1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/mm/page_alloc.c 4 * 5 * Manages the free list, the system allocates free pages here. 6 * Note that kmalloc() lives in slab.c 7 * 8 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 9 * Swap reorganised 29.12.95, Stephen Tweedie 10 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999 11 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999 12 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999 13 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000 14 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002 15 * (lots of bits borrowed from Ingo Molnar & Andrew Morton) 16 */ 17 18 #include <linux/stddef.h> 19 #include <linux/mm.h> 20 #include <linux/highmem.h> 21 #include <linux/interrupt.h> 22 #include <linux/jiffies.h> 23 #include <linux/compiler.h> 24 #include <linux/kernel.h> 25 #include <linux/kasan.h> 26 #include <linux/kmsan.h> 27 #include <linux/module.h> 28 #include <linux/suspend.h> 29 #include <linux/ratelimit.h> 30 #include <linux/oom.h> 31 #include <linux/topology.h> 32 #include <linux/sysctl.h> 33 #include <linux/cpu.h> 34 #include <linux/cpuset.h> 35 #include <linux/pagevec.h> 36 #include <linux/memory_hotplug.h> 37 #include <linux/nodemask.h> 38 #include <linux/vmstat.h> 39 #include <linux/fault-inject.h> 40 #include <linux/compaction.h> 41 #include <trace/events/kmem.h> 42 #include <trace/events/oom.h> 43 #include <linux/prefetch.h> 44 #include <linux/mm_inline.h> 45 #include <linux/mmu_notifier.h> 46 #include <linux/migrate.h> 47 #include <linux/sched/mm.h> 48 #include <linux/page_owner.h> 49 #include <linux/page_table_check.h> 50 #include <linux/memcontrol.h> 51 #include <linux/ftrace.h> 52 #include <linux/lockdep.h> 53 #include <linux/psi.h> 54 #include <linux/khugepaged.h> 55 #include <linux/delayacct.h> 56 #include <linux/cacheinfo.h> 57 #include <linux/pgalloc_tag.h> 58 #include <asm/div64.h> 59 #include "internal.h" 60 #include "shuffle.h" 61 #include "page_reporting.h" 62 63 /* Free Page Internal flags: for internal, non-pcp variants of free_pages(). */ 64 typedef int __bitwise fpi_t; 65 66 /* No special request */ 67 #define FPI_NONE ((__force fpi_t)0) 68 69 /* 70 * Skip free page reporting notification for the (possibly merged) page. 71 * This does not hinder free page reporting from grabbing the page, 72 * reporting it and marking it "reported" - it only skips notifying 73 * the free page reporting infrastructure about a newly freed page. For 74 * example, used when temporarily pulling a page from a freelist and 75 * putting it back unmodified. 76 */ 77 #define FPI_SKIP_REPORT_NOTIFY ((__force fpi_t)BIT(0)) 78 79 /* 80 * Place the (possibly merged) page to the tail of the freelist. Will ignore 81 * page shuffling (relevant code - e.g., memory onlining - is expected to 82 * shuffle the whole zone). 83 * 84 * Note: No code should rely on this flag for correctness - it's purely 85 * to allow for optimizations when handing back either fresh pages 86 * (memory onlining) or untouched pages (page isolation, free page 87 * reporting). 88 */ 89 #define FPI_TO_TAIL ((__force fpi_t)BIT(1)) 90 91 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */ 92 static DEFINE_MUTEX(pcp_batch_high_lock); 93 #define MIN_PERCPU_PAGELIST_HIGH_FRACTION (8) 94 95 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT_RT) 96 /* 97 * On SMP, spin_trylock is sufficient protection. 98 * On PREEMPT_RT, spin_trylock is equivalent on both SMP and UP. 99 */ 100 #define pcp_trylock_prepare(flags) do { } while (0) 101 #define pcp_trylock_finish(flag) do { } while (0) 102 #else 103 104 /* UP spin_trylock always succeeds so disable IRQs to prevent re-entrancy. */ 105 #define pcp_trylock_prepare(flags) local_irq_save(flags) 106 #define pcp_trylock_finish(flags) local_irq_restore(flags) 107 #endif 108 109 /* 110 * Locking a pcp requires a PCP lookup followed by a spinlock. To avoid 111 * a migration causing the wrong PCP to be locked and remote memory being 112 * potentially allocated, pin the task to the CPU for the lookup+lock. 113 * preempt_disable is used on !RT because it is faster than migrate_disable. 114 * migrate_disable is used on RT because otherwise RT spinlock usage is 115 * interfered with and a high priority task cannot preempt the allocator. 116 */ 117 #ifndef CONFIG_PREEMPT_RT 118 #define pcpu_task_pin() preempt_disable() 119 #define pcpu_task_unpin() preempt_enable() 120 #else 121 #define pcpu_task_pin() migrate_disable() 122 #define pcpu_task_unpin() migrate_enable() 123 #endif 124 125 /* 126 * Generic helper to lookup and a per-cpu variable with an embedded spinlock. 127 * Return value should be used with equivalent unlock helper. 128 */ 129 #define pcpu_spin_lock(type, member, ptr) \ 130 ({ \ 131 type *_ret; \ 132 pcpu_task_pin(); \ 133 _ret = this_cpu_ptr(ptr); \ 134 spin_lock(&_ret->member); \ 135 _ret; \ 136 }) 137 138 #define pcpu_spin_trylock(type, member, ptr) \ 139 ({ \ 140 type *_ret; \ 141 pcpu_task_pin(); \ 142 _ret = this_cpu_ptr(ptr); \ 143 if (!spin_trylock(&_ret->member)) { \ 144 pcpu_task_unpin(); \ 145 _ret = NULL; \ 146 } \ 147 _ret; \ 148 }) 149 150 #define pcpu_spin_unlock(member, ptr) \ 151 ({ \ 152 spin_unlock(&ptr->member); \ 153 pcpu_task_unpin(); \ 154 }) 155 156 /* struct per_cpu_pages specific helpers. */ 157 #define pcp_spin_lock(ptr) \ 158 pcpu_spin_lock(struct per_cpu_pages, lock, ptr) 159 160 #define pcp_spin_trylock(ptr) \ 161 pcpu_spin_trylock(struct per_cpu_pages, lock, ptr) 162 163 #define pcp_spin_unlock(ptr) \ 164 pcpu_spin_unlock(lock, ptr) 165 166 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID 167 DEFINE_PER_CPU(int, numa_node); 168 EXPORT_PER_CPU_SYMBOL(numa_node); 169 #endif 170 171 DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key); 172 173 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 174 /* 175 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly. 176 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined. 177 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem() 178 * defined in <linux/topology.h>. 179 */ 180 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */ 181 EXPORT_PER_CPU_SYMBOL(_numa_mem_); 182 #endif 183 184 static DEFINE_MUTEX(pcpu_drain_mutex); 185 186 #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY 187 volatile unsigned long latent_entropy __latent_entropy; 188 EXPORT_SYMBOL(latent_entropy); 189 #endif 190 191 /* 192 * Array of node states. 193 */ 194 nodemask_t node_states[NR_NODE_STATES] __read_mostly = { 195 [N_POSSIBLE] = NODE_MASK_ALL, 196 [N_ONLINE] = { { [0] = 1UL } }, 197 #ifndef CONFIG_NUMA 198 [N_NORMAL_MEMORY] = { { [0] = 1UL } }, 199 #ifdef CONFIG_HIGHMEM 200 [N_HIGH_MEMORY] = { { [0] = 1UL } }, 201 #endif 202 [N_MEMORY] = { { [0] = 1UL } }, 203 [N_CPU] = { { [0] = 1UL } }, 204 #endif /* NUMA */ 205 }; 206 EXPORT_SYMBOL(node_states); 207 208 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK; 209 210 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE 211 unsigned int pageblock_order __read_mostly; 212 #endif 213 214 static void __free_pages_ok(struct page *page, unsigned int order, 215 fpi_t fpi_flags); 216 217 /* 218 * results with 256, 32 in the lowmem_reserve sysctl: 219 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high) 220 * 1G machine -> (16M dma, 784M normal, 224M high) 221 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA 222 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL 223 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA 224 * 225 * TBD: should special case ZONE_DMA32 machines here - in those we normally 226 * don't need any ZONE_NORMAL reservation 227 */ 228 static int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = { 229 #ifdef CONFIG_ZONE_DMA 230 [ZONE_DMA] = 256, 231 #endif 232 #ifdef CONFIG_ZONE_DMA32 233 [ZONE_DMA32] = 256, 234 #endif 235 [ZONE_NORMAL] = 32, 236 #ifdef CONFIG_HIGHMEM 237 [ZONE_HIGHMEM] = 0, 238 #endif 239 [ZONE_MOVABLE] = 0, 240 }; 241 242 char * const zone_names[MAX_NR_ZONES] = { 243 #ifdef CONFIG_ZONE_DMA 244 "DMA", 245 #endif 246 #ifdef CONFIG_ZONE_DMA32 247 "DMA32", 248 #endif 249 "Normal", 250 #ifdef CONFIG_HIGHMEM 251 "HighMem", 252 #endif 253 "Movable", 254 #ifdef CONFIG_ZONE_DEVICE 255 "Device", 256 #endif 257 }; 258 259 const char * const migratetype_names[MIGRATE_TYPES] = { 260 "Unmovable", 261 "Movable", 262 "Reclaimable", 263 "HighAtomic", 264 #ifdef CONFIG_CMA 265 "CMA", 266 #endif 267 #ifdef CONFIG_MEMORY_ISOLATION 268 "Isolate", 269 #endif 270 }; 271 272 int min_free_kbytes = 1024; 273 int user_min_free_kbytes = -1; 274 static int watermark_boost_factor __read_mostly = 15000; 275 static int watermark_scale_factor = 10; 276 277 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */ 278 int movable_zone; 279 EXPORT_SYMBOL(movable_zone); 280 281 #if MAX_NUMNODES > 1 282 unsigned int nr_node_ids __read_mostly = MAX_NUMNODES; 283 unsigned int nr_online_nodes __read_mostly = 1; 284 EXPORT_SYMBOL(nr_node_ids); 285 EXPORT_SYMBOL(nr_online_nodes); 286 #endif 287 288 static bool page_contains_unaccepted(struct page *page, unsigned int order); 289 static bool cond_accept_memory(struct zone *zone, unsigned int order); 290 static bool __free_unaccepted(struct page *page); 291 292 int page_group_by_mobility_disabled __read_mostly; 293 294 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 295 /* 296 * During boot we initialize deferred pages on-demand, as needed, but once 297 * page_alloc_init_late() has finished, the deferred pages are all initialized, 298 * and we can permanently disable that path. 299 */ 300 DEFINE_STATIC_KEY_TRUE(deferred_pages); 301 302 static inline bool deferred_pages_enabled(void) 303 { 304 return static_branch_unlikely(&deferred_pages); 305 } 306 307 /* 308 * deferred_grow_zone() is __init, but it is called from 309 * get_page_from_freelist() during early boot until deferred_pages permanently 310 * disables this call. This is why we have refdata wrapper to avoid warning, 311 * and to ensure that the function body gets unloaded. 312 */ 313 static bool __ref 314 _deferred_grow_zone(struct zone *zone, unsigned int order) 315 { 316 return deferred_grow_zone(zone, order); 317 } 318 #else 319 static inline bool deferred_pages_enabled(void) 320 { 321 return false; 322 } 323 324 static inline bool _deferred_grow_zone(struct zone *zone, unsigned int order) 325 { 326 return false; 327 } 328 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */ 329 330 /* Return a pointer to the bitmap storing bits affecting a block of pages */ 331 static inline unsigned long *get_pageblock_bitmap(const struct page *page, 332 unsigned long pfn) 333 { 334 #ifdef CONFIG_SPARSEMEM 335 return section_to_usemap(__pfn_to_section(pfn)); 336 #else 337 return page_zone(page)->pageblock_flags; 338 #endif /* CONFIG_SPARSEMEM */ 339 } 340 341 static inline int pfn_to_bitidx(const struct page *page, unsigned long pfn) 342 { 343 #ifdef CONFIG_SPARSEMEM 344 pfn &= (PAGES_PER_SECTION-1); 345 #else 346 pfn = pfn - pageblock_start_pfn(page_zone(page)->zone_start_pfn); 347 #endif /* CONFIG_SPARSEMEM */ 348 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS; 349 } 350 351 /** 352 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages 353 * @page: The page within the block of interest 354 * @pfn: The target page frame number 355 * @mask: mask of bits that the caller is interested in 356 * 357 * Return: pageblock_bits flags 358 */ 359 unsigned long get_pfnblock_flags_mask(const struct page *page, 360 unsigned long pfn, unsigned long mask) 361 { 362 unsigned long *bitmap; 363 unsigned long bitidx, word_bitidx; 364 unsigned long word; 365 366 bitmap = get_pageblock_bitmap(page, pfn); 367 bitidx = pfn_to_bitidx(page, pfn); 368 word_bitidx = bitidx / BITS_PER_LONG; 369 bitidx &= (BITS_PER_LONG-1); 370 /* 371 * This races, without locks, with set_pfnblock_flags_mask(). Ensure 372 * a consistent read of the memory array, so that results, even though 373 * racy, are not corrupted. 