xref: /linux/mm/page_alloc.c (revision ccea15f45eb0ab12d658f88b5d4be005cb2bb1a7)
1 /*
2  *  linux/mm/page_alloc.c
3  *
4  *  Manages the free list, the system allocates free pages here.
5  *  Note that kmalloc() lives in slab.c
6  *
7  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
8  *  Swap reorganised 29.12.95, Stephen Tweedie
9  *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10  *  Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11  *  Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12  *  Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13  *  Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14  *          (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15  */
16 
17 #include <linux/config.h>
18 #include <linux/stddef.h>
19 #include <linux/mm.h>
20 #include <linux/swap.h>
21 #include <linux/interrupt.h>
22 #include <linux/pagemap.h>
23 #include <linux/bootmem.h>
24 #include <linux/compiler.h>
25 #include <linux/kernel.h>
26 #include <linux/module.h>
27 #include <linux/suspend.h>
28 #include <linux/pagevec.h>
29 #include <linux/blkdev.h>
30 #include <linux/slab.h>
31 #include <linux/notifier.h>
32 #include <linux/topology.h>
33 #include <linux/sysctl.h>
34 #include <linux/cpu.h>
35 #include <linux/cpuset.h>
36 #include <linux/memory_hotplug.h>
37 #include <linux/nodemask.h>
38 #include <linux/vmalloc.h>
39 #include <linux/mempolicy.h>
40 
41 #include <asm/tlbflush.h>
42 #include "internal.h"
43 
44 /*
45  * MCD - HACK: Find somewhere to initialize this EARLY, or make this
46  * initializer cleaner
47  */
48 nodemask_t node_online_map __read_mostly = { { [0] = 1UL } };
49 EXPORT_SYMBOL(node_online_map);
50 nodemask_t node_possible_map __read_mostly = NODE_MASK_ALL;
51 EXPORT_SYMBOL(node_possible_map);
52 unsigned long totalram_pages __read_mostly;
53 unsigned long totalhigh_pages __read_mostly;
54 unsigned long totalreserve_pages __read_mostly;
55 long nr_swap_pages;
56 int percpu_pagelist_fraction;
57 
58 static void __free_pages_ok(struct page *page, unsigned int order);
59 
60 /*
61  * results with 256, 32 in the lowmem_reserve sysctl:
62  *	1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
63  *	1G machine -> (16M dma, 784M normal, 224M high)
64  *	NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
65  *	HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
66  *	HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
67  *
68  * TBD: should special case ZONE_DMA32 machines here - in those we normally
69  * don't need any ZONE_NORMAL reservation
70  */
71 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = { 256, 256, 32 };
72 
73 EXPORT_SYMBOL(totalram_pages);
74 
75 /*
76  * Used by page_zone() to look up the address of the struct zone whose
77  * id is encoded in the upper bits of page->flags
78  */
79 struct zone *zone_table[1 << ZONETABLE_SHIFT] __read_mostly;
80 EXPORT_SYMBOL(zone_table);
81 
82 static char *zone_names[MAX_NR_ZONES] = { "DMA", "DMA32", "Normal", "HighMem" };
83 int min_free_kbytes = 1024;
84 
85 unsigned long __initdata nr_kernel_pages;
86 unsigned long __initdata nr_all_pages;
87 
88 #ifdef CONFIG_DEBUG_VM
89 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
90 {
91 	int ret = 0;
92 	unsigned seq;
93 	unsigned long pfn = page_to_pfn(page);
94 
95 	do {
96 		seq = zone_span_seqbegin(zone);
97 		if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
98 			ret = 1;
99 		else if (pfn < zone->zone_start_pfn)
100 			ret = 1;
101 	} while (zone_span_seqretry(zone, seq));
102 
103 	return ret;
104 }
105 
106 static int page_is_consistent(struct zone *zone, struct page *page)
107 {
108 #ifdef CONFIG_HOLES_IN_ZONE
109 	if (!pfn_valid(page_to_pfn(page)))
110 		return 0;
111 #endif
112 	if (zone != page_zone(page))
113 		return 0;
114 
115 	return 1;
116 }
117 /*
118  * Temporary debugging check for pages not lying within a given zone.
119  */
120 static int bad_range(struct zone *zone, struct page *page)
121 {
122 	if (page_outside_zone_boundaries(zone, page))
123 		return 1;
124 	if (!page_is_consistent(zone, page))
125 		return 1;
126 
127 	return 0;
128 }
129 
130 #else
131 static inline int bad_range(struct zone *zone, struct page *page)
132 {
133 	return 0;
134 }
135 #endif
136 
137 static void bad_page(struct page *page)
138 {
139 	printk(KERN_EMERG "Bad page state in process '%s'\n"
140 		KERN_EMERG "page:%p flags:0x%0*lx mapping:%p mapcount:%d count:%d\n"
141 		KERN_EMERG "Trying to fix it up, but a reboot is needed\n"
142 		KERN_EMERG "Backtrace:\n",
143 		current->comm, page, (int)(2*sizeof(unsigned long)),
144 		(unsigned long)page->flags, page->mapping,
145 		page_mapcount(page), page_count(page));
146 	dump_stack();
147 	page->flags &= ~(1 << PG_lru	|
148 			1 << PG_private |
149 			1 << PG_locked	|
150 			1 << PG_active	|
151 			1 << PG_dirty	|
152 			1 << PG_reclaim |
153 			1 << PG_slab    |
154 			1 << PG_swapcache |
155 			1 << PG_writeback |
156 			1 << PG_buddy );
157 	set_page_count(page, 0);
158 	reset_page_mapcount(page);
159 	page->mapping = NULL;
160 	add_taint(TAINT_BAD_PAGE);
161 }
162 
163 /*
164  * Higher-order pages are called "compound pages".  They are structured thusly:
165  *
166  * The first PAGE_SIZE page is called the "head page".
167  *
168  * The remaining PAGE_SIZE pages are called "tail pages".
169  *
170  * All pages have PG_compound set.  All pages have their ->private pointing at
171  * the head page (even the head page has this).
172  *
173  * The first tail page's ->lru.next holds the address of the compound page's
174  * put_page() function.  Its ->lru.prev holds the order of allocation.
175  * This usage means that zero-order pages may not be compound.
176  */
177 
178 static void free_compound_page(struct page *page)
179 {
180 	__free_pages_ok(page, (unsigned long)page[1].lru.prev);
181 }
182 
183 static void prep_compound_page(struct page *page, unsigned long order)
184 {
185 	int i;
186 	int nr_pages = 1 << order;
187 
188 	page[1].lru.next = (void *)free_compound_page;	/* set dtor */
189 	page[1].lru.prev = (void *)order;
190 	for (i = 0; i < nr_pages; i++) {
191 		struct page *p = page + i;
192 
193 		__SetPageCompound(p);
194 		set_page_private(p, (unsigned long)page);
195 	}
196 }
197 
198 static void destroy_compound_page(struct page *page, unsigned long order)
199 {
200 	int i;
201 	int nr_pages = 1 << order;
202 
203 	if (unlikely((unsigned long)page[1].lru.prev != order))
204 		bad_page(page);
205 
206 	for (i = 0; i < nr_pages; i++) {
207 		struct page *p = page + i;
208 
209 		if (unlikely(!PageCompound(p) |
210 				(page_private(p) != (unsigned long)page)))
211 			bad_page(page);
212 		__ClearPageCompound(p);
213 	}
214 }
215 
216 static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
217 {
218 	int i;
219 
220 	BUG_ON((gfp_flags & (__GFP_WAIT | __GFP_HIGHMEM)) == __GFP_HIGHMEM);
221 	/*
222 	 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
223 	 * and __GFP_HIGHMEM from hard or soft interrupt context.
224 	 */
225 	BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
226 	for (i = 0; i < (1 << order); i++)
227 		clear_highpage(page + i);
228 }
229 
230 /*
231  * function for dealing with page's order in buddy system.
232  * zone->lock is already acquired when we use these.
233  * So, we don't need atomic page->flags operations here.
234  */
235 static inline unsigned long page_order(struct page *page) {
236 	return page_private(page);
237 }
238 
239 static inline void set_page_order(struct page *page, int order) {
240 	set_page_private(page, order);
241 	__SetPageBuddy(page);
242 }
243 
244 static inline void rmv_page_order(struct page *page)
245 {
246 	__ClearPageBuddy(page);
247 	set_page_private(page, 0);
248 }
249 
250 /*
251  * Locate the struct page for both the matching buddy in our
252  * pair (buddy1) and the combined O(n+1) page they form (page).
253  *
254  * 1) Any buddy B1 will have an order O twin B2 which satisfies
255  * the following equation:
256  *     B2 = B1 ^ (1 << O)
257  * For example, if the starting buddy (buddy2) is #8 its order
258  * 1 buddy is #10:
259  *     B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
260  *
261  * 2) Any buddy B will have an order O+1 parent P which
262  * satisfies the following equation:
263  *     P = B & ~(1 << O)
264  *
265  * Assumption: *_mem_map is contigious at least up to MAX_ORDER
266  */
267 static inline struct page *
268 __page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order)
269 {
270 	unsigned long buddy_idx = page_idx ^ (1 << order);
271 
272 	return page + (buddy_idx - page_idx);
273 }
274 
275 static inline unsigned long
276 __find_combined_index(unsigned long page_idx, unsigned int order)
277 {
278 	return (page_idx & ~(1 << order));
279 }
280 
281 /*
282  * This function checks whether a page is free && is the buddy
283  * we can do coalesce a page and its buddy if
284  * (a) the buddy is not in a hole &&
285  * (b) the buddy is in the buddy system &&
286  * (c) a page and its buddy have the same order.
287  *
288  * For recording whether a page is in the buddy system, we use PG_buddy.
289  * Setting, clearing, and testing PG_buddy is serialized by zone->lock.
290  *
291  * For recording page's order, we use page_private(page).
292  */
293 static inline int page_is_buddy(struct page *page, int order)
294 {
295 #ifdef CONFIG_HOLES_IN_ZONE
296 	if (!pfn_valid(page_to_pfn(page)))
297 		return 0;
298 #endif
299 
300 	if (PageBuddy(page) && page_order(page) == order) {
301 		BUG_ON(page_count(page) != 0);
302                return 1;
303 	}
304        return 0;
305 }
306 
307 /*
308  * Freeing function for a buddy system allocator.
309  *
310  * The concept of a buddy system is to maintain direct-mapped table
311  * (containing bit values) for memory blocks of various "orders".
312  * The bottom level table contains the map for the smallest allocatable
313  * units of memory (here, pages), and each level above it describes
314  * pairs of units from the levels below, hence, "buddies".
315  * At a high level, all that happens here is marking the table entry
316  * at the bottom level available, and propagating the changes upward
317  * as necessary, plus some accounting needed to play nicely with other
318  * parts of the VM system.
319  * At each level, we keep a list of pages, which are heads of continuous
320  * free pages of length of (1 << order) and marked with PG_buddy. Page's
321  * order is recorded in page_private(page) field.
322  * So when we are allocating or freeing one, we can derive the state of the
323  * other.  That is, if we allocate a small block, and both were
324  * free, the remainder of the region must be split into blocks.
325  * If a block is freed, and its buddy is also free, then this
326  * triggers coalescing into a block of larger size.
327  *
328  * -- wli
329  */
330 
331 static inline void __free_one_page(struct page *page,
332 		struct zone *zone, unsigned int order)
333 {
334 	unsigned long page_idx;
335 	int order_size = 1 << order;
336 
337 	if (unlikely(PageCompound(page)))
338 		destroy_compound_page(page, order);
339 
340 	page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
341 
342 	BUG_ON(page_idx & (order_size - 1));
343 	BUG_ON(bad_range(zone, page));
344 
345 	zone->free_pages += order_size;
346 	while (order < MAX_ORDER-1) {
347 		unsigned long combined_idx;
348 		struct free_area *area;
349 		struct page *buddy;
350 
351 		buddy = __page_find_buddy(page, page_idx, order);
352 		if (!page_is_buddy(buddy, order))
353 			break;		/* Move the buddy up one level. */
354 
355 		list_del(&buddy->lru);
356 		area = zone->free_area + order;
357 		area->nr_free--;
358 		rmv_page_order(buddy);
359 		combined_idx = __find_combined_index(page_idx, order);
360 		page = page + (combined_idx - page_idx);
361 		page_idx = combined_idx;
362 		order++;
363 	}
364 	set_page_order(page, order);
365 	list_add(&page->lru, &zone->free_area[order].free_list);
366 	zone->free_area[order].nr_free++;
367 }
368 
369 static inline int free_pages_check(struct page *page)
370 {
371 	if (unlikely(page_mapcount(page) |
372 		(page->mapping != NULL)  |
373 		(page_count(page) != 0)  |
374 		(page->flags & (
375 			1 << PG_lru	|
376 			1 << PG_private |
377 			1 << PG_locked	|
378 			1 << PG_active	|
379 			1 << PG_reclaim	|
380 			1 << PG_slab	|
381 			1 << PG_swapcache |
382 			1 << PG_writeback |
383 			1 << PG_reserved |
384 			1 << PG_buddy ))))
385 		bad_page(page);
386 	if (PageDirty(page))
387 		__ClearPageDirty(page);
388 	/*
389 	 * For now, we report if PG_reserved was found set, but do not
390 	 * clear it, and do not free the page.  But we shall soon need
391 	 * to do more, for when the ZERO_PAGE count wraps negative.
