xref: /linux/mm/page_alloc.c (revision ce7240e445303de3ca66e6d08f17a2ec278a5bf6)
1 /*
2  *  linux/mm/page_alloc.c
3  *
4  *  Manages the free list, the system allocates free pages here.
5  *  Note that kmalloc() lives in slab.c
6  *
7  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
8  *  Swap reorganised 29.12.95, Stephen Tweedie
9  *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10  *  Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11  *  Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12  *  Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13  *  Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14  *          (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15  */
16 
17 #include <linux/stddef.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/memblock.h>
25 #include <linux/compiler.h>
26 #include <linux/kernel.h>
27 #include <linux/kmemcheck.h>
28 #include <linux/module.h>
29 #include <linux/suspend.h>
30 #include <linux/pagevec.h>
31 #include <linux/blkdev.h>
32 #include <linux/slab.h>
33 #include <linux/ratelimit.h>
34 #include <linux/oom.h>
35 #include <linux/notifier.h>
36 #include <linux/topology.h>
37 #include <linux/sysctl.h>
38 #include <linux/cpu.h>
39 #include <linux/cpuset.h>
40 #include <linux/memory_hotplug.h>
41 #include <linux/nodemask.h>
42 #include <linux/vmalloc.h>
43 #include <linux/vmstat.h>
44 #include <linux/mempolicy.h>
45 #include <linux/stop_machine.h>
46 #include <linux/sort.h>
47 #include <linux/pfn.h>
48 #include <linux/backing-dev.h>
49 #include <linux/fault-inject.h>
50 #include <linux/page-isolation.h>
51 #include <linux/page_cgroup.h>
52 #include <linux/debugobjects.h>
53 #include <linux/kmemleak.h>
54 #include <linux/memory.h>
55 #include <linux/compaction.h>
56 #include <trace/events/kmem.h>
57 #include <linux/ftrace_event.h>
58 #include <linux/memcontrol.h>
59 #include <linux/prefetch.h>
60 #include <linux/migrate.h>
61 #include <linux/page-debug-flags.h>
62 
63 #include <asm/tlbflush.h>
64 #include <asm/div64.h>
65 #include "internal.h"
66 
67 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
68 DEFINE_PER_CPU(int, numa_node);
69 EXPORT_PER_CPU_SYMBOL(numa_node);
70 #endif
71 
72 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
73 /*
74  * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
75  * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
76  * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
77  * defined in <linux/topology.h>.
78  */
79 DEFINE_PER_CPU(int, _numa_mem_);		/* Kernel "local memory" node */
80 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
81 #endif
82 
83 /*
84  * Array of node states.
85  */
86 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
87 	[N_POSSIBLE] = NODE_MASK_ALL,
88 	[N_ONLINE] = { { [0] = 1UL } },
89 #ifndef CONFIG_NUMA
90 	[N_NORMAL_MEMORY] = { { [0] = 1UL } },
91 #ifdef CONFIG_HIGHMEM
92 	[N_HIGH_MEMORY] = { { [0] = 1UL } },
93 #endif
94 	[N_CPU] = { { [0] = 1UL } },
95 #endif	/* NUMA */
96 };
97 EXPORT_SYMBOL(node_states);
98 
99 unsigned long totalram_pages __read_mostly;
100 unsigned long totalreserve_pages __read_mostly;
101 /*
102  * When calculating the number of globally allowed dirty pages, there
103  * is a certain number of per-zone reserves that should not be
104  * considered dirtyable memory.  This is the sum of those reserves
105  * over all existing zones that contribute dirtyable memory.
106  */
107 unsigned long dirty_balance_reserve __read_mostly;
108 
109 int percpu_pagelist_fraction;
110 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
111 
112 #ifdef CONFIG_PM_SLEEP
113 /*
114  * The following functions are used by the suspend/hibernate code to temporarily
115  * change gfp_allowed_mask in order to avoid using I/O during memory allocations
116  * while devices are suspended.  To avoid races with the suspend/hibernate code,
117  * they should always be called with pm_mutex held (gfp_allowed_mask also should
118  * only be modified with pm_mutex held, unless the suspend/hibernate code is
119  * guaranteed not to run in parallel with that modification).
120  */
121 
122 static gfp_t saved_gfp_mask;
123 
124 void pm_restore_gfp_mask(void)
125 {
126 	WARN_ON(!mutex_is_locked(&pm_mutex));
127 	if (saved_gfp_mask) {
128 		gfp_allowed_mask = saved_gfp_mask;
129 		saved_gfp_mask = 0;
130 	}
131 }
132 
133 void pm_restrict_gfp_mask(void)
134 {
135 	WARN_ON(!mutex_is_locked(&pm_mutex));
136 	WARN_ON(saved_gfp_mask);
137 	saved_gfp_mask = gfp_allowed_mask;
138 	gfp_allowed_mask &= ~GFP_IOFS;
139 }
140 
141 bool pm_suspended_storage(void)
142 {
143 	if ((gfp_allowed_mask & GFP_IOFS) == GFP_IOFS)
144 		return false;
145 	return true;
146 }
147 #endif /* CONFIG_PM_SLEEP */
148 
149 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
150 int pageblock_order __read_mostly;
151 #endif
152 
153 static void __free_pages_ok(struct page *page, unsigned int order);
154 
155 /*
156  * results with 256, 32 in the lowmem_reserve sysctl:
157  *	1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
158  *	1G machine -> (16M dma, 784M normal, 224M high)
159  *	NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
160  *	HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
161  *	HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
162  *
163  * TBD: should special case ZONE_DMA32 machines here - in those we normally
164  * don't need any ZONE_NORMAL reservation
165  */
166 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
167 #ifdef CONFIG_ZONE_DMA
168 	 256,
169 #endif
170 #ifdef CONFIG_ZONE_DMA32
171 	 256,
172 #endif
173 #ifdef CONFIG_HIGHMEM
174 	 32,
175 #endif
176 	 32,
177 };
178 
179 EXPORT_SYMBOL(totalram_pages);
180 
181 static char * const zone_names[MAX_NR_ZONES] = {
182 #ifdef CONFIG_ZONE_DMA
183 	 "DMA",
184 #endif
185 #ifdef CONFIG_ZONE_DMA32
186 	 "DMA32",
187 #endif
188 	 "Normal",
189 #ifdef CONFIG_HIGHMEM
190 	 "HighMem",
191 #endif
192 	 "Movable",
193 };
194 
195 int min_free_kbytes = 1024;
196 
197 static unsigned long __meminitdata nr_kernel_pages;
198 static unsigned long __meminitdata nr_all_pages;
199 static unsigned long __meminitdata dma_reserve;
200 
201 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
202 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
203 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
204 static unsigned long __initdata required_kernelcore;
205 static unsigned long __initdata required_movablecore;
206 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
207 
208 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
209 int movable_zone;
210 EXPORT_SYMBOL(movable_zone);
211 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
212 
213 #if MAX_NUMNODES > 1
214 int nr_node_ids __read_mostly = MAX_NUMNODES;
215 int nr_online_nodes __read_mostly = 1;
216 EXPORT_SYMBOL(nr_node_ids);
217 EXPORT_SYMBOL(nr_online_nodes);
218 #endif
219 
220 int page_group_by_mobility_disabled __read_mostly;
221 
222 static void set_pageblock_migratetype(struct page *page, int migratetype)
223 {
224 
225 	if (unlikely(page_group_by_mobility_disabled))
226 		migratetype = MIGRATE_UNMOVABLE;
227 
228 	set_pageblock_flags_group(page, (unsigned long)migratetype,
229 					PB_migrate, PB_migrate_end);
230 }
231 
232 bool oom_killer_disabled __read_mostly;
233 
234 #ifdef CONFIG_DEBUG_VM
235 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
236 {
237 	int ret = 0;
238 	unsigned seq;
239 	unsigned long pfn = page_to_pfn(page);
240 
241 	do {
242 		seq = zone_span_seqbegin(zone);
243 		if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
244 			ret = 1;
245 		else if (pfn < zone->zone_start_pfn)
246 			ret = 1;
247 	} while (zone_span_seqretry(zone, seq));
248 
249 	return ret;
250 }
251 
252 static int page_is_consistent(struct zone *zone, struct page *page)
253 {
254 	if (!pfn_valid_within(page_to_pfn(page)))
255 		return 0;
256 	if (zone != page_zone(page))
257 		return 0;
258 
259 	return 1;
260 }
261 /*
262  * Temporary debugging check for pages not lying within a given zone.
263  */
264 static int bad_range(struct zone *zone, struct page *page)
265 {
266 	if (page_outside_zone_boundaries(zone, page))
267 		return 1;
268 	if (!page_is_consistent(zone, page))
269 		return 1;
270 
271 	return 0;
272 }
273 #else
274 static inline int bad_range(struct zone *zone, struct page *page)
275 {
276 	return 0;
277 }
278 #endif
279 
280 static void bad_page(struct page *page)
281 {
282 	static unsigned long resume;
283 	static unsigned long nr_shown;
284 	static unsigned long nr_unshown;
285 
286 	/* Don't complain about poisoned pages */
287 	if (PageHWPoison(page)) {
288 		reset_page_mapcount(page); /* remove PageBuddy */
289 		return;
290 	}
291 
292 	/*
293 	 * Allow a burst of 60 reports, then keep quiet for that minute;
294 	 * or allow a steady drip of one report per second.
295 	 */
296 	if (nr_shown == 60) {
297 		if (time_before(jiffies, resume)) {
298 			nr_unshown++;
299 			goto out;
300 		}
301 		if (nr_unshown) {
302 			printk(KERN_ALERT
303 			      "BUG: Bad page state: %lu messages suppressed\n",
304 				nr_unshown);
305 			nr_unshown = 0;
306 		}
307 		nr_shown = 0;
308 	}
309 	if (nr_shown++ == 0)
310 		resume = jiffies + 60 * HZ;
311 
312 	printk(KERN_ALERT "BUG: Bad page state in process %s  pfn:%05lx\n",
313 		current->comm, page_to_pfn(page));
314 	dump_page(page);
315 
316 	print_modules();
317 	dump_stack();
318 out:
319 	/* Leave bad fields for debug, except PageBuddy could make trouble */
320 	reset_page_mapcount(page); /* remove PageBuddy */
321 	add_taint(TAINT_BAD_PAGE);
322 }
323 
324 /*
325  * Higher-order pages are called "compound pages".  They are structured thusly:
326  *
327  * The first PAGE_SIZE page is called the "head page".
328  *
329  * The remaining PAGE_SIZE pages are called "tail pages".
330  *
331  * All pages have PG_compound set.  All tail pages have their ->first_page
332  * pointing at the head page.
333  *
334  * The first tail page's ->lru.next holds the address of the compound page's
335  * put_page() function.  Its ->lru.prev holds the order of allocation.
336  * This usage means that zero-order pages may not be compound.
337  */
338 
339 static void free_compound_page(struct page *page)
340 {
341 	__free_pages_ok(page, compound_order(page));
342 }
343 
344 void prep_compound_page(struct page *page, unsigned long order)
345 {
346 	int i;
347 	int nr_pages = 1 << order;
348 
349 	set_compound_page_dtor(page, free_compound_page);
350 	set_compound_order(page, order);
351 	__SetPageHead(page);
352 	for (i = 1; i < nr_pages; i++) {
353 		struct page *p = page + i;
354 		__SetPageTail(p);
355 		set_page_count(p, 0);
356 		p->first_page = page;
357 	}
358 }
359 
360 /* update __split_huge_page_refcount if you change this function */
361 static int destroy_compound_page(struct page *page, unsigned long order)
362 {
363 	int i;
364 	int nr_pages = 1 << order;
365 	int bad = 0;
366 
367 	if (unlikely(compound_order(page) != order) ||
368 	    unlikely(!PageHead(page))) {
369 		bad_page(page);
370 		bad++;
371 	}
372 
373 	__ClearPageHead(page);
374 
375 	for (i = 1; i < nr_pages; i++) {
376 		struct page *p = page + i;
377 
378 		if (unlikely(!PageTail(p) || (p->first_page != page))) {
379 			bad_page(page);
380 			bad++;
381 		}
382 		__ClearPageTail(p);
383 	}
384 
385 	return bad;
386 }
387 
388 static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
389 {
390 	int i;
391 
392 	/*
393 	 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
394 	 * and __GFP_HIGHMEM from hard or soft interrupt context.
395 	 */
396 	VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
397 	for (i = 0; i < (1 << order); i++)
398 		clear_highpage(page + i);
399 }
400 
401 #ifdef CONFIG_DEBUG_PAGEALLOC
402 unsigned int _debug_guardpage_minorder;
403 
404 static int __init debug_guardpage_minorder_setup(char *buf)
405 {
406 	unsigned long res;
407 
408 	if (kstrtoul(buf, 10, &res) < 0 ||  res > MAX_ORDER / 2) {
409 		printk(KERN_ERR "Bad debug_guardpage_minorder value\n");
410 		return 0;
411 	}
412 	_debug_guardpage_minorder = res;
413 	printk(KERN_INFO "Setting debug_guardpage_minorder to %lu\n", res);
414 	return 0;
415 }
416 __setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup);
417 
418 static inline void set_page_guard_flag(struct page *page)
419 {
420 	__set_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
421 }
422 
423 static inline void clear_page_guard_flag(struct page *page)
424 {
425 	__clear_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
426 }
427 #else
428 static inline void set_page_guard_flag(struct page *page) { }
429 static inline void clear_page_guard_flag(struct page *page) { }
430 #endif
431 
432 static inline void set_page_order(struct page *page, int order)
433 {
434 	set_page_private(page, order);
435 	__SetPageBuddy(page);
436 }
437 
438 static inline void rmv_page_order(struct page *page)
439 {
440 	__ClearPageBuddy(page);
441 	set_page_private(page, 0);
442 }
443 
444 /*
445  * Locate the struct page for both the matching buddy in our
446  * pair (buddy1) and the combined O(n+1) page they form (page).
447  *
448  * 1) Any buddy B1 will have an order O twin B2 which satisfies
449  * the following equation:
450  *     B2 = B1 ^ (1 << O)
451  * For example, if the starting buddy (buddy2) is #8 its order
452  * 1 buddy is #10:
453  *     B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
454  *
455  * 2) Any buddy B will have an order O+1 parent P which
456  * satisfies the following equation:
457  *     P = B & ~(1 << O)
458  *
459  * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
460  */
461 static inline unsigned long
462 __find_buddy_index(unsigned long page_idx, unsigned int order)
463 {
464 	return page_idx ^ (1 << order);
465 }
466 
467 /*
468  * This function checks whether a page is free && is the buddy
469  * we can do coalesce a page and its buddy if
470  * (a) the buddy is not in a hole &&
471  * (b) the buddy is in the buddy system &&
472  * (c) a page and its buddy have the same order &&
473  * (d) a page and its buddy are in the same zone.
474  *
475  * For recording whether a page is in the buddy system, we set ->_mapcount -2.
476  * Setting, clearing, and testing _mapcount -2 is serialized by zone->lock.
477  *
478  * For recording page's order, we use page_private(page).
479  */
480 static inline int page_is_buddy(struct page *page, struct page *buddy,
481 								int order)
482 {
483 	if (!pfn_valid_within(page_to_pfn(buddy)))
484 		return 0;
485 
486 	if (page_zone_id(page) != page_zone_id(buddy))
487 		return 0;
488 
489 	if (page_is_guard(buddy) && page_order(buddy) == order) {
490 		VM_BUG_ON(page_count(buddy) != 0);
491 		return 1;
492 	}
493 
494 	if (PageBuddy(buddy) && page_order(buddy) == order) {
495 		VM_BUG_ON(page_count(buddy) != 0);
496 		return 1;
497 	}
498 	return 0;
499 }
500 
501 /*
502  * Freeing function for a buddy system allocator.
503  *
504  * The concept of a buddy system is to maintain direct-mapped table
505  * (containing bit values) for memory blocks of various "orders".
506  * The bottom level table contains the map for the smallest allocatable
507  * units of memory (here, pages), and each level above it describes
508  * pairs of units from the levels below, hence, "buddies".
509  * At a high level, all that happens here is marking the table entry
510  * at the bottom level available, and propagating the changes upward
511  * as necessary, plus some accounting needed to play nicely with other
512  * parts of the VM system.
513  * At each level, we keep a list of pages, which are heads of continuous
514  * free pages of length of (1 << order) and marked with _mapcount -2. Page's
515  * order is recorded in page_private(page) field.
516  * So when we are allocating or freeing one, we can derive the state of the
517  * other.  That is, if we allocate a small block, and both were
518  * free, the remainder of the region must be split into blocks.
519  * If a block is freed, and its buddy is also free, then this
520  * triggers coalescing into a block of larger size.
521  *
522  * -- wli
523  */
524 
525 static inline void __free_one_page(struct page *page,
526 		struct zone *zone, unsigned int order,
527 		int migratetype)
528 {
529 	unsigned long page_idx;
530 	unsigned long combined_idx;
531 	unsigned long uninitialized_var(buddy_idx);
532 	struct page *buddy;
533 
534 	if (unlikely(PageCompound(page)))
535 		if (unlikely(destroy_compound_page(page, order)))
536 			return;
537 
538 	VM_BUG_ON(migratetype == -1);
539 
540 	page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
541 
542 	VM_BUG_ON(page_idx & ((1 << order) - 1));
543 	VM_BUG_ON(bad_range(zone, page));
544 
545 	while (order < MAX_ORDER-1) {
546 		buddy_idx = __find_buddy_index(page_idx, order);
547 		buddy = page + (buddy_idx - page_idx);
548 		if (!page_is_buddy(page, buddy, order))
549 			break;
550 		/*
551 		 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
552 		 * merge with it and move up one order.
553 		 */
554 		if (page_is_guard(buddy)) {
555 			clear_page_guard_flag(buddy);
556 			set_page_private(page, 0);
557 			__mod_zone_page_state(zone, NR_FREE_PAGES, 1 << order);
558 		} else {
559 			list_del(&buddy->lru);
560 			zone->free_area[order].nr_free--;
561 			rmv_page_order(buddy);
562 		}
563 		combined_idx = buddy_idx & page_idx;
564 		page = page + (combined_idx - page_idx);
565 		page_idx = combined_idx;
566 		order++;
567 	}
568 	set_page_order(page, order);
569 
570 	/*
571 	 * If this is not the largest possible page, check if the buddy
572 	 * of the next-highest order is free. If it is, it's possible
573 	 * that pages are being freed that will coalesce soon. In case,
574 	 * that is happening, add the free page to the tail of the list
575 	 * so it's less likely to be used soon and more likely to be merged
576 	 * as a higher order page
577 	 */
578 	if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
579 		struct page *higher_page, *higher_buddy;
580 		combined_idx = buddy_idx & page_idx;
581 		higher_page = page + (combined_idx - page_idx);
582 		buddy_idx = __find_buddy_index(combined_idx, order + 1);
583 		higher_buddy = page + (buddy_idx - combined_idx);
584 		if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
585 			list_add_tail(&page->lru,
586 				&zone->free_area[order].free_list[migratetype]);
587 			goto out;
588 		}
589 	}
590 
591 	list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
592 out:
593 	zone->free_area[order].nr_free++;
594 }
595 
596 /*
597  * free_page_mlock() -- clean up attempts to free and mlocked() page.
598  * Page should not be on lru, so no need to fix that up.
599  * free_pages_check() will verify...
600  */
601 static inline void free_page_mlock(struct page *page)
602 {
603 	__dec_zone_page_state(page, NR_MLOCK);
604 	__count_vm_event(UNEVICTABLE_MLOCKFREED);
605 }
606 
607 static inline int free_pages_check(struct page *page)
608 {
609 	if (unlikely(page_mapcount(page) |
610 		(page->mapping != NULL)  |
611 		(atomic_read(&page->_count) != 0) |
612 		(page->flags & PAGE_FLAGS_CHECK_AT_FREE) |
613 		(mem_cgroup_bad_page_check(page)))) {
614 		bad_page(page);
615 		return 1;
616 	}
617 	if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
618 		page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
619 	return 0;
620 }
621 
622 /*
623  * Frees a number of pages from the PCP lists
624  * Assumes all pages on list are in same zone, and of same order.
625  * count is the number of pages to free.
626  *
627  * If the zone was previously in an "all pages pinned" state then look to
628  * see if this freeing clears that state.
629  *
630  * And clear the zone's pages_scanned counter, to hold off the "all pages are
631  * pinned" detection logic.
632  */
633 static void free_pcppages_bulk(struct zone *zone, int count,
634 					struct per_cpu_pages *pcp)
635 {
636 	int migratetype = 0;
637 	int batch_free = 0;
638 	int to_free = count;
639 
640 	spin_lock(&zone->lock);
641 	zone->all_unreclaimable = 0;
642 	zone->pages_scanned = 0;
643 
644 	while (to_free) {
645 		struct page *page;
646 		struct list_head *list;
647 
648 		/*
649 		 * Remove pages from lists in a round-robin fashion. A
650 		 * batch_free count is maintained that is incremented when an
651 		 * empty list is encountered.  This is so more pages are freed
652 		 * off fuller lists instead of spinning excessively around empty
653 		 * lists
654 		 */
655 		do {
656 			batch_free++;
657 			if (++migratetype == MIGRATE_PCPTYPES)
658 				migratetype = 0;
659 			list = &pcp->lists[migratetype];
660 		} while (list_empty(list));
661 
662 		/* This is the only non-empty list. Free them all. */
663 		if (batch_free == MIGRATE_PCPTYPES)
664 			batch_free = to_free;
665 
666 		do {
667 			page = list_entry(list->prev, struct page, lru);
668 			/* must delete as __free_one_page list manipulates */
669 			list_del(&page->lru);
670 			/* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */
671 			__free_one_page(page, zone, 0, page_private(page));
672 			trace_mm_page_pcpu_drain(page, 0, page_private(page));
673 		} while (--to_free && --batch_free && !list_empty(list));
674 	}
675 	__mod_zone_page_state(zone, NR_FREE_PAGES, count);
676 	spin_unlock(&zone->lock);
677 }
678 
679 static void free_one_page(struct zone *zone, struct page *page, int order,
680 				int migratetype)
681 {
682 	spin_lock(&zone->lock);
683 	zone->all_unreclaimable = 0;
684 	zone->pages_scanned = 0;
685 
686 	__free_one_page(page, zone, order, migratetype);
687 	__mod_zone_page_state(zone, NR_FREE_PAGES, 1 << order);
688 	spin_unlock(&zone->lock);
689 }
690 
691 static bool free_pages_prepare(struct page *page, unsigned int order)
692 {
693 	int i;
694 	int bad = 0;
695 
696 	trace_mm_page_free(page, order);
697 	kmemcheck_free_shadow(page, order);
698 
699 	if (PageAnon(page))
700 		page->mapping = NULL;
701 	for (i = 0; i < (1 << order); i++)
702 		bad += free_pages_check(page + i);
703 	if (bad)
704 		return false;
705 
706 	if (!PageHighMem(page)) {
707 		debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order);
708 		debug_check_no_obj_freed(page_address(page),
709 					   PAGE_SIZE << order);
710 	}
711 	arch_free_page(page, order);
712 	kernel_map_pages(page, 1 << order, 0);
713 
714 	return true;
715 }
716 
717 static void __free_pages_ok(struct page *page, unsigned int order)
718 {
719 	unsigned long flags;
720 	int wasMlocked = __TestClearPageMlocked(page);
721 
722 	if (!free_pages_prepare(page, order))
723 		return;
724 
725 	local_irq_save(flags);
726 	if (unlikely(wasMlocked))
727 		free_page_mlock(page);
728 	__count_vm_events(PGFREE, 1 << order);
729 	free_one_page(page_zone(page), page, order,
730 					get_pageblock_migratetype(page));
731 	local_irq_restore(flags);
732 }
733 
734 void __meminit __free_pages_bootmem(struct page *page, unsigned int order)
735 {
736 	unsigned int nr_pages = 1 << order;
737 	unsigned int loop;
738 
739 	prefetchw(page);
740 	for (loop = 0; loop < nr_pages; loop++) {
741 		struct page *p = &page[loop];
742 
743 		if (loop + 1 < nr_pages)
744 			prefetchw(p + 1);
745 		__ClearPageReserved(p);
746 		set_page_count(p, 0);
747 	}
748 
749 	set_page_refcounted(page);
750 	__free_pages(page, order);
751 }
752 
753 #ifdef CONFIG_CMA
754 /* Free whole pageblock and set it's migration type to MIGRATE_CMA. */
755 void __init init_cma_reserved_pageblock(struct page *page)
756 {
757 	unsigned i = pageblock_nr_pages;
758 	struct page *p = page;
759 
760 	do {
761 		__ClearPageReserved(p);
762 		set_page_count(p, 0);
763 	} while (++p, --i);
764 
765 	set_page_refcounted(page);
766 	set_pageblock_migratetype(page, MIGRATE_CMA);
767 	__free_pages(page, pageblock_order);
768 	totalram_pages += pageblock_nr_pages;
769 }
770 #endif
771 
772 /*
773  * The order of subdivision here is critical for the IO subsystem.
774  * Please do not alter this order without good reasons and regression
775  * testing. Specifically, as large blocks of memory are subdivided,
776  * the order in which smaller blocks are delivered depends on the order
777  * they're subdivided in this function. This is the primary factor
778  * influencing the order in which pages are delivered to the IO
779  * subsystem according to empirical testing, and this is also justified
780  * by considering the behavior of a buddy system containing a single
781  * large block of memory acted on by a series of small allocations.
782  * This behavior is a critical factor in sglist merging's success.
783  *
784  * -- wli
785  */
786 static inline void expand(struct zone *zone, struct page *page,
787 	int low, int high, struct free_area *area,
788 	int migratetype)
789 {
790 	unsigned long size = 1 << high;
791 
792 	while (high > low) {
793 		area--;
794 		high--;
795 		size >>= 1;
796 		VM_BUG_ON(bad_range(zone, &page[size]));
797 
798 #ifdef CONFIG_DEBUG_PAGEALLOC
799 		if (high < debug_guardpage_minorder()) {
800 			/*
801 			 * Mark as guard pages (or page), that will allow to
802 			 * merge back to allocator when buddy will be freed.
