1 /* 2 * linux/mm/page_alloc.c 3 * 4 * Manages the free list, the system allocates free pages here. 5 * Note that kmalloc() lives in slab.c 6 * 7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 8 * Swap reorganised 29.12.95, Stephen Tweedie 9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999 10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999 11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999 12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000 13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002 14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton) 15 */ 16 17 #include <linux/config.h> 18 #include <linux/stddef.h> 19 #include <linux/mm.h> 20 #include <linux/swap.h> 21 #include <linux/interrupt.h> 22 #include <linux/pagemap.h> 23 #include <linux/bootmem.h> 24 #include <linux/compiler.h> 25 #include <linux/kernel.h> 26 #include <linux/module.h> 27 #include <linux/suspend.h> 28 #include <linux/pagevec.h> 29 #include <linux/blkdev.h> 30 #include <linux/slab.h> 31 #include <linux/notifier.h> 32 #include <linux/topology.h> 33 #include <linux/sysctl.h> 34 #include <linux/cpu.h> 35 #include <linux/cpuset.h> 36 #include <linux/memory_hotplug.h> 37 #include <linux/nodemask.h> 38 #include <linux/vmalloc.h> 39 #include <linux/mempolicy.h> 40 41 #include <asm/tlbflush.h> 42 #include "internal.h" 43 44 /* 45 * MCD - HACK: Find somewhere to initialize this EARLY, or make this 46 * initializer cleaner 47 */ 48 nodemask_t node_online_map __read_mostly = { { [0] = 1UL } }; 49 EXPORT_SYMBOL(node_online_map); 50 nodemask_t node_possible_map __read_mostly = NODE_MASK_ALL; 51 EXPORT_SYMBOL(node_possible_map); 52 unsigned long totalram_pages __read_mostly; 53 unsigned long totalhigh_pages __read_mostly; 54 unsigned long totalreserve_pages __read_mostly; 55 long nr_swap_pages; 56 int percpu_pagelist_fraction; 57 58 static void __free_pages_ok(struct page *page, unsigned int order); 59 60 /* 61 * results with 256, 32 in the lowmem_reserve sysctl: 62 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high) 63 * 1G machine -> (16M dma, 784M normal, 224M high) 64 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA 65 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL 66 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA 67 * 68 * TBD: should special case ZONE_DMA32 machines here - in those we normally 69 * don't need any ZONE_NORMAL reservation 70 */ 71 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = { 256, 256, 32 }; 72 73 EXPORT_SYMBOL(totalram_pages); 74 75 /* 76 * Used by page_zone() to look up the address of the struct zone whose 77 * id is encoded in the upper bits of page->flags 78 */ 79 struct zone *zone_table[1 << ZONETABLE_SHIFT] __read_mostly; 80 EXPORT_SYMBOL(zone_table); 81 82 static char *zone_names[MAX_NR_ZONES] = { "DMA", "DMA32", "Normal", "HighMem" }; 83 int min_free_kbytes = 1024; 84 85 unsigned long __initdata nr_kernel_pages; 86 unsigned long __initdata nr_all_pages; 87 88 #ifdef CONFIG_DEBUG_VM 89 static int page_outside_zone_boundaries(struct zone *zone, struct page *page) 90 { 91 int ret = 0; 92 unsigned seq; 93 unsigned long pfn = page_to_pfn(page); 94 95 do { 96 seq = zone_span_seqbegin(zone); 97 if (pfn >= zone->zone_start_pfn + zone->spanned_pages) 98 ret = 1; 99 else if (pfn < zone->zone_start_pfn) 100 ret = 1; 101 } while (zone_span_seqretry(zone, seq)); 102 103 return ret; 104 } 105 106 static int page_is_consistent(struct zone *zone, struct page *page) 107 { 108 #ifdef CONFIG_HOLES_IN_ZONE 109 if (!pfn_valid(page_to_pfn(page))) 110 return 0; 111 #endif 112 if (zone != page_zone(page)) 113 return 0; 114 115 return 1; 116 } 117 /* 118 * Temporary debugging check for pages not lying within a given zone. 119 */ 120 static int bad_range(struct zone *zone, struct page *page) 121 { 122 if (page_outside_zone_boundaries(zone, page)) 123 return 1; 124 if (!page_is_consistent(zone, page)) 125 return 1; 126 127 return 0; 128 } 129 130 #else 131 static inline int bad_range(struct zone *zone, struct page *page) 132 { 133 return 0; 134 } 135 #endif 136 137 static void bad_page(struct page *page) 138 { 139 printk(KERN_EMERG "Bad page state in process '%s'\n" 140 KERN_EMERG "page:%p flags:0x%0*lx mapping:%p mapcount:%d count:%d\n" 141 KERN_EMERG "Trying to fix it up, but a reboot is needed\n" 142 KERN_EMERG "Backtrace:\n", 143 current->comm, page, (int)(2*sizeof(unsigned long)), 144 (unsigned long)page->flags, page->mapping, 145 page_mapcount(page), page_count(page)); 146 dump_stack(); 147 page->flags &= ~(1 << PG_lru | 148 1 << PG_private | 149 1 << PG_locked | 150 1 << PG_active | 151 1 << PG_dirty | 152 1 << PG_reclaim | 153 1 << PG_slab | 154 1 << PG_swapcache | 155 1 << PG_writeback | 156 1 << PG_buddy ); 157 set_page_count(page, 0); 158 reset_page_mapcount(page); 159 page->mapping = NULL; 160 add_taint(TAINT_BAD_PAGE); 161 } 162 163 /* 164 * Higher-order pages are called "compound pages". They are structured thusly: 165 * 166 * The first PAGE_SIZE page is called the "head page". 167 * 168 * The remaining PAGE_SIZE pages are called "tail pages". 169 * 170 * All pages have PG_compound set. All pages have their ->private pointing at 171 * the head page (even the head page has this). 172 * 173 * The first tail page's ->lru.next holds the address of the compound page's 174 * put_page() function. Its ->lru.prev holds the order of allocation. 175 * This usage means that zero-order pages may not be compound. 176 */ 177 178 static void free_compound_page(struct page *page) 179 { 180 __free_pages_ok(page, (unsigned long)page[1].lru.prev); 181 } 182 183 static void prep_compound_page(struct page *page, unsigned long order) 184 { 185 int i; 186 int nr_pages = 1 << order; 187 188 page[1].lru.next = (void *)free_compound_page; /* set dtor */ 189 page[1].lru.prev = (void *)order; 190 for (i = 0; i < nr_pages; i++) { 191 struct page *p = page + i; 192 193 __SetPageCompound(p); 194 set_page_private(p, (unsigned long)page); 195 } 196 } 197 198 static void destroy_compound_page(struct page *page, unsigned long order) 199 { 200 int i; 201 int nr_pages = 1 << order; 202 203 if (unlikely((unsigned long)page[1].lru.prev != order)) 204 bad_page(page); 205 206 for (i = 0; i < nr_pages; i++) { 207 struct page *p = page + i; 208 209 if (unlikely(!PageCompound(p) | 210 (page_private(p) != (unsigned long)page))) 211 bad_page(page); 212 __ClearPageCompound(p); 213 } 214 } 215 216 static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags) 217 { 218 int i; 219 220 BUG_ON((gfp_flags & (__GFP_WAIT | __GFP_HIGHMEM)) == __GFP_HIGHMEM); 221 /* 222 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO 223 * and __GFP_HIGHMEM from hard or soft interrupt context. 224 */ 225 BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt()); 226 for (i = 0; i < (1 << order); i++) 227 clear_highpage(page + i); 228 } 229 230 /* 231 * function for dealing with page's order in buddy system. 232 * zone->lock is already acquired when we use these. 233 * So, we don't need atomic page->flags operations here. 234 */ 235 static inline unsigned long page_order(struct page *page) { 236 return page_private(page); 237 } 238 239 static inline void set_page_order(struct page *page, int order) { 240 set_page_private(page, order); 241 __SetPageBuddy(page); 242 } 243 244 static inline void rmv_page_order(struct page *page) 245 { 246 __ClearPageBuddy(page); 247 set_page_private(page, 0); 248 } 249 250 /* 251 * Locate the struct page for both the matching buddy in our 252 * pair (buddy1) and the combined O(n+1) page they form (page). 253 * 254 * 1) Any buddy B1 will have an order O twin B2 which satisfies 255 * the following equation: 256 * B2 = B1 ^ (1 << O) 257 * For example, if the starting buddy (buddy2) is #8 its order 258 * 1 buddy is #10: 259 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10 260 * 261 * 2) Any buddy B will have an order O+1 parent P which 262 * satisfies the following equation: 263 * P = B & ~(1 << O) 264 * 265 * Assumption: *_mem_map is contigious at least up to MAX_ORDER 266 */ 267 static inline struct page * 268 __page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order) 269 { 270 unsigned long buddy_idx = page_idx ^ (1 << order); 271 272 return page + (buddy_idx - page_idx); 273 } 274 275 static inline unsigned long 276 __find_combined_index(unsigned long page_idx, unsigned int order) 277 { 278 return (page_idx & ~(1 << order)); 279 } 280 281 /* 282 * This function checks whether a page is free && is the buddy 283 * we can do coalesce a page and its buddy if 284 * (a) the buddy is not in a hole && 285 * (b) the buddy is in the buddy system && 286 * (c) a page and its buddy have the same order. 287 * 288 * For recording whether a page is in the buddy system, we use PG_buddy. 289 * Setting, clearing, and testing PG_buddy is serialized by zone->lock. 290 * 291 * For recording page's order, we use page_private(page). 292 */ 293 static inline int page_is_buddy(struct page *page, int order) 294 { 295 #ifdef CONFIG_HOLES_IN_ZONE 296 if (!pfn_valid(page_to_pfn(page))) 297 return 0; 298 #endif 299 300 if (PageBuddy(page) && page_order(page) == order) { 301 BUG_ON(page_count(page) != 0); 302 return 1; 303 } 304 return 0; 305 } 306 307 /* 308 * Freeing function for a buddy system allocator. 309 * 310 * The concept of a buddy system is to maintain direct-mapped table 311 * (containing bit values) for memory blocks of various "orders". 312 * The bottom level table contains the map for the smallest allocatable 313 * units of memory (here, pages), and each level above it describes 314 * pairs of units from the levels below, hence, "buddies". 315 * At a high level, all that happens here is marking the table entry 316 * at the bottom level available, and propagating the changes upward 317 * as necessary, plus some accounting needed to play nicely with other 318 * parts of the VM system. 