1 /* 2 * linux/mm/page_alloc.c 3 * 4 * Manages the free list, the system allocates free pages here. 5 * Note that kmalloc() lives in slab.c 6 * 7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 8 * Swap reorganised 29.12.95, Stephen Tweedie 9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999 10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999 11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999 12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000 13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002 14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton) 15 */ 16 17 #include <linux/stddef.h> 18 #include <linux/mm.h> 19 #include <linux/swap.h> 20 #include <linux/interrupt.h> 21 #include <linux/pagemap.h> 22 #include <linux/jiffies.h> 23 #include <linux/bootmem.h> 24 #include <linux/memblock.h> 25 #include <linux/compiler.h> 26 #include <linux/kernel.h> 27 #include <linux/kmemcheck.h> 28 #include <linux/module.h> 29 #include <linux/suspend.h> 30 #include <linux/pagevec.h> 31 #include <linux/blkdev.h> 32 #include <linux/slab.h> 33 #include <linux/ratelimit.h> 34 #include <linux/oom.h> 35 #include <linux/notifier.h> 36 #include <linux/topology.h> 37 #include <linux/sysctl.h> 38 #include <linux/cpu.h> 39 #include <linux/cpuset.h> 40 #include <linux/memory_hotplug.h> 41 #include <linux/nodemask.h> 42 #include <linux/vmalloc.h> 43 #include <linux/vmstat.h> 44 #include <linux/mempolicy.h> 45 #include <linux/stop_machine.h> 46 #include <linux/sort.h> 47 #include <linux/pfn.h> 48 #include <linux/backing-dev.h> 49 #include <linux/fault-inject.h> 50 #include <linux/page-isolation.h> 51 #include <linux/page_cgroup.h> 52 #include <linux/debugobjects.h> 53 #include <linux/kmemleak.h> 54 #include <linux/memory.h> 55 #include <linux/compaction.h> 56 #include <trace/events/kmem.h> 57 #include <linux/ftrace_event.h> 58 #include <linux/memcontrol.h> 59 #include <linux/prefetch.h> 60 #include <linux/migrate.h> 61 #include <linux/page-debug-flags.h> 62 63 #include <asm/tlbflush.h> 64 #include <asm/div64.h> 65 #include "internal.h" 66 67 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID 68 DEFINE_PER_CPU(int, numa_node); 69 EXPORT_PER_CPU_SYMBOL(numa_node); 70 #endif 71 72 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 73 /* 74 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly. 75 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined. 76 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem() 77 * defined in <linux/topology.h>. 78 */ 79 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */ 80 EXPORT_PER_CPU_SYMBOL(_numa_mem_); 81 #endif 82 83 /* 84 * Array of node states. 85 */ 86 nodemask_t node_states[NR_NODE_STATES] __read_mostly = { 87 [N_POSSIBLE] = NODE_MASK_ALL, 88 [N_ONLINE] = { { [0] = 1UL } }, 89 #ifndef CONFIG_NUMA 90 [N_NORMAL_MEMORY] = { { [0] = 1UL } }, 91 #ifdef CONFIG_HIGHMEM 92 [N_HIGH_MEMORY] = { { [0] = 1UL } }, 93 #endif 94 [N_CPU] = { { [0] = 1UL } }, 95 #endif /* NUMA */ 96 }; 97 EXPORT_SYMBOL(node_states); 98 99 unsigned long totalram_pages __read_mostly; 100 unsigned long totalreserve_pages __read_mostly; 101 /* 102 * When calculating the number of globally allowed dirty pages, there 103 * is a certain number of per-zone reserves that should not be 104 * considered dirtyable memory. This is the sum of those reserves 105 * over all existing zones that contribute dirtyable memory. 106 */ 107 unsigned long dirty_balance_reserve __read_mostly; 108 109 int percpu_pagelist_fraction; 110 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK; 111 112 #ifdef CONFIG_PM_SLEEP 113 /* 114 * The following functions are used by the suspend/hibernate code to temporarily 115 * change gfp_allowed_mask in order to avoid using I/O during memory allocations 116 * while devices are suspended. To avoid races with the suspend/hibernate code, 117 * they should always be called with pm_mutex held (gfp_allowed_mask also should 118 * only be modified with pm_mutex held, unless the suspend/hibernate code is 119 * guaranteed not to run in parallel with that modification). 120 */ 121 122 static gfp_t saved_gfp_mask; 123 124 void pm_restore_gfp_mask(void) 125 { 126 WARN_ON(!mutex_is_locked(&pm_mutex)); 127 if (saved_gfp_mask) { 128 gfp_allowed_mask = saved_gfp_mask; 129 saved_gfp_mask = 0; 130 } 131 } 132 133 void pm_restrict_gfp_mask(void) 134 { 135 WARN_ON(!mutex_is_locked(&pm_mutex)); 136 WARN_ON(saved_gfp_mask); 137 saved_gfp_mask = gfp_allowed_mask; 138 gfp_allowed_mask &= ~GFP_IOFS; 139 } 140 141 bool pm_suspended_storage(void) 142 { 143 if ((gfp_allowed_mask & GFP_IOFS) == GFP_IOFS) 144 return false; 145 return true; 146 } 147 #endif /* CONFIG_PM_SLEEP */ 148 149 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE 150 int pageblock_order __read_mostly; 151 #endif 152 153 static void __free_pages_ok(struct page *page, unsigned int order); 154 155 /* 156 * results with 256, 32 in the lowmem_reserve sysctl: 157 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high) 158 * 1G machine -> (16M dma, 784M normal, 224M high) 159 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA 160 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL 161 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA 162 * 163 * TBD: should special case ZONE_DMA32 machines here - in those we normally 164 * don't need any ZONE_NORMAL reservation 165 */ 166 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = { 167 #ifdef CONFIG_ZONE_DMA 168 256, 169 #endif 170 #ifdef CONFIG_ZONE_DMA32 171 256, 172 #endif 173 #ifdef CONFIG_HIGHMEM 174 32, 175 #endif 176 32, 177 }; 178 179 EXPORT_SYMBOL(totalram_pages); 180 181 static char * const zone_names[MAX_NR_ZONES] = { 182 #ifdef CONFIG_ZONE_DMA 183 "DMA", 184 #endif 185 #ifdef CONFIG_ZONE_DMA32 186 "DMA32", 187 #endif 188 "Normal", 189 #ifdef CONFIG_HIGHMEM 190 "HighMem", 191 #endif 192 "Movable", 193 }; 194 195 int min_free_kbytes = 1024; 196 197 static unsigned long __meminitdata nr_kernel_pages; 198 static unsigned long __meminitdata nr_all_pages; 199 static unsigned long __meminitdata dma_reserve; 200 201 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 202 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES]; 203 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES]; 204 static unsigned long __initdata required_kernelcore; 205 static unsigned long __initdata required_movablecore; 206 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES]; 207 208 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */ 209 int movable_zone; 210 EXPORT_SYMBOL(movable_zone); 211 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 212 213 #if MAX_NUMNODES > 1 214 int nr_node_ids __read_mostly = MAX_NUMNODES; 215 int nr_online_nodes __read_mostly = 1; 216 EXPORT_SYMBOL(nr_node_ids); 217 EXPORT_SYMBOL(nr_online_nodes); 218 #endif 219 220 int page_group_by_mobility_disabled __read_mostly; 221 222 static void set_pageblock_migratetype(struct page *page, int migratetype) 223 { 224 225 if (unlikely(page_group_by_mobility_disabled)) 226 migratetype = MIGRATE_UNMOVABLE; 227 228 set_pageblock_flags_group(page, (unsigned long)migratetype, 229 PB_migrate, PB_migrate_end); 230 } 231 232 bool oom_killer_disabled __read_mostly; 233 234 #ifdef CONFIG_DEBUG_VM 235 static int page_outside_zone_boundaries(struct zone *zone, struct page *page) 236 { 237 int ret = 0; 238 unsigned seq; 239 unsigned long pfn = page_to_pfn(page); 240 241 do { 242 seq = zone_span_seqbegin(zone); 243 if (pfn >= zone->zone_start_pfn + zone->spanned_pages) 244 ret = 1; 245 else if (pfn < zone->zone_start_pfn) 246 ret = 1; 247 } while (zone_span_seqretry(zone, seq)); 248 249 return ret; 250 } 251 252 static int page_is_consistent(struct zone *zone, struct page *page) 253 { 254 if (!pfn_valid_within(page_to_pfn(page))) 255 return 0; 256 if (zone != page_zone(page)) 257 return 0; 258 259 return 1; 260 } 261 /* 262 * Temporary debugging check for pages not lying within a given zone. 263 */ 264 static int bad_range(struct zone *zone, struct page *page) 265 { 266 if (page_outside_zone_boundaries(zone, page)) 267 return 1; 268 if (!page_is_consistent(zone, page)) 269 return 1; 270 271 return 0; 272 } 273 #else 274 static inline int bad_range(struct zone *zone, struct page *page) 275 { 276 return 0; 277 } 278 #endif 279 280 static void bad_page(struct page *page) 281 { 282 static unsigned long resume; 283 static unsigned long nr_shown; 284 static unsigned long nr_unshown; 285 286 /* Don't complain about poisoned pages */ 287 if (PageHWPoison(page)) { 288 reset_page_mapcount(page); /* remove PageBuddy */ 289 return; 290 } 291 292 /* 293 * Allow a burst of 60 reports, then keep quiet for that minute; 294 * or allow a steady drip of one report per second. 295 */ 296 if (nr_shown == 60) { 297 if (time_before(jiffies, resume)) { 298 nr_unshown++; 299 goto out; 300 } 301 if (nr_unshown) { 302 printk(KERN_ALERT 303 "BUG: Bad page state: %lu messages suppressed\n", 304 nr_unshown); 305 nr_unshown = 0; 306 } 307 nr_shown = 0; 308 } 309 if (nr_shown++ == 0) 310 resume = jiffies + 60 * HZ; 311 312 printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n", 313 current->comm, page_to_pfn(page)); 314 dump_page(page); 315 316 print_modules(); 317 dump_stack(); 318 out: 319 /* Leave bad fields for debug, except PageBuddy could make trouble */ 320 reset_page_mapcount(page); /* remove PageBuddy */ 321 add_taint(TAINT_BAD_PAGE); 322 } 323 324 /* 325 * Higher-order pages are called "compound pages". They are structured thusly: 326 * 327 * The first PAGE_SIZE page is called the "head page". 328 * 329 * The remaining PAGE_SIZE pages are called "tail pages". 330 * 331 * All pages have PG_compound set. All tail pages have their ->first_page 332 * pointing at the head page. 333 * 334 * The first tail page's ->lru.next holds the address of the compound page's 335 * put_page() function. Its ->lru.prev holds the order of allocation. 336 * This usage means that zero-order pages may not be compound. 337 */ 338 339 static void free_compound_page(struct page *page) 340 { 341 __free_pages_ok(page, compound_order(page)); 342 } 343 344 void prep_compound_page(struct page *page, unsigned long order) 345 { 346 int i; 347 int nr_pages = 1 << order; 348 349 set_compound_page_dtor(page, free_compound_page); 350 set_compound_order(page, order); 351 __SetPageHead(page); 352 for (i = 1; i < nr_pages; i++) { 353 struct page *p = page + i; 354 __SetPageTail(p); 355 set_page_count(p, 0); 356 p->first_page = page; 357 } 358 } 359 360 /* update __split_huge_page_refcount if you change this function */ 361 static int destroy_compound_page(struct page *page, unsigned long order) 362 { 363 int i; 364 int nr_pages = 1 << order; 365 int bad = 0; 366 367 if (unlikely(compound_order(page) != order) || 368 unlikely(!PageHead(page))) { 369 bad_page(page); 370 bad++; 371 } 372 373 __ClearPageHead(page); 374 375 for (i = 1; i < nr_pages; i++) { 376 struct page *p = page + i; 377 378 if (unlikely(!PageTail(p) || (p->first_page != page))) { 379 bad_page(page); 380 bad++; 381 } 382 __ClearPageTail(p); 383 } 384 385 return bad; 386 } 387 388 static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags) 389 { 390 int i; 391 392 /* 393 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO 394 * and __GFP_HIGHMEM from hard or soft interrupt context. 395 */ 396 VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt()); 397 for (i = 0; i < (1 << order); i++) 398 clear_highpage(page + i); 399 } 400 401 #ifdef CONFIG_DEBUG_PAGEALLOC 402 unsigned int _debug_guardpage_minorder; 403 404 static int __init debug_guardpage_minorder_setup(char *buf) 405 { 406 unsigned long res; 407 408 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) { 409 printk(KERN_ERR "Bad debug_guardpage_minorder value\n"); 410 return 0; 411 } 412 _debug_guardpage_minorder = res; 413 printk(KERN_INFO "Setting debug_guardpage_minorder to %lu\n", res); 414 return 0; 415 } 416 __setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup); 417 418 static inline void set_page_guard_flag(struct page *page) 419 { 420 __set_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags); 421 } 422 423 static inline void clear_page_guard_flag(struct page *page) 424 { 425 __clear_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags); 426 } 427 #else 428 static inline void set_page_guard_flag(struct page *page) { } 429 static inline void clear_page_guard_flag(struct page *page) { } 430 #endif 431 432 static inline void set_page_order(struct page *page, int order) 433 { 434 set_page_private(page, order); 435 __SetPageBuddy(page); 436 } 437 438 static inline void rmv_page_order(struct page *page) 439 { 440 __ClearPageBuddy(page); 441 set_page_private(page, 0); 442 } 443 444 /* 445 * Locate the struct page for both the matching buddy in our 446 * pair (buddy1) and the combined O(n+1) page they form (page). 447 * 448 * 1) Any buddy B1 will have an order O twin B2 which satisfies 449 * the following equation: 450 * B2 = B1 ^ (1 << O) 451 * For example, if the starting buddy (buddy2) is #8 its order 452 * 1 buddy is #10: 453 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10 454 * 455 * 2) Any buddy B will have an order O+1 parent P which 456 * satisfies the following equation: 457 * P = B & ~(1 << O) 458 * 459 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER 460 */ 461 static inline unsigned long 462 __find_buddy_index(unsigned long page_idx, unsigned int order) 463 { 464 return page_idx ^ (1 << order); 465 } 466 467 /* 468 * This function checks whether a page is free && is the buddy 469 * we can do coalesce a page and its buddy if 470 * (a) the buddy is not in a hole && 471 * (b) the buddy is in the buddy system && 472 * (c) a page and its buddy have the same order && 473 * (d) a page and its buddy are in the same zone. 474 * 475 * For recording whether a page is in the buddy system, we set ->_mapcount -2. 476 * Setting, clearing, and testing _mapcount -2 is serialized by zone->lock. 477 * 478 * For recording page's order, we use page_private(page). 479 */ 480 static inline int page_is_buddy(struct page *page, struct page *buddy, 481 int order) 482 { 483 if (!pfn_valid_within(page_to_pfn(buddy))) 484 return 0; 485 486 if (page_zone_id(page) != page_zone_id(buddy)) 487 return 0; 488 489 if (page_is_guard(buddy) && page_order(buddy) == order) { 490 VM_BUG_ON(page_count(buddy) != 0); 491 return 1; 492 } 493 494 if (PageBuddy(buddy) && page_order(buddy) == order) { 495 VM_BUG_ON(page_count(buddy) != 0); 496 return 1; 497 } 498 return 0; 499 } 500 501 /* 502 * Freeing function for a buddy system allocator. 503 * 504 * The concept of a buddy system is to maintain direct-mapped table 505 * (containing bit values) for memory blocks of various "orders". 506 * The bottom level table contains the map for the smallest allocatable 507 * units of memory (here, pages), and each level above it describes 508 * pairs of units from the levels below, hence, "buddies". 509 * At a high level, all that happens here is marking the table entry 510 * at the bottom level available, and propagating the changes upward 511 * as necessary, plus some accounting needed to play nicely with other 512 * parts of the VM system. 513 * At each level, we keep a list of pages, which are heads of continuous 514 * free pages of length of (1 << order) and marked with _mapcount -2. Page's 515 * order is recorded in page_private(page) field. 516 * So when we are allocating or freeing one, we can derive the state of the 517 * other. That is, if we allocate a small block, and both were 518 * free, the remainder of the region must be split into blocks. 519 * If a block is freed, and its buddy is also free, then this 520 * triggers coalescing into a block of larger size. 521 * 522 * -- wli 523 */ 524 525 static inline void __free_one_page(struct page *page, 526 struct zone *zone, unsigned int order, 527 int migratetype) 528 { 529 unsigned long page_idx; 530 unsigned long combined_idx; 531 unsigned long uninitialized_var(buddy_idx); 532 struct page *buddy; 533 534 if (unlikely(PageCompound(page))) 535 if (unlikely(destroy_compound_page(page, order))) 536 return; 537 538 VM_BUG_ON(migratetype == -1); 539 540 page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1); 541 542 VM_BUG_ON(page_idx & ((1 << order) - 1)); 543 VM_BUG_ON(bad_range(zone, page)); 544 545 while (order < MAX_ORDER-1) { 546 buddy_idx = __find_buddy_index(page_idx, order); 547 buddy = page + (buddy_idx - page_idx); 548 if (!page_is_buddy(page, buddy, order)) 549 break; 550 /* 551 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page, 552 * merge with it and move up one order. 553 */ 554 if (page_is_guard(buddy)) { 555 clear_page_guard_flag(buddy); 556 set_page_private(page, 0); 557 __mod_zone_page_state(zone, NR_FREE_PAGES, 1 << order); 558 } else { 559 list_del(&buddy->lru); 560 zone->free_area[order].nr_free--; 561 rmv_page_order(buddy); 562 } 563 combined_idx = buddy_idx & page_idx; 564 page = page + (combined_idx - page_idx); 565 page_idx = combined_idx; 566 order++; 567 } 568 set_page_order(page, order); 569 570 /* 571 * If this is not the largest possible page, check if the buddy 572 * of the next-highest order is free. If it is, it's possible 573 * that pages are being freed that will coalesce soon. In case, 574 * that is happening, add the free page to the tail of the list 575 * so it's less likely to be used soon and more likely to be merged 576 * as a higher order page 577 */ 578 if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) { 579 struct page *higher_page, *higher_buddy; 580 combined_idx = buddy_idx & page_idx; 581 higher_page = page + (combined_idx - page_idx); 582 buddy_idx = __find_buddy_index(combined_idx, order + 1); 583 higher_buddy = page + (buddy_idx - combined_idx); 584 if (page_is_buddy(higher_page, higher_buddy, order + 1)) { 585 list_add_tail(&page->lru, 586 &zone->free_area[order].free_list[migratetype]); 587 goto out; 588 } 589 } 590 591 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]); 592 out: 593 zone->free_area[order].nr_free++; 594 } 595 596 /* 597 * free_page_mlock() -- clean up attempts to free and mlocked() page. 598 * Page should not be on lru, so no need to fix that up. 599 * free_pages_check() will verify... 600 */ 601 static inline void free_page_mlock(struct page *page) 602 { 603 __dec_zone_page_state(page, NR_MLOCK); 604 __count_vm_event(UNEVICTABLE_MLOCKFREED); 605 } 606 607 static inline int free_pages_check(struct page *page) 608 { 609 if (unlikely(page_mapcount(page) | 610 (page->mapping != NULL) | 611 (atomic_read(&page->_count) != 0) | 612 (page->flags & PAGE_FLAGS_CHECK_AT_FREE) | 613 (mem_cgroup_bad_page_check(page)))) { 614 bad_page(page); 615 return 1; 616 } 617 if (page->flags & PAGE_FLAGS_CHECK_AT_PREP) 618 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP; 619 return 0; 620 } 621 622 /* 623 * Frees a number of pages from the PCP lists 624 * Assumes all pages on list are in same zone, and of same order. 625 * count is the number of pages to free. 626 * 627 * If the zone was previously in an "all pages pinned" state then look to 628 * see if this freeing clears that state. 629 * 630 * And clear the zone's pages_scanned counter, to hold off the "all pages are 631 * pinned" detection logic. 632 */ 633 static void free_pcppages_bulk(struct zone *zone, int count, 634 struct per_cpu_pages *pcp) 635 { 636 int migratetype = 0; 637 int batch_free = 0; 638 int to_free = count; 639 640 spin_lock(&zone->lock); 641 zone->all_unreclaimable = 0; 642 zone->pages_scanned = 0; 643 644 while (to_free) { 645 struct page *page; 646 struct list_head *list; 647 648 /* 649 * Remove pages from lists in a round-robin fashion. A 650 * batch_free count is maintained that is incremented when an 651 * empty list is encountered. This is so more pages are freed 652 * off fuller lists instead of spinning excessively around empty 653 * lists 654 */ 655 do { 656 batch_free++; 657 if (++migratetype == MIGRATE_PCPTYPES) 658 migratetype = 0; 659 list = &pcp->lists[migratetype]; 660 } while (list_empty(list)); 661 662 /* This is the only non-empty list. Free them all. */ 663 if (batch_free == MIGRATE_PCPTYPES) 664 batch_free = to_free; 665 666 do { 667 page = list_entry(list->prev, struct page, lru); 668 /* must delete as __free_one_page list manipulates */ 669 list_del(&page->lru); 670 /* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */ 671 __free_one_page(page, zone, 0, page_private(page)); 672 trace_mm_page_pcpu_drain(page, 0, page_private(page)); 673 } while (--to_free && --batch_free && !list_empty(list)); 674 } 675 __mod_zone_page_state(zone, NR_FREE_PAGES, count); 676 spin_unlock(&zone->lock); 677 } 678 679 static void free_one_page(struct zone *zone, struct page *page, int order, 680 int migratetype) 681 { 682 spin_lock(&zone->lock); 683 zone->all_unreclaimable = 0; 684 zone->pages_scanned = 0; 685 686 __free_one_page(page, zone, order, migratetype); 687 __mod_zone_page_state(zone, NR_FREE_PAGES, 1 << order); 688 spin_unlock(&zone->lock); 689 } 690 691 static bool free_pages_prepare(struct page *page, unsigned int order) 692 { 693 int i; 694 int bad = 0; 695 696 trace_mm_page_free(page, order); 697 kmemcheck_free_shadow(page, order); 698 699 if (PageAnon(page)) 700 page->mapping = NULL; 701 for (i = 0; i < (1 << order); i++) 702 bad += free_pages_check(page + i); 703 if (bad) 704 return false; 705 706 if (!PageHighMem(page)) { 707 debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order); 708 debug_check_no_obj_freed(page_address(page), 709 PAGE_SIZE << order); 710 } 711 arch_free_page(page, order); 712 kernel_map_pages(page, 1 << order, 0); 713 714 return true; 715 } 716 717 static void __free_pages_ok(struct page *page, unsigned int order) 718 { 719 unsigned long flags; 720 int wasMlocked = __TestClearPageMlocked(page); 721 722 if (!free_pages_prepare(page, order)) 723 return; 724 725 local_irq_save(flags); 726 if (unlikely(wasMlocked)) 727 free_page_mlock(page); 728 __count_vm_events(PGFREE, 1 << order); 729 free_one_page(page_zone(page), page, order, 730 get_pageblock_migratetype(page)); 731 local_irq_restore(flags); 732 } 733 734 void __meminit __free_pages_bootmem(struct page *page, unsigned int order) 735 { 736 unsigned int nr_pages = 1 << order; 737 unsigned int loop; 738 739 prefetchw(page); 740 for (loop = 0; loop < nr_pages; loop++) { 741 struct page *p = &page[loop]; 742 743 if (loop + 1 < nr_pages) 744 prefetchw(p + 1); 745 __ClearPageReserved(p); 746 set_page_count(p, 0); 747 } 748 749 set_page_refcounted(page); 750 __free_pages(page, order); 751 } 752 753 #ifdef CONFIG_CMA 754 /* Free whole pageblock and set it's migration type to MIGRATE_CMA. */ 755 void __init init_cma_reserved_pageblock(struct page *page) 756 { 757 unsigned i = pageblock_nr_pages; 758 struct page *p = page; 759 760 do { 761 __ClearPageReserved(p); 762 set_page_count(p, 0); 763 } while (++p, --i); 764 765 set_page_refcounted(page); 766 set_pageblock_migratetype(page, MIGRATE_CMA); 767 __free_pages(page, pageblock_order); 768 totalram_pages += pageblock_nr_pages; 769 } 770 #endif 771 772 /* 773 * The order of subdivision here is critical for the IO subsystem. 