1 /* 2 * linux/mm/page_alloc.c 3 * 4 * Manages the free list, the system allocates free pages here. 5 * Note that kmalloc() lives in slab.c 6 * 7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 8 * Swap reorganised 29.12.95, Stephen Tweedie 9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999 10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999 11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999 12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000 13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002 14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton) 15 */ 16 17 #include <linux/stddef.h> 18 #include <linux/mm.h> 19 #include <linux/swap.h> 20 #include <linux/interrupt.h> 21 #include <linux/pagemap.h> 22 #include <linux/jiffies.h> 23 #include <linux/bootmem.h> 24 #include <linux/memblock.h> 25 #include <linux/compiler.h> 26 #include <linux/kernel.h> 27 #include <linux/kmemcheck.h> 28 #include <linux/kasan.h> 29 #include <linux/module.h> 30 #include <linux/suspend.h> 31 #include <linux/pagevec.h> 32 #include <linux/blkdev.h> 33 #include <linux/slab.h> 34 #include <linux/ratelimit.h> 35 #include <linux/oom.h> 36 #include <linux/notifier.h> 37 #include <linux/topology.h> 38 #include <linux/sysctl.h> 39 #include <linux/cpu.h> 40 #include <linux/cpuset.h> 41 #include <linux/memory_hotplug.h> 42 #include <linux/nodemask.h> 43 #include <linux/vmalloc.h> 44 #include <linux/vmstat.h> 45 #include <linux/mempolicy.h> 46 #include <linux/stop_machine.h> 47 #include <linux/sort.h> 48 #include <linux/pfn.h> 49 #include <linux/backing-dev.h> 50 #include <linux/fault-inject.h> 51 #include <linux/page-isolation.h> 52 #include <linux/page_ext.h> 53 #include <linux/debugobjects.h> 54 #include <linux/kmemleak.h> 55 #include <linux/compaction.h> 56 #include <trace/events/kmem.h> 57 #include <linux/prefetch.h> 58 #include <linux/mm_inline.h> 59 #include <linux/migrate.h> 60 #include <linux/page_ext.h> 61 #include <linux/hugetlb.h> 62 #include <linux/sched/rt.h> 63 #include <linux/page_owner.h> 64 #include <linux/kthread.h> 65 66 #include <asm/sections.h> 67 #include <asm/tlbflush.h> 68 #include <asm/div64.h> 69 #include "internal.h" 70 71 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */ 72 static DEFINE_MUTEX(pcp_batch_high_lock); 73 #define MIN_PERCPU_PAGELIST_FRACTION (8) 74 75 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID 76 DEFINE_PER_CPU(int, numa_node); 77 EXPORT_PER_CPU_SYMBOL(numa_node); 78 #endif 79 80 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 81 /* 82 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly. 83 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined. 84 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem() 85 * defined in <linux/topology.h>. 86 */ 87 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */ 88 EXPORT_PER_CPU_SYMBOL(_numa_mem_); 89 int _node_numa_mem_[MAX_NUMNODES]; 90 #endif 91 92 /* 93 * Array of node states. 94 */ 95 nodemask_t node_states[NR_NODE_STATES] __read_mostly = { 96 [N_POSSIBLE] = NODE_MASK_ALL, 97 [N_ONLINE] = { { [0] = 1UL } }, 98 #ifndef CONFIG_NUMA 99 [N_NORMAL_MEMORY] = { { [0] = 1UL } }, 100 #ifdef CONFIG_HIGHMEM 101 [N_HIGH_MEMORY] = { { [0] = 1UL } }, 102 #endif 103 #ifdef CONFIG_MOVABLE_NODE 104 [N_MEMORY] = { { [0] = 1UL } }, 105 #endif 106 [N_CPU] = { { [0] = 1UL } }, 107 #endif /* NUMA */ 108 }; 109 EXPORT_SYMBOL(node_states); 110 111 /* Protect totalram_pages and zone->managed_pages */ 112 static DEFINE_SPINLOCK(managed_page_count_lock); 113 114 unsigned long totalram_pages __read_mostly; 115 unsigned long totalreserve_pages __read_mostly; 116 unsigned long totalcma_pages __read_mostly; 117 /* 118 * When calculating the number of globally allowed dirty pages, there 119 * is a certain number of per-zone reserves that should not be 120 * considered dirtyable memory. This is the sum of those reserves 121 * over all existing zones that contribute dirtyable memory. 122 */ 123 unsigned long dirty_balance_reserve __read_mostly; 124 125 int percpu_pagelist_fraction; 126 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK; 127 128 /* 129 * A cached value of the page's pageblock's migratetype, used when the page is 130 * put on a pcplist. Used to avoid the pageblock migratetype lookup when 131 * freeing from pcplists in most cases, at the cost of possibly becoming stale. 132 * Also the migratetype set in the page does not necessarily match the pcplist 133 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any 134 * other index - this ensures that it will be put on the correct CMA freelist. 135 */ 136 static inline int get_pcppage_migratetype(struct page *page) 137 { 138 return page->index; 139 } 140 141 static inline void set_pcppage_migratetype(struct page *page, int migratetype) 142 { 143 page->index = migratetype; 144 } 145 146 #ifdef CONFIG_PM_SLEEP 147 /* 148 * The following functions are used by the suspend/hibernate code to temporarily 149 * change gfp_allowed_mask in order to avoid using I/O during memory allocations 150 * while devices are suspended. To avoid races with the suspend/hibernate code, 151 * they should always be called with pm_mutex held (gfp_allowed_mask also should 152 * only be modified with pm_mutex held, unless the suspend/hibernate code is 153 * guaranteed not to run in parallel with that modification). 154 */ 155 156 static gfp_t saved_gfp_mask; 157 158 void pm_restore_gfp_mask(void) 159 { 160 WARN_ON(!mutex_is_locked(&pm_mutex)); 161 if (saved_gfp_mask) { 162 gfp_allowed_mask = saved_gfp_mask; 163 saved_gfp_mask = 0; 164 } 165 } 166 167 void pm_restrict_gfp_mask(void) 168 { 169 WARN_ON(!mutex_is_locked(&pm_mutex)); 170 WARN_ON(saved_gfp_mask); 171 saved_gfp_mask = gfp_allowed_mask; 172 gfp_allowed_mask &= ~GFP_IOFS; 173 } 174 175 bool pm_suspended_storage(void) 176 { 177 if ((gfp_allowed_mask & GFP_IOFS) == GFP_IOFS) 178 return false; 179 return true; 180 } 181 #endif /* CONFIG_PM_SLEEP */ 182 183 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE 184 int pageblock_order __read_mostly; 185 #endif 186 187 static void __free_pages_ok(struct page *page, unsigned int order); 188 189 /* 190 * results with 256, 32 in the lowmem_reserve sysctl: 191 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high) 192 * 1G machine -> (16M dma, 784M normal, 224M high) 193 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA 194 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL 195 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA 196 * 197 * TBD: should special case ZONE_DMA32 machines here - in those we normally 198 * don't need any ZONE_NORMAL reservation 199 */ 200 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = { 201 #ifdef CONFIG_ZONE_DMA 202 256, 203 #endif 204 #ifdef CONFIG_ZONE_DMA32 205 256, 206 #endif 207 #ifdef CONFIG_HIGHMEM 208 32, 209 #endif 210 32, 211 }; 212 213 EXPORT_SYMBOL(totalram_pages); 214 215 static char * const zone_names[MAX_NR_ZONES] = { 216 #ifdef CONFIG_ZONE_DMA 217 "DMA", 218 #endif 219 #ifdef CONFIG_ZONE_DMA32 220 "DMA32", 221 #endif 222 "Normal", 223 #ifdef CONFIG_HIGHMEM 224 "HighMem", 225 #endif 226 "Movable", 227 #ifdef CONFIG_ZONE_DEVICE 228 "Device", 229 #endif 230 }; 231 232 int min_free_kbytes = 1024; 233 int user_min_free_kbytes = -1; 234 235 static unsigned long __meminitdata nr_kernel_pages; 236 static unsigned long __meminitdata nr_all_pages; 237 static unsigned long __meminitdata dma_reserve; 238 239 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 240 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES]; 241 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES]; 242 static unsigned long __initdata required_kernelcore; 243 static unsigned long __initdata required_movablecore; 244 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES]; 245 246 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */ 247 int movable_zone; 248 EXPORT_SYMBOL(movable_zone); 249 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 250 251 #if MAX_NUMNODES > 1 252 int nr_node_ids __read_mostly = MAX_NUMNODES; 253 int nr_online_nodes __read_mostly = 1; 254 EXPORT_SYMBOL(nr_node_ids); 255 EXPORT_SYMBOL(nr_online_nodes); 256 #endif 257 258 int page_group_by_mobility_disabled __read_mostly; 259 260 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 261 static inline void reset_deferred_meminit(pg_data_t *pgdat) 262 { 263 pgdat->first_deferred_pfn = ULONG_MAX; 264 } 265 266 /* Returns true if the struct page for the pfn is uninitialised */ 267 static inline bool __meminit early_page_uninitialised(unsigned long pfn) 268 { 269 if (pfn >= NODE_DATA(early_pfn_to_nid(pfn))->first_deferred_pfn) 270 return true; 271 272 return false; 273 } 274 275 static inline bool early_page_nid_uninitialised(unsigned long pfn, int nid) 276 { 277 if (pfn >= NODE_DATA(nid)->first_deferred_pfn) 278 return true; 279 280 return false; 281 } 282 283 /* 284 * Returns false when the remaining initialisation should be deferred until 285 * later in the boot cycle when it can be parallelised. 286 */ 287 static inline bool update_defer_init(pg_data_t *pgdat, 288 unsigned long pfn, unsigned long zone_end, 289 unsigned long *nr_initialised) 290 { 291 /* Always populate low zones for address-contrained allocations */ 292 if (zone_end < pgdat_end_pfn(pgdat)) 293 return true; 294 295 /* Initialise at least 2G of the highest zone */ 296 (*nr_initialised)++; 297 if (*nr_initialised > (2UL << (30 - PAGE_SHIFT)) && 298 (pfn & (PAGES_PER_SECTION - 1)) == 0) { 299 pgdat->first_deferred_pfn = pfn; 300 return false; 301 } 302 303 return true; 304 } 305 #else 306 static inline void reset_deferred_meminit(pg_data_t *pgdat) 307 { 308 } 309 310 static inline bool early_page_uninitialised(unsigned long pfn) 311 { 312 return false; 313 } 314 315 static inline bool early_page_nid_uninitialised(unsigned long pfn, int nid) 316 { 317 return false; 318 } 319 320 static inline bool update_defer_init(pg_data_t *pgdat, 321 unsigned long pfn, unsigned long zone_end, 322 unsigned long *nr_initialised) 323 { 324 return true; 325 } 326 #endif 327 328 329 void set_pageblock_migratetype(struct page *page, int migratetype) 330 { 331 if (unlikely(page_group_by_mobility_disabled && 332 migratetype < MIGRATE_PCPTYPES)) 333 migratetype = MIGRATE_UNMOVABLE; 334 335 set_pageblock_flags_group(page, (unsigned long)migratetype, 336 PB_migrate, PB_migrate_end); 337 } 338 339 #ifdef CONFIG_DEBUG_VM 340 static int page_outside_zone_boundaries(struct zone *zone, struct page *page) 341 { 342 int ret = 0; 343 unsigned seq; 344 unsigned long pfn = page_to_pfn(page); 345 unsigned long sp, start_pfn; 346 347 do { 348 seq = zone_span_seqbegin(zone); 349 start_pfn = zone->zone_start_pfn; 350 sp = zone->spanned_pages; 351 if (!zone_spans_pfn(zone, pfn)) 352 ret = 1; 353 } while (zone_span_seqretry(zone, seq)); 354 355 if (ret) 356 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n", 357 pfn, zone_to_nid(zone), zone->name, 358 start_pfn, start_pfn + sp); 359 360 return ret; 361 } 362 363 static int page_is_consistent(struct zone *zone, struct page *page) 364 { 365 if (!pfn_valid_within(page_to_pfn(page))) 366 return 0; 367 if (zone != page_zone(page)) 368 return 0; 369 370 return 1; 371 } 372 /* 373 * Temporary debugging check for pages not lying within a given zone. 374 */ 375 static int bad_range(struct zone *zone, struct page *page) 376 { 377 if (page_outside_zone_boundaries(zone, page)) 378 return 1; 379 if (!page_is_consistent(zone, page)) 380 return 1; 381 382 return 0; 383 } 384 #else 385 static inline int bad_range(struct zone *zone, struct page *page) 386 { 387 return 0; 388 } 389 #endif 390 391 static void bad_page(struct page *page, const char *reason, 392 unsigned long bad_flags) 393 { 394 static unsigned long resume; 395 static unsigned long nr_shown; 396 static unsigned long nr_unshown; 397 398 /* Don't complain about poisoned pages */ 399 if (PageHWPoison(page)) { 400 page_mapcount_reset(page); /* remove PageBuddy */ 401 return; 402 } 403 404 /* 405 * Allow a burst of 60 reports, then keep quiet for that minute; 406 * or allow a steady drip of one report per second. 407 */ 408 if (nr_shown == 60) { 409 if (time_before(jiffies, resume)) { 410 nr_unshown++; 411 goto out; 412 } 413 if (nr_unshown) { 414 printk(KERN_ALERT 415 "BUG: Bad page state: %lu messages suppressed\n", 416 nr_unshown); 417 nr_unshown = 0; 418 } 419 nr_shown = 0; 420 } 421 if (nr_shown++ == 0) 422 resume = jiffies + 60 * HZ; 423 424 printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n", 425 current->comm, page_to_pfn(page)); 426 dump_page_badflags(page, reason, bad_flags); 427 428 print_modules(); 429 dump_stack(); 430 out: 431 /* Leave bad fields for debug, except PageBuddy could make trouble */ 432 page_mapcount_reset(page); /* remove PageBuddy */ 433 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 434 } 435 436 /* 437 * Higher-order pages are called "compound pages". They are structured thusly: 438 * 439 * The first PAGE_SIZE page is called the "head page". 440 * 441 * The remaining PAGE_SIZE pages are called "tail pages". 442 * 443 * All pages have PG_compound set. All tail pages have their ->first_page 444 * pointing at the head page. 445 * 446 * The first tail page's ->lru.next holds the address of the compound page's 447 * put_page() function. Its ->lru.prev holds the order of allocation. 448 * This usage means that zero-order pages may not be compound. 449 */ 450 451 static void free_compound_page(struct page *page) 452 { 453 __free_pages_ok(page, compound_order(page)); 454 } 455 456 void prep_compound_page(struct page *page, unsigned long order) 457 { 458 int i; 459 int nr_pages = 1 << order; 460 461 set_compound_page_dtor(page, free_compound_page); 462 set_compound_order(page, order); 463 __SetPageHead(page); 464 for (i = 1; i < nr_pages; i++) { 465 struct page *p = page + i; 466 set_page_count(p, 0); 467 p->first_page = page; 468 /* Make sure p->first_page is always valid for PageTail() */ 469 smp_wmb(); 470 __SetPageTail(p); 471 } 472 } 473 474 #ifdef CONFIG_DEBUG_PAGEALLOC 475 unsigned int _debug_guardpage_minorder; 476 bool _debug_pagealloc_enabled __read_mostly; 477 bool _debug_guardpage_enabled __read_mostly; 478 479 static int __init early_debug_pagealloc(char *buf) 480 { 481 if (!buf) 482 return -EINVAL; 483 484 if (strcmp(buf, "on") == 0) 485 _debug_pagealloc_enabled = true; 486 487 return 0; 488 } 489 early_param("debug_pagealloc", early_debug_pagealloc); 490 491 static bool need_debug_guardpage(void) 492 { 493 /* If we don't use debug_pagealloc, we don't need guard page */ 494 if (!debug_pagealloc_enabled()) 495 return false; 496 497 return true; 498 } 499 500 static void init_debug_guardpage(void) 501 { 502 if (!debug_pagealloc_enabled()) 503 return; 504 505 _debug_guardpage_enabled = true; 506 } 507 508 struct page_ext_operations debug_guardpage_ops = { 509 .need = need_debug_guardpage, 510 .init = init_debug_guardpage, 511 }; 512 513 static int __init debug_guardpage_minorder_setup(char *buf) 514 { 515 unsigned long res; 516 517 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) { 518 printk(KERN_ERR "Bad debug_guardpage_minorder value\n"); 519 return 0; 520 } 521 _debug_guardpage_minorder = res; 522 printk(KERN_INFO "Setting debug_guardpage_minorder to %lu\n", res); 523 return 0; 524 } 525 __setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup); 526 527 static inline void set_page_guard(struct zone *zone, struct page *page, 528 unsigned int order, int migratetype) 529 { 530 struct page_ext *page_ext; 531 532 if (!debug_guardpage_enabled()) 533 return; 534 535 page_ext = lookup_page_ext(page); 536 __set_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags); 537 538 INIT_LIST_HEAD(&page->lru); 539 set_page_private(page, order); 540 /* Guard pages are not available for any usage */ 541 __mod_zone_freepage_state(zone, -(1 << order), migratetype); 542 } 543 544 static inline void clear_page_guard(struct zone *zone, struct page *page, 545 unsigned int order, int migratetype) 546 { 547 struct page_ext *page_ext; 548 549 if (!debug_guardpage_enabled()) 550 return; 551 552 page_ext = lookup_page_ext(page); 553 __clear_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags); 554 555 set_page_private(page, 0); 556 if (!is_migrate_isolate(migratetype)) 557 __mod_zone_freepage_state(zone, (1 << order), migratetype); 558 } 559 #else 560 struct page_ext_operations debug_guardpage_ops = { NULL, }; 561 static inline void set_page_guard(struct zone *zone, struct page *page, 562 unsigned int order, int migratetype) {} 563 static inline void clear_page_guard(struct zone *zone, struct page *page, 564 unsigned int order, int migratetype) {} 565 #endif 566 567 static inline void set_page_order(struct page *page, unsigned int order) 568 { 569 set_page_private(page, order); 570 __SetPageBuddy(page); 571 } 572 573 static inline void rmv_page_order(struct page *page) 574 { 575 __ClearPageBuddy(page); 576 set_page_private(page, 0); 577 } 578 579 /* 580 * This function checks whether a page is free && is the buddy 581 * we can do coalesce a page and its buddy if 582 * (a) the buddy is not in a hole && 583 * (b) the buddy is in the buddy system && 584 * (c) a page and its buddy have the same order && 585 * (d) a page and its buddy are in the same zone. 586 * 587 * For recording whether a page is in the buddy system, we set ->_mapcount 588 * PAGE_BUDDY_MAPCOUNT_VALUE. 589 * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is 590 * serialized by zone->lock. 591 * 592 * For recording page's order, we use page_private(page). 593 */ 594 static inline int page_is_buddy(struct page *page, struct page *buddy, 595 unsigned int order) 596 { 597 if (!pfn_valid_within(page_to_pfn(buddy))) 598 return 0; 599 600 if (page_is_guard(buddy) && page_order(buddy) == order) { 601 if (page_zone_id(page) != page_zone_id(buddy)) 602 return 0; 603 604 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy); 605 606 return 1; 607 } 608 609 if (PageBuddy(buddy) && page_order(buddy) == order) { 610 /* 611 * zone check is done late to avoid uselessly 612 * calculating zone/node ids for pages that could 613 * never merge. 614 */ 615 if (page_zone_id(page) != page_zone_id(buddy)) 616 return 0; 617 618 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy); 619 620 return 1; 621 } 622 return 0; 623 } 624 625 /* 626 * Freeing function for a buddy system allocator. 627 * 628 * The concept of a buddy system is to maintain direct-mapped table 629 * (containing bit values) for memory blocks of various "orders". 630 * The bottom level table contains the map for the smallest allocatable 631 * units of memory (here, pages), and each level above it describes 632 * pairs of units from the levels below, hence, "buddies". 633 * At a high level, all that happens here is marking the table entry 634 * at the bottom level available, and propagating the changes upward 635 * as necessary, plus some accounting needed to play nicely with other 636 * parts of the VM system. 637 * At each level, we keep a list of pages, which are heads of continuous 638 * free pages of length of (1 << order) and marked with _mapcount 639 * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page) 640 * field. 641 * So when we are allocating or freeing one, we can derive the state of the 642 * other. That is, if we allocate a small block, and both were 643 * free, the remainder of the region must be split into blocks. 644 * If a block is freed, and its buddy is also free, then this 645 * triggers coalescing into a block of larger size. 646 * 647 * -- nyc 648 */ 649 650 static inline void __free_one_page(struct page *page, 651 unsigned long pfn, 652 struct zone *zone, unsigned int order, 653 int migratetype) 654 { 655 unsigned long page_idx; 656 unsigned long combined_idx; 657 unsigned long uninitialized_var(buddy_idx); 658 struct page *buddy; 659 int max_order = MAX_ORDER; 660 661 VM_BUG_ON(!zone_is_initialized(zone)); 662 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page); 663 664 VM_BUG_ON(migratetype == -1); 665 if (is_migrate_isolate(migratetype)) { 666 /* 667 * We restrict max order of merging to prevent merge 668 * between freepages on isolate pageblock and normal 669 * pageblock. Without this, pageblock isolation 670 * could cause incorrect freepage accounting. 671 */ 672 max_order = min(MAX_ORDER, pageblock_order + 1); 673 } else { 674 __mod_zone_freepage_state(zone, 1 << order, migratetype); 675 } 676 677 page_idx = pfn & ((1 << max_order) - 1); 678 679 VM_BUG_ON_PAGE(page_idx & ((1 << order) - 1), page); 680 VM_BUG_ON_PAGE(bad_range(zone, page), page); 681 682 while (order < max_order - 1) { 683 buddy_idx = __find_buddy_index(page_idx, order); 684 buddy = page + (buddy_idx - page_idx); 685 if (!page_is_buddy(page, buddy, order)) 686 break; 687 /* 688 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page, 689 * merge with it and move up one order. 690 */ 691 if (page_is_guard(buddy)) { 692 clear_page_guard(zone, buddy, order, migratetype); 693 } else { 694 list_del(&buddy->lru); 695 zone->free_area[order].nr_free--; 696 rmv_page_order(buddy); 697 } 698 combined_idx = buddy_idx & page_idx; 699 page = page + (combined_idx - page_idx); 700 page_idx = combined_idx; 701 order++; 702 } 703 set_page_order(page, order); 704 705 /* 706 * If this is not the largest possible page, check if the buddy 707 * of the next-highest order is free. If it is, it's possible 708 * that pages are being freed that will coalesce soon. In case, 709 * that is happening, add the free page to the tail of the list 710 * so it's less likely to be used soon and more likely to be merged 711 * as a higher order page 712 */ 713 if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) { 714 struct page *higher_page, *higher_buddy; 715 combined_idx = buddy_idx & page_idx; 716 higher_page = page + (combined_idx - page_idx); 717 buddy_idx = __find_buddy_index(combined_idx, order + 1); 718 higher_buddy = higher_page + (buddy_idx - combined_idx); 719 if (page_is_buddy(higher_page, higher_buddy, order + 1)) { 720 list_add_tail(&page->lru, 721 &zone->free_area[order].free_list[migratetype]); 722 goto out; 723 } 724 } 725 726 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]); 727 out: 728 zone->free_area[order].nr_free++; 729 } 730 731 static inline int free_pages_check(struct page *page) 732 { 733 const char *bad_reason = NULL; 734 unsigned long bad_flags = 0; 735 736 if (unlikely(page_mapcount(page))) 737 bad_reason = "nonzero mapcount"; 738 if (unlikely(page->mapping != NULL)) 739 bad_reason = "non-NULL mapping"; 740 if (unlikely(atomic_read(&page->_count) != 0)) 741 bad_reason = "nonzero _count"; 742 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) { 743 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set"; 744 bad_flags = PAGE_FLAGS_CHECK_AT_FREE; 745 } 746 #ifdef CONFIG_MEMCG 747 if (unlikely(page->mem_cgroup)) 748 bad_reason = "page still charged to cgroup"; 749 #endif 750 if (unlikely(bad_reason)) { 751 bad_page(page, bad_reason, bad_flags); 752 return 1; 753 } 754 page_cpupid_reset_last(page); 755 if (page->flags & PAGE_FLAGS_CHECK_AT_PREP) 756 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP; 757 return 0; 758 } 759 760 /* 761 * Frees a number of pages from the PCP lists 762 * Assumes all pages on list are in same zone, and of same order. 763 * count is the number of pages to free. 764 * 765 * If the zone was previously in an "all pages pinned" state then look to 766 * see if this freeing clears that state. 767 * 768 * And clear the zone's pages_scanned counter, to hold off the "all pages are 769 * pinned" detection logic. 770 */ 771 static void free_pcppages_bulk(struct zone *zone, int count, 772 struct per_cpu_pages *pcp) 773 { 774 int migratetype = 0; 775 int batch_free = 0; 776 int to_free = count; 777 unsigned long nr_scanned; 778 779 spin_lock(&zone->lock); 780 nr_scanned = zone_page_state(zone, NR_PAGES_SCANNED); 781 if (nr_scanned) 782 __mod_zone_page_state(zone, NR_PAGES_SCANNED, -nr_scanned); 783 784 while (to_free) { 785 struct page *page; 786 struct list_head *list; 787 788 /* 789 * Remove pages from lists in a round-robin fashion. A 790 * batch_free count is maintained that is incremented when an 791 * empty list is encountered. This is so more pages are freed 792 * off fuller lists instead of spinning excessively around empty 793 * lists 794 */ 795 do { 796 batch_free++; 797 if (++migratetype == MIGRATE_PCPTYPES) 798 migratetype = 0; 799 list = &pcp->lists[migratetype]; 800 } while (list_empty(list)); 801 802 /* This is the only non-empty list. Free them all. */ 803 if (batch_free == MIGRATE_PCPTYPES) 804 batch_free = to_free; 805 806 do { 807 int mt; /* migratetype of the to-be-freed page */ 808 809 page = list_entry(list->prev, struct page, lru); 810 /* must delete as __free_one_page list manipulates */ 811 list_del(&page->lru); 812 813 mt = get_pcppage_migratetype(page); 814 /* MIGRATE_ISOLATE page should not go to pcplists */ 815 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page); 816 /* Pageblock could have been isolated meanwhile */ 817 if (unlikely(has_isolate_pageblock(zone))) 818 mt = get_pageblock_migratetype(page); 819 820 /* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */ 821 __free_one_page(page, page_to_pfn(page), zone, 0, mt); 822 trace_mm_page_pcpu_drain(page, 0, mt); 823 } while (--to_free && --batch_free && !list_empty(list)); 824 } 825 spin_unlock(&zone->lock); 826 } 827 828 static void free_one_page(struct zone *zone, 829 struct page *page, unsigned long pfn, 830 unsigned int order, 831 int migratetype) 832 { 833 unsigned long nr_scanned; 834 spin_lock(&zone->lock); 835 nr_scanned = zone_page_state(zone, NR_PAGES_SCANNED); 836 if (nr_scanned) 837 __mod_zone_page_state(zone, NR_PAGES_SCANNED, -nr_scanned); 838 839 if (unlikely(has_isolate_pageblock(zone) || 840 is_migrate_isolate(migratetype))) { 841 migratetype = get_pfnblock_migratetype(page, pfn); 842 } 843 __free_one_page(page, pfn, zone, order, migratetype); 844 spin_unlock(&zone->lock); 845 } 846 847 static int free_tail_pages_check(struct page *head_page, struct page *page) 848 { 849 if (!IS_ENABLED(CONFIG_DEBUG_VM)) 850 return 0; 851 if (unlikely(!PageTail(page))) { 852 bad_page(page, "PageTail not set", 0); 853 return 1; 854 } 855 if (unlikely(page->first_page != head_page)) { 856 bad_page(page, "first_page not consistent", 0); 857 return 1; 858 } 859 return 0; 860 } 861 862 static void __meminit __init_single_page(struct page *page, unsigned long pfn, 863 unsigned long zone, int nid) 864 { 865 set_page_links(page, zone, nid, pfn); 866 init_page_count(page); 867 page_mapcount_reset(page); 868 page_cpupid_reset_last(page); 869 870 INIT_LIST_HEAD(&page->lru); 871 #ifdef WANT_PAGE_VIRTUAL 872 /* The shift won't overflow because ZONE_NORMAL is below 4G. */ 873 if (!is_highmem_idx(zone)) 874 set_page_address(page, __va(pfn << PAGE_SHIFT)); 875 #endif 876 } 877 878 static void __meminit __init_single_pfn(unsigned long pfn, unsigned long zone, 879 int nid) 880 { 881 return __init_single_page(pfn_to_page(pfn), pfn, zone, nid); 882 } 883 884 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 885 static void init_reserved_page(unsigned long pfn) 886 { 887 pg_data_t *pgdat; 888 int nid, zid; 889 890 if (!early_page_uninitialised(pfn)) 891 return; 892 893 nid = early_pfn_to_nid(pfn); 894 pgdat = NODE_DATA(nid); 895 896 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 897 struct zone *zone = &pgdat->node_zones[zid]; 898 899 if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone)) 900 break; 901 } 902 __init_single_pfn(pfn, zid, nid); 903 } 904 #else 905 static inline void init_reserved_page(unsigned long pfn) 906 { 907 } 908 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */ 909 910 /* 911 * Initialised pages do not have PageReserved set. This function is 912 * called for each range allocated by the bootmem allocator and 913 * marks the pages PageReserved. The remaining valid pages are later 914 * sent to the buddy page allocator. 