319 * At each level, we keep a list of pages, which are heads of continuous 320 * free pages of length of (1 << order) and marked with PG_buddy. Page's 321 * order is recorded in page_private(page) field. 322 * So when we are allocating or freeing one, we can derive the state of the 323 * other. That is, if we allocate a small block, and both were 324 * free, the remainder of the region must be split into blocks. 325 * If a block is freed, and its buddy is also free, then this 326 * triggers coalescing into a block of larger size. 327 * 328 * -- wli 329 */ 330 331 static inline void __free_one_page(struct page *page, 332 struct zone *zone, unsigned int order) 333 { 334 unsigned long page_idx; 335 int order_size = 1 << order; 336 337 if (unlikely(PageCompound(page))) 338 destroy_compound_page(page, order); 339 340 page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1); 341 342 BUG_ON(page_idx & (order_size - 1)); 343 BUG_ON(bad_range(zone, page)); 344 345 zone->free_pages += order_size; 346 while (order < MAX_ORDER-1) { 347 unsigned long combined_idx; 348 struct free_area *area; 349 struct page *buddy; 350 351 buddy = __page_find_buddy(page, page_idx, order); 352 if (!page_is_buddy(buddy, order)) 353 break; /* Move the buddy up one level. */ 354 355 list_del(&buddy->lru); 356 area = zone->free_area + order; 357 area->nr_free--; 358 rmv_page_order(buddy); 359 combined_idx = __find_combined_index(page_idx, order); 360 page = page + (combined_idx - page_idx); 361 page_idx = combined_idx; 362 order++; 363 } 364 set_page_order(page, order); 365 list_add(&page->lru, &zone->free_area[order].free_list); 366 zone->free_area[order].nr_free++; 367 } 368 369 static inline int free_pages_check(struct page *page) 370 { 371 if (unlikely(page_mapcount(page) | 372 (page->mapping != NULL) | 373 (page_count(page) != 0) | 374 (page->flags & ( 375 1 << PG_lru | 376 1 << PG_private | 377 1 << PG_locked | 378 1 << PG_active | 379 1 << PG_reclaim | 380 1 << PG_slab | 381 1 << PG_swapcache | 382 1 << PG_writeback | 383 1 << PG_reserved | 384 1 << PG_buddy )))) 385 bad_page(page); 386 if (PageDirty(page)) 387 __ClearPageDirty(page); 388 /* 389 * For now, we report if PG_reserved was found set, but do not 390 * clear it, and do not free the page. But we shall soon need 391 * to do more, for when the ZERO_PAGE count wraps negative. 392 */ 393 return PageReserved(page); 394 } 395 396 /* 397 * Frees a list of pages. 398 * Assumes all pages on list are in same zone, and of same order. 399 * count is the number of pages to free. 400 * 401 * If the zone was previously in an "all pages pinned" state then look to 402 * see if this freeing clears that state. 403 * 404 * And clear the zone's pages_scanned counter, to hold off the "all pages are 405 * pinned" detection logic. 406 */ 407 static void free_pages_bulk(struct zone *zone, int count, 408 struct list_head *list, int order) 409 { 410 spin_lock(&zone->lock); 411 zone->all_unreclaimable = 0; 412 zone->pages_scanned = 0; 413 while (count--) { 414 struct page *page; 415 416 BUG_ON(list_empty(list)); 417 page = list_entry(list->prev, struct page, lru); 418 /* have to delete it as __free_one_page list manipulates */ 419 list_del(&page->lru); 420 __free_one_page(page, zone, order); 421 } 422 spin_unlock(&zone->lock); 423 } 424 425 static void free_one_page(struct zone *zone, struct page *page, int order) 426 { 427 LIST_HEAD(list); 428 list_add(&page->lru, &list); 429 free_pages_bulk(zone, 1, &list, order); 430 } 431 432 static void __free_pages_ok(struct page *page, unsigned int order) 433 { 434 unsigned long flags; 435 int i; 436 int reserved = 0; 437 438 arch_free_page(page, order); 439 if (!PageHighMem(page)) 440 mutex_debug_check_no_locks_freed(page_address(page), 441 PAGE_SIZE<<order); 442 443 for (i = 0 ; i < (1 << order) ; ++i) 444 reserved += free_pages_check(page + i); 445 if (reserved) 446 return; 447 448 kernel_map_pages(page, 1 << order, 0); 449 local_irq_save(flags); 450 __mod_page_state(pgfree, 1 << order); 451 free_one_page(page_zone(page), page, order); 452 local_irq_restore(flags); 453 } 454 455 /* 456 * permit the bootmem allocator to evade page validation on high-order frees 457 */ 458 void fastcall __init __free_pages_bootmem(struct page *page, unsigned int order) 459 { 460 if (order == 0) { 461 __ClearPageReserved(page); 462 set_page_count(page, 0); 463 set_page_refcounted(page); 464 __free_page(page); 465 } else { 466 int loop; 467 468 prefetchw(page); 469 for (loop = 0; loop < BITS_PER_LONG; loop++) { 470 struct page *p = &page[loop]; 471 472 if (loop + 1 < BITS_PER_LONG) 473 prefetchw(p + 1); 474 __ClearPageReserved(p); 475 set_page_count(p, 0); 476 } 477 478 set_page_refcounted(page); 479 __free_pages(page, order); 480 } 481 } 482 483 484 /* 485 * The order of subdivision here is critical for the IO subsystem. 486 * Please do not alter this order without good reasons and regression 487 * testing. Specifically, as large blocks of memory are subdivided, 488 * the order in which smaller blocks are delivered depends on the order 489 * they're subdivided in this function. This is the primary factor 490 * influencing the order in which pages are delivered to the IO 491 * subsystem according to empirical testing, and this is also justified 492 * by considering the behavior of a buddy system containing a single 493 * large block of memory acted on by a series of small allocations. 494 * This behavior is a critical factor in sglist merging's success. 495 * 496 * -- wli 497 */ 498 static inline void expand(struct zone *zone, struct page *page, 499 int low, int high, struct free_area *area) 500 { 501 unsigned long size = 1 << high; 502 503 while (high > low) { 504 area--; 505 high--; 506 size >>= 1; 507 BUG_ON(bad_range(zone, &page[size])); 508 list_add(&page[size].lru, &area->free_list); 509 area->nr_free++; 510 set_page_order(&page[size], high); 511 } 512 } 513 514 /* 515 * This page is about to be returned from the page allocator 516 */ 517 static int prep_new_page(struct page *page, int order, gfp_t gfp_flags) 518 { 519 if (unlikely(page_mapcount(page) | 520 (page->mapping != NULL) | 521 (page_count(page) != 0) | 522 (page->flags & ( 523 1 << PG_lru | 524 1 << PG_private | 525 1 << PG_locked | 526 1 << PG_active | 527 1 << PG_dirty | 528 1 << PG_reclaim | 529 1 << PG_slab | 530 1 << PG_swapcache | 531 1 << PG_writeback | 532 1 << PG_reserved | 533 1 << PG_buddy )))) 534 bad_page(page); 535 536 /* 537 * For now, we report if PG_reserved was found set, but do not 538 * clear it, and do not allocate the page: as a safety net. 539 */ 540 if (PageReserved(page)) 541 return 1; 542 543 page->flags &= ~(1 << PG_uptodate | 1 << PG_error | 544 1 << PG_referenced | 1 << PG_arch_1 | 545 1 << PG_checked | 1 << PG_mappedtodisk); 546 set_page_private(page, 0); 547 set_page_refcounted(page); 548 kernel_map_pages(page, 1 << order, 1); 549 550 if (gfp_flags & __GFP_ZERO) 551 prep_zero_page(page, order, gfp_flags); 552 553 if (order && (gfp_flags & __GFP_COMP)) 554 prep_compound_page(page, order); 555 556 return 0; 557 } 558 559 /* 560 * Do the hard work of removing an element from the buddy allocator. 561 * Call me with the zone->lock already held. 562 */ 563 static struct page *__rmqueue(struct zone *zone, unsigned int order) 564 { 565 struct free_area * area; 566 unsigned int current_order; 567 struct page *page; 568 569 for (current_order = order; current_order < MAX_ORDER; ++current_order) { 570 area = zone->free_area + current_order; 571 if (list_empty(&area->free_list)) 572 continue; 573 574 page = list_entry(area->free_list.next, struct page, lru); 575 list_del(&page->lru); 576 rmv_page_order(page); 577 area->nr_free--; 578 zone->free_pages -= 1UL << order; 579 expand(zone, page, order, current_order, area); 580 return page; 581 } 582 583 return NULL; 584 } 585 586 /* 587 * Obtain a specified number of elements from the buddy allocator, all under 588 * a single hold of the lock, for efficiency. Add them to the supplied list. 589 * Returns the number of new pages which were placed at *list. 590 */ 591 static int rmqueue_bulk(struct zone *zone, unsigned int order, 592 unsigned long count, struct list_head *list) 593 { 594 int i; 595 596 spin_lock(&zone->lock); 597 for (i = 0; i < count; ++i) { 598 struct page *page = __rmqueue(zone, order); 599 if (unlikely(page == NULL)) 600 break; 601 list_add_tail(&page->lru, list); 602 } 603 spin_unlock(&zone->lock); 604 return i; 605 } 606 607 #ifdef CONFIG_NUMA 608 /* 609 * Called from the slab reaper to drain pagesets on a particular node that 610 * belong to the currently executing processor. 611 * Note that this function must be called with the thread pinned to 612 * a single processor. 613 */ 614 void drain_node_pages(int nodeid) 615 { 616 int i, z; 617 unsigned long flags; 618 619 for (z = 0; z < MAX_NR_ZONES; z++) { 620 struct zone *zone = NODE_DATA(nodeid)->node_zones + z; 621 struct per_cpu_pageset *pset; 622 623 pset = zone_pcp(zone, smp_processor_id()); 624 for (i = 0; i < ARRAY_SIZE(pset->pcp); i++) { 625 struct per_cpu_pages *pcp; 626 627 pcp = &pset->pcp[i]; 628 if (pcp->count) { 629 local_irq_save(flags); 630 free_pages_bulk(zone, pcp->count, &pcp->list, 0); 631 pcp->count = 0; 632 local_irq_restore(flags); 633 } 634 } 635 } 636 } 637 #endif 638 639 #if defined(CONFIG_PM) || defined(CONFIG_HOTPLUG_CPU) 640 static void __drain_pages(unsigned int cpu) 641 { 642 unsigned long flags; 643 struct zone *zone; 644 int i; 645 646 for_each_zone(zone) { 647 struct per_cpu_pageset *pset; 648 649 pset = zone_pcp(zone, cpu); 650 for (i = 0; i < ARRAY_SIZE(pset->pcp); i++) { 651 struct per_cpu_pages *pcp; 652 653 pcp = &pset->pcp[i]; 654 local_irq_save(flags); 655 free_pages_bulk(zone, pcp->count, &pcp->list, 0); 656 pcp->count = 0; 657 local_irq_restore(flags); 658 } 659 } 660 } 661 #endif /* CONFIG_PM || CONFIG_HOTPLUG_CPU */ 662 663 #ifdef CONFIG_PM 664 665 void mark_free_pages(struct zone *zone) 666 { 667 unsigned long zone_pfn, flags; 668 int order; 669 struct list_head *curr; 670 671 if (!zone->spanned_pages) 672 return; 673 674 spin_lock_irqsave(&zone->lock, flags); 675 for (zone_pfn = 0; zone_pfn < zone->spanned_pages; ++zone_pfn) 676 ClearPageNosaveFree(pfn_to_page(zone_pfn + zone->zone_start_pfn)); 677 678 for (order = MAX_ORDER - 1; order >= 0; --order) 679 list_for_each(curr, &zone->free_area[order].free_list) { 680 unsigned long start_pfn, i; 681 682 start_pfn = page_to_pfn(list_entry(curr, struct page, lru)); 683 684 for (i=0; i < (1<<order); i++) 685 SetPageNosaveFree(pfn_to_page(start_pfn+i)); 686 } 687 spin_unlock_irqrestore(&zone->lock, flags); 688 } 689 690 /* 691 * Spill all of this CPU's per-cpu pages back into the buddy allocator. 