774 * Please do not alter this order without good reasons and regression 775 * testing. Specifically, as large blocks of memory are subdivided, 776 * the order in which smaller blocks are delivered depends on the order 777 * they're subdivided in this function. This is the primary factor 778 * influencing the order in which pages are delivered to the IO 779 * subsystem according to empirical testing, and this is also justified 780 * by considering the behavior of a buddy system containing a single 781 * large block of memory acted on by a series of small allocations. 782 * This behavior is a critical factor in sglist merging's success. 783 * 784 * -- wli 785 */ 786 static inline void expand(struct zone *zone, struct page *page, 787 int low, int high, struct free_area *area, 788 int migratetype) 789 { 790 unsigned long size = 1 << high; 791 792 while (high > low) { 793 area--; 794 high--; 795 size >>= 1; 796 VM_BUG_ON(bad_range(zone, &page[size])); 797 798 #ifdef CONFIG_DEBUG_PAGEALLOC 799 if (high < debug_guardpage_minorder()) { 800 /* 801 * Mark as guard pages (or page), that will allow to 802 * merge back to allocator when buddy will be freed. 803 * Corresponding page table entries will not be touched, 804 * pages will stay not present in virtual address space 805 */ 806 INIT_LIST_HEAD(&page[size].lru); 807 set_page_guard_flag(&page[size]); 808 set_page_private(&page[size], high); 809 /* Guard pages are not available for any usage */ 810 __mod_zone_page_state(zone, NR_FREE_PAGES, -(1 << high)); 811 continue; 812 } 813 #endif 814 list_add(&page[size].lru, &area->free_list[migratetype]); 815 area->nr_free++; 816 set_page_order(&page[size], high); 817 } 818 } 819 820 /* 821 * This page is about to be returned from the page allocator 822 */ 823 static inline int check_new_page(struct page *page) 824 { 825 if (unlikely(page_mapcount(page) | 826 (page->mapping != NULL) | 827 (atomic_read(&page->_count) != 0) | 828 (page->flags & PAGE_FLAGS_CHECK_AT_PREP) | 829 (mem_cgroup_bad_page_check(page)))) { 830 bad_page(page); 831 return 1; 832 } 833 return 0; 834 } 835 836 static int prep_new_page(struct page *page, int order, gfp_t gfp_flags) 837 { 838 int i; 839 840 for (i = 0; i < (1 << order); i++) { 841 struct page *p = page + i; 842 if (unlikely(check_new_page(p))) 843 return 1; 844 } 845 846 set_page_private(page, 0); 847 set_page_refcounted(page); 848 849 arch_alloc_page(page, order); 850 kernel_map_pages(page, 1 << order, 1); 851 852 if (gfp_flags & __GFP_ZERO) 853 prep_zero_page(page, order, gfp_flags); 854 855 if (order && (gfp_flags & __GFP_COMP)) 856 prep_compound_page(page, order); 857 858 return 0; 859 } 860 861 /* 862 * Go through the free lists for the given migratetype and remove 863 * the smallest available page from the freelists 864 */ 865 static inline 866 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order, 867 int migratetype) 868 { 869 unsigned int current_order; 870 struct free_area * area; 871 struct page *page; 872 873 /* Find a page of the appropriate size in the preferred list */ 874 for (current_order = order; current_order < MAX_ORDER; ++current_order) { 875 area = &(zone->free_area[current_order]); 876 if (list_empty(&area->free_list[migratetype])) 877 continue; 878 879 page = list_entry(area->free_list[migratetype].next, 880 struct page, lru); 881 list_del(&page->lru); 882 rmv_page_order(page); 883 area->nr_free--; 884 expand(zone, page, order, current_order, area, migratetype); 885 return page; 886 } 887 888 return NULL; 889 } 890 891 892 /* 893 * This array describes the order lists are fallen back to when 894 * the free lists for the desirable migrate type are depleted 895 */ 896 static int fallbacks[MIGRATE_TYPES][4] = { 897 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE }, 898 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE }, 899 #ifdef CONFIG_CMA 900 [MIGRATE_MOVABLE] = { MIGRATE_CMA, MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE }, 901 [MIGRATE_CMA] = { MIGRATE_RESERVE }, /* Never used */ 902 #else 903 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE }, 904 #endif 905 [MIGRATE_RESERVE] = { MIGRATE_RESERVE }, /* Never used */ 906 [MIGRATE_ISOLATE] = { MIGRATE_RESERVE }, /* Never used */ 907 }; 908 909 /* 910 * Move the free pages in a range to the free lists of the requested type. 911 * Note that start_page and end_pages are not aligned on a pageblock 912 * boundary. If alignment is required, use move_freepages_block() 913 */ 914 static int move_freepages(struct zone *zone, 915 struct page *start_page, struct page *end_page, 916 int migratetype) 917 { 918 struct page *page; 919 unsigned long order; 920 int pages_moved = 0; 921 922 #ifndef CONFIG_HOLES_IN_ZONE 923 /* 924 * page_zone is not safe to call in this context when 925 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant 926 * anyway as we check zone boundaries in move_freepages_block(). 927 * Remove at a later date when no bug reports exist related to 928 * grouping pages by mobility 929 */ 930 BUG_ON(page_zone(start_page) != page_zone(end_page)); 931 #endif 932 933 for (page = start_page; page <= end_page;) { 934 /* Make sure we are not inadvertently changing nodes */ 935 VM_BUG_ON(page_to_nid(page) != zone_to_nid(zone)); 936 937 if (!pfn_valid_within(page_to_pfn(page))) { 938 page++; 939 continue; 940 } 941 942 if (!PageBuddy(page)) { 943 page++; 944 continue; 945 } 946 947 order = page_order(page); 948 list_move(&page->lru, 949 &zone->free_area[order].free_list[migratetype]); 950 page += 1 << order; 951 pages_moved += 1 << order; 952 } 953 954 return pages_moved; 955 } 956 957 static int move_freepages_block(struct zone *zone, struct page *page, 958 int migratetype) 959 { 960 unsigned long start_pfn, end_pfn; 961 struct page *start_page, *end_page; 962 963 start_pfn = page_to_pfn(page); 964 start_pfn = start_pfn & ~(pageblock_nr_pages-1); 965 start_page = pfn_to_page(start_pfn); 966 end_page = start_page + pageblock_nr_pages - 1; 967 end_pfn = start_pfn + pageblock_nr_pages - 1; 968 969 /* Do not cross zone boundaries */ 970 if (start_pfn < zone->zone_start_pfn) 971 start_page = page; 972 if (end_pfn >= zone->zone_start_pfn + zone->spanned_pages) 973 return 0; 974 975 return move_freepages(zone, start_page, end_page, migratetype); 976 } 977 978 static void change_pageblock_range(struct page *pageblock_page, 979 int start_order, int migratetype) 980 { 981 int nr_pageblocks = 1 << (start_order - pageblock_order); 982 983 while (nr_pageblocks--) { 984 set_pageblock_migratetype(pageblock_page, migratetype); 985 pageblock_page += pageblock_nr_pages; 986 } 987 } 988 989 /* Remove an element from the buddy allocator from the fallback list */ 990 static inline struct page * 991 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype) 992 { 993 struct free_area * area; 994 int current_order; 995 struct page *page; 996 int migratetype, i; 997 998 /* Find the largest possible block of pages in the other list */ 999 for (current_order = MAX_ORDER-1; current_order >= order; 1000 --current_order) { 1001 for (i = 0;; i++) { 1002 migratetype = fallbacks[start_migratetype][i]; 1003 1004 /* MIGRATE_RESERVE handled later if necessary */ 1005 if (migratetype == MIGRATE_RESERVE) 1006 break; 1007 1008 area = &(zone->free_area[current_order]); 1009 if (list_empty(&area->free_list[migratetype])) 1010 continue; 1011 1012 page = list_entry(area->free_list[migratetype].next, 1013 struct page, lru); 1014 area->nr_free--; 1015 1016 /* 1017 * If breaking a large block of pages, move all free 1018 * pages to the preferred allocation list. If falling 1019 * back for a reclaimable kernel allocation, be more 1020 * aggressive about taking ownership of free pages 1021 * 1022 * On the other hand, never change migration 1023 * type of MIGRATE_CMA pageblocks nor move CMA 1024 * pages on different free lists. We don't 1025 * want unmovable pages to be allocated from 1026 * MIGRATE_CMA areas. 1027 */ 1028 if (!is_migrate_cma(migratetype) && 1029 (unlikely(current_order >= pageblock_order / 2) || 1030 start_migratetype == MIGRATE_RECLAIMABLE || 1031 page_group_by_mobility_disabled)) { 1032 int pages; 1033 pages = move_freepages_block(zone, page, 1034 start_migratetype); 1035 1036 /* Claim the whole block if over half of it is free */ 1037 if (pages >= (1 << (pageblock_order-1)) || 1038 page_group_by_mobility_disabled) 1039 set_pageblock_migratetype(page, 1040 start_migratetype); 1041 1042 migratetype = start_migratetype; 1043 } 1044 1045 /* Remove the page from the freelists */ 1046 list_del(&page->lru); 1047 rmv_page_order(page); 1048 1049 /* Take ownership for orders >= pageblock_order */ 1050 if (current_order >= pageblock_order && 1051 !is_migrate_cma(migratetype)) 1052 change_pageblock_range(page, current_order, 1053 start_migratetype); 1054 1055 expand(zone, page, order, current_order, area, 1056 is_migrate_cma(migratetype) 1057 ? migratetype : start_migratetype); 1058 1059 trace_mm_page_alloc_extfrag(page, order, current_order, 1060 start_migratetype, migratetype); 1061 1062 return page; 1063 } 1064 } 1065 1066 return NULL; 1067 } 1068 1069 /* 1070 * Do the hard work of removing an element from the buddy allocator. 1071 * Call me with the zone->lock already held. 1072 */ 1073 static struct page *__rmqueue(struct zone *zone, unsigned int order, 1074 int migratetype) 1075 { 1076 struct page *page; 1077 1078 retry_reserve: 1079 page = __rmqueue_smallest(zone, order, migratetype); 1080 1081 if (unlikely(!page) && migratetype != MIGRATE_RESERVE) { 1082 page = __rmqueue_fallback(zone, order, migratetype); 1083 1084 /* 1085 * Use MIGRATE_RESERVE rather than fail an allocation. goto 1086 * is used because __rmqueue_smallest is an inline function 1087 * and we want just one call site 1088 */ 1089 if (!page) { 1090 migratetype = MIGRATE_RESERVE; 1091 goto retry_reserve; 1092 } 1093 } 1094 1095 trace_mm_page_alloc_zone_locked(page, order, migratetype); 1096 return page; 1097 } 1098 1099 /* 1100 * Obtain a specified number of elements from the buddy allocator, all under 1101 * a single hold of the lock, for efficiency. Add them to the supplied list. 1102 * Returns the number of new pages which were placed at *list. 1103 */ 1104 static int rmqueue_bulk(struct zone *zone, unsigned int order, 1105 unsigned long count, struct list_head *list, 1106 int migratetype, int cold) 1107 { 1108 int mt = migratetype, i; 1109 1110 spin_lock(&zone->lock); 1111 for (i = 0; i < count; ++i) { 1112 struct page *page = __rmqueue(zone, order, migratetype); 1113 if (unlikely(page == NULL)) 1114 break; 1115 1116 /* 1117 * Split buddy pages returned by expand() are received here 1118 * in physical page order. The page is added to the callers and 1119 * list and the list head then moves forward. From the callers 1120 * perspective, the linked list is ordered by page number in 1121 * some conditions. This is useful for IO devices that can 1122 * merge IO requests if the physical pages are ordered 1123 * properly. 1124 */ 1125 if (likely(cold == 0)) 1126 list_add(&page->lru, list); 1127 else 1128 list_add_tail(&page->lru, list); 1129 if (IS_ENABLED(CONFIG_CMA)) { 1130 mt = get_pageblock_migratetype(page); 1131 if (!is_migrate_cma(mt) && mt != MIGRATE_ISOLATE) 1132 mt = migratetype; 1133 } 1134 set_page_private(page, mt); 1135 list = &page->lru; 1136 } 1137 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order)); 1138 spin_unlock(&zone->lock); 1139 return i; 1140 } 1141 1142 #ifdef CONFIG_NUMA 1143 /* 1144 * Called from the vmstat counter updater to drain pagesets of this 1145 * currently executing processor on remote nodes after they have 1146 * expired. 1147 * 1148 * Note that this function must be called with the thread pinned to 1149 * a single processor. 1150 */ 1151 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp) 1152 { 1153 unsigned long flags; 1154 int to_drain; 1155 1156 local_irq_save(flags); 1157 if (pcp->count >= pcp->batch) 1158 to_drain = pcp->batch; 1159 else 1160 to_drain = pcp->count; 1161 free_pcppages_bulk(zone, to_drain, pcp); 1162 pcp->count -= to_drain; 1163 local_irq_restore(flags); 1164 } 1165 #endif 1166 1167 /* 1168 * Drain pages of the indicated processor. 1169 * 1170 * The processor must either be the current processor and the 1171 * thread pinned to the current processor or a processor that 1172 * is not online. 1173 */ 1174 static void drain_pages(unsigned int cpu) 1175 { 1176 unsigned long flags; 1177 struct zone *zone; 1178 1179 for_each_populated_zone(zone) { 1180 struct per_cpu_pageset *pset; 1181 struct per_cpu_pages *pcp; 1182 1183 local_irq_save(flags); 1184 pset = per_cpu_ptr(zone->pageset, cpu); 1185 1186 pcp = &pset->pcp; 1187 if (pcp->count) { 1188 free_pcppages_bulk(zone, pcp->count, pcp); 1189 pcp->count = 0; 1190 } 1191 local_irq_restore(flags); 1192 } 1193 } 1194 1195 /* 1196 * Spill all of this CPU's per-cpu pages back into the buddy allocator. 1197 */ 1198 void drain_local_pages(void *arg) 1199 { 1200 drain_pages(smp_processor_id()); 1201 } 1202 1203 /* 1204 * Spill all the per-cpu pages from all CPUs back into the buddy allocator. 1205 * 1206 * Note that this code is protected against sending an IPI to an offline 1207 * CPU but does not guarantee sending an IPI to newly hotplugged CPUs: 1208 * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but 1209 * nothing keeps CPUs from showing up after we populated the cpumask and 1210 * before the call to on_each_cpu_mask(). 1211 */ 1212 void drain_all_pages(void) 1213 { 1214 int cpu; 1215 struct per_cpu_pageset *pcp; 1216 struct zone *zone; 1217 1218 /* 1219 * Allocate in the BSS so we wont require allocation in 1220 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y 1221 */ 1222 static cpumask_t cpus_with_pcps; 1223 1224 /* 1225 * We don't care about racing with CPU hotplug event 1226 * as offline notification will cause the notified 1227 * cpu to drain that CPU pcps and on_each_cpu_mask 1228 * disables preemption as part of its processing 1229 */ 1230 for_each_online_cpu(cpu) { 1231 bool has_pcps = false; 1232 for_each_populated_zone(zone) { 1233 pcp = per_cpu_ptr(zone->pageset, cpu); 1234 if (pcp->pcp.count) { 1235 has_pcps = true; 1236 break; 1237 } 1238 } 1239 if (has_pcps) 1240 cpumask_set_cpu(cpu, &cpus_with_pcps); 1241 else 1242 cpumask_clear_cpu(cpu, &cpus_with_pcps); 1243 } 1244 on_each_cpu_mask(&cpus_with_pcps, drain_local_pages, NULL, 1); 1245 } 1246 1247 #ifdef CONFIG_HIBERNATION 1248 1249 void mark_free_pages(struct zone *zone) 1250 { 1251 unsigned long pfn, max_zone_pfn; 1252 unsigned long flags; 1253 int order, t; 1254 struct list_head *curr; 1255 1256 if (!zone->spanned_pages) 1257 return; 1258 1259 spin_lock_irqsave(&zone->lock, flags); 1260 1261 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages; 1262 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) 1263 if (pfn_valid(pfn)) { 1264 struct page *page = pfn_to_page(pfn); 1265 1266 if (!swsusp_page_is_forbidden(page)) 1267 swsusp_unset_page_free(page); 1268 } 1269 1270 for_each_migratetype_order(order, t) { 1271 list_for_each(curr, &zone->free_area[order].free_list[t]) { 1272 unsigned long i; 1273 1274 pfn = page_to_pfn(list_entry(curr, struct page, lru)); 1275 for (i = 0; i < (1UL << order); i++) 1276 swsusp_set_page_free(pfn_to_page(pfn + i)); 1277 } 1278 } 1279 spin_unlock_irqrestore(&zone->lock, flags); 1280 } 1281 #endif /* CONFIG_PM */ 1282 1283 /* 1284 * Free a 0-order page 1285 * cold == 1 ? free a cold page : free a hot page 1286 */ 1287 void free_hot_cold_page(struct page *page, int cold) 1288 { 1289 struct zone *zone = page_zone(page); 1290 struct per_cpu_pages *pcp; 1291 unsigned long flags; 1292 int migratetype; 1293 int wasMlocked = __TestClearPageMlocked(page); 1294 1295 if (!free_pages_prepare(page, 0)) 1296 return; 1297 1298 migratetype = get_pageblock_migratetype(page); 1299 set_page_private(page, migratetype); 1300 local_irq_save(flags); 1301 if (unlikely(wasMlocked)) 1302 free_page_mlock(page); 1303 __count_vm_event(PGFREE); 1304 1305 /* 1306 * We only track unmovable, reclaimable and movable on pcp lists. 1307 * Free ISOLATE pages back to the allocator because they are being 1308 * offlined but treat RESERVE as movable pages so we can get those 1309 * areas back if necessary. Otherwise, we may have to free 1310 * excessively into the page allocator 1311 */ 1312 if (migratetype >= MIGRATE_PCPTYPES) { 1313 if (unlikely(migratetype == MIGRATE_ISOLATE)) { 1314 free_one_page(zone, page, 0, migratetype); 1315 goto out; 1316 } 1317 migratetype = MIGRATE_MOVABLE; 1318 } 1319 1320 pcp = &this_cpu_ptr(zone->pageset)->pcp; 1321 if (cold) 1322 list_add_tail(&page->lru, &pcp->lists[migratetype]); 1323 else 1324 list_add(&page->lru, &pcp->lists[migratetype]); 1325 pcp->count++; 1326 if (pcp->count >= pcp->high) { 1327 free_pcppages_bulk(zone, pcp->batch, pcp); 1328 pcp->count -= pcp->batch; 1329 } 1330 1331 out: 1332 local_irq_restore(flags); 1333 } 1334 1335 /* 1336 * Free a list of 0-order pages 1337 */ 1338 void free_hot_cold_page_list(struct list_head *list, int cold) 1339 { 1340 struct page *page, *next; 1341 1342 list_for_each_entry_safe(page, next, list, lru) { 1343 trace_mm_page_free_batched(page, cold); 1344 free_hot_cold_page(page, cold); 1345 } 1346 } 1347 1348 /* 1349 * split_page takes a non-compound higher-order page, and splits it into 1350 * n (1<<order) sub-pages: page[0..n] 1351 * Each sub-page must be freed individually. 1352 * 1353 * Note: this is probably too low level an operation for use in drivers. 1354 * Please consult with lkml before using this in your driver. 1355 */ 1356 void split_page(struct page *page, unsigned int order) 1357 { 1358 int i; 1359 1360 VM_BUG_ON(PageCompound(page)); 1361 VM_BUG_ON(!page_count(page)); 1362 1363 #ifdef CONFIG_KMEMCHECK 1364 /* 1365 * Split shadow pages too, because free(page[0]) would 1366 * otherwise free the whole shadow. 1367 */ 1368 if (kmemcheck_page_is_tracked(page)) 1369 split_page(virt_to_page(page[0].shadow), order); 1370 #endif 1371 1372 for (i = 1; i < (1 << order); i++) 1373 set_page_refcounted(page + i); 1374 } 1375 1376 /* 1377 * Similar to split_page except the page is already free. As this is only 1378 * being used for migration, the migratetype of the block also changes. 1379 * As this is called with interrupts disabled, the caller is responsible 1380 * for calling arch_alloc_page() and kernel_map_page() after interrupts 1381 * are enabled. 1382 * 1383 * Note: this is probably too low level an operation for use in drivers. 1384 * Please consult with lkml before using this in your driver. 1385 */ 1386 int split_free_page(struct page *page) 1387 { 1388 unsigned int order; 1389 unsigned long watermark; 1390 struct zone *zone; 1391 1392 BUG_ON(!PageBuddy(page)); 1393 1394 zone = page_zone(page); 1395 order = page_order(page); 1396 1397 /* Obey watermarks as if the page was being allocated */ 1398 watermark = low_wmark_pages(zone) + (1 << order); 1399 if (!zone_watermark_ok(zone, 0, watermark, 0, 0)) 1400 return 0; 1401 1402 /* Remove page from free list */ 1403 list_del(&page->lru); 1404 zone->free_area[order].nr_free--; 1405 rmv_page_order(page); 1406 __mod_zone_page_state(zone, NR_FREE_PAGES, -(1UL << order)); 1407 1408 /* Split into individual pages */ 1409 set_page_refcounted(page); 1410 split_page(page, order); 1411 1412 if (order >= pageblock_order - 1) { 1413 struct page *endpage = page + (1 << order) - 1; 1414 for (; page < endpage; page += pageblock_nr_pages) { 1415 int mt = get_pageblock_migratetype(page); 1416 if (mt != MIGRATE_ISOLATE && !is_migrate_cma(mt)) 1417 set_pageblock_migratetype(page, 1418 MIGRATE_MOVABLE); 1419 } 1420 } 1421 1422 return 1 << order; 1423 } 1424 1425 /* 1426 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But 1427 * we cheat by calling it from here, in the order > 0 path. Saves a branch 1428 * or two. 1429 */ 1430 static inline 1431 struct page *buffered_rmqueue(struct zone *preferred_zone, 1432 struct zone *zone, int order, gfp_t gfp_flags, 1433 int migratetype) 1434 { 1435 unsigned long flags; 1436 struct page *page; 1437 int cold = !!(gfp_flags & __GFP_COLD); 1438 1439 again: 1440 if (likely(order == 0)) { 1441 struct per_cpu_pages *pcp; 1442 struct list_head *list; 1443 1444 local_irq_save(flags); 1445 pcp = &this_cpu_ptr(zone->pageset)->pcp; 1446 list = &pcp->lists[migratetype]; 1447 if (list_empty(list)) { 1448 pcp->count += rmqueue_bulk(zone, 0, 1449 pcp->batch, list, 1450 migratetype, cold); 1451 if (unlikely(list_empty(list))) 1452 goto failed; 1453 } 1454 1455 if (cold) 1456 page = list_entry(list->prev, struct page, lru); 1457 else 1458 page = list_entry(list->next, struct page, lru); 1459 1460 list_del(&page->lru); 1461 pcp->count--; 1462 } else { 1463 if (unlikely(gfp_flags & __GFP_NOFAIL)) { 1464 /* 1465 * __GFP_NOFAIL is not to be used in new code. 1466 * 1467 * All __GFP_NOFAIL callers should be fixed so that they 1468 * properly detect and handle allocation failures. 1469 * 1470 * We most definitely don't want callers attempting to 1471 * allocate greater than order-1 page units with 1472 * __GFP_NOFAIL. 1473 */ 1474 WARN_ON_ONCE(order > 1); 1475 } 1476 spin_lock_irqsave(&zone->lock, flags); 1477 page = __rmqueue(zone, order, migratetype); 1478 spin_unlock(&zone->lock); 1479 if (!page) 1480 goto failed; 1481 __mod_zone_page_state(zone, NR_FREE_PAGES, -(1 << order)); 1482 } 1483 1484 __count_zone_vm_events(PGALLOC, zone, 1 << order); 1485 zone_statistics(preferred_zone, zone, gfp_flags); 1486 local_irq_restore(flags); 1487 1488 VM_BUG_ON(bad_range(zone, page)); 1489 if (prep_new_page(page, order, gfp_flags)) 1490 goto again; 1491 return page; 1492 1493 failed: 1494 local_irq_restore(flags); 1495 return NULL; 1496 } 1497 1498 /* The ALLOC_WMARK bits are used as an index to zone->watermark */ 1499 #define ALLOC_WMARK_MIN WMARK_MIN 1500 #define ALLOC_WMARK_LOW WMARK_LOW 1501 #define ALLOC_WMARK_HIGH WMARK_HIGH 1502 #define ALLOC_NO_WATERMARKS 0x04 /* don't check watermarks at all */ 1503 1504 /* Mask to get the watermark bits */ 1505 #define ALLOC_WMARK_MASK (ALLOC_NO_WATERMARKS-1) 1506 1507 #define ALLOC_HARDER 0x10 /* try to alloc harder */ 1508 #define ALLOC_HIGH 0x20 /* __GFP_HIGH set */ 1509 #define ALLOC_CPUSET 0x40 /* check for correct cpuset */ 1510 1511 #ifdef CONFIG_FAIL_PAGE_ALLOC 1512 1513 static struct { 1514 struct fault_attr attr; 1515 1516 u32 ignore_gfp_highmem; 1517 u32 ignore_gfp_wait; 1518 u32 min_order; 1519 } fail_page_alloc = { 1520 .attr = FAULT_ATTR_INITIALIZER, 1521 .ignore_gfp_wait = 1, 1522 .ignore_gfp_highmem = 1, 1523 .min_order = 1, 1524 }; 1525 1526 static int __init setup_fail_page_alloc(char *str) 1527 { 1528 return setup_fault_attr(&fail_page_alloc.attr, str); 1529 } 1530 __setup("fail_page_alloc=", setup_fail_page_alloc); 1531 1532 static int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) 1533 { 1534 if (order < fail_page_alloc.min_order) 1535 return 0; 1536 if (gfp_mask & __GFP_NOFAIL) 1537 return 0; 1538 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM)) 1539 return 0; 1540 if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT)) 1541 return 0; 1542 1543 return should_fail(&fail_page_alloc.attr, 1 << order); 1544 } 1545 1546 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS 1547 1548 static int __init fail_page_alloc_debugfs(void) 1549 { 1550 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR; 1551 struct dentry *dir; 1552 1553 dir = fault_create_debugfs_attr("fail_page_alloc", NULL, 1554 &fail_page_alloc.attr); 1555 if (IS_ERR(dir)) 1556 return PTR_ERR(dir); 1557 1558 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir, 1559 &fail_page_alloc.ignore_gfp_wait)) 1560 goto fail; 1561 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir, 1562 &fail_page_alloc.ignore_gfp_highmem)) 1563 goto fail; 1564 if (!debugfs_create_u32("min-order", mode, dir, 1565 &fail_page_alloc.min_order)) 1566 goto fail; 1567 1568 return 0; 1569 fail: 1570 debugfs_remove_recursive(dir); 1571 1572 return -ENOMEM; 1573 } 1574 1575 late_initcall(fail_page_alloc_debugfs); 1576 1577 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */ 1578 1579 #else /* CONFIG_FAIL_PAGE_ALLOC */ 1580 1581 static inline int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) 1582 { 1583 return 0; 1584 } 1585 1586 #endif /* CONFIG_FAIL_PAGE_ALLOC */ 1587 1588 /* 1589 * Return true if free pages are above 'mark'. This takes into account the order 1590 * of the allocation. 