xref: /linux/mm/page_alloc.c (revision cf26e043c2a9213805d7ea9e8cf3e1d7166a62a4)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/page_alloc.c
4  *
5  *  Manages the free list, the system allocates free pages here.
6  *  Note that kmalloc() lives in slab.c
7  *
8  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
9  *  Swap reorganised 29.12.95, Stephen Tweedie
10  *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
11  *  Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
12  *  Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
13  *  Zone balancing, Kanoj Sarcar, SGI, Jan 2000
14  *  Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
15  *          (lots of bits borrowed from Ingo Molnar & Andrew Morton)
16  */
17 
18 #include <linux/stddef.h>
19 #include <linux/mm.h>
20 #include <linux/highmem.h>
21 #include <linux/swap.h>
22 #include <linux/swapops.h>
23 #include <linux/interrupt.h>
24 #include <linux/pagemap.h>
25 #include <linux/jiffies.h>
26 #include <linux/memblock.h>
27 #include <linux/compiler.h>
28 #include <linux/kernel.h>
29 #include <linux/kasan.h>
30 #include <linux/kmsan.h>
31 #include <linux/module.h>
32 #include <linux/suspend.h>
33 #include <linux/pagevec.h>
34 #include <linux/blkdev.h>
35 #include <linux/slab.h>
36 #include <linux/ratelimit.h>
37 #include <linux/oom.h>
38 #include <linux/topology.h>
39 #include <linux/sysctl.h>
40 #include <linux/cpu.h>
41 #include <linux/cpuset.h>
42 #include <linux/memory_hotplug.h>
43 #include <linux/nodemask.h>
44 #include <linux/vmalloc.h>
45 #include <linux/vmstat.h>
46 #include <linux/mempolicy.h>
47 #include <linux/memremap.h>
48 #include <linux/stop_machine.h>
49 #include <linux/random.h>
50 #include <linux/sort.h>
51 #include <linux/pfn.h>
52 #include <linux/backing-dev.h>
53 #include <linux/fault-inject.h>
54 #include <linux/page-isolation.h>
55 #include <linux/debugobjects.h>
56 #include <linux/kmemleak.h>
57 #include <linux/compaction.h>
58 #include <trace/events/kmem.h>
59 #include <trace/events/oom.h>
60 #include <linux/prefetch.h>
61 #include <linux/mm_inline.h>
62 #include <linux/mmu_notifier.h>
63 #include <linux/migrate.h>
64 #include <linux/hugetlb.h>
65 #include <linux/sched/rt.h>
66 #include <linux/sched/mm.h>
67 #include <linux/page_owner.h>
68 #include <linux/page_table_check.h>
69 #include <linux/kthread.h>
70 #include <linux/memcontrol.h>
71 #include <linux/ftrace.h>
72 #include <linux/lockdep.h>
73 #include <linux/nmi.h>
74 #include <linux/psi.h>
75 #include <linux/padata.h>
76 #include <linux/khugepaged.h>
77 #include <linux/buffer_head.h>
78 #include <linux/delayacct.h>
79 #include <asm/sections.h>
80 #include <asm/tlbflush.h>
81 #include <asm/div64.h>
82 #include "internal.h"
83 #include "shuffle.h"
84 #include "page_reporting.h"
85 #include "swap.h"
86 
87 /* Free Page Internal flags: for internal, non-pcp variants of free_pages(). */
88 typedef int __bitwise fpi_t;
89 
90 /* No special request */
91 #define FPI_NONE		((__force fpi_t)0)
92 
93 /*
94  * Skip free page reporting notification for the (possibly merged) page.
95  * This does not hinder free page reporting from grabbing the page,
96  * reporting it and marking it "reported" -  it only skips notifying
97  * the free page reporting infrastructure about a newly freed page. For
98  * example, used when temporarily pulling a page from a freelist and
99  * putting it back unmodified.
100  */
101 #define FPI_SKIP_REPORT_NOTIFY	((__force fpi_t)BIT(0))
102 
103 /*
104  * Place the (possibly merged) page to the tail of the freelist. Will ignore
105  * page shuffling (relevant code - e.g., memory onlining - is expected to
106  * shuffle the whole zone).
107  *
108  * Note: No code should rely on this flag for correctness - it's purely
109  *       to allow for optimizations when handing back either fresh pages
110  *       (memory onlining) or untouched pages (page isolation, free page
111  *       reporting).
112  */
113 #define FPI_TO_TAIL		((__force fpi_t)BIT(1))
114 
115 /*
116  * Don't poison memory with KASAN (only for the tag-based modes).
117  * During boot, all non-reserved memblock memory is exposed to page_alloc.
118  * Poisoning all that memory lengthens boot time, especially on systems with
119  * large amount of RAM. This flag is used to skip that poisoning.
120  * This is only done for the tag-based KASAN modes, as those are able to
121  * detect memory corruptions with the memory tags assigned by default.
122  * All memory allocated normally after boot gets poisoned as usual.
123  */
124 #define FPI_SKIP_KASAN_POISON	((__force fpi_t)BIT(2))
125 
126 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
127 static DEFINE_MUTEX(pcp_batch_high_lock);
128 #define MIN_PERCPU_PAGELIST_HIGH_FRACTION (8)
129 
130 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT_RT)
131 /*
132  * On SMP, spin_trylock is sufficient protection.
133  * On PREEMPT_RT, spin_trylock is equivalent on both SMP and UP.
134  */
135 #define pcp_trylock_prepare(flags)	do { } while (0)
136 #define pcp_trylock_finish(flag)	do { } while (0)
137 #else
138 
139 /* UP spin_trylock always succeeds so disable IRQs to prevent re-entrancy. */
140 #define pcp_trylock_prepare(flags)	local_irq_save(flags)
141 #define pcp_trylock_finish(flags)	local_irq_restore(flags)
142 #endif
143 
144 /*
145  * Locking a pcp requires a PCP lookup followed by a spinlock. To avoid
146  * a migration causing the wrong PCP to be locked and remote memory being
147  * potentially allocated, pin the task to the CPU for the lookup+lock.
148  * preempt_disable is used on !RT because it is faster than migrate_disable.
149  * migrate_disable is used on RT because otherwise RT spinlock usage is
150  * interfered with and a high priority task cannot preempt the allocator.
151  */
152 #ifndef CONFIG_PREEMPT_RT
153 #define pcpu_task_pin()		preempt_disable()
154 #define pcpu_task_unpin()	preempt_enable()
155 #else
156 #define pcpu_task_pin()		migrate_disable()
157 #define pcpu_task_unpin()	migrate_enable()
158 #endif
159 
160 /*
161  * Generic helper to lookup and a per-cpu variable with an embedded spinlock.
162  * Return value should be used with equivalent unlock helper.
163  */
164 #define pcpu_spin_lock(type, member, ptr)				\
165 ({									\
166 	type *_ret;							\
167 	pcpu_task_pin();						\
168 	_ret = this_cpu_ptr(ptr);					\
169 	spin_lock(&_ret->member);					\
170 	_ret;								\
171 })
172 
173 #define pcpu_spin_trylock(type, member, ptr)				\
174 ({									\
175 	type *_ret;							\
176 	pcpu_task_pin();						\
177 	_ret = this_cpu_ptr(ptr);					\
178 	if (!spin_trylock(&_ret->member)) {				\
179 		pcpu_task_unpin();					\
180 		_ret = NULL;						\
181 	}								\
182 	_ret;								\
183 })
184 
185 #define pcpu_spin_unlock(member, ptr)					\
186 ({									\
187 	spin_unlock(&ptr->member);					\
188 	pcpu_task_unpin();						\
189 })
190 
191 /* struct per_cpu_pages specific helpers. */
192 #define pcp_spin_lock(ptr)						\
193 	pcpu_spin_lock(struct per_cpu_pages, lock, ptr)
194 
195 #define pcp_spin_trylock(ptr)						\
196 	pcpu_spin_trylock(struct per_cpu_pages, lock, ptr)
197 
198 #define pcp_spin_unlock(ptr)						\
199 	pcpu_spin_unlock(lock, ptr)
200 
201 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
202 DEFINE_PER_CPU(int, numa_node);
203 EXPORT_PER_CPU_SYMBOL(numa_node);
204 #endif
205 
206 DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key);
207 
208 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
209 /*
210  * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
211  * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
212  * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
213  * defined in <linux/topology.h>.
214  */
215 DEFINE_PER_CPU(int, _numa_mem_);		/* Kernel "local memory" node */
216 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
217 #endif
218 
219 static DEFINE_MUTEX(pcpu_drain_mutex);
220 
221 #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
222 volatile unsigned long latent_entropy __latent_entropy;
223 EXPORT_SYMBOL(latent_entropy);
224 #endif
225 
226 /*
227  * Array of node states.
228  */
229 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
230 	[N_POSSIBLE] = NODE_MASK_ALL,
231 	[N_ONLINE] = { { [0] = 1UL } },
232 #ifndef CONFIG_NUMA
233 	[N_NORMAL_MEMORY] = { { [0] = 1UL } },
234 #ifdef CONFIG_HIGHMEM
235 	[N_HIGH_MEMORY] = { { [0] = 1UL } },
236 #endif
237 	[N_MEMORY] = { { [0] = 1UL } },
238 	[N_CPU] = { { [0] = 1UL } },
239 #endif	/* NUMA */
240 };
241 EXPORT_SYMBOL(node_states);
242 
243 atomic_long_t _totalram_pages __read_mostly;
244 EXPORT_SYMBOL(_totalram_pages);
245 unsigned long totalreserve_pages __read_mostly;
246 unsigned long totalcma_pages __read_mostly;
247 
248 int percpu_pagelist_high_fraction;
249 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
250 DEFINE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, init_on_alloc);
251 EXPORT_SYMBOL(init_on_alloc);
252 
253 DEFINE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_FREE_DEFAULT_ON, init_on_free);
254 EXPORT_SYMBOL(init_on_free);
255 
256 static bool _init_on_alloc_enabled_early __read_mostly
257 				= IS_ENABLED(CONFIG_INIT_ON_ALLOC_DEFAULT_ON);
258 static int __init early_init_on_alloc(char *buf)
259 {
260 
261 	return kstrtobool(buf, &_init_on_alloc_enabled_early);
262 }
263 early_param("init_on_alloc", early_init_on_alloc);
264 
265 static bool _init_on_free_enabled_early __read_mostly
266 				= IS_ENABLED(CONFIG_INIT_ON_FREE_DEFAULT_ON);
267 static int __init early_init_on_free(char *buf)
268 {
269 	return kstrtobool(buf, &_init_on_free_enabled_early);
270 }
271 early_param("init_on_free", early_init_on_free);
272 
273 /*
274  * A cached value of the page's pageblock's migratetype, used when the page is
275  * put on a pcplist. Used to avoid the pageblock migratetype lookup when
276  * freeing from pcplists in most cases, at the cost of possibly becoming stale.
277  * Also the migratetype set in the page does not necessarily match the pcplist
278  * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
279  * other index - this ensures that it will be put on the correct CMA freelist.
280  */
281 static inline int get_pcppage_migratetype(struct page *page)
282 {
283 	return page->index;
284 }
285 
286 static inline void set_pcppage_migratetype(struct page *page, int migratetype)
287 {
288 	page->index = migratetype;
289 }
290 
291 #ifdef CONFIG_PM_SLEEP
292 /*
293  * The following functions are used by the suspend/hibernate code to temporarily
294  * change gfp_allowed_mask in order to avoid using I/O during memory allocations
295  * while devices are suspended.  To avoid races with the suspend/hibernate code,
296  * they should always be called with system_transition_mutex held
297  * (gfp_allowed_mask also should only be modified with system_transition_mutex
298  * held, unless the suspend/hibernate code is guaranteed not to run in parallel
299  * with that modification).
300  */
301 
302 static gfp_t saved_gfp_mask;
303 
304 void pm_restore_gfp_mask(void)
305 {
306 	WARN_ON(!mutex_is_locked(&system_transition_mutex));
307 	if (saved_gfp_mask) {
308 		gfp_allowed_mask = saved_gfp_mask;
309 		saved_gfp_mask = 0;
310 	}
311 }
312 
313 void pm_restrict_gfp_mask(void)
314 {
315 	WARN_ON(!mutex_is_locked(&system_transition_mutex));
316 	WARN_ON(saved_gfp_mask);
317 	saved_gfp_mask = gfp_allowed_mask;
318 	gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
319 }
320 
321 bool pm_suspended_storage(void)
322 {
323 	if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
324 		return false;
325 	return true;
326 }
327 #endif /* CONFIG_PM_SLEEP */
328 
329 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
330 unsigned int pageblock_order __read_mostly;
331 #endif
332 
333 static void __free_pages_ok(struct page *page, unsigned int order,
334 			    fpi_t fpi_flags);
335 
336 /*
337  * results with 256, 32 in the lowmem_reserve sysctl:
338  *	1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
339  *	1G machine -> (16M dma, 784M normal, 224M high)
340  *	NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
341  *	HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
342  *	HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
343  *
344  * TBD: should special case ZONE_DMA32 machines here - in those we normally
345  * don't need any ZONE_NORMAL reservation
346  */
347 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = {
348 #ifdef CONFIG_ZONE_DMA
349 	[ZONE_DMA] = 256,
350 #endif
351 #ifdef CONFIG_ZONE_DMA32
352 	[ZONE_DMA32] = 256,
353 #endif
354 	[ZONE_NORMAL] = 32,
355 #ifdef CONFIG_HIGHMEM
356 	[ZONE_HIGHMEM] = 0,
357 #endif
358 	[ZONE_MOVABLE] = 0,
359 };
360 
361 static char * const zone_names[MAX_NR_ZONES] = {
362 #ifdef CONFIG_ZONE_DMA
363 	 "DMA",
364 #endif
365 #ifdef CONFIG_ZONE_DMA32
366 	 "DMA32",
367 #endif
368 	 "Normal",
369 #ifdef CONFIG_HIGHMEM
370 	 "HighMem",
371 #endif
372 	 "Movable",
373 #ifdef CONFIG_ZONE_DEVICE
374 	 "Device",
375 #endif
376 };
377 
378 const char * const migratetype_names[MIGRATE_TYPES] = {
379 	"Unmovable",
380 	"Movable",
381 	"Reclaimable",
382 	"HighAtomic",
383 #ifdef CONFIG_CMA
384 	"CMA",
385 #endif
386 #ifdef CONFIG_MEMORY_ISOLATION
387 	"Isolate",
388 #endif
389 };
390 
391 compound_page_dtor * const compound_page_dtors[NR_COMPOUND_DTORS] = {
392 	[NULL_COMPOUND_DTOR] = NULL,
393 	[COMPOUND_PAGE_DTOR] = free_compound_page,
394 #ifdef CONFIG_HUGETLB_PAGE
395 	[HUGETLB_PAGE_DTOR] = free_huge_page,
396 #endif
397 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
398 	[TRANSHUGE_PAGE_DTOR] = free_transhuge_page,
399 #endif
400 };
401 
402 int min_free_kbytes = 1024;
403 int user_min_free_kbytes = -1;
404 int watermark_boost_factor __read_mostly = 15000;
405 int watermark_scale_factor = 10;
406 
407 static unsigned long nr_kernel_pages __initdata;
408 static unsigned long nr_all_pages __initdata;
409 static unsigned long dma_reserve __initdata;
410 
411 static unsigned long arch_zone_lowest_possible_pfn[MAX_NR_ZONES] __initdata;
412 static unsigned long arch_zone_highest_possible_pfn[MAX_NR_ZONES] __initdata;
413 static unsigned long required_kernelcore __initdata;
414 static unsigned long required_kernelcore_percent __initdata;
415 static unsigned long required_movablecore __initdata;
416 static unsigned long required_movablecore_percent __initdata;
417 static unsigned long zone_movable_pfn[MAX_NUMNODES] __initdata;
418 bool mirrored_kernelcore __initdata_memblock;
419 
420 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
421 int movable_zone;
422 EXPORT_SYMBOL(movable_zone);
423 
424 #if MAX_NUMNODES > 1
425 unsigned int nr_node_ids __read_mostly = MAX_NUMNODES;
426 unsigned int nr_online_nodes __read_mostly = 1;
427 EXPORT_SYMBOL(nr_node_ids);
428 EXPORT_SYMBOL(nr_online_nodes);
429 #endif
430 
431 int page_group_by_mobility_disabled __read_mostly;
432 
433 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
434 /*
435  * During boot we initialize deferred pages on-demand, as needed, but once
436  * page_alloc_init_late() has finished, the deferred pages are all initialized,
437  * and we can permanently disable that path.
438  */
439 static DEFINE_STATIC_KEY_TRUE(deferred_pages);
440 
441 static inline bool deferred_pages_enabled(void)
442 {
443 	return static_branch_unlikely(&deferred_pages);
444 }
445 
446 /* Returns true if the struct page for the pfn is uninitialised */
447 static inline bool __meminit early_page_uninitialised(unsigned long pfn)
448 {
449 	int nid = early_pfn_to_nid(pfn);
450 
451 	if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
452 		return true;
453 
454 	return false;
455 }
456 
457 /*
458  * Returns true when the remaining initialisation should be deferred until
459  * later in the boot cycle when it can be parallelised.
460  */
461 static bool __meminit
462 defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
463 {
464 	static unsigned long prev_end_pfn, nr_initialised;
465 
466 	if (early_page_ext_enabled())
467 		return false;
468 	/*
469 	 * prev_end_pfn static that contains the end of previous zone
470 	 * No need to protect because called very early in boot before smp_init.
471 	 */
472 	if (prev_end_pfn != end_pfn) {
473 		prev_end_pfn = end_pfn;
474 		nr_initialised = 0;
475 	}
476 
477 	/* Always populate low zones for address-constrained allocations */
478 	if (end_pfn < pgdat_end_pfn(NODE_DATA(nid)))
479 		return false;
480 
481 	if (NODE_DATA(nid)->first_deferred_pfn != ULONG_MAX)
482 		return true;
483 	/*
484 	 * We start only with one section of pages, more pages are added as
485 	 * needed until the rest of deferred pages are initialized.
486 	 */
487 	nr_initialised++;
488 	if ((nr_initialised > PAGES_PER_SECTION) &&
489 	    (pfn & (PAGES_PER_SECTION - 1)) == 0) {
490 		NODE_DATA(nid)->first_deferred_pfn = pfn;
491 		return true;
492 	}
493 	return false;
494 }
495 #else
496 static inline bool deferred_pages_enabled(void)
497 {
498 	return false;
499 }
500 
501 static inline bool early_page_uninitialised(unsigned long pfn)
502 {
503 	return false;
504 }
505 
506 static inline bool defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
507 {
508 	return false;
509 }
510 #endif
511 
512 /* Return a pointer to the bitmap storing bits affecting a block of pages */
513 static inline unsigned long *get_pageblock_bitmap(const struct page *page,
514 							unsigned long pfn)
515 {
516 #ifdef CONFIG_SPARSEMEM
517 	return section_to_usemap(__pfn_to_section(pfn));
518 #else
519 	return page_zone(page)->pageblock_flags;
520 #endif /* CONFIG_SPARSEMEM */
521 }
522 
523 static inline int pfn_to_bitidx(const struct page *page, unsigned long pfn)
524 {
525 #ifdef CONFIG_SPARSEMEM
526 	pfn &= (PAGES_PER_SECTION-1);
527 #else
528 	pfn = pfn - pageblock_start_pfn(page_zone(page)->zone_start_pfn);
529 #endif /* CONFIG_SPARSEMEM */
530 	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
531 }
532 
533 static __always_inline
534 unsigned long __get_pfnblock_flags_mask(const struct page *page,
535 					unsigned long pfn,
536 					unsigned long mask)
537 {
538 	unsigned long *bitmap;
539 	unsigned long bitidx, word_bitidx;
540 	unsigned long word;
541 
542 	bitmap = get_pageblock_bitmap(page, pfn);
543 	bitidx = pfn_to_bitidx(page, pfn);
544 	word_bitidx = bitidx / BITS_PER_LONG;
545 	bitidx &= (BITS_PER_LONG-1);
546 	/*
547 	 * This races, without locks, with set_pfnblock_flags_mask(). Ensure
548 	 * a consistent read of the memory array, so that results, even though
549 	 * racy, are not corrupted.
550 	 */
551 	word = READ_ONCE(bitmap[word_bitidx]);
552 	return (word >> bitidx) & mask;
553 }
554 
555 /**
556  * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
557  * @page: The page within the block of interest
558  * @pfn: The target page frame number
559  * @mask: mask of bits that the caller is interested in
560  *
561  * Return: pageblock_bits flags
562  */
563 unsigned long get_pfnblock_flags_mask(const struct page *page,
564 					unsigned long pfn, unsigned long mask)
565 {
566 	return __get_pfnblock_flags_mask(page, pfn, mask);
567 }
568 
569 static __always_inline int get_pfnblock_migratetype(const struct page *page,
570 					unsigned long pfn)
571 {
572 	return __get_pfnblock_flags_mask(page, pfn, MIGRATETYPE_MASK);
573 }
574 
575 /**
576  * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
577  * @page: The page within the block of interest
578  * @flags: The flags to set
579  * @pfn: The target page frame number
580  * @mask: mask of bits that the caller is interested in
581  */
582 void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
583 					unsigned long pfn,
584 					unsigned long mask)
585 {
586 	unsigned long *bitmap;
587 	unsigned long bitidx, word_bitidx;
588 	unsigned long word;
589 
590 	BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
591 	BUILD_BUG_ON(MIGRATE_TYPES > (1 << PB_migratetype_bits));
592 
593 	bitmap = get_pageblock_bitmap(page, pfn);
594 	bitidx = pfn_to_bitidx(page, pfn);
595 	word_bitidx = bitidx / BITS_PER_LONG;
596 	bitidx &= (BITS_PER_LONG-1);
597 
598 	VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
599 
600 	mask <<= bitidx;
601 	flags <<= bitidx;
602 
603 	word = READ_ONCE(bitmap[word_bitidx]);
604 	do {
605 	} while (!try_cmpxchg(&bitmap[word_bitidx], &word, (word & ~mask) | flags));
606 }
607 
608 void set_pageblock_migratetype(struct page *page, int migratetype)
609 {
610 	if (unlikely(page_group_by_mobility_disabled &&
611 		     migratetype < MIGRATE_PCPTYPES))
612 		migratetype = MIGRATE_UNMOVABLE;
613 
614 	set_pfnblock_flags_mask(page, (unsigned long)migratetype,
615 				page_to_pfn(page), MIGRATETYPE_MASK);
616 }
617 
618 #ifdef CONFIG_DEBUG_VM
619 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
620 {
621 	int ret = 0;
622 	unsigned seq;
623 	unsigned long pfn = page_to_pfn(page);
624 	unsigned long sp, start_pfn;
625 
626 	do {
627 		seq = zone_span_seqbegin(zone);
628 		start_pfn = zone->zone_start_pfn;
629 		sp = zone->spanned_pages;
630 		if (!zone_spans_pfn(zone, pfn))
631 			ret = 1;
632 	} while (zone_span_seqretry(zone, seq));
633 
634 	if (ret)
635 		pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
636 			pfn, zone_to_nid(zone), zone->name,
637 			start_pfn, start_pfn + sp);
638 
639 	return ret;
640 }
641 
642 static int page_is_consistent(struct zone *zone, struct page *page)
643 {
644 	if (zone != page_zone(page))
645 		return 0;
646 
647 	return 1;
648 }
649 /*
650  * Temporary debugging check for pages not lying within a given zone.
651  */
652 static int __maybe_unused bad_range(struct zone *zone, struct page *page)
653 {
654 	if (page_outside_zone_boundaries(zone, page))
655 		return 1;
656 	if (!page_is_consistent(zone, page))
657 		return 1;
658 
659 	return 0;
660 }
661 #else
662 static inline int __maybe_unused bad_range(struct zone *zone, struct page *page)
663 {
664 	return 0;
665 }
666 #endif
667 
668 static void bad_page(struct page *page, const char *reason)
669 {
670 	static unsigned long resume;
671 	static unsigned long nr_shown;
672 	static unsigned long nr_unshown;
673 
674 	/*
675 	 * Allow a burst of 60 reports, then keep quiet for that minute;
676 	 * or allow a steady drip of one report per second.
677 	 */
678 	if (nr_shown == 60) {
679 		if (time_before(jiffies, resume)) {
680 			nr_unshown++;
681 			goto out;
682 		}
683 		if (nr_unshown) {
684 			pr_alert(
685 			      "BUG: Bad page state: %lu messages suppressed\n",
686 				nr_unshown);
687 			nr_unshown = 0;
688 		}
689 		nr_shown = 0;
690 	}
691 	if (nr_shown++ == 0)
692 		resume = jiffies + 60 * HZ;
693 
694 	pr_alert("BUG: Bad page state in process %s  pfn:%05lx\n",
695 		current->comm, page_to_pfn(page));
696 	dump_page(page, reason);
697 
698 	print_modules();
699 	dump_stack();
700 out:
701 	/* Leave bad fields for debug, except PageBuddy could make trouble */
702 	page_mapcount_reset(page); /* remove PageBuddy */
703 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
704 }
705 
706 static inline unsigned int order_to_pindex(int migratetype, int order)
707 {
708 	int base = order;
709 
710 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
711 	if (order > PAGE_ALLOC_COSTLY_ORDER) {
712 		VM_BUG_ON(order != pageblock_order);
713 		return NR_LOWORDER_PCP_LISTS;
714 	}
715 #else
716 	VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER);
717 #endif
718 
719 	return (MIGRATE_PCPTYPES * base) + migratetype;
720 }
721 
722 static inline int pindex_to_order(unsigned int pindex)
723 {
724 	int order = pindex / MIGRATE_PCPTYPES;
725 
726 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
727 	if (pindex == NR_LOWORDER_PCP_LISTS)
728 		order = pageblock_order;
729 #else
730 	VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER);
731 #endif
732 
733 	return order;
734 }
735 
736 static inline bool pcp_allowed_order(unsigned int order)
737 {
738 	if (order <= PAGE_ALLOC_COSTLY_ORDER)
739 		return true;
740 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
741 	if (order == pageblock_order)
742 		return true;
743 #endif
744 	return false;
745 }
746 
747 static inline void free_the_page(struct page *page, unsigned int order)
748 {
749 	if (pcp_allowed_order(order))		/* Via pcp? */
750 		free_unref_page(page, order);
751 	else
752 		__free_pages_ok(page, order, FPI_NONE);
753 }
754 
755 /*
756  * Higher-order pages are called "compound pages".  They are structured thusly:
757  *
758  * The first PAGE_SIZE page is called the "head page" and have PG_head set.
759  *
760  * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
761  * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
762  *
763  * The first tail page's ->compound_dtor holds the offset in array of compound
764  * page destructors. See compound_page_dtors.
765  *
766  * The first tail page's ->compound_order holds the order of allocation.
767  * This usage means that zero-order pages may not be compound.
768  */
769 
770 void free_compound_page(struct page *page)
771 {
772 	mem_cgroup_uncharge(page_folio(page));
773 	free_the_page(page, compound_order(page));
774 }
775 
776 static void prep_compound_head(struct page *page, unsigned int order)
777 {
778 	set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
779 	set_compound_order(page, order);
780 	atomic_set(compound_mapcount_ptr(page), -1);
781 	atomic_set(subpages_mapcount_ptr(page), 0);
782 	atomic_set(compound_pincount_ptr(page), 0);
783 }
784 
785 static void prep_compound_tail(struct page *head, int tail_idx)
786 {
787 	struct page *p = head + tail_idx;
788 
789 	p->mapping = TAIL_MAPPING;
790 	set_compound_head(p, head);
791 	set_page_private(p, 0);
792 }
793 
794 void prep_compound_page(struct page *page, unsigned int order)
795 {
796 	int i;
797 	int nr_pages = 1 << order;
798 
799 	__SetPageHead(page);
800 	for (i = 1; i < nr_pages; i++)
801 		prep_compound_tail(page, i);
802 
803 	prep_compound_head(page, order);
804 }
805 
806 void destroy_large_folio(struct folio *folio)
807 {
808 	enum compound_dtor_id dtor = folio_page(folio, 1)->compound_dtor;
809 
810 	VM_BUG_ON_FOLIO(dtor >= NR_COMPOUND_DTORS, folio);
811 	compound_page_dtors[dtor](&folio->page);
812 }
813 
814 #ifdef CONFIG_DEBUG_PAGEALLOC
815 unsigned int _debug_guardpage_minorder;
816 
817 bool _debug_pagealloc_enabled_early __read_mostly
818 			= IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
819 EXPORT_SYMBOL(_debug_pagealloc_enabled_early);
820 DEFINE_STATIC_KEY_FALSE(_debug_pagealloc_enabled);
821 EXPORT_SYMBOL(_debug_pagealloc_enabled);
822 
823 DEFINE_STATIC_KEY_FALSE(_debug_guardpage_enabled);
824 
825 static int __init early_debug_pagealloc(char *buf)
826 {
827 	return kstrtobool(buf, &_debug_pagealloc_enabled_early);
828 }
829 early_param("debug_pagealloc", early_debug_pagealloc);
830 
831 static int __init debug_guardpage_minorder_setup(char *buf)
832 {
833 	unsigned long res;
834 
835 	if (kstrtoul(buf, 10, &res) < 0 ||  res > MAX_ORDER / 2) {
836 		pr_err("Bad debug_guardpage_minorder value\n");
837 		return 0;
838 	}
839 	_debug_guardpage_minorder = res;
840 	pr_info("Setting debug_guardpage_minorder to %lu\n", res);
841 	return 0;
842 }
843 early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup);
844 
845 static inline bool set_page_guard(struct zone *zone, struct page *page,
846 				unsigned int order, int migratetype)
847 {
848 	if (!debug_guardpage_enabled())
849 		return false;
850 
851 	if (order >= debug_guardpage_minorder())
852 		return false;
853 
854 	__SetPageGuard(page);
855 	INIT_LIST_HEAD(&page->buddy_list);
856 	set_page_private(page, order);
857 	/* Guard pages are not available for any usage */
858 	if (!is_migrate_isolate(migratetype))
859 		__mod_zone_freepage_state(zone, -(1 << order), migratetype);
860 
861 	return true;
862 }
863 
864 static inline void clear_page_guard(struct zone *zone, struct page *page,
865 				unsigned int order, int migratetype)
866 {
867 	if (!debug_guardpage_enabled())
868 		return;
869 
870 	__ClearPageGuard(page);
871 
872 	set_page_private(page, 0);
873 	if (!is_migrate_isolate(migratetype))
874 		__mod_zone_freepage_state(zone, (1 << order), migratetype);
875 }
876 #else
877 static inline bool set_page_guard(struct zone *zone, struct page *page,
878 			unsigned int order, int migratetype) { return false; }
879 static inline void clear_page_guard(struct zone *zone, struct page *page,
880 				unsigned int order, int migratetype) {}
881 #endif
882 
883 /*
884  * Enable static keys related to various memory debugging and hardening options.
885  * Some override others, and depend on early params that are evaluated in the
886  * order of appearance. So we need to first gather the full picture of what was
887  * enabled, and then make decisions.
888  */
889 void __init init_mem_debugging_and_hardening(void)
890 {
891 	bool page_poisoning_requested = false;
892 
893 #ifdef CONFIG_PAGE_POISONING
894 	/*
895 	 * Page poisoning is debug page alloc for some arches. If
896 	 * either of those options are enabled, enable poisoning.
897 	 */
898 	if (page_poisoning_enabled() ||
899 	     (!IS_ENABLED(CONFIG_ARCH_SUPPORTS_DEBUG_PAGEALLOC) &&
900 	      debug_pagealloc_enabled())) {
901 		static_branch_enable(&_page_poisoning_enabled);
902 		page_poisoning_requested = true;
903 	}
904 #endif
905 
906 	if ((_init_on_alloc_enabled_early || _init_on_free_enabled_early) &&
907 	    page_poisoning_requested) {
908 		pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, "
909 			"will take precedence over init_on_alloc and init_on_free\n");
910 		_init_on_alloc_enabled_early = false;
911 		_init_on_free_enabled_early = false;
912 	}
913 
914 	if (_init_on_alloc_enabled_early)
915 		static_branch_enable(&init_on_alloc);
916 	else
917 		static_branch_disable(&init_on_alloc);
918 
919 	if (_init_on_free_enabled_early)
920 		static_branch_enable(&init_on_free);
921 	else
922 		static_branch_disable(&init_on_free);
923 
924 	if (IS_ENABLED(CONFIG_KMSAN) &&
925 	    (_init_on_alloc_enabled_early || _init_on_free_enabled_early))
926 		pr_info("mem auto-init: please make sure init_on_alloc and init_on_free are disabled when running KMSAN\n");
927 
928 #ifdef CONFIG_DEBUG_PAGEALLOC
929 	if (!debug_pagealloc_enabled())
930 		return;
931 
932 	static_branch_enable(&_debug_pagealloc_enabled);
933 
934 	if (!debug_guardpage_minorder())
935 		return;
936 
937 	static_branch_enable(&_debug_guardpage_enabled);
938 #endif
939 }
940 
941 static inline void set_buddy_order(struct page *page, unsigned int order)
942 {
943 	set_page_private(page, order);
944 	__SetPageBuddy(page);
945 }
946 
947 #ifdef CONFIG_COMPACTION
948 static inline struct capture_control *task_capc(struct zone *zone)
949 {
950 	struct capture_control *capc = current->capture_control;
951 
952 	return unlikely(capc) &&
953 		!(current->flags & PF_KTHREAD) &&
954 		!capc->page &&
955 		capc->cc->zone == zone ? capc : NULL;
956 }
957 
958 static inline bool
959 compaction_capture(struct capture_control *capc, struct page *page,
960 		   int order, int migratetype)
961 {
962 	if (!capc || order != capc->cc->order)
963 		return false;
964 
965 	/* Do not accidentally pollute CMA or isolated regions*/
966 	if (is_migrate_cma(migratetype) ||
967 	    is_migrate_isolate(migratetype))
968 		return false;
969 
970 	/*
971 	 * Do not let lower order allocations pollute a movable pageblock.
972 	 * This might let an unmovable request use a reclaimable pageblock
973 	 * and vice-versa but no more than normal fallback logic which can
974 	 * have trouble finding a high-order free page.
975 	 */
976 	if (order < pageblock_order && migratetype == MIGRATE_MOVABLE)
977 		return false;
978 
979 	capc->page = page;
980 	return true;
981 }
982 
983 #else
984 static inline struct capture_control *task_capc(struct zone *zone)
985 {
986 	return NULL;
987 }
988 
989 static inline bool
990 compaction_capture(struct capture_control *capc, struct page *page,
991 		   int order, int migratetype)
992 {
993 	return false;
994 }
995 #endif /* CONFIG_COMPACTION */
996 
997 /* Used for pages not on another list */
998 static inline void add_to_free_list(struct page *page, struct zone *zone,
999 				    unsigned int order, int migratetype)
1000 {
1001 	struct free_area *area = &zone->free_area[order];
1002 
1003 	list_add(&page->buddy_list, &area->free_list[migratetype]);
1004 	area->nr_free++;
1005 }
1006 
1007 /* Used for pages not on another list */
1008 static inline void add_to_free_list_tail(struct page *page, struct zone *zone,
1009 					 unsigned int order, int migratetype)
1010 {
1011 	struct free_area *area = &zone->free_area[order];
1012 
1013 	list_add_tail(&page->buddy_list, &area->free_list[migratetype]);
1014 	area->nr_free++;
1015 }
1016 
1017 /*
1018  * Used for pages which are on another list. Move the pages to the tail
1019  * of the list - so the moved pages won't immediately be considered for
1020  * allocation again (e.g., optimization for memory onlining).
1021  */
1022 static inline void move_to_free_list(struct page *page, struct zone *zone,
1023 				     unsigned int order, int migratetype)
1024 {
1025 	struct free_area *area = &zone->free_area[order];
1026 
1027 	list_move_tail(&page->buddy_list, &area->free_list[migratetype]);
1028 }
1029 
1030 static inline void del_page_from_free_list(struct page *page, struct zone *zone,
1031 					   unsigned int order)
1032 {
1033 	/* clear reported state and update reported page count */
1034 	if (page_reported(page))
1035 		__ClearPageReported(page);
1036 
1037 	list_del(&page->buddy_list);
1038 	__ClearPageBuddy(page);
1039 	set_page_private(page, 0);
1040 	zone->free_area[order].nr_free--;
1041 }
1042 
1043 /*
1044  * If this is not the largest possible page, check if the buddy
1045  * of the next-highest order is free. If it is, it's possible
1046  * that pages are being freed that will coalesce soon. In case,
1047  * that is happening, add the free page to the tail of the list
1048  * so it's less likely to be used soon and more likely to be merged
1049  * as a higher order page
1050  */
1051 static inline bool
1052 buddy_merge_likely(unsigned long pfn, unsigned long buddy_pfn,
1053 		   struct page *page, unsigned int order)
1054 {
1055 	unsigned long higher_page_pfn;
1056 	struct page *higher_page;
1057 
1058 	if (order >= MAX_ORDER - 2)
1059 		return false;
1060 
1061 	higher_page_pfn = buddy_pfn & pfn;
1062 	higher_page = page + (higher_page_pfn - pfn);
1063 
1064 	return find_buddy_page_pfn(higher_page, higher_page_pfn, order + 1,
1065 			NULL) != NULL;
1066 }
1067 
1068 /*
1069  * Freeing function for a buddy system allocator.
1070  *
1071  * The concept of a buddy system is to maintain direct-mapped table
1072  * (containing bit values) for memory blocks of various "orders".
1073  * The bottom level table contains the map for the smallest allocatable
1074  * units of memory (here, pages), and each level above it describes
1075  * pairs of units from the levels below, hence, "buddies".
1076  * At a high level, all that happens here is marking the table entry
1077  * at the bottom level available, and propagating the changes upward
1078  * as necessary, plus some accounting needed to play nicely with other
1079  * parts of the VM system.
1080  * At each level, we keep a list of pages, which are heads of continuous
1081  * free pages of length of (1 << order) and marked with PageBuddy.
1082  * Page's order is recorded in page_private(page) field.
1083  * So when we are allocating or freeing one, we can derive the state of the
1084  * other.  That is, if we allocate a small block, and both were
1085  * free, the remainder of the region must be split into blocks.
1086  * If a block is freed, and its buddy is also free, then this
1087  * triggers coalescing into a block of larger size.
1088  *
1089  * -- nyc
1090  */
1091 
1092 static inline void __free_one_page(struct page *page,
1093 		unsigned long pfn,
1094 		struct zone *zone, unsigned int order,
1095 		int migratetype, fpi_t fpi_flags)
1096 {
1097 	struct capture_control *capc = task_capc(zone);
1098 	unsigned long buddy_pfn = 0;
1099 	unsigned long combined_pfn;
1100 	struct page *buddy;
1101 	bool to_tail;
1102 
1103 	VM_BUG_ON(!zone_is_initialized(zone));
1104 	VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
1105 
1106 	VM_BUG_ON(migratetype == -1);
1107 	if (likely(!is_migrate_isolate(migratetype)))
1108 		__mod_zone_freepage_state(zone, 1 << order, migratetype);
1109 
1110 	VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
1111 	VM_BUG_ON_PAGE(bad_range(zone, page), page);
1112 
1113 	while (order < MAX_ORDER - 1) {
1114 		if (compaction_capture(capc, page, order, migratetype)) {
1115 			__mod_zone_freepage_state(zone, -(1 << order),
1116 								migratetype);
1117 			return;
1118 		}
1119 
1120 		buddy = find_buddy_page_pfn(page, pfn, order, &buddy_pfn);
1121 		if (!buddy)
1122 			goto done_merging;
1123 
1124 		if (unlikely(order >= pageblock_order)) {
1125 			/*
1126 			 * We want to prevent merge between freepages on pageblock
1127 			 * without fallbacks and normal pageblock. Without this,
1128 			 * pageblock isolation could cause incorrect freepage or CMA
1129 			 * accounting or HIGHATOMIC accounting.
1130 			 */
1131 			int buddy_mt = get_pageblock_migratetype(buddy);
1132 
1133 			if (migratetype != buddy_mt
1134 					&& (!migratetype_is_mergeable(migratetype) ||
1135 						!migratetype_is_mergeable(buddy_mt)))
1136 				goto done_merging;
1137 		}
1138 
1139 		/*
1140 		 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
1141 		 * merge with it and move up one order.
1142 		 */
1143 		if (page_is_guard(buddy))
1144 			clear_page_guard(zone, buddy, order, migratetype);
1145 		else
1146 			del_page_from_free_list(buddy, zone, order);
1147 		combined_pfn = buddy_pfn & pfn;
1148 		page = page + (combined_pfn - pfn);
1149 		pfn = combined_pfn;
1150 		order++;
1151 	}
1152 
1153 done_merging:
1154 	set_buddy_order(page, order);
1155 
1156 	if (fpi_flags & FPI_TO_TAIL)
1157 		to_tail = true;
1158 	else if (is_shuffle_order(order))
1159 		to_tail = shuffle_pick_tail();
1160 	else
1161 		to_tail = buddy_merge_likely(pfn, buddy_pfn, page, order);
1162 
1163 	if (to_tail)
1164 		add_to_free_list_tail(page, zone, order, migratetype);
1165 	else
1166 		add_to_free_list(page, zone, order, migratetype);
1167 
1168 	/* Notify page reporting subsystem of freed page */
1169 	if (!(fpi_flags & FPI_SKIP_REPORT_NOTIFY))
1170 		page_reporting_notify_free(order);
1171 }
1172 
1173 /**
1174  * split_free_page() -- split a free page at split_pfn_offset
1175  * @free_page:		the original free page
1176  * @order:		the order of the page
1177  * @split_pfn_offset:	split offset within the page
1178  *
1179  * Return -ENOENT if the free page is changed, otherwise 0
1180  *
1181  * It is used when the free page crosses two pageblocks with different migratetypes
1182  * at split_pfn_offset within the page. The split free page will be put into
1183  * separate migratetype lists afterwards. Otherwise, the function achieves
1184  * nothing.
1185  */
1186 int split_free_page(struct page *free_page,
1187 			unsigned int order, unsigned long split_pfn_offset)
1188 {
1189 	struct zone *zone = page_zone(free_page);
1190 	unsigned long free_page_pfn = page_to_pfn(free_page);
1191 	unsigned long pfn;
1192 	unsigned long flags;
1193 	int free_page_order;
1194 	int mt;
1195 	int ret = 0;
1196 
1197 	if (split_pfn_offset == 0)
1198 		return ret;
1199 
1200 	spin_lock_irqsave(&zone->lock, flags);
1201 
1202 	if (!PageBuddy(free_page) || buddy_order(free_page) != order) {
1203 		ret = -ENOENT;
1204 		goto out;
1205 	}
1206 
1207 	mt = get_pageblock_migratetype(free_page);
1208 	if (likely(!is_migrate_isolate(mt)))
1209 		__mod_zone_freepage_state(zone, -(1UL << order), mt);
1210 
1211 	del_page_from_free_list(free_page, zone, order);
1212 	for (pfn = free_page_pfn;
1213 	     pfn < free_page_pfn + (1UL << order);) {
1214 		int mt = get_pfnblock_migratetype(pfn_to_page(pfn), pfn);
1215 
1216 		free_page_order = min_t(unsigned int,
1217 					pfn ? __ffs(pfn) : order,
1218 					__fls(split_pfn_offset));
1219 		__free_one_page(pfn_to_page(pfn), pfn, zone, free_page_order,
1220 				mt, FPI_NONE);
1221 		pfn += 1UL << free_page_order;
1222 		split_pfn_offset -= (1UL << free_page_order);
1223 		/* we have done the first part, now switch to second part */
1224 		if (split_pfn_offset == 0)
1225 			split_pfn_offset = (1UL << order) - (pfn - free_page_pfn);
1226 	}
1227 out:
1228 	spin_unlock_irqrestore(&zone->lock, flags);
1229 	return ret;
1230 }
1231 /*
1232  * A bad page could be due to a number of fields. Instead of multiple branches,
1233  * try and check multiple fields with one check. The caller must do a detailed
1234  * check if necessary.