692 */ 693 void drain_local_pages(void) 694 { 695 unsigned long flags; 696 697 local_irq_save(flags); 698 __drain_pages(smp_processor_id()); 699 local_irq_restore(flags); 700 } 701 #endif /* CONFIG_PM */ 702 703 static void zone_statistics(struct zonelist *zonelist, struct zone *z, int cpu) 704 { 705 #ifdef CONFIG_NUMA 706 pg_data_t *pg = z->zone_pgdat; 707 pg_data_t *orig = zonelist->zones[0]->zone_pgdat; 708 struct per_cpu_pageset *p; 709 710 p = zone_pcp(z, cpu); 711 if (pg == orig) { 712 p->numa_hit++; 713 } else { 714 p->numa_miss++; 715 zone_pcp(zonelist->zones[0], cpu)->numa_foreign++; 716 } 717 if (pg == NODE_DATA(numa_node_id())) 718 p->local_node++; 719 else 720 p->other_node++; 721 #endif 722 } 723 724 /* 725 * Free a 0-order page 726 */ 727 static void fastcall free_hot_cold_page(struct page *page, int cold) 728 { 729 struct zone *zone = page_zone(page); 730 struct per_cpu_pages *pcp; 731 unsigned long flags; 732 733 arch_free_page(page, 0); 734 735 if (PageAnon(page)) 736 page->mapping = NULL; 737 if (free_pages_check(page)) 738 return; 739 740 kernel_map_pages(page, 1, 0); 741 742 pcp = &zone_pcp(zone, get_cpu())->pcp[cold]; 743 local_irq_save(flags); 744 __inc_page_state(pgfree); 745 list_add(&page->lru, &pcp->list); 746 pcp->count++; 747 if (pcp->count >= pcp->high) { 748 free_pages_bulk(zone, pcp->batch, &pcp->list, 0); 749 pcp->count -= pcp->batch; 750 } 751 local_irq_restore(flags); 752 put_cpu(); 753 } 754 755 void fastcall free_hot_page(struct page *page) 756 { 757 free_hot_cold_page(page, 0); 758 } 759 760 void fastcall free_cold_page(struct page *page) 761 { 762 free_hot_cold_page(page, 1); 763 } 764 765 /* 766 * split_page takes a non-compound higher-order page, and splits it into 767 * n (1<<order) sub-pages: page[0..n] 768 * Each sub-page must be freed individually. 769 * 770 * Note: this is probably too low level an operation for use in drivers. 771 * Please consult with lkml before using this in your driver. 772 */ 773 void split_page(struct page *page, unsigned int order) 774 { 775 int i; 776 777 BUG_ON(PageCompound(page)); 778 BUG_ON(!page_count(page)); 779 for (i = 1; i < (1 << order); i++) 780 set_page_refcounted(page + i); 781 } 782 783 /* 784 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But 785 * we cheat by calling it from here, in the order > 0 path. Saves a branch 786 * or two. 787 */ 788 static struct page *buffered_rmqueue(struct zonelist *zonelist, 789 struct zone *zone, int order, gfp_t gfp_flags) 790 { 791 unsigned long flags; 792 struct page *page; 793 int cold = !!(gfp_flags & __GFP_COLD); 794 int cpu; 795 796 again: 797 cpu = get_cpu(); 798 if (likely(order == 0)) { 799 struct per_cpu_pages *pcp; 800 801 pcp = &zone_pcp(zone, cpu)->pcp[cold]; 802 local_irq_save(flags); 803 if (!pcp->count) { 804 pcp->count += rmqueue_bulk(zone, 0, 805 pcp->batch, &pcp->list); 806 if (unlikely(!pcp->count)) 807 goto failed; 808 } 809 page = list_entry(pcp->list.next, struct page, lru); 810 list_del(&page->lru); 811 pcp->count--; 812 } else { 813 spin_lock_irqsave(&zone->lock, flags); 814 page = __rmqueue(zone, order); 815 spin_unlock(&zone->lock); 816 if (!page) 817 goto failed; 818 } 819 820 __mod_page_state_zone(zone, pgalloc, 1 << order); 821 zone_statistics(zonelist, zone, cpu); 822 local_irq_restore(flags); 823 put_cpu(); 824 825 BUG_ON(bad_range(zone, page)); 826 if (prep_new_page(page, order, gfp_flags)) 827 goto again; 828 return page; 829 830 failed: 831 local_irq_restore(flags); 832 put_cpu(); 833 return NULL; 834 } 835 836 #define ALLOC_NO_WATERMARKS 0x01 /* don't check watermarks at all */ 837 #define ALLOC_WMARK_MIN 0x02 /* use pages_min watermark */ 838 #define ALLOC_WMARK_LOW 0x04 /* use pages_low watermark */ 839 #define ALLOC_WMARK_HIGH 0x08 /* use pages_high watermark */ 840 #define ALLOC_HARDER 0x10 /* try to alloc harder */ 841 #define ALLOC_HIGH 0x20 /* __GFP_HIGH set */ 842 #define ALLOC_CPUSET 0x40 /* check for correct cpuset */ 843 844 /* 845 * Return 1 if free pages are above 'mark'. This takes into account the order 846 * of the allocation. 847 */ 848 int zone_watermark_ok(struct zone *z, int order, unsigned long mark, 849 int classzone_idx, int alloc_flags) 850 { 851 /* free_pages my go negative - that's OK */ 852 long min = mark, free_pages = z->free_pages - (1 << order) + 1; 853 int o; 854 855 if (alloc_flags & ALLOC_HIGH) 856 min -= min / 2; 857 if (alloc_flags & ALLOC_HARDER) 858 min -= min / 4; 859 860 if (free_pages <= min + z->lowmem_reserve[classzone_idx]) 861 return 0; 862 for (o = 0; o < order; o++) { 863 /* At the next order, this order's pages become unavailable */ 864 free_pages -= z->free_area[o].nr_free << o; 865 866 /* Require fewer higher order pages to be free */ 867 min >>= 1; 868 869 if (free_pages <= min) 870 return 0; 871 } 872 return 1; 873 } 874 875 /* 876 * get_page_from_freeliest goes through the zonelist trying to allocate 877 * a page. 878 */ 879 static struct page * 880 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, 881 struct zonelist *zonelist, int alloc_flags) 882 { 883 struct zone **z = zonelist->zones; 884 struct page *page = NULL; 885 int classzone_idx = zone_idx(*z); 886 887 /* 888 * Go through the zonelist once, looking for a zone with enough free. 889 * See also cpuset_zone_allowed() comment in kernel/cpuset.c. 890 */ 891 do { 892 if ((alloc_flags & ALLOC_CPUSET) && 893 !cpuset_zone_allowed(*z, gfp_mask)) 894 continue; 895 896 if (!(alloc_flags & ALLOC_NO_WATERMARKS)) { 897 unsigned long mark; 898 if (alloc_flags & ALLOC_WMARK_MIN) 899 mark = (*z)->pages_min; 900 else if (alloc_flags & ALLOC_WMARK_LOW) 901 mark = (*z)->pages_low; 902 else 903 mark = (*z)->pages_high; 904 if (!zone_watermark_ok(*z, order, mark, 905 classzone_idx, alloc_flags)) 906 if (!zone_reclaim_mode || 907 !zone_reclaim(*z, gfp_mask, order)) 908 continue; 909 } 910 911 page = buffered_rmqueue(zonelist, *z, order, gfp_mask); 912 if (page) { 913 break; 914 } 915 } while (*(++z) != NULL); 916 return page; 917 } 918 919 /* 920 * This is the 'heart' of the zoned buddy allocator. 921 */ 922 struct page * fastcall 923 __alloc_pages(gfp_t gfp_mask, unsigned int order, 924 struct zonelist *zonelist) 925 { 926 const gfp_t wait = gfp_mask & __GFP_WAIT; 927 struct zone **z; 928 struct page *page; 929 struct reclaim_state reclaim_state; 930 struct task_struct *p = current; 931 int do_retry; 932 int alloc_flags; 933 int did_some_progress; 934 935 might_sleep_if(wait); 936 937 restart: 938 z = zonelist->zones; /* the list of zones suitable for gfp_mask */ 939 940 if (unlikely(*z == NULL)) { 941 /* Should this ever happen?? */ 942 return NULL; 943 } 944 945 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, order, 946 zonelist, ALLOC_WMARK_LOW|ALLOC_CPUSET); 947 if (page) 948 goto got_pg; 949 950 do { 951 if (cpuset_zone_allowed(*z, gfp_mask)) 952 wakeup_kswapd(*z, order); 953 } while (*(++z)); 954 955 /* 956 * OK, we're below the kswapd watermark and have kicked background 957 * reclaim. Now things get more complex, so set up alloc_flags according 958 * to how we want to proceed. 959 * 960 * The caller may dip into page reserves a bit more if the caller 961 * cannot run direct reclaim, or if the caller has realtime scheduling 962 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will 963 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH). 964 */ 965 alloc_flags = ALLOC_WMARK_MIN; 966 if ((unlikely(rt_task(p)) && !in_interrupt()) || !wait) 967 alloc_flags |= ALLOC_HARDER; 968 if (gfp_mask & __GFP_HIGH) 969 alloc_flags |= ALLOC_HIGH; 970 alloc_flags |= ALLOC_CPUSET; 971 972 /* 973 * Go through the zonelist again. Let __GFP_HIGH and allocations 974 * coming from realtime tasks go deeper into reserves. 975 * 976 * This is the last chance, in general, before the goto nopage. 977 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc. 978 * See also cpuset_zone_allowed() comment in kernel/cpuset.c. 979 */ 980 page = get_page_from_freelist(gfp_mask, order, zonelist, alloc_flags); 981 if (page) 982 goto got_pg; 983 984 /* This allocation should allow future memory freeing. */ 985 986 if (((p->flags & PF_MEMALLOC) || unlikely(test_thread_flag(TIF_MEMDIE))) 987 && !in_interrupt()) { 988 if (!(gfp_mask & __GFP_NOMEMALLOC)) { 989 nofail_alloc: 990 /* go through the zonelist yet again, ignoring mins */ 991 page = get_page_from_freelist(gfp_mask, order, 992 zonelist, ALLOC_NO_WATERMARKS); 993 if (page) 994 goto got_pg; 995 if (gfp_mask & __GFP_NOFAIL) { 996 blk_congestion_wait(WRITE, HZ/50); 997 goto nofail_alloc; 998 } 999 } 1000 goto nopage; 1001 } 1002 1003 /* Atomic allocations - we can't balance anything */ 1004 if (!wait) 1005 goto nopage; 1006 1007 rebalance: 1008 cond_resched(); 1009 1010 /* We now go into synchronous reclaim */ 1011 cpuset_memory_pressure_bump(); 1012 p->flags |= PF_MEMALLOC; 1013 reclaim_state.reclaimed_slab = 0; 1014 p->reclaim_state = &reclaim_state; 1015 1016 did_some_progress = try_to_free_pages(zonelist->zones, gfp_mask); 1017 1018 p->reclaim_state = NULL; 1019 p->flags &= ~PF_MEMALLOC; 1020 1021 cond_resched(); 1022 1023 if (likely(did_some_progress)) { 1024 page = get_page_from_freelist(gfp_mask, order, 1025 zonelist, alloc_flags); 1026 if (page) 1027 goto got_pg; 1028 } else if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) { 1029 /* 1030 * Go through the zonelist yet one more time, keep 1031 * very high watermark here, this is only to catch 1032 * a parallel oom killing, we must fail if we're still 1033 * under heavy pressure. 