1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/mm/page_alloc.c 4 * 5 * Manages the free list, the system allocates free pages here. 6 * Note that kmalloc() lives in slab.c 7 * 8 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 9 * Swap reorganised 29.12.95, Stephen Tweedie 10 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999 11 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999 12 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999 13 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000 14 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002 15 * (lots of bits borrowed from Ingo Molnar & Andrew Morton) 16 */ 17 18 #include <linux/stddef.h> 19 #include <linux/mm.h> 20 #include <linux/highmem.h> 21 #include <linux/interrupt.h> 22 #include <linux/jiffies.h> 23 #include <linux/compiler.h> 24 #include <linux/kernel.h> 25 #include <linux/kasan.h> 26 #include <linux/kmsan.h> 27 #include <linux/module.h> 28 #include <linux/suspend.h> 29 #include <linux/ratelimit.h> 30 #include <linux/oom.h> 31 #include <linux/topology.h> 32 #include <linux/sysctl.h> 33 #include <linux/cpu.h> 34 #include <linux/cpuset.h> 35 #include <linux/pagevec.h> 36 #include <linux/memory_hotplug.h> 37 #include <linux/nodemask.h> 38 #include <linux/vmstat.h> 39 #include <linux/fault-inject.h> 40 #include <linux/compaction.h> 41 #include <trace/events/kmem.h> 42 #include <trace/events/oom.h> 43 #include <linux/prefetch.h> 44 #include <linux/mm_inline.h> 45 #include <linux/mmu_notifier.h> 46 #include <linux/migrate.h> 47 #include <linux/sched/mm.h> 48 #include <linux/page_owner.h> 49 #include <linux/page_table_check.h> 50 #include <linux/memcontrol.h> 51 #include <linux/ftrace.h> 52 #include <linux/lockdep.h> 53 #include <linux/psi.h> 54 #include <linux/khugepaged.h> 55 #include <linux/delayacct.h> 56 #include <linux/cacheinfo.h> 57 #include <linux/pgalloc_tag.h> 58 #include <asm/div64.h> 59 #include "internal.h" 60 #include "shuffle.h" 61 #include "page_reporting.h" 62 63 /* Free Page Internal flags: for internal, non-pcp variants of free_pages(). */ 64 typedef int __bitwise fpi_t; 65 66 /* No special request */ 67 #define FPI_NONE ((__force fpi_t)0) 68 69 /* 70 * Skip free page reporting notification for the (possibly merged) page. 71 * This does not hinder free page reporting from grabbing the page, 72 * reporting it and marking it "reported" - it only skips notifying 73 * the free page reporting infrastructure about a newly freed page. For 74 * example, used when temporarily pulling a page from a freelist and 75 * putting it back unmodified. 76 */ 77 #define FPI_SKIP_REPORT_NOTIFY ((__force fpi_t)BIT(0)) 78 79 /* 80 * Place the (possibly merged) page to the tail of the freelist. Will ignore 81 * page shuffling (relevant code - e.g., memory onlining - is expected to 82 * shuffle the whole zone). 83 * 84 * Note: No code should rely on this flag for correctness - it's purely 85 * to allow for optimizations when handing back either fresh pages 86 * (memory onlining) or untouched pages (page isolation, free page 87 * reporting). 88 */ 89 #define FPI_TO_TAIL ((__force fpi_t)BIT(1)) 90 91 /* Free the page without taking locks. Rely on trylock only. */ 92 #define FPI_TRYLOCK ((__force fpi_t)BIT(2)) 93 94 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */ 95 static DEFINE_MUTEX(pcp_batch_high_lock); 96 #define MIN_PERCPU_PAGELIST_HIGH_FRACTION (8) 97 98 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT_RT) 99 /* 100 * On SMP, spin_trylock is sufficient protection. 101 * On PREEMPT_RT, spin_trylock is equivalent on both SMP and UP. 102 */ 103 #define pcp_trylock_prepare(flags) do { } while (0) 104 #define pcp_trylock_finish(flag) do { } while (0) 105 #else 106 107 /* UP spin_trylock always succeeds so disable IRQs to prevent re-entrancy. */ 108 #define pcp_trylock_prepare(flags) local_irq_save(flags) 109 #define pcp_trylock_finish(flags) local_irq_restore(flags) 110 #endif 111 112 /* 113 * Locking a pcp requires a PCP lookup followed by a spinlock. To avoid 114 * a migration causing the wrong PCP to be locked and remote memory being 115 * potentially allocated, pin the task to the CPU for the lookup+lock. 116 * preempt_disable is used on !RT because it is faster than migrate_disable. 117 * migrate_disable is used on RT because otherwise RT spinlock usage is 118 * interfered with and a high priority task cannot preempt the allocator. 119 */ 120 #ifndef CONFIG_PREEMPT_RT 121 #define pcpu_task_pin() preempt_disable() 122 #define pcpu_task_unpin() preempt_enable() 123 #else 124 #define pcpu_task_pin() migrate_disable() 125 #define pcpu_task_unpin() migrate_enable() 126 #endif 127 128 /* 129 * Generic helper to lookup and a per-cpu variable with an embedded spinlock. 130 * Return value should be used with equivalent unlock helper. 131 */ 132 #define pcpu_spin_lock(type, member, ptr) \ 133 ({ \ 134 type *_ret; \ 135 pcpu_task_pin(); \ 136 _ret = this_cpu_ptr(ptr); \ 137 spin_lock(&_ret->member); \ 138 _ret; \ 139 }) 140 141 #define pcpu_spin_trylock(type, member, ptr) \ 142 ({ \ 143 type *_ret; \ 144 pcpu_task_pin(); \ 145 _ret = this_cpu_ptr(ptr); \ 146 if (!spin_trylock(&_ret->member)) { \ 147 pcpu_task_unpin(); \ 148 _ret = NULL; \ 149 } \ 150 _ret; \ 151 }) 152 153 #define pcpu_spin_unlock(member, ptr) \ 154 ({ \ 155 spin_unlock(&ptr->member); \ 156 pcpu_task_unpin(); \ 157 }) 158 159 /* struct per_cpu_pages specific helpers. */ 160 #define pcp_spin_lock(ptr) \ 161 pcpu_spin_lock(struct per_cpu_pages, lock, ptr) 162 163 #define pcp_spin_trylock(ptr) \ 164 pcpu_spin_trylock(struct per_cpu_pages, lock, ptr) 165 166 #define pcp_spin_unlock(ptr) \ 167 pcpu_spin_unlock(lock, ptr) 168 169 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID 170 DEFINE_PER_CPU(int, numa_node); 171 EXPORT_PER_CPU_SYMBOL(numa_node); 172 #endif 173 174 DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key); 175 176 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 177 /* 178 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly. 179 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined. 180 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem() 181 * defined in <linux/topology.h>. 182 */ 183 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */ 184 EXPORT_PER_CPU_SYMBOL(_numa_mem_); 185 #endif 186 187 static DEFINE_MUTEX(pcpu_drain_mutex); 188 189 #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY 190 volatile unsigned long latent_entropy __latent_entropy; 191 EXPORT_SYMBOL(latent_entropy); 192 #endif 193 194 /* 195 * Array of node states. 196 */ 197 nodemask_t node_states[NR_NODE_STATES] __read_mostly = { 198 [N_POSSIBLE] = NODE_MASK_ALL, 199 [N_ONLINE] = { { [0] = 1UL } }, 200 #ifndef CONFIG_NUMA 201 [N_NORMAL_MEMORY] = { { [0] = 1UL } }, 202 #ifdef CONFIG_HIGHMEM 203 [N_HIGH_MEMORY] = { { [0] = 1UL } }, 204 #endif 205 [N_MEMORY] = { { [0] = 1UL } }, 206 [N_CPU] = { { [0] = 1UL } }, 207 #endif /* NUMA */ 208 }; 209 EXPORT_SYMBOL(node_states); 210 211 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK; 212 213 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE 214 unsigned int pageblock_order __read_mostly; 215 #endif 216 217 static void __free_pages_ok(struct page *page, unsigned int order, 218 fpi_t fpi_flags); 219 220 /* 221 * results with 256, 32 in the lowmem_reserve sysctl: 222 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high) 223 * 1G machine -> (16M dma, 784M normal, 224M high) 224 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA 225 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL 226 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA 227 * 228 * TBD: should special case ZONE_DMA32 machines here - in those we normally 229 * don't need any ZONE_NORMAL reservation 230 */ 231 static int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = { 232 #ifdef CONFIG_ZONE_DMA 233 [ZONE_DMA] = 256, 234 #endif 235 #ifdef CONFIG_ZONE_DMA32 236 [ZONE_DMA32] = 256, 237 #endif 238 [ZONE_NORMAL] = 32, 239 #ifdef CONFIG_HIGHMEM 240 [ZONE_HIGHMEM] = 0, 241 #endif 242 [ZONE_MOVABLE] = 0, 243 }; 244 245 char * const zone_names[MAX_NR_ZONES] = { 246 #ifdef CONFIG_ZONE_DMA 247 "DMA", 248 #endif 249 #ifdef CONFIG_ZONE_DMA32 250 "DMA32", 251 #endif 252 "Normal", 253 #ifdef CONFIG_HIGHMEM 254 "HighMem", 255 #endif 256 "Movable", 257 #ifdef CONFIG_ZONE_DEVICE 258 "Device", 259 #endif 260 }; 261 262 const char * const migratetype_names[MIGRATE_TYPES] = { 263 "Unmovable", 264 "Movable", 265 "Reclaimable", 266 "HighAtomic", 267 #ifdef CONFIG_CMA 268 "CMA", 269 #endif 270 #ifdef CONFIG_MEMORY_ISOLATION 271 "Isolate", 272 #endif 273 }; 274 275 int min_free_kbytes = 1024; 276 int user_min_free_kbytes = -1; 277 static int watermark_boost_factor __read_mostly = 15000; 278 static int watermark_scale_factor = 10; 279 int defrag_mode; 280 281 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */ 282 int movable_zone; 283 EXPORT_SYMBOL(movable_zone); 284 285 #if MAX_NUMNODES > 1 286 unsigned int nr_node_ids __read_mostly = MAX_NUMNODES; 287 unsigned int nr_online_nodes __read_mostly = 1; 288 EXPORT_SYMBOL(nr_node_ids); 289 EXPORT_SYMBOL(nr_online_nodes); 290 #endif 291 292 static bool page_contains_unaccepted(struct page *page, unsigned int order); 293 static bool cond_accept_memory(struct zone *zone, unsigned int order, 294 int alloc_flags); 295 static bool __free_unaccepted(struct page *page); 296 297 int page_group_by_mobility_disabled __read_mostly; 298 299 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 300 /* 301 * During boot we initialize deferred pages on-demand, as needed, but once 302 * page_alloc_init_late() has finished, the deferred pages are all initialized, 303 * and we can permanently disable that path. 304 */ 305 DEFINE_STATIC_KEY_TRUE(deferred_pages); 306 307 static inline bool deferred_pages_enabled(void) 308 { 309 return static_branch_unlikely(&deferred_pages); 310 } 311 312 /* 313 * deferred_grow_zone() is __init, but it is called from 314 * get_page_from_freelist() during early boot until deferred_pages permanently 315 * disables this call. This is why we have refdata wrapper to avoid warning, 316 * and to ensure that the function body gets unloaded. 317 */ 318 static bool __ref 319 _deferred_grow_zone(struct zone *zone, unsigned int order) 320 { 321 return deferred_grow_zone(zone, order); 322 } 323 #else 324 static inline bool deferred_pages_enabled(void) 325 { 326 return false; 327 } 328 329 static inline bool _deferred_grow_zone(struct zone *zone, unsigned int order) 330 { 331 return false; 332 } 333 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */ 334 335 /* Return a pointer to the bitmap storing bits affecting a block of pages */ 336 static inline unsigned long *get_pageblock_bitmap(const struct page *page, 337 unsigned long pfn) 338 { 339 #ifdef CONFIG_SPARSEMEM 340 return section_to_usemap(__pfn_to_section(pfn)); 341 #else 342 return page_zone(page)->pageblock_flags; 343 #endif /* CONFIG_SPARSEMEM */ 344 } 345 346 static inline int pfn_to_bitidx(const struct page *page, unsigned long pfn) 347 { 348 #ifdef CONFIG_SPARSEMEM 349 pfn &= (PAGES_PER_SECTION-1); 350 #else 351 pfn = pfn - pageblock_start_pfn(page_zone(page)->zone_start_pfn); 352 #endif /* CONFIG_SPARSEMEM */ 353 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS; 354 } 355 356 static __always_inline bool is_standalone_pb_bit(enum pageblock_bits pb_bit) 357 { 358 return pb_bit > PB_migrate_end && pb_bit < __NR_PAGEBLOCK_BITS; 359 } 360 361 static __always_inline void 362 get_pfnblock_bitmap_bitidx(const struct page *page, unsigned long pfn, 363 unsigned long **bitmap_word, unsigned long *bitidx) 364 { 365 unsigned long *bitmap; 366 unsigned long word_bitidx; 367 368 #ifdef CONFIG_MEMORY_ISOLATION 369 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 8); 370 #else 371 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4); 372 #endif 373 BUILD_BUG_ON(__MIGRATE_TYPE_END >= (1 << PB_migratetype_bits)); 374 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page); 375 376 bitmap = get_pageblock_bitmap(page, pfn); 377 *bitidx = pfn_to_bitidx(page, pfn); 378 word_bitidx = *bitidx / BITS_PER_LONG; 379 *bitidx &= (BITS_PER_LONG - 1); 380 *bitmap_word = &bitmap[word_bitidx]; 381 } 382 383 384 /** 385 * __get_pfnblock_flags_mask - Return the requested group of flags for 386 * a pageblock_nr_pages block of pages 387 * @page: The page within the block of interest 388 * @pfn: The target page frame number 389 * @mask: mask of bits that the caller is interested in 390 * 391 * Return: pageblock_bits flags 392 */ 393 static unsigned long __get_pfnblock_flags_mask(const struct page *page, 394 unsigned long pfn, 395 unsigned long mask) 396 { 397 unsigned long *bitmap_word; 398 unsigned long bitidx; 399 unsigned long word; 400 401 get_pfnblock_bitmap_bitidx(page, pfn, &bitmap_word, &bitidx); 402 /* 403 * This races, without locks, with set_pfnblock_migratetype(). Ensure 404 * a consistent read of the memory array, so that results, even though 405 * racy, are not corrupted. 406 */ 407 word = READ_ONCE(*bitmap_word); 408 return (word >> bitidx) & mask; 409 } 410 411 /** 412 * get_pfnblock_bit - Check if a standalone bit of a pageblock is set 413 * @page: The page within the block of interest 414 * @pfn: The target page frame number 415 * @pb_bit: pageblock bit to check 416 * 417 * Return: true if the bit is set, otherwise false 418 */ 419 bool get_pfnblock_bit(const struct page *page, unsigned long pfn, 420 enum pageblock_bits pb_bit) 421 { 422 unsigned long *bitmap_word; 423 unsigned long bitidx; 424 425 if (WARN_ON_ONCE(!is_standalone_pb_bit(pb_bit))) 426 return false; 427 428 get_pfnblock_bitmap_bitidx(page, pfn, &bitmap_word, &bitidx); 429 430 return test_bit(bitidx + pb_bit, bitmap_word); 431 } 432 433 /** 434 * get_pfnblock_migratetype - Return the migratetype of a pageblock 435 * @page: The page within the block of interest 436 * @pfn: The target page frame number 437 * 438 * Return: The migratetype of the pageblock 439 * 440 * Use get_pfnblock_migratetype() if caller already has both @page and @pfn 441 * to save a call to page_to_pfn(). 442 */ 443 __always_inline enum migratetype 444 get_pfnblock_migratetype(const struct page *page, unsigned long pfn) 445 { 446 unsigned long mask = MIGRATETYPE_AND_ISO_MASK; 447 unsigned long flags; 448 449 flags = __get_pfnblock_flags_mask(page, pfn, mask); 450 451 #ifdef CONFIG_MEMORY_ISOLATION 452 if (flags & BIT(PB_migrate_isolate)) 453 return MIGRATE_ISOLATE; 454 #endif 455 return flags & MIGRATETYPE_MASK; 456 } 457 458 /** 459 * __set_pfnblock_flags_mask - Set the requested group of flags for 460 * a pageblock_nr_pages block of pages 461 * @page: The page within the block of interest 462 * @pfn: The target page frame number 463 * @flags: The flags to set 464 * @mask: mask of bits that the caller is interested in 465 */ 466 static void __set_pfnblock_flags_mask(struct page *page, unsigned long pfn, 467 unsigned long flags, unsigned long mask) 468 { 469 unsigned long *bitmap_word; 470 unsigned long bitidx; 471 unsigned long word; 472 473 get_pfnblock_bitmap_bitidx(page, pfn, &bitmap_word, &bitidx); 474 475 mask <<= bitidx; 476 flags <<= bitidx; 477 478 word = READ_ONCE(*bitmap_word); 479 do { 480 } while (!try_cmpxchg(bitmap_word, &word, (word & ~mask) | flags)); 481 } 482 483 /** 484 * set_pfnblock_bit - Set a standalone bit of a pageblock 485 * @page: The page within the block of interest 486 * @pfn: The target page frame number 487 * @pb_bit: pageblock bit to set 488 */ 489 void set_pfnblock_bit(const struct page *page, unsigned long pfn, 490 enum pageblock_bits pb_bit) 491 { 492 unsigned long *bitmap_word; 493 unsigned long bitidx; 494 495 if (WARN_ON_ONCE(!is_standalone_pb_bit(pb_bit))) 496 return; 497 498 get_pfnblock_bitmap_bitidx(page, pfn, &bitmap_word, &bitidx); 499 500 set_bit(bitidx + pb_bit, bitmap_word); 501 } 502 503 /** 504 * clear_pfnblock_bit - Clear a standalone bit of a pageblock 505 * @page: The page within the block of interest 506 * @pfn: The target page frame number 507 * @pb_bit: pageblock bit to clear 508 */ 509 void clear_pfnblock_bit(const struct page *page, unsigned long pfn, 510 enum pageblock_bits pb_bit) 511 { 512 unsigned long *bitmap_word; 513 unsigned long bitidx; 514 515 if (WARN_ON_ONCE(!is_standalone_pb_bit(pb_bit))) 516 return; 517 518 get_pfnblock_bitmap_bitidx(page, pfn, &bitmap_word, &bitidx); 519 520 clear_bit(bitidx + pb_bit, bitmap_word); 521 } 522 523 /** 524 * set_pageblock_migratetype - Set the migratetype of a pageblock 525 * @page: The page within the block of interest 526 * @migratetype: migratetype to set 527 */ 528 static void set_pageblock_migratetype(struct page *page, 529 enum migratetype migratetype) 530 { 531 if (unlikely(page_group_by_mobility_disabled && 532 migratetype < MIGRATE_PCPTYPES)) 533 migratetype = MIGRATE_UNMOVABLE; 534 535 #ifdef CONFIG_MEMORY_ISOLATION 536 if (migratetype == MIGRATE_ISOLATE) { 537 VM_WARN_ONCE(1, 538 "Use set_pageblock_isolate() for pageblock isolation"); 539 return; 540 } 541 VM_WARN_ONCE(get_pfnblock_bit(page, page_to_pfn(page), 542 PB_migrate_isolate), 543 "Use clear_pageblock_isolate() to unisolate pageblock"); 544 /* MIGRATETYPE_AND_ISO_MASK clears PB_migrate_isolate if it is set */ 545 #endif 546 __set_pfnblock_flags_mask(page, page_to_pfn(page), 547 (unsigned long)migratetype, 548 MIGRATETYPE_AND_ISO_MASK); 549 } 550 551 void __meminit init_pageblock_migratetype(struct page *page, 552 enum migratetype migratetype, 553 bool isolate) 554 { 555 unsigned long flags; 556 557 if (unlikely(page_group_by_mobility_disabled && 558 migratetype < MIGRATE_PCPTYPES)) 559 migratetype = MIGRATE_UNMOVABLE; 560 561 flags = migratetype; 562 563 #ifdef CONFIG_MEMORY_ISOLATION 564 if (migratetype == MIGRATE_ISOLATE) { 565 VM_WARN_ONCE( 566 1, 567 "Set isolate=true to isolate pageblock with a migratetype"); 568 return; 569 } 570 if (isolate) 571 flags |= BIT(PB_migrate_isolate); 572 #endif 573 __set_pfnblock_flags_mask(page, page_to_pfn(page), flags, 574 MIGRATETYPE_AND_ISO_MASK); 575 } 576 577 #ifdef CONFIG_DEBUG_VM 578 static int page_outside_zone_boundaries(struct zone *zone, struct page *page) 579 { 580 int ret; 581 unsigned seq; 582 unsigned long pfn = page_to_pfn(page); 583 unsigned long sp, start_pfn; 584 585 do { 586 seq = zone_span_seqbegin(zone); 587 start_pfn = zone->zone_start_pfn; 588 sp = zone->spanned_pages; 589 ret = !zone_spans_pfn(zone, pfn); 590 } while (zone_span_seqretry(zone, seq)); 591 592 if (ret) 593 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n", 594 pfn, zone_to_nid(zone), zone->name, 595 start_pfn, start_pfn + sp); 596 597 return ret; 598 } 599 600 /* 601 * Temporary debugging check for pages not lying within a given zone. 602 */ 603 static bool __maybe_unused bad_range(struct zone *zone, struct page *page) 604 { 605 if (page_outside_zone_boundaries(zone, page)) 606 return true; 607 if (zone != page_zone(page)) 608 return true; 609 610 return false; 611 } 612 #else 613 static inline bool __maybe_unused bad_range(struct zone *zone, struct page *page) 614 { 615 return false; 616 } 617 #endif 618 619 static void bad_page(struct page *page, const char *reason) 620 { 621 static unsigned long resume; 622 static unsigned long nr_shown; 623 static unsigned long nr_unshown; 624 625 /* 626 * Allow a burst of 60 reports, then keep quiet for that minute; 627 * or allow a steady drip of one report per second. 628 */ 629 if (nr_shown == 60) { 630 if (time_before(jiffies, resume)) { 631 nr_unshown++; 632 goto out; 633 } 634 if (nr_unshown) { 635 pr_alert( 636 "BUG: Bad page state: %lu messages suppressed\n", 637 nr_unshown); 638 nr_unshown = 0; 639 } 640 nr_shown = 0; 641 } 642 if (nr_shown++ == 0) 643 resume = jiffies + 60 * HZ; 644 645 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n", 646 current->comm, page_to_pfn(page)); 647 dump_page(page, reason); 648 649 print_modules(); 650 dump_stack(); 651 out: 652 /* Leave bad fields for debug, except PageBuddy could make trouble */ 653 if (PageBuddy(page)) 654 __ClearPageBuddy(page); 655 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 656 } 657 658 static inline unsigned int order_to_pindex(int migratetype, int order) 659 { 660 661 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 662 bool movable; 663 if (order > PAGE_ALLOC_COSTLY_ORDER) { 664 VM_BUG_ON(order != HPAGE_PMD_ORDER); 665 666 movable = migratetype == MIGRATE_MOVABLE; 667 668 return NR_LOWORDER_PCP_LISTS + movable; 669 } 670 #else 671 VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER); 672 #endif 673 674 return (MIGRATE_PCPTYPES * order) + migratetype; 675 } 676 677 static inline int pindex_to_order(unsigned int pindex) 678 { 679 int order = pindex / MIGRATE_PCPTYPES; 680 681 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 682 if (pindex >= NR_LOWORDER_PCP_LISTS) 683 order = HPAGE_PMD_ORDER; 684 #else 685 VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER); 686 #endif 687 688 return order; 689 } 690 691 static inline bool pcp_allowed_order(unsigned int order) 692 { 693 if (order <= PAGE_ALLOC_COSTLY_ORDER) 694 return true; 695 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 696 if (order == HPAGE_PMD_ORDER) 697 return true; 698 #endif 699 return false; 700 } 701 702 /* 703 * Higher-order pages are called "compound pages". They are structured thusly: 704 * 705 * The first PAGE_SIZE page is called the "head page" and have PG_head set. 706 * 707 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded 708 * in bit 0 of page->compound_head. The rest of bits is pointer to head page. 709 * 710 * The first tail page's ->compound_order holds the order of allocation. 711 * This usage means that zero-order pages may not be compound. 712 */ 713 714 void prep_compound_page(struct page *page, unsigned int order) 715 { 716 int i; 717 int nr_pages = 1 << order; 718 719 __SetPageHead(page); 720 for (i = 1; i < nr_pages; i++) 721 prep_compound_tail(page, i); 722 723 prep_compound_head(page, order); 724 } 725 726 static inline void set_buddy_order(struct page *page, unsigned int order) 727 { 728 set_page_private(page, order); 729 __SetPageBuddy(page); 730 } 731 732 #ifdef CONFIG_COMPACTION 733 static inline struct capture_control *task_capc(struct zone *zone) 734 { 735 struct capture_control *capc = current->capture_control; 736 737 return unlikely(capc) && 738 !(current->flags & PF_KTHREAD) && 739 !capc->page && 740 capc->cc->zone == zone ? capc : NULL; 741 } 742 743 static inline bool 744 compaction_capture(struct capture_control *capc, struct page *page, 745 int order, int migratetype) 746 { 747 if (!capc || order != capc->cc->order) 748 return false; 749 750 /* Do not accidentally pollute CMA or isolated regions*/ 751 if (is_migrate_cma(migratetype) || 752 is_migrate_isolate(migratetype)) 753 return false; 754 755 /* 756 * Do not let lower order allocations pollute a movable pageblock 757 * unless compaction is also requesting movable pages. 758 * This might let an unmovable request use a reclaimable pageblock 759 * and vice-versa but no more than normal fallback logic which can 760 * have trouble finding a high-order free page. 761 */ 762 if (order < pageblock_order && migratetype == MIGRATE_MOVABLE && 763 capc->cc->migratetype != MIGRATE_MOVABLE) 764 return false; 765 766 if (migratetype != capc->cc->migratetype) 767 trace_mm_page_alloc_extfrag(page, capc->cc->order, order, 768 capc->cc->migratetype, migratetype); 769 770 capc->page = page; 771 return true; 772 } 773 774 #else 775 static inline struct capture_control *task_capc(struct zone *zone) 776 { 777 return NULL; 778 } 779 780 static inline bool 781 compaction_capture(struct capture_control *capc, struct page *page, 782 int order, int migratetype) 783 { 784 return false; 785 } 786 #endif /* CONFIG_COMPACTION */ 787 788 static inline void account_freepages(struct zone *zone, int nr_pages, 789 int migratetype) 790 { 791 lockdep_assert_held(&zone->lock); 792 793 if (is_migrate_isolate(migratetype)) 794 return; 795 796 __mod_zone_page_state(zone, NR_FREE_PAGES, nr_pages); 797 798 if (is_migrate_cma(migratetype)) 799 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES, nr_pages); 800 else if (is_migrate_highatomic(migratetype)) 801 WRITE_ONCE(zone->nr_free_highatomic, 802 zone->nr_free_highatomic + nr_pages); 803 } 804 805 /* Used for pages not on another list */ 806 static inline void __add_to_free_list(struct page *page, struct zone *zone, 807 unsigned int order, int migratetype, 808 bool tail) 809 { 810 struct free_area *area = &zone->free_area[order]; 811 int nr_pages = 1 << order; 812 813 VM_WARN_ONCE(get_pageblock_migratetype(page) != migratetype, 814 "page type is %d, passed migratetype is %d (nr=%d)\n", 815 get_pageblock_migratetype(page), migratetype, nr_pages); 816 817 if (tail) 818 list_add_tail(&page->buddy_list, &area->free_list[migratetype]); 819 else 820 list_add(&page->buddy_list, &area->free_list[migratetype]); 821 area->nr_free++; 822 823 if (order >= pageblock_order && !is_migrate_isolate(migratetype)) 824 __mod_zone_page_state(zone, NR_FREE_PAGES_BLOCKS, nr_pages); 825 } 826 827 /* 828 * Used for pages which are on another list. Move the pages to the tail 829 * of the list - so the moved pages won't immediately be considered for 830 * allocation again (e.g., optimization for memory onlining). 831 */ 832 static inline void move_to_free_list(struct page *page, struct zone *zone, 833 unsigned int order, int old_mt, int new_mt) 834 { 835 struct free_area *area = &zone->free_area[order]; 836 int nr_pages = 1 << order; 837 838 /* Free page moving can fail, so it happens before the type update */ 839 VM_WARN_ONCE(get_pageblock_migratetype(page) != old_mt, 840 "page type is %d, passed migratetype is %d (nr=%d)\n", 841 get_pageblock_migratetype(page), old_mt, nr_pages); 842 843 list_move_tail(&page->buddy_list, &area->free_list[new_mt]); 844 845 account_freepages(zone, -nr_pages, old_mt); 846 account_freepages(zone, nr_pages, new_mt); 847 848 if (order >= pageblock_order && 849 is_migrate_isolate(old_mt) != is_migrate_isolate(new_mt)) { 850 if (!is_migrate_isolate(old_mt)) 851 nr_pages = -nr_pages; 852 __mod_zone_page_state(zone, NR_FREE_PAGES_BLOCKS, nr_pages); 853 } 854 } 855 856 static inline void __del_page_from_free_list(struct page *page, struct zone *zone, 857 unsigned int order, int migratetype) 858 { 859 int nr_pages = 1 << order; 860 861 VM_WARN_ONCE(get_pageblock_migratetype(page) != migratetype, 862 "page type is %d, passed migratetype is %d (nr=%d)\n", 863 get_pageblock_migratetype(page), migratetype, nr_pages); 864 865 /* clear reported state and update reported page count */ 866 if (page_reported(page)) 867 __ClearPageReported(page); 868 869 list_del(&page->buddy_list); 870 __ClearPageBuddy(page); 871 set_page_private(page, 0); 872 zone->free_area[order].nr_free--; 873 874 if (order >= pageblock_order && !is_migrate_isolate(migratetype)) 875 __mod_zone_page_state(zone, NR_FREE_PAGES_BLOCKS, -nr_pages); 876 } 877 878 static inline void del_page_from_free_list(struct page *page, struct zone *zone, 879 unsigned int order, int migratetype) 880 { 881 __del_page_from_free_list(page, zone, order, migratetype); 882 account_freepages(zone, -(1 << order), migratetype); 883 } 884 885 static inline struct page *get_page_from_free_area(struct free_area *area, 886 int migratetype) 887 { 888 return list_first_entry_or_null(&area->free_list[migratetype], 889 struct page, buddy_list); 890 } 891 892 /* 893 * If this is less than the 2nd largest possible page, check if the buddy 894 * of the next-higher order is free. If it is, it's possible 895 * that pages are being freed that will coalesce soon. In case, 896 * that is happening, add the free page to the tail of the list 897 * so it's less likely to be used soon and more likely to be merged 898 * as a 2-level higher order page 899 */ 900 static inline bool 901 buddy_merge_likely(unsigned long pfn, unsigned long buddy_pfn, 902 struct page *page, unsigned int order) 903 { 904 unsigned long higher_page_pfn; 905 struct page *higher_page; 906 907 if (order >= MAX_PAGE_ORDER - 1) 908 return false; 909 910 higher_page_pfn = buddy_pfn & pfn; 911 higher_page = page + (higher_page_pfn - pfn); 912 913 return find_buddy_page_pfn(higher_page, higher_page_pfn, order + 1, 914 NULL) != NULL; 915 } 916 917 /* 918 * Freeing function for a buddy system allocator. 919 * 920 * The concept of a buddy system is to maintain direct-mapped table 921 * (containing bit values) for memory blocks of various "orders". 922 * The bottom level table contains the map for the smallest allocatable 923 * units of memory (here, pages), and each level above it describes 924 * pairs of units from the levels below, hence, "buddies". 925 * At a high level, all that happens here is marking the table entry 926 * at the bottom level available, and propagating the changes upward 927 * as necessary, plus some accounting needed to play nicely with other 928 * parts of the VM system. 929 * At each level, we keep a list of pages, which are heads of continuous 930 * free pages of length of (1 << order) and marked with PageBuddy. 931 * Page's order is recorded in page_private(page) field. 932 * So when we are allocating or freeing one, we can derive the state of the 933 * other. That is, if we allocate a small block, and both were 934 * free, the remainder of the region must be split into blocks. 