1235  */
1236 static inline bool page_expected_state(struct page *page,
1237 					unsigned long check_flags)
1238 {
1239 	if (unlikely(atomic_read(&page->_mapcount) != -1))
1240 		return false;
1241 
1242 	if (unlikely((unsigned long)page->mapping |
1243 			page_ref_count(page) |
1244 #ifdef CONFIG_MEMCG
1245 			page->memcg_data |
1246 #endif
1247 			(page->flags & check_flags)))
1248 		return false;
1249 
1250 	return true;
1251 }
1252 
1253 static const char *page_bad_reason(struct page *page, unsigned long flags)
1254 {
1255 	const char *bad_reason = NULL;
1256 
1257 	if (unlikely(atomic_read(&page->_mapcount) != -1))
1258 		bad_reason = "nonzero mapcount";
1259 	if (unlikely(page->mapping != NULL))
1260 		bad_reason = "non-NULL mapping";
1261 	if (unlikely(page_ref_count(page) != 0))
1262 		bad_reason = "nonzero _refcount";
1263 	if (unlikely(page->flags & flags)) {
1264 		if (flags == PAGE_FLAGS_CHECK_AT_PREP)
1265 			bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag(s) set";
1266 		else
1267 			bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
1268 	}
1269 #ifdef CONFIG_MEMCG
1270 	if (unlikely(page->memcg_data))
1271 		bad_reason = "page still charged to cgroup";
1272 #endif
1273 	return bad_reason;
1274 }
1275 
1276 static void free_page_is_bad_report(struct page *page)
1277 {
1278 	bad_page(page,
1279 		 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_FREE));
1280 }
1281 
1282 static inline bool free_page_is_bad(struct page *page)
1283 {
1284 	if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
1285 		return false;
1286 
1287 	/* Something has gone sideways, find it */
1288 	free_page_is_bad_report(page);
1289 	return true;
1290 }
1291 
1292 static int free_tail_pages_check(struct page *head_page, struct page *page)
1293 {
1294 	int ret = 1;
1295 
1296 	/*
1297 	 * We rely page->lru.next never has bit 0 set, unless the page
1298 	 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
1299 	 */
1300 	BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
1301 
1302 	if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
1303 		ret = 0;
1304 		goto out;
1305 	}
1306 	switch (page - head_page) {
1307 	case 1:
1308 		/* the first tail page: these may be in place of ->mapping */
1309 		if (unlikely(head_compound_mapcount(head_page))) {
1310 			bad_page(page, "nonzero compound_mapcount");
1311 			goto out;
1312 		}
1313 		if (unlikely(atomic_read(subpages_mapcount_ptr(head_page)))) {
1314 			bad_page(page, "nonzero subpages_mapcount");
1315 			goto out;
1316 		}
1317 		if (unlikely(head_compound_pincount(head_page))) {
1318 			bad_page(page, "nonzero compound_pincount");
1319 			goto out;
1320 		}
1321 		break;
1322 	case 2:
1323 		/*
1324 		 * the second tail page: ->mapping is
1325 		 * deferred_list.next -- ignore value.
1326 		 */
1327 		break;
1328 	default:
1329 		if (page->mapping != TAIL_MAPPING) {
1330 			bad_page(page, "corrupted mapping in tail page");
1331 			goto out;
1332 		}
1333 		break;
1334 	}
1335 	if (unlikely(!PageTail(page))) {
1336 		bad_page(page, "PageTail not set");
1337 		goto out;
1338 	}
1339 	if (unlikely(compound_head(page) != head_page)) {
1340 		bad_page(page, "compound_head not consistent");
1341 		goto out;
1342 	}
1343 	ret = 0;
1344 out:
1345 	page->mapping = NULL;
1346 	clear_compound_head(page);
1347 	return ret;
1348 }
1349 
1350 /*
1351  * Skip KASAN memory poisoning when either:
1352  *
1353  * 1. Deferred memory initialization has not yet completed,
1354  *    see the explanation below.
1355  * 2. Skipping poisoning is requested via FPI_SKIP_KASAN_POISON,
1356  *    see the comment next to it.
1357  * 3. Skipping poisoning is requested via __GFP_SKIP_KASAN_POISON,
1358  *    see the comment next to it.
1359  *
1360  * Poisoning pages during deferred memory init will greatly lengthen the
1361  * process and cause problem in large memory systems as the deferred pages
1362  * initialization is done with interrupt disabled.
1363  *
1364  * Assuming that there will be no reference to those newly initialized
1365  * pages before they are ever allocated, this should have no effect on
1366  * KASAN memory tracking as the poison will be properly inserted at page
1367  * allocation time. The only corner case is when pages are allocated by
1368  * on-demand allocation and then freed again before the deferred pages
1369  * initialization is done, but this is not likely to happen.
1370  */
1371 static inline bool should_skip_kasan_poison(struct page *page, fpi_t fpi_flags)
1372 {
1373 	return deferred_pages_enabled() ||
1374 	       (!IS_ENABLED(CONFIG_KASAN_GENERIC) &&
1375 		(fpi_flags & FPI_SKIP_KASAN_POISON)) ||
1376 	       PageSkipKASanPoison(page);
1377 }
1378 
1379 static void kernel_init_pages(struct page *page, int numpages)
1380 {
1381 	int i;
1382 
1383 	/* s390's use of memset() could override KASAN redzones. */
1384 	kasan_disable_current();
1385 	for (i = 0; i < numpages; i++)
1386 		clear_highpage_kasan_tagged(page + i);
1387 	kasan_enable_current();
1388 }
1389 
1390 static __always_inline bool free_pages_prepare(struct page *page,
1391 			unsigned int order, bool check_free, fpi_t fpi_flags)
1392 {
1393 	int bad = 0;
1394 	bool init = want_init_on_free();
1395 
1396 	VM_BUG_ON_PAGE(PageTail(page), page);
1397 
1398 	trace_mm_page_free(page, order);
1399 	kmsan_free_page(page, order);
1400 
1401 	if (unlikely(PageHWPoison(page)) && !order) {
1402 		/*
1403 		 * Do not let hwpoison pages hit pcplists/buddy
1404 		 * Untie memcg state and reset page's owner
1405 		 */
1406 		if (memcg_kmem_enabled() && PageMemcgKmem(page))
1407 			__memcg_kmem_uncharge_page(page, order);
1408 		reset_page_owner(page, order);
1409 		page_table_check_free(page, order);
1410 		return false;
1411 	}
1412 
1413 	/*
1414 	 * Check tail pages before head page information is cleared to
1415 	 * avoid checking PageCompound for order-0 pages.
1416 	 */
1417 	if (unlikely(order)) {
1418 		bool compound = PageCompound(page);
1419 		int i;
1420 
1421 		VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
1422 
1423 		if (compound)
1424 			ClearPageHasHWPoisoned(page);
1425 		for (i = 1; i < (1 << order); i++) {
1426 			if (compound)
1427 				bad += free_tail_pages_check(page, page + i);
1428 			if (unlikely(free_page_is_bad(page + i))) {
1429 				bad++;
1430 				continue;
1431 			}
1432 			(page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1433 		}
1434 	}
1435 	if (PageMappingFlags(page))
1436 		page->mapping = NULL;
1437 	if (memcg_kmem_enabled() && PageMemcgKmem(page))
1438 		__memcg_kmem_uncharge_page(page, order);
1439 	if (check_free && free_page_is_bad(page))
1440 		bad++;
1441 	if (bad)
1442 		return false;
1443 
1444 	page_cpupid_reset_last(page);
1445 	page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1446 	reset_page_owner(page, order);
1447 	page_table_check_free(page, order);
1448 
1449 	if (!PageHighMem(page)) {
1450 		debug_check_no_locks_freed(page_address(page),
1451 					   PAGE_SIZE << order);
1452 		debug_check_no_obj_freed(page_address(page),
1453 					   PAGE_SIZE << order);
1454 	}
1455 
1456 	kernel_poison_pages(page, 1 << order);
1457 
1458 	/*
1459 	 * As memory initialization might be integrated into KASAN,
1460 	 * KASAN poisoning and memory initialization code must be
1461 	 * kept together to avoid discrepancies in behavior.
1462 	 *
1463 	 * With hardware tag-based KASAN, memory tags must be set before the
1464 	 * page becomes unavailable via debug_pagealloc or arch_free_page.
1465 	 */
1466 	if (!should_skip_kasan_poison(page, fpi_flags)) {
1467 		kasan_poison_pages(page, order, init);
1468 
1469 		/* Memory is already initialized if KASAN did it internally. */
1470 		if (kasan_has_integrated_init())
1471 			init = false;
1472 	}
1473 	if (init)
1474 		kernel_init_pages(page, 1 << order);
1475 
1476 	/*
1477 	 * arch_free_page() can make the page's contents inaccessible.  s390
1478 	 * does this.  So nothing which can access the page's contents should
1479 	 * happen after this.
1480 	 */
1481 	arch_free_page(page, order);
1482 
1483 	debug_pagealloc_unmap_pages(page, 1 << order);
1484 
1485 	return true;
1486 }
1487 
1488 #ifdef CONFIG_DEBUG_VM
1489 /*
1490  * With DEBUG_VM enabled, order-0 pages are checked immediately when being freed
1491  * to pcp lists. With debug_pagealloc also enabled, they are also rechecked when
1492  * moved from pcp lists to free lists.
1493  */
1494 static bool free_pcp_prepare(struct page *page, unsigned int order)
1495 {
1496 	return free_pages_prepare(page, order, true, FPI_NONE);
1497 }
1498 
1499 /* return true if this page has an inappropriate state */
1500 static bool bulkfree_pcp_prepare(struct page *page)
1501 {
1502 	if (debug_pagealloc_enabled_static())
1503 		return free_page_is_bad(page);
1504 	else
1505 		return false;
1506 }
1507 #else
1508 /*
1509  * With DEBUG_VM disabled, order-0 pages being freed are checked only when
1510  * moving from pcp lists to free list in order to reduce overhead. With
1511  * debug_pagealloc enabled, they are checked also immediately when being freed
1512  * to the pcp lists.
1513  */
1514 static bool free_pcp_prepare(struct page *page, unsigned int order)
1515 {
1516 	if (debug_pagealloc_enabled_static())
1517 		return free_pages_prepare(page, order, true, FPI_NONE);
1518 	else
1519 		return free_pages_prepare(page, order, false, FPI_NONE);
1520 }
1521 
1522 static bool bulkfree_pcp_prepare(struct page *page)
1523 {
1524 	return free_page_is_bad(page);
1525 }
1526 #endif /* CONFIG_DEBUG_VM */
1527 
1528 /*
1529  * Frees a number of pages from the PCP lists
1530  * Assumes all pages on list are in same zone.
1531  * count is the number of pages to free.
1532  */
1533 static void free_pcppages_bulk(struct zone *zone, int count,
1534 					struct per_cpu_pages *pcp,
1535 					int pindex)
1536 {
1537 	unsigned long flags;
1538 	int min_pindex = 0;
1539 	int max_pindex = NR_PCP_LISTS - 1;
1540 	unsigned int order;
1541 	bool isolated_pageblocks;
1542 	struct page *page;
1543 
1544 	/*
1545 	 * Ensure proper count is passed which otherwise would stuck in the
1546 	 * below while (list_empty(list)) loop.
1547 	 */
1548 	count = min(pcp->count, count);
1549 
1550 	/* Ensure requested pindex is drained first. */
1551 	pindex = pindex - 1;
1552 
1553 	spin_lock_irqsave(&zone->lock, flags);
1554 	isolated_pageblocks = has_isolate_pageblock(zone);
1555 
1556 	while (count > 0) {
1557 		struct list_head *list;
1558 		int nr_pages;
1559 
1560 		/* Remove pages from lists in a round-robin fashion. */
1561 		do {
1562 			if (++pindex > max_pindex)
1563 				pindex = min_pindex;
1564 			list = &pcp->lists[pindex];
1565 			if (!list_empty(list))
1566 				break;
1567 
1568 			if (pindex == max_pindex)
1569 				max_pindex--;
1570 			if (pindex == min_pindex)
1571 				min_pindex++;
1572 		} while (1);
1573 
1574 		order = pindex_to_order(pindex);
1575 		nr_pages = 1 << order;
1576 		do {
1577 			int mt;
1578 
1579 			page = list_last_entry(list, struct page, pcp_list);
1580 			mt = get_pcppage_migratetype(page);
1581 
1582 			/* must delete to avoid corrupting pcp list */
1583 			list_del(&page->pcp_list);
1584 			count -= nr_pages;
1585 			pcp->count -= nr_pages;
1586 
1587 			if (bulkfree_pcp_prepare(page))
1588 				continue;
1589 
1590 			/* MIGRATE_ISOLATE page should not go to pcplists */
1591 			VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1592 			/* Pageblock could have been isolated meanwhile */
1593 			if (unlikely(isolated_pageblocks))
1594 				mt = get_pageblock_migratetype(page);
1595 
1596 			__free_one_page(page, page_to_pfn(page), zone, order, mt, FPI_NONE);
1597 			trace_mm_page_pcpu_drain(page, order, mt);
1598 		} while (count > 0 && !list_empty(list));
1599 	}
1600 
1601 	spin_unlock_irqrestore(&zone->lock, flags);
1602 }
1603 
1604 static void free_one_page(struct zone *zone,
1605 				struct page *page, unsigned long pfn,
1606 				unsigned int order,
1607 				int migratetype, fpi_t fpi_flags)
1608 {
1609 	unsigned long flags;
1610 
1611 	spin_lock_irqsave(&zone->lock, flags);
1612 	if (unlikely(has_isolate_pageblock(zone) ||
1613 		is_migrate_isolate(migratetype))) {
1614 		migratetype = get_pfnblock_migratetype(page, pfn);
1615 	}
1616 	__free_one_page(page, pfn, zone, order, migratetype, fpi_flags);
1617 	spin_unlock_irqrestore(&zone->lock, flags);
1618 }
1619 
1620 static void __meminit __init_single_page(struct page *page, unsigned long pfn,
1621 				unsigned long zone, int nid)
1622 {
1623 	mm_zero_struct_page(page);
1624 	set_page_links(page, zone, nid, pfn);
1625 	init_page_count(page);
1626 	page_mapcount_reset(page);
1627 	page_cpupid_reset_last(page);
1628 	page_kasan_tag_reset(page);
1629 
1630 	INIT_LIST_HEAD(&page->lru);
1631 #ifdef WANT_PAGE_VIRTUAL
1632 	/* The shift won't overflow because ZONE_NORMAL is below 4G. */
1633 	if (!is_highmem_idx(zone))
1634 		set_page_address(page, __va(pfn << PAGE_SHIFT));
1635 #endif
1636 }
1637 
1638 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1639 static void __meminit init_reserved_page(unsigned long pfn)
1640 {
1641 	pg_data_t *pgdat;
1642 	int nid, zid;
1643 
1644 	if (!early_page_uninitialised(pfn))
1645 		return;
1646 
1647 	nid = early_pfn_to_nid(pfn);
1648 	pgdat = NODE_DATA(nid);
1649 
1650 	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1651 		struct zone *zone = &pgdat->node_zones[zid];
1652 
1653 		if (zone_spans_pfn(zone, pfn))
1654 			break;
1655 	}
1656 	__init_single_page(pfn_to_page(pfn), pfn, zid, nid);
1657 }
1658 #else
1659 static inline void init_reserved_page(unsigned long pfn)
1660 {
1661 }
1662 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1663 
1664 /*
1665  * Initialised pages do not have PageReserved set. This function is
1666  * called for each range allocated by the bootmem allocator and
1667  * marks the pages PageReserved. The remaining valid pages are later
1668  * sent to the buddy page allocator.
1669  */
1670 void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
1671 {
1672 	unsigned long start_pfn = PFN_DOWN(start);
1673 	unsigned long end_pfn = PFN_UP(end);
1674 
1675 	for (; start_pfn < end_pfn; start_pfn++) {
1676 		if (pfn_valid(start_pfn)) {
1677 			struct page *page = pfn_to_page(start_pfn);
1678 
1679 			init_reserved_page(start_pfn);
1680 
1681 			/* Avoid false-positive PageTail() */
1682 			INIT_LIST_HEAD(&page->lru);
1683 
1684 			/*
1685 			 * no need for atomic set_bit because the struct
1686 			 * page is not visible yet so nobody should
1687 			 * access it yet.
1688 			 */
1689 			__SetPageReserved(page);
1690 		}
1691 	}
1692 }
1693 
1694 static void __free_pages_ok(struct page *page, unsigned int order,
1695 			    fpi_t fpi_flags)
1696 {
1697 	unsigned long flags;
1698 	int migratetype;
1699 	unsigned long pfn = page_to_pfn(page);
1700 	struct zone *zone = page_zone(page);
1701 
1702 	if (!free_pages_prepare(page, order, true, fpi_flags))
1703 		return;
1704 
1705 	/*
1706 	 * Calling get_pfnblock_migratetype() without spin_lock_irqsave() here
1707 	 * is used to avoid calling get_pfnblock_migratetype() under the lock.
1708 	 * This will reduce the lock holding time.
1709 	 */
1710 	migratetype = get_pfnblock_migratetype(page, pfn);
1711 
1712 	spin_lock_irqsave(&zone->lock, flags);
1713 	if (unlikely(has_isolate_pageblock(zone) ||
1714 		is_migrate_isolate(migratetype))) {
1715 		migratetype = get_pfnblock_migratetype(page, pfn);
1716 	}
1717 	__free_one_page(page, pfn, zone, order, migratetype, fpi_flags);
1718 	spin_unlock_irqrestore(&zone->lock, flags);
1719 
1720 	__count_vm_events(PGFREE, 1 << order);
1721 }
1722 
1723 void __free_pages_core(struct page *page, unsigned int order)
1724 {
1725 	unsigned int nr_pages = 1 << order;
1726 	struct page *p = page;
1727 	unsigned int loop;
1728 
1729 	/*
1730 	 * When initializing the memmap, __init_single_page() sets the refcount
1731 	 * of all pages to 1 ("allocated"/"not free"). We have to set the
1732 	 * refcount of all involved pages to 0.
1733 	 */
1734 	prefetchw(p);
1735 	for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1736 		prefetchw(p + 1);
1737 		__ClearPageReserved(p);
1738 		set_page_count(p, 0);
1739 	}
1740 	__ClearPageReserved(p);
1741 	set_page_count(p, 0);
1742 
1743 	atomic_long_add(nr_pages, &page_zone(page)->managed_pages);
1744 
1745 	/*
1746 	 * Bypass PCP and place fresh pages right to the tail, primarily
1747 	 * relevant for memory onlining.
1748 	 */
1749 	__free_pages_ok(page, order, FPI_TO_TAIL | FPI_SKIP_KASAN_POISON);
1750 }
1751 
1752 #ifdef CONFIG_NUMA
1753 
1754 /*
1755  * During memory init memblocks map pfns to nids. The search is expensive and
1756  * this caches recent lookups. The implementation of __early_pfn_to_nid
1757  * treats start/end as pfns.
1758  */
1759 struct mminit_pfnnid_cache {
1760 	unsigned long last_start;
1761 	unsigned long last_end;
1762 	int last_nid;
1763 };
1764 
1765 static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
1766 
1767 /*
1768  * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
1769  */
1770 static int __meminit __early_pfn_to_nid(unsigned long pfn,
1771 					struct mminit_pfnnid_cache *state)
1772 {
1773 	unsigned long start_pfn, end_pfn;
1774 	int nid;
1775 
1776 	if (state->last_start <= pfn && pfn < state->last_end)
1777 		return state->last_nid;
1778 
1779 	nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
1780 	if (nid != NUMA_NO_NODE) {
1781 		state->last_start = start_pfn;
1782 		state->last_end = end_pfn;
1783 		state->last_nid = nid;
1784 	}
1785 
1786 	return nid;
1787 }
1788 
1789 int __meminit early_pfn_to_nid(unsigned long pfn)
1790 {
1791 	static DEFINE_SPINLOCK(early_pfn_lock);
1792 	int nid;
1793 
1794 	spin_lock(&early_pfn_lock);
1795 	nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
1796 	if (nid < 0)
1797 		nid = first_online_node;
1798 	spin_unlock(&early_pfn_lock);
1799 
1800 	return nid;
1801 }
1802 #endif /* CONFIG_NUMA */
1803 
1804 void __init memblock_free_pages(struct page *page, unsigned long pfn,
1805 							unsigned int order)
1806 {
1807 	if (early_page_uninitialised(pfn))
1808 		return;
1809 	if (!kmsan_memblock_free_pages(page, order)) {
1810 		/* KMSAN will take care of these pages. */
1811 		return;
1812 	}
1813 	__free_pages_core(page, order);
1814 }
1815 
1816 /*
1817  * Check that the whole (or subset of) a pageblock given by the interval of
1818  * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1819  * with the migration of free compaction scanner.
1820  *
1821  * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1822  *
1823  * It's possible on some configurations to have a setup like node0 node1 node0
1824  * i.e. it's possible that all pages within a zones range of pages do not
1825  * belong to a single zone. We assume that a border between node0 and node1
1826  * can occur within a single pageblock, but not a node0 node1 node0
1827  * interleaving within a single pageblock. It is therefore sufficient to check
1828  * the first and last page of a pageblock and avoid checking each individual
1829  * page in a pageblock.
1830  */
1831 struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1832 				     unsigned long end_pfn, struct zone *zone)
1833 {
1834 	struct page *start_page;
1835 	struct page *end_page;
1836 
1837 	/* end_pfn is one past the range we are checking */
1838 	end_pfn--;
1839 
1840 	if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
1841 		return NULL;
1842 
1843 	start_page = pfn_to_online_page(start_pfn);
1844 	if (!start_page)
1845 		return NULL;
1846 
1847 	if (page_zone(start_page) != zone)
1848 		return NULL;
1849 
1850 	end_page = pfn_to_page(end_pfn);
1851 
1852 	/* This gives a shorter code than deriving page_zone(end_page) */
1853 	if (page_zone_id(start_page) != page_zone_id(end_page))
1854 		return NULL;
1855 
1856 	return start_page;
1857 }
1858 
1859 void set_zone_contiguous(struct zone *zone)
1860 {
1861 	unsigned long block_start_pfn = zone->zone_start_pfn;
1862 	unsigned long block_end_pfn;
1863 
1864 	block_end_pfn = pageblock_end_pfn(block_start_pfn);
1865 	for (; block_start_pfn < zone_end_pfn(zone);
1866 			block_start_pfn = block_end_pfn,
1867 			 block_end_pfn += pageblock_nr_pages) {
1868 
1869 		block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
1870 
1871 		if (!__pageblock_pfn_to_page(block_start_pfn,
1872 					     block_end_pfn, zone))
1873 			return;
1874 		cond_resched();
1875 	}
1876 
1877 	/* We confirm that there is no hole */
1878 	zone->contiguous = true;
1879 }
1880 
1881 void clear_zone_contiguous(struct zone *zone)
1882 {
1883 	zone->contiguous = false;
1884 }
1885 
1886 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1887 static void __init deferred_free_range(unsigned long pfn,
1888 				       unsigned long nr_pages)
1889 {
1890 	struct page *page;
1891 	unsigned long i;
1892 
1893 	if (!nr_pages)
1894 		return;
1895 
1896 	page = pfn_to_page(pfn);
1897 
1898 	/* Free a large naturally-aligned chunk if possible */
1899 	if (nr_pages == pageblock_nr_pages && pageblock_aligned(pfn)) {
1900 		set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1901 		__free_pages_core(page, pageblock_order);
1902 		return;
1903 	}
1904 
1905 	for (i = 0; i < nr_pages; i++, page++, pfn++) {
1906 		if (pageblock_aligned(pfn))
1907 			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1908 		__free_pages_core(page, 0);
1909 	}
1910 }
1911 
1912 /* Completion tracking for deferred_init_memmap() threads */
1913 static atomic_t pgdat_init_n_undone __initdata;
1914 static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1915 
1916 static inline void __init pgdat_init_report_one_done(void)
1917 {
1918 	if (atomic_dec_and_test(&pgdat_init_n_undone))
1919 		complete(&pgdat_init_all_done_comp);
1920 }
1921 
1922 /*
1923  * Returns true if page needs to be initialized or freed to buddy allocator.
1924  *
1925  * We check if a current large page is valid by only checking the validity
1926  * of the head pfn.
1927  */
1928 static inline bool __init deferred_pfn_valid(unsigned long pfn)
1929 {
1930 	if (pageblock_aligned(pfn) && !pfn_valid(pfn))
1931 		return false;
1932 	return true;
1933 }
1934 
1935 /*
1936  * Free pages to buddy allocator. Try to free aligned pages in
1937  * pageblock_nr_pages sizes.
1938  */
1939 static void __init deferred_free_pages(unsigned long pfn,
1940 				       unsigned long end_pfn)
1941 {
1942 	unsigned long nr_free = 0;
1943 
1944 	for (; pfn < end_pfn; pfn++) {
1945 		if (!deferred_pfn_valid(pfn)) {
1946 			deferred_free_range(pfn - nr_free, nr_free);
1947 			nr_free = 0;
1948 		} else if (pageblock_aligned(pfn)) {
1949 			deferred_free_range(pfn - nr_free, nr_free);
1950 			nr_free = 1;
1951 		} else {
1952 			nr_free++;
1953 		}
1954 	}
1955 	/* Free the last block of pages to allocator */
1956 	deferred_free_range(pfn - nr_free, nr_free);
1957 }
1958 
1959 /*
1960  * Initialize struct pages.  We minimize pfn page lookups and scheduler checks
1961  * by performing it only once every pageblock_nr_pages.
1962  * Return number of pages initialized.
1963  */
1964 static unsigned long  __init deferred_init_pages(struct zone *zone,
1965 						 unsigned long pfn,
1966 						 unsigned long end_pfn)
1967 {
1968 	int nid = zone_to_nid(zone);
1969 	unsigned long nr_pages = 0;
1970 	int zid = zone_idx(zone);
1971 	struct page *page = NULL;
1972 
1973 	for (; pfn < end_pfn; pfn++) {
1974 		if (!deferred_pfn_valid(pfn)) {
1975 			page = NULL;
1976 			continue;
1977 		} else if (!page || pageblock_aligned(pfn)) {
1978 			page = pfn_to_page(pfn);
1979 		} else {
1980 			page++;
1981 		}
1982 		__init_single_page(page, pfn, zid, nid);
1983 		nr_pages++;
1984 	}
1985 	return (nr_pages);
1986 }
1987 
1988 /*
1989  * This function is meant to pre-load the iterator for the zone init.
1990  * Specifically it walks through the ranges until we are caught up to the
1991  * first_init_pfn value and exits there. If we never encounter the value we
1992  * return false indicating there are no valid ranges left.
1993  */
1994 static bool __init
1995 deferred_init_mem_pfn_range_in_zone(u64 *i, struct zone *zone,
1996 				    unsigned long *spfn, unsigned long *epfn,
1997 				    unsigned long first_init_pfn)
1998 {
1999 	u64 j;
2000 
2001 	/*
2002 	 * Start out by walking through the ranges in this zone that have
2003 	 * already been initialized. We don't need to do anything with them
2004 	 * so we just need to flush them out of the system.
2005 	 */
2006 	for_each_free_mem_pfn_range_in_zone(j, zone, spfn, epfn) {
2007 		if (*epfn <= first_init_pfn)
2008 			continue;
2009 		if (*spfn < first_init_pfn)
2010 			*spfn = first_init_pfn;
2011 		*i = j;
2012 		return true;
2013 	}
2014 
2015 	return false;
2016 }
2017 
2018 /*
2019  * Initialize and free pages. We do it in two loops: first we initialize
2020  * struct page, then free to buddy allocator, because while we are
2021  * freeing pages we can access pages that are ahead (computing buddy
2022  * page in __free_one_page()).
2023  *
2024  * In order to try and keep some memory in the cache we have the loop
2025  * broken along max page order boundaries. This way we will not cause
2026  * any issues with the buddy page computation.
2027  */
2028 static unsigned long __init
2029 deferred_init_maxorder(u64 *i, struct zone *zone, unsigned long *start_pfn,
2030 		       unsigned long *end_pfn)
2031 {
2032 	unsigned long mo_pfn = ALIGN(*start_pfn + 1, MAX_ORDER_NR_PAGES);
2033 	unsigned long spfn = *start_pfn, epfn = *end_pfn;
2034 	unsigned long nr_pages = 0;
2035 	u64 j = *i;
2036 
2037 	/* First we loop through and initialize the page values */
2038 	for_each_free_mem_pfn_range_in_zone_from(j, zone, start_pfn, end_pfn) {
2039 		unsigned long t;
2040 
2041 		if (mo_pfn <= *start_pfn)
2042 			break;
2043 
2044 		t = min(mo_pfn, *end_pfn);
2045 		nr_pages += deferred_init_pages(zone, *start_pfn, t);
2046 
2047 		if (mo_pfn < *end_pfn) {
2048 			*start_pfn = mo_pfn;
2049 			break;
2050 		}
2051 	}
2052 
2053 	/* Reset values and now loop through freeing pages as needed */
2054 	swap(j, *i);
2055 
2056 	for_each_free_mem_pfn_range_in_zone_from(j, zone, &spfn, &epfn) {
2057 		unsigned long t;
2058 
2059 		if (mo_pfn <= spfn)
2060 			break;
2061 
2062 		t = min(mo_pfn, epfn);
2063 		deferred_free_pages(spfn, t);
2064 
2065 		if (mo_pfn <= epfn)
2066 			break;
2067 	}
2068 
2069 	return nr_pages;
2070 }
2071 
2072 static void __init
2073 deferred_init_memmap_chunk(unsigned long start_pfn, unsigned long end_pfn,
2074 			   void *arg)
2075 {
2076 	unsigned long spfn, epfn;
2077 	struct zone *zone = arg;
2078 	u64 i;
2079 
2080 	deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, start_pfn);
2081 
2082 	/*
2083 	 * Initialize and free pages in MAX_ORDER sized increments so that we
2084 	 * can avoid introducing any issues with the buddy allocator.
2085 	 */
2086 	while (spfn < end_pfn) {
2087 		deferred_init_maxorder(&i, zone, &spfn, &epfn);
2088 		cond_resched();
2089 	}
2090 }
2091 
2092 /* An arch may override for more concurrency. */
2093 __weak int __init
2094 deferred_page_init_max_threads(const struct cpumask *node_cpumask)
2095 {
2096 	return 1;
2097 }
2098 
2099 /* Initialise remaining memory on a node */
2100 static int __init deferred_init_memmap(void *data)
2101 {
2102 	pg_data_t *pgdat = data;
2103 	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
2104 	unsigned long spfn = 0, epfn = 0;
2105 	unsigned long first_init_pfn, flags;
2106 	unsigned long start = jiffies;
2107 	struct zone *zone;
2108 	int zid, max_threads;
2109 	u64 i;
2110 
2111 	/* Bind memory initialisation thread to a local node if possible */
2112 	if (!cpumask_empty(cpumask))
2113 		set_cpus_allowed_ptr(current, cpumask);
2114 
2115 	pgdat_resize_lock(pgdat, &flags);
2116 	first_init_pfn = pgdat->first_deferred_pfn;
2117 	if (first_init_pfn == ULONG_MAX) {
2118 		pgdat_resize_unlock(pgdat, &flags);
2119 		pgdat_init_report_one_done();
2120 		return 0;
2121 	}
2122 
2123 	/* Sanity check boundaries */
2124 	BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
2125 	BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
2126 	pgdat->first_deferred_pfn = ULONG_MAX;
2127 
2128 	/*
2129 	 * Once we unlock here, the zone cannot be grown anymore, thus if an
2130 	 * interrupt thread must allocate this early in boot, zone must be
2131 	 * pre-grown prior to start of deferred page initialization.
2132 	 */
2133 	pgdat_resize_unlock(pgdat, &flags);
2134 
2135 	/* Only the highest zone is deferred so find it */
2136 	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
2137 		zone = pgdat->node_zones + zid;
2138 		if (first_init_pfn < zone_end_pfn(zone))
2139 			break;
2140 	}
2141 
2142 	/* If the zone is empty somebody else may have cleared out the zone */
2143 	if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
2144 						 first_init_pfn))
2145 		goto zone_empty;
2146 
2147 	max_threads = deferred_page_init_max_threads(cpumask);
2148 
2149 	while (spfn < epfn) {
2150 		unsigned long epfn_align = ALIGN(epfn, PAGES_PER_SECTION);
2151 		struct padata_mt_job job = {
2152 			.thread_fn   = deferred_init_memmap_chunk,
2153 			.fn_arg      = zone,
2154 			.start       = spfn,
2155 			.size        = epfn_align - spfn,
2156 			.align       = PAGES_PER_SECTION,
2157 			.min_chunk   = PAGES_PER_SECTION,
2158 			.max_threads = max_threads,
2159 		};
2160 
2161 		padata_do_multithreaded(&job);
2162 		deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
2163 						    epfn_align);
2164 	}
2165 zone_empty:
2166 	/* Sanity check that the next zone really is unpopulated */
2167 	WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
2168 
2169 	pr_info("node %d deferred pages initialised in %ums\n",
2170 		pgdat->node_id, jiffies_to_msecs(jiffies - start));
2171 
2172 	pgdat_init_report_one_done();
2173 	return 0;
2174 }
2175 
2176 /*
2177  * If this zone has deferred pages, try to grow it by initializing enough
2178  * deferred pages to satisfy the allocation specified by order, rounded up to
2179  * the nearest PAGES_PER_SECTION boundary.  So we're adding memory in increments
2180  * of SECTION_SIZE bytes by initializing struct pages in increments of
2181  * PAGES_PER_SECTION * sizeof(struct page) bytes.
2182  *
2183  * Return true when zone was grown, otherwise return false. We return true even
2184  * when we grow less than requested, to let the caller decide if there are
2185  * enough pages to satisfy the allocation.
2186  *
2187  * Note: We use noinline because this function is needed only during boot, and
2188  * it is called from a __ref function _deferred_grow_zone. This way we are
2189  * making sure that it is not inlined into permanent text section.
2190  */
2191 static noinline bool __init
2192 deferred_grow_zone(struct zone *zone, unsigned int order)
2193 {
2194 	unsigned long nr_pages_needed = ALIGN(1 << order, PAGES_PER_SECTION);
2195 	pg_data_t *pgdat = zone->zone_pgdat;
2196 	unsigned long first_deferred_pfn = pgdat->first_deferred_pfn;
2197 	unsigned long spfn, epfn, flags;
2198 	unsigned long nr_pages = 0;
2199 	u64 i;
2200 
2201 	/* Only the last zone may have deferred pages */
2202 	if (zone_end_pfn(zone) != pgdat_end_pfn(pgdat))
2203 		return false;
2204 
2205 	pgdat_resize_lock(pgdat, &flags);
2206 
2207 	/*
2208 	 * If someone grew this zone while we were waiting for spinlock, return
2209 	 * true, as there might be enough pages already.
2210 	 */
2211 	if (first_deferred_pfn != pgdat->first_deferred_pfn) {
2212 		pgdat_resize_unlock(pgdat, &flags);
2213 		return true;
2214 	}
2215 
2216 	/* If the zone is empty somebody else may have cleared out the zone */
2217 	if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
2218 						 first_deferred_pfn)) {
2219 		pgdat->first_deferred_pfn = ULONG_MAX;
2220 		pgdat_resize_unlock(pgdat, &flags);
2221 		/* Retry only once. */
2222 		return first_deferred_pfn != ULONG_MAX;
2223 	}
2224 
2225 	/*
2226 	 * Initialize and free pages in MAX_ORDER sized increments so
2227 	 * that we can avoid introducing any issues with the buddy
2228 	 * allocator.
2229 	 */
2230 	while (spfn < epfn) {
2231 		/* update our first deferred PFN for this section */
2232 		first_deferred_pfn = spfn;
2233 
2234 		nr_pages += deferred_init_maxorder(&i, zone, &spfn, &epfn);
2235 		touch_nmi_watchdog();
2236 
2237 		/* We should only stop along section boundaries */
2238 		if ((first_deferred_pfn ^ spfn) < PAGES_PER_SECTION)
2239 			continue;
2240 
2241 		/* If our quota has been met we can stop here */
2242 		if (nr_pages >= nr_pages_needed)
2243 			break;
2244 	}
2245 
2246 	pgdat->first_deferred_pfn = spfn;
2247 	pgdat_resize_unlock(pgdat, &flags);
2248 
2249 	return nr_pages > 0;
2250 }
2251 
2252 /*
2253  * deferred_grow_zone() is __init, but it is called from
2254  * get_page_from_freelist() during early boot until deferred_pages permanently
2255  * disables this call. This is why we have refdata wrapper to avoid warning,
2256  * and to ensure that the function body gets unloaded.
2257  */
2258 static bool __ref
2259 _deferred_grow_zone(struct zone *zone, unsigned int order)
2260 {
2261 	return deferred_grow_zone(zone, order);
2262 }
2263 
2264 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
2265 
2266 void __init page_alloc_init_late(void)
2267 {
2268 	struct zone *zone;
2269 	int nid;
2270 
2271 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
2272 
2273 	/* There will be num_node_state(N_MEMORY) threads */
2274 	atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
2275 	for_each_node_state(nid, N_MEMORY) {
2276 		kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
2277 	}
2278 
2279 	/* Block until all are initialised */
2280 	wait_for_completion(&pgdat_init_all_done_comp);
2281 
2282 	/*
2283 	 * We initialized the rest of the deferred pages.  Permanently disable
2284 	 * on-demand struct page initialization.
2285 	 */
2286 	static_branch_disable(&deferred_pages);
2287 
2288 	/* Reinit limits that are based on free pages after the kernel is up */
2289 	files_maxfiles_init();
2290 #endif
2291 
2292 	buffer_init();
2293 
2294 	/* Discard memblock private memory */
2295 	memblock_discard();
2296 
2297 	for_each_node_state(nid, N_MEMORY)
2298 		shuffle_free_memory(NODE_DATA(nid));
2299 
2300 	for_each_populated_zone(zone)
2301 		set_zone_contiguous(zone);
2302 }
2303 
2304 #ifdef CONFIG_CMA
2305 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */
2306 void __init init_cma_reserved_pageblock(struct page *page)
2307 {
2308 	unsigned i = pageblock_nr_pages;
2309 	struct page *p = page;
2310 
2311 	do {
2312 		__ClearPageReserved(p);
2313 		set_page_count(p, 0);
2314 	} while (++p, --i);
2315 
2316 	set_pageblock_migratetype(page, MIGRATE_CMA);
2317 	set_page_refcounted(page);
2318 	__free_pages(page, pageblock_order);
2319 
2320 	adjust_managed_page_count(page, pageblock_nr_pages);
2321 	page_zone(page)->cma_pages += pageblock_nr_pages;
2322 }
2323 #endif
2324 
2325 /*
2326  * The order of subdivision here is critical for the IO subsystem.
2327  * Please do not alter this order without good reasons and regression
2328  * testing. Specifically, as large blocks of memory are subdivided,
2329  * the order in which smaller blocks are delivered depends on the order
2330  * they're subdivided in this function. This is the primary factor
2331  * influencing the order in which pages are delivered to the IO
2332  * subsystem according to empirical testing, and this is also justified
2333  * by considering the behavior of a buddy system containing a single
2334  * large block of memory acted on by a series of small allocations.
2335  * This behavior is a critical factor in sglist merging's success.
2336  *
2337  * -- nyc
2338  */
2339 static inline void expand(struct zone *zone, struct page *page,
2340 	int low, int high, int migratetype)
2341 {
2342 	unsigned long size = 1 << high;
2343 
2344 	while (high > low) {
2345 		high--;
2346 		size >>= 1;
2347 		VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
2348 
2349 		/*
2350 		 * Mark as guard pages (or page), that will allow to
2351 		 * merge back to allocator when buddy will be freed.
2352 		 * Corresponding page table entries will not be touched,
2353 		 * pages will stay not present in virtual address space
2354 		 */
2355 		if (set_page_guard(zone, &page[size], high, migratetype))
2356 			continue;
2357 
2358 		add_to_free_list(&page[size], zone, high, migratetype);
2359 		set_buddy_order(&page[size], high);
2360 	}
2361 }
2362 
2363 static void check_new_page_bad(struct page *page)
2364 {
2365 	if (unlikely(page->flags & __PG_HWPOISON)) {
2366 		/* Don't complain about hwpoisoned pages */
2367 		page_mapcount_reset(page); /* remove PageBuddy */
2368 		return;
2369 	}
2370 
2371 	bad_page(page,
2372 		 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_PREP));
2373 }
2374 
2375 /*
2376  * This page is about to be returned from the page allocator
2377  */
2378 static inline int check_new_page(struct page *page)
2379 {
2380 	if (likely(page_expected_state(page,
2381 				PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
2382 		return 0;
2383 
2384 	check_new_page_bad(page);
2385 	return 1;
2386 }
2387 
2388 static bool check_new_pages(struct page *page, unsigned int order)
2389 {
2390 	int i;
2391 	for (i = 0; i < (1 << order); i++) {
2392 		struct page *p = page + i;
2393 
2394 		if (unlikely(check_new_page(p)))
2395 			return true;
2396 	}
2397 
2398 	return false;
2399 }
2400 
2401 #ifdef CONFIG_DEBUG_VM
2402 /*
2403  * With DEBUG_VM enabled, order-0 pages are checked for expected state when
2404  * being allocated from pcp lists. With debug_pagealloc also enabled, they are
2405  * also checked when pcp lists are refilled from the free lists.
2406  */
2407 static inline bool check_pcp_refill(struct page *page, unsigned int order)
2408 {
2409 	if (debug_pagealloc_enabled_static())
2410 		return check_new_pages(page, order);
2411 	else
2412 		return false;
2413 }
2414 
2415 static inline bool check_new_pcp(struct page *page, unsigned int order)
2416 {
2417 	return check_new_pages(page, order);
2418 }
2419 #else
2420 /*
2421  * With DEBUG_VM disabled, free order-0 pages are checked for expected state
2422  * when pcp lists are being refilled from the free lists. With debug_pagealloc
2423  * enabled, they are also checked when being allocated from the pcp lists.
2424  */
2425 static inline bool check_pcp_refill(struct page *page, unsigned int order)
2426 {
2427 	return check_new_pages(page, order);
2428 }
2429 static inline bool check_new_pcp(struct page *page, unsigned int order)
2430 {
2431 	if (debug_pagealloc_enabled_static())
2432 		return check_new_pages(page, order);
2433 	else
2434 		return false;
2435 }
2436 #endif /* CONFIG_DEBUG_VM */
2437 
2438 static inline bool should_skip_kasan_unpoison(gfp_t flags)
2439 {
2440 	/* Don't skip if a software KASAN mode is enabled. */
2441 	if (IS_ENABLED(CONFIG_KASAN_GENERIC) ||
2442 	    IS_ENABLED(CONFIG_KASAN_SW_TAGS))
2443 		return false;
2444 
2445 	/* Skip, if hardware tag-based KASAN is not enabled. */
2446 	if (!kasan_hw_tags_enabled())
2447 		return true;
2448 
2449 	/*
2450 	 * With hardware tag-based KASAN enabled, skip if this has been
2451 	 * requested via __GFP_SKIP_KASAN_UNPOISON.
2452 	 */
2453 	return flags & __GFP_SKIP_KASAN_UNPOISON;
2454 }
2455 
2456 static inline bool should_skip_init(gfp_t flags)
2457 {
2458 	/* Don't skip, if hardware tag-based KASAN is not enabled. */
2459 	if (!kasan_hw_tags_enabled())
2460 		return false;
2461 
2462 	/* For hardware tag-based KASAN, skip if requested. */
2463 	return (flags & __GFP_SKIP_ZERO);
2464 }
2465 
2466 inline void post_alloc_hook(struct page *page, unsigned int order,
2467 				gfp_t gfp_flags)
2468 {
2469 	bool init = !want_init_on_free() && want_init_on_alloc(gfp_flags) &&
2470 			!should_skip_init(gfp_flags);
2471 	bool init_tags = init && (gfp_flags & __GFP_ZEROTAGS);
2472 	int i;
2473 
2474 	set_page_private(page, 0);
2475 	set_page_refcounted(page);
2476 
2477 	arch_alloc_page(page, order);
2478 	debug_pagealloc_map_pages(page, 1 << order);
2479 
2480 	/*
2481 	 * Page unpoisoning must happen before memory initialization.
2482 	 * Otherwise, the poison pattern will be overwritten for __GFP_ZERO
2483 	 * allocations and the page unpoisoning code will complain.
2484 	 */
2485 	kernel_unpoison_pages(page, 1 << order);
2486 
2487 	/*
2488 	 * As memory initialization might be integrated into KASAN,
2489 	 * KASAN unpoisoning and memory initializion code must be
2490 	 * kept together to avoid discrepancies in behavior.
