1 /* 2 * linux/mm/page_alloc.c 3 * 4 * Manages the free list, the system allocates free pages here. 5 * Note that kmalloc() lives in slab.c 6 * 7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 8 * Swap reorganised 29.12.95, Stephen Tweedie 9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999 10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999 11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999 12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000 13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002 14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton) 15 */ 16 17 #include <linux/stddef.h> 18 #include <linux/mm.h> 19 #include <linux/swap.h> 20 #include <linux/interrupt.h> 21 #include <linux/pagemap.h> 22 #include <linux/jiffies.h> 23 #include <linux/bootmem.h> 24 #include <linux/memblock.h> 25 #include <linux/compiler.h> 26 #include <linux/kernel.h> 27 #include <linux/kasan.h> 28 #include <linux/module.h> 29 #include <linux/suspend.h> 30 #include <linux/pagevec.h> 31 #include <linux/blkdev.h> 32 #include <linux/slab.h> 33 #include <linux/ratelimit.h> 34 #include <linux/oom.h> 35 #include <linux/notifier.h> 36 #include <linux/topology.h> 37 #include <linux/sysctl.h> 38 #include <linux/cpu.h> 39 #include <linux/cpuset.h> 40 #include <linux/memory_hotplug.h> 41 #include <linux/nodemask.h> 42 #include <linux/vmalloc.h> 43 #include <linux/vmstat.h> 44 #include <linux/mempolicy.h> 45 #include <linux/memremap.h> 46 #include <linux/stop_machine.h> 47 #include <linux/sort.h> 48 #include <linux/pfn.h> 49 #include <xen/xen.h> 50 #include <linux/backing-dev.h> 51 #include <linux/fault-inject.h> 52 #include <linux/page-isolation.h> 53 #include <linux/page_ext.h> 54 #include <linux/debugobjects.h> 55 #include <linux/kmemleak.h> 56 #include <linux/compaction.h> 57 #include <trace/events/kmem.h> 58 #include <trace/events/oom.h> 59 #include <linux/prefetch.h> 60 #include <linux/mm_inline.h> 61 #include <linux/migrate.h> 62 #include <linux/hugetlb.h> 63 #include <linux/sched/rt.h> 64 #include <linux/sched/mm.h> 65 #include <linux/page_owner.h> 66 #include <linux/kthread.h> 67 #include <linux/memcontrol.h> 68 #include <linux/ftrace.h> 69 #include <linux/lockdep.h> 70 #include <linux/nmi.h> 71 72 #include <asm/sections.h> 73 #include <asm/tlbflush.h> 74 #include <asm/div64.h> 75 #include "internal.h" 76 77 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */ 78 static DEFINE_MUTEX(pcp_batch_high_lock); 79 #define MIN_PERCPU_PAGELIST_FRACTION (8) 80 81 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID 82 DEFINE_PER_CPU(int, numa_node); 83 EXPORT_PER_CPU_SYMBOL(numa_node); 84 #endif 85 86 DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key); 87 88 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 89 /* 90 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly. 91 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined. 92 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem() 93 * defined in <linux/topology.h>. 94 */ 95 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */ 96 EXPORT_PER_CPU_SYMBOL(_numa_mem_); 97 int _node_numa_mem_[MAX_NUMNODES]; 98 #endif 99 100 /* work_structs for global per-cpu drains */ 101 DEFINE_MUTEX(pcpu_drain_mutex); 102 DEFINE_PER_CPU(struct work_struct, pcpu_drain); 103 104 #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY 105 volatile unsigned long latent_entropy __latent_entropy; 106 EXPORT_SYMBOL(latent_entropy); 107 #endif 108 109 /* 110 * Array of node states. 111 */ 112 nodemask_t node_states[NR_NODE_STATES] __read_mostly = { 113 [N_POSSIBLE] = NODE_MASK_ALL, 114 [N_ONLINE] = { { [0] = 1UL } }, 115 #ifndef CONFIG_NUMA 116 [N_NORMAL_MEMORY] = { { [0] = 1UL } }, 117 #ifdef CONFIG_HIGHMEM 118 [N_HIGH_MEMORY] = { { [0] = 1UL } }, 119 #endif 120 [N_MEMORY] = { { [0] = 1UL } }, 121 [N_CPU] = { { [0] = 1UL } }, 122 #endif /* NUMA */ 123 }; 124 EXPORT_SYMBOL(node_states); 125 126 /* Protect totalram_pages and zone->managed_pages */ 127 static DEFINE_SPINLOCK(managed_page_count_lock); 128 129 unsigned long totalram_pages __read_mostly; 130 unsigned long totalreserve_pages __read_mostly; 131 unsigned long totalcma_pages __read_mostly; 132 133 int percpu_pagelist_fraction; 134 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK; 135 136 /* 137 * A cached value of the page's pageblock's migratetype, used when the page is 138 * put on a pcplist. Used to avoid the pageblock migratetype lookup when 139 * freeing from pcplists in most cases, at the cost of possibly becoming stale. 140 * Also the migratetype set in the page does not necessarily match the pcplist 141 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any 142 * other index - this ensures that it will be put on the correct CMA freelist. 143 */ 144 static inline int get_pcppage_migratetype(struct page *page) 145 { 146 return page->index; 147 } 148 149 static inline void set_pcppage_migratetype(struct page *page, int migratetype) 150 { 151 page->index = migratetype; 152 } 153 154 #ifdef CONFIG_PM_SLEEP 155 /* 156 * The following functions are used by the suspend/hibernate code to temporarily 157 * change gfp_allowed_mask in order to avoid using I/O during memory allocations 158 * while devices are suspended. To avoid races with the suspend/hibernate code, 159 * they should always be called with pm_mutex held (gfp_allowed_mask also should 160 * only be modified with pm_mutex held, unless the suspend/hibernate code is 161 * guaranteed not to run in parallel with that modification). 162 */ 163 164 static gfp_t saved_gfp_mask; 165 166 void pm_restore_gfp_mask(void) 167 { 168 WARN_ON(!mutex_is_locked(&pm_mutex)); 169 if (saved_gfp_mask) { 170 gfp_allowed_mask = saved_gfp_mask; 171 saved_gfp_mask = 0; 172 } 173 } 174 175 void pm_restrict_gfp_mask(void) 176 { 177 WARN_ON(!mutex_is_locked(&pm_mutex)); 178 WARN_ON(saved_gfp_mask); 179 saved_gfp_mask = gfp_allowed_mask; 180 gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS); 181 } 182 183 bool pm_suspended_storage(void) 184 { 185 if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS)) 186 return false; 187 return true; 188 } 189 #endif /* CONFIG_PM_SLEEP */ 190 191 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE 192 unsigned int pageblock_order __read_mostly; 193 #endif 194 195 static void __free_pages_ok(struct page *page, unsigned int order); 196 197 /* 198 * results with 256, 32 in the lowmem_reserve sysctl: 199 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high) 200 * 1G machine -> (16M dma, 784M normal, 224M high) 201 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA 202 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL 203 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA 204 * 205 * TBD: should special case ZONE_DMA32 machines here - in those we normally 206 * don't need any ZONE_NORMAL reservation 207 */ 208 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = { 209 #ifdef CONFIG_ZONE_DMA 210 256, 211 #endif 212 #ifdef CONFIG_ZONE_DMA32 213 256, 214 #endif 215 #ifdef CONFIG_HIGHMEM 216 32, 217 #endif 218 32, 219 }; 220 221 EXPORT_SYMBOL(totalram_pages); 222 223 static char * const zone_names[MAX_NR_ZONES] = { 224 #ifdef CONFIG_ZONE_DMA 225 "DMA", 226 #endif 227 #ifdef CONFIG_ZONE_DMA32 228 "DMA32", 229 #endif 230 "Normal", 231 #ifdef CONFIG_HIGHMEM 232 "HighMem", 233 #endif 234 "Movable", 235 #ifdef CONFIG_ZONE_DEVICE 236 "Device", 237 #endif 238 }; 239 240 char * const migratetype_names[MIGRATE_TYPES] = { 241 "Unmovable", 242 "Movable", 243 "Reclaimable", 244 "HighAtomic", 245 #ifdef CONFIG_CMA 246 "CMA", 247 #endif 248 #ifdef CONFIG_MEMORY_ISOLATION 249 "Isolate", 250 #endif 251 }; 252 253 compound_page_dtor * const compound_page_dtors[] = { 254 NULL, 255 free_compound_page, 256 #ifdef CONFIG_HUGETLB_PAGE 257 free_huge_page, 258 #endif 259 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 260 free_transhuge_page, 261 #endif 262 }; 263 264 int min_free_kbytes = 1024; 265 int user_min_free_kbytes = -1; 266 int watermark_scale_factor = 10; 267 268 static unsigned long __meminitdata nr_kernel_pages; 269 static unsigned long __meminitdata nr_all_pages; 270 static unsigned long __meminitdata dma_reserve; 271 272 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 273 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES]; 274 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES]; 275 static unsigned long __initdata required_kernelcore; 276 static unsigned long __initdata required_movablecore; 277 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES]; 278 static bool mirrored_kernelcore; 279 280 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */ 281 int movable_zone; 282 EXPORT_SYMBOL(movable_zone); 283 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 284 285 #if MAX_NUMNODES > 1 286 int nr_node_ids __read_mostly = MAX_NUMNODES; 287 int nr_online_nodes __read_mostly = 1; 288 EXPORT_SYMBOL(nr_node_ids); 289 EXPORT_SYMBOL(nr_online_nodes); 290 #endif 291 292 int page_group_by_mobility_disabled __read_mostly; 293 294 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 295 296 /* 297 * Determine how many pages need to be initialized during early boot 298 * (non-deferred initialization). 299 * The value of first_deferred_pfn will be set later, once non-deferred pages 300 * are initialized, but for now set it ULONG_MAX. 301 */ 302 static inline void reset_deferred_meminit(pg_data_t *pgdat) 303 { 304 phys_addr_t start_addr, end_addr; 305 unsigned long max_pgcnt; 306 unsigned long reserved; 307 308 /* 309 * Initialise at least 2G of a node but also take into account that 310 * two large system hashes that can take up 1GB for 0.25TB/node. 311 */ 312 max_pgcnt = max(2UL << (30 - PAGE_SHIFT), 313 (pgdat->node_spanned_pages >> 8)); 314 315 /* 316 * Compensate the all the memblock reservations (e.g. crash kernel) 317 * from the initial estimation to make sure we will initialize enough 318 * memory to boot. 319 */ 320 start_addr = PFN_PHYS(pgdat->node_start_pfn); 321 end_addr = PFN_PHYS(pgdat->node_start_pfn + max_pgcnt); 322 reserved = memblock_reserved_memory_within(start_addr, end_addr); 323 max_pgcnt += PHYS_PFN(reserved); 324 325 pgdat->static_init_pgcnt = min(max_pgcnt, pgdat->node_spanned_pages); 326 pgdat->first_deferred_pfn = ULONG_MAX; 327 } 328 329 /* Returns true if the struct page for the pfn is uninitialised */ 330 static inline bool __meminit early_page_uninitialised(unsigned long pfn) 331 { 332 int nid = early_pfn_to_nid(pfn); 333 334 if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn) 335 return true; 336 337 return false; 338 } 339 340 /* 341 * Returns false when the remaining initialisation should be deferred until 342 * later in the boot cycle when it can be parallelised. 343 */ 344 static inline bool update_defer_init(pg_data_t *pgdat, 345 unsigned long pfn, unsigned long zone_end, 346 unsigned long *nr_initialised) 347 { 348 /* Always populate low zones for address-constrained allocations */ 349 if (zone_end < pgdat_end_pfn(pgdat)) 350 return true; 351 /* Xen PV domains need page structures early */ 352 if (xen_pv_domain()) 353 return true; 354 (*nr_initialised)++; 355 if ((*nr_initialised > pgdat->static_init_pgcnt) && 356 (pfn & (PAGES_PER_SECTION - 1)) == 0) { 357 pgdat->first_deferred_pfn = pfn; 358 return false; 359 } 360 361 return true; 362 } 363 #else 364 static inline void reset_deferred_meminit(pg_data_t *pgdat) 365 { 366 } 367 368 static inline bool early_page_uninitialised(unsigned long pfn) 369 { 370 return false; 371 } 372 373 static inline bool update_defer_init(pg_data_t *pgdat, 374 unsigned long pfn, unsigned long zone_end, 375 unsigned long *nr_initialised) 376 { 377 return true; 378 } 379 #endif 380 381 /* Return a pointer to the bitmap storing bits affecting a block of pages */ 382 static inline unsigned long *get_pageblock_bitmap(struct page *page, 383 unsigned long pfn) 384 { 385 #ifdef CONFIG_SPARSEMEM 386 return __pfn_to_section(pfn)->pageblock_flags; 387 #else 388 return page_zone(page)->pageblock_flags; 389 #endif /* CONFIG_SPARSEMEM */ 390 } 391 392 static inline int pfn_to_bitidx(struct page *page, unsigned long pfn) 393 { 394 #ifdef CONFIG_SPARSEMEM 395 pfn &= (PAGES_PER_SECTION-1); 396 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS; 397 #else 398 pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages); 399 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS; 400 #endif /* CONFIG_SPARSEMEM */ 401 } 402 403 /** 404 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages 405 * @page: The page within the block of interest 406 * @pfn: The target page frame number 407 * @end_bitidx: The last bit of interest to retrieve 408 * @mask: mask of bits that the caller is interested in 409 * 410 * Return: pageblock_bits flags 411 */ 412 static __always_inline unsigned long __get_pfnblock_flags_mask(struct page *page, 413 unsigned long pfn, 414 unsigned long end_bitidx, 415 unsigned long mask) 416 { 417 unsigned long *bitmap; 418 unsigned long bitidx, word_bitidx; 419 unsigned long word; 420 421 bitmap = get_pageblock_bitmap(page, pfn); 422 bitidx = pfn_to_bitidx(page, pfn); 423 word_bitidx = bitidx / BITS_PER_LONG; 424 bitidx &= (BITS_PER_LONG-1); 425 426 word = bitmap[word_bitidx]; 427 bitidx += end_bitidx; 428 return (word >> (BITS_PER_LONG - bitidx - 1)) & mask; 429 } 430 431 unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn, 432 unsigned long end_bitidx, 433 unsigned long mask) 434 { 435 return __get_pfnblock_flags_mask(page, pfn, end_bitidx, mask); 436 } 437 438 static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn) 439 { 440 return __get_pfnblock_flags_mask(page, pfn, PB_migrate_end, MIGRATETYPE_MASK); 441 } 442 443 /** 444 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages 445 * @page: The page within the block of interest 446 * @flags: The flags to set 447 * @pfn: The target page frame number 448 * @end_bitidx: The last bit of interest 449 * @mask: mask of bits that the caller is interested in 450 */ 451 void set_pfnblock_flags_mask(struct page *page, unsigned long flags, 452 unsigned long pfn, 453 unsigned long end_bitidx, 454 unsigned long mask) 455 { 456 unsigned long *bitmap; 457 unsigned long bitidx, word_bitidx; 458 unsigned long old_word, word; 459 460 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4); 461 462 bitmap = get_pageblock_bitmap(page, pfn); 463 bitidx = pfn_to_bitidx(page, pfn); 464 word_bitidx = bitidx / BITS_PER_LONG; 465 bitidx &= (BITS_PER_LONG-1); 466 467 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page); 468 469 bitidx += end_bitidx; 470 mask <<= (BITS_PER_LONG - bitidx - 1); 471 flags <<= (BITS_PER_LONG - bitidx - 1); 472 473 word = READ_ONCE(bitmap[word_bitidx]); 474 for (;;) { 475 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags); 476 if (word == old_word) 477 break; 478 word = old_word; 479 } 480 } 481 482 void set_pageblock_migratetype(struct page *page, int migratetype) 483 { 484 if (unlikely(page_group_by_mobility_disabled && 485 migratetype < MIGRATE_PCPTYPES)) 486 migratetype = MIGRATE_UNMOVABLE; 487 488 set_pageblock_flags_group(page, (unsigned long)migratetype, 489 PB_migrate, PB_migrate_end); 490 } 491 492 #ifdef CONFIG_DEBUG_VM 493 static int page_outside_zone_boundaries(struct zone *zone, struct page *page) 494 { 495 int ret = 0; 496 unsigned seq; 497 unsigned long pfn = page_to_pfn(page); 498 unsigned long sp, start_pfn; 499 500 do { 501 seq = zone_span_seqbegin(zone); 502 start_pfn = zone->zone_start_pfn; 503 sp = zone->spanned_pages; 504 if (!zone_spans_pfn(zone, pfn)) 505 ret = 1; 506 } while (zone_span_seqretry(zone, seq)); 507 508 if (ret) 509 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n", 510 pfn, zone_to_nid(zone), zone->name, 511 start_pfn, start_pfn + sp); 512 513 return ret; 514 } 515 516 static int page_is_consistent(struct zone *zone, struct page *page) 517 { 518 if (!pfn_valid_within(page_to_pfn(page))) 519 return 0; 520 if (zone != page_zone(page)) 521 return 0; 522 523 return 1; 524 } 525 /* 526 * Temporary debugging check for pages not lying within a given zone. 527 */ 528 static int __maybe_unused bad_range(struct zone *zone, struct page *page) 529 { 530 if (page_outside_zone_boundaries(zone, page)) 531 return 1; 532 if (!page_is_consistent(zone, page)) 533 return 1; 534 535 return 0; 536 } 537 #else 538 static inline int __maybe_unused bad_range(struct zone *zone, struct page *page) 539 { 540 return 0; 541 } 542 #endif 543 544 static void bad_page(struct page *page, const char *reason, 545 unsigned long bad_flags) 546 { 547 static unsigned long resume; 548 static unsigned long nr_shown; 549 static unsigned long nr_unshown; 550 551 /* 552 * Allow a burst of 60 reports, then keep quiet for that minute; 553 * or allow a steady drip of one report per second. 554 */ 555 if (nr_shown == 60) { 556 if (time_before(jiffies, resume)) { 557 nr_unshown++; 558 goto out; 559 } 560 if (nr_unshown) { 561 pr_alert( 562 "BUG: Bad page state: %lu messages suppressed\n", 563 nr_unshown); 564 nr_unshown = 0; 565 } 566 nr_shown = 0; 567 } 568 if (nr_shown++ == 0) 569 resume = jiffies + 60 * HZ; 570 571 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n", 572 current->comm, page_to_pfn(page)); 573 __dump_page(page, reason); 574 bad_flags &= page->flags; 575 if (bad_flags) 576 pr_alert("bad because of flags: %#lx(%pGp)\n", 577 bad_flags, &bad_flags); 578 dump_page_owner(page); 579 580 print_modules(); 581 dump_stack(); 582 out: 583 /* Leave bad fields for debug, except PageBuddy could make trouble */ 584 page_mapcount_reset(page); /* remove PageBuddy */ 585 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 586 } 587 588 /* 589 * Higher-order pages are called "compound pages". They are structured thusly: 590 * 591 * The first PAGE_SIZE page is called the "head page" and have PG_head set. 592 * 593 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded 594 * in bit 0 of page->compound_head. The rest of bits is pointer to head page. 595 * 596 * The first tail page's ->compound_dtor holds the offset in array of compound 597 * page destructors. See compound_page_dtors. 598 * 599 * The first tail page's ->compound_order holds the order of allocation. 600 * This usage means that zero-order pages may not be compound. 601 */ 602 603 void free_compound_page(struct page *page) 604 { 605 __free_pages_ok(page, compound_order(page)); 606 } 607 608 void prep_compound_page(struct page *page, unsigned int order) 609 { 610 int i; 611 int nr_pages = 1 << order; 612 613 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR); 614 set_compound_order(page, order); 615 __SetPageHead(page); 616 for (i = 1; i < nr_pages; i++) { 617 struct page *p = page + i; 618 set_page_count(p, 0); 619 p->mapping = TAIL_MAPPING; 620 set_compound_head(p, page); 621 } 622 atomic_set(compound_mapcount_ptr(page), -1); 623 } 624 625 #ifdef CONFIG_DEBUG_PAGEALLOC 626 unsigned int _debug_guardpage_minorder; 627 bool _debug_pagealloc_enabled __read_mostly 628 = IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT); 629 EXPORT_SYMBOL(_debug_pagealloc_enabled); 630 bool _debug_guardpage_enabled __read_mostly; 631 632 static int __init early_debug_pagealloc(char *buf) 633 { 634 if (!buf) 635 return -EINVAL; 636 return kstrtobool(buf, &_debug_pagealloc_enabled); 637 } 638 early_param("debug_pagealloc", early_debug_pagealloc); 639 640 static bool need_debug_guardpage(void) 641 { 642 /* If we don't use debug_pagealloc, we don't need guard page */ 643 if (!debug_pagealloc_enabled()) 644 return false; 645 646 if (!debug_guardpage_minorder()) 647 return false; 648 649 return true; 650 } 651 652 static void init_debug_guardpage(void) 653 { 654 if (!debug_pagealloc_enabled()) 655 return; 656 657 if (!debug_guardpage_minorder()) 658 return; 659 660 _debug_guardpage_enabled = true; 661 } 662 663 struct page_ext_operations debug_guardpage_ops = { 664 .need = need_debug_guardpage, 665 .init = init_debug_guardpage, 666 }; 667 668 static int __init debug_guardpage_minorder_setup(char *buf) 669 { 670 unsigned long res; 671 672 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) { 673 pr_err("Bad debug_guardpage_minorder value\n"); 674 return 0; 675 } 676 _debug_guardpage_minorder = res; 677 pr_info("Setting debug_guardpage_minorder to %lu\n", res); 678 return 0; 679 } 680 early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup); 681 682 static inline bool set_page_guard(struct zone *zone, struct page *page, 683 unsigned int order, int migratetype) 684 { 685 struct page_ext *page_ext; 686 687 if (!debug_guardpage_enabled()) 688 return false; 689 690 if (order >= debug_guardpage_minorder()) 691 return false; 692 693 page_ext = lookup_page_ext(page); 694 if (unlikely(!page_ext)) 695 return false; 696 697 __set_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags); 698 699 INIT_LIST_HEAD(&page->lru); 700 set_page_private(page, order); 701 /* Guard pages are not available for any usage */ 702 __mod_zone_freepage_state(zone, -(1 << order), migratetype); 703 704 return true; 705 } 706 707 static inline void clear_page_guard(struct zone *zone, struct page *page, 708 unsigned int order, int migratetype) 709 { 710 struct page_ext *page_ext; 711 712 if (!debug_guardpage_enabled()) 713 return; 714 715 page_ext = lookup_page_ext(page); 716 if (unlikely(!page_ext)) 717 return; 718 719 __clear_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags); 720 721 set_page_private(page, 0); 722 if (!is_migrate_isolate(migratetype)) 723 __mod_zone_freepage_state(zone, (1 << order), migratetype); 724 } 725 #else 726 struct page_ext_operations debug_guardpage_ops; 727 static inline bool set_page_guard(struct zone *zone, struct page *page, 728 unsigned int order, int migratetype) { return false; } 729 static inline void clear_page_guard(struct zone *zone, struct page *page, 730 unsigned int order, int migratetype) {} 731 #endif 732 733 static inline void set_page_order(struct page *page, unsigned int order) 734 { 735 set_page_private(page, order); 736 __SetPageBuddy(page); 737 } 738 739 static inline void rmv_page_order(struct page *page) 740 { 741 __ClearPageBuddy(page); 742 set_page_private(page, 0); 743 } 744 745 /* 746 * This function checks whether a page is free && is the buddy 747 * we can do coalesce a page and its buddy if 748 * (a) the buddy is not in a hole (check before calling!) && 749 * (b) the buddy is in the buddy system && 750 * (c) a page and its buddy have the same order && 751 * (d) a page and its buddy are in the same zone. 752 * 753 * For recording whether a page is in the buddy system, we set ->_mapcount 754 * PAGE_BUDDY_MAPCOUNT_VALUE. 755 * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is 756 * serialized by zone->lock. 757 * 758 * For recording page's order, we use page_private(page). 759 */ 760 static inline int page_is_buddy(struct page *page, struct page *buddy, 761 unsigned int order) 762 { 763 if (page_is_guard(buddy) && page_order(buddy) == order) { 764 if (page_zone_id(page) != page_zone_id(buddy)) 765 return 0; 766 767 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy); 768 769 return 1; 770 } 771 772 if (PageBuddy(buddy) && page_order(buddy) == order) { 773 /* 774 * zone check is done late to avoid uselessly 775 * calculating zone/node ids for pages that could 776 * never merge. 777 */ 778 if (page_zone_id(page) != page_zone_id(buddy)) 779 return 0; 780 781 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy); 782 783 return 1; 784 } 785 return 0; 786 } 787 788 /* 789 * Freeing function for a buddy system allocator. 790 * 791 * The concept of a buddy system is to maintain direct-mapped table 792 * (containing bit values) for memory blocks of various "orders". 793 * The bottom level table contains the map for the smallest allocatable 794 * units of memory (here, pages), and each level above it describes 795 * pairs of units from the levels below, hence, "buddies". 796 * At a high level, all that happens here is marking the table entry 797 * at the bottom level available, and propagating the changes upward 798 * as necessary, plus some accounting needed to play nicely with other 799 * parts of the VM system. 800 * At each level, we keep a list of pages, which are heads of continuous 801 * free pages of length of (1 << order) and marked with _mapcount 802 * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page) 803 * field. 804 * So when we are allocating or freeing one, we can derive the state of the 805 * other. That is, if we allocate a small block, and both were 806 * free, the remainder of the region must be split into blocks. 807 * If a block is freed, and its buddy is also free, then this 808 * triggers coalescing into a block of larger size. 809 * 810 * -- nyc 811 */ 812 813 static inline void __free_one_page(struct page *page, 814 unsigned long pfn, 815 struct zone *zone, unsigned int order, 816 int migratetype) 817 { 818 unsigned long combined_pfn; 819 unsigned long uninitialized_var(buddy_pfn); 820 struct page *buddy; 821 unsigned int max_order; 822 823 max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1); 824 825 VM_BUG_ON(!zone_is_initialized(zone)); 826 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page); 827 828 VM_BUG_ON(migratetype == -1); 829 if (likely(!is_migrate_isolate(migratetype))) 830 __mod_zone_freepage_state(zone, 1 << order, migratetype); 831 832 VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page); 833 VM_BUG_ON_PAGE(bad_range(zone, page), page); 834 835 continue_merging: 836 while (order < max_order - 1) { 837 buddy_pfn = __find_buddy_pfn(pfn, order); 838 buddy = page + (buddy_pfn - pfn); 839 840 if (!pfn_valid_within(buddy_pfn)) 841 goto done_merging; 842 if (!page_is_buddy(page, buddy, order)) 843 goto done_merging; 844 /* 845 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page, 846 * merge with it and move up one order. 847 */ 848 if (page_is_guard(buddy)) { 849 clear_page_guard(zone, buddy, order, migratetype); 850 } else { 851 list_del(&buddy->lru); 852 zone->free_area[order].nr_free--; 853 rmv_page_order(buddy); 854 } 855 combined_pfn = buddy_pfn & pfn; 856 page = page + (combined_pfn - pfn); 857 pfn = combined_pfn; 858 order++; 859 } 860 if (max_order < MAX_ORDER) { 861 /* If we are here, it means order is >= pageblock_order. 862 * We want to prevent merge between freepages on isolate 863 * pageblock and normal pageblock. Without this, pageblock 864 * isolation could cause incorrect freepage or CMA accounting. 865 * 866 * We don't want to hit this code for the more frequent 867 * low-order merging. 868 */ 869 if (unlikely(has_isolate_pageblock(zone))) { 870 int buddy_mt; 871 872 buddy_pfn = __find_buddy_pfn(pfn, order); 873 buddy = page + (buddy_pfn - pfn); 874 buddy_mt = get_pageblock_migratetype(buddy); 875 876 if (migratetype != buddy_mt 877 && (is_migrate_isolate(migratetype) || 878 is_migrate_isolate(buddy_mt))) 879 goto done_merging; 880 } 881 max_order++; 882 goto continue_merging; 883 } 884 885 done_merging: 886 set_page_order(page, order); 887 888 /* 889 * If this is not the largest possible page, check if the buddy 890 * of the next-highest order is free. If it is, it's possible 891 * that pages are being freed that will coalesce soon. In case, 892 * that is happening, add the free page to the tail of the list 893 * so it's less likely to be used soon and more likely to be merged 894 * as a higher order page 895 */ 896 if ((order < MAX_ORDER-2) && pfn_valid_within(buddy_pfn)) { 897 struct page *higher_page, *higher_buddy; 898 combined_pfn = buddy_pfn & pfn; 899 higher_page = page + (combined_pfn - pfn); 900 buddy_pfn = __find_buddy_pfn(combined_pfn, order + 1); 901 higher_buddy = higher_page + (buddy_pfn - combined_pfn); 902 if (pfn_valid_within(buddy_pfn) && 903 page_is_buddy(higher_page, higher_buddy, order + 1)) { 904 list_add_tail(&page->lru, 905 &zone->free_area[order].free_list[migratetype]); 906 goto out; 907 } 908 } 909 910 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]); 911 out: 912 zone->free_area[order].nr_free++; 913 } 914 915 /* 916 * A bad page could be due to a number of fields. Instead of multiple branches, 917 * try and check multiple fields with one check. The caller must do a detailed 918 * check if necessary. 919 */ 920 static inline bool page_expected_state(struct page *page, 921 unsigned long check_flags) 922 { 923 if (unlikely(atomic_read(&page->_mapcount) != -1)) 924 return false; 925 926 if (unlikely((unsigned long)page->mapping | 927 page_ref_count(page) | 928 #ifdef CONFIG_MEMCG 929 (unsigned long)page->mem_cgroup | 930 #endif 931 (page->flags & check_flags))) 932 return false; 933 934 return true; 935 } 936 937 static void free_pages_check_bad(struct page *page) 938 { 939 const char *bad_reason; 940 unsigned long bad_flags; 941 942 bad_reason = NULL; 943 bad_flags = 0; 944 945 if (unlikely(atomic_read(&page->_mapcount) != -1)) 946 bad_reason = "nonzero mapcount"; 947 if (unlikely(page->mapping != NULL)) 948 bad_reason = "non-NULL mapping"; 949 if (unlikely(page_ref_count(page) != 0)) 950 bad_reason = "nonzero _refcount"; 951 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) { 952 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set"; 953 bad_flags = PAGE_FLAGS_CHECK_AT_FREE; 954 } 955 #ifdef CONFIG_MEMCG 956 if (unlikely(page->mem_cgroup)) 957 bad_reason = "page still charged to cgroup"; 958 #endif 959 bad_page(page, bad_reason, bad_flags); 960 } 961 962 static inline int free_pages_check(struct page *page) 963 { 964 if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE))) 965 return 0; 966 967 /* Something has gone sideways, find it */ 968 free_pages_check_bad(page); 969 return 1; 970 } 971 972 static int free_tail_pages_check(struct page *head_page, struct page *page) 973 { 974 int ret = 1; 975 976 /* 977 * We rely page->lru.next never has bit 0 set, unless the page 978 * is PageTail(). Let's make sure that's true even for poisoned ->lru. 979 */ 980 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1); 981 982 if (!IS_ENABLED(CONFIG_DEBUG_VM)) { 983 ret = 0; 984 goto out; 985 } 986 switch (page - head_page) { 987 case 1: 988 /* the first tail page: ->mapping is compound_mapcount() */ 989 if (unlikely(compound_mapcount(page))) { 990 bad_page(page, "nonzero compound_mapcount", 0); 991 goto out; 992 } 993 break; 994 case 2: 995 /* 996 * the second tail page: ->mapping is 997 * page_deferred_list().next -- ignore value. 