1591 */ 1592 static bool __zone_watermark_ok(struct zone *z, int order, unsigned long mark, 1593 int classzone_idx, int alloc_flags, long free_pages) 1594 { 1595 /* free_pages my go negative - that's OK */ 1596 long min = mark; 1597 int o; 1598 1599 free_pages -= (1 << order) - 1; 1600 if (alloc_flags & ALLOC_HIGH) 1601 min -= min / 2; 1602 if (alloc_flags & ALLOC_HARDER) 1603 min -= min / 4; 1604 1605 if (free_pages <= min + z->lowmem_reserve[classzone_idx]) 1606 return false; 1607 for (o = 0; o < order; o++) { 1608 /* At the next order, this order's pages become unavailable */ 1609 free_pages -= z->free_area[o].nr_free << o; 1610 1611 /* Require fewer higher order pages to be free */ 1612 min >>= 1; 1613 1614 if (free_pages <= min) 1615 return false; 1616 } 1617 return true; 1618 } 1619 1620 bool zone_watermark_ok(struct zone *z, int order, unsigned long mark, 1621 int classzone_idx, int alloc_flags) 1622 { 1623 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags, 1624 zone_page_state(z, NR_FREE_PAGES)); 1625 } 1626 1627 bool zone_watermark_ok_safe(struct zone *z, int order, unsigned long mark, 1628 int classzone_idx, int alloc_flags) 1629 { 1630 long free_pages = zone_page_state(z, NR_FREE_PAGES); 1631 1632 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark) 1633 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES); 1634 1635 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags, 1636 free_pages); 1637 } 1638 1639 #ifdef CONFIG_NUMA 1640 /* 1641 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to 1642 * skip over zones that are not allowed by the cpuset, or that have 1643 * been recently (in last second) found to be nearly full. See further 1644 * comments in mmzone.h. Reduces cache footprint of zonelist scans 1645 * that have to skip over a lot of full or unallowed zones. 1646 * 1647 * If the zonelist cache is present in the passed in zonelist, then 1648 * returns a pointer to the allowed node mask (either the current 1649 * tasks mems_allowed, or node_states[N_HIGH_MEMORY].) 1650 * 1651 * If the zonelist cache is not available for this zonelist, does 1652 * nothing and returns NULL. 1653 * 1654 * If the fullzones BITMAP in the zonelist cache is stale (more than 1655 * a second since last zap'd) then we zap it out (clear its bits.) 1656 * 1657 * We hold off even calling zlc_setup, until after we've checked the 1658 * first zone in the zonelist, on the theory that most allocations will 1659 * be satisfied from that first zone, so best to examine that zone as 1660 * quickly as we can. 1661 */ 1662 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags) 1663 { 1664 struct zonelist_cache *zlc; /* cached zonelist speedup info */ 1665 nodemask_t *allowednodes; /* zonelist_cache approximation */ 1666 1667 zlc = zonelist->zlcache_ptr; 1668 if (!zlc) 1669 return NULL; 1670 1671 if (time_after(jiffies, zlc->last_full_zap + HZ)) { 1672 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST); 1673 zlc->last_full_zap = jiffies; 1674 } 1675 1676 allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ? 1677 &cpuset_current_mems_allowed : 1678 &node_states[N_HIGH_MEMORY]; 1679 return allowednodes; 1680 } 1681 1682 /* 1683 * Given 'z' scanning a zonelist, run a couple of quick checks to see 1684 * if it is worth looking at further for free memory: 1685 * 1) Check that the zone isn't thought to be full (doesn't have its 1686 * bit set in the zonelist_cache fullzones BITMAP). 1687 * 2) Check that the zones node (obtained from the zonelist_cache 1688 * z_to_n[] mapping) is allowed in the passed in allowednodes mask. 1689 * Return true (non-zero) if zone is worth looking at further, or 1690 * else return false (zero) if it is not. 1691 * 1692 * This check -ignores- the distinction between various watermarks, 1693 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is 1694 * found to be full for any variation of these watermarks, it will 1695 * be considered full for up to one second by all requests, unless 1696 * we are so low on memory on all allowed nodes that we are forced 1697 * into the second scan of the zonelist. 1698 * 1699 * In the second scan we ignore this zonelist cache and exactly 1700 * apply the watermarks to all zones, even it is slower to do so. 1701 * We are low on memory in the second scan, and should leave no stone 1702 * unturned looking for a free page. 1703 */ 1704 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z, 1705 nodemask_t *allowednodes) 1706 { 1707 struct zonelist_cache *zlc; /* cached zonelist speedup info */ 1708 int i; /* index of *z in zonelist zones */ 1709 int n; /* node that zone *z is on */ 1710 1711 zlc = zonelist->zlcache_ptr; 1712 if (!zlc) 1713 return 1; 1714 1715 i = z - zonelist->_zonerefs; 1716 n = zlc->z_to_n[i]; 1717 1718 /* This zone is worth trying if it is allowed but not full */ 1719 return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones); 1720 } 1721 1722 /* 1723 * Given 'z' scanning a zonelist, set the corresponding bit in 1724 * zlc->fullzones, so that subsequent attempts to allocate a page 1725 * from that zone don't waste time re-examining it. 1726 */ 1727 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z) 1728 { 1729 struct zonelist_cache *zlc; /* cached zonelist speedup info */ 1730 int i; /* index of *z in zonelist zones */ 1731 1732 zlc = zonelist->zlcache_ptr; 1733 if (!zlc) 1734 return; 1735 1736 i = z - zonelist->_zonerefs; 1737 1738 set_bit(i, zlc->fullzones); 1739 } 1740 1741 /* 1742 * clear all zones full, called after direct reclaim makes progress so that 1743 * a zone that was recently full is not skipped over for up to a second 1744 */ 1745 static void zlc_clear_zones_full(struct zonelist *zonelist) 1746 { 1747 struct zonelist_cache *zlc; /* cached zonelist speedup info */ 1748 1749 zlc = zonelist->zlcache_ptr; 1750 if (!zlc) 1751 return; 1752 1753 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST); 1754 } 1755 1756 #else /* CONFIG_NUMA */ 1757 1758 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags) 1759 { 1760 return NULL; 1761 } 1762 1763 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z, 1764 nodemask_t *allowednodes) 1765 { 1766 return 1; 1767 } 1768 1769 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z) 1770 { 1771 } 1772 1773 static void zlc_clear_zones_full(struct zonelist *zonelist) 1774 { 1775 } 1776 #endif /* CONFIG_NUMA */ 1777 1778 /* 1779 * get_page_from_freelist goes through the zonelist trying to allocate 1780 * a page. 1781 */ 1782 static struct page * 1783 get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order, 1784 struct zonelist *zonelist, int high_zoneidx, int alloc_flags, 1785 struct zone *preferred_zone, int migratetype) 1786 { 1787 struct zoneref *z; 1788 struct page *page = NULL; 1789 int classzone_idx; 1790 struct zone *zone; 1791 nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */ 1792 int zlc_active = 0; /* set if using zonelist_cache */ 1793 int did_zlc_setup = 0; /* just call zlc_setup() one time */ 1794 1795 classzone_idx = zone_idx(preferred_zone); 1796 zonelist_scan: 1797 /* 1798 * Scan zonelist, looking for a zone with enough free. 1799 * See also cpuset_zone_allowed() comment in kernel/cpuset.c. 1800 */ 1801 for_each_zone_zonelist_nodemask(zone, z, zonelist, 1802 high_zoneidx, nodemask) { 1803 if (NUMA_BUILD && zlc_active && 1804 !zlc_zone_worth_trying(zonelist, z, allowednodes)) 1805 continue; 1806 if ((alloc_flags & ALLOC_CPUSET) && 1807 !cpuset_zone_allowed_softwall(zone, gfp_mask)) 1808 continue; 1809 /* 1810 * When allocating a page cache page for writing, we 1811 * want to get it from a zone that is within its dirty 1812 * limit, such that no single zone holds more than its 1813 * proportional share of globally allowed dirty pages. 1814 * The dirty limits take into account the zone's 1815 * lowmem reserves and high watermark so that kswapd 1816 * should be able to balance it without having to 1817 * write pages from its LRU list. 1818 * 1819 * This may look like it could increase pressure on 1820 * lower zones by failing allocations in higher zones 1821 * before they are full. But the pages that do spill 1822 * over are limited as the lower zones are protected 1823 * by this very same mechanism. It should not become 1824 * a practical burden to them. 1825 * 1826 * XXX: For now, allow allocations to potentially 1827 * exceed the per-zone dirty limit in the slowpath 1828 * (ALLOC_WMARK_LOW unset) before going into reclaim, 1829 * which is important when on a NUMA setup the allowed 1830 * zones are together not big enough to reach the 1831 * global limit. The proper fix for these situations 1832 * will require awareness of zones in the 1833 * dirty-throttling and the flusher threads. 1834 */ 1835 if ((alloc_flags & ALLOC_WMARK_LOW) && 1836 (gfp_mask & __GFP_WRITE) && !zone_dirty_ok(zone)) 1837 goto this_zone_full; 1838 1839 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK); 1840 if (!(alloc_flags & ALLOC_NO_WATERMARKS)) { 1841 unsigned long mark; 1842 int ret; 1843 1844 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK]; 1845 if (zone_watermark_ok(zone, order, mark, 1846 classzone_idx, alloc_flags)) 1847 goto try_this_zone; 1848 1849 if (NUMA_BUILD && !did_zlc_setup && nr_online_nodes > 1) { 1850 /* 1851 * we do zlc_setup if there are multiple nodes 1852 * and before considering the first zone allowed 1853 * by the cpuset. 1854 */ 1855 allowednodes = zlc_setup(zonelist, alloc_flags); 1856 zlc_active = 1; 1857 did_zlc_setup = 1; 1858 } 1859 1860 if (zone_reclaim_mode == 0) 1861 goto this_zone_full; 1862 1863 /* 1864 * As we may have just activated ZLC, check if the first 1865 * eligible zone has failed zone_reclaim recently. 1866 */ 1867 if (NUMA_BUILD && zlc_active && 1868 !zlc_zone_worth_trying(zonelist, z, allowednodes)) 1869 continue; 1870 1871 ret = zone_reclaim(zone, gfp_mask, order); 1872 switch (ret) { 1873 case ZONE_RECLAIM_NOSCAN: 1874 /* did not scan */ 1875 continue; 1876 case ZONE_RECLAIM_FULL: 1877 /* scanned but unreclaimable */ 1878 continue; 1879 default: 1880 /* did we reclaim enough */ 1881 if (!zone_watermark_ok(zone, order, mark, 1882 classzone_idx, alloc_flags)) 1883 goto this_zone_full; 1884 } 1885 } 1886 1887 try_this_zone: 1888 page = buffered_rmqueue(preferred_zone, zone, order, 1889 gfp_mask, migratetype); 1890 if (page) 1891 break; 1892 this_zone_full: 1893 if (NUMA_BUILD) 1894 zlc_mark_zone_full(zonelist, z); 1895 } 1896 1897 if (unlikely(NUMA_BUILD && page == NULL && zlc_active)) { 1898 /* Disable zlc cache for second zonelist scan */ 1899 zlc_active = 0; 1900 goto zonelist_scan; 1901 } 1902 return page; 1903 } 1904 1905 /* 1906 * Large machines with many possible nodes should not always dump per-node 1907 * meminfo in irq context. 1908 */ 1909 static inline bool should_suppress_show_mem(void) 1910 { 1911 bool ret = false; 1912 1913 #if NODES_SHIFT > 8 1914 ret = in_interrupt(); 1915 #endif 1916 return ret; 1917 } 1918 1919 static DEFINE_RATELIMIT_STATE(nopage_rs, 1920 DEFAULT_RATELIMIT_INTERVAL, 1921 DEFAULT_RATELIMIT_BURST); 1922 1923 void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...) 1924 { 1925 unsigned int filter = SHOW_MEM_FILTER_NODES; 1926 1927 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) || 1928 debug_guardpage_minorder() > 0) 1929 return; 1930 1931 /* 1932 * This documents exceptions given to allocations in certain 1933 * contexts that are allowed to allocate outside current's set 1934 * of allowed nodes. 1935 */ 1936 if (!(gfp_mask & __GFP_NOMEMALLOC)) 1937 if (test_thread_flag(TIF_MEMDIE) || 1938 (current->flags & (PF_MEMALLOC | PF_EXITING))) 1939 filter &= ~SHOW_MEM_FILTER_NODES; 1940 if (in_interrupt() || !(gfp_mask & __GFP_WAIT)) 1941 filter &= ~SHOW_MEM_FILTER_NODES; 1942 1943 if (fmt) { 1944 struct va_format vaf; 1945 va_list args; 1946 1947 va_start(args, fmt); 1948 1949 vaf.fmt = fmt; 1950 vaf.va = &args; 1951 1952 pr_warn("%pV", &vaf); 1953 1954 va_end(args); 1955 } 1956 1957 pr_warn("%s: page allocation failure: order:%d, mode:0x%x\n", 1958 current->comm, order, gfp_mask); 1959 1960 dump_stack(); 1961 if (!should_suppress_show_mem()) 1962 show_mem(filter); 1963 } 1964 1965 static inline int 1966 should_alloc_retry(gfp_t gfp_mask, unsigned int order, 1967 unsigned long did_some_progress, 1968 unsigned long pages_reclaimed) 1969 { 1970 /* Do not loop if specifically requested */ 1971 if (gfp_mask & __GFP_NORETRY) 1972 return 0; 1973 1974 /* Always retry if specifically requested */ 1975 if (gfp_mask & __GFP_NOFAIL) 1976 return 1; 1977 1978 /* 1979 * Suspend converts GFP_KERNEL to __GFP_WAIT which can prevent reclaim 1980 * making forward progress without invoking OOM. Suspend also disables 1981 * storage devices so kswapd will not help. Bail if we are suspending. 1982 */ 1983 if (!did_some_progress && pm_suspended_storage()) 1984 return 0; 1985 1986 /* 1987 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER 1988 * means __GFP_NOFAIL, but that may not be true in other 1989 * implementations. 1990 */ 1991 if (order <= PAGE_ALLOC_COSTLY_ORDER) 1992 return 1; 1993 1994 /* 1995 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is 1996 * specified, then we retry until we no longer reclaim any pages 1997 * (above), or we've reclaimed an order of pages at least as 1998 * large as the allocation's order. In both cases, if the 1999 * allocation still fails, we stop retrying. 2000 */ 2001 if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order)) 2002 return 1; 2003 2004 return 0; 2005 } 2006 2007 static inline struct page * 2008 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order, 2009 struct zonelist *zonelist, enum zone_type high_zoneidx, 2010 nodemask_t *nodemask, struct zone *preferred_zone, 2011 int migratetype) 2012 { 2013 struct page *page; 2014 2015 /* Acquire the OOM killer lock for the zones in zonelist */ 2016 if (!try_set_zonelist_oom(zonelist, gfp_mask)) { 2017 schedule_timeout_uninterruptible(1); 2018 return NULL; 2019 } 2020 2021 /* 2022 * Go through the zonelist yet one more time, keep very high watermark 2023 * here, this is only to catch a parallel oom killing, we must fail if 2024 * we're still under heavy pressure. 2025 */ 2026 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, 2027 order, zonelist, high_zoneidx, 2028 ALLOC_WMARK_HIGH|ALLOC_CPUSET, 2029 preferred_zone, migratetype); 2030 if (page) 2031 goto out; 2032 2033 if (!(gfp_mask & __GFP_NOFAIL)) { 2034 /* The OOM killer will not help higher order allocs */ 2035 if (order > PAGE_ALLOC_COSTLY_ORDER) 2036 goto out; 2037 /* The OOM killer does not needlessly kill tasks for lowmem */ 2038 if (high_zoneidx < ZONE_NORMAL) 2039 goto out; 2040 /* 2041 * GFP_THISNODE contains __GFP_NORETRY and we never hit this. 2042 * Sanity check for bare calls of __GFP_THISNODE, not real OOM. 2043 * The caller should handle page allocation failure by itself if 2044 * it specifies __GFP_THISNODE. 2045 * Note: Hugepage uses it but will hit PAGE_ALLOC_COSTLY_ORDER. 2046 */ 2047 if (gfp_mask & __GFP_THISNODE) 2048 goto out; 2049 } 2050 /* Exhausted what can be done so it's blamo time */ 2051 out_of_memory(zonelist, gfp_mask, order, nodemask, false); 2052 2053 out: 2054 clear_zonelist_oom(zonelist, gfp_mask); 2055 return page; 2056 } 2057 2058 #ifdef CONFIG_COMPACTION 2059 /* Try memory compaction for high-order allocations before reclaim */ 2060 static struct page * 2061 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order, 2062 struct zonelist *zonelist, enum zone_type high_zoneidx, 2063 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone, 2064 int migratetype, bool sync_migration, 2065 bool *deferred_compaction, 2066 unsigned long *did_some_progress) 2067 { 2068 struct page *page; 2069 2070 if (!order) 2071 return NULL; 2072 2073 if (compaction_deferred(preferred_zone, order)) { 2074 *deferred_compaction = true; 2075 return NULL; 2076 } 2077 2078 current->flags |= PF_MEMALLOC; 2079 *did_some_progress = try_to_compact_pages(zonelist, order, gfp_mask, 2080 nodemask, sync_migration); 2081 current->flags &= ~PF_MEMALLOC; 2082 if (*did_some_progress != COMPACT_SKIPPED) { 2083 2084 /* Page migration frees to the PCP lists but we want merging */ 2085 drain_pages(get_cpu()); 2086 put_cpu(); 2087 2088 page = get_page_from_freelist(gfp_mask, nodemask, 2089 order, zonelist, high_zoneidx, 2090 alloc_flags, preferred_zone, 2091 migratetype); 2092 if (page) { 2093 preferred_zone->compact_considered = 0; 2094 preferred_zone->compact_defer_shift = 0; 2095 if (order >= preferred_zone->compact_order_failed) 2096 preferred_zone->compact_order_failed = order + 1; 2097 count_vm_event(COMPACTSUCCESS); 2098 return page; 2099 } 2100 2101 /* 2102 * It's bad if compaction run occurs and fails. 2103 * The most likely reason is that pages exist, 2104 * but not enough to satisfy watermarks. 2105 */ 2106 count_vm_event(COMPACTFAIL); 2107 2108 /* 2109 * As async compaction considers a subset of pageblocks, only 2110 * defer if the failure was a sync compaction failure. 2111 */ 2112 if (sync_migration) 2113 defer_compaction(preferred_zone, order); 2114 2115 cond_resched(); 2116 } 2117 2118 return NULL; 2119 } 2120 #else 2121 static inline struct page * 2122 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order, 2123 struct zonelist *zonelist, enum zone_type high_zoneidx, 2124 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone, 2125 int migratetype, bool sync_migration, 2126 bool *deferred_compaction, 2127 unsigned long *did_some_progress) 2128 { 2129 return NULL; 2130 } 2131 #endif /* CONFIG_COMPACTION */ 2132 2133 /* Perform direct synchronous page reclaim */ 2134 static int 2135 __perform_reclaim(gfp_t gfp_mask, unsigned int order, struct zonelist *zonelist, 2136 nodemask_t *nodemask) 2137 { 2138 struct reclaim_state reclaim_state; 2139 int progress; 2140 2141 cond_resched(); 2142 2143 /* We now go into synchronous reclaim */ 2144 cpuset_memory_pressure_bump(); 2145 current->flags |= PF_MEMALLOC; 2146 lockdep_set_current_reclaim_state(gfp_mask); 2147 reclaim_state.reclaimed_slab = 0; 2148 current->reclaim_state = &reclaim_state; 2149 2150 progress = try_to_free_pages(zonelist, order, gfp_mask, nodemask); 2151 2152 current->reclaim_state = NULL; 2153 lockdep_clear_current_reclaim_state(); 2154 current->flags &= ~PF_MEMALLOC; 2155 2156 cond_resched(); 2157 2158 return progress; 2159 } 2160 2161 /* The really slow allocator path where we enter direct reclaim */ 2162 static inline struct page * 2163 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order, 2164 struct zonelist *zonelist, enum zone_type high_zoneidx, 2165 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone, 2166 int migratetype, unsigned long *did_some_progress) 2167 { 2168 struct page *page = NULL; 2169 bool drained = false; 2170 2171 *did_some_progress = __perform_reclaim(gfp_mask, order, zonelist, 2172 nodemask); 2173 if (unlikely(!(*did_some_progress))) 2174 return NULL; 2175 2176 /* After successful reclaim, reconsider all zones for allocation */ 2177 if (NUMA_BUILD) 2178 zlc_clear_zones_full(zonelist); 2179 2180 retry: 2181 page = get_page_from_freelist(gfp_mask, nodemask, order, 2182 zonelist, high_zoneidx, 2183 alloc_flags, preferred_zone, 2184 migratetype); 2185 2186 /* 2187 * If an allocation failed after direct reclaim, it could be because 2188 * pages are pinned on the per-cpu lists. Drain them and try again 2189 */ 2190 if (!page && !drained) { 2191 drain_all_pages(); 2192 drained = true; 2193 goto retry; 2194 } 2195 2196 return page; 2197 } 2198 2199 /* 2200 * This is called in the allocator slow-path if the allocation request is of 2201 * sufficient urgency to ignore watermarks and take other desperate measures 2202 */ 2203 static inline struct page * 2204 __alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order, 2205 struct zonelist *zonelist, enum zone_type high_zoneidx, 2206 nodemask_t *nodemask, struct zone *preferred_zone, 2207 int migratetype) 2208 { 2209 struct page *page; 2210 2211 do { 2212 page = get_page_from_freelist(gfp_mask, nodemask, order, 2213 zonelist, high_zoneidx, ALLOC_NO_WATERMARKS, 2214 preferred_zone, migratetype); 2215 2216 if (!page && gfp_mask & __GFP_NOFAIL) 2217 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50); 2218 } while (!page && (gfp_mask & __GFP_NOFAIL)); 2219 2220 return page; 2221 } 2222 2223 static inline 2224 void wake_all_kswapd(unsigned int order, struct zonelist *zonelist, 2225 enum zone_type high_zoneidx, 2226 enum zone_type classzone_idx) 2227 { 2228 struct zoneref *z; 2229 struct zone *zone; 2230 2231 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) 2232 wakeup_kswapd(zone, order, classzone_idx); 2233 } 2234 2235 static inline int 2236 gfp_to_alloc_flags(gfp_t gfp_mask) 2237 { 2238 int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET; 2239 const gfp_t wait = gfp_mask & __GFP_WAIT; 2240 2241 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */ 2242 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH); 2243 2244 /* 2245 * The caller may dip into page reserves a bit more if the caller 2246 * cannot run direct reclaim, or if the caller has realtime scheduling 2247 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will 2248 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH). 2249 */ 2250 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH); 2251 2252 if (!wait) { 2253 /* 2254 * Not worth trying to allocate harder for 2255 * __GFP_NOMEMALLOC even if it can't schedule. 2256 */ 2257 if (!(gfp_mask & __GFP_NOMEMALLOC)) 2258 alloc_flags |= ALLOC_HARDER; 2259 /* 2260 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc. 2261 * See also cpuset_zone_allowed() comment in kernel/cpuset.c. 2262 */ 2263 alloc_flags &= ~ALLOC_CPUSET; 2264 } else if (unlikely(rt_task(current)) && !in_interrupt()) 2265 alloc_flags |= ALLOC_HARDER; 2266 2267 if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) { 2268 if (!in_interrupt() && 2269 ((current->flags & PF_MEMALLOC) || 2270 unlikely(test_thread_flag(TIF_MEMDIE)))) 2271 alloc_flags |= ALLOC_NO_WATERMARKS; 2272 } 2273 2274 return alloc_flags; 2275 } 2276 2277 static inline struct page * 2278 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order, 2279 struct zonelist *zonelist, enum zone_type high_zoneidx, 2280 nodemask_t *nodemask, struct zone *preferred_zone, 2281 int migratetype) 2282 { 2283 const gfp_t wait = gfp_mask & __GFP_WAIT; 2284 struct page *page = NULL; 2285 int alloc_flags; 2286 unsigned long pages_reclaimed = 0; 2287 unsigned long did_some_progress; 2288 bool sync_migration = false; 2289 bool deferred_compaction = false; 2290 2291 /* 2292 * In the slowpath, we sanity check order to avoid ever trying to 2293 * reclaim >= MAX_ORDER areas which will never succeed. Callers may 2294 * be using allocators in order of preference for an area that is 2295 * too large. 