1 /* 2 * linux/mm/page_alloc.c 3 * 4 * Manages the free list, the system allocates free pages here. 5 * Note that kmalloc() lives in slab.c 6 * 7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 8 * Swap reorganised 29.12.95, Stephen Tweedie 9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999 10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999 11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999 12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000 13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002 14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton) 15 */ 16 17 #include <linux/stddef.h> 18 #include <linux/mm.h> 19 #include <linux/swap.h> 20 #include <linux/interrupt.h> 21 #include <linux/pagemap.h> 22 #include <linux/jiffies.h> 23 #include <linux/bootmem.h> 24 #include <linux/memblock.h> 25 #include <linux/compiler.h> 26 #include <linux/kernel.h> 27 #include <linux/kmemcheck.h> 28 #include <linux/module.h> 29 #include <linux/suspend.h> 30 #include <linux/pagevec.h> 31 #include <linux/blkdev.h> 32 #include <linux/slab.h> 33 #include <linux/ratelimit.h> 34 #include <linux/oom.h> 35 #include <linux/notifier.h> 36 #include <linux/topology.h> 37 #include <linux/sysctl.h> 38 #include <linux/cpu.h> 39 #include <linux/cpuset.h> 40 #include <linux/memory_hotplug.h> 41 #include <linux/nodemask.h> 42 #include <linux/vmalloc.h> 43 #include <linux/vmstat.h> 44 #include <linux/mempolicy.h> 45 #include <linux/stop_machine.h> 46 #include <linux/sort.h> 47 #include <linux/pfn.h> 48 #include <linux/backing-dev.h> 49 #include <linux/fault-inject.h> 50 #include <linux/page-isolation.h> 51 #include <linux/page_cgroup.h> 52 #include <linux/debugobjects.h> 53 #include <linux/kmemleak.h> 54 #include <linux/compaction.h> 55 #include <trace/events/kmem.h> 56 #include <linux/ftrace_event.h> 57 #include <linux/memcontrol.h> 58 #include <linux/prefetch.h> 59 #include <linux/migrate.h> 60 #include <linux/page-debug-flags.h> 61 62 #include <asm/tlbflush.h> 63 #include <asm/div64.h> 64 #include "internal.h" 65 66 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID 67 DEFINE_PER_CPU(int, numa_node); 68 EXPORT_PER_CPU_SYMBOL(numa_node); 69 #endif 70 71 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 72 /* 73 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly. 74 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined. 75 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem() 76 * defined in <linux/topology.h>. 77 */ 78 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */ 79 EXPORT_PER_CPU_SYMBOL(_numa_mem_); 80 #endif 81 82 /* 83 * Array of node states. 84 */ 85 nodemask_t node_states[NR_NODE_STATES] __read_mostly = { 86 [N_POSSIBLE] = NODE_MASK_ALL, 87 [N_ONLINE] = { { [0] = 1UL } }, 88 #ifndef CONFIG_NUMA 89 [N_NORMAL_MEMORY] = { { [0] = 1UL } }, 90 #ifdef CONFIG_HIGHMEM 91 [N_HIGH_MEMORY] = { { [0] = 1UL } }, 92 #endif 93 [N_CPU] = { { [0] = 1UL } }, 94 #endif /* NUMA */ 95 }; 96 EXPORT_SYMBOL(node_states); 97 98 unsigned long totalram_pages __read_mostly; 99 unsigned long totalreserve_pages __read_mostly; 100 /* 101 * When calculating the number of globally allowed dirty pages, there 102 * is a certain number of per-zone reserves that should not be 103 * considered dirtyable memory. This is the sum of those reserves 104 * over all existing zones that contribute dirtyable memory. 105 */ 106 unsigned long dirty_balance_reserve __read_mostly; 107 108 int percpu_pagelist_fraction; 109 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK; 110 111 #ifdef CONFIG_PM_SLEEP 112 /* 113 * The following functions are used by the suspend/hibernate code to temporarily 114 * change gfp_allowed_mask in order to avoid using I/O during memory allocations 115 * while devices are suspended. To avoid races with the suspend/hibernate code, 116 * they should always be called with pm_mutex held (gfp_allowed_mask also should 117 * only be modified with pm_mutex held, unless the suspend/hibernate code is 118 * guaranteed not to run in parallel with that modification). 119 */ 120 121 static gfp_t saved_gfp_mask; 122 123 void pm_restore_gfp_mask(void) 124 { 125 WARN_ON(!mutex_is_locked(&pm_mutex)); 126 if (saved_gfp_mask) { 127 gfp_allowed_mask = saved_gfp_mask; 128 saved_gfp_mask = 0; 129 } 130 } 131 132 void pm_restrict_gfp_mask(void) 133 { 134 WARN_ON(!mutex_is_locked(&pm_mutex)); 135 WARN_ON(saved_gfp_mask); 136 saved_gfp_mask = gfp_allowed_mask; 137 gfp_allowed_mask &= ~GFP_IOFS; 138 } 139 140 bool pm_suspended_storage(void) 141 { 142 if ((gfp_allowed_mask & GFP_IOFS) == GFP_IOFS) 143 return false; 144 return true; 145 } 146 #endif /* CONFIG_PM_SLEEP */ 147 148 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE 149 int pageblock_order __read_mostly; 150 #endif 151 152 static void __free_pages_ok(struct page *page, unsigned int order); 153 154 /* 155 * results with 256, 32 in the lowmem_reserve sysctl: 156 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high) 157 * 1G machine -> (16M dma, 784M normal, 224M high) 158 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA 159 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL 160 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA 161 * 162 * TBD: should special case ZONE_DMA32 machines here - in those we normally 163 * don't need any ZONE_NORMAL reservation 164 */ 165 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = { 166 #ifdef CONFIG_ZONE_DMA 167 256, 168 #endif 169 #ifdef CONFIG_ZONE_DMA32 170 256, 171 #endif 172 #ifdef CONFIG_HIGHMEM 173 32, 174 #endif 175 32, 176 }; 177 178 EXPORT_SYMBOL(totalram_pages); 179 180 static char * const zone_names[MAX_NR_ZONES] = { 181 #ifdef CONFIG_ZONE_DMA 182 "DMA", 183 #endif 184 #ifdef CONFIG_ZONE_DMA32 185 "DMA32", 186 #endif 187 "Normal", 188 #ifdef CONFIG_HIGHMEM 189 "HighMem", 190 #endif 191 "Movable", 192 }; 193 194 int min_free_kbytes = 1024; 195 196 static unsigned long __meminitdata nr_kernel_pages; 197 static unsigned long __meminitdata nr_all_pages; 198 static unsigned long __meminitdata dma_reserve; 199 200 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 201 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES]; 202 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES]; 203 static unsigned long __initdata required_kernelcore; 204 static unsigned long __initdata required_movablecore; 205 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES]; 206 207 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */ 208 int movable_zone; 209 EXPORT_SYMBOL(movable_zone); 210 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 211 212 #if MAX_NUMNODES > 1 213 int nr_node_ids __read_mostly = MAX_NUMNODES; 214 int nr_online_nodes __read_mostly = 1; 215 EXPORT_SYMBOL(nr_node_ids); 216 EXPORT_SYMBOL(nr_online_nodes); 217 #endif 218 219 int page_group_by_mobility_disabled __read_mostly; 220 221 /* 222 * NOTE: 223 * Don't use set_pageblock_migratetype(page, MIGRATE_ISOLATE) directly. 224 * Instead, use {un}set_pageblock_isolate. 225 */ 226 void set_pageblock_migratetype(struct page *page, int migratetype) 227 { 228 229 if (unlikely(page_group_by_mobility_disabled)) 230 migratetype = MIGRATE_UNMOVABLE; 231 232 set_pageblock_flags_group(page, (unsigned long)migratetype, 233 PB_migrate, PB_migrate_end); 234 } 235 236 bool oom_killer_disabled __read_mostly; 237 238 #ifdef CONFIG_DEBUG_VM 239 static int page_outside_zone_boundaries(struct zone *zone, struct page *page) 240 { 241 int ret = 0; 242 unsigned seq; 243 unsigned long pfn = page_to_pfn(page); 244 245 do { 246 seq = zone_span_seqbegin(zone); 247 if (pfn >= zone->zone_start_pfn + zone->spanned_pages) 248 ret = 1; 249 else if (pfn < zone->zone_start_pfn) 250 ret = 1; 251 } while (zone_span_seqretry(zone, seq)); 252 253 return ret; 254 } 255 256 static int page_is_consistent(struct zone *zone, struct page *page) 257 { 258 if (!pfn_valid_within(page_to_pfn(page))) 259 return 0; 260 if (zone != page_zone(page)) 261 return 0; 262 263 return 1; 264 } 265 /* 266 * Temporary debugging check for pages not lying within a given zone. 267 */ 268 static int bad_range(struct zone *zone, struct page *page) 269 { 270 if (page_outside_zone_boundaries(zone, page)) 271 return 1; 272 if (!page_is_consistent(zone, page)) 273 return 1; 274 275 return 0; 276 } 277 #else 278 static inline int bad_range(struct zone *zone, struct page *page) 279 { 280 return 0; 281 } 282 #endif 283 284 static void bad_page(struct page *page) 285 { 286 static unsigned long resume; 287 static unsigned long nr_shown; 288 static unsigned long nr_unshown; 289 290 /* Don't complain about poisoned pages */ 291 if (PageHWPoison(page)) { 292 reset_page_mapcount(page); /* remove PageBuddy */ 293 return; 294 } 295 296 /* 297 * Allow a burst of 60 reports, then keep quiet for that minute; 298 * or allow a steady drip of one report per second. 299 */ 300 if (nr_shown == 60) { 301 if (time_before(jiffies, resume)) { 302 nr_unshown++; 303 goto out; 304 } 305 if (nr_unshown) { 306 printk(KERN_ALERT 307 "BUG: Bad page state: %lu messages suppressed\n", 308 nr_unshown); 309 nr_unshown = 0; 310 } 311 nr_shown = 0; 312 } 313 if (nr_shown++ == 0) 314 resume = jiffies + 60 * HZ; 315 316 printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n", 317 current->comm, page_to_pfn(page)); 318 dump_page(page); 319 320 print_modules(); 321 dump_stack(); 322 out: 323 /* Leave bad fields for debug, except PageBuddy could make trouble */ 324 reset_page_mapcount(page); /* remove PageBuddy */ 325 add_taint(TAINT_BAD_PAGE); 326 } 327 328 /* 329 * Higher-order pages are called "compound pages". They are structured thusly: 330 * 331 * The first PAGE_SIZE page is called the "head page". 332 * 333 * The remaining PAGE_SIZE pages are called "tail pages". 334 * 335 * All pages have PG_compound set. All tail pages have their ->first_page 336 * pointing at the head page. 337 * 338 * The first tail page's ->lru.next holds the address of the compound page's 339 * put_page() function. Its ->lru.prev holds the order of allocation. 340 * This usage means that zero-order pages may not be compound. 341 */ 342 343 static void free_compound_page(struct page *page) 344 { 345 __free_pages_ok(page, compound_order(page)); 346 } 347 348 void prep_compound_page(struct page *page, unsigned long order) 349 { 350 int i; 351 int nr_pages = 1 << order; 352 353 set_compound_page_dtor(page, free_compound_page); 354 set_compound_order(page, order); 355 __SetPageHead(page); 356 for (i = 1; i < nr_pages; i++) { 357 struct page *p = page + i; 358 __SetPageTail(p); 359 set_page_count(p, 0); 360 p->first_page = page; 361 } 362 } 363 364 /* update __split_huge_page_refcount if you change this function */ 365 static int destroy_compound_page(struct page *page, unsigned long order) 366 { 367 int i; 368 int nr_pages = 1 << order; 369 int bad = 0; 370 371 if (unlikely(compound_order(page) != order) || 372 unlikely(!PageHead(page))) { 373 bad_page(page); 374 bad++; 375 } 376 377 __ClearPageHead(page); 378 379 for (i = 1; i < nr_pages; i++) { 380 struct page *p = page + i; 381 382 if (unlikely(!PageTail(p) || (p->first_page != page))) { 383 bad_page(page); 384 bad++; 385 } 386 __ClearPageTail(p); 387 } 388 389 return bad; 390 } 391 392 static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags) 393 { 394 int i; 395 396 /* 397 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO 398 * and __GFP_HIGHMEM from hard or soft interrupt context. 399 */ 400 VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt()); 401 for (i = 0; i < (1 << order); i++) 402 clear_highpage(page + i); 403 } 404 405 #ifdef CONFIG_DEBUG_PAGEALLOC 406 unsigned int _debug_guardpage_minorder; 407 408 static int __init debug_guardpage_minorder_setup(char *buf) 409 { 410 unsigned long res; 411 412 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) { 413 printk(KERN_ERR "Bad debug_guardpage_minorder value\n"); 414 return 0; 415 } 416 _debug_guardpage_minorder = res; 417 printk(KERN_INFO "Setting debug_guardpage_minorder to %lu\n", res); 418 return 0; 419 } 420 __setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup); 421 422 static inline void set_page_guard_flag(struct page *page) 423 { 424 __set_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags); 425 } 426 427 static inline void clear_page_guard_flag(struct page *page) 428 { 429 __clear_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags); 430 } 431 #else 432 static inline void set_page_guard_flag(struct page *page) { } 433 static inline void clear_page_guard_flag(struct page *page) { } 434 #endif 435 436 static inline void set_page_order(struct page *page, int order) 437 { 438 set_page_private(page, order); 439 __SetPageBuddy(page); 440 } 441 442 static inline void rmv_page_order(struct page *page) 443 { 444 __ClearPageBuddy(page); 445 set_page_private(page, 0); 446 } 447 448 /* 449 * Locate the struct page for both the matching buddy in our 450 * pair (buddy1) and the combined O(n+1) page they form (page). 451 * 452 * 1) Any buddy B1 will have an order O twin B2 which satisfies 453 * the following equation: 454 * B2 = B1 ^ (1 << O) 455 * For example, if the starting buddy (buddy2) is #8 its order 456 * 1 buddy is #10: 457 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10 458 * 459 * 2) Any buddy B will have an order O+1 parent P which 460 * satisfies the following equation: 461 * P = B & ~(1 << O) 462 * 463 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER 464 */ 465 static inline unsigned long 466 __find_buddy_index(unsigned long page_idx, unsigned int order) 467 { 468 return page_idx ^ (1 << order); 469 } 470 471 /* 472 * This function checks whether a page is free && is the buddy 473 * we can do coalesce a page and its buddy if 474 * (a) the buddy is not in a hole && 475 * (b) the buddy is in the buddy system && 476 * (c) a page and its buddy have the same order && 477 * (d) a page and its buddy are in the same zone. 478 * 479 * For recording whether a page is in the buddy system, we set ->_mapcount -2. 480 * Setting, clearing, and testing _mapcount -2 is serialized by zone->lock. 481 * 482 * For recording page's order, we use page_private(page). 483 */ 484 static inline int page_is_buddy(struct page *page, struct page *buddy, 485 int order) 486 { 487 if (!pfn_valid_within(page_to_pfn(buddy))) 488 return 0; 489 490 if (page_zone_id(page) != page_zone_id(buddy)) 491 return 0; 492 493 if (page_is_guard(buddy) && page_order(buddy) == order) { 494 VM_BUG_ON(page_count(buddy) != 0); 495 return 1; 496 } 497 498 if (PageBuddy(buddy) && page_order(buddy) == order) { 499 VM_BUG_ON(page_count(buddy) != 0); 500 return 1; 501 } 502 return 0; 503 } 504 505 /* 506 * Freeing function for a buddy system allocator. 507 * 508 * The concept of a buddy system is to maintain direct-mapped table 509 * (containing bit values) for memory blocks of various "orders". 510 * The bottom level table contains the map for the smallest allocatable 511 * units of memory (here, pages), and each level above it describes 512 * pairs of units from the levels below, hence, "buddies". 513 * At a high level, all that happens here is marking the table entry 514 * at the bottom level available, and propagating the changes upward 515 * as necessary, plus some accounting needed to play nicely with other 516 * parts of the VM system. 517 * At each level, we keep a list of pages, which are heads of continuous 518 * free pages of length of (1 << order) and marked with _mapcount -2. Page's 519 * order is recorded in page_private(page) field. 520 * So when we are allocating or freeing one, we can derive the state of the 521 * other. That is, if we allocate a small block, and both were 522 * free, the remainder of the region must be split into blocks. 523 * If a block is freed, and its buddy is also free, then this 524 * triggers coalescing into a block of larger size. 525 * 526 * -- wli 527 */ 528 529 static inline void __free_one_page(struct page *page, 530 struct zone *zone, unsigned int order, 531 int migratetype) 532 { 533 unsigned long page_idx; 534 unsigned long combined_idx; 535 unsigned long uninitialized_var(buddy_idx); 536 struct page *buddy; 537 538 if (unlikely(PageCompound(page))) 539 if (unlikely(destroy_compound_page(page, order))) 540 return; 541 542 VM_BUG_ON(migratetype == -1); 543 544 page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1); 545 546 VM_BUG_ON(page_idx & ((1 << order) - 1)); 547 VM_BUG_ON(bad_range(zone, page)); 548 549 while (order < MAX_ORDER-1) { 550 buddy_idx = __find_buddy_index(page_idx, order); 551 buddy = page + (buddy_idx - page_idx); 552 if (!page_is_buddy(page, buddy, order)) 553 break; 554 /* 555 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page, 556 * merge with it and move up one order. 557 */ 558 if (page_is_guard(buddy)) { 559 clear_page_guard_flag(buddy); 560 set_page_private(page, 0); 561 __mod_zone_freepage_state(zone, 1 << order, 562 migratetype); 563 } else { 564 list_del(&buddy->lru); 565 zone->free_area[order].nr_free--; 566 rmv_page_order(buddy); 567 } 568 combined_idx = buddy_idx & page_idx; 569 page = page + (combined_idx - page_idx); 570 page_idx = combined_idx; 571 order++; 572 } 573 set_page_order(page, order); 574 575 /* 576 * If this is not the largest possible page, check if the buddy 577 * of the next-highest order is free. If it is, it's possible 578 * that pages are being freed that will coalesce soon. In case, 579 * that is happening, add the free page to the tail of the list 580 * so it's less likely to be used soon and more likely to be merged 581 * as a higher order page 582 */ 583 if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) { 584 struct page *higher_page, *higher_buddy; 585 combined_idx = buddy_idx & page_idx; 586 higher_page = page + (combined_idx - page_idx); 587 buddy_idx = __find_buddy_index(combined_idx, order + 1); 588 higher_buddy = higher_page + (buddy_idx - combined_idx); 589 if (page_is_buddy(higher_page, higher_buddy, order + 1)) { 590 list_add_tail(&page->lru, 591 &zone->free_area[order].free_list[migratetype]); 592 goto out; 593 } 594 } 595 596 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]); 597 out: 598 zone->free_area[order].nr_free++; 599 } 600 601 static inline int free_pages_check(struct page *page) 602 { 603 if (unlikely(page_mapcount(page) | 604 (page->mapping != NULL) | 605 (atomic_read(&page->_count) != 0) | 606 (page->flags & PAGE_FLAGS_CHECK_AT_FREE) | 607 (mem_cgroup_bad_page_check(page)))) { 608 bad_page(page); 609 return 1; 610 } 611 if (page->flags & PAGE_FLAGS_CHECK_AT_PREP) 612 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP; 613 return 0; 614 } 615 616 /* 617 * Frees a number of pages from the PCP lists 618 * Assumes all pages on list are in same zone, and of same order. 619 * count is the number of pages to free. 620 * 621 * If the zone was previously in an "all pages pinned" state then look to 622 * see if this freeing clears that state. 623 * 624 * And clear the zone's pages_scanned counter, to hold off the "all pages are 625 * pinned" detection logic. 626 */ 627 static void free_pcppages_bulk(struct zone *zone, int count, 628 struct per_cpu_pages *pcp) 629 { 630 int migratetype = 0; 631 int batch_free = 0; 632 int to_free = count; 633 634 spin_lock(&zone->lock); 635 zone->all_unreclaimable = 0; 636 zone->pages_scanned = 0; 637 638 while (to_free) { 639 struct page *page; 640 struct list_head *list; 641 642 /* 643 * Remove pages from lists in a round-robin fashion. A 644 * batch_free count is maintained that is incremented when an 645 * empty list is encountered. This is so more pages are freed 646 * off fuller lists instead of spinning excessively around empty 647 * lists 648 */ 649 do { 650 batch_free++; 651 if (++migratetype == MIGRATE_PCPTYPES) 652 migratetype = 0; 653 list = &pcp->lists[migratetype]; 654 } while (list_empty(list)); 655 656 /* This is the only non-empty list. Free them all. */ 657 if (batch_free == MIGRATE_PCPTYPES) 658 batch_free = to_free; 659 660 do { 661 int mt; /* migratetype of the to-be-freed page */ 662 663 page = list_entry(list->prev, struct page, lru); 664 /* must delete as __free_one_page list manipulates */ 665 list_del(&page->lru); 666 mt = get_freepage_migratetype(page); 667 /* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */ 668 __free_one_page(page, zone, 0, mt); 669 trace_mm_page_pcpu_drain(page, 0, mt); 670 if (is_migrate_cma(mt)) 671 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES, 1); 672 } while (--to_free && --batch_free && !list_empty(list)); 673 } 674 __mod_zone_page_state(zone, NR_FREE_PAGES, count); 675 spin_unlock(&zone->lock); 676 } 677 678 static void free_one_page(struct zone *zone, struct page *page, int order, 679 int migratetype) 680 { 681 spin_lock(&zone->lock); 682 zone->all_unreclaimable = 0; 683 zone->pages_scanned = 0; 684 685 __free_one_page(page, zone, order, migratetype); 686 if (unlikely(migratetype != MIGRATE_ISOLATE)) 687 __mod_zone_freepage_state(zone, 1 << order, migratetype); 688 spin_unlock(&zone->lock); 689 } 690 691 static bool free_pages_prepare(struct page *page, unsigned int order) 692 { 693 int i; 694 int bad = 0; 695 696 trace_mm_page_free(page, order); 697 kmemcheck_free_shadow(page, order); 698 699 if (PageAnon(page)) 700 page->mapping = NULL; 701 for (i = 0; i < (1 << order); i++) 702 bad += free_pages_check(page + i); 703 if (bad) 704 return false; 705 706 if (!PageHighMem(page)) { 707 debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order); 708 debug_check_no_obj_freed(page_address(page), 709 PAGE_SIZE << order); 710 } 711 arch_free_page(page, order); 712 kernel_map_pages(page, 1 << order, 0); 713 714 return true; 715 } 716 717 static void __free_pages_ok(struct page *page, unsigned int order) 718 { 719 unsigned long flags; 720 int migratetype; 721 722 if (!free_pages_prepare(page, order)) 723 return; 724 725 local_irq_save(flags); 726 __count_vm_events(PGFREE, 1 << order); 727 migratetype = get_pageblock_migratetype(page); 728 set_freepage_migratetype(page, migratetype); 729 free_one_page(page_zone(page), page, order, migratetype); 730 local_irq_restore(flags); 731 } 732 733 void __meminit __free_pages_bootmem(struct page *page, unsigned int order) 734 { 735 unsigned int nr_pages = 1 << order; 736 unsigned int loop; 737 738 prefetchw(page); 739 for (loop = 0; loop < nr_pages; loop++) { 740 struct page *p = &page[loop]; 741 742 if (loop + 1 < nr_pages) 743 prefetchw(p + 1); 744 __ClearPageReserved(p); 745 set_page_count(p, 0); 746 } 747 748 set_page_refcounted(page); 749 __free_pages(page, order); 750 } 751 752 #ifdef CONFIG_CMA 753 /* Free whole pageblock and set it's migration type to MIGRATE_CMA. */ 754 void __init init_cma_reserved_pageblock(struct page *page) 755 { 756 unsigned i = pageblock_nr_pages; 757 struct page *p = page; 758 759 do { 760 __ClearPageReserved(p); 761 set_page_count(p, 0); 762 } while (++p, --i); 763 764 set_page_refcounted(page); 765 set_pageblock_migratetype(page, MIGRATE_CMA); 766 __free_pages(page, pageblock_order); 767 totalram_pages += pageblock_nr_pages; 768 } 769 #endif 770 771 /* 772 * The order of subdivision here is critical for the IO subsystem. 773 * Please do not alter this order without good reasons and regression 774 * testing. Specifically, as large blocks of memory are subdivided, 775 * the order in which smaller blocks are delivered depends on the order 776 * they're subdivided in this function. This is the primary factor 777 * influencing the order in which pages are delivered to the IO 778 * subsystem according to empirical testing, and this is also justified 779 * by considering the behavior of a buddy system containing a single 780 * large block of memory acted on by a series of small allocations. 781 * This behavior is a critical factor in sglist merging's success. 