998 */ 999 break; 1000 default: 1001 if (page->mapping != TAIL_MAPPING) { 1002 bad_page(page, "corrupted mapping in tail page", 0); 1003 goto out; 1004 } 1005 break; 1006 } 1007 if (unlikely(!PageTail(page))) { 1008 bad_page(page, "PageTail not set", 0); 1009 goto out; 1010 } 1011 if (unlikely(compound_head(page) != head_page)) { 1012 bad_page(page, "compound_head not consistent", 0); 1013 goto out; 1014 } 1015 ret = 0; 1016 out: 1017 page->mapping = NULL; 1018 clear_compound_head(page); 1019 return ret; 1020 } 1021 1022 static __always_inline bool free_pages_prepare(struct page *page, 1023 unsigned int order, bool check_free) 1024 { 1025 int bad = 0; 1026 1027 VM_BUG_ON_PAGE(PageTail(page), page); 1028 1029 trace_mm_page_free(page, order); 1030 1031 /* 1032 * Check tail pages before head page information is cleared to 1033 * avoid checking PageCompound for order-0 pages. 1034 */ 1035 if (unlikely(order)) { 1036 bool compound = PageCompound(page); 1037 int i; 1038 1039 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page); 1040 1041 if (compound) 1042 ClearPageDoubleMap(page); 1043 for (i = 1; i < (1 << order); i++) { 1044 if (compound) 1045 bad += free_tail_pages_check(page, page + i); 1046 if (unlikely(free_pages_check(page + i))) { 1047 bad++; 1048 continue; 1049 } 1050 (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP; 1051 } 1052 } 1053 if (PageMappingFlags(page)) 1054 page->mapping = NULL; 1055 if (memcg_kmem_enabled() && PageKmemcg(page)) 1056 memcg_kmem_uncharge(page, order); 1057 if (check_free) 1058 bad += free_pages_check(page); 1059 if (bad) 1060 return false; 1061 1062 page_cpupid_reset_last(page); 1063 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP; 1064 reset_page_owner(page, order); 1065 1066 if (!PageHighMem(page)) { 1067 debug_check_no_locks_freed(page_address(page), 1068 PAGE_SIZE << order); 1069 debug_check_no_obj_freed(page_address(page), 1070 PAGE_SIZE << order); 1071 } 1072 arch_free_page(page, order); 1073 kernel_poison_pages(page, 1 << order, 0); 1074 kernel_map_pages(page, 1 << order, 0); 1075 kasan_free_pages(page, order); 1076 1077 return true; 1078 } 1079 1080 #ifdef CONFIG_DEBUG_VM 1081 static inline bool free_pcp_prepare(struct page *page) 1082 { 1083 return free_pages_prepare(page, 0, true); 1084 } 1085 1086 static inline bool bulkfree_pcp_prepare(struct page *page) 1087 { 1088 return false; 1089 } 1090 #else 1091 static bool free_pcp_prepare(struct page *page) 1092 { 1093 return free_pages_prepare(page, 0, false); 1094 } 1095 1096 static bool bulkfree_pcp_prepare(struct page *page) 1097 { 1098 return free_pages_check(page); 1099 } 1100 #endif /* CONFIG_DEBUG_VM */ 1101 1102 /* 1103 * Frees a number of pages from the PCP lists 1104 * Assumes all pages on list are in same zone, and of same order. 1105 * count is the number of pages to free. 1106 * 1107 * If the zone was previously in an "all pages pinned" state then look to 1108 * see if this freeing clears that state. 1109 * 1110 * And clear the zone's pages_scanned counter, to hold off the "all pages are 1111 * pinned" detection logic. 1112 */ 1113 static void free_pcppages_bulk(struct zone *zone, int count, 1114 struct per_cpu_pages *pcp) 1115 { 1116 int migratetype = 0; 1117 int batch_free = 0; 1118 bool isolated_pageblocks; 1119 1120 spin_lock(&zone->lock); 1121 isolated_pageblocks = has_isolate_pageblock(zone); 1122 1123 while (count) { 1124 struct page *page; 1125 struct list_head *list; 1126 1127 /* 1128 * Remove pages from lists in a round-robin fashion. A 1129 * batch_free count is maintained that is incremented when an 1130 * empty list is encountered. This is so more pages are freed 1131 * off fuller lists instead of spinning excessively around empty 1132 * lists 1133 */ 1134 do { 1135 batch_free++; 1136 if (++migratetype == MIGRATE_PCPTYPES) 1137 migratetype = 0; 1138 list = &pcp->lists[migratetype]; 1139 } while (list_empty(list)); 1140 1141 /* This is the only non-empty list. Free them all. */ 1142 if (batch_free == MIGRATE_PCPTYPES) 1143 batch_free = count; 1144 1145 do { 1146 int mt; /* migratetype of the to-be-freed page */ 1147 1148 page = list_last_entry(list, struct page, lru); 1149 /* must delete as __free_one_page list manipulates */ 1150 list_del(&page->lru); 1151 1152 mt = get_pcppage_migratetype(page); 1153 /* MIGRATE_ISOLATE page should not go to pcplists */ 1154 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page); 1155 /* Pageblock could have been isolated meanwhile */ 1156 if (unlikely(isolated_pageblocks)) 1157 mt = get_pageblock_migratetype(page); 1158 1159 if (bulkfree_pcp_prepare(page)) 1160 continue; 1161 1162 __free_one_page(page, page_to_pfn(page), zone, 0, mt); 1163 trace_mm_page_pcpu_drain(page, 0, mt); 1164 } while (--count && --batch_free && !list_empty(list)); 1165 } 1166 spin_unlock(&zone->lock); 1167 } 1168 1169 static void free_one_page(struct zone *zone, 1170 struct page *page, unsigned long pfn, 1171 unsigned int order, 1172 int migratetype) 1173 { 1174 spin_lock(&zone->lock); 1175 if (unlikely(has_isolate_pageblock(zone) || 1176 is_migrate_isolate(migratetype))) { 1177 migratetype = get_pfnblock_migratetype(page, pfn); 1178 } 1179 __free_one_page(page, pfn, zone, order, migratetype); 1180 spin_unlock(&zone->lock); 1181 } 1182 1183 static void __meminit __init_single_page(struct page *page, unsigned long pfn, 1184 unsigned long zone, int nid, bool zero) 1185 { 1186 if (zero) 1187 mm_zero_struct_page(page); 1188 set_page_links(page, zone, nid, pfn); 1189 init_page_count(page); 1190 page_mapcount_reset(page); 1191 page_cpupid_reset_last(page); 1192 1193 INIT_LIST_HEAD(&page->lru); 1194 #ifdef WANT_PAGE_VIRTUAL 1195 /* The shift won't overflow because ZONE_NORMAL is below 4G. */ 1196 if (!is_highmem_idx(zone)) 1197 set_page_address(page, __va(pfn << PAGE_SHIFT)); 1198 #endif 1199 } 1200 1201 static void __meminit __init_single_pfn(unsigned long pfn, unsigned long zone, 1202 int nid, bool zero) 1203 { 1204 return __init_single_page(pfn_to_page(pfn), pfn, zone, nid, zero); 1205 } 1206 1207 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 1208 static void __meminit init_reserved_page(unsigned long pfn) 1209 { 1210 pg_data_t *pgdat; 1211 int nid, zid; 1212 1213 if (!early_page_uninitialised(pfn)) 1214 return; 1215 1216 nid = early_pfn_to_nid(pfn); 1217 pgdat = NODE_DATA(nid); 1218 1219 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 1220 struct zone *zone = &pgdat->node_zones[zid]; 1221 1222 if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone)) 1223 break; 1224 } 1225 __init_single_pfn(pfn, zid, nid, true); 1226 } 1227 #else 1228 static inline void init_reserved_page(unsigned long pfn) 1229 { 1230 } 1231 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */ 1232 1233 /* 1234 * Initialised pages do not have PageReserved set. This function is 1235 * called for each range allocated by the bootmem allocator and 1236 * marks the pages PageReserved. The remaining valid pages are later 1237 * sent to the buddy page allocator. 1238 */ 1239 void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end) 1240 { 1241 unsigned long start_pfn = PFN_DOWN(start); 1242 unsigned long end_pfn = PFN_UP(end); 1243 1244 for (; start_pfn < end_pfn; start_pfn++) { 1245 if (pfn_valid(start_pfn)) { 1246 struct page *page = pfn_to_page(start_pfn); 1247 1248 init_reserved_page(start_pfn); 1249 1250 /* Avoid false-positive PageTail() */ 1251 INIT_LIST_HEAD(&page->lru); 1252 1253 SetPageReserved(page); 1254 } 1255 } 1256 } 1257 1258 static void __free_pages_ok(struct page *page, unsigned int order) 1259 { 1260 unsigned long flags; 1261 int migratetype; 1262 unsigned long pfn = page_to_pfn(page); 1263 1264 if (!free_pages_prepare(page, order, true)) 1265 return; 1266 1267 migratetype = get_pfnblock_migratetype(page, pfn); 1268 local_irq_save(flags); 1269 __count_vm_events(PGFREE, 1 << order); 1270 free_one_page(page_zone(page), page, pfn, order, migratetype); 1271 local_irq_restore(flags); 1272 } 1273 1274 static void __init __free_pages_boot_core(struct page *page, unsigned int order) 1275 { 1276 unsigned int nr_pages = 1 << order; 1277 struct page *p = page; 1278 unsigned int loop; 1279 1280 prefetchw(p); 1281 for (loop = 0; loop < (nr_pages - 1); loop++, p++) { 1282 prefetchw(p + 1); 1283 __ClearPageReserved(p); 1284 set_page_count(p, 0); 1285 } 1286 __ClearPageReserved(p); 1287 set_page_count(p, 0); 1288 1289 page_zone(page)->managed_pages += nr_pages; 1290 set_page_refcounted(page); 1291 __free_pages(page, order); 1292 } 1293 1294 #if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \ 1295 defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) 1296 1297 static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata; 1298 1299 int __meminit early_pfn_to_nid(unsigned long pfn) 1300 { 1301 static DEFINE_SPINLOCK(early_pfn_lock); 1302 int nid; 1303 1304 spin_lock(&early_pfn_lock); 1305 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache); 1306 if (nid < 0) 1307 nid = first_online_node; 1308 spin_unlock(&early_pfn_lock); 1309 1310 return nid; 1311 } 1312 #endif 1313 1314 #ifdef CONFIG_NODES_SPAN_OTHER_NODES 1315 static inline bool __meminit __maybe_unused 1316 meminit_pfn_in_nid(unsigned long pfn, int node, 1317 struct mminit_pfnnid_cache *state) 1318 { 1319 int nid; 1320 1321 nid = __early_pfn_to_nid(pfn, state); 1322 if (nid >= 0 && nid != node) 1323 return false; 1324 return true; 1325 } 1326 1327 /* Only safe to use early in boot when initialisation is single-threaded */ 1328 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node) 1329 { 1330 return meminit_pfn_in_nid(pfn, node, &early_pfnnid_cache); 1331 } 1332 1333 #else 1334 1335 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node) 1336 { 1337 return true; 1338 } 1339 static inline bool __meminit __maybe_unused 1340 meminit_pfn_in_nid(unsigned long pfn, int node, 1341 struct mminit_pfnnid_cache *state) 1342 { 1343 return true; 1344 } 1345 #endif 1346 1347 1348 void __init __free_pages_bootmem(struct page *page, unsigned long pfn, 1349 unsigned int order) 1350 { 1351 if (early_page_uninitialised(pfn)) 1352 return; 1353 return __free_pages_boot_core(page, order); 1354 } 1355 1356 /* 1357 * Check that the whole (or subset of) a pageblock given by the interval of 1358 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it 1359 * with the migration of free compaction scanner. The scanners then need to 1360 * use only pfn_valid_within() check for arches that allow holes within 1361 * pageblocks. 1362 * 1363 * Return struct page pointer of start_pfn, or NULL if checks were not passed. 1364 * 1365 * It's possible on some configurations to have a setup like node0 node1 node0 1366 * i.e. it's possible that all pages within a zones range of pages do not 1367 * belong to a single zone. We assume that a border between node0 and node1 1368 * can occur within a single pageblock, but not a node0 node1 node0 1369 * interleaving within a single pageblock. It is therefore sufficient to check 1370 * the first and last page of a pageblock and avoid checking each individual 1371 * page in a pageblock. 1372 */ 1373 struct page *__pageblock_pfn_to_page(unsigned long start_pfn, 1374 unsigned long end_pfn, struct zone *zone) 1375 { 1376 struct page *start_page; 1377 struct page *end_page; 1378 1379 /* end_pfn is one past the range we are checking */ 1380 end_pfn--; 1381 1382 if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn)) 1383 return NULL; 1384 1385 start_page = pfn_to_online_page(start_pfn); 1386 if (!start_page) 1387 return NULL; 1388 1389 if (page_zone(start_page) != zone) 1390 return NULL; 1391 1392 end_page = pfn_to_page(end_pfn); 1393 1394 /* This gives a shorter code than deriving page_zone(end_page) */ 1395 if (page_zone_id(start_page) != page_zone_id(end_page)) 1396 return NULL; 1397 1398 return start_page; 1399 } 1400 1401 void set_zone_contiguous(struct zone *zone) 1402 { 1403 unsigned long block_start_pfn = zone->zone_start_pfn; 1404 unsigned long block_end_pfn; 1405 1406 block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages); 1407 for (; block_start_pfn < zone_end_pfn(zone); 1408 block_start_pfn = block_end_pfn, 1409 block_end_pfn += pageblock_nr_pages) { 1410 1411 block_end_pfn = min(block_end_pfn, zone_end_pfn(zone)); 1412 1413 if (!__pageblock_pfn_to_page(block_start_pfn, 1414 block_end_pfn, zone)) 1415 return; 1416 } 1417 1418 /* We confirm that there is no hole */ 1419 zone->contiguous = true; 1420 } 1421 1422 void clear_zone_contiguous(struct zone *zone) 1423 { 1424 zone->contiguous = false; 1425 } 1426 1427 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 1428 static void __init deferred_free_range(unsigned long pfn, 1429 unsigned long nr_pages) 1430 { 1431 struct page *page; 1432 unsigned long i; 1433 1434 if (!nr_pages) 1435 return; 1436 1437 page = pfn_to_page(pfn); 1438 1439 /* Free a large naturally-aligned chunk if possible */ 1440 if (nr_pages == pageblock_nr_pages && 1441 (pfn & (pageblock_nr_pages - 1)) == 0) { 1442 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 1443 __free_pages_boot_core(page, pageblock_order); 1444 return; 1445 } 1446 1447 for (i = 0; i < nr_pages; i++, page++, pfn++) { 1448 if ((pfn & (pageblock_nr_pages - 1)) == 0) 1449 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 1450 __free_pages_boot_core(page, 0); 1451 } 1452 } 1453 1454 /* Completion tracking for deferred_init_memmap() threads */ 1455 static atomic_t pgdat_init_n_undone __initdata; 1456 static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp); 1457 1458 static inline void __init pgdat_init_report_one_done(void) 1459 { 1460 if (atomic_dec_and_test(&pgdat_init_n_undone)) 1461 complete(&pgdat_init_all_done_comp); 1462 } 1463 1464 /* 1465 * Returns true if page needs to be initialized or freed to buddy allocator. 1466 * 1467 * First we check if pfn is valid on architectures where it is possible to have 1468 * holes within pageblock_nr_pages. On systems where it is not possible, this 1469 * function is optimized out. 1470 * 1471 * Then, we check if a current large page is valid by only checking the validity 1472 * of the head pfn. 1473 * 1474 * Finally, meminit_pfn_in_nid is checked on systems where pfns can interleave 1475 * within a node: a pfn is between start and end of a node, but does not belong 1476 * to this memory node. 1477 */ 1478 static inline bool __init 1479 deferred_pfn_valid(int nid, unsigned long pfn, 1480 struct mminit_pfnnid_cache *nid_init_state) 1481 { 1482 if (!pfn_valid_within(pfn)) 1483 return false; 1484 if (!(pfn & (pageblock_nr_pages - 1)) && !pfn_valid(pfn)) 1485 return false; 1486 if (!meminit_pfn_in_nid(pfn, nid, nid_init_state)) 1487 return false; 1488 return true; 1489 } 1490 1491 /* 1492 * Free pages to buddy allocator. Try to free aligned pages in 1493 * pageblock_nr_pages sizes. 1494 */ 1495 static void __init deferred_free_pages(int nid, int zid, unsigned long pfn, 1496 unsigned long end_pfn) 1497 { 1498 struct mminit_pfnnid_cache nid_init_state = { }; 1499 unsigned long nr_pgmask = pageblock_nr_pages - 1; 1500 unsigned long nr_free = 0; 1501 1502 for (; pfn < end_pfn; pfn++) { 1503 if (!deferred_pfn_valid(nid, pfn, &nid_init_state)) { 1504 deferred_free_range(pfn - nr_free, nr_free); 1505 nr_free = 0; 1506 } else if (!(pfn & nr_pgmask)) { 1507 deferred_free_range(pfn - nr_free, nr_free); 1508 nr_free = 1; 1509 cond_resched(); 1510 } else { 1511 nr_free++; 1512 } 1513 } 1514 /* Free the last block of pages to allocator */ 1515 deferred_free_range(pfn - nr_free, nr_free); 1516 } 1517 1518 /* 1519 * Initialize struct pages. We minimize pfn page lookups and scheduler checks 1520 * by performing it only once every pageblock_nr_pages. 1521 * Return number of pages initialized. 1522 */ 1523 static unsigned long __init deferred_init_pages(int nid, int zid, 1524 unsigned long pfn, 1525 unsigned long end_pfn) 1526 { 1527 struct mminit_pfnnid_cache nid_init_state = { }; 1528 unsigned long nr_pgmask = pageblock_nr_pages - 1; 1529 unsigned long nr_pages = 0; 1530 struct page *page = NULL; 1531 1532 for (; pfn < end_pfn; pfn++) { 1533 if (!deferred_pfn_valid(nid, pfn, &nid_init_state)) { 1534 page = NULL; 1535 continue; 1536 } else if (!page || !(pfn & nr_pgmask)) { 1537 page = pfn_to_page(pfn); 1538 cond_resched(); 1539 } else { 1540 page++; 1541 } 1542 __init_single_page(page, pfn, zid, nid, true); 1543 nr_pages++; 1544 } 1545 return (nr_pages); 1546 } 1547 1548 /* Initialise remaining memory on a node */ 1549 static int __init deferred_init_memmap(void *data) 1550 { 1551 pg_data_t *pgdat = data; 1552 int nid = pgdat->node_id; 1553 unsigned long start = jiffies; 1554 unsigned long nr_pages = 0; 1555 unsigned long spfn, epfn; 1556 phys_addr_t spa, epa; 1557 int zid; 1558 struct zone *zone; 1559 unsigned long first_init_pfn = pgdat->first_deferred_pfn; 1560 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id); 1561 u64 i; 1562 1563 if (first_init_pfn == ULONG_MAX) { 1564 pgdat_init_report_one_done(); 1565 return 0; 1566 } 1567 1568 /* Bind memory initialisation thread to a local node if possible */ 1569 if (!cpumask_empty(cpumask)) 1570 set_cpus_allowed_ptr(current, cpumask); 1571 1572 /* Sanity check boundaries */ 1573 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn); 1574 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat)); 1575 pgdat->first_deferred_pfn = ULONG_MAX; 1576 1577 /* Only the highest zone is deferred so find it */ 1578 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 1579 zone = pgdat->node_zones + zid; 1580 if (first_init_pfn < zone_end_pfn(zone)) 1581 break; 1582 } 1583 first_init_pfn = max(zone->zone_start_pfn, first_init_pfn); 1584 1585 /* 1586 * Initialize and free pages. We do it in two loops: first we initialize 1587 * struct page, than free to buddy allocator, because while we are 1588 * freeing pages we can access pages that are ahead (computing buddy 1589 * page in __free_one_page()). 1590 */ 1591 for_each_free_mem_range(i, nid, MEMBLOCK_NONE, &spa, &epa, NULL) { 1592 spfn = max_t(unsigned long, first_init_pfn, PFN_UP(spa)); 1593 epfn = min_t(unsigned long, zone_end_pfn(zone), PFN_DOWN(epa)); 1594 nr_pages += deferred_init_pages(nid, zid, spfn, epfn); 1595 } 1596 for_each_free_mem_range(i, nid, MEMBLOCK_NONE, &spa, &epa, NULL) { 1597 spfn = max_t(unsigned long, first_init_pfn, PFN_UP(spa)); 1598 epfn = min_t(unsigned long, zone_end_pfn(zone), PFN_DOWN(epa)); 1599 deferred_free_pages(nid, zid, spfn, epfn); 1600 } 1601 1602 /* Sanity check that the next zone really is unpopulated */ 1603 WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone)); 1604 1605 pr_info("node %d initialised, %lu pages in %ums\n", nid, nr_pages, 1606 jiffies_to_msecs(jiffies - start)); 1607 1608 pgdat_init_report_one_done(); 1609 return 0; 1610 } 1611 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */ 1612 1613 void __init page_alloc_init_late(void) 1614 { 1615 struct zone *zone; 1616 1617 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 1618 int nid; 1619 1620 /* There will be num_node_state(N_MEMORY) threads */ 1621 atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY)); 1622 for_each_node_state(nid, N_MEMORY) { 1623 kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid); 1624 } 1625 1626 /* Block until all are initialised */ 1627 wait_for_completion(&pgdat_init_all_done_comp); 1628 1629 /* Reinit limits that are based on free pages after the kernel is up */ 1630 files_maxfiles_init(); 1631 #endif 1632 #ifdef CONFIG_ARCH_DISCARD_MEMBLOCK 1633 /* Discard memblock private memory */ 1634 memblock_discard(); 1635 #endif 1636 1637 for_each_populated_zone(zone) 1638 set_zone_contiguous(zone); 1639 } 1640 1641 #ifdef CONFIG_CMA 1642 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */ 1643 void __init init_cma_reserved_pageblock(struct page *page) 1644 { 1645 unsigned i = pageblock_nr_pages; 1646 struct page *p = page; 1647 1648 do { 1649 __ClearPageReserved(p); 1650 set_page_count(p, 0); 1651 } while (++p, --i); 1652 1653 set_pageblock_migratetype(page, MIGRATE_CMA); 1654 1655 if (pageblock_order >= MAX_ORDER) { 1656 i = pageblock_nr_pages; 1657 p = page; 1658 do { 1659 set_page_refcounted(p); 1660 __free_pages(p, MAX_ORDER - 1); 1661 p += MAX_ORDER_NR_PAGES; 1662 } while (i -= MAX_ORDER_NR_PAGES); 1663 } else { 1664 set_page_refcounted(page); 1665 __free_pages(page, pageblock_order); 1666 } 1667 1668 adjust_managed_page_count(page, pageblock_nr_pages); 1669 } 1670 #endif 1671 1672 /* 1673 * The order of subdivision here is critical for the IO subsystem. 1674 * Please do not alter this order without good reasons and regression 1675 * testing. Specifically, as large blocks of memory are subdivided, 1676 * the order in which smaller blocks are delivered depends on the order 1677 * they're subdivided in this function. This is the primary factor 1678 * influencing the order in which pages are delivered to the IO 1679 * subsystem according to empirical testing, and this is also justified 1680 * by considering the behavior of a buddy system containing a single 1681 * large block of memory acted on by a series of small allocations. 1682 * This behavior is a critical factor in sglist merging's success. 1683 * 1684 * -- nyc 1685 */ 1686 static inline void expand(struct zone *zone, struct page *page, 1687 int low, int high, struct free_area *area, 1688 int migratetype) 1689 { 1690 unsigned long size = 1 << high; 1691 1692 while (high > low) { 1693 area--; 1694 high--; 1695 size >>= 1; 1696 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]); 1697 1698 /* 1699 * Mark as guard pages (or page), that will allow to 1700 * merge back to allocator when buddy will be freed. 1701 * Corresponding page table entries will not be touched, 1702 * pages will stay not present in virtual address space 1703 */ 1704 if (set_page_guard(zone, &page[size], high, migratetype)) 1705 continue; 1706 1707 list_add(&page[size].lru, &area->free_list[migratetype]); 1708 area->nr_free++; 1709 set_page_order(&page[size], high); 1710 } 1711 } 1712 1713 static void check_new_page_bad(struct page *page) 1714 { 1715 const char *bad_reason = NULL; 1716 unsigned long bad_flags = 0; 1717 1718 if (unlikely(atomic_read(&page->_mapcount) != -1)) 1719 bad_reason = "nonzero mapcount"; 1720 if (unlikely(page->mapping != NULL)) 1721 bad_reason = "non-NULL mapping"; 1722 if (unlikely(page_ref_count(page) != 0)) 1723 bad_reason = "nonzero _count"; 1724 if (unlikely(page->flags & __PG_HWPOISON)) { 1725 bad_reason = "HWPoisoned (hardware-corrupted)"; 1726 bad_flags = __PG_HWPOISON; 1727 /* Don't complain about hwpoisoned pages */ 1728 page_mapcount_reset(page); /* remove PageBuddy */ 1729 return; 1730 } 1731 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) { 1732 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set"; 1733 bad_flags = PAGE_FLAGS_CHECK_AT_PREP; 1734 } 1735 #ifdef CONFIG_MEMCG 1736 if (unlikely(page->mem_cgroup)) 1737 bad_reason = "page still charged to cgroup"; 1738 #endif 1739 bad_page(page, bad_reason, bad_flags); 1740 } 1741 1742 /* 1743 * This page is about to be returned from the page allocator 1744 */ 1745 static inline int check_new_page(struct page *page) 1746 { 1747 if (likely(page_expected_state(page, 1748 PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON))) 1749 return 0; 1750 1751 check_new_page_bad(page); 1752 return 1; 1753 } 1754 1755 static inline bool free_pages_prezeroed(void) 1756 { 1757 return IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) && 1758 page_poisoning_enabled(); 1759 } 1760 1761 #ifdef CONFIG_DEBUG_VM 1762 static bool check_pcp_refill(struct page *page) 1763 { 1764 return false; 1765 } 1766 1767 static bool check_new_pcp(struct page *page) 1768 { 1769 return check_new_page(page); 1770 } 1771 #else 1772 static bool check_pcp_refill(struct page *page) 1773 { 1774 return check_new_page(page); 1775 } 1776 static bool check_new_pcp(struct page *page) 1777 { 1778 return false; 1779 } 1780 #endif /* CONFIG_DEBUG_VM */ 1781 1782 static bool check_new_pages(struct page *page, unsigned int order) 1783 { 1784 int i; 1785 for (i = 0; i < (1 << order); i++) { 1786 struct page *p = page + i; 1787 1788 if (unlikely(check_new_page(p))) 1789 return true; 1790 } 1791 1792 return false; 1793 } 1794 1795 inline void post_alloc_hook(struct page *page, unsigned int order, 1796 gfp_t gfp_flags) 1797 { 1798 set_page_private(page, 0); 1799 set_page_refcounted(page); 1800 1801 arch_alloc_page(page, order); 1802 kernel_map_pages(page, 1 << order, 1); 1803 kernel_poison_pages(page, 1 << order, 1); 1804 kasan_alloc_pages(page, order); 1805 set_page_owner(page, order, gfp_flags); 1806 } 1807 1808 static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags, 1809 unsigned int alloc_flags) 1810 { 1811 int i; 1812 1813 post_alloc_hook(page, order, gfp_flags); 1814 1815 if (!free_pages_prezeroed() && (gfp_flags & __GFP_ZERO)) 1816 for (i = 0; i < (1 << order); i++) 1817 clear_highpage(page + i); 1818 1819 if (order && (gfp_flags & __GFP_COMP)) 1820 prep_compound_page(page, order); 1821 1822 /* 1823 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to 1824 * allocate the page. The expectation is that the caller is taking 1825 * steps that will free more memory. The caller should avoid the page 1826 * being used for !PFMEMALLOC purposes. 1827 */ 1828 if (alloc_flags & ALLOC_NO_WATERMARKS) 1829 set_page_pfmemalloc(page); 1830 else 1831 clear_page_pfmemalloc(page); 1832 } 1833 1834 /* 1835 * Go through the free lists for the given migratetype and remove 1836 * the smallest available page from the freelists 1837 */ 1838 static __always_inline 1839 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order, 1840 int migratetype) 1841 { 1842 unsigned int current_order; 1843 struct free_area *area; 1844 struct page *page; 1845 1846 /* Find a page of the appropriate size in the preferred list */ 1847 for (current_order = order; current_order < MAX_ORDER; ++current_order) { 1848 area = &(zone->free_area[current_order]); 1849 page = list_first_entry_or_null(&area->free_list[migratetype], 1850 struct page, lru); 1851 if (!page) 1852 continue; 1853 list_del(&page->lru); 1854 rmv_page_order(page); 1855 area->nr_free--; 1856 expand(zone, page, order, current_order, area, migratetype); 1857 set_pcppage_migratetype(page, migratetype); 1858 return page; 1859 } 1860 1861 return NULL; 1862 } 1863 1864 1865 /* 1866 * This array describes the order lists are fallen back to when 1867 * the free lists for the desirable migrate type are depleted 1868 */ 1869 static int fallbacks[MIGRATE_TYPES][4] = { 1870 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_TYPES }, 1871 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_TYPES }, 1872 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES }, 1873 #ifdef CONFIG_CMA 1874 [MIGRATE_CMA] = { MIGRATE_TYPES }, /* Never used */ 1875 #endif 1876 #ifdef CONFIG_MEMORY_ISOLATION 1877 [MIGRATE_ISOLATE] = { MIGRATE_TYPES }, /* Never used */ 1878 #endif 1879 }; 1880 1881 #ifdef CONFIG_CMA 1882 static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone, 1883 unsigned int order) 1884 { 1885 return __rmqueue_smallest(zone, order, MIGRATE_CMA); 1886 } 1887 #else 1888 static inline struct page *__rmqueue_cma_fallback(struct zone *zone, 1889 unsigned int order) { return NULL; } 1890 #endif 1891 1892 /* 1893 * Move the free pages in a range to the free lists of the requested type. 1894 * Note that start_page and end_pages are not aligned on a pageblock 1895 * boundary. If alignment is required, use move_freepages_block() 1896 */ 1897 static int move_freepages(struct zone *zone, 1898 struct page *start_page, struct page *end_page, 1899 int migratetype, int *num_movable) 1900 { 1901 struct page *page; 1902 unsigned int order; 1903 int pages_moved = 0; 1904 1905 #ifndef CONFIG_HOLES_IN_ZONE 1906 /* 1907 * page_zone is not safe to call in this context when 1908 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant 1909 * anyway as we check zone boundaries in move_freepages_block(). 1910 * Remove at a later date when no bug reports exist related to 1911 * grouping pages by mobility 1912 */ 1913 VM_BUG_ON(pfn_valid(page_to_pfn(start_page)) && 1914 pfn_valid(page_to_pfn(end_page)) && 1915 page_zone(start_page) != page_zone(end_page)); 1916 #endif 1917 1918 if (num_movable) 1919 *num_movable = 0; 1920 1921 for (page = start_page; page <= end_page;) { 1922 if (!pfn_valid_within(page_to_pfn(page))) { 1923 page++; 1924 continue; 1925 } 1926 1927 /* Make sure we are not inadvertently changing nodes */ 1928 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page); 1929 1930 if (!PageBuddy(page)) { 1931 /* 1932 * We assume that pages that could be isolated for 1933 * migration are movable. But we don't actually try 1934 * isolating, as that would be expensive. 1935 */ 1936 if (num_movable && 1937 (PageLRU(page) || __PageMovable(page))) 1938 (*num_movable)++; 1939 1940 page++; 1941 continue; 1942 } 1943 1944 order = page_order(page); 1945 list_move(&page->lru, 1946 &zone->free_area[order].free_list[migratetype]); 1947 page += 1 << order; 1948 pages_moved += 1 << order; 1949 } 1950 1951 return pages_moved; 1952 } 1953 1954 int move_freepages_block(struct zone *zone, struct page *page, 1955 int migratetype, int *num_movable) 1956 { 1957 unsigned long start_pfn, end_pfn; 1958 struct page *start_page, *end_page; 1959 1960 start_pfn = page_to_pfn(page); 1961 start_pfn = start_pfn & ~(pageblock_nr_pages-1); 1962 start_page = pfn_to_page(start_pfn); 1963 end_page = start_page + pageblock_nr_pages - 1; 1964 end_pfn = start_pfn + pageblock_nr_pages - 1; 1965 1966 /* Do not cross zone boundaries */ 1967 if (!zone_spans_pfn(zone, start_pfn)) 1968 start_page = page; 1969 if (!zone_spans_pfn(zone, end_pfn)) 1970 return 0; 1971 1972 return move_freepages(zone, start_page, end_page, migratetype, 1973 num_movable); 1974 } 1975 1976 static void change_pageblock_range(struct page *pageblock_page, 1977 int start_order, int migratetype) 1978 { 1979 int nr_pageblocks = 1 << (start_order - pageblock_order); 1980 1981 while (nr_pageblocks--) { 1982 set_pageblock_migratetype(pageblock_page, migratetype); 1983 pageblock_page += pageblock_nr_pages; 1984 } 1985 } 1986 1987 /* 1988 * When we are falling back to another migratetype during allocation, try to 1989 * steal extra free pages from the same pageblocks to satisfy further 1990 * allocations, instead of polluting multiple pageblocks. 1991 * 1992 * If we are stealing a relatively large buddy page, it is likely there will 1993 * be more free pages in the pageblock, so try to steal them all. For 1994 * reclaimable and unmovable allocations, we steal regardless of page size, 1995 * as fragmentation caused by those allocations polluting movable pageblocks 1996 * is worse than movable allocations stealing from unmovable and reclaimable 1997 * pageblocks. 