392 	 */
393 	return PageReserved(page);
394 }
395 
396 /*
397  * Frees a list of pages.
398  * Assumes all pages on list are in same zone, and of same order.
399  * count is the number of pages to free.
400  *
401  * If the zone was previously in an "all pages pinned" state then look to
402  * see if this freeing clears that state.
403  *
404  * And clear the zone's pages_scanned counter, to hold off the "all pages are
405  * pinned" detection logic.
406  */
407 static void free_pages_bulk(struct zone *zone, int count,
408 					struct list_head *list, int order)
409 {
410 	spin_lock(&zone->lock);
411 	zone->all_unreclaimable = 0;
412 	zone->pages_scanned = 0;
413 	while (count--) {
414 		struct page *page;
415 
416 		BUG_ON(list_empty(list));
417 		page = list_entry(list->prev, struct page, lru);
418 		/* have to delete it as __free_one_page list manipulates */
419 		list_del(&page->lru);
420 		__free_one_page(page, zone, order);
421 	}
422 	spin_unlock(&zone->lock);
423 }
424 
425 static void free_one_page(struct zone *zone, struct page *page, int order)
426 {
427 	LIST_HEAD(list);
428 	list_add(&page->lru, &list);
429 	free_pages_bulk(zone, 1, &list, order);
430 }
431 
432 static void __free_pages_ok(struct page *page, unsigned int order)
433 {
434 	unsigned long flags;
435 	int i;
436 	int reserved = 0;
437 
438 	arch_free_page(page, order);
439 	if (!PageHighMem(page))
440 		mutex_debug_check_no_locks_freed(page_address(page),
441 						 PAGE_SIZE<<order);
442 
443 	for (i = 0 ; i < (1 << order) ; ++i)
444 		reserved += free_pages_check(page + i);
445 	if (reserved)
446 		return;
447 
448 	kernel_map_pages(page, 1 << order, 0);
449 	local_irq_save(flags);
450 	__mod_page_state(pgfree, 1 << order);
451 	free_one_page(page_zone(page), page, order);
452 	local_irq_restore(flags);
453 }
454 
455 /*
456  * permit the bootmem allocator to evade page validation on high-order frees
457  */
458 void fastcall __init __free_pages_bootmem(struct page *page, unsigned int order)
459 {
460 	if (order == 0) {
461 		__ClearPageReserved(page);
462 		set_page_count(page, 0);
463 		set_page_refcounted(page);
464 		__free_page(page);
465 	} else {
466 		int loop;
467 
468 		prefetchw(page);
469 		for (loop = 0; loop < BITS_PER_LONG; loop++) {
470 			struct page *p = &page[loop];
471 
472 			if (loop + 1 < BITS_PER_LONG)
473 				prefetchw(p + 1);
474 			__ClearPageReserved(p);
475 			set_page_count(p, 0);
476 		}
477 
478 		set_page_refcounted(page);
479 		__free_pages(page, order);
480 	}
481 }
482 
483 
484 /*
485  * The order of subdivision here is critical for the IO subsystem.
486  * Please do not alter this order without good reasons and regression
487  * testing. Specifically, as large blocks of memory are subdivided,
488  * the order in which smaller blocks are delivered depends on the order
489  * they're subdivided in this function. This is the primary factor
490  * influencing the order in which pages are delivered to the IO
491  * subsystem according to empirical testing, and this is also justified
492  * by considering the behavior of a buddy system containing a single
493  * large block of memory acted on by a series of small allocations.
494  * This behavior is a critical factor in sglist merging's success.
495  *
496  * -- wli
497  */
498 static inline void expand(struct zone *zone, struct page *page,
499  	int low, int high, struct free_area *area)
500 {
501 	unsigned long size = 1 << high;
502 
503 	while (high > low) {
504 		area--;
505 		high--;
506 		size >>= 1;
507 		BUG_ON(bad_range(zone, &page[size]));
508 		list_add(&page[size].lru, &area->free_list);
509 		area->nr_free++;
510 		set_page_order(&page[size], high);
511 	}
512 }
513 
514 /*
515  * This page is about to be returned from the page allocator
516  */
517 static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
518 {
519 	if (unlikely(page_mapcount(page) |
520 		(page->mapping != NULL)  |
521 		(page_count(page) != 0)  |
522 		(page->flags & (
523 			1 << PG_lru	|
524 			1 << PG_private	|
525 			1 << PG_locked	|
526 			1 << PG_active	|
527 			1 << PG_dirty	|
528 			1 << PG_reclaim	|
529 			1 << PG_slab    |
530 			1 << PG_swapcache |
531 			1 << PG_writeback |
532 			1 << PG_reserved |
533 			1 << PG_buddy ))))
534 		bad_page(page);
535 
536 	/*
537 	 * For now, we report if PG_reserved was found set, but do not
538 	 * clear it, and do not allocate the page: as a safety net.
539 	 */
540 	if (PageReserved(page))
541 		return 1;
542 
543 	page->flags &= ~(1 << PG_uptodate | 1 << PG_error |
544 			1 << PG_referenced | 1 << PG_arch_1 |
545 			1 << PG_checked | 1 << PG_mappedtodisk);
546 	set_page_private(page, 0);
547 	set_page_refcounted(page);
548 	kernel_map_pages(page, 1 << order, 1);
549 
550 	if (gfp_flags & __GFP_ZERO)
551 		prep_zero_page(page, order, gfp_flags);
552 
553 	if (order && (gfp_flags & __GFP_COMP))
554 		prep_compound_page(page, order);
555 
556 	return 0;
557 }
558 
559 /*
560  * Do the hard work of removing an element from the buddy allocator.
561  * Call me with the zone->lock already held.
562  */
563 static struct page *__rmqueue(struct zone *zone, unsigned int order)
564 {
565 	struct free_area * area;
566 	unsigned int current_order;
567 	struct page *page;
568 
569 	for (current_order = order; current_order < MAX_ORDER; ++current_order) {
570 		area = zone->free_area + current_order;
571 		if (list_empty(&area->free_list))
572 			continue;
573 
574 		page = list_entry(area->free_list.next, struct page, lru);
575 		list_del(&page->lru);
576 		rmv_page_order(page);
577 		area->nr_free--;
578 		zone->free_pages -= 1UL << order;
579 		expand(zone, page, order, current_order, area);
580 		return page;
581 	}
582 
583 	return NULL;
584 }
585 
586 /*
587  * Obtain a specified number of elements from the buddy allocator, all under
588  * a single hold of the lock, for efficiency.  Add them to the supplied list.
589  * Returns the number of new pages which were placed at *list.
590  */
591 static int rmqueue_bulk(struct zone *zone, unsigned int order,
592 			unsigned long count, struct list_head *list)
593 {
594 	int i;
595 
596 	spin_lock(&zone->lock);
597 	for (i = 0; i < count; ++i) {
598 		struct page *page = __rmqueue(zone, order);
599 		if (unlikely(page == NULL))
600 			break;
601 		list_add_tail(&page->lru, list);
602 	}
603 	spin_unlock(&zone->lock);
604 	return i;
605 }
606 
607 #ifdef CONFIG_NUMA
608 /*
609  * Called from the slab reaper to drain pagesets on a particular node that
610  * belong to the currently executing processor.
611  * Note that this function must be called with the thread pinned to
612  * a single processor.
613  */
614 void drain_node_pages(int nodeid)
615 {
616 	int i, z;
617 	unsigned long flags;
618 
619 	for (z = 0; z < MAX_NR_ZONES; z++) {
620 		struct zone *zone = NODE_DATA(nodeid)->node_zones + z;
621 		struct per_cpu_pageset *pset;
622 
623 		pset = zone_pcp(zone, smp_processor_id());
624 		for (i = 0; i < ARRAY_SIZE(pset->pcp); i++) {
625 			struct per_cpu_pages *pcp;
626 
627 			pcp = &pset->pcp[i];
628 			if (pcp->count) {
629 				local_irq_save(flags);
630 				free_pages_bulk(zone, pcp->count, &pcp->list, 0);
631 				pcp->count = 0;
632 				local_irq_restore(flags);
633 			}
634 		}
635 	}
636 }
637 #endif
638 
639 #if defined(CONFIG_PM) || defined(CONFIG_HOTPLUG_CPU)
640 static void __drain_pages(unsigned int cpu)
641 {
642 	unsigned long flags;
643 	struct zone *zone;
644 	int i;
645 
646 	for_each_zone(zone) {
647 		struct per_cpu_pageset *pset;
648 
649 		pset = zone_pcp(zone, cpu);
650 		for (i = 0; i < ARRAY_SIZE(pset->pcp); i++) {
651 			struct per_cpu_pages *pcp;
652 
653 			pcp = &pset->pcp[i];
654 			local_irq_save(flags);
655 			free_pages_bulk(zone, pcp->count, &pcp->list, 0);
656 			pcp->count = 0;
657 			local_irq_restore(flags);
658 		}
659 	}
660 }
661 #endif /* CONFIG_PM || CONFIG_HOTPLUG_CPU */
662 
663 #ifdef CONFIG_PM
664 
665 void mark_free_pages(struct zone *zone)
666 {
667 	unsigned long zone_pfn, flags;
668 	int order;
669 	struct list_head *curr;
670 
671 	if (!zone->spanned_pages)
672 		return;
673 
674 	spin_lock_irqsave(&zone->lock, flags);
675 	for (zone_pfn = 0; zone_pfn < zone->spanned_pages; ++zone_pfn)
676 		ClearPageNosaveFree(pfn_to_page(zone_pfn + zone->zone_start_pfn));
677 
678 	for (order = MAX_ORDER - 1; order >= 0; --order)
679 		list_for_each(curr, &zone->free_area[order].free_list) {
680 			unsigned long start_pfn, i;
681 
682 			start_pfn = page_to_pfn(list_entry(curr, struct page, lru));
683 
684 			for (i=0; i < (1<<order); i++)
685 				SetPageNosaveFree(pfn_to_page(start_pfn+i));
686 	}
687 	spin_unlock_irqrestore(&zone->lock, flags);
688 }
689 
690 /*
691  * Spill all of this CPU's per-cpu pages back into the buddy allocator.
692  */
693 void drain_local_pages(void)
694 {
695 	unsigned long flags;
696 
697 	local_irq_save(flags);
698 	__drain_pages(smp_processor_id());
699 	local_irq_restore(flags);
700 }
701 #endif /* CONFIG_PM */
702 
703 static void zone_statistics(struct zonelist *zonelist, struct zone *z, int cpu)
704 {
705 #ifdef CONFIG_NUMA
706 	pg_data_t *pg = z->zone_pgdat;
707 	pg_data_t *orig = zonelist->zones[0]->zone_pgdat;
708 	struct per_cpu_pageset *p;
709 
710 	p = zone_pcp(z, cpu);
711 	if (pg == orig) {
712 		p->numa_hit++;
713 	} else {
714 		p->numa_miss++;
715 		zone_pcp(zonelist->zones[0], cpu)->numa_foreign++;
716 	}
717 	if (pg == NODE_DATA(numa_node_id()))
718 		p->local_node++;
719 	else
720 		p->other_node++;
721 #endif
722 }
723 
724 /*
725  * Free a 0-order page
726  */
727 static void fastcall free_hot_cold_page(struct page *page, int cold)
728 {
729 	struct zone *zone = page_zone(page);
730 	struct per_cpu_pages *pcp;
731 	unsigned long flags;
732 
733 	arch_free_page(page, 0);
734 
735 	if (PageAnon(page))
736 		page->mapping = NULL;
737 	if (free_pages_check(page))
738 		return;
739 
740 	kernel_map_pages(page, 1, 0);
741 
742 	pcp = &zone_pcp(zone, get_cpu())->pcp[cold];
743 	local_irq_save(flags);
744 	__inc_page_state(pgfree);
745 	list_add(&page->lru, &pcp->list);
746 	pcp->count++;
747 	if (pcp->count >= pcp->high) {
748 		free_pages_bulk(zone, pcp->batch, &pcp->list, 0);
749 		pcp->count -= pcp->batch;
750 	}
751 	local_irq_restore(flags);
752 	put_cpu();
753 }
754 
755 void fastcall free_hot_page(struct page *page)
756 {
757 	free_hot_cold_page(page, 0);
758 }
759 
760 void fastcall free_cold_page(struct page *page)
761 {
762 	free_hot_cold_page(page, 1);
763 }
764 
765 /*
766  * split_page takes a non-compound higher-order page, and splits it into
767  * n (1<<order) sub-pages: page[0..n]
768  * Each sub-page must be freed individually.