782 * 783 * -- wli 784 */ 785 static inline void expand(struct zone *zone, struct page *page, 786 int low, int high, struct free_area *area, 787 int migratetype) 788 { 789 unsigned long size = 1 << high; 790 791 while (high > low) { 792 area--; 793 high--; 794 size >>= 1; 795 VM_BUG_ON(bad_range(zone, &page[size])); 796 797 #ifdef CONFIG_DEBUG_PAGEALLOC 798 if (high < debug_guardpage_minorder()) { 799 /* 800 * Mark as guard pages (or page), that will allow to 801 * merge back to allocator when buddy will be freed. 802 * Corresponding page table entries will not be touched, 803 * pages will stay not present in virtual address space 804 */ 805 INIT_LIST_HEAD(&page[size].lru); 806 set_page_guard_flag(&page[size]); 807 set_page_private(&page[size], high); 808 /* Guard pages are not available for any usage */ 809 __mod_zone_freepage_state(zone, -(1 << high), 810 migratetype); 811 continue; 812 } 813 #endif 814 list_add(&page[size].lru, &area->free_list[migratetype]); 815 area->nr_free++; 816 set_page_order(&page[size], high); 817 } 818 } 819 820 /* 821 * This page is about to be returned from the page allocator 822 */ 823 static inline int check_new_page(struct page *page) 824 { 825 if (unlikely(page_mapcount(page) | 826 (page->mapping != NULL) | 827 (atomic_read(&page->_count) != 0) | 828 (page->flags & PAGE_FLAGS_CHECK_AT_PREP) | 829 (mem_cgroup_bad_page_check(page)))) { 830 bad_page(page); 831 return 1; 832 } 833 return 0; 834 } 835 836 static int prep_new_page(struct page *page, int order, gfp_t gfp_flags) 837 { 838 int i; 839 840 for (i = 0; i < (1 << order); i++) { 841 struct page *p = page + i; 842 if (unlikely(check_new_page(p))) 843 return 1; 844 } 845 846 set_page_private(page, 0); 847 set_page_refcounted(page); 848 849 arch_alloc_page(page, order); 850 kernel_map_pages(page, 1 << order, 1); 851 852 if (gfp_flags & __GFP_ZERO) 853 prep_zero_page(page, order, gfp_flags); 854 855 if (order && (gfp_flags & __GFP_COMP)) 856 prep_compound_page(page, order); 857 858 return 0; 859 } 860 861 /* 862 * Go through the free lists for the given migratetype and remove 863 * the smallest available page from the freelists 864 */ 865 static inline 866 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order, 867 int migratetype) 868 { 869 unsigned int current_order; 870 struct free_area * area; 871 struct page *page; 872 873 /* Find a page of the appropriate size in the preferred list */ 874 for (current_order = order; current_order < MAX_ORDER; ++current_order) { 875 area = &(zone->free_area[current_order]); 876 if (list_empty(&area->free_list[migratetype])) 877 continue; 878 879 page = list_entry(area->free_list[migratetype].next, 880 struct page, lru); 881 list_del(&page->lru); 882 rmv_page_order(page); 883 area->nr_free--; 884 expand(zone, page, order, current_order, area, migratetype); 885 return page; 886 } 887 888 return NULL; 889 } 890 891 892 /* 893 * This array describes the order lists are fallen back to when 894 * the free lists for the desirable migrate type are depleted 895 */ 896 static int fallbacks[MIGRATE_TYPES][4] = { 897 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE }, 898 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE }, 899 #ifdef CONFIG_CMA 900 [MIGRATE_MOVABLE] = { MIGRATE_CMA, MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE }, 901 [MIGRATE_CMA] = { MIGRATE_RESERVE }, /* Never used */ 902 #else 903 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE }, 904 #endif 905 [MIGRATE_RESERVE] = { MIGRATE_RESERVE }, /* Never used */ 906 [MIGRATE_ISOLATE] = { MIGRATE_RESERVE }, /* Never used */ 907 }; 908 909 /* 910 * Move the free pages in a range to the free lists of the requested type. 911 * Note that start_page and end_pages are not aligned on a pageblock 912 * boundary. If alignment is required, use move_freepages_block() 913 */ 914 int move_freepages(struct zone *zone, 915 struct page *start_page, struct page *end_page, 916 int migratetype) 917 { 918 struct page *page; 919 unsigned long order; 920 int pages_moved = 0; 921 922 #ifndef CONFIG_HOLES_IN_ZONE 923 /* 924 * page_zone is not safe to call in this context when 925 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant 926 * anyway as we check zone boundaries in move_freepages_block(). 927 * Remove at a later date when no bug reports exist related to 928 * grouping pages by mobility 929 */ 930 BUG_ON(page_zone(start_page) != page_zone(end_page)); 931 #endif 932 933 for (page = start_page; page <= end_page;) { 934 /* Make sure we are not inadvertently changing nodes */ 935 VM_BUG_ON(page_to_nid(page) != zone_to_nid(zone)); 936 937 if (!pfn_valid_within(page_to_pfn(page))) { 938 page++; 939 continue; 940 } 941 942 if (!PageBuddy(page)) { 943 page++; 944 continue; 945 } 946 947 order = page_order(page); 948 list_move(&page->lru, 949 &zone->free_area[order].free_list[migratetype]); 950 set_freepage_migratetype(page, migratetype); 951 page += 1 << order; 952 pages_moved += 1 << order; 953 } 954 955 return pages_moved; 956 } 957 958 int move_freepages_block(struct zone *zone, struct page *page, 959 int migratetype) 960 { 961 unsigned long start_pfn, end_pfn; 962 struct page *start_page, *end_page; 963 964 start_pfn = page_to_pfn(page); 965 start_pfn = start_pfn & ~(pageblock_nr_pages-1); 966 start_page = pfn_to_page(start_pfn); 967 end_page = start_page + pageblock_nr_pages - 1; 968 end_pfn = start_pfn + pageblock_nr_pages - 1; 969 970 /* Do not cross zone boundaries */ 971 if (start_pfn < zone->zone_start_pfn) 972 start_page = page; 973 if (end_pfn >= zone->zone_start_pfn + zone->spanned_pages) 974 return 0; 975 976 return move_freepages(zone, start_page, end_page, migratetype); 977 } 978 979 static void change_pageblock_range(struct page *pageblock_page, 980 int start_order, int migratetype) 981 { 982 int nr_pageblocks = 1 << (start_order - pageblock_order); 983 984 while (nr_pageblocks--) { 985 set_pageblock_migratetype(pageblock_page, migratetype); 986 pageblock_page += pageblock_nr_pages; 987 } 988 } 989 990 /* Remove an element from the buddy allocator from the fallback list */ 991 static inline struct page * 992 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype) 993 { 994 struct free_area * area; 995 int current_order; 996 struct page *page; 997 int migratetype, i; 998 999 /* Find the largest possible block of pages in the other list */ 1000 for (current_order = MAX_ORDER-1; current_order >= order; 1001 --current_order) { 1002 for (i = 0;; i++) { 1003 migratetype = fallbacks[start_migratetype][i]; 1004 1005 /* MIGRATE_RESERVE handled later if necessary */ 1006 if (migratetype == MIGRATE_RESERVE) 1007 break; 1008 1009 area = &(zone->free_area[current_order]); 1010 if (list_empty(&area->free_list[migratetype])) 1011 continue; 1012 1013 page = list_entry(area->free_list[migratetype].next, 1014 struct page, lru); 1015 area->nr_free--; 1016 1017 /* 1018 * If breaking a large block of pages, move all free 1019 * pages to the preferred allocation list. If falling 1020 * back for a reclaimable kernel allocation, be more 1021 * aggressive about taking ownership of free pages 1022 * 1023 * On the other hand, never change migration 1024 * type of MIGRATE_CMA pageblocks nor move CMA 1025 * pages on different free lists. We don't 1026 * want unmovable pages to be allocated from 1027 * MIGRATE_CMA areas. 1028 */ 1029 if (!is_migrate_cma(migratetype) && 1030 (unlikely(current_order >= pageblock_order / 2) || 1031 start_migratetype == MIGRATE_RECLAIMABLE || 1032 page_group_by_mobility_disabled)) { 1033 int pages; 1034 pages = move_freepages_block(zone, page, 1035 start_migratetype); 1036 1037 /* Claim the whole block if over half of it is free */ 1038 if (pages >= (1 << (pageblock_order-1)) || 1039 page_group_by_mobility_disabled) 1040 set_pageblock_migratetype(page, 1041 start_migratetype); 1042 1043 migratetype = start_migratetype; 1044 } 1045 1046 /* Remove the page from the freelists */ 1047 list_del(&page->lru); 1048 rmv_page_order(page); 1049 1050 /* Take ownership for orders >= pageblock_order */ 1051 if (current_order >= pageblock_order && 1052 !is_migrate_cma(migratetype)) 1053 change_pageblock_range(page, current_order, 1054 start_migratetype); 1055 1056 expand(zone, page, order, current_order, area, 1057 is_migrate_cma(migratetype) 1058 ? migratetype : start_migratetype); 1059 1060 trace_mm_page_alloc_extfrag(page, order, current_order, 1061 start_migratetype, migratetype); 1062 1063 return page; 1064 } 1065 } 1066 1067 return NULL; 1068 } 1069 1070 /* 1071 * Do the hard work of removing an element from the buddy allocator. 1072 * Call me with the zone->lock already held. 1073 */ 1074 static struct page *__rmqueue(struct zone *zone, unsigned int order, 1075 int migratetype) 1076 { 1077 struct page *page; 1078 1079 retry_reserve: 1080 page = __rmqueue_smallest(zone, order, migratetype); 1081 1082 if (unlikely(!page) && migratetype != MIGRATE_RESERVE) { 1083 page = __rmqueue_fallback(zone, order, migratetype); 1084 1085 /* 1086 * Use MIGRATE_RESERVE rather than fail an allocation. goto 1087 * is used because __rmqueue_smallest is an inline function 1088 * and we want just one call site 1089 */ 1090 if (!page) { 1091 migratetype = MIGRATE_RESERVE; 1092 goto retry_reserve; 1093 } 1094 } 1095 1096 trace_mm_page_alloc_zone_locked(page, order, migratetype); 1097 return page; 1098 } 1099 1100 /* 1101 * Obtain a specified number of elements from the buddy allocator, all under 1102 * a single hold of the lock, for efficiency. Add them to the supplied list. 1103 * Returns the number of new pages which were placed at *list. 1104 */ 1105 static int rmqueue_bulk(struct zone *zone, unsigned int order, 1106 unsigned long count, struct list_head *list, 1107 int migratetype, int cold) 1108 { 1109 int mt = migratetype, i; 1110 1111 spin_lock(&zone->lock); 1112 for (i = 0; i < count; ++i) { 1113 struct page *page = __rmqueue(zone, order, migratetype); 1114 if (unlikely(page == NULL)) 1115 break; 1116 1117 /* 1118 * Split buddy pages returned by expand() are received here 1119 * in physical page order. The page is added to the callers and 1120 * list and the list head then moves forward. From the callers 1121 * perspective, the linked list is ordered by page number in 1122 * some conditions. This is useful for IO devices that can 1123 * merge IO requests if the physical pages are ordered 1124 * properly. 1125 */ 1126 if (likely(cold == 0)) 1127 list_add(&page->lru, list); 1128 else 1129 list_add_tail(&page->lru, list); 1130 if (IS_ENABLED(CONFIG_CMA)) { 1131 mt = get_pageblock_migratetype(page); 1132 if (!is_migrate_cma(mt) && mt != MIGRATE_ISOLATE) 1133 mt = migratetype; 1134 } 1135 set_freepage_migratetype(page, mt); 1136 list = &page->lru; 1137 if (is_migrate_cma(mt)) 1138 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES, 1139 -(1 << order)); 1140 } 1141 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order)); 1142 spin_unlock(&zone->lock); 1143 return i; 1144 } 1145 1146 #ifdef CONFIG_NUMA 1147 /* 1148 * Called from the vmstat counter updater to drain pagesets of this 1149 * currently executing processor on remote nodes after they have 1150 * expired. 1151 * 1152 * Note that this function must be called with the thread pinned to 1153 * a single processor. 1154 */ 1155 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp) 1156 { 1157 unsigned long flags; 1158 int to_drain; 1159 1160 local_irq_save(flags); 1161 if (pcp->count >= pcp->batch) 1162 to_drain = pcp->batch; 1163 else 1164 to_drain = pcp->count; 1165 if (to_drain > 0) { 1166 free_pcppages_bulk(zone, to_drain, pcp); 1167 pcp->count -= to_drain; 1168 } 1169 local_irq_restore(flags); 1170 } 1171 #endif 1172 1173 /* 1174 * Drain pages of the indicated processor. 1175 * 1176 * The processor must either be the current processor and the 1177 * thread pinned to the current processor or a processor that 1178 * is not online. 1179 */ 1180 static void drain_pages(unsigned int cpu) 1181 { 1182 unsigned long flags; 1183 struct zone *zone; 1184 1185 for_each_populated_zone(zone) { 1186 struct per_cpu_pageset *pset; 1187 struct per_cpu_pages *pcp; 1188 1189 local_irq_save(flags); 1190 pset = per_cpu_ptr(zone->pageset, cpu); 1191 1192 pcp = &pset->pcp; 1193 if (pcp->count) { 1194 free_pcppages_bulk(zone, pcp->count, pcp); 1195 pcp->count = 0; 1196 } 1197 local_irq_restore(flags); 1198 } 1199 } 1200 1201 /* 1202 * Spill all of this CPU's per-cpu pages back into the buddy allocator. 1203 */ 1204 void drain_local_pages(void *arg) 1205 { 1206 drain_pages(smp_processor_id()); 1207 } 1208 1209 /* 1210 * Spill all the per-cpu pages from all CPUs back into the buddy allocator. 1211 * 1212 * Note that this code is protected against sending an IPI to an offline 1213 * CPU but does not guarantee sending an IPI to newly hotplugged CPUs: 1214 * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but 1215 * nothing keeps CPUs from showing up after we populated the cpumask and 1216 * before the call to on_each_cpu_mask(). 1217 */ 1218 void drain_all_pages(void) 1219 { 1220 int cpu; 1221 struct per_cpu_pageset *pcp; 1222 struct zone *zone; 1223 1224 /* 1225 * Allocate in the BSS so we wont require allocation in 1226 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y 1227 */ 1228 static cpumask_t cpus_with_pcps; 1229 1230 /* 1231 * We don't care about racing with CPU hotplug event 1232 * as offline notification will cause the notified 1233 * cpu to drain that CPU pcps and on_each_cpu_mask 1234 * disables preemption as part of its processing 1235 */ 1236 for_each_online_cpu(cpu) { 1237 bool has_pcps = false; 1238 for_each_populated_zone(zone) { 1239 pcp = per_cpu_ptr(zone->pageset, cpu); 1240 if (pcp->pcp.count) { 1241 has_pcps = true; 1242 break; 1243 } 1244 } 1245 if (has_pcps) 1246 cpumask_set_cpu(cpu, &cpus_with_pcps); 1247 else 1248 cpumask_clear_cpu(cpu, &cpus_with_pcps); 1249 } 1250 on_each_cpu_mask(&cpus_with_pcps, drain_local_pages, NULL, 1); 1251 } 1252 1253 #ifdef CONFIG_HIBERNATION 1254 1255 void mark_free_pages(struct zone *zone) 1256 { 1257 unsigned long pfn, max_zone_pfn; 1258 unsigned long flags; 1259 int order, t; 1260 struct list_head *curr; 1261 1262 if (!zone->spanned_pages) 1263 return; 1264 1265 spin_lock_irqsave(&zone->lock, flags); 1266 1267 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages; 1268 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) 1269 if (pfn_valid(pfn)) { 1270 struct page *page = pfn_to_page(pfn); 1271 1272 if (!swsusp_page_is_forbidden(page)) 1273 swsusp_unset_page_free(page); 1274 } 1275 1276 for_each_migratetype_order(order, t) { 1277 list_for_each(curr, &zone->free_area[order].free_list[t]) { 1278 unsigned long i; 1279 1280 pfn = page_to_pfn(list_entry(curr, struct page, lru)); 1281 for (i = 0; i < (1UL << order); i++) 1282 swsusp_set_page_free(pfn_to_page(pfn + i)); 1283 } 1284 } 1285 spin_unlock_irqrestore(&zone->lock, flags); 1286 } 1287 #endif /* CONFIG_PM */ 1288 1289 /* 1290 * Free a 0-order page 1291 * cold == 1 ? free a cold page : free a hot page 1292 */ 1293 void free_hot_cold_page(struct page *page, int cold) 1294 { 1295 struct zone *zone = page_zone(page); 1296 struct per_cpu_pages *pcp; 1297 unsigned long flags; 1298 int migratetype; 1299 1300 if (!free_pages_prepare(page, 0)) 1301 return; 1302 1303 migratetype = get_pageblock_migratetype(page); 1304 set_freepage_migratetype(page, migratetype); 1305 local_irq_save(flags); 1306 __count_vm_event(PGFREE); 1307 1308 /* 1309 * We only track unmovable, reclaimable and movable on pcp lists. 1310 * Free ISOLATE pages back to the allocator because they are being 1311 * offlined but treat RESERVE as movable pages so we can get those 1312 * areas back if necessary. Otherwise, we may have to free 1313 * excessively into the page allocator 1314 */ 1315 if (migratetype >= MIGRATE_PCPTYPES) { 1316 if (unlikely(migratetype == MIGRATE_ISOLATE)) { 1317 free_one_page(zone, page, 0, migratetype); 1318 goto out; 1319 } 1320 migratetype = MIGRATE_MOVABLE; 1321 } 1322 1323 pcp = &this_cpu_ptr(zone->pageset)->pcp; 1324 if (cold) 1325 list_add_tail(&page->lru, &pcp->lists[migratetype]); 1326 else 1327 list_add(&page->lru, &pcp->lists[migratetype]); 1328 pcp->count++; 1329 if (pcp->count >= pcp->high) { 1330 free_pcppages_bulk(zone, pcp->batch, pcp); 1331 pcp->count -= pcp->batch; 1332 } 1333 1334 out: 1335 local_irq_restore(flags); 1336 } 1337 1338 /* 1339 * Free a list of 0-order pages 1340 */ 1341 void free_hot_cold_page_list(struct list_head *list, int cold) 1342 { 1343 struct page *page, *next; 1344 1345 list_for_each_entry_safe(page, next, list, lru) { 1346 trace_mm_page_free_batched(page, cold); 1347 free_hot_cold_page(page, cold); 1348 } 1349 } 1350 1351 /* 1352 * split_page takes a non-compound higher-order page, and splits it into 1353 * n (1<<order) sub-pages: page[0..n] 1354 * Each sub-page must be freed individually. 1355 * 1356 * Note: this is probably too low level an operation for use in drivers. 1357 * Please consult with lkml before using this in your driver. 1358 */ 1359 void split_page(struct page *page, unsigned int order) 1360 { 1361 int i; 1362 1363 VM_BUG_ON(PageCompound(page)); 1364 VM_BUG_ON(!page_count(page)); 1365 1366 #ifdef CONFIG_KMEMCHECK 1367 /* 1368 * Split shadow pages too, because free(page[0]) would 1369 * otherwise free the whole shadow. 1370 */ 1371 if (kmemcheck_page_is_tracked(page)) 1372 split_page(virt_to_page(page[0].shadow), order); 1373 #endif 1374 1375 for (i = 1; i < (1 << order); i++) 1376 set_page_refcounted(page + i); 1377 } 1378 1379 /* 1380 * Similar to the split_page family of functions except that the page 1381 * required at the given order and being isolated now to prevent races 1382 * with parallel allocators 1383 */ 1384 int capture_free_page(struct page *page, int alloc_order, int migratetype) 1385 { 1386 unsigned int order; 1387 unsigned long watermark; 1388 struct zone *zone; 1389 int mt; 1390 1391 BUG_ON(!PageBuddy(page)); 1392 1393 zone = page_zone(page); 1394 order = page_order(page); 1395 1396 /* Obey watermarks as if the page was being allocated */ 1397 watermark = low_wmark_pages(zone) + (1 << order); 1398 if (!zone_watermark_ok(zone, 0, watermark, 0, 0)) 1399 return 0; 1400 1401 /* Remove page from free list */ 1402 list_del(&page->lru); 1403 zone->free_area[order].nr_free--; 1404 rmv_page_order(page); 1405 1406 mt = get_pageblock_migratetype(page); 1407 if (unlikely(mt != MIGRATE_ISOLATE)) 1408 __mod_zone_freepage_state(zone, -(1UL << alloc_order), mt); 1409 1410 if (alloc_order != order) 1411 expand(zone, page, alloc_order, order, 1412 &zone->free_area[order], migratetype); 1413 1414 /* Set the pageblock if the captured page is at least a pageblock */ 1415 if (order >= pageblock_order - 1) { 1416 struct page *endpage = page + (1 << order) - 1; 1417 for (; page < endpage; page += pageblock_nr_pages) { 1418 int mt = get_pageblock_migratetype(page); 1419 if (mt != MIGRATE_ISOLATE && !is_migrate_cma(mt)) 1420 set_pageblock_migratetype(page, 1421 MIGRATE_MOVABLE); 1422 } 1423 } 1424 1425 return 1UL << alloc_order; 1426 } 1427 1428 /* 1429 * Similar to split_page except the page is already free. As this is only 1430 * being used for migration, the migratetype of the block also changes. 1431 * As this is called with interrupts disabled, the caller is responsible 1432 * for calling arch_alloc_page() and kernel_map_page() after interrupts 1433 * are enabled. 1434 * 1435 * Note: this is probably too low level an operation for use in drivers. 1436 * Please consult with lkml before using this in your driver. 1437 */ 1438 int split_free_page(struct page *page) 1439 { 1440 unsigned int order; 1441 int nr_pages; 1442 1443 BUG_ON(!PageBuddy(page)); 1444 order = page_order(page); 1445 1446 nr_pages = capture_free_page(page, order, 0); 1447 if (!nr_pages) 1448 return 0; 1449 1450 /* Split into individual pages */ 1451 set_page_refcounted(page); 1452 split_page(page, order); 1453 return nr_pages; 1454 } 1455 1456 /* 1457 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But 1458 * we cheat by calling it from here, in the order > 0 path. Saves a branch 1459 * or two. 1460 */ 1461 static inline 1462 struct page *buffered_rmqueue(struct zone *preferred_zone, 1463 struct zone *zone, int order, gfp_t gfp_flags, 1464 int migratetype) 1465 { 1466 unsigned long flags; 1467 struct page *page; 1468 int cold = !!(gfp_flags & __GFP_COLD); 1469 1470 again: 1471 if (likely(order == 0)) { 1472 struct per_cpu_pages *pcp; 1473 struct list_head *list; 1474 1475 local_irq_save(flags); 1476 pcp = &this_cpu_ptr(zone->pageset)->pcp; 1477 list = &pcp->lists[migratetype]; 1478 if (list_empty(list)) { 1479 pcp->count += rmqueue_bulk(zone, 0, 1480 pcp->batch, list, 1481 migratetype, cold); 1482 if (unlikely(list_empty(list))) 1483 goto failed; 1484 } 1485 1486 if (cold) 1487 page = list_entry(list->prev, struct page, lru); 1488 else 1489 page = list_entry(list->next, struct page, lru); 1490 1491 list_del(&page->lru); 1492 pcp->count--; 1493 } else { 1494 if (unlikely(gfp_flags & __GFP_NOFAIL)) { 1495 /* 1496 * __GFP_NOFAIL is not to be used in new code. 1497 * 1498 * All __GFP_NOFAIL callers should be fixed so that they 1499 * properly detect and handle allocation failures. 1500 * 1501 * We most definitely don't want callers attempting to 1502 * allocate greater than order-1 page units with 1503 * __GFP_NOFAIL. 1504 */ 1505 WARN_ON_ONCE(order > 1); 1506 } 1507 spin_lock_irqsave(&zone->lock, flags); 1508 page = __rmqueue(zone, order, migratetype); 1509 spin_unlock(&zone->lock); 1510 if (!page) 1511 goto failed; 1512 __mod_zone_freepage_state(zone, -(1 << order), 1513 get_pageblock_migratetype(page)); 1514 } 1515 1516 __count_zone_vm_events(PGALLOC, zone, 1 << order); 1517 zone_statistics(preferred_zone, zone, gfp_flags); 1518 local_irq_restore(flags); 1519 1520 VM_BUG_ON(bad_range(zone, page)); 1521 if (prep_new_page(page, order, gfp_flags)) 1522 goto again; 1523 return page; 1524 1525 failed: 1526 local_irq_restore(flags); 1527 return NULL; 1528 } 1529 1530 #ifdef CONFIG_FAIL_PAGE_ALLOC 1531 1532 static struct { 1533 struct fault_attr attr; 1534 1535 u32 ignore_gfp_highmem; 1536 u32 ignore_gfp_wait; 1537 u32 min_order; 1538 } fail_page_alloc = { 1539 .attr = FAULT_ATTR_INITIALIZER, 1540 .ignore_gfp_wait = 1, 1541 .ignore_gfp_highmem = 1, 1542 .min_order = 1, 1543 }; 1544 1545 static int __init setup_fail_page_alloc(char *str) 1546 { 1547 return setup_fault_attr(&fail_page_alloc.attr, str); 1548 } 1549 __setup("fail_page_alloc=", setup_fail_page_alloc); 1550 1551 static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) 1552 { 1553 if (order < fail_page_alloc.min_order) 1554 return false; 1555 if (gfp_mask & __GFP_NOFAIL) 1556 return false; 1557 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM)) 1558 return false; 1559 if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT)) 1560 return false; 1561 1562 return should_fail(&fail_page_alloc.attr, 1 << order); 1563 } 1564 1565 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS 1566 1567 static int __init fail_page_alloc_debugfs(void) 1568 { 1569 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR; 1570 struct dentry *dir; 1571 1572 dir = fault_create_debugfs_attr("fail_page_alloc", NULL, 1573 &fail_page_alloc.attr); 1574 if (IS_ERR(dir)) 1575 return PTR_ERR(dir); 1576 1577 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir, 1578 &fail_page_alloc.ignore_gfp_wait)) 1579 goto fail; 1580 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir, 1581 &fail_page_alloc.ignore_gfp_highmem)) 1582 goto fail; 1583 if (!debugfs_create_u32("min-order", mode, dir, 1584 &fail_page_alloc.min_order)) 1585 goto fail; 1586 1587 return 0; 1588 fail: 1589 debugfs_remove_recursive(dir); 1590 1591 return -ENOMEM; 1592 } 1593 1594 late_initcall(fail_page_alloc_debugfs); 1595 1596 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */ 1597 1598 #else /* CONFIG_FAIL_PAGE_ALLOC */ 1599 1600 static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) 1601 { 1602 return false; 1603 } 1604 1605 #endif /* CONFIG_FAIL_PAGE_ALLOC */ 1606 1607 /* 1608 * Return true if free pages are above 'mark'. This takes into account the order 1609 * of the allocation. 