2296 */ 2297 if (order >= MAX_ORDER) { 2298 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN)); 2299 return NULL; 2300 } 2301 2302 /* 2303 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and 2304 * __GFP_NOWARN set) should not cause reclaim since the subsystem 2305 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim 2306 * using a larger set of nodes after it has established that the 2307 * allowed per node queues are empty and that nodes are 2308 * over allocated. 2309 */ 2310 if (NUMA_BUILD && (gfp_mask & GFP_THISNODE) == GFP_THISNODE) 2311 goto nopage; 2312 2313 restart: 2314 if (!(gfp_mask & __GFP_NO_KSWAPD)) 2315 wake_all_kswapd(order, zonelist, high_zoneidx, 2316 zone_idx(preferred_zone)); 2317 2318 /* 2319 * OK, we're below the kswapd watermark and have kicked background 2320 * reclaim. Now things get more complex, so set up alloc_flags according 2321 * to how we want to proceed. 2322 */ 2323 alloc_flags = gfp_to_alloc_flags(gfp_mask); 2324 2325 /* 2326 * Find the true preferred zone if the allocation is unconstrained by 2327 * cpusets. 2328 */ 2329 if (!(alloc_flags & ALLOC_CPUSET) && !nodemask) 2330 first_zones_zonelist(zonelist, high_zoneidx, NULL, 2331 &preferred_zone); 2332 2333 rebalance: 2334 /* This is the last chance, in general, before the goto nopage. */ 2335 page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist, 2336 high_zoneidx, alloc_flags & ~ALLOC_NO_WATERMARKS, 2337 preferred_zone, migratetype); 2338 if (page) 2339 goto got_pg; 2340 2341 /* Allocate without watermarks if the context allows */ 2342 if (alloc_flags & ALLOC_NO_WATERMARKS) { 2343 page = __alloc_pages_high_priority(gfp_mask, order, 2344 zonelist, high_zoneidx, nodemask, 2345 preferred_zone, migratetype); 2346 if (page) 2347 goto got_pg; 2348 } 2349 2350 /* Atomic allocations - we can't balance anything */ 2351 if (!wait) 2352 goto nopage; 2353 2354 /* Avoid recursion of direct reclaim */ 2355 if (current->flags & PF_MEMALLOC) 2356 goto nopage; 2357 2358 /* Avoid allocations with no watermarks from looping endlessly */ 2359 if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL)) 2360 goto nopage; 2361 2362 /* 2363 * Try direct compaction. The first pass is asynchronous. Subsequent 2364 * attempts after direct reclaim are synchronous 2365 */ 2366 page = __alloc_pages_direct_compact(gfp_mask, order, 2367 zonelist, high_zoneidx, 2368 nodemask, 2369 alloc_flags, preferred_zone, 2370 migratetype, sync_migration, 2371 &deferred_compaction, 2372 &did_some_progress); 2373 if (page) 2374 goto got_pg; 2375 sync_migration = true; 2376 2377 /* 2378 * If compaction is deferred for high-order allocations, it is because 2379 * sync compaction recently failed. In this is the case and the caller 2380 * has requested the system not be heavily disrupted, fail the 2381 * allocation now instead of entering direct reclaim 2382 */ 2383 if (deferred_compaction && (gfp_mask & __GFP_NO_KSWAPD)) 2384 goto nopage; 2385 2386 /* Try direct reclaim and then allocating */ 2387 page = __alloc_pages_direct_reclaim(gfp_mask, order, 2388 zonelist, high_zoneidx, 2389 nodemask, 2390 alloc_flags, preferred_zone, 2391 migratetype, &did_some_progress); 2392 if (page) 2393 goto got_pg; 2394 2395 /* 2396 * If we failed to make any progress reclaiming, then we are 2397 * running out of options and have to consider going OOM 2398 */ 2399 if (!did_some_progress) { 2400 if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) { 2401 if (oom_killer_disabled) 2402 goto nopage; 2403 /* Coredumps can quickly deplete all memory reserves */ 2404 if ((current->flags & PF_DUMPCORE) && 2405 !(gfp_mask & __GFP_NOFAIL)) 2406 goto nopage; 2407 page = __alloc_pages_may_oom(gfp_mask, order, 2408 zonelist, high_zoneidx, 2409 nodemask, preferred_zone, 2410 migratetype); 2411 if (page) 2412 goto got_pg; 2413 2414 if (!(gfp_mask & __GFP_NOFAIL)) { 2415 /* 2416 * The oom killer is not called for high-order 2417 * allocations that may fail, so if no progress 2418 * is being made, there are no other options and 2419 * retrying is unlikely to help. 2420 */ 2421 if (order > PAGE_ALLOC_COSTLY_ORDER) 2422 goto nopage; 2423 /* 2424 * The oom killer is not called for lowmem 2425 * allocations to prevent needlessly killing 2426 * innocent tasks. 2427 */ 2428 if (high_zoneidx < ZONE_NORMAL) 2429 goto nopage; 2430 } 2431 2432 goto restart; 2433 } 2434 } 2435 2436 /* Check if we should retry the allocation */ 2437 pages_reclaimed += did_some_progress; 2438 if (should_alloc_retry(gfp_mask, order, did_some_progress, 2439 pages_reclaimed)) { 2440 /* Wait for some write requests to complete then retry */ 2441 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50); 2442 goto rebalance; 2443 } else { 2444 /* 2445 * High-order allocations do not necessarily loop after 2446 * direct reclaim and reclaim/compaction depends on compaction 2447 * being called after reclaim so call directly if necessary 2448 */ 2449 page = __alloc_pages_direct_compact(gfp_mask, order, 2450 zonelist, high_zoneidx, 2451 nodemask, 2452 alloc_flags, preferred_zone, 2453 migratetype, sync_migration, 2454 &deferred_compaction, 2455 &did_some_progress); 2456 if (page) 2457 goto got_pg; 2458 } 2459 2460 nopage: 2461 warn_alloc_failed(gfp_mask, order, NULL); 2462 return page; 2463 got_pg: 2464 if (kmemcheck_enabled) 2465 kmemcheck_pagealloc_alloc(page, order, gfp_mask); 2466 return page; 2467 2468 } 2469 2470 /* 2471 * This is the 'heart' of the zoned buddy allocator. 2472 */ 2473 struct page * 2474 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order, 2475 struct zonelist *zonelist, nodemask_t *nodemask) 2476 { 2477 enum zone_type high_zoneidx = gfp_zone(gfp_mask); 2478 struct zone *preferred_zone; 2479 struct page *page = NULL; 2480 int migratetype = allocflags_to_migratetype(gfp_mask); 2481 unsigned int cpuset_mems_cookie; 2482 2483 gfp_mask &= gfp_allowed_mask; 2484 2485 lockdep_trace_alloc(gfp_mask); 2486 2487 might_sleep_if(gfp_mask & __GFP_WAIT); 2488 2489 if (should_fail_alloc_page(gfp_mask, order)) 2490 return NULL; 2491 2492 /* 2493 * Check the zones suitable for the gfp_mask contain at least one 2494 * valid zone. It's possible to have an empty zonelist as a result 2495 * of GFP_THISNODE and a memoryless node 2496 */ 2497 if (unlikely(!zonelist->_zonerefs->zone)) 2498 return NULL; 2499 2500 retry_cpuset: 2501 cpuset_mems_cookie = get_mems_allowed(); 2502 2503 /* The preferred zone is used for statistics later */ 2504 first_zones_zonelist(zonelist, high_zoneidx, 2505 nodemask ? : &cpuset_current_mems_allowed, 2506 &preferred_zone); 2507 if (!preferred_zone) 2508 goto out; 2509 2510 /* First allocation attempt */ 2511 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order, 2512 zonelist, high_zoneidx, ALLOC_WMARK_LOW|ALLOC_CPUSET, 2513 preferred_zone, migratetype); 2514 if (unlikely(!page)) 2515 page = __alloc_pages_slowpath(gfp_mask, order, 2516 zonelist, high_zoneidx, nodemask, 2517 preferred_zone, migratetype); 2518 2519 trace_mm_page_alloc(page, order, gfp_mask, migratetype); 2520 2521 out: 2522 /* 2523 * When updating a task's mems_allowed, it is possible to race with 2524 * parallel threads in such a way that an allocation can fail while 2525 * the mask is being updated. If a page allocation is about to fail, 2526 * check if the cpuset changed during allocation and if so, retry. 2527 */ 2528 if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page)) 2529 goto retry_cpuset; 2530 2531 return page; 2532 } 2533 EXPORT_SYMBOL(__alloc_pages_nodemask); 2534 2535 /* 2536 * Common helper functions. 2537 */ 2538 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order) 2539 { 2540 struct page *page; 2541 2542 /* 2543 * __get_free_pages() returns a 32-bit address, which cannot represent 2544 * a highmem page 2545 */ 2546 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0); 2547 2548 page = alloc_pages(gfp_mask, order); 2549 if (!page) 2550 return 0; 2551 return (unsigned long) page_address(page); 2552 } 2553 EXPORT_SYMBOL(__get_free_pages); 2554 2555 unsigned long get_zeroed_page(gfp_t gfp_mask) 2556 { 2557 return __get_free_pages(gfp_mask | __GFP_ZERO, 0); 2558 } 2559 EXPORT_SYMBOL(get_zeroed_page); 2560 2561 void __free_pages(struct page *page, unsigned int order) 2562 { 2563 if (put_page_testzero(page)) { 2564 if (order == 0) 2565 free_hot_cold_page(page, 0); 2566 else 2567 __free_pages_ok(page, order); 2568 } 2569 } 2570 2571 EXPORT_SYMBOL(__free_pages); 2572 2573 void free_pages(unsigned long addr, unsigned int order) 2574 { 2575 if (addr != 0) { 2576 VM_BUG_ON(!virt_addr_valid((void *)addr)); 2577 __free_pages(virt_to_page((void *)addr), order); 2578 } 2579 } 2580 2581 EXPORT_SYMBOL(free_pages); 2582 2583 static void *make_alloc_exact(unsigned long addr, unsigned order, size_t size) 2584 { 2585 if (addr) { 2586 unsigned long alloc_end = addr + (PAGE_SIZE << order); 2587 unsigned long used = addr + PAGE_ALIGN(size); 2588 2589 split_page(virt_to_page((void *)addr), order); 2590 while (used < alloc_end) { 2591 free_page(used); 2592 used += PAGE_SIZE; 2593 } 2594 } 2595 return (void *)addr; 2596 } 2597 2598 /** 2599 * alloc_pages_exact - allocate an exact number physically-contiguous pages. 2600 * @size: the number of bytes to allocate 2601 * @gfp_mask: GFP flags for the allocation 2602 * 2603 * This function is similar to alloc_pages(), except that it allocates the 2604 * minimum number of pages to satisfy the request. alloc_pages() can only 2605 * allocate memory in power-of-two pages. 2606 * 2607 * This function is also limited by MAX_ORDER. 2608 * 2609 * Memory allocated by this function must be released by free_pages_exact(). 2610 */ 2611 void *alloc_pages_exact(size_t size, gfp_t gfp_mask) 2612 { 2613 unsigned int order = get_order(size); 2614 unsigned long addr; 2615 2616 addr = __get_free_pages(gfp_mask, order); 2617 return make_alloc_exact(addr, order, size); 2618 } 2619 EXPORT_SYMBOL(alloc_pages_exact); 2620 2621 /** 2622 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous 2623 * pages on a node. 2624 * @nid: the preferred node ID where memory should be allocated 2625 * @size: the number of bytes to allocate 2626 * @gfp_mask: GFP flags for the allocation 2627 * 2628 * Like alloc_pages_exact(), but try to allocate on node nid first before falling 2629 * back. 2630 * Note this is not alloc_pages_exact_node() which allocates on a specific node, 2631 * but is not exact. 2632 */ 2633 void *alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask) 2634 { 2635 unsigned order = get_order(size); 2636 struct page *p = alloc_pages_node(nid, gfp_mask, order); 2637 if (!p) 2638 return NULL; 2639 return make_alloc_exact((unsigned long)page_address(p), order, size); 2640 } 2641 EXPORT_SYMBOL(alloc_pages_exact_nid); 2642 2643 /** 2644 * free_pages_exact - release memory allocated via alloc_pages_exact() 2645 * @virt: the value returned by alloc_pages_exact. 2646 * @size: size of allocation, same value as passed to alloc_pages_exact(). 2647 * 2648 * Release the memory allocated by a previous call to alloc_pages_exact. 2649 */ 2650 void free_pages_exact(void *virt, size_t size) 2651 { 2652 unsigned long addr = (unsigned long)virt; 2653 unsigned long end = addr + PAGE_ALIGN(size); 2654 2655 while (addr < end) { 2656 free_page(addr); 2657 addr += PAGE_SIZE; 2658 } 2659 } 2660 EXPORT_SYMBOL(free_pages_exact); 2661 2662 static unsigned int nr_free_zone_pages(int offset) 2663 { 2664 struct zoneref *z; 2665 struct zone *zone; 2666 2667 /* Just pick one node, since fallback list is circular */ 2668 unsigned int sum = 0; 2669 2670 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL); 2671 2672 for_each_zone_zonelist(zone, z, zonelist, offset) { 2673 unsigned long size = zone->present_pages; 2674 unsigned long high = high_wmark_pages(zone); 2675 if (size > high) 2676 sum += size - high; 2677 } 2678 2679 return sum; 2680 } 2681 2682 /* 2683 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL 2684 */ 2685 unsigned int nr_free_buffer_pages(void) 2686 { 2687 return nr_free_zone_pages(gfp_zone(GFP_USER)); 2688 } 2689 EXPORT_SYMBOL_GPL(nr_free_buffer_pages); 2690 2691 /* 2692 * Amount of free RAM allocatable within all zones 2693 */ 2694 unsigned int nr_free_pagecache_pages(void) 2695 { 2696 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE)); 2697 } 2698 2699 static inline void show_node(struct zone *zone) 2700 { 2701 if (NUMA_BUILD) 2702 printk("Node %d ", zone_to_nid(zone)); 2703 } 2704 2705 void si_meminfo(struct sysinfo *val) 2706 { 2707 val->totalram = totalram_pages; 2708 val->sharedram = 0; 2709 val->freeram = global_page_state(NR_FREE_PAGES); 2710 val->bufferram = nr_blockdev_pages(); 2711 val->totalhigh = totalhigh_pages; 2712 val->freehigh = nr_free_highpages(); 2713 val->mem_unit = PAGE_SIZE; 2714 } 2715 2716 EXPORT_SYMBOL(si_meminfo); 2717 2718 #ifdef CONFIG_NUMA 2719 void si_meminfo_node(struct sysinfo *val, int nid) 2720 { 2721 pg_data_t *pgdat = NODE_DATA(nid); 2722 2723 val->totalram = pgdat->node_present_pages; 2724 val->freeram = node_page_state(nid, NR_FREE_PAGES); 2725 #ifdef CONFIG_HIGHMEM 2726 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages; 2727 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM], 2728 NR_FREE_PAGES); 2729 #else 2730 val->totalhigh = 0; 2731 val->freehigh = 0; 2732 #endif 2733 val->mem_unit = PAGE_SIZE; 2734 } 2735 #endif 2736 2737 /* 2738 * Determine whether the node should be displayed or not, depending on whether 2739 * SHOW_MEM_FILTER_NODES was passed to show_free_areas(). 2740 */ 2741 bool skip_free_areas_node(unsigned int flags, int nid) 2742 { 2743 bool ret = false; 2744 unsigned int cpuset_mems_cookie; 2745 2746 if (!(flags & SHOW_MEM_FILTER_NODES)) 2747 goto out; 2748 2749 do { 2750 cpuset_mems_cookie = get_mems_allowed(); 2751 ret = !node_isset(nid, cpuset_current_mems_allowed); 2752 } while (!put_mems_allowed(cpuset_mems_cookie)); 2753 out: 2754 return ret; 2755 } 2756 2757 #define K(x) ((x) << (PAGE_SHIFT-10)) 2758 2759 /* 2760 * Show free area list (used inside shift_scroll-lock stuff) 2761 * We also calculate the percentage fragmentation. We do this by counting the 2762 * memory on each free list with the exception of the first item on the list. 2763 * Suppresses nodes that are not allowed by current's cpuset if 2764 * SHOW_MEM_FILTER_NODES is passed. 2765 */ 2766 void show_free_areas(unsigned int filter) 2767 { 2768 int cpu; 2769 struct zone *zone; 2770 2771 for_each_populated_zone(zone) { 2772 if (skip_free_areas_node(filter, zone_to_nid(zone))) 2773 continue; 2774 show_node(zone); 2775 printk("%s per-cpu:\n", zone->name); 2776 2777 for_each_online_cpu(cpu) { 2778 struct per_cpu_pageset *pageset; 2779 2780 pageset = per_cpu_ptr(zone->pageset, cpu); 2781 2782 printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n", 2783 cpu, pageset->pcp.high, 2784 pageset->pcp.batch, pageset->pcp.count); 2785 } 2786 } 2787 2788 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n" 2789 " active_file:%lu inactive_file:%lu isolated_file:%lu\n" 2790 " unevictable:%lu" 2791 " dirty:%lu writeback:%lu unstable:%lu\n" 2792 " free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n" 2793 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n", 2794 global_page_state(NR_ACTIVE_ANON), 2795 global_page_state(NR_INACTIVE_ANON), 2796 global_page_state(NR_ISOLATED_ANON), 2797 global_page_state(NR_ACTIVE_FILE), 2798 global_page_state(NR_INACTIVE_FILE), 2799 global_page_state(NR_ISOLATED_FILE), 2800 global_page_state(NR_UNEVICTABLE), 2801 global_page_state(NR_FILE_DIRTY), 2802 global_page_state(NR_WRITEBACK), 2803 global_page_state(NR_UNSTABLE_NFS), 2804 global_page_state(NR_FREE_PAGES), 2805 global_page_state(NR_SLAB_RECLAIMABLE), 2806 global_page_state(NR_SLAB_UNRECLAIMABLE), 2807 global_page_state(NR_FILE_MAPPED), 2808 global_page_state(NR_SHMEM), 2809 global_page_state(NR_PAGETABLE), 2810 global_page_state(NR_BOUNCE)); 2811 2812 for_each_populated_zone(zone) { 2813 int i; 2814 2815 if (skip_free_areas_node(filter, zone_to_nid(zone))) 2816 continue; 2817 show_node(zone); 2818 printk("%s" 2819 " free:%lukB" 2820 " min:%lukB" 2821 " low:%lukB" 2822 " high:%lukB" 2823 " active_anon:%lukB" 2824 " inactive_anon:%lukB" 2825 " active_file:%lukB" 2826 " inactive_file:%lukB" 2827 " unevictable:%lukB" 2828 " isolated(anon):%lukB" 2829 " isolated(file):%lukB" 2830 " present:%lukB" 2831 " mlocked:%lukB" 2832 " dirty:%lukB" 2833 " writeback:%lukB" 2834 " mapped:%lukB" 2835 " shmem:%lukB" 2836 " slab_reclaimable:%lukB" 2837 " slab_unreclaimable:%lukB" 2838 " kernel_stack:%lukB" 2839 " pagetables:%lukB" 2840 " unstable:%lukB" 2841 " bounce:%lukB" 2842 " writeback_tmp:%lukB" 2843 " pages_scanned:%lu" 2844 " all_unreclaimable? %s" 2845 "\n", 2846 zone->name, 2847 K(zone_page_state(zone, NR_FREE_PAGES)), 2848 K(min_wmark_pages(zone)), 2849 K(low_wmark_pages(zone)), 2850 K(high_wmark_pages(zone)), 2851 K(zone_page_state(zone, NR_ACTIVE_ANON)), 2852 K(zone_page_state(zone, NR_INACTIVE_ANON)), 2853 K(zone_page_state(zone, NR_ACTIVE_FILE)), 2854 K(zone_page_state(zone, NR_INACTIVE_FILE)), 2855 K(zone_page_state(zone, NR_UNEVICTABLE)), 2856 K(zone_page_state(zone, NR_ISOLATED_ANON)), 2857 K(zone_page_state(zone, NR_ISOLATED_FILE)), 2858 K(zone->present_pages), 2859 K(zone_page_state(zone, NR_MLOCK)), 2860 K(zone_page_state(zone, NR_FILE_DIRTY)), 2861 K(zone_page_state(zone, NR_WRITEBACK)), 2862 K(zone_page_state(zone, NR_FILE_MAPPED)), 2863 K(zone_page_state(zone, NR_SHMEM)), 2864 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)), 2865 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)), 2866 zone_page_state(zone, NR_KERNEL_STACK) * 2867 THREAD_SIZE / 1024, 2868 K(zone_page_state(zone, NR_PAGETABLE)), 2869 K(zone_page_state(zone, NR_UNSTABLE_NFS)), 2870 K(zone_page_state(zone, NR_BOUNCE)), 2871 K(zone_page_state(zone, NR_WRITEBACK_TEMP)), 2872 zone->pages_scanned, 2873 (zone->all_unreclaimable ? "yes" : "no") 2874 ); 2875 printk("lowmem_reserve[]:"); 2876 for (i = 0; i < MAX_NR_ZONES; i++) 2877 printk(" %lu", zone->lowmem_reserve[i]); 2878 printk("\n"); 2879 } 2880 2881 for_each_populated_zone(zone) { 2882 unsigned long nr[MAX_ORDER], flags, order, total = 0; 2883 2884 if (skip_free_areas_node(filter, zone_to_nid(zone))) 2885 continue; 2886 show_node(zone); 2887 printk("%s: ", zone->name); 2888 2889 spin_lock_irqsave(&zone->lock, flags); 2890 for (order = 0; order < MAX_ORDER; order++) { 2891 nr[order] = zone->free_area[order].nr_free; 2892 total += nr[order] << order; 2893 } 2894 spin_unlock_irqrestore(&zone->lock, flags); 2895 for (order = 0; order < MAX_ORDER; order++) 2896 printk("%lu*%lukB ", nr[order], K(1UL) << order); 2897 printk("= %lukB\n", K(total)); 2898 } 2899 2900 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES)); 2901 2902 show_swap_cache_info(); 2903 } 2904 2905 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref) 2906 { 2907 zoneref->zone = zone; 2908 zoneref->zone_idx = zone_idx(zone); 2909 } 2910 2911 /* 2912 * Builds allocation fallback zone lists. 2913 * 2914 * Add all populated zones of a node to the zonelist. 2915 */ 2916 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist, 2917 int nr_zones, enum zone_type zone_type) 2918 { 2919 struct zone *zone; 2920 2921 BUG_ON(zone_type >= MAX_NR_ZONES); 2922 zone_type++; 2923 2924 do { 2925 zone_type--; 2926 zone = pgdat->node_zones + zone_type; 2927 if (populated_zone(zone)) { 2928 zoneref_set_zone(zone, 2929 &zonelist->_zonerefs[nr_zones++]); 2930 check_highest_zone(zone_type); 2931 } 2932 2933 } while (zone_type); 2934 return nr_zones; 2935 } 2936 2937 2938 /* 2939 * zonelist_order: 2940 * 0 = automatic detection of better ordering. 2941 * 1 = order by ([node] distance, -zonetype) 2942 * 2 = order by (-zonetype, [node] distance) 2943 * 2944 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create 2945 * the same zonelist. So only NUMA can configure this param. 2946 */ 2947 #define ZONELIST_ORDER_DEFAULT 0 2948 #define ZONELIST_ORDER_NODE 1 2949 #define ZONELIST_ORDER_ZONE 2 2950 2951 /* zonelist order in the kernel. 2952 * set_zonelist_order() will set this to NODE or ZONE. 2953 */ 2954 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT; 2955 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"}; 2956 2957 2958 #ifdef CONFIG_NUMA 2959 /* The value user specified ....changed by config */ 2960 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT; 2961 /* string for sysctl */ 2962 #define NUMA_ZONELIST_ORDER_LEN 16 2963 char numa_zonelist_order[16] = "default"; 2964 2965 /* 2966 * interface for configure zonelist ordering. 2967 * command line option "numa_zonelist_order" 2968 * = "[dD]efault - default, automatic configuration. 2969 * = "[nN]ode - order by node locality, then by zone within node 2970 * = "[zZ]one - order by zone, then by locality within zone 2971 */ 2972 2973 static int __parse_numa_zonelist_order(char *s) 2974 { 2975 if (*s == 'd' || *s == 'D') { 2976 user_zonelist_order = ZONELIST_ORDER_DEFAULT; 2977 } else if (*s == 'n' || *s == 'N') { 2978 user_zonelist_order = ZONELIST_ORDER_NODE; 2979 } else if (*s == 'z' || *s == 'Z') { 2980 user_zonelist_order = ZONELIST_ORDER_ZONE; 2981 } else { 2982 printk(KERN_WARNING 2983 "Ignoring invalid numa_zonelist_order value: " 2984 "%s\n", s); 2985 return -EINVAL; 2986 } 2987 return 0; 2988 } 2989 2990 static __init int setup_numa_zonelist_order(char *s) 2991 { 2992 int ret; 2993 2994 if (!s) 2995 return 0; 2996 2997 ret = __parse_numa_zonelist_order(s); 2998 if (ret == 0) 2999 strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN); 3000 3001 return ret; 3002 } 3003 early_param("numa_zonelist_order", setup_numa_zonelist_order); 3004 3005 /* 3006 * sysctl handler for numa_zonelist_order 3007 */ 3008 int numa_zonelist_order_handler(ctl_table *table, int write, 3009 void __user *buffer, size_t *length, 3010 loff_t *ppos) 3011 { 3012 char saved_string[NUMA_ZONELIST_ORDER_LEN]; 3013 int ret; 3014 static DEFINE_MUTEX(zl_order_mutex); 3015 3016 mutex_lock(&zl_order_mutex); 3017 if (write) 3018 strcpy(saved_string, (char*)table->data); 3019 ret = proc_dostring(table, write, buffer, length, ppos); 3020 if (ret) 3021 goto out; 3022 if (write) { 3023 int oldval = user_zonelist_order; 3024 if (__parse_numa_zonelist_order((char*)table->data)) { 3025 /* 3026 * bogus value. restore saved string 3027 */ 3028 strncpy((char*)table->data, saved_string, 3029 NUMA_ZONELIST_ORDER_LEN); 3030 user_zonelist_order = oldval; 3031 } else if (oldval != user_zonelist_order) { 3032 mutex_lock(&zonelists_mutex); 3033 build_all_zonelists(NULL); 3034 mutex_unlock(&zonelists_mutex); 3035 } 3036 } 3037 out: 3038 mutex_unlock(&zl_order_mutex); 3039 return ret; 3040 } 3041 3042 3043 #define MAX_NODE_LOAD (nr_online_nodes) 3044 static int node_load[MAX_NUMNODES]; 3045 3046 /** 3047 * find_next_best_node - find the next node that should appear in a given node's fallback list 3048 * @node: node whose fallback list we're appending 3049 * @used_node_mask: nodemask_t of already used nodes 3050 * 3051 * We use a number of factors to determine which is the next node that should 3052 * appear on a given node's fallback list. The node should not have appeared 3053 * already in @node's fallback list, and it should be the next closest node 3054 * according to the distance array (which contains arbitrary distance values 3055 * from each node to each node in the system), and should also prefer nodes 3056 * with no CPUs, since presumably they'll have very little allocation pressure 3057 * on them otherwise. 