935 * If a block is freed, and its buddy is also free, then this 936 * triggers coalescing into a block of larger size. 937 * 938 * -- nyc 939 */ 940 941 static inline void __free_one_page(struct page *page, 942 unsigned long pfn, 943 struct zone *zone, unsigned int order, 944 int migratetype, fpi_t fpi_flags) 945 { 946 struct capture_control *capc = task_capc(zone); 947 unsigned long buddy_pfn = 0; 948 unsigned long combined_pfn; 949 struct page *buddy; 950 bool to_tail; 951 952 VM_BUG_ON(!zone_is_initialized(zone)); 953 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page); 954 955 VM_BUG_ON(migratetype == -1); 956 VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page); 957 VM_BUG_ON_PAGE(bad_range(zone, page), page); 958 959 account_freepages(zone, 1 << order, migratetype); 960 961 while (order < MAX_PAGE_ORDER) { 962 int buddy_mt = migratetype; 963 964 if (compaction_capture(capc, page, order, migratetype)) { 965 account_freepages(zone, -(1 << order), migratetype); 966 return; 967 } 968 969 buddy = find_buddy_page_pfn(page, pfn, order, &buddy_pfn); 970 if (!buddy) 971 goto done_merging; 972 973 if (unlikely(order >= pageblock_order)) { 974 /* 975 * We want to prevent merge between freepages on pageblock 976 * without fallbacks and normal pageblock. Without this, 977 * pageblock isolation could cause incorrect freepage or CMA 978 * accounting or HIGHATOMIC accounting. 979 */ 980 buddy_mt = get_pfnblock_migratetype(buddy, buddy_pfn); 981 982 if (migratetype != buddy_mt && 983 (!migratetype_is_mergeable(migratetype) || 984 !migratetype_is_mergeable(buddy_mt))) 985 goto done_merging; 986 } 987 988 /* 989 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page, 990 * merge with it and move up one order. 991 */ 992 if (page_is_guard(buddy)) 993 clear_page_guard(zone, buddy, order); 994 else 995 __del_page_from_free_list(buddy, zone, order, buddy_mt); 996 997 if (unlikely(buddy_mt != migratetype)) { 998 /* 999 * Match buddy type. This ensures that an 1000 * expand() down the line puts the sub-blocks 1001 * on the right freelists. 1002 */ 1003 set_pageblock_migratetype(buddy, migratetype); 1004 } 1005 1006 combined_pfn = buddy_pfn & pfn; 1007 page = page + (combined_pfn - pfn); 1008 pfn = combined_pfn; 1009 order++; 1010 } 1011 1012 done_merging: 1013 set_buddy_order(page, order); 1014 1015 if (fpi_flags & FPI_TO_TAIL) 1016 to_tail = true; 1017 else if (is_shuffle_order(order)) 1018 to_tail = shuffle_pick_tail(); 1019 else 1020 to_tail = buddy_merge_likely(pfn, buddy_pfn, page, order); 1021 1022 __add_to_free_list(page, zone, order, migratetype, to_tail); 1023 1024 /* Notify page reporting subsystem of freed page */ 1025 if (!(fpi_flags & FPI_SKIP_REPORT_NOTIFY)) 1026 page_reporting_notify_free(order); 1027 } 1028 1029 /* 1030 * A bad page could be due to a number of fields. Instead of multiple branches, 1031 * try and check multiple fields with one check. The caller must do a detailed 1032 * check if necessary. 1033 */ 1034 static inline bool page_expected_state(struct page *page, 1035 unsigned long check_flags) 1036 { 1037 if (unlikely(atomic_read(&page->_mapcount) != -1)) 1038 return false; 1039 1040 if (unlikely((unsigned long)page->mapping | 1041 page_ref_count(page) | 1042 #ifdef CONFIG_MEMCG 1043 page->memcg_data | 1044 #endif 1045 page_pool_page_is_pp(page) | 1046 (page->flags & check_flags))) 1047 return false; 1048 1049 return true; 1050 } 1051 1052 static const char *page_bad_reason(struct page *page, unsigned long flags) 1053 { 1054 const char *bad_reason = NULL; 1055 1056 if (unlikely(atomic_read(&page->_mapcount) != -1)) 1057 bad_reason = "nonzero mapcount"; 1058 if (unlikely(page->mapping != NULL)) 1059 bad_reason = "non-NULL mapping"; 1060 if (unlikely(page_ref_count(page) != 0)) 1061 bad_reason = "nonzero _refcount"; 1062 if (unlikely(page->flags & flags)) { 1063 if (flags == PAGE_FLAGS_CHECK_AT_PREP) 1064 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag(s) set"; 1065 else 1066 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set"; 1067 } 1068 #ifdef CONFIG_MEMCG 1069 if (unlikely(page->memcg_data)) 1070 bad_reason = "page still charged to cgroup"; 1071 #endif 1072 if (unlikely(page_pool_page_is_pp(page))) 1073 bad_reason = "page_pool leak"; 1074 return bad_reason; 1075 } 1076 1077 static inline bool free_page_is_bad(struct page *page) 1078 { 1079 if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE))) 1080 return false; 1081 1082 /* Something has gone sideways, find it */ 1083 bad_page(page, page_bad_reason(page, PAGE_FLAGS_CHECK_AT_FREE)); 1084 return true; 1085 } 1086 1087 static inline bool is_check_pages_enabled(void) 1088 { 1089 return static_branch_unlikely(&check_pages_enabled); 1090 } 1091 1092 static int free_tail_page_prepare(struct page *head_page, struct page *page) 1093 { 1094 struct folio *folio = (struct folio *)head_page; 1095 int ret = 1; 1096 1097 /* 1098 * We rely page->lru.next never has bit 0 set, unless the page 1099 * is PageTail(). Let's make sure that's true even for poisoned ->lru. 1100 */ 1101 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1); 1102 1103 if (!is_check_pages_enabled()) { 1104 ret = 0; 1105 goto out; 1106 } 1107 switch (page - head_page) { 1108 case 1: 1109 /* the first tail page: these may be in place of ->mapping */ 1110 if (unlikely(folio_large_mapcount(folio))) { 1111 bad_page(page, "nonzero large_mapcount"); 1112 goto out; 1113 } 1114 if (IS_ENABLED(CONFIG_PAGE_MAPCOUNT) && 1115 unlikely(atomic_read(&folio->_nr_pages_mapped))) { 1116 bad_page(page, "nonzero nr_pages_mapped"); 1117 goto out; 1118 } 1119 if (IS_ENABLED(CONFIG_MM_ID)) { 1120 if (unlikely(folio->_mm_id_mapcount[0] != -1)) { 1121 bad_page(page, "nonzero mm mapcount 0"); 1122 goto out; 1123 } 1124 if (unlikely(folio->_mm_id_mapcount[1] != -1)) { 1125 bad_page(page, "nonzero mm mapcount 1"); 1126 goto out; 1127 } 1128 } 1129 if (IS_ENABLED(CONFIG_64BIT)) { 1130 if (unlikely(atomic_read(&folio->_entire_mapcount) + 1)) { 1131 bad_page(page, "nonzero entire_mapcount"); 1132 goto out; 1133 } 1134 if (unlikely(atomic_read(&folio->_pincount))) { 1135 bad_page(page, "nonzero pincount"); 1136 goto out; 1137 } 1138 } 1139 break; 1140 case 2: 1141 /* the second tail page: deferred_list overlaps ->mapping */ 1142 if (unlikely(!list_empty(&folio->_deferred_list))) { 1143 bad_page(page, "on deferred list"); 1144 goto out; 1145 } 1146 if (!IS_ENABLED(CONFIG_64BIT)) { 1147 if (unlikely(atomic_read(&folio->_entire_mapcount) + 1)) { 1148 bad_page(page, "nonzero entire_mapcount"); 1149 goto out; 1150 } 1151 if (unlikely(atomic_read(&folio->_pincount))) { 1152 bad_page(page, "nonzero pincount"); 1153 goto out; 1154 } 1155 } 1156 break; 1157 case 3: 1158 /* the third tail page: hugetlb specifics overlap ->mappings */ 1159 if (IS_ENABLED(CONFIG_HUGETLB_PAGE)) 1160 break; 1161 fallthrough; 1162 default: 1163 if (page->mapping != TAIL_MAPPING) { 1164 bad_page(page, "corrupted mapping in tail page"); 1165 goto out; 1166 } 1167 break; 1168 } 1169 if (unlikely(!PageTail(page))) { 1170 bad_page(page, "PageTail not set"); 1171 goto out; 1172 } 1173 if (unlikely(compound_head(page) != head_page)) { 1174 bad_page(page, "compound_head not consistent"); 1175 goto out; 1176 } 1177 ret = 0; 1178 out: 1179 page->mapping = NULL; 1180 clear_compound_head(page); 1181 return ret; 1182 } 1183 1184 /* 1185 * Skip KASAN memory poisoning when either: 1186 * 1187 * 1. For generic KASAN: deferred memory initialization has not yet completed. 1188 * Tag-based KASAN modes skip pages freed via deferred memory initialization 1189 * using page tags instead (see below). 1190 * 2. For tag-based KASAN modes: the page has a match-all KASAN tag, indicating 1191 * that error detection is disabled for accesses via the page address. 1192 * 1193 * Pages will have match-all tags in the following circumstances: 1194 * 1195 * 1. Pages are being initialized for the first time, including during deferred 1196 * memory init; see the call to page_kasan_tag_reset in __init_single_page. 1197 * 2. The allocation was not unpoisoned due to __GFP_SKIP_KASAN, with the 1198 * exception of pages unpoisoned by kasan_unpoison_vmalloc. 1199 * 3. The allocation was excluded from being checked due to sampling, 1200 * see the call to kasan_unpoison_pages. 1201 * 1202 * Poisoning pages during deferred memory init will greatly lengthen the 1203 * process and cause problem in large memory systems as the deferred pages 1204 * initialization is done with interrupt disabled. 1205 * 1206 * Assuming that there will be no reference to those newly initialized 1207 * pages before they are ever allocated, this should have no effect on 1208 * KASAN memory tracking as the poison will be properly inserted at page 1209 * allocation time. The only corner case is when pages are allocated by 1210 * on-demand allocation and then freed again before the deferred pages 1211 * initialization is done, but this is not likely to happen. 1212 */ 1213 static inline bool should_skip_kasan_poison(struct page *page) 1214 { 1215 if (IS_ENABLED(CONFIG_KASAN_GENERIC)) 1216 return deferred_pages_enabled(); 1217 1218 return page_kasan_tag(page) == KASAN_TAG_KERNEL; 1219 } 1220 1221 static void kernel_init_pages(struct page *page, int numpages) 1222 { 1223 int i; 1224 1225 /* s390's use of memset() could override KASAN redzones. */ 1226 kasan_disable_current(); 1227 for (i = 0; i < numpages; i++) 1228 clear_highpage_kasan_tagged(page + i); 1229 kasan_enable_current(); 1230 } 1231 1232 #ifdef CONFIG_MEM_ALLOC_PROFILING 1233 1234 /* Should be called only if mem_alloc_profiling_enabled() */ 1235 void __clear_page_tag_ref(struct page *page) 1236 { 1237 union pgtag_ref_handle handle; 1238 union codetag_ref ref; 1239 1240 if (get_page_tag_ref(page, &ref, &handle)) { 1241 set_codetag_empty(&ref); 1242 update_page_tag_ref(handle, &ref); 1243 put_page_tag_ref(handle); 1244 } 1245 } 1246 1247 /* Should be called only if mem_alloc_profiling_enabled() */ 1248 static noinline 1249 void __pgalloc_tag_add(struct page *page, struct task_struct *task, 1250 unsigned int nr) 1251 { 1252 union pgtag_ref_handle handle; 1253 union codetag_ref ref; 1254 1255 if (get_page_tag_ref(page, &ref, &handle)) { 1256 alloc_tag_add(&ref, task->alloc_tag, PAGE_SIZE * nr); 1257 update_page_tag_ref(handle, &ref); 1258 put_page_tag_ref(handle); 1259 } 1260 } 1261 1262 static inline void pgalloc_tag_add(struct page *page, struct task_struct *task, 1263 unsigned int nr) 1264 { 1265 if (mem_alloc_profiling_enabled()) 1266 __pgalloc_tag_add(page, task, nr); 1267 } 1268 1269 /* Should be called only if mem_alloc_profiling_enabled() */ 1270 static noinline 1271 void __pgalloc_tag_sub(struct page *page, unsigned int nr) 1272 { 1273 union pgtag_ref_handle handle; 1274 union codetag_ref ref; 1275 1276 if (get_page_tag_ref(page, &ref, &handle)) { 1277 alloc_tag_sub(&ref, PAGE_SIZE * nr); 1278 update_page_tag_ref(handle, &ref); 1279 put_page_tag_ref(handle); 1280 } 1281 } 1282 1283 static inline void pgalloc_tag_sub(struct page *page, unsigned int nr) 1284 { 1285 if (mem_alloc_profiling_enabled()) 1286 __pgalloc_tag_sub(page, nr); 1287 } 1288 1289 /* When tag is not NULL, assuming mem_alloc_profiling_enabled */ 1290 static inline void pgalloc_tag_sub_pages(struct alloc_tag *tag, unsigned int nr) 1291 { 1292 if (tag) 1293 this_cpu_sub(tag->counters->bytes, PAGE_SIZE * nr); 1294 } 1295 1296 #else /* CONFIG_MEM_ALLOC_PROFILING */ 1297 1298 static inline void pgalloc_tag_add(struct page *page, struct task_struct *task, 1299 unsigned int nr) {} 1300 static inline void pgalloc_tag_sub(struct page *page, unsigned int nr) {} 1301 static inline void pgalloc_tag_sub_pages(struct alloc_tag *tag, unsigned int nr) {} 1302 1303 #endif /* CONFIG_MEM_ALLOC_PROFILING */ 1304 1305 __always_inline bool free_pages_prepare(struct page *page, 1306 unsigned int order) 1307 { 1308 int bad = 0; 1309 bool skip_kasan_poison = should_skip_kasan_poison(page); 1310 bool init = want_init_on_free(); 1311 bool compound = PageCompound(page); 1312 struct folio *folio = page_folio(page); 1313 1314 VM_BUG_ON_PAGE(PageTail(page), page); 1315 1316 trace_mm_page_free(page, order); 1317 kmsan_free_page(page, order); 1318 1319 if (memcg_kmem_online() && PageMemcgKmem(page)) 1320 __memcg_kmem_uncharge_page(page, order); 1321 1322 /* 1323 * In rare cases, when truncation or holepunching raced with 1324 * munlock after VM_LOCKED was cleared, Mlocked may still be 1325 * found set here. This does not indicate a problem, unless 1326 * "unevictable_pgs_cleared" appears worryingly large. 1327 */ 1328 if (unlikely(folio_test_mlocked(folio))) { 1329 long nr_pages = folio_nr_pages(folio); 1330 1331 __folio_clear_mlocked(folio); 1332 zone_stat_mod_folio(folio, NR_MLOCK, -nr_pages); 1333 count_vm_events(UNEVICTABLE_PGCLEARED, nr_pages); 1334 } 1335 1336 if (unlikely(PageHWPoison(page)) && !order) { 1337 /* Do not let hwpoison pages hit pcplists/buddy */ 1338 reset_page_owner(page, order); 1339 page_table_check_free(page, order); 1340 pgalloc_tag_sub(page, 1 << order); 1341 1342 /* 1343 * The page is isolated and accounted for. 1344 * Mark the codetag as empty to avoid accounting error 1345 * when the page is freed by unpoison_memory(). 1346 */ 1347 clear_page_tag_ref(page); 1348 return false; 1349 } 1350 1351 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page); 1352 1353 /* 1354 * Check tail pages before head page information is cleared to 1355 * avoid checking PageCompound for order-0 pages. 1356 */ 1357 if (unlikely(order)) { 1358 int i; 1359 1360 if (compound) { 1361 page[1].flags &= ~PAGE_FLAGS_SECOND; 1362 #ifdef NR_PAGES_IN_LARGE_FOLIO 1363 folio->_nr_pages = 0; 1364 #endif 1365 } 1366 for (i = 1; i < (1 << order); i++) { 1367 if (compound) 1368 bad += free_tail_page_prepare(page, page + i); 1369 if (is_check_pages_enabled()) { 1370 if (free_page_is_bad(page + i)) { 1371 bad++; 1372 continue; 1373 } 1374 } 1375 (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP; 1376 } 1377 } 1378 if (PageMappingFlags(page)) { 1379 if (PageAnon(page)) 1380 mod_mthp_stat(order, MTHP_STAT_NR_ANON, -1); 1381 page->mapping = NULL; 1382 } 1383 if (is_check_pages_enabled()) { 1384 if (free_page_is_bad(page)) 1385 bad++; 1386 if (bad) 1387 return false; 1388 } 1389 1390 page_cpupid_reset_last(page); 1391 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP; 1392 reset_page_owner(page, order); 1393 page_table_check_free(page, order); 1394 pgalloc_tag_sub(page, 1 << order); 1395 1396 if (!PageHighMem(page)) { 1397 debug_check_no_locks_freed(page_address(page), 1398 PAGE_SIZE << order); 1399 debug_check_no_obj_freed(page_address(page), 1400 PAGE_SIZE << order); 1401 } 1402 1403 kernel_poison_pages(page, 1 << order); 1404 1405 /* 1406 * As memory initialization might be integrated into KASAN, 1407 * KASAN poisoning and memory initialization code must be 1408 * kept together to avoid discrepancies in behavior. 1409 * 1410 * With hardware tag-based KASAN, memory tags must be set before the 1411 * page becomes unavailable via debug_pagealloc or arch_free_page. 1412 */ 1413 if (!skip_kasan_poison) { 1414 kasan_poison_pages(page, order, init); 1415 1416 /* Memory is already initialized if KASAN did it internally. */ 1417 if (kasan_has_integrated_init()) 1418 init = false; 1419 } 1420 if (init) 1421 kernel_init_pages(page, 1 << order); 1422 1423 /* 1424 * arch_free_page() can make the page's contents inaccessible. s390 1425 * does this. So nothing which can access the page's contents should 1426 * happen after this. 1427 */ 1428 arch_free_page(page, order); 1429 1430 debug_pagealloc_unmap_pages(page, 1 << order); 1431 1432 return true; 1433 } 1434 1435 /* 1436 * Frees a number of pages from the PCP lists 1437 * Assumes all pages on list are in same zone. 1438 * count is the number of pages to free. 1439 */ 1440 static void free_pcppages_bulk(struct zone *zone, int count, 1441 struct per_cpu_pages *pcp, 1442 int pindex) 1443 { 1444 unsigned long flags; 1445 unsigned int order; 1446 struct page *page; 1447 1448 /* 1449 * Ensure proper count is passed which otherwise would stuck in the 1450 * below while (list_empty(list)) loop. 1451 */ 1452 count = min(pcp->count, count); 1453 1454 /* Ensure requested pindex is drained first. */ 1455 pindex = pindex - 1; 1456 1457 spin_lock_irqsave(&zone->lock, flags); 1458 1459 while (count > 0) { 1460 struct list_head *list; 1461 int nr_pages; 1462 1463 /* Remove pages from lists in a round-robin fashion. */ 1464 do { 1465 if (++pindex > NR_PCP_LISTS - 1) 1466 pindex = 0; 1467 list = &pcp->lists[pindex]; 1468 } while (list_empty(list)); 1469 1470 order = pindex_to_order(pindex); 1471 nr_pages = 1 << order; 1472 do { 1473 unsigned long pfn; 1474 int mt; 1475 1476 page = list_last_entry(list, struct page, pcp_list); 1477 pfn = page_to_pfn(page); 1478 mt = get_pfnblock_migratetype(page, pfn); 1479 1480 /* must delete to avoid corrupting pcp list */ 1481 list_del(&page->pcp_list); 1482 count -= nr_pages; 1483 pcp->count -= nr_pages; 1484 1485 __free_one_page(page, pfn, zone, order, mt, FPI_NONE); 1486 trace_mm_page_pcpu_drain(page, order, mt); 1487 } while (count > 0 && !list_empty(list)); 1488 } 1489 1490 spin_unlock_irqrestore(&zone->lock, flags); 1491 } 1492 1493 /* Split a multi-block free page into its individual pageblocks. */ 1494 static void split_large_buddy(struct zone *zone, struct page *page, 1495 unsigned long pfn, int order, fpi_t fpi) 1496 { 1497 unsigned long end = pfn + (1 << order); 1498 1499 VM_WARN_ON_ONCE(!IS_ALIGNED(pfn, 1 << order)); 1500 /* Caller removed page from freelist, buddy info cleared! */ 1501 VM_WARN_ON_ONCE(PageBuddy(page)); 1502 1503 if (order > pageblock_order) 1504 order = pageblock_order; 1505 1506 do { 1507 int mt = get_pfnblock_migratetype(page, pfn); 1508 1509 __free_one_page(page, pfn, zone, order, mt, fpi); 1510 pfn += 1 << order; 1511 if (pfn == end) 1512 break; 1513 page = pfn_to_page(pfn); 1514 } while (1); 1515 } 1516 1517 static void add_page_to_zone_llist(struct zone *zone, struct page *page, 1518 unsigned int order) 1519 { 1520 /* Remember the order */ 1521 page->order = order; 1522 /* Add the page to the free list */ 1523 llist_add(&page->pcp_llist, &zone->trylock_free_pages); 1524 } 1525 1526 static void free_one_page(struct zone *zone, struct page *page, 1527 unsigned long pfn, unsigned int order, 1528 fpi_t fpi_flags) 1529 { 1530 struct llist_head *llhead; 1531 unsigned long flags; 1532 1533 if (unlikely(fpi_flags & FPI_TRYLOCK)) { 1534 if (!spin_trylock_irqsave(&zone->lock, flags)) { 1535 add_page_to_zone_llist(zone, page, order); 1536 return; 1537 } 1538 } else { 1539 spin_lock_irqsave(&zone->lock, flags); 1540 } 1541 1542 /* The lock succeeded. Process deferred pages. */ 1543 llhead = &zone->trylock_free_pages; 1544 if (unlikely(!llist_empty(llhead) && !(fpi_flags & FPI_TRYLOCK))) { 1545 struct llist_node *llnode; 1546 struct page *p, *tmp; 1547 1548 llnode = llist_del_all(llhead); 1549 llist_for_each_entry_safe(p, tmp, llnode, pcp_llist) { 1550 unsigned int p_order = p->order; 1551 1552 split_large_buddy(zone, p, page_to_pfn(p), p_order, fpi_flags); 1553 __count_vm_events(PGFREE, 1 << p_order); 1554 } 1555 } 1556 split_large_buddy(zone, page, pfn, order, fpi_flags); 1557 spin_unlock_irqrestore(&zone->lock, flags); 1558 1559 __count_vm_events(PGFREE, 1 << order); 1560 } 1561 1562 static void __free_pages_ok(struct page *page, unsigned int order, 1563 fpi_t fpi_flags) 1564 { 1565 unsigned long pfn = page_to_pfn(page); 1566 struct zone *zone = page_zone(page); 1567 1568 if (free_pages_prepare(page, order)) 1569 free_one_page(zone, page, pfn, order, fpi_flags); 1570 } 1571 1572 void __meminit __free_pages_core(struct page *page, unsigned int order, 1573 enum meminit_context context) 1574 { 1575 unsigned int nr_pages = 1 << order; 1576 struct page *p = page; 1577 unsigned int loop; 1578 1579 /* 1580 * When initializing the memmap, __init_single_page() sets the refcount 1581 * of all pages to 1 ("allocated"/"not free"). We have to set the 1582 * refcount of all involved pages to 0. 1583 * 1584 * Note that hotplugged memory pages are initialized to PageOffline(). 1585 * Pages freed from memblock might be marked as reserved. 1586 */ 1587 if (IS_ENABLED(CONFIG_MEMORY_HOTPLUG) && 1588 unlikely(context == MEMINIT_HOTPLUG)) { 1589 for (loop = 0; loop < nr_pages; loop++, p++) { 1590 VM_WARN_ON_ONCE(PageReserved(p)); 1591 __ClearPageOffline(p); 1592 set_page_count(p, 0); 1593 } 1594 1595 adjust_managed_page_count(page, nr_pages); 1596 } else { 1597 for (loop = 0; loop < nr_pages; loop++, p++) { 1598 __ClearPageReserved(p); 1599 set_page_count(p, 0); 1600 } 1601 1602 /* memblock adjusts totalram_pages() manually. */ 1603 atomic_long_add(nr_pages, &page_zone(page)->managed_pages); 1604 } 1605 1606 if (page_contains_unaccepted(page, order)) { 1607 if (order == MAX_PAGE_ORDER && __free_unaccepted(page)) 1608 return; 1609 1610 accept_memory(page_to_phys(page), PAGE_SIZE << order); 1611 } 1612 1613 /* 1614 * Bypass PCP and place fresh pages right to the tail, primarily 1615 * relevant for memory onlining. 1616 */ 1617 __free_pages_ok(page, order, FPI_TO_TAIL); 1618 } 1619 1620 /* 1621 * Check that the whole (or subset of) a pageblock given by the interval of 1622 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it 1623 * with the migration of free compaction scanner. 1624 * 1625 * Return struct page pointer of start_pfn, or NULL if checks were not passed. 1626 * 1627 * It's possible on some configurations to have a setup like node0 node1 node0 1628 * i.e. it's possible that all pages within a zones range of pages do not 1629 * belong to a single zone. We assume that a border between node0 and node1 1630 * can occur within a single pageblock, but not a node0 node1 node0 1631 * interleaving within a single pageblock. It is therefore sufficient to check 1632 * the first and last page of a pageblock and avoid checking each individual 1633 * page in a pageblock. 1634 * 1635 * Note: the function may return non-NULL struct page even for a page block 1636 * which contains a memory hole (i.e. there is no physical memory for a subset 1637 * of the pfn range). For example, if the pageblock order is MAX_PAGE_ORDER, which 1638 * will fall into 2 sub-sections, and the end pfn of the pageblock may be hole 1639 * even though the start pfn is online and valid. This should be safe most of 1640 * the time because struct pages are still initialized via init_unavailable_range() 1641 * and pfn walkers shouldn't touch any physical memory range for which they do 1642 * not recognize any specific metadata in struct pages. 1643 */ 1644 struct page *__pageblock_pfn_to_page(unsigned long start_pfn, 1645 unsigned long end_pfn, struct zone *zone) 1646 { 1647 struct page *start_page; 1648 struct page *end_page; 1649 1650 /* end_pfn is one past the range we are checking */ 1651 end_pfn--; 1652 1653 if (!pfn_valid(end_pfn)) 1654 return NULL; 1655 1656 start_page = pfn_to_online_page(start_pfn); 1657 if (!start_page) 1658 return NULL; 1659 1660 if (page_zone(start_page) != zone) 1661 return NULL; 1662 1663 end_page = pfn_to_page(end_pfn); 1664 1665 /* This gives a shorter code than deriving page_zone(end_page) */ 1666 if (page_zone_id(start_page) != page_zone_id(end_page)) 1667 return NULL; 1668 1669 return start_page; 1670 } 1671 1672 /* 1673 * The order of subdivision here is critical for the IO subsystem. 1674 * Please do not alter this order without good reasons and regression 1675 * testing. Specifically, as large blocks of memory are subdivided, 1676 * the order in which smaller blocks are delivered depends on the order 1677 * they're subdivided in this function. This is the primary factor 1678 * influencing the order in which pages are delivered to the IO 1679 * subsystem according to empirical testing, and this is also justified 1680 * by considering the behavior of a buddy system containing a single 1681 * large block of memory acted on by a series of small allocations. 1682 * This behavior is a critical factor in sglist merging's success. 1683 * 1684 * -- nyc 1685 */ 1686 static inline unsigned int expand(struct zone *zone, struct page *page, int low, 1687 int high, int migratetype) 1688 { 1689 unsigned int size = 1 << high; 1690 unsigned int nr_added = 0; 1691 1692 while (high > low) { 1693 high--; 1694 size >>= 1; 1695 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]); 1696 1697 /* 1698 * Mark as guard pages (or page), that will allow to 1699 * merge back to allocator when buddy will be freed. 1700 * Corresponding page table entries will not be touched, 1701 * pages will stay not present in virtual address space 1702 */ 1703 if (set_page_guard(zone, &page[size], high)) 1704 continue; 1705 1706 __add_to_free_list(&page[size], zone, high, migratetype, false); 1707 set_buddy_order(&page[size], high); 1708 nr_added += size; 1709 } 1710 1711 return nr_added; 1712 } 1713 1714 static __always_inline void page_del_and_expand(struct zone *zone, 1715 struct page *page, int low, 1716 int high, int migratetype) 1717 { 1718 int nr_pages = 1 << high; 1719 1720 __del_page_from_free_list(page, zone, high, migratetype); 1721 nr_pages -= expand(zone, page, low, high, migratetype); 1722 account_freepages(zone, -nr_pages, migratetype); 1723 } 1724 1725 static void check_new_page_bad(struct page *page) 1726 { 1727 if (unlikely(PageHWPoison(page))) { 1728 /* Don't complain about hwpoisoned pages */ 1729 if (PageBuddy(page)) 1730 __ClearPageBuddy(page); 1731 return; 1732 } 1733 1734 bad_page(page, 1735 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_PREP)); 1736 } 1737 1738 /* 1739 * This page is about to be returned from the page allocator 1740 */ 1741 static bool check_new_page(struct page *page) 1742 { 1743 if (likely(page_expected_state(page, 1744 PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON))) 1745 return false; 1746 1747 check_new_page_bad(page); 1748 return true; 1749 } 1750 1751 static inline bool check_new_pages(struct page *page, unsigned int order) 1752 { 1753 if (is_check_pages_enabled()) { 1754 for (int i = 0; i < (1 << order); i++) { 1755 struct page *p = page + i; 1756 1757 if (check_new_page(p)) 1758 return true; 1759 } 1760 } 1761 1762 return false; 1763 } 1764 1765 static inline bool should_skip_kasan_unpoison(gfp_t flags) 1766 { 1767 /* Don't skip if a software KASAN mode is enabled. */ 1768 if (IS_ENABLED(CONFIG_KASAN_GENERIC) || 1769 IS_ENABLED(CONFIG_KASAN_SW_TAGS)) 1770 return false; 1771 1772 /* Skip, if hardware tag-based KASAN is not enabled. */ 1773 if (!kasan_hw_tags_enabled()) 1774 return true; 1775 1776 /* 1777 * With hardware tag-based KASAN enabled, skip if this has been 1778 * requested via __GFP_SKIP_KASAN. 1779 */ 1780 return flags & __GFP_SKIP_KASAN; 1781 } 1782 1783 static inline bool should_skip_init(gfp_t flags) 1784 { 1785 /* Don't skip, if hardware tag-based KASAN is not enabled. */ 1786 if (!kasan_hw_tags_enabled()) 1787 return false; 1788 1789 /* For hardware tag-based KASAN, skip if requested. */ 1790 return (flags & __GFP_SKIP_ZERO); 1791 } 1792 1793 inline void post_alloc_hook(struct page *page, unsigned int order, 1794 gfp_t gfp_flags) 1795 { 1796 bool init = !want_init_on_free() && want_init_on_alloc(gfp_flags) && 1797 !should_skip_init(gfp_flags); 1798 bool zero_tags = init && (gfp_flags & __GFP_ZEROTAGS); 1799 int i; 1800 1801 set_page_private(page, 0); 1802 1803 arch_alloc_page(page, order); 1804 debug_pagealloc_map_pages(page, 1 << order); 1805 1806 /* 1807 * Page unpoisoning must happen before memory initialization. 1808 * Otherwise, the poison pattern will be overwritten for __GFP_ZERO 1809 * allocations and the page unpoisoning code will complain. 1810 */ 1811 kernel_unpoison_pages(page, 1 << order); 1812 1813 /* 1814 * As memory initialization might be integrated into KASAN, 1815 * KASAN unpoisoning and memory initializion code must be 1816 * kept together to avoid discrepancies in behavior. 1817 */ 1818 1819 /* 1820 * If memory tags should be zeroed 1821 * (which happens only when memory should be initialized as well). 1822 */ 1823 if (zero_tags) { 1824 /* Initialize both memory and memory tags. */ 1825 for (i = 0; i != 1 << order; ++i) 1826 tag_clear_highpage(page + i); 1827 1828 /* Take note that memory was initialized by the loop above. */ 1829 init = false; 1830 } 1831 if (!should_skip_kasan_unpoison(gfp_flags) && 1832 kasan_unpoison_pages(page, order, init)) { 1833 /* Take note that memory was initialized by KASAN. */ 1834 if (kasan_has_integrated_init()) 1835 init = false; 1836 } else { 1837 /* 1838 * If memory tags have not been set by KASAN, reset the page 1839 * tags to ensure page_address() dereferencing does not fault. 1840 */ 1841 for (i = 0; i != 1 << order; ++i) 1842 page_kasan_tag_reset(page + i); 1843 } 1844 /* If memory is still not initialized, initialize it now. */ 1845 if (init) 1846 kernel_init_pages(page, 1 << order); 1847 1848 set_page_owner(page, order, gfp_flags); 1849 page_table_check_alloc(page, order); 1850 pgalloc_tag_add(page, current, 1 << order); 1851 } 1852 1853 static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags, 1854 unsigned int alloc_flags) 1855 { 1856 post_alloc_hook(page, order, gfp_flags); 1857 1858 if (order && (gfp_flags & __GFP_COMP)) 1859 prep_compound_page(page, order); 1860 1861 /* 1862 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to 1863 * allocate the page. The expectation is that the caller is taking 1864 * steps that will free more memory. The caller should avoid the page 1865 * being used for !PFMEMALLOC purposes. 1866 */ 1867 if (alloc_flags & ALLOC_NO_WATERMARKS) 1868 set_page_pfmemalloc(page); 1869 else 1870 clear_page_pfmemalloc(page); 1871 } 1872 1873 /* 1874 * Go through the free lists for the given migratetype and remove 1875 * the smallest available page from the freelists 1876 */ 1877 static __always_inline 1878 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order, 1879 int migratetype) 1880 { 1881 unsigned int current_order; 1882 struct free_area *area; 1883 struct page *page; 1884 1885 /* Find a page of the appropriate size in the preferred list */ 1886 for (current_order = order; current_order < NR_PAGE_ORDERS; ++current_order) { 1887 area = &(zone->free_area[current_order]); 1888 page = get_page_from_free_area(area, migratetype); 1889 if (!page) 1890 continue; 1891 1892 page_del_and_expand(zone, page, order, current_order, 1893 migratetype); 1894 trace_mm_page_alloc_zone_locked(page, order, migratetype, 1895 pcp_allowed_order(order) && 1896 migratetype < MIGRATE_PCPTYPES); 1897 return page; 1898 } 1899 1900 return NULL; 1901 } 1902 1903 1904 /* 1905 * This array describes the order lists are fallen back to when 1906 * the free lists for the desirable migrate type are depleted 1907 * 1908 * The other migratetypes do not have fallbacks. 