1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/mm/page_alloc.c 4 * 5 * Manages the free list, the system allocates free pages here. 6 * Note that kmalloc() lives in slab.c 7 * 8 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 9 * Swap reorganised 29.12.95, Stephen Tweedie 10 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999 11 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999 12 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999 13 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000 14 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002 15 * (lots of bits borrowed from Ingo Molnar & Andrew Morton) 16 */ 17 18 #include <linux/stddef.h> 19 #include <linux/mm.h> 20 #include <linux/highmem.h> 21 #include <linux/swap.h> 22 #include <linux/swapops.h> 23 #include <linux/interrupt.h> 24 #include <linux/pagemap.h> 25 #include <linux/jiffies.h> 26 #include <linux/memblock.h> 27 #include <linux/compiler.h> 28 #include <linux/kernel.h> 29 #include <linux/kasan.h> 30 #include <linux/module.h> 31 #include <linux/suspend.h> 32 #include <linux/pagevec.h> 33 #include <linux/blkdev.h> 34 #include <linux/slab.h> 35 #include <linux/ratelimit.h> 36 #include <linux/oom.h> 37 #include <linux/topology.h> 38 #include <linux/sysctl.h> 39 #include <linux/cpu.h> 40 #include <linux/cpuset.h> 41 #include <linux/memory_hotplug.h> 42 #include <linux/nodemask.h> 43 #include <linux/vmalloc.h> 44 #include <linux/vmstat.h> 45 #include <linux/mempolicy.h> 46 #include <linux/memremap.h> 47 #include <linux/stop_machine.h> 48 #include <linux/random.h> 49 #include <linux/sort.h> 50 #include <linux/pfn.h> 51 #include <linux/backing-dev.h> 52 #include <linux/fault-inject.h> 53 #include <linux/page-isolation.h> 54 #include <linux/debugobjects.h> 55 #include <linux/kmemleak.h> 56 #include <linux/compaction.h> 57 #include <trace/events/kmem.h> 58 #include <trace/events/oom.h> 59 #include <linux/prefetch.h> 60 #include <linux/mm_inline.h> 61 #include <linux/mmu_notifier.h> 62 #include <linux/migrate.h> 63 #include <linux/hugetlb.h> 64 #include <linux/sched/rt.h> 65 #include <linux/sched/mm.h> 66 #include <linux/page_owner.h> 67 #include <linux/page_table_check.h> 68 #include <linux/kthread.h> 69 #include <linux/memcontrol.h> 70 #include <linux/ftrace.h> 71 #include <linux/lockdep.h> 72 #include <linux/nmi.h> 73 #include <linux/psi.h> 74 #include <linux/padata.h> 75 #include <linux/khugepaged.h> 76 #include <linux/buffer_head.h> 77 #include <linux/delayacct.h> 78 #include <asm/sections.h> 79 #include <asm/tlbflush.h> 80 #include <asm/div64.h> 81 #include "internal.h" 82 #include "shuffle.h" 83 #include "page_reporting.h" 84 #include "swap.h" 85 86 /* Free Page Internal flags: for internal, non-pcp variants of free_pages(). */ 87 typedef int __bitwise fpi_t; 88 89 /* No special request */ 90 #define FPI_NONE ((__force fpi_t)0) 91 92 /* 93 * Skip free page reporting notification for the (possibly merged) page. 94 * This does not hinder free page reporting from grabbing the page, 95 * reporting it and marking it "reported" - it only skips notifying 96 * the free page reporting infrastructure about a newly freed page. For 97 * example, used when temporarily pulling a page from a freelist and 98 * putting it back unmodified. 99 */ 100 #define FPI_SKIP_REPORT_NOTIFY ((__force fpi_t)BIT(0)) 101 102 /* 103 * Place the (possibly merged) page to the tail of the freelist. Will ignore 104 * page shuffling (relevant code - e.g., memory onlining - is expected to 105 * shuffle the whole zone). 106 * 107 * Note: No code should rely on this flag for correctness - it's purely 108 * to allow for optimizations when handing back either fresh pages 109 * (memory onlining) or untouched pages (page isolation, free page 110 * reporting). 111 */ 112 #define FPI_TO_TAIL ((__force fpi_t)BIT(1)) 113 114 /* 115 * Don't poison memory with KASAN (only for the tag-based modes). 116 * During boot, all non-reserved memblock memory is exposed to page_alloc. 117 * Poisoning all that memory lengthens boot time, especially on systems with 118 * large amount of RAM. This flag is used to skip that poisoning. 119 * This is only done for the tag-based KASAN modes, as those are able to 120 * detect memory corruptions with the memory tags assigned by default. 121 * All memory allocated normally after boot gets poisoned as usual. 122 */ 123 #define FPI_SKIP_KASAN_POISON ((__force fpi_t)BIT(2)) 124 125 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */ 126 static DEFINE_MUTEX(pcp_batch_high_lock); 127 #define MIN_PERCPU_PAGELIST_HIGH_FRACTION (8) 128 129 struct pagesets { 130 local_lock_t lock; 131 }; 132 static DEFINE_PER_CPU(struct pagesets, pagesets) = { 133 .lock = INIT_LOCAL_LOCK(lock), 134 }; 135 136 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID 137 DEFINE_PER_CPU(int, numa_node); 138 EXPORT_PER_CPU_SYMBOL(numa_node); 139 #endif 140 141 DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key); 142 143 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 144 /* 145 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly. 146 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined. 147 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem() 148 * defined in <linux/topology.h>. 149 */ 150 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */ 151 EXPORT_PER_CPU_SYMBOL(_numa_mem_); 152 #endif 153 154 /* work_structs for global per-cpu drains */ 155 struct pcpu_drain { 156 struct zone *zone; 157 struct work_struct work; 158 }; 159 static DEFINE_MUTEX(pcpu_drain_mutex); 160 static DEFINE_PER_CPU(struct pcpu_drain, pcpu_drain); 161 162 #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY 163 volatile unsigned long latent_entropy __latent_entropy; 164 EXPORT_SYMBOL(latent_entropy); 165 #endif 166 167 /* 168 * Array of node states. 169 */ 170 nodemask_t node_states[NR_NODE_STATES] __read_mostly = { 171 [N_POSSIBLE] = NODE_MASK_ALL, 172 [N_ONLINE] = { { [0] = 1UL } }, 173 #ifndef CONFIG_NUMA 174 [N_NORMAL_MEMORY] = { { [0] = 1UL } }, 175 #ifdef CONFIG_HIGHMEM 176 [N_HIGH_MEMORY] = { { [0] = 1UL } }, 177 #endif 178 [N_MEMORY] = { { [0] = 1UL } }, 179 [N_CPU] = { { [0] = 1UL } }, 180 #endif /* NUMA */ 181 }; 182 EXPORT_SYMBOL(node_states); 183 184 atomic_long_t _totalram_pages __read_mostly; 185 EXPORT_SYMBOL(_totalram_pages); 186 unsigned long totalreserve_pages __read_mostly; 187 unsigned long totalcma_pages __read_mostly; 188 189 int percpu_pagelist_high_fraction; 190 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK; 191 DEFINE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, init_on_alloc); 192 EXPORT_SYMBOL(init_on_alloc); 193 194 DEFINE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_FREE_DEFAULT_ON, init_on_free); 195 EXPORT_SYMBOL(init_on_free); 196 197 static bool _init_on_alloc_enabled_early __read_mostly 198 = IS_ENABLED(CONFIG_INIT_ON_ALLOC_DEFAULT_ON); 199 static int __init early_init_on_alloc(char *buf) 200 { 201 202 return kstrtobool(buf, &_init_on_alloc_enabled_early); 203 } 204 early_param("init_on_alloc", early_init_on_alloc); 205 206 static bool _init_on_free_enabled_early __read_mostly 207 = IS_ENABLED(CONFIG_INIT_ON_FREE_DEFAULT_ON); 208 static int __init early_init_on_free(char *buf) 209 { 210 return kstrtobool(buf, &_init_on_free_enabled_early); 211 } 212 early_param("init_on_free", early_init_on_free); 213 214 /* 215 * A cached value of the page's pageblock's migratetype, used when the page is 216 * put on a pcplist. Used to avoid the pageblock migratetype lookup when 217 * freeing from pcplists in most cases, at the cost of possibly becoming stale. 218 * Also the migratetype set in the page does not necessarily match the pcplist 219 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any 220 * other index - this ensures that it will be put on the correct CMA freelist. 221 */ 222 static inline int get_pcppage_migratetype(struct page *page) 223 { 224 return page->index; 225 } 226 227 static inline void set_pcppage_migratetype(struct page *page, int migratetype) 228 { 229 page->index = migratetype; 230 } 231 232 #ifdef CONFIG_PM_SLEEP 233 /* 234 * The following functions are used by the suspend/hibernate code to temporarily 235 * change gfp_allowed_mask in order to avoid using I/O during memory allocations 236 * while devices are suspended. To avoid races with the suspend/hibernate code, 237 * they should always be called with system_transition_mutex held 238 * (gfp_allowed_mask also should only be modified with system_transition_mutex 239 * held, unless the suspend/hibernate code is guaranteed not to run in parallel 240 * with that modification). 241 */ 242 243 static gfp_t saved_gfp_mask; 244 245 void pm_restore_gfp_mask(void) 246 { 247 WARN_ON(!mutex_is_locked(&system_transition_mutex)); 248 if (saved_gfp_mask) { 249 gfp_allowed_mask = saved_gfp_mask; 250 saved_gfp_mask = 0; 251 } 252 } 253 254 void pm_restrict_gfp_mask(void) 255 { 256 WARN_ON(!mutex_is_locked(&system_transition_mutex)); 257 WARN_ON(saved_gfp_mask); 258 saved_gfp_mask = gfp_allowed_mask; 259 gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS); 260 } 261 262 bool pm_suspended_storage(void) 263 { 264 if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS)) 265 return false; 266 return true; 267 } 268 #endif /* CONFIG_PM_SLEEP */ 269 270 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE 271 unsigned int pageblock_order __read_mostly; 272 #endif 273 274 static void __free_pages_ok(struct page *page, unsigned int order, 275 fpi_t fpi_flags); 276 277 /* 278 * results with 256, 32 in the lowmem_reserve sysctl: 279 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high) 280 * 1G machine -> (16M dma, 784M normal, 224M high) 281 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA 282 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL 283 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA 284 * 285 * TBD: should special case ZONE_DMA32 machines here - in those we normally 286 * don't need any ZONE_NORMAL reservation 287 */ 288 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = { 289 #ifdef CONFIG_ZONE_DMA 290 [ZONE_DMA] = 256, 291 #endif 292 #ifdef CONFIG_ZONE_DMA32 293 [ZONE_DMA32] = 256, 294 #endif 295 [ZONE_NORMAL] = 32, 296 #ifdef CONFIG_HIGHMEM 297 [ZONE_HIGHMEM] = 0, 298 #endif 299 [ZONE_MOVABLE] = 0, 300 }; 301 302 static char * const zone_names[MAX_NR_ZONES] = { 303 #ifdef CONFIG_ZONE_DMA 304 "DMA", 305 #endif 306 #ifdef CONFIG_ZONE_DMA32 307 "DMA32", 308 #endif 309 "Normal", 310 #ifdef CONFIG_HIGHMEM 311 "HighMem", 312 #endif 313 "Movable", 314 #ifdef CONFIG_ZONE_DEVICE 315 "Device", 316 #endif 317 }; 318 319 const char * const migratetype_names[MIGRATE_TYPES] = { 320 "Unmovable", 321 "Movable", 322 "Reclaimable", 323 "HighAtomic", 324 #ifdef CONFIG_CMA 325 "CMA", 326 #endif 327 #ifdef CONFIG_MEMORY_ISOLATION 328 "Isolate", 329 #endif 330 }; 331 332 compound_page_dtor * const compound_page_dtors[NR_COMPOUND_DTORS] = { 333 [NULL_COMPOUND_DTOR] = NULL, 334 [COMPOUND_PAGE_DTOR] = free_compound_page, 335 #ifdef CONFIG_HUGETLB_PAGE 336 [HUGETLB_PAGE_DTOR] = free_huge_page, 337 #endif 338 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 339 [TRANSHUGE_PAGE_DTOR] = free_transhuge_page, 340 #endif 341 }; 342 343 int min_free_kbytes = 1024; 344 int user_min_free_kbytes = -1; 345 int watermark_boost_factor __read_mostly = 15000; 346 int watermark_scale_factor = 10; 347 348 static unsigned long nr_kernel_pages __initdata; 349 static unsigned long nr_all_pages __initdata; 350 static unsigned long dma_reserve __initdata; 351 352 static unsigned long arch_zone_lowest_possible_pfn[MAX_NR_ZONES] __initdata; 353 static unsigned long arch_zone_highest_possible_pfn[MAX_NR_ZONES] __initdata; 354 static unsigned long required_kernelcore __initdata; 355 static unsigned long required_kernelcore_percent __initdata; 356 static unsigned long required_movablecore __initdata; 357 static unsigned long required_movablecore_percent __initdata; 358 static unsigned long zone_movable_pfn[MAX_NUMNODES] __initdata; 359 bool mirrored_kernelcore __initdata_memblock; 360 361 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */ 362 int movable_zone; 363 EXPORT_SYMBOL(movable_zone); 364 365 #if MAX_NUMNODES > 1 366 unsigned int nr_node_ids __read_mostly = MAX_NUMNODES; 367 unsigned int nr_online_nodes __read_mostly = 1; 368 EXPORT_SYMBOL(nr_node_ids); 369 EXPORT_SYMBOL(nr_online_nodes); 370 #endif 371 372 int page_group_by_mobility_disabled __read_mostly; 373 374 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 375 /* 376 * During boot we initialize deferred pages on-demand, as needed, but once 377 * page_alloc_init_late() has finished, the deferred pages are all initialized, 378 * and we can permanently disable that path. 379 */ 380 static DEFINE_STATIC_KEY_TRUE(deferred_pages); 381 382 static inline bool deferred_pages_enabled(void) 383 { 384 return static_branch_unlikely(&deferred_pages); 385 } 386 387 /* Returns true if the struct page for the pfn is uninitialised */ 388 static inline bool __meminit early_page_uninitialised(unsigned long pfn) 389 { 390 int nid = early_pfn_to_nid(pfn); 391 392 if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn) 393 return true; 394 395 return false; 396 } 397 398 /* 399 * Returns true when the remaining initialisation should be deferred until 400 * later in the boot cycle when it can be parallelised. 401 */ 402 static bool __meminit 403 defer_init(int nid, unsigned long pfn, unsigned long end_pfn) 404 { 405 static unsigned long prev_end_pfn, nr_initialised; 406 407 /* 408 * prev_end_pfn static that contains the end of previous zone 409 * No need to protect because called very early in boot before smp_init. 410 */ 411 if (prev_end_pfn != end_pfn) { 412 prev_end_pfn = end_pfn; 413 nr_initialised = 0; 414 } 415 416 /* Always populate low zones for address-constrained allocations */ 417 if (end_pfn < pgdat_end_pfn(NODE_DATA(nid))) 418 return false; 419 420 if (NODE_DATA(nid)->first_deferred_pfn != ULONG_MAX) 421 return true; 422 /* 423 * We start only with one section of pages, more pages are added as 424 * needed until the rest of deferred pages are initialized. 425 */ 426 nr_initialised++; 427 if ((nr_initialised > PAGES_PER_SECTION) && 428 (pfn & (PAGES_PER_SECTION - 1)) == 0) { 429 NODE_DATA(nid)->first_deferred_pfn = pfn; 430 return true; 431 } 432 return false; 433 } 434 #else 435 static inline bool deferred_pages_enabled(void) 436 { 437 return false; 438 } 439 440 static inline bool early_page_uninitialised(unsigned long pfn) 441 { 442 return false; 443 } 444 445 static inline bool defer_init(int nid, unsigned long pfn, unsigned long end_pfn) 446 { 447 return false; 448 } 449 #endif 450 451 /* Return a pointer to the bitmap storing bits affecting a block of pages */ 452 static inline unsigned long *get_pageblock_bitmap(const struct page *page, 453 unsigned long pfn) 454 { 455 #ifdef CONFIG_SPARSEMEM 456 return section_to_usemap(__pfn_to_section(pfn)); 457 #else 458 return page_zone(page)->pageblock_flags; 459 #endif /* CONFIG_SPARSEMEM */ 460 } 461 462 static inline int pfn_to_bitidx(const struct page *page, unsigned long pfn) 463 { 464 #ifdef CONFIG_SPARSEMEM 465 pfn &= (PAGES_PER_SECTION-1); 466 #else 467 pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages); 468 #endif /* CONFIG_SPARSEMEM */ 469 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS; 470 } 471 472 static __always_inline 473 unsigned long __get_pfnblock_flags_mask(const struct page *page, 474 unsigned long pfn, 475 unsigned long mask) 476 { 477 unsigned long *bitmap; 478 unsigned long bitidx, word_bitidx; 479 unsigned long word; 480 481 bitmap = get_pageblock_bitmap(page, pfn); 482 bitidx = pfn_to_bitidx(page, pfn); 483 word_bitidx = bitidx / BITS_PER_LONG; 484 bitidx &= (BITS_PER_LONG-1); 485 /* 486 * This races, without locks, with set_pfnblock_flags_mask(). Ensure 487 * a consistent read of the memory array, so that results, even though 488 * racy, are not corrupted. 489 */ 490 word = READ_ONCE(bitmap[word_bitidx]); 491 return (word >> bitidx) & mask; 492 } 493 494 /** 495 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages 496 * @page: The page within the block of interest 497 * @pfn: The target page frame number 498 * @mask: mask of bits that the caller is interested in 499 * 500 * Return: pageblock_bits flags 501 */ 502 unsigned long get_pfnblock_flags_mask(const struct page *page, 503 unsigned long pfn, unsigned long mask) 504 { 505 return __get_pfnblock_flags_mask(page, pfn, mask); 506 } 507 508 static __always_inline int get_pfnblock_migratetype(const struct page *page, 509 unsigned long pfn) 510 { 511 return __get_pfnblock_flags_mask(page, pfn, MIGRATETYPE_MASK); 512 } 513 514 /** 515 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages 516 * @page: The page within the block of interest 517 * @flags: The flags to set 518 * @pfn: The target page frame number 519 * @mask: mask of bits that the caller is interested in 520 */ 521 void set_pfnblock_flags_mask(struct page *page, unsigned long flags, 522 unsigned long pfn, 523 unsigned long mask) 524 { 525 unsigned long *bitmap; 526 unsigned long bitidx, word_bitidx; 527 unsigned long old_word, word; 528 529 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4); 530 BUILD_BUG_ON(MIGRATE_TYPES > (1 << PB_migratetype_bits)); 531 532 bitmap = get_pageblock_bitmap(page, pfn); 533 bitidx = pfn_to_bitidx(page, pfn); 534 word_bitidx = bitidx / BITS_PER_LONG; 535 bitidx &= (BITS_PER_LONG-1); 536 537 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page); 538 539 mask <<= bitidx; 540 flags <<= bitidx; 541 542 word = READ_ONCE(bitmap[word_bitidx]); 543 for (;;) { 544 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags); 545 if (word == old_word) 546 break; 547 word = old_word; 548 } 549 } 550 551 void set_pageblock_migratetype(struct page *page, int migratetype) 552 { 553 if (unlikely(page_group_by_mobility_disabled && 554 migratetype < MIGRATE_PCPTYPES)) 555 migratetype = MIGRATE_UNMOVABLE; 556 557 set_pfnblock_flags_mask(page, (unsigned long)migratetype, 558 page_to_pfn(page), MIGRATETYPE_MASK); 559 } 560 561 #ifdef CONFIG_DEBUG_VM 562 static int page_outside_zone_boundaries(struct zone *zone, struct page *page) 563 { 564 int ret = 0; 565 unsigned seq; 566 unsigned long pfn = page_to_pfn(page); 567 unsigned long sp, start_pfn; 568 569 do { 570 seq = zone_span_seqbegin(zone); 571 start_pfn = zone->zone_start_pfn; 572 sp = zone->spanned_pages; 573 if (!zone_spans_pfn(zone, pfn)) 574 ret = 1; 575 } while (zone_span_seqretry(zone, seq)); 576 577 if (ret) 578 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n", 579 pfn, zone_to_nid(zone), zone->name, 580 start_pfn, start_pfn + sp); 581 582 return ret; 583 } 584 585 static int page_is_consistent(struct zone *zone, struct page *page) 586 { 587 if (zone != page_zone(page)) 588 return 0; 589 590 return 1; 591 } 592 /* 593 * Temporary debugging check for pages not lying within a given zone. 594 */ 595 static int __maybe_unused bad_range(struct zone *zone, struct page *page) 596 { 597 if (page_outside_zone_boundaries(zone, page)) 598 return 1; 599 if (!page_is_consistent(zone, page)) 600 return 1; 601 602 return 0; 603 } 604 #else 605 static inline int __maybe_unused bad_range(struct zone *zone, struct page *page) 606 { 607 return 0; 608 } 609 #endif 610 611 static void bad_page(struct page *page, const char *reason) 612 { 613 static unsigned long resume; 614 static unsigned long nr_shown; 615 static unsigned long nr_unshown; 616 617 /* 618 * Allow a burst of 60 reports, then keep quiet for that minute; 619 * or allow a steady drip of one report per second. 620 */ 621 if (nr_shown == 60) { 622 if (time_before(jiffies, resume)) { 623 nr_unshown++; 624 goto out; 625 } 626 if (nr_unshown) { 627 pr_alert( 628 "BUG: Bad page state: %lu messages suppressed\n", 629 nr_unshown); 630 nr_unshown = 0; 631 } 632 nr_shown = 0; 633 } 634 if (nr_shown++ == 0) 635 resume = jiffies + 60 * HZ; 636 637 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n", 638 current->comm, page_to_pfn(page)); 639 dump_page(page, reason); 640 641 print_modules(); 642 dump_stack(); 643 out: 644 /* Leave bad fields for debug, except PageBuddy could make trouble */ 645 page_mapcount_reset(page); /* remove PageBuddy */ 646 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 647 } 648 649 static inline unsigned int order_to_pindex(int migratetype, int order) 650 { 651 int base = order; 652 653 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 654 if (order > PAGE_ALLOC_COSTLY_ORDER) { 655 VM_BUG_ON(order != pageblock_order); 656 base = PAGE_ALLOC_COSTLY_ORDER + 1; 657 } 658 #else 659 VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER); 660 #endif 661 662 return (MIGRATE_PCPTYPES * base) + migratetype; 663 } 664 665 static inline int pindex_to_order(unsigned int pindex) 666 { 667 int order = pindex / MIGRATE_PCPTYPES; 668 669 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 670 if (order > PAGE_ALLOC_COSTLY_ORDER) 671 order = pageblock_order; 672 #else 673 VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER); 674 #endif 675 676 return order; 677 } 678 679 static inline bool pcp_allowed_order(unsigned int order) 680 { 681 if (order <= PAGE_ALLOC_COSTLY_ORDER) 682 return true; 683 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 684 if (order == pageblock_order) 685 return true; 686 #endif 687 return false; 688 } 689 690 static inline void free_the_page(struct page *page, unsigned int order) 691 { 692 if (pcp_allowed_order(order)) /* Via pcp? */ 693 free_unref_page(page, order); 694 else 695 __free_pages_ok(page, order, FPI_NONE); 696 } 697 698 /* 699 * Higher-order pages are called "compound pages". They are structured thusly: 700 * 701 * The first PAGE_SIZE page is called the "head page" and have PG_head set. 702 * 703 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded 704 * in bit 0 of page->compound_head. The rest of bits is pointer to head page. 705 * 706 * The first tail page's ->compound_dtor holds the offset in array of compound 707 * page destructors. See compound_page_dtors. 708 * 709 * The first tail page's ->compound_order holds the order of allocation. 710 * This usage means that zero-order pages may not be compound. 711 */ 712 713 void free_compound_page(struct page *page) 714 { 715 mem_cgroup_uncharge(page_folio(page)); 716 free_the_page(page, compound_order(page)); 717 } 718 719 static void prep_compound_head(struct page *page, unsigned int order) 720 { 721 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR); 722 set_compound_order(page, order); 723 atomic_set(compound_mapcount_ptr(page), -1); 724 atomic_set(compound_pincount_ptr(page), 0); 725 } 726 727 static void prep_compound_tail(struct page *head, int tail_idx) 728 { 729 struct page *p = head + tail_idx; 730 731 p->mapping = TAIL_MAPPING; 732 set_compound_head(p, head); 733 } 734 735 void prep_compound_page(struct page *page, unsigned int order) 736 { 737 int i; 738 int nr_pages = 1 << order; 739 740 __SetPageHead(page); 741 for (i = 1; i < nr_pages; i++) 742 prep_compound_tail(page, i); 743 744 prep_compound_head(page, order); 745 } 746 747 #ifdef CONFIG_DEBUG_PAGEALLOC 748 unsigned int _debug_guardpage_minorder; 749 750 bool _debug_pagealloc_enabled_early __read_mostly 751 = IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT); 752 EXPORT_SYMBOL(_debug_pagealloc_enabled_early); 753 DEFINE_STATIC_KEY_FALSE(_debug_pagealloc_enabled); 754 EXPORT_SYMBOL(_debug_pagealloc_enabled); 755 756 DEFINE_STATIC_KEY_FALSE(_debug_guardpage_enabled); 757 758 static int __init early_debug_pagealloc(char *buf) 759 { 760 return kstrtobool(buf, &_debug_pagealloc_enabled_early); 761 } 762 early_param("debug_pagealloc", early_debug_pagealloc); 763 764 static int __init debug_guardpage_minorder_setup(char *buf) 765 { 766 unsigned long res; 767 768 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) { 769 pr_err("Bad debug_guardpage_minorder value\n"); 770 return 0; 771 } 772 _debug_guardpage_minorder = res; 773 pr_info("Setting debug_guardpage_minorder to %lu\n", res); 774 return 0; 775 } 776 early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup); 777 778 static inline bool set_page_guard(struct zone *zone, struct page *page, 779 unsigned int order, int migratetype) 780 { 781 if (!debug_guardpage_enabled()) 782 return false; 783 784 if (order >= debug_guardpage_minorder()) 785 return false; 786 787 __SetPageGuard(page); 788 INIT_LIST_HEAD(&page->lru); 789 set_page_private(page, order); 790 /* Guard pages are not available for any usage */ 791 __mod_zone_freepage_state(zone, -(1 << order), migratetype); 792 793 return true; 794 } 795 796 static inline void clear_page_guard(struct zone *zone, struct page *page, 797 unsigned int order, int migratetype) 798 { 799 if (!debug_guardpage_enabled()) 800 return; 801 802 __ClearPageGuard(page); 803 804 set_page_private(page, 0); 805 if (!is_migrate_isolate(migratetype)) 806 __mod_zone_freepage_state(zone, (1 << order), migratetype); 807 } 808 #else 809 static inline bool set_page_guard(struct zone *zone, struct page *page, 810 unsigned int order, int migratetype) { return false; } 811 static inline void clear_page_guard(struct zone *zone, struct page *page, 812 unsigned int order, int migratetype) {} 813 #endif 814 815 /* 816 * Enable static keys related to various memory debugging and hardening options. 817 * Some override others, and depend on early params that are evaluated in the 818 * order of appearance. So we need to first gather the full picture of what was 819 * enabled, and then make decisions. 820 */ 821 void init_mem_debugging_and_hardening(void) 822 { 823 bool page_poisoning_requested = false; 824 825 #ifdef CONFIG_PAGE_POISONING 826 /* 827 * Page poisoning is debug page alloc for some arches. If 828 * either of those options are enabled, enable poisoning. 829 */ 830 if (page_poisoning_enabled() || 831 (!IS_ENABLED(CONFIG_ARCH_SUPPORTS_DEBUG_PAGEALLOC) && 832 debug_pagealloc_enabled())) { 833 static_branch_enable(&_page_poisoning_enabled); 834 page_poisoning_requested = true; 835 } 836 #endif 837 838 if ((_init_on_alloc_enabled_early || _init_on_free_enabled_early) && 839 page_poisoning_requested) { 840 pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, " 841 "will take precedence over init_on_alloc and init_on_free\n"); 842 _init_on_alloc_enabled_early = false; 843 _init_on_free_enabled_early = false; 844 } 845 846 if (_init_on_alloc_enabled_early) 847 static_branch_enable(&init_on_alloc); 848 else 849 static_branch_disable(&init_on_alloc); 850 851 if (_init_on_free_enabled_early) 852 static_branch_enable(&init_on_free); 853 else 854 static_branch_disable(&init_on_free); 855 856 #ifdef CONFIG_DEBUG_PAGEALLOC 857 if (!debug_pagealloc_enabled()) 858 return; 859 860 static_branch_enable(&_debug_pagealloc_enabled); 861 862 if (!debug_guardpage_minorder()) 863 return; 864 865 static_branch_enable(&_debug_guardpage_enabled); 866 #endif 867 } 868 869 static inline void set_buddy_order(struct page *page, unsigned int order) 870 { 871 set_page_private(page, order); 872 __SetPageBuddy(page); 873 } 874 875 #ifdef CONFIG_COMPACTION 876 static inline struct capture_control *task_capc(struct zone *zone) 877 { 878 struct capture_control *capc = current->capture_control; 879 880 return unlikely(capc) && 881 !(current->flags & PF_KTHREAD) && 882 !capc->page && 883 capc->cc->zone == zone ? capc : NULL; 884 } 885 886 static inline bool 887 compaction_capture(struct capture_control *capc, struct page *page, 888 int order, int migratetype) 889 { 890 if (!capc || order != capc->cc->order) 891 return false; 892 893 /* Do not accidentally pollute CMA or isolated regions*/ 894 if (is_migrate_cma(migratetype) || 895 is_migrate_isolate(migratetype)) 896 return false; 897 898 /* 899 * Do not let lower order allocations pollute a movable pageblock. 900 * This might let an unmovable request use a reclaimable pageblock 901 * and vice-versa but no more than normal fallback logic which can 902 * have trouble finding a high-order free page. 903 */ 904 if (order < pageblock_order && migratetype == MIGRATE_MOVABLE) 905 return false; 906 907 capc->page = page; 908 return true; 909 } 910 911 #else 912 static inline struct capture_control *task_capc(struct zone *zone) 913 { 914 return NULL; 915 } 916 917 static inline bool 918 compaction_capture(struct capture_control *capc, struct page *page, 919 int order, int migratetype) 920 { 921 return false; 922 } 923 #endif /* CONFIG_COMPACTION */ 924 925 /* Used for pages not on another list */ 926 static inline void add_to_free_list(struct page *page, struct zone *zone, 927 unsigned int order, int migratetype) 928 { 929 struct free_area *area = &zone->free_area[order]; 930 931 list_add(&page->lru, &area->free_list[migratetype]); 932 area->nr_free++; 933 } 934 935 /* Used for pages not on another list */ 936 static inline void add_to_free_list_tail(struct page *page, struct zone *zone, 937 unsigned int order, int migratetype) 938 { 939 struct free_area *area = &zone->free_area[order]; 940 941 list_add_tail(&page->lru, &area->free_list[migratetype]); 942 area->nr_free++; 943 } 944 945 /* 946 * Used for pages which are on another list. Move the pages to the tail 947 * of the list - so the moved pages won't immediately be considered for 948 * allocation again (e.g., optimization for memory onlining). 949 */ 950 static inline void move_to_free_list(struct page *page, struct zone *zone, 951 unsigned int order, int migratetype) 952 { 953 struct free_area *area = &zone->free_area[order]; 954 955 list_move_tail(&page->lru, &area->free_list[migratetype]); 956 } 957 958 static inline void del_page_from_free_list(struct page *page, struct zone *zone, 959 unsigned int order) 960 { 961 /* clear reported state and update reported page count */ 962 if (page_reported(page)) 963 __ClearPageReported(page); 964 965 list_del(&page->lru); 966 __ClearPageBuddy(page); 967 set_page_private(page, 0); 968 zone->free_area[order].nr_free--; 969 } 970 971 /* 972 * If this is not the largest possible page, check if the buddy 973 * of the next-highest order is free. If it is, it's possible 974 * that pages are being freed that will coalesce soon. In case, 975 * that is happening, add the free page to the tail of the list 976 * so it's less likely to be used soon and more likely to be merged 977 * as a higher order page 978 */ 979 static inline bool 980 buddy_merge_likely(unsigned long pfn, unsigned long buddy_pfn, 981 struct page *page, unsigned int order) 982 { 983 unsigned long higher_page_pfn; 984 struct page *higher_page; 985 986 if (order >= MAX_ORDER - 2) 987 return false; 988 989 higher_page_pfn = buddy_pfn & pfn; 990 higher_page = page + (higher_page_pfn - pfn); 991 992 return find_buddy_page_pfn(higher_page, higher_page_pfn, order + 1, 993 NULL) != NULL; 994 } 995 996 /* 997 * Freeing function for a buddy system allocator. 998 * 999 * The concept of a buddy system is to maintain direct-mapped table 1000 * (containing bit values) for memory blocks of various "orders". 1001 * The bottom level table contains the map for the smallest allocatable 1002 * units of memory (here, pages), and each level above it describes 1003 * pairs of units from the levels below, hence, "buddies". 1004 * At a high level, all that happens here is marking the table entry 1005 * at the bottom level available, and propagating the changes upward 1006 * as necessary, plus some accounting needed to play nicely with other 1007 * parts of the VM system. 1008 * At each level, we keep a list of pages, which are heads of continuous 1009 * free pages of length of (1 << order) and marked with PageBuddy. 1010 * Page's order is recorded in page_private(page) field. 1011 * So when we are allocating or freeing one, we can derive the state of the 1012 * other. That is, if we allocate a small block, and both were 1013 * free, the remainder of the region must be split into blocks. 1014 * If a block is freed, and its buddy is also free, then this 1015 * triggers coalescing into a block of larger size. 1016 * 1017 * -- nyc 1018 */ 1019 1020 static inline void __free_one_page(struct page *page, 1021 unsigned long pfn, 1022 struct zone *zone, unsigned int order, 1023 int migratetype, fpi_t fpi_flags) 1024 { 1025 struct capture_control *capc = task_capc(zone); 1026 unsigned long buddy_pfn; 1027 unsigned long combined_pfn; 1028 struct page *buddy; 1029 bool to_tail; 1030 1031 VM_BUG_ON(!zone_is_initialized(zone)); 1032 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page); 1033 1034 VM_BUG_ON(migratetype == -1); 1035 if (likely(!is_migrate_isolate(migratetype))) 1036 __mod_zone_freepage_state(zone, 1 << order, migratetype); 1037 1038 VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page); 1039 VM_BUG_ON_PAGE(bad_range(zone, page), page); 1040 1041 while (order < MAX_ORDER - 1) { 1042 if (compaction_capture(capc, page, order, migratetype)) { 1043 __mod_zone_freepage_state(zone, -(1 << order), 1044 migratetype); 1045 return; 1046 } 1047 1048 buddy = find_buddy_page_pfn(page, pfn, order, &buddy_pfn); 1049 if (!buddy) 1050 goto done_merging; 1051 1052 if (unlikely(order >= pageblock_order)) { 1053 /* 1054 * We want to prevent merge between freepages on pageblock 1055 * without fallbacks and normal pageblock. Without this, 1056 * pageblock isolation could cause incorrect freepage or CMA 1057 * accounting or HIGHATOMIC accounting. 1058 */ 1059 int buddy_mt = get_pageblock_migratetype(buddy); 1060 1061 if (migratetype != buddy_mt 1062 && (!migratetype_is_mergeable(migratetype) || 1063 !migratetype_is_mergeable(buddy_mt))) 1064 goto done_merging; 1065 } 1066 1067 /* 1068 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page, 1069 * merge with it and move up one order. 1070 */ 1071 if (page_is_guard(buddy)) 1072 clear_page_guard(zone, buddy, order, migratetype); 1073 else 1074 del_page_from_free_list(buddy, zone, order); 1075 combined_pfn = buddy_pfn & pfn; 1076 page = page + (combined_pfn - pfn); 1077 pfn = combined_pfn; 1078 order++; 1079 } 1080 1081 done_merging: 1082 set_buddy_order(page, order); 1083 1084 if (fpi_flags & FPI_TO_TAIL) 1085 to_tail = true; 1086 else if (is_shuffle_order(order)) 1087 to_tail = shuffle_pick_tail(); 1088 else 1089 to_tail = buddy_merge_likely(pfn, buddy_pfn, page, order); 1090 1091 if (to_tail) 1092 add_to_free_list_tail(page, zone, order, migratetype); 1093 else 1094 add_to_free_list(page, zone, order, migratetype); 1095 1096 /* Notify page reporting subsystem of freed page */ 1097 if (!(fpi_flags & FPI_SKIP_REPORT_NOTIFY)) 1098 page_reporting_notify_free(order); 1099 } 1100 1101 /** 1102 * split_free_page() -- split a free page at split_pfn_offset 1103 * @free_page: the original free page 1104 * @order: the order of the page 1105 * @split_pfn_offset: split offset within the page 1106 * 1107 * Return -ENOENT if the free page is changed, otherwise 0 1108 * 1109 * It is used when the free page crosses two pageblocks with different migratetypes 1110 * at split_pfn_offset within the page. The split free page will be put into 1111 * separate migratetype lists afterwards. Otherwise, the function achieves 1112 * nothing. 1113 */ 1114 int split_free_page(struct page *free_page, 1115 unsigned int order, unsigned long split_pfn_offset) 1116 { 1117 struct zone *zone = page_zone(free_page); 1118 unsigned long free_page_pfn = page_to_pfn(free_page); 1119 unsigned long pfn; 1120 unsigned long flags; 1121 int free_page_order; 1122 int mt; 1123 int ret = 0; 1124 1125 if (split_pfn_offset == 0) 1126 return ret; 1127 1128 spin_lock_irqsave(&zone->lock, flags); 1129 1130 if (!PageBuddy(free_page) || buddy_order(free_page) != order) { 1131 ret = -ENOENT; 1132 goto out; 1133 } 1134 1135 mt = get_pageblock_migratetype(free_page); 1136 if (likely(!is_migrate_isolate(mt))) 1137 __mod_zone_freepage_state(zone, -(1UL << order), mt); 1138 1139 del_page_from_free_list(free_page, zone, order); 1140 for (pfn = free_page_pfn; 1141 pfn < free_page_pfn + (1UL << order);) { 1142 int mt = get_pfnblock_migratetype(pfn_to_page(pfn), pfn); 1143 1144 free_page_order = min_t(unsigned int, 1145 pfn ? __ffs(pfn) : order, 1146 __fls(split_pfn_offset)); 1147 __free_one_page(pfn_to_page(pfn), pfn, zone, free_page_order, 1148 mt, FPI_NONE); 1149 pfn += 1UL << free_page_order; 1150 split_pfn_offset -= (1UL << free_page_order); 1151 /* we have done the first part, now switch to second part */ 1152 if (split_pfn_offset == 0) 1153 split_pfn_offset = (1UL << order) - (pfn - free_page_pfn); 1154 } 1155 out: 1156 spin_unlock_irqrestore(&zone->lock, flags); 1157 return ret; 1158 } 1159 /* 1160 * A bad page could be due to a number of fields. Instead of multiple branches, 1161 * try and check multiple fields with one check. The caller must do a detailed 1162 * check if necessary. 