803 			 * Corresponding page table entries will not be touched,
804 			 * pages will stay not present in virtual address space
805 			 */
806 			INIT_LIST_HEAD(&page[size].lru);
807 			set_page_guard_flag(&page[size]);
808 			set_page_private(&page[size], high);
809 			/* Guard pages are not available for any usage */
810 			__mod_zone_page_state(zone, NR_FREE_PAGES, -(1 << high));
811 			continue;
812 		}
813 #endif
814 		list_add(&page[size].lru, &area->free_list[migratetype]);
815 		area->nr_free++;
816 		set_page_order(&page[size], high);
817 	}
818 }
819 
820 /*
821  * This page is about to be returned from the page allocator
822  */
823 static inline int check_new_page(struct page *page)
824 {
825 	if (unlikely(page_mapcount(page) |
826 		(page->mapping != NULL)  |
827 		(atomic_read(&page->_count) != 0)  |
828 		(page->flags & PAGE_FLAGS_CHECK_AT_PREP) |
829 		(mem_cgroup_bad_page_check(page)))) {
830 		bad_page(page);
831 		return 1;
832 	}
833 	return 0;
834 }
835 
836 static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
837 {
838 	int i;
839 
840 	for (i = 0; i < (1 << order); i++) {
841 		struct page *p = page + i;
842 		if (unlikely(check_new_page(p)))
843 			return 1;
844 	}
845 
846 	set_page_private(page, 0);
847 	set_page_refcounted(page);
848 
849 	arch_alloc_page(page, order);
850 	kernel_map_pages(page, 1 << order, 1);
851 
852 	if (gfp_flags & __GFP_ZERO)
853 		prep_zero_page(page, order, gfp_flags);
854 
855 	if (order && (gfp_flags & __GFP_COMP))
856 		prep_compound_page(page, order);
857 
858 	return 0;
859 }
860 
861 /*
862  * Go through the free lists for the given migratetype and remove
863  * the smallest available page from the freelists
864  */
865 static inline
866 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
867 						int migratetype)
868 {
869 	unsigned int current_order;
870 	struct free_area * area;
871 	struct page *page;
872 
873 	/* Find a page of the appropriate size in the preferred list */
874 	for (current_order = order; current_order < MAX_ORDER; ++current_order) {
875 		area = &(zone->free_area[current_order]);
876 		if (list_empty(&area->free_list[migratetype]))
877 			continue;
878 
879 		page = list_entry(area->free_list[migratetype].next,
880 							struct page, lru);
881 		list_del(&page->lru);
882 		rmv_page_order(page);
883 		area->nr_free--;
884 		expand(zone, page, order, current_order, area, migratetype);
885 		return page;
886 	}
887 
888 	return NULL;
889 }
890 
891 
892 /*
893  * This array describes the order lists are fallen back to when
894  * the free lists for the desirable migrate type are depleted
895  */
896 static int fallbacks[MIGRATE_TYPES][4] = {
897 	[MIGRATE_UNMOVABLE]   = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE,     MIGRATE_RESERVE },
898 	[MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE,   MIGRATE_MOVABLE,     MIGRATE_RESERVE },
899 #ifdef CONFIG_CMA
900 	[MIGRATE_MOVABLE]     = { MIGRATE_CMA,         MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
901 	[MIGRATE_CMA]         = { MIGRATE_RESERVE }, /* Never used */
902 #else
903 	[MIGRATE_MOVABLE]     = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE,   MIGRATE_RESERVE },
904 #endif
905 	[MIGRATE_RESERVE]     = { MIGRATE_RESERVE }, /* Never used */
906 	[MIGRATE_ISOLATE]     = { MIGRATE_RESERVE }, /* Never used */
907 };
908 
909 /*
910  * Move the free pages in a range to the free lists of the requested type.
911  * Note that start_page and end_pages are not aligned on a pageblock
912  * boundary. If alignment is required, use move_freepages_block()
913  */
914 static int move_freepages(struct zone *zone,
915 			  struct page *start_page, struct page *end_page,
916 			  int migratetype)
917 {
918 	struct page *page;
919 	unsigned long order;
920 	int pages_moved = 0;
921 
922 #ifndef CONFIG_HOLES_IN_ZONE
923 	/*
924 	 * page_zone is not safe to call in this context when
925 	 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
926 	 * anyway as we check zone boundaries in move_freepages_block().
927 	 * Remove at a later date when no bug reports exist related to
928 	 * grouping pages by mobility
929 	 */
930 	BUG_ON(page_zone(start_page) != page_zone(end_page));
931 #endif
932 
933 	for (page = start_page; page <= end_page;) {
934 		/* Make sure we are not inadvertently changing nodes */
935 		VM_BUG_ON(page_to_nid(page) != zone_to_nid(zone));
936 
937 		if (!pfn_valid_within(page_to_pfn(page))) {
938 			page++;
939 			continue;
940 		}
941 
942 		if (!PageBuddy(page)) {
943 			page++;
944 			continue;
945 		}
946 
947 		order = page_order(page);
948 		list_move(&page->lru,
949 			  &zone->free_area[order].free_list[migratetype]);
950 		page += 1 << order;
951 		pages_moved += 1 << order;
952 	}
953 
954 	return pages_moved;
955 }
956 
957 static int move_freepages_block(struct zone *zone, struct page *page,
958 				int migratetype)
959 {
960 	unsigned long start_pfn, end_pfn;
961 	struct page *start_page, *end_page;
962 
963 	start_pfn = page_to_pfn(page);
964 	start_pfn = start_pfn & ~(pageblock_nr_pages-1);
965 	start_page = pfn_to_page(start_pfn);
966 	end_page = start_page + pageblock_nr_pages - 1;
967 	end_pfn = start_pfn + pageblock_nr_pages - 1;
968 
969 	/* Do not cross zone boundaries */
970 	if (start_pfn < zone->zone_start_pfn)
971 		start_page = page;
972 	if (end_pfn >= zone->zone_start_pfn + zone->spanned_pages)
973 		return 0;
974 
975 	return move_freepages(zone, start_page, end_page, migratetype);
976 }
977 
978 static void change_pageblock_range(struct page *pageblock_page,
979 					int start_order, int migratetype)
980 {
981 	int nr_pageblocks = 1 << (start_order - pageblock_order);
982 
983 	while (nr_pageblocks--) {
984 		set_pageblock_migratetype(pageblock_page, migratetype);
985 		pageblock_page += pageblock_nr_pages;
986 	}
987 }
988 
989 /* Remove an element from the buddy allocator from the fallback list */
990 static inline struct page *
991 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype)
992 {
993 	struct free_area * area;
994 	int current_order;
995 	struct page *page;
996 	int migratetype, i;
997 
998 	/* Find the largest possible block of pages in the other list */
999 	for (current_order = MAX_ORDER-1; current_order >= order;
1000 						--current_order) {
1001 		for (i = 0;; i++) {
1002 			migratetype = fallbacks[start_migratetype][i];
1003 
1004 			/* MIGRATE_RESERVE handled later if necessary */
1005 			if (migratetype == MIGRATE_RESERVE)
1006 				break;
1007 
1008 			area = &(zone->free_area[current_order]);
1009 			if (list_empty(&area->free_list[migratetype]))
1010 				continue;
1011 
1012 			page = list_entry(area->free_list[migratetype].next,
1013 					struct page, lru);
1014 			area->nr_free--;
1015 
1016 			/*
1017 			 * If breaking a large block of pages, move all free
1018 			 * pages to the preferred allocation list. If falling
1019 			 * back for a reclaimable kernel allocation, be more
1020 			 * aggressive about taking ownership of free pages
1021 			 *
1022 			 * On the other hand, never change migration
1023 			 * type of MIGRATE_CMA pageblocks nor move CMA
1024 			 * pages on different free lists. We don't
1025 			 * want unmovable pages to be allocated from
1026 			 * MIGRATE_CMA areas.
1027 			 */
1028 			if (!is_migrate_cma(migratetype) &&
1029 			    (unlikely(current_order >= pageblock_order / 2) ||
1030 			     start_migratetype == MIGRATE_RECLAIMABLE ||
1031 			     page_group_by_mobility_disabled)) {
1032 				int pages;
1033 				pages = move_freepages_block(zone, page,
1034 								start_migratetype);
1035 
1036 				/* Claim the whole block if over half of it is free */
1037 				if (pages >= (1 << (pageblock_order-1)) ||
1038 						page_group_by_mobility_disabled)
1039 					set_pageblock_migratetype(page,
1040 								start_migratetype);
1041 
1042 				migratetype = start_migratetype;
1043 			}
1044 
1045 			/* Remove the page from the freelists */
1046 			list_del(&page->lru);
1047 			rmv_page_order(page);
1048 
1049 			/* Take ownership for orders >= pageblock_order */
1050 			if (current_order >= pageblock_order &&
1051 			    !is_migrate_cma(migratetype))
1052 				change_pageblock_range(page, current_order,
1053 							start_migratetype);
1054 
1055 			expand(zone, page, order, current_order, area,
1056 			       is_migrate_cma(migratetype)
1057 			     ? migratetype : start_migratetype);
1058 
1059 			trace_mm_page_alloc_extfrag(page, order, current_order,
1060 				start_migratetype, migratetype);
1061 
1062 			return page;
1063 		}
1064 	}
1065 
1066 	return NULL;
1067 }
1068 
1069 /*
1070  * Do the hard work of removing an element from the buddy allocator.
1071  * Call me with the zone->lock already held.
1072  */
1073 static struct page *__rmqueue(struct zone *zone, unsigned int order,
1074 						int migratetype)
1075 {
1076 	struct page *page;
1077 
1078 retry_reserve:
1079 	page = __rmqueue_smallest(zone, order, migratetype);
1080 
1081 	if (unlikely(!page) && migratetype != MIGRATE_RESERVE) {
1082 		page = __rmqueue_fallback(zone, order, migratetype);
1083 
1084 		/*
1085 		 * Use MIGRATE_RESERVE rather than fail an allocation. goto
1086 		 * is used because __rmqueue_smallest is an inline function
1087 		 * and we want just one call site
1088 		 */
1089 		if (!page) {
1090 			migratetype = MIGRATE_RESERVE;
1091 			goto retry_reserve;
1092 		}
1093 	}
1094 
1095 	trace_mm_page_alloc_zone_locked(page, order, migratetype);
1096 	return page;
1097 }
1098 
1099 /*
1100  * Obtain a specified number of elements from the buddy allocator, all under
1101  * a single hold of the lock, for efficiency.  Add them to the supplied list.
1102  * Returns the number of new pages which were placed at *list.
1103  */
1104 static int rmqueue_bulk(struct zone *zone, unsigned int order,
1105 			unsigned long count, struct list_head *list,
1106 			int migratetype, int cold)
1107 {
1108 	int mt = migratetype, i;
1109 
1110 	spin_lock(&zone->lock);
1111 	for (i = 0; i < count; ++i) {
1112 		struct page *page = __rmqueue(zone, order, migratetype);
1113 		if (unlikely(page == NULL))
1114 			break;
1115 
1116 		/*
1117 		 * Split buddy pages returned by expand() are received here
1118 		 * in physical page order. The page is added to the callers and
1119 		 * list and the list head then moves forward. From the callers
1120 		 * perspective, the linked list is ordered by page number in
1121 		 * some conditions. This is useful for IO devices that can
1122 		 * merge IO requests if the physical pages are ordered
1123 		 * properly.
1124 		 */
1125 		if (likely(cold == 0))
1126 			list_add(&page->lru, list);
1127 		else
1128 			list_add_tail(&page->lru, list);
1129 		if (IS_ENABLED(CONFIG_CMA)) {
1130 			mt = get_pageblock_migratetype(page);
1131 			if (!is_migrate_cma(mt) && mt != MIGRATE_ISOLATE)
1132 				mt = migratetype;
1133 		}
1134 		set_page_private(page, mt);
1135 		list = &page->lru;
1136 	}
1137 	__mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
1138 	spin_unlock(&zone->lock);
1139 	return i;
1140 }
1141 
1142 #ifdef CONFIG_NUMA
1143 /*
1144  * Called from the vmstat counter updater to drain pagesets of this
1145  * currently executing processor on remote nodes after they have
1146  * expired.
1147  *
1148  * Note that this function must be called with the thread pinned to
1149  * a single processor.
1150  */
1151 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
1152 {
1153 	unsigned long flags;
1154 	int to_drain;
1155 
1156 	local_irq_save(flags);
1157 	if (pcp->count >= pcp->batch)
1158 		to_drain = pcp->batch;
1159 	else
1160 		to_drain = pcp->count;
1161 	free_pcppages_bulk(zone, to_drain, pcp);
1162 	pcp->count -= to_drain;
1163 	local_irq_restore(flags);
1164 }
1165 #endif
1166 
1167 /*
1168  * Drain pages of the indicated processor.
1169  *
1170  * The processor must either be the current processor and the
1171  * thread pinned to the current processor or a processor that
1172  * is not online.
1173  */
1174 static void drain_pages(unsigned int cpu)
1175 {
1176 	unsigned long flags;
1177 	struct zone *zone;
1178 
1179 	for_each_populated_zone(zone) {
1180 		struct per_cpu_pageset *pset;
1181 		struct per_cpu_pages *pcp;
1182 
1183 		local_irq_save(flags);
1184 		pset = per_cpu_ptr(zone->pageset, cpu);
1185 
1186 		pcp = &pset->pcp;
1187 		if (pcp->count) {
1188 			free_pcppages_bulk(zone, pcp->count, pcp);
1189 			pcp->count = 0;
1190 		}
1191 		local_irq_restore(flags);
1192 	}
1193 }
1194 
1195 /*
1196  * Spill all of this CPU's per-cpu pages back into the buddy allocator.
1197  */
1198 void drain_local_pages(void *arg)
1199 {
1200 	drain_pages(smp_processor_id());
1201 }
1202 
1203 /*
1204  * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
1205  *
1206  * Note that this code is protected against sending an IPI to an offline
1207  * CPU but does not guarantee sending an IPI to newly hotplugged CPUs:
1208  * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but
1209  * nothing keeps CPUs from showing up after we populated the cpumask and
1210  * before the call to on_each_cpu_mask().
1211  */
1212 void drain_all_pages(void)
1213 {
1214 	int cpu;
1215 	struct per_cpu_pageset *pcp;
1216 	struct zone *zone;
1217 
1218 	/*
1219 	 * Allocate in the BSS so we wont require allocation in
1220 	 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
1221 	 */
1222 	static cpumask_t cpus_with_pcps;
1223 
1224 	/*
1225 	 * We don't care about racing with CPU hotplug event
1226 	 * as offline notification will cause the notified
1227 	 * cpu to drain that CPU pcps and on_each_cpu_mask
1228 	 * disables preemption as part of its processing
1229 	 */
1230 	for_each_online_cpu(cpu) {
1231 		bool has_pcps = false;
1232 		for_each_populated_zone(zone) {
1233 			pcp = per_cpu_ptr(zone->pageset, cpu);
1234 			if (pcp->pcp.count) {
1235 				has_pcps = true;
1236 				break;
1237 			}
1238 		}
1239 		if (has_pcps)
1240 			cpumask_set_cpu(cpu, &cpus_with_pcps);
1241 		else
1242 			cpumask_clear_cpu(cpu, &cpus_with_pcps);
1243 	}
1244 	on_each_cpu_mask(&cpus_with_pcps, drain_local_pages, NULL, 1);
1245 }
1246 
1247 #ifdef CONFIG_HIBERNATION
1248 
1249 void mark_free_pages(struct zone *zone)
1250 {
1251 	unsigned long pfn, max_zone_pfn;
1252 	unsigned long flags;
1253 	int order, t;
1254 	struct list_head *curr;
1255 
1256 	if (!zone->spanned_pages)
1257 		return;
1258 
1259 	spin_lock_irqsave(&zone->lock, flags);
1260 
1261 	max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
1262 	for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1263 		if (pfn_valid(pfn)) {
1264 			struct page *page = pfn_to_page(pfn);
1265 
1266 			if (!swsusp_page_is_forbidden(page))
1267 				swsusp_unset_page_free(page);
1268 		}
1269 
1270 	for_each_migratetype_order(order, t) {
1271 		list_for_each(curr, &zone->free_area[order].free_list[t]) {
1272 			unsigned long i;
1273 
1274 			pfn = page_to_pfn(list_entry(curr, struct page, lru));
1275 			for (i = 0; i < (1UL << order); i++)
1276 				swsusp_set_page_free(pfn_to_page(pfn + i));
1277 		}
1278 	}
1279 	spin_unlock_irqrestore(&zone->lock, flags);
1280 }
1281 #endif /* CONFIG_PM */
1282 
1283 /*
1284  * Free a 0-order page
1285  * cold == 1 ? free a cold page : free a hot page
1286  */
1287 void free_hot_cold_page(struct page *page, int cold)
1288 {
1289 	struct zone *zone = page_zone(page);
1290 	struct per_cpu_pages *pcp;
1291 	unsigned long flags;
1292 	int migratetype;
1293 	int wasMlocked = __TestClearPageMlocked(page);
1294 
1295 	if (!free_pages_prepare(page, 0))
1296 		return;
1297 
1298 	migratetype = get_pageblock_migratetype(page);
1299 	set_page_private(page, migratetype);
1300 	local_irq_save(flags);
1301 	if (unlikely(wasMlocked))
1302 		free_page_mlock(page);
1303 	__count_vm_event(PGFREE);
1304 
1305 	/*
1306 	 * We only track unmovable, reclaimable and movable on pcp lists.
1307 	 * Free ISOLATE pages back to the allocator because they are being
1308 	 * offlined but treat RESERVE as movable pages so we can get those
1309 	 * areas back if necessary. Otherwise, we may have to free
1310 	 * excessively into the page allocator
1311 	 */
1312 	if (migratetype >= MIGRATE_PCPTYPES) {
1313 		if (unlikely(migratetype == MIGRATE_ISOLATE)) {
1314 			free_one_page(zone, page, 0, migratetype);
1315 			goto out;
1316 		}
1317 		migratetype = MIGRATE_MOVABLE;
1318 	}
1319 
1320 	pcp = &this_cpu_ptr(zone->pageset)->pcp;
1321 	if (cold)
1322 		list_add_tail(&page->lru, &pcp->lists[migratetype]);
1323 	else
1324 		list_add(&page->lru, &pcp->lists[migratetype]);
1325 	pcp->count++;
1326 	if (pcp->count >= pcp->high) {
1327 		free_pcppages_bulk(zone, pcp->batch, pcp);
1328 		pcp->count -= pcp->batch;
1329 	}
1330 
1331 out:
1332 	local_irq_restore(flags);
1333 }
1334 
1335 /*
1336  * Free a list of 0-order pages
1337  */
1338 void free_hot_cold_page_list(struct list_head *list, int cold)
1339 {
1340 	struct page *page, *next;
1341 
1342 	list_for_each_entry_safe(page, next, list, lru) {
1343 		trace_mm_page_free_batched(page, cold);
1344 		free_hot_cold_page(page, cold);
1345 	}
1346 }
1347 
1348 /*
1349  * split_page takes a non-compound higher-order page, and splits it into
1350  * n (1<<order) sub-pages: page[0..n]
1351  * Each sub-page must be freed individually.
1352  *
1353  * Note: this is probably too low level an operation for use in drivers.
1354  * Please consult with lkml before using this in your driver.
1355  */
1356 void split_page(struct page *page, unsigned int order)
1357 {
1358 	int i;
1359 
1360 	VM_BUG_ON(PageCompound(page));
1361 	VM_BUG_ON(!page_count(page));
1362 
1363 #ifdef CONFIG_KMEMCHECK
1364 	/*
1365 	 * Split shadow pages too, because free(page[0]) would
1366 	 * otherwise free the whole shadow.
1367 	 */
1368 	if (kmemcheck_page_is_tracked(page))
1369 		split_page(virt_to_page(page[0].shadow), order);
1370 #endif
1371 
1372 	for (i = 1; i < (1 << order); i++)
1373 		set_page_refcounted(page + i);
1374 }
1375 
1376 /*
1377  * Similar to split_page except the page is already free. As this is only
1378  * being used for migration, the migratetype of the block also changes.
1379  * As this is called with interrupts disabled, the caller is responsible
1380  * for calling arch_alloc_page() and kernel_map_page() after interrupts
1381  * are enabled.
1382  *
1383  * Note: this is probably too low level an operation for use in drivers.
1384  * Please consult with lkml before using this in your driver.
1385  */
1386 int split_free_page(struct page *page)
1387 {
1388 	unsigned int order;
1389 	unsigned long watermark;
1390 	struct zone *zone;
1391 
1392 	BUG_ON(!PageBuddy(page));
1393 
1394 	zone = page_zone(page);
1395 	order = page_order(page);
1396 
1397 	/* Obey watermarks as if the page was being allocated */
1398 	watermark = low_wmark_pages(zone) + (1 << order);
1399 	if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
1400 		return 0;
1401 
1402 	/* Remove page from free list */
1403 	list_del(&page->lru);
1404 	zone->free_area[order].nr_free--;
1405 	rmv_page_order(page);
1406 	__mod_zone_page_state(zone, NR_FREE_PAGES, -(1UL << order));
1407 
1408 	/* Split into individual pages */
1409 	set_page_refcounted(page);
1410 	split_page(page, order);
1411 
1412 	if (order >= pageblock_order - 1) {
1413 		struct page *endpage = page + (1 << order) - 1;
1414 		for (; page < endpage; page += pageblock_nr_pages) {
1415 			int mt = get_pageblock_migratetype(page);
1416 			if (mt != MIGRATE_ISOLATE && !is_migrate_cma(mt))
1417 				set_pageblock_migratetype(page,
1418 							  MIGRATE_MOVABLE);
1419 		}
1420 	}
1421 
1422 	return 1 << order;
1423 }
1424 
1425 /*
1426  * Really, prep_compound_page() should be called from __rmqueue_bulk().  But
1427  * we cheat by calling it from here, in the order > 0 path.  Saves a branch
1428  * or two.
1429  */
1430 static inline
1431 struct page *buffered_rmqueue(struct zone *preferred_zone,
1432 			struct zone *zone, int order, gfp_t gfp_flags,
1433 			int migratetype)
1434 {
1435 	unsigned long flags;
1436 	struct page *page;
1437 	int cold = !!(gfp_flags & __GFP_COLD);
1438 
1439 again:
1440 	if (likely(order == 0)) {
1441 		struct per_cpu_pages *pcp;
1442 		struct list_head *list;
1443 
1444 		local_irq_save(flags);
1445 		pcp = &this_cpu_ptr(zone->pageset)->pcp;
1446 		list = &pcp->lists[migratetype];
1447 		if (list_empty(list)) {
1448 			pcp->count += rmqueue_bulk(zone, 0,
1449 					pcp->batch, list,
1450 					migratetype, cold);
1451 			if (unlikely(list_empty(list)))
1452 				goto failed;
1453 		}
1454 
1455 		if (cold)
1456 			page = list_entry(list->prev, struct page, lru);
1457 		else
1458 			page = list_entry(list->next, struct page, lru);
1459 
1460 		list_del(&page->lru);
1461 		pcp->count--;
1462 	} else {
1463 		if (unlikely(gfp_flags & __GFP_NOFAIL)) {
1464 			/*
1465 			 * __GFP_NOFAIL is not to be used in new code.
1466 			 *
1467 			 * All __GFP_NOFAIL callers should be fixed so that they
1468 			 * properly detect and handle allocation failures.
1469 			 *
1470 			 * We most definitely don't want callers attempting to
1471 			 * allocate greater than order-1 page units with
1472 			 * __GFP_NOFAIL.
1473 			 */
1474 			WARN_ON_ONCE(order > 1);
1475 		}
1476 		spin_lock_irqsave(&zone->lock, flags);
1477 		page = __rmqueue(zone, order, migratetype);
1478 		spin_unlock(&zone->lock);
1479 		if (!page)
1480 			goto failed;
1481 		__mod_zone_page_state(zone, NR_FREE_PAGES, -(1 << order));
1482 	}
1483 
1484 	__count_zone_vm_events(PGALLOC, zone, 1 << order);
1485 	zone_statistics(preferred_zone, zone, gfp_flags);
1486 	local_irq_restore(flags);
1487 
1488 	VM_BUG_ON(bad_range(zone, page));
1489 	if (prep_new_page(page, order, gfp_flags))
1490 		goto again;
1491 	return page;
1492 
1493 failed:
1494 	local_irq_restore(flags);
1495 	return NULL;
1496 }
1497 
1498 /* The ALLOC_WMARK bits are used as an index to zone->watermark */
1499 #define ALLOC_WMARK_MIN		WMARK_MIN
1500 #define ALLOC_WMARK_LOW		WMARK_LOW
1501 #define ALLOC_WMARK_HIGH	WMARK_HIGH
1502 #define ALLOC_NO_WATERMARKS	0x04 /* don't check watermarks at all */
1503 
1504 /* Mask to get the watermark bits */
1505 #define ALLOC_WMARK_MASK	(ALLOC_NO_WATERMARKS-1)
1506 
1507 #define ALLOC_HARDER		0x10 /* try to alloc harder */
1508 #define ALLOC_HIGH		0x20 /* __GFP_HIGH set */
1509 #define ALLOC_CPUSET		0x40 /* check for correct cpuset */
1510 
1511 #ifdef CONFIG_FAIL_PAGE_ALLOC
1512 
1513 static struct {
1514 	struct fault_attr attr;
1515 
1516 	u32 ignore_gfp_highmem;
1517 	u32 ignore_gfp_wait;
1518 	u32 min_order;
1519 } fail_page_alloc = {
1520 	.attr = FAULT_ATTR_INITIALIZER,
1521 	.ignore_gfp_wait = 1,
1522 	.ignore_gfp_highmem = 1,
1523 	.min_order = 1,
1524 };
1525 
1526 static int __init setup_fail_page_alloc(char *str)
1527 {
1528 	return setup_fault_attr(&fail_page_alloc.attr, str);
1529 }
1530 __setup("fail_page_alloc=", setup_fail_page_alloc);
1531 
1532 static int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1533 {
1534 	if (order < fail_page_alloc.min_order)
1535 		return 0;
1536 	if (gfp_mask & __GFP_NOFAIL)
1537 		return 0;
1538 	if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
1539 		return 0;
1540 	if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
1541 		return 0;
1542 
1543 	return should_fail(&fail_page_alloc.attr, 1 << order);
1544 }
1545 
1546 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1547 
1548 static int __init fail_page_alloc_debugfs(void)
1549 {
1550 	umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
1551 	struct dentry *dir;
1552 
1553 	dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
1554 					&fail_page_alloc.attr);
1555 	if (IS_ERR(dir))
1556 		return PTR_ERR(dir);
1557 
1558 	if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
1559 				&fail_page_alloc.ignore_gfp_wait))
1560 		goto fail;
1561 	if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
1562 				&fail_page_alloc.ignore_gfp_highmem))
1563 		goto fail;
1564 	if (!debugfs_create_u32("min-order", mode, dir,
1565 				&fail_page_alloc.min_order))
1566 		goto fail;
1567 
1568 	return 0;
1569 fail:
1570 	debugfs_remove_recursive(dir);
1571 
1572 	return -ENOMEM;
1573 }
1574 
1575 late_initcall(fail_page_alloc_debugfs);
1576 
1577 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1578 
1579 #else /* CONFIG_FAIL_PAGE_ALLOC */
1580 
1581 static inline int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1582 {
1583 	return 0;
1584 }
1585 
1586 #endif /* CONFIG_FAIL_PAGE_ALLOC */
1587 
1588 /*
1589  * Return true if free pages are above 'mark'. This takes into account the order
1590  * of the allocation.