1610 */ 1611 static bool __zone_watermark_ok(struct zone *z, int order, unsigned long mark, 1612 int classzone_idx, int alloc_flags, long free_pages) 1613 { 1614 /* free_pages my go negative - that's OK */ 1615 long min = mark; 1616 long lowmem_reserve = z->lowmem_reserve[classzone_idx]; 1617 int o; 1618 1619 free_pages -= (1 << order) - 1; 1620 if (alloc_flags & ALLOC_HIGH) 1621 min -= min / 2; 1622 if (alloc_flags & ALLOC_HARDER) 1623 min -= min / 4; 1624 #ifdef CONFIG_CMA 1625 /* If allocation can't use CMA areas don't use free CMA pages */ 1626 if (!(alloc_flags & ALLOC_CMA)) 1627 free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES); 1628 #endif 1629 if (free_pages <= min + lowmem_reserve) 1630 return false; 1631 for (o = 0; o < order; o++) { 1632 /* At the next order, this order's pages become unavailable */ 1633 free_pages -= z->free_area[o].nr_free << o; 1634 1635 /* Require fewer higher order pages to be free */ 1636 min >>= 1; 1637 1638 if (free_pages <= min) 1639 return false; 1640 } 1641 return true; 1642 } 1643 1644 #ifdef CONFIG_MEMORY_ISOLATION 1645 static inline unsigned long nr_zone_isolate_freepages(struct zone *zone) 1646 { 1647 if (unlikely(zone->nr_pageblock_isolate)) 1648 return zone->nr_pageblock_isolate * pageblock_nr_pages; 1649 return 0; 1650 } 1651 #else 1652 static inline unsigned long nr_zone_isolate_freepages(struct zone *zone) 1653 { 1654 return 0; 1655 } 1656 #endif 1657 1658 bool zone_watermark_ok(struct zone *z, int order, unsigned long mark, 1659 int classzone_idx, int alloc_flags) 1660 { 1661 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags, 1662 zone_page_state(z, NR_FREE_PAGES)); 1663 } 1664 1665 bool zone_watermark_ok_safe(struct zone *z, int order, unsigned long mark, 1666 int classzone_idx, int alloc_flags) 1667 { 1668 long free_pages = zone_page_state(z, NR_FREE_PAGES); 1669 1670 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark) 1671 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES); 1672 1673 /* 1674 * If the zone has MIGRATE_ISOLATE type free pages, we should consider 1675 * it. nr_zone_isolate_freepages is never accurate so kswapd might not 1676 * sleep although it could do so. But this is more desirable for memory 1677 * hotplug than sleeping which can cause a livelock in the direct 1678 * reclaim path. 1679 */ 1680 free_pages -= nr_zone_isolate_freepages(z); 1681 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags, 1682 free_pages); 1683 } 1684 1685 #ifdef CONFIG_NUMA 1686 /* 1687 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to 1688 * skip over zones that are not allowed by the cpuset, or that have 1689 * been recently (in last second) found to be nearly full. See further 1690 * comments in mmzone.h. Reduces cache footprint of zonelist scans 1691 * that have to skip over a lot of full or unallowed zones. 1692 * 1693 * If the zonelist cache is present in the passed in zonelist, then 1694 * returns a pointer to the allowed node mask (either the current 1695 * tasks mems_allowed, or node_states[N_HIGH_MEMORY].) 1696 * 1697 * If the zonelist cache is not available for this zonelist, does 1698 * nothing and returns NULL. 1699 * 1700 * If the fullzones BITMAP in the zonelist cache is stale (more than 1701 * a second since last zap'd) then we zap it out (clear its bits.) 1702 * 1703 * We hold off even calling zlc_setup, until after we've checked the 1704 * first zone in the zonelist, on the theory that most allocations will 1705 * be satisfied from that first zone, so best to examine that zone as 1706 * quickly as we can. 1707 */ 1708 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags) 1709 { 1710 struct zonelist_cache *zlc; /* cached zonelist speedup info */ 1711 nodemask_t *allowednodes; /* zonelist_cache approximation */ 1712 1713 zlc = zonelist->zlcache_ptr; 1714 if (!zlc) 1715 return NULL; 1716 1717 if (time_after(jiffies, zlc->last_full_zap + HZ)) { 1718 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST); 1719 zlc->last_full_zap = jiffies; 1720 } 1721 1722 allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ? 1723 &cpuset_current_mems_allowed : 1724 &node_states[N_HIGH_MEMORY]; 1725 return allowednodes; 1726 } 1727 1728 /* 1729 * Given 'z' scanning a zonelist, run a couple of quick checks to see 1730 * if it is worth looking at further for free memory: 1731 * 1) Check that the zone isn't thought to be full (doesn't have its 1732 * bit set in the zonelist_cache fullzones BITMAP). 1733 * 2) Check that the zones node (obtained from the zonelist_cache 1734 * z_to_n[] mapping) is allowed in the passed in allowednodes mask. 1735 * Return true (non-zero) if zone is worth looking at further, or 1736 * else return false (zero) if it is not. 1737 * 1738 * This check -ignores- the distinction between various watermarks, 1739 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is 1740 * found to be full for any variation of these watermarks, it will 1741 * be considered full for up to one second by all requests, unless 1742 * we are so low on memory on all allowed nodes that we are forced 1743 * into the second scan of the zonelist. 1744 * 1745 * In the second scan we ignore this zonelist cache and exactly 1746 * apply the watermarks to all zones, even it is slower to do so. 1747 * We are low on memory in the second scan, and should leave no stone 1748 * unturned looking for a free page. 1749 */ 1750 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z, 1751 nodemask_t *allowednodes) 1752 { 1753 struct zonelist_cache *zlc; /* cached zonelist speedup info */ 1754 int i; /* index of *z in zonelist zones */ 1755 int n; /* node that zone *z is on */ 1756 1757 zlc = zonelist->zlcache_ptr; 1758 if (!zlc) 1759 return 1; 1760 1761 i = z - zonelist->_zonerefs; 1762 n = zlc->z_to_n[i]; 1763 1764 /* This zone is worth trying if it is allowed but not full */ 1765 return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones); 1766 } 1767 1768 /* 1769 * Given 'z' scanning a zonelist, set the corresponding bit in 1770 * zlc->fullzones, so that subsequent attempts to allocate a page 1771 * from that zone don't waste time re-examining it. 1772 */ 1773 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z) 1774 { 1775 struct zonelist_cache *zlc; /* cached zonelist speedup info */ 1776 int i; /* index of *z in zonelist zones */ 1777 1778 zlc = zonelist->zlcache_ptr; 1779 if (!zlc) 1780 return; 1781 1782 i = z - zonelist->_zonerefs; 1783 1784 set_bit(i, zlc->fullzones); 1785 } 1786 1787 /* 1788 * clear all zones full, called after direct reclaim makes progress so that 1789 * a zone that was recently full is not skipped over for up to a second 1790 */ 1791 static void zlc_clear_zones_full(struct zonelist *zonelist) 1792 { 1793 struct zonelist_cache *zlc; /* cached zonelist speedup info */ 1794 1795 zlc = zonelist->zlcache_ptr; 1796 if (!zlc) 1797 return; 1798 1799 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST); 1800 } 1801 1802 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone) 1803 { 1804 return node_isset(local_zone->node, zone->zone_pgdat->reclaim_nodes); 1805 } 1806 1807 static void __paginginit init_zone_allows_reclaim(int nid) 1808 { 1809 int i; 1810 1811 for_each_online_node(i) 1812 if (node_distance(nid, i) <= RECLAIM_DISTANCE) 1813 node_set(i, NODE_DATA(nid)->reclaim_nodes); 1814 else 1815 zone_reclaim_mode = 1; 1816 } 1817 1818 #else /* CONFIG_NUMA */ 1819 1820 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags) 1821 { 1822 return NULL; 1823 } 1824 1825 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z, 1826 nodemask_t *allowednodes) 1827 { 1828 return 1; 1829 } 1830 1831 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z) 1832 { 1833 } 1834 1835 static void zlc_clear_zones_full(struct zonelist *zonelist) 1836 { 1837 } 1838 1839 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone) 1840 { 1841 return true; 1842 } 1843 1844 static inline void init_zone_allows_reclaim(int nid) 1845 { 1846 } 1847 #endif /* CONFIG_NUMA */ 1848 1849 /* 1850 * get_page_from_freelist goes through the zonelist trying to allocate 1851 * a page. 1852 */ 1853 static struct page * 1854 get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order, 1855 struct zonelist *zonelist, int high_zoneidx, int alloc_flags, 1856 struct zone *preferred_zone, int migratetype) 1857 { 1858 struct zoneref *z; 1859 struct page *page = NULL; 1860 int classzone_idx; 1861 struct zone *zone; 1862 nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */ 1863 int zlc_active = 0; /* set if using zonelist_cache */ 1864 int did_zlc_setup = 0; /* just call zlc_setup() one time */ 1865 1866 classzone_idx = zone_idx(preferred_zone); 1867 zonelist_scan: 1868 /* 1869 * Scan zonelist, looking for a zone with enough free. 1870 * See also cpuset_zone_allowed() comment in kernel/cpuset.c. 1871 */ 1872 for_each_zone_zonelist_nodemask(zone, z, zonelist, 1873 high_zoneidx, nodemask) { 1874 if (NUMA_BUILD && zlc_active && 1875 !zlc_zone_worth_trying(zonelist, z, allowednodes)) 1876 continue; 1877 if ((alloc_flags & ALLOC_CPUSET) && 1878 !cpuset_zone_allowed_softwall(zone, gfp_mask)) 1879 continue; 1880 /* 1881 * When allocating a page cache page for writing, we 1882 * want to get it from a zone that is within its dirty 1883 * limit, such that no single zone holds more than its 1884 * proportional share of globally allowed dirty pages. 1885 * The dirty limits take into account the zone's 1886 * lowmem reserves and high watermark so that kswapd 1887 * should be able to balance it without having to 1888 * write pages from its LRU list. 1889 * 1890 * This may look like it could increase pressure on 1891 * lower zones by failing allocations in higher zones 1892 * before they are full. But the pages that do spill 1893 * over are limited as the lower zones are protected 1894 * by this very same mechanism. It should not become 1895 * a practical burden to them. 1896 * 1897 * XXX: For now, allow allocations to potentially 1898 * exceed the per-zone dirty limit in the slowpath 1899 * (ALLOC_WMARK_LOW unset) before going into reclaim, 1900 * which is important when on a NUMA setup the allowed 1901 * zones are together not big enough to reach the 1902 * global limit. The proper fix for these situations 1903 * will require awareness of zones in the 1904 * dirty-throttling and the flusher threads. 1905 */ 1906 if ((alloc_flags & ALLOC_WMARK_LOW) && 1907 (gfp_mask & __GFP_WRITE) && !zone_dirty_ok(zone)) 1908 goto this_zone_full; 1909 1910 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK); 1911 if (!(alloc_flags & ALLOC_NO_WATERMARKS)) { 1912 unsigned long mark; 1913 int ret; 1914 1915 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK]; 1916 if (zone_watermark_ok(zone, order, mark, 1917 classzone_idx, alloc_flags)) 1918 goto try_this_zone; 1919 1920 if (NUMA_BUILD && !did_zlc_setup && nr_online_nodes > 1) { 1921 /* 1922 * we do zlc_setup if there are multiple nodes 1923 * and before considering the first zone allowed 1924 * by the cpuset. 1925 */ 1926 allowednodes = zlc_setup(zonelist, alloc_flags); 1927 zlc_active = 1; 1928 did_zlc_setup = 1; 1929 } 1930 1931 if (zone_reclaim_mode == 0 || 1932 !zone_allows_reclaim(preferred_zone, zone)) 1933 goto this_zone_full; 1934 1935 /* 1936 * As we may have just activated ZLC, check if the first 1937 * eligible zone has failed zone_reclaim recently. 1938 */ 1939 if (NUMA_BUILD && zlc_active && 1940 !zlc_zone_worth_trying(zonelist, z, allowednodes)) 1941 continue; 1942 1943 ret = zone_reclaim(zone, gfp_mask, order); 1944 switch (ret) { 1945 case ZONE_RECLAIM_NOSCAN: 1946 /* did not scan */ 1947 continue; 1948 case ZONE_RECLAIM_FULL: 1949 /* scanned but unreclaimable */ 1950 continue; 1951 default: 1952 /* did we reclaim enough */ 1953 if (!zone_watermark_ok(zone, order, mark, 1954 classzone_idx, alloc_flags)) 1955 goto this_zone_full; 1956 } 1957 } 1958 1959 try_this_zone: 1960 page = buffered_rmqueue(preferred_zone, zone, order, 1961 gfp_mask, migratetype); 1962 if (page) 1963 break; 1964 this_zone_full: 1965 if (NUMA_BUILD) 1966 zlc_mark_zone_full(zonelist, z); 1967 } 1968 1969 if (unlikely(NUMA_BUILD && page == NULL && zlc_active)) { 1970 /* Disable zlc cache for second zonelist scan */ 1971 zlc_active = 0; 1972 goto zonelist_scan; 1973 } 1974 1975 if (page) 1976 /* 1977 * page->pfmemalloc is set when ALLOC_NO_WATERMARKS was 1978 * necessary to allocate the page. The expectation is 1979 * that the caller is taking steps that will free more 1980 * memory. The caller should avoid the page being used 1981 * for !PFMEMALLOC purposes. 1982 */ 1983 page->pfmemalloc = !!(alloc_flags & ALLOC_NO_WATERMARKS); 1984 1985 return page; 1986 } 1987 1988 /* 1989 * Large machines with many possible nodes should not always dump per-node 1990 * meminfo in irq context. 1991 */ 1992 static inline bool should_suppress_show_mem(void) 1993 { 1994 bool ret = false; 1995 1996 #if NODES_SHIFT > 8 1997 ret = in_interrupt(); 1998 #endif 1999 return ret; 2000 } 2001 2002 static DEFINE_RATELIMIT_STATE(nopage_rs, 2003 DEFAULT_RATELIMIT_INTERVAL, 2004 DEFAULT_RATELIMIT_BURST); 2005 2006 void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...) 2007 { 2008 unsigned int filter = SHOW_MEM_FILTER_NODES; 2009 2010 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) || 2011 debug_guardpage_minorder() > 0) 2012 return; 2013 2014 /* 2015 * This documents exceptions given to allocations in certain 2016 * contexts that are allowed to allocate outside current's set 2017 * of allowed nodes. 2018 */ 2019 if (!(gfp_mask & __GFP_NOMEMALLOC)) 2020 if (test_thread_flag(TIF_MEMDIE) || 2021 (current->flags & (PF_MEMALLOC | PF_EXITING))) 2022 filter &= ~SHOW_MEM_FILTER_NODES; 2023 if (in_interrupt() || !(gfp_mask & __GFP_WAIT)) 2024 filter &= ~SHOW_MEM_FILTER_NODES; 2025 2026 if (fmt) { 2027 struct va_format vaf; 2028 va_list args; 2029 2030 va_start(args, fmt); 2031 2032 vaf.fmt = fmt; 2033 vaf.va = &args; 2034 2035 pr_warn("%pV", &vaf); 2036 2037 va_end(args); 2038 } 2039 2040 pr_warn("%s: page allocation failure: order:%d, mode:0x%x\n", 2041 current->comm, order, gfp_mask); 2042 2043 dump_stack(); 2044 if (!should_suppress_show_mem()) 2045 show_mem(filter); 2046 } 2047 2048 static inline int 2049 should_alloc_retry(gfp_t gfp_mask, unsigned int order, 2050 unsigned long did_some_progress, 2051 unsigned long pages_reclaimed) 2052 { 2053 /* Do not loop if specifically requested */ 2054 if (gfp_mask & __GFP_NORETRY) 2055 return 0; 2056 2057 /* Always retry if specifically requested */ 2058 if (gfp_mask & __GFP_NOFAIL) 2059 return 1; 2060 2061 /* 2062 * Suspend converts GFP_KERNEL to __GFP_WAIT which can prevent reclaim 2063 * making forward progress without invoking OOM. Suspend also disables 2064 * storage devices so kswapd will not help. Bail if we are suspending. 2065 */ 2066 if (!did_some_progress && pm_suspended_storage()) 2067 return 0; 2068 2069 /* 2070 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER 2071 * means __GFP_NOFAIL, but that may not be true in other 2072 * implementations. 2073 */ 2074 if (order <= PAGE_ALLOC_COSTLY_ORDER) 2075 return 1; 2076 2077 /* 2078 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is 2079 * specified, then we retry until we no longer reclaim any pages 2080 * (above), or we've reclaimed an order of pages at least as 2081 * large as the allocation's order. In both cases, if the 2082 * allocation still fails, we stop retrying. 2083 */ 2084 if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order)) 2085 return 1; 2086 2087 return 0; 2088 } 2089 2090 static inline struct page * 2091 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order, 2092 struct zonelist *zonelist, enum zone_type high_zoneidx, 2093 nodemask_t *nodemask, struct zone *preferred_zone, 2094 int migratetype) 2095 { 2096 struct page *page; 2097 2098 /* Acquire the OOM killer lock for the zones in zonelist */ 2099 if (!try_set_zonelist_oom(zonelist, gfp_mask)) { 2100 schedule_timeout_uninterruptible(1); 2101 return NULL; 2102 } 2103 2104 /* 2105 * Go through the zonelist yet one more time, keep very high watermark 2106 * here, this is only to catch a parallel oom killing, we must fail if 2107 * we're still under heavy pressure. 2108 */ 2109 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, 2110 order, zonelist, high_zoneidx, 2111 ALLOC_WMARK_HIGH|ALLOC_CPUSET, 2112 preferred_zone, migratetype); 2113 if (page) 2114 goto out; 2115 2116 if (!(gfp_mask & __GFP_NOFAIL)) { 2117 /* The OOM killer will not help higher order allocs */ 2118 if (order > PAGE_ALLOC_COSTLY_ORDER) 2119 goto out; 2120 /* The OOM killer does not needlessly kill tasks for lowmem */ 2121 if (high_zoneidx < ZONE_NORMAL) 2122 goto out; 2123 /* 2124 * GFP_THISNODE contains __GFP_NORETRY and we never hit this. 2125 * Sanity check for bare calls of __GFP_THISNODE, not real OOM. 2126 * The caller should handle page allocation failure by itself if 2127 * it specifies __GFP_THISNODE. 2128 * Note: Hugepage uses it but will hit PAGE_ALLOC_COSTLY_ORDER. 2129 */ 2130 if (gfp_mask & __GFP_THISNODE) 2131 goto out; 2132 } 2133 /* Exhausted what can be done so it's blamo time */ 2134 out_of_memory(zonelist, gfp_mask, order, nodemask, false); 2135 2136 out: 2137 clear_zonelist_oom(zonelist, gfp_mask); 2138 return page; 2139 } 2140 2141 #ifdef CONFIG_COMPACTION 2142 /* Try memory compaction for high-order allocations before reclaim */ 2143 static struct page * 2144 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order, 2145 struct zonelist *zonelist, enum zone_type high_zoneidx, 2146 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone, 2147 int migratetype, bool sync_migration, 2148 bool *contended_compaction, bool *deferred_compaction, 2149 unsigned long *did_some_progress) 2150 { 2151 struct page *page = NULL; 2152 2153 if (!order) 2154 return NULL; 2155 2156 if (compaction_deferred(preferred_zone, order)) { 2157 *deferred_compaction = true; 2158 return NULL; 2159 } 2160 2161 current->flags |= PF_MEMALLOC; 2162 *did_some_progress = try_to_compact_pages(zonelist, order, gfp_mask, 2163 nodemask, sync_migration, 2164 contended_compaction, &page); 2165 current->flags &= ~PF_MEMALLOC; 2166 2167 /* If compaction captured a page, prep and use it */ 2168 if (page) { 2169 prep_new_page(page, order, gfp_mask); 2170 goto got_page; 2171 } 2172 2173 if (*did_some_progress != COMPACT_SKIPPED) { 2174 /* Page migration frees to the PCP lists but we want merging */ 2175 drain_pages(get_cpu()); 2176 put_cpu(); 2177 2178 page = get_page_from_freelist(gfp_mask, nodemask, 2179 order, zonelist, high_zoneidx, 2180 alloc_flags & ~ALLOC_NO_WATERMARKS, 2181 preferred_zone, migratetype); 2182 if (page) { 2183 got_page: 2184 preferred_zone->compact_blockskip_flush = false; 2185 preferred_zone->compact_considered = 0; 2186 preferred_zone->compact_defer_shift = 0; 2187 if (order >= preferred_zone->compact_order_failed) 2188 preferred_zone->compact_order_failed = order + 1; 2189 count_vm_event(COMPACTSUCCESS); 2190 return page; 2191 } 2192 2193 /* 2194 * It's bad if compaction run occurs and fails. 2195 * The most likely reason is that pages exist, 2196 * but not enough to satisfy watermarks. 2197 */ 2198 count_vm_event(COMPACTFAIL); 2199 2200 /* 2201 * As async compaction considers a subset of pageblocks, only 2202 * defer if the failure was a sync compaction failure. 2203 */ 2204 if (sync_migration) 2205 defer_compaction(preferred_zone, order); 2206 2207 cond_resched(); 2208 } 2209 2210 return NULL; 2211 } 2212 #else 2213 static inline struct page * 2214 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order, 2215 struct zonelist *zonelist, enum zone_type high_zoneidx, 2216 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone, 2217 int migratetype, bool sync_migration, 2218 bool *contended_compaction, bool *deferred_compaction, 2219 unsigned long *did_some_progress) 2220 { 2221 return NULL; 2222 } 2223 #endif /* CONFIG_COMPACTION */ 2224 2225 /* Perform direct synchronous page reclaim */ 2226 static int 2227 __perform_reclaim(gfp_t gfp_mask, unsigned int order, struct zonelist *zonelist, 2228 nodemask_t *nodemask) 2229 { 2230 struct reclaim_state reclaim_state; 2231 int progress; 2232 2233 cond_resched(); 2234 2235 /* We now go into synchronous reclaim */ 2236 cpuset_memory_pressure_bump(); 2237 current->flags |= PF_MEMALLOC; 2238 lockdep_set_current_reclaim_state(gfp_mask); 2239 reclaim_state.reclaimed_slab = 0; 2240 current->reclaim_state = &reclaim_state; 2241 2242 progress = try_to_free_pages(zonelist, order, gfp_mask, nodemask); 2243 2244 current->reclaim_state = NULL; 2245 lockdep_clear_current_reclaim_state(); 2246 current->flags &= ~PF_MEMALLOC; 2247 2248 cond_resched(); 2249 2250 return progress; 2251 } 2252 2253 /* The really slow allocator path where we enter direct reclaim */ 2254 static inline struct page * 2255 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order, 2256 struct zonelist *zonelist, enum zone_type high_zoneidx, 2257 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone, 2258 int migratetype, unsigned long *did_some_progress) 2259 { 2260 struct page *page = NULL; 2261 bool drained = false; 2262 2263 *did_some_progress = __perform_reclaim(gfp_mask, order, zonelist, 2264 nodemask); 2265 if (unlikely(!(*did_some_progress))) 2266 return NULL; 2267 2268 /* After successful reclaim, reconsider all zones for allocation */ 2269 if (NUMA_BUILD) 2270 zlc_clear_zones_full(zonelist); 2271 2272 retry: 2273 page = get_page_from_freelist(gfp_mask, nodemask, order, 2274 zonelist, high_zoneidx, 2275 alloc_flags & ~ALLOC_NO_WATERMARKS, 2276 preferred_zone, migratetype); 2277 2278 /* 2279 * If an allocation failed after direct reclaim, it could be because 2280 * pages are pinned on the per-cpu lists. Drain them and try again 2281 */ 2282 if (!page && !drained) { 2283 drain_all_pages(); 2284 drained = true; 2285 goto retry; 2286 } 2287 2288 return page; 2289 } 2290 2291 /* 2292 * This is called in the allocator slow-path if the allocation request is of 2293 * sufficient urgency to ignore watermarks and take other desperate measures 2294 */ 2295 static inline struct page * 2296 __alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order, 2297 struct zonelist *zonelist, enum zone_type high_zoneidx, 2298 nodemask_t *nodemask, struct zone *preferred_zone, 2299 int migratetype) 2300 { 2301 struct page *page; 2302 2303 do { 2304 page = get_page_from_freelist(gfp_mask, nodemask, order, 2305 zonelist, high_zoneidx, ALLOC_NO_WATERMARKS, 2306 preferred_zone, migratetype); 2307 2308 if (!page && gfp_mask & __GFP_NOFAIL) 2309 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50); 2310 } while (!page && (gfp_mask & __GFP_NOFAIL)); 2311 2312 return page; 2313 } 2314 2315 static inline 2316 void wake_all_kswapd(unsigned int order, struct zonelist *zonelist, 2317 enum zone_type high_zoneidx, 2318 enum zone_type classzone_idx) 2319 { 2320 struct zoneref *z; 2321 struct zone *zone; 2322 2323 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) 2324 wakeup_kswapd(zone, order, classzone_idx); 2325 } 2326 2327 static inline int 2328 gfp_to_alloc_flags(gfp_t gfp_mask) 2329 { 2330 int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET; 2331 const gfp_t wait = gfp_mask & __GFP_WAIT; 2332 2333 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */ 2334 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH); 2335 2336 /* 2337 * The caller may dip into page reserves a bit more if the caller 2338 * cannot run direct reclaim, or if the caller has realtime scheduling 2339 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will 2340 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH). 