2491 	 */
2492 
2493 	/*
2494 	 * If memory tags should be zeroed (which happens only when memory
2495 	 * should be initialized as well).
2496 	 */
2497 	if (init_tags) {
2498 		/* Initialize both memory and tags. */
2499 		for (i = 0; i != 1 << order; ++i)
2500 			tag_clear_highpage(page + i);
2501 
2502 		/* Note that memory is already initialized by the loop above. */
2503 		init = false;
2504 	}
2505 	if (!should_skip_kasan_unpoison(gfp_flags)) {
2506 		/* Unpoison shadow memory or set memory tags. */
2507 		kasan_unpoison_pages(page, order, init);
2508 
2509 		/* Note that memory is already initialized by KASAN. */
2510 		if (kasan_has_integrated_init())
2511 			init = false;
2512 	} else {
2513 		/* Ensure page_address() dereferencing does not fault. */
2514 		for (i = 0; i != 1 << order; ++i)
2515 			page_kasan_tag_reset(page + i);
2516 	}
2517 	/* If memory is still not initialized, do it now. */
2518 	if (init)
2519 		kernel_init_pages(page, 1 << order);
2520 	/* Propagate __GFP_SKIP_KASAN_POISON to page flags. */
2521 	if (kasan_hw_tags_enabled() && (gfp_flags & __GFP_SKIP_KASAN_POISON))
2522 		SetPageSkipKASanPoison(page);
2523 
2524 	set_page_owner(page, order, gfp_flags);
2525 	page_table_check_alloc(page, order);
2526 }
2527 
2528 static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
2529 							unsigned int alloc_flags)
2530 {
2531 	post_alloc_hook(page, order, gfp_flags);
2532 
2533 	if (order && (gfp_flags & __GFP_COMP))
2534 		prep_compound_page(page, order);
2535 
2536 	/*
2537 	 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
2538 	 * allocate the page. The expectation is that the caller is taking
2539 	 * steps that will free more memory. The caller should avoid the page
2540 	 * being used for !PFMEMALLOC purposes.
2541 	 */
2542 	if (alloc_flags & ALLOC_NO_WATERMARKS)
2543 		set_page_pfmemalloc(page);
2544 	else
2545 		clear_page_pfmemalloc(page);
2546 }
2547 
2548 /*
2549  * Go through the free lists for the given migratetype and remove
2550  * the smallest available page from the freelists
2551  */
2552 static __always_inline
2553 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
2554 						int migratetype)
2555 {
2556 	unsigned int current_order;
2557 	struct free_area *area;
2558 	struct page *page;
2559 
2560 	/* Find a page of the appropriate size in the preferred list */
2561 	for (current_order = order; current_order < MAX_ORDER; ++current_order) {
2562 		area = &(zone->free_area[current_order]);
2563 		page = get_page_from_free_area(area, migratetype);
2564 		if (!page)
2565 			continue;
2566 		del_page_from_free_list(page, zone, current_order);
2567 		expand(zone, page, order, current_order, migratetype);
2568 		set_pcppage_migratetype(page, migratetype);
2569 		trace_mm_page_alloc_zone_locked(page, order, migratetype,
2570 				pcp_allowed_order(order) &&
2571 				migratetype < MIGRATE_PCPTYPES);
2572 		return page;
2573 	}
2574 
2575 	return NULL;
2576 }
2577 
2578 
2579 /*
2580  * This array describes the order lists are fallen back to when
2581  * the free lists for the desirable migrate type are depleted
2582  *
2583  * The other migratetypes do not have fallbacks.
2584  */
2585 static int fallbacks[MIGRATE_TYPES][3] = {
2586 	[MIGRATE_UNMOVABLE]   = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE,   MIGRATE_TYPES },
2587 	[MIGRATE_MOVABLE]     = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
2588 	[MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE,   MIGRATE_MOVABLE,   MIGRATE_TYPES },
2589 };
2590 
2591 #ifdef CONFIG_CMA
2592 static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone,
2593 					unsigned int order)
2594 {
2595 	return __rmqueue_smallest(zone, order, MIGRATE_CMA);
2596 }
2597 #else
2598 static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
2599 					unsigned int order) { return NULL; }
2600 #endif
2601 
2602 /*
2603  * Move the free pages in a range to the freelist tail of the requested type.
2604  * Note that start_page and end_pages are not aligned on a pageblock
2605  * boundary. If alignment is required, use move_freepages_block()
2606  */
2607 static int move_freepages(struct zone *zone,
2608 			  unsigned long start_pfn, unsigned long end_pfn,
2609 			  int migratetype, int *num_movable)
2610 {
2611 	struct page *page;
2612 	unsigned long pfn;
2613 	unsigned int order;
2614 	int pages_moved = 0;
2615 
2616 	for (pfn = start_pfn; pfn <= end_pfn;) {
2617 		page = pfn_to_page(pfn);
2618 		if (!PageBuddy(page)) {
2619 			/*
2620 			 * We assume that pages that could be isolated for
2621 			 * migration are movable. But we don't actually try
2622 			 * isolating, as that would be expensive.
2623 			 */
2624 			if (num_movable &&
2625 					(PageLRU(page) || __PageMovable(page)))
2626 				(*num_movable)++;
2627 			pfn++;
2628 			continue;
2629 		}
2630 
2631 		/* Make sure we are not inadvertently changing nodes */
2632 		VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
2633 		VM_BUG_ON_PAGE(page_zone(page) != zone, page);
2634 
2635 		order = buddy_order(page);
2636 		move_to_free_list(page, zone, order, migratetype);
2637 		pfn += 1 << order;
2638 		pages_moved += 1 << order;
2639 	}
2640 
2641 	return pages_moved;
2642 }
2643 
2644 int move_freepages_block(struct zone *zone, struct page *page,
2645 				int migratetype, int *num_movable)
2646 {
2647 	unsigned long start_pfn, end_pfn, pfn;
2648 
2649 	if (num_movable)
2650 		*num_movable = 0;
2651 
2652 	pfn = page_to_pfn(page);
2653 	start_pfn = pageblock_start_pfn(pfn);
2654 	end_pfn = pageblock_end_pfn(pfn) - 1;
2655 
2656 	/* Do not cross zone boundaries */
2657 	if (!zone_spans_pfn(zone, start_pfn))
2658 		start_pfn = pfn;
2659 	if (!zone_spans_pfn(zone, end_pfn))
2660 		return 0;
2661 
2662 	return move_freepages(zone, start_pfn, end_pfn, migratetype,
2663 								num_movable);
2664 }
2665 
2666 static void change_pageblock_range(struct page *pageblock_page,
2667 					int start_order, int migratetype)
2668 {
2669 	int nr_pageblocks = 1 << (start_order - pageblock_order);
2670 
2671 	while (nr_pageblocks--) {
2672 		set_pageblock_migratetype(pageblock_page, migratetype);
2673 		pageblock_page += pageblock_nr_pages;
2674 	}
2675 }
2676 
2677 /*
2678  * When we are falling back to another migratetype during allocation, try to
2679  * steal extra free pages from the same pageblocks to satisfy further
2680  * allocations, instead of polluting multiple pageblocks.
2681  *
2682  * If we are stealing a relatively large buddy page, it is likely there will
2683  * be more free pages in the pageblock, so try to steal them all. For
2684  * reclaimable and unmovable allocations, we steal regardless of page size,
2685  * as fragmentation caused by those allocations polluting movable pageblocks
2686  * is worse than movable allocations stealing from unmovable and reclaimable
2687  * pageblocks.
2688  */
2689 static bool can_steal_fallback(unsigned int order, int start_mt)
2690 {
2691 	/*
2692 	 * Leaving this order check is intended, although there is
2693 	 * relaxed order check in next check. The reason is that
2694 	 * we can actually steal whole pageblock if this condition met,
2695 	 * but, below check doesn't guarantee it and that is just heuristic
2696 	 * so could be changed anytime.
2697 	 */
2698 	if (order >= pageblock_order)
2699 		return true;
2700 
2701 	if (order >= pageblock_order / 2 ||
2702 		start_mt == MIGRATE_RECLAIMABLE ||
2703 		start_mt == MIGRATE_UNMOVABLE ||
2704 		page_group_by_mobility_disabled)
2705 		return true;
2706 
2707 	return false;
2708 }
2709 
2710 static inline bool boost_watermark(struct zone *zone)
2711 {
2712 	unsigned long max_boost;
2713 
2714 	if (!watermark_boost_factor)
2715 		return false;
2716 	/*
2717 	 * Don't bother in zones that are unlikely to produce results.
2718 	 * On small machines, including kdump capture kernels running
2719 	 * in a small area, boosting the watermark can cause an out of
2720 	 * memory situation immediately.
2721 	 */
2722 	if ((pageblock_nr_pages * 4) > zone_managed_pages(zone))
2723 		return false;
2724 
2725 	max_boost = mult_frac(zone->_watermark[WMARK_HIGH],
2726 			watermark_boost_factor, 10000);
2727 
2728 	/*
2729 	 * high watermark may be uninitialised if fragmentation occurs
2730 	 * very early in boot so do not boost. We do not fall
2731 	 * through and boost by pageblock_nr_pages as failing
2732 	 * allocations that early means that reclaim is not going
2733 	 * to help and it may even be impossible to reclaim the
2734 	 * boosted watermark resulting in a hang.
2735 	 */
2736 	if (!max_boost)
2737 		return false;
2738 
2739 	max_boost = max(pageblock_nr_pages, max_boost);
2740 
2741 	zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages,
2742 		max_boost);
2743 
2744 	return true;
2745 }
2746 
2747 /*
2748  * This function implements actual steal behaviour. If order is large enough,
2749  * we can steal whole pageblock. If not, we first move freepages in this
2750  * pageblock to our migratetype and determine how many already-allocated pages
2751  * are there in the pageblock with a compatible migratetype. If at least half
2752  * of pages are free or compatible, we can change migratetype of the pageblock
2753  * itself, so pages freed in the future will be put on the correct free list.
2754  */
2755 static void steal_suitable_fallback(struct zone *zone, struct page *page,
2756 		unsigned int alloc_flags, int start_type, bool whole_block)
2757 {
2758 	unsigned int current_order = buddy_order(page);
2759 	int free_pages, movable_pages, alike_pages;
2760 	int old_block_type;
2761 
2762 	old_block_type = get_pageblock_migratetype(page);
2763 
2764 	/*
2765 	 * This can happen due to races and we want to prevent broken
2766 	 * highatomic accounting.
2767 	 */
2768 	if (is_migrate_highatomic(old_block_type))
2769 		goto single_page;
2770 
2771 	/* Take ownership for orders >= pageblock_order */
2772 	if (current_order >= pageblock_order) {
2773 		change_pageblock_range(page, current_order, start_type);
2774 		goto single_page;
2775 	}
2776 
2777 	/*
2778 	 * Boost watermarks to increase reclaim pressure to reduce the
2779 	 * likelihood of future fallbacks. Wake kswapd now as the node
2780 	 * may be balanced overall and kswapd will not wake naturally.
2781 	 */
2782 	if (boost_watermark(zone) && (alloc_flags & ALLOC_KSWAPD))
2783 		set_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
2784 
2785 	/* We are not allowed to try stealing from the whole block */
2786 	if (!whole_block)
2787 		goto single_page;
2788 
2789 	free_pages = move_freepages_block(zone, page, start_type,
2790 						&movable_pages);
2791 	/*
2792 	 * Determine how many pages are compatible with our allocation.
2793 	 * For movable allocation, it's the number of movable pages which
2794 	 * we just obtained. For other types it's a bit more tricky.
2795 	 */
2796 	if (start_type == MIGRATE_MOVABLE) {
2797 		alike_pages = movable_pages;
2798 	} else {
2799 		/*
2800 		 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
2801 		 * to MOVABLE pageblock, consider all non-movable pages as
2802 		 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
2803 		 * vice versa, be conservative since we can't distinguish the
2804 		 * exact migratetype of non-movable pages.
2805 		 */
2806 		if (old_block_type == MIGRATE_MOVABLE)
2807 			alike_pages = pageblock_nr_pages
2808 						- (free_pages + movable_pages);
2809 		else
2810 			alike_pages = 0;
2811 	}
2812 
2813 	/* moving whole block can fail due to zone boundary conditions */
2814 	if (!free_pages)
2815 		goto single_page;
2816 
2817 	/*
2818 	 * If a sufficient number of pages in the block are either free or of
2819 	 * comparable migratability as our allocation, claim the whole block.
2820 	 */
2821 	if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
2822 			page_group_by_mobility_disabled)
2823 		set_pageblock_migratetype(page, start_type);
2824 
2825 	return;
2826 
2827 single_page:
2828 	move_to_free_list(page, zone, current_order, start_type);
2829 }
2830 
2831 /*
2832  * Check whether there is a suitable fallback freepage with requested order.
2833  * If only_stealable is true, this function returns fallback_mt only if
2834  * we can steal other freepages all together. This would help to reduce
2835  * fragmentation due to mixed migratetype pages in one pageblock.
2836  */
2837 int find_suitable_fallback(struct free_area *area, unsigned int order,
2838 			int migratetype, bool only_stealable, bool *can_steal)
2839 {
2840 	int i;
2841 	int fallback_mt;
2842 
2843 	if (area->nr_free == 0)
2844 		return -1;
2845 
2846 	*can_steal = false;
2847 	for (i = 0;; i++) {
2848 		fallback_mt = fallbacks[migratetype][i];
2849 		if (fallback_mt == MIGRATE_TYPES)
2850 			break;
2851 
2852 		if (free_area_empty(area, fallback_mt))
2853 			continue;
2854 
2855 		if (can_steal_fallback(order, migratetype))
2856 			*can_steal = true;
2857 
2858 		if (!only_stealable)
2859 			return fallback_mt;
2860 
2861 		if (*can_steal)
2862 			return fallback_mt;
2863 	}
2864 
2865 	return -1;
2866 }
2867 
2868 /*
2869  * Reserve a pageblock for exclusive use of high-order atomic allocations if
2870  * there are no empty page blocks that contain a page with a suitable order
2871  */
2872 static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
2873 				unsigned int alloc_order)
2874 {
2875 	int mt;
2876 	unsigned long max_managed, flags;
2877 
2878 	/*
2879 	 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
2880 	 * Check is race-prone but harmless.
2881 	 */
2882 	max_managed = (zone_managed_pages(zone) / 100) + pageblock_nr_pages;
2883 	if (zone->nr_reserved_highatomic >= max_managed)
2884 		return;
2885 
2886 	spin_lock_irqsave(&zone->lock, flags);
2887 
2888 	/* Recheck the nr_reserved_highatomic limit under the lock */
2889 	if (zone->nr_reserved_highatomic >= max_managed)
2890 		goto out_unlock;
2891 
2892 	/* Yoink! */
2893 	mt = get_pageblock_migratetype(page);
2894 	/* Only reserve normal pageblocks (i.e., they can merge with others) */
2895 	if (migratetype_is_mergeable(mt)) {
2896 		zone->nr_reserved_highatomic += pageblock_nr_pages;
2897 		set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
2898 		move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL);
2899 	}
2900 
2901 out_unlock:
2902 	spin_unlock_irqrestore(&zone->lock, flags);
2903 }
2904 
2905 /*
2906  * Used when an allocation is about to fail under memory pressure. This
2907  * potentially hurts the reliability of high-order allocations when under
2908  * intense memory pressure but failed atomic allocations should be easier
2909  * to recover from than an OOM.
2910  *
2911  * If @force is true, try to unreserve a pageblock even though highatomic
2912  * pageblock is exhausted.
2913  */
2914 static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
2915 						bool force)
2916 {
2917 	struct zonelist *zonelist = ac->zonelist;
2918 	unsigned long flags;
2919 	struct zoneref *z;
2920 	struct zone *zone;
2921 	struct page *page;
2922 	int order;
2923 	bool ret;
2924 
2925 	for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->highest_zoneidx,
2926 								ac->nodemask) {
2927 		/*
2928 		 * Preserve at least one pageblock unless memory pressure
2929 		 * is really high.
2930 		 */
2931 		if (!force && zone->nr_reserved_highatomic <=
2932 					pageblock_nr_pages)
2933 			continue;
2934 
2935 		spin_lock_irqsave(&zone->lock, flags);
2936 		for (order = 0; order < MAX_ORDER; order++) {
2937 			struct free_area *area = &(zone->free_area[order]);
2938 
2939 			page = get_page_from_free_area(area, MIGRATE_HIGHATOMIC);
2940 			if (!page)
2941 				continue;
2942 
2943 			/*
2944 			 * In page freeing path, migratetype change is racy so
2945 			 * we can counter several free pages in a pageblock
2946 			 * in this loop although we changed the pageblock type
2947 			 * from highatomic to ac->migratetype. So we should
2948 			 * adjust the count once.
2949 			 */
2950 			if (is_migrate_highatomic_page(page)) {
2951 				/*
2952 				 * It should never happen but changes to
2953 				 * locking could inadvertently allow a per-cpu
2954 				 * drain to add pages to MIGRATE_HIGHATOMIC
2955 				 * while unreserving so be safe and watch for
2956 				 * underflows.
2957 				 */
2958 				zone->nr_reserved_highatomic -= min(
2959 						pageblock_nr_pages,
2960 						zone->nr_reserved_highatomic);
2961 			}
2962 
2963 			/*
2964 			 * Convert to ac->migratetype and avoid the normal
2965 			 * pageblock stealing heuristics. Minimally, the caller
2966 			 * is doing the work and needs the pages. More
2967 			 * importantly, if the block was always converted to
2968 			 * MIGRATE_UNMOVABLE or another type then the number
2969 			 * of pageblocks that cannot be completely freed
2970 			 * may increase.
2971 			 */
2972 			set_pageblock_migratetype(page, ac->migratetype);
2973 			ret = move_freepages_block(zone, page, ac->migratetype,
2974 									NULL);
2975 			if (ret) {
2976 				spin_unlock_irqrestore(&zone->lock, flags);
2977 				return ret;
2978 			}
2979 		}
2980 		spin_unlock_irqrestore(&zone->lock, flags);
2981 	}
2982 
2983 	return false;
2984 }
2985 
2986 /*
2987  * Try finding a free buddy page on the fallback list and put it on the free
2988  * list of requested migratetype, possibly along with other pages from the same
2989  * block, depending on fragmentation avoidance heuristics. Returns true if
2990  * fallback was found so that __rmqueue_smallest() can grab it.
2991  *
2992  * The use of signed ints for order and current_order is a deliberate
2993  * deviation from the rest of this file, to make the for loop
2994  * condition simpler.
2995  */
2996 static __always_inline bool
2997 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype,
2998 						unsigned int alloc_flags)
2999 {
3000 	struct free_area *area;
3001 	int current_order;
3002 	int min_order = order;
3003 	struct page *page;
3004 	int fallback_mt;
3005 	bool can_steal;
3006 
3007 	/*
3008 	 * Do not steal pages from freelists belonging to other pageblocks
3009 	 * i.e. orders < pageblock_order. If there are no local zones free,
3010 	 * the zonelists will be reiterated without ALLOC_NOFRAGMENT.
3011 	 */
3012 	if (order < pageblock_order && alloc_flags & ALLOC_NOFRAGMENT)
3013 		min_order = pageblock_order;
3014 
3015 	/*
3016 	 * Find the largest available free page in the other list. This roughly
3017 	 * approximates finding the pageblock with the most free pages, which
3018 	 * would be too costly to do exactly.
3019 	 */
3020 	for (current_order = MAX_ORDER - 1; current_order >= min_order;
3021 				--current_order) {
3022 		area = &(zone->free_area[current_order]);
3023 		fallback_mt = find_suitable_fallback(area, current_order,
3024 				start_migratetype, false, &can_steal);
3025 		if (fallback_mt == -1)
3026 			continue;
3027 
3028 		/*
3029 		 * We cannot steal all free pages from the pageblock and the
3030 		 * requested migratetype is movable. In that case it's better to
3031 		 * steal and split the smallest available page instead of the
3032 		 * largest available page, because even if the next movable
3033 		 * allocation falls back into a different pageblock than this
3034 		 * one, it won't cause permanent fragmentation.
3035 		 */
3036 		if (!can_steal && start_migratetype == MIGRATE_MOVABLE
3037 					&& current_order > order)
3038 			goto find_smallest;
3039 
3040 		goto do_steal;
3041 	}
3042 
3043 	return false;
3044 
3045 find_smallest:
3046 	for (current_order = order; current_order < MAX_ORDER;
3047 							current_order++) {
3048 		area = &(zone->free_area[current_order]);
3049 		fallback_mt = find_suitable_fallback(area, current_order,
3050 				start_migratetype, false, &can_steal);
3051 		if (fallback_mt != -1)
3052 			break;
3053 	}
3054 
3055 	/*
3056 	 * This should not happen - we already found a suitable fallback
3057 	 * when looking for the largest page.
3058 	 */
3059 	VM_BUG_ON(current_order == MAX_ORDER);
3060 
3061 do_steal:
3062 	page = get_page_from_free_area(area, fallback_mt);
3063 
3064 	steal_suitable_fallback(zone, page, alloc_flags, start_migratetype,
3065 								can_steal);
3066 
3067 	trace_mm_page_alloc_extfrag(page, order, current_order,
3068 		start_migratetype, fallback_mt);
3069 
3070 	return true;
3071 
3072 }
3073 
3074 /*
3075  * Do the hard work of removing an element from the buddy allocator.
3076  * Call me with the zone->lock already held.
3077  */
3078 static __always_inline struct page *
3079 __rmqueue(struct zone *zone, unsigned int order, int migratetype,
3080 						unsigned int alloc_flags)
3081 {
3082 	struct page *page;
3083 
3084 	if (IS_ENABLED(CONFIG_CMA)) {
3085 		/*
3086 		 * Balance movable allocations between regular and CMA areas by
3087 		 * allocating from CMA when over half of the zone's free memory
3088 		 * is in the CMA area.
3089 		 */
3090 		if (alloc_flags & ALLOC_CMA &&
3091 		    zone_page_state(zone, NR_FREE_CMA_PAGES) >
3092 		    zone_page_state(zone, NR_FREE_PAGES) / 2) {
3093 			page = __rmqueue_cma_fallback(zone, order);
3094 			if (page)
3095 				return page;
3096 		}
3097 	}
3098 retry:
3099 	page = __rmqueue_smallest(zone, order, migratetype);
3100 	if (unlikely(!page)) {
3101 		if (alloc_flags & ALLOC_CMA)
3102 			page = __rmqueue_cma_fallback(zone, order);
3103 
3104 		if (!page && __rmqueue_fallback(zone, order, migratetype,
3105 								alloc_flags))
3106 			goto retry;
3107 	}
3108 	return page;
3109 }
3110 
3111 /*
3112  * Obtain a specified number of elements from the buddy allocator, all under
3113  * a single hold of the lock, for efficiency.  Add them to the supplied list.
3114  * Returns the number of new pages which were placed at *list.
3115  */
3116 static int rmqueue_bulk(struct zone *zone, unsigned int order,
3117 			unsigned long count, struct list_head *list,
3118 			int migratetype, unsigned int alloc_flags)
3119 {
3120 	unsigned long flags;
3121 	int i, allocated = 0;
3122 
3123 	spin_lock_irqsave(&zone->lock, flags);
3124 	for (i = 0; i < count; ++i) {
3125 		struct page *page = __rmqueue(zone, order, migratetype,
3126 								alloc_flags);
3127 		if (unlikely(page == NULL))
3128 			break;
3129 
3130 		if (unlikely(check_pcp_refill(page, order)))
3131 			continue;
3132 
3133 		/*
3134 		 * Split buddy pages returned by expand() are received here in
3135 		 * physical page order. The page is added to the tail of
3136 		 * caller's list. From the callers perspective, the linked list
3137 		 * is ordered by page number under some conditions. This is
3138 		 * useful for IO devices that can forward direction from the
3139 		 * head, thus also in the physical page order. This is useful
3140 		 * for IO devices that can merge IO requests if the physical
3141 		 * pages are ordered properly.
3142 		 */
3143 		list_add_tail(&page->pcp_list, list);
3144 		allocated++;
3145 		if (is_migrate_cma(get_pcppage_migratetype(page)))
3146 			__mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
3147 					      -(1 << order));
3148 	}
3149 
3150 	/*
3151 	 * i pages were removed from the buddy list even if some leak due
3152 	 * to check_pcp_refill failing so adjust NR_FREE_PAGES based
3153 	 * on i. Do not confuse with 'allocated' which is the number of
3154 	 * pages added to the pcp list.
3155 	 */
3156 	__mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
3157 	spin_unlock_irqrestore(&zone->lock, flags);
3158 	return allocated;
3159 }
3160 
3161 #ifdef CONFIG_NUMA
3162 /*
3163  * Called from the vmstat counter updater to drain pagesets of this
3164  * currently executing processor on remote nodes after they have
3165  * expired.
3166  */
3167 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
3168 {
3169 	int to_drain, batch;
3170 
3171 	batch = READ_ONCE(pcp->batch);
3172 	to_drain = min(pcp->count, batch);
3173 	if (to_drain > 0) {
3174 		spin_lock(&pcp->lock);
3175 		free_pcppages_bulk(zone, to_drain, pcp, 0);
3176 		spin_unlock(&pcp->lock);
3177 	}
3178 }
3179 #endif
3180 
3181 /*
3182  * Drain pcplists of the indicated processor and zone.
3183  */
3184 static void drain_pages_zone(unsigned int cpu, struct zone *zone)
3185 {
3186 	struct per_cpu_pages *pcp;
3187 
3188 	pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
3189 	if (pcp->count) {
3190 		spin_lock(&pcp->lock);
3191 		free_pcppages_bulk(zone, pcp->count, pcp, 0);
3192 		spin_unlock(&pcp->lock);
3193 	}
3194 }
3195 
3196 /*
3197  * Drain pcplists of all zones on the indicated processor.
3198  */
3199 static void drain_pages(unsigned int cpu)
3200 {
3201 	struct zone *zone;
3202 
3203 	for_each_populated_zone(zone) {
3204 		drain_pages_zone(cpu, zone);
3205 	}
3206 }
3207 
3208 /*
3209  * Spill all of this CPU's per-cpu pages back into the buddy allocator.
3210  */
3211 void drain_local_pages(struct zone *zone)
3212 {
3213 	int cpu = smp_processor_id();
3214 
3215 	if (zone)
3216 		drain_pages_zone(cpu, zone);
3217 	else
3218 		drain_pages(cpu);
3219 }
3220 
3221 /*
3222  * The implementation of drain_all_pages(), exposing an extra parameter to
3223  * drain on all cpus.
3224  *
3225  * drain_all_pages() is optimized to only execute on cpus where pcplists are
3226  * not empty. The check for non-emptiness can however race with a free to
3227  * pcplist that has not yet increased the pcp->count from 0 to 1. Callers
3228  * that need the guarantee that every CPU has drained can disable the
3229  * optimizing racy check.
3230  */
3231 static void __drain_all_pages(struct zone *zone, bool force_all_cpus)
3232 {
3233 	int cpu;
3234 
3235 	/*
3236 	 * Allocate in the BSS so we won't require allocation in
3237 	 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
3238 	 */
3239 	static cpumask_t cpus_with_pcps;
3240 
3241 	/*
3242 	 * Do not drain if one is already in progress unless it's specific to
3243 	 * a zone. Such callers are primarily CMA and memory hotplug and need
3244 	 * the drain to be complete when the call returns.
3245 	 */
3246 	if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
3247 		if (!zone)
3248 			return;
3249 		mutex_lock(&pcpu_drain_mutex);
3250 	}
3251 
3252 	/*
3253 	 * We don't care about racing with CPU hotplug event
3254 	 * as offline notification will cause the notified
3255 	 * cpu to drain that CPU pcps and on_each_cpu_mask
3256 	 * disables preemption as part of its processing
3257 	 */
3258 	for_each_online_cpu(cpu) {
3259 		struct per_cpu_pages *pcp;
3260 		struct zone *z;
3261 		bool has_pcps = false;
3262 
3263 		if (force_all_cpus) {
3264 			/*
3265 			 * The pcp.count check is racy, some callers need a
3266 			 * guarantee that no cpu is missed.
3267 			 */
3268 			has_pcps = true;
3269 		} else if (zone) {
3270 			pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
3271 			if (pcp->count)
3272 				has_pcps = true;
3273 		} else {
3274 			for_each_populated_zone(z) {
3275 				pcp = per_cpu_ptr(z->per_cpu_pageset, cpu);
3276 				if (pcp->count) {
3277 					has_pcps = true;
3278 					break;
3279 				}
3280 			}
3281 		}
3282 
3283 		if (has_pcps)
3284 			cpumask_set_cpu(cpu, &cpus_with_pcps);
3285 		else
3286 			cpumask_clear_cpu(cpu, &cpus_with_pcps);
3287 	}
3288 
3289 	for_each_cpu(cpu, &cpus_with_pcps) {
3290 		if (zone)
3291 			drain_pages_zone(cpu, zone);
3292 		else
3293 			drain_pages(cpu);
3294 	}
3295 
3296 	mutex_unlock(&pcpu_drain_mutex);
3297 }
3298 
3299 /*
3300  * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
3301  *
3302  * When zone parameter is non-NULL, spill just the single zone's pages.
3303  */
3304 void drain_all_pages(struct zone *zone)
3305 {
3306 	__drain_all_pages(zone, false);
3307 }
3308 
3309 #ifdef CONFIG_HIBERNATION
3310 
3311 /*
3312  * Touch the watchdog for every WD_PAGE_COUNT pages.
3313  */
3314 #define WD_PAGE_COUNT	(128*1024)
3315 
3316 void mark_free_pages(struct zone *zone)
3317 {
3318 	unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT;
3319 	unsigned long flags;
3320 	unsigned int order, t;
3321 	struct page *page;
3322 
3323 	if (zone_is_empty(zone))
3324 		return;
3325 
3326 	spin_lock_irqsave(&zone->lock, flags);
3327 
3328 	max_zone_pfn = zone_end_pfn(zone);
3329 	for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
3330 		if (pfn_valid(pfn)) {
3331 			page = pfn_to_page(pfn);
3332 
3333 			if (!--page_count) {
3334 				touch_nmi_watchdog();
3335 				page_count = WD_PAGE_COUNT;
3336 			}
3337 
3338 			if (page_zone(page) != zone)
3339 				continue;
3340 
3341 			if (!swsusp_page_is_forbidden(page))
3342 				swsusp_unset_page_free(page);
3343 		}
3344 
3345 	for_each_migratetype_order(order, t) {
3346 		list_for_each_entry(page,
3347 				&zone->free_area[order].free_list[t], buddy_list) {
3348 			unsigned long i;
3349 
3350 			pfn = page_to_pfn(page);
3351 			for (i = 0; i < (1UL << order); i++) {
3352 				if (!--page_count) {
3353 					touch_nmi_watchdog();
3354 					page_count = WD_PAGE_COUNT;
3355 				}
3356 				swsusp_set_page_free(pfn_to_page(pfn + i));
3357 			}
3358 		}
3359 	}
3360 	spin_unlock_irqrestore(&zone->lock, flags);
3361 }
3362 #endif /* CONFIG_PM */
3363 
3364 static bool free_unref_page_prepare(struct page *page, unsigned long pfn,
3365 							unsigned int order)
3366 {
3367 	int migratetype;
3368 
3369 	if (!free_pcp_prepare(page, order))
3370 		return false;
3371 
3372 	migratetype = get_pfnblock_migratetype(page, pfn);
3373 	set_pcppage_migratetype(page, migratetype);
3374 	return true;
3375 }
3376 
3377 static int nr_pcp_free(struct per_cpu_pages *pcp, int high, int batch,
3378 		       bool free_high)
3379 {
3380 	int min_nr_free, max_nr_free;
3381 
3382 	/* Free everything if batch freeing high-order pages. */
3383 	if (unlikely(free_high))
3384 		return pcp->count;
3385 
3386 	/* Check for PCP disabled or boot pageset */
3387 	if (unlikely(high < batch))
3388 		return 1;
3389 
3390 	/* Leave at least pcp->batch pages on the list */
3391 	min_nr_free = batch;
3392 	max_nr_free = high - batch;
3393 
3394 	/*
3395 	 * Double the number of pages freed each time there is subsequent
3396 	 * freeing of pages without any allocation.
3397 	 */
3398 	batch <<= pcp->free_factor;
3399 	if (batch < max_nr_free)
3400 		pcp->free_factor++;
3401 	batch = clamp(batch, min_nr_free, max_nr_free);
3402 
3403 	return batch;
3404 }
3405 
3406 static int nr_pcp_high(struct per_cpu_pages *pcp, struct zone *zone,
3407 		       bool free_high)
3408 {
3409 	int high = READ_ONCE(pcp->high);
3410 
3411 	if (unlikely(!high || free_high))
3412 		return 0;
3413 
3414 	if (!test_bit(ZONE_RECLAIM_ACTIVE, &zone->flags))
3415 		return high;
3416 
3417 	/*
3418 	 * If reclaim is active, limit the number of pages that can be
3419 	 * stored on pcp lists
3420 	 */
3421 	return min(READ_ONCE(pcp->batch) << 2, high);
3422 }
3423 
3424 static void free_unref_page_commit(struct zone *zone, struct per_cpu_pages *pcp,
3425 				   struct page *page, int migratetype,
3426 				   unsigned int order)
3427 {
3428 	int high;
3429 	int pindex;
3430 	bool free_high;
3431 
3432 	__count_vm_events(PGFREE, 1 << order);
3433 	pindex = order_to_pindex(migratetype, order);
3434 	list_add(&page->pcp_list, &pcp->lists[pindex]);
3435 	pcp->count += 1 << order;
3436 
3437 	/*
3438 	 * As high-order pages other than THP's stored on PCP can contribute
3439 	 * to fragmentation, limit the number stored when PCP is heavily
3440 	 * freeing without allocation. The remainder after bulk freeing
3441 	 * stops will be drained from vmstat refresh context.
3442 	 */
3443 	free_high = (pcp->free_factor && order && order <= PAGE_ALLOC_COSTLY_ORDER);
3444 
3445 	high = nr_pcp_high(pcp, zone, free_high);
3446 	if (pcp->count >= high) {
3447 		int batch = READ_ONCE(pcp->batch);
3448 
3449 		free_pcppages_bulk(zone, nr_pcp_free(pcp, high, batch, free_high), pcp, pindex);
3450 	}
3451 }
3452 
3453 /*
3454  * Free a pcp page
3455  */
3456 void free_unref_page(struct page *page, unsigned int order)
3457 {
3458 	unsigned long __maybe_unused UP_flags;
3459 	struct per_cpu_pages *pcp;
3460 	struct zone *zone;
3461 	unsigned long pfn = page_to_pfn(page);
3462 	int migratetype;
3463 
3464 	if (!free_unref_page_prepare(page, pfn, order))
3465 		return;
3466 
3467 	/*
3468 	 * We only track unmovable, reclaimable and movable on pcp lists.
3469 	 * Place ISOLATE pages on the isolated list because they are being
3470 	 * offlined but treat HIGHATOMIC as movable pages so we can get those
3471 	 * areas back if necessary. Otherwise, we may have to free
3472 	 * excessively into the page allocator
3473 	 */
3474 	migratetype = get_pcppage_migratetype(page);
3475 	if (unlikely(migratetype >= MIGRATE_PCPTYPES)) {
3476 		if (unlikely(is_migrate_isolate(migratetype))) {
3477 			free_one_page(page_zone(page), page, pfn, order, migratetype, FPI_NONE);
3478 			return;
3479 		}
3480 		migratetype = MIGRATE_MOVABLE;
3481 	}
3482 
3483 	zone = page_zone(page);
3484 	pcp_trylock_prepare(UP_flags);
3485 	pcp = pcp_spin_trylock(zone->per_cpu_pageset);
3486 	if (pcp) {
3487 		free_unref_page_commit(zone, pcp, page, migratetype, order);
3488 		pcp_spin_unlock(pcp);
3489 	} else {
3490 		free_one_page(zone, page, pfn, order, migratetype, FPI_NONE);
3491 	}
3492 	pcp_trylock_finish(UP_flags);
3493 }
3494 
3495 /*
3496  * Free a list of 0-order pages
3497  */
3498 void free_unref_page_list(struct list_head *list)
3499 {
3500 	unsigned long __maybe_unused UP_flags;
3501 	struct page *page, *next;
3502 	struct per_cpu_pages *pcp = NULL;
3503 	struct zone *locked_zone = NULL;
3504 	int batch_count = 0;
3505 	int migratetype;
3506 
3507 	/* Prepare pages for freeing */
3508 	list_for_each_entry_safe(page, next, list, lru) {
3509 		unsigned long pfn = page_to_pfn(page);
3510 		if (!free_unref_page_prepare(page, pfn, 0)) {
3511 			list_del(&page->lru);
3512 			continue;
3513 		}
3514 
3515 		/*
3516 		 * Free isolated pages directly to the allocator, see
3517 		 * comment in free_unref_page.
3518 		 */
3519 		migratetype = get_pcppage_migratetype(page);
3520 		if (unlikely(is_migrate_isolate(migratetype))) {
3521 			list_del(&page->lru);
3522 			free_one_page(page_zone(page), page, pfn, 0, migratetype, FPI_NONE);
3523 			continue;
3524 		}
3525 	}
3526 
3527 	list_for_each_entry_safe(page, next, list, lru) {
3528 		struct zone *zone = page_zone(page);
3529 
3530 		list_del(&page->lru);
3531 		migratetype = get_pcppage_migratetype(page);
3532 
3533 		/*
3534 		 * Either different zone requiring a different pcp lock or
3535 		 * excessive lock hold times when freeing a large list of
3536 		 * pages.
3537 		 */
3538 		if (zone != locked_zone || batch_count == SWAP_CLUSTER_MAX) {
3539 			if (pcp) {
3540 				pcp_spin_unlock(pcp);
3541 				pcp_trylock_finish(UP_flags);
3542 			}
3543 
3544 			batch_count = 0;
3545 
3546 			/*
3547 			 * trylock is necessary as pages may be getting freed
3548 			 * from IRQ or SoftIRQ context after an IO completion.
3549 			 */
3550 			pcp_trylock_prepare(UP_flags);
3551 			pcp = pcp_spin_trylock(zone->per_cpu_pageset);
3552 			if (unlikely(!pcp)) {
3553 				pcp_trylock_finish(UP_flags);
3554 				free_one_page(zone, page, page_to_pfn(page),
3555 					      0, migratetype, FPI_NONE);
3556 				locked_zone = NULL;
3557 				continue;
3558 			}
3559 			locked_zone = zone;
3560 		}
3561 
3562 		/*
3563 		 * Non-isolated types over MIGRATE_PCPTYPES get added
3564 		 * to the MIGRATE_MOVABLE pcp list.
3565 		 */
3566 		if (unlikely(migratetype >= MIGRATE_PCPTYPES))
3567 			migratetype = MIGRATE_MOVABLE;
3568 
3569 		trace_mm_page_free_batched(page);
3570 		free_unref_page_commit(zone, pcp, page, migratetype, 0);
3571 		batch_count++;
3572 	}
3573 
3574 	if (pcp) {
3575 		pcp_spin_unlock(pcp);
3576 		pcp_trylock_finish(UP_flags);
3577 	}
3578 }
3579 
3580 /*
3581  * split_page takes a non-compound higher-order page, and splits it into
3582  * n (1<<order) sub-pages: page[0..n]
3583  * Each sub-page must be freed individually.
3584  *
3585  * Note: this is probably too low level an operation for use in drivers.
3586  * Please consult with lkml before using this in your driver.
3587  */
3588 void split_page(struct page *page, unsigned int order)
3589 {
3590 	int i;
3591 
3592 	VM_BUG_ON_PAGE(PageCompound(page), page);
3593 	VM_BUG_ON_PAGE(!page_count(page), page);
3594 
3595 	for (i = 1; i < (1 << order); i++)
3596 		set_page_refcounted(page + i);
3597 	split_page_owner(page, 1 << order);
3598 	split_page_memcg(page, 1 << order);
3599 }
3600 EXPORT_SYMBOL_GPL(split_page);
3601 
3602 int __isolate_free_page(struct page *page, unsigned int order)
3603 {
3604 	struct zone *zone = page_zone(page);
3605 	int mt = get_pageblock_migratetype(page);
3606 
3607 	if (!is_migrate_isolate(mt)) {
3608 		unsigned long watermark;
3609 		/*
3610 		 * Obey watermarks as if the page was being allocated. We can
3611 		 * emulate a high-order watermark check with a raised order-0
3612 		 * watermark, because we already know our high-order page
3613 		 * exists.
3614 		 */
3615 		watermark = zone->_watermark[WMARK_MIN] + (1UL << order);
3616 		if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
3617 			return 0;
3618 
3619 		__mod_zone_freepage_state(zone, -(1UL << order), mt);
3620 	}
3621 
3622 	del_page_from_free_list(page, zone, order);
3623 
3624 	/*
3625 	 * Set the pageblock if the isolated page is at least half of a
3626 	 * pageblock
3627 	 */
3628 	if (order >= pageblock_order - 1) {
3629 		struct page *endpage = page + (1 << order) - 1;
3630 		for (; page < endpage; page += pageblock_nr_pages) {
3631 			int mt = get_pageblock_migratetype(page);
3632 			/*
3633 			 * Only change normal pageblocks (i.e., they can merge
3634 			 * with others)
3635 			 */
3636 			if (migratetype_is_mergeable(mt))
3637 				set_pageblock_migratetype(page,
3638 							  MIGRATE_MOVABLE);
3639 		}
3640 	}
3641 
3642 	return 1UL << order;
3643 }
3644 
3645 /**
3646  * __putback_isolated_page - Return a now-isolated page back where we got it
3647  * @page: Page that was isolated
3648  * @order: Order of the isolated page
3649  * @mt: The page's pageblock's migratetype
3650  *
3651  * This function is meant to return a page pulled from the free lists via
3652  * __isolate_free_page back to the free lists they were pulled from.
3653  */
3654 void __putback_isolated_page(struct page *page, unsigned int order, int mt)
3655 {
3656 	struct zone *zone = page_zone(page);
3657 
3658 	/* zone lock should be held when this function is called */
3659 	lockdep_assert_held(&zone->lock);
3660 
3661 	/* Return isolated page to tail of freelist. */
3662 	__free_one_page(page, page_to_pfn(page), zone, order, mt,
3663 			FPI_SKIP_REPORT_NOTIFY | FPI_TO_TAIL);
3664 }
3665 
3666 /*
3667  * Update NUMA hit/miss statistics
3668  */
3669 static inline void zone_statistics(struct zone *preferred_zone, struct zone *z,
3670 				   long nr_account)
3671 {
3672 #ifdef CONFIG_NUMA
3673 	enum numa_stat_item local_stat = NUMA_LOCAL;
3674 
3675 	/* skip numa counters update if numa stats is disabled */
3676 	if (!static_branch_likely(&vm_numa_stat_key))
3677 		return;
3678 
3679 	if (zone_to_nid(z) != numa_node_id())
3680 		local_stat = NUMA_OTHER;
3681 
3682 	if (zone_to_nid(z) == zone_to_nid(preferred_zone))
3683 		__count_numa_events(z, NUMA_HIT, nr_account);
3684 	else {
3685 		__count_numa_events(z, NUMA_MISS, nr_account);
3686 		__count_numa_events(preferred_zone, NUMA_FOREIGN, nr_account);
3687 	}
3688 	__count_numa_events(z, local_stat, nr_account);
3689 #endif
3690 }
3691 
3692 static __always_inline
3693 struct page *rmqueue_buddy(struct zone *preferred_zone, struct zone *zone,
3694 			   unsigned int order, unsigned int alloc_flags,
3695 			   int migratetype)
3696 {
3697 	struct page *page;
3698 	unsigned long flags;
3699 
3700 	do {
3701 		page = NULL;
3702 		spin_lock_irqsave(&zone->lock, flags);
3703 		/*
3704 		 * order-0 request can reach here when the pcplist is skipped
3705 		 * due to non-CMA allocation context. HIGHATOMIC area is
3706 		 * reserved for high-order atomic allocation, so order-0
3707 		 * request should skip it.