1909 */ 1910 static int fallbacks[MIGRATE_PCPTYPES][MIGRATE_PCPTYPES - 1] = { 1911 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE }, 1912 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE }, 1913 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE }, 1914 }; 1915 1916 #ifdef CONFIG_CMA 1917 static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone, 1918 unsigned int order) 1919 { 1920 return __rmqueue_smallest(zone, order, MIGRATE_CMA); 1921 } 1922 #else 1923 static inline struct page *__rmqueue_cma_fallback(struct zone *zone, 1924 unsigned int order) { return NULL; } 1925 #endif 1926 1927 /* 1928 * Move all free pages of a block to new type's freelist. Caller needs to 1929 * change the block type. 1930 */ 1931 static int __move_freepages_block(struct zone *zone, unsigned long start_pfn, 1932 int old_mt, int new_mt) 1933 { 1934 struct page *page; 1935 unsigned long pfn, end_pfn; 1936 unsigned int order; 1937 int pages_moved = 0; 1938 1939 VM_WARN_ON(start_pfn & (pageblock_nr_pages - 1)); 1940 end_pfn = pageblock_end_pfn(start_pfn); 1941 1942 for (pfn = start_pfn; pfn < end_pfn;) { 1943 page = pfn_to_page(pfn); 1944 if (!PageBuddy(page)) { 1945 pfn++; 1946 continue; 1947 } 1948 1949 /* Make sure we are not inadvertently changing nodes */ 1950 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page); 1951 VM_BUG_ON_PAGE(page_zone(page) != zone, page); 1952 1953 order = buddy_order(page); 1954 1955 move_to_free_list(page, zone, order, old_mt, new_mt); 1956 1957 pfn += 1 << order; 1958 pages_moved += 1 << order; 1959 } 1960 1961 return pages_moved; 1962 } 1963 1964 static bool prep_move_freepages_block(struct zone *zone, struct page *page, 1965 unsigned long *start_pfn, 1966 int *num_free, int *num_movable) 1967 { 1968 unsigned long pfn, start, end; 1969 1970 pfn = page_to_pfn(page); 1971 start = pageblock_start_pfn(pfn); 1972 end = pageblock_end_pfn(pfn); 1973 1974 /* 1975 * The caller only has the lock for @zone, don't touch ranges 1976 * that straddle into other zones. While we could move part of 1977 * the range that's inside the zone, this call is usually 1978 * accompanied by other operations such as migratetype updates 1979 * which also should be locked. 1980 */ 1981 if (!zone_spans_pfn(zone, start)) 1982 return false; 1983 if (!zone_spans_pfn(zone, end - 1)) 1984 return false; 1985 1986 *start_pfn = start; 1987 1988 if (num_free) { 1989 *num_free = 0; 1990 *num_movable = 0; 1991 for (pfn = start; pfn < end;) { 1992 page = pfn_to_page(pfn); 1993 if (PageBuddy(page)) { 1994 int nr = 1 << buddy_order(page); 1995 1996 *num_free += nr; 1997 pfn += nr; 1998 continue; 1999 } 2000 /* 2001 * We assume that pages that could be isolated for 2002 * migration are movable. But we don't actually try 2003 * isolating, as that would be expensive. 2004 */ 2005 if (PageLRU(page) || __PageMovable(page)) 2006 (*num_movable)++; 2007 pfn++; 2008 } 2009 } 2010 2011 return true; 2012 } 2013 2014 static int move_freepages_block(struct zone *zone, struct page *page, 2015 int old_mt, int new_mt) 2016 { 2017 unsigned long start_pfn; 2018 int res; 2019 2020 if (!prep_move_freepages_block(zone, page, &start_pfn, NULL, NULL)) 2021 return -1; 2022 2023 res = __move_freepages_block(zone, start_pfn, old_mt, new_mt); 2024 set_pageblock_migratetype(pfn_to_page(start_pfn), new_mt); 2025 2026 return res; 2027 2028 } 2029 2030 #ifdef CONFIG_MEMORY_ISOLATION 2031 /* Look for a buddy that straddles start_pfn */ 2032 static unsigned long find_large_buddy(unsigned long start_pfn) 2033 { 2034 int order = 0; 2035 struct page *page; 2036 unsigned long pfn = start_pfn; 2037 2038 while (!PageBuddy(page = pfn_to_page(pfn))) { 2039 /* Nothing found */ 2040 if (++order > MAX_PAGE_ORDER) 2041 return start_pfn; 2042 pfn &= ~0UL << order; 2043 } 2044 2045 /* 2046 * Found a preceding buddy, but does it straddle? 2047 */ 2048 if (pfn + (1 << buddy_order(page)) > start_pfn) 2049 return pfn; 2050 2051 /* Nothing found */ 2052 return start_pfn; 2053 } 2054 2055 static inline void toggle_pageblock_isolate(struct page *page, bool isolate) 2056 { 2057 if (isolate) 2058 set_pfnblock_bit(page, page_to_pfn(page), PB_migrate_isolate); 2059 else 2060 clear_pfnblock_bit(page, page_to_pfn(page), PB_migrate_isolate); 2061 } 2062 2063 /** 2064 * __move_freepages_block_isolate - move free pages in block for page isolation 2065 * @zone: the zone 2066 * @page: the pageblock page 2067 * @isolate: to isolate the given pageblock or unisolate it 2068 * 2069 * This is similar to move_freepages_block(), but handles the special 2070 * case encountered in page isolation, where the block of interest 2071 * might be part of a larger buddy spanning multiple pageblocks. 2072 * 2073 * Unlike the regular page allocator path, which moves pages while 2074 * stealing buddies off the freelist, page isolation is interested in 2075 * arbitrary pfn ranges that may have overlapping buddies on both ends. 2076 * 2077 * This function handles that. Straddling buddies are split into 2078 * individual pageblocks. Only the block of interest is moved. 2079 * 2080 * Returns %true if pages could be moved, %false otherwise. 2081 */ 2082 static bool __move_freepages_block_isolate(struct zone *zone, 2083 struct page *page, bool isolate) 2084 { 2085 unsigned long start_pfn, pfn; 2086 int from_mt; 2087 int to_mt; 2088 2089 if (isolate == get_pageblock_isolate(page)) { 2090 VM_WARN_ONCE(1, "%s a pageblock that is already in that state", 2091 isolate ? "Isolate" : "Unisolate"); 2092 return false; 2093 } 2094 2095 if (!prep_move_freepages_block(zone, page, &start_pfn, NULL, NULL)) 2096 return false; 2097 2098 /* No splits needed if buddies can't span multiple blocks */ 2099 if (pageblock_order == MAX_PAGE_ORDER) 2100 goto move; 2101 2102 /* We're a tail block in a larger buddy */ 2103 pfn = find_large_buddy(start_pfn); 2104 if (pfn != start_pfn) { 2105 struct page *buddy = pfn_to_page(pfn); 2106 int order = buddy_order(buddy); 2107 2108 del_page_from_free_list(buddy, zone, order, 2109 get_pfnblock_migratetype(buddy, pfn)); 2110 toggle_pageblock_isolate(page, isolate); 2111 split_large_buddy(zone, buddy, pfn, order, FPI_NONE); 2112 return true; 2113 } 2114 2115 /* We're the starting block of a larger buddy */ 2116 if (PageBuddy(page) && buddy_order(page) > pageblock_order) { 2117 int order = buddy_order(page); 2118 2119 del_page_from_free_list(page, zone, order, 2120 get_pfnblock_migratetype(page, pfn)); 2121 toggle_pageblock_isolate(page, isolate); 2122 split_large_buddy(zone, page, pfn, order, FPI_NONE); 2123 return true; 2124 } 2125 move: 2126 /* Use MIGRATETYPE_MASK to get non-isolate migratetype */ 2127 if (isolate) { 2128 from_mt = __get_pfnblock_flags_mask(page, page_to_pfn(page), 2129 MIGRATETYPE_MASK); 2130 to_mt = MIGRATE_ISOLATE; 2131 } else { 2132 from_mt = MIGRATE_ISOLATE; 2133 to_mt = __get_pfnblock_flags_mask(page, page_to_pfn(page), 2134 MIGRATETYPE_MASK); 2135 } 2136 2137 __move_freepages_block(zone, start_pfn, from_mt, to_mt); 2138 toggle_pageblock_isolate(pfn_to_page(start_pfn), isolate); 2139 2140 return true; 2141 } 2142 2143 bool pageblock_isolate_and_move_free_pages(struct zone *zone, struct page *page) 2144 { 2145 return __move_freepages_block_isolate(zone, page, true); 2146 } 2147 2148 bool pageblock_unisolate_and_move_free_pages(struct zone *zone, struct page *page) 2149 { 2150 return __move_freepages_block_isolate(zone, page, false); 2151 } 2152 2153 #endif /* CONFIG_MEMORY_ISOLATION */ 2154 2155 static void change_pageblock_range(struct page *pageblock_page, 2156 int start_order, int migratetype) 2157 { 2158 int nr_pageblocks = 1 << (start_order - pageblock_order); 2159 2160 while (nr_pageblocks--) { 2161 set_pageblock_migratetype(pageblock_page, migratetype); 2162 pageblock_page += pageblock_nr_pages; 2163 } 2164 } 2165 2166 static inline bool boost_watermark(struct zone *zone) 2167 { 2168 unsigned long max_boost; 2169 2170 if (!watermark_boost_factor) 2171 return false; 2172 /* 2173 * Don't bother in zones that are unlikely to produce results. 2174 * On small machines, including kdump capture kernels running 2175 * in a small area, boosting the watermark can cause an out of 2176 * memory situation immediately. 2177 */ 2178 if ((pageblock_nr_pages * 4) > zone_managed_pages(zone)) 2179 return false; 2180 2181 max_boost = mult_frac(zone->_watermark[WMARK_HIGH], 2182 watermark_boost_factor, 10000); 2183 2184 /* 2185 * high watermark may be uninitialised if fragmentation occurs 2186 * very early in boot so do not boost. We do not fall 2187 * through and boost by pageblock_nr_pages as failing 2188 * allocations that early means that reclaim is not going 2189 * to help and it may even be impossible to reclaim the 2190 * boosted watermark resulting in a hang. 2191 */ 2192 if (!max_boost) 2193 return false; 2194 2195 max_boost = max(pageblock_nr_pages, max_boost); 2196 2197 zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages, 2198 max_boost); 2199 2200 return true; 2201 } 2202 2203 /* 2204 * When we are falling back to another migratetype during allocation, should we 2205 * try to claim an entire block to satisfy further allocations, instead of 2206 * polluting multiple pageblocks? 2207 */ 2208 static bool should_try_claim_block(unsigned int order, int start_mt) 2209 { 2210 /* 2211 * Leaving this order check is intended, although there is 2212 * relaxed order check in next check. The reason is that 2213 * we can actually claim the whole pageblock if this condition met, 2214 * but, below check doesn't guarantee it and that is just heuristic 2215 * so could be changed anytime. 2216 */ 2217 if (order >= pageblock_order) 2218 return true; 2219 2220 /* 2221 * Above a certain threshold, always try to claim, as it's likely there 2222 * will be more free pages in the pageblock. 2223 */ 2224 if (order >= pageblock_order / 2) 2225 return true; 2226 2227 /* 2228 * Unmovable/reclaimable allocations would cause permanent 2229 * fragmentations if they fell back to allocating from a movable block 2230 * (polluting it), so we try to claim the whole block regardless of the 2231 * allocation size. Later movable allocations can always steal from this 2232 * block, which is less problematic. 2233 */ 2234 if (start_mt == MIGRATE_RECLAIMABLE || start_mt == MIGRATE_UNMOVABLE) 2235 return true; 2236 2237 if (page_group_by_mobility_disabled) 2238 return true; 2239 2240 /* 2241 * Movable pages won't cause permanent fragmentation, so when you alloc 2242 * small pages, we just need to temporarily steal unmovable or 2243 * reclaimable pages that are closest to the request size. After a 2244 * while, memory compaction may occur to form large contiguous pages, 2245 * and the next movable allocation may not need to steal. 2246 */ 2247 return false; 2248 } 2249 2250 /* 2251 * Check whether there is a suitable fallback freepage with requested order. 2252 * If claimable is true, this function returns fallback_mt only if 2253 * we would do this whole-block claiming. This would help to reduce 2254 * fragmentation due to mixed migratetype pages in one pageblock. 2255 */ 2256 int find_suitable_fallback(struct free_area *area, unsigned int order, 2257 int migratetype, bool claimable) 2258 { 2259 int i; 2260 2261 if (claimable && !should_try_claim_block(order, migratetype)) 2262 return -2; 2263 2264 if (area->nr_free == 0) 2265 return -1; 2266 2267 for (i = 0; i < MIGRATE_PCPTYPES - 1 ; i++) { 2268 int fallback_mt = fallbacks[migratetype][i]; 2269 2270 if (!free_area_empty(area, fallback_mt)) 2271 return fallback_mt; 2272 } 2273 2274 return -1; 2275 } 2276 2277 /* 2278 * This function implements actual block claiming behaviour. If order is large 2279 * enough, we can claim the whole pageblock for the requested migratetype. If 2280 * not, we check the pageblock for constituent pages; if at least half of the 2281 * pages are free or compatible, we can still claim the whole block, so pages 2282 * freed in the future will be put on the correct free list. 2283 */ 2284 static struct page * 2285 try_to_claim_block(struct zone *zone, struct page *page, 2286 int current_order, int order, int start_type, 2287 int block_type, unsigned int alloc_flags) 2288 { 2289 int free_pages, movable_pages, alike_pages; 2290 unsigned long start_pfn; 2291 2292 /* Take ownership for orders >= pageblock_order */ 2293 if (current_order >= pageblock_order) { 2294 unsigned int nr_added; 2295 2296 del_page_from_free_list(page, zone, current_order, block_type); 2297 change_pageblock_range(page, current_order, start_type); 2298 nr_added = expand(zone, page, order, current_order, start_type); 2299 account_freepages(zone, nr_added, start_type); 2300 return page; 2301 } 2302 2303 /* 2304 * Boost watermarks to increase reclaim pressure to reduce the 2305 * likelihood of future fallbacks. Wake kswapd now as the node 2306 * may be balanced overall and kswapd will not wake naturally. 2307 */ 2308 if (boost_watermark(zone) && (alloc_flags & ALLOC_KSWAPD)) 2309 set_bit(ZONE_BOOSTED_WATERMARK, &zone->flags); 2310 2311 /* moving whole block can fail due to zone boundary conditions */ 2312 if (!prep_move_freepages_block(zone, page, &start_pfn, &free_pages, 2313 &movable_pages)) 2314 return NULL; 2315 2316 /* 2317 * Determine how many pages are compatible with our allocation. 2318 * For movable allocation, it's the number of movable pages which 2319 * we just obtained. For other types it's a bit more tricky. 2320 */ 2321 if (start_type == MIGRATE_MOVABLE) { 2322 alike_pages = movable_pages; 2323 } else { 2324 /* 2325 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation 2326 * to MOVABLE pageblock, consider all non-movable pages as 2327 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or 2328 * vice versa, be conservative since we can't distinguish the 2329 * exact migratetype of non-movable pages. 2330 */ 2331 if (block_type == MIGRATE_MOVABLE) 2332 alike_pages = pageblock_nr_pages 2333 - (free_pages + movable_pages); 2334 else 2335 alike_pages = 0; 2336 } 2337 /* 2338 * If a sufficient number of pages in the block are either free or of 2339 * compatible migratability as our allocation, claim the whole block. 2340 */ 2341 if (free_pages + alike_pages >= (1 << (pageblock_order-1)) || 2342 page_group_by_mobility_disabled) { 2343 __move_freepages_block(zone, start_pfn, block_type, start_type); 2344 set_pageblock_migratetype(pfn_to_page(start_pfn), start_type); 2345 return __rmqueue_smallest(zone, order, start_type); 2346 } 2347 2348 return NULL; 2349 } 2350 2351 /* 2352 * Try to allocate from some fallback migratetype by claiming the entire block, 2353 * i.e. converting it to the allocation's start migratetype. 2354 * 2355 * The use of signed ints for order and current_order is a deliberate 2356 * deviation from the rest of this file, to make the for loop 2357 * condition simpler. 2358 */ 2359 static __always_inline struct page * 2360 __rmqueue_claim(struct zone *zone, int order, int start_migratetype, 2361 unsigned int alloc_flags) 2362 { 2363 struct free_area *area; 2364 int current_order; 2365 int min_order = order; 2366 struct page *page; 2367 int fallback_mt; 2368 2369 /* 2370 * Do not steal pages from freelists belonging to other pageblocks 2371 * i.e. orders < pageblock_order. If there are no local zones free, 2372 * the zonelists will be reiterated without ALLOC_NOFRAGMENT. 2373 */ 2374 if (order < pageblock_order && alloc_flags & ALLOC_NOFRAGMENT) 2375 min_order = pageblock_order; 2376 2377 /* 2378 * Find the largest available free page in the other list. This roughly 2379 * approximates finding the pageblock with the most free pages, which 2380 * would be too costly to do exactly. 2381 */ 2382 for (current_order = MAX_PAGE_ORDER; current_order >= min_order; 2383 --current_order) { 2384 area = &(zone->free_area[current_order]); 2385 fallback_mt = find_suitable_fallback(area, current_order, 2386 start_migratetype, true); 2387 2388 /* No block in that order */ 2389 if (fallback_mt == -1) 2390 continue; 2391 2392 /* Advanced into orders too low to claim, abort */ 2393 if (fallback_mt == -2) 2394 break; 2395 2396 page = get_page_from_free_area(area, fallback_mt); 2397 page = try_to_claim_block(zone, page, current_order, order, 2398 start_migratetype, fallback_mt, 2399 alloc_flags); 2400 if (page) { 2401 trace_mm_page_alloc_extfrag(page, order, current_order, 2402 start_migratetype, fallback_mt); 2403 return page; 2404 } 2405 } 2406 2407 return NULL; 2408 } 2409 2410 /* 2411 * Try to steal a single page from some fallback migratetype. Leave the rest of 2412 * the block as its current migratetype, potentially causing fragmentation. 2413 */ 2414 static __always_inline struct page * 2415 __rmqueue_steal(struct zone *zone, int order, int start_migratetype) 2416 { 2417 struct free_area *area; 2418 int current_order; 2419 struct page *page; 2420 int fallback_mt; 2421 2422 for (current_order = order; current_order < NR_PAGE_ORDERS; current_order++) { 2423 area = &(zone->free_area[current_order]); 2424 fallback_mt = find_suitable_fallback(area, current_order, 2425 start_migratetype, false); 2426 if (fallback_mt == -1) 2427 continue; 2428 2429 page = get_page_from_free_area(area, fallback_mt); 2430 page_del_and_expand(zone, page, order, current_order, fallback_mt); 2431 trace_mm_page_alloc_extfrag(page, order, current_order, 2432 start_migratetype, fallback_mt); 2433 return page; 2434 } 2435 2436 return NULL; 2437 } 2438 2439 enum rmqueue_mode { 2440 RMQUEUE_NORMAL, 2441 RMQUEUE_CMA, 2442 RMQUEUE_CLAIM, 2443 RMQUEUE_STEAL, 2444 }; 2445 2446 /* 2447 * Do the hard work of removing an element from the buddy allocator. 2448 * Call me with the zone->lock already held. 2449 */ 2450 static __always_inline struct page * 2451 __rmqueue(struct zone *zone, unsigned int order, int migratetype, 2452 unsigned int alloc_flags, enum rmqueue_mode *mode) 2453 { 2454 struct page *page; 2455 2456 if (IS_ENABLED(CONFIG_CMA)) { 2457 /* 2458 * Balance movable allocations between regular and CMA areas by 2459 * allocating from CMA when over half of the zone's free memory 2460 * is in the CMA area. 2461 */ 2462 if (alloc_flags & ALLOC_CMA && 2463 zone_page_state(zone, NR_FREE_CMA_PAGES) > 2464 zone_page_state(zone, NR_FREE_PAGES) / 2) { 2465 page = __rmqueue_cma_fallback(zone, order); 2466 if (page) 2467 return page; 2468 } 2469 } 2470 2471 /* 2472 * First try the freelists of the requested migratetype, then try 2473 * fallbacks modes with increasing levels of fragmentation risk. 2474 * 2475 * The fallback logic is expensive and rmqueue_bulk() calls in 2476 * a loop with the zone->lock held, meaning the freelists are 2477 * not subject to any outside changes. Remember in *mode where 2478 * we found pay dirt, to save us the search on the next call. 2479 */ 2480 switch (*mode) { 2481 case RMQUEUE_NORMAL: 2482 page = __rmqueue_smallest(zone, order, migratetype); 2483 if (page) 2484 return page; 2485 fallthrough; 2486 case RMQUEUE_CMA: 2487 if (alloc_flags & ALLOC_CMA) { 2488 page = __rmqueue_cma_fallback(zone, order); 2489 if (page) { 2490 *mode = RMQUEUE_CMA; 2491 return page; 2492 } 2493 } 2494 fallthrough; 2495 case RMQUEUE_CLAIM: 2496 page = __rmqueue_claim(zone, order, migratetype, alloc_flags); 2497 if (page) { 2498 /* Replenished preferred freelist, back to normal mode. */ 2499 *mode = RMQUEUE_NORMAL; 2500 return page; 2501 } 2502 fallthrough; 2503 case RMQUEUE_STEAL: 2504 if (!(alloc_flags & ALLOC_NOFRAGMENT)) { 2505 page = __rmqueue_steal(zone, order, migratetype); 2506 if (page) { 2507 *mode = RMQUEUE_STEAL; 2508 return page; 2509 } 2510 } 2511 } 2512 return NULL; 2513 } 2514 2515 /* 2516 * Obtain a specified number of elements from the buddy allocator, all under 2517 * a single hold of the lock, for efficiency. Add them to the supplied list. 2518 * Returns the number of new pages which were placed at *list. 2519 */ 2520 static int rmqueue_bulk(struct zone *zone, unsigned int order, 2521 unsigned long count, struct list_head *list, 2522 int migratetype, unsigned int alloc_flags) 2523 { 2524 enum rmqueue_mode rmqm = RMQUEUE_NORMAL; 2525 unsigned long flags; 2526 int i; 2527 2528 if (unlikely(alloc_flags & ALLOC_TRYLOCK)) { 2529 if (!spin_trylock_irqsave(&zone->lock, flags)) 2530 return 0; 2531 } else { 2532 spin_lock_irqsave(&zone->lock, flags); 2533 } 2534 for (i = 0; i < count; ++i) { 2535 struct page *page = __rmqueue(zone, order, migratetype, 2536 alloc_flags, &rmqm); 2537 if (unlikely(page == NULL)) 2538 break; 2539 2540 /* 2541 * Split buddy pages returned by expand() are received here in 2542 * physical page order. The page is added to the tail of 2543 * caller's list. From the callers perspective, the linked list 2544 * is ordered by page number under some conditions. This is 2545 * useful for IO devices that can forward direction from the 2546 * head, thus also in the physical page order. This is useful 2547 * for IO devices that can merge IO requests if the physical 2548 * pages are ordered properly. 2549 */ 2550 list_add_tail(&page->pcp_list, list); 2551 } 2552 spin_unlock_irqrestore(&zone->lock, flags); 2553 2554 return i; 2555 } 2556 2557 /* 2558 * Called from the vmstat counter updater to decay the PCP high. 2559 * Return whether there are addition works to do. 2560 */ 2561 int decay_pcp_high(struct zone *zone, struct per_cpu_pages *pcp) 2562 { 2563 int high_min, to_drain, batch; 2564 int todo = 0; 2565 2566 high_min = READ_ONCE(pcp->high_min); 2567 batch = READ_ONCE(pcp->batch); 2568 /* 2569 * Decrease pcp->high periodically to try to free possible 2570 * idle PCP pages. And, avoid to free too many pages to 2571 * control latency. This caps pcp->high decrement too. 2572 */ 2573 if (pcp->high > high_min) { 2574 pcp->high = max3(pcp->count - (batch << CONFIG_PCP_BATCH_SCALE_MAX), 2575 pcp->high - (pcp->high >> 3), high_min); 2576 if (pcp->high > high_min) 2577 todo++; 2578 } 2579 2580 to_drain = pcp->count - pcp->high; 2581 if (to_drain > 0) { 2582 spin_lock(&pcp->lock); 2583 free_pcppages_bulk(zone, to_drain, pcp, 0); 2584 spin_unlock(&pcp->lock); 2585 todo++; 2586 } 2587 2588 return todo; 2589 } 2590 2591 #ifdef CONFIG_NUMA 2592 /* 2593 * Called from the vmstat counter updater to drain pagesets of this 2594 * currently executing processor on remote nodes after they have 2595 * expired. 2596 */ 2597 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp) 2598 { 2599 int to_drain, batch; 2600 2601 batch = READ_ONCE(pcp->batch); 2602 to_drain = min(pcp->count, batch); 2603 if (to_drain > 0) { 2604 spin_lock(&pcp->lock); 2605 free_pcppages_bulk(zone, to_drain, pcp, 0); 2606 spin_unlock(&pcp->lock); 2607 } 2608 } 2609 #endif 2610 2611 /* 2612 * Drain pcplists of the indicated processor and zone. 2613 */ 2614 static void drain_pages_zone(unsigned int cpu, struct zone *zone) 2615 { 2616 struct per_cpu_pages *pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu); 2617 int count; 2618 2619 do { 2620 spin_lock(&pcp->lock); 2621 count = pcp->count; 2622 if (count) { 2623 int to_drain = min(count, 2624 pcp->batch << CONFIG_PCP_BATCH_SCALE_MAX); 2625 2626 free_pcppages_bulk(zone, to_drain, pcp, 0); 2627 count -= to_drain; 2628 } 2629 spin_unlock(&pcp->lock); 2630 } while (count); 2631 } 2632 2633 /* 2634 * Drain pcplists of all zones on the indicated processor. 2635 */ 2636 static void drain_pages(unsigned int cpu) 2637 { 2638 struct zone *zone; 2639 2640 for_each_populated_zone(zone) { 2641 drain_pages_zone(cpu, zone); 2642 } 2643 } 2644 2645 /* 2646 * Spill all of this CPU's per-cpu pages back into the buddy allocator. 2647 */ 2648 void drain_local_pages(struct zone *zone) 2649 { 2650 int cpu = smp_processor_id(); 2651 2652 if (zone) 2653 drain_pages_zone(cpu, zone); 2654 else 2655 drain_pages(cpu); 2656 } 2657 2658 /* 2659 * The implementation of drain_all_pages(), exposing an extra parameter to 2660 * drain on all cpus. 2661 * 2662 * drain_all_pages() is optimized to only execute on cpus where pcplists are 2663 * not empty. The check for non-emptiness can however race with a free to 2664 * pcplist that has not yet increased the pcp->count from 0 to 1. Callers 2665 * that need the guarantee that every CPU has drained can disable the 2666 * optimizing racy check. 2667 */ 2668 static void __drain_all_pages(struct zone *zone, bool force_all_cpus) 2669 { 2670 int cpu; 2671 2672 /* 2673 * Allocate in the BSS so we won't require allocation in 2674 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y 2675 */ 2676 static cpumask_t cpus_with_pcps; 2677 2678 /* 2679 * Do not drain if one is already in progress unless it's specific to 2680 * a zone. Such callers are primarily CMA and memory hotplug and need 2681 * the drain to be complete when the call returns. 2682 */ 2683 if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) { 2684 if (!zone) 2685 return; 2686 mutex_lock(&pcpu_drain_mutex); 2687 } 2688 2689 /* 2690 * We don't care about racing with CPU hotplug event 2691 * as offline notification will cause the notified 2692 * cpu to drain that CPU pcps and on_each_cpu_mask 2693 * disables preemption as part of its processing 2694 */ 2695 for_each_online_cpu(cpu) { 2696 struct per_cpu_pages *pcp; 2697 struct zone *z; 2698 bool has_pcps = false; 2699 2700 if (force_all_cpus) { 2701 /* 2702 * The pcp.count check is racy, some callers need a 2703 * guarantee that no cpu is missed. 2704 */ 2705 has_pcps = true; 2706 } else if (zone) { 2707 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu); 2708 if (pcp->count) 2709 has_pcps = true; 2710 } else { 2711 for_each_populated_zone(z) { 2712 pcp = per_cpu_ptr(z->per_cpu_pageset, cpu); 2713 if (pcp->count) { 2714 has_pcps = true; 2715 break; 2716 } 2717 } 2718 } 2719 2720 if (has_pcps) 2721 cpumask_set_cpu(cpu, &cpus_with_pcps); 2722 else 2723 cpumask_clear_cpu(cpu, &cpus_with_pcps); 2724 } 2725 2726 for_each_cpu(cpu, &cpus_with_pcps) { 2727 if (zone) 2728 drain_pages_zone(cpu, zone); 2729 else 2730 drain_pages(cpu); 2731 } 2732 2733 mutex_unlock(&pcpu_drain_mutex); 2734 } 2735 2736 /* 2737 * Spill all the per-cpu pages from all CPUs back into the buddy allocator. 2738 * 2739 * When zone parameter is non-NULL, spill just the single zone's pages. 2740 */ 2741 void drain_all_pages(struct zone *zone) 2742 { 2743 __drain_all_pages(zone, false); 2744 } 2745 2746 static int nr_pcp_free(struct per_cpu_pages *pcp, int batch, int high, bool free_high) 2747 { 2748 int min_nr_free, max_nr_free; 2749 2750 /* Free as much as possible if batch freeing high-order pages. */ 2751 if (unlikely(free_high)) 2752 return min(pcp->count, batch << CONFIG_PCP_BATCH_SCALE_MAX); 2753 2754 /* Check for PCP disabled or boot pageset */ 2755 if (unlikely(high < batch)) 2756 return 1; 2757 2758 /* Leave at least pcp->batch pages on the list */ 2759 min_nr_free = batch; 2760 max_nr_free = high - batch; 2761 2762 /* 2763 * Increase the batch number to the number of the consecutive 2764 * freed pages to reduce zone lock contention. 2765 */ 2766 batch = clamp_t(int, pcp->free_count, min_nr_free, max_nr_free); 2767 2768 return batch; 2769 } 2770 2771 static int nr_pcp_high(struct per_cpu_pages *pcp, struct zone *zone, 2772 int batch, bool free_high) 2773 { 2774 int high, high_min, high_max; 2775 2776 high_min = READ_ONCE(pcp->high_min); 2777 high_max = READ_ONCE(pcp->high_max); 2778 high = pcp->high = clamp(pcp->high, high_min, high_max); 2779 2780 if (unlikely(!high)) 2781 return 0; 2782 2783 if (unlikely(free_high)) { 2784 pcp->high = max(high - (batch << CONFIG_PCP_BATCH_SCALE_MAX), 2785 high_min); 2786 return 0; 2787 } 2788 2789 /* 2790 * If reclaim is active, limit the number of pages that can be 2791 * stored on pcp lists 2792 */ 2793 if (test_bit(ZONE_RECLAIM_ACTIVE, &zone->flags)) { 2794 int free_count = max_t(int, pcp->free_count, batch); 2795 2796 pcp->high = max(high - free_count, high_min); 2797 return min(batch << 2, pcp->high); 2798 } 2799 2800 if (high_min == high_max) 2801 return high; 2802 2803 if (test_bit(ZONE_BELOW_HIGH, &zone->flags)) { 2804 int free_count = max_t(int, pcp->free_count, batch); 2805 2806 pcp->high = max(high - free_count, high_min); 2807 high = max(pcp->count, high_min); 2808 } else if (pcp->count >= high) { 2809 int need_high = pcp->free_count + batch; 2810 2811 /* pcp->high should be large enough to hold batch freed pages */ 2812 if (pcp->high < need_high) 2813 pcp->high = clamp(need_high, high_min, high_max); 2814 } 2815 2816 return high; 2817 } 2818 2819 static void free_frozen_page_commit(struct zone *zone, 2820 struct per_cpu_pages *pcp, struct page *page, int migratetype, 2821 unsigned int order, fpi_t fpi_flags) 2822 { 2823 int high, batch; 2824 int pindex; 2825 bool free_high = false; 2826 2827 /* 2828 * On freeing, reduce the number of pages that are batch allocated. 2829 * See nr_pcp_alloc() where alloc_factor is increased for subsequent 2830 * allocations. 2831 */ 2832 pcp->alloc_factor >>= 1; 2833 __count_vm_events(PGFREE, 1 << order); 2834 pindex = order_to_pindex(migratetype, order); 2835 list_add(&page->pcp_list, &pcp->lists[pindex]); 2836 pcp->count += 1 << order; 2837 2838 batch = READ_ONCE(pcp->batch); 2839 /* 2840 * As high-order pages other than THP's stored on PCP can contribute 2841 * to fragmentation, limit the number stored when PCP is heavily 2842 * freeing without allocation. The remainder after bulk freeing 2843 * stops will be drained from vmstat refresh context. 2844 */ 2845 if (order && order <= PAGE_ALLOC_COSTLY_ORDER) { 2846 free_high = (pcp->free_count >= (batch + pcp->high_min / 2) && 2847 (pcp->flags & PCPF_PREV_FREE_HIGH_ORDER) && 2848 (!