xref: /linux/mm/page_alloc.c (revision d003d772e64df08af04ee63609d47169ee82ae0e)
1 /*
2  *  linux/mm/page_alloc.c
3  *
4  *  Manages the free list, the system allocates free pages here.
5  *  Note that kmalloc() lives in slab.c
6  *
7  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
8  *  Swap reorganised 29.12.95, Stephen Tweedie
9  *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10  *  Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11  *  Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12  *  Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13  *  Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14  *          (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15  */
16 
17 #include <linux/stddef.h>
18 #include <linux/mm.h>
19 #include <linux/highmem.h>
20 #include <linux/swap.h>
21 #include <linux/interrupt.h>
22 #include <linux/pagemap.h>
23 #include <linux/jiffies.h>
24 #include <linux/memblock.h>
25 #include <linux/compiler.h>
26 #include <linux/kernel.h>
27 #include <linux/kasan.h>
28 #include <linux/module.h>
29 #include <linux/suspend.h>
30 #include <linux/pagevec.h>
31 #include <linux/blkdev.h>
32 #include <linux/slab.h>
33 #include <linux/ratelimit.h>
34 #include <linux/oom.h>
35 #include <linux/topology.h>
36 #include <linux/sysctl.h>
37 #include <linux/cpu.h>
38 #include <linux/cpuset.h>
39 #include <linux/memory_hotplug.h>
40 #include <linux/nodemask.h>
41 #include <linux/vmalloc.h>
42 #include <linux/vmstat.h>
43 #include <linux/mempolicy.h>
44 #include <linux/memremap.h>
45 #include <linux/stop_machine.h>
46 #include <linux/sort.h>
47 #include <linux/pfn.h>
48 #include <linux/backing-dev.h>
49 #include <linux/fault-inject.h>
50 #include <linux/page-isolation.h>
51 #include <linux/page_ext.h>
52 #include <linux/debugobjects.h>
53 #include <linux/kmemleak.h>
54 #include <linux/compaction.h>
55 #include <trace/events/kmem.h>
56 #include <trace/events/oom.h>
57 #include <linux/prefetch.h>
58 #include <linux/mm_inline.h>
59 #include <linux/migrate.h>
60 #include <linux/hugetlb.h>
61 #include <linux/sched/rt.h>
62 #include <linux/sched/mm.h>
63 #include <linux/page_owner.h>
64 #include <linux/kthread.h>
65 #include <linux/memcontrol.h>
66 #include <linux/ftrace.h>
67 #include <linux/lockdep.h>
68 #include <linux/nmi.h>
69 #include <linux/psi.h>
70 
71 #include <asm/sections.h>
72 #include <asm/tlbflush.h>
73 #include <asm/div64.h>
74 #include "internal.h"
75 
76 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
77 static DEFINE_MUTEX(pcp_batch_high_lock);
78 #define MIN_PERCPU_PAGELIST_FRACTION	(8)
79 
80 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
81 DEFINE_PER_CPU(int, numa_node);
82 EXPORT_PER_CPU_SYMBOL(numa_node);
83 #endif
84 
85 DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key);
86 
87 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
88 /*
89  * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
90  * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
91  * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
92  * defined in <linux/topology.h>.
93  */
94 DEFINE_PER_CPU(int, _numa_mem_);		/* Kernel "local memory" node */
95 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
96 int _node_numa_mem_[MAX_NUMNODES];
97 #endif
98 
99 /* work_structs for global per-cpu drains */
100 struct pcpu_drain {
101 	struct zone *zone;
102 	struct work_struct work;
103 };
104 DEFINE_MUTEX(pcpu_drain_mutex);
105 DEFINE_PER_CPU(struct pcpu_drain, pcpu_drain);
106 
107 #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
108 volatile unsigned long latent_entropy __latent_entropy;
109 EXPORT_SYMBOL(latent_entropy);
110 #endif
111 
112 /*
113  * Array of node states.
114  */
115 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
116 	[N_POSSIBLE] = NODE_MASK_ALL,
117 	[N_ONLINE] = { { [0] = 1UL } },
118 #ifndef CONFIG_NUMA
119 	[N_NORMAL_MEMORY] = { { [0] = 1UL } },
120 #ifdef CONFIG_HIGHMEM
121 	[N_HIGH_MEMORY] = { { [0] = 1UL } },
122 #endif
123 	[N_MEMORY] = { { [0] = 1UL } },
124 	[N_CPU] = { { [0] = 1UL } },
125 #endif	/* NUMA */
126 };
127 EXPORT_SYMBOL(node_states);
128 
129 atomic_long_t _totalram_pages __read_mostly;
130 EXPORT_SYMBOL(_totalram_pages);
131 unsigned long totalreserve_pages __read_mostly;
132 unsigned long totalcma_pages __read_mostly;
133 
134 int percpu_pagelist_fraction;
135 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
136 
137 /*
138  * A cached value of the page's pageblock's migratetype, used when the page is
139  * put on a pcplist. Used to avoid the pageblock migratetype lookup when
140  * freeing from pcplists in most cases, at the cost of possibly becoming stale.
141  * Also the migratetype set in the page does not necessarily match the pcplist
142  * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
143  * other index - this ensures that it will be put on the correct CMA freelist.
144  */
145 static inline int get_pcppage_migratetype(struct page *page)
146 {
147 	return page->index;
148 }
149 
150 static inline void set_pcppage_migratetype(struct page *page, int migratetype)
151 {
152 	page->index = migratetype;
153 }
154 
155 #ifdef CONFIG_PM_SLEEP
156 /*
157  * The following functions are used by the suspend/hibernate code to temporarily
158  * change gfp_allowed_mask in order to avoid using I/O during memory allocations
159  * while devices are suspended.  To avoid races with the suspend/hibernate code,
160  * they should always be called with system_transition_mutex held
161  * (gfp_allowed_mask also should only be modified with system_transition_mutex
162  * held, unless the suspend/hibernate code is guaranteed not to run in parallel
163  * with that modification).
164  */
165 
166 static gfp_t saved_gfp_mask;
167 
168 void pm_restore_gfp_mask(void)
169 {
170 	WARN_ON(!mutex_is_locked(&system_transition_mutex));
171 	if (saved_gfp_mask) {
172 		gfp_allowed_mask = saved_gfp_mask;
173 		saved_gfp_mask = 0;
174 	}
175 }
176 
177 void pm_restrict_gfp_mask(void)
178 {
179 	WARN_ON(!mutex_is_locked(&system_transition_mutex));
180 	WARN_ON(saved_gfp_mask);
181 	saved_gfp_mask = gfp_allowed_mask;
182 	gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
183 }
184 
185 bool pm_suspended_storage(void)
186 {
187 	if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
188 		return false;
189 	return true;
190 }
191 #endif /* CONFIG_PM_SLEEP */
192 
193 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
194 unsigned int pageblock_order __read_mostly;
195 #endif
196 
197 static void __free_pages_ok(struct page *page, unsigned int order);
198 
199 /*
200  * results with 256, 32 in the lowmem_reserve sysctl:
201  *	1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
202  *	1G machine -> (16M dma, 784M normal, 224M high)
203  *	NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
204  *	HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
205  *	HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
206  *
207  * TBD: should special case ZONE_DMA32 machines here - in those we normally
208  * don't need any ZONE_NORMAL reservation
209  */
210 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = {
211 #ifdef CONFIG_ZONE_DMA
212 	[ZONE_DMA] = 256,
213 #endif
214 #ifdef CONFIG_ZONE_DMA32
215 	[ZONE_DMA32] = 256,
216 #endif
217 	[ZONE_NORMAL] = 32,
218 #ifdef CONFIG_HIGHMEM
219 	[ZONE_HIGHMEM] = 0,
220 #endif
221 	[ZONE_MOVABLE] = 0,
222 };
223 
224 EXPORT_SYMBOL(totalram_pages);
225 
226 static char * const zone_names[MAX_NR_ZONES] = {
227 #ifdef CONFIG_ZONE_DMA
228 	 "DMA",
229 #endif
230 #ifdef CONFIG_ZONE_DMA32
231 	 "DMA32",
232 #endif
233 	 "Normal",
234 #ifdef CONFIG_HIGHMEM
235 	 "HighMem",
236 #endif
237 	 "Movable",
238 #ifdef CONFIG_ZONE_DEVICE
239 	 "Device",
240 #endif
241 };
242 
243 const char * const migratetype_names[MIGRATE_TYPES] = {
244 	"Unmovable",
245 	"Movable",
246 	"Reclaimable",
247 	"HighAtomic",
248 #ifdef CONFIG_CMA
249 	"CMA",
250 #endif
251 #ifdef CONFIG_MEMORY_ISOLATION
252 	"Isolate",
253 #endif
254 };
255 
256 compound_page_dtor * const compound_page_dtors[] = {
257 	NULL,
258 	free_compound_page,
259 #ifdef CONFIG_HUGETLB_PAGE
260 	free_huge_page,
261 #endif
262 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
263 	free_transhuge_page,
264 #endif
265 };
266 
267 int min_free_kbytes = 1024;
268 int user_min_free_kbytes = -1;
269 int watermark_boost_factor __read_mostly = 15000;
270 int watermark_scale_factor = 10;
271 
272 static unsigned long nr_kernel_pages __initdata;
273 static unsigned long nr_all_pages __initdata;
274 static unsigned long dma_reserve __initdata;
275 
276 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
277 static unsigned long arch_zone_lowest_possible_pfn[MAX_NR_ZONES] __initdata;
278 static unsigned long arch_zone_highest_possible_pfn[MAX_NR_ZONES] __initdata;
279 static unsigned long required_kernelcore __initdata;
280 static unsigned long required_kernelcore_percent __initdata;
281 static unsigned long required_movablecore __initdata;
282 static unsigned long required_movablecore_percent __initdata;
283 static unsigned long zone_movable_pfn[MAX_NUMNODES] __initdata;
284 static bool mirrored_kernelcore __meminitdata;
285 
286 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
287 int movable_zone;
288 EXPORT_SYMBOL(movable_zone);
289 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
290 
291 #if MAX_NUMNODES > 1
292 unsigned int nr_node_ids __read_mostly = MAX_NUMNODES;
293 unsigned int nr_online_nodes __read_mostly = 1;
294 EXPORT_SYMBOL(nr_node_ids);
295 EXPORT_SYMBOL(nr_online_nodes);
296 #endif
297 
298 int page_group_by_mobility_disabled __read_mostly;
299 
300 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
301 /*
302  * During boot we initialize deferred pages on-demand, as needed, but once
303  * page_alloc_init_late() has finished, the deferred pages are all initialized,
304  * and we can permanently disable that path.
305  */
306 static DEFINE_STATIC_KEY_TRUE(deferred_pages);
307 
308 /*
309  * Calling kasan_free_pages() only after deferred memory initialization
310  * has completed. Poisoning pages during deferred memory init will greatly
311  * lengthen the process and cause problem in large memory systems as the
312  * deferred pages initialization is done with interrupt disabled.
313  *
314  * Assuming that there will be no reference to those newly initialized
315  * pages before they are ever allocated, this should have no effect on
316  * KASAN memory tracking as the poison will be properly inserted at page
317  * allocation time. The only corner case is when pages are allocated by
318  * on-demand allocation and then freed again before the deferred pages
319  * initialization is done, but this is not likely to happen.
320  */
321 static inline void kasan_free_nondeferred_pages(struct page *page, int order)
322 {
323 	if (!static_branch_unlikely(&deferred_pages))
324 		kasan_free_pages(page, order);
325 }
326 
327 /* Returns true if the struct page for the pfn is uninitialised */
328 static inline bool __meminit early_page_uninitialised(unsigned long pfn)
329 {
330 	int nid = early_pfn_to_nid(pfn);
331 
332 	if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
333 		return true;
334 
335 	return false;
336 }
337 
338 /*
339  * Returns true when the remaining initialisation should be deferred until
340  * later in the boot cycle when it can be parallelised.
341  */
342 static bool __meminit
343 defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
344 {
345 	static unsigned long prev_end_pfn, nr_initialised;
346 
347 	/*
348 	 * prev_end_pfn static that contains the end of previous zone
349 	 * No need to protect because called very early in boot before smp_init.
350 	 */
351 	if (prev_end_pfn != end_pfn) {
352 		prev_end_pfn = end_pfn;
353 		nr_initialised = 0;
354 	}
355 
356 	/* Always populate low zones for address-constrained allocations */
357 	if (end_pfn < pgdat_end_pfn(NODE_DATA(nid)))
358 		return false;
359 
360 	/*
361 	 * We start only with one section of pages, more pages are added as
362 	 * needed until the rest of deferred pages are initialized.
363 	 */
364 	nr_initialised++;
365 	if ((nr_initialised > PAGES_PER_SECTION) &&
366 	    (pfn & (PAGES_PER_SECTION - 1)) == 0) {
367 		NODE_DATA(nid)->first_deferred_pfn = pfn;
368 		return true;
369 	}
370 	return false;
371 }
372 #else
373 #define kasan_free_nondeferred_pages(p, o)	kasan_free_pages(p, o)
374 
375 static inline bool early_page_uninitialised(unsigned long pfn)
376 {
377 	return false;
378 }
379 
380 static inline bool defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
381 {
382 	return false;
383 }
384 #endif
385 
386 /* Return a pointer to the bitmap storing bits affecting a block of pages */
387 static inline unsigned long *get_pageblock_bitmap(struct page *page,
388 							unsigned long pfn)
389 {
390 #ifdef CONFIG_SPARSEMEM
391 	return __pfn_to_section(pfn)->pageblock_flags;
392 #else
393 	return page_zone(page)->pageblock_flags;
394 #endif /* CONFIG_SPARSEMEM */
395 }
396 
397 static inline int pfn_to_bitidx(struct page *page, unsigned long pfn)
398 {
399 #ifdef CONFIG_SPARSEMEM
400 	pfn &= (PAGES_PER_SECTION-1);
401 	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
402 #else
403 	pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
404 	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
405 #endif /* CONFIG_SPARSEMEM */
406 }
407 
408 /**
409  * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
410  * @page: The page within the block of interest
411  * @pfn: The target page frame number
412  * @end_bitidx: The last bit of interest to retrieve
413  * @mask: mask of bits that the caller is interested in
414  *
415  * Return: pageblock_bits flags
416  */
417 static __always_inline unsigned long __get_pfnblock_flags_mask(struct page *page,
418 					unsigned long pfn,
419 					unsigned long end_bitidx,
420 					unsigned long mask)
421 {
422 	unsigned long *bitmap;
423 	unsigned long bitidx, word_bitidx;
424 	unsigned long word;
425 
426 	bitmap = get_pageblock_bitmap(page, pfn);
427 	bitidx = pfn_to_bitidx(page, pfn);
428 	word_bitidx = bitidx / BITS_PER_LONG;
429 	bitidx &= (BITS_PER_LONG-1);
430 
431 	word = bitmap[word_bitidx];
432 	bitidx += end_bitidx;
433 	return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
434 }
435 
436 unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
437 					unsigned long end_bitidx,
438 					unsigned long mask)
439 {
440 	return __get_pfnblock_flags_mask(page, pfn, end_bitidx, mask);
441 }
442 
443 static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn)
444 {
445 	return __get_pfnblock_flags_mask(page, pfn, PB_migrate_end, MIGRATETYPE_MASK);
446 }
447 
448 /**
449  * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
450  * @page: The page within the block of interest
451  * @flags: The flags to set
452  * @pfn: The target page frame number
453  * @end_bitidx: The last bit of interest
454  * @mask: mask of bits that the caller is interested in
455  */
456 void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
457 					unsigned long pfn,
458 					unsigned long end_bitidx,
459 					unsigned long mask)
460 {
461 	unsigned long *bitmap;
462 	unsigned long bitidx, word_bitidx;
463 	unsigned long old_word, word;
464 
465 	BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
466 	BUILD_BUG_ON(MIGRATE_TYPES > (1 << PB_migratetype_bits));
467 
468 	bitmap = get_pageblock_bitmap(page, pfn);
469 	bitidx = pfn_to_bitidx(page, pfn);
470 	word_bitidx = bitidx / BITS_PER_LONG;
471 	bitidx &= (BITS_PER_LONG-1);
472 
473 	VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
474 
475 	bitidx += end_bitidx;
476 	mask <<= (BITS_PER_LONG - bitidx - 1);
477 	flags <<= (BITS_PER_LONG - bitidx - 1);
478 
479 	word = READ_ONCE(bitmap[word_bitidx]);
480 	for (;;) {
481 		old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
482 		if (word == old_word)
483 			break;
484 		word = old_word;
485 	}
486 }
487 
488 void set_pageblock_migratetype(struct page *page, int migratetype)
489 {
490 	if (unlikely(page_group_by_mobility_disabled &&
491 		     migratetype < MIGRATE_PCPTYPES))
492 		migratetype = MIGRATE_UNMOVABLE;
493 
494 	set_pageblock_flags_group(page, (unsigned long)migratetype,
495 					PB_migrate, PB_migrate_end);
496 }
497 
498 #ifdef CONFIG_DEBUG_VM
499 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
500 {
501 	int ret = 0;
502 	unsigned seq;
503 	unsigned long pfn = page_to_pfn(page);
504 	unsigned long sp, start_pfn;
505 
506 	do {
507 		seq = zone_span_seqbegin(zone);
508 		start_pfn = zone->zone_start_pfn;
509 		sp = zone->spanned_pages;
510 		if (!zone_spans_pfn(zone, pfn))
511 			ret = 1;
512 	} while (zone_span_seqretry(zone, seq));
513 
514 	if (ret)
515 		pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
516 			pfn, zone_to_nid(zone), zone->name,
517 			start_pfn, start_pfn + sp);
518 
519 	return ret;
520 }
521 
522 static int page_is_consistent(struct zone *zone, struct page *page)
523 {
524 	if (!pfn_valid_within(page_to_pfn(page)))
525 		return 0;
526 	if (zone != page_zone(page))
527 		return 0;
528 
529 	return 1;
530 }
531 /*
532  * Temporary debugging check for pages not lying within a given zone.
533  */
534 static int __maybe_unused bad_range(struct zone *zone, struct page *page)
535 {
536 	if (page_outside_zone_boundaries(zone, page))
537 		return 1;
538 	if (!page_is_consistent(zone, page))
539 		return 1;
540 
541 	return 0;
542 }
543 #else
544 static inline int __maybe_unused bad_range(struct zone *zone, struct page *page)
545 {
546 	return 0;
547 }
548 #endif
549 
550 static void bad_page(struct page *page, const char *reason,
551 		unsigned long bad_flags)
552 {
553 	static unsigned long resume;
554 	static unsigned long nr_shown;
555 	static unsigned long nr_unshown;
556 
557 	/*
558 	 * Allow a burst of 60 reports, then keep quiet for that minute;
559 	 * or allow a steady drip of one report per second.
560 	 */
561 	if (nr_shown == 60) {
562 		if (time_before(jiffies, resume)) {
563 			nr_unshown++;
564 			goto out;
565 		}
566 		if (nr_unshown) {
567 			pr_alert(
568 			      "BUG: Bad page state: %lu messages suppressed\n",
569 				nr_unshown);
570 			nr_unshown = 0;
571 		}
572 		nr_shown = 0;
573 	}
574 	if (nr_shown++ == 0)
575 		resume = jiffies + 60 * HZ;
576 
577 	pr_alert("BUG: Bad page state in process %s  pfn:%05lx\n",
578 		current->comm, page_to_pfn(page));
579 	__dump_page(page, reason);
580 	bad_flags &= page->flags;
581 	if (bad_flags)
582 		pr_alert("bad because of flags: %#lx(%pGp)\n",
583 						bad_flags, &bad_flags);
584 	dump_page_owner(page);
585 
586 	print_modules();
587 	dump_stack();
588 out:
589 	/* Leave bad fields for debug, except PageBuddy could make trouble */
590 	page_mapcount_reset(page); /* remove PageBuddy */
591 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
592 }
593 
594 /*
595  * Higher-order pages are called "compound pages".  They are structured thusly:
596  *
597  * The first PAGE_SIZE page is called the "head page" and have PG_head set.
598  *
599  * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
600  * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
601  *
602  * The first tail page's ->compound_dtor holds the offset in array of compound
603  * page destructors. See compound_page_dtors.
604  *
605  * The first tail page's ->compound_order holds the order of allocation.
606  * This usage means that zero-order pages may not be compound.
607  */
608 
609 void free_compound_page(struct page *page)
610 {
611 	__free_pages_ok(page, compound_order(page));
612 }
613 
614 void prep_compound_page(struct page *page, unsigned int order)
615 {
616 	int i;
617 	int nr_pages = 1 << order;
618 
619 	set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
620 	set_compound_order(page, order);
621 	__SetPageHead(page);
622 	for (i = 1; i < nr_pages; i++) {
623 		struct page *p = page + i;
624 		set_page_count(p, 0);
625 		p->mapping = TAIL_MAPPING;
626 		set_compound_head(p, page);
627 	}
628 	atomic_set(compound_mapcount_ptr(page), -1);
629 }
630 
631 #ifdef CONFIG_DEBUG_PAGEALLOC
632 unsigned int _debug_guardpage_minorder;
633 bool _debug_pagealloc_enabled __read_mostly
634 			= IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
635 EXPORT_SYMBOL(_debug_pagealloc_enabled);
636 bool _debug_guardpage_enabled __read_mostly;
637 
638 static int __init early_debug_pagealloc(char *buf)
639 {
640 	if (!buf)
641 		return -EINVAL;
642 	return kstrtobool(buf, &_debug_pagealloc_enabled);
643 }
644 early_param("debug_pagealloc", early_debug_pagealloc);
645 
646 static bool need_debug_guardpage(void)
647 {
648 	/* If we don't use debug_pagealloc, we don't need guard page */
649 	if (!debug_pagealloc_enabled())
650 		return false;
651 
652 	if (!debug_guardpage_minorder())
653 		return false;
654 
655 	return true;
656 }
657 
658 static void init_debug_guardpage(void)
659 {
660 	if (!debug_pagealloc_enabled())
661 		return;
662 
663 	if (!debug_guardpage_minorder())
664 		return;
665 
666 	_debug_guardpage_enabled = true;
667 }
668 
669 struct page_ext_operations debug_guardpage_ops = {
670 	.need = need_debug_guardpage,
671 	.init = init_debug_guardpage,
672 };
673 
674 static int __init debug_guardpage_minorder_setup(char *buf)
675 {
676 	unsigned long res;
677 
678 	if (kstrtoul(buf, 10, &res) < 0 ||  res > MAX_ORDER / 2) {
679 		pr_err("Bad debug_guardpage_minorder value\n");
680 		return 0;
681 	}
682 	_debug_guardpage_minorder = res;
683 	pr_info("Setting debug_guardpage_minorder to %lu\n", res);
684 	return 0;
685 }
686 early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup);
687 
688 static inline bool set_page_guard(struct zone *zone, struct page *page,
689 				unsigned int order, int migratetype)
690 {
691 	struct page_ext *page_ext;
692 
693 	if (!debug_guardpage_enabled())
694 		return false;
695 
696 	if (order >= debug_guardpage_minorder())
697 		return false;
698 
699 	page_ext = lookup_page_ext(page);
700 	if (unlikely(!page_ext))
701 		return false;
702 
703 	__set_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
704 
705 	INIT_LIST_HEAD(&page->lru);
706 	set_page_private(page, order);
707 	/* Guard pages are not available for any usage */
708 	__mod_zone_freepage_state(zone, -(1 << order), migratetype);
709 
710 	return true;
711 }
712 
713 static inline void clear_page_guard(struct zone *zone, struct page *page,
714 				unsigned int order, int migratetype)
715 {
716 	struct page_ext *page_ext;
717 
718 	if (!debug_guardpage_enabled())
719 		return;
720 
721 	page_ext = lookup_page_ext(page);
722 	if (unlikely(!page_ext))
723 		return;
724 
725 	__clear_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
726 
727 	set_page_private(page, 0);
728 	if (!is_migrate_isolate(migratetype))
729 		__mod_zone_freepage_state(zone, (1 << order), migratetype);
730 }
731 #else
732 struct page_ext_operations debug_guardpage_ops;
733 static inline bool set_page_guard(struct zone *zone, struct page *page,
734 			unsigned int order, int migratetype) { return false; }
735 static inline void clear_page_guard(struct zone *zone, struct page *page,
736 				unsigned int order, int migratetype) {}
737 #endif
738 
739 static inline void set_page_order(struct page *page, unsigned int order)
740 {
741 	set_page_private(page, order);
742 	__SetPageBuddy(page);
743 }
744 
745 static inline void rmv_page_order(struct page *page)
746 {
747 	__ClearPageBuddy(page);
748 	set_page_private(page, 0);
749 }
750 
751 /*
752  * This function checks whether a page is free && is the buddy
753  * we can coalesce a page and its buddy if
754  * (a) the buddy is not in a hole (check before calling!) &&
755  * (b) the buddy is in the buddy system &&
756  * (c) a page and its buddy have the same order &&
757  * (d) a page and its buddy are in the same zone.
758  *
759  * For recording whether a page is in the buddy system, we set PageBuddy.
760  * Setting, clearing, and testing PageBuddy is serialized by zone->lock.
761  *
762  * For recording page's order, we use page_private(page).
763  */
764 static inline int page_is_buddy(struct page *page, struct page *buddy,
765 							unsigned int order)
766 {
767 	if (page_is_guard(buddy) && page_order(buddy) == order) {
768 		if (page_zone_id(page) != page_zone_id(buddy))
769 			return 0;
770 
771 		VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
772 
773 		return 1;
774 	}
775 
776 	if (PageBuddy(buddy) && page_order(buddy) == order) {
777 		/*
778 		 * zone check is done late to avoid uselessly
779 		 * calculating zone/node ids for pages that could
780 		 * never merge.
781 		 */
782 		if (page_zone_id(page) != page_zone_id(buddy))
783 			return 0;
784 
785 		VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
786 
787 		return 1;
788 	}
789 	return 0;
790 }
791 
792 #ifdef CONFIG_COMPACTION
793 static inline struct capture_control *task_capc(struct zone *zone)
794 {
795 	struct capture_control *capc = current->capture_control;
796 
797 	return capc &&
798 		!(current->flags & PF_KTHREAD) &&
799 		!capc->page &&
800 		capc->cc->zone == zone &&
801 		capc->cc->direct_compaction ? capc : NULL;
802 }
803 
804 static inline bool
805 compaction_capture(struct capture_control *capc, struct page *page,
806 		   int order, int migratetype)
807 {
808 	if (!capc || order != capc->cc->order)
809 		return false;
810 
811 	/* Do not accidentally pollute CMA or isolated regions*/
812 	if (is_migrate_cma(migratetype) ||
813 	    is_migrate_isolate(migratetype))
814 		return false;
815 
816 	/*
817 	 * Do not let lower order allocations polluate a movable pageblock.
818 	 * This might let an unmovable request use a reclaimable pageblock
819 	 * and vice-versa but no more than normal fallback logic which can
820 	 * have trouble finding a high-order free page.
821 	 */
822 	if (order < pageblock_order && migratetype == MIGRATE_MOVABLE)
823 		return false;
824 
825 	capc->page = page;
826 	return true;
827 }
828 
829 #else
830 static inline struct capture_control *task_capc(struct zone *zone)
831 {
832 	return NULL;
833 }
834 
835 static inline bool
836 compaction_capture(struct capture_control *capc, struct page *page,
837 		   int order, int migratetype)
838 {
839 	return false;
840 }
841 #endif /* CONFIG_COMPACTION */
842 
843 /*
844  * Freeing function for a buddy system allocator.
845  *
846  * The concept of a buddy system is to maintain direct-mapped table
847  * (containing bit values) for memory blocks of various "orders".
848  * The bottom level table contains the map for the smallest allocatable
849  * units of memory (here, pages), and each level above it describes
850  * pairs of units from the levels below, hence, "buddies".
851  * At a high level, all that happens here is marking the table entry
852  * at the bottom level available, and propagating the changes upward
853  * as necessary, plus some accounting needed to play nicely with other
854  * parts of the VM system.
855  * At each level, we keep a list of pages, which are heads of continuous
856  * free pages of length of (1 << order) and marked with PageBuddy.
857  * Page's order is recorded in page_private(page) field.
858  * So when we are allocating or freeing one, we can derive the state of the
859  * other.  That is, if we allocate a small block, and both were
860  * free, the remainder of the region must be split into blocks.
861  * If a block is freed, and its buddy is also free, then this
862  * triggers coalescing into a block of larger size.
863  *
864  * -- nyc
865  */
866 
867 static inline void __free_one_page(struct page *page,
868 		unsigned long pfn,
869 		struct zone *zone, unsigned int order,
870 		int migratetype)
871 {
872 	unsigned long combined_pfn;
873 	unsigned long uninitialized_var(buddy_pfn);
874 	struct page *buddy;
875 	unsigned int max_order;
876 	struct capture_control *capc = task_capc(zone);
877 
878 	max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1);
879 
880 	VM_BUG_ON(!zone_is_initialized(zone));
881 	VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
882 
883 	VM_BUG_ON(migratetype == -1);
884 	if (likely(!is_migrate_isolate(migratetype)))
885 		__mod_zone_freepage_state(zone, 1 << order, migratetype);
886 
887 	VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
888 	VM_BUG_ON_PAGE(bad_range(zone, page), page);
889 
890 continue_merging:
891 	while (order < max_order - 1) {
892 		if (compaction_capture(capc, page, order, migratetype)) {
893 			__mod_zone_freepage_state(zone, -(1 << order),
894 								migratetype);
895 			return;
896 		}
897 		buddy_pfn = __find_buddy_pfn(pfn, order);
898 		buddy = page + (buddy_pfn - pfn);
899 
900 		if (!pfn_valid_within(buddy_pfn))
901 			goto done_merging;
902 		if (!page_is_buddy(page, buddy, order))
903 			goto done_merging;
904 		/*
905 		 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
906 		 * merge with it and move up one order.
907 		 */
908 		if (page_is_guard(buddy)) {
909 			clear_page_guard(zone, buddy, order, migratetype);
910 		} else {
911 			list_del(&buddy->lru);
912 			zone->free_area[order].nr_free--;
913 			rmv_page_order(buddy);
914 		}
915 		combined_pfn = buddy_pfn & pfn;
916 		page = page + (combined_pfn - pfn);
917 		pfn = combined_pfn;
918 		order++;
919 	}
920 	if (max_order < MAX_ORDER) {
921 		/* If we are here, it means order is >= pageblock_order.
922 		 * We want to prevent merge between freepages on isolate
923 		 * pageblock and normal pageblock. Without this, pageblock
924 		 * isolation could cause incorrect freepage or CMA accounting.
925 		 *
926 		 * We don't want to hit this code for the more frequent
927 		 * low-order merging.
928 		 */
929 		if (unlikely(has_isolate_pageblock(zone))) {
930 			int buddy_mt;
931 
932 			buddy_pfn = __find_buddy_pfn(pfn, order);
933 			buddy = page + (buddy_pfn - pfn);
934 			buddy_mt = get_pageblock_migratetype(buddy);
935 
936 			if (migratetype != buddy_mt
937 					&& (is_migrate_isolate(migratetype) ||
938 						is_migrate_isolate(buddy_mt)))
939 				goto done_merging;
940 		}
941 		max_order++;
942 		goto continue_merging;
943 	}
944 
945 done_merging:
946 	set_page_order(page, order);
947 
948 	/*
949 	 * If this is not the largest possible page, check if the buddy
950 	 * of the next-highest order is free. If it is, it's possible
951 	 * that pages are being freed that will coalesce soon. In case,
952 	 * that is happening, add the free page to the tail of the list
953 	 * so it's less likely to be used soon and more likely to be merged
954 	 * as a higher order page
955 	 */
956 	if ((order < MAX_ORDER-2) && pfn_valid_within(buddy_pfn)) {
957 		struct page *higher_page, *higher_buddy;
958 		combined_pfn = buddy_pfn & pfn;
959 		higher_page = page + (combined_pfn - pfn);
960 		buddy_pfn = __find_buddy_pfn(combined_pfn, order + 1);
961 		higher_buddy = higher_page + (buddy_pfn - combined_pfn);
962 		if (pfn_valid_within(buddy_pfn) &&
963 		    page_is_buddy(higher_page, higher_buddy, order + 1)) {
964 			list_add_tail(&page->lru,
965 				&zone->free_area[order].free_list[migratetype]);
966 			goto out;
967 		}
968 	}
969 
970 	list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
971 out:
972 	zone->free_area[order].nr_free++;
973 }
974 
975 /*
976  * A bad page could be due to a number of fields. Instead of multiple branches,
977  * try and check multiple fields with one check. The caller must do a detailed
978  * check if necessary.
979  */
980 static inline bool page_expected_state(struct page *page,
981 					unsigned long check_flags)
982 {
983 	if (unlikely(atomic_read(&page->_mapcount) != -1))
984 		return false;
985 
986 	if (unlikely((unsigned long)page->mapping |
987 			page_ref_count(page) |
988 #ifdef CONFIG_MEMCG
989 			(unsigned long)page->mem_cgroup |
990 #endif
991 			(page->flags & check_flags)))
992 		return false;
993 
994 	return true;
995 }
996 
997 static void free_pages_check_bad(struct page *page)
998 {
999 	const char *bad_reason;
1000 	unsigned long bad_flags;
1001 
1002 	bad_reason = NULL;
1003 	bad_flags = 0;
1004 
1005 	if (unlikely(atomic_read(&page->_mapcount) != -1))
1006 		bad_reason = "nonzero mapcount";
1007 	if (unlikely(page->mapping != NULL))
1008 		bad_reason = "non-NULL mapping";
1009 	if (unlikely(page_ref_count(page) != 0))
1010 		bad_reason = "nonzero _refcount";
1011 	if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
1012 		bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
1013 		bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
1014 	}
1015 #ifdef CONFIG_MEMCG
1016 	if (unlikely(page->mem_cgroup))
1017 		bad_reason = "page still charged to cgroup";
1018 #endif
1019 	bad_page(page, bad_reason, bad_flags);
1020 }
1021 
1022 static inline int free_pages_check(struct page *page)
1023 {
1024 	if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
1025 		return 0;
1026 
1027 	/* Something has gone sideways, find it */
1028 	free_pages_check_bad(page);
1029 	return 1;
1030 }
1031 
1032 static int free_tail_pages_check(struct page *head_page, struct page *page)
1033 {
1034 	int ret = 1;
1035 
1036 	/*
1037 	 * We rely page->lru.next never has bit 0 set, unless the page
1038 	 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
1039 	 */
1040 	BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
1041 
1042 	if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
1043 		ret = 0;
1044 		goto out;
1045 	}
1046 	switch (page - head_page) {
1047 	case 1:
1048 		/* the first tail page: ->mapping may be compound_mapcount() */
1049 		if (unlikely(compound_mapcount(page))) {
1050 			bad_page(page, "nonzero compound_mapcount", 0);
1051 			goto out;
1052 		}
1053 		break;
1054 	case 2:
1055 		/*
1056 		 * the second tail page: ->mapping is
1057 		 * deferred_list.next -- ignore value.
1058 		 */
1059 		break;
1060 	default:
1061 		if (page->mapping != TAIL_MAPPING) {
1062 			bad_page(page, "corrupted mapping in tail page", 0);
1063 			goto out;
1064 		}
1065 		break;
1066 	}
1067 	if (unlikely(!PageTail(page))) {
1068 		bad_page(page, "PageTail not set", 0);
1069 		goto out;
1070 	}
1071 	if (unlikely(compound_head(page) != head_page)) {
1072 		bad_page(page, "compound_head not consistent", 0);
1073 		goto out;
1074 	}
1075 	ret = 0;
1076 out:
1077 	page->mapping = NULL;
1078 	clear_compound_head(page);
1079 	return ret;
1080 }
1081 
1082 static __always_inline bool free_pages_prepare(struct page *page,
1083 					unsigned int order, bool check_free)
1084 {
1085 	int bad = 0;
1086 
1087 	VM_BUG_ON_PAGE(PageTail(page), page);
1088 
1089 	trace_mm_page_free(page, order);
1090 
1091 	/*
1092 	 * Check tail pages before head page information is cleared to
1093 	 * avoid checking PageCompound for order-0 pages.
1094 	 */
1095 	if (unlikely(order)) {
1096 		bool compound = PageCompound(page);
1097 		int i;
1098 
1099 		VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
1100 
1101 		if (compound)
1102 			ClearPageDoubleMap(page);
1103 		for (i = 1; i < (1 << order); i++) {
1104 			if (compound)
1105 				bad += free_tail_pages_check(page, page + i);
1106 			if (unlikely(free_pages_check(page + i))) {
1107 				bad++;
1108 				continue;
1109 			}
1110 			(page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1111 		}
1112 	}
1113 	if (PageMappingFlags(page))
1114 		page->mapping = NULL;
1115 	if (memcg_kmem_enabled() && PageKmemcg(page))
1116 		__memcg_kmem_uncharge(page, order);
1117 	if (check_free)
1118 		bad += free_pages_check(page);
1119 	if (bad)
1120 		return false;
1121 
1122 	page_cpupid_reset_last(page);
1123 	page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1124 	reset_page_owner(page, order);
1125 
1126 	if (!PageHighMem(page)) {
1127 		debug_check_no_locks_freed(page_address(page),
1128 					   PAGE_SIZE << order);
1129 		debug_check_no_obj_freed(page_address(page),
1130 					   PAGE_SIZE << order);
1131 	}
1132 	arch_free_page(page, order);
1133 	kernel_poison_pages(page, 1 << order, 0);
1134 	kernel_map_pages(page, 1 << order, 0);
1135 	kasan_free_nondeferred_pages(page, order);
1136 
1137 	return true;
1138 }
1139 
1140 #ifdef CONFIG_DEBUG_VM
1141 static inline bool free_pcp_prepare(struct page *page)
1142 {
1143 	return free_pages_prepare(page, 0, true);
1144 }
1145 
1146 static inline bool bulkfree_pcp_prepare(struct page *page)
1147 {
1148 	return false;
1149 }
1150 #else
1151 static bool free_pcp_prepare(struct page *page)
1152 {
1153 	return free_pages_prepare(page, 0, false);
1154 }
1155 
1156 static bool bulkfree_pcp_prepare(struct page *page)
1157 {
1158 	return free_pages_check(page);
1159 }
1160 #endif /* CONFIG_DEBUG_VM */
1161 
1162 static inline void prefetch_buddy(struct page *page)
1163 {
1164 	unsigned long pfn = page_to_pfn(page);
1165 	unsigned long buddy_pfn = __find_buddy_pfn(pfn, 0);
1166 	struct page *buddy = page + (buddy_pfn - pfn);
1167 
1168 	prefetch(buddy);
1169 }
1170 
1171 /*
1172  * Frees a number of pages from the PCP lists
1173  * Assumes all pages on list are in same zone, and of same order.