1034 */ 1035 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, order, 1036 zonelist, ALLOC_WMARK_HIGH|ALLOC_CPUSET); 1037 if (page) 1038 goto got_pg; 1039 1040 out_of_memory(zonelist, gfp_mask, order); 1041 goto restart; 1042 } 1043 1044 /* 1045 * Don't let big-order allocations loop unless the caller explicitly 1046 * requests that. Wait for some write requests to complete then retry. 1047 * 1048 * In this implementation, __GFP_REPEAT means __GFP_NOFAIL for order 1049 * <= 3, but that may not be true in other implementations. 1050 */ 1051 do_retry = 0; 1052 if (!(gfp_mask & __GFP_NORETRY)) { 1053 if ((order <= 3) || (gfp_mask & __GFP_REPEAT)) 1054 do_retry = 1; 1055 if (gfp_mask & __GFP_NOFAIL) 1056 do_retry = 1; 1057 } 1058 if (do_retry) { 1059 blk_congestion_wait(WRITE, HZ/50); 1060 goto rebalance; 1061 } 1062 1063 nopage: 1064 if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) { 1065 printk(KERN_WARNING "%s: page allocation failure." 1066 " order:%d, mode:0x%x\n", 1067 p->comm, order, gfp_mask); 1068 dump_stack(); 1069 show_mem(); 1070 } 1071 got_pg: 1072 return page; 1073 } 1074 1075 EXPORT_SYMBOL(__alloc_pages); 1076 1077 /* 1078 * Common helper functions. 1079 */ 1080 fastcall unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order) 1081 { 1082 struct page * page; 1083 page = alloc_pages(gfp_mask, order); 1084 if (!page) 1085 return 0; 1086 return (unsigned long) page_address(page); 1087 } 1088 1089 EXPORT_SYMBOL(__get_free_pages); 1090 1091 fastcall unsigned long get_zeroed_page(gfp_t gfp_mask) 1092 { 1093 struct page * page; 1094 1095 /* 1096 * get_zeroed_page() returns a 32-bit address, which cannot represent 1097 * a highmem page 1098 */ 1099 BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0); 1100 1101 page = alloc_pages(gfp_mask | __GFP_ZERO, 0); 1102 if (page) 1103 return (unsigned long) page_address(page); 1104 return 0; 1105 } 1106 1107 EXPORT_SYMBOL(get_zeroed_page); 1108 1109 void __pagevec_free(struct pagevec *pvec) 1110 { 1111 int i = pagevec_count(pvec); 1112 1113 while (--i >= 0) 1114 free_hot_cold_page(pvec->pages[i], pvec->cold); 1115 } 1116 1117 fastcall void __free_pages(struct page *page, unsigned int order) 1118 { 1119 if (put_page_testzero(page)) { 1120 if (order == 0) 1121 free_hot_page(page); 1122 else 1123 __free_pages_ok(page, order); 1124 } 1125 } 1126 1127 EXPORT_SYMBOL(__free_pages); 1128 1129 fastcall void free_pages(unsigned long addr, unsigned int order) 1130 { 1131 if (addr != 0) { 1132 BUG_ON(!virt_addr_valid((void *)addr)); 1133 __free_pages(virt_to_page((void *)addr), order); 1134 } 1135 } 1136 1137 EXPORT_SYMBOL(free_pages); 1138 1139 /* 1140 * Total amount of free (allocatable) RAM: 1141 */ 1142 unsigned int nr_free_pages(void) 1143 { 1144 unsigned int sum = 0; 1145 struct zone *zone; 1146 1147 for_each_zone(zone) 1148 sum += zone->free_pages; 1149 1150 return sum; 1151 } 1152 1153 EXPORT_SYMBOL(nr_free_pages); 1154 1155 #ifdef CONFIG_NUMA 1156 unsigned int nr_free_pages_pgdat(pg_data_t *pgdat) 1157 { 1158 unsigned int i, sum = 0; 1159 1160 for (i = 0; i < MAX_NR_ZONES; i++) 1161 sum += pgdat->node_zones[i].free_pages; 1162 1163 return sum; 1164 } 1165 #endif 1166 1167 static unsigned int nr_free_zone_pages(int offset) 1168 { 1169 /* Just pick one node, since fallback list is circular */ 1170 pg_data_t *pgdat = NODE_DATA(numa_node_id()); 1171 unsigned int sum = 0; 1172 1173 struct zonelist *zonelist = pgdat->node_zonelists + offset; 1174 struct zone **zonep = zonelist->zones; 1175 struct zone *zone; 1176 1177 for (zone = *zonep++; zone; zone = *zonep++) { 1178 unsigned long size = zone->present_pages; 1179 unsigned long high = zone->pages_high; 1180 if (size > high) 1181 sum += size - high; 1182 } 1183 1184 return sum; 1185 } 1186 1187 /* 1188 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL 1189 */ 1190 unsigned int nr_free_buffer_pages(void) 1191 { 1192 return nr_free_zone_pages(gfp_zone(GFP_USER)); 1193 } 1194 1195 /* 1196 * Amount of free RAM allocatable within all zones 1197 */ 1198 unsigned int nr_free_pagecache_pages(void) 1199 { 1200 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER)); 1201 } 1202 1203 #ifdef CONFIG_HIGHMEM 1204 unsigned int nr_free_highpages (void) 1205 { 1206 pg_data_t *pgdat; 1207 unsigned int pages = 0; 1208 1209 for_each_online_pgdat(pgdat) 1210 pages += pgdat->node_zones[ZONE_HIGHMEM].free_pages; 1211 1212 return pages; 1213 } 1214 #endif 1215 1216 #ifdef CONFIG_NUMA 1217 static void show_node(struct zone *zone) 1218 { 1219 printk("Node %d ", zone->zone_pgdat->node_id); 1220 } 1221 #else 1222 #define show_node(zone) do { } while (0) 1223 #endif 1224 1225 /* 1226 * Accumulate the page_state information across all CPUs. 1227 * The result is unavoidably approximate - it can change 1228 * during and after execution of this function. 1229 */ 1230 static DEFINE_PER_CPU(struct page_state, page_states) = {0}; 1231 1232 atomic_t nr_pagecache = ATOMIC_INIT(0); 1233 EXPORT_SYMBOL(nr_pagecache); 1234 #ifdef CONFIG_SMP 1235 DEFINE_PER_CPU(long, nr_pagecache_local) = 0; 1236 #endif 1237 1238 static void __get_page_state(struct page_state *ret, int nr, cpumask_t *cpumask) 1239 { 1240 unsigned cpu; 1241 1242 memset(ret, 0, nr * sizeof(unsigned long)); 1243 cpus_and(*cpumask, *cpumask, cpu_online_map); 1244 1245 for_each_cpu_mask(cpu, *cpumask) { 1246 unsigned long *in; 1247 unsigned long *out; 1248 unsigned off; 1249 unsigned next_cpu; 1250 1251 in = (unsigned long *)&per_cpu(page_states, cpu); 1252 1253 next_cpu = next_cpu(cpu, *cpumask); 1254 if (likely(next_cpu < NR_CPUS)) 1255 prefetch(&per_cpu(page_states, next_cpu)); 1256 1257 out = (unsigned long *)ret; 1258 for (off = 0; off < nr; off++) 1259 *out++ += *in++; 1260 } 1261 } 1262 1263 void get_page_state_node(struct page_state *ret, int node) 1264 { 1265 int nr; 1266 cpumask_t mask = node_to_cpumask(node); 1267 1268 nr = offsetof(struct page_state, GET_PAGE_STATE_LAST); 1269 nr /= sizeof(unsigned long); 1270 1271 __get_page_state(ret, nr+1, &mask); 1272 } 1273 1274 void get_page_state(struct page_state *ret) 1275 { 1276 int nr; 1277 cpumask_t mask = CPU_MASK_ALL; 1278 1279 nr = offsetof(struct page_state, GET_PAGE_STATE_LAST); 1280 nr /= sizeof(unsigned long); 1281 1282 __get_page_state(ret, nr + 1, &mask); 1283 } 1284 1285 void get_full_page_state(struct page_state *ret) 1286 { 1287 cpumask_t mask = CPU_MASK_ALL; 1288 1289 __get_page_state(ret, sizeof(*ret) / sizeof(unsigned long), &mask); 1290 } 1291 1292 unsigned long read_page_state_offset(unsigned long offset) 1293 { 1294 unsigned long ret = 0; 1295 int cpu; 1296 1297 for_each_online_cpu(cpu) { 1298 unsigned long in; 1299 1300 in = (unsigned long)&per_cpu(page_states, cpu) + offset; 1301 ret += *((unsigned long *)in); 1302 } 1303 return ret; 1304 } 1305 1306 void __mod_page_state_offset(unsigned long offset, unsigned long delta) 1307 { 1308 void *ptr; 1309 1310 ptr = &__get_cpu_var(page_states); 1311 *(unsigned long *)(ptr + offset) += delta; 1312 } 1313 EXPORT_SYMBOL(__mod_page_state_offset); 1314 1315 void mod_page_state_offset(unsigned long offset, unsigned long delta) 1316 { 1317 unsigned long flags; 1318 void *ptr; 1319 1320 local_irq_save(flags); 1321 ptr = &__get_cpu_var(page_states); 1322 *(unsigned long *)(ptr + offset) += delta; 1323 local_irq_restore(flags); 1324 } 1325 EXPORT_SYMBOL(mod_page_state_offset); 1326 1327 void __get_zone_counts(unsigned long *active, unsigned long *inactive, 1328 unsigned long *free, struct pglist_data *pgdat) 1329 { 1330 struct zone *zones = pgdat->node_zones; 1331 int i; 1332 1333 *active = 0; 1334 *inactive = 0; 1335 *free = 0; 1336 for (i = 0; i < MAX_NR_ZONES; i++) { 1337 *active += zones[i].nr_active; 1338 *inactive += zones[i].nr_inactive; 1339 *free += zones[i].free_pages; 1340 } 1341 } 1342 1343 void get_zone_counts(unsigned long *active, 1344 unsigned long *inactive, unsigned long *free) 1345 { 1346 struct pglist_data *pgdat; 1347 1348 *active = 0; 1349 *inactive = 0; 1350 *free = 0; 1351 for_each_online_pgdat(pgdat) { 1352 unsigned long l, m, n; 1353 __get_zone_counts(&l, &m, &n, pgdat); 1354 *active += l; 1355 *inactive += m; 1356 *free += n; 1357 } 1358 } 1359 1360 void si_meminfo(struct sysinfo *val) 1361 { 1362 val->totalram = totalram_pages; 1363 val->sharedram = 0; 1364 val->freeram = nr_free_pages(); 1365 val->bufferram = nr_blockdev_pages(); 1366 #ifdef CONFIG_HIGHMEM 1367 val->totalhigh = totalhigh_pages; 1368 val->freehigh = nr_free_highpages(); 1369 #else 1370 val->totalhigh = 0; 1371 val->freehigh = 0; 1372 #endif 1373 val->mem_unit = PAGE_SIZE; 1374 } 1375 1376 EXPORT_SYMBOL(si_meminfo); 1377 1378 #ifdef CONFIG_NUMA 1379 void si_meminfo_node(struct sysinfo *val, int nid) 1380 { 1381 pg_data_t *pgdat = NODE_DATA(nid); 1382 1383 val->totalram = pgdat->node_present_pages; 1384 val->freeram = nr_free_pages_pgdat(pgdat); 1385 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages; 1386 val->freehigh = pgdat->node_zones[ZONE_HIGHMEM].free_pages; 1387 val->mem_unit = PAGE_SIZE; 1388 } 1389 #endif 1390 1391 #define K(x) ((x) << (PAGE_SHIFT-10)) 1392 1393 /* 1394 * Show free area list (used inside shift_scroll-lock stuff) 1395 * We also calculate the percentage fragmentation. We do this by counting the 1396 * memory on each free list with the exception of the first item on the list. 1397 */ 1398 void show_free_areas(void) 1399 { 1400 struct page_state ps; 1401 int cpu, temperature; 1402 unsigned long active; 1403 unsigned long inactive; 1404 unsigned long free; 1405 struct zone *zone; 1406 1407 for_each_zone(zone) { 1408 show_node(zone); 1409 printk("%s per-cpu:", zone->name); 1410 1411 if (!populated_zone(zone)) { 1412 printk(" empty\n"); 1413 continue; 1414 } else 1415 printk("\n"); 1416 1417 for_each_online_cpu(cpu) { 1418 struct per_cpu_pageset *pageset; 1419 1420 pageset = zone_pcp(zone, cpu); 1421 1422 for (temperature = 0; temperature < 2; temperature++) 1423 printk("cpu %d %s: high %d, batch %d used:%d\n", 1424 cpu, 1425 temperature ? "cold" : "hot", 1426 pageset->pcp[temperature].high, 1427 pageset->pcp[temperature].batch, 1428 pageset->pcp[temperature].count); 1429 } 1430 } 1431 1432 get_page_state(&ps); 1433 get_zone_counts(&active, &inactive, &free); 1434 1435 printk("Free pages: %11ukB (%ukB HighMem)\n", 1436 K(nr_free_pages()), 1437 K(nr_free_highpages())); 1438 1439 printk("Active:%lu inactive:%lu dirty:%lu writeback:%lu " 1440 "unstable:%lu free:%u slab:%lu mapped:%lu pagetables:%lu\n", 1441 active, 1442 inactive, 1443 ps.nr_dirty, 1444 ps.nr_writeback, 1445 ps.nr_unstable, 1446 nr_free_pages(), 1447 ps.nr_slab, 1448 ps.nr_mapped, 1449 ps.nr_page_table_pages); 1450 1451 for_each_zone(zone) { 1452 int i; 1453 1454 show_node(zone); 1455 printk("%s" 1456 " free:%lukB" 1457 " min:%lukB" 1458 " low:%lukB" 1459 " high:%lukB" 1460 " active:%lukB" 1461 " inactive:%lukB" 1462 " present:%lukB" 1463 " pages_scanned:%lu" 1464 " all_unreclaimable? %s" 1465 "\n", 1466 zone->name, 1467 K(zone->free_pages), 1468 K(zone->pages_min), 1469 K(zone->pages_low), 1470 K(zone->pages_high), 1471 K(zone->nr_active), 1472 K(zone->nr_inactive), 1473 K(zone->present_pages), 1474 zone->pages_scanned, 1475 (zone->all_unreclaimable ? "yes" : "no") 1476 ); 1477 printk("lowmem_reserve[]:"); 1478 for (i = 0; i < MAX_NR_ZONES; i++) 1479 printk(" %lu", zone->lowmem_reserve[i]); 1480 printk("\n"); 1481 } 1482 1483 for_each_zone(zone) { 1484 unsigned long nr, flags, order, total = 0; 1485 1486 show_node(zone); 1487 printk("%s: ", zone->name); 1488 if (!populated_zone(zone)) { 1489 printk("empty\n"); 1490 continue; 1491 } 1492 1493 spin_lock_irqsave(&zone->lock, flags); 1494 for (order = 0; order < MAX_ORDER; order++) { 1495 nr = zone->free_area[order].nr_free; 1496 total += nr << order; 1497 printk("%lu*%lukB ", nr, K(1UL) << order); 1498 } 1499 spin_unlock_irqrestore(&zone->lock, flags); 1500 printk("= %lukB\n", K(total)); 1501 } 1502 1503 show_swap_cache_info(); 1504 } 1505 1506 /* 1507 * Builds allocation fallback zone lists. 1508 * 1509 * Add all populated zones of a node to the zonelist. 1510 */ 1511 static int __init build_zonelists_node(pg_data_t *pgdat, 1512 struct zonelist *zonelist, int nr_zones, int zone_type) 1513 { 1514 struct zone *zone; 1515 1516 BUG_ON(zone_type > ZONE_HIGHMEM); 1517 1518 do { 1519 zone = pgdat->node_zones + zone_type; 1520 if (populated_zone(zone)) { 1521 #ifndef CONFIG_HIGHMEM 1522 BUG_ON(zone_type > ZONE_NORMAL); 1523 #endif 1524 zonelist->zones[nr_zones++] = zone; 1525 check_highest_zone(zone_type); 1526 } 1527 zone_type--; 1528 1529 } while (zone_type >= 0); 1530 return nr_zones; 1531 } 1532 1533 static inline int highest_zone(int zone_bits) 1534 { 1535 int res = ZONE_NORMAL; 1536 if (zone_bits & (__force int)__GFP_HIGHMEM) 1537 res = ZONE_HIGHMEM; 1538 if (zone_bits & (__force int)__GFP_DMA32) 1539 res = ZONE_DMA32; 1540 if (zone_bits & (__force int)__GFP_DMA) 1541 res = ZONE_DMA; 1542 return res; 1543 } 1544 1545 #ifdef CONFIG_NUMA 1546 #define MAX_NODE_LOAD (num_online_nodes()) 1547 static int __initdata node_load[MAX_NUMNODES]; 1548 /** 1549 * find_next_best_node - find the next node that should appear in a given node's fallback list 1550 * @node: node whose fallback list we're appending 1551 * @used_node_mask: nodemask_t of already used nodes 1552 * 1553 * We use a number of factors to determine which is the next node that should 1554 * appear on a given node's fallback list. The node should not have appeared 1555 * already in @node's fallback list, and it should be the next closest node 1556 * according to the distance array (which contains arbitrary distance values 1557 * from each node to each node in the system), and should also prefer nodes 1558 * with no CPUs, since presumably they'll have very little allocation pressure 1559 * on them otherwise. 1560 * It returns -1 if no node is found. 1561 */ 1562 static int __init find_next_best_node(int node, nodemask_t *used_node_mask) 1563 { 1564 int n, val; 1565 int min_val = INT_MAX; 1566 int best_node = -1; 1567 1568 /* Use the local node if we haven't already */ 1569 if (!node_isset(node, *used_node_mask)) { 1570 node_set(node, *used_node_mask); 1571 return node; 1572 } 1573 1574 for_each_online_node(n) { 1575 cpumask_t tmp; 1576 1577 /* Don't want a node to appear more than once */ 1578 if (node_isset(n, *used_node_mask)) 1579 continue; 1580 1581 /* Use the distance array to find the distance */ 1582 val = node_distance(node, n); 1583 1584 /* Penalize nodes under us ("prefer the next node") */ 1585 val += (n < node); 1586 1587 /* Give preference to headless and unused nodes */ 1588 tmp = node_to_cpumask(n); 1589 if (!cpus_empty(tmp)) 1590 val += PENALTY_FOR_NODE_WITH_CPUS; 1591 1592 /* Slight preference for less loaded node */ 1593 val *= (MAX_NODE_LOAD*MAX_NUMNODES); 1594 val += node_load[n]; 1595 1596 if (val < min_val) { 1597 min_val = val; 1598 best_node = n; 1599 } 1600 } 1601 1602 if (best_node >= 0) 1603 node_set(best_node, *used_node_mask); 1604 1605 return best_node; 1606 } 1607 1608 static void __init build_zonelists(pg_data_t *pgdat) 1609 { 1610 int i, j, k, node, local_node; 1611 int prev_node, load; 1612 struct zonelist *zonelist; 1613 nodemask_t used_mask; 1614 1615 /* initialize zonelists */ 1616 for (i = 0; i < GFP_ZONETYPES; i++) { 1617 zonelist = pgdat->node_zonelists + i; 1618 zonelist->zones[0] = NULL; 1619 } 1620 1621 /* NUMA-aware ordering of nodes */ 1622 local_node = pgdat->node_id; 1623 load = num_online_nodes(); 1624 prev_node = local_node; 1625 nodes_clear(used_mask); 1626 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) { 1627 int distance = node_distance(local_node, node); 1628 1629 /* 1630 * If another node is sufficiently far away then it is better 1631 * to reclaim pages in a zone before going off node. 1632 */ 1633 if (distance > RECLAIM_DISTANCE) 1634 zone_reclaim_mode = 1; 1635 1636 /* 1637 * We don't want to pressure a particular node. 1638 * So adding penalty to the first node in same 1639 * distance group to make it round-robin. 1640 */ 1641 1642 if (distance != node_distance(local_node, prev_node)) 1643 node_load[node] += load; 1644 prev_node = node; 1645 load--; 1646 for (i = 0; i < GFP_ZONETYPES; i++) { 1647 zonelist = pgdat->node_zonelists + i; 1648 for (j = 0; zonelist->zones[j] != NULL; j++); 1649 1650 k = highest_zone(i); 1651 1652 j = build_zonelists_node(NODE_DATA(node), zonelist, j, k); 1653 zonelist->zones[j] = NULL; 1654 } 1655 } 1656 } 1657 1658 #else /* CONFIG_NUMA */ 1659 1660 static void __init build_zonelists(pg_data_t *pgdat) 1661 { 1662 int i, j, k, node, local_node; 1663 1664 local_node = pgdat->node_id; 1665 for (i = 0; i < GFP_ZONETYPES; i++) { 1666 struct zonelist *zonelist; 1667 1668 zonelist = pgdat->node_zonelists + i; 1669 1670 j = 0; 1671 k = highest_zone(i); 1672 j = build_zonelists_node(pgdat, zonelist, j, k); 1673 /* 1674 * Now we build the zonelist so that it contains the zones 1675 * of all the other nodes. 1676 * We don't want to pressure a particular node, so when 1677 * building the zones for node N, we make sure that the 1678 * zones coming right after the local ones are those from 1679 * node N+1 (modulo N) 1680 */ 1681 for (node = local_node + 1; node < MAX_NUMNODES; node++) { 1682 if (!node_online(node)) 1683 continue; 1684 j = build_zonelists_node(NODE_DATA(node), zonelist, j, k); 1685 } 1686 for (node = 0; node < local_node; node++) { 1687 if (!node_online(node)) 1688 continue; 1689 j = build_zonelists_node(NODE_DATA(node), zonelist, j, k); 1690 } 1691 1692 zonelist->zones[j] = NULL; 1693 } 1694 } 1695 1696 #endif /* CONFIG_NUMA */ 1697 1698 void __init build_all_zonelists(void) 1699 { 1700 int i; 1701 1702 for_each_online_node(i) 1703 build_zonelists(NODE_DATA(i)); 1704 printk("Built %i zonelists\n", num_online_nodes()); 1705 cpuset_init_current_mems_allowed(); 1706 } 1707 1708 /* 1709 * Helper functions to size the waitqueue hash table. 1710 * Essentially these want to choose hash table sizes sufficiently 1711 * large so that collisions trying to wait on pages are rare. 1712 * But in fact, the number of active page waitqueues on typical 1713 * systems is ridiculously low, less than 200. So this is even 1714 * conservative, even though it seems large. 1715 * 1716 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to 1717 * waitqueues, i.e. the size of the waitq table given the number of pages. 1718 */ 1719 #define PAGES_PER_WAITQUEUE 256 1720 1721 static inline unsigned long wait_table_size(unsigned long pages) 1722 { 1723 unsigned long size = 1; 1724 1725 pages /= PAGES_PER_WAITQUEUE; 1726 1727 while (size < pages) 1728 size <<= 1; 1729 1730 /* 1731 * Once we have dozens or even hundreds of threads sleeping 1732 * on IO we've got bigger problems than wait queue collision. 1733 * Limit the size of the wait table to a reasonable size. 1734 */ 1735 size = min(size, 4096UL); 1736 1737 return max(size, 4UL); 1738 } 1739 1740 /* 1741 * This is an integer logarithm so that shifts can be used later 1742 * to extract the more random high bits from the multiplicative 1743 * hash function before the remainder is taken. 