915 */ 916 void __meminit reserve_bootmem_region(unsigned long start, unsigned long end) 917 { 918 unsigned long start_pfn = PFN_DOWN(start); 919 unsigned long end_pfn = PFN_UP(end); 920 921 for (; start_pfn < end_pfn; start_pfn++) { 922 if (pfn_valid(start_pfn)) { 923 struct page *page = pfn_to_page(start_pfn); 924 925 init_reserved_page(start_pfn); 926 SetPageReserved(page); 927 } 928 } 929 } 930 931 static bool free_pages_prepare(struct page *page, unsigned int order) 932 { 933 bool compound = PageCompound(page); 934 int i, bad = 0; 935 936 VM_BUG_ON_PAGE(PageTail(page), page); 937 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page); 938 939 trace_mm_page_free(page, order); 940 kmemcheck_free_shadow(page, order); 941 kasan_free_pages(page, order); 942 943 if (PageAnon(page)) 944 page->mapping = NULL; 945 bad += free_pages_check(page); 946 for (i = 1; i < (1 << order); i++) { 947 if (compound) 948 bad += free_tail_pages_check(page, page + i); 949 bad += free_pages_check(page + i); 950 } 951 if (bad) 952 return false; 953 954 reset_page_owner(page, order); 955 956 if (!PageHighMem(page)) { 957 debug_check_no_locks_freed(page_address(page), 958 PAGE_SIZE << order); 959 debug_check_no_obj_freed(page_address(page), 960 PAGE_SIZE << order); 961 } 962 arch_free_page(page, order); 963 kernel_map_pages(page, 1 << order, 0); 964 965 return true; 966 } 967 968 static void __free_pages_ok(struct page *page, unsigned int order) 969 { 970 unsigned long flags; 971 int migratetype; 972 unsigned long pfn = page_to_pfn(page); 973 974 if (!free_pages_prepare(page, order)) 975 return; 976 977 migratetype = get_pfnblock_migratetype(page, pfn); 978 local_irq_save(flags); 979 __count_vm_events(PGFREE, 1 << order); 980 free_one_page(page_zone(page), page, pfn, order, migratetype); 981 local_irq_restore(flags); 982 } 983 984 static void __init __free_pages_boot_core(struct page *page, 985 unsigned long pfn, unsigned int order) 986 { 987 unsigned int nr_pages = 1 << order; 988 struct page *p = page; 989 unsigned int loop; 990 991 prefetchw(p); 992 for (loop = 0; loop < (nr_pages - 1); loop++, p++) { 993 prefetchw(p + 1); 994 __ClearPageReserved(p); 995 set_page_count(p, 0); 996 } 997 __ClearPageReserved(p); 998 set_page_count(p, 0); 999 1000 page_zone(page)->managed_pages += nr_pages; 1001 set_page_refcounted(page); 1002 __free_pages(page, order); 1003 } 1004 1005 #if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \ 1006 defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) 1007 1008 static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata; 1009 1010 int __meminit early_pfn_to_nid(unsigned long pfn) 1011 { 1012 static DEFINE_SPINLOCK(early_pfn_lock); 1013 int nid; 1014 1015 spin_lock(&early_pfn_lock); 1016 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache); 1017 if (nid < 0) 1018 nid = 0; 1019 spin_unlock(&early_pfn_lock); 1020 1021 return nid; 1022 } 1023 #endif 1024 1025 #ifdef CONFIG_NODES_SPAN_OTHER_NODES 1026 static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node, 1027 struct mminit_pfnnid_cache *state) 1028 { 1029 int nid; 1030 1031 nid = __early_pfn_to_nid(pfn, state); 1032 if (nid >= 0 && nid != node) 1033 return false; 1034 return true; 1035 } 1036 1037 /* Only safe to use early in boot when initialisation is single-threaded */ 1038 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node) 1039 { 1040 return meminit_pfn_in_nid(pfn, node, &early_pfnnid_cache); 1041 } 1042 1043 #else 1044 1045 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node) 1046 { 1047 return true; 1048 } 1049 static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node, 1050 struct mminit_pfnnid_cache *state) 1051 { 1052 return true; 1053 } 1054 #endif 1055 1056 1057 void __init __free_pages_bootmem(struct page *page, unsigned long pfn, 1058 unsigned int order) 1059 { 1060 if (early_page_uninitialised(pfn)) 1061 return; 1062 return __free_pages_boot_core(page, pfn, order); 1063 } 1064 1065 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 1066 static void __init deferred_free_range(struct page *page, 1067 unsigned long pfn, int nr_pages) 1068 { 1069 int i; 1070 1071 if (!page) 1072 return; 1073 1074 /* Free a large naturally-aligned chunk if possible */ 1075 if (nr_pages == MAX_ORDER_NR_PAGES && 1076 (pfn & (MAX_ORDER_NR_PAGES-1)) == 0) { 1077 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 1078 __free_pages_boot_core(page, pfn, MAX_ORDER-1); 1079 return; 1080 } 1081 1082 for (i = 0; i < nr_pages; i++, page++, pfn++) 1083 __free_pages_boot_core(page, pfn, 0); 1084 } 1085 1086 /* Completion tracking for deferred_init_memmap() threads */ 1087 static atomic_t pgdat_init_n_undone __initdata; 1088 static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp); 1089 1090 static inline void __init pgdat_init_report_one_done(void) 1091 { 1092 if (atomic_dec_and_test(&pgdat_init_n_undone)) 1093 complete(&pgdat_init_all_done_comp); 1094 } 1095 1096 /* Initialise remaining memory on a node */ 1097 static int __init deferred_init_memmap(void *data) 1098 { 1099 pg_data_t *pgdat = data; 1100 int nid = pgdat->node_id; 1101 struct mminit_pfnnid_cache nid_init_state = { }; 1102 unsigned long start = jiffies; 1103 unsigned long nr_pages = 0; 1104 unsigned long walk_start, walk_end; 1105 int i, zid; 1106 struct zone *zone; 1107 unsigned long first_init_pfn = pgdat->first_deferred_pfn; 1108 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id); 1109 1110 if (first_init_pfn == ULONG_MAX) { 1111 pgdat_init_report_one_done(); 1112 return 0; 1113 } 1114 1115 /* Bind memory initialisation thread to a local node if possible */ 1116 if (!cpumask_empty(cpumask)) 1117 set_cpus_allowed_ptr(current, cpumask); 1118 1119 /* Sanity check boundaries */ 1120 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn); 1121 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat)); 1122 pgdat->first_deferred_pfn = ULONG_MAX; 1123 1124 /* Only the highest zone is deferred so find it */ 1125 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 1126 zone = pgdat->node_zones + zid; 1127 if (first_init_pfn < zone_end_pfn(zone)) 1128 break; 1129 } 1130 1131 for_each_mem_pfn_range(i, nid, &walk_start, &walk_end, NULL) { 1132 unsigned long pfn, end_pfn; 1133 struct page *page = NULL; 1134 struct page *free_base_page = NULL; 1135 unsigned long free_base_pfn = 0; 1136 int nr_to_free = 0; 1137 1138 end_pfn = min(walk_end, zone_end_pfn(zone)); 1139 pfn = first_init_pfn; 1140 if (pfn < walk_start) 1141 pfn = walk_start; 1142 if (pfn < zone->zone_start_pfn) 1143 pfn = zone->zone_start_pfn; 1144 1145 for (; pfn < end_pfn; pfn++) { 1146 if (!pfn_valid_within(pfn)) 1147 goto free_range; 1148 1149 /* 1150 * Ensure pfn_valid is checked every 1151 * MAX_ORDER_NR_PAGES for memory holes 1152 */ 1153 if ((pfn & (MAX_ORDER_NR_PAGES - 1)) == 0) { 1154 if (!pfn_valid(pfn)) { 1155 page = NULL; 1156 goto free_range; 1157 } 1158 } 1159 1160 if (!meminit_pfn_in_nid(pfn, nid, &nid_init_state)) { 1161 page = NULL; 1162 goto free_range; 1163 } 1164 1165 /* Minimise pfn page lookups and scheduler checks */ 1166 if (page && (pfn & (MAX_ORDER_NR_PAGES - 1)) != 0) { 1167 page++; 1168 } else { 1169 nr_pages += nr_to_free; 1170 deferred_free_range(free_base_page, 1171 free_base_pfn, nr_to_free); 1172 free_base_page = NULL; 1173 free_base_pfn = nr_to_free = 0; 1174 1175 page = pfn_to_page(pfn); 1176 cond_resched(); 1177 } 1178 1179 if (page->flags) { 1180 VM_BUG_ON(page_zone(page) != zone); 1181 goto free_range; 1182 } 1183 1184 __init_single_page(page, pfn, zid, nid); 1185 if (!free_base_page) { 1186 free_base_page = page; 1187 free_base_pfn = pfn; 1188 nr_to_free = 0; 1189 } 1190 nr_to_free++; 1191 1192 /* Where possible, batch up pages for a single free */ 1193 continue; 1194 free_range: 1195 /* Free the current block of pages to allocator */ 1196 nr_pages += nr_to_free; 1197 deferred_free_range(free_base_page, free_base_pfn, 1198 nr_to_free); 1199 free_base_page = NULL; 1200 free_base_pfn = nr_to_free = 0; 1201 } 1202 1203 first_init_pfn = max(end_pfn, first_init_pfn); 1204 } 1205 1206 /* Sanity check that the next zone really is unpopulated */ 1207 WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone)); 1208 1209 pr_info("node %d initialised, %lu pages in %ums\n", nid, nr_pages, 1210 jiffies_to_msecs(jiffies - start)); 1211 1212 pgdat_init_report_one_done(); 1213 return 0; 1214 } 1215 1216 void __init page_alloc_init_late(void) 1217 { 1218 int nid; 1219 1220 /* There will be num_node_state(N_MEMORY) threads */ 1221 atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY)); 1222 for_each_node_state(nid, N_MEMORY) { 1223 kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid); 1224 } 1225 1226 /* Block until all are initialised */ 1227 wait_for_completion(&pgdat_init_all_done_comp); 1228 1229 /* Reinit limits that are based on free pages after the kernel is up */ 1230 files_maxfiles_init(); 1231 } 1232 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */ 1233 1234 #ifdef CONFIG_CMA 1235 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */ 1236 void __init init_cma_reserved_pageblock(struct page *page) 1237 { 1238 unsigned i = pageblock_nr_pages; 1239 struct page *p = page; 1240 1241 do { 1242 __ClearPageReserved(p); 1243 set_page_count(p, 0); 1244 } while (++p, --i); 1245 1246 set_pageblock_migratetype(page, MIGRATE_CMA); 1247 1248 if (pageblock_order >= MAX_ORDER) { 1249 i = pageblock_nr_pages; 1250 p = page; 1251 do { 1252 set_page_refcounted(p); 1253 __free_pages(p, MAX_ORDER - 1); 1254 p += MAX_ORDER_NR_PAGES; 1255 } while (i -= MAX_ORDER_NR_PAGES); 1256 } else { 1257 set_page_refcounted(page); 1258 __free_pages(page, pageblock_order); 1259 } 1260 1261 adjust_managed_page_count(page, pageblock_nr_pages); 1262 } 1263 #endif 1264 1265 /* 1266 * The order of subdivision here is critical for the IO subsystem. 1267 * Please do not alter this order without good reasons and regression 1268 * testing. Specifically, as large blocks of memory are subdivided, 1269 * the order in which smaller blocks are delivered depends on the order 1270 * they're subdivided in this function. This is the primary factor 1271 * influencing the order in which pages are delivered to the IO 1272 * subsystem according to empirical testing, and this is also justified 1273 * by considering the behavior of a buddy system containing a single 1274 * large block of memory acted on by a series of small allocations. 1275 * This behavior is a critical factor in sglist merging's success. 1276 * 1277 * -- nyc 1278 */ 1279 static inline void expand(struct zone *zone, struct page *page, 1280 int low, int high, struct free_area *area, 1281 int migratetype) 1282 { 1283 unsigned long size = 1 << high; 1284 1285 while (high > low) { 1286 area--; 1287 high--; 1288 size >>= 1; 1289 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]); 1290 1291 if (IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) && 1292 debug_guardpage_enabled() && 1293 high < debug_guardpage_minorder()) { 1294 /* 1295 * Mark as guard pages (or page), that will allow to 1296 * merge back to allocator when buddy will be freed. 1297 * Corresponding page table entries will not be touched, 1298 * pages will stay not present in virtual address space 1299 */ 1300 set_page_guard(zone, &page[size], high, migratetype); 1301 continue; 1302 } 1303 list_add(&page[size].lru, &area->free_list[migratetype]); 1304 area->nr_free++; 1305 set_page_order(&page[size], high); 1306 } 1307 } 1308 1309 /* 1310 * This page is about to be returned from the page allocator 1311 */ 1312 static inline int check_new_page(struct page *page) 1313 { 1314 const char *bad_reason = NULL; 1315 unsigned long bad_flags = 0; 1316 1317 if (unlikely(page_mapcount(page))) 1318 bad_reason = "nonzero mapcount"; 1319 if (unlikely(page->mapping != NULL)) 1320 bad_reason = "non-NULL mapping"; 1321 if (unlikely(atomic_read(&page->_count) != 0)) 1322 bad_reason = "nonzero _count"; 1323 if (unlikely(page->flags & __PG_HWPOISON)) { 1324 bad_reason = "HWPoisoned (hardware-corrupted)"; 1325 bad_flags = __PG_HWPOISON; 1326 } 1327 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) { 1328 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set"; 1329 bad_flags = PAGE_FLAGS_CHECK_AT_PREP; 1330 } 1331 #ifdef CONFIG_MEMCG 1332 if (unlikely(page->mem_cgroup)) 1333 bad_reason = "page still charged to cgroup"; 1334 #endif 1335 if (unlikely(bad_reason)) { 1336 bad_page(page, bad_reason, bad_flags); 1337 return 1; 1338 } 1339 return 0; 1340 } 1341 1342 static int prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags, 1343 int alloc_flags) 1344 { 1345 int i; 1346 1347 for (i = 0; i < (1 << order); i++) { 1348 struct page *p = page + i; 1349 if (unlikely(check_new_page(p))) 1350 return 1; 1351 } 1352 1353 set_page_private(page, 0); 1354 set_page_refcounted(page); 1355 1356 arch_alloc_page(page, order); 1357 kernel_map_pages(page, 1 << order, 1); 1358 kasan_alloc_pages(page, order); 1359 1360 if (gfp_flags & __GFP_ZERO) 1361 for (i = 0; i < (1 << order); i++) 1362 clear_highpage(page + i); 1363 1364 if (order && (gfp_flags & __GFP_COMP)) 1365 prep_compound_page(page, order); 1366 1367 set_page_owner(page, order, gfp_flags); 1368 1369 /* 1370 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to 1371 * allocate the page. The expectation is that the caller is taking 1372 * steps that will free more memory. The caller should avoid the page 1373 * being used for !PFMEMALLOC purposes. 1374 */ 1375 if (alloc_flags & ALLOC_NO_WATERMARKS) 1376 set_page_pfmemalloc(page); 1377 else 1378 clear_page_pfmemalloc(page); 1379 1380 return 0; 1381 } 1382 1383 /* 1384 * Go through the free lists for the given migratetype and remove 1385 * the smallest available page from the freelists 1386 */ 1387 static inline 1388 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order, 1389 int migratetype) 1390 { 1391 unsigned int current_order; 1392 struct free_area *area; 1393 struct page *page; 1394 1395 /* Find a page of the appropriate size in the preferred list */ 1396 for (current_order = order; current_order < MAX_ORDER; ++current_order) { 1397 area = &(zone->free_area[current_order]); 1398 if (list_empty(&area->free_list[migratetype])) 1399 continue; 1400 1401 page = list_entry(area->free_list[migratetype].next, 1402 struct page, lru); 1403 list_del(&page->lru); 1404 rmv_page_order(page); 1405 area->nr_free--; 1406 expand(zone, page, order, current_order, area, migratetype); 1407 set_pcppage_migratetype(page, migratetype); 1408 return page; 1409 } 1410 1411 return NULL; 1412 } 1413 1414 1415 /* 1416 * This array describes the order lists are fallen back to when 1417 * the free lists for the desirable migrate type are depleted 1418 */ 1419 static int fallbacks[MIGRATE_TYPES][4] = { 1420 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE }, 1421 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE }, 1422 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE }, 1423 #ifdef CONFIG_CMA 1424 [MIGRATE_CMA] = { MIGRATE_RESERVE }, /* Never used */ 1425 #endif 1426 [MIGRATE_RESERVE] = { MIGRATE_RESERVE }, /* Never used */ 1427 #ifdef CONFIG_MEMORY_ISOLATION 1428 [MIGRATE_ISOLATE] = { MIGRATE_RESERVE }, /* Never used */ 1429 #endif 1430 }; 1431 1432 #ifdef CONFIG_CMA 1433 static struct page *__rmqueue_cma_fallback(struct zone *zone, 1434 unsigned int order) 1435 { 1436 return __rmqueue_smallest(zone, order, MIGRATE_CMA); 1437 } 1438 #else 1439 static inline struct page *__rmqueue_cma_fallback(struct zone *zone, 1440 unsigned int order) { return NULL; } 1441 #endif 1442 1443 /* 1444 * Move the free pages in a range to the free lists of the requested type. 1445 * Note that start_page and end_pages are not aligned on a pageblock 1446 * boundary. If alignment is required, use move_freepages_block() 1447 */ 1448 int move_freepages(struct zone *zone, 1449 struct page *start_page, struct page *end_page, 1450 int migratetype) 1451 { 1452 struct page *page; 1453 unsigned long order; 1454 int pages_moved = 0; 1455 1456 #ifndef CONFIG_HOLES_IN_ZONE 1457 /* 1458 * page_zone is not safe to call in this context when 1459 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant 1460 * anyway as we check zone boundaries in move_freepages_block(). 1461 * Remove at a later date when no bug reports exist related to 1462 * grouping pages by mobility 1463 */ 1464 VM_BUG_ON(page_zone(start_page) != page_zone(end_page)); 1465 #endif 1466 1467 for (page = start_page; page <= end_page;) { 1468 /* Make sure we are not inadvertently changing nodes */ 1469 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page); 1470 1471 if (!pfn_valid_within(page_to_pfn(page))) { 1472 page++; 1473 continue; 1474 } 1475 1476 if (!PageBuddy(page)) { 1477 page++; 1478 continue; 1479 } 1480 1481 order = page_order(page); 1482 list_move(&page->lru, 1483 &zone->free_area[order].free_list[migratetype]); 1484 page += 1 << order; 1485 pages_moved += 1 << order; 1486 } 1487 1488 return pages_moved; 1489 } 1490 1491 int move_freepages_block(struct zone *zone, struct page *page, 1492 int migratetype) 1493 { 1494 unsigned long start_pfn, end_pfn; 1495 struct page *start_page, *end_page; 1496 1497 start_pfn = page_to_pfn(page); 1498 start_pfn = start_pfn & ~(pageblock_nr_pages-1); 1499 start_page = pfn_to_page(start_pfn); 1500 end_page = start_page + pageblock_nr_pages - 1; 1501 end_pfn = start_pfn + pageblock_nr_pages - 1; 1502 1503 /* Do not cross zone boundaries */ 1504 if (!zone_spans_pfn(zone, start_pfn)) 1505 start_page = page; 1506 if (!zone_spans_pfn(zone, end_pfn)) 1507 return 0; 1508 1509 return move_freepages(zone, start_page, end_page, migratetype); 1510 } 1511 1512 static void change_pageblock_range(struct page *pageblock_page, 1513 int start_order, int migratetype) 1514 { 1515 int nr_pageblocks = 1 << (start_order - pageblock_order); 1516 1517 while (nr_pageblocks--) { 1518 set_pageblock_migratetype(pageblock_page, migratetype); 1519 pageblock_page += pageblock_nr_pages; 1520 } 1521 } 1522 1523 /* 1524 * When we are falling back to another migratetype during allocation, try to 1525 * steal extra free pages from the same pageblocks to satisfy further 1526 * allocations, instead of polluting multiple pageblocks. 1527 * 1528 * If we are stealing a relatively large buddy page, it is likely there will 1529 * be more free pages in the pageblock, so try to steal them all. For 1530 * reclaimable and unmovable allocations, we steal regardless of page size, 1531 * as fragmentation caused by those allocations polluting movable pageblocks 1532 * is worse than movable allocations stealing from unmovable and reclaimable 1533 * pageblocks. 1534 */ 1535 static bool can_steal_fallback(unsigned int order, int start_mt) 1536 { 1537 /* 1538 * Leaving this order check is intended, although there is 1539 * relaxed order check in next check. The reason is that 1540 * we can actually steal whole pageblock if this condition met, 1541 * but, below check doesn't guarantee it and that is just heuristic 1542 * so could be changed anytime. 1543 */ 1544 if (order >= pageblock_order) 1545 return true; 1546 1547 if (order >= pageblock_order / 2 || 1548 start_mt == MIGRATE_RECLAIMABLE || 1549 start_mt == MIGRATE_UNMOVABLE || 1550 page_group_by_mobility_disabled) 1551 return true; 1552 1553 return false; 1554 } 1555 1556 /* 1557 * This function implements actual steal behaviour. If order is large enough, 1558 * we can steal whole pageblock. If not, we first move freepages in this 1559 * pageblock and check whether half of pages are moved or not. If half of 1560 * pages are moved, we can change migratetype of pageblock and permanently 1561 * use it's pages as requested migratetype in the future. 1562 */ 1563 static void steal_suitable_fallback(struct zone *zone, struct page *page, 1564 int start_type) 1565 { 1566 int current_order = page_order(page); 1567 int pages; 1568 1569 /* Take ownership for orders >= pageblock_order */ 1570 if (current_order >= pageblock_order) { 1571 change_pageblock_range(page, current_order, start_type); 1572 return; 1573 } 1574 1575 pages = move_freepages_block(zone, page, start_type); 1576 1577 /* Claim the whole block if over half of it is free */ 1578 if (pages >= (1 << (pageblock_order-1)) || 1579 page_group_by_mobility_disabled) 1580 set_pageblock_migratetype(page, start_type); 1581 } 1582 1583 /* 1584 * Check whether there is a suitable fallback freepage with requested order. 1585 * If only_stealable is true, this function returns fallback_mt only if 1586 * we can steal other freepages all together. This would help to reduce 1587 * fragmentation due to mixed migratetype pages in one pageblock. 1588 */ 1589 int find_suitable_fallback(struct free_area *area, unsigned int order, 1590 int migratetype, bool only_stealable, bool *can_steal) 1591 { 1592 int i; 1593 int fallback_mt; 1594 1595 if (area->nr_free == 0) 1596 return -1; 1597 1598 *can_steal = false; 1599 for (i = 0;; i++) { 1600 fallback_mt = fallbacks[migratetype][i]; 1601 if (fallback_mt == MIGRATE_RESERVE) 1602 break; 1603 1604 if (list_empty(&area->free_list[fallback_mt])) 1605 continue; 1606 1607 if (can_steal_fallback(order, migratetype)) 1608 *can_steal = true; 1609 1610 if (!only_stealable) 1611 return fallback_mt; 1612 1613 if (*can_steal) 1614 return fallback_mt; 1615 } 1616 1617 return -1; 1618 } 1619 1620 /* Remove an element from the buddy allocator from the fallback list */ 1621 static inline struct page * 1622 __rmqueue_fallback(struct zone *zone, unsigned int order, int start_migratetype) 1623 { 1624 struct free_area *area; 1625 unsigned int current_order; 1626 struct page *page; 1627 int fallback_mt; 1628 bool can_steal; 1629 1630 /* Find the largest possible block of pages in the other list */ 1631 for (current_order = MAX_ORDER-1; 1632 current_order >= order && current_order <= MAX_ORDER-1; 1633 --current_order) { 1634 area = &(zone->free_area[current_order]); 1635 fallback_mt = find_suitable_fallback(area, current_order, 1636 start_migratetype, false, &can_steal); 1637 if (fallback_mt == -1) 1638 continue; 1639 1640 page = list_entry(area->free_list[fallback_mt].next, 1641 struct page, lru); 1642 if (can_steal) 1643 steal_suitable_fallback(zone, page, start_migratetype); 1644 1645 /* Remove the page from the freelists */ 1646 area->nr_free--; 1647 list_del(&page->lru); 1648 rmv_page_order(page); 1649 1650 expand(zone, page, order, current_order, area, 1651 start_migratetype); 1652 /* 1653 * The pcppage_migratetype may differ from pageblock's 1654 * migratetype depending on the decisions in 1655 * find_suitable_fallback(). This is OK as long as it does not 1656 * differ for MIGRATE_CMA pageblocks. Those can be used as 1657 * fallback only via special __rmqueue_cma_fallback() function 1658 */ 1659 set_pcppage_migratetype(page, start_migratetype); 1660 1661 trace_mm_page_alloc_extfrag(page, order, current_order, 1662 start_migratetype, fallback_mt); 1663 1664 return page; 1665 } 1666 1667 return NULL; 1668 } 1669 1670 /* 1671 * Do the hard work of removing an element from the buddy allocator. 1672 * Call me with the zone->lock already held. 1673 */ 1674 static struct page *__rmqueue(struct zone *zone, unsigned int order, 1675 int migratetype) 1676 { 1677 struct page *page; 1678 1679 retry_reserve: 1680 page = __rmqueue_smallest(zone, order, migratetype); 1681 1682 if (unlikely(!page) && migratetype != MIGRATE_RESERVE) { 1683 if (migratetype == MIGRATE_MOVABLE) 1684 page = __rmqueue_cma_fallback(zone, order); 1685 1686 if (!page) 1687 page = __rmqueue_fallback(zone, order, migratetype); 1688 1689 /* 1690 * Use MIGRATE_RESERVE rather than fail an allocation. goto 1691 * is used because __rmqueue_smallest is an inline function 1692 * and we want just one call site 1693 */ 1694 if (!page) { 1695 migratetype = MIGRATE_RESERVE; 1696 goto retry_reserve; 1697 } 1698 } 1699 1700 trace_mm_page_alloc_zone_locked(page, order, migratetype); 1701 return page; 1702 } 1703 1704 /* 1705 * Obtain a specified number of elements from the buddy allocator, all under 1706 * a single hold of the lock, for efficiency. Add them to the supplied list. 1707 * Returns the number of new pages which were placed at *list. 1708 */ 1709 static int rmqueue_bulk(struct zone *zone, unsigned int order, 1710 unsigned long count, struct list_head *list, 1711 int migratetype, bool cold) 1712 { 1713 int i; 1714 1715 spin_lock(&zone->lock); 1716 for (i = 0; i < count; ++i) { 1717 struct page *page = __rmqueue(zone, order, migratetype); 1718 if (unlikely(page == NULL)) 1719 break; 1720 1721 /* 1722 * Split buddy pages returned by expand() are received here 1723 * in physical page order. The page is added to the callers and 1724 * list and the list head then moves forward. From the callers 1725 * perspective, the linked list is ordered by page number in 1726 * some conditions. This is useful for IO devices that can 1727 * merge IO requests if the physical pages are ordered 1728 * properly. 1729 */ 1730 if (likely(!cold)) 1731 list_add(&page->lru, list); 1732 else 1733 list_add_tail(&page->lru, list); 1734 list = &page->lru; 1735 if (is_migrate_cma(get_pcppage_migratetype(page))) 1736 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES, 1737 -(1 << order)); 1738 } 1739 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order)); 1740 spin_unlock(&zone->lock); 1741 return i; 1742 } 1743 1744 #ifdef CONFIG_NUMA 1745 /* 1746 * Called from the vmstat counter updater to drain pagesets of this 1747 * currently executing processor on remote nodes after they have 1748 * expired. 1749 * 1750 * Note that this function must be called with the thread pinned to 1751 * a single processor. 1752 */ 1753 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp) 1754 { 1755 unsigned long flags; 1756 int to_drain, batch; 1757 1758 local_irq_save(flags); 1759 batch = READ_ONCE(pcp->batch); 1760 to_drain = min(pcp->count, batch); 1761 if (to_drain > 0) { 1762 free_pcppages_bulk(zone, to_drain, pcp); 1763 pcp->count -= to_drain; 1764 } 1765 local_irq_restore(flags); 1766 } 1767 #endif 1768 1769 /* 1770 * Drain pcplists of the indicated processor and zone. 1771 * 1772 * The processor must either be the current processor and the 1773 * thread pinned to the current processor or a processor that 1774 * is not online. 1775 */ 1776 static void drain_pages_zone(unsigned int cpu, struct zone *zone) 1777 { 1778 unsigned long flags; 1779 struct per_cpu_pageset *pset; 1780 struct per_cpu_pages *pcp; 1781 1782 local_irq_save(flags); 1783 pset = per_cpu_ptr(zone->pageset, cpu); 1784 1785 pcp = &pset->pcp; 1786 if (pcp->count) { 1787 free_pcppages_bulk(zone, pcp->count, pcp); 1788 pcp->count = 0; 1789 } 1790 local_irq_restore(flags); 1791 } 1792 1793 /* 1794 * Drain pcplists of all zones on the indicated processor. 1795 * 1796 * The processor must either be the current processor and the 1797 * thread pinned to the current processor or a processor that 1798 * is not online. 