3708 		 */
3709 		if (order > 0 && alloc_flags & ALLOC_HARDER)
3710 			page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
3711 		if (!page) {
3712 			page = __rmqueue(zone, order, migratetype, alloc_flags);
3713 			if (!page) {
3714 				spin_unlock_irqrestore(&zone->lock, flags);
3715 				return NULL;
3716 			}
3717 		}
3718 		__mod_zone_freepage_state(zone, -(1 << order),
3719 					  get_pcppage_migratetype(page));
3720 		spin_unlock_irqrestore(&zone->lock, flags);
3721 	} while (check_new_pages(page, order));
3722 
3723 	__count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
3724 	zone_statistics(preferred_zone, zone, 1);
3725 
3726 	return page;
3727 }
3728 
3729 /* Remove page from the per-cpu list, caller must protect the list */
3730 static inline
3731 struct page *__rmqueue_pcplist(struct zone *zone, unsigned int order,
3732 			int migratetype,
3733 			unsigned int alloc_flags,
3734 			struct per_cpu_pages *pcp,
3735 			struct list_head *list)
3736 {
3737 	struct page *page;
3738 
3739 	do {
3740 		if (list_empty(list)) {
3741 			int batch = READ_ONCE(pcp->batch);
3742 			int alloced;
3743 
3744 			/*
3745 			 * Scale batch relative to order if batch implies
3746 			 * free pages can be stored on the PCP. Batch can
3747 			 * be 1 for small zones or for boot pagesets which
3748 			 * should never store free pages as the pages may
3749 			 * belong to arbitrary zones.
3750 			 */
3751 			if (batch > 1)
3752 				batch = max(batch >> order, 2);
3753 			alloced = rmqueue_bulk(zone, order,
3754 					batch, list,
3755 					migratetype, alloc_flags);
3756 
3757 			pcp->count += alloced << order;
3758 			if (unlikely(list_empty(list)))
3759 				return NULL;
3760 		}
3761 
3762 		page = list_first_entry(list, struct page, pcp_list);
3763 		list_del(&page->pcp_list);
3764 		pcp->count -= 1 << order;
3765 	} while (check_new_pcp(page, order));
3766 
3767 	return page;
3768 }
3769 
3770 /* Lock and remove page from the per-cpu list */
3771 static struct page *rmqueue_pcplist(struct zone *preferred_zone,
3772 			struct zone *zone, unsigned int order,
3773 			int migratetype, unsigned int alloc_flags)
3774 {
3775 	struct per_cpu_pages *pcp;
3776 	struct list_head *list;
3777 	struct page *page;
3778 	unsigned long __maybe_unused UP_flags;
3779 
3780 	/* spin_trylock may fail due to a parallel drain or IRQ reentrancy. */
3781 	pcp_trylock_prepare(UP_flags);
3782 	pcp = pcp_spin_trylock(zone->per_cpu_pageset);
3783 	if (!pcp) {
3784 		pcp_trylock_finish(UP_flags);
3785 		return NULL;
3786 	}
3787 
3788 	/*
3789 	 * On allocation, reduce the number of pages that are batch freed.
3790 	 * See nr_pcp_free() where free_factor is increased for subsequent
3791 	 * frees.
3792 	 */
3793 	pcp->free_factor >>= 1;
3794 	list = &pcp->lists[order_to_pindex(migratetype, order)];
3795 	page = __rmqueue_pcplist(zone, order, migratetype, alloc_flags, pcp, list);
3796 	pcp_spin_unlock(pcp);
3797 	pcp_trylock_finish(UP_flags);
3798 	if (page) {
3799 		__count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
3800 		zone_statistics(preferred_zone, zone, 1);
3801 	}
3802 	return page;
3803 }
3804 
3805 /*
3806  * Allocate a page from the given zone.
3807  * Use pcplists for THP or "cheap" high-order allocations.
3808  */
3809 
3810 /*
3811  * Do not instrument rmqueue() with KMSAN. This function may call
3812  * __msan_poison_alloca() through a call to set_pfnblock_flags_mask().
3813  * If __msan_poison_alloca() attempts to allocate pages for the stack depot, it
3814  * may call rmqueue() again, which will result in a deadlock.
3815  */
3816 __no_sanitize_memory
3817 static inline
3818 struct page *rmqueue(struct zone *preferred_zone,
3819 			struct zone *zone, unsigned int order,
3820 			gfp_t gfp_flags, unsigned int alloc_flags,
3821 			int migratetype)
3822 {
3823 	struct page *page;
3824 
3825 	/*
3826 	 * We most definitely don't want callers attempting to
3827 	 * allocate greater than order-1 page units with __GFP_NOFAIL.
3828 	 */
3829 	WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
3830 
3831 	if (likely(pcp_allowed_order(order))) {
3832 		/*
3833 		 * MIGRATE_MOVABLE pcplist could have the pages on CMA area and
3834 		 * we need to skip it when CMA area isn't allowed.
3835 		 */
3836 		if (!IS_ENABLED(CONFIG_CMA) || alloc_flags & ALLOC_CMA ||
3837 				migratetype != MIGRATE_MOVABLE) {
3838 			page = rmqueue_pcplist(preferred_zone, zone, order,
3839 					migratetype, alloc_flags);
3840 			if (likely(page))
3841 				goto out;
3842 		}
3843 	}
3844 
3845 	page = rmqueue_buddy(preferred_zone, zone, order, alloc_flags,
3846 							migratetype);
3847 
3848 out:
3849 	/* Separate test+clear to avoid unnecessary atomics */
3850 	if (unlikely(test_bit(ZONE_BOOSTED_WATERMARK, &zone->flags))) {
3851 		clear_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
3852 		wakeup_kswapd(zone, 0, 0, zone_idx(zone));
3853 	}
3854 
3855 	VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
3856 	return page;
3857 }
3858 
3859 #ifdef CONFIG_FAIL_PAGE_ALLOC
3860 
3861 static struct {
3862 	struct fault_attr attr;
3863 
3864 	bool ignore_gfp_highmem;
3865 	bool ignore_gfp_reclaim;
3866 	u32 min_order;
3867 } fail_page_alloc = {
3868 	.attr = FAULT_ATTR_INITIALIZER,
3869 	.ignore_gfp_reclaim = true,
3870 	.ignore_gfp_highmem = true,
3871 	.min_order = 1,
3872 };
3873 
3874 static int __init setup_fail_page_alloc(char *str)
3875 {
3876 	return setup_fault_attr(&fail_page_alloc.attr, str);
3877 }
3878 __setup("fail_page_alloc=", setup_fail_page_alloc);
3879 
3880 static bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3881 {
3882 	int flags = 0;
3883 
3884 	if (order < fail_page_alloc.min_order)
3885 		return false;
3886 	if (gfp_mask & __GFP_NOFAIL)
3887 		return false;
3888 	if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
3889 		return false;
3890 	if (fail_page_alloc.ignore_gfp_reclaim &&
3891 			(gfp_mask & __GFP_DIRECT_RECLAIM))
3892 		return false;
3893 
3894 	/* See comment in __should_failslab() */
3895 	if (gfp_mask & __GFP_NOWARN)
3896 		flags |= FAULT_NOWARN;
3897 
3898 	return should_fail_ex(&fail_page_alloc.attr, 1 << order, flags);
3899 }
3900 
3901 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
3902 
3903 static int __init fail_page_alloc_debugfs(void)
3904 {
3905 	umode_t mode = S_IFREG | 0600;
3906 	struct dentry *dir;
3907 
3908 	dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
3909 					&fail_page_alloc.attr);
3910 
3911 	debugfs_create_bool("ignore-gfp-wait", mode, dir,
3912 			    &fail_page_alloc.ignore_gfp_reclaim);
3913 	debugfs_create_bool("ignore-gfp-highmem", mode, dir,
3914 			    &fail_page_alloc.ignore_gfp_highmem);
3915 	debugfs_create_u32("min-order", mode, dir, &fail_page_alloc.min_order);
3916 
3917 	return 0;
3918 }
3919 
3920 late_initcall(fail_page_alloc_debugfs);
3921 
3922 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
3923 
3924 #else /* CONFIG_FAIL_PAGE_ALLOC */
3925 
3926 static inline bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3927 {
3928 	return false;
3929 }
3930 
3931 #endif /* CONFIG_FAIL_PAGE_ALLOC */
3932 
3933 noinline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3934 {
3935 	return __should_fail_alloc_page(gfp_mask, order);
3936 }
3937 ALLOW_ERROR_INJECTION(should_fail_alloc_page, TRUE);
3938 
3939 static inline long __zone_watermark_unusable_free(struct zone *z,
3940 				unsigned int order, unsigned int alloc_flags)
3941 {
3942 	const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
3943 	long unusable_free = (1 << order) - 1;
3944 
3945 	/*
3946 	 * If the caller does not have rights to ALLOC_HARDER then subtract
3947 	 * the high-atomic reserves. This will over-estimate the size of the
3948 	 * atomic reserve but it avoids a search.
3949 	 */
3950 	if (likely(!alloc_harder))
3951 		unusable_free += z->nr_reserved_highatomic;
3952 
3953 #ifdef CONFIG_CMA
3954 	/* If allocation can't use CMA areas don't use free CMA pages */
3955 	if (!(alloc_flags & ALLOC_CMA))
3956 		unusable_free += zone_page_state(z, NR_FREE_CMA_PAGES);
3957 #endif
3958 
3959 	return unusable_free;
3960 }
3961 
3962 /*
3963  * Return true if free base pages are above 'mark'. For high-order checks it
3964  * will return true of the order-0 watermark is reached and there is at least
3965  * one free page of a suitable size. Checking now avoids taking the zone lock
3966  * to check in the allocation paths if no pages are free.
3967  */
3968 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3969 			 int highest_zoneidx, unsigned int alloc_flags,
3970 			 long free_pages)
3971 {
3972 	long min = mark;
3973 	int o;
3974 	const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
3975 
3976 	/* free_pages may go negative - that's OK */
3977 	free_pages -= __zone_watermark_unusable_free(z, order, alloc_flags);
3978 
3979 	if (alloc_flags & ALLOC_HIGH)
3980 		min -= min / 2;
3981 
3982 	if (unlikely(alloc_harder)) {
3983 		/*
3984 		 * OOM victims can try even harder than normal ALLOC_HARDER
3985 		 * users on the grounds that it's definitely going to be in
3986 		 * the exit path shortly and free memory. Any allocation it
3987 		 * makes during the free path will be small and short-lived.
3988 		 */
3989 		if (alloc_flags & ALLOC_OOM)
3990 			min -= min / 2;
3991 		else
3992 			min -= min / 4;
3993 	}
3994 
3995 	/*
3996 	 * Check watermarks for an order-0 allocation request. If these
3997 	 * are not met, then a high-order request also cannot go ahead
3998 	 * even if a suitable page happened to be free.
3999 	 */
4000 	if (free_pages <= min + z->lowmem_reserve[highest_zoneidx])
4001 		return false;
4002 
4003 	/* If this is an order-0 request then the watermark is fine */
4004 	if (!order)
4005 		return true;
4006 
4007 	/* For a high-order request, check at least one suitable page is free */
4008 	for (o = order; o < MAX_ORDER; o++) {
4009 		struct free_area *area = &z->free_area[o];
4010 		int mt;
4011 
4012 		if (!area->nr_free)
4013 			continue;
4014 
4015 		for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
4016 			if (!free_area_empty(area, mt))
4017 				return true;
4018 		}
4019 
4020 #ifdef CONFIG_CMA
4021 		if ((alloc_flags & ALLOC_CMA) &&
4022 		    !free_area_empty(area, MIGRATE_CMA)) {
4023 			return true;
4024 		}
4025 #endif
4026 		if (alloc_harder && !free_area_empty(area, MIGRATE_HIGHATOMIC))
4027 			return true;
4028 	}
4029 	return false;
4030 }
4031 
4032 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
4033 		      int highest_zoneidx, unsigned int alloc_flags)
4034 {
4035 	return __zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
4036 					zone_page_state(z, NR_FREE_PAGES));
4037 }
4038 
4039 static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
4040 				unsigned long mark, int highest_zoneidx,
4041 				unsigned int alloc_flags, gfp_t gfp_mask)
4042 {
4043 	long free_pages;
4044 
4045 	free_pages = zone_page_state(z, NR_FREE_PAGES);
4046 
4047 	/*
4048 	 * Fast check for order-0 only. If this fails then the reserves
4049 	 * need to be calculated.
4050 	 */
4051 	if (!order) {
4052 		long usable_free;
4053 		long reserved;
4054 
4055 		usable_free = free_pages;
4056 		reserved = __zone_watermark_unusable_free(z, 0, alloc_flags);
4057 
4058 		/* reserved may over estimate high-atomic reserves. */
4059 		usable_free -= min(usable_free, reserved);
4060 		if (usable_free > mark + z->lowmem_reserve[highest_zoneidx])
4061 			return true;
4062 	}
4063 
4064 	if (__zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
4065 					free_pages))
4066 		return true;
4067 	/*
4068 	 * Ignore watermark boosting for GFP_ATOMIC order-0 allocations
4069 	 * when checking the min watermark. The min watermark is the
4070 	 * point where boosting is ignored so that kswapd is woken up
4071 	 * when below the low watermark.
4072 	 */
4073 	if (unlikely(!order && (gfp_mask & __GFP_ATOMIC) && z->watermark_boost
4074 		&& ((alloc_flags & ALLOC_WMARK_MASK) == WMARK_MIN))) {
4075 		mark = z->_watermark[WMARK_MIN];
4076 		return __zone_watermark_ok(z, order, mark, highest_zoneidx,
4077 					alloc_flags, free_pages);
4078 	}
4079 
4080 	return false;
4081 }
4082 
4083 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
4084 			unsigned long mark, int highest_zoneidx)
4085 {
4086 	long free_pages = zone_page_state(z, NR_FREE_PAGES);
4087 
4088 	if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
4089 		free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
4090 
4091 	return __zone_watermark_ok(z, order, mark, highest_zoneidx, 0,
4092 								free_pages);
4093 }
4094 
4095 #ifdef CONFIG_NUMA
4096 int __read_mostly node_reclaim_distance = RECLAIM_DISTANCE;
4097 
4098 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
4099 {
4100 	return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
4101 				node_reclaim_distance;
4102 }
4103 #else	/* CONFIG_NUMA */
4104 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
4105 {
4106 	return true;
4107 }
4108 #endif	/* CONFIG_NUMA */
4109 
4110 /*
4111  * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid
4112  * fragmentation is subtle. If the preferred zone was HIGHMEM then
4113  * premature use of a lower zone may cause lowmem pressure problems that
4114  * are worse than fragmentation. If the next zone is ZONE_DMA then it is
4115  * probably too small. It only makes sense to spread allocations to avoid
4116  * fragmentation between the Normal and DMA32 zones.
4117  */
4118 static inline unsigned int
4119 alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask)
4120 {
4121 	unsigned int alloc_flags;
4122 
4123 	/*
4124 	 * __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
4125 	 * to save a branch.
4126 	 */
4127 	alloc_flags = (__force int) (gfp_mask & __GFP_KSWAPD_RECLAIM);
4128 
4129 #ifdef CONFIG_ZONE_DMA32
4130 	if (!zone)
4131 		return alloc_flags;
4132 
4133 	if (zone_idx(zone) != ZONE_NORMAL)
4134 		return alloc_flags;
4135 
4136 	/*
4137 	 * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and
4138 	 * the pointer is within zone->zone_pgdat->node_zones[]. Also assume
4139 	 * on UMA that if Normal is populated then so is DMA32.
4140 	 */
4141 	BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1);
4142 	if (nr_online_nodes > 1 && !populated_zone(--zone))
4143 		return alloc_flags;
4144 
4145 	alloc_flags |= ALLOC_NOFRAGMENT;
4146 #endif /* CONFIG_ZONE_DMA32 */
4147 	return alloc_flags;
4148 }
4149 
4150 /* Must be called after current_gfp_context() which can change gfp_mask */
4151 static inline unsigned int gfp_to_alloc_flags_cma(gfp_t gfp_mask,
4152 						  unsigned int alloc_flags)
4153 {
4154 #ifdef CONFIG_CMA
4155 	if (gfp_migratetype(gfp_mask) == MIGRATE_MOVABLE)
4156 		alloc_flags |= ALLOC_CMA;
4157 #endif
4158 	return alloc_flags;
4159 }
4160 
4161 /*
4162  * get_page_from_freelist goes through the zonelist trying to allocate
4163  * a page.
4164  */
4165 static struct page *
4166 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
4167 						const struct alloc_context *ac)
4168 {
4169 	struct zoneref *z;
4170 	struct zone *zone;
4171 	struct pglist_data *last_pgdat = NULL;
4172 	bool last_pgdat_dirty_ok = false;
4173 	bool no_fallback;
4174 
4175 retry:
4176 	/*
4177 	 * Scan zonelist, looking for a zone with enough free.
4178 	 * See also __cpuset_node_allowed() comment in kernel/cgroup/cpuset.c.
4179 	 */
4180 	no_fallback = alloc_flags & ALLOC_NOFRAGMENT;
4181 	z = ac->preferred_zoneref;
4182 	for_next_zone_zonelist_nodemask(zone, z, ac->highest_zoneidx,
4183 					ac->nodemask) {
4184 		struct page *page;
4185 		unsigned long mark;
4186 
4187 		if (cpusets_enabled() &&
4188 			(alloc_flags & ALLOC_CPUSET) &&
4189 			!__cpuset_zone_allowed(zone, gfp_mask))
4190 				continue;
4191 		/*
4192 		 * When allocating a page cache page for writing, we
4193 		 * want to get it from a node that is within its dirty
4194 		 * limit, such that no single node holds more than its
4195 		 * proportional share of globally allowed dirty pages.
4196 		 * The dirty limits take into account the node's
4197 		 * lowmem reserves and high watermark so that kswapd
4198 		 * should be able to balance it without having to
4199 		 * write pages from its LRU list.
4200 		 *
4201 		 * XXX: For now, allow allocations to potentially
4202 		 * exceed the per-node dirty limit in the slowpath
4203 		 * (spread_dirty_pages unset) before going into reclaim,
4204 		 * which is important when on a NUMA setup the allowed
4205 		 * nodes are together not big enough to reach the
4206 		 * global limit.  The proper fix for these situations
4207 		 * will require awareness of nodes in the
4208 		 * dirty-throttling and the flusher threads.
4209 		 */
4210 		if (ac->spread_dirty_pages) {
4211 			if (last_pgdat != zone->zone_pgdat) {
4212 				last_pgdat = zone->zone_pgdat;
4213 				last_pgdat_dirty_ok = node_dirty_ok(zone->zone_pgdat);
4214 			}
4215 
4216 			if (!last_pgdat_dirty_ok)
4217 				continue;
4218 		}
4219 
4220 		if (no_fallback && nr_online_nodes > 1 &&
4221 		    zone != ac->preferred_zoneref->zone) {
4222 			int local_nid;
4223 
4224 			/*
4225 			 * If moving to a remote node, retry but allow
4226 			 * fragmenting fallbacks. Locality is more important
4227 			 * than fragmentation avoidance.
4228 			 */
4229 			local_nid = zone_to_nid(ac->preferred_zoneref->zone);
4230 			if (zone_to_nid(zone) != local_nid) {
4231 				alloc_flags &= ~ALLOC_NOFRAGMENT;
4232 				goto retry;
4233 			}
4234 		}
4235 
4236 		mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
4237 		if (!zone_watermark_fast(zone, order, mark,
4238 				       ac->highest_zoneidx, alloc_flags,
4239 				       gfp_mask)) {
4240 			int ret;
4241 
4242 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
4243 			/*
4244 			 * Watermark failed for this zone, but see if we can
4245 			 * grow this zone if it contains deferred pages.
4246 			 */
4247 			if (static_branch_unlikely(&deferred_pages)) {
4248 				if (_deferred_grow_zone(zone, order))
4249 					goto try_this_zone;
4250 			}
4251 #endif
4252 			/* Checked here to keep the fast path fast */
4253 			BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
4254 			if (alloc_flags & ALLOC_NO_WATERMARKS)
4255 				goto try_this_zone;
4256 
4257 			if (!node_reclaim_enabled() ||
4258 			    !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
4259 				continue;
4260 
4261 			ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
4262 			switch (ret) {
4263 			case NODE_RECLAIM_NOSCAN:
4264 				/* did not scan */
4265 				continue;
4266 			case NODE_RECLAIM_FULL:
4267 				/* scanned but unreclaimable */
4268 				continue;
4269 			default:
4270 				/* did we reclaim enough */
4271 				if (zone_watermark_ok(zone, order, mark,
4272 					ac->highest_zoneidx, alloc_flags))
4273 					goto try_this_zone;
4274 
4275 				continue;
4276 			}
4277 		}
4278 
4279 try_this_zone:
4280 		page = rmqueue(ac->preferred_zoneref->zone, zone, order,
4281 				gfp_mask, alloc_flags, ac->migratetype);
4282 		if (page) {
4283 			prep_new_page(page, order, gfp_mask, alloc_flags);
4284 
4285 			/*
4286 			 * If this is a high-order atomic allocation then check
4287 			 * if the pageblock should be reserved for the future
4288 			 */
4289 			if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
4290 				reserve_highatomic_pageblock(page, zone, order);
4291 
4292 			return page;
4293 		} else {
4294 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
4295 			/* Try again if zone has deferred pages */
4296 			if (static_branch_unlikely(&deferred_pages)) {
4297 				if (_deferred_grow_zone(zone, order))
4298 					goto try_this_zone;
4299 			}
4300 #endif
4301 		}
4302 	}
4303 
4304 	/*
4305 	 * It's possible on a UMA machine to get through all zones that are
4306 	 * fragmented. If avoiding fragmentation, reset and try again.
4307 	 */
4308 	if (no_fallback) {
4309 		alloc_flags &= ~ALLOC_NOFRAGMENT;
4310 		goto retry;
4311 	}
4312 
4313 	return NULL;
4314 }
4315 
4316 static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
4317 {
4318 	unsigned int filter = SHOW_MEM_FILTER_NODES;
4319 
4320 	/*
4321 	 * This documents exceptions given to allocations in certain
4322 	 * contexts that are allowed to allocate outside current's set
4323 	 * of allowed nodes.
4324 	 */
4325 	if (!(gfp_mask & __GFP_NOMEMALLOC))
4326 		if (tsk_is_oom_victim(current) ||
4327 		    (current->flags & (PF_MEMALLOC | PF_EXITING)))
4328 			filter &= ~SHOW_MEM_FILTER_NODES;
4329 	if (!in_task() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
4330 		filter &= ~SHOW_MEM_FILTER_NODES;
4331 
4332 	__show_mem(filter, nodemask, gfp_zone(gfp_mask));
4333 }
4334 
4335 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
4336 {
4337 	struct va_format vaf;
4338 	va_list args;
4339 	static DEFINE_RATELIMIT_STATE(nopage_rs, 10*HZ, 1);
4340 
4341 	if ((gfp_mask & __GFP_NOWARN) ||
4342 	     !__ratelimit(&nopage_rs) ||
4343 	     ((gfp_mask & __GFP_DMA) && !has_managed_dma()))
4344 		return;
4345 
4346 	va_start(args, fmt);
4347 	vaf.fmt = fmt;
4348 	vaf.va = &args;
4349 	pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl",
4350 			current->comm, &vaf, gfp_mask, &gfp_mask,
4351 			nodemask_pr_args(nodemask));
4352 	va_end(args);
4353 
4354 	cpuset_print_current_mems_allowed();
4355 	pr_cont("\n");
4356 	dump_stack();
4357 	warn_alloc_show_mem(gfp_mask, nodemask);
4358 }
4359 
4360 static inline struct page *
4361 __alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
4362 			      unsigned int alloc_flags,
4363 			      const struct alloc_context *ac)
4364 {
4365 	struct page *page;
4366 
4367 	page = get_page_from_freelist(gfp_mask, order,
4368 			alloc_flags|ALLOC_CPUSET, ac);
4369 	/*
4370 	 * fallback to ignore cpuset restriction if our nodes
4371 	 * are depleted
4372 	 */
4373 	if (!page)
4374 		page = get_page_from_freelist(gfp_mask, order,
4375 				alloc_flags, ac);
4376 
4377 	return page;
4378 }
4379 
4380 static inline struct page *
4381 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
4382 	const struct alloc_context *ac, unsigned long *did_some_progress)
4383 {
4384 	struct oom_control oc = {
4385 		.zonelist = ac->zonelist,
4386 		.nodemask = ac->nodemask,
4387 		.memcg = NULL,
4388 		.gfp_mask = gfp_mask,
4389 		.order = order,
4390 	};
4391 	struct page *page;
4392 
4393 	*did_some_progress = 0;
4394 
4395 	/*
4396 	 * Acquire the oom lock.  If that fails, somebody else is
4397 	 * making progress for us.
4398 	 */
4399 	if (!mutex_trylock(&oom_lock)) {
4400 		*did_some_progress = 1;
4401 		schedule_timeout_uninterruptible(1);
4402 		return NULL;
4403 	}
4404 
4405 	/*
4406 	 * Go through the zonelist yet one more time, keep very high watermark
4407 	 * here, this is only to catch a parallel oom killing, we must fail if
4408 	 * we're still under heavy pressure. But make sure that this reclaim
4409 	 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
4410 	 * allocation which will never fail due to oom_lock already held.
4411 	 */
4412 	page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) &
4413 				      ~__GFP_DIRECT_RECLAIM, order,
4414 				      ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
4415 	if (page)
4416 		goto out;
4417 
4418 	/* Coredumps can quickly deplete all memory reserves */
4419 	if (current->flags & PF_DUMPCORE)
4420 		goto out;
4421 	/* The OOM killer will not help higher order allocs */
4422 	if (order > PAGE_ALLOC_COSTLY_ORDER)
4423 		goto out;
4424 	/*
4425 	 * We have already exhausted all our reclaim opportunities without any
4426 	 * success so it is time to admit defeat. We will skip the OOM killer
4427 	 * because it is very likely that the caller has a more reasonable
4428 	 * fallback than shooting a random task.
4429 	 *
4430 	 * The OOM killer may not free memory on a specific node.
4431 	 */
4432 	if (gfp_mask & (__GFP_RETRY_MAYFAIL | __GFP_THISNODE))
4433 		goto out;
4434 	/* The OOM killer does not needlessly kill tasks for lowmem */
4435 	if (ac->highest_zoneidx < ZONE_NORMAL)
4436 		goto out;
4437 	if (pm_suspended_storage())
4438 		goto out;
4439 	/*
4440 	 * XXX: GFP_NOFS allocations should rather fail than rely on
4441 	 * other request to make a forward progress.
4442 	 * We are in an unfortunate situation where out_of_memory cannot
4443 	 * do much for this context but let's try it to at least get
4444 	 * access to memory reserved if the current task is killed (see
4445 	 * out_of_memory). Once filesystems are ready to handle allocation
4446 	 * failures more gracefully we should just bail out here.
4447 	 */
4448 
4449 	/* Exhausted what can be done so it's blame time */
4450 	if (out_of_memory(&oc) ||
4451 	    WARN_ON_ONCE_GFP(gfp_mask & __GFP_NOFAIL, gfp_mask)) {
4452 		*did_some_progress = 1;
4453 
4454 		/*
4455 		 * Help non-failing allocations by giving them access to memory
4456 		 * reserves
4457 		 */
4458 		if (gfp_mask & __GFP_NOFAIL)
4459 			page = __alloc_pages_cpuset_fallback(gfp_mask, order,
4460 					ALLOC_NO_WATERMARKS, ac);
4461 	}
4462 out:
4463 	mutex_unlock(&oom_lock);
4464 	return page;
4465 }
4466 
4467 /*
4468  * Maximum number of compaction retries with a progress before OOM
4469  * killer is consider as the only way to move forward.
4470  */
4471 #define MAX_COMPACT_RETRIES 16
4472 
4473 #ifdef CONFIG_COMPACTION
4474 /* Try memory compaction for high-order allocations before reclaim */
4475 static struct page *
4476 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
4477 		unsigned int alloc_flags, const struct alloc_context *ac,
4478 		enum compact_priority prio, enum compact_result *compact_result)
4479 {
4480 	struct page *page = NULL;
4481 	unsigned long pflags;
4482 	unsigned int noreclaim_flag;
4483 
4484 	if (!order)
4485 		return NULL;
4486 
4487 	psi_memstall_enter(&pflags);
4488 	delayacct_compact_start();
4489 	noreclaim_flag = memalloc_noreclaim_save();
4490 
4491 	*compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
4492 								prio, &page);
4493 
4494 	memalloc_noreclaim_restore(noreclaim_flag);
4495 	psi_memstall_leave(&pflags);
4496 	delayacct_compact_end();
4497 
4498 	if (*compact_result == COMPACT_SKIPPED)
4499 		return NULL;
4500 	/*
4501 	 * At least in one zone compaction wasn't deferred or skipped, so let's
4502 	 * count a compaction stall
4503 	 */
4504 	count_vm_event(COMPACTSTALL);
4505 
4506 	/* Prep a captured page if available */
4507 	if (page)
4508 		prep_new_page(page, order, gfp_mask, alloc_flags);
4509 
4510 	/* Try get a page from the freelist if available */
4511 	if (!page)
4512 		page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4513 
4514 	if (page) {
4515 		struct zone *zone = page_zone(page);
4516 
4517 		zone->compact_blockskip_flush = false;
4518 		compaction_defer_reset(zone, order, true);
4519 		count_vm_event(COMPACTSUCCESS);
4520 		return page;
4521 	}
4522 
4523 	/*
4524 	 * It's bad if compaction run occurs and fails. The most likely reason
4525 	 * is that pages exist, but not enough to satisfy watermarks.
4526 	 */
4527 	count_vm_event(COMPACTFAIL);
4528 
4529 	cond_resched();
4530 
4531 	return NULL;
4532 }
4533 
4534 static inline bool
4535 should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
4536 		     enum compact_result compact_result,
4537 		     enum compact_priority *compact_priority,
4538 		     int *compaction_retries)
4539 {
4540 	int max_retries = MAX_COMPACT_RETRIES;
4541 	int min_priority;
4542 	bool ret = false;
4543 	int retries = *compaction_retries;
4544 	enum compact_priority priority = *compact_priority;
4545 
4546 	if (!order)
4547 		return false;
4548 
4549 	if (fatal_signal_pending(current))
4550 		return false;
4551 
4552 	if (compaction_made_progress(compact_result))
4553 		(*compaction_retries)++;
4554 
4555 	/*
4556 	 * compaction considers all the zone as desperately out of memory
4557 	 * so it doesn't really make much sense to retry except when the
4558 	 * failure could be caused by insufficient priority
4559 	 */
4560 	if (compaction_failed(compact_result))
4561 		goto check_priority;
4562 
4563 	/*
4564 	 * compaction was skipped because there are not enough order-0 pages
4565 	 * to work with, so we retry only if it looks like reclaim can help.
4566 	 */
4567 	if (compaction_needs_reclaim(compact_result)) {
4568 		ret = compaction_zonelist_suitable(ac, order, alloc_flags);
4569 		goto out;
4570 	}
4571 
4572 	/*
4573 	 * make sure the compaction wasn't deferred or didn't bail out early
4574 	 * due to locks contention before we declare that we should give up.
4575 	 * But the next retry should use a higher priority if allowed, so
4576 	 * we don't just keep bailing out endlessly.
4577 	 */
4578 	if (compaction_withdrawn(compact_result)) {
4579 		goto check_priority;
4580 	}
4581 
4582 	/*
4583 	 * !costly requests are much more important than __GFP_RETRY_MAYFAIL
4584 	 * costly ones because they are de facto nofail and invoke OOM
4585 	 * killer to move on while costly can fail and users are ready
4586 	 * to cope with that. 1/4 retries is rather arbitrary but we
4587 	 * would need much more detailed feedback from compaction to
4588 	 * make a better decision.
4589 	 */
4590 	if (order > PAGE_ALLOC_COSTLY_ORDER)
4591 		max_retries /= 4;
4592 	if (*compaction_retries <= max_retries) {
4593 		ret = true;
4594 		goto out;
4595 	}
4596 
4597 	/*
4598 	 * Make sure there are attempts at the highest priority if we exhausted
4599 	 * all retries or failed at the lower priorities.
4600 	 */
4601 check_priority:
4602 	min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
4603 			MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
4604 
4605 	if (*compact_priority > min_priority) {
4606 		(*compact_priority)--;
4607 		*compaction_retries = 0;
4608 		ret = true;
4609 	}
4610 out:
4611 	trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
4612 	return ret;
4613 }
4614 #else
4615 static inline struct page *
4616 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
4617 		unsigned int alloc_flags, const struct alloc_context *ac,
4618 		enum compact_priority prio, enum compact_result *compact_result)
4619 {
4620 	*compact_result = COMPACT_SKIPPED;
4621 	return NULL;
4622 }
4623 
4624 static inline bool
4625 should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
4626 		     enum compact_result compact_result,
4627 		     enum compact_priority *compact_priority,
4628 		     int *compaction_retries)
4629 {
4630 	struct zone *zone;
4631 	struct zoneref *z;
4632 
4633 	if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
4634 		return false;
4635 
4636 	/*
4637 	 * There are setups with compaction disabled which would prefer to loop
4638 	 * inside the allocator rather than hit the oom killer prematurely.
4639 	 * Let's give them a good hope and keep retrying while the order-0
4640 	 * watermarks are OK.
4641 	 */
4642 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
4643 				ac->highest_zoneidx, ac->nodemask) {
4644 		if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
4645 					ac->highest_zoneidx, alloc_flags))
4646 			return true;
4647 	}
4648 	return false;
4649 }
4650 #endif /* CONFIG_COMPACTION */
4651 
4652 #ifdef CONFIG_LOCKDEP
4653 static struct lockdep_map __fs_reclaim_map =
4654 	STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map);
4655 
4656 static bool __need_reclaim(gfp_t gfp_mask)
4657 {
4658 	/* no reclaim without waiting on it */
4659 	if (!(gfp_mask & __GFP_DIRECT_RECLAIM))
4660 		return false;
4661 
4662 	/* this guy won't enter reclaim */
4663 	if (current->flags & PF_MEMALLOC)
4664 		return false;
4665 
4666 	if (gfp_mask & __GFP_NOLOCKDEP)
4667 		return false;
4668 
4669 	return true;
4670 }
4671 
4672 void __fs_reclaim_acquire(unsigned long ip)
4673 {
4674 	lock_acquire_exclusive(&__fs_reclaim_map, 0, 0, NULL, ip);
4675 }
4676 
4677 void __fs_reclaim_release(unsigned long ip)
4678 {
4679 	lock_release(&__fs_reclaim_map, ip);
4680 }
4681 
4682 void fs_reclaim_acquire(gfp_t gfp_mask)
4683 {
4684 	gfp_mask = current_gfp_context(gfp_mask);
4685 
4686 	if (__need_reclaim(gfp_mask)) {
4687 		if (gfp_mask & __GFP_FS)
4688 			__fs_reclaim_acquire(_RET_IP_);
4689 
4690 #ifdef CONFIG_MMU_NOTIFIER
4691 		lock_map_acquire(&__mmu_notifier_invalidate_range_start_map);
4692 		lock_map_release(&__mmu_notifier_invalidate_range_start_map);
4693 #endif
4694 
4695 	}
4696 }
4697 EXPORT_SYMBOL_GPL(fs_reclaim_acquire);
4698 
4699 void fs_reclaim_release(gfp_t gfp_mask)
4700 {
4701 	gfp_mask = current_gfp_context(gfp_mask);
4702 
4703 	if (__need_reclaim(gfp_mask)) {
4704 		if (gfp_mask & __GFP_FS)
4705 			__fs_reclaim_release(_RET_IP_);
4706 	}
4707 }
4708 EXPORT_SYMBOL_GPL(fs_reclaim_release);
4709 #endif
4710 
4711 /*
4712  * Zonelists may change due to hotplug during allocation. Detect when zonelists
4713  * have been rebuilt so allocation retries. Reader side does not lock and
4714  * retries the allocation if zonelist changes. Writer side is protected by the
4715  * embedded spin_lock.
4716  */
4717 static DEFINE_SEQLOCK(zonelist_update_seq);
4718 
4719 static unsigned int zonelist_iter_begin(void)
4720 {
4721 	if (IS_ENABLED(CONFIG_MEMORY_HOTREMOVE))
4722 		return read_seqbegin(&zonelist_update_seq);
4723 
4724 	return 0;
4725 }
4726 
4727 static unsigned int check_retry_zonelist(unsigned int seq)
4728 {
4729 	if (IS_ENABLED(CONFIG_MEMORY_HOTREMOVE))
4730 		return read_seqretry(&zonelist_update_seq, seq);
4731 
4732 	return seq;
4733 }
4734 
4735 /* Perform direct synchronous page reclaim */
4736 static unsigned long
4737 __perform_reclaim(gfp_t gfp_mask, unsigned int order,
4738 					const struct alloc_context *ac)
4739 {
4740 	unsigned int noreclaim_flag;
4741 	unsigned long progress;
4742 
4743 	cond_resched();
4744 
4745 	/* We now go into synchronous reclaim */
4746 	cpuset_memory_pressure_bump();
4747 	fs_reclaim_acquire(gfp_mask);
4748 	noreclaim_flag = memalloc_noreclaim_save();
4749 
4750 	progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
4751 								ac->nodemask);
4752 
4753 	memalloc_noreclaim_restore(noreclaim_flag);
4754 	fs_reclaim_release(gfp_mask);
4755 
4756 	cond_resched();
4757 
4758 	return progress;
4759 }
4760 
4761 /* The really slow allocator path where we enter direct reclaim */
4762 static inline struct page *
4763 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
4764 		unsigned int alloc_flags, const struct alloc_context *ac,
4765 		unsigned long *did_some_progress)
4766 {
4767 	struct page *page = NULL;
4768 	unsigned long pflags;
4769 	bool drained = false;
4770 
4771 	psi_memstall_enter(&pflags);
4772 	*did_some_progress = __perform_reclaim(gfp_mask, order, ac);
4773 	if (unlikely(!(*did_some_progress)))
4774 		goto out;
4775 
4776 retry:
4777 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4778 
4779 	/*
4780 	 * If an allocation failed after direct reclaim, it could be because
4781 	 * pages are pinned on the per-cpu lists or in high alloc reserves.
4782 	 * Shrink them and try again
4783 	 */
4784 	if (!page && !drained) {
4785 		unreserve_highatomic_pageblock(ac, false);
4786 		drain_all_pages(NULL);
4787 		drained = true;
4788 		goto retry;
4789 	}
4790 out:
4791 	psi_memstall_leave(&pflags);
4792 
4793 	return page;
4794 }
4795 
4796 static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask,
4797 			     const struct alloc_context *ac)
4798 {
4799 	struct zoneref *z;
4800 	struct zone *zone;
4801 	pg_data_t *last_pgdat = NULL;
4802 	enum zone_type highest_zoneidx = ac->highest_zoneidx;
4803 
4804 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, highest_zoneidx,
4805 					ac->nodemask) {
4806 		if (!managed_zone(zone))
4807 			continue;
4808 		if (last_pgdat != zone->zone_pgdat) {
4809 			wakeup_kswapd(zone, gfp_mask, order, highest_zoneidx);
4810 			last_pgdat = zone->zone_pgdat;
4811 		}
4812 	}
4813 }
4814 
4815 static inline unsigned int
4816 gfp_to_alloc_flags(gfp_t gfp_mask)
4817 {
4818 	unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
4819 
4820 	/*
4821 	 * __GFP_HIGH is assumed to be the same as ALLOC_HIGH
4822 	 * and __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
4823 	 * to save two branches.
4824 	 */
4825 	BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
4826 	BUILD_BUG_ON(__GFP_KSWAPD_RECLAIM != (__force gfp_t) ALLOC_KSWAPD);
4827 
4828 	/*
4829 	 * The caller may dip into page reserves a bit more if the caller
4830 	 * cannot run direct reclaim, or if the caller has realtime scheduling
4831 	 * policy or is asking for __GFP_HIGH memory.  GFP_ATOMIC requests will
4832 	 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
4833 	 */
4834 	alloc_flags |= (__force int)
4835 		(gfp_mask & (__GFP_HIGH | __GFP_KSWAPD_RECLAIM));
4836 
4837 	if (gfp_mask & __GFP_ATOMIC) {
4838 		/*
4839 		 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
4840 		 * if it can't schedule.
4841 		 */
4842 		if (!(gfp_mask & __GFP_NOMEMALLOC))
4843 			alloc_flags |= ALLOC_HARDER;
4844 		/*
4845 		 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
4846 		 * comment for __cpuset_node_allowed().
4847 		 */
4848 		alloc_flags &= ~ALLOC_CPUSET;
4849 	} else if (unlikely(rt_task(current)) && in_task())
4850 		alloc_flags |= ALLOC_HARDER;
4851 
4852 	alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, alloc_flags);
4853 
4854 	return alloc_flags;
4855 }
4856 
4857 static bool oom_reserves_allowed(struct task_struct *tsk)
4858 {
4859 	if (!tsk_is_oom_victim(tsk))
4860 		return false;
4861 
4862 	/*
4863 	 * !MMU doesn't have oom reaper so give access to memory reserves
4864 	 * only to the thread with TIF_MEMDIE set
4865 	 */
4866 	if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE))
4867 		return false;
4868 
4869 	return true;
4870 }
4871 
4872 /*
4873  * Distinguish requests which really need access to full memory
4874  * reserves from oom victims which can live with a portion of it
4875  */
4876 static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask)
4877 {
4878 	if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
4879 		return 0;
4880 	if (gfp_mask & __GFP_MEMALLOC)
4881 		return ALLOC_NO_WATERMARKS;
4882 	if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
4883 		return ALLOC_NO_WATERMARKS;
4884 	if (!in_interrupt()) {
4885 		if (current->flags & PF_MEMALLOC)
4886 			return ALLOC_NO_WATERMARKS;
4887 		else if (oom_reserves_allowed(current))
4888 			return ALLOC_OOM;
4889 	}
4890 
4891 	return 0;
4892 }
4893 
4894 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
4895 {
4896 	return !!__gfp_pfmemalloc_flags(gfp_mask);
4897 }
4898 
4899 /*
4900  * Checks whether it makes sense to retry the reclaim to make a forward progress
4901  * for the given allocation request.
4902  *
4903  * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
4904  * without success, or when we couldn't even meet the watermark if we
4905  * reclaimed all remaining pages on the LRU lists.
4906  *
4907  * Returns true if a retry is viable or false to enter the oom path.
4908  */
4909 static inline bool
4910 should_reclaim_retry(gfp_t gfp_mask, unsigned order,
4911 		     struct alloc_context *ac, int alloc_flags,
4912 		     bool did_some_progress, int *no_progress_loops)
4913 {
4914 	struct zone *zone;
4915 	struct zoneref *z;
4916 	bool ret = false;
4917 
4918 	/*
4919 	 * Costly allocations might have made a progress but this doesn't mean
4920 	 * their order will become available due to high fragmentation so
4921 	 * always increment the no progress counter for them
4922 	 */
4923 	if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
4924 		*no_progress_loops = 0;
4925 	else
4926 		(*no_progress_loops)++;
4927 
4928 	/*
4929 	 * Make sure we converge to OOM if we cannot make any progress
4930 	 * several times in the row.
4931 	 */
4932 	if (*no_progress_loops > MAX_RECLAIM_RETRIES) {
4933 		/* Before OOM, exhaust highatomic_reserve */
4934 		return unreserve_highatomic_pageblock(ac, true);
4935 	}
4936 
4937 	/*
4938 	 * Keep reclaiming pages while there is a chance this will lead
4939 	 * somewhere.  If none of the target zones can satisfy our allocation
4940 	 * request even if all reclaimable pages are considered then we are
4941 	 * screwed and have to go OOM.
4942 	 */
4943 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
4944 				ac->highest_zoneidx, ac->nodemask) {
4945 		unsigned long available;
4946 		unsigned long reclaimable;
4947 		unsigned long min_wmark = min_wmark_pages(zone);
4948 		bool wmark;
4949 
4950 		available = reclaimable = zone_reclaimable_pages(zone);
4951 		available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
4952 
4953 		/*
4954 		 * Would the allocation succeed if we reclaimed all
4955 		 * reclaimable pages?
4956 		 */
4957 		wmark = __zone_watermark_ok(zone, order, min_wmark,
4958 				ac->highest_zoneidx, alloc_flags, available);
4959 		trace_reclaim_retry_zone(z, order, reclaimable,
4960 				available, min_wmark, *no_progress_loops, wmark);
4961 		if (wmark) {
4962 			ret = true;
4963 			break;
4964 		}
4965 	}
4966 
4967 	/*
4968 	 * Memory allocation/reclaim might be called from a WQ context and the
4969 	 * current implementation of the WQ concurrency control doesn't
4970 	 * recognize that a particular WQ is congested if the worker thread is
4971 	 * looping without ever sleeping. Therefore we have to do a short sleep
4972 	 * here rather than calling cond_resched().