2341 */ 2342 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH); 2343 2344 if (!wait) { 2345 /* 2346 * Not worth trying to allocate harder for 2347 * __GFP_NOMEMALLOC even if it can't schedule. 2348 */ 2349 if (!(gfp_mask & __GFP_NOMEMALLOC)) 2350 alloc_flags |= ALLOC_HARDER; 2351 /* 2352 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc. 2353 * See also cpuset_zone_allowed() comment in kernel/cpuset.c. 2354 */ 2355 alloc_flags &= ~ALLOC_CPUSET; 2356 } else if (unlikely(rt_task(current)) && !in_interrupt()) 2357 alloc_flags |= ALLOC_HARDER; 2358 2359 if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) { 2360 if (gfp_mask & __GFP_MEMALLOC) 2361 alloc_flags |= ALLOC_NO_WATERMARKS; 2362 else if (in_serving_softirq() && (current->flags & PF_MEMALLOC)) 2363 alloc_flags |= ALLOC_NO_WATERMARKS; 2364 else if (!in_interrupt() && 2365 ((current->flags & PF_MEMALLOC) || 2366 unlikely(test_thread_flag(TIF_MEMDIE)))) 2367 alloc_flags |= ALLOC_NO_WATERMARKS; 2368 } 2369 #ifdef CONFIG_CMA 2370 if (allocflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE) 2371 alloc_flags |= ALLOC_CMA; 2372 #endif 2373 return alloc_flags; 2374 } 2375 2376 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask) 2377 { 2378 return !!(gfp_to_alloc_flags(gfp_mask) & ALLOC_NO_WATERMARKS); 2379 } 2380 2381 /* Returns true if the allocation is likely for THP */ 2382 static bool is_thp_alloc(gfp_t gfp_mask, unsigned int order) 2383 { 2384 if (order == pageblock_order && 2385 (gfp_mask & (__GFP_MOVABLE|__GFP_REPEAT)) == __GFP_MOVABLE) 2386 return true; 2387 return false; 2388 } 2389 2390 static inline struct page * 2391 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order, 2392 struct zonelist *zonelist, enum zone_type high_zoneidx, 2393 nodemask_t *nodemask, struct zone *preferred_zone, 2394 int migratetype) 2395 { 2396 const gfp_t wait = gfp_mask & __GFP_WAIT; 2397 struct page *page = NULL; 2398 int alloc_flags; 2399 unsigned long pages_reclaimed = 0; 2400 unsigned long did_some_progress; 2401 bool sync_migration = false; 2402 bool deferred_compaction = false; 2403 bool contended_compaction = false; 2404 2405 /* 2406 * In the slowpath, we sanity check order to avoid ever trying to 2407 * reclaim >= MAX_ORDER areas which will never succeed. Callers may 2408 * be using allocators in order of preference for an area that is 2409 * too large. 2410 */ 2411 if (order >= MAX_ORDER) { 2412 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN)); 2413 return NULL; 2414 } 2415 2416 /* 2417 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and 2418 * __GFP_NOWARN set) should not cause reclaim since the subsystem 2419 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim 2420 * using a larger set of nodes after it has established that the 2421 * allowed per node queues are empty and that nodes are 2422 * over allocated. 2423 */ 2424 if (NUMA_BUILD && (gfp_mask & GFP_THISNODE) == GFP_THISNODE) 2425 goto nopage; 2426 2427 restart: 2428 /* The decision whether to wake kswapd for THP is made later */ 2429 if (!is_thp_alloc(gfp_mask, order)) 2430 wake_all_kswapd(order, zonelist, high_zoneidx, 2431 zone_idx(preferred_zone)); 2432 2433 /* 2434 * OK, we're below the kswapd watermark and have kicked background 2435 * reclaim. Now things get more complex, so set up alloc_flags according 2436 * to how we want to proceed. 2437 */ 2438 alloc_flags = gfp_to_alloc_flags(gfp_mask); 2439 2440 /* 2441 * Find the true preferred zone if the allocation is unconstrained by 2442 * cpusets. 2443 */ 2444 if (!(alloc_flags & ALLOC_CPUSET) && !nodemask) 2445 first_zones_zonelist(zonelist, high_zoneidx, NULL, 2446 &preferred_zone); 2447 2448 rebalance: 2449 /* This is the last chance, in general, before the goto nopage. */ 2450 page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist, 2451 high_zoneidx, alloc_flags & ~ALLOC_NO_WATERMARKS, 2452 preferred_zone, migratetype); 2453 if (page) 2454 goto got_pg; 2455 2456 /* Allocate without watermarks if the context allows */ 2457 if (alloc_flags & ALLOC_NO_WATERMARKS) { 2458 /* 2459 * Ignore mempolicies if ALLOC_NO_WATERMARKS on the grounds 2460 * the allocation is high priority and these type of 2461 * allocations are system rather than user orientated 2462 */ 2463 zonelist = node_zonelist(numa_node_id(), gfp_mask); 2464 2465 page = __alloc_pages_high_priority(gfp_mask, order, 2466 zonelist, high_zoneidx, nodemask, 2467 preferred_zone, migratetype); 2468 if (page) { 2469 goto got_pg; 2470 } 2471 } 2472 2473 /* Atomic allocations - we can't balance anything */ 2474 if (!wait) 2475 goto nopage; 2476 2477 /* Avoid recursion of direct reclaim */ 2478 if (current->flags & PF_MEMALLOC) 2479 goto nopage; 2480 2481 /* Avoid allocations with no watermarks from looping endlessly */ 2482 if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL)) 2483 goto nopage; 2484 2485 /* 2486 * Try direct compaction. The first pass is asynchronous. Subsequent 2487 * attempts after direct reclaim are synchronous 2488 */ 2489 page = __alloc_pages_direct_compact(gfp_mask, order, 2490 zonelist, high_zoneidx, 2491 nodemask, 2492 alloc_flags, preferred_zone, 2493 migratetype, sync_migration, 2494 &contended_compaction, 2495 &deferred_compaction, 2496 &did_some_progress); 2497 if (page) 2498 goto got_pg; 2499 sync_migration = true; 2500 2501 if (is_thp_alloc(gfp_mask, order)) { 2502 /* 2503 * If compaction is deferred for high-order allocations, it is 2504 * because sync compaction recently failed. If this is the case 2505 * and the caller requested a movable allocation that does not 2506 * heavily disrupt the system then fail the allocation instead 2507 * of entering direct reclaim. 2508 */ 2509 if (deferred_compaction || contended_compaction) 2510 goto nopage; 2511 2512 /* If process is willing to reclaim/compact then wake kswapd */ 2513 wake_all_kswapd(order, zonelist, high_zoneidx, 2514 zone_idx(preferred_zone)); 2515 } 2516 2517 /* Try direct reclaim and then allocating */ 2518 page = __alloc_pages_direct_reclaim(gfp_mask, order, 2519 zonelist, high_zoneidx, 2520 nodemask, 2521 alloc_flags, preferred_zone, 2522 migratetype, &did_some_progress); 2523 if (page) 2524 goto got_pg; 2525 2526 /* 2527 * If we failed to make any progress reclaiming, then we are 2528 * running out of options and have to consider going OOM 2529 */ 2530 if (!did_some_progress) { 2531 if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) { 2532 if (oom_killer_disabled) 2533 goto nopage; 2534 /* Coredumps can quickly deplete all memory reserves */ 2535 if ((current->flags & PF_DUMPCORE) && 2536 !(gfp_mask & __GFP_NOFAIL)) 2537 goto nopage; 2538 page = __alloc_pages_may_oom(gfp_mask, order, 2539 zonelist, high_zoneidx, 2540 nodemask, preferred_zone, 2541 migratetype); 2542 if (page) 2543 goto got_pg; 2544 2545 if (!(gfp_mask & __GFP_NOFAIL)) { 2546 /* 2547 * The oom killer is not called for high-order 2548 * allocations that may fail, so if no progress 2549 * is being made, there are no other options and 2550 * retrying is unlikely to help. 2551 */ 2552 if (order > PAGE_ALLOC_COSTLY_ORDER) 2553 goto nopage; 2554 /* 2555 * The oom killer is not called for lowmem 2556 * allocations to prevent needlessly killing 2557 * innocent tasks. 2558 */ 2559 if (high_zoneidx < ZONE_NORMAL) 2560 goto nopage; 2561 } 2562 2563 goto restart; 2564 } 2565 } 2566 2567 /* Check if we should retry the allocation */ 2568 pages_reclaimed += did_some_progress; 2569 if (should_alloc_retry(gfp_mask, order, did_some_progress, 2570 pages_reclaimed)) { 2571 /* Wait for some write requests to complete then retry */ 2572 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50); 2573 goto rebalance; 2574 } else { 2575 /* 2576 * High-order allocations do not necessarily loop after 2577 * direct reclaim and reclaim/compaction depends on compaction 2578 * being called after reclaim so call directly if necessary 2579 */ 2580 page = __alloc_pages_direct_compact(gfp_mask, order, 2581 zonelist, high_zoneidx, 2582 nodemask, 2583 alloc_flags, preferred_zone, 2584 migratetype, sync_migration, 2585 &contended_compaction, 2586 &deferred_compaction, 2587 &did_some_progress); 2588 if (page) 2589 goto got_pg; 2590 } 2591 2592 nopage: 2593 warn_alloc_failed(gfp_mask, order, NULL); 2594 return page; 2595 got_pg: 2596 if (kmemcheck_enabled) 2597 kmemcheck_pagealloc_alloc(page, order, gfp_mask); 2598 2599 return page; 2600 } 2601 2602 /* 2603 * This is the 'heart' of the zoned buddy allocator. 2604 */ 2605 struct page * 2606 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order, 2607 struct zonelist *zonelist, nodemask_t *nodemask) 2608 { 2609 enum zone_type high_zoneidx = gfp_zone(gfp_mask); 2610 struct zone *preferred_zone; 2611 struct page *page = NULL; 2612 int migratetype = allocflags_to_migratetype(gfp_mask); 2613 unsigned int cpuset_mems_cookie; 2614 int alloc_flags = ALLOC_WMARK_LOW|ALLOC_CPUSET; 2615 2616 gfp_mask &= gfp_allowed_mask; 2617 2618 lockdep_trace_alloc(gfp_mask); 2619 2620 might_sleep_if(gfp_mask & __GFP_WAIT); 2621 2622 if (should_fail_alloc_page(gfp_mask, order)) 2623 return NULL; 2624 2625 /* 2626 * Check the zones suitable for the gfp_mask contain at least one 2627 * valid zone. It's possible to have an empty zonelist as a result 2628 * of GFP_THISNODE and a memoryless node 2629 */ 2630 if (unlikely(!zonelist->_zonerefs->zone)) 2631 return NULL; 2632 2633 retry_cpuset: 2634 cpuset_mems_cookie = get_mems_allowed(); 2635 2636 /* The preferred zone is used for statistics later */ 2637 first_zones_zonelist(zonelist, high_zoneidx, 2638 nodemask ? : &cpuset_current_mems_allowed, 2639 &preferred_zone); 2640 if (!preferred_zone) 2641 goto out; 2642 2643 #ifdef CONFIG_CMA 2644 if (allocflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE) 2645 alloc_flags |= ALLOC_CMA; 2646 #endif 2647 /* First allocation attempt */ 2648 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order, 2649 zonelist, high_zoneidx, alloc_flags, 2650 preferred_zone, migratetype); 2651 if (unlikely(!page)) 2652 page = __alloc_pages_slowpath(gfp_mask, order, 2653 zonelist, high_zoneidx, nodemask, 2654 preferred_zone, migratetype); 2655 2656 trace_mm_page_alloc(page, order, gfp_mask, migratetype); 2657 2658 out: 2659 /* 2660 * When updating a task's mems_allowed, it is possible to race with 2661 * parallel threads in such a way that an allocation can fail while 2662 * the mask is being updated. If a page allocation is about to fail, 2663 * check if the cpuset changed during allocation and if so, retry. 2664 */ 2665 if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page)) 2666 goto retry_cpuset; 2667 2668 return page; 2669 } 2670 EXPORT_SYMBOL(__alloc_pages_nodemask); 2671 2672 /* 2673 * Common helper functions. 2674 */ 2675 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order) 2676 { 2677 struct page *page; 2678 2679 /* 2680 * __get_free_pages() returns a 32-bit address, which cannot represent 2681 * a highmem page 2682 */ 2683 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0); 2684 2685 page = alloc_pages(gfp_mask, order); 2686 if (!page) 2687 return 0; 2688 return (unsigned long) page_address(page); 2689 } 2690 EXPORT_SYMBOL(__get_free_pages); 2691 2692 unsigned long get_zeroed_page(gfp_t gfp_mask) 2693 { 2694 return __get_free_pages(gfp_mask | __GFP_ZERO, 0); 2695 } 2696 EXPORT_SYMBOL(get_zeroed_page); 2697 2698 void __free_pages(struct page *page, unsigned int order) 2699 { 2700 if (put_page_testzero(page)) { 2701 if (order == 0) 2702 free_hot_cold_page(page, 0); 2703 else 2704 __free_pages_ok(page, order); 2705 } 2706 } 2707 2708 EXPORT_SYMBOL(__free_pages); 2709 2710 void free_pages(unsigned long addr, unsigned int order) 2711 { 2712 if (addr != 0) { 2713 VM_BUG_ON(!virt_addr_valid((void *)addr)); 2714 __free_pages(virt_to_page((void *)addr), order); 2715 } 2716 } 2717 2718 EXPORT_SYMBOL(free_pages); 2719 2720 static void *make_alloc_exact(unsigned long addr, unsigned order, size_t size) 2721 { 2722 if (addr) { 2723 unsigned long alloc_end = addr + (PAGE_SIZE << order); 2724 unsigned long used = addr + PAGE_ALIGN(size); 2725 2726 split_page(virt_to_page((void *)addr), order); 2727 while (used < alloc_end) { 2728 free_page(used); 2729 used += PAGE_SIZE; 2730 } 2731 } 2732 return (void *)addr; 2733 } 2734 2735 /** 2736 * alloc_pages_exact - allocate an exact number physically-contiguous pages. 2737 * @size: the number of bytes to allocate 2738 * @gfp_mask: GFP flags for the allocation 2739 * 2740 * This function is similar to alloc_pages(), except that it allocates the 2741 * minimum number of pages to satisfy the request. alloc_pages() can only 2742 * allocate memory in power-of-two pages. 2743 * 2744 * This function is also limited by MAX_ORDER. 2745 * 2746 * Memory allocated by this function must be released by free_pages_exact(). 2747 */ 2748 void *alloc_pages_exact(size_t size, gfp_t gfp_mask) 2749 { 2750 unsigned int order = get_order(size); 2751 unsigned long addr; 2752 2753 addr = __get_free_pages(gfp_mask, order); 2754 return make_alloc_exact(addr, order, size); 2755 } 2756 EXPORT_SYMBOL(alloc_pages_exact); 2757 2758 /** 2759 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous 2760 * pages on a node. 2761 * @nid: the preferred node ID where memory should be allocated 2762 * @size: the number of bytes to allocate 2763 * @gfp_mask: GFP flags for the allocation 2764 * 2765 * Like alloc_pages_exact(), but try to allocate on node nid first before falling 2766 * back. 2767 * Note this is not alloc_pages_exact_node() which allocates on a specific node, 2768 * but is not exact. 2769 */ 2770 void *alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask) 2771 { 2772 unsigned order = get_order(size); 2773 struct page *p = alloc_pages_node(nid, gfp_mask, order); 2774 if (!p) 2775 return NULL; 2776 return make_alloc_exact((unsigned long)page_address(p), order, size); 2777 } 2778 EXPORT_SYMBOL(alloc_pages_exact_nid); 2779 2780 /** 2781 * free_pages_exact - release memory allocated via alloc_pages_exact() 2782 * @virt: the value returned by alloc_pages_exact. 2783 * @size: size of allocation, same value as passed to alloc_pages_exact(). 2784 * 2785 * Release the memory allocated by a previous call to alloc_pages_exact. 2786 */ 2787 void free_pages_exact(void *virt, size_t size) 2788 { 2789 unsigned long addr = (unsigned long)virt; 2790 unsigned long end = addr + PAGE_ALIGN(size); 2791 2792 while (addr < end) { 2793 free_page(addr); 2794 addr += PAGE_SIZE; 2795 } 2796 } 2797 EXPORT_SYMBOL(free_pages_exact); 2798 2799 static unsigned int nr_free_zone_pages(int offset) 2800 { 2801 struct zoneref *z; 2802 struct zone *zone; 2803 2804 /* Just pick one node, since fallback list is circular */ 2805 unsigned int sum = 0; 2806 2807 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL); 2808 2809 for_each_zone_zonelist(zone, z, zonelist, offset) { 2810 unsigned long size = zone->present_pages; 2811 unsigned long high = high_wmark_pages(zone); 2812 if (size > high) 2813 sum += size - high; 2814 } 2815 2816 return sum; 2817 } 2818 2819 /* 2820 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL 2821 */ 2822 unsigned int nr_free_buffer_pages(void) 2823 { 2824 return nr_free_zone_pages(gfp_zone(GFP_USER)); 2825 } 2826 EXPORT_SYMBOL_GPL(nr_free_buffer_pages); 2827 2828 /* 2829 * Amount of free RAM allocatable within all zones 2830 */ 2831 unsigned int nr_free_pagecache_pages(void) 2832 { 2833 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE)); 2834 } 2835 2836 static inline void show_node(struct zone *zone) 2837 { 2838 if (NUMA_BUILD) 2839 printk("Node %d ", zone_to_nid(zone)); 2840 } 2841 2842 void si_meminfo(struct sysinfo *val) 2843 { 2844 val->totalram = totalram_pages; 2845 val->sharedram = 0; 2846 val->freeram = global_page_state(NR_FREE_PAGES); 2847 val->bufferram = nr_blockdev_pages(); 2848 val->totalhigh = totalhigh_pages; 2849 val->freehigh = nr_free_highpages(); 2850 val->mem_unit = PAGE_SIZE; 2851 } 2852 2853 EXPORT_SYMBOL(si_meminfo); 2854 2855 #ifdef CONFIG_NUMA 2856 void si_meminfo_node(struct sysinfo *val, int nid) 2857 { 2858 pg_data_t *pgdat = NODE_DATA(nid); 2859 2860 val->totalram = pgdat->node_present_pages; 2861 val->freeram = node_page_state(nid, NR_FREE_PAGES); 2862 #ifdef CONFIG_HIGHMEM 2863 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages; 2864 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM], 2865 NR_FREE_PAGES); 2866 #else 2867 val->totalhigh = 0; 2868 val->freehigh = 0; 2869 #endif 2870 val->mem_unit = PAGE_SIZE; 2871 } 2872 #endif 2873 2874 /* 2875 * Determine whether the node should be displayed or not, depending on whether 2876 * SHOW_MEM_FILTER_NODES was passed to show_free_areas(). 2877 */ 2878 bool skip_free_areas_node(unsigned int flags, int nid) 2879 { 2880 bool ret = false; 2881 unsigned int cpuset_mems_cookie; 2882 2883 if (!(flags & SHOW_MEM_FILTER_NODES)) 2884 goto out; 2885 2886 do { 2887 cpuset_mems_cookie = get_mems_allowed(); 2888 ret = !node_isset(nid, cpuset_current_mems_allowed); 2889 } while (!put_mems_allowed(cpuset_mems_cookie)); 2890 out: 2891 return ret; 2892 } 2893 2894 #define K(x) ((x) << (PAGE_SHIFT-10)) 2895 2896 /* 2897 * Show free area list (used inside shift_scroll-lock stuff) 2898 * We also calculate the percentage fragmentation. We do this by counting the 2899 * memory on each free list with the exception of the first item on the list. 2900 * Suppresses nodes that are not allowed by current's cpuset if 2901 * SHOW_MEM_FILTER_NODES is passed. 2902 */ 2903 void show_free_areas(unsigned int filter) 2904 { 2905 int cpu; 2906 struct zone *zone; 2907 2908 for_each_populated_zone(zone) { 2909 if (skip_free_areas_node(filter, zone_to_nid(zone))) 2910 continue; 2911 show_node(zone); 2912 printk("%s per-cpu:\n", zone->name); 2913 2914 for_each_online_cpu(cpu) { 2915 struct per_cpu_pageset *pageset; 2916 2917 pageset = per_cpu_ptr(zone->pageset, cpu); 2918 2919 printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n", 2920 cpu, pageset->pcp.high, 2921 pageset->pcp.batch, pageset->pcp.count); 2922 } 2923 } 2924 2925 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n" 2926 " active_file:%lu inactive_file:%lu isolated_file:%lu\n" 2927 " unevictable:%lu" 2928 " dirty:%lu writeback:%lu unstable:%lu\n" 2929 " free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n" 2930 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n" 2931 " free_cma:%lu\n", 2932 global_page_state(NR_ACTIVE_ANON), 2933 global_page_state(NR_INACTIVE_ANON), 2934 global_page_state(NR_ISOLATED_ANON), 2935 global_page_state(NR_ACTIVE_FILE), 2936 global_page_state(NR_INACTIVE_FILE), 2937 global_page_state(NR_ISOLATED_FILE), 2938 global_page_state(NR_UNEVICTABLE), 2939 global_page_state(NR_FILE_DIRTY), 2940 global_page_state(NR_WRITEBACK), 2941 global_page_state(NR_UNSTABLE_NFS), 2942 global_page_state(NR_FREE_PAGES), 2943 global_page_state(NR_SLAB_RECLAIMABLE), 2944 global_page_state(NR_SLAB_UNRECLAIMABLE), 2945 global_page_state(NR_FILE_MAPPED), 2946 global_page_state(NR_SHMEM), 2947 global_page_state(NR_PAGETABLE), 2948 global_page_state(NR_BOUNCE), 2949 global_page_state(NR_FREE_CMA_PAGES)); 2950 2951 for_each_populated_zone(zone) { 2952 int i; 2953 2954 if (skip_free_areas_node(filter, zone_to_nid(zone))) 2955 continue; 2956 show_node(zone); 2957 printk("%s" 2958 " free:%lukB" 2959 " min:%lukB" 2960 " low:%lukB" 2961 " high:%lukB" 2962 " active_anon:%lukB" 2963 " inactive_anon:%lukB" 2964 " active_file:%lukB" 2965 " inactive_file:%lukB" 2966 " unevictable:%lukB" 2967 " isolated(anon):%lukB" 2968 " isolated(file):%lukB" 2969 " present:%lukB" 2970 " mlocked:%lukB" 2971 " dirty:%lukB" 2972 " writeback:%lukB" 2973 " mapped:%lukB" 2974 " shmem:%lukB" 2975 " slab_reclaimable:%lukB" 2976 " slab_unreclaimable:%lukB" 2977 " kernel_stack:%lukB" 2978 " pagetables:%lukB" 2979 " unstable:%lukB" 2980 " bounce:%lukB" 2981 " free_cma:%lukB" 2982 " writeback_tmp:%lukB" 2983 " pages_scanned:%lu" 2984 " all_unreclaimable? %s" 2985 "\n", 2986 zone->name, 2987 K(zone_page_state(zone, NR_FREE_PAGES)), 2988 K(min_wmark_pages(zone)), 2989 K(low_wmark_pages(zone)), 2990 K(high_wmark_pages(zone)), 2991 K(zone_page_state(zone, NR_ACTIVE_ANON)), 2992 K(zone_page_state(zone, NR_INACTIVE_ANON)), 2993 K(zone_page_state(zone, NR_ACTIVE_FILE)), 2994 K(zone_page_state(zone, NR_INACTIVE_FILE)), 2995 K(zone_page_state(zone, NR_UNEVICTABLE)), 2996 K(zone_page_state(zone, NR_ISOLATED_ANON)), 2997 K(zone_page_state(zone, NR_ISOLATED_FILE)), 2998 K(zone->present_pages), 2999 K(zone_page_state(zone, NR_MLOCK)), 3000 K(zone_page_state(zone, NR_FILE_DIRTY)), 3001 K(zone_page_state(zone, NR_WRITEBACK)), 3002 K(zone_page_state(zone, NR_FILE_MAPPED)), 3003 K(zone_page_state(zone, NR_SHMEM)), 3004 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)), 3005 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)), 3006 zone_page_state(zone, NR_KERNEL_STACK) * 3007 THREAD_SIZE / 1024, 3008 K(zone_page_state(zone, NR_PAGETABLE)), 3009 K(zone_page_state(zone, NR_UNSTABLE_NFS)), 3010 K(zone_page_state(zone, NR_BOUNCE)), 3011 K(zone_page_state(zone, NR_FREE_CMA_PAGES)), 3012 K(zone_page_state(zone, NR_WRITEBACK_TEMP)), 3013 zone->pages_scanned, 3014 (zone->all_unreclaimable ? "yes" : "no") 3015 ); 3016 printk("lowmem_reserve[]:"); 3017 for (i = 0; i < MAX_NR_ZONES; i++) 3018 printk(" %lu", zone->lowmem_reserve[i]); 3019 printk("\n"); 3020 } 3021 3022 for_each_populated_zone(zone) { 3023 unsigned long nr[MAX_ORDER], flags, order, total = 0; 3024 3025 if (skip_free_areas_node(filter, zone_to_nid(zone))) 3026 continue; 3027 show_node(zone); 3028 printk("%s: ", zone->name); 3029 3030 spin_lock_irqsave(&zone->lock, flags); 3031 for (order = 0; order < MAX_ORDER; order++) { 3032 nr[order] = zone->free_area[order].nr_free; 3033 total += nr[order] << order; 3034 } 3035 spin_unlock_irqrestore(&zone->lock, flags); 3036 for (order = 0; order < MAX_ORDER; order++) 3037 printk("%lu*%lukB ", nr[order], K(1UL) << order); 3038 printk("= %lukB\n", K(total)); 3039 } 3040 3041 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES)); 3042 3043 show_swap_cache_info(); 3044 } 3045 3046 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref) 3047 { 3048 zoneref->zone = zone; 3049 zoneref->zone_idx = zone_idx(zone); 3050 } 3051 3052 /* 3053 * Builds allocation fallback zone lists. 3054 * 3055 * Add all populated zones of a node to the zonelist. 3056 */ 3057 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist, 3058 int nr_zones, enum zone_type zone_type) 3059 { 3060 struct zone *zone; 3061 3062 BUG_ON(zone_type >= MAX_NR_ZONES); 3063 zone_type++; 3064 3065 do { 3066 zone_type--; 3067 zone = pgdat->node_zones + zone_type; 3068 if (populated_zone(zone)) { 3069 zoneref_set_zone(zone, 3070 &zonelist->_zonerefs[nr_zones++]); 3071 check_highest_zone(zone_type); 3072 } 3073 3074 } while (zone_type); 3075 return nr_zones; 3076 } 3077 3078 3079 /* 3080 * zonelist_order: 3081 * 0 = automatic detection of better ordering. 3082 * 1 = order by ([node] distance, -zonetype) 3083 * 2 = order by (-zonetype, [node] distance) 3084 * 3085 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create 3086 * the same zonelist. So only NUMA can configure this param. 3087 */ 3088 #define ZONELIST_ORDER_DEFAULT 0 3089 #define ZONELIST_ORDER_NODE 1 3090 #define ZONELIST_ORDER_ZONE 2 3091 3092 /* zonelist order in the kernel. 3093 * set_zonelist_order() will set this to NODE or ZONE. 3094 */ 3095 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT; 3096 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"}; 3097 3098 3099 #ifdef CONFIG_NUMA 3100 /* The value user specified ....changed by config */ 3101 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT; 3102 /* string for sysctl */ 3103 #define NUMA_ZONELIST_ORDER_LEN 16 3104 char numa_zonelist_order[16] = "default"; 3105 3106 /* 3107 * interface for configure zonelist ordering. 