1163 */ 1164 static inline bool page_expected_state(struct page *page, 1165 unsigned long check_flags) 1166 { 1167 if (unlikely(atomic_read(&page->_mapcount) != -1)) 1168 return false; 1169 1170 if (unlikely((unsigned long)page->mapping | 1171 page_ref_count(page) | 1172 #ifdef CONFIG_MEMCG 1173 page->memcg_data | 1174 #endif 1175 (page->flags & check_flags))) 1176 return false; 1177 1178 return true; 1179 } 1180 1181 static const char *page_bad_reason(struct page *page, unsigned long flags) 1182 { 1183 const char *bad_reason = NULL; 1184 1185 if (unlikely(atomic_read(&page->_mapcount) != -1)) 1186 bad_reason = "nonzero mapcount"; 1187 if (unlikely(page->mapping != NULL)) 1188 bad_reason = "non-NULL mapping"; 1189 if (unlikely(page_ref_count(page) != 0)) 1190 bad_reason = "nonzero _refcount"; 1191 if (unlikely(page->flags & flags)) { 1192 if (flags == PAGE_FLAGS_CHECK_AT_PREP) 1193 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag(s) set"; 1194 else 1195 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set"; 1196 } 1197 #ifdef CONFIG_MEMCG 1198 if (unlikely(page->memcg_data)) 1199 bad_reason = "page still charged to cgroup"; 1200 #endif 1201 return bad_reason; 1202 } 1203 1204 static void check_free_page_bad(struct page *page) 1205 { 1206 bad_page(page, 1207 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_FREE)); 1208 } 1209 1210 static inline int check_free_page(struct page *page) 1211 { 1212 if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE))) 1213 return 0; 1214 1215 /* Something has gone sideways, find it */ 1216 check_free_page_bad(page); 1217 return 1; 1218 } 1219 1220 static int free_tail_pages_check(struct page *head_page, struct page *page) 1221 { 1222 int ret = 1; 1223 1224 /* 1225 * We rely page->lru.next never has bit 0 set, unless the page 1226 * is PageTail(). Let's make sure that's true even for poisoned ->lru. 1227 */ 1228 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1); 1229 1230 if (!IS_ENABLED(CONFIG_DEBUG_VM)) { 1231 ret = 0; 1232 goto out; 1233 } 1234 switch (page - head_page) { 1235 case 1: 1236 /* the first tail page: ->mapping may be compound_mapcount() */ 1237 if (unlikely(compound_mapcount(page))) { 1238 bad_page(page, "nonzero compound_mapcount"); 1239 goto out; 1240 } 1241 break; 1242 case 2: 1243 /* 1244 * the second tail page: ->mapping is 1245 * deferred_list.next -- ignore value. 1246 */ 1247 break; 1248 default: 1249 if (page->mapping != TAIL_MAPPING) { 1250 bad_page(page, "corrupted mapping in tail page"); 1251 goto out; 1252 } 1253 break; 1254 } 1255 if (unlikely(!PageTail(page))) { 1256 bad_page(page, "PageTail not set"); 1257 goto out; 1258 } 1259 if (unlikely(compound_head(page) != head_page)) { 1260 bad_page(page, "compound_head not consistent"); 1261 goto out; 1262 } 1263 ret = 0; 1264 out: 1265 page->mapping = NULL; 1266 clear_compound_head(page); 1267 return ret; 1268 } 1269 1270 /* 1271 * Skip KASAN memory poisoning when either: 1272 * 1273 * 1. Deferred memory initialization has not yet completed, 1274 * see the explanation below. 1275 * 2. Skipping poisoning is requested via FPI_SKIP_KASAN_POISON, 1276 * see the comment next to it. 1277 * 3. Skipping poisoning is requested via __GFP_SKIP_KASAN_POISON, 1278 * see the comment next to it. 1279 * 1280 * Poisoning pages during deferred memory init will greatly lengthen the 1281 * process and cause problem in large memory systems as the deferred pages 1282 * initialization is done with interrupt disabled. 1283 * 1284 * Assuming that there will be no reference to those newly initialized 1285 * pages before they are ever allocated, this should have no effect on 1286 * KASAN memory tracking as the poison will be properly inserted at page 1287 * allocation time. The only corner case is when pages are allocated by 1288 * on-demand allocation and then freed again before the deferred pages 1289 * initialization is done, but this is not likely to happen. 1290 */ 1291 static inline bool should_skip_kasan_poison(struct page *page, fpi_t fpi_flags) 1292 { 1293 return deferred_pages_enabled() || 1294 (!IS_ENABLED(CONFIG_KASAN_GENERIC) && 1295 (fpi_flags & FPI_SKIP_KASAN_POISON)) || 1296 PageSkipKASanPoison(page); 1297 } 1298 1299 static void kernel_init_free_pages(struct page *page, int numpages) 1300 { 1301 int i; 1302 1303 /* s390's use of memset() could override KASAN redzones. */ 1304 kasan_disable_current(); 1305 for (i = 0; i < numpages; i++) { 1306 u8 tag = page_kasan_tag(page + i); 1307 page_kasan_tag_reset(page + i); 1308 clear_highpage(page + i); 1309 page_kasan_tag_set(page + i, tag); 1310 } 1311 kasan_enable_current(); 1312 } 1313 1314 static __always_inline bool free_pages_prepare(struct page *page, 1315 unsigned int order, bool check_free, fpi_t fpi_flags) 1316 { 1317 int bad = 0; 1318 bool init = want_init_on_free(); 1319 1320 VM_BUG_ON_PAGE(PageTail(page), page); 1321 1322 trace_mm_page_free(page, order); 1323 1324 if (unlikely(PageHWPoison(page)) && !order) { 1325 /* 1326 * Do not let hwpoison pages hit pcplists/buddy 1327 * Untie memcg state and reset page's owner 1328 */ 1329 if (memcg_kmem_enabled() && PageMemcgKmem(page)) 1330 __memcg_kmem_uncharge_page(page, order); 1331 reset_page_owner(page, order); 1332 page_table_check_free(page, order); 1333 return false; 1334 } 1335 1336 /* 1337 * Check tail pages before head page information is cleared to 1338 * avoid checking PageCompound for order-0 pages. 1339 */ 1340 if (unlikely(order)) { 1341 bool compound = PageCompound(page); 1342 int i; 1343 1344 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page); 1345 1346 if (compound) { 1347 ClearPageDoubleMap(page); 1348 ClearPageHasHWPoisoned(page); 1349 } 1350 for (i = 1; i < (1 << order); i++) { 1351 if (compound) 1352 bad += free_tail_pages_check(page, page + i); 1353 if (unlikely(check_free_page(page + i))) { 1354 bad++; 1355 continue; 1356 } 1357 (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP; 1358 } 1359 } 1360 if (PageMappingFlags(page)) 1361 page->mapping = NULL; 1362 if (memcg_kmem_enabled() && PageMemcgKmem(page)) 1363 __memcg_kmem_uncharge_page(page, order); 1364 if (check_free) 1365 bad += check_free_page(page); 1366 if (bad) 1367 return false; 1368 1369 page_cpupid_reset_last(page); 1370 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP; 1371 reset_page_owner(page, order); 1372 page_table_check_free(page, order); 1373 1374 if (!PageHighMem(page)) { 1375 debug_check_no_locks_freed(page_address(page), 1376 PAGE_SIZE << order); 1377 debug_check_no_obj_freed(page_address(page), 1378 PAGE_SIZE << order); 1379 } 1380 1381 kernel_poison_pages(page, 1 << order); 1382 1383 /* 1384 * As memory initialization might be integrated into KASAN, 1385 * KASAN poisoning and memory initialization code must be 1386 * kept together to avoid discrepancies in behavior. 1387 * 1388 * With hardware tag-based KASAN, memory tags must be set before the 1389 * page becomes unavailable via debug_pagealloc or arch_free_page. 1390 */ 1391 if (!should_skip_kasan_poison(page, fpi_flags)) { 1392 kasan_poison_pages(page, order, init); 1393 1394 /* Memory is already initialized if KASAN did it internally. */ 1395 if (kasan_has_integrated_init()) 1396 init = false; 1397 } 1398 if (init) 1399 kernel_init_free_pages(page, 1 << order); 1400 1401 /* 1402 * arch_free_page() can make the page's contents inaccessible. s390 1403 * does this. So nothing which can access the page's contents should 1404 * happen after this. 1405 */ 1406 arch_free_page(page, order); 1407 1408 debug_pagealloc_unmap_pages(page, 1 << order); 1409 1410 return true; 1411 } 1412 1413 #ifdef CONFIG_DEBUG_VM 1414 /* 1415 * With DEBUG_VM enabled, order-0 pages are checked immediately when being freed 1416 * to pcp lists. With debug_pagealloc also enabled, they are also rechecked when 1417 * moved from pcp lists to free lists. 1418 */ 1419 static bool free_pcp_prepare(struct page *page, unsigned int order) 1420 { 1421 return free_pages_prepare(page, order, true, FPI_NONE); 1422 } 1423 1424 static bool bulkfree_pcp_prepare(struct page *page) 1425 { 1426 if (debug_pagealloc_enabled_static()) 1427 return check_free_page(page); 1428 else 1429 return false; 1430 } 1431 #else 1432 /* 1433 * With DEBUG_VM disabled, order-0 pages being freed are checked only when 1434 * moving from pcp lists to free list in order to reduce overhead. With 1435 * debug_pagealloc enabled, they are checked also immediately when being freed 1436 * to the pcp lists. 1437 */ 1438 static bool free_pcp_prepare(struct page *page, unsigned int order) 1439 { 1440 if (debug_pagealloc_enabled_static()) 1441 return free_pages_prepare(page, order, true, FPI_NONE); 1442 else 1443 return free_pages_prepare(page, order, false, FPI_NONE); 1444 } 1445 1446 static bool bulkfree_pcp_prepare(struct page *page) 1447 { 1448 return check_free_page(page); 1449 } 1450 #endif /* CONFIG_DEBUG_VM */ 1451 1452 /* 1453 * Frees a number of pages from the PCP lists 1454 * Assumes all pages on list are in same zone. 1455 * count is the number of pages to free. 1456 */ 1457 static void free_pcppages_bulk(struct zone *zone, int count, 1458 struct per_cpu_pages *pcp, 1459 int pindex) 1460 { 1461 int min_pindex = 0; 1462 int max_pindex = NR_PCP_LISTS - 1; 1463 unsigned int order; 1464 bool isolated_pageblocks; 1465 struct page *page; 1466 1467 /* 1468 * Ensure proper count is passed which otherwise would stuck in the 1469 * below while (list_empty(list)) loop. 1470 */ 1471 count = min(pcp->count, count); 1472 1473 /* Ensure requested pindex is drained first. */ 1474 pindex = pindex - 1; 1475 1476 /* 1477 * local_lock_irq held so equivalent to spin_lock_irqsave for 1478 * both PREEMPT_RT and non-PREEMPT_RT configurations. 1479 */ 1480 spin_lock(&zone->lock); 1481 isolated_pageblocks = has_isolate_pageblock(zone); 1482 1483 while (count > 0) { 1484 struct list_head *list; 1485 int nr_pages; 1486 1487 /* Remove pages from lists in a round-robin fashion. */ 1488 do { 1489 if (++pindex > max_pindex) 1490 pindex = min_pindex; 1491 list = &pcp->lists[pindex]; 1492 if (!list_empty(list)) 1493 break; 1494 1495 if (pindex == max_pindex) 1496 max_pindex--; 1497 if (pindex == min_pindex) 1498 min_pindex++; 1499 } while (1); 1500 1501 order = pindex_to_order(pindex); 1502 nr_pages = 1 << order; 1503 BUILD_BUG_ON(MAX_ORDER >= (1<<NR_PCP_ORDER_WIDTH)); 1504 do { 1505 int mt; 1506 1507 page = list_last_entry(list, struct page, lru); 1508 mt = get_pcppage_migratetype(page); 1509 1510 /* must delete to avoid corrupting pcp list */ 1511 list_del(&page->lru); 1512 count -= nr_pages; 1513 pcp->count -= nr_pages; 1514 1515 if (bulkfree_pcp_prepare(page)) 1516 continue; 1517 1518 /* MIGRATE_ISOLATE page should not go to pcplists */ 1519 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page); 1520 /* Pageblock could have been isolated meanwhile */ 1521 if (unlikely(isolated_pageblocks)) 1522 mt = get_pageblock_migratetype(page); 1523 1524 __free_one_page(page, page_to_pfn(page), zone, order, mt, FPI_NONE); 1525 trace_mm_page_pcpu_drain(page, order, mt); 1526 } while (count > 0 && !list_empty(list)); 1527 } 1528 1529 spin_unlock(&zone->lock); 1530 } 1531 1532 static void free_one_page(struct zone *zone, 1533 struct page *page, unsigned long pfn, 1534 unsigned int order, 1535 int migratetype, fpi_t fpi_flags) 1536 { 1537 unsigned long flags; 1538 1539 spin_lock_irqsave(&zone->lock, flags); 1540 if (unlikely(has_isolate_pageblock(zone) || 1541 is_migrate_isolate(migratetype))) { 1542 migratetype = get_pfnblock_migratetype(page, pfn); 1543 } 1544 __free_one_page(page, pfn, zone, order, migratetype, fpi_flags); 1545 spin_unlock_irqrestore(&zone->lock, flags); 1546 } 1547 1548 static void __meminit __init_single_page(struct page *page, unsigned long pfn, 1549 unsigned long zone, int nid) 1550 { 1551 mm_zero_struct_page(page); 1552 set_page_links(page, zone, nid, pfn); 1553 init_page_count(page); 1554 page_mapcount_reset(page); 1555 page_cpupid_reset_last(page); 1556 page_kasan_tag_reset(page); 1557 1558 INIT_LIST_HEAD(&page->lru); 1559 #ifdef WANT_PAGE_VIRTUAL 1560 /* The shift won't overflow because ZONE_NORMAL is below 4G. */ 1561 if (!is_highmem_idx(zone)) 1562 set_page_address(page, __va(pfn << PAGE_SHIFT)); 1563 #endif 1564 } 1565 1566 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 1567 static void __meminit init_reserved_page(unsigned long pfn) 1568 { 1569 pg_data_t *pgdat; 1570 int nid, zid; 1571 1572 if (!early_page_uninitialised(pfn)) 1573 return; 1574 1575 nid = early_pfn_to_nid(pfn); 1576 pgdat = NODE_DATA(nid); 1577 1578 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 1579 struct zone *zone = &pgdat->node_zones[zid]; 1580 1581 if (zone_spans_pfn(zone, pfn)) 1582 break; 1583 } 1584 __init_single_page(pfn_to_page(pfn), pfn, zid, nid); 1585 } 1586 #else 1587 static inline void init_reserved_page(unsigned long pfn) 1588 { 1589 } 1590 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */ 1591 1592 /* 1593 * Initialised pages do not have PageReserved set. This function is 1594 * called for each range allocated by the bootmem allocator and 1595 * marks the pages PageReserved. The remaining valid pages are later 1596 * sent to the buddy page allocator. 1597 */ 1598 void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end) 1599 { 1600 unsigned long start_pfn = PFN_DOWN(start); 1601 unsigned long end_pfn = PFN_UP(end); 1602 1603 for (; start_pfn < end_pfn; start_pfn++) { 1604 if (pfn_valid(start_pfn)) { 1605 struct page *page = pfn_to_page(start_pfn); 1606 1607 init_reserved_page(start_pfn); 1608 1609 /* Avoid false-positive PageTail() */ 1610 INIT_LIST_HEAD(&page->lru); 1611 1612 /* 1613 * no need for atomic set_bit because the struct 1614 * page is not visible yet so nobody should 1615 * access it yet. 1616 */ 1617 __SetPageReserved(page); 1618 } 1619 } 1620 } 1621 1622 static void __free_pages_ok(struct page *page, unsigned int order, 1623 fpi_t fpi_flags) 1624 { 1625 unsigned long flags; 1626 int migratetype; 1627 unsigned long pfn = page_to_pfn(page); 1628 struct zone *zone = page_zone(page); 1629 1630 if (!free_pages_prepare(page, order, true, fpi_flags)) 1631 return; 1632 1633 migratetype = get_pfnblock_migratetype(page, pfn); 1634 1635 spin_lock_irqsave(&zone->lock, flags); 1636 if (unlikely(has_isolate_pageblock(zone) || 1637 is_migrate_isolate(migratetype))) { 1638 migratetype = get_pfnblock_migratetype(page, pfn); 1639 } 1640 __free_one_page(page, pfn, zone, order, migratetype, fpi_flags); 1641 spin_unlock_irqrestore(&zone->lock, flags); 1642 1643 __count_vm_events(PGFREE, 1 << order); 1644 } 1645 1646 void __free_pages_core(struct page *page, unsigned int order) 1647 { 1648 unsigned int nr_pages = 1 << order; 1649 struct page *p = page; 1650 unsigned int loop; 1651 1652 /* 1653 * When initializing the memmap, __init_single_page() sets the refcount 1654 * of all pages to 1 ("allocated"/"not free"). We have to set the 1655 * refcount of all involved pages to 0. 1656 */ 1657 prefetchw(p); 1658 for (loop = 0; loop < (nr_pages - 1); loop++, p++) { 1659 prefetchw(p + 1); 1660 __ClearPageReserved(p); 1661 set_page_count(p, 0); 1662 } 1663 __ClearPageReserved(p); 1664 set_page_count(p, 0); 1665 1666 atomic_long_add(nr_pages, &page_zone(page)->managed_pages); 1667 1668 /* 1669 * Bypass PCP and place fresh pages right to the tail, primarily 1670 * relevant for memory onlining. 1671 */ 1672 __free_pages_ok(page, order, FPI_TO_TAIL | FPI_SKIP_KASAN_POISON); 1673 } 1674 1675 #ifdef CONFIG_NUMA 1676 1677 /* 1678 * During memory init memblocks map pfns to nids. The search is expensive and 1679 * this caches recent lookups. The implementation of __early_pfn_to_nid 1680 * treats start/end as pfns. 1681 */ 1682 struct mminit_pfnnid_cache { 1683 unsigned long last_start; 1684 unsigned long last_end; 1685 int last_nid; 1686 }; 1687 1688 static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata; 1689 1690 /* 1691 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on. 1692 */ 1693 static int __meminit __early_pfn_to_nid(unsigned long pfn, 1694 struct mminit_pfnnid_cache *state) 1695 { 1696 unsigned long start_pfn, end_pfn; 1697 int nid; 1698 1699 if (state->last_start <= pfn && pfn < state->last_end) 1700 return state->last_nid; 1701 1702 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn); 1703 if (nid != NUMA_NO_NODE) { 1704 state->last_start = start_pfn; 1705 state->last_end = end_pfn; 1706 state->last_nid = nid; 1707 } 1708 1709 return nid; 1710 } 1711 1712 int __meminit early_pfn_to_nid(unsigned long pfn) 1713 { 1714 static DEFINE_SPINLOCK(early_pfn_lock); 1715 int nid; 1716 1717 spin_lock(&early_pfn_lock); 1718 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache); 1719 if (nid < 0) 1720 nid = first_online_node; 1721 spin_unlock(&early_pfn_lock); 1722 1723 return nid; 1724 } 1725 #endif /* CONFIG_NUMA */ 1726 1727 void __init memblock_free_pages(struct page *page, unsigned long pfn, 1728 unsigned int order) 1729 { 1730 if (early_page_uninitialised(pfn)) 1731 return; 1732 __free_pages_core(page, order); 1733 } 1734 1735 /* 1736 * Check that the whole (or subset of) a pageblock given by the interval of 1737 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it 1738 * with the migration of free compaction scanner. 1739 * 1740 * Return struct page pointer of start_pfn, or NULL if checks were not passed. 1741 * 1742 * It's possible on some configurations to have a setup like node0 node1 node0 1743 * i.e. it's possible that all pages within a zones range of pages do not 1744 * belong to a single zone. We assume that a border between node0 and node1 1745 * can occur within a single pageblock, but not a node0 node1 node0 1746 * interleaving within a single pageblock. It is therefore sufficient to check 1747 * the first and last page of a pageblock and avoid checking each individual 1748 * page in a pageblock. 1749 */ 1750 struct page *__pageblock_pfn_to_page(unsigned long start_pfn, 1751 unsigned long end_pfn, struct zone *zone) 1752 { 1753 struct page *start_page; 1754 struct page *end_page; 1755 1756 /* end_pfn is one past the range we are checking */ 1757 end_pfn--; 1758 1759 if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn)) 1760 return NULL; 1761 1762 start_page = pfn_to_online_page(start_pfn); 1763 if (!start_page) 1764 return NULL; 1765 1766 if (page_zone(start_page) != zone) 1767 return NULL; 1768 1769 end_page = pfn_to_page(end_pfn); 1770 1771 /* This gives a shorter code than deriving page_zone(end_page) */ 1772 if (page_zone_id(start_page) != page_zone_id(end_page)) 1773 return NULL; 1774 1775 return start_page; 1776 } 1777 1778 void set_zone_contiguous(struct zone *zone) 1779 { 1780 unsigned long block_start_pfn = zone->zone_start_pfn; 1781 unsigned long block_end_pfn; 1782 1783 block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages); 1784 for (; block_start_pfn < zone_end_pfn(zone); 1785 block_start_pfn = block_end_pfn, 1786 block_end_pfn += pageblock_nr_pages) { 1787 1788 block_end_pfn = min(block_end_pfn, zone_end_pfn(zone)); 1789 1790 if (!__pageblock_pfn_to_page(block_start_pfn, 1791 block_end_pfn, zone)) 1792 return; 1793 cond_resched(); 1794 } 1795 1796 /* We confirm that there is no hole */ 1797 zone->contiguous = true; 1798 } 1799 1800 void clear_zone_contiguous(struct zone *zone) 1801 { 1802 zone->contiguous = false; 1803 } 1804 1805 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 1806 static void __init deferred_free_range(unsigned long pfn, 1807 unsigned long nr_pages) 1808 { 1809 struct page *page; 1810 unsigned long i; 1811 1812 if (!nr_pages) 1813 return; 1814 1815 page = pfn_to_page(pfn); 1816 1817 /* Free a large naturally-aligned chunk if possible */ 1818 if (nr_pages == pageblock_nr_pages && 1819 (pfn & (pageblock_nr_pages - 1)) == 0) { 1820 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 1821 __free_pages_core(page, pageblock_order); 1822 return; 1823 } 1824 1825 for (i = 0; i < nr_pages; i++, page++, pfn++) { 1826 if ((pfn & (pageblock_nr_pages - 1)) == 0) 1827 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 1828 __free_pages_core(page, 0); 1829 } 1830 } 1831 1832 /* Completion tracking for deferred_init_memmap() threads */ 1833 static atomic_t pgdat_init_n_undone __initdata; 1834 static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp); 1835 1836 static inline void __init pgdat_init_report_one_done(void) 1837 { 1838 if (atomic_dec_and_test(&pgdat_init_n_undone)) 1839 complete(&pgdat_init_all_done_comp); 1840 } 1841 1842 /* 1843 * Returns true if page needs to be initialized or freed to buddy allocator. 1844 * 1845 * First we check if pfn is valid on architectures where it is possible to have 1846 * holes within pageblock_nr_pages. On systems where it is not possible, this 1847 * function is optimized out. 1848 * 1849 * Then, we check if a current large page is valid by only checking the validity 1850 * of the head pfn. 1851 */ 1852 static inline bool __init deferred_pfn_valid(unsigned long pfn) 1853 { 1854 if (!(pfn & (pageblock_nr_pages - 1)) && !pfn_valid(pfn)) 1855 return false; 1856 return true; 1857 } 1858 1859 /* 1860 * Free pages to buddy allocator. Try to free aligned pages in 1861 * pageblock_nr_pages sizes. 1862 */ 1863 static void __init deferred_free_pages(unsigned long pfn, 1864 unsigned long end_pfn) 1865 { 1866 unsigned long nr_pgmask = pageblock_nr_pages - 1; 1867 unsigned long nr_free = 0; 1868 1869 for (; pfn < end_pfn; pfn++) { 1870 if (!deferred_pfn_valid(pfn)) { 1871 deferred_free_range(pfn - nr_free, nr_free); 1872 nr_free = 0; 1873 } else if (!(pfn & nr_pgmask)) { 1874 deferred_free_range(pfn - nr_free, nr_free); 1875 nr_free = 1; 1876 } else { 1877 nr_free++; 1878 } 1879 } 1880 /* Free the last block of pages to allocator */ 1881 deferred_free_range(pfn - nr_free, nr_free); 1882 } 1883 1884 /* 1885 * Initialize struct pages. We minimize pfn page lookups and scheduler checks 1886 * by performing it only once every pageblock_nr_pages. 1887 * Return number of pages initialized. 1888 */ 1889 static unsigned long __init deferred_init_pages(struct zone *zone, 1890 unsigned long pfn, 1891 unsigned long end_pfn) 1892 { 1893 unsigned long nr_pgmask = pageblock_nr_pages - 1; 1894 int nid = zone_to_nid(zone); 1895 unsigned long nr_pages = 0; 1896 int zid = zone_idx(zone); 1897 struct page *page = NULL; 1898 1899 for (; pfn < end_pfn; pfn++) { 1900 if (!deferred_pfn_valid(pfn)) { 1901 page = NULL; 1902 continue; 1903 } else if (!page || !(pfn & nr_pgmask)) { 1904 page = pfn_to_page(pfn); 1905 } else { 1906 page++; 1907 } 1908 __init_single_page(page, pfn, zid, nid); 1909 nr_pages++; 1910 } 1911 return (nr_pages); 1912 } 1913 1914 /* 1915 * This function is meant to pre-load the iterator for the zone init. 1916 * Specifically it walks through the ranges until we are caught up to the 1917 * first_init_pfn value and exits there. If we never encounter the value we 1918 * return false indicating there are no valid ranges left. 1919 */ 1920 static bool __init 1921 deferred_init_mem_pfn_range_in_zone(u64 *i, struct zone *zone, 1922 unsigned long *spfn, unsigned long *epfn, 1923 unsigned long first_init_pfn) 1924 { 1925 u64 j; 1926 1927 /* 1928 * Start out by walking through the ranges in this zone that have 1929 * already been initialized. We don't need to do anything with them 1930 * so we just need to flush them out of the system. 1931 */ 1932 for_each_free_mem_pfn_range_in_zone(j, zone, spfn, epfn) { 1933 if (*epfn <= first_init_pfn) 1934 continue; 1935 if (*spfn < first_init_pfn) 1936 *spfn = first_init_pfn; 1937 *i = j; 1938 return true; 1939 } 1940 1941 return false; 1942 } 1943 1944 /* 1945 * Initialize and free pages. We do it in two loops: first we initialize 1946 * struct page, then free to buddy allocator, because while we are 1947 * freeing pages we can access pages that are ahead (computing buddy 1948 * page in __free_one_page()). 1949 * 1950 * In order to try and keep some memory in the cache we have the loop 1951 * broken along max page order boundaries. This way we will not cause 1952 * any issues with the buddy page computation. 1953 */ 1954 static unsigned long __init 1955 deferred_init_maxorder(u64 *i, struct zone *zone, unsigned long *start_pfn, 1956 unsigned long *end_pfn) 1957 { 1958 unsigned long mo_pfn = ALIGN(*start_pfn + 1, MAX_ORDER_NR_PAGES); 1959 unsigned long spfn = *start_pfn, epfn = *end_pfn; 1960 unsigned long nr_pages = 0; 1961 u64 j = *i; 1962 1963 /* First we loop through and initialize the page values */ 1964 for_each_free_mem_pfn_range_in_zone_from(j, zone, start_pfn, end_pfn) { 1965 unsigned long t; 1966 1967 if (mo_pfn <= *start_pfn) 1968 break; 1969 1970 t = min(mo_pfn, *end_pfn); 1971 nr_pages += deferred_init_pages(zone, *start_pfn, t); 1972 1973 if (mo_pfn < *end_pfn) { 1974 *start_pfn = mo_pfn; 1975 break; 1976 } 1977 } 1978 1979 /* Reset values and now loop through freeing pages as needed */ 1980 swap(j, *i); 1981 1982 for_each_free_mem_pfn_range_in_zone_from(j, zone, &spfn, &epfn) { 1983 unsigned long t; 1984 1985 if (mo_pfn <= spfn) 1986 break; 1987 1988 t = min(mo_pfn, epfn); 1989 deferred_free_pages(spfn, t); 1990 1991 if (mo_pfn <= epfn) 1992 break; 1993 } 1994 1995 return nr_pages; 1996 } 1997 1998 static void __init 1999 deferred_init_memmap_chunk(unsigned long start_pfn, unsigned long end_pfn, 2000 void *arg) 2001 { 2002 unsigned long spfn, epfn; 2003 struct zone *zone = arg; 2004 u64 i; 2005 2006 deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, start_pfn); 2007 2008 /* 2009 * Initialize and free pages in MAX_ORDER sized increments so that we 2010 * can avoid introducing any issues with the buddy allocator. 2011 */ 2012 while (spfn < end_pfn) { 2013 deferred_init_maxorder(&i, zone, &spfn, &epfn); 2014 cond_resched(); 2015 } 2016 } 2017 2018 /* An arch may override for more concurrency. */ 2019 __weak int __init 2020 deferred_page_init_max_threads(const struct cpumask *node_cpumask) 2021 { 2022 return 1; 2023 } 2024 2025 /* Initialise remaining memory on a node */ 2026 static int __init deferred_init_memmap(void *data) 2027 { 2028 pg_data_t *pgdat = data; 2029 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id); 2030 unsigned long spfn = 0, epfn = 0; 2031 unsigned long first_init_pfn, flags; 2032 unsigned long start = jiffies; 2033 struct zone *zone; 2034 int zid, max_threads; 2035 u64 i; 2036 2037 /* Bind memory initialisation thread to a local node if possible */ 2038 if (!cpumask_empty(cpumask)) 2039 set_cpus_allowed_ptr(current, cpumask); 2040 2041 pgdat_resize_lock(pgdat, &flags); 2042 first_init_pfn = pgdat->first_deferred_pfn; 2043 if (first_init_pfn == ULONG_MAX) { 2044 pgdat_resize_unlock(pgdat, &flags); 2045 pgdat_init_report_one_done(); 2046 return 0; 2047 } 2048 2049 /* Sanity check boundaries */ 2050 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn); 2051 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat)); 2052 pgdat->first_deferred_pfn = ULONG_MAX; 2053 2054 /* 2055 * Once we unlock here, the zone cannot be grown anymore, thus if an 2056 * interrupt thread must allocate this early in boot, zone must be 2057 * pre-grown prior to start of deferred page initialization. 2058 */ 2059 pgdat_resize_unlock(pgdat, &flags); 2060 2061 /* Only the highest zone is deferred so find it */ 2062 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 2063 zone = pgdat->node_zones + zid; 2064 if (first_init_pfn < zone_end_pfn(zone)) 2065 break; 2066 } 2067 2068 /* If the zone is empty somebody else may have cleared out the zone */ 2069 if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, 2070 first_init_pfn)) 2071 goto zone_empty; 2072 2073 max_threads = deferred_page_init_max_threads(cpumask); 2074 2075 while (spfn < epfn) { 2076 unsigned long epfn_align = ALIGN(epfn, PAGES_PER_SECTION); 2077 struct padata_mt_job job = { 2078 .thread_fn = deferred_init_memmap_chunk, 2079 .fn_arg = zone, 2080 .start = spfn, 2081 .size = epfn_align - spfn, 2082 .align = PAGES_PER_SECTION, 2083 .min_chunk = PAGES_PER_SECTION, 2084 .max_threads = max_threads, 2085 }; 2086 2087 padata_do_multithreaded(&job); 2088 deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, 2089 epfn_align); 2090 } 2091 zone_empty: 2092 /* Sanity check that the next zone really is unpopulated */ 2093 WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone)); 2094 2095 pr_info("node %d deferred pages initialised in %ums\n", 2096 pgdat->node_id, jiffies_to_msecs(jiffies - start)); 2097 2098 pgdat_init_report_one_done(); 2099 return 0; 2100 } 2101 2102 /* 2103 * If this zone has deferred pages, try to grow it by initializing enough 2104 * deferred pages to satisfy the allocation specified by order, rounded up to 2105 * the nearest PAGES_PER_SECTION boundary. So we're adding memory in increments 2106 * of SECTION_SIZE bytes by initializing struct pages in increments of 2107 * PAGES_PER_SECTION * sizeof(struct page) bytes. 2108 * 2109 * Return true when zone was grown, otherwise return false. We return true even 2110 * when we grow less than requested, to let the caller decide if there are 2111 * enough pages to satisfy the allocation. 2112 * 2113 * Note: We use noinline because this function is needed only during boot, and 2114 * it is called from a __ref function _deferred_grow_zone. This way we are 2115 * making sure that it is not inlined into permanent text section. 2116 */ 2117 static noinline bool __init 2118 deferred_grow_zone(struct zone *zone, unsigned int order) 2119 { 2120 unsigned long nr_pages_needed = ALIGN(1 << order, PAGES_PER_SECTION); 2121 pg_data_t *pgdat = zone->zone_pgdat; 2122 unsigned long first_deferred_pfn = pgdat->first_deferred_pfn; 2123 unsigned long spfn, epfn, flags; 2124 unsigned long nr_pages = 0; 2125 u64 i; 2126 2127 /* Only the last zone may have deferred pages */ 2128 if (zone_end_pfn(zone) != pgdat_end_pfn(pgdat)) 2129 return false; 2130 2131 pgdat_resize_lock(pgdat, &flags); 2132 2133 /* 2134 * If someone grew this zone while we were waiting for spinlock, return 2135 * true, as there might be enough pages already. 2136 */ 2137 if (first_deferred_pfn != pgdat->first_deferred_pfn) { 2138 pgdat_resize_unlock(pgdat, &flags); 2139 return true; 2140 } 2141 2142 /* If the zone is empty somebody else may have cleared out the zone */ 2143 if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, 2144 first_deferred_pfn)) { 2145 pgdat->first_deferred_pfn = ULONG_MAX; 2146 pgdat_resize_unlock(pgdat, &flags); 2147 /* Retry only once. */ 2148 return first_deferred_pfn != ULONG_MAX; 2149 } 2150 2151 /* 2152 * Initialize and free pages in MAX_ORDER sized increments so 2153 * that we can avoid introducing any issues with the buddy 2154 * allocator. 2155 */ 2156 while (spfn < epfn) { 2157 /* update our first deferred PFN for this section */ 2158 first_deferred_pfn = spfn; 2159 2160 nr_pages += deferred_init_maxorder(&i, zone, &spfn, &epfn); 2161 touch_nmi_watchdog(); 2162 2163 /* We should only stop along section boundaries */ 2164 if ((first_deferred_pfn ^ spfn) < PAGES_PER_SECTION) 2165 continue; 2166 2167 /* If our quota has been met we can stop here */ 2168 if (nr_pages >= nr_pages_needed) 2169 break; 2170 } 2171 2172 pgdat->first_deferred_pfn = spfn; 2173 pgdat_resize_unlock(pgdat, &flags); 2174 2175 return nr_pages > 0; 2176 } 2177 2178 /* 2179 * deferred_grow_zone() is __init, but it is called from 2180 * get_page_from_freelist() during early boot until deferred_pages permanently 2181 * disables this call. This is why we have refdata wrapper to avoid warning, 2182 * and to ensure that the function body gets unloaded. 2183 */ 2184 static bool __ref 2185 _deferred_grow_zone(struct zone *zone, unsigned int order) 2186 { 2187 return deferred_grow_zone(zone, order); 2188 } 2189 2190 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */ 2191 2192 void __init page_alloc_init_late(void) 2193 { 2194 struct zone *zone; 2195 int nid; 2196 2197 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 2198 2199 /* There will be num_node_state(N_MEMORY) threads */ 2200 atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY)); 2201 for_each_node_state(nid, N_MEMORY) { 2202 kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid); 2203 } 2204 2205 /* Block until all are initialised */ 2206 wait_for_completion(&pgdat_init_all_done_comp); 2207 2208 /* 2209 * We initialized the rest of the deferred pages. Permanently disable 2210 * on-demand struct page initialization. 2211 */ 2212 static_branch_disable(&deferred_pages); 2213 2214 /* Reinit limits that are based on free pages after the kernel is up */ 2215 files_maxfiles_init(); 2216 #endif 2217 2218 buffer_init(); 2219 2220 /* Discard memblock private memory */ 2221 memblock_discard(); 2222 2223 for_each_node_state(nid, N_MEMORY) 2224 shuffle_free_memory(NODE_DATA(nid)); 2225 2226 for_each_populated_zone(zone) 2227 set_zone_contiguous(zone); 2228 } 2229 2230 #ifdef CONFIG_CMA 2231 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */ 2232 void __init init_cma_reserved_pageblock(struct page *page) 2233 { 2234 unsigned i = pageblock_nr_pages; 2235 struct page *p = page; 2236 2237 do { 2238 __ClearPageReserved(p); 2239 set_page_count(p, 0); 2240 } while (++p, --i); 2241 2242 set_pageblock_migratetype(page, MIGRATE_CMA); 2243 set_page_refcounted(page); 2244 __free_pages(page, pageblock_order); 2245 2246 adjust_managed_page_count(page, pageblock_nr_pages); 2247 page_zone(page)->cma_pages += pageblock_nr_pages; 2248 } 2249 #endif 2250 2251 /* 2252 * The order of subdivision here is critical for the IO subsystem. 2253 * Please do not alter this order without good reasons and regression 2254 * testing. Specifically, as large blocks of memory are subdivided, 2255 * the order in which smaller blocks are delivered depends on the order 2256 * they're subdivided in this function. This is the primary factor 2257 * influencing the order in which pages are delivered to the IO 2258 * subsystem according to empirical testing, and this is also justified 2259 * by considering the behavior of a buddy system containing a single 2260 * large block of memory acted on by a series of small allocations. 2261 * This behavior is a critical factor in sglist merging's success. 2262 * 2263 * -- nyc 2264 */ 2265 static inline void expand(struct zone *zone, struct page *page, 2266 int low, int high, int migratetype) 2267 { 2268 unsigned long size = 1 << high; 2269 2270 while (high > low) { 2271 high--; 2272 size >>= 1; 2273 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]); 2274 2275 /* 2276 * Mark as guard pages (or page), that will allow to 2277 * merge back to allocator when buddy will be freed. 2278 * Corresponding page table entries will not be touched, 2279 * pages will stay not present in virtual address space 2280 */ 2281 if (set_page_guard(zone, &page[size], high, migratetype)) 2282 continue; 2283 2284 add_to_free_list(&page[size], zone, high, migratetype); 2285 set_buddy_order(&page[size], high); 2286 } 2287 } 2288 2289 static void check_new_page_bad(struct page *page) 2290 { 2291 if (unlikely(page->flags & __PG_HWPOISON)) { 2292 /* Don't complain about hwpoisoned pages */ 2293 page_mapcount_reset(page); /* remove PageBuddy */ 2294 return; 2295 } 2296 2297 bad_page(page, 2298 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_PREP)); 2299 } 2300 2301 /* 2302 * This page is about to be returned from the page allocator 2303 */ 2304 static inline int check_new_page(struct page *page) 2305 { 2306 if (likely(page_expected_state(page, 2307 PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON))) 2308 return 0; 2309 2310 check_new_page_bad(page); 2311 return 1; 2312 } 2313 2314 static bool check_new_pages(struct page *page, unsigned int order) 2315 { 2316 int i; 2317 for (i = 0; i < (1 << order); i++) { 2318 struct page *p = page + i; 2319 2320 if (unlikely(check_new_page(p))) 2321 return true; 2322 } 2323 2324 return false; 2325 } 2326 2327 #ifdef CONFIG_DEBUG_VM 2328 /* 2329 * With DEBUG_VM enabled, order-0 pages are checked for expected state when 2330 * being allocated from pcp lists. With debug_pagealloc also enabled, they are 2331 * also checked when pcp lists are refilled from the free lists. 2332 */ 2333 static inline bool check_pcp_refill(struct page *page, unsigned int order) 2334 { 2335 if (debug_pagealloc_enabled_static()) 2336 return check_new_pages(page, order); 2337 else 2338 return false; 2339 } 2340 2341 static inline bool check_new_pcp(struct page *page, unsigned int order) 2342 { 2343 return check_new_pages(page, order); 2344 } 2345 #else 2346 /* 2347 * With DEBUG_VM disabled, free order-0 pages are checked for expected state 2348 * when pcp lists are being refilled from the free lists. With debug_pagealloc 2349 * enabled, they are also checked when being allocated from the pcp lists. 2350 */ 2351 static inline bool check_pcp_refill(struct page *page, unsigned int order) 2352 { 2353 return check_new_pages(page, order); 2354 } 2355 static inline bool check_new_pcp(struct page *page, unsigned int order) 2356 { 2357 if (debug_pagealloc_enabled_static()) 2358 return check_new_pages(page, order); 2359 else 2360 return false; 2361 } 2362 #endif /* CONFIG_DEBUG_VM */ 2363 2364 static inline bool should_skip_kasan_unpoison(gfp_t flags) 2365 { 2366 /* Don't skip if a software KASAN mode is enabled. */ 2367 if (IS_ENABLED(CONFIG_KASAN_GENERIC) || 2368 IS_ENABLED(CONFIG_KASAN_SW_TAGS)) 2369 return false; 2370 2371 /* Skip, if hardware tag-based KASAN is not enabled. */ 2372 if (!kasan_hw_tags_enabled()) 2373 return true; 2374 2375 /* 2376 * With hardware tag-based KASAN enabled, skip if this has been 2377 * requested via __GFP_SKIP_KASAN_UNPOISON. 2378 */ 2379 return flags & __GFP_SKIP_KASAN_UNPOISON; 2380 } 2381 2382 static inline bool should_skip_init(gfp_t flags) 2383 { 2384 /* Don't skip, if hardware tag-based KASAN is not enabled. */ 2385 if (!kasan_hw_tags_enabled()) 2386 return false; 2387 2388 /* For hardware tag-based KASAN, skip if requested. */ 2389 return (flags & __GFP_SKIP_ZERO); 2390 } 2391 2392 inline void post_alloc_hook(struct page *page, unsigned int order, 2393 gfp_t gfp_flags) 2394 { 2395 bool init = !want_init_on_free() && want_init_on_alloc(gfp_flags) && 2396 !should_skip_init(gfp_flags); 2397 bool init_tags = init && (gfp_flags & __GFP_ZEROTAGS); 2398 int i; 2399 2400 set_page_private(page, 0); 2401 set_page_refcounted(page); 2402 2403 arch_alloc_page(page, order); 2404 debug_pagealloc_map_pages(page, 1 << order); 2405 2406 /* 2407 * Page unpoisoning must happen before memory initialization. 2408 * Otherwise, the poison pattern will be overwritten for __GFP_ZERO 2409 * allocations and the page unpoisoning code will complain. 2410 */ 2411 kernel_unpoison_pages(page, 1 << order); 2412 2413 /* 2414 * As memory initialization might be integrated into KASAN, 2415 * KASAN unpoisoning and memory initializion code must be 2416 * kept together to avoid discrepancies in behavior. 