1591  */
1592 static bool __zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1593 		      int classzone_idx, int alloc_flags, long free_pages)
1594 {
1595 	/* free_pages my go negative - that's OK */
1596 	long min = mark;
1597 	int o;
1598 
1599 	free_pages -= (1 << order) - 1;
1600 	if (alloc_flags & ALLOC_HIGH)
1601 		min -= min / 2;
1602 	if (alloc_flags & ALLOC_HARDER)
1603 		min -= min / 4;
1604 
1605 	if (free_pages <= min + z->lowmem_reserve[classzone_idx])
1606 		return false;
1607 	for (o = 0; o < order; o++) {
1608 		/* At the next order, this order's pages become unavailable */
1609 		free_pages -= z->free_area[o].nr_free << o;
1610 
1611 		/* Require fewer higher order pages to be free */
1612 		min >>= 1;
1613 
1614 		if (free_pages <= min)
1615 			return false;
1616 	}
1617 	return true;
1618 }
1619 
1620 bool zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1621 		      int classzone_idx, int alloc_flags)
1622 {
1623 	return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1624 					zone_page_state(z, NR_FREE_PAGES));
1625 }
1626 
1627 bool zone_watermark_ok_safe(struct zone *z, int order, unsigned long mark,
1628 		      int classzone_idx, int alloc_flags)
1629 {
1630 	long free_pages = zone_page_state(z, NR_FREE_PAGES);
1631 
1632 	if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
1633 		free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
1634 
1635 	return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1636 								free_pages);
1637 }
1638 
1639 #ifdef CONFIG_NUMA
1640 /*
1641  * zlc_setup - Setup for "zonelist cache".  Uses cached zone data to
1642  * skip over zones that are not allowed by the cpuset, or that have
1643  * been recently (in last second) found to be nearly full.  See further
1644  * comments in mmzone.h.  Reduces cache footprint of zonelist scans
1645  * that have to skip over a lot of full or unallowed zones.
1646  *
1647  * If the zonelist cache is present in the passed in zonelist, then
1648  * returns a pointer to the allowed node mask (either the current
1649  * tasks mems_allowed, or node_states[N_HIGH_MEMORY].)
1650  *
1651  * If the zonelist cache is not available for this zonelist, does
1652  * nothing and returns NULL.
1653  *
1654  * If the fullzones BITMAP in the zonelist cache is stale (more than
1655  * a second since last zap'd) then we zap it out (clear its bits.)
1656  *
1657  * We hold off even calling zlc_setup, until after we've checked the
1658  * first zone in the zonelist, on the theory that most allocations will
1659  * be satisfied from that first zone, so best to examine that zone as
1660  * quickly as we can.
1661  */
1662 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1663 {
1664 	struct zonelist_cache *zlc;	/* cached zonelist speedup info */
1665 	nodemask_t *allowednodes;	/* zonelist_cache approximation */
1666 
1667 	zlc = zonelist->zlcache_ptr;
1668 	if (!zlc)
1669 		return NULL;
1670 
1671 	if (time_after(jiffies, zlc->last_full_zap + HZ)) {
1672 		bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1673 		zlc->last_full_zap = jiffies;
1674 	}
1675 
1676 	allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1677 					&cpuset_current_mems_allowed :
1678 					&node_states[N_HIGH_MEMORY];
1679 	return allowednodes;
1680 }
1681 
1682 /*
1683  * Given 'z' scanning a zonelist, run a couple of quick checks to see
1684  * if it is worth looking at further for free memory:
1685  *  1) Check that the zone isn't thought to be full (doesn't have its
1686  *     bit set in the zonelist_cache fullzones BITMAP).
1687  *  2) Check that the zones node (obtained from the zonelist_cache
1688  *     z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1689  * Return true (non-zero) if zone is worth looking at further, or
1690  * else return false (zero) if it is not.
1691  *
1692  * This check -ignores- the distinction between various watermarks,
1693  * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ...  If a zone is
1694  * found to be full for any variation of these watermarks, it will
1695  * be considered full for up to one second by all requests, unless
1696  * we are so low on memory on all allowed nodes that we are forced
1697  * into the second scan of the zonelist.
1698  *
1699  * In the second scan we ignore this zonelist cache and exactly
1700  * apply the watermarks to all zones, even it is slower to do so.
1701  * We are low on memory in the second scan, and should leave no stone
1702  * unturned looking for a free page.
1703  */
1704 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1705 						nodemask_t *allowednodes)
1706 {
1707 	struct zonelist_cache *zlc;	/* cached zonelist speedup info */
1708 	int i;				/* index of *z in zonelist zones */
1709 	int n;				/* node that zone *z is on */
1710 
1711 	zlc = zonelist->zlcache_ptr;
1712 	if (!zlc)
1713 		return 1;
1714 
1715 	i = z - zonelist->_zonerefs;
1716 	n = zlc->z_to_n[i];
1717 
1718 	/* This zone is worth trying if it is allowed but not full */
1719 	return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1720 }
1721 
1722 /*
1723  * Given 'z' scanning a zonelist, set the corresponding bit in
1724  * zlc->fullzones, so that subsequent attempts to allocate a page
1725  * from that zone don't waste time re-examining it.
1726  */
1727 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1728 {
1729 	struct zonelist_cache *zlc;	/* cached zonelist speedup info */
1730 	int i;				/* index of *z in zonelist zones */
1731 
1732 	zlc = zonelist->zlcache_ptr;
1733 	if (!zlc)
1734 		return;
1735 
1736 	i = z - zonelist->_zonerefs;
1737 
1738 	set_bit(i, zlc->fullzones);
1739 }
1740 
1741 /*
1742  * clear all zones full, called after direct reclaim makes progress so that
1743  * a zone that was recently full is not skipped over for up to a second
1744  */
1745 static void zlc_clear_zones_full(struct zonelist *zonelist)
1746 {
1747 	struct zonelist_cache *zlc;	/* cached zonelist speedup info */
1748 
1749 	zlc = zonelist->zlcache_ptr;
1750 	if (!zlc)
1751 		return;
1752 
1753 	bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1754 }
1755 
1756 #else	/* CONFIG_NUMA */
1757 
1758 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1759 {
1760 	return NULL;
1761 }
1762 
1763 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1764 				nodemask_t *allowednodes)
1765 {
1766 	return 1;
1767 }
1768 
1769 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1770 {
1771 }
1772 
1773 static void zlc_clear_zones_full(struct zonelist *zonelist)
1774 {
1775 }
1776 #endif	/* CONFIG_NUMA */
1777 
1778 /*
1779  * get_page_from_freelist goes through the zonelist trying to allocate
1780  * a page.
1781  */
1782 static struct page *
1783 get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order,
1784 		struct zonelist *zonelist, int high_zoneidx, int alloc_flags,
1785 		struct zone *preferred_zone, int migratetype)
1786 {
1787 	struct zoneref *z;
1788 	struct page *page = NULL;
1789 	int classzone_idx;
1790 	struct zone *zone;
1791 	nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
1792 	int zlc_active = 0;		/* set if using zonelist_cache */
1793 	int did_zlc_setup = 0;		/* just call zlc_setup() one time */
1794 
1795 	classzone_idx = zone_idx(preferred_zone);
1796 zonelist_scan:
1797 	/*
1798 	 * Scan zonelist, looking for a zone with enough free.
1799 	 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1800 	 */
1801 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
1802 						high_zoneidx, nodemask) {
1803 		if (NUMA_BUILD && zlc_active &&
1804 			!zlc_zone_worth_trying(zonelist, z, allowednodes))
1805 				continue;
1806 		if ((alloc_flags & ALLOC_CPUSET) &&
1807 			!cpuset_zone_allowed_softwall(zone, gfp_mask))
1808 				continue;
1809 		/*
1810 		 * When allocating a page cache page for writing, we
1811 		 * want to get it from a zone that is within its dirty
1812 		 * limit, such that no single zone holds more than its
1813 		 * proportional share of globally allowed dirty pages.
1814 		 * The dirty limits take into account the zone's
1815 		 * lowmem reserves and high watermark so that kswapd
1816 		 * should be able to balance it without having to
1817 		 * write pages from its LRU list.
1818 		 *
1819 		 * This may look like it could increase pressure on
1820 		 * lower zones by failing allocations in higher zones
1821 		 * before they are full.  But the pages that do spill
1822 		 * over are limited as the lower zones are protected
1823 		 * by this very same mechanism.  It should not become
1824 		 * a practical burden to them.
1825 		 *
1826 		 * XXX: For now, allow allocations to potentially
1827 		 * exceed the per-zone dirty limit in the slowpath
1828 		 * (ALLOC_WMARK_LOW unset) before going into reclaim,
1829 		 * which is important when on a NUMA setup the allowed
1830 		 * zones are together not big enough to reach the
1831 		 * global limit.  The proper fix for these situations
1832 		 * will require awareness of zones in the
1833 		 * dirty-throttling and the flusher threads.
1834 		 */
1835 		if ((alloc_flags & ALLOC_WMARK_LOW) &&
1836 		    (gfp_mask & __GFP_WRITE) && !zone_dirty_ok(zone))
1837 			goto this_zone_full;
1838 
1839 		BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
1840 		if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
1841 			unsigned long mark;
1842 			int ret;
1843 
1844 			mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
1845 			if (zone_watermark_ok(zone, order, mark,
1846 				    classzone_idx, alloc_flags))
1847 				goto try_this_zone;
1848 
1849 			if (NUMA_BUILD && !did_zlc_setup && nr_online_nodes > 1) {
1850 				/*
1851 				 * we do zlc_setup if there are multiple nodes
1852 				 * and before considering the first zone allowed
1853 				 * by the cpuset.
1854 				 */
1855 				allowednodes = zlc_setup(zonelist, alloc_flags);
1856 				zlc_active = 1;
1857 				did_zlc_setup = 1;
1858 			}
1859 
1860 			if (zone_reclaim_mode == 0)
1861 				goto this_zone_full;
1862 
1863 			/*
1864 			 * As we may have just activated ZLC, check if the first
1865 			 * eligible zone has failed zone_reclaim recently.
1866 			 */
1867 			if (NUMA_BUILD && zlc_active &&
1868 				!zlc_zone_worth_trying(zonelist, z, allowednodes))
1869 				continue;
1870 
1871 			ret = zone_reclaim(zone, gfp_mask, order);
1872 			switch (ret) {
1873 			case ZONE_RECLAIM_NOSCAN:
1874 				/* did not scan */
1875 				continue;
1876 			case ZONE_RECLAIM_FULL:
1877 				/* scanned but unreclaimable */
1878 				continue;
1879 			default:
1880 				/* did we reclaim enough */
1881 				if (!zone_watermark_ok(zone, order, mark,
1882 						classzone_idx, alloc_flags))
1883 					goto this_zone_full;
1884 			}
1885 		}
1886 
1887 try_this_zone:
1888 		page = buffered_rmqueue(preferred_zone, zone, order,
1889 						gfp_mask, migratetype);
1890 		if (page)
1891 			break;
1892 this_zone_full:
1893 		if (NUMA_BUILD)
1894 			zlc_mark_zone_full(zonelist, z);
1895 	}
1896 
1897 	if (unlikely(NUMA_BUILD && page == NULL && zlc_active)) {
1898 		/* Disable zlc cache for second zonelist scan */
1899 		zlc_active = 0;
1900 		goto zonelist_scan;
1901 	}
1902 	return page;
1903 }
1904 
1905 /*
1906  * Large machines with many possible nodes should not always dump per-node
1907  * meminfo in irq context.
1908  */
1909 static inline bool should_suppress_show_mem(void)
1910 {
1911 	bool ret = false;
1912 
1913 #if NODES_SHIFT > 8
1914 	ret = in_interrupt();
1915 #endif
1916 	return ret;
1917 }
1918 
1919 static DEFINE_RATELIMIT_STATE(nopage_rs,
1920 		DEFAULT_RATELIMIT_INTERVAL,
1921 		DEFAULT_RATELIMIT_BURST);
1922 
1923 void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...)
1924 {
1925 	unsigned int filter = SHOW_MEM_FILTER_NODES;
1926 
1927 	if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) ||
1928 	    debug_guardpage_minorder() > 0)
1929 		return;
1930 
1931 	/*
1932 	 * This documents exceptions given to allocations in certain
1933 	 * contexts that are allowed to allocate outside current's set
1934 	 * of allowed nodes.
1935 	 */
1936 	if (!(gfp_mask & __GFP_NOMEMALLOC))
1937 		if (test_thread_flag(TIF_MEMDIE) ||
1938 		    (current->flags & (PF_MEMALLOC | PF_EXITING)))
1939 			filter &= ~SHOW_MEM_FILTER_NODES;
1940 	if (in_interrupt() || !(gfp_mask & __GFP_WAIT))
1941 		filter &= ~SHOW_MEM_FILTER_NODES;
1942 
1943 	if (fmt) {
1944 		struct va_format vaf;
1945 		va_list args;
1946 
1947 		va_start(args, fmt);
1948 
1949 		vaf.fmt = fmt;
1950 		vaf.va = &args;
1951 
1952 		pr_warn("%pV", &vaf);
1953 
1954 		va_end(args);
1955 	}
1956 
1957 	pr_warn("%s: page allocation failure: order:%d, mode:0x%x\n",
1958 		current->comm, order, gfp_mask);
1959 
1960 	dump_stack();
1961 	if (!should_suppress_show_mem())
1962 		show_mem(filter);
1963 }
1964 
1965 static inline int
1966 should_alloc_retry(gfp_t gfp_mask, unsigned int order,
1967 				unsigned long did_some_progress,
1968 				unsigned long pages_reclaimed)
1969 {
1970 	/* Do not loop if specifically requested */
1971 	if (gfp_mask & __GFP_NORETRY)
1972 		return 0;
1973 
1974 	/* Always retry if specifically requested */
1975 	if (gfp_mask & __GFP_NOFAIL)
1976 		return 1;
1977 
1978 	/*
1979 	 * Suspend converts GFP_KERNEL to __GFP_WAIT which can prevent reclaim
1980 	 * making forward progress without invoking OOM. Suspend also disables
1981 	 * storage devices so kswapd will not help. Bail if we are suspending.
1982 	 */
1983 	if (!did_some_progress && pm_suspended_storage())
1984 		return 0;
1985 
1986 	/*
1987 	 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
1988 	 * means __GFP_NOFAIL, but that may not be true in other
1989 	 * implementations.
1990 	 */
1991 	if (order <= PAGE_ALLOC_COSTLY_ORDER)
1992 		return 1;
1993 
1994 	/*
1995 	 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
1996 	 * specified, then we retry until we no longer reclaim any pages
1997 	 * (above), or we've reclaimed an order of pages at least as
1998 	 * large as the allocation's order. In both cases, if the
1999 	 * allocation still fails, we stop retrying.
2000 	 */
2001 	if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order))
2002 		return 1;
2003 
2004 	return 0;
2005 }
2006 
2007 static inline struct page *
2008 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
2009 	struct zonelist *zonelist, enum zone_type high_zoneidx,
2010 	nodemask_t *nodemask, struct zone *preferred_zone,
2011 	int migratetype)
2012 {
2013 	struct page *page;
2014 
2015 	/* Acquire the OOM killer lock for the zones in zonelist */
2016 	if (!try_set_zonelist_oom(zonelist, gfp_mask)) {
2017 		schedule_timeout_uninterruptible(1);
2018 		return NULL;
2019 	}
2020 
2021 	/*
2022 	 * Go through the zonelist yet one more time, keep very high watermark
2023 	 * here, this is only to catch a parallel oom killing, we must fail if
2024 	 * we're still under heavy pressure.
2025 	 */
2026 	page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask,
2027 		order, zonelist, high_zoneidx,
2028 		ALLOC_WMARK_HIGH|ALLOC_CPUSET,
2029 		preferred_zone, migratetype);
2030 	if (page)
2031 		goto out;
2032 
2033 	if (!(gfp_mask & __GFP_NOFAIL)) {
2034 		/* The OOM killer will not help higher order allocs */
2035 		if (order > PAGE_ALLOC_COSTLY_ORDER)
2036 			goto out;
2037 		/* The OOM killer does not needlessly kill tasks for lowmem */
2038 		if (high_zoneidx < ZONE_NORMAL)
2039 			goto out;
2040 		/*
2041 		 * GFP_THISNODE contains __GFP_NORETRY and we never hit this.
2042 		 * Sanity check for bare calls of __GFP_THISNODE, not real OOM.
2043 		 * The caller should handle page allocation failure by itself if
2044 		 * it specifies __GFP_THISNODE.
2045 		 * Note: Hugepage uses it but will hit PAGE_ALLOC_COSTLY_ORDER.
2046 		 */
2047 		if (gfp_mask & __GFP_THISNODE)
2048 			goto out;
2049 	}
2050 	/* Exhausted what can be done so it's blamo time */
2051 	out_of_memory(zonelist, gfp_mask, order, nodemask, false);
2052 
2053 out:
2054 	clear_zonelist_oom(zonelist, gfp_mask);
2055 	return page;
2056 }
2057 
2058 #ifdef CONFIG_COMPACTION
2059 /* Try memory compaction for high-order allocations before reclaim */
2060 static struct page *
2061 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2062 	struct zonelist *zonelist, enum zone_type high_zoneidx,
2063 	nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
2064 	int migratetype, bool sync_migration,
2065 	bool *deferred_compaction,
2066 	unsigned long *did_some_progress)
2067 {
2068 	struct page *page;
2069 
2070 	if (!order)
2071 		return NULL;
2072 
2073 	if (compaction_deferred(preferred_zone, order)) {
2074 		*deferred_compaction = true;
2075 		return NULL;
2076 	}
2077 
2078 	current->flags |= PF_MEMALLOC;
2079 	*did_some_progress = try_to_compact_pages(zonelist, order, gfp_mask,
2080 						nodemask, sync_migration);
2081 	current->flags &= ~PF_MEMALLOC;
2082 	if (*did_some_progress != COMPACT_SKIPPED) {
2083 
2084 		/* Page migration frees to the PCP lists but we want merging */
2085 		drain_pages(get_cpu());
2086 		put_cpu();
2087 
2088 		page = get_page_from_freelist(gfp_mask, nodemask,
2089 				order, zonelist, high_zoneidx,
2090 				alloc_flags, preferred_zone,
2091 				migratetype);
2092 		if (page) {
2093 			preferred_zone->compact_considered = 0;
2094 			preferred_zone->compact_defer_shift = 0;
2095 			if (order >= preferred_zone->compact_order_failed)
2096 				preferred_zone->compact_order_failed = order + 1;
2097 			count_vm_event(COMPACTSUCCESS);
2098 			return page;
2099 		}
2100 
2101 		/*
2102 		 * It's bad if compaction run occurs and fails.
2103 		 * The most likely reason is that pages exist,
2104 		 * but not enough to satisfy watermarks.
2105 		 */
2106 		count_vm_event(COMPACTFAIL);
2107 
2108 		/*
2109 		 * As async compaction considers a subset of pageblocks, only
2110 		 * defer if the failure was a sync compaction failure.
2111 		 */
2112 		if (sync_migration)
2113 			defer_compaction(preferred_zone, order);
2114 
2115 		cond_resched();
2116 	}
2117 
2118 	return NULL;
2119 }
2120 #else
2121 static inline struct page *
2122 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2123 	struct zonelist *zonelist, enum zone_type high_zoneidx,
2124 	nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
2125 	int migratetype, bool sync_migration,
2126 	bool *deferred_compaction,
2127 	unsigned long *did_some_progress)
2128 {
2129 	return NULL;
2130 }
2131 #endif /* CONFIG_COMPACTION */
2132 
2133 /* Perform direct synchronous page reclaim */
2134 static int
2135 __perform_reclaim(gfp_t gfp_mask, unsigned int order, struct zonelist *zonelist,
2136 		  nodemask_t *nodemask)
2137 {
2138 	struct reclaim_state reclaim_state;
2139 	int progress;
2140 
2141 	cond_resched();
2142 
2143 	/* We now go into synchronous reclaim */
2144 	cpuset_memory_pressure_bump();
2145 	current->flags |= PF_MEMALLOC;
2146 	lockdep_set_current_reclaim_state(gfp_mask);
2147 	reclaim_state.reclaimed_slab = 0;
2148 	current->reclaim_state = &reclaim_state;
2149 
2150 	progress = try_to_free_pages(zonelist, order, gfp_mask, nodemask);
2151 
2152 	current->reclaim_state = NULL;
2153 	lockdep_clear_current_reclaim_state();
2154 	current->flags &= ~PF_MEMALLOC;
2155 
2156 	cond_resched();
2157 
2158 	return progress;
2159 }
2160 
2161 /* The really slow allocator path where we enter direct reclaim */
2162 static inline struct page *
2163 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
2164 	struct zonelist *zonelist, enum zone_type high_zoneidx,
2165 	nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
2166 	int migratetype, unsigned long *did_some_progress)
2167 {
2168 	struct page *page = NULL;
2169 	bool drained = false;
2170 
2171 	*did_some_progress = __perform_reclaim(gfp_mask, order, zonelist,
2172 					       nodemask);
2173 	if (unlikely(!(*did_some_progress)))
2174 		return NULL;
2175 
2176 	/* After successful reclaim, reconsider all zones for allocation */
2177 	if (NUMA_BUILD)
2178 		zlc_clear_zones_full(zonelist);
2179 
2180 retry:
2181 	page = get_page_from_freelist(gfp_mask, nodemask, order,
2182 					zonelist, high_zoneidx,
2183 					alloc_flags, preferred_zone,
2184 					migratetype);
2185 
2186 	/*
2187 	 * If an allocation failed after direct reclaim, it could be because
2188 	 * pages are pinned on the per-cpu lists. Drain them and try again
2189 	 */
2190 	if (!page && !drained) {
2191 		drain_all_pages();
2192 		drained = true;
2193 		goto retry;
2194 	}
2195 
2196 	return page;
2197 }
2198 
2199 /*
2200  * This is called in the allocator slow-path if the allocation request is of
2201  * sufficient urgency to ignore watermarks and take other desperate measures
2202  */
2203 static inline struct page *
2204 __alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order,
2205 	struct zonelist *zonelist, enum zone_type high_zoneidx,
2206 	nodemask_t *nodemask, struct zone *preferred_zone,
2207 	int migratetype)
2208 {
2209 	struct page *page;
2210 
2211 	do {
2212 		page = get_page_from_freelist(gfp_mask, nodemask, order,
2213 			zonelist, high_zoneidx, ALLOC_NO_WATERMARKS,
2214 			preferred_zone, migratetype);
2215 
2216 		if (!page && gfp_mask & __GFP_NOFAIL)
2217 			wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
2218 	} while (!page && (gfp_mask & __GFP_NOFAIL));
2219 
2220 	return page;
2221 }
2222 
2223 static inline
2224 void wake_all_kswapd(unsigned int order, struct zonelist *zonelist,
2225 						enum zone_type high_zoneidx,
2226 						enum zone_type classzone_idx)
2227 {
2228 	struct zoneref *z;
2229 	struct zone *zone;
2230 
2231 	for_each_zone_zonelist(zone, z, zonelist, high_zoneidx)
2232 		wakeup_kswapd(zone, order, classzone_idx);
2233 }
2234 
2235 static inline int
2236 gfp_to_alloc_flags(gfp_t gfp_mask)
2237 {
2238 	int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
2239 	const gfp_t wait = gfp_mask & __GFP_WAIT;
2240 
2241 	/* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
2242 	BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
2243 
2244 	/*
2245 	 * The caller may dip into page reserves a bit more if the caller
2246 	 * cannot run direct reclaim, or if the caller has realtime scheduling
2247 	 * policy or is asking for __GFP_HIGH memory.  GFP_ATOMIC requests will
2248 	 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
2249 	 */
2250 	alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
2251 
2252 	if (!wait) {
2253 		/*
2254 		 * Not worth trying to allocate harder for
2255 		 * __GFP_NOMEMALLOC even if it can't schedule.
2256 		 */
2257 		if  (!(gfp_mask & __GFP_NOMEMALLOC))
2258 			alloc_flags |= ALLOC_HARDER;
2259 		/*
2260 		 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
2261 		 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
2262 		 */
2263 		alloc_flags &= ~ALLOC_CPUSET;
2264 	} else if (unlikely(rt_task(current)) && !in_interrupt())
2265 		alloc_flags |= ALLOC_HARDER;
2266 
2267 	if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
2268 		if (!in_interrupt() &&
2269 		    ((current->flags & PF_MEMALLOC) ||
2270 		     unlikely(test_thread_flag(TIF_MEMDIE))))
2271 			alloc_flags |= ALLOC_NO_WATERMARKS;
2272 	}
2273 
2274 	return alloc_flags;
2275 }
2276 
2277 static inline struct page *
2278 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
2279 	struct zonelist *zonelist, enum zone_type high_zoneidx,
2280 	nodemask_t *nodemask, struct zone *preferred_zone,
2281 	int migratetype)
2282 {
2283 	const gfp_t wait = gfp_mask & __GFP_WAIT;
2284 	struct page *page = NULL;
2285 	int alloc_flags;
2286 	unsigned long pages_reclaimed = 0;
2287 	unsigned long did_some_progress;
2288 	bool sync_migration = false;
2289 	bool deferred_compaction = false;
2290 
2291 	/*
2292 	 * In the slowpath, we sanity check order to avoid ever trying to
2293 	 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
2294 	 * be using allocators in order of preference for an area that is
2295 	 * too large.
2296 	 */
2297 	if (order >= MAX_ORDER) {
2298 		WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
2299 		return NULL;
2300 	}
2301 
2302 	/*
2303 	 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
2304 	 * __GFP_NOWARN set) should not cause reclaim since the subsystem
2305 	 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
2306 	 * using a larger set of nodes after it has established that the
2307 	 * allowed per node queues are empty and that nodes are
2308 	 * over allocated.
2309 	 */
2310 	if (NUMA_BUILD && (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
2311 		goto nopage;
2312 
2313 restart:
2314 	if (!(gfp_mask & __GFP_NO_KSWAPD))
2315 		wake_all_kswapd(order, zonelist, high_zoneidx,
2316 						zone_idx(preferred_zone));
2317 
2318 	/*
2319 	 * OK, we're below the kswapd watermark and have kicked background
2320 	 * reclaim. Now things get more complex, so set up alloc_flags according
2321 	 * to how we want to proceed.
2322 	 */
2323 	alloc_flags = gfp_to_alloc_flags(gfp_mask);
2324 
2325 	/*
2326 	 * Find the true preferred zone if the allocation is unconstrained by
2327 	 * cpusets.
