xref: /linux/mm/page_alloc.c (revision cd6e992b3aab072cc90839508aaf5573c8f7e066)
1 /*
2  *  linux/mm/page_alloc.c
3  *
4  *  Manages the free list, the system allocates free pages here.
5  *  Note that kmalloc() lives in slab.c
6  *
7  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
8  *  Swap reorganised 29.12.95, Stephen Tweedie
9  *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10  *  Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11  *  Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12  *  Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13  *  Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14  *          (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15  */
16 
17 #include <linux/stddef.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/memblock.h>
25 #include <linux/compiler.h>
26 #include <linux/kernel.h>
27 #include <linux/kasan.h>
28 #include <linux/module.h>
29 #include <linux/suspend.h>
30 #include <linux/pagevec.h>
31 #include <linux/blkdev.h>
32 #include <linux/slab.h>
33 #include <linux/ratelimit.h>
34 #include <linux/oom.h>
35 #include <linux/notifier.h>
36 #include <linux/topology.h>
37 #include <linux/sysctl.h>
38 #include <linux/cpu.h>
39 #include <linux/cpuset.h>
40 #include <linux/memory_hotplug.h>
41 #include <linux/nodemask.h>
42 #include <linux/vmalloc.h>
43 #include <linux/vmstat.h>
44 #include <linux/mempolicy.h>
45 #include <linux/memremap.h>
46 #include <linux/stop_machine.h>
47 #include <linux/sort.h>
48 #include <linux/pfn.h>
49 #include <xen/xen.h>
50 #include <linux/backing-dev.h>
51 #include <linux/fault-inject.h>
52 #include <linux/page-isolation.h>
53 #include <linux/page_ext.h>
54 #include <linux/debugobjects.h>
55 #include <linux/kmemleak.h>
56 #include <linux/compaction.h>
57 #include <trace/events/kmem.h>
58 #include <trace/events/oom.h>
59 #include <linux/prefetch.h>
60 #include <linux/mm_inline.h>
61 #include <linux/migrate.h>
62 #include <linux/hugetlb.h>
63 #include <linux/sched/rt.h>
64 #include <linux/sched/mm.h>
65 #include <linux/page_owner.h>
66 #include <linux/kthread.h>
67 #include <linux/memcontrol.h>
68 #include <linux/ftrace.h>
69 #include <linux/lockdep.h>
70 #include <linux/nmi.h>
71 
72 #include <asm/sections.h>
73 #include <asm/tlbflush.h>
74 #include <asm/div64.h>
75 #include "internal.h"
76 
77 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
78 static DEFINE_MUTEX(pcp_batch_high_lock);
79 #define MIN_PERCPU_PAGELIST_FRACTION	(8)
80 
81 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
82 DEFINE_PER_CPU(int, numa_node);
83 EXPORT_PER_CPU_SYMBOL(numa_node);
84 #endif
85 
86 DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key);
87 
88 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
89 /*
90  * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
91  * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
92  * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
93  * defined in <linux/topology.h>.
94  */
95 DEFINE_PER_CPU(int, _numa_mem_);		/* Kernel "local memory" node */
96 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
97 int _node_numa_mem_[MAX_NUMNODES];
98 #endif
99 
100 /* work_structs for global per-cpu drains */
101 DEFINE_MUTEX(pcpu_drain_mutex);
102 DEFINE_PER_CPU(struct work_struct, pcpu_drain);
103 
104 #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
105 volatile unsigned long latent_entropy __latent_entropy;
106 EXPORT_SYMBOL(latent_entropy);
107 #endif
108 
109 /*
110  * Array of node states.
111  */
112 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
113 	[N_POSSIBLE] = NODE_MASK_ALL,
114 	[N_ONLINE] = { { [0] = 1UL } },
115 #ifndef CONFIG_NUMA
116 	[N_NORMAL_MEMORY] = { { [0] = 1UL } },
117 #ifdef CONFIG_HIGHMEM
118 	[N_HIGH_MEMORY] = { { [0] = 1UL } },
119 #endif
120 	[N_MEMORY] = { { [0] = 1UL } },
121 	[N_CPU] = { { [0] = 1UL } },
122 #endif	/* NUMA */
123 };
124 EXPORT_SYMBOL(node_states);
125 
126 /* Protect totalram_pages and zone->managed_pages */
127 static DEFINE_SPINLOCK(managed_page_count_lock);
128 
129 unsigned long totalram_pages __read_mostly;
130 unsigned long totalreserve_pages __read_mostly;
131 unsigned long totalcma_pages __read_mostly;
132 
133 int percpu_pagelist_fraction;
134 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
135 
136 /*
137  * A cached value of the page's pageblock's migratetype, used when the page is
138  * put on a pcplist. Used to avoid the pageblock migratetype lookup when
139  * freeing from pcplists in most cases, at the cost of possibly becoming stale.
140  * Also the migratetype set in the page does not necessarily match the pcplist
141  * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
142  * other index - this ensures that it will be put on the correct CMA freelist.
143  */
144 static inline int get_pcppage_migratetype(struct page *page)
145 {
146 	return page->index;
147 }
148 
149 static inline void set_pcppage_migratetype(struct page *page, int migratetype)
150 {
151 	page->index = migratetype;
152 }
153 
154 #ifdef CONFIG_PM_SLEEP
155 /*
156  * The following functions are used by the suspend/hibernate code to temporarily
157  * change gfp_allowed_mask in order to avoid using I/O during memory allocations
158  * while devices are suspended.  To avoid races with the suspend/hibernate code,
159  * they should always be called with pm_mutex held (gfp_allowed_mask also should
160  * only be modified with pm_mutex held, unless the suspend/hibernate code is
161  * guaranteed not to run in parallel with that modification).
162  */
163 
164 static gfp_t saved_gfp_mask;
165 
166 void pm_restore_gfp_mask(void)
167 {
168 	WARN_ON(!mutex_is_locked(&pm_mutex));
169 	if (saved_gfp_mask) {
170 		gfp_allowed_mask = saved_gfp_mask;
171 		saved_gfp_mask = 0;
172 	}
173 }
174 
175 void pm_restrict_gfp_mask(void)
176 {
177 	WARN_ON(!mutex_is_locked(&pm_mutex));
178 	WARN_ON(saved_gfp_mask);
179 	saved_gfp_mask = gfp_allowed_mask;
180 	gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
181 }
182 
183 bool pm_suspended_storage(void)
184 {
185 	if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
186 		return false;
187 	return true;
188 }
189 #endif /* CONFIG_PM_SLEEP */
190 
191 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
192 unsigned int pageblock_order __read_mostly;
193 #endif
194 
195 static void __free_pages_ok(struct page *page, unsigned int order);
196 
197 /*
198  * results with 256, 32 in the lowmem_reserve sysctl:
199  *	1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
200  *	1G machine -> (16M dma, 784M normal, 224M high)
201  *	NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
202  *	HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
203  *	HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
204  *
205  * TBD: should special case ZONE_DMA32 machines here - in those we normally
206  * don't need any ZONE_NORMAL reservation
207  */
208 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
209 #ifdef CONFIG_ZONE_DMA
210 	 256,
211 #endif
212 #ifdef CONFIG_ZONE_DMA32
213 	 256,
214 #endif
215 #ifdef CONFIG_HIGHMEM
216 	 32,
217 #endif
218 	 32,
219 };
220 
221 EXPORT_SYMBOL(totalram_pages);
222 
223 static char * const zone_names[MAX_NR_ZONES] = {
224 #ifdef CONFIG_ZONE_DMA
225 	 "DMA",
226 #endif
227 #ifdef CONFIG_ZONE_DMA32
228 	 "DMA32",
229 #endif
230 	 "Normal",
231 #ifdef CONFIG_HIGHMEM
232 	 "HighMem",
233 #endif
234 	 "Movable",
235 #ifdef CONFIG_ZONE_DEVICE
236 	 "Device",
237 #endif
238 };
239 
240 char * const migratetype_names[MIGRATE_TYPES] = {
241 	"Unmovable",
242 	"Movable",
243 	"Reclaimable",
244 	"HighAtomic",
245 #ifdef CONFIG_CMA
246 	"CMA",
247 #endif
248 #ifdef CONFIG_MEMORY_ISOLATION
249 	"Isolate",
250 #endif
251 };
252 
253 compound_page_dtor * const compound_page_dtors[] = {
254 	NULL,
255 	free_compound_page,
256 #ifdef CONFIG_HUGETLB_PAGE
257 	free_huge_page,
258 #endif
259 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
260 	free_transhuge_page,
261 #endif
262 };
263 
264 int min_free_kbytes = 1024;
265 int user_min_free_kbytes = -1;
266 int watermark_scale_factor = 10;
267 
268 static unsigned long __meminitdata nr_kernel_pages;
269 static unsigned long __meminitdata nr_all_pages;
270 static unsigned long __meminitdata dma_reserve;
271 
272 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
273 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
274 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
275 static unsigned long __initdata required_kernelcore;
276 static unsigned long __initdata required_movablecore;
277 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
278 static bool mirrored_kernelcore;
279 
280 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
281 int movable_zone;
282 EXPORT_SYMBOL(movable_zone);
283 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
284 
285 #if MAX_NUMNODES > 1
286 int nr_node_ids __read_mostly = MAX_NUMNODES;
287 int nr_online_nodes __read_mostly = 1;
288 EXPORT_SYMBOL(nr_node_ids);
289 EXPORT_SYMBOL(nr_online_nodes);
290 #endif
291 
292 int page_group_by_mobility_disabled __read_mostly;
293 
294 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
295 
296 /*
297  * Determine how many pages need to be initialized during early boot
298  * (non-deferred initialization).
299  * The value of first_deferred_pfn will be set later, once non-deferred pages
300  * are initialized, but for now set it ULONG_MAX.
301  */
302 static inline void reset_deferred_meminit(pg_data_t *pgdat)
303 {
304 	phys_addr_t start_addr, end_addr;
305 	unsigned long max_pgcnt;
306 	unsigned long reserved;
307 
308 	/*
309 	 * Initialise at least 2G of a node but also take into account that
310 	 * two large system hashes that can take up 1GB for 0.25TB/node.
311 	 */
312 	max_pgcnt = max(2UL << (30 - PAGE_SHIFT),
313 			(pgdat->node_spanned_pages >> 8));
314 
315 	/*
316 	 * Compensate the all the memblock reservations (e.g. crash kernel)
317 	 * from the initial estimation to make sure we will initialize enough
318 	 * memory to boot.
319 	 */
320 	start_addr = PFN_PHYS(pgdat->node_start_pfn);
321 	end_addr = PFN_PHYS(pgdat->node_start_pfn + max_pgcnt);
322 	reserved = memblock_reserved_memory_within(start_addr, end_addr);
323 	max_pgcnt += PHYS_PFN(reserved);
324 
325 	pgdat->static_init_pgcnt = min(max_pgcnt, pgdat->node_spanned_pages);
326 	pgdat->first_deferred_pfn = ULONG_MAX;
327 }
328 
329 /* Returns true if the struct page for the pfn is uninitialised */
330 static inline bool __meminit early_page_uninitialised(unsigned long pfn)
331 {
332 	int nid = early_pfn_to_nid(pfn);
333 
334 	if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
335 		return true;
336 
337 	return false;
338 }
339 
340 /*
341  * Returns false when the remaining initialisation should be deferred until
342  * later in the boot cycle when it can be parallelised.
343  */
344 static inline bool update_defer_init(pg_data_t *pgdat,
345 				unsigned long pfn, unsigned long zone_end,
346 				unsigned long *nr_initialised)
347 {
348 	/* Always populate low zones for address-constrained allocations */
349 	if (zone_end < pgdat_end_pfn(pgdat))
350 		return true;
351 	/* Xen PV domains need page structures early */
352 	if (xen_pv_domain())
353 		return true;
354 	(*nr_initialised)++;
355 	if ((*nr_initialised > pgdat->static_init_pgcnt) &&
356 	    (pfn & (PAGES_PER_SECTION - 1)) == 0) {
357 		pgdat->first_deferred_pfn = pfn;
358 		return false;
359 	}
360 
361 	return true;
362 }
363 #else
364 static inline void reset_deferred_meminit(pg_data_t *pgdat)
365 {
366 }
367 
368 static inline bool early_page_uninitialised(unsigned long pfn)
369 {
370 	return false;
371 }
372 
373 static inline bool update_defer_init(pg_data_t *pgdat,
374 				unsigned long pfn, unsigned long zone_end,
375 				unsigned long *nr_initialised)
376 {
377 	return true;
378 }
379 #endif
380 
381 /* Return a pointer to the bitmap storing bits affecting a block of pages */
382 static inline unsigned long *get_pageblock_bitmap(struct page *page,
383 							unsigned long pfn)
384 {
385 #ifdef CONFIG_SPARSEMEM
386 	return __pfn_to_section(pfn)->pageblock_flags;
387 #else
388 	return page_zone(page)->pageblock_flags;
389 #endif /* CONFIG_SPARSEMEM */
390 }
391 
392 static inline int pfn_to_bitidx(struct page *page, unsigned long pfn)
393 {
394 #ifdef CONFIG_SPARSEMEM
395 	pfn &= (PAGES_PER_SECTION-1);
396 	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
397 #else
398 	pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
399 	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
400 #endif /* CONFIG_SPARSEMEM */
401 }
402 
403 /**
404  * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
405  * @page: The page within the block of interest
406  * @pfn: The target page frame number
407  * @end_bitidx: The last bit of interest to retrieve
408  * @mask: mask of bits that the caller is interested in
409  *
410  * Return: pageblock_bits flags
411  */
412 static __always_inline unsigned long __get_pfnblock_flags_mask(struct page *page,
413 					unsigned long pfn,
414 					unsigned long end_bitidx,
415 					unsigned long mask)
416 {
417 	unsigned long *bitmap;
418 	unsigned long bitidx, word_bitidx;
419 	unsigned long word;
420 
421 	bitmap = get_pageblock_bitmap(page, pfn);
422 	bitidx = pfn_to_bitidx(page, pfn);
423 	word_bitidx = bitidx / BITS_PER_LONG;
424 	bitidx &= (BITS_PER_LONG-1);
425 
426 	word = bitmap[word_bitidx];
427 	bitidx += end_bitidx;
428 	return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
429 }
430 
431 unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
432 					unsigned long end_bitidx,
433 					unsigned long mask)
434 {
435 	return __get_pfnblock_flags_mask(page, pfn, end_bitidx, mask);
436 }
437 
438 static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn)
439 {
440 	return __get_pfnblock_flags_mask(page, pfn, PB_migrate_end, MIGRATETYPE_MASK);
441 }
442 
443 /**
444  * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
445  * @page: The page within the block of interest
446  * @flags: The flags to set
447  * @pfn: The target page frame number
448  * @end_bitidx: The last bit of interest
449  * @mask: mask of bits that the caller is interested in
450  */
451 void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
452 					unsigned long pfn,
453 					unsigned long end_bitidx,
454 					unsigned long mask)
455 {
456 	unsigned long *bitmap;
457 	unsigned long bitidx, word_bitidx;
458 	unsigned long old_word, word;
459 
460 	BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
461 
462 	bitmap = get_pageblock_bitmap(page, pfn);
463 	bitidx = pfn_to_bitidx(page, pfn);
464 	word_bitidx = bitidx / BITS_PER_LONG;
465 	bitidx &= (BITS_PER_LONG-1);
466 
467 	VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
468 
469 	bitidx += end_bitidx;
470 	mask <<= (BITS_PER_LONG - bitidx - 1);
471 	flags <<= (BITS_PER_LONG - bitidx - 1);
472 
473 	word = READ_ONCE(bitmap[word_bitidx]);
474 	for (;;) {
475 		old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
476 		if (word == old_word)
477 			break;
478 		word = old_word;
479 	}
480 }
481 
482 void set_pageblock_migratetype(struct page *page, int migratetype)
483 {
484 	if (unlikely(page_group_by_mobility_disabled &&
485 		     migratetype < MIGRATE_PCPTYPES))
486 		migratetype = MIGRATE_UNMOVABLE;
487 
488 	set_pageblock_flags_group(page, (unsigned long)migratetype,
489 					PB_migrate, PB_migrate_end);
490 }
491 
492 #ifdef CONFIG_DEBUG_VM
493 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
494 {
495 	int ret = 0;
496 	unsigned seq;
497 	unsigned long pfn = page_to_pfn(page);
498 	unsigned long sp, start_pfn;
499 
500 	do {
501 		seq = zone_span_seqbegin(zone);
502 		start_pfn = zone->zone_start_pfn;
503 		sp = zone->spanned_pages;
504 		if (!zone_spans_pfn(zone, pfn))
505 			ret = 1;
506 	} while (zone_span_seqretry(zone, seq));
507 
508 	if (ret)
509 		pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
510 			pfn, zone_to_nid(zone), zone->name,
511 			start_pfn, start_pfn + sp);
512 
513 	return ret;
514 }
515 
516 static int page_is_consistent(struct zone *zone, struct page *page)
517 {
518 	if (!pfn_valid_within(page_to_pfn(page)))
519 		return 0;
520 	if (zone != page_zone(page))
521 		return 0;
522 
523 	return 1;
524 }
525 /*
526  * Temporary debugging check for pages not lying within a given zone.
527  */
528 static int __maybe_unused bad_range(struct zone *zone, struct page *page)
529 {
530 	if (page_outside_zone_boundaries(zone, page))
531 		return 1;
532 	if (!page_is_consistent(zone, page))
533 		return 1;
534 
535 	return 0;
536 }
537 #else
538 static inline int __maybe_unused bad_range(struct zone *zone, struct page *page)
539 {
540 	return 0;
541 }
542 #endif
543 
544 static void bad_page(struct page *page, const char *reason,
545 		unsigned long bad_flags)
546 {
547 	static unsigned long resume;
548 	static unsigned long nr_shown;
549 	static unsigned long nr_unshown;
550 
551 	/*
552 	 * Allow a burst of 60 reports, then keep quiet for that minute;
553 	 * or allow a steady drip of one report per second.
554 	 */
555 	if (nr_shown == 60) {
556 		if (time_before(jiffies, resume)) {
557 			nr_unshown++;
558 			goto out;
559 		}
560 		if (nr_unshown) {
561 			pr_alert(
562 			      "BUG: Bad page state: %lu messages suppressed\n",
563 				nr_unshown);
564 			nr_unshown = 0;
565 		}
566 		nr_shown = 0;
567 	}
568 	if (nr_shown++ == 0)
569 		resume = jiffies + 60 * HZ;
570 
571 	pr_alert("BUG: Bad page state in process %s  pfn:%05lx\n",
572 		current->comm, page_to_pfn(page));
573 	__dump_page(page, reason);
574 	bad_flags &= page->flags;
575 	if (bad_flags)
576 		pr_alert("bad because of flags: %#lx(%pGp)\n",
577 						bad_flags, &bad_flags);
578 	dump_page_owner(page);
579 
580 	print_modules();
581 	dump_stack();
582 out:
583 	/* Leave bad fields for debug, except PageBuddy could make trouble */
584 	page_mapcount_reset(page); /* remove PageBuddy */
585 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
586 }
587 
588 /*
589  * Higher-order pages are called "compound pages".  They are structured thusly:
590  *
591  * The first PAGE_SIZE page is called the "head page" and have PG_head set.
592  *
593  * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
594  * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
595  *
596  * The first tail page's ->compound_dtor holds the offset in array of compound
597  * page destructors. See compound_page_dtors.
598  *
599  * The first tail page's ->compound_order holds the order of allocation.
600  * This usage means that zero-order pages may not be compound.
601  */
602 
603 void free_compound_page(struct page *page)
604 {
605 	__free_pages_ok(page, compound_order(page));
606 }
607 
608 void prep_compound_page(struct page *page, unsigned int order)
609 {
610 	int i;
611 	int nr_pages = 1 << order;
612 
613 	set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
614 	set_compound_order(page, order);
615 	__SetPageHead(page);
616 	for (i = 1; i < nr_pages; i++) {
617 		struct page *p = page + i;
618 		set_page_count(p, 0);
619 		p->mapping = TAIL_MAPPING;
620 		set_compound_head(p, page);
621 	}
622 	atomic_set(compound_mapcount_ptr(page), -1);
623 }
624 
625 #ifdef CONFIG_DEBUG_PAGEALLOC
626 unsigned int _debug_guardpage_minorder;
627 bool _debug_pagealloc_enabled __read_mostly
628 			= IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
629 EXPORT_SYMBOL(_debug_pagealloc_enabled);
630 bool _debug_guardpage_enabled __read_mostly;
631 
632 static int __init early_debug_pagealloc(char *buf)
633 {
634 	if (!buf)
635 		return -EINVAL;
636 	return kstrtobool(buf, &_debug_pagealloc_enabled);
637 }
638 early_param("debug_pagealloc", early_debug_pagealloc);
639 
640 static bool need_debug_guardpage(void)
641 {
642 	/* If we don't use debug_pagealloc, we don't need guard page */
643 	if (!debug_pagealloc_enabled())
644 		return false;
645 
646 	if (!debug_guardpage_minorder())
647 		return false;
648 
649 	return true;
650 }
651 
652 static void init_debug_guardpage(void)
653 {
654 	if (!debug_pagealloc_enabled())
655 		return;
656 
657 	if (!debug_guardpage_minorder())
658 		return;
659 
660 	_debug_guardpage_enabled = true;
661 }
662 
663 struct page_ext_operations debug_guardpage_ops = {
664 	.need = need_debug_guardpage,
665 	.init = init_debug_guardpage,
666 };
667 
668 static int __init debug_guardpage_minorder_setup(char *buf)
669 {
670 	unsigned long res;
671 
672 	if (kstrtoul(buf, 10, &res) < 0 ||  res > MAX_ORDER / 2) {
673 		pr_err("Bad debug_guardpage_minorder value\n");
674 		return 0;
675 	}
676 	_debug_guardpage_minorder = res;
677 	pr_info("Setting debug_guardpage_minorder to %lu\n", res);
678 	return 0;
679 }
680 early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup);
681 
682 static inline bool set_page_guard(struct zone *zone, struct page *page,
683 				unsigned int order, int migratetype)
684 {
685 	struct page_ext *page_ext;
686 
687 	if (!debug_guardpage_enabled())
688 		return false;
689 
690 	if (order >= debug_guardpage_minorder())
691 		return false;
692 
693 	page_ext = lookup_page_ext(page);
694 	if (unlikely(!page_ext))
695 		return false;
696 
697 	__set_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
698 
699 	INIT_LIST_HEAD(&page->lru);
700 	set_page_private(page, order);
701 	/* Guard pages are not available for any usage */
702 	__mod_zone_freepage_state(zone, -(1 << order), migratetype);
703 
704 	return true;
705 }
706 
707 static inline void clear_page_guard(struct zone *zone, struct page *page,
708 				unsigned int order, int migratetype)
709 {
710 	struct page_ext *page_ext;
711 
712 	if (!debug_guardpage_enabled())
713 		return;
714 
715 	page_ext = lookup_page_ext(page);
716 	if (unlikely(!page_ext))
717 		return;
718 
719 	__clear_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
720 
721 	set_page_private(page, 0);
722 	if (!is_migrate_isolate(migratetype))
723 		__mod_zone_freepage_state(zone, (1 << order), migratetype);
724 }
725 #else
726 struct page_ext_operations debug_guardpage_ops;
727 static inline bool set_page_guard(struct zone *zone, struct page *page,
728 			unsigned int order, int migratetype) { return false; }
729 static inline void clear_page_guard(struct zone *zone, struct page *page,
730 				unsigned int order, int migratetype) {}
731 #endif
732 
733 static inline void set_page_order(struct page *page, unsigned int order)
734 {
735 	set_page_private(page, order);
736 	__SetPageBuddy(page);
737 }
738 
739 static inline void rmv_page_order(struct page *page)
740 {
741 	__ClearPageBuddy(page);
742 	set_page_private(page, 0);
743 }
744 
745 /*
746  * This function checks whether a page is free && is the buddy
747  * we can do coalesce a page and its buddy if
748  * (a) the buddy is not in a hole (check before calling!) &&
749  * (b) the buddy is in the buddy system &&
750  * (c) a page and its buddy have the same order &&
751  * (d) a page and its buddy are in the same zone.
752  *
753  * For recording whether a page is in the buddy system, we set ->_mapcount
754  * PAGE_BUDDY_MAPCOUNT_VALUE.
755  * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is
756  * serialized by zone->lock.
757  *
758  * For recording page's order, we use page_private(page).
759  */
760 static inline int page_is_buddy(struct page *page, struct page *buddy,
761 							unsigned int order)
762 {
763 	if (page_is_guard(buddy) && page_order(buddy) == order) {
764 		if (page_zone_id(page) != page_zone_id(buddy))
765 			return 0;
766 
767 		VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
768 
769 		return 1;
770 	}
771 
772 	if (PageBuddy(buddy) && page_order(buddy) == order) {
773 		/*
774 		 * zone check is done late to avoid uselessly
775 		 * calculating zone/node ids for pages that could
776 		 * never merge.
777 		 */
778 		if (page_zone_id(page) != page_zone_id(buddy))
779 			return 0;
780 
781 		VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
782 
783 		return 1;
784 	}
785 	return 0;
786 }
787 
788 /*
789  * Freeing function for a buddy system allocator.
790  *
791  * The concept of a buddy system is to maintain direct-mapped table
792  * (containing bit values) for memory blocks of various "orders".
793  * The bottom level table contains the map for the smallest allocatable
794  * units of memory (here, pages), and each level above it describes
795  * pairs of units from the levels below, hence, "buddies".
796  * At a high level, all that happens here is marking the table entry
797  * at the bottom level available, and propagating the changes upward
798  * as necessary, plus some accounting needed to play nicely with other
799  * parts of the VM system.
800  * At each level, we keep a list of pages, which are heads of continuous
801  * free pages of length of (1 << order) and marked with _mapcount
802  * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page)
803  * field.
804  * So when we are allocating or freeing one, we can derive the state of the
805  * other.  That is, if we allocate a small block, and both were
806  * free, the remainder of the region must be split into blocks.
807  * If a block is freed, and its buddy is also free, then this
808  * triggers coalescing into a block of larger size.
809  *
810  * -- nyc
811  */
812 
813 static inline void __free_one_page(struct page *page,
814 		unsigned long pfn,
815 		struct zone *zone, unsigned int order,
816 		int migratetype)
817 {
818 	unsigned long combined_pfn;
819 	unsigned long uninitialized_var(buddy_pfn);
820 	struct page *buddy;
821 	unsigned int max_order;
822 
823 	max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1);
824 
825 	VM_BUG_ON(!zone_is_initialized(zone));
826 	VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
827 
828 	VM_BUG_ON(migratetype == -1);
829 	if (likely(!is_migrate_isolate(migratetype)))
830 		__mod_zone_freepage_state(zone, 1 << order, migratetype);
831 
832 	VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
833 	VM_BUG_ON_PAGE(bad_range(zone, page), page);
834 
835 continue_merging:
836 	while (order < max_order - 1) {
837 		buddy_pfn = __find_buddy_pfn(pfn, order);
838 		buddy = page + (buddy_pfn - pfn);
839 
840 		if (!pfn_valid_within(buddy_pfn))
841 			goto done_merging;
842 		if (!page_is_buddy(page, buddy, order))
843 			goto done_merging;
844 		/*
845 		 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
846 		 * merge with it and move up one order.
847 		 */
848 		if (page_is_guard(buddy)) {
849 			clear_page_guard(zone, buddy, order, migratetype);
850 		} else {
851 			list_del(&buddy->lru);
852 			zone->free_area[order].nr_free--;
853 			rmv_page_order(buddy);
854 		}
855 		combined_pfn = buddy_pfn & pfn;
856 		page = page + (combined_pfn - pfn);
857 		pfn = combined_pfn;
858 		order++;
859 	}
860 	if (max_order < MAX_ORDER) {
861 		/* If we are here, it means order is >= pageblock_order.
862 		 * We want to prevent merge between freepages on isolate
863 		 * pageblock and normal pageblock. Without this, pageblock
864 		 * isolation could cause incorrect freepage or CMA accounting.
865 		 *
866 		 * We don't want to hit this code for the more frequent
867 		 * low-order merging.
868 		 */
869 		if (unlikely(has_isolate_pageblock(zone))) {
870 			int buddy_mt;
871 
872 			buddy_pfn = __find_buddy_pfn(pfn, order);
873 			buddy = page + (buddy_pfn - pfn);
874 			buddy_mt = get_pageblock_migratetype(buddy);
875 
876 			if (migratetype != buddy_mt
877 					&& (is_migrate_isolate(migratetype) ||
878 						is_migrate_isolate(buddy_mt)))
879 				goto done_merging;
880 		}
881 		max_order++;
882 		goto continue_merging;
883 	}
884 
885 done_merging:
886 	set_page_order(page, order);
887 
888 	/*
889 	 * If this is not the largest possible page, check if the buddy
890 	 * of the next-highest order is free. If it is, it's possible
891 	 * that pages are being freed that will coalesce soon. In case,
892 	 * that is happening, add the free page to the tail of the list
893 	 * so it's less likely to be used soon and more likely to be merged
894 	 * as a higher order page
895 	 */
896 	if ((order < MAX_ORDER-2) && pfn_valid_within(buddy_pfn)) {
897 		struct page *higher_page, *higher_buddy;
898 		combined_pfn = buddy_pfn & pfn;
899 		higher_page = page + (combined_pfn - pfn);
900 		buddy_pfn = __find_buddy_pfn(combined_pfn, order + 1);
901 		higher_buddy = higher_page + (buddy_pfn - combined_pfn);
902 		if (pfn_valid_within(buddy_pfn) &&
903 		    page_is_buddy(higher_page, higher_buddy, order + 1)) {
904 			list_add_tail(&page->lru,
905 				&zone->free_area[order].free_list[migratetype]);
906 			goto out;
907 		}
908 	}
909 
910 	list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
911 out:
912 	zone->free_area[order].nr_free++;
913 }
914 
915 /*
916  * A bad page could be due to a number of fields. Instead of multiple branches,
917  * try and check multiple fields with one check. The caller must do a detailed
918  * check if necessary.
919  */
920 static inline bool page_expected_state(struct page *page,
921 					unsigned long check_flags)
922 {
923 	if (unlikely(atomic_read(&page->_mapcount) != -1))
924 		return false;
925 
926 	if (unlikely((unsigned long)page->mapping |
927 			page_ref_count(page) |
928 #ifdef CONFIG_MEMCG
929 			(unsigned long)page->mem_cgroup |
930 #endif
931 			(page->flags & check_flags)))
932 		return false;
933 
934 	return true;
935 }
936 
937 static void free_pages_check_bad(struct page *page)
938 {
939 	const char *bad_reason;
940 	unsigned long bad_flags;
941 
942 	bad_reason = NULL;
943 	bad_flags = 0;
944 
945 	if (unlikely(atomic_read(&page->_mapcount) != -1))
946 		bad_reason = "nonzero mapcount";
947 	if (unlikely(page->mapping != NULL))
948 		bad_reason = "non-NULL mapping";
949 	if (unlikely(page_ref_count(page) != 0))
950 		bad_reason = "nonzero _refcount";
951 	if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
952 		bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
953 		bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
954 	}
955 #ifdef CONFIG_MEMCG
956 	if (unlikely(page->mem_cgroup))
957 		bad_reason = "page still charged to cgroup";
958 #endif
959 	bad_page(page, bad_reason, bad_flags);
960 }
961 
962 static inline int free_pages_check(struct page *page)
963 {
964 	if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
965 		return 0;
966 
967 	/* Something has gone sideways, find it */
968 	free_pages_check_bad(page);
969 	return 1;
970 }
971 
972 static int free_tail_pages_check(struct page *head_page, struct page *page)
973 {
974 	int ret = 1;
975 
976 	/*
977 	 * We rely page->lru.next never has bit 0 set, unless the page
978 	 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
979 	 */
980 	BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
981 
982 	if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
983 		ret = 0;
984 		goto out;
985 	}
986 	switch (page - head_page) {
987 	case 1:
988 		/* the first tail page: ->mapping is compound_mapcount() */
989 		if (unlikely(compound_mapcount(page))) {
990 			bad_page(page, "nonzero compound_mapcount", 0);
991 			goto out;
992 		}
993 		break;
994 	case 2:
995 		/*
996 		 * the second tail page: ->mapping is
997 		 * page_deferred_list().next -- ignore value.
998 		 */
999 		break;
1000 	default:
1001 		if (page->mapping != TAIL_MAPPING) {
1002 			bad_page(page, "corrupted mapping in tail page", 0);
1003 			goto out;
1004 		}
1005 		break;
1006 	}
1007 	if (unlikely(!PageTail(page))) {
1008 		bad_page(page, "PageTail not set", 0);
1009 		goto out;
1010 	}
1011 	if (unlikely(compound_head(page) != head_page)) {
1012 		bad_page(page, "compound_head not consistent", 0);
1013 		goto out;
1014 	}
1015 	ret = 0;
1016 out:
1017 	page->mapping = NULL;
1018 	clear_compound_head(page);
1019 	return ret;
1020 }
1021 
1022 static __always_inline bool free_pages_prepare(struct page *page,
1023 					unsigned int order, bool check_free)
1024 {
1025 	int bad = 0;
1026 
1027 	VM_BUG_ON_PAGE(PageTail(page), page);
1028 
1029 	trace_mm_page_free(page, order);
1030 
1031 	/*
1032 	 * Check tail pages before head page information is cleared to
1033 	 * avoid checking PageCompound for order-0 pages.