1174  * count is the number of pages to free.
1175  *
1176  * If the zone was previously in an "all pages pinned" state then look to
1177  * see if this freeing clears that state.
1178  *
1179  * And clear the zone's pages_scanned counter, to hold off the "all pages are
1180  * pinned" detection logic.
1181  */
1182 static void free_pcppages_bulk(struct zone *zone, int count,
1183 					struct per_cpu_pages *pcp)
1184 {
1185 	int migratetype = 0;
1186 	int batch_free = 0;
1187 	int prefetch_nr = 0;
1188 	bool isolated_pageblocks;
1189 	struct page *page, *tmp;
1190 	LIST_HEAD(head);
1191 
1192 	while (count) {
1193 		struct list_head *list;
1194 
1195 		/*
1196 		 * Remove pages from lists in a round-robin fashion. A
1197 		 * batch_free count is maintained that is incremented when an
1198 		 * empty list is encountered.  This is so more pages are freed
1199 		 * off fuller lists instead of spinning excessively around empty
1200 		 * lists
1201 		 */
1202 		do {
1203 			batch_free++;
1204 			if (++migratetype == MIGRATE_PCPTYPES)
1205 				migratetype = 0;
1206 			list = &pcp->lists[migratetype];
1207 		} while (list_empty(list));
1208 
1209 		/* This is the only non-empty list. Free them all. */
1210 		if (batch_free == MIGRATE_PCPTYPES)
1211 			batch_free = count;
1212 
1213 		do {
1214 			page = list_last_entry(list, struct page, lru);
1215 			/* must delete to avoid corrupting pcp list */
1216 			list_del(&page->lru);
1217 			pcp->count--;
1218 
1219 			if (bulkfree_pcp_prepare(page))
1220 				continue;
1221 
1222 			list_add_tail(&page->lru, &head);
1223 
1224 			/*
1225 			 * We are going to put the page back to the global
1226 			 * pool, prefetch its buddy to speed up later access
1227 			 * under zone->lock. It is believed the overhead of
1228 			 * an additional test and calculating buddy_pfn here
1229 			 * can be offset by reduced memory latency later. To
1230 			 * avoid excessive prefetching due to large count, only
1231 			 * prefetch buddy for the first pcp->batch nr of pages.
1232 			 */
1233 			if (prefetch_nr++ < pcp->batch)
1234 				prefetch_buddy(page);
1235 		} while (--count && --batch_free && !list_empty(list));
1236 	}
1237 
1238 	spin_lock(&zone->lock);
1239 	isolated_pageblocks = has_isolate_pageblock(zone);
1240 
1241 	/*
1242 	 * Use safe version since after __free_one_page(),
1243 	 * page->lru.next will not point to original list.
1244 	 */
1245 	list_for_each_entry_safe(page, tmp, &head, lru) {
1246 		int mt = get_pcppage_migratetype(page);
1247 		/* MIGRATE_ISOLATE page should not go to pcplists */
1248 		VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1249 		/* Pageblock could have been isolated meanwhile */
1250 		if (unlikely(isolated_pageblocks))
1251 			mt = get_pageblock_migratetype(page);
1252 
1253 		__free_one_page(page, page_to_pfn(page), zone, 0, mt);
1254 		trace_mm_page_pcpu_drain(page, 0, mt);
1255 	}
1256 	spin_unlock(&zone->lock);
1257 }
1258 
1259 static void free_one_page(struct zone *zone,
1260 				struct page *page, unsigned long pfn,
1261 				unsigned int order,
1262 				int migratetype)
1263 {
1264 	spin_lock(&zone->lock);
1265 	if (unlikely(has_isolate_pageblock(zone) ||
1266 		is_migrate_isolate(migratetype))) {
1267 		migratetype = get_pfnblock_migratetype(page, pfn);
1268 	}
1269 	__free_one_page(page, pfn, zone, order, migratetype);
1270 	spin_unlock(&zone->lock);
1271 }
1272 
1273 static void __meminit __init_single_page(struct page *page, unsigned long pfn,
1274 				unsigned long zone, int nid)
1275 {
1276 	mm_zero_struct_page(page);
1277 	set_page_links(page, zone, nid, pfn);
1278 	init_page_count(page);
1279 	page_mapcount_reset(page);
1280 	page_cpupid_reset_last(page);
1281 	page_kasan_tag_reset(page);
1282 
1283 	INIT_LIST_HEAD(&page->lru);
1284 #ifdef WANT_PAGE_VIRTUAL
1285 	/* The shift won't overflow because ZONE_NORMAL is below 4G. */
1286 	if (!is_highmem_idx(zone))
1287 		set_page_address(page, __va(pfn << PAGE_SHIFT));
1288 #endif
1289 }
1290 
1291 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1292 static void __meminit init_reserved_page(unsigned long pfn)
1293 {
1294 	pg_data_t *pgdat;
1295 	int nid, zid;
1296 
1297 	if (!early_page_uninitialised(pfn))
1298 		return;
1299 
1300 	nid = early_pfn_to_nid(pfn);
1301 	pgdat = NODE_DATA(nid);
1302 
1303 	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1304 		struct zone *zone = &pgdat->node_zones[zid];
1305 
1306 		if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
1307 			break;
1308 	}
1309 	__init_single_page(pfn_to_page(pfn), pfn, zid, nid);
1310 }
1311 #else
1312 static inline void init_reserved_page(unsigned long pfn)
1313 {
1314 }
1315 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1316 
1317 /*
1318  * Initialised pages do not have PageReserved set. This function is
1319  * called for each range allocated by the bootmem allocator and
1320  * marks the pages PageReserved. The remaining valid pages are later
1321  * sent to the buddy page allocator.
1322  */
1323 void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
1324 {
1325 	unsigned long start_pfn = PFN_DOWN(start);
1326 	unsigned long end_pfn = PFN_UP(end);
1327 
1328 	for (; start_pfn < end_pfn; start_pfn++) {
1329 		if (pfn_valid(start_pfn)) {
1330 			struct page *page = pfn_to_page(start_pfn);
1331 
1332 			init_reserved_page(start_pfn);
1333 
1334 			/* Avoid false-positive PageTail() */
1335 			INIT_LIST_HEAD(&page->lru);
1336 
1337 			/*
1338 			 * no need for atomic set_bit because the struct
1339 			 * page is not visible yet so nobody should
1340 			 * access it yet.
1341 			 */
1342 			__SetPageReserved(page);
1343 		}
1344 	}
1345 }
1346 
1347 static void __free_pages_ok(struct page *page, unsigned int order)
1348 {
1349 	unsigned long flags;
1350 	int migratetype;
1351 	unsigned long pfn = page_to_pfn(page);
1352 
1353 	if (!free_pages_prepare(page, order, true))
1354 		return;
1355 
1356 	migratetype = get_pfnblock_migratetype(page, pfn);
1357 	local_irq_save(flags);
1358 	__count_vm_events(PGFREE, 1 << order);
1359 	free_one_page(page_zone(page), page, pfn, order, migratetype);
1360 	local_irq_restore(flags);
1361 }
1362 
1363 void __free_pages_core(struct page *page, unsigned int order)
1364 {
1365 	unsigned int nr_pages = 1 << order;
1366 	struct page *p = page;
1367 	unsigned int loop;
1368 
1369 	prefetchw(p);
1370 	for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1371 		prefetchw(p + 1);
1372 		__ClearPageReserved(p);
1373 		set_page_count(p, 0);
1374 	}
1375 	__ClearPageReserved(p);
1376 	set_page_count(p, 0);
1377 
1378 	atomic_long_add(nr_pages, &page_zone(page)->managed_pages);
1379 	set_page_refcounted(page);
1380 	__free_pages(page, order);
1381 }
1382 
1383 #if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \
1384 	defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
1385 
1386 static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
1387 
1388 int __meminit early_pfn_to_nid(unsigned long pfn)
1389 {
1390 	static DEFINE_SPINLOCK(early_pfn_lock);
1391 	int nid;
1392 
1393 	spin_lock(&early_pfn_lock);
1394 	nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
1395 	if (nid < 0)
1396 		nid = first_online_node;
1397 	spin_unlock(&early_pfn_lock);
1398 
1399 	return nid;
1400 }
1401 #endif
1402 
1403 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
1404 static inline bool __meminit __maybe_unused
1405 meminit_pfn_in_nid(unsigned long pfn, int node,
1406 		   struct mminit_pfnnid_cache *state)
1407 {
1408 	int nid;
1409 
1410 	nid = __early_pfn_to_nid(pfn, state);
1411 	if (nid >= 0 && nid != node)
1412 		return false;
1413 	return true;
1414 }
1415 
1416 /* Only safe to use early in boot when initialisation is single-threaded */
1417 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1418 {
1419 	return meminit_pfn_in_nid(pfn, node, &early_pfnnid_cache);
1420 }
1421 
1422 #else
1423 
1424 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1425 {
1426 	return true;
1427 }
1428 static inline bool __meminit  __maybe_unused
1429 meminit_pfn_in_nid(unsigned long pfn, int node,
1430 		   struct mminit_pfnnid_cache *state)
1431 {
1432 	return true;
1433 }
1434 #endif
1435 
1436 
1437 void __init memblock_free_pages(struct page *page, unsigned long pfn,
1438 							unsigned int order)
1439 {
1440 	if (early_page_uninitialised(pfn))
1441 		return;
1442 	__free_pages_core(page, order);
1443 }
1444 
1445 /*
1446  * Check that the whole (or subset of) a pageblock given by the interval of
1447  * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1448  * with the migration of free compaction scanner. The scanners then need to
1449  * use only pfn_valid_within() check for arches that allow holes within
1450  * pageblocks.
1451  *
1452  * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1453  *
1454  * It's possible on some configurations to have a setup like node0 node1 node0
1455  * i.e. it's possible that all pages within a zones range of pages do not
1456  * belong to a single zone. We assume that a border between node0 and node1
1457  * can occur within a single pageblock, but not a node0 node1 node0
1458  * interleaving within a single pageblock. It is therefore sufficient to check
1459  * the first and last page of a pageblock and avoid checking each individual
1460  * page in a pageblock.
1461  */
1462 struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1463 				     unsigned long end_pfn, struct zone *zone)
1464 {
1465 	struct page *start_page;
1466 	struct page *end_page;
1467 
1468 	/* end_pfn is one past the range we are checking */
1469 	end_pfn--;
1470 
1471 	if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
1472 		return NULL;
1473 
1474 	start_page = pfn_to_online_page(start_pfn);
1475 	if (!start_page)
1476 		return NULL;
1477 
1478 	if (page_zone(start_page) != zone)
1479 		return NULL;
1480 
1481 	end_page = pfn_to_page(end_pfn);
1482 
1483 	/* This gives a shorter code than deriving page_zone(end_page) */
1484 	if (page_zone_id(start_page) != page_zone_id(end_page))
1485 		return NULL;
1486 
1487 	return start_page;
1488 }
1489 
1490 void set_zone_contiguous(struct zone *zone)
1491 {
1492 	unsigned long block_start_pfn = zone->zone_start_pfn;
1493 	unsigned long block_end_pfn;
1494 
1495 	block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
1496 	for (; block_start_pfn < zone_end_pfn(zone);
1497 			block_start_pfn = block_end_pfn,
1498 			 block_end_pfn += pageblock_nr_pages) {
1499 
1500 		block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
1501 
1502 		if (!__pageblock_pfn_to_page(block_start_pfn,
1503 					     block_end_pfn, zone))
1504 			return;
1505 	}
1506 
1507 	/* We confirm that there is no hole */
1508 	zone->contiguous = true;
1509 }
1510 
1511 void clear_zone_contiguous(struct zone *zone)
1512 {
1513 	zone->contiguous = false;
1514 }
1515 
1516 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1517 static void __init deferred_free_range(unsigned long pfn,
1518 				       unsigned long nr_pages)
1519 {
1520 	struct page *page;
1521 	unsigned long i;
1522 
1523 	if (!nr_pages)
1524 		return;
1525 
1526 	page = pfn_to_page(pfn);
1527 
1528 	/* Free a large naturally-aligned chunk if possible */
1529 	if (nr_pages == pageblock_nr_pages &&
1530 	    (pfn & (pageblock_nr_pages - 1)) == 0) {
1531 		set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1532 		__free_pages_core(page, pageblock_order);
1533 		return;
1534 	}
1535 
1536 	for (i = 0; i < nr_pages; i++, page++, pfn++) {
1537 		if ((pfn & (pageblock_nr_pages - 1)) == 0)
1538 			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1539 		__free_pages_core(page, 0);
1540 	}
1541 }
1542 
1543 /* Completion tracking for deferred_init_memmap() threads */
1544 static atomic_t pgdat_init_n_undone __initdata;
1545 static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1546 
1547 static inline void __init pgdat_init_report_one_done(void)
1548 {
1549 	if (atomic_dec_and_test(&pgdat_init_n_undone))
1550 		complete(&pgdat_init_all_done_comp);
1551 }
1552 
1553 /*
1554  * Returns true if page needs to be initialized or freed to buddy allocator.
1555  *
1556  * First we check if pfn is valid on architectures where it is possible to have
1557  * holes within pageblock_nr_pages. On systems where it is not possible, this
1558  * function is optimized out.
1559  *
1560  * Then, we check if a current large page is valid by only checking the validity
1561  * of the head pfn.
1562  *
1563  * Finally, meminit_pfn_in_nid is checked on systems where pfns can interleave
1564  * within a node: a pfn is between start and end of a node, but does not belong
1565  * to this memory node.
1566  */
1567 static inline bool __init
1568 deferred_pfn_valid(int nid, unsigned long pfn,
1569 		   struct mminit_pfnnid_cache *nid_init_state)
1570 {
1571 	if (!pfn_valid_within(pfn))
1572 		return false;
1573 	if (!(pfn & (pageblock_nr_pages - 1)) && !pfn_valid(pfn))
1574 		return false;
1575 	if (!meminit_pfn_in_nid(pfn, nid, nid_init_state))
1576 		return false;
1577 	return true;
1578 }
1579 
1580 /*
1581  * Free pages to buddy allocator. Try to free aligned pages in
1582  * pageblock_nr_pages sizes.
1583  */
1584 static void __init deferred_free_pages(int nid, int zid, unsigned long pfn,
1585 				       unsigned long end_pfn)
1586 {
1587 	struct mminit_pfnnid_cache nid_init_state = { };
1588 	unsigned long nr_pgmask = pageblock_nr_pages - 1;
1589 	unsigned long nr_free = 0;
1590 
1591 	for (; pfn < end_pfn; pfn++) {
1592 		if (!deferred_pfn_valid(nid, pfn, &nid_init_state)) {
1593 			deferred_free_range(pfn - nr_free, nr_free);
1594 			nr_free = 0;
1595 		} else if (!(pfn & nr_pgmask)) {
1596 			deferred_free_range(pfn - nr_free, nr_free);
1597 			nr_free = 1;
1598 			touch_nmi_watchdog();
1599 		} else {
1600 			nr_free++;
1601 		}
1602 	}
1603 	/* Free the last block of pages to allocator */
1604 	deferred_free_range(pfn - nr_free, nr_free);
1605 }
1606 
1607 /*
1608  * Initialize struct pages.  We minimize pfn page lookups and scheduler checks
1609  * by performing it only once every pageblock_nr_pages.
1610  * Return number of pages initialized.
1611  */
1612 static unsigned long  __init deferred_init_pages(int nid, int zid,
1613 						 unsigned long pfn,
1614 						 unsigned long end_pfn)
1615 {
1616 	struct mminit_pfnnid_cache nid_init_state = { };
1617 	unsigned long nr_pgmask = pageblock_nr_pages - 1;
1618 	unsigned long nr_pages = 0;
1619 	struct page *page = NULL;
1620 
1621 	for (; pfn < end_pfn; pfn++) {
1622 		if (!deferred_pfn_valid(nid, pfn, &nid_init_state)) {
1623 			page = NULL;
1624 			continue;
1625 		} else if (!page || !(pfn & nr_pgmask)) {
1626 			page = pfn_to_page(pfn);
1627 			touch_nmi_watchdog();
1628 		} else {
1629 			page++;
1630 		}
1631 		__init_single_page(page, pfn, zid, nid);
1632 		nr_pages++;
1633 	}
1634 	return (nr_pages);
1635 }
1636 
1637 /* Initialise remaining memory on a node */
1638 static int __init deferred_init_memmap(void *data)
1639 {
1640 	pg_data_t *pgdat = data;
1641 	int nid = pgdat->node_id;
1642 	unsigned long start = jiffies;
1643 	unsigned long nr_pages = 0;
1644 	unsigned long spfn, epfn, first_init_pfn, flags;
1645 	phys_addr_t spa, epa;
1646 	int zid;
1647 	struct zone *zone;
1648 	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1649 	u64 i;
1650 
1651 	/* Bind memory initialisation thread to a local node if possible */
1652 	if (!cpumask_empty(cpumask))
1653 		set_cpus_allowed_ptr(current, cpumask);
1654 
1655 	pgdat_resize_lock(pgdat, &flags);
1656 	first_init_pfn = pgdat->first_deferred_pfn;
1657 	if (first_init_pfn == ULONG_MAX) {
1658 		pgdat_resize_unlock(pgdat, &flags);
1659 		pgdat_init_report_one_done();
1660 		return 0;
1661 	}
1662 
1663 	/* Sanity check boundaries */
1664 	BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
1665 	BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
1666 	pgdat->first_deferred_pfn = ULONG_MAX;
1667 
1668 	/* Only the highest zone is deferred so find it */
1669 	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1670 		zone = pgdat->node_zones + zid;
1671 		if (first_init_pfn < zone_end_pfn(zone))
1672 			break;
1673 	}
1674 	first_init_pfn = max(zone->zone_start_pfn, first_init_pfn);
1675 
1676 	/*
1677 	 * Initialize and free pages. We do it in two loops: first we initialize
1678 	 * struct page, than free to buddy allocator, because while we are
1679 	 * freeing pages we can access pages that are ahead (computing buddy
1680 	 * page in __free_one_page()).
1681 	 */
1682 	for_each_free_mem_range(i, nid, MEMBLOCK_NONE, &spa, &epa, NULL) {
1683 		spfn = max_t(unsigned long, first_init_pfn, PFN_UP(spa));
1684 		epfn = min_t(unsigned long, zone_end_pfn(zone), PFN_DOWN(epa));
1685 		nr_pages += deferred_init_pages(nid, zid, spfn, epfn);
1686 	}
1687 	for_each_free_mem_range(i, nid, MEMBLOCK_NONE, &spa, &epa, NULL) {
1688 		spfn = max_t(unsigned long, first_init_pfn, PFN_UP(spa));
1689 		epfn = min_t(unsigned long, zone_end_pfn(zone), PFN_DOWN(epa));
1690 		deferred_free_pages(nid, zid, spfn, epfn);
1691 	}
1692 	pgdat_resize_unlock(pgdat, &flags);
1693 
1694 	/* Sanity check that the next zone really is unpopulated */
1695 	WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
1696 
1697 	pr_info("node %d initialised, %lu pages in %ums\n", nid, nr_pages,
1698 					jiffies_to_msecs(jiffies - start));
1699 
1700 	pgdat_init_report_one_done();
1701 	return 0;
1702 }
1703 
1704 /*
1705  * If this zone has deferred pages, try to grow it by initializing enough
1706  * deferred pages to satisfy the allocation specified by order, rounded up to
1707  * the nearest PAGES_PER_SECTION boundary.  So we're adding memory in increments
1708  * of SECTION_SIZE bytes by initializing struct pages in increments of
1709  * PAGES_PER_SECTION * sizeof(struct page) bytes.
1710  *
1711  * Return true when zone was grown, otherwise return false. We return true even
1712  * when we grow less than requested, to let the caller decide if there are
1713  * enough pages to satisfy the allocation.
1714  *
1715  * Note: We use noinline because this function is needed only during boot, and
1716  * it is called from a __ref function _deferred_grow_zone. This way we are
1717  * making sure that it is not inlined into permanent text section.
1718  */
1719 static noinline bool __init
1720 deferred_grow_zone(struct zone *zone, unsigned int order)
1721 {
1722 	int zid = zone_idx(zone);
1723 	int nid = zone_to_nid(zone);
1724 	pg_data_t *pgdat = NODE_DATA(nid);
1725 	unsigned long nr_pages_needed = ALIGN(1 << order, PAGES_PER_SECTION);
1726 	unsigned long nr_pages = 0;
1727 	unsigned long first_init_pfn, spfn, epfn, t, flags;
1728 	unsigned long first_deferred_pfn = pgdat->first_deferred_pfn;
1729 	phys_addr_t spa, epa;
1730 	u64 i;
1731 
1732 	/* Only the last zone may have deferred pages */
1733 	if (zone_end_pfn(zone) != pgdat_end_pfn(pgdat))
1734 		return false;
1735 
1736 	pgdat_resize_lock(pgdat, &flags);
1737 
1738 	/*
1739 	 * If deferred pages have been initialized while we were waiting for
1740 	 * the lock, return true, as the zone was grown.  The caller will retry
1741 	 * this zone.  We won't return to this function since the caller also
1742 	 * has this static branch.
1743 	 */
1744 	if (!static_branch_unlikely(&deferred_pages)) {
1745 		pgdat_resize_unlock(pgdat, &flags);
1746 		return true;
1747 	}
1748 
1749 	/*
1750 	 * If someone grew this zone while we were waiting for spinlock, return
1751 	 * true, as there might be enough pages already.
1752 	 */
1753 	if (first_deferred_pfn != pgdat->first_deferred_pfn) {
1754 		pgdat_resize_unlock(pgdat, &flags);
1755 		return true;
1756 	}
1757 
1758 	first_init_pfn = max(zone->zone_start_pfn, first_deferred_pfn);
1759 
1760 	if (first_init_pfn >= pgdat_end_pfn(pgdat)) {
1761 		pgdat_resize_unlock(pgdat, &flags);
1762 		return false;
1763 	}
1764 
1765 	for_each_free_mem_range(i, nid, MEMBLOCK_NONE, &spa, &epa, NULL) {
1766 		spfn = max_t(unsigned long, first_init_pfn, PFN_UP(spa));
1767 		epfn = min_t(unsigned long, zone_end_pfn(zone), PFN_DOWN(epa));
1768 
1769 		while (spfn < epfn && nr_pages < nr_pages_needed) {
1770 			t = ALIGN(spfn + PAGES_PER_SECTION, PAGES_PER_SECTION);
1771 			first_deferred_pfn = min(t, epfn);
1772 			nr_pages += deferred_init_pages(nid, zid, spfn,
1773 							first_deferred_pfn);
1774 			spfn = first_deferred_pfn;
1775 		}
1776 
1777 		if (nr_pages >= nr_pages_needed)
1778 			break;
1779 	}
1780 
1781 	for_each_free_mem_range(i, nid, MEMBLOCK_NONE, &spa, &epa, NULL) {
1782 		spfn = max_t(unsigned long, first_init_pfn, PFN_UP(spa));
1783 		epfn = min_t(unsigned long, first_deferred_pfn, PFN_DOWN(epa));
1784 		deferred_free_pages(nid, zid, spfn, epfn);
1785 
1786 		if (first_deferred_pfn == epfn)
1787 			break;
1788 	}
1789 	pgdat->first_deferred_pfn = first_deferred_pfn;
1790 	pgdat_resize_unlock(pgdat, &flags);
1791 
1792 	return nr_pages > 0;
1793 }
1794 
1795 /*
1796  * deferred_grow_zone() is __init, but it is called from
1797  * get_page_from_freelist() during early boot until deferred_pages permanently
1798  * disables this call. This is why we have refdata wrapper to avoid warning,
1799  * and to ensure that the function body gets unloaded.
1800  */
1801 static bool __ref
1802 _deferred_grow_zone(struct zone *zone, unsigned int order)
1803 {
1804 	return deferred_grow_zone(zone, order);
1805 }
1806 
1807 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1808 
1809 void __init page_alloc_init_late(void)
1810 {
1811 	struct zone *zone;
1812 
1813 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1814 	int nid;
1815 
1816 	/* There will be num_node_state(N_MEMORY) threads */
1817 	atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
1818 	for_each_node_state(nid, N_MEMORY) {
1819 		kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
1820 	}
1821 
1822 	/* Block until all are initialised */
1823 	wait_for_completion(&pgdat_init_all_done_comp);
1824 
1825 	/*
1826 	 * We initialized the rest of the deferred pages.  Permanently disable
1827 	 * on-demand struct page initialization.
1828 	 */
1829 	static_branch_disable(&deferred_pages);
1830 
1831 	/* Reinit limits that are based on free pages after the kernel is up */
1832 	files_maxfiles_init();
1833 #endif
1834 #ifdef CONFIG_ARCH_DISCARD_MEMBLOCK
1835 	/* Discard memblock private memory */
1836 	memblock_discard();
1837 #endif
1838 
1839 	for_each_populated_zone(zone)
1840 		set_zone_contiguous(zone);
1841 }
1842 
1843 #ifdef CONFIG_CMA
1844 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */
1845 void __init init_cma_reserved_pageblock(struct page *page)
1846 {
1847 	unsigned i = pageblock_nr_pages;
1848 	struct page *p = page;
1849 
1850 	do {
1851 		__ClearPageReserved(p);
1852 		set_page_count(p, 0);
1853 	} while (++p, --i);
1854 
1855 	set_pageblock_migratetype(page, MIGRATE_CMA);
1856 
1857 	if (pageblock_order >= MAX_ORDER) {
1858 		i = pageblock_nr_pages;
1859 		p = page;
1860 		do {
1861 			set_page_refcounted(p);
1862 			__free_pages(p, MAX_ORDER - 1);
1863 			p += MAX_ORDER_NR_PAGES;
1864 		} while (i -= MAX_ORDER_NR_PAGES);
1865 	} else {
1866 		set_page_refcounted(page);
1867 		__free_pages(page, pageblock_order);
1868 	}
1869 
1870 	adjust_managed_page_count(page, pageblock_nr_pages);
1871 }
1872 #endif
1873 
1874 /*
1875  * The order of subdivision here is critical for the IO subsystem.
1876  * Please do not alter this order without good reasons and regression
1877  * testing. Specifically, as large blocks of memory are subdivided,
1878  * the order in which smaller blocks are delivered depends on the order
1879  * they're subdivided in this function. This is the primary factor
1880  * influencing the order in which pages are delivered to the IO
1881  * subsystem according to empirical testing, and this is also justified
1882  * by considering the behavior of a buddy system containing a single
1883  * large block of memory acted on by a series of small allocations.
1884  * This behavior is a critical factor in sglist merging's success.
1885  *
1886  * -- nyc
1887  */
1888 static inline void expand(struct zone *zone, struct page *page,
1889 	int low, int high, struct free_area *area,
1890 	int migratetype)
1891 {
1892 	unsigned long size = 1 << high;
1893 
1894 	while (high > low) {
1895 		area--;
1896 		high--;
1897 		size >>= 1;
1898 		VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
1899 
1900 		/*
1901 		 * Mark as guard pages (or page), that will allow to
1902 		 * merge back to allocator when buddy will be freed.
1903 		 * Corresponding page table entries will not be touched,
1904 		 * pages will stay not present in virtual address space
1905 		 */
1906 		if (set_page_guard(zone, &page[size], high, migratetype))
1907 			continue;
1908 
1909 		list_add(&page[size].lru, &area->free_list[migratetype]);
1910 		area->nr_free++;
1911 		set_page_order(&page[size], high);
1912 	}
1913 }
1914 
1915 static void check_new_page_bad(struct page *page)
1916 {
1917 	const char *bad_reason = NULL;
1918 	unsigned long bad_flags = 0;
1919 
1920 	if (unlikely(atomic_read(&page->_mapcount) != -1))
1921 		bad_reason = "nonzero mapcount";
1922 	if (unlikely(page->mapping != NULL))
1923 		bad_reason = "non-NULL mapping";
1924 	if (unlikely(page_ref_count(page) != 0))
1925 		bad_reason = "nonzero _count";
1926 	if (unlikely(page->flags & __PG_HWPOISON)) {
1927 		bad_reason = "HWPoisoned (hardware-corrupted)";
1928 		bad_flags = __PG_HWPOISON;
1929 		/* Don't complain about hwpoisoned pages */
1930 		page_mapcount_reset(page); /* remove PageBuddy */
1931 		return;
1932 	}
1933 	if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
1934 		bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
1935 		bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
1936 	}
1937 #ifdef CONFIG_MEMCG
1938 	if (unlikely(page->mem_cgroup))
1939 		bad_reason = "page still charged to cgroup";
1940 #endif
1941 	bad_page(page, bad_reason, bad_flags);
1942 }
1943 
1944 /*
1945  * This page is about to be returned from the page allocator
1946  */
1947 static inline int check_new_page(struct page *page)
1948 {
1949 	if (likely(page_expected_state(page,
1950 				PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
1951 		return 0;
1952 
1953 	check_new_page_bad(page);
1954 	return 1;
1955 }
1956 
1957 static inline bool free_pages_prezeroed(void)
1958 {
1959 	return IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) &&
1960 		page_poisoning_enabled();
1961 }
1962 
1963 #ifdef CONFIG_DEBUG_VM
1964 static bool check_pcp_refill(struct page *page)
1965 {
1966 	return false;
1967 }
1968 
1969 static bool check_new_pcp(struct page *page)
1970 {
1971 	return check_new_page(page);
1972 }
1973 #else
1974 static bool check_pcp_refill(struct page *page)
1975 {
1976 	return check_new_page(page);
1977 }
1978 static bool check_new_pcp(struct page *page)
1979 {
1980 	return false;
1981 }
1982 #endif /* CONFIG_DEBUG_VM */
1983 
1984 static bool check_new_pages(struct page *page, unsigned int order)
1985 {
1986 	int i;
1987 	for (i = 0; i < (1 << order); i++) {
1988 		struct page *p = page + i;
1989 
1990 		if (unlikely(check_new_page(p)))
1991 			return true;
1992 	}
1993 
1994 	return false;
1995 }
1996 
1997 inline void post_alloc_hook(struct page *page, unsigned int order,
1998 				gfp_t gfp_flags)
1999 {
2000 	set_page_private(page, 0);
2001 	set_page_refcounted(page);
2002 
2003 	arch_alloc_page(page, order);
2004 	kernel_map_pages(page, 1 << order, 1);
2005 	kasan_alloc_pages(page, order);
2006 	kernel_poison_pages(page, 1 << order, 1);
2007 	set_page_owner(page, order, gfp_flags);
2008 }
2009 
2010 static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
2011 							unsigned int alloc_flags)
2012 {
2013 	int i;
2014 
2015 	post_alloc_hook(page, order, gfp_flags);
2016 
2017 	if (!free_pages_prezeroed() && (gfp_flags & __GFP_ZERO))
2018 		for (i = 0; i < (1 << order); i++)
2019 			clear_highpage(page + i);
2020 
2021 	if (order && (gfp_flags & __GFP_COMP))
2022 		prep_compound_page(page, order);
2023 
2024 	/*
2025 	 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
2026 	 * allocate the page. The expectation is that the caller is taking
2027 	 * steps that will free more memory. The caller should avoid the page
2028 	 * being used for !PFMEMALLOC purposes.
2029 	 */
2030 	if (alloc_flags & ALLOC_NO_WATERMARKS)
2031 		set_page_pfmemalloc(page);
2032 	else
2033 		clear_page_pfmemalloc(page);
2034 }
2035 
2036 /*
2037  * Go through the free lists for the given migratetype and remove
2038  * the smallest available page from the freelists
2039  */
2040 static __always_inline
2041 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
2042 						int migratetype)
2043 {
2044 	unsigned int current_order;
2045 	struct free_area *area;
2046 	struct page *page;
2047 
2048 	/* Find a page of the appropriate size in the preferred list */
2049 	for (current_order = order; current_order < MAX_ORDER; ++current_order) {
2050 		area = &(zone->free_area[current_order]);
2051 		page = list_first_entry_or_null(&area->free_list[migratetype],
2052 							struct page, lru);
2053 		if (!page)
2054 			continue;
2055 		list_del(&page->lru);
2056 		rmv_page_order(page);
2057 		area->nr_free--;
2058 		expand(zone, page, order, current_order, area, migratetype);
2059 		set_pcppage_migratetype(page, migratetype);
2060 		return page;
2061 	}
2062 
2063 	return NULL;
2064 }
2065 
2066 
2067 /*
2068  * This array describes the order lists are fallen back to when
2069  * the free lists for the desirable migrate type are depleted
2070  */
2071 static int fallbacks[MIGRATE_TYPES][4] = {
2072 	[MIGRATE_UNMOVABLE]   = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE,   MIGRATE_TYPES },
2073 	[MIGRATE_MOVABLE]     = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
2074 	[MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE,   MIGRATE_MOVABLE,   MIGRATE_TYPES },
2075 #ifdef CONFIG_CMA
2076 	[MIGRATE_CMA]         = { MIGRATE_TYPES }, /* Never used */
2077 #endif
2078 #ifdef CONFIG_MEMORY_ISOLATION
2079 	[MIGRATE_ISOLATE]     = { MIGRATE_TYPES }, /* Never used */
2080 #endif
2081 };
2082 
2083 #ifdef CONFIG_CMA
2084 static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone,
2085 					unsigned int order)
2086 {
2087 	return __rmqueue_smallest(zone, order, MIGRATE_CMA);
2088 }
2089 #else
2090 static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
2091 					unsigned int order) { return NULL; }
2092 #endif
2093 
2094 /*
2095  * Move the free pages in a range to the free lists of the requested type.
2096  * Note that start_page and end_pages are not aligned on a pageblock
2097  * boundary. If alignment is required, use move_freepages_block()
2098  */
2099 static int move_freepages(struct zone *zone,
2100 			  struct page *start_page, struct page *end_page,
2101 			  int migratetype, int *num_movable)
2102 {
2103 	struct page *page;
2104 	unsigned int order;
2105 	int pages_moved = 0;
2106 
2107 #ifndef CONFIG_HOLES_IN_ZONE
2108 	/*
2109 	 * page_zone is not safe to call in this context when
2110 	 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
2111 	 * anyway as we check zone boundaries in move_freepages_block().
2112 	 * Remove at a later date when no bug reports exist related to
2113 	 * grouping pages by mobility
2114 	 */
2115 	VM_BUG_ON(pfn_valid(page_to_pfn(start_page)) &&
2116 	          pfn_valid(page_to_pfn(end_page)) &&
2117 	          page_zone(start_page) != page_zone(end_page));
2118 #endif
2119 	for (page = start_page; page <= end_page;) {
2120 		if (!pfn_valid_within(page_to_pfn(page))) {
2121 			page++;
2122 			continue;
2123 		}
2124 
2125 		/* Make sure we are not inadvertently changing nodes */
2126 		VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
2127 
2128 		if (!PageBuddy(page)) {
2129 			/*
2130 			 * We assume that pages that could be isolated for
2131 			 * migration are movable. But we don't actually try
2132 			 * isolating, as that would be expensive.
2133 			 */
2134 			if (num_movable &&
2135 					(PageLRU(page) || __PageMovable(page)))
2136 				(*num_movable)++;
2137 
2138 			page++;
2139 			continue;
2140 		}
2141 
2142 		order = page_order(page);
2143 		list_move(&page->lru,
2144 			  &zone->free_area[order].free_list[migratetype]);
2145 		page += 1 << order;
2146 		pages_moved += 1 << order;
2147 	}
2148 
2149 	return pages_moved;
2150 }
2151 
2152 int move_freepages_block(struct zone *zone, struct page *page,
2153 				int migratetype, int *num_movable)
2154 {
2155 	unsigned long start_pfn, end_pfn;
2156 	struct page *start_page, *end_page;
2157 
2158 	if (num_movable)
2159 		*num_movable = 0;
2160 
2161 	start_pfn = page_to_pfn(page);
2162 	start_pfn = start_pfn & ~(pageblock_nr_pages-1);
2163 	start_page = pfn_to_page(start_pfn);
2164 	end_page = start_page + pageblock_nr_pages - 1;
2165 	end_pfn = start_pfn + pageblock_nr_pages - 1;
2166 
2167 	/* Do not cross zone boundaries */
2168 	if (!zone_spans_pfn(zone, start_pfn))
2169 		start_page = page;
2170 	if (!zone_spans_pfn(zone, end_pfn))
2171 		return 0;
2172 
2173 	return move_freepages(zone, start_page, end_page, migratetype,
2174 								num_movable);
2175 }
2176 
2177 static void change_pageblock_range(struct page *pageblock_page,
2178 					int start_order, int migratetype)
2179 {
2180 	int nr_pageblocks = 1 << (start_order - pageblock_order);
2181 
2182 	while (nr_pageblocks--) {
2183 		set_pageblock_migratetype(pageblock_page, migratetype);
2184 		pageblock_page += pageblock_nr_pages;
2185 	}
2186 }
2187 
2188 /*
2189  * When we are falling back to another migratetype during allocation, try to
2190  * steal extra free pages from the same pageblocks to satisfy further
2191  * allocations, instead of polluting multiple pageblocks.