2328 	 */
2329 	if (!(alloc_flags & ALLOC_CPUSET) && !nodemask)
2330 		first_zones_zonelist(zonelist, high_zoneidx, NULL,
2331 					&preferred_zone);
2332 
2333 rebalance:
2334 	/* This is the last chance, in general, before the goto nopage. */
2335 	page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist,
2336 			high_zoneidx, alloc_flags & ~ALLOC_NO_WATERMARKS,
2337 			preferred_zone, migratetype);
2338 	if (page)
2339 		goto got_pg;
2340 
2341 	/* Allocate without watermarks if the context allows */
2342 	if (alloc_flags & ALLOC_NO_WATERMARKS) {
2343 		page = __alloc_pages_high_priority(gfp_mask, order,
2344 				zonelist, high_zoneidx, nodemask,
2345 				preferred_zone, migratetype);
2346 		if (page)
2347 			goto got_pg;
2348 	}
2349 
2350 	/* Atomic allocations - we can't balance anything */
2351 	if (!wait)
2352 		goto nopage;
2353 
2354 	/* Avoid recursion of direct reclaim */
2355 	if (current->flags & PF_MEMALLOC)
2356 		goto nopage;
2357 
2358 	/* Avoid allocations with no watermarks from looping endlessly */
2359 	if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
2360 		goto nopage;
2361 
2362 	/*
2363 	 * Try direct compaction. The first pass is asynchronous. Subsequent
2364 	 * attempts after direct reclaim are synchronous
2365 	 */
2366 	page = __alloc_pages_direct_compact(gfp_mask, order,
2367 					zonelist, high_zoneidx,
2368 					nodemask,
2369 					alloc_flags, preferred_zone,
2370 					migratetype, sync_migration,
2371 					&deferred_compaction,
2372 					&did_some_progress);
2373 	if (page)
2374 		goto got_pg;
2375 	sync_migration = true;
2376 
2377 	/*
2378 	 * If compaction is deferred for high-order allocations, it is because
2379 	 * sync compaction recently failed. In this is the case and the caller
2380 	 * has requested the system not be heavily disrupted, fail the
2381 	 * allocation now instead of entering direct reclaim
2382 	 */
2383 	if (deferred_compaction && (gfp_mask & __GFP_NO_KSWAPD))
2384 		goto nopage;
2385 
2386 	/* Try direct reclaim and then allocating */
2387 	page = __alloc_pages_direct_reclaim(gfp_mask, order,
2388 					zonelist, high_zoneidx,
2389 					nodemask,
2390 					alloc_flags, preferred_zone,
2391 					migratetype, &did_some_progress);
2392 	if (page)
2393 		goto got_pg;
2394 
2395 	/*
2396 	 * If we failed to make any progress reclaiming, then we are
2397 	 * running out of options and have to consider going OOM
2398 	 */
2399 	if (!did_some_progress) {
2400 		if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
2401 			if (oom_killer_disabled)
2402 				goto nopage;
2403 			/* Coredumps can quickly deplete all memory reserves */
2404 			if ((current->flags & PF_DUMPCORE) &&
2405 			    !(gfp_mask & __GFP_NOFAIL))
2406 				goto nopage;
2407 			page = __alloc_pages_may_oom(gfp_mask, order,
2408 					zonelist, high_zoneidx,
2409 					nodemask, preferred_zone,
2410 					migratetype);
2411 			if (page)
2412 				goto got_pg;
2413 
2414 			if (!(gfp_mask & __GFP_NOFAIL)) {
2415 				/*
2416 				 * The oom killer is not called for high-order
2417 				 * allocations that may fail, so if no progress
2418 				 * is being made, there are no other options and
2419 				 * retrying is unlikely to help.
2420 				 */
2421 				if (order > PAGE_ALLOC_COSTLY_ORDER)
2422 					goto nopage;
2423 				/*
2424 				 * The oom killer is not called for lowmem
2425 				 * allocations to prevent needlessly killing
2426 				 * innocent tasks.
2427 				 */
2428 				if (high_zoneidx < ZONE_NORMAL)
2429 					goto nopage;
2430 			}
2431 
2432 			goto restart;
2433 		}
2434 	}
2435 
2436 	/* Check if we should retry the allocation */
2437 	pages_reclaimed += did_some_progress;
2438 	if (should_alloc_retry(gfp_mask, order, did_some_progress,
2439 						pages_reclaimed)) {
2440 		/* Wait for some write requests to complete then retry */
2441 		wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
2442 		goto rebalance;
2443 	} else {
2444 		/*
2445 		 * High-order allocations do not necessarily loop after
2446 		 * direct reclaim and reclaim/compaction depends on compaction
2447 		 * being called after reclaim so call directly if necessary
2448 		 */
2449 		page = __alloc_pages_direct_compact(gfp_mask, order,
2450 					zonelist, high_zoneidx,
2451 					nodemask,
2452 					alloc_flags, preferred_zone,
2453 					migratetype, sync_migration,
2454 					&deferred_compaction,
2455 					&did_some_progress);
2456 		if (page)
2457 			goto got_pg;
2458 	}
2459 
2460 nopage:
2461 	warn_alloc_failed(gfp_mask, order, NULL);
2462 	return page;
2463 got_pg:
2464 	if (kmemcheck_enabled)
2465 		kmemcheck_pagealloc_alloc(page, order, gfp_mask);
2466 	return page;
2467 
2468 }
2469 
2470 /*
2471  * This is the 'heart' of the zoned buddy allocator.
2472  */
2473 struct page *
2474 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
2475 			struct zonelist *zonelist, nodemask_t *nodemask)
2476 {
2477 	enum zone_type high_zoneidx = gfp_zone(gfp_mask);
2478 	struct zone *preferred_zone;
2479 	struct page *page = NULL;
2480 	int migratetype = allocflags_to_migratetype(gfp_mask);
2481 	unsigned int cpuset_mems_cookie;
2482 
2483 	gfp_mask &= gfp_allowed_mask;
2484 
2485 	lockdep_trace_alloc(gfp_mask);
2486 
2487 	might_sleep_if(gfp_mask & __GFP_WAIT);
2488 
2489 	if (should_fail_alloc_page(gfp_mask, order))
2490 		return NULL;
2491 
2492 	/*
2493 	 * Check the zones suitable for the gfp_mask contain at least one
2494 	 * valid zone. It's possible to have an empty zonelist as a result
2495 	 * of GFP_THISNODE and a memoryless node
2496 	 */
2497 	if (unlikely(!zonelist->_zonerefs->zone))
2498 		return NULL;
2499 
2500 retry_cpuset:
2501 	cpuset_mems_cookie = get_mems_allowed();
2502 
2503 	/* The preferred zone is used for statistics later */
2504 	first_zones_zonelist(zonelist, high_zoneidx,
2505 				nodemask ? : &cpuset_current_mems_allowed,
2506 				&preferred_zone);
2507 	if (!preferred_zone)
2508 		goto out;
2509 
2510 	/* First allocation attempt */
2511 	page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order,
2512 			zonelist, high_zoneidx, ALLOC_WMARK_LOW|ALLOC_CPUSET,
2513 			preferred_zone, migratetype);
2514 	if (unlikely(!page))
2515 		page = __alloc_pages_slowpath(gfp_mask, order,
2516 				zonelist, high_zoneidx, nodemask,
2517 				preferred_zone, migratetype);
2518 
2519 	trace_mm_page_alloc(page, order, gfp_mask, migratetype);
2520 
2521 out:
2522 	/*
2523 	 * When updating a task's mems_allowed, it is possible to race with
2524 	 * parallel threads in such a way that an allocation can fail while
2525 	 * the mask is being updated. If a page allocation is about to fail,
2526 	 * check if the cpuset changed during allocation and if so, retry.
2527 	 */
2528 	if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page))
2529 		goto retry_cpuset;
2530 
2531 	return page;
2532 }
2533 EXPORT_SYMBOL(__alloc_pages_nodemask);
2534 
2535 /*
2536  * Common helper functions.
2537  */
2538 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
2539 {
2540 	struct page *page;
2541 
2542 	/*
2543 	 * __get_free_pages() returns a 32-bit address, which cannot represent
2544 	 * a highmem page
2545 	 */
2546 	VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
2547 
2548 	page = alloc_pages(gfp_mask, order);
2549 	if (!page)
2550 		return 0;
2551 	return (unsigned long) page_address(page);
2552 }
2553 EXPORT_SYMBOL(__get_free_pages);
2554 
2555 unsigned long get_zeroed_page(gfp_t gfp_mask)
2556 {
2557 	return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
2558 }
2559 EXPORT_SYMBOL(get_zeroed_page);
2560 
2561 void __free_pages(struct page *page, unsigned int order)
2562 {
2563 	if (put_page_testzero(page)) {
2564 		if (order == 0)
2565 			free_hot_cold_page(page, 0);
2566 		else
2567 			__free_pages_ok(page, order);
2568 	}
2569 }
2570 
2571 EXPORT_SYMBOL(__free_pages);
2572 
2573 void free_pages(unsigned long addr, unsigned int order)
2574 {
2575 	if (addr != 0) {
2576 		VM_BUG_ON(!virt_addr_valid((void *)addr));
2577 		__free_pages(virt_to_page((void *)addr), order);
2578 	}
2579 }
2580 
2581 EXPORT_SYMBOL(free_pages);
2582 
2583 static void *make_alloc_exact(unsigned long addr, unsigned order, size_t size)
2584 {
2585 	if (addr) {
2586 		unsigned long alloc_end = addr + (PAGE_SIZE << order);
2587 		unsigned long used = addr + PAGE_ALIGN(size);
2588 
2589 		split_page(virt_to_page((void *)addr), order);
2590 		while (used < alloc_end) {
2591 			free_page(used);
2592 			used += PAGE_SIZE;
2593 		}
2594 	}
2595 	return (void *)addr;
2596 }
2597 
2598 /**
2599  * alloc_pages_exact - allocate an exact number physically-contiguous pages.
2600  * @size: the number of bytes to allocate
2601  * @gfp_mask: GFP flags for the allocation
2602  *
2603  * This function is similar to alloc_pages(), except that it allocates the
2604  * minimum number of pages to satisfy the request.  alloc_pages() can only
2605  * allocate memory in power-of-two pages.
2606  *
2607  * This function is also limited by MAX_ORDER.
2608  *
2609  * Memory allocated by this function must be released by free_pages_exact().
2610  */
2611 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
2612 {
2613 	unsigned int order = get_order(size);
2614 	unsigned long addr;
2615 
2616 	addr = __get_free_pages(gfp_mask, order);
2617 	return make_alloc_exact(addr, order, size);
2618 }
2619 EXPORT_SYMBOL(alloc_pages_exact);
2620 
2621 /**
2622  * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
2623  *			   pages on a node.
2624  * @nid: the preferred node ID where memory should be allocated
2625  * @size: the number of bytes to allocate
2626  * @gfp_mask: GFP flags for the allocation
2627  *
2628  * Like alloc_pages_exact(), but try to allocate on node nid first before falling
2629  * back.
2630  * Note this is not alloc_pages_exact_node() which allocates on a specific node,
2631  * but is not exact.
2632  */
2633 void *alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
2634 {
2635 	unsigned order = get_order(size);
2636 	struct page *p = alloc_pages_node(nid, gfp_mask, order);
2637 	if (!p)
2638 		return NULL;
2639 	return make_alloc_exact((unsigned long)page_address(p), order, size);
2640 }
2641 EXPORT_SYMBOL(alloc_pages_exact_nid);
2642 
2643 /**
2644  * free_pages_exact - release memory allocated via alloc_pages_exact()
2645  * @virt: the value returned by alloc_pages_exact.
2646  * @size: size of allocation, same value as passed to alloc_pages_exact().
2647  *
2648  * Release the memory allocated by a previous call to alloc_pages_exact.
2649  */
2650 void free_pages_exact(void *virt, size_t size)
2651 {
2652 	unsigned long addr = (unsigned long)virt;
2653 	unsigned long end = addr + PAGE_ALIGN(size);
2654 
2655 	while (addr < end) {
2656 		free_page(addr);
2657 		addr += PAGE_SIZE;
2658 	}
2659 }
2660 EXPORT_SYMBOL(free_pages_exact);
2661 
2662 static unsigned int nr_free_zone_pages(int offset)
2663 {
2664 	struct zoneref *z;
2665 	struct zone *zone;
2666 
2667 	/* Just pick one node, since fallback list is circular */
2668 	unsigned int sum = 0;
2669 
2670 	struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
2671 
2672 	for_each_zone_zonelist(zone, z, zonelist, offset) {
2673 		unsigned long size = zone->present_pages;
2674 		unsigned long high = high_wmark_pages(zone);
2675 		if (size > high)
2676 			sum += size - high;
2677 	}
2678 
2679 	return sum;
2680 }
2681 
2682 /*
2683  * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
2684  */
2685 unsigned int nr_free_buffer_pages(void)
2686 {
2687 	return nr_free_zone_pages(gfp_zone(GFP_USER));
2688 }
2689 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
2690 
2691 /*
2692  * Amount of free RAM allocatable within all zones
2693  */
2694 unsigned int nr_free_pagecache_pages(void)
2695 {
2696 	return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
2697 }
2698 
2699 static inline void show_node(struct zone *zone)
2700 {
2701 	if (NUMA_BUILD)
2702 		printk("Node %d ", zone_to_nid(zone));
2703 }
2704 
2705 void si_meminfo(struct sysinfo *val)
2706 {
2707 	val->totalram = totalram_pages;
2708 	val->sharedram = 0;
2709 	val->freeram = global_page_state(NR_FREE_PAGES);
2710 	val->bufferram = nr_blockdev_pages();
2711 	val->totalhigh = totalhigh_pages;
2712 	val->freehigh = nr_free_highpages();
2713 	val->mem_unit = PAGE_SIZE;
2714 }
2715 
2716 EXPORT_SYMBOL(si_meminfo);
2717 
2718 #ifdef CONFIG_NUMA
2719 void si_meminfo_node(struct sysinfo *val, int nid)
2720 {
2721 	pg_data_t *pgdat = NODE_DATA(nid);
2722 
2723 	val->totalram = pgdat->node_present_pages;
2724 	val->freeram = node_page_state(nid, NR_FREE_PAGES);
2725 #ifdef CONFIG_HIGHMEM
2726 	val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
2727 	val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
2728 			NR_FREE_PAGES);
2729 #else
2730 	val->totalhigh = 0;
2731 	val->freehigh = 0;
2732 #endif
2733 	val->mem_unit = PAGE_SIZE;
2734 }
2735 #endif
2736 
2737 /*
2738  * Determine whether the node should be displayed or not, depending on whether
2739  * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
2740  */
2741 bool skip_free_areas_node(unsigned int flags, int nid)
2742 {
2743 	bool ret = false;
2744 	unsigned int cpuset_mems_cookie;
2745 
2746 	if (!(flags & SHOW_MEM_FILTER_NODES))
2747 		goto out;
2748 
2749 	do {
2750 		cpuset_mems_cookie = get_mems_allowed();
2751 		ret = !node_isset(nid, cpuset_current_mems_allowed);
2752 	} while (!put_mems_allowed(cpuset_mems_cookie));
2753 out:
2754 	return ret;
2755 }
2756 
2757 #define K(x) ((x) << (PAGE_SHIFT-10))
2758 
2759 /*
2760  * Show free area list (used inside shift_scroll-lock stuff)
2761  * We also calculate the percentage fragmentation. We do this by counting the
2762  * memory on each free list with the exception of the first item on the list.
2763  * Suppresses nodes that are not allowed by current's cpuset if
2764  * SHOW_MEM_FILTER_NODES is passed.
2765  */
2766 void show_free_areas(unsigned int filter)
2767 {
2768 	int cpu;
2769 	struct zone *zone;
2770 
2771 	for_each_populated_zone(zone) {
2772 		if (skip_free_areas_node(filter, zone_to_nid(zone)))
2773 			continue;
2774 		show_node(zone);
2775 		printk("%s per-cpu:\n", zone->name);
2776 
2777 		for_each_online_cpu(cpu) {
2778 			struct per_cpu_pageset *pageset;
2779 
2780 			pageset = per_cpu_ptr(zone->pageset, cpu);
2781 
2782 			printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
2783 			       cpu, pageset->pcp.high,
2784 			       pageset->pcp.batch, pageset->pcp.count);
2785 		}
2786 	}
2787 
2788 	printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
2789 		" active_file:%lu inactive_file:%lu isolated_file:%lu\n"
2790 		" unevictable:%lu"
2791 		" dirty:%lu writeback:%lu unstable:%lu\n"
2792 		" free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n"
2793 		" mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n",
2794 		global_page_state(NR_ACTIVE_ANON),
2795 		global_page_state(NR_INACTIVE_ANON),
2796 		global_page_state(NR_ISOLATED_ANON),
2797 		global_page_state(NR_ACTIVE_FILE),
2798 		global_page_state(NR_INACTIVE_FILE),
2799 		global_page_state(NR_ISOLATED_FILE),
2800 		global_page_state(NR_UNEVICTABLE),
2801 		global_page_state(NR_FILE_DIRTY),
2802 		global_page_state(NR_WRITEBACK),
2803 		global_page_state(NR_UNSTABLE_NFS),
2804 		global_page_state(NR_FREE_PAGES),
2805 		global_page_state(NR_SLAB_RECLAIMABLE),
2806 		global_page_state(NR_SLAB_UNRECLAIMABLE),
2807 		global_page_state(NR_FILE_MAPPED),
2808 		global_page_state(NR_SHMEM),
2809 		global_page_state(NR_PAGETABLE),
2810 		global_page_state(NR_BOUNCE));
2811 
2812 	for_each_populated_zone(zone) {
2813 		int i;
2814 
2815 		if (skip_free_areas_node(filter, zone_to_nid(zone)))
2816 			continue;
2817 		show_node(zone);
2818 		printk("%s"
2819 			" free:%lukB"
2820 			" min:%lukB"
2821 			" low:%lukB"
2822 			" high:%lukB"
2823 			" active_anon:%lukB"
2824 			" inactive_anon:%lukB"
2825 			" active_file:%lukB"
2826 			" inactive_file:%lukB"
2827 			" unevictable:%lukB"
2828 			" isolated(anon):%lukB"
2829 			" isolated(file):%lukB"
2830 			" present:%lukB"
2831 			" mlocked:%lukB"
2832 			" dirty:%lukB"
2833 			" writeback:%lukB"
2834 			" mapped:%lukB"
2835 			" shmem:%lukB"
2836 			" slab_reclaimable:%lukB"
2837 			" slab_unreclaimable:%lukB"
2838 			" kernel_stack:%lukB"
2839 			" pagetables:%lukB"
2840 			" unstable:%lukB"
2841 			" bounce:%lukB"
2842 			" writeback_tmp:%lukB"
2843 			" pages_scanned:%lu"
2844 			" all_unreclaimable? %s"
2845 			"\n",
2846 			zone->name,
2847 			K(zone_page_state(zone, NR_FREE_PAGES)),
2848 			K(min_wmark_pages(zone)),
2849 			K(low_wmark_pages(zone)),
2850 			K(high_wmark_pages(zone)),
2851 			K(zone_page_state(zone, NR_ACTIVE_ANON)),
2852 			K(zone_page_state(zone, NR_INACTIVE_ANON)),
2853 			K(zone_page_state(zone, NR_ACTIVE_FILE)),
2854 			K(zone_page_state(zone, NR_INACTIVE_FILE)),
2855 			K(zone_page_state(zone, NR_UNEVICTABLE)),
2856 			K(zone_page_state(zone, NR_ISOLATED_ANON)),
2857 			K(zone_page_state(zone, NR_ISOLATED_FILE)),
2858 			K(zone->present_pages),
2859 			K(zone_page_state(zone, NR_MLOCK)),
2860 			K(zone_page_state(zone, NR_FILE_DIRTY)),
2861 			K(zone_page_state(zone, NR_WRITEBACK)),
2862 			K(zone_page_state(zone, NR_FILE_MAPPED)),
2863 			K(zone_page_state(zone, NR_SHMEM)),
2864 			K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
2865 			K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
2866 			zone_page_state(zone, NR_KERNEL_STACK) *
2867 				THREAD_SIZE / 1024,
2868 			K(zone_page_state(zone, NR_PAGETABLE)),
2869 			K(zone_page_state(zone, NR_UNSTABLE_NFS)),
2870 			K(zone_page_state(zone, NR_BOUNCE)),
2871 			K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
2872 			zone->pages_scanned,
2873 			(zone->all_unreclaimable ? "yes" : "no")
2874 			);
2875 		printk("lowmem_reserve[]:");
2876 		for (i = 0; i < MAX_NR_ZONES; i++)
2877 			printk(" %lu", zone->lowmem_reserve[i]);
2878 		printk("\n");
2879 	}
2880 
2881 	for_each_populated_zone(zone) {
2882  		unsigned long nr[MAX_ORDER], flags, order, total = 0;
2883 
2884 		if (skip_free_areas_node(filter, zone_to_nid(zone)))
2885 			continue;
2886 		show_node(zone);
2887 		printk("%s: ", zone->name);
2888 
2889 		spin_lock_irqsave(&zone->lock, flags);
2890 		for (order = 0; order < MAX_ORDER; order++) {
2891 			nr[order] = zone->free_area[order].nr_free;
2892 			total += nr[order] << order;
2893 		}
2894 		spin_unlock_irqrestore(&zone->lock, flags);
2895 		for (order = 0; order < MAX_ORDER; order++)
2896 			printk("%lu*%lukB ", nr[order], K(1UL) << order);
2897 		printk("= %lukB\n", K(total));
2898 	}
2899 
2900 	printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
2901 
2902 	show_swap_cache_info();
2903 }
2904 
2905 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
2906 {
2907 	zoneref->zone = zone;
2908 	zoneref->zone_idx = zone_idx(zone);
2909 }
2910 
2911 /*
2912  * Builds allocation fallback zone lists.
2913  *
2914  * Add all populated zones of a node to the zonelist.
2915  */
2916 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
2917 				int nr_zones, enum zone_type zone_type)
2918 {
2919 	struct zone *zone;
2920 
2921 	BUG_ON(zone_type >= MAX_NR_ZONES);
2922 	zone_type++;
2923 
2924 	do {
2925 		zone_type--;
2926 		zone = pgdat->node_zones + zone_type;
2927 		if (populated_zone(zone)) {
2928 			zoneref_set_zone(zone,
2929 				&zonelist->_zonerefs[nr_zones++]);
2930 			check_highest_zone(zone_type);
2931 		}
2932 
2933 	} while (zone_type);
2934 	return nr_zones;
2935 }
2936 
2937 
2938 /*
2939  *  zonelist_order:
2940  *  0 = automatic detection of better ordering.
2941  *  1 = order by ([node] distance, -zonetype)
2942  *  2 = order by (-zonetype, [node] distance)
2943  *
2944  *  If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
2945  *  the same zonelist. So only NUMA can configure this param.
2946  */
2947 #define ZONELIST_ORDER_DEFAULT  0
2948 #define ZONELIST_ORDER_NODE     1
2949 #define ZONELIST_ORDER_ZONE     2
2950 
2951 /* zonelist order in the kernel.
2952  * set_zonelist_order() will set this to NODE or ZONE.
2953  */
2954 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
2955 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
2956 
2957 
2958 #ifdef CONFIG_NUMA
2959 /* The value user specified ....changed by config */
2960 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
2961 /* string for sysctl */
2962 #define NUMA_ZONELIST_ORDER_LEN	16
2963 char numa_zonelist_order[16] = "default";
2964 
2965 /*
2966  * interface for configure zonelist ordering.
2967  * command line option "numa_zonelist_order"
2968  *	= "[dD]efault	- default, automatic configuration.
2969  *	= "[nN]ode 	- order by node locality, then by zone within node
2970  *	= "[zZ]one      - order by zone, then by locality within zone
2971  */
2972 
2973 static int __parse_numa_zonelist_order(char *s)
2974 {
2975 	if (*s == 'd' || *s == 'D') {
2976 		user_zonelist_order = ZONELIST_ORDER_DEFAULT;
2977 	} else if (*s == 'n' || *s == 'N') {
2978 		user_zonelist_order = ZONELIST_ORDER_NODE;
2979 	} else if (*s == 'z' || *s == 'Z') {
2980 		user_zonelist_order = ZONELIST_ORDER_ZONE;
2981 	} else {
2982 		printk(KERN_WARNING
2983 			"Ignoring invalid numa_zonelist_order value:  "
2984 			"%s\n", s);
2985 		return -EINVAL;
2986 	}
2987 	return 0;
2988 }
2989 
2990 static __init int setup_numa_zonelist_order(char *s)
2991 {
2992 	int ret;
2993 
2994 	if (!s)
2995 		return 0;
2996 
2997 	ret = __parse_numa_zonelist_order(s);
2998 	if (ret == 0)
2999 		strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
3000 
3001 	return ret;
3002 }
3003 early_param("numa_zonelist_order", setup_numa_zonelist_order);
3004 
3005 /*
3006  * sysctl handler for numa_zonelist_order
3007  */
3008 int numa_zonelist_order_handler(ctl_table *table, int write,
3009 		void __user *buffer, size_t *length,
3010 		loff_t *ppos)
3011 {
3012 	char saved_string[NUMA_ZONELIST_ORDER_LEN];
3013 	int ret;
3014 	static DEFINE_MUTEX(zl_order_mutex);
3015 
3016 	mutex_lock(&zl_order_mutex);
3017 	if (write)
3018 		strcpy(saved_string, (char*)table->data);
3019 	ret = proc_dostring(table, write, buffer, length, ppos);
3020 	if (ret)
3021 		goto out;
3022 	if (write) {
3023 		int oldval = user_zonelist_order;
3024 		if (__parse_numa_zonelist_order((char*)table->data)) {
3025 			/*
3026 			 * bogus value.  restore saved string
3027 			 */
3028 			strncpy((char*)table->data, saved_string,
3029 				NUMA_ZONELIST_ORDER_LEN);
3030 			user_zonelist_order = oldval;
3031 		} else if (oldval != user_zonelist_order) {
3032 			mutex_lock(&zonelists_mutex);
3033 			build_all_zonelists(NULL);
3034 			mutex_unlock(&zonelists_mutex);
3035 		}
3036 	}
3037 out:
3038 	mutex_unlock(&zl_order_mutex);
3039 	return ret;
3040 }
3041 
3042 
3043 #define MAX_NODE_LOAD (nr_online_nodes)
3044 static int node_load[MAX_NUMNODES];
3045 
3046 /**
3047  * find_next_best_node - find the next node that should appear in a given node's fallback list
3048  * @node: node whose fallback list we're appending
3049  * @used_node_mask: nodemask_t of already used nodes
3050  *
3051  * We use a number of factors to determine which is the next node that should
3052  * appear on a given node's fallback list.  The node should not have appeared
3053  * already in @node's fallback list, and it should be the next closest node
3054  * according to the distance array (which contains arbitrary distance values
3055  * from each node to each node in the system), and should also prefer nodes
3056  * with no CPUs, since presumably they'll have very little allocation pressure
3057  * on them otherwise.
3058  * It returns -1 if no node is found.