769  *
770  * Note: this is probably too low level an operation for use in drivers.
771  * Please consult with lkml before using this in your driver.
772  */
773 void split_page(struct page *page, unsigned int order)
774 {
775 	int i;
776 
777 	BUG_ON(PageCompound(page));
778 	BUG_ON(!page_count(page));
779 	for (i = 1; i < (1 << order); i++)
780 		set_page_refcounted(page + i);
781 }
782 
783 /*
784  * Really, prep_compound_page() should be called from __rmqueue_bulk().  But
785  * we cheat by calling it from here, in the order > 0 path.  Saves a branch
786  * or two.
787  */
788 static struct page *buffered_rmqueue(struct zonelist *zonelist,
789 			struct zone *zone, int order, gfp_t gfp_flags)
790 {
791 	unsigned long flags;
792 	struct page *page;
793 	int cold = !!(gfp_flags & __GFP_COLD);
794 	int cpu;
795 
796 again:
797 	cpu  = get_cpu();
798 	if (likely(order == 0)) {
799 		struct per_cpu_pages *pcp;
800 
801 		pcp = &zone_pcp(zone, cpu)->pcp[cold];
802 		local_irq_save(flags);
803 		if (!pcp->count) {
804 			pcp->count += rmqueue_bulk(zone, 0,
805 						pcp->batch, &pcp->list);
806 			if (unlikely(!pcp->count))
807 				goto failed;
808 		}
809 		page = list_entry(pcp->list.next, struct page, lru);
810 		list_del(&page->lru);
811 		pcp->count--;
812 	} else {
813 		spin_lock_irqsave(&zone->lock, flags);
814 		page = __rmqueue(zone, order);
815 		spin_unlock(&zone->lock);
816 		if (!page)
817 			goto failed;
818 	}
819 
820 	__mod_page_state_zone(zone, pgalloc, 1 << order);
821 	zone_statistics(zonelist, zone, cpu);
822 	local_irq_restore(flags);
823 	put_cpu();
824 
825 	BUG_ON(bad_range(zone, page));
826 	if (prep_new_page(page, order, gfp_flags))
827 		goto again;
828 	return page;
829 
830 failed:
831 	local_irq_restore(flags);
832 	put_cpu();
833 	return NULL;
834 }
835 
836 #define ALLOC_NO_WATERMARKS	0x01 /* don't check watermarks at all */
837 #define ALLOC_WMARK_MIN		0x02 /* use pages_min watermark */
838 #define ALLOC_WMARK_LOW		0x04 /* use pages_low watermark */
839 #define ALLOC_WMARK_HIGH	0x08 /* use pages_high watermark */
840 #define ALLOC_HARDER		0x10 /* try to alloc harder */
841 #define ALLOC_HIGH		0x20 /* __GFP_HIGH set */
842 #define ALLOC_CPUSET		0x40 /* check for correct cpuset */
843 
844 /*
845  * Return 1 if free pages are above 'mark'. This takes into account the order
846  * of the allocation.
847  */
848 int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
849 		      int classzone_idx, int alloc_flags)
850 {
851 	/* free_pages my go negative - that's OK */
852 	long min = mark, free_pages = z->free_pages - (1 << order) + 1;
853 	int o;
854 
855 	if (alloc_flags & ALLOC_HIGH)
856 		min -= min / 2;
857 	if (alloc_flags & ALLOC_HARDER)
858 		min -= min / 4;
859 
860 	if (free_pages <= min + z->lowmem_reserve[classzone_idx])
861 		return 0;
862 	for (o = 0; o < order; o++) {
863 		/* At the next order, this order's pages become unavailable */
864 		free_pages -= z->free_area[o].nr_free << o;
865 
866 		/* Require fewer higher order pages to be free */
867 		min >>= 1;
868 
869 		if (free_pages <= min)
870 			return 0;
871 	}
872 	return 1;
873 }
874 
875 /*
876  * get_page_from_freeliest goes through the zonelist trying to allocate
877  * a page.
878  */
879 static struct page *
880 get_page_from_freelist(gfp_t gfp_mask, unsigned int order,
881 		struct zonelist *zonelist, int alloc_flags)
882 {
883 	struct zone **z = zonelist->zones;
884 	struct page *page = NULL;
885 	int classzone_idx = zone_idx(*z);
886 
887 	/*
888 	 * Go through the zonelist once, looking for a zone with enough free.
889 	 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
890 	 */
891 	do {
892 		if ((alloc_flags & ALLOC_CPUSET) &&
893 				!cpuset_zone_allowed(*z, gfp_mask))
894 			continue;
895 
896 		if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
897 			unsigned long mark;
898 			if (alloc_flags & ALLOC_WMARK_MIN)
899 				mark = (*z)->pages_min;
900 			else if (alloc_flags & ALLOC_WMARK_LOW)
901 				mark = (*z)->pages_low;
902 			else
903 				mark = (*z)->pages_high;
904 			if (!zone_watermark_ok(*z, order, mark,
905 				    classzone_idx, alloc_flags))
906 				if (!zone_reclaim_mode ||
907 				    !zone_reclaim(*z, gfp_mask, order))
908 					continue;
909 		}
910 
911 		page = buffered_rmqueue(zonelist, *z, order, gfp_mask);
912 		if (page) {
913 			break;
914 		}
915 	} while (*(++z) != NULL);
916 	return page;
917 }
918 
919 /*
920  * This is the 'heart' of the zoned buddy allocator.
921  */
922 struct page * fastcall
923 __alloc_pages(gfp_t gfp_mask, unsigned int order,
924 		struct zonelist *zonelist)
925 {
926 	const gfp_t wait = gfp_mask & __GFP_WAIT;
927 	struct zone **z;
928 	struct page *page;
929 	struct reclaim_state reclaim_state;
930 	struct task_struct *p = current;
931 	int do_retry;
932 	int alloc_flags;
933 	int did_some_progress;
934 
935 	might_sleep_if(wait);
936 
937 restart:
938 	z = zonelist->zones;  /* the list of zones suitable for gfp_mask */
939 
940 	if (unlikely(*z == NULL)) {
941 		/* Should this ever happen?? */
942 		return NULL;
943 	}
944 
945 	page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, order,
946 				zonelist, ALLOC_WMARK_LOW|ALLOC_CPUSET);
947 	if (page)
948 		goto got_pg;
949 
950 	do {
951 		if (cpuset_zone_allowed(*z, gfp_mask))
952 			wakeup_kswapd(*z, order);
953 	} while (*(++z));
954 
955 	/*
956 	 * OK, we're below the kswapd watermark and have kicked background
957 	 * reclaim. Now things get more complex, so set up alloc_flags according
958 	 * to how we want to proceed.
959 	 *
960 	 * The caller may dip into page reserves a bit more if the caller
961 	 * cannot run direct reclaim, or if the caller has realtime scheduling
962 	 * policy or is asking for __GFP_HIGH memory.  GFP_ATOMIC requests will
963 	 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
964 	 */
965 	alloc_flags = ALLOC_WMARK_MIN;
966 	if ((unlikely(rt_task(p)) && !in_interrupt()) || !wait)
967 		alloc_flags |= ALLOC_HARDER;
968 	if (gfp_mask & __GFP_HIGH)
969 		alloc_flags |= ALLOC_HIGH;
970 	alloc_flags |= ALLOC_CPUSET;
971 
972 	/*
973 	 * Go through the zonelist again. Let __GFP_HIGH and allocations
974 	 * coming from realtime tasks go deeper into reserves.
975 	 *
976 	 * This is the last chance, in general, before the goto nopage.
977 	 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
978 	 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
979 	 */
980 	page = get_page_from_freelist(gfp_mask, order, zonelist, alloc_flags);
981 	if (page)
982 		goto got_pg;
983 
984 	/* This allocation should allow future memory freeing. */
985 
986 	if (((p->flags & PF_MEMALLOC) || unlikely(test_thread_flag(TIF_MEMDIE)))
987 			&& !in_interrupt()) {
988 		if (!(gfp_mask & __GFP_NOMEMALLOC)) {
989 nofail_alloc:
990 			/* go through the zonelist yet again, ignoring mins */
991 			page = get_page_from_freelist(gfp_mask, order,
992 				zonelist, ALLOC_NO_WATERMARKS);
993 			if (page)
994 				goto got_pg;
995 			if (gfp_mask & __GFP_NOFAIL) {
996 				blk_congestion_wait(WRITE, HZ/50);
997 				goto nofail_alloc;
998 			}
999 		}
1000 		goto nopage;
1001 	}
1002 
1003 	/* Atomic allocations - we can't balance anything */
1004 	if (!wait)
1005 		goto nopage;
1006 
1007 rebalance:
1008 	cond_resched();
1009 
1010 	/* We now go into synchronous reclaim */
1011 	cpuset_memory_pressure_bump();
1012 	p->flags |= PF_MEMALLOC;
1013 	reclaim_state.reclaimed_slab = 0;
1014 	p->reclaim_state = &reclaim_state;
1015 
1016 	did_some_progress = try_to_free_pages(zonelist->zones, gfp_mask);
1017 
1018 	p->reclaim_state = NULL;
1019 	p->flags &= ~PF_MEMALLOC;
1020 
1021 	cond_resched();
1022 
1023 	if (likely(did_some_progress)) {
1024 		page = get_page_from_freelist(gfp_mask, order,
1025 						zonelist, alloc_flags);
1026 		if (page)
1027 			goto got_pg;
1028 	} else if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
1029 		/*
1030 		 * Go through the zonelist yet one more time, keep
1031 		 * very high watermark here, this is only to catch
1032 		 * a parallel oom killing, we must fail if we're still
1033 		 * under heavy pressure.
1034 		 */
1035 		page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, order,
1036 				zonelist, ALLOC_WMARK_HIGH|ALLOC_CPUSET);
1037 		if (page)
1038 			goto got_pg;
1039 
1040 		out_of_memory(zonelist, gfp_mask, order);
1041 		goto restart;
1042 	}
1043 
1044 	/*
1045 	 * Don't let big-order allocations loop unless the caller explicitly
1046 	 * requests that.  Wait for some write requests to complete then retry.
1047 	 *
1048 	 * In this implementation, __GFP_REPEAT means __GFP_NOFAIL for order
1049 	 * <= 3, but that may not be true in other implementations.
1050 	 */
1051 	do_retry = 0;
1052 	if (!(gfp_mask & __GFP_NORETRY)) {
1053 		if ((order <= 3) || (gfp_mask & __GFP_REPEAT))
1054 			do_retry = 1;
1055 		if (gfp_mask & __GFP_NOFAIL)
1056 			do_retry = 1;
1057 	}
1058 	if (do_retry) {
1059 		blk_congestion_wait(WRITE, HZ/50);
1060 		goto rebalance;
1061 	}
1062 
1063 nopage:
1064 	if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) {
1065 		printk(KERN_WARNING "%s: page allocation failure."
1066 			" order:%d, mode:0x%x\n",
1067 			p->comm, order, gfp_mask);
1068 		dump_stack();
1069 		show_mem();
1070 	}
1071 got_pg:
1072 	return page;
1073 }
1074 
1075 EXPORT_SYMBOL(__alloc_pages);
1076 
1077 /*
1078  * Common helper functions.