1744 */ 1745 static inline unsigned long wait_table_bits(unsigned long size) 1746 { 1747 return ffz(~size); 1748 } 1749 1750 #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1)) 1751 1752 static void __init calculate_zone_totalpages(struct pglist_data *pgdat, 1753 unsigned long *zones_size, unsigned long *zholes_size) 1754 { 1755 unsigned long realtotalpages, totalpages = 0; 1756 int i; 1757 1758 for (i = 0; i < MAX_NR_ZONES; i++) 1759 totalpages += zones_size[i]; 1760 pgdat->node_spanned_pages = totalpages; 1761 1762 realtotalpages = totalpages; 1763 if (zholes_size) 1764 for (i = 0; i < MAX_NR_ZONES; i++) 1765 realtotalpages -= zholes_size[i]; 1766 pgdat->node_present_pages = realtotalpages; 1767 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id, realtotalpages); 1768 } 1769 1770 1771 /* 1772 * Initially all pages are reserved - free ones are freed 1773 * up by free_all_bootmem() once the early boot process is 1774 * done. Non-atomic initialization, single-pass. 1775 */ 1776 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone, 1777 unsigned long start_pfn) 1778 { 1779 struct page *page; 1780 unsigned long end_pfn = start_pfn + size; 1781 unsigned long pfn; 1782 1783 for (pfn = start_pfn; pfn < end_pfn; pfn++) { 1784 if (!early_pfn_valid(pfn)) 1785 continue; 1786 page = pfn_to_page(pfn); 1787 set_page_links(page, zone, nid, pfn); 1788 init_page_count(page); 1789 reset_page_mapcount(page); 1790 SetPageReserved(page); 1791 INIT_LIST_HEAD(&page->lru); 1792 #ifdef WANT_PAGE_VIRTUAL 1793 /* The shift won't overflow because ZONE_NORMAL is below 4G. */ 1794 if (!is_highmem_idx(zone)) 1795 set_page_address(page, __va(pfn << PAGE_SHIFT)); 1796 #endif 1797 } 1798 } 1799 1800 void zone_init_free_lists(struct pglist_data *pgdat, struct zone *zone, 1801 unsigned long size) 1802 { 1803 int order; 1804 for (order = 0; order < MAX_ORDER ; order++) { 1805 INIT_LIST_HEAD(&zone->free_area[order].free_list); 1806 zone->free_area[order].nr_free = 0; 1807 } 1808 } 1809 1810 #define ZONETABLE_INDEX(x, zone_nr) ((x << ZONES_SHIFT) | zone_nr) 1811 void zonetable_add(struct zone *zone, int nid, int zid, unsigned long pfn, 1812 unsigned long size) 1813 { 1814 unsigned long snum = pfn_to_section_nr(pfn); 1815 unsigned long end = pfn_to_section_nr(pfn + size); 1816 1817 if (FLAGS_HAS_NODE) 1818 zone_table[ZONETABLE_INDEX(nid, zid)] = zone; 1819 else 1820 for (; snum <= end; snum++) 1821 zone_table[ZONETABLE_INDEX(snum, zid)] = zone; 1822 } 1823 1824 #ifndef __HAVE_ARCH_MEMMAP_INIT 1825 #define memmap_init(size, nid, zone, start_pfn) \ 1826 memmap_init_zone((size), (nid), (zone), (start_pfn)) 1827 #endif 1828 1829 static int __cpuinit zone_batchsize(struct zone *zone) 1830 { 1831 int batch; 1832 1833 /* 1834 * The per-cpu-pages pools are set to around 1000th of the 1835 * size of the zone. But no more than 1/2 of a meg. 1836 * 1837 * OK, so we don't know how big the cache is. So guess. 1838 */ 1839 batch = zone->present_pages / 1024; 1840 if (batch * PAGE_SIZE > 512 * 1024) 1841 batch = (512 * 1024) / PAGE_SIZE; 1842 batch /= 4; /* We effectively *= 4 below */ 1843 if (batch < 1) 1844 batch = 1; 1845 1846 /* 1847 * Clamp the batch to a 2^n - 1 value. Having a power 1848 * of 2 value was found to be more likely to have 1849 * suboptimal cache aliasing properties in some cases. 1850 * 1851 * For example if 2 tasks are alternately allocating 1852 * batches of pages, one task can end up with a lot 1853 * of pages of one half of the possible page colors 1854 * and the other with pages of the other colors. 1855 */ 1856 batch = (1 << (fls(batch + batch/2)-1)) - 1; 1857 1858 return batch; 1859 } 1860 1861 inline void setup_pageset(struct per_cpu_pageset *p, unsigned long batch) 1862 { 1863 struct per_cpu_pages *pcp; 1864 1865 memset(p, 0, sizeof(*p)); 1866 1867 pcp = &p->pcp[0]; /* hot */ 1868 pcp->count = 0; 1869 pcp->high = 6 * batch; 1870 pcp->batch = max(1UL, 1 * batch); 1871 INIT_LIST_HEAD(&pcp->list); 1872 1873 pcp = &p->pcp[1]; /* cold*/ 1874 pcp->count = 0; 1875 pcp->high = 2 * batch; 1876 pcp->batch = max(1UL, batch/2); 1877 INIT_LIST_HEAD(&pcp->list); 1878 } 1879 1880 /* 1881 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist 1882 * to the value high for the pageset p. 1883 */ 1884 1885 static void setup_pagelist_highmark(struct per_cpu_pageset *p, 1886 unsigned long high) 1887 { 1888 struct per_cpu_pages *pcp; 1889 1890 pcp = &p->pcp[0]; /* hot list */ 1891 pcp->high = high; 1892 pcp->batch = max(1UL, high/4); 1893 if ((high/4) > (PAGE_SHIFT * 8)) 1894 pcp->batch = PAGE_SHIFT * 8; 1895 } 1896 1897 1898 #ifdef CONFIG_NUMA 1899 /* 1900 * Boot pageset table. One per cpu which is going to be used for all 1901 * zones and all nodes. The parameters will be set in such a way 1902 * that an item put on a list will immediately be handed over to 1903 * the buddy list. This is safe since pageset manipulation is done 1904 * with interrupts disabled. 1905 * 1906 * Some NUMA counter updates may also be caught by the boot pagesets. 1907 * 1908 * The boot_pagesets must be kept even after bootup is complete for 1909 * unused processors and/or zones. They do play a role for bootstrapping 1910 * hotplugged processors. 1911 * 1912 * zoneinfo_show() and maybe other functions do 1913 * not check if the processor is online before following the pageset pointer. 1914 * Other parts of the kernel may not check if the zone is available. 1915 */ 1916 static struct per_cpu_pageset boot_pageset[NR_CPUS]; 1917 1918 /* 1919 * Dynamically allocate memory for the 1920 * per cpu pageset array in struct zone. 1921 */ 1922 static int __cpuinit process_zones(int cpu) 1923 { 1924 struct zone *zone, *dzone; 1925 1926 for_each_zone(zone) { 1927 1928 zone_pcp(zone, cpu) = kmalloc_node(sizeof(struct per_cpu_pageset), 1929 GFP_KERNEL, cpu_to_node(cpu)); 1930 if (!zone_pcp(zone, cpu)) 1931 goto bad; 1932 1933 setup_pageset(zone_pcp(zone, cpu), zone_batchsize(zone)); 1934 1935 if (percpu_pagelist_fraction) 1936 setup_pagelist_highmark(zone_pcp(zone, cpu), 1937 (zone->present_pages / percpu_pagelist_fraction)); 1938 } 1939 1940 return 0; 1941 bad: 1942 for_each_zone(dzone) { 1943 if (dzone == zone) 1944 break; 1945 kfree(zone_pcp(dzone, cpu)); 1946 zone_pcp(dzone, cpu) = NULL; 1947 } 1948 return -ENOMEM; 1949 } 1950 1951 static inline void free_zone_pagesets(int cpu) 1952 { 1953 struct zone *zone; 1954 1955 for_each_zone(zone) { 1956 struct per_cpu_pageset *pset = zone_pcp(zone, cpu); 1957 1958 zone_pcp(zone, cpu) = NULL; 1959 kfree(pset); 1960 } 1961 } 1962 1963 static int __cpuinit pageset_cpuup_callback(struct notifier_block *nfb, 1964 unsigned long action, 1965 void *hcpu) 1966 { 1967 int cpu = (long)hcpu; 1968 int ret = NOTIFY_OK; 1969 1970 switch (action) { 1971 case CPU_UP_PREPARE: 1972 if (process_zones(cpu)) 1973 ret = NOTIFY_BAD; 1974 break; 1975 case CPU_UP_CANCELED: 1976 case CPU_DEAD: 1977 free_zone_pagesets(cpu); 1978 break; 1979 default: 1980 break; 1981 } 1982 return ret; 1983 } 1984 1985 static struct notifier_block pageset_notifier = 1986 { &pageset_cpuup_callback, NULL, 0 }; 1987 1988 void __init setup_per_cpu_pageset(void) 1989 { 1990 int err; 1991 1992 /* Initialize per_cpu_pageset for cpu 0. 1993 * A cpuup callback will do this for every cpu 1994 * as it comes online 1995 */ 1996 err = process_zones(smp_processor_id()); 1997 BUG_ON(err); 1998 register_cpu_notifier(&pageset_notifier); 1999 } 2000 2001 #endif 2002 2003 static __meminit 2004 void zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages) 2005 { 2006 int i; 2007 struct pglist_data *pgdat = zone->zone_pgdat; 2008 2009 /* 2010 * The per-page waitqueue mechanism uses hashed waitqueues 2011 * per zone. 2012 */ 2013 zone->wait_table_size = wait_table_size(zone_size_pages); 2014 zone->wait_table_bits = wait_table_bits(zone->wait_table_size); 2015 zone->wait_table = (wait_queue_head_t *) 2016 alloc_bootmem_node(pgdat, zone->wait_table_size 2017 * sizeof(wait_queue_head_t)); 2018 2019 for(i = 0; i < zone->wait_table_size; ++i) 2020 init_waitqueue_head(zone->wait_table + i); 2021 } 2022 2023 static __meminit void zone_pcp_init(struct zone *zone) 2024 { 2025 int cpu; 2026 unsigned long batch = zone_batchsize(zone); 2027 2028 for (cpu = 0; cpu < NR_CPUS; cpu++) { 2029 #ifdef CONFIG_NUMA 2030 /* Early boot. Slab allocator not functional yet */ 2031 zone_pcp(zone, cpu) = &boot_pageset[cpu]; 2032 setup_pageset(&boot_pageset[cpu],0); 2033 #else 2034 setup_pageset(zone_pcp(zone,cpu), batch); 2035 #endif 2036 } 2037 if (zone->present_pages) 2038 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%lu\n", 2039 zone->name, zone->present_pages, batch); 2040 } 2041 2042 static __meminit void init_currently_empty_zone(struct zone *zone, 2043 unsigned long zone_start_pfn, unsigned long size) 2044 { 2045 struct pglist_data *pgdat = zone->zone_pgdat; 2046 2047 zone_wait_table_init(zone, size); 2048 pgdat->nr_zones = zone_idx(zone) + 1; 2049 2050 zone->zone_start_pfn = zone_start_pfn; 2051 2052 memmap_init(size, pgdat->node_id, zone_idx(zone), zone_start_pfn); 2053 2054 zone_init_free_lists(pgdat, zone, zone->spanned_pages); 2055 } 2056 2057 /* 2058 * Set up the zone data structures: 2059 * - mark all pages reserved 2060 * - mark all memory queues empty 2061 * - clear the memory bitmaps 2062 */ 2063 static void __init free_area_init_core(struct pglist_data *pgdat, 2064 unsigned long *zones_size, unsigned long *zholes_size) 2065 { 2066 unsigned long j; 2067 int nid = pgdat->node_id; 2068 unsigned long zone_start_pfn = pgdat->node_start_pfn; 2069 2070 pgdat_resize_init(pgdat); 2071 pgdat->nr_zones = 0; 2072 init_waitqueue_head(&pgdat->kswapd_wait); 2073 pgdat->kswapd_max_order = 0; 2074 2075 for (j = 0; j < MAX_NR_ZONES; j++) { 2076 struct zone *zone = pgdat->node_zones + j; 2077 unsigned long size, realsize; 2078 2079 realsize = size = zones_size[j]; 2080 if (zholes_size) 2081 realsize -= zholes_size[j]; 2082 2083 if (j < ZONE_HIGHMEM) 2084 nr_kernel_pages += realsize; 2085 nr_all_pages += realsize; 2086 2087 zone->spanned_pages = size; 2088 zone->present_pages = realsize; 2089 zone->name = zone_names[j]; 2090 spin_lock_init(&zone->lock); 2091 spin_lock_init(&zone->lru_lock); 2092 zone_seqlock_init(zone); 2093 zone->zone_pgdat = pgdat; 2094 zone->free_pages = 0; 2095 2096 zone->temp_priority = zone->prev_priority = DEF_PRIORITY; 2097 2098 zone_pcp_init(zone); 2099 INIT_LIST_HEAD(&zone->active_list); 2100 INIT_LIST_HEAD(&zone->inactive_list); 2101 zone->nr_scan_active = 0; 2102 zone->nr_scan_inactive = 0; 2103 zone->nr_active = 0; 2104 zone->nr_inactive = 0; 2105 atomic_set(&zone->reclaim_in_progress, 0); 2106 if (!size) 2107 continue; 2108 2109 