4973 	 */
4974 	if (current->flags & PF_WQ_WORKER)
4975 		schedule_timeout_uninterruptible(1);
4976 	else
4977 		cond_resched();
4978 	return ret;
4979 }
4980 
4981 static inline bool
4982 check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
4983 {
4984 	/*
4985 	 * It's possible that cpuset's mems_allowed and the nodemask from
4986 	 * mempolicy don't intersect. This should be normally dealt with by
4987 	 * policy_nodemask(), but it's possible to race with cpuset update in
4988 	 * such a way the check therein was true, and then it became false
4989 	 * before we got our cpuset_mems_cookie here.
4990 	 * This assumes that for all allocations, ac->nodemask can come only
4991 	 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
4992 	 * when it does not intersect with the cpuset restrictions) or the
4993 	 * caller can deal with a violated nodemask.
4994 	 */
4995 	if (cpusets_enabled() && ac->nodemask &&
4996 			!cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
4997 		ac->nodemask = NULL;
4998 		return true;
4999 	}
5000 
5001 	/*
5002 	 * When updating a task's mems_allowed or mempolicy nodemask, it is
5003 	 * possible to race with parallel threads in such a way that our
5004 	 * allocation can fail while the mask is being updated. If we are about
5005 	 * to fail, check if the cpuset changed during allocation and if so,
5006 	 * retry.
5007 	 */
5008 	if (read_mems_allowed_retry(cpuset_mems_cookie))
5009 		return true;
5010 
5011 	return false;
5012 }
5013 
5014 static inline struct page *
5015 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
5016 						struct alloc_context *ac)
5017 {
5018 	bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
5019 	const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
5020 	struct page *page = NULL;
5021 	unsigned int alloc_flags;
5022 	unsigned long did_some_progress;
5023 	enum compact_priority compact_priority;
5024 	enum compact_result compact_result;
5025 	int compaction_retries;
5026 	int no_progress_loops;
5027 	unsigned int cpuset_mems_cookie;
5028 	unsigned int zonelist_iter_cookie;
5029 	int reserve_flags;
5030 
5031 	/*
5032 	 * We also sanity check to catch abuse of atomic reserves being used by
5033 	 * callers that are not in atomic context.
5034 	 */
5035 	if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
5036 				(__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
5037 		gfp_mask &= ~__GFP_ATOMIC;
5038 
5039 restart:
5040 	compaction_retries = 0;
5041 	no_progress_loops = 0;
5042 	compact_priority = DEF_COMPACT_PRIORITY;
5043 	cpuset_mems_cookie = read_mems_allowed_begin();
5044 	zonelist_iter_cookie = zonelist_iter_begin();
5045 
5046 	/*
5047 	 * The fast path uses conservative alloc_flags to succeed only until
5048 	 * kswapd needs to be woken up, and to avoid the cost of setting up
5049 	 * alloc_flags precisely. So we do that now.
5050 	 */
5051 	alloc_flags = gfp_to_alloc_flags(gfp_mask);
5052 
5053 	/*
5054 	 * We need to recalculate the starting point for the zonelist iterator
5055 	 * because we might have used different nodemask in the fast path, or
5056 	 * there was a cpuset modification and we are retrying - otherwise we
5057 	 * could end up iterating over non-eligible zones endlessly.
5058 	 */
5059 	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
5060 					ac->highest_zoneidx, ac->nodemask);
5061 	if (!ac->preferred_zoneref->zone)
5062 		goto nopage;
5063 
5064 	/*
5065 	 * Check for insane configurations where the cpuset doesn't contain
5066 	 * any suitable zone to satisfy the request - e.g. non-movable
5067 	 * GFP_HIGHUSER allocations from MOVABLE nodes only.
5068 	 */
5069 	if (cpusets_insane_config() && (gfp_mask & __GFP_HARDWALL)) {
5070 		struct zoneref *z = first_zones_zonelist(ac->zonelist,
5071 					ac->highest_zoneidx,
5072 					&cpuset_current_mems_allowed);
5073 		if (!z->zone)
5074 			goto nopage;
5075 	}
5076 
5077 	if (alloc_flags & ALLOC_KSWAPD)
5078 		wake_all_kswapds(order, gfp_mask, ac);
5079 
5080 	/*
5081 	 * The adjusted alloc_flags might result in immediate success, so try
5082 	 * that first
5083 	 */
5084 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
5085 	if (page)
5086 		goto got_pg;
5087 
5088 	/*
5089 	 * For costly allocations, try direct compaction first, as it's likely
5090 	 * that we have enough base pages and don't need to reclaim. For non-
5091 	 * movable high-order allocations, do that as well, as compaction will
5092 	 * try prevent permanent fragmentation by migrating from blocks of the
5093 	 * same migratetype.
5094 	 * Don't try this for allocations that are allowed to ignore
5095 	 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
5096 	 */
5097 	if (can_direct_reclaim &&
5098 			(costly_order ||
5099 			   (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
5100 			&& !gfp_pfmemalloc_allowed(gfp_mask)) {
5101 		page = __alloc_pages_direct_compact(gfp_mask, order,
5102 						alloc_flags, ac,
5103 						INIT_COMPACT_PRIORITY,
5104 						&compact_result);
5105 		if (page)
5106 			goto got_pg;
5107 
5108 		/*
5109 		 * Checks for costly allocations with __GFP_NORETRY, which
5110 		 * includes some THP page fault allocations
5111 		 */
5112 		if (costly_order && (gfp_mask & __GFP_NORETRY)) {
5113 			/*
5114 			 * If allocating entire pageblock(s) and compaction
5115 			 * failed because all zones are below low watermarks
5116 			 * or is prohibited because it recently failed at this
5117 			 * order, fail immediately unless the allocator has
5118 			 * requested compaction and reclaim retry.
5119 			 *
5120 			 * Reclaim is
5121 			 *  - potentially very expensive because zones are far
5122 			 *    below their low watermarks or this is part of very
5123 			 *    bursty high order allocations,
5124 			 *  - not guaranteed to help because isolate_freepages()
5125 			 *    may not iterate over freed pages as part of its
5126 			 *    linear scan, and
5127 			 *  - unlikely to make entire pageblocks free on its
5128 			 *    own.
5129 			 */
5130 			if (compact_result == COMPACT_SKIPPED ||
5131 			    compact_result == COMPACT_DEFERRED)
5132 				goto nopage;
5133 
5134 			/*
5135 			 * Looks like reclaim/compaction is worth trying, but
5136 			 * sync compaction could be very expensive, so keep
5137 			 * using async compaction.
5138 			 */
5139 			compact_priority = INIT_COMPACT_PRIORITY;
5140 		}
5141 	}
5142 
5143 retry:
5144 	/* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
5145 	if (alloc_flags & ALLOC_KSWAPD)
5146 		wake_all_kswapds(order, gfp_mask, ac);
5147 
5148 	reserve_flags = __gfp_pfmemalloc_flags(gfp_mask);
5149 	if (reserve_flags)
5150 		alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, reserve_flags) |
5151 					  (alloc_flags & ALLOC_KSWAPD);
5152 
5153 	/*
5154 	 * Reset the nodemask and zonelist iterators if memory policies can be
5155 	 * ignored. These allocations are high priority and system rather than
5156 	 * user oriented.
5157 	 */
5158 	if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) {
5159 		ac->nodemask = NULL;
5160 		ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
5161 					ac->highest_zoneidx, ac->nodemask);
5162 	}
5163 
5164 	/* Attempt with potentially adjusted zonelist and alloc_flags */
5165 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
5166 	if (page)
5167 		goto got_pg;
5168 
5169 	/* Caller is not willing to reclaim, we can't balance anything */
5170 	if (!can_direct_reclaim)
5171 		goto nopage;
5172 
5173 	/* Avoid recursion of direct reclaim */
5174 	if (current->flags & PF_MEMALLOC)
5175 		goto nopage;
5176 
5177 	/* Try direct reclaim and then allocating */
5178 	page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
5179 							&did_some_progress);
5180 	if (page)
5181 		goto got_pg;
5182 
5183 	/* Try direct compaction and then allocating */
5184 	page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
5185 					compact_priority, &compact_result);
5186 	if (page)
5187 		goto got_pg;
5188 
5189 	/* Do not loop if specifically requested */
5190 	if (gfp_mask & __GFP_NORETRY)
5191 		goto nopage;
5192 
5193 	/*
5194 	 * Do not retry costly high order allocations unless they are
5195 	 * __GFP_RETRY_MAYFAIL
5196 	 */
5197 	if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL))
5198 		goto nopage;
5199 
5200 	if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
5201 				 did_some_progress > 0, &no_progress_loops))
5202 		goto retry;
5203 
5204 	/*
5205 	 * It doesn't make any sense to retry for the compaction if the order-0
5206 	 * reclaim is not able to make any progress because the current
5207 	 * implementation of the compaction depends on the sufficient amount
5208 	 * of free memory (see __compaction_suitable)
5209 	 */
5210 	if (did_some_progress > 0 &&
5211 			should_compact_retry(ac, order, alloc_flags,
5212 				compact_result, &compact_priority,
5213 				&compaction_retries))
5214 		goto retry;
5215 
5216 
5217 	/*
5218 	 * Deal with possible cpuset update races or zonelist updates to avoid
5219 	 * a unnecessary OOM kill.
5220 	 */
5221 	if (check_retry_cpuset(cpuset_mems_cookie, ac) ||
5222 	    check_retry_zonelist(zonelist_iter_cookie))
5223 		goto restart;
5224 
5225 	/* Reclaim has failed us, start killing things */
5226 	page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
5227 	if (page)
5228 		goto got_pg;
5229 
5230 	/* Avoid allocations with no watermarks from looping endlessly */
5231 	if (tsk_is_oom_victim(current) &&
5232 	    (alloc_flags & ALLOC_OOM ||
5233 	     (gfp_mask & __GFP_NOMEMALLOC)))
5234 		goto nopage;
5235 
5236 	/* Retry as long as the OOM killer is making progress */
5237 	if (did_some_progress) {
5238 		no_progress_loops = 0;
5239 		goto retry;
5240 	}
5241 
5242 nopage:
5243 	/*
5244 	 * Deal with possible cpuset update races or zonelist updates to avoid
5245 	 * a unnecessary OOM kill.
5246 	 */
5247 	if (check_retry_cpuset(cpuset_mems_cookie, ac) ||
5248 	    check_retry_zonelist(zonelist_iter_cookie))
5249 		goto restart;
5250 
5251 	/*
5252 	 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
5253 	 * we always retry
5254 	 */
5255 	if (gfp_mask & __GFP_NOFAIL) {
5256 		/*
5257 		 * All existing users of the __GFP_NOFAIL are blockable, so warn
5258 		 * of any new users that actually require GFP_NOWAIT
5259 		 */
5260 		if (WARN_ON_ONCE_GFP(!can_direct_reclaim, gfp_mask))
5261 			goto fail;
5262 
5263 		/*
5264 		 * PF_MEMALLOC request from this context is rather bizarre
5265 		 * because we cannot reclaim anything and only can loop waiting
5266 		 * for somebody to do a work for us
5267 		 */
5268 		WARN_ON_ONCE_GFP(current->flags & PF_MEMALLOC, gfp_mask);
5269 
5270 		/*
5271 		 * non failing costly orders are a hard requirement which we
5272 		 * are not prepared for much so let's warn about these users
5273 		 * so that we can identify them and convert them to something
5274 		 * else.
5275 		 */
5276 		WARN_ON_ONCE_GFP(costly_order, gfp_mask);
5277 
5278 		/*
5279 		 * Help non-failing allocations by giving them access to memory
5280 		 * reserves but do not use ALLOC_NO_WATERMARKS because this
5281 		 * could deplete whole memory reserves which would just make
5282 		 * the situation worse
5283 		 */
5284 		page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac);
5285 		if (page)
5286 			goto got_pg;
5287 
5288 		cond_resched();
5289 		goto retry;
5290 	}
5291 fail:
5292 	warn_alloc(gfp_mask, ac->nodemask,
5293 			"page allocation failure: order:%u", order);
5294 got_pg:
5295 	return page;
5296 }
5297 
5298 static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
5299 		int preferred_nid, nodemask_t *nodemask,
5300 		struct alloc_context *ac, gfp_t *alloc_gfp,
5301 		unsigned int *alloc_flags)
5302 {
5303 	ac->highest_zoneidx = gfp_zone(gfp_mask);
5304 	ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
5305 	ac->nodemask = nodemask;
5306 	ac->migratetype = gfp_migratetype(gfp_mask);
5307 
5308 	if (cpusets_enabled()) {
5309 		*alloc_gfp |= __GFP_HARDWALL;
5310 		/*
5311 		 * When we are in the interrupt context, it is irrelevant
5312 		 * to the current task context. It means that any node ok.
5313 		 */
5314 		if (in_task() && !ac->nodemask)
5315 			ac->nodemask = &cpuset_current_mems_allowed;
5316 		else
5317 			*alloc_flags |= ALLOC_CPUSET;
5318 	}
5319 
5320 	might_alloc(gfp_mask);
5321 
5322 	if (should_fail_alloc_page(gfp_mask, order))
5323 		return false;
5324 
5325 	*alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, *alloc_flags);
5326 
5327 	/* Dirty zone balancing only done in the fast path */
5328 	ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
5329 
5330 	/*
5331 	 * The preferred zone is used for statistics but crucially it is
5332 	 * also used as the starting point for the zonelist iterator. It
5333 	 * may get reset for allocations that ignore memory policies.
5334 	 */
5335 	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
5336 					ac->highest_zoneidx, ac->nodemask);
5337 
5338 	return true;
5339 }
5340 
5341 /*
5342  * __alloc_pages_bulk - Allocate a number of order-0 pages to a list or array
5343  * @gfp: GFP flags for the allocation
5344  * @preferred_nid: The preferred NUMA node ID to allocate from
5345  * @nodemask: Set of nodes to allocate from, may be NULL
5346  * @nr_pages: The number of pages desired on the list or array
5347  * @page_list: Optional list to store the allocated pages
5348  * @page_array: Optional array to store the pages
5349  *
5350  * This is a batched version of the page allocator that attempts to
5351  * allocate nr_pages quickly. Pages are added to page_list if page_list
5352  * is not NULL, otherwise it is assumed that the page_array is valid.
5353  *
5354  * For lists, nr_pages is the number of pages that should be allocated.
5355  *
5356  * For arrays, only NULL elements are populated with pages and nr_pages
5357  * is the maximum number of pages that will be stored in the array.
5358  *
5359  * Returns the number of pages on the list or array.
5360  */
5361 unsigned long __alloc_pages_bulk(gfp_t gfp, int preferred_nid,
5362 			nodemask_t *nodemask, int nr_pages,
5363 			struct list_head *page_list,
5364 			struct page **page_array)
5365 {
5366 	struct page *page;
5367 	unsigned long __maybe_unused UP_flags;
5368 	struct zone *zone;
5369 	struct zoneref *z;
5370 	struct per_cpu_pages *pcp;
5371 	struct list_head *pcp_list;
5372 	struct alloc_context ac;
5373 	gfp_t alloc_gfp;
5374 	unsigned int alloc_flags = ALLOC_WMARK_LOW;
5375 	int nr_populated = 0, nr_account = 0;
5376 
5377 	/*
5378 	 * Skip populated array elements to determine if any pages need
5379 	 * to be allocated before disabling IRQs.
5380 	 */
5381 	while (page_array && nr_populated < nr_pages && page_array[nr_populated])
5382 		nr_populated++;
5383 
5384 	/* No pages requested? */
5385 	if (unlikely(nr_pages <= 0))
5386 		goto out;
5387 
5388 	/* Already populated array? */
5389 	if (unlikely(page_array && nr_pages - nr_populated == 0))
5390 		goto out;
5391 
5392 	/* Bulk allocator does not support memcg accounting. */
5393 	if (memcg_kmem_enabled() && (gfp & __GFP_ACCOUNT))
5394 		goto failed;
5395 
5396 	/* Use the single page allocator for one page. */
5397 	if (nr_pages - nr_populated == 1)
5398 		goto failed;
5399 
5400 #ifdef CONFIG_PAGE_OWNER
5401 	/*
5402 	 * PAGE_OWNER may recurse into the allocator to allocate space to
5403 	 * save the stack with pagesets.lock held. Releasing/reacquiring
5404 	 * removes much of the performance benefit of bulk allocation so
5405 	 * force the caller to allocate one page at a time as it'll have
5406 	 * similar performance to added complexity to the bulk allocator.
5407 	 */
5408 	if (static_branch_unlikely(&page_owner_inited))
5409 		goto failed;
5410 #endif
5411 
5412 	/* May set ALLOC_NOFRAGMENT, fragmentation will return 1 page. */
5413 	gfp &= gfp_allowed_mask;
5414 	alloc_gfp = gfp;
5415 	if (!prepare_alloc_pages(gfp, 0, preferred_nid, nodemask, &ac, &alloc_gfp, &alloc_flags))
5416 		goto out;
5417 	gfp = alloc_gfp;
5418 
5419 	/* Find an allowed local zone that meets the low watermark. */
5420 	for_each_zone_zonelist_nodemask(zone, z, ac.zonelist, ac.highest_zoneidx, ac.nodemask) {
5421 		unsigned long mark;
5422 
5423 		if (cpusets_enabled() && (alloc_flags & ALLOC_CPUSET) &&
5424 		    !__cpuset_zone_allowed(zone, gfp)) {
5425 			continue;
5426 		}
5427 
5428 		if (nr_online_nodes > 1 && zone != ac.preferred_zoneref->zone &&
5429 		    zone_to_nid(zone) != zone_to_nid(ac.preferred_zoneref->zone)) {
5430 			goto failed;
5431 		}
5432 
5433 		mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK) + nr_pages;
5434 		if (zone_watermark_fast(zone, 0,  mark,
5435 				zonelist_zone_idx(ac.preferred_zoneref),
5436 				alloc_flags, gfp)) {
5437 			break;
5438 		}
5439 	}
5440 
5441 	/*
5442 	 * If there are no allowed local zones that meets the watermarks then
5443 	 * try to allocate a single page and reclaim if necessary.
5444 	 */
5445 	if (unlikely(!zone))
5446 		goto failed;
5447 
5448 	/* spin_trylock may fail due to a parallel drain or IRQ reentrancy. */
5449 	pcp_trylock_prepare(UP_flags);
5450 	pcp = pcp_spin_trylock(zone->per_cpu_pageset);
5451 	if (!pcp)
5452 		goto failed_irq;
5453 
5454 	/* Attempt the batch allocation */
5455 	pcp_list = &pcp->lists[order_to_pindex(ac.migratetype, 0)];
5456 	while (nr_populated < nr_pages) {
5457 
5458 		/* Skip existing pages */
5459 		if (page_array && page_array[nr_populated]) {
5460 			nr_populated++;
5461 			continue;
5462 		}
5463 
5464 		page = __rmqueue_pcplist(zone, 0, ac.migratetype, alloc_flags,
5465 								pcp, pcp_list);
5466 		if (unlikely(!page)) {
5467 			/* Try and allocate at least one page */
5468 			if (!nr_account) {
5469 				pcp_spin_unlock(pcp);
5470 				goto failed_irq;
5471 			}
5472 			break;
5473 		}
5474 		nr_account++;
5475 
5476 		prep_new_page(page, 0, gfp, 0);
5477 		if (page_list)
5478 			list_add(&page->lru, page_list);
5479 		else
5480 			page_array[nr_populated] = page;
5481 		nr_populated++;
5482 	}
5483 
5484 	pcp_spin_unlock(pcp);
5485 	pcp_trylock_finish(UP_flags);
5486 
5487 	__count_zid_vm_events(PGALLOC, zone_idx(zone), nr_account);
5488 	zone_statistics(ac.preferred_zoneref->zone, zone, nr_account);
5489 
5490 out:
5491 	return nr_populated;
5492 
5493 failed_irq:
5494 	pcp_trylock_finish(UP_flags);
5495 
5496 failed:
5497 	page = __alloc_pages(gfp, 0, preferred_nid, nodemask);
5498 	if (page) {
5499 		if (page_list)
5500 			list_add(&page->lru, page_list);
5501 		else
5502 			page_array[nr_populated] = page;
5503 		nr_populated++;
5504 	}
5505 
5506 	goto out;
5507 }
5508 EXPORT_SYMBOL_GPL(__alloc_pages_bulk);
5509 
5510 /*
5511  * This is the 'heart' of the zoned buddy allocator.
5512  */
5513 struct page *__alloc_pages(gfp_t gfp, unsigned int order, int preferred_nid,
5514 							nodemask_t *nodemask)
5515 {
5516 	struct page *page;
5517 	unsigned int alloc_flags = ALLOC_WMARK_LOW;
5518 	gfp_t alloc_gfp; /* The gfp_t that was actually used for allocation */
5519 	struct alloc_context ac = { };
5520 
5521 	/*
5522 	 * There are several places where we assume that the order value is sane
5523 	 * so bail out early if the request is out of bound.
5524 	 */
5525 	if (WARN_ON_ONCE_GFP(order >= MAX_ORDER, gfp))
5526 		return NULL;
5527 
5528 	gfp &= gfp_allowed_mask;
5529 	/*
5530 	 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
5531 	 * resp. GFP_NOIO which has to be inherited for all allocation requests
5532 	 * from a particular context which has been marked by
5533 	 * memalloc_no{fs,io}_{save,restore}. And PF_MEMALLOC_PIN which ensures
5534 	 * movable zones are not used during allocation.
5535 	 */
5536 	gfp = current_gfp_context(gfp);
5537 	alloc_gfp = gfp;
5538 	if (!prepare_alloc_pages(gfp, order, preferred_nid, nodemask, &ac,
5539 			&alloc_gfp, &alloc_flags))
5540 		return NULL;
5541 
5542 	/*
5543 	 * Forbid the first pass from falling back to types that fragment
5544 	 * memory until all local zones are considered.
5545 	 */
5546 	alloc_flags |= alloc_flags_nofragment(ac.preferred_zoneref->zone, gfp);
5547 
5548 	/* First allocation attempt */
5549 	page = get_page_from_freelist(alloc_gfp, order, alloc_flags, &ac);
5550 	if (likely(page))
5551 		goto out;
5552 
5553 	alloc_gfp = gfp;
5554 	ac.spread_dirty_pages = false;
5555 
5556 	/*
5557 	 * Restore the original nodemask if it was potentially replaced with
5558 	 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
5559 	 */
5560 	ac.nodemask = nodemask;
5561 
5562 	page = __alloc_pages_slowpath(alloc_gfp, order, &ac);
5563 
5564 out:
5565 	if (memcg_kmem_enabled() && (gfp & __GFP_ACCOUNT) && page &&
5566 	    unlikely(__memcg_kmem_charge_page(page, gfp, order) != 0)) {
5567 		__free_pages(page, order);
5568 		page = NULL;
5569 	}
5570 
5571 	trace_mm_page_alloc(page, order, alloc_gfp, ac.migratetype);
5572 	kmsan_alloc_page(page, order, alloc_gfp);
5573 
5574 	return page;
5575 }
5576 EXPORT_SYMBOL(__alloc_pages);
5577 
5578 struct folio *__folio_alloc(gfp_t gfp, unsigned int order, int preferred_nid,
5579 		nodemask_t *nodemask)
5580 {
5581 	struct page *page = __alloc_pages(gfp | __GFP_COMP, order,
5582 			preferred_nid, nodemask);
5583 
5584 	if (page && order > 1)
5585 		prep_transhuge_page(page);
5586 	return (struct folio *)page;
5587 }
5588 EXPORT_SYMBOL(__folio_alloc);
5589 
5590 /*
5591  * Common helper functions. Never use with __GFP_HIGHMEM because the returned
5592  * address cannot represent highmem pages. Use alloc_pages and then kmap if
5593  * you need to access high mem.
5594  */
5595 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
5596 {
5597 	struct page *page;
5598 
5599 	page = alloc_pages(gfp_mask & ~__GFP_HIGHMEM, order);
5600 	if (!page)
5601 		return 0;
5602 	return (unsigned long) page_address(page);
5603 }
5604 EXPORT_SYMBOL(__get_free_pages);
5605 
5606 unsigned long get_zeroed_page(gfp_t gfp_mask)
5607 {
5608 	return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
5609 }
5610 EXPORT_SYMBOL(get_zeroed_page);
5611 
5612 /**
5613  * __free_pages - Free pages allocated with alloc_pages().
5614  * @page: The page pointer returned from alloc_pages().
5615  * @order: The order of the allocation.
5616  *
5617  * This function can free multi-page allocations that are not compound
5618  * pages.  It does not check that the @order passed in matches that of
5619  * the allocation, so it is easy to leak memory.  Freeing more memory
5620  * than was allocated will probably emit a warning.
5621  *
5622  * If the last reference to this page is speculative, it will be released
5623  * by put_page() which only frees the first page of a non-compound
5624  * allocation.  To prevent the remaining pages from being leaked, we free
5625  * the subsequent pages here.  If you want to use the page's reference
5626  * count to decide when to free the allocation, you should allocate a
5627  * compound page, and use put_page() instead of __free_pages().
5628  *
5629  * Context: May be called in interrupt context or while holding a normal
5630  * spinlock, but not in NMI context or while holding a raw spinlock.
5631  */
5632 void __free_pages(struct page *page, unsigned int order)
5633 {
5634 	if (put_page_testzero(page))
5635 		free_the_page(page, order);
5636 	else if (!PageHead(page))
5637 		while (order-- > 0)
5638 			free_the_page(page + (1 << order), order);
5639 }
5640 EXPORT_SYMBOL(__free_pages);
5641 
5642 void free_pages(unsigned long addr, unsigned int order)
5643 {
5644 	if (addr != 0) {
5645 		VM_BUG_ON(!virt_addr_valid((void *)addr));
5646 		__free_pages(virt_to_page((void *)addr), order);
5647 	}
5648 }
5649 
5650 EXPORT_SYMBOL(free_pages);
5651 
5652 /*
5653  * Page Fragment:
5654  *  An arbitrary-length arbitrary-offset area of memory which resides
5655  *  within a 0 or higher order page.  Multiple fragments within that page
5656  *  are individually refcounted, in the page's reference counter.
5657  *
5658  * The page_frag functions below provide a simple allocation framework for
5659  * page fragments.  This is used by the network stack and network device
5660  * drivers to provide a backing region of memory for use as either an
5661  * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
5662  */
5663 static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
5664 					     gfp_t gfp_mask)
5665 {
5666 	struct page *page = NULL;
5667 	gfp_t gfp = gfp_mask;
5668 
5669 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5670 	gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
5671 		    __GFP_NOMEMALLOC;
5672 	page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
5673 				PAGE_FRAG_CACHE_MAX_ORDER);
5674 	nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
5675 #endif
5676 	if (unlikely(!page))
5677 		page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
5678 
5679 	nc->va = page ? page_address(page) : NULL;
5680 
5681 	return page;
5682 }
5683 
5684 void __page_frag_cache_drain(struct page *page, unsigned int count)
5685 {
5686 	VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
5687 
5688 	if (page_ref_sub_and_test(page, count))
5689 		free_the_page(page, compound_order(page));
5690 }
5691 EXPORT_SYMBOL(__page_frag_cache_drain);
5692 
5693 void *page_frag_alloc_align(struct page_frag_cache *nc,
5694 		      unsigned int fragsz, gfp_t gfp_mask,
5695 		      unsigned int align_mask)
5696 {
5697 	unsigned int size = PAGE_SIZE;
5698 	struct page *page;
5699 	int offset;
5700 
5701 	if (unlikely(!nc->va)) {
5702 refill:
5703 		page = __page_frag_cache_refill(nc, gfp_mask);
5704 		if (!page)
5705 			return NULL;
5706 
5707 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5708 		/* if size can vary use size else just use PAGE_SIZE */
5709 		size = nc->size;
5710 #endif
5711 		/* Even if we own the page, we do not use atomic_set().
5712 		 * This would break get_page_unless_zero() users.
5713 		 */
5714 		page_ref_add(page, PAGE_FRAG_CACHE_MAX_SIZE);
5715 
5716 		/* reset page count bias and offset to start of new frag */
5717 		nc->pfmemalloc = page_is_pfmemalloc(page);
5718 		nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
5719 		nc->offset = size;
5720 	}
5721 
5722 	offset = nc->offset - fragsz;
5723 	if (unlikely(offset < 0)) {
5724 		page = virt_to_page(nc->va);
5725 
5726 		if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
5727 			goto refill;
5728 
5729 		if (unlikely(nc->pfmemalloc)) {
5730 			free_the_page(page, compound_order(page));
5731 			goto refill;
5732 		}
5733 
5734 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5735 		/* if size can vary use size else just use PAGE_SIZE */
5736 		size = nc->size;
5737 #endif
5738 		/* OK, page count is 0, we can safely set it */
5739 		set_page_count(page, PAGE_FRAG_CACHE_MAX_SIZE + 1);
5740 
5741 		/* reset page count bias and offset to start of new frag */
5742 		nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
5743 		offset = size - fragsz;
5744 		if (unlikely(offset < 0)) {
5745 			/*
5746 			 * The caller is trying to allocate a fragment
5747 			 * with fragsz > PAGE_SIZE but the cache isn't big
5748 			 * enough to satisfy the request, this may
5749 			 * happen in low memory conditions.
5750 			 * We don't release the cache page because
5751 			 * it could make memory pressure worse
5752 			 * so we simply return NULL here.
5753 			 */
5754 			return NULL;
5755 		}
5756 	}
5757 
5758 	nc->pagecnt_bias--;
5759 	offset &= align_mask;
5760 	nc->offset = offset;
5761 
5762 	return nc->va + offset;
5763 }
5764 EXPORT_SYMBOL(page_frag_alloc_align);
5765 
5766 /*
5767  * Frees a page fragment allocated out of either a compound or order 0 page.
5768  */
5769 void page_frag_free(void *addr)
5770 {
5771 	struct page *page = virt_to_head_page(addr);
5772 
5773 	if (unlikely(put_page_testzero(page)))
5774 		free_the_page(page, compound_order(page));
5775 }
5776 EXPORT_SYMBOL(page_frag_free);
5777 
5778 static void *make_alloc_exact(unsigned long addr, unsigned int order,
5779 		size_t size)
5780 {
5781 	if (addr) {
5782 		unsigned long nr = DIV_ROUND_UP(size, PAGE_SIZE);
5783 		struct page *page = virt_to_page((void *)addr);
5784 		struct page *last = page + nr;
5785 
5786 		split_page_owner(page, 1 << order);
5787 		split_page_memcg(page, 1 << order);
5788 		while (page < --last)
5789 			set_page_refcounted(last);
5790 
5791 		last = page + (1UL << order);
5792 		for (page += nr; page < last; page++)
5793 			__free_pages_ok(page, 0, FPI_TO_TAIL);
5794 	}
5795 	return (void *)addr;
5796 }
5797 
5798 /**
5799  * alloc_pages_exact - allocate an exact number physically-contiguous pages.
5800  * @size: the number of bytes to allocate
5801  * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
5802  *
5803  * This function is similar to alloc_pages(), except that it allocates the
5804  * minimum number of pages to satisfy the request.  alloc_pages() can only
5805  * allocate memory in power-of-two pages.
5806  *
5807  * This function is also limited by MAX_ORDER.
5808  *
5809  * Memory allocated by this function must be released by free_pages_exact().
5810  *
5811  * Return: pointer to the allocated area or %NULL in case of error.
5812  */
5813 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
5814 {
5815 	unsigned int order = get_order(size);
5816 	unsigned long addr;
5817 
5818 	if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM)))
5819 		gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM);
5820 
5821 	addr = __get_free_pages(gfp_mask, order);
5822 	return make_alloc_exact(addr, order, size);
5823 }
5824 EXPORT_SYMBOL(alloc_pages_exact);
5825 
5826 /**
5827  * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
5828  *			   pages on a node.
5829  * @nid: the preferred node ID where memory should be allocated
5830  * @size: the number of bytes to allocate
5831  * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
5832  *
5833  * Like alloc_pages_exact(), but try to allocate on node nid first before falling
5834  * back.
5835  *
5836  * Return: pointer to the allocated area or %NULL in case of error.
5837  */
5838 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
5839 {
5840 	unsigned int order = get_order(size);
5841 	struct page *p;
5842 
5843 	if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM)))
5844 		gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM);
5845 
5846 	p = alloc_pages_node(nid, gfp_mask, order);
5847 	if (!p)
5848 		return NULL;
5849 	return make_alloc_exact((unsigned long)page_address(p), order, size);
5850 }
5851 
5852 /**
5853  * free_pages_exact - release memory allocated via alloc_pages_exact()
5854  * @virt: the value returned by alloc_pages_exact.
5855  * @size: size of allocation, same value as passed to alloc_pages_exact().
5856  *
5857  * Release the memory allocated by a previous call to alloc_pages_exact.
5858  */
5859 void free_pages_exact(void *virt, size_t size)
5860 {
5861 	unsigned long addr = (unsigned long)virt;
5862 	unsigned long end = addr + PAGE_ALIGN(size);
5863 
5864 	while (addr < end) {
5865 		free_page(addr);
5866 		addr += PAGE_SIZE;
5867 	}
5868 }
5869 EXPORT_SYMBOL(free_pages_exact);
5870 
5871 /**
5872  * nr_free_zone_pages - count number of pages beyond high watermark
5873  * @offset: The zone index of the highest zone
5874  *
5875  * nr_free_zone_pages() counts the number of pages which are beyond the
5876  * high watermark within all zones at or below a given zone index.  For each
5877  * zone, the number of pages is calculated as:
5878  *
5879  *     nr_free_zone_pages = managed_pages - high_pages
5880  *
5881  * Return: number of pages beyond high watermark.
5882  */
5883 static unsigned long nr_free_zone_pages(int offset)
5884 {
5885 	struct zoneref *z;
5886 	struct zone *zone;
5887 
5888 	/* Just pick one node, since fallback list is circular */
5889 	unsigned long sum = 0;
5890 
5891 	struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
5892 
5893 	for_each_zone_zonelist(zone, z, zonelist, offset) {
5894 		unsigned long size = zone_managed_pages(zone);
5895 		unsigned long high = high_wmark_pages(zone);
5896 		if (size > high)
5897 			sum += size - high;
5898 	}
5899 
5900 	return sum;
5901 }
5902 
5903 /**
5904  * nr_free_buffer_pages - count number of pages beyond high watermark
5905  *
5906  * nr_free_buffer_pages() counts the number of pages which are beyond the high
5907  * watermark within ZONE_DMA and ZONE_NORMAL.
5908  *
5909  * Return: number of pages beyond high watermark within ZONE_DMA and
5910  * ZONE_NORMAL.
5911  */
5912 unsigned long nr_free_buffer_pages(void)
5913 {
5914 	return nr_free_zone_pages(gfp_zone(GFP_USER));
5915 }
5916 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
5917 
5918 static inline void show_node(struct zone *zone)
5919 {
5920 	if (IS_ENABLED(CONFIG_NUMA))
5921 		printk("Node %d ", zone_to_nid(zone));
5922 }
5923 
5924 long si_mem_available(void)
5925 {
5926 	long available;
5927 	unsigned long pagecache;
5928 	unsigned long wmark_low = 0;
5929 	unsigned long pages[NR_LRU_LISTS];
5930 	unsigned long reclaimable;
5931 	struct zone *zone;
5932 	int lru;
5933 
5934 	for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
5935 		pages[lru] = global_node_page_state(NR_LRU_BASE + lru);
5936 
5937 	for_each_zone(zone)
5938 		wmark_low += low_wmark_pages(zone);
5939 
5940 	/*
5941 	 * Estimate the amount of memory available for userspace allocations,
5942 	 * without causing swapping or OOM.
5943 	 */
5944 	available = global_zone_page_state(NR_FREE_PAGES) - totalreserve_pages;
5945 
5946 	/*
5947 	 * Not all the page cache can be freed, otherwise the system will
5948 	 * start swapping or thrashing. Assume at least half of the page
5949 	 * cache, or the low watermark worth of cache, needs to stay.
5950 	 */
5951 	pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
5952 	pagecache -= min(pagecache / 2, wmark_low);
5953 	available += pagecache;
5954 
5955 	/*
5956 	 * Part of the reclaimable slab and other kernel memory consists of
5957 	 * items that are in use, and cannot be freed. Cap this estimate at the
5958 	 * low watermark.
5959 	 */
5960 	reclaimable = global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B) +
5961 		global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE);
5962 	available += reclaimable - min(reclaimable / 2, wmark_low);
5963 
5964 	if (available < 0)
5965 		available = 0;
5966 	return available;
5967 }
5968 EXPORT_SYMBOL_GPL(si_mem_available);
5969 
5970 void si_meminfo(struct sysinfo *val)
5971 {
5972 	val->totalram = totalram_pages();
5973 	val->sharedram = global_node_page_state(NR_SHMEM);
5974 	val->freeram = global_zone_page_state(NR_FREE_PAGES);
5975 	val->bufferram = nr_blockdev_pages();
5976 	val->totalhigh = totalhigh_pages();
5977 	val->freehigh = nr_free_highpages();
5978 	val->mem_unit = PAGE_SIZE;
5979 }
5980 
5981 EXPORT_SYMBOL(si_meminfo);
5982 
5983 #ifdef CONFIG_NUMA
5984 void si_meminfo_node(struct sysinfo *val, int nid)
5985 {
5986 	int zone_type;		/* needs to be signed */
5987 	unsigned long managed_pages = 0;
5988 	unsigned long managed_highpages = 0;
5989 	unsigned long free_highpages = 0;
5990 	pg_data_t *pgdat = NODE_DATA(nid);
5991 
5992 	for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
5993 		managed_pages += zone_managed_pages(&pgdat->node_zones[zone_type]);
5994 	val->totalram = managed_pages;
5995 	val->sharedram = node_page_state(pgdat, NR_SHMEM);
5996 	val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES);
5997 #ifdef CONFIG_HIGHMEM
5998 	for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
5999 		struct zone *zone = &pgdat->node_zones[zone_type];
6000 
6001 		if (is_highmem(zone)) {
6002 			managed_highpages += zone_managed_pages(zone);
6003 			free_highpages += zone_page_state(zone, NR_FREE_PAGES);
6004 		}
6005 	}
6006 	val->totalhigh = managed_highpages;
6007 	val->freehigh = free_highpages;
6008 #else
6009 	val->totalhigh = managed_highpages;
6010 	val->freehigh = free_highpages;
6011 #endif
6012 	val->mem_unit = PAGE_SIZE;
6013 }
6014 #endif
6015 
6016 /*
6017  * Determine whether the node should be displayed or not, depending on whether
6018  * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
6019  */
6020 static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask)
6021 {
6022 	if (!(flags & SHOW_MEM_FILTER_NODES))
6023 		return false;
6024 
6025 	/*
6026 	 * no node mask - aka implicit memory numa policy. Do not bother with
6027 	 * the synchronization - read_mems_allowed_begin - because we do not
6028 	 * have to be precise here.
6029 	 */
6030 	if (!nodemask)
6031 		nodemask = &cpuset_current_mems_allowed;
6032 
6033 	return !node_isset(nid, *nodemask);
6034 }
6035 
6036 #define K(x) ((x) << (PAGE_SHIFT-10))
6037 
6038 static void show_migration_types(unsigned char type)
6039 {
6040 	static const char types[MIGRATE_TYPES] = {
6041 		[MIGRATE_UNMOVABLE]	= 'U',
6042 		[MIGRATE_MOVABLE]	= 'M',
6043 		[MIGRATE_RECLAIMABLE]	= 'E',
6044 		[MIGRATE_HIGHATOMIC]	= 'H',
6045 #ifdef CONFIG_CMA
6046 		[MIGRATE_CMA]		= 'C',
6047 #endif
6048 #ifdef CONFIG_MEMORY_ISOLATION
6049 		[MIGRATE_ISOLATE]	= 'I',
6050 #endif
6051 	};
6052 	char tmp[MIGRATE_TYPES + 1];
6053 	char *p = tmp;
6054 	int i;
6055 
6056 	for (i = 0; i < MIGRATE_TYPES; i++) {
6057 		if (type & (1 << i))
6058 			*p++ = types[i];
6059 	}
6060 
6061 	*p = '\0';
6062 	printk(KERN_CONT "(%s) ", tmp);
6063 }
6064 
6065 static bool node_has_managed_zones(pg_data_t *pgdat, int max_zone_idx)
6066 {
6067 	int zone_idx;
6068 	for (zone_idx = 0; zone_idx <= max_zone_idx; zone_idx++)
6069 		if (zone_managed_pages(pgdat->node_zones + zone_idx))
6070 			return true;
6071 	return false;
6072 }
6073 
6074 /*
6075  * Show free area list (used inside shift_scroll-lock stuff)
6076  * We also calculate the percentage fragmentation. We do this by counting the
6077  * memory on each free list with the exception of the first item on the list.
6078  *
6079  * Bits in @filter:
6080  * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
6081  *   cpuset.
6082  */
6083 void __show_free_areas(unsigned int filter, nodemask_t *nodemask, int max_zone_idx)
6084 {
6085 	unsigned long free_pcp = 0;
6086 	int cpu, nid;
6087 	struct zone *zone;
6088 	pg_data_t *pgdat;
6089 
6090 	for_each_populated_zone(zone) {
6091 		if (zone_idx(zone) > max_zone_idx)
6092 			continue;
6093 		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
6094 			continue;
6095 
6096 		for_each_online_cpu(cpu)
6097 			free_pcp += per_cpu_ptr(zone->per_cpu_pageset, cpu)->count;
6098 	}
6099 
6100 	printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
6101 		" active_file:%lu inactive_file:%lu isolated_file:%lu\n"
6102 		" unevictable:%lu dirty:%lu writeback:%lu\n"
6103 		" slab_reclaimable:%lu slab_unreclaimable:%lu\n"
6104 		" mapped:%lu shmem:%lu pagetables:%lu\n"
6105 		" sec_pagetables:%lu bounce:%lu\n"
6106 		" kernel_misc_reclaimable:%lu\n"
6107 		" free:%lu free_pcp:%lu free_cma:%lu\n",
6108 		global_node_page_state(NR_ACTIVE_ANON),
6109 		global_node_page_state(NR_INACTIVE_ANON),
6110 		global_node_page_state(NR_ISOLATED_ANON),
6111 		global_node_page_state(NR_ACTIVE_FILE),
6112 		global_node_page_state(NR_INACTIVE_FILE),
6113 		global_node_page_state(NR_ISOLATED_FILE),
6114 		global_node_page_state(NR_UNEVICTABLE),
6115 		global_node_page_state(NR_FILE_DIRTY),
6116 		global_node_page_state(NR_WRITEBACK),
6117 		global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B),
6118 		global_node_page_state_pages(NR_SLAB_UNRECLAIMABLE_B),
6119 		global_node_page_state(NR_FILE_MAPPED),
6120 		global_node_page_state(NR_SHMEM),
6121 		global_node_page_state(NR_PAGETABLE),
6122 		global_node_page_state(NR_SECONDARY_PAGETABLE),
6123 		global_zone_page_state(NR_BOUNCE),
6124 		global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE),
6125 		global_zone_page_state(NR_FREE_PAGES),
6126 		free_pcp,
6127 		global_zone_page_state(NR_FREE_CMA_PAGES));
6128 
6129 	for_each_online_pgdat(pgdat) {
6130 		if (show_mem_node_skip(filter, pgdat->node_id, nodemask))
6131 			continue;
6132 		if (!node_has_managed_zones(pgdat, max_zone_idx))
6133 			continue;
6134 
6135 		printk("Node %d"
6136 			" active_anon:%lukB"
6137 			" inactive_anon:%lukB"
6138 			" active_file:%lukB"
6139 			" inactive_file:%lukB"
6140 			" unevictable:%lukB"
6141 			" isolated(anon):%lukB"
6142 			" isolated(file):%lukB"
6143 			" mapped:%lukB"
6144 			" dirty:%lukB"
6145 			" writeback:%lukB"
6146 			" shmem:%lukB"
6147 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
6148 			" shmem_thp: %lukB"
6149 			" shmem_pmdmapped: %lukB"
6150 			" anon_thp: %lukB"
6151 #endif
6152 			" writeback_tmp:%lukB"
6153 			" kernel_stack:%lukB"
6154 #ifdef CONFIG_SHADOW_CALL_STACK
6155 			" shadow_call_stack:%lukB"
6156 #endif
6157 			" pagetables:%lukB"
6158 			" sec_pagetables:%lukB"
6159 			" all_unreclaimable? %s"
6160 			"\n",
6161 			pgdat->node_id,
6162 			K(node_page_state(pgdat, NR_ACTIVE_ANON)),
6163 			K(node_page_state(pgdat, NR_INACTIVE_ANON)),
6164 			K(node_page_state(pgdat, NR_ACTIVE_FILE)),
6165 			K(node_page_state(pgdat, NR_INACTIVE_FILE)),
6166 			K(node_page_state(pgdat, NR_UNEVICTABLE)),
6167 			K(node_page_state(pgdat, NR_ISOLATED_ANON)),
6168 			K(node_page_state(pgdat, NR_ISOLATED_FILE)),
6169 			K(node_page_state(pgdat, NR_FILE_MAPPED)),
6170 			K(node_page_state(pgdat, NR_FILE_DIRTY)),
6171 			K(node_page_state(pgdat, NR_WRITEBACK)),
6172 			K(node_page_state(pgdat, NR_SHMEM)),
6173 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
6174 			K(node_page_state(pgdat, NR_SHMEM_THPS)),
6175 			K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)),
6176 			K(node_page_state(pgdat, NR_ANON_THPS)),
6177 #endif
6178 			K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
6179 			node_page_state(pgdat, NR_KERNEL_STACK_KB),
6180 #ifdef CONFIG_SHADOW_CALL_STACK
6181 			node_page_state(pgdat, NR_KERNEL_SCS_KB),
6182 #endif
6183 			K(node_page_state(pgdat, NR_PAGETABLE)),
6184 			K(node_page_state(pgdat, NR_SECONDARY_PAGETABLE)),
6185 			pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ?