1079  */
1080 fastcall unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1081 {
1082 	struct page * page;
1083 	page = alloc_pages(gfp_mask, order);
1084 	if (!page)
1085 		return 0;
1086 	return (unsigned long) page_address(page);
1087 }
1088 
1089 EXPORT_SYMBOL(__get_free_pages);
1090 
1091 fastcall unsigned long get_zeroed_page(gfp_t gfp_mask)
1092 {
1093 	struct page * page;
1094 
1095 	/*
1096 	 * get_zeroed_page() returns a 32-bit address, which cannot represent
1097 	 * a highmem page
1098 	 */
1099 	BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
1100 
1101 	page = alloc_pages(gfp_mask | __GFP_ZERO, 0);
1102 	if (page)
1103 		return (unsigned long) page_address(page);
1104 	return 0;
1105 }
1106 
1107 EXPORT_SYMBOL(get_zeroed_page);
1108 
1109 void __pagevec_free(struct pagevec *pvec)
1110 {
1111 	int i = pagevec_count(pvec);
1112 
1113 	while (--i >= 0)
1114 		free_hot_cold_page(pvec->pages[i], pvec->cold);
1115 }
1116 
1117 fastcall void __free_pages(struct page *page, unsigned int order)
1118 {
1119 	if (put_page_testzero(page)) {
1120 		if (order == 0)
1121 			free_hot_page(page);
1122 		else
1123 			__free_pages_ok(page, order);
1124 	}
1125 }
1126 
1127 EXPORT_SYMBOL(__free_pages);
1128 
1129 fastcall void free_pages(unsigned long addr, unsigned int order)
1130 {
1131 	if (addr != 0) {
1132 		BUG_ON(!virt_addr_valid((void *)addr));
1133 		__free_pages(virt_to_page((void *)addr), order);
1134 	}
1135 }
1136 
1137 EXPORT_SYMBOL(free_pages);
1138 
1139 /*
1140  * Total amount of free (allocatable) RAM:
1141  */
1142 unsigned int nr_free_pages(void)
1143 {
1144 	unsigned int sum = 0;
1145 	struct zone *zone;
1146 
1147 	for_each_zone(zone)
1148 		sum += zone->free_pages;
1149 
1150 	return sum;
1151 }
1152 
1153 EXPORT_SYMBOL(nr_free_pages);
1154 
1155 #ifdef CONFIG_NUMA
1156 unsigned int nr_free_pages_pgdat(pg_data_t *pgdat)
1157 {
1158 	unsigned int i, sum = 0;
1159 
1160 	for (i = 0; i < MAX_NR_ZONES; i++)
1161 		sum += pgdat->node_zones[i].free_pages;
1162 
1163 	return sum;
1164 }
1165 #endif
1166 
1167 static unsigned int nr_free_zone_pages(int offset)
1168 {
1169 	/* Just pick one node, since fallback list is circular */
1170 	pg_data_t *pgdat = NODE_DATA(numa_node_id());
1171 	unsigned int sum = 0;
1172 
1173 	struct zonelist *zonelist = pgdat->node_zonelists + offset;
1174 	struct zone **zonep = zonelist->zones;
1175 	struct zone *zone;
1176 
1177 	for (zone = *zonep++; zone; zone = *zonep++) {
1178 		unsigned long size = zone->present_pages;
1179 		unsigned long high = zone->pages_high;
1180 		if (size > high)
1181 			sum += size - high;
1182 	}
1183 
1184 	return sum;
1185 }
1186 
1187 /*
1188  * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
1189  */
1190 unsigned int nr_free_buffer_pages(void)
1191 {
1192 	return nr_free_zone_pages(gfp_zone(GFP_USER));
1193 }
1194 
1195 /*
1196  * Amount of free RAM allocatable within all zones
1197  */
1198 unsigned int nr_free_pagecache_pages(void)
1199 {
1200 	return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER));
1201 }
1202 
1203 #ifdef CONFIG_HIGHMEM
1204 unsigned int nr_free_highpages (void)
1205 {
1206 	pg_data_t *pgdat;
1207 	unsigned int pages = 0;
1208 
1209 	for_each_online_pgdat(pgdat)
1210 		pages += pgdat->node_zones[ZONE_HIGHMEM].free_pages;
1211 
1212 	return pages;
1213 }
1214 #endif
1215 
1216 #ifdef CONFIG_NUMA
1217 static void show_node(struct zone *zone)
1218 {
1219 	printk("Node %d ", zone->zone_pgdat->node_id);
1220 }
1221 #else
1222 #define show_node(zone)	do { } while (0)
1223 #endif
1224 
1225 /*
1226  * Accumulate the page_state information across all CPUs.
1227  * The result is unavoidably approximate - it can change
1228  * during and after execution of this function.
1229  */
1230 static DEFINE_PER_CPU(struct page_state, page_states) = {0};
1231 
1232 atomic_t nr_pagecache = ATOMIC_INIT(0);
1233 EXPORT_SYMBOL(nr_pagecache);
1234 #ifdef CONFIG_SMP
1235 DEFINE_PER_CPU(long, nr_pagecache_local) = 0;
1236 #endif
1237 
1238 static void __get_page_state(struct page_state *ret, int nr, cpumask_t *cpumask)
1239 {
1240 	unsigned cpu;
1241 
1242 	memset(ret, 0, nr * sizeof(unsigned long));
1243 	cpus_and(*cpumask, *cpumask, cpu_online_map);
1244 
1245 	for_each_cpu_mask(cpu, *cpumask) {
1246 		unsigned long *in;
1247 		unsigned long *out;
1248 		unsigned off;
1249 		unsigned next_cpu;
1250 
1251 		in = (unsigned long *)&per_cpu(page_states, cpu);
1252 
1253 		next_cpu = next_cpu(cpu, *cpumask);
1254 		if (likely(next_cpu < NR_CPUS))
1255 			prefetch(&per_cpu(page_states, next_cpu));
1256 
1257 		out = (unsigned long *)ret;
1258 		for (off = 0; off < nr; off++)
1259 			*out++ += *in++;
1260 	}
1261 }
1262 
1263 void get_page_state_node(struct page_state *ret, int node)
1264 {
1265 	int nr;
1266 	cpumask_t mask = node_to_cpumask(node);
1267 
1268 	nr = offsetof(struct page_state, GET_PAGE_STATE_LAST);
1269 	nr /= sizeof(unsigned long);
1270 
1271 	__get_page_state(ret, nr+1, &mask);
1272 }
1273 
1274 void get_page_state(struct page_state *ret)
1275 {
1276 	int nr;
1277 	cpumask_t mask = CPU_MASK_ALL;
1278 
1279 	nr = offsetof(struct page_state, GET_PAGE_STATE_LAST);
1280 	nr /= sizeof(unsigned long);
1281 
1282 	__get_page_state(ret, nr + 1, &mask);
1283 }
1284 
1285 void get_full_page_state(struct page_state *ret)
1286 {
1287 	cpumask_t mask = CPU_MASK_ALL;
1288 
1289 	__get_page_state(ret, sizeof(*ret) / sizeof(unsigned long), &mask);
1290 }
1291 
1292 unsigned long read_page_state_offset(unsigned long offset)
1293 {
1294 	unsigned long ret = 0;
1295 	int cpu;
1296 
1297 	for_each_online_cpu(cpu) {
1298 		unsigned long in;
1299 
1300 		in = (unsigned long)&per_cpu(page_states, cpu) + offset;
1301 		ret += *((unsigned long *)in);
1302 	}
1303 	return ret;
1304 }
1305 
1306 void __mod_page_state_offset(unsigned long offset, unsigned long delta)
1307 {
1308 	void *ptr;
1309 
1310 	ptr = &__get_cpu_var(page_states);
1311 	*(unsigned long *)(ptr + offset) += delta;
1312 }
1313 EXPORT_SYMBOL(__mod_page_state_offset);
1314 
1315 void mod_page_state_offset(unsigned long offset, unsigned long delta)
1316 {
1317 	unsigned long flags;
1318 	void *ptr;
1319 
1320 	local_irq_save(flags);
1321 	ptr = &__get_cpu_var(page_states);
1322 	*(unsigned long *)(ptr + offset) += delta;
1323 	local_irq_restore(flags);
1324 }
1325 EXPORT_SYMBOL(mod_page_state_offset);
1326 
1327 void __get_zone_counts(unsigned long *active, unsigned long *inactive,
1328 			unsigned long *free, struct pglist_data *pgdat)
1329 {
1330 	struct zone *zones = pgdat->node_zones;
1331 	int i;
1332 
1333 	*active = 0;
1334 	*inactive = 0;
1335 	*free = 0;
1336 	for (i = 0; i < MAX_NR_ZONES; i++) {
1337 		*active += zones[i].nr_active;
1338 		*inactive += zones[i].nr_inactive;
1339 		*free += zones[i].free_pages;
1340 	}
1341 }
1342 
1343 void get_zone_counts(unsigned long *active,
1344 		unsigned long *inactive, unsigned long *free)
1345 {
1346 	struct pglist_data *pgdat;
1347 
1348 	*active = 0;
1349 	*inactive = 0;
1350 	*free = 0;
1351 	for_each_online_pgdat(pgdat) {
1352 		unsigned long l, m, n;
1353 		__get_zone_counts(&l, &m, &n, pgdat);
1354 		*active += l;
1355 		*inactive += m;
1356 		*free += n;
1357 	}
1358 }
1359 
1360 void si_meminfo(struct sysinfo *val)
1361 {
1362 	val->totalram = totalram_pages;
1363 	val->sharedram = 0;
1364 	val->freeram = nr_free_pages();
1365 	val->bufferram = nr_blockdev_pages();
1366 #ifdef CONFIG_HIGHMEM
1367 	val->totalhigh = totalhigh_pages;
1368 	val->freehigh = nr_free_highpages();
1369 #else
1370 	val->totalhigh = 0;
1371 	val->freehigh = 0;
1372 #endif
1373 	val->mem_unit = PAGE_SIZE;
1374 }
1375 
1376 EXPORT_SYMBOL(si_meminfo);
1377 
1378 #ifdef CONFIG_NUMA
1379 void si_meminfo_node(struct sysinfo *val, int nid)
1380 {
1381 	pg_data_t *pgdat = NODE_DATA(nid);
1382 
1383 	val->totalram = pgdat->node_present_pages;
1384 	val->freeram = nr_free_pages_pgdat(pgdat);
1385 	val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
1386 	val->freehigh = pgdat->node_zones[ZONE_HIGHMEM].free_pages;
1387 	val->mem_unit = PAGE_SIZE;
1388 }
1389 #endif
1390 
1391 #define K(x) ((x) << (PAGE_SHIFT-10))
1392 
1393 /*
1394  * Show free area list (used inside shift_scroll-lock stuff)
1395  * We also calculate the percentage fragmentation. We do this by counting the
1396  * memory on each free list with the exception of the first item on the list.
1397  */
1398 void show_free_areas(void)
1399 {
1400 	struct page_state ps;
1401 	int cpu, temperature;
1402 	unsigned long active;
1403 	unsigned long inactive;
1404 	unsigned long free;
1405 	struct zone *zone;
1406 
1407 	for_each_zone(zone) {
1408 		show_node(zone);
1409 		printk("%s per-cpu:", zone->name);
1410 
1411 		if (!populated_zone(zone)) {
1412 			printk(" empty\n");
1413 			continue;
1414 		} else
1415 			printk("\n");
1416 
1417 		for_each_online_cpu(cpu) {
1418 			struct per_cpu_pageset *pageset;
1419 
1420 			pageset = zone_pcp(zone, cpu);
1421 
1422 			for (temperature = 0; temperature < 2; temperature++)
1423 				printk("cpu %d %s: high %d, batch %d used:%d\n",
1424 					cpu,
1425 					temperature ? "cold" : "hot",
1426 					pageset->pcp[temperature].high,
1427 					pageset->pcp[temperature].batch,
1428 					pageset->pcp[temperature].count);
1429 		}
1430 	}
1431 
1432 	get_page_state(&ps);
1433 	get_zone_counts(&active, &inactive, &free);
1434 
1435 	printk("Free pages: %11ukB (%ukB HighMem)\n",
1436 		K(nr_free_pages()),
1437 		K(nr_free_highpages()));
1438 
1439 	printk("Active:%lu inactive:%lu dirty:%lu writeback:%lu "
1440 		"unstable:%lu free:%u slab:%lu mapped:%lu pagetables:%lu\n",
1441 		active,
1442 		inactive,
1443 		ps.nr_dirty,
1444 		ps.nr_writeback,
1445 		ps.nr_unstable,
1446 		nr_free_pages(),
1447 		ps.nr_slab,
1448 		ps.nr_mapped,
1449 		ps.nr_page_table_pages);
1450 
1451 	for_each_zone(zone) {
1452 		int i;
1453 
1454 		show_node(zone);
1455 		printk("%s"
1456 			" free:%lukB"
1457 			" min:%lukB"
1458 			" low:%lukB"
1459 			" high:%lukB"
1460 			" active:%lukB"
1461 			" inactive:%lukB"
1462 			" present:%lukB"
1463 			" pages_scanned:%lu"
1464 			" all_unreclaimable? %s"
1465 			"\n",
1466 			zone->name,
1467 			K(zone->free_pages),
1468 			K(zone->pages_min),
1469 			K(zone->pages_low),
1470 			K(zone->pages_high),
1471 			K(zone->nr_active),
1472 			K(zone->nr_inactive),
1473 			K(zone->present_pages),
1474 			zone->pages_scanned,
1475 			(zone->all_unreclaimable ? "yes" : "no")
1476 			);
1477 		printk("lowmem_reserve[]:");
1478 		for (i = 0; i < MAX_NR_ZONES; i++)
1479 			printk(" %lu", zone->lowmem_reserve[i]);
1480 		printk("\n");
1481 	}
1482 
1483 	for_each_zone(zone) {
1484  		unsigned long nr, flags, order, total = 0;
1485 
1486 		show_node(zone);
1487 		printk("%s: ", zone->name);
1488 		if (!populated_zone(zone)) {
1489 			printk("empty\n");
1490 			continue;
1491 		}
1492 
1493 		spin_lock_irqsave(&zone->lock, flags);
1494 		for (order = 0; order < MAX_ORDER; order++) {
1495 			nr = zone->free_area[order].nr_free;
1496 			total += nr << order;
1497 			printk("%lu*%lukB ", nr, K(1UL) << order);
1498 		}
1499 		spin_unlock_irqrestore(&zone->lock, flags);
1500 		printk("= %lukB\n", K(total));
1501 	}
1502 
1503 	show_swap_cache_info();
1504 }
1505 
1506 /*
1507  * Builds allocation fallback zone lists.