1034 	 */
1035 	if (unlikely(order)) {
1036 		bool compound = PageCompound(page);
1037 		int i;
1038 
1039 		VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
1040 
1041 		if (compound)
1042 			ClearPageDoubleMap(page);
1043 		for (i = 1; i < (1 << order); i++) {
1044 			if (compound)
1045 				bad += free_tail_pages_check(page, page + i);
1046 			if (unlikely(free_pages_check(page + i))) {
1047 				bad++;
1048 				continue;
1049 			}
1050 			(page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1051 		}
1052 	}
1053 	if (PageMappingFlags(page))
1054 		page->mapping = NULL;
1055 	if (memcg_kmem_enabled() && PageKmemcg(page))
1056 		memcg_kmem_uncharge(page, order);
1057 	if (check_free)
1058 		bad += free_pages_check(page);
1059 	if (bad)
1060 		return false;
1061 
1062 	page_cpupid_reset_last(page);
1063 	page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1064 	reset_page_owner(page, order);
1065 
1066 	if (!PageHighMem(page)) {
1067 		debug_check_no_locks_freed(page_address(page),
1068 					   PAGE_SIZE << order);
1069 		debug_check_no_obj_freed(page_address(page),
1070 					   PAGE_SIZE << order);
1071 	}
1072 	arch_free_page(page, order);
1073 	kernel_poison_pages(page, 1 << order, 0);
1074 	kernel_map_pages(page, 1 << order, 0);
1075 	kasan_free_pages(page, order);
1076 
1077 	return true;
1078 }
1079 
1080 #ifdef CONFIG_DEBUG_VM
1081 static inline bool free_pcp_prepare(struct page *page)
1082 {
1083 	return free_pages_prepare(page, 0, true);
1084 }
1085 
1086 static inline bool bulkfree_pcp_prepare(struct page *page)
1087 {
1088 	return false;
1089 }
1090 #else
1091 static bool free_pcp_prepare(struct page *page)
1092 {
1093 	return free_pages_prepare(page, 0, false);
1094 }
1095 
1096 static bool bulkfree_pcp_prepare(struct page *page)
1097 {
1098 	return free_pages_check(page);
1099 }
1100 #endif /* CONFIG_DEBUG_VM */
1101 
1102 /*
1103  * Frees a number of pages from the PCP lists
1104  * Assumes all pages on list are in same zone, and of same order.
1105  * count is the number of pages to free.
1106  *
1107  * If the zone was previously in an "all pages pinned" state then look to
1108  * see if this freeing clears that state.
1109  *
1110  * And clear the zone's pages_scanned counter, to hold off the "all pages are
1111  * pinned" detection logic.
1112  */
1113 static void free_pcppages_bulk(struct zone *zone, int count,
1114 					struct per_cpu_pages *pcp)
1115 {
1116 	int migratetype = 0;
1117 	int batch_free = 0;
1118 	bool isolated_pageblocks;
1119 
1120 	spin_lock(&zone->lock);
1121 	isolated_pageblocks = has_isolate_pageblock(zone);
1122 
1123 	while (count) {
1124 		struct page *page;
1125 		struct list_head *list;
1126 
1127 		/*
1128 		 * Remove pages from lists in a round-robin fashion. A
1129 		 * batch_free count is maintained that is incremented when an
1130 		 * empty list is encountered.  This is so more pages are freed
1131 		 * off fuller lists instead of spinning excessively around empty
1132 		 * lists
1133 		 */
1134 		do {
1135 			batch_free++;
1136 			if (++migratetype == MIGRATE_PCPTYPES)
1137 				migratetype = 0;
1138 			list = &pcp->lists[migratetype];
1139 		} while (list_empty(list));
1140 
1141 		/* This is the only non-empty list. Free them all. */
1142 		if (batch_free == MIGRATE_PCPTYPES)
1143 			batch_free = count;
1144 
1145 		do {
1146 			int mt;	/* migratetype of the to-be-freed page */
1147 
1148 			page = list_last_entry(list, struct page, lru);
1149 			/* must delete as __free_one_page list manipulates */
1150 			list_del(&page->lru);
1151 
1152 			mt = get_pcppage_migratetype(page);
1153 			/* MIGRATE_ISOLATE page should not go to pcplists */
1154 			VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1155 			/* Pageblock could have been isolated meanwhile */
1156 			if (unlikely(isolated_pageblocks))
1157 				mt = get_pageblock_migratetype(page);
1158 
1159 			if (bulkfree_pcp_prepare(page))
1160 				continue;
1161 
1162 			__free_one_page(page, page_to_pfn(page), zone, 0, mt);
1163 			trace_mm_page_pcpu_drain(page, 0, mt);
1164 		} while (--count && --batch_free && !list_empty(list));
1165 	}
1166 	spin_unlock(&zone->lock);
1167 }
1168 
1169 static void free_one_page(struct zone *zone,
1170 				struct page *page, unsigned long pfn,
1171 				unsigned int order,
1172 				int migratetype)
1173 {
1174 	spin_lock(&zone->lock);
1175 	if (unlikely(has_isolate_pageblock(zone) ||
1176 		is_migrate_isolate(migratetype))) {
1177 		migratetype = get_pfnblock_migratetype(page, pfn);
1178 	}
1179 	__free_one_page(page, pfn, zone, order, migratetype);
1180 	spin_unlock(&zone->lock);
1181 }
1182 
1183 static void __meminit __init_single_page(struct page *page, unsigned long pfn,
1184 				unsigned long zone, int nid, bool zero)
1185 {
1186 	if (zero)
1187 		mm_zero_struct_page(page);
1188 	set_page_links(page, zone, nid, pfn);
1189 	init_page_count(page);
1190 	page_mapcount_reset(page);
1191 	page_cpupid_reset_last(page);
1192 
1193 	INIT_LIST_HEAD(&page->lru);
1194 #ifdef WANT_PAGE_VIRTUAL
1195 	/* The shift won't overflow because ZONE_NORMAL is below 4G. */
1196 	if (!is_highmem_idx(zone))
1197 		set_page_address(page, __va(pfn << PAGE_SHIFT));
1198 #endif
1199 }
1200 
1201 static void __meminit __init_single_pfn(unsigned long pfn, unsigned long zone,
1202 					int nid, bool zero)
1203 {
1204 	return __init_single_page(pfn_to_page(pfn), pfn, zone, nid, zero);
1205 }
1206 
1207 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1208 static void __meminit init_reserved_page(unsigned long pfn)
1209 {
1210 	pg_data_t *pgdat;
1211 	int nid, zid;
1212 
1213 	if (!early_page_uninitialised(pfn))
1214 		return;
1215 
1216 	nid = early_pfn_to_nid(pfn);
1217 	pgdat = NODE_DATA(nid);
1218 
1219 	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1220 		struct zone *zone = &pgdat->node_zones[zid];
1221 
1222 		if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
1223 			break;
1224 	}
1225 	__init_single_pfn(pfn, zid, nid, true);
1226 }
1227 #else
1228 static inline void init_reserved_page(unsigned long pfn)
1229 {
1230 }
1231 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1232 
1233 /*
1234  * Initialised pages do not have PageReserved set. This function is
1235  * called for each range allocated by the bootmem allocator and
1236  * marks the pages PageReserved. The remaining valid pages are later
1237  * sent to the buddy page allocator.
1238  */
1239 void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
1240 {
1241 	unsigned long start_pfn = PFN_DOWN(start);
1242 	unsigned long end_pfn = PFN_UP(end);
1243 
1244 	for (; start_pfn < end_pfn; start_pfn++) {
1245 		if (pfn_valid(start_pfn)) {
1246 			struct page *page = pfn_to_page(start_pfn);
1247 
1248 			init_reserved_page(start_pfn);
1249 
1250 			/* Avoid false-positive PageTail() */
1251 			INIT_LIST_HEAD(&page->lru);
1252 
1253 			SetPageReserved(page);
1254 		}
1255 	}
1256 }
1257 
1258 static void __free_pages_ok(struct page *page, unsigned int order)
1259 {
1260 	unsigned long flags;
1261 	int migratetype;
1262 	unsigned long pfn = page_to_pfn(page);
1263 
1264 	if (!free_pages_prepare(page, order, true))
1265 		return;
1266 
1267 	migratetype = get_pfnblock_migratetype(page, pfn);
1268 	local_irq_save(flags);
1269 	__count_vm_events(PGFREE, 1 << order);
1270 	free_one_page(page_zone(page), page, pfn, order, migratetype);
1271 	local_irq_restore(flags);
1272 }
1273 
1274 static void __init __free_pages_boot_core(struct page *page, unsigned int order)
1275 {
1276 	unsigned int nr_pages = 1 << order;
1277 	struct page *p = page;
1278 	unsigned int loop;
1279 
1280 	prefetchw(p);
1281 	for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1282 		prefetchw(p + 1);
1283 		__ClearPageReserved(p);
1284 		set_page_count(p, 0);
1285 	}
1286 	__ClearPageReserved(p);
1287 	set_page_count(p, 0);
1288 
1289 	page_zone(page)->managed_pages += nr_pages;
1290 	set_page_refcounted(page);
1291 	__free_pages(page, order);
1292 }
1293 
1294 #if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \
1295 	defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
1296 
1297 static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
1298 
1299 int __meminit early_pfn_to_nid(unsigned long pfn)
1300 {
1301 	static DEFINE_SPINLOCK(early_pfn_lock);
1302 	int nid;
1303 
1304 	spin_lock(&early_pfn_lock);
1305 	nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
1306 	if (nid < 0)
1307 		nid = first_online_node;
1308 	spin_unlock(&early_pfn_lock);
1309 
1310 	return nid;
1311 }
1312 #endif
1313 
1314 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
1315 static inline bool __meminit __maybe_unused
1316 meminit_pfn_in_nid(unsigned long pfn, int node,
1317 		   struct mminit_pfnnid_cache *state)
1318 {
1319 	int nid;
1320 
1321 	nid = __early_pfn_to_nid(pfn, state);
1322 	if (nid >= 0 && nid != node)
1323 		return false;
1324 	return true;
1325 }
1326 
1327 /* Only safe to use early in boot when initialisation is single-threaded */
1328 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1329 {
1330 	return meminit_pfn_in_nid(pfn, node, &early_pfnnid_cache);
1331 }
1332 
1333 #else
1334 
1335 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1336 {
1337 	return true;
1338 }
1339 static inline bool __meminit  __maybe_unused
1340 meminit_pfn_in_nid(unsigned long pfn, int node,
1341 		   struct mminit_pfnnid_cache *state)
1342 {
1343 	return true;
1344 }
1345 #endif
1346 
1347 
1348 void __init __free_pages_bootmem(struct page *page, unsigned long pfn,
1349 							unsigned int order)
1350 {
1351 	if (early_page_uninitialised(pfn))
1352 		return;
1353 	return __free_pages_boot_core(page, order);
1354 }
1355 
1356 /*
1357  * Check that the whole (or subset of) a pageblock given by the interval of
1358  * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1359  * with the migration of free compaction scanner. The scanners then need to
1360  * use only pfn_valid_within() check for arches that allow holes within
1361  * pageblocks.
1362  *
1363  * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1364  *
1365  * It's possible on some configurations to have a setup like node0 node1 node0
1366  * i.e. it's possible that all pages within a zones range of pages do not
1367  * belong to a single zone. We assume that a border between node0 and node1
1368  * can occur within a single pageblock, but not a node0 node1 node0
1369  * interleaving within a single pageblock. It is therefore sufficient to check
1370  * the first and last page of a pageblock and avoid checking each individual
1371  * page in a pageblock.
1372  */
1373 struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1374 				     unsigned long end_pfn, struct zone *zone)
1375 {
1376 	struct page *start_page;
1377 	struct page *end_page;
1378 
1379 	/* end_pfn is one past the range we are checking */
1380 	end_pfn--;
1381 
1382 	if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
1383 		return NULL;
1384 
1385 	start_page = pfn_to_online_page(start_pfn);
1386 	if (!start_page)
1387 		return NULL;
1388 
1389 	if (page_zone(start_page) != zone)
1390 		return NULL;
1391 
1392 	end_page = pfn_to_page(end_pfn);
1393 
1394 	/* This gives a shorter code than deriving page_zone(end_page) */
1395 	if (page_zone_id(start_page) != page_zone_id(end_page))
1396 		return NULL;
1397 
1398 	return start_page;
1399 }
1400 
1401 void set_zone_contiguous(struct zone *zone)
1402 {
1403 	unsigned long block_start_pfn = zone->zone_start_pfn;
1404 	unsigned long block_end_pfn;
1405 
1406 	block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
1407 	for (; block_start_pfn < zone_end_pfn(zone);
1408 			block_start_pfn = block_end_pfn,
1409 			 block_end_pfn += pageblock_nr_pages) {
1410 
1411 		block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
1412 
1413 		if (!__pageblock_pfn_to_page(block_start_pfn,
1414 					     block_end_pfn, zone))
1415 			return;
1416 	}
1417 
1418 	/* We confirm that there is no hole */
1419 	zone->contiguous = true;
1420 }
1421 
1422 void clear_zone_contiguous(struct zone *zone)
1423 {
1424 	zone->contiguous = false;
1425 }
1426 
1427 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1428 static void __init deferred_free_range(unsigned long pfn,
1429 				       unsigned long nr_pages)
1430 {
1431 	struct page *page;
1432 	unsigned long i;
1433 
1434 	if (!nr_pages)
1435 		return;
1436 
1437 	page = pfn_to_page(pfn);
1438 
1439 	/* Free a large naturally-aligned chunk if possible */
1440 	if (nr_pages == pageblock_nr_pages &&
1441 	    (pfn & (pageblock_nr_pages - 1)) == 0) {
1442 		set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1443 		__free_pages_boot_core(page, pageblock_order);
1444 		return;
1445 	}
1446 
1447 	for (i = 0; i < nr_pages; i++, page++, pfn++) {
1448 		if ((pfn & (pageblock_nr_pages - 1)) == 0)
1449 			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1450 		__free_pages_boot_core(page, 0);
1451 	}
1452 }
1453 
1454 /* Completion tracking for deferred_init_memmap() threads */
1455 static atomic_t pgdat_init_n_undone __initdata;
1456 static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1457 
1458 static inline void __init pgdat_init_report_one_done(void)
1459 {
1460 	if (atomic_dec_and_test(&pgdat_init_n_undone))
1461 		complete(&pgdat_init_all_done_comp);
1462 }
1463 
1464 /*
1465  * Returns true if page needs to be initialized or freed to buddy allocator.
1466  *
1467  * First we check if pfn is valid on architectures where it is possible to have
1468  * holes within pageblock_nr_pages. On systems where it is not possible, this
1469  * function is optimized out.
1470  *
1471  * Then, we check if a current large page is valid by only checking the validity
1472  * of the head pfn.
1473  *
1474  * Finally, meminit_pfn_in_nid is checked on systems where pfns can interleave
1475  * within a node: a pfn is between start and end of a node, but does not belong
1476  * to this memory node.
1477  */
1478 static inline bool __init
1479 deferred_pfn_valid(int nid, unsigned long pfn,
1480 		   struct mminit_pfnnid_cache *nid_init_state)
1481 {
1482 	if (!pfn_valid_within(pfn))
1483 		return false;
1484 	if (!(pfn & (pageblock_nr_pages - 1)) && !pfn_valid(pfn))
1485 		return false;
1486 	if (!meminit_pfn_in_nid(pfn, nid, nid_init_state))
1487 		return false;
1488 	return true;
1489 }
1490 
1491 /*
1492  * Free pages to buddy allocator. Try to free aligned pages in
1493  * pageblock_nr_pages sizes.
1494  */
1495 static void __init deferred_free_pages(int nid, int zid, unsigned long pfn,
1496 				       unsigned long end_pfn)
1497 {
1498 	struct mminit_pfnnid_cache nid_init_state = { };
1499 	unsigned long nr_pgmask = pageblock_nr_pages - 1;
1500 	unsigned long nr_free = 0;
1501 
1502 	for (; pfn < end_pfn; pfn++) {
1503 		if (!deferred_pfn_valid(nid, pfn, &nid_init_state)) {
1504 			deferred_free_range(pfn - nr_free, nr_free);
1505 			nr_free = 0;
1506 		} else if (!(pfn & nr_pgmask)) {
1507 			deferred_free_range(pfn - nr_free, nr_free);
1508 			nr_free = 1;
1509 			cond_resched();
1510 		} else {
1511 			nr_free++;
1512 		}
1513 	}
1514 	/* Free the last block of pages to allocator */
1515 	deferred_free_range(pfn - nr_free, nr_free);
1516 }
1517 
1518 /*
1519  * Initialize struct pages.  We minimize pfn page lookups and scheduler checks
1520  * by performing it only once every pageblock_nr_pages.
1521  * Return number of pages initialized.
1522  */
1523 static unsigned long  __init deferred_init_pages(int nid, int zid,
1524 						 unsigned long pfn,
1525 						 unsigned long end_pfn)
1526 {
1527 	struct mminit_pfnnid_cache nid_init_state = { };
1528 	unsigned long nr_pgmask = pageblock_nr_pages - 1;
1529 	unsigned long nr_pages = 0;
1530 	struct page *page = NULL;
1531 
1532 	for (; pfn < end_pfn; pfn++) {
1533 		if (!deferred_pfn_valid(nid, pfn, &nid_init_state)) {
1534 			page = NULL;
1535 			continue;
1536 		} else if (!page || !(pfn & nr_pgmask)) {
1537 			page = pfn_to_page(pfn);
1538 			cond_resched();
1539 		} else {
1540 			page++;
1541 		}
1542 		__init_single_page(page, pfn, zid, nid, true);
1543 		nr_pages++;
1544 	}
1545 	return (nr_pages);
1546 }
1547 
1548 /* Initialise remaining memory on a node */
1549 static int __init deferred_init_memmap(void *data)
1550 {
1551 	pg_data_t *pgdat = data;
1552 	int nid = pgdat->node_id;
1553 	unsigned long start = jiffies;
1554 	unsigned long nr_pages = 0;
1555 	unsigned long spfn, epfn;
1556 	phys_addr_t spa, epa;
1557 	int zid;
1558 	struct zone *zone;
1559 	unsigned long first_init_pfn = pgdat->first_deferred_pfn;
1560 	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1561 	u64 i;
1562 
1563 	if (first_init_pfn == ULONG_MAX) {
1564 		pgdat_init_report_one_done();
1565 		return 0;
1566 	}
1567 
1568 	/* Bind memory initialisation thread to a local node if possible */
1569 	if (!cpumask_empty(cpumask))
1570 		set_cpus_allowed_ptr(current, cpumask);
1571 
1572 	/* Sanity check boundaries */
1573 	BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
1574 	BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
1575 	pgdat->first_deferred_pfn = ULONG_MAX;
1576 
1577 	/* Only the highest zone is deferred so find it */
1578 	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1579 		zone = pgdat->node_zones + zid;
1580 		if (first_init_pfn < zone_end_pfn(zone))
1581 			break;
1582 	}
1583 	first_init_pfn = max(zone->zone_start_pfn, first_init_pfn);
1584 
1585 	/*
1586 	 * Initialize and free pages. We do it in two loops: first we initialize
1587 	 * struct page, than free to buddy allocator, because while we are
1588 	 * freeing pages we can access pages that are ahead (computing buddy
1589 	 * page in __free_one_page()).
1590 	 */
1591 	for_each_free_mem_range(i, nid, MEMBLOCK_NONE, &spa, &epa, NULL) {
1592 		spfn = max_t(unsigned long, first_init_pfn, PFN_UP(spa));
1593 		epfn = min_t(unsigned long, zone_end_pfn(zone), PFN_DOWN(epa));
1594 		nr_pages += deferred_init_pages(nid, zid, spfn, epfn);
1595 	}
1596 	for_each_free_mem_range(i, nid, MEMBLOCK_NONE, &spa, &epa, NULL) {
1597 		spfn = max_t(unsigned long, first_init_pfn, PFN_UP(spa));
1598 		epfn = min_t(unsigned long, zone_end_pfn(zone), PFN_DOWN(epa));
1599 		deferred_free_pages(nid, zid, spfn, epfn);
1600 	}
1601 
1602 	/* Sanity check that the next zone really is unpopulated */
1603 	WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
1604 
1605 	pr_info("node %d initialised, %lu pages in %ums\n", nid, nr_pages,
1606 					jiffies_to_msecs(jiffies - start));
1607 
1608 	pgdat_init_report_one_done();
1609 	return 0;
1610 }
1611 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1612 
1613 void __init page_alloc_init_late(void)
1614 {
1615 	struct zone *zone;
1616 
1617 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1618 	int nid;
1619 
1620 	/* There will be num_node_state(N_MEMORY) threads */
1621 	atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
1622 	for_each_node_state(nid, N_MEMORY) {
1623 		kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
1624 	}
1625 
1626 	/* Block until all are initialised */
1627 	wait_for_completion(&pgdat_init_all_done_comp);
1628 
1629 	/* Reinit limits that are based on free pages after the kernel is up */
1630 	files_maxfiles_init();
1631 #endif
1632 #ifdef CONFIG_ARCH_DISCARD_MEMBLOCK
1633 	/* Discard memblock private memory */
1634 	memblock_discard();
1635 #endif
1636 
1637 	for_each_populated_zone(zone)
1638 		set_zone_contiguous(zone);
1639 }
1640 
1641 #ifdef CONFIG_CMA
1642 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */
1643 void __init init_cma_reserved_pageblock(struct page *page)
1644 {
1645 	unsigned i = pageblock_nr_pages;
1646 	struct page *p = page;
1647 
1648 	do {
1649 		__ClearPageReserved(p);
1650 		set_page_count(p, 0);
1651 	} while (++p, --i);
1652 
1653 	set_pageblock_migratetype(page, MIGRATE_CMA);
1654 
1655 	if (pageblock_order >= MAX_ORDER) {
1656 		i = pageblock_nr_pages;
1657 		p = page;
1658 		do {
1659 			set_page_refcounted(p);
1660 			__free_pages(p, MAX_ORDER - 1);
1661 			p += MAX_ORDER_NR_PAGES;
1662 		} while (i -= MAX_ORDER_NR_PAGES);
1663 	} else {
1664 		set_page_refcounted(page);
1665 		__free_pages(page, pageblock_order);
1666 	}
1667 
1668 	adjust_managed_page_count(page, pageblock_nr_pages);
1669 }
1670 #endif
1671 
1672 /*
1673  * The order of subdivision here is critical for the IO subsystem.
1674  * Please do not alter this order without good reasons and regression
1675  * testing. Specifically, as large blocks of memory are subdivided,
1676  * the order in which smaller blocks are delivered depends on the order
1677  * they're subdivided in this function. This is the primary factor
1678  * influencing the order in which pages are delivered to the IO
1679  * subsystem according to empirical testing, and this is also justified
1680  * by considering the behavior of a buddy system containing a single
1681  * large block of memory acted on by a series of small allocations.
1682  * This behavior is a critical factor in sglist merging's success.
1683  *
1684  * -- nyc
1685  */
1686 static inline void expand(struct zone *zone, struct page *page,
1687 	int low, int high, struct free_area *area,
1688 	int migratetype)
1689 {
1690 	unsigned long size = 1 << high;
1691 
1692 	while (high > low) {
1693 		area--;
1694 		high--;
1695 		size >>= 1;
1696 		VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
1697 
1698 		/*
1699 		 * Mark as guard pages (or page), that will allow to
1700 		 * merge back to allocator when buddy will be freed.
1701 		 * Corresponding page table entries will not be touched,
1702 		 * pages will stay not present in virtual address space
1703 		 */
1704 		if (set_page_guard(zone, &page[size], high, migratetype))
1705 			continue;
1706 
1707 		list_add(&page[size].lru, &area->free_list[migratetype]);
1708 		area->nr_free++;
1709 		set_page_order(&page[size], high);
1710 	}
1711 }
1712 
1713 static void check_new_page_bad(struct page *page)
1714 {
1715 	const char *bad_reason = NULL;
1716 	unsigned long bad_flags = 0;
1717 
1718 	if (unlikely(atomic_read(&page->_mapcount) != -1))
1719 		bad_reason = "nonzero mapcount";
1720 	if (unlikely(page->mapping != NULL))
1721 		bad_reason = "non-NULL mapping";
1722 	if (unlikely(page_ref_count(page) != 0))
1723 		bad_reason = "nonzero _count";
1724 	if (unlikely(page->flags & __PG_HWPOISON)) {
1725 		bad_reason = "HWPoisoned (hardware-corrupted)";
1726 		bad_flags = __PG_HWPOISON;
1727 		/* Don't complain about hwpoisoned pages */
1728 		page_mapcount_reset(page); /* remove PageBuddy */
1729 		return;
1730 	}
1731 	if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
1732 		bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
1733 		bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
1734 	}
1735 #ifdef CONFIG_MEMCG
1736 	if (unlikely(page->mem_cgroup))
1737 		bad_reason = "page still charged to cgroup";
1738 #endif
1739 	bad_page(page, bad_reason, bad_flags);
1740 }
1741 
1742 /*
1743  * This page is about to be returned from the page allocator
1744  */
1745 static inline int check_new_page(struct page *page)
1746 {
1747 	if (likely(page_expected_state(page,
1748 				PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
1749 		return 0;
1750 
1751 	check_new_page_bad(page);
1752 	return 1;
1753 }
1754 
1755 static inline bool free_pages_prezeroed(void)
1756 {
1757 	return IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) &&
1758 		page_poisoning_enabled();
1759 }
1760 
1761 #ifdef CONFIG_DEBUG_VM
1762 static bool check_pcp_refill(struct page *page)
1763 {
1764 	return false;
1765 }
1766 
1767 static bool check_new_pcp(struct page *page)
1768 {
1769 	return check_new_page(page);
1770 }
1771 #else
1772 static bool check_pcp_refill(struct page *page)
1773 {
1774 	return check_new_page(page);
1775 }
1776 static bool check_new_pcp(struct page *page)
1777 {
1778 	return false;
1779 }
1780 #endif /* CONFIG_DEBUG_VM */
1781 
1782 static bool check_new_pages(struct page *page, unsigned int order)
1783 {
1784 	int i;
1785 	for (i = 0; i < (1 << order); i++) {
1786 		struct page *p = page + i;
1787 
1788 		if (unlikely(check_new_page(p)))
1789 			return true;
1790 	}
1791 
1792 	return false;
1793 }
1794 
1795 inline void post_alloc_hook(struct page *page, unsigned int order,
1796 				gfp_t gfp_flags)
1797 {
1798 	set_page_private(page, 0);
1799 	set_page_refcounted(page);
1800 
1801 	arch_alloc_page(page, order);
1802 	kernel_map_pages(page, 1 << order, 1);
1803 	kernel_poison_pages(page, 1 << order, 1);
1804 	kasan_alloc_pages(page, order);
1805 	set_page_owner(page, order, gfp_flags);
1806 }
1807 
1808 static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
1809 							unsigned int alloc_flags)
1810 {
1811 	int i;
1812 
1813 	post_alloc_hook(page, order, gfp_flags);
1814 
1815 	if (!free_pages_prezeroed() && (gfp_flags & __GFP_ZERO))
1816 		for (i = 0; i < (1 << order); i++)
1817 			clear_highpage(page + i);
1818 
1819 	if (order && (gfp_flags & __GFP_COMP))
1820 		prep_compound_page(page, order);
1821 
1822 	/*
1823 	 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
1824 	 * allocate the page. The expectation is that the caller is taking
1825 	 * steps that will free more memory. The caller should avoid the page
1826 	 * being used for !PFMEMALLOC purposes.
1827 	 */
1828 	if (alloc_flags & ALLOC_NO_WATERMARKS)
1829 		set_page_pfmemalloc(page);
1830 	else
1831 		clear_page_pfmemalloc(page);
1832 }
1833 
1834 /*
1835  * Go through the free lists for the given migratetype and remove
1836  * the smallest available page from the freelists
1837  */
1838 static __always_inline
1839 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
1840 						int migratetype)
1841 {
1842 	unsigned int current_order;
1843 	struct free_area *area;
1844 	struct page *page;
1845 
1846 	/* Find a page of the appropriate size in the preferred list */
1847 	for (current_order = order; current_order < MAX_ORDER; ++current_order) {
1848 		area = &(zone->free_area[current_order]);
1849 		page = list_first_entry_or_null(&area->free_list[migratetype],
1850 							struct page, lru);
1851 		if (!page)
1852 			continue;
1853 		list_del(&page->lru);
1854 		rmv_page_order(page);
1855 		area->nr_free--;
1856 		expand(zone, page, order, current_order, area, migratetype);
1857 		set_pcppage_migratetype(page, migratetype);
1858 		return page;
1859 	}
1860 
1861 	return NULL;
1862 }
1863 
1864 
1865 /*
1866  * This array describes the order lists are fallen back to when
1867  * the free lists for the desirable migrate type are depleted
1868  */
1869 static int fallbacks[MIGRATE_TYPES][4] = {
1870 	[MIGRATE_UNMOVABLE]   = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE,   MIGRATE_TYPES },
1871 	[MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE,   MIGRATE_MOVABLE,   MIGRATE_TYPES },
1872 	[MIGRATE_MOVABLE]     = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
1873 #ifdef CONFIG_CMA
1874 	[MIGRATE_CMA]         = { MIGRATE_TYPES }, /* Never used */
1875 #endif
1876 #ifdef CONFIG_MEMORY_ISOLATION
1877 	[MIGRATE_ISOLATE]     = { MIGRATE_TYPES }, /* Never used */
1878 #endif
1879 };
1880 
1881 #ifdef CONFIG_CMA
1882 static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1883 					unsigned int order)
1884 {
1885 	return __rmqueue_smallest(zone, order, MIGRATE_CMA);
1886 }
1887 #else
1888 static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1889 					unsigned int order) { return NULL; }
1890 #endif
1891 
1892 /*
1893  * Move the free pages in a range to the free lists of the requested type.
1894  * Note that start_page and end_pages are not aligned on a pageblock
1895  * boundary. If alignment is required, use move_freepages_block()
1896  */
1897 static int move_freepages(struct zone *zone,
1898 			  struct page *start_page, struct page *end_page,
1899 			  int migratetype, int *num_movable)
1900 {
1901 	struct page *page;
1902 	unsigned int order;
1903 	int pages_moved = 0;
1904 
1905 #ifndef CONFIG_HOLES_IN_ZONE
1906 	/*
1907 	 * page_zone is not safe to call in this context when
1908 	 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
1909 	 * anyway as we check zone boundaries in move_freepages_block().
1910 	 * Remove at a later date when no bug reports exist related to
1911 	 * grouping pages by mobility
1912 	 */
1913 	VM_BUG_ON(pfn_valid(page_to_pfn(start_page)) &&
1914 	          pfn_valid(page_to_pfn(end_page)) &&
1915 	          page_zone(start_page) != page_zone(end_page));
1916 #endif
1917 
1918 	if (num_movable)
1919 		*num_movable = 0;
1920 
1921 	for (page = start_page; page <= end_page;) {
1922 		if (!pfn_valid_within(page_to_pfn(page))) {
1923 			page++;
1924 			continue;
1925 		}
1926 
1927 		/* Make sure we are not inadvertently changing nodes */
1928 		VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
1929 
1930 		if (!PageBuddy(page)) {
1931 			/*
1932 			 * We assume that pages that could be isolated for
1933 			 * migration are movable. But we don't actually try
1934 			 * isolating, as that would be expensive.
1935 			 */
1936 			if (num_movable &&
1937 					(PageLRU(page) || __PageMovable(page)))
1938 				(*num_movable)++;
1939 
1940 			page++;
1941 			continue;
1942 		}
1943 
1944 		order = page_order(page);
1945 		list_move(&page->lru,
1946 			  &zone->free_area[order].free_list[migratetype]);
1947 		page += 1 << order;
1948 		pages_moved += 1 << order;
1949 	}
1950 
1951 	return pages_moved;
1952 }
1953 
1954 int move_freepages_block(struct zone *zone, struct page *page,
1955 				int migratetype, int *num_movable)
1956 {
1957 	unsigned long start_pfn, end_pfn;
1958 	struct page *start_page, *end_page;
1959 
1960 	start_pfn = page_to_pfn(page);
1961 	start_pfn = start_pfn & ~(pageblock_nr_pages-1);
1962 	start_page = pfn_to_page(start_pfn);
1963 	end_page = start_page + pageblock_nr_pages - 1;
1964 	end_pfn = start_pfn + pageblock_nr_pages - 1;
1965 
1966 	/* Do not cross zone boundaries */
1967 	if (!zone_spans_pfn(zone, start_pfn))
1968 		start_page = page;
1969 	if (!zone_spans_pfn(zone, end_pfn))
1970 		return 0;
1971 
1972 	return move_freepages(zone, start_page, end_page, migratetype,
1973 								num_movable);
1974 }
1975 
1976 static void change_pageblock_range(struct page *pageblock_page,
1977 					int start_order, int migratetype)
1978 {
1979 	int nr_pageblocks = 1 << (start_order - pageblock_order);
1980 
1981 	while (nr_pageblocks--) {
1982 		set_pageblock_migratetype(pageblock_page, migratetype);
1983 		pageblock_page += pageblock_nr_pages;
1984 	}
1985 }
1986 
1987 /*
1988  * When we are falling back to another migratetype during allocation, try to
1989  * steal extra free pages from the same pageblocks to satisfy further
1990  * allocations, instead of polluting multiple pageblocks.
1991  *
1992  * If we are stealing a relatively large buddy page, it is likely there will
1993  * be more free pages in the pageblock, so try to steal them all. For
1994  * reclaimable and unmovable allocations, we steal regardless of page size,
1995  * as fragmentation caused by those allocations polluting movable pageblocks
1996  * is worse than movable allocations stealing from unmovable and reclaimable
1997  * pageblocks.
1998  */
1999 static bool can_steal_fallback(unsigned int order, int start_mt)
2000 {
2001 	/*
2002 	 * Leaving this order check is intended, although there is
2003 	 * relaxed order check in next check. The reason is that
2004 	 * we can actually steal whole pageblock if this condition met,
2005 	 * but, below check doesn't guarantee it and that is just heuristic
2006 	 * so could be changed anytime.
2007 	 */
2008 	if (order >= pageblock_order)
2009 		return true;
2010 
2011 	if (order >= pageblock_order / 2 ||
2012 		start_mt == MIGRATE_RECLAIMABLE ||
2013 		start_mt == MIGRATE_UNMOVABLE ||
2014 		page_group_by_mobility_disabled)
2015 		return true;
2016 
2017 	return false;
2018 }
2019 
2020 /*
2021  * This function implements actual steal behaviour. If order is large enough,
2022  * we can steal whole pageblock. If not, we first move freepages in this
2023  * pageblock to our migratetype and determine how many already-allocated pages
2024  * are there in the pageblock with a compatible migratetype. If at least half
2025  * of pages are free or compatible, we can change migratetype of the pageblock
2026  * itself, so pages freed in the future will be put on the correct free list.
2027  */
2028 static void steal_suitable_fallback(struct zone *zone, struct page *page,
2029 					int start_type, bool whole_block)
2030 {
2031 	unsigned int current_order = page_order(page);
2032 	struct free_area *area;
2033 	int free_pages, movable_pages, alike_pages;
2034 	int old_block_type;
2035 
2036 	old_block_type = get_pageblock_migratetype(page);
2037 
2038 	/*
2039 	 * This can happen due to races and we want to prevent broken
2040 	 * highatomic accounting.