2417 */ 2418 2419 /* 2420 * If memory tags should be zeroed (which happens only when memory 2421 * should be initialized as well). 2422 */ 2423 if (init_tags) { 2424 /* Initialize both memory and tags. */ 2425 for (i = 0; i != 1 << order; ++i) 2426 tag_clear_highpage(page + i); 2427 2428 /* Note that memory is already initialized by the loop above. */ 2429 init = false; 2430 } 2431 if (!should_skip_kasan_unpoison(gfp_flags)) { 2432 /* Unpoison shadow memory or set memory tags. */ 2433 kasan_unpoison_pages(page, order, init); 2434 2435 /* Note that memory is already initialized by KASAN. */ 2436 if (kasan_has_integrated_init()) 2437 init = false; 2438 } else { 2439 /* Ensure page_address() dereferencing does not fault. */ 2440 for (i = 0; i != 1 << order; ++i) 2441 page_kasan_tag_reset(page + i); 2442 } 2443 /* If memory is still not initialized, do it now. */ 2444 if (init) 2445 kernel_init_free_pages(page, 1 << order); 2446 /* Propagate __GFP_SKIP_KASAN_POISON to page flags. */ 2447 if (kasan_hw_tags_enabled() && (gfp_flags & __GFP_SKIP_KASAN_POISON)) 2448 SetPageSkipKASanPoison(page); 2449 2450 set_page_owner(page, order, gfp_flags); 2451 page_table_check_alloc(page, order); 2452 } 2453 2454 static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags, 2455 unsigned int alloc_flags) 2456 { 2457 post_alloc_hook(page, order, gfp_flags); 2458 2459 if (order && (gfp_flags & __GFP_COMP)) 2460 prep_compound_page(page, order); 2461 2462 /* 2463 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to 2464 * allocate the page. The expectation is that the caller is taking 2465 * steps that will free more memory. The caller should avoid the page 2466 * being used for !PFMEMALLOC purposes. 2467 */ 2468 if (alloc_flags & ALLOC_NO_WATERMARKS) 2469 set_page_pfmemalloc(page); 2470 else 2471 clear_page_pfmemalloc(page); 2472 } 2473 2474 /* 2475 * Go through the free lists for the given migratetype and remove 2476 * the smallest available page from the freelists 2477 */ 2478 static __always_inline 2479 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order, 2480 int migratetype) 2481 { 2482 unsigned int current_order; 2483 struct free_area *area; 2484 struct page *page; 2485 2486 /* Find a page of the appropriate size in the preferred list */ 2487 for (current_order = order; current_order < MAX_ORDER; ++current_order) { 2488 area = &(zone->free_area[current_order]); 2489 page = get_page_from_free_area(area, migratetype); 2490 if (!page) 2491 continue; 2492 del_page_from_free_list(page, zone, current_order); 2493 expand(zone, page, order, current_order, migratetype); 2494 set_pcppage_migratetype(page, migratetype); 2495 trace_mm_page_alloc_zone_locked(page, order, migratetype, 2496 pcp_allowed_order(order) && 2497 migratetype < MIGRATE_PCPTYPES); 2498 return page; 2499 } 2500 2501 return NULL; 2502 } 2503 2504 2505 /* 2506 * This array describes the order lists are fallen back to when 2507 * the free lists for the desirable migrate type are depleted 2508 * 2509 * The other migratetypes do not have fallbacks. 2510 */ 2511 static int fallbacks[MIGRATE_TYPES][3] = { 2512 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_TYPES }, 2513 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES }, 2514 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_TYPES }, 2515 }; 2516 2517 #ifdef CONFIG_CMA 2518 static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone, 2519 unsigned int order) 2520 { 2521 return __rmqueue_smallest(zone, order, MIGRATE_CMA); 2522 } 2523 #else 2524 static inline struct page *__rmqueue_cma_fallback(struct zone *zone, 2525 unsigned int order) { return NULL; } 2526 #endif 2527 2528 /* 2529 * Move the free pages in a range to the freelist tail of the requested type. 2530 * Note that start_page and end_pages are not aligned on a pageblock 2531 * boundary. If alignment is required, use move_freepages_block() 2532 */ 2533 static int move_freepages(struct zone *zone, 2534 unsigned long start_pfn, unsigned long end_pfn, 2535 int migratetype, int *num_movable) 2536 { 2537 struct page *page; 2538 unsigned long pfn; 2539 unsigned int order; 2540 int pages_moved = 0; 2541 2542 for (pfn = start_pfn; pfn <= end_pfn;) { 2543 page = pfn_to_page(pfn); 2544 if (!PageBuddy(page)) { 2545 /* 2546 * We assume that pages that could be isolated for 2547 * migration are movable. But we don't actually try 2548 * isolating, as that would be expensive. 2549 */ 2550 if (num_movable && 2551 (PageLRU(page) || __PageMovable(page))) 2552 (*num_movable)++; 2553 pfn++; 2554 continue; 2555 } 2556 2557 /* Make sure we are not inadvertently changing nodes */ 2558 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page); 2559 VM_BUG_ON_PAGE(page_zone(page) != zone, page); 2560 2561 order = buddy_order(page); 2562 move_to_free_list(page, zone, order, migratetype); 2563 pfn += 1 << order; 2564 pages_moved += 1 << order; 2565 } 2566 2567 return pages_moved; 2568 } 2569 2570 int move_freepages_block(struct zone *zone, struct page *page, 2571 int migratetype, int *num_movable) 2572 { 2573 unsigned long start_pfn, end_pfn, pfn; 2574 2575 if (num_movable) 2576 *num_movable = 0; 2577 2578 pfn = page_to_pfn(page); 2579 start_pfn = pfn & ~(pageblock_nr_pages - 1); 2580 end_pfn = start_pfn + pageblock_nr_pages - 1; 2581 2582 /* Do not cross zone boundaries */ 2583 if (!zone_spans_pfn(zone, start_pfn)) 2584 start_pfn = pfn; 2585 if (!zone_spans_pfn(zone, end_pfn)) 2586 return 0; 2587 2588 return move_freepages(zone, start_pfn, end_pfn, migratetype, 2589 num_movable); 2590 } 2591 2592 static void change_pageblock_range(struct page *pageblock_page, 2593 int start_order, int migratetype) 2594 { 2595 int nr_pageblocks = 1 << (start_order - pageblock_order); 2596 2597 while (nr_pageblocks--) { 2598 set_pageblock_migratetype(pageblock_page, migratetype); 2599 pageblock_page += pageblock_nr_pages; 2600 } 2601 } 2602 2603 /* 2604 * When we are falling back to another migratetype during allocation, try to 2605 * steal extra free pages from the same pageblocks to satisfy further 2606 * allocations, instead of polluting multiple pageblocks. 2607 * 2608 * If we are stealing a relatively large buddy page, it is likely there will 2609 * be more free pages in the pageblock, so try to steal them all. For 2610 * reclaimable and unmovable allocations, we steal regardless of page size, 2611 * as fragmentation caused by those allocations polluting movable pageblocks 2612 * is worse than movable allocations stealing from unmovable and reclaimable 2613 * pageblocks. 2614 */ 2615 static bool can_steal_fallback(unsigned int order, int start_mt) 2616 { 2617 /* 2618 * Leaving this order check is intended, although there is 2619 * relaxed order check in next check. The reason is that 2620 * we can actually steal whole pageblock if this condition met, 2621 * but, below check doesn't guarantee it and that is just heuristic 2622 * so could be changed anytime. 2623 */ 2624 if (order >= pageblock_order) 2625 return true; 2626 2627 if (order >= pageblock_order / 2 || 2628 start_mt == MIGRATE_RECLAIMABLE || 2629 start_mt == MIGRATE_UNMOVABLE || 2630 page_group_by_mobility_disabled) 2631 return true; 2632 2633 return false; 2634 } 2635 2636 static inline bool boost_watermark(struct zone *zone) 2637 { 2638 unsigned long max_boost; 2639 2640 if (!watermark_boost_factor) 2641 return false; 2642 /* 2643 * Don't bother in zones that are unlikely to produce results. 2644 * On small machines, including kdump capture kernels running 2645 * in a small area, boosting the watermark can cause an out of 2646 * memory situation immediately. 2647 */ 2648 if ((pageblock_nr_pages * 4) > zone_managed_pages(zone)) 2649 return false; 2650 2651 max_boost = mult_frac(zone->_watermark[WMARK_HIGH], 2652 watermark_boost_factor, 10000); 2653 2654 /* 2655 * high watermark may be uninitialised if fragmentation occurs 2656 * very early in boot so do not boost. We do not fall 2657 * through and boost by pageblock_nr_pages as failing 2658 * allocations that early means that reclaim is not going 2659 * to help and it may even be impossible to reclaim the 2660 * boosted watermark resulting in a hang. 2661 */ 2662 if (!max_boost) 2663 return false; 2664 2665 max_boost = max(pageblock_nr_pages, max_boost); 2666 2667 zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages, 2668 max_boost); 2669 2670 return true; 2671 } 2672 2673 /* 2674 * This function implements actual steal behaviour. If order is large enough, 2675 * we can steal whole pageblock. If not, we first move freepages in this 2676 * pageblock to our migratetype and determine how many already-allocated pages 2677 * are there in the pageblock with a compatible migratetype. If at least half 2678 * of pages are free or compatible, we can change migratetype of the pageblock 2679 * itself, so pages freed in the future will be put on the correct free list. 2680 */ 2681 static void steal_suitable_fallback(struct zone *zone, struct page *page, 2682 unsigned int alloc_flags, int start_type, bool whole_block) 2683 { 2684 unsigned int current_order = buddy_order(page); 2685 int free_pages, movable_pages, alike_pages; 2686 int old_block_type; 2687 2688 old_block_type = get_pageblock_migratetype(page); 2689 2690 /* 2691 * This can happen due to races and we want to prevent broken 2692 * highatomic accounting. 2693 */ 2694 if (is_migrate_highatomic(old_block_type)) 2695 goto single_page; 2696 2697 /* Take ownership for orders >= pageblock_order */ 2698 if (current_order >= pageblock_order) { 2699 change_pageblock_range(page, current_order, start_type); 2700 goto single_page; 2701 } 2702 2703 /* 2704 * Boost watermarks to increase reclaim pressure to reduce the 2705 * likelihood of future fallbacks. Wake kswapd now as the node 2706 * may be balanced overall and kswapd will not wake naturally. 2707 */ 2708 if (boost_watermark(zone) && (alloc_flags & ALLOC_KSWAPD)) 2709 set_bit(ZONE_BOOSTED_WATERMARK, &zone->flags); 2710 2711 /* We are not allowed to try stealing from the whole block */ 2712 if (!whole_block) 2713 goto single_page; 2714 2715 free_pages = move_freepages_block(zone, page, start_type, 2716 &movable_pages); 2717 /* 2718 * Determine how many pages are compatible with our allocation. 2719 * For movable allocation, it's the number of movable pages which 2720 * we just obtained. For other types it's a bit more tricky. 2721 */ 2722 if (start_type == MIGRATE_MOVABLE) { 2723 alike_pages = movable_pages; 2724 } else { 2725 /* 2726 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation 2727 * to MOVABLE pageblock, consider all non-movable pages as 2728 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or 2729 * vice versa, be conservative since we can't distinguish the 2730 * exact migratetype of non-movable pages. 2731 */ 2732 if (old_block_type == MIGRATE_MOVABLE) 2733 alike_pages = pageblock_nr_pages 2734 - (free_pages + movable_pages); 2735 else 2736 alike_pages = 0; 2737 } 2738 2739 /* moving whole block can fail due to zone boundary conditions */ 2740 if (!free_pages) 2741 goto single_page; 2742 2743 /* 2744 * If a sufficient number of pages in the block are either free or of 2745 * comparable migratability as our allocation, claim the whole block. 2746 */ 2747 if (free_pages + alike_pages >= (1 << (pageblock_order-1)) || 2748 page_group_by_mobility_disabled) 2749 set_pageblock_migratetype(page, start_type); 2750 2751 return; 2752 2753 single_page: 2754 move_to_free_list(page, zone, current_order, start_type); 2755 } 2756 2757 /* 2758 * Check whether there is a suitable fallback freepage with requested order. 2759 * If only_stealable is true, this function returns fallback_mt only if 2760 * we can steal other freepages all together. This would help to reduce 2761 * fragmentation due to mixed migratetype pages in one pageblock. 2762 */ 2763 int find_suitable_fallback(struct free_area *area, unsigned int order, 2764 int migratetype, bool only_stealable, bool *can_steal) 2765 { 2766 int i; 2767 int fallback_mt; 2768 2769 if (area->nr_free == 0) 2770 return -1; 2771 2772 *can_steal = false; 2773 for (i = 0;; i++) { 2774 fallback_mt = fallbacks[migratetype][i]; 2775 if (fallback_mt == MIGRATE_TYPES) 2776 break; 2777 2778 if (free_area_empty(area, fallback_mt)) 2779 continue; 2780 2781 if (can_steal_fallback(order, migratetype)) 2782 *can_steal = true; 2783 2784 if (!only_stealable) 2785 return fallback_mt; 2786 2787 if (*can_steal) 2788 return fallback_mt; 2789 } 2790 2791 return -1; 2792 } 2793 2794 /* 2795 * Reserve a pageblock for exclusive use of high-order atomic allocations if 2796 * there are no empty page blocks that contain a page with a suitable order 2797 */ 2798 static void reserve_highatomic_pageblock(struct page *page, struct zone *zone, 2799 unsigned int alloc_order) 2800 { 2801 int mt; 2802 unsigned long max_managed, flags; 2803 2804 /* 2805 * Limit the number reserved to 1 pageblock or roughly 1% of a zone. 2806 * Check is race-prone but harmless. 2807 */ 2808 max_managed = (zone_managed_pages(zone) / 100) + pageblock_nr_pages; 2809 if (zone->nr_reserved_highatomic >= max_managed) 2810 return; 2811 2812 spin_lock_irqsave(&zone->lock, flags); 2813 2814 /* Recheck the nr_reserved_highatomic limit under the lock */ 2815 if (zone->nr_reserved_highatomic >= max_managed) 2816 goto out_unlock; 2817 2818 /* Yoink! */ 2819 mt = get_pageblock_migratetype(page); 2820 /* Only reserve normal pageblocks (i.e., they can merge with others) */ 2821 if (migratetype_is_mergeable(mt)) { 2822 zone->nr_reserved_highatomic += pageblock_nr_pages; 2823 set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC); 2824 move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL); 2825 } 2826 2827 out_unlock: 2828 spin_unlock_irqrestore(&zone->lock, flags); 2829 } 2830 2831 /* 2832 * Used when an allocation is about to fail under memory pressure. This 2833 * potentially hurts the reliability of high-order allocations when under 2834 * intense memory pressure but failed atomic allocations should be easier 2835 * to recover from than an OOM. 2836 * 2837 * If @force is true, try to unreserve a pageblock even though highatomic 2838 * pageblock is exhausted. 2839 */ 2840 static bool unreserve_highatomic_pageblock(const struct alloc_context *ac, 2841 bool force) 2842 { 2843 struct zonelist *zonelist = ac->zonelist; 2844 unsigned long flags; 2845 struct zoneref *z; 2846 struct zone *zone; 2847 struct page *page; 2848 int order; 2849 bool ret; 2850 2851 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->highest_zoneidx, 2852 ac->nodemask) { 2853 /* 2854 * Preserve at least one pageblock unless memory pressure 2855 * is really high. 2856 */ 2857 if (!force && zone->nr_reserved_highatomic <= 2858 pageblock_nr_pages) 2859 continue; 2860 2861 spin_lock_irqsave(&zone->lock, flags); 2862 for (order = 0; order < MAX_ORDER; order++) { 2863 struct free_area *area = &(zone->free_area[order]); 2864 2865 page = get_page_from_free_area(area, MIGRATE_HIGHATOMIC); 2866 if (!page) 2867 continue; 2868 2869 /* 2870 * In page freeing path, migratetype change is racy so 2871 * we can counter several free pages in a pageblock 2872 * in this loop although we changed the pageblock type 2873 * from highatomic to ac->migratetype. So we should 2874 * adjust the count once. 2875 */ 2876 if (is_migrate_highatomic_page(page)) { 2877 /* 2878 * It should never happen but changes to 2879 * locking could inadvertently allow a per-cpu 2880 * drain to add pages to MIGRATE_HIGHATOMIC 2881 * while unreserving so be safe and watch for 2882 * underflows. 2883 */ 2884 zone->nr_reserved_highatomic -= min( 2885 pageblock_nr_pages, 2886 zone->nr_reserved_highatomic); 2887 } 2888 2889 /* 2890 * Convert to ac->migratetype and avoid the normal 2891 * pageblock stealing heuristics. Minimally, the caller 2892 * is doing the work and needs the pages. More 2893 * importantly, if the block was always converted to 2894 * MIGRATE_UNMOVABLE or another type then the number 2895 * of pageblocks that cannot be completely freed 2896 * may increase. 2897 */ 2898 set_pageblock_migratetype(page, ac->migratetype); 2899 ret = move_freepages_block(zone, page, ac->migratetype, 2900 NULL); 2901 if (ret) { 2902 spin_unlock_irqrestore(&zone->lock, flags); 2903 return ret; 2904 } 2905 } 2906 spin_unlock_irqrestore(&zone->lock, flags); 2907 } 2908 2909 return false; 2910 } 2911 2912 /* 2913 * Try finding a free buddy page on the fallback list and put it on the free 2914 * list of requested migratetype, possibly along with other pages from the same 2915 * block, depending on fragmentation avoidance heuristics. Returns true if 2916 * fallback was found so that __rmqueue_smallest() can grab it. 2917 * 2918 * The use of signed ints for order and current_order is a deliberate 2919 * deviation from the rest of this file, to make the for loop 2920 * condition simpler. 2921 */ 2922 static __always_inline bool 2923 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype, 2924 unsigned int alloc_flags) 2925 { 2926 struct free_area *area; 2927 int current_order; 2928 int min_order = order; 2929 struct page *page; 2930 int fallback_mt; 2931 bool can_steal; 2932 2933 /* 2934 * Do not steal pages from freelists belonging to other pageblocks 2935 * i.e. orders < pageblock_order. If there are no local zones free, 2936 * the zonelists will be reiterated without ALLOC_NOFRAGMENT. 2937 */ 2938 if (alloc_flags & ALLOC_NOFRAGMENT) 2939 min_order = pageblock_order; 2940 2941 /* 2942 * Find the largest available free page in the other list. This roughly 2943 * approximates finding the pageblock with the most free pages, which 2944 * would be too costly to do exactly. 2945 */ 2946 for (current_order = MAX_ORDER - 1; current_order >= min_order; 2947 --current_order) { 2948 area = &(zone->free_area[current_order]); 2949 fallback_mt = find_suitable_fallback(area, current_order, 2950 start_migratetype, false, &can_steal); 2951 if (fallback_mt == -1) 2952 continue; 2953 2954 /* 2955 * We cannot steal all free pages from the pageblock and the 2956 * requested migratetype is movable. In that case it's better to 2957 * steal and split the smallest available page instead of the 2958 * largest available page, because even if the next movable 2959 * allocation falls back into a different pageblock than this 2960 * one, it won't cause permanent fragmentation. 2961 */ 2962 if (!can_steal && start_migratetype == MIGRATE_MOVABLE 2963 && current_order > order) 2964 goto find_smallest; 2965 2966 goto do_steal; 2967 } 2968 2969 return false; 2970 2971 find_smallest: 2972 for (current_order = order; current_order < MAX_ORDER; 2973 current_order++) { 2974 area = &(zone->free_area[current_order]); 2975 fallback_mt = find_suitable_fallback(area, current_order, 2976 start_migratetype, false, &can_steal); 2977 if (fallback_mt != -1) 2978 break; 2979 } 2980 2981 /* 2982 * This should not happen - we already found a suitable fallback 2983 * when looking for the largest page. 2984 */ 2985 VM_BUG_ON(current_order == MAX_ORDER); 2986 2987 do_steal: 2988 page = get_page_from_free_area(area, fallback_mt); 2989 2990 steal_suitable_fallback(zone, page, alloc_flags, start_migratetype, 2991 can_steal); 2992 2993 trace_mm_page_alloc_extfrag(page, order, current_order, 2994 start_migratetype, fallback_mt); 2995 2996 return true; 2997 2998 } 2999 3000 /* 3001 * Do the hard work of removing an element from the buddy allocator. 3002 * Call me with the zone->lock already held. 3003 */ 3004 static __always_inline struct page * 3005 __rmqueue(struct zone *zone, unsigned int order, int migratetype, 3006 unsigned int alloc_flags) 3007 { 3008 struct page *page; 3009 3010 if (IS_ENABLED(CONFIG_CMA)) { 3011 /* 3012 * Balance movable allocations between regular and CMA areas by 3013 * allocating from CMA when over half of the zone's free memory 3014 * is in the CMA area. 3015 */ 3016 if (alloc_flags & ALLOC_CMA && 3017 zone_page_state(zone, NR_FREE_CMA_PAGES) > 3018 zone_page_state(zone, NR_FREE_PAGES) / 2) { 3019 page = __rmqueue_cma_fallback(zone, order); 3020 if (page) 3021 return page; 3022 } 3023 } 3024 retry: 3025 page = __rmqueue_smallest(zone, order, migratetype); 3026 if (unlikely(!page)) { 3027 if (alloc_flags & ALLOC_CMA) 3028 page = __rmqueue_cma_fallback(zone, order); 3029 3030 if (!page && __rmqueue_fallback(zone, order, migratetype, 3031 alloc_flags)) 3032 goto retry; 3033 } 3034 return page; 3035 } 3036 3037 /* 3038 * Obtain a specified number of elements from the buddy allocator, all under 3039 * a single hold of the lock, for efficiency. Add them to the supplied list. 3040 * Returns the number of new pages which were placed at *list. 3041 */ 3042 static int rmqueue_bulk(struct zone *zone, unsigned int order, 3043 unsigned long count, struct list_head *list, 3044 int migratetype, unsigned int alloc_flags) 3045 { 3046 int i, allocated = 0; 3047 3048 /* 3049 * local_lock_irq held so equivalent to spin_lock_irqsave for 3050 * both PREEMPT_RT and non-PREEMPT_RT configurations. 3051 */ 3052 spin_lock(&zone->lock); 3053 for (i = 0; i < count; ++i) { 3054 struct page *page = __rmqueue(zone, order, migratetype, 3055 alloc_flags); 3056 if (unlikely(page == NULL)) 3057 break; 3058 3059 if (unlikely(check_pcp_refill(page, order))) 3060 continue; 3061 3062 /* 3063 * Split buddy pages returned by expand() are received here in 3064 * physical page order. The page is added to the tail of 3065 * caller's list. From the callers perspective, the linked list 3066 * is ordered by page number under some conditions. This is 3067 * useful for IO devices that can forward direction from the 3068 * head, thus also in the physical page order. This is useful 3069 * for IO devices that can merge IO requests if the physical 3070 * pages are ordered properly. 3071 */ 3072 list_add_tail(&page->lru, list); 3073 allocated++; 3074 if (is_migrate_cma(get_pcppage_migratetype(page))) 3075 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES, 3076 -(1 << order)); 3077 } 3078 3079 /* 3080 * i pages were removed from the buddy list even if some leak due 3081 * to check_pcp_refill failing so adjust NR_FREE_PAGES based 3082 * on i. Do not confuse with 'allocated' which is the number of 3083 * pages added to the pcp list. 3084 */ 3085 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order)); 3086 spin_unlock(&zone->lock); 3087 return allocated; 3088 } 3089 3090 #ifdef CONFIG_NUMA 3091 /* 3092 * Called from the vmstat counter updater to drain pagesets of this 3093 * currently executing processor on remote nodes after they have 3094 * expired. 3095 * 3096 * Note that this function must be called with the thread pinned to 3097 * a single processor. 3098 */ 3099 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp) 3100 { 3101 unsigned long flags; 3102 int to_drain, batch; 3103 3104 local_lock_irqsave(&pagesets.lock, flags); 3105 batch = READ_ONCE(pcp->batch); 3106 to_drain = min(pcp->count, batch); 3107 if (to_drain > 0) 3108 free_pcppages_bulk(zone, to_drain, pcp, 0); 3109 local_unlock_irqrestore(&pagesets.lock, flags); 3110 } 3111 #endif 3112 3113 /* 3114 * Drain pcplists of the indicated processor and zone. 3115 * 3116 * The processor must either be the current processor and the 3117 * thread pinned to the current processor or a processor that 3118 * is not online. 3119 */ 3120 static void drain_pages_zone(unsigned int cpu, struct zone *zone) 3121 { 3122 unsigned long flags; 3123 struct per_cpu_pages *pcp; 3124 3125 local_lock_irqsave(&pagesets.lock, flags); 3126 3127 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu); 3128 if (pcp->count) 3129 free_pcppages_bulk(zone, pcp->count, pcp, 0); 3130 3131 local_unlock_irqrestore(&pagesets.lock, flags); 3132 } 3133 3134 /* 3135 * Drain pcplists of all zones on the indicated processor. 3136 * 3137 * The processor must either be the current processor and the 3138 * thread pinned to the current processor or a processor that 3139 * is not online. 3140 */ 3141 static void drain_pages(unsigned int cpu) 3142 { 3143 struct zone *zone; 3144 3145 for_each_populated_zone(zone) { 3146 drain_pages_zone(cpu, zone); 3147 } 3148 } 3149 3150 /* 3151 * Spill all of this CPU's per-cpu pages back into the buddy allocator. 3152 * 3153 * The CPU has to be pinned. When zone parameter is non-NULL, spill just 3154 * the single zone's pages. 3155 */ 3156 void drain_local_pages(struct zone *zone) 3157 { 3158 int cpu = smp_processor_id(); 3159 3160 if (zone) 3161 drain_pages_zone(cpu, zone); 3162 else 3163 drain_pages(cpu); 3164 } 3165 3166 static void drain_local_pages_wq(struct work_struct *work) 3167 { 3168 struct pcpu_drain *drain; 3169 3170 drain = container_of(work, struct pcpu_drain, work); 3171 3172 /* 3173 * drain_all_pages doesn't use proper cpu hotplug protection so 3174 * we can race with cpu offline when the WQ can move this from 3175 * a cpu pinned worker to an unbound one. We can operate on a different 3176 * cpu which is alright but we also have to make sure to not move to 3177 * a different one. 3178 */ 3179 migrate_disable(); 3180 drain_local_pages(drain->zone); 3181 migrate_enable(); 3182 } 3183 3184 /* 3185 * The implementation of drain_all_pages(), exposing an extra parameter to 3186 * drain on all cpus. 3187 * 3188 * drain_all_pages() is optimized to only execute on cpus where pcplists are 3189 * not empty. The check for non-emptiness can however race with a free to 3190 * pcplist that has not yet increased the pcp->count from 0 to 1. Callers 3191 * that need the guarantee that every CPU has drained can disable the 3192 * optimizing racy check. 3193 */ 3194 static void __drain_all_pages(struct zone *zone, bool force_all_cpus) 3195 { 3196 int cpu; 3197 3198 /* 3199 * Allocate in the BSS so we won't require allocation in 3200 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y 3201 */ 3202 static cpumask_t cpus_with_pcps; 3203 3204 /* 3205 * Make sure nobody triggers this path before mm_percpu_wq is fully 3206 * initialized. 3207 */ 3208 if (WARN_ON_ONCE(!mm_percpu_wq)) 3209 return; 3210 3211 /* 3212 * Do not drain if one is already in progress unless it's specific to 3213 * a zone. Such callers are primarily CMA and memory hotplug and need 3214 * the drain to be complete when the call returns. 3215 */ 3216 if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) { 3217 if (!zone) 3218 return; 3219 mutex_lock(&pcpu_drain_mutex); 3220 } 3221 3222 /* 3223 * We don't care about racing with CPU hotplug event 3224 * as offline notification will cause the notified 3225 * cpu to drain that CPU pcps and on_each_cpu_mask 3226 * disables preemption as part of its processing 3227 */ 3228 for_each_online_cpu(cpu) { 3229 struct per_cpu_pages *pcp; 3230 struct zone *z; 3231 bool has_pcps = false; 3232 3233 if (force_all_cpus) { 3234 /* 3235 * The pcp.count check is racy, some callers need a 3236 * guarantee that no cpu is missed. 3237 */ 3238 has_pcps = true; 3239 } else if (zone) { 3240 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu); 3241 if (pcp->count) 3242 has_pcps = true; 3243 } else { 3244 for_each_populated_zone(z) { 3245 pcp = per_cpu_ptr(z->per_cpu_pageset, cpu); 3246 if (pcp->count) { 3247 has_pcps = true; 3248 break; 3249 } 3250 } 3251 } 3252 3253 if (has_pcps) 3254 cpumask_set_cpu(cpu, &cpus_with_pcps); 3255 else 3256 cpumask_clear_cpu(cpu, &cpus_with_pcps); 3257 } 3258 3259 for_each_cpu(cpu, &cpus_with_pcps) { 3260 struct pcpu_drain *drain = per_cpu_ptr(&pcpu_drain, cpu); 3261 3262 drain->zone = zone; 3263 INIT_WORK(&drain->work, drain_local_pages_wq); 3264 queue_work_on(cpu, mm_percpu_wq, &drain->work); 3265 } 3266 for_each_cpu(cpu, &cpus_with_pcps) 3267 flush_work(&per_cpu_ptr(&pcpu_drain, cpu)->work); 3268 3269 mutex_unlock(&pcpu_drain_mutex); 3270 } 3271 3272 /* 3273 * Spill all the per-cpu pages from all CPUs back into the buddy allocator. 3274 * 3275 * When zone parameter is non-NULL, spill just the single zone's pages. 3276 * 3277 * Note that this can be extremely slow as the draining happens in a workqueue. 3278 */ 3279 void drain_all_pages(struct zone *zone) 3280 { 3281 __drain_all_pages(zone, false); 3282 } 3283 3284 #ifdef CONFIG_HIBERNATION 3285 3286 /* 3287 * Touch the watchdog for every WD_PAGE_COUNT pages. 3288 */ 3289 #define WD_PAGE_COUNT (128*1024) 3290 3291 void mark_free_pages(struct zone *zone) 3292 { 3293 unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT; 3294 unsigned long flags; 3295 unsigned int order, t; 3296 struct page *page; 3297 3298 if (zone_is_empty(zone)) 3299 return; 3300 3301 spin_lock_irqsave(&zone->lock, flags); 3302 3303 max_zone_pfn = zone_end_pfn(zone); 3304 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) 3305 if (pfn_valid(pfn)) { 3306 page = pfn_to_page(pfn); 3307 3308 if (!--page_count) { 3309 touch_nmi_watchdog(); 3310 page_count = WD_PAGE_COUNT; 3311 } 3312 3313 if (page_zone(page) != zone) 3314 continue; 3315 3316 if (!swsusp_page_is_forbidden(page)) 3317 swsusp_unset_page_free(page); 3318 } 3319 3320 for_each_migratetype_order(order, t) { 3321 list_for_each_entry(page, 3322 &zone->free_area[order].free_list[t], lru) { 3323 unsigned long i; 3324 3325 pfn = page_to_pfn(page); 3326 for (i = 0; i < (1UL << order); i++) { 3327 if (!--page_count) { 3328 touch_nmi_watchdog(); 3329 page_count = WD_PAGE_COUNT; 3330 } 3331 swsusp_set_page_free(pfn_to_page(pfn + i)); 3332 } 3333 } 3334 } 3335 spin_unlock_irqrestore(&zone->lock, flags); 3336 } 3337 #endif /* CONFIG_PM */ 3338 3339 static bool free_unref_page_prepare(struct page *page, unsigned long pfn, 3340 unsigned int order) 3341 { 3342 int migratetype; 3343 3344 if (!free_pcp_prepare(page, order)) 3345 return false; 3346 3347 migratetype = get_pfnblock_migratetype(page, pfn); 3348 set_pcppage_migratetype(page, migratetype); 3349 return true; 3350 } 3351 3352 static int nr_pcp_free(struct per_cpu_pages *pcp, int high, int batch, 3353 bool free_high) 3354 { 3355 int min_nr_free, max_nr_free; 3356 3357 /* Free everything if batch freeing high-order pages. */ 3358 if (unlikely(free_high)) 3359 return pcp->count; 3360 3361 /* Check for PCP disabled or boot pageset */ 3362 if (unlikely(high < batch)) 3363 return 1; 3364 3365 /* Leave at least pcp->batch pages on the list */ 3366 min_nr_free = batch; 3367 max_nr_free = high - batch; 3368 3369 /* 3370 * Double the number of pages freed each time there is subsequent 3371 * freeing of pages without any allocation. 3372 */ 3373 batch <<= pcp->free_factor; 3374 if (batch < max_nr_free) 3375 pcp->free_factor++; 3376 batch = clamp(batch, min_nr_free, max_nr_free); 3377 3378 return batch; 3379 } 3380 3381 static int nr_pcp_high(struct per_cpu_pages *pcp, struct zone *zone, 3382 bool free_high) 3383 { 3384 int high = READ_ONCE(pcp->high); 3385 3386 if (unlikely(!high || free_high)) 3387 return 0; 3388 3389 if (!test_bit(ZONE_RECLAIM_ACTIVE, &zone->flags)) 3390 return high; 3391 3392 /* 3393 * If reclaim is active, limit the number of pages that can be 3394 * stored on pcp lists 3395 */ 3396 return min(READ_ONCE(pcp->batch) << 2, high); 3397 } 3398 3399 static void free_unref_page_commit(struct page *page, int migratetype, 3400 unsigned int order) 3401 { 3402 struct zone *zone = page_zone(page); 3403 struct per_cpu_pages *pcp; 3404 int high; 3405 int pindex; 3406 bool free_high; 3407 3408 __count_vm_event(PGFREE); 3409 pcp = this_cpu_ptr(zone->per_cpu_pageset); 3410 pindex = order_to_pindex(migratetype, order); 3411 list_add(&page->lru, &pcp->lists[pindex]); 3412 pcp->count += 1 << order; 3413 3414 /* 3415 * As high-order pages other than THP's stored on PCP can contribute 3416 * to fragmentation, limit the number stored when PCP is heavily 3417 * freeing without allocation. The remainder after bulk freeing 3418 * stops will be drained from vmstat refresh context. 3419 */ 3420 free_high = (pcp->free_factor && order && order <= PAGE_ALLOC_COSTLY_ORDER); 3421 3422 high = nr_pcp_high(pcp, zone, free_high); 3423 if (pcp->count >= high) { 3424 int batch = READ_ONCE(pcp->batch); 3425 3426 free_pcppages_bulk(zone, nr_pcp_free(pcp, high, batch, free_high), pcp, pindex); 3427 } 3428 } 3429 3430 /* 3431 * Free a pcp page 3432 */ 3433 void free_unref_page(struct page *page, unsigned int order) 3434 { 3435 unsigned long flags; 3436 unsigned long pfn = page_to_pfn(page); 3437 int migratetype; 3438 3439 if (!free_unref_page_prepare(page, pfn, order)) 3440 return; 3441 3442 /* 3443 * We only track unmovable, reclaimable and movable on pcp lists. 3444 * Place ISOLATE pages on the isolated list because they are being 3445 * offlined but treat HIGHATOMIC as movable pages so we can get those 3446 * areas back if necessary. Otherwise, we may have to free 3447 * excessively into the page allocator 3448 */ 3449 migratetype = get_pcppage_migratetype(page); 3450 if (unlikely(migratetype >= MIGRATE_PCPTYPES)) { 3451 if (unlikely(is_migrate_isolate(migratetype))) { 3452 free_one_page(page_zone(page), page, pfn, order, migratetype, FPI_NONE); 3453 return; 3454 } 3455 migratetype = MIGRATE_MOVABLE; 3456 } 3457 3458 local_lock_irqsave(&pagesets.lock, flags); 3459 free_unref_page_commit(page, migratetype, order); 3460 local_unlock_irqrestore(&pagesets.lock, flags); 3461 } 3462 3463 /* 3464 * Free a list of 0-order pages 3465 */ 3466 void free_unref_page_list(struct list_head *list) 3467 { 3468 struct page *page, *next; 3469 unsigned long flags; 3470 int batch_count = 0; 3471 int migratetype; 3472 3473 /* Prepare pages for freeing */ 3474 list_for_each_entry_safe(page, next, list, lru) { 3475 unsigned long pfn = page_to_pfn(page); 3476 if (!free_unref_page_prepare(page, pfn, 0)) { 3477 list_del(&page->lru); 3478 continue; 3479 } 3480 3481 /* 3482 * Free isolated pages directly to the allocator, see 3483 * comment in free_unref_page. 3484 */ 3485 migratetype = get_pcppage_migratetype(page); 3486 if (unlikely(is_migrate_isolate(migratetype))) { 3487 list_del(&page->lru); 3488 free_one_page(page_zone(page), page, pfn, 0, migratetype, FPI_NONE); 3489 continue; 3490 } 3491 } 3492 3493 local_lock_irqsave(&pagesets.lock, flags); 3494 list_for_each_entry_safe(page, next, list, lru) { 3495 /* 3496 * Non-isolated types over MIGRATE_PCPTYPES get added 3497 * to the MIGRATE_MOVABLE pcp list. 3498 */ 3499 migratetype = get_pcppage_migratetype(page); 3500 if (unlikely(migratetype >= MIGRATE_PCPTYPES)) 3501 migratetype = MIGRATE_MOVABLE; 3502 3503 trace_mm_page_free_batched(page); 3504 free_unref_page_commit(page, migratetype, 0); 3505 3506 /* 3507 * Guard against excessive IRQ disabled times when we get 3508 * a large list of pages to free. 3509 */ 3510 if (++batch_count == SWAP_CLUSTER_MAX) { 3511 local_unlock_irqrestore(&pagesets.lock, flags); 3512 batch_count = 0; 3513 local_lock_irqsave(&pagesets.lock, flags); 3514 } 3515 } 3516 local_unlock_irqrestore(&pagesets.lock, flags); 3517 } 3518 3519 /* 3520 * split_page takes a non-compound higher-order page, and splits it into 3521 * n (1<<order) sub-pages: page[0..n] 3522 * Each sub-page must be freed individually. 3523 * 3524 * Note: this is probably too low level an operation for use in drivers. 3525 * Please consult with lkml before using this in your driver. 3526 */ 3527 void split_page(struct page *page, unsigned int order) 3528 { 3529 int i; 3530 3531 VM_BUG_ON_PAGE(PageCompound(page), page); 3532 VM_BUG_ON_PAGE(!page_count(page), page); 3533 3534 for (i = 1; i < (1 << order); i++) 3535 set_page_refcounted(page + i); 3536 split_page_owner(page, 1 << order); 3537 split_page_memcg(page, 1 << order); 3538 } 3539 EXPORT_SYMBOL_GPL(split_page); 3540 3541 int __isolate_free_page(struct page *page, unsigned int order) 3542 { 3543 unsigned long watermark; 3544 struct zone *zone; 3545 int mt; 3546 3547 BUG_ON(!PageBuddy(page)); 3548 3549 zone = page_zone(page); 3550 mt = get_pageblock_migratetype(page); 3551 3552 if (!is_migrate_isolate(mt)) { 3553 /* 3554 * Obey watermarks as if the page was being allocated. We can 3555 * emulate a high-order watermark check with a raised order-0 3556 * watermark, because we already know our high-order page 3557 * exists. 3558 */ 3559 watermark = zone->_watermark[WMARK_MIN] + (1UL << order); 3560 if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA)) 3561 return 0; 3562 3563 __mod_zone_freepage_state(zone, -(1UL << order), mt); 3564 } 3565 3566 /* Remove page from free list */ 3567 3568 del_page_from_free_list(page, zone, order); 3569 3570 /* 3571 * Set the pageblock if the isolated page is at least half of a 3572 * pageblock 3573 */ 3574 if (order >= pageblock_order - 1) { 3575 struct page *endpage = page + (1 << order) - 1; 3576 for (; page < endpage; page += pageblock_nr_pages) { 3577 int mt = get_pageblock_migratetype(page); 3578 /* 3579 * Only change normal pageblocks (i.e., they can merge 3580 * with others) 3581 */ 3582 if (migratetype_is_mergeable(mt)) 3583 set_pageblock_migratetype(page, 3584 MIGRATE_MOVABLE); 3585 } 3586 } 3587 3588 3589 return 1UL << order; 3590 } 3591 3592 /** 3593 * __putback_isolated_page - Return a now-isolated page back where we got it 3594 * @page: Page that was isolated 3595 * @order: Order of the isolated page 3596 * @mt: The page's pageblock's migratetype 3597 * 3598 * This function is meant to return a page pulled from the free lists via 3599 * __isolate_free_page back to the free lists they were pulled from. 3600 */ 3601 void __putback_isolated_page(struct page *page, unsigned int order, int mt) 3602 { 3603 struct zone *zone = page_zone(page); 3604 3605 /* zone lock should be held when this function is called */ 3606 lockdep_assert_held(&zone->lock); 3607 3608 /* Return isolated page to tail of freelist. */ 3609 __free_one_page(page, page_to_pfn(page), zone, order, mt, 3610 FPI_SKIP_REPORT_NOTIFY | FPI_TO_TAIL); 3611 } 3612 3613 /* 3614 * Update NUMA hit/miss statistics 3615 * 3616 * Must be called with interrupts disabled. 