1508  *
1509  * Add all populated zones of a node to the zonelist.
1510  */
1511 static int __init build_zonelists_node(pg_data_t *pgdat,
1512 			struct zonelist *zonelist, int nr_zones, int zone_type)
1513 {
1514 	struct zone *zone;
1515 
1516 	BUG_ON(zone_type > ZONE_HIGHMEM);
1517 
1518 	do {
1519 		zone = pgdat->node_zones + zone_type;
1520 		if (populated_zone(zone)) {
1521 #ifndef CONFIG_HIGHMEM
1522 			BUG_ON(zone_type > ZONE_NORMAL);
1523 #endif
1524 			zonelist->zones[nr_zones++] = zone;
1525 			check_highest_zone(zone_type);
1526 		}
1527 		zone_type--;
1528 
1529 	} while (zone_type >= 0);
1530 	return nr_zones;
1531 }
1532 
1533 static inline int highest_zone(int zone_bits)
1534 {
1535 	int res = ZONE_NORMAL;
1536 	if (zone_bits & (__force int)__GFP_HIGHMEM)
1537 		res = ZONE_HIGHMEM;
1538 	if (zone_bits & (__force int)__GFP_DMA32)
1539 		res = ZONE_DMA32;
1540 	if (zone_bits & (__force int)__GFP_DMA)
1541 		res = ZONE_DMA;
1542 	return res;
1543 }
1544 
1545 #ifdef CONFIG_NUMA
1546 #define MAX_NODE_LOAD (num_online_nodes())
1547 static int __initdata node_load[MAX_NUMNODES];
1548 /**
1549  * find_next_best_node - find the next node that should appear in a given node's fallback list
1550  * @node: node whose fallback list we're appending
1551  * @used_node_mask: nodemask_t of already used nodes
1552  *
1553  * We use a number of factors to determine which is the next node that should
1554  * appear on a given node's fallback list.  The node should not have appeared
1555  * already in @node's fallback list, and it should be the next closest node
1556  * according to the distance array (which contains arbitrary distance values
1557  * from each node to each node in the system), and should also prefer nodes
1558  * with no CPUs, since presumably they'll have very little allocation pressure
1559  * on them otherwise.
1560  * It returns -1 if no node is found.
1561  */
1562 static int __init find_next_best_node(int node, nodemask_t *used_node_mask)
1563 {
1564 	int n, val;
1565 	int min_val = INT_MAX;
1566 	int best_node = -1;
1567 
1568 	/* Use the local node if we haven't already */
1569 	if (!node_isset(node, *used_node_mask)) {
1570 		node_set(node, *used_node_mask);
1571 		return node;
1572 	}
1573 
1574 	for_each_online_node(n) {
1575 		cpumask_t tmp;
1576 
1577 		/* Don't want a node to appear more than once */
1578 		if (node_isset(n, *used_node_mask))
1579 			continue;
1580 
1581 		/* Use the distance array to find the distance */
1582 		val = node_distance(node, n);
1583 
1584 		/* Penalize nodes under us ("prefer the next node") */
1585 		val += (n < node);
1586 
1587 		/* Give preference to headless and unused nodes */
1588 		tmp = node_to_cpumask(n);
1589 		if (!cpus_empty(tmp))
1590 			val += PENALTY_FOR_NODE_WITH_CPUS;
1591 
1592 		/* Slight preference for less loaded node */
1593 		val *= (MAX_NODE_LOAD*MAX_NUMNODES);
1594 		val += node_load[n];
1595 
1596 		if (val < min_val) {
1597 			min_val = val;
1598 			best_node = n;
1599 		}
1600 	}
1601 
1602 	if (best_node >= 0)
1603 		node_set(best_node, *used_node_mask);
1604 
1605 	return best_node;
1606 }
1607 
1608 static void __init build_zonelists(pg_data_t *pgdat)
1609 {
1610 	int i, j, k, node, local_node;
1611 	int prev_node, load;
1612 	struct zonelist *zonelist;
1613 	nodemask_t used_mask;
1614 
1615 	/* initialize zonelists */
1616 	for (i = 0; i < GFP_ZONETYPES; i++) {
1617 		zonelist = pgdat->node_zonelists + i;
1618 		zonelist->zones[0] = NULL;
1619 	}
1620 
1621 	/* NUMA-aware ordering of nodes */
1622 	local_node = pgdat->node_id;
1623 	load = num_online_nodes();
1624 	prev_node = local_node;
1625 	nodes_clear(used_mask);
1626 	while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
1627 		int distance = node_distance(local_node, node);
1628 
1629 		/*
1630 		 * If another node is sufficiently far away then it is better
1631 		 * to reclaim pages in a zone before going off node.
1632 		 */
1633 		if (distance > RECLAIM_DISTANCE)
1634 			zone_reclaim_mode = 1;
1635 
1636 		/*
1637 		 * We don't want to pressure a particular node.
1638 		 * So adding penalty to the first node in same
1639 		 * distance group to make it round-robin.
1640 		 */
1641 
1642 		if (distance != node_distance(local_node, prev_node))
1643 			node_load[node] += load;
1644 		prev_node = node;
1645 		load--;
1646 		for (i = 0; i < GFP_ZONETYPES; i++) {
1647 			zonelist = pgdat->node_zonelists + i;
1648 			for (j = 0; zonelist->zones[j] != NULL; j++);
1649 
1650 			k = highest_zone(i);
1651 
1652 	 		j = build_zonelists_node(NODE_DATA(node), zonelist, j, k);
1653 			zonelist->zones[j] = NULL;
1654 		}
1655 	}
1656 }
1657 
1658 #else	/* CONFIG_NUMA */
1659 
1660 static void __init build_zonelists(pg_data_t *pgdat)
1661 {
1662 	int i, j, k, node, local_node;
1663 
1664 	local_node = pgdat->node_id;
1665 	for (i = 0; i < GFP_ZONETYPES; i++) {
1666 		struct zonelist *zonelist;
1667 
1668 		zonelist = pgdat->node_zonelists + i;
1669 
1670 		j = 0;
1671 		k = highest_zone(i);
1672  		j = build_zonelists_node(pgdat, zonelist, j, k);
1673  		/*
1674  		 * Now we build the zonelist so that it contains the zones
1675  		 * of all the other nodes.
1676  		 * We don't want to pressure a particular node, so when
1677  		 * building the zones for node N, we make sure that the
1678  		 * zones coming right after the local ones are those from
1679  		 * node N+1 (modulo N)
1680  		 */
1681 		for (node = local_node + 1; node < MAX_NUMNODES; node++) {
1682 			if (!node_online(node))
1683 				continue;
1684 			j = build_zonelists_node(NODE_DATA(node), zonelist, j, k);
1685 		}
1686 		for (node = 0; node < local_node; node++) {
1687 			if (!node_online(node))
1688 				continue;
1689 			j = build_zonelists_node(NODE_DATA(node), zonelist, j, k);
1690 		}
1691 
1692 		zonelist->zones[j] = NULL;
1693 	}
1694 }
1695 
1696 #endif	/* CONFIG_NUMA */
1697 
1698 void __init build_all_zonelists(void)
1699 {
1700 	int i;
1701 
1702 	for_each_online_node(i)
1703 		build_zonelists(NODE_DATA(i));
1704 	printk("Built %i zonelists\n", num_online_nodes());
1705 	cpuset_init_current_mems_allowed();
1706 }
1707 
1708 /*
1709  * Helper functions to size the waitqueue hash table.
1710  * Essentially these want to choose hash table sizes sufficiently
1711  * large so that collisions trying to wait on pages are rare.
1712  * But in fact, the number of active page waitqueues on typical
1713  * systems is ridiculously low, less than 200. So this is even
1714  * conservative, even though it seems large.
1715  *
1716  * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
1717  * waitqueues, i.e. the size of the waitq table given the number of pages.
1718  */
1719 #define PAGES_PER_WAITQUEUE	256
1720 
1721 static inline unsigned long wait_table_size(unsigned long pages)
1722 {
1723 	unsigned long size = 1;
1724 
1725 	pages /= PAGES_PER_WAITQUEUE;
1726 
1727 	while (size < pages)
1728 		size <<= 1;
1729 
1730 	/*
1731 	 * Once we have dozens or even hundreds of threads sleeping
1732 	 * on IO we've got bigger problems than wait queue collision.
1733 	 * Limit the size of the wait table to a reasonable size.
1734 	 */
1735 	size = min(size, 4096UL);
1736 
1737 	return max(size, 4UL);
1738 }
1739 
1740 /*
1741  * This is an integer logarithm so that shifts can be used later
1742  * to extract the more random high bits from the multiplicative
1743  * hash function before the remainder is taken.
1744  */
1745 static inline unsigned long wait_table_bits(unsigned long size)
1746 {
1747 	return ffz(~size);
1748 }
1749 
1750 #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
1751 
1752 static void __init calculate_zone_totalpages(struct pglist_data *pgdat,
1753 		unsigned long *zones_size, unsigned long *zholes_size)
1754 {
1755 	unsigned long realtotalpages, totalpages = 0;
1756 	int i;
1757 
1758 	for (i = 0; i < MAX_NR_ZONES; i++)
1759 		totalpages += zones_size[i];
1760 	pgdat->node_spanned_pages = totalpages;
1761 
1762 	realtotalpages = totalpages;
1763 	if (zholes_size)
1764 		for (i = 0; i < MAX_NR_ZONES; i++)
1765 			realtotalpages -= zholes_size[i];
1766 	pgdat->node_present_pages = realtotalpages;
1767 	printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id, realtotalpages);
1768 }
1769 
1770 
1771 /*
1772  * Initially all pages are reserved - free ones are freed
1773  * up by free_all_bootmem() once the early boot process is
1774  * done. Non-atomic initialization, single-pass.
1775  */
1776 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
1777 		unsigned long start_pfn)
1778 {
1779 	struct page *page;
1780 	unsigned long end_pfn = start_pfn + size;
1781 	unsigned long pfn;
1782 
1783 	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
1784 		if (!early_pfn_valid(pfn))
1785 			continue;
1786 		page = pfn_to_page(pfn);
1787 		set_page_links(page, zone, nid, pfn);
1788 		init_page_count(page);
1789 		reset_page_mapcount(page);
1790 		SetPageReserved(page);
1791 		INIT_LIST_HEAD(&page->lru);
1792 #ifdef WANT_PAGE_VIRTUAL
1793 		/* The shift won't overflow because ZONE_NORMAL is below 4G. */
1794 		if (!is_highmem_idx(zone))
1795 			set_page_address(page, __va(pfn << PAGE_SHIFT));
1796 #endif
1797 	}
1798 }
1799 
1800 void zone_init_free_lists(struct pglist_data *pgdat, struct zone *zone,
1801 				unsigned long size)
1802 {
1803 	int order;
1804 	for (order = 0; order < MAX_ORDER ; order++) {
1805 		INIT_LIST_HEAD(&zone->free_area[order].free_list);
1806 		zone->free_area[order].nr_free = 0;
1807 	}
1808 }
1809 
1810 #define ZONETABLE_INDEX(x, zone_nr)	((x << ZONES_SHIFT) | zone_nr)
1811 void zonetable_add(struct zone *zone, int nid, int zid, unsigned long pfn,
1812 		unsigned long size)
1813 {
1814 	unsigned long snum = pfn_to_section_nr(pfn);
1815 	unsigned long end = pfn_to_section_nr(pfn + size);
1816 
1817 	if (FLAGS_HAS_NODE)
1818 		zone_table[ZONETABLE_INDEX(nid, zid)] = zone;
1819 	else
1820 		for (; snum <= end; snum++)
1821 			zone_table[ZONETABLE_INDEX(snum, zid)] = zone;
1822 }
1823 
1824 #ifndef __HAVE_ARCH_MEMMAP_INIT
1825 #define memmap_init(size, nid, zone, start_pfn) \
1826 	memmap_init_zone((size), (nid), (zone), (start_pfn))
1827 #endif
1828 
1829 static int __cpuinit zone_batchsize(struct zone *zone)
1830 {
1831 	int batch;
1832 
1833 	/*
1834 	 * The per-cpu-pages pools are set to around 1000th of the
1835 	 * size of the zone.  But no more than 1/2 of a meg.