(pcp->flags & PCPF_FREE_HIGH_BATCH) || 2849 pcp->count >= batch)); 2850 pcp->flags |= PCPF_PREV_FREE_HIGH_ORDER; 2851 } else if (pcp->flags & PCPF_PREV_FREE_HIGH_ORDER) { 2852 pcp->flags &= ~PCPF_PREV_FREE_HIGH_ORDER; 2853 } 2854 if (pcp->free_count < (batch << CONFIG_PCP_BATCH_SCALE_MAX)) 2855 pcp->free_count += (1 << order); 2856 2857 if (unlikely(fpi_flags & FPI_TRYLOCK)) { 2858 /* 2859 * Do not attempt to take a zone lock. Let pcp->count get 2860 * over high mark temporarily. 2861 */ 2862 return; 2863 } 2864 high = nr_pcp_high(pcp, zone, batch, free_high); 2865 if (pcp->count >= high) { 2866 free_pcppages_bulk(zone, nr_pcp_free(pcp, batch, high, free_high), 2867 pcp, pindex); 2868 if (test_bit(ZONE_BELOW_HIGH, &zone->flags) && 2869 zone_watermark_ok(zone, 0, high_wmark_pages(zone), 2870 ZONE_MOVABLE, 0)) 2871 clear_bit(ZONE_BELOW_HIGH, &zone->flags); 2872 } 2873 } 2874 2875 /* 2876 * Free a pcp page 2877 */ 2878 static void __free_frozen_pages(struct page *page, unsigned int order, 2879 fpi_t fpi_flags) 2880 { 2881 unsigned long __maybe_unused UP_flags; 2882 struct per_cpu_pages *pcp; 2883 struct zone *zone; 2884 unsigned long pfn = page_to_pfn(page); 2885 int migratetype; 2886 2887 if (!pcp_allowed_order(order)) { 2888 __free_pages_ok(page, order, fpi_flags); 2889 return; 2890 } 2891 2892 if (!free_pages_prepare(page, order)) 2893 return; 2894 2895 /* 2896 * We only track unmovable, reclaimable and movable on pcp lists. 2897 * Place ISOLATE pages on the isolated list because they are being 2898 * offlined but treat HIGHATOMIC and CMA as movable pages so we can 2899 * get those areas back if necessary. Otherwise, we may have to free 2900 * excessively into the page allocator 2901 */ 2902 zone = page_zone(page); 2903 migratetype = get_pfnblock_migratetype(page, pfn); 2904 if (unlikely(migratetype >= MIGRATE_PCPTYPES)) { 2905 if (unlikely(is_migrate_isolate(migratetype))) { 2906 free_one_page(zone, page, pfn, order, fpi_flags); 2907 return; 2908 } 2909 migratetype = MIGRATE_MOVABLE; 2910 } 2911 2912 if (unlikely((fpi_flags & FPI_TRYLOCK) && IS_ENABLED(CONFIG_PREEMPT_RT) 2913 && (in_nmi() || in_hardirq()))) { 2914 add_page_to_zone_llist(zone, page, order); 2915 return; 2916 } 2917 pcp_trylock_prepare(UP_flags); 2918 pcp = pcp_spin_trylock(zone->per_cpu_pageset); 2919 if (pcp) { 2920 free_frozen_page_commit(zone, pcp, page, migratetype, order, fpi_flags); 2921 pcp_spin_unlock(pcp); 2922 } else { 2923 free_one_page(zone, page, pfn, order, fpi_flags); 2924 } 2925 pcp_trylock_finish(UP_flags); 2926 } 2927 2928 void free_frozen_pages(struct page *page, unsigned int order) 2929 { 2930 __free_frozen_pages(page, order, FPI_NONE); 2931 } 2932 2933 /* 2934 * Free a batch of folios 2935 */ 2936 void free_unref_folios(struct folio_batch *folios) 2937 { 2938 unsigned long __maybe_unused UP_flags; 2939 struct per_cpu_pages *pcp = NULL; 2940 struct zone *locked_zone = NULL; 2941 int i, j; 2942 2943 /* Prepare folios for freeing */ 2944 for (i = 0, j = 0; i < folios->nr; i++) { 2945 struct folio *folio = folios->folios[i]; 2946 unsigned long pfn = folio_pfn(folio); 2947 unsigned int order = folio_order(folio); 2948 2949 if (!free_pages_prepare(&folio->page, order)) 2950 continue; 2951 /* 2952 * Free orders not handled on the PCP directly to the 2953 * allocator. 2954 */ 2955 if (!pcp_allowed_order(order)) { 2956 free_one_page(folio_zone(folio), &folio->page, 2957 pfn, order, FPI_NONE); 2958 continue; 2959 } 2960 folio->private = (void *)(unsigned long)order; 2961 if (j != i) 2962 folios->folios[j] = folio; 2963 j++; 2964 } 2965 folios->nr = j; 2966 2967 for (i = 0; i < folios->nr; i++) { 2968 struct folio *folio = folios->folios[i]; 2969 struct zone *zone = folio_zone(folio); 2970 unsigned long pfn = folio_pfn(folio); 2971 unsigned int order = (unsigned long)folio->private; 2972 int migratetype; 2973 2974 folio->private = NULL; 2975 migratetype = get_pfnblock_migratetype(&folio->page, pfn); 2976 2977 /* Different zone requires a different pcp lock */ 2978 if (zone != locked_zone || 2979 is_migrate_isolate(migratetype)) { 2980 if (pcp) { 2981 pcp_spin_unlock(pcp); 2982 pcp_trylock_finish(UP_flags); 2983 locked_zone = NULL; 2984 pcp = NULL; 2985 } 2986 2987 /* 2988 * Free isolated pages directly to the 2989 * allocator, see comment in free_frozen_pages. 2990 */ 2991 if (is_migrate_isolate(migratetype)) { 2992 free_one_page(zone, &folio->page, pfn, 2993 order, FPI_NONE); 2994 continue; 2995 } 2996 2997 /* 2998 * trylock is necessary as folios may be getting freed 2999 * from IRQ or SoftIRQ context after an IO completion. 3000 */ 3001 pcp_trylock_prepare(UP_flags); 3002 pcp = pcp_spin_trylock(zone->per_cpu_pageset); 3003 if (unlikely(!pcp)) { 3004 pcp_trylock_finish(UP_flags); 3005 free_one_page(zone, &folio->page, pfn, 3006 order, FPI_NONE); 3007 continue; 3008 } 3009 locked_zone = zone; 3010 } 3011 3012 /* 3013 * Non-isolated types over MIGRATE_PCPTYPES get added 3014 * to the MIGRATE_MOVABLE pcp list. 3015 */ 3016 if (unlikely(migratetype >= MIGRATE_PCPTYPES)) 3017 migratetype = MIGRATE_MOVABLE; 3018 3019 trace_mm_page_free_batched(&folio->page); 3020 free_frozen_page_commit(zone, pcp, &folio->page, migratetype, 3021 order, FPI_NONE); 3022 } 3023 3024 if (pcp) { 3025 pcp_spin_unlock(pcp); 3026 pcp_trylock_finish(UP_flags); 3027 } 3028 folio_batch_reinit(folios); 3029 } 3030 3031 /* 3032 * split_page takes a non-compound higher-order page, and splits it into 3033 * n (1<<order) sub-pages: page[0..n] 3034 * Each sub-page must be freed individually. 3035 * 3036 * Note: this is probably too low level an operation for use in drivers. 3037 * Please consult with lkml before using this in your driver. 3038 */ 3039 void split_page(struct page *page, unsigned int order) 3040 { 3041 int i; 3042 3043 VM_BUG_ON_PAGE(PageCompound(page), page); 3044 VM_BUG_ON_PAGE(!page_count(page), page); 3045 3046 for (i = 1; i < (1 << order); i++) 3047 set_page_refcounted(page + i); 3048 split_page_owner(page, order, 0); 3049 pgalloc_tag_split(page_folio(page), order, 0); 3050 split_page_memcg(page, order); 3051 } 3052 EXPORT_SYMBOL_GPL(split_page); 3053 3054 int __isolate_free_page(struct page *page, unsigned int order) 3055 { 3056 struct zone *zone = page_zone(page); 3057 int mt = get_pageblock_migratetype(page); 3058 3059 if (!is_migrate_isolate(mt)) { 3060 unsigned long watermark; 3061 /* 3062 * Obey watermarks as if the page was being allocated. We can 3063 * emulate a high-order watermark check with a raised order-0 3064 * watermark, because we already know our high-order page 3065 * exists. 3066 */ 3067 watermark = zone->_watermark[WMARK_MIN] + (1UL << order); 3068 if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA)) 3069 return 0; 3070 } 3071 3072 del_page_from_free_list(page, zone, order, mt); 3073 3074 /* 3075 * Set the pageblock if the isolated page is at least half of a 3076 * pageblock 3077 */ 3078 if (order >= pageblock_order - 1) { 3079 struct page *endpage = page + (1 << order) - 1; 3080 for (; page < endpage; page += pageblock_nr_pages) { 3081 int mt = get_pageblock_migratetype(page); 3082 /* 3083 * Only change normal pageblocks (i.e., they can merge 3084 * with others) 3085 */ 3086 if (migratetype_is_mergeable(mt)) 3087 move_freepages_block(zone, page, mt, 3088 MIGRATE_MOVABLE); 3089 } 3090 } 3091 3092 return 1UL << order; 3093 } 3094 3095 /** 3096 * __putback_isolated_page - Return a now-isolated page back where we got it 3097 * @page: Page that was isolated 3098 * @order: Order of the isolated page 3099 * @mt: The page's pageblock's migratetype 3100 * 3101 * This function is meant to return a page pulled from the free lists via 3102 * __isolate_free_page back to the free lists they were pulled from. 3103 */ 3104 void __putback_isolated_page(struct page *page, unsigned int order, int mt) 3105 { 3106 struct zone *zone = page_zone(page); 3107 3108 /* zone lock should be held when this function is called */ 3109 lockdep_assert_held(&zone->lock); 3110 3111 /* Return isolated page to tail of freelist. */ 3112 __free_one_page(page, page_to_pfn(page), zone, order, mt, 3113 FPI_SKIP_REPORT_NOTIFY | FPI_TO_TAIL); 3114 } 3115 3116 /* 3117 * Update NUMA hit/miss statistics 3118 */ 3119 static inline void zone_statistics(struct zone *preferred_zone, struct zone *z, 3120 long nr_account) 3121 { 3122 #ifdef CONFIG_NUMA 3123 enum numa_stat_item local_stat = NUMA_LOCAL; 3124 3125 /* skip numa counters update if numa stats is disabled */ 3126 if (!static_branch_likely(&vm_numa_stat_key)) 3127 return; 3128 3129 if (zone_to_nid(z) != numa_node_id()) 3130 local_stat = NUMA_OTHER; 3131 3132 if (zone_to_nid(z) == zone_to_nid(preferred_zone)) 3133 __count_numa_events(z, NUMA_HIT, nr_account); 3134 else { 3135 __count_numa_events(z, NUMA_MISS, nr_account); 3136 __count_numa_events(preferred_zone, NUMA_FOREIGN, nr_account); 3137 } 3138 __count_numa_events(z, local_stat, nr_account); 3139 #endif 3140 } 3141 3142 static __always_inline 3143 struct page *rmqueue_buddy(struct zone *preferred_zone, struct zone *zone, 3144 unsigned int order, unsigned int alloc_flags, 3145 int migratetype) 3146 { 3147 struct page *page; 3148 unsigned long flags; 3149 3150 do { 3151 page = NULL; 3152 if (unlikely(alloc_flags & ALLOC_TRYLOCK)) { 3153 if (!spin_trylock_irqsave(&zone->lock, flags)) 3154 return NULL; 3155 } else { 3156 spin_lock_irqsave(&zone->lock, flags); 3157 } 3158 if (alloc_flags & ALLOC_HIGHATOMIC) 3159 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC); 3160 if (!page) { 3161 enum rmqueue_mode rmqm = RMQUEUE_NORMAL; 3162 3163 page = __rmqueue(zone, order, migratetype, alloc_flags, &rmqm); 3164 3165 /* 3166 * If the allocation fails, allow OOM handling and 3167 * order-0 (atomic) allocs access to HIGHATOMIC 3168 * reserves as failing now is worse than failing a 3169 * high-order atomic allocation in the future. 3170 */ 3171 if (!page && (alloc_flags & (ALLOC_OOM|ALLOC_NON_BLOCK))) 3172 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC); 3173 3174 if (!page) { 3175 spin_unlock_irqrestore(&zone->lock, flags); 3176 return NULL; 3177 } 3178 } 3179 spin_unlock_irqrestore(&zone->lock, flags); 3180 } while (check_new_pages(page, order)); 3181 3182 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order); 3183 zone_statistics(preferred_zone, zone, 1); 3184 3185 return page; 3186 } 3187 3188 static int nr_pcp_alloc(struct per_cpu_pages *pcp, struct zone *zone, int order) 3189 { 3190 int high, base_batch, batch, max_nr_alloc; 3191 int high_max, high_min; 3192 3193 base_batch = READ_ONCE(pcp->batch); 3194 high_min = READ_ONCE(pcp->high_min); 3195 high_max = READ_ONCE(pcp->high_max); 3196 high = pcp->high = clamp(pcp->high, high_min, high_max); 3197 3198 /* Check for PCP disabled or boot pageset */ 3199 if (unlikely(high < base_batch)) 3200 return 1; 3201 3202 if (order) 3203 batch = base_batch; 3204 else 3205 batch = (base_batch << pcp->alloc_factor); 3206 3207 /* 3208 * If we had larger pcp->high, we could avoid to allocate from 3209 * zone. 3210 */ 3211 if (high_min != high_max && !test_bit(ZONE_BELOW_HIGH, &zone->flags)) 3212 high = pcp->high = min(high + batch, high_max); 3213 3214 if (!order) { 3215 max_nr_alloc = max(high - pcp->count - base_batch, base_batch); 3216 /* 3217 * Double the number of pages allocated each time there is 3218 * subsequent allocation of order-0 pages without any freeing. 3219 */ 3220 if (batch <= max_nr_alloc && 3221 pcp->alloc_factor < CONFIG_PCP_BATCH_SCALE_MAX) 3222 pcp->alloc_factor++; 3223 batch = min(batch, max_nr_alloc); 3224 } 3225 3226 /* 3227 * Scale batch relative to order if batch implies free pages 3228 * can be stored on the PCP. Batch can be 1 for small zones or 3229 * for boot pagesets which should never store free pages as 3230 * the pages may belong to arbitrary zones. 3231 */ 3232 if (batch > 1) 3233 batch = max(batch >> order, 2); 3234 3235 return batch; 3236 } 3237 3238 /* Remove page from the per-cpu list, caller must protect the list */ 3239 static inline 3240 struct page *__rmqueue_pcplist(struct zone *zone, unsigned int order, 3241 int migratetype, 3242 unsigned int alloc_flags, 3243 struct per_cpu_pages *pcp, 3244 struct list_head *list) 3245 { 3246 struct page *page; 3247 3248 do { 3249 if (list_empty(list)) { 3250 int batch = nr_pcp_alloc(pcp, zone, order); 3251 int alloced; 3252 3253 alloced = rmqueue_bulk(zone, order, 3254 batch, list, 3255 migratetype, alloc_flags); 3256 3257 pcp->count += alloced << order; 3258 if (unlikely(list_empty(list))) 3259 return NULL; 3260 } 3261 3262 page = list_first_entry(list, struct page, pcp_list); 3263 list_del(&page->pcp_list); 3264 pcp->count -= 1 << order; 3265 } while (check_new_pages(page, order)); 3266 3267 return page; 3268 } 3269 3270 /* Lock and remove page from the per-cpu list */ 3271 static struct page *rmqueue_pcplist(struct zone *preferred_zone, 3272 struct zone *zone, unsigned int order, 3273 int migratetype, unsigned int alloc_flags) 3274 { 3275 struct per_cpu_pages *pcp; 3276 struct list_head *list; 3277 struct page *page; 3278 unsigned long __maybe_unused UP_flags; 3279 3280 /* spin_trylock may fail due to a parallel drain or IRQ reentrancy. */ 3281 pcp_trylock_prepare(UP_flags); 3282 pcp = pcp_spin_trylock(zone->per_cpu_pageset); 3283 if (!pcp) { 3284 pcp_trylock_finish(UP_flags); 3285 return NULL; 3286 } 3287 3288 /* 3289 * On allocation, reduce the number of pages that are batch freed. 3290 * See nr_pcp_free() where free_factor is increased for subsequent 3291 * frees. 3292 */ 3293 pcp->free_count >>= 1; 3294 list = &pcp->lists[order_to_pindex(migratetype, order)]; 3295 page = __rmqueue_pcplist(zone, order, migratetype, alloc_flags, pcp, list); 3296 pcp_spin_unlock(pcp); 3297 pcp_trylock_finish(UP_flags); 3298 if (page) { 3299 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order); 3300 zone_statistics(preferred_zone, zone, 1); 3301 } 3302 return page; 3303 } 3304 3305 /* 3306 * Allocate a page from the given zone. 3307 * Use pcplists for THP or "cheap" high-order allocations. 3308 */ 3309 3310 /* 3311 * Do not instrument rmqueue() with KMSAN. This function may call 3312 * __msan_poison_alloca() through a call to set_pfnblock_migratetype(). 3313 * If __msan_poison_alloca() attempts to allocate pages for the stack depot, it 3314 * may call rmqueue() again, which will result in a deadlock. 3315 */ 3316 __no_sanitize_memory 3317 static inline 3318 struct page *rmqueue(struct zone *preferred_zone, 3319 struct zone *zone, unsigned int order, 3320 gfp_t gfp_flags, unsigned int alloc_flags, 3321 int migratetype) 3322 { 3323 struct page *page; 3324 3325 if (likely(pcp_allowed_order(order))) { 3326 page = rmqueue_pcplist(preferred_zone, zone, order, 3327 migratetype, alloc_flags); 3328 if (likely(page)) 3329 goto out; 3330 } 3331 3332 page = rmqueue_buddy(preferred_zone, zone, order, alloc_flags, 3333 migratetype); 3334 3335 out: 3336 /* Separate test+clear to avoid unnecessary atomics */ 3337 if ((alloc_flags & ALLOC_KSWAPD) && 3338 unlikely(test_bit(ZONE_BOOSTED_WATERMARK, &zone->flags))) { 3339 clear_bit(ZONE_BOOSTED_WATERMARK, &zone->flags); 3340 wakeup_kswapd(zone, 0, 0, zone_idx(zone)); 3341 } 3342 3343 VM_BUG_ON_PAGE(page && bad_range(zone, page), page); 3344 return page; 3345 } 3346 3347 /* 3348 * Reserve the pageblock(s) surrounding an allocation request for 3349 * exclusive use of high-order atomic allocations if there are no 3350 * empty page blocks that contain a page with a suitable order 3351 */ 3352 static void reserve_highatomic_pageblock(struct page *page, int order, 3353 struct zone *zone) 3354 { 3355 int mt; 3356 unsigned long max_managed, flags; 3357 3358 /* 3359 * The number reserved as: minimum is 1 pageblock, maximum is 3360 * roughly 1% of a zone. But if 1% of a zone falls below a 3361 * pageblock size, then don't reserve any pageblocks. 3362 * Check is race-prone but harmless. 3363 */ 3364 if ((zone_managed_pages(zone) / 100) < pageblock_nr_pages) 3365 return; 3366 max_managed = ALIGN((zone_managed_pages(zone) / 100), pageblock_nr_pages); 3367 if (zone->nr_reserved_highatomic >= max_managed) 3368 return; 3369 3370 spin_lock_irqsave(&zone->lock, flags); 3371 3372 /* Recheck the nr_reserved_highatomic limit under the lock */ 3373 if (zone->nr_reserved_highatomic >= max_managed) 3374 goto out_unlock; 3375 3376 /* Yoink! */ 3377 mt = get_pageblock_migratetype(page); 3378 /* Only reserve normal pageblocks (i.e., they can merge with others) */ 3379 if (!migratetype_is_mergeable(mt)) 3380 goto out_unlock; 3381 3382 if (order < pageblock_order) { 3383 if (move_freepages_block(zone, page, mt, MIGRATE_HIGHATOMIC) == -1) 3384 goto out_unlock; 3385 zone->nr_reserved_highatomic += pageblock_nr_pages; 3386 } else { 3387 change_pageblock_range(page, order, MIGRATE_HIGHATOMIC); 3388 zone->nr_reserved_highatomic += 1 << order; 3389 } 3390 3391 out_unlock: 3392 spin_unlock_irqrestore(&zone->lock, flags); 3393 } 3394 3395 /* 3396 * Used when an allocation is about to fail under memory pressure. This 3397 * potentially hurts the reliability of high-order allocations when under 3398 * intense memory pressure but failed atomic allocations should be easier 3399 * to recover from than an OOM. 3400 * 3401 * If @force is true, try to unreserve pageblocks even though highatomic 3402 * pageblock is exhausted. 3403 */ 3404 static bool unreserve_highatomic_pageblock(const struct alloc_context *ac, 3405 bool force) 3406 { 3407 struct zonelist *zonelist = ac->zonelist; 3408 unsigned long flags; 3409 struct zoneref *z; 3410 struct zone *zone; 3411 struct page *page; 3412 int order; 3413 int ret; 3414 3415 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->highest_zoneidx, 3416 ac->nodemask) { 3417 /* 3418 * Preserve at least one pageblock unless memory pressure 3419 * is really high. 3420 */ 3421 if (!force && zone->nr_reserved_highatomic <= 3422 pageblock_nr_pages) 3423 continue; 3424 3425 spin_lock_irqsave(&zone->lock, flags); 3426 for (order = 0; order < NR_PAGE_ORDERS; order++) { 3427 struct free_area *area = &(zone->free_area[order]); 3428 unsigned long size; 3429 3430 page = get_page_from_free_area(area, MIGRATE_HIGHATOMIC); 3431 if (!page) 3432 continue; 3433 3434 size = max(pageblock_nr_pages, 1UL << order); 3435 /* 3436 * It should never happen but changes to 3437 * locking could inadvertently allow a per-cpu 3438 * drain to add pages to MIGRATE_HIGHATOMIC 3439 * while unreserving so be safe and watch for 3440 * underflows. 3441 */ 3442 if (WARN_ON_ONCE(size > zone->nr_reserved_highatomic)) 3443 size = zone->nr_reserved_highatomic; 3444 zone->nr_reserved_highatomic -= size; 3445 3446 /* 3447 * Convert to ac->migratetype and avoid the normal 3448 * pageblock stealing heuristics. Minimally, the caller 3449 * is doing the work and needs the pages. More 3450 * importantly, if the block was always converted to 3451 * MIGRATE_UNMOVABLE or another type then the number 3452 * of pageblocks that cannot be completely freed 3453 * may increase. 3454 */ 3455 if (order < pageblock_order) 3456 ret = move_freepages_block(zone, page, 3457 MIGRATE_HIGHATOMIC, 3458 ac->migratetype); 3459 else { 3460 move_to_free_list(page, zone, order, 3461 MIGRATE_HIGHATOMIC, 3462 ac->migratetype); 3463 change_pageblock_range(page, order, 3464 ac->migratetype); 3465 ret = 1; 3466 } 3467 /* 3468 * Reserving the block(s) already succeeded, 3469 * so this should not fail on zone boundaries. 3470 */ 3471 WARN_ON_ONCE(ret == -1); 3472 if (ret > 0) { 3473 spin_unlock_irqrestore(&zone->lock, flags); 3474 return ret; 3475 } 3476 } 3477 spin_unlock_irqrestore(&zone->lock, flags); 3478 } 3479 3480 return false; 3481 } 3482 3483 static inline long __zone_watermark_unusable_free(struct zone *z, 3484 unsigned int order, unsigned int alloc_flags) 3485 { 3486 long unusable_free = (1 << order) - 1; 3487 3488 /* 3489 * If the caller does not have rights to reserves below the min 3490 * watermark then subtract the free pages reserved for highatomic. 3491 */ 3492 if (likely(!(alloc_flags & ALLOC_RESERVES))) 3493 unusable_free += READ_ONCE(z->nr_free_highatomic); 3494 3495 #ifdef CONFIG_CMA 3496 /* If allocation can't use CMA areas don't use free CMA pages */ 3497 if (!(alloc_flags & ALLOC_CMA)) 3498 unusable_free += zone_page_state(z, NR_FREE_CMA_PAGES); 3499 #endif 3500 3501 return unusable_free; 3502 } 3503 3504 /* 3505 * Return true if free base pages are above 'mark'. For high-order checks it 3506 * will return true of the order-0 watermark is reached and there is at least 3507 * one free page of a suitable size. Checking now avoids taking the zone lock 3508 * to check in the allocation paths if no pages are free. 3509 */ 3510 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark, 3511 int highest_zoneidx, unsigned int alloc_flags, 3512 long free_pages) 3513 { 3514 long min = mark; 3515 int o; 3516 3517 /* free_pages may go negative - that's OK */ 3518 free_pages -= __zone_watermark_unusable_free(z, order, alloc_flags); 3519 3520 if (unlikely(alloc_flags & ALLOC_RESERVES)) { 3521 /* 3522 * __GFP_HIGH allows access to 50% of the min reserve as well 3523 * as OOM. 3524 */ 3525 if (alloc_flags & ALLOC_MIN_RESERVE) { 3526 min -= min / 2; 3527 3528 /* 3529 * Non-blocking allocations (e.g. GFP_ATOMIC) can 3530 * access more reserves than just __GFP_HIGH. Other 3531 * non-blocking allocations requests such as GFP_NOWAIT 3532 * or (GFP_KERNEL & ~__GFP_DIRECT_RECLAIM) do not get 3533 * access to the min reserve. 3534 */ 3535 if (alloc_flags & ALLOC_NON_BLOCK) 3536 min -= min / 4; 3537 } 3538 3539 /* 3540 * OOM victims can try even harder than the normal reserve 3541 * users on the grounds that it's definitely going to be in 3542 * the exit path shortly and free memory. Any allocation it 3543 * makes during the free path will be small and short-lived. 3544 */ 3545 if (alloc_flags & ALLOC_OOM) 3546 min -= min / 2; 3547 } 3548 3549 /* 3550 * Check watermarks for an order-0 allocation request. If these 3551 * are not met, then a high-order request also cannot go ahead 3552 * even if a suitable page happened to be free. 3553 */ 3554 if (free_pages <= min + z->lowmem_reserve[highest_zoneidx]) 3555 return false; 3556 3557 /* If this is an order-0 request then the watermark is fine */ 3558 if (!order) 3559 return true; 3560 3561 /* For a high-order request, check at least one suitable page is free */ 3562 for (o = order; o < NR_PAGE_ORDERS; o++) { 3563 struct free_area *area = &z->free_area[o]; 3564 int mt; 3565 3566 if (!area->nr_free) 3567 continue; 3568 3569 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) { 3570 if (!free_area_empty(area, mt)) 3571 return true; 3572 } 3573 3574 #ifdef CONFIG_CMA 3575 if ((alloc_flags & ALLOC_CMA) && 3576 !free_area_empty(area, MIGRATE_CMA)) { 3577 return true; 3578 } 3579 #endif 3580 if ((alloc_flags & (ALLOC_HIGHATOMIC|ALLOC_OOM)) && 3581 !free_area_empty(area, MIGRATE_HIGHATOMIC)) { 3582 return true; 3583 } 3584 } 3585 return false; 3586 } 3587 3588 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark, 3589 int highest_zoneidx, unsigned int alloc_flags) 3590 { 3591 return __zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags, 3592 zone_page_state(z, NR_FREE_PAGES)); 3593 } 3594 3595 static inline bool zone_watermark_fast(struct zone *z, unsigned int order, 3596 unsigned long mark, int highest_zoneidx, 3597 unsigned int alloc_flags, gfp_t gfp_mask) 3598 { 3599 long free_pages; 3600 3601 free_pages = zone_page_state(z, NR_FREE_PAGES); 3602 3603 /* 3604 * Fast check for order-0 only. If this fails then the reserves 3605 * need to be calculated. 3606 */ 3607 if (!order) { 3608 long usable_free; 3609 long reserved; 3610 3611 usable_free = free_pages; 3612 reserved = __zone_watermark_unusable_free(z, 0, alloc_flags); 3613 3614 /* reserved may over estimate high-atomic reserves. */ 3615 usable_free -= min(usable_free, reserved); 3616 if (usable_free > mark + z->lowmem_reserve[highest_zoneidx]) 3617 return true; 3618 } 3619 3620 if (__zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags, 3621 free_pages)) 3622 return true; 3623 3624 /* 3625 * Ignore watermark boosting for __GFP_HIGH order-0 allocations 3626 * when checking the min watermark. The min watermark is the 3627 * point where boosting is ignored so that kswapd is woken up 3628 * when below the low watermark. 3629 */ 3630 if (unlikely(!order && (alloc_flags & ALLOC_MIN_RESERVE) && z->watermark_boost 3631 && ((alloc_flags & ALLOC_WMARK_MASK) == WMARK_MIN))) { 3632 mark = z->_watermark[WMARK_MIN]; 3633 return __zone_watermark_ok(z, order, mark, highest_zoneidx, 3634 alloc_flags, free_pages); 3635 } 3636 3637 return false; 3638 } 3639 3640 #ifdef CONFIG_NUMA 3641 int __read_mostly node_reclaim_distance = RECLAIM_DISTANCE; 3642 3643 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone) 3644 { 3645 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <= 3646 node_reclaim_distance; 3647 } 3648 #else /* CONFIG_NUMA */ 3649 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone) 3650 { 3651 return true; 3652 } 3653 #endif /* CONFIG_NUMA */ 3654 3655 /* 3656 * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid 3657 * fragmentation is subtle. If the preferred zone was HIGHMEM then 3658 * premature use of a lower zone may cause lowmem pressure problems that 3659 * are worse than fragmentation. If the next zone is ZONE_DMA then it is 3660 * probably too small. It only makes sense to spread allocations to avoid 3661 * fragmentation between the Normal and DMA32 zones. 3662 */ 3663 static inline unsigned int 3664 alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask) 3665 { 3666 unsigned int alloc_flags; 3667 3668 /* 3669 * __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD 3670 * to save a branch. 3671 */ 3672 alloc_flags = (__force int) (gfp_mask & __GFP_KSWAPD_RECLAIM); 3673 3674 if (defrag_mode) { 3675 alloc_flags |= ALLOC_NOFRAGMENT; 3676 return alloc_flags; 3677 } 3678 3679 #ifdef CONFIG_ZONE_DMA32 3680 if (!zone) 3681 return alloc_flags; 3682 3683 if (zone_idx(zone) != ZONE_NORMAL) 3684 return alloc_flags; 3685 3686 /* 3687 * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and 3688 * the pointer is within zone->zone_pgdat->node_zones[]. Also assume 3689 * on UMA that if Normal is populated then so is DMA32. 3690 */ 3691 BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1); 3692 if (nr_online_nodes > 1 && !populated_zone(--zone)) 3693 return alloc_flags; 3694 3695 alloc_flags |= ALLOC_NOFRAGMENT; 3696 #endif /* CONFIG_ZONE_DMA32 */ 3697 return alloc_flags; 3698 } 3699 3700 /* Must be called after current_gfp_context() which can change gfp_mask */ 3701 static inline unsigned int gfp_to_alloc_flags_cma(gfp_t gfp_mask, 3702 unsigned int alloc_flags) 3703 { 3704 #ifdef CONFIG_CMA 3705 if (gfp_migratetype(gfp_mask) == MIGRATE_MOVABLE) 3706 alloc_flags |= ALLOC_CMA; 3707 #endif 3708 return alloc_flags; 3709 } 3710 3711 /* 3712 * get_page_from_freelist goes through the zonelist trying to allocate 3713 * a page. 3714 */ 3715 static struct page * 3716 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags, 3717 const struct alloc_context *ac) 3718 { 3719 struct zoneref *z; 3720 struct zone *zone; 3721 struct pglist_data *last_pgdat = NULL; 3722 bool last_pgdat_dirty_ok = false; 3723 bool no_fallback; 3724 3725 retry: 3726 /* 3727 * Scan zonelist, looking for a zone with enough free. 3728 * See also cpuset_current_node_allowed() comment in kernel/cgroup/cpuset.c. 3729 */ 3730 no_fallback = alloc_flags & ALLOC_NOFRAGMENT; 3731 z = ac->preferred_zoneref; 3732 for_next_zone_zonelist_nodemask(zone, z, ac->highest_zoneidx, 3733 ac->nodemask) { 3734 struct page *page; 3735 unsigned long mark; 3736 3737 if (cpusets_enabled() && 3738 (alloc_flags & ALLOC_CPUSET) && 3739 !__cpuset_zone_allowed(zone, gfp_mask)) 3740 continue; 3741 /* 3742 * When allocating a page cache page for writing, we 3743 * want to get it from a node that is within its dirty 3744 * limit, such that no single node holds more than its 3745 * proportional share of globally allowed dirty pages. 3746 * The dirty limits take into account the node's 3747 * lowmem reserves and high watermark so that kswapd 3748 * should be able to balance it without having to 3749 * write pages from its LRU list. 3750 * 3751 * XXX: For now, allow allocations to potentially 3752 * exceed the per-node dirty limit in the slowpath 3753 * (spread_dirty_pages unset) before going into reclaim, 3754 * which is important when on a NUMA setup the allowed 3755 * nodes are together not big enough to reach the 3756 * global limit. The proper fix for these situations 3757 * will require awareness of nodes in the 3758 * dirty-throttling and the flusher threads. 3759 */ 3760 if (ac->spread_dirty_pages) { 3761 if (last_pgdat != zone->zone_pgdat) { 3762 last_pgdat = zone->zone_pgdat; 3763 last_pgdat_dirty_ok = node_dirty_ok(zone->zone_pgdat); 3764 } 3765 3766 if (!last_pgdat_dirty_ok) 3767 continue; 3768 } 3769 3770 if (no_fallback && !defrag_mode && nr_online_nodes > 1 && 3771 zone != zonelist_zone(ac->preferred_zoneref)) { 3772 int local_nid; 3773 3774 /* 3775 * If moving to a remote node, retry but allow 3776 * fragmenting fallbacks. Locality is more important 3777 * than fragmentation avoidance. 3778 */ 3779 local_nid = zonelist_node_idx(ac->preferred_zoneref); 3780 if (zone_to_nid(zone) != local_nid) { 3781 alloc_flags &= ~ALLOC_NOFRAGMENT; 3782 goto retry; 3783 } 3784 } 3785 3786 cond_accept_memory(zone, order, alloc_flags); 3787 3788 /* 3789 * Detect whether the number of free pages is below high 3790 * watermark. If so, we will decrease pcp->high and free 3791 * PCP pages in free path to reduce the possibility of 3792 * premature page reclaiming. Detection is done here to 3793 * avoid to do that in hotter free path. 3794 */ 3795 if (test_bit(ZONE_BELOW_HIGH, &zone->flags)) 3796 goto check_alloc_wmark; 3797 3798 mark = high_wmark_pages(zone); 3799 if (zone_watermark_fast(zone, order, mark, 3800 ac->highest_zoneidx, alloc_flags, 3801 gfp_mask)) 3802 goto try_this_zone; 3803 else 3804 set_bit(ZONE_BELOW_HIGH, &zone->flags); 3805 3806 check_alloc_wmark: 3807 mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK); 3808 if (!zone_watermark_fast(zone, order, mark, 3809 ac->highest_zoneidx, alloc_flags, 3810 gfp_mask)) { 3811 int ret; 3812 3813 if (cond_accept_memory(zone, order, alloc_flags)) 3814 goto try_this_zone; 3815 3816 /* 3817 * Watermark failed for this zone, but see if we can 3818 * grow this zone if it contains deferred pages. 