1799 */ 1800 static void drain_pages(unsigned int cpu) 1801 { 1802 struct zone *zone; 1803 1804 for_each_populated_zone(zone) { 1805 drain_pages_zone(cpu, zone); 1806 } 1807 } 1808 1809 /* 1810 * Spill all of this CPU's per-cpu pages back into the buddy allocator. 1811 * 1812 * The CPU has to be pinned. When zone parameter is non-NULL, spill just 1813 * the single zone's pages. 1814 */ 1815 void drain_local_pages(struct zone *zone) 1816 { 1817 int cpu = smp_processor_id(); 1818 1819 if (zone) 1820 drain_pages_zone(cpu, zone); 1821 else 1822 drain_pages(cpu); 1823 } 1824 1825 /* 1826 * Spill all the per-cpu pages from all CPUs back into the buddy allocator. 1827 * 1828 * When zone parameter is non-NULL, spill just the single zone's pages. 1829 * 1830 * Note that this code is protected against sending an IPI to an offline 1831 * CPU but does not guarantee sending an IPI to newly hotplugged CPUs: 1832 * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but 1833 * nothing keeps CPUs from showing up after we populated the cpumask and 1834 * before the call to on_each_cpu_mask(). 1835 */ 1836 void drain_all_pages(struct zone *zone) 1837 { 1838 int cpu; 1839 1840 /* 1841 * Allocate in the BSS so we wont require allocation in 1842 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y 1843 */ 1844 static cpumask_t cpus_with_pcps; 1845 1846 /* 1847 * We don't care about racing with CPU hotplug event 1848 * as offline notification will cause the notified 1849 * cpu to drain that CPU pcps and on_each_cpu_mask 1850 * disables preemption as part of its processing 1851 */ 1852 for_each_online_cpu(cpu) { 1853 struct per_cpu_pageset *pcp; 1854 struct zone *z; 1855 bool has_pcps = false; 1856 1857 if (zone) { 1858 pcp = per_cpu_ptr(zone->pageset, cpu); 1859 if (pcp->pcp.count) 1860 has_pcps = true; 1861 } else { 1862 for_each_populated_zone(z) { 1863 pcp = per_cpu_ptr(z->pageset, cpu); 1864 if (pcp->pcp.count) { 1865 has_pcps = true; 1866 break; 1867 } 1868 } 1869 } 1870 1871 if (has_pcps) 1872 cpumask_set_cpu(cpu, &cpus_with_pcps); 1873 else 1874 cpumask_clear_cpu(cpu, &cpus_with_pcps); 1875 } 1876 on_each_cpu_mask(&cpus_with_pcps, (smp_call_func_t) drain_local_pages, 1877 zone, 1); 1878 } 1879 1880 #ifdef CONFIG_HIBERNATION 1881 1882 void mark_free_pages(struct zone *zone) 1883 { 1884 unsigned long pfn, max_zone_pfn; 1885 unsigned long flags; 1886 unsigned int order, t; 1887 struct list_head *curr; 1888 1889 if (zone_is_empty(zone)) 1890 return; 1891 1892 spin_lock_irqsave(&zone->lock, flags); 1893 1894 max_zone_pfn = zone_end_pfn(zone); 1895 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) 1896 if (pfn_valid(pfn)) { 1897 struct page *page = pfn_to_page(pfn); 1898 1899 if (!swsusp_page_is_forbidden(page)) 1900 swsusp_unset_page_free(page); 1901 } 1902 1903 for_each_migratetype_order(order, t) { 1904 list_for_each(curr, &zone->free_area[order].free_list[t]) { 1905 unsigned long i; 1906 1907 pfn = page_to_pfn(list_entry(curr, struct page, lru)); 1908 for (i = 0; i < (1UL << order); i++) 1909 swsusp_set_page_free(pfn_to_page(pfn + i)); 1910 } 1911 } 1912 spin_unlock_irqrestore(&zone->lock, flags); 1913 } 1914 #endif /* CONFIG_PM */ 1915 1916 /* 1917 * Free a 0-order page 1918 * cold == true ? free a cold page : free a hot page 1919 */ 1920 void free_hot_cold_page(struct page *page, bool cold) 1921 { 1922 struct zone *zone = page_zone(page); 1923 struct per_cpu_pages *pcp; 1924 unsigned long flags; 1925 unsigned long pfn = page_to_pfn(page); 1926 int migratetype; 1927 1928 if (!free_pages_prepare(page, 0)) 1929 return; 1930 1931 migratetype = get_pfnblock_migratetype(page, pfn); 1932 set_pcppage_migratetype(page, migratetype); 1933 local_irq_save(flags); 1934 __count_vm_event(PGFREE); 1935 1936 /* 1937 * We only track unmovable, reclaimable and movable on pcp lists. 1938 * Free ISOLATE pages back to the allocator because they are being 1939 * offlined but treat RESERVE as movable pages so we can get those 1940 * areas back if necessary. Otherwise, we may have to free 1941 * excessively into the page allocator 1942 */ 1943 if (migratetype >= MIGRATE_PCPTYPES) { 1944 if (unlikely(is_migrate_isolate(migratetype))) { 1945 free_one_page(zone, page, pfn, 0, migratetype); 1946 goto out; 1947 } 1948 migratetype = MIGRATE_MOVABLE; 1949 } 1950 1951 pcp = &this_cpu_ptr(zone->pageset)->pcp; 1952 if (!cold) 1953 list_add(&page->lru, &pcp->lists[migratetype]); 1954 else 1955 list_add_tail(&page->lru, &pcp->lists[migratetype]); 1956 pcp->count++; 1957 if (pcp->count >= pcp->high) { 1958 unsigned long batch = READ_ONCE(pcp->batch); 1959 free_pcppages_bulk(zone, batch, pcp); 1960 pcp->count -= batch; 1961 } 1962 1963 out: 1964 local_irq_restore(flags); 1965 } 1966 1967 /* 1968 * Free a list of 0-order pages 1969 */ 1970 void free_hot_cold_page_list(struct list_head *list, bool cold) 1971 { 1972 struct page *page, *next; 1973 1974 list_for_each_entry_safe(page, next, list, lru) { 1975 trace_mm_page_free_batched(page, cold); 1976 free_hot_cold_page(page, cold); 1977 } 1978 } 1979 1980 /* 1981 * split_page takes a non-compound higher-order page, and splits it into 1982 * n (1<<order) sub-pages: page[0..n] 1983 * Each sub-page must be freed individually. 1984 * 1985 * Note: this is probably too low level an operation for use in drivers. 1986 * Please consult with lkml before using this in your driver. 1987 */ 1988 void split_page(struct page *page, unsigned int order) 1989 { 1990 int i; 1991 gfp_t gfp_mask; 1992 1993 VM_BUG_ON_PAGE(PageCompound(page), page); 1994 VM_BUG_ON_PAGE(!page_count(page), page); 1995 1996 #ifdef CONFIG_KMEMCHECK 1997 /* 1998 * Split shadow pages too, because free(page[0]) would 1999 * otherwise free the whole shadow. 2000 */ 2001 if (kmemcheck_page_is_tracked(page)) 2002 split_page(virt_to_page(page[0].shadow), order); 2003 #endif 2004 2005 gfp_mask = get_page_owner_gfp(page); 2006 set_page_owner(page, 0, gfp_mask); 2007 for (i = 1; i < (1 << order); i++) { 2008 set_page_refcounted(page + i); 2009 set_page_owner(page + i, 0, gfp_mask); 2010 } 2011 } 2012 EXPORT_SYMBOL_GPL(split_page); 2013 2014 int __isolate_free_page(struct page *page, unsigned int order) 2015 { 2016 unsigned long watermark; 2017 struct zone *zone; 2018 int mt; 2019 2020 BUG_ON(!PageBuddy(page)); 2021 2022 zone = page_zone(page); 2023 mt = get_pageblock_migratetype(page); 2024 2025 if (!is_migrate_isolate(mt)) { 2026 /* Obey watermarks as if the page was being allocated */ 2027 watermark = low_wmark_pages(zone) + (1 << order); 2028 if (!zone_watermark_ok(zone, 0, watermark, 0, 0)) 2029 return 0; 2030 2031 __mod_zone_freepage_state(zone, -(1UL << order), mt); 2032 } 2033 2034 /* Remove page from free list */ 2035 list_del(&page->lru); 2036 zone->free_area[order].nr_free--; 2037 rmv_page_order(page); 2038 2039 set_page_owner(page, order, __GFP_MOVABLE); 2040 2041 /* Set the pageblock if the isolated page is at least a pageblock */ 2042 if (order >= pageblock_order - 1) { 2043 struct page *endpage = page + (1 << order) - 1; 2044 for (; page < endpage; page += pageblock_nr_pages) { 2045 int mt = get_pageblock_migratetype(page); 2046 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt)) 2047 set_pageblock_migratetype(page, 2048 MIGRATE_MOVABLE); 2049 } 2050 } 2051 2052 2053 return 1UL << order; 2054 } 2055 2056 /* 2057 * Similar to split_page except the page is already free. As this is only 2058 * being used for migration, the migratetype of the block also changes. 2059 * As this is called with interrupts disabled, the caller is responsible 2060 * for calling arch_alloc_page() and kernel_map_page() after interrupts 2061 * are enabled. 2062 * 2063 * Note: this is probably too low level an operation for use in drivers. 2064 * Please consult with lkml before using this in your driver. 2065 */ 2066 int split_free_page(struct page *page) 2067 { 2068 unsigned int order; 2069 int nr_pages; 2070 2071 order = page_order(page); 2072 2073 nr_pages = __isolate_free_page(page, order); 2074 if (!nr_pages) 2075 return 0; 2076 2077 /* Split into individual pages */ 2078 set_page_refcounted(page); 2079 split_page(page, order); 2080 return nr_pages; 2081 } 2082 2083 /* 2084 * Allocate a page from the given zone. Use pcplists for order-0 allocations. 2085 */ 2086 static inline 2087 struct page *buffered_rmqueue(struct zone *preferred_zone, 2088 struct zone *zone, unsigned int order, 2089 gfp_t gfp_flags, int migratetype) 2090 { 2091 unsigned long flags; 2092 struct page *page; 2093 bool cold = ((gfp_flags & __GFP_COLD) != 0); 2094 2095 if (likely(order == 0)) { 2096 struct per_cpu_pages *pcp; 2097 struct list_head *list; 2098 2099 local_irq_save(flags); 2100 pcp = &this_cpu_ptr(zone->pageset)->pcp; 2101 list = &pcp->lists[migratetype]; 2102 if (list_empty(list)) { 2103 pcp->count += rmqueue_bulk(zone, 0, 2104 pcp->batch, list, 2105 migratetype, cold); 2106 if (unlikely(list_empty(list))) 2107 goto failed; 2108 } 2109 2110 if (cold) 2111 page = list_entry(list->prev, struct page, lru); 2112 else 2113 page = list_entry(list->next, struct page, lru); 2114 2115 list_del(&page->lru); 2116 pcp->count--; 2117 } else { 2118 if (unlikely(gfp_flags & __GFP_NOFAIL)) { 2119 /* 2120 * __GFP_NOFAIL is not to be used in new code. 2121 * 2122 * All __GFP_NOFAIL callers should be fixed so that they 2123 * properly detect and handle allocation failures. 2124 * 2125 * We most definitely don't want callers attempting to 2126 * allocate greater than order-1 page units with 2127 * __GFP_NOFAIL. 2128 */ 2129 WARN_ON_ONCE(order > 1); 2130 } 2131 spin_lock_irqsave(&zone->lock, flags); 2132 page = __rmqueue(zone, order, migratetype); 2133 spin_unlock(&zone->lock); 2134 if (!page) 2135 goto failed; 2136 __mod_zone_freepage_state(zone, -(1 << order), 2137 get_pcppage_migratetype(page)); 2138 } 2139 2140 __mod_zone_page_state(zone, NR_ALLOC_BATCH, -(1 << order)); 2141 if (atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]) <= 0 && 2142 !test_bit(ZONE_FAIR_DEPLETED, &zone->flags)) 2143 set_bit(ZONE_FAIR_DEPLETED, &zone->flags); 2144 2145 __count_zone_vm_events(PGALLOC, zone, 1 << order); 2146 zone_statistics(preferred_zone, zone, gfp_flags); 2147 local_irq_restore(flags); 2148 2149 VM_BUG_ON_PAGE(bad_range(zone, page), page); 2150 return page; 2151 2152 failed: 2153 local_irq_restore(flags); 2154 return NULL; 2155 } 2156 2157 #ifdef CONFIG_FAIL_PAGE_ALLOC 2158 2159 static struct { 2160 struct fault_attr attr; 2161 2162 u32 ignore_gfp_highmem; 2163 u32 ignore_gfp_wait; 2164 u32 min_order; 2165 } fail_page_alloc = { 2166 .attr = FAULT_ATTR_INITIALIZER, 2167 .ignore_gfp_wait = 1, 2168 .ignore_gfp_highmem = 1, 2169 .min_order = 1, 2170 }; 2171 2172 static int __init setup_fail_page_alloc(char *str) 2173 { 2174 return setup_fault_attr(&fail_page_alloc.attr, str); 2175 } 2176 __setup("fail_page_alloc=", setup_fail_page_alloc); 2177 2178 static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) 2179 { 2180 if (order < fail_page_alloc.min_order) 2181 return false; 2182 if (gfp_mask & __GFP_NOFAIL) 2183 return false; 2184 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM)) 2185 return false; 2186 if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT)) 2187 return false; 2188 2189 return should_fail(&fail_page_alloc.attr, 1 << order); 2190 } 2191 2192 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS 2193 2194 static int __init fail_page_alloc_debugfs(void) 2195 { 2196 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR; 2197 struct dentry *dir; 2198 2199 dir = fault_create_debugfs_attr("fail_page_alloc", NULL, 2200 &fail_page_alloc.attr); 2201 if (IS_ERR(dir)) 2202 return PTR_ERR(dir); 2203 2204 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir, 2205 &fail_page_alloc.ignore_gfp_wait)) 2206 goto fail; 2207 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir, 2208 &fail_page_alloc.ignore_gfp_highmem)) 2209 goto fail; 2210 if (!debugfs_create_u32("min-order", mode, dir, 2211 &fail_page_alloc.min_order)) 2212 goto fail; 2213 2214 return 0; 2215 fail: 2216 debugfs_remove_recursive(dir); 2217 2218 return -ENOMEM; 2219 } 2220 2221 late_initcall(fail_page_alloc_debugfs); 2222 2223 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */ 2224 2225 #else /* CONFIG_FAIL_PAGE_ALLOC */ 2226 2227 static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) 2228 { 2229 return false; 2230 } 2231 2232 #endif /* CONFIG_FAIL_PAGE_ALLOC */ 2233 2234 /* 2235 * Return true if free pages are above 'mark'. This takes into account the order 2236 * of the allocation. 2237 */ 2238 static bool __zone_watermark_ok(struct zone *z, unsigned int order, 2239 unsigned long mark, int classzone_idx, int alloc_flags, 2240 long free_pages) 2241 { 2242 /* free_pages may go negative - that's OK */ 2243 long min = mark; 2244 int o; 2245 long free_cma = 0; 2246 2247 free_pages -= (1 << order) - 1; 2248 if (alloc_flags & ALLOC_HIGH) 2249 min -= min / 2; 2250 if (alloc_flags & ALLOC_HARDER) 2251 min -= min / 4; 2252 #ifdef CONFIG_CMA 2253 /* If allocation can't use CMA areas don't use free CMA pages */ 2254 if (!(alloc_flags & ALLOC_CMA)) 2255 free_cma = zone_page_state(z, NR_FREE_CMA_PAGES); 2256 #endif 2257 2258 if (free_pages - free_cma <= min + z->lowmem_reserve[classzone_idx]) 2259 return false; 2260 for (o = 0; o < order; o++) { 2261 /* At the next order, this order's pages become unavailable */ 2262 free_pages -= z->free_area[o].nr_free << o; 2263 2264 /* Require fewer higher order pages to be free */ 2265 min >>= 1; 2266 2267 if (free_pages <= min) 2268 return false; 2269 } 2270 return true; 2271 } 2272 2273 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark, 2274 int classzone_idx, int alloc_flags) 2275 { 2276 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags, 2277 zone_page_state(z, NR_FREE_PAGES)); 2278 } 2279 2280 bool zone_watermark_ok_safe(struct zone *z, unsigned int order, 2281 unsigned long mark, int classzone_idx, int alloc_flags) 2282 { 2283 long free_pages = zone_page_state(z, NR_FREE_PAGES); 2284 2285 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark) 2286 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES); 2287 2288 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags, 2289 free_pages); 2290 } 2291 2292 #ifdef CONFIG_NUMA 2293 /* 2294 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to 2295 * skip over zones that are not allowed by the cpuset, or that have 2296 * been recently (in last second) found to be nearly full. See further 2297 * comments in mmzone.h. Reduces cache footprint of zonelist scans 2298 * that have to skip over a lot of full or unallowed zones. 2299 * 2300 * If the zonelist cache is present in the passed zonelist, then 2301 * returns a pointer to the allowed node mask (either the current 2302 * tasks mems_allowed, or node_states[N_MEMORY].) 2303 * 2304 * If the zonelist cache is not available for this zonelist, does 2305 * nothing and returns NULL. 2306 * 2307 * If the fullzones BITMAP in the zonelist cache is stale (more than 2308 * a second since last zap'd) then we zap it out (clear its bits.) 2309 * 2310 * We hold off even calling zlc_setup, until after we've checked the 2311 * first zone in the zonelist, on the theory that most allocations will 2312 * be satisfied from that first zone, so best to examine that zone as 2313 * quickly as we can. 2314 */ 2315 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags) 2316 { 2317 struct zonelist_cache *zlc; /* cached zonelist speedup info */ 2318 nodemask_t *allowednodes; /* zonelist_cache approximation */ 2319 2320 zlc = zonelist->zlcache_ptr; 2321 if (!zlc) 2322 return NULL; 2323 2324 if (time_after(jiffies, zlc->last_full_zap + HZ)) { 2325 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST); 2326 zlc->last_full_zap = jiffies; 2327 } 2328 2329 allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ? 2330 &cpuset_current_mems_allowed : 2331 &node_states[N_MEMORY]; 2332 return allowednodes; 2333 } 2334 2335 /* 2336 * Given 'z' scanning a zonelist, run a couple of quick checks to see 2337 * if it is worth looking at further for free memory: 2338 * 1) Check that the zone isn't thought to be full (doesn't have its 2339 * bit set in the zonelist_cache fullzones BITMAP). 2340 * 2) Check that the zones node (obtained from the zonelist_cache 2341 * z_to_n[] mapping) is allowed in the passed in allowednodes mask. 2342 * Return true (non-zero) if zone is worth looking at further, or 2343 * else return false (zero) if it is not. 2344 * 2345 * This check -ignores- the distinction between various watermarks, 2346 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is 2347 * found to be full for any variation of these watermarks, it will 2348 * be considered full for up to one second by all requests, unless 2349 * we are so low on memory on all allowed nodes that we are forced 2350 * into the second scan of the zonelist. 2351 * 2352 * In the second scan we ignore this zonelist cache and exactly 2353 * apply the watermarks to all zones, even it is slower to do so. 2354 * We are low on memory in the second scan, and should leave no stone 2355 * unturned looking for a free page. 2356 */ 2357 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z, 2358 nodemask_t *allowednodes) 2359 { 2360 struct zonelist_cache *zlc; /* cached zonelist speedup info */ 2361 int i; /* index of *z in zonelist zones */ 2362 int n; /* node that zone *z is on */ 2363 2364 zlc = zonelist->zlcache_ptr; 2365 if (!zlc) 2366 return 1; 2367 2368 i = z - zonelist->_zonerefs; 2369 n = zlc->z_to_n[i]; 2370 2371 /* This zone is worth trying if it is allowed but not full */ 2372 return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones); 2373 } 2374 2375 /* 2376 * Given 'z' scanning a zonelist, set the corresponding bit in 2377 * zlc->fullzones, so that subsequent attempts to allocate a page 2378 * from that zone don't waste time re-examining it. 2379 */ 2380 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z) 2381 { 2382 struct zonelist_cache *zlc; /* cached zonelist speedup info */ 2383 int i; /* index of *z in zonelist zones */ 2384 2385 zlc = zonelist->zlcache_ptr; 2386 if (!zlc) 2387 return; 2388 2389 i = z - zonelist->_zonerefs; 2390 2391 set_bit(i, zlc->fullzones); 2392 } 2393 2394 /* 2395 * clear all zones full, called after direct reclaim makes progress so that 2396 * a zone that was recently full is not skipped over for up to a second 2397 */ 2398 static void zlc_clear_zones_full(struct zonelist *zonelist) 2399 { 2400 struct zonelist_cache *zlc; /* cached zonelist speedup info */ 2401 2402 zlc = zonelist->zlcache_ptr; 2403 if (!zlc) 2404 return; 2405 2406 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST); 2407 } 2408 2409 static bool zone_local(struct zone *local_zone, struct zone *zone) 2410 { 2411 return local_zone->node == zone->node; 2412 } 2413 2414 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone) 2415 { 2416 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) < 2417 RECLAIM_DISTANCE; 2418 } 2419 2420 #else /* CONFIG_NUMA */ 2421 2422 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags) 2423 { 2424 return NULL; 2425 } 2426 2427 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z, 2428 nodemask_t *allowednodes) 2429 { 2430 return 1; 2431 } 2432 2433 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z) 2434 { 2435 } 2436 2437 static void zlc_clear_zones_full(struct zonelist *zonelist) 2438 { 2439 } 2440 2441 static bool zone_local(struct zone *local_zone, struct zone *zone) 2442 { 2443 return true; 2444 } 2445 2446 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone) 2447 { 2448 return true; 2449 } 2450 2451 #endif /* CONFIG_NUMA */ 2452 2453 static void reset_alloc_batches(struct zone *preferred_zone) 2454 { 2455 struct zone *zone = preferred_zone->zone_pgdat->node_zones; 2456 2457 do { 2458 mod_zone_page_state(zone, NR_ALLOC_BATCH, 2459 high_wmark_pages(zone) - low_wmark_pages(zone) - 2460 atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH])); 2461 clear_bit(ZONE_FAIR_DEPLETED, &zone->flags); 2462 } while (zone++ != preferred_zone); 2463 } 2464 2465 /* 2466 * get_page_from_freelist goes through the zonelist trying to allocate 2467 * a page. 2468 */ 2469 static struct page * 2470 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags, 2471 const struct alloc_context *ac) 2472 { 2473 struct zonelist *zonelist = ac->zonelist; 2474 struct zoneref *z; 2475 struct page *page = NULL; 2476 struct zone *zone; 2477 nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */ 2478 int zlc_active = 0; /* set if using zonelist_cache */ 2479 int did_zlc_setup = 0; /* just call zlc_setup() one time */ 2480 bool consider_zone_dirty = (alloc_flags & ALLOC_WMARK_LOW) && 2481 (gfp_mask & __GFP_WRITE); 2482 int nr_fair_skipped = 0; 2483 bool zonelist_rescan; 2484 2485 zonelist_scan: 2486 zonelist_rescan = false; 2487 2488 /* 2489 * Scan zonelist, looking for a zone with enough free. 2490 * See also __cpuset_node_allowed() comment in kernel/cpuset.c. 2491 */ 2492 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx, 2493 ac->nodemask) { 2494 unsigned long mark; 2495 2496 if (IS_ENABLED(CONFIG_NUMA) && zlc_active && 2497 !zlc_zone_worth_trying(zonelist, z, allowednodes)) 2498 continue; 2499 if (cpusets_enabled() && 2500 (alloc_flags & ALLOC_CPUSET) && 2501 !cpuset_zone_allowed(zone, gfp_mask)) 2502 continue; 2503 /* 2504 * Distribute pages in proportion to the individual 2505 * zone size to ensure fair page aging. The zone a 2506 * page was allocated in should have no effect on the 2507 * time the page has in memory before being reclaimed. 2508 */ 2509 if (alloc_flags & ALLOC_FAIR) { 2510 if (!zone_local(ac->preferred_zone, zone)) 2511 break; 2512 if (test_bit(ZONE_FAIR_DEPLETED, &zone->flags)) { 2513 nr_fair_skipped++; 2514 continue; 2515 } 2516 } 2517 /* 2518 * When allocating a page cache page for writing, we 2519 * want to get it from a zone that is within its dirty 2520 * limit, such that no single zone holds more than its 2521 * proportional share of globally allowed dirty pages. 2522 * The dirty limits take into account the zone's 2523 * lowmem reserves and high watermark so that kswapd 2524 * should be able to balance it without having to 2525 * write pages from its LRU list. 2526 * 2527 * This may look like it could increase pressure on 2528 * lower zones by failing allocations in higher zones 2529 * before they are full. But the pages that do spill 2530 * over are limited as the lower zones are protected 2531 * by this very same mechanism. It should not become 2532 * a practical burden to them. 2533 * 2534 * XXX: For now, allow allocations to potentially 2535 * exceed the per-zone dirty limit in the slowpath 2536 * (ALLOC_WMARK_LOW unset) before going into reclaim, 2537 * which is important when on a NUMA setup the allowed 2538 * zones are together not big enough to reach the 2539 * global limit. The proper fix for these situations 2540 * will require awareness of zones in the 2541 * dirty-throttling and the flusher threads. 2542 */ 2543 if (consider_zone_dirty && !zone_dirty_ok(zone)) 2544 continue; 2545 2546 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK]; 2547 if (!zone_watermark_ok(zone, order, mark, 2548 ac->classzone_idx, alloc_flags)) { 2549 int ret; 2550 2551 /* Checked here to keep the fast path fast */ 2552 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK); 2553 if (alloc_flags & ALLOC_NO_WATERMARKS) 2554 goto try_this_zone; 2555 2556 if (IS_ENABLED(CONFIG_NUMA) && 2557 !did_zlc_setup && nr_online_nodes > 1) { 2558 /* 2559 * we do zlc_setup if there are multiple nodes 2560 * and before considering the first zone allowed 2561 * by the cpuset. 2562 */ 2563 allowednodes = zlc_setup(zonelist, alloc_flags); 2564 zlc_active = 1; 2565 did_zlc_setup = 1; 2566 } 2567 2568 if (zone_reclaim_mode == 0 || 2569 !zone_allows_reclaim(ac->preferred_zone, zone)) 2570 goto this_zone_full; 2571 2572 /* 2573 * As we may have just activated ZLC, check if the first 2574 * eligible zone has failed zone_reclaim recently. 2575 */ 2576 if (IS_ENABLED(CONFIG_NUMA) && zlc_active && 2577 !zlc_zone_worth_trying(zonelist, z, allowednodes)) 2578 continue; 2579 2580 ret = zone_reclaim(zone, gfp_mask, order); 2581 switch (ret) { 2582 case ZONE_RECLAIM_NOSCAN: 2583 /* did not scan */ 2584 continue; 2585 case ZONE_RECLAIM_FULL: 2586 /* scanned but unreclaimable */ 2587 continue; 2588 default: 2589 /* did we reclaim enough */ 2590 if (zone_watermark_ok(zone, order, mark, 2591 ac->classzone_idx, alloc_flags)) 2592 goto try_this_zone; 2593 2594 /* 2595 * Failed to reclaim enough to meet watermark. 2596 * Only mark the zone full if checking the min 2597 * watermark or if we failed to reclaim just 2598 * 1<<order pages or else the page allocator 2599 * fastpath will prematurely mark zones full 2600 * when the watermark is between the low and 2601 * min watermarks. 2602 */ 2603 if (((alloc_flags & ALLOC_WMARK_MASK) == ALLOC_WMARK_MIN) || 2604 ret == ZONE_RECLAIM_SOME) 2605 goto this_zone_full; 2606 2607 continue; 2608 } 2609 } 2610 2611 try_this_zone: 2612 page = buffered_rmqueue(ac->preferred_zone, zone, order, 2613 gfp_mask, ac->migratetype); 2614 if (page) { 2615 if (prep_new_page(page, order, gfp_mask, alloc_flags)) 2616 goto try_this_zone; 2617 return page; 2618 } 2619 this_zone_full: 2620 if (IS_ENABLED(CONFIG_NUMA) && zlc_active) 2621 zlc_mark_zone_full(zonelist, z); 2622 } 2623 2624 /* 2625 * The first pass makes sure allocations are spread fairly within the 2626 * local node. However, the local node might have free pages left 2627 * after the fairness batches are exhausted, and remote zones haven't 2628 * even been considered yet. Try once more without fairness, and 2629 * include remote zones now, before entering the slowpath and waking 2630 * kswapd: prefer spilling to a remote zone over swapping locally. 2631 */ 2632 if (alloc_flags & ALLOC_FAIR) { 2633 alloc_flags &= ~ALLOC_FAIR; 2634 if (nr_fair_skipped) { 2635 zonelist_rescan = true; 2636 reset_alloc_batches(ac->preferred_zone); 2637 } 2638 if (nr_online_nodes > 1) 2639 zonelist_rescan = true; 2640 } 2641 2642 if (unlikely(IS_ENABLED(CONFIG_NUMA) && zlc_active)) { 2643 /* Disable zlc cache for second zonelist scan */ 2644 zlc_active = 0; 2645 zonelist_rescan = true; 2646 } 2647 2648 if (zonelist_rescan) 2649 goto zonelist_scan; 2650 2651 return NULL; 2652 } 2653 2654 /* 2655 * Large machines with many possible nodes should not always dump per-node 2656 * meminfo in irq context. 2657 */ 2658 static inline bool should_suppress_show_mem(void) 2659 { 2660 bool ret = false; 2661 2662 #if NODES_SHIFT > 8 2663 ret = in_interrupt(); 2664 #endif 2665 return ret; 2666 } 2667 2668 static DEFINE_RATELIMIT_STATE(nopage_rs, 2669 DEFAULT_RATELIMIT_INTERVAL, 2670 DEFAULT_RATELIMIT_BURST); 2671 2672 void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...) 2673 { 2674 unsigned int filter = SHOW_MEM_FILTER_NODES; 2675 2676 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) || 2677 debug_guardpage_minorder() > 0) 2678 return; 2679 2680 /* 2681 * This documents exceptions given to allocations in certain 2682 * contexts that are allowed to allocate outside current's set 2683 * of allowed nodes. 2684 */ 2685 if (!(gfp_mask & __GFP_NOMEMALLOC)) 2686 if (test_thread_flag(TIF_MEMDIE) || 2687 (current->flags & (PF_MEMALLOC | PF_EXITING))) 2688 filter &= ~SHOW_MEM_FILTER_NODES; 2689 if (in_interrupt() || !