3058 * It returns -1 if no node is found. 3059 */ 3060 static int find_next_best_node(int node, nodemask_t *used_node_mask) 3061 { 3062 int n, val; 3063 int min_val = INT_MAX; 3064 int best_node = -1; 3065 const struct cpumask *tmp = cpumask_of_node(0); 3066 3067 /* Use the local node if we haven't already */ 3068 if (!node_isset(node, *used_node_mask)) { 3069 node_set(node, *used_node_mask); 3070 return node; 3071 } 3072 3073 for_each_node_state(n, N_HIGH_MEMORY) { 3074 3075 /* Don't want a node to appear more than once */ 3076 if (node_isset(n, *used_node_mask)) 3077 continue; 3078 3079 /* Use the distance array to find the distance */ 3080 val = node_distance(node, n); 3081 3082 /* Penalize nodes under us ("prefer the next node") */ 3083 val += (n < node); 3084 3085 /* Give preference to headless and unused nodes */ 3086 tmp = cpumask_of_node(n); 3087 if (!cpumask_empty(tmp)) 3088 val += PENALTY_FOR_NODE_WITH_CPUS; 3089 3090 /* Slight preference for less loaded node */ 3091 val *= (MAX_NODE_LOAD*MAX_NUMNODES); 3092 val += node_load[n]; 3093 3094 if (val < min_val) { 3095 min_val = val; 3096 best_node = n; 3097 } 3098 } 3099 3100 if (best_node >= 0) 3101 node_set(best_node, *used_node_mask); 3102 3103 return best_node; 3104 } 3105 3106 3107 /* 3108 * Build zonelists ordered by node and zones within node. 3109 * This results in maximum locality--normal zone overflows into local 3110 * DMA zone, if any--but risks exhausting DMA zone. 3111 */ 3112 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node) 3113 { 3114 int j; 3115 struct zonelist *zonelist; 3116 3117 zonelist = &pgdat->node_zonelists[0]; 3118 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++) 3119 ; 3120 j = build_zonelists_node(NODE_DATA(node), zonelist, j, 3121 MAX_NR_ZONES - 1); 3122 zonelist->_zonerefs[j].zone = NULL; 3123 zonelist->_zonerefs[j].zone_idx = 0; 3124 } 3125 3126 /* 3127 * Build gfp_thisnode zonelists 3128 */ 3129 static void build_thisnode_zonelists(pg_data_t *pgdat) 3130 { 3131 int j; 3132 struct zonelist *zonelist; 3133 3134 zonelist = &pgdat->node_zonelists[1]; 3135 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1); 3136 zonelist->_zonerefs[j].zone = NULL; 3137 zonelist->_zonerefs[j].zone_idx = 0; 3138 } 3139 3140 /* 3141 * Build zonelists ordered by zone and nodes within zones. 3142 * This results in conserving DMA zone[s] until all Normal memory is 3143 * exhausted, but results in overflowing to remote node while memory 3144 * may still exist in local DMA zone. 3145 */ 3146 static int node_order[MAX_NUMNODES]; 3147 3148 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes) 3149 { 3150 int pos, j, node; 3151 int zone_type; /* needs to be signed */ 3152 struct zone *z; 3153 struct zonelist *zonelist; 3154 3155 zonelist = &pgdat->node_zonelists[0]; 3156 pos = 0; 3157 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) { 3158 for (j = 0; j < nr_nodes; j++) { 3159 node = node_order[j]; 3160 z = &NODE_DATA(node)->node_zones[zone_type]; 3161 if (populated_zone(z)) { 3162 zoneref_set_zone(z, 3163 &zonelist->_zonerefs[pos++]); 3164 check_highest_zone(zone_type); 3165 } 3166 } 3167 } 3168 zonelist->_zonerefs[pos].zone = NULL; 3169 zonelist->_zonerefs[pos].zone_idx = 0; 3170 } 3171 3172 static int default_zonelist_order(void) 3173 { 3174 int nid, zone_type; 3175 unsigned long low_kmem_size,total_size; 3176 struct zone *z; 3177 int average_size; 3178 /* 3179 * ZONE_DMA and ZONE_DMA32 can be very small area in the system. 3180 * If they are really small and used heavily, the system can fall 3181 * into OOM very easily. 3182 * This function detect ZONE_DMA/DMA32 size and configures zone order. 3183 */ 3184 /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */ 3185 low_kmem_size = 0; 3186 total_size = 0; 3187 for_each_online_node(nid) { 3188 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) { 3189 z = &NODE_DATA(nid)->node_zones[zone_type]; 3190 if (populated_zone(z)) { 3191 if (zone_type < ZONE_NORMAL) 3192 low_kmem_size += z->present_pages; 3193 total_size += z->present_pages; 3194 } else if (zone_type == ZONE_NORMAL) { 3195 /* 3196 * If any node has only lowmem, then node order 3197 * is preferred to allow kernel allocations 3198 * locally; otherwise, they can easily infringe 3199 * on other nodes when there is an abundance of 3200 * lowmem available to allocate from. 3201 */ 3202 return ZONELIST_ORDER_NODE; 3203 } 3204 } 3205 } 3206 if (!low_kmem_size || /* there are no DMA area. */ 3207 low_kmem_size > total_size/2) /* DMA/DMA32 is big. */ 3208 return ZONELIST_ORDER_NODE; 3209 /* 3210 * look into each node's config. 3211 * If there is a node whose DMA/DMA32 memory is very big area on 3212 * local memory, NODE_ORDER may be suitable. 3213 */ 3214 average_size = total_size / 3215 (nodes_weight(node_states[N_HIGH_MEMORY]) + 1); 3216 for_each_online_node(nid) { 3217 low_kmem_size = 0; 3218 total_size = 0; 3219 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) { 3220 z = &NODE_DATA(nid)->node_zones[zone_type]; 3221 if (populated_zone(z)) { 3222 if (zone_type < ZONE_NORMAL) 3223 low_kmem_size += z->present_pages; 3224 total_size += z->present_pages; 3225 } 3226 } 3227 if (low_kmem_size && 3228 total_size > average_size && /* ignore small node */ 3229 low_kmem_size > total_size * 70/100) 3230 return ZONELIST_ORDER_NODE; 3231 } 3232 return ZONELIST_ORDER_ZONE; 3233 } 3234 3235 static void set_zonelist_order(void) 3236 { 3237 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT) 3238 current_zonelist_order = default_zonelist_order(); 3239 else 3240 current_zonelist_order = user_zonelist_order; 3241 } 3242 3243 static void build_zonelists(pg_data_t *pgdat) 3244 { 3245 int j, node, load; 3246 enum zone_type i; 3247 nodemask_t used_mask; 3248 int local_node, prev_node; 3249 struct zonelist *zonelist; 3250 int order = current_zonelist_order; 3251 3252 /* initialize zonelists */ 3253 for (i = 0; i < MAX_ZONELISTS; i++) { 3254 zonelist = pgdat->node_zonelists + i; 3255 zonelist->_zonerefs[0].zone = NULL; 3256 zonelist->_zonerefs[0].zone_idx = 0; 3257 } 3258 3259 /* NUMA-aware ordering of nodes */ 3260 local_node = pgdat->node_id; 3261 load = nr_online_nodes; 3262 prev_node = local_node; 3263 nodes_clear(used_mask); 3264 3265 memset(node_order, 0, sizeof(node_order)); 3266 j = 0; 3267 3268 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) { 3269 int distance = node_distance(local_node, node); 3270 3271 /* 3272 * If another node is sufficiently far away then it is better 3273 * to reclaim pages in a zone before going off node. 3274 */ 3275 if (distance > RECLAIM_DISTANCE) 3276 zone_reclaim_mode = 1; 3277 3278 /* 3279 * We don't want to pressure a particular node. 3280 * So adding penalty to the first node in same 3281 * distance group to make it round-robin. 3282 */ 3283 if (distance != node_distance(local_node, prev_node)) 3284 node_load[node] = load; 3285 3286 prev_node = node; 3287 load--; 3288 if (order == ZONELIST_ORDER_NODE) 3289 build_zonelists_in_node_order(pgdat, node); 3290 else 3291 node_order[j++] = node; /* remember order */ 3292 } 3293 3294 if (order == ZONELIST_ORDER_ZONE) { 3295 /* calculate node order -- i.e., DMA last! */ 3296 build_zonelists_in_zone_order(pgdat, j); 3297 } 3298 3299 build_thisnode_zonelists(pgdat); 3300 } 3301 3302 /* Construct the zonelist performance cache - see further mmzone.h */ 3303 static void build_zonelist_cache(pg_data_t *pgdat) 3304 { 3305 struct zonelist *zonelist; 3306 struct zonelist_cache *zlc; 3307 struct zoneref *z; 3308 3309 zonelist = &pgdat->node_zonelists[0]; 3310 zonelist->zlcache_ptr = zlc = &zonelist->zlcache; 3311 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST); 3312 for (z = zonelist->_zonerefs; z->zone; z++) 3313 zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z); 3314 } 3315 3316 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 3317 /* 3318 * Return node id of node used for "local" allocations. 3319 * I.e., first node id of first zone in arg node's generic zonelist. 3320 * Used for initializing percpu 'numa_mem', which is used primarily 3321 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist. 3322 */ 3323 int local_memory_node(int node) 3324 { 3325 struct zone *zone; 3326 3327 (void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL), 3328 gfp_zone(GFP_KERNEL), 3329 NULL, 3330 &zone); 3331 return zone->node; 3332 } 3333 #endif 3334 3335 #else /* CONFIG_NUMA */ 3336 3337 static void set_zonelist_order(void) 3338 { 3339 current_zonelist_order = ZONELIST_ORDER_ZONE; 3340 } 3341 3342 static void build_zonelists(pg_data_t *pgdat) 3343 { 3344 int node, local_node; 3345 enum zone_type j; 3346 struct zonelist *zonelist; 3347 3348 local_node = pgdat->node_id; 3349 3350 zonelist = &pgdat->node_zonelists[0]; 3351 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1); 3352 3353 /* 3354 * Now we build the zonelist so that it contains the zones 3355 * of all the other nodes. 3356 * We don't want to pressure a particular node, so when 3357 * building the zones for node N, we make sure that the 3358 * zones coming right after the local ones are those from 3359 * node N+1 (modulo N) 3360 */ 3361 for (node = local_node + 1; node < MAX_NUMNODES; node++) { 3362 if (!node_online(node)) 3363 continue; 3364 j = build_zonelists_node(NODE_DATA(node), zonelist, j, 3365 MAX_NR_ZONES - 1); 3366 } 3367 for (node = 0; node < local_node; node++) { 3368 if (!node_online(node)) 3369 continue; 3370 j = build_zonelists_node(NODE_DATA(node), zonelist, j, 3371 MAX_NR_ZONES - 1); 3372 } 3373 3374 zonelist->_zonerefs[j].zone = NULL; 3375 zonelist->_zonerefs[j].zone_idx = 0; 3376 } 3377 3378 /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */ 3379 static void build_zonelist_cache(pg_data_t *pgdat) 3380 { 3381 pgdat->node_zonelists[0].zlcache_ptr = NULL; 3382 } 3383 3384 #endif /* CONFIG_NUMA */ 3385 3386 /* 3387 * Boot pageset table. One per cpu which is going to be used for all 3388 * zones and all nodes. The parameters will be set in such a way 3389 * that an item put on a list will immediately be handed over to 3390 * the buddy list. This is safe since pageset manipulation is done 3391 * with interrupts disabled. 3392 * 3393 * The boot_pagesets must be kept even after bootup is complete for 3394 * unused processors and/or zones. They do play a role for bootstrapping 3395 * hotplugged processors. 3396 * 3397 * zoneinfo_show() and maybe other functions do 3398 * not check if the processor is online before following the pageset pointer. 3399 * Other parts of the kernel may not check if the zone is available. 3400 */ 3401 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch); 3402 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset); 3403 static void setup_zone_pageset(struct zone *zone); 3404 3405 /* 3406 * Global mutex to protect against size modification of zonelists 3407 * as well as to serialize pageset setup for the new populated zone. 3408 */ 3409 DEFINE_MUTEX(zonelists_mutex); 3410 3411 /* return values int ....just for stop_machine() */ 3412 static __init_refok int __build_all_zonelists(void *data) 3413 { 3414 int nid; 3415 int cpu; 3416 3417 #ifdef CONFIG_NUMA 3418 memset(node_load, 0, sizeof(node_load)); 3419 #endif 3420 for_each_online_node(nid) { 3421 pg_data_t *pgdat = NODE_DATA(nid); 3422 3423 build_zonelists(pgdat); 3424 build_zonelist_cache(pgdat); 3425 } 3426 3427 /* 3428 * Initialize the boot_pagesets that are going to be used 3429 * for bootstrapping processors. The real pagesets for 3430 * each zone will be allocated later when the per cpu 3431 * allocator is available. 3432 * 3433 * boot_pagesets are used also for bootstrapping offline 3434 * cpus if the system is already booted because the pagesets 3435 * are needed to initialize allocators on a specific cpu too. 3436 * F.e. the percpu allocator needs the page allocator which 3437 * needs the percpu allocator in order to allocate its pagesets 3438 * (a chicken-egg dilemma). 3439 */ 3440 for_each_possible_cpu(cpu) { 3441 setup_pageset(&per_cpu(boot_pageset, cpu), 0); 3442 3443 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 3444 /* 3445 * We now know the "local memory node" for each node-- 3446 * i.e., the node of the first zone in the generic zonelist. 3447 * Set up numa_mem percpu variable for on-line cpus. During 3448 * boot, only the boot cpu should be on-line; we'll init the 3449 * secondary cpus' numa_mem as they come on-line. During 3450 * node/memory hotplug, we'll fixup all on-line cpus. 3451 */ 3452 if (cpu_online(cpu)) 3453 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu))); 3454 #endif 3455 } 3456 3457 return 0; 3458 } 3459 3460 /* 3461 * Called with zonelists_mutex held always 3462 * unless system_state == SYSTEM_BOOTING. 3463 */ 3464 void __ref build_all_zonelists(void *data) 3465 { 3466 set_zonelist_order(); 3467 3468 if (system_state == SYSTEM_BOOTING) { 3469 __build_all_zonelists(NULL); 3470 mminit_verify_zonelist(); 3471 cpuset_init_current_mems_allowed(); 3472 } else { 3473 /* we have to stop all cpus to guarantee there is no user 3474 of zonelist */ 3475 #ifdef CONFIG_MEMORY_HOTPLUG 3476 if (data) 3477 setup_zone_pageset((struct zone *)data); 3478 #endif 3479 stop_machine(__build_all_zonelists, NULL, NULL); 3480 /* cpuset refresh routine should be here */ 3481 } 3482 vm_total_pages = nr_free_pagecache_pages(); 3483 /* 3484 * Disable grouping by mobility if the number of pages in the 3485 * system is too low to allow the mechanism to work. It would be 3486 * more accurate, but expensive to check per-zone. This check is 3487 * made on memory-hotadd so a system can start with mobility 3488 * disabled and enable it later 3489 */ 3490 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES)) 3491 page_group_by_mobility_disabled = 1; 3492 else 3493 page_group_by_mobility_disabled = 0; 3494 3495 printk("Built %i zonelists in %s order, mobility grouping %s. " 3496 "Total pages: %ld\n", 3497 nr_online_nodes, 3498 zonelist_order_name[current_zonelist_order], 3499 page_group_by_mobility_disabled ? "off" : "on", 3500 vm_total_pages); 3501 #ifdef CONFIG_NUMA 3502 printk("Policy zone: %s\n", zone_names[policy_zone]); 3503 #endif 3504 } 3505 3506 /* 3507 * Helper functions to size the waitqueue hash table. 3508 * Essentially these want to choose hash table sizes sufficiently 3509 * large so that collisions trying to wait on pages are rare. 3510 * But in fact, the number of active page waitqueues on typical 3511 * systems is ridiculously low, less than 200. So this is even 3512 * conservative, even though it seems large. 3513 * 3514 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to 3515 * waitqueues, i.e. the size of the waitq table given the number of pages. 3516 */ 3517 #define PAGES_PER_WAITQUEUE 256 3518 3519 #ifndef CONFIG_MEMORY_HOTPLUG 3520 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages) 3521 { 3522 unsigned long size = 1; 3523 3524 pages /= PAGES_PER_WAITQUEUE; 3525 3526 while (size < pages) 3527 size <<= 1; 3528 3529 /* 3530 * Once we have dozens or even hundreds of threads sleeping 3531 * on IO we've got bigger problems than wait queue collision. 3532 * Limit the size of the wait table to a reasonable size. 3533 */ 3534 size = min(size, 4096UL); 3535 3536 return max(size, 4UL); 3537 } 3538 #else 3539 /* 3540 * A zone's size might be changed by hot-add, so it is not possible to determine 3541 * a suitable size for its wait_table. So we use the maximum size now. 3542 * 3543 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie: 3544 * 3545 * i386 (preemption config) : 4096 x 16 = 64Kbyte. 3546 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte. 3547 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte. 3548 * 3549 * The maximum entries are prepared when a zone's memory is (512K + 256) pages 3550 * or more by the traditional way. (See above). It equals: 3551 * 3552 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte. 3553 * ia64(16K page size) : = ( 8G + 4M)byte. 3554 * powerpc (64K page size) : = (32G +16M)byte. 3555 */ 3556 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages) 3557 { 3558 return 4096UL; 3559 } 3560 #endif 3561 3562 /* 3563 * This is an integer logarithm so that shifts can be used later 3564 * to extract the more random high bits from the multiplicative 3565 * hash function before the remainder is taken. 3566 */ 3567 static inline unsigned long wait_table_bits(unsigned long size) 3568 { 3569 return ffz(~size); 3570 } 3571 3572 #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1)) 3573 3574 /* 3575 * Check if a pageblock contains reserved pages 3576 */ 3577 static int pageblock_is_reserved(unsigned long start_pfn, unsigned long end_pfn) 3578 { 3579 unsigned long pfn; 3580 3581 for (pfn = start_pfn; pfn < end_pfn; pfn++) { 3582 if (!pfn_valid_within(pfn) || PageReserved(pfn_to_page(pfn))) 3583 return 1; 3584 } 3585 return 0; 3586 } 3587 3588 /* 3589 * Mark a number of pageblocks as MIGRATE_RESERVE. The number 3590 * of blocks reserved is based on min_wmark_pages(zone). The memory within 3591 * the reserve will tend to store contiguous free pages. Setting min_free_kbytes 3592 * higher will lead to a bigger reserve which will get freed as contiguous 3593 * blocks as reclaim kicks in 3594 */ 3595 static void setup_zone_migrate_reserve(struct zone *zone) 3596 { 3597 unsigned long start_pfn, pfn, end_pfn, block_end_pfn; 3598 struct page *page; 3599 unsigned long block_migratetype; 3600 int reserve; 3601 3602 /* 3603 * Get the start pfn, end pfn and the number of blocks to reserve 3604 * We have to be careful to be aligned to pageblock_nr_pages to 3605 * make sure that we always check pfn_valid for the first page in 3606 * the block. 3607 */ 3608 start_pfn = zone->zone_start_pfn; 3609 end_pfn = start_pfn + zone->spanned_pages; 3610 start_pfn = roundup(start_pfn, pageblock_nr_pages); 3611 reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >> 3612 pageblock_order; 3613 3614 /* 3615 * Reserve blocks are generally in place to help high-order atomic 3616 * allocations that are short-lived. A min_free_kbytes value that 3617 * would result in more than 2 reserve blocks for atomic allocations 3618 * is assumed to be in place to help anti-fragmentation for the 3619 * future allocation of hugepages at runtime. 3620 */ 3621 reserve = min(2, reserve); 3622 3623 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) { 3624 if (!pfn_valid(pfn)) 3625 continue; 3626 page = pfn_to_page(pfn); 3627 3628 /* Watch out for overlapping nodes */ 3629 if (page_to_nid(page) != zone_to_nid(zone)) 3630 continue; 3631 3632 block_migratetype = get_pageblock_migratetype(page); 3633 3634 /* Only test what is necessary when the reserves are not met */ 3635 if (reserve > 0) { 3636 /* 3637 * Blocks with reserved pages will never free, skip 3638 * them. 3639 */ 3640 block_end_pfn = min(pfn + pageblock_nr_pages, end_pfn); 3641 if (pageblock_is_reserved(pfn, block_end_pfn)) 3642 continue; 3643 3644 /* If this block is reserved, account for it */ 3645 if (block_migratetype == MIGRATE_RESERVE) { 3646 reserve--; 3647 continue; 3648 } 3649 3650 /* Suitable for reserving if this block is movable */ 3651 if (block_migratetype == MIGRATE_MOVABLE) { 3652 set_pageblock_migratetype(page, 3653 MIGRATE_RESERVE); 3654 move_freepages_block(zone, page, 3655 MIGRATE_RESERVE); 3656 reserve--; 3657 continue; 3658 } 3659 } 3660 3661 /* 3662 * If the reserve is met and this is a previous reserved block, 3663 * take it back 3664 */ 3665 if (block_migratetype == MIGRATE_RESERVE) { 3666 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 3667 move_freepages_block(zone, page, MIGRATE_MOVABLE); 3668 } 3669 } 3670 } 3671 3672 /* 3673 * Initially all pages are reserved - free ones are freed 3674 * up by free_all_bootmem() once the early boot process is 3675 * done. Non-atomic initialization, single-pass. 3676 */ 3677 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone, 3678 unsigned long start_pfn, enum memmap_context context) 3679 { 3680 struct page *page; 3681 unsigned long end_pfn = start_pfn + size; 3682 unsigned long pfn; 3683 struct zone *z; 3684 3685 if (highest_memmap_pfn < end_pfn - 1) 3686 highest_memmap_pfn = end_pfn - 1; 3687 3688 z = &NODE_DATA(nid)->node_zones[zone]; 3689 for (pfn = start_pfn; pfn < end_pfn; pfn++) { 3690 /* 3691 * There can be holes in boot-time mem_map[]s 3692 * handed to this function. They do not 3693 * exist on hotplugged memory. 3694 */ 3695 if (context == MEMMAP_EARLY) { 3696 if (!early_pfn_valid(pfn)) 3697 continue; 3698 if (!early_pfn_in_nid(pfn, nid)) 3699 continue; 3700 } 3701 page = pfn_to_page(pfn); 3702 set_page_links(page, zone, nid, pfn); 3703 mminit_verify_page_links(page, zone, nid, pfn); 3704 init_page_count(page); 3705 reset_page_mapcount(page); 3706 SetPageReserved(page); 3707 /* 3708 * Mark the block movable so that blocks are reserved for 3709 * movable at startup. This will force kernel allocations 3710 * to reserve their blocks rather than leaking throughout 3711 * the address space during boot when many long-lived 3712 * kernel allocations are made. Later some blocks near 3713 * the start are marked MIGRATE_RESERVE by 3714 * setup_zone_migrate_reserve() 3715 * 3716 * bitmap is created for zone's valid pfn range. but memmap 3717 * can be created for invalid pages (for alignment) 3718 * check here not to call set_pageblock_migratetype() against 3719 * pfn out of zone. 3720 */ 3721 if ((z->zone_start_pfn <= pfn) 3722 && (pfn < z->zone_start_pfn + z->spanned_pages) 3723 && !(pfn & (pageblock_nr_pages - 1))) 3724 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 3725 3726 INIT_LIST_HEAD(&page->lru); 3727 #ifdef WANT_PAGE_VIRTUAL 3728 /* The shift won't overflow because ZONE_NORMAL is below 4G. */ 3729 if (!is_highmem_idx(zone)) 3730 set_page_address(page, __va(pfn << PAGE_SHIFT)); 3731 #endif 3732 } 3733 } 3734 3735 static void __meminit zone_init_free_lists(struct zone *zone) 3736 { 3737 int order, t; 3738 for_each_migratetype_order(order, t) { 3739 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]); 3740 zone->free_area[order].nr_free = 0; 3741 } 3742 } 3743 3744 #ifndef __HAVE_ARCH_MEMMAP_INIT 3745 #define memmap_init(size, nid, zone, start_pfn) \ 3746 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY) 3747 #endif 3748 3749 static int zone_batchsize(struct zone *zone) 3750 { 3751 #ifdef CONFIG_MMU 3752 int batch; 3753 3754 /* 3755 * The per-cpu-pages pools are set to around 1000th of the 3756 * size of the zone. But no more than 1/2 of a meg. 3757 * 3758 * OK, so we don't know how big the cache is. So guess. 3759 */ 3760 batch = zone->present_pages / 1024; 3761 if (batch * PAGE_SIZE > 512 * 1024) 3762 batch = (512 * 1024) / PAGE_SIZE; 3763 batch /= 4; /* We effectively *= 4 below */ 3764 if (batch < 1) 3765 batch = 1; 3766 3767 /* 3768 * Clamp the batch to a 2^n - 1 value. Having a power 3769 * of 2 value was found to be more likely to have 3770 * suboptimal cache aliasing properties in some cases. 3771 * 3772 * For example if 2 tasks are alternately allocating 3773 * batches of pages, one task can end up with a lot 3774 * of pages of one half of the possible page colors 3775 * and the other with pages of the other colors. 3776 */ 3777 batch = rounddown_pow_of_two(batch + batch/2) - 1; 3778 3779 return batch; 3780 3781 #else 3782 /* The deferral and batching of frees should be suppressed under NOMMU 3783 * conditions. 