3108 * command line option "numa_zonelist_order" 3109 * = "[dD]efault - default, automatic configuration. 3110 * = "[nN]ode - order by node locality, then by zone within node 3111 * = "[zZ]one - order by zone, then by locality within zone 3112 */ 3113 3114 static int __parse_numa_zonelist_order(char *s) 3115 { 3116 if (*s == 'd' || *s == 'D') { 3117 user_zonelist_order = ZONELIST_ORDER_DEFAULT; 3118 } else if (*s == 'n' || *s == 'N') { 3119 user_zonelist_order = ZONELIST_ORDER_NODE; 3120 } else if (*s == 'z' || *s == 'Z') { 3121 user_zonelist_order = ZONELIST_ORDER_ZONE; 3122 } else { 3123 printk(KERN_WARNING 3124 "Ignoring invalid numa_zonelist_order value: " 3125 "%s\n", s); 3126 return -EINVAL; 3127 } 3128 return 0; 3129 } 3130 3131 static __init int setup_numa_zonelist_order(char *s) 3132 { 3133 int ret; 3134 3135 if (!s) 3136 return 0; 3137 3138 ret = __parse_numa_zonelist_order(s); 3139 if (ret == 0) 3140 strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN); 3141 3142 return ret; 3143 } 3144 early_param("numa_zonelist_order", setup_numa_zonelist_order); 3145 3146 /* 3147 * sysctl handler for numa_zonelist_order 3148 */ 3149 int numa_zonelist_order_handler(ctl_table *table, int write, 3150 void __user *buffer, size_t *length, 3151 loff_t *ppos) 3152 { 3153 char saved_string[NUMA_ZONELIST_ORDER_LEN]; 3154 int ret; 3155 static DEFINE_MUTEX(zl_order_mutex); 3156 3157 mutex_lock(&zl_order_mutex); 3158 if (write) 3159 strcpy(saved_string, (char*)table->data); 3160 ret = proc_dostring(table, write, buffer, length, ppos); 3161 if (ret) 3162 goto out; 3163 if (write) { 3164 int oldval = user_zonelist_order; 3165 if (__parse_numa_zonelist_order((char*)table->data)) { 3166 /* 3167 * bogus value. restore saved string 3168 */ 3169 strncpy((char*)table->data, saved_string, 3170 NUMA_ZONELIST_ORDER_LEN); 3171 user_zonelist_order = oldval; 3172 } else if (oldval != user_zonelist_order) { 3173 mutex_lock(&zonelists_mutex); 3174 build_all_zonelists(NULL, NULL); 3175 mutex_unlock(&zonelists_mutex); 3176 } 3177 } 3178 out: 3179 mutex_unlock(&zl_order_mutex); 3180 return ret; 3181 } 3182 3183 3184 #define MAX_NODE_LOAD (nr_online_nodes) 3185 static int node_load[MAX_NUMNODES]; 3186 3187 /** 3188 * find_next_best_node - find the next node that should appear in a given node's fallback list 3189 * @node: node whose fallback list we're appending 3190 * @used_node_mask: nodemask_t of already used nodes 3191 * 3192 * We use a number of factors to determine which is the next node that should 3193 * appear on a given node's fallback list. The node should not have appeared 3194 * already in @node's fallback list, and it should be the next closest node 3195 * according to the distance array (which contains arbitrary distance values 3196 * from each node to each node in the system), and should also prefer nodes 3197 * with no CPUs, since presumably they'll have very little allocation pressure 3198 * on them otherwise. 3199 * It returns -1 if no node is found. 3200 */ 3201 static int find_next_best_node(int node, nodemask_t *used_node_mask) 3202 { 3203 int n, val; 3204 int min_val = INT_MAX; 3205 int best_node = -1; 3206 const struct cpumask *tmp = cpumask_of_node(0); 3207 3208 /* Use the local node if we haven't already */ 3209 if (!node_isset(node, *used_node_mask)) { 3210 node_set(node, *used_node_mask); 3211 return node; 3212 } 3213 3214 for_each_node_state(n, N_HIGH_MEMORY) { 3215 3216 /* Don't want a node to appear more than once */ 3217 if (node_isset(n, *used_node_mask)) 3218 continue; 3219 3220 /* Use the distance array to find the distance */ 3221 val = node_distance(node, n); 3222 3223 /* Penalize nodes under us ("prefer the next node") */ 3224 val += (n < node); 3225 3226 /* Give preference to headless and unused nodes */ 3227 tmp = cpumask_of_node(n); 3228 if (!cpumask_empty(tmp)) 3229 val += PENALTY_FOR_NODE_WITH_CPUS; 3230 3231 /* Slight preference for less loaded node */ 3232 val *= (MAX_NODE_LOAD*MAX_NUMNODES); 3233 val += node_load[n]; 3234 3235 if (val < min_val) { 3236 min_val = val; 3237 best_node = n; 3238 } 3239 } 3240 3241 if (best_node >= 0) 3242 node_set(best_node, *used_node_mask); 3243 3244 return best_node; 3245 } 3246 3247 3248 /* 3249 * Build zonelists ordered by node and zones within node. 3250 * This results in maximum locality--normal zone overflows into local 3251 * DMA zone, if any--but risks exhausting DMA zone. 3252 */ 3253 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node) 3254 { 3255 int j; 3256 struct zonelist *zonelist; 3257 3258 zonelist = &pgdat->node_zonelists[0]; 3259 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++) 3260 ; 3261 j = build_zonelists_node(NODE_DATA(node), zonelist, j, 3262 MAX_NR_ZONES - 1); 3263 zonelist->_zonerefs[j].zone = NULL; 3264 zonelist->_zonerefs[j].zone_idx = 0; 3265 } 3266 3267 /* 3268 * Build gfp_thisnode zonelists 3269 */ 3270 static void build_thisnode_zonelists(pg_data_t *pgdat) 3271 { 3272 int j; 3273 struct zonelist *zonelist; 3274 3275 zonelist = &pgdat->node_zonelists[1]; 3276 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1); 3277 zonelist->_zonerefs[j].zone = NULL; 3278 zonelist->_zonerefs[j].zone_idx = 0; 3279 } 3280 3281 /* 3282 * Build zonelists ordered by zone and nodes within zones. 3283 * This results in conserving DMA zone[s] until all Normal memory is 3284 * exhausted, but results in overflowing to remote node while memory 3285 * may still exist in local DMA zone. 3286 */ 3287 static int node_order[MAX_NUMNODES]; 3288 3289 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes) 3290 { 3291 int pos, j, node; 3292 int zone_type; /* needs to be signed */ 3293 struct zone *z; 3294 struct zonelist *zonelist; 3295 3296 zonelist = &pgdat->node_zonelists[0]; 3297 pos = 0; 3298 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) { 3299 for (j = 0; j < nr_nodes; j++) { 3300 node = node_order[j]; 3301 z = &NODE_DATA(node)->node_zones[zone_type]; 3302 if (populated_zone(z)) { 3303 zoneref_set_zone(z, 3304 &zonelist->_zonerefs[pos++]); 3305 check_highest_zone(zone_type); 3306 } 3307 } 3308 } 3309 zonelist->_zonerefs[pos].zone = NULL; 3310 zonelist->_zonerefs[pos].zone_idx = 0; 3311 } 3312 3313 static int default_zonelist_order(void) 3314 { 3315 int nid, zone_type; 3316 unsigned long low_kmem_size,total_size; 3317 struct zone *z; 3318 int average_size; 3319 /* 3320 * ZONE_DMA and ZONE_DMA32 can be very small area in the system. 3321 * If they are really small and used heavily, the system can fall 3322 * into OOM very easily. 3323 * This function detect ZONE_DMA/DMA32 size and configures zone order. 3324 */ 3325 /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */ 3326 low_kmem_size = 0; 3327 total_size = 0; 3328 for_each_online_node(nid) { 3329 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) { 3330 z = &NODE_DATA(nid)->node_zones[zone_type]; 3331 if (populated_zone(z)) { 3332 if (zone_type < ZONE_NORMAL) 3333 low_kmem_size += z->present_pages; 3334 total_size += z->present_pages; 3335 } else if (zone_type == ZONE_NORMAL) { 3336 /* 3337 * If any node has only lowmem, then node order 3338 * is preferred to allow kernel allocations 3339 * locally; otherwise, they can easily infringe 3340 * on other nodes when there is an abundance of 3341 * lowmem available to allocate from. 3342 */ 3343 return ZONELIST_ORDER_NODE; 3344 } 3345 } 3346 } 3347 if (!low_kmem_size || /* there are no DMA area. */ 3348 low_kmem_size > total_size/2) /* DMA/DMA32 is big. */ 3349 return ZONELIST_ORDER_NODE; 3350 /* 3351 * look into each node's config. 3352 * If there is a node whose DMA/DMA32 memory is very big area on 3353 * local memory, NODE_ORDER may be suitable. 3354 */ 3355 average_size = total_size / 3356 (nodes_weight(node_states[N_HIGH_MEMORY]) + 1); 3357 for_each_online_node(nid) { 3358 low_kmem_size = 0; 3359 total_size = 0; 3360 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) { 3361 z = &NODE_DATA(nid)->node_zones[zone_type]; 3362 if (populated_zone(z)) { 3363 if (zone_type < ZONE_NORMAL) 3364 low_kmem_size += z->present_pages; 3365 total_size += z->present_pages; 3366 } 3367 } 3368 if (low_kmem_size && 3369 total_size > average_size && /* ignore small node */ 3370 low_kmem_size > total_size * 70/100) 3371 return ZONELIST_ORDER_NODE; 3372 } 3373 return ZONELIST_ORDER_ZONE; 3374 } 3375 3376 static void set_zonelist_order(void) 3377 { 3378 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT) 3379 current_zonelist_order = default_zonelist_order(); 3380 else 3381 current_zonelist_order = user_zonelist_order; 3382 } 3383 3384 static void build_zonelists(pg_data_t *pgdat) 3385 { 3386 int j, node, load; 3387 enum zone_type i; 3388 nodemask_t used_mask; 3389 int local_node, prev_node; 3390 struct zonelist *zonelist; 3391 int order = current_zonelist_order; 3392 3393 /* initialize zonelists */ 3394 for (i = 0; i < MAX_ZONELISTS; i++) { 3395 zonelist = pgdat->node_zonelists + i; 3396 zonelist->_zonerefs[0].zone = NULL; 3397 zonelist->_zonerefs[0].zone_idx = 0; 3398 } 3399 3400 /* NUMA-aware ordering of nodes */ 3401 local_node = pgdat->node_id; 3402 load = nr_online_nodes; 3403 prev_node = local_node; 3404 nodes_clear(used_mask); 3405 3406 memset(node_order, 0, sizeof(node_order)); 3407 j = 0; 3408 3409 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) { 3410 /* 3411 * We don't want to pressure a particular node. 3412 * So adding penalty to the first node in same 3413 * distance group to make it round-robin. 3414 */ 3415 if (node_distance(local_node, node) != 3416 node_distance(local_node, prev_node)) 3417 node_load[node] = load; 3418 3419 prev_node = node; 3420 load--; 3421 if (order == ZONELIST_ORDER_NODE) 3422 build_zonelists_in_node_order(pgdat, node); 3423 else 3424 node_order[j++] = node; /* remember order */ 3425 } 3426 3427 if (order == ZONELIST_ORDER_ZONE) { 3428 /* calculate node order -- i.e., DMA last! */ 3429 build_zonelists_in_zone_order(pgdat, j); 3430 } 3431 3432 build_thisnode_zonelists(pgdat); 3433 } 3434 3435 /* Construct the zonelist performance cache - see further mmzone.h */ 3436 static void build_zonelist_cache(pg_data_t *pgdat) 3437 { 3438 struct zonelist *zonelist; 3439 struct zonelist_cache *zlc; 3440 struct zoneref *z; 3441 3442 zonelist = &pgdat->node_zonelists[0]; 3443 zonelist->zlcache_ptr = zlc = &zonelist->zlcache; 3444 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST); 3445 for (z = zonelist->_zonerefs; z->zone; z++) 3446 zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z); 3447 } 3448 3449 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 3450 /* 3451 * Return node id of node used for "local" allocations. 3452 * I.e., first node id of first zone in arg node's generic zonelist. 3453 * Used for initializing percpu 'numa_mem', which is used primarily 3454 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist. 3455 */ 3456 int local_memory_node(int node) 3457 { 3458 struct zone *zone; 3459 3460 (void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL), 3461 gfp_zone(GFP_KERNEL), 3462 NULL, 3463 &zone); 3464 return zone->node; 3465 } 3466 #endif 3467 3468 #else /* CONFIG_NUMA */ 3469 3470 static void set_zonelist_order(void) 3471 { 3472 current_zonelist_order = ZONELIST_ORDER_ZONE; 3473 } 3474 3475 static void build_zonelists(pg_data_t *pgdat) 3476 { 3477 int node, local_node; 3478 enum zone_type j; 3479 struct zonelist *zonelist; 3480 3481 local_node = pgdat->node_id; 3482 3483 zonelist = &pgdat->node_zonelists[0]; 3484 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1); 3485 3486 /* 3487 * Now we build the zonelist so that it contains the zones 3488 * of all the other nodes. 3489 * We don't want to pressure a particular node, so when 3490 * building the zones for node N, we make sure that the 3491 * zones coming right after the local ones are those from 3492 * node N+1 (modulo N) 3493 */ 3494 for (node = local_node + 1; node < MAX_NUMNODES; node++) { 3495 if (!node_online(node)) 3496 continue; 3497 j = build_zonelists_node(NODE_DATA(node), zonelist, j, 3498 MAX_NR_ZONES - 1); 3499 } 3500 for (node = 0; node < local_node; node++) { 3501 if (!node_online(node)) 3502 continue; 3503 j = build_zonelists_node(NODE_DATA(node), zonelist, j, 3504 MAX_NR_ZONES - 1); 3505 } 3506 3507 zonelist->_zonerefs[j].zone = NULL; 3508 zonelist->_zonerefs[j].zone_idx = 0; 3509 } 3510 3511 /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */ 3512 static void build_zonelist_cache(pg_data_t *pgdat) 3513 { 3514 pgdat->node_zonelists[0].zlcache_ptr = NULL; 3515 } 3516 3517 #endif /* CONFIG_NUMA */ 3518 3519 /* 3520 * Boot pageset table. One per cpu which is going to be used for all 3521 * zones and all nodes. The parameters will be set in such a way 3522 * that an item put on a list will immediately be handed over to 3523 * the buddy list. This is safe since pageset manipulation is done 3524 * with interrupts disabled. 3525 * 3526 * The boot_pagesets must be kept even after bootup is complete for 3527 * unused processors and/or zones. They do play a role for bootstrapping 3528 * hotplugged processors. 3529 * 3530 * zoneinfo_show() and maybe other functions do 3531 * not check if the processor is online before following the pageset pointer. 3532 * Other parts of the kernel may not check if the zone is available. 3533 */ 3534 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch); 3535 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset); 3536 static void setup_zone_pageset(struct zone *zone); 3537 3538 /* 3539 * Global mutex to protect against size modification of zonelists 3540 * as well as to serialize pageset setup for the new populated zone. 3541 */ 3542 DEFINE_MUTEX(zonelists_mutex); 3543 3544 /* return values int ....just for stop_machine() */ 3545 static int __build_all_zonelists(void *data) 3546 { 3547 int nid; 3548 int cpu; 3549 pg_data_t *self = data; 3550 3551 #ifdef CONFIG_NUMA 3552 memset(node_load, 0, sizeof(node_load)); 3553 #endif 3554 3555 if (self && !node_online(self->node_id)) { 3556 build_zonelists(self); 3557 build_zonelist_cache(self); 3558 } 3559 3560 for_each_online_node(nid) { 3561 pg_data_t *pgdat = NODE_DATA(nid); 3562 3563 build_zonelists(pgdat); 3564 build_zonelist_cache(pgdat); 3565 } 3566 3567 /* 3568 * Initialize the boot_pagesets that are going to be used 3569 * for bootstrapping processors. The real pagesets for 3570 * each zone will be allocated later when the per cpu 3571 * allocator is available. 3572 * 3573 * boot_pagesets are used also for bootstrapping offline 3574 * cpus if the system is already booted because the pagesets 3575 * are needed to initialize allocators on a specific cpu too. 3576 * F.e. the percpu allocator needs the page allocator which 3577 * needs the percpu allocator in order to allocate its pagesets 3578 * (a chicken-egg dilemma). 3579 */ 3580 for_each_possible_cpu(cpu) { 3581 setup_pageset(&per_cpu(boot_pageset, cpu), 0); 3582 3583 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 3584 /* 3585 * We now know the "local memory node" for each node-- 3586 * i.e., the node of the first zone in the generic zonelist. 3587 * Set up numa_mem percpu variable for on-line cpus. During 3588 * boot, only the boot cpu should be on-line; we'll init the 3589 * secondary cpus' numa_mem as they come on-line. During 3590 * node/memory hotplug, we'll fixup all on-line cpus. 3591 */ 3592 if (cpu_online(cpu)) 3593 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu))); 3594 #endif 3595 } 3596 3597 return 0; 3598 } 3599 3600 /* 3601 * Called with zonelists_mutex held always 3602 * unless system_state == SYSTEM_BOOTING. 3603 */ 3604 void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone) 3605 { 3606 set_zonelist_order(); 3607 3608 if (system_state == SYSTEM_BOOTING) { 3609 __build_all_zonelists(NULL); 3610 mminit_verify_zonelist(); 3611 cpuset_init_current_mems_allowed(); 3612 } else { 3613 /* we have to stop all cpus to guarantee there is no user 3614 of zonelist */ 3615 #ifdef CONFIG_MEMORY_HOTPLUG 3616 if (zone) 3617 setup_zone_pageset(zone); 3618 #endif 3619 stop_machine(__build_all_zonelists, pgdat, NULL); 3620 /* cpuset refresh routine should be here */ 3621 } 3622 vm_total_pages = nr_free_pagecache_pages(); 3623 /* 3624 * Disable grouping by mobility if the number of pages in the 3625 * system is too low to allow the mechanism to work. It would be 3626 * more accurate, but expensive to check per-zone. This check is 3627 * made on memory-hotadd so a system can start with mobility 3628 * disabled and enable it later 3629 */ 3630 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES)) 3631 page_group_by_mobility_disabled = 1; 3632 else 3633 page_group_by_mobility_disabled = 0; 3634 3635 printk("Built %i zonelists in %s order, mobility grouping %s. " 3636 "Total pages: %ld\n", 3637 nr_online_nodes, 3638 zonelist_order_name[current_zonelist_order], 3639 page_group_by_mobility_disabled ? "off" : "on", 3640 vm_total_pages); 3641 #ifdef CONFIG_NUMA 3642 printk("Policy zone: %s\n", zone_names[policy_zone]); 3643 #endif 3644 } 3645 3646 /* 3647 * Helper functions to size the waitqueue hash table. 3648 * Essentially these want to choose hash table sizes sufficiently 3649 * large so that collisions trying to wait on pages are rare. 3650 * But in fact, the number of active page waitqueues on typical 3651 * systems is ridiculously low, less than 200. So this is even 3652 * conservative, even though it seems large. 3653 * 3654 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to 3655 * waitqueues, i.e. the size of the waitq table given the number of pages. 3656 */ 3657 #define PAGES_PER_WAITQUEUE 256 3658 3659 #ifndef CONFIG_MEMORY_HOTPLUG 3660 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages) 3661 { 3662 unsigned long size = 1; 3663 3664 pages /= PAGES_PER_WAITQUEUE; 3665 3666 while (size < pages) 3667 size <<= 1; 3668 3669 /* 3670 * Once we have dozens or even hundreds of threads sleeping 3671 * on IO we've got bigger problems than wait queue collision. 3672 * Limit the size of the wait table to a reasonable size. 3673 */ 3674 size = min(size, 4096UL); 3675 3676 return max(size, 4UL); 3677 } 3678 #else 3679 /* 3680 * A zone's size might be changed by hot-add, so it is not possible to determine 3681 * a suitable size for its wait_table. So we use the maximum size now. 3682 * 3683 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie: 3684 * 3685 * i386 (preemption config) : 4096 x 16 = 64Kbyte. 3686 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte. 3687 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte. 3688 * 3689 * The maximum entries are prepared when a zone's memory is (512K + 256) pages 3690 * or more by the traditional way. (See above). It equals: 3691 * 3692 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte. 3693 * ia64(16K page size) : = ( 8G + 4M)byte. 3694 * powerpc (64K page size) : = (32G +16M)byte. 3695 */ 3696 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages) 3697 { 3698 return 4096UL; 3699 } 3700 #endif 3701 3702 /* 3703 * This is an integer logarithm so that shifts can be used later 3704 * to extract the more random high bits from the multiplicative 3705 * hash function before the remainder is taken. 3706 */ 3707 static inline unsigned long wait_table_bits(unsigned long size) 3708 { 3709 return ffz(~size); 3710 } 3711 3712 #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1)) 3713 3714 /* 3715 * Check if a pageblock contains reserved pages 3716 */ 3717 static int pageblock_is_reserved(unsigned long start_pfn, unsigned long end_pfn) 3718 { 3719 unsigned long pfn; 3720 3721 for (pfn = start_pfn; pfn < end_pfn; pfn++) { 3722 if (!pfn_valid_within(pfn) || PageReserved(pfn_to_page(pfn))) 3723 return 1; 3724 } 3725 return 0; 3726 } 3727 3728 /* 3729 * Mark a number of pageblocks as MIGRATE_RESERVE. The number 3730 * of blocks reserved is based on min_wmark_pages(zone). The memory within 3731 * the reserve will tend to store contiguous free pages. Setting min_free_kbytes 3732 * higher will lead to a bigger reserve which will get freed as contiguous 3733 * blocks as reclaim kicks in 3734 */ 3735 static void setup_zone_migrate_reserve(struct zone *zone) 3736 { 3737 unsigned long start_pfn, pfn, end_pfn, block_end_pfn; 3738 struct page *page; 3739 unsigned long block_migratetype; 3740 int reserve; 3741 3742 /* 3743 * Get the start pfn, end pfn and the number of blocks to reserve 3744 * We have to be careful to be aligned to pageblock_nr_pages to 3745 * make sure that we always check pfn_valid for the first page in 3746 * the block. 3747 */ 3748 start_pfn = zone->zone_start_pfn; 3749 end_pfn = start_pfn + zone->spanned_pages; 3750 start_pfn = roundup(start_pfn, pageblock_nr_pages); 3751 reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >> 3752 pageblock_order; 3753 3754 /* 3755 * Reserve blocks are generally in place to help high-order atomic 3756 * allocations that are short-lived. A min_free_kbytes value that 3757 * would result in more than 2 reserve blocks for atomic allocations 3758 * is assumed to be in place to help anti-fragmentation for the 3759 * future allocation of hugepages at runtime. 3760 */ 3761 reserve = min(2, reserve); 3762 3763 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) { 3764 if (!pfn_valid(pfn)) 3765 continue; 3766 page = pfn_to_page(pfn); 3767 3768 /* Watch out for overlapping nodes */ 3769 if (page_to_nid(page) != zone_to_nid(zone)) 3770 continue; 3771 3772 block_migratetype = get_pageblock_migratetype(page); 3773 3774 /* Only test what is necessary when the reserves are not met */ 3775 if (reserve > 0) { 3776 /* 3777 * Blocks with reserved pages will never free, skip 3778 * them. 3779 */ 3780 block_end_pfn = min(pfn + pageblock_nr_pages, end_pfn); 3781 if (pageblock_is_reserved(pfn, block_end_pfn)) 3782 continue; 3783 3784 /* If this block is reserved, account for it */ 3785 if (block_migratetype == MIGRATE_RESERVE) { 3786 reserve--; 3787 continue; 3788 } 3789 3790 /* Suitable for reserving if this block is movable */ 3791 if (block_migratetype == MIGRATE_MOVABLE) { 3792 set_pageblock_migratetype(page, 3793 MIGRATE_RESERVE); 3794 move_freepages_block(zone, page, 3795 MIGRATE_RESERVE); 3796 reserve--; 3797 continue; 3798 } 3799 } 3800 3801 /* 3802 * If the reserve is met and this is a previous reserved block, 3803 * take it back 3804 */ 3805 if (block_migratetype == MIGRATE_RESERVE) { 3806 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 3807 move_freepages_block(zone, page, MIGRATE_MOVABLE); 3808 } 3809 } 3810 } 3811 3812 /* 3813 * Initially all pages are reserved - free ones are freed 3814 * up by free_all_bootmem() once the early boot process is 3815 * done. Non-atomic initialization, single-pass. 3816 */ 3817 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone, 3818 unsigned long start_pfn, enum memmap_context context) 3819 { 3820 struct page *page; 3821 unsigned long end_pfn = start_pfn + size; 3822 unsigned long pfn; 3823 struct zone *z; 3824 3825 if (highest_memmap_pfn < end_pfn - 1) 3826 highest_memmap_pfn = end_pfn - 1; 3827 3828 z = &NODE_DATA(nid)->node_zones[zone]; 3829 for (pfn = start_pfn; pfn < end_pfn; pfn++) { 3830 /* 3831 * There can be holes in boot-time mem_map[]s 3832 * handed to this function. They do not 3833 * exist on hotplugged memory. 3834 */ 3835 if (context == MEMMAP_EARLY) { 3836 if (!early_pfn_valid(pfn)) 3837 continue; 3838 if (!early_pfn_in_nid(pfn, nid)) 3839 continue; 3840 } 3841 page = pfn_to_page(pfn); 3842 set_page_links(page, zone, nid, pfn); 3843 mminit_verify_page_links(page, zone, nid, pfn); 3844 init_page_count(page); 3845 reset_page_mapcount(page); 3846 SetPageReserved(page); 3847 /* 3848 * Mark the block movable so that blocks are reserved for 3849 * movable at startup. This will force kernel allocations 3850 * to reserve their blocks rather than leaking throughout 3851 * the address space during boot when many long-lived 3852 * kernel allocations are made. Later some blocks near 3853 * the start are marked MIGRATE_RESERVE by 3854 * setup_zone_migrate_reserve() 3855 * 3856 * bitmap is created for zone's valid pfn range. but memmap 3857 * can be created for invalid pages (for alignment) 3858 * check here not to call set_pageblock_migratetype() against 3859 * pfn out of zone. 3860 */ 3861 if ((z->zone_start_pfn <= pfn) 3862 && (pfn < z->zone_start_pfn + z->spanned_pages) 3863 && !