(gfp_mask & __GFP_WAIT)) 2690 filter &= ~SHOW_MEM_FILTER_NODES; 2691 2692 if (fmt) { 2693 struct va_format vaf; 2694 va_list args; 2695 2696 va_start(args, fmt); 2697 2698 vaf.fmt = fmt; 2699 vaf.va = &args; 2700 2701 pr_warn("%pV", &vaf); 2702 2703 va_end(args); 2704 } 2705 2706 pr_warn("%s: page allocation failure: order:%d, mode:0x%x\n", 2707 current->comm, order, gfp_mask); 2708 2709 dump_stack(); 2710 if (!should_suppress_show_mem()) 2711 show_mem(filter); 2712 } 2713 2714 static inline struct page * 2715 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order, 2716 const struct alloc_context *ac, unsigned long *did_some_progress) 2717 { 2718 struct oom_control oc = { 2719 .zonelist = ac->zonelist, 2720 .nodemask = ac->nodemask, 2721 .gfp_mask = gfp_mask, 2722 .order = order, 2723 }; 2724 struct page *page; 2725 2726 *did_some_progress = 0; 2727 2728 /* 2729 * Acquire the oom lock. If that fails, somebody else is 2730 * making progress for us. 2731 */ 2732 if (!mutex_trylock(&oom_lock)) { 2733 *did_some_progress = 1; 2734 schedule_timeout_uninterruptible(1); 2735 return NULL; 2736 } 2737 2738 /* 2739 * Go through the zonelist yet one more time, keep very high watermark 2740 * here, this is only to catch a parallel oom killing, we must fail if 2741 * we're still under heavy pressure. 2742 */ 2743 page = get_page_from_freelist(gfp_mask | __GFP_HARDWALL, order, 2744 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac); 2745 if (page) 2746 goto out; 2747 2748 if (!(gfp_mask & __GFP_NOFAIL)) { 2749 /* Coredumps can quickly deplete all memory reserves */ 2750 if (current->flags & PF_DUMPCORE) 2751 goto out; 2752 /* The OOM killer will not help higher order allocs */ 2753 if (order > PAGE_ALLOC_COSTLY_ORDER) 2754 goto out; 2755 /* The OOM killer does not needlessly kill tasks for lowmem */ 2756 if (ac->high_zoneidx < ZONE_NORMAL) 2757 goto out; 2758 /* The OOM killer does not compensate for IO-less reclaim */ 2759 if (!(gfp_mask & __GFP_FS)) { 2760 /* 2761 * XXX: Page reclaim didn't yield anything, 2762 * and the OOM killer can't be invoked, but 2763 * keep looping as per tradition. 2764 */ 2765 *did_some_progress = 1; 2766 goto out; 2767 } 2768 if (pm_suspended_storage()) 2769 goto out; 2770 /* The OOM killer may not free memory on a specific node */ 2771 if (gfp_mask & __GFP_THISNODE) 2772 goto out; 2773 } 2774 /* Exhausted what can be done so it's blamo time */ 2775 if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) 2776 *did_some_progress = 1; 2777 out: 2778 mutex_unlock(&oom_lock); 2779 return page; 2780 } 2781 2782 #ifdef CONFIG_COMPACTION 2783 /* Try memory compaction for high-order allocations before reclaim */ 2784 static struct page * 2785 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order, 2786 int alloc_flags, const struct alloc_context *ac, 2787 enum migrate_mode mode, int *contended_compaction, 2788 bool *deferred_compaction) 2789 { 2790 unsigned long compact_result; 2791 struct page *page; 2792 2793 if (!order) 2794 return NULL; 2795 2796 current->flags |= PF_MEMALLOC; 2797 compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac, 2798 mode, contended_compaction); 2799 current->flags &= ~PF_MEMALLOC; 2800 2801 switch (compact_result) { 2802 case COMPACT_DEFERRED: 2803 *deferred_compaction = true; 2804 /* fall-through */ 2805 case COMPACT_SKIPPED: 2806 return NULL; 2807 default: 2808 break; 2809 } 2810 2811 /* 2812 * At least in one zone compaction wasn't deferred or skipped, so let's 2813 * count a compaction stall 2814 */ 2815 count_vm_event(COMPACTSTALL); 2816 2817 page = get_page_from_freelist(gfp_mask, order, 2818 alloc_flags & ~ALLOC_NO_WATERMARKS, ac); 2819 2820 if (page) { 2821 struct zone *zone = page_zone(page); 2822 2823 zone->compact_blockskip_flush = false; 2824 compaction_defer_reset(zone, order, true); 2825 count_vm_event(COMPACTSUCCESS); 2826 return page; 2827 } 2828 2829 /* 2830 * It's bad if compaction run occurs and fails. The most likely reason 2831 * is that pages exist, but not enough to satisfy watermarks. 2832 */ 2833 count_vm_event(COMPACTFAIL); 2834 2835 cond_resched(); 2836 2837 return NULL; 2838 } 2839 #else 2840 static inline struct page * 2841 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order, 2842 int alloc_flags, const struct alloc_context *ac, 2843 enum migrate_mode mode, int *contended_compaction, 2844 bool *deferred_compaction) 2845 { 2846 return NULL; 2847 } 2848 #endif /* CONFIG_COMPACTION */ 2849 2850 /* Perform direct synchronous page reclaim */ 2851 static int 2852 __perform_reclaim(gfp_t gfp_mask, unsigned int order, 2853 const struct alloc_context *ac) 2854 { 2855 struct reclaim_state reclaim_state; 2856 int progress; 2857 2858 cond_resched(); 2859 2860 /* We now go into synchronous reclaim */ 2861 cpuset_memory_pressure_bump(); 2862 current->flags |= PF_MEMALLOC; 2863 lockdep_set_current_reclaim_state(gfp_mask); 2864 reclaim_state.reclaimed_slab = 0; 2865 current->reclaim_state = &reclaim_state; 2866 2867 progress = try_to_free_pages(ac->zonelist, order, gfp_mask, 2868 ac->nodemask); 2869 2870 current->reclaim_state = NULL; 2871 lockdep_clear_current_reclaim_state(); 2872 current->flags &= ~PF_MEMALLOC; 2873 2874 cond_resched(); 2875 2876 return progress; 2877 } 2878 2879 /* The really slow allocator path where we enter direct reclaim */ 2880 static inline struct page * 2881 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order, 2882 int alloc_flags, const struct alloc_context *ac, 2883 unsigned long *did_some_progress) 2884 { 2885 struct page *page = NULL; 2886 bool drained = false; 2887 2888 *did_some_progress = __perform_reclaim(gfp_mask, order, ac); 2889 if (unlikely(!(*did_some_progress))) 2890 return NULL; 2891 2892 /* After successful reclaim, reconsider all zones for allocation */ 2893 if (IS_ENABLED(CONFIG_NUMA)) 2894 zlc_clear_zones_full(ac->zonelist); 2895 2896 retry: 2897 page = get_page_from_freelist(gfp_mask, order, 2898 alloc_flags & ~ALLOC_NO_WATERMARKS, ac); 2899 2900 /* 2901 * If an allocation failed after direct reclaim, it could be because 2902 * pages are pinned on the per-cpu lists. Drain them and try again 2903 */ 2904 if (!page && !drained) { 2905 drain_all_pages(NULL); 2906 drained = true; 2907 goto retry; 2908 } 2909 2910 return page; 2911 } 2912 2913 /* 2914 * This is called in the allocator slow-path if the allocation request is of 2915 * sufficient urgency to ignore watermarks and take other desperate measures 2916 */ 2917 static inline struct page * 2918 __alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order, 2919 const struct alloc_context *ac) 2920 { 2921 struct page *page; 2922 2923 do { 2924 page = get_page_from_freelist(gfp_mask, order, 2925 ALLOC_NO_WATERMARKS, ac); 2926 2927 if (!page && gfp_mask & __GFP_NOFAIL) 2928 wait_iff_congested(ac->preferred_zone, BLK_RW_ASYNC, 2929 HZ/50); 2930 } while (!page && (gfp_mask & __GFP_NOFAIL)); 2931 2932 return page; 2933 } 2934 2935 static void wake_all_kswapds(unsigned int order, const struct alloc_context *ac) 2936 { 2937 struct zoneref *z; 2938 struct zone *zone; 2939 2940 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, 2941 ac->high_zoneidx, ac->nodemask) 2942 wakeup_kswapd(zone, order, zone_idx(ac->preferred_zone)); 2943 } 2944 2945 static inline int 2946 gfp_to_alloc_flags(gfp_t gfp_mask) 2947 { 2948 int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET; 2949 const bool atomic = !(gfp_mask & (__GFP_WAIT | __GFP_NO_KSWAPD)); 2950 2951 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */ 2952 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH); 2953 2954 /* 2955 * The caller may dip into page reserves a bit more if the caller 2956 * cannot run direct reclaim, or if the caller has realtime scheduling 2957 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will 2958 * set both ALLOC_HARDER (atomic == true) and ALLOC_HIGH (__GFP_HIGH). 2959 */ 2960 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH); 2961 2962 if (atomic) { 2963 /* 2964 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even 2965 * if it can't schedule. 2966 */ 2967 if (!(gfp_mask & __GFP_NOMEMALLOC)) 2968 alloc_flags |= ALLOC_HARDER; 2969 /* 2970 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the 2971 * comment for __cpuset_node_allowed(). 2972 */ 2973 alloc_flags &= ~ALLOC_CPUSET; 2974 } else if (unlikely(rt_task(current)) && !in_interrupt()) 2975 alloc_flags |= ALLOC_HARDER; 2976 2977 if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) { 2978 if (gfp_mask & __GFP_MEMALLOC) 2979 alloc_flags |= ALLOC_NO_WATERMARKS; 2980 else if (in_serving_softirq() && (current->flags & PF_MEMALLOC)) 2981 alloc_flags |= ALLOC_NO_WATERMARKS; 2982 else if (!in_interrupt() && 2983 ((current->flags & PF_MEMALLOC) || 2984 unlikely(test_thread_flag(TIF_MEMDIE)))) 2985 alloc_flags |= ALLOC_NO_WATERMARKS; 2986 } 2987 #ifdef CONFIG_CMA 2988 if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE) 2989 alloc_flags |= ALLOC_CMA; 2990 #endif 2991 return alloc_flags; 2992 } 2993 2994 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask) 2995 { 2996 return !!(gfp_to_alloc_flags(gfp_mask) & ALLOC_NO_WATERMARKS); 2997 } 2998 2999 static inline struct page * 3000 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order, 3001 struct alloc_context *ac) 3002 { 3003 const gfp_t wait = gfp_mask & __GFP_WAIT; 3004 struct page *page = NULL; 3005 int alloc_flags; 3006 unsigned long pages_reclaimed = 0; 3007 unsigned long did_some_progress; 3008 enum migrate_mode migration_mode = MIGRATE_ASYNC; 3009 bool deferred_compaction = false; 3010 int contended_compaction = COMPACT_CONTENDED_NONE; 3011 3012 /* 3013 * In the slowpath, we sanity check order to avoid ever trying to 3014 * reclaim >= MAX_ORDER areas which will never succeed. Callers may 3015 * be using allocators in order of preference for an area that is 3016 * too large. 3017 */ 3018 if (order >= MAX_ORDER) { 3019 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN)); 3020 return NULL; 3021 } 3022 3023 /* 3024 * If this allocation cannot block and it is for a specific node, then 3025 * fail early. There's no need to wakeup kswapd or retry for a 3026 * speculative node-specific allocation. 3027 */ 3028 if (IS_ENABLED(CONFIG_NUMA) && (gfp_mask & __GFP_THISNODE) && !wait) 3029 goto nopage; 3030 3031 retry: 3032 if (!(gfp_mask & __GFP_NO_KSWAPD)) 3033 wake_all_kswapds(order, ac); 3034 3035 /* 3036 * OK, we're below the kswapd watermark and have kicked background 3037 * reclaim. Now things get more complex, so set up alloc_flags according 3038 * to how we want to proceed. 3039 */ 3040 alloc_flags = gfp_to_alloc_flags(gfp_mask); 3041 3042 /* 3043 * Find the true preferred zone if the allocation is unconstrained by 3044 * cpusets. 3045 */ 3046 if (!(alloc_flags & ALLOC_CPUSET) && !ac->nodemask) { 3047 struct zoneref *preferred_zoneref; 3048 preferred_zoneref = first_zones_zonelist(ac->zonelist, 3049 ac->high_zoneidx, NULL, &ac->preferred_zone); 3050 ac->classzone_idx = zonelist_zone_idx(preferred_zoneref); 3051 } 3052 3053 /* This is the last chance, in general, before the goto nopage. */ 3054 page = get_page_from_freelist(gfp_mask, order, 3055 alloc_flags & ~ALLOC_NO_WATERMARKS, ac); 3056 if (page) 3057 goto got_pg; 3058 3059 /* Allocate without watermarks if the context allows */ 3060 if (alloc_flags & ALLOC_NO_WATERMARKS) { 3061 /* 3062 * Ignore mempolicies if ALLOC_NO_WATERMARKS on the grounds 3063 * the allocation is high priority and these type of 3064 * allocations are system rather than user orientated 3065 */ 3066 ac->zonelist = node_zonelist(numa_node_id(), gfp_mask); 3067 3068 page = __alloc_pages_high_priority(gfp_mask, order, ac); 3069 3070 if (page) { 3071 goto got_pg; 3072 } 3073 } 3074 3075 /* Atomic allocations - we can't balance anything */ 3076 if (!wait) { 3077 /* 3078 * All existing users of the deprecated __GFP_NOFAIL are 3079 * blockable, so warn of any new users that actually allow this 3080 * type of allocation to fail. 3081 */ 3082 WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL); 3083 goto nopage; 3084 } 3085 3086 /* Avoid recursion of direct reclaim */ 3087 if (current->flags & PF_MEMALLOC) 3088 goto nopage; 3089 3090 /* Avoid allocations with no watermarks from looping endlessly */ 3091 if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL)) 3092 goto nopage; 3093 3094 /* 3095 * Try direct compaction. The first pass is asynchronous. Subsequent 3096 * attempts after direct reclaim are synchronous 3097 */ 3098 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac, 3099 migration_mode, 3100 &contended_compaction, 3101 &deferred_compaction); 3102 if (page) 3103 goto got_pg; 3104 3105 /* Checks for THP-specific high-order allocations */ 3106 if ((gfp_mask & GFP_TRANSHUGE) == GFP_TRANSHUGE) { 3107 /* 3108 * If compaction is deferred for high-order allocations, it is 3109 * because sync compaction recently failed. If this is the case 3110 * and the caller requested a THP allocation, we do not want 3111 * to heavily disrupt the system, so we fail the allocation 3112 * instead of entering direct reclaim. 3113 */ 3114 if (deferred_compaction) 3115 goto nopage; 3116 3117 /* 3118 * In all zones where compaction was attempted (and not 3119 * deferred or skipped), lock contention has been detected. 3120 * For THP allocation we do not want to disrupt the others 3121 * so we fallback to base pages instead. 3122 */ 3123 if (contended_compaction == COMPACT_CONTENDED_LOCK) 3124 goto nopage; 3125 3126 /* 3127 * If compaction was aborted due to need_resched(), we do not 3128 * want to further increase allocation latency, unless it is 3129 * khugepaged trying to collapse. 3130 */ 3131 if (contended_compaction == COMPACT_CONTENDED_SCHED 3132 && !(current->flags & PF_KTHREAD)) 3133 goto nopage; 3134 } 3135 3136 /* 3137 * It can become very expensive to allocate transparent hugepages at 3138 * fault, so use asynchronous memory compaction for THP unless it is 3139 * khugepaged trying to collapse. 3140 */ 3141 if ((gfp_mask & GFP_TRANSHUGE) != GFP_TRANSHUGE || 3142 (current->flags & PF_KTHREAD)) 3143 migration_mode = MIGRATE_SYNC_LIGHT; 3144 3145 /* Try direct reclaim and then allocating */ 3146 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac, 3147 &did_some_progress); 3148 if (page) 3149 goto got_pg; 3150 3151 /* Do not loop if specifically requested */ 3152 if (gfp_mask & __GFP_NORETRY) 3153 goto noretry; 3154 3155 /* Keep reclaiming pages as long as there is reasonable progress */ 3156 pages_reclaimed += did_some_progress; 3157 if ((did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER) || 3158 ((gfp_mask & __GFP_REPEAT) && pages_reclaimed < (1 << order))) { 3159 /* Wait for some write requests to complete then retry */ 3160 wait_iff_congested(ac->preferred_zone, BLK_RW_ASYNC, HZ/50); 3161 goto retry; 3162 } 3163 3164 /* Reclaim has failed us, start killing things */ 3165 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress); 3166 if (page) 3167 goto got_pg; 3168 3169 /* Retry as long as the OOM killer is making progress */ 3170 if (did_some_progress) 3171 goto retry; 3172 3173 noretry: 3174 /* 3175 * High-order allocations do not necessarily loop after 3176 * direct reclaim and reclaim/compaction depends on compaction 3177 * being called after reclaim so call directly if necessary 3178 */ 3179 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, 3180 ac, migration_mode, 3181 &contended_compaction, 3182 &deferred_compaction); 3183 if (page) 3184 goto got_pg; 3185 nopage: 3186 warn_alloc_failed(gfp_mask, order, NULL); 3187 got_pg: 3188 return page; 3189 } 3190 3191 /* 3192 * This is the 'heart' of the zoned buddy allocator. 3193 */ 3194 struct page * 3195 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order, 3196 struct zonelist *zonelist, nodemask_t *nodemask) 3197 { 3198 struct zoneref *preferred_zoneref; 3199 struct page *page = NULL; 3200 unsigned int cpuset_mems_cookie; 3201 int alloc_flags = ALLOC_WMARK_LOW|ALLOC_CPUSET|ALLOC_FAIR; 3202 gfp_t alloc_mask; /* The gfp_t that was actually used for allocation */ 3203 struct alloc_context ac = { 3204 .high_zoneidx = gfp_zone(gfp_mask), 3205 .nodemask = nodemask, 3206 .migratetype = gfpflags_to_migratetype(gfp_mask), 3207 }; 3208 3209 gfp_mask &= gfp_allowed_mask; 3210 3211 lockdep_trace_alloc(gfp_mask); 3212 3213 might_sleep_if(gfp_mask & __GFP_WAIT); 3214 3215 if (should_fail_alloc_page(gfp_mask, order)) 3216 return NULL; 3217 3218 /* 3219 * Check the zones suitable for the gfp_mask contain at least one 3220 * valid zone. It's possible to have an empty zonelist as a result 3221 * of __GFP_THISNODE and a memoryless node 3222 */ 3223 if (unlikely(!zonelist->_zonerefs->zone)) 3224 return NULL; 3225 3226 if (IS_ENABLED(CONFIG_CMA) && ac.migratetype == MIGRATE_MOVABLE) 3227 alloc_flags |= ALLOC_CMA; 3228 3229 retry_cpuset: 3230 cpuset_mems_cookie = read_mems_allowed_begin(); 3231 3232 /* We set it here, as __alloc_pages_slowpath might have changed it */ 3233 ac.zonelist = zonelist; 3234 /* The preferred zone is used for statistics later */ 3235 preferred_zoneref = first_zones_zonelist(ac.zonelist, ac.high_zoneidx, 3236 ac.nodemask ? : &cpuset_current_mems_allowed, 3237 &ac.preferred_zone); 3238 if (!ac.preferred_zone) 3239 goto out; 3240 ac.classzone_idx = zonelist_zone_idx(preferred_zoneref); 3241 3242 /* First allocation attempt */ 3243 alloc_mask = gfp_mask|__GFP_HARDWALL; 3244 page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac); 3245 if (unlikely(!page)) { 3246 /* 3247 * Runtime PM, block IO and its error handling path 3248 * can deadlock because I/O on the device might not 3249 * complete. 3250 */ 3251 alloc_mask = memalloc_noio_flags(gfp_mask); 3252 3253 page = __alloc_pages_slowpath(alloc_mask, order, &ac); 3254 } 3255 3256 if (kmemcheck_enabled && page) 3257 kmemcheck_pagealloc_alloc(page, order, gfp_mask); 3258 3259 trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype); 3260 3261 out: 3262 /* 3263 * When updating a task's mems_allowed, it is possible to race with 3264 * parallel threads in such a way that an allocation can fail while 3265 * the mask is being updated. If a page allocation is about to fail, 3266 * check if the cpuset changed during allocation and if so, retry. 3267 */ 3268 if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie))) 3269 goto retry_cpuset; 3270 3271 return page; 3272 } 3273 EXPORT_SYMBOL(__alloc_pages_nodemask); 3274 3275 /* 3276 * Common helper functions. 3277 */ 3278 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order) 3279 { 3280 struct page *page; 3281 3282 /* 3283 * __get_free_pages() returns a 32-bit address, which cannot represent 3284 * a highmem page 3285 */ 3286 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0); 3287 3288 page = alloc_pages(gfp_mask, order); 3289 if (!page) 3290 return 0; 3291 return (unsigned long) page_address(page); 3292 } 3293 EXPORT_SYMBOL(__get_free_pages); 3294 3295 unsigned long get_zeroed_page(gfp_t gfp_mask) 3296 { 3297 return __get_free_pages(gfp_mask | __GFP_ZERO, 0); 3298 } 3299 EXPORT_SYMBOL(get_zeroed_page); 3300 3301 void __free_pages(struct page *page, unsigned int order) 3302 { 3303 if (put_page_testzero(page)) { 3304 if (order == 0) 3305 free_hot_cold_page(page, false); 3306 else 3307 __free_pages_ok(page, order); 3308 } 3309 } 3310 3311 EXPORT_SYMBOL(__free_pages); 3312 3313 void free_pages(unsigned long addr, unsigned int order) 3314 { 3315 if (addr != 0) { 3316 VM_BUG_ON(!virt_addr_valid((void *)addr)); 3317 __free_pages(virt_to_page((void *)addr), order); 3318 } 3319 } 3320 3321 EXPORT_SYMBOL(free_pages); 3322 3323 /* 3324 * Page Fragment: 3325 * An arbitrary-length arbitrary-offset area of memory which resides 3326 * within a 0 or higher order page. Multiple fragments within that page 3327 * are individually refcounted, in the page's reference counter. 3328 * 3329 * The page_frag functions below provide a simple allocation framework for 3330 * page fragments. This is used by the network stack and network device 3331 * drivers to provide a backing region of memory for use as either an 3332 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info. 3333 */ 3334 static struct page *__page_frag_refill(struct page_frag_cache *nc, 3335 gfp_t gfp_mask) 3336 { 3337 struct page *page = NULL; 3338 gfp_t gfp = gfp_mask; 3339 3340 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE) 3341 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY | 3342 __GFP_NOMEMALLOC; 3343 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask, 3344 PAGE_FRAG_CACHE_MAX_ORDER); 3345 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE; 3346 #endif 3347 if (unlikely(!page)) 3348 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0); 3349 3350 nc->va = page ? page_address(page) : NULL; 3351 3352 return page; 3353 } 3354 3355 void *__alloc_page_frag(struct page_frag_cache *nc, 3356 unsigned int fragsz, gfp_t gfp_mask) 3357 { 3358 unsigned int size = PAGE_SIZE; 3359 struct page *page; 3360 int offset; 3361 3362 if (unlikely(!nc->va)) { 3363 refill: 3364 page = __page_frag_refill(nc, gfp_mask); 3365 if (!page) 3366 return NULL; 3367 3368 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE) 3369 /* if size can vary use size else just use PAGE_SIZE */ 3370 size = nc->size; 3371 #endif 3372 /* Even if we own the page, we do not use atomic_set(). 3373 * This would break get_page_unless_zero() users. 3374 */ 3375 atomic_add(size - 1, &page->_count); 3376 3377 /* reset page count bias and offset to start of new frag */ 3378 nc->pfmemalloc = page_is_pfmemalloc(page); 3379 nc->pagecnt_bias = size; 3380 nc->offset = size; 3381 } 3382 3383 offset = nc->offset - fragsz; 3384 if (unlikely(offset < 0)) { 3385 page = virt_to_page(nc->va); 3386 3387 if (!atomic_sub_and_test(nc->pagecnt_bias, &page->_count)) 3388 goto refill; 3389 3390 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE) 3391 /* if size can vary use size else just use PAGE_SIZE */ 3392 size = nc->size; 3393 #endif 3394 /* OK, page count is 0, we can safely set it */ 3395 atomic_set(&page->_count, size); 3396 3397 /* reset page count bias and offset to start of new frag */ 3398 nc->pagecnt_bias = size; 3399 offset = size - fragsz; 3400 } 3401 3402 nc->pagecnt_bias--; 3403 nc->offset = offset; 3404 3405 return nc->va + offset; 3406 } 3407 EXPORT_SYMBOL(__alloc_page_frag); 3408 3409 /* 3410 * Frees a page fragment allocated out of either a compound or order 0 page. 3411 */ 3412 void __free_page_frag(void *addr) 3413 { 3414 struct page *page = virt_to_head_page(addr); 3415 3416 if (unlikely(put_page_testzero(page))) 3417 __free_pages_ok(page, compound_order(page)); 3418 } 3419 EXPORT_SYMBOL(__free_page_frag); 3420 3421 /* 3422 * alloc_kmem_pages charges newly allocated pages to the kmem resource counter 3423 * of the current memory cgroup. 3424 * 3425 * It should be used when the caller would like to use kmalloc, but since the 3426 * allocation is large, it has to fall back to the page allocator. 3427 */ 3428 struct page *alloc_kmem_pages(gfp_t gfp_mask, unsigned int order) 3429 { 3430 struct page *page; 3431 struct mem_cgroup *memcg = NULL; 3432 3433 if (!memcg_kmem_newpage_charge(gfp_mask, &memcg, order)) 3434 return NULL; 3435 page = alloc_pages(gfp_mask, order); 3436 memcg_kmem_commit_charge(page, memcg, order); 3437 return page; 3438 } 3439 3440 struct page *alloc_kmem_pages_node(int nid, gfp_t gfp_mask, unsigned int order) 3441 { 3442 struct page *page; 3443 struct mem_cgroup *memcg = NULL; 3444 3445 if (!memcg_kmem_newpage_charge(gfp_mask, &memcg, order)) 3446 return NULL; 3447 page = alloc_pages_node(nid, gfp_mask, order); 3448 memcg_kmem_commit_charge(page, memcg, order); 3449 return page; 3450 } 3451 3452 /* 3453 * __free_kmem_pages and free_kmem_pages will free pages allocated with 3454 * alloc_kmem_pages. 3455 */ 3456 void __free_kmem_pages(struct page *page, unsigned int order) 3457 { 3458 memcg_kmem_uncharge_pages(page, order); 3459 __free_pages(page, order); 3460 } 3461 3462 void free_kmem_pages(unsigned long addr, unsigned int order) 3463 { 3464 if (addr != 0) { 3465 VM_BUG_ON(!virt_addr_valid((void *)addr)); 3466 __free_kmem_pages(virt_to_page((void *)addr), order); 3467 } 3468 } 3469 3470 static void *make_alloc_exact(unsigned long addr, unsigned order, size_t size) 3471 { 3472 if (addr) { 3473 unsigned long alloc_end = addr + (PAGE_SIZE << order); 3474 unsigned long used = addr + PAGE_ALIGN(size); 3475 3476 split_page(virt_to_page((void *)addr), order); 3477 while (used < alloc_end) { 3478 free_page(used); 3479 used += PAGE_SIZE; 3480 } 3481 } 3482 return (void *)addr; 3483 } 3484 3485 /** 3486 * alloc_pages_exact - allocate an exact number physically-contiguous pages. 3487 * @size: the number of bytes to allocate 3488 * @gfp_mask: GFP flags for the allocation 3489 * 3490 * This function is similar to alloc_pages(), except that it allocates the 3491 * minimum number of pages to satisfy the request. alloc_pages() can only 3492 * allocate memory in power-of-two pages. 3493 * 3494 * This function is also limited by MAX_ORDER. 3495 * 3496 * Memory allocated by this function must be released by free_pages_exact(). 3497 */ 3498 void *alloc_pages_exact(size_t size, gfp_t gfp_mask) 3499 { 3500 unsigned int order = get_order(size); 3501 unsigned long addr; 3502 3503 addr = __get_free_pages(gfp_mask, order); 3504 return make_alloc_exact(addr, order, size); 3505 } 3506 EXPORT_SYMBOL(alloc_pages_exact); 3507 3508 /** 3509 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous 3510 * pages on a node. 3511 * @nid: the preferred node ID where memory should be allocated 3512 * @size: the number of bytes to allocate 3513 * @gfp_mask: GFP flags for the allocation 3514 * 3515 * Like alloc_pages_exact(), but try to allocate on node nid first before falling 3516 * back. 3517 */ 3518 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask) 3519 { 3520 unsigned order = get_order(size); 3521 struct page *p = alloc_pages_node(nid, gfp_mask, order); 3522 if (!p) 3523 return NULL; 3524 return make_alloc_exact((unsigned long)page_address(p), order, size); 3525 } 3526 3527 /** 3528 * free_pages_exact - release memory allocated via alloc_pages_exact() 3529 * @virt: the value returned by alloc_pages_exact. 3530 * @size: size of allocation, same value as passed to alloc_pages_exact(). 3531 * 3532 * Release the memory allocated by a previous call to alloc_pages_exact. 3533 */ 3534 void free_pages_exact(void *virt, size_t size) 3535 { 3536 unsigned long addr = (unsigned long)virt; 3537 unsigned long end = addr + PAGE_ALIGN(size); 3538 3539 while (addr < end) { 3540 free_page(addr); 3541 addr += PAGE_SIZE; 3542 } 3543 } 3544 EXPORT_SYMBOL(free_pages_exact); 3545 3546 /** 3547 * nr_free_zone_pages - count number of pages beyond high watermark 3548 * @offset: The zone index of the highest zone 3549 * 3550 * nr_free_zone_pages() counts the number of counts pages which are beyond the 3551 * high watermark within all zones at or below a given zone index. For each 3552 * zone, the number of pages is calculated as: 3553 * managed_pages - high_pages 3554 */ 3555 static unsigned long nr_free_zone_pages(int offset) 3556 { 3557 struct zoneref *z; 3558 struct zone *zone; 3559 3560 /* Just pick one node, since fallback list is circular */ 3561 unsigned long sum = 0; 3562 3563 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL); 3564 3565 for_each_zone_zonelist(zone, z, zonelist, offset) { 3566 unsigned long size = zone->managed_pages; 3567 unsigned long high = high_wmark_pages(zone); 3568 if (size > high) 3569 sum += size - high; 3570 } 3571 3572 return sum; 3573 } 3574 3575 /** 3576 * nr_free_buffer_pages - count number of pages beyond high watermark 3577 * 3578 * nr_free_buffer_pages() counts the number of pages which are beyond the high 3579 * watermark within ZONE_DMA and ZONE_NORMAL. 