3819 */ 3820 if (deferred_pages_enabled()) { 3821 if (_deferred_grow_zone(zone, order)) 3822 goto try_this_zone; 3823 } 3824 /* Checked here to keep the fast path fast */ 3825 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK); 3826 if (alloc_flags & ALLOC_NO_WATERMARKS) 3827 goto try_this_zone; 3828 3829 if (!node_reclaim_enabled() || 3830 !zone_allows_reclaim(zonelist_zone(ac->preferred_zoneref), zone)) 3831 continue; 3832 3833 ret = node_reclaim(zone->zone_pgdat, gfp_mask, order); 3834 switch (ret) { 3835 case NODE_RECLAIM_NOSCAN: 3836 /* did not scan */ 3837 continue; 3838 case NODE_RECLAIM_FULL: 3839 /* scanned but unreclaimable */ 3840 continue; 3841 default: 3842 /* did we reclaim enough */ 3843 if (zone_watermark_ok(zone, order, mark, 3844 ac->highest_zoneidx, alloc_flags)) 3845 goto try_this_zone; 3846 3847 continue; 3848 } 3849 } 3850 3851 try_this_zone: 3852 page = rmqueue(zonelist_zone(ac->preferred_zoneref), zone, order, 3853 gfp_mask, alloc_flags, ac->migratetype); 3854 if (page) { 3855 prep_new_page(page, order, gfp_mask, alloc_flags); 3856 3857 /* 3858 * If this is a high-order atomic allocation then check 3859 * if the pageblock should be reserved for the future 3860 */ 3861 if (unlikely(alloc_flags & ALLOC_HIGHATOMIC)) 3862 reserve_highatomic_pageblock(page, order, zone); 3863 3864 return page; 3865 } else { 3866 if (cond_accept_memory(zone, order, alloc_flags)) 3867 goto try_this_zone; 3868 3869 /* Try again if zone has deferred pages */ 3870 if (deferred_pages_enabled()) { 3871 if (_deferred_grow_zone(zone, order)) 3872 goto try_this_zone; 3873 } 3874 } 3875 } 3876 3877 /* 3878 * It's possible on a UMA machine to get through all zones that are 3879 * fragmented. If avoiding fragmentation, reset and try again. 3880 */ 3881 if (no_fallback && !defrag_mode) { 3882 alloc_flags &= ~ALLOC_NOFRAGMENT; 3883 goto retry; 3884 } 3885 3886 return NULL; 3887 } 3888 3889 static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask) 3890 { 3891 unsigned int filter = SHOW_MEM_FILTER_NODES; 3892 3893 /* 3894 * This documents exceptions given to allocations in certain 3895 * contexts that are allowed to allocate outside current's set 3896 * of allowed nodes. 3897 */ 3898 if (!(gfp_mask & __GFP_NOMEMALLOC)) 3899 if (tsk_is_oom_victim(current) || 3900 (current->flags & (PF_MEMALLOC | PF_EXITING))) 3901 filter &= ~SHOW_MEM_FILTER_NODES; 3902 if (!in_task() || !(gfp_mask & __GFP_DIRECT_RECLAIM)) 3903 filter &= ~SHOW_MEM_FILTER_NODES; 3904 3905 __show_mem(filter, nodemask, gfp_zone(gfp_mask)); 3906 } 3907 3908 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...) 3909 { 3910 struct va_format vaf; 3911 va_list args; 3912 static DEFINE_RATELIMIT_STATE(nopage_rs, 10*HZ, 1); 3913 3914 if ((gfp_mask & __GFP_NOWARN) || 3915 !__ratelimit(&nopage_rs) || 3916 ((gfp_mask & __GFP_DMA) && !has_managed_dma())) 3917 return; 3918 3919 va_start(args, fmt); 3920 vaf.fmt = fmt; 3921 vaf.va = &args; 3922 pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl", 3923 current->comm, &vaf, gfp_mask, &gfp_mask, 3924 nodemask_pr_args(nodemask)); 3925 va_end(args); 3926 3927 cpuset_print_current_mems_allowed(); 3928 pr_cont("\n"); 3929 dump_stack(); 3930 warn_alloc_show_mem(gfp_mask, nodemask); 3931 } 3932 3933 static inline struct page * 3934 __alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order, 3935 unsigned int alloc_flags, 3936 const struct alloc_context *ac) 3937 { 3938 struct page *page; 3939 3940 page = get_page_from_freelist(gfp_mask, order, 3941 alloc_flags|ALLOC_CPUSET, ac); 3942 /* 3943 * fallback to ignore cpuset restriction if our nodes 3944 * are depleted 3945 */ 3946 if (!page) 3947 page = get_page_from_freelist(gfp_mask, order, 3948 alloc_flags, ac); 3949 return page; 3950 } 3951 3952 static inline struct page * 3953 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order, 3954 const struct alloc_context *ac, unsigned long *did_some_progress) 3955 { 3956 struct oom_control oc = { 3957 .zonelist = ac->zonelist, 3958 .nodemask = ac->nodemask, 3959 .memcg = NULL, 3960 .gfp_mask = gfp_mask, 3961 .order = order, 3962 }; 3963 struct page *page; 3964 3965 *did_some_progress = 0; 3966 3967 /* 3968 * Acquire the oom lock. If that fails, somebody else is 3969 * making progress for us. 3970 */ 3971 if (!mutex_trylock(&oom_lock)) { 3972 *did_some_progress = 1; 3973 schedule_timeout_uninterruptible(1); 3974 return NULL; 3975 } 3976 3977 /* 3978 * Go through the zonelist yet one more time, keep very high watermark 3979 * here, this is only to catch a parallel oom killing, we must fail if 3980 * we're still under heavy pressure. But make sure that this reclaim 3981 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY 3982 * allocation which will never fail due to oom_lock already held. 3983 */ 3984 page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) & 3985 ~__GFP_DIRECT_RECLAIM, order, 3986 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac); 3987 if (page) 3988 goto out; 3989 3990 /* Coredumps can quickly deplete all memory reserves */ 3991 if (current->flags & PF_DUMPCORE) 3992 goto out; 3993 /* The OOM killer will not help higher order allocs */ 3994 if (order > PAGE_ALLOC_COSTLY_ORDER) 3995 goto out; 3996 /* 3997 * We have already exhausted all our reclaim opportunities without any 3998 * success so it is time to admit defeat. We will skip the OOM killer 3999 * because it is very likely that the caller has a more reasonable 4000 * fallback than shooting a random task. 4001 * 4002 * The OOM killer may not free memory on a specific node. 4003 */ 4004 if (gfp_mask & (__GFP_RETRY_MAYFAIL | __GFP_THISNODE)) 4005 goto out; 4006 /* The OOM killer does not needlessly kill tasks for lowmem */ 4007 if (ac->highest_zoneidx < ZONE_NORMAL) 4008 goto out; 4009 if (pm_suspended_storage()) 4010 goto out; 4011 /* 4012 * XXX: GFP_NOFS allocations should rather fail than rely on 4013 * other request to make a forward progress. 4014 * We are in an unfortunate situation where out_of_memory cannot 4015 * do much for this context but let's try it to at least get 4016 * access to memory reserved if the current task is killed (see 4017 * out_of_memory). Once filesystems are ready to handle allocation 4018 * failures more gracefully we should just bail out here. 4019 */ 4020 4021 /* Exhausted what can be done so it's blame time */ 4022 if (out_of_memory(&oc) || 4023 WARN_ON_ONCE_GFP(gfp_mask & __GFP_NOFAIL, gfp_mask)) { 4024 *did_some_progress = 1; 4025 4026 /* 4027 * Help non-failing allocations by giving them access to memory 4028 * reserves 4029 */ 4030 if (gfp_mask & __GFP_NOFAIL) 4031 page = __alloc_pages_cpuset_fallback(gfp_mask, order, 4032 ALLOC_NO_WATERMARKS, ac); 4033 } 4034 out: 4035 mutex_unlock(&oom_lock); 4036 return page; 4037 } 4038 4039 /* 4040 * Maximum number of compaction retries with a progress before OOM 4041 * killer is consider as the only way to move forward. 4042 */ 4043 #define MAX_COMPACT_RETRIES 16 4044 4045 #ifdef CONFIG_COMPACTION 4046 /* Try memory compaction for high-order allocations before reclaim */ 4047 static struct page * 4048 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order, 4049 unsigned int alloc_flags, const struct alloc_context *ac, 4050 enum compact_priority prio, enum compact_result *compact_result) 4051 { 4052 struct page *page = NULL; 4053 unsigned long pflags; 4054 unsigned int noreclaim_flag; 4055 4056 if (!order) 4057 return NULL; 4058 4059 psi_memstall_enter(&pflags); 4060 delayacct_compact_start(); 4061 noreclaim_flag = memalloc_noreclaim_save(); 4062 4063 *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac, 4064 prio, &page); 4065 4066 memalloc_noreclaim_restore(noreclaim_flag); 4067 psi_memstall_leave(&pflags); 4068 delayacct_compact_end(); 4069 4070 if (*compact_result == COMPACT_SKIPPED) 4071 return NULL; 4072 /* 4073 * At least in one zone compaction wasn't deferred or skipped, so let's 4074 * count a compaction stall 4075 */ 4076 count_vm_event(COMPACTSTALL); 4077 4078 /* Prep a captured page if available */ 4079 if (page) 4080 prep_new_page(page, order, gfp_mask, alloc_flags); 4081 4082 /* Try get a page from the freelist if available */ 4083 if (!page) 4084 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 4085 4086 if (page) { 4087 struct zone *zone = page_zone(page); 4088 4089 zone->compact_blockskip_flush = false; 4090 compaction_defer_reset(zone, order, true); 4091 count_vm_event(COMPACTSUCCESS); 4092 return page; 4093 } 4094 4095 /* 4096 * It's bad if compaction run occurs and fails. The most likely reason 4097 * is that pages exist, but not enough to satisfy watermarks. 4098 */ 4099 count_vm_event(COMPACTFAIL); 4100 4101 cond_resched(); 4102 4103 return NULL; 4104 } 4105 4106 static inline bool 4107 should_compact_retry(struct alloc_context *ac, int order, int alloc_flags, 4108 enum compact_result compact_result, 4109 enum compact_priority *compact_priority, 4110 int *compaction_retries) 4111 { 4112 int max_retries = MAX_COMPACT_RETRIES; 4113 int min_priority; 4114 bool ret = false; 4115 int retries = *compaction_retries; 4116 enum compact_priority priority = *compact_priority; 4117 4118 if (!order) 4119 return false; 4120 4121 if (fatal_signal_pending(current)) 4122 return false; 4123 4124 /* 4125 * Compaction was skipped due to a lack of free order-0 4126 * migration targets. Continue if reclaim can help. 4127 */ 4128 if (compact_result == COMPACT_SKIPPED) { 4129 ret = compaction_zonelist_suitable(ac, order, alloc_flags); 4130 goto out; 4131 } 4132 4133 /* 4134 * Compaction managed to coalesce some page blocks, but the 4135 * allocation failed presumably due to a race. Retry some. 4136 */ 4137 if (compact_result == COMPACT_SUCCESS) { 4138 /* 4139 * !costly requests are much more important than 4140 * __GFP_RETRY_MAYFAIL costly ones because they are de 4141 * facto nofail and invoke OOM killer to move on while 4142 * costly can fail and users are ready to cope with 4143 * that. 1/4 retries is rather arbitrary but we would 4144 * need much more detailed feedback from compaction to 4145 * make a better decision. 4146 */ 4147 if (order > PAGE_ALLOC_COSTLY_ORDER) 4148 max_retries /= 4; 4149 4150 if (++(*compaction_retries) <= max_retries) { 4151 ret = true; 4152 goto out; 4153 } 4154 } 4155 4156 /* 4157 * Compaction failed. Retry with increasing priority. 4158 */ 4159 min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ? 4160 MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY; 4161 4162 if (*compact_priority > min_priority) { 4163 (*compact_priority)--; 4164 *compaction_retries = 0; 4165 ret = true; 4166 } 4167 out: 4168 trace_compact_retry(order, priority, compact_result, retries, max_retries, ret); 4169 return ret; 4170 } 4171 #else 4172 static inline struct page * 4173 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order, 4174 unsigned int alloc_flags, const struct alloc_context *ac, 4175 enum compact_priority prio, enum compact_result *compact_result) 4176 { 4177 *compact_result = COMPACT_SKIPPED; 4178 return NULL; 4179 } 4180 4181 static inline bool 4182 should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags, 4183 enum compact_result compact_result, 4184 enum compact_priority *compact_priority, 4185 int *compaction_retries) 4186 { 4187 struct zone *zone; 4188 struct zoneref *z; 4189 4190 if (!order || order > PAGE_ALLOC_COSTLY_ORDER) 4191 return false; 4192 4193 /* 4194 * There are setups with compaction disabled which would prefer to loop 4195 * inside the allocator rather than hit the oom killer prematurely. 4196 * Let's give them a good hope and keep retrying while the order-0 4197 * watermarks are OK. 4198 */ 4199 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, 4200 ac->highest_zoneidx, ac->nodemask) { 4201 if (zone_watermark_ok(zone, 0, min_wmark_pages(zone), 4202 ac->highest_zoneidx, alloc_flags)) 4203 return true; 4204 } 4205 return false; 4206 } 4207 #endif /* CONFIG_COMPACTION */ 4208 4209 #ifdef CONFIG_LOCKDEP 4210 static struct lockdep_map __fs_reclaim_map = 4211 STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map); 4212 4213 static bool __need_reclaim(gfp_t gfp_mask) 4214 { 4215 /* no reclaim without waiting on it */ 4216 if (!(gfp_mask & __GFP_DIRECT_RECLAIM)) 4217 return false; 4218 4219 /* this guy won't enter reclaim */ 4220 if (current->flags & PF_MEMALLOC) 4221 return false; 4222 4223 if (gfp_mask & __GFP_NOLOCKDEP) 4224 return false; 4225 4226 return true; 4227 } 4228 4229 void __fs_reclaim_acquire(unsigned long ip) 4230 { 4231 lock_acquire_exclusive(&__fs_reclaim_map, 0, 0, NULL, ip); 4232 } 4233 4234 void __fs_reclaim_release(unsigned long ip) 4235 { 4236 lock_release(&__fs_reclaim_map, ip); 4237 } 4238 4239 void fs_reclaim_acquire(gfp_t gfp_mask) 4240 { 4241 gfp_mask = current_gfp_context(gfp_mask); 4242 4243 if (__need_reclaim(gfp_mask)) { 4244 if (gfp_mask & __GFP_FS) 4245 __fs_reclaim_acquire(_RET_IP_); 4246 4247 #ifdef CONFIG_MMU_NOTIFIER 4248 lock_map_acquire(&__mmu_notifier_invalidate_range_start_map); 4249 lock_map_release(&__mmu_notifier_invalidate_range_start_map); 4250 #endif 4251 4252 } 4253 } 4254 EXPORT_SYMBOL_GPL(fs_reclaim_acquire); 4255 4256 void fs_reclaim_release(gfp_t gfp_mask) 4257 { 4258 gfp_mask = current_gfp_context(gfp_mask); 4259 4260 if (__need_reclaim(gfp_mask)) { 4261 if (gfp_mask & __GFP_FS) 4262 __fs_reclaim_release(_RET_IP_); 4263 } 4264 } 4265 EXPORT_SYMBOL_GPL(fs_reclaim_release); 4266 #endif 4267 4268 /* 4269 * Zonelists may change due to hotplug during allocation. Detect when zonelists 4270 * have been rebuilt so allocation retries. Reader side does not lock and 4271 * retries the allocation if zonelist changes. Writer side is protected by the 4272 * embedded spin_lock. 4273 */ 4274 static DEFINE_SEQLOCK(zonelist_update_seq); 4275 4276 static unsigned int zonelist_iter_begin(void) 4277 { 4278 if (IS_ENABLED(CONFIG_MEMORY_HOTREMOVE)) 4279 return read_seqbegin(&zonelist_update_seq); 4280 4281 return 0; 4282 } 4283 4284 static unsigned int check_retry_zonelist(unsigned int seq) 4285 { 4286 if (IS_ENABLED(CONFIG_MEMORY_HOTREMOVE)) 4287 return read_seqretry(&zonelist_update_seq, seq); 4288 4289 return seq; 4290 } 4291 4292 /* Perform direct synchronous page reclaim */ 4293 static unsigned long 4294 __perform_reclaim(gfp_t gfp_mask, unsigned int order, 4295 const struct alloc_context *ac) 4296 { 4297 unsigned int noreclaim_flag; 4298 unsigned long progress; 4299 4300 cond_resched(); 4301 4302 /* We now go into synchronous reclaim */ 4303 cpuset_memory_pressure_bump(); 4304 fs_reclaim_acquire(gfp_mask); 4305 noreclaim_flag = memalloc_noreclaim_save(); 4306 4307 progress = try_to_free_pages(ac->zonelist, order, gfp_mask, 4308 ac->nodemask); 4309 4310 memalloc_noreclaim_restore(noreclaim_flag); 4311 fs_reclaim_release(gfp_mask); 4312 4313 cond_resched(); 4314 4315 return progress; 4316 } 4317 4318 /* The really slow allocator path where we enter direct reclaim */ 4319 static inline struct page * 4320 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order, 4321 unsigned int alloc_flags, const struct alloc_context *ac, 4322 unsigned long *did_some_progress) 4323 { 4324 struct page *page = NULL; 4325 unsigned long pflags; 4326 bool drained = false; 4327 4328 psi_memstall_enter(&pflags); 4329 *did_some_progress = __perform_reclaim(gfp_mask, order, ac); 4330 if (unlikely(!(*did_some_progress))) 4331 goto out; 4332 4333 retry: 4334 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 4335 4336 /* 4337 * If an allocation failed after direct reclaim, it could be because 4338 * pages are pinned on the per-cpu lists or in high alloc reserves. 4339 * Shrink them and try again 4340 */ 4341 if (!page && !drained) { 4342 unreserve_highatomic_pageblock(ac, false); 4343 drain_all_pages(NULL); 4344 drained = true; 4345 goto retry; 4346 } 4347 out: 4348 psi_memstall_leave(&pflags); 4349 4350 return page; 4351 } 4352 4353 static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask, 4354 const struct alloc_context *ac) 4355 { 4356 struct zoneref *z; 4357 struct zone *zone; 4358 pg_data_t *last_pgdat = NULL; 4359 enum zone_type highest_zoneidx = ac->highest_zoneidx; 4360 unsigned int reclaim_order; 4361 4362 if (defrag_mode) 4363 reclaim_order = max(order, pageblock_order); 4364 else 4365 reclaim_order = order; 4366 4367 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, highest_zoneidx, 4368 ac->nodemask) { 4369 if (!managed_zone(zone)) 4370 continue; 4371 if (last_pgdat == zone->zone_pgdat) 4372 continue; 4373 wakeup_kswapd(zone, gfp_mask, reclaim_order, highest_zoneidx); 4374 last_pgdat = zone->zone_pgdat; 4375 } 4376 } 4377 4378 static inline unsigned int 4379 gfp_to_alloc_flags(gfp_t gfp_mask, unsigned int order) 4380 { 4381 unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET; 4382 4383 /* 4384 * __GFP_HIGH is assumed to be the same as ALLOC_MIN_RESERVE 4385 * and __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD 4386 * to save two branches. 4387 */ 4388 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_MIN_RESERVE); 4389 BUILD_BUG_ON(__GFP_KSWAPD_RECLAIM != (__force gfp_t) ALLOC_KSWAPD); 4390 4391 /* 4392 * The caller may dip into page reserves a bit more if the caller 4393 * cannot run direct reclaim, or if the caller has realtime scheduling 4394 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will 4395 * set both ALLOC_NON_BLOCK and ALLOC_MIN_RESERVE(__GFP_HIGH). 4396 */ 4397 alloc_flags |= (__force int) 4398 (gfp_mask & (__GFP_HIGH | __GFP_KSWAPD_RECLAIM)); 4399 4400 if (!(gfp_mask & __GFP_DIRECT_RECLAIM)) { 4401 /* 4402 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even 4403 * if it can't schedule. 4404 */ 4405 if (!(gfp_mask & __GFP_NOMEMALLOC)) { 4406 alloc_flags |= ALLOC_NON_BLOCK; 4407 4408 if (order > 0) 4409 alloc_flags |= ALLOC_HIGHATOMIC; 4410 } 4411 4412 /* 4413 * Ignore cpuset mems for non-blocking __GFP_HIGH (probably 4414 * GFP_ATOMIC) rather than fail, see the comment for 4415 * cpuset_current_node_allowed(). 4416 */ 4417 if (alloc_flags & ALLOC_MIN_RESERVE) 4418 alloc_flags &= ~ALLOC_CPUSET; 4419 } else if (unlikely(rt_or_dl_task(current)) && in_task()) 4420 alloc_flags |= ALLOC_MIN_RESERVE; 4421 4422 alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, alloc_flags); 4423 4424 if (defrag_mode) 4425 alloc_flags |= ALLOC_NOFRAGMENT; 4426 4427 return alloc_flags; 4428 } 4429 4430 static bool oom_reserves_allowed(struct task_struct *tsk) 4431 { 4432 if (!tsk_is_oom_victim(tsk)) 4433 return false; 4434 4435 /* 4436 * !MMU doesn't have oom reaper so give access to memory reserves 4437 * only to the thread with TIF_MEMDIE set 4438 */ 4439 if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE)) 4440 return false; 4441 4442 return true; 4443 } 4444 4445 /* 4446 * Distinguish requests which really need access to full memory 4447 * reserves from oom victims which can live with a portion of it 4448 */ 4449 static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask) 4450 { 4451 if (unlikely(gfp_mask & __GFP_NOMEMALLOC)) 4452 return 0; 4453 if (gfp_mask & __GFP_MEMALLOC) 4454 return ALLOC_NO_WATERMARKS; 4455 if (in_serving_softirq() && (current->flags & PF_MEMALLOC)) 4456 return ALLOC_NO_WATERMARKS; 4457 if (!in_interrupt()) { 4458 if (current->flags & PF_MEMALLOC) 4459 return ALLOC_NO_WATERMARKS; 4460 else if (oom_reserves_allowed(current)) 4461 return ALLOC_OOM; 4462 } 4463 4464 return 0; 4465 } 4466 4467 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask) 4468 { 4469 return !!__gfp_pfmemalloc_flags(gfp_mask); 4470 } 4471 4472 /* 4473 * Checks whether it makes sense to retry the reclaim to make a forward progress 4474 * for the given allocation request. 4475 * 4476 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row 4477 * without success, or when we couldn't even meet the watermark if we 4478 * reclaimed all remaining pages on the LRU lists. 4479 * 4480 * Returns true if a retry is viable or false to enter the oom path. 4481 */ 4482 static inline bool 4483 should_reclaim_retry(gfp_t gfp_mask, unsigned order, 4484 struct alloc_context *ac, int alloc_flags, 4485 bool did_some_progress, int *no_progress_loops) 4486 { 4487 struct zone *zone; 4488 struct zoneref *z; 4489 bool ret = false; 4490 4491 /* 4492 * Costly allocations might have made a progress but this doesn't mean 4493 * their order will become available due to high fragmentation so 4494 * always increment the no progress counter for them 4495 */ 4496 if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER) 4497 *no_progress_loops = 0; 4498 else 4499 (*no_progress_loops)++; 4500 4501 if (*no_progress_loops > MAX_RECLAIM_RETRIES) 4502 goto out; 4503 4504 4505 /* 4506 * Keep reclaiming pages while there is a chance this will lead 4507 * somewhere. If none of the target zones can satisfy our allocation 4508 * request even if all reclaimable pages are considered then we are 4509 * screwed and have to go OOM. 4510 */ 4511 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, 4512 ac->highest_zoneidx, ac->nodemask) { 4513 unsigned long available; 4514 unsigned long reclaimable; 4515 unsigned long min_wmark = min_wmark_pages(zone); 4516 bool wmark; 4517 4518 if (cpusets_enabled() && 4519 (alloc_flags & ALLOC_CPUSET) && 4520 !__cpuset_zone_allowed(zone, gfp_mask)) 4521 continue; 4522 4523 available = reclaimable = zone_reclaimable_pages(zone); 4524 available += zone_page_state_snapshot(zone, NR_FREE_PAGES); 4525 4526 /* 4527 * Would the allocation succeed if we reclaimed all 4528 * reclaimable pages? 4529 */ 4530 wmark = __zone_watermark_ok(zone, order, min_wmark, 4531 ac->highest_zoneidx, alloc_flags, available); 4532 trace_reclaim_retry_zone(z, order, reclaimable, 4533 available, min_wmark, *no_progress_loops, wmark); 4534 if (wmark) { 4535 ret = true; 4536 break; 4537 } 4538 } 4539 4540 /* 4541 * Memory allocation/reclaim might be called from a WQ context and the 4542 * current implementation of the WQ concurrency control doesn't 4543 * recognize that a particular WQ is congested if the worker thread is 4544 * looping without ever sleeping. Therefore we have to do a short sleep 4545 * here rather than calling cond_resched(). 4546 */ 4547 if (current->flags & PF_WQ_WORKER) 4548 schedule_timeout_uninterruptible(1); 4549 else 4550 cond_resched(); 4551 out: 4552 /* Before OOM, exhaust highatomic_reserve */ 4553 if (!ret) 4554 return unreserve_highatomic_pageblock(ac, true); 4555 4556 return ret; 4557 } 4558 4559 static inline bool 4560 check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac) 4561 { 4562 /* 4563 * It's possible that cpuset's mems_allowed and the nodemask from 4564 * mempolicy don't intersect. This should be normally dealt with by 4565 * policy_nodemask(), but it's possible to race with cpuset update in 4566 * such a way the check therein was true, and then it became false 4567 * before we got our cpuset_mems_cookie here. 4568 * This assumes that for all allocations, ac->nodemask can come only 4569 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored 4570 * when it does not intersect with the cpuset restrictions) or the 4571 * caller can deal with a violated nodemask. 4572 */ 4573 if (cpusets_enabled() && ac->nodemask && 4574 !cpuset_nodemask_valid_mems_allowed(ac->nodemask)) { 4575 ac->nodemask = NULL; 4576 return true; 4577 } 4578 4579 /* 4580 * When updating a task's mems_allowed or mempolicy nodemask, it is 4581 * possible to race with parallel threads in such a way that our 4582 * allocation can fail while the mask is being updated. If we are about 4583 * to fail, check if the cpuset changed during allocation and if so, 4584 * retry. 4585 */ 4586 if (read_mems_allowed_retry(cpuset_mems_cookie)) 4587 return true; 4588 4589 return false; 4590 } 4591 4592 static inline struct page * 4593 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order, 4594 struct alloc_context *ac) 4595 { 4596 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM; 4597 bool can_compact = gfp_compaction_allowed(gfp_mask); 4598 bool nofail = gfp_mask & __GFP_NOFAIL; 4599 const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER; 4600 struct page *page = NULL; 4601 unsigned int alloc_flags; 4602 unsigned long did_some_progress; 4603 enum compact_priority compact_priority; 4604 enum compact_result compact_result; 4605 int compaction_retries; 4606 int no_progress_loops; 4607 unsigned int cpuset_mems_cookie; 4608 unsigned int zonelist_iter_cookie; 4609 int reserve_flags; 4610 4611 if (unlikely(nofail)) { 4612 /* 4613 * We most definitely don't want callers attempting to 4614 * allocate greater than order-1 page units with __GFP_NOFAIL. 4615 */ 4616 WARN_ON_ONCE(order > 1); 4617 /* 4618 * Also we don't support __GFP_NOFAIL without __GFP_DIRECT_RECLAIM, 4619 * otherwise, we may result in lockup. 4620 */ 4621 WARN_ON_ONCE(!can_direct_reclaim); 4622 /* 4623 * PF_MEMALLOC request from this context is rather bizarre 4624 * because we cannot reclaim anything and only can loop waiting 4625 * for somebody to do a work for us. 4626 */ 4627 WARN_ON_ONCE(current->flags & PF_MEMALLOC); 4628 } 4629 4630 restart: 4631 compaction_retries = 0; 4632 no_progress_loops = 0; 4633 compact_result = COMPACT_SKIPPED; 4634 compact_priority = DEF_COMPACT_PRIORITY; 4635 cpuset_mems_cookie = read_mems_allowed_begin(); 4636 zonelist_iter_cookie = zonelist_iter_begin(); 4637 4638 /* 4639 * The fast path uses conservative alloc_flags to succeed only until 4640 * kswapd needs to be woken up, and to avoid the cost of setting up 4641 * alloc_flags precisely. So we do that now. 4642 */ 4643 alloc_flags = gfp_to_alloc_flags(gfp_mask, order); 4644 4645 /* 4646 * We need to recalculate the starting point for the zonelist iterator 4647 * because we might have used different nodemask in the fast path, or 4648 * there was a cpuset modification and we are retrying - otherwise we 4649 * could end up iterating over non-eligible zones endlessly. 4650 */ 4651 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist, 4652 ac->highest_zoneidx, ac->nodemask); 4653 if (!zonelist_zone(ac->preferred_zoneref)) 4654 goto nopage; 4655 4656 /* 4657 * Check for insane configurations where the cpuset doesn't contain 4658 * any suitable zone to satisfy the request - e.g. non-movable 4659 * GFP_HIGHUSER allocations from MOVABLE nodes only. 4660 */ 4661 if (cpusets_insane_config() && (gfp_mask & __GFP_HARDWALL)) { 4662 struct zoneref *z = first_zones_zonelist(ac->zonelist, 4663 ac->highest_zoneidx, 4664 &cpuset_current_mems_allowed); 4665 if (!zonelist_zone(z)) 4666 goto nopage; 4667 } 4668 4669 if (alloc_flags & ALLOC_KSWAPD) 4670 wake_all_kswapds(order, gfp_mask, ac); 4671 4672 /* 4673 * The adjusted alloc_flags might result in immediate success, so try 4674 * that first 4675 */ 4676 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 4677 if (page) 4678 goto got_pg; 4679 4680 /* 4681 * For costly allocations, try direct compaction first, as it's likely 4682 * that we have enough base pages and don't need to reclaim. For non- 4683 * movable high-order allocations, do that as well, as compaction will 4684 * try prevent permanent fragmentation by migrating from blocks of the 4685 * same migratetype. 4686 * Don't try this for allocations that are allowed to ignore 4687 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen. 4688 */ 4689 if (can_direct_reclaim && can_compact && 4690 (costly_order || 4691 (order > 0 && ac->migratetype != MIGRATE_MOVABLE)) 4692 && !gfp_pfmemalloc_allowed(gfp_mask)) { 4693 page = __alloc_pages_direct_compact(gfp_mask, order, 4694 alloc_flags, ac, 4695 INIT_COMPACT_PRIORITY, 4696 &compact_result); 4697 if (page) 4698 goto got_pg; 4699 4700 /* 4701 * Checks for costly allocations with __GFP_NORETRY, which 4702 * includes some THP page fault allocations 4703 */ 4704 if (costly_order && (gfp_mask & __GFP_NORETRY)) { 4705 /* 4706 * If allocating entire pageblock(s) and compaction 4707 * failed because all zones are below low watermarks 4708 * or is prohibited because it recently failed at this 4709 * order, fail immediately unless the allocator has 4710 * requested compaction and reclaim retry. 4711 * 4712 * Reclaim is 4713 * - potentially very expensive because zones are far 4714 * below their low watermarks or this is part of very 4715 * bursty high order allocations, 4716 * - not guaranteed to help because isolate_freepages() 4717 * may not iterate over freed pages as part of its 4718 * linear scan, and 4719 * - unlikely to make entire pageblocks free on its 4720 * own. 4721 */ 4722 if (compact_result == COMPACT_SKIPPED || 4723 compact_result == COMPACT_DEFERRED) 4724 goto nopage; 4725 4726 /* 4727 * Looks like reclaim/compaction is worth trying, but 4728 * sync compaction could be very expensive, so keep 4729 * using async compaction. 4730 */ 4731 compact_priority = INIT_COMPACT_PRIORITY; 4732 } 4733 } 4734 4735 retry: 4736 /* 4737 * Deal with possible cpuset update races or zonelist updates to avoid 4738 * infinite retries. 4739 */ 4740 if (check_retry_cpuset(cpuset_mems_cookie, ac) || 4741 check_retry_zonelist(zonelist_iter_cookie)) 4742 goto restart; 4743 4744 /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */ 4745 if (alloc_flags & ALLOC_KSWAPD) 4746 wake_all_kswapds(order, gfp_mask, ac); 4747 4748 reserve_flags = __gfp_pfmemalloc_flags(gfp_mask); 4749 if (reserve_flags) 4750 alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, reserve_flags) | 4751 (alloc_flags & ALLOC_KSWAPD); 4752 4753 /* 4754 * Reset the nodemask and zonelist iterators if memory policies can be 4755 * ignored. These allocations are high priority and system rather than 4756 * user oriented. 