374 */ 375 word = READ_ONCE(bitmap[word_bitidx]); 376 return (word >> bitidx) & mask; 377 } 378 379 static __always_inline int get_pfnblock_migratetype(const struct page *page, 380 unsigned long pfn) 381 { 382 return get_pfnblock_flags_mask(page, pfn, MIGRATETYPE_MASK); 383 } 384 385 /** 386 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages 387 * @page: The page within the block of interest 388 * @flags: The flags to set 389 * @pfn: The target page frame number 390 * @mask: mask of bits that the caller is interested in 391 */ 392 void set_pfnblock_flags_mask(struct page *page, unsigned long flags, 393 unsigned long pfn, 394 unsigned long mask) 395 { 396 unsigned long *bitmap; 397 unsigned long bitidx, word_bitidx; 398 unsigned long word; 399 400 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4); 401 BUILD_BUG_ON(MIGRATE_TYPES > (1 << PB_migratetype_bits)); 402 403 bitmap = get_pageblock_bitmap(page, pfn); 404 bitidx = pfn_to_bitidx(page, pfn); 405 word_bitidx = bitidx / BITS_PER_LONG; 406 bitidx &= (BITS_PER_LONG-1); 407 408 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page); 409 410 mask <<= bitidx; 411 flags <<= bitidx; 412 413 word = READ_ONCE(bitmap[word_bitidx]); 414 do { 415 } while (!try_cmpxchg(&bitmap[word_bitidx], &word, (word & ~mask) | flags)); 416 } 417 418 void set_pageblock_migratetype(struct page *page, int migratetype) 419 { 420 if (unlikely(page_group_by_mobility_disabled && 421 migratetype < MIGRATE_PCPTYPES)) 422 migratetype = MIGRATE_UNMOVABLE; 423 424 set_pfnblock_flags_mask(page, (unsigned long)migratetype, 425 page_to_pfn(page), MIGRATETYPE_MASK); 426 } 427 428 #ifdef CONFIG_DEBUG_VM 429 static int page_outside_zone_boundaries(struct zone *zone, struct page *page) 430 { 431 int ret; 432 unsigned seq; 433 unsigned long pfn = page_to_pfn(page); 434 unsigned long sp, start_pfn; 435 436 do { 437 seq = zone_span_seqbegin(zone); 438 start_pfn = zone->zone_start_pfn; 439 sp = zone->spanned_pages; 440 ret = !zone_spans_pfn(zone, pfn); 441 } while (zone_span_seqretry(zone, seq)); 442 443 if (ret) 444 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n", 445 pfn, zone_to_nid(zone), zone->name, 446 start_pfn, start_pfn + sp); 447 448 return ret; 449 } 450 451 /* 452 * Temporary debugging check for pages not lying within a given zone. 453 */ 454 static bool __maybe_unused bad_range(struct zone *zone, struct page *page) 455 { 456 if (page_outside_zone_boundaries(zone, page)) 457 return true; 458 if (zone != page_zone(page)) 459 return true; 460 461 return false; 462 } 463 #else 464 static inline bool __maybe_unused bad_range(struct zone *zone, struct page *page) 465 { 466 return false; 467 } 468 #endif 469 470 static void bad_page(struct page *page, const char *reason) 471 { 472 static unsigned long resume; 473 static unsigned long nr_shown; 474 static unsigned long nr_unshown; 475 476 /* 477 * Allow a burst of 60 reports, then keep quiet for that minute; 478 * or allow a steady drip of one report per second. 479 */ 480 if (nr_shown == 60) { 481 if (time_before(jiffies, resume)) { 482 nr_unshown++; 483 goto out; 484 } 485 if (nr_unshown) { 486 pr_alert( 487 "BUG: Bad page state: %lu messages suppressed\n", 488 nr_unshown); 489 nr_unshown = 0; 490 } 491 nr_shown = 0; 492 } 493 if (nr_shown++ == 0) 494 resume = jiffies + 60 * HZ; 495 496 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n", 497 current->comm, page_to_pfn(page)); 498 dump_page(page, reason); 499 500 print_modules(); 501 dump_stack(); 502 out: 503 /* Leave bad fields for debug, except PageBuddy could make trouble */ 504 if (PageBuddy(page)) 505 __ClearPageBuddy(page); 506 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 507 } 508 509 static inline unsigned int order_to_pindex(int migratetype, int order) 510 { 511 bool __maybe_unused movable; 512 513 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 514 if (order > PAGE_ALLOC_COSTLY_ORDER) { 515 VM_BUG_ON(order != HPAGE_PMD_ORDER); 516 517 movable = migratetype == MIGRATE_MOVABLE; 518 519 return NR_LOWORDER_PCP_LISTS + movable; 520 } 521 #else 522 VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER); 523 #endif 524 525 return (MIGRATE_PCPTYPES * order) + migratetype; 526 } 527 528 static inline int pindex_to_order(unsigned int pindex) 529 { 530 int order = pindex / MIGRATE_PCPTYPES; 531 532 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 533 if (pindex >= NR_LOWORDER_PCP_LISTS) 534 order = HPAGE_PMD_ORDER; 535 #else 536 VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER); 537 #endif 538 539 return order; 540 } 541 542 static inline bool pcp_allowed_order(unsigned int order) 543 { 544 if (order <= PAGE_ALLOC_COSTLY_ORDER) 545 return true; 546 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 547 if (order == HPAGE_PMD_ORDER) 548 return true; 549 #endif 550 return false; 551 } 552 553 /* 554 * Higher-order pages are called "compound pages". They are structured thusly: 555 * 556 * The first PAGE_SIZE page is called the "head page" and have PG_head set. 557 * 558 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded 559 * in bit 0 of page->compound_head. The rest of bits is pointer to head page. 560 * 561 * The first tail page's ->compound_order holds the order of allocation. 562 * This usage means that zero-order pages may not be compound. 563 */ 564 565 void prep_compound_page(struct page *page, unsigned int order) 566 { 567 int i; 568 int nr_pages = 1 << order; 569 570 __SetPageHead(page); 571 for (i = 1; i < nr_pages; i++) 572 prep_compound_tail(page, i); 573 574 prep_compound_head(page, order); 575 } 576 577 static inline void set_buddy_order(struct page *page, unsigned int order) 578 { 579 set_page_private(page, order); 580 __SetPageBuddy(page); 581 } 582 583 #ifdef CONFIG_COMPACTION 584 static inline struct capture_control *task_capc(struct zone *zone) 585 { 586 struct capture_control *capc = current->capture_control; 587 588 return unlikely(capc) && 589 !(current->flags & PF_KTHREAD) && 590 !capc->page && 591 capc->cc->zone == zone ? capc : NULL; 592 } 593 594 static inline bool 595 compaction_capture(struct capture_control *capc, struct page *page, 596 int order, int migratetype) 597 { 598 if (!capc || order != capc->cc->order) 599 return false; 600 601 /* Do not accidentally pollute CMA or isolated regions*/ 602 if (is_migrate_cma(migratetype) || 603 is_migrate_isolate(migratetype)) 604 return false; 605 606 /* 607 * Do not let lower order allocations pollute a movable pageblock 608 * unless compaction is also requesting movable pages. 609 * This might let an unmovable request use a reclaimable pageblock 610 * and vice-versa but no more than normal fallback logic which can 611 * have trouble finding a high-order free page. 612 */ 613 if (order < pageblock_order && migratetype == MIGRATE_MOVABLE && 614 capc->cc->migratetype != MIGRATE_MOVABLE) 615 return false; 616 617 capc->page = page; 618 return true; 619 } 620 621 #else 622 static inline struct capture_control *task_capc(struct zone *zone) 623 { 624 return NULL; 625 } 626 627 static inline bool 628 compaction_capture(struct capture_control *capc, struct page *page, 629 int order, int migratetype) 630 { 631 return false; 632 } 633 #endif /* CONFIG_COMPACTION */ 634 635 static inline void account_freepages(struct zone *zone, int nr_pages, 636 int migratetype) 637 { 638 lockdep_assert_held(&zone->lock); 639 640 if (is_migrate_isolate(migratetype)) 641 return; 642 643 __mod_zone_page_state(zone, NR_FREE_PAGES, nr_pages); 644 645 if (is_migrate_cma(migratetype)) 646 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES, nr_pages); 647 else if (is_migrate_highatomic(migratetype)) 648 WRITE_ONCE(zone->nr_free_highatomic, 649 zone->nr_free_highatomic + nr_pages); 650 } 651 652 /* Used for pages not on another list */ 653 static inline void __add_to_free_list(struct page *page, struct zone *zone, 654 unsigned int order, int migratetype, 655 bool tail) 656 { 657 struct free_area *area = &zone->free_area[order]; 658 659 VM_WARN_ONCE(get_pageblock_migratetype(page) != migratetype, 660 "page type is %lu, passed migratetype is %d (nr=%d)\n", 661 get_pageblock_migratetype(page), migratetype, 1 << order); 662 663 if (tail) 664 list_add_tail(&page->buddy_list, &area->free_list[migratetype]); 665 else 666 list_add(&page->buddy_list, &area->free_list[migratetype]); 667 area->nr_free++; 668 } 669 670 /* 671 * Used for pages which are on another list. Move the pages to the tail 672 * of the list - so the moved pages won't immediately be considered for 673 * allocation again (e.g., optimization for memory onlining). 674 */ 675 static inline void move_to_free_list(struct page *page, struct zone *zone, 676 unsigned int order, int old_mt, int new_mt) 677 { 678 struct free_area *area = &zone->free_area[order]; 679 680 /* Free page moving can fail, so it happens before the type update */ 681 VM_WARN_ONCE(get_pageblock_migratetype(page) != old_mt, 682 "page type is %lu, passed migratetype is %d (nr=%d)\n", 683 get_pageblock_migratetype(page), old_mt, 1 << order); 684 685 list_move_tail(&page->buddy_list, &area->free_list[new_mt]); 686 687 account_freepages(zone, -(1 << order), old_mt); 688 account_freepages(zone, 1 << order, new_mt); 689 } 690 691 static inline void __del_page_from_free_list(struct page *page, struct zone *zone, 692 unsigned int order, int migratetype) 693 { 694 VM_WARN_ONCE(get_pageblock_migratetype(page) != migratetype, 695 "page type is %lu, passed migratetype is %d (nr=%d)\n", 696 get_pageblock_migratetype(page), migratetype, 1 << order); 697 698 /* clear reported state and update reported page count */ 699 if (page_reported(page)) 700 __ClearPageReported(page); 701 702 list_del(&page->buddy_list); 703 __ClearPageBuddy(page); 704 set_page_private(page, 0); 705 zone->free_area[order].nr_free--; 706 } 707 708 static inline void del_page_from_free_list(struct page *page, struct zone *zone, 709 unsigned int order, int migratetype) 710 { 711 __del_page_from_free_list(page, zone, order, migratetype); 712 account_freepages(zone, -(1 << order), migratetype); 713 } 714 715 static inline struct page *get_page_from_free_area(struct free_area *area, 716 int migratetype) 717 { 718 return list_first_entry_or_null(&area->free_list[migratetype], 719 struct page, buddy_list); 720 } 721 722 /* 723 * If this is less than the 2nd largest possible page, check if the buddy 724 * of the next-higher order is free. If it is, it's possible 725 * that pages are being freed that will coalesce soon. In case, 726 * that is happening, add the free page to the tail of the list 727 * so it's less likely to be used soon and more likely to be merged 728 * as a 2-level higher order page 729 */ 730 static inline bool 731 buddy_merge_likely(unsigned long pfn, unsigned long buddy_pfn, 732 struct page *page, unsigned int order) 733 { 734 unsigned long higher_page_pfn; 735 struct page *higher_page; 736 737 if (order >= MAX_PAGE_ORDER - 1) 738 return false; 739 740 higher_page_pfn = buddy_pfn & pfn; 741 higher_page = page + (higher_page_pfn - pfn); 742 743 return find_buddy_page_pfn(higher_page, higher_page_pfn, order + 1, 744 NULL) != NULL; 745 } 746 747 /* 748 * Freeing function for a buddy system allocator. 749 * 750 * The concept of a buddy system is to maintain direct-mapped table 751 * (containing bit values) for memory blocks of various "orders". 752 * The bottom level table contains the map for the smallest allocatable 753 * units of memory (here, pages), and each level above it describes 754 * pairs of units from the levels below, hence, "buddies". 