1998 */ 1999 static bool can_steal_fallback(unsigned int order, int start_mt) 2000 { 2001 /* 2002 * Leaving this order check is intended, although there is 2003 * relaxed order check in next check. The reason is that 2004 * we can actually steal whole pageblock if this condition met, 2005 * but, below check doesn't guarantee it and that is just heuristic 2006 * so could be changed anytime. 2007 */ 2008 if (order >= pageblock_order) 2009 return true; 2010 2011 if (order >= pageblock_order / 2 || 2012 start_mt == MIGRATE_RECLAIMABLE || 2013 start_mt == MIGRATE_UNMOVABLE || 2014 page_group_by_mobility_disabled) 2015 return true; 2016 2017 return false; 2018 } 2019 2020 /* 2021 * This function implements actual steal behaviour. If order is large enough, 2022 * we can steal whole pageblock. If not, we first move freepages in this 2023 * pageblock to our migratetype and determine how many already-allocated pages 2024 * are there in the pageblock with a compatible migratetype. If at least half 2025 * of pages are free or compatible, we can change migratetype of the pageblock 2026 * itself, so pages freed in the future will be put on the correct free list. 2027 */ 2028 static void steal_suitable_fallback(struct zone *zone, struct page *page, 2029 int start_type, bool whole_block) 2030 { 2031 unsigned int current_order = page_order(page); 2032 struct free_area *area; 2033 int free_pages, movable_pages, alike_pages; 2034 int old_block_type; 2035 2036 old_block_type = get_pageblock_migratetype(page); 2037 2038 /* 2039 * This can happen due to races and we want to prevent broken 2040 * highatomic accounting. 2041 */ 2042 if (is_migrate_highatomic(old_block_type)) 2043 goto single_page; 2044 2045 /* Take ownership for orders >= pageblock_order */ 2046 if (current_order >= pageblock_order) { 2047 change_pageblock_range(page, current_order, start_type); 2048 goto single_page; 2049 } 2050 2051 /* We are not allowed to try stealing from the whole block */ 2052 if (!whole_block) 2053 goto single_page; 2054 2055 free_pages = move_freepages_block(zone, page, start_type, 2056 &movable_pages); 2057 /* 2058 * Determine how many pages are compatible with our allocation. 2059 * For movable allocation, it's the number of movable pages which 2060 * we just obtained. For other types it's a bit more tricky. 2061 */ 2062 if (start_type == MIGRATE_MOVABLE) { 2063 alike_pages = movable_pages; 2064 } else { 2065 /* 2066 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation 2067 * to MOVABLE pageblock, consider all non-movable pages as 2068 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or 2069 * vice versa, be conservative since we can't distinguish the 2070 * exact migratetype of non-movable pages. 2071 */ 2072 if (old_block_type == MIGRATE_MOVABLE) 2073 alike_pages = pageblock_nr_pages 2074 - (free_pages + movable_pages); 2075 else 2076 alike_pages = 0; 2077 } 2078 2079 /* moving whole block can fail due to zone boundary conditions */ 2080 if (!free_pages) 2081 goto single_page; 2082 2083 /* 2084 * If a sufficient number of pages in the block are either free or of 2085 * comparable migratability as our allocation, claim the whole block. 2086 */ 2087 if (free_pages + alike_pages >= (1 << (pageblock_order-1)) || 2088 page_group_by_mobility_disabled) 2089 set_pageblock_migratetype(page, start_type); 2090 2091 return; 2092 2093 single_page: 2094 area = &zone->free_area[current_order]; 2095 list_move(&page->lru, &area->free_list[start_type]); 2096 } 2097 2098 /* 2099 * Check whether there is a suitable fallback freepage with requested order. 2100 * If only_stealable is true, this function returns fallback_mt only if 2101 * we can steal other freepages all together. This would help to reduce 2102 * fragmentation due to mixed migratetype pages in one pageblock. 2103 */ 2104 int find_suitable_fallback(struct free_area *area, unsigned int order, 2105 int migratetype, bool only_stealable, bool *can_steal) 2106 { 2107 int i; 2108 int fallback_mt; 2109 2110 if (area->nr_free == 0) 2111 return -1; 2112 2113 *can_steal = false; 2114 for (i = 0;; i++) { 2115 fallback_mt = fallbacks[migratetype][i]; 2116 if (fallback_mt == MIGRATE_TYPES) 2117 break; 2118 2119 if (list_empty(&area->free_list[fallback_mt])) 2120 continue; 2121 2122 if (can_steal_fallback(order, migratetype)) 2123 *can_steal = true; 2124 2125 if (!only_stealable) 2126 return fallback_mt; 2127 2128 if (*can_steal) 2129 return fallback_mt; 2130 } 2131 2132 return -1; 2133 } 2134 2135 /* 2136 * Reserve a pageblock for exclusive use of high-order atomic allocations if 2137 * there are no empty page blocks that contain a page with a suitable order 2138 */ 2139 static void reserve_highatomic_pageblock(struct page *page, struct zone *zone, 2140 unsigned int alloc_order) 2141 { 2142 int mt; 2143 unsigned long max_managed, flags; 2144 2145 /* 2146 * Limit the number reserved to 1 pageblock or roughly 1% of a zone. 2147 * Check is race-prone but harmless. 2148 */ 2149 max_managed = (zone->managed_pages / 100) + pageblock_nr_pages; 2150 if (zone->nr_reserved_highatomic >= max_managed) 2151 return; 2152 2153 spin_lock_irqsave(&zone->lock, flags); 2154 2155 /* Recheck the nr_reserved_highatomic limit under the lock */ 2156 if (zone->nr_reserved_highatomic >= max_managed) 2157 goto out_unlock; 2158 2159 /* Yoink! */ 2160 mt = get_pageblock_migratetype(page); 2161 if (!is_migrate_highatomic(mt) && !is_migrate_isolate(mt) 2162 && !is_migrate_cma(mt)) { 2163 zone->nr_reserved_highatomic += pageblock_nr_pages; 2164 set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC); 2165 move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL); 2166 } 2167 2168 out_unlock: 2169 spin_unlock_irqrestore(&zone->lock, flags); 2170 } 2171 2172 /* 2173 * Used when an allocation is about to fail under memory pressure. This 2174 * potentially hurts the reliability of high-order allocations when under 2175 * intense memory pressure but failed atomic allocations should be easier 2176 * to recover from than an OOM. 2177 * 2178 * If @force is true, try to unreserve a pageblock even though highatomic 2179 * pageblock is exhausted. 2180 */ 2181 static bool unreserve_highatomic_pageblock(const struct alloc_context *ac, 2182 bool force) 2183 { 2184 struct zonelist *zonelist = ac->zonelist; 2185 unsigned long flags; 2186 struct zoneref *z; 2187 struct zone *zone; 2188 struct page *page; 2189 int order; 2190 bool ret; 2191 2192 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx, 2193 ac->nodemask) { 2194 /* 2195 * Preserve at least one pageblock unless memory pressure 2196 * is really high. 2197 */ 2198 if (!force && zone->nr_reserved_highatomic <= 2199 pageblock_nr_pages) 2200 continue; 2201 2202 spin_lock_irqsave(&zone->lock, flags); 2203 for (order = 0; order < MAX_ORDER; order++) { 2204 struct free_area *area = &(zone->free_area[order]); 2205 2206 page = list_first_entry_or_null( 2207 &area->free_list[MIGRATE_HIGHATOMIC], 2208 struct page, lru); 2209 if (!page) 2210 continue; 2211 2212 /* 2213 * In page freeing path, migratetype change is racy so 2214 * we can counter several free pages in a pageblock 2215 * in this loop althoug we changed the pageblock type 2216 * from highatomic to ac->migratetype. So we should 2217 * adjust the count once. 2218 */ 2219 if (is_migrate_highatomic_page(page)) { 2220 /* 2221 * It should never happen but changes to 2222 * locking could inadvertently allow a per-cpu 2223 * drain to add pages to MIGRATE_HIGHATOMIC 2224 * while unreserving so be safe and watch for 2225 * underflows. 2226 */ 2227 zone->nr_reserved_highatomic -= min( 2228 pageblock_nr_pages, 2229 zone->nr_reserved_highatomic); 2230 } 2231 2232 /* 2233 * Convert to ac->migratetype and avoid the normal 2234 * pageblock stealing heuristics. Minimally, the caller 2235 * is doing the work and needs the pages. More 2236 * importantly, if the block was always converted to 2237 * MIGRATE_UNMOVABLE or another type then the number 2238 * of pageblocks that cannot be completely freed 2239 * may increase. 2240 */ 2241 set_pageblock_migratetype(page, ac->migratetype); 2242 ret = move_freepages_block(zone, page, ac->migratetype, 2243 NULL); 2244 if (ret) { 2245 spin_unlock_irqrestore(&zone->lock, flags); 2246 return ret; 2247 } 2248 } 2249 spin_unlock_irqrestore(&zone->lock, flags); 2250 } 2251 2252 return false; 2253 } 2254 2255 /* 2256 * Try finding a free buddy page on the fallback list and put it on the free 2257 * list of requested migratetype, possibly along with other pages from the same 2258 * block, depending on fragmentation avoidance heuristics. Returns true if 2259 * fallback was found so that __rmqueue_smallest() can grab it. 2260 * 2261 * The use of signed ints for order and current_order is a deliberate 2262 * deviation from the rest of this file, to make the for loop 2263 * condition simpler. 2264 */ 2265 static __always_inline bool 2266 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype) 2267 { 2268 struct free_area *area; 2269 int current_order; 2270 struct page *page; 2271 int fallback_mt; 2272 bool can_steal; 2273 2274 /* 2275 * Find the largest available free page in the other list. This roughly 2276 * approximates finding the pageblock with the most free pages, which 2277 * would be too costly to do exactly. 2278 */ 2279 for (current_order = MAX_ORDER - 1; current_order >= order; 2280 --current_order) { 2281 area = &(zone->free_area[current_order]); 2282 fallback_mt = find_suitable_fallback(area, current_order, 2283 start_migratetype, false, &can_steal); 2284 if (fallback_mt == -1) 2285 continue; 2286 2287 /* 2288 * We cannot steal all free pages from the pageblock and the 2289 * requested migratetype is movable. In that case it's better to 2290 * steal and split the smallest available page instead of the 2291 * largest available page, because even if the next movable 2292 * allocation falls back into a different pageblock than this 2293 * one, it won't cause permanent fragmentation. 2294 */ 2295 if (!can_steal && start_migratetype == MIGRATE_MOVABLE 2296 && current_order > order) 2297 goto find_smallest; 2298 2299 goto do_steal; 2300 } 2301 2302 return false; 2303 2304 find_smallest: 2305 for (current_order = order; current_order < MAX_ORDER; 2306 current_order++) { 2307 area = &(zone->free_area[current_order]); 2308 fallback_mt = find_suitable_fallback(area, current_order, 2309 start_migratetype, false, &can_steal); 2310 if (fallback_mt != -1) 2311 break; 2312 } 2313 2314 /* 2315 * This should not happen - we already found a suitable fallback 2316 * when looking for the largest page. 2317 */ 2318 VM_BUG_ON(current_order == MAX_ORDER); 2319 2320 do_steal: 2321 page = list_first_entry(&area->free_list[fallback_mt], 2322 struct page, lru); 2323 2324 steal_suitable_fallback(zone, page, start_migratetype, can_steal); 2325 2326 trace_mm_page_alloc_extfrag(page, order, current_order, 2327 start_migratetype, fallback_mt); 2328 2329 return true; 2330 2331 } 2332 2333 /* 2334 * Do the hard work of removing an element from the buddy allocator. 2335 * Call me with the zone->lock already held. 2336 */ 2337 static __always_inline struct page * 2338 __rmqueue(struct zone *zone, unsigned int order, int migratetype) 2339 { 2340 struct page *page; 2341 2342 retry: 2343 page = __rmqueue_smallest(zone, order, migratetype); 2344 if (unlikely(!page)) { 2345 if (migratetype == MIGRATE_MOVABLE) 2346 page = __rmqueue_cma_fallback(zone, order); 2347 2348 if (!page && __rmqueue_fallback(zone, order, migratetype)) 2349 goto retry; 2350 } 2351 2352 trace_mm_page_alloc_zone_locked(page, order, migratetype); 2353 return page; 2354 } 2355 2356 /* 2357 * Obtain a specified number of elements from the buddy allocator, all under 2358 * a single hold of the lock, for efficiency. Add them to the supplied list. 2359 * Returns the number of new pages which were placed at *list. 2360 */ 2361 static int rmqueue_bulk(struct zone *zone, unsigned int order, 2362 unsigned long count, struct list_head *list, 2363 int migratetype) 2364 { 2365 int i, alloced = 0; 2366 2367 spin_lock(&zone->lock); 2368 for (i = 0; i < count; ++i) { 2369 struct page *page = __rmqueue(zone, order, migratetype); 2370 if (unlikely(page == NULL)) 2371 break; 2372 2373 if (unlikely(check_pcp_refill(page))) 2374 continue; 2375 2376 /* 2377 * Split buddy pages returned by expand() are received here in 2378 * physical page order. The page is added to the tail of 2379 * caller's list. From the callers perspective, the linked list 2380 * is ordered by page number under some conditions. This is 2381 * useful for IO devices that can forward direction from the 2382 * head, thus also in the physical page order. This is useful 2383 * for IO devices that can merge IO requests if the physical 2384 * pages are ordered properly. 2385 */ 2386 list_add_tail(&page->lru, list); 2387 alloced++; 2388 if (is_migrate_cma(get_pcppage_migratetype(page))) 2389 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES, 2390 -(1 << order)); 2391 } 2392 2393 /* 2394 * i pages were removed from the buddy list even if some leak due 2395 * to check_pcp_refill failing so adjust NR_FREE_PAGES based 2396 * on i. Do not confuse with 'alloced' which is the number of 2397 * pages added to the pcp list. 2398 */ 2399 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order)); 2400 spin_unlock(&zone->lock); 2401 return alloced; 2402 } 2403 2404 #ifdef CONFIG_NUMA 2405 /* 2406 * Called from the vmstat counter updater to drain pagesets of this 2407 * currently executing processor on remote nodes after they have 2408 * expired. 2409 * 2410 * Note that this function must be called with the thread pinned to 2411 * a single processor. 2412 */ 2413 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp) 2414 { 2415 unsigned long flags; 2416 int to_drain, batch; 2417 2418 local_irq_save(flags); 2419 batch = READ_ONCE(pcp->batch); 2420 to_drain = min(pcp->count, batch); 2421 if (to_drain > 0) { 2422 free_pcppages_bulk(zone, to_drain, pcp); 2423 pcp->count -= to_drain; 2424 } 2425 local_irq_restore(flags); 2426 } 2427 #endif 2428 2429 /* 2430 * Drain pcplists of the indicated processor and zone. 2431 * 2432 * The processor must either be the current processor and the 2433 * thread pinned to the current processor or a processor that 2434 * is not online. 2435 */ 2436 static void drain_pages_zone(unsigned int cpu, struct zone *zone) 2437 { 2438 unsigned long flags; 2439 struct per_cpu_pageset *pset; 2440 struct per_cpu_pages *pcp; 2441 2442 local_irq_save(flags); 2443 pset = per_cpu_ptr(zone->pageset, cpu); 2444 2445 pcp = &pset->pcp; 2446 if (pcp->count) { 2447 free_pcppages_bulk(zone, pcp->count, pcp); 2448 pcp->count = 0; 2449 } 2450 local_irq_restore(flags); 2451 } 2452 2453 /* 2454 * Drain pcplists of all zones on the indicated processor. 2455 * 2456 * The processor must either be the current processor and the 2457 * thread pinned to the current processor or a processor that 2458 * is not online. 2459 */ 2460 static void drain_pages(unsigned int cpu) 2461 { 2462 struct zone *zone; 2463 2464 for_each_populated_zone(zone) { 2465 drain_pages_zone(cpu, zone); 2466 } 2467 } 2468 2469 /* 2470 * Spill all of this CPU's per-cpu pages back into the buddy allocator. 2471 * 2472 * The CPU has to be pinned. When zone parameter is non-NULL, spill just 2473 * the single zone's pages. 2474 */ 2475 void drain_local_pages(struct zone *zone) 2476 { 2477 int cpu = smp_processor_id(); 2478 2479 if (zone) 2480 drain_pages_zone(cpu, zone); 2481 else 2482 drain_pages(cpu); 2483 } 2484 2485 static void drain_local_pages_wq(struct work_struct *work) 2486 { 2487 /* 2488 * drain_all_pages doesn't use proper cpu hotplug protection so 2489 * we can race with cpu offline when the WQ can move this from 2490 * a cpu pinned worker to an unbound one. We can operate on a different 2491 * cpu which is allright but we also have to make sure to not move to 2492 * a different one. 2493 */ 2494 preempt_disable(); 2495 drain_local_pages(NULL); 2496 preempt_enable(); 2497 } 2498 2499 /* 2500 * Spill all the per-cpu pages from all CPUs back into the buddy allocator. 2501 * 2502 * When zone parameter is non-NULL, spill just the single zone's pages. 2503 * 2504 * Note that this can be extremely slow as the draining happens in a workqueue. 2505 */ 2506 void drain_all_pages(struct zone *zone) 2507 { 2508 int cpu; 2509 2510 /* 2511 * Allocate in the BSS so we wont require allocation in 2512 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y 2513 */ 2514 static cpumask_t cpus_with_pcps; 2515 2516 /* 2517 * Make sure nobody triggers this path before mm_percpu_wq is fully 2518 * initialized. 2519 */ 2520 if (WARN_ON_ONCE(!mm_percpu_wq)) 2521 return; 2522 2523 /* 2524 * Do not drain if one is already in progress unless it's specific to 2525 * a zone. Such callers are primarily CMA and memory hotplug and need 2526 * the drain to be complete when the call returns. 2527 */ 2528 if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) { 2529 if (!zone) 2530 return; 2531 mutex_lock(&pcpu_drain_mutex); 2532 } 2533 2534 /* 2535 * We don't care about racing with CPU hotplug event 2536 * as offline notification will cause the notified 2537 * cpu to drain that CPU pcps and on_each_cpu_mask 2538 * disables preemption as part of its processing 2539 */ 2540 for_each_online_cpu(cpu) { 2541 struct per_cpu_pageset *pcp; 2542 struct zone *z; 2543 bool has_pcps = false; 2544 2545 if (zone) { 2546 pcp = per_cpu_ptr(zone->pageset, cpu); 2547 if (pcp->pcp.count) 2548 has_pcps = true; 2549 } else { 2550 for_each_populated_zone(z) { 2551 pcp = per_cpu_ptr(z->pageset, cpu); 2552 if (pcp->pcp.count) { 2553 has_pcps = true; 2554 break; 2555 } 2556 } 2557 } 2558 2559 if (has_pcps) 2560 cpumask_set_cpu(cpu, &cpus_with_pcps); 2561 else 2562 cpumask_clear_cpu(cpu, &cpus_with_pcps); 2563 } 2564 2565 for_each_cpu(cpu, &cpus_with_pcps) { 2566 struct work_struct *work = per_cpu_ptr(&pcpu_drain, cpu); 2567 INIT_WORK(work, drain_local_pages_wq); 2568 queue_work_on(cpu, mm_percpu_wq, work); 2569 } 2570 for_each_cpu(cpu, &cpus_with_pcps) 2571 flush_work(per_cpu_ptr(&pcpu_drain, cpu)); 2572 2573 mutex_unlock(&pcpu_drain_mutex); 2574 } 2575 2576 #ifdef CONFIG_HIBERNATION 2577 2578 /* 2579 * Touch the watchdog for every WD_PAGE_COUNT pages. 2580 */ 2581 #define WD_PAGE_COUNT (128*1024) 2582 2583 void mark_free_pages(struct zone *zone) 2584 { 2585 unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT; 2586 unsigned long flags; 2587 unsigned int order, t; 2588 struct page *page; 2589 2590 if (zone_is_empty(zone)) 2591 return; 2592 2593 spin_lock_irqsave(&zone->lock, flags); 2594 2595 max_zone_pfn = zone_end_pfn(zone); 2596 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) 2597 if (pfn_valid(pfn)) { 2598 page = pfn_to_page(pfn); 2599 2600 if (!--page_count) { 2601 touch_nmi_watchdog(); 2602 page_count = WD_PAGE_COUNT; 2603 } 2604 2605 if (page_zone(page) != zone) 2606 continue; 2607 2608 if (!swsusp_page_is_forbidden(page)) 2609 swsusp_unset_page_free(page); 2610 } 2611 2612 for_each_migratetype_order(order, t) { 2613 list_for_each_entry(page, 2614 &zone->free_area[order].free_list[t], lru) { 2615 unsigned long i; 2616 2617 pfn = page_to_pfn(page); 2618 for (i = 0; i < (1UL << order); i++) { 2619 if (!--page_count) { 2620 touch_nmi_watchdog(); 2621 page_count = WD_PAGE_COUNT; 2622 } 2623 swsusp_set_page_free(pfn_to_page(pfn + i)); 2624 } 2625 } 2626 } 2627 spin_unlock_irqrestore(&zone->lock, flags); 2628 } 2629 #endif /* CONFIG_PM */ 2630 2631 static bool free_unref_page_prepare(struct page *page, unsigned long pfn) 2632 { 2633 int migratetype; 2634 2635 if (!free_pcp_prepare(page)) 2636 return false; 2637 2638 migratetype = get_pfnblock_migratetype(page, pfn); 2639 set_pcppage_migratetype(page, migratetype); 2640 return true; 2641 } 2642 2643 static void free_unref_page_commit(struct page *page, unsigned long pfn) 2644 { 2645 struct zone *zone = page_zone(page); 2646 struct per_cpu_pages *pcp; 2647 int migratetype; 2648 2649 migratetype = get_pcppage_migratetype(page); 2650 __count_vm_event(PGFREE); 2651 2652 /* 2653 * We only track unmovable, reclaimable and movable on pcp lists. 2654 * Free ISOLATE pages back to the allocator because they are being 2655 * offlined but treat HIGHATOMIC as movable pages so we can get those 2656 * areas back if necessary. Otherwise, we may have to free 2657 * excessively into the page allocator 2658 */ 2659 if (migratetype >= MIGRATE_PCPTYPES) { 2660 if (unlikely(is_migrate_isolate(migratetype))) { 2661 free_one_page(zone, page, pfn, 0, migratetype); 2662 return; 2663 } 2664 migratetype = MIGRATE_MOVABLE; 2665 } 2666 2667 pcp = &this_cpu_ptr(zone->pageset)->pcp; 2668 list_add(&page->lru, &pcp->lists[migratetype]); 2669 pcp->count++; 2670 if (pcp->count >= pcp->high) { 2671 unsigned long batch = READ_ONCE(pcp->batch); 2672 free_pcppages_bulk(zone, batch, pcp); 2673 pcp->count -= batch; 2674 } 2675 } 2676 2677 /* 2678 * Free a 0-order page 2679 */ 2680 void free_unref_page(struct page *page) 2681 { 2682 unsigned long flags; 2683 unsigned long pfn = page_to_pfn(page); 2684 2685 if (!free_unref_page_prepare(page, pfn)) 2686 return; 2687 2688 local_irq_save(flags); 2689 free_unref_page_commit(page, pfn); 2690 local_irq_restore(flags); 2691 } 2692 2693 /* 2694 * Free a list of 0-order pages 2695 */ 2696 void free_unref_page_list(struct list_head *list) 2697 { 2698 struct page *page, *next; 2699 unsigned long flags, pfn; 2700 int batch_count = 0; 2701 2702 /* Prepare pages for freeing */ 2703 list_for_each_entry_safe(page, next, list, lru) { 2704 pfn = page_to_pfn(page); 2705 if (!free_unref_page_prepare(page, pfn)) 2706 list_del(&page->lru); 2707 set_page_private(page, pfn); 2708 } 2709 2710 local_irq_save(flags); 2711 list_for_each_entry_safe(page, next, list, lru) { 2712 unsigned long pfn = page_private(page); 2713 2714 set_page_private(page, 0); 2715 trace_mm_page_free_batched(page); 2716 free_unref_page_commit(page, pfn); 2717 2718 /* 2719 * Guard against excessive IRQ disabled times when we get 2720 * a large list of pages to free. 2721 */ 2722 if (++batch_count == SWAP_CLUSTER_MAX) { 2723 local_irq_restore(flags); 2724 batch_count = 0; 2725 local_irq_save(flags); 2726 } 2727 } 2728 local_irq_restore(flags); 2729 } 2730 2731 /* 2732 * split_page takes a non-compound higher-order page, and splits it into 2733 * n (1<<order) sub-pages: page[0..n] 2734 * Each sub-page must be freed individually. 2735 * 2736 * Note: this is probably too low level an operation for use in drivers. 2737 * Please consult with lkml before using this in your driver. 2738 */ 2739 void split_page(struct page *page, unsigned int order) 2740 { 2741 int i; 2742 2743 VM_BUG_ON_PAGE(PageCompound(page), page); 2744 VM_BUG_ON_PAGE(!page_count(page), page); 2745 2746 for (i = 1; i < (1 << order); i++) 2747 set_page_refcounted(page + i); 2748 split_page_owner(page, order); 2749 } 2750 EXPORT_SYMBOL_GPL(split_page); 2751 2752 int __isolate_free_page(struct page *page, unsigned int order) 2753 { 2754 unsigned long watermark; 2755 struct zone *zone; 2756 int mt; 2757 2758 BUG_ON(!PageBuddy(page)); 2759 2760 zone = page_zone(page); 2761 mt = get_pageblock_migratetype(page); 2762 2763 if (!is_migrate_isolate(mt)) { 2764 /* 2765 * Obey watermarks as if the page was being allocated. We can 2766 * emulate a high-order watermark check with a raised order-0 2767 * watermark, because we already know our high-order page 2768 * exists. 2769 */ 2770 watermark = min_wmark_pages(zone) + (1UL << order); 2771 if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA)) 2772 return 0; 2773 2774 __mod_zone_freepage_state(zone, -(1UL << order), mt); 2775 } 2776 2777 /* Remove page from free list */ 2778 list_del(&page->lru); 2779 zone->free_area[order].nr_free--; 2780 rmv_page_order(page); 2781 2782 /* 2783 * Set the pageblock if the isolated page is at least half of a 2784 * pageblock 2785 */ 2786 if (order >= pageblock_order - 1) { 2787 struct page *endpage = page + (1 << order) - 1; 2788 for (; page < endpage; page += pageblock_nr_pages) { 2789 int mt = get_pageblock_migratetype(page); 2790 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt) 2791 && !is_migrate_highatomic(mt)) 2792 set_pageblock_migratetype(page, 2793 MIGRATE_MOVABLE); 2794 } 2795 } 2796 2797 2798 return 1UL << order; 2799 } 2800 2801 /* 2802 * Update NUMA hit/miss statistics 2803 * 2804 * Must be called with interrupts disabled. 2805 */ 2806 static inline void zone_statistics(struct zone *preferred_zone, struct zone *z) 2807 { 2808 #ifdef CONFIG_NUMA 2809 enum numa_stat_item local_stat = NUMA_LOCAL; 2810 2811 /* skip numa counters update if numa stats is disabled */ 2812 if (!static_branch_likely(&vm_numa_stat_key)) 2813 return; 2814 2815 if (z->node != numa_node_id()) 2816 local_stat = NUMA_OTHER; 2817 2818 if (z->node == preferred_zone->node) 2819 __inc_numa_state(z, NUMA_HIT); 2820 else { 2821 __inc_numa_state(z, NUMA_MISS); 2822 __inc_numa_state(preferred_zone, NUMA_FOREIGN); 2823 } 2824 __inc_numa_state(z, local_stat); 2825 #endif 2826 } 2827 2828 /* Remove page from the per-cpu list, caller must protect the list */ 2829 static struct page *__rmqueue_pcplist(struct zone *zone, int migratetype, 2830 struct per_cpu_pages *pcp, 2831 struct list_head *list) 2832 { 2833 struct page *page; 2834 2835 do { 2836 if (list_empty(list)) { 2837 pcp->count += rmqueue_bulk(zone, 0, 2838 pcp->batch, list, 2839 migratetype); 2840 if (unlikely(list_empty(list))) 2841 return NULL; 2842 } 2843 2844 page = list_first_entry(list, struct page, lru); 2845 list_del(&page->lru); 2846 pcp->count--; 2847 } while (check_new_pcp(page)); 2848 2849 return page; 2850 } 2851 2852 /* Lock and remove page from the per-cpu list */ 2853 static struct page *rmqueue_pcplist(struct zone *preferred_zone, 2854 struct zone *zone, unsigned int order, 2855 gfp_t gfp_flags, int migratetype) 2856 { 2857 struct per_cpu_pages *pcp; 2858 struct list_head *list; 2859 struct page *page; 2860 unsigned long flags; 2861 2862 local_irq_save(flags); 2863 pcp = &this_cpu_ptr(zone->pageset)->pcp; 2864 list = &pcp->lists[migratetype]; 2865 page = __rmqueue_pcplist(zone, migratetype, pcp, list); 2866 if (page) { 2867 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order); 2868 zone_statistics(preferred_zone, zone); 2869 } 2870 local_irq_restore(flags); 2871 return page; 2872 } 2873 2874 /* 2875 * Allocate a page from the given zone. Use pcplists for order-0 allocations. 2876 */ 2877 static inline 2878 struct page *rmqueue(struct zone *preferred_zone, 2879 struct zone *zone, unsigned int order, 2880 gfp_t gfp_flags, unsigned int alloc_flags, 2881 int migratetype) 2882 { 2883 unsigned long flags; 2884 struct page *page; 2885 2886 if (likely(order == 0)) { 2887 page = rmqueue_pcplist(preferred_zone, zone, order, 2888 gfp_flags, migratetype); 2889 goto out; 2890 } 2891 2892 /* 2893 * We most definitely don't want callers attempting to 2894 * allocate greater than order-1 page units with __GFP_NOFAIL. 2895 */ 2896 WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1)); 2897 spin_lock_irqsave(&zone->lock, flags); 2898 2899 do { 2900 page = NULL; 2901 if (alloc_flags & ALLOC_HARDER) { 2902 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC); 2903 if (page) 2904 trace_mm_page_alloc_zone_locked(page, order, migratetype); 2905 } 2906 if (!page) 2907 page = __rmqueue(zone, order, migratetype); 2908 } while (page && check_new_pages(page, order)); 2909 spin_unlock(&zone->lock); 2910 if (!page) 2911 goto failed; 2912 __mod_zone_freepage_state(zone, -(1 << order), 2913 get_pcppage_migratetype(page)); 2914 2915 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order); 2916 zone_statistics(preferred_zone, zone); 2917 local_irq_restore(flags); 2918 2919 out: 2920 VM_BUG_ON_PAGE(page && bad_range(zone, page), page); 2921 return page; 2922 2923 failed: 2924 local_irq_restore(flags); 2925 return NULL; 2926 } 2927 2928 #ifdef CONFIG_FAIL_PAGE_ALLOC 2929 2930 static struct { 2931 struct fault_attr attr; 2932 2933 bool ignore_gfp_highmem; 2934 bool ignore_gfp_reclaim; 2935 u32 min_order; 2936 } fail_page_alloc = { 2937 .attr = FAULT_ATTR_INITIALIZER, 2938 .ignore_gfp_reclaim = true, 2939 .ignore_gfp_highmem = true, 2940 .min_order = 1, 2941 }; 2942 2943 static int __init setup_fail_page_alloc(char *str) 2944 { 2945 return setup_fault_attr(&fail_page_alloc.attr, str); 2946 } 2947 __setup("fail_page_alloc=", setup_fail_page_alloc); 2948 2949 static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) 2950 { 2951 if (order < fail_page_alloc.min_order) 2952 return false; 2953 if (gfp_mask & __GFP_NOFAIL) 2954 return false; 2955 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM)) 2956 return false; 2957 if (fail_page_alloc.ignore_gfp_reclaim && 2958 (gfp_mask & __GFP_DIRECT_RECLAIM)) 2959 return false; 2960 2961 return should_fail(&fail_page_alloc.attr, 1 << order); 2962 } 2963 2964 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS 2965 2966 static int __init fail_page_alloc_debugfs(void) 2967 { 2968 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR; 2969 struct dentry *dir; 2970 2971 dir = fault_create_debugfs_attr("fail_page_alloc", NULL, 2972 &fail_page_alloc.attr); 2973 if (IS_ERR(dir)) 2974 return PTR_ERR(dir); 2975 2976 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir, 2977 &fail_page_alloc.ignore_gfp_reclaim)) 2978 goto fail; 2979 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir, 2980 &fail_page_alloc.ignore_gfp_highmem)) 2981 goto fail; 2982 if (!debugfs_create_u32("min-order", mode, dir, 2983 &fail_page_alloc.min_order)) 2984 goto fail; 2985 2986 return 0; 2987 fail: 2988 debugfs_remove_recursive(dir); 2989 2990 return -ENOMEM; 2991 } 2992 2993 late_initcall(fail_page_alloc_debugfs); 2994 2995 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */ 2996 2997 #else /* CONFIG_FAIL_PAGE_ALLOC */ 2998 2999 static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) 3000 { 3001 return false; 3002 } 3003 3004 #endif /* CONFIG_FAIL_PAGE_ALLOC */ 3005 3006 /* 3007 * Return true if free base pages are above 'mark'. For high-order checks it 3008 * will return true of the order-0 watermark is reached and there is at least 3009 * one free page of a suitable size. Checking now avoids taking the zone lock 3010 * to check in the allocation paths if no pages are free. 3011 */ 3012 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark, 3013 int classzone_idx, unsigned int alloc_flags, 3014 long free_pages) 3015 { 3016 long min = mark; 3017 int o; 3018 const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM)); 3019 3020 /* free_pages may go negative - that's OK */ 3021 free_pages -= (1 << order) - 1; 3022 3023 if (alloc_flags & ALLOC_HIGH) 3024 min -= min / 2; 3025 3026 /* 3027 * If the caller does not have rights to ALLOC_HARDER then subtract 3028 * the high-atomic reserves. This will over-estimate the size of the 3029 * atomic reserve but it avoids a search. 