1836 	 *
1837 	 * OK, so we don't know how big the cache is.  So guess.
1838 	 */
1839 	batch = zone->present_pages / 1024;
1840 	if (batch * PAGE_SIZE > 512 * 1024)
1841 		batch = (512 * 1024) / PAGE_SIZE;
1842 	batch /= 4;		/* We effectively *= 4 below */
1843 	if (batch < 1)
1844 		batch = 1;
1845 
1846 	/*
1847 	 * Clamp the batch to a 2^n - 1 value. Having a power
1848 	 * of 2 value was found to be more likely to have
1849 	 * suboptimal cache aliasing properties in some cases.
1850 	 *
1851 	 * For example if 2 tasks are alternately allocating
1852 	 * batches of pages, one task can end up with a lot
1853 	 * of pages of one half of the possible page colors
1854 	 * and the other with pages of the other colors.
1855 	 */
1856 	batch = (1 << (fls(batch + batch/2)-1)) - 1;
1857 
1858 	return batch;
1859 }
1860 
1861 inline void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
1862 {
1863 	struct per_cpu_pages *pcp;
1864 
1865 	memset(p, 0, sizeof(*p));
1866 
1867 	pcp = &p->pcp[0];		/* hot */
1868 	pcp->count = 0;
1869 	pcp->high = 6 * batch;
1870 	pcp->batch = max(1UL, 1 * batch);
1871 	INIT_LIST_HEAD(&pcp->list);
1872 
1873 	pcp = &p->pcp[1];		/* cold*/
1874 	pcp->count = 0;
1875 	pcp->high = 2 * batch;
1876 	pcp->batch = max(1UL, batch/2);
1877 	INIT_LIST_HEAD(&pcp->list);
1878 }
1879 
1880 /*
1881  * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
1882  * to the value high for the pageset p.
1883  */
1884 
1885 static void setup_pagelist_highmark(struct per_cpu_pageset *p,
1886 				unsigned long high)
1887 {
1888 	struct per_cpu_pages *pcp;
1889 
1890 	pcp = &p->pcp[0]; /* hot list */
1891 	pcp->high = high;
1892 	pcp->batch = max(1UL, high/4);
1893 	if ((high/4) > (PAGE_SHIFT * 8))
1894 		pcp->batch = PAGE_SHIFT * 8;
1895 }
1896 
1897 
1898 #ifdef CONFIG_NUMA
1899 /*
1900  * Boot pageset table. One per cpu which is going to be used for all
1901  * zones and all nodes. The parameters will be set in such a way
1902  * that an item put on a list will immediately be handed over to
1903  * the buddy list. This is safe since pageset manipulation is done
1904  * with interrupts disabled.
1905  *
1906  * Some NUMA counter updates may also be caught by the boot pagesets.
1907  *
1908  * The boot_pagesets must be kept even after bootup is complete for
1909  * unused processors and/or zones. They do play a role for bootstrapping
1910  * hotplugged processors.
1911  *
1912  * zoneinfo_show() and maybe other functions do
1913  * not check if the processor is online before following the pageset pointer.
1914  * Other parts of the kernel may not check if the zone is available.
1915  */
1916 static struct per_cpu_pageset boot_pageset[NR_CPUS];
1917 
1918 /*
1919  * Dynamically allocate memory for the
1920  * per cpu pageset array in struct zone.
1921  */
1922 static int __cpuinit process_zones(int cpu)
1923 {
1924 	struct zone *zone, *dzone;
1925 
1926 	for_each_zone(zone) {
1927 
1928 		zone_pcp(zone, cpu) = kmalloc_node(sizeof(struct per_cpu_pageset),
1929 					 GFP_KERNEL, cpu_to_node(cpu));
1930 		if (!zone_pcp(zone, cpu))
1931 			goto bad;
1932 
1933 		setup_pageset(zone_pcp(zone, cpu), zone_batchsize(zone));
1934 
1935 		if (percpu_pagelist_fraction)
1936 			setup_pagelist_highmark(zone_pcp(zone, cpu),
1937 			 	(zone->present_pages / percpu_pagelist_fraction));
1938 	}
1939 
1940 	return 0;
1941 bad:
1942 	for_each_zone(dzone) {
1943 		if (dzone == zone)
1944 			break;
1945 		kfree(zone_pcp(dzone, cpu));
1946 		zone_pcp(dzone, cpu) = NULL;
1947 	}
1948 	return -ENOMEM;
1949 }
1950 
1951 static inline void free_zone_pagesets(int cpu)
1952 {
1953 	struct zone *zone;
1954 
1955 	for_each_zone(zone) {
1956 		struct per_cpu_pageset *pset = zone_pcp(zone, cpu);
1957 
1958 		zone_pcp(zone, cpu) = NULL;
1959 		kfree(pset);
1960 	}
1961 }
1962 
1963 static int __cpuinit pageset_cpuup_callback(struct notifier_block *nfb,
1964 		unsigned long action,
1965 		void *hcpu)
1966 {
1967 	int cpu = (long)hcpu;
1968 	int ret = NOTIFY_OK;
1969 
1970 	switch (action) {
1971 		case CPU_UP_PREPARE:
1972 			if (process_zones(cpu))
1973 				ret = NOTIFY_BAD;
1974 			break;
1975 		case CPU_UP_CANCELED:
1976 		case CPU_DEAD:
1977 			free_zone_pagesets(cpu);
1978 			break;
1979 		default:
1980 			break;
1981 	}
1982 	return ret;
1983 }
1984 
1985 static struct notifier_block pageset_notifier =
1986 	{ &pageset_cpuup_callback, NULL, 0 };
1987 
1988 void __init setup_per_cpu_pageset(void)
1989 {
1990 	int err;
1991 
1992 	/* Initialize per_cpu_pageset for cpu 0.
1993 	 * A cpuup callback will do this for every cpu
1994 	 * as it comes online
1995 	 */
1996 	err = process_zones(smp_processor_id());
1997 	BUG_ON(err);
1998 	register_cpu_notifier(&pageset_notifier);
1999 }
2000 
2001 #endif
2002 
2003 static __meminit
2004 void zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
2005 {
2006 	int i;
2007 	struct pglist_data *pgdat = zone->zone_pgdat;
2008 
2009 	/*
2010 	 * The per-page waitqueue mechanism uses hashed waitqueues
2011 	 * per zone.
2012 	 */
2013 	zone->wait_table_size = wait_table_size(zone_size_pages);
2014 	zone->wait_table_bits =	wait_table_bits(zone->wait_table_size);
2015 	zone->wait_table = (wait_queue_head_t *)
2016 		alloc_bootmem_node(pgdat, zone->wait_table_size
2017 					* sizeof(wait_queue_head_t));
2018 
2019 	for(i = 0; i < zone->wait_table_size; ++i)
2020 		init_waitqueue_head(zone->wait_table + i);
2021 }
2022 
2023 static __meminit void zone_pcp_init(struct zone *zone)
2024 {
2025 	int cpu;
2026 	unsigned long batch = zone_batchsize(zone);
2027 
2028 	for (cpu = 0; cpu < NR_CPUS; cpu++) {
2029 #ifdef CONFIG_NUMA
2030 		/* Early boot. Slab allocator not functional yet */
2031 		zone_pcp(zone, cpu) = &boot_pageset[cpu];
2032 		setup_pageset(&boot_pageset[cpu],0);
2033 #else
2034 		setup_pageset(zone_pcp(zone,cpu), batch);
2035 #endif
2036 	}
2037 	if (zone->present_pages)
2038 		printk(KERN_DEBUG "  %s zone: %lu pages, LIFO batch:%lu\n",
2039 			zone->name, zone->present_pages, batch);
2040 }
2041 
2042 static __meminit void init_currently_empty_zone(struct zone *zone,
2043 		unsigned long zone_start_pfn, unsigned long size)
2044 {
2045 	struct pglist_data *pgdat = zone->zone_pgdat;
2046 
2047 	zone_wait_table_init(zone, size);
2048 	pgdat->nr_zones = zone_idx(zone) + 1;
2049 
2050 	zone->zone_start_pfn = zone_start_pfn;
2051 
2052 	memmap_init(size, pgdat->node_id, zone_idx(zone), zone_start_pfn);
2053 
2054 	zone_init_free_lists(pgdat, zone, zone->spanned_pages);
2055 }
2056 
2057 /*
2058  * Set up the zone data structures:
2059  *   - mark all pages reserved
2060  *   - mark all memory queues empty
2061  *   - clear the memory bitmaps
2062  */
2063 static void __init free_area_init_core(struct pglist_data *pgdat,
2064 		unsigned long *zones_size, unsigned long *zholes_size)
2065 {
2066 	unsigned long j;
2067 	int nid = pgdat->node_id;
2068 	unsigned long zone_start_pfn = pgdat->node_start_pfn;
2069 
2070 	pgdat_resize_init(pgdat);
2071 	pgdat->nr_zones = 0;
2072 	init_waitqueue_head(&pgdat->kswapd_wait);
2073 	pgdat->kswapd_max_order = 0;
2074 
2075 	for (j = 0; j < MAX_NR_ZONES; j++) {
2076 		struct zone *zone = pgdat->node_zones + j;
2077 		unsigned long size, realsize;
2078 
2079 		realsize = size = zones_size[j];
2080 		if (zholes_size)
2081 			realsize -= zholes_size[j];
2082 
2083 		if (j < ZONE_HIGHMEM)
2084 			nr_kernel_pages += realsize;
2085 		nr_all_pages += realsize;
2086 
2087 		zone->spanned_pages = size;
2088 		zone->present_pages = realsize;
2089 		zone->name = zone_names[j];
2090 		spin_lock_init(&zone->lock);
2091 		spin_lock_init(&zone->lru_lock);
2092 		zone_seqlock_init(zone);
2093 		zone->zone_pgdat = pgdat;
2094 		zone->free_pages = 0;
2095 
2096 		zone->temp_priority = zone->prev_priority = DEF_PRIORITY;
2097 
2098 		zone_pcp_init(zone);
2099 		INIT_LIST_HEAD(&zone->active_list);
2100 		INIT_LIST_HEAD(&zone->inactive_list);
2101 		zone->nr_scan_active = 0;
2102 		zone->nr_scan_inactive = 0;
2103 		zone->nr_active = 0;
2104 		zone->nr_inactive = 0;
2105 		atomic_set(&zone->reclaim_in_progress, 0);
2106 		if (!size)
2107 			continue;
2108 
2109 		zonetable_add(zone, nid, j, zone_start_pfn, size);
2110 		init_currently_empty_zone(zone, zone_start_pfn, size);
2111 		zone_start_pfn += size;
2112 	}
2113 }
2114 
2115 static void __init alloc_node_mem_map(struct pglist_data *pgdat)
2116 {
2117 	/* Skip empty nodes */
2118 	if (!pgdat->node_spanned_pages)
2119 		return;
2120 
2121 #ifdef CONFIG_FLAT_NODE_MEM_MAP
2122 	/* ia64 gets its own node_mem_map, before this, without bootmem */
2123 	if (!pgdat->node_mem_map) {
2124 		unsigned long size;
2125 		struct page *map;
2126 
2127 		size = (pgdat->node_spanned_pages + 1) * sizeof(struct page);
2128 		map = alloc_remap(pgdat->node_id, size);
2129 		if (!map)
2130 			map = alloc_bootmem_node(pgdat, size);
2131 		pgdat->node_mem_map = map;
2132 	}
2133 #ifdef CONFIG_FLATMEM
2134 	/*
2135 	 * With no DISCONTIG, the global mem_map is just set as node 0's
2136 	 */
2137 	if (pgdat == NODE_DATA(0))
2138 		mem_map = NODE_DATA(0)->node_mem_map;
2139 #endif
2140 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
2141 }
2142 
2143 void __init free_area_init_node(int nid, struct pglist_data *pgdat,
2144 		unsigned long *zones_size, unsigned long node_start_pfn,
2145 		unsigned long *zholes_size)
2146 {
2147 	pgdat->node_id = nid;
2148 	pgdat->node_start_pfn = node_start_pfn;
2149 	calculate_zone_totalpages(pgdat, zones_size, zholes_size);
2150 
2151 	alloc_node_mem_map(pgdat);
2152 
2153 	free_area_init_core(pgdat, zones_size, zholes_size);
2154 }
2155 
2156 #ifndef CONFIG_NEED_MULTIPLE_NODES
2157 static bootmem_data_t contig_bootmem_data;
2158 struct pglist_data contig_page_data = { .bdata = &contig_bootmem_data };
2159 
2160 EXPORT_SYMBOL(contig_page_data);
2161 #endif
2162 
2163 void __init free_area_init(unsigned long *zones_size)
2164 {
2165 	free_area_init_node(0, NODE_DATA(0), zones_size,
2166 			__pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
2167 }
2168 
2169 #ifdef CONFIG_PROC_FS
2170 
2171 #include <linux/seq_file.h>
2172 
2173 static void *frag_start(struct seq_file *m, loff_t *pos)
2174 {
2175 	pg_data_t *pgdat;
2176 	loff_t node = *pos;
2177 	for (pgdat = first_online_pgdat();
2178 	     pgdat && node;
2179 	     pgdat = next_online_pgdat(pgdat))
2180 		--node;
2181 
2182 	return pgdat;
2183 }
2184 
2185 static void *frag_next(struct seq_file *m, void *arg, loff_t *pos)
2186 {
2187 	pg_data_t *pgdat = (pg_data_t *)arg;
2188 
2189 	(*pos)++;
2190 	return next_online_pgdat(pgdat);
2191 }
2192 
2193 static void frag_stop(struct seq_file *m, void *arg)
2194 {
2195 }
2196 
2197 /*
2198  * This walks the free areas for each zone.