(pfn & (pageblock_nr_pages - 1))) 3864 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 3865 3866 INIT_LIST_HEAD(&page->lru); 3867 #ifdef WANT_PAGE_VIRTUAL 3868 /* The shift won't overflow because ZONE_NORMAL is below 4G. */ 3869 if (!is_highmem_idx(zone)) 3870 set_page_address(page, __va(pfn << PAGE_SHIFT)); 3871 #endif 3872 } 3873 } 3874 3875 static void __meminit zone_init_free_lists(struct zone *zone) 3876 { 3877 int order, t; 3878 for_each_migratetype_order(order, t) { 3879 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]); 3880 zone->free_area[order].nr_free = 0; 3881 } 3882 } 3883 3884 #ifndef __HAVE_ARCH_MEMMAP_INIT 3885 #define memmap_init(size, nid, zone, start_pfn) \ 3886 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY) 3887 #endif 3888 3889 static int __meminit zone_batchsize(struct zone *zone) 3890 { 3891 #ifdef CONFIG_MMU 3892 int batch; 3893 3894 /* 3895 * The per-cpu-pages pools are set to around 1000th of the 3896 * size of the zone. But no more than 1/2 of a meg. 3897 * 3898 * OK, so we don't know how big the cache is. So guess. 3899 */ 3900 batch = zone->present_pages / 1024; 3901 if (batch * PAGE_SIZE > 512 * 1024) 3902 batch = (512 * 1024) / PAGE_SIZE; 3903 batch /= 4; /* We effectively *= 4 below */ 3904 if (batch < 1) 3905 batch = 1; 3906 3907 /* 3908 * Clamp the batch to a 2^n - 1 value. Having a power 3909 * of 2 value was found to be more likely to have 3910 * suboptimal cache aliasing properties in some cases. 3911 * 3912 * For example if 2 tasks are alternately allocating 3913 * batches of pages, one task can end up with a lot 3914 * of pages of one half of the possible page colors 3915 * and the other with pages of the other colors. 3916 */ 3917 batch = rounddown_pow_of_two(batch + batch/2) - 1; 3918 3919 return batch; 3920 3921 #else 3922 /* The deferral and batching of frees should be suppressed under NOMMU 3923 * conditions. 3924 * 3925 * The problem is that NOMMU needs to be able to allocate large chunks 3926 * of contiguous memory as there's no hardware page translation to 3927 * assemble apparent contiguous memory from discontiguous pages. 3928 * 3929 * Queueing large contiguous runs of pages for batching, however, 3930 * causes the pages to actually be freed in smaller chunks. As there 3931 * can be a significant delay between the individual batches being 3932 * recycled, this leads to the once large chunks of space being 3933 * fragmented and becoming unavailable for high-order allocations. 3934 */ 3935 return 0; 3936 #endif 3937 } 3938 3939 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch) 3940 { 3941 struct per_cpu_pages *pcp; 3942 int migratetype; 3943 3944 memset(p, 0, sizeof(*p)); 3945 3946 pcp = &p->pcp; 3947 pcp->count = 0; 3948 pcp->high = 6 * batch; 3949 pcp->batch = max(1UL, 1 * batch); 3950 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++) 3951 INIT_LIST_HEAD(&pcp->lists[migratetype]); 3952 } 3953 3954 /* 3955 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist 3956 * to the value high for the pageset p. 3957 */ 3958 3959 static void setup_pagelist_highmark(struct per_cpu_pageset *p, 3960 unsigned long high) 3961 { 3962 struct per_cpu_pages *pcp; 3963 3964 pcp = &p->pcp; 3965 pcp->high = high; 3966 pcp->batch = max(1UL, high/4); 3967 if ((high/4) > (PAGE_SHIFT * 8)) 3968 pcp->batch = PAGE_SHIFT * 8; 3969 } 3970 3971 static void __meminit setup_zone_pageset(struct zone *zone) 3972 { 3973 int cpu; 3974 3975 zone->pageset = alloc_percpu(struct per_cpu_pageset); 3976 3977 for_each_possible_cpu(cpu) { 3978 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu); 3979 3980 setup_pageset(pcp, zone_batchsize(zone)); 3981 3982 if (percpu_pagelist_fraction) 3983 setup_pagelist_highmark(pcp, 3984 (zone->present_pages / 3985 percpu_pagelist_fraction)); 3986 } 3987 } 3988 3989 /* 3990 * Allocate per cpu pagesets and initialize them. 3991 * Before this call only boot pagesets were available. 3992 */ 3993 void __init setup_per_cpu_pageset(void) 3994 { 3995 struct zone *zone; 3996 3997 for_each_populated_zone(zone) 3998 setup_zone_pageset(zone); 3999 } 4000 4001 static noinline __init_refok 4002 int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages) 4003 { 4004 int i; 4005 struct pglist_data *pgdat = zone->zone_pgdat; 4006 size_t alloc_size; 4007 4008 /* 4009 * The per-page waitqueue mechanism uses hashed waitqueues 4010 * per zone. 4011 */ 4012 zone->wait_table_hash_nr_entries = 4013 wait_table_hash_nr_entries(zone_size_pages); 4014 zone->wait_table_bits = 4015 wait_table_bits(zone->wait_table_hash_nr_entries); 4016 alloc_size = zone->wait_table_hash_nr_entries 4017 * sizeof(wait_queue_head_t); 4018 4019 if (!slab_is_available()) { 4020 zone->wait_table = (wait_queue_head_t *) 4021 alloc_bootmem_node_nopanic(pgdat, alloc_size); 4022 } else { 4023 /* 4024 * This case means that a zone whose size was 0 gets new memory 4025 * via memory hot-add. 4026 * But it may be the case that a new node was hot-added. In 4027 * this case vmalloc() will not be able to use this new node's 4028 * memory - this wait_table must be initialized to use this new 4029 * node itself as well. 4030 * To use this new node's memory, further consideration will be 4031 * necessary. 4032 */ 4033 zone->wait_table = vmalloc(alloc_size); 4034 } 4035 if (!zone->wait_table) 4036 return -ENOMEM; 4037 4038 for(i = 0; i < zone->wait_table_hash_nr_entries; ++i) 4039 init_waitqueue_head(zone->wait_table + i); 4040 4041 return 0; 4042 } 4043 4044 static __meminit void zone_pcp_init(struct zone *zone) 4045 { 4046 /* 4047 * per cpu subsystem is not up at this point. The following code 4048 * relies on the ability of the linker to provide the 4049 * offset of a (static) per cpu variable into the per cpu area. 4050 */ 4051 zone->pageset = &boot_pageset; 4052 4053 if (zone->present_pages) 4054 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n", 4055 zone->name, zone->present_pages, 4056 zone_batchsize(zone)); 4057 } 4058 4059 int __meminit init_currently_empty_zone(struct zone *zone, 4060 unsigned long zone_start_pfn, 4061 unsigned long size, 4062 enum memmap_context context) 4063 { 4064 struct pglist_data *pgdat = zone->zone_pgdat; 4065 int ret; 4066 ret = zone_wait_table_init(zone, size); 4067 if (ret) 4068 return ret; 4069 pgdat->nr_zones = zone_idx(zone) + 1; 4070 4071 zone->zone_start_pfn = zone_start_pfn; 4072 4073 mminit_dprintk(MMINIT_TRACE, "memmap_init", 4074 "Initialising map node %d zone %lu pfns %lu -> %lu\n", 4075 pgdat->node_id, 4076 (unsigned long)zone_idx(zone), 4077 zone_start_pfn, (zone_start_pfn + size)); 4078 4079 zone_init_free_lists(zone); 4080 4081 return 0; 4082 } 4083 4084 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 4085 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID 4086 /* 4087 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on. 4088 * Architectures may implement their own version but if add_active_range() 4089 * was used and there are no special requirements, this is a convenient 4090 * alternative 4091 */ 4092 int __meminit __early_pfn_to_nid(unsigned long pfn) 4093 { 4094 unsigned long start_pfn, end_pfn; 4095 int i, nid; 4096 4097 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) 4098 if (start_pfn <= pfn && pfn < end_pfn) 4099 return nid; 4100 /* This is a memory hole */ 4101 return -1; 4102 } 4103 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */ 4104 4105 int __meminit early_pfn_to_nid(unsigned long pfn) 4106 { 4107 int nid; 4108 4109 nid = __early_pfn_to_nid(pfn); 4110 if (nid >= 0) 4111 return nid; 4112 /* just returns 0 */ 4113 return 0; 4114 } 4115 4116 #ifdef CONFIG_NODES_SPAN_OTHER_NODES 4117 bool __meminit early_pfn_in_nid(unsigned long pfn, int node) 4118 { 4119 int nid; 4120 4121 nid = __early_pfn_to_nid(pfn); 4122 if (nid >= 0 && nid != node) 4123 return false; 4124 return true; 4125 } 4126 #endif 4127 4128 /** 4129 * free_bootmem_with_active_regions - Call free_bootmem_node for each active range 4130 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed. 4131 * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node 4132 * 4133 * If an architecture guarantees that all ranges registered with 4134 * add_active_ranges() contain no holes and may be freed, this 4135 * this function may be used instead of calling free_bootmem() manually. 4136 */ 4137 void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn) 4138 { 4139 unsigned long start_pfn, end_pfn; 4140 int i, this_nid; 4141 4142 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) { 4143 start_pfn = min(start_pfn, max_low_pfn); 4144 end_pfn = min(end_pfn, max_low_pfn); 4145 4146 if (start_pfn < end_pfn) 4147 free_bootmem_node(NODE_DATA(this_nid), 4148 PFN_PHYS(start_pfn), 4149 (end_pfn - start_pfn) << PAGE_SHIFT); 4150 } 4151 } 4152 4153 /** 4154 * sparse_memory_present_with_active_regions - Call memory_present for each active range 4155 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used. 4156 * 4157 * If an architecture guarantees that all ranges registered with 4158 * add_active_ranges() contain no holes and may be freed, this 4159 * function may be used instead of calling memory_present() manually. 4160 */ 4161 void __init sparse_memory_present_with_active_regions(int nid) 4162 { 4163 unsigned long start_pfn, end_pfn; 4164 int i, this_nid; 4165 4166 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) 4167 memory_present(this_nid, start_pfn, end_pfn); 4168 } 4169 4170 /** 4171 * get_pfn_range_for_nid - Return the start and end page frames for a node 4172 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned. 4173 * @start_pfn: Passed by reference. On return, it will have the node start_pfn. 4174 * @end_pfn: Passed by reference. On return, it will have the node end_pfn. 4175 * 4176 * It returns the start and end page frame of a node based on information 4177 * provided by an arch calling add_active_range(). If called for a node 4178 * with no available memory, a warning is printed and the start and end 4179 * PFNs will be 0. 4180 */ 4181 void __meminit get_pfn_range_for_nid(unsigned int nid, 4182 unsigned long *start_pfn, unsigned long *end_pfn) 4183 { 4184 unsigned long this_start_pfn, this_end_pfn; 4185 int i; 4186 4187 *start_pfn = -1UL; 4188 *end_pfn = 0; 4189 4190 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) { 4191 *start_pfn = min(*start_pfn, this_start_pfn); 4192 *end_pfn = max(*end_pfn, this_end_pfn); 4193 } 4194 4195 if (*start_pfn == -1UL) 4196 *start_pfn = 0; 4197 } 4198 4199 /* 4200 * This finds a zone that can be used for ZONE_MOVABLE pages. The 4201 * assumption is made that zones within a node are ordered in monotonic 4202 * increasing memory addresses so that the "highest" populated zone is used 4203 */ 4204 static void __init find_usable_zone_for_movable(void) 4205 { 4206 int zone_index; 4207 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) { 4208 if (zone_index == ZONE_MOVABLE) 4209 continue; 4210 4211 if (arch_zone_highest_possible_pfn[zone_index] > 4212 arch_zone_lowest_possible_pfn[zone_index]) 4213 break; 4214 } 4215 4216 VM_BUG_ON(zone_index == -1); 4217 movable_zone = zone_index; 4218 } 4219 4220 /* 4221 * The zone ranges provided by the architecture do not include ZONE_MOVABLE 4222 * because it is sized independent of architecture. Unlike the other zones, 4223 * the starting point for ZONE_MOVABLE is not fixed. It may be different 4224 * in each node depending on the size of each node and how evenly kernelcore 4225 * is distributed. This helper function adjusts the zone ranges 4226 * provided by the architecture for a given node by using the end of the 4227 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that 4228 * zones within a node are in order of monotonic increases memory addresses 4229 */ 4230 static void __meminit adjust_zone_range_for_zone_movable(int nid, 4231 unsigned long zone_type, 4232 unsigned long node_start_pfn, 4233 unsigned long node_end_pfn, 4234 unsigned long *zone_start_pfn, 4235 unsigned long *zone_end_pfn) 4236 { 4237 /* Only adjust if ZONE_MOVABLE is on this node */ 4238 if (zone_movable_pfn[nid]) { 4239 /* Size ZONE_MOVABLE */ 4240 if (zone_type == ZONE_MOVABLE) { 4241 *zone_start_pfn = zone_movable_pfn[nid]; 4242 *zone_end_pfn = min(node_end_pfn, 4243 arch_zone_highest_possible_pfn[movable_zone]); 4244 4245 /* Adjust for ZONE_MOVABLE starting within this range */ 4246 } else if (*zone_start_pfn < zone_movable_pfn[nid] && 4247 *zone_end_pfn > zone_movable_pfn[nid]) { 4248 *zone_end_pfn = zone_movable_pfn[nid]; 4249 4250 /* Check if this whole range is within ZONE_MOVABLE */ 4251 } else if (*zone_start_pfn >= zone_movable_pfn[nid]) 4252 *zone_start_pfn = *zone_end_pfn; 4253 } 4254 } 4255 4256 /* 4257 * Return the number of pages a zone spans in a node, including holes 4258 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node() 4259 */ 4260 static unsigned long __meminit zone_spanned_pages_in_node(int nid, 4261 unsigned long zone_type, 4262 unsigned long *ignored) 4263 { 4264 unsigned long node_start_pfn, node_end_pfn; 4265 unsigned long zone_start_pfn, zone_end_pfn; 4266 4267 /* Get the start and end of the node and zone */ 4268 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn); 4269 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type]; 4270 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type]; 4271 adjust_zone_range_for_zone_movable(nid, zone_type, 4272 node_start_pfn, node_end_pfn, 4273 &zone_start_pfn, &zone_end_pfn); 4274 4275 /* Check that this node has pages within the zone's required range */ 4276 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn) 4277 return 0; 4278 4279 /* Move the zone boundaries inside the node if necessary */ 4280 zone_end_pfn = min(zone_end_pfn, node_end_pfn); 4281 zone_start_pfn = max(zone_start_pfn, node_start_pfn); 4282 4283 /* Return the spanned pages */ 4284 return zone_end_pfn - zone_start_pfn; 4285 } 4286 4287 /* 4288 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES, 4289 * then all holes in the requested range will be accounted for. 4290 */ 4291 unsigned long __meminit __absent_pages_in_range(int nid, 4292 unsigned long range_start_pfn, 4293 unsigned long range_end_pfn) 4294 { 4295 unsigned long nr_absent = range_end_pfn - range_start_pfn; 4296 unsigned long start_pfn, end_pfn; 4297 int i; 4298 4299 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) { 4300 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn); 4301 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn); 4302 nr_absent -= end_pfn - start_pfn; 4303 } 4304 return nr_absent; 4305 } 4306 4307 /** 4308 * absent_pages_in_range - Return number of page frames in holes within a range 4309 * @start_pfn: The start PFN to start searching for holes 4310 * @end_pfn: The end PFN to stop searching for holes 4311 * 4312 * It returns the number of pages frames in memory holes within a range. 4313 */ 4314 unsigned long __init absent_pages_in_range(unsigned long start_pfn, 4315 unsigned long end_pfn) 4316 { 4317 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn); 4318 } 4319 4320 /* Return the number of page frames in holes in a zone on a node */ 4321 static unsigned long __meminit zone_absent_pages_in_node(int nid, 4322 unsigned long zone_type, 4323 unsigned long *ignored) 4324 { 4325 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type]; 4326 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type]; 4327 unsigned long node_start_pfn, node_end_pfn; 4328 unsigned long zone_start_pfn, zone_end_pfn; 4329 4330 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn); 4331 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high); 4332 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high); 4333 4334 adjust_zone_range_for_zone_movable(nid, zone_type, 4335 node_start_pfn, node_end_pfn, 4336 &zone_start_pfn, &zone_end_pfn); 4337 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn); 4338 } 4339 4340 #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 4341 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid, 4342 unsigned long zone_type, 4343 unsigned long *zones_size) 4344 { 4345 return zones_size[zone_type]; 4346 } 4347 4348 static inline unsigned long __meminit zone_absent_pages_in_node(int nid, 4349 unsigned long zone_type, 4350 unsigned long *zholes_size) 4351 { 4352 if (!zholes_size) 4353 return 0; 4354 4355 return zholes_size[zone_type]; 4356 } 4357 4358 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 4359 4360 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat, 4361 unsigned long *zones_size, unsigned long *zholes_size) 4362 { 4363 unsigned long realtotalpages, totalpages = 0; 4364 enum zone_type i; 4365 4366 for (i = 0; i < MAX_NR_ZONES; i++) 4367 totalpages += zone_spanned_pages_in_node(pgdat->node_id, i, 4368 zones_size); 4369 pgdat->node_spanned_pages = totalpages; 4370 4371 realtotalpages = totalpages; 4372 for (i = 0; i < MAX_NR_ZONES; i++) 4373 realtotalpages -= 4374 zone_absent_pages_in_node(pgdat->node_id, i, 4375 zholes_size); 4376 pgdat->node_present_pages = realtotalpages; 4377 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id, 4378 realtotalpages); 4379 } 4380 4381 #ifndef CONFIG_SPARSEMEM 4382 /* 4383 * Calculate the size of the zone->blockflags rounded to an unsigned long 4384 * Start by making sure zonesize is a multiple of pageblock_order by rounding 4385 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally 4386 * round what is now in bits to nearest long in bits, then return it in 4387 * bytes. 4388 */ 4389 static unsigned long __init usemap_size(unsigned long zonesize) 4390 { 4391 unsigned long usemapsize; 4392 4393 usemapsize = roundup(zonesize, pageblock_nr_pages); 4394 usemapsize = usemapsize >> pageblock_order; 4395 usemapsize *= NR_PAGEBLOCK_BITS; 4396 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long)); 4397 4398 return usemapsize / 8; 4399 } 4400 4401 static void __init setup_usemap(struct pglist_data *pgdat, 4402 struct zone *zone, unsigned long zonesize) 4403 { 4404 unsigned long usemapsize = usemap_size(zonesize); 4405 zone->pageblock_flags = NULL; 4406 if (usemapsize) 4407 zone->pageblock_flags = alloc_bootmem_node_nopanic(pgdat, 4408 usemapsize); 4409 } 4410 #else 4411 static inline void setup_usemap(struct pglist_data *pgdat, 4412 struct zone *zone, unsigned long zonesize) {} 4413 #endif /* CONFIG_SPARSEMEM */ 4414 4415 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE 4416 4417 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */ 4418 void __init set_pageblock_order(void) 4419 { 4420 unsigned int order; 4421 4422 /* Check that pageblock_nr_pages has not already been setup */ 4423 if (pageblock_order) 4424 return; 4425 4426 if (HPAGE_SHIFT > PAGE_SHIFT) 4427 order = HUGETLB_PAGE_ORDER; 4428 else 4429 order = MAX_ORDER - 1; 4430 4431 /* 4432 * Assume the largest contiguous order of interest is a huge page. 4433 * This value may be variable depending on boot parameters on IA64 and 4434 * powerpc. 4435 */ 4436 pageblock_order = order; 4437 } 4438 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */ 4439 4440 /* 4441 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order() 4442 * is unused as pageblock_order is set at compile-time. See 4443 * include/linux/pageblock-flags.h for the values of pageblock_order based on 4444 * the kernel config 4445 */ 4446 void __init set_pageblock_order(void) 4447 { 4448 } 4449 4450 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */ 4451 4452 /* 4453 * Set up the zone data structures: 4454 * - mark all pages reserved 4455 * - mark all memory queues empty 4456 * - clear the memory bitmaps 4457 * 4458 * NOTE: pgdat should get zeroed by caller. 4459 */ 4460 static void __paginginit free_area_init_core(struct pglist_data *pgdat, 4461 unsigned long *zones_size, unsigned long *zholes_size) 4462 { 4463 enum zone_type j; 4464 int nid = pgdat->node_id; 4465 unsigned long zone_start_pfn = pgdat->node_start_pfn; 4466 int ret; 4467 4468 pgdat_resize_init(pgdat); 4469 init_waitqueue_head(&pgdat->kswapd_wait); 4470 init_waitqueue_head(&pgdat->pfmemalloc_wait); 4471 pgdat_page_cgroup_init(pgdat); 4472 4473 for (j = 0; j < MAX_NR_ZONES; j++) { 4474 struct zone *zone = pgdat->node_zones + j; 4475 unsigned long size, realsize, memmap_pages; 4476 4477 size = zone_spanned_pages_in_node(nid, j, zones_size); 4478 realsize = size - zone_absent_pages_in_node(nid, j, 4479 zholes_size); 4480 4481 /* 4482 * Adjust realsize so that it accounts for how much memory 4483 * is used by this zone for memmap. This affects the watermark 4484 * and per-cpu initialisations 4485 */ 4486 memmap_pages = 4487 PAGE_ALIGN(size * sizeof(struct page)) >> PAGE_SHIFT; 4488 if (realsize >= memmap_pages) { 4489 realsize -= memmap_pages; 4490 if (memmap_pages) 4491 printk(KERN_DEBUG 4492 " %s zone: %lu pages used for memmap\n", 4493 zone_names[j], memmap_pages); 4494 } else 4495 printk(KERN_WARNING 4496 " %s zone: %lu pages exceeds realsize %lu\n", 4497 zone_names[j], memmap_pages, realsize); 4498 4499 /* Account for reserved pages */ 4500 if (j == 0 && realsize > dma_reserve) { 4501 realsize -= dma_reserve; 4502 printk(KERN_DEBUG " %s zone: %lu pages reserved\n", 4503 zone_names[0], dma_reserve); 4504 } 4505 4506 if (!is_highmem_idx(j)) 4507 nr_kernel_pages += realsize; 4508 nr_all_pages += realsize; 4509 4510 zone->spanned_pages = size; 4511 zone->present_pages = realsize; 4512 #ifdef CONFIG_NUMA 4513 zone->node = nid; 4514 zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio) 4515 / 100; 4516 zone->min_slab_pages = (realsize * sysctl_min_slab_ratio) / 100; 4517 #endif 4518 zone->name = zone_names[j]; 4519 spin_lock_init(&zone->lock); 4520 spin_lock_init(&zone->lru_lock); 4521 zone_seqlock_init(zone); 4522 zone->zone_pgdat = pgdat; 4523 4524 zone_pcp_init(zone); 4525 lruvec_init(&zone->lruvec); 4526 if (!size) 4527 continue; 4528 4529 set_pageblock_order(); 4530 setup_usemap(pgdat, zone, size); 4531 ret = init_currently_empty_zone(zone, zone_start_pfn, 4532 size, MEMMAP_EARLY); 4533 BUG_ON(ret); 4534 memmap_init(size, nid, j, zone_start_pfn); 4535 zone_start_pfn += size; 4536 } 4537 } 4538 4539 static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat) 4540 { 4541 /* Skip empty nodes */ 4542 if (!pgdat->node_spanned_pages) 4543 return; 4544 4545 #ifdef CONFIG_FLAT_NODE_MEM_MAP 4546 /* ia64 gets its own node_mem_map, before this, without bootmem */ 4547 if (!pgdat->node_mem_map) { 4548 unsigned long size, start, end; 4549 struct page *map; 4550 4551 /* 4552 * The zone's endpoints aren't required to be MAX_ORDER 4553 * aligned but the node_mem_map endpoints must be in order 4554 * for the buddy allocator to function correctly. 