3617 */ 3618 static inline void zone_statistics(struct zone *preferred_zone, struct zone *z, 3619 long nr_account) 3620 { 3621 #ifdef CONFIG_NUMA 3622 enum numa_stat_item local_stat = NUMA_LOCAL; 3623 3624 /* skip numa counters update if numa stats is disabled */ 3625 if (!static_branch_likely(&vm_numa_stat_key)) 3626 return; 3627 3628 if (zone_to_nid(z) != numa_node_id()) 3629 local_stat = NUMA_OTHER; 3630 3631 if (zone_to_nid(z) == zone_to_nid(preferred_zone)) 3632 __count_numa_events(z, NUMA_HIT, nr_account); 3633 else { 3634 __count_numa_events(z, NUMA_MISS, nr_account); 3635 __count_numa_events(preferred_zone, NUMA_FOREIGN, nr_account); 3636 } 3637 __count_numa_events(z, local_stat, nr_account); 3638 #endif 3639 } 3640 3641 /* Remove page from the per-cpu list, caller must protect the list */ 3642 static inline 3643 struct page *__rmqueue_pcplist(struct zone *zone, unsigned int order, 3644 int migratetype, 3645 unsigned int alloc_flags, 3646 struct per_cpu_pages *pcp, 3647 struct list_head *list) 3648 { 3649 struct page *page; 3650 3651 do { 3652 if (list_empty(list)) { 3653 int batch = READ_ONCE(pcp->batch); 3654 int alloced; 3655 3656 /* 3657 * Scale batch relative to order if batch implies 3658 * free pages can be stored on the PCP. Batch can 3659 * be 1 for small zones or for boot pagesets which 3660 * should never store free pages as the pages may 3661 * belong to arbitrary zones. 3662 */ 3663 if (batch > 1) 3664 batch = max(batch >> order, 2); 3665 alloced = rmqueue_bulk(zone, order, 3666 batch, list, 3667 migratetype, alloc_flags); 3668 3669 pcp->count += alloced << order; 3670 if (unlikely(list_empty(list))) 3671 return NULL; 3672 } 3673 3674 page = list_first_entry(list, struct page, lru); 3675 list_del(&page->lru); 3676 pcp->count -= 1 << order; 3677 } while (check_new_pcp(page, order)); 3678 3679 return page; 3680 } 3681 3682 /* Lock and remove page from the per-cpu list */ 3683 static struct page *rmqueue_pcplist(struct zone *preferred_zone, 3684 struct zone *zone, unsigned int order, 3685 gfp_t gfp_flags, int migratetype, 3686 unsigned int alloc_flags) 3687 { 3688 struct per_cpu_pages *pcp; 3689 struct list_head *list; 3690 struct page *page; 3691 unsigned long flags; 3692 3693 local_lock_irqsave(&pagesets.lock, flags); 3694 3695 /* 3696 * On allocation, reduce the number of pages that are batch freed. 3697 * See nr_pcp_free() where free_factor is increased for subsequent 3698 * frees. 3699 */ 3700 pcp = this_cpu_ptr(zone->per_cpu_pageset); 3701 pcp->free_factor >>= 1; 3702 list = &pcp->lists[order_to_pindex(migratetype, order)]; 3703 page = __rmqueue_pcplist(zone, order, migratetype, alloc_flags, pcp, list); 3704 local_unlock_irqrestore(&pagesets.lock, flags); 3705 if (page) { 3706 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1); 3707 zone_statistics(preferred_zone, zone, 1); 3708 } 3709 return page; 3710 } 3711 3712 /* 3713 * Allocate a page from the given zone. Use pcplists for order-0 allocations. 3714 */ 3715 static inline 3716 struct page *rmqueue(struct zone *preferred_zone, 3717 struct zone *zone, unsigned int order, 3718 gfp_t gfp_flags, unsigned int alloc_flags, 3719 int migratetype) 3720 { 3721 unsigned long flags; 3722 struct page *page; 3723 3724 if (likely(pcp_allowed_order(order))) { 3725 /* 3726 * MIGRATE_MOVABLE pcplist could have the pages on CMA area and 3727 * we need to skip it when CMA area isn't allowed. 3728 */ 3729 if (!IS_ENABLED(CONFIG_CMA) || alloc_flags & ALLOC_CMA || 3730 migratetype != MIGRATE_MOVABLE) { 3731 page = rmqueue_pcplist(preferred_zone, zone, order, 3732 gfp_flags, migratetype, alloc_flags); 3733 goto out; 3734 } 3735 } 3736 3737 /* 3738 * We most definitely don't want callers attempting to 3739 * allocate greater than order-1 page units with __GFP_NOFAIL. 3740 */ 3741 WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1)); 3742 3743 do { 3744 page = NULL; 3745 spin_lock_irqsave(&zone->lock, flags); 3746 /* 3747 * order-0 request can reach here when the pcplist is skipped 3748 * due to non-CMA allocation context. HIGHATOMIC area is 3749 * reserved for high-order atomic allocation, so order-0 3750 * request should skip it. 3751 */ 3752 if (order > 0 && alloc_flags & ALLOC_HARDER) 3753 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC); 3754 if (!page) { 3755 page = __rmqueue(zone, order, migratetype, alloc_flags); 3756 if (!page) 3757 goto failed; 3758 } 3759 __mod_zone_freepage_state(zone, -(1 << order), 3760 get_pcppage_migratetype(page)); 3761 spin_unlock_irqrestore(&zone->lock, flags); 3762 } while (check_new_pages(page, order)); 3763 3764 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order); 3765 zone_statistics(preferred_zone, zone, 1); 3766 3767 out: 3768 /* Separate test+clear to avoid unnecessary atomics */ 3769 if (test_bit(ZONE_BOOSTED_WATERMARK, &zone->flags)) { 3770 clear_bit(ZONE_BOOSTED_WATERMARK, &zone->flags); 3771 wakeup_kswapd(zone, 0, 0, zone_idx(zone)); 3772 } 3773 3774 VM_BUG_ON_PAGE(page && bad_range(zone, page), page); 3775 return page; 3776 3777 failed: 3778 spin_unlock_irqrestore(&zone->lock, flags); 3779 return NULL; 3780 } 3781 3782 #ifdef CONFIG_FAIL_PAGE_ALLOC 3783 3784 static struct { 3785 struct fault_attr attr; 3786 3787 bool ignore_gfp_highmem; 3788 bool ignore_gfp_reclaim; 3789 u32 min_order; 3790 } fail_page_alloc = { 3791 .attr = FAULT_ATTR_INITIALIZER, 3792 .ignore_gfp_reclaim = true, 3793 .ignore_gfp_highmem = true, 3794 .min_order = 1, 3795 }; 3796 3797 static int __init setup_fail_page_alloc(char *str) 3798 { 3799 return setup_fault_attr(&fail_page_alloc.attr, str); 3800 } 3801 __setup("fail_page_alloc=", setup_fail_page_alloc); 3802 3803 static bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) 3804 { 3805 if (order < fail_page_alloc.min_order) 3806 return false; 3807 if (gfp_mask & __GFP_NOFAIL) 3808 return false; 3809 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM)) 3810 return false; 3811 if (fail_page_alloc.ignore_gfp_reclaim && 3812 (gfp_mask & __GFP_DIRECT_RECLAIM)) 3813 return false; 3814 3815 if (gfp_mask & __GFP_NOWARN) 3816 fail_page_alloc.attr.no_warn = true; 3817 3818 return should_fail(&fail_page_alloc.attr, 1 << order); 3819 } 3820 3821 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS 3822 3823 static int __init fail_page_alloc_debugfs(void) 3824 { 3825 umode_t mode = S_IFREG | 0600; 3826 struct dentry *dir; 3827 3828 dir = fault_create_debugfs_attr("fail_page_alloc", NULL, 3829 &fail_page_alloc.attr); 3830 3831 debugfs_create_bool("ignore-gfp-wait", mode, dir, 3832 &fail_page_alloc.ignore_gfp_reclaim); 3833 debugfs_create_bool("ignore-gfp-highmem", mode, dir, 3834 &fail_page_alloc.ignore_gfp_highmem); 3835 debugfs_create_u32("min-order", mode, dir, &fail_page_alloc.min_order); 3836 3837 return 0; 3838 } 3839 3840 late_initcall(fail_page_alloc_debugfs); 3841 3842 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */ 3843 3844 #else /* CONFIG_FAIL_PAGE_ALLOC */ 3845 3846 static inline bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) 3847 { 3848 return false; 3849 } 3850 3851 #endif /* CONFIG_FAIL_PAGE_ALLOC */ 3852 3853 noinline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) 3854 { 3855 return __should_fail_alloc_page(gfp_mask, order); 3856 } 3857 ALLOW_ERROR_INJECTION(should_fail_alloc_page, TRUE); 3858 3859 static inline long __zone_watermark_unusable_free(struct zone *z, 3860 unsigned int order, unsigned int alloc_flags) 3861 { 3862 const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM)); 3863 long unusable_free = (1 << order) - 1; 3864 3865 /* 3866 * If the caller does not have rights to ALLOC_HARDER then subtract 3867 * the high-atomic reserves. This will over-estimate the size of the 3868 * atomic reserve but it avoids a search. 3869 */ 3870 if (likely(!alloc_harder)) 3871 unusable_free += z->nr_reserved_highatomic; 3872 3873 #ifdef CONFIG_CMA 3874 /* If allocation can't use CMA areas don't use free CMA pages */ 3875 if (!(alloc_flags & ALLOC_CMA)) 3876 unusable_free += zone_page_state(z, NR_FREE_CMA_PAGES); 3877 #endif 3878 3879 return unusable_free; 3880 } 3881 3882 /* 3883 * Return true if free base pages are above 'mark'. For high-order checks it 3884 * will return true of the order-0 watermark is reached and there is at least 3885 * one free page of a suitable size. Checking now avoids taking the zone lock 3886 * to check in the allocation paths if no pages are free. 3887 */ 3888 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark, 3889 int highest_zoneidx, unsigned int alloc_flags, 3890 long free_pages) 3891 { 3892 long min = mark; 3893 int o; 3894 const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM)); 3895 3896 /* free_pages may go negative - that's OK */ 3897 free_pages -= __zone_watermark_unusable_free(z, order, alloc_flags); 3898 3899 if (alloc_flags & ALLOC_HIGH) 3900 min -= min / 2; 3901 3902 if (unlikely(alloc_harder)) { 3903 /* 3904 * OOM victims can try even harder than normal ALLOC_HARDER 3905 * users on the grounds that it's definitely going to be in 3906 * the exit path shortly and free memory. Any allocation it 3907 * makes during the free path will be small and short-lived. 3908 */ 3909 if (alloc_flags & ALLOC_OOM) 3910 min -= min / 2; 3911 else 3912 min -= min / 4; 3913 } 3914 3915 /* 3916 * Check watermarks for an order-0 allocation request. If these 3917 * are not met, then a high-order request also cannot go ahead 3918 * even if a suitable page happened to be free. 3919 */ 3920 if (free_pages <= min + z->lowmem_reserve[highest_zoneidx]) 3921 return false; 3922 3923 /* If this is an order-0 request then the watermark is fine */ 3924 if (!order) 3925 return true; 3926 3927 /* For a high-order request, check at least one suitable page is free */ 3928 for (o = order; o < MAX_ORDER; o++) { 3929 struct free_area *area = &z->free_area[o]; 3930 int mt; 3931 3932 if (!area->nr_free) 3933 continue; 3934 3935 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) { 3936 if (!free_area_empty(area, mt)) 3937 return true; 3938 } 3939 3940 #ifdef CONFIG_CMA 3941 if ((alloc_flags & ALLOC_CMA) && 3942 !free_area_empty(area, MIGRATE_CMA)) { 3943 return true; 3944 } 3945 #endif 3946 if (alloc_harder && !free_area_empty(area, MIGRATE_HIGHATOMIC)) 3947 return true; 3948 } 3949 return false; 3950 } 3951 3952 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark, 3953 int highest_zoneidx, unsigned int alloc_flags) 3954 { 3955 return __zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags, 3956 zone_page_state(z, NR_FREE_PAGES)); 3957 } 3958 3959 static inline bool zone_watermark_fast(struct zone *z, unsigned int order, 3960 unsigned long mark, int highest_zoneidx, 3961 unsigned int alloc_flags, gfp_t gfp_mask) 3962 { 3963 long free_pages; 3964 3965 free_pages = zone_page_state(z, NR_FREE_PAGES); 3966 3967 /* 3968 * Fast check for order-0 only. If this fails then the reserves 3969 * need to be calculated. 3970 */ 3971 if (!order) { 3972 long usable_free; 3973 long reserved; 3974 3975 usable_free = free_pages; 3976 reserved = __zone_watermark_unusable_free(z, 0, alloc_flags); 3977 3978 /* reserved may over estimate high-atomic reserves. */ 3979 usable_free -= min(usable_free, reserved); 3980 if (usable_free > mark + z->lowmem_reserve[highest_zoneidx]) 3981 return true; 3982 } 3983 3984 if (__zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags, 3985 free_pages)) 3986 return true; 3987 /* 3988 * Ignore watermark boosting for GFP_ATOMIC order-0 allocations 3989 * when checking the min watermark. The min watermark is the 3990 * point where boosting is ignored so that kswapd is woken up 3991 * when below the low watermark. 3992 */ 3993 if (unlikely(!order && (gfp_mask & __GFP_ATOMIC) && z->watermark_boost 3994 && ((alloc_flags & ALLOC_WMARK_MASK) == WMARK_MIN))) { 3995 mark = z->_watermark[WMARK_MIN]; 3996 return __zone_watermark_ok(z, order, mark, highest_zoneidx, 3997 alloc_flags, free_pages); 3998 } 3999 4000 return false; 4001 } 4002 4003 bool zone_watermark_ok_safe(struct zone *z, unsigned int order, 4004 unsigned long mark, int highest_zoneidx) 4005 { 4006 long free_pages = zone_page_state(z, NR_FREE_PAGES); 4007 4008 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark) 4009 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES); 4010 4011 return __zone_watermark_ok(z, order, mark, highest_zoneidx, 0, 4012 free_pages); 4013 } 4014 4015 #ifdef CONFIG_NUMA 4016 int __read_mostly node_reclaim_distance = RECLAIM_DISTANCE; 4017 4018 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone) 4019 { 4020 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <= 4021 node_reclaim_distance; 4022 } 4023 #else /* CONFIG_NUMA */ 4024 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone) 4025 { 4026 return true; 4027 } 4028 #endif /* CONFIG_NUMA */ 4029 4030 /* 4031 * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid 4032 * fragmentation is subtle. If the preferred zone was HIGHMEM then 4033 * premature use of a lower zone may cause lowmem pressure problems that 4034 * are worse than fragmentation. If the next zone is ZONE_DMA then it is 4035 * probably too small. It only makes sense to spread allocations to avoid 4036 * fragmentation between the Normal and DMA32 zones. 4037 */ 4038 static inline unsigned int 4039 alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask) 4040 { 4041 unsigned int alloc_flags; 4042 4043 /* 4044 * __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD 4045 * to save a branch. 4046 */ 4047 alloc_flags = (__force int) (gfp_mask & __GFP_KSWAPD_RECLAIM); 4048 4049 #ifdef CONFIG_ZONE_DMA32 4050 if (!zone) 4051 return alloc_flags; 4052 4053 if (zone_idx(zone) != ZONE_NORMAL) 4054 return alloc_flags; 4055 4056 /* 4057 * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and 4058 * the pointer is within zone->zone_pgdat->node_zones[]. Also assume 4059 * on UMA that if Normal is populated then so is DMA32. 4060 */ 4061 BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1); 4062 if (nr_online_nodes > 1 && !populated_zone(--zone)) 4063 return alloc_flags; 4064 4065 alloc_flags |= ALLOC_NOFRAGMENT; 4066 #endif /* CONFIG_ZONE_DMA32 */ 4067 return alloc_flags; 4068 } 4069 4070 /* Must be called after current_gfp_context() which can change gfp_mask */ 4071 static inline unsigned int gfp_to_alloc_flags_cma(gfp_t gfp_mask, 4072 unsigned int alloc_flags) 4073 { 4074 #ifdef CONFIG_CMA 4075 if (gfp_migratetype(gfp_mask) == MIGRATE_MOVABLE) 4076 alloc_flags |= ALLOC_CMA; 4077 #endif 4078 return alloc_flags; 4079 } 4080 4081 /* 4082 * get_page_from_freelist goes through the zonelist trying to allocate 4083 * a page. 4084 */ 4085 static struct page * 4086 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags, 4087 const struct alloc_context *ac) 4088 { 4089 struct zoneref *z; 4090 struct zone *zone; 4091 struct pglist_data *last_pgdat = NULL; 4092 bool last_pgdat_dirty_ok = false; 4093 bool no_fallback; 4094 4095 retry: 4096 /* 4097 * Scan zonelist, looking for a zone with enough free. 4098 * See also __cpuset_node_allowed() comment in kernel/cpuset.c. 4099 */ 4100 no_fallback = alloc_flags & ALLOC_NOFRAGMENT; 4101 z = ac->preferred_zoneref; 4102 for_next_zone_zonelist_nodemask(zone, z, ac->highest_zoneidx, 4103 ac->nodemask) { 4104 struct page *page; 4105 unsigned long mark; 4106 4107 if (cpusets_enabled() && 4108 (alloc_flags & ALLOC_CPUSET) && 4109 !__cpuset_zone_allowed(zone, gfp_mask)) 4110 continue; 4111 /* 4112 * When allocating a page cache page for writing, we 4113 * want to get it from a node that is within its dirty 4114 * limit, such that no single node holds more than its 4115 * proportional share of globally allowed dirty pages. 4116 * The dirty limits take into account the node's 4117 * lowmem reserves and high watermark so that kswapd 4118 * should be able to balance it without having to 4119 * write pages from its LRU list. 4120 * 4121 * XXX: For now, allow allocations to potentially 4122 * exceed the per-node dirty limit in the slowpath 4123 * (spread_dirty_pages unset) before going into reclaim, 4124 * which is important when on a NUMA setup the allowed 4125 * nodes are together not big enough to reach the 4126 * global limit. The proper fix for these situations 4127 * will require awareness of nodes in the 4128 * dirty-throttling and the flusher threads. 4129 */ 4130 if (ac->spread_dirty_pages) { 4131 if (last_pgdat != zone->zone_pgdat) { 4132 last_pgdat = zone->zone_pgdat; 4133 last_pgdat_dirty_ok = node_dirty_ok(zone->zone_pgdat); 4134 } 4135 4136 if (!last_pgdat_dirty_ok) 4137 continue; 4138 } 4139 4140 if (no_fallback && nr_online_nodes > 1 && 4141 zone != ac->preferred_zoneref->zone) { 4142 int local_nid; 4143 4144 /* 4145 * If moving to a remote node, retry but allow 4146 * fragmenting fallbacks. Locality is more important 4147 * than fragmentation avoidance. 4148 */ 4149 local_nid = zone_to_nid(ac->preferred_zoneref->zone); 4150 if (zone_to_nid(zone) != local_nid) { 4151 alloc_flags &= ~ALLOC_NOFRAGMENT; 4152 goto retry; 4153 } 4154 } 4155 4156 mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK); 4157 if (!zone_watermark_fast(zone, order, mark, 4158 ac->highest_zoneidx, alloc_flags, 4159 gfp_mask)) { 4160 int ret; 4161 4162 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 4163 /* 4164 * Watermark failed for this zone, but see if we can 4165 * grow this zone if it contains deferred pages. 4166 */ 4167 if (static_branch_unlikely(&deferred_pages)) { 4168 if (_deferred_grow_zone(zone, order)) 4169 goto try_this_zone; 4170 } 4171 #endif 4172 /* Checked here to keep the fast path fast */ 4173 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK); 4174 if (alloc_flags & ALLOC_NO_WATERMARKS) 4175 goto try_this_zone; 4176 4177 if (!node_reclaim_enabled() || 4178 !zone_allows_reclaim(ac->preferred_zoneref->zone, zone)) 4179 continue; 4180 4181 ret = node_reclaim(zone->zone_pgdat, gfp_mask, order); 4182 switch (ret) { 4183 case NODE_RECLAIM_NOSCAN: 4184 /* did not scan */ 4185 continue; 4186 case NODE_RECLAIM_FULL: 4187 /* scanned but unreclaimable */ 4188 continue; 4189 default: 4190 /* did we reclaim enough */ 4191 if (zone_watermark_ok(zone, order, mark, 4192 ac->highest_zoneidx, alloc_flags)) 4193 goto try_this_zone; 4194 4195 continue; 4196 } 4197 } 4198 4199 try_this_zone: 4200 page = rmqueue(ac->preferred_zoneref->zone, zone, order, 4201 gfp_mask, alloc_flags, ac->migratetype); 4202 if (page) { 4203 prep_new_page(page, order, gfp_mask, alloc_flags); 4204 4205 /* 4206 * If this is a high-order atomic allocation then check 4207 * if the pageblock should be reserved for the future 4208 */ 4209 if (unlikely(order && (alloc_flags & ALLOC_HARDER))) 4210 reserve_highatomic_pageblock(page, zone, order); 4211 4212 return page; 4213 } else { 4214 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 4215 /* Try again if zone has deferred pages */ 4216 if (static_branch_unlikely(&deferred_pages)) { 4217 if (_deferred_grow_zone(zone, order)) 4218 goto try_this_zone; 4219 } 4220 #endif 4221 } 4222 } 4223 4224 /* 4225 * It's possible on a UMA machine to get through all zones that are 4226 * fragmented. If avoiding fragmentation, reset and try again. 4227 */ 4228 if (no_fallback) { 4229 alloc_flags &= ~ALLOC_NOFRAGMENT; 4230 goto retry; 4231 } 4232 4233 return NULL; 4234 } 4235 4236 static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask) 4237 { 4238 unsigned int filter = SHOW_MEM_FILTER_NODES; 4239 4240 /* 4241 * This documents exceptions given to allocations in certain 4242 * contexts that are allowed to allocate outside current's set 4243 * of allowed nodes. 4244 */ 4245 if (!(gfp_mask & __GFP_NOMEMALLOC)) 4246 if (tsk_is_oom_victim(current) || 4247 (current->flags & (PF_MEMALLOC | PF_EXITING))) 4248 filter &= ~SHOW_MEM_FILTER_NODES; 4249 if (!in_task() || !(gfp_mask & __GFP_DIRECT_RECLAIM)) 4250 filter &= ~SHOW_MEM_FILTER_NODES; 4251 4252 show_mem(filter, nodemask); 4253 } 4254 4255 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...) 4256 { 4257 struct va_format vaf; 4258 va_list args; 4259 static DEFINE_RATELIMIT_STATE(nopage_rs, 10*HZ, 1); 4260 4261 if ((gfp_mask & __GFP_NOWARN) || 4262 !__ratelimit(&nopage_rs) || 4263 ((gfp_mask & __GFP_DMA) && !has_managed_dma())) 4264 return; 4265 4266 va_start(args, fmt); 4267 vaf.fmt = fmt; 4268 vaf.va = &args; 4269 pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl", 4270 current->comm, &vaf, gfp_mask, &gfp_mask, 4271 nodemask_pr_args(nodemask)); 4272 va_end(args); 4273 4274 cpuset_print_current_mems_allowed(); 4275 pr_cont("\n"); 4276 dump_stack(); 4277 warn_alloc_show_mem(gfp_mask, nodemask); 4278 } 4279 4280 static inline struct page * 4281 __alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order, 4282 unsigned int alloc_flags, 4283 const struct alloc_context *ac) 4284 { 4285 struct page *page; 4286 4287 page = get_page_from_freelist(gfp_mask, order, 4288 alloc_flags|ALLOC_CPUSET, ac); 4289 /* 4290 * fallback to ignore cpuset restriction if our nodes 4291 * are depleted 4292 */ 4293 if (!page) 4294 page = get_page_from_freelist(gfp_mask, order, 4295 alloc_flags, ac); 4296 4297 return page; 4298 } 4299 4300 static inline struct page * 4301 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order, 4302 const struct alloc_context *ac, unsigned long *did_some_progress) 4303 { 4304 struct oom_control oc = { 4305 .zonelist = ac->zonelist, 4306 .nodemask = ac->nodemask, 4307 .memcg = NULL, 4308 .gfp_mask = gfp_mask, 4309 .order = order, 4310 }; 4311 struct page *page; 4312 4313 *did_some_progress = 0; 4314 4315 /* 4316 * Acquire the oom lock. If that fails, somebody else is 4317 * making progress for us. 4318 */ 4319 if (!mutex_trylock(&oom_lock)) { 4320 *did_some_progress = 1; 4321 schedule_timeout_uninterruptible(1); 4322 return NULL; 4323 } 4324 4325 /* 4326 * Go through the zonelist yet one more time, keep very high watermark 4327 * here, this is only to catch a parallel oom killing, we must fail if 4328 * we're still under heavy pressure. But make sure that this reclaim 4329 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY 4330 * allocation which will never fail due to oom_lock already held. 4331 */ 4332 page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) & 4333 ~__GFP_DIRECT_RECLAIM, order, 4334 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac); 4335 if (page) 4336 goto out; 4337 4338 /* Coredumps can quickly deplete all memory reserves */ 4339 if (current->flags & PF_DUMPCORE) 4340 goto out; 4341 /* The OOM killer will not help higher order allocs */ 4342 if (order > PAGE_ALLOC_COSTLY_ORDER) 4343 goto out; 4344 /* 4345 * We have already exhausted all our reclaim opportunities without any 4346 * success so it is time to admit defeat. We will skip the OOM killer 4347 * because it is very likely that the caller has a more reasonable 4348 * fallback than shooting a random task. 4349 * 4350 * The OOM killer may not free memory on a specific node. 4351 */ 4352 if (gfp_mask & (__GFP_RETRY_MAYFAIL | __GFP_THISNODE)) 4353 goto out; 4354 /* The OOM killer does not needlessly kill tasks for lowmem */ 4355 if (ac->highest_zoneidx < ZONE_NORMAL) 4356 goto out; 4357 if (pm_suspended_storage()) 4358 goto out; 4359 /* 4360 * XXX: GFP_NOFS allocations should rather fail than rely on 4361 * other request to make a forward progress. 4362 * We are in an unfortunate situation where out_of_memory cannot 4363 * do much for this context but let's try it to at least get 4364 * access to memory reserved if the current task is killed (see 4365 * out_of_memory). Once filesystems are ready to handle allocation 4366 * failures more gracefully we should just bail out here. 4367 */ 4368 4369 /* Exhausted what can be done so it's blame time */ 4370 if (out_of_memory(&oc) || 4371 WARN_ON_ONCE_GFP(gfp_mask & __GFP_NOFAIL, gfp_mask)) { 4372 *did_some_progress = 1; 4373 4374 /* 4375 * Help non-failing allocations by giving them access to memory 4376 * reserves 4377 */ 4378 if (gfp_mask & __GFP_NOFAIL) 4379 page = __alloc_pages_cpuset_fallback(gfp_mask, order, 4380 ALLOC_NO_WATERMARKS, ac); 4381 } 4382 out: 4383 mutex_unlock(&oom_lock); 4384 return page; 4385 } 4386 4387 /* 4388 * Maximum number of compaction retries with a progress before OOM 4389 * killer is consider as the only way to move forward. 4390 */ 4391 #define MAX_COMPACT_RETRIES 16 4392 4393 #ifdef CONFIG_COMPACTION 4394 /* Try memory compaction for high-order allocations before reclaim */ 4395 static struct page * 4396 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order, 4397 unsigned int alloc_flags, const struct alloc_context *ac, 4398 enum compact_priority prio, enum compact_result *compact_result) 4399 { 4400 struct page *page = NULL; 4401 unsigned long pflags; 4402 unsigned int noreclaim_flag; 4403 4404 if (!order) 4405 return NULL; 4406 4407 psi_memstall_enter(&pflags); 4408 delayacct_compact_start(); 4409 noreclaim_flag = memalloc_noreclaim_save(); 4410 4411 *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac, 4412 prio, &page); 4413 4414 memalloc_noreclaim_restore(noreclaim_flag); 4415 psi_memstall_leave(&pflags); 4416 delayacct_compact_end(); 4417 4418 if (*compact_result == COMPACT_SKIPPED) 4419 return NULL; 4420 /* 4421 * At least in one zone compaction wasn't deferred or skipped, so let's 4422 * count a compaction stall 4423 */ 4424 count_vm_event(COMPACTSTALL); 4425 4426 /* Prep a captured page if available */ 4427 if (page) 4428 prep_new_page(page, order, gfp_mask, alloc_flags); 4429 4430 /* Try get a page from the freelist if available */ 4431 if (!page) 4432 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 4433 4434 if (page) { 4435 struct zone *zone = page_zone(page); 4436 4437 zone->compact_blockskip_flush = false; 4438 compaction_defer_reset(zone, order, true); 4439 count_vm_event(COMPACTSUCCESS); 4440 return page; 4441 } 4442 4443 /* 4444 * It's bad if compaction run occurs and fails. The most likely reason 4445 * is that pages exist, but not enough to satisfy watermarks. 4446 */ 4447 count_vm_event(COMPACTFAIL); 4448 4449 cond_resched(); 4450 4451 return NULL; 4452 } 4453 4454 static inline bool 4455 should_compact_retry(struct alloc_context *ac, int order, int alloc_flags, 4456 enum compact_result compact_result, 4457 enum compact_priority *compact_priority, 4458 int *compaction_retries) 4459 { 4460 int max_retries = MAX_COMPACT_RETRIES; 4461 int min_priority; 4462 bool ret = false; 4463 int retries = *compaction_retries; 4464 enum compact_priority priority = *compact_priority; 4465 4466 if (!order) 4467 return false; 4468 4469 if (fatal_signal_pending(current)) 4470 return false; 4471 4472 if (compaction_made_progress(compact_result)) 4473 (*compaction_retries)++; 4474 4475 /* 4476 * compaction considers all the zone as desperately out of memory 4477 * so it doesn't really make much sense to retry except when the 4478 * failure could be caused by insufficient priority 4479 */ 4480 if (compaction_failed(compact_result)) 4481 goto check_priority; 4482 4483 /* 4484 * compaction was skipped because there are not enough order-0 pages 4485 * to work with, so we retry only if it looks like reclaim can help. 4486 */ 4487 if (compaction_needs_reclaim(compact_result)) { 4488 ret = compaction_zonelist_suitable(ac, order, alloc_flags); 4489 goto out; 4490 } 4491 4492 /* 4493 * make sure the compaction wasn't deferred or didn't bail out early 4494 * due to locks contention before we declare that we should give up. 4495 * But the next retry should use a higher priority if allowed, so 4496 * we don't just keep bailing out endlessly. 4497 */ 4498 if (compaction_withdrawn(compact_result)) { 4499 goto check_priority; 4500 } 4501 4502 /* 4503 * !costly requests are much more important than __GFP_RETRY_MAYFAIL 4504 * costly ones because they are de facto nofail and invoke OOM 4505 * killer to move on while costly can fail and users are ready 4506 * to cope with that. 1/4 retries is rather arbitrary but we 4507 * would need much more detailed feedback from compaction to 4508 * make a better decision. 4509 */ 4510 if (order > PAGE_ALLOC_COSTLY_ORDER) 4511 max_retries /= 4; 4512 if (*compaction_retries <= max_retries) { 4513 ret = true; 4514 goto out; 4515 } 4516 4517 /* 4518 * Make sure there are attempts at the highest priority if we exhausted 4519 * all retries or failed at the lower priorities. 4520 */ 4521 check_priority: 4522 min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ? 4523 MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY; 4524 4525 if (*compact_priority > min_priority) { 4526 (*compact_priority)--; 4527 *compaction_retries = 0; 4528 ret = true; 4529 } 4530 out: 4531 trace_compact_retry(order, priority, compact_result, retries, max_retries, ret); 4532 return ret; 4533 } 4534 #else 4535 static inline struct page * 4536 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order, 4537 unsigned int alloc_flags, const struct alloc_context *ac, 4538 enum compact_priority prio, enum compact_result *compact_result) 4539 { 4540 *compact_result = COMPACT_SKIPPED; 4541 return NULL; 4542 } 4543 4544 static inline bool 4545 should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags, 4546 enum compact_result compact_result, 4547 enum compact_priority *compact_priority, 4548 int *compaction_retries) 4549 { 4550 struct zone *zone; 4551 struct zoneref *z; 4552 4553 if (!order || order > PAGE_ALLOC_COSTLY_ORDER) 4554 return false; 4555 4556 /* 4557 * There are setups with compaction disabled which would prefer to loop 4558 * inside the allocator rather than hit the oom killer prematurely. 4559 * Let's give them a good hope and keep retrying while the order-0 4560 * watermarks are OK. 4561 */ 4562 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, 4563 ac->highest_zoneidx, ac->nodemask) { 4564 if (zone_watermark_ok(zone, 0, min_wmark_pages(zone), 4565 ac->highest_zoneidx, alloc_flags)) 4566 return true; 4567 } 4568 return false; 4569 } 4570 #endif /* CONFIG_COMPACTION */ 4571 4572 #ifdef CONFIG_LOCKDEP 4573 static struct lockdep_map __fs_reclaim_map = 4574 STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map); 4575 4576 static bool __need_reclaim(gfp_t gfp_mask) 4577 { 4578 /* no reclaim without waiting on it */ 4579 if (!(gfp_mask & __GFP_DIRECT_RECLAIM)) 4580 return false; 4581 4582 /* this guy won't enter reclaim */ 4583 if (current->flags & PF_MEMALLOC) 4584 return false; 4585 4586 if (gfp_mask & __GFP_NOLOCKDEP) 4587 return false; 4588 4589 return true; 4590 } 4591 4592 void __fs_reclaim_acquire(unsigned long ip) 4593 { 4594 lock_acquire_exclusive(&__fs_reclaim_map, 0, 0, NULL, ip); 4595 } 4596 4597 void __fs_reclaim_release(unsigned long ip) 4598 { 4599 lock_release(&__fs_reclaim_map, ip); 4600 } 4601 4602 void fs_reclaim_acquire(gfp_t gfp_mask) 4603 { 4604 gfp_mask = current_gfp_context(gfp_mask); 4605 4606 if (__need_reclaim(gfp_mask)) { 4607 if (gfp_mask & __GFP_FS) 4608 __fs_reclaim_acquire(_RET_IP_); 4609 4610 #ifdef CONFIG_MMU_NOTIFIER 4611 lock_map_acquire(&__mmu_notifier_invalidate_range_start_map); 4612 lock_map_release(&__mmu_notifier_invalidate_range_start_map); 4613 #endif 4614 4615 } 4616 } 4617 EXPORT_SYMBOL_GPL(fs_reclaim_acquire); 4618 4619 void fs_reclaim_release(gfp_t gfp_mask) 4620 { 4621 gfp_mask = current_gfp_context(gfp_mask); 4622 4623 if (__need_reclaim(gfp_mask)) { 4624 if (gfp_mask & __GFP_FS) 4625 __fs_reclaim_release(_RET_IP_); 4626 } 4627 } 4628 EXPORT_SYMBOL_GPL(fs_reclaim_release); 4629 #endif 4630 4631 /* Perform direct synchronous page reclaim */ 4632 static unsigned long 4633 __perform_reclaim(gfp_t gfp_mask, unsigned int order, 4634 const struct alloc_context *ac) 4635 { 4636 unsigned int noreclaim_flag; 4637 unsigned long progress; 4638 4639 cond_resched(); 4640 4641 /* We now go into synchronous reclaim */ 4642 cpuset_memory_pressure_bump(); 4643 fs_reclaim_acquire(gfp_mask); 4644 noreclaim_flag = memalloc_noreclaim_save(); 4645 4646 progress = try_to_free_pages(ac->zonelist, order, gfp_mask, 4647 ac->nodemask); 4648 4649 memalloc_noreclaim_restore(noreclaim_flag); 4650 fs_reclaim_release(gfp_mask); 4651 4652 cond_resched(); 4653 4654 return progress; 4655 } 4656 4657 /* The really slow allocator path where we enter direct reclaim */ 4658 static inline struct page * 4659 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order, 4660 unsigned int alloc_flags, const struct alloc_context *ac, 4661 unsigned long *did_some_progress) 4662 { 4663 struct page *page = NULL; 4664 unsigned long pflags; 4665 bool drained = false; 4666 4667 psi_memstall_enter(&pflags); 4668 *did_some_progress = __perform_reclaim(gfp_mask, order, ac); 4669 if (unlikely(!(*did_some_progress))) 4670 goto out; 4671 4672 retry: 4673 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 4674 4675 /* 4676 * If an allocation failed after direct reclaim, it could be because 4677 * pages are pinned on the per-cpu lists or in high alloc reserves. 4678 * Shrink them and try again 4679 */ 4680 if (!page && !drained) { 4681 unreserve_highatomic_pageblock(ac, false); 4682 drain_all_pages(NULL); 4683 drained = true; 4684 goto retry; 4685 } 4686 out: 4687 psi_memstall_leave(&pflags); 4688 4689 return page; 4690 } 4691 4692 static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask, 4693 const struct alloc_context *ac) 4694 { 4695 struct zoneref *z; 4696 struct zone *zone; 4697 pg_data_t *last_pgdat = NULL; 4698 enum zone_type highest_zoneidx = ac->highest_zoneidx; 4699 4700 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, highest_zoneidx, 4701 ac->nodemask) { 4702 if (!managed_zone(zone)) 4703 continue; 4704 if (last_pgdat != zone->zone_pgdat) { 4705 wakeup_kswapd(zone, gfp_mask, order, highest_zoneidx); 4706 last_pgdat = zone->zone_pgdat; 4707 } 4708 } 4709 } 4710 4711 static inline unsigned int 4712 gfp_to_alloc_flags(gfp_t gfp_mask) 4713 { 4714 unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET; 4715 4716 /* 4717 * __GFP_HIGH is assumed to be the same as ALLOC_HIGH 4718 * and __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD 4719 * to save two branches. 4720 */ 4721 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH); 4722 BUILD_BUG_ON(__GFP_KSWAPD_RECLAIM != (__force gfp_t) ALLOC_KSWAPD); 4723 4724 /* 4725 * The caller may dip into page reserves a bit more if the caller 4726 * cannot run direct reclaim, or if the caller has realtime scheduling 4727 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will 4728 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH). 4729 */ 4730 alloc_flags |= (__force int) 4731 (gfp_mask & (__GFP_HIGH | __GFP_KSWAPD_RECLAIM)); 4732 4733 if (gfp_mask & __GFP_ATOMIC) { 4734 /* 4735 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even 4736 * if it can't schedule. 4737 */ 4738 if (!(gfp_mask & __GFP_NOMEMALLOC)) 4739 alloc_flags |= ALLOC_HARDER; 4740 /* 4741 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the 4742 * comment for __cpuset_node_allowed(). 4743 */ 4744 alloc_flags &= ~ALLOC_CPUSET; 4745 } else if (unlikely(rt_task(current)) && in_task()) 4746 alloc_flags |= ALLOC_HARDER; 4747 4748 alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, alloc_flags); 4749 4750 return alloc_flags; 4751 } 4752 4753 static bool oom_reserves_allowed(struct task_struct *tsk) 4754 { 4755 if (!tsk_is_oom_victim(tsk)) 4756 return false; 4757 4758 /* 4759 * !MMU doesn't have oom reaper so give access to memory reserves 4760 * only to the thread with TIF_MEMDIE set 4761 */ 4762 if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE)) 4763 return false; 4764 4765 return true; 4766 } 4767 4768 /* 4769 * Distinguish requests which really need access to full memory 4770 * reserves from oom victims which can live with a portion of it 4771 */ 4772 static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask) 4773 { 4774 if (unlikely(gfp_mask & __GFP_NOMEMALLOC)) 4775 return 0; 4776 if (gfp_mask & __GFP_MEMALLOC) 4777 return ALLOC_NO_WATERMARKS; 4778 if (in_serving_softirq() && (current->flags & PF_MEMALLOC)) 4779 return ALLOC_NO_WATERMARKS; 4780 if (!in_interrupt()) { 4781 if (current->flags & PF_MEMALLOC) 4782 return ALLOC_NO_WATERMARKS; 4783 else if (oom_reserves_allowed(current)) 4784 return ALLOC_OOM; 4785 } 4786 4787 return 0; 4788 } 4789 4790 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask) 4791 { 4792 return !!__gfp_pfmemalloc_flags(gfp_mask); 4793 } 4794 4795 /* 4796 * Checks whether it makes sense to retry the reclaim to make a forward progress 4797 * for the given allocation request. 4798 * 4799 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row 4800 * without success, or when we couldn't even meet the watermark if we 4801 * reclaimed all remaining pages on the LRU lists. 4802 * 4803 * Returns true if a retry is viable or false to enter the oom path. 4804 */ 4805 static inline bool 4806 should_reclaim_retry(gfp_t gfp_mask, unsigned order, 4807 struct alloc_context *ac, int alloc_flags, 4808 bool did_some_progress, int *no_progress_loops) 4809 { 4810 struct zone *zone; 4811 struct zoneref *z; 4812 bool ret = false; 4813 4814 /* 4815 * Costly allocations might have made a progress but this doesn't mean 4816 * their order will become available due to high fragmentation so 4817 * always increment the no progress counter for them 4818 */ 4819 if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER) 4820 *no_progress_loops = 0; 4821 else 4822 (*no_progress_loops)++; 4823 4824 /* 4825 * Make sure we converge to OOM if we cannot make any progress 4826 * several times in the row. 4827 */ 4828 if (*no_progress_loops > MAX_RECLAIM_RETRIES) { 4829 /* Before OOM, exhaust highatomic_reserve */ 4830 return unreserve_highatomic_pageblock(ac, true); 4831 } 4832 4833 /* 4834 * Keep reclaiming pages while there is a chance this will lead 4835 * somewhere. If none of the target zones can satisfy our allocation 4836 * request even if all reclaimable pages are considered then we are 4837 * screwed and have to go OOM. 4838 */ 4839 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, 4840 ac->highest_zoneidx, ac->nodemask) { 4841 unsigned long available; 4842 unsigned long reclaimable; 4843 unsigned long min_wmark = min_wmark_pages(zone); 4844 bool wmark; 4845 4846 available = reclaimable = zone_reclaimable_pages(zone); 4847 available += zone_page_state_snapshot(zone, NR_FREE_PAGES); 4848 4849 /* 4850 * Would the allocation succeed if we reclaimed all 4851 * reclaimable pages? 