2199  */
2200 static int frag_show(struct seq_file *m, void *arg)
2201 {
2202 	pg_data_t *pgdat = (pg_data_t *)arg;
2203 	struct zone *zone;
2204 	struct zone *node_zones = pgdat->node_zones;
2205 	unsigned long flags;
2206 	int order;
2207 
2208 	for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
2209 		if (!populated_zone(zone))
2210 			continue;
2211 
2212 		spin_lock_irqsave(&zone->lock, flags);
2213 		seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
2214 		for (order = 0; order < MAX_ORDER; ++order)
2215 			seq_printf(m, "%6lu ", zone->free_area[order].nr_free);
2216 		spin_unlock_irqrestore(&zone->lock, flags);
2217 		seq_putc(m, '\n');
2218 	}
2219 	return 0;
2220 }
2221 
2222 struct seq_operations fragmentation_op = {
2223 	.start	= frag_start,
2224 	.next	= frag_next,
2225 	.stop	= frag_stop,
2226 	.show	= frag_show,
2227 };
2228 
2229 /*
2230  * Output information about zones in @pgdat.
2231  */
2232 static int zoneinfo_show(struct seq_file *m, void *arg)
2233 {
2234 	pg_data_t *pgdat = arg;
2235 	struct zone *zone;
2236 	struct zone *node_zones = pgdat->node_zones;
2237 	unsigned long flags;
2238 
2239 	for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; zone++) {
2240 		int i;
2241 
2242 		if (!populated_zone(zone))
2243 			continue;
2244 
2245 		spin_lock_irqsave(&zone->lock, flags);
2246 		seq_printf(m, "Node %d, zone %8s", pgdat->node_id, zone->name);
2247 		seq_printf(m,
2248 			   "\n  pages free     %lu"
2249 			   "\n        min      %lu"
2250 			   "\n        low      %lu"
2251 			   "\n        high     %lu"
2252 			   "\n        active   %lu"
2253 			   "\n        inactive %lu"
2254 			   "\n        scanned  %lu (a: %lu i: %lu)"
2255 			   "\n        spanned  %lu"
2256 			   "\n        present  %lu",
2257 			   zone->free_pages,
2258 			   zone->pages_min,
2259 			   zone->pages_low,
2260 			   zone->pages_high,
2261 			   zone->nr_active,
2262 			   zone->nr_inactive,
2263 			   zone->pages_scanned,
2264 			   zone->nr_scan_active, zone->nr_scan_inactive,
2265 			   zone->spanned_pages,
2266 			   zone->present_pages);
2267 		seq_printf(m,
2268 			   "\n        protection: (%lu",
2269 			   zone->lowmem_reserve[0]);
2270 		for (i = 1; i < ARRAY_SIZE(zone->lowmem_reserve); i++)
2271 			seq_printf(m, ", %lu", zone->lowmem_reserve[i]);
2272 		seq_printf(m,
2273 			   ")"
2274 			   "\n  pagesets");
2275 		for_each_online_cpu(i) {
2276 			struct per_cpu_pageset *pageset;
2277 			int j;
2278 
2279 			pageset = zone_pcp(zone, i);
2280 			for (j = 0; j < ARRAY_SIZE(pageset->pcp); j++) {
2281 				if (pageset->pcp[j].count)
2282 					break;
2283 			}
2284 			if (j == ARRAY_SIZE(pageset->pcp))
2285 				continue;
2286 			for (j = 0; j < ARRAY_SIZE(pageset->pcp); j++) {
2287 				seq_printf(m,
2288 					   "\n    cpu: %i pcp: %i"
2289 					   "\n              count: %i"
2290 					   "\n              high:  %i"
2291 					   "\n              batch: %i",
2292 					   i, j,
2293 					   pageset->pcp[j].count,
2294 					   pageset->pcp[j].high,
2295 					   pageset->pcp[j].batch);
2296 			}
2297 #ifdef CONFIG_NUMA
2298 			seq_printf(m,
2299 				   "\n            numa_hit:       %lu"
2300 				   "\n            numa_miss:      %lu"
2301 				   "\n            numa_foreign:   %lu"
2302 				   "\n            interleave_hit: %lu"
2303 				   "\n            local_node:     %lu"
2304 				   "\n            other_node:     %lu",
2305 				   pageset->numa_hit,
2306 				   pageset->numa_miss,
2307 				   pageset->numa_foreign,
2308 				   pageset->interleave_hit,
2309 				   pageset->local_node,
2310 				   pageset->other_node);
2311 #endif
2312 		}
2313 		seq_printf(m,
2314 			   "\n  all_unreclaimable: %u"
2315 			   "\n  prev_priority:     %i"
2316 			   "\n  temp_priority:     %i"
2317 			   "\n  start_pfn:         %lu",
2318 			   zone->all_unreclaimable,
2319 			   zone->prev_priority,
2320 			   zone->temp_priority,
2321 			   zone->zone_start_pfn);
2322 		spin_unlock_irqrestore(&zone->lock, flags);
2323 		seq_putc(m, '\n');
2324 	}
2325 	return 0;
2326 }
2327 
2328 struct seq_operations zoneinfo_op = {
2329 	.start	= frag_start, /* iterate over all zones. The same as in
2330 			       * fragmentation. */
2331 	.next	= frag_next,
2332 	.stop	= frag_stop,
2333 	.show	= zoneinfo_show,
2334 };
2335 
2336 static char *vmstat_text[] = {
2337 	"nr_dirty",
2338 	"nr_writeback",
2339 	"nr_unstable",
2340 	"nr_page_table_pages",
2341 	"nr_mapped",
2342 	"nr_slab",
2343 
2344 	"pgpgin",
2345 	"pgpgout",
2346 	"pswpin",
2347 	"pswpout",
2348 
2349 	"pgalloc_high",
2350 	"pgalloc_normal",
2351 	"pgalloc_dma32",
2352 	"pgalloc_dma",
2353 
2354 	"pgfree",
2355 	"pgactivate",
2356 	"pgdeactivate",
2357 
2358 	"pgfault",
2359 	"pgmajfault",
2360 
2361 	"pgrefill_high",
2362 	"pgrefill_normal",
2363 	"pgrefill_dma32",
2364 	"pgrefill_dma",
2365 
2366 	"pgsteal_high",
2367 	"pgsteal_normal",
2368 	"pgsteal_dma32",
2369 	"pgsteal_dma",
2370 
2371 	"pgscan_kswapd_high",
2372 	"pgscan_kswapd_normal",
2373 	"pgscan_kswapd_dma32",
2374 	"pgscan_kswapd_dma",
2375 
2376 	"pgscan_direct_high",
2377 	"pgscan_direct_normal",
2378 	"pgscan_direct_dma32",
2379 	"pgscan_direct_dma",
2380 
2381 	"pginodesteal",
2382 	"slabs_scanned",
2383 	"kswapd_steal",
2384 	"kswapd_inodesteal",
2385 	"pageoutrun",
2386 	"allocstall",
2387 
2388 	"pgrotated",
2389 	"nr_bounce",
2390 };
2391 
2392 static void *vmstat_start(struct seq_file *m, loff_t *pos)
2393 {
2394 	struct page_state *ps;
2395 
2396 	if (*pos >= ARRAY_SIZE(vmstat_text))
2397 		return NULL;
2398 
2399 	ps = kmalloc(sizeof(*ps), GFP_KERNEL);
2400 	m->private = ps;
2401 	if (!ps)
2402 		return ERR_PTR(-ENOMEM);
2403 	get_full_page_state(ps);
2404 	ps->pgpgin /= 2;		/* sectors -> kbytes */
2405 	ps->pgpgout /= 2;
2406 	return (unsigned long *)ps + *pos;
2407 }
2408 
2409 static void *vmstat_next(struct seq_file *m, void *arg, loff_t *pos)
2410 {
2411 	(*pos)++;
2412 	if (*pos >= ARRAY_SIZE(vmstat_text))
2413 		return NULL;
2414 	return (unsigned long *)m->private + *pos;
2415 }
2416 
2417 static int vmstat_show(struct seq_file *m, void *arg)
2418 {
2419 	unsigned long *l = arg;
2420 	unsigned long off = l - (unsigned long *)m->private;
2421 
2422 	seq_printf(m, "%s %lu\n", vmstat_text[off], *l);
2423 	return 0;
2424 }
2425 
2426 static void vmstat_stop(struct seq_file *m, void *arg)
2427 {
2428 	kfree(m->private);
2429 	m->private = NULL;
2430 }
2431 
2432 struct seq_operations vmstat_op = {
2433 	.start	= vmstat_start,
2434 	.next	= vmstat_next,
2435 	.stop	= vmstat_stop,
2436 	.show	= vmstat_show,
2437 };
2438 
2439 #endif /* CONFIG_PROC_FS */
2440 
2441 #ifdef CONFIG_HOTPLUG_CPU
2442 static int page_alloc_cpu_notify(struct notifier_block *self,
2443 				 unsigned long action, void *hcpu)
2444 {
2445 	int cpu = (unsigned long)hcpu;
2446 	long *count;
2447 	unsigned long *src, *dest;
2448 
2449 	if (action == CPU_DEAD) {
2450 		int i;
2451 
2452 		/* Drain local pagecache count. */
2453 		count = &per_cpu(nr_pagecache_local, cpu);
2454 		atomic_add(*count, &nr_pagecache);
2455 		*count = 0;
2456 		local_irq_disable();
2457 		__drain_pages(cpu);
2458 
2459 		/* Add dead cpu's page_states to our own. */
2460 		dest = (unsigned long *)&__get_cpu_var(page_states);
2461 		src = (unsigned long *)&per_cpu(page_states, cpu);
2462 
2463 		for (i = 0; i < sizeof(struct page_state)/sizeof(unsigned long);
2464 				i++) {
2465 			dest[i] += src[i];
2466 			src[i] = 0;
2467 		}
2468 
2469 		local_irq_enable();
2470 	}
2471 	return NOTIFY_OK;
2472 }
2473 #endif /* CONFIG_HOTPLUG_CPU */
2474 
2475 void __init page_alloc_init(void)
2476 {
2477 	hotcpu_notifier(page_alloc_cpu_notify, 0);
2478 }
2479 
2480 /*
2481  * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
2482  *	or min_free_kbytes changes.