2192  *
2193  * If we are stealing a relatively large buddy page, it is likely there will
2194  * be more free pages in the pageblock, so try to steal them all. For
2195  * reclaimable and unmovable allocations, we steal regardless of page size,
2196  * as fragmentation caused by those allocations polluting movable pageblocks
2197  * is worse than movable allocations stealing from unmovable and reclaimable
2198  * pageblocks.
2199  */
2200 static bool can_steal_fallback(unsigned int order, int start_mt)
2201 {
2202 	/*
2203 	 * Leaving this order check is intended, although there is
2204 	 * relaxed order check in next check. The reason is that
2205 	 * we can actually steal whole pageblock if this condition met,
2206 	 * but, below check doesn't guarantee it and that is just heuristic
2207 	 * so could be changed anytime.
2208 	 */
2209 	if (order >= pageblock_order)
2210 		return true;
2211 
2212 	if (order >= pageblock_order / 2 ||
2213 		start_mt == MIGRATE_RECLAIMABLE ||
2214 		start_mt == MIGRATE_UNMOVABLE ||
2215 		page_group_by_mobility_disabled)
2216 		return true;
2217 
2218 	return false;
2219 }
2220 
2221 static inline void boost_watermark(struct zone *zone)
2222 {
2223 	unsigned long max_boost;
2224 
2225 	if (!watermark_boost_factor)
2226 		return;
2227 
2228 	max_boost = mult_frac(zone->_watermark[WMARK_HIGH],
2229 			watermark_boost_factor, 10000);
2230 
2231 	/*
2232 	 * high watermark may be uninitialised if fragmentation occurs
2233 	 * very early in boot so do not boost. We do not fall
2234 	 * through and boost by pageblock_nr_pages as failing
2235 	 * allocations that early means that reclaim is not going
2236 	 * to help and it may even be impossible to reclaim the
2237 	 * boosted watermark resulting in a hang.
2238 	 */
2239 	if (!max_boost)
2240 		return;
2241 
2242 	max_boost = max(pageblock_nr_pages, max_boost);
2243 
2244 	zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages,
2245 		max_boost);
2246 }
2247 
2248 /*
2249  * This function implements actual steal behaviour. If order is large enough,
2250  * we can steal whole pageblock. If not, we first move freepages in this
2251  * pageblock to our migratetype and determine how many already-allocated pages
2252  * are there in the pageblock with a compatible migratetype. If at least half
2253  * of pages are free or compatible, we can change migratetype of the pageblock
2254  * itself, so pages freed in the future will be put on the correct free list.
2255  */
2256 static void steal_suitable_fallback(struct zone *zone, struct page *page,
2257 		unsigned int alloc_flags, int start_type, bool whole_block)
2258 {
2259 	unsigned int current_order = page_order(page);
2260 	struct free_area *area;
2261 	int free_pages, movable_pages, alike_pages;
2262 	int old_block_type;
2263 
2264 	old_block_type = get_pageblock_migratetype(page);
2265 
2266 	/*
2267 	 * This can happen due to races and we want to prevent broken
2268 	 * highatomic accounting.
2269 	 */
2270 	if (is_migrate_highatomic(old_block_type))
2271 		goto single_page;
2272 
2273 	/* Take ownership for orders >= pageblock_order */
2274 	if (current_order >= pageblock_order) {
2275 		change_pageblock_range(page, current_order, start_type);
2276 		goto single_page;
2277 	}
2278 
2279 	/*
2280 	 * Boost watermarks to increase reclaim pressure to reduce the
2281 	 * likelihood of future fallbacks. Wake kswapd now as the node
2282 	 * may be balanced overall and kswapd will not wake naturally.
2283 	 */
2284 	boost_watermark(zone);
2285 	if (alloc_flags & ALLOC_KSWAPD)
2286 		set_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
2287 
2288 	/* We are not allowed to try stealing from the whole block */
2289 	if (!whole_block)
2290 		goto single_page;
2291 
2292 	free_pages = move_freepages_block(zone, page, start_type,
2293 						&movable_pages);
2294 	/*
2295 	 * Determine how many pages are compatible with our allocation.
2296 	 * For movable allocation, it's the number of movable pages which
2297 	 * we just obtained. For other types it's a bit more tricky.
2298 	 */
2299 	if (start_type == MIGRATE_MOVABLE) {
2300 		alike_pages = movable_pages;
2301 	} else {
2302 		/*
2303 		 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
2304 		 * to MOVABLE pageblock, consider all non-movable pages as
2305 		 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
2306 		 * vice versa, be conservative since we can't distinguish the
2307 		 * exact migratetype of non-movable pages.
2308 		 */
2309 		if (old_block_type == MIGRATE_MOVABLE)
2310 			alike_pages = pageblock_nr_pages
2311 						- (free_pages + movable_pages);
2312 		else
2313 			alike_pages = 0;
2314 	}
2315 
2316 	/* moving whole block can fail due to zone boundary conditions */
2317 	if (!free_pages)
2318 		goto single_page;
2319 
2320 	/*
2321 	 * If a sufficient number of pages in the block are either free or of
2322 	 * comparable migratability as our allocation, claim the whole block.
2323 	 */
2324 	if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
2325 			page_group_by_mobility_disabled)
2326 		set_pageblock_migratetype(page, start_type);
2327 
2328 	return;
2329 
2330 single_page:
2331 	area = &zone->free_area[current_order];
2332 	list_move(&page->lru, &area->free_list[start_type]);
2333 }
2334 
2335 /*
2336  * Check whether there is a suitable fallback freepage with requested order.
2337  * If only_stealable is true, this function returns fallback_mt only if
2338  * we can steal other freepages all together. This would help to reduce
2339  * fragmentation due to mixed migratetype pages in one pageblock.
2340  */
2341 int find_suitable_fallback(struct free_area *area, unsigned int order,
2342 			int migratetype, bool only_stealable, bool *can_steal)
2343 {
2344 	int i;
2345 	int fallback_mt;
2346 
2347 	if (area->nr_free == 0)
2348 		return -1;
2349 
2350 	*can_steal = false;
2351 	for (i = 0;; i++) {
2352 		fallback_mt = fallbacks[migratetype][i];
2353 		if (fallback_mt == MIGRATE_TYPES)
2354 			break;
2355 
2356 		if (list_empty(&area->free_list[fallback_mt]))
2357 			continue;
2358 
2359 		if (can_steal_fallback(order, migratetype))
2360 			*can_steal = true;
2361 
2362 		if (!only_stealable)
2363 			return fallback_mt;
2364 
2365 		if (*can_steal)
2366 			return fallback_mt;
2367 	}
2368 
2369 	return -1;
2370 }
2371 
2372 /*
2373  * Reserve a pageblock for exclusive use of high-order atomic allocations if
2374  * there are no empty page blocks that contain a page with a suitable order
2375  */
2376 static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
2377 				unsigned int alloc_order)
2378 {
2379 	int mt;
2380 	unsigned long max_managed, flags;
2381 
2382 	/*
2383 	 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
2384 	 * Check is race-prone but harmless.
2385 	 */
2386 	max_managed = (zone_managed_pages(zone) / 100) + pageblock_nr_pages;
2387 	if (zone->nr_reserved_highatomic >= max_managed)
2388 		return;
2389 
2390 	spin_lock_irqsave(&zone->lock, flags);
2391 
2392 	/* Recheck the nr_reserved_highatomic limit under the lock */
2393 	if (zone->nr_reserved_highatomic >= max_managed)
2394 		goto out_unlock;
2395 
2396 	/* Yoink! */
2397 	mt = get_pageblock_migratetype(page);
2398 	if (!is_migrate_highatomic(mt) && !is_migrate_isolate(mt)
2399 	    && !is_migrate_cma(mt)) {
2400 		zone->nr_reserved_highatomic += pageblock_nr_pages;
2401 		set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
2402 		move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL);
2403 	}
2404 
2405 out_unlock:
2406 	spin_unlock_irqrestore(&zone->lock, flags);
2407 }
2408 
2409 /*
2410  * Used when an allocation is about to fail under memory pressure. This
2411  * potentially hurts the reliability of high-order allocations when under
2412  * intense memory pressure but failed atomic allocations should be easier
2413  * to recover from than an OOM.
2414  *
2415  * If @force is true, try to unreserve a pageblock even though highatomic
2416  * pageblock is exhausted.
2417  */
2418 static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
2419 						bool force)
2420 {
2421 	struct zonelist *zonelist = ac->zonelist;
2422 	unsigned long flags;
2423 	struct zoneref *z;
2424 	struct zone *zone;
2425 	struct page *page;
2426 	int order;
2427 	bool ret;
2428 
2429 	for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
2430 								ac->nodemask) {
2431 		/*
2432 		 * Preserve at least one pageblock unless memory pressure
2433 		 * is really high.
2434 		 */
2435 		if (!force && zone->nr_reserved_highatomic <=
2436 					pageblock_nr_pages)
2437 			continue;
2438 
2439 		spin_lock_irqsave(&zone->lock, flags);
2440 		for (order = 0; order < MAX_ORDER; order++) {
2441 			struct free_area *area = &(zone->free_area[order]);
2442 
2443 			page = list_first_entry_or_null(
2444 					&area->free_list[MIGRATE_HIGHATOMIC],
2445 					struct page, lru);
2446 			if (!page)
2447 				continue;
2448 
2449 			/*
2450 			 * In page freeing path, migratetype change is racy so
2451 			 * we can counter several free pages in a pageblock
2452 			 * in this loop althoug we changed the pageblock type
2453 			 * from highatomic to ac->migratetype. So we should
2454 			 * adjust the count once.
2455 			 */
2456 			if (is_migrate_highatomic_page(page)) {
2457 				/*
2458 				 * It should never happen but changes to
2459 				 * locking could inadvertently allow a per-cpu
2460 				 * drain to add pages to MIGRATE_HIGHATOMIC
2461 				 * while unreserving so be safe and watch for
2462 				 * underflows.
2463 				 */
2464 				zone->nr_reserved_highatomic -= min(
2465 						pageblock_nr_pages,
2466 						zone->nr_reserved_highatomic);
2467 			}
2468 
2469 			/*
2470 			 * Convert to ac->migratetype and avoid the normal
2471 			 * pageblock stealing heuristics. Minimally, the caller
2472 			 * is doing the work and needs the pages. More
2473 			 * importantly, if the block was always converted to
2474 			 * MIGRATE_UNMOVABLE or another type then the number
2475 			 * of pageblocks that cannot be completely freed
2476 			 * may increase.
2477 			 */
2478 			set_pageblock_migratetype(page, ac->migratetype);
2479 			ret = move_freepages_block(zone, page, ac->migratetype,
2480 									NULL);
2481 			if (ret) {
2482 				spin_unlock_irqrestore(&zone->lock, flags);
2483 				return ret;
2484 			}
2485 		}
2486 		spin_unlock_irqrestore(&zone->lock, flags);
2487 	}
2488 
2489 	return false;
2490 }
2491 
2492 /*
2493  * Try finding a free buddy page on the fallback list and put it on the free
2494  * list of requested migratetype, possibly along with other pages from the same
2495  * block, depending on fragmentation avoidance heuristics. Returns true if
2496  * fallback was found so that __rmqueue_smallest() can grab it.
2497  *
2498  * The use of signed ints for order and current_order is a deliberate
2499  * deviation from the rest of this file, to make the for loop
2500  * condition simpler.
2501  */
2502 static __always_inline bool
2503 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype,
2504 						unsigned int alloc_flags)
2505 {
2506 	struct free_area *area;
2507 	int current_order;
2508 	int min_order = order;
2509 	struct page *page;
2510 	int fallback_mt;
2511 	bool can_steal;
2512 
2513 	/*
2514 	 * Do not steal pages from freelists belonging to other pageblocks
2515 	 * i.e. orders < pageblock_order. If there are no local zones free,
2516 	 * the zonelists will be reiterated without ALLOC_NOFRAGMENT.
2517 	 */
2518 	if (alloc_flags & ALLOC_NOFRAGMENT)
2519 		min_order = pageblock_order;
2520 
2521 	/*
2522 	 * Find the largest available free page in the other list. This roughly
2523 	 * approximates finding the pageblock with the most free pages, which
2524 	 * would be too costly to do exactly.
2525 	 */
2526 	for (current_order = MAX_ORDER - 1; current_order >= min_order;
2527 				--current_order) {
2528 		area = &(zone->free_area[current_order]);
2529 		fallback_mt = find_suitable_fallback(area, current_order,
2530 				start_migratetype, false, &can_steal);
2531 		if (fallback_mt == -1)
2532 			continue;
2533 
2534 		/*
2535 		 * We cannot steal all free pages from the pageblock and the
2536 		 * requested migratetype is movable. In that case it's better to
2537 		 * steal and split the smallest available page instead of the
2538 		 * largest available page, because even if the next movable
2539 		 * allocation falls back into a different pageblock than this
2540 		 * one, it won't cause permanent fragmentation.
2541 		 */
2542 		if (!can_steal && start_migratetype == MIGRATE_MOVABLE
2543 					&& current_order > order)
2544 			goto find_smallest;
2545 
2546 		goto do_steal;
2547 	}
2548 
2549 	return false;
2550 
2551 find_smallest:
2552 	for (current_order = order; current_order < MAX_ORDER;
2553 							current_order++) {
2554 		area = &(zone->free_area[current_order]);
2555 		fallback_mt = find_suitable_fallback(area, current_order,
2556 				start_migratetype, false, &can_steal);
2557 		if (fallback_mt != -1)
2558 			break;
2559 	}
2560 
2561 	/*
2562 	 * This should not happen - we already found a suitable fallback
2563 	 * when looking for the largest page.
2564 	 */
2565 	VM_BUG_ON(current_order == MAX_ORDER);
2566 
2567 do_steal:
2568 	page = list_first_entry(&area->free_list[fallback_mt],
2569 							struct page, lru);
2570 
2571 	steal_suitable_fallback(zone, page, alloc_flags, start_migratetype,
2572 								can_steal);
2573 
2574 	trace_mm_page_alloc_extfrag(page, order, current_order,
2575 		start_migratetype, fallback_mt);
2576 
2577 	return true;
2578 
2579 }
2580 
2581 /*
2582  * Do the hard work of removing an element from the buddy allocator.
2583  * Call me with the zone->lock already held.
2584  */
2585 static __always_inline struct page *
2586 __rmqueue(struct zone *zone, unsigned int order, int migratetype,
2587 						unsigned int alloc_flags)
2588 {
2589 	struct page *page;
2590 
2591 retry:
2592 	page = __rmqueue_smallest(zone, order, migratetype);
2593 	if (unlikely(!page)) {
2594 		if (migratetype == MIGRATE_MOVABLE)
2595 			page = __rmqueue_cma_fallback(zone, order);
2596 
2597 		if (!page && __rmqueue_fallback(zone, order, migratetype,
2598 								alloc_flags))
2599 			goto retry;
2600 	}
2601 
2602 	trace_mm_page_alloc_zone_locked(page, order, migratetype);
2603 	return page;
2604 }
2605 
2606 /*
2607  * Obtain a specified number of elements from the buddy allocator, all under
2608  * a single hold of the lock, for efficiency.  Add them to the supplied list.
2609  * Returns the number of new pages which were placed at *list.
2610  */
2611 static int rmqueue_bulk(struct zone *zone, unsigned int order,
2612 			unsigned long count, struct list_head *list,
2613 			int migratetype, unsigned int alloc_flags)
2614 {
2615 	int i, alloced = 0;
2616 
2617 	spin_lock(&zone->lock);
2618 	for (i = 0; i < count; ++i) {
2619 		struct page *page = __rmqueue(zone, order, migratetype,
2620 								alloc_flags);
2621 		if (unlikely(page == NULL))
2622 			break;
2623 
2624 		if (unlikely(check_pcp_refill(page)))
2625 			continue;
2626 
2627 		/*
2628 		 * Split buddy pages returned by expand() are received here in
2629 		 * physical page order. The page is added to the tail of
2630 		 * caller's list. From the callers perspective, the linked list
2631 		 * is ordered by page number under some conditions. This is
2632 		 * useful for IO devices that can forward direction from the
2633 		 * head, thus also in the physical page order. This is useful
2634 		 * for IO devices that can merge IO requests if the physical
2635 		 * pages are ordered properly.
2636 		 */
2637 		list_add_tail(&page->lru, list);
2638 		alloced++;
2639 		if (is_migrate_cma(get_pcppage_migratetype(page)))
2640 			__mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
2641 					      -(1 << order));
2642 	}
2643 
2644 	/*
2645 	 * i pages were removed from the buddy list even if some leak due
2646 	 * to check_pcp_refill failing so adjust NR_FREE_PAGES based
2647 	 * on i. Do not confuse with 'alloced' which is the number of
2648 	 * pages added to the pcp list.
2649 	 */
2650 	__mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
2651 	spin_unlock(&zone->lock);
2652 	return alloced;
2653 }
2654 
2655 #ifdef CONFIG_NUMA
2656 /*
2657  * Called from the vmstat counter updater to drain pagesets of this
2658  * currently executing processor on remote nodes after they have
2659  * expired.
2660  *
2661  * Note that this function must be called with the thread pinned to
2662  * a single processor.
2663  */
2664 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
2665 {
2666 	unsigned long flags;
2667 	int to_drain, batch;
2668 
2669 	local_irq_save(flags);
2670 	batch = READ_ONCE(pcp->batch);
2671 	to_drain = min(pcp->count, batch);
2672 	if (to_drain > 0)
2673 		free_pcppages_bulk(zone, to_drain, pcp);
2674 	local_irq_restore(flags);
2675 }
2676 #endif
2677 
2678 /*
2679  * Drain pcplists of the indicated processor and zone.
2680  *
2681  * The processor must either be the current processor and the
2682  * thread pinned to the current processor or a processor that
2683  * is not online.
2684  */
2685 static void drain_pages_zone(unsigned int cpu, struct zone *zone)
2686 {
2687 	unsigned long flags;
2688 	struct per_cpu_pageset *pset;
2689 	struct per_cpu_pages *pcp;
2690 
2691 	local_irq_save(flags);
2692 	pset = per_cpu_ptr(zone->pageset, cpu);
2693 
2694 	pcp = &pset->pcp;
2695 	if (pcp->count)
2696 		free_pcppages_bulk(zone, pcp->count, pcp);
2697 	local_irq_restore(flags);
2698 }
2699 
2700 /*
2701  * Drain pcplists of all zones on the indicated processor.
2702  *
2703  * The processor must either be the current processor and the
2704  * thread pinned to the current processor or a processor that
2705  * is not online.
2706  */
2707 static void drain_pages(unsigned int cpu)
2708 {
2709 	struct zone *zone;
2710 
2711 	for_each_populated_zone(zone) {
2712 		drain_pages_zone(cpu, zone);
2713 	}
2714 }
2715 
2716 /*
2717  * Spill all of this CPU's per-cpu pages back into the buddy allocator.
2718  *
2719  * The CPU has to be pinned. When zone parameter is non-NULL, spill just
2720  * the single zone's pages.
2721  */
2722 void drain_local_pages(struct zone *zone)
2723 {
2724 	int cpu = smp_processor_id();
2725 
2726 	if (zone)
2727 		drain_pages_zone(cpu, zone);
2728 	else
2729 		drain_pages(cpu);
2730 }
2731 
2732 static void drain_local_pages_wq(struct work_struct *work)
2733 {
2734 	struct pcpu_drain *drain;
2735 
2736 	drain = container_of(work, struct pcpu_drain, work);
2737 
2738 	/*
2739 	 * drain_all_pages doesn't use proper cpu hotplug protection so
2740 	 * we can race with cpu offline when the WQ can move this from
2741 	 * a cpu pinned worker to an unbound one. We can operate on a different
2742 	 * cpu which is allright but we also have to make sure to not move to
2743 	 * a different one.
2744 	 */
2745 	preempt_disable();
2746 	drain_local_pages(drain->zone);
2747 	preempt_enable();
2748 }
2749 
2750 /*
2751  * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
2752  *
2753  * When zone parameter is non-NULL, spill just the single zone's pages.
2754  *
2755  * Note that this can be extremely slow as the draining happens in a workqueue.
2756  */
2757 void drain_all_pages(struct zone *zone)
2758 {
2759 	int cpu;
2760 
2761 	/*
2762 	 * Allocate in the BSS so we wont require allocation in
2763 	 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
2764 	 */
2765 	static cpumask_t cpus_with_pcps;
2766 
2767 	/*
2768 	 * Make sure nobody triggers this path before mm_percpu_wq is fully
2769 	 * initialized.
2770 	 */
2771 	if (WARN_ON_ONCE(!mm_percpu_wq))
2772 		return;
2773 
2774 	/*
2775 	 * Do not drain if one is already in progress unless it's specific to
2776 	 * a zone. Such callers are primarily CMA and memory hotplug and need
2777 	 * the drain to be complete when the call returns.
2778 	 */
2779 	if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
2780 		if (!zone)
2781 			return;
2782 		mutex_lock(&pcpu_drain_mutex);
2783 	}
2784 
2785 	/*
2786 	 * We don't care about racing with CPU hotplug event
2787 	 * as offline notification will cause the notified
2788 	 * cpu to drain that CPU pcps and on_each_cpu_mask
2789 	 * disables preemption as part of its processing
2790 	 */
2791 	for_each_online_cpu(cpu) {
2792 		struct per_cpu_pageset *pcp;
2793 		struct zone *z;
2794 		bool has_pcps = false;
2795 
2796 		if (zone) {
2797 			pcp = per_cpu_ptr(zone->pageset, cpu);
2798 			if (pcp->pcp.count)
2799 				has_pcps = true;
2800 		} else {
2801 			for_each_populated_zone(z) {
2802 				pcp = per_cpu_ptr(z->pageset, cpu);
2803 				if (pcp->pcp.count) {
2804 					has_pcps = true;
2805 					break;
2806 				}
2807 			}
2808 		}
2809 
2810 		if (has_pcps)
2811 			cpumask_set_cpu(cpu, &cpus_with_pcps);
2812 		else
2813 			cpumask_clear_cpu(cpu, &cpus_with_pcps);
2814 	}
2815 
2816 	for_each_cpu(cpu, &cpus_with_pcps) {
2817 		struct pcpu_drain *drain = per_cpu_ptr(&pcpu_drain, cpu);
2818 
2819 		drain->zone = zone;
2820 		INIT_WORK(&drain->work, drain_local_pages_wq);
2821 		queue_work_on(cpu, mm_percpu_wq, &drain->work);
2822 	}
2823 	for_each_cpu(cpu, &cpus_with_pcps)
2824 		flush_work(&per_cpu_ptr(&pcpu_drain, cpu)->work);
2825 
2826 	mutex_unlock(&pcpu_drain_mutex);
2827 }
2828 
2829 #ifdef CONFIG_HIBERNATION
2830 
2831 /*
2832  * Touch the watchdog for every WD_PAGE_COUNT pages.
2833  */
2834 #define WD_PAGE_COUNT	(128*1024)
2835 
2836 void mark_free_pages(struct zone *zone)
2837 {
2838 	unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT;
2839 	unsigned long flags;
2840 	unsigned int order, t;
2841 	struct page *page;
2842 
2843 	if (zone_is_empty(zone))
2844 		return;
2845 
2846 	spin_lock_irqsave(&zone->lock, flags);
2847 
2848 	max_zone_pfn = zone_end_pfn(zone);
2849 	for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
2850 		if (pfn_valid(pfn)) {
2851 			page = pfn_to_page(pfn);
2852 
2853 			if (!--page_count) {
2854 				touch_nmi_watchdog();
2855 				page_count = WD_PAGE_COUNT;
2856 			}
2857 
2858 			if (page_zone(page) != zone)
2859 				continue;
2860 
2861 			if (!swsusp_page_is_forbidden(page))
2862 				swsusp_unset_page_free(page);
2863 		}
2864 
2865 	for_each_migratetype_order(order, t) {
2866 		list_for_each_entry(page,
2867 				&zone->free_area[order].free_list[t], lru) {
2868 			unsigned long i;
2869 
2870 			pfn = page_to_pfn(page);
2871 			for (i = 0; i < (1UL << order); i++) {
2872 				if (!--page_count) {
2873 					touch_nmi_watchdog();
2874 					page_count = WD_PAGE_COUNT;
2875 				}
2876 				swsusp_set_page_free(pfn_to_page(pfn + i));
2877 			}
2878 		}
2879 	}
2880 	spin_unlock_irqrestore(&zone->lock, flags);
2881 }
2882 #endif /* CONFIG_PM */
2883 
2884 static bool free_unref_page_prepare(struct page *page, unsigned long pfn)
2885 {
2886 	int migratetype;
2887 
2888 	if (!free_pcp_prepare(page))
2889 		return false;
2890 
2891 	migratetype = get_pfnblock_migratetype(page, pfn);
2892 	set_pcppage_migratetype(page, migratetype);
2893 	return true;
2894 }
2895 
2896 static void free_unref_page_commit(struct page *page, unsigned long pfn)
2897 {
2898 	struct zone *zone = page_zone(page);
2899 	struct per_cpu_pages *pcp;
2900 	int migratetype;
2901 
2902 	migratetype = get_pcppage_migratetype(page);
2903 	__count_vm_event(PGFREE);
2904 
2905 	/*
2906 	 * We only track unmovable, reclaimable and movable on pcp lists.
2907 	 * Free ISOLATE pages back to the allocator because they are being
2908 	 * offlined but treat HIGHATOMIC as movable pages so we can get those
2909 	 * areas back if necessary. Otherwise, we may have to free
2910 	 * excessively into the page allocator
2911 	 */
2912 	if (migratetype >= MIGRATE_PCPTYPES) {
2913 		if (unlikely(is_migrate_isolate(migratetype))) {
2914 			free_one_page(zone, page, pfn, 0, migratetype);
2915 			return;
2916 		}
2917 		migratetype = MIGRATE_MOVABLE;
2918 	}
2919 
2920 	pcp = &this_cpu_ptr(zone->pageset)->pcp;
2921 	list_add(&page->lru, &pcp->lists[migratetype]);
2922 	pcp->count++;
2923 	if (pcp->count >= pcp->high) {
2924 		unsigned long batch = READ_ONCE(pcp->batch);
2925 		free_pcppages_bulk(zone, batch, pcp);
2926 	}
2927 }
2928 
2929 /*
2930  * Free a 0-order page
2931  */
2932 void free_unref_page(struct page *page)
2933 {
2934 	unsigned long flags;
2935 	unsigned long pfn = page_to_pfn(page);
2936 
2937 	if (!free_unref_page_prepare(page, pfn))
2938 		return;
2939 
2940 	local_irq_save(flags);
2941 	free_unref_page_commit(page, pfn);
2942 	local_irq_restore(flags);
2943 }
2944 
2945 /*
2946  * Free a list of 0-order pages
2947  */
2948 void free_unref_page_list(struct list_head *list)
2949 {
2950 	struct page *page, *next;
2951 	unsigned long flags, pfn;
2952 	int batch_count = 0;
2953 
2954 	/* Prepare pages for freeing */
2955 	list_for_each_entry_safe(page, next, list, lru) {
2956 		pfn = page_to_pfn(page);
2957 		if (!free_unref_page_prepare(page, pfn))
2958 			list_del(&page->lru);
2959 		set_page_private(page, pfn);
2960 	}
2961 
2962 	local_irq_save(flags);
2963 	list_for_each_entry_safe(page, next, list, lru) {
2964 		unsigned long pfn = page_private(page);
2965 
2966 		set_page_private(page, 0);
2967 		trace_mm_page_free_batched(page);
2968 		free_unref_page_commit(page, pfn);
2969 
2970 		/*
2971 		 * Guard against excessive IRQ disabled times when we get
2972 		 * a large list of pages to free.
2973 		 */
2974 		if (++batch_count == SWAP_CLUSTER_MAX) {
2975 			local_irq_restore(flags);
2976 			batch_count = 0;
2977 			local_irq_save(flags);
2978 		}
2979 	}
2980 	local_irq_restore(flags);
2981 }
2982 
2983 /*
2984  * split_page takes a non-compound higher-order page, and splits it into
2985  * n (1<<order) sub-pages: page[0..n]
2986  * Each sub-page must be freed individually.
2987  *
2988  * Note: this is probably too low level an operation for use in drivers.
2989  * Please consult with lkml before using this in your driver.
2990  */
2991 void split_page(struct page *page, unsigned int order)
2992 {
2993 	int i;
2994 
2995 	VM_BUG_ON_PAGE(PageCompound(page), page);
2996 	VM_BUG_ON_PAGE(!page_count(page), page);
2997 
2998 	for (i = 1; i < (1 << order); i++)
2999 		set_page_refcounted(page + i);
3000 	split_page_owner(page, order);
3001 }
3002 EXPORT_SYMBOL_GPL(split_page);
3003 
3004 int __isolate_free_page(struct page *page, unsigned int order)
3005 {
3006 	unsigned long watermark;
3007 	struct zone *zone;
3008 	int mt;
3009 
3010 	BUG_ON(!PageBuddy(page));
3011 
3012 	zone = page_zone(page);
3013 	mt = get_pageblock_migratetype(page);
3014 
3015 	if (!is_migrate_isolate(mt)) {
3016 		/*
3017 		 * Obey watermarks as if the page was being allocated. We can
3018 		 * emulate a high-order watermark check with a raised order-0
3019 		 * watermark, because we already know our high-order page
3020 		 * exists.
3021 		 */
3022 		watermark = zone->_watermark[WMARK_MIN] + (1UL << order);
3023 		if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
3024 			return 0;
3025 
3026 		__mod_zone_freepage_state(zone, -(1UL << order), mt);
3027 	}
3028 
3029 	/* Remove page from free list */
3030 	list_del(&page->lru);
3031 	zone->free_area[order].nr_free--;
3032 	rmv_page_order(page);
3033 
3034 	/*
3035 	 * Set the pageblock if the isolated page is at least half of a
3036 	 * pageblock
3037 	 */
3038 	if (order >= pageblock_order - 1) {
3039 		struct page *endpage = page + (1 << order) - 1;
3040 		for (; page < endpage; page += pageblock_nr_pages) {
3041 			int mt = get_pageblock_migratetype(page);
3042 			if (!is_migrate_isolate(mt) && !is_migrate_cma(mt)
3043 			    && !is_migrate_highatomic(mt))
3044 				set_pageblock_migratetype(page,
3045 							  MIGRATE_MOVABLE);
3046 		}
3047 	}
3048 
3049 
3050 	return 1UL << order;
3051 }
3052 
3053 /*
3054  * Update NUMA hit/miss statistics
3055  *
3056  * Must be called with interrupts disabled.
3057  */
3058 static inline void zone_statistics(struct zone *preferred_zone, struct zone *z)
3059 {
3060 #ifdef CONFIG_NUMA
3061 	enum numa_stat_item local_stat = NUMA_LOCAL;
3062 
3063 	/* skip numa counters update if numa stats is disabled */
3064 	if (!static_branch_likely(&vm_numa_stat_key))
3065 		return;
3066 
3067 	if (zone_to_nid(z) != numa_node_id())
3068 		local_stat = NUMA_OTHER;
3069 
3070 	if (zone_to_nid(z) == zone_to_nid(preferred_zone))
3071 		__inc_numa_state(z, NUMA_HIT);
3072 	else {
3073 		__inc_numa_state(z, NUMA_MISS);
3074 		__inc_numa_state(preferred_zone, NUMA_FOREIGN);
3075 	}
3076 	__inc_numa_state(z, local_stat);
3077 #endif
3078 }
3079 
3080 /* Remove page from the per-cpu list, caller must protect the list */
3081 static struct page *__rmqueue_pcplist(struct zone *zone, int migratetype,
3082 			unsigned int alloc_flags,
3083 			struct per_cpu_pages *pcp,
3084 			struct list_head *list)
3085 {
3086 	struct page *page;
3087 
3088 	do {
3089 		if (list_empty(list)) {
3090 			pcp->count += rmqueue_bulk(zone, 0,
3091 					pcp->batch, list,
3092 					migratetype, alloc_flags);
3093 			if (unlikely(list_empty(list)))
3094 				return NULL;
3095 		}
3096 
3097 		page = list_first_entry(list, struct page, lru);
3098 		list_del(&page->lru);
3099 		pcp->count--;
3100 	} while (check_new_pcp(page));
3101 
3102 	return page;
3103 }
3104 
3105 /* Lock and remove page from the per-cpu list */
3106 static struct page *rmqueue_pcplist(struct zone *preferred_zone,
3107 			struct zone *zone, unsigned int order,
3108 			gfp_t gfp_flags, int migratetype,
3109 			unsigned int alloc_flags)
3110 {
3111 	struct per_cpu_pages *pcp;
3112 	struct list_head *list;
3113 	struct page *page;
3114 	unsigned long flags;
3115 
3116 	local_irq_save(flags);
3117 	pcp = &this_cpu_ptr(zone->pageset)->pcp;
3118 	list = &pcp->lists[migratetype];
3119 	page = __rmqueue_pcplist(zone,  migratetype, alloc_flags, pcp, list);
3120 	if (page) {
3121 		__count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
3122 		zone_statistics(preferred_zone, zone);
3123 	}
3124 	local_irq_restore(flags);
3125 	return page;
3126 }
3127 
3128 /*
3129  * Allocate a page from the given zone. Use pcplists for order-0 allocations.
3130  */
3131 static inline
3132 struct page *rmqueue(struct zone *preferred_zone,
3133 			struct zone *zone, unsigned int order,
3134 			gfp_t gfp_flags, unsigned int alloc_flags,
3135 			int migratetype)
3136 {
3137 	unsigned long flags;
3138 	struct page *page;
3139 
3140 	if (likely(order == 0)) {
3141 		page = rmqueue_pcplist(preferred_zone, zone, order,
3142 				gfp_flags, migratetype, alloc_flags);
3143 		goto out;
3144 	}
3145 
3146 	/*
3147 	 * We most definitely don't want callers attempting to
3148 	 * allocate greater than order-1 page units with __GFP_NOFAIL.
3149 	 */
3150 	WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
3151 	spin_lock_irqsave(&zone->lock, flags);
3152 
3153 	do {
3154 		page = NULL;
3155 		if (alloc_flags & ALLOC_HARDER) {
3156 			page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
3157 			if (page)
3158 				trace_mm_page_alloc_zone_locked(page, order, migratetype);
3159 		}
3160 		if (!page)
3161 			page = __rmqueue(zone, order, migratetype, alloc_flags);
3162 	} while (page && check_new_pages(page, order));
3163 	spin_unlock(&zone->lock);
3164 	if (!page)
3165 		goto failed;
3166 	__mod_zone_freepage_state(zone, -(1 << order),
3167 				  get_pcppage_migratetype(page));
3168 
3169 	__count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
3170 	zone_statistics(preferred_zone, zone);
3171 	local_irq_restore(flags);
3172 
3173 out:
3174 	/* Separate test+clear to avoid unnecessary atomics */
3175 	if (test_bit(ZONE_BOOSTED_WATERMARK, &zone->flags)) {
3176 		clear_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
3177 		wakeup_kswapd(zone, 0, 0, zone_idx(zone));
3178 	}
3179 
3180 	VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
3181 	return page;
3182 
3183 failed:
3184 	local_irq_restore(flags);
3185 	return NULL;
3186 }
3187 
3188 #ifdef CONFIG_FAIL_PAGE_ALLOC
3189 
3190 static struct {
3191 	struct fault_attr attr;
3192 
3193 	bool ignore_gfp_highmem;
3194 	bool ignore_gfp_reclaim;
3195 	u32 min_order;
3196 } fail_page_alloc = {
3197 	.attr = FAULT_ATTR_INITIALIZER,
3198 	.ignore_gfp_reclaim = true,
3199 	.ignore_gfp_highmem = true,
3200 	.min_order = 1,
3201 };
3202 
3203 static int __init setup_fail_page_alloc(char *str)
3204 {
3205 	return setup_fault_attr(&fail_page_alloc.attr, str);
3206 }
3207 __setup("fail_page_alloc=", setup_fail_page_alloc);
3208 
3209 static bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3210 {
3211 	if (order < fail_page_alloc.min_order)
3212 		return false;
3213 	if (gfp_mask & __GFP_NOFAIL)
3214 		return false;
3215 	if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
3216 		return false;
3217 	if (fail_page_alloc.ignore_gfp_reclaim &&
3218 			(gfp_mask & __GFP_DIRECT_RECLAIM))
3219 		return false;
3220 
3221 	return should_fail(&fail_page_alloc.attr, 1 << order);
3222 }
3223 
3224 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
3225 
3226 static int __init fail_page_alloc_debugfs(void)
3227 {
3228 	umode_t mode = S_IFREG | 0600;
3229 	struct dentry *dir;
3230 
3231 	dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
3232 					&fail_page_alloc.attr);
3233 
3234 	debugfs_create_bool("ignore-gfp-wait", mode, dir,
3235 			    &fail_page_alloc.ignore_gfp_reclaim);
3236 	debugfs_create_bool("ignore-gfp-highmem", mode, dir,
3237 			    &fail_page_alloc.ignore_gfp_highmem);
3238 	debugfs_create_u32("min-order", mode, dir, &fail_page_alloc.min_order);
3239 
3240 	return 0;
3241 }
3242 
3243 late_initcall(fail_page_alloc_debugfs);
3244 
3245 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
3246 
3247 #else /* CONFIG_FAIL_PAGE_ALLOC */
3248 
3249 static inline bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3250 {
3251 	return false;
3252 }
3253 
3254 #endif /* CONFIG_FAIL_PAGE_ALLOC */
3255 
3256 static noinline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3257 {
3258 	return __should_fail_alloc_page(gfp_mask, order);
3259 }
3260 ALLOW_ERROR_INJECTION(should_fail_alloc_page, TRUE);
3261 
3262 /*
3263  * Return true if free base pages are above 'mark'. For high-order checks it
3264  * will return true of the order-0 watermark is reached and there is at least
3265  * one free page of a suitable size. Checking now avoids taking the zone lock
3266  * to check in the allocation paths if no pages are free.
