue; 9386 9387 if (current_buddy != target) { 9388 add_to_free_list(current_buddy, zone, high, migratetype); 9389 set_buddy_order(current_buddy, high); 9390 page = next_page; 9391 } 9392 } 9393 } 9394 9395 /* 9396 * Take a page that will be marked as poisoned off the buddy allocator. 9397 */ 9398 bool take_page_off_buddy(struct page *page) 9399 { 9400 struct zone *zone = page_zone(page); 9401 unsigned long pfn = page_to_pfn(page); 9402 unsigned long flags; 9403 unsigned int order; 9404 bool ret = false; 9405 9406 spin_lock_irqsave(&zone->lock, flags); 9407 for (order = 0; order < MAX_ORDER; order++) { 9408 struct page *page_head = page - (pfn & ((1 << order) - 1)); 9409 int page_order = buddy_order(page_head); 9410 9411 if (PageBuddy(page_head) && page_order >= order) { 9412 unsigned long pfn_head = page_to_pfn(page_head); 9413 int migratetype = get_pfnblock_migratetype(page_head, 9414 pfn_head); 9415 9416 del_page_from_free_list(page_head, zone, page_order); 9417 break_down_buddy_pages(zone, page_head, page, 0, 9418 page_order, migratetype); 9419 if (!is_migrate_isolate(migratetype)) 9420 __mod_zone_freepage_state(zone, -1, migratetype); 9421 ret = true; 9422 break; 9423 } 9424 if (page_count(page_head) > 0) 9425 break; 9426 } 9427 spin_unlock_irqrestore(&zone->lock, flags); 9428 return ret; 9429 } 9430 #endif 9431