755 * At a high level, all that happens here is marking the table entry 756 * at the bottom level available, and propagating the changes upward 757 * as necessary, plus some accounting needed to play nicely with other 758 * parts of the VM system. 759 * At each level, we keep a list of pages, which are heads of continuous 760 * free pages of length of (1 << order) and marked with PageBuddy. 761 * Page's order is recorded in page_private(page) field. 762 * So when we are allocating or freeing one, we can derive the state of the 763 * other. That is, if we allocate a small block, and both were 764 * free, the remainder of the region must be split into blocks. 765 * If a block is freed, and its buddy is also free, then this 766 * triggers coalescing into a block of larger size. 767 * 768 * -- nyc 769 */ 770 771 static inline void __free_one_page(struct page *page, 772 unsigned long pfn, 773 struct zone *zone, unsigned int order, 774 int migratetype, fpi_t fpi_flags) 775 { 776 struct capture_control *capc = task_capc(zone); 777 unsigned long buddy_pfn = 0; 778 unsigned long combined_pfn; 779 struct page *buddy; 780 bool to_tail; 781 782 VM_BUG_ON(!zone_is_initialized(zone)); 783 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page); 784 785 VM_BUG_ON(migratetype == -1); 786 VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page); 787 VM_BUG_ON_PAGE(bad_range(zone, page), page); 788 789 account_freepages(zone, 1 << order, migratetype); 790 791 while (order < MAX_PAGE_ORDER) { 792 int buddy_mt = migratetype; 793 794 if (compaction_capture(capc, page, order, migratetype)) { 795 account_freepages(zone, -(1 << order), migratetype); 796 return; 797 } 798 799 buddy = find_buddy_page_pfn(page, pfn, order, &buddy_pfn); 800 if (!buddy) 801 goto done_merging; 802 803 if (unlikely(order >= pageblock_order)) { 804 /* 805 * We want to prevent merge between freepages on pageblock 806 * without fallbacks and normal pageblock. Without this, 807 * pageblock isolation could cause incorrect freepage or CMA 808 * accounting or HIGHATOMIC accounting. 809 */ 810 buddy_mt = get_pfnblock_migratetype(buddy, buddy_pfn); 811 812 if (migratetype != buddy_mt && 813 (!migratetype_is_mergeable(migratetype) || 814 !migratetype_is_mergeable(buddy_mt))) 815 goto done_merging; 816 } 817 818 /* 819 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page, 820 * merge with it and move up one order. 821 */ 822 if (page_is_guard(buddy)) 823 clear_page_guard(zone, buddy, order); 824 else 825 __del_page_from_free_list(buddy, zone, order, buddy_mt); 826 827 if (unlikely(buddy_mt != migratetype)) { 828 /* 829 * Match buddy type. This ensures that an 830 * expand() down the line puts the sub-blocks 831 * on the right freelists. 832 */ 833 set_pageblock_migratetype(buddy, migratetype); 834 } 835 836 combined_pfn = buddy_pfn & pfn; 837 page = page + (combined_pfn - pfn); 838 pfn = combined_pfn; 839 order++; 840 } 841 842 done_merging: 843 set_buddy_order(page, order); 844 845 if (fpi_flags & FPI_TO_TAIL) 846 to_tail = true; 847 else if (is_shuffle_order(order)) 848 to_tail = shuffle_pick_tail(); 849 else 850 to_tail = buddy_merge_likely(pfn, buddy_pfn, page, order); 851 852 __add_to_free_list(page, zone, order, migratetype, to_tail); 853 854 /* Notify page reporting subsystem of freed page */ 855 if (!(fpi_flags & FPI_SKIP_REPORT_NOTIFY)) 856 page_reporting_notify_free(order); 857 } 858 859 /* 860 * A bad page could be due to a number of fields. Instead of multiple branches, 861 * try and check multiple fields with one check. The caller must do a detailed 862 * check if necessary. 863 */ 864 static inline bool page_expected_state(struct page *page, 865 unsigned long check_flags) 866 { 867 if (unlikely(atomic_read(&page->_mapcount) != -1)) 868 return false; 869 870 if (unlikely((unsigned long)page->mapping | 871 page_ref_count(page) | 872 #ifdef CONFIG_MEMCG 873 page->memcg_data | 874 #endif 875 #ifdef CONFIG_PAGE_POOL 876 ((page->pp_magic & ~0x3UL) == PP_SIGNATURE) | 877 #endif 878 (page->flags & check_flags))) 879 return false; 880 881 return true; 882 } 883 884 static const char *page_bad_reason(struct page *page, unsigned long flags) 885 { 886 const char *bad_reason = NULL; 887 888 if (unlikely(atomic_read(&page->_mapcount) != -1)) 889 bad_reason = "nonzero mapcount"; 890 if (unlikely(page->mapping != NULL)) 891 bad_reason = "non-NULL mapping"; 892 if (unlikely(page_ref_count(page) != 0)) 893 bad_reason = "nonzero _refcount"; 894 if (unlikely(page->flags & flags)) { 895 if (flags == PAGE_FLAGS_CHECK_AT_PREP) 896 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag(s) set"; 897 else 898 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set"; 899 } 900 #ifdef CONFIG_MEMCG 901 if (unlikely(page->memcg_data)) 902 bad_reason = "page still charged to cgroup"; 903 #endif 904 #ifdef CONFIG_PAGE_POOL 905 if (unlikely((page->pp_magic & ~0x3UL) == PP_SIGNATURE)) 906 bad_reason = "page_pool leak"; 907 #endif 908 return bad_reason; 909 } 910 911 static void free_page_is_bad_report(struct page *page) 912 { 913 bad_page(page, 914 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_FREE)); 915 } 916 917 static inline bool free_page_is_bad(struct page *page) 918 { 919 if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE))) 920 return false; 921 922 /* Something has gone sideways, find it */ 923 free_page_is_bad_report(page); 924 return true; 925 } 926 927 static inline bool is_check_pages_enabled(void) 928 { 929 return static_branch_unlikely(&check_pages_enabled); 930 } 931 932 static int free_tail_page_prepare(struct page *head_page, struct page *page) 933 { 934 struct folio *folio = (struct folio *)head_page; 935 int ret = 1; 936 937 /* 938 * We rely page->lru.next never has bit 0 set, unless the page 939 * is PageTail(). Let's make sure that's true even for poisoned ->lru. 940 */ 941 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1); 942 943 if (!is_check_pages_enabled()) { 944 ret = 0; 945 goto out; 946 } 947 switch (page - head_page) { 948 case 1: 949 /* the first tail page: these may be in place of ->mapping */ 950 if (unlikely(folio_entire_mapcount(folio))) { 951 bad_page(page, "nonzero entire_mapcount"); 952 goto out; 953 } 954 if (unlikely(folio_large_mapcount(folio))) { 955 bad_page(page, "nonzero large_mapcount"); 956 goto out; 957 } 958 if (unlikely(atomic_read(&folio->_nr_pages_mapped))) { 959 bad_page(page, "nonzero nr_pages_mapped"); 960 goto out; 961 } 962 if (unlikely(atomic_read(&folio->_pincount))) { 963 bad_page(page, "nonzero pincount"); 964 goto out; 965 } 966 break; 967 case 2: 968 /* the second tail page: deferred_list overlaps ->mapping */ 969 if (unlikely(!list_empty(&folio->_deferred_list))) { 970 bad_page(page, "on deferred list"); 971 goto out; 972 } 973 break; 974 default: 975 if (page->mapping != TAIL_MAPPING) { 976 bad_page(page, "corrupted mapping in tail page"); 977 goto out; 978 } 979 break; 980 } 981 if (unlikely(!PageTail(page))) { 982 bad_page(page, "PageTail not set"); 983 goto out; 984 } 985 if (unlikely(compound_head(page) != head_page)) { 986 bad_page(page, "compound_head not consistent"); 987 goto out; 988 } 989 ret = 0; 990 out: 991 page->mapping = NULL; 992 clear_compound_head(page); 993 return ret; 994 } 995 996 /* 997 * Skip KASAN memory poisoning when either: 998 * 999 * 1. For generic KASAN: deferred memory initialization has not yet completed. 1000 * Tag-based KASAN modes skip pages freed via deferred memory initialization 1001 * using page tags instead (see below). 1002 * 2. For tag-based KASAN modes: the page has a match-all KASAN tag, indicating 1003 * that error detection is disabled for accesses via the page address. 1004 * 1005 * Pages will have match-all tags in the following circumstances: 1006 * 1007 * 1. Pages are being initialized for the first time, including during deferred 1008 * memory init; see the call to page_kasan_tag_reset in __init_single_page. 1009 * 2. The allocation was not unpoisoned due to __GFP_SKIP_KASAN, with the 1010 * exception of pages unpoisoned by kasan_unpoison_vmalloc. 1011 * 3. The allocation was excluded from being checked due to sampling, 1012 * see the call to kasan_unpoison_pages. 1013 * 1014 * Poisoning pages during deferred memory init will greatly lengthen the 1015 * process and cause problem in large memory systems as the deferred pages 1016 * initialization is done with interrupt disabled. 1017 * 1018 * Assuming that there will be no reference to those newly initialized 1019 * pages before they are ever allocated, this should have no effect on 1020 * KASAN memory tracking as the poison will be properly inserted at page 1021 * allocation time. The only corner case is when pages are allocated by 1022 * on-demand allocation and then freed again before the deferred pages 1023 * initialization is done, but this is not likely to happen. 1024 */ 1025 static inline bool should_skip_kasan_poison(struct page *page) 1026 { 1027 if (IS_ENABLED(CONFIG_KASAN_GENERIC)) 1028 return deferred_pages_enabled(); 1029 1030 return page_kasan_tag(page) == KASAN_TAG_KERNEL; 1031 } 1032 1033 static void kernel_init_pages(struct page *page, int numpages) 1034 { 1035 int i; 1036 1037 /* s390's use of memset() could override KASAN redzones. */ 1038 kasan_disable_current(); 1039 for (i = 0; i < numpages; i++) 1040 clear_highpage_kasan_tagged(page + i); 1041 kasan_enable_current(); 1042 } 1043 1044 __always_inline bool free_pages_prepare(struct page *page, 1045 unsigned int order) 1046 { 1047 int bad = 0; 1048 bool skip_kasan_poison = should_skip_kasan_poison(page); 1049 bool init = want_init_on_free(); 1050 bool compound = PageCompound(page); 1051 1052 VM_BUG_ON_PAGE(PageTail(page), page); 1053 1054 trace_mm_page_free(page, order); 1055 kmsan_free_page(page, order); 1056 1057 if (memcg_kmem_online() && PageMemcgKmem(page)) 1058 __memcg_kmem_uncharge_page(page, order); 1059 1060 if (unlikely(PageHWPoison(page)) && !order) { 1061 /* Do not let hwpoison pages hit pcplists/buddy */ 1062 reset_page_owner(page, order); 1063 page_table_check_free(page, order); 1064 pgalloc_tag_sub(page, 1 << order); 1065 1066 /* 1067 * The page is isolated and accounted for. 1068 * Mark the codetag as empty to avoid accounting error 1069 * when the page is freed by unpoison_memory(). 1070 */ 1071 clear_page_tag_ref(page); 1072 return false; 1073 } 1074 1075 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page); 1076 1077 /* 1078 * Check tail pages before head page information is cleared to 1079 * avoid checking PageCompound for order-0 pages. 1080 */ 1081 if (unlikely(order)) { 1082 int i; 1083 1084 if (compound) 1085 page[1].flags &= ~PAGE_FLAGS_SECOND; 1086 for (i = 1; i < (1 << order); i++) { 1087 if (compound) 1088 bad += free_tail_page_prepare(page, page + i); 1089 if (is_check_pages_enabled()) { 1090 if (free_page_is_bad(page + i)) { 1091 bad++; 1092 continue; 1093 } 1094 } 1095 (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP; 1096 } 1097 } 1098 if (PageMappingFlags(page)) { 1099 if (PageAnon(page)) 1100 mod_mthp_stat(order, MTHP_STAT_NR_ANON, -1); 1101 page->mapping = NULL; 1102 } 1103 if (is_check_pages_enabled()) { 1104 if (free_page_is_bad(page)) 1105 bad++; 1106 if (bad) 1107 return false; 1108 } 1109 1110 page_cpupid_reset_last(page); 1111 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP; 1112 reset_page_owner(page, order); 1113 page_table_check_free(page, order); 1114 pgalloc_tag_sub(page, 1 << order); 1115 1116 if (!PageHighMem(page)) { 1117 debug_check_no_locks_freed(page_address(page), 1118 PAGE_SIZE << order); 1119 debug_check_no_obj_freed(page_address(page), 1120 PAGE_SIZE << order); 1121 } 1122 1123 kernel_poison_pages(page, 1 << order); 1124 1125 /* 1126 * As memory initialization might be integrated into KASAN, 1127 * KASAN poisoning and memory initialization code must be 1128 * kept together to avoid discrepancies in behavior. 