3267  */
3268 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3269 			 int classzone_idx, unsigned int alloc_flags,
3270 			 long free_pages)
3271 {
3272 	long min = mark;
3273 	int o;
3274 	const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
3275 
3276 	/* free_pages may go negative - that's OK */
3277 	free_pages -= (1 << order) - 1;
3278 
3279 	if (alloc_flags & ALLOC_HIGH)
3280 		min -= min / 2;
3281 
3282 	/*
3283 	 * If the caller does not have rights to ALLOC_HARDER then subtract
3284 	 * the high-atomic reserves. This will over-estimate the size of the
3285 	 * atomic reserve but it avoids a search.
3286 	 */
3287 	if (likely(!alloc_harder)) {
3288 		free_pages -= z->nr_reserved_highatomic;
3289 	} else {
3290 		/*
3291 		 * OOM victims can try even harder than normal ALLOC_HARDER
3292 		 * users on the grounds that it's definitely going to be in
3293 		 * the exit path shortly and free memory. Any allocation it
3294 		 * makes during the free path will be small and short-lived.
3295 		 */
3296 		if (alloc_flags & ALLOC_OOM)
3297 			min -= min / 2;
3298 		else
3299 			min -= min / 4;
3300 	}
3301 
3302 
3303 #ifdef CONFIG_CMA
3304 	/* If allocation can't use CMA areas don't use free CMA pages */
3305 	if (!(alloc_flags & ALLOC_CMA))
3306 		free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES);
3307 #endif
3308 
3309 	/*
3310 	 * Check watermarks for an order-0 allocation request. If these
3311 	 * are not met, then a high-order request also cannot go ahead
3312 	 * even if a suitable page happened to be free.
3313 	 */
3314 	if (free_pages <= min + z->lowmem_reserve[classzone_idx])
3315 		return false;
3316 
3317 	/* If this is an order-0 request then the watermark is fine */
3318 	if (!order)
3319 		return true;
3320 
3321 	/* For a high-order request, check at least one suitable page is free */
3322 	for (o = order; o < MAX_ORDER; o++) {
3323 		struct free_area *area = &z->free_area[o];
3324 		int mt;
3325 
3326 		if (!area->nr_free)
3327 			continue;
3328 
3329 		for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
3330 			if (!list_empty(&area->free_list[mt]))
3331 				return true;
3332 		}
3333 
3334 #ifdef CONFIG_CMA
3335 		if ((alloc_flags & ALLOC_CMA) &&
3336 		    !list_empty(&area->free_list[MIGRATE_CMA])) {
3337 			return true;
3338 		}
3339 #endif
3340 		if (alloc_harder &&
3341 			!list_empty(&area->free_list[MIGRATE_HIGHATOMIC]))
3342 			return true;
3343 	}
3344 	return false;
3345 }
3346 
3347 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3348 		      int classzone_idx, unsigned int alloc_flags)
3349 {
3350 	return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
3351 					zone_page_state(z, NR_FREE_PAGES));
3352 }
3353 
3354 static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
3355 		unsigned long mark, int classzone_idx, unsigned int alloc_flags)
3356 {
3357 	long free_pages = zone_page_state(z, NR_FREE_PAGES);
3358 	long cma_pages = 0;
3359 
3360 #ifdef CONFIG_CMA
3361 	/* If allocation can't use CMA areas don't use free CMA pages */
3362 	if (!(alloc_flags & ALLOC_CMA))
3363 		cma_pages = zone_page_state(z, NR_FREE_CMA_PAGES);
3364 #endif
3365 
3366 	/*
3367 	 * Fast check for order-0 only. If this fails then the reserves
3368 	 * need to be calculated. There is a corner case where the check
3369 	 * passes but only the high-order atomic reserve are free. If
3370 	 * the caller is !atomic then it'll uselessly search the free
3371 	 * list. That corner case is then slower but it is harmless.
3372 	 */
3373 	if (!order && (free_pages - cma_pages) > mark + z->lowmem_reserve[classzone_idx])
3374 		return true;
3375 
3376 	return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
3377 					free_pages);
3378 }
3379 
3380 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
3381 			unsigned long mark, int classzone_idx)
3382 {
3383 	long free_pages = zone_page_state(z, NR_FREE_PAGES);
3384 
3385 	if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
3386 		free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
3387 
3388 	return __zone_watermark_ok(z, order, mark, classzone_idx, 0,
3389 								free_pages);
3390 }
3391 
3392 #ifdef CONFIG_NUMA
3393 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3394 {
3395 	return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
3396 				RECLAIM_DISTANCE;
3397 }
3398 #else	/* CONFIG_NUMA */
3399 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3400 {
3401 	return true;
3402 }
3403 #endif	/* CONFIG_NUMA */
3404 
3405 /*
3406  * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid
3407  * fragmentation is subtle. If the preferred zone was HIGHMEM then
3408  * premature use of a lower zone may cause lowmem pressure problems that
3409  * are worse than fragmentation. If the next zone is ZONE_DMA then it is
3410  * probably too small. It only makes sense to spread allocations to avoid
3411  * fragmentation between the Normal and DMA32 zones.
3412  */
3413 static inline unsigned int
3414 alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask)
3415 {
3416 	unsigned int alloc_flags = 0;
3417 
3418 	if (gfp_mask & __GFP_KSWAPD_RECLAIM)
3419 		alloc_flags |= ALLOC_KSWAPD;
3420 
3421 #ifdef CONFIG_ZONE_DMA32
3422 	if (zone_idx(zone) != ZONE_NORMAL)
3423 		goto out;
3424 
3425 	/*
3426 	 * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and
3427 	 * the pointer is within zone->zone_pgdat->node_zones[]. Also assume
3428 	 * on UMA that if Normal is populated then so is DMA32.
3429 	 */
3430 	BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1);
3431 	if (nr_online_nodes > 1 && !populated_zone(--zone))
3432 		goto out;
3433 
3434 out:
3435 #endif /* CONFIG_ZONE_DMA32 */
3436 	return alloc_flags;
3437 }
3438 
3439 /*
3440  * get_page_from_freelist goes through the zonelist trying to allocate
3441  * a page.
3442  */
3443 static struct page *
3444 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
3445 						const struct alloc_context *ac)
3446 {
3447 	struct zoneref *z;
3448 	struct zone *zone;
3449 	struct pglist_data *last_pgdat_dirty_limit = NULL;
3450 	bool no_fallback;
3451 
3452 retry:
3453 	/*
3454 	 * Scan zonelist, looking for a zone with enough free.
3455 	 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
3456 	 */
3457 	no_fallback = alloc_flags & ALLOC_NOFRAGMENT;
3458 	z = ac->preferred_zoneref;
3459 	for_next_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3460 								ac->nodemask) {
3461 		struct page *page;
3462 		unsigned long mark;
3463 
3464 		if (cpusets_enabled() &&
3465 			(alloc_flags & ALLOC_CPUSET) &&
3466 			!__cpuset_zone_allowed(zone, gfp_mask))
3467 				continue;
3468 		/*
3469 		 * When allocating a page cache page for writing, we
3470 		 * want to get it from a node that is within its dirty
3471 		 * limit, such that no single node holds more than its
3472 		 * proportional share of globally allowed dirty pages.
3473 		 * The dirty limits take into account the node's
3474 		 * lowmem reserves and high watermark so that kswapd
3475 		 * should be able to balance it without having to
3476 		 * write pages from its LRU list.
3477 		 *
3478 		 * XXX: For now, allow allocations to potentially
3479 		 * exceed the per-node dirty limit in the slowpath
3480 		 * (spread_dirty_pages unset) before going into reclaim,
3481 		 * which is important when on a NUMA setup the allowed
3482 		 * nodes are together not big enough to reach the
3483 		 * global limit.  The proper fix for these situations
3484 		 * will require awareness of nodes in the
3485 		 * dirty-throttling and the flusher threads.
3486 		 */
3487 		if (ac->spread_dirty_pages) {
3488 			if (last_pgdat_dirty_limit == zone->zone_pgdat)
3489 				continue;
3490 
3491 			if (!node_dirty_ok(zone->zone_pgdat)) {
3492 				last_pgdat_dirty_limit = zone->zone_pgdat;
3493 				continue;
3494 			}
3495 		}
3496 
3497 		if (no_fallback && nr_online_nodes > 1 &&
3498 		    zone != ac->preferred_zoneref->zone) {
3499 			int local_nid;
3500 
3501 			/*
3502 			 * If moving to a remote node, retry but allow
3503 			 * fragmenting fallbacks. Locality is more important
3504 			 * than fragmentation avoidance.
3505 			 */
3506 			local_nid = zone_to_nid(ac->preferred_zoneref->zone);
3507 			if (zone_to_nid(zone) != local_nid) {
3508 				alloc_flags &= ~ALLOC_NOFRAGMENT;
3509 				goto retry;
3510 			}
3511 		}
3512 
3513 		mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
3514 		if (!zone_watermark_fast(zone, order, mark,
3515 				       ac_classzone_idx(ac), alloc_flags)) {
3516 			int ret;
3517 
3518 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3519 			/*
3520 			 * Watermark failed for this zone, but see if we can
3521 			 * grow this zone if it contains deferred pages.
3522 			 */
3523 			if (static_branch_unlikely(&deferred_pages)) {
3524 				if (_deferred_grow_zone(zone, order))
3525 					goto try_this_zone;
3526 			}
3527 #endif
3528 			/* Checked here to keep the fast path fast */
3529 			BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
3530 			if (alloc_flags & ALLOC_NO_WATERMARKS)
3531 				goto try_this_zone;
3532 
3533 			if (node_reclaim_mode == 0 ||
3534 			    !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
3535 				continue;
3536 
3537 			ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
3538 			switch (ret) {
3539 			case NODE_RECLAIM_NOSCAN:
3540 				/* did not scan */
3541 				continue;
3542 			case NODE_RECLAIM_FULL:
3543 				/* scanned but unreclaimable */
3544 				continue;
3545 			default:
3546 				/* did we reclaim enough */
3547 				if (zone_watermark_ok(zone, order, mark,
3548 						ac_classzone_idx(ac), alloc_flags))
3549 					goto try_this_zone;
3550 
3551 				continue;
3552 			}
3553 		}
3554 
3555 try_this_zone:
3556 		page = rmqueue(ac->preferred_zoneref->zone, zone, order,
3557 				gfp_mask, alloc_flags, ac->migratetype);
3558 		if (page) {
3559 			prep_new_page(page, order, gfp_mask, alloc_flags);
3560 
3561 			/*
3562 			 * If this is a high-order atomic allocation then check
3563 			 * if the pageblock should be reserved for the future
3564 			 */
3565 			if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
3566 				reserve_highatomic_pageblock(page, zone, order);
3567 
3568 			return page;
3569 		} else {
3570 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3571 			/* Try again if zone has deferred pages */
3572 			if (static_branch_unlikely(&deferred_pages)) {
3573 				if (_deferred_grow_zone(zone, order))
3574 					goto try_this_zone;
3575 			}
3576 #endif
3577 		}
3578 	}
3579 
3580 	/*
3581 	 * It's possible on a UMA machine to get through all zones that are
3582 	 * fragmented. If avoiding fragmentation, reset and try again.
3583 	 */
3584 	if (no_fallback) {
3585 		alloc_flags &= ~ALLOC_NOFRAGMENT;
3586 		goto retry;
3587 	}
3588 
3589 	return NULL;
3590 }
3591 
3592 static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
3593 {
3594 	unsigned int filter = SHOW_MEM_FILTER_NODES;
3595 	static DEFINE_RATELIMIT_STATE(show_mem_rs, HZ, 1);
3596 
3597 	if (!__ratelimit(&show_mem_rs))
3598 		return;
3599 
3600 	/*
3601 	 * This documents exceptions given to allocations in certain
3602 	 * contexts that are allowed to allocate outside current's set
3603 	 * of allowed nodes.
3604 	 */
3605 	if (!(gfp_mask & __GFP_NOMEMALLOC))
3606 		if (tsk_is_oom_victim(current) ||
3607 		    (current->flags & (PF_MEMALLOC | PF_EXITING)))
3608 			filter &= ~SHOW_MEM_FILTER_NODES;
3609 	if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
3610 		filter &= ~SHOW_MEM_FILTER_NODES;
3611 
3612 	show_mem(filter, nodemask);
3613 }
3614 
3615 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
3616 {
3617 	struct va_format vaf;
3618 	va_list args;
3619 	static DEFINE_RATELIMIT_STATE(nopage_rs, DEFAULT_RATELIMIT_INTERVAL,
3620 				      DEFAULT_RATELIMIT_BURST);
3621 
3622 	if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs))
3623 		return;
3624 
3625 	va_start(args, fmt);
3626 	vaf.fmt = fmt;
3627 	vaf.va = &args;
3628 	pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl",
3629 			current->comm, &vaf, gfp_mask, &gfp_mask,
3630 			nodemask_pr_args(nodemask));
3631 	va_end(args);
3632 
3633 	cpuset_print_current_mems_allowed();
3634 	pr_cont("\n");
3635 	dump_stack();
3636 	warn_alloc_show_mem(gfp_mask, nodemask);
3637 }
3638 
3639 static inline struct page *
3640 __alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
3641 			      unsigned int alloc_flags,
3642 			      const struct alloc_context *ac)
3643 {
3644 	struct page *page;
3645 
3646 	page = get_page_from_freelist(gfp_mask, order,
3647 			alloc_flags|ALLOC_CPUSET, ac);
3648 	/*
3649 	 * fallback to ignore cpuset restriction if our nodes
3650 	 * are depleted
3651 	 */
3652 	if (!page)
3653 		page = get_page_from_freelist(gfp_mask, order,
3654 				alloc_flags, ac);
3655 
3656 	return page;
3657 }
3658 
3659 static inline struct page *
3660 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
3661 	const struct alloc_context *ac, unsigned long *did_some_progress)
3662 {
3663 	struct oom_control oc = {
3664 		.zonelist = ac->zonelist,
3665 		.nodemask = ac->nodemask,
3666 		.memcg = NULL,
3667 		.gfp_mask = gfp_mask,
3668 		.order = order,
3669 	};
3670 	struct page *page;
3671 
3672 	*did_some_progress = 0;
3673 
3674 	/*
3675 	 * Acquire the oom lock.  If that fails, somebody else is
3676 	 * making progress for us.
3677 	 */
3678 	if (!mutex_trylock(&oom_lock)) {
3679 		*did_some_progress = 1;
3680 		schedule_timeout_uninterruptible(1);
3681 		return NULL;
3682 	}
3683 
3684 	/*
3685 	 * Go through the zonelist yet one more time, keep very high watermark
3686 	 * here, this is only to catch a parallel oom killing, we must fail if
3687 	 * we're still under heavy pressure. But make sure that this reclaim
3688 	 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
3689 	 * allocation which will never fail due to oom_lock already held.
3690 	 */
3691 	page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) &
3692 				      ~__GFP_DIRECT_RECLAIM, order,
3693 				      ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
3694 	if (page)
3695 		goto out;
3696 
3697 	/* Coredumps can quickly deplete all memory reserves */
3698 	if (current->flags & PF_DUMPCORE)
3699 		goto out;
3700 	/* The OOM killer will not help higher order allocs */
3701 	if (order > PAGE_ALLOC_COSTLY_ORDER)
3702 		goto out;
3703 	/*
3704 	 * We have already exhausted all our reclaim opportunities without any
3705 	 * success so it is time to admit defeat. We will skip the OOM killer
3706 	 * because it is very likely that the caller has a more reasonable
3707 	 * fallback than shooting a random task.
3708 	 */
3709 	if (gfp_mask & __GFP_RETRY_MAYFAIL)
3710 		goto out;
3711 	/* The OOM killer does not needlessly kill tasks for lowmem */
3712 	if (ac->high_zoneidx < ZONE_NORMAL)
3713 		goto out;
3714 	if (pm_suspended_storage())
3715 		goto out;
3716 	/*
3717 	 * XXX: GFP_NOFS allocations should rather fail than rely on
3718 	 * other request to make a forward progress.
3719 	 * We are in an unfortunate situation where out_of_memory cannot
3720 	 * do much for this context but let's try it to at least get
3721 	 * access to memory reserved if the current task is killed (see
3722 	 * out_of_memory). Once filesystems are ready to handle allocation
3723 	 * failures more gracefully we should just bail out here.
3724 	 */
3725 
3726 	/* The OOM killer may not free memory on a specific node */
3727 	if (gfp_mask & __GFP_THISNODE)
3728 		goto out;
3729 
3730 	/* Exhausted what can be done so it's blame time */
3731 	if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
3732 		*did_some_progress = 1;
3733 
3734 		/*
3735 		 * Help non-failing allocations by giving them access to memory
3736 		 * reserves
3737 		 */
3738 		if (gfp_mask & __GFP_NOFAIL)
3739 			page = __alloc_pages_cpuset_fallback(gfp_mask, order,
3740 					ALLOC_NO_WATERMARKS, ac);
3741 	}
3742 out:
3743 	mutex_unlock(&oom_lock);
3744 	return page;
3745 }
3746 
3747 /*
3748  * Maximum number of compaction retries wit a progress before OOM
3749  * killer is consider as the only way to move forward.
3750  */
3751 #define MAX_COMPACT_RETRIES 16
3752 
3753 #ifdef CONFIG_COMPACTION
3754 /* Try memory compaction for high-order allocations before reclaim */
3755 static struct page *
3756 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3757 		unsigned int alloc_flags, const struct alloc_context *ac,
3758 		enum compact_priority prio, enum compact_result *compact_result)
3759 {
3760 	struct page *page = NULL;
3761 	unsigned long pflags;
3762 	unsigned int noreclaim_flag;
3763 
3764 	if (!order)
3765 		return NULL;
3766 
3767 	psi_memstall_enter(&pflags);
3768 	noreclaim_flag = memalloc_noreclaim_save();
3769 
3770 	*compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
3771 								prio, &page);
3772 
3773 	memalloc_noreclaim_restore(noreclaim_flag);
3774 	psi_memstall_leave(&pflags);
3775 
3776 	if (*compact_result <= COMPACT_INACTIVE) {
3777 		WARN_ON_ONCE(page);
3778 		return NULL;
3779 	}
3780 
3781 	/*
3782 	 * At least in one zone compaction wasn't deferred or skipped, so let's
3783 	 * count a compaction stall
3784 	 */
3785 	count_vm_event(COMPACTSTALL);
3786 
3787 	/* Prep a captured page if available */
3788 	if (page)
3789 		prep_new_page(page, order, gfp_mask, alloc_flags);
3790 
3791 	/* Try get a page from the freelist if available */
3792 	if (!page)
3793 		page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3794 
3795 	if (page) {
3796 		struct zone *zone = page_zone(page);
3797 
3798 		zone->compact_blockskip_flush = false;
3799 		compaction_defer_reset(zone, order, true);
3800 		count_vm_event(COMPACTSUCCESS);
3801 		return page;
3802 	}
3803 
3804 	/*
3805 	 * It's bad if compaction run occurs and fails. The most likely reason
3806 	 * is that pages exist, but not enough to satisfy watermarks.
3807 	 */
3808 	count_vm_event(COMPACTFAIL);
3809 
3810 	cond_resched();
3811 
3812 	return NULL;
3813 }
3814 
3815 static inline bool
3816 should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
3817 		     enum compact_result compact_result,
3818 		     enum compact_priority *compact_priority,
3819 		     int *compaction_retries)
3820 {
3821 	int max_retries = MAX_COMPACT_RETRIES;
3822 	int min_priority;
3823 	bool ret = false;
3824 	int retries = *compaction_retries;
3825 	enum compact_priority priority = *compact_priority;
3826 
3827 	if (!order)
3828 		return false;
3829 
3830 	if (compaction_made_progress(compact_result))
3831 		(*compaction_retries)++;
3832 
3833 	/*
3834 	 * compaction considers all the zone as desperately out of memory
3835 	 * so it doesn't really make much sense to retry except when the
3836 	 * failure could be caused by insufficient priority
3837 	 */
3838 	if (compaction_failed(compact_result))
3839 		goto check_priority;
3840 
3841 	/*
3842 	 * make sure the compaction wasn't deferred or didn't bail out early
3843 	 * due to locks contention before we declare that we should give up.
3844 	 * But do not retry if the given zonelist is not suitable for
3845 	 * compaction.
3846 	 */
3847 	if (compaction_withdrawn(compact_result)) {
3848 		ret = compaction_zonelist_suitable(ac, order, alloc_flags);
3849 		goto out;
3850 	}
3851 
3852 	/*
3853 	 * !costly requests are much more important than __GFP_RETRY_MAYFAIL
3854 	 * costly ones because they are de facto nofail and invoke OOM
3855 	 * killer to move on while costly can fail and users are ready
3856 	 * to cope with that. 1/4 retries is rather arbitrary but we
3857 	 * would need much more detailed feedback from compaction to
3858 	 * make a better decision.
3859 	 */
3860 	if (order > PAGE_ALLOC_COSTLY_ORDER)
3861 		max_retries /= 4;
3862 	if (*compaction_retries <= max_retries) {
3863 		ret = true;
3864 		goto out;
3865 	}
3866 
3867 	/*
3868 	 * Make sure there are attempts at the highest priority if we exhausted
3869 	 * all retries or failed at the lower priorities.
3870 	 */
3871 check_priority:
3872 	min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
3873 			MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
3874 
3875 	if (*compact_priority > min_priority) {
3876 		(*compact_priority)--;
3877 		*compaction_retries = 0;
3878 		ret = true;
3879 	}
3880 out:
3881 	trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
3882 	return ret;
3883 }
3884 #else
3885 static inline struct page *
3886 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3887 		unsigned int alloc_flags, const struct alloc_context *ac,
3888 		enum compact_priority prio, enum compact_result *compact_result)
3889 {
3890 	*compact_result = COMPACT_SKIPPED;
3891 	return NULL;
3892 }
3893 
3894 static inline bool
3895 should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
3896 		     enum compact_result compact_result,
3897 		     enum compact_priority *compact_priority,
3898 		     int *compaction_retries)
3899 {
3900 	struct zone *zone;
3901 	struct zoneref *z;
3902 
3903 	if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
3904 		return false;
3905 
3906 	/*
3907 	 * There are setups with compaction disabled which would prefer to loop
3908 	 * inside the allocator rather than hit the oom killer prematurely.
3909 	 * Let's give them a good hope and keep retrying while the order-0
3910 	 * watermarks are OK.
3911 	 */
3912 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3913 					ac->nodemask) {
3914 		if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
3915 					ac_classzone_idx(ac), alloc_flags))
3916 			return true;
3917 	}
3918 	return false;
3919 }
3920 #endif /* CONFIG_COMPACTION */
3921 
3922 #ifdef CONFIG_LOCKDEP
3923 static struct lockdep_map __fs_reclaim_map =
3924 	STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map);
3925 
3926 static bool __need_fs_reclaim(gfp_t gfp_mask)
3927 {
3928 	gfp_mask = current_gfp_context(gfp_mask);
3929 
3930 	/* no reclaim without waiting on it */
3931 	if (!(gfp_mask & __GFP_DIRECT_RECLAIM))
3932 		return false;
3933 
3934 	/* this guy won't enter reclaim */
3935 	if (current->flags & PF_MEMALLOC)
3936 		return false;
3937 
3938 	/* We're only interested __GFP_FS allocations for now */
3939 	if (!(gfp_mask & __GFP_FS))
3940 		return false;
3941 
3942 	if (gfp_mask & __GFP_NOLOCKDEP)
3943 		return false;
3944 
3945 	return true;
3946 }
3947 
3948 void __fs_reclaim_acquire(void)
3949 {
3950 	lock_map_acquire(&__fs_reclaim_map);
3951 }
3952 
3953 void __fs_reclaim_release(void)
3954 {
3955 	lock_map_release(&__fs_reclaim_map);
3956 }
3957 
3958 void fs_reclaim_acquire(gfp_t gfp_mask)
3959 {
3960 	if (__need_fs_reclaim(gfp_mask))
3961 		__fs_reclaim_acquire();
3962 }
3963 EXPORT_SYMBOL_GPL(fs_reclaim_acquire);
3964 
3965 void fs_reclaim_release(gfp_t gfp_mask)
3966 {
3967 	if (__need_fs_reclaim(gfp_mask))
3968 		__fs_reclaim_release();
3969 }
3970 EXPORT_SYMBOL_GPL(fs_reclaim_release);
3971 #endif
3972 
3973 /* Perform direct synchronous page reclaim */
3974 static int
3975 __perform_reclaim(gfp_t gfp_mask, unsigned int order,
3976 					const struct alloc_context *ac)
3977 {
3978 	struct reclaim_state reclaim_state;
3979 	int progress;
3980 	unsigned int noreclaim_flag;
3981 	unsigned long pflags;
3982 
3983 	cond_resched();
3984 
3985 	/* We now go into synchronous reclaim */
3986 	cpuset_memory_pressure_bump();
3987 	psi_memstall_enter(&pflags);
3988 	fs_reclaim_acquire(gfp_mask);
3989 	noreclaim_flag = memalloc_noreclaim_save();
3990 	reclaim_state.reclaimed_slab = 0;
3991 	current->reclaim_state = &reclaim_state;
3992 
3993 	progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
3994 								ac->nodemask);
3995 
3996 	current->reclaim_state = NULL;
3997 	memalloc_noreclaim_restore(noreclaim_flag);
3998 	fs_reclaim_release(gfp_mask);
3999 	psi_memstall_leave(&pflags);
4000 
4001 	cond_resched();
4002 
4003 	return progress;
4004 }
4005 
4006 /* The really slow allocator path where we enter direct reclaim */
4007 static inline struct page *
4008 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
4009 		unsigned int alloc_flags, const struct alloc_context *ac,
4010 		unsigned long *did_some_progress)
4011 {
4012 	struct page *page = NULL;
4013 	bool drained = false;
4014 
4015 	*did_some_progress = __perform_reclaim(gfp_mask, order, ac);
4016 	if (unlikely(!(*did_some_progress)))
4017 		return NULL;
4018 
4019 retry:
4020 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4021 
4022 	/*
4023 	 * If an allocation failed after direct reclaim, it could be because
4024 	 * pages are pinned on the per-cpu lists or in high alloc reserves.
4025 	 * Shrink them them and try again
4026 	 */
4027 	if (!page && !drained) {
4028 		unreserve_highatomic_pageblock(ac, false);
4029 		drain_all_pages(NULL);
4030 		drained = true;
4031 		goto retry;
4032 	}
4033 
4034 	return page;
4035 }
4036 
4037 static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask,
4038 			     const struct alloc_context *ac)
4039 {
4040 	struct zoneref *z;
4041 	struct zone *zone;
4042 	pg_data_t *last_pgdat = NULL;
4043 	enum zone_type high_zoneidx = ac->high_zoneidx;
4044 
4045 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, high_zoneidx,
4046 					ac->nodemask) {
4047 		if (last_pgdat != zone->zone_pgdat)
4048 			wakeup_kswapd(zone, gfp_mask, order, high_zoneidx);
4049 		last_pgdat = zone->zone_pgdat;
4050 	}
4051 }
4052 
4053 static inline unsigned int
4054 gfp_to_alloc_flags(gfp_t gfp_mask)
4055 {
4056 	unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
4057 
4058 	/* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
4059 	BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
4060 
4061 	/*
4062 	 * The caller may dip into page reserves a bit more if the caller
4063 	 * cannot run direct reclaim, or if the caller has realtime scheduling
4064 	 * policy or is asking for __GFP_HIGH memory.  GFP_ATOMIC requests will
4065 	 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
4066 	 */
4067 	alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
4068 
4069 	if (gfp_mask & __GFP_ATOMIC) {
4070 		/*
4071 		 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
4072 		 * if it can't schedule.
4073 		 */
4074 		if (!(gfp_mask & __GFP_NOMEMALLOC))
4075 			alloc_flags |= ALLOC_HARDER;
4076 		/*
4077 		 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
4078 		 * comment for __cpuset_node_allowed().
4079 		 */
4080 		alloc_flags &= ~ALLOC_CPUSET;
4081 	} else if (unlikely(rt_task(current)) && !in_interrupt())
4082 		alloc_flags |= ALLOC_HARDER;
4083 
4084 	if (gfp_mask & __GFP_KSWAPD_RECLAIM)
4085 		alloc_flags |= ALLOC_KSWAPD;
4086 
4087 #ifdef CONFIG_CMA
4088 	if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
4089 		alloc_flags |= ALLOC_CMA;
4090 #endif
4091 	return alloc_flags;
4092 }
4093 
4094 static bool oom_reserves_allowed(struct task_struct *tsk)
4095 {
4096 	if (!tsk_is_oom_victim(tsk))
4097 		return false;
4098 
4099 	/*
4100 	 * !MMU doesn't have oom reaper so give access to memory reserves
4101 	 * only to the thread with TIF_MEMDIE set
4102 	 */
4103 	if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE))
4104 		return false;
4105 
4106 	return true;
4107 }
4108 
4109 /*
4110  * Distinguish requests which really need access to full memory
4111  * reserves from oom victims which can live with a portion of it
4112  */
4113 static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask)
4114 {
4115 	if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
4116 		return 0;
4117 	if (gfp_mask & __GFP_MEMALLOC)
4118 		return ALLOC_NO_WATERMARKS;
4119 	if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
4120 		return ALLOC_NO_WATERMARKS;
4121 	if (!in_interrupt()) {
4122 		if (current->flags & PF_MEMALLOC)
4123 			return ALLOC_NO_WATERMARKS;
4124 		else if (oom_reserves_allowed(current))
4125 			return ALLOC_OOM;
4126 	}
4127 
4128 	return 0;
4129 }
4130 
4131 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
4132 {
4133 	return !!__gfp_pfmemalloc_flags(gfp_mask);
4134 }
4135 
4136 /*
4137  * Checks whether it makes sense to retry the reclaim to make a forward progress
4138  * for the given allocation request.
4139  *
4140  * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
4141  * without success, or when we couldn't even meet the watermark if we
4142  * reclaimed all remaining pages on the LRU lists.
4143  *
4144  * Returns true if a retry is viable or false to enter the oom path.
4145  */
4146 static inline bool
4147 should_reclaim_retry(gfp_t gfp_mask, unsigned order,
4148 		     struct alloc_context *ac, int alloc_flags,
4149 		     bool did_some_progress, int *no_progress_loops)
4150 {
4151 	struct zone *zone;
4152 	struct zoneref *z;
4153 	bool ret = false;
4154 
4155 	/*
4156 	 * Costly allocations might have made a progress but this doesn't mean
4157 	 * their order will become available due to high fragmentation so
4158 	 * always increment the no progress counter for them
4159 	 */
4160 	if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
4161 		*no_progress_loops = 0;
4162 	else
4163 		(*no_progress_loops)++;
4164 
4165 	/*
4166 	 * Make sure we converge to OOM if we cannot make any progress
4167 	 * several times in the row.
4168 	 */
4169 	if (*no_progress_loops > MAX_RECLAIM_RETRIES) {
4170 		/* Before OOM, exhaust highatomic_reserve */
4171 		return unreserve_highatomic_pageblock(ac, true);
4172 	}
4173 
4174 	/*
4175 	 * Keep reclaiming pages while there is a chance this will lead
4176 	 * somewhere.  If none of the target zones can satisfy our allocation
4177 	 * request even if all reclaimable pages are considered then we are
4178 	 * screwed and have to go OOM.
4179 	 */
4180 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
4181 					ac->nodemask) {
4182 		unsigned long available;
4183 		unsigned long reclaimable;
4184 		unsigned long min_wmark = min_wmark_pages(zone);
4185 		bool wmark;
4186 
4187 		available = reclaimable = zone_reclaimable_pages(zone);
4188 		available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
4189 
4190 		/*
4191 		 * Would the allocation succeed if we reclaimed all
4192 		 * reclaimable pages?
4193 		 */
4194 		wmark = __zone_watermark_ok(zone, order, min_wmark,
4195 				ac_classzone_idx(ac), alloc_flags, available);
4196 		trace_reclaim_retry_zone(z, order, reclaimable,
4197 				available, min_wmark, *no_progress_loops, wmark);
4198 		if (wmark) {
4199 			/*
4200 			 * If we didn't make any progress and have a lot of
4201 			 * dirty + writeback pages then we should wait for
4202 			 * an IO to complete to slow down the reclaim and
4203 			 * prevent from pre mature OOM
4204 			 */
4205 			if (!did_some_progress) {
4206 				unsigned long write_pending;
4207 
4208 				write_pending = zone_page_state_snapshot(zone,
4209 							NR_ZONE_WRITE_PENDING);
4210 
4211 				if (2 * write_pending > reclaimable) {
4212 					congestion_wait(BLK_RW_ASYNC, HZ/10);
4213 					return true;
4214 				}
4215 			}
4216 
4217 			ret = true;
4218 			goto out;
4219 		}
4220 	}
4221 
4222 out:
4223 	/*
4224 	 * Memory allocation/reclaim might be called from a WQ context and the
4225 	 * current implementation of the WQ concurrency control doesn't
4226 	 * recognize that a particular WQ is congested if the worker thread is
4227 	 * looping without ever sleeping. Therefore we have to do a short sleep
4228 	 * here rather than calling cond_resched().
4229 	 */
4230 	if (current->flags & PF_WQ_WORKER)
4231 		schedule_timeout_uninterruptible(1);
4232 	else
4233 		cond_resched();
4234 	return ret;
4235 }
4236 
4237 static inline bool
4238 check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
4239 {
4240 	/*
4241 	 * It's possible that cpuset's mems_allowed and the nodemask from
4242 	 * mempolicy don't intersect. This should be normally dealt with by
4243 	 * policy_nodemask(), but it's possible to race with cpuset update in
4244 	 * such a way the check therein was true, and then it became false
4245 	 * before we got our cpuset_mems_cookie here.
4246 	 * This assumes that for all allocations, ac->nodemask can come only
4247 	 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
4248 	 * when it does not intersect with the cpuset restrictions) or the
4249 	 * caller can deal with a violated nodemask.
4250 	 */
4251 	if (cpusets_enabled() && ac->nodemask &&
4252 			!cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
4253 		ac->nodemask = NULL;
4254 		return true;
4255 	}
4256 
4257 	/*
4258 	 * When updating a task's mems_allowed or mempolicy nodemask, it is
4259 	 * possible to race with parallel threads in such a way that our
4260 	 * allocation can fail while the mask is being updated. If we are about
4261 	 * to fail, check if the cpuset changed during allocation and if so,
4262 	 * retry.
4263 	 */
4264 	if (read_mems_allowed_retry(cpuset_mems_cookie))
4265 		return true;
4266 
4267 	return false;
4268 }
4269 
4270 static inline struct page *
4271 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
4272 						struct alloc_context *ac)
4273 {
4274 	bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
4275 	const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
4276 	struct page *page = NULL;
4277 	unsigned int alloc_flags;
4278 	unsigned long did_some_progress;
4279 	enum compact_priority compact_priority;
4280 	enum compact_result compact_result;
4281 	int compaction_retries;
4282 	int no_progress_loops;
4283 	unsigned int cpuset_mems_cookie;
4284 	int reserve_flags;
4285 
4286 	/*
4287 	 * We also sanity check to catch abuse of atomic reserves being used by
4288 	 * callers that are not in atomic context.
4289 	 */
4290 	if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
4291 				(__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
4292 		gfp_mask &= ~__GFP_ATOMIC;
4293 
4294 retry_cpuset:
4295 	compaction_retries = 0;
4296 	no_progress_loops = 0;
4297 	compact_priority = DEF_COMPACT_PRIORITY;
4298 	cpuset_mems_cookie = read_mems_allowed_begin();
4299 
4300 	/*
4301 	 * The fast path uses conservative alloc_flags to succeed only until
4302 	 * kswapd needs to be woken up, and to avoid the cost of setting up
4303 	 * alloc_flags precisely. So we do that now.
4304 	 */
4305 	alloc_flags = gfp_to_alloc_flags(gfp_mask);
4306 
4307 	/*
4308 	 * We need to recalculate the starting point for the zonelist iterator
4309 	 * because we might have used different nodemask in the fast path, or
4310 	 * there was a cpuset modification and we are retrying - otherwise we
4311 	 * could end up iterating over non-eligible zones endlessly.