3030 */ 3031 if (likely(!alloc_harder)) { 3032 free_pages -= z->nr_reserved_highatomic; 3033 } else { 3034 /* 3035 * OOM victims can try even harder than normal ALLOC_HARDER 3036 * users on the grounds that it's definitely going to be in 3037 * the exit path shortly and free memory. Any allocation it 3038 * makes during the free path will be small and short-lived. 3039 */ 3040 if (alloc_flags & ALLOC_OOM) 3041 min -= min / 2; 3042 else 3043 min -= min / 4; 3044 } 3045 3046 3047 #ifdef CONFIG_CMA 3048 /* If allocation can't use CMA areas don't use free CMA pages */ 3049 if (!(alloc_flags & ALLOC_CMA)) 3050 free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES); 3051 #endif 3052 3053 /* 3054 * Check watermarks for an order-0 allocation request. If these 3055 * are not met, then a high-order request also cannot go ahead 3056 * even if a suitable page happened to be free. 3057 */ 3058 if (free_pages <= min + z->lowmem_reserve[classzone_idx]) 3059 return false; 3060 3061 /* If this is an order-0 request then the watermark is fine */ 3062 if (!order) 3063 return true; 3064 3065 /* For a high-order request, check at least one suitable page is free */ 3066 for (o = order; o < MAX_ORDER; o++) { 3067 struct free_area *area = &z->free_area[o]; 3068 int mt; 3069 3070 if (!area->nr_free) 3071 continue; 3072 3073 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) { 3074 if (!list_empty(&area->free_list[mt])) 3075 return true; 3076 } 3077 3078 #ifdef CONFIG_CMA 3079 if ((alloc_flags & ALLOC_CMA) && 3080 !list_empty(&area->free_list[MIGRATE_CMA])) { 3081 return true; 3082 } 3083 #endif 3084 if (alloc_harder && 3085 !list_empty(&area->free_list[MIGRATE_HIGHATOMIC])) 3086 return true; 3087 } 3088 return false; 3089 } 3090 3091 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark, 3092 int classzone_idx, unsigned int alloc_flags) 3093 { 3094 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags, 3095 zone_page_state(z, NR_FREE_PAGES)); 3096 } 3097 3098 static inline bool zone_watermark_fast(struct zone *z, unsigned int order, 3099 unsigned long mark, int classzone_idx, unsigned int alloc_flags) 3100 { 3101 long free_pages = zone_page_state(z, NR_FREE_PAGES); 3102 long cma_pages = 0; 3103 3104 #ifdef CONFIG_CMA 3105 /* If allocation can't use CMA areas don't use free CMA pages */ 3106 if (!(alloc_flags & ALLOC_CMA)) 3107 cma_pages = zone_page_state(z, NR_FREE_CMA_PAGES); 3108 #endif 3109 3110 /* 3111 * Fast check for order-0 only. If this fails then the reserves 3112 * need to be calculated. There is a corner case where the check 3113 * passes but only the high-order atomic reserve are free. If 3114 * the caller is !atomic then it'll uselessly search the free 3115 * list. That corner case is then slower but it is harmless. 3116 */ 3117 if (!order && (free_pages - cma_pages) > mark + z->lowmem_reserve[classzone_idx]) 3118 return true; 3119 3120 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags, 3121 free_pages); 3122 } 3123 3124 bool zone_watermark_ok_safe(struct zone *z, unsigned int order, 3125 unsigned long mark, int classzone_idx) 3126 { 3127 long free_pages = zone_page_state(z, NR_FREE_PAGES); 3128 3129 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark) 3130 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES); 3131 3132 return __zone_watermark_ok(z, order, mark, classzone_idx, 0, 3133 free_pages); 3134 } 3135 3136 #ifdef CONFIG_NUMA 3137 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone) 3138 { 3139 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <= 3140 RECLAIM_DISTANCE; 3141 } 3142 #else /* CONFIG_NUMA */ 3143 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone) 3144 { 3145 return true; 3146 } 3147 #endif /* CONFIG_NUMA */ 3148 3149 /* 3150 * get_page_from_freelist goes through the zonelist trying to allocate 3151 * a page. 3152 */ 3153 static struct page * 3154 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags, 3155 const struct alloc_context *ac) 3156 { 3157 struct zoneref *z = ac->preferred_zoneref; 3158 struct zone *zone; 3159 struct pglist_data *last_pgdat_dirty_limit = NULL; 3160 3161 /* 3162 * Scan zonelist, looking for a zone with enough free. 3163 * See also __cpuset_node_allowed() comment in kernel/cpuset.c. 3164 */ 3165 for_next_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx, 3166 ac->nodemask) { 3167 struct page *page; 3168 unsigned long mark; 3169 3170 if (cpusets_enabled() && 3171 (alloc_flags & ALLOC_CPUSET) && 3172 !__cpuset_zone_allowed(zone, gfp_mask)) 3173 continue; 3174 /* 3175 * When allocating a page cache page for writing, we 3176 * want to get it from a node that is within its dirty 3177 * limit, such that no single node holds more than its 3178 * proportional share of globally allowed dirty pages. 3179 * The dirty limits take into account the node's 3180 * lowmem reserves and high watermark so that kswapd 3181 * should be able to balance it without having to 3182 * write pages from its LRU list. 3183 * 3184 * XXX: For now, allow allocations to potentially 3185 * exceed the per-node dirty limit in the slowpath 3186 * (spread_dirty_pages unset) before going into reclaim, 3187 * which is important when on a NUMA setup the allowed 3188 * nodes are together not big enough to reach the 3189 * global limit. The proper fix for these situations 3190 * will require awareness of nodes in the 3191 * dirty-throttling and the flusher threads. 3192 */ 3193 if (ac->spread_dirty_pages) { 3194 if (last_pgdat_dirty_limit == zone->zone_pgdat) 3195 continue; 3196 3197 if (!node_dirty_ok(zone->zone_pgdat)) { 3198 last_pgdat_dirty_limit = zone->zone_pgdat; 3199 continue; 3200 } 3201 } 3202 3203 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK]; 3204 if (!zone_watermark_fast(zone, order, mark, 3205 ac_classzone_idx(ac), alloc_flags)) { 3206 int ret; 3207 3208 /* Checked here to keep the fast path fast */ 3209 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK); 3210 if (alloc_flags & ALLOC_NO_WATERMARKS) 3211 goto try_this_zone; 3212 3213 if (node_reclaim_mode == 0 || 3214 !zone_allows_reclaim(ac->preferred_zoneref->zone, zone)) 3215 continue; 3216 3217 ret = node_reclaim(zone->zone_pgdat, gfp_mask, order); 3218 switch (ret) { 3219 case NODE_RECLAIM_NOSCAN: 3220 /* did not scan */ 3221 continue; 3222 case NODE_RECLAIM_FULL: 3223 /* scanned but unreclaimable */ 3224 continue; 3225 default: 3226 /* did we reclaim enough */ 3227 if (zone_watermark_ok(zone, order, mark, 3228 ac_classzone_idx(ac), alloc_flags)) 3229 goto try_this_zone; 3230 3231 continue; 3232 } 3233 } 3234 3235 try_this_zone: 3236 page = rmqueue(ac->preferred_zoneref->zone, zone, order, 3237 gfp_mask, alloc_flags, ac->migratetype); 3238 if (page) { 3239 prep_new_page(page, order, gfp_mask, alloc_flags); 3240 3241 /* 3242 * If this is a high-order atomic allocation then check 3243 * if the pageblock should be reserved for the future 3244 */ 3245 if (unlikely(order && (alloc_flags & ALLOC_HARDER))) 3246 reserve_highatomic_pageblock(page, zone, order); 3247 3248 return page; 3249 } 3250 } 3251 3252 return NULL; 3253 } 3254 3255 /* 3256 * Large machines with many possible nodes should not always dump per-node 3257 * meminfo in irq context. 3258 */ 3259 static inline bool should_suppress_show_mem(void) 3260 { 3261 bool ret = false; 3262 3263 #if NODES_SHIFT > 8 3264 ret = in_interrupt(); 3265 #endif 3266 return ret; 3267 } 3268 3269 static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask) 3270 { 3271 unsigned int filter = SHOW_MEM_FILTER_NODES; 3272 static DEFINE_RATELIMIT_STATE(show_mem_rs, HZ, 1); 3273 3274 if (should_suppress_show_mem() || !__ratelimit(&show_mem_rs)) 3275 return; 3276 3277 /* 3278 * This documents exceptions given to allocations in certain 3279 * contexts that are allowed to allocate outside current's set 3280 * of allowed nodes. 3281 */ 3282 if (!(gfp_mask & __GFP_NOMEMALLOC)) 3283 if (tsk_is_oom_victim(current) || 3284 (current->flags & (PF_MEMALLOC | PF_EXITING))) 3285 filter &= ~SHOW_MEM_FILTER_NODES; 3286 if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM)) 3287 filter &= ~SHOW_MEM_FILTER_NODES; 3288 3289 show_mem(filter, nodemask); 3290 } 3291 3292 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...) 3293 { 3294 struct va_format vaf; 3295 va_list args; 3296 static DEFINE_RATELIMIT_STATE(nopage_rs, DEFAULT_RATELIMIT_INTERVAL, 3297 DEFAULT_RATELIMIT_BURST); 3298 3299 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs)) 3300 return; 3301 3302 va_start(args, fmt); 3303 vaf.fmt = fmt; 3304 vaf.va = &args; 3305 pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl\n", 3306 current->comm, &vaf, gfp_mask, &gfp_mask, 3307 nodemask_pr_args(nodemask)); 3308 va_end(args); 3309 3310 cpuset_print_current_mems_allowed(); 3311 3312 dump_stack(); 3313 warn_alloc_show_mem(gfp_mask, nodemask); 3314 } 3315 3316 static inline struct page * 3317 __alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order, 3318 unsigned int alloc_flags, 3319 const struct alloc_context *ac) 3320 { 3321 struct page *page; 3322 3323 page = get_page_from_freelist(gfp_mask, order, 3324 alloc_flags|ALLOC_CPUSET, ac); 3325 /* 3326 * fallback to ignore cpuset restriction if our nodes 3327 * are depleted 3328 */ 3329 if (!page) 3330 page = get_page_from_freelist(gfp_mask, order, 3331 alloc_flags, ac); 3332 3333 return page; 3334 } 3335 3336 static inline struct page * 3337 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order, 3338 const struct alloc_context *ac, unsigned long *did_some_progress) 3339 { 3340 struct oom_control oc = { 3341 .zonelist = ac->zonelist, 3342 .nodemask = ac->nodemask, 3343 .memcg = NULL, 3344 .gfp_mask = gfp_mask, 3345 .order = order, 3346 }; 3347 struct page *page; 3348 3349 *did_some_progress = 0; 3350 3351 /* 3352 * Acquire the oom lock. If that fails, somebody else is 3353 * making progress for us. 3354 */ 3355 if (!mutex_trylock(&oom_lock)) { 3356 *did_some_progress = 1; 3357 schedule_timeout_uninterruptible(1); 3358 return NULL; 3359 } 3360 3361 /* 3362 * Go through the zonelist yet one more time, keep very high watermark 3363 * here, this is only to catch a parallel oom killing, we must fail if 3364 * we're still under heavy pressure. But make sure that this reclaim 3365 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY 3366 * allocation which will never fail due to oom_lock already held. 3367 */ 3368 page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) & 3369 ~__GFP_DIRECT_RECLAIM, order, 3370 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac); 3371 if (page) 3372 goto out; 3373 3374 /* Coredumps can quickly deplete all memory reserves */ 3375 if (current->flags & PF_DUMPCORE) 3376 goto out; 3377 /* The OOM killer will not help higher order allocs */ 3378 if (order > PAGE_ALLOC_COSTLY_ORDER) 3379 goto out; 3380 /* 3381 * We have already exhausted all our reclaim opportunities without any 3382 * success so it is time to admit defeat. We will skip the OOM killer 3383 * because it is very likely that the caller has a more reasonable 3384 * fallback than shooting a random task. 3385 */ 3386 if (gfp_mask & __GFP_RETRY_MAYFAIL) 3387 goto out; 3388 /* The OOM killer does not needlessly kill tasks for lowmem */ 3389 if (ac->high_zoneidx < ZONE_NORMAL) 3390 goto out; 3391 if (pm_suspended_storage()) 3392 goto out; 3393 /* 3394 * XXX: GFP_NOFS allocations should rather fail than rely on 3395 * other request to make a forward progress. 3396 * We are in an unfortunate situation where out_of_memory cannot 3397 * do much for this context but let's try it to at least get 3398 * access to memory reserved if the current task is killed (see 3399 * out_of_memory). Once filesystems are ready to handle allocation 3400 * failures more gracefully we should just bail out here. 3401 */ 3402 3403 /* The OOM killer may not free memory on a specific node */ 3404 if (gfp_mask & __GFP_THISNODE) 3405 goto out; 3406 3407 /* Exhausted what can be done so it's blame time */ 3408 if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) { 3409 *did_some_progress = 1; 3410 3411 /* 3412 * Help non-failing allocations by giving them access to memory 3413 * reserves 3414 */ 3415 if (gfp_mask & __GFP_NOFAIL) 3416 page = __alloc_pages_cpuset_fallback(gfp_mask, order, 3417 ALLOC_NO_WATERMARKS, ac); 3418 } 3419 out: 3420 mutex_unlock(&oom_lock); 3421 return page; 3422 } 3423 3424 /* 3425 * Maximum number of compaction retries wit a progress before OOM 3426 * killer is consider as the only way to move forward. 3427 */ 3428 #define MAX_COMPACT_RETRIES 16 3429 3430 #ifdef CONFIG_COMPACTION 3431 /* Try memory compaction for high-order allocations before reclaim */ 3432 static struct page * 3433 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order, 3434 unsigned int alloc_flags, const struct alloc_context *ac, 3435 enum compact_priority prio, enum compact_result *compact_result) 3436 { 3437 struct page *page; 3438 unsigned int noreclaim_flag; 3439 3440 if (!order) 3441 return NULL; 3442 3443 noreclaim_flag = memalloc_noreclaim_save(); 3444 *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac, 3445 prio); 3446 memalloc_noreclaim_restore(noreclaim_flag); 3447 3448 if (*compact_result <= COMPACT_INACTIVE) 3449 return NULL; 3450 3451 /* 3452 * At least in one zone compaction wasn't deferred or skipped, so let's 3453 * count a compaction stall 3454 */ 3455 count_vm_event(COMPACTSTALL); 3456 3457 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 3458 3459 if (page) { 3460 struct zone *zone = page_zone(page); 3461 3462 zone->compact_blockskip_flush = false; 3463 compaction_defer_reset(zone, order, true); 3464 count_vm_event(COMPACTSUCCESS); 3465 return page; 3466 } 3467 3468 /* 3469 * It's bad if compaction run occurs and fails. The most likely reason 3470 * is that pages exist, but not enough to satisfy watermarks. 3471 */ 3472 count_vm_event(COMPACTFAIL); 3473 3474 cond_resched(); 3475 3476 return NULL; 3477 } 3478 3479 static inline bool 3480 should_compact_retry(struct alloc_context *ac, int order, int alloc_flags, 3481 enum compact_result compact_result, 3482 enum compact_priority *compact_priority, 3483 int *compaction_retries) 3484 { 3485 int max_retries = MAX_COMPACT_RETRIES; 3486 int min_priority; 3487 bool ret = false; 3488 int retries = *compaction_retries; 3489 enum compact_priority priority = *compact_priority; 3490 3491 if (!order) 3492 return false; 3493 3494 if (compaction_made_progress(compact_result)) 3495 (*compaction_retries)++; 3496 3497 /* 3498 * compaction considers all the zone as desperately out of memory 3499 * so it doesn't really make much sense to retry except when the 3500 * failure could be caused by insufficient priority 3501 */ 3502 if (compaction_failed(compact_result)) 3503 goto check_priority; 3504 3505 /* 3506 * make sure the compaction wasn't deferred or didn't bail out early 3507 * due to locks contention before we declare that we should give up. 3508 * But do not retry if the given zonelist is not suitable for 3509 * compaction. 3510 */ 3511 if (compaction_withdrawn(compact_result)) { 3512 ret = compaction_zonelist_suitable(ac, order, alloc_flags); 3513 goto out; 3514 } 3515 3516 /* 3517 * !costly requests are much more important than __GFP_RETRY_MAYFAIL 3518 * costly ones because they are de facto nofail and invoke OOM 3519 * killer to move on while costly can fail and users are ready 3520 * to cope with that. 1/4 retries is rather arbitrary but we 3521 * would need much more detailed feedback from compaction to 3522 * make a better decision. 3523 */ 3524 if (order > PAGE_ALLOC_COSTLY_ORDER) 3525 max_retries /= 4; 3526 if (*compaction_retries <= max_retries) { 3527 ret = true; 3528 goto out; 3529 } 3530 3531 /* 3532 * Make sure there are attempts at the highest priority if we exhausted 3533 * all retries or failed at the lower priorities. 3534 */ 3535 check_priority: 3536 min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ? 3537 MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY; 3538 3539 if (*compact_priority > min_priority) { 3540 (*compact_priority)--; 3541 *compaction_retries = 0; 3542 ret = true; 3543 } 3544 out: 3545 trace_compact_retry(order, priority, compact_result, retries, max_retries, ret); 3546 return ret; 3547 } 3548 #else 3549 static inline struct page * 3550 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order, 3551 unsigned int alloc_flags, const struct alloc_context *ac, 3552 enum compact_priority prio, enum compact_result *compact_result) 3553 { 3554 *compact_result = COMPACT_SKIPPED; 3555 return NULL; 3556 } 3557 3558 static inline bool 3559 should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags, 3560 enum compact_result compact_result, 3561 enum compact_priority *compact_priority, 3562 int *compaction_retries) 3563 { 3564 struct zone *zone; 3565 struct zoneref *z; 3566 3567 if (!order || order > PAGE_ALLOC_COSTLY_ORDER) 3568 return false; 3569 3570 /* 3571 * There are setups with compaction disabled which would prefer to loop 3572 * inside the allocator rather than hit the oom killer prematurely. 3573 * Let's give them a good hope and keep retrying while the order-0 3574 * watermarks are OK. 3575 */ 3576 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx, 3577 ac->nodemask) { 3578 if (zone_watermark_ok(zone, 0, min_wmark_pages(zone), 3579 ac_classzone_idx(ac), alloc_flags)) 3580 return true; 3581 } 3582 return false; 3583 } 3584 #endif /* CONFIG_COMPACTION */ 3585 3586 #ifdef CONFIG_LOCKDEP 3587 struct lockdep_map __fs_reclaim_map = 3588 STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map); 3589 3590 static bool __need_fs_reclaim(gfp_t gfp_mask) 3591 { 3592 gfp_mask = current_gfp_context(gfp_mask); 3593 3594 /* no reclaim without waiting on it */ 3595 if (!(gfp_mask & __GFP_DIRECT_RECLAIM)) 3596 return false; 3597 3598 /* this guy won't enter reclaim */ 3599 if ((current->flags & PF_MEMALLOC) && !(gfp_mask & __GFP_NOMEMALLOC)) 3600 return false; 3601 3602 /* We're only interested __GFP_FS allocations for now */ 3603 if (!(gfp_mask & __GFP_FS)) 3604 return false; 3605 3606 if (gfp_mask & __GFP_NOLOCKDEP) 3607 return false; 3608 3609 return true; 3610 } 3611 3612 void fs_reclaim_acquire(gfp_t gfp_mask) 3613 { 3614 if (__need_fs_reclaim(gfp_mask)) 3615 lock_map_acquire(&__fs_reclaim_map); 3616 } 3617 EXPORT_SYMBOL_GPL(fs_reclaim_acquire); 3618 3619 void fs_reclaim_release(gfp_t gfp_mask) 3620 { 3621 if (__need_fs_reclaim(gfp_mask)) 3622 lock_map_release(&__fs_reclaim_map); 3623 } 3624 EXPORT_SYMBOL_GPL(fs_reclaim_release); 3625 #endif 3626 3627 /* Perform direct synchronous page reclaim */ 3628 static int 3629 __perform_reclaim(gfp_t gfp_mask, unsigned int order, 3630 const struct alloc_context *ac) 3631 { 3632 struct reclaim_state reclaim_state; 3633 int progress; 3634 unsigned int noreclaim_flag; 3635 3636 cond_resched(); 3637 3638 /* We now go into synchronous reclaim */ 3639 cpuset_memory_pressure_bump(); 3640 noreclaim_flag = memalloc_noreclaim_save(); 3641 fs_reclaim_acquire(gfp_mask); 3642 reclaim_state.reclaimed_slab = 0; 3643 current->reclaim_state = &reclaim_state; 3644 3645 progress = try_to_free_pages(ac->zonelist, order, gfp_mask, 3646 ac->nodemask); 3647 3648 current->reclaim_state = NULL; 3649 fs_reclaim_release(gfp_mask); 3650 memalloc_noreclaim_restore(noreclaim_flag); 3651 3652 cond_resched(); 3653 3654 return progress; 3655 } 3656 3657 /* The really slow allocator path where we enter direct reclaim */ 3658 static inline struct page * 3659 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order, 3660 unsigned int alloc_flags, const struct alloc_context *ac, 3661 unsigned long *did_some_progress) 3662 { 3663 struct page *page = NULL; 3664 bool drained = false; 3665 3666 *did_some_progress = __perform_reclaim(gfp_mask, order, ac); 3667 if (unlikely(!(*did_some_progress))) 3668 return NULL; 3669 3670 retry: 3671 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 3672 3673 /* 3674 * If an allocation failed after direct reclaim, it could be because 3675 * pages are pinned on the per-cpu lists or in high alloc reserves. 3676 * Shrink them them and try again 3677 */ 3678 if (!page && !drained) { 3679 unreserve_highatomic_pageblock(ac, false); 3680 drain_all_pages(NULL); 3681 drained = true; 3682 goto retry; 3683 } 3684 3685 return page; 3686 } 3687 3688 static void wake_all_kswapds(unsigned int order, const struct alloc_context *ac) 3689 { 3690 struct zoneref *z; 3691 struct zone *zone; 3692 pg_data_t *last_pgdat = NULL; 3693 3694 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, 3695 ac->high_zoneidx, ac->nodemask) { 3696 if (last_pgdat != zone->zone_pgdat) 3697 wakeup_kswapd(zone, order, ac->high_zoneidx); 3698 last_pgdat = zone->zone_pgdat; 3699 } 3700 } 3701 3702 static inline unsigned int 3703 gfp_to_alloc_flags(gfp_t gfp_mask) 3704 { 3705 unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET; 3706 3707 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */ 3708 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH); 3709 3710 /* 3711 * The caller may dip into page reserves a bit more if the caller 3712 * cannot run direct reclaim, or if the caller has realtime scheduling 3713 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will 3714 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH). 3715 */ 3716 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH); 3717 3718 if (gfp_mask & __GFP_ATOMIC) { 3719 /* 3720 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even 3721 * if it can't schedule. 3722 */ 3723 if (!(gfp_mask & __GFP_NOMEMALLOC)) 3724 alloc_flags |= ALLOC_HARDER; 3725 /* 3726 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the 3727 * comment for __cpuset_node_allowed(). 3728 */ 3729 alloc_flags &= ~ALLOC_CPUSET; 3730 } else if (unlikely(rt_task(current)) && !in_interrupt()) 3731 alloc_flags |= ALLOC_HARDER; 3732 3733 #ifdef CONFIG_CMA 3734 if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE) 3735 alloc_flags |= ALLOC_CMA; 3736 #endif 3737 return alloc_flags; 3738 } 3739 3740 static bool oom_reserves_allowed(struct task_struct *tsk) 3741 { 3742 if (!tsk_is_oom_victim(tsk)) 3743 return false; 3744 3745 /* 3746 * !MMU doesn't have oom reaper so give access to memory reserves 3747 * only to the thread with TIF_MEMDIE set 3748 */ 3749 if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE)) 3750 return false; 3751 3752 return true; 3753 } 3754 3755 /* 3756 * Distinguish requests which really need access to full memory 3757 * reserves from oom victims which can live with a portion of it 3758 */ 3759 static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask) 3760 { 3761 if (unlikely(gfp_mask & __GFP_NOMEMALLOC)) 3762 return 0; 3763 if (gfp_mask & __GFP_MEMALLOC) 3764 return ALLOC_NO_WATERMARKS; 3765 if (in_serving_softirq() && (current->flags & PF_MEMALLOC)) 3766 return ALLOC_NO_WATERMARKS; 3767 if (!in_interrupt()) { 3768 if (current->flags & PF_MEMALLOC) 3769 return ALLOC_NO_WATERMARKS; 3770 else if (oom_reserves_allowed(current)) 3771 return ALLOC_OOM; 3772 } 3773 3774 return 0; 3775 } 3776 3777 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask) 3778 { 3779 return !!__gfp_pfmemalloc_flags(gfp_mask); 3780 } 3781 3782 /* 3783 * Checks whether it makes sense to retry the reclaim to make a forward progress 3784 * for the given allocation request. 3785 * 3786 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row 3787 * without success, or when we couldn't even meet the watermark if we 3788 * reclaimed all remaining pages on the LRU lists. 3789 * 3790 * Returns true if a retry is viable or false to enter the oom path. 3791 */ 3792 static inline bool 3793 should_reclaim_retry(gfp_t gfp_mask, unsigned order, 3794 struct alloc_context *ac, int alloc_flags, 3795 bool did_some_progress, int *no_progress_loops) 3796 { 3797 struct zone *zone; 3798 struct zoneref *z; 3799 3800 /* 3801 * Costly allocations might have made a progress but this doesn't mean 3802 * their order will become available due to high fragmentation so 3803 * always increment the no progress counter for them 3804 */ 3805 if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER) 3806 *no_progress_loops = 0; 3807 else 3808 (*no_progress_loops)++; 3809 3810 /* 3811 * Make sure we converge to OOM if we cannot make any progress 3812 * several times in the row. 3813 */ 3814 if (*no_progress_loops > MAX_RECLAIM_RETRIES) { 3815 /* Before OOM, exhaust highatomic_reserve */ 3816 return unreserve_highatomic_pageblock(ac, true); 3817 } 3818 3819 /* 3820 * Keep reclaiming pages while there is a chance this will lead 3821 * somewhere. If none of the target zones can satisfy our allocation 3822 * request even if all reclaimable pages are considered then we are 3823 * screwed and have to go OOM. 3824 */ 3825 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx, 3826 ac->nodemask) { 3827 unsigned long available; 3828 unsigned long reclaimable; 3829 unsigned long min_wmark = min_wmark_pages(zone); 3830 bool wmark; 3831 3832 available = reclaimable = zone_reclaimable_pages(zone); 3833 available += zone_page_state_snapshot(zone, NR_FREE_PAGES); 3834 3835 /* 3836 * Would the allocation succeed if we reclaimed all 3837 * reclaimable pages? 3838 */ 3839 wmark = __zone_watermark_ok(zone, order, min_wmark, 3840 ac_classzone_idx(ac), alloc_flags, available); 3841 trace_reclaim_retry_zone(z, order, reclaimable, 3842 available, min_wmark, *no_progress_loops, wmark); 3843 if (wmark) { 3844 /* 3845 * If we didn't make any progress and have a lot of 3846 * dirty + writeback pages then we should wait for 3847 * an IO to complete to slow down the reclaim and 3848 * prevent from pre mature OOM 3849 */ 3850 if (!did_some_progress) { 3851 unsigned long write_pending; 3852 3853 write_pending = zone_page_state_snapshot(zone, 3854 NR_ZONE_WRITE_PENDING); 3855 3856 if (2 * write_pending > reclaimable) { 3857 congestion_wait(BLK_RW_ASYNC, HZ/10); 3858 return true; 3859 } 3860 } 3861 3862 /* 3863 * Memory allocation/reclaim might be called from a WQ 3864 * context and the current implementation of the WQ 3865 * concurrency control doesn't recognize that 3866 * a particular WQ is congested if the worker thread is 3867 * looping without ever sleeping. Therefore we have to 3868 * do a short sleep here rather than calling 3869 * cond_resched(). 3870 */ 3871 if (current->flags & PF_WQ_WORKER) 3872 schedule_timeout_uninterruptible(1); 3873 else 3874 cond_resched(); 3875 3876 return true; 3877 } 3878 } 3879 3880 return false; 3881 } 3882 3883 static inline bool 3884 check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac) 3885 { 3886 /* 3887 * It's possible that cpuset's mems_allowed and the nodemask from 3888 * mempolicy don't intersect. This should be normally dealt with by 3889 * policy_nodemask(), but it's possible to race with cpuset update in 3890 * such a way the check therein was true, and then it became false 3891 * before we got our cpuset_mems_cookie here. 3892 * This assumes that for all allocations, ac->nodemask can come only 3893 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored 3894 * when it does not intersect with the cpuset restrictions) or the 3895 * caller can deal with a violated nodemask. 3896 */ 3897 if (cpusets_enabled() && ac->nodemask && 3898 !cpuset_nodemask_valid_mems_allowed(ac->nodemask)) { 3899 ac->nodemask = NULL; 3900 return true; 3901 } 3902 3903 /* 3904 * When updating a task's mems_allowed or mempolicy nodemask, it is 3905 * possible to race with parallel threads in such a way that our 3906 * allocation can fail while the mask is being updated. If we are about 3907 * to fail, check if the cpuset changed during allocation and if so, 3908 * retry. 3909 */ 3910 if (read_mems_allowed_retry(cpuset_mems_cookie)) 3911 return true; 3912 3913 return false; 3914 } 3915 3916 static inline struct page * 3917 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order, 3918 struct alloc_context *ac) 3919 { 3920 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM; 3921 const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER; 3922 struct page *page = NULL; 3923 unsigned int alloc_flags; 3924 unsigned long did_some_progress; 3925 enum compact_priority compact_priority; 3926 enum compact_result compact_result; 3927 int compaction_retries; 3928 int no_progress_loops; 3929 unsigned int cpuset_mems_cookie; 3930 int reserve_flags; 3931 3932 /* 3933 * In the slowpath, we sanity check order to avoid ever trying to 3934 * reclaim >= MAX_ORDER areas which will never succeed. Callers may 3935 * be using allocators in order of preference for an area that is 3936 * too large. 3937 */ 3938 if (order >= MAX_ORDER) { 3939 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN)); 3940 return NULL; 3941 } 3942 3943 /* 3944 * We also sanity check to catch abuse of atomic reserves being used by 3945 * callers that are not in atomic context. 3946 */ 3947 if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) == 3948 (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM))) 3949 gfp_mask &= ~__GFP_ATOMIC; 3950 3951 retry_cpuset: 3952 compaction_retries = 0; 3953 no_progress_loops = 0; 3954 compact_priority = DEF_COMPACT_PRIORITY; 3955 cpuset_mems_cookie = read_mems_allowed_begin(); 3956 3957 /* 3958 * The fast path uses conservative alloc_flags to succeed only until 3959 * kswapd needs to be woken up, and to avoid the cost of setting up 3960 * alloc_flags precisely. So we do that now. 3961 */ 3962 alloc_flags = gfp_to_alloc_flags(gfp_mask); 3963 3964 /* 3965 * We need to recalculate the starting point for the zonelist iterator 3966 * because we might have used different nodemask in the fast path, or 3967 * there was a cpuset modification and we are retrying - otherwise we 3968 * could end up iterating over non-eligible zones endlessly. 3969 */ 3970 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist, 3971 ac->high_zoneidx, ac->nodemask); 3972 if (!ac->preferred_zoneref->zone) 3973 goto nopage; 3974 3975 if (gfp_mask & __GFP_KSWAPD_RECLAIM) 3976 wake_all_kswapds(order, ac); 3977 3978 /* 3979 * The adjusted alloc_flags might result in immediate success, so try 3980 * that first 3981 */ 3982 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 3983 if (page) 3984 goto got_pg; 3985 3986 /* 3987 * For costly allocations, try direct compaction first, as it's likely 3988 * that we have enough base pages and don't need to reclaim. For non- 3989 * movable high-order allocations, do that as well, as compaction will 3990 * try prevent permanent fragmentation by migrating from blocks of the 3991 * same migratetype. 