2041 	 */
2042 	if (is_migrate_highatomic(old_block_type))
2043 		goto single_page;
2044 
2045 	/* Take ownership for orders >= pageblock_order */
2046 	if (current_order >= pageblock_order) {
2047 		change_pageblock_range(page, current_order, start_type);
2048 		goto single_page;
2049 	}
2050 
2051 	/* We are not allowed to try stealing from the whole block */
2052 	if (!whole_block)
2053 		goto single_page;
2054 
2055 	free_pages = move_freepages_block(zone, page, start_type,
2056 						&movable_pages);
2057 	/*
2058 	 * Determine how many pages are compatible with our allocation.
2059 	 * For movable allocation, it's the number of movable pages which
2060 	 * we just obtained. For other types it's a bit more tricky.
2061 	 */
2062 	if (start_type == MIGRATE_MOVABLE) {
2063 		alike_pages = movable_pages;
2064 	} else {
2065 		/*
2066 		 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
2067 		 * to MOVABLE pageblock, consider all non-movable pages as
2068 		 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
2069 		 * vice versa, be conservative since we can't distinguish the
2070 		 * exact migratetype of non-movable pages.
2071 		 */
2072 		if (old_block_type == MIGRATE_MOVABLE)
2073 			alike_pages = pageblock_nr_pages
2074 						- (free_pages + movable_pages);
2075 		else
2076 			alike_pages = 0;
2077 	}
2078 
2079 	/* moving whole block can fail due to zone boundary conditions */
2080 	if (!free_pages)
2081 		goto single_page;
2082 
2083 	/*
2084 	 * If a sufficient number of pages in the block are either free or of
2085 	 * comparable migratability as our allocation, claim the whole block.
2086 	 */
2087 	if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
2088 			page_group_by_mobility_disabled)
2089 		set_pageblock_migratetype(page, start_type);
2090 
2091 	return;
2092 
2093 single_page:
2094 	area = &zone->free_area[current_order];
2095 	list_move(&page->lru, &area->free_list[start_type]);
2096 }
2097 
2098 /*
2099  * Check whether there is a suitable fallback freepage with requested order.
2100  * If only_stealable is true, this function returns fallback_mt only if
2101  * we can steal other freepages all together. This would help to reduce
2102  * fragmentation due to mixed migratetype pages in one pageblock.
2103  */
2104 int find_suitable_fallback(struct free_area *area, unsigned int order,
2105 			int migratetype, bool only_stealable, bool *can_steal)
2106 {
2107 	int i;
2108 	int fallback_mt;
2109 
2110 	if (area->nr_free == 0)
2111 		return -1;
2112 
2113 	*can_steal = false;
2114 	for (i = 0;; i++) {
2115 		fallback_mt = fallbacks[migratetype][i];
2116 		if (fallback_mt == MIGRATE_TYPES)
2117 			break;
2118 
2119 		if (list_empty(&area->free_list[fallback_mt]))
2120 			continue;
2121 
2122 		if (can_steal_fallback(order, migratetype))
2123 			*can_steal = true;
2124 
2125 		if (!only_stealable)
2126 			return fallback_mt;
2127 
2128 		if (*can_steal)
2129 			return fallback_mt;
2130 	}
2131 
2132 	return -1;
2133 }
2134 
2135 /*
2136  * Reserve a pageblock for exclusive use of high-order atomic allocations if
2137  * there are no empty page blocks that contain a page with a suitable order
2138  */
2139 static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
2140 				unsigned int alloc_order)
2141 {
2142 	int mt;
2143 	unsigned long max_managed, flags;
2144 
2145 	/*
2146 	 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
2147 	 * Check is race-prone but harmless.
2148 	 */
2149 	max_managed = (zone->managed_pages / 100) + pageblock_nr_pages;
2150 	if (zone->nr_reserved_highatomic >= max_managed)
2151 		return;
2152 
2153 	spin_lock_irqsave(&zone->lock, flags);
2154 
2155 	/* Recheck the nr_reserved_highatomic limit under the lock */
2156 	if (zone->nr_reserved_highatomic >= max_managed)
2157 		goto out_unlock;
2158 
2159 	/* Yoink! */
2160 	mt = get_pageblock_migratetype(page);
2161 	if (!is_migrate_highatomic(mt) && !is_migrate_isolate(mt)
2162 	    && !is_migrate_cma(mt)) {
2163 		zone->nr_reserved_highatomic += pageblock_nr_pages;
2164 		set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
2165 		move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL);
2166 	}
2167 
2168 out_unlock:
2169 	spin_unlock_irqrestore(&zone->lock, flags);
2170 }
2171 
2172 /*
2173  * Used when an allocation is about to fail under memory pressure. This
2174  * potentially hurts the reliability of high-order allocations when under
2175  * intense memory pressure but failed atomic allocations should be easier
2176  * to recover from than an OOM.
2177  *
2178  * If @force is true, try to unreserve a pageblock even though highatomic
2179  * pageblock is exhausted.
2180  */
2181 static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
2182 						bool force)
2183 {
2184 	struct zonelist *zonelist = ac->zonelist;
2185 	unsigned long flags;
2186 	struct zoneref *z;
2187 	struct zone *zone;
2188 	struct page *page;
2189 	int order;
2190 	bool ret;
2191 
2192 	for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
2193 								ac->nodemask) {
2194 		/*
2195 		 * Preserve at least one pageblock unless memory pressure
2196 		 * is really high.
2197 		 */
2198 		if (!force && zone->nr_reserved_highatomic <=
2199 					pageblock_nr_pages)
2200 			continue;
2201 
2202 		spin_lock_irqsave(&zone->lock, flags);
2203 		for (order = 0; order < MAX_ORDER; order++) {
2204 			struct free_area *area = &(zone->free_area[order]);
2205 
2206 			page = list_first_entry_or_null(
2207 					&area->free_list[MIGRATE_HIGHATOMIC],
2208 					struct page, lru);
2209 			if (!page)
2210 				continue;
2211 
2212 			/*
2213 			 * In page freeing path, migratetype change is racy so
2214 			 * we can counter several free pages in a pageblock
2215 			 * in this loop althoug we changed the pageblock type
2216 			 * from highatomic to ac->migratetype. So we should
2217 			 * adjust the count once.
2218 			 */
2219 			if (is_migrate_highatomic_page(page)) {
2220 				/*
2221 				 * It should never happen but changes to
2222 				 * locking could inadvertently allow a per-cpu
2223 				 * drain to add pages to MIGRATE_HIGHATOMIC
2224 				 * while unreserving so be safe and watch for
2225 				 * underflows.
2226 				 */
2227 				zone->nr_reserved_highatomic -= min(
2228 						pageblock_nr_pages,
2229 						zone->nr_reserved_highatomic);
2230 			}
2231 
2232 			/*
2233 			 * Convert to ac->migratetype and avoid the normal
2234 			 * pageblock stealing heuristics. Minimally, the caller
2235 			 * is doing the work and needs the pages. More
2236 			 * importantly, if the block was always converted to
2237 			 * MIGRATE_UNMOVABLE or another type then the number
2238 			 * of pageblocks that cannot be completely freed
2239 			 * may increase.
2240 			 */
2241 			set_pageblock_migratetype(page, ac->migratetype);
2242 			ret = move_freepages_block(zone, page, ac->migratetype,
2243 									NULL);
2244 			if (ret) {
2245 				spin_unlock_irqrestore(&zone->lock, flags);
2246 				return ret;
2247 			}
2248 		}
2249 		spin_unlock_irqrestore(&zone->lock, flags);
2250 	}
2251 
2252 	return false;
2253 }
2254 
2255 /*
2256  * Try finding a free buddy page on the fallback list and put it on the free
2257  * list of requested migratetype, possibly along with other pages from the same
2258  * block, depending on fragmentation avoidance heuristics. Returns true if
2259  * fallback was found so that __rmqueue_smallest() can grab it.
2260  *
2261  * The use of signed ints for order and current_order is a deliberate
2262  * deviation from the rest of this file, to make the for loop
2263  * condition simpler.
2264  */
2265 static __always_inline bool
2266 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype)
2267 {
2268 	struct free_area *area;
2269 	int current_order;
2270 	struct page *page;
2271 	int fallback_mt;
2272 	bool can_steal;
2273 
2274 	/*
2275 	 * Find the largest available free page in the other list. This roughly
2276 	 * approximates finding the pageblock with the most free pages, which
2277 	 * would be too costly to do exactly.
2278 	 */
2279 	for (current_order = MAX_ORDER - 1; current_order >= order;
2280 				--current_order) {
2281 		area = &(zone->free_area[current_order]);
2282 		fallback_mt = find_suitable_fallback(area, current_order,
2283 				start_migratetype, false, &can_steal);
2284 		if (fallback_mt == -1)
2285 			continue;
2286 
2287 		/*
2288 		 * We cannot steal all free pages from the pageblock and the
2289 		 * requested migratetype is movable. In that case it's better to
2290 		 * steal and split the smallest available page instead of the
2291 		 * largest available page, because even if the next movable
2292 		 * allocation falls back into a different pageblock than this
2293 		 * one, it won't cause permanent fragmentation.
2294 		 */
2295 		if (!can_steal && start_migratetype == MIGRATE_MOVABLE
2296 					&& current_order > order)
2297 			goto find_smallest;
2298 
2299 		goto do_steal;
2300 	}
2301 
2302 	return false;
2303 
2304 find_smallest:
2305 	for (current_order = order; current_order < MAX_ORDER;
2306 							current_order++) {
2307 		area = &(zone->free_area[current_order]);
2308 		fallback_mt = find_suitable_fallback(area, current_order,
2309 				start_migratetype, false, &can_steal);
2310 		if (fallback_mt != -1)
2311 			break;
2312 	}
2313 
2314 	/*
2315 	 * This should not happen - we already found a suitable fallback
2316 	 * when looking for the largest page.
2317 	 */
2318 	VM_BUG_ON(current_order == MAX_ORDER);
2319 
2320 do_steal:
2321 	page = list_first_entry(&area->free_list[fallback_mt],
2322 							struct page, lru);
2323 
2324 	steal_suitable_fallback(zone, page, start_migratetype, can_steal);
2325 
2326 	trace_mm_page_alloc_extfrag(page, order, current_order,
2327 		start_migratetype, fallback_mt);
2328 
2329 	return true;
2330 
2331 }
2332 
2333 /*
2334  * Do the hard work of removing an element from the buddy allocator.
2335  * Call me with the zone->lock already held.
2336  */
2337 static __always_inline struct page *
2338 __rmqueue(struct zone *zone, unsigned int order, int migratetype)
2339 {
2340 	struct page *page;
2341 
2342 retry:
2343 	page = __rmqueue_smallest(zone, order, migratetype);
2344 	if (unlikely(!page)) {
2345 		if (migratetype == MIGRATE_MOVABLE)
2346 			page = __rmqueue_cma_fallback(zone, order);
2347 
2348 		if (!page && __rmqueue_fallback(zone, order, migratetype))
2349 			goto retry;
2350 	}
2351 
2352 	trace_mm_page_alloc_zone_locked(page, order, migratetype);
2353 	return page;
2354 }
2355 
2356 /*
2357  * Obtain a specified number of elements from the buddy allocator, all under
2358  * a single hold of the lock, for efficiency.  Add them to the supplied list.
2359  * Returns the number of new pages which were placed at *list.
2360  */
2361 static int rmqueue_bulk(struct zone *zone, unsigned int order,
2362 			unsigned long count, struct list_head *list,
2363 			int migratetype)
2364 {
2365 	int i, alloced = 0;
2366 
2367 	spin_lock(&zone->lock);
2368 	for (i = 0; i < count; ++i) {
2369 		struct page *page = __rmqueue(zone, order, migratetype);
2370 		if (unlikely(page == NULL))
2371 			break;
2372 
2373 		if (unlikely(check_pcp_refill(page)))
2374 			continue;
2375 
2376 		/*
2377 		 * Split buddy pages returned by expand() are received here in
2378 		 * physical page order. The page is added to the tail of
2379 		 * caller's list. From the callers perspective, the linked list
2380 		 * is ordered by page number under some conditions. This is
2381 		 * useful for IO devices that can forward direction from the
2382 		 * head, thus also in the physical page order. This is useful
2383 		 * for IO devices that can merge IO requests if the physical
2384 		 * pages are ordered properly.
2385 		 */
2386 		list_add_tail(&page->lru, list);
2387 		alloced++;
2388 		if (is_migrate_cma(get_pcppage_migratetype(page)))
2389 			__mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
2390 					      -(1 << order));
2391 	}
2392 
2393 	/*
2394 	 * i pages were removed from the buddy list even if some leak due
2395 	 * to check_pcp_refill failing so adjust NR_FREE_PAGES based
2396 	 * on i. Do not confuse with 'alloced' which is the number of
2397 	 * pages added to the pcp list.
2398 	 */
2399 	__mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
2400 	spin_unlock(&zone->lock);
2401 	return alloced;
2402 }
2403 
2404 #ifdef CONFIG_NUMA
2405 /*
2406  * Called from the vmstat counter updater to drain pagesets of this
2407  * currently executing processor on remote nodes after they have
2408  * expired.
2409  *
2410  * Note that this function must be called with the thread pinned to
2411  * a single processor.
2412  */
2413 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
2414 {
2415 	unsigned long flags;
2416 	int to_drain, batch;
2417 
2418 	local_irq_save(flags);
2419 	batch = READ_ONCE(pcp->batch);
2420 	to_drain = min(pcp->count, batch);
2421 	if (to_drain > 0) {
2422 		free_pcppages_bulk(zone, to_drain, pcp);
2423 		pcp->count -= to_drain;
2424 	}
2425 	local_irq_restore(flags);
2426 }
2427 #endif
2428 
2429 /*
2430  * Drain pcplists of the indicated processor and zone.
2431  *
2432  * The processor must either be the current processor and the
2433  * thread pinned to the current processor or a processor that
2434  * is not online.
2435  */
2436 static void drain_pages_zone(unsigned int cpu, struct zone *zone)
2437 {
2438 	unsigned long flags;
2439 	struct per_cpu_pageset *pset;
2440 	struct per_cpu_pages *pcp;
2441 
2442 	local_irq_save(flags);
2443 	pset = per_cpu_ptr(zone->pageset, cpu);
2444 
2445 	pcp = &pset->pcp;
2446 	if (pcp->count) {
2447 		free_pcppages_bulk(zone, pcp->count, pcp);
2448 		pcp->count = 0;
2449 	}
2450 	local_irq_restore(flags);
2451 }
2452 
2453 /*
2454  * Drain pcplists of all zones on the indicated processor.
2455  *
2456  * The processor must either be the current processor and the
2457  * thread pinned to the current processor or a processor that
2458  * is not online.
2459  */
2460 static void drain_pages(unsigned int cpu)
2461 {
2462 	struct zone *zone;
2463 
2464 	for_each_populated_zone(zone) {
2465 		drain_pages_zone(cpu, zone);
2466 	}
2467 }
2468 
2469 /*
2470  * Spill all of this CPU's per-cpu pages back into the buddy allocator.
2471  *
2472  * The CPU has to be pinned. When zone parameter is non-NULL, spill just
2473  * the single zone's pages.
2474  */
2475 void drain_local_pages(struct zone *zone)
2476 {
2477 	int cpu = smp_processor_id();
2478 
2479 	if (zone)
2480 		drain_pages_zone(cpu, zone);
2481 	else
2482 		drain_pages(cpu);
2483 }
2484 
2485 static void drain_local_pages_wq(struct work_struct *work)
2486 {
2487 	/*
2488 	 * drain_all_pages doesn't use proper cpu hotplug protection so
2489 	 * we can race with cpu offline when the WQ can move this from
2490 	 * a cpu pinned worker to an unbound one. We can operate on a different
2491 	 * cpu which is allright but we also have to make sure to not move to
2492 	 * a different one.
2493 	 */
2494 	preempt_disable();
2495 	drain_local_pages(NULL);
2496 	preempt_enable();
2497 }
2498 
2499 /*
2500  * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
2501  *
2502  * When zone parameter is non-NULL, spill just the single zone's pages.
2503  *
2504  * Note that this can be extremely slow as the draining happens in a workqueue.
2505  */
2506 void drain_all_pages(struct zone *zone)
2507 {
2508 	int cpu;
2509 
2510 	/*
2511 	 * Allocate in the BSS so we wont require allocation in
2512 	 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
2513 	 */
2514 	static cpumask_t cpus_with_pcps;
2515 
2516 	/*
2517 	 * Make sure nobody triggers this path before mm_percpu_wq is fully
2518 	 * initialized.
2519 	 */
2520 	if (WARN_ON_ONCE(!mm_percpu_wq))
2521 		return;
2522 
2523 	/*
2524 	 * Do not drain if one is already in progress unless it's specific to
2525 	 * a zone. Such callers are primarily CMA and memory hotplug and need
2526 	 * the drain to be complete when the call returns.
2527 	 */
2528 	if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
2529 		if (!zone)
2530 			return;
2531 		mutex_lock(&pcpu_drain_mutex);
2532 	}
2533 
2534 	/*
2535 	 * We don't care about racing with CPU hotplug event
2536 	 * as offline notification will cause the notified
2537 	 * cpu to drain that CPU pcps and on_each_cpu_mask
2538 	 * disables preemption as part of its processing
2539 	 */
2540 	for_each_online_cpu(cpu) {
2541 		struct per_cpu_pageset *pcp;
2542 		struct zone *z;
2543 		bool has_pcps = false;
2544 
2545 		if (zone) {
2546 			pcp = per_cpu_ptr(zone->pageset, cpu);
2547 			if (pcp->pcp.count)
2548 				has_pcps = true;
2549 		} else {
2550 			for_each_populated_zone(z) {
2551 				pcp = per_cpu_ptr(z->pageset, cpu);
2552 				if (pcp->pcp.count) {
2553 					has_pcps = true;
2554 					break;
2555 				}
2556 			}
2557 		}
2558 
2559 		if (has_pcps)
2560 			cpumask_set_cpu(cpu, &cpus_with_pcps);
2561 		else
2562 			cpumask_clear_cpu(cpu, &cpus_with_pcps);
2563 	}
2564 
2565 	for_each_cpu(cpu, &cpus_with_pcps) {
2566 		struct work_struct *work = per_cpu_ptr(&pcpu_drain, cpu);
2567 		INIT_WORK(work, drain_local_pages_wq);
2568 		queue_work_on(cpu, mm_percpu_wq, work);
2569 	}
2570 	for_each_cpu(cpu, &cpus_with_pcps)
2571 		flush_work(per_cpu_ptr(&pcpu_drain, cpu));
2572 
2573 	mutex_unlock(&pcpu_drain_mutex);
2574 }
2575 
2576 #ifdef CONFIG_HIBERNATION
2577 
2578 /*
2579  * Touch the watchdog for every WD_PAGE_COUNT pages.
2580  */
2581 #define WD_PAGE_COUNT	(128*1024)
2582 
2583 void mark_free_pages(struct zone *zone)
2584 {
2585 	unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT;
2586 	unsigned long flags;
2587 	unsigned int order, t;
2588 	struct page *page;
2589 
2590 	if (zone_is_empty(zone))
2591 		return;
2592 
2593 	spin_lock_irqsave(&zone->lock, flags);
2594 
2595 	max_zone_pfn = zone_end_pfn(zone);
2596 	for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
2597 		if (pfn_valid(pfn)) {
2598 			page = pfn_to_page(pfn);
2599 
2600 			if (!--page_count) {
2601 				touch_nmi_watchdog();
2602 				page_count = WD_PAGE_COUNT;
2603 			}
2604 
2605 			if (page_zone(page) != zone)
2606 				continue;
2607 
2608 			if (!swsusp_page_is_forbidden(page))
2609 				swsusp_unset_page_free(page);
2610 		}
2611 
2612 	for_each_migratetype_order(order, t) {
2613 		list_for_each_entry(page,
2614 				&zone->free_area[order].free_list[t], lru) {
2615 			unsigned long i;
2616 
2617 			pfn = page_to_pfn(page);
2618 			for (i = 0; i < (1UL << order); i++) {
2619 				if (!--page_count) {
2620 					touch_nmi_watchdog();
2621 					page_count = WD_PAGE_COUNT;
2622 				}
2623 				swsusp_set_page_free(pfn_to_page(pfn + i));
2624 			}
2625 		}
2626 	}
2627 	spin_unlock_irqrestore(&zone->lock, flags);
2628 }
2629 #endif /* CONFIG_PM */
2630 
2631 static bool free_unref_page_prepare(struct page *page, unsigned long pfn)
2632 {
2633 	int migratetype;
2634 
2635 	if (!free_pcp_prepare(page))
2636 		return false;
2637 
2638 	migratetype = get_pfnblock_migratetype(page, pfn);
2639 	set_pcppage_migratetype(page, migratetype);
2640 	return true;
2641 }
2642 
2643 static void free_unref_page_commit(struct page *page, unsigned long pfn)
2644 {
2645 	struct zone *zone = page_zone(page);
2646 	struct per_cpu_pages *pcp;
2647 	int migratetype;
2648 
2649 	migratetype = get_pcppage_migratetype(page);
2650 	__count_vm_event(PGFREE);
2651 
2652 	/*
2653 	 * We only track unmovable, reclaimable and movable on pcp lists.
2654 	 * Free ISOLATE pages back to the allocator because they are being
2655 	 * offlined but treat HIGHATOMIC as movable pages so we can get those
2656 	 * areas back if necessary. Otherwise, we may have to free
2657 	 * excessively into the page allocator
2658 	 */
2659 	if (migratetype >= MIGRATE_PCPTYPES) {
2660 		if (unlikely(is_migrate_isolate(migratetype))) {
2661 			free_one_page(zone, page, pfn, 0, migratetype);
2662 			return;
2663 		}
2664 		migratetype = MIGRATE_MOVABLE;
2665 	}
2666 
2667 	pcp = &this_cpu_ptr(zone->pageset)->pcp;
2668 	list_add(&page->lru, &pcp->lists[migratetype]);
2669 	pcp->count++;
2670 	if (pcp->count >= pcp->high) {
2671 		unsigned long batch = READ_ONCE(pcp->batch);
2672 		free_pcppages_bulk(zone, batch, pcp);
2673 		pcp->count -= batch;
2674 	}
2675 }
2676 
2677 /*
2678  * Free a 0-order page
2679  */
2680 void free_unref_page(struct page *page)
2681 {
2682 	unsigned long flags;
2683 	unsigned long pfn = page_to_pfn(page);
2684 
2685 	if (!free_unref_page_prepare(page, pfn))
2686 		return;
2687 
2688 	local_irq_save(flags);
2689 	free_unref_page_commit(page, pfn);
2690 	local_irq_restore(flags);
2691 }
2692 
2693 /*
2694  * Free a list of 0-order pages
2695  */
2696 void free_unref_page_list(struct list_head *list)
2697 {
2698 	struct page *page, *next;
2699 	unsigned long flags, pfn;
2700 	int batch_count = 0;
2701 
2702 	/* Prepare pages for freeing */
2703 	list_for_each_entry_safe(page, next, list, lru) {
2704 		pfn = page_to_pfn(page);
2705 		if (!free_unref_page_prepare(page, pfn))
2706 			list_del(&page->lru);
2707 		set_page_private(page, pfn);
2708 	}
2709 
2710 	local_irq_save(flags);
2711 	list_for_each_entry_safe(page, next, list, lru) {
2712 		unsigned long pfn = page_private(page);
2713 
2714 		set_page_private(page, 0);
2715 		trace_mm_page_free_batched(page);
2716 		free_unref_page_commit(page, pfn);
2717 
2718 		/*
2719 		 * Guard against excessive IRQ disabled times when we get
2720 		 * a large list of pages to free.
2721 		 */
2722 		if (++batch_count == SWAP_CLUSTER_MAX) {
2723 			local_irq_restore(flags);
2724 			batch_count = 0;
2725 			local_irq_save(flags);
2726 		}
2727 	}
2728 	local_irq_restore(flags);
2729 }
2730 
2731 /*
2732  * split_page takes a non-compound higher-order page, and splits it into
2733  * n (1<<order) sub-pages: page[0..n]
2734  * Each sub-page must be freed individually.
2735  *
2736  * Note: this is probably too low level an operation for use in drivers.
2737  * Please consult with lkml before using this in your driver.
2738  */
2739 void split_page(struct page *page, unsigned int order)
2740 {
2741 	int i;
2742 
2743 	VM_BUG_ON_PAGE(PageCompound(page), page);
2744 	VM_BUG_ON_PAGE(!page_count(page), page);
2745 
2746 	for (i = 1; i < (1 << order); i++)
2747 		set_page_refcounted(page + i);
2748 	split_page_owner(page, order);
2749 }
2750 EXPORT_SYMBOL_GPL(split_page);
2751 
2752 int __isolate_free_page(struct page *page, unsigned int order)
2753 {
2754 	unsigned long watermark;
2755 	struct zone *zone;
2756 	int mt;
2757 
2758 	BUG_ON(!PageBuddy(page));
2759 
2760 	zone = page_zone(page);
2761 	mt = get_pageblock_migratetype(page);
2762 
2763 	if (!is_migrate_isolate(mt)) {
2764 		/*
2765 		 * Obey watermarks as if the page was being allocated. We can
2766 		 * emulate a high-order watermark check with a raised order-0
2767 		 * watermark, because we already know our high-order page
2768 		 * exists.
2769 		 */
2770 		watermark = min_wmark_pages(zone) + (1UL << order);
2771 		if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
2772 			return 0;
2773 
2774 		__mod_zone_freepage_state(zone, -(1UL << order), mt);
2775 	}
2776 
2777 	/* Remove page from free list */
2778 	list_del(&page->lru);
2779 	zone->free_area[order].nr_free--;
2780 	rmv_page_order(page);
2781 
2782 	/*
2783 	 * Set the pageblock if the isolated page is at least half of a
2784 	 * pageblock
2785 	 */
2786 	if (order >= pageblock_order - 1) {
2787 		struct page *endpage = page + (1 << order) - 1;
2788 		for (; page < endpage; page += pageblock_nr_pages) {
2789 			int mt = get_pageblock_migratetype(page);
2790 			if (!is_migrate_isolate(mt) && !is_migrate_cma(mt)
2791 			    && !is_migrate_highatomic(mt))
2792 				set_pageblock_migratetype(page,
2793 							  MIGRATE_MOVABLE);
2794 		}
2795 	}
2796 
2797 
2798 	return 1UL << order;
2799 }
2800 
2801 /*
2802  * Update NUMA hit/miss statistics
2803  *
2804  * Must be called with interrupts disabled.
2805  */
2806 static inline void zone_statistics(struct zone *preferred_zone, struct zone *z)
2807 {
2808 #ifdef CONFIG_NUMA
2809 	enum numa_stat_item local_stat = NUMA_LOCAL;
2810 
2811 	/* skip numa counters update if numa stats is disabled */
2812 	if (!static_branch_likely(&vm_numa_stat_key))
2813 		return;
2814 
2815 	if (z->node != numa_node_id())
2816 		local_stat = NUMA_OTHER;
2817 
2818 	if (z->node == preferred_zone->node)
2819 		__inc_numa_state(z, NUMA_HIT);
2820 	else {
2821 		__inc_numa_state(z, NUMA_MISS);
2822 		__inc_numa_state(preferred_zone, NUMA_FOREIGN);
2823 	}
2824 	__inc_numa_state(z, local_stat);
2825 #endif
2826 }
2827 
2828 /* Remove page from the per-cpu list, caller must protect the list */
2829 static struct page *__rmqueue_pcplist(struct zone *zone, int migratetype,
2830 			struct per_cpu_pages *pcp,
2831 			struct list_head *list)
2832 {
2833 	struct page *page;
2834 
2835 	do {
2836 		if (list_empty(list)) {
2837 			pcp->count += rmqueue_bulk(zone, 0,
2838 					pcp->batch, list,
2839 					migratetype);
2840 			if (unlikely(list_empty(list)))
2841 				return NULL;
2842 		}
2843 
2844 		page = list_first_entry(list, struct page, lru);
2845 		list_del(&page->lru);
2846 		pcp->count--;
2847 	} while (check_new_pcp(page));
2848 
2849 	return page;
2850 }
2851 
2852 /* Lock and remove page from the per-cpu list */
2853 static struct page *rmqueue_pcplist(struct zone *preferred_zone,
2854 			struct zone *zone, unsigned int order,
2855 			gfp_t gfp_flags, int migratetype)
2856 {
2857 	struct per_cpu_pages *pcp;
2858 	struct list_head *list;
2859 	struct page *page;
2860 	unsigned long flags;
2861 
2862 	local_irq_save(flags);
2863 	pcp = &this_cpu_ptr(zone->pageset)->pcp;
2864 	list = &pcp->lists[migratetype];
2865 	page = __rmqueue_pcplist(zone,  migratetype, pcp, list);
2866 	if (page) {
2867 		__count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
2868 		zone_statistics(preferred_zone, zone);
2869 	}
2870 	local_irq_restore(flags);
2871 	return page;
2872 }
2873 
2874 /*
2875  * Allocate a page from the given zone. Use pcplists for order-0 allocations.
2876  */
2877 static inline
2878 struct page *rmqueue(struct zone *preferred_zone,
2879 			struct zone *zone, unsigned int order,
2880 			gfp_t gfp_flags, unsigned int alloc_flags,
2881 			int migratetype)
2882 {
2883 	unsigned long flags;
2884 	struct page *page;
2885 
2886 	if (likely(order == 0)) {
2887 		page = rmqueue_pcplist(preferred_zone, zone, order,
2888 				gfp_flags, migratetype);
2889 		goto out;
2890 	}
2891 
2892 	/*
2893 	 * We most definitely don't want callers attempting to
2894 	 * allocate greater than order-1 page units with __GFP_NOFAIL.
2895 	 */
2896 	WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
2897 	spin_lock_irqsave(&zone->lock, flags);
2898 
2899 	do {
2900 		page = NULL;
2901 		if (alloc_flags & ALLOC_HARDER) {
2902 			page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
2903 			if (page)
2904 				trace_mm_page_alloc_zone_locked(page, order, migratetype);
2905 		}
2906 		if (!page)
2907 			page = __rmqueue(zone, order, migratetype);
2908 	} while (page && check_new_pages(page, order));
2909 	spin_unlock(&zone->lock);
2910 	if (!page)
2911 		goto failed;
2912 	__mod_zone_freepage_state(zone, -(1 << order),
2913 				  get_pcppage_migratetype(page));
2914 
2915 	__count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
2916 	zone_statistics(preferred_zone, zone);
2917 	local_irq_restore(flags);
2918 
2919 out:
2920 	VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
2921 	return page;
2922 
2923 failed:
2924 	local_irq_restore(flags);
2925 	return NULL;
2926 }
2927 
2928 #ifdef CONFIG_FAIL_PAGE_ALLOC
2929 
2930 static struct {
2931 	struct fault_attr attr;
2932 
2933 	bool ignore_gfp_highmem;
2934 	bool ignore_gfp_reclaim;
2935 	u32 min_order;
2936 } fail_page_alloc = {
2937 	.attr = FAULT_ATTR_INITIALIZER,
2938 	.ignore_gfp_reclaim = true,
2939 	.ignore_gfp_highmem = true,
2940 	.min_order = 1,
2941 };
2942 
2943 static int __init setup_fail_page_alloc(char *str)
2944 {
2945 	return setup_fault_attr(&fail_page_alloc.attr, str);
2946 }
2947 __setup("fail_page_alloc=", setup_fail_page_alloc);
2948 
2949 static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
2950 {
2951 	if (order < fail_page_alloc.min_order)
2952 		return false;
2953 	if (gfp_mask & __GFP_NOFAIL)
2954 		return false;
2955 	if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
2956 		return false;
2957 	if (fail_page_alloc.ignore_gfp_reclaim &&
2958 			(gfp_mask & __GFP_DIRECT_RECLAIM))
2959 		return false;
2960 
2961 	return should_fail(&fail_page_alloc.attr, 1 << order);
2962 }
2963 
2964 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
2965 
2966 static int __init fail_page_alloc_debugfs(void)
2967 {
2968 	umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
2969 	struct dentry *dir;
2970 
2971 	dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
2972 					&fail_page_alloc.attr);
2973 	if (IS_ERR(dir))
2974 		return PTR_ERR(dir);
2975 
2976 	if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
2977 				&fail_page_alloc.ignore_gfp_reclaim))
2978 		goto fail;
2979 	if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
2980 				&fail_page_alloc.ignore_gfp_highmem))
2981 		goto fail;
2982 	if (!debugfs_create_u32("min-order", mode, dir,
2983 				&fail_page_alloc.min_order))
2984 		goto fail;
2985 
2986 	return 0;
2987 fail:
2988 	debugfs_remove_recursive(dir);
2989 
2990 	return -ENOMEM;
2991 }
2992 
2993 late_initcall(fail_page_alloc_debugfs);
2994 
2995 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
2996 
2997 #else /* CONFIG_FAIL_PAGE_ALLOC */
2998 
2999 static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3000 {
3001 	return false;
3002 }
3003 
3004 #endif /* CONFIG_FAIL_PAGE_ALLOC */
3005 
3006 /*
3007  * Return true if free base pages are above 'mark'. For high-order checks it
3008  * will return true of the order-0 watermark is reached and there is at least
3009  * one free page of a suitable size. Checking now avoids taking the zone lock
3010  * to check in the allocation paths if no pages are free.
3011  */
3012 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3013 			 int classzone_idx, unsigned int alloc_flags,
3014 			 long free_pages)
3015 {
3016 	long min = mark;
3017 	int o;
3018 	const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
3019 
3020 	/* free_pages may go negative - that's OK */
3021 	free_pages -= (1 << order) - 1;
3022 
3023 	if (alloc_flags & ALLOC_HIGH)
3024 		min -= min / 2;
3025 
3026 	/*
3027 	 * If the caller does not have rights to ALLOC_HARDER then subtract
3028 	 * the high-atomic reserves. This will over-estimate the size of the
3029 	 * atomic reserve but it avoids a search.
3030 	 */
3031 	if (likely(!alloc_harder)) {
3032 		free_pages -= z->nr_reserved_highatomic;
3033 	} else {
3034 		/*
3035 		 * OOM victims can try even harder than normal ALLOC_HARDER
3036 		 * users on the grounds that it's definitely going to be in
3037 		 * the exit path shortly and free memory. Any allocation it
3038 		 * makes during the free path will be small and short-lived.