1129 * 1130 * With hardware tag-based KASAN, memory tags must be set before the 1131 * page becomes unavailable via debug_pagealloc or arch_free_page. 1132 */ 1133 if (!skip_kasan_poison) { 1134 kasan_poison_pages(page, order, init); 1135 1136 /* Memory is already initialized if KASAN did it internally. */ 1137 if (kasan_has_integrated_init()) 1138 init = false; 1139 } 1140 if (init) 1141 kernel_init_pages(page, 1 << order); 1142 1143 /* 1144 * arch_free_page() can make the page's contents inaccessible. s390 1145 * does this. So nothing which can access the page's contents should 1146 * happen after this. 1147 */ 1148 arch_free_page(page, order); 1149 1150 debug_pagealloc_unmap_pages(page, 1 << order); 1151 1152 return true; 1153 } 1154 1155 /* 1156 * Frees a number of pages from the PCP lists 1157 * Assumes all pages on list are in same zone. 1158 * count is the number of pages to free. 1159 */ 1160 static void free_pcppages_bulk(struct zone *zone, int count, 1161 struct per_cpu_pages *pcp, 1162 int pindex) 1163 { 1164 unsigned long flags; 1165 unsigned int order; 1166 struct page *page; 1167 1168 /* 1169 * Ensure proper count is passed which otherwise would stuck in the 1170 * below while (list_empty(list)) loop. 1171 */ 1172 count = min(pcp->count, count); 1173 1174 /* Ensure requested pindex is drained first. */ 1175 pindex = pindex - 1; 1176 1177 spin_lock_irqsave(&zone->lock, flags); 1178 1179 while (count > 0) { 1180 struct list_head *list; 1181 int nr_pages; 1182 1183 /* Remove pages from lists in a round-robin fashion. */ 1184 do { 1185 if (++pindex > NR_PCP_LISTS - 1) 1186 pindex = 0; 1187 list = &pcp->lists[pindex]; 1188 } while (list_empty(list)); 1189 1190 order = pindex_to_order(pindex); 1191 nr_pages = 1 << order; 1192 do { 1193 unsigned long pfn; 1194 int mt; 1195 1196 page = list_last_entry(list, struct page, pcp_list); 1197 pfn = page_to_pfn(page); 1198 mt = get_pfnblock_migratetype(page, pfn); 1199 1200 /* must delete to avoid corrupting pcp list */ 1201 list_del(&page->pcp_list); 1202 count -= nr_pages; 1203 pcp->count -= nr_pages; 1204 1205 __free_one_page(page, pfn, zone, order, mt, FPI_NONE); 1206 trace_mm_page_pcpu_drain(page, order, mt); 1207 } while (count > 0 && !list_empty(list)); 1208 } 1209 1210 spin_unlock_irqrestore(&zone->lock, flags); 1211 } 1212 1213 /* Split a multi-block free page into its individual pageblocks. */ 1214 static void split_large_buddy(struct zone *zone, struct page *page, 1215 unsigned long pfn, int order, fpi_t fpi) 1216 { 1217 unsigned long end = pfn + (1 << order); 1218 1219 VM_WARN_ON_ONCE(!IS_ALIGNED(pfn, 1 << order)); 1220 /* Caller removed page from freelist, buddy info cleared! */ 1221 VM_WARN_ON_ONCE(PageBuddy(page)); 1222 1223 if (order > pageblock_order) 1224 order = pageblock_order; 1225 1226 while (pfn != end) { 1227 int mt = get_pfnblock_migratetype(page, pfn); 1228 1229 __free_one_page(page, pfn, zone, order, mt, fpi); 1230 pfn += 1 << order; 1231 page = pfn_to_page(pfn); 1232 } 1233 } 1234 1235 static void free_one_page(struct zone *zone, struct page *page, 1236 unsigned long pfn, unsigned int order, 1237 fpi_t fpi_flags) 1238 { 1239 unsigned long flags; 1240 1241 spin_lock_irqsave(&zone->lock, flags); 1242 split_large_buddy(zone, page, pfn, order, fpi_flags); 1243 spin_unlock_irqrestore(&zone->lock, flags); 1244 1245 __count_vm_events(PGFREE, 1 << order); 1246 } 1247 1248 static void __free_pages_ok(struct page *page, unsigned int order, 1249 fpi_t fpi_flags) 1250 { 1251 unsigned long pfn = page_to_pfn(page); 1252 struct zone *zone = page_zone(page); 1253 1254 if (free_pages_prepare(page, order)) 1255 free_one_page(zone, page, pfn, order, fpi_flags); 1256 } 1257 1258 void __meminit __free_pages_core(struct page *page, unsigned int order, 1259 enum meminit_context context) 1260 { 1261 unsigned int nr_pages = 1 << order; 1262 struct page *p = page; 1263 unsigned int loop; 1264 1265 /* 1266 * When initializing the memmap, __init_single_page() sets the refcount 1267 * of all pages to 1 ("allocated"/"not free"). We have to set the 1268 * refcount of all involved pages to 0. 1269 * 1270 * Note that hotplugged memory pages are initialized to PageOffline(). 1271 * Pages freed from memblock might be marked as reserved. 1272 */ 1273 if (IS_ENABLED(CONFIG_MEMORY_HOTPLUG) && 1274 unlikely(context == MEMINIT_HOTPLUG)) { 1275 for (loop = 0; loop < nr_pages; loop++, p++) { 1276 VM_WARN_ON_ONCE(PageReserved(p)); 1277 __ClearPageOffline(p); 1278 set_page_count(p, 0); 1279 } 1280 1281 /* 1282 * Freeing the page with debug_pagealloc enabled will try to 1283 * unmap it; some archs don't like double-unmappings, so 1284 * map it first. 1285 */ 1286 debug_pagealloc_map_pages(page, nr_pages); 1287 adjust_managed_page_count(page, nr_pages); 1288 } else { 1289 for (loop = 0; loop < nr_pages; loop++, p++) { 1290 __ClearPageReserved(p); 1291 set_page_count(p, 0); 1292 } 1293 1294 /* memblock adjusts totalram_pages() manually. */ 1295 atomic_long_add(nr_pages, &page_zone(page)->managed_pages); 1296 } 1297 1298 if (page_contains_unaccepted(page, order)) { 1299 if (order == MAX_PAGE_ORDER && __free_unaccepted(page)) 1300 return; 1301 1302 accept_memory(page_to_phys(page), PAGE_SIZE << order); 1303 } 1304 1305 /* 1306 * Bypass PCP and place fresh pages right to the tail, primarily 1307 * relevant for memory onlining. 1308 */ 1309 __free_pages_ok(page, order, FPI_TO_TAIL); 1310 } 1311 1312 /* 1313 * Check that the whole (or subset of) a pageblock given by the interval of 1314 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it 1315 * with the migration of free compaction scanner. 1316 * 1317 * Return struct page pointer of start_pfn, or NULL if checks were not passed. 1318 * 1319 * It's possible on some configurations to have a setup like node0 node1 node0 1320 * i.e. it's possible that all pages within a zones range of pages do not 1321 * belong to a single zone. We assume that a border between node0 and node1 1322 * can occur within a single pageblock, but not a node0 node1 node0 1323 * interleaving within a single pageblock. It is therefore sufficient to check 1324 * the first and last page of a pageblock and avoid checking each individual 1325 * page in a pageblock. 1326 * 1327 * Note: the function may return non-NULL struct page even for a page block 1328 * which contains a memory hole (i.e. there is no physical memory for a subset 1329 * of the pfn range). For example, if the pageblock order is MAX_PAGE_ORDER, which 1330 * will fall into 2 sub-sections, and the end pfn of the pageblock may be hole 1331 * even though the start pfn is online and valid. This should be safe most of 1332 * the time because struct pages are still initialized via init_unavailable_range() 1333 * and pfn walkers shouldn't touch any physical memory range for which they do 1334 * not recognize any specific metadata in struct pages. 1335 */ 1336 struct page *__pageblock_pfn_to_page(unsigned long start_pfn, 1337 unsigned long end_pfn, struct zone *zone) 1338 { 1339 struct page *start_page; 1340 struct page *end_page; 1341 1342 /* end_pfn is one past the range we are checking */ 1343 end_pfn--; 1344 1345 if (!pfn_valid(end_pfn)) 1346 return NULL; 1347 1348 start_page = pfn_to_online_page(start_pfn); 1349 if (!start_page) 1350 return NULL; 1351 1352 if (page_zone(start_page) != zone) 1353 return NULL; 1354 1355 end_page = pfn_to_page(end_pfn); 1356 1357 /* This gives a shorter code than deriving page_zone(end_page) */ 1358 if (page_zone_id(start_page) != page_zone_id(end_page)) 1359 return NULL; 1360 1361 return start_page; 1362 } 1363 1364 /* 1365 * The order of subdivision here is critical for the IO subsystem. 1366 * Please do not alter this order without good reasons and regression 1367 * testing. Specifically, as large blocks of memory are subdivided, 1368 * the order in which smaller blocks are delivered depends on the order 1369 * they're subdivided in this function. This is the primary factor 1370 * influencing the order in which pages are delivered to the IO 1371 * subsystem according to empirical testing, and this is also justified 1372 * by considering the behavior of a buddy system containing a single 1373 * large block of memory acted on by a series of small allocations. 1374 * This behavior is a critical factor in sglist merging's success. 1375 * 1376 * -- nyc 1377 */ 1378 static inline unsigned int expand(struct zone *zone, struct page *page, int low, 1379 int high, int migratetype) 1380 { 1381 unsigned int size = 1 << high; 1382 unsigned int nr_added = 0; 1383 1384 while (high > low) { 1385 high--; 1386 size >>= 1; 1387 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]); 1388 1389 /* 1390 * Mark as guard pages (or page), that will allow to 1391 * merge back to allocator when buddy will be freed. 1392 * Corresponding page table entries will not be touched, 1393 * pages will stay not present in virtual address space 1394 */ 1395 if (set_page_guard(zone, &page[size], high)) 1396 continue; 1397 1398 __add_to_free_list(&page[size], zone, high, migratetype, false); 1399 set_buddy_order(&page[size], high); 1400 nr_added += size; 1401 } 1402 1403 return nr_added; 1404 } 1405 1406 static __always_inline void page_del_and_expand(struct zone *zone, 1407 struct page *page, int low, 1408 int high, int migratetype) 1409 { 1410 int nr_pages = 1 << high; 1411 1412 __del_page_from_free_list(page, zone, high, migratetype); 1413 nr_pages -= expand(zone, page, low, high, migratetype); 1414 account_freepages(zone, -nr_pages, migratetype); 1415 } 1416 1417 static void check_new_page_bad(struct page *page) 1418 { 1419 if (unlikely(page->flags & __PG_HWPOISON)) { 1420 /* Don't complain about hwpoisoned pages */ 1421 if (PageBuddy(page)) 1422 __ClearPageBuddy(page); 1423 return; 1424 } 1425 1426 bad_page(page, 1427 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_PREP)); 1428 } 1429 1430 /* 1431 * This page is about to be returned from the page allocator 1432 */ 1433 static bool check_new_page(struct page *page) 1434 { 1435 if (likely(page_expected_state(page, 1436 PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON))) 1437 return false; 1438 1439 check_new_page_bad(page); 1440 return true; 1441 } 1442 1443 static inline bool check_new_pages(struct page *page, unsigned int order) 1444 { 1445 if (is_check_pages_enabled()) { 1446 for (int i = 0; i < (1 << order); i++) { 1447 struct page *p = page + i; 1448 1449 if (check_new_page(p)) 1450 return true; 1451 } 1452 } 1453 1454 return false; 1455 } 1456 1457 static inline bool should_skip_kasan_unpoison(gfp_t flags) 1458 { 1459 /* Don't skip if a software KASAN mode is enabled. */ 1460 if (IS_ENABLED(CONFIG_KASAN_GENERIC) || 1461 IS_ENABLED(CONFIG_KASAN_SW_TAGS)) 1462 return false; 1463 1464 /* Skip, if hardware tag-based KASAN is not enabled. */ 1465 if (!kasan_hw_tags_enabled()) 1466 return true; 1467 1468 /* 1469 * With hardware tag-based KASAN enabled, skip if this has been 1470 * requested via __GFP_SKIP_KASAN. 1471 */ 1472 return flags & __GFP_SKIP_KASAN; 1473 } 1474 1475 static inline bool should_skip_init(gfp_t flags) 1476 { 1477 /* Don't skip, if hardware tag-based KASAN is not enabled. */ 1478 if (!kasan_hw_tags_enabled()) 1479 return false; 1480 1481 /* For hardware tag-based KASAN, skip if requested. */ 1482 return (flags & __GFP_SKIP_ZERO); 1483 } 1484 1485 inline void post_alloc_hook(struct page *page, unsigned int order, 1486 gfp_t gfp_flags) 1487 { 1488 bool init = !want_init_on_free() && want_init_on_alloc(gfp_flags) && 1489 !should_skip_init(gfp_flags); 1490 bool zero_tags = init && (gfp_flags & __GFP_ZEROTAGS); 1491 int i; 1492 1493 set_page_private(page, 0); 1494 set_page_refcounted(page); 1495 1496 arch_alloc_page(page, order); 1497 debug_pagealloc_map_pages(page, 1 << order); 1498 1499 /* 1500 * Page unpoisoning must happen before memory initialization. 