3992 * Don't try this for allocations that are allowed to ignore 3993 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen. 3994 */ 3995 if (can_direct_reclaim && 3996 (costly_order || 3997 (order > 0 && ac->migratetype != MIGRATE_MOVABLE)) 3998 && !gfp_pfmemalloc_allowed(gfp_mask)) { 3999 page = __alloc_pages_direct_compact(gfp_mask, order, 4000 alloc_flags, ac, 4001 INIT_COMPACT_PRIORITY, 4002 &compact_result); 4003 if (page) 4004 goto got_pg; 4005 4006 /* 4007 * Checks for costly allocations with __GFP_NORETRY, which 4008 * includes THP page fault allocations 4009 */ 4010 if (costly_order && (gfp_mask & __GFP_NORETRY)) { 4011 /* 4012 * If compaction is deferred for high-order allocations, 4013 * it is because sync compaction recently failed. If 4014 * this is the case and the caller requested a THP 4015 * allocation, we do not want to heavily disrupt the 4016 * system, so we fail the allocation instead of entering 4017 * direct reclaim. 4018 */ 4019 if (compact_result == COMPACT_DEFERRED) 4020 goto nopage; 4021 4022 /* 4023 * Looks like reclaim/compaction is worth trying, but 4024 * sync compaction could be very expensive, so keep 4025 * using async compaction. 4026 */ 4027 compact_priority = INIT_COMPACT_PRIORITY; 4028 } 4029 } 4030 4031 retry: 4032 /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */ 4033 if (gfp_mask & __GFP_KSWAPD_RECLAIM) 4034 wake_all_kswapds(order, ac); 4035 4036 reserve_flags = __gfp_pfmemalloc_flags(gfp_mask); 4037 if (reserve_flags) 4038 alloc_flags = reserve_flags; 4039 4040 /* 4041 * Reset the zonelist iterators if memory policies can be ignored. 4042 * These allocations are high priority and system rather than user 4043 * orientated. 4044 */ 4045 if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) { 4046 ac->zonelist = node_zonelist(numa_node_id(), gfp_mask); 4047 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist, 4048 ac->high_zoneidx, ac->nodemask); 4049 } 4050 4051 /* Attempt with potentially adjusted zonelist and alloc_flags */ 4052 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 4053 if (page) 4054 goto got_pg; 4055 4056 /* Caller is not willing to reclaim, we can't balance anything */ 4057 if (!can_direct_reclaim) 4058 goto nopage; 4059 4060 /* Avoid recursion of direct reclaim */ 4061 if (current->flags & PF_MEMALLOC) 4062 goto nopage; 4063 4064 /* Try direct reclaim and then allocating */ 4065 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac, 4066 &did_some_progress); 4067 if (page) 4068 goto got_pg; 4069 4070 /* Try direct compaction and then allocating */ 4071 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac, 4072 compact_priority, &compact_result); 4073 if (page) 4074 goto got_pg; 4075 4076 /* Do not loop if specifically requested */ 4077 if (gfp_mask & __GFP_NORETRY) 4078 goto nopage; 4079 4080 /* 4081 * Do not retry costly high order allocations unless they are 4082 * __GFP_RETRY_MAYFAIL 4083 */ 4084 if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL)) 4085 goto nopage; 4086 4087 if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags, 4088 did_some_progress > 0, &no_progress_loops)) 4089 goto retry; 4090 4091 /* 4092 * It doesn't make any sense to retry for the compaction if the order-0 4093 * reclaim is not able to make any progress because the current 4094 * implementation of the compaction depends on the sufficient amount 4095 * of free memory (see __compaction_suitable) 4096 */ 4097 if (did_some_progress > 0 && 4098 should_compact_retry(ac, order, alloc_flags, 4099 compact_result, &compact_priority, 4100 &compaction_retries)) 4101 goto retry; 4102 4103 4104 /* Deal with possible cpuset update races before we start OOM killing */ 4105 if (check_retry_cpuset(cpuset_mems_cookie, ac)) 4106 goto retry_cpuset; 4107 4108 /* Reclaim has failed us, start killing things */ 4109 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress); 4110 if (page) 4111 goto got_pg; 4112 4113 /* Avoid allocations with no watermarks from looping endlessly */ 4114 if (tsk_is_oom_victim(current) && 4115 (alloc_flags == ALLOC_OOM || 4116 (gfp_mask & __GFP_NOMEMALLOC))) 4117 goto nopage; 4118 4119 /* Retry as long as the OOM killer is making progress */ 4120 if (did_some_progress) { 4121 no_progress_loops = 0; 4122 goto retry; 4123 } 4124 4125 nopage: 4126 /* Deal with possible cpuset update races before we fail */ 4127 if (check_retry_cpuset(cpuset_mems_cookie, ac)) 4128 goto retry_cpuset; 4129 4130 /* 4131 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure 4132 * we always retry 4133 */ 4134 if (gfp_mask & __GFP_NOFAIL) { 4135 /* 4136 * All existing users of the __GFP_NOFAIL are blockable, so warn 4137 * of any new users that actually require GFP_NOWAIT 4138 */ 4139 if (WARN_ON_ONCE(!can_direct_reclaim)) 4140 goto fail; 4141 4142 /* 4143 * PF_MEMALLOC request from this context is rather bizarre 4144 * because we cannot reclaim anything and only can loop waiting 4145 * for somebody to do a work for us 4146 */ 4147 WARN_ON_ONCE(current->flags & PF_MEMALLOC); 4148 4149 /* 4150 * non failing costly orders are a hard requirement which we 4151 * are not prepared for much so let's warn about these users 4152 * so that we can identify them and convert them to something 4153 * else. 4154 */ 4155 WARN_ON_ONCE(order > PAGE_ALLOC_COSTLY_ORDER); 4156 4157 /* 4158 * Help non-failing allocations by giving them access to memory 4159 * reserves but do not use ALLOC_NO_WATERMARKS because this 4160 * could deplete whole memory reserves which would just make 4161 * the situation worse 4162 */ 4163 page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac); 4164 if (page) 4165 goto got_pg; 4166 4167 cond_resched(); 4168 goto retry; 4169 } 4170 fail: 4171 warn_alloc(gfp_mask, ac->nodemask, 4172 "page allocation failure: order:%u", order); 4173 got_pg: 4174 return page; 4175 } 4176 4177 static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order, 4178 int preferred_nid, nodemask_t *nodemask, 4179 struct alloc_context *ac, gfp_t *alloc_mask, 4180 unsigned int *alloc_flags) 4181 { 4182 ac->high_zoneidx = gfp_zone(gfp_mask); 4183 ac->zonelist = node_zonelist(preferred_nid, gfp_mask); 4184 ac->nodemask = nodemask; 4185 ac->migratetype = gfpflags_to_migratetype(gfp_mask); 4186 4187 if (cpusets_enabled()) { 4188 *alloc_mask |= __GFP_HARDWALL; 4189 if (!ac->nodemask) 4190 ac->nodemask = &cpuset_current_mems_allowed; 4191 else 4192 *alloc_flags |= ALLOC_CPUSET; 4193 } 4194 4195 fs_reclaim_acquire(gfp_mask); 4196 fs_reclaim_release(gfp_mask); 4197 4198 might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM); 4199 4200 if (should_fail_alloc_page(gfp_mask, order)) 4201 return false; 4202 4203 if (IS_ENABLED(CONFIG_CMA) && ac->migratetype == MIGRATE_MOVABLE) 4204 *alloc_flags |= ALLOC_CMA; 4205 4206 return true; 4207 } 4208 4209 /* Determine whether to spread dirty pages and what the first usable zone */ 4210 static inline void finalise_ac(gfp_t gfp_mask, 4211 unsigned int order, struct alloc_context *ac) 4212 { 4213 /* Dirty zone balancing only done in the fast path */ 4214 ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE); 4215 4216 /* 4217 * The preferred zone is used for statistics but crucially it is 4218 * also used as the starting point for the zonelist iterator. It 4219 * may get reset for allocations that ignore memory policies. 4220 */ 4221 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist, 4222 ac->high_zoneidx, ac->nodemask); 4223 } 4224 4225 /* 4226 * This is the 'heart' of the zoned buddy allocator. 4227 */ 4228 struct page * 4229 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order, int preferred_nid, 4230 nodemask_t *nodemask) 4231 { 4232 struct page *page; 4233 unsigned int alloc_flags = ALLOC_WMARK_LOW; 4234 gfp_t alloc_mask; /* The gfp_t that was actually used for allocation */ 4235 struct alloc_context ac = { }; 4236 4237 gfp_mask &= gfp_allowed_mask; 4238 alloc_mask = gfp_mask; 4239 if (!prepare_alloc_pages(gfp_mask, order, preferred_nid, nodemask, &ac, &alloc_mask, &alloc_flags)) 4240 return NULL; 4241 4242 finalise_ac(gfp_mask, order, &ac); 4243 4244 /* First allocation attempt */ 4245 page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac); 4246 if (likely(page)) 4247 goto out; 4248 4249 /* 4250 * Apply scoped allocation constraints. This is mainly about GFP_NOFS 4251 * resp. GFP_NOIO which has to be inherited for all allocation requests 4252 * from a particular context which has been marked by 4253 * memalloc_no{fs,io}_{save,restore}. 4254 */ 4255 alloc_mask = current_gfp_context(gfp_mask); 4256 ac.spread_dirty_pages = false; 4257 4258 /* 4259 * Restore the original nodemask if it was potentially replaced with 4260 * &cpuset_current_mems_allowed to optimize the fast-path attempt. 4261 */ 4262 if (unlikely(ac.nodemask != nodemask)) 4263 ac.nodemask = nodemask; 4264 4265 page = __alloc_pages_slowpath(alloc_mask, order, &ac); 4266 4267 out: 4268 if (memcg_kmem_enabled() && (gfp_mask & __GFP_ACCOUNT) && page && 4269 unlikely(memcg_kmem_charge(page, gfp_mask, order) != 0)) { 4270 __free_pages(page, order); 4271 page = NULL; 4272 } 4273 4274 trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype); 4275 4276 return page; 4277 } 4278 EXPORT_SYMBOL(__alloc_pages_nodemask); 4279 4280 /* 4281 * Common helper functions. 4282 */ 4283 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order) 4284 { 4285 struct page *page; 4286 4287 /* 4288 * __get_free_pages() returns a virtual address, which cannot represent 4289 * a highmem page 4290 */ 4291 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0); 4292 4293 page = alloc_pages(gfp_mask, order); 4294 if (!page) 4295 return 0; 4296 return (unsigned long) page_address(page); 4297 } 4298 EXPORT_SYMBOL(__get_free_pages); 4299 4300 unsigned long get_zeroed_page(gfp_t gfp_mask) 4301 { 4302 return __get_free_pages(gfp_mask | __GFP_ZERO, 0); 4303 } 4304 EXPORT_SYMBOL(get_zeroed_page); 4305 4306 void __free_pages(struct page *page, unsigned int order) 4307 { 4308 if (put_page_testzero(page)) { 4309 if (order == 0) 4310 free_unref_page(page); 4311 else 4312 __free_pages_ok(page, order); 4313 } 4314 } 4315 4316 EXPORT_SYMBOL(__free_pages); 4317 4318 void free_pages(unsigned long addr, unsigned int order) 4319 { 4320 if (addr != 0) { 4321 VM_BUG_ON(!virt_addr_valid((void *)addr)); 4322 __free_pages(virt_to_page((void *)addr), order); 4323 } 4324 } 4325 4326 EXPORT_SYMBOL(free_pages); 4327 4328 /* 4329 * Page Fragment: 4330 * An arbitrary-length arbitrary-offset area of memory which resides 4331 * within a 0 or higher order page. Multiple fragments within that page 4332 * are individually refcounted, in the page's reference counter. 4333 * 4334 * The page_frag functions below provide a simple allocation framework for 4335 * page fragments. This is used by the network stack and network device 4336 * drivers to provide a backing region of memory for use as either an 4337 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info. 4338 */ 4339 static struct page *__page_frag_cache_refill(struct page_frag_cache *nc, 4340 gfp_t gfp_mask) 4341 { 4342 struct page *page = NULL; 4343 gfp_t gfp = gfp_mask; 4344 4345 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE) 4346 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY | 4347 __GFP_NOMEMALLOC; 4348 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask, 4349 PAGE_FRAG_CACHE_MAX_ORDER); 4350 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE; 4351 #endif 4352 if (unlikely(!page)) 4353 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0); 4354 4355 nc->va = page ? page_address(page) : NULL; 4356 4357 return page; 4358 } 4359 4360 void __page_frag_cache_drain(struct page *page, unsigned int count) 4361 { 4362 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page); 4363 4364 if (page_ref_sub_and_test(page, count)) { 4365 unsigned int order = compound_order(page); 4366 4367 if (order == 0) 4368 free_unref_page(page); 4369 else 4370 __free_pages_ok(page, order); 4371 } 4372 } 4373 EXPORT_SYMBOL(__page_frag_cache_drain); 4374 4375 void *page_frag_alloc(struct page_frag_cache *nc, 4376 unsigned int fragsz, gfp_t gfp_mask) 4377 { 4378 unsigned int size = PAGE_SIZE; 4379 struct page *page; 4380 int offset; 4381 4382 if (unlikely(!nc->va)) { 4383 refill: 4384 page = __page_frag_cache_refill(nc, gfp_mask); 4385 if (!page) 4386 return NULL; 4387 4388 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE) 4389 /* if size can vary use size else just use PAGE_SIZE */ 4390 size = nc->size; 4391 #endif 4392 /* Even if we own the page, we do not use atomic_set(). 4393 * This would break get_page_unless_zero() users. 4394 */ 4395 page_ref_add(page, size - 1); 4396 4397 /* reset page count bias and offset to start of new frag */ 4398 nc->pfmemalloc = page_is_pfmemalloc(page); 4399 nc->pagecnt_bias = size; 4400 nc->offset = size; 4401 } 4402 4403 offset = nc->offset - fragsz; 4404 if (unlikely(offset < 0)) { 4405 page = virt_to_page(nc->va); 4406 4407 if (!page_ref_sub_and_test(page, nc->pagecnt_bias)) 4408 goto refill; 4409 4410 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE) 4411 /* if size can vary use size else just use PAGE_SIZE */ 4412 size = nc->size; 4413 #endif 4414 /* OK, page count is 0, we can safely set it */ 4415 set_page_count(page, size); 4416 4417 /* reset page count bias and offset to start of new frag */ 4418 nc->pagecnt_bias = size; 4419 offset = size - fragsz; 4420 } 4421 4422 nc->pagecnt_bias--; 4423 nc->offset = offset; 4424 4425 return nc->va + offset; 4426 } 4427 EXPORT_SYMBOL(page_frag_alloc); 4428 4429 /* 4430 * Frees a page fragment allocated out of either a compound or order 0 page. 4431 */ 4432 void page_frag_free(void *addr) 4433 { 4434 struct page *page = virt_to_head_page(addr); 4435 4436 if (unlikely(put_page_testzero(page))) 4437 __free_pages_ok(page, compound_order(page)); 4438 } 4439 EXPORT_SYMBOL(page_frag_free); 4440 4441 static void *make_alloc_exact(unsigned long addr, unsigned int order, 4442 size_t size) 4443 { 4444 if (addr) { 4445 unsigned long alloc_end = addr + (PAGE_SIZE << order); 4446 unsigned long used = addr + PAGE_ALIGN(size); 4447 4448 split_page(virt_to_page((void *)addr), order); 4449 while (used < alloc_end) { 4450 free_page(used); 4451 used += PAGE_SIZE; 4452 } 4453 } 4454 return (void *)addr; 4455 } 4456 4457 /** 4458 * alloc_pages_exact - allocate an exact number physically-contiguous pages. 4459 * @size: the number of bytes to allocate 4460 * @gfp_mask: GFP flags for the allocation 4461 * 4462 * This function is similar to alloc_pages(), except that it allocates the 4463 * minimum number of pages to satisfy the request. alloc_pages() can only 4464 * allocate memory in power-of-two pages. 4465 * 4466 * This function is also limited by MAX_ORDER. 4467 * 4468 * Memory allocated by this function must be released by free_pages_exact(). 4469 */ 4470 void *alloc_pages_exact(size_t size, gfp_t gfp_mask) 4471 { 4472 unsigned int order = get_order(size); 4473 unsigned long addr; 4474 4475 addr = __get_free_pages(gfp_mask, order); 4476 return make_alloc_exact(addr, order, size); 4477 } 4478 EXPORT_SYMBOL(alloc_pages_exact); 4479 4480 /** 4481 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous 4482 * pages on a node. 4483 * @nid: the preferred node ID where memory should be allocated 4484 * @size: the number of bytes to allocate 4485 * @gfp_mask: GFP flags for the allocation 4486 * 4487 * Like alloc_pages_exact(), but try to allocate on node nid first before falling 4488 * back. 4489 */ 4490 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask) 4491 { 4492 unsigned int order = get_order(size); 4493 struct page *p = alloc_pages_node(nid, gfp_mask, order); 4494 if (!p) 4495 return NULL; 4496 return make_alloc_exact((unsigned long)page_address(p), order, size); 4497 } 4498 4499 /** 4500 * free_pages_exact - release memory allocated via alloc_pages_exact() 4501 * @virt: the value returned by alloc_pages_exact. 4502 * @size: size of allocation, same value as passed to alloc_pages_exact(). 4503 * 4504 * Release the memory allocated by a previous call to alloc_pages_exact. 4505 */ 4506 void free_pages_exact(void *virt, size_t size) 4507 { 4508 unsigned long addr = (unsigned long)virt; 4509 unsigned long end = addr + PAGE_ALIGN(size); 4510 4511 while (addr < end) { 4512 free_page(addr); 4513 addr += PAGE_SIZE; 4514 } 4515 } 4516 EXPORT_SYMBOL(free_pages_exact); 4517 4518 /** 4519 * nr_free_zone_pages - count number of pages beyond high watermark 4520 * @offset: The zone index of the highest zone 4521 * 4522 * nr_free_zone_pages() counts the number of counts pages which are beyond the 4523 * high watermark within all zones at or below a given zone index. For each 4524 * zone, the number of pages is calculated as: 4525 * 4526 * nr_free_zone_pages = managed_pages - high_pages 4527 */ 4528 static unsigned long nr_free_zone_pages(int offset) 4529 { 4530 struct zoneref *z; 4531 struct zone *zone; 4532 4533 /* Just pick one node, since fallback list is circular */ 4534 unsigned long sum = 0; 4535 4536 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL); 4537 4538 for_each_zone_zonelist(zone, z, zonelist, offset) { 4539 unsigned long size = zone->managed_pages; 4540 unsigned long high = high_wmark_pages(zone); 4541 if (size > high) 4542 sum += size - high; 4543 } 4544 4545 return sum; 4546 } 4547 4548 /** 4549 * nr_free_buffer_pages - count number of pages beyond high watermark 4550 * 4551 * nr_free_buffer_pages() counts the number of pages which are beyond the high 4552 * watermark within ZONE_DMA and ZONE_NORMAL. 4553 */ 4554 unsigned long nr_free_buffer_pages(void) 4555 { 4556 return nr_free_zone_pages(gfp_zone(GFP_USER)); 4557 } 4558 EXPORT_SYMBOL_GPL(nr_free_buffer_pages); 4559 4560 /** 4561 * nr_free_pagecache_pages - count number of pages beyond high watermark 4562 * 4563 * nr_free_pagecache_pages() counts the number of pages which are beyond the 4564 * high watermark within all zones. 4565 */ 4566 unsigned long nr_free_pagecache_pages(void) 4567 { 4568 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE)); 4569 } 4570 4571 static inline void show_node(struct zone *zone) 4572 { 4573 if (IS_ENABLED(CONFIG_NUMA)) 4574 printk("Node %d ", zone_to_nid(zone)); 4575 } 4576 4577 long si_mem_available(void) 4578 { 4579 long available; 4580 unsigned long pagecache; 4581 unsigned long wmark_low = 0; 4582 unsigned long pages[NR_LRU_LISTS]; 4583 struct zone *zone; 4584 int lru; 4585 4586 for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++) 4587 pages[lru] = global_node_page_state(NR_LRU_BASE + lru); 4588 4589 for_each_zone(zone) 4590 wmark_low += zone->watermark[WMARK_LOW]; 4591 4592 /* 4593 * Estimate the amount of memory available for userspace allocations, 4594 * without causing swapping. 4595 */ 4596 available = global_zone_page_state(NR_FREE_PAGES) - totalreserve_pages; 4597 4598 /* 4599 * Not all the page cache can be freed, otherwise the system will 4600 * start swapping. Assume at least half of the page cache, or the 4601 * low watermark worth of cache, needs to stay. 4602 */ 4603 pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE]; 4604 pagecache -= min(pagecache / 2, wmark_low); 4605 available += pagecache; 4606 4607 /* 4608 * Part of the reclaimable slab consists of items that are in use, 4609 * and cannot be freed. Cap this estimate at the low watermark. 4610 */ 4611 available += global_node_page_state(NR_SLAB_RECLAIMABLE) - 4612 min(global_node_page_state(NR_SLAB_RECLAIMABLE) / 2, 4613 wmark_low); 4614 4615 if (available < 0) 4616 available = 0; 4617 return available; 4618 } 4619 EXPORT_SYMBOL_GPL(si_mem_available); 4620 4621 void si_meminfo(struct sysinfo *val) 4622 { 4623 val->totalram = totalram_pages; 4624 val->sharedram = global_node_page_state(NR_SHMEM); 4625 val->freeram = global_zone_page_state(NR_FREE_PAGES); 4626 val->bufferram = nr_blockdev_pages(); 4627 val->totalhigh = totalhigh_pages; 4628 val->freehigh = nr_free_highpages(); 4629 val->mem_unit = PAGE_SIZE; 4630 } 4631 4632 EXPORT_SYMBOL(si_meminfo); 4633 4634 #ifdef CONFIG_NUMA 4635 void si_meminfo_node(struct sysinfo *val, int nid) 4636 { 4637 int zone_type; /* needs to be signed */ 4638 unsigned long managed_pages = 0; 4639 unsigned long managed_highpages = 0; 4640 unsigned long free_highpages = 0; 4641 pg_data_t *pgdat = NODE_DATA(nid); 4642 4643 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) 4644 managed_pages += pgdat->node_zones[zone_type].managed_pages; 4645 val->totalram = managed_pages; 4646 val->sharedram = node_page_state(pgdat, NR_SHMEM); 4647 val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES); 4648 #ifdef CONFIG_HIGHMEM 4649 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) { 4650 struct zone *zone = &pgdat->node_zones[zone_type]; 4651 4652 if (is_highmem(zone)) { 4653 managed_highpages += zone->managed_pages; 4654 free_highpages += zone_page_state(zone, NR_FREE_PAGES); 4655 } 4656 } 4657 val->totalhigh = managed_highpages; 4658 val->freehigh = free_highpages; 4659 #else 4660 val->totalhigh = managed_highpages; 4661 val->freehigh = free_highpages; 4662 #endif 4663 val->mem_unit = PAGE_SIZE; 4664 } 4665 #endif 4666 4667 /* 4668 * Determine whether the node should be displayed or not, depending on whether 4669 * SHOW_MEM_FILTER_NODES was passed to show_free_areas(). 4670 */ 4671 static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask) 4672 { 4673 if (!(flags & SHOW_MEM_FILTER_NODES)) 4674 return false; 4675 4676 /* 4677 * no node mask - aka implicit memory numa policy. Do not bother with 4678 * the synchronization - read_mems_allowed_begin - because we do not 4679 * have to be precise here. 4680 */ 4681 if (!nodemask) 4682 nodemask = &cpuset_current_mems_allowed; 4683 4684 return !node_isset(nid, *nodemask); 4685 } 4686 4687 #define K(x) ((x) << (PAGE_SHIFT-10)) 4688 4689 static void show_migration_types(unsigned char type) 4690 { 4691 static const char types[MIGRATE_TYPES] = { 4692 [MIGRATE_UNMOVABLE] = 'U', 4693 [MIGRATE_MOVABLE] = 'M', 4694 [MIGRATE_RECLAIMABLE] = 'E', 4695 [MIGRATE_HIGHATOMIC] = 'H', 4696 #ifdef CONFIG_CMA 4697 [MIGRATE_CMA] = 'C', 4698 #endif 4699 #ifdef CONFIG_MEMORY_ISOLATION 4700 [MIGRATE_ISOLATE] = 'I', 4701 #endif 4702 }; 4703 char tmp[MIGRATE_TYPES + 1]; 4704 char *p = tmp; 4705 int i; 4706 4707 for (i = 0; i < MIGRATE_TYPES; i++) { 4708 if (type & (1 << i)) 4709 *p++ = types[i]; 4710 } 4711 4712 *p = '\0'; 4713 printk(KERN_CONT "(%s) ", tmp); 4714 } 4715 4716 /* 4717 * Show free area list (used inside shift_scroll-lock stuff) 4718 * We also calculate the percentage fragmentation. We do this by counting the 4719 * memory on each free list with the exception of the first item on the list. 4720 * 4721 * Bits in @filter: 4722 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's 4723 * cpuset. 4724 */ 4725 void show_free_areas(unsigned int filter, nodemask_t *nodemask) 4726 { 4727 unsigned long free_pcp = 0; 4728 int cpu; 4729 struct zone *zone; 4730 pg_data_t *pgdat; 4731 4732 for_each_populated_zone(zone) { 4733 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask)) 4734 continue; 4735 4736 for_each_online_cpu(cpu) 4737 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count; 4738 } 4739 4740 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n" 4741 " active_file:%lu inactive_file:%lu isolated_file:%lu\n" 4742 " unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n" 4743 " slab_reclaimable:%lu slab_unreclaimable:%lu\n" 4744 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n" 4745 " free:%lu free_pcp:%lu free_cma:%lu\n", 4746 global_node_page_state(NR_ACTIVE_ANON), 4747 global_node_page_state(NR_INACTIVE_ANON), 4748 global_node_page_state(NR_ISOLATED_ANON), 4749 global_node_page_state(NR_ACTIVE_FILE), 4750 global_node_page_state(NR_INACTIVE_FILE), 4751 global_node_page_state(NR_ISOLATED_FILE), 4752 global_node_page_state(NR_UNEVICTABLE), 4753 global_node_page_state(NR_FILE_DIRTY), 4754 global_node_page_state(NR_WRITEBACK), 4755 global_node_page_state(NR_UNSTABLE_NFS), 4756 global_node_page_state(NR_SLAB_RECLAIMABLE), 4757 global_node_page_state(NR_SLAB_UNRECLAIMABLE), 4758 global_node_page_state(NR_FILE_MAPPED), 4759 global_node_page_state(NR_SHMEM), 4760 global_zone_page_state(NR_PAGETABLE), 4761 global_zone_page_state(NR_BOUNCE), 4762 global_zone_page_state(NR_FREE_PAGES), 4763 free_pcp, 4764 global_zone_page_state(NR_FREE_CMA_PAGES)); 4765 4766 for_each_online_pgdat(pgdat) { 4767 if (show_mem_node_skip(filter, pgdat->node_id, nodemask)) 4768 continue; 4769 4770 printk("Node %d" 4771 " active_anon:%lukB" 4772 " inactive_anon:%lukB" 4773 " active_file:%lukB" 4774 " inactive_file:%lukB" 4775 " unevictable:%lukB" 4776 " isolated(anon):%lukB" 4777 " isolated(file):%lukB" 4778 " mapped:%lukB" 4779 " dirty:%lukB" 4780 " writeback:%lukB" 4781 " shmem:%lukB" 4782 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 4783 " shmem_thp: %lukB" 4784 " shmem_pmdmapped: %lukB" 4785 " anon_thp: %lukB" 4786 #endif 4787 " writeback_tmp:%lukB" 4788 " unstable:%lukB" 4789 " all_unreclaimable? %s" 4790 "\n", 4791 pgdat->node_id, 4792 K(node_page_state(pgdat, NR_ACTIVE_ANON)), 4793 K(node_page_state(pgdat, NR_INACTIVE_ANON)), 4794 K(node_page_state(pgdat, NR_ACTIVE_FILE)), 4795 K(node_page_state(pgdat, NR_INACTIVE_FILE)), 4796 K(node_page_state(pgdat, NR_UNEVICTABLE)), 4797 K(node_page_state(pgdat, NR_ISOLATED_ANON)), 4798 K(node_page_state(pgdat, NR_ISOLATED_FILE)), 4799 K(node_page_state(pgdat, NR_FILE_MAPPED)), 4800 K(node_page_state(pgdat, NR_FILE_DIRTY)), 4801 K(node_page_state(pgdat, NR_WRITEBACK)), 4802 K(node_page_state(pgdat, NR_SHMEM)), 4803 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 4804 K(node_page_state(pgdat, NR_SHMEM_THPS) * HPAGE_PMD_NR), 4805 K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED) 4806 * HPAGE_PMD_NR), 4807 K(node_page_state(pgdat, NR_ANON_THPS) * HPAGE_PMD_NR), 4808 #endif 4809 K(node_page_state(pgdat, NR_WRITEBACK_TEMP)), 4810 K(node_page_state(pgdat, NR_UNSTABLE_NFS)), 4811 pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ? 4812 "yes" : "no"); 4813 } 4814 4815 for_each_populated_zone(zone) { 4816 int i; 4817 4818 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask)) 4819 continue; 4820 4821 free_pcp = 0; 4822 for_each_online_cpu(cpu) 4823 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count; 4824 4825 show_node(zone); 4826 printk(KERN_CONT 4827 "%s" 4828 " free:%lukB" 4829 " min:%lukB" 4830 " low:%lukB" 4831 " high:%lukB" 4832 " active_anon:%lukB" 4833 " inactive_anon:%lukB" 4834 " active_file:%lukB" 4835 " inactive_file:%lukB" 4836 " unevictable:%lukB" 4837 " writepending:%lukB" 4838 " present:%lukB" 4839 " managed:%lukB" 4840 " mlocked:%lukB" 4841 " kernel_stack:%lukB" 4842 " pagetables:%lukB" 4843 " bounce:%lukB" 4844 " free_pcp:%lukB" 4845 " local_pcp:%ukB" 4846 " free_cma:%lukB" 4847 "\n", 4848 zone->name, 4849 K(zone_page_state(zone, NR_FREE_PAGES)), 4850 K(min_wmark_pages(zone)), 4851 K(low_wmark_pages(zone)), 4852 K(high_wmark_pages(zone)), 4853 K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)), 4854 K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)), 4855 K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)), 4856 K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)), 4857 K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)), 4858 K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)), 4859 K(zone->present_pages), 4860 K(zone->managed_pages), 4861 K(zone_page_state(zone, NR_MLOCK)), 4862 zone_page_state(zone, NR_KERNEL_STACK_KB), 4863 K(zone_page_state(zone, NR_PAGETABLE)), 4864 K(zone_page_state(zone, NR_BOUNCE)), 4865 K(free_pcp), 4866 K(this_cpu_read(zone->pageset->pcp.count)), 4867 K(zone_page_state(zone, NR_FREE_CMA_PAGES))); 4868 printk("lowmem_reserve[]:"); 4869 for (i = 0; i < MAX_NR_ZONES; i++) 4870 printk(KERN_CONT " %ld", zone->lowmem_reserve[i]); 4871 printk(KERN_CONT "\n"); 4872 } 4873 4874 for_each_populated_zone(zone) { 4875 unsigned int order; 4876 unsigned long nr[MAX_ORDER], flags, total = 0; 4877 unsigned char types[MAX_ORDER]; 4878 4879 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask)) 4880 continue; 4881 show_node(zone); 4882 printk(KERN_CONT "%s: ", zone->name); 4883 4884 spin_lock_irqsave(&zone->lock, flags); 4885 for (order = 0; order < MAX_ORDER; order++) { 4886 struct free_area *area = &zone->free_area[order]; 4887 int type; 4888 4889 nr[order] = area->nr_free; 4890 total += nr[order] << order; 4891 4892 types[order] = 0; 4893 for (type = 0; type < MIGRATE_TYPES; type++) { 4894 if (!list_empty(&area->free_list[type])) 4895 types[order] |= 1 << type; 4896 } 4897 } 4898 spin_unlock_irqrestore(&zone->lock, flags); 4899 for (order = 0; order < MAX_ORDER; order++) { 4900 printk(KERN_CONT "%lu*%lukB ", 4901 nr[order], K(1UL) << order); 4902 if (nr[order]) 4903 show_migration_types(types[order]); 4904 } 4905 printk(KERN_CONT "= %lukB\n", K(total)); 4906 } 4907 4908 hugetlb_show_meminfo(); 4909 4910 printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES)); 4911 4912 show_swap_cache_info(); 4913 } 4914 4915 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref) 4916 { 4917 zoneref->zone = zone; 4918 zoneref->zone_idx = zone_idx(zone); 4919 } 4920 4921 /* 4922 * Builds allocation fallback zone lists. 4923 * 4924 * Add all populated zones of a node to the zonelist. 