4757 */ 4758 if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) { 4759 ac->nodemask = NULL; 4760 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist, 4761 ac->highest_zoneidx, ac->nodemask); 4762 } 4763 4764 /* Attempt with potentially adjusted zonelist and alloc_flags */ 4765 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 4766 if (page) 4767 goto got_pg; 4768 4769 /* Caller is not willing to reclaim, we can't balance anything */ 4770 if (!can_direct_reclaim) 4771 goto nopage; 4772 4773 /* Avoid recursion of direct reclaim */ 4774 if (current->flags & PF_MEMALLOC) 4775 goto nopage; 4776 4777 /* Try direct reclaim and then allocating */ 4778 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac, 4779 &did_some_progress); 4780 if (page) 4781 goto got_pg; 4782 4783 /* Try direct compaction and then allocating */ 4784 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac, 4785 compact_priority, &compact_result); 4786 if (page) 4787 goto got_pg; 4788 4789 /* Do not loop if specifically requested */ 4790 if (gfp_mask & __GFP_NORETRY) 4791 goto nopage; 4792 4793 /* 4794 * Do not retry costly high order allocations unless they are 4795 * __GFP_RETRY_MAYFAIL and we can compact 4796 */ 4797 if (costly_order && (!can_compact || 4798 !(gfp_mask & __GFP_RETRY_MAYFAIL))) 4799 goto nopage; 4800 4801 if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags, 4802 did_some_progress > 0, &no_progress_loops)) 4803 goto retry; 4804 4805 /* 4806 * It doesn't make any sense to retry for the compaction if the order-0 4807 * reclaim is not able to make any progress because the current 4808 * implementation of the compaction depends on the sufficient amount 4809 * of free memory (see __compaction_suitable) 4810 */ 4811 if (did_some_progress > 0 && can_compact && 4812 should_compact_retry(ac, order, alloc_flags, 4813 compact_result, &compact_priority, 4814 &compaction_retries)) 4815 goto retry; 4816 4817 /* Reclaim/compaction failed to prevent the fallback */ 4818 if (defrag_mode && (alloc_flags & ALLOC_NOFRAGMENT)) { 4819 alloc_flags &= ~ALLOC_NOFRAGMENT; 4820 goto retry; 4821 } 4822 4823 /* 4824 * Deal with possible cpuset update races or zonelist updates to avoid 4825 * a unnecessary OOM kill. 4826 */ 4827 if (check_retry_cpuset(cpuset_mems_cookie, ac) || 4828 check_retry_zonelist(zonelist_iter_cookie)) 4829 goto restart; 4830 4831 /* Reclaim has failed us, start killing things */ 4832 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress); 4833 if (page) 4834 goto got_pg; 4835 4836 /* Avoid allocations with no watermarks from looping endlessly */ 4837 if (tsk_is_oom_victim(current) && 4838 (alloc_flags & ALLOC_OOM || 4839 (gfp_mask & __GFP_NOMEMALLOC))) 4840 goto nopage; 4841 4842 /* Retry as long as the OOM killer is making progress */ 4843 if (did_some_progress) { 4844 no_progress_loops = 0; 4845 goto retry; 4846 } 4847 4848 nopage: 4849 /* 4850 * Deal with possible cpuset update races or zonelist updates to avoid 4851 * a unnecessary OOM kill. 4852 */ 4853 if (check_retry_cpuset(cpuset_mems_cookie, ac) || 4854 check_retry_zonelist(zonelist_iter_cookie)) 4855 goto restart; 4856 4857 /* 4858 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure 4859 * we always retry 4860 */ 4861 if (unlikely(nofail)) { 4862 /* 4863 * Lacking direct_reclaim we can't do anything to reclaim memory, 4864 * we disregard these unreasonable nofail requests and still 4865 * return NULL 4866 */ 4867 if (!can_direct_reclaim) 4868 goto fail; 4869 4870 /* 4871 * Help non-failing allocations by giving some access to memory 4872 * reserves normally used for high priority non-blocking 4873 * allocations but do not use ALLOC_NO_WATERMARKS because this 4874 * could deplete whole memory reserves which would just make 4875 * the situation worse. 4876 */ 4877 page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_MIN_RESERVE, ac); 4878 if (page) 4879 goto got_pg; 4880 4881 cond_resched(); 4882 goto retry; 4883 } 4884 fail: 4885 warn_alloc(gfp_mask, ac->nodemask, 4886 "page allocation failure: order:%u", order); 4887 got_pg: 4888 return page; 4889 } 4890 4891 static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order, 4892 int preferred_nid, nodemask_t *nodemask, 4893 struct alloc_context *ac, gfp_t *alloc_gfp, 4894 unsigned int *alloc_flags) 4895 { 4896 ac->highest_zoneidx = gfp_zone(gfp_mask); 4897 ac->zonelist = node_zonelist(preferred_nid, gfp_mask); 4898 ac->nodemask = nodemask; 4899 ac->migratetype = gfp_migratetype(gfp_mask); 4900 4901 if (cpusets_enabled()) { 4902 *alloc_gfp |= __GFP_HARDWALL; 4903 /* 4904 * When we are in the interrupt context, it is irrelevant 4905 * to the current task context. It means that any node ok. 4906 */ 4907 if (in_task() && !ac->nodemask) 4908 ac->nodemask = &cpuset_current_mems_allowed; 4909 else 4910 *alloc_flags |= ALLOC_CPUSET; 4911 } 4912 4913 might_alloc(gfp_mask); 4914 4915 /* 4916 * Don't invoke should_fail logic, since it may call 4917 * get_random_u32() and printk() which need to spin_lock. 4918 */ 4919 if (!(*alloc_flags & ALLOC_TRYLOCK) && 4920 should_fail_alloc_page(gfp_mask, order)) 4921 return false; 4922 4923 *alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, *alloc_flags); 4924 4925 /* Dirty zone balancing only done in the fast path */ 4926 ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE); 4927 4928 /* 4929 * The preferred zone is used for statistics but crucially it is 4930 * also used as the starting point for the zonelist iterator. It 4931 * may get reset for allocations that ignore memory policies. 4932 */ 4933 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist, 4934 ac->highest_zoneidx, ac->nodemask); 4935 4936 return true; 4937 } 4938 4939 /* 4940 * __alloc_pages_bulk - Allocate a number of order-0 pages to an array 4941 * @gfp: GFP flags for the allocation 4942 * @preferred_nid: The preferred NUMA node ID to allocate from 4943 * @nodemask: Set of nodes to allocate from, may be NULL 4944 * @nr_pages: The number of pages desired in the array 4945 * @page_array: Array to store the pages 4946 * 4947 * This is a batched version of the page allocator that attempts to 4948 * allocate nr_pages quickly. Pages are added to the page_array. 4949 * 4950 * Note that only NULL elements are populated with pages and nr_pages 4951 * is the maximum number of pages that will be stored in the array. 4952 * 4953 * Returns the number of pages in the array. 4954 */ 4955 unsigned long alloc_pages_bulk_noprof(gfp_t gfp, int preferred_nid, 4956 nodemask_t *nodemask, int nr_pages, 4957 struct page **page_array) 4958 { 4959 struct page *page; 4960 unsigned long __maybe_unused UP_flags; 4961 struct zone *zone; 4962 struct zoneref *z; 4963 struct per_cpu_pages *pcp; 4964 struct list_head *pcp_list; 4965 struct alloc_context ac; 4966 gfp_t alloc_gfp; 4967 unsigned int alloc_flags = ALLOC_WMARK_LOW; 4968 int nr_populated = 0, nr_account = 0; 4969 4970 /* 4971 * Skip populated array elements to determine if any pages need 4972 * to be allocated before disabling IRQs. 4973 */ 4974 while (nr_populated < nr_pages && page_array[nr_populated]) 4975 nr_populated++; 4976 4977 /* No pages requested? */ 4978 if (unlikely(nr_pages <= 0)) 4979 goto out; 4980 4981 /* Already populated array? */ 4982 if (unlikely(nr_pages - nr_populated == 0)) 4983 goto out; 4984 4985 /* Bulk allocator does not support memcg accounting. */ 4986 if (memcg_kmem_online() && (gfp & __GFP_ACCOUNT)) 4987 goto failed; 4988 4989 /* Use the single page allocator for one page. */ 4990 if (nr_pages - nr_populated == 1) 4991 goto failed; 4992 4993 #ifdef CONFIG_PAGE_OWNER 4994 /* 4995 * PAGE_OWNER may recurse into the allocator to allocate space to 4996 * save the stack with pagesets.lock held. Releasing/reacquiring 4997 * removes much of the performance benefit of bulk allocation so 4998 * force the caller to allocate one page at a time as it'll have 4999 * similar performance to added complexity to the bulk allocator. 5000 */ 5001 if (static_branch_unlikely(&page_owner_inited)) 5002 goto failed; 5003 #endif 5004 5005 /* May set ALLOC_NOFRAGMENT, fragmentation will return 1 page. */ 5006 gfp &= gfp_allowed_mask; 5007 alloc_gfp = gfp; 5008 if (!prepare_alloc_pages(gfp, 0, preferred_nid, nodemask, &ac, &alloc_gfp, &alloc_flags)) 5009 goto out; 5010 gfp = alloc_gfp; 5011 5012 /* Find an allowed local zone that meets the low watermark. */ 5013 z = ac.preferred_zoneref; 5014 for_next_zone_zonelist_nodemask(zone, z, ac.highest_zoneidx, ac.nodemask) { 5015 unsigned long mark; 5016 5017 if (cpusets_enabled() && (alloc_flags & ALLOC_CPUSET) && 5018 !__cpuset_zone_allowed(zone, gfp)) { 5019 continue; 5020 } 5021 5022 if (nr_online_nodes > 1 && zone != zonelist_zone(ac.preferred_zoneref) && 5023 zone_to_nid(zone) != zonelist_node_idx(ac.preferred_zoneref)) { 5024 goto failed; 5025 } 5026 5027 cond_accept_memory(zone, 0, alloc_flags); 5028 retry_this_zone: 5029 mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK) + nr_pages; 5030 if (zone_watermark_fast(zone, 0, mark, 5031 zonelist_zone_idx(ac.preferred_zoneref), 5032 alloc_flags, gfp)) { 5033 break; 5034 } 5035 5036 if (cond_accept_memory(zone, 0, alloc_flags)) 5037 goto retry_this_zone; 5038 5039 /* Try again if zone has deferred pages */ 5040 if (deferred_pages_enabled()) { 5041 if (_deferred_grow_zone(zone, 0)) 5042 goto retry_this_zone; 5043 } 5044 } 5045 5046 /* 5047 * If there are no allowed local zones that meets the watermarks then 5048 * try to allocate a single page and reclaim if necessary. 5049 */ 5050 if (unlikely(!zone)) 5051 goto failed; 5052 5053 /* spin_trylock may fail due to a parallel drain or IRQ reentrancy. */ 5054 pcp_trylock_prepare(UP_flags); 5055 pcp = pcp_spin_trylock(zone->per_cpu_pageset); 5056 if (!pcp) 5057 goto failed_irq; 5058 5059 /* Attempt the batch allocation */ 5060 pcp_list = &pcp->lists[order_to_pindex(ac.migratetype, 0)]; 5061 while (nr_populated < nr_pages) { 5062 5063 /* Skip existing pages */ 5064 if (page_array[nr_populated]) { 5065 nr_populated++; 5066 continue; 5067 } 5068 5069 page = __rmqueue_pcplist(zone, 0, ac.migratetype, alloc_flags, 5070 pcp, pcp_list); 5071 if (unlikely(!page)) { 5072 /* Try and allocate at least one page */ 5073 if (!nr_account) { 5074 pcp_spin_unlock(pcp); 5075 goto failed_irq; 5076 } 5077 break; 5078 } 5079 nr_account++; 5080 5081 prep_new_page(page, 0, gfp, 0); 5082 set_page_refcounted(page); 5083 page_array[nr_populated++] = page; 5084 } 5085 5086 pcp_spin_unlock(pcp); 5087 pcp_trylock_finish(UP_flags); 5088 5089 __count_zid_vm_events(PGALLOC, zone_idx(zone), nr_account); 5090 zone_statistics(zonelist_zone(ac.preferred_zoneref), zone, nr_account); 5091 5092 out: 5093 return nr_populated; 5094 5095 failed_irq: 5096 pcp_trylock_finish(UP_flags); 5097 5098 failed: 5099 page = __alloc_pages_noprof(gfp, 0, preferred_nid, nodemask); 5100 if (page) 5101 page_array[nr_populated++] = page; 5102 goto out; 5103 } 5104 EXPORT_SYMBOL_GPL(alloc_pages_bulk_noprof); 5105 5106 /* 5107 * This is the 'heart' of the zoned buddy allocator. 5108 */ 5109 struct page *__alloc_frozen_pages_noprof(gfp_t gfp, unsigned int order, 5110 int preferred_nid, nodemask_t *nodemask) 5111 { 5112 struct page *page; 5113 unsigned int alloc_flags = ALLOC_WMARK_LOW; 5114 gfp_t alloc_gfp; /* The gfp_t that was actually used for allocation */ 5115 struct alloc_context ac = { }; 5116 5117 /* 5118 * There are several places where we assume that the order value is sane 5119 * so bail out early if the request is out of bound. 5120 */ 5121 if (WARN_ON_ONCE_GFP(order > MAX_PAGE_ORDER, gfp)) 5122 return NULL; 5123 5124 gfp &= gfp_allowed_mask; 5125 /* 5126 * Apply scoped allocation constraints. This is mainly about GFP_NOFS 5127 * resp. GFP_NOIO which has to be inherited for all allocation requests 5128 * from a particular context which has been marked by 5129 * memalloc_no{fs,io}_{save,restore}. And PF_MEMALLOC_PIN which ensures 5130 * movable zones are not used during allocation. 5131 */ 5132 gfp = current_gfp_context(gfp); 5133 alloc_gfp = gfp; 5134 if (!prepare_alloc_pages(gfp, order, preferred_nid, nodemask, &ac, 5135 &alloc_gfp, &alloc_flags)) 5136 return NULL; 5137 5138 /* 5139 * Forbid the first pass from falling back to types that fragment 5140 * memory until all local zones are considered. 5141 */ 5142 alloc_flags |= alloc_flags_nofragment(zonelist_zone(ac.preferred_zoneref), gfp); 5143 5144 /* First allocation attempt */ 5145 page = get_page_from_freelist(alloc_gfp, order, alloc_flags, &ac); 5146 if (likely(page)) 5147 goto out; 5148 5149 alloc_gfp = gfp; 5150 ac.spread_dirty_pages = false; 5151 5152 /* 5153 * Restore the original nodemask if it was potentially replaced with 5154 * &cpuset_current_mems_allowed to optimize the fast-path attempt. 5155 */ 5156 ac.nodemask = nodemask; 5157 5158 page = __alloc_pages_slowpath(alloc_gfp, order, &ac); 5159 5160 out: 5161 if (memcg_kmem_online() && (gfp & __GFP_ACCOUNT) && page && 5162 unlikely(__memcg_kmem_charge_page(page, gfp, order) != 0)) { 5163 free_frozen_pages(page, order); 5164 page = NULL; 5165 } 5166 5167 trace_mm_page_alloc(page, order, alloc_gfp, ac.migratetype); 5168 kmsan_alloc_page(page, order, alloc_gfp); 5169 5170 return page; 5171 } 5172 EXPORT_SYMBOL(__alloc_frozen_pages_noprof); 5173 5174 struct page *__alloc_pages_noprof(gfp_t gfp, unsigned int order, 5175 int preferred_nid, nodemask_t *nodemask) 5176 { 5177 struct page *page; 5178 5179 page = __alloc_frozen_pages_noprof(gfp, order, preferred_nid, nodemask); 5180 if (page) 5181 set_page_refcounted(page); 5182 return page; 5183 } 5184 EXPORT_SYMBOL(__alloc_pages_noprof); 5185 5186 struct folio *__folio_alloc_noprof(gfp_t gfp, unsigned int order, int preferred_nid, 5187 nodemask_t *nodemask) 5188 { 5189 struct page *page = __alloc_pages_noprof(gfp | __GFP_COMP, order, 5190 preferred_nid, nodemask); 5191 return page_rmappable_folio(page); 5192 } 5193 EXPORT_SYMBOL(__folio_alloc_noprof); 5194 5195 /* 5196 * Common helper functions. Never use with __GFP_HIGHMEM because the returned 5197 * address cannot represent highmem pages. Use alloc_pages and then kmap if 5198 * you need to access high mem. 5199 */ 5200 unsigned long get_free_pages_noprof(gfp_t gfp_mask, unsigned int order) 5201 { 5202 struct page *page; 5203 5204 page = alloc_pages_noprof(gfp_mask & ~__GFP_HIGHMEM, order); 5205 if (!page) 5206 return 0; 5207 return (unsigned long) page_address(page); 5208 } 5209 EXPORT_SYMBOL(get_free_pages_noprof); 5210 5211 unsigned long get_zeroed_page_noprof(gfp_t gfp_mask) 5212 { 5213 return get_free_pages_noprof(gfp_mask | __GFP_ZERO, 0); 5214 } 5215 EXPORT_SYMBOL(get_zeroed_page_noprof); 5216 5217 static void ___free_pages(struct page *page, unsigned int order, 5218 fpi_t fpi_flags) 5219 { 5220 /* get PageHead before we drop reference */ 5221 int head = PageHead(page); 5222 /* get alloc tag in case the page is released by others */ 5223 struct alloc_tag *tag = pgalloc_tag_get(page); 5224 5225 if (put_page_testzero(page)) 5226 __free_frozen_pages(page, order, fpi_flags); 5227 else if (!head) { 5228 pgalloc_tag_sub_pages(tag, (1 << order) - 1); 5229 while (order-- > 0) 5230 __free_frozen_pages(page + (1 << order), order, 5231 fpi_flags); 5232 } 5233 } 5234 5235 /** 5236 * __free_pages - Free pages allocated with alloc_pages(). 5237 * @page: The page pointer returned from alloc_pages(). 5238 * @order: The order of the allocation. 5239 * 5240 * This function can free multi-page allocations that are not compound 5241 * pages. It does not check that the @order passed in matches that of 5242 * the allocation, so it is easy to leak memory. Freeing more memory 5243 * than was allocated will probably emit a warning. 5244 * 5245 * If the last reference to this page is speculative, it will be released 5246 * by put_page() which only frees the first page of a non-compound 5247 * allocation. To prevent the remaining pages from being leaked, we free 5248 * the subsequent pages here. If you want to use the page's reference 5249 * count to decide when to free the allocation, you should allocate a 5250 * compound page, and use put_page() instead of __free_pages(). 5251 * 5252 * Context: May be called in interrupt context or while holding a normal 5253 * spinlock, but not in NMI context or while holding a raw spinlock. 5254 */ 5255 void __free_pages(struct page *page, unsigned int order) 5256 { 5257 ___free_pages(page, order, FPI_NONE); 5258 } 5259 EXPORT_SYMBOL(__free_pages); 5260 5261 /* 5262 * Can be called while holding raw_spin_lock or from IRQ and NMI for any 5263 * page type (not only those that came from alloc_pages_nolock) 5264 */ 5265 void free_pages_nolock(struct page *page, unsigned int order) 5266 { 5267 ___free_pages(page, order, FPI_TRYLOCK); 5268 } 5269 5270 void free_pages(unsigned long addr, unsigned int order) 5271 { 5272 if (addr != 0) { 5273 VM_BUG_ON(!virt_addr_valid((void *)addr)); 5274 __free_pages(virt_to_page((void *)addr), order); 5275 } 5276 } 5277 5278 EXPORT_SYMBOL(free_pages); 5279 5280 static void *make_alloc_exact(unsigned long addr, unsigned int order, 5281 size_t size) 5282 { 5283 if (addr) { 5284 unsigned long nr = DIV_ROUND_UP(size, PAGE_SIZE); 5285 struct page *page = virt_to_page((void *)addr); 5286 struct page *last = page + nr; 5287 5288 split_page_owner(page, order, 0); 5289 pgalloc_tag_split(page_folio(page), order, 0); 5290 split_page_memcg(page, order); 5291 while (page < --last) 5292 set_page_refcounted(last); 5293 5294 last = page + (1UL << order); 5295 for (page += nr; page < last; page++) 5296 __free_pages_ok(page, 0, FPI_TO_TAIL); 5297 } 5298 return (void *)addr; 5299 } 5300 5301 /** 5302 * alloc_pages_exact - allocate an exact number physically-contiguous pages. 5303 * @size: the number of bytes to allocate 5304 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP 5305 * 5306 * This function is similar to alloc_pages(), except that it allocates the 5307 * minimum number of pages to satisfy the request. alloc_pages() can only 5308 * allocate memory in power-of-two pages. 5309 * 5310 * This function is also limited by MAX_PAGE_ORDER. 5311 * 5312 * Memory allocated by this function must be released by free_pages_exact(). 5313 * 5314 * Return: pointer to the allocated area or %NULL in case of error. 5315 */ 5316 void *alloc_pages_exact_noprof(size_t size, gfp_t gfp_mask) 5317 { 5318 unsigned int order = get_order(size); 5319 unsigned long addr; 5320 5321 if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM))) 5322 gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM); 5323 5324 addr = get_free_pages_noprof(gfp_mask, order); 5325 return make_alloc_exact(addr, order, size); 5326 } 5327 EXPORT_SYMBOL(alloc_pages_exact_noprof); 5328 5329 /** 5330 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous 5331 * pages on a node. 5332 * @nid: the preferred node ID where memory should be allocated 5333 * @size: the number of bytes to allocate 5334 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP 5335 * 5336 * Like alloc_pages_exact(), but try to allocate on node nid first before falling 5337 * back. 5338 * 5339 * Return: pointer to the allocated area or %NULL in case of error. 5340 */ 5341 void * __meminit alloc_pages_exact_nid_noprof(int nid, size_t size, gfp_t gfp_mask) 5342 { 5343 unsigned int order = get_order(size); 5344 struct page *p; 5345 5346 if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM))) 5347 gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM); 5348 5349 p = alloc_pages_node_noprof(nid, gfp_mask, order); 5350 if (!p) 5351 return NULL; 5352 return make_alloc_exact((unsigned long)page_address(p), order, size); 5353 } 5354 5355 /** 5356 * free_pages_exact - release memory allocated via alloc_pages_exact() 5357 * @virt: the value returned by alloc_pages_exact. 5358 * @size: size of allocation, same value as passed to alloc_pages_exact(). 5359 * 5360 * Release the memory allocated by a previous call to alloc_pages_exact. 5361 */ 5362 void free_pages_exact(void *virt, size_t size) 5363 { 5364 unsigned long addr = (unsigned long)virt; 5365 unsigned long end = addr + PAGE_ALIGN(size); 5366 5367 while (addr < end) { 5368 free_page(addr); 5369 addr += PAGE_SIZE; 5370 } 5371 } 5372 EXPORT_SYMBOL(free_pages_exact); 5373 5374 /** 5375 * nr_free_zone_pages - count number of pages beyond high watermark 5376 * @offset: The zone index of the highest zone 5377 * 5378 * nr_free_zone_pages() counts the number of pages which are beyond the 5379 * high watermark within all zones at or below a given zone index. For each 5380 * zone, the number of pages is calculated as: 5381 * 5382 * nr_free_zone_pages = managed_pages - high_pages 5383 * 5384 * Return: number of pages beyond high watermark. 5385 */ 5386 static unsigned long nr_free_zone_pages(int offset) 5387 { 5388 struct zoneref *z; 5389 struct zone *zone; 5390 5391 /* Just pick one node, since fallback list is circular */ 5392 unsigned long sum = 0; 5393 5394 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL); 5395 5396 for_each_zone_zonelist(zone, z, zonelist, offset) { 5397 unsigned long size = zone_managed_pages(zone); 5398 unsigned long high = high_wmark_pages(zone); 5399 if (size > high) 5400 sum += size - high; 5401 } 5402 5403 return sum; 5404 } 5405 5406 /** 5407 * nr_free_buffer_pages - count number of pages beyond high watermark 5408 * 5409 * nr_free_buffer_pages() counts the number of pages which are beyond the high 5410 * watermark within ZONE_DMA and ZONE_NORMAL. 5411 * 5412 * Return: number of pages beyond high watermark within ZONE_DMA and 5413 * ZONE_NORMAL. 5414 */ 5415 unsigned long nr_free_buffer_pages(void) 5416 { 5417 return nr_free_zone_pages(gfp_zone(GFP_USER)); 5418 } 5419 EXPORT_SYMBOL_GPL(nr_free_buffer_pages); 5420 5421 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref) 5422 { 5423 zoneref->zone = zone; 5424 zoneref->zone_idx = zone_idx(zone); 5425 } 5426 5427 /* 5428 * Builds allocation fallback zone lists. 5429 * 5430 * Add all populated zones of a node to the zonelist. 5431 */ 5432 static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs) 5433 { 5434 struct zone *zone; 5435 enum zone_type zone_type = MAX_NR_ZONES; 5436 int nr_zones = 0; 5437 5438 do { 5439 zone_type--; 5440 zone = pgdat->node_zones + zone_type; 5441 if (populated_zone(zone)) { 5442 zoneref_set_zone(zone, &zonerefs[nr_zones++]); 5443 check_highest_zone(zone_type); 5444 } 5445 } while (zone_type); 5446 5447 return nr_zones; 5448 } 5449 5450 #ifdef CONFIG_NUMA 5451 5452 static int __parse_numa_zonelist_order(char *s) 5453 { 5454 /* 5455 * We used to support different zonelists modes but they turned 5456 * out to be just not useful. Let's keep the warning in place 5457 * if somebody still use the cmd line parameter so that we do 5458 * not fail it silently 5459 */ 5460 if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) { 5461 pr_warn("Ignoring unsupported numa_zonelist_order value: %s\n", s); 5462 return -EINVAL; 5463 } 5464 return 0; 5465 } 5466 5467 static char numa_zonelist_order[] = "Node"; 5468 #define NUMA_ZONELIST_ORDER_LEN 16 5469 /* 5470 * sysctl handler for numa_zonelist_order 5471 */ 5472 static int numa_zonelist_order_handler(const struct ctl_table *table, int write, 5473 void *buffer, size_t *length, loff_t *ppos) 5474 { 5475 if (write) 5476 return __parse_numa_zonelist_order(buffer); 5477 return proc_dostring(table, write, buffer, length, ppos); 5478 } 5479 5480 static int node_load[MAX_NUMNODES]; 5481 5482 /** 5483 * find_next_best_node - find the next node that should appear in a given node's fallback list 5484 * @node: node whose fallback list we're appending 5485 * @used_node_mask: nodemask_t of already used nodes 5486 * 5487 * We use a number of factors to determine which is the next node that should 5488 * appear on a given node's fallback list. The node should not have appeared 5489 * already in @node's fallback list, and it should be the next closest node 5490 * according to the distance array (which contains arbitrary distance values 5491 * from each node to each node in the system), and should also prefer nodes 5492 * with no CPUs, since presumably they'll have very little allocation pressure 5493 * on them otherwise. 5494 * 5495 * Return: node id of the found node or %NUMA_NO_NODE if no node is found. 5496 */ 5497 int find_next_best_node(int node, nodemask_t *used_node_mask) 5498 { 5499 int n, val; 5500 int min_val = INT_MAX; 5501 int best_node = NUMA_NO_NODE; 5502 5503 /* 5504 * Use the local node if we haven't already, but for memoryless local 5505 * node, we should skip it and fall back to other nodes. 5506 */ 5507 if (!node_isset(node, *used_node_mask) && node_state(node, N_MEMORY)) { 5508 node_set(node, *used_node_mask); 5509 return node; 5510 } 5511 5512 for_each_node_state(n, N_MEMORY) { 5513 5514 /* Don't want a node to appear more than once */ 5515 if (node_isset(n, *used_node_mask)) 5516 continue; 5517 5518 /* Use the distance array to find the distance */ 5519 val = node_distance(node, n); 5520 5521 /* Penalize nodes under us ("prefer the next node") */ 5522 val += (n < node); 5523 5524 /* Give preference to headless and unused nodes */ 5525 if (!cpumask_empty(cpumask_of_node(n))) 5526 val += PENALTY_FOR_NODE_WITH_CPUS; 5527 5528 /* Slight preference for less loaded node */ 5529 val *= MAX_NUMNODES; 5530 val += node_load[n]; 5531 5532 if (val < min_val) { 5533 min_val = val; 5534 best_node = n; 5535 } 5536 } 5537 5538 if (best_node >= 0) 5539 node_set(best_node, *used_node_mask); 5540 5541 return best_node; 5542 } 5543 5544 5545 /* 5546 * Build zonelists ordered by node and zones within node. 5547 * This results in maximum locality--normal zone overflows into local 5548 * DMA zone, if any--but risks exhausting DMA zone. 5549 */ 5550 static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order, 5551 unsigned nr_nodes) 5552 { 5553 struct zoneref *zonerefs; 5554 int i; 5555 5556 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs; 5557 5558 for (i = 0; i < nr_nodes; i++) { 5559 int nr_zones; 5560 5561 pg_data_t *node = NODE_DATA(node_order[i]); 5562 5563 nr_zones = build_zonerefs_node(node, zonerefs); 5564 zonerefs += nr_zones; 5565 } 5566 zonerefs->zone = NULL; 5567 zonerefs->zone_idx = 0; 5568 } 5569 5570 /* 5571 * Build __GFP_THISNODE zonelists 5572 */ 5573 static void build_thisnode_zonelists(pg_data_t *pgdat) 5574 { 5575 struct zoneref *zonerefs; 5576 int nr_zones; 5577 5578 zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs; 5579 nr_zones = build_zonerefs_node(pgdat, zonerefs); 5580 zonerefs += nr_zones; 5581 zonerefs->zone = NULL; 5582 zonerefs->zone_idx = 0; 5583 } 5584 5585 static void build_zonelists(pg_data_t *pgdat) 5586 { 5587 static int node_order[MAX_NUMNODES]; 5588 int node, nr_nodes = 0; 5589 nodemask_t used_mask = NODE_MASK_NONE; 5590 int local_node, prev_node; 5591 5592 /* NUMA-aware ordering of nodes */ 5593 local_node = pgdat->node_id; 5594 prev_node = local_node; 5595 5596 memset(node_order, 0, sizeof(node_order)); 5597 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) { 5598 /* 5599 * We don't want to pressure a particular node. 5600 * So adding penalty to the first node in same 5601 * distance group to make it round-robin. 5602 */ 5603 if (node_distance(local_node, node) != 5604 node_distance(local_node, prev_node)) 5605 node_load[node] += 1; 5606 5607 node_order[nr_nodes++] = node; 5608 prev_node = node; 5609 } 5610 5611 build_zonelists_in_node_order(pgdat, node_order, nr_nodes); 5612 build_thisnode_zonelists(pgdat); 5613 pr_info("Fallback order for Node %d: ", local_node); 5614 for (node = 0; node < nr_nodes; node++) 5615 pr_cont("%d ", node_order[node]); 5616 pr_cont("\n"); 5617 } 5618 5619 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 5620 /* 5621 * Return node id of node used for "local" allocations. 5622 * I.e., first node id of first zone in arg node's generic zonelist. 5623 * Used for initializing percpu 'numa_mem', which is used primarily 5624 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist. 5625 */ 5626 int local_memory_node(int node) 5627 { 5628 struct zoneref *z; 5629 5630 z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL), 5631 gfp_zone(GFP_KERNEL), 5632 NULL); 5633 return zonelist_node_idx(z); 5634 } 5635 #endif 5636 5637 static void setup_min_unmapped_ratio(void); 5638 static void setup_min_slab_ratio(void); 5639 #else /* CONFIG_NUMA */ 5640 5641 static void build_zonelists(pg_data_t *pgdat) 5642 { 5643 struct zoneref *zonerefs; 5644 int nr_zones; 5645 5646 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs; 5647 nr_zones = build_zonerefs_node(pgdat, zonerefs); 5648 zonerefs += nr_zones; 5649 5650 zonerefs->zone = NULL; 5651 zonerefs->zone_idx = 0; 5652 } 5653 5654 #endif /* CONFIG_NUMA */ 5655 5656 /* 5657 * Boot pageset table. One per cpu which is going to be used for all 5658 * zones and all nodes. The parameters will be set in such a way 5659 * that an item put on a list will immediately be handed over to 5660 * the buddy list. This is safe since pageset manipulation is done 5661 * with interrupts disabled. 5662 * 5663 * The boot_pagesets must be kept even after bootup is complete for 5664 * unused processors and/or zones. They do play a role for bootstrapping 5665 * hotplugged processors. 5666 * 5667 * zoneinfo_show() and maybe other functions do 5668 * not check if the processor is online before following the pageset pointer. 5669 * Other parts of the kernel may not check if the zone is available. 5670 */ 5671 static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats); 5672 /* These effectively disable the pcplists in the boot pageset completely */ 5673 #define BOOT_PAGESET_HIGH 0 5674 #define BOOT_PAGESET_BATCH 1 5675 static DEFINE_PER_CPU(struct per_cpu_pages, boot_pageset); 5676 static DEFINE_PER_CPU(struct per_cpu_zonestat, boot_zonestats); 5677 5678 static void __build_all_zonelists(void *data) 5679 { 5680 int nid; 5681 int __maybe_unused cpu; 5682 pg_data_t *self = data; 5683 unsigned long flags; 5684 5685 /* 5686 * The zonelist_update_seq must be acquired with irqsave because the 5687 * reader can be invoked from IRQ with GFP_ATOMIC. 