3784 * 3785 * The problem is that NOMMU needs to be able to allocate large chunks 3786 * of contiguous memory as there's no hardware page translation to 3787 * assemble apparent contiguous memory from discontiguous pages. 3788 * 3789 * Queueing large contiguous runs of pages for batching, however, 3790 * causes the pages to actually be freed in smaller chunks. As there 3791 * can be a significant delay between the individual batches being 3792 * recycled, this leads to the once large chunks of space being 3793 * fragmented and becoming unavailable for high-order allocations. 3794 */ 3795 return 0; 3796 #endif 3797 } 3798 3799 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch) 3800 { 3801 struct per_cpu_pages *pcp; 3802 int migratetype; 3803 3804 memset(p, 0, sizeof(*p)); 3805 3806 pcp = &p->pcp; 3807 pcp->count = 0; 3808 pcp->high = 6 * batch; 3809 pcp->batch = max(1UL, 1 * batch); 3810 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++) 3811 INIT_LIST_HEAD(&pcp->lists[migratetype]); 3812 } 3813 3814 /* 3815 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist 3816 * to the value high for the pageset p. 3817 */ 3818 3819 static void setup_pagelist_highmark(struct per_cpu_pageset *p, 3820 unsigned long high) 3821 { 3822 struct per_cpu_pages *pcp; 3823 3824 pcp = &p->pcp; 3825 pcp->high = high; 3826 pcp->batch = max(1UL, high/4); 3827 if ((high/4) > (PAGE_SHIFT * 8)) 3828 pcp->batch = PAGE_SHIFT * 8; 3829 } 3830 3831 static void setup_zone_pageset(struct zone *zone) 3832 { 3833 int cpu; 3834 3835 zone->pageset = alloc_percpu(struct per_cpu_pageset); 3836 3837 for_each_possible_cpu(cpu) { 3838 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu); 3839 3840 setup_pageset(pcp, zone_batchsize(zone)); 3841 3842 if (percpu_pagelist_fraction) 3843 setup_pagelist_highmark(pcp, 3844 (zone->present_pages / 3845 percpu_pagelist_fraction)); 3846 } 3847 } 3848 3849 /* 3850 * Allocate per cpu pagesets and initialize them. 3851 * Before this call only boot pagesets were available. 3852 */ 3853 void __init setup_per_cpu_pageset(void) 3854 { 3855 struct zone *zone; 3856 3857 for_each_populated_zone(zone) 3858 setup_zone_pageset(zone); 3859 } 3860 3861 static noinline __init_refok 3862 int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages) 3863 { 3864 int i; 3865 struct pglist_data *pgdat = zone->zone_pgdat; 3866 size_t alloc_size; 3867 3868 /* 3869 * The per-page waitqueue mechanism uses hashed waitqueues 3870 * per zone. 3871 */ 3872 zone->wait_table_hash_nr_entries = 3873 wait_table_hash_nr_entries(zone_size_pages); 3874 zone->wait_table_bits = 3875 wait_table_bits(zone->wait_table_hash_nr_entries); 3876 alloc_size = zone->wait_table_hash_nr_entries 3877 * sizeof(wait_queue_head_t); 3878 3879 if (!slab_is_available()) { 3880 zone->wait_table = (wait_queue_head_t *) 3881 alloc_bootmem_node_nopanic(pgdat, alloc_size); 3882 } else { 3883 /* 3884 * This case means that a zone whose size was 0 gets new memory 3885 * via memory hot-add. 3886 * But it may be the case that a new node was hot-added. In 3887 * this case vmalloc() will not be able to use this new node's 3888 * memory - this wait_table must be initialized to use this new 3889 * node itself as well. 3890 * To use this new node's memory, further consideration will be 3891 * necessary. 3892 */ 3893 zone->wait_table = vmalloc(alloc_size); 3894 } 3895 if (!zone->wait_table) 3896 return -ENOMEM; 3897 3898 for(i = 0; i < zone->wait_table_hash_nr_entries; ++i) 3899 init_waitqueue_head(zone->wait_table + i); 3900 3901 return 0; 3902 } 3903 3904 static int __zone_pcp_update(void *data) 3905 { 3906 struct zone *zone = data; 3907 int cpu; 3908 unsigned long batch = zone_batchsize(zone), flags; 3909 3910 for_each_possible_cpu(cpu) { 3911 struct per_cpu_pageset *pset; 3912 struct per_cpu_pages *pcp; 3913 3914 pset = per_cpu_ptr(zone->pageset, cpu); 3915 pcp = &pset->pcp; 3916 3917 local_irq_save(flags); 3918 free_pcppages_bulk(zone, pcp->count, pcp); 3919 setup_pageset(pset, batch); 3920 local_irq_restore(flags); 3921 } 3922 return 0; 3923 } 3924 3925 void zone_pcp_update(struct zone *zone) 3926 { 3927 stop_machine(__zone_pcp_update, zone, NULL); 3928 } 3929 3930 static __meminit void zone_pcp_init(struct zone *zone) 3931 { 3932 /* 3933 * per cpu subsystem is not up at this point. The following code 3934 * relies on the ability of the linker to provide the 3935 * offset of a (static) per cpu variable into the per cpu area. 3936 */ 3937 zone->pageset = &boot_pageset; 3938 3939 if (zone->present_pages) 3940 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n", 3941 zone->name, zone->present_pages, 3942 zone_batchsize(zone)); 3943 } 3944 3945 __meminit int init_currently_empty_zone(struct zone *zone, 3946 unsigned long zone_start_pfn, 3947 unsigned long size, 3948 enum memmap_context context) 3949 { 3950 struct pglist_data *pgdat = zone->zone_pgdat; 3951 int ret; 3952 ret = zone_wait_table_init(zone, size); 3953 if (ret) 3954 return ret; 3955 pgdat->nr_zones = zone_idx(zone) + 1; 3956 3957 zone->zone_start_pfn = zone_start_pfn; 3958 3959 mminit_dprintk(MMINIT_TRACE, "memmap_init", 3960 "Initialising map node %d zone %lu pfns %lu -> %lu\n", 3961 pgdat->node_id, 3962 (unsigned long)zone_idx(zone), 3963 zone_start_pfn, (zone_start_pfn + size)); 3964 3965 zone_init_free_lists(zone); 3966 3967 return 0; 3968 } 3969 3970 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 3971 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID 3972 /* 3973 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on. 3974 * Architectures may implement their own version but if add_active_range() 3975 * was used and there are no special requirements, this is a convenient 3976 * alternative 3977 */ 3978 int __meminit __early_pfn_to_nid(unsigned long pfn) 3979 { 3980 unsigned long start_pfn, end_pfn; 3981 int i, nid; 3982 3983 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) 3984 if (start_pfn <= pfn && pfn < end_pfn) 3985 return nid; 3986 /* This is a memory hole */ 3987 return -1; 3988 } 3989 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */ 3990 3991 int __meminit early_pfn_to_nid(unsigned long pfn) 3992 { 3993 int nid; 3994 3995 nid = __early_pfn_to_nid(pfn); 3996 if (nid >= 0) 3997 return nid; 3998 /* just returns 0 */ 3999 return 0; 4000 } 4001 4002 #ifdef CONFIG_NODES_SPAN_OTHER_NODES 4003 bool __meminit early_pfn_in_nid(unsigned long pfn, int node) 4004 { 4005 int nid; 4006 4007 nid = __early_pfn_to_nid(pfn); 4008 if (nid >= 0 && nid != node) 4009 return false; 4010 return true; 4011 } 4012 #endif 4013 4014 /** 4015 * free_bootmem_with_active_regions - Call free_bootmem_node for each active range 4016 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed. 4017 * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node 4018 * 4019 * If an architecture guarantees that all ranges registered with 4020 * add_active_ranges() contain no holes and may be freed, this 4021 * this function may be used instead of calling free_bootmem() manually. 4022 */ 4023 void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn) 4024 { 4025 unsigned long start_pfn, end_pfn; 4026 int i, this_nid; 4027 4028 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) { 4029 start_pfn = min(start_pfn, max_low_pfn); 4030 end_pfn = min(end_pfn, max_low_pfn); 4031 4032 if (start_pfn < end_pfn) 4033 free_bootmem_node(NODE_DATA(this_nid), 4034 PFN_PHYS(start_pfn), 4035 (end_pfn - start_pfn) << PAGE_SHIFT); 4036 } 4037 } 4038 4039 /** 4040 * sparse_memory_present_with_active_regions - Call memory_present for each active range 4041 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used. 4042 * 4043 * If an architecture guarantees that all ranges registered with 4044 * add_active_ranges() contain no holes and may be freed, this 4045 * function may be used instead of calling memory_present() manually. 4046 */ 4047 void __init sparse_memory_present_with_active_regions(int nid) 4048 { 4049 unsigned long start_pfn, end_pfn; 4050 int i, this_nid; 4051 4052 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) 4053 memory_present(this_nid, start_pfn, end_pfn); 4054 } 4055 4056 /** 4057 * get_pfn_range_for_nid - Return the start and end page frames for a node 4058 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned. 4059 * @start_pfn: Passed by reference. On return, it will have the node start_pfn. 4060 * @end_pfn: Passed by reference. On return, it will have the node end_pfn. 4061 * 4062 * It returns the start and end page frame of a node based on information 4063 * provided by an arch calling add_active_range(). If called for a node 4064 * with no available memory, a warning is printed and the start and end 4065 * PFNs will be 0. 4066 */ 4067 void __meminit get_pfn_range_for_nid(unsigned int nid, 4068 unsigned long *start_pfn, unsigned long *end_pfn) 4069 { 4070 unsigned long this_start_pfn, this_end_pfn; 4071 int i; 4072 4073 *start_pfn = -1UL; 4074 *end_pfn = 0; 4075 4076 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) { 4077 *start_pfn = min(*start_pfn, this_start_pfn); 4078 *end_pfn = max(*end_pfn, this_end_pfn); 4079 } 4080 4081 if (*start_pfn == -1UL) 4082 *start_pfn = 0; 4083 } 4084 4085 /* 4086 * This finds a zone that can be used for ZONE_MOVABLE pages. The 4087 * assumption is made that zones within a node are ordered in monotonic 4088 * increasing memory addresses so that the "highest" populated zone is used 4089 */ 4090 static void __init find_usable_zone_for_movable(void) 4091 { 4092 int zone_index; 4093 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) { 4094 if (zone_index == ZONE_MOVABLE) 4095 continue; 4096 4097 if (arch_zone_highest_possible_pfn[zone_index] > 4098 arch_zone_lowest_possible_pfn[zone_index]) 4099 break; 4100 } 4101 4102 VM_BUG_ON(zone_index == -1); 4103 movable_zone = zone_index; 4104 } 4105 4106 /* 4107 * The zone ranges provided by the architecture do not include ZONE_MOVABLE 4108 * because it is sized independent of architecture. Unlike the other zones, 4109 * the starting point for ZONE_MOVABLE is not fixed. It may be different 4110 * in each node depending on the size of each node and how evenly kernelcore 4111 * is distributed. This helper function adjusts the zone ranges 4112 * provided by the architecture for a given node by using the end of the 4113 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that 4114 * zones within a node are in order of monotonic increases memory addresses 4115 */ 4116 static void __meminit adjust_zone_range_for_zone_movable(int nid, 4117 unsigned long zone_type, 4118 unsigned long node_start_pfn, 4119 unsigned long node_end_pfn, 4120 unsigned long *zone_start_pfn, 4121 unsigned long *zone_end_pfn) 4122 { 4123 /* Only adjust if ZONE_MOVABLE is on this node */ 4124 if (zone_movable_pfn[nid]) { 4125 /* Size ZONE_MOVABLE */ 4126 if (zone_type == ZONE_MOVABLE) { 4127 *zone_start_pfn = zone_movable_pfn[nid]; 4128 *zone_end_pfn = min(node_end_pfn, 4129 arch_zone_highest_possible_pfn[movable_zone]); 4130 4131 /* Adjust for ZONE_MOVABLE starting within this range */ 4132 } else if (*zone_start_pfn < zone_movable_pfn[nid] && 4133 *zone_end_pfn > zone_movable_pfn[nid]) { 4134 *zone_end_pfn = zone_movable_pfn[nid]; 4135 4136 /* Check if this whole range is within ZONE_MOVABLE */ 4137 } else if (*zone_start_pfn >= zone_movable_pfn[nid]) 4138 *zone_start_pfn = *zone_end_pfn; 4139 } 4140 } 4141 4142 /* 4143 * Return the number of pages a zone spans in a node, including holes 4144 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node() 4145 */ 4146 static unsigned long __meminit zone_spanned_pages_in_node(int nid, 4147 unsigned long zone_type, 4148 unsigned long *ignored) 4149 { 4150 unsigned long node_start_pfn, node_end_pfn; 4151 unsigned long zone_start_pfn, zone_end_pfn; 4152 4153 /* Get the start and end of the node and zone */ 4154 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn); 4155 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type]; 4156 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type]; 4157 adjust_zone_range_for_zone_movable(nid, zone_type, 4158 node_start_pfn, node_end_pfn, 4159 &zone_start_pfn, &zone_end_pfn); 4160 4161 /* Check that this node has pages within the zone's required range */ 4162 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn) 4163 return 0; 4164 4165 /* Move the zone boundaries inside the node if necessary */ 4166 zone_end_pfn = min(zone_end_pfn, node_end_pfn); 4167 zone_start_pfn = max(zone_start_pfn, node_start_pfn); 4168 4169 /* Return the spanned pages */ 4170 return zone_end_pfn - zone_start_pfn; 4171 } 4172 4173 /* 4174 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES, 4175 * then all holes in the requested range will be accounted for. 4176 */ 4177 unsigned long __meminit __absent_pages_in_range(int nid, 4178 unsigned long range_start_pfn, 4179 unsigned long range_end_pfn) 4180 { 4181 unsigned long nr_absent = range_end_pfn - range_start_pfn; 4182 unsigned long start_pfn, end_pfn; 4183 int i; 4184 4185 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) { 4186 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn); 4187 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn); 4188 nr_absent -= end_pfn - start_pfn; 4189 } 4190 return nr_absent; 4191 } 4192 4193 /** 4194 * absent_pages_in_range - Return number of page frames in holes within a range 4195 * @start_pfn: The start PFN to start searching for holes 4196 * @end_pfn: The end PFN to stop searching for holes 4197 * 4198 * It returns the number of pages frames in memory holes within a range. 4199 */ 4200 unsigned long __init absent_pages_in_range(unsigned long start_pfn, 4201 unsigned long end_pfn) 4202 { 4203 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn); 4204 } 4205 4206 /* Return the number of page frames in holes in a zone on a node */ 4207 static unsigned long __meminit zone_absent_pages_in_node(int nid, 4208 unsigned long zone_type, 4209 unsigned long *ignored) 4210 { 4211 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type]; 4212 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type]; 4213 unsigned long node_start_pfn, node_end_pfn; 4214 unsigned long zone_start_pfn, zone_end_pfn; 4215 4216 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn); 4217 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high); 4218 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high); 4219 4220 adjust_zone_range_for_zone_movable(nid, zone_type, 4221 node_start_pfn, node_end_pfn, 4222 &zone_start_pfn, &zone_end_pfn); 4223 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn); 4224 } 4225 4226 #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 4227 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid, 4228 unsigned long zone_type, 4229 unsigned long *zones_size) 4230 { 4231 return zones_size[zone_type]; 4232 } 4233 4234 static inline unsigned long __meminit zone_absent_pages_in_node(int nid, 4235 unsigned long zone_type, 4236 unsigned long *zholes_size) 4237 { 4238 if (!zholes_size) 4239 return 0; 4240 4241 return zholes_size[zone_type]; 4242 } 4243 4244 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 4245 4246 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat, 4247 unsigned long *zones_size, unsigned long *zholes_size) 4248 { 4249 unsigned long realtotalpages, totalpages = 0; 4250 enum zone_type i; 4251 4252 for (i = 0; i < MAX_NR_ZONES; i++) 4253 totalpages += zone_spanned_pages_in_node(pgdat->node_id, i, 4254 zones_size); 4255 pgdat->node_spanned_pages = totalpages; 4256 4257 realtotalpages = totalpages; 4258 for (i = 0; i < MAX_NR_ZONES; i++) 4259 realtotalpages -= 4260 zone_absent_pages_in_node(pgdat->node_id, i, 4261 zholes_size); 4262 pgdat->node_present_pages = realtotalpages; 4263 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id, 4264 realtotalpages); 4265 } 4266 4267 #ifndef CONFIG_SPARSEMEM 4268 /* 4269 * Calculate the size of the zone->blockflags rounded to an unsigned long 4270 * Start by making sure zonesize is a multiple of pageblock_order by rounding 4271 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally 4272 * round what is now in bits to nearest long in bits, then return it in 4273 * bytes. 4274 */ 4275 static unsigned long __init usemap_size(unsigned long zonesize) 4276 { 4277 unsigned long usemapsize; 4278 4279 usemapsize = roundup(zonesize, pageblock_nr_pages); 4280 usemapsize = usemapsize >> pageblock_order; 4281 usemapsize *= NR_PAGEBLOCK_BITS; 4282 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long)); 4283 4284 return usemapsize / 8; 4285 } 4286 4287 static void __init setup_usemap(struct pglist_data *pgdat, 4288 struct zone *zone, unsigned long zonesize) 4289 { 4290 unsigned long usemapsize = usemap_size(zonesize); 4291 zone->pageblock_flags = NULL; 4292 if (usemapsize) 4293 zone->pageblock_flags = alloc_bootmem_node_nopanic(pgdat, 4294 usemapsize); 4295 } 4296 #else 4297 static inline void setup_usemap(struct pglist_data *pgdat, 4298 struct zone *zone, unsigned long zonesize) {} 4299 #endif /* CONFIG_SPARSEMEM */ 4300 4301 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE 4302 4303 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */ 4304 static inline void __init set_pageblock_order(void) 4305 { 4306 unsigned int order; 4307 4308 /* Check that pageblock_nr_pages has not already been setup */ 4309 if (pageblock_order) 4310 return; 4311 4312 if (HPAGE_SHIFT > PAGE_SHIFT) 4313 order = HUGETLB_PAGE_ORDER; 4314 else 4315 order = MAX_ORDER - 1; 4316 4317 /* 4318 * Assume the largest contiguous order of interest is a huge page. 4319 * This value may be variable depending on boot parameters on IA64 and 4320 * powerpc. 4321 */ 4322 pageblock_order = order; 4323 } 4324 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */ 4325 4326 /* 4327 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order() 4328 * is unused as pageblock_order is set at compile-time. See 4329 * include/linux/pageblock-flags.h for the values of pageblock_order based on 4330 * the kernel config 4331 */ 4332 static inline void set_pageblock_order(void) 4333 { 4334 } 4335 4336 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */ 4337 4338 /* 4339 * Set up the zone data structures: 4340 * - mark all pages reserved 4341 * - mark all memory queues empty 4342 * - clear the memory bitmaps 4343 */ 4344 static void __paginginit free_area_init_core(struct pglist_data *pgdat, 4345 unsigned long *zones_size, unsigned long *zholes_size) 4346 { 4347 enum zone_type j; 4348 int nid = pgdat->node_id; 4349 unsigned long zone_start_pfn = pgdat->node_start_pfn; 4350 int ret; 4351 4352 pgdat_resize_init(pgdat); 4353 pgdat->nr_zones = 0; 4354 init_waitqueue_head(&pgdat->kswapd_wait); 4355 pgdat->kswapd_max_order = 0; 4356 pgdat_page_cgroup_init(pgdat); 4357 4358 for (j = 0; j < MAX_NR_ZONES; j++) { 4359 struct zone *zone = pgdat->node_zones + j; 4360 unsigned long size, realsize, memmap_pages; 4361 4362 size = zone_spanned_pages_in_node(nid, j, zones_size); 4363 realsize = size - zone_absent_pages_in_node(nid, j, 4364 zholes_size); 4365 4366 /* 4367 * Adjust realsize so that it accounts for how much memory 4368 * is used by this zone for memmap. This affects the watermark 4369 * and per-cpu initialisations 4370 */ 4371 memmap_pages = 4372 PAGE_ALIGN(size * sizeof(struct page)) >> PAGE_SHIFT; 4373 if (realsize >= memmap_pages) { 4374 realsize -= memmap_pages; 4375 if (memmap_pages) 4376 printk(KERN_DEBUG 4377 " %s zone: %lu pages used for memmap\n", 4378 zone_names[j], memmap_pages); 4379 } else 4380 printk(KERN_WARNING 4381 " %s zone: %lu pages exceeds realsize %lu\n", 4382 zone_names[j], memmap_pages, realsize); 4383 4384 /* Account for reserved pages */ 4385 if (j == 0 && realsize > dma_reserve) { 4386 realsize -= dma_reserve; 4387 printk(KERN_DEBUG " %s zone: %lu pages reserved\n", 4388 zone_names[0], dma_reserve); 4389 } 4390 4391 if (!is_highmem_idx(j)) 4392 nr_kernel_pages += realsize; 4393 nr_all_pages += realsize; 4394 4395 zone->spanned_pages = size; 4396 zone->present_pages = realsize; 4397 #ifdef CONFIG_NUMA 4398 zone->node = nid; 4399 zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio) 4400 / 100; 4401 zone->min_slab_pages = (realsize * sysctl_min_slab_ratio) / 100; 4402 #endif 4403 zone->name = zone_names[j]; 4404 spin_lock_init(&zone->lock); 4405 spin_lock_init(&zone->lru_lock); 4406 zone_seqlock_init(zone); 4407 zone->zone_pgdat = pgdat; 4408 4409 zone_pcp_init(zone); 4410 lruvec_init(&zone->lruvec, zone); 4411 zap_zone_vm_stats(zone); 4412 zone->flags = 0; 4413 if (!size) 4414 continue; 4415 4416 set_pageblock_order(); 4417 setup_usemap(pgdat, zone, size); 4418 ret = init_currently_empty_zone(zone, zone_start_pfn, 4419 size, MEMMAP_EARLY); 4420 BUG_ON(ret); 4421 memmap_init(size, nid, j, zone_start_pfn); 4422 zone_start_pfn += size; 4423 } 4424 } 4425 4426 static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat) 4427 { 4428 /* Skip empty nodes */ 4429 if (!pgdat->node_spanned_pages) 4430 return; 4431 4432 #ifdef CONFIG_FLAT_NODE_MEM_MAP 4433 /* ia64 gets its own node_mem_map, before this, without bootmem */ 4434 if (!pgdat->node_mem_map) { 4435 unsigned long size, start, end; 4436 struct page *map; 4437 4438 /* 4439 * The zone's endpoints aren't required to be MAX_ORDER 4440 * aligned but the node_mem_map endpoints must be in order 4441 * for the buddy allocator to function correctly. 4442 */ 4443 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1); 4444 end = pgdat->node_start_pfn + pgdat->node_spanned_pages; 4445 end = ALIGN(end, MAX_ORDER_NR_PAGES); 4446 size = (end - start) * sizeof(struct page); 4447 map = alloc_remap(pgdat->node_id, size); 4448 if (!map) 4449 map = alloc_bootmem_node_nopanic(pgdat, size); 4450 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start); 4451 } 4452 #ifndef CONFIG_NEED_MULTIPLE_NODES 4453 /* 4454 * With no DISCONTIG, the global mem_map is just set as node 0's 4455 */ 4456 if (pgdat == NODE_DATA(0)) { 4457 mem_map = NODE_DATA(0)->node_mem_map; 4458 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 4459 if (page_to_pfn(mem_map) != pgdat->node_start_pfn) 4460 mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET); 4461 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 4462 } 4463 #endif 4464 #endif /* CONFIG_FLAT_NODE_MEM_MAP */ 4465 } 4466 4467 void __paginginit free_area_init_node(int nid, unsigned long *zones_size, 4468 unsigned long node_start_pfn, unsigned long *zholes_size) 4469 { 4470 pg_data_t *pgdat = NODE_DATA(nid); 4471 4472 pgdat->node_id = nid; 4473 pgdat->node_start_pfn = node_start_pfn; 4474 calculate_node_totalpages(pgdat, zones_size, zholes_size); 4475 4476 alloc_node_mem_map(pgdat); 4477 #ifdef CONFIG_FLAT_NODE_MEM_MAP 4478 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n", 4479 nid, (unsigned long)pgdat, 4480 (unsigned long)pgdat->node_mem_map); 4481 #endif 4482 4483 free_area_init_core(pgdat, zones_size, zholes_size); 4484 } 4485 4486 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 4487 4488 #if MAX_NUMNODES > 1 4489 /* 4490 * Figure out the number of possible node ids. 4491 */ 4492 static void __init setup_nr_node_ids(void) 4493 { 4494 unsigned int node; 4495 unsigned int highest = 0; 4496 4497 for_each_node_mask(node, node_possible_map) 4498 highest = node; 4499 nr_node_ids = highest + 1; 4500 } 4501 #else 4502 static inline void setup_nr_node_ids(void) 4503 { 4504 } 4505 #endif 4506 4507 /** 4508 * node_map_pfn_alignment - determine the maximum internode alignment 4509 * 4510 * This function should be called after node map is populated and sorted. 