6186 				"yes" : "no");
6187 	}
6188 
6189 	for_each_populated_zone(zone) {
6190 		int i;
6191 
6192 		if (zone_idx(zone) > max_zone_idx)
6193 			continue;
6194 		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
6195 			continue;
6196 
6197 		free_pcp = 0;
6198 		for_each_online_cpu(cpu)
6199 			free_pcp += per_cpu_ptr(zone->per_cpu_pageset, cpu)->count;
6200 
6201 		show_node(zone);
6202 		printk(KERN_CONT
6203 			"%s"
6204 			" free:%lukB"
6205 			" boost:%lukB"
6206 			" min:%lukB"
6207 			" low:%lukB"
6208 			" high:%lukB"
6209 			" reserved_highatomic:%luKB"
6210 			" active_anon:%lukB"
6211 			" inactive_anon:%lukB"
6212 			" active_file:%lukB"
6213 			" inactive_file:%lukB"
6214 			" unevictable:%lukB"
6215 			" writepending:%lukB"
6216 			" present:%lukB"
6217 			" managed:%lukB"
6218 			" mlocked:%lukB"
6219 			" bounce:%lukB"
6220 			" free_pcp:%lukB"
6221 			" local_pcp:%ukB"
6222 			" free_cma:%lukB"
6223 			"\n",
6224 			zone->name,
6225 			K(zone_page_state(zone, NR_FREE_PAGES)),
6226 			K(zone->watermark_boost),
6227 			K(min_wmark_pages(zone)),
6228 			K(low_wmark_pages(zone)),
6229 			K(high_wmark_pages(zone)),
6230 			K(zone->nr_reserved_highatomic),
6231 			K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)),
6232 			K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)),
6233 			K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)),
6234 			K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)),
6235 			K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)),
6236 			K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)),
6237 			K(zone->present_pages),
6238 			K(zone_managed_pages(zone)),
6239 			K(zone_page_state(zone, NR_MLOCK)),
6240 			K(zone_page_state(zone, NR_BOUNCE)),
6241 			K(free_pcp),
6242 			K(this_cpu_read(zone->per_cpu_pageset->count)),
6243 			K(zone_page_state(zone, NR_FREE_CMA_PAGES)));
6244 		printk("lowmem_reserve[]:");
6245 		for (i = 0; i < MAX_NR_ZONES; i++)
6246 			printk(KERN_CONT " %ld", zone->lowmem_reserve[i]);
6247 		printk(KERN_CONT "\n");
6248 	}
6249 
6250 	for_each_populated_zone(zone) {
6251 		unsigned int order;
6252 		unsigned long nr[MAX_ORDER], flags, total = 0;
6253 		unsigned char types[MAX_ORDER];
6254 
6255 		if (zone_idx(zone) > max_zone_idx)
6256 			continue;
6257 		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
6258 			continue;
6259 		show_node(zone);
6260 		printk(KERN_CONT "%s: ", zone->name);
6261 
6262 		spin_lock_irqsave(&zone->lock, flags);
6263 		for (order = 0; order < MAX_ORDER; order++) {
6264 			struct free_area *area = &zone->free_area[order];
6265 			int type;
6266 
6267 			nr[order] = area->nr_free;
6268 			total += nr[order] << order;
6269 
6270 			types[order] = 0;
6271 			for (type = 0; type < MIGRATE_TYPES; type++) {
6272 				if (!free_area_empty(area, type))
6273 					types[order] |= 1 << type;
6274 			}
6275 		}
6276 		spin_unlock_irqrestore(&zone->lock, flags);
6277 		for (order = 0; order < MAX_ORDER; order++) {
6278 			printk(KERN_CONT "%lu*%lukB ",
6279 			       nr[order], K(1UL) << order);
6280 			if (nr[order])
6281 				show_migration_types(types[order]);
6282 		}
6283 		printk(KERN_CONT "= %lukB\n", K(total));
6284 	}
6285 
6286 	for_each_online_node(nid) {
6287 		if (show_mem_node_skip(filter, nid, nodemask))
6288 			continue;
6289 		hugetlb_show_meminfo_node(nid);
6290 	}
6291 
6292 	printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES));
6293 
6294 	show_swap_cache_info();
6295 }
6296 
6297 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
6298 {
6299 	zoneref->zone = zone;
6300 	zoneref->zone_idx = zone_idx(zone);
6301 }
6302 
6303 /*
6304  * Builds allocation fallback zone lists.
6305  *
6306  * Add all populated zones of a node to the zonelist.
6307  */
6308 static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs)
6309 {
6310 	struct zone *zone;
6311 	enum zone_type zone_type = MAX_NR_ZONES;
6312 	int nr_zones = 0;
6313 
6314 	do {
6315 		zone_type--;
6316 		zone = pgdat->node_zones + zone_type;
6317 		if (populated_zone(zone)) {
6318 			zoneref_set_zone(zone, &zonerefs[nr_zones++]);
6319 			check_highest_zone(zone_type);
6320 		}
6321 	} while (zone_type);
6322 
6323 	return nr_zones;
6324 }
6325 
6326 #ifdef CONFIG_NUMA
6327 
6328 static int __parse_numa_zonelist_order(char *s)
6329 {
6330 	/*
6331 	 * We used to support different zonelists modes but they turned
6332 	 * out to be just not useful. Let's keep the warning in place
6333 	 * if somebody still use the cmd line parameter so that we do
6334 	 * not fail it silently
6335 	 */
6336 	if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) {
6337 		pr_warn("Ignoring unsupported numa_zonelist_order value:  %s\n", s);
6338 		return -EINVAL;
6339 	}
6340 	return 0;
6341 }
6342 
6343 char numa_zonelist_order[] = "Node";
6344 
6345 /*
6346  * sysctl handler for numa_zonelist_order
6347  */
6348 int numa_zonelist_order_handler(struct ctl_table *table, int write,
6349 		void *buffer, size_t *length, loff_t *ppos)
6350 {
6351 	if (write)
6352 		return __parse_numa_zonelist_order(buffer);
6353 	return proc_dostring(table, write, buffer, length, ppos);
6354 }
6355 
6356 
6357 static int node_load[MAX_NUMNODES];
6358 
6359 /**
6360  * find_next_best_node - find the next node that should appear in a given node's fallback list
6361  * @node: node whose fallback list we're appending
6362  * @used_node_mask: nodemask_t of already used nodes
6363  *
6364  * We use a number of factors to determine which is the next node that should
6365  * appear on a given node's fallback list.  The node should not have appeared
6366  * already in @node's fallback list, and it should be the next closest node
6367  * according to the distance array (which contains arbitrary distance values
6368  * from each node to each node in the system), and should also prefer nodes
6369  * with no CPUs, since presumably they'll have very little allocation pressure
6370  * on them otherwise.
6371  *
6372  * Return: node id of the found node or %NUMA_NO_NODE if no node is found.
6373  */
6374 int find_next_best_node(int node, nodemask_t *used_node_mask)
6375 {
6376 	int n, val;
6377 	int min_val = INT_MAX;
6378 	int best_node = NUMA_NO_NODE;
6379 
6380 	/* Use the local node if we haven't already */
6381 	if (!node_isset(node, *used_node_mask)) {
6382 		node_set(node, *used_node_mask);
6383 		return node;
6384 	}
6385 
6386 	for_each_node_state(n, N_MEMORY) {
6387 
6388 		/* Don't want a node to appear more than once */
6389 		if (node_isset(n, *used_node_mask))
6390 			continue;
6391 
6392 		/* Use the distance array to find the distance */
6393 		val = node_distance(node, n);
6394 
6395 		/* Penalize nodes under us ("prefer the next node") */
6396 		val += (n < node);
6397 
6398 		/* Give preference to headless and unused nodes */
6399 		if (!cpumask_empty(cpumask_of_node(n)))
6400 			val += PENALTY_FOR_NODE_WITH_CPUS;
6401 
6402 		/* Slight preference for less loaded node */
6403 		val *= MAX_NUMNODES;
6404 		val += node_load[n];
6405 
6406 		if (val < min_val) {
6407 			min_val = val;
6408 			best_node = n;
6409 		}
6410 	}
6411 
6412 	if (best_node >= 0)
6413 		node_set(best_node, *used_node_mask);
6414 
6415 	return best_node;
6416 }
6417 
6418 
6419 /*
6420  * Build zonelists ordered by node and zones within node.
6421  * This results in maximum locality--normal zone overflows into local
6422  * DMA zone, if any--but risks exhausting DMA zone.
6423  */
6424 static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order,
6425 		unsigned nr_nodes)
6426 {
6427 	struct zoneref *zonerefs;
6428 	int i;
6429 
6430 	zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
6431 
6432 	for (i = 0; i < nr_nodes; i++) {
6433 		int nr_zones;
6434 
6435 		pg_data_t *node = NODE_DATA(node_order[i]);
6436 
6437 		nr_zones = build_zonerefs_node(node, zonerefs);
6438 		zonerefs += nr_zones;
6439 	}
6440 	zonerefs->zone = NULL;
6441 	zonerefs->zone_idx = 0;
6442 }
6443 
6444 /*
6445  * Build gfp_thisnode zonelists
6446  */
6447 static void build_thisnode_zonelists(pg_data_t *pgdat)
6448 {
6449 	struct zoneref *zonerefs;
6450 	int nr_zones;
6451 
6452 	zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs;
6453 	nr_zones = build_zonerefs_node(pgdat, zonerefs);
6454 	zonerefs += nr_zones;
6455 	zonerefs->zone = NULL;
6456 	zonerefs->zone_idx = 0;
6457 }
6458 
6459 /*
6460  * Build zonelists ordered by zone and nodes within zones.
6461  * This results in conserving DMA zone[s] until all Normal memory is
6462  * exhausted, but results in overflowing to remote node while memory
6463  * may still exist in local DMA zone.
6464  */
6465 
6466 static void build_zonelists(pg_data_t *pgdat)
6467 {
6468 	static int node_order[MAX_NUMNODES];
6469 	int node, nr_nodes = 0;
6470 	nodemask_t used_mask = NODE_MASK_NONE;
6471 	int local_node, prev_node;
6472 
6473 	/* NUMA-aware ordering of nodes */
6474 	local_node = pgdat->node_id;
6475 	prev_node = local_node;
6476 
6477 	memset(node_order, 0, sizeof(node_order));
6478 	while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
6479 		/*
6480 		 * We don't want to pressure a particular node.
6481 		 * So adding penalty to the first node in same
6482 		 * distance group to make it round-robin.
6483 		 */
6484 		if (node_distance(local_node, node) !=
6485 		    node_distance(local_node, prev_node))
6486 			node_load[node] += 1;
6487 
6488 		node_order[nr_nodes++] = node;
6489 		prev_node = node;
6490 	}
6491 
6492 	build_zonelists_in_node_order(pgdat, node_order, nr_nodes);
6493 	build_thisnode_zonelists(pgdat);
6494 	pr_info("Fallback order for Node %d: ", local_node);
6495 	for (node = 0; node < nr_nodes; node++)
6496 		pr_cont("%d ", node_order[node]);
6497 	pr_cont("\n");
6498 }
6499 
6500 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
6501 /*
6502  * Return node id of node used for "local" allocations.
6503  * I.e., first node id of first zone in arg node's generic zonelist.
6504  * Used for initializing percpu 'numa_mem', which is used primarily
6505  * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
6506  */
6507 int local_memory_node(int node)
6508 {
6509 	struct zoneref *z;
6510 
6511 	z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
6512 				   gfp_zone(GFP_KERNEL),
6513 				   NULL);
6514 	return zone_to_nid(z->zone);
6515 }
6516 #endif
6517 
6518 static void setup_min_unmapped_ratio(void);
6519 static void setup_min_slab_ratio(void);
6520 #else	/* CONFIG_NUMA */
6521 
6522 static void build_zonelists(pg_data_t *pgdat)
6523 {
6524 	int node, local_node;
6525 	struct zoneref *zonerefs;
6526 	int nr_zones;
6527 
6528 	local_node = pgdat->node_id;
6529 
6530 	zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
6531 	nr_zones = build_zonerefs_node(pgdat, zonerefs);
6532 	zonerefs += nr_zones;
6533 
6534 	/*
6535 	 * Now we build the zonelist so that it contains the zones
6536 	 * of all the other nodes.
6537 	 * We don't want to pressure a particular node, so when
6538 	 * building the zones for node N, we make sure that the
6539 	 * zones coming right after the local ones are those from
6540 	 * node N+1 (modulo N)
6541 	 */
6542 	for (node = local_node + 1; node < MAX_NUMNODES; node++) {
6543 		if (!node_online(node))
6544 			continue;
6545 		nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
6546 		zonerefs += nr_zones;
6547 	}
6548 	for (node = 0; node < local_node; node++) {
6549 		if (!node_online(node))
6550 			continue;
6551 		nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
6552 		zonerefs += nr_zones;
6553 	}
6554 
6555 	zonerefs->zone = NULL;
6556 	zonerefs->zone_idx = 0;
6557 }
6558 
6559 #endif	/* CONFIG_NUMA */
6560 
6561 /*
6562  * Boot pageset table. One per cpu which is going to be used for all
6563  * zones and all nodes. The parameters will be set in such a way
6564  * that an item put on a list will immediately be handed over to
6565  * the buddy list. This is safe since pageset manipulation is done
6566  * with interrupts disabled.
6567  *
6568  * The boot_pagesets must be kept even after bootup is complete for
6569  * unused processors and/or zones. They do play a role for bootstrapping
6570  * hotplugged processors.
6571  *
6572  * zoneinfo_show() and maybe other functions do
6573  * not check if the processor is online before following the pageset pointer.
6574  * Other parts of the kernel may not check if the zone is available.
6575  */
6576 static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats);
6577 /* These effectively disable the pcplists in the boot pageset completely */
6578 #define BOOT_PAGESET_HIGH	0
6579 #define BOOT_PAGESET_BATCH	1
6580 static DEFINE_PER_CPU(struct per_cpu_pages, boot_pageset);
6581 static DEFINE_PER_CPU(struct per_cpu_zonestat, boot_zonestats);
6582 static DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats);
6583 
6584 static void __build_all_zonelists(void *data)
6585 {
6586 	int nid;
6587 	int __maybe_unused cpu;
6588 	pg_data_t *self = data;
6589 
6590 	write_seqlock(&zonelist_update_seq);
6591 
6592 #ifdef CONFIG_NUMA
6593 	memset(node_load, 0, sizeof(node_load));
6594 #endif
6595 
6596 	/*
6597 	 * This node is hotadded and no memory is yet present.   So just
6598 	 * building zonelists is fine - no need to touch other nodes.
6599 	 */
6600 	if (self && !node_online(self->node_id)) {
6601 		build_zonelists(self);
6602 	} else {
6603 		/*
6604 		 * All possible nodes have pgdat preallocated
6605 		 * in free_area_init
6606 		 */
6607 		for_each_node(nid) {
6608 			pg_data_t *pgdat = NODE_DATA(nid);
6609 
6610 			build_zonelists(pgdat);
6611 		}
6612 
6613 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
6614 		/*
6615 		 * We now know the "local memory node" for each node--
6616 		 * i.e., the node of the first zone in the generic zonelist.
6617 		 * Set up numa_mem percpu variable for on-line cpus.  During
6618 		 * boot, only the boot cpu should be on-line;  we'll init the
6619 		 * secondary cpus' numa_mem as they come on-line.  During
6620 		 * node/memory hotplug, we'll fixup all on-line cpus.
6621 		 */
6622 		for_each_online_cpu(cpu)
6623 			set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
6624 #endif
6625 	}
6626 
6627 	write_sequnlock(&zonelist_update_seq);
6628 }
6629 
6630 static noinline void __init
6631 build_all_zonelists_init(void)
6632 {
6633 	int cpu;
6634 
6635 	__build_all_zonelists(NULL);
6636 
6637 	/*
6638 	 * Initialize the boot_pagesets that are going to be used
6639 	 * for bootstrapping processors. The real pagesets for
6640 	 * each zone will be allocated later when the per cpu
6641 	 * allocator is available.
6642 	 *
6643 	 * boot_pagesets are used also for bootstrapping offline
6644 	 * cpus if the system is already booted because the pagesets
6645 	 * are needed to initialize allocators on a specific cpu too.
6646 	 * F.e. the percpu allocator needs the page allocator which
6647 	 * needs the percpu allocator in order to allocate its pagesets
6648 	 * (a chicken-egg dilemma).
6649 	 */
6650 	for_each_possible_cpu(cpu)
6651 		per_cpu_pages_init(&per_cpu(boot_pageset, cpu), &per_cpu(boot_zonestats, cpu));
6652 
6653 	mminit_verify_zonelist();
6654 	cpuset_init_current_mems_allowed();
6655 }
6656 
6657 /*
6658  * unless system_state == SYSTEM_BOOTING.
6659  *
6660  * __ref due to call of __init annotated helper build_all_zonelists_init
6661  * [protected by SYSTEM_BOOTING].
6662  */
6663 void __ref build_all_zonelists(pg_data_t *pgdat)
6664 {
6665 	unsigned long vm_total_pages;
6666 
6667 	if (system_state == SYSTEM_BOOTING) {
6668 		build_all_zonelists_init();
6669 	} else {
6670 		__build_all_zonelists(pgdat);
6671 		/* cpuset refresh routine should be here */
6672 	}
6673 	/* Get the number of free pages beyond high watermark in all zones. */
6674 	vm_total_pages = nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
6675 	/*
6676 	 * Disable grouping by mobility if the number of pages in the
6677 	 * system is too low to allow the mechanism to work. It would be
6678 	 * more accurate, but expensive to check per-zone. This check is
6679 	 * made on memory-hotadd so a system can start with mobility
6680 	 * disabled and enable it later
6681 	 */
6682 	if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
6683 		page_group_by_mobility_disabled = 1;
6684 	else
6685 		page_group_by_mobility_disabled = 0;
6686 
6687 	pr_info("Built %u zonelists, mobility grouping %s.  Total pages: %ld\n",
6688 		nr_online_nodes,
6689 		page_group_by_mobility_disabled ? "off" : "on",
6690 		vm_total_pages);
6691 #ifdef CONFIG_NUMA
6692 	pr_info("Policy zone: %s\n", zone_names[policy_zone]);
6693 #endif
6694 }
6695 
6696 /* If zone is ZONE_MOVABLE but memory is mirrored, it is an overlapped init */
6697 static bool __meminit
6698 overlap_memmap_init(unsigned long zone, unsigned long *pfn)
6699 {
6700 	static struct memblock_region *r;
6701 
6702 	if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
6703 		if (!r || *pfn >= memblock_region_memory_end_pfn(r)) {
6704 			for_each_mem_region(r) {
6705 				if (*pfn < memblock_region_memory_end_pfn(r))
6706 					break;
6707 			}
6708 		}
6709 		if (*pfn >= memblock_region_memory_base_pfn(r) &&
6710 		    memblock_is_mirror(r)) {
6711 			*pfn = memblock_region_memory_end_pfn(r);
6712 			return true;
6713 		}
6714 	}
6715 	return false;
6716 }
6717 
6718 /*
6719  * Initially all pages are reserved - free ones are freed
6720  * up by memblock_free_all() once the early boot process is
6721  * done. Non-atomic initialization, single-pass.
6722  *
6723  * All aligned pageblocks are initialized to the specified migratetype
6724  * (usually MIGRATE_MOVABLE). Besides setting the migratetype, no related
6725  * zone stats (e.g., nr_isolate_pageblock) are touched.
6726  */
6727 void __meminit memmap_init_range(unsigned long size, int nid, unsigned long zone,
6728 		unsigned long start_pfn, unsigned long zone_end_pfn,
6729 		enum meminit_context context,
6730 		struct vmem_altmap *altmap, int migratetype)
6731 {
6732 	unsigned long pfn, end_pfn = start_pfn + size;
6733 	struct page *page;
6734 
6735 	if (highest_memmap_pfn < end_pfn - 1)
6736 		highest_memmap_pfn = end_pfn - 1;
6737 
6738 #ifdef CONFIG_ZONE_DEVICE
6739 	/*
6740 	 * Honor reservation requested by the driver for this ZONE_DEVICE
6741 	 * memory. We limit the total number of pages to initialize to just
6742 	 * those that might contain the memory mapping. We will defer the
6743 	 * ZONE_DEVICE page initialization until after we have released
6744 	 * the hotplug lock.
6745 	 */
6746 	if (zone == ZONE_DEVICE) {
6747 		if (!altmap)
6748 			return;
6749 
6750 		if (start_pfn == altmap->base_pfn)
6751 			start_pfn += altmap->reserve;
6752 		end_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
6753 	}
6754 #endif
6755 
6756 	for (pfn = start_pfn; pfn < end_pfn; ) {
6757 		/*
6758 		 * There can be holes in boot-time mem_map[]s handed to this
6759 		 * function.  They do not exist on hotplugged memory.
6760 		 */
6761 		if (context == MEMINIT_EARLY) {
6762 			if (overlap_memmap_init(zone, &pfn))
6763 				continue;
6764 			if (defer_init(nid, pfn, zone_end_pfn))
6765 				break;
6766 		}
6767 
6768 		page = pfn_to_page(pfn);
6769 		__init_single_page(page, pfn, zone, nid);
6770 		if (context == MEMINIT_HOTPLUG)
6771 			__SetPageReserved(page);
6772 
6773 		/*
6774 		 * Usually, we want to mark the pageblock MIGRATE_MOVABLE,
6775 		 * such that unmovable allocations won't be scattered all
6776 		 * over the place during system boot.
6777 		 */
6778 		if (pageblock_aligned(pfn)) {
6779 			set_pageblock_migratetype(page, migratetype);
6780 			cond_resched();
6781 		}
6782 		pfn++;
6783 	}
6784 }
6785 
6786 #ifdef CONFIG_ZONE_DEVICE
6787 static void __ref __init_zone_device_page(struct page *page, unsigned long pfn,
6788 					  unsigned long zone_idx, int nid,
6789 					  struct dev_pagemap *pgmap)
6790 {
6791 
6792 	__init_single_page(page, pfn, zone_idx, nid);
6793 
6794 	/*
6795 	 * Mark page reserved as it will need to wait for onlining
6796 	 * phase for it to be fully associated with a zone.
6797 	 *
6798 	 * We can use the non-atomic __set_bit operation for setting
6799 	 * the flag as we are still initializing the pages.
6800 	 */
6801 	__SetPageReserved(page);
6802 
6803 	/*
6804 	 * ZONE_DEVICE pages union ->lru with a ->pgmap back pointer
6805 	 * and zone_device_data.  It is a bug if a ZONE_DEVICE page is
6806 	 * ever freed or placed on a driver-private list.
6807 	 */
6808 	page->pgmap = pgmap;
6809 	page->zone_device_data = NULL;
6810 
6811 	/*
6812 	 * Mark the block movable so that blocks are reserved for
6813 	 * movable at startup. This will force kernel allocations
6814 	 * to reserve their blocks rather than leaking throughout
6815 	 * the address space during boot when many long-lived
6816 	 * kernel allocations are made.
6817 	 *
6818 	 * Please note that MEMINIT_HOTPLUG path doesn't clear memmap
6819 	 * because this is done early in section_activate()
6820 	 */
6821 	if (pageblock_aligned(pfn)) {
6822 		set_pageblock_migratetype(page, MIGRATE_MOVABLE);
6823 		cond_resched();
6824 	}
6825 
6826 	/*
6827 	 * ZONE_DEVICE pages are released directly to the driver page allocator
6828 	 * which will set the page count to 1 when allocating the page.
6829 	 */
6830 	if (pgmap->type == MEMORY_DEVICE_PRIVATE ||
6831 	    pgmap->type == MEMORY_DEVICE_COHERENT)
6832 		set_page_count(page, 0);
6833 }
6834 
6835 /*
6836  * With compound page geometry and when struct pages are stored in ram most
6837  * tail pages are reused. Consequently, the amount of unique struct pages to
6838  * initialize is a lot smaller that the total amount of struct pages being
6839  * mapped. This is a paired / mild layering violation with explicit knowledge
6840  * of how the sparse_vmemmap internals handle compound pages in the lack
6841  * of an altmap. See vmemmap_populate_compound_pages().
6842  */
6843 static inline unsigned long compound_nr_pages(struct vmem_altmap *altmap,
6844 					      unsigned long nr_pages)
6845 {
6846 	return is_power_of_2(sizeof(struct page)) &&
6847 		!altmap ? 2 * (PAGE_SIZE / sizeof(struct page)) : nr_pages;
6848 }
6849 
6850 static void __ref memmap_init_compound(struct page *head,
6851 				       unsigned long head_pfn,
6852 				       unsigned long zone_idx, int nid,
6853 				       struct dev_pagemap *pgmap,
6854 				       unsigned long nr_pages)
6855 {
6856 	unsigned long pfn, end_pfn = head_pfn + nr_pages;
6857 	unsigned int order = pgmap->vmemmap_shift;
6858 
6859 	__SetPageHead(head);
6860 	for (pfn = head_pfn + 1; pfn < end_pfn; pfn++) {
6861 		struct page *page = pfn_to_page(pfn);
6862 
6863 		__init_zone_device_page(page, pfn, zone_idx, nid, pgmap);
6864 		prep_compound_tail(head, pfn - head_pfn);
6865 		set_page_count(page, 0);
6866 
6867 		/*
6868 		 * The first tail page stores important compound page info.
6869 		 * Call prep_compound_head() after the first tail page has
6870 		 * been initialized, to not have the data overwritten.
6871 		 */
6872 		if (pfn == head_pfn + 1)
6873 			prep_compound_head(head, order);
6874 	}
6875 }
6876 
6877 void __ref memmap_init_zone_device(struct zone *zone,
6878 				   unsigned long start_pfn,
6879 				   unsigned long nr_pages,
6880 				   struct dev_pagemap *pgmap)
6881 {
6882 	unsigned long pfn, end_pfn = start_pfn + nr_pages;
6883 	struct pglist_data *pgdat = zone->zone_pgdat;
6884 	struct vmem_altmap *altmap = pgmap_altmap(pgmap);
6885 	unsigned int pfns_per_compound = pgmap_vmemmap_nr(pgmap);
6886 	unsigned long zone_idx = zone_idx(zone);
6887 	unsigned long start = jiffies;
6888 	int nid = pgdat->node_id;
6889 
6890 	if (WARN_ON_ONCE(!pgmap || zone_idx != ZONE_DEVICE))
6891 		return;
6892 
6893 	/*
6894 	 * The call to memmap_init should have already taken care
6895 	 * of the pages reserved for the memmap, so we can just jump to
6896 	 * the end of that region and start processing the device pages.
6897 	 */
6898 	if (altmap) {
6899 		start_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
6900 		nr_pages = end_pfn - start_pfn;
6901 	}
6902 
6903 	for (pfn = start_pfn; pfn < end_pfn; pfn += pfns_per_compound) {
6904 		struct page *page = pfn_to_page(pfn);
6905 
6906 		__init_zone_device_page(page, pfn, zone_idx, nid, pgmap);
6907 
6908 		if (pfns_per_compound == 1)
6909 			continue;
6910 
6911 		memmap_init_compound(page, pfn, zone_idx, nid, pgmap,
6912 				     compound_nr_pages(altmap, pfns_per_compound));
6913 	}
6914 
6915 	pr_info("%s initialised %lu pages in %ums\n", __func__,
6916 		nr_pages, jiffies_to_msecs(jiffies - start));
6917 }
6918 
6919 #endif
6920 static void __meminit zone_init_free_lists(struct zone *zone)
6921 {
6922 	unsigned int order, t;
6923 	for_each_migratetype_order(order, t) {
6924 		INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
6925 		zone->free_area[order].nr_free = 0;
6926 	}
6927 }
6928 
6929 /*
6930  * Only struct pages that correspond to ranges defined by memblock.memory
6931  * are zeroed and initialized by going through __init_single_page() during
6932  * memmap_init_zone_range().
6933  *
6934  * But, there could be struct pages that correspond to holes in
6935  * memblock.memory. This can happen because of the following reasons:
6936  * - physical memory bank size is not necessarily the exact multiple of the
6937  *   arbitrary section size
6938  * - early reserved memory may not be listed in memblock.memory
6939  * - memory layouts defined with memmap= kernel parameter may not align
6940  *   nicely with memmap sections
6941  *
6942  * Explicitly initialize those struct pages so that:
6943  * - PG_Reserved is set
6944  * - zone and node links point to zone and node that span the page if the
6945  *   hole is in the middle of a zone
6946  * - zone and node links point to adjacent zone/node if the hole falls on
6947  *   the zone boundary; the pages in such holes will be prepended to the
6948  *   zone/node above the hole except for the trailing pages in the last
6949  *   section that will be appended to the zone/node below.
6950  */
6951 static void __init init_unavailable_range(unsigned long spfn,
6952 					  unsigned long epfn,
6953 					  int zone, int node)
6954 {
6955 	unsigned long pfn;
6956 	u64 pgcnt = 0;
6957 
6958 	for (pfn = spfn; pfn < epfn; pfn++) {
6959 		if (!pfn_valid(pageblock_start_pfn(pfn))) {
6960 			pfn = pageblock_end_pfn(pfn) - 1;
6961 			continue;
6962 		}
6963 		__init_single_page(pfn_to_page(pfn), pfn, zone, node);
6964 		__SetPageReserved(pfn_to_page(pfn));
6965 		pgcnt++;
6966 	}
6967 
6968 	if (pgcnt)
6969 		pr_info("On node %d, zone %s: %lld pages in unavailable ranges",
6970 			node, zone_names[zone], pgcnt);
6971 }
6972 
6973 static void __init memmap_init_zone_range(struct zone *zone,
6974 					  unsigned long start_pfn,
6975 					  unsigned long end_pfn,
6976 					  unsigned long *hole_pfn)
6977 {
6978 	unsigned long zone_start_pfn = zone->zone_start_pfn;
6979 	unsigned long zone_end_pfn = zone_start_pfn + zone->spanned_pages;
6980 	int nid = zone_to_nid(zone), zone_id = zone_idx(zone);
6981 
6982 	start_pfn = clamp(start_pfn, zone_start_pfn, zone_end_pfn);
6983 	end_pfn = clamp(end_pfn, zone_start_pfn, zone_end_pfn);
6984 
6985 	if (start_pfn >= end_pfn)
6986 		return;
6987 
6988 	memmap_init_range(end_pfn - start_pfn, nid, zone_id, start_pfn,
6989 			  zone_end_pfn, MEMINIT_EARLY, NULL, MIGRATE_MOVABLE);
6990 
6991 	if (*hole_pfn < start_pfn)
6992 		init_unavailable_range(*hole_pfn, start_pfn, zone_id, nid);
6993 
6994 	*hole_pfn = end_pfn;
6995 }
6996 
6997 static void __init memmap_init(void)
6998 {
6999 	unsigned long start_pfn, end_pfn;
7000 	unsigned long hole_pfn = 0;
7001 	int i, j, zone_id = 0, nid;
7002 
7003 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
7004 		struct pglist_data *node = NODE_DATA(nid);
7005 
7006 		for (j = 0; j < MAX_NR_ZONES; j++) {
7007 			struct zone *zone = node->node_zones + j;
7008 
7009 			if (!populated_zone(zone))
7010 				continue;
7011 
7012 			memmap_init_zone_range(zone, start_pfn, end_pfn,
7013 					       &hole_pfn);
7014 			zone_id = j;
7015 		}
7016 	}
7017 
7018 #ifdef CONFIG_SPARSEMEM
7019 	/*
7020 	 * Initialize the memory map for hole in the range [memory_end,
7021 	 * section_end].
7022 	 * Append the pages in this hole to the highest zone in the last
7023 	 * node.
7024 	 * The call to init_unavailable_range() is outside the ifdef to
7025 	 * silence the compiler warining about zone_id set but not used;
7026 	 * for FLATMEM it is a nop anyway
7027 	 */
7028 	end_pfn = round_up(end_pfn, PAGES_PER_SECTION);
7029 	if (hole_pfn < end_pfn)
7030 #endif
7031 		init_unavailable_range(hole_pfn, end_pfn, zone_id, nid);
7032 }
7033 
7034 void __init *memmap_alloc(phys_addr_t size, phys_addr_t align,
7035 			  phys_addr_t min_addr, int nid, bool exact_nid)
7036 {
7037 	void *ptr;
7038 
7039 	if (exact_nid)
7040 		ptr = memblock_alloc_exact_nid_raw(size, align, min_addr,
7041 						   MEMBLOCK_ALLOC_ACCESSIBLE,
7042 						   nid);
7043 	else
7044 		ptr = memblock_alloc_try_nid_raw(size, align, min_addr,
7045 						 MEMBLOCK_ALLOC_ACCESSIBLE,
7046 						 nid);
7047 
7048 	if (ptr && size > 0)
7049 		page_init_poison(ptr, size);
7050 
7051 	return ptr;
7052 }
7053 
7054 static int zone_batchsize(struct zone *zone)
7055 {
7056 #ifdef CONFIG_MMU
7057 	int batch;
7058 
7059 	/*
7060 	 * The number of pages to batch allocate is either ~0.1%
7061 	 * of the zone or 1MB, whichever is smaller. The batch
7062 	 * size is striking a balance between allocation latency
7063 	 * and zone lock contention.
7064 	 */
7065 	batch = min(zone_managed_pages(zone) >> 10, SZ_1M / PAGE_SIZE);
7066 	batch /= 4;		/* We effectively *= 4 below */
7067 	if (batch < 1)
7068 		batch = 1;
7069 
7070 	/*
7071 	 * Clamp the batch to a 2^n - 1 value. Having a power
7072 	 * of 2 value was found to be more likely to have
7073 	 * suboptimal cache aliasing properties in some cases.
7074 	 *
7075 	 * For example if 2 tasks are alternately allocating
7076 	 * batches of pages, one task can end up with a lot
7077 	 * of pages of one half of the possible page colors
7078 	 * and the other with pages of the other colors.
7079 	 */
7080 	batch = rounddown_pow_of_two(batch + batch/2) - 1;
7081 
7082 	return batch;
7083 
7084 #else
7085 	/* The deferral and batching of frees should be suppressed under NOMMU
7086 	 * conditions.
7087 	 *
7088 	 * The problem is that NOMMU needs to be able to allocate large chunks
7089 	 * of contiguous memory as there's no hardware page translation to
7090 	 * assemble apparent contiguous memory from discontiguous pages.
7091 	 *
7092 	 * Queueing large contiguous runs of pages for batching, however,
7093 	 * causes the pages to actually be freed in smaller chunks.  As there
7094 	 * can be a significant delay between the individual batches being
7095 	 * recycled, this leads to the once large chunks of space being
7096 	 * fragmented and becoming unavailable for high-order allocations.
7097 	 */
7098 	return 0;
7099 #endif
7100 }
7101 
7102 static int zone_highsize(struct zone *zone, int batch, int cpu_online)
7103 {
7104 #ifdef CONFIG_MMU
7105 	int high;
7106 	int nr_split_cpus;
7107 	unsigned long total_pages;
7108 
7109 	if (!percpu_pagelist_high_fraction) {
7110 		/*
7111 		 * By default, the high value of the pcp is based on the zone
7112 		 * low watermark so that if they are full then background
7113 		 * reclaim will not be started prematurely.
7114 		 */
7115 		total_pages = low_wmark_pages(zone);
7116 	} else {
7117 		/*
7118 		 * If percpu_pagelist_high_fraction is configured, the high
7119 		 * value is based on a fraction of the managed pages in the
7120 		 * zone.
7121 		 */
7122 		total_pages = zone_managed_pages(zone) / percpu_pagelist_high_fraction;
7123 	}
7124 
7125 	/*
7126 	 * Split the high value across all online CPUs local to the zone. Note
7127 	 * that early in boot that CPUs may not be online yet and that during
7128 	 * CPU hotplug that the cpumask is not yet updated when a CPU is being
7129 	 * onlined. For memory nodes that have no CPUs, split pcp->high across
7130 	 * all online CPUs to mitigate the risk that reclaim is triggered
7131 	 * prematurely due to pages stored on pcp lists.
7132 	 */
7133 	nr_split_cpus = cpumask_weight(cpumask_of_node(zone_to_nid(zone))) + cpu_online;
7134 	if (!nr_split_cpus)
7135 		nr_split_cpus = num_online_cpus();
7136 	high = total_pages / nr_split_cpus;
7137 
7138 	/*
7139 	 * Ensure high is at least batch*4. The multiple is based on the
7140 	 * historical relationship between high and batch.
7141 	 */
7142 	high = max(high, batch << 2);
7143 
7144 	return high;
7145 #else
7146 	return 0;
7147 #endif
7148 }
7149 
7150 /*
7151  * pcp->high and pcp->batch values are related and generally batch is lower
7152  * than high. They are also related to pcp->count such that count is lower
7153  * than high, and as soon as it reaches high, the pcplist is flushed.
7154  *
7155  * However, guaranteeing these relations at all times would require e.g. write
7156  * barriers here but also careful usage of read barriers at the read side, and
7157  * thus be prone to error and bad for performance. Thus the update only prevents
7158  * store tearing. Any new users of pcp->batch and pcp->high should ensure they
7159  * can cope with those fields changing asynchronously, and fully trust only the
7160  * pcp->count field on the local CPU with interrupts disabled.
7161  *
7162  * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
7163  * outside of boot time (or some other assurance that no concurrent updaters
7164  * exist).
7165  */
7166 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
7167 		unsigned long batch)
7168 {
7169 	WRITE_ONCE(pcp->batch, batch);
7170 	WRITE_ONCE(pcp->high, high);
7171 }
7172 
7173 static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats)
7174 {
7175 	int pindex;
7176 
7177 	memset(pcp, 0, sizeof(*pcp));
7178 	memset(pzstats, 0, sizeof(*pzstats));
7179 
7180 	spin_lock_init(&pcp->lock);
7181 	for (pindex = 0; pindex < NR_PCP_LISTS; pindex++)
7182 		INIT_LIST_HEAD(&pcp->lists[pindex]);
7183 
7184 	/*
7185 	 * Set batch and high values safe for a boot pageset. A true percpu
7186 	 * pageset's initialization will update them subsequently. Here we don't
7187 	 * need to be as careful as pageset_update() as nobody can access the
7188 	 * pageset yet.
7189 	 */
7190 	pcp->high = BOOT_PAGESET_HIGH;
7191 	pcp->batch = BOOT_PAGESET_BATCH;
7192 	pcp->free_factor = 0;
7193 }
7194 
7195 static void __zone_set_pageset_high_and_batch(struct zone *zone, unsigned long high,
7196 		unsigned long batch)
7197 {
7198 	struct per_cpu_pages *pcp;
7199 	int cpu;
7200 
7201 	for_each_possible_cpu(cpu) {
7202 		pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
7203 		pageset_update(pcp, high, batch);
7204 	}
7205 }
7206 
7207 /*
7208  * Calculate and set new high and batch values for all per-cpu pagesets of a
7209  * zone based on the zone's size.
7210  */
7211 static void zone_set_pageset_high_and_batch(struct zone *zone, int cpu_online)
7212 {
7213 	int new_high, new_batch;
7214 
7215 	new_batch = max(1, zone_batchsize(zone));
7216 	new_high = zone_highsize(zone, new_batch, cpu_online);
7217 
7218 	if (zone->pageset_high == new_high &&
7219 	    zone->pageset_batch == new_batch)
7220 		return;
7221 
7222 	zone->pageset_high = new_high;
7223 	zone->pageset_batch = new_batch;
7224 
7225 	__zone_set_pageset_high_and_batch(zone, new_high, new_batch);
7226 }
7227 
7228 void __meminit setup_zone_pageset(struct zone *zone)
7229 {
7230 	int cpu;
7231 
7232 	/* Size may be 0 on !SMP && !NUMA */
7233 	if (sizeof(struct per_cpu_zonestat) > 0)
7234 		zone->per_cpu_zonestats = alloc_percpu(struct per_cpu_zonestat);
7235 
7236 	zone->per_cpu_pageset = alloc_percpu(struct per_cpu_pages);
7237 	for_each_possible_cpu(cpu) {
7238 		struct per_cpu_pages *pcp;
7239 		struct per_cpu_zonestat *pzstats;
7240 
7241 		pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
7242 		pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
7243 		per_cpu_pages_init(pcp, pzstats);
7244 	}
7245 
7246 	zone_set_pageset_high_and_batch(zone, 0);
7247 }
7248 
7249 /*
7250  * The zone indicated has a new number of managed_pages; batch sizes and percpu
7251  * page high values need to be recalculated.
7252  */
7253 static void zone_pcp_update(struct zone *zone, int cpu_online)
7254 {
7255 	mutex_lock(&pcp_batch_high_lock);
7256 	zone_set_pageset_high_and_batch(zone, cpu_online);
7257 	mutex_unlock(&pcp_batch_high_lock);
7258 }
7259 
7260 /*
7261  * Allocate per cpu pagesets and initialize them.
7262  * Before this call only boot pagesets were available.
7263  */
7264 void __init setup_per_cpu_pageset(void)
7265 {
7266 	struct pglist_data *pgdat;
7267 	struct zone *zone;
7268 	int __maybe_unused cpu;
7269 
7270 	for_each_populated_zone(zone)
7271 		setup_zone_pageset(zone);
7272 
7273 #ifdef CONFIG_NUMA
7274 	/*
7275 	 * Unpopulated zones continue using the boot pagesets.
7276 	 * The numa stats for these pagesets need to be reset.
7277 	 * Otherwise, they will end up skewing the stats of
7278 	 * the nodes these zones are associated with.
7279 	 */
7280 	for_each_possible_cpu(cpu) {
7281 		struct per_cpu_zonestat *pzstats = &per_cpu(boot_zonestats, cpu);
7282 		memset(pzstats->vm_numa_event, 0,
7283 		       sizeof(pzstats->vm_numa_event));
7284 	}
7285 #endif
7286 
7287 	for_each_online_pgdat(pgdat)
7288 		pgdat->per_cpu_nodestats =
7289 			alloc_percpu(struct per_cpu_nodestat);
7290 }
7291 
7292 static __meminit void zone_pcp_init(struct zone *zone)
7293 {
7294 	/*
7295 	 * per cpu subsystem is not up at this point. The following code
7296 	 * relies on the ability of the linker to provide the
7297 	 * offset of a (static) per cpu variable into the per cpu area.