5688 */ 5689 write_seqlock_irqsave(&zonelist_update_seq, flags); 5690 /* 5691 * Also disable synchronous printk() to prevent any printk() from 5692 * trying to hold port->lock, for 5693 * tty_insert_flip_string_and_push_buffer() on other CPU might be 5694 * calling kmalloc(GFP_ATOMIC | __GFP_NOWARN) with port->lock held. 5695 */ 5696 printk_deferred_enter(); 5697 5698 #ifdef CONFIG_NUMA 5699 memset(node_load, 0, sizeof(node_load)); 5700 #endif 5701 5702 /* 5703 * This node is hotadded and no memory is yet present. So just 5704 * building zonelists is fine - no need to touch other nodes. 5705 */ 5706 if (self && !node_online(self->node_id)) { 5707 build_zonelists(self); 5708 } else { 5709 /* 5710 * All possible nodes have pgdat preallocated 5711 * in free_area_init 5712 */ 5713 for_each_node(nid) { 5714 pg_data_t *pgdat = NODE_DATA(nid); 5715 5716 build_zonelists(pgdat); 5717 } 5718 5719 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 5720 /* 5721 * We now know the "local memory node" for each node-- 5722 * i.e., the node of the first zone in the generic zonelist. 5723 * Set up numa_mem percpu variable for on-line cpus. During 5724 * boot, only the boot cpu should be on-line; we'll init the 5725 * secondary cpus' numa_mem as they come on-line. During 5726 * node/memory hotplug, we'll fixup all on-line cpus. 5727 */ 5728 for_each_online_cpu(cpu) 5729 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu))); 5730 #endif 5731 } 5732 5733 printk_deferred_exit(); 5734 write_sequnlock_irqrestore(&zonelist_update_seq, flags); 5735 } 5736 5737 static noinline void __init 5738 build_all_zonelists_init(void) 5739 { 5740 int cpu; 5741 5742 __build_all_zonelists(NULL); 5743 5744 /* 5745 * Initialize the boot_pagesets that are going to be used 5746 * for bootstrapping processors. The real pagesets for 5747 * each zone will be allocated later when the per cpu 5748 * allocator is available. 5749 * 5750 * boot_pagesets are used also for bootstrapping offline 5751 * cpus if the system is already booted because the pagesets 5752 * are needed to initialize allocators on a specific cpu too. 5753 * F.e. the percpu allocator needs the page allocator which 5754 * needs the percpu allocator in order to allocate its pagesets 5755 * (a chicken-egg dilemma). 5756 */ 5757 for_each_possible_cpu(cpu) 5758 per_cpu_pages_init(&per_cpu(boot_pageset, cpu), &per_cpu(boot_zonestats, cpu)); 5759 5760 mminit_verify_zonelist(); 5761 cpuset_init_current_mems_allowed(); 5762 } 5763 5764 /* 5765 * unless system_state == SYSTEM_BOOTING. 5766 * 5767 * __ref due to call of __init annotated helper build_all_zonelists_init 5768 * [protected by SYSTEM_BOOTING]. 5769 */ 5770 void __ref build_all_zonelists(pg_data_t *pgdat) 5771 { 5772 unsigned long vm_total_pages; 5773 5774 if (system_state == SYSTEM_BOOTING) { 5775 build_all_zonelists_init(); 5776 } else { 5777 __build_all_zonelists(pgdat); 5778 /* cpuset refresh routine should be here */ 5779 } 5780 /* Get the number of free pages beyond high watermark in all zones. */ 5781 vm_total_pages = nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE)); 5782 /* 5783 * Disable grouping by mobility if the number of pages in the 5784 * system is too low to allow the mechanism to work. It would be 5785 * more accurate, but expensive to check per-zone. This check is 5786 * made on memory-hotadd so a system can start with mobility 5787 * disabled and enable it later 5788 */ 5789 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES)) 5790 page_group_by_mobility_disabled = 1; 5791 else 5792 page_group_by_mobility_disabled = 0; 5793 5794 pr_info("Built %u zonelists, mobility grouping %s. Total pages: %ld\n", 5795 nr_online_nodes, 5796 str_off_on(page_group_by_mobility_disabled), 5797 vm_total_pages); 5798 #ifdef CONFIG_NUMA 5799 pr_info("Policy zone: %s\n", zone_names[policy_zone]); 5800 #endif 5801 } 5802 5803 static int zone_batchsize(struct zone *zone) 5804 { 5805 #ifdef CONFIG_MMU 5806 int batch; 5807 5808 /* 5809 * The number of pages to batch allocate is either ~0.1% 5810 * of the zone or 1MB, whichever is smaller. The batch 5811 * size is striking a balance between allocation latency 5812 * and zone lock contention. 5813 */ 5814 batch = min(zone_managed_pages(zone) >> 10, SZ_1M / PAGE_SIZE); 5815 batch /= 4; /* We effectively *= 4 below */ 5816 if (batch < 1) 5817 batch = 1; 5818 5819 /* 5820 * Clamp the batch to a 2^n - 1 value. Having a power 5821 * of 2 value was found to be more likely to have 5822 * suboptimal cache aliasing properties in some cases. 5823 * 5824 * For example if 2 tasks are alternately allocating 5825 * batches of pages, one task can end up with a lot 5826 * of pages of one half of the possible page colors 5827 * and the other with pages of the other colors. 5828 */ 5829 batch = rounddown_pow_of_two(batch + batch/2) - 1; 5830 5831 return batch; 5832 5833 #else 5834 /* The deferral and batching of frees should be suppressed under NOMMU 5835 * conditions. 5836 * 5837 * The problem is that NOMMU needs to be able to allocate large chunks 5838 * of contiguous memory as there's no hardware page translation to 5839 * assemble apparent contiguous memory from discontiguous pages. 5840 * 5841 * Queueing large contiguous runs of pages for batching, however, 5842 * causes the pages to actually be freed in smaller chunks. As there 5843 * can be a significant delay between the individual batches being 5844 * recycled, this leads to the once large chunks of space being 5845 * fragmented and becoming unavailable for high-order allocations. 5846 */ 5847 return 0; 5848 #endif 5849 } 5850 5851 static int percpu_pagelist_high_fraction; 5852 static int zone_highsize(struct zone *zone, int batch, int cpu_online, 5853 int high_fraction) 5854 { 5855 #ifdef CONFIG_MMU 5856 int high; 5857 int nr_split_cpus; 5858 unsigned long total_pages; 5859 5860 if (!high_fraction) { 5861 /* 5862 * By default, the high value of the pcp is based on the zone 5863 * low watermark so that if they are full then background 5864 * reclaim will not be started prematurely. 5865 */ 5866 total_pages = low_wmark_pages(zone); 5867 } else { 5868 /* 5869 * If percpu_pagelist_high_fraction is configured, the high 5870 * value is based on a fraction of the managed pages in the 5871 * zone. 5872 */ 5873 total_pages = zone_managed_pages(zone) / high_fraction; 5874 } 5875 5876 /* 5877 * Split the high value across all online CPUs local to the zone. Note 5878 * that early in boot that CPUs may not be online yet and that during 5879 * CPU hotplug that the cpumask is not yet updated when a CPU is being 5880 * onlined. For memory nodes that have no CPUs, split the high value 5881 * across all online CPUs to mitigate the risk that reclaim is triggered 5882 * prematurely due to pages stored on pcp lists. 5883 */ 5884 nr_split_cpus = cpumask_weight(cpumask_of_node(zone_to_nid(zone))) + cpu_online; 5885 if (!nr_split_cpus) 5886 nr_split_cpus = num_online_cpus(); 5887 high = total_pages / nr_split_cpus; 5888 5889 /* 5890 * Ensure high is at least batch*4. The multiple is based on the 5891 * historical relationship between high and batch. 5892 */ 5893 high = max(high, batch << 2); 5894 5895 return high; 5896 #else 5897 return 0; 5898 #endif 5899 } 5900 5901 /* 5902 * pcp->high and pcp->batch values are related and generally batch is lower 5903 * than high. They are also related to pcp->count such that count is lower 5904 * than high, and as soon as it reaches high, the pcplist is flushed. 5905 * 5906 * However, guaranteeing these relations at all times would require e.g. write 5907 * barriers here but also careful usage of read barriers at the read side, and 5908 * thus be prone to error and bad for performance. Thus the update only prevents 5909 * store tearing. Any new users of pcp->batch, pcp->high_min and pcp->high_max 5910 * should ensure they can cope with those fields changing asynchronously, and 5911 * fully trust only the pcp->count field on the local CPU with interrupts 5912 * disabled. 5913 * 5914 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function 5915 * outside of boot time (or some other assurance that no concurrent updaters 5916 * exist). 5917 */ 5918 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high_min, 5919 unsigned long high_max, unsigned long batch) 5920 { 5921 WRITE_ONCE(pcp->batch, batch); 5922 WRITE_ONCE(pcp->high_min, high_min); 5923 WRITE_ONCE(pcp->high_max, high_max); 5924 } 5925 5926 static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats) 5927 { 5928 int pindex; 5929 5930 memset(pcp, 0, sizeof(*pcp)); 5931 memset(pzstats, 0, sizeof(*pzstats)); 5932 5933 spin_lock_init(&pcp->lock); 5934 for (pindex = 0; pindex < NR_PCP_LISTS; pindex++) 5935 INIT_LIST_HEAD(&pcp->lists[pindex]); 5936 5937 /* 5938 * Set batch and high values safe for a boot pageset. A true percpu 5939 * pageset's initialization will update them subsequently. Here we don't 5940 * need to be as careful as pageset_update() as nobody can access the 5941 * pageset yet. 5942 */ 5943 pcp->high_min = BOOT_PAGESET_HIGH; 5944 pcp->high_max = BOOT_PAGESET_HIGH; 5945 pcp->batch = BOOT_PAGESET_BATCH; 5946 pcp->free_count = 0; 5947 } 5948 5949 static void __zone_set_pageset_high_and_batch(struct zone *zone, unsigned long high_min, 5950 unsigned long high_max, unsigned long batch) 5951 { 5952 struct per_cpu_pages *pcp; 5953 int cpu; 5954 5955 for_each_possible_cpu(cpu) { 5956 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu); 5957 pageset_update(pcp, high_min, high_max, batch); 5958 } 5959 } 5960 5961 /* 5962 * Calculate and set new high and batch values for all per-cpu pagesets of a 5963 * zone based on the zone's size. 5964 */ 5965 static void zone_set_pageset_high_and_batch(struct zone *zone, int cpu_online) 5966 { 5967 int new_high_min, new_high_max, new_batch; 5968 5969 new_batch = max(1, zone_batchsize(zone)); 5970 if (percpu_pagelist_high_fraction) { 5971 new_high_min = zone_highsize(zone, new_batch, cpu_online, 5972 percpu_pagelist_high_fraction); 5973 /* 5974 * PCP high is tuned manually, disable auto-tuning via 5975 * setting high_min and high_max to the manual value. 5976 */ 5977 new_high_max = new_high_min; 5978 } else { 5979 new_high_min = zone_highsize(zone, new_batch, cpu_online, 0); 5980 new_high_max = zone_highsize(zone, new_batch, cpu_online, 5981 MIN_PERCPU_PAGELIST_HIGH_FRACTION); 5982 } 5983 5984 if (zone->pageset_high_min == new_high_min && 5985 zone->pageset_high_max == new_high_max && 5986 zone->pageset_batch == new_batch) 5987 return; 5988 5989 zone->pageset_high_min = new_high_min; 5990 zone->pageset_high_max = new_high_max; 5991 zone->pageset_batch = new_batch; 5992 5993 __zone_set_pageset_high_and_batch(zone, new_high_min, new_high_max, 5994 new_batch); 5995 } 5996 5997 void __meminit setup_zone_pageset(struct zone *zone) 5998 { 5999 int cpu; 6000 6001 /* Size may be 0 on !SMP && !NUMA */ 6002 if (sizeof(struct per_cpu_zonestat) > 0) 6003 zone->per_cpu_zonestats = alloc_percpu(struct per_cpu_zonestat); 6004 6005 zone->per_cpu_pageset = alloc_percpu(struct per_cpu_pages); 6006 for_each_possible_cpu(cpu) { 6007 struct per_cpu_pages *pcp; 6008 struct per_cpu_zonestat *pzstats; 6009 6010 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu); 6011 pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu); 6012 per_cpu_pages_init(pcp, pzstats); 6013 } 6014 6015 zone_set_pageset_high_and_batch(zone, 0); 6016 } 6017 6018 /* 6019 * The zone indicated has a new number of managed_pages; batch sizes and percpu 6020 * page high values need to be recalculated. 6021 */ 6022 static void zone_pcp_update(struct zone *zone, int cpu_online) 6023 { 6024 mutex_lock(&pcp_batch_high_lock); 6025 zone_set_pageset_high_and_batch(zone, cpu_online); 6026 mutex_unlock(&pcp_batch_high_lock); 6027 } 6028 6029 static void zone_pcp_update_cacheinfo(struct zone *zone, unsigned int cpu) 6030 { 6031 struct per_cpu_pages *pcp; 6032 struct cpu_cacheinfo *cci; 6033 6034 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu); 6035 cci = get_cpu_cacheinfo(cpu); 6036 /* 6037 * If data cache slice of CPU is large enough, "pcp->batch" 6038 * pages can be preserved in PCP before draining PCP for 6039 * consecutive high-order pages freeing without allocation. 6040 * This can reduce zone lock contention without hurting 6041 * cache-hot pages sharing. 6042 */ 6043 spin_lock(&pcp->lock); 6044 if ((cci->per_cpu_data_slice_size >> PAGE_SHIFT) > 3 * pcp->batch) 6045 pcp->flags |= PCPF_FREE_HIGH_BATCH; 6046 else 6047 pcp->flags &= ~PCPF_FREE_HIGH_BATCH; 6048 spin_unlock(&pcp->lock); 6049 } 6050 6051 void setup_pcp_cacheinfo(unsigned int cpu) 6052 { 6053 struct zone *zone; 6054 6055 for_each_populated_zone(zone) 6056 zone_pcp_update_cacheinfo(zone, cpu); 6057 } 6058 6059 /* 6060 * Allocate per cpu pagesets and initialize them. 6061 * Before this call only boot pagesets were available. 6062 */ 6063 void __init setup_per_cpu_pageset(void) 6064 { 6065 struct pglist_data *pgdat; 6066 struct zone *zone; 6067 int __maybe_unused cpu; 6068 6069 for_each_populated_zone(zone) 6070 setup_zone_pageset(zone); 6071 6072 #ifdef CONFIG_NUMA 6073 /* 6074 * Unpopulated zones continue using the boot pagesets. 6075 * The numa stats for these pagesets need to be reset. 6076 * Otherwise, they will end up skewing the stats of 6077 * the nodes these zones are associated with. 6078 */ 6079 for_each_possible_cpu(cpu) { 6080 struct per_cpu_zonestat *pzstats = &per_cpu(boot_zonestats, cpu); 6081 memset(pzstats->vm_numa_event, 0, 6082 sizeof(pzstats->vm_numa_event)); 6083 } 6084 #endif 6085 6086 for_each_online_pgdat(pgdat) 6087 pgdat->per_cpu_nodestats = 6088 alloc_percpu(struct per_cpu_nodestat); 6089 } 6090 6091 __meminit void zone_pcp_init(struct zone *zone) 6092 { 6093 /* 6094 * per cpu subsystem is not up at this point. The following code 6095 * relies on the ability of the linker to provide the 6096 * offset of a (static) per cpu variable into the per cpu area. 6097 */ 6098 zone->per_cpu_pageset = &boot_pageset; 6099 zone->per_cpu_zonestats = &boot_zonestats; 6100 zone->pageset_high_min = BOOT_PAGESET_HIGH; 6101 zone->pageset_high_max = BOOT_PAGESET_HIGH; 6102 zone->pageset_batch = BOOT_PAGESET_BATCH; 6103 6104 if (populated_zone(zone)) 6105 pr_debug(" %s zone: %lu pages, LIFO batch:%u\n", zone->name, 6106 zone->present_pages, zone_batchsize(zone)); 6107 } 6108 6109 static void setup_per_zone_lowmem_reserve(void); 6110 6111 void adjust_managed_page_count(struct page *page, long count) 6112 { 6113 atomic_long_add(count, &page_zone(page)->managed_pages); 6114 totalram_pages_add(count); 6115 setup_per_zone_lowmem_reserve(); 6116 } 6117 EXPORT_SYMBOL(adjust_managed_page_count); 6118 6119 unsigned long free_reserved_area(void *start, void *end, int poison, const char *s) 6120 { 6121 void *pos; 6122 unsigned long pages = 0; 6123 6124 start = (void *)PAGE_ALIGN((unsigned long)start); 6125 end = (void *)((unsigned long)end & PAGE_MASK); 6126 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) { 6127 struct page *page = virt_to_page(pos); 6128 void *direct_map_addr; 6129 6130 /* 6131 * 'direct_map_addr' might be different from 'pos' 6132 * because some architectures' virt_to_page() 6133 * work with aliases. Getting the direct map 6134 * address ensures that we get a _writeable_ 6135 * alias for the memset(). 6136 */ 6137 direct_map_addr = page_address(page); 6138 /* 6139 * Perform a kasan-unchecked memset() since this memory 6140 * has not been initialized. 6141 */ 6142 direct_map_addr = kasan_reset_tag(direct_map_addr); 6143 if ((unsigned int)poison <= 0xFF) 6144 memset(direct_map_addr, poison, PAGE_SIZE); 6145 6146 free_reserved_page(page); 6147 } 6148 6149 if (pages && s) 6150 pr_info("Freeing %s memory: %ldK\n", s, K(pages)); 6151 6152 return pages; 6153 } 6154 6155 void free_reserved_page(struct page *page) 6156 { 6157 clear_page_tag_ref(page); 6158 ClearPageReserved(page); 6159 init_page_count(page); 6160 __free_page(page); 6161 adjust_managed_page_count(page, 1); 6162 } 6163 EXPORT_SYMBOL(free_reserved_page); 6164 6165 static int page_alloc_cpu_dead(unsigned int cpu) 6166 { 6167 struct zone *zone; 6168 6169 lru_add_drain_cpu(cpu); 6170 mlock_drain_remote(cpu); 6171 drain_pages(cpu); 6172 6173 /* 6174 * Spill the event counters of the dead processor 6175 * into the current processors event counters. 6176 * This artificially elevates the count of the current 6177 * processor. 6178 */ 6179 vm_events_fold_cpu(cpu); 6180 6181 /* 6182 * Zero the differential counters of the dead processor 6183 * so that the vm statistics are consistent. 6184 * 6185 * This is only okay since the processor is dead and cannot 6186 * race with what we are doing. 6187 */ 6188 cpu_vm_stats_fold(cpu); 6189 6190 for_each_populated_zone(zone) 6191 zone_pcp_update(zone, 0); 6192 6193 return 0; 6194 } 6195 6196 static int page_alloc_cpu_online(unsigned int cpu) 6197 { 6198 struct zone *zone; 6199 6200 for_each_populated_zone(zone) 6201 zone_pcp_update(zone, 1); 6202 return 0; 6203 } 6204 6205 void __init page_alloc_init_cpuhp(void) 6206 { 6207 int ret; 6208 6209 ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC, 6210 "mm/page_alloc:pcp", 6211 page_alloc_cpu_online, 6212 page_alloc_cpu_dead); 6213 WARN_ON(ret < 0); 6214 } 6215 6216 /* 6217 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio 6218 * or min_free_kbytes changes. 6219 */ 6220 static void calculate_totalreserve_pages(void) 6221 { 6222 struct pglist_data *pgdat; 6223 unsigned long reserve_pages = 0; 6224 enum zone_type i, j; 6225 6226 for_each_online_pgdat(pgdat) { 6227 6228 pgdat->totalreserve_pages = 0; 6229 6230 for (i = 0; i < MAX_NR_ZONES; i++) { 6231 struct zone *zone = pgdat->node_zones + i; 6232 long max = 0; 6233 unsigned long managed_pages = zone_managed_pages(zone); 6234 6235 /* Find valid and maximum lowmem_reserve in the zone */ 6236 for (j = i; j < MAX_NR_ZONES; j++) { 6237 if (zone->lowmem_reserve[j] > max) 6238 max = zone->lowmem_reserve[j]; 6239 } 6240 6241 /* we treat the high watermark as reserved pages. */ 6242 max += high_wmark_pages(zone); 6243 6244 if (max > managed_pages) 6245 max = managed_pages; 6246 6247 pgdat->totalreserve_pages += max; 6248 6249 reserve_pages += max; 6250 } 6251 } 6252 totalreserve_pages = reserve_pages; 6253 trace_mm_calculate_totalreserve_pages(totalreserve_pages); 6254 } 6255 6256 /* 6257 * setup_per_zone_lowmem_reserve - called whenever 6258 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone 6259 * has a correct pages reserved value, so an adequate number of 6260 * pages are left in the zone after a successful __alloc_pages(). 6261 */ 6262 static void setup_per_zone_lowmem_reserve(void) 6263 { 6264 struct pglist_data *pgdat; 6265 enum zone_type i, j; 6266 6267 for_each_online_pgdat(pgdat) { 6268 for (i = 0; i < MAX_NR_ZONES - 1; i++) { 6269 struct zone *zone = &pgdat->node_zones[i]; 6270 int ratio = sysctl_lowmem_reserve_ratio[i]; 6271 bool clear = !ratio || !zone_managed_pages(zone); 6272 unsigned long managed_pages = 0; 6273 6274 for (j = i + 1; j < MAX_NR_ZONES; j++) { 6275 struct zone *upper_zone = &pgdat->node_zones[j]; 6276 6277 managed_pages += zone_managed_pages(upper_zone); 6278 6279 if (clear) 6280 zone->lowmem_reserve[j] = 0; 6281 else 6282 zone->lowmem_reserve[j] = managed_pages / ratio; 6283 trace_mm_setup_per_zone_lowmem_reserve(zone, upper_zone, 6284 zone->lowmem_reserve[j]); 6285 } 6286 } 6287 } 6288 6289 /* update totalreserve_pages */ 6290 calculate_totalreserve_pages(); 6291 } 6292 6293 static void __setup_per_zone_wmarks(void) 6294 { 6295 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10); 6296 unsigned long lowmem_pages = 0; 6297 struct zone *zone; 6298 unsigned long flags; 6299 6300 /* Calculate total number of !ZONE_HIGHMEM and !ZONE_MOVABLE pages */ 6301 for_each_zone(zone) { 6302 if (!is_highmem(zone) && zone_idx(zone) != ZONE_MOVABLE) 6303 lowmem_pages += zone_managed_pages(zone); 6304 } 6305 6306 for_each_zone(zone) { 6307 u64 tmp; 6308 6309 spin_lock_irqsave(&zone->lock, flags); 6310 tmp = (u64)pages_min * zone_managed_pages(zone); 6311 tmp = div64_ul(tmp, lowmem_pages); 6312 if (is_highmem(zone) || zone_idx(zone) == ZONE_MOVABLE) { 6313 /* 6314 * __GFP_HIGH and PF_MEMALLOC allocations usually don't 6315 * need highmem and movable zones pages, so cap pages_min 6316 * to a small value here. 6317 * 6318 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN) 6319 * deltas control async page reclaim, and so should 6320 * not be capped for highmem and movable zones. 6321 */ 6322 unsigned long min_pages; 6323 6324 min_pages = zone_managed_pages(zone) / 1024; 6325 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL); 6326 zone->_watermark[WMARK_MIN] = min_pages; 6327 } else { 6328 /* 6329 * If it's a lowmem zone, reserve a number of pages 6330 * proportionate to the zone's size. 6331 */ 6332 zone->_watermark[WMARK_MIN] = tmp; 6333 } 6334 6335 /* 6336 * Set the kswapd watermarks distance according to the 6337 * scale factor in proportion to available memory, but 6338 * ensure a minimum size on small systems. 6339 */ 6340 tmp = max_t(u64, tmp >> 2, 6341 mult_frac(zone_managed_pages(zone), 6342 watermark_scale_factor, 10000)); 6343 6344 zone->watermark_boost = 0; 6345 zone->_watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp; 6346 zone->_watermark[WMARK_HIGH] = low_wmark_pages(zone) + tmp; 6347 zone->_watermark[WMARK_PROMO] = high_wmark_pages(zone) + tmp; 6348 trace_mm_setup_per_zone_wmarks(zone); 6349 6350 spin_unlock_irqrestore(&zone->lock, flags); 6351 } 6352 6353 /* update totalreserve_pages */ 6354 calculate_totalreserve_pages(); 6355 } 6356 6357 /** 6358 * setup_per_zone_wmarks - called when min_free_kbytes changes 6359 * or when memory is hot-{added|removed} 6360 * 6361 * Ensures that the watermark[min,low,high] values for each zone are set 6362 * correctly with respect to min_free_kbytes. 6363 */ 6364 void setup_per_zone_wmarks(void) 6365 { 6366 struct zone *zone; 6367 static DEFINE_SPINLOCK(lock); 6368 6369 spin_lock(&lock); 6370 __setup_per_zone_wmarks(); 6371 spin_unlock(&lock); 6372 6373 /* 6374 * The watermark size have changed so update the pcpu batch 6375 * and high limits or the limits may be inappropriate. 6376 */ 6377 for_each_zone(zone) 6378 zone_pcp_update(zone, 0); 6379 } 6380 6381 /* 6382 * Initialise min_free_kbytes. 6383 * 6384 * For small machines we want it small (128k min). For large machines 6385 * we want it large (256MB max). But it is not linear, because network 6386 * bandwidth does not increase linearly with machine size. We use 6387 * 6388 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy: 6389 * min_free_kbytes = sqrt(lowmem_kbytes * 16) 6390 * 6391 * which yields 6392 * 6393 * 16MB: 512k 6394 * 32MB: 724k 6395 * 64MB: 1024k 6396 * 128MB: 1448k 6397 * 256MB: 2048k 6398 * 512MB: 2896k 6399 * 1024MB: 4096k 6400 * 2048MB: 5792k 6401 * 4096MB: 8192k 6402 * 8192MB: 11584k 6403 * 16384MB: 16384k 6404 */ 6405 void calculate_min_free_kbytes(void) 6406 { 6407 unsigned long lowmem_kbytes; 6408 int new_min_free_kbytes; 6409 6410 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10); 6411 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16); 6412 6413 if (new_min_free_kbytes > user_min_free_kbytes) 6414 min_free_kbytes = clamp(new_min_free_kbytes, 128, 262144); 6415 else 6416 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n", 6417 new_min_free_kbytes, user_min_free_kbytes); 6418 6419 } 6420 6421 int __meminit init_per_zone_wmark_min(void) 6422 { 6423 calculate_min_free_kbytes(); 6424 setup_per_zone_wmarks(); 6425 refresh_zone_stat_thresholds(); 6426 setup_per_zone_lowmem_reserve(); 6427 6428 #ifdef CONFIG_NUMA 6429 setup_min_unmapped_ratio(); 6430 setup_min_slab_ratio(); 6431 #endif 6432 6433 khugepaged_min_free_kbytes_update(); 6434 6435 return 0; 6436 } 6437 postcore_initcall(init_per_zone_wmark_min) 6438 6439 /* 6440 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so 6441 * that we can call two helper functions whenever min_free_kbytes 6442 * changes. 6443 */ 6444 static int min_free_kbytes_sysctl_handler(const struct ctl_table *table, int write, 6445 void *buffer, size_t *length, loff_t *ppos) 6446 { 6447 int rc; 6448 6449 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 6450 if (rc) 6451 return rc; 6452 6453 if (write) { 6454 user_min_free_kbytes = min_free_kbytes; 6455 setup_per_zone_wmarks(); 6456 } 6457 return 0; 6458 } 6459 6460 static int watermark_scale_factor_sysctl_handler(const struct ctl_table *table, int write, 6461 void *buffer, size_t *length, loff_t *ppos) 6462 { 6463 int rc; 6464 6465 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 6466 if (rc) 6467 return rc; 6468 6469 if (write) 6470 setup_per_zone_wmarks(); 6471 6472 return 0; 6473 } 6474 6475 #ifdef CONFIG_NUMA 6476 static void setup_min_unmapped_ratio(void) 6477 { 6478 pg_data_t *pgdat; 6479 struct zone *zone; 6480 6481 for_each_online_pgdat(pgdat) 6482 pgdat->min_unmapped_pages = 0; 6483 6484 for_each_zone(zone) 6485 zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) * 6486 sysctl_min_unmapped_ratio) / 100; 6487 } 6488 6489 6490 static int sysctl_min_unmapped_ratio_sysctl_handler(const struct ctl_table *table, int write, 6491 void *buffer, size_t *length, loff_t *ppos) 6492 { 6493 int rc; 6494 6495 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 6496 if (rc) 6497 return rc; 6498 6499 setup_min_unmapped_ratio(); 6500 6501 return 0; 6502 } 6503 6504 static void setup_min_slab_ratio(void) 6505 { 6506 pg_data_t *pgdat; 6507 struct zone *zone; 6508 6509 for_each_online_pgdat(pgdat) 6510 pgdat->min_slab_pages = 0; 6511 6512 for_each_zone(zone) 6513 zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) * 6514 sysctl_min_slab_ratio) / 100; 6515 } 6516 6517 static int sysctl_min_slab_ratio_sysctl_handler(const struct ctl_table *table, int write, 6518 void *buffer, size_t *length, loff_t *ppos) 6519 { 6520 int rc; 6521 6522 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 6523 if (rc) 6524 return rc; 6525 6526 setup_min_slab_ratio(); 6527 6528 return 0; 6529 } 6530 #endif 6531 6532 /* 6533 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around 6534 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve() 6535 * whenever sysctl_lowmem_reserve_ratio changes. 6536 * 6537 * The reserve ratio obviously has absolutely no relation with the 6538 * minimum watermarks. The lowmem reserve ratio can only make sense 6539 * if in function of the boot time zone sizes. 6540 */ 6541 static int lowmem_reserve_ratio_sysctl_handler(const struct ctl_table *table, 6542 int write, void *buffer, size_t *length, loff_t *ppos) 6543 { 6544 int i; 6545 6546 proc_dointvec_minmax(table, write, buffer, length, ppos); 6547 6548 for (i = 0; i < MAX_NR_ZONES; i++) { 6549 if (sysctl_lowmem_reserve_ratio[i] < 1) 6550 sysctl_lowmem_reserve_ratio[i] = 0; 6551 } 6552 6553 setup_per_zone_lowmem_reserve(); 6554 return 0; 6555 } 6556 6557 /* 6558 * percpu_pagelist_high_fraction - changes the pcp->high for each zone on each 6559 * cpu. It is the fraction of total pages in each zone that a hot per cpu 6560 * pagelist can have before it gets flushed back to buddy allocator. 