4555 */ 4556 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1); 4557 end = pgdat->node_start_pfn + pgdat->node_spanned_pages; 4558 end = ALIGN(end, MAX_ORDER_NR_PAGES); 4559 size = (end - start) * sizeof(struct page); 4560 map = alloc_remap(pgdat->node_id, size); 4561 if (!map) 4562 map = alloc_bootmem_node_nopanic(pgdat, size); 4563 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start); 4564 } 4565 #ifndef CONFIG_NEED_MULTIPLE_NODES 4566 /* 4567 * With no DISCONTIG, the global mem_map is just set as node 0's 4568 */ 4569 if (pgdat == NODE_DATA(0)) { 4570 mem_map = NODE_DATA(0)->node_mem_map; 4571 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 4572 if (page_to_pfn(mem_map) != pgdat->node_start_pfn) 4573 mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET); 4574 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 4575 } 4576 #endif 4577 #endif /* CONFIG_FLAT_NODE_MEM_MAP */ 4578 } 4579 4580 void __paginginit free_area_init_node(int nid, unsigned long *zones_size, 4581 unsigned long node_start_pfn, unsigned long *zholes_size) 4582 { 4583 pg_data_t *pgdat = NODE_DATA(nid); 4584 4585 /* pg_data_t should be reset to zero when it's allocated */ 4586 WARN_ON(pgdat->nr_zones || pgdat->classzone_idx); 4587 4588 pgdat->node_id = nid; 4589 pgdat->node_start_pfn = node_start_pfn; 4590 init_zone_allows_reclaim(nid); 4591 calculate_node_totalpages(pgdat, zones_size, zholes_size); 4592 4593 alloc_node_mem_map(pgdat); 4594 #ifdef CONFIG_FLAT_NODE_MEM_MAP 4595 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n", 4596 nid, (unsigned long)pgdat, 4597 (unsigned long)pgdat->node_mem_map); 4598 #endif 4599 4600 free_area_init_core(pgdat, zones_size, zholes_size); 4601 } 4602 4603 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 4604 4605 #if MAX_NUMNODES > 1 4606 /* 4607 * Figure out the number of possible node ids. 4608 */ 4609 static void __init setup_nr_node_ids(void) 4610 { 4611 unsigned int node; 4612 unsigned int highest = 0; 4613 4614 for_each_node_mask(node, node_possible_map) 4615 highest = node; 4616 nr_node_ids = highest + 1; 4617 } 4618 #else 4619 static inline void setup_nr_node_ids(void) 4620 { 4621 } 4622 #endif 4623 4624 /** 4625 * node_map_pfn_alignment - determine the maximum internode alignment 4626 * 4627 * This function should be called after node map is populated and sorted. 4628 * It calculates the maximum power of two alignment which can distinguish 4629 * all the nodes. 4630 * 4631 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value 4632 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the 4633 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is 4634 * shifted, 1GiB is enough and this function will indicate so. 4635 * 4636 * This is used to test whether pfn -> nid mapping of the chosen memory 4637 * model has fine enough granularity to avoid incorrect mapping for the 4638 * populated node map. 4639 * 4640 * Returns the determined alignment in pfn's. 0 if there is no alignment 4641 * requirement (single node). 4642 */ 4643 unsigned long __init node_map_pfn_alignment(void) 4644 { 4645 unsigned long accl_mask = 0, last_end = 0; 4646 unsigned long start, end, mask; 4647 int last_nid = -1; 4648 int i, nid; 4649 4650 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) { 4651 if (!start || last_nid < 0 || last_nid == nid) { 4652 last_nid = nid; 4653 last_end = end; 4654 continue; 4655 } 4656 4657 /* 4658 * Start with a mask granular enough to pin-point to the 4659 * start pfn and tick off bits one-by-one until it becomes 4660 * too coarse to separate the current node from the last. 4661 */ 4662 mask = ~((1 << __ffs(start)) - 1); 4663 while (mask && last_end <= (start & (mask << 1))) 4664 mask <<= 1; 4665 4666 /* accumulate all internode masks */ 4667 accl_mask |= mask; 4668 } 4669 4670 /* convert mask to number of pages */ 4671 return ~accl_mask + 1; 4672 } 4673 4674 /* Find the lowest pfn for a node */ 4675 static unsigned long __init find_min_pfn_for_node(int nid) 4676 { 4677 unsigned long min_pfn = ULONG_MAX; 4678 unsigned long start_pfn; 4679 int i; 4680 4681 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL) 4682 min_pfn = min(min_pfn, start_pfn); 4683 4684 if (min_pfn == ULONG_MAX) { 4685 printk(KERN_WARNING 4686 "Could not find start_pfn for node %d\n", nid); 4687 return 0; 4688 } 4689 4690 return min_pfn; 4691 } 4692 4693 /** 4694 * find_min_pfn_with_active_regions - Find the minimum PFN registered 4695 * 4696 * It returns the minimum PFN based on information provided via 4697 * add_active_range(). 4698 */ 4699 unsigned long __init find_min_pfn_with_active_regions(void) 4700 { 4701 return find_min_pfn_for_node(MAX_NUMNODES); 4702 } 4703 4704 /* 4705 * early_calculate_totalpages() 4706 * Sum pages in active regions for movable zone. 4707 * Populate N_HIGH_MEMORY for calculating usable_nodes. 4708 */ 4709 static unsigned long __init early_calculate_totalpages(void) 4710 { 4711 unsigned long totalpages = 0; 4712 unsigned long start_pfn, end_pfn; 4713 int i, nid; 4714 4715 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) { 4716 unsigned long pages = end_pfn - start_pfn; 4717 4718 totalpages += pages; 4719 if (pages) 4720 node_set_state(nid, N_HIGH_MEMORY); 4721 } 4722 return totalpages; 4723 } 4724 4725 /* 4726 * Find the PFN the Movable zone begins in each node. Kernel memory 4727 * is spread evenly between nodes as long as the nodes have enough 4728 * memory. When they don't, some nodes will have more kernelcore than 4729 * others 4730 */ 4731 static void __init find_zone_movable_pfns_for_nodes(void) 4732 { 4733 int i, nid; 4734 unsigned long usable_startpfn; 4735 unsigned long kernelcore_node, kernelcore_remaining; 4736 /* save the state before borrow the nodemask */ 4737 nodemask_t saved_node_state = node_states[N_HIGH_MEMORY]; 4738 unsigned long totalpages = early_calculate_totalpages(); 4739 int usable_nodes = nodes_weight(node_states[N_HIGH_MEMORY]); 4740 4741 /* 4742 * If movablecore was specified, calculate what size of 4743 * kernelcore that corresponds so that memory usable for 4744 * any allocation type is evenly spread. If both kernelcore 4745 * and movablecore are specified, then the value of kernelcore 4746 * will be used for required_kernelcore if it's greater than 4747 * what movablecore would have allowed. 4748 */ 4749 if (required_movablecore) { 4750 unsigned long corepages; 4751 4752 /* 4753 * Round-up so that ZONE_MOVABLE is at least as large as what 4754 * was requested by the user 4755 */ 4756 required_movablecore = 4757 roundup(required_movablecore, MAX_ORDER_NR_PAGES); 4758 corepages = totalpages - required_movablecore; 4759 4760 required_kernelcore = max(required_kernelcore, corepages); 4761 } 4762 4763 /* If kernelcore was not specified, there is no ZONE_MOVABLE */ 4764 if (!required_kernelcore) 4765 goto out; 4766 4767 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */ 4768 find_usable_zone_for_movable(); 4769 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone]; 4770 4771 restart: 4772 /* Spread kernelcore memory as evenly as possible throughout nodes */ 4773 kernelcore_node = required_kernelcore / usable_nodes; 4774 for_each_node_state(nid, N_HIGH_MEMORY) { 4775 unsigned long start_pfn, end_pfn; 4776 4777 /* 4778 * Recalculate kernelcore_node if the division per node 4779 * now exceeds what is necessary to satisfy the requested 4780 * amount of memory for the kernel 4781 */ 4782 if (required_kernelcore < kernelcore_node) 4783 kernelcore_node = required_kernelcore / usable_nodes; 4784 4785 /* 4786 * As the map is walked, we track how much memory is usable 4787 * by the kernel using kernelcore_remaining. When it is 4788 * 0, the rest of the node is usable by ZONE_MOVABLE 4789 */ 4790 kernelcore_remaining = kernelcore_node; 4791 4792 /* Go through each range of PFNs within this node */ 4793 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) { 4794 unsigned long size_pages; 4795 4796 start_pfn = max(start_pfn, zone_movable_pfn[nid]); 4797 if (start_pfn >= end_pfn) 4798 continue; 4799 4800 /* Account for what is only usable for kernelcore */ 4801 if (start_pfn < usable_startpfn) { 4802 unsigned long kernel_pages; 4803 kernel_pages = min(end_pfn, usable_startpfn) 4804 - start_pfn; 4805 4806 kernelcore_remaining -= min(kernel_pages, 4807 kernelcore_remaining); 4808 required_kernelcore -= min(kernel_pages, 4809 required_kernelcore); 4810 4811 /* Continue if range is now fully accounted */ 4812 if (end_pfn <= usable_startpfn) { 4813 4814 /* 4815 * Push zone_movable_pfn to the end so 4816 * that if we have to rebalance 4817 * kernelcore across nodes, we will 4818 * not double account here 4819 */ 4820 zone_movable_pfn[nid] = end_pfn; 4821 continue; 4822 } 4823 start_pfn = usable_startpfn; 4824 } 4825 4826 /* 4827 * The usable PFN range for ZONE_MOVABLE is from 4828 * start_pfn->end_pfn. Calculate size_pages as the 4829 * number of pages used as kernelcore 4830 */ 4831 size_pages = end_pfn - start_pfn; 4832 if (size_pages > kernelcore_remaining) 4833 size_pages = kernelcore_remaining; 4834 zone_movable_pfn[nid] = start_pfn + size_pages; 4835 4836 /* 4837 * Some kernelcore has been met, update counts and 4838 * break if the kernelcore for this node has been 4839 * satisified 4840 */ 4841 required_kernelcore -= min(required_kernelcore, 4842 size_pages); 4843 kernelcore_remaining -= size_pages; 4844 if (!kernelcore_remaining) 4845 break; 4846 } 4847 } 4848 4849 /* 4850 * If there is still required_kernelcore, we do another pass with one 4851 * less node in the count. This will push zone_movable_pfn[nid] further 4852 * along on the nodes that still have memory until kernelcore is 4853 * satisified 4854 */ 4855 usable_nodes--; 4856 if (usable_nodes && required_kernelcore > usable_nodes) 4857 goto restart; 4858 4859 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */ 4860 for (nid = 0; nid < MAX_NUMNODES; nid++) 4861 zone_movable_pfn[nid] = 4862 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES); 4863 4864 out: 4865 /* restore the node_state */ 4866 node_states[N_HIGH_MEMORY] = saved_node_state; 4867 } 4868 4869 /* Any regular memory on that node ? */ 4870 static void __init check_for_regular_memory(pg_data_t *pgdat) 4871 { 4872 #ifdef CONFIG_HIGHMEM 4873 enum zone_type zone_type; 4874 4875 for (zone_type = 0; zone_type <= ZONE_NORMAL; zone_type++) { 4876 struct zone *zone = &pgdat->node_zones[zone_type]; 4877 if (zone->present_pages) { 4878 node_set_state(zone_to_nid(zone), N_NORMAL_MEMORY); 4879 break; 4880 } 4881 } 4882 #endif 4883 } 4884 4885 /** 4886 * free_area_init_nodes - Initialise all pg_data_t and zone data 4887 * @max_zone_pfn: an array of max PFNs for each zone 4888 * 4889 * This will call free_area_init_node() for each active node in the system. 4890 * Using the page ranges provided by add_active_range(), the size of each 4891 * zone in each node and their holes is calculated. If the maximum PFN 4892 * between two adjacent zones match, it is assumed that the zone is empty. 4893 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed 4894 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone 4895 * starts where the previous one ended. For example, ZONE_DMA32 starts 4896 * at arch_max_dma_pfn. 4897 */ 4898 void __init free_area_init_nodes(unsigned long *max_zone_pfn) 4899 { 4900 unsigned long start_pfn, end_pfn; 4901 int i, nid; 4902 4903 /* Record where the zone boundaries are */ 4904 memset(arch_zone_lowest_possible_pfn, 0, 4905 sizeof(arch_zone_lowest_possible_pfn)); 4906 memset(arch_zone_highest_possible_pfn, 0, 4907 sizeof(arch_zone_highest_possible_pfn)); 4908 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions(); 4909 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0]; 4910 for (i = 1; i < MAX_NR_ZONES; i++) { 4911 if (i == ZONE_MOVABLE) 4912 continue; 4913 arch_zone_lowest_possible_pfn[i] = 4914 arch_zone_highest_possible_pfn[i-1]; 4915 arch_zone_highest_possible_pfn[i] = 4916 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]); 4917 } 4918 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0; 4919 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0; 4920 4921 /* Find the PFNs that ZONE_MOVABLE begins at in each node */ 4922 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn)); 4923 find_zone_movable_pfns_for_nodes(); 4924 4925 /* Print out the zone ranges */ 4926 printk("Zone ranges:\n"); 4927 for (i = 0; i < MAX_NR_ZONES; i++) { 4928 if (i == ZONE_MOVABLE) 4929 continue; 4930 printk(KERN_CONT " %-8s ", zone_names[i]); 4931 if (arch_zone_lowest_possible_pfn[i] == 4932 arch_zone_highest_possible_pfn[i]) 4933 printk(KERN_CONT "empty\n"); 4934 else 4935 printk(KERN_CONT "[mem %0#10lx-%0#10lx]\n", 4936 arch_zone_lowest_possible_pfn[i] << PAGE_SHIFT, 4937 (arch_zone_highest_possible_pfn[i] 4938 << PAGE_SHIFT) - 1); 4939 } 4940 4941 /* Print out the PFNs ZONE_MOVABLE begins at in each node */ 4942 printk("Movable zone start for each node\n"); 4943 for (i = 0; i < MAX_NUMNODES; i++) { 4944 if (zone_movable_pfn[i]) 4945 printk(" Node %d: %#010lx\n", i, 4946 zone_movable_pfn[i] << PAGE_SHIFT); 4947 } 4948 4949 /* Print out the early node map */ 4950 printk("Early memory node ranges\n"); 4951 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) 4952 printk(" node %3d: [mem %#010lx-%#010lx]\n", nid, 4953 start_pfn << PAGE_SHIFT, (end_pfn << PAGE_SHIFT) - 1); 4954 4955 /* Initialise every node */ 4956 mminit_verify_pageflags_layout(); 4957 setup_nr_node_ids(); 4958 for_each_online_node(nid) { 4959 pg_data_t *pgdat = NODE_DATA(nid); 4960 free_area_init_node(nid, NULL, 4961 find_min_pfn_for_node(nid), NULL); 4962 4963 /* Any memory on that node */ 4964 if (pgdat->node_present_pages) 4965 node_set_state(nid, N_HIGH_MEMORY); 4966 check_for_regular_memory(pgdat); 4967 } 4968 } 4969 4970 static int __init cmdline_parse_core(char *p, unsigned long *core) 4971 { 4972 unsigned long long coremem; 4973 if (!p) 4974 return -EINVAL; 4975 4976 coremem = memparse(p, &p); 4977 *core = coremem >> PAGE_SHIFT; 4978 4979 /* Paranoid check that UL is enough for the coremem value */ 4980 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX); 4981 4982 return 0; 4983 } 4984 4985 /* 4986 * kernelcore=size sets the amount of memory for use for allocations that 4987 * cannot be reclaimed or migrated. 4988 */ 4989 static int __init cmdline_parse_kernelcore(char *p) 4990 { 4991 return cmdline_parse_core(p, &required_kernelcore); 4992 } 4993 4994 /* 4995 * movablecore=size sets the amount of memory for use for allocations that 4996 * can be reclaimed or migrated. 4997 */ 4998 static int __init cmdline_parse_movablecore(char *p) 4999 { 5000 return cmdline_parse_core(p, &required_movablecore); 5001 } 5002 5003 early_param("kernelcore", cmdline_parse_kernelcore); 5004 early_param("movablecore", cmdline_parse_movablecore); 5005 5006 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 5007 5008 /** 5009 * set_dma_reserve - set the specified number of pages reserved in the first zone 5010 * @new_dma_reserve: The number of pages to mark reserved 5011 * 5012 * The per-cpu batchsize and zone watermarks are determined by present_pages. 5013 * In the DMA zone, a significant percentage may be consumed by kernel image 5014 * and other unfreeable allocations which can skew the watermarks badly. This 5015 * function may optionally be used to account for unfreeable pages in the 5016 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and 5017 * smaller per-cpu batchsize. 5018 */ 5019 void __init set_dma_reserve(unsigned long new_dma_reserve) 5020 { 5021 dma_reserve = new_dma_reserve; 5022 } 5023 5024 void __init free_area_init(unsigned long *zones_size) 5025 { 5026 free_area_init_node(0, zones_size, 5027 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL); 5028 } 5029 5030 static int page_alloc_cpu_notify(struct notifier_block *self, 5031 unsigned long action, void *hcpu) 5032 { 5033 int cpu = (unsigned long)hcpu; 5034 5035 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) { 5036 lru_add_drain_cpu(cpu); 5037 drain_pages(cpu); 5038 5039 /* 5040 * Spill the event counters of the dead processor 5041 * into the current processors event counters. 5042 * This artificially elevates the count of the current 5043 * processor. 5044 */ 5045 vm_events_fold_cpu(cpu); 5046 5047 /* 5048 * Zero the differential counters of the dead processor 5049 * so that the vm statistics are consistent. 5050 * 5051 * This is only okay since the processor is dead and cannot 5052 * race with what we are doing. 5053 */ 5054 refresh_cpu_vm_stats(cpu); 5055 } 5056 return NOTIFY_OK; 5057 } 5058 5059 void __init page_alloc_init(void) 5060 { 5061 hotcpu_notifier(page_alloc_cpu_notify, 0); 5062 } 5063 5064 /* 5065 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio 5066 * or min_free_kbytes changes. 5067 */ 5068 static void calculate_totalreserve_pages(void) 5069 { 5070 struct pglist_data *pgdat; 5071 unsigned long reserve_pages = 0; 5072 enum zone_type i, j; 5073 5074 for_each_online_pgdat(pgdat) { 5075 for (i = 0; i < MAX_NR_ZONES; i++) { 5076 struct zone *zone = pgdat->node_zones + i; 5077 unsigned long max = 0; 5078 5079 /* Find valid and maximum lowmem_reserve in the zone */ 5080 for (j = i; j < MAX_NR_ZONES; j++) { 5081 if (zone->lowmem_reserve[j] > max) 5082 max = zone->lowmem_reserve[j]; 5083 } 5084 5085 /* we treat the high watermark as reserved pages. */ 5086 max += high_wmark_pages(zone); 5087 5088 if (max > zone->present_pages) 5089 max = zone->present_pages; 5090 reserve_pages += max; 5091 /* 5092 * Lowmem reserves are not available to 5093 * GFP_HIGHUSER page cache allocations and 5094 * kswapd tries to balance zones to their high 5095 * watermark. As a result, neither should be 5096 * regarded as dirtyable memory, to prevent a 5097 * situation where reclaim has to clean pages 5098 * in order to balance the zones. 5099 */ 5100 zone->dirty_balance_reserve = max; 5101 } 5102 } 5103 dirty_balance_reserve = reserve_pages; 5104 totalreserve_pages = reserve_pages; 5105 } 5106 5107 /* 5108 * setup_per_zone_lowmem_reserve - called whenever 5109 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone 5110 * has a correct pages reserved value, so an adequate number of 5111 * pages are left in the zone after a successful __alloc_pages(). 5112 */ 5113 static void setup_per_zone_lowmem_reserve(void) 5114 { 5115 struct pglist_data *pgdat; 5116 enum zone_type j, idx; 5117 5118 for_each_online_pgdat(pgdat) { 5119 for (j = 0; j < MAX_NR_ZONES; j++) { 5120 struct zone *zone = pgdat->node_zones + j; 5121 unsigned long present_pages = zone->present_pages; 5122 5123 zone->lowmem_reserve[j] = 0; 5124 5125 idx = j; 5126 while (idx) { 5127 struct zone *lower_zone; 5128 5129 idx--; 5130 5131 if (sysctl_lowmem_reserve_ratio[idx] < 1) 5132 sysctl_lowmem_reserve_ratio[idx] = 1; 5133 5134 lower_zone = pgdat->node_zones + idx; 5135 lower_zone->lowmem_reserve[j] = present_pages / 5136 sysctl_lowmem_reserve_ratio[idx]; 5137 present_pages += lower_zone->present_pages; 5138 } 5139 } 5140 } 5141 5142 /* update totalreserve_pages */ 5143 calculate_totalreserve_pages(); 5144 } 5145 5146 static void __setup_per_zone_wmarks(void) 5147 { 5148 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10); 5149 unsigned long lowmem_pages = 0; 5150 struct zone *zone; 5151 unsigned long flags; 5152 5153 /* Calculate total number of !ZONE_HIGHMEM pages */ 5154 for_each_zone(zone) { 5155 if (!is_highmem(zone)) 5156 lowmem_pages += zone->present_pages; 5157 } 5158 5159 for_each_zone(zone) { 5160 u64 tmp; 5161 5162 spin_lock_irqsave(&zone->lock, flags); 5163 tmp = (u64)pages_min * zone->present_pages; 5164 do_div(tmp, lowmem_pages); 5165 if (is_highmem(zone)) { 5166 /* 5167 * __GFP_HIGH and PF_MEMALLOC allocations usually don't 5168 * need highmem pages, so cap pages_min to a small 5169 * value here. 5170 * 5171 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN) 5172 * deltas controls asynch page reclaim, and so should 5173 * not be capped for highmem. 5174 */ 5175 int min_pages; 5176 5177 min_pages = zone->present_pages / 1024; 5178 if (min_pages < SWAP_CLUSTER_MAX) 5179 min_pages = SWAP_CLUSTER_MAX; 5180 if (min_pages > 128) 5181 min_pages = 128; 5182 zone->watermark[WMARK_MIN] = min_pages; 5183 } else { 5184 /* 5185 * If it's a lowmem zone, reserve a number of pages 5186 * proportionate to the zone's size. 5187 */ 5188 zone->watermark[WMARK_MIN] = tmp; 5189 } 5190 5191 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + (tmp >> 2); 5192 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1); 5193 5194 zone->watermark[WMARK_MIN] += cma_wmark_pages(zone); 5195 zone->watermark[WMARK_LOW] += cma_wmark_pages(zone); 5196 zone->watermark[WMARK_HIGH] += cma_wmark_pages(zone); 5197 5198 setup_zone_migrate_reserve(zone); 5199 spin_unlock_irqrestore(&zone->lock, flags); 5200 } 5201 5202 /* update totalreserve_pages */ 5203 calculate_totalreserve_pages(); 5204 } 5205 5206 /** 5207 * setup_per_zone_wmarks - called when min_free_kbytes changes 5208 * or when memory is hot-{added|removed} 5209 * 5210 * Ensures that the watermark[min,low,high] values for each zone are set 5211 * correctly with respect to min_free_kbytes. 5212 */ 5213 void setup_per_zone_wmarks(void) 5214 { 5215 mutex_lock(&zonelists_mutex); 5216 __setup_per_zone_wmarks(); 5217 mutex_unlock(&zonelists_mutex); 5218 } 5219 5220 /* 5221 * The inactive anon list should be small enough that the VM never has to 5222 * do too much work, but large enough that each inactive page has a chance 5223 * to be referenced again before it is swapped out. 5224 * 5225 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to 5226 * INACTIVE_ANON pages on this zone's LRU, maintained by the 5227 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of 5228 * the anonymous pages are kept on the inactive list. 5229 * 5230 * total target max 5231 * memory ratio inactive anon 5232 * ------------------------------------- 5233 * 10MB 1 5MB 5234 * 100MB 1 50MB 5235 * 1GB 3 250MB 5236 * 10GB 10 0.9GB 5237 * 100GB 31 3GB 5238 * 1TB 101 10GB 5239 * 10TB 320 32GB 5240 */ 5241 static void __meminit calculate_zone_inactive_ratio(struct zone *zone) 5242 { 5243 unsigned int gb, ratio; 5244 5245 /* Zone size in gigabytes */ 5246 gb = zone->present_pages >> (30 - PAGE_SHIFT); 5247 if (gb) 5248 ratio = int_sqrt(10 * gb); 5249 else 5250 ratio = 1; 5251 5252 zone->inactive_ratio = ratio; 5253 } 5254 5255 static void __meminit setup_per_zone_inactive_ratio(void) 5256 { 5257 struct zone *zone; 5258 5259 for_each_zone(zone) 5260 calculate_zone_inactive_ratio(zone); 5261 } 5262 5263 /* 5264 * Initialise min_free_kbytes. 5265 * 5266 * For small machines we want it small (128k min). For large machines 5267 * we want it large (64MB max). But it is not linear, because network 5268 * bandwidth does not increase linearly with machine size. We use 5269 * 5270 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy: 5271 * min_free_kbytes = sqrt(lowmem_kbytes * 16) 5272 * 5273 * which yields 5274 * 5275 * 16MB: 512k 5276 * 32MB: 724k 5277 * 64MB: 1024k 5278 * 128MB: 1448k 5279 * 256MB: 2048k 5280 * 512MB: 2896k 5281 * 1024MB: 4096k 5282 * 2048MB: 5792k 5283 * 4096MB: 8192k 5284 * 8192MB: 11584k 5285 * 16384MB: 16384k 5286 */ 5287 int __meminit init_per_zone_wmark_min(void) 5288 { 5289 unsigned long lowmem_kbytes; 5290 5291 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10); 5292 5293 min_free_kbytes = int_sqrt(lowmem_kbytes * 16); 5294 if (min_free_kbytes < 128) 5295 min_free_kbytes = 128; 5296 if (min_free_kbytes > 65536) 5297 min_free_kbytes = 65536; 5298 setup_per_zone_wmarks(); 5299 refresh_zone_stat_thresholds(); 5300 setup_per_zone_lowmem_reserve(); 5301 setup_per_zone_inactive_ratio(); 5302 return 0; 5303 } 5304 module_init(init_per_zone_wmark_min) 5305 5306 /* 5307 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so 5308 * that we can call two helper functions whenever min_free_kbytes 5309 * changes. 5310 */ 5311 int min_free_kbytes_sysctl_handler(ctl_table *table, int write, 5312 void __user *buffer, size_t *length, loff_t *ppos) 5313 { 5314 proc_dointvec(table, write, buffer, length, ppos); 5315 if (write) 5316 setup_per_zone_wmarks(); 5317 return 0; 5318 } 5319 5320 #ifdef CONFIG_NUMA 5321 int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write, 5322 void __user *buffer, size_t *length, loff_t *ppos) 5323 { 5324 struct zone *zone; 5325 int rc; 5326 5327 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 5328 if (rc) 5329 return rc; 5330 5331 for_each_zone(zone) 5332 zone->min_unmapped_pages = (zone->present_pages * 5333 sysctl_min_unmapped_ratio) / 100; 5334 return 0; 5335 } 5336 5337 int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write, 5338 void __user *buffer, size_t *length, loff_t *ppos) 5339 { 5340 struct zone *zone; 5341 int rc; 5342 5343 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 5344 if (rc) 5345 return rc; 5346 5347 for_each_zone(zone) 5348 zone->min_slab_pages = (zone->present_pages * 5349 sysctl_min_slab_ratio) / 100; 5350 return 0; 5351 } 5352 #endif 5353 5354 /* 5355 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around 5356 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve() 5357 * whenever sysctl_lowmem_reserve_ratio changes. 