3059  */
3060 static int find_next_best_node(int node, nodemask_t *used_node_mask)
3061 {
3062 	int n, val;
3063 	int min_val = INT_MAX;
3064 	int best_node = -1;
3065 	const struct cpumask *tmp = cpumask_of_node(0);
3066 
3067 	/* Use the local node if we haven't already */
3068 	if (!node_isset(node, *used_node_mask)) {
3069 		node_set(node, *used_node_mask);
3070 		return node;
3071 	}
3072 
3073 	for_each_node_state(n, N_HIGH_MEMORY) {
3074 
3075 		/* Don't want a node to appear more than once */
3076 		if (node_isset(n, *used_node_mask))
3077 			continue;
3078 
3079 		/* Use the distance array to find the distance */
3080 		val = node_distance(node, n);
3081 
3082 		/* Penalize nodes under us ("prefer the next node") */
3083 		val += (n < node);
3084 
3085 		/* Give preference to headless and unused nodes */
3086 		tmp = cpumask_of_node(n);
3087 		if (!cpumask_empty(tmp))
3088 			val += PENALTY_FOR_NODE_WITH_CPUS;
3089 
3090 		/* Slight preference for less loaded node */
3091 		val *= (MAX_NODE_LOAD*MAX_NUMNODES);
3092 		val += node_load[n];
3093 
3094 		if (val < min_val) {
3095 			min_val = val;
3096 			best_node = n;
3097 		}
3098 	}
3099 
3100 	if (best_node >= 0)
3101 		node_set(best_node, *used_node_mask);
3102 
3103 	return best_node;
3104 }
3105 
3106 
3107 /*
3108  * Build zonelists ordered by node and zones within node.
3109  * This results in maximum locality--normal zone overflows into local
3110  * DMA zone, if any--but risks exhausting DMA zone.
3111  */
3112 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
3113 {
3114 	int j;
3115 	struct zonelist *zonelist;
3116 
3117 	zonelist = &pgdat->node_zonelists[0];
3118 	for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
3119 		;
3120 	j = build_zonelists_node(NODE_DATA(node), zonelist, j,
3121 							MAX_NR_ZONES - 1);
3122 	zonelist->_zonerefs[j].zone = NULL;
3123 	zonelist->_zonerefs[j].zone_idx = 0;
3124 }
3125 
3126 /*
3127  * Build gfp_thisnode zonelists
3128  */
3129 static void build_thisnode_zonelists(pg_data_t *pgdat)
3130 {
3131 	int j;
3132 	struct zonelist *zonelist;
3133 
3134 	zonelist = &pgdat->node_zonelists[1];
3135 	j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
3136 	zonelist->_zonerefs[j].zone = NULL;
3137 	zonelist->_zonerefs[j].zone_idx = 0;
3138 }
3139 
3140 /*
3141  * Build zonelists ordered by zone and nodes within zones.
3142  * This results in conserving DMA zone[s] until all Normal memory is
3143  * exhausted, but results in overflowing to remote node while memory
3144  * may still exist in local DMA zone.
3145  */
3146 static int node_order[MAX_NUMNODES];
3147 
3148 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
3149 {
3150 	int pos, j, node;
3151 	int zone_type;		/* needs to be signed */
3152 	struct zone *z;
3153 	struct zonelist *zonelist;
3154 
3155 	zonelist = &pgdat->node_zonelists[0];
3156 	pos = 0;
3157 	for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
3158 		for (j = 0; j < nr_nodes; j++) {
3159 			node = node_order[j];
3160 			z = &NODE_DATA(node)->node_zones[zone_type];
3161 			if (populated_zone(z)) {
3162 				zoneref_set_zone(z,
3163 					&zonelist->_zonerefs[pos++]);
3164 				check_highest_zone(zone_type);
3165 			}
3166 		}
3167 	}
3168 	zonelist->_zonerefs[pos].zone = NULL;
3169 	zonelist->_zonerefs[pos].zone_idx = 0;
3170 }
3171 
3172 static int default_zonelist_order(void)
3173 {
3174 	int nid, zone_type;
3175 	unsigned long low_kmem_size,total_size;
3176 	struct zone *z;
3177 	int average_size;
3178 	/*
3179          * ZONE_DMA and ZONE_DMA32 can be very small area in the system.
3180 	 * If they are really small and used heavily, the system can fall
3181 	 * into OOM very easily.
3182 	 * This function detect ZONE_DMA/DMA32 size and configures zone order.
3183 	 */
3184 	/* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
3185 	low_kmem_size = 0;
3186 	total_size = 0;
3187 	for_each_online_node(nid) {
3188 		for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
3189 			z = &NODE_DATA(nid)->node_zones[zone_type];
3190 			if (populated_zone(z)) {
3191 				if (zone_type < ZONE_NORMAL)
3192 					low_kmem_size += z->present_pages;
3193 				total_size += z->present_pages;
3194 			} else if (zone_type == ZONE_NORMAL) {
3195 				/*
3196 				 * If any node has only lowmem, then node order
3197 				 * is preferred to allow kernel allocations
3198 				 * locally; otherwise, they can easily infringe
3199 				 * on other nodes when there is an abundance of
3200 				 * lowmem available to allocate from.
3201 				 */
3202 				return ZONELIST_ORDER_NODE;
3203 			}
3204 		}
3205 	}
3206 	if (!low_kmem_size ||  /* there are no DMA area. */
3207 	    low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
3208 		return ZONELIST_ORDER_NODE;
3209 	/*
3210 	 * look into each node's config.
3211   	 * If there is a node whose DMA/DMA32 memory is very big area on
3212  	 * local memory, NODE_ORDER may be suitable.
3213          */
3214 	average_size = total_size /
3215 				(nodes_weight(node_states[N_HIGH_MEMORY]) + 1);
3216 	for_each_online_node(nid) {
3217 		low_kmem_size = 0;
3218 		total_size = 0;
3219 		for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
3220 			z = &NODE_DATA(nid)->node_zones[zone_type];
3221 			if (populated_zone(z)) {
3222 				if (zone_type < ZONE_NORMAL)
3223 					low_kmem_size += z->present_pages;
3224 				total_size += z->present_pages;
3225 			}
3226 		}
3227 		if (low_kmem_size &&
3228 		    total_size > average_size && /* ignore small node */
3229 		    low_kmem_size > total_size * 70/100)
3230 			return ZONELIST_ORDER_NODE;
3231 	}
3232 	return ZONELIST_ORDER_ZONE;
3233 }
3234 
3235 static void set_zonelist_order(void)
3236 {
3237 	if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
3238 		current_zonelist_order = default_zonelist_order();
3239 	else
3240 		current_zonelist_order = user_zonelist_order;
3241 }
3242 
3243 static void build_zonelists(pg_data_t *pgdat)
3244 {
3245 	int j, node, load;
3246 	enum zone_type i;
3247 	nodemask_t used_mask;
3248 	int local_node, prev_node;
3249 	struct zonelist *zonelist;
3250 	int order = current_zonelist_order;
3251 
3252 	/* initialize zonelists */
3253 	for (i = 0; i < MAX_ZONELISTS; i++) {
3254 		zonelist = pgdat->node_zonelists + i;
3255 		zonelist->_zonerefs[0].zone = NULL;
3256 		zonelist->_zonerefs[0].zone_idx = 0;
3257 	}
3258 
3259 	/* NUMA-aware ordering of nodes */
3260 	local_node = pgdat->node_id;
3261 	load = nr_online_nodes;
3262 	prev_node = local_node;
3263 	nodes_clear(used_mask);
3264 
3265 	memset(node_order, 0, sizeof(node_order));
3266 	j = 0;
3267 
3268 	while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
3269 		int distance = node_distance(local_node, node);
3270 
3271 		/*
3272 		 * If another node is sufficiently far away then it is better
3273 		 * to reclaim pages in a zone before going off node.
3274 		 */
3275 		if (distance > RECLAIM_DISTANCE)
3276 			zone_reclaim_mode = 1;
3277 
3278 		/*
3279 		 * We don't want to pressure a particular node.
3280 		 * So adding penalty to the first node in same
3281 		 * distance group to make it round-robin.
3282 		 */
3283 		if (distance != node_distance(local_node, prev_node))
3284 			node_load[node] = load;
3285 
3286 		prev_node = node;
3287 		load--;
3288 		if (order == ZONELIST_ORDER_NODE)
3289 			build_zonelists_in_node_order(pgdat, node);
3290 		else
3291 			node_order[j++] = node;	/* remember order */
3292 	}
3293 
3294 	if (order == ZONELIST_ORDER_ZONE) {
3295 		/* calculate node order -- i.e., DMA last! */
3296 		build_zonelists_in_zone_order(pgdat, j);
3297 	}
3298 
3299 	build_thisnode_zonelists(pgdat);
3300 }
3301 
3302 /* Construct the zonelist performance cache - see further mmzone.h */
3303 static void build_zonelist_cache(pg_data_t *pgdat)
3304 {
3305 	struct zonelist *zonelist;
3306 	struct zonelist_cache *zlc;
3307 	struct zoneref *z;
3308 
3309 	zonelist = &pgdat->node_zonelists[0];
3310 	zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
3311 	bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
3312 	for (z = zonelist->_zonerefs; z->zone; z++)
3313 		zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
3314 }
3315 
3316 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
3317 /*
3318  * Return node id of node used for "local" allocations.
3319  * I.e., first node id of first zone in arg node's generic zonelist.
3320  * Used for initializing percpu 'numa_mem', which is used primarily
3321  * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
3322  */
3323 int local_memory_node(int node)
3324 {
3325 	struct zone *zone;
3326 
3327 	(void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
3328 				   gfp_zone(GFP_KERNEL),
3329 				   NULL,
3330 				   &zone);
3331 	return zone->node;
3332 }
3333 #endif
3334 
3335 #else	/* CONFIG_NUMA */
3336 
3337 static void set_zonelist_order(void)
3338 {
3339 	current_zonelist_order = ZONELIST_ORDER_ZONE;
3340 }
3341 
3342 static void build_zonelists(pg_data_t *pgdat)
3343 {
3344 	int node, local_node;
3345 	enum zone_type j;
3346 	struct zonelist *zonelist;
3347 
3348 	local_node = pgdat->node_id;
3349 
3350 	zonelist = &pgdat->node_zonelists[0];
3351 	j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
3352 
3353 	/*
3354 	 * Now we build the zonelist so that it contains the zones
3355 	 * of all the other nodes.
3356 	 * We don't want to pressure a particular node, so when
3357 	 * building the zones for node N, we make sure that the
3358 	 * zones coming right after the local ones are those from
3359 	 * node N+1 (modulo N)
3360 	 */
3361 	for (node = local_node + 1; node < MAX_NUMNODES; node++) {
3362 		if (!node_online(node))
3363 			continue;
3364 		j = build_zonelists_node(NODE_DATA(node), zonelist, j,
3365 							MAX_NR_ZONES - 1);
3366 	}
3367 	for (node = 0; node < local_node; node++) {
3368 		if (!node_online(node))
3369 			continue;
3370 		j = build_zonelists_node(NODE_DATA(node), zonelist, j,
3371 							MAX_NR_ZONES - 1);
3372 	}
3373 
3374 	zonelist->_zonerefs[j].zone = NULL;
3375 	zonelist->_zonerefs[j].zone_idx = 0;
3376 }
3377 
3378 /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
3379 static void build_zonelist_cache(pg_data_t *pgdat)
3380 {
3381 	pgdat->node_zonelists[0].zlcache_ptr = NULL;
3382 }
3383 
3384 #endif	/* CONFIG_NUMA */
3385 
3386 /*
3387  * Boot pageset table. One per cpu which is going to be used for all
3388  * zones and all nodes. The parameters will be set in such a way
3389  * that an item put on a list will immediately be handed over to
3390  * the buddy list. This is safe since pageset manipulation is done
3391  * with interrupts disabled.
3392  *
3393  * The boot_pagesets must be kept even after bootup is complete for
3394  * unused processors and/or zones. They do play a role for bootstrapping
3395  * hotplugged processors.
3396  *
3397  * zoneinfo_show() and maybe other functions do
3398  * not check if the processor is online before following the pageset pointer.
3399  * Other parts of the kernel may not check if the zone is available.
3400  */
3401 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
3402 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
3403 static void setup_zone_pageset(struct zone *zone);
3404 
3405 /*
3406  * Global mutex to protect against size modification of zonelists
3407  * as well as to serialize pageset setup for the new populated zone.
3408  */
3409 DEFINE_MUTEX(zonelists_mutex);
3410 
3411 /* return values int ....just for stop_machine() */
3412 static __init_refok int __build_all_zonelists(void *data)
3413 {
3414 	int nid;
3415 	int cpu;
3416 
3417 #ifdef CONFIG_NUMA
3418 	memset(node_load, 0, sizeof(node_load));
3419 #endif
3420 	for_each_online_node(nid) {
3421 		pg_data_t *pgdat = NODE_DATA(nid);
3422 
3423 		build_zonelists(pgdat);
3424 		build_zonelist_cache(pgdat);
3425 	}
3426 
3427 	/*
3428 	 * Initialize the boot_pagesets that are going to be used
3429 	 * for bootstrapping processors. The real pagesets for
3430 	 * each zone will be allocated later when the per cpu
3431 	 * allocator is available.
3432 	 *
3433 	 * boot_pagesets are used also for bootstrapping offline
3434 	 * cpus if the system is already booted because the pagesets
3435 	 * are needed to initialize allocators on a specific cpu too.
3436 	 * F.e. the percpu allocator needs the page allocator which
3437 	 * needs the percpu allocator in order to allocate its pagesets
3438 	 * (a chicken-egg dilemma).
3439 	 */
3440 	for_each_possible_cpu(cpu) {
3441 		setup_pageset(&per_cpu(boot_pageset, cpu), 0);
3442 
3443 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
3444 		/*
3445 		 * We now know the "local memory node" for each node--
3446 		 * i.e., the node of the first zone in the generic zonelist.
3447 		 * Set up numa_mem percpu variable for on-line cpus.  During
3448 		 * boot, only the boot cpu should be on-line;  we'll init the
3449 		 * secondary cpus' numa_mem as they come on-line.  During
3450 		 * node/memory hotplug, we'll fixup all on-line cpus.
3451 		 */
3452 		if (cpu_online(cpu))
3453 			set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
3454 #endif
3455 	}
3456 
3457 	return 0;
3458 }
3459 
3460 /*
3461  * Called with zonelists_mutex held always
3462  * unless system_state == SYSTEM_BOOTING.
3463  */
3464 void __ref build_all_zonelists(void *data)
3465 {
3466 	set_zonelist_order();
3467 
3468 	if (system_state == SYSTEM_BOOTING) {
3469 		__build_all_zonelists(NULL);
3470 		mminit_verify_zonelist();
3471 		cpuset_init_current_mems_allowed();
3472 	} else {
3473 		/* we have to stop all cpus to guarantee there is no user
3474 		   of zonelist */
3475 #ifdef CONFIG_MEMORY_HOTPLUG
3476 		if (data)
3477 			setup_zone_pageset((struct zone *)data);
3478 #endif
3479 		stop_machine(__build_all_zonelists, NULL, NULL);
3480 		/* cpuset refresh routine should be here */
3481 	}
3482 	vm_total_pages = nr_free_pagecache_pages();
3483 	/*
3484 	 * Disable grouping by mobility if the number of pages in the
3485 	 * system is too low to allow the mechanism to work. It would be
3486 	 * more accurate, but expensive to check per-zone. This check is
3487 	 * made on memory-hotadd so a system can start with mobility
3488 	 * disabled and enable it later
3489 	 */
3490 	if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
3491 		page_group_by_mobility_disabled = 1;
3492 	else
3493 		page_group_by_mobility_disabled = 0;
3494 
3495 	printk("Built %i zonelists in %s order, mobility grouping %s.  "
3496 		"Total pages: %ld\n",
3497 			nr_online_nodes,
3498 			zonelist_order_name[current_zonelist_order],
3499 			page_group_by_mobility_disabled ? "off" : "on",
3500 			vm_total_pages);
3501 #ifdef CONFIG_NUMA
3502 	printk("Policy zone: %s\n", zone_names[policy_zone]);
3503 #endif
3504 }
3505 
3506 /*
3507  * Helper functions to size the waitqueue hash table.
3508  * Essentially these want to choose hash table sizes sufficiently
3509  * large so that collisions trying to wait on pages are rare.
3510  * But in fact, the number of active page waitqueues on typical
3511  * systems is ridiculously low, less than 200. So this is even
3512  * conservative, even though it seems large.
3513  *
3514  * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
3515  * waitqueues, i.e. the size of the waitq table given the number of pages.
3516  */
3517 #define PAGES_PER_WAITQUEUE	256
3518 
3519 #ifndef CONFIG_MEMORY_HOTPLUG
3520 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
3521 {
3522 	unsigned long size = 1;
3523 
3524 	pages /= PAGES_PER_WAITQUEUE;
3525 
3526 	while (size < pages)
3527 		size <<= 1;
3528 
3529 	/*
3530 	 * Once we have dozens or even hundreds of threads sleeping
3531 	 * on IO we've got bigger problems than wait queue collision.
3532 	 * Limit the size of the wait table to a reasonable size.
3533 	 */
3534 	size = min(size, 4096UL);
3535 
3536 	return max(size, 4UL);
3537 }
3538 #else
3539 /*
3540  * A zone's size might be changed by hot-add, so it is not possible to determine
3541  * a suitable size for its wait_table.  So we use the maximum size now.
3542  *
3543  * The max wait table size = 4096 x sizeof(wait_queue_head_t).   ie:
3544  *
3545  *    i386 (preemption config)    : 4096 x 16 = 64Kbyte.
3546  *    ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
3547  *    ia64, x86-64 (preemption)   : 4096 x 24 = 96Kbyte.
3548  *
3549  * The maximum entries are prepared when a zone's memory is (512K + 256) pages
3550  * or more by the traditional way. (See above).  It equals:
3551  *
3552  *    i386, x86-64, powerpc(4K page size) : =  ( 2G + 1M)byte.
3553  *    ia64(16K page size)                 : =  ( 8G + 4M)byte.
3554  *    powerpc (64K page size)             : =  (32G +16M)byte.
3555  */
3556 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
3557 {
3558 	return 4096UL;
3559 }
3560 #endif
3561 
3562 /*
3563  * This is an integer logarithm so that shifts can be used later
3564  * to extract the more random high bits from the multiplicative
3565  * hash function before the remainder is taken.
3566  */
3567 static inline unsigned long wait_table_bits(unsigned long size)
3568 {
3569 	return ffz(~size);
3570 }
3571 
3572 #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
3573 
3574 /*
3575  * Check if a pageblock contains reserved pages
3576  */
3577 static int pageblock_is_reserved(unsigned long start_pfn, unsigned long end_pfn)
3578 {
3579 	unsigned long pfn;
3580 
3581 	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
3582 		if (!pfn_valid_within(pfn) || PageReserved(pfn_to_page(pfn)))
3583 			return 1;
3584 	}
3585 	return 0;
3586 }
3587 
3588 /*
3589  * Mark a number of pageblocks as MIGRATE_RESERVE. The number
3590  * of blocks reserved is based on min_wmark_pages(zone). The memory within
3591  * the reserve will tend to store contiguous free pages. Setting min_free_kbytes
3592  * higher will lead to a bigger reserve which will get freed as contiguous
3593  * blocks as reclaim kicks in
3594  */
3595 static void setup_zone_migrate_reserve(struct zone *zone)
3596 {
3597 	unsigned long start_pfn, pfn, end_pfn, block_end_pfn;
3598 	struct page *page;
3599 	unsigned long block_migratetype;
3600 	int reserve;
3601 
3602 	/*
3603 	 * Get the start pfn, end pfn and the number of blocks to reserve
3604 	 * We have to be careful to be aligned to pageblock_nr_pages to
3605 	 * make sure that we always check pfn_valid for the first page in
3606 	 * the block.
3607 	 */
3608 	start_pfn = zone->zone_start_pfn;
3609 	end_pfn = start_pfn + zone->spanned_pages;
3610 	start_pfn = roundup(start_pfn, pageblock_nr_pages);
3611 	reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >>
3612 							pageblock_order;
3613 
3614 	/*
3615 	 * Reserve blocks are generally in place to help high-order atomic
3616 	 * allocations that are short-lived. A min_free_kbytes value that
3617 	 * would result in more than 2 reserve blocks for atomic allocations
3618 	 * is assumed to be in place to help anti-fragmentation for the
3619 	 * future allocation of hugepages at runtime.
3620 	 */
3621 	reserve = min(2, reserve);
3622 
3623 	for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
3624 		if (!pfn_valid(pfn))
3625 			continue;
3626 		page = pfn_to_page(pfn);
3627 
3628 		/* Watch out for overlapping nodes */
3629 		if (page_to_nid(page) != zone_to_nid(zone))
3630 			continue;
3631 
3632 		block_migratetype = get_pageblock_migratetype(page);
3633 
3634 		/* Only test what is necessary when the reserves are not met */
3635 		if (reserve > 0) {
3636 			/*
3637 			 * Blocks with reserved pages will never free, skip
3638 			 * them.
3639 			 */
3640 			block_end_pfn = min(pfn + pageblock_nr_pages, end_pfn);
3641 			if (pageblock_is_reserved(pfn, block_end_pfn))
3642 				continue;
3643 
3644 			/* If this block is reserved, account for it */
3645 			if (block_migratetype == MIGRATE_RESERVE) {
3646 				reserve--;
3647 				continue;
3648 			}
3649 
3650 			/* Suitable for reserving if this block is movable */
3651 			if (block_migratetype == MIGRATE_MOVABLE) {
3652 				set_pageblock_migratetype(page,
3653 							MIGRATE_RESERVE);
3654 				move_freepages_block(zone, page,
3655 							MIGRATE_RESERVE);
3656 				reserve--;
3657 				continue;
3658 			}
3659 		}
3660 
3661 		/*
3662 		 * If the reserve is met and this is a previous reserved block,
3663 		 * take it back
3664 		 */
3665 		if (block_migratetype == MIGRATE_RESERVE) {
3666 			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
3667 			move_freepages_block(zone, page, MIGRATE_MOVABLE);
3668 		}
3669 	}
3670 }
3671 
3672 /*
3673  * Initially all pages are reserved - free ones are freed
3674  * up by free_all_bootmem() once the early boot process is
3675  * done. Non-atomic initialization, single-pass.
3676  */
3677 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
3678 		unsigned long start_pfn, enum memmap_context context)
3679 {
3680 	struct page *page;
3681 	unsigned long end_pfn = start_pfn + size;
3682 	unsigned long pfn;
3683 	struct zone *z;
3684 
3685 	if (highest_memmap_pfn < end_pfn - 1)
3686 		highest_memmap_pfn = end_pfn - 1;
3687 
3688 	z = &NODE_DATA(nid)->node_zones[zone];
3689 	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
3690 		/*
3691 		 * There can be holes in boot-time mem_map[]s
3692 		 * handed to this function.  They do not
3693 		 * exist on hotplugged memory.
3694 		 */
3695 		if (context == MEMMAP_EARLY) {
3696 			if (!early_pfn_valid(pfn))
3697 				continue;
3698 			if (!early_pfn_in_nid(pfn, nid))
3699 				continue;
3700 		}
3701 		page = pfn_to_page(pfn);
3702 		set_page_links(page, zone, nid, pfn);
3703 		mminit_verify_page_links(page, zone, nid, pfn);
3704 		init_page_count(page);
3705 		reset_page_mapcount(page);
3706 		SetPageReserved(page);
3707 		/*
3708 		 * Mark the block movable so that blocks are reserved for
3709 		 * movable at startup. This will force kernel allocations
3710 		 * to reserve their blocks rather than leaking throughout
3711 		 * the address space during boot when many long-lived
3712 		 * kernel allocations are made. Later some blocks near
3713 		 * the start are marked MIGRATE_RESERVE by
3714 		 * setup_zone_migrate_reserve()
3715 		 *
3716 		 * bitmap is created for zone's valid pfn range. but memmap
3717 		 * can be created for invalid pages (for alignment)
3718 		 * check here not to call set_pageblock_migratetype() against
3719 		 * pfn out of zone.
3720 		 */
3721 		if ((z->zone_start_pfn <= pfn)
3722 		    && (pfn < z->zone_start_pfn + z->spanned_pages)
3723 		    && !(pfn & (pageblock_nr_pages - 1)))
3724 			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
3725 
3726 		INIT_LIST_HEAD(&page->lru);
3727 #ifdef WANT_PAGE_VIRTUAL
3728 		/* The shift won't overflow because ZONE_NORMAL is below 4G. */
3729 		if (!is_highmem_idx(zone))
3730 			set_page_address(page, __va(pfn << PAGE_SHIFT));
3731 #endif
3732 	}
3733 }
3734 
3735 static void __meminit zone_init_free_lists(struct zone *zone)
3736 {
3737 	int order, t;
3738 	for_each_migratetype_order(order, t) {
3739 		INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
3740 		zone->free_area[order].nr_free = 0;
3741 	}
3742 }
3743 
3744 #ifndef __HAVE_ARCH_MEMMAP_INIT
3745 #define memmap_init(size, nid, zone, start_pfn) \
3746 	memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
3747 #endif
3748 
3749 static int zone_batchsize(struct zone *zone)
3750 {
3751 #ifdef CONFIG_MMU
3752 	int batch;
3753 
3754 	/*
3755 	 * The per-cpu-pages pools are set to around 1000th of the
3756 	 * size of the zone.  But no more than 1/2 of a meg.
3757 	 *
3758 	 * OK, so we don't know how big the cache is.  So guess.
3759 	 */
3760 	batch = zone->present_pages / 1024;
3761 	if (batch * PAGE_SIZE > 512 * 1024)
3762 		batch = (512 * 1024) / PAGE_SIZE;
3763 	batch /= 4;		/* We effectively *= 4 below */
3764 	if (batch < 1)
3765 		batch = 1;
3766 
3767 	/*
3768 	 * Clamp the batch to a 2^n - 1 value. Having a power
3769 	 * of 2 value was found to be more likely to have
3770 	 * suboptimal cache aliasing properties in some cases.
3771 	 *
3772 	 * For example if 2 tasks are alternately allocating
3773 	 * batches of pages, one task can end up with a lot
3774 	 * of pages of one half of the possible page colors
3775 	 * and the other with pages of the other colors.
3776 	 */
3777 	batch = rounddown_pow_of_two(batch + batch/2) - 1;
3778 
3779 	return batch;
3780 
3781 #else
3782 	/* The deferral and batching of frees should be suppressed under NOMMU
3783 	 * conditions.
3784 	 *
3785 	 * The problem is that NOMMU needs to be able to allocate large chunks
3786 	 * of contiguous memory as there's no hardware page translation to
3787 	 * assemble apparent contiguous memory from discontiguous pages.