4925 */ 4926 static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs) 4927 { 4928 struct zone *zone; 4929 enum zone_type zone_type = MAX_NR_ZONES; 4930 int nr_zones = 0; 4931 4932 do { 4933 zone_type--; 4934 zone = pgdat->node_zones + zone_type; 4935 if (managed_zone(zone)) { 4936 zoneref_set_zone(zone, &zonerefs[nr_zones++]); 4937 check_highest_zone(zone_type); 4938 } 4939 } while (zone_type); 4940 4941 return nr_zones; 4942 } 4943 4944 #ifdef CONFIG_NUMA 4945 4946 static int __parse_numa_zonelist_order(char *s) 4947 { 4948 /* 4949 * We used to support different zonlists modes but they turned 4950 * out to be just not useful. Let's keep the warning in place 4951 * if somebody still use the cmd line parameter so that we do 4952 * not fail it silently 4953 */ 4954 if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) { 4955 pr_warn("Ignoring unsupported numa_zonelist_order value: %s\n", s); 4956 return -EINVAL; 4957 } 4958 return 0; 4959 } 4960 4961 static __init int setup_numa_zonelist_order(char *s) 4962 { 4963 if (!s) 4964 return 0; 4965 4966 return __parse_numa_zonelist_order(s); 4967 } 4968 early_param("numa_zonelist_order", setup_numa_zonelist_order); 4969 4970 char numa_zonelist_order[] = "Node"; 4971 4972 /* 4973 * sysctl handler for numa_zonelist_order 4974 */ 4975 int numa_zonelist_order_handler(struct ctl_table *table, int write, 4976 void __user *buffer, size_t *length, 4977 loff_t *ppos) 4978 { 4979 char *str; 4980 int ret; 4981 4982 if (!write) 4983 return proc_dostring(table, write, buffer, length, ppos); 4984 str = memdup_user_nul(buffer, 16); 4985 if (IS_ERR(str)) 4986 return PTR_ERR(str); 4987 4988 ret = __parse_numa_zonelist_order(str); 4989 kfree(str); 4990 return ret; 4991 } 4992 4993 4994 #define MAX_NODE_LOAD (nr_online_nodes) 4995 static int node_load[MAX_NUMNODES]; 4996 4997 /** 4998 * find_next_best_node - find the next node that should appear in a given node's fallback list 4999 * @node: node whose fallback list we're appending 5000 * @used_node_mask: nodemask_t of already used nodes 5001 * 5002 * We use a number of factors to determine which is the next node that should 5003 * appear on a given node's fallback list. The node should not have appeared 5004 * already in @node's fallback list, and it should be the next closest node 5005 * according to the distance array (which contains arbitrary distance values 5006 * from each node to each node in the system), and should also prefer nodes 5007 * with no CPUs, since presumably they'll have very little allocation pressure 5008 * on them otherwise. 5009 * It returns -1 if no node is found. 5010 */ 5011 static int find_next_best_node(int node, nodemask_t *used_node_mask) 5012 { 5013 int n, val; 5014 int min_val = INT_MAX; 5015 int best_node = NUMA_NO_NODE; 5016 const struct cpumask *tmp = cpumask_of_node(0); 5017 5018 /* Use the local node if we haven't already */ 5019 if (!node_isset(node, *used_node_mask)) { 5020 node_set(node, *used_node_mask); 5021 return node; 5022 } 5023 5024 for_each_node_state(n, N_MEMORY) { 5025 5026 /* Don't want a node to appear more than once */ 5027 if (node_isset(n, *used_node_mask)) 5028 continue; 5029 5030 /* Use the distance array to find the distance */ 5031 val = node_distance(node, n); 5032 5033 /* Penalize nodes under us ("prefer the next node") */ 5034 val += (n < node); 5035 5036 /* Give preference to headless and unused nodes */ 5037 tmp = cpumask_of_node(n); 5038 if (!cpumask_empty(tmp)) 5039 val += PENALTY_FOR_NODE_WITH_CPUS; 5040 5041 /* Slight preference for less loaded node */ 5042 val *= (MAX_NODE_LOAD*MAX_NUMNODES); 5043 val += node_load[n]; 5044 5045 if (val < min_val) { 5046 min_val = val; 5047 best_node = n; 5048 } 5049 } 5050 5051 if (best_node >= 0) 5052 node_set(best_node, *used_node_mask); 5053 5054 return best_node; 5055 } 5056 5057 5058 /* 5059 * Build zonelists ordered by node and zones within node. 5060 * This results in maximum locality--normal zone overflows into local 5061 * DMA zone, if any--but risks exhausting DMA zone. 5062 */ 5063 static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order, 5064 unsigned nr_nodes) 5065 { 5066 struct zoneref *zonerefs; 5067 int i; 5068 5069 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs; 5070 5071 for (i = 0; i < nr_nodes; i++) { 5072 int nr_zones; 5073 5074 pg_data_t *node = NODE_DATA(node_order[i]); 5075 5076 nr_zones = build_zonerefs_node(node, zonerefs); 5077 zonerefs += nr_zones; 5078 } 5079 zonerefs->zone = NULL; 5080 zonerefs->zone_idx = 0; 5081 } 5082 5083 /* 5084 * Build gfp_thisnode zonelists 5085 */ 5086 static void build_thisnode_zonelists(pg_data_t *pgdat) 5087 { 5088 struct zoneref *zonerefs; 5089 int nr_zones; 5090 5091 zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs; 5092 nr_zones = build_zonerefs_node(pgdat, zonerefs); 5093 zonerefs += nr_zones; 5094 zonerefs->zone = NULL; 5095 zonerefs->zone_idx = 0; 5096 } 5097 5098 /* 5099 * Build zonelists ordered by zone and nodes within zones. 5100 * This results in conserving DMA zone[s] until all Normal memory is 5101 * exhausted, but results in overflowing to remote node while memory 5102 * may still exist in local DMA zone. 5103 */ 5104 5105 static void build_zonelists(pg_data_t *pgdat) 5106 { 5107 static int node_order[MAX_NUMNODES]; 5108 int node, load, nr_nodes = 0; 5109 nodemask_t used_mask; 5110 int local_node, prev_node; 5111 5112 /* NUMA-aware ordering of nodes */ 5113 local_node = pgdat->node_id; 5114 load = nr_online_nodes; 5115 prev_node = local_node; 5116 nodes_clear(used_mask); 5117 5118 memset(node_order, 0, sizeof(node_order)); 5119 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) { 5120 /* 5121 * We don't want to pressure a particular node. 5122 * So adding penalty to the first node in same 5123 * distance group to make it round-robin. 5124 */ 5125 if (node_distance(local_node, node) != 5126 node_distance(local_node, prev_node)) 5127 node_load[node] = load; 5128 5129 node_order[nr_nodes++] = node; 5130 prev_node = node; 5131 load--; 5132 } 5133 5134 build_zonelists_in_node_order(pgdat, node_order, nr_nodes); 5135 build_thisnode_zonelists(pgdat); 5136 } 5137 5138 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 5139 /* 5140 * Return node id of node used for "local" allocations. 5141 * I.e., first node id of first zone in arg node's generic zonelist. 5142 * Used for initializing percpu 'numa_mem', which is used primarily 5143 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist. 5144 */ 5145 int local_memory_node(int node) 5146 { 5147 struct zoneref *z; 5148 5149 z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL), 5150 gfp_zone(GFP_KERNEL), 5151 NULL); 5152 return z->zone->node; 5153 } 5154 #endif 5155 5156 static void setup_min_unmapped_ratio(void); 5157 static void setup_min_slab_ratio(void); 5158 #else /* CONFIG_NUMA */ 5159 5160 static void build_zonelists(pg_data_t *pgdat) 5161 { 5162 int node, local_node; 5163 struct zoneref *zonerefs; 5164 int nr_zones; 5165 5166 local_node = pgdat->node_id; 5167 5168 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs; 5169 nr_zones = build_zonerefs_node(pgdat, zonerefs); 5170 zonerefs += nr_zones; 5171 5172 /* 5173 * Now we build the zonelist so that it contains the zones 5174 * of all the other nodes. 5175 * We don't want to pressure a particular node, so when 5176 * building the zones for node N, we make sure that the 5177 * zones coming right after the local ones are those from 5178 * node N+1 (modulo N) 5179 */ 5180 for (node = local_node + 1; node < MAX_NUMNODES; node++) { 5181 if (!node_online(node)) 5182 continue; 5183 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs); 5184 zonerefs += nr_zones; 5185 } 5186 for (node = 0; node < local_node; node++) { 5187 if (!node_online(node)) 5188 continue; 5189 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs); 5190 zonerefs += nr_zones; 5191 } 5192 5193 zonerefs->zone = NULL; 5194 zonerefs->zone_idx = 0; 5195 } 5196 5197 #endif /* CONFIG_NUMA */ 5198 5199 /* 5200 * Boot pageset table. One per cpu which is going to be used for all 5201 * zones and all nodes. The parameters will be set in such a way 5202 * that an item put on a list will immediately be handed over to 5203 * the buddy list. This is safe since pageset manipulation is done 5204 * with interrupts disabled. 5205 * 5206 * The boot_pagesets must be kept even after bootup is complete for 5207 * unused processors and/or zones. They do play a role for bootstrapping 5208 * hotplugged processors. 5209 * 5210 * zoneinfo_show() and maybe other functions do 5211 * not check if the processor is online before following the pageset pointer. 5212 * Other parts of the kernel may not check if the zone is available. 5213 */ 5214 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch); 5215 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset); 5216 static DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats); 5217 5218 static void __build_all_zonelists(void *data) 5219 { 5220 int nid; 5221 int __maybe_unused cpu; 5222 pg_data_t *self = data; 5223 static DEFINE_SPINLOCK(lock); 5224 5225 spin_lock(&lock); 5226 5227 #ifdef CONFIG_NUMA 5228 memset(node_load, 0, sizeof(node_load)); 5229 #endif 5230 5231 /* 5232 * This node is hotadded and no memory is yet present. So just 5233 * building zonelists is fine - no need to touch other nodes. 5234 */ 5235 if (self && !node_online(self->node_id)) { 5236 build_zonelists(self); 5237 } else { 5238 for_each_online_node(nid) { 5239 pg_data_t *pgdat = NODE_DATA(nid); 5240 5241 build_zonelists(pgdat); 5242 } 5243 5244 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 5245 /* 5246 * We now know the "local memory node" for each node-- 5247 * i.e., the node of the first zone in the generic zonelist. 5248 * Set up numa_mem percpu variable for on-line cpus. During 5249 * boot, only the boot cpu should be on-line; we'll init the 5250 * secondary cpus' numa_mem as they come on-line. During 5251 * node/memory hotplug, we'll fixup all on-line cpus. 5252 */ 5253 for_each_online_cpu(cpu) 5254 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu))); 5255 #endif 5256 } 5257 5258 spin_unlock(&lock); 5259 } 5260 5261 static noinline void __init 5262 build_all_zonelists_init(void) 5263 { 5264 int cpu; 5265 5266 __build_all_zonelists(NULL); 5267 5268 /* 5269 * Initialize the boot_pagesets that are going to be used 5270 * for bootstrapping processors. The real pagesets for 5271 * each zone will be allocated later when the per cpu 5272 * allocator is available. 5273 * 5274 * boot_pagesets are used also for bootstrapping offline 5275 * cpus if the system is already booted because the pagesets 5276 * are needed to initialize allocators on a specific cpu too. 5277 * F.e. the percpu allocator needs the page allocator which 5278 * needs the percpu allocator in order to allocate its pagesets 5279 * (a chicken-egg dilemma). 5280 */ 5281 for_each_possible_cpu(cpu) 5282 setup_pageset(&per_cpu(boot_pageset, cpu), 0); 5283 5284 mminit_verify_zonelist(); 5285 cpuset_init_current_mems_allowed(); 5286 } 5287 5288 /* 5289 * unless system_state == SYSTEM_BOOTING. 5290 * 5291 * __ref due to call of __init annotated helper build_all_zonelists_init 5292 * [protected by SYSTEM_BOOTING]. 5293 */ 5294 void __ref build_all_zonelists(pg_data_t *pgdat) 5295 { 5296 if (system_state == SYSTEM_BOOTING) { 5297 build_all_zonelists_init(); 5298 } else { 5299 __build_all_zonelists(pgdat); 5300 /* cpuset refresh routine should be here */ 5301 } 5302 vm_total_pages = nr_free_pagecache_pages(); 5303 /* 5304 * Disable grouping by mobility if the number of pages in the 5305 * system is too low to allow the mechanism to work. It would be 5306 * more accurate, but expensive to check per-zone. This check is 5307 * made on memory-hotadd so a system can start with mobility 5308 * disabled and enable it later 5309 */ 5310 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES)) 5311 page_group_by_mobility_disabled = 1; 5312 else 5313 page_group_by_mobility_disabled = 0; 5314 5315 pr_info("Built %i zonelists, mobility grouping %s. Total pages: %ld\n", 5316 nr_online_nodes, 5317 page_group_by_mobility_disabled ? "off" : "on", 5318 vm_total_pages); 5319 #ifdef CONFIG_NUMA 5320 pr_info("Policy zone: %s\n", zone_names[policy_zone]); 5321 #endif 5322 } 5323 5324 /* 5325 * Initially all pages are reserved - free ones are freed 5326 * up by free_all_bootmem() once the early boot process is 5327 * done. Non-atomic initialization, single-pass. 5328 */ 5329 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone, 5330 unsigned long start_pfn, enum memmap_context context, 5331 struct vmem_altmap *altmap) 5332 { 5333 unsigned long end_pfn = start_pfn + size; 5334 pg_data_t *pgdat = NODE_DATA(nid); 5335 unsigned long pfn; 5336 unsigned long nr_initialised = 0; 5337 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 5338 struct memblock_region *r = NULL, *tmp; 5339 #endif 5340 5341 if (highest_memmap_pfn < end_pfn - 1) 5342 highest_memmap_pfn = end_pfn - 1; 5343 5344 /* 5345 * Honor reservation requested by the driver for this ZONE_DEVICE 5346 * memory 5347 */ 5348 if (altmap && start_pfn == altmap->base_pfn) 5349 start_pfn += altmap->reserve; 5350 5351 for (pfn = start_pfn; pfn < end_pfn; pfn++) { 5352 /* 5353 * There can be holes in boot-time mem_map[]s handed to this 5354 * function. They do not exist on hotplugged memory. 5355 */ 5356 if (context != MEMMAP_EARLY) 5357 goto not_early; 5358 5359 if (!early_pfn_valid(pfn)) { 5360 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 5361 /* 5362 * Skip to the pfn preceding the next valid one (or 5363 * end_pfn), such that we hit a valid pfn (or end_pfn) 5364 * on our next iteration of the loop. 5365 */ 5366 pfn = memblock_next_valid_pfn(pfn, end_pfn) - 1; 5367 #endif 5368 continue; 5369 } 5370 if (!early_pfn_in_nid(pfn, nid)) 5371 continue; 5372 if (!update_defer_init(pgdat, pfn, end_pfn, &nr_initialised)) 5373 break; 5374 5375 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 5376 /* 5377 * Check given memblock attribute by firmware which can affect 5378 * kernel memory layout. If zone==ZONE_MOVABLE but memory is 5379 * mirrored, it's an overlapped memmap init. skip it. 5380 */ 5381 if (mirrored_kernelcore && zone == ZONE_MOVABLE) { 5382 if (!r || pfn >= memblock_region_memory_end_pfn(r)) { 5383 for_each_memblock(memory, tmp) 5384 if (pfn < memblock_region_memory_end_pfn(tmp)) 5385 break; 5386 r = tmp; 5387 } 5388 if (pfn >= memblock_region_memory_base_pfn(r) && 5389 memblock_is_mirror(r)) { 5390 /* already initialized as NORMAL */ 5391 pfn = memblock_region_memory_end_pfn(r); 5392 continue; 5393 } 5394 } 5395 #endif 5396 5397 not_early: 5398 /* 5399 * Mark the block movable so that blocks are reserved for 5400 * movable at startup. This will force kernel allocations 5401 * to reserve their blocks rather than leaking throughout 5402 * the address space during boot when many long-lived 5403 * kernel allocations are made. 5404 * 5405 * bitmap is created for zone's valid pfn range. but memmap 5406 * can be created for invalid pages (for alignment) 5407 * check here not to call set_pageblock_migratetype() against 5408 * pfn out of zone. 5409 * 5410 * Please note that MEMMAP_HOTPLUG path doesn't clear memmap 5411 * because this is done early in sparse_add_one_section 5412 */ 5413 if (!(pfn & (pageblock_nr_pages - 1))) { 5414 struct page *page = pfn_to_page(pfn); 5415 5416 __init_single_page(page, pfn, zone, nid, 5417 context != MEMMAP_HOTPLUG); 5418 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 5419 cond_resched(); 5420 } else { 5421 __init_single_pfn(pfn, zone, nid, 5422 context != MEMMAP_HOTPLUG); 5423 } 5424 } 5425 } 5426 5427 static void __meminit zone_init_free_lists(struct zone *zone) 5428 { 5429 unsigned int order, t; 5430 for_each_migratetype_order(order, t) { 5431 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]); 5432 zone->free_area[order].nr_free = 0; 5433 } 5434 } 5435 5436 #ifndef __HAVE_ARCH_MEMMAP_INIT 5437 #define memmap_init(size, nid, zone, start_pfn) \ 5438 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY, NULL) 5439 #endif 5440 5441 static int zone_batchsize(struct zone *zone) 5442 { 5443 #ifdef CONFIG_MMU 5444 int batch; 5445 5446 /* 5447 * The per-cpu-pages pools are set to around 1000th of the 5448 * size of the zone. But no more than 1/2 of a meg. 5449 * 5450 * OK, so we don't know how big the cache is. So guess. 5451 */ 5452 batch = zone->managed_pages / 1024; 5453 if (batch * PAGE_SIZE > 512 * 1024) 5454 batch = (512 * 1024) / PAGE_SIZE; 5455 batch /= 4; /* We effectively *= 4 below */ 5456 if (batch < 1) 5457 batch = 1; 5458 5459 /* 5460 * Clamp the batch to a 2^n - 1 value. Having a power 5461 * of 2 value was found to be more likely to have 5462 * suboptimal cache aliasing properties in some cases. 5463 * 5464 * For example if 2 tasks are alternately allocating 5465 * batches of pages, one task can end up with a lot 5466 * of pages of one half of the possible page colors 5467 * and the other with pages of the other colors. 5468 */ 5469 batch = rounddown_pow_of_two(batch + batch/2) - 1; 5470 5471 return batch; 5472 5473 #else 5474 /* The deferral and batching of frees should be suppressed under NOMMU 5475 * conditions. 5476 * 5477 * The problem is that NOMMU needs to be able to allocate large chunks 5478 * of contiguous memory as there's no hardware page translation to 5479 * assemble apparent contiguous memory from discontiguous pages. 5480 * 5481 * Queueing large contiguous runs of pages for batching, however, 5482 * causes the pages to actually be freed in smaller chunks. As there 5483 * can be a significant delay between the individual batches being 5484 * recycled, this leads to the once large chunks of space being 5485 * fragmented and becoming unavailable for high-order allocations. 5486 */ 5487 return 0; 5488 #endif 5489 } 5490 5491 /* 5492 * pcp->high and pcp->batch values are related and dependent on one another: 5493 * ->batch must never be higher then ->high. 5494 * The following function updates them in a safe manner without read side 5495 * locking. 5496 * 5497 * Any new users of pcp->batch and pcp->high should ensure they can cope with 5498 * those fields changing asynchronously (acording the the above rule). 5499 * 5500 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function 5501 * outside of boot time (or some other assurance that no concurrent updaters 5502 * exist). 5503 */ 5504 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high, 5505 unsigned long batch) 5506 { 5507 /* start with a fail safe value for batch */ 5508 pcp->batch = 1; 5509 smp_wmb(); 5510 5511 /* Update high, then batch, in order */ 5512 pcp->high = high; 5513 smp_wmb(); 5514 5515 pcp->batch = batch; 5516 } 5517 5518 /* a companion to pageset_set_high() */ 5519 static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch) 5520 { 5521 pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch)); 5522 } 5523 5524 static void pageset_init(struct per_cpu_pageset *p) 5525 { 5526 struct per_cpu_pages *pcp; 5527 int migratetype; 5528 5529 memset(p, 0, sizeof(*p)); 5530 5531 pcp = &p->pcp; 5532 pcp->count = 0; 5533 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++) 5534 INIT_LIST_HEAD(&pcp->lists[migratetype]); 5535 } 5536 5537 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch) 5538 { 5539 pageset_init(p); 5540 pageset_set_batch(p, batch); 5541 } 5542 5543 /* 5544 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist 5545 * to the value high for the pageset p. 5546 */ 5547 static void pageset_set_high(struct per_cpu_pageset *p, 5548 unsigned long high) 5549 { 5550 unsigned long batch = max(1UL, high / 4); 5551 if ((high / 4) > (PAGE_SHIFT * 8)) 5552 batch = PAGE_SHIFT * 8; 5553 5554 pageset_update(&p->pcp, high, batch); 5555 } 5556 5557 static void pageset_set_high_and_batch(struct zone *zone, 5558 struct per_cpu_pageset *pcp) 5559 { 5560 if (percpu_pagelist_fraction) 5561 pageset_set_high(pcp, 5562 (zone->managed_pages / 5563 percpu_pagelist_fraction)); 5564 else 5565 pageset_set_batch(pcp, zone_batchsize(zone)); 5566 } 5567 5568 static void __meminit zone_pageset_init(struct zone *zone, int cpu) 5569 { 5570 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu); 5571 5572 pageset_init(pcp); 5573 pageset_set_high_and_batch(zone, pcp); 5574 } 5575 5576 void __meminit setup_zone_pageset(struct zone *zone) 5577 { 5578 int cpu; 5579 zone->pageset = alloc_percpu(struct per_cpu_pageset); 5580 for_each_possible_cpu(cpu) 5581 zone_pageset_init(zone, cpu); 5582 } 5583 5584 /* 5585 * Allocate per cpu pagesets and initialize them. 5586 * Before this call only boot pagesets were available. 5587 */ 5588 void __init setup_per_cpu_pageset(void) 5589 { 5590 struct pglist_data *pgdat; 5591 struct zone *zone; 5592 5593 for_each_populated_zone(zone) 5594 setup_zone_pageset(zone); 5595 5596 for_each_online_pgdat(pgdat) 5597 pgdat->per_cpu_nodestats = 5598 alloc_percpu(struct per_cpu_nodestat); 5599 } 5600 5601 static __meminit void zone_pcp_init(struct zone *zone) 5602 { 5603 /* 5604 * per cpu subsystem is not up at this point. The following code 5605 * relies on the ability of the linker to provide the 5606 * offset of a (static) per cpu variable into the per cpu area. 5607 */ 5608 zone->pageset = &boot_pageset; 5609 5610 if (populated_zone(zone)) 5611 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n", 5612 zone->name, zone->present_pages, 5613 zone_batchsize(zone)); 5614 } 5615 5616 void __meminit init_currently_empty_zone(struct zone *zone, 5617 unsigned long zone_start_pfn, 5618 unsigned long size) 5619 { 5620 struct pglist_data *pgdat = zone->zone_pgdat; 5621 5622 pgdat->nr_zones = zone_idx(zone) + 1; 5623 5624 zone->zone_start_pfn = zone_start_pfn; 5625 5626 mminit_dprintk(MMINIT_TRACE, "memmap_init", 5627 "Initialising map node %d zone %lu pfns %lu -> %lu\n", 5628 pgdat->node_id, 5629 (unsigned long)zone_idx(zone), 5630 zone_start_pfn, (zone_start_pfn + size)); 5631 5632 zone_init_free_lists(zone); 5633 zone->initialized = 1; 5634 } 5635 5636 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 5637 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID 5638 5639 /* 5640 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on. 5641 */ 5642 int __meminit __early_pfn_to_nid(unsigned long pfn, 5643 struct mminit_pfnnid_cache *state) 5644 { 5645 unsigned long start_pfn, end_pfn; 5646 int nid; 5647 5648 if (state->last_start <= pfn && pfn < state->last_end) 5649 return state->last_nid; 5650 5651 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn); 5652 if (nid != -1) { 5653 state->last_start = start_pfn; 5654 state->last_end = end_pfn; 5655 state->last_nid = nid; 5656 } 5657 5658 return nid; 5659 } 5660 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */ 5661 5662 /** 5663 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range 5664 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed. 5665 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid 5666 * 5667 * If an architecture guarantees that all ranges registered contain no holes 5668 * and may be freed, this this function may be used instead of calling 5669 * memblock_free_early_nid() manually. 5670 */ 5671 void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn) 5672 { 5673 unsigned long start_pfn, end_pfn; 5674 int i, this_nid; 5675 5676 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) { 5677 start_pfn = min(start_pfn, max_low_pfn); 5678 end_pfn = min(end_pfn, max_low_pfn); 5679 5680 if (start_pfn < end_pfn) 5681 memblock_free_early_nid(PFN_PHYS(start_pfn), 5682 (end_pfn - start_pfn) << PAGE_SHIFT, 5683 this_nid); 5684 } 5685 } 5686 5687 /** 5688 * sparse_memory_present_with_active_regions - Call memory_present for each active range 5689 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used. 5690 * 5691 * If an architecture guarantees that all ranges registered contain no holes and may 5692 * be freed, this function may be used instead of calling memory_present() manually. 5693 */ 5694 void __init sparse_memory_present_with_active_regions(int nid) 5695 { 5696 unsigned long start_pfn, end_pfn; 5697 int i, this_nid; 5698 5699 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) 5700 memory_present(this_nid, start_pfn, end_pfn); 5701 } 5702 5703 /** 5704 * get_pfn_range_for_nid - Return the start and end page frames for a node 5705 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned. 5706 * @start_pfn: Passed by reference. On return, it will have the node start_pfn. 5707 * @end_pfn: Passed by reference. On return, it will have the node end_pfn. 5708 * 5709 * It returns the start and end page frame of a node based on information 5710 * provided by memblock_set_node(). If called for a node 5711 * with no available memory, a warning is printed and the start and end 5712 * PFNs will be 0. 5713 */ 5714 void __meminit get_pfn_range_for_nid(unsigned int nid, 5715 unsigned long *start_pfn, unsigned long *end_pfn) 5716 { 5717 unsigned long this_start_pfn, this_end_pfn; 5718 int i; 5719 5720 *start_pfn = -1UL; 5721 *end_pfn = 0; 5722 5723 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) { 5724 *start_pfn = min(*start_pfn, this_start_pfn); 5725 *end_pfn = max(*end_pfn, this_end_pfn); 5726 } 5727 5728 if (*start_pfn == -1UL) 5729 *start_pfn = 0; 5730 } 5731 5732 /* 5733 * This finds a zone that can be used for ZONE_MOVABLE pages. The 5734 * assumption is made that zones within a node are ordered in monotonic 5735 * increasing memory addresses so that the "highest" populated zone is used 5736 */ 5737 static void __init find_usable_zone_for_movable(void) 5738 { 5739 int zone_index; 5740 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) { 5741 if (zone_index == ZONE_MOVABLE) 5742 continue; 5743 5744 if (arch_zone_highest_possible_pfn[zone_index] > 5745 arch_zone_lowest_possible_pfn[zone_index]) 5746 break; 5747 } 5748 5749 VM_BUG_ON(zone_index == -1); 5750 movable_zone = zone_index; 5751 } 5752 5753 /* 5754 * The zone ranges provided by the architecture do not include ZONE_MOVABLE 5755 * because it is sized independent of architecture. Unlike the other zones, 5756 * the starting point for ZONE_MOVABLE is not fixed. It may be different 5757 * in each node depending on the size of each node and how evenly kernelcore 5758 * is distributed. This helper function adjusts the zone ranges 5759 * provided by the architecture for a given node by using the end of the 5760 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that 5761 * zones within a node are in order of monotonic increases memory addresses 5762 */ 5763 static void __meminit adjust_zone_range_for_zone_movable(int nid, 5764 unsigned long zone_type, 5765 unsigned long node_start_pfn, 5766 unsigned long node_end_pfn, 5767 unsigned long *zone_start_pfn, 5768 unsigned long *zone_end_pfn) 5769 { 5770 /* Only adjust if ZONE_MOVABLE is on this node */ 5771 if (zone_movable_pfn[nid]) { 5772 /* Size ZONE_MOVABLE */ 5773 if (zone_type == ZONE_MOVABLE) { 5774 *zone_start_pfn = zone_movable_pfn[nid]; 5775 *zone_end_pfn = min(node_end_pfn, 5776 arch_zone_highest_possible_pfn[movable_zone]); 5777 5778 /* Adjust for ZONE_MOVABLE starting within this range */ 5779 } else if (!mirrored_kernelcore && 5780 *zone_start_pfn < zone_movable_pfn[nid] && 5781 *zone_end_pfn > zone_movable_pfn[nid]) { 5782 *zone_end_pfn = zone_movable_pfn[nid]; 5783 5784 /* Check if this whole range is within ZONE_MOVABLE */ 5785 } else if (*zone_start_pfn >= zone_movable_pfn[nid]) 5786 *zone_start_pfn = *zone_end_pfn; 5787 } 5788 } 5789 5790 /* 5791 * Return the number of pages a zone spans in a node, including holes 5792 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node() 5793 */ 5794 static unsigned long __meminit zone_spanned_pages_in_node(int nid, 5795 unsigned long zone_type, 5796 unsigned long node_start_pfn, 5797 unsigned long node_end_pfn, 5798 unsigned long *zone_start_pfn, 5799 unsigned long *zone_end_pfn, 5800 unsigned long *ignored) 5801 { 5802 /* When hotadd a new node from cpu_up(), the node should be empty */ 5803 if (!node_start_pfn && !node_end_pfn) 5804 return 0; 5805 5806 /* Get the start and end of the zone */ 5807 *zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type]; 5808 *zone_end_pfn = arch_zone_highest_possible_pfn[zone_type]; 5809 adjust_zone_range_for_zone_movable(nid, zone_type, 5810 node_start_pfn, node_end_pfn, 5811 zone_start_pfn, zone_end_pfn); 5812 5813 /* Check that this node has pages within the zone's required range */ 5814 if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn) 5815 return 0; 5816 5817 /* Move the zone boundaries inside the node if necessary */ 5818 *zone_end_pfn = min(*zone_end_pfn, node_end_pfn); 5819 *zone_start_pfn = max(*zone_start_pfn, node_start_pfn); 5820 5821 /* Return the spanned pages */ 5822 return *zone_end_pfn - *zone_start_pfn; 5823 } 5824 5825 /* 5826 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES, 5827 * then all holes in the requested range will be accounted for. 5828 */ 5829 unsigned long __meminit __absent_pages_in_range(int nid, 5830 unsigned long range_start_pfn, 5831 unsigned long range_end_pfn) 5832 { 5833 unsigned long nr_absent = range_end_pfn - range_start_pfn; 5834 unsigned long start_pfn, end_pfn; 5835 int i; 5836 5837 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) { 5838 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn); 5839 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn); 5840 nr_absent -= end_pfn - start_pfn; 5841 } 5842 return nr_absent; 5843 } 5844 5845 /** 5846 * absent_pages_in_range - Return number of page frames in holes within a range 5847 * @start_pfn: The start PFN to start searching for holes 5848 * @end_pfn: The end PFN to stop searching for holes 5849 * 5850 * It returns the number of pages frames in memory holes within a range. 5851 */ 5852 unsigned long __init absent_pages_in_range(unsigned long start_pfn, 5853 unsigned long end_pfn) 5854 { 5855 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn); 5856 } 5857 5858 /* Return the number of page frames in holes in a zone on a node */ 5859 static unsigned long __meminit zone_absent_pages_in_node(int nid, 5860 unsigned long zone_type, 5861 unsigned long node_start_pfn, 5862 unsigned long node_end_pfn, 5863 unsigned long *ignored) 5864 { 5865 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type]; 5866 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type]; 5867 unsigned long zone_start_pfn, zone_end_pfn; 5868 unsigned long nr_absent; 5869 5870 /* When hotadd a new node from cpu_up(), the node should be empty */ 5871 if (!node_start_pfn && !node_end_pfn) 5872 return 0; 5873 5874 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high); 5875 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high); 5876 5877 adjust_zone_range_for_zone_movable(nid, zone_type, 5878 node_start_pfn, node_end_pfn, 5879 &zone_start_pfn, &zone_end_pfn); 5880 nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn); 5881 5882 /* 5883 * ZONE_MOVABLE handling. 5884 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages 5885 * and vice versa. 