3580 */ 3581 unsigned long nr_free_buffer_pages(void) 3582 { 3583 return nr_free_zone_pages(gfp_zone(GFP_USER)); 3584 } 3585 EXPORT_SYMBOL_GPL(nr_free_buffer_pages); 3586 3587 /** 3588 * nr_free_pagecache_pages - count number of pages beyond high watermark 3589 * 3590 * nr_free_pagecache_pages() counts the number of pages which are beyond the 3591 * high watermark within all zones. 3592 */ 3593 unsigned long nr_free_pagecache_pages(void) 3594 { 3595 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE)); 3596 } 3597 3598 static inline void show_node(struct zone *zone) 3599 { 3600 if (IS_ENABLED(CONFIG_NUMA)) 3601 printk("Node %d ", zone_to_nid(zone)); 3602 } 3603 3604 void si_meminfo(struct sysinfo *val) 3605 { 3606 val->totalram = totalram_pages; 3607 val->sharedram = global_page_state(NR_SHMEM); 3608 val->freeram = global_page_state(NR_FREE_PAGES); 3609 val->bufferram = nr_blockdev_pages(); 3610 val->totalhigh = totalhigh_pages; 3611 val->freehigh = nr_free_highpages(); 3612 val->mem_unit = PAGE_SIZE; 3613 } 3614 3615 EXPORT_SYMBOL(si_meminfo); 3616 3617 #ifdef CONFIG_NUMA 3618 void si_meminfo_node(struct sysinfo *val, int nid) 3619 { 3620 int zone_type; /* needs to be signed */ 3621 unsigned long managed_pages = 0; 3622 pg_data_t *pgdat = NODE_DATA(nid); 3623 3624 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) 3625 managed_pages += pgdat->node_zones[zone_type].managed_pages; 3626 val->totalram = managed_pages; 3627 val->sharedram = node_page_state(nid, NR_SHMEM); 3628 val->freeram = node_page_state(nid, NR_FREE_PAGES); 3629 #ifdef CONFIG_HIGHMEM 3630 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].managed_pages; 3631 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM], 3632 NR_FREE_PAGES); 3633 #else 3634 val->totalhigh = 0; 3635 val->freehigh = 0; 3636 #endif 3637 val->mem_unit = PAGE_SIZE; 3638 } 3639 #endif 3640 3641 /* 3642 * Determine whether the node should be displayed or not, depending on whether 3643 * SHOW_MEM_FILTER_NODES was passed to show_free_areas(). 3644 */ 3645 bool skip_free_areas_node(unsigned int flags, int nid) 3646 { 3647 bool ret = false; 3648 unsigned int cpuset_mems_cookie; 3649 3650 if (!(flags & SHOW_MEM_FILTER_NODES)) 3651 goto out; 3652 3653 do { 3654 cpuset_mems_cookie = read_mems_allowed_begin(); 3655 ret = !node_isset(nid, cpuset_current_mems_allowed); 3656 } while (read_mems_allowed_retry(cpuset_mems_cookie)); 3657 out: 3658 return ret; 3659 } 3660 3661 #define K(x) ((x) << (PAGE_SHIFT-10)) 3662 3663 static void show_migration_types(unsigned char type) 3664 { 3665 static const char types[MIGRATE_TYPES] = { 3666 [MIGRATE_UNMOVABLE] = 'U', 3667 [MIGRATE_RECLAIMABLE] = 'E', 3668 [MIGRATE_MOVABLE] = 'M', 3669 [MIGRATE_RESERVE] = 'R', 3670 #ifdef CONFIG_CMA 3671 [MIGRATE_CMA] = 'C', 3672 #endif 3673 #ifdef CONFIG_MEMORY_ISOLATION 3674 [MIGRATE_ISOLATE] = 'I', 3675 #endif 3676 }; 3677 char tmp[MIGRATE_TYPES + 1]; 3678 char *p = tmp; 3679 int i; 3680 3681 for (i = 0; i < MIGRATE_TYPES; i++) { 3682 if (type & (1 << i)) 3683 *p++ = types[i]; 3684 } 3685 3686 *p = '\0'; 3687 printk("(%s) ", tmp); 3688 } 3689 3690 /* 3691 * Show free area list (used inside shift_scroll-lock stuff) 3692 * We also calculate the percentage fragmentation. We do this by counting the 3693 * memory on each free list with the exception of the first item on the list. 3694 * 3695 * Bits in @filter: 3696 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's 3697 * cpuset. 3698 */ 3699 void show_free_areas(unsigned int filter) 3700 { 3701 unsigned long free_pcp = 0; 3702 int cpu; 3703 struct zone *zone; 3704 3705 for_each_populated_zone(zone) { 3706 if (skip_free_areas_node(filter, zone_to_nid(zone))) 3707 continue; 3708 3709 for_each_online_cpu(cpu) 3710 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count; 3711 } 3712 3713 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n" 3714 " active_file:%lu inactive_file:%lu isolated_file:%lu\n" 3715 " unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n" 3716 " slab_reclaimable:%lu slab_unreclaimable:%lu\n" 3717 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n" 3718 " free:%lu free_pcp:%lu free_cma:%lu\n", 3719 global_page_state(NR_ACTIVE_ANON), 3720 global_page_state(NR_INACTIVE_ANON), 3721 global_page_state(NR_ISOLATED_ANON), 3722 global_page_state(NR_ACTIVE_FILE), 3723 global_page_state(NR_INACTIVE_FILE), 3724 global_page_state(NR_ISOLATED_FILE), 3725 global_page_state(NR_UNEVICTABLE), 3726 global_page_state(NR_FILE_DIRTY), 3727 global_page_state(NR_WRITEBACK), 3728 global_page_state(NR_UNSTABLE_NFS), 3729 global_page_state(NR_SLAB_RECLAIMABLE), 3730 global_page_state(NR_SLAB_UNRECLAIMABLE), 3731 global_page_state(NR_FILE_MAPPED), 3732 global_page_state(NR_SHMEM), 3733 global_page_state(NR_PAGETABLE), 3734 global_page_state(NR_BOUNCE), 3735 global_page_state(NR_FREE_PAGES), 3736 free_pcp, 3737 global_page_state(NR_FREE_CMA_PAGES)); 3738 3739 for_each_populated_zone(zone) { 3740 int i; 3741 3742 if (skip_free_areas_node(filter, zone_to_nid(zone))) 3743 continue; 3744 3745 free_pcp = 0; 3746 for_each_online_cpu(cpu) 3747 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count; 3748 3749 show_node(zone); 3750 printk("%s" 3751 " free:%lukB" 3752 " min:%lukB" 3753 " low:%lukB" 3754 " high:%lukB" 3755 " active_anon:%lukB" 3756 " inactive_anon:%lukB" 3757 " active_file:%lukB" 3758 " inactive_file:%lukB" 3759 " unevictable:%lukB" 3760 " isolated(anon):%lukB" 3761 " isolated(file):%lukB" 3762 " present:%lukB" 3763 " managed:%lukB" 3764 " mlocked:%lukB" 3765 " dirty:%lukB" 3766 " writeback:%lukB" 3767 " mapped:%lukB" 3768 " shmem:%lukB" 3769 " slab_reclaimable:%lukB" 3770 " slab_unreclaimable:%lukB" 3771 " kernel_stack:%lukB" 3772 " pagetables:%lukB" 3773 " unstable:%lukB" 3774 " bounce:%lukB" 3775 " free_pcp:%lukB" 3776 " local_pcp:%ukB" 3777 " free_cma:%lukB" 3778 " writeback_tmp:%lukB" 3779 " pages_scanned:%lu" 3780 " all_unreclaimable? %s" 3781 "\n", 3782 zone->name, 3783 K(zone_page_state(zone, NR_FREE_PAGES)), 3784 K(min_wmark_pages(zone)), 3785 K(low_wmark_pages(zone)), 3786 K(high_wmark_pages(zone)), 3787 K(zone_page_state(zone, NR_ACTIVE_ANON)), 3788 K(zone_page_state(zone, NR_INACTIVE_ANON)), 3789 K(zone_page_state(zone, NR_ACTIVE_FILE)), 3790 K(zone_page_state(zone, NR_INACTIVE_FILE)), 3791 K(zone_page_state(zone, NR_UNEVICTABLE)), 3792 K(zone_page_state(zone, NR_ISOLATED_ANON)), 3793 K(zone_page_state(zone, NR_ISOLATED_FILE)), 3794 K(zone->present_pages), 3795 K(zone->managed_pages), 3796 K(zone_page_state(zone, NR_MLOCK)), 3797 K(zone_page_state(zone, NR_FILE_DIRTY)), 3798 K(zone_page_state(zone, NR_WRITEBACK)), 3799 K(zone_page_state(zone, NR_FILE_MAPPED)), 3800 K(zone_page_state(zone, NR_SHMEM)), 3801 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)), 3802 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)), 3803 zone_page_state(zone, NR_KERNEL_STACK) * 3804 THREAD_SIZE / 1024, 3805 K(zone_page_state(zone, NR_PAGETABLE)), 3806 K(zone_page_state(zone, NR_UNSTABLE_NFS)), 3807 K(zone_page_state(zone, NR_BOUNCE)), 3808 K(free_pcp), 3809 K(this_cpu_read(zone->pageset->pcp.count)), 3810 K(zone_page_state(zone, NR_FREE_CMA_PAGES)), 3811 K(zone_page_state(zone, NR_WRITEBACK_TEMP)), 3812 K(zone_page_state(zone, NR_PAGES_SCANNED)), 3813 (!zone_reclaimable(zone) ? "yes" : "no") 3814 ); 3815 printk("lowmem_reserve[]:"); 3816 for (i = 0; i < MAX_NR_ZONES; i++) 3817 printk(" %ld", zone->lowmem_reserve[i]); 3818 printk("\n"); 3819 } 3820 3821 for_each_populated_zone(zone) { 3822 unsigned long nr[MAX_ORDER], flags, order, total = 0; 3823 unsigned char types[MAX_ORDER]; 3824 3825 if (skip_free_areas_node(filter, zone_to_nid(zone))) 3826 continue; 3827 show_node(zone); 3828 printk("%s: ", zone->name); 3829 3830 spin_lock_irqsave(&zone->lock, flags); 3831 for (order = 0; order < MAX_ORDER; order++) { 3832 struct free_area *area = &zone->free_area[order]; 3833 int type; 3834 3835 nr[order] = area->nr_free; 3836 total += nr[order] << order; 3837 3838 types[order] = 0; 3839 for (type = 0; type < MIGRATE_TYPES; type++) { 3840 if (!list_empty(&area->free_list[type])) 3841 types[order] |= 1 << type; 3842 } 3843 } 3844 spin_unlock_irqrestore(&zone->lock, flags); 3845 for (order = 0; order < MAX_ORDER; order++) { 3846 printk("%lu*%lukB ", nr[order], K(1UL) << order); 3847 if (nr[order]) 3848 show_migration_types(types[order]); 3849 } 3850 printk("= %lukB\n", K(total)); 3851 } 3852 3853 hugetlb_show_meminfo(); 3854 3855 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES)); 3856 3857 show_swap_cache_info(); 3858 } 3859 3860 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref) 3861 { 3862 zoneref->zone = zone; 3863 zoneref->zone_idx = zone_idx(zone); 3864 } 3865 3866 /* 3867 * Builds allocation fallback zone lists. 3868 * 3869 * Add all populated zones of a node to the zonelist. 3870 */ 3871 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist, 3872 int nr_zones) 3873 { 3874 struct zone *zone; 3875 enum zone_type zone_type = MAX_NR_ZONES; 3876 3877 do { 3878 zone_type--; 3879 zone = pgdat->node_zones + zone_type; 3880 if (populated_zone(zone)) { 3881 zoneref_set_zone(zone, 3882 &zonelist->_zonerefs[nr_zones++]); 3883 check_highest_zone(zone_type); 3884 } 3885 } while (zone_type); 3886 3887 return nr_zones; 3888 } 3889 3890 3891 /* 3892 * zonelist_order: 3893 * 0 = automatic detection of better ordering. 3894 * 1 = order by ([node] distance, -zonetype) 3895 * 2 = order by (-zonetype, [node] distance) 3896 * 3897 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create 3898 * the same zonelist. So only NUMA can configure this param. 3899 */ 3900 #define ZONELIST_ORDER_DEFAULT 0 3901 #define ZONELIST_ORDER_NODE 1 3902 #define ZONELIST_ORDER_ZONE 2 3903 3904 /* zonelist order in the kernel. 3905 * set_zonelist_order() will set this to NODE or ZONE. 3906 */ 3907 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT; 3908 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"}; 3909 3910 3911 #ifdef CONFIG_NUMA 3912 /* The value user specified ....changed by config */ 3913 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT; 3914 /* string for sysctl */ 3915 #define NUMA_ZONELIST_ORDER_LEN 16 3916 char numa_zonelist_order[16] = "default"; 3917 3918 /* 3919 * interface for configure zonelist ordering. 3920 * command line option "numa_zonelist_order" 3921 * = "[dD]efault - default, automatic configuration. 3922 * = "[nN]ode - order by node locality, then by zone within node 3923 * = "[zZ]one - order by zone, then by locality within zone 3924 */ 3925 3926 static int __parse_numa_zonelist_order(char *s) 3927 { 3928 if (*s == 'd' || *s == 'D') { 3929 user_zonelist_order = ZONELIST_ORDER_DEFAULT; 3930 } else if (*s == 'n' || *s == 'N') { 3931 user_zonelist_order = ZONELIST_ORDER_NODE; 3932 } else if (*s == 'z' || *s == 'Z') { 3933 user_zonelist_order = ZONELIST_ORDER_ZONE; 3934 } else { 3935 printk(KERN_WARNING 3936 "Ignoring invalid numa_zonelist_order value: " 3937 "%s\n", s); 3938 return -EINVAL; 3939 } 3940 return 0; 3941 } 3942 3943 static __init int setup_numa_zonelist_order(char *s) 3944 { 3945 int ret; 3946 3947 if (!s) 3948 return 0; 3949 3950 ret = __parse_numa_zonelist_order(s); 3951 if (ret == 0) 3952 strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN); 3953 3954 return ret; 3955 } 3956 early_param("numa_zonelist_order", setup_numa_zonelist_order); 3957 3958 /* 3959 * sysctl handler for numa_zonelist_order 3960 */ 3961 int numa_zonelist_order_handler(struct ctl_table *table, int write, 3962 void __user *buffer, size_t *length, 3963 loff_t *ppos) 3964 { 3965 char saved_string[NUMA_ZONELIST_ORDER_LEN]; 3966 int ret; 3967 static DEFINE_MUTEX(zl_order_mutex); 3968 3969 mutex_lock(&zl_order_mutex); 3970 if (write) { 3971 if (strlen((char *)table->data) >= NUMA_ZONELIST_ORDER_LEN) { 3972 ret = -EINVAL; 3973 goto out; 3974 } 3975 strcpy(saved_string, (char *)table->data); 3976 } 3977 ret = proc_dostring(table, write, buffer, length, ppos); 3978 if (ret) 3979 goto out; 3980 if (write) { 3981 int oldval = user_zonelist_order; 3982 3983 ret = __parse_numa_zonelist_order((char *)table->data); 3984 if (ret) { 3985 /* 3986 * bogus value. restore saved string 3987 */ 3988 strncpy((char *)table->data, saved_string, 3989 NUMA_ZONELIST_ORDER_LEN); 3990 user_zonelist_order = oldval; 3991 } else if (oldval != user_zonelist_order) { 3992 mutex_lock(&zonelists_mutex); 3993 build_all_zonelists(NULL, NULL); 3994 mutex_unlock(&zonelists_mutex); 3995 } 3996 } 3997 out: 3998 mutex_unlock(&zl_order_mutex); 3999 return ret; 4000 } 4001 4002 4003 #define MAX_NODE_LOAD (nr_online_nodes) 4004 static int node_load[MAX_NUMNODES]; 4005 4006 /** 4007 * find_next_best_node - find the next node that should appear in a given node's fallback list 4008 * @node: node whose fallback list we're appending 4009 * @used_node_mask: nodemask_t of already used nodes 4010 * 4011 * We use a number of factors to determine which is the next node that should 4012 * appear on a given node's fallback list. The node should not have appeared 4013 * already in @node's fallback list, and it should be the next closest node 4014 * according to the distance array (which contains arbitrary distance values 4015 * from each node to each node in the system), and should also prefer nodes 4016 * with no CPUs, since presumably they'll have very little allocation pressure 4017 * on them otherwise. 4018 * It returns -1 if no node is found. 4019 */ 4020 static int find_next_best_node(int node, nodemask_t *used_node_mask) 4021 { 4022 int n, val; 4023 int min_val = INT_MAX; 4024 int best_node = NUMA_NO_NODE; 4025 const struct cpumask *tmp = cpumask_of_node(0); 4026 4027 /* Use the local node if we haven't already */ 4028 if (!node_isset(node, *used_node_mask)) { 4029 node_set(node, *used_node_mask); 4030 return node; 4031 } 4032 4033 for_each_node_state(n, N_MEMORY) { 4034 4035 /* Don't want a node to appear more than once */ 4036 if (node_isset(n, *used_node_mask)) 4037 continue; 4038 4039 /* Use the distance array to find the distance */ 4040 val = node_distance(node, n); 4041 4042 /* Penalize nodes under us ("prefer the next node") */ 4043 val += (n < node); 4044 4045 /* Give preference to headless and unused nodes */ 4046 tmp = cpumask_of_node(n); 4047 if (!cpumask_empty(tmp)) 4048 val += PENALTY_FOR_NODE_WITH_CPUS; 4049 4050 /* Slight preference for less loaded node */ 4051 val *= (MAX_NODE_LOAD*MAX_NUMNODES); 4052 val += node_load[n]; 4053 4054 if (val < min_val) { 4055 min_val = val; 4056 best_node = n; 4057 } 4058 } 4059 4060 if (best_node >= 0) 4061 node_set(best_node, *used_node_mask); 4062 4063 return best_node; 4064 } 4065 4066 4067 /* 4068 * Build zonelists ordered by node and zones within node. 4069 * This results in maximum locality--normal zone overflows into local 4070 * DMA zone, if any--but risks exhausting DMA zone. 4071 */ 4072 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node) 4073 { 4074 int j; 4075 struct zonelist *zonelist; 4076 4077 zonelist = &pgdat->node_zonelists[0]; 4078 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++) 4079 ; 4080 j = build_zonelists_node(NODE_DATA(node), zonelist, j); 4081 zonelist->_zonerefs[j].zone = NULL; 4082 zonelist->_zonerefs[j].zone_idx = 0; 4083 } 4084 4085 /* 4086 * Build gfp_thisnode zonelists 4087 */ 4088 static void build_thisnode_zonelists(pg_data_t *pgdat) 4089 { 4090 int j; 4091 struct zonelist *zonelist; 4092 4093 zonelist = &pgdat->node_zonelists[1]; 4094 j = build_zonelists_node(pgdat, zonelist, 0); 4095 zonelist->_zonerefs[j].zone = NULL; 4096 zonelist->_zonerefs[j].zone_idx = 0; 4097 } 4098 4099 /* 4100 * Build zonelists ordered by zone and nodes within zones. 4101 * This results in conserving DMA zone[s] until all Normal memory is 4102 * exhausted, but results in overflowing to remote node while memory 4103 * may still exist in local DMA zone. 4104 */ 4105 static int node_order[MAX_NUMNODES]; 4106 4107 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes) 4108 { 4109 int pos, j, node; 4110 int zone_type; /* needs to be signed */ 4111 struct zone *z; 4112 struct zonelist *zonelist; 4113 4114 zonelist = &pgdat->node_zonelists[0]; 4115 pos = 0; 4116 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) { 4117 for (j = 0; j < nr_nodes; j++) { 4118 node = node_order[j]; 4119 z = &NODE_DATA(node)->node_zones[zone_type]; 4120 if (populated_zone(z)) { 4121 zoneref_set_zone(z, 4122 &zonelist->_zonerefs[pos++]); 4123 check_highest_zone(zone_type); 4124 } 4125 } 4126 } 4127 zonelist->_zonerefs[pos].zone = NULL; 4128 zonelist->_zonerefs[pos].zone_idx = 0; 4129 } 4130 4131 #if defined(CONFIG_64BIT) 4132 /* 4133 * Devices that require DMA32/DMA are relatively rare and do not justify a 4134 * penalty to every machine in case the specialised case applies. Default 4135 * to Node-ordering on 64-bit NUMA machines 4136 */ 4137 static int default_zonelist_order(void) 4138 { 4139 return ZONELIST_ORDER_NODE; 4140 } 4141 #else 4142 /* 4143 * On 32-bit, the Normal zone needs to be preserved for allocations accessible 4144 * by the kernel. If processes running on node 0 deplete the low memory zone 4145 * then reclaim will occur more frequency increasing stalls and potentially 4146 * be easier to OOM if a large percentage of the zone is under writeback or 4147 * dirty. The problem is significantly worse if CONFIG_HIGHPTE is not set. 4148 * Hence, default to zone ordering on 32-bit. 4149 */ 4150 static int default_zonelist_order(void) 4151 { 4152 return ZONELIST_ORDER_ZONE; 4153 } 4154 #endif /* CONFIG_64BIT */ 4155 4156 static void set_zonelist_order(void) 4157 { 4158 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT) 4159 current_zonelist_order = default_zonelist_order(); 4160 else 4161 current_zonelist_order = user_zonelist_order; 4162 } 4163 4164 static void build_zonelists(pg_data_t *pgdat) 4165 { 4166 int j, node, load; 4167 enum zone_type i; 4168 nodemask_t used_mask; 4169 int local_node, prev_node; 4170 struct zonelist *zonelist; 4171 int order = current_zonelist_order; 4172 4173 /* initialize zonelists */ 4174 for (i = 0; i < MAX_ZONELISTS; i++) { 4175 zonelist = pgdat->node_zonelists + i; 4176 zonelist->_zonerefs[0].zone = NULL; 4177 zonelist->_zonerefs[0].zone_idx = 0; 4178 } 4179 4180 /* NUMA-aware ordering of nodes */ 4181 local_node = pgdat->node_id; 4182 load = nr_online_nodes; 4183 prev_node = local_node; 4184 nodes_clear(used_mask); 4185 4186 memset(node_order, 0, sizeof(node_order)); 4187 j = 0; 4188 4189 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) { 4190 /* 4191 * We don't want to pressure a particular node. 4192 * So adding penalty to the first node in same 4193 * distance group to make it round-robin. 4194 */ 4195 if (node_distance(local_node, node) != 4196 node_distance(local_node, prev_node)) 4197 node_load[node] = load; 4198 4199 prev_node = node; 4200 load--; 4201 if (order == ZONELIST_ORDER_NODE) 4202 build_zonelists_in_node_order(pgdat, node); 4203 else 4204 node_order[j++] = node; /* remember order */ 4205 } 4206 4207 if (order == ZONELIST_ORDER_ZONE) { 4208 /* calculate node order -- i.e., DMA last! */ 4209 build_zonelists_in_zone_order(pgdat, j); 4210 } 4211 4212 build_thisnode_zonelists(pgdat); 4213 } 4214 4215 /* Construct the zonelist performance cache - see further mmzone.h */ 4216 static void build_zonelist_cache(pg_data_t *pgdat) 4217 { 4218 struct zonelist *zonelist; 4219 struct zonelist_cache *zlc; 4220 struct zoneref *z; 4221 4222 zonelist = &pgdat->node_zonelists[0]; 4223 zonelist->zlcache_ptr = zlc = &zonelist->zlcache; 4224 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST); 4225 for (z = zonelist->_zonerefs; z->zone; z++) 4226 zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z); 4227 } 4228 4229 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 4230 /* 4231 * Return node id of node used for "local" allocations. 4232 * I.e., first node id of first zone in arg node's generic zonelist. 4233 * Used for initializing percpu 'numa_mem', which is used primarily 4234 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist. 4235 */ 4236 int local_memory_node(int node) 4237 { 4238 struct zone *zone; 4239 4240 (void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL), 4241 gfp_zone(GFP_KERNEL), 4242 NULL, 4243 &zone); 4244 return zone->node; 4245 } 4246 #endif 4247 4248 #else /* CONFIG_NUMA */ 4249 4250 static void set_zonelist_order(void) 4251 { 4252 current_zonelist_order = ZONELIST_ORDER_ZONE; 4253 } 4254 4255 static void build_zonelists(pg_data_t *pgdat) 4256 { 4257 int node, local_node; 4258 enum zone_type j; 4259 struct zonelist *zonelist; 4260 4261 local_node = pgdat->node_id; 4262 4263 zonelist = &pgdat->node_zonelists[0]; 4264 j = build_zonelists_node(pgdat, zonelist, 0); 4265 4266 /* 4267 * Now we build the zonelist so that it contains the zones 4268 * of all the other nodes. 4269 * We don't want to pressure a particular node, so when 4270 * building the zones for node N, we make sure that the 4271 * zones coming right after the local ones are those from 4272 * node N+1 (modulo N) 4273 */ 4274 for (node = local_node + 1; node < MAX_NUMNODES; node++) { 4275 if (!node_online(node)) 4276 continue; 4277 j = build_zonelists_node(NODE_DATA(node), zonelist, j); 4278 } 4279 for (node = 0; node < local_node; node++) { 4280 if (!node_online(node)) 4281 continue; 4282 j = build_zonelists_node(NODE_DATA(node), zonelist, j); 4283 } 4284 4285 zonelist->_zonerefs[j].zone = NULL; 4286 zonelist->_zonerefs[j].zone_idx = 0; 4287 } 4288 4289 /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */ 4290 static void build_zonelist_cache(pg_data_t *pgdat) 4291 { 4292 pgdat->node_zonelists[0].zlcache_ptr = NULL; 4293 } 4294 4295 #endif /* CONFIG_NUMA */ 4296 4297 /* 4298 * Boot pageset table. One per cpu which is going to be used for all 4299 * zones and all nodes. The parameters will be set in such a way 4300 * that an item put on a list will immediately be handed over to 4301 * the buddy list. This is safe since pageset manipulation is done 4302 * with interrupts disabled. 4303 * 4304 * The boot_pagesets must be kept even after bootup is complete for 4305 * unused processors and/or zones. They do play a role for bootstrapping 4306 * hotplugged processors. 4307 * 4308 * zoneinfo_show() and maybe other functions do 4309 * not check if the processor is online before following the pageset pointer. 4310 * Other parts of the kernel may not check if the zone is available. 4311 */ 4312 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch); 4313 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset); 4314 static void setup_zone_pageset(struct zone *zone); 4315 4316 /* 4317 * Global mutex to protect against size modification of zonelists 4318 * as well as to serialize pageset setup for the new populated zone. 4319 */ 4320 DEFINE_MUTEX(zonelists_mutex); 4321 4322 /* return values int ....just for stop_machine() */ 4323 static int __build_all_zonelists(void *data) 4324 { 4325 int nid; 4326 int cpu; 4327 pg_data_t *self = data; 4328 4329 #ifdef CONFIG_NUMA 4330 memset(node_load, 0, sizeof(node_load)); 4331 #endif 4332 4333 if (self && !node_online(self->node_id)) { 4334 build_zonelists(self); 4335 build_zonelist_cache(self); 4336 } 4337 4338 for_each_online_node(nid) { 4339 pg_data_t *pgdat = NODE_DATA(nid); 4340 4341 build_zonelists(pgdat); 4342 build_zonelist_cache(pgdat); 4343 } 4344 4345 /* 4346 * Initialize the boot_pagesets that are going to be used 4347 * for bootstrapping processors. The real pagesets for 4348 * each zone will be allocated later when the per cpu 4349 * allocator is available. 4350 * 4351 * boot_pagesets are used also for bootstrapping offline 4352 * cpus if the system is already booted because the pagesets 4353 * are needed to initialize allocators on a specific cpu too. 4354 * F.e. the percpu allocator needs the page allocator which 4355 * needs the percpu allocator in order to allocate its pagesets 4356 * (a chicken-egg dilemma). 4357 */ 4358 for_each_possible_cpu(cpu) { 4359 setup_pageset(&per_cpu(boot_pageset, cpu), 0); 4360 4361 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 4362 /* 4363 * We now know the "local memory node" for each node-- 4364 * i.e., the node of the first zone in the generic zonelist. 4365 * Set up numa_mem percpu variable for on-line cpus. During 4366 * boot, only the boot cpu should be on-line; we'll init the 4367 * secondary cpus' numa_mem as they come on-line. During 4368 * node/memory hotplug, we'll fixup all on-line cpus. 4369 */ 4370 if (cpu_online(cpu)) 4371 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu))); 4372 #endif 4373 } 4374 4375 return 0; 4376 } 4377 4378 static noinline void __init 4379 build_all_zonelists_init(void) 4380 { 4381 __build_all_zonelists(NULL); 4382 mminit_verify_zonelist(); 4383 cpuset_init_current_mems_allowed(); 4384 } 4385 4386 /* 4387 * Called with zonelists_mutex held always 4388 * unless system_state == SYSTEM_BOOTING. 4389 * 4390 * __ref due to (1) call of __meminit annotated setup_zone_pageset 4391 * [we're only called with non-NULL zone through __meminit paths] and 4392 * (2) call of __init annotated helper build_all_zonelists_init 4393 * [protected by SYSTEM_BOOTING]. 4394 */ 4395 void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone) 4396 { 4397 set_zonelist_order(); 4398 4399 if (system_state == SYSTEM_BOOTING) { 4400 build_all_zonelists_init(); 4401 } else { 4402 #ifdef CONFIG_MEMORY_HOTPLUG 4403 if (zone) 4404 setup_zone_pageset(zone); 4405 #endif 4406 /* we have to stop all cpus to guarantee there is no user 4407 of zonelist */ 4408 stop_machine(__build_all_zonelists, pgdat, NULL); 4409 /* cpuset refresh routine should be here */ 4410 } 4411 vm_total_pages = nr_free_pagecache_pages(); 4412 /* 4413 * Disable grouping by mobility if the number of pages in the 4414 * system is too low to allow the mechanism to work. It would be 4415 * more accurate, but expensive to check per-zone. This check is 4416 * made on memory-hotadd so a system can start with mobility 4417 * disabled and enable it later 4418 */ 4419 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES)) 4420 page_group_by_mobility_disabled = 1; 4421 else 4422 page_group_by_mobility_disabled = 0; 4423 4424 pr_info("Built %i zonelists in %s order, mobility grouping %s. " 4425 "Total pages: %ld\n", 4426 nr_online_nodes, 4427 zonelist_order_name[current_zonelist_order], 4428 page_group_by_mobility_disabled ? "off" : "on", 4429 vm_total_pages); 4430 #ifdef CONFIG_NUMA 4431 pr_info("Policy zone: %s\n", zone_names[policy_zone]); 4432 #endif 4433 } 4434 4435 /* 4436 * Helper functions to size the waitqueue hash table. 4437 * Essentially these want to choose hash table sizes sufficiently 4438 * large so that collisions trying to wait on pages are rare. 4439 * But in fact, the number of active page waitqueues on typical 4440 * systems is ridiculously low, less than 200. So this is even 4441 * conservative, even though it seems large. 4442 * 4443 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to 4444 * waitqueues, i.e. the size of the waitq table given the number of pages. 4445 */ 4446 #define PAGES_PER_WAITQUEUE 256 4447 4448 #ifndef CONFIG_MEMORY_HOTPLUG 4449 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages) 4450 { 4451 unsigned long size = 1; 4452 4453 pages /= PAGES_PER_WAITQUEUE; 4454 4455 while (size < pages) 4456 size <<= 1; 4457 4458 /* 4459 * Once we have dozens or even hundreds of threads sleeping 4460 * on IO we've got bigger problems than wait queue collision. 