4511 * It calculates the maximum power of two alignment which can distinguish 4512 * all the nodes. 4513 * 4514 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value 4515 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the 4516 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is 4517 * shifted, 1GiB is enough and this function will indicate so. 4518 * 4519 * This is used to test whether pfn -> nid mapping of the chosen memory 4520 * model has fine enough granularity to avoid incorrect mapping for the 4521 * populated node map. 4522 * 4523 * Returns the determined alignment in pfn's. 0 if there is no alignment 4524 * requirement (single node). 4525 */ 4526 unsigned long __init node_map_pfn_alignment(void) 4527 { 4528 unsigned long accl_mask = 0, last_end = 0; 4529 unsigned long start, end, mask; 4530 int last_nid = -1; 4531 int i, nid; 4532 4533 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) { 4534 if (!start || last_nid < 0 || last_nid == nid) { 4535 last_nid = nid; 4536 last_end = end; 4537 continue; 4538 } 4539 4540 /* 4541 * Start with a mask granular enough to pin-point to the 4542 * start pfn and tick off bits one-by-one until it becomes 4543 * too coarse to separate the current node from the last. 4544 */ 4545 mask = ~((1 << __ffs(start)) - 1); 4546 while (mask && last_end <= (start & (mask << 1))) 4547 mask <<= 1; 4548 4549 /* accumulate all internode masks */ 4550 accl_mask |= mask; 4551 } 4552 4553 /* convert mask to number of pages */ 4554 return ~accl_mask + 1; 4555 } 4556 4557 /* Find the lowest pfn for a node */ 4558 static unsigned long __init find_min_pfn_for_node(int nid) 4559 { 4560 unsigned long min_pfn = ULONG_MAX; 4561 unsigned long start_pfn; 4562 int i; 4563 4564 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL) 4565 min_pfn = min(min_pfn, start_pfn); 4566 4567 if (min_pfn == ULONG_MAX) { 4568 printk(KERN_WARNING 4569 "Could not find start_pfn for node %d\n", nid); 4570 return 0; 4571 } 4572 4573 return min_pfn; 4574 } 4575 4576 /** 4577 * find_min_pfn_with_active_regions - Find the minimum PFN registered 4578 * 4579 * It returns the minimum PFN based on information provided via 4580 * add_active_range(). 4581 */ 4582 unsigned long __init find_min_pfn_with_active_regions(void) 4583 { 4584 return find_min_pfn_for_node(MAX_NUMNODES); 4585 } 4586 4587 /* 4588 * early_calculate_totalpages() 4589 * Sum pages in active regions for movable zone. 4590 * Populate N_HIGH_MEMORY for calculating usable_nodes. 4591 */ 4592 static unsigned long __init early_calculate_totalpages(void) 4593 { 4594 unsigned long totalpages = 0; 4595 unsigned long start_pfn, end_pfn; 4596 int i, nid; 4597 4598 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) { 4599 unsigned long pages = end_pfn - start_pfn; 4600 4601 totalpages += pages; 4602 if (pages) 4603 node_set_state(nid, N_HIGH_MEMORY); 4604 } 4605 return totalpages; 4606 } 4607 4608 /* 4609 * Find the PFN the Movable zone begins in each node. Kernel memory 4610 * is spread evenly between nodes as long as the nodes have enough 4611 * memory. When they don't, some nodes will have more kernelcore than 4612 * others 4613 */ 4614 static void __init find_zone_movable_pfns_for_nodes(void) 4615 { 4616 int i, nid; 4617 unsigned long usable_startpfn; 4618 unsigned long kernelcore_node, kernelcore_remaining; 4619 /* save the state before borrow the nodemask */ 4620 nodemask_t saved_node_state = node_states[N_HIGH_MEMORY]; 4621 unsigned long totalpages = early_calculate_totalpages(); 4622 int usable_nodes = nodes_weight(node_states[N_HIGH_MEMORY]); 4623 4624 /* 4625 * If movablecore was specified, calculate what size of 4626 * kernelcore that corresponds so that memory usable for 4627 * any allocation type is evenly spread. If both kernelcore 4628 * and movablecore are specified, then the value of kernelcore 4629 * will be used for required_kernelcore if it's greater than 4630 * what movablecore would have allowed. 4631 */ 4632 if (required_movablecore) { 4633 unsigned long corepages; 4634 4635 /* 4636 * Round-up so that ZONE_MOVABLE is at least as large as what 4637 * was requested by the user 4638 */ 4639 required_movablecore = 4640 roundup(required_movablecore, MAX_ORDER_NR_PAGES); 4641 corepages = totalpages - required_movablecore; 4642 4643 required_kernelcore = max(required_kernelcore, corepages); 4644 } 4645 4646 /* If kernelcore was not specified, there is no ZONE_MOVABLE */ 4647 if (!required_kernelcore) 4648 goto out; 4649 4650 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */ 4651 find_usable_zone_for_movable(); 4652 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone]; 4653 4654 restart: 4655 /* Spread kernelcore memory as evenly as possible throughout nodes */ 4656 kernelcore_node = required_kernelcore / usable_nodes; 4657 for_each_node_state(nid, N_HIGH_MEMORY) { 4658 unsigned long start_pfn, end_pfn; 4659 4660 /* 4661 * Recalculate kernelcore_node if the division per node 4662 * now exceeds what is necessary to satisfy the requested 4663 * amount of memory for the kernel 4664 */ 4665 if (required_kernelcore < kernelcore_node) 4666 kernelcore_node = required_kernelcore / usable_nodes; 4667 4668 /* 4669 * As the map is walked, we track how much memory is usable 4670 * by the kernel using kernelcore_remaining. When it is 4671 * 0, the rest of the node is usable by ZONE_MOVABLE 4672 */ 4673 kernelcore_remaining = kernelcore_node; 4674 4675 /* Go through each range of PFNs within this node */ 4676 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) { 4677 unsigned long size_pages; 4678 4679 start_pfn = max(start_pfn, zone_movable_pfn[nid]); 4680 if (start_pfn >= end_pfn) 4681 continue; 4682 4683 /* Account for what is only usable for kernelcore */ 4684 if (start_pfn < usable_startpfn) { 4685 unsigned long kernel_pages; 4686 kernel_pages = min(end_pfn, usable_startpfn) 4687 - start_pfn; 4688 4689 kernelcore_remaining -= min(kernel_pages, 4690 kernelcore_remaining); 4691 required_kernelcore -= min(kernel_pages, 4692 required_kernelcore); 4693 4694 /* Continue if range is now fully accounted */ 4695 if (end_pfn <= usable_startpfn) { 4696 4697 /* 4698 * Push zone_movable_pfn to the end so 4699 * that if we have to rebalance 4700 * kernelcore across nodes, we will 4701 * not double account here 4702 */ 4703 zone_movable_pfn[nid] = end_pfn; 4704 continue; 4705 } 4706 start_pfn = usable_startpfn; 4707 } 4708 4709 /* 4710 * The usable PFN range for ZONE_MOVABLE is from 4711 * start_pfn->end_pfn. Calculate size_pages as the 4712 * number of pages used as kernelcore 4713 */ 4714 size_pages = end_pfn - start_pfn; 4715 if (size_pages > kernelcore_remaining) 4716 size_pages = kernelcore_remaining; 4717 zone_movable_pfn[nid] = start_pfn + size_pages; 4718 4719 /* 4720 * Some kernelcore has been met, update counts and 4721 * break if the kernelcore for this node has been 4722 * satisified 4723 */ 4724 required_kernelcore -= min(required_kernelcore, 4725 size_pages); 4726 kernelcore_remaining -= size_pages; 4727 if (!kernelcore_remaining) 4728 break; 4729 } 4730 } 4731 4732 /* 4733 * If there is still required_kernelcore, we do another pass with one 4734 * less node in the count. This will push zone_movable_pfn[nid] further 4735 * along on the nodes that still have memory until kernelcore is 4736 * satisified 4737 */ 4738 usable_nodes--; 4739 if (usable_nodes && required_kernelcore > usable_nodes) 4740 goto restart; 4741 4742 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */ 4743 for (nid = 0; nid < MAX_NUMNODES; nid++) 4744 zone_movable_pfn[nid] = 4745 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES); 4746 4747 out: 4748 /* restore the node_state */ 4749 node_states[N_HIGH_MEMORY] = saved_node_state; 4750 } 4751 4752 /* Any regular memory on that node ? */ 4753 static void check_for_regular_memory(pg_data_t *pgdat) 4754 { 4755 #ifdef CONFIG_HIGHMEM 4756 enum zone_type zone_type; 4757 4758 for (zone_type = 0; zone_type <= ZONE_NORMAL; zone_type++) { 4759 struct zone *zone = &pgdat->node_zones[zone_type]; 4760 if (zone->present_pages) { 4761 node_set_state(zone_to_nid(zone), N_NORMAL_MEMORY); 4762 break; 4763 } 4764 } 4765 #endif 4766 } 4767 4768 /** 4769 * free_area_init_nodes - Initialise all pg_data_t and zone data 4770 * @max_zone_pfn: an array of max PFNs for each zone 4771 * 4772 * This will call free_area_init_node() for each active node in the system. 4773 * Using the page ranges provided by add_active_range(), the size of each 4774 * zone in each node and their holes is calculated. If the maximum PFN 4775 * between two adjacent zones match, it is assumed that the zone is empty. 4776 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed 4777 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone 4778 * starts where the previous one ended. For example, ZONE_DMA32 starts 4779 * at arch_max_dma_pfn. 4780 */ 4781 void __init free_area_init_nodes(unsigned long *max_zone_pfn) 4782 { 4783 unsigned long start_pfn, end_pfn; 4784 int i, nid; 4785 4786 /* Record where the zone boundaries are */ 4787 memset(arch_zone_lowest_possible_pfn, 0, 4788 sizeof(arch_zone_lowest_possible_pfn)); 4789 memset(arch_zone_highest_possible_pfn, 0, 4790 sizeof(arch_zone_highest_possible_pfn)); 4791 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions(); 4792 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0]; 4793 for (i = 1; i < MAX_NR_ZONES; i++) { 4794 if (i == ZONE_MOVABLE) 4795 continue; 4796 arch_zone_lowest_possible_pfn[i] = 4797 arch_zone_highest_possible_pfn[i-1]; 4798 arch_zone_highest_possible_pfn[i] = 4799 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]); 4800 } 4801 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0; 4802 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0; 4803 4804 /* Find the PFNs that ZONE_MOVABLE begins at in each node */ 4805 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn)); 4806 find_zone_movable_pfns_for_nodes(); 4807 4808 /* Print out the zone ranges */ 4809 printk("Zone ranges:\n"); 4810 for (i = 0; i < MAX_NR_ZONES; i++) { 4811 if (i == ZONE_MOVABLE) 4812 continue; 4813 printk(KERN_CONT " %-8s ", zone_names[i]); 4814 if (arch_zone_lowest_possible_pfn[i] == 4815 arch_zone_highest_possible_pfn[i]) 4816 printk(KERN_CONT "empty\n"); 4817 else 4818 printk(KERN_CONT "[mem %0#10lx-%0#10lx]\n", 4819 arch_zone_lowest_possible_pfn[i] << PAGE_SHIFT, 4820 (arch_zone_highest_possible_pfn[i] 4821 << PAGE_SHIFT) - 1); 4822 } 4823 4824 /* Print out the PFNs ZONE_MOVABLE begins at in each node */ 4825 printk("Movable zone start for each node\n"); 4826 for (i = 0; i < MAX_NUMNODES; i++) { 4827 if (zone_movable_pfn[i]) 4828 printk(" Node %d: %#010lx\n", i, 4829 zone_movable_pfn[i] << PAGE_SHIFT); 4830 } 4831 4832 /* Print out the early_node_map[] */ 4833 printk("Early memory node ranges\n"); 4834 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) 4835 printk(" node %3d: [mem %#010lx-%#010lx]\n", nid, 4836 start_pfn << PAGE_SHIFT, (end_pfn << PAGE_SHIFT) - 1); 4837 4838 /* Initialise every node */ 4839 mminit_verify_pageflags_layout(); 4840 setup_nr_node_ids(); 4841 for_each_online_node(nid) { 4842 pg_data_t *pgdat = NODE_DATA(nid); 4843 free_area_init_node(nid, NULL, 4844 find_min_pfn_for_node(nid), NULL); 4845 4846 /* Any memory on that node */ 4847 if (pgdat->node_present_pages) 4848 node_set_state(nid, N_HIGH_MEMORY); 4849 check_for_regular_memory(pgdat); 4850 } 4851 } 4852 4853 static int __init cmdline_parse_core(char *p, unsigned long *core) 4854 { 4855 unsigned long long coremem; 4856 if (!p) 4857 return -EINVAL; 4858 4859 coremem = memparse(p, &p); 4860 *core = coremem >> PAGE_SHIFT; 4861 4862 /* Paranoid check that UL is enough for the coremem value */ 4863 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX); 4864 4865 return 0; 4866 } 4867 4868 /* 4869 * kernelcore=size sets the amount of memory for use for allocations that 4870 * cannot be reclaimed or migrated. 4871 */ 4872 static int __init cmdline_parse_kernelcore(char *p) 4873 { 4874 return cmdline_parse_core(p, &required_kernelcore); 4875 } 4876 4877 /* 4878 * movablecore=size sets the amount of memory for use for allocations that 4879 * can be reclaimed or migrated. 4880 */ 4881 static int __init cmdline_parse_movablecore(char *p) 4882 { 4883 return cmdline_parse_core(p, &required_movablecore); 4884 } 4885 4886 early_param("kernelcore", cmdline_parse_kernelcore); 4887 early_param("movablecore", cmdline_parse_movablecore); 4888 4889 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 4890 4891 /** 4892 * set_dma_reserve - set the specified number of pages reserved in the first zone 4893 * @new_dma_reserve: The number of pages to mark reserved 4894 * 4895 * The per-cpu batchsize and zone watermarks are determined by present_pages. 4896 * In the DMA zone, a significant percentage may be consumed by kernel image 4897 * and other unfreeable allocations which can skew the watermarks badly. This 4898 * function may optionally be used to account for unfreeable pages in the 4899 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and 4900 * smaller per-cpu batchsize. 4901 */ 4902 void __init set_dma_reserve(unsigned long new_dma_reserve) 4903 { 4904 dma_reserve = new_dma_reserve; 4905 } 4906 4907 void __init free_area_init(unsigned long *zones_size) 4908 { 4909 free_area_init_node(0, zones_size, 4910 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL); 4911 } 4912 4913 static int page_alloc_cpu_notify(struct notifier_block *self, 4914 unsigned long action, void *hcpu) 4915 { 4916 int cpu = (unsigned long)hcpu; 4917 4918 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) { 4919 lru_add_drain_cpu(cpu); 4920 drain_pages(cpu); 4921 4922 /* 4923 * Spill the event counters of the dead processor 4924 * into the current processors event counters. 4925 * This artificially elevates the count of the current 4926 * processor. 4927 */ 4928 vm_events_fold_cpu(cpu); 4929 4930 /* 4931 * Zero the differential counters of the dead processor 4932 * so that the vm statistics are consistent. 4933 * 4934 * This is only okay since the processor is dead and cannot 4935 * race with what we are doing. 4936 */ 4937 refresh_cpu_vm_stats(cpu); 4938 } 4939 return NOTIFY_OK; 4940 } 4941 4942 void __init page_alloc_init(void) 4943 { 4944 hotcpu_notifier(page_alloc_cpu_notify, 0); 4945 } 4946 4947 /* 4948 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio 4949 * or min_free_kbytes changes. 4950 */ 4951 static void calculate_totalreserve_pages(void) 4952 { 4953 struct pglist_data *pgdat; 4954 unsigned long reserve_pages = 0; 4955 enum zone_type i, j; 4956 4957 for_each_online_pgdat(pgdat) { 4958 for (i = 0; i < MAX_NR_ZONES; i++) { 4959 struct zone *zone = pgdat->node_zones + i; 4960 unsigned long max = 0; 4961 4962 /* Find valid and maximum lowmem_reserve in the zone */ 4963 for (j = i; j < MAX_NR_ZONES; j++) { 4964 if (zone->lowmem_reserve[j] > max) 4965 max = zone->lowmem_reserve[j]; 4966 } 4967 4968 /* we treat the high watermark as reserved pages. */ 4969 max += high_wmark_pages(zone); 4970 4971 if (max > zone->present_pages) 4972 max = zone->present_pages; 4973 reserve_pages += max; 4974 /* 4975 * Lowmem reserves are not available to 4976 * GFP_HIGHUSER page cache allocations and 4977 * kswapd tries to balance zones to their high 4978 * watermark. As a result, neither should be 4979 * regarded as dirtyable memory, to prevent a 4980 * situation where reclaim has to clean pages 4981 * in order to balance the zones. 4982 */ 4983 zone->dirty_balance_reserve = max; 4984 } 4985 } 4986 dirty_balance_reserve = reserve_pages; 4987 totalreserve_pages = reserve_pages; 4988 } 4989 4990 /* 4991 * setup_per_zone_lowmem_reserve - called whenever 4992 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone 4993 * has a correct pages reserved value, so an adequate number of 4994 * pages are left in the zone after a successful __alloc_pages(). 4995 */ 4996 static void setup_per_zone_lowmem_reserve(void) 4997 { 4998 struct pglist_data *pgdat; 4999 enum zone_type j, idx; 5000 5001 for_each_online_pgdat(pgdat) { 5002 for (j = 0; j < MAX_NR_ZONES; j++) { 5003 struct zone *zone = pgdat->node_zones + j; 5004 unsigned long present_pages = zone->present_pages; 5005 5006 zone->lowmem_reserve[j] = 0; 5007 5008 idx = j; 5009 while (idx) { 5010 struct zone *lower_zone; 5011 5012 idx--; 5013 5014 if (sysctl_lowmem_reserve_ratio[idx] < 1) 5015 sysctl_lowmem_reserve_ratio[idx] = 1; 5016 5017 lower_zone = pgdat->node_zones + idx; 5018 lower_zone->lowmem_reserve[j] = present_pages / 5019 sysctl_lowmem_reserve_ratio[idx]; 5020 present_pages += lower_zone->present_pages; 5021 } 5022 } 5023 } 5024 5025 /* update totalreserve_pages */ 5026 calculate_totalreserve_pages(); 5027 } 5028 5029 static void __setup_per_zone_wmarks(void) 5030 { 5031 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10); 5032 unsigned long lowmem_pages = 0; 5033 struct zone *zone; 5034 unsigned long flags; 5035 5036 /* Calculate total number of !ZONE_HIGHMEM pages */ 5037 for_each_zone(zone) { 5038 if (!is_highmem(zone)) 5039 lowmem_pages += zone->present_pages; 5040 } 5041 5042 for_each_zone(zone) { 5043 u64 tmp; 5044 5045 spin_lock_irqsave(&zone->lock, flags); 5046 tmp = (u64)pages_min * zone->present_pages; 5047 do_div(tmp, lowmem_pages); 5048 if (is_highmem(zone)) { 5049 /* 5050 * __GFP_HIGH and PF_MEMALLOC allocations usually don't 5051 * need highmem pages, so cap pages_min to a small 5052 * value here. 5053 * 5054 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN) 5055 * deltas controls asynch page reclaim, and so should 5056 * not be capped for highmem. 5057 */ 5058 int min_pages; 5059 5060 min_pages = zone->present_pages / 1024; 5061 if (min_pages < SWAP_CLUSTER_MAX) 5062 min_pages = SWAP_CLUSTER_MAX; 5063 if (min_pages > 128) 5064 min_pages = 128; 5065 zone->watermark[WMARK_MIN] = min_pages; 5066 } else { 5067 /* 5068 * If it's a lowmem zone, reserve a number of pages 5069 * proportionate to the zone's size. 5070 */ 5071 zone->watermark[WMARK_MIN] = tmp; 5072 } 5073 5074 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + (tmp >> 2); 5075 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1); 5076 5077 zone->watermark[WMARK_MIN] += cma_wmark_pages(zone); 5078 zone->watermark[WMARK_LOW] += cma_wmark_pages(zone); 5079 zone->watermark[WMARK_HIGH] += cma_wmark_pages(zone); 5080 5081 setup_zone_migrate_reserve(zone); 5082 spin_unlock_irqrestore(&zone->lock, flags); 5083 } 5084 5085 /* update totalreserve_pages */ 5086 calculate_totalreserve_pages(); 5087 } 5088 5089 /** 5090 * setup_per_zone_wmarks - called when min_free_kbytes changes 5091 * or when memory is hot-{added|removed} 5092 * 5093 * Ensures that the watermark[min,low,high] values for each zone are set 5094 * correctly with respect to min_free_kbytes. 5095 */ 5096 void setup_per_zone_wmarks(void) 5097 { 5098 mutex_lock(&zonelists_mutex); 5099 __setup_per_zone_wmarks(); 5100 mutex_unlock(&zonelists_mutex); 5101 } 5102 5103 /* 5104 * The inactive anon list should be small enough that the VM never has to 5105 * do too much work, but large enough that each inactive page has a chance 5106 * to be referenced again before it is swapped out. 5107 * 5108 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to 5109 * INACTIVE_ANON pages on this zone's LRU, maintained by the 5110 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of 5111 * the anonymous pages are kept on the inactive list. 5112 * 5113 * total target max 5114 * memory ratio inactive anon 5115 * ------------------------------------- 5116 * 10MB 1 5MB 5117 * 100MB 1 50MB 5118 * 1GB 3 250MB 5119 * 10GB 10 0.9GB 5120 * 100GB 31 3GB 5121 * 1TB 101 10GB 5122 * 10TB 320 32GB 5123 */ 5124 static void __meminit calculate_zone_inactive_ratio(struct zone *zone) 5125 { 5126 unsigned int gb, ratio; 5127 5128 /* Zone size in gigabytes */ 5129 gb = zone->present_pages >> (30 - PAGE_SHIFT); 5130 if (gb) 5131 ratio = int_sqrt(10 * gb); 5132 else 5133 ratio = 1; 5134 5135 zone->inactive_ratio = ratio; 5136 } 5137 5138 static void __meminit setup_per_zone_inactive_ratio(void) 5139 { 5140 struct zone *zone; 5141 5142 for_each_zone(zone) 5143 calculate_zone_inactive_ratio(zone); 5144 } 5145 5146 /* 5147 * Initialise min_free_kbytes. 5148 * 5149 * For small machines we want it small (128k min). For large machines 5150 * we want it large (64MB max). But it is not linear, because network 5151 * bandwidth does not increase linearly with machine size. We use 5152 * 5153 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy: 5154 * min_free_kbytes = sqrt(lowmem_kbytes * 16) 5155 * 5156 * which yields 5157 * 5158 * 16MB: 512k 5159 * 32MB: 724k 5160 * 64MB: 1024k 5161 * 128MB: 1448k 5162 * 256MB: 2048k 5163 * 512MB: 2896k 5164 * 1024MB: 4096k 5165 * 2048MB: 5792k 5166 * 4096MB: 8192k 5167 * 8192MB: 11584k 5168 * 16384MB: 16384k 5169 */ 5170 int __meminit init_per_zone_wmark_min(void) 5171 { 5172 unsigned long lowmem_kbytes; 5173 5174 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10); 5175 5176 min_free_kbytes = int_sqrt(lowmem_kbytes * 16); 5177 if (min_free_kbytes < 128) 5178 min_free_kbytes = 128; 5179 if (min_free_kbytes > 65536) 5180 min_free_kbytes = 65536; 5181 setup_per_zone_wmarks(); 5182 refresh_zone_stat_thresholds(); 5183 setup_per_zone_lowmem_reserve(); 5184 setup_per_zone_inactive_ratio(); 5185 return 0; 5186 } 5187 module_init(init_per_zone_wmark_min) 5188 5189 /* 5190 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so 5191 * that we can call two helper functions whenever min_free_kbytes 5192 * changes. 5193 */ 5194 int min_free_kbytes_sysctl_handler(ctl_table *table, int write, 5195 void __user *buffer, size_t *length, loff_t *ppos) 5196 { 5197 proc_dointvec(table, write, buffer, length, ppos); 5198 if (write) 5199 setup_per_zone_wmarks(); 5200 return 0; 5201 } 5202 5203 #ifdef CONFIG_NUMA 5204 int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write, 5205 void __user *buffer, size_t *length, loff_t *ppos) 5206 { 5207 struct zone *zone; 5208 int rc; 5209 5210 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 5211 if (rc) 5212 return rc; 5213 5214 for_each_zone(zone) 5215 zone->min_unmapped_pages = (zone->present_pages * 5216 sysctl_min_unmapped_ratio) / 100; 5217 return 0; 5218 } 5219 5220 int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write, 5221 void __user *buffer, size_t *length, loff_t *ppos) 5222 { 5223 struct zone *zone; 5224 int rc; 5225 5226 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 5227 if (rc) 5228 return rc; 5229 5230 for_each_zone(zone) 5231 zone->min_slab_pages = (zone->present_pages * 5232 sysctl_min_slab_ratio) / 100; 5233 return 0; 5234 } 5235 #endif 5236 5237 /* 5238 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around 5239 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve() 5240 * whenever sysctl_lowmem_reserve_ratio changes. 5241 * 5242 * The reserve ratio obviously has absolutely no relation with the 5243 * minimum watermarks. The lowmem reserve ratio can only make sense 5244 * if in function of the boot time zone sizes. 5245 */ 5246 int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write, 5247 void __user *buffer, size_t *length, loff_t *ppos) 5248 { 5249 proc_dointvec_minmax(table, write, buffer, length, ppos); 5250 setup_per_zone_lowmem_reserve(); 5251 return 0; 5252 } 5253 5254 /* 5255 * percpu_pagelist_fraction - changes the pcp->high for each zone on each 5256 * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist 5257 * can have before it gets flushed back to buddy allocator. 