2483  */
2484 static void calculate_totalreserve_pages(void)
2485 {
2486 	struct pglist_data *pgdat;
2487 	unsigned long reserve_pages = 0;
2488 	int i, j;
2489 
2490 	for_each_online_pgdat(pgdat) {
2491 		for (i = 0; i < MAX_NR_ZONES; i++) {
2492 			struct zone *zone = pgdat->node_zones + i;
2493 			unsigned long max = 0;
2494 
2495 			/* Find valid and maximum lowmem_reserve in the zone */
2496 			for (j = i; j < MAX_NR_ZONES; j++) {
2497 				if (zone->lowmem_reserve[j] > max)
2498 					max = zone->lowmem_reserve[j];
2499 			}
2500 
2501 			/* we treat pages_high as reserved pages. */
2502 			max += zone->pages_high;
2503 
2504 			if (max > zone->present_pages)
2505 				max = zone->present_pages;
2506 			reserve_pages += max;
2507 		}
2508 	}
2509 	totalreserve_pages = reserve_pages;
2510 }
2511 
2512 /*
2513  * setup_per_zone_lowmem_reserve - called whenever
2514  *	sysctl_lower_zone_reserve_ratio changes.  Ensures that each zone
2515  *	has a correct pages reserved value, so an adequate number of
2516  *	pages are left in the zone after a successful __alloc_pages().
2517  */
2518 static void setup_per_zone_lowmem_reserve(void)
2519 {
2520 	struct pglist_data *pgdat;
2521 	int j, idx;
2522 
2523 	for_each_online_pgdat(pgdat) {
2524 		for (j = 0; j < MAX_NR_ZONES; j++) {
2525 			struct zone *zone = pgdat->node_zones + j;
2526 			unsigned long present_pages = zone->present_pages;
2527 
2528 			zone->lowmem_reserve[j] = 0;
2529 
2530 			for (idx = j-1; idx >= 0; idx--) {
2531 				struct zone *lower_zone;
2532 
2533 				if (sysctl_lowmem_reserve_ratio[idx] < 1)
2534 					sysctl_lowmem_reserve_ratio[idx] = 1;
2535 
2536 				lower_zone = pgdat->node_zones + idx;
2537 				lower_zone->lowmem_reserve[j] = present_pages /
2538 					sysctl_lowmem_reserve_ratio[idx];
2539 				present_pages += lower_zone->present_pages;
2540 			}
2541 		}
2542 	}
2543 
2544 	/* update totalreserve_pages */
2545 	calculate_totalreserve_pages();
2546 }
2547 
2548 /*
2549  * setup_per_zone_pages_min - called when min_free_kbytes changes.  Ensures
2550  *	that the pages_{min,low,high} values for each zone are set correctly
2551  *	with respect to min_free_kbytes.
2552  */
2553 void setup_per_zone_pages_min(void)
2554 {
2555 	unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
2556 	unsigned long lowmem_pages = 0;
2557 	struct zone *zone;
2558 	unsigned long flags;
2559 
2560 	/* Calculate total number of !ZONE_HIGHMEM pages */
2561 	for_each_zone(zone) {
2562 		if (!is_highmem(zone))
2563 			lowmem_pages += zone->present_pages;
2564 	}
2565 
2566 	for_each_zone(zone) {
2567 		unsigned long tmp;
2568 		spin_lock_irqsave(&zone->lru_lock, flags);
2569 		tmp = (pages_min * zone->present_pages) / lowmem_pages;
2570 		if (is_highmem(zone)) {
2571 			/*
2572 			 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
2573 			 * need highmem pages, so cap pages_min to a small
2574 			 * value here.
2575 			 *
2576 			 * The (pages_high-pages_low) and (pages_low-pages_min)
2577 			 * deltas controls asynch page reclaim, and so should
2578 			 * not be capped for highmem.
2579 			 */
2580 			int min_pages;
2581 
2582 			min_pages = zone->present_pages / 1024;
2583 			if (min_pages < SWAP_CLUSTER_MAX)
2584 				min_pages = SWAP_CLUSTER_MAX;
2585 			if (min_pages > 128)
2586 				min_pages = 128;
2587 			zone->pages_min = min_pages;
2588 		} else {
2589 			/*
2590 			 * If it's a lowmem zone, reserve a number of pages
2591 			 * proportionate to the zone's size.
2592 			 */
2593 			zone->pages_min = tmp;
2594 		}
2595 
2596 		zone->pages_low   = zone->pages_min + tmp / 4;
2597 		zone->pages_high  = zone->pages_min + tmp / 2;
2598 		spin_unlock_irqrestore(&zone->lru_lock, flags);
2599 	}
2600 
2601 	/* update totalreserve_pages */
2602 	calculate_totalreserve_pages();
2603 }
2604 
2605 /*
2606  * Initialise min_free_kbytes.
2607  *
2608  * For small machines we want it small (128k min).  For large machines
2609  * we want it large (64MB max).  But it is not linear, because network
2610  * bandwidth does not increase linearly with machine size.  We use
2611  *
2612  * 	min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
2613  *	min_free_kbytes = sqrt(lowmem_kbytes * 16)
2614  *
2615  * which yields
2616  *
2617  * 16MB:	512k
2618  * 32MB:	724k
2619  * 64MB:	1024k
2620  * 128MB:	1448k
2621  * 256MB:	2048k
2622  * 512MB:	2896k
2623  * 1024MB:	4096k
2624  * 2048MB:	5792k
2625  * 4096MB:	8192k
2626  * 8192MB:	11584k
2627  * 16384MB:	16384k
2628  */
2629 static int __init init_per_zone_pages_min(void)
2630 {
2631 	unsigned long lowmem_kbytes;
2632 
2633 	lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
2634 
2635 	min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
2636 	if (min_free_kbytes < 128)
2637 		min_free_kbytes = 128;
2638 	if (min_free_kbytes > 65536)
2639 		min_free_kbytes = 65536;
2640 	setup_per_zone_pages_min();
2641 	setup_per_zone_lowmem_reserve();
2642 	return 0;
2643 }
2644 module_init(init_per_zone_pages_min)
2645 
2646 /*
2647  * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
2648  *	that we can call two helper functions whenever min_free_kbytes
2649  *	changes.
2650  */
2651 int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
2652 	struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
2653 {
2654 	proc_dointvec(table, write, file, buffer, length, ppos);
2655 	setup_per_zone_pages_min();
2656 	return 0;
2657 }
2658 
2659 /*
2660  * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
2661  *	proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
2662  *	whenever sysctl_lowmem_reserve_ratio changes.
2663  *
2664  * The reserve ratio obviously has absolutely no relation with the
2665  * pages_min watermarks. The lowmem reserve ratio can only make sense
2666  * if in function of the boot time zone sizes.
2667  */
2668 int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
2669 	struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
2670 {
2671 	proc_dointvec_minmax(table, write, file, buffer, length, ppos);
2672 	setup_per_zone_lowmem_reserve();
2673 	return 0;
2674 }
2675 
2676 /*
2677  * percpu_pagelist_fraction - changes the pcp->high for each zone on each
2678  * cpu.  It is the fraction of total pages in each zone that a hot per cpu pagelist
2679  * can have before it gets flushed back to buddy allocator.
2680  */
2681 
2682 int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
2683 	struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
2684 {
2685 	struct zone *zone;
2686 	unsigned int cpu;
2687 	int ret;
2688 
2689 	ret = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
2690 	if (!write || (ret == -EINVAL))
2691 		return ret;
2692 	for_each_zone(zone) {
2693 		for_each_online_cpu(cpu) {
2694 			unsigned long  high;
2695 			high = zone->present_pages / percpu_pagelist_fraction;
2696 			setup_pagelist_highmark(zone_pcp(zone, cpu), high);
2697 		}
2698 	}
2699 	return 0;
2700 }
2701 
2702 __initdata int hashdist = HASHDIST_DEFAULT;
2703 
2704 #ifdef CONFIG_NUMA
2705 static int __init set_hashdist(char *str)
2706 {
2707 	if (!str)
2708 		return 0;
2709 	hashdist = simple_strtoul(str, &str, 0);
2710 	return 1;
2711 }
2712 __setup("hashdist=", set_hashdist);
2713 #endif
2714 
2715 /*
2716  * allocate a large system hash table from bootmem
2717  * - it is assumed that the hash table must contain an exact power-of-2
2718  *   quantity of entries
2719  * - limit is the number of hash buckets, not the total allocation size
2720  */
2721 void *__init alloc_large_system_hash(const char *tablename,
2722 				     unsigned long bucketsize,
2723 				     unsigned long numentries,
2724 				     int scale,
2725 				     int flags,
2726 				     unsigned int *_hash_shift,
2727 				     unsigned int *_hash_mask,
2728 				     unsigned long limit)
2729 {
2730 	unsigned long long max = limit;
2731 	unsigned long log2qty, size;
2732 	void *table = NULL;
2733 
2734 	/* allow the kernel cmdline to have a say */
2735 	if (!numentries) {
2736 		/* round applicable memory size up to nearest megabyte */
2737 		numentries = (flags & HASH_HIGHMEM) ? nr_all_pages : nr_kernel_pages;
2738 		numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
2739 		numentries >>= 20 - PAGE_SHIFT;
2740 		numentries <<= 20 - PAGE_SHIFT;
2741 
2742 		/* limit to 1 bucket per 2^scale bytes of low memory */
2743 		if (scale > PAGE_SHIFT)
2744 			numentries >>= (scale - PAGE_SHIFT);
2745 		else
2746 			numentries <<= (PAGE_SHIFT - scale);
2747 	}
2748 	numentries = roundup_pow_of_two(numentries);
2749 
2750 	/* limit allocation size to 1/16 total memory by default */
2751 	if (max == 0) {
2752 		max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
2753 		do_div(max, bucketsize);
2754 	}
2755 
2756 	if (numentries > max)
2757 		numentries = max;
2758 
2759 	log2qty = long_log2(numentries);
2760 
2761 	do {
2762 		size = bucketsize << log2qty;
2763 		if (flags & HASH_EARLY)
2764 			table = alloc_bootmem(size);
2765 		else if (hashdist)
2766 			table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
2767 		else {
2768 			unsigned long order;
2769 			for (order = 0; ((1UL << order) << PAGE_SHIFT) < size; order++)
2770 				;
2771 			table = (void*) __get_free_pages(GFP_ATOMIC, order);
2772 		}
2773 	} while (!table && size > PAGE_SIZE && --log2qty);
2774 
2775 	if (!table)
2776 		panic("Failed to allocate %s hash table\n", tablename);
2777 
2778 	printk("%s hash table entries: %d (order: %d, %lu bytes)\n",
2779 	       tablename,
2780 	       (1U << log2qty),
2781 	       long_log2(size) - PAGE_SHIFT,
2782 	       size);
2783 
2784 	if (_hash_shift)
2785 		*_hash_shift = log2qty;
2786 	if (_hash_mask)
2787 		*_hash_mask = (1 << log2qty) - 1;
2788 
2789 	return table;
2790 }
2791 
2792 #ifdef CONFIG_OUT_OF_LINE_PFN_TO_PAGE
2793 /*
2794  * pfn <-> page translation. out-of-line version.
2795  * (see asm-generic/memory_model.h)
2796  */
2797 #if defined(CONFIG_FLATMEM)
2798 struct page *pfn_to_page(unsigned long pfn)
2799 {
2800 	return mem_map + (pfn - ARCH_PFN_OFFSET);
2801 }
2802 unsigned long page_to_pfn(struct page *page)
2803 {
2804 	return (page - mem_map) + ARCH_PFN_OFFSET;
2805 }
2806 #elif defined(CONFIG_DISCONTIGMEM)
2807 struct page *pfn_to_page(unsigned long pfn)
2808 {
2809 	int nid = arch_pfn_to_nid(pfn);
2810 	return NODE_DATA(nid)->node_mem_map + arch_local_page_offset(pfn,nid);
2811 }
2812 unsigned long page_to_pfn(struct page *page)
2813 {
2814 	struct pglist_data *pgdat = NODE_DATA(page_to_nid(page));
2815 	return (page - pgdat->node_mem_map) + pgdat->node_start_pfn;
2816 }
2817 #elif defined(CONFIG_SPARSEMEM)
2818 struct page *pfn_to_page(unsigned long pfn)
2819 {
2820 	return __section_mem_map_addr(__pfn_to_section(pfn)) + pfn;
2821 }
2822 
2823 unsigned long page_to_pfn(struct page *page)
2824 {
2825 	long section_id = page_to_section(page);
2826 	return page - __section_mem_map_addr(__nr_to_section(section_id));
2827 }
2828 #endif /* CONFIG_FLATMEM/DISCONTIGMME/SPARSEMEM */
2829 EXPORT_SYMBOL(pfn_to_page);
2830 EXPORT_SYMBOL(page_to_pfn);
2831 #endif /* CONFIG_OUT_OF_LINE_PFN_TO_PAGE */
2832