4461 * Limit the size of the wait table to a reasonable size. 4462 */ 4463 size = min(size, 4096UL); 4464 4465 return max(size, 4UL); 4466 } 4467 #else 4468 /* 4469 * A zone's size might be changed by hot-add, so it is not possible to determine 4470 * a suitable size for its wait_table. So we use the maximum size now. 4471 * 4472 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie: 4473 * 4474 * i386 (preemption config) : 4096 x 16 = 64Kbyte. 4475 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte. 4476 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte. 4477 * 4478 * The maximum entries are prepared when a zone's memory is (512K + 256) pages 4479 * or more by the traditional way. (See above). It equals: 4480 * 4481 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte. 4482 * ia64(16K page size) : = ( 8G + 4M)byte. 4483 * powerpc (64K page size) : = (32G +16M)byte. 4484 */ 4485 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages) 4486 { 4487 return 4096UL; 4488 } 4489 #endif 4490 4491 /* 4492 * This is an integer logarithm so that shifts can be used later 4493 * to extract the more random high bits from the multiplicative 4494 * hash function before the remainder is taken. 4495 */ 4496 static inline unsigned long wait_table_bits(unsigned long size) 4497 { 4498 return ffz(~size); 4499 } 4500 4501 /* 4502 * Check if a pageblock contains reserved pages 4503 */ 4504 static int pageblock_is_reserved(unsigned long start_pfn, unsigned long end_pfn) 4505 { 4506 unsigned long pfn; 4507 4508 for (pfn = start_pfn; pfn < end_pfn; pfn++) { 4509 if (!pfn_valid_within(pfn) || PageReserved(pfn_to_page(pfn))) 4510 return 1; 4511 } 4512 return 0; 4513 } 4514 4515 /* 4516 * Mark a number of pageblocks as MIGRATE_RESERVE. The number 4517 * of blocks reserved is based on min_wmark_pages(zone). The memory within 4518 * the reserve will tend to store contiguous free pages. Setting min_free_kbytes 4519 * higher will lead to a bigger reserve which will get freed as contiguous 4520 * blocks as reclaim kicks in 4521 */ 4522 static void setup_zone_migrate_reserve(struct zone *zone) 4523 { 4524 unsigned long start_pfn, pfn, end_pfn, block_end_pfn; 4525 struct page *page; 4526 unsigned long block_migratetype; 4527 int reserve; 4528 int old_reserve; 4529 4530 /* 4531 * Get the start pfn, end pfn and the number of blocks to reserve 4532 * We have to be careful to be aligned to pageblock_nr_pages to 4533 * make sure that we always check pfn_valid for the first page in 4534 * the block. 4535 */ 4536 start_pfn = zone->zone_start_pfn; 4537 end_pfn = zone_end_pfn(zone); 4538 start_pfn = roundup(start_pfn, pageblock_nr_pages); 4539 reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >> 4540 pageblock_order; 4541 4542 /* 4543 * Reserve blocks are generally in place to help high-order atomic 4544 * allocations that are short-lived. A min_free_kbytes value that 4545 * would result in more than 2 reserve blocks for atomic allocations 4546 * is assumed to be in place to help anti-fragmentation for the 4547 * future allocation of hugepages at runtime. 4548 */ 4549 reserve = min(2, reserve); 4550 old_reserve = zone->nr_migrate_reserve_block; 4551 4552 /* When memory hot-add, we almost always need to do nothing */ 4553 if (reserve == old_reserve) 4554 return; 4555 zone->nr_migrate_reserve_block = reserve; 4556 4557 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) { 4558 if (!early_page_nid_uninitialised(pfn, zone_to_nid(zone))) 4559 return; 4560 4561 if (!pfn_valid(pfn)) 4562 continue; 4563 page = pfn_to_page(pfn); 4564 4565 /* Watch out for overlapping nodes */ 4566 if (page_to_nid(page) != zone_to_nid(zone)) 4567 continue; 4568 4569 block_migratetype = get_pageblock_migratetype(page); 4570 4571 /* Only test what is necessary when the reserves are not met */ 4572 if (reserve > 0) { 4573 /* 4574 * Blocks with reserved pages will never free, skip 4575 * them. 4576 */ 4577 block_end_pfn = min(pfn + pageblock_nr_pages, end_pfn); 4578 if (pageblock_is_reserved(pfn, block_end_pfn)) 4579 continue; 4580 4581 /* If this block is reserved, account for it */ 4582 if (block_migratetype == MIGRATE_RESERVE) { 4583 reserve--; 4584 continue; 4585 } 4586 4587 /* Suitable for reserving if this block is movable */ 4588 if (block_migratetype == MIGRATE_MOVABLE) { 4589 set_pageblock_migratetype(page, 4590 MIGRATE_RESERVE); 4591 move_freepages_block(zone, page, 4592 MIGRATE_RESERVE); 4593 reserve--; 4594 continue; 4595 } 4596 } else if (!old_reserve) { 4597 /* 4598 * At boot time we don't need to scan the whole zone 4599 * for turning off MIGRATE_RESERVE. 4600 */ 4601 break; 4602 } 4603 4604 /* 4605 * If the reserve is met and this is a previous reserved block, 4606 * take it back 4607 */ 4608 if (block_migratetype == MIGRATE_RESERVE) { 4609 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 4610 move_freepages_block(zone, page, MIGRATE_MOVABLE); 4611 } 4612 } 4613 } 4614 4615 /* 4616 * Initially all pages are reserved - free ones are freed 4617 * up by free_all_bootmem() once the early boot process is 4618 * done. Non-atomic initialization, single-pass. 4619 */ 4620 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone, 4621 unsigned long start_pfn, enum memmap_context context) 4622 { 4623 pg_data_t *pgdat = NODE_DATA(nid); 4624 unsigned long end_pfn = start_pfn + size; 4625 unsigned long pfn; 4626 struct zone *z; 4627 unsigned long nr_initialised = 0; 4628 4629 if (highest_memmap_pfn < end_pfn - 1) 4630 highest_memmap_pfn = end_pfn - 1; 4631 4632 z = &pgdat->node_zones[zone]; 4633 for (pfn = start_pfn; pfn < end_pfn; pfn++) { 4634 /* 4635 * There can be holes in boot-time mem_map[]s 4636 * handed to this function. They do not 4637 * exist on hotplugged memory. 4638 */ 4639 if (context == MEMMAP_EARLY) { 4640 if (!early_pfn_valid(pfn)) 4641 continue; 4642 if (!early_pfn_in_nid(pfn, nid)) 4643 continue; 4644 if (!update_defer_init(pgdat, pfn, end_pfn, 4645 &nr_initialised)) 4646 break; 4647 } 4648 4649 /* 4650 * Mark the block movable so that blocks are reserved for 4651 * movable at startup. This will force kernel allocations 4652 * to reserve their blocks rather than leaking throughout 4653 * the address space during boot when many long-lived 4654 * kernel allocations are made. Later some blocks near 4655 * the start are marked MIGRATE_RESERVE by 4656 * setup_zone_migrate_reserve() 4657 * 4658 * bitmap is created for zone's valid pfn range. but memmap 4659 * can be created for invalid pages (for alignment) 4660 * check here not to call set_pageblock_migratetype() against 4661 * pfn out of zone. 4662 */ 4663 if (!(pfn & (pageblock_nr_pages - 1))) { 4664 struct page *page = pfn_to_page(pfn); 4665 4666 __init_single_page(page, pfn, zone, nid); 4667 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 4668 } else { 4669 __init_single_pfn(pfn, zone, nid); 4670 } 4671 } 4672 } 4673 4674 static void __meminit zone_init_free_lists(struct zone *zone) 4675 { 4676 unsigned int order, t; 4677 for_each_migratetype_order(order, t) { 4678 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]); 4679 zone->free_area[order].nr_free = 0; 4680 } 4681 } 4682 4683 #ifndef __HAVE_ARCH_MEMMAP_INIT 4684 #define memmap_init(size, nid, zone, start_pfn) \ 4685 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY) 4686 #endif 4687 4688 static int zone_batchsize(struct zone *zone) 4689 { 4690 #ifdef CONFIG_MMU 4691 int batch; 4692 4693 /* 4694 * The per-cpu-pages pools are set to around 1000th of the 4695 * size of the zone. But no more than 1/2 of a meg. 4696 * 4697 * OK, so we don't know how big the cache is. So guess. 4698 */ 4699 batch = zone->managed_pages / 1024; 4700 if (batch * PAGE_SIZE > 512 * 1024) 4701 batch = (512 * 1024) / PAGE_SIZE; 4702 batch /= 4; /* We effectively *= 4 below */ 4703 if (batch < 1) 4704 batch = 1; 4705 4706 /* 4707 * Clamp the batch to a 2^n - 1 value. Having a power 4708 * of 2 value was found to be more likely to have 4709 * suboptimal cache aliasing properties in some cases. 4710 * 4711 * For example if 2 tasks are alternately allocating 4712 * batches of pages, one task can end up with a lot 4713 * of pages of one half of the possible page colors 4714 * and the other with pages of the other colors. 4715 */ 4716 batch = rounddown_pow_of_two(batch + batch/2) - 1; 4717 4718 return batch; 4719 4720 #else 4721 /* The deferral and batching of frees should be suppressed under NOMMU 4722 * conditions. 4723 * 4724 * The problem is that NOMMU needs to be able to allocate large chunks 4725 * of contiguous memory as there's no hardware page translation to 4726 * assemble apparent contiguous memory from discontiguous pages. 4727 * 4728 * Queueing large contiguous runs of pages for batching, however, 4729 * causes the pages to actually be freed in smaller chunks. As there 4730 * can be a significant delay between the individual batches being 4731 * recycled, this leads to the once large chunks of space being 4732 * fragmented and becoming unavailable for high-order allocations. 4733 */ 4734 return 0; 4735 #endif 4736 } 4737 4738 /* 4739 * pcp->high and pcp->batch values are related and dependent on one another: 4740 * ->batch must never be higher then ->high. 4741 * The following function updates them in a safe manner without read side 4742 * locking. 4743 * 4744 * Any new users of pcp->batch and pcp->high should ensure they can cope with 4745 * those fields changing asynchronously (acording the the above rule). 4746 * 4747 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function 4748 * outside of boot time (or some other assurance that no concurrent updaters 4749 * exist). 4750 */ 4751 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high, 4752 unsigned long batch) 4753 { 4754 /* start with a fail safe value for batch */ 4755 pcp->batch = 1; 4756 smp_wmb(); 4757 4758 /* Update high, then batch, in order */ 4759 pcp->high = high; 4760 smp_wmb(); 4761 4762 pcp->batch = batch; 4763 } 4764 4765 /* a companion to pageset_set_high() */ 4766 static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch) 4767 { 4768 pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch)); 4769 } 4770 4771 static void pageset_init(struct per_cpu_pageset *p) 4772 { 4773 struct per_cpu_pages *pcp; 4774 int migratetype; 4775 4776 memset(p, 0, sizeof(*p)); 4777 4778 pcp = &p->pcp; 4779 pcp->count = 0; 4780 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++) 4781 INIT_LIST_HEAD(&pcp->lists[migratetype]); 4782 } 4783 4784 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch) 4785 { 4786 pageset_init(p); 4787 pageset_set_batch(p, batch); 4788 } 4789 4790 /* 4791 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist 4792 * to the value high for the pageset p. 4793 */ 4794 static void pageset_set_high(struct per_cpu_pageset *p, 4795 unsigned long high) 4796 { 4797 unsigned long batch = max(1UL, high / 4); 4798 if ((high / 4) > (PAGE_SHIFT * 8)) 4799 batch = PAGE_SHIFT * 8; 4800 4801 pageset_update(&p->pcp, high, batch); 4802 } 4803 4804 static void pageset_set_high_and_batch(struct zone *zone, 4805 struct per_cpu_pageset *pcp) 4806 { 4807 if (percpu_pagelist_fraction) 4808 pageset_set_high(pcp, 4809 (zone->managed_pages / 4810 percpu_pagelist_fraction)); 4811 else 4812 pageset_set_batch(pcp, zone_batchsize(zone)); 4813 } 4814 4815 static void __meminit zone_pageset_init(struct zone *zone, int cpu) 4816 { 4817 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu); 4818 4819 pageset_init(pcp); 4820 pageset_set_high_and_batch(zone, pcp); 4821 } 4822 4823 static void __meminit setup_zone_pageset(struct zone *zone) 4824 { 4825 int cpu; 4826 zone->pageset = alloc_percpu(struct per_cpu_pageset); 4827 for_each_possible_cpu(cpu) 4828 zone_pageset_init(zone, cpu); 4829 } 4830 4831 /* 4832 * Allocate per cpu pagesets and initialize them. 4833 * Before this call only boot pagesets were available. 4834 */ 4835 void __init setup_per_cpu_pageset(void) 4836 { 4837 struct zone *zone; 4838 4839 for_each_populated_zone(zone) 4840 setup_zone_pageset(zone); 4841 } 4842 4843 static noinline __init_refok 4844 int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages) 4845 { 4846 int i; 4847 size_t alloc_size; 4848 4849 /* 4850 * The per-page waitqueue mechanism uses hashed waitqueues 4851 * per zone. 4852 */ 4853 zone->wait_table_hash_nr_entries = 4854 wait_table_hash_nr_entries(zone_size_pages); 4855 zone->wait_table_bits = 4856 wait_table_bits(zone->wait_table_hash_nr_entries); 4857 alloc_size = zone->wait_table_hash_nr_entries 4858 * sizeof(wait_queue_head_t); 4859 4860 if (!slab_is_available()) { 4861 zone->wait_table = (wait_queue_head_t *) 4862 memblock_virt_alloc_node_nopanic( 4863 alloc_size, zone->zone_pgdat->node_id); 4864 } else { 4865 /* 4866 * This case means that a zone whose size was 0 gets new memory 4867 * via memory hot-add. 4868 * But it may be the case that a new node was hot-added. In 4869 * this case vmalloc() will not be able to use this new node's 4870 * memory - this wait_table must be initialized to use this new 4871 * node itself as well. 4872 * To use this new node's memory, further consideration will be 4873 * necessary. 4874 */ 4875 zone->wait_table = vmalloc(alloc_size); 4876 } 4877 if (!zone->wait_table) 4878 return -ENOMEM; 4879 4880 for (i = 0; i < zone->wait_table_hash_nr_entries; ++i) 4881 init_waitqueue_head(zone->wait_table + i); 4882 4883 return 0; 4884 } 4885 4886 static __meminit void zone_pcp_init(struct zone *zone) 4887 { 4888 /* 4889 * per cpu subsystem is not up at this point. The following code 4890 * relies on the ability of the linker to provide the 4891 * offset of a (static) per cpu variable into the per cpu area. 4892 */ 4893 zone->pageset = &boot_pageset; 4894 4895 if (populated_zone(zone)) 4896 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n", 4897 zone->name, zone->present_pages, 4898 zone_batchsize(zone)); 4899 } 4900 4901 int __meminit init_currently_empty_zone(struct zone *zone, 4902 unsigned long zone_start_pfn, 4903 unsigned long size, 4904 enum memmap_context context) 4905 { 4906 struct pglist_data *pgdat = zone->zone_pgdat; 4907 int ret; 4908 ret = zone_wait_table_init(zone, size); 4909 if (ret) 4910 return ret; 4911 pgdat->nr_zones = zone_idx(zone) + 1; 4912 4913 zone->zone_start_pfn = zone_start_pfn; 4914 4915 mminit_dprintk(MMINIT_TRACE, "memmap_init", 4916 "Initialising map node %d zone %lu pfns %lu -> %lu\n", 4917 pgdat->node_id, 4918 (unsigned long)zone_idx(zone), 4919 zone_start_pfn, (zone_start_pfn + size)); 4920 4921 zone_init_free_lists(zone); 4922 4923 return 0; 4924 } 4925 4926 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 4927 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID 4928 4929 /* 4930 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on. 4931 */ 4932 int __meminit __early_pfn_to_nid(unsigned long pfn, 4933 struct mminit_pfnnid_cache *state) 4934 { 4935 unsigned long start_pfn, end_pfn; 4936 int nid; 4937 4938 if (state->last_start <= pfn && pfn < state->last_end) 4939 return state->last_nid; 4940 4941 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn); 4942 if (nid != -1) { 4943 state->last_start = start_pfn; 4944 state->last_end = end_pfn; 4945 state->last_nid = nid; 4946 } 4947 4948 return nid; 4949 } 4950 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */ 4951 4952 /** 4953 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range 4954 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed. 4955 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid 4956 * 4957 * If an architecture guarantees that all ranges registered contain no holes 4958 * and may be freed, this this function may be used instead of calling 4959 * memblock_free_early_nid() manually. 4960 */ 4961 void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn) 4962 { 4963 unsigned long start_pfn, end_pfn; 4964 int i, this_nid; 4965 4966 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) { 4967 start_pfn = min(start_pfn, max_low_pfn); 4968 end_pfn = min(end_pfn, max_low_pfn); 4969 4970 if (start_pfn < end_pfn) 4971 memblock_free_early_nid(PFN_PHYS(start_pfn), 4972 (end_pfn - start_pfn) << PAGE_SHIFT, 4973 this_nid); 4974 } 4975 } 4976 4977 /** 4978 * sparse_memory_present_with_active_regions - Call memory_present for each active range 4979 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used. 4980 * 4981 * If an architecture guarantees that all ranges registered contain no holes and may 4982 * be freed, this function may be used instead of calling memory_present() manually. 4983 */ 4984 void __init sparse_memory_present_with_active_regions(int nid) 4985 { 4986 unsigned long start_pfn, end_pfn; 4987 int i, this_nid; 4988 4989 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) 4990 memory_present(this_nid, start_pfn, end_pfn); 4991 } 4992 4993 /** 4994 * get_pfn_range_for_nid - Return the start and end page frames for a node 4995 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned. 4996 * @start_pfn: Passed by reference. On return, it will have the node start_pfn. 4997 * @end_pfn: Passed by reference. On return, it will have the node end_pfn. 4998 * 4999 * It returns the start and end page frame of a node based on information 5000 * provided by memblock_set_node(). If called for a node 5001 * with no available memory, a warning is printed and the start and end 5002 * PFNs will be 0. 5003 */ 5004 void __meminit get_pfn_range_for_nid(unsigned int nid, 5005 unsigned long *start_pfn, unsigned long *end_pfn) 5006 { 5007 unsigned long this_start_pfn, this_end_pfn; 5008 int i; 5009 5010 *start_pfn = -1UL; 5011 *end_pfn = 0; 5012 5013 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) { 5014 *start_pfn = min(*start_pfn, this_start_pfn); 5015 *end_pfn = max(*end_pfn, this_end_pfn); 5016 } 5017 5018 if (*start_pfn == -1UL) 5019 *start_pfn = 0; 5020 } 5021 5022 /* 5023 * This finds a zone that can be used for ZONE_MOVABLE pages. The 5024 * assumption is made that zones within a node are ordered in monotonic 5025 * increasing memory addresses so that the "highest" populated zone is used 5026 */ 5027 static void __init find_usable_zone_for_movable(void) 5028 { 5029 int zone_index; 5030 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) { 5031 if (zone_index == ZONE_MOVABLE) 5032 continue; 5033 5034 if (arch_zone_highest_possible_pfn[zone_index] > 5035 arch_zone_lowest_possible_pfn[zone_index]) 5036 break; 5037 } 5038 5039 VM_BUG_ON(zone_index == -1); 5040 movable_zone = zone_index; 5041 } 5042 5043 /* 5044 * The zone ranges provided by the architecture do not include ZONE_MOVABLE 5045 * because it is sized independent of architecture. Unlike the other zones, 5046 * the starting point for ZONE_MOVABLE is not fixed. It may be different 5047 * in each node depending on the size of each node and how evenly kernelcore 5048 * is distributed. This helper function adjusts the zone ranges 5049 * provided by the architecture for a given node by using the end of the 5050 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that 5051 * zones within a node are in order of monotonic increases memory addresses 5052 */ 5053 static void __meminit adjust_zone_range_for_zone_movable(int nid, 5054 unsigned long zone_type, 5055 unsigned long node_start_pfn, 5056 unsigned long node_end_pfn, 5057 unsigned long *zone_start_pfn, 5058 unsigned long *zone_end_pfn) 5059 { 5060 /* Only adjust if ZONE_MOVABLE is on this node */ 5061 if (zone_movable_pfn[nid]) { 5062 /* Size ZONE_MOVABLE */ 5063 if (zone_type == ZONE_MOVABLE) { 5064 *zone_start_pfn = zone_movable_pfn[nid]; 5065 *zone_end_pfn = min(node_end_pfn, 5066 arch_zone_highest_possible_pfn[movable_zone]); 5067 5068 /* Adjust for ZONE_MOVABLE starting within this range */ 5069 } else if (*zone_start_pfn < zone_movable_pfn[nid] && 5070 *zone_end_pfn > zone_movable_pfn[nid]) { 5071 *zone_end_pfn = zone_movable_pfn[nid]; 5072 5073 /* Check if this whole range is within ZONE_MOVABLE */ 5074 } else if (*zone_start_pfn >= zone_movable_pfn[nid]) 5075 *zone_start_pfn = *zone_end_pfn; 5076 } 5077 } 5078 5079 /* 5080 * Return the number of pages a zone spans in a node, including holes 5081 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node() 5082 */ 5083 static unsigned long __meminit zone_spanned_pages_in_node(int nid, 5084 unsigned long zone_type, 5085 unsigned long node_start_pfn, 5086 unsigned long node_end_pfn, 5087 unsigned long *ignored) 5088 { 5089 unsigned long zone_start_pfn, zone_end_pfn; 5090 5091 /* When hotadd a new node from cpu_up(), the node should be empty */ 5092 if (!node_start_pfn && !node_end_pfn) 5093 return 0; 5094 5095 /* Get the start and end of the zone */ 5096 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type]; 5097 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type]; 5098 adjust_zone_range_for_zone_movable(nid, zone_type, 5099 node_start_pfn, node_end_pfn, 5100 &zone_start_pfn, &zone_end_pfn); 5101 5102 /* Check that this node has pages within the zone's required range */ 5103 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn) 5104 return 0; 5105 5106 /* Move the zone boundaries inside the node if necessary */ 5107 zone_end_pfn = min(zone_end_pfn, node_end_pfn); 5108 zone_start_pfn = max(zone_start_pfn, node_start_pfn); 5109 5110 /* Return the spanned pages */ 5111 return zone_end_pfn - zone_start_pfn; 5112 } 5113 5114 /* 5115 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES, 5116 * then all holes in the requested range will be accounted for. 5117 */ 5118 unsigned long __meminit __absent_pages_in_range(int nid, 5119 unsigned long range_start_pfn, 5120 unsigned long range_end_pfn) 5121 { 5122 unsigned long nr_absent = range_end_pfn - range_start_pfn; 5123 unsigned long start_pfn, end_pfn; 5124 int i; 5125 5126 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) { 5127 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn); 5128 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn); 5129 nr_absent -= end_pfn - start_pfn; 5130 } 5131 return nr_absent; 5132 } 5133 5134 /** 5135 * absent_pages_in_range - Return number of page frames in holes within a range 5136 * @start_pfn: The start PFN to start searching for holes 5137 * @end_pfn: The end PFN to stop searching for holes 5138 * 5139 * It returns the number of pages frames in memory holes within a range. 5140 */ 5141 unsigned long __init absent_pages_in_range(unsigned long start_pfn, 5142 unsigned long end_pfn) 5143 { 5144 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn); 5145 } 5146 5147 /* Return the number of page frames in holes in a zone on a node */ 5148 static unsigned long __meminit zone_absent_pages_in_node(int nid, 5149 unsigned long zone_type, 5150 unsigned long node_start_pfn, 5151 unsigned long node_end_pfn, 5152 unsigned long *ignored) 5153 { 5154 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type]; 5155 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type]; 5156 unsigned long zone_start_pfn, zone_end_pfn; 5157 5158 /* When hotadd a new node from cpu_up(), the node should be empty */ 5159 if (!node_start_pfn && !node_end_pfn) 5160 return 0; 5161 5162 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high); 5163 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high); 5164 5165 adjust_zone_range_for_zone_movable(nid, zone_type, 5166 node_start_pfn, node_end_pfn, 5167 &zone_start_pfn, &zone_end_pfn); 5168 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn); 5169 } 5170 5171 #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 5172 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid, 5173 unsigned long zone_type, 5174 unsigned long node_start_pfn, 5175 unsigned long node_end_pfn, 5176 unsigned long *zones_size) 5177 { 5178 return zones_size[zone_type]; 5179 } 5180 5181 static inline unsigned long __meminit zone_absent_pages_in_node(int nid, 5182 unsigned long zone_type, 5183 unsigned long node_start_pfn, 5184 unsigned long node_end_pfn, 5185 unsigned long *zholes_size) 5186 { 5187 if (!zholes_size) 5188 return 0; 5189 5190 return zholes_size[zone_type]; 5191 } 5192 5193 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 5194 5195 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat, 5196 unsigned long node_start_pfn, 5197 unsigned long node_end_pfn, 5198 unsigned long *zones_size, 5199 unsigned long *zholes_size) 5200 { 5201 unsigned long realtotalpages = 0, totalpages = 0; 5202 enum zone_type i; 5203 5204 for (i = 0; i < MAX_NR_ZONES; i++) { 5205 struct zone *zone = pgdat->node_zones + i; 5206 unsigned long size, real_size; 5207 5208 size = zone_spanned_pages_in_node(pgdat->node_id, i, 5209 node_start_pfn, 5210 node_end_pfn, 5211 zones_size); 5212 real_size = size - zone_absent_pages_in_node(pgdat->node_id, i, 5213 node_start_pfn, node_end_pfn, 5214 zholes_size); 5215 zone->spanned_pages = size; 5216 zone->present_pages = real_size; 5217 5218 totalpages += size; 5219 realtotalpages += real_size; 5220 } 5221 5222 pgdat->node_spanned_pages = totalpages; 5223 pgdat->node_present_pages = realtotalpages; 5224 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id, 5225 realtotalpages); 5226 } 5227 5228 #ifndef CONFIG_SPARSEMEM 5229 /* 5230 * Calculate the size of the zone->blockflags rounded to an unsigned long 5231 * Start by making sure zonesize is a multiple of pageblock_order by rounding 5232 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally 5233 * round what is now in bits to nearest long in bits, then return it in 5234 * bytes. 5235 */ 5236 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize) 5237 { 5238 unsigned long usemapsize; 5239 5240 zonesize += zone_start_pfn & (pageblock_nr_pages-1); 5241 usemapsize = roundup(zonesize, pageblock_nr_pages); 5242 usemapsize = usemapsize >> pageblock_order; 5243 usemapsize *= NR_PAGEBLOCK_BITS; 5244 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long)); 5245 5246 return usemapsize / 8; 5247 } 5248 5249 static void __init setup_usemap(struct pglist_data *pgdat, 5250 struct zone *zone, 5251 unsigned long zone_start_pfn, 5252 unsigned long zonesize) 5253 { 5254 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize); 5255 zone->pageblock_flags = NULL; 5256 if (usemapsize) 5257 zone->pageblock_flags = 5258 memblock_virt_alloc_node_nopanic(usemapsize, 5259 pgdat->node_id); 5260 } 5261 #else 5262 static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone, 5263 unsigned long zone_start_pfn, unsigned long zonesize) {} 5264 #endif /* CONFIG_SPARSEMEM */ 5265 5266 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE 5267 5268 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */ 5269 void __paginginit set_pageblock_order(void) 5270 { 5271 unsigned int order; 5272 5273 /* Check that pageblock_nr_pages has not already been setup */ 5274 if (pageblock_order) 5275 return; 5276 5277 if (HPAGE_SHIFT > PAGE_SHIFT) 5278 order = HUGETLB_PAGE_ORDER; 5279 else 5280 order = MAX_ORDER - 1; 5281 5282 /* 5283 * Assume the largest contiguous order of interest is a huge page. 5284 * This value may be variable depending on boot parameters on IA64 and 5285 * powerpc. 