3788 	 *
3789 	 * Queueing large contiguous runs of pages for batching, however,
3790 	 * causes the pages to actually be freed in smaller chunks.  As there
3791 	 * can be a significant delay between the individual batches being
3792 	 * recycled, this leads to the once large chunks of space being
3793 	 * fragmented and becoming unavailable for high-order allocations.
3794 	 */
3795 	return 0;
3796 #endif
3797 }
3798 
3799 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
3800 {
3801 	struct per_cpu_pages *pcp;
3802 	int migratetype;
3803 
3804 	memset(p, 0, sizeof(*p));
3805 
3806 	pcp = &p->pcp;
3807 	pcp->count = 0;
3808 	pcp->high = 6 * batch;
3809 	pcp->batch = max(1UL, 1 * batch);
3810 	for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
3811 		INIT_LIST_HEAD(&pcp->lists[migratetype]);
3812 }
3813 
3814 /*
3815  * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
3816  * to the value high for the pageset p.
3817  */
3818 
3819 static void setup_pagelist_highmark(struct per_cpu_pageset *p,
3820 				unsigned long high)
3821 {
3822 	struct per_cpu_pages *pcp;
3823 
3824 	pcp = &p->pcp;
3825 	pcp->high = high;
3826 	pcp->batch = max(1UL, high/4);
3827 	if ((high/4) > (PAGE_SHIFT * 8))
3828 		pcp->batch = PAGE_SHIFT * 8;
3829 }
3830 
3831 static void setup_zone_pageset(struct zone *zone)
3832 {
3833 	int cpu;
3834 
3835 	zone->pageset = alloc_percpu(struct per_cpu_pageset);
3836 
3837 	for_each_possible_cpu(cpu) {
3838 		struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
3839 
3840 		setup_pageset(pcp, zone_batchsize(zone));
3841 
3842 		if (percpu_pagelist_fraction)
3843 			setup_pagelist_highmark(pcp,
3844 				(zone->present_pages /
3845 					percpu_pagelist_fraction));
3846 	}
3847 }
3848 
3849 /*
3850  * Allocate per cpu pagesets and initialize them.
3851  * Before this call only boot pagesets were available.
3852  */
3853 void __init setup_per_cpu_pageset(void)
3854 {
3855 	struct zone *zone;
3856 
3857 	for_each_populated_zone(zone)
3858 		setup_zone_pageset(zone);
3859 }
3860 
3861 static noinline __init_refok
3862 int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
3863 {
3864 	int i;
3865 	struct pglist_data *pgdat = zone->zone_pgdat;
3866 	size_t alloc_size;
3867 
3868 	/*
3869 	 * The per-page waitqueue mechanism uses hashed waitqueues
3870 	 * per zone.
3871 	 */
3872 	zone->wait_table_hash_nr_entries =
3873 		 wait_table_hash_nr_entries(zone_size_pages);
3874 	zone->wait_table_bits =
3875 		wait_table_bits(zone->wait_table_hash_nr_entries);
3876 	alloc_size = zone->wait_table_hash_nr_entries
3877 					* sizeof(wait_queue_head_t);
3878 
3879 	if (!slab_is_available()) {
3880 		zone->wait_table = (wait_queue_head_t *)
3881 			alloc_bootmem_node_nopanic(pgdat, alloc_size);
3882 	} else {
3883 		/*
3884 		 * This case means that a zone whose size was 0 gets new memory
3885 		 * via memory hot-add.
3886 		 * But it may be the case that a new node was hot-added.  In
3887 		 * this case vmalloc() will not be able to use this new node's
3888 		 * memory - this wait_table must be initialized to use this new
3889 		 * node itself as well.
3890 		 * To use this new node's memory, further consideration will be
3891 		 * necessary.
3892 		 */
3893 		zone->wait_table = vmalloc(alloc_size);
3894 	}
3895 	if (!zone->wait_table)
3896 		return -ENOMEM;
3897 
3898 	for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
3899 		init_waitqueue_head(zone->wait_table + i);
3900 
3901 	return 0;
3902 }
3903 
3904 static int __zone_pcp_update(void *data)
3905 {
3906 	struct zone *zone = data;
3907 	int cpu;
3908 	unsigned long batch = zone_batchsize(zone), flags;
3909 
3910 	for_each_possible_cpu(cpu) {
3911 		struct per_cpu_pageset *pset;
3912 		struct per_cpu_pages *pcp;
3913 
3914 		pset = per_cpu_ptr(zone->pageset, cpu);
3915 		pcp = &pset->pcp;
3916 
3917 		local_irq_save(flags);
3918 		free_pcppages_bulk(zone, pcp->count, pcp);
3919 		setup_pageset(pset, batch);
3920 		local_irq_restore(flags);
3921 	}
3922 	return 0;
3923 }
3924 
3925 void zone_pcp_update(struct zone *zone)
3926 {
3927 	stop_machine(__zone_pcp_update, zone, NULL);
3928 }
3929 
3930 static __meminit void zone_pcp_init(struct zone *zone)
3931 {
3932 	/*
3933 	 * per cpu subsystem is not up at this point. The following code
3934 	 * relies on the ability of the linker to provide the
3935 	 * offset of a (static) per cpu variable into the per cpu area.
3936 	 */
3937 	zone->pageset = &boot_pageset;
3938 
3939 	if (zone->present_pages)
3940 		printk(KERN_DEBUG "  %s zone: %lu pages, LIFO batch:%u\n",
3941 			zone->name, zone->present_pages,
3942 					 zone_batchsize(zone));
3943 }
3944 
3945 __meminit int init_currently_empty_zone(struct zone *zone,
3946 					unsigned long zone_start_pfn,
3947 					unsigned long size,
3948 					enum memmap_context context)
3949 {
3950 	struct pglist_data *pgdat = zone->zone_pgdat;
3951 	int ret;
3952 	ret = zone_wait_table_init(zone, size);
3953 	if (ret)
3954 		return ret;
3955 	pgdat->nr_zones = zone_idx(zone) + 1;
3956 
3957 	zone->zone_start_pfn = zone_start_pfn;
3958 
3959 	mminit_dprintk(MMINIT_TRACE, "memmap_init",
3960 			"Initialising map node %d zone %lu pfns %lu -> %lu\n",
3961 			pgdat->node_id,
3962 			(unsigned long)zone_idx(zone),
3963 			zone_start_pfn, (zone_start_pfn + size));
3964 
3965 	zone_init_free_lists(zone);
3966 
3967 	return 0;
3968 }
3969 
3970 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
3971 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
3972 /*
3973  * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
3974  * Architectures may implement their own version but if add_active_range()
3975  * was used and there are no special requirements, this is a convenient
3976  * alternative
3977  */
3978 int __meminit __early_pfn_to_nid(unsigned long pfn)
3979 {
3980 	unsigned long start_pfn, end_pfn;
3981 	int i, nid;
3982 
3983 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
3984 		if (start_pfn <= pfn && pfn < end_pfn)
3985 			return nid;
3986 	/* This is a memory hole */
3987 	return -1;
3988 }
3989 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
3990 
3991 int __meminit early_pfn_to_nid(unsigned long pfn)
3992 {
3993 	int nid;
3994 
3995 	nid = __early_pfn_to_nid(pfn);
3996 	if (nid >= 0)
3997 		return nid;
3998 	/* just returns 0 */
3999 	return 0;
4000 }
4001 
4002 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
4003 bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
4004 {
4005 	int nid;
4006 
4007 	nid = __early_pfn_to_nid(pfn);
4008 	if (nid >= 0 && nid != node)
4009 		return false;
4010 	return true;
4011 }
4012 #endif
4013 
4014 /**
4015  * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
4016  * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
4017  * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
4018  *
4019  * If an architecture guarantees that all ranges registered with
4020  * add_active_ranges() contain no holes and may be freed, this
4021  * this function may be used instead of calling free_bootmem() manually.
4022  */
4023 void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
4024 {
4025 	unsigned long start_pfn, end_pfn;
4026 	int i, this_nid;
4027 
4028 	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
4029 		start_pfn = min(start_pfn, max_low_pfn);
4030 		end_pfn = min(end_pfn, max_low_pfn);
4031 
4032 		if (start_pfn < end_pfn)
4033 			free_bootmem_node(NODE_DATA(this_nid),
4034 					  PFN_PHYS(start_pfn),
4035 					  (end_pfn - start_pfn) << PAGE_SHIFT);
4036 	}
4037 }
4038 
4039 /**
4040  * sparse_memory_present_with_active_regions - Call memory_present for each active range
4041  * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
4042  *
4043  * If an architecture guarantees that all ranges registered with
4044  * add_active_ranges() contain no holes and may be freed, this
4045  * function may be used instead of calling memory_present() manually.
4046  */
4047 void __init sparse_memory_present_with_active_regions(int nid)
4048 {
4049 	unsigned long start_pfn, end_pfn;
4050 	int i, this_nid;
4051 
4052 	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
4053 		memory_present(this_nid, start_pfn, end_pfn);
4054 }
4055 
4056 /**
4057  * get_pfn_range_for_nid - Return the start and end page frames for a node
4058  * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
4059  * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
4060  * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
4061  *
4062  * It returns the start and end page frame of a node based on information
4063  * provided by an arch calling add_active_range(). If called for a node
4064  * with no available memory, a warning is printed and the start and end
4065  * PFNs will be 0.
4066  */
4067 void __meminit get_pfn_range_for_nid(unsigned int nid,
4068 			unsigned long *start_pfn, unsigned long *end_pfn)
4069 {
4070 	unsigned long this_start_pfn, this_end_pfn;
4071 	int i;
4072 
4073 	*start_pfn = -1UL;
4074 	*end_pfn = 0;
4075 
4076 	for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
4077 		*start_pfn = min(*start_pfn, this_start_pfn);
4078 		*end_pfn = max(*end_pfn, this_end_pfn);
4079 	}
4080 
4081 	if (*start_pfn == -1UL)
4082 		*start_pfn = 0;
4083 }
4084 
4085 /*
4086  * This finds a zone that can be used for ZONE_MOVABLE pages. The
4087  * assumption is made that zones within a node are ordered in monotonic
4088  * increasing memory addresses so that the "highest" populated zone is used
4089  */
4090 static void __init find_usable_zone_for_movable(void)
4091 {
4092 	int zone_index;
4093 	for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
4094 		if (zone_index == ZONE_MOVABLE)
4095 			continue;
4096 
4097 		if (arch_zone_highest_possible_pfn[zone_index] >
4098 				arch_zone_lowest_possible_pfn[zone_index])
4099 			break;
4100 	}
4101 
4102 	VM_BUG_ON(zone_index == -1);
4103 	movable_zone = zone_index;
4104 }
4105 
4106 /*
4107  * The zone ranges provided by the architecture do not include ZONE_MOVABLE
4108  * because it is sized independent of architecture. Unlike the other zones,
4109  * the starting point for ZONE_MOVABLE is not fixed. It may be different
4110  * in each node depending on the size of each node and how evenly kernelcore
4111  * is distributed. This helper function adjusts the zone ranges
4112  * provided by the architecture for a given node by using the end of the
4113  * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
4114  * zones within a node are in order of monotonic increases memory addresses
4115  */
4116 static void __meminit adjust_zone_range_for_zone_movable(int nid,
4117 					unsigned long zone_type,
4118 					unsigned long node_start_pfn,
4119 					unsigned long node_end_pfn,
4120 					unsigned long *zone_start_pfn,
4121 					unsigned long *zone_end_pfn)
4122 {
4123 	/* Only adjust if ZONE_MOVABLE is on this node */
4124 	if (zone_movable_pfn[nid]) {
4125 		/* Size ZONE_MOVABLE */
4126 		if (zone_type == ZONE_MOVABLE) {
4127 			*zone_start_pfn = zone_movable_pfn[nid];
4128 			*zone_end_pfn = min(node_end_pfn,
4129 				arch_zone_highest_possible_pfn[movable_zone]);
4130 
4131 		/* Adjust for ZONE_MOVABLE starting within this range */
4132 		} else if (*zone_start_pfn < zone_movable_pfn[nid] &&
4133 				*zone_end_pfn > zone_movable_pfn[nid]) {
4134 			*zone_end_pfn = zone_movable_pfn[nid];
4135 
4136 		/* Check if this whole range is within ZONE_MOVABLE */
4137 		} else if (*zone_start_pfn >= zone_movable_pfn[nid])
4138 			*zone_start_pfn = *zone_end_pfn;
4139 	}
4140 }
4141 
4142 /*
4143  * Return the number of pages a zone spans in a node, including holes
4144  * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
4145  */
4146 static unsigned long __meminit zone_spanned_pages_in_node(int nid,
4147 					unsigned long zone_type,
4148 					unsigned long *ignored)
4149 {
4150 	unsigned long node_start_pfn, node_end_pfn;
4151 	unsigned long zone_start_pfn, zone_end_pfn;
4152 
4153 	/* Get the start and end of the node and zone */
4154 	get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
4155 	zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
4156 	zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
4157 	adjust_zone_range_for_zone_movable(nid, zone_type,
4158 				node_start_pfn, node_end_pfn,
4159 				&zone_start_pfn, &zone_end_pfn);
4160 
4161 	/* Check that this node has pages within the zone's required range */
4162 	if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
4163 		return 0;
4164 
4165 	/* Move the zone boundaries inside the node if necessary */
4166 	zone_end_pfn = min(zone_end_pfn, node_end_pfn);
4167 	zone_start_pfn = max(zone_start_pfn, node_start_pfn);
4168 
4169 	/* Return the spanned pages */
4170 	return zone_end_pfn - zone_start_pfn;
4171 }
4172 
4173 /*
4174  * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
4175  * then all holes in the requested range will be accounted for.
4176  */
4177 unsigned long __meminit __absent_pages_in_range(int nid,
4178 				unsigned long range_start_pfn,
4179 				unsigned long range_end_pfn)
4180 {
4181 	unsigned long nr_absent = range_end_pfn - range_start_pfn;
4182 	unsigned long start_pfn, end_pfn;
4183 	int i;
4184 
4185 	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
4186 		start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
4187 		end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
4188 		nr_absent -= end_pfn - start_pfn;
4189 	}
4190 	return nr_absent;
4191 }
4192 
4193 /**
4194  * absent_pages_in_range - Return number of page frames in holes within a range
4195  * @start_pfn: The start PFN to start searching for holes
4196  * @end_pfn: The end PFN to stop searching for holes
4197  *
4198  * It returns the number of pages frames in memory holes within a range.
4199  */
4200 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
4201 							unsigned long end_pfn)
4202 {
4203 	return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
4204 }
4205 
4206 /* Return the number of page frames in holes in a zone on a node */
4207 static unsigned long __meminit zone_absent_pages_in_node(int nid,
4208 					unsigned long zone_type,
4209 					unsigned long *ignored)
4210 {
4211 	unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
4212 	unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
4213 	unsigned long node_start_pfn, node_end_pfn;
4214 	unsigned long zone_start_pfn, zone_end_pfn;
4215 
4216 	get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
4217 	zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
4218 	zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
4219 
4220 	adjust_zone_range_for_zone_movable(nid, zone_type,
4221 			node_start_pfn, node_end_pfn,
4222 			&zone_start_pfn, &zone_end_pfn);
4223 	return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
4224 }
4225 
4226 #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4227 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
4228 					unsigned long zone_type,
4229 					unsigned long *zones_size)
4230 {
4231 	return zones_size[zone_type];
4232 }
4233 
4234 static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
4235 						unsigned long zone_type,
4236 						unsigned long *zholes_size)
4237 {
4238 	if (!zholes_size)
4239 		return 0;
4240 
4241 	return zholes_size[zone_type];
4242 }
4243 
4244 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4245 
4246 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
4247 		unsigned long *zones_size, unsigned long *zholes_size)
4248 {
4249 	unsigned long realtotalpages, totalpages = 0;
4250 	enum zone_type i;
4251 
4252 	for (i = 0; i < MAX_NR_ZONES; i++)
4253 		totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
4254 								zones_size);
4255 	pgdat->node_spanned_pages = totalpages;
4256 
4257 	realtotalpages = totalpages;
4258 	for (i = 0; i < MAX_NR_ZONES; i++)
4259 		realtotalpages -=
4260 			zone_absent_pages_in_node(pgdat->node_id, i,
4261 								zholes_size);
4262 	pgdat->node_present_pages = realtotalpages;
4263 	printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
4264 							realtotalpages);
4265 }
4266 
4267 #ifndef CONFIG_SPARSEMEM
4268 /*
4269  * Calculate the size of the zone->blockflags rounded to an unsigned long
4270  * Start by making sure zonesize is a multiple of pageblock_order by rounding
4271  * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
4272  * round what is now in bits to nearest long in bits, then return it in
4273  * bytes.
4274  */
4275 static unsigned long __init usemap_size(unsigned long zonesize)
4276 {
4277 	unsigned long usemapsize;
4278 
4279 	usemapsize = roundup(zonesize, pageblock_nr_pages);
4280 	usemapsize = usemapsize >> pageblock_order;
4281 	usemapsize *= NR_PAGEBLOCK_BITS;
4282 	usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
4283 
4284 	return usemapsize / 8;
4285 }
4286 
4287 static void __init setup_usemap(struct pglist_data *pgdat,
4288 				struct zone *zone, unsigned long zonesize)
4289 {
4290 	unsigned long usemapsize = usemap_size(zonesize);
4291 	zone->pageblock_flags = NULL;
4292 	if (usemapsize)
4293 		zone->pageblock_flags = alloc_bootmem_node_nopanic(pgdat,
4294 								   usemapsize);
4295 }
4296 #else
4297 static inline void setup_usemap(struct pglist_data *pgdat,
4298 				struct zone *zone, unsigned long zonesize) {}
4299 #endif /* CONFIG_SPARSEMEM */
4300 
4301 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
4302 
4303 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
4304 static inline void __init set_pageblock_order(void)
4305 {
4306 	unsigned int order;
4307 
4308 	/* Check that pageblock_nr_pages has not already been setup */
4309 	if (pageblock_order)
4310 		return;
4311 
4312 	if (HPAGE_SHIFT > PAGE_SHIFT)
4313 		order = HUGETLB_PAGE_ORDER;
4314 	else
4315 		order = MAX_ORDER - 1;
4316 
4317 	/*
4318 	 * Assume the largest contiguous order of interest is a huge page.
4319 	 * This value may be variable depending on boot parameters on IA64 and
4320 	 * powerpc.
4321 	 */
4322 	pageblock_order = order;
4323 }
4324 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4325 
4326 /*
4327  * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
4328  * is unused as pageblock_order is set at compile-time. See
4329  * include/linux/pageblock-flags.h for the values of pageblock_order based on
4330  * the kernel config
4331  */
4332 static inline void set_pageblock_order(void)
4333 {
4334 }
4335 
4336 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4337 
4338 /*
4339  * Set up the zone data structures:
4340  *   - mark all pages reserved
4341  *   - mark all memory queues empty
4342  *   - clear the memory bitmaps
4343  */
4344 static void __paginginit free_area_init_core(struct pglist_data *pgdat,
4345 		unsigned long *zones_size, unsigned long *zholes_size)
4346 {
4347 	enum zone_type j;
4348 	int nid = pgdat->node_id;
4349 	unsigned long zone_start_pfn = pgdat->node_start_pfn;
4350 	int ret;
4351 
4352 	pgdat_resize_init(pgdat);
4353 	pgdat->nr_zones = 0;
4354 	init_waitqueue_head(&pgdat->kswapd_wait);
4355 	pgdat->kswapd_max_order = 0;
4356 	pgdat_page_cgroup_init(pgdat);
4357 
4358 	for (j = 0; j < MAX_NR_ZONES; j++) {
4359 		struct zone *zone = pgdat->node_zones + j;
4360 		unsigned long size, realsize, memmap_pages;
4361 
4362 		size = zone_spanned_pages_in_node(nid, j, zones_size);
4363 		realsize = size - zone_absent_pages_in_node(nid, j,
4364 								zholes_size);
4365 
4366 		/*
4367 		 * Adjust realsize so that it accounts for how much memory
4368 		 * is used by this zone for memmap. This affects the watermark
4369 		 * and per-cpu initialisations
4370 		 */
4371 		memmap_pages =
4372 			PAGE_ALIGN(size * sizeof(struct page)) >> PAGE_SHIFT;
4373 		if (realsize >= memmap_pages) {
4374 			realsize -= memmap_pages;
4375 			if (memmap_pages)
4376 				printk(KERN_DEBUG
4377 				       "  %s zone: %lu pages used for memmap\n",
4378 				       zone_names[j], memmap_pages);
4379 		} else
4380 			printk(KERN_WARNING
4381 				"  %s zone: %lu pages exceeds realsize %lu\n",
4382 				zone_names[j], memmap_pages, realsize);
4383 
4384 		/* Account for reserved pages */
4385 		if (j == 0 && realsize > dma_reserve) {
4386 			realsize -= dma_reserve;
4387 			printk(KERN_DEBUG "  %s zone: %lu pages reserved\n",
4388 					zone_names[0], dma_reserve);
4389 		}
4390 
4391 		if (!is_highmem_idx(j))
4392 			nr_kernel_pages += realsize;
4393 		nr_all_pages += realsize;
4394 
4395 		zone->spanned_pages = size;
4396 		zone->present_pages = realsize;
4397 #ifdef CONFIG_NUMA
4398 		zone->node = nid;
4399 		zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio)
4400 						/ 100;
4401 		zone->min_slab_pages = (realsize * sysctl_min_slab_ratio) / 100;
4402 #endif
4403 		zone->name = zone_names[j];
4404 		spin_lock_init(&zone->lock);
4405 		spin_lock_init(&zone->lru_lock);
4406 		zone_seqlock_init(zone);
4407 		zone->zone_pgdat = pgdat;
4408 
4409 		zone_pcp_init(zone);
4410 		lruvec_init(&zone->lruvec, zone);
4411 		zap_zone_vm_stats(zone);
4412 		zone->flags = 0;
4413 		if (!size)
4414 			continue;
4415 
4416 		set_pageblock_order();
4417 		setup_usemap(pgdat, zone, size);
4418 		ret = init_currently_empty_zone(zone, zone_start_pfn,
4419 						size, MEMMAP_EARLY);
4420 		BUG_ON(ret);
4421 		memmap_init(size, nid, j, zone_start_pfn);
4422 		zone_start_pfn += size;
4423 	}
4424 }
4425 
4426 static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
4427 {
4428 	/* Skip empty nodes */
4429 	if (!pgdat->node_spanned_pages)
4430 		return;
4431 
4432 #ifdef CONFIG_FLAT_NODE_MEM_MAP
4433 	/* ia64 gets its own node_mem_map, before this, without bootmem */
4434 	if (!pgdat->node_mem_map) {
4435 		unsigned long size, start, end;
4436 		struct page *map;
4437 
4438 		/*
4439 		 * The zone's endpoints aren't required to be MAX_ORDER
4440 		 * aligned but the node_mem_map endpoints must be in order
4441 		 * for the buddy allocator to function correctly.
4442 		 */
4443 		start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
4444 		end = pgdat->node_start_pfn + pgdat->node_spanned_pages;
4445 		end = ALIGN(end, MAX_ORDER_NR_PAGES);
4446 		size =  (end - start) * sizeof(struct page);
4447 		map = alloc_remap(pgdat->node_id, size);
4448 		if (!map)
4449 			map = alloc_bootmem_node_nopanic(pgdat, size);
4450 		pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
4451 	}
4452 #ifndef CONFIG_NEED_MULTIPLE_NODES
4453 	/*
4454 	 * With no DISCONTIG, the global mem_map is just set as node 0's
4455 	 */
4456 	if (pgdat == NODE_DATA(0)) {
4457 		mem_map = NODE_DATA(0)->node_mem_map;
4458 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4459 		if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
4460 			mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
4461 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4462 	}
4463 #endif
4464 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
4465 }
4466 
4467 void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
4468 		unsigned long node_start_pfn, unsigned long *zholes_size)
4469 {
4470 	pg_data_t *pgdat = NODE_DATA(nid);
4471 
4472 	pgdat->node_id = nid;
4473 	pgdat->node_start_pfn = node_start_pfn;
4474 	calculate_node_totalpages(pgdat, zones_size, zholes_size);
4475 
4476 	alloc_node_mem_map(pgdat);
4477 #ifdef CONFIG_FLAT_NODE_MEM_MAP
4478 	printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
4479 		nid, (unsigned long)pgdat,
4480 		(unsigned long)pgdat->node_mem_map);
4481 #endif
4482 
4483 	free_area_init_core(pgdat, zones_size, zholes_size);
4484 }
4485 
4486 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4487 
4488 #if MAX_NUMNODES > 1
4489 /*
4490  * Figure out the number of possible node ids.
4491  */
4492 static void __init setup_nr_node_ids(void)
4493 {
4494 	unsigned int node;
4495 	unsigned int highest = 0;
4496 
4497 	for_each_node_mask(node, node_possible_map)
4498 		highest = node;
4499 	nr_node_ids = highest + 1;
4500 }
4501 #else
4502 static inline void setup_nr_node_ids(void)
4503 {
4504 }
4505 #endif
4506 
4507 /**
4508  * node_map_pfn_alignment - determine the maximum internode alignment
4509  *
4510  * This function should be called after node map is populated and sorted.
4511  * It calculates the maximum power of two alignment which can distinguish
4512  * all the nodes.
4513  *
4514  * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
4515  * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)).  If the
4516  * nodes are shifted by 256MiB, 256MiB.  Note that if only the last node is
4517  * shifted, 1GiB is enough and this function will indicate so.
4518  *
4519  * This is used to test whether pfn -> nid mapping of the chosen memory
4520  * model has fine enough granularity to avoid incorrect mapping for the
4521  * populated node map.
4522  *
4523  * Returns the determined alignment in pfn's.  0 if there is no alignment
4524  * requirement (single node).
4525  */
4526 unsigned long __init node_map_pfn_alignment(void)
4527 {
4528 	unsigned long accl_mask = 0, last_end = 0;
4529 	unsigned long start, end, mask;
4530 	int last_nid = -1;
4531 	int i, nid;
4532 
4533 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
4534 		if (!start || last_nid < 0 || last_nid == nid) {
4535 			last_nid = nid;
4536 			last_end = end;
4537 			continue;
4538 		}
4539 
4540 		/*
4541 		 * Start with a mask granular enough to pin-point to the
4542 		 * start pfn and tick off bits one-by-one until it becomes
4543 		 * too coarse to separate the current node from the last.