5886 */ 5887 if (mirrored_kernelcore && zone_movable_pfn[nid]) { 5888 unsigned long start_pfn, end_pfn; 5889 struct memblock_region *r; 5890 5891 for_each_memblock(memory, r) { 5892 start_pfn = clamp(memblock_region_memory_base_pfn(r), 5893 zone_start_pfn, zone_end_pfn); 5894 end_pfn = clamp(memblock_region_memory_end_pfn(r), 5895 zone_start_pfn, zone_end_pfn); 5896 5897 if (zone_type == ZONE_MOVABLE && 5898 memblock_is_mirror(r)) 5899 nr_absent += end_pfn - start_pfn; 5900 5901 if (zone_type == ZONE_NORMAL && 5902 !memblock_is_mirror(r)) 5903 nr_absent += end_pfn - start_pfn; 5904 } 5905 } 5906 5907 return nr_absent; 5908 } 5909 5910 #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 5911 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid, 5912 unsigned long zone_type, 5913 unsigned long node_start_pfn, 5914 unsigned long node_end_pfn, 5915 unsigned long *zone_start_pfn, 5916 unsigned long *zone_end_pfn, 5917 unsigned long *zones_size) 5918 { 5919 unsigned int zone; 5920 5921 *zone_start_pfn = node_start_pfn; 5922 for (zone = 0; zone < zone_type; zone++) 5923 *zone_start_pfn += zones_size[zone]; 5924 5925 *zone_end_pfn = *zone_start_pfn + zones_size[zone_type]; 5926 5927 return zones_size[zone_type]; 5928 } 5929 5930 static inline unsigned long __meminit zone_absent_pages_in_node(int nid, 5931 unsigned long zone_type, 5932 unsigned long node_start_pfn, 5933 unsigned long node_end_pfn, 5934 unsigned long *zholes_size) 5935 { 5936 if (!zholes_size) 5937 return 0; 5938 5939 return zholes_size[zone_type]; 5940 } 5941 5942 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 5943 5944 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat, 5945 unsigned long node_start_pfn, 5946 unsigned long node_end_pfn, 5947 unsigned long *zones_size, 5948 unsigned long *zholes_size) 5949 { 5950 unsigned long realtotalpages = 0, totalpages = 0; 5951 enum zone_type i; 5952 5953 for (i = 0; i < MAX_NR_ZONES; i++) { 5954 struct zone *zone = pgdat->node_zones + i; 5955 unsigned long zone_start_pfn, zone_end_pfn; 5956 unsigned long size, real_size; 5957 5958 size = zone_spanned_pages_in_node(pgdat->node_id, i, 5959 node_start_pfn, 5960 node_end_pfn, 5961 &zone_start_pfn, 5962 &zone_end_pfn, 5963 zones_size); 5964 real_size = size - zone_absent_pages_in_node(pgdat->node_id, i, 5965 node_start_pfn, node_end_pfn, 5966 zholes_size); 5967 if (size) 5968 zone->zone_start_pfn = zone_start_pfn; 5969 else 5970 zone->zone_start_pfn = 0; 5971 zone->spanned_pages = size; 5972 zone->present_pages = real_size; 5973 5974 totalpages += size; 5975 realtotalpages += real_size; 5976 } 5977 5978 pgdat->node_spanned_pages = totalpages; 5979 pgdat->node_present_pages = realtotalpages; 5980 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id, 5981 realtotalpages); 5982 } 5983 5984 #ifndef CONFIG_SPARSEMEM 5985 /* 5986 * Calculate the size of the zone->blockflags rounded to an unsigned long 5987 * Start by making sure zonesize is a multiple of pageblock_order by rounding 5988 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally 5989 * round what is now in bits to nearest long in bits, then return it in 5990 * bytes. 5991 */ 5992 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize) 5993 { 5994 unsigned long usemapsize; 5995 5996 zonesize += zone_start_pfn & (pageblock_nr_pages-1); 5997 usemapsize = roundup(zonesize, pageblock_nr_pages); 5998 usemapsize = usemapsize >> pageblock_order; 5999 usemapsize *= NR_PAGEBLOCK_BITS; 6000 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long)); 6001 6002 return usemapsize / 8; 6003 } 6004 6005 static void __init setup_usemap(struct pglist_data *pgdat, 6006 struct zone *zone, 6007 unsigned long zone_start_pfn, 6008 unsigned long zonesize) 6009 { 6010 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize); 6011 zone->pageblock_flags = NULL; 6012 if (usemapsize) 6013 zone->pageblock_flags = 6014 memblock_virt_alloc_node_nopanic(usemapsize, 6015 pgdat->node_id); 6016 } 6017 #else 6018 static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone, 6019 unsigned long zone_start_pfn, unsigned long zonesize) {} 6020 #endif /* CONFIG_SPARSEMEM */ 6021 6022 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE 6023 6024 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */ 6025 void __paginginit set_pageblock_order(void) 6026 { 6027 unsigned int order; 6028 6029 /* Check that pageblock_nr_pages has not already been setup */ 6030 if (pageblock_order) 6031 return; 6032 6033 if (HPAGE_SHIFT > PAGE_SHIFT) 6034 order = HUGETLB_PAGE_ORDER; 6035 else 6036 order = MAX_ORDER - 1; 6037 6038 /* 6039 * Assume the largest contiguous order of interest is a huge page. 6040 * This value may be variable depending on boot parameters on IA64 and 6041 * powerpc. 6042 */ 6043 pageblock_order = order; 6044 } 6045 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */ 6046 6047 /* 6048 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order() 6049 * is unused as pageblock_order is set at compile-time. See 6050 * include/linux/pageblock-flags.h for the values of pageblock_order based on 6051 * the kernel config 6052 */ 6053 void __paginginit set_pageblock_order(void) 6054 { 6055 } 6056 6057 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */ 6058 6059 static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages, 6060 unsigned long present_pages) 6061 { 6062 unsigned long pages = spanned_pages; 6063 6064 /* 6065 * Provide a more accurate estimation if there are holes within 6066 * the zone and SPARSEMEM is in use. If there are holes within the 6067 * zone, each populated memory region may cost us one or two extra 6068 * memmap pages due to alignment because memmap pages for each 6069 * populated regions may not be naturally aligned on page boundary. 6070 * So the (present_pages >> 4) heuristic is a tradeoff for that. 6071 */ 6072 if (spanned_pages > present_pages + (present_pages >> 4) && 6073 IS_ENABLED(CONFIG_SPARSEMEM)) 6074 pages = present_pages; 6075 6076 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT; 6077 } 6078 6079 /* 6080 * Set up the zone data structures: 6081 * - mark all pages reserved 6082 * - mark all memory queues empty 6083 * - clear the memory bitmaps 6084 * 6085 * NOTE: pgdat should get zeroed by caller. 6086 */ 6087 static void __paginginit free_area_init_core(struct pglist_data *pgdat) 6088 { 6089 enum zone_type j; 6090 int nid = pgdat->node_id; 6091 6092 pgdat_resize_init(pgdat); 6093 #ifdef CONFIG_NUMA_BALANCING 6094 spin_lock_init(&pgdat->numabalancing_migrate_lock); 6095 pgdat->numabalancing_migrate_nr_pages = 0; 6096 pgdat->numabalancing_migrate_next_window = jiffies; 6097 #endif 6098 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 6099 spin_lock_init(&pgdat->split_queue_lock); 6100 INIT_LIST_HEAD(&pgdat->split_queue); 6101 pgdat->split_queue_len = 0; 6102 #endif 6103 init_waitqueue_head(&pgdat->kswapd_wait); 6104 init_waitqueue_head(&pgdat->pfmemalloc_wait); 6105 #ifdef CONFIG_COMPACTION 6106 init_waitqueue_head(&pgdat->kcompactd_wait); 6107 #endif 6108 pgdat_page_ext_init(pgdat); 6109 spin_lock_init(&pgdat->lru_lock); 6110 lruvec_init(node_lruvec(pgdat)); 6111 6112 pgdat->per_cpu_nodestats = &boot_nodestats; 6113 6114 for (j = 0; j < MAX_NR_ZONES; j++) { 6115 struct zone *zone = pgdat->node_zones + j; 6116 unsigned long size, realsize, freesize, memmap_pages; 6117 unsigned long zone_start_pfn = zone->zone_start_pfn; 6118 6119 size = zone->spanned_pages; 6120 realsize = freesize = zone->present_pages; 6121 6122 /* 6123 * Adjust freesize so that it accounts for how much memory 6124 * is used by this zone for memmap. This affects the watermark 6125 * and per-cpu initialisations 6126 */ 6127 memmap_pages = calc_memmap_size(size, realsize); 6128 if (!is_highmem_idx(j)) { 6129 if (freesize >= memmap_pages) { 6130 freesize -= memmap_pages; 6131 if (memmap_pages) 6132 printk(KERN_DEBUG 6133 " %s zone: %lu pages used for memmap\n", 6134 zone_names[j], memmap_pages); 6135 } else 6136 pr_warn(" %s zone: %lu pages exceeds freesize %lu\n", 6137 zone_names[j], memmap_pages, freesize); 6138 } 6139 6140 /* Account for reserved pages */ 6141 if (j == 0 && freesize > dma_reserve) { 6142 freesize -= dma_reserve; 6143 printk(KERN_DEBUG " %s zone: %lu pages reserved\n", 6144 zone_names[0], dma_reserve); 6145 } 6146 6147 if (!is_highmem_idx(j)) 6148 nr_kernel_pages += freesize; 6149 /* Charge for highmem memmap if there are enough kernel pages */ 6150 else if (nr_kernel_pages > memmap_pages * 2) 6151 nr_kernel_pages -= memmap_pages; 6152 nr_all_pages += freesize; 6153 6154 /* 6155 * Set an approximate value for lowmem here, it will be adjusted 6156 * when the bootmem allocator frees pages into the buddy system. 6157 * And all highmem pages will be managed by the buddy system. 6158 */ 6159 zone->managed_pages = is_highmem_idx(j) ? realsize : freesize; 6160 #ifdef CONFIG_NUMA 6161 zone->node = nid; 6162 #endif 6163 zone->name = zone_names[j]; 6164 zone->zone_pgdat = pgdat; 6165 spin_lock_init(&zone->lock); 6166 zone_seqlock_init(zone); 6167 zone_pcp_init(zone); 6168 6169 if (!size) 6170 continue; 6171 6172 set_pageblock_order(); 6173 setup_usemap(pgdat, zone, zone_start_pfn, size); 6174 init_currently_empty_zone(zone, zone_start_pfn, size); 6175 memmap_init(size, nid, j, zone_start_pfn); 6176 } 6177 } 6178 6179 #ifdef CONFIG_FLAT_NODE_MEM_MAP 6180 static void __ref alloc_node_mem_map(struct pglist_data *pgdat) 6181 { 6182 unsigned long __maybe_unused start = 0; 6183 unsigned long __maybe_unused offset = 0; 6184 6185 /* Skip empty nodes */ 6186 if (!pgdat->node_spanned_pages) 6187 return; 6188 6189 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1); 6190 offset = pgdat->node_start_pfn - start; 6191 /* ia64 gets its own node_mem_map, before this, without bootmem */ 6192 if (!pgdat->node_mem_map) { 6193 unsigned long size, end; 6194 struct page *map; 6195 6196 /* 6197 * The zone's endpoints aren't required to be MAX_ORDER 6198 * aligned but the node_mem_map endpoints must be in order 6199 * for the buddy allocator to function correctly. 6200 */ 6201 end = pgdat_end_pfn(pgdat); 6202 end = ALIGN(end, MAX_ORDER_NR_PAGES); 6203 size = (end - start) * sizeof(struct page); 6204 map = alloc_remap(pgdat->node_id, size); 6205 if (!map) 6206 map = memblock_virt_alloc_node_nopanic(size, 6207 pgdat->node_id); 6208 pgdat->node_mem_map = map + offset; 6209 } 6210 pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n", 6211 __func__, pgdat->node_id, (unsigned long)pgdat, 6212 (unsigned long)pgdat->node_mem_map); 6213 #ifndef CONFIG_NEED_MULTIPLE_NODES 6214 /* 6215 * With no DISCONTIG, the global mem_map is just set as node 0's 6216 */ 6217 if (pgdat == NODE_DATA(0)) { 6218 mem_map = NODE_DATA(0)->node_mem_map; 6219 #if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM) 6220 if (page_to_pfn(mem_map) != pgdat->node_start_pfn) 6221 mem_map -= offset; 6222 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 6223 } 6224 #endif 6225 } 6226 #else 6227 static void __ref alloc_node_mem_map(struct pglist_data *pgdat) { } 6228 #endif /* CONFIG_FLAT_NODE_MEM_MAP */ 6229 6230 void __paginginit free_area_init_node(int nid, unsigned long *zones_size, 6231 unsigned long node_start_pfn, unsigned long *zholes_size) 6232 { 6233 pg_data_t *pgdat = NODE_DATA(nid); 6234 unsigned long start_pfn = 0; 6235 unsigned long end_pfn = 0; 6236 6237 /* pg_data_t should be reset to zero when it's allocated */ 6238 WARN_ON(pgdat->nr_zones || pgdat->kswapd_classzone_idx); 6239 6240 pgdat->node_id = nid; 6241 pgdat->node_start_pfn = node_start_pfn; 6242 pgdat->per_cpu_nodestats = NULL; 6243 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 6244 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn); 6245 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid, 6246 (u64)start_pfn << PAGE_SHIFT, 6247 end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0); 6248 #else 6249 start_pfn = node_start_pfn; 6250 #endif 6251 calculate_node_totalpages(pgdat, start_pfn, end_pfn, 6252 zones_size, zholes_size); 6253 6254 alloc_node_mem_map(pgdat); 6255 6256 reset_deferred_meminit(pgdat); 6257 free_area_init_core(pgdat); 6258 } 6259 6260 #ifdef CONFIG_HAVE_MEMBLOCK 6261 /* 6262 * Only struct pages that are backed by physical memory are zeroed and 6263 * initialized by going through __init_single_page(). But, there are some 6264 * struct pages which are reserved in memblock allocator and their fields 6265 * may be accessed (for example page_to_pfn() on some configuration accesses 6266 * flags). We must explicitly zero those struct pages. 6267 */ 6268 void __paginginit zero_resv_unavail(void) 6269 { 6270 phys_addr_t start, end; 6271 unsigned long pfn; 6272 u64 i, pgcnt; 6273 6274 /* 6275 * Loop through ranges that are reserved, but do not have reported 6276 * physical memory backing. 6277 */ 6278 pgcnt = 0; 6279 for_each_resv_unavail_range(i, &start, &end) { 6280 for (pfn = PFN_DOWN(start); pfn < PFN_UP(end); pfn++) { 6281 if (!pfn_valid(ALIGN_DOWN(pfn, pageblock_nr_pages))) 6282 continue; 6283 mm_zero_struct_page(pfn_to_page(pfn)); 6284 pgcnt++; 6285 } 6286 } 6287 6288 /* 6289 * Struct pages that do not have backing memory. This could be because 6290 * firmware is using some of this memory, or for some other reasons. 6291 * Once memblock is changed so such behaviour is not allowed: i.e. 6292 * list of "reserved" memory must be a subset of list of "memory", then 6293 * this code can be removed. 6294 */ 6295 if (pgcnt) 6296 pr_info("Reserved but unavailable: %lld pages", pgcnt); 6297 } 6298 #endif /* CONFIG_HAVE_MEMBLOCK */ 6299 6300 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 6301 6302 #if MAX_NUMNODES > 1 6303 /* 6304 * Figure out the number of possible node ids. 6305 */ 6306 void __init setup_nr_node_ids(void) 6307 { 6308 unsigned int highest; 6309 6310 highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES); 6311 nr_node_ids = highest + 1; 6312 } 6313 #endif 6314 6315 /** 6316 * node_map_pfn_alignment - determine the maximum internode alignment 6317 * 6318 * This function should be called after node map is populated and sorted. 6319 * It calculates the maximum power of two alignment which can distinguish 6320 * all the nodes. 6321 * 6322 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value 6323 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the 6324 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is 6325 * shifted, 1GiB is enough and this function will indicate so. 6326 * 6327 * This is used to test whether pfn -> nid mapping of the chosen memory 6328 * model has fine enough granularity to avoid incorrect mapping for the 6329 * populated node map. 6330 * 6331 * Returns the determined alignment in pfn's. 0 if there is no alignment 6332 * requirement (single node). 6333 */ 6334 unsigned long __init node_map_pfn_alignment(void) 6335 { 6336 unsigned long accl_mask = 0, last_end = 0; 6337 unsigned long start, end, mask; 6338 int last_nid = -1; 6339 int i, nid; 6340 6341 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) { 6342 if (!start || last_nid < 0 || last_nid == nid) { 6343 last_nid = nid; 6344 last_end = end; 6345 continue; 6346 } 6347 6348 /* 6349 * Start with a mask granular enough to pin-point to the 6350 * start pfn and tick off bits one-by-one until it becomes 6351 * too coarse to separate the current node from the last. 6352 */ 6353 mask = ~((1 << __ffs(start)) - 1); 6354 while (mask && last_end <= (start & (mask << 1))) 6355 mask <<= 1; 6356 6357 /* accumulate all internode masks */ 6358 accl_mask |= mask; 6359 } 6360 6361 /* convert mask to number of pages */ 6362 return ~accl_mask + 1; 6363 } 6364 6365 /* Find the lowest pfn for a node */ 6366 static unsigned long __init find_min_pfn_for_node(int nid) 6367 { 6368 unsigned long min_pfn = ULONG_MAX; 6369 unsigned long start_pfn; 6370 int i; 6371 6372 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL) 6373 min_pfn = min(min_pfn, start_pfn); 6374 6375 if (min_pfn == ULONG_MAX) { 6376 pr_warn("Could not find start_pfn for node %d\n", nid); 6377 return 0; 6378 } 6379 6380 return min_pfn; 6381 } 6382 6383 /** 6384 * find_min_pfn_with_active_regions - Find the minimum PFN registered 6385 * 6386 * It returns the minimum PFN based on information provided via 6387 * memblock_set_node(). 6388 */ 6389 unsigned long __init find_min_pfn_with_active_regions(void) 6390 { 6391 return find_min_pfn_for_node(MAX_NUMNODES); 6392 } 6393 6394 /* 6395 * early_calculate_totalpages() 6396 * Sum pages in active regions for movable zone. 6397 * Populate N_MEMORY for calculating usable_nodes. 6398 */ 6399 static unsigned long __init early_calculate_totalpages(void) 6400 { 6401 unsigned long totalpages = 0; 6402 unsigned long start_pfn, end_pfn; 6403 int i, nid; 6404 6405 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) { 6406 unsigned long pages = end_pfn - start_pfn; 6407 6408 totalpages += pages; 6409 if (pages) 6410 node_set_state(nid, N_MEMORY); 6411 } 6412 return totalpages; 6413 } 6414 6415 /* 6416 * Find the PFN the Movable zone begins in each node. Kernel memory 6417 * is spread evenly between nodes as long as the nodes have enough 6418 * memory. When they don't, some nodes will have more kernelcore than 6419 * others 6420 */ 6421 static void __init find_zone_movable_pfns_for_nodes(void) 6422 { 6423 int i, nid; 6424 unsigned long usable_startpfn; 6425 unsigned long kernelcore_node, kernelcore_remaining; 6426 /* save the state before borrow the nodemask */ 6427 nodemask_t saved_node_state = node_states[N_MEMORY]; 6428 unsigned long totalpages = early_calculate_totalpages(); 6429 int usable_nodes = nodes_weight(node_states[N_MEMORY]); 6430 struct memblock_region *r; 6431 6432 /* Need to find movable_zone earlier when movable_node is specified. */ 6433 find_usable_zone_for_movable(); 6434 6435 /* 6436 * If movable_node is specified, ignore kernelcore and movablecore 6437 * options. 6438 */ 6439 if (movable_node_is_enabled()) { 6440 for_each_memblock(memory, r) { 6441 if (!memblock_is_hotpluggable(r)) 6442 continue; 6443 6444 nid = r->nid; 6445 6446 usable_startpfn = PFN_DOWN(r->base); 6447 zone_movable_pfn[nid] = zone_movable_pfn[nid] ? 6448 min(usable_startpfn, zone_movable_pfn[nid]) : 6449 usable_startpfn; 6450 } 6451 6452 goto out2; 6453 } 6454 6455 /* 6456 * If kernelcore=mirror is specified, ignore movablecore option 6457 */ 6458 if (mirrored_kernelcore) { 6459 bool mem_below_4gb_not_mirrored = false; 6460 6461 for_each_memblock(memory, r) { 6462 if (memblock_is_mirror(r)) 6463 continue; 6464 6465 nid = r->nid; 6466 6467 usable_startpfn = memblock_region_memory_base_pfn(r); 6468 6469 if (usable_startpfn < 0x100000) { 6470 mem_below_4gb_not_mirrored = true; 6471 continue; 6472 } 6473 6474 zone_movable_pfn[nid] = zone_movable_pfn[nid] ? 6475 min(usable_startpfn, zone_movable_pfn[nid]) : 6476 usable_startpfn; 6477 } 6478 6479 if (mem_below_4gb_not_mirrored) 6480 pr_warn("This configuration results in unmirrored kernel memory."); 6481 6482 goto out2; 6483 } 6484 6485 /* 6486 * If movablecore=nn[KMG] was specified, calculate what size of 6487 * kernelcore that corresponds so that memory usable for 6488 * any allocation type is evenly spread. If both kernelcore 6489 * and movablecore are specified, then the value of kernelcore 6490 * will be used for required_kernelcore if it's greater than 6491 * what movablecore would have allowed. 6492 */ 6493 if (required_movablecore) { 6494 unsigned long corepages; 6495 6496 /* 6497 * Round-up so that ZONE_MOVABLE is at least as large as what 6498 * was requested by the user 6499 */ 6500 required_movablecore = 6501 roundup(required_movablecore, MAX_ORDER_NR_PAGES); 6502 required_movablecore = min(totalpages, required_movablecore); 6503 corepages = totalpages - required_movablecore; 6504 6505 required_kernelcore = max(required_kernelcore, corepages); 6506 } 6507 6508 /* 6509 * If kernelcore was not specified or kernelcore size is larger 6510 * than totalpages, there is no ZONE_MOVABLE. 6511 */ 6512 if (!required_kernelcore || required_kernelcore >= totalpages) 6513 goto out; 6514 6515 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */ 6516 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone]; 6517 6518 restart: 6519 /* Spread kernelcore memory as evenly as possible throughout nodes */ 6520 kernelcore_node = required_kernelcore / usable_nodes; 6521 for_each_node_state(nid, N_MEMORY) { 6522 unsigned long start_pfn, end_pfn; 6523 6524 /* 6525 * Recalculate kernelcore_node if the division per node 6526 * now exceeds what is necessary to satisfy the requested 6527 * amount of memory for the kernel 6528 */ 6529 if (required_kernelcore < kernelcore_node) 6530 kernelcore_node = required_kernelcore / usable_nodes; 6531 6532 /* 6533 * As the map is walked, we track how much memory is usable 6534 * by the kernel using kernelcore_remaining. When it is 6535 * 0, the rest of the node is usable by ZONE_MOVABLE 6536 */ 6537 kernelcore_remaining = kernelcore_node; 6538 6539 /* Go through each range of PFNs within this node */ 6540 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) { 6541 unsigned long size_pages; 6542 6543 start_pfn = max(start_pfn, zone_movable_pfn[nid]); 6544 if (start_pfn >= end_pfn) 6545 continue; 6546 6547 /* Account for what is only usable for kernelcore */ 6548 if (start_pfn < usable_startpfn) { 6549 unsigned long kernel_pages; 6550 kernel_pages = min(end_pfn, usable_startpfn) 6551 - start_pfn; 6552 6553 kernelcore_remaining -= min(kernel_pages, 6554 kernelcore_remaining); 6555 required_kernelcore -= min(kernel_pages, 6556 required_kernelcore); 6557 6558 /* Continue if range is now fully accounted */ 6559 if (end_pfn <= usable_startpfn) { 6560 6561 /* 6562 * Push zone_movable_pfn to the end so 6563 * that if we have to rebalance 6564 * kernelcore across nodes, we will 6565 * not double account here 6566 */ 6567 zone_movable_pfn[nid] = end_pfn; 6568 continue; 6569 } 6570 start_pfn = usable_startpfn; 6571 } 6572 6573 /* 6574 * The usable PFN range for ZONE_MOVABLE is from 6575 * start_pfn->end_pfn. Calculate size_pages as the 6576 * number of pages used as kernelcore 6577 */ 6578 size_pages = end_pfn - start_pfn; 6579 if (size_pages > kernelcore_remaining) 6580 size_pages = kernelcore_remaining; 6581 zone_movable_pfn[nid] = start_pfn + size_pages; 6582 6583 /* 6584 * Some kernelcore has been met, update counts and 6585 * break if the kernelcore for this node has been 6586 * satisfied 6587 */ 6588 required_kernelcore -= min(required_kernelcore, 6589 size_pages); 6590 kernelcore_remaining -= size_pages; 6591 if (!kernelcore_remaining) 6592 break; 6593 } 6594 } 6595 6596 /* 6597 * If there is still required_kernelcore, we do another pass with one 6598 * less node in the count. This will push zone_movable_pfn[nid] further 6599 * along on the nodes that still have memory until kernelcore is 6600 * satisfied 6601 */ 6602 usable_nodes--; 6603 if (usable_nodes && required_kernelcore > usable_nodes) 6604 goto restart; 6605 6606 out2: 6607 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */ 6608 for (nid = 0; nid < MAX_NUMNODES; nid++) 6609 zone_movable_pfn[nid] = 6610 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES); 6611 6612 out: 6613 /* restore the node_state */ 6614 node_states[N_MEMORY] = saved_node_state; 6615 } 6616 6617 /* Any regular or high memory on that node ? */ 6618 static void check_for_memory(pg_data_t *pgdat, int nid) 6619 { 6620 enum zone_type zone_type; 6621 6622 if (N_MEMORY == N_NORMAL_MEMORY) 6623 return; 6624 6625 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) { 6626 struct zone *zone = &pgdat->node_zones[zone_type]; 6627 if (populated_zone(zone)) { 6628 node_set_state(nid, N_HIGH_MEMORY); 6629 if (N_NORMAL_MEMORY != N_HIGH_MEMORY && 6630 zone_type <= ZONE_NORMAL) 6631 node_set_state(nid, N_NORMAL_MEMORY); 6632 break; 6633 } 6634 } 6635 } 6636 6637 /** 6638 * free_area_init_nodes - Initialise all pg_data_t and zone data 6639 * @max_zone_pfn: an array of max PFNs for each zone 6640 * 6641 * This will call free_area_init_node() for each active node in the system. 6642 * Using the page ranges provided by memblock_set_node(), the size of each 6643 * zone in each node and their holes is calculated. If the maximum PFN 6644 * between two adjacent zones match, it is assumed that the zone is empty. 6645 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed 6646 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone 6647 * starts where the previous one ended. For example, ZONE_DMA32 starts 6648 * at arch_max_dma_pfn. 6649 */ 6650 void __init free_area_init_nodes(unsigned long *max_zone_pfn) 6651 { 6652 unsigned long start_pfn, end_pfn; 6653 int i, nid; 6654 6655 /* Record where the zone boundaries are */ 6656 memset(arch_zone_lowest_possible_pfn, 0, 6657 sizeof(arch_zone_lowest_possible_pfn)); 6658 memset(arch_zone_highest_possible_pfn, 0, 6659 sizeof(arch_zone_highest_possible_pfn)); 6660 6661 start_pfn = find_min_pfn_with_active_regions(); 6662 6663 for (i = 0; i < MAX_NR_ZONES; i++) { 6664 if (i == ZONE_MOVABLE) 6665 continue; 6666 6667 end_pfn = max(max_zone_pfn[i], start_pfn); 6668 arch_zone_lowest_possible_pfn[i] = start_pfn; 6669 arch_zone_highest_possible_pfn[i] = end_pfn; 6670 6671 start_pfn = end_pfn; 6672 } 6673 6674 /* Find the PFNs that ZONE_MOVABLE begins at in each node */ 6675 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn)); 6676 find_zone_movable_pfns_for_nodes(); 6677 6678 /* Print out the zone ranges */ 6679 pr_info("Zone ranges:\n"); 6680 for (i = 0; i < MAX_NR_ZONES; i++) { 6681 if (i == ZONE_MOVABLE) 6682 continue; 6683 pr_info(" %-8s ", zone_names[i]); 6684 if (arch_zone_lowest_possible_pfn[i] == 6685 arch_zone_highest_possible_pfn[i]) 6686 pr_cont("empty\n"); 6687 else 6688 pr_cont("[mem %#018Lx-%#018Lx]\n", 6689 (u64)arch_zone_lowest_possible_pfn[i] 6690 << PAGE_SHIFT, 6691 ((u64)arch_zone_highest_possible_pfn[i] 6692 << PAGE_SHIFT) - 1); 6693 } 6694 6695 /* Print out the PFNs ZONE_MOVABLE begins at in each node */ 6696 pr_info("Movable zone start for each node\n"); 6697 for (i = 0; i < MAX_NUMNODES; i++) { 6698 if (zone_movable_pfn[i]) 6699 pr_info(" Node %d: %#018Lx\n", i, 6700 (u64)zone_movable_pfn[i] << PAGE_SHIFT); 6701 } 6702 6703 /* Print out the early node map */ 6704 pr_info("Early memory node ranges\n"); 6705 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) 6706 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid, 6707 (u64)start_pfn << PAGE_SHIFT, 6708 ((u64)end_pfn << PAGE_SHIFT) - 1); 6709 6710 /* Initialise every node */ 6711 mminit_verify_pageflags_layout(); 6712 setup_nr_node_ids(); 6713 for_each_online_node(nid) { 6714 pg_data_t *pgdat = NODE_DATA(nid); 6715 free_area_init_node(nid, NULL, 6716 find_min_pfn_for_node(nid), NULL); 6717 6718 /* Any memory on that node */ 6719 if (pgdat->node_present_pages) 6720 node_set_state(nid, N_MEMORY); 6721 check_for_memory(pgdat, nid); 6722 } 6723 zero_resv_unavail(); 6724 } 6725 6726 static int __init cmdline_parse_core(char *p, unsigned long *core) 6727 { 6728 unsigned long long coremem; 6729 if (!p) 6730 return -EINVAL; 6731 6732 coremem = memparse(p, &p); 6733 *core = coremem >> PAGE_SHIFT; 6734 6735 /* Paranoid check that UL is enough for the coremem value */ 6736 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX); 6737 6738 return 0; 6739 } 6740 6741 /* 6742 * kernelcore=size sets the amount of memory for use for allocations that 6743 * cannot be reclaimed or migrated. 6744 */ 6745 static int __init cmdline_parse_kernelcore(char *p) 6746 { 6747 /* parse kernelcore=mirror */ 6748 if (parse_option_str(p, "mirror")) { 6749 mirrored_kernelcore = true; 6750 return 0; 6751 } 6752 6753 return cmdline_parse_core(p, &required_kernelcore); 6754 } 6755 6756 /* 6757 * movablecore=size sets the amount of memory for use for allocations that 6758 * can be reclaimed or migrated. 6759 */ 6760 static int __init cmdline_parse_movablecore(char *p) 6761 { 6762 return cmdline_parse_core(p, &required_movablecore); 6763 } 6764 6765 early_param("kernelcore", cmdline_parse_kernelcore); 6766 early_param("movablecore", cmdline_parse_movablecore); 6767 6768 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 6769 6770 void adjust_managed_page_count(struct page *page, long count) 6771 { 6772 spin_lock(&managed_page_count_lock); 6773 page_zone(page)->managed_pages += count; 6774 totalram_pages += count; 6775 #ifdef CONFIG_HIGHMEM 6776 if (PageHighMem(page)) 6777 totalhigh_pages += count; 6778 #endif 6779 spin_unlock(&managed_page_count_lock); 6780 } 6781 EXPORT_SYMBOL(adjust_managed_page_count); 6782 6783 unsigned long free_reserved_area(void *start, void *end, int poison, char *s) 6784 { 6785 void *pos; 6786 unsigned long pages = 0; 6787 6788 start = (void *)PAGE_ALIGN((unsigned long)start); 6789 end = (void *)((unsigned long)end & PAGE_MASK); 6790 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) { 6791 if ((unsigned int)poison <= 0xFF) 6792 memset(pos, poison, PAGE_SIZE); 6793 free_reserved_page(virt_to_page(pos)); 6794 } 6795 6796 if (pages && s) 6797 pr_info("Freeing %s memory: %ldK\n", 6798 s, pages << (PAGE_SHIFT - 10)); 6799 6800 return pages; 6801 } 6802 EXPORT_SYMBOL(free_reserved_area); 6803 6804 #ifdef CONFIG_HIGHMEM 6805 void free_highmem_page(struct page *page) 6806 { 6807 __free_reserved_page(page); 6808 totalram_pages++; 6809 page_zone(page)->managed_pages++; 6810 totalhigh_pages++; 6811 } 6812 #endif 6813 6814 6815 void __init mem_init_print_info(const char *str) 6816 { 6817 unsigned long physpages, codesize, datasize, rosize, bss_size; 6818 unsigned long init_code_size, init_data_size; 6819 6820 physpages = get_num_physpages(); 6821 codesize = _etext - _stext; 6822 datasize = _edata - _sdata; 6823 rosize = __end_rodata - __start_rodata; 6824 bss_size = __bss_stop - __bss_start; 6825 init_data_size = __init_end - __init_begin; 6826 init_code_size = _einittext - _sinittext; 6827 6828 /* 6829 * Detect special cases and adjust section sizes accordingly: 6830 * 1) .init.* may be embedded into .data sections 6831 * 2) .init.text.* may be out of [__init_begin, __init_end], 6832 * please refer to arch/tile/kernel/vmlinux.lds.S. 6833 * 3) .rodata.* may be embedded into .text or .data sections. 6834 */ 6835 #define adj_init_size(start, end, size, pos, adj) \ 6836 do { \ 6837 if (start <= pos && pos < end && size > adj) \ 6838 size -= adj; \ 6839 } while (0) 6840 6841 adj_init_size(__init_begin, __init_end, init_data_size, 6842 _sinittext, init_code_size); 6843 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size); 6844 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size); 6845 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize); 6846 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize); 6847 6848 #undef adj_init_size 6849 6850 pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved" 6851 #ifdef CONFIG_HIGHMEM 6852 ", %luK highmem" 6853 #endif 6854 "%s%s)\n", 6855 nr_free_pages() << (PAGE_SHIFT - 10), 6856 physpages << (PAGE_SHIFT - 10), 6857 codesize >> 10, datasize >> 10, rosize >> 10, 6858 (init_data_size + init_code_size) >> 10, bss_size >> 10, 6859 (physpages - totalram_pages - totalcma_pages) << (PAGE_SHIFT - 10), 6860 totalcma_pages << (PAGE_SHIFT - 10), 6861 #ifdef CONFIG_HIGHMEM 6862 totalhigh_pages << (PAGE_SHIFT - 10), 6863 #endif 6864 str ? ", " : "", str ? str : ""); 6865 } 6866 6867 /** 6868 * set_dma_reserve - set the specified number of pages reserved in the first zone 6869 * @new_dma_reserve: The number of pages to mark reserved 6870 * 6871 * The per-cpu batchsize and zone watermarks are determined by managed_pages. 