5258 */ 5259 5260 int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write, 5261 void __user *buffer, size_t *length, loff_t *ppos) 5262 { 5263 struct zone *zone; 5264 unsigned int cpu; 5265 int ret; 5266 5267 ret = proc_dointvec_minmax(table, write, buffer, length, ppos); 5268 if (!write || (ret < 0)) 5269 return ret; 5270 for_each_populated_zone(zone) { 5271 for_each_possible_cpu(cpu) { 5272 unsigned long high; 5273 high = zone->present_pages / percpu_pagelist_fraction; 5274 setup_pagelist_highmark( 5275 per_cpu_ptr(zone->pageset, cpu), high); 5276 } 5277 } 5278 return 0; 5279 } 5280 5281 int hashdist = HASHDIST_DEFAULT; 5282 5283 #ifdef CONFIG_NUMA 5284 static int __init set_hashdist(char *str) 5285 { 5286 if (!str) 5287 return 0; 5288 hashdist = simple_strtoul(str, &str, 0); 5289 return 1; 5290 } 5291 __setup("hashdist=", set_hashdist); 5292 #endif 5293 5294 /* 5295 * allocate a large system hash table from bootmem 5296 * - it is assumed that the hash table must contain an exact power-of-2 5297 * quantity of entries 5298 * - limit is the number of hash buckets, not the total allocation size 5299 */ 5300 void *__init alloc_large_system_hash(const char *tablename, 5301 unsigned long bucketsize, 5302 unsigned long numentries, 5303 int scale, 5304 int flags, 5305 unsigned int *_hash_shift, 5306 unsigned int *_hash_mask, 5307 unsigned long low_limit, 5308 unsigned long high_limit) 5309 { 5310 unsigned long long max = high_limit; 5311 unsigned long log2qty, size; 5312 void *table = NULL; 5313 5314 /* allow the kernel cmdline to have a say */ 5315 if (!numentries) { 5316 /* round applicable memory size up to nearest megabyte */ 5317 numentries = nr_kernel_pages; 5318 numentries += (1UL << (20 - PAGE_SHIFT)) - 1; 5319 numentries >>= 20 - PAGE_SHIFT; 5320 numentries <<= 20 - PAGE_SHIFT; 5321 5322 /* limit to 1 bucket per 2^scale bytes of low memory */ 5323 if (scale > PAGE_SHIFT) 5324 numentries >>= (scale - PAGE_SHIFT); 5325 else 5326 numentries <<= (PAGE_SHIFT - scale); 5327 5328 /* Make sure we've got at least a 0-order allocation.. */ 5329 if (unlikely(flags & HASH_SMALL)) { 5330 /* Makes no sense without HASH_EARLY */ 5331 WARN_ON(!(flags & HASH_EARLY)); 5332 if (!(numentries >> *_hash_shift)) { 5333 numentries = 1UL << *_hash_shift; 5334 BUG_ON(!numentries); 5335 } 5336 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE)) 5337 numentries = PAGE_SIZE / bucketsize; 5338 } 5339 numentries = roundup_pow_of_two(numentries); 5340 5341 /* limit allocation size to 1/16 total memory by default */ 5342 if (max == 0) { 5343 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4; 5344 do_div(max, bucketsize); 5345 } 5346 max = min(max, 0x80000000ULL); 5347 5348 if (numentries < low_limit) 5349 numentries = low_limit; 5350 if (numentries > max) 5351 numentries = max; 5352 5353 log2qty = ilog2(numentries); 5354 5355 do { 5356 size = bucketsize << log2qty; 5357 if (flags & HASH_EARLY) 5358 table = alloc_bootmem_nopanic(size); 5359 else if (hashdist) 5360 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL); 5361 else { 5362 /* 5363 * If bucketsize is not a power-of-two, we may free 5364 * some pages at the end of hash table which 5365 * alloc_pages_exact() automatically does 5366 */ 5367 if (get_order(size) < MAX_ORDER) { 5368 table = alloc_pages_exact(size, GFP_ATOMIC); 5369 kmemleak_alloc(table, size, 1, GFP_ATOMIC); 5370 } 5371 } 5372 } while (!table && size > PAGE_SIZE && --log2qty); 5373 5374 if (!table) 5375 panic("Failed to allocate %s hash table\n", tablename); 5376 5377 printk(KERN_INFO "%s hash table entries: %ld (order: %d, %lu bytes)\n", 5378 tablename, 5379 (1UL << log2qty), 5380 ilog2(size) - PAGE_SHIFT, 5381 size); 5382 5383 if (_hash_shift) 5384 *_hash_shift = log2qty; 5385 if (_hash_mask) 5386 *_hash_mask = (1 << log2qty) - 1; 5387 5388 return table; 5389 } 5390 5391 /* Return a pointer to the bitmap storing bits affecting a block of pages */ 5392 static inline unsigned long *get_pageblock_bitmap(struct zone *zone, 5393 unsigned long pfn) 5394 { 5395 #ifdef CONFIG_SPARSEMEM 5396 return __pfn_to_section(pfn)->pageblock_flags; 5397 #else 5398 return zone->pageblock_flags; 5399 #endif /* CONFIG_SPARSEMEM */ 5400 } 5401 5402 static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn) 5403 { 5404 #ifdef CONFIG_SPARSEMEM 5405 pfn &= (PAGES_PER_SECTION-1); 5406 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS; 5407 #else 5408 pfn = pfn - zone->zone_start_pfn; 5409 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS; 5410 #endif /* CONFIG_SPARSEMEM */ 5411 } 5412 5413 /** 5414 * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages 5415 * @page: The page within the block of interest 5416 * @start_bitidx: The first bit of interest to retrieve 5417 * @end_bitidx: The last bit of interest 5418 * returns pageblock_bits flags 5419 */ 5420 unsigned long get_pageblock_flags_group(struct page *page, 5421 int start_bitidx, int end_bitidx) 5422 { 5423 struct zone *zone; 5424 unsigned long *bitmap; 5425 unsigned long pfn, bitidx; 5426 unsigned long flags = 0; 5427 unsigned long value = 1; 5428 5429 zone = page_zone(page); 5430 pfn = page_to_pfn(page); 5431 bitmap = get_pageblock_bitmap(zone, pfn); 5432 bitidx = pfn_to_bitidx(zone, pfn); 5433 5434 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1) 5435 if (test_bit(bitidx + start_bitidx, bitmap)) 5436 flags |= value; 5437 5438 return flags; 5439 } 5440 5441 /** 5442 * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages 5443 * @page: The page within the block of interest 5444 * @start_bitidx: The first bit of interest 5445 * @end_bitidx: The last bit of interest 5446 * @flags: The flags to set 5447 */ 5448 void set_pageblock_flags_group(struct page *page, unsigned long flags, 5449 int start_bitidx, int end_bitidx) 5450 { 5451 struct zone *zone; 5452 unsigned long *bitmap; 5453 unsigned long pfn, bitidx; 5454 unsigned long value = 1; 5455 5456 zone = page_zone(page); 5457 pfn = page_to_pfn(page); 5458 bitmap = get_pageblock_bitmap(zone, pfn); 5459 bitidx = pfn_to_bitidx(zone, pfn); 5460 VM_BUG_ON(pfn < zone->zone_start_pfn); 5461 VM_BUG_ON(pfn >= zone->zone_start_pfn + zone->spanned_pages); 5462 5463 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1) 5464 if (flags & value) 5465 __set_bit(bitidx + start_bitidx, bitmap); 5466 else 5467 __clear_bit(bitidx + start_bitidx, bitmap); 5468 } 5469 5470 /* 5471 * This is designed as sub function...plz see page_isolation.c also. 5472 * set/clear page block's type to be ISOLATE. 5473 * page allocater never alloc memory from ISOLATE block. 5474 */ 5475 5476 static int 5477 __count_immobile_pages(struct zone *zone, struct page *page, int count) 5478 { 5479 unsigned long pfn, iter, found; 5480 int mt; 5481 5482 /* 5483 * For avoiding noise data, lru_add_drain_all() should be called 5484 * If ZONE_MOVABLE, the zone never contains immobile pages 5485 */ 5486 if (zone_idx(zone) == ZONE_MOVABLE) 5487 return true; 5488 mt = get_pageblock_migratetype(page); 5489 if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt)) 5490 return true; 5491 5492 pfn = page_to_pfn(page); 5493 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) { 5494 unsigned long check = pfn + iter; 5495 5496 if (!pfn_valid_within(check)) 5497 continue; 5498 5499 page = pfn_to_page(check); 5500 if (!page_count(page)) { 5501 if (PageBuddy(page)) 5502 iter += (1 << page_order(page)) - 1; 5503 continue; 5504 } 5505 if (!PageLRU(page)) 5506 found++; 5507 /* 5508 * If there are RECLAIMABLE pages, we need to check it. 5509 * But now, memory offline itself doesn't call shrink_slab() 5510 * and it still to be fixed. 5511 */ 5512 /* 5513 * If the page is not RAM, page_count()should be 0. 5514 * we don't need more check. This is an _used_ not-movable page. 5515 * 5516 * The problematic thing here is PG_reserved pages. PG_reserved 5517 * is set to both of a memory hole page and a _used_ kernel 5518 * page at boot. 5519 */ 5520 if (found > count) 5521 return false; 5522 } 5523 return true; 5524 } 5525 5526 bool is_pageblock_removable_nolock(struct page *page) 5527 { 5528 struct zone *zone; 5529 unsigned long pfn; 5530 5531 /* 5532 * We have to be careful here because we are iterating over memory 5533 * sections which are not zone aware so we might end up outside of 5534 * the zone but still within the section. 5535 * We have to take care about the node as well. If the node is offline 5536 * its NODE_DATA will be NULL - see page_zone. 5537 */ 5538 if (!node_online(page_to_nid(page))) 5539 return false; 5540 5541 zone = page_zone(page); 5542 pfn = page_to_pfn(page); 5543 if (zone->zone_start_pfn > pfn || 5544 zone->zone_start_pfn + zone->spanned_pages <= pfn) 5545 return false; 5546 5547 return __count_immobile_pages(zone, page, 0); 5548 } 5549 5550 int set_migratetype_isolate(struct page *page) 5551 { 5552 struct zone *zone; 5553 unsigned long flags, pfn; 5554 struct memory_isolate_notify arg; 5555 int notifier_ret; 5556 int ret = -EBUSY; 5557 5558 zone = page_zone(page); 5559 5560 spin_lock_irqsave(&zone->lock, flags); 5561 5562 pfn = page_to_pfn(page); 5563 arg.start_pfn = pfn; 5564 arg.nr_pages = pageblock_nr_pages; 5565 arg.pages_found = 0; 5566 5567 /* 5568 * It may be possible to isolate a pageblock even if the 5569 * migratetype is not MIGRATE_MOVABLE. The memory isolation 5570 * notifier chain is used by balloon drivers to return the 5571 * number of pages in a range that are held by the balloon 5572 * driver to shrink memory. If all the pages are accounted for 5573 * by balloons, are free, or on the LRU, isolation can continue. 5574 * Later, for example, when memory hotplug notifier runs, these 5575 * pages reported as "can be isolated" should be isolated(freed) 5576 * by the balloon driver through the memory notifier chain. 5577 */ 5578 notifier_ret = memory_isolate_notify(MEM_ISOLATE_COUNT, &arg); 5579 notifier_ret = notifier_to_errno(notifier_ret); 5580 if (notifier_ret) 5581 goto out; 5582 /* 5583 * FIXME: Now, memory hotplug doesn't call shrink_slab() by itself. 5584 * We just check MOVABLE pages. 5585 */ 5586 if (__count_immobile_pages(zone, page, arg.pages_found)) 5587 ret = 0; 5588 5589 /* 5590 * immobile means "not-on-lru" paes. If immobile is larger than 5591 * removable-by-driver pages reported by notifier, we'll fail. 5592 */ 5593 5594 out: 5595 if (!ret) { 5596 set_pageblock_migratetype(page, MIGRATE_ISOLATE); 5597 move_freepages_block(zone, page, MIGRATE_ISOLATE); 5598 } 5599 5600 spin_unlock_irqrestore(&zone->lock, flags); 5601 if (!ret) 5602 drain_all_pages(); 5603 return ret; 5604 } 5605 5606 void unset_migratetype_isolate(struct page *page, unsigned migratetype) 5607 { 5608 struct zone *zone; 5609 unsigned long flags; 5610 zone = page_zone(page); 5611 spin_lock_irqsave(&zone->lock, flags); 5612 if (get_pageblock_migratetype(page) != MIGRATE_ISOLATE) 5613 goto out; 5614 set_pageblock_migratetype(page, migratetype); 5615 move_freepages_block(zone, page, migratetype); 5616 out: 5617 spin_unlock_irqrestore(&zone->lock, flags); 5618 } 5619 5620 #ifdef CONFIG_CMA 5621 5622 static unsigned long pfn_max_align_down(unsigned long pfn) 5623 { 5624 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES, 5625 pageblock_nr_pages) - 1); 5626 } 5627 5628 static unsigned long pfn_max_align_up(unsigned long pfn) 5629 { 5630 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES, 5631 pageblock_nr_pages)); 5632 } 5633 5634 static struct page * 5635 __alloc_contig_migrate_alloc(struct page *page, unsigned long private, 5636 int **resultp) 5637 { 5638 return alloc_page(GFP_HIGHUSER_MOVABLE); 5639 } 5640 5641 /* [start, end) must belong to a single zone. */ 5642 static int __alloc_contig_migrate_range(unsigned long start, unsigned long end) 5643 { 5644 /* This function is based on compact_zone() from compaction.c. */ 5645 5646 unsigned long pfn = start; 5647 unsigned int tries = 0; 5648 int ret = 0; 5649 5650 struct compact_control cc = { 5651 .nr_migratepages = 0, 5652 .order = -1, 5653 .zone = page_zone(pfn_to_page(start)), 5654 .sync = true, 5655 }; 5656 INIT_LIST_HEAD(&cc.migratepages); 5657 5658 migrate_prep_local(); 5659 5660 while (pfn < end || !list_empty(&cc.migratepages)) { 5661 if (fatal_signal_pending(current)) { 5662 ret = -EINTR; 5663 break; 5664 } 5665 5666 if (list_empty(&cc.migratepages)) { 5667 cc.nr_migratepages = 0; 5668 pfn = isolate_migratepages_range(cc.zone, &cc, 5669 pfn, end); 5670 if (!pfn) { 5671 ret = -EINTR; 5672 break; 5673 } 5674 tries = 0; 5675 } else if (++tries == 5) { 5676 ret = ret < 0 ? ret : -EBUSY; 5677 break; 5678 } 5679 5680 ret = migrate_pages(&cc.migratepages, 5681 __alloc_contig_migrate_alloc, 5682 0, false, MIGRATE_SYNC); 5683 } 5684 5685 putback_lru_pages(&cc.migratepages); 5686 return ret > 0 ? 0 : ret; 5687 } 5688 5689 /* 5690 * Update zone's cma pages counter used for watermark level calculation. 5691 */ 5692 static inline void __update_cma_watermarks(struct zone *zone, int count) 5693 { 5694 unsigned long flags; 5695 spin_lock_irqsave(&zone->lock, flags); 5696 zone->min_cma_pages += count; 5697 spin_unlock_irqrestore(&zone->lock, flags); 5698 setup_per_zone_wmarks(); 5699 } 5700 5701 /* 5702 * Trigger memory pressure bump to reclaim some pages in order to be able to 5703 * allocate 'count' pages in single page units. Does similar work as 5704 *__alloc_pages_slowpath() function. 5705 */ 5706 static int __reclaim_pages(struct zone *zone, gfp_t gfp_mask, int count) 5707 { 5708 enum zone_type high_zoneidx = gfp_zone(gfp_mask); 5709 struct zonelist *zonelist = node_zonelist(0, gfp_mask); 5710 int did_some_progress = 0; 5711 int order = 1; 5712 5713 /* 5714 * Increase level of watermarks to force kswapd do his job 5715 * to stabilise at new watermark level. 5716 */ 5717 __update_cma_watermarks(zone, count); 5718 5719 /* Obey watermarks as if the page was being allocated */ 5720 while (!zone_watermark_ok(zone, 0, low_wmark_pages(zone), 0, 0)) { 5721 wake_all_kswapd(order, zonelist, high_zoneidx, zone_idx(zone)); 5722 5723 did_some_progress = __perform_reclaim(gfp_mask, order, zonelist, 5724 NULL); 5725 if (!did_some_progress) { 5726 /* Exhausted what can be done so it's blamo time */ 5727 out_of_memory(zonelist, gfp_mask, order, NULL, false); 5728 } 5729 } 5730 5731 /* Restore original watermark levels. */ 5732 __update_cma_watermarks(zone, -count); 5733 5734 return count; 5735 } 5736 5737 /** 5738 * alloc_contig_range() -- tries to allocate given range of pages 5739 * @start: start PFN to allocate 5740 * @end: one-past-the-last PFN to allocate 5741 * @migratetype: migratetype of the underlaying pageblocks (either 5742 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks 5743 * in range must have the same migratetype and it must 5744 * be either of the two. 5745 * 5746 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES 5747 * aligned, however it's the caller's responsibility to guarantee that 5748 * we are the only thread that changes migrate type of pageblocks the 5749 * pages fall in. 5750 * 5751 * The PFN range must belong to a single zone. 5752 * 5753 * Returns zero on success or negative error code. On success all 5754 * pages which PFN is in [start, end) are allocated for the caller and 5755 * need to be freed with free_contig_range(). 5756 */ 5757 int alloc_contig_range(unsigned long start, unsigned long end, 5758 unsigned migratetype) 5759 { 5760 struct zone *zone = page_zone(pfn_to_page(start)); 5761 unsigned long outer_start, outer_end; 5762 int ret = 0, order; 5763 5764 /* 5765 * What we do here is we mark all pageblocks in range as 5766 * MIGRATE_ISOLATE. Because pageblock and max order pages may 5767 * have different sizes, and due to the way page allocator 5768 * work, we align the range to biggest of the two pages so 5769 * that page allocator won't try to merge buddies from 5770 * different pageblocks and change MIGRATE_ISOLATE to some 5771 * other migration type. 5772 * 5773 * Once the pageblocks are marked as MIGRATE_ISOLATE, we 5774 * migrate the pages from an unaligned range (ie. pages that 5775 * we are interested in). This will put all the pages in 5776 * range back to page allocator as MIGRATE_ISOLATE. 5777 * 5778 * When this is done, we take the pages in range from page 5779 * allocator removing them from the buddy system. This way 5780 * page allocator will never consider using them. 5781 * 5782 * This lets us mark the pageblocks back as 5783 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the 5784 * aligned range but not in the unaligned, original range are 5785 * put back to page allocator so that buddy can use them. 5786 */ 5787 5788 ret = start_isolate_page_range(pfn_max_align_down(start), 5789 pfn_max_align_up(end), migratetype); 5790 if (ret) 5791 goto done; 5792 5793 ret = __alloc_contig_migrate_range(start, end); 5794 if (ret) 5795 goto done; 5796 5797 /* 5798 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES 5799 * aligned blocks that are marked as MIGRATE_ISOLATE. What's 5800 * more, all pages in [start, end) are free in page allocator. 5801 * What we are going to do is to allocate all pages from 5802 * [start, end) (that is remove them from page allocator). 5803 * 5804 * The only problem is that pages at the beginning and at the 5805 * end of interesting range may be not aligned with pages that 5806 * page allocator holds, ie. they can be part of higher order 5807 * pages. Because of this, we reserve the bigger range and 5808 * once this is done free the pages we are not interested in. 5809 * 5810 * We don't have to hold zone->lock here because the pages are 5811 * isolated thus they won't get removed from buddy. 5812 */ 5813 5814 lru_add_drain_all(); 5815 drain_all_pages(); 5816 5817 order = 0; 5818 outer_start = start; 5819 while (!PageBuddy(pfn_to_page(outer_start))) { 5820 if (++order >= MAX_ORDER) { 5821 ret = -EBUSY; 5822 goto done; 5823 } 5824 outer_start &= ~0UL << order; 5825 } 5826 5827 /* Make sure the range is really isolated. */ 5828 if (test_pages_isolated(outer_start, end)) { 5829 pr_warn("alloc_contig_range test_pages_isolated(%lx, %lx) failed\n", 5830 outer_start, end); 5831 ret = -EBUSY; 5832 goto done; 5833 } 5834 5835 /* 5836 * Reclaim enough pages to make sure that contiguous allocation 5837 * will not starve the system. 5838 */ 5839 __reclaim_pages(zone, GFP_HIGHUSER_MOVABLE, end-start); 5840 5841 /* Grab isolated pages from freelists. */ 5842 outer_end = isolate_freepages_range(outer_start, end); 5843 if (!outer_end) { 5844 ret = -EBUSY; 5845 goto done; 5846 } 5847 5848 /* Free head and tail (if any) */ 5849 if (start != outer_start) 5850 free_contig_range(outer_start, start - outer_start); 5851 if (end != outer_end) 5852 free_contig_range(end, outer_end - end); 5853 5854 done: 5855 undo_isolate_page_range(pfn_max_align_down(start), 5856 pfn_max_align_up(end), migratetype); 5857 return ret; 5858 } 5859 5860 void free_contig_range(unsigned long pfn, unsigned nr_pages) 5861 { 5862 for (; nr_pages--; ++pfn) 5863 __free_page(pfn_to_page(pfn)); 5864 } 5865 #endif 5866 5867 #ifdef CONFIG_MEMORY_HOTREMOVE 5868 /* 5869 * All pages in the range must be isolated before calling this. 5870 */ 5871 void 5872 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn) 5873 { 5874 struct page *page; 5875 struct zone *zone; 5876 int order, i; 5877 unsigned long pfn; 5878 unsigned long flags; 5879 /* find the first valid pfn */ 5880 for (pfn = start_pfn; pfn < end_pfn; pfn++) 5881 if (pfn_valid(pfn)) 5882 break; 5883 if (pfn == end_pfn) 5884 return; 5885 zone = page_zone(pfn_to_page(pfn)); 5886 spin_lock_irqsave(&zone->lock, flags); 5887 pfn = start_pfn; 5888 while (pfn < end_pfn) { 5889 if (!pfn_valid(pfn)) { 5890 pfn++; 5891 continue; 5892 } 5893 page = pfn_to_page(pfn); 5894 BUG_ON(page_count(page)); 5895 BUG_ON(!PageBuddy(page)); 5896 order = page_order(page); 5897 #ifdef CONFIG_DEBUG_VM 5898 printk(KERN_INFO "remove from free list %lx %d %lx\n", 5899 pfn, 1 << order, end_pfn); 5900 #endif 5901 list_del(&page->lru); 5902 rmv_page_order(page); 5903 zone->free_area[order].nr_free--; 5904 __mod_zone_page_state(zone, NR_FREE_PAGES, 5905 - (1UL << order)); 5906 for (i = 0; i < (1 << order); i++) 5907 SetPageReserved((page+i)); 5908 pfn += (1 << order); 5909 } 5910 spin_unlock_irqrestore(&zone->lock, flags); 5911 } 5912 #endif 5913 5914 #ifdef CONFIG_MEMORY_FAILURE 5915 bool is_free_buddy_page(struct page *page) 5916 { 5917 struct zone *zone = page_zone(page); 5918 unsigned long pfn = page_to_pfn(page); 5919 unsigned long flags; 5920 int order; 5921 5922 spin_lock_irqsave(&zone->lock, flags); 5923 for (order = 0; order < MAX_ORDER; order++) { 5924 struct page *page_head = page - (pfn & ((1 << order) - 1)); 5925 5926 if (PageBuddy(page_head) && page_order(page_head) >= order) 5927 break; 5928 } 5929 spin_unlock_irqrestore(&zone->lock, flags); 5930 5931 return order < MAX_ORDER; 5932 } 5933 #endif 5934 5935 static const struct trace_print_flags pageflag_names[] = { 5936 {1UL << PG_locked, "locked" }, 5937 {1UL << PG_error, "error" }, 5938 {1UL << PG_referenced, "referenced" }, 5939 {1UL << PG_uptodate, "uptodate" }, 5940 {1UL << PG_dirty, "dirty" }, 5941 {1UL << PG_lru, "lru" }, 5942 {1UL << PG_active, "active" }, 5943 {1UL << PG_slab, "slab" }, 5944 {1UL << PG_owner_priv_1, "owner_priv_1" }, 5945 {1UL << PG_arch_1, "arch_1" }, 5946 {1UL << PG_reserved, "reserved" }, 5947 {1UL << PG_private, "private" }, 5948 {1UL << PG_private_2, "private_2" }, 5949 {1UL << PG_writeback, "writeback" }, 5950 #ifdef CONFIG_PAGEFLAGS_EXTENDED 5951 {1UL << PG_head, "head" }, 5952 {1UL << PG_tail, "tail" }, 5953 #else 5954 {1UL << PG_compound, "compound" }, 5955 #endif 5956 {1UL << PG_swapcache, "swapcache" }, 5957 {1UL << PG_mappedtodisk, "mappedtodisk" }, 5958 {1UL << PG_reclaim, "reclaim" }, 5959 {1UL << PG_swapbacked, "swapbacked" }, 5960 {1UL << PG_unevictable, "unevictable" }, 5961 #ifdef CONFIG_MMU 5962 {1UL << PG_mlocked, "mlocked" }, 5963 #endif 5964 #ifdef CONFIG_ARCH_USES_PG_UNCACHED 5965 {1UL << PG_uncached, "uncached" }, 5966 #endif 5967 #ifdef CONFIG_MEMORY_FAILURE 5968 {1UL << PG_hwpoison, "hwpoison" }, 5969 #endif 5970 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 5971 {1UL << PG_compound_lock, "compound_lock" }, 5972 #endif 5973 }; 5974 5975 static void dump_page_flags(unsigned long flags) 5976 { 5977 const char *delim = ""; 5978 unsigned long mask; 5979 int i; 5980 5981 BUILD_BUG_ON(ARRAY_SIZE(pageflag_names) != __NR_PAGEFLAGS); 5982 5983 printk(KERN_ALERT "page flags: %#lx(", flags); 5984 5985 /* remove zone id */ 5986 flags &= (1UL << NR_PAGEFLAGS) - 1; 5987 5988 for (i = 0; i < ARRAY_SIZE(pageflag_names) && flags; i++) { 5989 5990 mask = pageflag_names[i].mask; 5991 if ((flags & mask) != mask) 5992 continue; 5993 5994 flags &= ~mask; 5995 printk("%s%s", delim, pageflag_names[i].name); 5996 delim = "|"; 5997 } 5998 5999 /* check for left over flags */ 6000 if (flags) 6001 printk("%s%#lx", delim, flags); 6002 6003 printk(")\n"); 6004 } 6005 6006 void dump_page(struct page *page) 6007 { 6008 printk(KERN_ALERT 6009 "page:%p count:%d mapcount:%d mapping:%p index:%#lx\n", 6010 page, atomic_read(&page->_count), page_mapcount(page), 6011 page->mapping, page->index); 6012 dump_page_flags(page->flags); 6013 mem_cgroup_print_bad_page(page); 6014 } 6015