3039 		 */
3040 		if (alloc_flags & ALLOC_OOM)
3041 			min -= min / 2;
3042 		else
3043 			min -= min / 4;
3044 	}
3045 
3046 
3047 #ifdef CONFIG_CMA
3048 	/* If allocation can't use CMA areas don't use free CMA pages */
3049 	if (!(alloc_flags & ALLOC_CMA))
3050 		free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES);
3051 #endif
3052 
3053 	/*
3054 	 * Check watermarks for an order-0 allocation request. If these
3055 	 * are not met, then a high-order request also cannot go ahead
3056 	 * even if a suitable page happened to be free.
3057 	 */
3058 	if (free_pages <= min + z->lowmem_reserve[classzone_idx])
3059 		return false;
3060 
3061 	/* If this is an order-0 request then the watermark is fine */
3062 	if (!order)
3063 		return true;
3064 
3065 	/* For a high-order request, check at least one suitable page is free */
3066 	for (o = order; o < MAX_ORDER; o++) {
3067 		struct free_area *area = &z->free_area[o];
3068 		int mt;
3069 
3070 		if (!area->nr_free)
3071 			continue;
3072 
3073 		for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
3074 			if (!list_empty(&area->free_list[mt]))
3075 				return true;
3076 		}
3077 
3078 #ifdef CONFIG_CMA
3079 		if ((alloc_flags & ALLOC_CMA) &&
3080 		    !list_empty(&area->free_list[MIGRATE_CMA])) {
3081 			return true;
3082 		}
3083 #endif
3084 		if (alloc_harder &&
3085 			!list_empty(&area->free_list[MIGRATE_HIGHATOMIC]))
3086 			return true;
3087 	}
3088 	return false;
3089 }
3090 
3091 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3092 		      int classzone_idx, unsigned int alloc_flags)
3093 {
3094 	return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
3095 					zone_page_state(z, NR_FREE_PAGES));
3096 }
3097 
3098 static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
3099 		unsigned long mark, int classzone_idx, unsigned int alloc_flags)
3100 {
3101 	long free_pages = zone_page_state(z, NR_FREE_PAGES);
3102 	long cma_pages = 0;
3103 
3104 #ifdef CONFIG_CMA
3105 	/* If allocation can't use CMA areas don't use free CMA pages */
3106 	if (!(alloc_flags & ALLOC_CMA))
3107 		cma_pages = zone_page_state(z, NR_FREE_CMA_PAGES);
3108 #endif
3109 
3110 	/*
3111 	 * Fast check for order-0 only. If this fails then the reserves
3112 	 * need to be calculated. There is a corner case where the check
3113 	 * passes but only the high-order atomic reserve are free. If
3114 	 * the caller is !atomic then it'll uselessly search the free
3115 	 * list. That corner case is then slower but it is harmless.
3116 	 */
3117 	if (!order && (free_pages - cma_pages) > mark + z->lowmem_reserve[classzone_idx])
3118 		return true;
3119 
3120 	return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
3121 					free_pages);
3122 }
3123 
3124 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
3125 			unsigned long mark, int classzone_idx)
3126 {
3127 	long free_pages = zone_page_state(z, NR_FREE_PAGES);
3128 
3129 	if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
3130 		free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
3131 
3132 	return __zone_watermark_ok(z, order, mark, classzone_idx, 0,
3133 								free_pages);
3134 }
3135 
3136 #ifdef CONFIG_NUMA
3137 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3138 {
3139 	return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
3140 				RECLAIM_DISTANCE;
3141 }
3142 #else	/* CONFIG_NUMA */
3143 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3144 {
3145 	return true;
3146 }
3147 #endif	/* CONFIG_NUMA */
3148 
3149 /*
3150  * get_page_from_freelist goes through the zonelist trying to allocate
3151  * a page.
3152  */
3153 static struct page *
3154 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
3155 						const struct alloc_context *ac)
3156 {
3157 	struct zoneref *z = ac->preferred_zoneref;
3158 	struct zone *zone;
3159 	struct pglist_data *last_pgdat_dirty_limit = NULL;
3160 
3161 	/*
3162 	 * Scan zonelist, looking for a zone with enough free.
3163 	 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
3164 	 */
3165 	for_next_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3166 								ac->nodemask) {
3167 		struct page *page;
3168 		unsigned long mark;
3169 
3170 		if (cpusets_enabled() &&
3171 			(alloc_flags & ALLOC_CPUSET) &&
3172 			!__cpuset_zone_allowed(zone, gfp_mask))
3173 				continue;
3174 		/*
3175 		 * When allocating a page cache page for writing, we
3176 		 * want to get it from a node that is within its dirty
3177 		 * limit, such that no single node holds more than its
3178 		 * proportional share of globally allowed dirty pages.
3179 		 * The dirty limits take into account the node's
3180 		 * lowmem reserves and high watermark so that kswapd
3181 		 * should be able to balance it without having to
3182 		 * write pages from its LRU list.
3183 		 *
3184 		 * XXX: For now, allow allocations to potentially
3185 		 * exceed the per-node dirty limit in the slowpath
3186 		 * (spread_dirty_pages unset) before going into reclaim,
3187 		 * which is important when on a NUMA setup the allowed
3188 		 * nodes are together not big enough to reach the
3189 		 * global limit.  The proper fix for these situations
3190 		 * will require awareness of nodes in the
3191 		 * dirty-throttling and the flusher threads.
3192 		 */
3193 		if (ac->spread_dirty_pages) {
3194 			if (last_pgdat_dirty_limit == zone->zone_pgdat)
3195 				continue;
3196 
3197 			if (!node_dirty_ok(zone->zone_pgdat)) {
3198 				last_pgdat_dirty_limit = zone->zone_pgdat;
3199 				continue;
3200 			}
3201 		}
3202 
3203 		mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
3204 		if (!zone_watermark_fast(zone, order, mark,
3205 				       ac_classzone_idx(ac), alloc_flags)) {
3206 			int ret;
3207 
3208 			/* Checked here to keep the fast path fast */
3209 			BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
3210 			if (alloc_flags & ALLOC_NO_WATERMARKS)
3211 				goto try_this_zone;
3212 
3213 			if (node_reclaim_mode == 0 ||
3214 			    !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
3215 				continue;
3216 
3217 			ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
3218 			switch (ret) {
3219 			case NODE_RECLAIM_NOSCAN:
3220 				/* did not scan */
3221 				continue;
3222 			case NODE_RECLAIM_FULL:
3223 				/* scanned but unreclaimable */
3224 				continue;
3225 			default:
3226 				/* did we reclaim enough */
3227 				if (zone_watermark_ok(zone, order, mark,
3228 						ac_classzone_idx(ac), alloc_flags))
3229 					goto try_this_zone;
3230 
3231 				continue;
3232 			}
3233 		}
3234 
3235 try_this_zone:
3236 		page = rmqueue(ac->preferred_zoneref->zone, zone, order,
3237 				gfp_mask, alloc_flags, ac->migratetype);
3238 		if (page) {
3239 			prep_new_page(page, order, gfp_mask, alloc_flags);
3240 
3241 			/*
3242 			 * If this is a high-order atomic allocation then check
3243 			 * if the pageblock should be reserved for the future
3244 			 */
3245 			if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
3246 				reserve_highatomic_pageblock(page, zone, order);
3247 
3248 			return page;
3249 		}
3250 	}
3251 
3252 	return NULL;
3253 }
3254 
3255 /*
3256  * Large machines with many possible nodes should not always dump per-node
3257  * meminfo in irq context.
3258  */
3259 static inline bool should_suppress_show_mem(void)
3260 {
3261 	bool ret = false;
3262 
3263 #if NODES_SHIFT > 8
3264 	ret = in_interrupt();
3265 #endif
3266 	return ret;
3267 }
3268 
3269 static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
3270 {
3271 	unsigned int filter = SHOW_MEM_FILTER_NODES;
3272 	static DEFINE_RATELIMIT_STATE(show_mem_rs, HZ, 1);
3273 
3274 	if (should_suppress_show_mem() || !__ratelimit(&show_mem_rs))
3275 		return;
3276 
3277 	/*
3278 	 * This documents exceptions given to allocations in certain
3279 	 * contexts that are allowed to allocate outside current's set
3280 	 * of allowed nodes.
3281 	 */
3282 	if (!(gfp_mask & __GFP_NOMEMALLOC))
3283 		if (tsk_is_oom_victim(current) ||
3284 		    (current->flags & (PF_MEMALLOC | PF_EXITING)))
3285 			filter &= ~SHOW_MEM_FILTER_NODES;
3286 	if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
3287 		filter &= ~SHOW_MEM_FILTER_NODES;
3288 
3289 	show_mem(filter, nodemask);
3290 }
3291 
3292 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
3293 {
3294 	struct va_format vaf;
3295 	va_list args;
3296 	static DEFINE_RATELIMIT_STATE(nopage_rs, DEFAULT_RATELIMIT_INTERVAL,
3297 				      DEFAULT_RATELIMIT_BURST);
3298 
3299 	if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs))
3300 		return;
3301 
3302 	va_start(args, fmt);
3303 	vaf.fmt = fmt;
3304 	vaf.va = &args;
3305 	pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl\n",
3306 			current->comm, &vaf, gfp_mask, &gfp_mask,
3307 			nodemask_pr_args(nodemask));
3308 	va_end(args);
3309 
3310 	cpuset_print_current_mems_allowed();
3311 
3312 	dump_stack();
3313 	warn_alloc_show_mem(gfp_mask, nodemask);
3314 }
3315 
3316 static inline struct page *
3317 __alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
3318 			      unsigned int alloc_flags,
3319 			      const struct alloc_context *ac)
3320 {
3321 	struct page *page;
3322 
3323 	page = get_page_from_freelist(gfp_mask, order,
3324 			alloc_flags|ALLOC_CPUSET, ac);
3325 	/*
3326 	 * fallback to ignore cpuset restriction if our nodes
3327 	 * are depleted
3328 	 */
3329 	if (!page)
3330 		page = get_page_from_freelist(gfp_mask, order,
3331 				alloc_flags, ac);
3332 
3333 	return page;
3334 }
3335 
3336 static inline struct page *
3337 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
3338 	const struct alloc_context *ac, unsigned long *did_some_progress)
3339 {
3340 	struct oom_control oc = {
3341 		.zonelist = ac->zonelist,
3342 		.nodemask = ac->nodemask,
3343 		.memcg = NULL,
3344 		.gfp_mask = gfp_mask,
3345 		.order = order,
3346 	};
3347 	struct page *page;
3348 
3349 	*did_some_progress = 0;
3350 
3351 	/*
3352 	 * Acquire the oom lock.  If that fails, somebody else is
3353 	 * making progress for us.
3354 	 */
3355 	if (!mutex_trylock(&oom_lock)) {
3356 		*did_some_progress = 1;
3357 		schedule_timeout_uninterruptible(1);
3358 		return NULL;
3359 	}
3360 
3361 	/*
3362 	 * Go through the zonelist yet one more time, keep very high watermark
3363 	 * here, this is only to catch a parallel oom killing, we must fail if
3364 	 * we're still under heavy pressure. But make sure that this reclaim
3365 	 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
3366 	 * allocation which will never fail due to oom_lock already held.
3367 	 */
3368 	page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) &
3369 				      ~__GFP_DIRECT_RECLAIM, order,
3370 				      ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
3371 	if (page)
3372 		goto out;
3373 
3374 	/* Coredumps can quickly deplete all memory reserves */
3375 	if (current->flags & PF_DUMPCORE)
3376 		goto out;
3377 	/* The OOM killer will not help higher order allocs */
3378 	if (order > PAGE_ALLOC_COSTLY_ORDER)
3379 		goto out;
3380 	/*
3381 	 * We have already exhausted all our reclaim opportunities without any
3382 	 * success so it is time to admit defeat. We will skip the OOM killer
3383 	 * because it is very likely that the caller has a more reasonable
3384 	 * fallback than shooting a random task.
3385 	 */
3386 	if (gfp_mask & __GFP_RETRY_MAYFAIL)
3387 		goto out;
3388 	/* The OOM killer does not needlessly kill tasks for lowmem */
3389 	if (ac->high_zoneidx < ZONE_NORMAL)
3390 		goto out;
3391 	if (pm_suspended_storage())
3392 		goto out;
3393 	/*
3394 	 * XXX: GFP_NOFS allocations should rather fail than rely on
3395 	 * other request to make a forward progress.
3396 	 * We are in an unfortunate situation where out_of_memory cannot
3397 	 * do much for this context but let's try it to at least get
3398 	 * access to memory reserved if the current task is killed (see
3399 	 * out_of_memory). Once filesystems are ready to handle allocation
3400 	 * failures more gracefully we should just bail out here.
3401 	 */
3402 
3403 	/* The OOM killer may not free memory on a specific node */
3404 	if (gfp_mask & __GFP_THISNODE)
3405 		goto out;
3406 
3407 	/* Exhausted what can be done so it's blame time */
3408 	if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
3409 		*did_some_progress = 1;
3410 
3411 		/*
3412 		 * Help non-failing allocations by giving them access to memory
3413 		 * reserves
3414 		 */
3415 		if (gfp_mask & __GFP_NOFAIL)
3416 			page = __alloc_pages_cpuset_fallback(gfp_mask, order,
3417 					ALLOC_NO_WATERMARKS, ac);
3418 	}
3419 out:
3420 	mutex_unlock(&oom_lock);
3421 	return page;
3422 }
3423 
3424 /*
3425  * Maximum number of compaction retries wit a progress before OOM
3426  * killer is consider as the only way to move forward.
3427  */
3428 #define MAX_COMPACT_RETRIES 16
3429 
3430 #ifdef CONFIG_COMPACTION
3431 /* Try memory compaction for high-order allocations before reclaim */
3432 static struct page *
3433 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3434 		unsigned int alloc_flags, const struct alloc_context *ac,
3435 		enum compact_priority prio, enum compact_result *compact_result)
3436 {
3437 	struct page *page;
3438 	unsigned int noreclaim_flag;
3439 
3440 	if (!order)
3441 		return NULL;
3442 
3443 	noreclaim_flag = memalloc_noreclaim_save();
3444 	*compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
3445 									prio);
3446 	memalloc_noreclaim_restore(noreclaim_flag);
3447 
3448 	if (*compact_result <= COMPACT_INACTIVE)
3449 		return NULL;
3450 
3451 	/*
3452 	 * At least in one zone compaction wasn't deferred or skipped, so let's
3453 	 * count a compaction stall
3454 	 */
3455 	count_vm_event(COMPACTSTALL);
3456 
3457 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3458 
3459 	if (page) {
3460 		struct zone *zone = page_zone(page);
3461 
3462 		zone->compact_blockskip_flush = false;
3463 		compaction_defer_reset(zone, order, true);
3464 		count_vm_event(COMPACTSUCCESS);
3465 		return page;
3466 	}
3467 
3468 	/*
3469 	 * It's bad if compaction run occurs and fails. The most likely reason
3470 	 * is that pages exist, but not enough to satisfy watermarks.
3471 	 */
3472 	count_vm_event(COMPACTFAIL);
3473 
3474 	cond_resched();
3475 
3476 	return NULL;
3477 }
3478 
3479 static inline bool
3480 should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
3481 		     enum compact_result compact_result,
3482 		     enum compact_priority *compact_priority,
3483 		     int *compaction_retries)
3484 {
3485 	int max_retries = MAX_COMPACT_RETRIES;
3486 	int min_priority;
3487 	bool ret = false;
3488 	int retries = *compaction_retries;
3489 	enum compact_priority priority = *compact_priority;
3490 
3491 	if (!order)
3492 		return false;
3493 
3494 	if (compaction_made_progress(compact_result))
3495 		(*compaction_retries)++;
3496 
3497 	/*
3498 	 * compaction considers all the zone as desperately out of memory
3499 	 * so it doesn't really make much sense to retry except when the
3500 	 * failure could be caused by insufficient priority
3501 	 */
3502 	if (compaction_failed(compact_result))
3503 		goto check_priority;
3504 
3505 	/*
3506 	 * make sure the compaction wasn't deferred or didn't bail out early
3507 	 * due to locks contention before we declare that we should give up.
3508 	 * But do not retry if the given zonelist is not suitable for
3509 	 * compaction.
3510 	 */
3511 	if (compaction_withdrawn(compact_result)) {
3512 		ret = compaction_zonelist_suitable(ac, order, alloc_flags);
3513 		goto out;
3514 	}
3515 
3516 	/*
3517 	 * !costly requests are much more important than __GFP_RETRY_MAYFAIL
3518 	 * costly ones because they are de facto nofail and invoke OOM
3519 	 * killer to move on while costly can fail and users are ready
3520 	 * to cope with that. 1/4 retries is rather arbitrary but we
3521 	 * would need much more detailed feedback from compaction to
3522 	 * make a better decision.
3523 	 */
3524 	if (order > PAGE_ALLOC_COSTLY_ORDER)
3525 		max_retries /= 4;
3526 	if (*compaction_retries <= max_retries) {
3527 		ret = true;
3528 		goto out;
3529 	}
3530 
3531 	/*
3532 	 * Make sure there are attempts at the highest priority if we exhausted
3533 	 * all retries or failed at the lower priorities.
3534 	 */
3535 check_priority:
3536 	min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
3537 			MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
3538 
3539 	if (*compact_priority > min_priority) {
3540 		(*compact_priority)--;
3541 		*compaction_retries = 0;
3542 		ret = true;
3543 	}
3544 out:
3545 	trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
3546 	return ret;
3547 }
3548 #else
3549 static inline struct page *
3550 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3551 		unsigned int alloc_flags, const struct alloc_context *ac,
3552 		enum compact_priority prio, enum compact_result *compact_result)
3553 {
3554 	*compact_result = COMPACT_SKIPPED;
3555 	return NULL;
3556 }
3557 
3558 static inline bool
3559 should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
3560 		     enum compact_result compact_result,
3561 		     enum compact_priority *compact_priority,
3562 		     int *compaction_retries)
3563 {
3564 	struct zone *zone;
3565 	struct zoneref *z;
3566 
3567 	if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
3568 		return false;
3569 
3570 	/*
3571 	 * There are setups with compaction disabled which would prefer to loop
3572 	 * inside the allocator rather than hit the oom killer prematurely.
3573 	 * Let's give them a good hope and keep retrying while the order-0
3574 	 * watermarks are OK.
3575 	 */
3576 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3577 					ac->nodemask) {
3578 		if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
3579 					ac_classzone_idx(ac), alloc_flags))
3580 			return true;
3581 	}
3582 	return false;
3583 }
3584 #endif /* CONFIG_COMPACTION */
3585 
3586 #ifdef CONFIG_LOCKDEP
3587 struct lockdep_map __fs_reclaim_map =
3588 	STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map);
3589 
3590 static bool __need_fs_reclaim(gfp_t gfp_mask)
3591 {
3592 	gfp_mask = current_gfp_context(gfp_mask);
3593 
3594 	/* no reclaim without waiting on it */
3595 	if (!(gfp_mask & __GFP_DIRECT_RECLAIM))
3596 		return false;
3597 
3598 	/* this guy won't enter reclaim */
3599 	if ((current->flags & PF_MEMALLOC) && !(gfp_mask & __GFP_NOMEMALLOC))
3600 		return false;
3601 
3602 	/* We're only interested __GFP_FS allocations for now */
3603 	if (!(gfp_mask & __GFP_FS))
3604 		return false;
3605 
3606 	if (gfp_mask & __GFP_NOLOCKDEP)
3607 		return false;
3608 
3609 	return true;
3610 }
3611 
3612 void fs_reclaim_acquire(gfp_t gfp_mask)
3613 {
3614 	if (__need_fs_reclaim(gfp_mask))
3615 		lock_map_acquire(&__fs_reclaim_map);
3616 }
3617 EXPORT_SYMBOL_GPL(fs_reclaim_acquire);
3618 
3619 void fs_reclaim_release(gfp_t gfp_mask)
3620 {
3621 	if (__need_fs_reclaim(gfp_mask))
3622 		lock_map_release(&__fs_reclaim_map);
3623 }
3624 EXPORT_SYMBOL_GPL(fs_reclaim_release);
3625 #endif
3626 
3627 /* Perform direct synchronous page reclaim */
3628 static int
3629 __perform_reclaim(gfp_t gfp_mask, unsigned int order,
3630 					const struct alloc_context *ac)
3631 {
3632 	struct reclaim_state reclaim_state;
3633 	int progress;
3634 	unsigned int noreclaim_flag;
3635 
3636 	cond_resched();
3637 
3638 	/* We now go into synchronous reclaim */
3639 	cpuset_memory_pressure_bump();
3640 	noreclaim_flag = memalloc_noreclaim_save();
3641 	fs_reclaim_acquire(gfp_mask);
3642 	reclaim_state.reclaimed_slab = 0;
3643 	current->reclaim_state = &reclaim_state;
3644 
3645 	progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
3646 								ac->nodemask);
3647 
3648 	current->reclaim_state = NULL;
3649 	fs_reclaim_release(gfp_mask);
3650 	memalloc_noreclaim_restore(noreclaim_flag);
3651 
3652 	cond_resched();
3653 
3654 	return progress;
3655 }
3656 
3657 /* The really slow allocator path where we enter direct reclaim */
3658 static inline struct page *
3659 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
3660 		unsigned int alloc_flags, const struct alloc_context *ac,
3661 		unsigned long *did_some_progress)
3662 {
3663 	struct page *page = NULL;
3664 	bool drained = false;
3665 
3666 	*did_some_progress = __perform_reclaim(gfp_mask, order, ac);
3667 	if (unlikely(!(*did_some_progress)))
3668 		return NULL;
3669 
3670 retry:
3671 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3672 
3673 	/*
3674 	 * If an allocation failed after direct reclaim, it could be because
3675 	 * pages are pinned on the per-cpu lists or in high alloc reserves.
3676 	 * Shrink them them and try again
3677 	 */
3678 	if (!page && !drained) {
3679 		unreserve_highatomic_pageblock(ac, false);
3680 		drain_all_pages(NULL);
3681 		drained = true;
3682 		goto retry;
3683 	}
3684 
3685 	return page;
3686 }
3687 
3688 static void wake_all_kswapds(unsigned int order, const struct alloc_context *ac)
3689 {
3690 	struct zoneref *z;
3691 	struct zone *zone;
3692 	pg_data_t *last_pgdat = NULL;
3693 
3694 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
3695 					ac->high_zoneidx, ac->nodemask) {
3696 		if (last_pgdat != zone->zone_pgdat)
3697 			wakeup_kswapd(zone, order, ac->high_zoneidx);
3698 		last_pgdat = zone->zone_pgdat;
3699 	}
3700 }
3701 
3702 static inline unsigned int
3703 gfp_to_alloc_flags(gfp_t gfp_mask)
3704 {
3705 	unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
3706 
3707 	/* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
3708 	BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
3709 
3710 	/*
3711 	 * The caller may dip into page reserves a bit more if the caller
3712 	 * cannot run direct reclaim, or if the caller has realtime scheduling
3713 	 * policy or is asking for __GFP_HIGH memory.  GFP_ATOMIC requests will
3714 	 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
3715 	 */
3716 	alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
3717 
3718 	if (gfp_mask & __GFP_ATOMIC) {
3719 		/*
3720 		 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
3721 		 * if it can't schedule.
3722 		 */
3723 		if (!(gfp_mask & __GFP_NOMEMALLOC))
3724 			alloc_flags |= ALLOC_HARDER;
3725 		/*
3726 		 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
3727 		 * comment for __cpuset_node_allowed().
3728 		 */
3729 		alloc_flags &= ~ALLOC_CPUSET;
3730 	} else if (unlikely(rt_task(current)) && !in_interrupt())
3731 		alloc_flags |= ALLOC_HARDER;
3732 
3733 #ifdef CONFIG_CMA
3734 	if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
3735 		alloc_flags |= ALLOC_CMA;
3736 #endif
3737 	return alloc_flags;
3738 }
3739 
3740 static bool oom_reserves_allowed(struct task_struct *tsk)
3741 {
3742 	if (!tsk_is_oom_victim(tsk))
3743 		return false;
3744 
3745 	/*
3746 	 * !MMU doesn't have oom reaper so give access to memory reserves
3747 	 * only to the thread with TIF_MEMDIE set
3748 	 */
3749 	if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE))
3750 		return false;
3751 
3752 	return true;
3753 }
3754 
3755 /*
3756  * Distinguish requests which really need access to full memory
3757  * reserves from oom victims which can live with a portion of it
3758  */
3759 static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask)
3760 {
3761 	if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
3762 		return 0;
3763 	if (gfp_mask & __GFP_MEMALLOC)
3764 		return ALLOC_NO_WATERMARKS;
3765 	if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
3766 		return ALLOC_NO_WATERMARKS;
3767 	if (!in_interrupt()) {
3768 		if (current->flags & PF_MEMALLOC)
3769 			return ALLOC_NO_WATERMARKS;
3770 		else if (oom_reserves_allowed(current))
3771 			return ALLOC_OOM;
3772 	}
3773 
3774 	return 0;
3775 }
3776 
3777 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
3778 {
3779 	return !!__gfp_pfmemalloc_flags(gfp_mask);
3780 }
3781 
3782 /*
3783  * Checks whether it makes sense to retry the reclaim to make a forward progress
3784  * for the given allocation request.
3785  *
3786  * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
3787  * without success, or when we couldn't even meet the watermark if we
3788  * reclaimed all remaining pages on the LRU lists.
3789  *
3790  * Returns true if a retry is viable or false to enter the oom path.
3791  */
3792 static inline bool
3793 should_reclaim_retry(gfp_t gfp_mask, unsigned order,
3794 		     struct alloc_context *ac, int alloc_flags,
3795 		     bool did_some_progress, int *no_progress_loops)
3796 {
3797 	struct zone *zone;
3798 	struct zoneref *z;
3799 
3800 	/*
3801 	 * Costly allocations might have made a progress but this doesn't mean
3802 	 * their order will become available due to high fragmentation so
3803 	 * always increment the no progress counter for them
3804 	 */
3805 	if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
3806 		*no_progress_loops = 0;
3807 	else
3808 		(*no_progress_loops)++;
3809 
3810 	/*
3811 	 * Make sure we converge to OOM if we cannot make any progress
3812 	 * several times in the row.
3813 	 */
3814 	if (*no_progress_loops > MAX_RECLAIM_RETRIES) {
3815 		/* Before OOM, exhaust highatomic_reserve */
3816 		return unreserve_highatomic_pageblock(ac, true);
3817 	}
3818 
3819 	/*
3820 	 * Keep reclaiming pages while there is a chance this will lead
3821 	 * somewhere.  If none of the target zones can satisfy our allocation
3822 	 * request even if all reclaimable pages are considered then we are
3823 	 * screwed and have to go OOM.
3824 	 */
3825 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3826 					ac->nodemask) {
3827 		unsigned long available;
3828 		unsigned long reclaimable;
3829 		unsigned long min_wmark = min_wmark_pages(zone);
3830 		bool wmark;
3831 
3832 		available = reclaimable = zone_reclaimable_pages(zone);
3833 		available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
3834 
3835 		/*
3836 		 * Would the allocation succeed if we reclaimed all
3837 		 * reclaimable pages?
3838 		 */
3839 		wmark = __zone_watermark_ok(zone, order, min_wmark,
3840 				ac_classzone_idx(ac), alloc_flags, available);
3841 		trace_reclaim_retry_zone(z, order, reclaimable,
3842 				available, min_wmark, *no_progress_loops, wmark);
3843 		if (wmark) {
3844 			/*
3845 			 * If we didn't make any progress and have a lot of
3846 			 * dirty + writeback pages then we should wait for
3847 			 * an IO to complete to slow down the reclaim and
3848 			 * prevent from pre mature OOM
3849 			 */
3850 			if (!did_some_progress) {
3851 				unsigned long write_pending;
3852 
3853 				write_pending = zone_page_state_snapshot(zone,
3854 							NR_ZONE_WRITE_PENDING);
3855 
3856 				if (2 * write_pending > reclaimable) {
3857 					congestion_wait(BLK_RW_ASYNC, HZ/10);
3858 					return true;
3859 				}
3860 			}
3861 
3862 			/*
3863 			 * Memory allocation/reclaim might be called from a WQ
3864 			 * context and the current implementation of the WQ
3865 			 * concurrency control doesn't recognize that
3866 			 * a particular WQ is congested if the worker thread is
3867 			 * looping without ever sleeping. Therefore we have to
3868 			 * do a short sleep here rather than calling
3869 			 * cond_resched().
3870 			 */
3871 			if (current->flags & PF_WQ_WORKER)
3872 				schedule_timeout_uninterruptible(1);
3873 			else
3874 				cond_resched();
3875 
3876 			return true;
3877 		}
3878 	}
3879 
3880 	return false;
3881 }
3882 
3883 static inline bool
3884 check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
3885 {
3886 	/*
3887 	 * It's possible that cpuset's mems_allowed and the nodemask from
3888 	 * mempolicy don't intersect. This should be normally dealt with by
3889 	 * policy_nodemask(), but it's possible to race with cpuset update in
3890 	 * such a way the check therein was true, and then it became false
3891 	 * before we got our cpuset_mems_cookie here.
3892 	 * This assumes that for all allocations, ac->nodemask can come only
3893 	 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
3894 	 * when it does not intersect with the cpuset restrictions) or the
3895 	 * caller can deal with a violated nodemask.
3896 	 */
3897 	if (cpusets_enabled() && ac->nodemask &&
3898 			!cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
3899 		ac->nodemask = NULL;
3900 		return true;
3901 	}
3902 
3903 	/*
3904 	 * When updating a task's mems_allowed or mempolicy nodemask, it is
3905 	 * possible to race with parallel threads in such a way that our
3906 	 * allocation can fail while the mask is being updated. If we are about
3907 	 * to fail, check if the cpuset changed during allocation and if so,
3908 	 * retry.
3909 	 */
3910 	if (read_mems_allowed_retry(cpuset_mems_cookie))
3911 		return true;
3912 
3913 	return false;
3914 }
3915 
3916 static inline struct page *
3917 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
3918 						struct alloc_context *ac)
3919 {
3920 	bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
3921 	const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
3922 	struct page *page = NULL;
3923 	unsigned int alloc_flags;
3924 	unsigned long did_some_progress;
3925 	enum compact_priority compact_priority;
3926 	enum compact_result compact_result;
3927 	int compaction_retries;
3928 	int no_progress_loops;
3929 	unsigned int cpuset_mems_cookie;
3930 	int reserve_flags;
3931 
3932 	/*
3933 	 * In the slowpath, we sanity check order to avoid ever trying to
3934 	 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
3935 	 * be using allocators in order of preference for an area that is
3936 	 * too large.
3937 	 */
3938 	if (order >= MAX_ORDER) {
3939 		WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
3940 		return NULL;
3941 	}
3942 
3943 	/*
3944 	 * We also sanity check to catch abuse of atomic reserves being used by
3945 	 * callers that are not in atomic context.
3946 	 */
3947 	if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
3948 				(__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
3949 		gfp_mask &= ~__GFP_ATOMIC;
3950 
3951 retry_cpuset:
3952 	compaction_retries = 0;
3953 	no_progress_loops = 0;
3954 	compact_priority = DEF_COMPACT_PRIORITY;
3955 	cpuset_mems_cookie = read_mems_allowed_begin();
3956 
3957 	/*
3958 	 * The fast path uses conservative alloc_flags to succeed only until
3959 	 * kswapd needs to be woken up, and to avoid the cost of setting up
3960 	 * alloc_flags precisely. So we do that now.
3961 	 */
3962 	alloc_flags = gfp_to_alloc_flags(gfp_mask);
3963 
3964 	/*
3965 	 * We need to recalculate the starting point for the zonelist iterator
3966 	 * because we might have used different nodemask in the fast path, or
3967 	 * there was a cpuset modification and we are retrying - otherwise we
3968 	 * could end up iterating over non-eligible zones endlessly.
3969 	 */
3970 	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
3971 					ac->high_zoneidx, ac->nodemask);
3972 	if (!ac->preferred_zoneref->zone)
3973 		goto nopage;
3974 
3975 	if (gfp_mask & __GFP_KSWAPD_RECLAIM)
3976 		wake_all_kswapds(order, ac);
3977 
3978 	/*
3979 	 * The adjusted alloc_flags might result in immediate success, so try
3980 	 * that first
3981 	 */
3982 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3983 	if (page)
3984 		goto got_pg;
3985 
3986 	/*
3987 	 * For costly allocations, try direct compaction first, as it's likely
3988 	 * that we have enough base pages and don't need to reclaim. For non-
3989 	 * movable high-order allocations, do that as well, as compaction will
3990 	 * try prevent permanent fragmentation by migrating from blocks of the
3991 	 * same migratetype.
3992 	 * Don't try this for allocations that are allowed to ignore
3993 	 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
3994 	 */
3995 	if (can_direct_reclaim &&
3996 			(costly_order ||
3997 			   (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
3998 			&& !gfp_pfmemalloc_allowed(gfp_mask)) {
3999 		page = __alloc_pages_direct_compact(gfp_mask, order,
4000 						alloc_flags, ac,
4001 						INIT_COMPACT_PRIORITY,
4002 						&compact_result);
4003 		if (page)
4004 			goto got_pg;
4005 
4006 		/*
4007 		 * Checks for costly allocations with __GFP_NORETRY, which
4008 		 * includes THP page fault allocations
4009 		 */
4010 		if (costly_order && (gfp_mask & __GFP_NORETRY)) {
4011 			/*
4012 			 * If compaction is deferred for high-order allocations,
4013 			 * it is because sync compaction recently failed. If
4014 			 * this is the case and the caller requested a THP
4015 			 * allocation, we do not want to heavily disrupt the
4016 			 * system, so we fail the allocation instead of entering
4017 			 * direct reclaim.
4018 			 */
4019 			if (compact_result == COMPACT_DEFERRED)
4020 				goto nopage;
4021 
4022 			/*
4023 			 * Looks like reclaim/compaction is worth trying, but
4024 			 * sync compaction could be very expensive, so keep
4025 			 * using async compaction.
4026 			 */
4027 			compact_priority = INIT_COMPACT_PRIORITY;
4028 		}
4029 	}
4030 
4031 retry:
4032 	/* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
4033 	if (gfp_mask & __GFP_KSWAPD_RECLAIM)
4034 		wake_all_kswapds(order, ac);
4035 
4036 	reserve_flags = __gfp_pfmemalloc_flags(gfp_mask);
4037 	if (reserve_flags)
4038 		alloc_flags = reserve_flags;
4039 
4040 	/*
4041 	 * Reset the zonelist iterators if memory policies can be ignored.