zonetable_add(zone, nid, j, zone_start_pfn, size); 2110 init_currently_empty_zone(zone, zone_start_pfn, size); 2111 zone_start_pfn += size; 2112 } 2113 } 2114 2115 static void __init alloc_node_mem_map(struct pglist_data *pgdat) 2116 { 2117 /* Skip empty nodes */ 2118 if (!pgdat->node_spanned_pages) 2119 return; 2120 2121 #ifdef CONFIG_FLAT_NODE_MEM_MAP 2122 /* ia64 gets its own node_mem_map, before this, without bootmem */ 2123 if (!pgdat->node_mem_map) { 2124 unsigned long size; 2125 struct page *map; 2126 2127 size = (pgdat->node_spanned_pages + 1) * sizeof(struct page); 2128 map = alloc_remap(pgdat->node_id, size); 2129 if (!map) 2130 map = alloc_bootmem_node(pgdat, size); 2131 pgdat->node_mem_map = map; 2132 } 2133 #ifdef CONFIG_FLATMEM 2134 /* 2135 * With no DISCONTIG, the global mem_map is just set as node 0's 2136 */ 2137 if (pgdat == NODE_DATA(0)) 2138 mem_map = NODE_DATA(0)->node_mem_map; 2139 #endif 2140 #endif /* CONFIG_FLAT_NODE_MEM_MAP */ 2141 } 2142 2143 void __init free_area_init_node(int nid, struct pglist_data *pgdat, 2144 unsigned long *zones_size, unsigned long node_start_pfn, 2145 unsigned long *zholes_size) 2146 { 2147 pgdat->node_id = nid; 2148 pgdat->node_start_pfn = node_start_pfn; 2149 calculate_zone_totalpages(pgdat, zones_size, zholes_size); 2150 2151 alloc_node_mem_map(pgdat); 2152 2153 free_area_init_core(pgdat, zones_size, zholes_size); 2154 } 2155 2156 #ifndef CONFIG_NEED_MULTIPLE_NODES 2157 static bootmem_data_t contig_bootmem_data; 2158 struct pglist_data contig_page_data = { .bdata = &contig_bootmem_data }; 2159 2160 EXPORT_SYMBOL(contig_page_data); 2161 #endif 2162 2163 void __init free_area_init(unsigned long *zones_size) 2164 { 2165 free_area_init_node(0, NODE_DATA(0), zones_size, 2166 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL); 2167 } 2168 2169 #ifdef CONFIG_PROC_FS 2170 2171 #include <linux/seq_file.h> 2172 2173 static void *frag_start(struct seq_file *m, loff_t *pos) 2174 { 2175 pg_data_t *pgdat; 2176 loff_t node = *pos; 2177 for (pgdat = first_online_pgdat(); 2178 pgdat && node; 2179 pgdat = next_online_pgdat(pgdat)) 2180 --node; 2181 2182 return pgdat; 2183 } 2184 2185 static void *frag_next(struct seq_file *m, void *arg, loff_t *pos) 2186 { 2187 pg_data_t *pgdat = (pg_data_t *)arg; 2188 2189 (*pos)++; 2190 return next_online_pgdat(pgdat); 2191 } 2192 2193 static void frag_stop(struct seq_file *m, void *arg) 2194 { 2195 } 2196 2197 /* 2198 * This walks the free areas for each zone. 2199 */ 2200 static int frag_show(struct seq_file *m, void *arg) 2201 { 2202 pg_data_t *pgdat = (pg_data_t *)arg; 2203 struct zone *zone; 2204 struct zone *node_zones = pgdat->node_zones; 2205 unsigned long flags; 2206 int order; 2207 2208 for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) { 2209 if (!populated_zone(zone)) 2210 continue; 2211 2212 spin_lock_irqsave(&zone->lock, flags); 2213 seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name); 2214 for (order = 0; order < MAX_ORDER; ++order) 2215 seq_printf(m, "%6lu ", zone->free_area[order].nr_free); 2216 spin_unlock_irqrestore(&zone->lock, flags); 2217 seq_putc(m, '\n'); 2218 } 2219 return 0; 2220 } 2221 2222 struct seq_operations fragmentation_op = { 2223 .start = frag_start, 2224 .next = frag_next, 2225 .stop = frag_stop, 2226 .show = frag_show, 2227 }; 2228 2229 /* 2230 * Output information about zones in @pgdat. 2231 */ 2232 static int zoneinfo_show(struct seq_file *m, void *arg) 2233 { 2234 pg_data_t *pgdat = arg; 2235 struct zone *zone; 2236 struct zone *node_zones = pgdat->node_zones; 2237 unsigned long flags; 2238 2239 for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; zone++) { 2240 int i; 2241 2242 if (!populated_zone(zone)) 2243 continue; 2244 2245 spin_lock_irqsave(&zone->lock, flags); 2246 seq_printf(m, "Node %d, zone %8s", pgdat->node_id, zone->name); 2247 seq_printf(m, 2248 "\n pages free %lu" 2249 "\n min %lu" 2250 "\n low %lu" 2251 "\n high %lu" 2252 "\n active %lu" 2253 "\n inactive %lu" 2254 "\n scanned %lu (a: %lu i: %lu)" 2255 "\n spanned %lu" 2256 "\n present %lu", 2257 zone->free_pages, 2258 zone->pages_min, 2259 zone->pages_low, 2260 zone->pages_high, 2261 zone->nr_active, 2262 zone->nr_inactive, 2263 zone->pages_scanned, 2264 zone->nr_scan_active, zone->nr_scan_inactive, 2265 zone->spanned_pages, 2266 zone->present_pages); 2267 seq_printf(m, 2268 "\n protection: (%lu", 2269 zone->lowmem_reserve[0]); 2270 for (i = 1; i < ARRAY_SIZE(zone->lowmem_reserve); i++) 2271 seq_printf(m, ", %lu", zone->lowmem_reserve[i]); 2272 seq_printf(m, 2273 ")" 2274 "\n pagesets"); 2275 for_each_online_cpu(i) { 2276 struct per_cpu_pageset *pageset; 2277 int j; 2278 2279 pageset = zone_pcp(zone, i); 2280 for (j = 0; j < ARRAY_SIZE(pageset->pcp); j++) { 2281 if (pageset->pcp[j].count) 2282 break; 2283 } 2284 if (j == ARRAY_SIZE(pageset->pcp)) 2285 continue; 2286 for (j = 0; j < ARRAY_SIZE(pageset->pcp); j++) { 2287 seq_printf(m, 2288 "\n cpu: %i pcp: %i" 2289 "\n count: %i" 2290 "\n high: %i" 2291 "\n batch: %i", 2292 i, j, 2293 pageset->pcp[j].count, 2294 pageset->pcp[j].high, 2295 pageset->pcp[j].batch); 2296 } 2297 #ifdef CONFIG_NUMA 2298 seq_printf(m, 2299 "\n numa_hit: %lu" 2300 "\n numa_miss: %lu" 2301 "\n numa_foreign: %lu" 2302 "\n interleave_hit: %lu" 2303 "\n local_node: %lu" 2304 "\n other_node: %lu", 2305 pageset->numa_hit, 2306 pageset->numa_miss, 2307 pageset->numa_foreign, 2308 pageset->interleave_hit, 2309 pageset->local_node, 2310 pageset->other_node); 2311 #endif 2312 } 2313 seq_printf(m, 2314 "\n all_unreclaimable: %u" 2315 "\n prev_priority: %i" 2316 "\n temp_priority: %i" 2317 "\n start_pfn: %lu", 2318 zone->all_unreclaimable, 2319 zone->prev_priority, 2320 zone->temp_priority, 2321 zone->zone_start_pfn); 2322 spin_unlock_irqrestore(&zone->lock, flags); 2323 seq_putc(m, '\n'); 2324 } 2325 return 0; 2326 } 2327 2328 struct seq_operations zoneinfo_op = { 2329 .start = frag_start, /* iterate over all zones. The same as in 2330 * fragmentation. */ 2331 .next = frag_next, 2332 .stop = frag_stop, 2333 .show = zoneinfo_show, 2334 }; 2335 2336 static char *vmstat_text[] = { 2337 "nr_dirty", 2338 "nr_writeback", 2339 "nr_unstable", 2340 "nr_page_table_pages", 2341 "nr_mapped", 2342 "nr_slab", 2343 2344 "pgpgin", 2345 "pgpgout", 2346 "pswpin", 2347 "pswpout", 2348 2349 "pgalloc_high", 2350 "pgalloc_normal", 2351 "pgalloc_dma32", 2352 "pgalloc_dma", 2353 2354 "pgfree", 2355 "pgactivate", 2356 "pgdeactivate", 2357 2358 "pgfault", 2359 "pgmajfault", 2360 2361 "pgrefill_high", 2362 "pgrefill_normal", 2363 "pgrefill_dma32", 2364 "pgrefill_dma", 2365 2366 "pgsteal_high", 2367 "pgsteal_normal", 2368 "pgsteal_dma32", 2369 "pgsteal_dma", 2370 2371 "pgscan_kswapd_high", 2372 "pgscan_kswapd_normal", 2373 "pgscan_kswapd_dma32", 2374 "pgscan_kswapd_dma", 2375 2376 "pgscan_direct_high", 2377 "pgscan_direct_normal", 2378 "pgscan_direct_dma32", 2379 "pgscan_direct_dma", 2380 2381 "pginodesteal", 2382 "slabs_scanned", 2383 "kswapd_steal", 2384 "kswapd_inodesteal", 2385 "pageoutrun", 2386 "allocstall", 2387 2388 "pgrotated", 2389 "nr_bounce", 2390 }; 2391 2392 static void *vmstat_start(struct seq_file *m, loff_t *pos) 2393 { 2394 struct page_state *ps; 2395 2396 if (*pos >= ARRAY_SIZE(vmstat_text)) 2397 return NULL; 2398 2399 ps = kmalloc(sizeof(*ps), GFP_KERNEL); 2400 m->private = ps; 2401 if (!ps) 2402 return ERR_PTR(-ENOMEM); 2403 get_full_page_state(ps); 2404 ps->pgpgin /= 2; /* sectors -> kbytes */ 2405 ps->pgpgout /= 2; 2406 return (unsigned long *)ps + *pos; 2407 } 2408 2409 static void *vmstat_next(struct seq_file *m, void *arg, loff_t *pos) 2410 { 2411 (*pos)++; 2412 if (*pos >= ARRAY_SIZE(vmstat_text)) 2413 return NULL; 2414 return (unsigned long *)m->private + *pos; 2415 } 2416 2417 static int vmstat_show(struct seq_file *m, void *arg) 2418 { 2419 unsigned long *l = arg; 2420 unsigned long off = l - (unsigned long *)m->private; 2421 2422 seq_printf(m, "%s %lu\n", vmstat_text[off], *l); 2423 return 0; 2424 } 2425 2426 static void vmstat_stop(struct seq_file *m, void *arg) 2427 { 2428 kfree(m->private); 2429 m->private = NULL; 2430 } 2431 2432 struct seq_operations vmstat_op = { 2433 .start = vmstat_start, 2434 .next = vmstat_next, 2435 .stop = vmstat_stop, 2436 .show = vmstat_show, 2437 }; 2438 2439 #endif /* CONFIG_PROC_FS */ 2440 2441 #ifdef CONFIG_HOTPLUG_CPU 2442 static int page_alloc_cpu_notify(struct notifier_block *self, 2443 unsigned long action, void *hcpu) 2444 { 2445 int cpu = (unsigned long)hcpu; 2446 long *count; 2447 unsigned long *src, *dest; 2448 2449 if (action == CPU_DEAD) { 2450 int i; 2451 2452 /* Drain local pagecache count. */ 2453 count = &per_cpu(nr_pagecache_local, cpu); 2454 atomic_add(*count, &nr_pagecache); 2455 *count = 0; 2456 local_irq_disable(); 2457 __drain_pages(cpu); 2458 2459 /* Add dead cpu's page_states to our own. */ 2460 dest = (unsigned long *)&__get_cpu_var(page_states); 2461 src = (unsigned long *)&per_cpu(page_states, cpu); 2462 2463 for (i = 0; i < sizeof(struct page_state)/sizeof(unsigned long); 2464 i++) { 2465 dest[i] += src[i]; 2466 src[i] = 0; 2467 } 2468 2469 local_irq_enable(); 2470 } 2471 return NOTIFY_OK; 2472 } 2473 #endif /* CONFIG_HOTPLUG_CPU */ 2474 2475 void __init page_alloc_init(void) 2476 { 2477 hotcpu_notifier(page_alloc_cpu_notify, 0); 2478 } 2479 2480 /* 2481 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio 2482 * or min_free_kbytes changes. 2483 */ 2484 static void calculate_totalreserve_pages(void) 2485 { 2486 struct pglist_data *pgdat; 2487 unsigned long reserve_pages = 0; 2488 int i, j; 2489 2490 for_each_online_pgdat(pgdat) { 2491 for (i = 0; i < MAX_NR_ZONES; i++) { 2492 struct zone *zone = pgdat->node_zones + i; 2493 unsigned long max = 0; 2494 2495 /* Find valid and maximum lowmem_reserve in the zone */ 2496 for (j = i; j < MAX_NR_ZONES; j++) { 2497 if (zone->lowmem_reserve[j] > max) 2498 max = zone->lowmem_reserve[j]; 2499 } 2500 2501 /* we treat pages_high as reserved pages. */ 2502 max += zone->pages_high; 2503 2504 if (max > zone->present_pages) 2505 max = zone->present_pages; 2506 reserve_pages += max; 2507 } 2508 } 2509 totalreserve_pages = reserve_pages; 2510 } 2511 2512 /* 2513 * setup_per_zone_lowmem_reserve - called whenever 2514 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone 2515 * has a correct pages reserved value, so an adequate number of 2516 * pages are left in the zone after a successful __alloc_pages(). 