4312 	 */
4313 	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4314 					ac->high_zoneidx, ac->nodemask);
4315 	if (!ac->preferred_zoneref->zone)
4316 		goto nopage;
4317 
4318 	if (alloc_flags & ALLOC_KSWAPD)
4319 		wake_all_kswapds(order, gfp_mask, ac);
4320 
4321 	/*
4322 	 * The adjusted alloc_flags might result in immediate success, so try
4323 	 * that first
4324 	 */
4325 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4326 	if (page)
4327 		goto got_pg;
4328 
4329 	/*
4330 	 * For costly allocations, try direct compaction first, as it's likely
4331 	 * that we have enough base pages and don't need to reclaim. For non-
4332 	 * movable high-order allocations, do that as well, as compaction will
4333 	 * try prevent permanent fragmentation by migrating from blocks of the
4334 	 * same migratetype.
4335 	 * Don't try this for allocations that are allowed to ignore
4336 	 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
4337 	 */
4338 	if (can_direct_reclaim &&
4339 			(costly_order ||
4340 			   (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
4341 			&& !gfp_pfmemalloc_allowed(gfp_mask)) {
4342 		page = __alloc_pages_direct_compact(gfp_mask, order,
4343 						alloc_flags, ac,
4344 						INIT_COMPACT_PRIORITY,
4345 						&compact_result);
4346 		if (page)
4347 			goto got_pg;
4348 
4349 		/*
4350 		 * Checks for costly allocations with __GFP_NORETRY, which
4351 		 * includes THP page fault allocations
4352 		 */
4353 		if (costly_order && (gfp_mask & __GFP_NORETRY)) {
4354 			/*
4355 			 * If compaction is deferred for high-order allocations,
4356 			 * it is because sync compaction recently failed. If
4357 			 * this is the case and the caller requested a THP
4358 			 * allocation, we do not want to heavily disrupt the
4359 			 * system, so we fail the allocation instead of entering
4360 			 * direct reclaim.
4361 			 */
4362 			if (compact_result == COMPACT_DEFERRED)
4363 				goto nopage;
4364 
4365 			/*
4366 			 * Looks like reclaim/compaction is worth trying, but
4367 			 * sync compaction could be very expensive, so keep
4368 			 * using async compaction.
4369 			 */
4370 			compact_priority = INIT_COMPACT_PRIORITY;
4371 		}
4372 	}
4373 
4374 retry:
4375 	/* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
4376 	if (alloc_flags & ALLOC_KSWAPD)
4377 		wake_all_kswapds(order, gfp_mask, ac);
4378 
4379 	reserve_flags = __gfp_pfmemalloc_flags(gfp_mask);
4380 	if (reserve_flags)
4381 		alloc_flags = reserve_flags;
4382 
4383 	/*
4384 	 * Reset the nodemask and zonelist iterators if memory policies can be
4385 	 * ignored. These allocations are high priority and system rather than
4386 	 * user oriented.
4387 	 */
4388 	if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) {
4389 		ac->nodemask = NULL;
4390 		ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4391 					ac->high_zoneidx, ac->nodemask);
4392 	}
4393 
4394 	/* Attempt with potentially adjusted zonelist and alloc_flags */
4395 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4396 	if (page)
4397 		goto got_pg;
4398 
4399 	/* Caller is not willing to reclaim, we can't balance anything */
4400 	if (!can_direct_reclaim)
4401 		goto nopage;
4402 
4403 	/* Avoid recursion of direct reclaim */
4404 	if (current->flags & PF_MEMALLOC)
4405 		goto nopage;
4406 
4407 	/* Try direct reclaim and then allocating */
4408 	page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
4409 							&did_some_progress);
4410 	if (page)
4411 		goto got_pg;
4412 
4413 	/* Try direct compaction and then allocating */
4414 	page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
4415 					compact_priority, &compact_result);
4416 	if (page)
4417 		goto got_pg;
4418 
4419 	/* Do not loop if specifically requested */
4420 	if (gfp_mask & __GFP_NORETRY)
4421 		goto nopage;
4422 
4423 	/*
4424 	 * Do not retry costly high order allocations unless they are
4425 	 * __GFP_RETRY_MAYFAIL
4426 	 */
4427 	if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL))
4428 		goto nopage;
4429 
4430 	if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
4431 				 did_some_progress > 0, &no_progress_loops))
4432 		goto retry;
4433 
4434 	/*
4435 	 * It doesn't make any sense to retry for the compaction if the order-0
4436 	 * reclaim is not able to make any progress because the current
4437 	 * implementation of the compaction depends on the sufficient amount
4438 	 * of free memory (see __compaction_suitable)
4439 	 */
4440 	if (did_some_progress > 0 &&
4441 			should_compact_retry(ac, order, alloc_flags,
4442 				compact_result, &compact_priority,
4443 				&compaction_retries))
4444 		goto retry;
4445 
4446 
4447 	/* Deal with possible cpuset update races before we start OOM killing */
4448 	if (check_retry_cpuset(cpuset_mems_cookie, ac))
4449 		goto retry_cpuset;
4450 
4451 	/* Reclaim has failed us, start killing things */
4452 	page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
4453 	if (page)
4454 		goto got_pg;
4455 
4456 	/* Avoid allocations with no watermarks from looping endlessly */
4457 	if (tsk_is_oom_victim(current) &&
4458 	    (alloc_flags == ALLOC_OOM ||
4459 	     (gfp_mask & __GFP_NOMEMALLOC)))
4460 		goto nopage;
4461 
4462 	/* Retry as long as the OOM killer is making progress */
4463 	if (did_some_progress) {
4464 		no_progress_loops = 0;
4465 		goto retry;
4466 	}
4467 
4468 nopage:
4469 	/* Deal with possible cpuset update races before we fail */
4470 	if (check_retry_cpuset(cpuset_mems_cookie, ac))
4471 		goto retry_cpuset;
4472 
4473 	/*
4474 	 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
4475 	 * we always retry
4476 	 */
4477 	if (gfp_mask & __GFP_NOFAIL) {
4478 		/*
4479 		 * All existing users of the __GFP_NOFAIL are blockable, so warn
4480 		 * of any new users that actually require GFP_NOWAIT
4481 		 */
4482 		if (WARN_ON_ONCE(!can_direct_reclaim))
4483 			goto fail;
4484 
4485 		/*
4486 		 * PF_MEMALLOC request from this context is rather bizarre
4487 		 * because we cannot reclaim anything and only can loop waiting
4488 		 * for somebody to do a work for us
4489 		 */
4490 		WARN_ON_ONCE(current->flags & PF_MEMALLOC);
4491 
4492 		/*
4493 		 * non failing costly orders are a hard requirement which we
4494 		 * are not prepared for much so let's warn about these users
4495 		 * so that we can identify them and convert them to something
4496 		 * else.
4497 		 */
4498 		WARN_ON_ONCE(order > PAGE_ALLOC_COSTLY_ORDER);
4499 
4500 		/*
4501 		 * Help non-failing allocations by giving them access to memory
4502 		 * reserves but do not use ALLOC_NO_WATERMARKS because this
4503 		 * could deplete whole memory reserves which would just make
4504 		 * the situation worse
4505 		 */
4506 		page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac);
4507 		if (page)
4508 			goto got_pg;
4509 
4510 		cond_resched();
4511 		goto retry;
4512 	}
4513 fail:
4514 	warn_alloc(gfp_mask, ac->nodemask,
4515 			"page allocation failure: order:%u", order);
4516 got_pg:
4517 	return page;
4518 }
4519 
4520 static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
4521 		int preferred_nid, nodemask_t *nodemask,
4522 		struct alloc_context *ac, gfp_t *alloc_mask,
4523 		unsigned int *alloc_flags)
4524 {
4525 	ac->high_zoneidx = gfp_zone(gfp_mask);
4526 	ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
4527 	ac->nodemask = nodemask;
4528 	ac->migratetype = gfpflags_to_migratetype(gfp_mask);
4529 
4530 	if (cpusets_enabled()) {
4531 		*alloc_mask |= __GFP_HARDWALL;
4532 		if (!ac->nodemask)
4533 			ac->nodemask = &cpuset_current_mems_allowed;
4534 		else
4535 			*alloc_flags |= ALLOC_CPUSET;
4536 	}
4537 
4538 	fs_reclaim_acquire(gfp_mask);
4539 	fs_reclaim_release(gfp_mask);
4540 
4541 	might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
4542 
4543 	if (should_fail_alloc_page(gfp_mask, order))
4544 		return false;
4545 
4546 	if (IS_ENABLED(CONFIG_CMA) && ac->migratetype == MIGRATE_MOVABLE)
4547 		*alloc_flags |= ALLOC_CMA;
4548 
4549 	return true;
4550 }
4551 
4552 /* Determine whether to spread dirty pages and what the first usable zone */
4553 static inline void finalise_ac(gfp_t gfp_mask, struct alloc_context *ac)
4554 {
4555 	/* Dirty zone balancing only done in the fast path */
4556 	ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
4557 
4558 	/*
4559 	 * The preferred zone is used for statistics but crucially it is
4560 	 * also used as the starting point for the zonelist iterator. It
4561 	 * may get reset for allocations that ignore memory policies.
4562 	 */
4563 	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4564 					ac->high_zoneidx, ac->nodemask);
4565 }
4566 
4567 /*
4568  * This is the 'heart' of the zoned buddy allocator.
4569  */
4570 struct page *
4571 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order, int preferred_nid,
4572 							nodemask_t *nodemask)
4573 {
4574 	struct page *page;
4575 	unsigned int alloc_flags = ALLOC_WMARK_LOW;
4576 	gfp_t alloc_mask; /* The gfp_t that was actually used for allocation */
4577 	struct alloc_context ac = { };
4578 
4579 	/*
4580 	 * There are several places where we assume that the order value is sane
4581 	 * so bail out early if the request is out of bound.
4582 	 */
4583 	if (unlikely(order >= MAX_ORDER)) {
4584 		WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
4585 		return NULL;
4586 	}
4587 
4588 	gfp_mask &= gfp_allowed_mask;
4589 	alloc_mask = gfp_mask;
4590 	if (!prepare_alloc_pages(gfp_mask, order, preferred_nid, nodemask, &ac, &alloc_mask, &alloc_flags))
4591 		return NULL;
4592 
4593 	finalise_ac(gfp_mask, &ac);
4594 
4595 	/*
4596 	 * Forbid the first pass from falling back to types that fragment
4597 	 * memory until all local zones are considered.
4598 	 */
4599 	alloc_flags |= alloc_flags_nofragment(ac.preferred_zoneref->zone, gfp_mask);
4600 
4601 	/* First allocation attempt */
4602 	page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
4603 	if (likely(page))
4604 		goto out;
4605 
4606 	/*
4607 	 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
4608 	 * resp. GFP_NOIO which has to be inherited for all allocation requests
4609 	 * from a particular context which has been marked by
4610 	 * memalloc_no{fs,io}_{save,restore}.
4611 	 */
4612 	alloc_mask = current_gfp_context(gfp_mask);
4613 	ac.spread_dirty_pages = false;
4614 
4615 	/*
4616 	 * Restore the original nodemask if it was potentially replaced with
4617 	 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
4618 	 */
4619 	if (unlikely(ac.nodemask != nodemask))
4620 		ac.nodemask = nodemask;
4621 
4622 	page = __alloc_pages_slowpath(alloc_mask, order, &ac);
4623 
4624 out:
4625 	if (memcg_kmem_enabled() && (gfp_mask & __GFP_ACCOUNT) && page &&
4626 	    unlikely(__memcg_kmem_charge(page, gfp_mask, order) != 0)) {
4627 		__free_pages(page, order);
4628 		page = NULL;
4629 	}
4630 
4631 	trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);
4632 
4633 	return page;
4634 }
4635 EXPORT_SYMBOL(__alloc_pages_nodemask);
4636 
4637 /*
4638  * Common helper functions. Never use with __GFP_HIGHMEM because the returned
4639  * address cannot represent highmem pages. Use alloc_pages and then kmap if
4640  * you need to access high mem.
4641  */
4642 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
4643 {
4644 	struct page *page;
4645 
4646 	page = alloc_pages(gfp_mask & ~__GFP_HIGHMEM, order);
4647 	if (!page)
4648 		return 0;
4649 	return (unsigned long) page_address(page);
4650 }
4651 EXPORT_SYMBOL(__get_free_pages);
4652 
4653 unsigned long get_zeroed_page(gfp_t gfp_mask)
4654 {
4655 	return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
4656 }
4657 EXPORT_SYMBOL(get_zeroed_page);
4658 
4659 static inline void free_the_page(struct page *page, unsigned int order)
4660 {
4661 	if (order == 0)		/* Via pcp? */
4662 		free_unref_page(page);
4663 	else
4664 		__free_pages_ok(page, order);
4665 }
4666 
4667 void __free_pages(struct page *page, unsigned int order)
4668 {
4669 	if (put_page_testzero(page))
4670 		free_the_page(page, order);
4671 }
4672 EXPORT_SYMBOL(__free_pages);
4673 
4674 void free_pages(unsigned long addr, unsigned int order)
4675 {
4676 	if (addr != 0) {
4677 		VM_BUG_ON(!virt_addr_valid((void *)addr));
4678 		__free_pages(virt_to_page((void *)addr), order);
4679 	}
4680 }
4681 
4682 EXPORT_SYMBOL(free_pages);
4683 
4684 /*
4685  * Page Fragment:
4686  *  An arbitrary-length arbitrary-offset area of memory which resides
4687  *  within a 0 or higher order page.  Multiple fragments within that page
4688  *  are individually refcounted, in the page's reference counter.
4689  *
4690  * The page_frag functions below provide a simple allocation framework for
4691  * page fragments.  This is used by the network stack and network device
4692  * drivers to provide a backing region of memory for use as either an
4693  * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
4694  */
4695 static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
4696 					     gfp_t gfp_mask)
4697 {
4698 	struct page *page = NULL;
4699 	gfp_t gfp = gfp_mask;
4700 
4701 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4702 	gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
4703 		    __GFP_NOMEMALLOC;
4704 	page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
4705 				PAGE_FRAG_CACHE_MAX_ORDER);
4706 	nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
4707 #endif
4708 	if (unlikely(!page))
4709 		page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
4710 
4711 	nc->va = page ? page_address(page) : NULL;
4712 
4713 	return page;
4714 }
4715 
4716 void __page_frag_cache_drain(struct page *page, unsigned int count)
4717 {
4718 	VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
4719 
4720 	if (page_ref_sub_and_test(page, count))
4721 		free_the_page(page, compound_order(page));
4722 }
4723 EXPORT_SYMBOL(__page_frag_cache_drain);
4724 
4725 void *page_frag_alloc(struct page_frag_cache *nc,
4726 		      unsigned int fragsz, gfp_t gfp_mask)
4727 {
4728 	unsigned int size = PAGE_SIZE;
4729 	struct page *page;
4730 	int offset;
4731 
4732 	if (unlikely(!nc->va)) {
4733 refill:
4734 		page = __page_frag_cache_refill(nc, gfp_mask);
4735 		if (!page)
4736 			return NULL;
4737 
4738 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4739 		/* if size can vary use size else just use PAGE_SIZE */
4740 		size = nc->size;
4741 #endif
4742 		/* Even if we own the page, we do not use atomic_set().
4743 		 * This would break get_page_unless_zero() users.
4744 		 */
4745 		page_ref_add(page, PAGE_FRAG_CACHE_MAX_SIZE);
4746 
4747 		/* reset page count bias and offset to start of new frag */
4748 		nc->pfmemalloc = page_is_pfmemalloc(page);
4749 		nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
4750 		nc->offset = size;
4751 	}
4752 
4753 	offset = nc->offset - fragsz;
4754 	if (unlikely(offset < 0)) {
4755 		page = virt_to_page(nc->va);
4756 
4757 		if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
4758 			goto refill;
4759 
4760 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4761 		/* if size can vary use size else just use PAGE_SIZE */
4762 		size = nc->size;
4763 #endif
4764 		/* OK, page count is 0, we can safely set it */
4765 		set_page_count(page, PAGE_FRAG_CACHE_MAX_SIZE + 1);
4766 
4767 		/* reset page count bias and offset to start of new frag */
4768 		nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
4769 		offset = size - fragsz;
4770 	}
4771 
4772 	nc->pagecnt_bias--;
4773 	nc->offset = offset;
4774 
4775 	return nc->va + offset;
4776 }
4777 EXPORT_SYMBOL(page_frag_alloc);
4778 
4779 /*
4780  * Frees a page fragment allocated out of either a compound or order 0 page.
4781  */
4782 void page_frag_free(void *addr)
4783 {
4784 	struct page *page = virt_to_head_page(addr);
4785 
4786 	if (unlikely(put_page_testzero(page)))
4787 		free_the_page(page, compound_order(page));
4788 }
4789 EXPORT_SYMBOL(page_frag_free);
4790 
4791 static void *make_alloc_exact(unsigned long addr, unsigned int order,
4792 		size_t size)
4793 {
4794 	if (addr) {
4795 		unsigned long alloc_end = addr + (PAGE_SIZE << order);
4796 		unsigned long used = addr + PAGE_ALIGN(size);
4797 
4798 		split_page(virt_to_page((void *)addr), order);
4799 		while (used < alloc_end) {
4800 			free_page(used);
4801 			used += PAGE_SIZE;
4802 		}
4803 	}
4804 	return (void *)addr;
4805 }
4806 
4807 /**
4808  * alloc_pages_exact - allocate an exact number physically-contiguous pages.
4809  * @size: the number of bytes to allocate
4810  * @gfp_mask: GFP flags for the allocation
4811  *
4812  * This function is similar to alloc_pages(), except that it allocates the
4813  * minimum number of pages to satisfy the request.  alloc_pages() can only
4814  * allocate memory in power-of-two pages.
4815  *
4816  * This function is also limited by MAX_ORDER.
4817  *
4818  * Memory allocated by this function must be released by free_pages_exact().
4819  *
4820  * Return: pointer to the allocated area or %NULL in case of error.
4821  */
4822 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
4823 {
4824 	unsigned int order = get_order(size);
4825 	unsigned long addr;
4826 
4827 	addr = __get_free_pages(gfp_mask, order);
4828 	return make_alloc_exact(addr, order, size);
4829 }
4830 EXPORT_SYMBOL(alloc_pages_exact);
4831 
4832 /**
4833  * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
4834  *			   pages on a node.
4835  * @nid: the preferred node ID where memory should be allocated
4836  * @size: the number of bytes to allocate
4837  * @gfp_mask: GFP flags for the allocation
4838  *
4839  * Like alloc_pages_exact(), but try to allocate on node nid first before falling
4840  * back.
4841  *
4842  * Return: pointer to the allocated area or %NULL in case of error.
4843  */
4844 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
4845 {
4846 	unsigned int order = get_order(size);
4847 	struct page *p = alloc_pages_node(nid, gfp_mask, order);
4848 	if (!p)
4849 		return NULL;
4850 	return make_alloc_exact((unsigned long)page_address(p), order, size);
4851 }
4852 
4853 /**
4854  * free_pages_exact - release memory allocated via alloc_pages_exact()
4855  * @virt: the value returned by alloc_pages_exact.
4856  * @size: size of allocation, same value as passed to alloc_pages_exact().
4857  *
4858  * Release the memory allocated by a previous call to alloc_pages_exact.
4859  */
4860 void free_pages_exact(void *virt, size_t size)
4861 {
4862 	unsigned long addr = (unsigned long)virt;
4863 	unsigned long end = addr + PAGE_ALIGN(size);
4864 
4865 	while (addr < end) {
4866 		free_page(addr);
4867 		addr += PAGE_SIZE;
4868 	}
4869 }
4870 EXPORT_SYMBOL(free_pages_exact);
4871 
4872 /**
4873  * nr_free_zone_pages - count number of pages beyond high watermark
4874  * @offset: The zone index of the highest zone
4875  *
4876  * nr_free_zone_pages() counts the number of pages which are beyond the
4877  * high watermark within all zones at or below a given zone index.  For each
4878  * zone, the number of pages is calculated as:
4879  *
4880  *     nr_free_zone_pages = managed_pages - high_pages
4881  *
4882  * Return: number of pages beyond high watermark.
4883  */
4884 static unsigned long nr_free_zone_pages(int offset)
4885 {
4886 	struct zoneref *z;
4887 	struct zone *zone;
4888 
4889 	/* Just pick one node, since fallback list is circular */
4890 	unsigned long sum = 0;
4891 
4892 	struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
4893 
4894 	for_each_zone_zonelist(zone, z, zonelist, offset) {
4895 		unsigned long size = zone_managed_pages(zone);
4896 		unsigned long high = high_wmark_pages(zone);
4897 		if (size > high)
4898 			sum += size - high;
4899 	}
4900 
4901 	return sum;
4902 }
4903 
4904 /**
4905  * nr_free_buffer_pages - count number of pages beyond high watermark
4906  *
4907  * nr_free_buffer_pages() counts the number of pages which are beyond the high
4908  * watermark within ZONE_DMA and ZONE_NORMAL.
4909  *
4910  * Return: number of pages beyond high watermark within ZONE_DMA and
4911  * ZONE_NORMAL.
4912  */
4913 unsigned long nr_free_buffer_pages(void)
4914 {
4915 	return nr_free_zone_pages(gfp_zone(GFP_USER));
4916 }
4917 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
4918 
4919 /**
4920  * nr_free_pagecache_pages - count number of pages beyond high watermark
4921  *
4922  * nr_free_pagecache_pages() counts the number of pages which are beyond the
4923  * high watermark within all zones.
4924  *
4925  * Return: number of pages beyond high watermark within all zones.
4926  */
4927 unsigned long nr_free_pagecache_pages(void)
4928 {
4929 	return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
4930 }
4931 
4932 static inline void show_node(struct zone *zone)
4933 {
4934 	if (IS_ENABLED(CONFIG_NUMA))
4935 		printk("Node %d ", zone_to_nid(zone));
4936 }
4937 
4938 long si_mem_available(void)
4939 {
4940 	long available;
4941 	unsigned long pagecache;
4942 	unsigned long wmark_low = 0;
4943 	unsigned long pages[NR_LRU_LISTS];
4944 	unsigned long reclaimable;
4945 	struct zone *zone;
4946 	int lru;
4947 
4948 	for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
4949 		pages[lru] = global_node_page_state(NR_LRU_BASE + lru);
4950 
4951 	for_each_zone(zone)
4952 		wmark_low += low_wmark_pages(zone);
4953 
4954 	/*
4955 	 * Estimate the amount of memory available for userspace allocations,
4956 	 * without causing swapping.
4957 	 */
4958 	available = global_zone_page_state(NR_FREE_PAGES) - totalreserve_pages;
4959 
4960 	/*
4961 	 * Not all the page cache can be freed, otherwise the system will
4962 	 * start swapping. Assume at least half of the page cache, or the
4963 	 * low watermark worth of cache, needs to stay.
4964 	 */
4965 	pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
4966 	pagecache -= min(pagecache / 2, wmark_low);
4967 	available += pagecache;
4968 
4969 	/*
4970 	 * Part of the reclaimable slab and other kernel memory consists of
4971 	 * items that are in use, and cannot be freed. Cap this estimate at the
4972 	 * low watermark.
4973 	 */
4974 	reclaimable = global_node_page_state(NR_SLAB_RECLAIMABLE) +
4975 			global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE);
4976 	available += reclaimable - min(reclaimable / 2, wmark_low);
4977 
4978 	if (available < 0)
4979 		available = 0;
4980 	return available;
4981 }
4982 EXPORT_SYMBOL_GPL(si_mem_available);
4983 
4984 void si_meminfo(struct sysinfo *val)
4985 {
4986 	val->totalram = totalram_pages();
4987 	val->sharedram = global_node_page_state(NR_SHMEM);
4988 	val->freeram = global_zone_page_state(NR_FREE_PAGES);
4989 	val->bufferram = nr_blockdev_pages();
4990 	val->totalhigh = totalhigh_pages();
4991 	val->freehigh = nr_free_highpages();
4992 	val->mem_unit = PAGE_SIZE;
4993 }
4994 
4995 EXPORT_SYMBOL(si_meminfo);
4996 
4997 #ifdef CONFIG_NUMA
4998 void si_meminfo_node(struct sysinfo *val, int nid)
4999 {
5000 	int zone_type;		/* needs to be signed */
5001 	unsigned long managed_pages = 0;
5002 	unsigned long managed_highpages = 0;
5003 	unsigned long free_highpages = 0;
5004 	pg_data_t *pgdat = NODE_DATA(nid);
5005 
5006 	for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
5007 		managed_pages += zone_managed_pages(&pgdat->node_zones[zone_type]);
5008 	val->totalram = managed_pages;
5009 	val->sharedram = node_page_state(pgdat, NR_SHMEM);
5010 	val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES);
5011 #ifdef CONFIG_HIGHMEM
5012 	for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
5013 		struct zone *zone = &pgdat->node_zones[zone_type];
5014 
5015 		if (is_highmem(zone)) {
5016 			managed_highpages += zone_managed_pages(zone);
5017 			free_highpages += zone_page_state(zone, NR_FREE_PAGES);
5018 		}
5019 	}
5020 	val->totalhigh = managed_highpages;
5021 	val->freehigh = free_highpages;
5022 #else
5023 	val->totalhigh = managed_highpages;
5024 	val->freehigh = free_highpages;
5025 #endif
5026 	val->mem_unit = PAGE_SIZE;
5027 }
5028 #endif
5029 
5030 /*
5031  * Determine whether the node should be displayed or not, depending on whether
5032  * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
5033  */
5034 static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask)
5035 {
5036 	if (!(flags & SHOW_MEM_FILTER_NODES))
5037 		return false;
5038 
5039 	/*
5040 	 * no node mask - aka implicit memory numa policy. Do not bother with
5041 	 * the synchronization - read_mems_allowed_begin - because we do not
5042 	 * have to be precise here.
5043 	 */
5044 	if (!nodemask)
5045 		nodemask = &cpuset_current_mems_allowed;
5046 
5047 	return !node_isset(nid, *nodemask);
5048 }
5049 
5050 #define K(x) ((x) << (PAGE_SHIFT-10))
5051 
5052 static void show_migration_types(unsigned char type)
5053 {
5054 	static const char types[MIGRATE_TYPES] = {
5055 		[MIGRATE_UNMOVABLE]	= 'U',
5056 		[MIGRATE_MOVABLE]	= 'M',
5057 		[MIGRATE_RECLAIMABLE]	= 'E',
5058 		[MIGRATE_HIGHATOMIC]	= 'H',
5059 #ifdef CONFIG_CMA
5060 		[MIGRATE_CMA]		= 'C',
5061 #endif
5062 #ifdef CONFIG_MEMORY_ISOLATION
5063 		[MIGRATE_ISOLATE]	= 'I',
5064 #endif
5065 	};
5066 	char tmp[MIGRATE_TYPES + 1];
5067 	char *p = tmp;
5068 	int i;
5069 
5070 	for (i = 0; i < MIGRATE_TYPES; i++) {
5071 		if (type & (1 << i))
5072 			*p++ = types[i];
5073 	}
5074 
5075 	*p = '\0';
5076 	printk(KERN_CONT "(%s) ", tmp);
5077 }
5078 
5079 /*
5080  * Show free area list (used inside shift_scroll-lock stuff)
5081  * We also calculate the percentage fragmentation. We do this by counting the
5082  * memory on each free list with the exception of the first item on the list.
5083  *
5084  * Bits in @filter:
5085  * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
5086  *   cpuset.
5087  */
5088 void show_free_areas(unsigned int filter, nodemask_t *nodemask)
5089 {
5090 	unsigned long free_pcp = 0;
5091 	int cpu;
5092 	struct zone *zone;
5093 	pg_data_t *pgdat;
5094 
5095 	for_each_populated_zone(zone) {
5096 		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5097 			continue;
5098 
5099 		for_each_online_cpu(cpu)
5100 			free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
5101 	}
5102 
5103 	printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
5104 		" active_file:%lu inactive_file:%lu isolated_file:%lu\n"
5105 		" unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n"
5106 		" slab_reclaimable:%lu slab_unreclaimable:%lu\n"
5107 		" mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
5108 		" free:%lu free_pcp:%lu free_cma:%lu\n",
5109 		global_node_page_state(NR_ACTIVE_ANON),
5110 		global_node_page_state(NR_INACTIVE_ANON),
5111 		global_node_page_state(NR_ISOLATED_ANON),
5112 		global_node_page_state(NR_ACTIVE_FILE),
5113 		global_node_page_state(NR_INACTIVE_FILE),
5114 		global_node_page_state(NR_ISOLATED_FILE),
5115 		global_node_page_state(NR_UNEVICTABLE),
5116 		global_node_page_state(NR_FILE_DIRTY),
5117 		global_node_page_state(NR_WRITEBACK),
5118 		global_node_page_state(NR_UNSTABLE_NFS),
5119 		global_node_page_state(NR_SLAB_RECLAIMABLE),
5120 		global_node_page_state(NR_SLAB_UNRECLAIMABLE),
5121 		global_node_page_state(NR_FILE_MAPPED),
5122 		global_node_page_state(NR_SHMEM),
5123 		global_zone_page_state(NR_PAGETABLE),
5124 		global_zone_page_state(NR_BOUNCE),
5125 		global_zone_page_state(NR_FREE_PAGES),
5126 		free_pcp,
5127 		global_zone_page_state(NR_FREE_CMA_PAGES));
5128 
5129 	for_each_online_pgdat(pgdat) {
5130 		if (show_mem_node_skip(filter, pgdat->node_id, nodemask))
5131 			continue;
5132 
5133 		printk("Node %d"
5134 			" active_anon:%lukB"
5135 			" inactive_anon:%lukB"
5136 			" active_file:%lukB"
5137 			" inactive_file:%lukB"
5138 			" unevictable:%lukB"
5139 			" isolated(anon):%lukB"
5140 			" isolated(file):%lukB"
5141 			" mapped:%lukB"
5142 			" dirty:%lukB"
5143 			" writeback:%lukB"
5144 			" shmem:%lukB"
5145 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5146 			" shmem_thp: %lukB"
5147 			" shmem_pmdmapped: %lukB"
5148 			" anon_thp: %lukB"
5149 #endif
5150 			" writeback_tmp:%lukB"
5151 			" unstable:%lukB"
5152 			" all_unreclaimable? %s"
5153 			"\n",
5154 			pgdat->node_id,
5155 			K(node_page_state(pgdat, NR_ACTIVE_ANON)),
5156 			K(node_page_state(pgdat, NR_INACTIVE_ANON)),
5157 			K(node_page_state(pgdat, NR_ACTIVE_FILE)),
5158 			K(node_page_state(pgdat, NR_INACTIVE_FILE)),
5159 			K(node_page_state(pgdat, NR_UNEVICTABLE)),
5160 			K(node_page_state(pgdat, NR_ISOLATED_ANON)),
5161 			K(node_page_state(pgdat, NR_ISOLATED_FILE)),
5162 			K(node_page_state(pgdat, NR_FILE_MAPPED)),
5163 			K(node_page_state(pgdat, NR_FILE_DIRTY)),
5164 			K(node_page_state(pgdat, NR_WRITEBACK)),
5165 			K(node_page_state(pgdat, NR_SHMEM)),
5166 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5167 			K(node_page_state(pgdat, NR_SHMEM_THPS) * HPAGE_PMD_NR),
5168 			K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)
5169 					* HPAGE_PMD_NR),
5170 			K(node_page_state(pgdat, NR_ANON_THPS) * HPAGE_PMD_NR),
5171 #endif
5172 			K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
5173 			K(node_page_state(pgdat, NR_UNSTABLE_NFS)),
5174 			pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ?
5175 				"yes" : "no");
5176 	}
5177 
5178 	for_each_populated_zone(zone) {
5179 		int i;
5180 
5181 		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5182 			continue;
5183 
5184 		free_pcp = 0;
5185 		for_each_online_cpu(cpu)
5186 			free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
5187 
5188 		show_node(zone);
5189 		printk(KERN_CONT
5190 			"%s"
5191 			" free:%lukB"
5192 			" min:%lukB"
5193 			" low:%lukB"
5194 			" high:%lukB"
5195 			" active_anon:%lukB"
5196 			" inactive_anon:%lukB"
5197 			" active_file:%lukB"
5198 			" inactive_file:%lukB"
5199 			" unevictable:%lukB"
5200 			" writepending:%lukB"
5201 			" present:%lukB"
5202 			" managed:%lukB"
5203 			" mlocked:%lukB"
5204 			" kernel_stack:%lukB"
5205 			" pagetables:%lukB"
5206 			" bounce:%lukB"
5207 			" free_pcp:%lukB"
5208 			" local_pcp:%ukB"
5209 			" free_cma:%lukB"
5210 			"\n",
5211 			zone->name,
5212 			K(zone_page_state(zone, NR_FREE_PAGES)),
5213 			K(min_wmark_pages(zone)),
5214 			K(low_wmark_pages(zone)),
5215 			K(high_wmark_pages(zone)),
5216 			K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)),
5217 			K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)),
5218 			K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)),
5219 			K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)),
5220 			K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)),
5221 			K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)),
5222 			K(zone->present_pages),
5223 			K(zone_managed_pages(zone)),
5224 			K(zone_page_state(zone, NR_MLOCK)),
5225 			zone_page_state(zone, NR_KERNEL_STACK_KB),
5226 			K(zone_page_state(zone, NR_PAGETABLE)),
5227 			K(zone_page_state(zone, NR_BOUNCE)),
5228 			K(free_pcp),
5229 			K(this_cpu_read(zone->pageset->pcp.count)),
5230 			K(zone_page_state(zone, NR_FREE_CMA_PAGES)));
5231 		printk("lowmem_reserve[]:");
5232 		for (i = 0; i < MAX_NR_ZONES; i++)
5233 			printk(KERN_CONT " %ld", zone->lowmem_reserve[i]);
5234 		printk(KERN_CONT "\n");
5235 	}
5236 
5237 	for_each_populated_zone(zone) {
5238 		unsigned int order;
5239 		unsigned long nr[MAX_ORDER], flags, total = 0;
5240 		unsigned char types[MAX_ORDER];
5241 
5242 		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5243 			continue;
5244 		show_node(zone);
5245 		printk(KERN_CONT "%s: ", zone->name);
5246 
5247 		spin_lock_irqsave(&zone->lock, flags);
5248 		for (order = 0; order < MAX_ORDER; order++) {
5249 			struct free_area *area = &zone->free_area[order];
5250 			int type;
5251 
5252 			nr[order] = area->nr_free;
5253 			total += nr[order] << order;
5254 
5255 			types[order] = 0;
5256 			for (type = 0; type < MIGRATE_TYPES; type++) {
5257 				if (!list_empty(&area->free_list[type]))
5258 					types[order] |= 1 << type;
5259 			}
5260 		}
5261 		spin_unlock_irqrestore(&zone->lock, flags);
5262 		for (order = 0; order < MAX_ORDER; order++) {
5263 			printk(KERN_CONT "%lu*%lukB ",
5264 			       nr[order], K(1UL) << order);
5265 			if (nr[order])
5266 				show_migration_types(types[order]);
5267 		}
5268 		printk(KERN_CONT "= %lukB\n", K(total));
5269 	}
5270 
5271 	hugetlb_show_meminfo();
5272 
5273 	printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES));
5274 
5275 	show_swap_cache_info();
5276 }
5277 
5278 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
5279 {
5280 	zoneref->zone = zone;
5281 	zoneref->zone_idx = zone_idx(zone);
5282 }
5283 
5284 /*
5285  * Builds allocation fallback zone lists.
5286  *
5287  * Add all populated zones of a node to the zonelist.
5288  */
5289 static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs)
5290 {
5291 	struct zone *zone;
5292 	enum zone_type zone_type = MAX_NR_ZONES;
5293 	int nr_zones = 0;
5294 
5295 	do {
5296 		zone_type--;
5297 		zone = pgdat->node_zones + zone_type;
5298 		if (managed_zone(zone)) {
5299 			zoneref_set_zone(zone, &zonerefs[nr_zones++]);
5300 			check_highest_zone(zone_type);
5301 		}
5302 	} while (zone_type);
5303 
5304 	return nr_zones;
5305 }
5306 
5307 #ifdef CONFIG_NUMA
5308 
5309 static int __parse_numa_zonelist_order(char *s)
5310 {
5311 	/*
5312 	 * We used to support different zonlists modes but they turned
5313 	 * out to be just not useful. Let's keep the warning in place
5314 	 * if somebody still use the cmd line parameter so that we do
5315 	 * not fail it silently
5316 	 */
5317 	if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) {
5318 		pr_warn("Ignoring unsupported numa_zonelist_order value:  %s\n", s);
5319 		return -EINVAL;
5320 	}
5321 	return 0;
5322 }
5323 
5324 static __init int setup_numa_zonelist_order(char *s)
5325 {
5326 	if (!s)
5327 		return 0;
5328 
5329 	return __parse_numa_zonelist_order(s);
5330 }
5331 early_param("numa_zonelist_order", setup_numa_zonelist_order);
5332 
5333 char numa_zonelist_order[] = "Node";
5334 
5335 /*
5336  * sysctl handler for numa_zonelist_order
5337  */
5338 int numa_zonelist_order_handler(struct ctl_table *table, int write,
5339 		void __user *buffer, size_t *length,
5340 		loff_t *ppos)
5341 {
5342 	char *str;
5343 	int ret;
5344 
5345 	if (!write)
5346 		return proc_dostring(table, write, buffer, length, ppos);
5347 	str = memdup_user_nul(buffer, 16);
5348 	if (IS_ERR(str))
5349 		return PTR_ERR(str);
5350 
5351 	ret = __parse_numa_zonelist_order(str);
5352 	kfree(str);
5353 	return ret;
5354 }
5355 
5356 
5357 #define MAX_NODE_LOAD (nr_online_nodes)
5358 static int node_load[MAX_NUMNODES];
5359 
5360 /**
5361  * find_next_best_node - find the next node that should appear in a given node's fallback list
5362  * @node: node whose fallback list we're appending
5363  * @used_node_mask: nodemask_t of already used nodes
5364  *
5365  * We use a number of factors to determine which is the next node that should
5366  * appear on a given node's fallback list.  The node should not have appeared
5367  * already in @node's fallback list, and it should be the next closest node
5368  * according to the distance array (which contains arbitrary distance values
5369  * from each node to each node in the system), and should also prefer nodes
5370  * with no CPUs, since presumably they'll have very little allocation pressure
5371  * on them otherwise.