4852 */ 4853 wmark = __zone_watermark_ok(zone, order, min_wmark, 4854 ac->highest_zoneidx, alloc_flags, available); 4855 trace_reclaim_retry_zone(z, order, reclaimable, 4856 available, min_wmark, *no_progress_loops, wmark); 4857 if (wmark) { 4858 ret = true; 4859 break; 4860 } 4861 } 4862 4863 /* 4864 * Memory allocation/reclaim might be called from a WQ context and the 4865 * current implementation of the WQ concurrency control doesn't 4866 * recognize that a particular WQ is congested if the worker thread is 4867 * looping without ever sleeping. Therefore we have to do a short sleep 4868 * here rather than calling cond_resched(). 4869 */ 4870 if (current->flags & PF_WQ_WORKER) 4871 schedule_timeout_uninterruptible(1); 4872 else 4873 cond_resched(); 4874 return ret; 4875 } 4876 4877 static inline bool 4878 check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac) 4879 { 4880 /* 4881 * It's possible that cpuset's mems_allowed and the nodemask from 4882 * mempolicy don't intersect. This should be normally dealt with by 4883 * policy_nodemask(), but it's possible to race with cpuset update in 4884 * such a way the check therein was true, and then it became false 4885 * before we got our cpuset_mems_cookie here. 4886 * This assumes that for all allocations, ac->nodemask can come only 4887 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored 4888 * when it does not intersect with the cpuset restrictions) or the 4889 * caller can deal with a violated nodemask. 4890 */ 4891 if (cpusets_enabled() && ac->nodemask && 4892 !cpuset_nodemask_valid_mems_allowed(ac->nodemask)) { 4893 ac->nodemask = NULL; 4894 return true; 4895 } 4896 4897 /* 4898 * When updating a task's mems_allowed or mempolicy nodemask, it is 4899 * possible to race with parallel threads in such a way that our 4900 * allocation can fail while the mask is being updated. If we are about 4901 * to fail, check if the cpuset changed during allocation and if so, 4902 * retry. 4903 */ 4904 if (read_mems_allowed_retry(cpuset_mems_cookie)) 4905 return true; 4906 4907 return false; 4908 } 4909 4910 static inline struct page * 4911 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order, 4912 struct alloc_context *ac) 4913 { 4914 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM; 4915 const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER; 4916 struct page *page = NULL; 4917 unsigned int alloc_flags; 4918 unsigned long did_some_progress; 4919 enum compact_priority compact_priority; 4920 enum compact_result compact_result; 4921 int compaction_retries; 4922 int no_progress_loops; 4923 unsigned int cpuset_mems_cookie; 4924 int reserve_flags; 4925 4926 /* 4927 * We also sanity check to catch abuse of atomic reserves being used by 4928 * callers that are not in atomic context. 4929 */ 4930 if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) == 4931 (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM))) 4932 gfp_mask &= ~__GFP_ATOMIC; 4933 4934 retry_cpuset: 4935 compaction_retries = 0; 4936 no_progress_loops = 0; 4937 compact_priority = DEF_COMPACT_PRIORITY; 4938 cpuset_mems_cookie = read_mems_allowed_begin(); 4939 4940 /* 4941 * The fast path uses conservative alloc_flags to succeed only until 4942 * kswapd needs to be woken up, and to avoid the cost of setting up 4943 * alloc_flags precisely. So we do that now. 4944 */ 4945 alloc_flags = gfp_to_alloc_flags(gfp_mask); 4946 4947 /* 4948 * We need to recalculate the starting point for the zonelist iterator 4949 * because we might have used different nodemask in the fast path, or 4950 * there was a cpuset modification and we are retrying - otherwise we 4951 * could end up iterating over non-eligible zones endlessly. 4952 */ 4953 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist, 4954 ac->highest_zoneidx, ac->nodemask); 4955 if (!ac->preferred_zoneref->zone) 4956 goto nopage; 4957 4958 /* 4959 * Check for insane configurations where the cpuset doesn't contain 4960 * any suitable zone to satisfy the request - e.g. non-movable 4961 * GFP_HIGHUSER allocations from MOVABLE nodes only. 4962 */ 4963 if (cpusets_insane_config() && (gfp_mask & __GFP_HARDWALL)) { 4964 struct zoneref *z = first_zones_zonelist(ac->zonelist, 4965 ac->highest_zoneidx, 4966 &cpuset_current_mems_allowed); 4967 if (!z->zone) 4968 goto nopage; 4969 } 4970 4971 if (alloc_flags & ALLOC_KSWAPD) 4972 wake_all_kswapds(order, gfp_mask, ac); 4973 4974 /* 4975 * The adjusted alloc_flags might result in immediate success, so try 4976 * that first 4977 */ 4978 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 4979 if (page) 4980 goto got_pg; 4981 4982 /* 4983 * For costly allocations, try direct compaction first, as it's likely 4984 * that we have enough base pages and don't need to reclaim. For non- 4985 * movable high-order allocations, do that as well, as compaction will 4986 * try prevent permanent fragmentation by migrating from blocks of the 4987 * same migratetype. 4988 * Don't try this for allocations that are allowed to ignore 4989 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen. 4990 */ 4991 if (can_direct_reclaim && 4992 (costly_order || 4993 (order > 0 && ac->migratetype != MIGRATE_MOVABLE)) 4994 && !gfp_pfmemalloc_allowed(gfp_mask)) { 4995 page = __alloc_pages_direct_compact(gfp_mask, order, 4996 alloc_flags, ac, 4997 INIT_COMPACT_PRIORITY, 4998 &compact_result); 4999 if (page) 5000 goto got_pg; 5001 5002 /* 5003 * Checks for costly allocations with __GFP_NORETRY, which 5004 * includes some THP page fault allocations 5005 */ 5006 if (costly_order && (gfp_mask & __GFP_NORETRY)) { 5007 /* 5008 * If allocating entire pageblock(s) and compaction 5009 * failed because all zones are below low watermarks 5010 * or is prohibited because it recently failed at this 5011 * order, fail immediately unless the allocator has 5012 * requested compaction and reclaim retry. 5013 * 5014 * Reclaim is 5015 * - potentially very expensive because zones are far 5016 * below their low watermarks or this is part of very 5017 * bursty high order allocations, 5018 * - not guaranteed to help because isolate_freepages() 5019 * may not iterate over freed pages as part of its 5020 * linear scan, and 5021 * - unlikely to make entire pageblocks free on its 5022 * own. 5023 */ 5024 if (compact_result == COMPACT_SKIPPED || 5025 compact_result == COMPACT_DEFERRED) 5026 goto nopage; 5027 5028 /* 5029 * Looks like reclaim/compaction is worth trying, but 5030 * sync compaction could be very expensive, so keep 5031 * using async compaction. 5032 */ 5033 compact_priority = INIT_COMPACT_PRIORITY; 5034 } 5035 } 5036 5037 retry: 5038 /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */ 5039 if (alloc_flags & ALLOC_KSWAPD) 5040 wake_all_kswapds(order, gfp_mask, ac); 5041 5042 reserve_flags = __gfp_pfmemalloc_flags(gfp_mask); 5043 if (reserve_flags) 5044 alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, reserve_flags); 5045 5046 /* 5047 * Reset the nodemask and zonelist iterators if memory policies can be 5048 * ignored. These allocations are high priority and system rather than 5049 * user oriented. 5050 */ 5051 if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) { 5052 ac->nodemask = NULL; 5053 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist, 5054 ac->highest_zoneidx, ac->nodemask); 5055 } 5056 5057 /* Attempt with potentially adjusted zonelist and alloc_flags */ 5058 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 5059 if (page) 5060 goto got_pg; 5061 5062 /* Caller is not willing to reclaim, we can't balance anything */ 5063 if (!can_direct_reclaim) 5064 goto nopage; 5065 5066 /* Avoid recursion of direct reclaim */ 5067 if (current->flags & PF_MEMALLOC) 5068 goto nopage; 5069 5070 /* Try direct reclaim and then allocating */ 5071 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac, 5072 &did_some_progress); 5073 if (page) 5074 goto got_pg; 5075 5076 /* Try direct compaction and then allocating */ 5077 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac, 5078 compact_priority, &compact_result); 5079 if (page) 5080 goto got_pg; 5081 5082 /* Do not loop if specifically requested */ 5083 if (gfp_mask & __GFP_NORETRY) 5084 goto nopage; 5085 5086 /* 5087 * Do not retry costly high order allocations unless they are 5088 * __GFP_RETRY_MAYFAIL 5089 */ 5090 if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL)) 5091 goto nopage; 5092 5093 if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags, 5094 did_some_progress > 0, &no_progress_loops)) 5095 goto retry; 5096 5097 /* 5098 * It doesn't make any sense to retry for the compaction if the order-0 5099 * reclaim is not able to make any progress because the current 5100 * implementation of the compaction depends on the sufficient amount 5101 * of free memory (see __compaction_suitable) 5102 */ 5103 if (did_some_progress > 0 && 5104 should_compact_retry(ac, order, alloc_flags, 5105 compact_result, &compact_priority, 5106 &compaction_retries)) 5107 goto retry; 5108 5109 5110 /* Deal with possible cpuset update races before we start OOM killing */ 5111 if (check_retry_cpuset(cpuset_mems_cookie, ac)) 5112 goto retry_cpuset; 5113 5114 /* Reclaim has failed us, start killing things */ 5115 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress); 5116 if (page) 5117 goto got_pg; 5118 5119 /* Avoid allocations with no watermarks from looping endlessly */ 5120 if (tsk_is_oom_victim(current) && 5121 (alloc_flags & ALLOC_OOM || 5122 (gfp_mask & __GFP_NOMEMALLOC))) 5123 goto nopage; 5124 5125 /* Retry as long as the OOM killer is making progress */ 5126 if (did_some_progress) { 5127 no_progress_loops = 0; 5128 goto retry; 5129 } 5130 5131 nopage: 5132 /* Deal with possible cpuset update races before we fail */ 5133 if (check_retry_cpuset(cpuset_mems_cookie, ac)) 5134 goto retry_cpuset; 5135 5136 /* 5137 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure 5138 * we always retry 5139 */ 5140 if (gfp_mask & __GFP_NOFAIL) { 5141 /* 5142 * All existing users of the __GFP_NOFAIL are blockable, so warn 5143 * of any new users that actually require GFP_NOWAIT 5144 */ 5145 if (WARN_ON_ONCE_GFP(!can_direct_reclaim, gfp_mask)) 5146 goto fail; 5147 5148 /* 5149 * PF_MEMALLOC request from this context is rather bizarre 5150 * because we cannot reclaim anything and only can loop waiting 5151 * for somebody to do a work for us 5152 */ 5153 WARN_ON_ONCE_GFP(current->flags & PF_MEMALLOC, gfp_mask); 5154 5155 /* 5156 * non failing costly orders are a hard requirement which we 5157 * are not prepared for much so let's warn about these users 5158 * so that we can identify them and convert them to something 5159 * else. 5160 */ 5161 WARN_ON_ONCE_GFP(order > PAGE_ALLOC_COSTLY_ORDER, gfp_mask); 5162 5163 /* 5164 * Help non-failing allocations by giving them access to memory 5165 * reserves but do not use ALLOC_NO_WATERMARKS because this 5166 * could deplete whole memory reserves which would just make 5167 * the situation worse 5168 */ 5169 page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac); 5170 if (page) 5171 goto got_pg; 5172 5173 cond_resched(); 5174 goto retry; 5175 } 5176 fail: 5177 warn_alloc(gfp_mask, ac->nodemask, 5178 "page allocation failure: order:%u", order); 5179 got_pg: 5180 return page; 5181 } 5182 5183 static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order, 5184 int preferred_nid, nodemask_t *nodemask, 5185 struct alloc_context *ac, gfp_t *alloc_gfp, 5186 unsigned int *alloc_flags) 5187 { 5188 ac->highest_zoneidx = gfp_zone(gfp_mask); 5189 ac->zonelist = node_zonelist(preferred_nid, gfp_mask); 5190 ac->nodemask = nodemask; 5191 ac->migratetype = gfp_migratetype(gfp_mask); 5192 5193 if (cpusets_enabled()) { 5194 *alloc_gfp |= __GFP_HARDWALL; 5195 /* 5196 * When we are in the interrupt context, it is irrelevant 5197 * to the current task context. It means that any node ok. 5198 */ 5199 if (in_task() && !ac->nodemask) 5200 ac->nodemask = &cpuset_current_mems_allowed; 5201 else 5202 *alloc_flags |= ALLOC_CPUSET; 5203 } 5204 5205 fs_reclaim_acquire(gfp_mask); 5206 fs_reclaim_release(gfp_mask); 5207 5208 might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM); 5209 5210 if (should_fail_alloc_page(gfp_mask, order)) 5211 return false; 5212 5213 *alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, *alloc_flags); 5214 5215 /* Dirty zone balancing only done in the fast path */ 5216 ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE); 5217 5218 /* 5219 * The preferred zone is used for statistics but crucially it is 5220 * also used as the starting point for the zonelist iterator. It 5221 * may get reset for allocations that ignore memory policies. 5222 */ 5223 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist, 5224 ac->highest_zoneidx, ac->nodemask); 5225 5226 return true; 5227 } 5228 5229 /* 5230 * __alloc_pages_bulk - Allocate a number of order-0 pages to a list or array 5231 * @gfp: GFP flags for the allocation 5232 * @preferred_nid: The preferred NUMA node ID to allocate from 5233 * @nodemask: Set of nodes to allocate from, may be NULL 5234 * @nr_pages: The number of pages desired on the list or array 5235 * @page_list: Optional list to store the allocated pages 5236 * @page_array: Optional array to store the pages 5237 * 5238 * This is a batched version of the page allocator that attempts to 5239 * allocate nr_pages quickly. Pages are added to page_list if page_list 5240 * is not NULL, otherwise it is assumed that the page_array is valid. 5241 * 5242 * For lists, nr_pages is the number of pages that should be allocated. 5243 * 5244 * For arrays, only NULL elements are populated with pages and nr_pages 5245 * is the maximum number of pages that will be stored in the array. 5246 * 5247 * Returns the number of pages on the list or array. 5248 */ 5249 unsigned long __alloc_pages_bulk(gfp_t gfp, int preferred_nid, 5250 nodemask_t *nodemask, int nr_pages, 5251 struct list_head *page_list, 5252 struct page **page_array) 5253 { 5254 struct page *page; 5255 unsigned long flags; 5256 struct zone *zone; 5257 struct zoneref *z; 5258 struct per_cpu_pages *pcp; 5259 struct list_head *pcp_list; 5260 struct alloc_context ac; 5261 gfp_t alloc_gfp; 5262 unsigned int alloc_flags = ALLOC_WMARK_LOW; 5263 int nr_populated = 0, nr_account = 0; 5264 5265 /* 5266 * Skip populated array elements to determine if any pages need 5267 * to be allocated before disabling IRQs. 5268 */ 5269 while (page_array && nr_populated < nr_pages && page_array[nr_populated]) 5270 nr_populated++; 5271 5272 /* No pages requested? */ 5273 if (unlikely(nr_pages <= 0)) 5274 goto out; 5275 5276 /* Already populated array? */ 5277 if (unlikely(page_array && nr_pages - nr_populated == 0)) 5278 goto out; 5279 5280 /* Bulk allocator does not support memcg accounting. */ 5281 if (memcg_kmem_enabled() && (gfp & __GFP_ACCOUNT)) 5282 goto failed; 5283 5284 /* Use the single page allocator for one page. */ 5285 if (nr_pages - nr_populated == 1) 5286 goto failed; 5287 5288 #ifdef CONFIG_PAGE_OWNER 5289 /* 5290 * PAGE_OWNER may recurse into the allocator to allocate space to 5291 * save the stack with pagesets.lock held. Releasing/reacquiring 5292 * removes much of the performance benefit of bulk allocation so 5293 * force the caller to allocate one page at a time as it'll have 5294 * similar performance to added complexity to the bulk allocator. 5295 */ 5296 if (static_branch_unlikely(&page_owner_inited)) 5297 goto failed; 5298 #endif 5299 5300 /* May set ALLOC_NOFRAGMENT, fragmentation will return 1 page. */ 5301 gfp &= gfp_allowed_mask; 5302 alloc_gfp = gfp; 5303 if (!prepare_alloc_pages(gfp, 0, preferred_nid, nodemask, &ac, &alloc_gfp, &alloc_flags)) 5304 goto out; 5305 gfp = alloc_gfp; 5306 5307 /* Find an allowed local zone that meets the low watermark. */ 5308 for_each_zone_zonelist_nodemask(zone, z, ac.zonelist, ac.highest_zoneidx, ac.nodemask) { 5309 unsigned long mark; 5310 5311 if (cpusets_enabled() && (alloc_flags & ALLOC_CPUSET) && 5312 !__cpuset_zone_allowed(zone, gfp)) { 5313 continue; 5314 } 5315 5316 if (nr_online_nodes > 1 && zone != ac.preferred_zoneref->zone && 5317 zone_to_nid(zone) != zone_to_nid(ac.preferred_zoneref->zone)) { 5318 goto failed; 5319 } 5320 5321 mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK) + nr_pages; 5322 if (zone_watermark_fast(zone, 0, mark, 5323 zonelist_zone_idx(ac.preferred_zoneref), 5324 alloc_flags, gfp)) { 5325 break; 5326 } 5327 } 5328 5329 /* 5330 * If there are no allowed local zones that meets the watermarks then 5331 * try to allocate a single page and reclaim if necessary. 5332 */ 5333 if (unlikely(!zone)) 5334 goto failed; 5335 5336 /* Attempt the batch allocation */ 5337 local_lock_irqsave(&pagesets.lock, flags); 5338 pcp = this_cpu_ptr(zone->per_cpu_pageset); 5339 pcp_list = &pcp->lists[order_to_pindex(ac.migratetype, 0)]; 5340 5341 while (nr_populated < nr_pages) { 5342 5343 /* Skip existing pages */ 5344 if (page_array && page_array[nr_populated]) { 5345 nr_populated++; 5346 continue; 5347 } 5348 5349 page = __rmqueue_pcplist(zone, 0, ac.migratetype, alloc_flags, 5350 pcp, pcp_list); 5351 if (unlikely(!page)) { 5352 /* Try and allocate at least one page */ 5353 if (!nr_account) 5354 goto failed_irq; 5355 break; 5356 } 5357 nr_account++; 5358 5359 prep_new_page(page, 0, gfp, 0); 5360 if (page_list) 5361 list_add(&page->lru, page_list); 5362 else 5363 page_array[nr_populated] = page; 5364 nr_populated++; 5365 } 5366 5367 local_unlock_irqrestore(&pagesets.lock, flags); 5368 5369 __count_zid_vm_events(PGALLOC, zone_idx(zone), nr_account); 5370 zone_statistics(ac.preferred_zoneref->zone, zone, nr_account); 5371 5372 out: 5373 return nr_populated; 5374 5375 failed_irq: 5376 local_unlock_irqrestore(&pagesets.lock, flags); 5377 5378 failed: 5379 page = __alloc_pages(gfp, 0, preferred_nid, nodemask); 5380 if (page) { 5381 if (page_list) 5382 list_add(&page->lru, page_list); 5383 else 5384 page_array[nr_populated] = page; 5385 nr_populated++; 5386 } 5387 5388 goto out; 5389 } 5390 EXPORT_SYMBOL_GPL(__alloc_pages_bulk); 5391 5392 /* 5393 * This is the 'heart' of the zoned buddy allocator. 5394 */ 5395 struct page *__alloc_pages(gfp_t gfp, unsigned int order, int preferred_nid, 5396 nodemask_t *nodemask) 5397 { 5398 struct page *page; 5399 unsigned int alloc_flags = ALLOC_WMARK_LOW; 5400 gfp_t alloc_gfp; /* The gfp_t that was actually used for allocation */ 5401 struct alloc_context ac = { }; 5402 5403 /* 5404 * There are several places where we assume that the order value is sane 5405 * so bail out early if the request is out of bound. 5406 */ 5407 if (WARN_ON_ONCE_GFP(order >= MAX_ORDER, gfp)) 5408 return NULL; 5409 5410 gfp &= gfp_allowed_mask; 5411 /* 5412 * Apply scoped allocation constraints. This is mainly about GFP_NOFS 5413 * resp. GFP_NOIO which has to be inherited for all allocation requests 5414 * from a particular context which has been marked by 5415 * memalloc_no{fs,io}_{save,restore}. And PF_MEMALLOC_PIN which ensures 5416 * movable zones are not used during allocation. 5417 */ 5418 gfp = current_gfp_context(gfp); 5419 alloc_gfp = gfp; 5420 if (!prepare_alloc_pages(gfp, order, preferred_nid, nodemask, &ac, 5421 &alloc_gfp, &alloc_flags)) 5422 return NULL; 5423 5424 /* 5425 * Forbid the first pass from falling back to types that fragment 5426 * memory until all local zones are considered. 5427 */ 5428 alloc_flags |= alloc_flags_nofragment(ac.preferred_zoneref->zone, gfp); 5429 5430 /* First allocation attempt */ 5431 page = get_page_from_freelist(alloc_gfp, order, alloc_flags, &ac); 5432 if (likely(page)) 5433 goto out; 5434 5435 alloc_gfp = gfp; 5436 ac.spread_dirty_pages = false; 5437 5438 /* 5439 * Restore the original nodemask if it was potentially replaced with 5440 * &cpuset_current_mems_allowed to optimize the fast-path attempt. 5441 */ 5442 ac.nodemask = nodemask; 5443 5444 page = __alloc_pages_slowpath(alloc_gfp, order, &ac); 5445 5446 out: 5447 if (memcg_kmem_enabled() && (gfp & __GFP_ACCOUNT) && page && 5448 unlikely(__memcg_kmem_charge_page(page, gfp, order) != 0)) { 5449 __free_pages(page, order); 5450 page = NULL; 5451 } 5452 5453 trace_mm_page_alloc(page, order, alloc_gfp, ac.migratetype); 5454 5455 return page; 5456 } 5457 EXPORT_SYMBOL(__alloc_pages); 5458 5459 struct folio *__folio_alloc(gfp_t gfp, unsigned int order, int preferred_nid, 5460 nodemask_t *nodemask) 5461 { 5462 struct page *page = __alloc_pages(gfp | __GFP_COMP, order, 5463 preferred_nid, nodemask); 5464 5465 if (page && order > 1) 5466 prep_transhuge_page(page); 5467 return (struct folio *)page; 5468 } 5469 EXPORT_SYMBOL(__folio_alloc); 5470 5471 /* 5472 * Common helper functions. Never use with __GFP_HIGHMEM because the returned 5473 * address cannot represent highmem pages. Use alloc_pages and then kmap if 5474 * you need to access high mem. 5475 */ 5476 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order) 5477 { 5478 struct page *page; 5479 5480 page = alloc_pages(gfp_mask & ~__GFP_HIGHMEM, order); 5481 if (!page) 5482 return 0; 5483 return (unsigned long) page_address(page); 5484 } 5485 EXPORT_SYMBOL(__get_free_pages); 5486 5487 unsigned long get_zeroed_page(gfp_t gfp_mask) 5488 { 5489 return __get_free_pages(gfp_mask | __GFP_ZERO, 0); 5490 } 5491 EXPORT_SYMBOL(get_zeroed_page); 5492 5493 /** 5494 * __free_pages - Free pages allocated with alloc_pages(). 5495 * @page: The page pointer returned from alloc_pages(). 5496 * @order: The order of the allocation. 5497 * 5498 * This function can free multi-page allocations that are not compound 5499 * pages. It does not check that the @order passed in matches that of 5500 * the allocation, so it is easy to leak memory. Freeing more memory 5501 * than was allocated will probably emit a warning. 5502 * 5503 * If the last reference to this page is speculative, it will be released 5504 * by put_page() which only frees the first page of a non-compound 5505 * allocation. To prevent the remaining pages from being leaked, we free 5506 * the subsequent pages here. If you want to use the page's reference 5507 * count to decide when to free the allocation, you should allocate a 5508 * compound page, and use put_page() instead of __free_pages(). 5509 * 5510 * Context: May be called in interrupt context or while holding a normal 5511 * spinlock, but not in NMI context or while holding a raw spinlock. 5512 */ 5513 void __free_pages(struct page *page, unsigned int order) 5514 { 5515 if (put_page_testzero(page)) 5516 free_the_page(page, order); 5517 else if (!PageHead(page)) 5518 while (order-- > 0) 5519 free_the_page(page + (1 << order), order); 5520 } 5521 EXPORT_SYMBOL(__free_pages); 5522 5523 void free_pages(unsigned long addr, unsigned int order) 5524 { 5525 if (addr != 0) { 5526 VM_BUG_ON(!virt_addr_valid((void *)addr)); 5527 __free_pages(virt_to_page((void *)addr), order); 5528 } 5529 } 5530 5531 EXPORT_SYMBOL(free_pages); 5532 5533 /* 5534 * Page Fragment: 5535 * An arbitrary-length arbitrary-offset area of memory which resides 5536 * within a 0 or higher order page. Multiple fragments within that page 5537 * are individually refcounted, in the page's reference counter. 5538 * 5539 * The page_frag functions below provide a simple allocation framework for 5540 * page fragments. This is used by the network stack and network device 5541 * drivers to provide a backing region of memory for use as either an 5542 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info. 5543 */ 5544 static struct page *__page_frag_cache_refill(struct page_frag_cache *nc, 5545 gfp_t gfp_mask) 5546 { 5547 struct page *page = NULL; 5548 gfp_t gfp = gfp_mask; 5549 5550 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE) 5551 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY | 5552 __GFP_NOMEMALLOC; 5553 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask, 5554 PAGE_FRAG_CACHE_MAX_ORDER); 5555 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE; 5556 #endif 5557 if (unlikely(!page)) 5558 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0); 5559 5560 nc->va = page ? page_address(page) : NULL; 5561 5562 return page; 5563 } 5564 5565 void __page_frag_cache_drain(struct page *page, unsigned int count) 5566 { 5567 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page); 5568 5569 if (page_ref_sub_and_test(page, count)) 5570 free_the_page(page, compound_order(page)); 5571 } 5572 EXPORT_SYMBOL(__page_frag_cache_drain); 5573 5574 void *page_frag_alloc_align(struct page_frag_cache *nc, 5575 unsigned int fragsz, gfp_t gfp_mask, 5576 unsigned int align_mask) 5577 { 5578 unsigned int size = PAGE_SIZE; 5579 struct page *page; 5580 int offset; 5581 5582 if (unlikely(!nc->va)) { 5583 refill: 5584 page = __page_frag_cache_refill(nc, gfp_mask); 5585 if (!page) 5586 return NULL; 5587 5588 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE) 5589 /* if size can vary use size else just use PAGE_SIZE */ 5590 size = nc->size; 5591 #endif 5592 /* Even if we own the page, we do not use atomic_set(). 5593 * This would break get_page_unless_zero() users. 5594 */ 5595 page_ref_add(page, PAGE_FRAG_CACHE_MAX_SIZE); 5596 5597 /* reset page count bias and offset to start of new frag */ 5598 nc->pfmemalloc = page_is_pfmemalloc(page); 5599 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1; 5600 nc->offset = size; 5601 } 5602 5603 offset = nc->offset - fragsz; 5604 if (unlikely(offset < 0)) { 5605 page = virt_to_page(nc->va); 5606 5607 if (!page_ref_sub_and_test(page, nc->pagecnt_bias)) 5608 goto refill; 5609 5610 if (unlikely(nc->pfmemalloc)) { 5611 free_the_page(page, compound_order(page)); 5612 goto refill; 5613 } 5614 5615 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE) 5616 /* if size can vary use size else just use PAGE_SIZE */ 5617 size = nc->size; 5618 #endif 5619 /* OK, page count is 0, we can safely set it */ 5620 set_page_count(page, PAGE_FRAG_CACHE_MAX_SIZE + 1); 5621 5622 /* reset page count bias and offset to start of new frag */ 5623 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1; 5624 offset = size - fragsz; 5625 } 5626 5627 nc->pagecnt_bias--; 5628 offset &= align_mask; 5629 nc->offset = offset; 5630 5631 return nc->va + offset; 5632 } 5633 EXPORT_SYMBOL(page_frag_alloc_align); 5634 5635 /* 5636 * Frees a page fragment allocated out of either a compound or order 0 page. 5637 */ 5638 void page_frag_free(void *addr) 5639 { 5640 struct page *page = virt_to_head_page(addr); 5641 5642 if (unlikely(put_page_testzero(page))) 5643 free_the_page(page, compound_order(page)); 5644 } 5645 EXPORT_SYMBOL(page_frag_free); 5646 5647 static void *make_alloc_exact(unsigned long addr, unsigned int order, 5648 size_t size) 5649 { 5650 if (addr) { 5651 unsigned long alloc_end = addr + (PAGE_SIZE << order); 5652 unsigned long used = addr + PAGE_ALIGN(size); 5653 5654 split_page(virt_to_page((void *)addr), order); 5655 while (used < alloc_end) { 5656 free_page(used); 5657 used += PAGE_SIZE; 5658 } 5659 } 5660 return (void *)addr; 5661 } 5662 5663 /** 5664 * alloc_pages_exact - allocate an exact number physically-contiguous pages. 5665 * @size: the number of bytes to allocate 5666 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP 5667 * 5668 * This function is similar to alloc_pages(), except that it allocates the 5669 * minimum number of pages to satisfy the request. alloc_pages() can only 5670 * allocate memory in power-of-two pages. 5671 * 5672 * This function is also limited by MAX_ORDER. 5673 * 5674 * Memory allocated by this function must be released by free_pages_exact(). 5675 * 5676 * Return: pointer to the allocated area or %NULL in case of error. 5677 */ 5678 void *alloc_pages_exact(size_t size, gfp_t gfp_mask) 5679 { 5680 unsigned int order = get_order(size); 5681 unsigned long addr; 5682 5683 if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM))) 5684 gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM); 5685 5686 addr = __get_free_pages(gfp_mask, order); 5687 return make_alloc_exact(addr, order, size); 5688 } 5689 EXPORT_SYMBOL(alloc_pages_exact); 5690 5691 /** 5692 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous 5693 * pages on a node. 5694 * @nid: the preferred node ID where memory should be allocated 5695 * @size: the number of bytes to allocate 5696 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP 5697 * 5698 * Like alloc_pages_exact(), but try to allocate on node nid first before falling 5699 * back. 5700 * 5701 * Return: pointer to the allocated area or %NULL in case of error. 5702 */ 5703 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask) 5704 { 5705 unsigned int order = get_order(size); 5706 struct page *p; 5707 5708 if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM))) 5709 gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM); 5710 5711 p = alloc_pages_node(nid, gfp_mask, order); 5712 if (!p) 5713 return NULL; 5714 return make_alloc_exact((unsigned long)page_address(p), order, size); 5715 } 5716 5717 /** 5718 * free_pages_exact - release memory allocated via alloc_pages_exact() 5719 * @virt: the value returned by alloc_pages_exact. 5720 * @size: size of allocation, same value as passed to alloc_pages_exact(). 5721 * 5722 * Release the memory allocated by a previous call to alloc_pages_exact. 5723 */ 5724 void free_pages_exact(void *virt, size_t size) 5725 { 5726 unsigned long addr = (unsigned long)virt; 5727 unsigned long end = addr + PAGE_ALIGN(size); 5728 5729 while (addr < end) { 5730 free_page(addr); 5731 addr += PAGE_SIZE; 5732 } 5733 } 5734 EXPORT_SYMBOL(free_pages_exact); 5735 5736 /** 5737 * nr_free_zone_pages - count number of pages beyond high watermark 5738 * @offset: The zone index of the highest zone 5739 * 5740 * nr_free_zone_pages() counts the number of pages which are beyond the 5741 * high watermark within all zones at or below a given zone index. For each 5742 * zone, the number of pages is calculated as: 5743 * 5744 * nr_free_zone_pages = managed_pages - high_pages 5745 * 5746 * Return: number of pages beyond high watermark. 5747 */ 5748 static unsigned long nr_free_zone_pages(int offset) 5749 { 5750 struct zoneref *z; 5751 struct zone *zone; 5752 5753 /* Just pick one node, since fallback list is circular */ 5754 unsigned long sum = 0; 5755 5756 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL); 5757 5758 for_each_zone_zonelist(zone, z, zonelist, offset) { 5759 unsigned long size = zone_managed_pages(zone); 5760 unsigned long high = high_wmark_pages(zone); 5761 if (size > high) 5762 sum += size - high; 5763 } 5764 5765 return sum; 5766 } 5767 5768 /** 5769 * nr_free_buffer_pages - count number of pages beyond high watermark 5770 * 5771 * nr_free_buffer_pages() counts the number of pages which are beyond the high 5772 * watermark within ZONE_DMA and ZONE_NORMAL. 5773 * 5774 * Return: number of pages beyond high watermark within ZONE_DMA and 5775 * ZONE_NORMAL. 5776 */ 5777 unsigned long nr_free_buffer_pages(void) 5778 { 5779 return nr_free_zone_pages(gfp_zone(GFP_USER)); 5780 } 5781 EXPORT_SYMBOL_GPL(nr_free_buffer_pages); 5782 5783 static inline void show_node(struct zone *zone) 5784 { 5785 if (IS_ENABLED(CONFIG_NUMA)) 5786 printk("Node %d ", zone_to_nid(zone)); 5787 } 5788 5789 long si_mem_available(void) 5790 { 5791 long available; 5792 unsigned long pagecache; 5793 unsigned long wmark_low = 0; 5794 unsigned long pages[NR_LRU_LISTS]; 5795 unsigned long reclaimable; 5796 struct zone *zone; 5797 int lru; 5798 5799 for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++) 5800 pages[lru] = global_node_page_state(NR_LRU_BASE + lru); 5801 5802 for_each_zone(zone) 5803 wmark_low += low_wmark_pages(zone); 5804 5805 /* 5806 * Estimate the amount of memory available for userspace allocations, 5807 * without causing swapping. 5808 */ 5809 available = global_zone_page_state(NR_FREE_PAGES) - totalreserve_pages; 5810 5811 /* 5812 * Not all the page cache can be freed, otherwise the system will 5813 * start swapping. Assume at least half of the page cache, or the 5814 * low watermark worth of cache, needs to stay. 5815 */ 5816 pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE]; 5817 pagecache -= min(pagecache / 2, wmark_low); 5818 available += pagecache; 5819 5820 /* 5821 * Part of the reclaimable slab and other kernel memory consists of 5822 * items that are in use, and cannot be freed. Cap this estimate at the 5823 * low watermark. 5824 */ 5825 reclaimable = global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B) + 5826 global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE); 5827 available += reclaimable - min(reclaimable / 2, wmark_low); 5828 5829 if (available < 0) 5830 available = 0; 5831 return available; 5832 } 5833 EXPORT_SYMBOL_GPL(si_mem_available); 5834 5835 void si_meminfo(struct sysinfo *val) 5836 { 5837 val->totalram = totalram_pages(); 5838 val->sharedram = global_node_page_state(NR_SHMEM); 5839 val->freeram = global_zone_page_state(NR_FREE_PAGES); 5840 val->bufferram = nr_blockdev_pages(); 5841 val->totalhigh = totalhigh_pages(); 5842 val->freehigh = nr_free_highpages(); 5843 val->mem_unit = PAGE_SIZE; 5844 } 5845 5846 EXPORT_SYMBOL(si_meminfo); 5847 5848 #ifdef CONFIG_NUMA 5849 void si_meminfo_node(struct sysinfo *val, int nid) 5850 { 5851 int zone_type; /* needs to be signed */ 5852 unsigned long managed_pages = 0; 5853 unsigned long managed_highpages = 0; 5854 unsigned long free_highpages = 0; 5855 pg_data_t *pgdat = NODE_DATA(nid); 5856 5857 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) 5858 managed_pages += zone_managed_pages(&pgdat->node_zones[zone_type]); 5859 val->totalram = managed_pages; 5860 val->sharedram = node_page_state(pgdat, NR_SHMEM); 5861 val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES); 5862 #ifdef CONFIG_HIGHMEM 5863 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) { 5864 struct zone *zone = &pgdat->node_zones[zone_type]; 5865 5866 if (is_highmem(zone)) { 5867 managed_highpages += zone_managed_pages(zone); 5868 free_highpages += zone_page_state(zone, NR_FREE_PAGES); 5869 } 5870 } 5871 val->totalhigh = managed_highpages; 5872 val->freehigh = free_highpages; 5873 #else 5874 val->totalhigh = managed_highpages; 5875 val->freehigh = free_highpages; 5876 #endif 5877 val->mem_unit = PAGE_SIZE; 5878 } 5879 #endif 5880 5881 /* 5882 * Determine whether the node should be displayed or not, depending on whether 5883 * SHOW_MEM_FILTER_NODES was passed to show_free_areas(). 5884 */ 5885 static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask) 5886 { 5887 if (!(flags & SHOW_MEM_FILTER_NODES)) 5888 return false; 5889 5890 /* 5891 * no node mask - aka implicit memory numa policy. Do not bother with 5892 * the synchronization - read_mems_allowed_begin - because we do not 5893 * have to be precise here. 5894 */ 5895 if (!nodemask) 5896 nodemask = &cpuset_current_mems_allowed; 5897 5898 return !node_isset(nid, *nodemask); 5899 } 5900 5901 #define K(x) ((x) << (PAGE_SHIFT-10)) 5902 5903 static void show_migration_types(unsigned char type) 5904 { 5905 static const char types[MIGRATE_TYPES] = { 5906 [MIGRATE_UNMOVABLE] = 'U', 5907 [MIGRATE_MOVABLE] = 'M', 5908 [MIGRATE_RECLAIMABLE] = 'E', 5909 [MIGRATE_HIGHATOMIC] = 'H', 5910 #ifdef CONFIG_CMA 5911 [MIGRATE_CMA] = 'C', 5912 #endif 5913 #ifdef CONFIG_MEMORY_ISOLATION 5914 [MIGRATE_ISOLATE] = 'I', 5915 #endif 5916 }; 5917 char tmp[MIGRATE_TYPES + 1]; 5918 char *p = tmp; 5919 int i; 5920 5921 for (i = 0; i < MIGRATE_TYPES; i++) { 5922 if (type & (1 << i)) 5923 *p++ = types[i]; 5924 } 5925 5926 *p = '\0'; 5927 printk(KERN_CONT "(%s) ", tmp); 5928 } 5929 5930 /* 5931 * Show free area list (used inside shift_scroll-lock stuff) 5932 * We also calculate the percentage fragmentation. We do this by counting the 5933 * memory on each free list with the exception of the first item on the list. 5934 * 5935 * Bits in @filter: 5936 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's 5937 * cpuset. 