1501 * Otherwise, the poison pattern will be overwritten for __GFP_ZERO 1502 * allocations and the page unpoisoning code will complain. 1503 */ 1504 kernel_unpoison_pages(page, 1 << order); 1505 1506 /* 1507 * As memory initialization might be integrated into KASAN, 1508 * KASAN unpoisoning and memory initializion code must be 1509 * kept together to avoid discrepancies in behavior. 1510 */ 1511 1512 /* 1513 * If memory tags should be zeroed 1514 * (which happens only when memory should be initialized as well). 1515 */ 1516 if (zero_tags) { 1517 /* Initialize both memory and memory tags. */ 1518 for (i = 0; i != 1 << order; ++i) 1519 tag_clear_highpage(page + i); 1520 1521 /* Take note that memory was initialized by the loop above. */ 1522 init = false; 1523 } 1524 if (!should_skip_kasan_unpoison(gfp_flags) && 1525 kasan_unpoison_pages(page, order, init)) { 1526 /* Take note that memory was initialized by KASAN. */ 1527 if (kasan_has_integrated_init()) 1528 init = false; 1529 } else { 1530 /* 1531 * If memory tags have not been set by KASAN, reset the page 1532 * tags to ensure page_address() dereferencing does not fault. 1533 */ 1534 for (i = 0; i != 1 << order; ++i) 1535 page_kasan_tag_reset(page + i); 1536 } 1537 /* If memory is still not initialized, initialize it now. */ 1538 if (init) 1539 kernel_init_pages(page, 1 << order); 1540 1541 set_page_owner(page, order, gfp_flags); 1542 page_table_check_alloc(page, order); 1543 pgalloc_tag_add(page, current, 1 << order); 1544 } 1545 1546 static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags, 1547 unsigned int alloc_flags) 1548 { 1549 post_alloc_hook(page, order, gfp_flags); 1550 1551 if (order && (gfp_flags & __GFP_COMP)) 1552 prep_compound_page(page, order); 1553 1554 /* 1555 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to 1556 * allocate the page. The expectation is that the caller is taking 1557 * steps that will free more memory. The caller should avoid the page 1558 * being used for !PFMEMALLOC purposes. 1559 */ 1560 if (alloc_flags & ALLOC_NO_WATERMARKS) 1561 set_page_pfmemalloc(page); 1562 else 1563 clear_page_pfmemalloc(page); 1564 } 1565 1566 /* 1567 * Go through the free lists for the given migratetype and remove 1568 * the smallest available page from the freelists 1569 */ 1570 static __always_inline 1571 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order, 1572 int migratetype) 1573 { 1574 unsigned int current_order; 1575 struct free_area *area; 1576 struct page *page; 1577 1578 /* Find a page of the appropriate size in the preferred list */ 1579 for (current_order = order; current_order < NR_PAGE_ORDERS; ++current_order) { 1580 area = &(zone->free_area[current_order]); 1581 page = get_page_from_free_area(area, migratetype); 1582 if (!page) 1583 continue; 1584 1585 page_del_and_expand(zone, page, order, current_order, 1586 migratetype); 1587 trace_mm_page_alloc_zone_locked(page, order, migratetype, 1588 pcp_allowed_order(order) && 1589 migratetype < MIGRATE_PCPTYPES); 1590 return page; 1591 } 1592 1593 return NULL; 1594 } 1595 1596 1597 /* 1598 * This array describes the order lists are fallen back to when 1599 * the free lists for the desirable migrate type are depleted 1600 * 1601 * The other migratetypes do not have fallbacks. 1602 */ 1603 static int fallbacks[MIGRATE_PCPTYPES][MIGRATE_PCPTYPES - 1] = { 1604 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE }, 1605 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE }, 1606 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE }, 1607 }; 1608 1609 #ifdef CONFIG_CMA 1610 static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone, 1611 unsigned int order) 1612 { 1613 return __rmqueue_smallest(zone, order, MIGRATE_CMA); 1614 } 1615 #else 1616 static inline struct page *__rmqueue_cma_fallback(struct zone *zone, 1617 unsigned int order) { return NULL; } 1618 #endif 1619 1620 /* 1621 * Change the type of a block and move all its free pages to that 1622 * type's freelist. 1623 */ 1624 static int __move_freepages_block(struct zone *zone, unsigned long start_pfn, 1625 int old_mt, int new_mt) 1626 { 1627 struct page *page; 1628 unsigned long pfn, end_pfn; 1629 unsigned int order; 1630 int pages_moved = 0; 1631 1632 VM_WARN_ON(start_pfn & (pageblock_nr_pages - 1)); 1633 end_pfn = pageblock_end_pfn(start_pfn); 1634 1635 for (pfn = start_pfn; pfn < end_pfn;) { 1636 page = pfn_to_page(pfn); 1637 if (!PageBuddy(page)) { 1638 pfn++; 1639 continue; 1640 } 1641 1642 /* Make sure we are not inadvertently changing nodes */ 1643 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page); 1644 VM_BUG_ON_PAGE(page_zone(page) != zone, page); 1645 1646 order = buddy_order(page); 1647 1648 move_to_free_list(page, zone, order, old_mt, new_mt); 1649 1650 pfn += 1 << order; 1651 pages_moved += 1 << order; 1652 } 1653 1654 set_pageblock_migratetype(pfn_to_page(start_pfn), new_mt); 1655 1656 return pages_moved; 1657 } 1658 1659 static bool prep_move_freepages_block(struct zone *zone, struct page *page, 1660 unsigned long *start_pfn, 1661 int *num_free, int *num_movable) 1662 { 1663 unsigned long pfn, start, end; 1664 1665 pfn = page_to_pfn(page); 1666 start = pageblock_start_pfn(pfn); 1667 end = pageblock_end_pfn(pfn); 1668 1669 /* 1670 * The caller only has the lock for @zone, don't touch ranges 1671 * that straddle into other zones. While we could move part of 1672 * the range that's inside the zone, this call is usually 1673 * accompanied by other operations such as migratetype updates 1674 * which also should be locked. 1675 */ 1676 if (!zone_spans_pfn(zone, start)) 1677 return false; 1678 if (!zone_spans_pfn(zone, end - 1)) 1679 return false; 1680 1681 *start_pfn = start; 1682 1683 if (num_free) { 1684 *num_free = 0; 1685 *num_movable = 0; 1686 for (pfn = start; pfn < end;) { 1687 page = pfn_to_page(pfn); 1688 if (PageBuddy(page)) { 1689 int nr = 1 << buddy_order(page); 1690 1691 *num_free += nr; 1692 pfn += nr; 1693 continue; 1694 } 1695 /* 1696 * We assume that pages that could be isolated for 1697 * migration are movable. But we don't actually try 1698 * isolating, as that would be expensive. 1699 */ 1700 if (PageLRU(page) || __PageMovable(page)) 1701 (*num_movable)++; 1702 pfn++; 1703 } 1704 } 1705 1706 return true; 1707 } 1708 1709 static int move_freepages_block(struct zone *zone, struct page *page, 1710 int old_mt, int new_mt) 1711 { 1712 unsigned long start_pfn; 1713 1714 if (!prep_move_freepages_block(zone, page, &start_pfn, NULL, NULL)) 1715 return -1; 1716 1717 return __move_freepages_block(zone, start_pfn, old_mt, new_mt); 1718 } 1719 1720 #ifdef CONFIG_MEMORY_ISOLATION 1721 /* Look for a buddy that straddles start_pfn */ 1722 static unsigned long find_large_buddy(unsigned long start_pfn) 1723 { 1724 int order = 0; 1725 struct page *page; 1726 unsigned long pfn = start_pfn; 1727 1728 while (!PageBuddy(page = pfn_to_page(pfn))) { 1729 /* Nothing found */ 1730 if (++order > MAX_PAGE_ORDER) 1731 return start_pfn; 1732 pfn &= ~0UL << order; 1733 } 1734 1735 /* 1736 * Found a preceding buddy, but does it straddle? 1737 */ 1738 if (pfn + (1 << buddy_order(page)) > start_pfn) 1739 return pfn; 1740 1741 /* Nothing found */ 1742 return start_pfn; 1743 } 1744 1745 /** 1746 * move_freepages_block_isolate - move free pages in block for page isolation 1747 * @zone: the zone 1748 * @page: the pageblock page 1749 * @migratetype: migratetype to set on the pageblock 1750 * 1751 * This is similar to move_freepages_block(), but handles the special 1752 * case encountered in page isolation, where the block of interest 1753 * might be part of a larger buddy spanning multiple pageblocks. 1754 * 1755 * Unlike the regular page allocator path, which moves pages while 1756 * stealing buddies off the freelist, page isolation is interested in 1757 * arbitrary pfn ranges that may have overlapping buddies on both ends. 1758 * 1759 * This function handles that. Straddling buddies are split into 1760 * individual pageblocks. Only the block of interest is moved. 1761 * 1762 * Returns %true if pages could be moved, %false otherwise. 1763 */ 1764 bool move_freepages_block_isolate(struct zone *zone, struct page *page, 1765 int migratetype) 1766 { 1767 unsigned long start_pfn, pfn; 1768 1769 if (!prep_move_freepages_block(zone, page, &start_pfn, NULL, NULL)) 1770 return false; 1771 1772 /* No splits needed if buddies can't span multiple blocks */ 1773 if (pageblock_order == MAX_PAGE_ORDER) 1774 goto move; 1775 1776 /* We're a tail block in a larger buddy */ 1777 pfn = find_large_buddy(start_pfn); 1778 if (pfn != start_pfn) { 1779 struct page *buddy = pfn_to_page(pfn); 1780 int order = buddy_order(buddy); 1781 1782 del_page_from_free_list(buddy, zone, order, 1783 get_pfnblock_migratetype(buddy, pfn)); 1784 set_pageblock_migratetype(page, migratetype); 1785 split_large_buddy(zone, buddy, pfn, order, FPI_NONE); 1786 return true; 1787 } 1788 1789 /* We're the starting block of a larger buddy */ 1790 if (PageBuddy(page) && buddy_order(page) > pageblock_order) { 1791 int order = buddy_order(page); 1792 1793 del_page_from_free_list(page, zone, order, 1794 get_pfnblock_migratetype(page, pfn)); 1795 set_pageblock_migratetype(page, migratetype); 1796 split_large_buddy(zone, page, pfn, order, FPI_NONE); 1797 return true; 1798 } 1799 move: 1800 __move_freepages_block(zone, start_pfn, 1801 get_pfnblock_migratetype(page, start_pfn), 1802 migratetype); 1803 return true; 1804 } 1805 #endif /* CONFIG_MEMORY_ISOLATION */ 1806 1807 static void change_pageblock_range(struct page *pageblock_page, 1808 int start_order, int migratetype) 1809 { 1810 int nr_pageblocks = 1 << (start_order - pageblock_order); 1811 1812 while (nr_pageblocks--) { 1813 set_pageblock_migratetype(pageblock_page, migratetype); 1814 pageblock_page += pageblock_nr_pages; 1815 } 1816 } 1817 1818 /* 1819 * When we are falling back to another migratetype during allocation, try to 1820 * steal extra free pages from the same pageblocks to satisfy further 1821 * allocations, instead of polluting multiple pageblocks. 1822 * 1823 * If we are stealing a relatively large buddy page, it is likely there will 1824 * be more free pages in the pageblock, so try to steal them all. For 1825 * reclaimable and unmovable allocations, we steal regardless of page size, 1826 * as fragmentation caused by those allocations polluting movable pageblocks 1827 * is worse than movable allocations stealing from unmovable and reclaimable 1828 * pageblocks. 1829 */ 1830 static bool can_steal_fallback(unsigned int order, int start_mt) 1831 { 1832 /* 1833 * Leaving this order check is intended, although there is 1834 * relaxed order check in next check. The reason is that 1835 * we can actually steal whole pageblock if this condition met, 1836 * but, below check doesn't guarantee it and that is just heuristic 1837 * so could be changed anytime. 1838 */ 1839 if (order >= pageblock_order) 1840 return true; 1841 1842 if (order >= pageblock_order / 2 || 1843 start_mt == MIGRATE_RECLAIMABLE || 1844 start_mt == MIGRATE_UNMOVABLE || 1845 page_group_by_mobility_disabled) 1846 return true; 1847 1848 return false; 1849 } 1850 1851 static inline bool boost_watermark(struct zone *zone) 1852 { 1853 unsigned long max_boost; 1854 1855 if (!watermark_boost_factor) 1856 return false; 1857 /* 1858 * Don't bother in zones that are unlikely to produce results. 1859 * On small machines, including kdump capture kernels running 1860 * in a small area, boosting the watermark can cause an out of 1861 * memory situation immediately. 