5286 */ 5287 pageblock_order = order; 5288 } 5289 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */ 5290 5291 /* 5292 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order() 5293 * is unused as pageblock_order is set at compile-time. See 5294 * include/linux/pageblock-flags.h for the values of pageblock_order based on 5295 * the kernel config 5296 */ 5297 void __paginginit set_pageblock_order(void) 5298 { 5299 } 5300 5301 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */ 5302 5303 static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages, 5304 unsigned long present_pages) 5305 { 5306 unsigned long pages = spanned_pages; 5307 5308 /* 5309 * Provide a more accurate estimation if there are holes within 5310 * the zone and SPARSEMEM is in use. If there are holes within the 5311 * zone, each populated memory region may cost us one or two extra 5312 * memmap pages due to alignment because memmap pages for each 5313 * populated regions may not naturally algined on page boundary. 5314 * So the (present_pages >> 4) heuristic is a tradeoff for that. 5315 */ 5316 if (spanned_pages > present_pages + (present_pages >> 4) && 5317 IS_ENABLED(CONFIG_SPARSEMEM)) 5318 pages = present_pages; 5319 5320 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT; 5321 } 5322 5323 /* 5324 * Set up the zone data structures: 5325 * - mark all pages reserved 5326 * - mark all memory queues empty 5327 * - clear the memory bitmaps 5328 * 5329 * NOTE: pgdat should get zeroed by caller. 5330 */ 5331 static void __paginginit free_area_init_core(struct pglist_data *pgdat) 5332 { 5333 enum zone_type j; 5334 int nid = pgdat->node_id; 5335 unsigned long zone_start_pfn = pgdat->node_start_pfn; 5336 int ret; 5337 5338 pgdat_resize_init(pgdat); 5339 #ifdef CONFIG_NUMA_BALANCING 5340 spin_lock_init(&pgdat->numabalancing_migrate_lock); 5341 pgdat->numabalancing_migrate_nr_pages = 0; 5342 pgdat->numabalancing_migrate_next_window = jiffies; 5343 #endif 5344 init_waitqueue_head(&pgdat->kswapd_wait); 5345 init_waitqueue_head(&pgdat->pfmemalloc_wait); 5346 pgdat_page_ext_init(pgdat); 5347 5348 for (j = 0; j < MAX_NR_ZONES; j++) { 5349 struct zone *zone = pgdat->node_zones + j; 5350 unsigned long size, realsize, freesize, memmap_pages; 5351 5352 size = zone->spanned_pages; 5353 realsize = freesize = zone->present_pages; 5354 5355 /* 5356 * Adjust freesize so that it accounts for how much memory 5357 * is used by this zone for memmap. This affects the watermark 5358 * and per-cpu initialisations 5359 */ 5360 memmap_pages = calc_memmap_size(size, realsize); 5361 if (!is_highmem_idx(j)) { 5362 if (freesize >= memmap_pages) { 5363 freesize -= memmap_pages; 5364 if (memmap_pages) 5365 printk(KERN_DEBUG 5366 " %s zone: %lu pages used for memmap\n", 5367 zone_names[j], memmap_pages); 5368 } else 5369 printk(KERN_WARNING 5370 " %s zone: %lu pages exceeds freesize %lu\n", 5371 zone_names[j], memmap_pages, freesize); 5372 } 5373 5374 /* Account for reserved pages */ 5375 if (j == 0 && freesize > dma_reserve) { 5376 freesize -= dma_reserve; 5377 printk(KERN_DEBUG " %s zone: %lu pages reserved\n", 5378 zone_names[0], dma_reserve); 5379 } 5380 5381 if (!is_highmem_idx(j)) 5382 nr_kernel_pages += freesize; 5383 /* Charge for highmem memmap if there are enough kernel pages */ 5384 else if (nr_kernel_pages > memmap_pages * 2) 5385 nr_kernel_pages -= memmap_pages; 5386 nr_all_pages += freesize; 5387 5388 /* 5389 * Set an approximate value for lowmem here, it will be adjusted 5390 * when the bootmem allocator frees pages into the buddy system. 5391 * And all highmem pages will be managed by the buddy system. 5392 */ 5393 zone->managed_pages = is_highmem_idx(j) ? realsize : freesize; 5394 #ifdef CONFIG_NUMA 5395 zone->node = nid; 5396 zone->min_unmapped_pages = (freesize*sysctl_min_unmapped_ratio) 5397 / 100; 5398 zone->min_slab_pages = (freesize * sysctl_min_slab_ratio) / 100; 5399 #endif 5400 zone->name = zone_names[j]; 5401 spin_lock_init(&zone->lock); 5402 spin_lock_init(&zone->lru_lock); 5403 zone_seqlock_init(zone); 5404 zone->zone_pgdat = pgdat; 5405 zone_pcp_init(zone); 5406 5407 /* For bootup, initialized properly in watermark setup */ 5408 mod_zone_page_state(zone, NR_ALLOC_BATCH, zone->managed_pages); 5409 5410 lruvec_init(&zone->lruvec); 5411 if (!size) 5412 continue; 5413 5414 set_pageblock_order(); 5415 setup_usemap(pgdat, zone, zone_start_pfn, size); 5416 ret = init_currently_empty_zone(zone, zone_start_pfn, 5417 size, MEMMAP_EARLY); 5418 BUG_ON(ret); 5419 memmap_init(size, nid, j, zone_start_pfn); 5420 zone_start_pfn += size; 5421 } 5422 } 5423 5424 static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat) 5425 { 5426 /* Skip empty nodes */ 5427 if (!pgdat->node_spanned_pages) 5428 return; 5429 5430 #ifdef CONFIG_FLAT_NODE_MEM_MAP 5431 /* ia64 gets its own node_mem_map, before this, without bootmem */ 5432 if (!pgdat->node_mem_map) { 5433 unsigned long size, start, end; 5434 struct page *map; 5435 5436 /* 5437 * The zone's endpoints aren't required to be MAX_ORDER 5438 * aligned but the node_mem_map endpoints must be in order 5439 * for the buddy allocator to function correctly. 5440 */ 5441 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1); 5442 end = pgdat_end_pfn(pgdat); 5443 end = ALIGN(end, MAX_ORDER_NR_PAGES); 5444 size = (end - start) * sizeof(struct page); 5445 map = alloc_remap(pgdat->node_id, size); 5446 if (!map) 5447 map = memblock_virt_alloc_node_nopanic(size, 5448 pgdat->node_id); 5449 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start); 5450 } 5451 #ifndef CONFIG_NEED_MULTIPLE_NODES 5452 /* 5453 * With no DISCONTIG, the global mem_map is just set as node 0's 5454 */ 5455 if (pgdat == NODE_DATA(0)) { 5456 mem_map = NODE_DATA(0)->node_mem_map; 5457 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 5458 if (page_to_pfn(mem_map) != pgdat->node_start_pfn) 5459 mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET); 5460 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 5461 } 5462 #endif 5463 #endif /* CONFIG_FLAT_NODE_MEM_MAP */ 5464 } 5465 5466 void __paginginit free_area_init_node(int nid, unsigned long *zones_size, 5467 unsigned long node_start_pfn, unsigned long *zholes_size) 5468 { 5469 pg_data_t *pgdat = NODE_DATA(nid); 5470 unsigned long start_pfn = 0; 5471 unsigned long end_pfn = 0; 5472 5473 /* pg_data_t should be reset to zero when it's allocated */ 5474 WARN_ON(pgdat->nr_zones || pgdat->classzone_idx); 5475 5476 reset_deferred_meminit(pgdat); 5477 pgdat->node_id = nid; 5478 pgdat->node_start_pfn = node_start_pfn; 5479 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 5480 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn); 5481 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid, 5482 (u64)start_pfn << PAGE_SHIFT, 5483 end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0); 5484 #endif 5485 calculate_node_totalpages(pgdat, start_pfn, end_pfn, 5486 zones_size, zholes_size); 5487 5488 alloc_node_mem_map(pgdat); 5489 #ifdef CONFIG_FLAT_NODE_MEM_MAP 5490 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n", 5491 nid, (unsigned long)pgdat, 5492 (unsigned long)pgdat->node_mem_map); 5493 #endif 5494 5495 free_area_init_core(pgdat); 5496 } 5497 5498 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 5499 5500 #if MAX_NUMNODES > 1 5501 /* 5502 * Figure out the number of possible node ids. 5503 */ 5504 void __init setup_nr_node_ids(void) 5505 { 5506 unsigned int highest; 5507 5508 highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES); 5509 nr_node_ids = highest + 1; 5510 } 5511 #endif 5512 5513 /** 5514 * node_map_pfn_alignment - determine the maximum internode alignment 5515 * 5516 * This function should be called after node map is populated and sorted. 5517 * It calculates the maximum power of two alignment which can distinguish 5518 * all the nodes. 5519 * 5520 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value 5521 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the 5522 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is 5523 * shifted, 1GiB is enough and this function will indicate so. 5524 * 5525 * This is used to test whether pfn -> nid mapping of the chosen memory 5526 * model has fine enough granularity to avoid incorrect mapping for the 5527 * populated node map. 5528 * 5529 * Returns the determined alignment in pfn's. 0 if there is no alignment 5530 * requirement (single node). 5531 */ 5532 unsigned long __init node_map_pfn_alignment(void) 5533 { 5534 unsigned long accl_mask = 0, last_end = 0; 5535 unsigned long start, end, mask; 5536 int last_nid = -1; 5537 int i, nid; 5538 5539 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) { 5540 if (!start || last_nid < 0 || last_nid == nid) { 5541 last_nid = nid; 5542 last_end = end; 5543 continue; 5544 } 5545 5546 /* 5547 * Start with a mask granular enough to pin-point to the 5548 * start pfn and tick off bits one-by-one until it becomes 5549 * too coarse to separate the current node from the last. 5550 */ 5551 mask = ~((1 << __ffs(start)) - 1); 5552 while (mask && last_end <= (start & (mask << 1))) 5553 mask <<= 1; 5554 5555 /* accumulate all internode masks */ 5556 accl_mask |= mask; 5557 } 5558 5559 /* convert mask to number of pages */ 5560 return ~accl_mask + 1; 5561 } 5562 5563 /* Find the lowest pfn for a node */ 5564 static unsigned long __init find_min_pfn_for_node(int nid) 5565 { 5566 unsigned long min_pfn = ULONG_MAX; 5567 unsigned long start_pfn; 5568 int i; 5569 5570 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL) 5571 min_pfn = min(min_pfn, start_pfn); 5572 5573 if (min_pfn == ULONG_MAX) { 5574 printk(KERN_WARNING 5575 "Could not find start_pfn for node %d\n", nid); 5576 return 0; 5577 } 5578 5579 return min_pfn; 5580 } 5581 5582 /** 5583 * find_min_pfn_with_active_regions - Find the minimum PFN registered 5584 * 5585 * It returns the minimum PFN based on information provided via 5586 * memblock_set_node(). 5587 */ 5588 unsigned long __init find_min_pfn_with_active_regions(void) 5589 { 5590 return find_min_pfn_for_node(MAX_NUMNODES); 5591 } 5592 5593 /* 5594 * early_calculate_totalpages() 5595 * Sum pages in active regions for movable zone. 5596 * Populate N_MEMORY for calculating usable_nodes. 5597 */ 5598 static unsigned long __init early_calculate_totalpages(void) 5599 { 5600 unsigned long totalpages = 0; 5601 unsigned long start_pfn, end_pfn; 5602 int i, nid; 5603 5604 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) { 5605 unsigned long pages = end_pfn - start_pfn; 5606 5607 totalpages += pages; 5608 if (pages) 5609 node_set_state(nid, N_MEMORY); 5610 } 5611 return totalpages; 5612 } 5613 5614 /* 5615 * Find the PFN the Movable zone begins in each node. Kernel memory 5616 * is spread evenly between nodes as long as the nodes have enough 5617 * memory. When they don't, some nodes will have more kernelcore than 5618 * others 5619 */ 5620 static void __init find_zone_movable_pfns_for_nodes(void) 5621 { 5622 int i, nid; 5623 unsigned long usable_startpfn; 5624 unsigned long kernelcore_node, kernelcore_remaining; 5625 /* save the state before borrow the nodemask */ 5626 nodemask_t saved_node_state = node_states[N_MEMORY]; 5627 unsigned long totalpages = early_calculate_totalpages(); 5628 int usable_nodes = nodes_weight(node_states[N_MEMORY]); 5629 struct memblock_region *r; 5630 5631 /* Need to find movable_zone earlier when movable_node is specified. */ 5632 find_usable_zone_for_movable(); 5633 5634 /* 5635 * If movable_node is specified, ignore kernelcore and movablecore 5636 * options. 5637 */ 5638 if (movable_node_is_enabled()) { 5639 for_each_memblock(memory, r) { 5640 if (!memblock_is_hotpluggable(r)) 5641 continue; 5642 5643 nid = r->nid; 5644 5645 usable_startpfn = PFN_DOWN(r->base); 5646 zone_movable_pfn[nid] = zone_movable_pfn[nid] ? 5647 min(usable_startpfn, zone_movable_pfn[nid]) : 5648 usable_startpfn; 5649 } 5650 5651 goto out2; 5652 } 5653 5654 /* 5655 * If movablecore=nn[KMG] was specified, calculate what size of 5656 * kernelcore that corresponds so that memory usable for 5657 * any allocation type is evenly spread. If both kernelcore 5658 * and movablecore are specified, then the value of kernelcore 5659 * will be used for required_kernelcore if it's greater than 5660 * what movablecore would have allowed. 5661 */ 5662 if (required_movablecore) { 5663 unsigned long corepages; 5664 5665 /* 5666 * Round-up so that ZONE_MOVABLE is at least as large as what 5667 * was requested by the user 5668 */ 5669 required_movablecore = 5670 roundup(required_movablecore, MAX_ORDER_NR_PAGES); 5671 corepages = totalpages - required_movablecore; 5672 5673 required_kernelcore = max(required_kernelcore, corepages); 5674 } 5675 5676 /* If kernelcore was not specified, there is no ZONE_MOVABLE */ 5677 if (!required_kernelcore) 5678 goto out; 5679 5680 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */ 5681 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone]; 5682 5683 restart: 5684 /* Spread kernelcore memory as evenly as possible throughout nodes */ 5685 kernelcore_node = required_kernelcore / usable_nodes; 5686 for_each_node_state(nid, N_MEMORY) { 5687 unsigned long start_pfn, end_pfn; 5688 5689 /* 5690 * Recalculate kernelcore_node if the division per node 5691 * now exceeds what is necessary to satisfy the requested 5692 * amount of memory for the kernel 5693 */ 5694 if (required_kernelcore < kernelcore_node) 5695 kernelcore_node = required_kernelcore / usable_nodes; 5696 5697 /* 5698 * As the map is walked, we track how much memory is usable 5699 * by the kernel using kernelcore_remaining. When it is 5700 * 0, the rest of the node is usable by ZONE_MOVABLE 5701 */ 5702 kernelcore_remaining = kernelcore_node; 5703 5704 /* Go through each range of PFNs within this node */ 5705 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) { 5706 unsigned long size_pages; 5707 5708 start_pfn = max(start_pfn, zone_movable_pfn[nid]); 5709 if (start_pfn >= end_pfn) 5710 continue; 5711 5712 /* Account for what is only usable for kernelcore */ 5713 if (start_pfn < usable_startpfn) { 5714 unsigned long kernel_pages; 5715 kernel_pages = min(end_pfn, usable_startpfn) 5716 - start_pfn; 5717 5718 kernelcore_remaining -= min(kernel_pages, 5719 kernelcore_remaining); 5720 required_kernelcore -= min(kernel_pages, 5721 required_kernelcore); 5722 5723 /* Continue if range is now fully accounted */ 5724 if (end_pfn <= usable_startpfn) { 5725 5726 /* 5727 * Push zone_movable_pfn to the end so 5728 * that if we have to rebalance 5729 * kernelcore across nodes, we will 5730 * not double account here 5731 */ 5732 zone_movable_pfn[nid] = end_pfn; 5733 continue; 5734 } 5735 start_pfn = usable_startpfn; 5736 } 5737 5738 /* 5739 * The usable PFN range for ZONE_MOVABLE is from 5740 * start_pfn->end_pfn. Calculate size_pages as the 5741 * number of pages used as kernelcore 5742 */ 5743 size_pages = end_pfn - start_pfn; 5744 if (size_pages > kernelcore_remaining) 5745 size_pages = kernelcore_remaining; 5746 zone_movable_pfn[nid] = start_pfn + size_pages; 5747 5748 /* 5749 * Some kernelcore has been met, update counts and 5750 * break if the kernelcore for this node has been 5751 * satisfied 5752 */ 5753 required_kernelcore -= min(required_kernelcore, 5754 size_pages); 5755 kernelcore_remaining -= size_pages; 5756 if (!kernelcore_remaining) 5757 break; 5758 } 5759 } 5760 5761 /* 5762 * If there is still required_kernelcore, we do another pass with one 5763 * less node in the count. This will push zone_movable_pfn[nid] further 5764 * along on the nodes that still have memory until kernelcore is 5765 * satisfied 5766 */ 5767 usable_nodes--; 5768 if (usable_nodes && required_kernelcore > usable_nodes) 5769 goto restart; 5770 5771 out2: 5772 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */ 5773 for (nid = 0; nid < MAX_NUMNODES; nid++) 5774 zone_movable_pfn[nid] = 5775 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES); 5776 5777 out: 5778 /* restore the node_state */ 5779 node_states[N_MEMORY] = saved_node_state; 5780 } 5781 5782 /* Any regular or high memory on that node ? */ 5783 static void check_for_memory(pg_data_t *pgdat, int nid) 5784 { 5785 enum zone_type zone_type; 5786 5787 if (N_MEMORY == N_NORMAL_MEMORY) 5788 return; 5789 5790 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) { 5791 struct zone *zone = &pgdat->node_zones[zone_type]; 5792 if (populated_zone(zone)) { 5793 node_set_state(nid, N_HIGH_MEMORY); 5794 if (N_NORMAL_MEMORY != N_HIGH_MEMORY && 5795 zone_type <= ZONE_NORMAL) 5796 node_set_state(nid, N_NORMAL_MEMORY); 5797 break; 5798 } 5799 } 5800 } 5801 5802 /** 5803 * free_area_init_nodes - Initialise all pg_data_t and zone data 5804 * @max_zone_pfn: an array of max PFNs for each zone 5805 * 5806 * This will call free_area_init_node() for each active node in the system. 5807 * Using the page ranges provided by memblock_set_node(), the size of each 5808 * zone in each node and their holes is calculated. If the maximum PFN 5809 * between two adjacent zones match, it is assumed that the zone is empty. 5810 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed 5811 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone 5812 * starts where the previous one ended. For example, ZONE_DMA32 starts 5813 * at arch_max_dma_pfn. 5814 */ 5815 void __init free_area_init_nodes(unsigned long *max_zone_pfn) 5816 { 5817 unsigned long start_pfn, end_pfn; 5818 int i, nid; 5819 5820 /* Record where the zone boundaries are */ 5821 memset(arch_zone_lowest_possible_pfn, 0, 5822 sizeof(arch_zone_lowest_possible_pfn)); 5823 memset(arch_zone_highest_possible_pfn, 0, 5824 sizeof(arch_zone_highest_possible_pfn)); 5825 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions(); 5826 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0]; 5827 for (i = 1; i < MAX_NR_ZONES; i++) { 5828 if (i == ZONE_MOVABLE) 5829 continue; 5830 arch_zone_lowest_possible_pfn[i] = 5831 arch_zone_highest_possible_pfn[i-1]; 5832 arch_zone_highest_possible_pfn[i] = 5833 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]); 5834 } 5835 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0; 5836 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0; 5837 5838 /* Find the PFNs that ZONE_MOVABLE begins at in each node */ 5839 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn)); 5840 find_zone_movable_pfns_for_nodes(); 5841 5842 /* Print out the zone ranges */ 5843 pr_info("Zone ranges:\n"); 5844 for (i = 0; i < MAX_NR_ZONES; i++) { 5845 if (i == ZONE_MOVABLE) 5846 continue; 5847 pr_info(" %-8s ", zone_names[i]); 5848 if (arch_zone_lowest_possible_pfn[i] == 5849 arch_zone_highest_possible_pfn[i]) 5850 pr_cont("empty\n"); 5851 else 5852 pr_cont("[mem %#018Lx-%#018Lx]\n", 5853 (u64)arch_zone_lowest_possible_pfn[i] 5854 << PAGE_SHIFT, 5855 ((u64)arch_zone_highest_possible_pfn[i] 5856 << PAGE_SHIFT) - 1); 5857 } 5858 5859 /* Print out the PFNs ZONE_MOVABLE begins at in each node */ 5860 pr_info("Movable zone start for each node\n"); 5861 for (i = 0; i < MAX_NUMNODES; i++) { 5862 if (zone_movable_pfn[i]) 5863 pr_info(" Node %d: %#018Lx\n", i, 5864 (u64)zone_movable_pfn[i] << PAGE_SHIFT); 5865 } 5866 5867 /* Print out the early node map */ 5868 pr_info("Early memory node ranges\n"); 5869 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) 5870 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid, 5871 (u64)start_pfn << PAGE_SHIFT, 5872 ((u64)end_pfn << PAGE_SHIFT) - 1); 5873 5874 /* Initialise every node */ 5875 mminit_verify_pageflags_layout(); 5876 setup_nr_node_ids(); 5877 for_each_online_node(nid) { 5878 pg_data_t *pgdat = NODE_DATA(nid); 5879 free_area_init_node(nid, NULL, 5880 find_min_pfn_for_node(nid), NULL); 5881 5882 /* Any memory on that node */ 5883 if (pgdat->node_present_pages) 5884 node_set_state(nid, N_MEMORY); 5885 check_for_memory(pgdat, nid); 5886 } 5887 } 5888 5889 static int __init cmdline_parse_core(char *p, unsigned long *core) 5890 { 5891 unsigned long long coremem; 5892 if (!p) 5893 return -EINVAL; 5894 5895 coremem = memparse(p, &p); 5896 *core = coremem >> PAGE_SHIFT; 5897 5898 /* Paranoid check that UL is enough for the coremem value */ 5899 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX); 5900 5901 return 0; 5902 } 5903 5904 /* 5905 * kernelcore=size sets the amount of memory for use for allocations that 5906 * cannot be reclaimed or migrated. 5907 */ 5908 static int __init cmdline_parse_kernelcore(char *p) 5909 { 5910 return cmdline_parse_core(p, &required_kernelcore); 5911 } 5912 5913 /* 5914 * movablecore=size sets the amount of memory for use for allocations that 5915 * can be reclaimed or migrated. 5916 */ 5917 static int __init cmdline_parse_movablecore(char *p) 5918 { 5919 return cmdline_parse_core(p, &required_movablecore); 5920 } 5921 5922 early_param("kernelcore", cmdline_parse_kernelcore); 5923 early_param("movablecore", cmdline_parse_movablecore); 5924 5925 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 5926 5927 void adjust_managed_page_count(struct page *page, long count) 5928 { 5929 spin_lock(&managed_page_count_lock); 5930 page_zone(page)->managed_pages += count; 5931 totalram_pages += count; 5932 #ifdef CONFIG_HIGHMEM 5933 if (PageHighMem(page)) 5934 totalhigh_pages += count; 5935 #endif 5936 spin_unlock(&managed_page_count_lock); 5937 } 5938 EXPORT_SYMBOL(adjust_managed_page_count); 5939 5940 unsigned long free_reserved_area(void *start, void *end, int poison, char *s) 5941 { 5942 void *pos; 5943 unsigned long pages = 0; 5944 5945 start = (void *)PAGE_ALIGN((unsigned long)start); 5946 end = (void *)((unsigned long)end & PAGE_MASK); 5947 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) { 5948 if ((unsigned int)poison <= 0xFF) 5949 memset(pos, poison, PAGE_SIZE); 5950 free_reserved_page(virt_to_page(pos)); 5951 } 5952 5953 if (pages && s) 5954 pr_info("Freeing %s memory: %ldK (%p - %p)\n", 5955 s, pages << (PAGE_SHIFT - 10), start, end); 5956 5957 return pages; 5958 } 5959 EXPORT_SYMBOL(free_reserved_area); 5960 5961 #ifdef CONFIG_HIGHMEM 5962 void free_highmem_page(struct page *page) 5963 { 5964 __free_reserved_page(page); 5965 totalram_pages++; 5966 page_zone(page)->managed_pages++; 5967 totalhigh_pages++; 5968 } 5969 #endif 5970 5971 5972 void __init mem_init_print_info(const char *str) 5973 { 5974 unsigned long physpages, codesize, datasize, rosize, bss_size; 5975 unsigned long init_code_size, init_data_size; 5976 5977 physpages = get_num_physpages(); 5978 codesize = _etext - _stext; 5979 datasize = _edata - _sdata; 5980 rosize = __end_rodata - __start_rodata; 5981 bss_size = __bss_stop - __bss_start; 5982 init_data_size = __init_end - __init_begin; 5983 init_code_size = _einittext - _sinittext; 5984 5985 /* 5986 * Detect special cases and adjust section sizes accordingly: 5987 * 1) .init.* may be embedded into .data sections 5988 * 2) .init.text.* may be out of [__init_begin, __init_end], 5989 * please refer to arch/tile/kernel/vmlinux.lds.S. 5990 * 3) .rodata.* may be embedded into .text or .data sections. 5991 */ 5992 #define adj_init_size(start, end, size, pos, adj) \ 5993 do { \ 5994 if (start <= pos && pos < end && size > adj) \ 5995 size -= adj; \ 5996 } while (0) 5997 5998 adj_init_size(__init_begin, __init_end, init_data_size, 5999 _sinittext, init_code_size); 6000 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size); 6001 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size); 6002 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize); 6003 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize); 6004 6005 #undef adj_init_size 6006 6007 pr_info("Memory: %luK/%luK available " 6008 "(%luK kernel code, %luK rwdata, %luK rodata, " 6009 "%luK init, %luK bss, %luK reserved, %luK cma-reserved" 6010 #ifdef CONFIG_HIGHMEM 6011 ", %luK highmem" 6012 #endif 6013 "%s%s)\n", 6014 nr_free_pages() << (PAGE_SHIFT-10), physpages << (PAGE_SHIFT-10), 6015 codesize >> 10, datasize >> 10, rosize >> 10, 6016 (init_data_size + init_code_size) >> 10, bss_size >> 10, 6017 (physpages - totalram_pages - totalcma_pages) << (PAGE_SHIFT-10), 6018 totalcma_pages << (PAGE_SHIFT-10), 6019 #ifdef CONFIG_HIGHMEM 6020 totalhigh_pages << (PAGE_SHIFT-10), 6021 #endif 6022 str ? ", " : "", str ? str : ""); 6023 } 6024 6025 /** 6026 * set_dma_reserve - set the specified number of pages reserved in the first zone 6027 * @new_dma_reserve: The number of pages to mark reserved 6028 * 6029 * The per-cpu batchsize and zone watermarks are determined by managed_pages. 6030 * In the DMA zone, a significant percentage may be consumed by kernel image 6031 * and other unfreeable allocations which can skew the watermarks badly. This 6032 * function may optionally be used to account for unfreeable pages in the 6033 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and 6034 * smaller per-cpu batchsize. 6035 */ 6036 void __init set_dma_reserve(unsigned long new_dma_reserve) 6037 { 6038 dma_reserve = new_dma_reserve; 6039 } 6040 6041 void __init free_area_init(unsigned long *zones_size) 6042 { 6043 free_area_init_node(0, zones_size, 6044 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL); 6045 } 6046 6047 static int page_alloc_cpu_notify(struct notifier_block *self, 6048 unsigned long action, void *hcpu) 6049 { 6050 int cpu = (unsigned long)hcpu; 6051 6052 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) { 6053 lru_add_drain_cpu(cpu); 6054 drain_pages(cpu); 6055 6056 /* 6057 * Spill the event counters of the dead processor 6058 * into the current processors event counters. 6059 * This artificially elevates the count of the current 6060 * processor. 6061 */ 6062 vm_events_fold_cpu(cpu); 6063 6064 /* 6065 * Zero the differential counters of the dead processor 6066 * so that the vm statistics are consistent. 6067 * 6068 * This is only okay since the processor is dead and cannot 6069 * race with what we are doing. 6070 */ 6071 cpu_vm_stats_fold(cpu); 6072 } 6073 return NOTIFY_OK; 6074 } 6075 6076 void __init page_alloc_init(void) 6077 { 6078 hotcpu_notifier(page_alloc_cpu_notify, 0); 6079 } 6080 6081 /* 6082 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio 6083 * or min_free_kbytes changes. 6084 */ 6085 static void calculate_totalreserve_pages(void) 6086 { 6087 struct pglist_data *pgdat; 6088 unsigned long reserve_pages = 0; 6089 enum zone_type i, j; 6090 6091 for_each_online_pgdat(pgdat) { 6092 for (i = 0; i < MAX_NR_ZONES; i++) { 6093 struct zone *zone = pgdat->node_zones + i; 6094 long max = 0; 6095 6096 /* Find valid and maximum lowmem_reserve in the zone */ 6097 for (j = i; j < MAX_NR_ZONES; j++) { 6098 if (zone->lowmem_reserve[j] > max) 6099 max = zone->lowmem_reserve[j]; 6100 } 6101 6102 /* we treat the high watermark as reserved pages. */ 6103 max += high_wmark_pages(zone); 6104 6105 if (max > zone->managed_pages) 6106 max = zone->managed_pages; 6107 reserve_pages += max; 6108 /* 6109 * Lowmem reserves are not available to 6110 * GFP_HIGHUSER page cache allocations and 6111 * kswapd tries to balance zones to their high 6112 * watermark. As a result, neither should be 6113 * regarded as dirtyable memory, to prevent a 6114 * situation where reclaim has to clean pages 6115 * in order to balance the zones. 6116 */ 6117 zone->dirty_balance_reserve = max; 6118 } 6119 } 6120 dirty_balance_reserve = reserve_pages; 6121 totalreserve_pages = reserve_pages; 6122 } 6123 6124 /* 6125 * setup_per_zone_lowmem_reserve - called whenever 6126 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone 6127 * has a correct pages reserved value, so an adequate number of 6128 * pages are left in the zone after a successful __alloc_pages(). 