2517 */ 2518 static void setup_per_zone_lowmem_reserve(void) 2519 { 2520 struct pglist_data *pgdat; 2521 int j, idx; 2522 2523 for_each_online_pgdat(pgdat) { 2524 for (j = 0; j < MAX_NR_ZONES; j++) { 2525 struct zone *zone = pgdat->node_zones + j; 2526 unsigned long present_pages = zone->present_pages; 2527 2528 zone->lowmem_reserve[j] = 0; 2529 2530 for (idx = j-1; idx >= 0; idx--) { 2531 struct zone *lower_zone; 2532 2533 if (sysctl_lowmem_reserve_ratio[idx] < 1) 2534 sysctl_lowmem_reserve_ratio[idx] = 1; 2535 2536 lower_zone = pgdat->node_zones + idx; 2537 lower_zone->lowmem_reserve[j] = present_pages / 2538 sysctl_lowmem_reserve_ratio[idx]; 2539 present_pages += lower_zone->present_pages; 2540 } 2541 } 2542 } 2543 2544 /* update totalreserve_pages */ 2545 calculate_totalreserve_pages(); 2546 } 2547 2548 /* 2549 * setup_per_zone_pages_min - called when min_free_kbytes changes. Ensures 2550 * that the pages_{min,low,high} values for each zone are set correctly 2551 * with respect to min_free_kbytes. 2552 */ 2553 void setup_per_zone_pages_min(void) 2554 { 2555 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10); 2556 unsigned long lowmem_pages = 0; 2557 struct zone *zone; 2558 unsigned long flags; 2559 2560 /* Calculate total number of !ZONE_HIGHMEM pages */ 2561 for_each_zone(zone) { 2562 if (!is_highmem(zone)) 2563 lowmem_pages += zone->present_pages; 2564 } 2565 2566 for_each_zone(zone) { 2567 unsigned long tmp; 2568 spin_lock_irqsave(&zone->lru_lock, flags); 2569 tmp = (pages_min * zone->present_pages) / lowmem_pages; 2570 if (is_highmem(zone)) { 2571 /* 2572 * __GFP_HIGH and PF_MEMALLOC allocations usually don't 2573 * need highmem pages, so cap pages_min to a small 2574 * value here. 2575 * 2576 * The (pages_high-pages_low) and (pages_low-pages_min) 2577 * deltas controls asynch page reclaim, and so should 2578 * not be capped for highmem. 2579 */ 2580 int min_pages; 2581 2582 min_pages = zone->present_pages / 1024; 2583 if (min_pages < SWAP_CLUSTER_MAX) 2584 min_pages = SWAP_CLUSTER_MAX; 2585 if (min_pages > 128) 2586 min_pages = 128; 2587 zone->pages_min = min_pages; 2588 } else { 2589 /* 2590 * If it's a lowmem zone, reserve a number of pages 2591 * proportionate to the zone's size. 2592 */ 2593 zone->pages_min = tmp; 2594 } 2595 2596 zone->pages_low = zone->pages_min + tmp / 4; 2597 zone->pages_high = zone->pages_min + tmp / 2; 2598 spin_unlock_irqrestore(&zone->lru_lock, flags); 2599 } 2600 2601 /* update totalreserve_pages */ 2602 calculate_totalreserve_pages(); 2603 } 2604 2605 /* 2606 * Initialise min_free_kbytes. 2607 * 2608 * For small machines we want it small (128k min). For large machines 2609 * we want it large (64MB max). But it is not linear, because network 2610 * bandwidth does not increase linearly with machine size. We use 2611 * 2612 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy: 2613 * min_free_kbytes = sqrt(lowmem_kbytes * 16) 2614 * 2615 * which yields 2616 * 2617 * 16MB: 512k 2618 * 32MB: 724k 2619 * 64MB: 1024k 2620 * 128MB: 1448k 2621 * 256MB: 2048k 2622 * 512MB: 2896k 2623 * 1024MB: 4096k 2624 * 2048MB: 5792k 2625 * 4096MB: 8192k 2626 * 8192MB: 11584k 2627 * 16384MB: 16384k 2628 */ 2629 static int __init init_per_zone_pages_min(void) 2630 { 2631 unsigned long lowmem_kbytes; 2632 2633 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10); 2634 2635 min_free_kbytes = int_sqrt(lowmem_kbytes * 16); 2636 if (min_free_kbytes < 128) 2637 min_free_kbytes = 128; 2638 if (min_free_kbytes > 65536) 2639 min_free_kbytes = 65536; 2640 setup_per_zone_pages_min(); 2641 setup_per_zone_lowmem_reserve(); 2642 return 0; 2643 } 2644 module_init(init_per_zone_pages_min) 2645 2646 /* 2647 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so 2648 * that we can call two helper functions whenever min_free_kbytes 2649 * changes. 2650 */ 2651 int min_free_kbytes_sysctl_handler(ctl_table *table, int write, 2652 struct file *file, void __user *buffer, size_t *length, loff_t *ppos) 2653 { 2654 proc_dointvec(table, write, file, buffer, length, ppos); 2655 setup_per_zone_pages_min(); 2656 return 0; 2657 } 2658 2659 /* 2660 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around 2661 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve() 2662 * whenever sysctl_lowmem_reserve_ratio changes. 2663 * 2664 * The reserve ratio obviously has absolutely no relation with the 2665 * pages_min watermarks. The lowmem reserve ratio can only make sense 2666 * if in function of the boot time zone sizes. 2667 */ 2668 int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write, 2669 struct file *file, void __user *buffer, size_t *length, loff_t *ppos) 2670 { 2671 proc_dointvec_minmax(table, write, file, buffer, length, ppos); 2672 setup_per_zone_lowmem_reserve(); 2673 return 0; 2674 } 2675 2676 /* 2677 * percpu_pagelist_fraction - changes the pcp->high for each zone on each 2678 * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist 2679 * can have before it gets flushed back to buddy allocator. 2680 */ 2681 2682 int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write, 2683 struct file *file, void __user *buffer, size_t *length, loff_t *ppos) 2684 { 2685 struct zone *zone; 2686 unsigned int cpu; 2687 int ret; 2688 2689 ret = proc_dointvec_minmax(table, write, file, buffer, length, ppos); 2690 if (!write || (ret == -EINVAL)) 2691 return ret; 2692 for_each_zone(zone) { 2693 for_each_online_cpu(cpu) { 2694 unsigned long high; 2695 high = zone->present_pages / percpu_pagelist_fraction; 2696 setup_pagelist_highmark(zone_pcp(zone, cpu), high); 2697 } 2698 } 2699 return 0; 2700 } 2701 2702 __initdata int hashdist = HASHDIST_DEFAULT; 2703 2704 #ifdef CONFIG_NUMA 2705 static int __init set_hashdist(char *str) 2706 { 2707 if (!str) 2708 return 0; 2709 hashdist = simple_strtoul(str, &str, 0); 2710 return 1; 2711 } 2712 __setup("hashdist=", set_hashdist); 2713 #endif 2714 2715 /* 2716 * allocate a large system hash table from bootmem 2717 * - it is assumed that the hash table must contain an exact power-of-2 2718 * quantity of entries 2719 * - limit is the number of hash buckets, not the total allocation size 2720 */ 2721 void *__init alloc_large_system_hash(const char *tablename, 2722 unsigned long bucketsize, 2723 unsigned long numentries, 2724 int scale, 2725 int flags, 2726 unsigned int *_hash_shift, 2727 unsigned int *_hash_mask, 2728 unsigned long limit) 2729 { 2730 unsigned long long max = limit; 2731 unsigned long log2qty, size; 2732 void *table = NULL; 2733 2734 /* allow the kernel cmdline to have a say */ 2735 if (!numentries) { 2736 /* round applicable memory size up to nearest megabyte */ 2737 numentries = (flags & HASH_HIGHMEM) ? nr_all_pages : nr_kernel_pages; 2738 numentries += (1UL << (20 - PAGE_SHIFT)) - 1; 2739 numentries >>= 20 - PAGE_SHIFT; 2740 numentries <<= 20 - PAGE_SHIFT; 2741 2742 /* limit to 1 bucket per 2^scale bytes of low memory */ 2743 if (scale > PAGE_SHIFT) 2744 numentries >>= (scale - PAGE_SHIFT); 2745 else 2746 numentries <<= (PAGE_SHIFT - scale); 2747 } 2748 numentries = roundup_pow_of_two(numentries); 2749 2750 /* limit allocation size to 1/16 total memory by default */ 2751 if (max == 0) { 2752 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4; 2753 do_div(max, bucketsize); 2754 } 2755 2756 if (numentries > max) 2757 numentries = max; 2758 2759 log2qty = long_log2(numentries); 2760 2761 do { 2762 size = bucketsize << log2qty; 2763 if (flags & HASH_EARLY) 2764 table = alloc_bootmem(size); 2765 else if (hashdist) 2766 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL); 2767 else { 2768 unsigned long order; 2769 for (order = 0; ((1UL << order) << PAGE_SHIFT) < size; order++) 2770 ; 2771 table = (void*) __get_free_pages(GFP_ATOMIC, order); 2772 } 2773 } while (!table && size > PAGE_SIZE && --log2qty); 2774 2775 if (!table) 2776 panic("Failed to allocate %s hash table\n", tablename); 2777 2778 printk("%s hash table entries: %d (order: %d, %lu bytes)\n", 2779 tablename, 2780 (1U << log2qty), 2781 long_log2(size) - PAGE_SHIFT, 2782 size); 2783 2784 if (_hash_shift) 2785 *_hash_shift = log2qty; 2786 if (_hash_mask) 2787 *_hash_mask = (1 << log2qty) - 1; 2788 2789 return table; 2790 } 2791 2792 #ifdef CONFIG_OUT_OF_LINE_PFN_TO_PAGE 2793 /* 2794 * pfn <-> page translation. out-of-line version. 2795 * (see asm-generic/memory_model.h) 2796 */ 2797 #if defined(CONFIG_FLATMEM) 2798 struct page *pfn_to_page(unsigned long pfn) 2799 { 2800 return mem_map + (pfn - ARCH_PFN_OFFSET); 2801 } 2802 unsigned long page_to_pfn(struct page *page) 2803 { 2804 return (page - mem_map) + ARCH_PFN_OFFSET; 2805 } 2806 #elif defined(CONFIG_DISCONTIGMEM) 2807 struct page *pfn_to_page(unsigned long pfn) 2808 { 2809 int nid = arch_pfn_to_nid(pfn); 2810 return NODE_DATA(nid)->node_mem_map + arch_local_page_offset(pfn,nid); 2811 } 2812 unsigned long page_to_pfn(struct page *page) 2813 { 2814 struct pglist_data *pgdat = NODE_DATA(page_to_nid(page)); 2815 return (page - pgdat->node_mem_map) + pgdat->node_start_pfn; 2816 } 2817 #elif defined(CONFIG_SPARSEMEM) 2818 struct page *pfn_to_page(unsigned long pfn) 2819 { 2820 return __section_mem_map_addr(__pfn_to_section(pfn)) + pfn; 2821 } 2822 2823 unsigned long page_to_pfn(struct page *page) 2824 { 2825 long section_id = page_to_section(page); 2826 return page - __section_mem_map_addr(__nr_to_section(section_id)); 2827 } 2828 #endif /* CONFIG_FLATMEM/DISCONTIGMME/SPARSEMEM */ 2829 EXPORT_SYMBOL(pfn_to_page); 2830 EXPORT_SYMBOL(page_to_pfn); 2831 #endif /* CONFIG_OUT_OF_LINE_PFN_TO_PAGE */ 2832