7298 	 */
7299 	zone->per_cpu_pageset = &boot_pageset;
7300 	zone->per_cpu_zonestats = &boot_zonestats;
7301 	zone->pageset_high = BOOT_PAGESET_HIGH;
7302 	zone->pageset_batch = BOOT_PAGESET_BATCH;
7303 
7304 	if (populated_zone(zone))
7305 		pr_debug("  %s zone: %lu pages, LIFO batch:%u\n", zone->name,
7306 			 zone->present_pages, zone_batchsize(zone));
7307 }
7308 
7309 void __meminit init_currently_empty_zone(struct zone *zone,
7310 					unsigned long zone_start_pfn,
7311 					unsigned long size)
7312 {
7313 	struct pglist_data *pgdat = zone->zone_pgdat;
7314 	int zone_idx = zone_idx(zone) + 1;
7315 
7316 	if (zone_idx > pgdat->nr_zones)
7317 		pgdat->nr_zones = zone_idx;
7318 
7319 	zone->zone_start_pfn = zone_start_pfn;
7320 
7321 	mminit_dprintk(MMINIT_TRACE, "memmap_init",
7322 			"Initialising map node %d zone %lu pfns %lu -> %lu\n",
7323 			pgdat->node_id,
7324 			(unsigned long)zone_idx(zone),
7325 			zone_start_pfn, (zone_start_pfn + size));
7326 
7327 	zone_init_free_lists(zone);
7328 	zone->initialized = 1;
7329 }
7330 
7331 /**
7332  * get_pfn_range_for_nid - Return the start and end page frames for a node
7333  * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
7334  * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
7335  * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
7336  *
7337  * It returns the start and end page frame of a node based on information
7338  * provided by memblock_set_node(). If called for a node
7339  * with no available memory, a warning is printed and the start and end
7340  * PFNs will be 0.
7341  */
7342 void __init get_pfn_range_for_nid(unsigned int nid,
7343 			unsigned long *start_pfn, unsigned long *end_pfn)
7344 {
7345 	unsigned long this_start_pfn, this_end_pfn;
7346 	int i;
7347 
7348 	*start_pfn = -1UL;
7349 	*end_pfn = 0;
7350 
7351 	for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
7352 		*start_pfn = min(*start_pfn, this_start_pfn);
7353 		*end_pfn = max(*end_pfn, this_end_pfn);
7354 	}
7355 
7356 	if (*start_pfn == -1UL)
7357 		*start_pfn = 0;
7358 }
7359 
7360 /*
7361  * This finds a zone that can be used for ZONE_MOVABLE pages. The
7362  * assumption is made that zones within a node are ordered in monotonic
7363  * increasing memory addresses so that the "highest" populated zone is used
7364  */
7365 static void __init find_usable_zone_for_movable(void)
7366 {
7367 	int zone_index;
7368 	for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
7369 		if (zone_index == ZONE_MOVABLE)
7370 			continue;
7371 
7372 		if (arch_zone_highest_possible_pfn[zone_index] >
7373 				arch_zone_lowest_possible_pfn[zone_index])
7374 			break;
7375 	}
7376 
7377 	VM_BUG_ON(zone_index == -1);
7378 	movable_zone = zone_index;
7379 }
7380 
7381 /*
7382  * The zone ranges provided by the architecture do not include ZONE_MOVABLE
7383  * because it is sized independent of architecture. Unlike the other zones,
7384  * the starting point for ZONE_MOVABLE is not fixed. It may be different
7385  * in each node depending on the size of each node and how evenly kernelcore
7386  * is distributed. This helper function adjusts the zone ranges
7387  * provided by the architecture for a given node by using the end of the
7388  * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
7389  * zones within a node are in order of monotonic increases memory addresses
7390  */
7391 static void __init adjust_zone_range_for_zone_movable(int nid,
7392 					unsigned long zone_type,
7393 					unsigned long node_start_pfn,
7394 					unsigned long node_end_pfn,
7395 					unsigned long *zone_start_pfn,
7396 					unsigned long *zone_end_pfn)
7397 {
7398 	/* Only adjust if ZONE_MOVABLE is on this node */
7399 	if (zone_movable_pfn[nid]) {
7400 		/* Size ZONE_MOVABLE */
7401 		if (zone_type == ZONE_MOVABLE) {
7402 			*zone_start_pfn = zone_movable_pfn[nid];
7403 			*zone_end_pfn = min(node_end_pfn,
7404 				arch_zone_highest_possible_pfn[movable_zone]);
7405 
7406 		/* Adjust for ZONE_MOVABLE starting within this range */
7407 		} else if (!mirrored_kernelcore &&
7408 			*zone_start_pfn < zone_movable_pfn[nid] &&
7409 			*zone_end_pfn > zone_movable_pfn[nid]) {
7410 			*zone_end_pfn = zone_movable_pfn[nid];
7411 
7412 		/* Check if this whole range is within ZONE_MOVABLE */
7413 		} else if (*zone_start_pfn >= zone_movable_pfn[nid])
7414 			*zone_start_pfn = *zone_end_pfn;
7415 	}
7416 }
7417 
7418 /*
7419  * Return the number of pages a zone spans in a node, including holes
7420  * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
7421  */
7422 static unsigned long __init zone_spanned_pages_in_node(int nid,
7423 					unsigned long zone_type,
7424 					unsigned long node_start_pfn,
7425 					unsigned long node_end_pfn,
7426 					unsigned long *zone_start_pfn,
7427 					unsigned long *zone_end_pfn)
7428 {
7429 	unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
7430 	unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
7431 	/* When hotadd a new node from cpu_up(), the node should be empty */
7432 	if (!node_start_pfn && !node_end_pfn)
7433 		return 0;
7434 
7435 	/* Get the start and end of the zone */
7436 	*zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
7437 	*zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
7438 	adjust_zone_range_for_zone_movable(nid, zone_type,
7439 				node_start_pfn, node_end_pfn,
7440 				zone_start_pfn, zone_end_pfn);
7441 
7442 	/* Check that this node has pages within the zone's required range */
7443 	if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
7444 		return 0;
7445 
7446 	/* Move the zone boundaries inside the node if necessary */
7447 	*zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
7448 	*zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
7449 
7450 	/* Return the spanned pages */
7451 	return *zone_end_pfn - *zone_start_pfn;
7452 }
7453 
7454 /*
7455  * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
7456  * then all holes in the requested range will be accounted for.
7457  */
7458 unsigned long __init __absent_pages_in_range(int nid,
7459 				unsigned long range_start_pfn,
7460 				unsigned long range_end_pfn)
7461 {
7462 	unsigned long nr_absent = range_end_pfn - range_start_pfn;
7463 	unsigned long start_pfn, end_pfn;
7464 	int i;
7465 
7466 	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
7467 		start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
7468 		end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
7469 		nr_absent -= end_pfn - start_pfn;
7470 	}
7471 	return nr_absent;
7472 }
7473 
7474 /**
7475  * absent_pages_in_range - Return number of page frames in holes within a range
7476  * @start_pfn: The start PFN to start searching for holes
7477  * @end_pfn: The end PFN to stop searching for holes
7478  *
7479  * Return: the number of pages frames in memory holes within a range.
7480  */
7481 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
7482 							unsigned long end_pfn)
7483 {
7484 	return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
7485 }
7486 
7487 /* Return the number of page frames in holes in a zone on a node */
7488 static unsigned long __init zone_absent_pages_in_node(int nid,
7489 					unsigned long zone_type,
7490 					unsigned long node_start_pfn,
7491 					unsigned long node_end_pfn)
7492 {
7493 	unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
7494 	unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
7495 	unsigned long zone_start_pfn, zone_end_pfn;
7496 	unsigned long nr_absent;
7497 
7498 	/* When hotadd a new node from cpu_up(), the node should be empty */
7499 	if (!node_start_pfn && !node_end_pfn)
7500 		return 0;
7501 
7502 	zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
7503 	zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
7504 
7505 	adjust_zone_range_for_zone_movable(nid, zone_type,
7506 			node_start_pfn, node_end_pfn,
7507 			&zone_start_pfn, &zone_end_pfn);
7508 	nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
7509 
7510 	/*
7511 	 * ZONE_MOVABLE handling.
7512 	 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
7513 	 * and vice versa.
7514 	 */
7515 	if (mirrored_kernelcore && zone_movable_pfn[nid]) {
7516 		unsigned long start_pfn, end_pfn;
7517 		struct memblock_region *r;
7518 
7519 		for_each_mem_region(r) {
7520 			start_pfn = clamp(memblock_region_memory_base_pfn(r),
7521 					  zone_start_pfn, zone_end_pfn);
7522 			end_pfn = clamp(memblock_region_memory_end_pfn(r),
7523 					zone_start_pfn, zone_end_pfn);
7524 
7525 			if (zone_type == ZONE_MOVABLE &&
7526 			    memblock_is_mirror(r))
7527 				nr_absent += end_pfn - start_pfn;
7528 
7529 			if (zone_type == ZONE_NORMAL &&
7530 			    !memblock_is_mirror(r))
7531 				nr_absent += end_pfn - start_pfn;
7532 		}
7533 	}
7534 
7535 	return nr_absent;
7536 }
7537 
7538 static void __init calculate_node_totalpages(struct pglist_data *pgdat,
7539 						unsigned long node_start_pfn,
7540 						unsigned long node_end_pfn)
7541 {
7542 	unsigned long realtotalpages = 0, totalpages = 0;
7543 	enum zone_type i;
7544 
7545 	for (i = 0; i < MAX_NR_ZONES; i++) {
7546 		struct zone *zone = pgdat->node_zones + i;
7547 		unsigned long zone_start_pfn, zone_end_pfn;
7548 		unsigned long spanned, absent;
7549 		unsigned long size, real_size;
7550 
7551 		spanned = zone_spanned_pages_in_node(pgdat->node_id, i,
7552 						     node_start_pfn,
7553 						     node_end_pfn,
7554 						     &zone_start_pfn,
7555 						     &zone_end_pfn);
7556 		absent = zone_absent_pages_in_node(pgdat->node_id, i,
7557 						   node_start_pfn,
7558 						   node_end_pfn);
7559 
7560 		size = spanned;
7561 		real_size = size - absent;
7562 
7563 		if (size)
7564 			zone->zone_start_pfn = zone_start_pfn;
7565 		else
7566 			zone->zone_start_pfn = 0;
7567 		zone->spanned_pages = size;
7568 		zone->present_pages = real_size;
7569 #if defined(CONFIG_MEMORY_HOTPLUG)
7570 		zone->present_early_pages = real_size;
7571 #endif
7572 
7573 		totalpages += size;
7574 		realtotalpages += real_size;
7575 	}
7576 
7577 	pgdat->node_spanned_pages = totalpages;
7578 	pgdat->node_present_pages = realtotalpages;
7579 	pr_debug("On node %d totalpages: %lu\n", pgdat->node_id, realtotalpages);
7580 }
7581 
7582 #ifndef CONFIG_SPARSEMEM
7583 /*
7584  * Calculate the size of the zone->blockflags rounded to an unsigned long
7585  * Start by making sure zonesize is a multiple of pageblock_order by rounding
7586  * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
7587  * round what is now in bits to nearest long in bits, then return it in
7588  * bytes.
7589  */
7590 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
7591 {
7592 	unsigned long usemapsize;
7593 
7594 	zonesize += zone_start_pfn & (pageblock_nr_pages-1);
7595 	usemapsize = roundup(zonesize, pageblock_nr_pages);
7596 	usemapsize = usemapsize >> pageblock_order;
7597 	usemapsize *= NR_PAGEBLOCK_BITS;
7598 	usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
7599 
7600 	return usemapsize / 8;
7601 }
7602 
7603 static void __ref setup_usemap(struct zone *zone)
7604 {
7605 	unsigned long usemapsize = usemap_size(zone->zone_start_pfn,
7606 					       zone->spanned_pages);
7607 	zone->pageblock_flags = NULL;
7608 	if (usemapsize) {
7609 		zone->pageblock_flags =
7610 			memblock_alloc_node(usemapsize, SMP_CACHE_BYTES,
7611 					    zone_to_nid(zone));
7612 		if (!zone->pageblock_flags)
7613 			panic("Failed to allocate %ld bytes for zone %s pageblock flags on node %d\n",
7614 			      usemapsize, zone->name, zone_to_nid(zone));
7615 	}
7616 }
7617 #else
7618 static inline void setup_usemap(struct zone *zone) {}
7619 #endif /* CONFIG_SPARSEMEM */
7620 
7621 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
7622 
7623 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
7624 void __init set_pageblock_order(void)
7625 {
7626 	unsigned int order = MAX_ORDER - 1;
7627 
7628 	/* Check that pageblock_nr_pages has not already been setup */
7629 	if (pageblock_order)
7630 		return;
7631 
7632 	/* Don't let pageblocks exceed the maximum allocation granularity. */
7633 	if (HPAGE_SHIFT > PAGE_SHIFT && HUGETLB_PAGE_ORDER < order)
7634 		order = HUGETLB_PAGE_ORDER;
7635 
7636 	/*
7637 	 * Assume the largest contiguous order of interest is a huge page.
7638 	 * This value may be variable depending on boot parameters on IA64 and
7639 	 * powerpc.
7640 	 */
7641 	pageblock_order = order;
7642 }
7643 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
7644 
7645 /*
7646  * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
7647  * is unused as pageblock_order is set at compile-time. See
7648  * include/linux/pageblock-flags.h for the values of pageblock_order based on
7649  * the kernel config
7650  */
7651 void __init set_pageblock_order(void)
7652 {
7653 }
7654 
7655 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
7656 
7657 static unsigned long __init calc_memmap_size(unsigned long spanned_pages,
7658 						unsigned long present_pages)
7659 {
7660 	unsigned long pages = spanned_pages;
7661 
7662 	/*
7663 	 * Provide a more accurate estimation if there are holes within
7664 	 * the zone and SPARSEMEM is in use. If there are holes within the
7665 	 * zone, each populated memory region may cost us one or two extra
7666 	 * memmap pages due to alignment because memmap pages for each
7667 	 * populated regions may not be naturally aligned on page boundary.
7668 	 * So the (present_pages >> 4) heuristic is a tradeoff for that.
7669 	 */
7670 	if (spanned_pages > present_pages + (present_pages >> 4) &&
7671 	    IS_ENABLED(CONFIG_SPARSEMEM))
7672 		pages = present_pages;
7673 
7674 	return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
7675 }
7676 
7677 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
7678 static void pgdat_init_split_queue(struct pglist_data *pgdat)
7679 {
7680 	struct deferred_split *ds_queue = &pgdat->deferred_split_queue;
7681 
7682 	spin_lock_init(&ds_queue->split_queue_lock);
7683 	INIT_LIST_HEAD(&ds_queue->split_queue);
7684 	ds_queue->split_queue_len = 0;
7685 }
7686 #else
7687 static void pgdat_init_split_queue(struct pglist_data *pgdat) {}
7688 #endif
7689 
7690 #ifdef CONFIG_COMPACTION
7691 static void pgdat_init_kcompactd(struct pglist_data *pgdat)
7692 {
7693 	init_waitqueue_head(&pgdat->kcompactd_wait);
7694 }
7695 #else
7696 static void pgdat_init_kcompactd(struct pglist_data *pgdat) {}
7697 #endif
7698 
7699 static void __meminit pgdat_init_internals(struct pglist_data *pgdat)
7700 {
7701 	int i;
7702 
7703 	pgdat_resize_init(pgdat);
7704 	pgdat_kswapd_lock_init(pgdat);
7705 
7706 	pgdat_init_split_queue(pgdat);
7707 	pgdat_init_kcompactd(pgdat);
7708 
7709 	init_waitqueue_head(&pgdat->kswapd_wait);
7710 	init_waitqueue_head(&pgdat->pfmemalloc_wait);
7711 
7712 	for (i = 0; i < NR_VMSCAN_THROTTLE; i++)
7713 		init_waitqueue_head(&pgdat->reclaim_wait[i]);
7714 
7715 	pgdat_page_ext_init(pgdat);
7716 	lruvec_init(&pgdat->__lruvec);
7717 }
7718 
7719 static void __meminit zone_init_internals(struct zone *zone, enum zone_type idx, int nid,
7720 							unsigned long remaining_pages)
7721 {
7722 	atomic_long_set(&zone->managed_pages, remaining_pages);
7723 	zone_set_nid(zone, nid);
7724 	zone->name = zone_names[idx];
7725 	zone->zone_pgdat = NODE_DATA(nid);
7726 	spin_lock_init(&zone->lock);
7727 	zone_seqlock_init(zone);
7728 	zone_pcp_init(zone);
7729 }
7730 
7731 /*
7732  * Set up the zone data structures
7733  * - init pgdat internals
7734  * - init all zones belonging to this node
7735  *
7736  * NOTE: this function is only called during memory hotplug
7737  */
7738 #ifdef CONFIG_MEMORY_HOTPLUG
7739 void __ref free_area_init_core_hotplug(struct pglist_data *pgdat)
7740 {
7741 	int nid = pgdat->node_id;
7742 	enum zone_type z;
7743 	int cpu;
7744 
7745 	pgdat_init_internals(pgdat);
7746 
7747 	if (pgdat->per_cpu_nodestats == &boot_nodestats)
7748 		pgdat->per_cpu_nodestats = alloc_percpu(struct per_cpu_nodestat);
7749 
7750 	/*
7751 	 * Reset the nr_zones, order and highest_zoneidx before reuse.
7752 	 * Note that kswapd will init kswapd_highest_zoneidx properly
7753 	 * when it starts in the near future.
7754 	 */
7755 	pgdat->nr_zones = 0;
7756 	pgdat->kswapd_order = 0;
7757 	pgdat->kswapd_highest_zoneidx = 0;
7758 	pgdat->node_start_pfn = 0;
7759 	for_each_online_cpu(cpu) {
7760 		struct per_cpu_nodestat *p;
7761 
7762 		p = per_cpu_ptr(pgdat->per_cpu_nodestats, cpu);
7763 		memset(p, 0, sizeof(*p));
7764 	}
7765 
7766 	for (z = 0; z < MAX_NR_ZONES; z++)
7767 		zone_init_internals(&pgdat->node_zones[z], z, nid, 0);
7768 }
7769 #endif
7770 
7771 /*
7772  * Set up the zone data structures:
7773  *   - mark all pages reserved
7774  *   - mark all memory queues empty
7775  *   - clear the memory bitmaps
7776  *
7777  * NOTE: pgdat should get zeroed by caller.
7778  * NOTE: this function is only called during early init.
7779  */
7780 static void __init free_area_init_core(struct pglist_data *pgdat)
7781 {
7782 	enum zone_type j;
7783 	int nid = pgdat->node_id;
7784 
7785 	pgdat_init_internals(pgdat);
7786 	pgdat->per_cpu_nodestats = &boot_nodestats;
7787 
7788 	for (j = 0; j < MAX_NR_ZONES; j++) {
7789 		struct zone *zone = pgdat->node_zones + j;
7790 		unsigned long size, freesize, memmap_pages;
7791 
7792 		size = zone->spanned_pages;
7793 		freesize = zone->present_pages;
7794 
7795 		/*
7796 		 * Adjust freesize so that it accounts for how much memory
7797 		 * is used by this zone for memmap. This affects the watermark
7798 		 * and per-cpu initialisations
7799 		 */
7800 		memmap_pages = calc_memmap_size(size, freesize);
7801 		if (!is_highmem_idx(j)) {
7802 			if (freesize >= memmap_pages) {
7803 				freesize -= memmap_pages;
7804 				if (memmap_pages)
7805 					pr_debug("  %s zone: %lu pages used for memmap\n",
7806 						 zone_names[j], memmap_pages);
7807 			} else
7808 				pr_warn("  %s zone: %lu memmap pages exceeds freesize %lu\n",
7809 					zone_names[j], memmap_pages, freesize);
7810 		}
7811 
7812 		/* Account for reserved pages */
7813 		if (j == 0 && freesize > dma_reserve) {
7814 			freesize -= dma_reserve;
7815 			pr_debug("  %s zone: %lu pages reserved\n", zone_names[0], dma_reserve);
7816 		}
7817 
7818 		if (!is_highmem_idx(j))
7819 			nr_kernel_pages += freesize;
7820 		/* Charge for highmem memmap if there are enough kernel pages */
7821 		else if (nr_kernel_pages > memmap_pages * 2)
7822 			nr_kernel_pages -= memmap_pages;
7823 		nr_all_pages += freesize;
7824 
7825 		/*
7826 		 * Set an approximate value for lowmem here, it will be adjusted
7827 		 * when the bootmem allocator frees pages into the buddy system.
7828 		 * And all highmem pages will be managed by the buddy system.
7829 		 */
7830 		zone_init_internals(zone, j, nid, freesize);
7831 
7832 		if (!size)
7833 			continue;
7834 
7835 		set_pageblock_order();
7836 		setup_usemap(zone);
7837 		init_currently_empty_zone(zone, zone->zone_start_pfn, size);
7838 	}
7839 }
7840 
7841 #ifdef CONFIG_FLATMEM
7842 static void __init alloc_node_mem_map(struct pglist_data *pgdat)
7843 {
7844 	unsigned long __maybe_unused start = 0;
7845 	unsigned long __maybe_unused offset = 0;
7846 
7847 	/* Skip empty nodes */
7848 	if (!pgdat->node_spanned_pages)
7849 		return;
7850 
7851 	start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
7852 	offset = pgdat->node_start_pfn - start;
7853 	/* ia64 gets its own node_mem_map, before this, without bootmem */
7854 	if (!pgdat->node_mem_map) {
7855 		unsigned long size, end;
7856 		struct page *map;
7857 
7858 		/*
7859 		 * The zone's endpoints aren't required to be MAX_ORDER
7860 		 * aligned but the node_mem_map endpoints must be in order
7861 		 * for the buddy allocator to function correctly.
7862 		 */
7863 		end = pgdat_end_pfn(pgdat);
7864 		end = ALIGN(end, MAX_ORDER_NR_PAGES);
7865 		size =  (end - start) * sizeof(struct page);
7866 		map = memmap_alloc(size, SMP_CACHE_BYTES, MEMBLOCK_LOW_LIMIT,
7867 				   pgdat->node_id, false);
7868 		if (!map)
7869 			panic("Failed to allocate %ld bytes for node %d memory map\n",
7870 			      size, pgdat->node_id);
7871 		pgdat->node_mem_map = map + offset;
7872 	}
7873 	pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n",
7874 				__func__, pgdat->node_id, (unsigned long)pgdat,
7875 				(unsigned long)pgdat->node_mem_map);
7876 #ifndef CONFIG_NUMA
7877 	/*
7878 	 * With no DISCONTIG, the global mem_map is just set as node 0's
7879 	 */
7880 	if (pgdat == NODE_DATA(0)) {
7881 		mem_map = NODE_DATA(0)->node_mem_map;
7882 		if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
7883 			mem_map -= offset;
7884 	}
7885 #endif
7886 }
7887 #else
7888 static inline void alloc_node_mem_map(struct pglist_data *pgdat) { }
7889 #endif /* CONFIG_FLATMEM */
7890 
7891 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
7892 static inline void pgdat_set_deferred_range(pg_data_t *pgdat)
7893 {
7894 	pgdat->first_deferred_pfn = ULONG_MAX;
7895 }
7896 #else
7897 static inline void pgdat_set_deferred_range(pg_data_t *pgdat) {}
7898 #endif
7899 
7900 static void __init free_area_init_node(int nid)
7901 {
7902 	pg_data_t *pgdat = NODE_DATA(nid);
7903 	unsigned long start_pfn = 0;
7904 	unsigned long end_pfn = 0;
7905 
7906 	/* pg_data_t should be reset to zero when it's allocated */
7907 	WARN_ON(pgdat->nr_zones || pgdat->kswapd_highest_zoneidx);
7908 
7909 	get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
7910 
7911 	pgdat->node_id = nid;
7912 	pgdat->node_start_pfn = start_pfn;
7913 	pgdat->per_cpu_nodestats = NULL;
7914 
7915 	if (start_pfn != end_pfn) {
7916 		pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
7917 			(u64)start_pfn << PAGE_SHIFT,
7918 			end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
7919 	} else {
7920 		pr_info("Initmem setup node %d as memoryless\n", nid);
7921 	}
7922 
7923 	calculate_node_totalpages(pgdat, start_pfn, end_pfn);
7924 
7925 	alloc_node_mem_map(pgdat);
7926 	pgdat_set_deferred_range(pgdat);
7927 
7928 	free_area_init_core(pgdat);
7929 }
7930 
7931 static void __init free_area_init_memoryless_node(int nid)
7932 {
7933 	free_area_init_node(nid);
7934 }
7935 
7936 #if MAX_NUMNODES > 1
7937 /*
7938  * Figure out the number of possible node ids.
7939  */
7940 void __init setup_nr_node_ids(void)
7941 {
7942 	unsigned int highest;
7943 
7944 	highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
7945 	nr_node_ids = highest + 1;
7946 }
7947 #endif
7948 
7949 /**
7950  * node_map_pfn_alignment - determine the maximum internode alignment
7951  *
7952  * This function should be called after node map is populated and sorted.
7953  * It calculates the maximum power of two alignment which can distinguish
7954  * all the nodes.
7955  *
7956  * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
7957  * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)).  If the
7958  * nodes are shifted by 256MiB, 256MiB.  Note that if only the last node is
7959  * shifted, 1GiB is enough and this function will indicate so.
7960  *
7961  * This is used to test whether pfn -> nid mapping of the chosen memory
7962  * model has fine enough granularity to avoid incorrect mapping for the
7963  * populated node map.
7964  *
7965  * Return: the determined alignment in pfn's.  0 if there is no alignment
7966  * requirement (single node).
7967  */
7968 unsigned long __init node_map_pfn_alignment(void)
7969 {
7970 	unsigned long accl_mask = 0, last_end = 0;
7971 	unsigned long start, end, mask;
7972 	int last_nid = NUMA_NO_NODE;
7973 	int i, nid;
7974 
7975 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
7976 		if (!start || last_nid < 0 || last_nid == nid) {
7977 			last_nid = nid;
7978 			last_end = end;
7979 			continue;
7980 		}
7981 
7982 		/*
7983 		 * Start with a mask granular enough to pin-point to the
7984 		 * start pfn and tick off bits one-by-one until it becomes
7985 		 * too coarse to separate the current node from the last.
7986 		 */
7987 		mask = ~((1 << __ffs(start)) - 1);
7988 		while (mask && last_end <= (start & (mask << 1)))
7989 			mask <<= 1;
7990 
7991 		/* accumulate all internode masks */
7992 		accl_mask |= mask;
7993 	}
7994 
7995 	/* convert mask to number of pages */
7996 	return ~accl_mask + 1;
7997 }
7998 
7999 /*
8000  * early_calculate_totalpages()
8001  * Sum pages in active regions for movable zone.
8002  * Populate N_MEMORY for calculating usable_nodes.
8003  */
8004 static unsigned long __init early_calculate_totalpages(void)
8005 {
8006 	unsigned long totalpages = 0;
8007 	unsigned long start_pfn, end_pfn;
8008 	int i, nid;
8009 
8010 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
8011 		unsigned long pages = end_pfn - start_pfn;
8012 
8013 		totalpages += pages;
8014 		if (pages)
8015 			node_set_state(nid, N_MEMORY);
8016 	}
8017 	return totalpages;
8018 }
8019 
8020 /*
8021  * Find the PFN the Movable zone begins in each node. Kernel memory
8022  * is spread evenly between nodes as long as the nodes have enough
8023  * memory. When they don't, some nodes will have more kernelcore than
8024  * others
8025  */
8026 static void __init find_zone_movable_pfns_for_nodes(void)
8027 {
8028 	int i, nid;
8029 	unsigned long usable_startpfn;
8030 	unsigned long kernelcore_node, kernelcore_remaining;
8031 	/* save the state before borrow the nodemask */
8032 	nodemask_t saved_node_state = node_states[N_MEMORY];
8033 	unsigned long totalpages = early_calculate_totalpages();
8034 	int usable_nodes = nodes_weight(node_states[N_MEMORY]);
8035 	struct memblock_region *r;
8036 
8037 	/* Need to find movable_zone earlier when movable_node is specified. */
8038 	find_usable_zone_for_movable();
8039 
8040 	/*
8041 	 * If movable_node is specified, ignore kernelcore and movablecore
8042 	 * options.
8043 	 */
8044 	if (movable_node_is_enabled()) {
8045 		for_each_mem_region(r) {
8046 			if (!memblock_is_hotpluggable(r))
8047 				continue;
8048 
8049 			nid = memblock_get_region_node(r);
8050 
8051 			usable_startpfn = PFN_DOWN(r->base);
8052 			zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
8053 				min(usable_startpfn, zone_movable_pfn[nid]) :
8054 				usable_startpfn;
8055 		}
8056 
8057 		goto out2;
8058 	}
8059 
8060 	/*
8061 	 * If kernelcore=mirror is specified, ignore movablecore option
8062 	 */
8063 	if (mirrored_kernelcore) {
8064 		bool mem_below_4gb_not_mirrored = false;
8065 
8066 		for_each_mem_region(r) {
8067 			if (memblock_is_mirror(r))
8068 				continue;
8069 
8070 			nid = memblock_get_region_node(r);
8071 
8072 			usable_startpfn = memblock_region_memory_base_pfn(r);
8073 
8074 			if (usable_startpfn < PHYS_PFN(SZ_4G)) {
8075 				mem_below_4gb_not_mirrored = true;
8076 				continue;
8077 			}
8078 
8079 			zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
8080 				min(usable_startpfn, zone_movable_pfn[nid]) :
8081 				usable_startpfn;
8082 		}
8083 
8084 		if (mem_below_4gb_not_mirrored)
8085 			pr_warn("This configuration results in unmirrored kernel memory.\n");
8086 
8087 		goto out2;
8088 	}
8089 
8090 	/*
8091 	 * If kernelcore=nn% or movablecore=nn% was specified, calculate the
8092 	 * amount of necessary memory.
8093 	 */
8094 	if (required_kernelcore_percent)
8095 		required_kernelcore = (totalpages * 100 * required_kernelcore_percent) /
8096 				       10000UL;
8097 	if (required_movablecore_percent)
8098 		required_movablecore = (totalpages * 100 * required_movablecore_percent) /
8099 					10000UL;
8100 
8101 	/*
8102 	 * If movablecore= was specified, calculate what size of
8103 	 * kernelcore that corresponds so that memory usable for
8104 	 * any allocation type is evenly spread. If both kernelcore
8105 	 * and movablecore are specified, then the value of kernelcore
8106 	 * will be used for required_kernelcore if it's greater than
8107 	 * what movablecore would have allowed.
8108 	 */
8109 	if (required_movablecore) {
8110 		unsigned long corepages;
8111 
8112 		/*
8113 		 * Round-up so that ZONE_MOVABLE is at least as large as what
8114 		 * was requested by the user
8115 		 */
8116 		required_movablecore =
8117 			roundup(required_movablecore, MAX_ORDER_NR_PAGES);
8118 		required_movablecore = min(totalpages, required_movablecore);
8119 		corepages = totalpages - required_movablecore;
8120 
8121 		required_kernelcore = max(required_kernelcore, corepages);
8122 	}
8123 
8124 	/*
8125 	 * If kernelcore was not specified or kernelcore size is larger
8126 	 * than totalpages, there is no ZONE_MOVABLE.
8127 	 */
8128 	if (!required_kernelcore || required_kernelcore >= totalpages)
8129 		goto out;
8130 
8131 	/* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
8132 	usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
8133 
8134 restart:
8135 	/* Spread kernelcore memory as evenly as possible throughout nodes */
8136 	kernelcore_node = required_kernelcore / usable_nodes;
8137 	for_each_node_state(nid, N_MEMORY) {
8138 		unsigned long start_pfn, end_pfn;
8139 
8140 		/*
8141 		 * Recalculate kernelcore_node if the division per node
8142 		 * now exceeds what is necessary to satisfy the requested
8143 		 * amount of memory for the kernel
8144 		 */
8145 		if (required_kernelcore < kernelcore_node)
8146 			kernelcore_node = required_kernelcore / usable_nodes;
8147 
8148 		/*
8149 		 * As the map is walked, we track how much memory is usable
8150 		 * by the kernel using kernelcore_remaining. When it is
8151 		 * 0, the rest of the node is usable by ZONE_MOVABLE
8152 		 */
8153 		kernelcore_remaining = kernelcore_node;
8154 
8155 		/* Go through each range of PFNs within this node */
8156 		for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
8157 			unsigned long size_pages;
8158 
8159 			start_pfn = max(start_pfn, zone_movable_pfn[nid]);
8160 			if (start_pfn >= end_pfn)
8161 				continue;
8162 
8163 			/* Account for what is only usable for kernelcore */
8164 			if (start_pfn < usable_startpfn) {
8165 				unsigned long kernel_pages;
8166 				kernel_pages = min(end_pfn, usable_startpfn)
8167 								- start_pfn;
8168 
8169 				kernelcore_remaining -= min(kernel_pages,
8170 							kernelcore_remaining);
8171 				required_kernelcore -= min(kernel_pages,
8172 							required_kernelcore);
8173 
8174 				/* Continue if range is now fully accounted */
8175 				if (end_pfn <= usable_startpfn) {
8176 
8177 					/*
8178 					 * Push zone_movable_pfn to the end so
8179 					 * that if we have to rebalance
8180 					 * kernelcore across nodes, we will
8181 					 * not double account here
8182 					 */
8183 					zone_movable_pfn[nid] = end_pfn;
8184 					continue;
8185 				}
8186 				start_pfn = usable_startpfn;
8187 			}
8188 
8189 			/*
8190 			 * The usable PFN range for ZONE_MOVABLE is from
8191 			 * start_pfn->end_pfn. Calculate size_pages as the
8192 			 * number of pages used as kernelcore
8193 			 */
8194 			size_pages = end_pfn - start_pfn;
8195 			if (size_pages > kernelcore_remaining)
8196 				size_pages = kernelcore_remaining;
8197 			zone_movable_pfn[nid] = start_pfn + size_pages;
8198 
8199 			/*
8200 			 * Some kernelcore has been met, update counts and
8201 			 * break if the kernelcore for this node has been
8202 			 * satisfied
8203 			 */
8204 			required_kernelcore -= min(required_kernelcore,
8205 								size_pages);
8206 			kernelcore_remaining -= size_pages;
8207 			if (!kernelcore_remaining)
8208 				break;
8209 		}
8210 	}
8211 
8212 	/*
8213 	 * If there is still required_kernelcore, we do another pass with one
8214 	 * less node in the count. This will push zone_movable_pfn[nid] further
8215 	 * along on the nodes that still have memory until kernelcore is
8216 	 * satisfied
8217 	 */
8218 	usable_nodes--;
8219 	if (usable_nodes && required_kernelcore > usable_nodes)
8220 		goto restart;
8221 
8222 out2:
8223 	/* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
8224 	for (nid = 0; nid < MAX_NUMNODES; nid++) {
8225 		unsigned long start_pfn, end_pfn;
8226 
8227 		zone_movable_pfn[nid] =
8228 			roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
8229 
8230 		get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
8231 		if (zone_movable_pfn[nid] >= end_pfn)
8232 			zone_movable_pfn[nid] = 0;
8233 	}
8234 
8235 out:
8236 	/* restore the node_state */
8237 	node_states[N_MEMORY] = saved_node_state;
8238 }
8239 
8240 /* Any regular or high memory on that node ? */
8241 static void check_for_memory(pg_data_t *pgdat, int nid)
8242 {
8243 	enum zone_type zone_type;
8244 
8245 	for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
8246 		struct zone *zone = &pgdat->node_zones[zone_type];
8247 		if (populated_zone(zone)) {
8248 			if (IS_ENABLED(CONFIG_HIGHMEM))
8249 				node_set_state(nid, N_HIGH_MEMORY);
8250 			if (zone_type <= ZONE_NORMAL)
8251 				node_set_state(nid, N_NORMAL_MEMORY);
8252 			break;
8253 		}
8254 	}
8255 }
8256 
8257 /*
8258  * Some architectures, e.g. ARC may have ZONE_HIGHMEM below ZONE_NORMAL. For
8259  * such cases we allow max_zone_pfn sorted in the descending order
8260  */
8261 bool __weak arch_has_descending_max_zone_pfns(void)
8262 {
8263 	return false;
8264 }
8265 
8266 /**
8267  * free_area_init - Initialise all pg_data_t and zone data
8268  * @max_zone_pfn: an array of max PFNs for each zone
8269  *
8270  * This will call free_area_init_node() for each active node in the system.
8271  * Using the page ranges provided by memblock_set_node(), the size of each
8272  * zone in each node and their holes is calculated. If the maximum PFN
8273  * between two adjacent zones match, it is assumed that the zone is empty.
8274  * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
8275  * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
8276  * starts where the previous one ended. For example, ZONE_DMA32 starts
8277  * at arch_max_dma_pfn.
8278  */
8279 void __init free_area_init(unsigned long *max_zone_pfn)
8280 {
8281 	unsigned long start_pfn, end_pfn;
8282 	int i, nid, zone;
8283 	bool descending;
8284 
8285 	/* Record where the zone boundaries are */
8286 	memset(arch_zone_lowest_possible_pfn, 0,
8287 				sizeof(arch_zone_lowest_possible_pfn));
8288 	memset(arch_zone_highest_possible_pfn, 0,
8289 				sizeof(arch_zone_highest_possible_pfn));
8290 
8291 	start_pfn = PHYS_PFN(memblock_start_of_DRAM());
8292 	descending = arch_has_descending_max_zone_pfns();
8293 
8294 	for (i = 0; i < MAX_NR_ZONES; i++) {
8295 		if (descending)
8296 			zone = MAX_NR_ZONES - i - 1;
8297 		else
8298 			zone = i;
8299 
8300 		if (zone == ZONE_MOVABLE)
8301 			continue;
8302 
8303 		end_pfn = max(max_zone_pfn[zone], start_pfn);
8304 		arch_zone_lowest_possible_pfn[zone] = start_pfn;
8305 		arch_zone_highest_possible_pfn[zone] = end_pfn;
8306 
8307 		start_pfn = end_pfn;
8308 	}
8309 
8310 	/* Find the PFNs that ZONE_MOVABLE begins at in each node */
8311 	memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
8312 	find_zone_movable_pfns_for_nodes();
8313 
8314 	/* Print out the zone ranges */
8315 	pr_info("Zone ranges:\n");
8316 	for (i = 0; i < MAX_NR_ZONES; i++) {
8317 		if (i == ZONE_MOVABLE)
8318 			continue;
8319 		pr_info("  %-8s ", zone_names[i]);
8320 		if (arch_zone_lowest_possible_pfn[i] ==
8321 				arch_zone_highest_possible_pfn[i])
8322 			pr_cont("empty\n");
8323 		else
8324 			pr_cont("[mem %#018Lx-%#018Lx]\n",
8325 				(u64)arch_zone_lowest_possible_pfn[i]
8326 					<< PAGE_SHIFT,
8327 				((u64)arch_zone_highest_possible_pfn[i]
8328 					<< PAGE_SHIFT) - 1);
8329 	}
8330 
8331 	/* Print out the PFNs ZONE_MOVABLE begins at in each node */
8332 	pr_info("Movable zone start for each node\n");
8333 	for (i = 0; i < MAX_NUMNODES; i++) {
8334 		if (zone_movable_pfn[i])
8335 			pr_info("  Node %d: %#018Lx\n", i,
8336 			       (u64)zone_movable_pfn[i] << PAGE_SHIFT);
8337 	}
8338 
8339 	/*
8340 	 * Print out the early node map, and initialize the
8341 	 * subsection-map relative to active online memory ranges to
8342 	 * enable future "sub-section" extensions of the memory map.
8343 	 */
8344 	pr_info("Early memory node ranges\n");
8345 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
8346 		pr_info("  node %3d: [mem %#018Lx-%#018Lx]\n", nid,
8347 			(u64)start_pfn << PAGE_SHIFT,
8348 			((u64)end_pfn << PAGE_SHIFT) - 1);
8349 		subsection_map_init(start_pfn, end_pfn - start_pfn);
8350 	}
8351 
8352 	/* Initialise every node */
8353 	mminit_verify_pageflags_layout();
8354 	setup_nr_node_ids();
8355 	for_each_node(nid) {
8356 		pg_data_t *pgdat;
8357 
8358 		if (!node_online(nid)) {
8359 			pr_info("Initializing node %d as memoryless\n", nid);
8360 
8361 			/* Allocator not initialized yet */
8362 			pgdat = arch_alloc_nodedata(nid);
8363 			if (!pgdat) {
8364 				pr_err("Cannot allocate %zuB for node %d.\n",
8365 						sizeof(*pgdat), nid);
8366 				continue;
8367 			}
8368 			arch_refresh_nodedata(nid, pgdat);
8369 			free_area_init_memoryless_node(nid);
8370 
8371 			/*
8372 			 * We do not want to confuse userspace by sysfs
8373 			 * files/directories for node without any memory
8374 			 * attached to it, so this node is not marked as
8375 			 * N_MEMORY and not marked online so that no sysfs
8376 			 * hierarchy will be created via register_one_node for
8377 			 * it. The pgdat will get fully initialized by
8378 			 * hotadd_init_pgdat() when memory is hotplugged into
8379 			 * this node.
8380 			 */
8381 			continue;
8382 		}
8383 
8384 		pgdat = NODE_DATA(nid);
8385 		free_area_init_node(nid);
8386 
8387 		/* Any memory on that node */
8388 		if (pgdat->node_present_pages)
8389 			node_set_state(nid, N_MEMORY);
8390 		check_for_memory(pgdat, nid);
8391 	}
8392 
8393 	memmap_init();
8394 }
8395 
8396 static int __init cmdline_parse_core(char *p, unsigned long *core,
8397 				     unsigned long *percent)
8398 {
8399 	unsigned long long coremem;
8400 	char *endptr;
8401 
8402 	if (!p)
8403 		return -EINVAL;
8404 
8405 	/* Value may be a percentage of total memory, otherwise bytes */
8406 	coremem = simple_strtoull(p, &endptr, 0);
8407 	if (*endptr == '%') {
8408 		/* Paranoid check for percent values greater than 100 */
8409 		WARN_ON(coremem > 100);
8410 
8411 		*percent = coremem;
8412 	} else {
8413 		coremem = memparse(p, &p);
8414 		/* Paranoid check that UL is enough for the coremem value */
8415 		WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
8416 
8417 		*core = coremem >> PAGE_SHIFT;
8418 		*percent = 0UL;
8419 	}
8420 	return 0;
8421 }
8422 
8423 /*
8424  * kernelcore=size sets the amount of memory for use for allocations that
8425  * cannot be reclaimed or migrated.
8426  */
8427 static int __init cmdline_parse_kernelcore(char *p)
8428 {
8429 	/* parse kernelcore=mirror */
8430 	if (parse_option_str(p, "mirror")) {
8431 		mirrored_kernelcore = true;
8432 		return 0;
8433 	}
8434 
8435 	return cmdline_parse_core(p, &required_kernelcore,
8436 				  &required_kernelcore_percent);
8437 }
8438 
8439 /*
8440  * movablecore=size sets the amount of memory for use for allocations that
8441  * can be reclaimed or migrated.
8442  */
8443 static int __init cmdline_parse_movablecore(char *p)
8444 {
8445 	return cmdline_parse_core(p, &required_movablecore,
8446 				  &required_movablecore_percent);
8447 }
8448 
8449 early_param("kernelcore", cmdline_parse_kernelcore);
8450 early_param("movablecore", cmdline_parse_movablecore);
8451 
8452 void adjust_managed_page_count(struct page *page, long count)
8453 {
8454 	atomic_long_add(count, &page_zone(page)->managed_pages);
8455 	totalram_pages_add(count);
8456 #ifdef CONFIG_HIGHMEM
8457 	if (PageHighMem(page))
8458 		totalhigh_pages_add(count);
8459 #endif
8460 }
8461 EXPORT_SYMBOL(adjust_managed_page_count);
8462 
8463 unsigned long free_reserved_area(void *start, void *end, int poison, const char *s)
8464 {
8465 	void *pos;
8466 	unsigned long pages = 0;
8467 
8468 	start = (void *)PAGE_ALIGN((unsigned long)start);
8469 	end = (void *)((unsigned long)end & PAGE_MASK);
8470 	for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
8471 		struct page *page = virt_to_page(pos);
8472 		void *direct_map_addr;
8473 
8474 		/*
8475 		 * 'direct_map_addr' might be different from 'pos'
8476 		 * because some architectures' virt_to_page()
8477 		 * work with aliases.  Getting the direct map
8478 		 * address ensures that we get a _writeable_
8479 		 * alias for the memset().
8480 		 */
8481 		direct_map_addr = page_address(page);
8482 		/*
8483 		 * Perform a kasan-unchecked memset() since this memory
8484 		 * has not been initialized.