6129 */ 6130 static void setup_per_zone_lowmem_reserve(void) 6131 { 6132 struct pglist_data *pgdat; 6133 enum zone_type j, idx; 6134 6135 for_each_online_pgdat(pgdat) { 6136 for (j = 0; j < MAX_NR_ZONES; j++) { 6137 struct zone *zone = pgdat->node_zones + j; 6138 unsigned long managed_pages = zone->managed_pages; 6139 6140 zone->lowmem_reserve[j] = 0; 6141 6142 idx = j; 6143 while (idx) { 6144 struct zone *lower_zone; 6145 6146 idx--; 6147 6148 if (sysctl_lowmem_reserve_ratio[idx] < 1) 6149 sysctl_lowmem_reserve_ratio[idx] = 1; 6150 6151 lower_zone = pgdat->node_zones + idx; 6152 lower_zone->lowmem_reserve[j] = managed_pages / 6153 sysctl_lowmem_reserve_ratio[idx]; 6154 managed_pages += lower_zone->managed_pages; 6155 } 6156 } 6157 } 6158 6159 /* update totalreserve_pages */ 6160 calculate_totalreserve_pages(); 6161 } 6162 6163 static void __setup_per_zone_wmarks(void) 6164 { 6165 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10); 6166 unsigned long lowmem_pages = 0; 6167 struct zone *zone; 6168 unsigned long flags; 6169 6170 /* Calculate total number of !ZONE_HIGHMEM pages */ 6171 for_each_zone(zone) { 6172 if (!is_highmem(zone)) 6173 lowmem_pages += zone->managed_pages; 6174 } 6175 6176 for_each_zone(zone) { 6177 u64 tmp; 6178 6179 spin_lock_irqsave(&zone->lock, flags); 6180 tmp = (u64)pages_min * zone->managed_pages; 6181 do_div(tmp, lowmem_pages); 6182 if (is_highmem(zone)) { 6183 /* 6184 * __GFP_HIGH and PF_MEMALLOC allocations usually don't 6185 * need highmem pages, so cap pages_min to a small 6186 * value here. 6187 * 6188 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN) 6189 * deltas control asynch page reclaim, and so should 6190 * not be capped for highmem. 6191 */ 6192 unsigned long min_pages; 6193 6194 min_pages = zone->managed_pages / 1024; 6195 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL); 6196 zone->watermark[WMARK_MIN] = min_pages; 6197 } else { 6198 /* 6199 * If it's a lowmem zone, reserve a number of pages 6200 * proportionate to the zone's size. 6201 */ 6202 zone->watermark[WMARK_MIN] = tmp; 6203 } 6204 6205 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + (tmp >> 2); 6206 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1); 6207 6208 __mod_zone_page_state(zone, NR_ALLOC_BATCH, 6209 high_wmark_pages(zone) - low_wmark_pages(zone) - 6210 atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH])); 6211 6212 setup_zone_migrate_reserve(zone); 6213 spin_unlock_irqrestore(&zone->lock, flags); 6214 } 6215 6216 /* update totalreserve_pages */ 6217 calculate_totalreserve_pages(); 6218 } 6219 6220 /** 6221 * setup_per_zone_wmarks - called when min_free_kbytes changes 6222 * or when memory is hot-{added|removed} 6223 * 6224 * Ensures that the watermark[min,low,high] values for each zone are set 6225 * correctly with respect to min_free_kbytes. 6226 */ 6227 void setup_per_zone_wmarks(void) 6228 { 6229 mutex_lock(&zonelists_mutex); 6230 __setup_per_zone_wmarks(); 6231 mutex_unlock(&zonelists_mutex); 6232 } 6233 6234 /* 6235 * The inactive anon list should be small enough that the VM never has to 6236 * do too much work, but large enough that each inactive page has a chance 6237 * to be referenced again before it is swapped out. 6238 * 6239 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to 6240 * INACTIVE_ANON pages on this zone's LRU, maintained by the 6241 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of 6242 * the anonymous pages are kept on the inactive list. 6243 * 6244 * total target max 6245 * memory ratio inactive anon 6246 * ------------------------------------- 6247 * 10MB 1 5MB 6248 * 100MB 1 50MB 6249 * 1GB 3 250MB 6250 * 10GB 10 0.9GB 6251 * 100GB 31 3GB 6252 * 1TB 101 10GB 6253 * 10TB 320 32GB 6254 */ 6255 static void __meminit calculate_zone_inactive_ratio(struct zone *zone) 6256 { 6257 unsigned int gb, ratio; 6258 6259 /* Zone size in gigabytes */ 6260 gb = zone->managed_pages >> (30 - PAGE_SHIFT); 6261 if (gb) 6262 ratio = int_sqrt(10 * gb); 6263 else 6264 ratio = 1; 6265 6266 zone->inactive_ratio = ratio; 6267 } 6268 6269 static void __meminit setup_per_zone_inactive_ratio(void) 6270 { 6271 struct zone *zone; 6272 6273 for_each_zone(zone) 6274 calculate_zone_inactive_ratio(zone); 6275 } 6276 6277 /* 6278 * Initialise min_free_kbytes. 6279 * 6280 * For small machines we want it small (128k min). For large machines 6281 * we want it large (64MB max). But it is not linear, because network 6282 * bandwidth does not increase linearly with machine size. We use 6283 * 6284 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy: 6285 * min_free_kbytes = sqrt(lowmem_kbytes * 16) 6286 * 6287 * which yields 6288 * 6289 * 16MB: 512k 6290 * 32MB: 724k 6291 * 64MB: 1024k 6292 * 128MB: 1448k 6293 * 256MB: 2048k 6294 * 512MB: 2896k 6295 * 1024MB: 4096k 6296 * 2048MB: 5792k 6297 * 4096MB: 8192k 6298 * 8192MB: 11584k 6299 * 16384MB: 16384k 6300 */ 6301 int __meminit init_per_zone_wmark_min(void) 6302 { 6303 unsigned long lowmem_kbytes; 6304 int new_min_free_kbytes; 6305 6306 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10); 6307 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16); 6308 6309 if (new_min_free_kbytes > user_min_free_kbytes) { 6310 min_free_kbytes = new_min_free_kbytes; 6311 if (min_free_kbytes < 128) 6312 min_free_kbytes = 128; 6313 if (min_free_kbytes > 65536) 6314 min_free_kbytes = 65536; 6315 } else { 6316 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n", 6317 new_min_free_kbytes, user_min_free_kbytes); 6318 } 6319 setup_per_zone_wmarks(); 6320 refresh_zone_stat_thresholds(); 6321 setup_per_zone_lowmem_reserve(); 6322 setup_per_zone_inactive_ratio(); 6323 return 0; 6324 } 6325 module_init(init_per_zone_wmark_min) 6326 6327 /* 6328 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so 6329 * that we can call two helper functions whenever min_free_kbytes 6330 * changes. 6331 */ 6332 int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write, 6333 void __user *buffer, size_t *length, loff_t *ppos) 6334 { 6335 int rc; 6336 6337 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 6338 if (rc) 6339 return rc; 6340 6341 if (write) { 6342 user_min_free_kbytes = min_free_kbytes; 6343 setup_per_zone_wmarks(); 6344 } 6345 return 0; 6346 } 6347 6348 #ifdef CONFIG_NUMA 6349 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write, 6350 void __user *buffer, size_t *length, loff_t *ppos) 6351 { 6352 struct zone *zone; 6353 int rc; 6354 6355 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 6356 if (rc) 6357 return rc; 6358 6359 for_each_zone(zone) 6360 zone->min_unmapped_pages = (zone->managed_pages * 6361 sysctl_min_unmapped_ratio) / 100; 6362 return 0; 6363 } 6364 6365 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write, 6366 void __user *buffer, size_t *length, loff_t *ppos) 6367 { 6368 struct zone *zone; 6369 int rc; 6370 6371 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 6372 if (rc) 6373 return rc; 6374 6375 for_each_zone(zone) 6376 zone->min_slab_pages = (zone->managed_pages * 6377 sysctl_min_slab_ratio) / 100; 6378 return 0; 6379 } 6380 #endif 6381 6382 /* 6383 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around 6384 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve() 6385 * whenever sysctl_lowmem_reserve_ratio changes. 6386 * 6387 * The reserve ratio obviously has absolutely no relation with the 6388 * minimum watermarks. The lowmem reserve ratio can only make sense 6389 * if in function of the boot time zone sizes. 6390 */ 6391 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write, 6392 void __user *buffer, size_t *length, loff_t *ppos) 6393 { 6394 proc_dointvec_minmax(table, write, buffer, length, ppos); 6395 setup_per_zone_lowmem_reserve(); 6396 return 0; 6397 } 6398 6399 /* 6400 * percpu_pagelist_fraction - changes the pcp->high for each zone on each 6401 * cpu. It is the fraction of total pages in each zone that a hot per cpu 6402 * pagelist can have before it gets flushed back to buddy allocator. 6403 */ 6404 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write, 6405 void __user *buffer, size_t *length, loff_t *ppos) 6406 { 6407 struct zone *zone; 6408 int old_percpu_pagelist_fraction; 6409 int ret; 6410 6411 mutex_lock(&pcp_batch_high_lock); 6412 old_percpu_pagelist_fraction = percpu_pagelist_fraction; 6413 6414 ret = proc_dointvec_minmax(table, write, buffer, length, ppos); 6415 if (!write || ret < 0) 6416 goto out; 6417 6418 /* Sanity checking to avoid pcp imbalance */ 6419 if (percpu_pagelist_fraction && 6420 percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) { 6421 percpu_pagelist_fraction = old_percpu_pagelist_fraction; 6422 ret = -EINVAL; 6423 goto out; 6424 } 6425 6426 /* No change? */ 6427 if (percpu_pagelist_fraction == old_percpu_pagelist_fraction) 6428 goto out; 6429 6430 for_each_populated_zone(zone) { 6431 unsigned int cpu; 6432 6433 for_each_possible_cpu(cpu) 6434 pageset_set_high_and_batch(zone, 6435 per_cpu_ptr(zone->pageset, cpu)); 6436 } 6437 out: 6438 mutex_unlock(&pcp_batch_high_lock); 6439 return ret; 6440 } 6441 6442 #ifdef CONFIG_NUMA 6443 int hashdist = HASHDIST_DEFAULT; 6444 6445 static int __init set_hashdist(char *str) 6446 { 6447 if (!str) 6448 return 0; 6449 hashdist = simple_strtoul(str, &str, 0); 6450 return 1; 6451 } 6452 __setup("hashdist=", set_hashdist); 6453 #endif 6454 6455 /* 6456 * allocate a large system hash table from bootmem 6457 * - it is assumed that the hash table must contain an exact power-of-2 6458 * quantity of entries 6459 * - limit is the number of hash buckets, not the total allocation size 6460 */ 6461 void *__init alloc_large_system_hash(const char *tablename, 6462 unsigned long bucketsize, 6463 unsigned long numentries, 6464 int scale, 6465 int flags, 6466 unsigned int *_hash_shift, 6467 unsigned int *_hash_mask, 6468 unsigned long low_limit, 6469 unsigned long high_limit) 6470 { 6471 unsigned long long max = high_limit; 6472 unsigned long log2qty, size; 6473 void *table = NULL; 6474 6475 /* allow the kernel cmdline to have a say */ 6476 if (!numentries) { 6477 /* round applicable memory size up to nearest megabyte */ 6478 numentries = nr_kernel_pages; 6479 6480 /* It isn't necessary when PAGE_SIZE >= 1MB */ 6481 if (PAGE_SHIFT < 20) 6482 numentries = round_up(numentries, (1<<20)/PAGE_SIZE); 6483 6484 /* limit to 1 bucket per 2^scale bytes of low memory */ 6485 if (scale > PAGE_SHIFT) 6486 numentries >>= (scale - PAGE_SHIFT); 6487 else 6488 numentries <<= (PAGE_SHIFT - scale); 6489 6490 /* Make sure we've got at least a 0-order allocation.. */ 6491 if (unlikely(flags & HASH_SMALL)) { 6492 /* Makes no sense without HASH_EARLY */ 6493 WARN_ON(!(flags & HASH_EARLY)); 6494 if (!(numentries >> *_hash_shift)) { 6495 numentries = 1UL << *_hash_shift; 6496 BUG_ON(!numentries); 6497 } 6498 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE)) 6499 numentries = PAGE_SIZE / bucketsize; 6500 } 6501 numentries = roundup_pow_of_two(numentries); 6502 6503 /* limit allocation size to 1/16 total memory by default */ 6504 if (max == 0) { 6505 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4; 6506 do_div(max, bucketsize); 6507 } 6508 max = min(max, 0x80000000ULL); 6509 6510 if (numentries < low_limit) 6511 numentries = low_limit; 6512 if (numentries > max) 6513 numentries = max; 6514 6515 log2qty = ilog2(numentries); 6516 6517 do { 6518 size = bucketsize << log2qty; 6519 if (flags & HASH_EARLY) 6520 table = memblock_virt_alloc_nopanic(size, 0); 6521 else if (hashdist) 6522 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL); 6523 else { 6524 /* 6525 * If bucketsize is not a power-of-two, we may free 6526 * some pages at the end of hash table which 6527 * alloc_pages_exact() automatically does 6528 */ 6529 if (get_order(size) < MAX_ORDER) { 6530 table = alloc_pages_exact(size, GFP_ATOMIC); 6531 kmemleak_alloc(table, size, 1, GFP_ATOMIC); 6532 } 6533 } 6534 } while (!table && size > PAGE_SIZE && --log2qty); 6535 6536 if (!table) 6537 panic("Failed to allocate %s hash table\n", tablename); 6538 6539 printk(KERN_INFO "%s hash table entries: %ld (order: %d, %lu bytes)\n", 6540 tablename, 6541 (1UL << log2qty), 6542 ilog2(size) - PAGE_SHIFT, 6543 size); 6544 6545 if (_hash_shift) 6546 *_hash_shift = log2qty; 6547 if (_hash_mask) 6548 *_hash_mask = (1 << log2qty) - 1; 6549 6550 return table; 6551 } 6552 6553 /* Return a pointer to the bitmap storing bits affecting a block of pages */ 6554 static inline unsigned long *get_pageblock_bitmap(struct zone *zone, 6555 unsigned long pfn) 6556 { 6557 #ifdef CONFIG_SPARSEMEM 6558 return __pfn_to_section(pfn)->pageblock_flags; 6559 #else 6560 return zone->pageblock_flags; 6561 #endif /* CONFIG_SPARSEMEM */ 6562 } 6563 6564 static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn) 6565 { 6566 #ifdef CONFIG_SPARSEMEM 6567 pfn &= (PAGES_PER_SECTION-1); 6568 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS; 6569 #else 6570 pfn = pfn - round_down(zone->zone_start_pfn, pageblock_nr_pages); 6571 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS; 6572 #endif /* CONFIG_SPARSEMEM */ 6573 } 6574 6575 /** 6576 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages 6577 * @page: The page within the block of interest 6578 * @pfn: The target page frame number 6579 * @end_bitidx: The last bit of interest to retrieve 6580 * @mask: mask of bits that the caller is interested in 6581 * 6582 * Return: pageblock_bits flags 6583 */ 6584 unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn, 6585 unsigned long end_bitidx, 6586 unsigned long mask) 6587 { 6588 struct zone *zone; 6589 unsigned long *bitmap; 6590 unsigned long bitidx, word_bitidx; 6591 unsigned long word; 6592 6593 zone = page_zone(page); 6594 bitmap = get_pageblock_bitmap(zone, pfn); 6595 bitidx = pfn_to_bitidx(zone, pfn); 6596 word_bitidx = bitidx / BITS_PER_LONG; 6597 bitidx &= (BITS_PER_LONG-1); 6598 6599 word = bitmap[word_bitidx]; 6600 bitidx += end_bitidx; 6601 return (word >> (BITS_PER_LONG - bitidx - 1)) & mask; 6602 } 6603 6604 /** 6605 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages 6606 * @page: The page within the block of interest 6607 * @flags: The flags to set 6608 * @pfn: The target page frame number 6609 * @end_bitidx: The last bit of interest 6610 * @mask: mask of bits that the caller is interested in 6611 */ 6612 void set_pfnblock_flags_mask(struct page *page, unsigned long flags, 6613 unsigned long pfn, 6614 unsigned long end_bitidx, 6615 unsigned long mask) 6616 { 6617 struct zone *zone; 6618 unsigned long *bitmap; 6619 unsigned long bitidx, word_bitidx; 6620 unsigned long old_word, word; 6621 6622 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4); 6623 6624 zone = page_zone(page); 6625 bitmap = get_pageblock_bitmap(zone, pfn); 6626 bitidx = pfn_to_bitidx(zone, pfn); 6627 word_bitidx = bitidx / BITS_PER_LONG; 6628 bitidx &= (BITS_PER_LONG-1); 6629 6630 VM_BUG_ON_PAGE(!zone_spans_pfn(zone, pfn), page); 6631 6632 bitidx += end_bitidx; 6633 mask <<= (BITS_PER_LONG - bitidx - 1); 6634 flags <<= (BITS_PER_LONG - bitidx - 1); 6635 6636 word = READ_ONCE(bitmap[word_bitidx]); 6637 for (;;) { 6638 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags); 6639 if (word == old_word) 6640 break; 6641 word = old_word; 6642 } 6643 } 6644 6645 /* 6646 * This function checks whether pageblock includes unmovable pages or not. 6647 * If @count is not zero, it is okay to include less @count unmovable pages 6648 * 6649 * PageLRU check without isolation or lru_lock could race so that 6650 * MIGRATE_MOVABLE block might include unmovable pages. It means you can't 6651 * expect this function should be exact. 6652 */ 6653 bool has_unmovable_pages(struct zone *zone, struct page *page, int count, 6654 bool skip_hwpoisoned_pages) 6655 { 6656 unsigned long pfn, iter, found; 6657 int mt; 6658 6659 /* 6660 * For avoiding noise data, lru_add_drain_all() should be called 6661 * If ZONE_MOVABLE, the zone never contains unmovable pages 6662 */ 6663 if (zone_idx(zone) == ZONE_MOVABLE) 6664 return false; 6665 mt = get_pageblock_migratetype(page); 6666 if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt)) 6667 return false; 6668 6669 pfn = page_to_pfn(page); 6670 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) { 6671 unsigned long check = pfn + iter; 6672 6673 if (!pfn_valid_within(check)) 6674 continue; 6675 6676 page = pfn_to_page(check); 6677 6678 /* 6679 * Hugepages are not in LRU lists, but they're movable. 6680 * We need not scan over tail pages bacause we don't 6681 * handle each tail page individually in migration. 6682 */ 6683 if (PageHuge(page)) { 6684 iter = round_up(iter + 1, 1<<compound_order(page)) - 1; 6685 continue; 6686 } 6687 6688 /* 6689 * We can't use page_count without pin a page 6690 * because another CPU can free compound page. 6691 * This check already skips compound tails of THP 6692 * because their page->_count is zero at all time. 6693 */ 6694 if (!atomic_read(&page->_count)) { 6695 if (PageBuddy(page)) 6696 iter += (1 << page_order(page)) - 1; 6697 continue; 6698 } 6699 6700 /* 6701 * The HWPoisoned page may be not in buddy system, and 6702 * page_count() is not 0. 6703 */ 6704 if (skip_hwpoisoned_pages && PageHWPoison(page)) 6705 continue; 6706 6707 if (!PageLRU(page)) 6708 found++; 6709 /* 6710 * If there are RECLAIMABLE pages, we need to check 6711 * it. But now, memory offline itself doesn't call 6712 * shrink_node_slabs() and it still to be fixed. 6713 */ 6714 /* 6715 * If the page is not RAM, page_count()should be 0. 6716 * we don't need more check. This is an _used_ not-movable page. 6717 * 6718 * The problematic thing here is PG_reserved pages. PG_reserved 6719 * is set to both of a memory hole page and a _used_ kernel 6720 * page at boot. 6721 */ 6722 if (found > count) 6723 return true; 6724 } 6725 return false; 6726 } 6727 6728 bool is_pageblock_removable_nolock(struct page *page) 6729 { 6730 struct zone *zone; 6731 unsigned long pfn; 6732 6733 /* 6734 * We have to be careful here because we are iterating over memory 6735 * sections which are not zone aware so we might end up outside of 6736 * the zone but still within the section. 6737 * We have to take care about the node as well. If the node is offline 6738 * its NODE_DATA will be NULL - see page_zone. 6739 */ 6740 if (!node_online(page_to_nid(page))) 6741 return false; 6742 6743 zone = page_zone(page); 6744 pfn = page_to_pfn(page); 6745 if (!zone_spans_pfn(zone, pfn)) 6746 return false; 6747 6748 return !has_unmovable_pages(zone, page, 0, true); 6749 } 6750 6751 #ifdef CONFIG_CMA 6752 6753 static unsigned long pfn_max_align_down(unsigned long pfn) 6754 { 6755 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES, 6756 pageblock_nr_pages) - 1); 6757 } 6758 6759 static unsigned long pfn_max_align_up(unsigned long pfn) 6760 { 6761 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES, 6762 pageblock_nr_pages)); 6763 } 6764 6765 /* [start, end) must belong to a single zone. */ 6766 static int __alloc_contig_migrate_range(struct compact_control *cc, 6767 unsigned long start, unsigned long end) 6768 { 6769 /* This function is based on compact_zone() from compaction.c. */ 6770 unsigned long nr_reclaimed; 6771 unsigned long pfn = start; 6772 unsigned int tries = 0; 6773 int ret = 0; 6774 6775 migrate_prep(); 6776 6777 while (pfn < end || !list_empty(&cc->migratepages)) { 6778 if (fatal_signal_pending(current)) { 6779 ret = -EINTR; 6780 break; 6781 } 6782 6783 if (list_empty(&cc->migratepages)) { 6784 cc->nr_migratepages = 0; 6785 pfn = isolate_migratepages_range(cc, pfn, end); 6786 if (!pfn) { 6787 ret = -EINTR; 6788 break; 6789 } 6790 tries = 0; 6791 } else if (++tries == 5) { 6792 ret = ret < 0 ? ret : -EBUSY; 6793 break; 6794 } 6795 6796 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone, 6797 &cc->migratepages); 6798 cc->nr_migratepages -= nr_reclaimed; 6799 6800 ret = migrate_pages(&cc->migratepages, alloc_migrate_target, 6801 NULL, 0, cc->mode, MR_CMA); 6802 } 6803 if (ret < 0) { 6804 putback_movable_pages(&cc->migratepages); 6805 return ret; 6806 } 6807 return 0; 6808 } 6809 6810 /** 6811 * alloc_contig_range() -- tries to allocate given range of pages 6812 * @start: start PFN to allocate 6813 * @end: one-past-the-last PFN to allocate 6814 * @migratetype: migratetype of the underlaying pageblocks (either 6815 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks 6816 * in range must have the same migratetype and it must 6817 * be either of the two. 6818 * 6819 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES 6820 * aligned, however it's the caller's responsibility to guarantee that 6821 * we are the only thread that changes migrate type of pageblocks the 6822 * pages fall in. 6823 * 6824 * The PFN range must belong to a single zone. 6825 * 6826 * Returns zero on success or negative error code. On success all 6827 * pages which PFN is in [start, end) are allocated for the caller and 6828 * need to be freed with free_contig_range(). 6829 */ 6830 int alloc_contig_range(unsigned long start, unsigned long end, 6831 unsigned migratetype) 6832 { 6833 unsigned long outer_start, outer_end; 6834 int ret = 0, order; 6835 6836 struct compact_control cc = { 6837 .nr_migratepages = 0, 6838 .order = -1, 6839 .zone = page_zone(pfn_to_page(start)), 6840 .mode = MIGRATE_SYNC, 6841 .ignore_skip_hint = true, 6842 }; 6843 INIT_LIST_HEAD(&cc.migratepages); 6844 6845 /* 6846 * What we do here is we mark all pageblocks in range as 6847 * MIGRATE_ISOLATE. Because pageblock and max order pages may 6848 * have different sizes, and due to the way page allocator 6849 * work, we align the range to biggest of the two pages so 6850 * that page allocator won't try to merge buddies from 6851 * different pageblocks and change MIGRATE_ISOLATE to some 6852 * other migration type. 6853 * 6854 * Once the pageblocks are marked as MIGRATE_ISOLATE, we 6855 * migrate the pages from an unaligned range (ie. pages that 6856 * we are interested in). This will put all the pages in 6857 * range back to page allocator as MIGRATE_ISOLATE. 6858 * 6859 * When this is done, we take the pages in range from page 6860 * allocator removing them from the buddy system. This way 6861 * page allocator will never consider using them. 6862 * 6863 * This lets us mark the pageblocks back as 6864 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the 6865 * aligned range but not in the unaligned, original range are 6866 * put back to page allocator so that buddy can use them. 6867 */ 6868 6869 ret = start_isolate_page_range(pfn_max_align_down(start), 6870 pfn_max_align_up(end), migratetype, 6871 false); 6872 if (ret) 6873 return ret; 6874 6875 ret = __alloc_contig_migrate_range(&cc, start, end); 6876 if (ret) 6877 goto done; 6878 6879 /* 6880 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES 6881 * aligned blocks that are marked as MIGRATE_ISOLATE. What's 6882 * more, all pages in [start, end) are free in page allocator. 6883 * What we are going to do is to allocate all pages from 6884 * [start, end) (that is remove them from page allocator). 6885 * 6886 * The only problem is that pages at the beginning and at the 6887 * end of interesting range may be not aligned with pages that 6888 * page allocator holds, ie. they can be part of higher order 6889 * pages. Because of this, we reserve the bigger range and 6890 * once this is done free the pages we are not interested in. 6891 * 6892 * We don't have to hold zone->lock here because the pages are 6893 * isolated thus they won't get removed from buddy. 6894 */ 6895 6896 lru_add_drain_all(); 6897 drain_all_pages(cc.zone); 6898 6899 order = 0; 6900 outer_start = start; 6901 while (!PageBuddy(pfn_to_page(outer_start))) { 6902 if (++order >= MAX_ORDER) { 6903 ret = -EBUSY; 6904 goto done; 6905 } 6906 outer_start &= ~0UL << order; 6907 } 6908 6909 /* Make sure the range is really isolated. */ 6910 if (test_pages_isolated(outer_start, end, false)) { 6911 pr_info("%s: [%lx, %lx) PFNs busy\n", 6912 __func__, outer_start, end); 6913 ret = -EBUSY; 6914 goto done; 6915 } 6916 6917 /* Grab isolated pages from freelists. */ 6918 outer_end = isolate_freepages_range(&cc, outer_start, end); 6919 if (!outer_end) { 6920 ret = -EBUSY; 6921 goto done; 6922 } 6923 6924 /* Free head and tail (if any) */ 6925 if (start != outer_start) 6926 free_contig_range(outer_start, start - outer_start); 6927 if (end != outer_end) 6928 free_contig_range(end, outer_end - end); 6929 6930 done: 6931 undo_isolate_page_range(pfn_max_align_down(start), 6932 pfn_max_align_up(end), migratetype); 6933 return ret; 6934 } 6935 6936 void free_contig_range(unsigned long pfn, unsigned nr_pages) 6937 { 6938 unsigned int count = 0; 6939 6940 for (; nr_pages--; pfn++) { 6941 struct page *page = pfn_to_page(pfn); 6942 6943 count += page_count(page) != 1; 6944 __free_page(page); 6945 } 6946 WARN(count != 0, "%d pages are still in use!\n", count); 6947 } 6948 #endif 6949 6950 #ifdef CONFIG_MEMORY_HOTPLUG 6951 /* 6952 * The zone indicated has a new number of managed_pages; batch sizes and percpu 6953 * page high values need to be recalulated. 6954 */ 6955 void __meminit zone_pcp_update(struct zone *zone) 6956 { 6957 unsigned cpu; 6958 mutex_lock(&pcp_batch_high_lock); 6959 for_each_possible_cpu(cpu) 6960 pageset_set_high_and_batch(zone, 6961 per_cpu_ptr(zone->pageset, cpu)); 6962 mutex_unlock(&pcp_batch_high_lock); 6963 } 6964 #endif 6965 6966 void zone_pcp_reset(struct zone *zone) 6967 { 6968 unsigned long flags; 6969 int cpu; 6970 struct per_cpu_pageset *pset; 6971 6972 /* avoid races with drain_pages() */ 6973 local_irq_save(flags); 6974 if (zone->pageset != &boot_pageset) { 6975 for_each_online_cpu(cpu) { 6976 pset = per_cpu_ptr(zone->pageset, cpu); 6977 drain_zonestat(zone, pset); 6978 } 6979 free_percpu(zone->pageset); 6980 zone->pageset = &boot_pageset; 6981 } 6982 local_irq_restore(flags); 6983 } 6984 6985 #ifdef CONFIG_MEMORY_HOTREMOVE 6986 /* 6987 * All pages in the range must be isolated before calling this. 6988 */ 6989 void 6990 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn) 6991 { 6992 struct page *page; 6993 struct zone *zone; 6994 unsigned int order, i; 6995 unsigned long pfn; 6996 unsigned long flags; 6997 /* find the first valid pfn */ 6998 for (pfn = start_pfn; pfn < end_pfn; pfn++) 6999 if (pfn_valid(pfn)) 7000 break; 7001 if (pfn == end_pfn) 7002 return; 7003 zone = page_zone(pfn_to_page(pfn)); 7004 spin_lock_irqsave(&zone->lock, flags); 7005 pfn = start_pfn; 7006 while (pfn < end_pfn) { 7007 if (!pfn_valid(pfn)) { 7008 pfn++; 7009 continue; 7010 } 7011 page = pfn_to_page(pfn); 7012 /* 7013 * The HWPoisoned page may be not in buddy system, and 7014 * page_count() is not 0. 7015 */ 7016 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) { 7017 pfn++; 7018 SetPageReserved(page); 7019 continue; 7020 } 7021 7022 BUG_ON(page_count(page)); 7023 BUG_ON(!PageBuddy(page)); 7024 order = page_order(page); 7025 #ifdef CONFIG_DEBUG_VM 7026 printk(KERN_INFO "remove from free list %lx %d %lx\n", 7027 pfn, 1 << order, end_pfn); 7028 #endif 7029 list_del(&page->lru); 7030 rmv_page_order(page); 7031 zone->free_area[order].nr_free--; 7032 for (i = 0; i < (1 << order); i++) 7033 SetPageReserved((page+i)); 7034 pfn += (1 << order); 7035 } 7036 spin_unlock_irqrestore(&zone->lock, flags); 7037 } 7038 #endif 7039 7040 #ifdef CONFIG_MEMORY_FAILURE 7041 bool is_free_buddy_page(struct page *page) 7042 { 7043 struct zone *zone = page_zone(page); 7044 unsigned long pfn = page_to_pfn(page); 7045 unsigned long flags; 7046 unsigned int order; 7047 7048 spin_lock_irqsave(&zone->lock, flags); 7049 for (order = 0; order < MAX_ORDER; order++) { 7050 struct page *page_head = page - (pfn & ((1 << order) - 1)); 7051 7052 if (PageBuddy(page_head) && page_order(page_head) >= order) 7053 break; 7054 } 7055 spin_unlock_irqrestore(&zone->lock, flags); 7056 7057 return order < MAX_ORDER; 7058 } 7059 #endif 7060