4042 	 * These allocations are high priority and system rather than user
4043 	 * orientated.
4044 	 */
4045 	if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) {
4046 		ac->zonelist = node_zonelist(numa_node_id(), gfp_mask);
4047 		ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4048 					ac->high_zoneidx, ac->nodemask);
4049 	}
4050 
4051 	/* Attempt with potentially adjusted zonelist and alloc_flags */
4052 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4053 	if (page)
4054 		goto got_pg;
4055 
4056 	/* Caller is not willing to reclaim, we can't balance anything */
4057 	if (!can_direct_reclaim)
4058 		goto nopage;
4059 
4060 	/* Avoid recursion of direct reclaim */
4061 	if (current->flags & PF_MEMALLOC)
4062 		goto nopage;
4063 
4064 	/* Try direct reclaim and then allocating */
4065 	page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
4066 							&did_some_progress);
4067 	if (page)
4068 		goto got_pg;
4069 
4070 	/* Try direct compaction and then allocating */
4071 	page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
4072 					compact_priority, &compact_result);
4073 	if (page)
4074 		goto got_pg;
4075 
4076 	/* Do not loop if specifically requested */
4077 	if (gfp_mask & __GFP_NORETRY)
4078 		goto nopage;
4079 
4080 	/*
4081 	 * Do not retry costly high order allocations unless they are
4082 	 * __GFP_RETRY_MAYFAIL
4083 	 */
4084 	if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL))
4085 		goto nopage;
4086 
4087 	if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
4088 				 did_some_progress > 0, &no_progress_loops))
4089 		goto retry;
4090 
4091 	/*
4092 	 * It doesn't make any sense to retry for the compaction if the order-0
4093 	 * reclaim is not able to make any progress because the current
4094 	 * implementation of the compaction depends on the sufficient amount
4095 	 * of free memory (see __compaction_suitable)
4096 	 */
4097 	if (did_some_progress > 0 &&
4098 			should_compact_retry(ac, order, alloc_flags,
4099 				compact_result, &compact_priority,
4100 				&compaction_retries))
4101 		goto retry;
4102 
4103 
4104 	/* Deal with possible cpuset update races before we start OOM killing */
4105 	if (check_retry_cpuset(cpuset_mems_cookie, ac))
4106 		goto retry_cpuset;
4107 
4108 	/* Reclaim has failed us, start killing things */
4109 	page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
4110 	if (page)
4111 		goto got_pg;
4112 
4113 	/* Avoid allocations with no watermarks from looping endlessly */
4114 	if (tsk_is_oom_victim(current) &&
4115 	    (alloc_flags == ALLOC_OOM ||
4116 	     (gfp_mask & __GFP_NOMEMALLOC)))
4117 		goto nopage;
4118 
4119 	/* Retry as long as the OOM killer is making progress */
4120 	if (did_some_progress) {
4121 		no_progress_loops = 0;
4122 		goto retry;
4123 	}
4124 
4125 nopage:
4126 	/* Deal with possible cpuset update races before we fail */
4127 	if (check_retry_cpuset(cpuset_mems_cookie, ac))
4128 		goto retry_cpuset;
4129 
4130 	/*
4131 	 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
4132 	 * we always retry
4133 	 */
4134 	if (gfp_mask & __GFP_NOFAIL) {
4135 		/*
4136 		 * All existing users of the __GFP_NOFAIL are blockable, so warn
4137 		 * of any new users that actually require GFP_NOWAIT
4138 		 */
4139 		if (WARN_ON_ONCE(!can_direct_reclaim))
4140 			goto fail;
4141 
4142 		/*
4143 		 * PF_MEMALLOC request from this context is rather bizarre
4144 		 * because we cannot reclaim anything and only can loop waiting
4145 		 * for somebody to do a work for us
4146 		 */
4147 		WARN_ON_ONCE(current->flags & PF_MEMALLOC);
4148 
4149 		/*
4150 		 * non failing costly orders are a hard requirement which we
4151 		 * are not prepared for much so let's warn about these users
4152 		 * so that we can identify them and convert them to something
4153 		 * else.
4154 		 */
4155 		WARN_ON_ONCE(order > PAGE_ALLOC_COSTLY_ORDER);
4156 
4157 		/*
4158 		 * Help non-failing allocations by giving them access to memory
4159 		 * reserves but do not use ALLOC_NO_WATERMARKS because this
4160 		 * could deplete whole memory reserves which would just make
4161 		 * the situation worse
4162 		 */
4163 		page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac);
4164 		if (page)
4165 			goto got_pg;
4166 
4167 		cond_resched();
4168 		goto retry;
4169 	}
4170 fail:
4171 	warn_alloc(gfp_mask, ac->nodemask,
4172 			"page allocation failure: order:%u", order);
4173 got_pg:
4174 	return page;
4175 }
4176 
4177 static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
4178 		int preferred_nid, nodemask_t *nodemask,
4179 		struct alloc_context *ac, gfp_t *alloc_mask,
4180 		unsigned int *alloc_flags)
4181 {
4182 	ac->high_zoneidx = gfp_zone(gfp_mask);
4183 	ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
4184 	ac->nodemask = nodemask;
4185 	ac->migratetype = gfpflags_to_migratetype(gfp_mask);
4186 
4187 	if (cpusets_enabled()) {
4188 		*alloc_mask |= __GFP_HARDWALL;
4189 		if (!ac->nodemask)
4190 			ac->nodemask = &cpuset_current_mems_allowed;
4191 		else
4192 			*alloc_flags |= ALLOC_CPUSET;
4193 	}
4194 
4195 	fs_reclaim_acquire(gfp_mask);
4196 	fs_reclaim_release(gfp_mask);
4197 
4198 	might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
4199 
4200 	if (should_fail_alloc_page(gfp_mask, order))
4201 		return false;
4202 
4203 	if (IS_ENABLED(CONFIG_CMA) && ac->migratetype == MIGRATE_MOVABLE)
4204 		*alloc_flags |= ALLOC_CMA;
4205 
4206 	return true;
4207 }
4208 
4209 /* Determine whether to spread dirty pages and what the first usable zone */
4210 static inline void finalise_ac(gfp_t gfp_mask,
4211 		unsigned int order, struct alloc_context *ac)
4212 {
4213 	/* Dirty zone balancing only done in the fast path */
4214 	ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
4215 
4216 	/*
4217 	 * The preferred zone is used for statistics but crucially it is
4218 	 * also used as the starting point for the zonelist iterator. It
4219 	 * may get reset for allocations that ignore memory policies.
4220 	 */
4221 	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4222 					ac->high_zoneidx, ac->nodemask);
4223 }
4224 
4225 /*
4226  * This is the 'heart' of the zoned buddy allocator.
4227  */
4228 struct page *
4229 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order, int preferred_nid,
4230 							nodemask_t *nodemask)
4231 {
4232 	struct page *page;
4233 	unsigned int alloc_flags = ALLOC_WMARK_LOW;
4234 	gfp_t alloc_mask; /* The gfp_t that was actually used for allocation */
4235 	struct alloc_context ac = { };
4236 
4237 	gfp_mask &= gfp_allowed_mask;
4238 	alloc_mask = gfp_mask;
4239 	if (!prepare_alloc_pages(gfp_mask, order, preferred_nid, nodemask, &ac, &alloc_mask, &alloc_flags))
4240 		return NULL;
4241 
4242 	finalise_ac(gfp_mask, order, &ac);
4243 
4244 	/* First allocation attempt */
4245 	page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
4246 	if (likely(page))
4247 		goto out;
4248 
4249 	/*
4250 	 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
4251 	 * resp. GFP_NOIO which has to be inherited for all allocation requests
4252 	 * from a particular context which has been marked by
4253 	 * memalloc_no{fs,io}_{save,restore}.
4254 	 */
4255 	alloc_mask = current_gfp_context(gfp_mask);
4256 	ac.spread_dirty_pages = false;
4257 
4258 	/*
4259 	 * Restore the original nodemask if it was potentially replaced with
4260 	 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
4261 	 */
4262 	if (unlikely(ac.nodemask != nodemask))
4263 		ac.nodemask = nodemask;
4264 
4265 	page = __alloc_pages_slowpath(alloc_mask, order, &ac);
4266 
4267 out:
4268 	if (memcg_kmem_enabled() && (gfp_mask & __GFP_ACCOUNT) && page &&
4269 	    unlikely(memcg_kmem_charge(page, gfp_mask, order) != 0)) {
4270 		__free_pages(page, order);
4271 		page = NULL;
4272 	}
4273 
4274 	trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);
4275 
4276 	return page;
4277 }
4278 EXPORT_SYMBOL(__alloc_pages_nodemask);
4279 
4280 /*
4281  * Common helper functions.
4282  */
4283 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
4284 {
4285 	struct page *page;
4286 
4287 	/*
4288 	 * __get_free_pages() returns a virtual address, which cannot represent
4289 	 * a highmem page
4290 	 */
4291 	VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
4292 
4293 	page = alloc_pages(gfp_mask, order);
4294 	if (!page)
4295 		return 0;
4296 	return (unsigned long) page_address(page);
4297 }
4298 EXPORT_SYMBOL(__get_free_pages);
4299 
4300 unsigned long get_zeroed_page(gfp_t gfp_mask)
4301 {
4302 	return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
4303 }
4304 EXPORT_SYMBOL(get_zeroed_page);
4305 
4306 void __free_pages(struct page *page, unsigned int order)
4307 {
4308 	if (put_page_testzero(page)) {
4309 		if (order == 0)
4310 			free_unref_page(page);
4311 		else
4312 			__free_pages_ok(page, order);
4313 	}
4314 }
4315 
4316 EXPORT_SYMBOL(__free_pages);
4317 
4318 void free_pages(unsigned long addr, unsigned int order)
4319 {
4320 	if (addr != 0) {
4321 		VM_BUG_ON(!virt_addr_valid((void *)addr));
4322 		__free_pages(virt_to_page((void *)addr), order);
4323 	}
4324 }
4325 
4326 EXPORT_SYMBOL(free_pages);
4327 
4328 /*
4329  * Page Fragment:
4330  *  An arbitrary-length arbitrary-offset area of memory which resides
4331  *  within a 0 or higher order page.  Multiple fragments within that page
4332  *  are individually refcounted, in the page's reference counter.
4333  *
4334  * The page_frag functions below provide a simple allocation framework for
4335  * page fragments.  This is used by the network stack and network device
4336  * drivers to provide a backing region of memory for use as either an
4337  * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
4338  */
4339 static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
4340 					     gfp_t gfp_mask)
4341 {
4342 	struct page *page = NULL;
4343 	gfp_t gfp = gfp_mask;
4344 
4345 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4346 	gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
4347 		    __GFP_NOMEMALLOC;
4348 	page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
4349 				PAGE_FRAG_CACHE_MAX_ORDER);
4350 	nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
4351 #endif
4352 	if (unlikely(!page))
4353 		page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
4354 
4355 	nc->va = page ? page_address(page) : NULL;
4356 
4357 	return page;
4358 }
4359 
4360 void __page_frag_cache_drain(struct page *page, unsigned int count)
4361 {
4362 	VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
4363 
4364 	if (page_ref_sub_and_test(page, count)) {
4365 		unsigned int order = compound_order(page);
4366 
4367 		if (order == 0)
4368 			free_unref_page(page);
4369 		else
4370 			__free_pages_ok(page, order);
4371 	}
4372 }
4373 EXPORT_SYMBOL(__page_frag_cache_drain);
4374 
4375 void *page_frag_alloc(struct page_frag_cache *nc,
4376 		      unsigned int fragsz, gfp_t gfp_mask)
4377 {
4378 	unsigned int size = PAGE_SIZE;
4379 	struct page *page;
4380 	int offset;
4381 
4382 	if (unlikely(!nc->va)) {
4383 refill:
4384 		page = __page_frag_cache_refill(nc, gfp_mask);
4385 		if (!page)
4386 			return NULL;
4387 
4388 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4389 		/* if size can vary use size else just use PAGE_SIZE */
4390 		size = nc->size;
4391 #endif
4392 		/* Even if we own the page, we do not use atomic_set().
4393 		 * This would break get_page_unless_zero() users.
4394 		 */
4395 		page_ref_add(page, size - 1);
4396 
4397 		/* reset page count bias and offset to start of new frag */
4398 		nc->pfmemalloc = page_is_pfmemalloc(page);
4399 		nc->pagecnt_bias = size;
4400 		nc->offset = size;
4401 	}
4402 
4403 	offset = nc->offset - fragsz;
4404 	if (unlikely(offset < 0)) {
4405 		page = virt_to_page(nc->va);
4406 
4407 		if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
4408 			goto refill;
4409 
4410 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4411 		/* if size can vary use size else just use PAGE_SIZE */
4412 		size = nc->size;
4413 #endif
4414 		/* OK, page count is 0, we can safely set it */
4415 		set_page_count(page, size);
4416 
4417 		/* reset page count bias and offset to start of new frag */
4418 		nc->pagecnt_bias = size;
4419 		offset = size - fragsz;
4420 	}
4421 
4422 	nc->pagecnt_bias--;
4423 	nc->offset = offset;
4424 
4425 	return nc->va + offset;
4426 }
4427 EXPORT_SYMBOL(page_frag_alloc);
4428 
4429 /*
4430  * Frees a page fragment allocated out of either a compound or order 0 page.
4431  */
4432 void page_frag_free(void *addr)
4433 {
4434 	struct page *page = virt_to_head_page(addr);
4435 
4436 	if (unlikely(put_page_testzero(page)))
4437 		__free_pages_ok(page, compound_order(page));
4438 }
4439 EXPORT_SYMBOL(page_frag_free);
4440 
4441 static void *make_alloc_exact(unsigned long addr, unsigned int order,
4442 		size_t size)
4443 {
4444 	if (addr) {
4445 		unsigned long alloc_end = addr + (PAGE_SIZE << order);
4446 		unsigned long used = addr + PAGE_ALIGN(size);
4447 
4448 		split_page(virt_to_page((void *)addr), order);
4449 		while (used < alloc_end) {
4450 			free_page(used);
4451 			used += PAGE_SIZE;
4452 		}
4453 	}
4454 	return (void *)addr;
4455 }
4456 
4457 /**
4458  * alloc_pages_exact - allocate an exact number physically-contiguous pages.
4459  * @size: the number of bytes to allocate
4460  * @gfp_mask: GFP flags for the allocation
4461  *
4462  * This function is similar to alloc_pages(), except that it allocates the
4463  * minimum number of pages to satisfy the request.  alloc_pages() can only
4464  * allocate memory in power-of-two pages.
4465  *
4466  * This function is also limited by MAX_ORDER.
4467  *
4468  * Memory allocated by this function must be released by free_pages_exact().
4469  */
4470 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
4471 {
4472 	unsigned int order = get_order(size);
4473 	unsigned long addr;
4474 
4475 	addr = __get_free_pages(gfp_mask, order);
4476 	return make_alloc_exact(addr, order, size);
4477 }
4478 EXPORT_SYMBOL(alloc_pages_exact);
4479 
4480 /**
4481  * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
4482  *			   pages on a node.
4483  * @nid: the preferred node ID where memory should be allocated
4484  * @size: the number of bytes to allocate
4485  * @gfp_mask: GFP flags for the allocation
4486  *
4487  * Like alloc_pages_exact(), but try to allocate on node nid first before falling
4488  * back.
4489  */
4490 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
4491 {
4492 	unsigned int order = get_order(size);
4493 	struct page *p = alloc_pages_node(nid, gfp_mask, order);
4494 	if (!p)
4495 		return NULL;
4496 	return make_alloc_exact((unsigned long)page_address(p), order, size);
4497 }
4498 
4499 /**
4500  * free_pages_exact - release memory allocated via alloc_pages_exact()
4501  * @virt: the value returned by alloc_pages_exact.
4502  * @size: size of allocation, same value as passed to alloc_pages_exact().
4503  *
4504  * Release the memory allocated by a previous call to alloc_pages_exact.
4505  */
4506 void free_pages_exact(void *virt, size_t size)
4507 {
4508 	unsigned long addr = (unsigned long)virt;
4509 	unsigned long end = addr + PAGE_ALIGN(size);
4510 
4511 	while (addr < end) {
4512 		free_page(addr);
4513 		addr += PAGE_SIZE;
4514 	}
4515 }
4516 EXPORT_SYMBOL(free_pages_exact);
4517 
4518 /**
4519  * nr_free_zone_pages - count number of pages beyond high watermark
4520  * @offset: The zone index of the highest zone
4521  *
4522  * nr_free_zone_pages() counts the number of counts pages which are beyond the
4523  * high watermark within all zones at or below a given zone index.  For each
4524  * zone, the number of pages is calculated as:
4525  *
4526  *     nr_free_zone_pages = managed_pages - high_pages
4527  */
4528 static unsigned long nr_free_zone_pages(int offset)
4529 {
4530 	struct zoneref *z;
4531 	struct zone *zone;
4532 
4533 	/* Just pick one node, since fallback list is circular */
4534 	unsigned long sum = 0;
4535 
4536 	struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
4537 
4538 	for_each_zone_zonelist(zone, z, zonelist, offset) {
4539 		unsigned long size = zone->managed_pages;
4540 		unsigned long high = high_wmark_pages(zone);
4541 		if (size > high)
4542 			sum += size - high;
4543 	}
4544 
4545 	return sum;
4546 }
4547 
4548 /**
4549  * nr_free_buffer_pages - count number of pages beyond high watermark
4550  *
4551  * nr_free_buffer_pages() counts the number of pages which are beyond the high
4552  * watermark within ZONE_DMA and ZONE_NORMAL.
4553  */
4554 unsigned long nr_free_buffer_pages(void)
4555 {
4556 	return nr_free_zone_pages(gfp_zone(GFP_USER));
4557 }
4558 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
4559 
4560 /**
4561  * nr_free_pagecache_pages - count number of pages beyond high watermark
4562  *
4563  * nr_free_pagecache_pages() counts the number of pages which are beyond the
4564  * high watermark within all zones.
4565  */
4566 unsigned long nr_free_pagecache_pages(void)
4567 {
4568 	return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
4569 }
4570 
4571 static inline void show_node(struct zone *zone)
4572 {
4573 	if (IS_ENABLED(CONFIG_NUMA))
4574 		printk("Node %d ", zone_to_nid(zone));
4575 }
4576 
4577 long si_mem_available(void)
4578 {
4579 	long available;
4580 	unsigned long pagecache;
4581 	unsigned long wmark_low = 0;
4582 	unsigned long pages[NR_LRU_LISTS];
4583 	struct zone *zone;
4584 	int lru;
4585 
4586 	for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
4587 		pages[lru] = global_node_page_state(NR_LRU_BASE + lru);
4588 
4589 	for_each_zone(zone)
4590 		wmark_low += zone->watermark[WMARK_LOW];
4591 
4592 	/*
4593 	 * Estimate the amount of memory available for userspace allocations,
4594 	 * without causing swapping.
4595 	 */
4596 	available = global_zone_page_state(NR_FREE_PAGES) - totalreserve_pages;
4597 
4598 	/*
4599 	 * Not all the page cache can be freed, otherwise the system will
4600 	 * start swapping. Assume at least half of the page cache, or the
4601 	 * low watermark worth of cache, needs to stay.
4602 	 */
4603 	pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
4604 	pagecache -= min(pagecache / 2, wmark_low);
4605 	available += pagecache;
4606 
4607 	/*
4608 	 * Part of the reclaimable slab consists of items that are in use,
4609 	 * and cannot be freed. Cap this estimate at the low watermark.
4610 	 */
4611 	available += global_node_page_state(NR_SLAB_RECLAIMABLE) -
4612 		     min(global_node_page_state(NR_SLAB_RECLAIMABLE) / 2,
4613 			 wmark_low);
4614 
4615 	if (available < 0)
4616 		available = 0;
4617 	return available;
4618 }
4619 EXPORT_SYMBOL_GPL(si_mem_available);
4620 
4621 void si_meminfo(struct sysinfo *val)
4622 {
4623 	val->totalram = totalram_pages;
4624 	val->sharedram = global_node_page_state(NR_SHMEM);
4625 	val->freeram = global_zone_page_state(NR_FREE_PAGES);
4626 	val->bufferram = nr_blockdev_pages();
4627 	val->totalhigh = totalhigh_pages;
4628 	val->freehigh = nr_free_highpages();
4629 	val->mem_unit = PAGE_SIZE;
4630 }
4631 
4632 EXPORT_SYMBOL(si_meminfo);
4633 
4634 #ifdef CONFIG_NUMA
4635 void si_meminfo_node(struct sysinfo *val, int nid)
4636 {
4637 	int zone_type;		/* needs to be signed */
4638 	unsigned long managed_pages = 0;
4639 	unsigned long managed_highpages = 0;
4640 	unsigned long free_highpages = 0;
4641 	pg_data_t *pgdat = NODE_DATA(nid);
4642 
4643 	for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
4644 		managed_pages += pgdat->node_zones[zone_type].managed_pages;
4645 	val->totalram = managed_pages;
4646 	val->sharedram = node_page_state(pgdat, NR_SHMEM);
4647 	val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES);
4648 #ifdef CONFIG_HIGHMEM
4649 	for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
4650 		struct zone *zone = &pgdat->node_zones[zone_type];
4651 
4652 		if (is_highmem(zone)) {
4653 			managed_highpages += zone->managed_pages;
4654 			free_highpages += zone_page_state(zone, NR_FREE_PAGES);
4655 		}
4656 	}
4657 	val->totalhigh = managed_highpages;
4658 	val->freehigh = free_highpages;
4659 #else
4660 	val->totalhigh = managed_highpages;
4661 	val->freehigh = free_highpages;
4662 #endif
4663 	val->mem_unit = PAGE_SIZE;
4664 }
4665 #endif
4666 
4667 /*
4668  * Determine whether the node should be displayed or not, depending on whether
4669  * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
4670  */
4671 static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask)
4672 {
4673 	if (!(flags & SHOW_MEM_FILTER_NODES))
4674 		return false;
4675 
4676 	/*
4677 	 * no node mask - aka implicit memory numa policy. Do not bother with
4678 	 * the synchronization - read_mems_allowed_begin - because we do not
4679 	 * have to be precise here.
4680 	 */
4681 	if (!nodemask)
4682 		nodemask = &cpuset_current_mems_allowed;
4683 
4684 	return !node_isset(nid, *nodemask);
4685 }
4686 
4687 #define K(x) ((x) << (PAGE_SHIFT-10))
4688 
4689 static void show_migration_types(unsigned char type)
4690 {
4691 	static const char types[MIGRATE_TYPES] = {
4692 		[MIGRATE_UNMOVABLE]	= 'U',
4693 		[MIGRATE_MOVABLE]	= 'M',
4694 		[MIGRATE_RECLAIMABLE]	= 'E',
4695 		[MIGRATE_HIGHATOMIC]	= 'H',
4696 #ifdef CONFIG_CMA
4697 		[MIGRATE_CMA]		= 'C',
4698 #endif
4699 #ifdef CONFIG_MEMORY_ISOLATION
4700 		[MIGRATE_ISOLATE]	= 'I',
4701 #endif
4702 	};
4703 	char tmp[MIGRATE_TYPES + 1];
4704 	char *p = tmp;
4705 	int i;
4706 
4707 	for (i = 0; i < MIGRATE_TYPES; i++) {
4708 		if (type & (1 << i))
4709 			*p++ = types[i];
4710 	}
4711 
4712 	*p = '\0';
4713 	printk(KERN_CONT "(%s) ", tmp);
4714 }
4715 
4716 /*
4717  * Show free area list (used inside shift_scroll-lock stuff)
4718  * We also calculate the percentage fragmentation. We do this by counting the
4719  * memory on each free list with the exception of the first item on the list.
4720  *
4721  * Bits in @filter:
4722  * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
4723  *   cpuset.
4724  */
4725 void show_free_areas(unsigned int filter, nodemask_t *nodemask)
4726 {
4727 	unsigned long free_pcp = 0;
4728 	int cpu;
4729 	struct zone *zone;
4730 	pg_data_t *pgdat;
4731 
4732 	for_each_populated_zone(zone) {
4733 		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
4734 			continue;
4735 
4736 		for_each_online_cpu(cpu)
4737 			free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
4738 	}
4739 
4740 	printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
4741 		" active_file:%lu inactive_file:%lu isolated_file:%lu\n"
4742 		" unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n"
4743 		" slab_reclaimable:%lu slab_unreclaimable:%lu\n"
4744 		" mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
4745 		" free:%lu free_pcp:%lu free_cma:%lu\n",
4746 		global_node_page_state(NR_ACTIVE_ANON),
4747 		global_node_page_state(NR_INACTIVE_ANON),
4748 		global_node_page_state(NR_ISOLATED_ANON),
4749 		global_node_page_state(NR_ACTIVE_FILE),
4750 		global_node_page_state(NR_INACTIVE_FILE),
4751 		global_node_page_state(NR_ISOLATED_FILE),
4752 		global_node_page_state(NR_UNEVICTABLE),
4753 		global_node_page_state(NR_FILE_DIRTY),
4754 		global_node_page_state(NR_WRITEBACK),
4755 		global_node_page_state(NR_UNSTABLE_NFS),
4756 		global_node_page_state(NR_SLAB_RECLAIMABLE),
4757 		global_node_page_state(NR_SLAB_UNRECLAIMABLE),
4758 		global_node_page_state(NR_FILE_MAPPED),
4759 		global_node_page_state(NR_SHMEM),
4760 		global_zone_page_state(NR_PAGETABLE),
4761 		global_zone_page_state(NR_BOUNCE),
4762 		global_zone_page_state(NR_FREE_PAGES),
4763 		free_pcp,
4764 		global_zone_page_state(NR_FREE_CMA_PAGES));
4765 
4766 	for_each_online_pgdat(pgdat) {
4767 		if (show_mem_node_skip(filter, pgdat->node_id, nodemask))
4768 			continue;
4769 
4770 		printk("Node %d"
4771 			" active_anon:%lukB"
4772 			" inactive_anon:%lukB"
4773 			" active_file:%lukB"
4774 			" inactive_file:%lukB"
4775 			" unevictable:%lukB"
4776 			" isolated(anon):%lukB"
4777 			" isolated(file):%lukB"
4778 			" mapped:%lukB"
4779 			" dirty:%lukB"
4780 			" writeback:%lukB"
4781 			" shmem:%lukB"
4782 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4783 			" shmem_thp: %lukB"
4784 			" shmem_pmdmapped: %lukB"
4785 			" anon_thp: %lukB"
4786 #endif
4787 			" writeback_tmp:%lukB"
4788 			" unstable:%lukB"
4789 			" all_unreclaimable? %s"
4790 			"\n",
4791 			pgdat->node_id,
4792 			K(node_page_state(pgdat, NR_ACTIVE_ANON)),
4793 			K(node_page_state(pgdat, NR_INACTIVE_ANON)),
4794 			K(node_page_state(pgdat, NR_ACTIVE_FILE)),
4795 			K(node_page_state(pgdat, NR_INACTIVE_FILE)),
4796 			K(node_page_state(pgdat, NR_UNEVICTABLE)),
4797 			K(node_page_state(pgdat, NR_ISOLATED_ANON)),
4798 			K(node_page_state(pgdat, NR_ISOLATED_FILE)),
4799 			K(node_page_state(pgdat, NR_FILE_MAPPED)),
4800 			K(node_page_state(pgdat, NR_FILE_DIRTY)),
4801 			K(node_page_state(pgdat, NR_WRITEBACK)),
4802 			K(node_page_state(pgdat, NR_SHMEM)),
4803 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4804 			K(node_page_state(pgdat, NR_SHMEM_THPS) * HPAGE_PMD_NR),
4805 			K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)
4806 					* HPAGE_PMD_NR),
4807 			K(node_page_state(pgdat, NR_ANON_THPS) * HPAGE_PMD_NR),
4808 #endif
4809 			K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
4810 			K(node_page_state(pgdat, NR_UNSTABLE_NFS)),
4811 			pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ?
4812 				"yes" : "no");
4813 	}
4814 
4815 	for_each_populated_zone(zone) {
4816 		int i;
4817 
4818 		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
4819 			continue;
4820 
4821 		free_pcp = 0;
4822 		for_each_online_cpu(cpu)
4823 			free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
4824 
4825 		show_node(zone);
4826 		printk(KERN_CONT
4827 			"%s"
4828 			" free:%lukB"
4829 			" min:%lukB"
4830 			" low:%lukB"
4831 			" high:%lukB"
4832 			" active_anon:%lukB"
4833 			" inactive_anon:%lukB"
4834 			" active_file:%lukB"
4835 			" inactive_file:%lukB"
4836 			" unevictable:%lukB"
4837 			" writepending:%lukB"
4838 			" present:%lukB"
4839 			" managed:%lukB"
4840 			" mlocked:%lukB"
4841 			" kernel_stack:%lukB"
4842 			" pagetables:%lukB"
4843 			" bounce:%lukB"
4844 			" free_pcp:%lukB"
4845 			" local_pcp:%ukB"
4846 			" free_cma:%lukB"
4847 			"\n",
4848 			zone->name,
4849 			K(zone_page_state(zone, NR_FREE_PAGES)),
4850 			K(min_wmark_pages(zone)),
4851 			K(low_wmark_pages(zone)),
4852 			K(high_wmark_pages(zone)),
4853 			K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)),
4854 			K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)),
4855 			K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)),
4856 			K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)),
4857 			K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)),
4858 			K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)),
4859 			K(zone->present_pages),
4860 			K(zone->managed_pages),
4861 			K(zone_page_state(zone, NR_MLOCK)),
4862 			zone_page_state(zone, NR_KERNEL_STACK_KB),
4863 			K(zone_page_state(zone, NR_PAGETABLE)),
4864 			K(zone_page_state(zone, NR_BOUNCE)),
4865 			K(free_pcp),
4866 			K(this_cpu_read(zone->pageset->pcp.count)),
4867 			K(zone_page_state(zone, NR_FREE_CMA_PAGES)));
4868 		printk("lowmem_reserve[]:");
4869 		for (i = 0; i < MAX_NR_ZONES; i++)
4870 			printk(KERN_CONT " %ld", zone->lowmem_reserve[i]);
4871 		printk(KERN_CONT "\n");
4872 	}
4873 
4874 	for_each_populated_zone(zone) {
4875 		unsigned int order;
4876 		unsigned long nr[MAX_ORDER], flags, total = 0;
4877 		unsigned char types[MAX_ORDER];
4878 
4879 		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
4880 			continue;
4881 		show_node(zone);
4882 		printk(KERN_CONT "%s: ", zone->name);
4883 
4884 		spin_lock_irqsave(&zone->lock, flags);
4885 		for (order = 0; order < MAX_ORDER; order++) {
4886 			struct free_area *area = &zone->free_area[order];
4887 			int type;
4888 
4889 			nr[order] = area->nr_free;
4890 			total += nr[order] << order;
4891 
4892 			types[order] = 0;
4893 			for (type = 0; type < MIGRATE_TYPES; type++) {
4894 				if (!list_empty(&area->free_list[type]))
4895 					types[order] |= 1 << type;
4896 			}
4897 		}
4898 		spin_unlock_irqrestore(&zone->lock, flags);
4899 		for (order = 0; order < MAX_ORDER; order++) {
4900 			printk(KERN_CONT "%lu*%lukB ",
4901 			       nr[order], K(1UL) << order);
4902 			if (nr[order])
4903 				show_migration_types(types[order]);
4904 		}
4905 		printk(KERN_CONT "= %lukB\n", K(total));
4906 	}
4907 
4908 	hugetlb_show_meminfo();
4909 
4910 	printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES));
4911 
4912 	show_swap_cache_info();
4913 }
4914 
4915 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
4916 {
4917 	zoneref->zone = zone;
4918 	zoneref->zone_idx = zone_idx(zone);
4919 }
4920 
4921 /*
4922  * Builds allocation fallback zone lists.
4923  *
4924  * Add all populated zones of a node to the zonelist.
4925  */
4926 static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs)
4927 {
4928 	struct zone *zone;
4929 	enum zone_type zone_type = MAX_NR_ZONES;
4930 	int nr_zones = 0;
4931 
4932 	do {
4933 		zone_type--;
4934 		zone = pgdat->node_zones + zone_type;
4935 		if (managed_zone(zone)) {
4936 			zoneref_set_zone(zone, &zonerefs[nr_zones++]);
4937 			check_highest_zone(zone_type);
4938 		}
4939 	} while (zone_type);
4940 
4941 	return nr_zones;
4942 }
4943 
4944 #ifdef CONFIG_NUMA
4945 
4946 static int __parse_numa_zonelist_order(char *s)
4947 {
4948 	/*
4949 	 * We used to support different zonlists modes but they turned
4950 	 * out to be just not useful. Let's keep the warning in place
4951 	 * if somebody still use the cmd line parameter so that we do
4952 	 * not fail it silently
4953 	 */
4954 	if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) {
4955 		pr_warn("Ignoring unsupported numa_zonelist_order value:  %s\n", s);
4956 		return -EINVAL;
4957 	}
4958 	return 0;
4959 }
4960 
4961 static __init int setup_numa_zonelist_order(char *s)
4962 {
4963 	if (!s)
4964 		return 0;
4965 
4966 	return __parse_numa_zonelist_order(s);
4967 }
4968 early_param("numa_zonelist_order", setup_numa_zonelist_order);
4969 
4970 char numa_zonelist_order[] = "Node";
4971 
4972 /*
4973  * sysctl handler for numa_zonelist_order
4974  */
4975 int numa_zonelist_order_handler(struct ctl_table *table, int write,
4976 		void __user *buffer, size_t *length,
4977 		loff_t *ppos)
4978 {
4979 	char *str;
4980 	int ret;
4981 
4982 	if (!write)
4983 		return proc_dostring(table, write, buffer, length, ppos);
4984 	str = memdup_user_nul(buffer, 16);
4985 	if (IS_ERR(str))
4986 		return PTR_ERR(str);
4987 
4988 	ret = __parse_numa_zonelist_order(str);
4989 	kfree(str);
4990 	return ret;
4991 }
4992 
4993 
4994 #define MAX_NODE_LOAD (nr_online_nodes)
4995 static int node_load[MAX_NUMNODES];
4996 
4997 /**
4998  * find_next_best_node - find the next node that should appear in a given node's fallback list
4999  * @node: node whose fallback list we're appending
5000  * @used_node_mask: nodemask_t of already used nodes
5001  *
5002  * We use a number of factors to determine which is the next node that should
5003  * appear on a given node's fallback list.  The node should not have appeared
5004  * already in @node's fallback list, and it should be the next closest node
5005  * according to the distance array (which contains arbitrary distance values
5006  * from each node to each node in the system), and should also prefer nodes
5007  * with no CPUs, since presumably they'll have very little allocation pressure
5008  * on them otherwise.