1862 */ 1863 if ((pageblock_nr_pages * 4) > zone_managed_pages(zone)) 1864 return false; 1865 1866 max_boost = mult_frac(zone->_watermark[WMARK_HIGH], 1867 watermark_boost_factor, 10000); 1868 1869 /* 1870 * high watermark may be uninitialised if fragmentation occurs 1871 * very early in boot so do not boost. We do not fall 1872 * through and boost by pageblock_nr_pages as failing 1873 * allocations that early means that reclaim is not going 1874 * to help and it may even be impossible to reclaim the 1875 * boosted watermark resulting in a hang. 1876 */ 1877 if (!max_boost) 1878 return false; 1879 1880 max_boost = max(pageblock_nr_pages, max_boost); 1881 1882 zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages, 1883 max_boost); 1884 1885 return true; 1886 } 1887 1888 /* 1889 * This function implements actual steal behaviour. If order is large enough, we 1890 * can claim the whole pageblock for the requested migratetype. If not, we check 1891 * the pageblock for constituent pages; if at least half of the pages are free 1892 * or compatible, we can still claim the whole block, so pages freed in the 1893 * future will be put on the correct free list. Otherwise, we isolate exactly 1894 * the order we need from the fallback block and leave its migratetype alone. 1895 */ 1896 static struct page * 1897 steal_suitable_fallback(struct zone *zone, struct page *page, 1898 int current_order, int order, int start_type, 1899 unsigned int alloc_flags, bool whole_block) 1900 { 1901 int free_pages, movable_pages, alike_pages; 1902 unsigned long start_pfn; 1903 int block_type; 1904 1905 block_type = get_pageblock_migratetype(page); 1906 1907 /* 1908 * This can happen due to races and we want to prevent broken 1909 * highatomic accounting. 1910 */ 1911 if (is_migrate_highatomic(block_type)) 1912 goto single_page; 1913 1914 /* Take ownership for orders >= pageblock_order */ 1915 if (current_order >= pageblock_order) { 1916 unsigned int nr_added; 1917 1918 del_page_from_free_list(page, zone, current_order, block_type); 1919 change_pageblock_range(page, current_order, start_type); 1920 nr_added = expand(zone, page, order, current_order, start_type); 1921 account_freepages(zone, nr_added, start_type); 1922 return page; 1923 } 1924 1925 /* 1926 * Boost watermarks to increase reclaim pressure to reduce the 1927 * likelihood of future fallbacks. Wake kswapd now as the node 1928 * may be balanced overall and kswapd will not wake naturally. 1929 */ 1930 if (boost_watermark(zone) && (alloc_flags & ALLOC_KSWAPD)) 1931 set_bit(ZONE_BOOSTED_WATERMARK, &zone->flags); 1932 1933 /* We are not allowed to try stealing from the whole block */ 1934 if (!whole_block) 1935 goto single_page; 1936 1937 /* moving whole block can fail due to zone boundary conditions */ 1938 if (!prep_move_freepages_block(zone, page, &start_pfn, &free_pages, 1939 &movable_pages)) 1940 goto single_page; 1941 1942 /* 1943 * Determine how many pages are compatible with our allocation. 1944 * For movable allocation, it's the number of movable pages which 1945 * we just obtained. For other types it's a bit more tricky. 1946 */ 1947 if (start_type == MIGRATE_MOVABLE) { 1948 alike_pages = movable_pages; 1949 } else { 1950 /* 1951 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation 1952 * to MOVABLE pageblock, consider all non-movable pages as 1953 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or 1954 * vice versa, be conservative since we can't distinguish the 1955 * exact migratetype of non-movable pages. 1956 */ 1957 if (block_type == MIGRATE_MOVABLE) 1958 alike_pages = pageblock_nr_pages 1959 - (free_pages + movable_pages); 1960 else 1961 alike_pages = 0; 1962 } 1963 /* 1964 * If a sufficient number of pages in the block are either free or of 1965 * compatible migratability as our allocation, claim the whole block. 1966 */ 1967 if (free_pages + alike_pages >= (1 << (pageblock_order-1)) || 1968 page_group_by_mobility_disabled) { 1969 __move_freepages_block(zone, start_pfn, block_type, start_type); 1970 return __rmqueue_smallest(zone, order, start_type); 1971 } 1972 1973 single_page: 1974 page_del_and_expand(zone, page, order, current_order, block_type); 1975 return page; 1976 } 1977 1978 /* 1979 * Check whether there is a suitable fallback freepage with requested order. 1980 * If only_stealable is true, this function returns fallback_mt only if 1981 * we can steal other freepages all together. This would help to reduce 1982 * fragmentation due to mixed migratetype pages in one pageblock. 1983 */ 1984 int find_suitable_fallback(struct free_area *area, unsigned int order, 1985 int migratetype, bool only_stealable, bool *can_steal) 1986 { 1987 int i; 1988 int fallback_mt; 1989 1990 if (area->nr_free == 0) 1991 return -1; 1992 1993 *can_steal = false; 1994 for (i = 0; i < MIGRATE_PCPTYPES - 1 ; i++) { 1995 fallback_mt = fallbacks[migratetype][i]; 1996 if (free_area_empty(area, fallback_mt)) 1997 continue; 1998 1999 if (can_steal_fallback(order, migratetype)) 2000 *can_steal = true; 2001 2002 if (!only_stealable) 2003 return fallback_mt; 2004 2005 if (*can_steal) 2006 return fallback_mt; 2007 } 2008 2009 return -1; 2010 } 2011 2012 /* 2013 * Reserve the pageblock(s) surrounding an allocation request for 2014 * exclusive use of high-order atomic allocations if there are no 2015 * empty page blocks that contain a page with a suitable order 2016 */ 2017 static void reserve_highatomic_pageblock(struct page *page, int order, 2018 struct zone *zone) 2019 { 2020 int mt; 2021 unsigned long max_managed, flags; 2022 2023 /* 2024 * The number reserved as: minimum is 1 pageblock, maximum is 2025 * roughly 1% of a zone. But if 1% of a zone falls below a 2026 * pageblock size, then don't reserve any pageblocks. 2027 * Check is race-prone but harmless. 2028 */ 2029 if ((zone_managed_pages(zone) / 100) < pageblock_nr_pages) 2030 return; 2031 max_managed = ALIGN((zone_managed_pages(zone) / 100), pageblock_nr_pages); 2032 if (zone->nr_reserved_highatomic >= max_managed) 2033 return; 2034 2035 spin_lock_irqsave(&zone->lock, flags); 2036 2037 /* Recheck the nr_reserved_highatomic limit under the lock */ 2038 if (zone->nr_reserved_highatomic >= max_managed) 2039 goto out_unlock; 2040 2041 /* Yoink! */ 2042 mt = get_pageblock_migratetype(page); 2043 /* Only reserve normal pageblocks (i.e., they can merge with others) */ 2044 if (!migratetype_is_mergeable(mt)) 2045 goto out_unlock; 2046 2047 if (order < pageblock_order) { 2048 if (move_freepages_block(zone, page, mt, MIGRATE_HIGHATOMIC) == -1) 2049 goto out_unlock; 2050 zone->nr_reserved_highatomic += pageblock_nr_pages; 2051 } else { 2052 change_pageblock_range(page, order, MIGRATE_HIGHATOMIC); 2053 zone->nr_reserved_highatomic += 1 << order; 2054 } 2055 2056 out_unlock: 2057 spin_unlock_irqrestore(&zone->lock, flags); 2058 } 2059 2060 /* 2061 * Used when an allocation is about to fail under memory pressure. This 2062 * potentially hurts the reliability of high-order allocations when under 2063 * intense memory pressure but failed atomic allocations should be easier 2064 * to recover from than an OOM. 2065 * 2066 * If @force is true, try to unreserve pageblocks even though highatomic 2067 * pageblock is exhausted. 2068 */ 2069 static bool unreserve_highatomic_pageblock(const struct alloc_context *ac, 2070 bool force) 2071 { 2072 struct zonelist *zonelist = ac->zonelist; 2073 unsigned long flags; 2074 struct zoneref *z; 2075 struct zone *zone; 2076 struct page *page; 2077 int order; 2078 int ret; 2079 2080 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->highest_zoneidx, 2081 ac->nodemask) { 2082 /* 2083 * Preserve at least one pageblock unless memory pressure 2084 * is really high. 2085 */ 2086 if (!force && zone->nr_reserved_highatomic <= 2087 pageblock_nr_pages) 2088 continue; 2089 2090 spin_lock_irqsave(&zone->lock, flags); 2091 for (order = 0; order < NR_PAGE_ORDERS; order++) { 2092 struct free_area *area = &(zone->free_area[order]); 2093 int mt; 2094 2095 page = get_page_from_free_area(area, MIGRATE_HIGHATOMIC); 2096 if (!page) 2097 continue; 2098 2099 mt = get_pageblock_migratetype(page); 2100 /* 2101 * In page freeing path, migratetype change is racy so 2102 * we can counter several free pages in a pageblock 2103 * in this loop although we changed the pageblock type 2104 * from highatomic to ac->migratetype. So we should 2105 * adjust the count once. 2106 */ 2107 if (is_migrate_highatomic(mt)) { 2108 unsigned long size; 2109 /* 2110 * It should never happen but changes to 2111 * locking could inadvertently allow a per-cpu 2112 * drain to add pages to MIGRATE_HIGHATOMIC 2113 * while unreserving so be safe and watch for 2114 * underflows. 2115 */ 2116 size = max(pageblock_nr_pages, 1UL << order); 2117 size = min(size, zone->nr_reserved_highatomic); 2118 zone->nr_reserved_highatomic -= size; 2119 } 2120 2121 /* 2122 * Convert to ac->migratetype and avoid the normal 2123 * pageblock stealing heuristics. Minimally, the caller 2124 * is doing the work and needs the pages. More 2125 * importantly, if the block was always converted to 2126 * MIGRATE_UNMOVABLE or another type then the number 2127 * of pageblocks that cannot be completely freed 2128 * may increase. 2129 */ 2130 if (order < pageblock_order) 2131 ret = move_freepages_block(zone, page, mt, 2132 ac->migratetype); 2133 else { 2134 move_to_free_list(page, zone, order, mt, 2135 ac->migratetype); 2136 change_pageblock_range(page, order, 2137 ac->migratetype); 2138 ret = 1; 2139 } 2140 /* 2141 * Reserving the block(s) already succeeded, 2142 * so this should not fail on zone boundaries. 2143 */ 2144 WARN_ON_ONCE(ret == -1); 2145 if (ret > 0) { 2146 spin_unlock_irqrestore(&zone->lock, flags); 2147 return ret; 2148 } 2149 } 2150 spin_unlock_irqrestore(&zone->lock, flags); 2151 } 2152 2153 return false; 2154 } 2155 2156 /* 2157 * Try finding a free buddy page on the fallback list and put it on the free 2158 * list of requested migratetype, possibly along with other pages from the same 2159 * block, depending on fragmentation avoidance heuristics. Returns true if 2160 * fallback was found so that __rmqueue_smallest() can grab it. 2161 * 2162 * The use of signed ints for order and current_order is a deliberate 2163 * deviation from the rest of this file, to make the for loop 2164 * condition simpler. 2165 */ 2166 static __always_inline struct page * 2167 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype, 2168 unsigned int alloc_flags) 2169 { 2170 struct free_area *area; 2171 int current_order; 2172 int min_order = order; 2173 struct page *page; 2174 int fallback_mt; 2175 bool can_steal; 2176 2177 /* 2178 * Do not steal pages from freelists belonging to other pageblocks 2179 * i.e. orders < pageblock_order. If there are no local zones free, 2180 * the zonelists will be reiterated without ALLOC_NOFRAGMENT. 2181 */ 2182 if (order < pageblock_order && alloc_flags & ALLOC_NOFRAGMENT) 2183 min_order = pageblock_order; 2184 2185 /* 2186 * Find the largest available free page in the other list. This roughly 2187 * approximates finding the pageblock with the most free pages, which 2188 * would be too costly to do exactly. 2189 */ 2190 for (current_order = MAX_PAGE_ORDER; current_order >= min_order; 2191 --current_order) { 2192 area = &(zone->free_area[current_order]); 2193 fallback_mt = find_suitable_fallback(area, current_order, 2194 start_migratetype, false, &can_steal); 2195 if (fallback_mt == -1) 2196 continue; 2197 2198 /* 2199 * We cannot steal all free pages from the pageblock and the 2200 * requested migratetype is movable. In that case it's better to 2201 * steal and split the smallest available page instead of the 2202 * largest available page, because even if the next movable 2203 * allocation falls back into a different pageblock than this 2204 * one, it won't cause permanent fragmentation. 