4544 		 */
4545 		mask = ~((1 << __ffs(start)) - 1);
4546 		while (mask && last_end <= (start & (mask << 1)))
4547 			mask <<= 1;
4548 
4549 		/* accumulate all internode masks */
4550 		accl_mask |= mask;
4551 	}
4552 
4553 	/* convert mask to number of pages */
4554 	return ~accl_mask + 1;
4555 }
4556 
4557 /* Find the lowest pfn for a node */
4558 static unsigned long __init find_min_pfn_for_node(int nid)
4559 {
4560 	unsigned long min_pfn = ULONG_MAX;
4561 	unsigned long start_pfn;
4562 	int i;
4563 
4564 	for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
4565 		min_pfn = min(min_pfn, start_pfn);
4566 
4567 	if (min_pfn == ULONG_MAX) {
4568 		printk(KERN_WARNING
4569 			"Could not find start_pfn for node %d\n", nid);
4570 		return 0;
4571 	}
4572 
4573 	return min_pfn;
4574 }
4575 
4576 /**
4577  * find_min_pfn_with_active_regions - Find the minimum PFN registered
4578  *
4579  * It returns the minimum PFN based on information provided via
4580  * add_active_range().
4581  */
4582 unsigned long __init find_min_pfn_with_active_regions(void)
4583 {
4584 	return find_min_pfn_for_node(MAX_NUMNODES);
4585 }
4586 
4587 /*
4588  * early_calculate_totalpages()
4589  * Sum pages in active regions for movable zone.
4590  * Populate N_HIGH_MEMORY for calculating usable_nodes.
4591  */
4592 static unsigned long __init early_calculate_totalpages(void)
4593 {
4594 	unsigned long totalpages = 0;
4595 	unsigned long start_pfn, end_pfn;
4596 	int i, nid;
4597 
4598 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
4599 		unsigned long pages = end_pfn - start_pfn;
4600 
4601 		totalpages += pages;
4602 		if (pages)
4603 			node_set_state(nid, N_HIGH_MEMORY);
4604 	}
4605   	return totalpages;
4606 }
4607 
4608 /*
4609  * Find the PFN the Movable zone begins in each node. Kernel memory
4610  * is spread evenly between nodes as long as the nodes have enough
4611  * memory. When they don't, some nodes will have more kernelcore than
4612  * others
4613  */
4614 static void __init find_zone_movable_pfns_for_nodes(void)
4615 {
4616 	int i, nid;
4617 	unsigned long usable_startpfn;
4618 	unsigned long kernelcore_node, kernelcore_remaining;
4619 	/* save the state before borrow the nodemask */
4620 	nodemask_t saved_node_state = node_states[N_HIGH_MEMORY];
4621 	unsigned long totalpages = early_calculate_totalpages();
4622 	int usable_nodes = nodes_weight(node_states[N_HIGH_MEMORY]);
4623 
4624 	/*
4625 	 * If movablecore was specified, calculate what size of
4626 	 * kernelcore that corresponds so that memory usable for
4627 	 * any allocation type is evenly spread. If both kernelcore
4628 	 * and movablecore are specified, then the value of kernelcore
4629 	 * will be used for required_kernelcore if it's greater than
4630 	 * what movablecore would have allowed.
4631 	 */
4632 	if (required_movablecore) {
4633 		unsigned long corepages;
4634 
4635 		/*
4636 		 * Round-up so that ZONE_MOVABLE is at least as large as what
4637 		 * was requested by the user
4638 		 */
4639 		required_movablecore =
4640 			roundup(required_movablecore, MAX_ORDER_NR_PAGES);
4641 		corepages = totalpages - required_movablecore;
4642 
4643 		required_kernelcore = max(required_kernelcore, corepages);
4644 	}
4645 
4646 	/* If kernelcore was not specified, there is no ZONE_MOVABLE */
4647 	if (!required_kernelcore)
4648 		goto out;
4649 
4650 	/* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
4651 	find_usable_zone_for_movable();
4652 	usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
4653 
4654 restart:
4655 	/* Spread kernelcore memory as evenly as possible throughout nodes */
4656 	kernelcore_node = required_kernelcore / usable_nodes;
4657 	for_each_node_state(nid, N_HIGH_MEMORY) {
4658 		unsigned long start_pfn, end_pfn;
4659 
4660 		/*
4661 		 * Recalculate kernelcore_node if the division per node
4662 		 * now exceeds what is necessary to satisfy the requested
4663 		 * amount of memory for the kernel
4664 		 */
4665 		if (required_kernelcore < kernelcore_node)
4666 			kernelcore_node = required_kernelcore / usable_nodes;
4667 
4668 		/*
4669 		 * As the map is walked, we track how much memory is usable
4670 		 * by the kernel using kernelcore_remaining. When it is
4671 		 * 0, the rest of the node is usable by ZONE_MOVABLE
4672 		 */
4673 		kernelcore_remaining = kernelcore_node;
4674 
4675 		/* Go through each range of PFNs within this node */
4676 		for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
4677 			unsigned long size_pages;
4678 
4679 			start_pfn = max(start_pfn, zone_movable_pfn[nid]);
4680 			if (start_pfn >= end_pfn)
4681 				continue;
4682 
4683 			/* Account for what is only usable for kernelcore */
4684 			if (start_pfn < usable_startpfn) {
4685 				unsigned long kernel_pages;
4686 				kernel_pages = min(end_pfn, usable_startpfn)
4687 								- start_pfn;
4688 
4689 				kernelcore_remaining -= min(kernel_pages,
4690 							kernelcore_remaining);
4691 				required_kernelcore -= min(kernel_pages,
4692 							required_kernelcore);
4693 
4694 				/* Continue if range is now fully accounted */
4695 				if (end_pfn <= usable_startpfn) {
4696 
4697 					/*
4698 					 * Push zone_movable_pfn to the end so
4699 					 * that if we have to rebalance
4700 					 * kernelcore across nodes, we will
4701 					 * not double account here
4702 					 */
4703 					zone_movable_pfn[nid] = end_pfn;
4704 					continue;
4705 				}
4706 				start_pfn = usable_startpfn;
4707 			}
4708 
4709 			/*
4710 			 * The usable PFN range for ZONE_MOVABLE is from
4711 			 * start_pfn->end_pfn. Calculate size_pages as the
4712 			 * number of pages used as kernelcore
4713 			 */
4714 			size_pages = end_pfn - start_pfn;
4715 			if (size_pages > kernelcore_remaining)
4716 				size_pages = kernelcore_remaining;
4717 			zone_movable_pfn[nid] = start_pfn + size_pages;
4718 
4719 			/*
4720 			 * Some kernelcore has been met, update counts and
4721 			 * break if the kernelcore for this node has been
4722 			 * satisified
4723 			 */
4724 			required_kernelcore -= min(required_kernelcore,
4725 								size_pages);
4726 			kernelcore_remaining -= size_pages;
4727 			if (!kernelcore_remaining)
4728 				break;
4729 		}
4730 	}
4731 
4732 	/*
4733 	 * If there is still required_kernelcore, we do another pass with one
4734 	 * less node in the count. This will push zone_movable_pfn[nid] further
4735 	 * along on the nodes that still have memory until kernelcore is
4736 	 * satisified
4737 	 */
4738 	usable_nodes--;
4739 	if (usable_nodes && required_kernelcore > usable_nodes)
4740 		goto restart;
4741 
4742 	/* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
4743 	for (nid = 0; nid < MAX_NUMNODES; nid++)
4744 		zone_movable_pfn[nid] =
4745 			roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
4746 
4747 out:
4748 	/* restore the node_state */
4749 	node_states[N_HIGH_MEMORY] = saved_node_state;
4750 }
4751 
4752 /* Any regular memory on that node ? */
4753 static void check_for_regular_memory(pg_data_t *pgdat)
4754 {
4755 #ifdef CONFIG_HIGHMEM
4756 	enum zone_type zone_type;
4757 
4758 	for (zone_type = 0; zone_type <= ZONE_NORMAL; zone_type++) {
4759 		struct zone *zone = &pgdat->node_zones[zone_type];
4760 		if (zone->present_pages) {
4761 			node_set_state(zone_to_nid(zone), N_NORMAL_MEMORY);
4762 			break;
4763 		}
4764 	}
4765 #endif
4766 }
4767 
4768 /**
4769  * free_area_init_nodes - Initialise all pg_data_t and zone data
4770  * @max_zone_pfn: an array of max PFNs for each zone
4771  *
4772  * This will call free_area_init_node() for each active node in the system.
4773  * Using the page ranges provided by add_active_range(), the size of each
4774  * zone in each node and their holes is calculated. If the maximum PFN
4775  * between two adjacent zones match, it is assumed that the zone is empty.
4776  * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
4777  * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
4778  * starts where the previous one ended. For example, ZONE_DMA32 starts
4779  * at arch_max_dma_pfn.
4780  */
4781 void __init free_area_init_nodes(unsigned long *max_zone_pfn)
4782 {
4783 	unsigned long start_pfn, end_pfn;
4784 	int i, nid;
4785 
4786 	/* Record where the zone boundaries are */
4787 	memset(arch_zone_lowest_possible_pfn, 0,
4788 				sizeof(arch_zone_lowest_possible_pfn));
4789 	memset(arch_zone_highest_possible_pfn, 0,
4790 				sizeof(arch_zone_highest_possible_pfn));
4791 	arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
4792 	arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
4793 	for (i = 1; i < MAX_NR_ZONES; i++) {
4794 		if (i == ZONE_MOVABLE)
4795 			continue;
4796 		arch_zone_lowest_possible_pfn[i] =
4797 			arch_zone_highest_possible_pfn[i-1];
4798 		arch_zone_highest_possible_pfn[i] =
4799 			max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
4800 	}
4801 	arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
4802 	arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
4803 
4804 	/* Find the PFNs that ZONE_MOVABLE begins at in each node */
4805 	memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
4806 	find_zone_movable_pfns_for_nodes();
4807 
4808 	/* Print out the zone ranges */
4809 	printk("Zone ranges:\n");
4810 	for (i = 0; i < MAX_NR_ZONES; i++) {
4811 		if (i == ZONE_MOVABLE)
4812 			continue;
4813 		printk(KERN_CONT "  %-8s ", zone_names[i]);
4814 		if (arch_zone_lowest_possible_pfn[i] ==
4815 				arch_zone_highest_possible_pfn[i])
4816 			printk(KERN_CONT "empty\n");
4817 		else
4818 			printk(KERN_CONT "[mem %0#10lx-%0#10lx]\n",
4819 				arch_zone_lowest_possible_pfn[i] << PAGE_SHIFT,
4820 				(arch_zone_highest_possible_pfn[i]
4821 					<< PAGE_SHIFT) - 1);
4822 	}
4823 
4824 	/* Print out the PFNs ZONE_MOVABLE begins at in each node */
4825 	printk("Movable zone start for each node\n");
4826 	for (i = 0; i < MAX_NUMNODES; i++) {
4827 		if (zone_movable_pfn[i])
4828 			printk("  Node %d: %#010lx\n", i,
4829 			       zone_movable_pfn[i] << PAGE_SHIFT);
4830 	}
4831 
4832 	/* Print out the early_node_map[] */
4833 	printk("Early memory node ranges\n");
4834 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
4835 		printk("  node %3d: [mem %#010lx-%#010lx]\n", nid,
4836 		       start_pfn << PAGE_SHIFT, (end_pfn << PAGE_SHIFT) - 1);
4837 
4838 	/* Initialise every node */
4839 	mminit_verify_pageflags_layout();
4840 	setup_nr_node_ids();
4841 	for_each_online_node(nid) {
4842 		pg_data_t *pgdat = NODE_DATA(nid);
4843 		free_area_init_node(nid, NULL,
4844 				find_min_pfn_for_node(nid), NULL);
4845 
4846 		/* Any memory on that node */
4847 		if (pgdat->node_present_pages)
4848 			node_set_state(nid, N_HIGH_MEMORY);
4849 		check_for_regular_memory(pgdat);
4850 	}
4851 }
4852 
4853 static int __init cmdline_parse_core(char *p, unsigned long *core)
4854 {
4855 	unsigned long long coremem;
4856 	if (!p)
4857 		return -EINVAL;
4858 
4859 	coremem = memparse(p, &p);
4860 	*core = coremem >> PAGE_SHIFT;
4861 
4862 	/* Paranoid check that UL is enough for the coremem value */
4863 	WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
4864 
4865 	return 0;
4866 }
4867 
4868 /*
4869  * kernelcore=size sets the amount of memory for use for allocations that
4870  * cannot be reclaimed or migrated.
4871  */
4872 static int __init cmdline_parse_kernelcore(char *p)
4873 {
4874 	return cmdline_parse_core(p, &required_kernelcore);
4875 }
4876 
4877 /*
4878  * movablecore=size sets the amount of memory for use for allocations that
4879  * can be reclaimed or migrated.
4880  */
4881 static int __init cmdline_parse_movablecore(char *p)
4882 {
4883 	return cmdline_parse_core(p, &required_movablecore);
4884 }
4885 
4886 early_param("kernelcore", cmdline_parse_kernelcore);
4887 early_param("movablecore", cmdline_parse_movablecore);
4888 
4889 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4890 
4891 /**
4892  * set_dma_reserve - set the specified number of pages reserved in the first zone
4893  * @new_dma_reserve: The number of pages to mark reserved
4894  *
4895  * The per-cpu batchsize and zone watermarks are determined by present_pages.
4896  * In the DMA zone, a significant percentage may be consumed by kernel image
4897  * and other unfreeable allocations which can skew the watermarks badly. This
4898  * function may optionally be used to account for unfreeable pages in the
4899  * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
4900  * smaller per-cpu batchsize.
4901  */
4902 void __init set_dma_reserve(unsigned long new_dma_reserve)
4903 {
4904 	dma_reserve = new_dma_reserve;
4905 }
4906 
4907 void __init free_area_init(unsigned long *zones_size)
4908 {
4909 	free_area_init_node(0, zones_size,
4910 			__pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
4911 }
4912 
4913 static int page_alloc_cpu_notify(struct notifier_block *self,
4914 				 unsigned long action, void *hcpu)
4915 {
4916 	int cpu = (unsigned long)hcpu;
4917 
4918 	if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
4919 		lru_add_drain_cpu(cpu);
4920 		drain_pages(cpu);
4921 
4922 		/*
4923 		 * Spill the event counters of the dead processor
4924 		 * into the current processors event counters.
4925 		 * This artificially elevates the count of the current
4926 		 * processor.
4927 		 */
4928 		vm_events_fold_cpu(cpu);
4929 
4930 		/*
4931 		 * Zero the differential counters of the dead processor
4932 		 * so that the vm statistics are consistent.
4933 		 *
4934 		 * This is only okay since the processor is dead and cannot
4935 		 * race with what we are doing.
4936 		 */
4937 		refresh_cpu_vm_stats(cpu);
4938 	}
4939 	return NOTIFY_OK;
4940 }
4941 
4942 void __init page_alloc_init(void)
4943 {
4944 	hotcpu_notifier(page_alloc_cpu_notify, 0);
4945 }
4946 
4947 /*
4948  * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
4949  *	or min_free_kbytes changes.
4950  */
4951 static void calculate_totalreserve_pages(void)
4952 {
4953 	struct pglist_data *pgdat;
4954 	unsigned long reserve_pages = 0;
4955 	enum zone_type i, j;
4956 
4957 	for_each_online_pgdat(pgdat) {
4958 		for (i = 0; i < MAX_NR_ZONES; i++) {
4959 			struct zone *zone = pgdat->node_zones + i;
4960 			unsigned long max = 0;
4961 
4962 			/* Find valid and maximum lowmem_reserve in the zone */
4963 			for (j = i; j < MAX_NR_ZONES; j++) {
4964 				if (zone->lowmem_reserve[j] > max)
4965 					max = zone->lowmem_reserve[j];
4966 			}
4967 
4968 			/* we treat the high watermark as reserved pages. */
4969 			max += high_wmark_pages(zone);
4970 
4971 			if (max > zone->present_pages)
4972 				max = zone->present_pages;
4973 			reserve_pages += max;
4974 			/*
4975 			 * Lowmem reserves are not available to
4976 			 * GFP_HIGHUSER page cache allocations and
4977 			 * kswapd tries to balance zones to their high
4978 			 * watermark.  As a result, neither should be
4979 			 * regarded as dirtyable memory, to prevent a
4980 			 * situation where reclaim has to clean pages
4981 			 * in order to balance the zones.
4982 			 */
4983 			zone->dirty_balance_reserve = max;
4984 		}
4985 	}
4986 	dirty_balance_reserve = reserve_pages;
4987 	totalreserve_pages = reserve_pages;
4988 }
4989 
4990 /*
4991  * setup_per_zone_lowmem_reserve - called whenever
4992  *	sysctl_lower_zone_reserve_ratio changes.  Ensures that each zone
4993  *	has a correct pages reserved value, so an adequate number of
4994  *	pages are left in the zone after a successful __alloc_pages().
4995  */
4996 static void setup_per_zone_lowmem_reserve(void)
4997 {
4998 	struct pglist_data *pgdat;
4999 	enum zone_type j, idx;
5000 
5001 	for_each_online_pgdat(pgdat) {
5002 		for (j = 0; j < MAX_NR_ZONES; j++) {
5003 			struct zone *zone = pgdat->node_zones + j;
5004 			unsigned long present_pages = zone->present_pages;
5005 
5006 			zone->lowmem_reserve[j] = 0;
5007 
5008 			idx = j;
5009 			while (idx) {
5010 				struct zone *lower_zone;
5011 
5012 				idx--;
5013 
5014 				if (sysctl_lowmem_reserve_ratio[idx] < 1)
5015 					sysctl_lowmem_reserve_ratio[idx] = 1;
5016 
5017 				lower_zone = pgdat->node_zones + idx;
5018 				lower_zone->lowmem_reserve[j] = present_pages /
5019 					sysctl_lowmem_reserve_ratio[idx];
5020 				present_pages += lower_zone->present_pages;
5021 			}
5022 		}
5023 	}
5024 
5025 	/* update totalreserve_pages */
5026 	calculate_totalreserve_pages();
5027 }
5028 
5029 static void __setup_per_zone_wmarks(void)
5030 {
5031 	unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
5032 	unsigned long lowmem_pages = 0;
5033 	struct zone *zone;
5034 	unsigned long flags;
5035 
5036 	/* Calculate total number of !ZONE_HIGHMEM pages */
5037 	for_each_zone(zone) {
5038 		if (!is_highmem(zone))
5039 			lowmem_pages += zone->present_pages;
5040 	}
5041 
5042 	for_each_zone(zone) {
5043 		u64 tmp;
5044 
5045 		spin_lock_irqsave(&zone->lock, flags);
5046 		tmp = (u64)pages_min * zone->present_pages;
5047 		do_div(tmp, lowmem_pages);
5048 		if (is_highmem(zone)) {
5049 			/*
5050 			 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
5051 			 * need highmem pages, so cap pages_min to a small
5052 			 * value here.
5053 			 *
5054 			 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
5055 			 * deltas controls asynch page reclaim, and so should
5056 			 * not be capped for highmem.
5057 			 */
5058 			int min_pages;
5059 
5060 			min_pages = zone->present_pages / 1024;
5061 			if (min_pages < SWAP_CLUSTER_MAX)
5062 				min_pages = SWAP_CLUSTER_MAX;
5063 			if (min_pages > 128)
5064 				min_pages = 128;
5065 			zone->watermark[WMARK_MIN] = min_pages;
5066 		} else {
5067 			/*
5068 			 * If it's a lowmem zone, reserve a number of pages
5069 			 * proportionate to the zone's size.
5070 			 */
5071 			zone->watermark[WMARK_MIN] = tmp;
5072 		}
5073 
5074 		zone->watermark[WMARK_LOW]  = min_wmark_pages(zone) + (tmp >> 2);
5075 		zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1);
5076 
5077 		zone->watermark[WMARK_MIN] += cma_wmark_pages(zone);
5078 		zone->watermark[WMARK_LOW] += cma_wmark_pages(zone);
5079 		zone->watermark[WMARK_HIGH] += cma_wmark_pages(zone);
5080 
5081 		setup_zone_migrate_reserve(zone);
5082 		spin_unlock_irqrestore(&zone->lock, flags);
5083 	}
5084 
5085 	/* update totalreserve_pages */
5086 	calculate_totalreserve_pages();
5087 }
5088 
5089 /**
5090  * setup_per_zone_wmarks - called when min_free_kbytes changes
5091  * or when memory is hot-{added|removed}
5092  *
5093  * Ensures that the watermark[min,low,high] values for each zone are set
5094  * correctly with respect to min_free_kbytes.
5095  */
5096 void setup_per_zone_wmarks(void)
5097 {
5098 	mutex_lock(&zonelists_mutex);
5099 	__setup_per_zone_wmarks();
5100 	mutex_unlock(&zonelists_mutex);
5101 }
5102 
5103 /*
5104  * The inactive anon list should be small enough that the VM never has to
5105  * do too much work, but large enough that each inactive page has a chance
5106  * to be referenced again before it is swapped out.
5107  *
5108  * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
5109  * INACTIVE_ANON pages on this zone's LRU, maintained by the
5110  * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
5111  * the anonymous pages are kept on the inactive list.
5112  *
5113  * total     target    max
5114  * memory    ratio     inactive anon
5115  * -------------------------------------
5116  *   10MB       1         5MB
5117  *  100MB       1        50MB
5118  *    1GB       3       250MB
5119  *   10GB      10       0.9GB
5120  *  100GB      31         3GB
5121  *    1TB     101        10GB
5122  *   10TB     320        32GB
5123  */
5124 static void __meminit calculate_zone_inactive_ratio(struct zone *zone)
5125 {
5126 	unsigned int gb, ratio;
5127 
5128 	/* Zone size in gigabytes */
5129 	gb = zone->present_pages >> (30 - PAGE_SHIFT);
5130 	if (gb)
5131 		ratio = int_sqrt(10 * gb);
5132 	else
5133 		ratio = 1;
5134 
5135 	zone->inactive_ratio = ratio;
5136 }
5137 
5138 static void __meminit setup_per_zone_inactive_ratio(void)
5139 {
5140 	struct zone *zone;
5141 
5142 	for_each_zone(zone)
5143 		calculate_zone_inactive_ratio(zone);
5144 }
5145 
5146 /*
5147  * Initialise min_free_kbytes.
5148  *
5149  * For small machines we want it small (128k min).  For large machines
5150  * we want it large (64MB max).  But it is not linear, because network
5151  * bandwidth does not increase linearly with machine size.  We use
5152  *
5153  * 	min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
5154  *	min_free_kbytes = sqrt(lowmem_kbytes * 16)
5155  *
5156  * which yields
5157  *
5158  * 16MB:	512k
5159  * 32MB:	724k
5160  * 64MB:	1024k
5161  * 128MB:	1448k
5162  * 256MB:	2048k
5163  * 512MB:	2896k
5164  * 1024MB:	4096k
5165  * 2048MB:	5792k
5166  * 4096MB:	8192k
5167  * 8192MB:	11584k
5168  * 16384MB:	16384k
5169  */
5170 int __meminit init_per_zone_wmark_min(void)
5171 {
5172 	unsigned long lowmem_kbytes;
5173 
5174 	lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5175 
5176 	min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
5177 	if (min_free_kbytes < 128)
5178 		min_free_kbytes = 128;
5179 	if (min_free_kbytes > 65536)
5180 		min_free_kbytes = 65536;
5181 	setup_per_zone_wmarks();
5182 	refresh_zone_stat_thresholds();
5183 	setup_per_zone_lowmem_reserve();
5184 	setup_per_zone_inactive_ratio();
5185 	return 0;
5186 }
5187 module_init(init_per_zone_wmark_min)
5188 
5189 /*
5190  * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
5191  *	that we can call two helper functions whenever min_free_kbytes
5192  *	changes.
5193  */
5194 int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
5195 	void __user *buffer, size_t *length, loff_t *ppos)
5196 {
5197 	proc_dointvec(table, write, buffer, length, ppos);
5198 	if (write)
5199 		setup_per_zone_wmarks();
5200 	return 0;
5201 }
5202 
5203 #ifdef CONFIG_NUMA
5204 int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
5205 	void __user *buffer, size_t *length, loff_t *ppos)
5206 {
5207 	struct zone *zone;
5208 	int rc;
5209 
5210 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5211 	if (rc)
5212 		return rc;
5213 
5214 	for_each_zone(zone)
5215 		zone->min_unmapped_pages = (zone->present_pages *
5216 				sysctl_min_unmapped_ratio) / 100;
5217 	return 0;
5218 }
5219 
5220 int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
5221 	void __user *buffer, size_t *length, loff_t *ppos)
5222 {
5223 	struct zone *zone;
5224 	int rc;
5225 
5226 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5227 	if (rc)
5228 		return rc;
5229 
5230 	for_each_zone(zone)
5231 		zone->min_slab_pages = (zone->present_pages *
5232 				sysctl_min_slab_ratio) / 100;
5233 	return 0;
5234 }
5235 #endif
5236 
5237 /*
5238  * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
5239  *	proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
5240  *	whenever sysctl_lowmem_reserve_ratio changes.
5241  *
5242  * The reserve ratio obviously has absolutely no relation with the
5243  * minimum watermarks. The lowmem reserve ratio can only make sense
5244  * if in function of the boot time zone sizes.
5245  */
5246 int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
5247 	void __user *buffer, size_t *length, loff_t *ppos)
5248 {
5249 	proc_dointvec_minmax(table, write, buffer, length, ppos);
5250 	setup_per_zone_lowmem_reserve();
5251 	return 0;
5252 }
5253 
5254 /*
5255  * percpu_pagelist_fraction - changes the pcp->high for each zone on each
5256  * cpu.  It is the fraction of total pages in each zone that a hot per cpu pagelist
5257  * can have before it gets flushed back to buddy allocator.