6561 */ 6562 static int percpu_pagelist_high_fraction_sysctl_handler(const struct ctl_table *table, 6563 int write, void *buffer, size_t *length, loff_t *ppos) 6564 { 6565 struct zone *zone; 6566 int old_percpu_pagelist_high_fraction; 6567 int ret; 6568 6569 mutex_lock(&pcp_batch_high_lock); 6570 old_percpu_pagelist_high_fraction = percpu_pagelist_high_fraction; 6571 6572 ret = proc_dointvec_minmax(table, write, buffer, length, ppos); 6573 if (!write || ret < 0) 6574 goto out; 6575 6576 /* Sanity checking to avoid pcp imbalance */ 6577 if (percpu_pagelist_high_fraction && 6578 percpu_pagelist_high_fraction < MIN_PERCPU_PAGELIST_HIGH_FRACTION) { 6579 percpu_pagelist_high_fraction = old_percpu_pagelist_high_fraction; 6580 ret = -EINVAL; 6581 goto out; 6582 } 6583 6584 /* No change? */ 6585 if (percpu_pagelist_high_fraction == old_percpu_pagelist_high_fraction) 6586 goto out; 6587 6588 for_each_populated_zone(zone) 6589 zone_set_pageset_high_and_batch(zone, 0); 6590 out: 6591 mutex_unlock(&pcp_batch_high_lock); 6592 return ret; 6593 } 6594 6595 static const struct ctl_table page_alloc_sysctl_table[] = { 6596 { 6597 .procname = "min_free_kbytes", 6598 .data = &min_free_kbytes, 6599 .maxlen = sizeof(min_free_kbytes), 6600 .mode = 0644, 6601 .proc_handler = min_free_kbytes_sysctl_handler, 6602 .extra1 = SYSCTL_ZERO, 6603 }, 6604 { 6605 .procname = "watermark_boost_factor", 6606 .data = &watermark_boost_factor, 6607 .maxlen = sizeof(watermark_boost_factor), 6608 .mode = 0644, 6609 .proc_handler = proc_dointvec_minmax, 6610 .extra1 = SYSCTL_ZERO, 6611 }, 6612 { 6613 .procname = "watermark_scale_factor", 6614 .data = &watermark_scale_factor, 6615 .maxlen = sizeof(watermark_scale_factor), 6616 .mode = 0644, 6617 .proc_handler = watermark_scale_factor_sysctl_handler, 6618 .extra1 = SYSCTL_ONE, 6619 .extra2 = SYSCTL_THREE_THOUSAND, 6620 }, 6621 { 6622 .procname = "defrag_mode", 6623 .data = &defrag_mode, 6624 .maxlen = sizeof(defrag_mode), 6625 .mode = 0644, 6626 .proc_handler = proc_dointvec_minmax, 6627 .extra1 = SYSCTL_ZERO, 6628 .extra2 = SYSCTL_ONE, 6629 }, 6630 { 6631 .procname = "percpu_pagelist_high_fraction", 6632 .data = &percpu_pagelist_high_fraction, 6633 .maxlen = sizeof(percpu_pagelist_high_fraction), 6634 .mode = 0644, 6635 .proc_handler = percpu_pagelist_high_fraction_sysctl_handler, 6636 .extra1 = SYSCTL_ZERO, 6637 }, 6638 { 6639 .procname = "lowmem_reserve_ratio", 6640 .data = &sysctl_lowmem_reserve_ratio, 6641 .maxlen = sizeof(sysctl_lowmem_reserve_ratio), 6642 .mode = 0644, 6643 .proc_handler = lowmem_reserve_ratio_sysctl_handler, 6644 }, 6645 #ifdef CONFIG_NUMA 6646 { 6647 .procname = "numa_zonelist_order", 6648 .data = &numa_zonelist_order, 6649 .maxlen = NUMA_ZONELIST_ORDER_LEN, 6650 .mode = 0644, 6651 .proc_handler = numa_zonelist_order_handler, 6652 }, 6653 { 6654 .procname = "min_unmapped_ratio", 6655 .data = &sysctl_min_unmapped_ratio, 6656 .maxlen = sizeof(sysctl_min_unmapped_ratio), 6657 .mode = 0644, 6658 .proc_handler = sysctl_min_unmapped_ratio_sysctl_handler, 6659 .extra1 = SYSCTL_ZERO, 6660 .extra2 = SYSCTL_ONE_HUNDRED, 6661 }, 6662 { 6663 .procname = "min_slab_ratio", 6664 .data = &sysctl_min_slab_ratio, 6665 .maxlen = sizeof(sysctl_min_slab_ratio), 6666 .mode = 0644, 6667 .proc_handler = sysctl_min_slab_ratio_sysctl_handler, 6668 .extra1 = SYSCTL_ZERO, 6669 .extra2 = SYSCTL_ONE_HUNDRED, 6670 }, 6671 #endif 6672 }; 6673 6674 void __init page_alloc_sysctl_init(void) 6675 { 6676 register_sysctl_init("vm", page_alloc_sysctl_table); 6677 } 6678 6679 #ifdef CONFIG_CONTIG_ALLOC 6680 /* Usage: See admin-guide/dynamic-debug-howto.rst */ 6681 static void alloc_contig_dump_pages(struct list_head *page_list) 6682 { 6683 DEFINE_DYNAMIC_DEBUG_METADATA(descriptor, "migrate failure"); 6684 6685 if (DYNAMIC_DEBUG_BRANCH(descriptor)) { 6686 struct page *page; 6687 6688 dump_stack(); 6689 list_for_each_entry(page, page_list, lru) 6690 dump_page(page, "migration failure"); 6691 } 6692 } 6693 6694 /* 6695 * [start, end) must belong to a single zone. 6696 * @alloc_flags: using acr_flags_t to filter the type of migration in 6697 * trace_mm_alloc_contig_migrate_range_info. 6698 */ 6699 static int __alloc_contig_migrate_range(struct compact_control *cc, 6700 unsigned long start, unsigned long end, 6701 acr_flags_t alloc_flags) 6702 { 6703 /* This function is based on compact_zone() from compaction.c. */ 6704 unsigned int nr_reclaimed; 6705 unsigned long pfn = start; 6706 unsigned int tries = 0; 6707 int ret = 0; 6708 struct migration_target_control mtc = { 6709 .nid = zone_to_nid(cc->zone), 6710 .gfp_mask = cc->gfp_mask, 6711 .reason = MR_CONTIG_RANGE, 6712 }; 6713 struct page *page; 6714 unsigned long total_mapped = 0; 6715 unsigned long total_migrated = 0; 6716 unsigned long total_reclaimed = 0; 6717 6718 lru_cache_disable(); 6719 6720 while (pfn < end || !list_empty(&cc->migratepages)) { 6721 if (fatal_signal_pending(current)) { 6722 ret = -EINTR; 6723 break; 6724 } 6725 6726 if (list_empty(&cc->migratepages)) { 6727 cc->nr_migratepages = 0; 6728 ret = isolate_migratepages_range(cc, pfn, end); 6729 if (ret && ret != -EAGAIN) 6730 break; 6731 pfn = cc->migrate_pfn; 6732 tries = 0; 6733 } else if (++tries == 5) { 6734 ret = -EBUSY; 6735 break; 6736 } 6737 6738 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone, 6739 &cc->migratepages); 6740 cc->nr_migratepages -= nr_reclaimed; 6741 6742 if (trace_mm_alloc_contig_migrate_range_info_enabled()) { 6743 total_reclaimed += nr_reclaimed; 6744 list_for_each_entry(page, &cc->migratepages, lru) { 6745 struct folio *folio = page_folio(page); 6746 6747 total_mapped += folio_mapped(folio) * 6748 folio_nr_pages(folio); 6749 } 6750 } 6751 6752 ret = migrate_pages(&cc->migratepages, alloc_migration_target, 6753 NULL, (unsigned long)&mtc, cc->mode, MR_CONTIG_RANGE, NULL); 6754 6755 if (trace_mm_alloc_contig_migrate_range_info_enabled() && !ret) 6756 total_migrated += cc->nr_migratepages; 6757 6758 /* 6759 * On -ENOMEM, migrate_pages() bails out right away. It is pointless 6760 * to retry again over this error, so do the same here. 6761 */ 6762 if (ret == -ENOMEM) 6763 break; 6764 } 6765 6766 lru_cache_enable(); 6767 if (ret < 0) { 6768 if (!(cc->gfp_mask & __GFP_NOWARN) && ret == -EBUSY) 6769 alloc_contig_dump_pages(&cc->migratepages); 6770 putback_movable_pages(&cc->migratepages); 6771 } 6772 6773 trace_mm_alloc_contig_migrate_range_info(start, end, alloc_flags, 6774 total_migrated, 6775 total_reclaimed, 6776 total_mapped); 6777 return (ret < 0) ? ret : 0; 6778 } 6779 6780 static void split_free_pages(struct list_head *list, gfp_t gfp_mask) 6781 { 6782 int order; 6783 6784 for (order = 0; order < NR_PAGE_ORDERS; order++) { 6785 struct page *page, *next; 6786 int nr_pages = 1 << order; 6787 6788 list_for_each_entry_safe(page, next, &list[order], lru) { 6789 int i; 6790 6791 post_alloc_hook(page, order, gfp_mask); 6792 set_page_refcounted(page); 6793 if (!order) 6794 continue; 6795 6796 split_page(page, order); 6797 6798 /* Add all subpages to the order-0 head, in sequence. */ 6799 list_del(&page->lru); 6800 for (i = 0; i < nr_pages; i++) 6801 list_add_tail(&page[i].lru, &list[0]); 6802 } 6803 } 6804 } 6805 6806 static int __alloc_contig_verify_gfp_mask(gfp_t gfp_mask, gfp_t *gfp_cc_mask) 6807 { 6808 const gfp_t reclaim_mask = __GFP_IO | __GFP_FS | __GFP_RECLAIM; 6809 const gfp_t action_mask = __GFP_COMP | __GFP_RETRY_MAYFAIL | __GFP_NOWARN | 6810 __GFP_ZERO | __GFP_ZEROTAGS | __GFP_SKIP_ZERO; 6811 const gfp_t cc_action_mask = __GFP_RETRY_MAYFAIL | __GFP_NOWARN; 6812 6813 /* 6814 * We are given the range to allocate; node, mobility and placement 6815 * hints are irrelevant at this point. We'll simply ignore them. 6816 */ 6817 gfp_mask &= ~(GFP_ZONEMASK | __GFP_RECLAIMABLE | __GFP_WRITE | 6818 __GFP_HARDWALL | __GFP_THISNODE | __GFP_MOVABLE); 6819 6820 /* 6821 * We only support most reclaim flags (but not NOFAIL/NORETRY), and 6822 * selected action flags. 6823 */ 6824 if (gfp_mask & ~(reclaim_mask | action_mask)) 6825 return -EINVAL; 6826 6827 /* 6828 * Flags to control page compaction/migration/reclaim, to free up our 6829 * page range. Migratable pages are movable, __GFP_MOVABLE is implied 6830 * for them. 6831 * 6832 * Traditionally we always had __GFP_RETRY_MAYFAIL set, keep doing that 6833 * to not degrade callers. 6834 */ 6835 *gfp_cc_mask = (gfp_mask & (reclaim_mask | cc_action_mask)) | 6836 __GFP_MOVABLE | __GFP_RETRY_MAYFAIL; 6837 return 0; 6838 } 6839 6840 /** 6841 * alloc_contig_range() -- tries to allocate given range of pages 6842 * @start: start PFN to allocate 6843 * @end: one-past-the-last PFN to allocate 6844 * @alloc_flags: allocation information 6845 * @gfp_mask: GFP mask. Node/zone/placement hints are ignored; only some 6846 * action and reclaim modifiers are supported. Reclaim modifiers 6847 * control allocation behavior during compaction/migration/reclaim. 6848 * 6849 * The PFN range does not have to be pageblock aligned. The PFN range must 6850 * belong to a single zone. 6851 * 6852 * The first thing this routine does is attempt to MIGRATE_ISOLATE all 6853 * pageblocks in the range. Once isolated, the pageblocks should not 6854 * be modified by others. 6855 * 6856 * Return: zero on success or negative error code. On success all 6857 * pages which PFN is in [start, end) are allocated for the caller and 6858 * need to be freed with free_contig_range(). 6859 */ 6860 int alloc_contig_range_noprof(unsigned long start, unsigned long end, 6861 acr_flags_t alloc_flags, gfp_t gfp_mask) 6862 { 6863 unsigned long outer_start, outer_end; 6864 int ret = 0; 6865 6866 struct compact_control cc = { 6867 .nr_migratepages = 0, 6868 .order = -1, 6869 .zone = page_zone(pfn_to_page(start)), 6870 .mode = MIGRATE_SYNC, 6871 .ignore_skip_hint = true, 6872 .no_set_skip_hint = true, 6873 .alloc_contig = true, 6874 }; 6875 INIT_LIST_HEAD(&cc.migratepages); 6876 enum pb_isolate_mode mode = (alloc_flags & ACR_FLAGS_CMA) ? 6877 PB_ISOLATE_MODE_CMA_ALLOC : 6878 PB_ISOLATE_MODE_OTHER; 6879 6880 gfp_mask = current_gfp_context(gfp_mask); 6881 if (__alloc_contig_verify_gfp_mask(gfp_mask, (gfp_t *)&cc.gfp_mask)) 6882 return -EINVAL; 6883 6884 /* 6885 * What we do here is we mark all pageblocks in range as 6886 * MIGRATE_ISOLATE. Because pageblock and max order pages may 6887 * have different sizes, and due to the way page allocator 6888 * work, start_isolate_page_range() has special handlings for this. 6889 * 6890 * Once the pageblocks are marked as MIGRATE_ISOLATE, we 6891 * migrate the pages from an unaligned range (ie. pages that 6892 * we are interested in). This will put all the pages in 6893 * range back to page allocator as MIGRATE_ISOLATE. 6894 * 6895 * When this is done, we take the pages in range from page 6896 * allocator removing them from the buddy system. This way 6897 * page allocator will never consider using them. 6898 * 6899 * This lets us mark the pageblocks back as 6900 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the 6901 * aligned range but not in the unaligned, original range are 6902 * put back to page allocator so that buddy can use them. 6903 */ 6904 6905 ret = start_isolate_page_range(start, end, mode); 6906 if (ret) 6907 goto done; 6908 6909 drain_all_pages(cc.zone); 6910 6911 /* 6912 * In case of -EBUSY, we'd like to know which page causes problem. 6913 * So, just fall through. test_pages_isolated() has a tracepoint 6914 * which will report the busy page. 6915 * 6916 * It is possible that busy pages could become available before 6917 * the call to test_pages_isolated, and the range will actually be 6918 * allocated. So, if we fall through be sure to clear ret so that 6919 * -EBUSY is not accidentally used or returned to caller. 6920 */ 6921 ret = __alloc_contig_migrate_range(&cc, start, end, alloc_flags); 6922 if (ret && ret != -EBUSY) 6923 goto done; 6924 6925 /* 6926 * When in-use hugetlb pages are migrated, they may simply be released 6927 * back into the free hugepage pool instead of being returned to the 6928 * buddy system. After the migration of in-use huge pages is completed, 6929 * we will invoke replace_free_hugepage_folios() to ensure that these 6930 * hugepages are properly released to the buddy system. 6931 */ 6932 ret = replace_free_hugepage_folios(start, end); 6933 if (ret) 6934 goto done; 6935 6936 /* 6937 * Pages from [start, end) are within a pageblock_nr_pages 6938 * aligned blocks that are marked as MIGRATE_ISOLATE. What's 6939 * more, all pages in [start, end) are free in page allocator. 6940 * What we are going to do is to allocate all pages from 6941 * [start, end) (that is remove them from page allocator). 6942 * 6943 * The only problem is that pages at the beginning and at the 6944 * end of interesting range may be not aligned with pages that 6945 * page allocator holds, ie. they can be part of higher order 6946 * pages. Because of this, we reserve the bigger range and 6947 * once this is done free the pages we are not interested in. 6948 * 6949 * We don't have to hold zone->lock here because the pages are 6950 * isolated thus they won't get removed from buddy. 6951 */ 6952 outer_start = find_large_buddy(start); 6953 6954 /* Make sure the range is really isolated. */ 6955 if (test_pages_isolated(outer_start, end, mode)) { 6956 ret = -EBUSY; 6957 goto done; 6958 } 6959 6960 /* Grab isolated pages from freelists. */ 6961 outer_end = isolate_freepages_range(&cc, outer_start, end); 6962 if (!outer_end) { 6963 ret = -EBUSY; 6964 goto done; 6965 } 6966 6967 if (!(gfp_mask & __GFP_COMP)) { 6968 split_free_pages(cc.freepages, gfp_mask); 6969 6970 /* Free head and tail (if any) */ 6971 if (start != outer_start) 6972 free_contig_range(outer_start, start - outer_start); 6973 if (end != outer_end) 6974 free_contig_range(end, outer_end - end); 6975 } else if (start == outer_start && end == outer_end && is_power_of_2(end - start)) { 6976 struct page *head = pfn_to_page(start); 6977 int order = ilog2(end - start); 6978 6979 check_new_pages(head, order); 6980 prep_new_page(head, order, gfp_mask, 0); 6981 set_page_refcounted(head); 6982 } else { 6983 ret = -EINVAL; 6984 WARN(true, "PFN range: requested [%lu, %lu), allocated [%lu, %lu)\n", 6985 start, end, outer_start, outer_end); 6986 } 6987 done: 6988 undo_isolate_page_range(start, end); 6989 return ret; 6990 } 6991 EXPORT_SYMBOL(alloc_contig_range_noprof); 6992 6993 static int __alloc_contig_pages(unsigned long start_pfn, 6994 unsigned long nr_pages, gfp_t gfp_mask) 6995 { 6996 unsigned long end_pfn = start_pfn + nr_pages; 6997 6998 return alloc_contig_range_noprof(start_pfn, end_pfn, ACR_FLAGS_NONE, 6999 gfp_mask); 7000 } 7001 7002 static bool pfn_range_valid_contig(struct zone *z, unsigned long start_pfn, 7003 unsigned long nr_pages) 7004 { 7005 unsigned long i, end_pfn = start_pfn + nr_pages; 7006 struct page *page; 7007 7008 for (i = start_pfn; i < end_pfn; i++) { 7009 page = pfn_to_online_page(i); 7010 if (!page) 7011 return false; 7012 7013 if (page_zone(page) != z) 7014 return false; 7015 7016 if (PageReserved(page)) 7017 return false; 7018 7019 if (PageHuge(page)) 7020 return false; 7021 } 7022 return true; 7023 } 7024 7025 static bool zone_spans_last_pfn(const struct zone *zone, 7026 unsigned long start_pfn, unsigned long nr_pages) 7027 { 7028 unsigned long last_pfn = start_pfn + nr_pages - 1; 7029 7030 return zone_spans_pfn(zone, last_pfn); 7031 } 7032 7033 /** 7034 * alloc_contig_pages() -- tries to find and allocate contiguous range of pages 7035 * @nr_pages: Number of contiguous pages to allocate 7036 * @gfp_mask: GFP mask. Node/zone/placement hints limit the search; only some 7037 * action and reclaim modifiers are supported. Reclaim modifiers 7038 * control allocation behavior during compaction/migration/reclaim. 7039 * @nid: Target node 7040 * @nodemask: Mask for other possible nodes 7041 * 7042 * This routine is a wrapper around alloc_contig_range(). It scans over zones 7043 * on an applicable zonelist to find a contiguous pfn range which can then be 7044 * tried for allocation with alloc_contig_range(). This routine is intended 7045 * for allocation requests which can not be fulfilled with the buddy allocator. 7046 * 7047 * The allocated memory is always aligned to a page boundary. If nr_pages is a 7048 * power of two, then allocated range is also guaranteed to be aligned to same 7049 * nr_pages (e.g. 1GB request would be aligned to 1GB). 7050 * 7051 * Allocated pages can be freed with free_contig_range() or by manually calling 7052 * __free_page() on each allocated page. 7053 * 7054 * Return: pointer to contiguous pages on success, or NULL if not successful. 7055 */ 7056 struct page *alloc_contig_pages_noprof(unsigned long nr_pages, gfp_t gfp_mask, 7057 int nid, nodemask_t *nodemask) 7058 { 7059 unsigned long ret, pfn, flags; 7060 struct zonelist *zonelist; 7061 struct zone *zone; 7062 struct zoneref *z; 7063 7064 zonelist = node_zonelist(nid, gfp_mask); 7065 for_each_zone_zonelist_nodemask(zone, z, zonelist, 7066 gfp_zone(gfp_mask), nodemask) { 7067 spin_lock_irqsave(&zone->lock, flags); 7068 7069 pfn = ALIGN(zone->zone_start_pfn, nr_pages); 7070 while (zone_spans_last_pfn(zone, pfn, nr_pages)) { 7071 if (pfn_range_valid_contig(zone, pfn, nr_pages)) { 7072 /* 7073 * We release the zone lock here because 7074 * alloc_contig_range() will also lock the zone 7075 * at some point. If there's an allocation 7076 * spinning on this lock, it may win the race 7077 * and cause alloc_contig_range() to fail... 7078 */ 7079 spin_unlock_irqrestore(&zone->lock, flags); 7080 ret = __alloc_contig_pages(pfn, nr_pages, 7081 gfp_mask); 7082 if (!ret) 7083 return pfn_to_page(pfn); 7084 spin_lock_irqsave(&zone->lock, flags); 7085 } 7086 pfn += nr_pages; 7087 } 7088 spin_unlock_irqrestore(&zone->lock, flags); 7089 } 7090 return NULL; 7091 } 7092 #endif /* CONFIG_CONTIG_ALLOC */ 7093 7094 void free_contig_range(unsigned long pfn, unsigned long nr_pages) 7095 { 7096 unsigned long count = 0; 7097 struct folio *folio = pfn_folio(pfn); 7098 7099 if (folio_test_large(folio)) { 7100 int expected = folio_nr_pages(folio); 7101 7102 if (nr_pages == expected) 7103 folio_put(folio); 7104 else 7105 WARN(true, "PFN %lu: nr_pages %lu != expected %d\n", 7106 pfn, nr_pages, expected); 7107 return; 7108 } 7109 7110 for (; nr_pages--; pfn++) { 7111 struct page *page = pfn_to_page(pfn); 7112 7113 count += page_count(page) != 1; 7114 __free_page(page); 7115 } 7116 WARN(count != 0, "%lu pages are still in use!\n", count); 7117 } 7118 EXPORT_SYMBOL(free_contig_range); 7119 7120 /* 7121 * Effectively disable pcplists for the zone by setting the high limit to 0 7122 * and draining all cpus. A concurrent page freeing on another CPU that's about 7123 * to put the page on pcplist will either finish before the drain and the page 7124 * will be drained, or observe the new high limit and skip the pcplist. 7125 * 7126 * Must be paired with a call to zone_pcp_enable(). 7127 */ 7128 void zone_pcp_disable(struct zone *zone) 7129 { 7130 mutex_lock(&pcp_batch_high_lock); 7131 __zone_set_pageset_high_and_batch(zone, 0, 0, 1); 7132 __drain_all_pages(zone, true); 7133 } 7134 7135 void zone_pcp_enable(struct zone *zone) 7136 { 7137 __zone_set_pageset_high_and_batch(zone, zone->pageset_high_min, 7138 zone->pageset_high_max, zone->pageset_batch); 7139 mutex_unlock(&pcp_batch_high_lock); 7140 } 7141 7142 void zone_pcp_reset(struct zone *zone) 7143 { 7144 int cpu; 7145 struct per_cpu_zonestat *pzstats; 7146 7147 if (zone->per_cpu_pageset != &boot_pageset) { 7148 for_each_online_cpu(cpu) { 7149 pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu); 7150 drain_zonestat(zone, pzstats); 7151 } 7152 free_percpu(zone->per_cpu_pageset); 7153 zone->per_cpu_pageset = &boot_pageset; 7154 if (zone->per_cpu_zonestats != &boot_zonestats) { 7155 free_percpu(zone->per_cpu_zonestats); 7156 zone->per_cpu_zonestats = &boot_zonestats; 7157 } 7158 } 7159 } 7160 7161 #ifdef CONFIG_MEMORY_HOTREMOVE 7162 /* 7163 * All pages in the range must be in a single zone, must not contain holes, 7164 * must span full sections, and must be isolated before calling this function. 7165 * 7166 * Returns the number of managed (non-PageOffline()) pages in the range: the 7167 * number of pages for which memory offlining code must adjust managed page 7168 * counters using adjust_managed_page_count(). 7169 */ 7170 unsigned long __offline_isolated_pages(unsigned long start_pfn, 7171 unsigned long end_pfn) 7172 { 7173 unsigned long already_offline = 0, flags; 7174 unsigned long pfn = start_pfn; 7175 struct page *page; 7176 struct zone *zone; 7177 unsigned int order; 7178 7179 offline_mem_sections(pfn, end_pfn); 7180 zone = page_zone(pfn_to_page(pfn)); 7181 spin_lock_irqsave(&zone->lock, flags); 7182 while (pfn < end_pfn) { 7183 page = pfn_to_page(pfn); 7184 /* 7185 * The HWPoisoned page may be not in buddy system, and 7186 * page_count() is not 0. 7187 */ 7188 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) { 7189 pfn++; 7190 continue; 7191 } 7192 /* 7193 * At this point all remaining PageOffline() pages have a 7194 * reference count of 0 and can simply be skipped. 7195 */ 7196 if (PageOffline(page)) { 7197 BUG_ON(page_count(page)); 7198 BUG_ON(PageBuddy(page)); 7199 already_offline++; 7200 pfn++; 7201 continue; 7202 } 7203 7204 BUG_ON(page_count(page)); 7205 BUG_ON(!PageBuddy(page)); 7206 VM_WARN_ON(get_pageblock_migratetype(page) != MIGRATE_ISOLATE); 7207 order = buddy_order(page); 7208 del_page_from_free_list(page, zone, order, MIGRATE_ISOLATE); 7209 pfn += (1 << order); 7210 } 7211 spin_unlock_irqrestore(&zone->lock, flags); 7212 7213 return end_pfn - start_pfn - already_offline; 7214 } 7215 #endif 7216 7217 /* 7218 * This function returns a stable result only if called under zone lock. 7219 */ 7220 bool is_free_buddy_page(const struct page *page) 7221 { 7222 unsigned long pfn = page_to_pfn(page); 7223 unsigned int order; 7224 7225 for (order = 0; order < NR_PAGE_ORDERS; order++) { 7226 const struct page *head = page - (pfn & ((1 << order) - 1)); 7227 7228 if (PageBuddy(head) && 7229 buddy_order_unsafe(head) >= order) 7230 break; 7231 } 7232 7233 return order <= MAX_PAGE_ORDER; 7234 } 7235 EXPORT_SYMBOL(is_free_buddy_page); 7236 7237 #ifdef CONFIG_MEMORY_FAILURE 7238 static inline void add_to_free_list(struct page *page, struct zone *zone, 7239 unsigned int order, int migratetype, 7240 bool tail) 7241 { 7242 __add_to_free_list(page, zone, order, migratetype, tail); 7243 account_freepages(zone, 1 << order, migratetype); 7244 } 7245 7246 /* 7247 * Break down a higher-order page in sub-pages, and keep our target out of 7248 * buddy allocator. 7249 */ 7250 static void break_down_buddy_pages(struct zone *zone, struct page *page, 7251 struct page *target, int low, int high, 7252 int migratetype) 7253 { 7254 unsigned long size = 1 << high; 7255 struct page *current_buddy; 7256 7257 while (high > low) { 7258 high--; 7259 size >>= 1; 7260 7261 if (target >= &page[size]) { 7262 current_buddy = page; 7263 page = page + size; 7264 } else { 7265 current_buddy = page + size; 7266 } 7267 7268 if (set_page_guard(zone, current_buddy, high)) 7269 continue; 7270 7271 add_to_free_list(current_buddy, zone, high, migratetype, false); 7272 set_buddy_order(current_buddy, high); 7273 } 7274 } 7275 7276 /* 7277 * Take a page that will be marked as poisoned off the buddy allocator. 7278 */ 7279 bool take_page_off_buddy(struct page *page) 7280 { 7281 struct zone *zone = page_zone(page); 7282 unsigned long pfn = page_to_pfn(page); 7283 unsigned long flags; 7284 unsigned int order; 7285 bool ret = false; 7286 7287 spin_lock_irqsave(&zone->lock, flags); 7288 for (order = 0; order < NR_PAGE_ORDERS; order++) { 7289 struct page *page_head = page - (pfn & ((1 << order) - 1)); 7290 int page_order = buddy_order(page_head); 7291 7292 if (PageBuddy(page_head) && page_order >= order) { 7293 unsigned long pfn_head = page_to_pfn(page_head); 7294 int migratetype = get_pfnblock_migratetype(page_head, 7295 pfn_head); 7296 7297 del_page_from_free_list(page_head, zone, page_order, 7298 migratetype); 7299 break_down_buddy_pages(zone, page_head, page, 0, 7300 page_order, migratetype); 7301 SetPageHWPoisonTakenOff(page); 7302 ret = true; 7303 break; 7304 } 7305 if (page_count(page_head) > 0) 7306 break; 7307 } 7308 spin_unlock_irqrestore(&zone->lock, flags); 7309 return ret; 7310 } 7311 7312 /* 7313 * Cancel takeoff done by take_page_off_buddy(). 7314 */ 7315 bool put_page_back_buddy(struct page *page) 7316 { 7317 struct zone *zone = page_zone(page); 7318 unsigned long flags; 7319 bool ret = false; 7320 7321 spin_lock_irqsave(&zone->lock, flags); 7322 if (put_page_testzero(page)) { 7323 unsigned long pfn = page_to_pfn(page); 7324 int migratetype = get_pfnblock_migratetype(page, pfn); 7325 7326 ClearPageHWPoisonTakenOff(page); 7327 __free_one_page(page, pfn, zone, 0, migratetype, FPI_NONE); 7328 if (TestClearPageHWPoison(page)) { 7329 ret = true; 7330 } 7331 } 7332 spin_unlock_irqrestore(&zone->lock, flags); 7333 7334 return ret; 7335 } 7336 #endif 7337 7338 #ifdef CONFIG_ZONE_DMA 7339 bool has_managed_dma(void) 7340 { 7341 struct pglist_data *pgdat; 7342 7343 for_each_online_pgdat(pgdat) { 7344 struct zone *zone = &pgdat->node_zones[ZONE_DMA]; 7345 7346 if (managed_zone(zone)) 7347 return true; 7348 } 7349 return false; 7350 } 7351 #endif /* CONFIG_ZONE_DMA */ 7352 7353 #ifdef CONFIG_UNACCEPTED_MEMORY 7354 7355 static bool lazy_accept = true; 7356 7357 static int __init accept_memory_parse(char *p) 7358 { 7359 if (!strcmp(p, "lazy")) { 7360 lazy_accept = true; 7361 return 0; 7362 } else if (!strcmp(p, "eager")) { 7363 lazy_accept = false; 7364 return 0; 7365 } else { 7366 return -EINVAL; 7367 } 7368 } 7369 early_param("accept_memory", accept_memory_parse); 7370 7371 static bool page_contains_unaccepted(struct page *page, unsigned int order) 7372 { 7373 phys_addr_t start = page_to_phys(page); 7374 7375 return range_contains_unaccepted_memory(start, PAGE_SIZE << order); 7376 } 7377 7378 static void __accept_page(struct zone *zone, unsigned long *flags, 7379 struct page *page) 7380 { 7381 list_del(&page->lru); 7382 account_freepages(zone, -MAX_ORDER_NR_PAGES, MIGRATE_MOVABLE); 7383 __mod_zone_page_state(zone, NR_UNACCEPTED, -MAX_ORDER_NR_PAGES); 7384 __ClearPageUnaccepted(page); 7385 spin_unlock_irqrestore(&zone->lock, *flags); 7386 7387 accept_memory(page_to_phys(page), PAGE_SIZE << MAX_PAGE_ORDER); 7388 7389 __free_pages_ok(page, MAX_PAGE_ORDER, FPI_TO_TAIL); 7390 } 7391 7392 void accept_page(struct page *page) 7393 { 7394 struct zone *zone = page_zone(page); 7395 unsigned long flags; 7396 7397 spin_lock_irqsave(&zone->lock, flags); 7398 if (!PageUnaccepted(page)) { 7399 spin_unlock_irqrestore(&zone->lock, flags); 7400 return; 7401 } 7402 7403 /* Unlocks zone->lock */ 7404 __accept_page(zone, &flags, page); 7405 } 7406 7407 static bool try_to_accept_memory_one(struct zone *zone) 7408 { 7409 unsigned long flags; 7410 struct page *page; 7411 7412 spin_lock_irqsave(&zone->lock, flags); 7413 page = list_first_entry_or_null(&zone->unaccepted_pages, 7414 struct page, lru); 7415 if (!page) { 7416 spin_unlock_irqrestore(&zone->lock, flags); 7417 return false; 7418 } 7419 7420 /* Unlocks zone->lock */ 7421 __accept_page(zone, &flags, page); 7422 7423 return true; 7424 } 7425 7426 static bool cond_accept_memory(struct zone *zone, unsigned int order, 7427 int alloc_flags) 7428 { 7429 long to_accept, wmark; 7430 bool ret = false; 7431 7432 if (list_empty(&zone->unaccepted_pages)) 7433 return false; 7434 7435 /* Bailout, since try_to_accept_memory_one() needs to take a lock */ 7436 if (alloc_flags & ALLOC_TRYLOCK) 7437 return false; 7438 7439 wmark = promo_wmark_pages(zone); 7440 7441 /* 7442 * Watermarks have not been initialized yet. 7443 * 7444 * Accepting one MAX_ORDER page to ensure progress. 7445 */ 7446 if (!wmark) 7447 return try_to_accept_memory_one(zone); 7448 7449 /* How much to accept to get to promo watermark? */ 7450 to_accept = wmark - 7451 (zone_page_state(zone, NR_FREE_PAGES) - 7452 __zone_watermark_unusable_free(zone, order, 0) - 7453 zone_page_state(zone, NR_UNACCEPTED)); 7454 7455 while (to_accept > 0) { 7456 if (!try_to_accept_memory_one(zone)) 7457 break; 7458 ret = true; 7459 to_accept -= MAX_ORDER_NR_PAGES; 7460 } 7461 7462 return ret; 7463 } 7464 7465 static bool __free_unaccepted(struct page *page) 7466 { 7467 struct zone *zone = page_zone(page); 7468 unsigned long flags; 7469 7470 if (!lazy_accept) 7471 return false; 7472 7473 spin_lock_irqsave(&zone->lock, flags); 7474 list_add_tail(&page->lru, &zone->unaccepted_pages); 7475 account_freepages(zone, MAX_ORDER_NR_PAGES, MIGRATE_MOVABLE); 7476 __mod_zone_page_state(zone, NR_UNACCEPTED, MAX_ORDER_NR_PAGES); 7477 __SetPageUnaccepted(page); 7478 spin_unlock_irqrestore(&zone->lock, flags); 7479 7480 return true; 7481 } 7482 7483 #else 7484 7485 static bool page_contains_unaccepted(struct page *page, unsigned int order) 7486 { 7487 return false; 7488 } 7489 7490 static bool cond_accept_memory(struct zone *zone, unsigned int order, 7491 int alloc_flags) 7492 { 7493 return false; 7494 } 7495 7496 static bool __free_unaccepted(struct page *page) 7497 { 7498 BUILD_BUG(); 7499 return false; 7500 } 7501 7502 #endif /* CONFIG_UNACCEPTED_MEMORY */ 7503 7504 /** 7505 * alloc_pages_nolock - opportunistic reentrant allocation from any context 7506 * @nid: node to allocate from 7507 * @order: allocation order size 7508 * 7509 * Allocates pages of a given order from the given node. This is safe to 7510 * call from any context (from atomic, NMI, and also reentrant 7511 * allocator -> tracepoint -> alloc_pages_nolock_noprof). 7512 * Allocation is best effort and to be expected to fail easily so nobody should 7513 * rely on the success. Failures are not reported via warn_alloc(). 7514 * See always fail conditions below. 7515 * 7516 * Return: allocated page or NULL on failure. NULL does not mean EBUSY or EAGAIN. 7517 * It means ENOMEM. There is no reason to call it again and expect !NULL. 7518 */ 7519 struct page *alloc_pages_nolock_noprof(int nid, unsigned int order) 7520 { 7521 /* 7522 * Do not specify __GFP_DIRECT_RECLAIM, since direct claim is not allowed. 7523 * Do not specify __GFP_KSWAPD_RECLAIM either, since wake up of kswapd 7524 * is not safe in arbitrary context. 7525 * 7526 * These two are the conditions for gfpflags_allow_spinning() being true. 7527 * 7528 * Specify __GFP_NOWARN since failing alloc_pages_nolock() is not a reason 7529 * to warn. Also warn would trigger printk() which is unsafe from 7530 * various contexts. We cannot use printk_deferred_enter() to mitigate, 7531 * since the running context is unknown. 7532 * 7533 * Specify __GFP_ZERO to make sure that call to kmsan_alloc_page() below 7534 * is safe in any context. Also zeroing the page is mandatory for 7535 * BPF use cases. 7536 * 7537 * Though __GFP_NOMEMALLOC is not checked in the code path below, 7538 * specify it here to highlight that alloc_pages_nolock() 7539 * doesn't want to deplete reserves. 7540 */ 7541 gfp_t alloc_gfp = __GFP_NOWARN | __GFP_ZERO | __GFP_NOMEMALLOC 7542 | __GFP_ACCOUNT; 7543 unsigned int alloc_flags = ALLOC_TRYLOCK; 7544 struct alloc_context ac = { }; 7545 struct page *page; 7546 7547 /* 7548 * In PREEMPT_RT spin_trylock() will call raw_spin_lock() which is 7549 * unsafe in NMI. If spin_trylock() is called from hard IRQ the current 7550 * task may be waiting for one rt_spin_lock, but rt_spin_trylock() will 7551 * mark the task as the owner of another rt_spin_lock which will 7552 * confuse PI logic, so return immediately if called form hard IRQ or 7553 * NMI. 7554 * 7555 * Note, irqs_disabled() case is ok. This function can be called 7556 * from raw_spin_lock_irqsave region. 7557 */ 7558 if (IS_ENABLED(CONFIG_PREEMPT_RT) && (in_nmi() || in_hardirq())) 7559 return NULL; 7560 if (!pcp_allowed_order(order)) 7561 return NULL; 7562 7563 /* Bailout, since _deferred_grow_zone() needs to take a lock */ 7564 if (deferred_pages_enabled()) 7565 return NULL; 7566 7567 if (nid == NUMA_NO_NODE) 7568 nid = numa_node_id(); 7569 7570 prepare_alloc_pages(alloc_gfp, order, nid, NULL, &ac, 7571 &alloc_gfp, &alloc_flags); 7572 7573 /* 7574 * Best effort allocation from percpu free list. 7575 * If it's empty attempt to spin_trylock zone->lock. 7576 */ 7577 page = get_page_from_freelist(alloc_gfp, order, alloc_flags, &ac); 7578 7579 /* Unlike regular alloc_pages() there is no __alloc_pages_slowpath(). */ 7580 7581 if (page) 7582 set_page_refcounted(page); 7583 7584 if (memcg_kmem_online() && page && 7585 unlikely(__memcg_kmem_charge_page(page, alloc_gfp, order) != 0)) { 7586 free_pages_nolock(page, order); 7587 page = NULL; 7588 } 7589 trace_mm_page_alloc(page, order, alloc_gfp, ac.migratetype); 7590 kmsan_alloc_page(page, order, alloc_gfp); 7591 return page; 7592 } 7593