5372  *
5373  * Return: node id of the found node or %NUMA_NO_NODE if no node is found.
5374  */
5375 static int find_next_best_node(int node, nodemask_t *used_node_mask)
5376 {
5377 	int n, val;
5378 	int min_val = INT_MAX;
5379 	int best_node = NUMA_NO_NODE;
5380 	const struct cpumask *tmp = cpumask_of_node(0);
5381 
5382 	/* Use the local node if we haven't already */
5383 	if (!node_isset(node, *used_node_mask)) {
5384 		node_set(node, *used_node_mask);
5385 		return node;
5386 	}
5387 
5388 	for_each_node_state(n, N_MEMORY) {
5389 
5390 		/* Don't want a node to appear more than once */
5391 		if (node_isset(n, *used_node_mask))
5392 			continue;
5393 
5394 		/* Use the distance array to find the distance */
5395 		val = node_distance(node, n);
5396 
5397 		/* Penalize nodes under us ("prefer the next node") */
5398 		val += (n < node);
5399 
5400 		/* Give preference to headless and unused nodes */
5401 		tmp = cpumask_of_node(n);
5402 		if (!cpumask_empty(tmp))
5403 			val += PENALTY_FOR_NODE_WITH_CPUS;
5404 
5405 		/* Slight preference for less loaded node */
5406 		val *= (MAX_NODE_LOAD*MAX_NUMNODES);
5407 		val += node_load[n];
5408 
5409 		if (val < min_val) {
5410 			min_val = val;
5411 			best_node = n;
5412 		}
5413 	}
5414 
5415 	if (best_node >= 0)
5416 		node_set(best_node, *used_node_mask);
5417 
5418 	return best_node;
5419 }
5420 
5421 
5422 /*
5423  * Build zonelists ordered by node and zones within node.
5424  * This results in maximum locality--normal zone overflows into local
5425  * DMA zone, if any--but risks exhausting DMA zone.
5426  */
5427 static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order,
5428 		unsigned nr_nodes)
5429 {
5430 	struct zoneref *zonerefs;
5431 	int i;
5432 
5433 	zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5434 
5435 	for (i = 0; i < nr_nodes; i++) {
5436 		int nr_zones;
5437 
5438 		pg_data_t *node = NODE_DATA(node_order[i]);
5439 
5440 		nr_zones = build_zonerefs_node(node, zonerefs);
5441 		zonerefs += nr_zones;
5442 	}
5443 	zonerefs->zone = NULL;
5444 	zonerefs->zone_idx = 0;
5445 }
5446 
5447 /*
5448  * Build gfp_thisnode zonelists
5449  */
5450 static void build_thisnode_zonelists(pg_data_t *pgdat)
5451 {
5452 	struct zoneref *zonerefs;
5453 	int nr_zones;
5454 
5455 	zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs;
5456 	nr_zones = build_zonerefs_node(pgdat, zonerefs);
5457 	zonerefs += nr_zones;
5458 	zonerefs->zone = NULL;
5459 	zonerefs->zone_idx = 0;
5460 }
5461 
5462 /*
5463  * Build zonelists ordered by zone and nodes within zones.
5464  * This results in conserving DMA zone[s] until all Normal memory is
5465  * exhausted, but results in overflowing to remote node while memory
5466  * may still exist in local DMA zone.
5467  */
5468 
5469 static void build_zonelists(pg_data_t *pgdat)
5470 {
5471 	static int node_order[MAX_NUMNODES];
5472 	int node, load, nr_nodes = 0;
5473 	nodemask_t used_mask;
5474 	int local_node, prev_node;
5475 
5476 	/* NUMA-aware ordering of nodes */
5477 	local_node = pgdat->node_id;
5478 	load = nr_online_nodes;
5479 	prev_node = local_node;
5480 	nodes_clear(used_mask);
5481 
5482 	memset(node_order, 0, sizeof(node_order));
5483 	while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
5484 		/*
5485 		 * We don't want to pressure a particular node.
5486 		 * So adding penalty to the first node in same
5487 		 * distance group to make it round-robin.
5488 		 */
5489 		if (node_distance(local_node, node) !=
5490 		    node_distance(local_node, prev_node))
5491 			node_load[node] = load;
5492 
5493 		node_order[nr_nodes++] = node;
5494 		prev_node = node;
5495 		load--;
5496 	}
5497 
5498 	build_zonelists_in_node_order(pgdat, node_order, nr_nodes);
5499 	build_thisnode_zonelists(pgdat);
5500 }
5501 
5502 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
5503 /*
5504  * Return node id of node used for "local" allocations.
5505  * I.e., first node id of first zone in arg node's generic zonelist.
5506  * Used for initializing percpu 'numa_mem', which is used primarily
5507  * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
5508  */
5509 int local_memory_node(int node)
5510 {
5511 	struct zoneref *z;
5512 
5513 	z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
5514 				   gfp_zone(GFP_KERNEL),
5515 				   NULL);
5516 	return zone_to_nid(z->zone);
5517 }
5518 #endif
5519 
5520 static void setup_min_unmapped_ratio(void);
5521 static void setup_min_slab_ratio(void);
5522 #else	/* CONFIG_NUMA */
5523 
5524 static void build_zonelists(pg_data_t *pgdat)
5525 {
5526 	int node, local_node;
5527 	struct zoneref *zonerefs;
5528 	int nr_zones;
5529 
5530 	local_node = pgdat->node_id;
5531 
5532 	zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5533 	nr_zones = build_zonerefs_node(pgdat, zonerefs);
5534 	zonerefs += nr_zones;
5535 
5536 	/*
5537 	 * Now we build the zonelist so that it contains the zones
5538 	 * of all the other nodes.
5539 	 * We don't want to pressure a particular node, so when
5540 	 * building the zones for node N, we make sure that the
5541 	 * zones coming right after the local ones are those from
5542 	 * node N+1 (modulo N)
5543 	 */
5544 	for (node = local_node + 1; node < MAX_NUMNODES; node++) {
5545 		if (!node_online(node))
5546 			continue;
5547 		nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5548 		zonerefs += nr_zones;
5549 	}
5550 	for (node = 0; node < local_node; node++) {
5551 		if (!node_online(node))
5552 			continue;
5553 		nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5554 		zonerefs += nr_zones;
5555 	}
5556 
5557 	zonerefs->zone = NULL;
5558 	zonerefs->zone_idx = 0;
5559 }
5560 
5561 #endif	/* CONFIG_NUMA */
5562 
5563 /*
5564  * Boot pageset table. One per cpu which is going to be used for all
5565  * zones and all nodes. The parameters will be set in such a way
5566  * that an item put on a list will immediately be handed over to
5567  * the buddy list. This is safe since pageset manipulation is done
5568  * with interrupts disabled.
5569  *
5570  * The boot_pagesets must be kept even after bootup is complete for
5571  * unused processors and/or zones. They do play a role for bootstrapping
5572  * hotplugged processors.
5573  *
5574  * zoneinfo_show() and maybe other functions do
5575  * not check if the processor is online before following the pageset pointer.
5576  * Other parts of the kernel may not check if the zone is available.
5577  */
5578 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
5579 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
5580 static DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats);
5581 
5582 static void __build_all_zonelists(void *data)
5583 {
5584 	int nid;
5585 	int __maybe_unused cpu;
5586 	pg_data_t *self = data;
5587 	static DEFINE_SPINLOCK(lock);
5588 
5589 	spin_lock(&lock);
5590 
5591 #ifdef CONFIG_NUMA
5592 	memset(node_load, 0, sizeof(node_load));
5593 #endif
5594 
5595 	/*
5596 	 * This node is hotadded and no memory is yet present.   So just
5597 	 * building zonelists is fine - no need to touch other nodes.
5598 	 */
5599 	if (self && !node_online(self->node_id)) {
5600 		build_zonelists(self);
5601 	} else {
5602 		for_each_online_node(nid) {
5603 			pg_data_t *pgdat = NODE_DATA(nid);
5604 
5605 			build_zonelists(pgdat);
5606 		}
5607 
5608 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
5609 		/*
5610 		 * We now know the "local memory node" for each node--
5611 		 * i.e., the node of the first zone in the generic zonelist.
5612 		 * Set up numa_mem percpu variable for on-line cpus.  During
5613 		 * boot, only the boot cpu should be on-line;  we'll init the
5614 		 * secondary cpus' numa_mem as they come on-line.  During
5615 		 * node/memory hotplug, we'll fixup all on-line cpus.
5616 		 */
5617 		for_each_online_cpu(cpu)
5618 			set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
5619 #endif
5620 	}
5621 
5622 	spin_unlock(&lock);
5623 }
5624 
5625 static noinline void __init
5626 build_all_zonelists_init(void)
5627 {
5628 	int cpu;
5629 
5630 	__build_all_zonelists(NULL);
5631 
5632 	/*
5633 	 * Initialize the boot_pagesets that are going to be used
5634 	 * for bootstrapping processors. The real pagesets for
5635 	 * each zone will be allocated later when the per cpu
5636 	 * allocator is available.
5637 	 *
5638 	 * boot_pagesets are used also for bootstrapping offline
5639 	 * cpus if the system is already booted because the pagesets
5640 	 * are needed to initialize allocators on a specific cpu too.
5641 	 * F.e. the percpu allocator needs the page allocator which
5642 	 * needs the percpu allocator in order to allocate its pagesets
5643 	 * (a chicken-egg dilemma).
5644 	 */
5645 	for_each_possible_cpu(cpu)
5646 		setup_pageset(&per_cpu(boot_pageset, cpu), 0);
5647 
5648 	mminit_verify_zonelist();
5649 	cpuset_init_current_mems_allowed();
5650 }
5651 
5652 /*
5653  * unless system_state == SYSTEM_BOOTING.
5654  *
5655  * __ref due to call of __init annotated helper build_all_zonelists_init
5656  * [protected by SYSTEM_BOOTING].
5657  */
5658 void __ref build_all_zonelists(pg_data_t *pgdat)
5659 {
5660 	if (system_state == SYSTEM_BOOTING) {
5661 		build_all_zonelists_init();
5662 	} else {
5663 		__build_all_zonelists(pgdat);
5664 		/* cpuset refresh routine should be here */
5665 	}
5666 	vm_total_pages = nr_free_pagecache_pages();
5667 	/*
5668 	 * Disable grouping by mobility if the number of pages in the
5669 	 * system is too low to allow the mechanism to work. It would be
5670 	 * more accurate, but expensive to check per-zone. This check is
5671 	 * made on memory-hotadd so a system can start with mobility
5672 	 * disabled and enable it later
5673 	 */
5674 	if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
5675 		page_group_by_mobility_disabled = 1;
5676 	else
5677 		page_group_by_mobility_disabled = 0;
5678 
5679 	pr_info("Built %u zonelists, mobility grouping %s.  Total pages: %ld\n",
5680 		nr_online_nodes,
5681 		page_group_by_mobility_disabled ? "off" : "on",
5682 		vm_total_pages);
5683 #ifdef CONFIG_NUMA
5684 	pr_info("Policy zone: %s\n", zone_names[policy_zone]);
5685 #endif
5686 }
5687 
5688 /* If zone is ZONE_MOVABLE but memory is mirrored, it is an overlapped init */
5689 static bool __meminit
5690 overlap_memmap_init(unsigned long zone, unsigned long *pfn)
5691 {
5692 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5693 	static struct memblock_region *r;
5694 
5695 	if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
5696 		if (!r || *pfn >= memblock_region_memory_end_pfn(r)) {
5697 			for_each_memblock(memory, r) {
5698 				if (*pfn < memblock_region_memory_end_pfn(r))
5699 					break;
5700 			}
5701 		}
5702 		if (*pfn >= memblock_region_memory_base_pfn(r) &&
5703 		    memblock_is_mirror(r)) {
5704 			*pfn = memblock_region_memory_end_pfn(r);
5705 			return true;
5706 		}
5707 	}
5708 #endif
5709 	return false;
5710 }
5711 
5712 /*
5713  * Initially all pages are reserved - free ones are freed
5714  * up by memblock_free_all() once the early boot process is
5715  * done. Non-atomic initialization, single-pass.
5716  */
5717 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
5718 		unsigned long start_pfn, enum memmap_context context,
5719 		struct vmem_altmap *altmap)
5720 {
5721 	unsigned long pfn, end_pfn = start_pfn + size;
5722 	struct page *page;
5723 
5724 	if (highest_memmap_pfn < end_pfn - 1)
5725 		highest_memmap_pfn = end_pfn - 1;
5726 
5727 #ifdef CONFIG_ZONE_DEVICE
5728 	/*
5729 	 * Honor reservation requested by the driver for this ZONE_DEVICE
5730 	 * memory. We limit the total number of pages to initialize to just
5731 	 * those that might contain the memory mapping. We will defer the
5732 	 * ZONE_DEVICE page initialization until after we have released
5733 	 * the hotplug lock.
5734 	 */
5735 	if (zone == ZONE_DEVICE) {
5736 		if (!altmap)
5737 			return;
5738 
5739 		if (start_pfn == altmap->base_pfn)
5740 			start_pfn += altmap->reserve;
5741 		end_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
5742 	}
5743 #endif
5744 
5745 	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
5746 		/*
5747 		 * There can be holes in boot-time mem_map[]s handed to this
5748 		 * function.  They do not exist on hotplugged memory.
5749 		 */
5750 		if (context == MEMMAP_EARLY) {
5751 			if (!early_pfn_valid(pfn))
5752 				continue;
5753 			if (!early_pfn_in_nid(pfn, nid))
5754 				continue;
5755 			if (overlap_memmap_init(zone, &pfn))
5756 				continue;
5757 			if (defer_init(nid, pfn, end_pfn))
5758 				break;
5759 		}
5760 
5761 		page = pfn_to_page(pfn);
5762 		__init_single_page(page, pfn, zone, nid);
5763 		if (context == MEMMAP_HOTPLUG)
5764 			__SetPageReserved(page);
5765 
5766 		/*
5767 		 * Mark the block movable so that blocks are reserved for
5768 		 * movable at startup. This will force kernel allocations
5769 		 * to reserve their blocks rather than leaking throughout
5770 		 * the address space during boot when many long-lived
5771 		 * kernel allocations are made.
5772 		 *
5773 		 * bitmap is created for zone's valid pfn range. but memmap
5774 		 * can be created for invalid pages (for alignment)
5775 		 * check here not to call set_pageblock_migratetype() against
5776 		 * pfn out of zone.
5777 		 */
5778 		if (!(pfn & (pageblock_nr_pages - 1))) {
5779 			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
5780 			cond_resched();
5781 		}
5782 	}
5783 }
5784 
5785 #ifdef CONFIG_ZONE_DEVICE
5786 void __ref memmap_init_zone_device(struct zone *zone,
5787 				   unsigned long start_pfn,
5788 				   unsigned long size,
5789 				   struct dev_pagemap *pgmap)
5790 {
5791 	unsigned long pfn, end_pfn = start_pfn + size;
5792 	struct pglist_data *pgdat = zone->zone_pgdat;
5793 	unsigned long zone_idx = zone_idx(zone);
5794 	unsigned long start = jiffies;
5795 	int nid = pgdat->node_id;
5796 
5797 	if (WARN_ON_ONCE(!pgmap || !is_dev_zone(zone)))
5798 		return;
5799 
5800 	/*
5801 	 * The call to memmap_init_zone should have already taken care
5802 	 * of the pages reserved for the memmap, so we can just jump to
5803 	 * the end of that region and start processing the device pages.
5804 	 */
5805 	if (pgmap->altmap_valid) {
5806 		struct vmem_altmap *altmap = &pgmap->altmap;
5807 
5808 		start_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
5809 		size = end_pfn - start_pfn;
5810 	}
5811 
5812 	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
5813 		struct page *page = pfn_to_page(pfn);
5814 
5815 		__init_single_page(page, pfn, zone_idx, nid);
5816 
5817 		/*
5818 		 * Mark page reserved as it will need to wait for onlining
5819 		 * phase for it to be fully associated with a zone.
5820 		 *
5821 		 * We can use the non-atomic __set_bit operation for setting
5822 		 * the flag as we are still initializing the pages.
5823 		 */
5824 		__SetPageReserved(page);
5825 
5826 		/*
5827 		 * ZONE_DEVICE pages union ->lru with a ->pgmap back
5828 		 * pointer and hmm_data.  It is a bug if a ZONE_DEVICE
5829 		 * page is ever freed or placed on a driver-private list.
5830 		 */
5831 		page->pgmap = pgmap;
5832 		page->hmm_data = 0;
5833 
5834 		/*
5835 		 * Mark the block movable so that blocks are reserved for
5836 		 * movable at startup. This will force kernel allocations
5837 		 * to reserve their blocks rather than leaking throughout
5838 		 * the address space during boot when many long-lived
5839 		 * kernel allocations are made.
5840 		 *
5841 		 * bitmap is created for zone's valid pfn range. but memmap
5842 		 * can be created for invalid pages (for alignment)
5843 		 * check here not to call set_pageblock_migratetype() against
5844 		 * pfn out of zone.
5845 		 *
5846 		 * Please note that MEMMAP_HOTPLUG path doesn't clear memmap
5847 		 * because this is done early in sparse_add_one_section
5848 		 */
5849 		if (!(pfn & (pageblock_nr_pages - 1))) {
5850 			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
5851 			cond_resched();
5852 		}
5853 	}
5854 
5855 	pr_info("%s initialised, %lu pages in %ums\n", dev_name(pgmap->dev),
5856 		size, jiffies_to_msecs(jiffies - start));
5857 }
5858 
5859 #endif
5860 static void __meminit zone_init_free_lists(struct zone *zone)
5861 {
5862 	unsigned int order, t;
5863 	for_each_migratetype_order(order, t) {
5864 		INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
5865 		zone->free_area[order].nr_free = 0;
5866 	}
5867 }
5868 
5869 void __meminit __weak memmap_init(unsigned long size, int nid,
5870 				  unsigned long zone, unsigned long start_pfn)
5871 {
5872 	memmap_init_zone(size, nid, zone, start_pfn, MEMMAP_EARLY, NULL);
5873 }
5874 
5875 static int zone_batchsize(struct zone *zone)
5876 {
5877 #ifdef CONFIG_MMU
5878 	int batch;
5879 
5880 	/*
5881 	 * The per-cpu-pages pools are set to around 1000th of the
5882 	 * size of the zone.
5883 	 */
5884 	batch = zone_managed_pages(zone) / 1024;
5885 	/* But no more than a meg. */
5886 	if (batch * PAGE_SIZE > 1024 * 1024)
5887 		batch = (1024 * 1024) / PAGE_SIZE;
5888 	batch /= 4;		/* We effectively *= 4 below */
5889 	if (batch < 1)
5890 		batch = 1;
5891 
5892 	/*
5893 	 * Clamp the batch to a 2^n - 1 value. Having a power
5894 	 * of 2 value was found to be more likely to have
5895 	 * suboptimal cache aliasing properties in some cases.
5896 	 *
5897 	 * For example if 2 tasks are alternately allocating
5898 	 * batches of pages, one task can end up with a lot
5899 	 * of pages of one half of the possible page colors
5900 	 * and the other with pages of the other colors.
5901 	 */
5902 	batch = rounddown_pow_of_two(batch + batch/2) - 1;
5903 
5904 	return batch;
5905 
5906 #else
5907 	/* The deferral and batching of frees should be suppressed under NOMMU
5908 	 * conditions.
5909 	 *
5910 	 * The problem is that NOMMU needs to be able to allocate large chunks
5911 	 * of contiguous memory as there's no hardware page translation to
5912 	 * assemble apparent contiguous memory from discontiguous pages.
5913 	 *
5914 	 * Queueing large contiguous runs of pages for batching, however,
5915 	 * causes the pages to actually be freed in smaller chunks.  As there
5916 	 * can be a significant delay between the individual batches being
5917 	 * recycled, this leads to the once large chunks of space being
5918 	 * fragmented and becoming unavailable for high-order allocations.
5919 	 */
5920 	return 0;
5921 #endif
5922 }
5923 
5924 /*
5925  * pcp->high and pcp->batch values are related and dependent on one another:
5926  * ->batch must never be higher then ->high.
5927  * The following function updates them in a safe manner without read side
5928  * locking.
5929  *
5930  * Any new users of pcp->batch and pcp->high should ensure they can cope with
5931  * those fields changing asynchronously (acording the the above rule).
5932  *
5933  * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
5934  * outside of boot time (or some other assurance that no concurrent updaters
5935  * exist).
5936  */
5937 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
5938 		unsigned long batch)
5939 {
5940        /* start with a fail safe value for batch */
5941 	pcp->batch = 1;
5942 	smp_wmb();
5943 
5944        /* Update high, then batch, in order */
5945 	pcp->high = high;
5946 	smp_wmb();
5947 
5948 	pcp->batch = batch;
5949 }
5950 
5951 /* a companion to pageset_set_high() */
5952 static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
5953 {
5954 	pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
5955 }
5956 
5957 static void pageset_init(struct per_cpu_pageset *p)
5958 {
5959 	struct per_cpu_pages *pcp;
5960 	int migratetype;
5961 
5962 	memset(p, 0, sizeof(*p));
5963 
5964 	pcp = &p->pcp;
5965 	for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
5966 		INIT_LIST_HEAD(&pcp->lists[migratetype]);
5967 }
5968 
5969 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
5970 {
5971 	pageset_init(p);
5972 	pageset_set_batch(p, batch);
5973 }
5974 
5975 /*
5976  * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
5977  * to the value high for the pageset p.
5978  */
5979 static void pageset_set_high(struct per_cpu_pageset *p,
5980 				unsigned long high)
5981 {
5982 	unsigned long batch = max(1UL, high / 4);
5983 	if ((high / 4) > (PAGE_SHIFT * 8))
5984 		batch = PAGE_SHIFT * 8;
5985 
5986 	pageset_update(&p->pcp, high, batch);
5987 }
5988 
5989 static void pageset_set_high_and_batch(struct zone *zone,
5990 				       struct per_cpu_pageset *pcp)
5991 {
5992 	if (percpu_pagelist_fraction)
5993 		pageset_set_high(pcp,
5994 			(zone_managed_pages(zone) /
5995 				percpu_pagelist_fraction));
5996 	else
5997 		pageset_set_batch(pcp, zone_batchsize(zone));
5998 }
5999 
6000 static void __meminit zone_pageset_init(struct zone *zone, int cpu)
6001 {
6002 	struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
6003 
6004 	pageset_init(pcp);
6005 	pageset_set_high_and_batch(zone, pcp);
6006 }
6007 
6008 void __meminit setup_zone_pageset(struct zone *zone)
6009 {
6010 	int cpu;
6011 	zone->pageset = alloc_percpu(struct per_cpu_pageset);
6012 	for_each_possible_cpu(cpu)
6013 		zone_pageset_init(zone, cpu);
6014 }
6015 
6016 /*
6017  * Allocate per cpu pagesets and initialize them.
6018  * Before this call only boot pagesets were available.
6019  */
6020 void __init setup_per_cpu_pageset(void)
6021 {
6022 	struct pglist_data *pgdat;
6023 	struct zone *zone;
6024 
6025 	for_each_populated_zone(zone)
6026 		setup_zone_pageset(zone);
6027 
6028 	for_each_online_pgdat(pgdat)
6029 		pgdat->per_cpu_nodestats =
6030 			alloc_percpu(struct per_cpu_nodestat);
6031 }
6032 
6033 static __meminit void zone_pcp_init(struct zone *zone)
6034 {
6035 	/*
6036 	 * per cpu subsystem is not up at this point. The following code
6037 	 * relies on the ability of the linker to provide the
6038 	 * offset of a (static) per cpu variable into the per cpu area.
6039 	 */
6040 	zone->pageset = &boot_pageset;
6041 
6042 	if (populated_zone(zone))
6043 		printk(KERN_DEBUG "  %s zone: %lu pages, LIFO batch:%u\n",
6044 			zone->name, zone->present_pages,
6045 					 zone_batchsize(zone));
6046 }
6047 
6048 void __meminit init_currently_empty_zone(struct zone *zone,
6049 					unsigned long zone_start_pfn,
6050 					unsigned long size)
6051 {
6052 	struct pglist_data *pgdat = zone->zone_pgdat;
6053 	int zone_idx = zone_idx(zone) + 1;
6054 
6055 	if (zone_idx > pgdat->nr_zones)
6056 		pgdat->nr_zones = zone_idx;
6057 
6058 	zone->zone_start_pfn = zone_start_pfn;
6059 
6060 	mminit_dprintk(MMINIT_TRACE, "memmap_init",
6061 			"Initialising map node %d zone %lu pfns %lu -> %lu\n",
6062 			pgdat->node_id,
6063 			(unsigned long)zone_idx(zone),
6064 			zone_start_pfn, (zone_start_pfn + size));
6065 
6066 	zone_init_free_lists(zone);
6067 	zone->initialized = 1;
6068 }
6069 
6070 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
6071 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
6072 
6073 /*
6074  * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
6075  */
6076 int __meminit __early_pfn_to_nid(unsigned long pfn,
6077 					struct mminit_pfnnid_cache *state)
6078 {
6079 	unsigned long start_pfn, end_pfn;
6080 	int nid;
6081 
6082 	if (state->last_start <= pfn && pfn < state->last_end)
6083 		return state->last_nid;
6084 
6085 	nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
6086 	if (nid != NUMA_NO_NODE) {
6087 		state->last_start = start_pfn;
6088 		state->last_end = end_pfn;
6089 		state->last_nid = nid;
6090 	}
6091 
6092 	return nid;
6093 }
6094 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
6095 
6096 /**
6097  * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
6098  * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
6099  * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
6100  *
6101  * If an architecture guarantees that all ranges registered contain no holes
6102  * and may be freed, this this function may be used instead of calling
6103  * memblock_free_early_nid() manually.
6104  */
6105 void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
6106 {
6107 	unsigned long start_pfn, end_pfn;
6108 	int i, this_nid;
6109 
6110 	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
6111 		start_pfn = min(start_pfn, max_low_pfn);
6112 		end_pfn = min(end_pfn, max_low_pfn);
6113 
6114 		if (start_pfn < end_pfn)
6115 			memblock_free_early_nid(PFN_PHYS(start_pfn),
6116 					(end_pfn - start_pfn) << PAGE_SHIFT,
6117 					this_nid);
6118 	}
6119 }
6120 
6121 /**
6122  * sparse_memory_present_with_active_regions - Call memory_present for each active range
6123  * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
6124  *
6125  * If an architecture guarantees that all ranges registered contain no holes and may
6126  * be freed, this function may be used instead of calling memory_present() manually.
6127  */
6128 void __init sparse_memory_present_with_active_regions(int nid)
6129 {
6130 	unsigned long start_pfn, end_pfn;
6131 	int i, this_nid;
6132 
6133 	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
6134 		memory_present(this_nid, start_pfn, end_pfn);
6135 }
6136 
6137 /**
6138  * get_pfn_range_for_nid - Return the start and end page frames for a node
6139  * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
6140  * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
6141  * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
6142  *
6143  * It returns the start and end page frame of a node based on information
6144  * provided by memblock_set_node(). If called for a node
6145  * with no available memory, a warning is printed and the start and end
6146  * PFNs will be 0.
6147  */
6148 void __init get_pfn_range_for_nid(unsigned int nid,
6149 			unsigned long *start_pfn, unsigned long *end_pfn)
6150 {
6151 	unsigned long this_start_pfn, this_end_pfn;
6152 	int i;
6153 
6154 	*start_pfn = -1UL;
6155 	*end_pfn = 0;
6156 
6157 	for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
6158 		*start_pfn = min(*start_pfn, this_start_pfn);
6159 		*end_pfn = max(*end_pfn, this_end_pfn);
6160 	}
6161 
6162 	if (*start_pfn == -1UL)
6163 		*start_pfn = 0;
6164 }
6165 
6166 /*
6167  * This finds a zone that can be used for ZONE_MOVABLE pages. The
6168  * assumption is made that zones within a node are ordered in monotonic
6169  * increasing memory addresses so that the "highest" populated zone is used
6170  */
6171 static void __init find_usable_zone_for_movable(void)
6172 {
6173 	int zone_index;
6174 	for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
6175 		if (zone_index == ZONE_MOVABLE)
6176 			continue;
6177 
6178 		if (arch_zone_highest_possible_pfn[zone_index] >
6179 				arch_zone_lowest_possible_pfn[zone_index])
6180 			break;
6181 	}
6182 
6183 	VM_BUG_ON(zone_index == -1);
6184 	movable_zone = zone_index;
6185 }
6186 
6187 /*
6188  * The zone ranges provided by the architecture do not include ZONE_MOVABLE
6189  * because it is sized independent of architecture. Unlike the other zones,
6190  * the starting point for ZONE_MOVABLE is not fixed. It may be different
6191  * in each node depending on the size of each node and how evenly kernelcore
6192  * is distributed. This helper function adjusts the zone ranges
6193  * provided by the architecture for a given node by using the end of the
6194  * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
6195  * zones within a node are in order of monotonic increases memory addresses
6196  */
6197 static void __init adjust_zone_range_for_zone_movable(int nid,
6198 					unsigned long zone_type,
6199 					unsigned long node_start_pfn,
6200 					unsigned long node_end_pfn,
6201 					unsigned long *zone_start_pfn,
6202 					unsigned long *zone_end_pfn)
6203 {
6204 	/* Only adjust if ZONE_MOVABLE is on this node */
6205 	if (zone_movable_pfn[nid]) {
6206 		/* Size ZONE_MOVABLE */
6207 		if (zone_type == ZONE_MOVABLE) {
6208 			*zone_start_pfn = zone_movable_pfn[nid];
6209 			*zone_end_pfn = min(node_end_pfn,
6210 				arch_zone_highest_possible_pfn[movable_zone]);
6211 
6212 		/* Adjust for ZONE_MOVABLE starting within this range */
6213 		} else if (!mirrored_kernelcore &&
6214 			*zone_start_pfn < zone_movable_pfn[nid] &&
6215 			*zone_end_pfn > zone_movable_pfn[nid]) {
6216 			*zone_end_pfn = zone_movable_pfn[nid];
6217 
6218 		/* Check if this whole range is within ZONE_MOVABLE */
6219 		} else if (*zone_start_pfn >= zone_movable_pfn[nid])
6220 			*zone_start_pfn = *zone_end_pfn;
6221 	}
6222 }
6223 
6224 /*
6225  * Return the number of pages a zone spans in a node, including holes
6226  * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
6227  */
6228 static unsigned long __init zone_spanned_pages_in_node(int nid,
6229 					unsigned long zone_type,
6230 					unsigned long node_start_pfn,
6231 					unsigned long node_end_pfn,
6232 					unsigned long *zone_start_pfn,
6233 					unsigned long *zone_end_pfn,
6234 					unsigned long *ignored)
6235 {
6236 	/* When hotadd a new node from cpu_up(), the node should be empty */
6237 	if (!node_start_pfn && !node_end_pfn)
6238 		return 0;
6239 
6240 	/* Get the start and end of the zone */
6241 	*zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
6242 	*zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
6243 	adjust_zone_range_for_zone_movable(nid, zone_type,
6244 				node_start_pfn, node_end_pfn,
6245 				zone_start_pfn, zone_end_pfn);
6246 
6247 	/* Check that this node has pages within the zone's required range */
6248 	if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
6249 		return 0;
6250 
6251 	/* Move the zone boundaries inside the node if necessary */
6252 	*zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
6253 	*zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
6254 
6255 	/* Return the spanned pages */
6256 	return *zone_end_pfn - *zone_start_pfn;
6257 }
6258 
6259 /*
6260  * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
6261  * then all holes in the requested range will be accounted for.
6262  */
6263 unsigned long __init __absent_pages_in_range(int nid,
6264 				unsigned long range_start_pfn,
6265 				unsigned long range_end_pfn)
6266 {
6267 	unsigned long nr_absent = range_end_pfn - range_start_pfn;
6268 	unsigned long start_pfn, end_pfn;
6269 	int i;
6270 
6271 	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
6272 		start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
6273 		end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
6274 		nr_absent -= end_pfn - start_pfn;
6275 	}
6276 	return nr_absent;
6277 }
6278 
6279 /**
6280  * absent_pages_in_range - Return number of page frames in holes within a range
6281  * @start_pfn: The start PFN to start searching for holes
6282  * @end_pfn: The end PFN to stop searching for holes
6283  *
6284  * Return: the number of pages frames in memory holes within a range.
6285  */
6286 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
6287 							unsigned long end_pfn)
6288 {
6289 	return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
6290 }
6291 
6292 /* Return the number of page frames in holes in a zone on a node */
6293 static unsigned long __init zone_absent_pages_in_node(int nid,
6294 					unsigned long zone_type,
6295 					unsigned long node_start_pfn,
6296 					unsigned long node_end_pfn,
6297 					unsigned long *ignored)
6298 {
6299 	unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
6300 	unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
6301 	unsigned long zone_start_pfn, zone_end_pfn;
6302 	unsigned long nr_absent;
6303 
6304 	/* When hotadd a new node from cpu_up(), the node should be empty */
6305 	if (!node_start_pfn && !node_end_pfn)
6306 		return 0;
6307 
6308 	zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
6309 	zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
6310 
6311 	adjust_zone_range_for_zone_movable(nid, zone_type,
6312 			node_start_pfn, node_end_pfn,
6313 			&zone_start_pfn, &zone_end_pfn);
6314 	nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
6315 
6316 	/*
6317 	 * ZONE_MOVABLE handling.
6318 	 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
6319 	 * and vice versa.
6320 	 */
6321 	if (mirrored_kernelcore && zone_movable_pfn[nid]) {
6322 		unsigned long start_pfn, end_pfn;
6323 		struct memblock_region *r;
6324 
6325 		for_each_memblock(memory, r) {
6326 			start_pfn = clamp(memblock_region_memory_base_pfn(r),
6327 					  zone_start_pfn, zone_end_pfn);
6328 			end_pfn = clamp(memblock_region_memory_end_pfn(r),
6329 					zone_start_pfn, zone_end_pfn);
6330 
6331 			if (zone_type == ZONE_MOVABLE &&
6332 			    memblock_is_mirror(r))
6333 				nr_absent += end_pfn - start_pfn;
6334 
6335 			if (zone_type == ZONE_NORMAL &&
6336 			    !memblock_is_mirror(r))
6337 				nr_absent += end_pfn - start_pfn;
6338 		}
6339 	}
6340 
6341 	return nr_absent;
6342 }
6343 
6344 #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6345 static inline unsigned long __init zone_spanned_pages_in_node(int nid,
6346 					unsigned long zone_type,
6347 					unsigned long node_start_pfn,
6348 					unsigned long node_end_pfn,
6349 					unsigned long *zone_start_pfn,
6350 					unsigned long *zone_end_pfn,
6351 					unsigned long *zones_size)
6352 {
6353 	unsigned int zone;
6354 
6355 	*zone_start_pfn = node_start_pfn;
6356 	for (zone = 0; zone < zone_type; zone++)
6357 		*zone_start_pfn += zones_size[zone];
6358 
6359 	*zone_end_pfn = *zone_start_pfn + zones_size[zone_type];
6360 
6361 	return zones_size[zone_type];
6362 }
6363 
6364 static inline unsigned long __init zone_absent_pages_in_node(int nid,
6365 						unsigned long zone_type,
6366 						unsigned long node_start_pfn,
6367 						unsigned long node_end_pfn,
6368 						unsigned long *zholes_size)
6369 {
6370 	if (!zholes_size)
6371 		return 0;
6372 
6373 	return zholes_size[zone_type];
6374 }
6375 
6376 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6377 
6378 static void __init calculate_node_totalpages(struct pglist_data *pgdat,
6379 						unsigned long node_start_pfn,
6380 						unsigned long node_end_pfn,
6381 						unsigned long *zones_size,
6382 						unsigned long *zholes_size)
6383 {
6384 	unsigned long realtotalpages = 0, totalpages = 0;
6385 	enum zone_type i;
6386 
6387 	for (i = 0; i < MAX_NR_ZONES; i++) {
6388 		struct zone *zone = pgdat->node_zones + i;
6389 		unsigned long zone_start_pfn, zone_end_pfn;
6390 		unsigned long size, real_size;
6391 
6392 		size = zone_spanned_pages_in_node(pgdat->node_id, i,
6393 						  node_start_pfn,
6394 						  node_end_pfn,
6395 						  &zone_start_pfn,
6396 						  &zone_end_pfn,
6397 						  zones_size);
6398 		real_size = size - zone_absent_pages_in_node(pgdat->node_id, i,
6399 						  node_start_pfn, node_end_pfn,
6400 						  zholes_size);
6401 		if (size)
6402 			zone->zone_start_pfn = zone_start_pfn;
6403 		else
6404 			zone->zone_start_pfn = 0;
6405 		zone->spanned_pages = size;
6406 		zone->present_pages = real_size;
6407 
6408 		totalpages += size;
6409 		realtotalpages += real_size;
6410 	}
6411 
6412 	pgdat->node_spanned_pages = totalpages;
6413 	pgdat->node_present_pages = realtotalpages;
6414 	printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
6415 							realtotalpages);
6416 }
6417 
6418 #ifndef CONFIG_SPARSEMEM
6419 /*
6420  * Calculate the size of the zone->blockflags rounded to an unsigned long
6421  * Start by making sure zonesize is a multiple of pageblock_order by rounding
6422  * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
6423  * round what is now in bits to nearest long in bits, then return it in
6424  * bytes.