5009  * It returns -1 if no node is found.
5010  */
5011 static int find_next_best_node(int node, nodemask_t *used_node_mask)
5012 {
5013 	int n, val;
5014 	int min_val = INT_MAX;
5015 	int best_node = NUMA_NO_NODE;
5016 	const struct cpumask *tmp = cpumask_of_node(0);
5017 
5018 	/* Use the local node if we haven't already */
5019 	if (!node_isset(node, *used_node_mask)) {
5020 		node_set(node, *used_node_mask);
5021 		return node;
5022 	}
5023 
5024 	for_each_node_state(n, N_MEMORY) {
5025 
5026 		/* Don't want a node to appear more than once */
5027 		if (node_isset(n, *used_node_mask))
5028 			continue;
5029 
5030 		/* Use the distance array to find the distance */
5031 		val = node_distance(node, n);
5032 
5033 		/* Penalize nodes under us ("prefer the next node") */
5034 		val += (n < node);
5035 
5036 		/* Give preference to headless and unused nodes */
5037 		tmp = cpumask_of_node(n);
5038 		if (!cpumask_empty(tmp))
5039 			val += PENALTY_FOR_NODE_WITH_CPUS;
5040 
5041 		/* Slight preference for less loaded node */
5042 		val *= (MAX_NODE_LOAD*MAX_NUMNODES);
5043 		val += node_load[n];
5044 
5045 		if (val < min_val) {
5046 			min_val = val;
5047 			best_node = n;
5048 		}
5049 	}
5050 
5051 	if (best_node >= 0)
5052 		node_set(best_node, *used_node_mask);
5053 
5054 	return best_node;
5055 }
5056 
5057 
5058 /*
5059  * Build zonelists ordered by node and zones within node.
5060  * This results in maximum locality--normal zone overflows into local
5061  * DMA zone, if any--but risks exhausting DMA zone.
5062  */
5063 static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order,
5064 		unsigned nr_nodes)
5065 {
5066 	struct zoneref *zonerefs;
5067 	int i;
5068 
5069 	zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5070 
5071 	for (i = 0; i < nr_nodes; i++) {
5072 		int nr_zones;
5073 
5074 		pg_data_t *node = NODE_DATA(node_order[i]);
5075 
5076 		nr_zones = build_zonerefs_node(node, zonerefs);
5077 		zonerefs += nr_zones;
5078 	}
5079 	zonerefs->zone = NULL;
5080 	zonerefs->zone_idx = 0;
5081 }
5082 
5083 /*
5084  * Build gfp_thisnode zonelists
5085  */
5086 static void build_thisnode_zonelists(pg_data_t *pgdat)
5087 {
5088 	struct zoneref *zonerefs;
5089 	int nr_zones;
5090 
5091 	zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs;
5092 	nr_zones = build_zonerefs_node(pgdat, zonerefs);
5093 	zonerefs += nr_zones;
5094 	zonerefs->zone = NULL;
5095 	zonerefs->zone_idx = 0;
5096 }
5097 
5098 /*
5099  * Build zonelists ordered by zone and nodes within zones.
5100  * This results in conserving DMA zone[s] until all Normal memory is
5101  * exhausted, but results in overflowing to remote node while memory
5102  * may still exist in local DMA zone.
5103  */
5104 
5105 static void build_zonelists(pg_data_t *pgdat)
5106 {
5107 	static int node_order[MAX_NUMNODES];
5108 	int node, load, nr_nodes = 0;
5109 	nodemask_t used_mask;
5110 	int local_node, prev_node;
5111 
5112 	/* NUMA-aware ordering of nodes */
5113 	local_node = pgdat->node_id;
5114 	load = nr_online_nodes;
5115 	prev_node = local_node;
5116 	nodes_clear(used_mask);
5117 
5118 	memset(node_order, 0, sizeof(node_order));
5119 	while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
5120 		/*
5121 		 * We don't want to pressure a particular node.
5122 		 * So adding penalty to the first node in same
5123 		 * distance group to make it round-robin.
5124 		 */
5125 		if (node_distance(local_node, node) !=
5126 		    node_distance(local_node, prev_node))
5127 			node_load[node] = load;
5128 
5129 		node_order[nr_nodes++] = node;
5130 		prev_node = node;
5131 		load--;
5132 	}
5133 
5134 	build_zonelists_in_node_order(pgdat, node_order, nr_nodes);
5135 	build_thisnode_zonelists(pgdat);
5136 }
5137 
5138 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
5139 /*
5140  * Return node id of node used for "local" allocations.
5141  * I.e., first node id of first zone in arg node's generic zonelist.
5142  * Used for initializing percpu 'numa_mem', which is used primarily
5143  * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
5144  */
5145 int local_memory_node(int node)
5146 {
5147 	struct zoneref *z;
5148 
5149 	z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
5150 				   gfp_zone(GFP_KERNEL),
5151 				   NULL);
5152 	return z->zone->node;
5153 }
5154 #endif
5155 
5156 static void setup_min_unmapped_ratio(void);
5157 static void setup_min_slab_ratio(void);
5158 #else	/* CONFIG_NUMA */
5159 
5160 static void build_zonelists(pg_data_t *pgdat)
5161 {
5162 	int node, local_node;
5163 	struct zoneref *zonerefs;
5164 	int nr_zones;
5165 
5166 	local_node = pgdat->node_id;
5167 
5168 	zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5169 	nr_zones = build_zonerefs_node(pgdat, zonerefs);
5170 	zonerefs += nr_zones;
5171 
5172 	/*
5173 	 * Now we build the zonelist so that it contains the zones
5174 	 * of all the other nodes.
5175 	 * We don't want to pressure a particular node, so when
5176 	 * building the zones for node N, we make sure that the
5177 	 * zones coming right after the local ones are those from
5178 	 * node N+1 (modulo N)
5179 	 */
5180 	for (node = local_node + 1; node < MAX_NUMNODES; node++) {
5181 		if (!node_online(node))
5182 			continue;
5183 		nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5184 		zonerefs += nr_zones;
5185 	}
5186 	for (node = 0; node < local_node; node++) {
5187 		if (!node_online(node))
5188 			continue;
5189 		nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5190 		zonerefs += nr_zones;
5191 	}
5192 
5193 	zonerefs->zone = NULL;
5194 	zonerefs->zone_idx = 0;
5195 }
5196 
5197 #endif	/* CONFIG_NUMA */
5198 
5199 /*
5200  * Boot pageset table. One per cpu which is going to be used for all
5201  * zones and all nodes. The parameters will be set in such a way
5202  * that an item put on a list will immediately be handed over to
5203  * the buddy list. This is safe since pageset manipulation is done
5204  * with interrupts disabled.
5205  *
5206  * The boot_pagesets must be kept even after bootup is complete for
5207  * unused processors and/or zones. They do play a role for bootstrapping
5208  * hotplugged processors.
5209  *
5210  * zoneinfo_show() and maybe other functions do
5211  * not check if the processor is online before following the pageset pointer.
5212  * Other parts of the kernel may not check if the zone is available.
5213  */
5214 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
5215 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
5216 static DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats);
5217 
5218 static void __build_all_zonelists(void *data)
5219 {
5220 	int nid;
5221 	int __maybe_unused cpu;
5222 	pg_data_t *self = data;
5223 	static DEFINE_SPINLOCK(lock);
5224 
5225 	spin_lock(&lock);
5226 
5227 #ifdef CONFIG_NUMA
5228 	memset(node_load, 0, sizeof(node_load));
5229 #endif
5230 
5231 	/*
5232 	 * This node is hotadded and no memory is yet present.   So just
5233 	 * building zonelists is fine - no need to touch other nodes.
5234 	 */
5235 	if (self && !node_online(self->node_id)) {
5236 		build_zonelists(self);
5237 	} else {
5238 		for_each_online_node(nid) {
5239 			pg_data_t *pgdat = NODE_DATA(nid);
5240 
5241 			build_zonelists(pgdat);
5242 		}
5243 
5244 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
5245 		/*
5246 		 * We now know the "local memory node" for each node--
5247 		 * i.e., the node of the first zone in the generic zonelist.
5248 		 * Set up numa_mem percpu variable for on-line cpus.  During
5249 		 * boot, only the boot cpu should be on-line;  we'll init the
5250 		 * secondary cpus' numa_mem as they come on-line.  During
5251 		 * node/memory hotplug, we'll fixup all on-line cpus.
5252 		 */
5253 		for_each_online_cpu(cpu)
5254 			set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
5255 #endif
5256 	}
5257 
5258 	spin_unlock(&lock);
5259 }
5260 
5261 static noinline void __init
5262 build_all_zonelists_init(void)
5263 {
5264 	int cpu;
5265 
5266 	__build_all_zonelists(NULL);
5267 
5268 	/*
5269 	 * Initialize the boot_pagesets that are going to be used
5270 	 * for bootstrapping processors. The real pagesets for
5271 	 * each zone will be allocated later when the per cpu
5272 	 * allocator is available.
5273 	 *
5274 	 * boot_pagesets are used also for bootstrapping offline
5275 	 * cpus if the system is already booted because the pagesets
5276 	 * are needed to initialize allocators on a specific cpu too.
5277 	 * F.e. the percpu allocator needs the page allocator which
5278 	 * needs the percpu allocator in order to allocate its pagesets
5279 	 * (a chicken-egg dilemma).
5280 	 */
5281 	for_each_possible_cpu(cpu)
5282 		setup_pageset(&per_cpu(boot_pageset, cpu), 0);
5283 
5284 	mminit_verify_zonelist();
5285 	cpuset_init_current_mems_allowed();
5286 }
5287 
5288 /*
5289  * unless system_state == SYSTEM_BOOTING.
5290  *
5291  * __ref due to call of __init annotated helper build_all_zonelists_init
5292  * [protected by SYSTEM_BOOTING].
5293  */
5294 void __ref build_all_zonelists(pg_data_t *pgdat)
5295 {
5296 	if (system_state == SYSTEM_BOOTING) {
5297 		build_all_zonelists_init();
5298 	} else {
5299 		__build_all_zonelists(pgdat);
5300 		/* cpuset refresh routine should be here */
5301 	}
5302 	vm_total_pages = nr_free_pagecache_pages();
5303 	/*
5304 	 * Disable grouping by mobility if the number of pages in the
5305 	 * system is too low to allow the mechanism to work. It would be
5306 	 * more accurate, but expensive to check per-zone. This check is
5307 	 * made on memory-hotadd so a system can start with mobility
5308 	 * disabled and enable it later
5309 	 */
5310 	if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
5311 		page_group_by_mobility_disabled = 1;
5312 	else
5313 		page_group_by_mobility_disabled = 0;
5314 
5315 	pr_info("Built %i zonelists, mobility grouping %s.  Total pages: %ld\n",
5316 		nr_online_nodes,
5317 		page_group_by_mobility_disabled ? "off" : "on",
5318 		vm_total_pages);
5319 #ifdef CONFIG_NUMA
5320 	pr_info("Policy zone: %s\n", zone_names[policy_zone]);
5321 #endif
5322 }
5323 
5324 /*
5325  * Initially all pages are reserved - free ones are freed
5326  * up by free_all_bootmem() once the early boot process is
5327  * done. Non-atomic initialization, single-pass.
5328  */
5329 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
5330 		unsigned long start_pfn, enum memmap_context context,
5331 		struct vmem_altmap *altmap)
5332 {
5333 	unsigned long end_pfn = start_pfn + size;
5334 	pg_data_t *pgdat = NODE_DATA(nid);
5335 	unsigned long pfn;
5336 	unsigned long nr_initialised = 0;
5337 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5338 	struct memblock_region *r = NULL, *tmp;
5339 #endif
5340 
5341 	if (highest_memmap_pfn < end_pfn - 1)
5342 		highest_memmap_pfn = end_pfn - 1;
5343 
5344 	/*
5345 	 * Honor reservation requested by the driver for this ZONE_DEVICE
5346 	 * memory
5347 	 */
5348 	if (altmap && start_pfn == altmap->base_pfn)
5349 		start_pfn += altmap->reserve;
5350 
5351 	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
5352 		/*
5353 		 * There can be holes in boot-time mem_map[]s handed to this
5354 		 * function.  They do not exist on hotplugged memory.
5355 		 */
5356 		if (context != MEMMAP_EARLY)
5357 			goto not_early;
5358 
5359 		if (!early_pfn_valid(pfn)) {
5360 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5361 			/*
5362 			 * Skip to the pfn preceding the next valid one (or
5363 			 * end_pfn), such that we hit a valid pfn (or end_pfn)
5364 			 * on our next iteration of the loop.
5365 			 */
5366 			pfn = memblock_next_valid_pfn(pfn, end_pfn) - 1;
5367 #endif
5368 			continue;
5369 		}
5370 		if (!early_pfn_in_nid(pfn, nid))
5371 			continue;
5372 		if (!update_defer_init(pgdat, pfn, end_pfn, &nr_initialised))
5373 			break;
5374 
5375 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5376 		/*
5377 		 * Check given memblock attribute by firmware which can affect
5378 		 * kernel memory layout.  If zone==ZONE_MOVABLE but memory is
5379 		 * mirrored, it's an overlapped memmap init. skip it.
5380 		 */
5381 		if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
5382 			if (!r || pfn >= memblock_region_memory_end_pfn(r)) {
5383 				for_each_memblock(memory, tmp)
5384 					if (pfn < memblock_region_memory_end_pfn(tmp))
5385 						break;
5386 				r = tmp;
5387 			}
5388 			if (pfn >= memblock_region_memory_base_pfn(r) &&
5389 			    memblock_is_mirror(r)) {
5390 				/* already initialized as NORMAL */
5391 				pfn = memblock_region_memory_end_pfn(r);
5392 				continue;
5393 			}
5394 		}
5395 #endif
5396 
5397 not_early:
5398 		/*
5399 		 * Mark the block movable so that blocks are reserved for
5400 		 * movable at startup. This will force kernel allocations
5401 		 * to reserve their blocks rather than leaking throughout
5402 		 * the address space during boot when many long-lived
5403 		 * kernel allocations are made.
5404 		 *
5405 		 * bitmap is created for zone's valid pfn range. but memmap
5406 		 * can be created for invalid pages (for alignment)
5407 		 * check here not to call set_pageblock_migratetype() against
5408 		 * pfn out of zone.
5409 		 *
5410 		 * Please note that MEMMAP_HOTPLUG path doesn't clear memmap
5411 		 * because this is done early in sparse_add_one_section
5412 		 */
5413 		if (!(pfn & (pageblock_nr_pages - 1))) {
5414 			struct page *page = pfn_to_page(pfn);
5415 
5416 			__init_single_page(page, pfn, zone, nid,
5417 					context != MEMMAP_HOTPLUG);
5418 			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
5419 			cond_resched();
5420 		} else {
5421 			__init_single_pfn(pfn, zone, nid,
5422 					context != MEMMAP_HOTPLUG);
5423 		}
5424 	}
5425 }
5426 
5427 static void __meminit zone_init_free_lists(struct zone *zone)
5428 {
5429 	unsigned int order, t;
5430 	for_each_migratetype_order(order, t) {
5431 		INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
5432 		zone->free_area[order].nr_free = 0;
5433 	}
5434 }
5435 
5436 #ifndef __HAVE_ARCH_MEMMAP_INIT
5437 #define memmap_init(size, nid, zone, start_pfn) \
5438 	memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY, NULL)
5439 #endif
5440 
5441 static int zone_batchsize(struct zone *zone)
5442 {
5443 #ifdef CONFIG_MMU
5444 	int batch;
5445 
5446 	/*
5447 	 * The per-cpu-pages pools are set to around 1000th of the
5448 	 * size of the zone.  But no more than 1/2 of a meg.
5449 	 *
5450 	 * OK, so we don't know how big the cache is.  So guess.
5451 	 */
5452 	batch = zone->managed_pages / 1024;
5453 	if (batch * PAGE_SIZE > 512 * 1024)
5454 		batch = (512 * 1024) / PAGE_SIZE;
5455 	batch /= 4;		/* We effectively *= 4 below */
5456 	if (batch < 1)
5457 		batch = 1;
5458 
5459 	/*
5460 	 * Clamp the batch to a 2^n - 1 value. Having a power
5461 	 * of 2 value was found to be more likely to have
5462 	 * suboptimal cache aliasing properties in some cases.
5463 	 *
5464 	 * For example if 2 tasks are alternately allocating
5465 	 * batches of pages, one task can end up with a lot
5466 	 * of pages of one half of the possible page colors
5467 	 * and the other with pages of the other colors.
5468 	 */
5469 	batch = rounddown_pow_of_two(batch + batch/2) - 1;
5470 
5471 	return batch;
5472 
5473 #else
5474 	/* The deferral and batching of frees should be suppressed under NOMMU
5475 	 * conditions.
5476 	 *
5477 	 * The problem is that NOMMU needs to be able to allocate large chunks
5478 	 * of contiguous memory as there's no hardware page translation to
5479 	 * assemble apparent contiguous memory from discontiguous pages.
5480 	 *
5481 	 * Queueing large contiguous runs of pages for batching, however,
5482 	 * causes the pages to actually be freed in smaller chunks.  As there
5483 	 * can be a significant delay between the individual batches being
5484 	 * recycled, this leads to the once large chunks of space being
5485 	 * fragmented and becoming unavailable for high-order allocations.
5486 	 */
5487 	return 0;
5488 #endif
5489 }
5490 
5491 /*
5492  * pcp->high and pcp->batch values are related and dependent on one another:
5493  * ->batch must never be higher then ->high.
5494  * The following function updates them in a safe manner without read side
5495  * locking.
5496  *
5497  * Any new users of pcp->batch and pcp->high should ensure they can cope with
5498  * those fields changing asynchronously (acording the the above rule).
5499  *
5500  * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
5501  * outside of boot time (or some other assurance that no concurrent updaters
5502  * exist).
5503  */
5504 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
5505 		unsigned long batch)
5506 {
5507        /* start with a fail safe value for batch */
5508 	pcp->batch = 1;
5509 	smp_wmb();
5510 
5511        /* Update high, then batch, in order */
5512 	pcp->high = high;
5513 	smp_wmb();
5514 
5515 	pcp->batch = batch;
5516 }
5517 
5518 /* a companion to pageset_set_high() */
5519 static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
5520 {
5521 	pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
5522 }
5523 
5524 static void pageset_init(struct per_cpu_pageset *p)
5525 {
5526 	struct per_cpu_pages *pcp;
5527 	int migratetype;
5528 
5529 	memset(p, 0, sizeof(*p));
5530 
5531 	pcp = &p->pcp;
5532 	pcp->count = 0;
5533 	for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
5534 		INIT_LIST_HEAD(&pcp->lists[migratetype]);
5535 }
5536 
5537 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
5538 {
5539 	pageset_init(p);
5540 	pageset_set_batch(p, batch);
5541 }
5542 
5543 /*
5544  * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
5545  * to the value high for the pageset p.
5546  */
5547 static void pageset_set_high(struct per_cpu_pageset *p,
5548 				unsigned long high)
5549 {
5550 	unsigned long batch = max(1UL, high / 4);
5551 	if ((high / 4) > (PAGE_SHIFT * 8))
5552 		batch = PAGE_SHIFT * 8;
5553 
5554 	pageset_update(&p->pcp, high, batch);
5555 }
5556 
5557 static void pageset_set_high_and_batch(struct zone *zone,
5558 				       struct per_cpu_pageset *pcp)
5559 {
5560 	if (percpu_pagelist_fraction)
5561 		pageset_set_high(pcp,
5562 			(zone->managed_pages /
5563 				percpu_pagelist_fraction));
5564 	else
5565 		pageset_set_batch(pcp, zone_batchsize(zone));
5566 }
5567 
5568 static void __meminit zone_pageset_init(struct zone *zone, int cpu)
5569 {
5570 	struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
5571 
5572 	pageset_init(pcp);
5573 	pageset_set_high_and_batch(zone, pcp);
5574 }
5575 
5576 void __meminit setup_zone_pageset(struct zone *zone)
5577 {
5578 	int cpu;
5579 	zone->pageset = alloc_percpu(struct per_cpu_pageset);
5580 	for_each_possible_cpu(cpu)
5581 		zone_pageset_init(zone, cpu);
5582 }
5583 
5584 /*
5585  * Allocate per cpu pagesets and initialize them.
5586  * Before this call only boot pagesets were available.
5587  */
5588 void __init setup_per_cpu_pageset(void)
5589 {
5590 	struct pglist_data *pgdat;
5591 	struct zone *zone;
5592 
5593 	for_each_populated_zone(zone)
5594 		setup_zone_pageset(zone);
5595 
5596 	for_each_online_pgdat(pgdat)
5597 		pgdat->per_cpu_nodestats =
5598 			alloc_percpu(struct per_cpu_nodestat);
5599 }
5600 
5601 static __meminit void zone_pcp_init(struct zone *zone)
5602 {
5603 	/*
5604 	 * per cpu subsystem is not up at this point. The following code
5605 	 * relies on the ability of the linker to provide the
5606 	 * offset of a (static) per cpu variable into the per cpu area.
5607 	 */
5608 	zone->pageset = &boot_pageset;
5609 
5610 	if (populated_zone(zone))
5611 		printk(KERN_DEBUG "  %s zone: %lu pages, LIFO batch:%u\n",
5612 			zone->name, zone->present_pages,
5613 					 zone_batchsize(zone));
5614 }
5615 
5616 void __meminit init_currently_empty_zone(struct zone *zone,
5617 					unsigned long zone_start_pfn,
5618 					unsigned long size)
5619 {
5620 	struct pglist_data *pgdat = zone->zone_pgdat;
5621 
5622 	pgdat->nr_zones = zone_idx(zone) + 1;
5623 
5624 	zone->zone_start_pfn = zone_start_pfn;
5625 
5626 	mminit_dprintk(MMINIT_TRACE, "memmap_init",
5627 			"Initialising map node %d zone %lu pfns %lu -> %lu\n",
5628 			pgdat->node_id,
5629 			(unsigned long)zone_idx(zone),
5630 			zone_start_pfn, (zone_start_pfn + size));
5631 
5632 	zone_init_free_lists(zone);
5633 	zone->initialized = 1;
5634 }
5635 
5636 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5637 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
5638 
5639 /*
5640  * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
5641  */
5642 int __meminit __early_pfn_to_nid(unsigned long pfn,
5643 					struct mminit_pfnnid_cache *state)
5644 {
5645 	unsigned long start_pfn, end_pfn;
5646 	int nid;
5647 
5648 	if (state->last_start <= pfn && pfn < state->last_end)
5649 		return state->last_nid;
5650 
5651 	nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
5652 	if (nid != -1) {
5653 		state->last_start = start_pfn;
5654 		state->last_end = end_pfn;
5655 		state->last_nid = nid;
5656 	}
5657 
5658 	return nid;
5659 }
5660 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
5661 
5662 /**
5663  * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
5664  * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
5665  * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
5666  *
5667  * If an architecture guarantees that all ranges registered contain no holes
5668  * and may be freed, this this function may be used instead of calling
5669  * memblock_free_early_nid() manually.
5670  */
5671 void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
5672 {
5673 	unsigned long start_pfn, end_pfn;
5674 	int i, this_nid;
5675 
5676 	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
5677 		start_pfn = min(start_pfn, max_low_pfn);
5678 		end_pfn = min(end_pfn, max_low_pfn);
5679 
5680 		if (start_pfn < end_pfn)
5681 			memblock_free_early_nid(PFN_PHYS(start_pfn),
5682 					(end_pfn - start_pfn) << PAGE_SHIFT,
5683 					this_nid);
5684 	}
5685 }
5686 
5687 /**
5688  * sparse_memory_present_with_active_regions - Call memory_present for each active range
5689  * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
5690  *
5691  * If an architecture guarantees that all ranges registered contain no holes and may
5692  * be freed, this function may be used instead of calling memory_present() manually.
5693  */
5694 void __init sparse_memory_present_with_active_regions(int nid)
5695 {
5696 	unsigned long start_pfn, end_pfn;
5697 	int i, this_nid;
5698 
5699 	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
5700 		memory_present(this_nid, start_pfn, end_pfn);
5701 }
5702 
5703 /**
5704  * get_pfn_range_for_nid - Return the start and end page frames for a node
5705  * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
5706  * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
5707  * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
5708  *
5709  * It returns the start and end page frame of a node based on information
5710  * provided by memblock_set_node(). If called for a node
5711  * with no available memory, a warning is printed and the start and end
5712  * PFNs will be 0.
5713  */
5714 void __meminit get_pfn_range_for_nid(unsigned int nid,
5715 			unsigned long *start_pfn, unsigned long *end_pfn)
5716 {
5717 	unsigned long this_start_pfn, this_end_pfn;
5718 	int i;
5719 
5720 	*start_pfn = -1UL;
5721 	*end_pfn = 0;
5722 
5723 	for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
5724 		*start_pfn = min(*start_pfn, this_start_pfn);
5725 		*end_pfn = max(*end_pfn, this_end_pfn);
5726 	}
5727 
5728 	if (*start_pfn == -1UL)
5729 		*start_pfn = 0;
5730 }
5731 
5732 /*
5733  * This finds a zone that can be used for ZONE_MOVABLE pages. The
5734  * assumption is made that zones within a node are ordered in monotonic
5735  * increasing memory addresses so that the "highest" populated zone is used
5736  */
5737 static void __init find_usable_zone_for_movable(void)
5738 {
5739 	int zone_index;
5740 	for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
5741 		if (zone_index == ZONE_MOVABLE)
5742 			continue;
5743 
5744 		if (arch_zone_highest_possible_pfn[zone_index] >
5745 				arch_zone_lowest_possible_pfn[zone_index])
5746 			break;
5747 	}
5748 
5749 	VM_BUG_ON(zone_index == -1);
5750 	movable_zone = zone_index;
5751 }
5752 
5753 /*
5754  * The zone ranges provided by the architecture do not include ZONE_MOVABLE
5755  * because it is sized independent of architecture. Unlike the other zones,
5756  * the starting point for ZONE_MOVABLE is not fixed. It may be different
5757  * in each node depending on the size of each node and how evenly kernelcore
5758  * is distributed. This helper function adjusts the zone ranges
5759  * provided by the architecture for a given node by using the end of the
5760  * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
5761  * zones within a node are in order of monotonic increases memory addresses
5762  */
5763 static void __meminit adjust_zone_range_for_zone_movable(int nid,
5764 					unsigned long zone_type,
5765 					unsigned long node_start_pfn,
5766 					unsigned long node_end_pfn,
5767 					unsigned long *zone_start_pfn,
5768 					unsigned long *zone_end_pfn)
5769 {
5770 	/* Only adjust if ZONE_MOVABLE is on this node */
5771 	if (zone_movable_pfn[nid]) {
5772 		/* Size ZONE_MOVABLE */
5773 		if (zone_type == ZONE_MOVABLE) {
5774 			*zone_start_pfn = zone_movable_pfn[nid];
5775 			*zone_end_pfn = min(node_end_pfn,
5776 				arch_zone_highest_possible_pfn[movable_zone]);
5777 
5778 		/* Adjust for ZONE_MOVABLE starting within this range */
5779 		} else if (!mirrored_kernelcore &&
5780 			*zone_start_pfn < zone_movable_pfn[nid] &&
5781 			*zone_end_pfn > zone_movable_pfn[nid]) {
5782 			*zone_end_pfn = zone_movable_pfn[nid];
5783 
5784 		/* Check if this whole range is within ZONE_MOVABLE */
5785 		} else if (*zone_start_pfn >= zone_movable_pfn[nid])
5786 			*zone_start_pfn = *zone_end_pfn;
5787 	}
5788 }
5789 
5790 /*
5791  * Return the number of pages a zone spans in a node, including holes
5792  * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
5793  */
5794 static unsigned long __meminit zone_spanned_pages_in_node(int nid,
5795 					unsigned long zone_type,
5796 					unsigned long node_start_pfn,
5797 					unsigned long node_end_pfn,
5798 					unsigned long *zone_start_pfn,
5799 					unsigned long *zone_end_pfn,
5800 					unsigned long *ignored)
5801 {
5802 	/* When hotadd a new node from cpu_up(), the node should be empty */
5803 	if (!node_start_pfn && !node_end_pfn)
5804 		return 0;
5805 
5806 	/* Get the start and end of the zone */
5807 	*zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
5808 	*zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
5809 	adjust_zone_range_for_zone_movable(nid, zone_type,
5810 				node_start_pfn, node_end_pfn,
5811 				zone_start_pfn, zone_end_pfn);
5812 
5813 	/* Check that this node has pages within the zone's required range */
5814 	if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
5815 		return 0;
5816 
5817 	/* Move the zone boundaries inside the node if necessary */
5818 	*zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
5819 	*zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
5820 
5821 	/* Return the spanned pages */
5822 	return *zone_end_pfn - *zone_start_pfn;
5823 }
5824 
5825 /*
5826  * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
5827  * then all holes in the requested range will be accounted for.
5828  */
5829 unsigned long __meminit __absent_pages_in_range(int nid,
5830 				unsigned long range_start_pfn,
5831 				unsigned long range_end_pfn)
5832 {
5833 	unsigned long nr_absent = range_end_pfn - range_start_pfn;
5834 	unsigned long start_pfn, end_pfn;
5835 	int i;
5836 
5837 	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
5838 		start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
5839 		end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
5840 		nr_absent -= end_pfn - start_pfn;
5841 	}
5842 	return nr_absent;
5843 }
5844 
5845 /**
5846  * absent_pages_in_range - Return number of page frames in holes within a range
5847  * @start_pfn: The start PFN to start searching for holes
5848  * @end_pfn: The end PFN to stop searching for holes
5849  *
5850  * It returns the number of pages frames in memory holes within a range.
5851  */
5852 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
5853 							unsigned long end_pfn)
5854 {
5855 	return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
5856 }
5857 
5858 /* Return the number of page frames in holes in a zone on a node */
5859 static unsigned long __meminit zone_absent_pages_in_node(int nid,
5860 					unsigned long zone_type,
5861 					unsigned long node_start_pfn,
5862 					unsigned long node_end_pfn,
5863 					unsigned long *ignored)
5864 {
5865 	unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
5866 	unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
5867 	unsigned long zone_start_pfn, zone_end_pfn;
5868 	unsigned long nr_absent;
5869 
5870 	/* When hotadd a new node from cpu_up(), the node should be empty */
5871 	if (!node_start_pfn && !node_end_pfn)
5872 		return 0;
5873 
5874 	zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
5875 	zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
5876 
5877 	adjust_zone_range_for_zone_movable(nid, zone_type,
5878 			node_start_pfn, node_end_pfn,
5879 			&zone_start_pfn, &zone_end_pfn);
5880 	nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
5881 
5882 	/*
5883 	 * ZONE_MOVABLE handling.
5884 	 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
5885 	 * and vice versa.
5886 	 */
5887 	if (mirrored_kernelcore && zone_movable_pfn[nid]) {
5888 		unsigned long start_pfn, end_pfn;
5889 		struct memblock_region *r;
5890 
5891 		for_each_memblock(memory, r) {
5892 			start_pfn = clamp(memblock_region_memory_base_pfn(r),
5893 					  zone_start_pfn, zone_end_pfn);
5894 			end_pfn = clamp(memblock_region_memory_end_pfn(r),
5895 					zone_start_pfn, zone_end_pfn);
5896 
5897 			if (zone_type == ZONE_MOVABLE &&
5898 			    memblock_is_mirror(r))
5899 				nr_absent += end_pfn - start_pfn;
5900 
5901 			if (zone_type == ZONE_NORMAL &&
5902 			    !memblock_is_mirror(r))
5903 				nr_absent += end_pfn - start_pfn;
5904 		}
5905 	}
5906 
5907 	return nr_absent;
5908 }
5909 
5910 #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5911 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
5912 					unsigned long zone_type,
5913 					unsigned long node_start_pfn,
5914 					unsigned long node_end_pfn,
5915 					unsigned long *zone_start_pfn,
5916 					unsigned long *zone_end_pfn,
5917 					unsigned long *zones_size)
5918 {
5919 	unsigned int zone;
5920 
5921 	*zone_start_pfn = node_start_pfn;
5922 	for (zone = 0; zone < zone_type; zone++)
5923 		*zone_start_pfn += zones_size[zone];
5924 
5925 	*zone_end_pfn = *zone_start_pfn + zones_size[zone_type];
5926 
5927 	return zones_size[zone_type];
5928 }
5929 
5930 static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
5931 						unsigned long zone_type,
5932 						unsigned long node_start_pfn,
5933 						unsigned long node_end_pfn,
5934 						unsigned long *zholes_size)
5935 {
5936 	if (!zholes_size)
5937 		return 0;
5938 
5939 	return zholes_size[zone_type];
5940 }
5941 
5942 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5943 
5944 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
5945 						unsigned long node_start_pfn,
5946 						unsigned long node_end_pfn,
5947 						unsigned long *zones_size,
5948 						unsigned long *zholes_size)
5949 {
5950 	unsigned long realtotalpages = 0, totalpages = 0;
5951 	enum zone_type i;
5952 
5953 	for (i = 0; i < MAX_NR_ZONES; i++) {
5954 		struct zone *zone = pgdat->node_zones + i;
5955 		unsigned long zone_start_pfn, zone_end_pfn;
5956 		unsigned long size, real_size;
5957 
5958 		size = zone_spanned_pages_in_node(pgdat->node_id, i,
5959 						  node_start_pfn,
5960 						  node_end_pfn,
5961 						  &zone_start_pfn,
5962 						  &zone_end_pfn,
5963 						  zones_size);
5964 		real_size = size - zone_absent_pages_in_node(pgdat->node_id, i,
5965 						  node_start_pfn, node_end_pfn,
5966 						  zholes_size);
5967 		if (size)
5968 			zone->zone_start_pfn = zone_start_pfn;
5969 		else
5970 			zone->zone_start_pfn = 0;
5971 		zone->spanned_pages = size;
5972 		zone->present_pages = real_size;
5973 
5974 		totalpages += size;
5975 		realtotalpages += real_size;
5976 	}
5977 
5978 	pgdat->node_spanned_pages = totalpages;
5979 	pgdat->node_present_pages = realtotalpages;
5980 	printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
5981 							realtotalpages);
5982 }
5983 
5984 #ifndef CONFIG_SPARSEMEM
5985 /*
5986  * Calculate the size of the zone->blockflags rounded to an unsigned long
5987  * Start by making sure zonesize is a multiple of pageblock_order by rounding
5988  * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
5989  * round what is now in bits to nearest long in bits, then return it in
5990  * bytes.