6872 * In the DMA zone, a significant percentage may be consumed by kernel image 6873 * and other unfreeable allocations which can skew the watermarks badly. This 6874 * function may optionally be used to account for unfreeable pages in the 6875 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and 6876 * smaller per-cpu batchsize. 6877 */ 6878 void __init set_dma_reserve(unsigned long new_dma_reserve) 6879 { 6880 dma_reserve = new_dma_reserve; 6881 } 6882 6883 void __init free_area_init(unsigned long *zones_size) 6884 { 6885 free_area_init_node(0, zones_size, 6886 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL); 6887 zero_resv_unavail(); 6888 } 6889 6890 static int page_alloc_cpu_dead(unsigned int cpu) 6891 { 6892 6893 lru_add_drain_cpu(cpu); 6894 drain_pages(cpu); 6895 6896 /* 6897 * Spill the event counters of the dead processor 6898 * into the current processors event counters. 6899 * This artificially elevates the count of the current 6900 * processor. 6901 */ 6902 vm_events_fold_cpu(cpu); 6903 6904 /* 6905 * Zero the differential counters of the dead processor 6906 * so that the vm statistics are consistent. 6907 * 6908 * This is only okay since the processor is dead and cannot 6909 * race with what we are doing. 6910 */ 6911 cpu_vm_stats_fold(cpu); 6912 return 0; 6913 } 6914 6915 void __init page_alloc_init(void) 6916 { 6917 int ret; 6918 6919 ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC_DEAD, 6920 "mm/page_alloc:dead", NULL, 6921 page_alloc_cpu_dead); 6922 WARN_ON(ret < 0); 6923 } 6924 6925 /* 6926 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio 6927 * or min_free_kbytes changes. 6928 */ 6929 static void calculate_totalreserve_pages(void) 6930 { 6931 struct pglist_data *pgdat; 6932 unsigned long reserve_pages = 0; 6933 enum zone_type i, j; 6934 6935 for_each_online_pgdat(pgdat) { 6936 6937 pgdat->totalreserve_pages = 0; 6938 6939 for (i = 0; i < MAX_NR_ZONES; i++) { 6940 struct zone *zone = pgdat->node_zones + i; 6941 long max = 0; 6942 6943 /* Find valid and maximum lowmem_reserve in the zone */ 6944 for (j = i; j < MAX_NR_ZONES; j++) { 6945 if (zone->lowmem_reserve[j] > max) 6946 max = zone->lowmem_reserve[j]; 6947 } 6948 6949 /* we treat the high watermark as reserved pages. */ 6950 max += high_wmark_pages(zone); 6951 6952 if (max > zone->managed_pages) 6953 max = zone->managed_pages; 6954 6955 pgdat->totalreserve_pages += max; 6956 6957 reserve_pages += max; 6958 } 6959 } 6960 totalreserve_pages = reserve_pages; 6961 } 6962 6963 /* 6964 * setup_per_zone_lowmem_reserve - called whenever 6965 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone 6966 * has a correct pages reserved value, so an adequate number of 6967 * pages are left in the zone after a successful __alloc_pages(). 6968 */ 6969 static void setup_per_zone_lowmem_reserve(void) 6970 { 6971 struct pglist_data *pgdat; 6972 enum zone_type j, idx; 6973 6974 for_each_online_pgdat(pgdat) { 6975 for (j = 0; j < MAX_NR_ZONES; j++) { 6976 struct zone *zone = pgdat->node_zones + j; 6977 unsigned long managed_pages = zone->managed_pages; 6978 6979 zone->lowmem_reserve[j] = 0; 6980 6981 idx = j; 6982 while (idx) { 6983 struct zone *lower_zone; 6984 6985 idx--; 6986 6987 if (sysctl_lowmem_reserve_ratio[idx] < 1) 6988 sysctl_lowmem_reserve_ratio[idx] = 1; 6989 6990 lower_zone = pgdat->node_zones + idx; 6991 lower_zone->lowmem_reserve[j] = managed_pages / 6992 sysctl_lowmem_reserve_ratio[idx]; 6993 managed_pages += lower_zone->managed_pages; 6994 } 6995 } 6996 } 6997 6998 /* update totalreserve_pages */ 6999 calculate_totalreserve_pages(); 7000 } 7001 7002 static void __setup_per_zone_wmarks(void) 7003 { 7004 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10); 7005 unsigned long lowmem_pages = 0; 7006 struct zone *zone; 7007 unsigned long flags; 7008 7009 /* Calculate total number of !ZONE_HIGHMEM pages */ 7010 for_each_zone(zone) { 7011 if (!is_highmem(zone)) 7012 lowmem_pages += zone->managed_pages; 7013 } 7014 7015 for_each_zone(zone) { 7016 u64 tmp; 7017 7018 spin_lock_irqsave(&zone->lock, flags); 7019 tmp = (u64)pages_min * zone->managed_pages; 7020 do_div(tmp, lowmem_pages); 7021 if (is_highmem(zone)) { 7022 /* 7023 * __GFP_HIGH and PF_MEMALLOC allocations usually don't 7024 * need highmem pages, so cap pages_min to a small 7025 * value here. 7026 * 7027 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN) 7028 * deltas control asynch page reclaim, and so should 7029 * not be capped for highmem. 7030 */ 7031 unsigned long min_pages; 7032 7033 min_pages = zone->managed_pages / 1024; 7034 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL); 7035 zone->watermark[WMARK_MIN] = min_pages; 7036 } else { 7037 /* 7038 * If it's a lowmem zone, reserve a number of pages 7039 * proportionate to the zone's size. 7040 */ 7041 zone->watermark[WMARK_MIN] = tmp; 7042 } 7043 7044 /* 7045 * Set the kswapd watermarks distance according to the 7046 * scale factor in proportion to available memory, but 7047 * ensure a minimum size on small systems. 7048 */ 7049 tmp = max_t(u64, tmp >> 2, 7050 mult_frac(zone->managed_pages, 7051 watermark_scale_factor, 10000)); 7052 7053 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp; 7054 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2; 7055 7056 spin_unlock_irqrestore(&zone->lock, flags); 7057 } 7058 7059 /* update totalreserve_pages */ 7060 calculate_totalreserve_pages(); 7061 } 7062 7063 /** 7064 * setup_per_zone_wmarks - called when min_free_kbytes changes 7065 * or when memory is hot-{added|removed} 7066 * 7067 * Ensures that the watermark[min,low,high] values for each zone are set 7068 * correctly with respect to min_free_kbytes. 7069 */ 7070 void setup_per_zone_wmarks(void) 7071 { 7072 static DEFINE_SPINLOCK(lock); 7073 7074 spin_lock(&lock); 7075 __setup_per_zone_wmarks(); 7076 spin_unlock(&lock); 7077 } 7078 7079 /* 7080 * Initialise min_free_kbytes. 7081 * 7082 * For small machines we want it small (128k min). For large machines 7083 * we want it large (64MB max). But it is not linear, because network 7084 * bandwidth does not increase linearly with machine size. We use 7085 * 7086 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy: 7087 * min_free_kbytes = sqrt(lowmem_kbytes * 16) 7088 * 7089 * which yields 7090 * 7091 * 16MB: 512k 7092 * 32MB: 724k 7093 * 64MB: 1024k 7094 * 128MB: 1448k 7095 * 256MB: 2048k 7096 * 512MB: 2896k 7097 * 1024MB: 4096k 7098 * 2048MB: 5792k 7099 * 4096MB: 8192k 7100 * 8192MB: 11584k 7101 * 16384MB: 16384k 7102 */ 7103 int __meminit init_per_zone_wmark_min(void) 7104 { 7105 unsigned long lowmem_kbytes; 7106 int new_min_free_kbytes; 7107 7108 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10); 7109 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16); 7110 7111 if (new_min_free_kbytes > user_min_free_kbytes) { 7112 min_free_kbytes = new_min_free_kbytes; 7113 if (min_free_kbytes < 128) 7114 min_free_kbytes = 128; 7115 if (min_free_kbytes > 65536) 7116 min_free_kbytes = 65536; 7117 } else { 7118 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n", 7119 new_min_free_kbytes, user_min_free_kbytes); 7120 } 7121 setup_per_zone_wmarks(); 7122 refresh_zone_stat_thresholds(); 7123 setup_per_zone_lowmem_reserve(); 7124 7125 #ifdef CONFIG_NUMA 7126 setup_min_unmapped_ratio(); 7127 setup_min_slab_ratio(); 7128 #endif 7129 7130 return 0; 7131 } 7132 core_initcall(init_per_zone_wmark_min) 7133 7134 /* 7135 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so 7136 * that we can call two helper functions whenever min_free_kbytes 7137 * changes. 7138 */ 7139 int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write, 7140 void __user *buffer, size_t *length, loff_t *ppos) 7141 { 7142 int rc; 7143 7144 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 7145 if (rc) 7146 return rc; 7147 7148 if (write) { 7149 user_min_free_kbytes = min_free_kbytes; 7150 setup_per_zone_wmarks(); 7151 } 7152 return 0; 7153 } 7154 7155 int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write, 7156 void __user *buffer, size_t *length, loff_t *ppos) 7157 { 7158 int rc; 7159 7160 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 7161 if (rc) 7162 return rc; 7163 7164 if (write) 7165 setup_per_zone_wmarks(); 7166 7167 return 0; 7168 } 7169 7170 #ifdef CONFIG_NUMA 7171 static void setup_min_unmapped_ratio(void) 7172 { 7173 pg_data_t *pgdat; 7174 struct zone *zone; 7175 7176 for_each_online_pgdat(pgdat) 7177 pgdat->min_unmapped_pages = 0; 7178 7179 for_each_zone(zone) 7180 zone->zone_pgdat->min_unmapped_pages += (zone->managed_pages * 7181 sysctl_min_unmapped_ratio) / 100; 7182 } 7183 7184 7185 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write, 7186 void __user *buffer, size_t *length, loff_t *ppos) 7187 { 7188 int rc; 7189 7190 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 7191 if (rc) 7192 return rc; 7193 7194 setup_min_unmapped_ratio(); 7195 7196 return 0; 7197 } 7198 7199 static void setup_min_slab_ratio(void) 7200 { 7201 pg_data_t *pgdat; 7202 struct zone *zone; 7203 7204 for_each_online_pgdat(pgdat) 7205 pgdat->min_slab_pages = 0; 7206 7207 for_each_zone(zone) 7208 zone->zone_pgdat->min_slab_pages += (zone->managed_pages * 7209 sysctl_min_slab_ratio) / 100; 7210 } 7211 7212 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write, 7213 void __user *buffer, size_t *length, loff_t *ppos) 7214 { 7215 int rc; 7216 7217 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 7218 if (rc) 7219 return rc; 7220 7221 setup_min_slab_ratio(); 7222 7223 return 0; 7224 } 7225 #endif 7226 7227 /* 7228 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around 7229 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve() 7230 * whenever sysctl_lowmem_reserve_ratio changes. 7231 * 7232 * The reserve ratio obviously has absolutely no relation with the 7233 * minimum watermarks. The lowmem reserve ratio can only make sense 7234 * if in function of the boot time zone sizes. 7235 */ 7236 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write, 7237 void __user *buffer, size_t *length, loff_t *ppos) 7238 { 7239 proc_dointvec_minmax(table, write, buffer, length, ppos); 7240 setup_per_zone_lowmem_reserve(); 7241 return 0; 7242 } 7243 7244 /* 7245 * percpu_pagelist_fraction - changes the pcp->high for each zone on each 7246 * cpu. It is the fraction of total pages in each zone that a hot per cpu 7247 * pagelist can have before it gets flushed back to buddy allocator. 7248 */ 7249 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write, 7250 void __user *buffer, size_t *length, loff_t *ppos) 7251 { 7252 struct zone *zone; 7253 int old_percpu_pagelist_fraction; 7254 int ret; 7255 7256 mutex_lock(&pcp_batch_high_lock); 7257 old_percpu_pagelist_fraction = percpu_pagelist_fraction; 7258 7259 ret = proc_dointvec_minmax(table, write, buffer, length, ppos); 7260 if (!write || ret < 0) 7261 goto out; 7262 7263 /* Sanity checking to avoid pcp imbalance */ 7264 if (percpu_pagelist_fraction && 7265 percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) { 7266 percpu_pagelist_fraction = old_percpu_pagelist_fraction; 7267 ret = -EINVAL; 7268 goto out; 7269 } 7270 7271 /* No change? */ 7272 if (percpu_pagelist_fraction == old_percpu_pagelist_fraction) 7273 goto out; 7274 7275 for_each_populated_zone(zone) { 7276 unsigned int cpu; 7277 7278 for_each_possible_cpu(cpu) 7279 pageset_set_high_and_batch(zone, 7280 per_cpu_ptr(zone->pageset, cpu)); 7281 } 7282 out: 7283 mutex_unlock(&pcp_batch_high_lock); 7284 return ret; 7285 } 7286 7287 #ifdef CONFIG_NUMA 7288 int hashdist = HASHDIST_DEFAULT; 7289 7290 static int __init set_hashdist(char *str) 7291 { 7292 if (!str) 7293 return 0; 7294 hashdist = simple_strtoul(str, &str, 0); 7295 return 1; 7296 } 7297 __setup("hashdist=", set_hashdist); 7298 #endif 7299 7300 #ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES 7301 /* 7302 * Returns the number of pages that arch has reserved but 7303 * is not known to alloc_large_system_hash(). 7304 */ 7305 static unsigned long __init arch_reserved_kernel_pages(void) 7306 { 7307 return 0; 7308 } 7309 #endif 7310 7311 /* 7312 * Adaptive scale is meant to reduce sizes of hash tables on large memory 7313 * machines. As memory size is increased the scale is also increased but at 7314 * slower pace. Starting from ADAPT_SCALE_BASE (64G), every time memory 7315 * quadruples the scale is increased by one, which means the size of hash table 7316 * only doubles, instead of quadrupling as well. 7317 * Because 32-bit systems cannot have large physical memory, where this scaling 7318 * makes sense, it is disabled on such platforms. 7319 */ 7320 #if __BITS_PER_LONG > 32 7321 #define ADAPT_SCALE_BASE (64ul << 30) 7322 #define ADAPT_SCALE_SHIFT 2 7323 #define ADAPT_SCALE_NPAGES (ADAPT_SCALE_BASE >> PAGE_SHIFT) 7324 #endif 7325 7326 /* 7327 * allocate a large system hash table from bootmem 7328 * - it is assumed that the hash table must contain an exact power-of-2 7329 * quantity of entries 7330 * - limit is the number of hash buckets, not the total allocation size 7331 */ 7332 void *__init alloc_large_system_hash(const char *tablename, 7333 unsigned long bucketsize, 7334 unsigned long numentries, 7335 int scale, 7336 int flags, 7337 unsigned int *_hash_shift, 7338 unsigned int *_hash_mask, 7339 unsigned long low_limit, 7340 unsigned long high_limit) 7341 { 7342 unsigned long long max = high_limit; 7343 unsigned long log2qty, size; 7344 void *table = NULL; 7345 gfp_t gfp_flags; 7346 7347 /* allow the kernel cmdline to have a say */ 7348 if (!numentries) { 7349 /* round applicable memory size up to nearest megabyte */ 7350 numentries = nr_kernel_pages; 7351 numentries -= arch_reserved_kernel_pages(); 7352 7353 /* It isn't necessary when PAGE_SIZE >= 1MB */ 7354 if (PAGE_SHIFT < 20) 7355 numentries = round_up(numentries, (1<<20)/PAGE_SIZE); 7356 7357 #if __BITS_PER_LONG > 32 7358 if (!high_limit) { 7359 unsigned long adapt; 7360 7361 for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries; 7362 adapt <<= ADAPT_SCALE_SHIFT) 7363 scale++; 7364 } 7365 #endif 7366 7367 /* limit to 1 bucket per 2^scale bytes of low memory */ 7368 if (scale > PAGE_SHIFT) 7369 numentries >>= (scale - PAGE_SHIFT); 7370 else 7371 numentries <<= (PAGE_SHIFT - scale); 7372 7373 /* Make sure we've got at least a 0-order allocation.. */ 7374 if (unlikely(flags & HASH_SMALL)) { 7375 /* Makes no sense without HASH_EARLY */ 7376 WARN_ON(!(flags & HASH_EARLY)); 7377 if (!(numentries >> *_hash_shift)) { 7378 numentries = 1UL << *_hash_shift; 7379 BUG_ON(!numentries); 7380 } 7381 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE)) 7382 numentries = PAGE_SIZE / bucketsize; 7383 } 7384 numentries = roundup_pow_of_two(numentries); 7385 7386 /* limit allocation size to 1/16 total memory by default */ 7387 if (max == 0) { 7388 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4; 7389 do_div(max, bucketsize); 7390 } 7391 max = min(max, 0x80000000ULL); 7392 7393 if (numentries < low_limit) 7394 numentries = low_limit; 7395 if (numentries > max) 7396 numentries = max; 7397 7398 log2qty = ilog2(numentries); 7399 7400 gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC; 7401 do { 7402 size = bucketsize << log2qty; 7403 if (flags & HASH_EARLY) { 7404 if (flags & HASH_ZERO) 7405 table = memblock_virt_alloc_nopanic(size, 0); 7406 else 7407 table = memblock_virt_alloc_raw(size, 0); 7408 } else if (hashdist) { 7409 table = __vmalloc(size, gfp_flags, PAGE_KERNEL); 7410 } else { 7411 /* 7412 * If bucketsize is not a power-of-two, we may free 7413 * some pages at the end of hash table which 7414 * alloc_pages_exact() automatically does 7415 */ 7416 if (get_order(size) < MAX_ORDER) { 7417 table = alloc_pages_exact(size, gfp_flags); 7418 kmemleak_alloc(table, size, 1, gfp_flags); 7419 } 7420 } 7421 } while (!table && size > PAGE_SIZE && --log2qty); 7422 7423 if (!table) 7424 panic("Failed to allocate %s hash table\n", tablename); 7425 7426 pr_info("%s hash table entries: %ld (order: %d, %lu bytes)\n", 7427 tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size); 7428 7429 if (_hash_shift) 7430 *_hash_shift = log2qty; 7431 if (_hash_mask) 7432 *_hash_mask = (1 << log2qty) - 1; 7433 7434 return table; 7435 } 7436 7437 /* 7438 * This function checks whether pageblock includes unmovable pages or not. 7439 * If @count is not zero, it is okay to include less @count unmovable pages 7440 * 7441 * PageLRU check without isolation or lru_lock could race so that 7442 * MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable 7443 * check without lock_page also may miss some movable non-lru pages at 7444 * race condition. So you can't expect this function should be exact. 7445 */ 7446 bool has_unmovable_pages(struct zone *zone, struct page *page, int count, 7447 int migratetype, 7448 bool skip_hwpoisoned_pages) 7449 { 7450 unsigned long pfn, iter, found; 7451 7452 /* 7453 * For avoiding noise data, lru_add_drain_all() should be called 7454 * If ZONE_MOVABLE, the zone never contains unmovable pages 7455 */ 7456 if (zone_idx(zone) == ZONE_MOVABLE) 7457 return false; 7458 7459 /* 7460 * CMA allocations (alloc_contig_range) really need to mark isolate 7461 * CMA pageblocks even when they are not movable in fact so consider 7462 * them movable here. 7463 */ 7464 if (is_migrate_cma(migratetype) && 7465 is_migrate_cma(get_pageblock_migratetype(page))) 7466 return false; 7467 7468 pfn = page_to_pfn(page); 7469 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) { 7470 unsigned long check = pfn + iter; 7471 7472 if (!pfn_valid_within(check)) 7473 continue; 7474 7475 page = pfn_to_page(check); 7476 7477 if (PageReserved(page)) 7478 return true; 7479 7480 /* 7481 * Hugepages are not in LRU lists, but they're movable. 7482 * We need not scan over tail pages bacause we don't 7483 * handle each tail page individually in migration. 7484 */ 7485 if (PageHuge(page)) { 7486 iter = round_up(iter + 1, 1<<compound_order(page)) - 1; 7487 continue; 7488 } 7489 7490 /* 7491 * We can't use page_count without pin a page 7492 * because another CPU can free compound page. 7493 * This check already skips compound tails of THP 7494 * because their page->_refcount is zero at all time. 7495 */ 7496 if (!page_ref_count(page)) { 7497 if (PageBuddy(page)) 7498 iter += (1 << page_order(page)) - 1; 7499 continue; 7500 } 7501 7502 /* 7503 * The HWPoisoned page may be not in buddy system, and 7504 * page_count() is not 0. 7505 */ 7506 if (skip_hwpoisoned_pages && PageHWPoison(page)) 7507 continue; 7508 7509 if (__PageMovable(page)) 7510 continue; 7511 7512 if (!PageLRU(page)) 7513 found++; 7514 /* 7515 * If there are RECLAIMABLE pages, we need to check 7516 * it. But now, memory offline itself doesn't call 7517 * shrink_node_slabs() and it still to be fixed. 7518 */ 7519 /* 7520 * If the page is not RAM, page_count()should be 0. 7521 * we don't need more check. This is an _used_ not-movable page. 7522 * 7523 * The problematic thing here is PG_reserved pages. PG_reserved 7524 * is set to both of a memory hole page and a _used_ kernel 7525 * page at boot. 7526 */ 7527 if (found > count) 7528 return true; 7529 } 7530 return false; 7531 } 7532 7533 bool is_pageblock_removable_nolock(struct page *page) 7534 { 7535 struct zone *zone; 7536 unsigned long pfn; 7537 7538 /* 7539 * We have to be careful here because we are iterating over memory 7540 * sections which are not zone aware so we might end up outside of 7541 * the zone but still within the section. 7542 * We have to take care about the node as well. If the node is offline 7543 * its NODE_DATA will be NULL - see page_zone. 7544 */ 7545 if (!node_online(page_to_nid(page))) 7546 return false; 7547 7548 zone = page_zone(page); 7549 pfn = page_to_pfn(page); 7550 if (!zone_spans_pfn(zone, pfn)) 7551 return false; 7552 7553 return !has_unmovable_pages(zone, page, 0, MIGRATE_MOVABLE, true); 7554 } 7555 7556 #if (defined(CONFIG_MEMORY_ISOLATION) && defined(CONFIG_COMPACTION)) || defined(CONFIG_CMA) 7557 7558 static unsigned long pfn_max_align_down(unsigned long pfn) 7559 { 7560 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES, 7561 pageblock_nr_pages) - 1); 7562 } 7563 7564 static unsigned long pfn_max_align_up(unsigned long pfn) 7565 { 7566 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES, 7567 pageblock_nr_pages)); 7568 } 7569 7570 /* [start, end) must belong to a single zone. */ 7571 static int __alloc_contig_migrate_range(struct compact_control *cc, 7572 unsigned long start, unsigned long end) 7573 { 7574 /* This function is based on compact_zone() from compaction.c. */ 7575 unsigned long nr_reclaimed; 7576 unsigned long pfn = start; 7577 unsigned int tries = 0; 7578 int ret = 0; 7579 7580 migrate_prep(); 7581 7582 while (pfn < end || !list_empty(&cc->migratepages)) { 7583 if (fatal_signal_pending(current)) { 7584 ret = -EINTR; 7585 break; 7586 } 7587 7588 if (list_empty(&cc->migratepages)) { 7589 cc->nr_migratepages = 0; 7590 pfn = isolate_migratepages_range(cc, pfn, end); 7591 if (!pfn) { 7592 ret = -EINTR; 7593 break; 7594 } 7595 tries = 0; 7596 } else if (++tries == 5) { 7597 ret = ret < 0 ? ret : -EBUSY; 7598 break; 7599 } 7600 7601 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone, 7602 &cc->migratepages); 7603 cc->nr_migratepages -= nr_reclaimed; 7604 7605 ret = migrate_pages(&cc->migratepages, alloc_migrate_target, 7606 NULL, 0, cc->mode, MR_CMA); 7607 } 7608 if (ret < 0) { 7609 putback_movable_pages(&cc->migratepages); 7610 return ret; 7611 } 7612 return 0; 7613 } 7614 7615 /** 7616 * alloc_contig_range() -- tries to allocate given range of pages 7617 * @start: start PFN to allocate 7618 * @end: one-past-the-last PFN to allocate 7619 * @migratetype: migratetype of the underlaying pageblocks (either 7620 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks 7621 * in range must have the same migratetype and it must 7622 * be either of the two. 7623 * @gfp_mask: GFP mask to use during compaction 7624 * 7625 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES 7626 * aligned, however it's the caller's responsibility to guarantee that 7627 * we are the only thread that changes migrate type of pageblocks the 7628 * pages fall in. 7629 * 7630 * The PFN range must belong to a single zone. 7631 * 7632 * Returns zero on success or negative error code. On success all 7633 * pages which PFN is in [start, end) are allocated for the caller and 7634 * need to be freed with free_contig_range(). 7635 */ 7636 int alloc_contig_range(unsigned long start, unsigned long end, 7637 unsigned migratetype, gfp_t gfp_mask) 7638 { 7639 unsigned long outer_start, outer_end; 7640 unsigned int order; 7641 int ret = 0; 7642 7643 struct compact_control cc = { 7644 .nr_migratepages = 0, 7645 .order = -1, 7646 .zone = page_zone(pfn_to_page(start)), 7647 .mode = MIGRATE_SYNC, 7648 .ignore_skip_hint = true, 7649 .no_set_skip_hint = true, 7650 .gfp_mask = current_gfp_context(gfp_mask), 7651 }; 7652 INIT_LIST_HEAD(&cc.migratepages); 7653 7654 /* 7655 * What we do here is we mark all pageblocks in range as 7656 * MIGRATE_ISOLATE. Because pageblock and max order pages may 7657 * have different sizes, and due to the way page allocator 7658 * work, we align the range to biggest of the two pages so 7659 * that page allocator won't try to merge buddies from 7660 * different pageblocks and change MIGRATE_ISOLATE to some 7661 * other migration type. 7662 * 7663 * Once the pageblocks are marked as MIGRATE_ISOLATE, we 7664 * migrate the pages from an unaligned range (ie. pages that 7665 * we are interested in). This will put all the pages in 7666 * range back to page allocator as MIGRATE_ISOLATE. 7667 * 7668 * When this is done, we take the pages in range from page 7669 * allocator removing them from the buddy system. This way 7670 * page allocator will never consider using them. 7671 * 7672 * This lets us mark the pageblocks back as 7673 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the 7674 * aligned range but not in the unaligned, original range are 7675 * put back to page allocator so that buddy can use them. 7676 */ 7677 7678 ret = start_isolate_page_range(pfn_max_align_down(start), 7679 pfn_max_align_up(end), migratetype, 7680 false); 7681 if (ret) 7682 return ret; 7683 7684 /* 7685 * In case of -EBUSY, we'd like to know which page causes problem. 7686 * So, just fall through. test_pages_isolated() has a tracepoint 7687 * which will report the busy page. 7688 * 7689 * It is possible that busy pages could become available before 7690 * the call to test_pages_isolated, and the range will actually be 7691 * allocated. So, if we fall through be sure to clear ret so that 7692 * -EBUSY is not accidentally used or returned to caller. 7693 */ 7694 ret = __alloc_contig_migrate_range(&cc, start, end); 7695 if (ret && ret != -EBUSY) 7696 goto done; 7697 ret =0; 7698 7699 /* 7700 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES 7701 * aligned blocks that are marked as MIGRATE_ISOLATE. What's 7702 * more, all pages in [start, end) are free in page allocator. 7703 * What we are going to do is to allocate all pages from 7704 * [start, end) (that is remove them from page allocator). 7705 * 7706 * The only problem is that pages at the beginning and at the 7707 * end of interesting range may be not aligned with pages that 7708 * page allocator holds, ie. they can be part of higher order 7709 * pages. Because of this, we reserve the bigger range and 7710 * once this is done free the pages we are not interested in. 7711 * 7712 * We don't have to hold zone->lock here because the pages are 7713 * isolated thus they won't get removed from buddy. 7714 */ 7715 7716 lru_add_drain_all(); 7717 drain_all_pages(cc.zone); 7718 7719 order = 0; 7720 outer_start = start; 7721 while (!PageBuddy(pfn_to_page(outer_start))) { 7722 if (++order >= MAX_ORDER) { 7723 outer_start = start; 7724 break; 7725 } 7726 outer_start &= ~0UL << order; 7727 } 7728 7729 if (outer_start != start) { 7730 order = page_order(pfn_to_page(outer_start)); 7731 7732 /* 7733 * outer_start page could be small order buddy page and 7734 * it doesn't include start page. Adjust outer_start 7735 * in this case to report failed page properly 7736 * on tracepoint in test_pages_isolated() 7737 */ 7738 if (outer_start + (1UL << order) <= start) 7739 outer_start = start; 7740 } 7741 7742 /* Make sure the range is really isolated. */ 7743 if (test_pages_isolated(outer_start, end, false)) { 7744 pr_info_ratelimited("%s: [%lx, %lx) PFNs busy\n", 7745 __func__, outer_start, end); 7746 ret = -EBUSY; 7747 goto done; 7748 } 7749 7750 /* Grab isolated pages from freelists. */ 7751 outer_end = isolate_freepages_range(&cc, outer_start, end); 7752 if (!outer_end) { 7753 ret = -EBUSY; 7754 goto done; 7755 } 7756 7757 /* Free head and tail (if any) */ 7758 if (start != outer_start) 7759 free_contig_range(outer_start, start - outer_start); 7760 if (end != outer_end) 7761 free_contig_range(end, outer_end - end); 7762 7763 done: 7764 undo_isolate_page_range(pfn_max_align_down(start), 7765 pfn_max_align_up(end), migratetype); 7766 return ret; 7767 } 7768 7769 void free_contig_range(unsigned long pfn, unsigned nr_pages) 7770 { 7771 unsigned int count = 0; 7772 7773 for (; nr_pages--; pfn++) { 7774 struct page *page = pfn_to_page(pfn); 7775 7776 count += page_count(page) != 1; 7777 __free_page(page); 7778 } 7779 WARN(count != 0, "%d pages are still in use!\n", count); 7780 } 7781 #endif 7782 7783 #ifdef CONFIG_MEMORY_HOTPLUG 7784 /* 7785 * The zone indicated has a new number of managed_pages; batch sizes and percpu 7786 * page high values need to be recalulated. 7787 */ 7788 void __meminit zone_pcp_update(struct zone *zone) 7789 { 7790 unsigned cpu; 7791 mutex_lock(&pcp_batch_high_lock); 7792 for_each_possible_cpu(cpu) 7793 pageset_set_high_and_batch(zone, 7794 per_cpu_ptr(zone->pageset, cpu)); 7795 mutex_unlock(&pcp_batch_high_lock); 7796 } 7797 #endif 7798 7799 void zone_pcp_reset(struct zone *zone) 7800 { 7801 unsigned long flags; 7802 int cpu; 7803 struct per_cpu_pageset *pset; 7804 7805 /* avoid races with drain_pages() */ 7806 local_irq_save(flags); 7807 if (zone->pageset != &boot_pageset) { 7808 for_each_online_cpu(cpu) { 7809 pset = per_cpu_ptr(zone->pageset, cpu); 7810 drain_zonestat(zone, pset); 7811 } 7812 free_percpu(zone->pageset); 7813 zone->pageset = &boot_pageset; 7814 } 7815 local_irq_restore(flags); 7816 } 7817 7818 #ifdef CONFIG_MEMORY_HOTREMOVE 7819 /* 7820 * All pages in the range must be in a single zone and isolated 7821 * before calling this. 7822 */ 7823 void 7824 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn) 7825 { 7826 struct page *page; 7827 struct zone *zone; 7828 unsigned int order, i; 7829 unsigned long pfn; 7830 unsigned long flags; 7831 /* find the first valid pfn */ 7832 for (pfn = start_pfn; pfn < end_pfn; pfn++) 7833 if (pfn_valid(pfn)) 7834 break; 7835 if (pfn == end_pfn) 7836 return; 7837 offline_mem_sections(pfn, end_pfn); 7838 zone = page_zone(pfn_to_page(pfn)); 7839 spin_lock_irqsave(&zone->lock, flags); 7840 pfn = start_pfn; 7841 while (pfn < end_pfn) { 7842 if (!pfn_valid(pfn)) { 7843 pfn++; 7844 continue; 7845 } 7846 page = pfn_to_page(pfn); 7847 /* 7848 * The HWPoisoned page may be not in buddy system, and 7849 * page_count() is not 0. 7850 */ 7851 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) { 7852 pfn++; 7853 SetPageReserved(page); 7854 continue; 7855 } 7856 7857 BUG_ON(page_count(page)); 7858 BUG_ON(!PageBuddy(page)); 7859 order = page_order(page); 7860 #ifdef CONFIG_DEBUG_VM 7861 pr_info("remove from free list %lx %d %lx\n", 7862 pfn, 1 << order, end_pfn); 7863 #endif 7864 list_del(&page->lru); 7865 rmv_page_order(page); 7866 zone->free_area[order].nr_free--; 7867 for (i = 0; i < (1 << order); i++) 7868 SetPageReserved((page+i)); 7869 pfn += (1 << order); 7870 } 7871 spin_unlock_irqrestore(&zone->lock, flags); 7872 } 7873 #endif 7874 7875 bool is_free_buddy_page(struct page *page) 7876 { 7877 struct zone *zone = page_zone(page); 7878 unsigned long pfn = page_to_pfn(page); 7879 unsigned long flags; 7880 unsigned int order; 7881 7882 spin_lock_irqsave(&zone->lock, flags); 7883 for (order = 0; order < MAX_ORDER; order++) { 7884 struct page *page_head = page - (pfn & ((1 << order) - 1)); 7885 7886 if (PageBuddy(page_head) && page_order(page_head) >= order) 7887 break; 7888 } 7889 spin_unlock_irqrestore(&zone->lock, flags); 7890 7891 return order < MAX_ORDER; 7892 } 7893