5358 * 5359 * The reserve ratio obviously has absolutely no relation with the 5360 * minimum watermarks. The lowmem reserve ratio can only make sense 5361 * if in function of the boot time zone sizes. 5362 */ 5363 int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write, 5364 void __user *buffer, size_t *length, loff_t *ppos) 5365 { 5366 proc_dointvec_minmax(table, write, buffer, length, ppos); 5367 setup_per_zone_lowmem_reserve(); 5368 return 0; 5369 } 5370 5371 /* 5372 * percpu_pagelist_fraction - changes the pcp->high for each zone on each 5373 * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist 5374 * can have before it gets flushed back to buddy allocator. 5375 */ 5376 5377 int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write, 5378 void __user *buffer, size_t *length, loff_t *ppos) 5379 { 5380 struct zone *zone; 5381 unsigned int cpu; 5382 int ret; 5383 5384 ret = proc_dointvec_minmax(table, write, buffer, length, ppos); 5385 if (!write || (ret < 0)) 5386 return ret; 5387 for_each_populated_zone(zone) { 5388 for_each_possible_cpu(cpu) { 5389 unsigned long high; 5390 high = zone->present_pages / percpu_pagelist_fraction; 5391 setup_pagelist_highmark( 5392 per_cpu_ptr(zone->pageset, cpu), high); 5393 } 5394 } 5395 return 0; 5396 } 5397 5398 int hashdist = HASHDIST_DEFAULT; 5399 5400 #ifdef CONFIG_NUMA 5401 static int __init set_hashdist(char *str) 5402 { 5403 if (!str) 5404 return 0; 5405 hashdist = simple_strtoul(str, &str, 0); 5406 return 1; 5407 } 5408 __setup("hashdist=", set_hashdist); 5409 #endif 5410 5411 /* 5412 * allocate a large system hash table from bootmem 5413 * - it is assumed that the hash table must contain an exact power-of-2 5414 * quantity of entries 5415 * - limit is the number of hash buckets, not the total allocation size 5416 */ 5417 void *__init alloc_large_system_hash(const char *tablename, 5418 unsigned long bucketsize, 5419 unsigned long numentries, 5420 int scale, 5421 int flags, 5422 unsigned int *_hash_shift, 5423 unsigned int *_hash_mask, 5424 unsigned long low_limit, 5425 unsigned long high_limit) 5426 { 5427 unsigned long long max = high_limit; 5428 unsigned long log2qty, size; 5429 void *table = NULL; 5430 5431 /* allow the kernel cmdline to have a say */ 5432 if (!numentries) { 5433 /* round applicable memory size up to nearest megabyte */ 5434 numentries = nr_kernel_pages; 5435 numentries += (1UL << (20 - PAGE_SHIFT)) - 1; 5436 numentries >>= 20 - PAGE_SHIFT; 5437 numentries <<= 20 - PAGE_SHIFT; 5438 5439 /* limit to 1 bucket per 2^scale bytes of low memory */ 5440 if (scale > PAGE_SHIFT) 5441 numentries >>= (scale - PAGE_SHIFT); 5442 else 5443 numentries <<= (PAGE_SHIFT - scale); 5444 5445 /* Make sure we've got at least a 0-order allocation.. */ 5446 if (unlikely(flags & HASH_SMALL)) { 5447 /* Makes no sense without HASH_EARLY */ 5448 WARN_ON(!(flags & HASH_EARLY)); 5449 if (!(numentries >> *_hash_shift)) { 5450 numentries = 1UL << *_hash_shift; 5451 BUG_ON(!numentries); 5452 } 5453 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE)) 5454 numentries = PAGE_SIZE / bucketsize; 5455 } 5456 numentries = roundup_pow_of_two(numentries); 5457 5458 /* limit allocation size to 1/16 total memory by default */ 5459 if (max == 0) { 5460 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4; 5461 do_div(max, bucketsize); 5462 } 5463 max = min(max, 0x80000000ULL); 5464 5465 if (numentries < low_limit) 5466 numentries = low_limit; 5467 if (numentries > max) 5468 numentries = max; 5469 5470 log2qty = ilog2(numentries); 5471 5472 do { 5473 size = bucketsize << log2qty; 5474 if (flags & HASH_EARLY) 5475 table = alloc_bootmem_nopanic(size); 5476 else if (hashdist) 5477 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL); 5478 else { 5479 /* 5480 * If bucketsize is not a power-of-two, we may free 5481 * some pages at the end of hash table which 5482 * alloc_pages_exact() automatically does 5483 */ 5484 if (get_order(size) < MAX_ORDER) { 5485 table = alloc_pages_exact(size, GFP_ATOMIC); 5486 kmemleak_alloc(table, size, 1, GFP_ATOMIC); 5487 } 5488 } 5489 } while (!table && size > PAGE_SIZE && --log2qty); 5490 5491 if (!table) 5492 panic("Failed to allocate %s hash table\n", tablename); 5493 5494 printk(KERN_INFO "%s hash table entries: %ld (order: %d, %lu bytes)\n", 5495 tablename, 5496 (1UL << log2qty), 5497 ilog2(size) - PAGE_SHIFT, 5498 size); 5499 5500 if (_hash_shift) 5501 *_hash_shift = log2qty; 5502 if (_hash_mask) 5503 *_hash_mask = (1 << log2qty) - 1; 5504 5505 return table; 5506 } 5507 5508 /* Return a pointer to the bitmap storing bits affecting a block of pages */ 5509 static inline unsigned long *get_pageblock_bitmap(struct zone *zone, 5510 unsigned long pfn) 5511 { 5512 #ifdef CONFIG_SPARSEMEM 5513 return __pfn_to_section(pfn)->pageblock_flags; 5514 #else 5515 return zone->pageblock_flags; 5516 #endif /* CONFIG_SPARSEMEM */ 5517 } 5518 5519 static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn) 5520 { 5521 #ifdef CONFIG_SPARSEMEM 5522 pfn &= (PAGES_PER_SECTION-1); 5523 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS; 5524 #else 5525 pfn = pfn - zone->zone_start_pfn; 5526 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS; 5527 #endif /* CONFIG_SPARSEMEM */ 5528 } 5529 5530 /** 5531 * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages 5532 * @page: The page within the block of interest 5533 * @start_bitidx: The first bit of interest to retrieve 5534 * @end_bitidx: The last bit of interest 5535 * returns pageblock_bits flags 5536 */ 5537 unsigned long get_pageblock_flags_group(struct page *page, 5538 int start_bitidx, int end_bitidx) 5539 { 5540 struct zone *zone; 5541 unsigned long *bitmap; 5542 unsigned long pfn, bitidx; 5543 unsigned long flags = 0; 5544 unsigned long value = 1; 5545 5546 zone = page_zone(page); 5547 pfn = page_to_pfn(page); 5548 bitmap = get_pageblock_bitmap(zone, pfn); 5549 bitidx = pfn_to_bitidx(zone, pfn); 5550 5551 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1) 5552 if (test_bit(bitidx + start_bitidx, bitmap)) 5553 flags |= value; 5554 5555 return flags; 5556 } 5557 5558 /** 5559 * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages 5560 * @page: The page within the block of interest 5561 * @start_bitidx: The first bit of interest 5562 * @end_bitidx: The last bit of interest 5563 * @flags: The flags to set 5564 */ 5565 void set_pageblock_flags_group(struct page *page, unsigned long flags, 5566 int start_bitidx, int end_bitidx) 5567 { 5568 struct zone *zone; 5569 unsigned long *bitmap; 5570 unsigned long pfn, bitidx; 5571 unsigned long value = 1; 5572 5573 zone = page_zone(page); 5574 pfn = page_to_pfn(page); 5575 bitmap = get_pageblock_bitmap(zone, pfn); 5576 bitidx = pfn_to_bitidx(zone, pfn); 5577 VM_BUG_ON(pfn < zone->zone_start_pfn); 5578 VM_BUG_ON(pfn >= zone->zone_start_pfn + zone->spanned_pages); 5579 5580 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1) 5581 if (flags & value) 5582 __set_bit(bitidx + start_bitidx, bitmap); 5583 else 5584 __clear_bit(bitidx + start_bitidx, bitmap); 5585 } 5586 5587 /* 5588 * This function checks whether pageblock includes unmovable pages or not. 5589 * If @count is not zero, it is okay to include less @count unmovable pages 5590 * 5591 * PageLRU check wihtout isolation or lru_lock could race so that 5592 * MIGRATE_MOVABLE block might include unmovable pages. It means you can't 5593 * expect this function should be exact. 5594 */ 5595 bool has_unmovable_pages(struct zone *zone, struct page *page, int count) 5596 { 5597 unsigned long pfn, iter, found; 5598 int mt; 5599 5600 /* 5601 * For avoiding noise data, lru_add_drain_all() should be called 5602 * If ZONE_MOVABLE, the zone never contains unmovable pages 5603 */ 5604 if (zone_idx(zone) == ZONE_MOVABLE) 5605 return false; 5606 mt = get_pageblock_migratetype(page); 5607 if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt)) 5608 return false; 5609 5610 pfn = page_to_pfn(page); 5611 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) { 5612 unsigned long check = pfn + iter; 5613 5614 if (!pfn_valid_within(check)) 5615 continue; 5616 5617 page = pfn_to_page(check); 5618 /* 5619 * We can't use page_count without pin a page 5620 * because another CPU can free compound page. 5621 * This check already skips compound tails of THP 5622 * because their page->_count is zero at all time. 5623 */ 5624 if (!atomic_read(&page->_count)) { 5625 if (PageBuddy(page)) 5626 iter += (1 << page_order(page)) - 1; 5627 continue; 5628 } 5629 5630 if (!PageLRU(page)) 5631 found++; 5632 /* 5633 * If there are RECLAIMABLE pages, we need to check it. 5634 * But now, memory offline itself doesn't call shrink_slab() 5635 * and it still to be fixed. 5636 */ 5637 /* 5638 * If the page is not RAM, page_count()should be 0. 5639 * we don't need more check. This is an _used_ not-movable page. 5640 * 5641 * The problematic thing here is PG_reserved pages. PG_reserved 5642 * is set to both of a memory hole page and a _used_ kernel 5643 * page at boot. 5644 */ 5645 if (found > count) 5646 return true; 5647 } 5648 return false; 5649 } 5650 5651 bool is_pageblock_removable_nolock(struct page *page) 5652 { 5653 struct zone *zone; 5654 unsigned long pfn; 5655 5656 /* 5657 * We have to be careful here because we are iterating over memory 5658 * sections which are not zone aware so we might end up outside of 5659 * the zone but still within the section. 5660 * We have to take care about the node as well. If the node is offline 5661 * its NODE_DATA will be NULL - see page_zone. 5662 */ 5663 if (!node_online(page_to_nid(page))) 5664 return false; 5665 5666 zone = page_zone(page); 5667 pfn = page_to_pfn(page); 5668 if (zone->zone_start_pfn > pfn || 5669 zone->zone_start_pfn + zone->spanned_pages <= pfn) 5670 return false; 5671 5672 return !has_unmovable_pages(zone, page, 0); 5673 } 5674 5675 #ifdef CONFIG_CMA 5676 5677 static unsigned long pfn_max_align_down(unsigned long pfn) 5678 { 5679 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES, 5680 pageblock_nr_pages) - 1); 5681 } 5682 5683 static unsigned long pfn_max_align_up(unsigned long pfn) 5684 { 5685 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES, 5686 pageblock_nr_pages)); 5687 } 5688 5689 /* [start, end) must belong to a single zone. */ 5690 static int __alloc_contig_migrate_range(struct compact_control *cc, 5691 unsigned long start, unsigned long end) 5692 { 5693 /* This function is based on compact_zone() from compaction.c. */ 5694 unsigned long nr_reclaimed; 5695 unsigned long pfn = start; 5696 unsigned int tries = 0; 5697 int ret = 0; 5698 5699 migrate_prep_local(); 5700 5701 while (pfn < end || !list_empty(&cc->migratepages)) { 5702 if (fatal_signal_pending(current)) { 5703 ret = -EINTR; 5704 break; 5705 } 5706 5707 if (list_empty(&cc->migratepages)) { 5708 cc->nr_migratepages = 0; 5709 pfn = isolate_migratepages_range(cc->zone, cc, 5710 pfn, end, true); 5711 if (!pfn) { 5712 ret = -EINTR; 5713 break; 5714 } 5715 tries = 0; 5716 } else if (++tries == 5) { 5717 ret = ret < 0 ? ret : -EBUSY; 5718 break; 5719 } 5720 5721 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone, 5722 &cc->migratepages); 5723 cc->nr_migratepages -= nr_reclaimed; 5724 5725 ret = migrate_pages(&cc->migratepages, 5726 alloc_migrate_target, 5727 0, false, MIGRATE_SYNC); 5728 } 5729 5730 putback_lru_pages(&cc->migratepages); 5731 return ret > 0 ? 0 : ret; 5732 } 5733 5734 /* 5735 * Update zone's cma pages counter used for watermark level calculation. 5736 */ 5737 static inline void __update_cma_watermarks(struct zone *zone, int count) 5738 { 5739 unsigned long flags; 5740 spin_lock_irqsave(&zone->lock, flags); 5741 zone->min_cma_pages += count; 5742 spin_unlock_irqrestore(&zone->lock, flags); 5743 setup_per_zone_wmarks(); 5744 } 5745 5746 /* 5747 * Trigger memory pressure bump to reclaim some pages in order to be able to 5748 * allocate 'count' pages in single page units. Does similar work as 5749 *__alloc_pages_slowpath() function. 5750 */ 5751 static int __reclaim_pages(struct zone *zone, gfp_t gfp_mask, int count) 5752 { 5753 enum zone_type high_zoneidx = gfp_zone(gfp_mask); 5754 struct zonelist *zonelist = node_zonelist(0, gfp_mask); 5755 int did_some_progress = 0; 5756 int order = 1; 5757 5758 /* 5759 * Increase level of watermarks to force kswapd do his job 5760 * to stabilise at new watermark level. 5761 */ 5762 __update_cma_watermarks(zone, count); 5763 5764 /* Obey watermarks as if the page was being allocated */ 5765 while (!zone_watermark_ok(zone, 0, low_wmark_pages(zone), 0, 0)) { 5766 wake_all_kswapd(order, zonelist, high_zoneidx, zone_idx(zone)); 5767 5768 did_some_progress = __perform_reclaim(gfp_mask, order, zonelist, 5769 NULL); 5770 if (!did_some_progress) { 5771 /* Exhausted what can be done so it's blamo time */ 5772 out_of_memory(zonelist, gfp_mask, order, NULL, false); 5773 } 5774 } 5775 5776 /* Restore original watermark levels. */ 5777 __update_cma_watermarks(zone, -count); 5778 5779 return count; 5780 } 5781 5782 /** 5783 * alloc_contig_range() -- tries to allocate given range of pages 5784 * @start: start PFN to allocate 5785 * @end: one-past-the-last PFN to allocate 5786 * @migratetype: migratetype of the underlaying pageblocks (either 5787 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks 5788 * in range must have the same migratetype and it must 5789 * be either of the two. 5790 * 5791 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES 5792 * aligned, however it's the caller's responsibility to guarantee that 5793 * we are the only thread that changes migrate type of pageblocks the 5794 * pages fall in. 5795 * 5796 * The PFN range must belong to a single zone. 5797 * 5798 * Returns zero on success or negative error code. On success all 5799 * pages which PFN is in [start, end) are allocated for the caller and 5800 * need to be freed with free_contig_range(). 5801 */ 5802 int alloc_contig_range(unsigned long start, unsigned long end, 5803 unsigned migratetype) 5804 { 5805 struct zone *zone = page_zone(pfn_to_page(start)); 5806 unsigned long outer_start, outer_end; 5807 int ret = 0, order; 5808 5809 struct compact_control cc = { 5810 .nr_migratepages = 0, 5811 .order = -1, 5812 .zone = page_zone(pfn_to_page(start)), 5813 .sync = true, 5814 .ignore_skip_hint = true, 5815 }; 5816 INIT_LIST_HEAD(&cc.migratepages); 5817 5818 /* 5819 * What we do here is we mark all pageblocks in range as 5820 * MIGRATE_ISOLATE. Because pageblock and max order pages may 5821 * have different sizes, and due to the way page allocator 5822 * work, we align the range to biggest of the two pages so 5823 * that page allocator won't try to merge buddies from 5824 * different pageblocks and change MIGRATE_ISOLATE to some 5825 * other migration type. 5826 * 5827 * Once the pageblocks are marked as MIGRATE_ISOLATE, we 5828 * migrate the pages from an unaligned range (ie. pages that 5829 * we are interested in). This will put all the pages in 5830 * range back to page allocator as MIGRATE_ISOLATE. 5831 * 5832 * When this is done, we take the pages in range from page 5833 * allocator removing them from the buddy system. This way 5834 * page allocator will never consider using them. 5835 * 5836 * This lets us mark the pageblocks back as 5837 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the 5838 * aligned range but not in the unaligned, original range are 5839 * put back to page allocator so that buddy can use them. 5840 */ 5841 5842 ret = start_isolate_page_range(pfn_max_align_down(start), 5843 pfn_max_align_up(end), migratetype); 5844 if (ret) 5845 return ret; 5846 5847 ret = __alloc_contig_migrate_range(&cc, start, end); 5848 if (ret) 5849 goto done; 5850 5851 /* 5852 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES 5853 * aligned blocks that are marked as MIGRATE_ISOLATE. What's 5854 * more, all pages in [start, end) are free in page allocator. 5855 * What we are going to do is to allocate all pages from 5856 * [start, end) (that is remove them from page allocator). 5857 * 5858 * The only problem is that pages at the beginning and at the 5859 * end of interesting range may be not aligned with pages that 5860 * page allocator holds, ie. they can be part of higher order 5861 * pages. Because of this, we reserve the bigger range and 5862 * once this is done free the pages we are not interested in. 5863 * 5864 * We don't have to hold zone->lock here because the pages are 5865 * isolated thus they won't get removed from buddy. 5866 */ 5867 5868 lru_add_drain_all(); 5869 drain_all_pages(); 5870 5871 order = 0; 5872 outer_start = start; 5873 while (!PageBuddy(pfn_to_page(outer_start))) { 5874 if (++order >= MAX_ORDER) { 5875 ret = -EBUSY; 5876 goto done; 5877 } 5878 outer_start &= ~0UL << order; 5879 } 5880 5881 /* Make sure the range is really isolated. */ 5882 if (test_pages_isolated(outer_start, end)) { 5883 pr_warn("alloc_contig_range test_pages_isolated(%lx, %lx) failed\n", 5884 outer_start, end); 5885 ret = -EBUSY; 5886 goto done; 5887 } 5888 5889 /* 5890 * Reclaim enough pages to make sure that contiguous allocation 5891 * will not starve the system. 5892 */ 5893 __reclaim_pages(zone, GFP_HIGHUSER_MOVABLE, end-start); 5894 5895 /* Grab isolated pages from freelists. */ 5896 outer_end = isolate_freepages_range(&cc, outer_start, end); 5897 if (!outer_end) { 5898 ret = -EBUSY; 5899 goto done; 5900 } 5901 5902 /* Free head and tail (if any) */ 5903 if (start != outer_start) 5904 free_contig_range(outer_start, start - outer_start); 5905 if (end != outer_end) 5906 free_contig_range(end, outer_end - end); 5907 5908 done: 5909 undo_isolate_page_range(pfn_max_align_down(start), 5910 pfn_max_align_up(end), migratetype); 5911 return ret; 5912 } 5913 5914 void free_contig_range(unsigned long pfn, unsigned nr_pages) 5915 { 5916 for (; nr_pages--; ++pfn) 5917 __free_page(pfn_to_page(pfn)); 5918 } 5919 #endif 5920 5921 #ifdef CONFIG_MEMORY_HOTPLUG 5922 static int __meminit __zone_pcp_update(void *data) 5923 { 5924 struct zone *zone = data; 5925 int cpu; 5926 unsigned long batch = zone_batchsize(zone), flags; 5927 5928 for_each_possible_cpu(cpu) { 5929 struct per_cpu_pageset *pset; 5930 struct per_cpu_pages *pcp; 5931 5932 pset = per_cpu_ptr(zone->pageset, cpu); 5933 pcp = &pset->pcp; 5934 5935 local_irq_save(flags); 5936 if (pcp->count > 0) 5937 free_pcppages_bulk(zone, pcp->count, pcp); 5938 drain_zonestat(zone, pset); 5939 setup_pageset(pset, batch); 5940 local_irq_restore(flags); 5941 } 5942 return 0; 5943 } 5944 5945 void __meminit zone_pcp_update(struct zone *zone) 5946 { 5947 stop_machine(__zone_pcp_update, zone, NULL); 5948 } 5949 #endif 5950 5951 #ifdef CONFIG_MEMORY_HOTREMOVE 5952 void zone_pcp_reset(struct zone *zone) 5953 { 5954 unsigned long flags; 5955 int cpu; 5956 struct per_cpu_pageset *pset; 5957 5958 /* avoid races with drain_pages() */ 5959 local_irq_save(flags); 5960 if (zone->pageset != &boot_pageset) { 5961 for_each_online_cpu(cpu) { 5962 pset = per_cpu_ptr(zone->pageset, cpu); 5963 drain_zonestat(zone, pset); 5964 } 5965 free_percpu(zone->pageset); 5966 zone->pageset = &boot_pageset; 5967 } 5968 local_irq_restore(flags); 5969 } 5970 5971 /* 5972 * All pages in the range must be isolated before calling this. 5973 */ 5974 void 5975 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn) 5976 { 5977 struct page *page; 5978 struct zone *zone; 5979 int order, i; 5980 unsigned long pfn; 5981 unsigned long flags; 5982 /* find the first valid pfn */ 5983 for (pfn = start_pfn; pfn < end_pfn; pfn++) 5984 if (pfn_valid(pfn)) 5985 break; 5986 if (pfn == end_pfn) 5987 return; 5988 zone = page_zone(pfn_to_page(pfn)); 5989 spin_lock_irqsave(&zone->lock, flags); 5990 pfn = start_pfn; 5991 while (pfn < end_pfn) { 5992 if (!pfn_valid(pfn)) { 5993 pfn++; 5994 continue; 5995 } 5996 page = pfn_to_page(pfn); 5997 BUG_ON(page_count(page)); 5998 BUG_ON(!PageBuddy(page)); 5999 order = page_order(page); 6000 #ifdef CONFIG_DEBUG_VM 6001 printk(KERN_INFO "remove from free list %lx %d %lx\n", 6002 pfn, 1 << order, end_pfn); 6003 #endif 6004 list_del(&page->lru); 6005 rmv_page_order(page); 6006 zone->free_area[order].nr_free--; 6007 __mod_zone_page_state(zone, NR_FREE_PAGES, 6008 - (1UL << order)); 6009 for (i = 0; i < (1 << order); i++) 6010 SetPageReserved((page+i)); 6011 pfn += (1 << order); 6012 } 6013 spin_unlock_irqrestore(&zone->lock, flags); 6014 } 6015 #endif 6016 6017 #ifdef CONFIG_MEMORY_FAILURE 6018 bool is_free_buddy_page(struct page *page) 6019 { 6020 struct zone *zone = page_zone(page); 6021 unsigned long pfn = page_to_pfn(page); 6022 unsigned long flags; 6023 int order; 6024 6025 spin_lock_irqsave(&zone->lock, flags); 6026 for (order = 0; order < MAX_ORDER; order++) { 6027 struct page *page_head = page - (pfn & ((1 << order) - 1)); 6028 6029 if (PageBuddy(page_head) && page_order(page_head) >= order) 6030 break; 6031 } 6032 spin_unlock_irqrestore(&zone->lock, flags); 6033 6034 return order < MAX_ORDER; 6035 } 6036 #endif 6037 6038 static const struct trace_print_flags pageflag_names[] = { 6039 {1UL << PG_locked, "locked" }, 6040 {1UL << PG_error, "error" }, 6041 {1UL << PG_referenced, "referenced" }, 6042 {1UL << PG_uptodate, "uptodate" }, 6043 {1UL << PG_dirty, "dirty" }, 6044 {1UL << PG_lru, "lru" }, 6045 {1UL << PG_active, "active" }, 6046 {1UL << PG_slab, "slab" }, 6047 {1UL << PG_owner_priv_1, "owner_priv_1" }, 6048 {1UL << PG_arch_1, "arch_1" }, 6049 {1UL << PG_reserved, "reserved" }, 6050 {1UL << PG_private, "private" }, 6051 {1UL << PG_private_2, "private_2" }, 6052 {1UL << PG_writeback, "writeback" }, 6053 #ifdef CONFIG_PAGEFLAGS_EXTENDED 6054 {1UL << PG_head, "head" }, 6055 {1UL << PG_tail, "tail" }, 6056 #else 6057 {1UL << PG_compound, "compound" }, 6058 #endif 6059 {1UL << PG_swapcache, "swapcache" }, 6060 {1UL << PG_mappedtodisk, "mappedtodisk" }, 6061 {1UL << PG_reclaim, "reclaim" }, 6062 {1UL << PG_swapbacked, "swapbacked" }, 6063 {1UL << PG_unevictable, "unevictable" }, 6064 #ifdef CONFIG_MMU 6065 {1UL << PG_mlocked, "mlocked" }, 6066 #endif 6067 #ifdef CONFIG_ARCH_USES_PG_UNCACHED 6068 {1UL << PG_uncached, "uncached" }, 6069 #endif 6070 #ifdef CONFIG_MEMORY_FAILURE 6071 {1UL << PG_hwpoison, "hwpoison" }, 6072 #endif 6073 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 6074 {1UL << PG_compound_lock, "compound_lock" }, 6075 #endif 6076 }; 6077 6078 static void dump_page_flags(unsigned long flags) 6079 { 6080 const char *delim = ""; 6081 unsigned long mask; 6082 int i; 6083 6084 BUILD_BUG_ON(ARRAY_SIZE(pageflag_names) != __NR_PAGEFLAGS); 6085 6086 printk(KERN_ALERT "page flags: %#lx(", flags); 6087 6088 /* remove zone id */ 6089 flags &= (1UL << NR_PAGEFLAGS) - 1; 6090 6091 for (i = 0; i < ARRAY_SIZE(pageflag_names) && flags; i++) { 6092 6093 mask = pageflag_names[i].mask; 6094 if ((flags & mask) != mask) 6095 continue; 6096 6097 flags &= ~mask; 6098 printk("%s%s", delim, pageflag_names[i].name); 6099 delim = "|"; 6100 } 6101 6102 /* check for left over flags */ 6103 if (flags) 6104 printk("%s%#lx", delim, flags); 6105 6106 printk(")\n"); 6107 } 6108 6109 void dump_page(struct page *page) 6110 { 6111 printk(KERN_ALERT 6112 "page:%p count:%d mapcount:%d mapping:%p index:%#lx\n", 6113 page, atomic_read(&page->_count), page_mapcount(page), 6114 page->mapping, page->index); 6115 dump_page_flags(page->flags); 6116 mem_cgroup_print_bad_page(page); 6117 } 6118