5991  */
5992 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
5993 {
5994 	unsigned long usemapsize;
5995 
5996 	zonesize += zone_start_pfn & (pageblock_nr_pages-1);
5997 	usemapsize = roundup(zonesize, pageblock_nr_pages);
5998 	usemapsize = usemapsize >> pageblock_order;
5999 	usemapsize *= NR_PAGEBLOCK_BITS;
6000 	usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
6001 
6002 	return usemapsize / 8;
6003 }
6004 
6005 static void __init setup_usemap(struct pglist_data *pgdat,
6006 				struct zone *zone,
6007 				unsigned long zone_start_pfn,
6008 				unsigned long zonesize)
6009 {
6010 	unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
6011 	zone->pageblock_flags = NULL;
6012 	if (usemapsize)
6013 		zone->pageblock_flags =
6014 			memblock_virt_alloc_node_nopanic(usemapsize,
6015 							 pgdat->node_id);
6016 }
6017 #else
6018 static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
6019 				unsigned long zone_start_pfn, unsigned long zonesize) {}
6020 #endif /* CONFIG_SPARSEMEM */
6021 
6022 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
6023 
6024 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
6025 void __paginginit set_pageblock_order(void)
6026 {
6027 	unsigned int order;
6028 
6029 	/* Check that pageblock_nr_pages has not already been setup */
6030 	if (pageblock_order)
6031 		return;
6032 
6033 	if (HPAGE_SHIFT > PAGE_SHIFT)
6034 		order = HUGETLB_PAGE_ORDER;
6035 	else
6036 		order = MAX_ORDER - 1;
6037 
6038 	/*
6039 	 * Assume the largest contiguous order of interest is a huge page.
6040 	 * This value may be variable depending on boot parameters on IA64 and
6041 	 * powerpc.
6042 	 */
6043 	pageblock_order = order;
6044 }
6045 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
6046 
6047 /*
6048  * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
6049  * is unused as pageblock_order is set at compile-time. See
6050  * include/linux/pageblock-flags.h for the values of pageblock_order based on
6051  * the kernel config
6052  */
6053 void __paginginit set_pageblock_order(void)
6054 {
6055 }
6056 
6057 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
6058 
6059 static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages,
6060 						   unsigned long present_pages)
6061 {
6062 	unsigned long pages = spanned_pages;
6063 
6064 	/*
6065 	 * Provide a more accurate estimation if there are holes within
6066 	 * the zone and SPARSEMEM is in use. If there are holes within the
6067 	 * zone, each populated memory region may cost us one or two extra
6068 	 * memmap pages due to alignment because memmap pages for each
6069 	 * populated regions may not be naturally aligned on page boundary.
6070 	 * So the (present_pages >> 4) heuristic is a tradeoff for that.
6071 	 */
6072 	if (spanned_pages > present_pages + (present_pages >> 4) &&
6073 	    IS_ENABLED(CONFIG_SPARSEMEM))
6074 		pages = present_pages;
6075 
6076 	return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
6077 }
6078 
6079 /*
6080  * Set up the zone data structures:
6081  *   - mark all pages reserved
6082  *   - mark all memory queues empty
6083  *   - clear the memory bitmaps
6084  *
6085  * NOTE: pgdat should get zeroed by caller.
6086  */
6087 static void __paginginit free_area_init_core(struct pglist_data *pgdat)
6088 {
6089 	enum zone_type j;
6090 	int nid = pgdat->node_id;
6091 
6092 	pgdat_resize_init(pgdat);
6093 #ifdef CONFIG_NUMA_BALANCING
6094 	spin_lock_init(&pgdat->numabalancing_migrate_lock);
6095 	pgdat->numabalancing_migrate_nr_pages = 0;
6096 	pgdat->numabalancing_migrate_next_window = jiffies;
6097 #endif
6098 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
6099 	spin_lock_init(&pgdat->split_queue_lock);
6100 	INIT_LIST_HEAD(&pgdat->split_queue);
6101 	pgdat->split_queue_len = 0;
6102 #endif
6103 	init_waitqueue_head(&pgdat->kswapd_wait);
6104 	init_waitqueue_head(&pgdat->pfmemalloc_wait);
6105 #ifdef CONFIG_COMPACTION
6106 	init_waitqueue_head(&pgdat->kcompactd_wait);
6107 #endif
6108 	pgdat_page_ext_init(pgdat);
6109 	spin_lock_init(&pgdat->lru_lock);
6110 	lruvec_init(node_lruvec(pgdat));
6111 
6112 	pgdat->per_cpu_nodestats = &boot_nodestats;
6113 
6114 	for (j = 0; j < MAX_NR_ZONES; j++) {
6115 		struct zone *zone = pgdat->node_zones + j;
6116 		unsigned long size, realsize, freesize, memmap_pages;
6117 		unsigned long zone_start_pfn = zone->zone_start_pfn;
6118 
6119 		size = zone->spanned_pages;
6120 		realsize = freesize = zone->present_pages;
6121 
6122 		/*
6123 		 * Adjust freesize so that it accounts for how much memory
6124 		 * is used by this zone for memmap. This affects the watermark
6125 		 * and per-cpu initialisations
6126 		 */
6127 		memmap_pages = calc_memmap_size(size, realsize);
6128 		if (!is_highmem_idx(j)) {
6129 			if (freesize >= memmap_pages) {
6130 				freesize -= memmap_pages;
6131 				if (memmap_pages)
6132 					printk(KERN_DEBUG
6133 					       "  %s zone: %lu pages used for memmap\n",
6134 					       zone_names[j], memmap_pages);
6135 			} else
6136 				pr_warn("  %s zone: %lu pages exceeds freesize %lu\n",
6137 					zone_names[j], memmap_pages, freesize);
6138 		}
6139 
6140 		/* Account for reserved pages */
6141 		if (j == 0 && freesize > dma_reserve) {
6142 			freesize -= dma_reserve;
6143 			printk(KERN_DEBUG "  %s zone: %lu pages reserved\n",
6144 					zone_names[0], dma_reserve);
6145 		}
6146 
6147 		if (!is_highmem_idx(j))
6148 			nr_kernel_pages += freesize;
6149 		/* Charge for highmem memmap if there are enough kernel pages */
6150 		else if (nr_kernel_pages > memmap_pages * 2)
6151 			nr_kernel_pages -= memmap_pages;
6152 		nr_all_pages += freesize;
6153 
6154 		/*
6155 		 * Set an approximate value for lowmem here, it will be adjusted
6156 		 * when the bootmem allocator frees pages into the buddy system.
6157 		 * And all highmem pages will be managed by the buddy system.
6158 		 */
6159 		zone->managed_pages = is_highmem_idx(j) ? realsize : freesize;
6160 #ifdef CONFIG_NUMA
6161 		zone->node = nid;
6162 #endif
6163 		zone->name = zone_names[j];
6164 		zone->zone_pgdat = pgdat;
6165 		spin_lock_init(&zone->lock);
6166 		zone_seqlock_init(zone);
6167 		zone_pcp_init(zone);
6168 
6169 		if (!size)
6170 			continue;
6171 
6172 		set_pageblock_order();
6173 		setup_usemap(pgdat, zone, zone_start_pfn, size);
6174 		init_currently_empty_zone(zone, zone_start_pfn, size);
6175 		memmap_init(size, nid, j, zone_start_pfn);
6176 	}
6177 }
6178 
6179 #ifdef CONFIG_FLAT_NODE_MEM_MAP
6180 static void __ref alloc_node_mem_map(struct pglist_data *pgdat)
6181 {
6182 	unsigned long __maybe_unused start = 0;
6183 	unsigned long __maybe_unused offset = 0;
6184 
6185 	/* Skip empty nodes */
6186 	if (!pgdat->node_spanned_pages)
6187 		return;
6188 
6189 	start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
6190 	offset = pgdat->node_start_pfn - start;
6191 	/* ia64 gets its own node_mem_map, before this, without bootmem */
6192 	if (!pgdat->node_mem_map) {
6193 		unsigned long size, end;
6194 		struct page *map;
6195 
6196 		/*
6197 		 * The zone's endpoints aren't required to be MAX_ORDER
6198 		 * aligned but the node_mem_map endpoints must be in order
6199 		 * for the buddy allocator to function correctly.
6200 		 */
6201 		end = pgdat_end_pfn(pgdat);
6202 		end = ALIGN(end, MAX_ORDER_NR_PAGES);
6203 		size =  (end - start) * sizeof(struct page);
6204 		map = alloc_remap(pgdat->node_id, size);
6205 		if (!map)
6206 			map = memblock_virt_alloc_node_nopanic(size,
6207 							       pgdat->node_id);
6208 		pgdat->node_mem_map = map + offset;
6209 	}
6210 	pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n",
6211 				__func__, pgdat->node_id, (unsigned long)pgdat,
6212 				(unsigned long)pgdat->node_mem_map);
6213 #ifndef CONFIG_NEED_MULTIPLE_NODES
6214 	/*
6215 	 * With no DISCONTIG, the global mem_map is just set as node 0's
6216 	 */
6217 	if (pgdat == NODE_DATA(0)) {
6218 		mem_map = NODE_DATA(0)->node_mem_map;
6219 #if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM)
6220 		if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
6221 			mem_map -= offset;
6222 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6223 	}
6224 #endif
6225 }
6226 #else
6227 static void __ref alloc_node_mem_map(struct pglist_data *pgdat) { }
6228 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
6229 
6230 void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
6231 		unsigned long node_start_pfn, unsigned long *zholes_size)
6232 {
6233 	pg_data_t *pgdat = NODE_DATA(nid);
6234 	unsigned long start_pfn = 0;
6235 	unsigned long end_pfn = 0;
6236 
6237 	/* pg_data_t should be reset to zero when it's allocated */
6238 	WARN_ON(pgdat->nr_zones || pgdat->kswapd_classzone_idx);
6239 
6240 	pgdat->node_id = nid;
6241 	pgdat->node_start_pfn = node_start_pfn;
6242 	pgdat->per_cpu_nodestats = NULL;
6243 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
6244 	get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
6245 	pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
6246 		(u64)start_pfn << PAGE_SHIFT,
6247 		end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
6248 #else
6249 	start_pfn = node_start_pfn;
6250 #endif
6251 	calculate_node_totalpages(pgdat, start_pfn, end_pfn,
6252 				  zones_size, zholes_size);
6253 
6254 	alloc_node_mem_map(pgdat);
6255 
6256 	reset_deferred_meminit(pgdat);
6257 	free_area_init_core(pgdat);
6258 }
6259 
6260 #ifdef CONFIG_HAVE_MEMBLOCK
6261 /*
6262  * Only struct pages that are backed by physical memory are zeroed and
6263  * initialized by going through __init_single_page(). But, there are some
6264  * struct pages which are reserved in memblock allocator and their fields
6265  * may be accessed (for example page_to_pfn() on some configuration accesses
6266  * flags). We must explicitly zero those struct pages.
6267  */
6268 void __paginginit zero_resv_unavail(void)
6269 {
6270 	phys_addr_t start, end;
6271 	unsigned long pfn;
6272 	u64 i, pgcnt;
6273 
6274 	/*
6275 	 * Loop through ranges that are reserved, but do not have reported
6276 	 * physical memory backing.
6277 	 */
6278 	pgcnt = 0;
6279 	for_each_resv_unavail_range(i, &start, &end) {
6280 		for (pfn = PFN_DOWN(start); pfn < PFN_UP(end); pfn++) {
6281 			if (!pfn_valid(ALIGN_DOWN(pfn, pageblock_nr_pages)))
6282 				continue;
6283 			mm_zero_struct_page(pfn_to_page(pfn));
6284 			pgcnt++;
6285 		}
6286 	}
6287 
6288 	/*
6289 	 * Struct pages that do not have backing memory. This could be because
6290 	 * firmware is using some of this memory, or for some other reasons.
6291 	 * Once memblock is changed so such behaviour is not allowed: i.e.
6292 	 * list of "reserved" memory must be a subset of list of "memory", then
6293 	 * this code can be removed.
6294 	 */
6295 	if (pgcnt)
6296 		pr_info("Reserved but unavailable: %lld pages", pgcnt);
6297 }
6298 #endif /* CONFIG_HAVE_MEMBLOCK */
6299 
6300 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
6301 
6302 #if MAX_NUMNODES > 1
6303 /*
6304  * Figure out the number of possible node ids.
6305  */
6306 void __init setup_nr_node_ids(void)
6307 {
6308 	unsigned int highest;
6309 
6310 	highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
6311 	nr_node_ids = highest + 1;
6312 }
6313 #endif
6314 
6315 /**
6316  * node_map_pfn_alignment - determine the maximum internode alignment
6317  *
6318  * This function should be called after node map is populated and sorted.
6319  * It calculates the maximum power of two alignment which can distinguish
6320  * all the nodes.
6321  *
6322  * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
6323  * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)).  If the
6324  * nodes are shifted by 256MiB, 256MiB.  Note that if only the last node is
6325  * shifted, 1GiB is enough and this function will indicate so.
6326  *
6327  * This is used to test whether pfn -> nid mapping of the chosen memory
6328  * model has fine enough granularity to avoid incorrect mapping for the
6329  * populated node map.
6330  *
6331  * Returns the determined alignment in pfn's.  0 if there is no alignment
6332  * requirement (single node).
6333  */
6334 unsigned long __init node_map_pfn_alignment(void)
6335 {
6336 	unsigned long accl_mask = 0, last_end = 0;
6337 	unsigned long start, end, mask;
6338 	int last_nid = -1;
6339 	int i, nid;
6340 
6341 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
6342 		if (!start || last_nid < 0 || last_nid == nid) {
6343 			last_nid = nid;
6344 			last_end = end;
6345 			continue;
6346 		}
6347 
6348 		/*
6349 		 * Start with a mask granular enough to pin-point to the
6350 		 * start pfn and tick off bits one-by-one until it becomes
6351 		 * too coarse to separate the current node from the last.
6352 		 */
6353 		mask = ~((1 << __ffs(start)) - 1);
6354 		while (mask && last_end <= (start & (mask << 1)))
6355 			mask <<= 1;
6356 
6357 		/* accumulate all internode masks */
6358 		accl_mask |= mask;
6359 	}
6360 
6361 	/* convert mask to number of pages */
6362 	return ~accl_mask + 1;
6363 }
6364 
6365 /* Find the lowest pfn for a node */
6366 static unsigned long __init find_min_pfn_for_node(int nid)
6367 {
6368 	unsigned long min_pfn = ULONG_MAX;
6369 	unsigned long start_pfn;
6370 	int i;
6371 
6372 	for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
6373 		min_pfn = min(min_pfn, start_pfn);
6374 
6375 	if (min_pfn == ULONG_MAX) {
6376 		pr_warn("Could not find start_pfn for node %d\n", nid);
6377 		return 0;
6378 	}
6379 
6380 	return min_pfn;
6381 }
6382 
6383 /**
6384  * find_min_pfn_with_active_regions - Find the minimum PFN registered
6385  *
6386  * It returns the minimum PFN based on information provided via
6387  * memblock_set_node().
6388  */
6389 unsigned long __init find_min_pfn_with_active_regions(void)
6390 {
6391 	return find_min_pfn_for_node(MAX_NUMNODES);
6392 }
6393 
6394 /*
6395  * early_calculate_totalpages()
6396  * Sum pages in active regions for movable zone.
6397  * Populate N_MEMORY for calculating usable_nodes.
6398  */
6399 static unsigned long __init early_calculate_totalpages(void)
6400 {
6401 	unsigned long totalpages = 0;
6402 	unsigned long start_pfn, end_pfn;
6403 	int i, nid;
6404 
6405 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
6406 		unsigned long pages = end_pfn - start_pfn;
6407 
6408 		totalpages += pages;
6409 		if (pages)
6410 			node_set_state(nid, N_MEMORY);
6411 	}
6412 	return totalpages;
6413 }
6414 
6415 /*
6416  * Find the PFN the Movable zone begins in each node. Kernel memory
6417  * is spread evenly between nodes as long as the nodes have enough
6418  * memory. When they don't, some nodes will have more kernelcore than
6419  * others
6420  */
6421 static void __init find_zone_movable_pfns_for_nodes(void)
6422 {
6423 	int i, nid;
6424 	unsigned long usable_startpfn;
6425 	unsigned long kernelcore_node, kernelcore_remaining;
6426 	/* save the state before borrow the nodemask */
6427 	nodemask_t saved_node_state = node_states[N_MEMORY];
6428 	unsigned long totalpages = early_calculate_totalpages();
6429 	int usable_nodes = nodes_weight(node_states[N_MEMORY]);
6430 	struct memblock_region *r;
6431 
6432 	/* Need to find movable_zone earlier when movable_node is specified. */
6433 	find_usable_zone_for_movable();
6434 
6435 	/*
6436 	 * If movable_node is specified, ignore kernelcore and movablecore
6437 	 * options.
6438 	 */
6439 	if (movable_node_is_enabled()) {
6440 		for_each_memblock(memory, r) {
6441 			if (!memblock_is_hotpluggable(r))
6442 				continue;
6443 
6444 			nid = r->nid;
6445 
6446 			usable_startpfn = PFN_DOWN(r->base);
6447 			zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
6448 				min(usable_startpfn, zone_movable_pfn[nid]) :
6449 				usable_startpfn;
6450 		}
6451 
6452 		goto out2;
6453 	}
6454 
6455 	/*
6456 	 * If kernelcore=mirror is specified, ignore movablecore option
6457 	 */
6458 	if (mirrored_kernelcore) {
6459 		bool mem_below_4gb_not_mirrored = false;
6460 
6461 		for_each_memblock(memory, r) {
6462 			if (memblock_is_mirror(r))
6463 				continue;
6464 
6465 			nid = r->nid;
6466 
6467 			usable_startpfn = memblock_region_memory_base_pfn(r);
6468 
6469 			if (usable_startpfn < 0x100000) {
6470 				mem_below_4gb_not_mirrored = true;
6471 				continue;
6472 			}
6473 
6474 			zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
6475 				min(usable_startpfn, zone_movable_pfn[nid]) :
6476 				usable_startpfn;
6477 		}
6478 
6479 		if (mem_below_4gb_not_mirrored)
6480 			pr_warn("This configuration results in unmirrored kernel memory.");
6481 
6482 		goto out2;
6483 	}
6484 
6485 	/*
6486 	 * If movablecore=nn[KMG] was specified, calculate what size of
6487 	 * kernelcore that corresponds so that memory usable for
6488 	 * any allocation type is evenly spread. If both kernelcore
6489 	 * and movablecore are specified, then the value of kernelcore
6490 	 * will be used for required_kernelcore if it's greater than
6491 	 * what movablecore would have allowed.
6492 	 */
6493 	if (required_movablecore) {
6494 		unsigned long corepages;
6495 
6496 		/*
6497 		 * Round-up so that ZONE_MOVABLE is at least as large as what
6498 		 * was requested by the user
6499 		 */
6500 		required_movablecore =
6501 			roundup(required_movablecore, MAX_ORDER_NR_PAGES);
6502 		required_movablecore = min(totalpages, required_movablecore);
6503 		corepages = totalpages - required_movablecore;
6504 
6505 		required_kernelcore = max(required_kernelcore, corepages);
6506 	}
6507 
6508 	/*
6509 	 * If kernelcore was not specified or kernelcore size is larger
6510 	 * than totalpages, there is no ZONE_MOVABLE.
6511 	 */
6512 	if (!required_kernelcore || required_kernelcore >= totalpages)
6513 		goto out;
6514 
6515 	/* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
6516 	usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
6517 
6518 restart:
6519 	/* Spread kernelcore memory as evenly as possible throughout nodes */
6520 	kernelcore_node = required_kernelcore / usable_nodes;
6521 	for_each_node_state(nid, N_MEMORY) {
6522 		unsigned long start_pfn, end_pfn;
6523 
6524 		/*
6525 		 * Recalculate kernelcore_node if the division per node
6526 		 * now exceeds what is necessary to satisfy the requested
6527 		 * amount of memory for the kernel
6528 		 */
6529 		if (required_kernelcore < kernelcore_node)
6530 			kernelcore_node = required_kernelcore / usable_nodes;
6531 
6532 		/*
6533 		 * As the map is walked, we track how much memory is usable
6534 		 * by the kernel using kernelcore_remaining. When it is
6535 		 * 0, the rest of the node is usable by ZONE_MOVABLE
6536 		 */
6537 		kernelcore_remaining = kernelcore_node;
6538 
6539 		/* Go through each range of PFNs within this node */
6540 		for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
6541 			unsigned long size_pages;
6542 
6543 			start_pfn = max(start_pfn, zone_movable_pfn[nid]);
6544 			if (start_pfn >= end_pfn)
6545 				continue;
6546 
6547 			/* Account for what is only usable for kernelcore */
6548 			if (start_pfn < usable_startpfn) {
6549 				unsigned long kernel_pages;
6550 				kernel_pages = min(end_pfn, usable_startpfn)
6551 								- start_pfn;
6552 
6553 				kernelcore_remaining -= min(kernel_pages,
6554 							kernelcore_remaining);
6555 				required_kernelcore -= min(kernel_pages,
6556 							required_kernelcore);
6557 
6558 				/* Continue if range is now fully accounted */
6559 				if (end_pfn <= usable_startpfn) {
6560 
6561 					/*
6562 					 * Push zone_movable_pfn to the end so
6563 					 * that if we have to rebalance
6564 					 * kernelcore across nodes, we will
6565 					 * not double account here
6566 					 */
6567 					zone_movable_pfn[nid] = end_pfn;
6568 					continue;
6569 				}
6570 				start_pfn = usable_startpfn;
6571 			}
6572 
6573 			/*
6574 			 * The usable PFN range for ZONE_MOVABLE is from
6575 			 * start_pfn->end_pfn. Calculate size_pages as the
6576 			 * number of pages used as kernelcore
6577 			 */
6578 			size_pages = end_pfn - start_pfn;
6579 			if (size_pages > kernelcore_remaining)
6580 				size_pages = kernelcore_remaining;
6581 			zone_movable_pfn[nid] = start_pfn + size_pages;
6582 
6583 			/*
6584 			 * Some kernelcore has been met, update counts and
6585 			 * break if the kernelcore for this node has been
6586 			 * satisfied
6587 			 */
6588 			required_kernelcore -= min(required_kernelcore,
6589 								size_pages);
6590 			kernelcore_remaining -= size_pages;
6591 			if (!kernelcore_remaining)
6592 				break;
6593 		}
6594 	}
6595 
6596 	/*
6597 	 * If there is still required_kernelcore, we do another pass with one
6598 	 * less node in the count. This will push zone_movable_pfn[nid] further
6599 	 * along on the nodes that still have memory until kernelcore is
6600 	 * satisfied
6601 	 */
6602 	usable_nodes--;
6603 	if (usable_nodes && required_kernelcore > usable_nodes)
6604 		goto restart;
6605 
6606 out2:
6607 	/* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
6608 	for (nid = 0; nid < MAX_NUMNODES; nid++)
6609 		zone_movable_pfn[nid] =
6610 			roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
6611 
6612 out:
6613 	/* restore the node_state */
6614 	node_states[N_MEMORY] = saved_node_state;
6615 }
6616 
6617 /* Any regular or high memory on that node ? */
6618 static void check_for_memory(pg_data_t *pgdat, int nid)
6619 {
6620 	enum zone_type zone_type;
6621 
6622 	if (N_MEMORY == N_NORMAL_MEMORY)
6623 		return;
6624 
6625 	for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
6626 		struct zone *zone = &pgdat->node_zones[zone_type];
6627 		if (populated_zone(zone)) {
6628 			node_set_state(nid, N_HIGH_MEMORY);
6629 			if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
6630 			    zone_type <= ZONE_NORMAL)
6631 				node_set_state(nid, N_NORMAL_MEMORY);
6632 			break;
6633 		}
6634 	}
6635 }
6636 
6637 /**
6638  * free_area_init_nodes - Initialise all pg_data_t and zone data
6639  * @max_zone_pfn: an array of max PFNs for each zone
6640  *
6641  * This will call free_area_init_node() for each active node in the system.
6642  * Using the page ranges provided by memblock_set_node(), the size of each
6643  * zone in each node and their holes is calculated. If the maximum PFN
6644  * between two adjacent zones match, it is assumed that the zone is empty.
6645  * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
6646  * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
6647  * starts where the previous one ended. For example, ZONE_DMA32 starts
6648  * at arch_max_dma_pfn.
6649  */
6650 void __init free_area_init_nodes(unsigned long *max_zone_pfn)
6651 {
6652 	unsigned long start_pfn, end_pfn;
6653 	int i, nid;
6654 
6655 	/* Record where the zone boundaries are */
6656 	memset(arch_zone_lowest_possible_pfn, 0,
6657 				sizeof(arch_zone_lowest_possible_pfn));
6658 	memset(arch_zone_highest_possible_pfn, 0,
6659 				sizeof(arch_zone_highest_possible_pfn));
6660 
6661 	start_pfn = find_min_pfn_with_active_regions();
6662 
6663 	for (i = 0; i < MAX_NR_ZONES; i++) {
6664 		if (i == ZONE_MOVABLE)
6665 			continue;
6666 
6667 		end_pfn = max(max_zone_pfn[i], start_pfn);
6668 		arch_zone_lowest_possible_pfn[i] = start_pfn;
6669 		arch_zone_highest_possible_pfn[i] = end_pfn;
6670 
6671 		start_pfn = end_pfn;
6672 	}
6673 
6674 	/* Find the PFNs that ZONE_MOVABLE begins at in each node */
6675 	memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
6676 	find_zone_movable_pfns_for_nodes();
6677 
6678 	/* Print out the zone ranges */
6679 	pr_info("Zone ranges:\n");
6680 	for (i = 0; i < MAX_NR_ZONES; i++) {
6681 		if (i == ZONE_MOVABLE)
6682 			continue;
6683 		pr_info("  %-8s ", zone_names[i]);
6684 		if (arch_zone_lowest_possible_pfn[i] ==
6685 				arch_zone_highest_possible_pfn[i])
6686 			pr_cont("empty\n");
6687 		else
6688 			pr_cont("[mem %#018Lx-%#018Lx]\n",
6689 				(u64)arch_zone_lowest_possible_pfn[i]
6690 					<< PAGE_SHIFT,
6691 				((u64)arch_zone_highest_possible_pfn[i]
6692 					<< PAGE_SHIFT) - 1);
6693 	}
6694 
6695 	/* Print out the PFNs ZONE_MOVABLE begins at in each node */
6696 	pr_info("Movable zone start for each node\n");
6697 	for (i = 0; i < MAX_NUMNODES; i++) {
6698 		if (zone_movable_pfn[i])
6699 			pr_info("  Node %d: %#018Lx\n", i,
6700 			       (u64)zone_movable_pfn[i] << PAGE_SHIFT);
6701 	}
6702 
6703 	/* Print out the early node map */
6704 	pr_info("Early memory node ranges\n");
6705 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
6706 		pr_info("  node %3d: [mem %#018Lx-%#018Lx]\n", nid,
6707 			(u64)start_pfn << PAGE_SHIFT,
6708 			((u64)end_pfn << PAGE_SHIFT) - 1);
6709 
6710 	/* Initialise every node */
6711 	mminit_verify_pageflags_layout();
6712 	setup_nr_node_ids();
6713 	for_each_online_node(nid) {
6714 		pg_data_t *pgdat = NODE_DATA(nid);
6715 		free_area_init_node(nid, NULL,
6716 				find_min_pfn_for_node(nid), NULL);
6717 
6718 		/* Any memory on that node */
6719 		if (pgdat->node_present_pages)
6720 			node_set_state(nid, N_MEMORY);
6721 		check_for_memory(pgdat, nid);
6722 	}
6723 	zero_resv_unavail();
6724 }
6725 
6726 static int __init cmdline_parse_core(char *p, unsigned long *core)
6727 {
6728 	unsigned long long coremem;
6729 	if (!p)
6730 		return -EINVAL;
6731 
6732 	coremem = memparse(p, &p);
6733 	*core = coremem >> PAGE_SHIFT;
6734 
6735 	/* Paranoid check that UL is enough for the coremem value */
6736 	WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
6737 
6738 	return 0;
6739 }
6740 
6741 /*
6742  * kernelcore=size sets the amount of memory for use for allocations that
6743  * cannot be reclaimed or migrated.
6744  */
6745 static int __init cmdline_parse_kernelcore(char *p)
6746 {
6747 	/* parse kernelcore=mirror */
6748 	if (parse_option_str(p, "mirror")) {
6749 		mirrored_kernelcore = true;
6750 		return 0;
6751 	}
6752 
6753 	return cmdline_parse_core(p, &required_kernelcore);
6754 }
6755 
6756 /*
6757  * movablecore=size sets the amount of memory for use for allocations that
6758  * can be reclaimed or migrated.
6759  */
6760 static int __init cmdline_parse_movablecore(char *p)
6761 {
6762 	return cmdline_parse_core(p, &required_movablecore);
6763 }
6764 
6765 early_param("kernelcore", cmdline_parse_kernelcore);
6766 early_param("movablecore", cmdline_parse_movablecore);
6767 
6768 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6769 
6770 void adjust_managed_page_count(struct page *page, long count)
6771 {
6772 	spin_lock(&managed_page_count_lock);
6773 	page_zone(page)->managed_pages += count;
6774 	totalram_pages += count;
6775 #ifdef CONFIG_HIGHMEM
6776 	if (PageHighMem(page))
6777 		totalhigh_pages += count;
6778 #endif
6779 	spin_unlock(&managed_page_count_lock);
6780 }
6781 EXPORT_SYMBOL(adjust_managed_page_count);
6782 
6783 unsigned long free_reserved_area(void *start, void *end, int poison, char *s)
6784 {
6785 	void *pos;
6786 	unsigned long pages = 0;
6787 
6788 	start = (void *)PAGE_ALIGN((unsigned long)start);
6789 	end = (void *)((unsigned long)end & PAGE_MASK);
6790 	for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
6791 		if ((unsigned int)poison <= 0xFF)
6792 			memset(pos, poison, PAGE_SIZE);
6793 		free_reserved_page(virt_to_page(pos));
6794 	}
6795 
6796 	if (pages && s)
6797 		pr_info("Freeing %s memory: %ldK\n",
6798 			s, pages << (PAGE_SHIFT - 10));
6799 
6800 	return pages;
6801 }
6802 EXPORT_SYMBOL(free_reserved_area);
6803 
6804 #ifdef	CONFIG_HIGHMEM
6805 void free_highmem_page(struct page *page)
6806 {
6807 	__free_reserved_page(page);
6808 	totalram_pages++;
6809 	page_zone(page)->managed_pages++;
6810 	totalhigh_pages++;
6811 }
6812 #endif
6813 
6814 
6815 void __init mem_init_print_info(const char *str)
6816 {
6817 	unsigned long physpages, codesize, datasize, rosize, bss_size;
6818 	unsigned long init_code_size, init_data_size;
6819 
6820 	physpages = get_num_physpages();
6821 	codesize = _etext - _stext;
6822 	datasize = _edata - _sdata;
6823 	rosize = __end_rodata - __start_rodata;
6824 	bss_size = __bss_stop - __bss_start;
6825 	init_data_size = __init_end - __init_begin;
6826 	init_code_size = _einittext - _sinittext;
6827 
6828 	/*
6829 	 * Detect special cases and adjust section sizes accordingly:
6830 	 * 1) .init.* may be embedded into .data sections
6831 	 * 2) .init.text.* may be out of [__init_begin, __init_end],
6832 	 *    please refer to arch/tile/kernel/vmlinux.lds.S.
6833 	 * 3) .rodata.* may be embedded into .text or .data sections.
6834 	 */
6835 #define adj_init_size(start, end, size, pos, adj) \
6836 	do { \
6837 		if (start <= pos && pos < end && size > adj) \
6838 			size -= adj; \
6839 	} while (0)
6840 
6841 	adj_init_size(__init_begin, __init_end, init_data_size,
6842 		     _sinittext, init_code_size);
6843 	adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
6844 	adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
6845 	adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
6846 	adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
6847 
6848 #undef	adj_init_size
6849 
6850 	pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
6851 #ifdef	CONFIG_HIGHMEM
6852 		", %luK highmem"
6853 #endif
6854 		"%s%s)\n",
6855 		nr_free_pages() << (PAGE_SHIFT - 10),
6856 		physpages << (PAGE_SHIFT - 10),
6857 		codesize >> 10, datasize >> 10, rosize >> 10,
6858 		(init_data_size + init_code_size) >> 10, bss_size >> 10,
6859 		(physpages - totalram_pages - totalcma_pages) << (PAGE_SHIFT - 10),
6860 		totalcma_pages << (PAGE_SHIFT - 10),
6861 #ifdef	CONFIG_HIGHMEM
6862 		totalhigh_pages << (PAGE_SHIFT - 10),
6863 #endif
6864 		str ? ", " : "", str ? str : "");
6865 }
6866 
6867 /**
6868  * set_dma_reserve - set the specified number of pages reserved in the first zone
6869  * @new_dma_reserve: The number of pages to mark reserved
6870  *
6871  * The per-cpu batchsize and zone watermarks are determined by managed_pages.
6872  * In the DMA zone, a significant percentage may be consumed by kernel image
6873  * and other unfreeable allocations which can skew the watermarks badly. This
6874  * function may optionally be used to account for unfreeable pages in the
6875  * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
6876  * smaller per-cpu batchsize.
6877  */
6878 void __init set_dma_reserve(unsigned long new_dma_reserve)
6879 {
6880 	dma_reserve = new_dma_reserve;
6881 }
6882 
6883 void __init free_area_init(unsigned long *zones_size)
6884 {
6885 	free_area_init_node(0, zones_size,
6886 			__pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
6887 	zero_resv_unavail();
6888 }
6889 
6890 static int page_alloc_cpu_dead(unsigned int cpu)
6891 {
6892 
6893 	lru_add_drain_cpu(cpu);
6894 	drain_pages(cpu);
6895 
6896 	/*
6897 	 * Spill the event counters of the dead processor
6898 	 * into the current processors event counters.
6899 	 * This artificially elevates the count of the current
6900 	 * processor.
6901 	 */
6902 	vm_events_fold_cpu(cpu);
6903 
6904 	/*
6905 	 * Zero the differential counters of the dead processor
6906 	 * so that the vm statistics are consistent.