5258  */
5259 
5260 int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
5261 	void __user *buffer, size_t *length, loff_t *ppos)
5262 {
5263 	struct zone *zone;
5264 	unsigned int cpu;
5265 	int ret;
5266 
5267 	ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
5268 	if (!write || (ret < 0))
5269 		return ret;
5270 	for_each_populated_zone(zone) {
5271 		for_each_possible_cpu(cpu) {
5272 			unsigned long  high;
5273 			high = zone->present_pages / percpu_pagelist_fraction;
5274 			setup_pagelist_highmark(
5275 				per_cpu_ptr(zone->pageset, cpu), high);
5276 		}
5277 	}
5278 	return 0;
5279 }
5280 
5281 int hashdist = HASHDIST_DEFAULT;
5282 
5283 #ifdef CONFIG_NUMA
5284 static int __init set_hashdist(char *str)
5285 {
5286 	if (!str)
5287 		return 0;
5288 	hashdist = simple_strtoul(str, &str, 0);
5289 	return 1;
5290 }
5291 __setup("hashdist=", set_hashdist);
5292 #endif
5293 
5294 /*
5295  * allocate a large system hash table from bootmem
5296  * - it is assumed that the hash table must contain an exact power-of-2
5297  *   quantity of entries
5298  * - limit is the number of hash buckets, not the total allocation size
5299  */
5300 void *__init alloc_large_system_hash(const char *tablename,
5301 				     unsigned long bucketsize,
5302 				     unsigned long numentries,
5303 				     int scale,
5304 				     int flags,
5305 				     unsigned int *_hash_shift,
5306 				     unsigned int *_hash_mask,
5307 				     unsigned long low_limit,
5308 				     unsigned long high_limit)
5309 {
5310 	unsigned long long max = high_limit;
5311 	unsigned long log2qty, size;
5312 	void *table = NULL;
5313 
5314 	/* allow the kernel cmdline to have a say */
5315 	if (!numentries) {
5316 		/* round applicable memory size up to nearest megabyte */
5317 		numentries = nr_kernel_pages;
5318 		numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
5319 		numentries >>= 20 - PAGE_SHIFT;
5320 		numentries <<= 20 - PAGE_SHIFT;
5321 
5322 		/* limit to 1 bucket per 2^scale bytes of low memory */
5323 		if (scale > PAGE_SHIFT)
5324 			numentries >>= (scale - PAGE_SHIFT);
5325 		else
5326 			numentries <<= (PAGE_SHIFT - scale);
5327 
5328 		/* Make sure we've got at least a 0-order allocation.. */
5329 		if (unlikely(flags & HASH_SMALL)) {
5330 			/* Makes no sense without HASH_EARLY */
5331 			WARN_ON(!(flags & HASH_EARLY));
5332 			if (!(numentries >> *_hash_shift)) {
5333 				numentries = 1UL << *_hash_shift;
5334 				BUG_ON(!numentries);
5335 			}
5336 		} else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
5337 			numentries = PAGE_SIZE / bucketsize;
5338 	}
5339 	numentries = roundup_pow_of_two(numentries);
5340 
5341 	/* limit allocation size to 1/16 total memory by default */
5342 	if (max == 0) {
5343 		max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
5344 		do_div(max, bucketsize);
5345 	}
5346 	max = min(max, 0x80000000ULL);
5347 
5348 	if (numentries < low_limit)
5349 		numentries = low_limit;
5350 	if (numentries > max)
5351 		numentries = max;
5352 
5353 	log2qty = ilog2(numentries);
5354 
5355 	do {
5356 		size = bucketsize << log2qty;
5357 		if (flags & HASH_EARLY)
5358 			table = alloc_bootmem_nopanic(size);
5359 		else if (hashdist)
5360 			table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
5361 		else {
5362 			/*
5363 			 * If bucketsize is not a power-of-two, we may free
5364 			 * some pages at the end of hash table which
5365 			 * alloc_pages_exact() automatically does
5366 			 */
5367 			if (get_order(size) < MAX_ORDER) {
5368 				table = alloc_pages_exact(size, GFP_ATOMIC);
5369 				kmemleak_alloc(table, size, 1, GFP_ATOMIC);
5370 			}
5371 		}
5372 	} while (!table && size > PAGE_SIZE && --log2qty);
5373 
5374 	if (!table)
5375 		panic("Failed to allocate %s hash table\n", tablename);
5376 
5377 	printk(KERN_INFO "%s hash table entries: %ld (order: %d, %lu bytes)\n",
5378 	       tablename,
5379 	       (1UL << log2qty),
5380 	       ilog2(size) - PAGE_SHIFT,
5381 	       size);
5382 
5383 	if (_hash_shift)
5384 		*_hash_shift = log2qty;
5385 	if (_hash_mask)
5386 		*_hash_mask = (1 << log2qty) - 1;
5387 
5388 	return table;
5389 }
5390 
5391 /* Return a pointer to the bitmap storing bits affecting a block of pages */
5392 static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
5393 							unsigned long pfn)
5394 {
5395 #ifdef CONFIG_SPARSEMEM
5396 	return __pfn_to_section(pfn)->pageblock_flags;
5397 #else
5398 	return zone->pageblock_flags;
5399 #endif /* CONFIG_SPARSEMEM */
5400 }
5401 
5402 static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
5403 {
5404 #ifdef CONFIG_SPARSEMEM
5405 	pfn &= (PAGES_PER_SECTION-1);
5406 	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
5407 #else
5408 	pfn = pfn - zone->zone_start_pfn;
5409 	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
5410 #endif /* CONFIG_SPARSEMEM */
5411 }
5412 
5413 /**
5414  * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
5415  * @page: The page within the block of interest
5416  * @start_bitidx: The first bit of interest to retrieve
5417  * @end_bitidx: The last bit of interest
5418  * returns pageblock_bits flags
5419  */
5420 unsigned long get_pageblock_flags_group(struct page *page,
5421 					int start_bitidx, int end_bitidx)
5422 {
5423 	struct zone *zone;
5424 	unsigned long *bitmap;
5425 	unsigned long pfn, bitidx;
5426 	unsigned long flags = 0;
5427 	unsigned long value = 1;
5428 
5429 	zone = page_zone(page);
5430 	pfn = page_to_pfn(page);
5431 	bitmap = get_pageblock_bitmap(zone, pfn);
5432 	bitidx = pfn_to_bitidx(zone, pfn);
5433 
5434 	for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
5435 		if (test_bit(bitidx + start_bitidx, bitmap))
5436 			flags |= value;
5437 
5438 	return flags;
5439 }
5440 
5441 /**
5442  * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
5443  * @page: The page within the block of interest
5444  * @start_bitidx: The first bit of interest
5445  * @end_bitidx: The last bit of interest
5446  * @flags: The flags to set
5447  */
5448 void set_pageblock_flags_group(struct page *page, unsigned long flags,
5449 					int start_bitidx, int end_bitidx)
5450 {
5451 	struct zone *zone;
5452 	unsigned long *bitmap;
5453 	unsigned long pfn, bitidx;
5454 	unsigned long value = 1;
5455 
5456 	zone = page_zone(page);
5457 	pfn = page_to_pfn(page);
5458 	bitmap = get_pageblock_bitmap(zone, pfn);
5459 	bitidx = pfn_to_bitidx(zone, pfn);
5460 	VM_BUG_ON(pfn < zone->zone_start_pfn);
5461 	VM_BUG_ON(pfn >= zone->zone_start_pfn + zone->spanned_pages);
5462 
5463 	for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
5464 		if (flags & value)
5465 			__set_bit(bitidx + start_bitidx, bitmap);
5466 		else
5467 			__clear_bit(bitidx + start_bitidx, bitmap);
5468 }
5469 
5470 /*
5471  * This is designed as sub function...plz see page_isolation.c also.
5472  * set/clear page block's type to be ISOLATE.
5473  * page allocater never alloc memory from ISOLATE block.
5474  */
5475 
5476 static int
5477 __count_immobile_pages(struct zone *zone, struct page *page, int count)
5478 {
5479 	unsigned long pfn, iter, found;
5480 	int mt;
5481 
5482 	/*
5483 	 * For avoiding noise data, lru_add_drain_all() should be called
5484 	 * If ZONE_MOVABLE, the zone never contains immobile pages
5485 	 */
5486 	if (zone_idx(zone) == ZONE_MOVABLE)
5487 		return true;
5488 	mt = get_pageblock_migratetype(page);
5489 	if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt))
5490 		return true;
5491 
5492 	pfn = page_to_pfn(page);
5493 	for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
5494 		unsigned long check = pfn + iter;
5495 
5496 		if (!pfn_valid_within(check))
5497 			continue;
5498 
5499 		page = pfn_to_page(check);
5500 		if (!page_count(page)) {
5501 			if (PageBuddy(page))
5502 				iter += (1 << page_order(page)) - 1;
5503 			continue;
5504 		}
5505 		if (!PageLRU(page))
5506 			found++;
5507 		/*
5508 		 * If there are RECLAIMABLE pages, we need to check it.
5509 		 * But now, memory offline itself doesn't call shrink_slab()
5510 		 * and it still to be fixed.
5511 		 */
5512 		/*
5513 		 * If the page is not RAM, page_count()should be 0.
5514 		 * we don't need more check. This is an _used_ not-movable page.
5515 		 *
5516 		 * The problematic thing here is PG_reserved pages. PG_reserved
5517 		 * is set to both of a memory hole page and a _used_ kernel
5518 		 * page at boot.
5519 		 */
5520 		if (found > count)
5521 			return false;
5522 	}
5523 	return true;
5524 }
5525 
5526 bool is_pageblock_removable_nolock(struct page *page)
5527 {
5528 	struct zone *zone;
5529 	unsigned long pfn;
5530 
5531 	/*
5532 	 * We have to be careful here because we are iterating over memory
5533 	 * sections which are not zone aware so we might end up outside of
5534 	 * the zone but still within the section.
5535 	 * We have to take care about the node as well. If the node is offline
5536 	 * its NODE_DATA will be NULL - see page_zone.
5537 	 */
5538 	if (!node_online(page_to_nid(page)))
5539 		return false;
5540 
5541 	zone = page_zone(page);
5542 	pfn = page_to_pfn(page);
5543 	if (zone->zone_start_pfn > pfn ||
5544 			zone->zone_start_pfn + zone->spanned_pages <= pfn)
5545 		return false;
5546 
5547 	return __count_immobile_pages(zone, page, 0);
5548 }
5549 
5550 int set_migratetype_isolate(struct page *page)
5551 {
5552 	struct zone *zone;
5553 	unsigned long flags, pfn;
5554 	struct memory_isolate_notify arg;
5555 	int notifier_ret;
5556 	int ret = -EBUSY;
5557 
5558 	zone = page_zone(page);
5559 
5560 	spin_lock_irqsave(&zone->lock, flags);
5561 
5562 	pfn = page_to_pfn(page);
5563 	arg.start_pfn = pfn;
5564 	arg.nr_pages = pageblock_nr_pages;
5565 	arg.pages_found = 0;
5566 
5567 	/*
5568 	 * It may be possible to isolate a pageblock even if the
5569 	 * migratetype is not MIGRATE_MOVABLE. The memory isolation
5570 	 * notifier chain is used by balloon drivers to return the
5571 	 * number of pages in a range that are held by the balloon
5572 	 * driver to shrink memory. If all the pages are accounted for
5573 	 * by balloons, are free, or on the LRU, isolation can continue.
5574 	 * Later, for example, when memory hotplug notifier runs, these
5575 	 * pages reported as "can be isolated" should be isolated(freed)
5576 	 * by the balloon driver through the memory notifier chain.
5577 	 */
5578 	notifier_ret = memory_isolate_notify(MEM_ISOLATE_COUNT, &arg);
5579 	notifier_ret = notifier_to_errno(notifier_ret);
5580 	if (notifier_ret)
5581 		goto out;
5582 	/*
5583 	 * FIXME: Now, memory hotplug doesn't call shrink_slab() by itself.
5584 	 * We just check MOVABLE pages.
5585 	 */
5586 	if (__count_immobile_pages(zone, page, arg.pages_found))
5587 		ret = 0;
5588 
5589 	/*
5590 	 * immobile means "not-on-lru" paes. If immobile is larger than
5591 	 * removable-by-driver pages reported by notifier, we'll fail.
5592 	 */
5593 
5594 out:
5595 	if (!ret) {
5596 		set_pageblock_migratetype(page, MIGRATE_ISOLATE);
5597 		move_freepages_block(zone, page, MIGRATE_ISOLATE);
5598 	}
5599 
5600 	spin_unlock_irqrestore(&zone->lock, flags);
5601 	if (!ret)
5602 		drain_all_pages();
5603 	return ret;
5604 }
5605 
5606 void unset_migratetype_isolate(struct page *page, unsigned migratetype)
5607 {
5608 	struct zone *zone;
5609 	unsigned long flags;
5610 	zone = page_zone(page);
5611 	spin_lock_irqsave(&zone->lock, flags);
5612 	if (get_pageblock_migratetype(page) != MIGRATE_ISOLATE)
5613 		goto out;
5614 	set_pageblock_migratetype(page, migratetype);
5615 	move_freepages_block(zone, page, migratetype);
5616 out:
5617 	spin_unlock_irqrestore(&zone->lock, flags);
5618 }
5619 
5620 #ifdef CONFIG_CMA
5621 
5622 static unsigned long pfn_max_align_down(unsigned long pfn)
5623 {
5624 	return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
5625 			     pageblock_nr_pages) - 1);
5626 }
5627 
5628 static unsigned long pfn_max_align_up(unsigned long pfn)
5629 {
5630 	return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
5631 				pageblock_nr_pages));
5632 }
5633 
5634 static struct page *
5635 __alloc_contig_migrate_alloc(struct page *page, unsigned long private,
5636 			     int **resultp)
5637 {
5638 	return alloc_page(GFP_HIGHUSER_MOVABLE);
5639 }
5640 
5641 /* [start, end) must belong to a single zone. */
5642 static int __alloc_contig_migrate_range(unsigned long start, unsigned long end)
5643 {
5644 	/* This function is based on compact_zone() from compaction.c. */
5645 
5646 	unsigned long pfn = start;
5647 	unsigned int tries = 0;
5648 	int ret = 0;
5649 
5650 	struct compact_control cc = {
5651 		.nr_migratepages = 0,
5652 		.order = -1,
5653 		.zone = page_zone(pfn_to_page(start)),
5654 		.sync = true,
5655 	};
5656 	INIT_LIST_HEAD(&cc.migratepages);
5657 
5658 	migrate_prep_local();
5659 
5660 	while (pfn < end || !list_empty(&cc.migratepages)) {
5661 		if (fatal_signal_pending(current)) {
5662 			ret = -EINTR;
5663 			break;
5664 		}
5665 
5666 		if (list_empty(&cc.migratepages)) {
5667 			cc.nr_migratepages = 0;
5668 			pfn = isolate_migratepages_range(cc.zone, &cc,
5669 							 pfn, end);
5670 			if (!pfn) {
5671 				ret = -EINTR;
5672 				break;
5673 			}
5674 			tries = 0;
5675 		} else if (++tries == 5) {
5676 			ret = ret < 0 ? ret : -EBUSY;
5677 			break;
5678 		}
5679 
5680 		ret = migrate_pages(&cc.migratepages,
5681 				    __alloc_contig_migrate_alloc,
5682 				    0, false, MIGRATE_SYNC);
5683 	}
5684 
5685 	putback_lru_pages(&cc.migratepages);
5686 	return ret > 0 ? 0 : ret;
5687 }
5688 
5689 /*
5690  * Update zone's cma pages counter used for watermark level calculation.
5691  */
5692 static inline void __update_cma_watermarks(struct zone *zone, int count)
5693 {
5694 	unsigned long flags;
5695 	spin_lock_irqsave(&zone->lock, flags);
5696 	zone->min_cma_pages += count;
5697 	spin_unlock_irqrestore(&zone->lock, flags);
5698 	setup_per_zone_wmarks();
5699 }
5700 
5701 /*
5702  * Trigger memory pressure bump to reclaim some pages in order to be able to
5703  * allocate 'count' pages in single page units. Does similar work as
5704  *__alloc_pages_slowpath() function.
5705  */
5706 static int __reclaim_pages(struct zone *zone, gfp_t gfp_mask, int count)
5707 {
5708 	enum zone_type high_zoneidx = gfp_zone(gfp_mask);
5709 	struct zonelist *zonelist = node_zonelist(0, gfp_mask);
5710 	int did_some_progress = 0;
5711 	int order = 1;
5712 
5713 	/*
5714 	 * Increase level of watermarks to force kswapd do his job
5715 	 * to stabilise at new watermark level.
5716 	 */
5717 	__update_cma_watermarks(zone, count);
5718 
5719 	/* Obey watermarks as if the page was being allocated */
5720 	while (!zone_watermark_ok(zone, 0, low_wmark_pages(zone), 0, 0)) {
5721 		wake_all_kswapd(order, zonelist, high_zoneidx, zone_idx(zone));
5722 
5723 		did_some_progress = __perform_reclaim(gfp_mask, order, zonelist,
5724 						      NULL);
5725 		if (!did_some_progress) {
5726 			/* Exhausted what can be done so it's blamo time */
5727 			out_of_memory(zonelist, gfp_mask, order, NULL, false);
5728 		}
5729 	}
5730 
5731 	/* Restore original watermark levels. */
5732 	__update_cma_watermarks(zone, -count);
5733 
5734 	return count;
5735 }
5736 
5737 /**
5738  * alloc_contig_range() -- tries to allocate given range of pages
5739  * @start:	start PFN to allocate
5740  * @end:	one-past-the-last PFN to allocate
5741  * @migratetype:	migratetype of the underlaying pageblocks (either
5742  *			#MIGRATE_MOVABLE or #MIGRATE_CMA).  All pageblocks
5743  *			in range must have the same migratetype and it must
5744  *			be either of the two.
5745  *
5746  * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
5747  * aligned, however it's the caller's responsibility to guarantee that
5748  * we are the only thread that changes migrate type of pageblocks the
5749  * pages fall in.
5750  *
5751  * The PFN range must belong to a single zone.
5752  *
5753  * Returns zero on success or negative error code.  On success all
5754  * pages which PFN is in [start, end) are allocated for the caller and
5755  * need to be freed with free_contig_range().
5756  */
5757 int alloc_contig_range(unsigned long start, unsigned long end,
5758 		       unsigned migratetype)
5759 {
5760 	struct zone *zone = page_zone(pfn_to_page(start));
5761 	unsigned long outer_start, outer_end;
5762 	int ret = 0, order;
5763 
5764 	/*
5765 	 * What we do here is we mark all pageblocks in range as
5766 	 * MIGRATE_ISOLATE.  Because pageblock and max order pages may
5767 	 * have different sizes, and due to the way page allocator
5768 	 * work, we align the range to biggest of the two pages so
5769 	 * that page allocator won't try to merge buddies from
5770 	 * different pageblocks and change MIGRATE_ISOLATE to some
5771 	 * other migration type.
5772 	 *
5773 	 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
5774 	 * migrate the pages from an unaligned range (ie. pages that
5775 	 * we are interested in).  This will put all the pages in
5776 	 * range back to page allocator as MIGRATE_ISOLATE.
5777 	 *
5778 	 * When this is done, we take the pages in range from page
5779 	 * allocator removing them from the buddy system.  This way
5780 	 * page allocator will never consider using them.
5781 	 *
5782 	 * This lets us mark the pageblocks back as
5783 	 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
5784 	 * aligned range but not in the unaligned, original range are
5785 	 * put back to page allocator so that buddy can use them.
5786 	 */
5787 
5788 	ret = start_isolate_page_range(pfn_max_align_down(start),
5789 				       pfn_max_align_up(end), migratetype);
5790 	if (ret)
5791 		goto done;
5792 
5793 	ret = __alloc_contig_migrate_range(start, end);
5794 	if (ret)
5795 		goto done;
5796 
5797 	/*
5798 	 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
5799 	 * aligned blocks that are marked as MIGRATE_ISOLATE.  What's
5800 	 * more, all pages in [start, end) are free in page allocator.
5801 	 * What we are going to do is to allocate all pages from
5802 	 * [start, end) (that is remove them from page allocator).
5803 	 *
5804 	 * The only problem is that pages at the beginning and at the
5805 	 * end of interesting range may be not aligned with pages that
5806 	 * page allocator holds, ie. they can be part of higher order
5807 	 * pages.  Because of this, we reserve the bigger range and
5808 	 * once this is done free the pages we are not interested in.
5809 	 *
5810 	 * We don't have to hold zone->lock here because the pages are
5811 	 * isolated thus they won't get removed from buddy.
5812 	 */
5813 
5814 	lru_add_drain_all();
5815 	drain_all_pages();
5816 
5817 	order = 0;
5818 	outer_start = start;
5819 	while (!PageBuddy(pfn_to_page(outer_start))) {
5820 		if (++order >= MAX_ORDER) {
5821 			ret = -EBUSY;
5822 			goto done;
5823 		}
5824 		outer_start &= ~0UL << order;
5825 	}
5826 
5827 	/* Make sure the range is really isolated. */
5828 	if (test_pages_isolated(outer_start, end)) {
5829 		pr_warn("alloc_contig_range test_pages_isolated(%lx, %lx) failed\n",
5830 		       outer_start, end);
5831 		ret = -EBUSY;
5832 		goto done;
5833 	}
5834 
5835 	/*
5836 	 * Reclaim enough pages to make sure that contiguous allocation
5837 	 * will not starve the system.
5838 	 */
5839 	__reclaim_pages(zone, GFP_HIGHUSER_MOVABLE, end-start);
5840 
5841 	/* Grab isolated pages from freelists. */
5842 	outer_end = isolate_freepages_range(outer_start, end);
5843 	if (!outer_end) {
5844 		ret = -EBUSY;
5845 		goto done;
5846 	}
5847 
5848 	/* Free head and tail (if any) */
5849 	if (start != outer_start)
5850 		free_contig_range(outer_start, start - outer_start);
5851 	if (end != outer_end)
5852 		free_contig_range(end, outer_end - end);
5853 
5854 done:
5855 	undo_isolate_page_range(pfn_max_align_down(start),
5856 				pfn_max_align_up(end), migratetype);
5857 	return ret;
5858 }
5859 
5860 void free_contig_range(unsigned long pfn, unsigned nr_pages)
5861 {
5862 	for (; nr_pages--; ++pfn)
5863 		__free_page(pfn_to_page(pfn));
5864 }
5865 #endif
5866 
5867 #ifdef CONFIG_MEMORY_HOTREMOVE
5868 /*
5869  * All pages in the range must be isolated before calling this.
5870  */
5871 void
5872 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
5873 {
5874 	struct page *page;
5875 	struct zone *zone;
5876 	int order, i;
5877 	unsigned long pfn;
5878 	unsigned long flags;
5879 	/* find the first valid pfn */
5880 	for (pfn = start_pfn; pfn < end_pfn; pfn++)
5881 		if (pfn_valid(pfn))
5882 			break;
5883 	if (pfn == end_pfn)
5884 		return;
5885 	zone = page_zone(pfn_to_page(pfn));
5886 	spin_lock_irqsave(&zone->lock, flags);
5887 	pfn = start_pfn;
5888 	while (pfn < end_pfn) {
5889 		if (!pfn_valid(pfn)) {
5890 			pfn++;
5891 			continue;
5892 		}
5893 		page = pfn_to_page(pfn);
5894 		BUG_ON(page_count(page));
5895 		BUG_ON(!PageBuddy(page));
5896 		order = page_order(page);
5897 #ifdef CONFIG_DEBUG_VM
5898 		printk(KERN_INFO "remove from free list %lx %d %lx\n",
5899 		       pfn, 1 << order, end_pfn);
5900 #endif
5901 		list_del(&page->lru);
5902 		rmv_page_order(page);
5903 		zone->free_area[order].nr_free--;
5904 		__mod_zone_page_state(zone, NR_FREE_PAGES,
5905 				      - (1UL << order));
5906 		for (i = 0; i < (1 << order); i++)
5907 			SetPageReserved((page+i));
5908 		pfn += (1 << order);
5909 	}
5910 	spin_unlock_irqrestore(&zone->lock, flags);
5911 }
5912 #endif
5913 
5914 #ifdef CONFIG_MEMORY_FAILURE
5915 bool is_free_buddy_page(struct page *page)
5916 {
5917 	struct zone *zone = page_zone(page);
5918 	unsigned long pfn = page_to_pfn(page);
5919 	unsigned long flags;
5920 	int order;
5921 
5922 	spin_lock_irqsave(&zone->lock, flags);
5923 	for (order = 0; order < MAX_ORDER; order++) {
5924 		struct page *page_head = page - (pfn & ((1 << order) - 1));
5925 
5926 		if (PageBuddy(page_head) && page_order(page_head) >= order)
5927 			break;
5928 	}
5929 	spin_unlock_irqrestore(&zone->lock, flags);
5930 
5931 	return order < MAX_ORDER;
5932 }
5933 #endif
5934 
5935 static const struct trace_print_flags pageflag_names[] = {
5936 	{1UL << PG_locked,		"locked"	},
5937 	{1UL << PG_error,		"error"		},
5938 	{1UL << PG_referenced,		"referenced"	},
5939 	{1UL << PG_uptodate,		"uptodate"	},
5940 	{1UL << PG_dirty,		"dirty"		},
5941 	{1UL << PG_lru,			"lru"		},
5942 	{1UL << PG_active,		"active"	},
5943 	{1UL << PG_slab,		"slab"		},
5944 	{1UL << PG_owner_priv_1,	"owner_priv_1"	},
5945 	{1UL << PG_arch_1,		"arch_1"	},
5946 	{1UL << PG_reserved,		"reserved"	},
5947 	{1UL << PG_private,		"private"	},
5948 	{1UL << PG_private_2,		"private_2"	},
5949 	{1UL << PG_writeback,		"writeback"	},
5950 #ifdef CONFIG_PAGEFLAGS_EXTENDED
5951 	{1UL << PG_head,		"head"		},
5952 	{1UL << PG_tail,		"tail"		},
5953 #else
5954 	{1UL << PG_compound,		"compound"	},
5955 #endif
5956 	{1UL << PG_swapcache,		"swapcache"	},
5957 	{1UL << PG_mappedtodisk,	"mappedtodisk"	},
5958 	{1UL << PG_reclaim,		"reclaim"	},
5959 	{1UL << PG_swapbacked,		"swapbacked"	},
5960 	{1UL << PG_unevictable,		"unevictable"	},
5961 #ifdef CONFIG_MMU
5962 	{1UL << PG_mlocked,		"mlocked"	},
5963 #endif
5964 #ifdef CONFIG_ARCH_USES_PG_UNCACHED
5965 	{1UL << PG_uncached,		"uncached"	},
5966 #endif
5967 #ifdef CONFIG_MEMORY_FAILURE
5968 	{1UL << PG_hwpoison,		"hwpoison"	},
5969 #endif
5970 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5971 	{1UL << PG_compound_lock,	"compound_lock"	},
5972 #endif
5973 };
5974 
5975 static void dump_page_flags(unsigned long flags)
5976 {
5977 	const char *delim = "";
5978 	unsigned long mask;
5979 	int i;
5980 
5981 	BUILD_BUG_ON(ARRAY_SIZE(pageflag_names) != __NR_PAGEFLAGS);
5982 
5983 	printk(KERN_ALERT "page flags: %#lx(", flags);
5984 
5985 	/* remove zone id */
5986 	flags &= (1UL << NR_PAGEFLAGS) - 1;
5987 
5988 	for (i = 0; i < ARRAY_SIZE(pageflag_names) && flags; i++) {
5989 
5990 		mask = pageflag_names[i].mask;
5991 		if ((flags & mask) != mask)
5992 			continue;
5993 
5994 		flags &= ~mask;
5995 		printk("%s%s", delim, pageflag_names[i].name);
5996 		delim = "|";
5997 	}
5998 
5999 	/* check for left over flags */
6000 	if (flags)
6001 		printk("%s%#lx", delim, flags);
6002 
6003 	printk(")\n");
6004 }
6005 
6006 void dump_page(struct page *page)
6007 {
6008 	printk(KERN_ALERT
6009 	       "page:%p count:%d mapcount:%d mapping:%p index:%#lx\n",
6010 		page, atomic_read(&page->_count), page_mapcount(page),
6011 		page->mapping, page->index);
6012 	dump_page_flags(page->flags);
6013 	mem_cgroup_print_bad_page(page);
6014 }
6015