6425  */
6426 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
6427 {
6428 	unsigned long usemapsize;
6429 
6430 	zonesize += zone_start_pfn & (pageblock_nr_pages-1);
6431 	usemapsize = roundup(zonesize, pageblock_nr_pages);
6432 	usemapsize = usemapsize >> pageblock_order;
6433 	usemapsize *= NR_PAGEBLOCK_BITS;
6434 	usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
6435 
6436 	return usemapsize / 8;
6437 }
6438 
6439 static void __ref setup_usemap(struct pglist_data *pgdat,
6440 				struct zone *zone,
6441 				unsigned long zone_start_pfn,
6442 				unsigned long zonesize)
6443 {
6444 	unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
6445 	zone->pageblock_flags = NULL;
6446 	if (usemapsize) {
6447 		zone->pageblock_flags =
6448 			memblock_alloc_node(usemapsize, SMP_CACHE_BYTES,
6449 					    pgdat->node_id);
6450 		if (!zone->pageblock_flags)
6451 			panic("Failed to allocate %ld bytes for zone %s pageblock flags on node %d\n",
6452 			      usemapsize, zone->name, pgdat->node_id);
6453 	}
6454 }
6455 #else
6456 static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
6457 				unsigned long zone_start_pfn, unsigned long zonesize) {}
6458 #endif /* CONFIG_SPARSEMEM */
6459 
6460 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
6461 
6462 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
6463 void __init set_pageblock_order(void)
6464 {
6465 	unsigned int order;
6466 
6467 	/* Check that pageblock_nr_pages has not already been setup */
6468 	if (pageblock_order)
6469 		return;
6470 
6471 	if (HPAGE_SHIFT > PAGE_SHIFT)
6472 		order = HUGETLB_PAGE_ORDER;
6473 	else
6474 		order = MAX_ORDER - 1;
6475 
6476 	/*
6477 	 * Assume the largest contiguous order of interest is a huge page.
6478 	 * This value may be variable depending on boot parameters on IA64 and
6479 	 * powerpc.
6480 	 */
6481 	pageblock_order = order;
6482 }
6483 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
6484 
6485 /*
6486  * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
6487  * is unused as pageblock_order is set at compile-time. See
6488  * include/linux/pageblock-flags.h for the values of pageblock_order based on
6489  * the kernel config
6490  */
6491 void __init set_pageblock_order(void)
6492 {
6493 }
6494 
6495 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
6496 
6497 static unsigned long __init calc_memmap_size(unsigned long spanned_pages,
6498 						unsigned long present_pages)
6499 {
6500 	unsigned long pages = spanned_pages;
6501 
6502 	/*
6503 	 * Provide a more accurate estimation if there are holes within
6504 	 * the zone and SPARSEMEM is in use. If there are holes within the
6505 	 * zone, each populated memory region may cost us one or two extra
6506 	 * memmap pages due to alignment because memmap pages for each
6507 	 * populated regions may not be naturally aligned on page boundary.
6508 	 * So the (present_pages >> 4) heuristic is a tradeoff for that.
6509 	 */
6510 	if (spanned_pages > present_pages + (present_pages >> 4) &&
6511 	    IS_ENABLED(CONFIG_SPARSEMEM))
6512 		pages = present_pages;
6513 
6514 	return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
6515 }
6516 
6517 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
6518 static void pgdat_init_split_queue(struct pglist_data *pgdat)
6519 {
6520 	spin_lock_init(&pgdat->split_queue_lock);
6521 	INIT_LIST_HEAD(&pgdat->split_queue);
6522 	pgdat->split_queue_len = 0;
6523 }
6524 #else
6525 static void pgdat_init_split_queue(struct pglist_data *pgdat) {}
6526 #endif
6527 
6528 #ifdef CONFIG_COMPACTION
6529 static void pgdat_init_kcompactd(struct pglist_data *pgdat)
6530 {
6531 	init_waitqueue_head(&pgdat->kcompactd_wait);
6532 }
6533 #else
6534 static void pgdat_init_kcompactd(struct pglist_data *pgdat) {}
6535 #endif
6536 
6537 static void __meminit pgdat_init_internals(struct pglist_data *pgdat)
6538 {
6539 	pgdat_resize_init(pgdat);
6540 
6541 	pgdat_init_split_queue(pgdat);
6542 	pgdat_init_kcompactd(pgdat);
6543 
6544 	init_waitqueue_head(&pgdat->kswapd_wait);
6545 	init_waitqueue_head(&pgdat->pfmemalloc_wait);
6546 
6547 	pgdat_page_ext_init(pgdat);
6548 	spin_lock_init(&pgdat->lru_lock);
6549 	lruvec_init(node_lruvec(pgdat));
6550 }
6551 
6552 static void __meminit zone_init_internals(struct zone *zone, enum zone_type idx, int nid,
6553 							unsigned long remaining_pages)
6554 {
6555 	atomic_long_set(&zone->managed_pages, remaining_pages);
6556 	zone_set_nid(zone, nid);
6557 	zone->name = zone_names[idx];
6558 	zone->zone_pgdat = NODE_DATA(nid);
6559 	spin_lock_init(&zone->lock);
6560 	zone_seqlock_init(zone);
6561 	zone_pcp_init(zone);
6562 }
6563 
6564 /*
6565  * Set up the zone data structures
6566  * - init pgdat internals
6567  * - init all zones belonging to this node
6568  *
6569  * NOTE: this function is only called during memory hotplug
6570  */
6571 #ifdef CONFIG_MEMORY_HOTPLUG
6572 void __ref free_area_init_core_hotplug(int nid)
6573 {
6574 	enum zone_type z;
6575 	pg_data_t *pgdat = NODE_DATA(nid);
6576 
6577 	pgdat_init_internals(pgdat);
6578 	for (z = 0; z < MAX_NR_ZONES; z++)
6579 		zone_init_internals(&pgdat->node_zones[z], z, nid, 0);
6580 }
6581 #endif
6582 
6583 /*
6584  * Set up the zone data structures:
6585  *   - mark all pages reserved
6586  *   - mark all memory queues empty
6587  *   - clear the memory bitmaps
6588  *
6589  * NOTE: pgdat should get zeroed by caller.
6590  * NOTE: this function is only called during early init.
6591  */
6592 static void __init free_area_init_core(struct pglist_data *pgdat)
6593 {
6594 	enum zone_type j;
6595 	int nid = pgdat->node_id;
6596 
6597 	pgdat_init_internals(pgdat);
6598 	pgdat->per_cpu_nodestats = &boot_nodestats;
6599 
6600 	for (j = 0; j < MAX_NR_ZONES; j++) {
6601 		struct zone *zone = pgdat->node_zones + j;
6602 		unsigned long size, freesize, memmap_pages;
6603 		unsigned long zone_start_pfn = zone->zone_start_pfn;
6604 
6605 		size = zone->spanned_pages;
6606 		freesize = zone->present_pages;
6607 
6608 		/*
6609 		 * Adjust freesize so that it accounts for how much memory
6610 		 * is used by this zone for memmap. This affects the watermark
6611 		 * and per-cpu initialisations
6612 		 */
6613 		memmap_pages = calc_memmap_size(size, freesize);
6614 		if (!is_highmem_idx(j)) {
6615 			if (freesize >= memmap_pages) {
6616 				freesize -= memmap_pages;
6617 				if (memmap_pages)
6618 					printk(KERN_DEBUG
6619 					       "  %s zone: %lu pages used for memmap\n",
6620 					       zone_names[j], memmap_pages);
6621 			} else
6622 				pr_warn("  %s zone: %lu pages exceeds freesize %lu\n",
6623 					zone_names[j], memmap_pages, freesize);
6624 		}
6625 
6626 		/* Account for reserved pages */
6627 		if (j == 0 && freesize > dma_reserve) {
6628 			freesize -= dma_reserve;
6629 			printk(KERN_DEBUG "  %s zone: %lu pages reserved\n",
6630 					zone_names[0], dma_reserve);
6631 		}
6632 
6633 		if (!is_highmem_idx(j))
6634 			nr_kernel_pages += freesize;
6635 		/* Charge for highmem memmap if there are enough kernel pages */
6636 		else if (nr_kernel_pages > memmap_pages * 2)
6637 			nr_kernel_pages -= memmap_pages;
6638 		nr_all_pages += freesize;
6639 
6640 		/*
6641 		 * Set an approximate value for lowmem here, it will be adjusted
6642 		 * when the bootmem allocator frees pages into the buddy system.
6643 		 * And all highmem pages will be managed by the buddy system.
6644 		 */
6645 		zone_init_internals(zone, j, nid, freesize);
6646 
6647 		if (!size)
6648 			continue;
6649 
6650 		set_pageblock_order();
6651 		setup_usemap(pgdat, zone, zone_start_pfn, size);
6652 		init_currently_empty_zone(zone, zone_start_pfn, size);
6653 		memmap_init(size, nid, j, zone_start_pfn);
6654 	}
6655 }
6656 
6657 #ifdef CONFIG_FLAT_NODE_MEM_MAP
6658 static void __ref alloc_node_mem_map(struct pglist_data *pgdat)
6659 {
6660 	unsigned long __maybe_unused start = 0;
6661 	unsigned long __maybe_unused offset = 0;
6662 
6663 	/* Skip empty nodes */
6664 	if (!pgdat->node_spanned_pages)
6665 		return;
6666 
6667 	start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
6668 	offset = pgdat->node_start_pfn - start;
6669 	/* ia64 gets its own node_mem_map, before this, without bootmem */
6670 	if (!pgdat->node_mem_map) {
6671 		unsigned long size, end;
6672 		struct page *map;
6673 
6674 		/*
6675 		 * The zone's endpoints aren't required to be MAX_ORDER
6676 		 * aligned but the node_mem_map endpoints must be in order
6677 		 * for the buddy allocator to function correctly.
6678 		 */
6679 		end = pgdat_end_pfn(pgdat);
6680 		end = ALIGN(end, MAX_ORDER_NR_PAGES);
6681 		size =  (end - start) * sizeof(struct page);
6682 		map = memblock_alloc_node(size, SMP_CACHE_BYTES,
6683 					  pgdat->node_id);
6684 		if (!map)
6685 			panic("Failed to allocate %ld bytes for node %d memory map\n",
6686 			      size, pgdat->node_id);
6687 		pgdat->node_mem_map = map + offset;
6688 	}
6689 	pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n",
6690 				__func__, pgdat->node_id, (unsigned long)pgdat,
6691 				(unsigned long)pgdat->node_mem_map);
6692 #ifndef CONFIG_NEED_MULTIPLE_NODES
6693 	/*
6694 	 * With no DISCONTIG, the global mem_map is just set as node 0's
6695 	 */
6696 	if (pgdat == NODE_DATA(0)) {
6697 		mem_map = NODE_DATA(0)->node_mem_map;
6698 #if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM)
6699 		if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
6700 			mem_map -= offset;
6701 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6702 	}
6703 #endif
6704 }
6705 #else
6706 static void __ref alloc_node_mem_map(struct pglist_data *pgdat) { }
6707 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
6708 
6709 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
6710 static inline void pgdat_set_deferred_range(pg_data_t *pgdat)
6711 {
6712 	pgdat->first_deferred_pfn = ULONG_MAX;
6713 }
6714 #else
6715 static inline void pgdat_set_deferred_range(pg_data_t *pgdat) {}
6716 #endif
6717 
6718 void __init free_area_init_node(int nid, unsigned long *zones_size,
6719 				   unsigned long node_start_pfn,
6720 				   unsigned long *zholes_size)
6721 {
6722 	pg_data_t *pgdat = NODE_DATA(nid);
6723 	unsigned long start_pfn = 0;
6724 	unsigned long end_pfn = 0;
6725 
6726 	/* pg_data_t should be reset to zero when it's allocated */
6727 	WARN_ON(pgdat->nr_zones || pgdat->kswapd_classzone_idx);
6728 
6729 	pgdat->node_id = nid;
6730 	pgdat->node_start_pfn = node_start_pfn;
6731 	pgdat->per_cpu_nodestats = NULL;
6732 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
6733 	get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
6734 	pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
6735 		(u64)start_pfn << PAGE_SHIFT,
6736 		end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
6737 #else
6738 	start_pfn = node_start_pfn;
6739 #endif
6740 	calculate_node_totalpages(pgdat, start_pfn, end_pfn,
6741 				  zones_size, zholes_size);
6742 
6743 	alloc_node_mem_map(pgdat);
6744 	pgdat_set_deferred_range(pgdat);
6745 
6746 	free_area_init_core(pgdat);
6747 }
6748 
6749 #if !defined(CONFIG_FLAT_NODE_MEM_MAP)
6750 /*
6751  * Zero all valid struct pages in range [spfn, epfn), return number of struct
6752  * pages zeroed
6753  */
6754 static u64 zero_pfn_range(unsigned long spfn, unsigned long epfn)
6755 {
6756 	unsigned long pfn;
6757 	u64 pgcnt = 0;
6758 
6759 	for (pfn = spfn; pfn < epfn; pfn++) {
6760 		if (!pfn_valid(ALIGN_DOWN(pfn, pageblock_nr_pages))) {
6761 			pfn = ALIGN_DOWN(pfn, pageblock_nr_pages)
6762 				+ pageblock_nr_pages - 1;
6763 			continue;
6764 		}
6765 		mm_zero_struct_page(pfn_to_page(pfn));
6766 		pgcnt++;
6767 	}
6768 
6769 	return pgcnt;
6770 }
6771 
6772 /*
6773  * Only struct pages that are backed by physical memory are zeroed and
6774  * initialized by going through __init_single_page(). But, there are some
6775  * struct pages which are reserved in memblock allocator and their fields
6776  * may be accessed (for example page_to_pfn() on some configuration accesses
6777  * flags). We must explicitly zero those struct pages.
6778  *
6779  * This function also addresses a similar issue where struct pages are left
6780  * uninitialized because the physical address range is not covered by
6781  * memblock.memory or memblock.reserved. That could happen when memblock
6782  * layout is manually configured via memmap=.
6783  */
6784 void __init zero_resv_unavail(void)
6785 {
6786 	phys_addr_t start, end;
6787 	u64 i, pgcnt;
6788 	phys_addr_t next = 0;
6789 
6790 	/*
6791 	 * Loop through unavailable ranges not covered by memblock.memory.
6792 	 */
6793 	pgcnt = 0;
6794 	for_each_mem_range(i, &memblock.memory, NULL,
6795 			NUMA_NO_NODE, MEMBLOCK_NONE, &start, &end, NULL) {
6796 		if (next < start)
6797 			pgcnt += zero_pfn_range(PFN_DOWN(next), PFN_UP(start));
6798 		next = end;
6799 	}
6800 	pgcnt += zero_pfn_range(PFN_DOWN(next), max_pfn);
6801 
6802 	/*
6803 	 * Struct pages that do not have backing memory. This could be because
6804 	 * firmware is using some of this memory, or for some other reasons.
6805 	 */
6806 	if (pgcnt)
6807 		pr_info("Zeroed struct page in unavailable ranges: %lld pages", pgcnt);
6808 }
6809 #endif /* !CONFIG_FLAT_NODE_MEM_MAP */
6810 
6811 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
6812 
6813 #if MAX_NUMNODES > 1
6814 /*
6815  * Figure out the number of possible node ids.
6816  */
6817 void __init setup_nr_node_ids(void)
6818 {
6819 	unsigned int highest;
6820 
6821 	highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
6822 	nr_node_ids = highest + 1;
6823 }
6824 #endif
6825 
6826 /**
6827  * node_map_pfn_alignment - determine the maximum internode alignment
6828  *
6829  * This function should be called after node map is populated and sorted.
6830  * It calculates the maximum power of two alignment which can distinguish
6831  * all the nodes.
6832  *
6833  * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
6834  * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)).  If the
6835  * nodes are shifted by 256MiB, 256MiB.  Note that if only the last node is
6836  * shifted, 1GiB is enough and this function will indicate so.
6837  *
6838  * This is used to test whether pfn -> nid mapping of the chosen memory
6839  * model has fine enough granularity to avoid incorrect mapping for the
6840  * populated node map.
6841  *
6842  * Return: the determined alignment in pfn's.  0 if there is no alignment
6843  * requirement (single node).
6844  */
6845 unsigned long __init node_map_pfn_alignment(void)
6846 {
6847 	unsigned long accl_mask = 0, last_end = 0;
6848 	unsigned long start, end, mask;
6849 	int last_nid = NUMA_NO_NODE;
6850 	int i, nid;
6851 
6852 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
6853 		if (!start || last_nid < 0 || last_nid == nid) {
6854 			last_nid = nid;
6855 			last_end = end;
6856 			continue;
6857 		}
6858 
6859 		/*
6860 		 * Start with a mask granular enough to pin-point to the
6861 		 * start pfn and tick off bits one-by-one until it becomes
6862 		 * too coarse to separate the current node from the last.
6863 		 */
6864 		mask = ~((1 << __ffs(start)) - 1);
6865 		while (mask && last_end <= (start & (mask << 1)))
6866 			mask <<= 1;
6867 
6868 		/* accumulate all internode masks */
6869 		accl_mask |= mask;
6870 	}
6871 
6872 	/* convert mask to number of pages */
6873 	return ~accl_mask + 1;
6874 }
6875 
6876 /* Find the lowest pfn for a node */
6877 static unsigned long __init find_min_pfn_for_node(int nid)
6878 {
6879 	unsigned long min_pfn = ULONG_MAX;
6880 	unsigned long start_pfn;
6881 	int i;
6882 
6883 	for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
6884 		min_pfn = min(min_pfn, start_pfn);
6885 
6886 	if (min_pfn == ULONG_MAX) {
6887 		pr_warn("Could not find start_pfn for node %d\n", nid);
6888 		return 0;
6889 	}
6890 
6891 	return min_pfn;
6892 }
6893 
6894 /**
6895  * find_min_pfn_with_active_regions - Find the minimum PFN registered
6896  *
6897  * Return: the minimum PFN based on information provided via
6898  * memblock_set_node().
6899  */
6900 unsigned long __init find_min_pfn_with_active_regions(void)
6901 {
6902 	return find_min_pfn_for_node(MAX_NUMNODES);
6903 }
6904 
6905 /*
6906  * early_calculate_totalpages()
6907  * Sum pages in active regions for movable zone.
6908  * Populate N_MEMORY for calculating usable_nodes.
6909  */
6910 static unsigned long __init early_calculate_totalpages(void)
6911 {
6912 	unsigned long totalpages = 0;
6913 	unsigned long start_pfn, end_pfn;
6914 	int i, nid;
6915 
6916 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
6917 		unsigned long pages = end_pfn - start_pfn;
6918 
6919 		totalpages += pages;
6920 		if (pages)
6921 			node_set_state(nid, N_MEMORY);
6922 	}
6923 	return totalpages;
6924 }
6925 
6926 /*
6927  * Find the PFN the Movable zone begins in each node. Kernel memory
6928  * is spread evenly between nodes as long as the nodes have enough
6929  * memory. When they don't, some nodes will have more kernelcore than
6930  * others
6931  */
6932 static void __init find_zone_movable_pfns_for_nodes(void)
6933 {
6934 	int i, nid;
6935 	unsigned long usable_startpfn;
6936 	unsigned long kernelcore_node, kernelcore_remaining;
6937 	/* save the state before borrow the nodemask */
6938 	nodemask_t saved_node_state = node_states[N_MEMORY];
6939 	unsigned long totalpages = early_calculate_totalpages();
6940 	int usable_nodes = nodes_weight(node_states[N_MEMORY]);
6941 	struct memblock_region *r;
6942 
6943 	/* Need to find movable_zone earlier when movable_node is specified. */
6944 	find_usable_zone_for_movable();
6945 
6946 	/*
6947 	 * If movable_node is specified, ignore kernelcore and movablecore
6948 	 * options.
6949 	 */
6950 	if (movable_node_is_enabled()) {
6951 		for_each_memblock(memory, r) {
6952 			if (!memblock_is_hotpluggable(r))
6953 				continue;
6954 
6955 			nid = r->nid;
6956 
6957 			usable_startpfn = PFN_DOWN(r->base);
6958 			zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
6959 				min(usable_startpfn, zone_movable_pfn[nid]) :
6960 				usable_startpfn;
6961 		}
6962 
6963 		goto out2;
6964 	}
6965 
6966 	/*
6967 	 * If kernelcore=mirror is specified, ignore movablecore option
6968 	 */
6969 	if (mirrored_kernelcore) {
6970 		bool mem_below_4gb_not_mirrored = false;
6971 
6972 		for_each_memblock(memory, r) {
6973 			if (memblock_is_mirror(r))
6974 				continue;
6975 
6976 			nid = r->nid;
6977 
6978 			usable_startpfn = memblock_region_memory_base_pfn(r);
6979 
6980 			if (usable_startpfn < 0x100000) {
6981 				mem_below_4gb_not_mirrored = true;
6982 				continue;
6983 			}
6984 
6985 			zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
6986 				min(usable_startpfn, zone_movable_pfn[nid]) :
6987 				usable_startpfn;
6988 		}
6989 
6990 		if (mem_below_4gb_not_mirrored)
6991 			pr_warn("This configuration results in unmirrored kernel memory.");
6992 
6993 		goto out2;
6994 	}
6995 
6996 	/*
6997 	 * If kernelcore=nn% or movablecore=nn% was specified, calculate the
6998 	 * amount of necessary memory.
6999 	 */
7000 	if (required_kernelcore_percent)
7001 		required_kernelcore = (totalpages * 100 * required_kernelcore_percent) /
7002 				       10000UL;
7003 	if (required_movablecore_percent)
7004 		required_movablecore = (totalpages * 100 * required_movablecore_percent) /
7005 					10000UL;
7006 
7007 	/*
7008 	 * If movablecore= was specified, calculate what size of
7009 	 * kernelcore that corresponds so that memory usable for
7010 	 * any allocation type is evenly spread. If both kernelcore
7011 	 * and movablecore are specified, then the value of kernelcore
7012 	 * will be used for required_kernelcore if it's greater than
7013 	 * what movablecore would have allowed.
7014 	 */
7015 	if (required_movablecore) {
7016 		unsigned long corepages;
7017 
7018 		/*
7019 		 * Round-up so that ZONE_MOVABLE is at least as large as what
7020 		 * was requested by the user
7021 		 */
7022 		required_movablecore =
7023 			roundup(required_movablecore, MAX_ORDER_NR_PAGES);
7024 		required_movablecore = min(totalpages, required_movablecore);
7025 		corepages = totalpages - required_movablecore;
7026 
7027 		required_kernelcore = max(required_kernelcore, corepages);
7028 	}
7029 
7030 	/*
7031 	 * If kernelcore was not specified or kernelcore size is larger
7032 	 * than totalpages, there is no ZONE_MOVABLE.
7033 	 */
7034 	if (!required_kernelcore || required_kernelcore >= totalpages)
7035 		goto out;
7036 
7037 	/* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
7038 	usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
7039 
7040 restart:
7041 	/* Spread kernelcore memory as evenly as possible throughout nodes */
7042 	kernelcore_node = required_kernelcore / usable_nodes;
7043 	for_each_node_state(nid, N_MEMORY) {
7044 		unsigned long start_pfn, end_pfn;
7045 
7046 		/*
7047 		 * Recalculate kernelcore_node if the division per node
7048 		 * now exceeds what is necessary to satisfy the requested
7049 		 * amount of memory for the kernel
7050 		 */
7051 		if (required_kernelcore < kernelcore_node)
7052 			kernelcore_node = required_kernelcore / usable_nodes;
7053 
7054 		/*
7055 		 * As the map is walked, we track how much memory is usable
7056 		 * by the kernel using kernelcore_remaining. When it is
7057 		 * 0, the rest of the node is usable by ZONE_MOVABLE
7058 		 */
7059 		kernelcore_remaining = kernelcore_node;
7060 
7061 		/* Go through each range of PFNs within this node */
7062 		for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
7063 			unsigned long size_pages;
7064 
7065 			start_pfn = max(start_pfn, zone_movable_pfn[nid]);
7066 			if (start_pfn >= end_pfn)
7067 				continue;
7068 
7069 			/* Account for what is only usable for kernelcore */
7070 			if (start_pfn < usable_startpfn) {
7071 				unsigned long kernel_pages;
7072 				kernel_pages = min(end_pfn, usable_startpfn)
7073 								- start_pfn;
7074 
7075 				kernelcore_remaining -= min(kernel_pages,
7076 							kernelcore_remaining);
7077 				required_kernelcore -= min(kernel_pages,
7078 							required_kernelcore);
7079 
7080 				/* Continue if range is now fully accounted */
7081 				if (end_pfn <= usable_startpfn) {
7082 
7083 					/*
7084 					 * Push zone_movable_pfn to the end so
7085 					 * that if we have to rebalance
7086 					 * kernelcore across nodes, we will
7087 					 * not double account here
7088 					 */
7089 					zone_movable_pfn[nid] = end_pfn;
7090 					continue;
7091 				}
7092 				start_pfn = usable_startpfn;
7093 			}
7094 
7095 			/*
7096 			 * The usable PFN range for ZONE_MOVABLE is from
7097 			 * start_pfn->end_pfn. Calculate size_pages as the
7098 			 * number of pages used as kernelcore
7099 			 */
7100 			size_pages = end_pfn - start_pfn;
7101 			if (size_pages > kernelcore_remaining)
7102 				size_pages = kernelcore_remaining;
7103 			zone_movable_pfn[nid] = start_pfn + size_pages;
7104 
7105 			/*
7106 			 * Some kernelcore has been met, update counts and
7107 			 * break if the kernelcore for this node has been
7108 			 * satisfied
7109 			 */
7110 			required_kernelcore -= min(required_kernelcore,
7111 								size_pages);
7112 			kernelcore_remaining -= size_pages;
7113 			if (!kernelcore_remaining)
7114 				break;
7115 		}
7116 	}
7117 
7118 	/*
7119 	 * If there is still required_kernelcore, we do another pass with one
7120 	 * less node in the count. This will push zone_movable_pfn[nid] further
7121 	 * along on the nodes that still have memory until kernelcore is
7122 	 * satisfied
7123 	 */
7124 	usable_nodes--;
7125 	if (usable_nodes && required_kernelcore > usable_nodes)
7126 		goto restart;
7127 
7128 out2:
7129 	/* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
7130 	for (nid = 0; nid < MAX_NUMNODES; nid++)
7131 		zone_movable_pfn[nid] =
7132 			roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
7133 
7134 out:
7135 	/* restore the node_state */
7136 	node_states[N_MEMORY] = saved_node_state;
7137 }
7138 
7139 /* Any regular or high memory on that node ? */
7140 static void check_for_memory(pg_data_t *pgdat, int nid)
7141 {
7142 	enum zone_type zone_type;
7143 
7144 	for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
7145 		struct zone *zone = &pgdat->node_zones[zone_type];
7146 		if (populated_zone(zone)) {
7147 			if (IS_ENABLED(CONFIG_HIGHMEM))
7148 				node_set_state(nid, N_HIGH_MEMORY);
7149 			if (zone_type <= ZONE_NORMAL)
7150 				node_set_state(nid, N_NORMAL_MEMORY);
7151 			break;
7152 		}
7153 	}
7154 }
7155 
7156 /**
7157  * free_area_init_nodes - Initialise all pg_data_t and zone data
7158  * @max_zone_pfn: an array of max PFNs for each zone
7159  *
7160  * This will call free_area_init_node() for each active node in the system.
7161  * Using the page ranges provided by memblock_set_node(), the size of each
7162  * zone in each node and their holes is calculated. If the maximum PFN
7163  * between two adjacent zones match, it is assumed that the zone is empty.
7164  * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
7165  * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
7166  * starts where the previous one ended. For example, ZONE_DMA32 starts
7167  * at arch_max_dma_pfn.
7168  */
7169 void __init free_area_init_nodes(unsigned long *max_zone_pfn)
7170 {
7171 	unsigned long start_pfn, end_pfn;
7172 	int i, nid;
7173 
7174 	/* Record where the zone boundaries are */
7175 	memset(arch_zone_lowest_possible_pfn, 0,
7176 				sizeof(arch_zone_lowest_possible_pfn));
7177 	memset(arch_zone_highest_possible_pfn, 0,
7178 				sizeof(arch_zone_highest_possible_pfn));
7179 
7180 	start_pfn = find_min_pfn_with_active_regions();
7181 
7182 	for (i = 0; i < MAX_NR_ZONES; i++) {
7183 		if (i == ZONE_MOVABLE)
7184 			continue;
7185 
7186 		end_pfn = max(max_zone_pfn[i], start_pfn);
7187 		arch_zone_lowest_possible_pfn[i] = start_pfn;
7188 		arch_zone_highest_possible_pfn[i] = end_pfn;
7189 
7190 		start_pfn = end_pfn;
7191 	}
7192 
7193 	/* Find the PFNs that ZONE_MOVABLE begins at in each node */
7194 	memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
7195 	find_zone_movable_pfns_for_nodes();
7196 
7197 	/* Print out the zone ranges */
7198 	pr_info("Zone ranges:\n");
7199 	for (i = 0; i < MAX_NR_ZONES; i++) {
7200 		if (i == ZONE_MOVABLE)
7201 			continue;
7202 		pr_info("  %-8s ", zone_names[i]);
7203 		if (arch_zone_lowest_possible_pfn[i] ==
7204 				arch_zone_highest_possible_pfn[i])
7205 			pr_cont("empty\n");
7206 		else
7207 			pr_cont("[mem %#018Lx-%#018Lx]\n",
7208 				(u64)arch_zone_lowest_possible_pfn[i]
7209 					<< PAGE_SHIFT,
7210 				((u64)arch_zone_highest_possible_pfn[i]
7211 					<< PAGE_SHIFT) - 1);
7212 	}
7213 
7214 	/* Print out the PFNs ZONE_MOVABLE begins at in each node */
7215 	pr_info("Movable zone start for each node\n");
7216 	for (i = 0; i < MAX_NUMNODES; i++) {
7217 		if (zone_movable_pfn[i])
7218 			pr_info("  Node %d: %#018Lx\n", i,
7219 			       (u64)zone_movable_pfn[i] << PAGE_SHIFT);
7220 	}
7221 
7222 	/* Print out the early node map */
7223 	pr_info("Early memory node ranges\n");
7224 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
7225 		pr_info("  node %3d: [mem %#018Lx-%#018Lx]\n", nid,
7226 			(u64)start_pfn << PAGE_SHIFT,
7227 			((u64)end_pfn << PAGE_SHIFT) - 1);
7228 
7229 	/* Initialise every node */
7230 	mminit_verify_pageflags_layout();
7231 	setup_nr_node_ids();
7232 	zero_resv_unavail();
7233 	for_each_online_node(nid) {
7234 		pg_data_t *pgdat = NODE_DATA(nid);
7235 		free_area_init_node(nid, NULL,
7236 				find_min_pfn_for_node(nid), NULL);
7237 
7238 		/* Any memory on that node */
7239 		if (pgdat->node_present_pages)
7240 			node_set_state(nid, N_MEMORY);
7241 		check_for_memory(pgdat, nid);
7242 	}
7243 }
7244 
7245 static int __init cmdline_parse_core(char *p, unsigned long *core,
7246 				     unsigned long *percent)
7247 {
7248 	unsigned long long coremem;
7249 	char *endptr;
7250 
7251 	if (!p)
7252 		return -EINVAL;
7253 
7254 	/* Value may be a percentage of total memory, otherwise bytes */
7255 	coremem = simple_strtoull(p, &endptr, 0);
7256 	if (*endptr == '%') {
7257 		/* Paranoid check for percent values greater than 100 */
7258 		WARN_ON(coremem > 100);
7259 
7260 		*percent = coremem;
7261 	} else {
7262 		coremem = memparse(p, &p);
7263 		/* Paranoid check that UL is enough for the coremem value */
7264 		WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
7265 
7266 		*core = coremem >> PAGE_SHIFT;
7267 		*percent = 0UL;
7268 	}
7269 	return 0;
7270 }
7271 
7272 /*
7273  * kernelcore=size sets the amount of memory for use for allocations that
7274  * cannot be reclaimed or migrated.
7275  */
7276 static int __init cmdline_parse_kernelcore(char *p)
7277 {
7278 	/* parse kernelcore=mirror */
7279 	if (parse_option_str(p, "mirror")) {
7280 		mirrored_kernelcore = true;
7281 		return 0;
7282 	}
7283 
7284 	return cmdline_parse_core(p, &required_kernelcore,
7285 				  &required_kernelcore_percent);
7286 }
7287 
7288 /*
7289  * movablecore=size sets the amount of memory for use for allocations that
7290  * can be reclaimed or migrated.
7291  */
7292 static int __init cmdline_parse_movablecore(char *p)
7293 {
7294 	return cmdline_parse_core(p, &required_movablecore,
7295 				  &required_movablecore_percent);
7296 }
7297 
7298 early_param("kernelcore", cmdline_parse_kernelcore);
7299 early_param("movablecore", cmdline_parse_movablecore);
7300 
7301 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
7302 
7303 void adjust_managed_page_count(struct page *page, long count)
7304 {
7305 	atomic_long_add(count, &page_zone(page)->managed_pages);
7306 	totalram_pages_add(count);
7307 #ifdef CONFIG_HIGHMEM
7308 	if (PageHighMem(page))
7309 		totalhigh_pages_add(count);
7310 #endif
7311 }
7312 EXPORT_SYMBOL(adjust_managed_page_count);
7313 
7314 unsigned long free_reserved_area(void *start, void *end, int poison, const char *s)
7315 {
7316 	void *pos;
7317 	unsigned long pages = 0;
7318 
7319 	start = (void *)PAGE_ALIGN((unsigned long)start);
7320 	end = (void *)((unsigned long)end & PAGE_MASK);
7321 	for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
7322 		struct page *page = virt_to_page(pos);
7323 		void *direct_map_addr;
7324 
7325 		/*
7326 		 * 'direct_map_addr' might be different from 'pos'
7327 		 * because some architectures' virt_to_page()
7328 		 * work with aliases.  Getting the direct map
7329 		 * address ensures that we get a _writeable_
7330 		 * alias for the memset().
7331 		 */
7332 		direct_map_addr = page_address(page);
7333 		if ((unsigned int)poison <= 0xFF)
7334 			memset(direct_map_addr, poison, PAGE_SIZE);
7335 
7336 		free_reserved_page(page);
7337 	}
7338 
7339 	if (pages && s)
7340 		pr_info("Freeing %s memory: %ldK\n",
7341 			s, pages << (PAGE_SHIFT - 10));
7342 
7343 	return pages;
7344 }
7345 
7346 #ifdef	CONFIG_HIGHMEM
7347 void free_highmem_page(struct page *page)
7348 {
7349 	__free_reserved_page(page);
7350 	totalram_pages_inc();
7351 	atomic_long_inc(&page_zone(page)->managed_pages);
7352 	totalhigh_pages_inc();
7353 }
7354 #endif
7355 
7356 
7357 void __init mem_init_print_info(const char *str)
7358 {
7359 	unsigned long physpages, codesize, datasize, rosize, bss_size;
7360 	unsigned long init_code_size, init_data_size;
7361 
7362 	physpages = get_num_physpages();
7363 	codesize = _etext - _stext;
7364 	datasize = _edata - _sdata;
7365 	rosize = __end_rodata - __start_rodata;
7366 	bss_size = __bss_stop - __bss_start;
7367 	init_data_size = __init_end - __init_begin;
7368 	init_code_size = _einittext - _sinittext;
7369 
7370 	/*
7371 	 * Detect special cases and adjust section sizes accordingly:
7372 	 * 1) .init.* may be embedded into .data sections
7373 	 * 2) .init.text.* may be out of [__init_begin, __init_end],
7374 	 *    please refer to arch/tile/kernel/vmlinux.lds.S.
7375 	 * 3) .rodata.* may be embedded into .text or .data sections.
7376 	 */
7377 #define adj_init_size(start, end, size, pos, adj) \
7378 	do { \
7379 		if (start <= pos && pos < end && size > adj) \
7380 			size -= adj; \
7381 	} while (0)
7382 
7383 	adj_init_size(__init_begin, __init_end, init_data_size,
7384 		     _sinittext, init_code_size);
7385 	adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
7386 	adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
7387 	adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
7388 	adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
7389 
7390 #undef	adj_init_size
7391 
7392 	pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
7393 #ifdef	CONFIG_HIGHMEM
7394 		", %luK highmem"
7395 #endif
7396 		"%s%s)\n",
7397 		nr_free_pages() << (PAGE_SHIFT - 10),
7398 		physpages << (PAGE_SHIFT - 10),
7399 		codesize >> 10, datasize >> 10, rosize >> 10,
7400 		(init_data_size + init_code_size) >> 10, bss_size >> 10,
7401 		(physpages - totalram_pages() - totalcma_pages) << (PAGE_SHIFT - 10),
7402 		totalcma_pages << (PAGE_SHIFT - 10),
7403 #ifdef	CONFIG_HIGHMEM
7404 		totalhigh_pages() << (PAGE_SHIFT - 10),
7405 #endif
7406 		str ? ", " : "", str ? str : "");
7407 }
7408 
7409 /**
7410  * set_dma_reserve - set the specified number of pages reserved in the first zone
7411  * @new_dma_reserve: The number of pages to mark reserved
7412  *
7413  * The per-cpu batchsize and zone watermarks are determined by managed_pages.