5938 */ 5939 void show_free_areas(unsigned int filter, nodemask_t *nodemask) 5940 { 5941 unsigned long free_pcp = 0; 5942 int cpu; 5943 struct zone *zone; 5944 pg_data_t *pgdat; 5945 5946 for_each_populated_zone(zone) { 5947 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask)) 5948 continue; 5949 5950 for_each_online_cpu(cpu) 5951 free_pcp += per_cpu_ptr(zone->per_cpu_pageset, cpu)->count; 5952 } 5953 5954 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n" 5955 " active_file:%lu inactive_file:%lu isolated_file:%lu\n" 5956 " unevictable:%lu dirty:%lu writeback:%lu\n" 5957 " slab_reclaimable:%lu slab_unreclaimable:%lu\n" 5958 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n" 5959 " kernel_misc_reclaimable:%lu\n" 5960 " free:%lu free_pcp:%lu free_cma:%lu\n", 5961 global_node_page_state(NR_ACTIVE_ANON), 5962 global_node_page_state(NR_INACTIVE_ANON), 5963 global_node_page_state(NR_ISOLATED_ANON), 5964 global_node_page_state(NR_ACTIVE_FILE), 5965 global_node_page_state(NR_INACTIVE_FILE), 5966 global_node_page_state(NR_ISOLATED_FILE), 5967 global_node_page_state(NR_UNEVICTABLE), 5968 global_node_page_state(NR_FILE_DIRTY), 5969 global_node_page_state(NR_WRITEBACK), 5970 global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B), 5971 global_node_page_state_pages(NR_SLAB_UNRECLAIMABLE_B), 5972 global_node_page_state(NR_FILE_MAPPED), 5973 global_node_page_state(NR_SHMEM), 5974 global_node_page_state(NR_PAGETABLE), 5975 global_zone_page_state(NR_BOUNCE), 5976 global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE), 5977 global_zone_page_state(NR_FREE_PAGES), 5978 free_pcp, 5979 global_zone_page_state(NR_FREE_CMA_PAGES)); 5980 5981 for_each_online_pgdat(pgdat) { 5982 if (show_mem_node_skip(filter, pgdat->node_id, nodemask)) 5983 continue; 5984 5985 printk("Node %d" 5986 " active_anon:%lukB" 5987 " inactive_anon:%lukB" 5988 " active_file:%lukB" 5989 " inactive_file:%lukB" 5990 " unevictable:%lukB" 5991 " isolated(anon):%lukB" 5992 " isolated(file):%lukB" 5993 " mapped:%lukB" 5994 " dirty:%lukB" 5995 " writeback:%lukB" 5996 " shmem:%lukB" 5997 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 5998 " shmem_thp: %lukB" 5999 " shmem_pmdmapped: %lukB" 6000 " anon_thp: %lukB" 6001 #endif 6002 " writeback_tmp:%lukB" 6003 " kernel_stack:%lukB" 6004 #ifdef CONFIG_SHADOW_CALL_STACK 6005 " shadow_call_stack:%lukB" 6006 #endif 6007 " pagetables:%lukB" 6008 " all_unreclaimable? %s" 6009 "\n", 6010 pgdat->node_id, 6011 K(node_page_state(pgdat, NR_ACTIVE_ANON)), 6012 K(node_page_state(pgdat, NR_INACTIVE_ANON)), 6013 K(node_page_state(pgdat, NR_ACTIVE_FILE)), 6014 K(node_page_state(pgdat, NR_INACTIVE_FILE)), 6015 K(node_page_state(pgdat, NR_UNEVICTABLE)), 6016 K(node_page_state(pgdat, NR_ISOLATED_ANON)), 6017 K(node_page_state(pgdat, NR_ISOLATED_FILE)), 6018 K(node_page_state(pgdat, NR_FILE_MAPPED)), 6019 K(node_page_state(pgdat, NR_FILE_DIRTY)), 6020 K(node_page_state(pgdat, NR_WRITEBACK)), 6021 K(node_page_state(pgdat, NR_SHMEM)), 6022 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 6023 K(node_page_state(pgdat, NR_SHMEM_THPS)), 6024 K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)), 6025 K(node_page_state(pgdat, NR_ANON_THPS)), 6026 #endif 6027 K(node_page_state(pgdat, NR_WRITEBACK_TEMP)), 6028 node_page_state(pgdat, NR_KERNEL_STACK_KB), 6029 #ifdef CONFIG_SHADOW_CALL_STACK 6030 node_page_state(pgdat, NR_KERNEL_SCS_KB), 6031 #endif 6032 K(node_page_state(pgdat, NR_PAGETABLE)), 6033 pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ? 6034 "yes" : "no"); 6035 } 6036 6037 for_each_populated_zone(zone) { 6038 int i; 6039 6040 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask)) 6041 continue; 6042 6043 free_pcp = 0; 6044 for_each_online_cpu(cpu) 6045 free_pcp += per_cpu_ptr(zone->per_cpu_pageset, cpu)->count; 6046 6047 show_node(zone); 6048 printk(KERN_CONT 6049 "%s" 6050 " free:%lukB" 6051 " boost:%lukB" 6052 " min:%lukB" 6053 " low:%lukB" 6054 " high:%lukB" 6055 " reserved_highatomic:%luKB" 6056 " active_anon:%lukB" 6057 " inactive_anon:%lukB" 6058 " active_file:%lukB" 6059 " inactive_file:%lukB" 6060 " unevictable:%lukB" 6061 " writepending:%lukB" 6062 " present:%lukB" 6063 " managed:%lukB" 6064 " mlocked:%lukB" 6065 " bounce:%lukB" 6066 " free_pcp:%lukB" 6067 " local_pcp:%ukB" 6068 " free_cma:%lukB" 6069 "\n", 6070 zone->name, 6071 K(zone_page_state(zone, NR_FREE_PAGES)), 6072 K(zone->watermark_boost), 6073 K(min_wmark_pages(zone)), 6074 K(low_wmark_pages(zone)), 6075 K(high_wmark_pages(zone)), 6076 K(zone->nr_reserved_highatomic), 6077 K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)), 6078 K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)), 6079 K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)), 6080 K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)), 6081 K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)), 6082 K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)), 6083 K(zone->present_pages), 6084 K(zone_managed_pages(zone)), 6085 K(zone_page_state(zone, NR_MLOCK)), 6086 K(zone_page_state(zone, NR_BOUNCE)), 6087 K(free_pcp), 6088 K(this_cpu_read(zone->per_cpu_pageset->count)), 6089 K(zone_page_state(zone, NR_FREE_CMA_PAGES))); 6090 printk("lowmem_reserve[]:"); 6091 for (i = 0; i < MAX_NR_ZONES; i++) 6092 printk(KERN_CONT " %ld", zone->lowmem_reserve[i]); 6093 printk(KERN_CONT "\n"); 6094 } 6095 6096 for_each_populated_zone(zone) { 6097 unsigned int order; 6098 unsigned long nr[MAX_ORDER], flags, total = 0; 6099 unsigned char types[MAX_ORDER]; 6100 6101 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask)) 6102 continue; 6103 show_node(zone); 6104 printk(KERN_CONT "%s: ", zone->name); 6105 6106 spin_lock_irqsave(&zone->lock, flags); 6107 for (order = 0; order < MAX_ORDER; order++) { 6108 struct free_area *area = &zone->free_area[order]; 6109 int type; 6110 6111 nr[order] = area->nr_free; 6112 total += nr[order] << order; 6113 6114 types[order] = 0; 6115 for (type = 0; type < MIGRATE_TYPES; type++) { 6116 if (!free_area_empty(area, type)) 6117 types[order] |= 1 << type; 6118 } 6119 } 6120 spin_unlock_irqrestore(&zone->lock, flags); 6121 for (order = 0; order < MAX_ORDER; order++) { 6122 printk(KERN_CONT "%lu*%lukB ", 6123 nr[order], K(1UL) << order); 6124 if (nr[order]) 6125 show_migration_types(types[order]); 6126 } 6127 printk(KERN_CONT "= %lukB\n", K(total)); 6128 } 6129 6130 hugetlb_show_meminfo(); 6131 6132 printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES)); 6133 6134 show_swap_cache_info(); 6135 } 6136 6137 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref) 6138 { 6139 zoneref->zone = zone; 6140 zoneref->zone_idx = zone_idx(zone); 6141 } 6142 6143 /* 6144 * Builds allocation fallback zone lists. 6145 * 6146 * Add all populated zones of a node to the zonelist. 6147 */ 6148 static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs) 6149 { 6150 struct zone *zone; 6151 enum zone_type zone_type = MAX_NR_ZONES; 6152 int nr_zones = 0; 6153 6154 do { 6155 zone_type--; 6156 zone = pgdat->node_zones + zone_type; 6157 if (populated_zone(zone)) { 6158 zoneref_set_zone(zone, &zonerefs[nr_zones++]); 6159 check_highest_zone(zone_type); 6160 } 6161 } while (zone_type); 6162 6163 return nr_zones; 6164 } 6165 6166 #ifdef CONFIG_NUMA 6167 6168 static int __parse_numa_zonelist_order(char *s) 6169 { 6170 /* 6171 * We used to support different zonelists modes but they turned 6172 * out to be just not useful. Let's keep the warning in place 6173 * if somebody still use the cmd line parameter so that we do 6174 * not fail it silently 6175 */ 6176 if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) { 6177 pr_warn("Ignoring unsupported numa_zonelist_order value: %s\n", s); 6178 return -EINVAL; 6179 } 6180 return 0; 6181 } 6182 6183 char numa_zonelist_order[] = "Node"; 6184 6185 /* 6186 * sysctl handler for numa_zonelist_order 6187 */ 6188 int numa_zonelist_order_handler(struct ctl_table *table, int write, 6189 void *buffer, size_t *length, loff_t *ppos) 6190 { 6191 if (write) 6192 return __parse_numa_zonelist_order(buffer); 6193 return proc_dostring(table, write, buffer, length, ppos); 6194 } 6195 6196 6197 static int node_load[MAX_NUMNODES]; 6198 6199 /** 6200 * find_next_best_node - find the next node that should appear in a given node's fallback list 6201 * @node: node whose fallback list we're appending 6202 * @used_node_mask: nodemask_t of already used nodes 6203 * 6204 * We use a number of factors to determine which is the next node that should 6205 * appear on a given node's fallback list. The node should not have appeared 6206 * already in @node's fallback list, and it should be the next closest node 6207 * according to the distance array (which contains arbitrary distance values 6208 * from each node to each node in the system), and should also prefer nodes 6209 * with no CPUs, since presumably they'll have very little allocation pressure 6210 * on them otherwise. 6211 * 6212 * Return: node id of the found node or %NUMA_NO_NODE if no node is found. 6213 */ 6214 int find_next_best_node(int node, nodemask_t *used_node_mask) 6215 { 6216 int n, val; 6217 int min_val = INT_MAX; 6218 int best_node = NUMA_NO_NODE; 6219 6220 /* Use the local node if we haven't already */ 6221 if (!node_isset(node, *used_node_mask)) { 6222 node_set(node, *used_node_mask); 6223 return node; 6224 } 6225 6226 for_each_node_state(n, N_MEMORY) { 6227 6228 /* Don't want a node to appear more than once */ 6229 if (node_isset(n, *used_node_mask)) 6230 continue; 6231 6232 /* Use the distance array to find the distance */ 6233 val = node_distance(node, n); 6234 6235 /* Penalize nodes under us ("prefer the next node") */ 6236 val += (n < node); 6237 6238 /* Give preference to headless and unused nodes */ 6239 if (!cpumask_empty(cpumask_of_node(n))) 6240 val += PENALTY_FOR_NODE_WITH_CPUS; 6241 6242 /* Slight preference for less loaded node */ 6243 val *= MAX_NUMNODES; 6244 val += node_load[n]; 6245 6246 if (val < min_val) { 6247 min_val = val; 6248 best_node = n; 6249 } 6250 } 6251 6252 if (best_node >= 0) 6253 node_set(best_node, *used_node_mask); 6254 6255 return best_node; 6256 } 6257 6258 6259 /* 6260 * Build zonelists ordered by node and zones within node. 6261 * This results in maximum locality--normal zone overflows into local 6262 * DMA zone, if any--but risks exhausting DMA zone. 6263 */ 6264 static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order, 6265 unsigned nr_nodes) 6266 { 6267 struct zoneref *zonerefs; 6268 int i; 6269 6270 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs; 6271 6272 for (i = 0; i < nr_nodes; i++) { 6273 int nr_zones; 6274 6275 pg_data_t *node = NODE_DATA(node_order[i]); 6276 6277 nr_zones = build_zonerefs_node(node, zonerefs); 6278 zonerefs += nr_zones; 6279 } 6280 zonerefs->zone = NULL; 6281 zonerefs->zone_idx = 0; 6282 } 6283 6284 /* 6285 * Build gfp_thisnode zonelists 6286 */ 6287 static void build_thisnode_zonelists(pg_data_t *pgdat) 6288 { 6289 struct zoneref *zonerefs; 6290 int nr_zones; 6291 6292 zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs; 6293 nr_zones = build_zonerefs_node(pgdat, zonerefs); 6294 zonerefs += nr_zones; 6295 zonerefs->zone = NULL; 6296 zonerefs->zone_idx = 0; 6297 } 6298 6299 /* 6300 * Build zonelists ordered by zone and nodes within zones. 6301 * This results in conserving DMA zone[s] until all Normal memory is 6302 * exhausted, but results in overflowing to remote node while memory 6303 * may still exist in local DMA zone. 6304 */ 6305 6306 static void build_zonelists(pg_data_t *pgdat) 6307 { 6308 static int node_order[MAX_NUMNODES]; 6309 int node, nr_nodes = 0; 6310 nodemask_t used_mask = NODE_MASK_NONE; 6311 int local_node, prev_node; 6312 6313 /* NUMA-aware ordering of nodes */ 6314 local_node = pgdat->node_id; 6315 prev_node = local_node; 6316 6317 memset(node_order, 0, sizeof(node_order)); 6318 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) { 6319 /* 6320 * We don't want to pressure a particular node. 6321 * So adding penalty to the first node in same 6322 * distance group to make it round-robin. 6323 */ 6324 if (node_distance(local_node, node) != 6325 node_distance(local_node, prev_node)) 6326 node_load[node] += 1; 6327 6328 node_order[nr_nodes++] = node; 6329 prev_node = node; 6330 } 6331 6332 build_zonelists_in_node_order(pgdat, node_order, nr_nodes); 6333 build_thisnode_zonelists(pgdat); 6334 pr_info("Fallback order for Node %d: ", local_node); 6335 for (node = 0; node < nr_nodes; node++) 6336 pr_cont("%d ", node_order[node]); 6337 pr_cont("\n"); 6338 } 6339 6340 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 6341 /* 6342 * Return node id of node used for "local" allocations. 6343 * I.e., first node id of first zone in arg node's generic zonelist. 6344 * Used for initializing percpu 'numa_mem', which is used primarily 6345 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist. 6346 */ 6347 int local_memory_node(int node) 6348 { 6349 struct zoneref *z; 6350 6351 z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL), 6352 gfp_zone(GFP_KERNEL), 6353 NULL); 6354 return zone_to_nid(z->zone); 6355 } 6356 #endif 6357 6358 static void setup_min_unmapped_ratio(void); 6359 static void setup_min_slab_ratio(void); 6360 #else /* CONFIG_NUMA */ 6361 6362 static void build_zonelists(pg_data_t *pgdat) 6363 { 6364 int node, local_node; 6365 struct zoneref *zonerefs; 6366 int nr_zones; 6367 6368 local_node = pgdat->node_id; 6369 6370 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs; 6371 nr_zones = build_zonerefs_node(pgdat, zonerefs); 6372 zonerefs += nr_zones; 6373 6374 /* 6375 * Now we build the zonelist so that it contains the zones 6376 * of all the other nodes. 6377 * We don't want to pressure a particular node, so when 6378 * building the zones for node N, we make sure that the 6379 * zones coming right after the local ones are those from 6380 * node N+1 (modulo N) 6381 */ 6382 for (node = local_node + 1; node < MAX_NUMNODES; node++) { 6383 if (!node_online(node)) 6384 continue; 6385 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs); 6386 zonerefs += nr_zones; 6387 } 6388 for (node = 0; node < local_node; node++) { 6389 if (!node_online(node)) 6390 continue; 6391 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs); 6392 zonerefs += nr_zones; 6393 } 6394 6395 zonerefs->zone = NULL; 6396 zonerefs->zone_idx = 0; 6397 } 6398 6399 #endif /* CONFIG_NUMA */ 6400 6401 /* 6402 * Boot pageset table. One per cpu which is going to be used for all 6403 * zones and all nodes. The parameters will be set in such a way 6404 * that an item put on a list will immediately be handed over to 6405 * the buddy list. This is safe since pageset manipulation is done 6406 * with interrupts disabled. 6407 * 6408 * The boot_pagesets must be kept even after bootup is complete for 6409 * unused processors and/or zones. They do play a role for bootstrapping 6410 * hotplugged processors. 6411 * 6412 * zoneinfo_show() and maybe other functions do 6413 * not check if the processor is online before following the pageset pointer. 6414 * Other parts of the kernel may not check if the zone is available. 6415 */ 6416 static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats); 6417 /* These effectively disable the pcplists in the boot pageset completely */ 6418 #define BOOT_PAGESET_HIGH 0 6419 #define BOOT_PAGESET_BATCH 1 6420 static DEFINE_PER_CPU(struct per_cpu_pages, boot_pageset); 6421 static DEFINE_PER_CPU(struct per_cpu_zonestat, boot_zonestats); 6422 DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats); 6423 6424 static void __build_all_zonelists(void *data) 6425 { 6426 int nid; 6427 int __maybe_unused cpu; 6428 pg_data_t *self = data; 6429 static DEFINE_SPINLOCK(lock); 6430 6431 spin_lock(&lock); 6432 6433 #ifdef CONFIG_NUMA 6434 memset(node_load, 0, sizeof(node_load)); 6435 #endif 6436 6437 /* 6438 * This node is hotadded and no memory is yet present. So just 6439 * building zonelists is fine - no need to touch other nodes. 6440 */ 6441 if (self && !node_online(self->node_id)) { 6442 build_zonelists(self); 6443 } else { 6444 /* 6445 * All possible nodes have pgdat preallocated 6446 * in free_area_init 6447 */ 6448 for_each_node(nid) { 6449 pg_data_t *pgdat = NODE_DATA(nid); 6450 6451 build_zonelists(pgdat); 6452 } 6453 6454 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 6455 /* 6456 * We now know the "local memory node" for each node-- 6457 * i.e., the node of the first zone in the generic zonelist. 6458 * Set up numa_mem percpu variable for on-line cpus. During 6459 * boot, only the boot cpu should be on-line; we'll init the 6460 * secondary cpus' numa_mem as they come on-line. During 6461 * node/memory hotplug, we'll fixup all on-line cpus. 6462 */ 6463 for_each_online_cpu(cpu) 6464 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu))); 6465 #endif 6466 } 6467 6468 spin_unlock(&lock); 6469 } 6470 6471 static noinline void __init 6472 build_all_zonelists_init(void) 6473 { 6474 int cpu; 6475 6476 __build_all_zonelists(NULL); 6477 6478 /* 6479 * Initialize the boot_pagesets that are going to be used 6480 * for bootstrapping processors. The real pagesets for 6481 * each zone will be allocated later when the per cpu 6482 * allocator is available. 6483 * 6484 * boot_pagesets are used also for bootstrapping offline 6485 * cpus if the system is already booted because the pagesets 6486 * are needed to initialize allocators on a specific cpu too. 6487 * F.e. the percpu allocator needs the page allocator which 6488 * needs the percpu allocator in order to allocate its pagesets 6489 * (a chicken-egg dilemma). 6490 */ 6491 for_each_possible_cpu(cpu) 6492 per_cpu_pages_init(&per_cpu(boot_pageset, cpu), &per_cpu(boot_zonestats, cpu)); 6493 6494 mminit_verify_zonelist(); 6495 cpuset_init_current_mems_allowed(); 6496 } 6497 6498 /* 6499 * unless system_state == SYSTEM_BOOTING. 6500 * 6501 * __ref due to call of __init annotated helper build_all_zonelists_init 6502 * [protected by SYSTEM_BOOTING]. 6503 */ 6504 void __ref build_all_zonelists(pg_data_t *pgdat) 6505 { 6506 unsigned long vm_total_pages; 6507 6508 if (system_state == SYSTEM_BOOTING) { 6509 build_all_zonelists_init(); 6510 } else { 6511 __build_all_zonelists(pgdat); 6512 /* cpuset refresh routine should be here */ 6513 } 6514 /* Get the number of free pages beyond high watermark in all zones. */ 6515 vm_total_pages = nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE)); 6516 /* 6517 * Disable grouping by mobility if the number of pages in the 6518 * system is too low to allow the mechanism to work. It would be 6519 * more accurate, but expensive to check per-zone. This check is 6520 * made on memory-hotadd so a system can start with mobility 6521 * disabled and enable it later 6522 */ 6523 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES)) 6524 page_group_by_mobility_disabled = 1; 6525 else 6526 page_group_by_mobility_disabled = 0; 6527 6528 pr_info("Built %u zonelists, mobility grouping %s. Total pages: %ld\n", 6529 nr_online_nodes, 6530 page_group_by_mobility_disabled ? "off" : "on", 6531 vm_total_pages); 6532 #ifdef CONFIG_NUMA 6533 pr_info("Policy zone: %s\n", zone_names[policy_zone]); 6534 #endif 6535 } 6536 6537 /* If zone is ZONE_MOVABLE but memory is mirrored, it is an overlapped init */ 6538 static bool __meminit 6539 overlap_memmap_init(unsigned long zone, unsigned long *pfn) 6540 { 6541 static struct memblock_region *r; 6542 6543 if (mirrored_kernelcore && zone == ZONE_MOVABLE) { 6544 if (!r || *pfn >= memblock_region_memory_end_pfn(r)) { 6545 for_each_mem_region(r) { 6546 if (*pfn < memblock_region_memory_end_pfn(r)) 6547 break; 6548 } 6549 } 6550 if (*pfn >= memblock_region_memory_base_pfn(r) && 6551 memblock_is_mirror(r)) { 6552 *pfn = memblock_region_memory_end_pfn(r); 6553 return true; 6554 } 6555 } 6556 return false; 6557 } 6558 6559 /* 6560 * Initially all pages are reserved - free ones are freed 6561 * up by memblock_free_all() once the early boot process is 6562 * done. Non-atomic initialization, single-pass. 6563 * 6564 * All aligned pageblocks are initialized to the specified migratetype 6565 * (usually MIGRATE_MOVABLE). Besides setting the migratetype, no related 6566 * zone stats (e.g., nr_isolate_pageblock) are touched. 6567 */ 6568 void __meminit memmap_init_range(unsigned long size, int nid, unsigned long zone, 6569 unsigned long start_pfn, unsigned long zone_end_pfn, 6570 enum meminit_context context, 6571 struct vmem_altmap *altmap, int migratetype) 6572 { 6573 unsigned long pfn, end_pfn = start_pfn + size; 6574 struct page *page; 6575 6576 if (highest_memmap_pfn < end_pfn - 1) 6577 highest_memmap_pfn = end_pfn - 1; 6578 6579 #ifdef CONFIG_ZONE_DEVICE 6580 /* 6581 * Honor reservation requested by the driver for this ZONE_DEVICE 6582 * memory. We limit the total number of pages to initialize to just 6583 * those that might contain the memory mapping. We will defer the 6584 * ZONE_DEVICE page initialization until after we have released 6585 * the hotplug lock. 6586 */ 6587 if (zone == ZONE_DEVICE) { 6588 if (!altmap) 6589 return; 6590 6591 if (start_pfn == altmap->base_pfn) 6592 start_pfn += altmap->reserve; 6593 end_pfn = altmap->base_pfn + vmem_altmap_offset(altmap); 6594 } 6595 #endif 6596 6597 for (pfn = start_pfn; pfn < end_pfn; ) { 6598 /* 6599 * There can be holes in boot-time mem_map[]s handed to this 6600 * function. They do not exist on hotplugged memory. 6601 */ 6602 if (context == MEMINIT_EARLY) { 6603 if (overlap_memmap_init(zone, &pfn)) 6604 continue; 6605 if (defer_init(nid, pfn, zone_end_pfn)) 6606 break; 6607 } 6608 6609 page = pfn_to_page(pfn); 6610 __init_single_page(page, pfn, zone, nid); 6611 if (context == MEMINIT_HOTPLUG) 6612 __SetPageReserved(page); 6613 6614 /* 6615 * Usually, we want to mark the pageblock MIGRATE_MOVABLE, 6616 * such that unmovable allocations won't be scattered all 6617 * over the place during system boot. 6618 */ 6619 if (IS_ALIGNED(pfn, pageblock_nr_pages)) { 6620 set_pageblock_migratetype(page, migratetype); 6621 cond_resched(); 6622 } 6623 pfn++; 6624 } 6625 } 6626 6627 #ifdef CONFIG_ZONE_DEVICE 6628 static void __ref __init_zone_device_page(struct page *page, unsigned long pfn, 6629 unsigned long zone_idx, int nid, 6630 struct dev_pagemap *pgmap) 6631 { 6632 6633 __init_single_page(page, pfn, zone_idx, nid); 6634 6635 /* 6636 * Mark page reserved as it will need to wait for onlining 6637 * phase for it to be fully associated with a zone. 6638 * 6639 * We can use the non-atomic __set_bit operation for setting 6640 * the flag as we are still initializing the pages. 6641 */ 6642 __SetPageReserved(page); 6643 6644 /* 6645 * ZONE_DEVICE pages union ->lru with a ->pgmap back pointer 6646 * and zone_device_data. It is a bug if a ZONE_DEVICE page is 6647 * ever freed or placed on a driver-private list. 6648 */ 6649 page->pgmap = pgmap; 6650 page->zone_device_data = NULL; 6651 6652 /* 6653 * Mark the block movable so that blocks are reserved for 6654 * movable at startup. This will force kernel allocations 6655 * to reserve their blocks rather than leaking throughout 6656 * the address space during boot when many long-lived 6657 * kernel allocations are made. 6658 * 6659 * Please note that MEMINIT_HOTPLUG path doesn't clear memmap 6660 * because this is done early in section_activate() 6661 */ 6662 if (IS_ALIGNED(pfn, pageblock_nr_pages)) { 6663 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 6664 cond_resched(); 6665 } 6666 } 6667 6668 /* 6669 * With compound page geometry and when struct pages are stored in ram most 6670 * tail pages are reused. Consequently, the amount of unique struct pages to 6671 * initialize is a lot smaller that the total amount of struct pages being 6672 * mapped. This is a paired / mild layering violation with explicit knowledge 6673 * of how the sparse_vmemmap internals handle compound pages in the lack 6674 * of an altmap. See vmemmap_populate_compound_pages(). 6675 */ 6676 static inline unsigned long compound_nr_pages(struct vmem_altmap *altmap, 6677 unsigned long nr_pages) 6678 { 6679 return is_power_of_2(sizeof(struct page)) && 6680 !altmap ? 2 * (PAGE_SIZE / sizeof(struct page)) : nr_pages; 6681 } 6682 6683 static void __ref memmap_init_compound(struct page *head, 6684 unsigned long head_pfn, 6685 unsigned long zone_idx, int nid, 6686 struct dev_pagemap *pgmap, 6687 unsigned long nr_pages) 6688 { 6689 unsigned long pfn, end_pfn = head_pfn + nr_pages; 6690 unsigned int order = pgmap->vmemmap_shift; 6691 6692 __SetPageHead(head); 6693 for (pfn = head_pfn + 1; pfn < end_pfn; pfn++) { 6694 struct page *page = pfn_to_page(pfn); 6695 6696 __init_zone_device_page(page, pfn, zone_idx, nid, pgmap); 6697 prep_compound_tail(head, pfn - head_pfn); 6698 set_page_count(page, 0); 6699 6700 /* 6701 * The first tail page stores compound_mapcount_ptr() and 6702 * compound_order() and the second tail page stores 6703 * compound_pincount_ptr(). Call prep_compound_head() after 6704 * the first and second tail pages have been initialized to 6705 * not have the data overwritten. 6706 */ 6707 if (pfn == head_pfn + 2) 6708 prep_compound_head(head, order); 6709 } 6710 } 6711 6712 void __ref memmap_init_zone_device(struct zone *zone, 6713 unsigned long start_pfn, 6714 unsigned long nr_pages, 6715 struct dev_pagemap *pgmap) 6716 { 6717 unsigned long pfn, end_pfn = start_pfn + nr_pages; 6718 struct pglist_data *pgdat = zone->zone_pgdat; 6719 struct vmem_altmap *altmap = pgmap_altmap(pgmap); 6720 unsigned int pfns_per_compound = pgmap_vmemmap_nr(pgmap); 6721 unsigned long zone_idx = zone_idx(zone); 6722 unsigned long start = jiffies; 6723 int nid = pgdat->node_id; 6724 6725 if (WARN_ON_ONCE(!pgmap || zone_idx(zone) != ZONE_DEVICE)) 6726 return; 6727 6728 /* 6729 * The call to memmap_init should have already taken care 6730 * of the pages reserved for the memmap, so we can just jump to 6731 * the end of that region and start processing the device pages. 6732 */ 6733 if (altmap) { 6734 start_pfn = altmap->base_pfn + vmem_altmap_offset(altmap); 6735 nr_pages = end_pfn - start_pfn; 6736 } 6737 6738 for (pfn = start_pfn; pfn < end_pfn; pfn += pfns_per_compound) { 6739 struct page *page = pfn_to_page(pfn); 6740 6741 __init_zone_device_page(page, pfn, zone_idx, nid, pgmap); 6742 6743 if (pfns_per_compound == 1) 6744 continue; 6745 6746 memmap_init_compound(page, pfn, zone_idx, nid, pgmap, 6747 compound_nr_pages(altmap, pfns_per_compound)); 6748 } 6749 6750 pr_info("%s initialised %lu pages in %ums\n", __func__, 6751 nr_pages, jiffies_to_msecs(jiffies - start)); 6752 } 6753 6754 #endif 6755 static void __meminit zone_init_free_lists(struct zone *zone) 6756 { 6757 unsigned int order, t; 6758 for_each_migratetype_order(order, t) { 6759 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]); 6760 zone->free_area[order].nr_free = 0; 6761 } 6762 } 6763 6764 /* 6765 * Only struct pages that correspond to ranges defined by memblock.memory 6766 * are zeroed and initialized by going through __init_single_page() during 6767 * memmap_init_zone_range(). 6768 * 6769 * But, there could be struct pages that correspond to holes in 6770 * memblock.memory. This can happen because of the following reasons: 6771 * - physical memory bank size is not necessarily the exact multiple of the 6772 * arbitrary section size 6773 * - early reserved memory may not be listed in memblock.memory 6774 * - memory layouts defined with memmap= kernel parameter may not align 6775 * nicely with memmap sections 6776 * 6777 * Explicitly initialize those struct pages so that: 6778 * - PG_Reserved is set 6779 * - zone and node links point to zone and node that span the page if the 6780 * hole is in the middle of a zone 6781 * - zone and node links point to adjacent zone/node if the hole falls on 6782 * the zone boundary; the pages in such holes will be prepended to the 6783 * zone/node above the hole except for the trailing pages in the last 6784 * section that will be appended to the zone/node below. 6785 */ 6786 static void __init init_unavailable_range(unsigned long spfn, 6787 unsigned long epfn, 6788 int zone, int node) 6789 { 6790 unsigned long pfn; 6791 u64 pgcnt = 0; 6792 6793 for (pfn = spfn; pfn < epfn; pfn++) { 6794 if (!pfn_valid(ALIGN_DOWN(pfn, pageblock_nr_pages))) { 6795 pfn = ALIGN_DOWN(pfn, pageblock_nr_pages) 6796 + pageblock_nr_pages - 1; 6797 continue; 6798 } 6799 __init_single_page(pfn_to_page(pfn), pfn, zone, node); 6800 __SetPageReserved(pfn_to_page(pfn)); 6801 pgcnt++; 6802 } 6803 6804 if (pgcnt) 6805 pr_info("On node %d, zone %s: %lld pages in unavailable ranges", 6806 node, zone_names[zone], pgcnt); 6807 } 6808 6809 static void __init memmap_init_zone_range(struct zone *zone, 6810 unsigned long start_pfn, 6811 unsigned long end_pfn, 6812 unsigned long *hole_pfn) 6813 { 6814 unsigned long zone_start_pfn = zone->zone_start_pfn; 6815 unsigned long zone_end_pfn = zone_start_pfn + zone->spanned_pages; 6816 int nid = zone_to_nid(zone), zone_id = zone_idx(zone); 6817 6818 start_pfn = clamp(start_pfn, zone_start_pfn, zone_end_pfn); 6819 end_pfn = clamp(end_pfn, zone_start_pfn, zone_end_pfn); 6820 6821 if (start_pfn >= end_pfn) 6822 return; 6823 6824 memmap_init_range(end_pfn - start_pfn, nid, zone_id, start_pfn, 6825 zone_end_pfn, MEMINIT_EARLY, NULL, MIGRATE_MOVABLE); 6826 6827 if (*hole_pfn < start_pfn) 6828 init_unavailable_range(*hole_pfn, start_pfn, zone_id, nid); 6829 6830 *hole_pfn = end_pfn; 6831 } 6832 6833 static void __init memmap_init(void) 6834 { 6835 unsigned long start_pfn, end_pfn; 6836 unsigned long hole_pfn = 0; 6837 int i, j, zone_id = 0, nid; 6838 6839 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) { 6840 struct pglist_data *node = NODE_DATA(nid); 6841 6842 for (j = 0; j < MAX_NR_ZONES; j++) { 6843 struct zone *zone = node->node_zones + j; 6844 6845 if (!populated_zone(zone)) 6846 continue; 6847 6848 memmap_init_zone_range(zone, start_pfn, end_pfn, 6849 &hole_pfn); 6850 zone_id = j; 6851 } 6852 } 6853 6854 #ifdef CONFIG_SPARSEMEM 6855 /* 6856 * Initialize the memory map for hole in the range [memory_end, 6857 * section_end]. 6858 * Append the pages in this hole to the highest zone in the last 6859 * node. 6860 * The call to init_unavailable_range() is outside the ifdef to 6861 * silence the compiler warining about zone_id set but not used; 6862 * for FLATMEM it is a nop anyway 6863 */ 6864 end_pfn = round_up(end_pfn, PAGES_PER_SECTION); 6865 if (hole_pfn < end_pfn) 6866 #endif 6867 init_unavailable_range(hole_pfn, end_pfn, zone_id, nid); 6868 } 6869 6870 void __init *memmap_alloc(phys_addr_t size, phys_addr_t align, 6871 phys_addr_t min_addr, int nid, bool exact_nid) 6872 { 6873 void *ptr; 6874 6875 if (exact_nid) 6876 ptr = memblock_alloc_exact_nid_raw(size, align, min_addr, 6877 MEMBLOCK_ALLOC_ACCESSIBLE, 6878 nid); 6879 else 6880 ptr = memblock_alloc_try_nid_raw(size, align, min_addr, 6881 MEMBLOCK_ALLOC_ACCESSIBLE, 6882 nid); 6883 6884 if (ptr && size > 0) 6885 page_init_poison(ptr, size); 6886 6887 return ptr; 6888 } 6889 6890 static int zone_batchsize(struct zone *zone) 6891 { 6892 #ifdef CONFIG_MMU 6893 int batch; 6894 6895 /* 6896 * The number of pages to batch allocate is either ~0.1% 6897 * of the zone or 1MB, whichever is smaller. The batch 6898 * size is striking a balance between allocation latency 6899 * and zone lock contention. 6900 */ 6901 batch = min(zone_managed_pages(zone) >> 10, (1024 * 1024) / PAGE_SIZE); 6902 batch /= 4; /* We effectively *= 4 below */ 6903 if (batch < 1) 6904 batch = 1; 6905 6906 /* 6907 * Clamp the batch to a 2^n - 1 value. Having a power 6908 * of 2 value was found to be more likely to have 6909 * suboptimal cache aliasing properties in some cases. 6910 * 6911 * For example if 2 tasks are alternately allocating 6912 * batches of pages, one task can end up with a lot 6913 * of pages of one half of the possible page colors 6914 * and the other with pages of the other colors. 6915 */ 6916 batch = rounddown_pow_of_two(batch + batch/2) - 1; 6917 6918 return batch; 6919 6920 #else 6921 /* The deferral and batching of frees should be suppressed under NOMMU 6922 * conditions. 6923 * 6924 * The problem is that NOMMU needs to be able to allocate large chunks 6925 * of contiguous memory as there's no hardware page translation to 6926 * assemble apparent contiguous memory from discontiguous pages. 6927 * 6928 * Queueing large contiguous runs of pages for batching, however, 6929 * causes the pages to actually be freed in smaller chunks. As there 6930 * can be a significant delay between the individual batches being 6931 * recycled, this leads to the once large chunks of space being 6932 * fragmented and becoming unavailable for high-order allocations. 6933 */ 6934 return 0; 6935 #endif 6936 } 6937 6938 static int zone_highsize(struct zone *zone, int batch, int cpu_online) 6939 { 6940 #ifdef CONFIG_MMU 6941 int high; 6942 int nr_split_cpus; 6943 unsigned long total_pages; 6944 6945 if (!percpu_pagelist_high_fraction) { 6946 /* 6947 * By default, the high value of the pcp is based on the zone 6948 * low watermark so that if they are full then background 6949 * reclaim will not be started prematurely. 6950 */ 6951 total_pages = low_wmark_pages(zone); 6952 } else { 6953 /* 6954 * If percpu_pagelist_high_fraction is configured, the high 6955 * value is based on a fraction of the managed pages in the 6956 * zone. 6957 */ 6958 total_pages = zone_managed_pages(zone) / percpu_pagelist_high_fraction; 6959 } 6960 6961 /* 6962 * Split the high value across all online CPUs local to the zone. Note 6963 * that early in boot that CPUs may not be online yet and that during 6964 * CPU hotplug that the cpumask is not yet updated when a CPU is being 6965 * onlined. For memory nodes that have no CPUs, split pcp->high across 6966 * all online CPUs to mitigate the risk that reclaim is triggered 6967 * prematurely due to pages stored on pcp lists. 6968 */ 6969 nr_split_cpus = cpumask_weight(cpumask_of_node(zone_to_nid(zone))) + cpu_online; 6970 if (!nr_split_cpus) 6971 nr_split_cpus = num_online_cpus(); 6972 high = total_pages / nr_split_cpus; 6973 6974 /* 6975 * Ensure high is at least batch*4. The multiple is based on the 6976 * historical relationship between high and batch. 6977 */ 6978 high = max(high, batch << 2); 6979 6980 return high; 6981 #else 6982 return 0; 6983 #endif 6984 } 6985 6986 /* 6987 * pcp->high and pcp->batch values are related and generally batch is lower 6988 * than high. They are also related to pcp->count such that count is lower 6989 * than high, and as soon as it reaches high, the pcplist is flushed. 6990 * 6991 * However, guaranteeing these relations at all times would require e.g. write 6992 * barriers here but also careful usage of read barriers at the read side, and 6993 * thus be prone to error and bad for performance. Thus the update only prevents 6994 * store tearing. Any new users of pcp->batch and pcp->high should ensure they 6995 * can cope with those fields changing asynchronously, and fully trust only the 6996 * pcp->count field on the local CPU with interrupts disabled. 6997 * 6998 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function 6999 * outside of boot time (or some other assurance that no concurrent updaters 7000 * exist). 7001 */ 7002 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high, 7003 unsigned long batch) 7004 { 7005 WRITE_ONCE(pcp->batch, batch); 7006 WRITE_ONCE(pcp->high, high); 7007 } 7008 7009 static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats) 7010 { 7011 int pindex; 7012 7013 memset(pcp, 0, sizeof(*pcp)); 7014 memset(pzstats, 0, sizeof(*pzstats)); 7015 7016 for (pindex = 0; pindex < NR_PCP_LISTS; pindex++) 7017 INIT_LIST_HEAD(&pcp->lists[pindex]); 7018 7019 /* 7020 * Set batch and high values safe for a boot pageset. A true percpu 7021 * pageset's initialization will update them subsequently. Here we don't 7022 * need to be as careful as pageset_update() as nobody can access the 7023 * pageset yet. 7024 */ 7025 pcp->high = BOOT_PAGESET_HIGH; 7026 pcp->batch = BOOT_PAGESET_BATCH; 7027 pcp->free_factor = 0; 7028 } 7029 7030 static void __zone_set_pageset_high_and_batch(struct zone *zone, unsigned long high, 7031 unsigned long batch) 7032 { 7033 struct per_cpu_pages *pcp; 7034 int cpu; 7035 7036 for_each_possible_cpu(cpu) { 7037 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu); 7038 pageset_update(pcp, high, batch); 7039 } 7040 } 7041 7042 /* 7043 * Calculate and set new high and batch values for all per-cpu pagesets of a 7044 * zone based on the zone's size. 7045 */ 7046 static void zone_set_pageset_high_and_batch(struct zone *zone, int cpu_online) 7047 { 7048 int new_high, new_batch; 7049 7050 new_batch = max(1, zone_batchsize(zone)); 7051 new_high = zone_highsize(zone, new_batch, cpu_online); 7052 7053 if (zone->pageset_high == new_high && 7054 zone->pageset_batch == new_batch) 7055 return; 7056 7057 zone->pageset_high = new_high; 7058 zone->pageset_batch = new_batch; 7059 7060 __zone_set_pageset_high_and_batch(zone, new_high, new_batch); 7061 } 7062 7063 void __meminit setup_zone_pageset(struct zone *zone) 7064 { 7065 int cpu; 7066 7067 /* Size may be 0 on !SMP && !NUMA */ 7068 if (sizeof(struct per_cpu_zonestat) > 0) 7069 zone->per_cpu_zonestats = alloc_percpu(struct per_cpu_zonestat); 7070 7071 zone->per_cpu_pageset = alloc_percpu(struct per_cpu_pages); 7072 for_each_possible_cpu(cpu) { 7073 struct per_cpu_pages *pcp; 7074 struct per_cpu_zonestat *pzstats; 7075 7076 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu); 7077 pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu); 7078 per_cpu_pages_init(pcp, pzstats); 7079 } 7080 7081 zone_set_pageset_high_and_batch(zone, 0); 7082 } 7083 7084 /* 7085 * Allocate per cpu pagesets and initialize them. 7086 * Before this call only boot pagesets were available. 7087 */ 7088 void __init setup_per_cpu_pageset(void) 7089 { 7090 struct pglist_data *pgdat; 7091 struct zone *zone; 7092 int __maybe_unused cpu; 7093 7094 for_each_populated_zone(zone) 7095 setup_zone_pageset(zone); 7096 7097 #ifdef CONFIG_NUMA 7098 /* 7099 * Unpopulated zones continue using the boot pagesets. 7100 * The numa stats for these pagesets need to be reset. 