8485 		 */
8486 		direct_map_addr = kasan_reset_tag(direct_map_addr);
8487 		if ((unsigned int)poison <= 0xFF)
8488 			memset(direct_map_addr, poison, PAGE_SIZE);
8489 
8490 		free_reserved_page(page);
8491 	}
8492 
8493 	if (pages && s)
8494 		pr_info("Freeing %s memory: %ldK\n", s, K(pages));
8495 
8496 	return pages;
8497 }
8498 
8499 void __init mem_init_print_info(void)
8500 {
8501 	unsigned long physpages, codesize, datasize, rosize, bss_size;
8502 	unsigned long init_code_size, init_data_size;
8503 
8504 	physpages = get_num_physpages();
8505 	codesize = _etext - _stext;
8506 	datasize = _edata - _sdata;
8507 	rosize = __end_rodata - __start_rodata;
8508 	bss_size = __bss_stop - __bss_start;
8509 	init_data_size = __init_end - __init_begin;
8510 	init_code_size = _einittext - _sinittext;
8511 
8512 	/*
8513 	 * Detect special cases and adjust section sizes accordingly:
8514 	 * 1) .init.* may be embedded into .data sections
8515 	 * 2) .init.text.* may be out of [__init_begin, __init_end],
8516 	 *    please refer to arch/tile/kernel/vmlinux.lds.S.
8517 	 * 3) .rodata.* may be embedded into .text or .data sections.
8518 	 */
8519 #define adj_init_size(start, end, size, pos, adj) \
8520 	do { \
8521 		if (&start[0] <= &pos[0] && &pos[0] < &end[0] && size > adj) \
8522 			size -= adj; \
8523 	} while (0)
8524 
8525 	adj_init_size(__init_begin, __init_end, init_data_size,
8526 		     _sinittext, init_code_size);
8527 	adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
8528 	adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
8529 	adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
8530 	adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
8531 
8532 #undef	adj_init_size
8533 
8534 	pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
8535 #ifdef	CONFIG_HIGHMEM
8536 		", %luK highmem"
8537 #endif
8538 		")\n",
8539 		K(nr_free_pages()), K(physpages),
8540 		codesize / SZ_1K, datasize / SZ_1K, rosize / SZ_1K,
8541 		(init_data_size + init_code_size) / SZ_1K, bss_size / SZ_1K,
8542 		K(physpages - totalram_pages() - totalcma_pages),
8543 		K(totalcma_pages)
8544 #ifdef	CONFIG_HIGHMEM
8545 		, K(totalhigh_pages())
8546 #endif
8547 		);
8548 }
8549 
8550 /**
8551  * set_dma_reserve - set the specified number of pages reserved in the first zone
8552  * @new_dma_reserve: The number of pages to mark reserved
8553  *
8554  * The per-cpu batchsize and zone watermarks are determined by managed_pages.
8555  * In the DMA zone, a significant percentage may be consumed by kernel image
8556  * and other unfreeable allocations which can skew the watermarks badly. This
8557  * function may optionally be used to account for unfreeable pages in the
8558  * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
8559  * smaller per-cpu batchsize.
8560  */
8561 void __init set_dma_reserve(unsigned long new_dma_reserve)
8562 {
8563 	dma_reserve = new_dma_reserve;
8564 }
8565 
8566 static int page_alloc_cpu_dead(unsigned int cpu)
8567 {
8568 	struct zone *zone;
8569 
8570 	lru_add_drain_cpu(cpu);
8571 	mlock_page_drain_remote(cpu);
8572 	drain_pages(cpu);
8573 
8574 	/*
8575 	 * Spill the event counters of the dead processor
8576 	 * into the current processors event counters.
8577 	 * This artificially elevates the count of the current
8578 	 * processor.
8579 	 */
8580 	vm_events_fold_cpu(cpu);
8581 
8582 	/*
8583 	 * Zero the differential counters of the dead processor
8584 	 * so that the vm statistics are consistent.
8585 	 *
8586 	 * This is only okay since the processor is dead and cannot
8587 	 * race with what we are doing.
8588 	 */
8589 	cpu_vm_stats_fold(cpu);
8590 
8591 	for_each_populated_zone(zone)
8592 		zone_pcp_update(zone, 0);
8593 
8594 	return 0;
8595 }
8596 
8597 static int page_alloc_cpu_online(unsigned int cpu)
8598 {
8599 	struct zone *zone;
8600 
8601 	for_each_populated_zone(zone)
8602 		zone_pcp_update(zone, 1);
8603 	return 0;
8604 }
8605 
8606 #ifdef CONFIG_NUMA
8607 int hashdist = HASHDIST_DEFAULT;
8608 
8609 static int __init set_hashdist(char *str)
8610 {
8611 	if (!str)
8612 		return 0;
8613 	hashdist = simple_strtoul(str, &str, 0);
8614 	return 1;
8615 }
8616 __setup("hashdist=", set_hashdist);
8617 #endif
8618 
8619 void __init page_alloc_init(void)
8620 {
8621 	int ret;
8622 
8623 #ifdef CONFIG_NUMA
8624 	if (num_node_state(N_MEMORY) == 1)
8625 		hashdist = 0;
8626 #endif
8627 
8628 	ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC,
8629 					"mm/page_alloc:pcp",
8630 					page_alloc_cpu_online,
8631 					page_alloc_cpu_dead);
8632 	WARN_ON(ret < 0);
8633 }
8634 
8635 /*
8636  * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
8637  *	or min_free_kbytes changes.
8638  */
8639 static void calculate_totalreserve_pages(void)
8640 {
8641 	struct pglist_data *pgdat;
8642 	unsigned long reserve_pages = 0;
8643 	enum zone_type i, j;
8644 
8645 	for_each_online_pgdat(pgdat) {
8646 
8647 		pgdat->totalreserve_pages = 0;
8648 
8649 		for (i = 0; i < MAX_NR_ZONES; i++) {
8650 			struct zone *zone = pgdat->node_zones + i;
8651 			long max = 0;
8652 			unsigned long managed_pages = zone_managed_pages(zone);
8653 
8654 			/* Find valid and maximum lowmem_reserve in the zone */
8655 			for (j = i; j < MAX_NR_ZONES; j++) {
8656 				if (zone->lowmem_reserve[j] > max)
8657 					max = zone->lowmem_reserve[j];
8658 			}
8659 
8660 			/* we treat the high watermark as reserved pages. */
8661 			max += high_wmark_pages(zone);
8662 
8663 			if (max > managed_pages)
8664 				max = managed_pages;
8665 
8666 			pgdat->totalreserve_pages += max;
8667 
8668 			reserve_pages += max;
8669 		}
8670 	}
8671 	totalreserve_pages = reserve_pages;
8672 }
8673 
8674 /*
8675  * setup_per_zone_lowmem_reserve - called whenever
8676  *	sysctl_lowmem_reserve_ratio changes.  Ensures that each zone
8677  *	has a correct pages reserved value, so an adequate number of
8678  *	pages are left in the zone after a successful __alloc_pages().
8679  */
8680 static void setup_per_zone_lowmem_reserve(void)
8681 {
8682 	struct pglist_data *pgdat;
8683 	enum zone_type i, j;
8684 
8685 	for_each_online_pgdat(pgdat) {
8686 		for (i = 0; i < MAX_NR_ZONES - 1; i++) {
8687 			struct zone *zone = &pgdat->node_zones[i];
8688 			int ratio = sysctl_lowmem_reserve_ratio[i];
8689 			bool clear = !ratio || !zone_managed_pages(zone);
8690 			unsigned long managed_pages = 0;
8691 
8692 			for (j = i + 1; j < MAX_NR_ZONES; j++) {
8693 				struct zone *upper_zone = &pgdat->node_zones[j];
8694 
8695 				managed_pages += zone_managed_pages(upper_zone);
8696 
8697 				if (clear)
8698 					zone->lowmem_reserve[j] = 0;
8699 				else
8700 					zone->lowmem_reserve[j] = managed_pages / ratio;
8701 			}
8702 		}
8703 	}
8704 
8705 	/* update totalreserve_pages */
8706 	calculate_totalreserve_pages();
8707 }
8708 
8709 static void __setup_per_zone_wmarks(void)
8710 {
8711 	unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
8712 	unsigned long lowmem_pages = 0;
8713 	struct zone *zone;
8714 	unsigned long flags;
8715 
8716 	/* Calculate total number of !ZONE_HIGHMEM pages */
8717 	for_each_zone(zone) {
8718 		if (!is_highmem(zone))
8719 			lowmem_pages += zone_managed_pages(zone);
8720 	}
8721 
8722 	for_each_zone(zone) {
8723 		u64 tmp;
8724 
8725 		spin_lock_irqsave(&zone->lock, flags);
8726 		tmp = (u64)pages_min * zone_managed_pages(zone);
8727 		do_div(tmp, lowmem_pages);
8728 		if (is_highmem(zone)) {
8729 			/*
8730 			 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
8731 			 * need highmem pages, so cap pages_min to a small
8732 			 * value here.
8733 			 *
8734 			 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
8735 			 * deltas control async page reclaim, and so should
8736 			 * not be capped for highmem.
8737 			 */
8738 			unsigned long min_pages;
8739 
8740 			min_pages = zone_managed_pages(zone) / 1024;
8741 			min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
8742 			zone->_watermark[WMARK_MIN] = min_pages;
8743 		} else {
8744 			/*
8745 			 * If it's a lowmem zone, reserve a number of pages
8746 			 * proportionate to the zone's size.
8747 			 */
8748 			zone->_watermark[WMARK_MIN] = tmp;
8749 		}
8750 
8751 		/*
8752 		 * Set the kswapd watermarks distance according to the
8753 		 * scale factor in proportion to available memory, but
8754 		 * ensure a minimum size on small systems.
8755 		 */
8756 		tmp = max_t(u64, tmp >> 2,
8757 			    mult_frac(zone_managed_pages(zone),
8758 				      watermark_scale_factor, 10000));
8759 
8760 		zone->watermark_boost = 0;
8761 		zone->_watermark[WMARK_LOW]  = min_wmark_pages(zone) + tmp;
8762 		zone->_watermark[WMARK_HIGH] = low_wmark_pages(zone) + tmp;
8763 		zone->_watermark[WMARK_PROMO] = high_wmark_pages(zone) + tmp;
8764 
8765 		spin_unlock_irqrestore(&zone->lock, flags);
8766 	}
8767 
8768 	/* update totalreserve_pages */
8769 	calculate_totalreserve_pages();
8770 }
8771 
8772 /**
8773  * setup_per_zone_wmarks - called when min_free_kbytes changes
8774  * or when memory is hot-{added|removed}
8775  *
8776  * Ensures that the watermark[min,low,high] values for each zone are set
8777  * correctly with respect to min_free_kbytes.
8778  */
8779 void setup_per_zone_wmarks(void)
8780 {
8781 	struct zone *zone;
8782 	static DEFINE_SPINLOCK(lock);
8783 
8784 	spin_lock(&lock);
8785 	__setup_per_zone_wmarks();
8786 	spin_unlock(&lock);
8787 
8788 	/*
8789 	 * The watermark size have changed so update the pcpu batch
8790 	 * and high limits or the limits may be inappropriate.
8791 	 */
8792 	for_each_zone(zone)
8793 		zone_pcp_update(zone, 0);
8794 }
8795 
8796 /*
8797  * Initialise min_free_kbytes.
8798  *
8799  * For small machines we want it small (128k min).  For large machines
8800  * we want it large (256MB max).  But it is not linear, because network
8801  * bandwidth does not increase linearly with machine size.  We use
8802  *
8803  *	min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
8804  *	min_free_kbytes = sqrt(lowmem_kbytes * 16)
8805  *
8806  * which yields
8807  *
8808  * 16MB:	512k
8809  * 32MB:	724k
8810  * 64MB:	1024k
8811  * 128MB:	1448k
8812  * 256MB:	2048k
8813  * 512MB:	2896k
8814  * 1024MB:	4096k
8815  * 2048MB:	5792k
8816  * 4096MB:	8192k
8817  * 8192MB:	11584k
8818  * 16384MB:	16384k
8819  */
8820 void calculate_min_free_kbytes(void)
8821 {
8822 	unsigned long lowmem_kbytes;
8823 	int new_min_free_kbytes;
8824 
8825 	lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
8826 	new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
8827 
8828 	if (new_min_free_kbytes > user_min_free_kbytes)
8829 		min_free_kbytes = clamp(new_min_free_kbytes, 128, 262144);
8830 	else
8831 		pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
8832 				new_min_free_kbytes, user_min_free_kbytes);
8833 
8834 }
8835 
8836 int __meminit init_per_zone_wmark_min(void)
8837 {
8838 	calculate_min_free_kbytes();
8839 	setup_per_zone_wmarks();
8840 	refresh_zone_stat_thresholds();
8841 	setup_per_zone_lowmem_reserve();
8842 
8843 #ifdef CONFIG_NUMA
8844 	setup_min_unmapped_ratio();
8845 	setup_min_slab_ratio();
8846 #endif
8847 
8848 	khugepaged_min_free_kbytes_update();
8849 
8850 	return 0;
8851 }
8852 postcore_initcall(init_per_zone_wmark_min)
8853 
8854 /*
8855  * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
8856  *	that we can call two helper functions whenever min_free_kbytes
8857  *	changes.
8858  */
8859 int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
8860 		void *buffer, size_t *length, loff_t *ppos)
8861 {
8862 	int rc;
8863 
8864 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8865 	if (rc)
8866 		return rc;
8867 
8868 	if (write) {
8869 		user_min_free_kbytes = min_free_kbytes;
8870 		setup_per_zone_wmarks();
8871 	}
8872 	return 0;
8873 }
8874 
8875 int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
8876 		void *buffer, size_t *length, loff_t *ppos)
8877 {
8878 	int rc;
8879 
8880 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8881 	if (rc)
8882 		return rc;
8883 
8884 	if (write)
8885 		setup_per_zone_wmarks();
8886 
8887 	return 0;
8888 }
8889 
8890 #ifdef CONFIG_NUMA
8891 static void setup_min_unmapped_ratio(void)
8892 {
8893 	pg_data_t *pgdat;
8894 	struct zone *zone;
8895 
8896 	for_each_online_pgdat(pgdat)
8897 		pgdat->min_unmapped_pages = 0;
8898 
8899 	for_each_zone(zone)
8900 		zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) *
8901 						         sysctl_min_unmapped_ratio) / 100;
8902 }
8903 
8904 
8905 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
8906 		void *buffer, size_t *length, loff_t *ppos)
8907 {
8908 	int rc;
8909 
8910 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8911 	if (rc)
8912 		return rc;
8913 
8914 	setup_min_unmapped_ratio();
8915 
8916 	return 0;
8917 }
8918 
8919 static void setup_min_slab_ratio(void)
8920 {
8921 	pg_data_t *pgdat;
8922 	struct zone *zone;
8923 
8924 	for_each_online_pgdat(pgdat)
8925 		pgdat->min_slab_pages = 0;
8926 
8927 	for_each_zone(zone)
8928 		zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) *
8929 						     sysctl_min_slab_ratio) / 100;
8930 }
8931 
8932 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
8933 		void *buffer, size_t *length, loff_t *ppos)
8934 {
8935 	int rc;
8936 
8937 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8938 	if (rc)
8939 		return rc;
8940 
8941 	setup_min_slab_ratio();
8942 
8943 	return 0;
8944 }
8945 #endif
8946 
8947 /*
8948  * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
8949  *	proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
8950  *	whenever sysctl_lowmem_reserve_ratio changes.
8951  *
8952  * The reserve ratio obviously has absolutely no relation with the
8953  * minimum watermarks. The lowmem reserve ratio can only make sense
8954  * if in function of the boot time zone sizes.
8955  */
8956 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
8957 		void *buffer, size_t *length, loff_t *ppos)
8958 {
8959 	int i;
8960 
8961 	proc_dointvec_minmax(table, write, buffer, length, ppos);
8962 
8963 	for (i = 0; i < MAX_NR_ZONES; i++) {
8964 		if (sysctl_lowmem_reserve_ratio[i] < 1)
8965 			sysctl_lowmem_reserve_ratio[i] = 0;
8966 	}
8967 
8968 	setup_per_zone_lowmem_reserve();
8969 	return 0;
8970 }
8971 
8972 /*
8973  * percpu_pagelist_high_fraction - changes the pcp->high for each zone on each
8974  * cpu. It is the fraction of total pages in each zone that a hot per cpu
8975  * pagelist can have before it gets flushed back to buddy allocator.
8976  */
8977 int percpu_pagelist_high_fraction_sysctl_handler(struct ctl_table *table,
8978 		int write, void *buffer, size_t *length, loff_t *ppos)
8979 {
8980 	struct zone *zone;
8981 	int old_percpu_pagelist_high_fraction;
8982 	int ret;
8983 
8984 	mutex_lock(&pcp_batch_high_lock);
8985 	old_percpu_pagelist_high_fraction = percpu_pagelist_high_fraction;
8986 
8987 	ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
8988 	if (!write || ret < 0)
8989 		goto out;
8990 
8991 	/* Sanity checking to avoid pcp imbalance */
8992 	if (percpu_pagelist_high_fraction &&
8993 	    percpu_pagelist_high_fraction < MIN_PERCPU_PAGELIST_HIGH_FRACTION) {
8994 		percpu_pagelist_high_fraction = old_percpu_pagelist_high_fraction;
8995 		ret = -EINVAL;
8996 		goto out;
8997 	}
8998 
8999 	/* No change? */
9000 	if (percpu_pagelist_high_fraction == old_percpu_pagelist_high_fraction)
9001 		goto out;
9002 
9003 	for_each_populated_zone(zone)
9004 		zone_set_pageset_high_and_batch(zone, 0);
9005 out:
9006 	mutex_unlock(&pcp_batch_high_lock);
9007 	return ret;
9008 }
9009 
9010 #ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
9011 /*
9012  * Returns the number of pages that arch has reserved but
9013  * is not known to alloc_large_system_hash().
9014  */
9015 static unsigned long __init arch_reserved_kernel_pages(void)
9016 {
9017 	return 0;
9018 }
9019 #endif
9020 
9021 /*
9022  * Adaptive scale is meant to reduce sizes of hash tables on large memory
9023  * machines. As memory size is increased the scale is also increased but at
9024  * slower pace.  Starting from ADAPT_SCALE_BASE (64G), every time memory
9025  * quadruples the scale is increased by one, which means the size of hash table
9026  * only doubles, instead of quadrupling as well.
9027  * Because 32-bit systems cannot have large physical memory, where this scaling
9028  * makes sense, it is disabled on such platforms.
9029  */
9030 #if __BITS_PER_LONG > 32
9031 #define ADAPT_SCALE_BASE	(64ul << 30)
9032 #define ADAPT_SCALE_SHIFT	2
9033 #define ADAPT_SCALE_NPAGES	(ADAPT_SCALE_BASE >> PAGE_SHIFT)
9034 #endif
9035 
9036 /*
9037  * allocate a large system hash table from bootmem
9038  * - it is assumed that the hash table must contain an exact power-of-2
9039  *   quantity of entries
9040  * - limit is the number of hash buckets, not the total allocation size
9041  */
9042 void *__init alloc_large_system_hash(const char *tablename,
9043 				     unsigned long bucketsize,
9044 				     unsigned long numentries,
9045 				     int scale,
9046 				     int flags,
9047 				     unsigned int *_hash_shift,
9048 				     unsigned int *_hash_mask,
9049 				     unsigned long low_limit,
9050 				     unsigned long high_limit)
9051 {
9052 	unsigned long long max = high_limit;
9053 	unsigned long log2qty, size;
9054 	void *table;
9055 	gfp_t gfp_flags;
9056 	bool virt;
9057 	bool huge;
9058 
9059 	/* allow the kernel cmdline to have a say */
9060 	if (!numentries) {
9061 		/* round applicable memory size up to nearest megabyte */
9062 		numentries = nr_kernel_pages;
9063 		numentries -= arch_reserved_kernel_pages();
9064 
9065 		/* It isn't necessary when PAGE_SIZE >= 1MB */
9066 		if (PAGE_SIZE < SZ_1M)
9067 			numentries = round_up(numentries, SZ_1M / PAGE_SIZE);
9068 
9069 #if __BITS_PER_LONG > 32
9070 		if (!high_limit) {
9071 			unsigned long adapt;
9072 
9073 			for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries;
9074 			     adapt <<= ADAPT_SCALE_SHIFT)
9075 				scale++;
9076 		}
9077 #endif
9078 
9079 		/* limit to 1 bucket per 2^scale bytes of low memory */
9080 		if (scale > PAGE_SHIFT)
9081 			numentries >>= (scale - PAGE_SHIFT);
9082 		else
9083 			numentries <<= (PAGE_SHIFT - scale);
9084 
9085 		/* Make sure we've got at least a 0-order allocation.. */
9086 		if (unlikely(flags & HASH_SMALL)) {
9087 			/* Makes no sense without HASH_EARLY */
9088 			WARN_ON(!(flags & HASH_EARLY));
9089 			if (!(numentries >> *_hash_shift)) {
9090 				numentries = 1UL << *_hash_shift;
9091 				BUG_ON(!numentries);
9092 			}
9093 		} else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
9094 			numentries = PAGE_SIZE / bucketsize;
9095 	}
9096 	numentries = roundup_pow_of_two(numentries);
9097 
9098 	/* limit allocation size to 1/16 total memory by default */
9099 	if (max == 0) {
9100 		max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
9101 		do_div(max, bucketsize);
9102 	}
9103 	max = min(max, 0x80000000ULL);
9104 
9105 	if (numentries < low_limit)
9106 		numentries = low_limit;
9107 	if (numentries > max)
9108 		numentries = max;
9109 
9110 	log2qty = ilog2(numentries);
9111 
9112 	gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC;
9113 	do {
9114 		virt = false;
9115 		size = bucketsize << log2qty;
9116 		if (flags & HASH_EARLY) {
9117 			if (flags & HASH_ZERO)
9118 				table = memblock_alloc(size, SMP_CACHE_BYTES);
9119 			else
9120 				table = memblock_alloc_raw(size,
9121 							   SMP_CACHE_BYTES);
9122 		} else if (get_order(size) >= MAX_ORDER || hashdist) {
9123 			table = vmalloc_huge(size, gfp_flags);
9124 			virt = true;
9125 			if (table)
9126 				huge = is_vm_area_hugepages(table);
9127 		} else {
9128 			/*
9129 			 * If bucketsize is not a power-of-two, we may free
9130 			 * some pages at the end of hash table which
9131 			 * alloc_pages_exact() automatically does
9132 			 */
9133 			table = alloc_pages_exact(size, gfp_flags);
9134 			kmemleak_alloc(table, size, 1, gfp_flags);
9135 		}
9136 	} while (!table && size > PAGE_SIZE && --log2qty);
9137 
9138 	if (!table)
9139 		panic("Failed to allocate %s hash table\n", tablename);
9140 
9141 	pr_info("%s hash table entries: %ld (order: %d, %lu bytes, %s)\n",
9142 		tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size,
9143 		virt ? (huge ? "vmalloc hugepage" : "vmalloc") : "linear");
9144 
9145 	if (_hash_shift)
9146 		*_hash_shift = log2qty;
9147 	if (_hash_mask)
9148 		*_hash_mask = (1 << log2qty) - 1;
9149 
9150 	return table;
9151 }
9152 
9153 #ifdef CONFIG_CONTIG_ALLOC
9154 #if defined(CONFIG_DYNAMIC_DEBUG) || \
9155 	(defined(CONFIG_DYNAMIC_DEBUG_CORE) && defined(DYNAMIC_DEBUG_MODULE))
9156 /* Usage: See admin-guide/dynamic-debug-howto.rst */
9157 static void alloc_contig_dump_pages(struct list_head *page_list)
9158 {
9159 	DEFINE_DYNAMIC_DEBUG_METADATA(descriptor, "migrate failure");
9160 
9161 	if (DYNAMIC_DEBUG_BRANCH(descriptor)) {
9162 		struct page *page;
9163 
9164 		dump_stack();
9165 		list_for_each_entry(page, page_list, lru)
9166 			dump_page(page, "migration failure");
9167 	}
9168 }
9169 #else
9170 static inline void alloc_contig_dump_pages(struct list_head *page_list)
9171 {
9172 }
9173 #endif
9174 
9175 /* [start, end) must belong to a single zone. */
9176 int __alloc_contig_migrate_range(struct compact_control *cc,
9177 					unsigned long start, unsigned long end)
9178 {
9179 	/* This function is based on compact_zone() from compaction.c. */
9180 	unsigned int nr_reclaimed;
9181 	unsigned long pfn = start;
9182 	unsigned int tries = 0;
9183 	int ret = 0;
9184 	struct migration_target_control mtc = {
9185 		.nid = zone_to_nid(cc->zone),
9186 		.gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL,
9187 	};
9188 
9189 	lru_cache_disable();
9190 
9191 	while (pfn < end || !list_empty(&cc->migratepages)) {
9192 		if (fatal_signal_pending(current)) {
9193 			ret = -EINTR;
9194 			break;
9195 		}
9196 
9197 		if (list_empty(&cc->migratepages)) {
9198 			cc->nr_migratepages = 0;
9199 			ret = isolate_migratepages_range(cc, pfn, end);
9200 			if (ret && ret != -EAGAIN)
9201 				break;
9202 			pfn = cc->migrate_pfn;
9203 			tries = 0;
9204 		} else if (++tries == 5) {
9205 			ret = -EBUSY;
9206 			break;
9207 		}
9208 
9209 		nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
9210 							&cc->migratepages);
9211 		cc->nr_migratepages -= nr_reclaimed;
9212 
9213 		ret = migrate_pages(&cc->migratepages, alloc_migration_target,
9214 			NULL, (unsigned long)&mtc, cc->mode, MR_CONTIG_RANGE, NULL);
9215 
9216 		/*
9217 		 * On -ENOMEM, migrate_pages() bails out right away. It is pointless
9218 		 * to retry again over this error, so do the same here.
9219 		 */
9220 		if (ret == -ENOMEM)
9221 			break;
9222 	}
9223 
9224 	lru_cache_enable();
9225 	if (ret < 0) {
9226 		if (!(cc->gfp_mask & __GFP_NOWARN) && ret == -EBUSY)
9227 			alloc_contig_dump_pages(&cc->migratepages);
9228 		putback_movable_pages(&cc->migratepages);
9229 		return ret;
9230 	}
9231 	return 0;
9232 }
9233 
9234 /**
9235  * alloc_contig_range() -- tries to allocate given range of pages
9236  * @start:	start PFN to allocate
9237  * @end:	one-past-the-last PFN to allocate
9238  * @migratetype:	migratetype of the underlying pageblocks (either
9239  *			#MIGRATE_MOVABLE or #MIGRATE_CMA).  All pageblocks
9240  *			in range must have the same migratetype and it must
9241  *			be either of the two.
9242  * @gfp_mask:	GFP mask to use during compaction
9243  *
9244  * The PFN range does not have to be pageblock aligned. The PFN range must
9245  * belong to a single zone.
9246  *
9247  * The first thing this routine does is attempt to MIGRATE_ISOLATE all
9248  * pageblocks in the range.  Once isolated, the pageblocks should not
9249  * be modified by others.
9250  *
9251  * Return: zero on success or negative error code.  On success all
9252  * pages which PFN is in [start, end) are allocated for the caller and
9253  * need to be freed with free_contig_range().
9254  */
9255 int alloc_contig_range(unsigned long start, unsigned long end,
9256 		       unsigned migratetype, gfp_t gfp_mask)
9257 {
9258 	unsigned long outer_start, outer_end;
9259 	int order;
9260 	int ret = 0;
9261 
9262 	struct compact_control cc = {
9263 		.nr_migratepages = 0,
9264 		.order = -1,
9265 		.zone = page_zone(pfn_to_page(start)),
9266 		.mode = MIGRATE_SYNC,
9267 		.ignore_skip_hint = true,
9268 		.no_set_skip_hint = true,
9269 		.gfp_mask = current_gfp_context(gfp_mask),
9270 		.alloc_contig = true,
9271 	};
9272 	INIT_LIST_HEAD(&cc.migratepages);
9273 
9274 	/*
9275 	 * What we do here is we mark all pageblocks in range as
9276 	 * MIGRATE_ISOLATE.  Because pageblock and max order pages may
9277 	 * have different sizes, and due to the way page allocator
9278 	 * work, start_isolate_page_range() has special handlings for this.
9279 	 *
9280 	 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
9281 	 * migrate the pages from an unaligned range (ie. pages that
9282 	 * we are interested in). This will put all the pages in
9283 	 * range back to page allocator as MIGRATE_ISOLATE.
9284 	 *
9285 	 * When this is done, we take the pages in range from page
9286 	 * allocator removing them from the buddy system.  This way
9287 	 * page allocator will never consider using them.
9288 	 *
9289 	 * This lets us mark the pageblocks back as
9290 	 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
9291 	 * aligned range but not in the unaligned, original range are
9292 	 * put back to page allocator so that buddy can use them.
9293 	 */
9294 
9295 	ret = start_isolate_page_range(start, end, migratetype, 0, gfp_mask);
9296 	if (ret)
9297 		goto done;
9298 
9299 	drain_all_pages(cc.zone);
9300 
9301 	/*
9302 	 * In case of -EBUSY, we'd like to know which page causes problem.
9303 	 * So, just fall through. test_pages_isolated() has a tracepoint
9304 	 * which will report the busy page.
9305 	 *
9306 	 * It is possible that busy pages could become available before
9307 	 * the call to test_pages_isolated, and the range will actually be
9308 	 * allocated.  So, if we fall through be sure to clear ret so that
9309 	 * -EBUSY is not accidentally used or returned to caller.
9310 	 */
9311 	ret = __alloc_contig_migrate_range(&cc, start, end);
9312 	if (ret && ret != -EBUSY)
9313 		goto done;
9314 	ret = 0;
9315 
9316 	/*
9317 	 * Pages from [start, end) are within a pageblock_nr_pages
9318 	 * aligned blocks that are marked as MIGRATE_ISOLATE.  What's
9319 	 * more, all pages in [start, end) are free in page allocator.
9320 	 * What we are going to do is to allocate all pages from
9321 	 * [start, end) (that is remove them from page allocator).
9322 	 *
9323 	 * The only problem is that pages at the beginning and at the
9324 	 * end of interesting range may be not aligned with pages that
9325 	 * page allocator holds, ie. they can be part of higher order
9326 	 * pages.  Because of this, we reserve the bigger range and
9327 	 * once this is done free the pages we are not interested in.
9328 	 *
9329 	 * We don't have to hold zone->lock here because the pages are
9330 	 * isolated thus they won't get removed from buddy.
9331 	 */
9332 
9333 	order = 0;
9334 	outer_start = start;
9335 	while (!PageBuddy(pfn_to_page(outer_start))) {
9336 		if (++order >= MAX_ORDER) {
9337 			outer_start = start;
9338 			break;
9339 		}
9340 		outer_start &= ~0UL << order;
9341 	}
9342 
9343 	if (outer_start != start) {
9344 		order = buddy_order(pfn_to_page(outer_start));
9345 
9346 		/*
9347 		 * outer_start page could be small order buddy page and
9348 		 * it doesn't include start page. Adjust outer_start
9349 		 * in this case to report failed page properly
9350 		 * on tracepoint in test_pages_isolated()
9351 		 */
9352 		if (outer_start + (1UL << order) <= start)
9353 			outer_start = start;
9354 	}
9355 
9356 	/* Make sure the range is really isolated. */
9357 	if (test_pages_isolated(outer_start, end, 0)) {
9358 		ret = -EBUSY;
9359 		goto done;
9360 	}
9361 
9362 	/* Grab isolated pages from freelists. */
9363 	outer_end = isolate_freepages_range(&cc, outer_start, end);
9364 	if (!outer_end) {
9365 		ret = -EBUSY;
9366 		goto done;
9367 	}
9368 
9369 	/* Free head and tail (if any) */
9370 	if (start != outer_start)
9371 		free_contig_range(outer_start, start - outer_start);
9372 	if (end != outer_end)
9373 		free_contig_range(end, outer_end - end);
9374 
9375 done:
9376 	undo_isolate_page_range(start, end, migratetype);
9377 	return ret;
9378 }
9379 EXPORT_SYMBOL(alloc_contig_range);
9380 
9381 static int __alloc_contig_pages(unsigned long start_pfn,
9382 				unsigned long nr_pages, gfp_t gfp_mask)
9383 {
9384 	unsigned long end_pfn = start_pfn + nr_pages;
9385 
9386 	return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE,
9387 				  gfp_mask);
9388 }
9389 
9390 static bool pfn_range_valid_contig(struct zone *z, unsigned long start_pfn,
9391 				   unsigned long nr_pages)
9392 {
9393 	unsigned long i, end_pfn = start_pfn + nr_pages;
9394 	struct page *page;
9395 
9396 	for (i = start_pfn; i < end_pfn; i++) {
9397 		page = pfn_to_online_page(i);
9398 		if (!page)
9399 			return false;
9400 
9401 		if (page_zone(page) != z)
9402 			return false;
9403 
9404 		if (PageReserved(page))
9405 			return false;
9406 	}
9407 	return true;
9408 }
9409 
9410 static bool zone_spans_last_pfn(const struct zone *zone,
9411 				unsigned long start_pfn, unsigned long nr_pages)
9412 {
9413 	unsigned long last_pfn = start_pfn + nr_pages - 1;
9414 
9415 	return zone_spans_pfn(zone, last_pfn);
9416 }
9417 
9418 /**
9419  * alloc_contig_pages() -- tries to find and allocate contiguous range of pages
9420  * @nr_pages:	Number of contiguous pages to allocate
9421  * @gfp_mask:	GFP mask to limit search and used during compaction
9422  * @nid:	Target node
9423  * @nodemask:	Mask for other possible nodes
9424  *
9425  * This routine is a wrapper around alloc_contig_range(). It scans over zones
9426  * on an applicable zonelist to find a contiguous pfn range which can then be
9427  * tried for allocation with alloc_contig_range(). This routine is intended
9428  * for allocation requests which can not be fulfilled with the buddy allocator.
9429  *
9430  * The allocated memory is always aligned to a page boundary. If nr_pages is a
9431  * power of two, then allocated range is also guaranteed to be aligned to same
9432  * nr_pages (e.g. 1GB request would be aligned to 1GB).
9433  *
9434  * Allocated pages can be freed with free_contig_range() or by manually calling
9435  * __free_page() on each allocated page.
9436  *
9437  * Return: pointer to contiguous pages on success, or NULL if not successful.
9438  */
9439 struct page *alloc_contig_pages(unsigned long nr_pages, gfp_t gfp_mask,
9440 				int nid, nodemask_t *nodemask)
9441 {
9442 	unsigned long ret, pfn, flags;
9443 	struct zonelist *zonelist;
9444 	struct zone *zone;
9445 	struct zoneref *z;
9446 
9447 	zonelist = node_zonelist(nid, gfp_mask);
9448 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
9449 					gfp_zone(gfp_mask), nodemask) {
9450 		spin_lock_irqsave(&zone->lock, flags);
9451 
9452 		pfn = ALIGN(zone->zone_start_pfn, nr_pages);
9453 		while (zone_spans_last_pfn(zone, pfn, nr_pages)) {
9454 			if (pfn_range_valid_contig(zone, pfn, nr_pages)) {
9455 				/*
9456 				 * We release the zone lock here because
9457 				 * alloc_contig_range() will also lock the zone
9458 				 * at some point. If there's an allocation
9459 				 * spinning on this lock, it may win the race
9460 				 * and cause alloc_contig_range() to fail...
9461 				 */
9462 				spin_unlock_irqrestore(&zone->lock, flags);
9463 				ret = __alloc_contig_pages(pfn, nr_pages,
9464 							gfp_mask);
9465 				if (!ret)
9466 					return pfn_to_page(pfn);
9467 				spin_lock_irqsave(&zone->lock, flags);
9468 			}
9469 			pfn += nr_pages;
9470 		}
9471 		spin_unlock_irqrestore(&zone->lock, flags);
9472 	}
9473 	return NULL;
9474 }
9475 #endif /* CONFIG_CONTIG_ALLOC */
9476 
9477 void free_contig_range(unsigned long pfn, unsigned long nr_pages)
9478 {
9479 	unsigned long count = 0;
9480 
9481 	for (; nr_pages--; pfn++) {
9482 		struct page *page = pfn_to_page(pfn);
9483 
9484 		count += page_count(page) != 1;
9485 		__free_page(page);
9486 	}
9487 	WARN(count != 0, "%lu pages are still in use!\n", count);
9488 }
9489 EXPORT_SYMBOL(free_contig_range);
9490 
9491 /*
9492  * Effectively disable pcplists for the zone by setting the high limit to 0
9493  * and draining all cpus. A concurrent page freeing on another CPU that's about
9494  * to put the page on pcplist will either finish before the drain and the page
9495  * will be drained, or observe the new high limit and skip the pcplist.
9496  *
9497  * Must be paired with a call to zone_pcp_enable().
9498  */
9499 void zone_pcp_disable(struct zone *zone)
9500 {
9501 	mutex_lock(&pcp_batch_high_lock);
9502 	__zone_set_pageset_high_and_batch(zone, 0, 1);
9503 	__drain_all_pages(zone, true);
9504 }
9505 
9506 void zone_pcp_enable(struct zone *zone)
9507 {
9508 	__zone_set_pageset_high_and_batch(zone, zone->pageset_high, zone->pageset_batch);
9509 	mutex_unlock(&pcp_batch_high_lock);
9510 }
9511 
9512 void zone_pcp_reset(struct zone *zone)
9513 {
9514 	int cpu;
9515 	struct per_cpu_zonestat *pzstats;
9516 
9517 	if (zone->per_cpu_pageset != &boot_pageset) {
9518 		for_each_online_cpu(cpu) {
9519 			pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
9520 			drain_zonestat(zone, pzstats);
9521 		}
9522 		free_percpu(zone->per_cpu_pageset);
9523 		zone->per_cpu_pageset = &boot_pageset;
9524 		if (zone->per_cpu_zonestats != &boot_zonestats) {
9525 			free_percpu(zone->per_cpu_zonestats);
9526 			zone->per_cpu_zonestats = &boot_zonestats;
9527 		}
9528 	}
9529 }
9530 
9531 #ifdef CONFIG_MEMORY_HOTREMOVE
9532 /*
9533  * All pages in the range must be in a single zone, must not contain holes,
9534  * must span full sections, and must be isolated before calling this function.
9535  */
9536 void __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
9537 {
9538 	unsigned long pfn = start_pfn;
9539 	struct page *page;
9540 	struct zone *zone;
9541 	unsigned int order;
9542 	unsigned long flags;
9543 
9544 	offline_mem_sections(pfn, end_pfn);
9545 	zone = page_zone(pfn_to_page(pfn));
9546 	spin_lock_irqsave(&zone->lock, flags);
9547 	while (pfn < end_pfn) {
9548 		page = pfn_to_page(pfn);
9549 		/*
9550 		 * The HWPoisoned page may be not in buddy system, and
9551 		 * page_count() is not 0.
9552 		 */
9553 		if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
9554 			pfn++;
9555 			continue;
9556 		}
9557 		/*
9558 		 * At this point all remaining PageOffline() pages have a
9559 		 * reference count of 0 and can simply be skipped.
9560 		 */
9561 		if (PageOffline(page)) {
9562 			BUG_ON(page_count(page));
9563 			BUG_ON(PageBuddy(page));
9564 			pfn++;
9565 			continue;
9566 		}
9567 
9568 		BUG_ON(page_count(page));
9569 		BUG_ON(!PageBuddy(page));
9570 		order = buddy_order(page);
9571 		del_page_from_free_list(page, zone, order);
9572 		pfn += (1 << order);
9573 	}
9574 	spin_unlock_irqrestore(&zone->lock, flags);
9575 }
9576 #endif
9577 
9578 /*
9579  * This function returns a stable result only if called under zone lock.
9580  */
9581 bool is_free_buddy_page(struct page *page)
9582 {
9583 	unsigned long pfn = page_to_pfn(page);
9584 	unsigned int order;
9585 
9586 	for (order = 0; order < MAX_ORDER; order++) {
9587 		struct page *page_head = page - (pfn & ((1 << order) - 1));
9588 
9589 		if (PageBuddy(page_head) &&
9590 		    buddy_order_unsafe(page_head) >= order)
9591 			break;
9592 	}
9593 
9594 	return order < MAX_ORDER;
9595 }
9596 EXPORT_SYMBOL(is_free_buddy_page);
9597 
9598 #ifdef CONFIG_MEMORY_FAILURE
9599 /*
9600  * Break down a higher-order page in sub-pages, and keep our target out of
9601  * buddy allocator.
9602  */
9603 static void break_down_buddy_pages(struct zone *zone, struct page *page,
9604 				   struct page *target, int low, int high,
9605 				   int migratetype)
9606 {
9607 	unsigned long size = 1 << high;
9608 	struct page *current_buddy, *next_page;
9609 
9610 	while (high > low) {
9611 		high--;
9612 		size >>= 1;
9613 
9614 		if (target >= &page[size]) {
9615 			next_page = page + size;
9616 			current_buddy = page;
9617 		} else {
9618 			next_page = page;
9619 			current_buddy = page + size;
9620 		}
9621 
9622 		if (set_page_guard(zone, current_buddy, high, migratetype))
9623 			continue;
9624 
9625 		if (current_buddy != target) {
9626 			add_to_free_list(current_buddy, zone, high, migratetype);
9627 			set_buddy_order(current_buddy, high);
9628 			page = next_page;
9629 		}
9630 	}
9631 }
9632 
9633 /*
9634  * Take a page that will be marked as poisoned off the buddy allocator.
9635  */
9636 bool take_page_off_buddy(struct page *page)
9637 {
9638 	struct zone *zone = page_zone(page);
9639 	unsigned long pfn = page_to_pfn(page);
9640 	unsigned long flags;
9641 	unsigned int order;
9642 	bool ret = false;
9643 
9644 	spin_lock_irqsave(&zone->lock, flags);
9645 	for (order = 0; order < MAX_ORDER; order++) {
9646 		struct page *page_head = page - (pfn & ((1 << order) - 1));
9647 		int page_order = buddy_order(page_head);
9648 
9649 		if (PageBuddy(page_head) && page_order >= order) {
9650 			unsigned long pfn_head = page_to_pfn(page_head);
9651 			int migratetype = get_pfnblock_migratetype(page_head,
9652 								   pfn_head);
9653 
9654 			del_page_from_free_list(page_head, zone, page_order);
9655 			break_down_buddy_pages(zone, page_head, page, 0,
9656 						page_order, migratetype);
9657 			SetPageHWPoisonTakenOff(page);
9658 			if (!is_migrate_isolate(migratetype))
9659 				__mod_zone_freepage_state(zone, -1, migratetype);
9660 			ret = true;
9661 			break;
9662 		}
9663 		if (page_count(page_head) > 0)
9664 			break;
9665 	}
9666 	spin_unlock_irqrestore(&zone->lock, flags);
9667 	return ret;
9668 }
9669 
9670 /*
9671  * Cancel takeoff done by take_page_off_buddy().
9672  */
9673 bool put_page_back_buddy(struct page *page)
9674 {
9675 	struct zone *zone = page_zone(page);
9676 	unsigned long pfn = page_to_pfn(page);
9677 	unsigned long flags;
9678 	int migratetype = get_pfnblock_migratetype(page, pfn);
9679 	bool ret = false;
9680 
9681 	spin_lock_irqsave(&zone->lock, flags);
9682 	if (put_page_testzero(page)) {
9683 		ClearPageHWPoisonTakenOff(page);
9684 		__free_one_page(page, pfn, zone, 0, migratetype, FPI_NONE);
9685 		if (TestClearPageHWPoison(page)) {
9686 			ret = true;
9687 		}
9688 	}
9689 	spin_unlock_irqrestore(&zone->lock, flags);
9690 
9691 	return ret;
9692 }
9693 #endif
9694 
9695 #ifdef CONFIG_ZONE_DMA
9696 bool has_managed_dma(void)
9697 {
9698 	struct pglist_data *pgdat;
9699 
9700 	for_each_online_pgdat(pgdat) {
9701 		struct zone *zone = &pgdat->node_zones[ZONE_DMA];
9702 
9703 		if (managed_zone(zone))
9704 			return true;
9705 	}
9706 	return false;
9707 }
9708 #endif /* CONFIG_ZONE_DMA */
9709