2205 */ 2206 if (!can_steal && start_migratetype == MIGRATE_MOVABLE 2207 && current_order > order) 2208 goto find_smallest; 2209 2210 goto do_steal; 2211 } 2212 2213 return NULL; 2214 2215 find_smallest: 2216 for (current_order = order; current_order < NR_PAGE_ORDERS; current_order++) { 2217 area = &(zone->free_area[current_order]); 2218 fallback_mt = find_suitable_fallback(area, current_order, 2219 start_migratetype, false, &can_steal); 2220 if (fallback_mt != -1) 2221 break; 2222 } 2223 2224 /* 2225 * This should not happen - we already found a suitable fallback 2226 * when looking for the largest page. 2227 */ 2228 VM_BUG_ON(current_order > MAX_PAGE_ORDER); 2229 2230 do_steal: 2231 page = get_page_from_free_area(area, fallback_mt); 2232 2233 /* take off list, maybe claim block, expand remainder */ 2234 page = steal_suitable_fallback(zone, page, current_order, order, 2235 start_migratetype, alloc_flags, can_steal); 2236 2237 trace_mm_page_alloc_extfrag(page, order, current_order, 2238 start_migratetype, fallback_mt); 2239 2240 return page; 2241 } 2242 2243 /* 2244 * Do the hard work of removing an element from the buddy allocator. 2245 * Call me with the zone->lock already held. 2246 */ 2247 static __always_inline struct page * 2248 __rmqueue(struct zone *zone, unsigned int order, int migratetype, 2249 unsigned int alloc_flags) 2250 { 2251 struct page *page; 2252 2253 if (IS_ENABLED(CONFIG_CMA)) { 2254 /* 2255 * Balance movable allocations between regular and CMA areas by 2256 * allocating from CMA when over half of the zone's free memory 2257 * is in the CMA area. 2258 */ 2259 if (alloc_flags & ALLOC_CMA && 2260 zone_page_state(zone, NR_FREE_CMA_PAGES) > 2261 zone_page_state(zone, NR_FREE_PAGES) / 2) { 2262 page = __rmqueue_cma_fallback(zone, order); 2263 if (page) 2264 return page; 2265 } 2266 } 2267 2268 page = __rmqueue_smallest(zone, order, migratetype); 2269 if (unlikely(!page)) { 2270 if (alloc_flags & ALLOC_CMA) 2271 page = __rmqueue_cma_fallback(zone, order); 2272 2273 if (!page) 2274 page = __rmqueue_fallback(zone, order, migratetype, 2275 alloc_flags); 2276 } 2277 return page; 2278 } 2279 2280 /* 2281 * Obtain a specified number of elements from the buddy allocator, all under 2282 * a single hold of the lock, for efficiency. Add them to the supplied list. 2283 * Returns the number of new pages which were placed at *list. 2284 */ 2285 static int rmqueue_bulk(struct zone *zone, unsigned int order, 2286 unsigned long count, struct list_head *list, 2287 int migratetype, unsigned int alloc_flags) 2288 { 2289 unsigned long flags; 2290 int i; 2291 2292 spin_lock_irqsave(&zone->lock, flags); 2293 for (i = 0; i < count; ++i) { 2294 struct page *page = __rmqueue(zone, order, migratetype, 2295 alloc_flags); 2296 if (unlikely(page == NULL)) 2297 break; 2298 2299 /* 2300 * Split buddy pages returned by expand() are received here in 2301 * physical page order. The page is added to the tail of 2302 * caller's list. From the callers perspective, the linked list 2303 * is ordered by page number under some conditions. This is 2304 * useful for IO devices that can forward direction from the 2305 * head, thus also in the physical page order. This is useful 2306 * for IO devices that can merge IO requests if the physical 2307 * pages are ordered properly. 2308 */ 2309 list_add_tail(&page->pcp_list, list); 2310 } 2311 spin_unlock_irqrestore(&zone->lock, flags); 2312 2313 return i; 2314 } 2315 2316 /* 2317 * Called from the vmstat counter updater to decay the PCP high. 2318 * Return whether there are addition works to do. 2319 */ 2320 int decay_pcp_high(struct zone *zone, struct per_cpu_pages *pcp) 2321 { 2322 int high_min, to_drain, batch; 2323 int todo = 0; 2324 2325 high_min = READ_ONCE(pcp->high_min); 2326 batch = READ_ONCE(pcp->batch); 2327 /* 2328 * Decrease pcp->high periodically to try to free possible 2329 * idle PCP pages. And, avoid to free too many pages to 2330 * control latency. This caps pcp->high decrement too. 2331 */ 2332 if (pcp->high > high_min) { 2333 pcp->high = max3(pcp->count - (batch << CONFIG_PCP_BATCH_SCALE_MAX), 2334 pcp->high - (pcp->high >> 3), high_min); 2335 if (pcp->high > high_min) 2336 todo++; 2337 } 2338 2339 to_drain = pcp->count - pcp->high; 2340 if (to_drain > 0) { 2341 spin_lock(&pcp->lock); 2342 free_pcppages_bulk(zone, to_drain, pcp, 0); 2343 spin_unlock(&pcp->lock); 2344 todo++; 2345 } 2346 2347 return todo; 2348 } 2349 2350 #ifdef CONFIG_NUMA 2351 /* 2352 * Called from the vmstat counter updater to drain pagesets of this 2353 * currently executing processor on remote nodes after they have 2354 * expired. 2355 */ 2356 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp) 2357 { 2358 int to_drain, batch; 2359 2360 batch = READ_ONCE(pcp->batch); 2361 to_drain = min(pcp->count, batch); 2362 if (to_drain > 0) { 2363 spin_lock(&pcp->lock); 2364 free_pcppages_bulk(zone, to_drain, pcp, 0); 2365 spin_unlock(&pcp->lock); 2366 } 2367 } 2368 #endif 2369 2370 /* 2371 * Drain pcplists of the indicated processor and zone. 2372 */ 2373 static void drain_pages_zone(unsigned int cpu, struct zone *zone) 2374 { 2375 struct per_cpu_pages *pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu); 2376 int count; 2377 2378 do { 2379 spin_lock(&pcp->lock); 2380 count = pcp->count; 2381 if (count) { 2382 int to_drain = min(count, 2383 pcp->batch << CONFIG_PCP_BATCH_SCALE_MAX); 2384 2385 free_pcppages_bulk(zone, to_drain, pcp, 0); 2386 count -= to_drain; 2387 } 2388 spin_unlock(&pcp->lock); 2389 } while (count); 2390 } 2391 2392 /* 2393 * Drain pcplists of all zones on the indicated processor. 2394 */ 2395 static void drain_pages(unsigned int cpu) 2396 { 2397 struct zone *zone; 2398 2399 for_each_populated_zone(zone) { 2400 drain_pages_zone(cpu, zone); 2401 } 2402 } 2403 2404 /* 2405 * Spill all of this CPU's per-cpu pages back into the buddy allocator. 2406 */ 2407 void drain_local_pages(struct zone *zone) 2408 { 2409 int cpu = smp_processor_id(); 2410 2411 if (zone) 2412 drain_pages_zone(cpu, zone); 2413 else 2414 drain_pages(cpu); 2415 } 2416 2417 /* 2418 * The implementation of drain_all_pages(), exposing an extra parameter to 2419 * drain on all cpus. 2420 * 2421 * drain_all_pages() is optimized to only execute on cpus where pcplists are 2422 * not empty. The check for non-emptiness can however race with a free to 2423 * pcplist that has not yet increased the pcp->count from 0 to 1. Callers 2424 * that need the guarantee that every CPU has drained can disable the 2425 * optimizing racy check. 2426 */ 2427 static void __drain_all_pages(struct zone *zone, bool force_all_cpus) 2428 { 2429 int cpu; 2430 2431 /* 2432 * Allocate in the BSS so we won't require allocation in 2433 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y 2434 */ 2435 static cpumask_t cpus_with_pcps; 2436 2437 /* 2438 * Do not drain if one is already in progress unless it's specific to 2439 * a zone. Such callers are primarily CMA and memory hotplug and need 2440 * the drain to be complete when the call returns. 2441 */ 2442 if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) { 2443 if (!zone) 2444 return; 2445 mutex_lock(&pcpu_drain_mutex); 2446 } 2447 2448 /* 2449 * We don't care about racing with CPU hotplug event 2450 * as offline notification will cause the notified 2451 * cpu to drain that CPU pcps and on_each_cpu_mask 2452 * disables preemption as part of its processing 2453 */ 2454 for_each_online_cpu(cpu) { 2455 struct per_cpu_pages *pcp; 2456 struct zone *z; 2457 bool has_pcps = false; 2458 2459 if (force_all_cpus) { 2460 /* 2461 * The pcp.count check is racy, some callers need a 2462 * guarantee that no cpu is missed. 2463 */ 2464 has_pcps = true; 2465 } else if (zone) { 2466 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu); 2467 if (pcp->count) 2468 has_pcps = true; 2469 } else { 2470 for_each_populated_zone(z) { 2471 pcp = per_cpu_ptr(z->per_cpu_pageset, cpu); 2472 if (pcp->count) { 2473 has_pcps = true; 2474 break; 2475 } 2476 } 2477 } 2478 2479 if (has_pcps) 2480 cpumask_set_cpu(cpu, &cpus_with_pcps); 2481 else 2482 cpumask_clear_cpu(cpu, &cpus_with_pcps); 2483 } 2484 2485 for_each_cpu(cpu, &cpus_with_pcps) { 2486 if (zone) 2487 drain_pages_zone(cpu, zone); 2488 else 2489 drain_pages(cpu); 2490 } 2491 2492 mutex_unlock(&pcpu_drain_mutex); 2493 } 2494 2495 /* 2496 * Spill all the per-cpu pages from all CPUs back into the buddy allocator. 2497 * 2498 * When zone parameter is non-NULL, spill just the single zone's pages. 2499 */ 2500 void drain_all_pages(struct zone *zone) 2501 { 2502 __drain_all_pages(zone, false); 2503 } 2504 2505 static int nr_pcp_free(struct per_cpu_pages *pcp, int batch, int high, bool free_high) 2506 { 2507 int min_nr_free, max_nr_free; 2508 2509 /* Free as much as possible if batch freeing high-order pages. */ 2510 if (unlikely(free_high)) 2511 return min(pcp->count, batch << CONFIG_PCP_BATCH_SCALE_MAX); 2512 2513 /* Check for PCP disabled or boot pageset */ 2514 if (unlikely(high < batch)) 2515 return 1; 2516 2517 /* Leave at least pcp->batch pages on the list */ 2518 min_nr_free = batch; 2519 max_nr_free = high - batch; 2520 2521 /* 2522 * Increase the batch number to the number of the consecutive 2523 * freed pages to reduce zone lock contention. 2524 */ 2525 batch = clamp_t(int, pcp->free_count, min_nr_free, max_nr_free); 2526 2527 return batch; 2528 } 2529 2530 static int nr_pcp_high(struct per_cpu_pages *pcp, struct zone *zone, 2531 int batch, bool free_high) 2532 { 2533 int high, high_min, high_max; 2534 2535 high_min = READ_ONCE(pcp->high_min); 2536 high_max = READ_ONCE(pcp->high_max); 2537 high = pcp->high = clamp(pcp->high, high_min, high_max); 2538 2539 if (unlikely(!high)) 2540 return 0; 2541 2542 if (unlikely(free_high)) { 2543 pcp->high = max(high - (batch << CONFIG_PCP_BATCH_SCALE_MAX), 2544 high_min); 2545 return 0; 2546 } 2547 2548 /* 2549 * If reclaim is active, limit the number of pages that can be 2550 * stored on pcp lists 2551 */ 2552 if (test_bit(ZONE_RECLAIM_ACTIVE, &zone->flags)) { 2553 int free_count = max_t(int, pcp->free_count, batch); 2554 2555 pcp->high = max(high - free_count, high_min); 2556 return min(batch << 2, pcp->high); 2557 } 2558 2559 if (high_min == high_max) 2560 return high; 2561 2562 if (test_bit(ZONE_BELOW_HIGH, &zone->flags)) { 2563 int free_count = max_t(int, pcp->free_count, batch); 2564 2565 pcp->high = max(high - free_count, high_min); 2566 high = max(pcp->count, high_min); 2567 } else if (pcp->count >= high) { 2568 int need_high = pcp->free_count + batch; 2569 2570 /* pcp->high should be large enough to hold batch freed pages */ 2571 if (pcp->high < need_high) 2572 pcp->high = clamp(need_high, high_min, high_max); 2573 } 2574 2575 return high; 2576 } 2577 2578 static void free_unref_page_commit(struct zone *zone, struct per_cpu_pages *pcp, 2579 struct page *page, int migratetype, 2580 unsigned int order) 2581 { 2582 int high, batch; 2583 int pindex; 2584 bool free_high = false; 2585 2586 /* 2587 * On freeing, reduce the number of pages that are batch allocated. 2588 * See nr_pcp_alloc() where alloc_factor is increased for subsequent 2589 * allocations. 2590 */ 2591 pcp->alloc_factor >>= 1; 2592 __count_vm_events(PGFREE, 1 << order); 2593 pindex = order_to_pindex(migratetype, order); 2594 list_add(&page->pcp_list, &pcp->lists[pindex]); 2595 pcp->count += 1 << order; 2596 2597 batch = READ_ONCE(pcp->batch); 2598 /* 2599 * As high-order pages other than THP's stored on PCP can contribute 2600 * to fragmentation, limit the number stored when PCP is heavily 2601 * freeing without allocation. The remainder after bulk freeing 2602 * stops will be drained from vmstat refresh context. 2603 */ 2604 if (order && order <= PAGE_ALLOC_COSTLY_ORDER) { 2605 free_high = (pcp->free_count >= batch && 2606 (pcp->flags & PCPF_PREV_FREE_HIGH_ORDER) && 2607 (!