7414  * In the DMA zone, a significant percentage may be consumed by kernel image
7415  * and other unfreeable allocations which can skew the watermarks badly. This
7416  * function may optionally be used to account for unfreeable pages in the
7417  * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
7418  * smaller per-cpu batchsize.
7419  */
7420 void __init set_dma_reserve(unsigned long new_dma_reserve)
7421 {
7422 	dma_reserve = new_dma_reserve;
7423 }
7424 
7425 void __init free_area_init(unsigned long *zones_size)
7426 {
7427 	zero_resv_unavail();
7428 	free_area_init_node(0, zones_size,
7429 			__pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
7430 }
7431 
7432 static int page_alloc_cpu_dead(unsigned int cpu)
7433 {
7434 
7435 	lru_add_drain_cpu(cpu);
7436 	drain_pages(cpu);
7437 
7438 	/*
7439 	 * Spill the event counters of the dead processor
7440 	 * into the current processors event counters.
7441 	 * This artificially elevates the count of the current
7442 	 * processor.
7443 	 */
7444 	vm_events_fold_cpu(cpu);
7445 
7446 	/*
7447 	 * Zero the differential counters of the dead processor
7448 	 * so that the vm statistics are consistent.
7449 	 *
7450 	 * This is only okay since the processor is dead and cannot
7451 	 * race with what we are doing.
7452 	 */
7453 	cpu_vm_stats_fold(cpu);
7454 	return 0;
7455 }
7456 
7457 void __init page_alloc_init(void)
7458 {
7459 	int ret;
7460 
7461 	ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC_DEAD,
7462 					"mm/page_alloc:dead", NULL,
7463 					page_alloc_cpu_dead);
7464 	WARN_ON(ret < 0);
7465 }
7466 
7467 /*
7468  * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
7469  *	or min_free_kbytes changes.
7470  */
7471 static void calculate_totalreserve_pages(void)
7472 {
7473 	struct pglist_data *pgdat;
7474 	unsigned long reserve_pages = 0;
7475 	enum zone_type i, j;
7476 
7477 	for_each_online_pgdat(pgdat) {
7478 
7479 		pgdat->totalreserve_pages = 0;
7480 
7481 		for (i = 0; i < MAX_NR_ZONES; i++) {
7482 			struct zone *zone = pgdat->node_zones + i;
7483 			long max = 0;
7484 			unsigned long managed_pages = zone_managed_pages(zone);
7485 
7486 			/* Find valid and maximum lowmem_reserve in the zone */
7487 			for (j = i; j < MAX_NR_ZONES; j++) {
7488 				if (zone->lowmem_reserve[j] > max)
7489 					max = zone->lowmem_reserve[j];
7490 			}
7491 
7492 			/* we treat the high watermark as reserved pages. */
7493 			max += high_wmark_pages(zone);
7494 
7495 			if (max > managed_pages)
7496 				max = managed_pages;
7497 
7498 			pgdat->totalreserve_pages += max;
7499 
7500 			reserve_pages += max;
7501 		}
7502 	}
7503 	totalreserve_pages = reserve_pages;
7504 }
7505 
7506 /*
7507  * setup_per_zone_lowmem_reserve - called whenever
7508  *	sysctl_lowmem_reserve_ratio changes.  Ensures that each zone
7509  *	has a correct pages reserved value, so an adequate number of
7510  *	pages are left in the zone after a successful __alloc_pages().
7511  */
7512 static void setup_per_zone_lowmem_reserve(void)
7513 {
7514 	struct pglist_data *pgdat;
7515 	enum zone_type j, idx;
7516 
7517 	for_each_online_pgdat(pgdat) {
7518 		for (j = 0; j < MAX_NR_ZONES; j++) {
7519 			struct zone *zone = pgdat->node_zones + j;
7520 			unsigned long managed_pages = zone_managed_pages(zone);
7521 
7522 			zone->lowmem_reserve[j] = 0;
7523 
7524 			idx = j;
7525 			while (idx) {
7526 				struct zone *lower_zone;
7527 
7528 				idx--;
7529 				lower_zone = pgdat->node_zones + idx;
7530 
7531 				if (sysctl_lowmem_reserve_ratio[idx] < 1) {
7532 					sysctl_lowmem_reserve_ratio[idx] = 0;
7533 					lower_zone->lowmem_reserve[j] = 0;
7534 				} else {
7535 					lower_zone->lowmem_reserve[j] =
7536 						managed_pages / sysctl_lowmem_reserve_ratio[idx];
7537 				}
7538 				managed_pages += zone_managed_pages(lower_zone);
7539 			}
7540 		}
7541 	}
7542 
7543 	/* update totalreserve_pages */
7544 	calculate_totalreserve_pages();
7545 }
7546 
7547 static void __setup_per_zone_wmarks(void)
7548 {
7549 	unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
7550 	unsigned long lowmem_pages = 0;
7551 	struct zone *zone;
7552 	unsigned long flags;
7553 
7554 	/* Calculate total number of !ZONE_HIGHMEM pages */
7555 	for_each_zone(zone) {
7556 		if (!is_highmem(zone))
7557 			lowmem_pages += zone_managed_pages(zone);
7558 	}
7559 
7560 	for_each_zone(zone) {
7561 		u64 tmp;
7562 
7563 		spin_lock_irqsave(&zone->lock, flags);
7564 		tmp = (u64)pages_min * zone_managed_pages(zone);
7565 		do_div(tmp, lowmem_pages);
7566 		if (is_highmem(zone)) {
7567 			/*
7568 			 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
7569 			 * need highmem pages, so cap pages_min to a small
7570 			 * value here.
7571 			 *
7572 			 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
7573 			 * deltas control async page reclaim, and so should
7574 			 * not be capped for highmem.
7575 			 */
7576 			unsigned long min_pages;
7577 
7578 			min_pages = zone_managed_pages(zone) / 1024;
7579 			min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
7580 			zone->_watermark[WMARK_MIN] = min_pages;
7581 		} else {
7582 			/*
7583 			 * If it's a lowmem zone, reserve a number of pages
7584 			 * proportionate to the zone's size.
7585 			 */
7586 			zone->_watermark[WMARK_MIN] = tmp;
7587 		}
7588 
7589 		/*
7590 		 * Set the kswapd watermarks distance according to the
7591 		 * scale factor in proportion to available memory, but
7592 		 * ensure a minimum size on small systems.
7593 		 */
7594 		tmp = max_t(u64, tmp >> 2,
7595 			    mult_frac(zone_managed_pages(zone),
7596 				      watermark_scale_factor, 10000));
7597 
7598 		zone->_watermark[WMARK_LOW]  = min_wmark_pages(zone) + tmp;
7599 		zone->_watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2;
7600 		zone->watermark_boost = 0;
7601 
7602 		spin_unlock_irqrestore(&zone->lock, flags);
7603 	}
7604 
7605 	/* update totalreserve_pages */
7606 	calculate_totalreserve_pages();
7607 }
7608 
7609 /**
7610  * setup_per_zone_wmarks - called when min_free_kbytes changes
7611  * or when memory is hot-{added|removed}
7612  *
7613  * Ensures that the watermark[min,low,high] values for each zone are set
7614  * correctly with respect to min_free_kbytes.
7615  */
7616 void setup_per_zone_wmarks(void)
7617 {
7618 	static DEFINE_SPINLOCK(lock);
7619 
7620 	spin_lock(&lock);
7621 	__setup_per_zone_wmarks();
7622 	spin_unlock(&lock);
7623 }
7624 
7625 /*
7626  * Initialise min_free_kbytes.
7627  *
7628  * For small machines we want it small (128k min).  For large machines
7629  * we want it large (64MB max).  But it is not linear, because network
7630  * bandwidth does not increase linearly with machine size.  We use
7631  *
7632  *	min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
7633  *	min_free_kbytes = sqrt(lowmem_kbytes * 16)
7634  *
7635  * which yields
7636  *
7637  * 16MB:	512k
7638  * 32MB:	724k
7639  * 64MB:	1024k
7640  * 128MB:	1448k
7641  * 256MB:	2048k
7642  * 512MB:	2896k
7643  * 1024MB:	4096k
7644  * 2048MB:	5792k
7645  * 4096MB:	8192k
7646  * 8192MB:	11584k
7647  * 16384MB:	16384k
7648  */
7649 int __meminit init_per_zone_wmark_min(void)
7650 {
7651 	unsigned long lowmem_kbytes;
7652 	int new_min_free_kbytes;
7653 
7654 	lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
7655 	new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
7656 
7657 	if (new_min_free_kbytes > user_min_free_kbytes) {
7658 		min_free_kbytes = new_min_free_kbytes;
7659 		if (min_free_kbytes < 128)
7660 			min_free_kbytes = 128;
7661 		if (min_free_kbytes > 65536)
7662 			min_free_kbytes = 65536;
7663 	} else {
7664 		pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
7665 				new_min_free_kbytes, user_min_free_kbytes);
7666 	}
7667 	setup_per_zone_wmarks();
7668 	refresh_zone_stat_thresholds();
7669 	setup_per_zone_lowmem_reserve();
7670 
7671 #ifdef CONFIG_NUMA
7672 	setup_min_unmapped_ratio();
7673 	setup_min_slab_ratio();
7674 #endif
7675 
7676 	return 0;
7677 }
7678 core_initcall(init_per_zone_wmark_min)
7679 
7680 /*
7681  * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
7682  *	that we can call two helper functions whenever min_free_kbytes
7683  *	changes.
7684  */
7685 int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
7686 	void __user *buffer, size_t *length, loff_t *ppos)
7687 {
7688 	int rc;
7689 
7690 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7691 	if (rc)
7692 		return rc;
7693 
7694 	if (write) {
7695 		user_min_free_kbytes = min_free_kbytes;
7696 		setup_per_zone_wmarks();
7697 	}
7698 	return 0;
7699 }
7700 
7701 int watermark_boost_factor_sysctl_handler(struct ctl_table *table, int write,
7702 	void __user *buffer, size_t *length, loff_t *ppos)
7703 {
7704 	int rc;
7705 
7706 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7707 	if (rc)
7708 		return rc;
7709 
7710 	return 0;
7711 }
7712 
7713 int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
7714 	void __user *buffer, size_t *length, loff_t *ppos)
7715 {
7716 	int rc;
7717 
7718 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7719 	if (rc)
7720 		return rc;
7721 
7722 	if (write)
7723 		setup_per_zone_wmarks();
7724 
7725 	return 0;
7726 }
7727 
7728 #ifdef CONFIG_NUMA
7729 static void setup_min_unmapped_ratio(void)
7730 {
7731 	pg_data_t *pgdat;
7732 	struct zone *zone;
7733 
7734 	for_each_online_pgdat(pgdat)
7735 		pgdat->min_unmapped_pages = 0;
7736 
7737 	for_each_zone(zone)
7738 		zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) *
7739 						         sysctl_min_unmapped_ratio) / 100;
7740 }
7741 
7742 
7743 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
7744 	void __user *buffer, size_t *length, loff_t *ppos)
7745 {
7746 	int rc;
7747 
7748 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7749 	if (rc)
7750 		return rc;
7751 
7752 	setup_min_unmapped_ratio();
7753 
7754 	return 0;
7755 }
7756 
7757 static void setup_min_slab_ratio(void)
7758 {
7759 	pg_data_t *pgdat;
7760 	struct zone *zone;
7761 
7762 	for_each_online_pgdat(pgdat)
7763 		pgdat->min_slab_pages = 0;
7764 
7765 	for_each_zone(zone)
7766 		zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) *
7767 						     sysctl_min_slab_ratio) / 100;
7768 }
7769 
7770 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
7771 	void __user *buffer, size_t *length, loff_t *ppos)
7772 {
7773 	int rc;
7774 
7775 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7776 	if (rc)
7777 		return rc;
7778 
7779 	setup_min_slab_ratio();
7780 
7781 	return 0;
7782 }
7783 #endif
7784 
7785 /*
7786  * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
7787  *	proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
7788  *	whenever sysctl_lowmem_reserve_ratio changes.
7789  *
7790  * The reserve ratio obviously has absolutely no relation with the
7791  * minimum watermarks. The lowmem reserve ratio can only make sense
7792  * if in function of the boot time zone sizes.
7793  */
7794 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
7795 	void __user *buffer, size_t *length, loff_t *ppos)
7796 {
7797 	proc_dointvec_minmax(table, write, buffer, length, ppos);
7798 	setup_per_zone_lowmem_reserve();
7799 	return 0;
7800 }
7801 
7802 /*
7803  * percpu_pagelist_fraction - changes the pcp->high for each zone on each
7804  * cpu.  It is the fraction of total pages in each zone that a hot per cpu
7805  * pagelist can have before it gets flushed back to buddy allocator.
7806  */
7807 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
7808 	void __user *buffer, size_t *length, loff_t *ppos)
7809 {
7810 	struct zone *zone;
7811 	int old_percpu_pagelist_fraction;
7812 	int ret;
7813 
7814 	mutex_lock(&pcp_batch_high_lock);
7815 	old_percpu_pagelist_fraction = percpu_pagelist_fraction;
7816 
7817 	ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
7818 	if (!write || ret < 0)
7819 		goto out;
7820 
7821 	/* Sanity checking to avoid pcp imbalance */
7822 	if (percpu_pagelist_fraction &&
7823 	    percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
7824 		percpu_pagelist_fraction = old_percpu_pagelist_fraction;
7825 		ret = -EINVAL;
7826 		goto out;
7827 	}
7828 
7829 	/* No change? */
7830 	if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
7831 		goto out;
7832 
7833 	for_each_populated_zone(zone) {
7834 		unsigned int cpu;
7835 
7836 		for_each_possible_cpu(cpu)
7837 			pageset_set_high_and_batch(zone,
7838 					per_cpu_ptr(zone->pageset, cpu));
7839 	}
7840 out:
7841 	mutex_unlock(&pcp_batch_high_lock);
7842 	return ret;
7843 }
7844 
7845 #ifdef CONFIG_NUMA
7846 int hashdist = HASHDIST_DEFAULT;
7847 
7848 static int __init set_hashdist(char *str)
7849 {
7850 	if (!str)
7851 		return 0;
7852 	hashdist = simple_strtoul(str, &str, 0);
7853 	return 1;
7854 }
7855 __setup("hashdist=", set_hashdist);
7856 #endif
7857 
7858 #ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
7859 /*
7860  * Returns the number of pages that arch has reserved but
7861  * is not known to alloc_large_system_hash().
7862  */
7863 static unsigned long __init arch_reserved_kernel_pages(void)
7864 {
7865 	return 0;
7866 }
7867 #endif
7868 
7869 /*
7870  * Adaptive scale is meant to reduce sizes of hash tables on large memory
7871  * machines. As memory size is increased the scale is also increased but at
7872  * slower pace.  Starting from ADAPT_SCALE_BASE (64G), every time memory
7873  * quadruples the scale is increased by one, which means the size of hash table
7874  * only doubles, instead of quadrupling as well.
7875  * Because 32-bit systems cannot have large physical memory, where this scaling
7876  * makes sense, it is disabled on such platforms.
7877  */
7878 #if __BITS_PER_LONG > 32
7879 #define ADAPT_SCALE_BASE	(64ul << 30)
7880 #define ADAPT_SCALE_SHIFT	2
7881 #define ADAPT_SCALE_NPAGES	(ADAPT_SCALE_BASE >> PAGE_SHIFT)
7882 #endif
7883 
7884 /*
7885  * allocate a large system hash table from bootmem
7886  * - it is assumed that the hash table must contain an exact power-of-2
7887  *   quantity of entries
7888  * - limit is the number of hash buckets, not the total allocation size
7889  */
7890 void *__init alloc_large_system_hash(const char *tablename,
7891 				     unsigned long bucketsize,
7892 				     unsigned long numentries,
7893 				     int scale,
7894 				     int flags,
7895 				     unsigned int *_hash_shift,
7896 				     unsigned int *_hash_mask,
7897 				     unsigned long low_limit,
7898 				     unsigned long high_limit)
7899 {
7900 	unsigned long long max = high_limit;
7901 	unsigned long log2qty, size;
7902 	void *table = NULL;
7903 	gfp_t gfp_flags;
7904 
7905 	/* allow the kernel cmdline to have a say */
7906 	if (!numentries) {
7907 		/* round applicable memory size up to nearest megabyte */
7908 		numentries = nr_kernel_pages;
7909 		numentries -= arch_reserved_kernel_pages();
7910 
7911 		/* It isn't necessary when PAGE_SIZE >= 1MB */
7912 		if (PAGE_SHIFT < 20)
7913 			numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
7914 
7915 #if __BITS_PER_LONG > 32
7916 		if (!high_limit) {
7917 			unsigned long adapt;
7918 
7919 			for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries;
7920 			     adapt <<= ADAPT_SCALE_SHIFT)
7921 				scale++;
7922 		}
7923 #endif
7924 
7925 		/* limit to 1 bucket per 2^scale bytes of low memory */
7926 		if (scale > PAGE_SHIFT)
7927 			numentries >>= (scale - PAGE_SHIFT);
7928 		else
7929 			numentries <<= (PAGE_SHIFT - scale);
7930 
7931 		/* Make sure we've got at least a 0-order allocation.. */
7932 		if (unlikely(flags & HASH_SMALL)) {
7933 			/* Makes no sense without HASH_EARLY */
7934 			WARN_ON(!(flags & HASH_EARLY));
7935 			if (!(numentries >> *_hash_shift)) {
7936 				numentries = 1UL << *_hash_shift;
7937 				BUG_ON(!numentries);
7938 			}
7939 		} else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
7940 			numentries = PAGE_SIZE / bucketsize;
7941 	}
7942 	numentries = roundup_pow_of_two(numentries);
7943 
7944 	/* limit allocation size to 1/16 total memory by default */
7945 	if (max == 0) {
7946 		max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
7947 		do_div(max, bucketsize);
7948 	}
7949 	max = min(max, 0x80000000ULL);
7950 
7951 	if (numentries < low_limit)
7952 		numentries = low_limit;
7953 	if (numentries > max)
7954 		numentries = max;
7955 
7956 	log2qty = ilog2(numentries);
7957 
7958 	gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC;
7959 	do {
7960 		size = bucketsize << log2qty;
7961 		if (flags & HASH_EARLY) {
7962 			if (flags & HASH_ZERO)
7963 				table = memblock_alloc(size, SMP_CACHE_BYTES);
7964 			else
7965 				table = memblock_alloc_raw(size,
7966 							   SMP_CACHE_BYTES);
7967 		} else if (hashdist) {
7968 			table = __vmalloc(size, gfp_flags, PAGE_KERNEL);
7969 		} else {
7970 			/*
7971 			 * If bucketsize is not a power-of-two, we may free
7972 			 * some pages at the end of hash table which
7973 			 * alloc_pages_exact() automatically does
7974 			 */
7975 			if (get_order(size) < MAX_ORDER) {
7976 				table = alloc_pages_exact(size, gfp_flags);
7977 				kmemleak_alloc(table, size, 1, gfp_flags);
7978 			}
7979 		}
7980 	} while (!table && size > PAGE_SIZE && --log2qty);
7981 
7982 	if (!table)
7983 		panic("Failed to allocate %s hash table\n", tablename);
7984 
7985 	pr_info("%s hash table entries: %ld (order: %d, %lu bytes)\n",
7986 		tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size);
7987 
7988 	if (_hash_shift)
7989 		*_hash_shift = log2qty;
7990 	if (_hash_mask)
7991 		*_hash_mask = (1 << log2qty) - 1;
7992 
7993 	return table;
7994 }
7995 
7996 /*
7997  * This function checks whether pageblock includes unmovable pages or not.
7998  * If @count is not zero, it is okay to include less @count unmovable pages
7999  *
8000  * PageLRU check without isolation or lru_lock could race so that
8001  * MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable
8002  * check without lock_page also may miss some movable non-lru pages at
8003  * race condition. So you can't expect this function should be exact.
8004  */
8005 bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
8006 			 int migratetype, int flags)
8007 {
8008 	unsigned long pfn, iter, found;
8009 
8010 	/*
8011 	 * TODO we could make this much more efficient by not checking every
8012 	 * page in the range if we know all of them are in MOVABLE_ZONE and
8013 	 * that the movable zone guarantees that pages are migratable but
8014 	 * the later is not the case right now unfortunatelly. E.g. movablecore
8015 	 * can still lead to having bootmem allocations in zone_movable.
8016 	 */
8017 
8018 	/*
8019 	 * CMA allocations (alloc_contig_range) really need to mark isolate
8020 	 * CMA pageblocks even when they are not movable in fact so consider
8021 	 * them movable here.
8022 	 */
8023 	if (is_migrate_cma(migratetype) &&
8024 			is_migrate_cma(get_pageblock_migratetype(page)))
8025 		return false;
8026 
8027 	pfn = page_to_pfn(page);
8028 	for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
8029 		unsigned long check = pfn + iter;
8030 
8031 		if (!pfn_valid_within(check))
8032 			continue;
8033 
8034 		page = pfn_to_page(check);
8035 
8036 		if (PageReserved(page))
8037 			goto unmovable;
8038 
8039 		/*
8040 		 * If the zone is movable and we have ruled out all reserved
8041 		 * pages then it should be reasonably safe to assume the rest
8042 		 * is movable.
8043 		 */
8044 		if (zone_idx(zone) == ZONE_MOVABLE)
8045 			continue;
8046 
8047 		/*
8048 		 * Hugepages are not in LRU lists, but they're movable.
8049 		 * We need not scan over tail pages because we don't
8050 		 * handle each tail page individually in migration.
8051 		 */
8052 		if (PageHuge(page)) {
8053 			struct page *head = compound_head(page);
8054 			unsigned int skip_pages;
8055 
8056 			if (!hugepage_migration_supported(page_hstate(head)))
8057 				goto unmovable;
8058 
8059 			skip_pages = (1 << compound_order(head)) - (page - head);
8060 			iter += skip_pages - 1;
8061 			continue;
8062 		}
8063 
8064 		/*
8065 		 * We can't use page_count without pin a page
8066 		 * because another CPU can free compound page.
8067 		 * This check already skips compound tails of THP
8068 		 * because their page->_refcount is zero at all time.
8069 		 */
8070 		if (!page_ref_count(page)) {
8071 			if (PageBuddy(page))
8072 				iter += (1 << page_order(page)) - 1;
8073 			continue;
8074 		}
8075 
8076 		/*
8077 		 * The HWPoisoned page may be not in buddy system, and
8078 		 * page_count() is not 0.
8079 		 */
8080 		if ((flags & SKIP_HWPOISON) && PageHWPoison(page))
8081 			continue;
8082 
8083 		if (__PageMovable(page))
8084 			continue;
8085 
8086 		if (!PageLRU(page))
8087 			found++;
8088 		/*
8089 		 * If there are RECLAIMABLE pages, we need to check
8090 		 * it.  But now, memory offline itself doesn't call
8091 		 * shrink_node_slabs() and it still to be fixed.
8092 		 */
8093 		/*
8094 		 * If the page is not RAM, page_count()should be 0.
8095 		 * we don't need more check. This is an _used_ not-movable page.
8096 		 *
8097 		 * The problematic thing here is PG_reserved pages. PG_reserved
8098 		 * is set to both of a memory hole page and a _used_ kernel
8099 		 * page at boot.
8100 		 */
8101 		if (found > count)
8102 			goto unmovable;
8103 	}
8104 	return false;
8105 unmovable:
8106 	WARN_ON_ONCE(zone_idx(zone) == ZONE_MOVABLE);
8107 	if (flags & REPORT_FAILURE)
8108 		dump_page(pfn_to_page(pfn+iter), "unmovable page");
8109 	return true;
8110 }
8111 
8112 #if (defined(CONFIG_MEMORY_ISOLATION) && defined(CONFIG_COMPACTION)) || defined(CONFIG_CMA)
8113 
8114 static unsigned long pfn_max_align_down(unsigned long pfn)
8115 {
8116 	return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
8117 			     pageblock_nr_pages) - 1);
8118 }
8119 
8120 static unsigned long pfn_max_align_up(unsigned long pfn)
8121 {
8122 	return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
8123 				pageblock_nr_pages));
8124 }
8125 
8126 /* [start, end) must belong to a single zone. */
8127 static int __alloc_contig_migrate_range(struct compact_control *cc,
8128 					unsigned long start, unsigned long end)
8129 {
8130 	/* This function is based on compact_zone() from compaction.c. */
8131 	unsigned long nr_reclaimed;
8132 	unsigned long pfn = start;
8133 	unsigned int tries = 0;
8134 	int ret = 0;
8135 
8136 	migrate_prep();
8137 
8138 	while (pfn < end || !list_empty(&cc->migratepages)) {
8139 		if (fatal_signal_pending(current)) {
8140 			ret = -EINTR;
8141 			break;
8142 		}
8143 
8144 		if (list_empty(&cc->migratepages)) {
8145 			cc->nr_migratepages = 0;
8146 			pfn = isolate_migratepages_range(cc, pfn, end);
8147 			if (!pfn) {
8148 				ret = -EINTR;
8149 				break;
8150 			}
8151 			tries = 0;
8152 		} else if (++tries == 5) {
8153 			ret = ret < 0 ? ret : -EBUSY;
8154 			break;
8155 		}
8156 
8157 		nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
8158 							&cc->migratepages);
8159 		cc->nr_migratepages -= nr_reclaimed;
8160 
8161 		ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
8162 				    NULL, 0, cc->mode, MR_CONTIG_RANGE);
8163 	}
8164 	if (ret < 0) {
8165 		putback_movable_pages(&cc->migratepages);
8166 		return ret;
8167 	}
8168 	return 0;
8169 }
8170 
8171 /**
8172  * alloc_contig_range() -- tries to allocate given range of pages
8173  * @start:	start PFN to allocate
8174  * @end:	one-past-the-last PFN to allocate
8175  * @migratetype:	migratetype of the underlaying pageblocks (either
8176  *			#MIGRATE_MOVABLE or #MIGRATE_CMA).  All pageblocks
8177  *			in range must have the same migratetype and it must
8178  *			be either of the two.
8179  * @gfp_mask:	GFP mask to use during compaction
8180  *
8181  * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
8182  * aligned.  The PFN range must belong to a single zone.
8183  *
8184  * The first thing this routine does is attempt to MIGRATE_ISOLATE all
8185  * pageblocks in the range.  Once isolated, the pageblocks should not
8186  * be modified by others.
8187  *
8188  * Return: zero on success or negative error code.  On success all
8189  * pages which PFN is in [start, end) are allocated for the caller and
8190  * need to be freed with free_contig_range().
8191  */
8192 int alloc_contig_range(unsigned long start, unsigned long end,
8193 		       unsigned migratetype, gfp_t gfp_mask)
8194 {
8195 	unsigned long outer_start, outer_end;
8196 	unsigned int order;
8197 	int ret = 0;
8198 
8199 	struct compact_control cc = {
8200 		.nr_migratepages = 0,
8201 		.order = -1,
8202 		.zone = page_zone(pfn_to_page(start)),
8203 		.mode = MIGRATE_SYNC,
8204 		.ignore_skip_hint = true,
8205 		.no_set_skip_hint = true,
8206 		.gfp_mask = current_gfp_context(gfp_mask),
8207 	};
8208 	INIT_LIST_HEAD(&cc.migratepages);
8209 
8210 	/*
8211 	 * What we do here is we mark all pageblocks in range as
8212 	 * MIGRATE_ISOLATE.  Because pageblock and max order pages may
8213 	 * have different sizes, and due to the way page allocator
8214 	 * work, we align the range to biggest of the two pages so
8215 	 * that page allocator won't try to merge buddies from
8216 	 * different pageblocks and change MIGRATE_ISOLATE to some
8217 	 * other migration type.
8218 	 *
8219 	 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
8220 	 * migrate the pages from an unaligned range (ie. pages that
8221 	 * we are interested in).  This will put all the pages in
8222 	 * range back to page allocator as MIGRATE_ISOLATE.
8223 	 *
8224 	 * When this is done, we take the pages in range from page
8225 	 * allocator removing them from the buddy system.  This way
8226 	 * page allocator will never consider using them.
8227 	 *
8228 	 * This lets us mark the pageblocks back as
8229 	 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
8230 	 * aligned range but not in the unaligned, original range are
8231 	 * put back to page allocator so that buddy can use them.
8232 	 */
8233 
8234 	ret = start_isolate_page_range(pfn_max_align_down(start),
8235 				       pfn_max_align_up(end), migratetype, 0);
8236 	if (ret < 0)
8237 		return ret;
8238 
8239 	/*
8240 	 * In case of -EBUSY, we'd like to know which page causes problem.
8241 	 * So, just fall through. test_pages_isolated() has a tracepoint
8242 	 * which will report the busy page.
8243 	 *
8244 	 * It is possible that busy pages could become available before
8245 	 * the call to test_pages_isolated, and the range will actually be
8246 	 * allocated.  So, if we fall through be sure to clear ret so that
8247 	 * -EBUSY is not accidentally used or returned to caller.
8248 	 */
8249 	ret = __alloc_contig_migrate_range(&cc, start, end);
8250 	if (ret && ret != -EBUSY)
8251 		goto done;
8252 	ret =0;
8253 
8254 	/*
8255 	 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
8256 	 * aligned blocks that are marked as MIGRATE_ISOLATE.  What's
8257 	 * more, all pages in [start, end) are free in page allocator.
8258 	 * What we are going to do is to allocate all pages from
8259 	 * [start, end) (that is remove them from page allocator).
8260 	 *
8261 	 * The only problem is that pages at the beginning and at the
8262 	 * end of interesting range may be not aligned with pages that
8263 	 * page allocator holds, ie. they can be part of higher order
8264 	 * pages.  Because of this, we reserve the bigger range and
8265 	 * once this is done free the pages we are not interested in.
8266 	 *
8267 	 * We don't have to hold zone->lock here because the pages are
8268 	 * isolated thus they won't get removed from buddy.
8269 	 */
8270 
8271 	lru_add_drain_all();
8272 
8273 	order = 0;
8274 	outer_start = start;
8275 	while (!PageBuddy(pfn_to_page(outer_start))) {
8276 		if (++order >= MAX_ORDER) {
8277 			outer_start = start;
8278 			break;
8279 		}
8280 		outer_start &= ~0UL << order;
8281 	}
8282 
8283 	if (outer_start != start) {
8284 		order = page_order(pfn_to_page(outer_start));
8285 
8286 		/*
8287 		 * outer_start page could be small order buddy page and
8288 		 * it doesn't include start page. Adjust outer_start
8289 		 * in this case to report failed page properly
8290 		 * on tracepoint in test_pages_isolated()
8291 		 */
8292 		if (outer_start + (1UL << order) <= start)
8293 			outer_start = start;
8294 	}
8295 
8296 	/* Make sure the range is really isolated. */
8297 	if (test_pages_isolated(outer_start, end, false)) {
8298 		pr_info_ratelimited("%s: [%lx, %lx) PFNs busy\n",
8299 			__func__, outer_start, end);
8300 		ret = -EBUSY;
8301 		goto done;
8302 	}
8303 
8304 	/* Grab isolated pages from freelists. */
8305 	outer_end = isolate_freepages_range(&cc, outer_start, end);
8306 	if (!outer_end) {
8307 		ret = -EBUSY;
8308 		goto done;
8309 	}
8310 
8311 	/* Free head and tail (if any) */
8312 	if (start != outer_start)
8313 		free_contig_range(outer_start, start - outer_start);
8314 	if (end != outer_end)
8315 		free_contig_range(end, outer_end - end);
8316 
8317 done:
8318 	undo_isolate_page_range(pfn_max_align_down(start),
8319 				pfn_max_align_up(end), migratetype);
8320 	return ret;
8321 }
8322 
8323 void free_contig_range(unsigned long pfn, unsigned nr_pages)
8324 {
8325 	unsigned int count = 0;
8326 
8327 	for (; nr_pages--; pfn++) {
8328 		struct page *page = pfn_to_page(pfn);
8329 
8330 		count += page_count(page) != 1;
8331 		__free_page(page);
8332 	}
8333 	WARN(count != 0, "%d pages are still in use!\n", count);
8334 }
8335 #endif
8336 
8337 #ifdef CONFIG_MEMORY_HOTPLUG
8338 /*
8339  * The zone indicated has a new number of managed_pages; batch sizes and percpu
8340  * page high values need to be recalulated.
8341  */
8342 void __meminit zone_pcp_update(struct zone *zone)
8343 {
8344 	unsigned cpu;
8345 	mutex_lock(&pcp_batch_high_lock);
8346 	for_each_possible_cpu(cpu)
8347 		pageset_set_high_and_batch(zone,
8348 				per_cpu_ptr(zone->pageset, cpu));
8349 	mutex_unlock(&pcp_batch_high_lock);
8350 }
8351 #endif
8352 
8353 void zone_pcp_reset(struct zone *zone)
8354 {
8355 	unsigned long flags;
8356 	int cpu;
8357 	struct per_cpu_pageset *pset;
8358 
8359 	/* avoid races with drain_pages()  */
8360 	local_irq_save(flags);
8361 	if (zone->pageset != &boot_pageset) {
8362 		for_each_online_cpu(cpu) {
8363 			pset = per_cpu_ptr(zone->pageset, cpu);
8364 			drain_zonestat(zone, pset);
8365 		}
8366 		free_percpu(zone->pageset);
8367 		zone->pageset = &boot_pageset;
8368 	}
8369 	local_irq_restore(flags);
8370 }
8371 
8372 #ifdef CONFIG_MEMORY_HOTREMOVE
8373 /*
8374  * All pages in the range must be in a single zone and isolated
8375  * before calling this.
8376  */
8377 void
8378 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
8379 {
8380 	struct page *page;
8381 	struct zone *zone;
8382 	unsigned int order, i;
8383 	unsigned long pfn;
8384 	unsigned long flags;
8385 	/* find the first valid pfn */
8386 	for (pfn = start_pfn; pfn < end_pfn; pfn++)
8387 		if (pfn_valid(pfn))
8388 			break;
8389 	if (pfn == end_pfn)
8390 		return;
8391 	offline_mem_sections(pfn, end_pfn);
8392 	zone = page_zone(pfn_to_page(pfn));
8393 	spin_lock_irqsave(&zone->lock, flags);
8394 	pfn = start_pfn;
8395 	while (pfn < end_pfn) {
8396 		if (!pfn_valid(pfn)) {
8397 			pfn++;
8398 			continue;
8399 		}
8400 		page = pfn_to_page(pfn);
8401 		/*
8402 		 * The HWPoisoned page may be not in buddy system, and
8403 		 * page_count() is not 0.
8404 		 */
8405 		if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
8406 			pfn++;
8407 			SetPageReserved(page);
8408 			continue;
8409 		}
8410 
8411 		BUG_ON(page_count(page));
8412 		BUG_ON(!PageBuddy(page));
8413 		order = page_order(page);
8414 #ifdef CONFIG_DEBUG_VM
8415 		pr_info("remove from free list %lx %d %lx\n",
8416 			pfn, 1 << order, end_pfn);
8417 #endif
8418 		list_del(&page->lru);
8419 		rmv_page_order(page);
8420 		zone->free_area[order].nr_free--;
8421 		for (i = 0; i < (1 << order); i++)
8422 			SetPageReserved((page+i));
8423 		pfn += (1 << order);
8424 	}
8425 	spin_unlock_irqrestore(&zone->lock, flags);
8426 }
8427 #endif
8428 
8429 bool is_free_buddy_page(struct page *page)
8430 {
8431 	struct zone *zone = page_zone(page);
8432 	unsigned long pfn = page_to_pfn(page);
8433 	unsigned long flags;
8434 	unsigned int order;
8435 
8436 	spin_lock_irqsave(&zone->lock, flags);
8437 	for (order = 0; order < MAX_ORDER; order++) {
8438 		struct page *page_head = page - (pfn & ((1 << order) - 1));
8439 
8440 		if (PageBuddy(page_head) && page_order(page_head) >= order)
8441 			break;
8442 	}
8443 	spin_unlock_irqrestore(&zone->lock, flags);
8444 
8445 	return order < MAX_ORDER;
8446 }
8447 
8448 #ifdef CONFIG_MEMORY_FAILURE
8449 /*
8450  * Set PG_hwpoison flag if a given page is confirmed to be a free page.  This
8451  * test is performed under the zone lock to prevent a race against page
8452  * allocation.
8453  */
8454 bool set_hwpoison_free_buddy_page(struct page *page)
8455 {
8456 	struct zone *zone = page_zone(page);
8457 	unsigned long pfn = page_to_pfn(page);
8458 	unsigned long flags;
8459 	unsigned int order;
8460 	bool hwpoisoned = false;
8461 
8462 	spin_lock_irqsave(&zone->lock, flags);
8463 	for (order = 0; order < MAX_ORDER; order++) {
8464 		struct page *page_head = page - (pfn & ((1 << order) - 1));
8465 
8466 		if (PageBuddy(page_head) && page_order(page_head) >= order) {
8467 			if (!TestSetPageHWPoison(page))
8468 				hwpoisoned = true;
8469 			break;
8470 		}
8471 	}
8472 	spin_unlock_irqrestore(&zone->lock, flags);
8473 
8474 	return hwpoisoned;
8475 }
8476 #endif
8477