6907 	 *
6908 	 * This is only okay since the processor is dead and cannot
6909 	 * race with what we are doing.
6910 	 */
6911 	cpu_vm_stats_fold(cpu);
6912 	return 0;
6913 }
6914 
6915 void __init page_alloc_init(void)
6916 {
6917 	int ret;
6918 
6919 	ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC_DEAD,
6920 					"mm/page_alloc:dead", NULL,
6921 					page_alloc_cpu_dead);
6922 	WARN_ON(ret < 0);
6923 }
6924 
6925 /*
6926  * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
6927  *	or min_free_kbytes changes.
6928  */
6929 static void calculate_totalreserve_pages(void)
6930 {
6931 	struct pglist_data *pgdat;
6932 	unsigned long reserve_pages = 0;
6933 	enum zone_type i, j;
6934 
6935 	for_each_online_pgdat(pgdat) {
6936 
6937 		pgdat->totalreserve_pages = 0;
6938 
6939 		for (i = 0; i < MAX_NR_ZONES; i++) {
6940 			struct zone *zone = pgdat->node_zones + i;
6941 			long max = 0;
6942 
6943 			/* Find valid and maximum lowmem_reserve in the zone */
6944 			for (j = i; j < MAX_NR_ZONES; j++) {
6945 				if (zone->lowmem_reserve[j] > max)
6946 					max = zone->lowmem_reserve[j];
6947 			}
6948 
6949 			/* we treat the high watermark as reserved pages. */
6950 			max += high_wmark_pages(zone);
6951 
6952 			if (max > zone->managed_pages)
6953 				max = zone->managed_pages;
6954 
6955 			pgdat->totalreserve_pages += max;
6956 
6957 			reserve_pages += max;
6958 		}
6959 	}
6960 	totalreserve_pages = reserve_pages;
6961 }
6962 
6963 /*
6964  * setup_per_zone_lowmem_reserve - called whenever
6965  *	sysctl_lowmem_reserve_ratio changes.  Ensures that each zone
6966  *	has a correct pages reserved value, so an adequate number of
6967  *	pages are left in the zone after a successful __alloc_pages().
6968  */
6969 static void setup_per_zone_lowmem_reserve(void)
6970 {
6971 	struct pglist_data *pgdat;
6972 	enum zone_type j, idx;
6973 
6974 	for_each_online_pgdat(pgdat) {
6975 		for (j = 0; j < MAX_NR_ZONES; j++) {
6976 			struct zone *zone = pgdat->node_zones + j;
6977 			unsigned long managed_pages = zone->managed_pages;
6978 
6979 			zone->lowmem_reserve[j] = 0;
6980 
6981 			idx = j;
6982 			while (idx) {
6983 				struct zone *lower_zone;
6984 
6985 				idx--;
6986 
6987 				if (sysctl_lowmem_reserve_ratio[idx] < 1)
6988 					sysctl_lowmem_reserve_ratio[idx] = 1;
6989 
6990 				lower_zone = pgdat->node_zones + idx;
6991 				lower_zone->lowmem_reserve[j] = managed_pages /
6992 					sysctl_lowmem_reserve_ratio[idx];
6993 				managed_pages += lower_zone->managed_pages;
6994 			}
6995 		}
6996 	}
6997 
6998 	/* update totalreserve_pages */
6999 	calculate_totalreserve_pages();
7000 }
7001 
7002 static void __setup_per_zone_wmarks(void)
7003 {
7004 	unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
7005 	unsigned long lowmem_pages = 0;
7006 	struct zone *zone;
7007 	unsigned long flags;
7008 
7009 	/* Calculate total number of !ZONE_HIGHMEM pages */
7010 	for_each_zone(zone) {
7011 		if (!is_highmem(zone))
7012 			lowmem_pages += zone->managed_pages;
7013 	}
7014 
7015 	for_each_zone(zone) {
7016 		u64 tmp;
7017 
7018 		spin_lock_irqsave(&zone->lock, flags);
7019 		tmp = (u64)pages_min * zone->managed_pages;
7020 		do_div(tmp, lowmem_pages);
7021 		if (is_highmem(zone)) {
7022 			/*
7023 			 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
7024 			 * need highmem pages, so cap pages_min to a small
7025 			 * value here.
7026 			 *
7027 			 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
7028 			 * deltas control asynch page reclaim, and so should
7029 			 * not be capped for highmem.
7030 			 */
7031 			unsigned long min_pages;
7032 
7033 			min_pages = zone->managed_pages / 1024;
7034 			min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
7035 			zone->watermark[WMARK_MIN] = min_pages;
7036 		} else {
7037 			/*
7038 			 * If it's a lowmem zone, reserve a number of pages
7039 			 * proportionate to the zone's size.
7040 			 */
7041 			zone->watermark[WMARK_MIN] = tmp;
7042 		}
7043 
7044 		/*
7045 		 * Set the kswapd watermarks distance according to the
7046 		 * scale factor in proportion to available memory, but
7047 		 * ensure a minimum size on small systems.
7048 		 */
7049 		tmp = max_t(u64, tmp >> 2,
7050 			    mult_frac(zone->managed_pages,
7051 				      watermark_scale_factor, 10000));
7052 
7053 		zone->watermark[WMARK_LOW]  = min_wmark_pages(zone) + tmp;
7054 		zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2;
7055 
7056 		spin_unlock_irqrestore(&zone->lock, flags);
7057 	}
7058 
7059 	/* update totalreserve_pages */
7060 	calculate_totalreserve_pages();
7061 }
7062 
7063 /**
7064  * setup_per_zone_wmarks - called when min_free_kbytes changes
7065  * or when memory is hot-{added|removed}
7066  *
7067  * Ensures that the watermark[min,low,high] values for each zone are set
7068  * correctly with respect to min_free_kbytes.
7069  */
7070 void setup_per_zone_wmarks(void)
7071 {
7072 	static DEFINE_SPINLOCK(lock);
7073 
7074 	spin_lock(&lock);
7075 	__setup_per_zone_wmarks();
7076 	spin_unlock(&lock);
7077 }
7078 
7079 /*
7080  * Initialise min_free_kbytes.
7081  *
7082  * For small machines we want it small (128k min).  For large machines
7083  * we want it large (64MB max).  But it is not linear, because network
7084  * bandwidth does not increase linearly with machine size.  We use
7085  *
7086  *	min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
7087  *	min_free_kbytes = sqrt(lowmem_kbytes * 16)
7088  *
7089  * which yields
7090  *
7091  * 16MB:	512k
7092  * 32MB:	724k
7093  * 64MB:	1024k
7094  * 128MB:	1448k
7095  * 256MB:	2048k
7096  * 512MB:	2896k
7097  * 1024MB:	4096k
7098  * 2048MB:	5792k
7099  * 4096MB:	8192k
7100  * 8192MB:	11584k
7101  * 16384MB:	16384k
7102  */
7103 int __meminit init_per_zone_wmark_min(void)
7104 {
7105 	unsigned long lowmem_kbytes;
7106 	int new_min_free_kbytes;
7107 
7108 	lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
7109 	new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
7110 
7111 	if (new_min_free_kbytes > user_min_free_kbytes) {
7112 		min_free_kbytes = new_min_free_kbytes;
7113 		if (min_free_kbytes < 128)
7114 			min_free_kbytes = 128;
7115 		if (min_free_kbytes > 65536)
7116 			min_free_kbytes = 65536;
7117 	} else {
7118 		pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
7119 				new_min_free_kbytes, user_min_free_kbytes);
7120 	}
7121 	setup_per_zone_wmarks();
7122 	refresh_zone_stat_thresholds();
7123 	setup_per_zone_lowmem_reserve();
7124 
7125 #ifdef CONFIG_NUMA
7126 	setup_min_unmapped_ratio();
7127 	setup_min_slab_ratio();
7128 #endif
7129 
7130 	return 0;
7131 }
7132 core_initcall(init_per_zone_wmark_min)
7133 
7134 /*
7135  * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
7136  *	that we can call two helper functions whenever min_free_kbytes
7137  *	changes.
7138  */
7139 int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
7140 	void __user *buffer, size_t *length, loff_t *ppos)
7141 {
7142 	int rc;
7143 
7144 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7145 	if (rc)
7146 		return rc;
7147 
7148 	if (write) {
7149 		user_min_free_kbytes = min_free_kbytes;
7150 		setup_per_zone_wmarks();
7151 	}
7152 	return 0;
7153 }
7154 
7155 int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
7156 	void __user *buffer, size_t *length, loff_t *ppos)
7157 {
7158 	int rc;
7159 
7160 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7161 	if (rc)
7162 		return rc;
7163 
7164 	if (write)
7165 		setup_per_zone_wmarks();
7166 
7167 	return 0;
7168 }
7169 
7170 #ifdef CONFIG_NUMA
7171 static void setup_min_unmapped_ratio(void)
7172 {
7173 	pg_data_t *pgdat;
7174 	struct zone *zone;
7175 
7176 	for_each_online_pgdat(pgdat)
7177 		pgdat->min_unmapped_pages = 0;
7178 
7179 	for_each_zone(zone)
7180 		zone->zone_pgdat->min_unmapped_pages += (zone->managed_pages *
7181 				sysctl_min_unmapped_ratio) / 100;
7182 }
7183 
7184 
7185 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
7186 	void __user *buffer, size_t *length, loff_t *ppos)
7187 {
7188 	int rc;
7189 
7190 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7191 	if (rc)
7192 		return rc;
7193 
7194 	setup_min_unmapped_ratio();
7195 
7196 	return 0;
7197 }
7198 
7199 static void setup_min_slab_ratio(void)
7200 {
7201 	pg_data_t *pgdat;
7202 	struct zone *zone;
7203 
7204 	for_each_online_pgdat(pgdat)
7205 		pgdat->min_slab_pages = 0;
7206 
7207 	for_each_zone(zone)
7208 		zone->zone_pgdat->min_slab_pages += (zone->managed_pages *
7209 				sysctl_min_slab_ratio) / 100;
7210 }
7211 
7212 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
7213 	void __user *buffer, size_t *length, loff_t *ppos)
7214 {
7215 	int rc;
7216 
7217 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7218 	if (rc)
7219 		return rc;
7220 
7221 	setup_min_slab_ratio();
7222 
7223 	return 0;
7224 }
7225 #endif
7226 
7227 /*
7228  * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
7229  *	proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
7230  *	whenever sysctl_lowmem_reserve_ratio changes.
7231  *
7232  * The reserve ratio obviously has absolutely no relation with the
7233  * minimum watermarks. The lowmem reserve ratio can only make sense
7234  * if in function of the boot time zone sizes.
7235  */
7236 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
7237 	void __user *buffer, size_t *length, loff_t *ppos)
7238 {
7239 	proc_dointvec_minmax(table, write, buffer, length, ppos);
7240 	setup_per_zone_lowmem_reserve();
7241 	return 0;
7242 }
7243 
7244 /*
7245  * percpu_pagelist_fraction - changes the pcp->high for each zone on each
7246  * cpu.  It is the fraction of total pages in each zone that a hot per cpu
7247  * pagelist can have before it gets flushed back to buddy allocator.
7248  */
7249 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
7250 	void __user *buffer, size_t *length, loff_t *ppos)
7251 {
7252 	struct zone *zone;
7253 	int old_percpu_pagelist_fraction;
7254 	int ret;
7255 
7256 	mutex_lock(&pcp_batch_high_lock);
7257 	old_percpu_pagelist_fraction = percpu_pagelist_fraction;
7258 
7259 	ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
7260 	if (!write || ret < 0)
7261 		goto out;
7262 
7263 	/* Sanity checking to avoid pcp imbalance */
7264 	if (percpu_pagelist_fraction &&
7265 	    percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
7266 		percpu_pagelist_fraction = old_percpu_pagelist_fraction;
7267 		ret = -EINVAL;
7268 		goto out;
7269 	}
7270 
7271 	/* No change? */
7272 	if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
7273 		goto out;
7274 
7275 	for_each_populated_zone(zone) {
7276 		unsigned int cpu;
7277 
7278 		for_each_possible_cpu(cpu)
7279 			pageset_set_high_and_batch(zone,
7280 					per_cpu_ptr(zone->pageset, cpu));
7281 	}
7282 out:
7283 	mutex_unlock(&pcp_batch_high_lock);
7284 	return ret;
7285 }
7286 
7287 #ifdef CONFIG_NUMA
7288 int hashdist = HASHDIST_DEFAULT;
7289 
7290 static int __init set_hashdist(char *str)
7291 {
7292 	if (!str)
7293 		return 0;
7294 	hashdist = simple_strtoul(str, &str, 0);
7295 	return 1;
7296 }
7297 __setup("hashdist=", set_hashdist);
7298 #endif
7299 
7300 #ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
7301 /*
7302  * Returns the number of pages that arch has reserved but
7303  * is not known to alloc_large_system_hash().
7304  */
7305 static unsigned long __init arch_reserved_kernel_pages(void)
7306 {
7307 	return 0;
7308 }
7309 #endif
7310 
7311 /*
7312  * Adaptive scale is meant to reduce sizes of hash tables on large memory
7313  * machines. As memory size is increased the scale is also increased but at
7314  * slower pace.  Starting from ADAPT_SCALE_BASE (64G), every time memory
7315  * quadruples the scale is increased by one, which means the size of hash table
7316  * only doubles, instead of quadrupling as well.
7317  * Because 32-bit systems cannot have large physical memory, where this scaling
7318  * makes sense, it is disabled on such platforms.
7319  */
7320 #if __BITS_PER_LONG > 32
7321 #define ADAPT_SCALE_BASE	(64ul << 30)
7322 #define ADAPT_SCALE_SHIFT	2
7323 #define ADAPT_SCALE_NPAGES	(ADAPT_SCALE_BASE >> PAGE_SHIFT)
7324 #endif
7325 
7326 /*
7327  * allocate a large system hash table from bootmem
7328  * - it is assumed that the hash table must contain an exact power-of-2
7329  *   quantity of entries
7330  * - limit is the number of hash buckets, not the total allocation size
7331  */
7332 void *__init alloc_large_system_hash(const char *tablename,
7333 				     unsigned long bucketsize,
7334 				     unsigned long numentries,
7335 				     int scale,
7336 				     int flags,
7337 				     unsigned int *_hash_shift,
7338 				     unsigned int *_hash_mask,
7339 				     unsigned long low_limit,
7340 				     unsigned long high_limit)
7341 {
7342 	unsigned long long max = high_limit;
7343 	unsigned long log2qty, size;
7344 	void *table = NULL;
7345 	gfp_t gfp_flags;
7346 
7347 	/* allow the kernel cmdline to have a say */
7348 	if (!numentries) {
7349 		/* round applicable memory size up to nearest megabyte */
7350 		numentries = nr_kernel_pages;
7351 		numentries -= arch_reserved_kernel_pages();
7352 
7353 		/* It isn't necessary when PAGE_SIZE >= 1MB */
7354 		if (PAGE_SHIFT < 20)
7355 			numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
7356 
7357 #if __BITS_PER_LONG > 32
7358 		if (!high_limit) {
7359 			unsigned long adapt;
7360 
7361 			for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries;
7362 			     adapt <<= ADAPT_SCALE_SHIFT)
7363 				scale++;
7364 		}
7365 #endif
7366 
7367 		/* limit to 1 bucket per 2^scale bytes of low memory */
7368 		if (scale > PAGE_SHIFT)
7369 			numentries >>= (scale - PAGE_SHIFT);
7370 		else
7371 			numentries <<= (PAGE_SHIFT - scale);
7372 
7373 		/* Make sure we've got at least a 0-order allocation.. */
7374 		if (unlikely(flags & HASH_SMALL)) {
7375 			/* Makes no sense without HASH_EARLY */
7376 			WARN_ON(!(flags & HASH_EARLY));
7377 			if (!(numentries >> *_hash_shift)) {
7378 				numentries = 1UL << *_hash_shift;
7379 				BUG_ON(!numentries);
7380 			}
7381 		} else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
7382 			numentries = PAGE_SIZE / bucketsize;
7383 	}
7384 	numentries = roundup_pow_of_two(numentries);
7385 
7386 	/* limit allocation size to 1/16 total memory by default */
7387 	if (max == 0) {
7388 		max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
7389 		do_div(max, bucketsize);
7390 	}
7391 	max = min(max, 0x80000000ULL);
7392 
7393 	if (numentries < low_limit)
7394 		numentries = low_limit;
7395 	if (numentries > max)
7396 		numentries = max;
7397 
7398 	log2qty = ilog2(numentries);
7399 
7400 	gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC;
7401 	do {
7402 		size = bucketsize << log2qty;
7403 		if (flags & HASH_EARLY) {
7404 			if (flags & HASH_ZERO)
7405 				table = memblock_virt_alloc_nopanic(size, 0);
7406 			else
7407 				table = memblock_virt_alloc_raw(size, 0);
7408 		} else if (hashdist) {
7409 			table = __vmalloc(size, gfp_flags, PAGE_KERNEL);
7410 		} else {
7411 			/*
7412 			 * If bucketsize is not a power-of-two, we may free
7413 			 * some pages at the end of hash table which
7414 			 * alloc_pages_exact() automatically does
7415 			 */
7416 			if (get_order(size) < MAX_ORDER) {
7417 				table = alloc_pages_exact(size, gfp_flags);
7418 				kmemleak_alloc(table, size, 1, gfp_flags);
7419 			}
7420 		}
7421 	} while (!table && size > PAGE_SIZE && --log2qty);
7422 
7423 	if (!table)
7424 		panic("Failed to allocate %s hash table\n", tablename);
7425 
7426 	pr_info("%s hash table entries: %ld (order: %d, %lu bytes)\n",
7427 		tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size);
7428 
7429 	if (_hash_shift)
7430 		*_hash_shift = log2qty;
7431 	if (_hash_mask)
7432 		*_hash_mask = (1 << log2qty) - 1;
7433 
7434 	return table;
7435 }
7436 
7437 /*
7438  * This function checks whether pageblock includes unmovable pages or not.
7439  * If @count is not zero, it is okay to include less @count unmovable pages
7440  *
7441  * PageLRU check without isolation or lru_lock could race so that
7442  * MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable
7443  * check without lock_page also may miss some movable non-lru pages at
7444  * race condition. So you can't expect this function should be exact.
7445  */
7446 bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
7447 			 int migratetype,
7448 			 bool skip_hwpoisoned_pages)
7449 {
7450 	unsigned long pfn, iter, found;
7451 
7452 	/*
7453 	 * For avoiding noise data, lru_add_drain_all() should be called
7454 	 * If ZONE_MOVABLE, the zone never contains unmovable pages
7455 	 */
7456 	if (zone_idx(zone) == ZONE_MOVABLE)
7457 		return false;
7458 
7459 	/*
7460 	 * CMA allocations (alloc_contig_range) really need to mark isolate
7461 	 * CMA pageblocks even when they are not movable in fact so consider
7462 	 * them movable here.
7463 	 */
7464 	if (is_migrate_cma(migratetype) &&
7465 			is_migrate_cma(get_pageblock_migratetype(page)))
7466 		return false;
7467 
7468 	pfn = page_to_pfn(page);
7469 	for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
7470 		unsigned long check = pfn + iter;
7471 
7472 		if (!pfn_valid_within(check))
7473 			continue;
7474 
7475 		page = pfn_to_page(check);
7476 
7477 		if (PageReserved(page))
7478 			return true;
7479 
7480 		/*
7481 		 * Hugepages are not in LRU lists, but they're movable.
7482 		 * We need not scan over tail pages bacause we don't
7483 		 * handle each tail page individually in migration.
7484 		 */
7485 		if (PageHuge(page)) {
7486 			iter = round_up(iter + 1, 1<<compound_order(page)) - 1;
7487 			continue;
7488 		}
7489 
7490 		/*
7491 		 * We can't use page_count without pin a page
7492 		 * because another CPU can free compound page.
7493 		 * This check already skips compound tails of THP
7494 		 * because their page->_refcount is zero at all time.
7495 		 */
7496 		if (!page_ref_count(page)) {
7497 			if (PageBuddy(page))
7498 				iter += (1 << page_order(page)) - 1;
7499 			continue;
7500 		}
7501 
7502 		/*
7503 		 * The HWPoisoned page may be not in buddy system, and
7504 		 * page_count() is not 0.
7505 		 */
7506 		if (skip_hwpoisoned_pages && PageHWPoison(page))
7507 			continue;
7508 
7509 		if (__PageMovable(page))
7510 			continue;
7511 
7512 		if (!PageLRU(page))
7513 			found++;
7514 		/*
7515 		 * If there are RECLAIMABLE pages, we need to check
7516 		 * it.  But now, memory offline itself doesn't call
7517 		 * shrink_node_slabs() and it still to be fixed.
7518 		 */
7519 		/*
7520 		 * If the page is not RAM, page_count()should be 0.
7521 		 * we don't need more check. This is an _used_ not-movable page.
7522 		 *
7523 		 * The problematic thing here is PG_reserved pages. PG_reserved
7524 		 * is set to both of a memory hole page and a _used_ kernel
7525 		 * page at boot.
7526 		 */
7527 		if (found > count)
7528 			return true;
7529 	}
7530 	return false;
7531 }
7532 
7533 bool is_pageblock_removable_nolock(struct page *page)
7534 {
7535 	struct zone *zone;
7536 	unsigned long pfn;
7537 
7538 	/*
7539 	 * We have to be careful here because we are iterating over memory
7540 	 * sections which are not zone aware so we might end up outside of
7541 	 * the zone but still within the section.
7542 	 * We have to take care about the node as well. If the node is offline
7543 	 * its NODE_DATA will be NULL - see page_zone.
7544 	 */
7545 	if (!node_online(page_to_nid(page)))
7546 		return false;
7547 
7548 	zone = page_zone(page);
7549 	pfn = page_to_pfn(page);
7550 	if (!zone_spans_pfn(zone, pfn))
7551 		return false;
7552 
7553 	return !has_unmovable_pages(zone, page, 0, MIGRATE_MOVABLE, true);
7554 }
7555 
7556 #if (defined(CONFIG_MEMORY_ISOLATION) && defined(CONFIG_COMPACTION)) || defined(CONFIG_CMA)
7557 
7558 static unsigned long pfn_max_align_down(unsigned long pfn)
7559 {
7560 	return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
7561 			     pageblock_nr_pages) - 1);
7562 }
7563 
7564 static unsigned long pfn_max_align_up(unsigned long pfn)
7565 {
7566 	return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
7567 				pageblock_nr_pages));
7568 }
7569 
7570 /* [start, end) must belong to a single zone. */
7571 static int __alloc_contig_migrate_range(struct compact_control *cc,
7572 					unsigned long start, unsigned long end)
7573 {
7574 	/* This function is based on compact_zone() from compaction.c. */
7575 	unsigned long nr_reclaimed;
7576 	unsigned long pfn = start;
7577 	unsigned int tries = 0;
7578 	int ret = 0;
7579 
7580 	migrate_prep();
7581 
7582 	while (pfn < end || !list_empty(&cc->migratepages)) {
7583 		if (fatal_signal_pending(current)) {
7584 			ret = -EINTR;
7585 			break;
7586 		}
7587 
7588 		if (list_empty(&cc->migratepages)) {
7589 			cc->nr_migratepages = 0;
7590 			pfn = isolate_migratepages_range(cc, pfn, end);
7591 			if (!pfn) {
7592 				ret = -EINTR;
7593 				break;
7594 			}
7595 			tries = 0;
7596 		} else if (++tries == 5) {
7597 			ret = ret < 0 ? ret : -EBUSY;
7598 			break;
7599 		}
7600 
7601 		nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
7602 							&cc->migratepages);
7603 		cc->nr_migratepages -= nr_reclaimed;
7604 
7605 		ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
7606 				    NULL, 0, cc->mode, MR_CMA);
7607 	}
7608 	if (ret < 0) {
7609 		putback_movable_pages(&cc->migratepages);
7610 		return ret;
7611 	}
7612 	return 0;
7613 }
7614 
7615 /**
7616  * alloc_contig_range() -- tries to allocate given range of pages
7617  * @start:	start PFN to allocate
7618  * @end:	one-past-the-last PFN to allocate
7619  * @migratetype:	migratetype of the underlaying pageblocks (either
7620  *			#MIGRATE_MOVABLE or #MIGRATE_CMA).  All pageblocks
7621  *			in range must have the same migratetype and it must
7622  *			be either of the two.
7623  * @gfp_mask:	GFP mask to use during compaction
7624  *
7625  * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
7626  * aligned, however it's the caller's responsibility to guarantee that
7627  * we are the only thread that changes migrate type of pageblocks the
7628  * pages fall in.
7629  *
7630  * The PFN range must belong to a single zone.
7631  *
7632  * Returns zero on success or negative error code.  On success all
7633  * pages which PFN is in [start, end) are allocated for the caller and
7634  * need to be freed with free_contig_range().
7635  */
7636 int alloc_contig_range(unsigned long start, unsigned long end,
7637 		       unsigned migratetype, gfp_t gfp_mask)
7638 {
7639 	unsigned long outer_start, outer_end;
7640 	unsigned int order;
7641 	int ret = 0;
7642 
7643 	struct compact_control cc = {
7644 		.nr_migratepages = 0,
7645 		.order = -1,
7646 		.zone = page_zone(pfn_to_page(start)),
7647 		.mode = MIGRATE_SYNC,
7648 		.ignore_skip_hint = true,
7649 		.no_set_skip_hint = true,
7650 		.gfp_mask = current_gfp_context(gfp_mask),
7651 	};
7652 	INIT_LIST_HEAD(&cc.migratepages);
7653 
7654 	/*
7655 	 * What we do here is we mark all pageblocks in range as
7656 	 * MIGRATE_ISOLATE.  Because pageblock and max order pages may
7657 	 * have different sizes, and due to the way page allocator
7658 	 * work, we align the range to biggest of the two pages so
7659 	 * that page allocator won't try to merge buddies from
7660 	 * different pageblocks and change MIGRATE_ISOLATE to some
7661 	 * other migration type.
7662 	 *
7663 	 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
7664 	 * migrate the pages from an unaligned range (ie. pages that
7665 	 * we are interested in).  This will put all the pages in
7666 	 * range back to page allocator as MIGRATE_ISOLATE.
7667 	 *
7668 	 * When this is done, we take the pages in range from page
7669 	 * allocator removing them from the buddy system.  This way
7670 	 * page allocator will never consider using them.
7671 	 *
7672 	 * This lets us mark the pageblocks back as
7673 	 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
7674 	 * aligned range but not in the unaligned, original range are
7675 	 * put back to page allocator so that buddy can use them.
7676 	 */
7677 
7678 	ret = start_isolate_page_range(pfn_max_align_down(start),
7679 				       pfn_max_align_up(end), migratetype,
7680 				       false);
7681 	if (ret)
7682 		return ret;
7683 
7684 	/*
7685 	 * In case of -EBUSY, we'd like to know which page causes problem.
7686 	 * So, just fall through. test_pages_isolated() has a tracepoint
7687 	 * which will report the busy page.
7688 	 *
7689 	 * It is possible that busy pages could become available before
7690 	 * the call to test_pages_isolated, and the range will actually be
7691 	 * allocated.  So, if we fall through be sure to clear ret so that
7692 	 * -EBUSY is not accidentally used or returned to caller.
7693 	 */
7694 	ret = __alloc_contig_migrate_range(&cc, start, end);
7695 	if (ret && ret != -EBUSY)
7696 		goto done;
7697 	ret =0;
7698 
7699 	/*
7700 	 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
7701 	 * aligned blocks that are marked as MIGRATE_ISOLATE.  What's
7702 	 * more, all pages in [start, end) are free in page allocator.
7703 	 * What we are going to do is to allocate all pages from
7704 	 * [start, end) (that is remove them from page allocator).
7705 	 *
7706 	 * The only problem is that pages at the beginning and at the
7707 	 * end of interesting range may be not aligned with pages that
7708 	 * page allocator holds, ie. they can be part of higher order
7709 	 * pages.  Because of this, we reserve the bigger range and
7710 	 * once this is done free the pages we are not interested in.
7711 	 *
7712 	 * We don't have to hold zone->lock here because the pages are
7713 	 * isolated thus they won't get removed from buddy.
7714 	 */
7715 
7716 	lru_add_drain_all();
7717 	drain_all_pages(cc.zone);
7718 
7719 	order = 0;
7720 	outer_start = start;
7721 	while (!PageBuddy(pfn_to_page(outer_start))) {
7722 		if (++order >= MAX_ORDER) {
7723 			outer_start = start;
7724 			break;
7725 		}
7726 		outer_start &= ~0UL << order;
7727 	}
7728 
7729 	if (outer_start != start) {
7730 		order = page_order(pfn_to_page(outer_start));
7731 
7732 		/*
7733 		 * outer_start page could be small order buddy page and
7734 		 * it doesn't include start page. Adjust outer_start
7735 		 * in this case to report failed page properly
7736 		 * on tracepoint in test_pages_isolated()
7737 		 */
7738 		if (outer_start + (1UL << order) <= start)
7739 			outer_start = start;
7740 	}
7741 
7742 	/* Make sure the range is really isolated. */
7743 	if (test_pages_isolated(outer_start, end, false)) {
7744 		pr_info_ratelimited("%s: [%lx, %lx) PFNs busy\n",
7745 			__func__, outer_start, end);
7746 		ret = -EBUSY;
7747 		goto done;
7748 	}
7749 
7750 	/* Grab isolated pages from freelists. */
7751 	outer_end = isolate_freepages_range(&cc, outer_start, end);
7752 	if (!outer_end) {
7753 		ret = -EBUSY;
7754 		goto done;
7755 	}
7756 
7757 	/* Free head and tail (if any) */
7758 	if (start != outer_start)
7759 		free_contig_range(outer_start, start - outer_start);
7760 	if (end != outer_end)
7761 		free_contig_range(end, outer_end - end);
7762 
7763 done:
7764 	undo_isolate_page_range(pfn_max_align_down(start),
7765 				pfn_max_align_up(end), migratetype);
7766 	return ret;
7767 }
7768 
7769 void free_contig_range(unsigned long pfn, unsigned nr_pages)
7770 {
7771 	unsigned int count = 0;
7772 
7773 	for (; nr_pages--; pfn++) {
7774 		struct page *page = pfn_to_page(pfn);
7775 
7776 		count += page_count(page) != 1;
7777 		__free_page(page);
7778 	}
7779 	WARN(count != 0, "%d pages are still in use!\n", count);
7780 }
7781 #endif
7782 
7783 #ifdef CONFIG_MEMORY_HOTPLUG
7784 /*
7785  * The zone indicated has a new number of managed_pages; batch sizes and percpu
7786  * page high values need to be recalulated.
7787  */
7788 void __meminit zone_pcp_update(struct zone *zone)
7789 {
7790 	unsigned cpu;
7791 	mutex_lock(&pcp_batch_high_lock);
7792 	for_each_possible_cpu(cpu)
7793 		pageset_set_high_and_batch(zone,
7794 				per_cpu_ptr(zone->pageset, cpu));
7795 	mutex_unlock(&pcp_batch_high_lock);
7796 }
7797 #endif
7798 
7799 void zone_pcp_reset(struct zone *zone)
7800 {
7801 	unsigned long flags;
7802 	int cpu;
7803 	struct per_cpu_pageset *pset;
7804 
7805 	/* avoid races with drain_pages()  */
7806 	local_irq_save(flags);
7807 	if (zone->pageset != &boot_pageset) {
7808 		for_each_online_cpu(cpu) {
7809 			pset = per_cpu_ptr(zone->pageset, cpu);
7810 			drain_zonestat(zone, pset);
7811 		}
7812 		free_percpu(zone->pageset);
7813 		zone->pageset = &boot_pageset;
7814 	}
7815 	local_irq_restore(flags);
7816 }
7817 
7818 #ifdef CONFIG_MEMORY_HOTREMOVE
7819 /*
7820  * All pages in the range must be in a single zone and isolated
7821  * before calling this.
7822  */
7823 void
7824 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
7825 {
7826 	struct page *page;
7827 	struct zone *zone;
7828 	unsigned int order, i;
7829 	unsigned long pfn;
7830 	unsigned long flags;
7831 	/* find the first valid pfn */
7832 	for (pfn = start_pfn; pfn < end_pfn; pfn++)
7833 		if (pfn_valid(pfn))
7834 			break;
7835 	if (pfn == end_pfn)
7836 		return;
7837 	offline_mem_sections(pfn, end_pfn);
7838 	zone = page_zone(pfn_to_page(pfn));
7839 	spin_lock_irqsave(&zone->lock, flags);
7840 	pfn = start_pfn;
7841 	while (pfn < end_pfn) {
7842 		if (!pfn_valid(pfn)) {
7843 			pfn++;
7844 			continue;
7845 		}
7846 		page = pfn_to_page(pfn);
7847 		/*
7848 		 * The HWPoisoned page may be not in buddy system, and
7849 		 * page_count() is not 0.
7850 		 */
7851 		if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
7852 			pfn++;
7853 			SetPageReserved(page);
7854 			continue;
7855 		}
7856 
7857 		BUG_ON(page_count(page));
7858 		BUG_ON(!PageBuddy(page));
7859 		order = page_order(page);
7860 #ifdef CONFIG_DEBUG_VM
7861 		pr_info("remove from free list %lx %d %lx\n",
7862 			pfn, 1 << order, end_pfn);
7863 #endif
7864 		list_del(&page->lru);
7865 		rmv_page_order(page);
7866 		zone->free_area[order].nr_free--;
7867 		for (i = 0; i < (1 << order); i++)
7868 			SetPageReserved((page+i));
7869 		pfn += (1 << order);
7870 	}
7871 	spin_unlock_irqrestore(&zone->lock, flags);
7872 }
7873 #endif
7874 
7875 bool is_free_buddy_page(struct page *page)
7876 {
7877 	struct zone *zone = page_zone(page);
7878 	unsigned long pfn = page_to_pfn(page);
7879 	unsigned long flags;
7880 	unsigned int order;
7881 
7882 	spin_lock_irqsave(&zone->lock, flags);
7883 	for (order = 0; order < MAX_ORDER; order++) {
7884 		struct page *page_head = page - (pfn & ((1 << order) - 1));
7885 
7886 		if (PageBuddy(page_head) && page_order(page_head) >= order)
7887 			break;
7888 	}
7889 	spin_unlock_irqrestore(&zone->lock, flags);
7890 
7891 	return order < MAX_ORDER;
7892 }
7893