7101 * Otherwise, they will end up skewing the stats of 7102 * the nodes these zones are associated with. 7103 */ 7104 for_each_possible_cpu(cpu) { 7105 struct per_cpu_zonestat *pzstats = &per_cpu(boot_zonestats, cpu); 7106 memset(pzstats->vm_numa_event, 0, 7107 sizeof(pzstats->vm_numa_event)); 7108 } 7109 #endif 7110 7111 for_each_online_pgdat(pgdat) 7112 pgdat->per_cpu_nodestats = 7113 alloc_percpu(struct per_cpu_nodestat); 7114 } 7115 7116 static __meminit void zone_pcp_init(struct zone *zone) 7117 { 7118 /* 7119 * per cpu subsystem is not up at this point. The following code 7120 * relies on the ability of the linker to provide the 7121 * offset of a (static) per cpu variable into the per cpu area. 7122 */ 7123 zone->per_cpu_pageset = &boot_pageset; 7124 zone->per_cpu_zonestats = &boot_zonestats; 7125 zone->pageset_high = BOOT_PAGESET_HIGH; 7126 zone->pageset_batch = BOOT_PAGESET_BATCH; 7127 7128 if (populated_zone(zone)) 7129 pr_debug(" %s zone: %lu pages, LIFO batch:%u\n", zone->name, 7130 zone->present_pages, zone_batchsize(zone)); 7131 } 7132 7133 void __meminit init_currently_empty_zone(struct zone *zone, 7134 unsigned long zone_start_pfn, 7135 unsigned long size) 7136 { 7137 struct pglist_data *pgdat = zone->zone_pgdat; 7138 int zone_idx = zone_idx(zone) + 1; 7139 7140 if (zone_idx > pgdat->nr_zones) 7141 pgdat->nr_zones = zone_idx; 7142 7143 zone->zone_start_pfn = zone_start_pfn; 7144 7145 mminit_dprintk(MMINIT_TRACE, "memmap_init", 7146 "Initialising map node %d zone %lu pfns %lu -> %lu\n", 7147 pgdat->node_id, 7148 (unsigned long)zone_idx(zone), 7149 zone_start_pfn, (zone_start_pfn + size)); 7150 7151 zone_init_free_lists(zone); 7152 zone->initialized = 1; 7153 } 7154 7155 /** 7156 * get_pfn_range_for_nid - Return the start and end page frames for a node 7157 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned. 7158 * @start_pfn: Passed by reference. On return, it will have the node start_pfn. 7159 * @end_pfn: Passed by reference. On return, it will have the node end_pfn. 7160 * 7161 * It returns the start and end page frame of a node based on information 7162 * provided by memblock_set_node(). If called for a node 7163 * with no available memory, a warning is printed and the start and end 7164 * PFNs will be 0. 7165 */ 7166 void __init get_pfn_range_for_nid(unsigned int nid, 7167 unsigned long *start_pfn, unsigned long *end_pfn) 7168 { 7169 unsigned long this_start_pfn, this_end_pfn; 7170 int i; 7171 7172 *start_pfn = -1UL; 7173 *end_pfn = 0; 7174 7175 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) { 7176 *start_pfn = min(*start_pfn, this_start_pfn); 7177 *end_pfn = max(*end_pfn, this_end_pfn); 7178 } 7179 7180 if (*start_pfn == -1UL) 7181 *start_pfn = 0; 7182 } 7183 7184 /* 7185 * This finds a zone that can be used for ZONE_MOVABLE pages. The 7186 * assumption is made that zones within a node are ordered in monotonic 7187 * increasing memory addresses so that the "highest" populated zone is used 7188 */ 7189 static void __init find_usable_zone_for_movable(void) 7190 { 7191 int zone_index; 7192 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) { 7193 if (zone_index == ZONE_MOVABLE) 7194 continue; 7195 7196 if (arch_zone_highest_possible_pfn[zone_index] > 7197 arch_zone_lowest_possible_pfn[zone_index]) 7198 break; 7199 } 7200 7201 VM_BUG_ON(zone_index == -1); 7202 movable_zone = zone_index; 7203 } 7204 7205 /* 7206 * The zone ranges provided by the architecture do not include ZONE_MOVABLE 7207 * because it is sized independent of architecture. Unlike the other zones, 7208 * the starting point for ZONE_MOVABLE is not fixed. It may be different 7209 * in each node depending on the size of each node and how evenly kernelcore 7210 * is distributed. This helper function adjusts the zone ranges 7211 * provided by the architecture for a given node by using the end of the 7212 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that 7213 * zones within a node are in order of monotonic increases memory addresses 7214 */ 7215 static void __init adjust_zone_range_for_zone_movable(int nid, 7216 unsigned long zone_type, 7217 unsigned long node_start_pfn, 7218 unsigned long node_end_pfn, 7219 unsigned long *zone_start_pfn, 7220 unsigned long *zone_end_pfn) 7221 { 7222 /* Only adjust if ZONE_MOVABLE is on this node */ 7223 if (zone_movable_pfn[nid]) { 7224 /* Size ZONE_MOVABLE */ 7225 if (zone_type == ZONE_MOVABLE) { 7226 *zone_start_pfn = zone_movable_pfn[nid]; 7227 *zone_end_pfn = min(node_end_pfn, 7228 arch_zone_highest_possible_pfn[movable_zone]); 7229 7230 /* Adjust for ZONE_MOVABLE starting within this range */ 7231 } else if (!mirrored_kernelcore && 7232 *zone_start_pfn < zone_movable_pfn[nid] && 7233 *zone_end_pfn > zone_movable_pfn[nid]) { 7234 *zone_end_pfn = zone_movable_pfn[nid]; 7235 7236 /* Check if this whole range is within ZONE_MOVABLE */ 7237 } else if (*zone_start_pfn >= zone_movable_pfn[nid]) 7238 *zone_start_pfn = *zone_end_pfn; 7239 } 7240 } 7241 7242 /* 7243 * Return the number of pages a zone spans in a node, including holes 7244 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node() 7245 */ 7246 static unsigned long __init zone_spanned_pages_in_node(int nid, 7247 unsigned long zone_type, 7248 unsigned long node_start_pfn, 7249 unsigned long node_end_pfn, 7250 unsigned long *zone_start_pfn, 7251 unsigned long *zone_end_pfn) 7252 { 7253 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type]; 7254 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type]; 7255 /* When hotadd a new node from cpu_up(), the node should be empty */ 7256 if (!node_start_pfn && !node_end_pfn) 7257 return 0; 7258 7259 /* Get the start and end of the zone */ 7260 *zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high); 7261 *zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high); 7262 adjust_zone_range_for_zone_movable(nid, zone_type, 7263 node_start_pfn, node_end_pfn, 7264 zone_start_pfn, zone_end_pfn); 7265 7266 /* Check that this node has pages within the zone's required range */ 7267 if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn) 7268 return 0; 7269 7270 /* Move the zone boundaries inside the node if necessary */ 7271 *zone_end_pfn = min(*zone_end_pfn, node_end_pfn); 7272 *zone_start_pfn = max(*zone_start_pfn, node_start_pfn); 7273 7274 /* Return the spanned pages */ 7275 return *zone_end_pfn - *zone_start_pfn; 7276 } 7277 7278 /* 7279 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES, 7280 * then all holes in the requested range will be accounted for. 7281 */ 7282 unsigned long __init __absent_pages_in_range(int nid, 7283 unsigned long range_start_pfn, 7284 unsigned long range_end_pfn) 7285 { 7286 unsigned long nr_absent = range_end_pfn - range_start_pfn; 7287 unsigned long start_pfn, end_pfn; 7288 int i; 7289 7290 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) { 7291 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn); 7292 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn); 7293 nr_absent -= end_pfn - start_pfn; 7294 } 7295 return nr_absent; 7296 } 7297 7298 /** 7299 * absent_pages_in_range - Return number of page frames in holes within a range 7300 * @start_pfn: The start PFN to start searching for holes 7301 * @end_pfn: The end PFN to stop searching for holes 7302 * 7303 * Return: the number of pages frames in memory holes within a range. 7304 */ 7305 unsigned long __init absent_pages_in_range(unsigned long start_pfn, 7306 unsigned long end_pfn) 7307 { 7308 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn); 7309 } 7310 7311 /* Return the number of page frames in holes in a zone on a node */ 7312 static unsigned long __init zone_absent_pages_in_node(int nid, 7313 unsigned long zone_type, 7314 unsigned long node_start_pfn, 7315 unsigned long node_end_pfn) 7316 { 7317 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type]; 7318 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type]; 7319 unsigned long zone_start_pfn, zone_end_pfn; 7320 unsigned long nr_absent; 7321 7322 /* When hotadd a new node from cpu_up(), the node should be empty */ 7323 if (!node_start_pfn && !node_end_pfn) 7324 return 0; 7325 7326 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high); 7327 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high); 7328 7329 adjust_zone_range_for_zone_movable(nid, zone_type, 7330 node_start_pfn, node_end_pfn, 7331 &zone_start_pfn, &zone_end_pfn); 7332 nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn); 7333 7334 /* 7335 * ZONE_MOVABLE handling. 7336 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages 7337 * and vice versa. 7338 */ 7339 if (mirrored_kernelcore && zone_movable_pfn[nid]) { 7340 unsigned long start_pfn, end_pfn; 7341 struct memblock_region *r; 7342 7343 for_each_mem_region(r) { 7344 start_pfn = clamp(memblock_region_memory_base_pfn(r), 7345 zone_start_pfn, zone_end_pfn); 7346 end_pfn = clamp(memblock_region_memory_end_pfn(r), 7347 zone_start_pfn, zone_end_pfn); 7348 7349 if (zone_type == ZONE_MOVABLE && 7350 memblock_is_mirror(r)) 7351 nr_absent += end_pfn - start_pfn; 7352 7353 if (zone_type == ZONE_NORMAL && 7354 !memblock_is_mirror(r)) 7355 nr_absent += end_pfn - start_pfn; 7356 } 7357 } 7358 7359 return nr_absent; 7360 } 7361 7362 static void __init calculate_node_totalpages(struct pglist_data *pgdat, 7363 unsigned long node_start_pfn, 7364 unsigned long node_end_pfn) 7365 { 7366 unsigned long realtotalpages = 0, totalpages = 0; 7367 enum zone_type i; 7368 7369 for (i = 0; i < MAX_NR_ZONES; i++) { 7370 struct zone *zone = pgdat->node_zones + i; 7371 unsigned long zone_start_pfn, zone_end_pfn; 7372 unsigned long spanned, absent; 7373 unsigned long size, real_size; 7374 7375 spanned = zone_spanned_pages_in_node(pgdat->node_id, i, 7376 node_start_pfn, 7377 node_end_pfn, 7378 &zone_start_pfn, 7379 &zone_end_pfn); 7380 absent = zone_absent_pages_in_node(pgdat->node_id, i, 7381 node_start_pfn, 7382 node_end_pfn); 7383 7384 size = spanned; 7385 real_size = size - absent; 7386 7387 if (size) 7388 zone->zone_start_pfn = zone_start_pfn; 7389 else 7390 zone->zone_start_pfn = 0; 7391 zone->spanned_pages = size; 7392 zone->present_pages = real_size; 7393 #if defined(CONFIG_MEMORY_HOTPLUG) 7394 zone->present_early_pages = real_size; 7395 #endif 7396 7397 totalpages += size; 7398 realtotalpages += real_size; 7399 } 7400 7401 pgdat->node_spanned_pages = totalpages; 7402 pgdat->node_present_pages = realtotalpages; 7403 pr_debug("On node %d totalpages: %lu\n", pgdat->node_id, realtotalpages); 7404 } 7405 7406 #ifndef CONFIG_SPARSEMEM 7407 /* 7408 * Calculate the size of the zone->blockflags rounded to an unsigned long 7409 * Start by making sure zonesize is a multiple of pageblock_order by rounding 7410 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally 7411 * round what is now in bits to nearest long in bits, then return it in 7412 * bytes. 7413 */ 7414 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize) 7415 { 7416 unsigned long usemapsize; 7417 7418 zonesize += zone_start_pfn & (pageblock_nr_pages-1); 7419 usemapsize = roundup(zonesize, pageblock_nr_pages); 7420 usemapsize = usemapsize >> pageblock_order; 7421 usemapsize *= NR_PAGEBLOCK_BITS; 7422 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long)); 7423 7424 return usemapsize / 8; 7425 } 7426 7427 static void __ref setup_usemap(struct zone *zone) 7428 { 7429 unsigned long usemapsize = usemap_size(zone->zone_start_pfn, 7430 zone->spanned_pages); 7431 zone->pageblock_flags = NULL; 7432 if (usemapsize) { 7433 zone->pageblock_flags = 7434 memblock_alloc_node(usemapsize, SMP_CACHE_BYTES, 7435 zone_to_nid(zone)); 7436 if (!zone->pageblock_flags) 7437 panic("Failed to allocate %ld bytes for zone %s pageblock flags on node %d\n", 7438 usemapsize, zone->name, zone_to_nid(zone)); 7439 } 7440 } 7441 #else 7442 static inline void setup_usemap(struct zone *zone) {} 7443 #endif /* CONFIG_SPARSEMEM */ 7444 7445 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE 7446 7447 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */ 7448 void __init set_pageblock_order(void) 7449 { 7450 unsigned int order = MAX_ORDER - 1; 7451 7452 /* Check that pageblock_nr_pages has not already been setup */ 7453 if (pageblock_order) 7454 return; 7455 7456 /* Don't let pageblocks exceed the maximum allocation granularity. */ 7457 if (HPAGE_SHIFT > PAGE_SHIFT && HUGETLB_PAGE_ORDER < order) 7458 order = HUGETLB_PAGE_ORDER; 7459 7460 /* 7461 * Assume the largest contiguous order of interest is a huge page. 7462 * This value may be variable depending on boot parameters on IA64 and 7463 * powerpc. 7464 */ 7465 pageblock_order = order; 7466 } 7467 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */ 7468 7469 /* 7470 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order() 7471 * is unused as pageblock_order is set at compile-time. See 7472 * include/linux/pageblock-flags.h for the values of pageblock_order based on 7473 * the kernel config 7474 */ 7475 void __init set_pageblock_order(void) 7476 { 7477 } 7478 7479 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */ 7480 7481 static unsigned long __init calc_memmap_size(unsigned long spanned_pages, 7482 unsigned long present_pages) 7483 { 7484 unsigned long pages = spanned_pages; 7485 7486 /* 7487 * Provide a more accurate estimation if there are holes within 7488 * the zone and SPARSEMEM is in use. If there are holes within the 7489 * zone, each populated memory region may cost us one or two extra 7490 * memmap pages due to alignment because memmap pages for each 7491 * populated regions may not be naturally aligned on page boundary. 7492 * So the (present_pages >> 4) heuristic is a tradeoff for that. 7493 */ 7494 if (spanned_pages > present_pages + (present_pages >> 4) && 7495 IS_ENABLED(CONFIG_SPARSEMEM)) 7496 pages = present_pages; 7497 7498 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT; 7499 } 7500 7501 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 7502 static void pgdat_init_split_queue(struct pglist_data *pgdat) 7503 { 7504 struct deferred_split *ds_queue = &pgdat->deferred_split_queue; 7505 7506 spin_lock_init(&ds_queue->split_queue_lock); 7507 INIT_LIST_HEAD(&ds_queue->split_queue); 7508 ds_queue->split_queue_len = 0; 7509 } 7510 #else 7511 static void pgdat_init_split_queue(struct pglist_data *pgdat) {} 7512 #endif 7513 7514 #ifdef CONFIG_COMPACTION 7515 static void pgdat_init_kcompactd(struct pglist_data *pgdat) 7516 { 7517 init_waitqueue_head(&pgdat->kcompactd_wait); 7518 } 7519 #else 7520 static void pgdat_init_kcompactd(struct pglist_data *pgdat) {} 7521 #endif 7522 7523 static void __meminit pgdat_init_internals(struct pglist_data *pgdat) 7524 { 7525 int i; 7526 7527 pgdat_resize_init(pgdat); 7528 7529 pgdat_init_split_queue(pgdat); 7530 pgdat_init_kcompactd(pgdat); 7531 7532 init_waitqueue_head(&pgdat->kswapd_wait); 7533 init_waitqueue_head(&pgdat->pfmemalloc_wait); 7534 7535 for (i = 0; i < NR_VMSCAN_THROTTLE; i++) 7536 init_waitqueue_head(&pgdat->reclaim_wait[i]); 7537 7538 pgdat_page_ext_init(pgdat); 7539 lruvec_init(&pgdat->__lruvec); 7540 } 7541 7542 static void __meminit zone_init_internals(struct zone *zone, enum zone_type idx, int nid, 7543 unsigned long remaining_pages) 7544 { 7545 atomic_long_set(&zone->managed_pages, remaining_pages); 7546 zone_set_nid(zone, nid); 7547 zone->name = zone_names[idx]; 7548 zone->zone_pgdat = NODE_DATA(nid); 7549 spin_lock_init(&zone->lock); 7550 zone_seqlock_init(zone); 7551 zone_pcp_init(zone); 7552 } 7553 7554 /* 7555 * Set up the zone data structures 7556 * - init pgdat internals 7557 * - init all zones belonging to this node 7558 * 7559 * NOTE: this function is only called during memory hotplug 7560 */ 7561 #ifdef CONFIG_MEMORY_HOTPLUG 7562 void __ref free_area_init_core_hotplug(struct pglist_data *pgdat) 7563 { 7564 int nid = pgdat->node_id; 7565 enum zone_type z; 7566 int cpu; 7567 7568 pgdat_init_internals(pgdat); 7569 7570 if (pgdat->per_cpu_nodestats == &boot_nodestats) 7571 pgdat->per_cpu_nodestats = alloc_percpu(struct per_cpu_nodestat); 7572 7573 /* 7574 * Reset the nr_zones, order and highest_zoneidx before reuse. 7575 * Note that kswapd will init kswapd_highest_zoneidx properly 7576 * when it starts in the near future. 7577 */ 7578 pgdat->nr_zones = 0; 7579 pgdat->kswapd_order = 0; 7580 pgdat->kswapd_highest_zoneidx = 0; 7581 pgdat->node_start_pfn = 0; 7582 for_each_online_cpu(cpu) { 7583 struct per_cpu_nodestat *p; 7584 7585 p = per_cpu_ptr(pgdat->per_cpu_nodestats, cpu); 7586 memset(p, 0, sizeof(*p)); 7587 } 7588 7589 for (z = 0; z < MAX_NR_ZONES; z++) 7590 zone_init_internals(&pgdat->node_zones[z], z, nid, 0); 7591 } 7592 #endif 7593 7594 /* 7595 * Set up the zone data structures: 7596 * - mark all pages reserved 7597 * - mark all memory queues empty 7598 * - clear the memory bitmaps 7599 * 7600 * NOTE: pgdat should get zeroed by caller. 7601 * NOTE: this function is only called during early init. 7602 */ 7603 static void __init free_area_init_core(struct pglist_data *pgdat) 7604 { 7605 enum zone_type j; 7606 int nid = pgdat->node_id; 7607 7608 pgdat_init_internals(pgdat); 7609 pgdat->per_cpu_nodestats = &boot_nodestats; 7610 7611 for (j = 0; j < MAX_NR_ZONES; j++) { 7612 struct zone *zone = pgdat->node_zones + j; 7613 unsigned long size, freesize, memmap_pages; 7614 7615 size = zone->spanned_pages; 7616 freesize = zone->present_pages; 7617 7618 /* 7619 * Adjust freesize so that it accounts for how much memory 7620 * is used by this zone for memmap. This affects the watermark 7621 * and per-cpu initialisations 7622 */ 7623 memmap_pages = calc_memmap_size(size, freesize); 7624 if (!is_highmem_idx(j)) { 7625 if (freesize >= memmap_pages) { 7626 freesize -= memmap_pages; 7627 if (memmap_pages) 7628 pr_debug(" %s zone: %lu pages used for memmap\n", 7629 zone_names[j], memmap_pages); 7630 } else 7631 pr_warn(" %s zone: %lu memmap pages exceeds freesize %lu\n", 7632 zone_names[j], memmap_pages, freesize); 7633 } 7634 7635 /* Account for reserved pages */ 7636 if (j == 0 && freesize > dma_reserve) { 7637 freesize -= dma_reserve; 7638 pr_debug(" %s zone: %lu pages reserved\n", zone_names[0], dma_reserve); 7639 } 7640 7641 if (!is_highmem_idx(j)) 7642 nr_kernel_pages += freesize; 7643 /* Charge for highmem memmap if there are enough kernel pages */ 7644 else if (nr_kernel_pages > memmap_pages * 2) 7645 nr_kernel_pages -= memmap_pages; 7646 nr_all_pages += freesize; 7647 7648 /* 7649 * Set an approximate value for lowmem here, it will be adjusted 7650 * when the bootmem allocator frees pages into the buddy system. 7651 * And all highmem pages will be managed by the buddy system. 7652 */ 7653 zone_init_internals(zone, j, nid, freesize); 7654 7655 if (!size) 7656 continue; 7657 7658 set_pageblock_order(); 7659 setup_usemap(zone); 7660 init_currently_empty_zone(zone, zone->zone_start_pfn, size); 7661 } 7662 } 7663 7664 #ifdef CONFIG_FLATMEM 7665 static void __init alloc_node_mem_map(struct pglist_data *pgdat) 7666 { 7667 unsigned long __maybe_unused start = 0; 7668 unsigned long __maybe_unused offset = 0; 7669 7670 /* Skip empty nodes */ 7671 if (!pgdat->node_spanned_pages) 7672 return; 7673 7674 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1); 7675 offset = pgdat->node_start_pfn - start; 7676 /* ia64 gets its own node_mem_map, before this, without bootmem */ 7677 if (!pgdat->node_mem_map) { 7678 unsigned long size, end; 7679 struct page *map; 7680 7681 /* 7682 * The zone's endpoints aren't required to be MAX_ORDER 7683 * aligned but the node_mem_map endpoints must be in order 7684 * for the buddy allocator to function correctly. 7685 */ 7686 end = pgdat_end_pfn(pgdat); 7687 end = ALIGN(end, MAX_ORDER_NR_PAGES); 7688 size = (end - start) * sizeof(struct page); 7689 map = memmap_alloc(size, SMP_CACHE_BYTES, MEMBLOCK_LOW_LIMIT, 7690 pgdat->node_id, false); 7691 if (!map) 7692 panic("Failed to allocate %ld bytes for node %d memory map\n", 7693 size, pgdat->node_id); 7694 pgdat->node_mem_map = map + offset; 7695 } 7696 pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n", 7697 __func__, pgdat->node_id, (unsigned long)pgdat, 7698 (unsigned long)pgdat->node_mem_map); 7699 #ifndef CONFIG_NUMA 7700 /* 7701 * With no DISCONTIG, the global mem_map is just set as node 0's 7702 */ 7703 if (pgdat == NODE_DATA(0)) { 7704 mem_map = NODE_DATA(0)->node_mem_map; 7705 if (page_to_pfn(mem_map) != pgdat->node_start_pfn) 7706 mem_map -= offset; 7707 } 7708 #endif 7709 } 7710 #else 7711 static inline void alloc_node_mem_map(struct pglist_data *pgdat) { } 7712 #endif /* CONFIG_FLATMEM */ 7713 7714 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 7715 static inline void pgdat_set_deferred_range(pg_data_t *pgdat) 7716 { 7717 pgdat->first_deferred_pfn = ULONG_MAX; 7718 } 7719 #else 7720 static inline void pgdat_set_deferred_range(pg_data_t *pgdat) {} 7721 #endif 7722 7723 static void __init free_area_init_node(int nid) 7724 { 7725 pg_data_t *pgdat = NODE_DATA(nid); 7726 unsigned long start_pfn = 0; 7727 unsigned long end_pfn = 0; 7728 7729 /* pg_data_t should be reset to zero when it's allocated */ 7730 WARN_ON(pgdat->nr_zones || pgdat->kswapd_highest_zoneidx); 7731 7732 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn); 7733 7734 pgdat->node_id = nid; 7735 pgdat->node_start_pfn = start_pfn; 7736 pgdat->per_cpu_nodestats = NULL; 7737 7738 if (start_pfn != end_pfn) { 7739 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid, 7740 (u64)start_pfn << PAGE_SHIFT, 7741 end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0); 7742 } else { 7743 pr_info("Initmem setup node %d as memoryless\n", nid); 7744 } 7745 7746 calculate_node_totalpages(pgdat, start_pfn, end_pfn); 7747 7748 alloc_node_mem_map(pgdat); 7749 pgdat_set_deferred_range(pgdat); 7750 7751 free_area_init_core(pgdat); 7752 } 7753 7754 static void __init free_area_init_memoryless_node(int nid) 7755 { 7756 free_area_init_node(nid); 7757 } 7758 7759 #if MAX_NUMNODES > 1 7760 /* 7761 * Figure out the number of possible node ids. 7762 */ 7763 void __init setup_nr_node_ids(void) 7764 { 7765 unsigned int highest; 7766 7767 highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES); 7768 nr_node_ids = highest + 1; 7769 } 7770 #endif 7771 7772 /** 7773 * node_map_pfn_alignment - determine the maximum internode alignment 7774 * 7775 * This function should be called after node map is populated and sorted. 7776 * It calculates the maximum power of two alignment which can distinguish 7777 * all the nodes. 7778 * 7779 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value 7780 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the 7781 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is 7782 * shifted, 1GiB is enough and this function will indicate so. 7783 * 7784 * This is used to test whether pfn -> nid mapping of the chosen memory 7785 * model has fine enough granularity to avoid incorrect mapping for the 7786 * populated node map. 7787 * 7788 * Return: the determined alignment in pfn's. 0 if there is no alignment 7789 * requirement (single node). 7790 */ 7791 unsigned long __init node_map_pfn_alignment(void) 7792 { 7793 unsigned long accl_mask = 0, last_end = 0; 7794 unsigned long start, end, mask; 7795 int last_nid = NUMA_NO_NODE; 7796 int i, nid; 7797 7798 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) { 7799 if (!start || last_nid < 0 || last_nid == nid) { 7800 last_nid = nid; 7801 last_end = end; 7802 continue; 7803 } 7804 7805 /* 7806 * Start with a mask granular enough to pin-point to the 7807 * start pfn and tick off bits one-by-one until it becomes 7808 * too coarse to separate the current node from the last. 7809 */ 7810 mask = ~((1 << __ffs(start)) - 1); 7811 while (mask && last_end <= (start & (mask << 1))) 7812 mask <<= 1; 7813 7814 /* accumulate all internode masks */ 7815 accl_mask |= mask; 7816 } 7817 7818 /* convert mask to number of pages */ 7819 return ~accl_mask + 1; 7820 } 7821 7822 /** 7823 * find_min_pfn_with_active_regions - Find the minimum PFN registered 7824 * 7825 * Return: the minimum PFN based on information provided via 7826 * memblock_set_node(). 7827 */ 7828 unsigned long __init find_min_pfn_with_active_regions(void) 7829 { 7830 return PHYS_PFN(memblock_start_of_DRAM()); 7831 } 7832 7833 /* 7834 * early_calculate_totalpages() 7835 * Sum pages in active regions for movable zone. 7836 * Populate N_MEMORY for calculating usable_nodes. 7837 */ 7838 static unsigned long __init early_calculate_totalpages(void) 7839 { 7840 unsigned long totalpages = 0; 7841 unsigned long start_pfn, end_pfn; 7842 int i, nid; 7843 7844 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) { 7845 unsigned long pages = end_pfn - start_pfn; 7846 7847 totalpages += pages; 7848 if (pages) 7849 node_set_state(nid, N_MEMORY); 7850 } 7851 return totalpages; 7852 } 7853 7854 /* 7855 * Find the PFN the Movable zone begins in each node. Kernel memory 7856 * is spread evenly between nodes as long as the nodes have enough 7857 * memory. When they don't, some nodes will have more kernelcore than 7858 * others 7859 */ 7860 static void __init find_zone_movable_pfns_for_nodes(void) 7861 { 7862 int i, nid; 7863 unsigned long usable_startpfn; 7864 unsigned long kernelcore_node, kernelcore_remaining; 7865 /* save the state before borrow the nodemask */ 7866 nodemask_t saved_node_state = node_states[N_MEMORY]; 7867 unsigned long totalpages = early_calculate_totalpages(); 7868 int usable_nodes = nodes_weight(node_states[N_MEMORY]); 7869 struct memblock_region *r; 7870 7871 /* Need to find movable_zone earlier when movable_node is specified. */ 7872 find_usable_zone_for_movable(); 7873 7874 /* 7875 * If movable_node is specified, ignore kernelcore and movablecore 7876 * options. 7877 */ 7878 if (movable_node_is_enabled()) { 7879 for_each_mem_region(r) { 7880 if (!memblock_is_hotpluggable(r)) 7881 continue; 7882 7883 nid = memblock_get_region_node(r); 7884 7885 usable_startpfn = PFN_DOWN(r->base); 7886 zone_movable_pfn[nid] = zone_movable_pfn[nid] ? 7887 min(usable_startpfn, zone_movable_pfn[nid]) : 7888 usable_startpfn; 7889 } 7890 7891 goto out2; 7892 } 7893 7894 /* 7895 * If kernelcore=mirror is specified, ignore movablecore option 7896 */ 7897 if (mirrored_kernelcore) { 7898 bool mem_below_4gb_not_mirrored = false; 7899 7900 for_each_mem_region(r) { 7901 if (memblock_is_mirror(r)) 7902 continue; 7903 7904 nid = memblock_get_region_node(r); 7905 7906 usable_startpfn = memblock_region_memory_base_pfn(r); 7907 7908 if (usable_startpfn < PHYS_PFN(SZ_4G)) { 7909 mem_below_4gb_not_mirrored = true; 7910 continue; 7911 } 7912 7913 zone_movable_pfn[nid] = zone_movable_pfn[nid] ? 7914 min(usable_startpfn, zone_movable_pfn[nid]) : 7915 usable_startpfn; 7916 } 7917 7918 if (mem_below_4gb_not_mirrored) 7919 pr_warn("This configuration results in unmirrored kernel memory.\n"); 7920 7921 goto out2; 7922 } 7923 7924 /* 7925 * If kernelcore=nn% or movablecore=nn% was specified, calculate the 7926 * amount of necessary memory. 7927 */ 7928 if (required_kernelcore_percent) 7929 required_kernelcore = (totalpages * 100 * required_kernelcore_percent) / 7930 10000UL; 7931 if (required_movablecore_percent) 7932 required_movablecore = (totalpages * 100 * required_movablecore_percent) / 7933 10000UL; 7934 7935 /* 7936 * If movablecore= was specified, calculate what size of 7937 * kernelcore that corresponds so that memory usable for 7938 * any allocation type is evenly spread. If both kernelcore 7939 * and movablecore are specified, then the value of kernelcore 7940 * will be used for required_kernelcore if it's greater than 7941 * what movablecore would have allowed. 7942 */ 7943 if (required_movablecore) { 7944 unsigned long corepages; 7945 7946 /* 7947 * Round-up so that ZONE_MOVABLE is at least as large as what 7948 * was requested by the user 7949 */ 7950 required_movablecore = 7951 roundup(required_movablecore, MAX_ORDER_NR_PAGES); 7952 required_movablecore = min(totalpages, required_movablecore); 7953 corepages = totalpages - required_movablecore; 7954 7955 required_kernelcore = max(required_kernelcore, corepages); 7956 } 7957 7958 /* 7959 * If kernelcore was not specified or kernelcore size is larger 7960 * than totalpages, there is no ZONE_MOVABLE. 7961 */ 7962 if (!required_kernelcore || required_kernelcore >= totalpages) 7963 goto out; 7964 7965 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */ 7966 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone]; 7967 7968 restart: 7969 /* Spread kernelcore memory as evenly as possible throughout nodes */ 7970 kernelcore_node = required_kernelcore / usable_nodes; 7971 for_each_node_state(nid, N_MEMORY) { 7972 unsigned long start_pfn, end_pfn; 7973 7974 /* 7975 * Recalculate kernelcore_node if the division per node 7976 * now exceeds what is necessary to satisfy the requested 7977 * amount of memory for the kernel 7978 */ 7979 if (required_kernelcore < kernelcore_node) 7980 kernelcore_node = required_kernelcore / usable_nodes; 7981 7982 /* 7983 * As the map is walked, we track how much memory is usable 7984 * by the kernel using kernelcore_remaining. When it is 7985 * 0, the rest of the node is usable by ZONE_MOVABLE 7986 */ 7987 kernelcore_remaining = kernelcore_node; 7988 7989 /* Go through each range of PFNs within this node */ 7990 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) { 7991 unsigned long size_pages; 7992 7993 start_pfn = max(start_pfn, zone_movable_pfn[nid]); 7994 if (start_pfn >= end_pfn) 7995 continue; 7996 7997 /* Account for what is only usable for kernelcore */ 7998 if (start_pfn < usable_startpfn) { 7999 unsigned long kernel_pages; 8000 kernel_pages = min(end_pfn, usable_startpfn) 8001 - start_pfn; 8002 8003 kernelcore_remaining -= min(kernel_pages, 8004 kernelcore_remaining); 8005 required_kernelcore -= min(kernel_pages, 8006 required_kernelcore); 8007 8008 /* Continue if range is now fully accounted */ 8009 if (end_pfn <= usable_startpfn) { 8010 8011 /* 8012 * Push zone_movable_pfn to the end so 8013 * that if we have to rebalance 8014 * kernelcore across nodes, we will 8015 * not double account here 8016 */ 8017 zone_movable_pfn[nid] = end_pfn; 8018 continue; 8019 } 8020 start_pfn = usable_startpfn; 8021 } 8022 8023 /* 8024 * The usable PFN range for ZONE_MOVABLE is from 8025 * start_pfn->end_pfn. Calculate size_pages as the 8026 * number of pages used as kernelcore 8027 */ 8028 size_pages = end_pfn - start_pfn; 8029 if (size_pages > kernelcore_remaining) 8030 size_pages = kernelcore_remaining; 8031 zone_movable_pfn[nid] = start_pfn + size_pages; 8032 8033 /* 8034 * Some kernelcore has been met, update counts and 8035 * break if the kernelcore for this node has been 8036 * satisfied 8037 */ 8038 required_kernelcore -= min(required_kernelcore, 8039 size_pages); 8040 kernelcore_remaining -= size_pages; 8041 if (!kernelcore_remaining) 8042 break; 8043 } 8044 } 8045 8046 /* 8047 * If there is still required_kernelcore, we do another pass with one 8048 * less node in the count. This will push zone_movable_pfn[nid] further 8049 * along on the nodes that still have memory until kernelcore is 8050 * satisfied 8051 */ 8052 usable_nodes--; 8053 if (usable_nodes && required_kernelcore > usable_nodes) 8054 goto restart; 8055 8056 out2: 8057 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */ 8058 for (nid = 0; nid < MAX_NUMNODES; nid++) { 8059 unsigned long start_pfn, end_pfn; 8060 8061 zone_movable_pfn[nid] = 8062 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES); 8063 8064 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn); 8065 if (zone_movable_pfn[nid] >= end_pfn) 8066 zone_movable_pfn[nid] = 0; 8067 } 8068 8069 out: 8070 /* restore the node_state */ 8071 node_states[N_MEMORY] = saved_node_state; 8072 } 8073 8074 /* Any regular or high memory on that node ? */ 8075 static void check_for_memory(pg_data_t *pgdat, int nid) 8076 { 8077 enum zone_type zone_type; 8078 8079 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) { 8080 struct zone *zone = &pgdat->node_zones[zone_type]; 8081 if (populated_zone(zone)) { 8082 if (IS_ENABLED(CONFIG_HIGHMEM)) 8083 node_set_state(nid, N_HIGH_MEMORY); 8084 if (zone_type <= ZONE_NORMAL) 8085 node_set_state(nid, N_NORMAL_MEMORY); 8086 break; 8087 } 8088 } 8089 } 8090 8091 /* 8092 * Some architectures, e.g. ARC may have ZONE_HIGHMEM below ZONE_NORMAL. For 8093 * such cases we allow max_zone_pfn sorted in the descending order 8094 */ 8095 bool __weak arch_has_descending_max_zone_pfns(void) 8096 { 8097 return false; 8098 } 8099 8100 /** 8101 * free_area_init - Initialise all pg_data_t and zone data 8102 * @max_zone_pfn: an array of max PFNs for each zone 8103 * 8104 * This will call free_area_init_node() for each active node in the system. 8105 * Using the page ranges provided by memblock_set_node(), the size of each 8106 * zone in each node and their holes is calculated. If the maximum PFN 8107 * between two adjacent zones match, it is assumed that the zone is empty. 8108 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed 8109 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone 8110 * starts where the previous one ended. For example, ZONE_DMA32 starts 8111 * at arch_max_dma_pfn. 8112 */ 8113 void __init free_area_init(unsigned long *max_zone_pfn) 8114 { 8115 unsigned long start_pfn, end_pfn; 8116 int i, nid, zone; 8117 bool descending; 8118 8119 /* Record where the zone boundaries are */ 8120 memset(arch_zone_lowest_possible_pfn, 0, 8121 sizeof(arch_zone_lowest_possible_pfn)); 8122 memset(arch_zone_highest_possible_pfn, 0, 8123 sizeof(arch_zone_highest_possible_pfn)); 8124 8125 start_pfn = find_min_pfn_with_active_regions(); 8126 descending = arch_has_descending_max_zone_pfns(); 8127 8128 for (i = 0; i < MAX_NR_ZONES; i++) { 8129 if (descending) 8130 zone = MAX_NR_ZONES - i - 1; 8131 else 8132 zone = i; 8133 8134 if (zone == ZONE_MOVABLE) 8135 continue; 8136 8137 end_pfn = max(max_zone_pfn[zone], start_pfn); 8138 arch_zone_lowest_possible_pfn[zone] = start_pfn; 8139 arch_zone_highest_possible_pfn[zone] = end_pfn; 8140 8141 start_pfn = end_pfn; 8142 } 8143 8144 /* Find the PFNs that ZONE_MOVABLE begins at in each node */ 8145 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn)); 8146 find_zone_movable_pfns_for_nodes(); 8147 8148 /* Print out the zone ranges */ 8149 pr_info("Zone ranges:\n"); 8150 for (i = 0; i < MAX_NR_ZONES; i++) { 8151 if (i == ZONE_MOVABLE) 8152 continue; 8153 pr_info(" %-8s ", zone_names[i]); 8154 if (arch_zone_lowest_possible_pfn[i] == 8155 arch_zone_highest_possible_pfn[i]) 8156 pr_cont("empty\n"); 8157 else 8158 pr_cont("[mem %#018Lx-%#018Lx]\n", 8159 (u64)arch_zone_lowest_possible_pfn[i] 8160 << PAGE_SHIFT, 8161 ((u64)arch_zone_highest_possible_pfn[i] 8162 << PAGE_SHIFT) - 1); 8163 } 8164 8165 /* Print out the PFNs ZONE_MOVABLE begins at in each node */ 8166 pr_info("Movable zone start for each node\n"); 8167 for (i = 0; i < MAX_NUMNODES; i++) { 8168 if (zone_movable_pfn[i]) 8169 pr_info(" Node %d: %#018Lx\n", i, 8170 (u64)zone_movable_pfn[i] << PAGE_SHIFT); 8171 } 8172 8173 /* 8174 * Print out the early node map, and initialize the 8175 * subsection-map relative to active online memory ranges to 8176 * enable future "sub-section" extensions of the memory map. 8177 */ 8178 pr_info("Early memory node ranges\n"); 8179 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) { 8180 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid, 8181 (u64)start_pfn << PAGE_SHIFT, 8182 ((u64)end_pfn << PAGE_SHIFT) - 1); 8183 subsection_map_init(start_pfn, end_pfn - start_pfn); 8184 } 8185 8186 /* Initialise every node */ 8187 mminit_verify_pageflags_layout(); 8188 setup_nr_node_ids(); 8189 for_each_node(nid) { 8190 pg_data_t *pgdat; 8191 8192 if (!node_online(nid)) { 8193 pr_info("Initializing node %d as memoryless\n", nid); 8194 8195 /* Allocator not initialized yet */ 8196 pgdat = arch_alloc_nodedata(nid); 8197 if (!pgdat) { 8198 pr_err("Cannot allocate %zuB for node %d.\n", 8199 sizeof(*pgdat), nid); 8200 continue; 8201 } 8202 arch_refresh_nodedata(nid, pgdat); 8203 free_area_init_memoryless_node(nid); 8204 8205 /* 8206 * We do not want to confuse userspace by sysfs 8207 * files/directories for node without any memory 8208 * attached to it, so this node is not marked as 8209 * N_MEMORY and not marked online so that no sysfs 8210 * hierarchy will be created via register_one_node for 8211 * it. The pgdat will get fully initialized by 8212 * hotadd_init_pgdat() when memory is hotplugged into 8213 * this node. 8214 */ 8215 continue; 8216 } 8217 8218 pgdat = NODE_DATA(nid); 8219 free_area_init_node(nid); 8220 8221 /* Any memory on that node */ 8222 if (pgdat->node_present_pages) 8223 node_set_state(nid, N_MEMORY); 8224 check_for_memory(pgdat, nid); 8225 } 8226 8227 memmap_init(); 8228 } 8229 8230 static int __init cmdline_parse_core(char *p, unsigned long *core, 8231 unsigned long *percent) 8232 { 8233 unsigned long long coremem; 8234 char *endptr; 8235 8236 if (!p) 8237 return -EINVAL; 8238 8239 /* Value may be a percentage of total memory, otherwise bytes */ 8240 coremem = simple_strtoull(p, &endptr, 0); 8241 if (*endptr == '%') { 8242 /* Paranoid check for percent values greater than 100 */ 8243 WARN_ON(coremem > 100); 8244 8245 *percent = coremem; 8246 } else { 8247 coremem = memparse(p, &p); 8248 /* Paranoid check that UL is enough for the coremem value */ 8249 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX); 8250 8251 *core = coremem >> PAGE_SHIFT; 8252 *percent = 0UL; 8253 } 8254 return 0; 8255 } 8256 8257 /* 8258 * kernelcore=size sets the amount of memory for use for allocations that 8259 * cannot be reclaimed or migrated. 8260 */ 8261 static int __init cmdline_parse_kernelcore(char *p) 8262 { 8263 /* parse kernelcore=mirror */ 8264 if (parse_option_str(p, "mirror")) { 8265 mirrored_kernelcore = true; 8266 return 0; 8267 } 8268 8269 return cmdline_parse_core(p, &required_kernelcore, 8270 &required_kernelcore_percent); 8271 } 8272 8273 /* 8274 * movablecore=size sets the amount of memory for use for allocations that 8275 * can be reclaimed or migrated. 8276 */ 8277 static int __init cmdline_parse_movablecore(char *p) 8278 { 8279 return cmdline_parse_core(p, &required_movablecore, 8280 &required_movablecore_percent); 8281 } 8282 8283 early_param("kernelcore", cmdline_parse_kernelcore); 8284 early_param("movablecore", cmdline_parse_movablecore); 8285 8286 void adjust_managed_page_count(struct page *page, long count) 8287 { 8288 atomic_long_add(count, &page_zone(page)->managed_pages); 8289 totalram_pages_add(count); 8290 #ifdef CONFIG_HIGHMEM 8291 if (PageHighMem(page)) 8292 totalhigh_pages_add(count); 8293 #endif 8294 } 8295 EXPORT_SYMBOL(adjust_managed_page_count); 8296 8297 unsigned long free_reserved_area(void *start, void *end, int poison, const char *s) 8298 { 8299 void *pos; 8300 unsigned long pages = 0; 8301 8302 start = (void *)PAGE_ALIGN((unsigned long)start); 8303 end = (void *)((unsigned long)end & PAGE_MASK); 8304 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) { 8305 struct page *page = virt_to_page(pos); 8306 void *direct_map_addr; 8307 8308 /* 8309 * 'direct_map_addr' might be different from 'pos' 8310 * because some architectures' virt_to_page() 8311 * work with aliases. Getting the direct map 8312 * address ensures that we get a _writeable_ 8313 * alias for the memset(). 8314 */ 8315 direct_map_addr = page_address(page); 8316 /* 8317 * Perform a kasan-unchecked memset() since this memory 8318 * has not been initialized. 8319 */ 8320 direct_map_addr = kasan_reset_tag(direct_map_addr); 8321 if ((unsigned int)poison <= 0xFF) 8322 memset(direct_map_addr, poison, PAGE_SIZE); 8323 8324 free_reserved_page(page); 8325 } 8326 8327 if (pages && s) 8328 pr_info("Freeing %s memory: %ldK\n", s, K(pages)); 8329 8330 return pages; 8331 } 8332 8333 void __init mem_init_print_info(void) 8334 { 8335 unsigned long physpages, codesize, datasize, rosize, bss_size; 8336 unsigned long init_code_size, init_data_size; 8337 8338 physpages = get_num_physpages(); 8339 codesize = _etext - _stext; 8340 datasize = _edata - _sdata; 8341 rosize = __end_rodata - __start_rodata; 8342 bss_size = __bss_stop - __bss_start; 8343 init_data_size = __init_end - __init_begin; 8344 init_code_size = _einittext - _sinittext; 8345 8346 /* 8347 * Detect special cases and adjust section sizes accordingly: 8348 * 1) .init.* may be embedded into .data sections 8349 * 2) .init.text.* may be out of [__init_begin, __init_end], 8350 * please refer to arch/tile/kernel/vmlinux.lds.S. 8351 * 3) .rodata.* may be embedded into .text or .data sections. 8352 */ 8353 #define adj_init_size(start, end, size, pos, adj) \ 8354 do { \ 8355 if (&start[0] <= &pos[0] && &pos[0] < &end[0] && size > adj) \ 8356 size -= adj; \ 8357 } while (0) 8358 8359 adj_init_size(__init_begin, __init_end, init_data_size, 8360 _sinittext, init_code_size); 8361 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size); 8362 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size); 8363 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize); 8364 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize); 8365 8366 #undef adj_init_size 8367 8368 pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved" 8369 #ifdef CONFIG_HIGHMEM 8370 ", %luK highmem" 8371 #endif 8372 ")\n", 8373 K(nr_free_pages()), K(physpages), 8374 codesize >> 10, datasize >> 10, rosize >> 10, 8375 (init_data_size + init_code_size) >> 10, bss_size >> 10, 8376 K(physpages - totalram_pages() - totalcma_pages), 8377 K(totalcma_pages) 8378 #ifdef CONFIG_HIGHMEM 8379 , K(totalhigh_pages()) 8380 #endif 8381 ); 8382 } 8383 8384 /** 8385 * set_dma_reserve - set the specified number of pages reserved in the first zone 8386 * @new_dma_reserve: The number of pages to mark reserved 8387 * 8388 * The per-cpu batchsize and zone watermarks are determined by managed_pages. 8389 * In the DMA zone, a significant percentage may be consumed by kernel image 8390 * and other unfreeable allocations which can skew the watermarks badly. This 8391 * function may optionally be used to account for unfreeable pages in the 8392 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and 8393 * smaller per-cpu batchsize. 8394 */ 8395 void __init set_dma_reserve(unsigned long new_dma_reserve) 8396 { 8397 dma_reserve = new_dma_reserve; 8398 } 8399 8400 static int page_alloc_cpu_dead(unsigned int cpu) 8401 { 8402 struct zone *zone; 8403 8404 lru_add_drain_cpu(cpu); 8405 mlock_page_drain_remote(cpu); 8406 drain_pages(cpu); 8407 8408 /* 8409 * Spill the event counters of the dead processor 8410 * into the current processors event counters. 8411 * This artificially elevates the count of the current 8412 * processor. 8413 */ 8414 vm_events_fold_cpu(cpu); 8415 8416 /* 8417 * Zero the differential counters of the dead processor 8418 * so that the vm statistics are consistent. 8419 * 8420 * This is only okay since the processor is dead and cannot 8421 * race with what we are doing. 8422 */ 8423 cpu_vm_stats_fold(cpu); 8424 8425 for_each_populated_zone(zone) 8426 zone_pcp_update(zone, 0); 8427 8428 return 0; 8429 } 8430 8431 static int page_alloc_cpu_online(unsigned int cpu) 8432 { 8433 struct zone *zone; 8434 8435 for_each_populated_zone(zone) 8436 zone_pcp_update(zone, 1); 8437 return 0; 8438 } 8439 8440 #ifdef CONFIG_NUMA 8441 int hashdist = HASHDIST_DEFAULT; 8442 8443 static int __init set_hashdist(char *str) 8444 { 8445 if (!str) 8446 return 0; 8447 hashdist = simple_strtoul(str, &str, 0); 8448 return 1; 8449 } 8450 __setup("hashdist=", set_hashdist); 8451 #endif 8452 8453 void __init page_alloc_init(void) 8454 { 8455 int ret; 8456 8457 #ifdef CONFIG_NUMA 8458 if (num_node_state(N_MEMORY) == 1) 8459 hashdist = 0; 8460 #endif 8461 8462 ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC, 8463 "mm/page_alloc:pcp", 8464 page_alloc_cpu_online, 8465 page_alloc_cpu_dead); 8466 WARN_ON(ret < 0); 8467 } 8468 8469 /* 8470 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio 8471 * or min_free_kbytes changes. 8472 */ 8473 static void calculate_totalreserve_pages(void) 8474 { 8475 struct pglist_data *pgdat; 8476 unsigned long reserve_pages = 0; 8477 enum zone_type i, j; 8478 8479 for_each_online_pgdat(pgdat) { 8480 8481 pgdat->totalreserve_pages = 0; 8482 8483 for (i = 0; i < MAX_NR_ZONES; i++) { 8484 struct zone *zone = pgdat->node_zones + i; 8485 long max = 0; 8486 unsigned long managed_pages = zone_managed_pages(zone); 8487 8488 /* Find valid and maximum lowmem_reserve in the zone */ 8489 for (j = i; j < MAX_NR_ZONES; j++) { 8490 if (zone->lowmem_reserve[j] > max) 8491 max = zone->lowmem_reserve[j]; 8492 } 8493 8494 /* we treat the high watermark as reserved pages. */ 8495 max += high_wmark_pages(zone); 8496 8497 if (max > managed_pages) 8498 max = managed_pages; 8499 8500 pgdat->totalreserve_pages += max; 8501 8502 reserve_pages += max; 8503 } 8504 } 8505 totalreserve_pages = reserve_pages; 8506 } 8507 8508 /* 8509 * setup_per_zone_lowmem_reserve - called whenever 8510 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone 8511 * has a correct pages reserved value, so an adequate number of 8512 * pages are left in the zone after a successful __alloc_pages(). 8513 */ 8514 static void setup_per_zone_lowmem_reserve(void) 8515 { 8516 struct pglist_data *pgdat; 8517 enum zone_type i, j; 8518 8519 for_each_online_pgdat(pgdat) { 8520 for (i = 0; i < MAX_NR_ZONES - 1; i++) { 8521 struct zone *zone = &pgdat->node_zones[i]; 8522 int ratio = sysctl_lowmem_reserve_ratio[i]; 8523 bool clear = !ratio || !zone_managed_pages(zone); 8524 unsigned long managed_pages = 0; 8525 8526 for (j = i + 1; j < MAX_NR_ZONES; j++) { 8527 struct zone *upper_zone = &pgdat->node_zones[j]; 8528 8529 managed_pages += zone_managed_pages(upper_zone); 8530 8531 if (clear) 8532 zone->lowmem_reserve[j] = 0; 8533 else 8534 zone->lowmem_reserve[j] = managed_pages / ratio; 8535 } 8536 } 8537 } 8538 8539 /* update totalreserve_pages */ 8540 calculate_totalreserve_pages(); 8541 } 8542 8543 static void __setup_per_zone_wmarks(void) 8544 { 8545 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10); 8546 unsigned long lowmem_pages = 0; 8547 struct zone *zone; 8548 unsigned long flags; 8549 8550 /* Calculate total number of !ZONE_HIGHMEM pages */ 8551 for_each_zone(zone) { 8552 if (!is_highmem(zone)) 8553 lowmem_pages += zone_managed_pages(zone); 8554 } 8555 8556 for_each_zone(zone) { 8557 u64 tmp; 8558 8559 spin_lock_irqsave(&zone->lock, flags); 8560 tmp = (u64)pages_min * zone_managed_pages(zone); 8561 do_div(tmp, lowmem_pages); 8562 if (is_highmem(zone)) { 8563 /* 8564 * __GFP_HIGH and PF_MEMALLOC allocations usually don't 8565 * need highmem pages, so cap pages_min to a small 8566 * value here. 8567 * 8568 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN) 8569 * deltas control async page reclaim, and so should 8570 * not be capped for highmem. 8571 */ 8572 unsigned long min_pages; 8573 8574 min_pages = zone_managed_pages(zone) / 1024; 8575 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL); 8576 zone->_watermark[WMARK_MIN] = min_pages; 8577 } else { 8578 /* 8579 * If it's a lowmem zone, reserve a number of pages 8580 * proportionate to the zone's size. 8581 */ 8582 zone->_watermark[WMARK_MIN] = tmp; 8583 } 8584 8585 /* 8586 * Set the kswapd watermarks distance according to the 8587 * scale factor in proportion to available memory, but 8588 * ensure a minimum size on small systems. 8589 */ 8590 tmp = max_t(u64, tmp >> 2, 8591 mult_frac(zone_managed_pages(zone), 8592 watermark_scale_factor, 10000)); 8593 8594 zone->watermark_boost = 0; 8595 zone->_watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp; 8596 zone->_watermark[WMARK_HIGH] = low_wmark_pages(zone) + tmp; 8597 zone->_watermark[WMARK_PROMO] = high_wmark_pages(zone) + tmp; 8598 8599 spin_unlock_irqrestore(&zone->lock, flags); 8600 } 8601 8602 /* update totalreserve_pages */ 8603 calculate_totalreserve_pages(); 8604 } 8605 8606 /** 8607 * setup_per_zone_wmarks - called when min_free_kbytes changes 8608 * or when memory is hot-{added|removed} 8609 * 8610 * Ensures that the watermark[min,low,high] values for each zone are set 8611 * correctly with respect to min_free_kbytes. 8612 */ 8613 void setup_per_zone_wmarks(void) 8614 { 8615 struct zone *zone; 8616 static DEFINE_SPINLOCK(lock); 8617 8618 spin_lock(&lock); 8619 __setup_per_zone_wmarks(); 8620 spin_unlock(&lock); 8621 8622 /* 8623 * The watermark size have changed so update the pcpu batch 8624 * and high limits or the limits may be inappropriate. 8625 */ 8626 for_each_zone(zone) 8627 zone_pcp_update(zone, 0); 8628 } 8629 8630 /* 8631 * Initialise min_free_kbytes. 8632 * 8633 * For small machines we want it small (128k min). For large machines 8634 * we want it large (256MB max). But it is not linear, because network 8635 * bandwidth does not increase linearly with machine size. We use 8636 * 8637 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy: 8638 * min_free_kbytes = sqrt(lowmem_kbytes * 16) 8639 * 8640 * which yields 8641 * 8642 * 16MB: 512k 8643 * 32MB: 724k 8644 * 64MB: 1024k 8645 * 128MB: 1448k 8646 * 256MB: 2048k 8647 * 512MB: 2896k 8648 * 1024MB: 4096k 8649 * 2048MB: 5792k 8650 * 4096MB: 8192k 8651 * 8192MB: 11584k 8652 * 16384MB: 16384k 8653 */ 8654 void calculate_min_free_kbytes(void) 8655 { 8656 unsigned long lowmem_kbytes; 8657 int new_min_free_kbytes; 8658 8659 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10); 8660 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16); 8661 8662 if (new_min_free_kbytes > user_min_free_kbytes) 8663 min_free_kbytes = clamp(new_min_free_kbytes, 128, 262144); 8664 else 8665 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n", 8666 new_min_free_kbytes, user_min_free_kbytes); 8667 8668 } 8669 8670 int __meminit init_per_zone_wmark_min(void) 8671 { 8672 calculate_min_free_kbytes(); 8673 setup_per_zone_wmarks(); 8674 refresh_zone_stat_thresholds(); 8675 setup_per_zone_lowmem_reserve(); 8676 8677 #ifdef CONFIG_NUMA 8678 setup_min_unmapped_ratio(); 8679 setup_min_slab_ratio(); 8680 #endif 8681 8682 khugepaged_min_free_kbytes_update(); 8683 8684 return 0; 8685 } 8686 postcore_initcall(init_per_zone_wmark_min) 8687 8688 /* 8689 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so 8690 * that we can call two helper functions whenever min_free_kbytes 8691 * changes. 8692 */ 8693 int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write, 8694 void *buffer, size_t *length, loff_t *ppos) 8695 { 8696 int rc; 8697 8698 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 8699 if (rc) 8700 return rc; 8701 8702 if (write) { 8703 user_min_free_kbytes = min_free_kbytes; 8704 setup_per_zone_wmarks(); 8705 } 8706 return 0; 8707 } 8708 8709 int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write, 8710 void *buffer, size_t *length, loff_t *ppos) 8711 { 8712 int rc; 8713 8714 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 8715 if (rc) 8716 return rc; 8717 8718 if (write) 8719 setup_per_zone_wmarks(); 8720 8721 return 0; 8722 } 8723 8724 #ifdef CONFIG_NUMA 8725 static void setup_min_unmapped_ratio(void) 8726 { 8727 pg_data_t *pgdat; 8728 struct zone *zone; 8729 8730 for_each_online_pgdat(pgdat) 8731 pgdat->min_unmapped_pages = 0; 8732 8733 for_each_zone(zone) 8734 zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) * 8735 sysctl_min_unmapped_ratio) / 100; 8736 } 8737 8738 8739 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write, 8740 void *buffer, size_t *length, loff_t *ppos) 8741 { 8742 int rc; 8743 8744 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 8745 if (rc) 8746 return rc; 8747 8748 setup_min_unmapped_ratio(); 8749 8750 return 0; 8751 } 8752 8753 static void setup_min_slab_ratio(void) 8754 { 8755 pg_data_t *pgdat; 8756 struct zone *zone; 8757 8758 for_each_online_pgdat(pgdat) 8759 pgdat->min_slab_pages = 0; 8760 8761 for_each_zone(zone) 8762 zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) * 8763 sysctl_min_slab_ratio) / 100; 8764 } 8765 8766 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write, 8767 void *buffer, size_t *length, loff_t *ppos) 8768 { 8769 int rc; 8770 8771 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 8772 if (rc) 8773 return rc; 8774 8775 setup_min_slab_ratio(); 8776 8777 return 0; 8778 } 8779 #endif 8780 8781 /* 8782 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around 8783 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve() 8784 * whenever sysctl_lowmem_reserve_ratio changes. 8785 * 8786 * The reserve ratio obviously has absolutely no relation with the 8787 * minimum watermarks. The lowmem reserve ratio can only make sense 8788 * if in function of the boot time zone sizes. 8789 */ 8790 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write, 8791 void *buffer, size_t *length, loff_t *ppos) 8792 { 8793 int i; 8794 8795 proc_dointvec_minmax(table, write, buffer, length, ppos); 8796 8797 for (i = 0; i < MAX_NR_ZONES; i++) { 8798 if (sysctl_lowmem_reserve_ratio[i] < 1) 8799 sysctl_lowmem_reserve_ratio[i] = 0; 8800 } 8801 8802 setup_per_zone_lowmem_reserve(); 8803 return 0; 8804 } 8805 8806 /* 8807 * percpu_pagelist_high_fraction - changes the pcp->high for each zone on each 8808 * cpu. It is the fraction of total pages in each zone that a hot per cpu 8809 * pagelist can have before it gets flushed back to buddy allocator. 8810 */ 8811 int percpu_pagelist_high_fraction_sysctl_handler(struct ctl_table *table, 8812 int write, void *buffer, size_t *length, loff_t *ppos) 8813 { 8814 struct zone *zone; 8815 int old_percpu_pagelist_high_fraction; 8816 int ret; 8817 8818 mutex_lock(&pcp_batch_high_lock); 8819 old_percpu_pagelist_high_fraction = percpu_pagelist_high_fraction; 8820 8821 ret = proc_dointvec_minmax(table, write, buffer, length, ppos); 8822 if (!write || ret < 0) 8823 goto out; 8824 8825 /* Sanity checking to avoid pcp imbalance */ 8826 if (percpu_pagelist_high_fraction && 8827 percpu_pagelist_high_fraction < MIN_PERCPU_PAGELIST_HIGH_FRACTION) { 8828 percpu_pagelist_high_fraction = old_percpu_pagelist_high_fraction; 8829 ret = -EINVAL; 8830 goto out; 8831 } 8832 8833 /* No change? */ 8834 if (percpu_pagelist_high_fraction == old_percpu_pagelist_high_fraction) 8835 goto out; 8836 8837 for_each_populated_zone(zone) 8838 zone_set_pageset_high_and_batch(zone, 0); 8839 out: 8840 mutex_unlock(&pcp_batch_high_lock); 8841 return ret; 8842 } 8843 8844 #ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES 8845 /* 8846 * Returns the number of pages that arch has reserved but 8847 * is not known to alloc_large_system_hash(). 8848 */ 8849 static unsigned long __init arch_reserved_kernel_pages(void) 8850 { 8851 return 0; 8852 } 8853 #endif 8854 8855 /* 8856 * Adaptive scale is meant to reduce sizes of hash tables on large memory 8857 * machines. As memory size is increased the scale is also increased but at 8858 * slower pace. Starting from ADAPT_SCALE_BASE (64G), every time memory 8859 * quadruples the scale is increased by one, which means the size of hash table 8860 * only doubles, instead of quadrupling as well. 8861 * Because 32-bit systems cannot have large physical memory, where this scaling 8862 * makes sense, it is disabled on such platforms. 8863 */ 8864 #if __BITS_PER_LONG > 32 8865 #define ADAPT_SCALE_BASE (64ul << 30) 8866 #define ADAPT_SCALE_SHIFT 2 8867 #define ADAPT_SCALE_NPAGES (ADAPT_SCALE_BASE >> PAGE_SHIFT) 8868 #endif 8869 8870 /* 8871 * allocate a large system hash table from bootmem 8872 * - it is assumed that the hash table must contain an exact power-of-2 8873 * quantity of entries 8874 * - limit is the number of hash buckets, not the total allocation size 8875 */ 8876 void *__init alloc_large_system_hash(const char *tablename, 8877 unsigned long bucketsize, 8878 unsigned long numentries, 8879 int scale, 8880 int flags, 8881 unsigned int *_hash_shift, 8882 unsigned int *_hash_mask, 8883 unsigned long low_limit, 8884 unsigned long high_limit) 8885 { 8886 unsigned long long max = high_limit; 8887 unsigned long log2qty, size; 8888 void *table = NULL; 8889 gfp_t gfp_flags; 8890 bool virt; 8891 bool huge; 8892 8893 /* allow the kernel cmdline to have a say */ 8894 if (!numentries) { 8895 /* round applicable memory size up to nearest megabyte */ 8896 numentries = nr_kernel_pages; 8897 numentries -= arch_reserved_kernel_pages(); 8898 8899 /* It isn't necessary when PAGE_SIZE >= 1MB */ 8900 if (PAGE_SHIFT < 20) 8901 numentries = round_up(numentries, (1<<20)/PAGE_SIZE); 8902 8903 #if __BITS_PER_LONG > 32 8904 if (!high_limit) { 8905 unsigned long adapt; 8906 8907 for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries; 8908 adapt <<= ADAPT_SCALE_SHIFT) 8909 scale++; 8910 } 8911 #endif 8912 8913 /* limit to 1 bucket per 2^scale bytes of low memory */ 8914 if (scale > PAGE_SHIFT) 8915 numentries >>= (scale - PAGE_SHIFT); 8916 else 8917 numentries <<= (PAGE_SHIFT - scale); 8918 8919 /* Make sure we've got at least a 0-order allocation.. */ 8920 if (unlikely(flags & HASH_SMALL)) { 8921 /* Makes no sense without HASH_EARLY */ 8922 WARN_ON(!(flags & HASH_EARLY)); 8923 if (!(numentries >> *_hash_shift)) { 8924 numentries = 1UL << *_hash_shift; 8925 BUG_ON(!numentries); 8926 } 8927 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE)) 8928 numentries = PAGE_SIZE / bucketsize; 8929 } 8930 numentries = roundup_pow_of_two(numentries); 8931 8932 /* limit allocation size to 1/16 total memory by default */ 8933 if (max == 0) { 8934 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4; 8935 do_div(max, bucketsize); 8936 } 8937 max = min(max, 0x80000000ULL); 8938 8939 if (numentries < low_limit) 8940 numentries = low_limit; 8941 if (numentries > max) 8942 numentries = max; 8943 8944 log2qty = ilog2(numentries); 8945 8946 gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC; 8947 do { 8948 virt = false; 8949 size = bucketsize << log2qty; 8950 if (flags & HASH_EARLY) { 8951 if (flags & HASH_ZERO) 8952 table = memblock_alloc(size, SMP_CACHE_BYTES); 8953 else 8954 table = memblock_alloc_raw(size, 8955 SMP_CACHE_BYTES); 8956 } else if (get_order(size) >= MAX_ORDER || hashdist) { 8957 table = vmalloc_huge(size, gfp_flags); 8958 virt = true; 8959 if (table) 8960 huge = is_vm_area_hugepages(table); 8961 } else { 8962 /* 8963 * If bucketsize is not a power-of-two, we may free 8964 * some pages at the end of hash table which 8965 * alloc_pages_exact() automatically does 8966 */ 8967 table = alloc_pages_exact(size, gfp_flags); 8968 kmemleak_alloc(table, size, 1, gfp_flags); 8969 } 8970 } while (!table && size > PAGE_SIZE && --log2qty); 8971 8972 if (!table) 8973 panic("Failed to allocate %s hash table\n", tablename); 8974 8975 pr_info("%s hash table entries: %ld (order: %d, %lu bytes, %s)\n", 8976 tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size, 8977 virt ? (huge ? "vmalloc hugepage" : "vmalloc") : "linear"); 8978 8979 if (_hash_shift) 8980 *_hash_shift = log2qty; 8981 if (_hash_mask) 8982 *_hash_mask = (1 << log2qty) - 1; 8983 8984 return table; 8985 } 8986 8987 #ifdef CONFIG_CONTIG_ALLOC 8988 #if defined(CONFIG_DYNAMIC_DEBUG) || \ 8989 (defined(CONFIG_DYNAMIC_DEBUG_CORE) && defined(DYNAMIC_DEBUG_MODULE)) 8990 /* Usage: See admin-guide/dynamic-debug-howto.rst */ 8991 static void alloc_contig_dump_pages(struct list_head *page_list) 8992 { 8993 DEFINE_DYNAMIC_DEBUG_METADATA(descriptor, "migrate failure"); 8994 8995 if (DYNAMIC_DEBUG_BRANCH(descriptor)) { 8996 struct page *page; 8997 8998 dump_stack(); 8999 list_for_each_entry(page, page_list, lru) 9000 dump_page(page, "migration failure"); 9001 } 9002 } 9003 #else 9004 static inline void alloc_contig_dump_pages(struct list_head *page_list) 9005 { 9006 } 9007 #endif 9008 9009 /* [start, end) must belong to a single zone. */ 9010 int __alloc_contig_migrate_range(struct compact_control *cc, 9011 unsigned long start, unsigned long end) 9012 { 9013 /* This function is based on compact_zone() from compaction.c. */ 9014 unsigned int nr_reclaimed; 9015 unsigned long pfn = start; 9016 unsigned int tries = 0; 9017 int ret = 0; 9018 struct migration_target_control mtc = { 9019 .nid = zone_to_nid(cc->zone), 9020 .gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL, 9021 }; 9022 9023 lru_cache_disable(); 9024 9025 while (pfn < end || !list_empty(&cc->migratepages)) { 9026 if (fatal_signal_pending(current)) { 9027 ret = -EINTR; 9028 break; 9029 } 9030 9031 if (list_empty(&cc->migratepages)) { 9032 cc->nr_migratepages = 0; 9033 ret = isolate_migratepages_range(cc, pfn, end); 9034 if (ret && ret != -EAGAIN) 9035 break; 9036 pfn = cc->migrate_pfn; 9037 tries = 0; 9038 } else if (++tries == 5) { 9039 ret = -EBUSY; 9040 break; 9041 } 9042 9043 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone, 9044 &cc->migratepages); 9045 cc->nr_migratepages -= nr_reclaimed; 9046 9047 ret = migrate_pages(&cc->migratepages, alloc_migration_target, 9048 NULL, (unsigned long)&mtc, cc->mode, MR_CONTIG_RANGE, NULL); 9049 9050 /* 9051 * On -ENOMEM, migrate_pages() bails out right away. It is pointless 9052 * to retry again over this error, so do the same here. 9053 */ 9054 if (ret == -ENOMEM) 9055 break; 9056 } 9057 9058 lru_cache_enable(); 9059 if (ret < 0) { 9060 if (!(cc->gfp_mask & __GFP_NOWARN) && ret == -EBUSY) 9061 alloc_contig_dump_pages(&cc->migratepages); 9062 putback_movable_pages(&cc->migratepages); 9063 return ret; 9064 } 9065 return 0; 9066 } 9067 9068 /** 9069 * alloc_contig_range() -- tries to allocate given range of pages 9070 * @start: start PFN to allocate 9071 * @end: one-past-the-last PFN to allocate 9072 * @migratetype: migratetype of the underlying pageblocks (either 9073 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks 9074 * in range must have the same migratetype and it must 9075 * be either of the two. 9076 * @gfp_mask: GFP mask to use during compaction 9077 * 9078 * The PFN range does not have to be pageblock aligned. The PFN range must 9079 * belong to a single zone. 9080 * 9081 * The first thing this routine does is attempt to MIGRATE_ISOLATE all 9082 * pageblocks in the range. Once isolated, the pageblocks should not 9083 * be modified by others. 9084 * 9085 * Return: zero on success or negative error code. On success all 9086 * pages which PFN is in [start, end) are allocated for the caller and 9087 * need to be freed with free_contig_range(). 9088 */ 9089 int alloc_contig_range(unsigned long start, unsigned long end, 9090 unsigned migratetype, gfp_t gfp_mask) 9091 { 9092 unsigned long outer_start, outer_end; 9093 int order; 9094 int ret = 0; 9095 9096 struct compact_control cc = { 9097 .nr_migratepages = 0, 9098 .order = -1, 9099 .zone = page_zone(pfn_to_page(start)), 9100 .mode = MIGRATE_SYNC, 9101 .ignore_skip_hint = true, 9102 .no_set_skip_hint = true, 9103 .gfp_mask = current_gfp_context(gfp_mask), 9104 .alloc_contig = true, 9105 }; 9106 INIT_LIST_HEAD(&cc.migratepages); 9107 9108 /* 9109 * What we do here is we mark all pageblocks in range as 9110 * MIGRATE_ISOLATE. Because pageblock and max order pages may 9111 * have different sizes, and due to the way page allocator 9112 * work, start_isolate_page_range() has special handlings for this. 9113 * 9114 * Once the pageblocks are marked as MIGRATE_ISOLATE, we 9115 * migrate the pages from an unaligned range (ie. pages that 9116 * we are interested in). This will put all the pages in 9117 * range back to page allocator as MIGRATE_ISOLATE. 9118 * 9119 * When this is done, we take the pages in range from page 9120 * allocator removing them from the buddy system. This way 9121 * page allocator will never consider using them. 9122 * 9123 * This lets us mark the pageblocks back as 9124 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the 9125 * aligned range but not in the unaligned, original range are 9126 * put back to page allocator so that buddy can use them. 9127 */ 9128 9129 ret = start_isolate_page_range(start, end, migratetype, 0, gfp_mask); 9130 if (ret) 9131 goto done; 9132 9133 drain_all_pages(cc.zone); 9134 9135 /* 9136 * In case of -EBUSY, we'd like to know which page causes problem. 9137 * So, just fall through. test_pages_isolated() has a tracepoint 9138 * which will report the busy page. 9139 * 9140 * It is possible that busy pages could become available before 9141 * the call to test_pages_isolated, and the range will actually be 9142 * allocated. So, if we fall through be sure to clear ret so that 9143 * -EBUSY is not accidentally used or returned to caller. 9144 */ 9145 ret = __alloc_contig_migrate_range(&cc, start, end); 9146 if (ret && ret != -EBUSY) 9147 goto done; 9148 ret = 0; 9149 9150 /* 9151 * Pages from [start, end) are within a pageblock_nr_pages 9152 * aligned blocks that are marked as MIGRATE_ISOLATE. What's 9153 * more, all pages in [start, end) are free in page allocator. 9154 * What we are going to do is to allocate all pages from 9155 * [start, end) (that is remove them from page allocator). 9156 * 9157 * The only problem is that pages at the beginning and at the 9158 * end of interesting range may be not aligned with pages that 9159 * page allocator holds, ie. they can be part of higher order 9160 * pages. Because of this, we reserve the bigger range and 9161 * once this is done free the pages we are not interested in. 9162 * 9163 * We don't have to hold zone->lock here because the pages are 9164 * isolated thus they won't get removed from buddy. 9165 */ 9166 9167 order = 0; 9168 outer_start = start; 9169 while (!PageBuddy(pfn_to_page(outer_start))) { 9170 if (++order >= MAX_ORDER) { 9171 outer_start = start; 9172 break; 9173 } 9174 outer_start &= ~0UL << order; 9175 } 9176 9177 if (outer_start != start) { 9178 order = buddy_order(pfn_to_page(outer_start)); 9179 9180 /* 9181 * outer_start page could be small order buddy page and 9182 * it doesn't include start page. Adjust outer_start 9183 * in this case to report failed page properly 9184 * on tracepoint in test_pages_isolated() 9185 */ 9186 if (outer_start + (1UL << order) <= start) 9187 outer_start = start; 9188 } 9189 9190 /* Make sure the range is really isolated. */ 9191 if (test_pages_isolated(outer_start, end, 0)) { 9192 ret = -EBUSY; 9193 goto done; 9194 } 9195 9196 /* Grab isolated pages from freelists. */ 9197 outer_end = isolate_freepages_range(&cc, outer_start, end); 9198 if (!outer_end) { 9199 ret = -EBUSY; 9200 goto done; 9201 } 9202 9203 /* Free head and tail (if any) */ 9204 if (start != outer_start) 9205 free_contig_range(outer_start, start - outer_start); 9206 if (end != outer_end) 9207 free_contig_range(end, outer_end - end); 9208 9209 done: 9210 undo_isolate_page_range(start, end, migratetype); 9211 return ret; 9212 } 9213 EXPORT_SYMBOL(alloc_contig_range); 9214 9215 static int __alloc_contig_pages(unsigned long start_pfn, 9216 unsigned long nr_pages, gfp_t gfp_mask) 9217 { 9218 unsigned long end_pfn = start_pfn + nr_pages; 9219 9220 return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE, 9221 gfp_mask); 9222 } 9223 9224 static bool pfn_range_valid_contig(struct zone *z, unsigned long start_pfn, 9225 unsigned long nr_pages) 9226 { 9227 unsigned long i, end_pfn = start_pfn + nr_pages; 9228 struct page *page; 9229 9230 for (i = start_pfn; i < end_pfn; i++) { 9231 page = pfn_to_online_page(i); 9232 if (!page) 9233 return false; 9234 9235 if (page_zone(page) != z) 9236 return false; 9237 9238 if (PageReserved(page)) 9239 return false; 9240 } 9241 return true; 9242 } 9243 9244 static bool zone_spans_last_pfn(const struct zone *zone, 9245 unsigned long start_pfn, unsigned long nr_pages) 9246 { 9247 unsigned long last_pfn = start_pfn + nr_pages - 1; 9248 9249 return zone_spans_pfn(zone, last_pfn); 9250 } 9251 9252 /** 9253 * alloc_contig_pages() -- tries to find and allocate contiguous range of pages 9254 * @nr_pages: Number of contiguous pages to allocate 9255 * @gfp_mask: GFP mask to limit search and used during compaction 9256 * @nid: Target node 9257 * @nodemask: Mask for other possible nodes 9258 * 9259 * This routine is a wrapper around alloc_contig_range(). It scans over zones 9260 * on an applicable zonelist to find a contiguous pfn range which can then be 9261 * tried for allocation with alloc_contig_range(). This routine is intended 9262 * for allocation requests which can not be fulfilled with the buddy allocator. 9263 * 9264 * The allocated memory is always aligned to a page boundary. If nr_pages is a 9265 * power of two, then allocated range is also guaranteed to be aligned to same 9266 * nr_pages (e.g. 1GB request would be aligned to 1GB). 9267 * 9268 * Allocated pages can be freed with free_contig_range() or by manually calling 9269 * __free_page() on each allocated page. 9270 * 9271 * Return: pointer to contiguous pages on success, or NULL if not successful. 9272 */ 9273 struct page *alloc_contig_pages(unsigned long nr_pages, gfp_t gfp_mask, 9274 int nid, nodemask_t *nodemask) 9275 { 9276 unsigned long ret, pfn, flags; 9277 struct zonelist *zonelist; 9278 struct zone *zone; 9279 struct zoneref *z; 9280 9281 zonelist = node_zonelist(nid, gfp_mask); 9282 for_each_zone_zonelist_nodemask(zone, z, zonelist, 9283 gfp_zone(gfp_mask), nodemask) { 9284 spin_lock_irqsave(&zone->lock, flags); 9285 9286 pfn = ALIGN(zone->zone_start_pfn, nr_pages); 9287 while (zone_spans_last_pfn(zone, pfn, nr_pages)) { 9288 if (pfn_range_valid_contig(zone, pfn, nr_pages)) { 9289 /* 9290 * We release the zone lock here because 9291 * alloc_contig_range() will also lock the zone 9292 * at some point. If there's an allocation 9293 * spinning on this lock, it may win the race 9294 * and cause alloc_contig_range() to fail... 9295 */ 9296 spin_unlock_irqrestore(&zone->lock, flags); 9297 ret = __alloc_contig_pages(pfn, nr_pages, 9298 gfp_mask); 9299 if (!ret) 9300 return pfn_to_page(pfn); 9301 spin_lock_irqsave(&zone->lock, flags); 9302 } 9303 pfn += nr_pages; 9304 } 9305 spin_unlock_irqrestore(&zone->lock, flags); 9306 } 9307 return NULL; 9308 } 9309 #endif /* CONFIG_CONTIG_ALLOC */ 9310 9311 void free_contig_range(unsigned long pfn, unsigned long nr_pages) 9312 { 9313 unsigned long count = 0; 9314 9315 for (; nr_pages--; pfn++) { 9316 struct page *page = pfn_to_page(pfn); 9317 9318 count += page_count(page) != 1; 9319 __free_page(page); 9320 } 9321 WARN(count != 0, "%lu pages are still in use!\n", count); 9322 } 9323 EXPORT_SYMBOL(free_contig_range); 9324 9325 /* 9326 * The zone indicated has a new number of managed_pages; batch sizes and percpu 9327 * page high values need to be recalculated. 9328 */ 9329 void zone_pcp_update(struct zone *zone, int cpu_online) 9330 { 9331 mutex_lock(&pcp_batch_high_lock); 9332 zone_set_pageset_high_and_batch(zone, cpu_online); 9333 mutex_unlock(&pcp_batch_high_lock); 9334 } 9335 9336 /* 9337 * Effectively disable pcplists for the zone by setting the high limit to 0 9338 * and draining all cpus. A concurrent page freeing on another CPU that's about 9339 * to put the page on pcplist will either finish before the drain and the page 9340 * will be drained, or observe the new high limit and skip the pcplist. 9341 * 9342 * Must be paired with a call to zone_pcp_enable(). 9343 */ 9344 void zone_pcp_disable(struct zone *zone) 9345 { 9346 mutex_lock(&pcp_batch_high_lock); 9347 __zone_set_pageset_high_and_batch(zone, 0, 1); 9348 __drain_all_pages(zone, true); 9349 } 9350 9351 void zone_pcp_enable(struct zone *zone) 9352 { 9353 __zone_set_pageset_high_and_batch(zone, zone->pageset_high, zone->pageset_batch); 9354 mutex_unlock(&pcp_batch_high_lock); 9355 } 9356 9357 void zone_pcp_reset(struct zone *zone) 9358 { 9359 int cpu; 9360 struct per_cpu_zonestat *pzstats; 9361 9362 if (zone->per_cpu_pageset != &boot_pageset) { 9363 for_each_online_cpu(cpu) { 9364 pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu); 9365 drain_zonestat(zone, pzstats); 9366 } 9367 free_percpu(zone->per_cpu_pageset); 9368 free_percpu(zone->per_cpu_zonestats); 9369 zone->per_cpu_pageset = &boot_pageset; 9370 zone->per_cpu_zonestats = &boot_zonestats; 9371 } 9372 } 9373 9374 #ifdef CONFIG_MEMORY_HOTREMOVE 9375 /* 9376 * All pages in the range must be in a single zone, must not contain holes, 9377 * must span full sections, and must be isolated before calling this function. 9378 */ 9379 void __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn) 9380 { 9381 unsigned long pfn = start_pfn; 9382 struct page *page; 9383 struct zone *zone; 9384 unsigned int order; 9385 unsigned long flags; 9386 9387 offline_mem_sections(pfn, end_pfn); 9388 zone = page_zone(pfn_to_page(pfn)); 9389 spin_lock_irqsave(&zone->lock, flags); 9390 while (pfn < end_pfn) { 9391 page = pfn_to_page(pfn); 9392 /* 9393 * The HWPoisoned page may be not in buddy system, and 9394 * page_count() is not 0. 9395 */ 9396 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) { 9397 pfn++; 9398 continue; 9399 } 9400 /* 9401 * At this point all remaining PageOffline() pages have a 9402 * reference count of 0 and can simply be skipped. 9403 */ 9404 if (PageOffline(page)) { 9405 BUG_ON(page_count(page)); 9406 BUG_ON(PageBuddy(page)); 9407 pfn++; 9408 continue; 9409 } 9410 9411 BUG_ON(page_count(page)); 9412 BUG_ON(!PageBuddy(page)); 9413 order = buddy_order(page); 9414 del_page_from_free_list(page, zone, order); 9415 pfn += (1 << order); 9416 } 9417 spin_unlock_irqrestore(&zone->lock, flags); 9418 } 9419 #endif 9420 9421 /* 9422 * This function returns a stable result only if called under zone lock. 9423 */ 9424 bool is_free_buddy_page(struct page *page) 9425 { 9426 unsigned long pfn = page_to_pfn(page); 9427 unsigned int order; 9428 9429 for (order = 0; order < MAX_ORDER; order++) { 9430 struct page *page_head = page - (pfn & ((1 << order) - 1)); 9431 9432 if (PageBuddy(page_head) && 9433 buddy_order_unsafe(page_head) >= order) 9434 break; 9435 } 9436 9437 return order < MAX_ORDER; 9438 } 9439 EXPORT_SYMBOL(is_free_buddy_page); 9440 9441 #ifdef CONFIG_MEMORY_FAILURE 9442 /* 9443 * Break down a higher-order page in sub-pages, and keep our target out of 9444 * buddy allocator. 9445 */ 9446 static void break_down_buddy_pages(struct zone *zone, struct page *page, 9447 struct page *target, int low, int high, 9448 int migratetype) 9449 { 9450 unsigned long size = 1 << high; 9451 struct page *current_buddy, *next_page; 9452 9453 while (high > low) { 9454 high--; 9455 size >>= 1; 9456 9457 if (target >= &page[size]) { 9458 next_page = page + size; 9459 current_buddy = page; 9460 } else { 9461 next_page = page; 9462 current_buddy = page + size; 9463 } 9464 9465 if (set_page_guard(zone, current_buddy, high, migratetype)) 9466 continue; 9467 9468 if (current_buddy != target) { 9469 add_to_free_list(current_buddy, zone, high, migratetype); 9470 set_buddy_order(current_buddy, high); 9471 page = next_page; 9472 } 9473 } 9474 } 9475 9476 /* 9477 * Take a page that will be marked as poisoned off the buddy allocator. 9478 */ 9479 bool take_page_off_buddy(struct page *page) 9480 { 9481 struct zone *zone = page_zone(page); 9482 unsigned long pfn = page_to_pfn(page); 9483 unsigned long flags; 9484 unsigned int order; 9485 bool ret = false; 9486 9487 spin_lock_irqsave(&zone->lock, flags); 9488 for (order = 0; order < MAX_ORDER; order++) { 9489 struct page *page_head = page - (pfn & ((1 << order) - 1)); 9490 int page_order = buddy_order(page_head); 9491 9492 if (PageBuddy(page_head) && page_order >= order) { 9493 unsigned long pfn_head = page_to_pfn(page_head); 9494 int migratetype = get_pfnblock_migratetype(page_head, 9495 pfn_head); 9496 9497 del_page_from_free_list(page_head, zone, page_order); 9498 break_down_buddy_pages(zone, page_head, page, 0, 9499 page_order, migratetype); 9500 SetPageHWPoisonTakenOff(page); 9501 if (!is_migrate_isolate(migratetype)) 9502 __mod_zone_freepage_state(zone, -1, migratetype); 9503 ret = true; 9504 break; 9505 } 9506 if (page_count(page_head) > 0) 9507 break; 9508 } 9509 spin_unlock_irqrestore(&zone->lock, flags); 9510 return ret; 9511 } 9512 9513 /* 9514 * Cancel takeoff done by take_page_off_buddy(). 9515 */ 9516 bool put_page_back_buddy(struct page *page) 9517 { 9518 struct zone *zone = page_zone(page); 9519 unsigned long pfn = page_to_pfn(page); 9520 unsigned long flags; 9521 int migratetype = get_pfnblock_migratetype(page, pfn); 9522 bool ret = false; 9523 9524 spin_lock_irqsave(&zone->lock, flags); 9525 if (put_page_testzero(page)) { 9526 ClearPageHWPoisonTakenOff(page); 9527 __free_one_page(page, pfn, zone, 0, migratetype, FPI_NONE); 9528 if (TestClearPageHWPoison(page)) { 9529 ret = true; 9530 } 9531 } 9532 spin_unlock_irqrestore(&zone->lock, flags); 9533 9534 return ret; 9535 } 9536 #endif 9537 9538 #ifdef CONFIG_ZONE_DMA 9539 bool has_managed_dma(void) 9540 { 9541 struct pglist_data *pgdat; 9542 9543 for_each_online_pgdat(pgdat) { 9544 struct zone *zone = &pgdat->node_zones[ZONE_DMA]; 9545 9546 if (managed_zone(zone)) 9547 return true; 9548 } 9549 return false; 9550 } 9551 #endif /* CONFIG_ZONE_DMA */ 9552