(pcp->flags & PCPF_FREE_HIGH_BATCH) || 2608 pcp->count >= READ_ONCE(batch))); 2609 pcp->flags |= PCPF_PREV_FREE_HIGH_ORDER; 2610 } else if (pcp->flags & PCPF_PREV_FREE_HIGH_ORDER) { 2611 pcp->flags &= ~PCPF_PREV_FREE_HIGH_ORDER; 2612 } 2613 if (pcp->free_count < (batch << CONFIG_PCP_BATCH_SCALE_MAX)) 2614 pcp->free_count += (1 << order); 2615 high = nr_pcp_high(pcp, zone, batch, free_high); 2616 if (pcp->count >= high) { 2617 free_pcppages_bulk(zone, nr_pcp_free(pcp, batch, high, free_high), 2618 pcp, pindex); 2619 if (test_bit(ZONE_BELOW_HIGH, &zone->flags) && 2620 zone_watermark_ok(zone, 0, high_wmark_pages(zone), 2621 ZONE_MOVABLE, 0)) 2622 clear_bit(ZONE_BELOW_HIGH, &zone->flags); 2623 } 2624 } 2625 2626 /* 2627 * Free a pcp page 2628 */ 2629 void free_unref_page(struct page *page, unsigned int order) 2630 { 2631 unsigned long __maybe_unused UP_flags; 2632 struct per_cpu_pages *pcp; 2633 struct zone *zone; 2634 unsigned long pfn = page_to_pfn(page); 2635 int migratetype; 2636 2637 if (!pcp_allowed_order(order)) { 2638 __free_pages_ok(page, order, FPI_NONE); 2639 return; 2640 } 2641 2642 if (!free_pages_prepare(page, order)) 2643 return; 2644 2645 /* 2646 * We only track unmovable, reclaimable and movable on pcp lists. 2647 * Place ISOLATE pages on the isolated list because they are being 2648 * offlined but treat HIGHATOMIC and CMA as movable pages so we can 2649 * get those areas back if necessary. Otherwise, we may have to free 2650 * excessively into the page allocator 2651 */ 2652 migratetype = get_pfnblock_migratetype(page, pfn); 2653 if (unlikely(migratetype >= MIGRATE_PCPTYPES)) { 2654 if (unlikely(is_migrate_isolate(migratetype))) { 2655 free_one_page(page_zone(page), page, pfn, order, FPI_NONE); 2656 return; 2657 } 2658 migratetype = MIGRATE_MOVABLE; 2659 } 2660 2661 zone = page_zone(page); 2662 pcp_trylock_prepare(UP_flags); 2663 pcp = pcp_spin_trylock(zone->per_cpu_pageset); 2664 if (pcp) { 2665 free_unref_page_commit(zone, pcp, page, migratetype, order); 2666 pcp_spin_unlock(pcp); 2667 } else { 2668 free_one_page(zone, page, pfn, order, FPI_NONE); 2669 } 2670 pcp_trylock_finish(UP_flags); 2671 } 2672 2673 /* 2674 * Free a batch of folios 2675 */ 2676 void free_unref_folios(struct folio_batch *folios) 2677 { 2678 unsigned long __maybe_unused UP_flags; 2679 struct per_cpu_pages *pcp = NULL; 2680 struct zone *locked_zone = NULL; 2681 int i, j; 2682 2683 /* Prepare folios for freeing */ 2684 for (i = 0, j = 0; i < folios->nr; i++) { 2685 struct folio *folio = folios->folios[i]; 2686 unsigned long pfn = folio_pfn(folio); 2687 unsigned int order = folio_order(folio); 2688 2689 if (!free_pages_prepare(&folio->page, order)) 2690 continue; 2691 /* 2692 * Free orders not handled on the PCP directly to the 2693 * allocator. 2694 */ 2695 if (!pcp_allowed_order(order)) { 2696 free_one_page(folio_zone(folio), &folio->page, 2697 pfn, order, FPI_NONE); 2698 continue; 2699 } 2700 folio->private = (void *)(unsigned long)order; 2701 if (j != i) 2702 folios->folios[j] = folio; 2703 j++; 2704 } 2705 folios->nr = j; 2706 2707 for (i = 0; i < folios->nr; i++) { 2708 struct folio *folio = folios->folios[i]; 2709 struct zone *zone = folio_zone(folio); 2710 unsigned long pfn = folio_pfn(folio); 2711 unsigned int order = (unsigned long)folio->private; 2712 int migratetype; 2713 2714 folio->private = NULL; 2715 migratetype = get_pfnblock_migratetype(&folio->page, pfn); 2716 2717 /* Different zone requires a different pcp lock */ 2718 if (zone != locked_zone || 2719 is_migrate_isolate(migratetype)) { 2720 if (pcp) { 2721 pcp_spin_unlock(pcp); 2722 pcp_trylock_finish(UP_flags); 2723 locked_zone = NULL; 2724 pcp = NULL; 2725 } 2726 2727 /* 2728 * Free isolated pages directly to the 2729 * allocator, see comment in free_unref_page. 2730 */ 2731 if (is_migrate_isolate(migratetype)) { 2732 free_one_page(zone, &folio->page, pfn, 2733 order, FPI_NONE); 2734 continue; 2735 } 2736 2737 /* 2738 * trylock is necessary as folios may be getting freed 2739 * from IRQ or SoftIRQ context after an IO completion. 2740 */ 2741 pcp_trylock_prepare(UP_flags); 2742 pcp = pcp_spin_trylock(zone->per_cpu_pageset); 2743 if (unlikely(!pcp)) { 2744 pcp_trylock_finish(UP_flags); 2745 free_one_page(zone, &folio->page, pfn, 2746 order, FPI_NONE); 2747 continue; 2748 } 2749 locked_zone = zone; 2750 } 2751 2752 /* 2753 * Non-isolated types over MIGRATE_PCPTYPES get added 2754 * to the MIGRATE_MOVABLE pcp list. 2755 */ 2756 if (unlikely(migratetype >= MIGRATE_PCPTYPES)) 2757 migratetype = MIGRATE_MOVABLE; 2758 2759 trace_mm_page_free_batched(&folio->page); 2760 free_unref_page_commit(zone, pcp, &folio->page, migratetype, 2761 order); 2762 } 2763 2764 if (pcp) { 2765 pcp_spin_unlock(pcp); 2766 pcp_trylock_finish(UP_flags); 2767 } 2768 folio_batch_reinit(folios); 2769 } 2770 2771 /* 2772 * split_page takes a non-compound higher-order page, and splits it into 2773 * n (1<<order) sub-pages: page[0..n] 2774 * Each sub-page must be freed individually. 2775 * 2776 * Note: this is probably too low level an operation for use in drivers. 2777 * Please consult with lkml before using this in your driver. 2778 */ 2779 void split_page(struct page *page, unsigned int order) 2780 { 2781 int i; 2782 2783 VM_BUG_ON_PAGE(PageCompound(page), page); 2784 VM_BUG_ON_PAGE(!page_count(page), page); 2785 2786 for (i = 1; i < (1 << order); i++) 2787 set_page_refcounted(page + i); 2788 split_page_owner(page, order, 0); 2789 pgalloc_tag_split(page_folio(page), order, 0); 2790 split_page_memcg(page, order, 0); 2791 } 2792 EXPORT_SYMBOL_GPL(split_page); 2793 2794 int __isolate_free_page(struct page *page, unsigned int order) 2795 { 2796 struct zone *zone = page_zone(page); 2797 int mt = get_pageblock_migratetype(page); 2798 2799 if (!is_migrate_isolate(mt)) { 2800 unsigned long watermark; 2801 /* 2802 * Obey watermarks as if the page was being allocated. We can 2803 * emulate a high-order watermark check with a raised order-0 2804 * watermark, because we already know our high-order page 2805 * exists. 2806 */ 2807 watermark = zone->_watermark[WMARK_MIN] + (1UL << order); 2808 if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA)) 2809 return 0; 2810 } 2811 2812 del_page_from_free_list(page, zone, order, mt); 2813 2814 /* 2815 * Set the pageblock if the isolated page is at least half of a 2816 * pageblock 2817 */ 2818 if (order >= pageblock_order - 1) { 2819 struct page *endpage = page + (1 << order) - 1; 2820 for (; page < endpage; page += pageblock_nr_pages) { 2821 int mt = get_pageblock_migratetype(page); 2822 /* 2823 * Only change normal pageblocks (i.e., they can merge 2824 * with others) 2825 */ 2826 if (migratetype_is_mergeable(mt)) 2827 move_freepages_block(zone, page, mt, 2828 MIGRATE_MOVABLE); 2829 } 2830 } 2831 2832 return 1UL << order; 2833 } 2834 2835 /** 2836 * __putback_isolated_page - Return a now-isolated page back where we got it 2837 * @page: Page that was isolated 2838 * @order: Order of the isolated page 2839 * @mt: The page's pageblock's migratetype 2840 * 2841 * This function is meant to return a page pulled from the free lists via 2842 * __isolate_free_page back to the free lists they were pulled from. 2843 */ 2844 void __putback_isolated_page(struct page *page, unsigned int order, int mt) 2845 { 2846 struct zone *zone = page_zone(page); 2847 2848 /* zone lock should be held when this function is called */ 2849 lockdep_assert_held(&zone->lock); 2850 2851 /* Return isolated page to tail of freelist. */ 2852 __free_one_page(page, page_to_pfn(page), zone, order, mt, 2853 FPI_SKIP_REPORT_NOTIFY | FPI_TO_TAIL); 2854 } 2855 2856 /* 2857 * Update NUMA hit/miss statistics 2858 */ 2859 static inline void zone_statistics(struct zone *preferred_zone, struct zone *z, 2860 long nr_account) 2861 { 2862 #ifdef CONFIG_NUMA 2863 enum numa_stat_item local_stat = NUMA_LOCAL; 2864 2865 /* skip numa counters update if numa stats is disabled */ 2866 if (!static_branch_likely(&vm_numa_stat_key)) 2867 return; 2868 2869 if (zone_to_nid(z) != numa_node_id()) 2870 local_stat = NUMA_OTHER; 2871 2872 if (zone_to_nid(z) == zone_to_nid(preferred_zone)) 2873 __count_numa_events(z, NUMA_HIT, nr_account); 2874 else { 2875 __count_numa_events(z, NUMA_MISS, nr_account); 2876 __count_numa_events(preferred_zone, NUMA_FOREIGN, nr_account); 2877 } 2878 __count_numa_events(z, local_stat, nr_account); 2879 #endif 2880 } 2881 2882 static __always_inline 2883 struct page *rmqueue_buddy(struct zone *preferred_zone, struct zone *zone, 2884 unsigned int order, unsigned int alloc_flags, 2885 int migratetype) 2886 { 2887 struct page *page; 2888 unsigned long flags; 2889 2890 do { 2891 page = NULL; 2892 spin_lock_irqsave(&zone->lock, flags); 2893 if (alloc_flags & ALLOC_HIGHATOMIC) 2894 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC); 2895 if (!page) { 2896 page = __rmqueue(zone, order, migratetype, alloc_flags); 2897 2898 /* 2899 * If the allocation fails, allow OOM handling and 2900 * order-0 (atomic) allocs access to HIGHATOMIC 2901 * reserves as failing now is worse than failing a 2902 * high-order atomic allocation in the future. 2903 */ 2904 if (!page && (alloc_flags & (ALLOC_OOM|ALLOC_NON_BLOCK))) 2905 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC); 2906 2907 if (!page) { 2908 spin_unlock_irqrestore(&zone->lock, flags); 2909 return NULL; 2910 } 2911 } 2912 spin_unlock_irqrestore(&zone->lock, flags); 2913 } while (check_new_pages(page, order)); 2914 2915 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order); 2916 zone_statistics(preferred_zone, zone, 1); 2917 2918 return page; 2919 } 2920 2921 static int nr_pcp_alloc(struct per_cpu_pages *pcp, struct zone *zone, int order) 2922 { 2923 int high, base_batch, batch, max_nr_alloc; 2924 int high_max, high_min; 2925 2926 base_batch = READ_ONCE(pcp->batch); 2927 high_min = READ_ONCE(pcp->high_min); 2928 high_max = READ_ONCE(pcp->high_max); 2929 high = pcp->high = clamp(pcp->high, high_min, high_max); 2930 2931 /* Check for PCP disabled or boot pageset */ 2932 if (unlikely(high < base_batch)) 2933 return 1; 2934 2935 if (order) 2936 batch = base_batch; 2937 else 2938 batch = (base_batch << pcp->alloc_factor); 2939 2940 /* 2941 * If we had larger pcp->high, we could avoid to allocate from 2942 * zone. 2943 */ 2944 if (high_min != high_max && !test_bit(ZONE_BELOW_HIGH, &zone->flags)) 2945 high = pcp->high = min(high + batch, high_max); 2946 2947 if (!order) { 2948 max_nr_alloc = max(high - pcp->count - base_batch, base_batch); 2949 /* 2950 * Double the number of pages allocated each time there is 2951 * subsequent allocation of order-0 pages without any freeing. 2952 */ 2953 if (batch <= max_nr_alloc && 2954 pcp->alloc_factor < CONFIG_PCP_BATCH_SCALE_MAX) 2955 pcp->alloc_factor++; 2956 batch = min(batch, max_nr_alloc); 2957 } 2958 2959 /* 2960 * Scale batch relative to order if batch implies free pages 2961 * can be stored on the PCP. Batch can be 1 for small zones or 2962 * for boot pagesets which should never store free pages as 2963 * the pages may belong to arbitrary zones. 2964 */ 2965 if (batch > 1) 2966 batch = max(batch >> order, 2); 2967 2968 return batch; 2969 } 2970 2971 /* Remove page from the per-cpu list, caller must protect the list */ 2972 static inline 2973 struct page *__rmqueue_pcplist(struct zone *zone, unsigned int order, 2974 int migratetype, 2975 unsigned int alloc_flags, 2976 struct per_cpu_pages *pcp, 2977 struct list_head *list) 2978 { 2979 struct page *page; 2980 2981 do { 2982 if (list_empty(list)) { 2983 int batch = nr_pcp_alloc(pcp, zone, order); 2984 int alloced; 2985 2986 alloced = rmqueue_bulk(zone, order, 2987 batch, list, 2988 migratetype, alloc_flags); 2989 2990 pcp->count += alloced << order; 2991 if (unlikely(list_empty(list))) 2992 return NULL; 2993 } 2994 2995 page = list_first_entry(list, struct page, pcp_list); 2996 list_del(&page->pcp_list); 2997 pcp->count -= 1 << order; 2998 } while (check_new_pages(page, order)); 2999 3000 return page; 3001 } 3002 3003 /* Lock and remove page from the per-cpu list */ 3004 static struct page *rmqueue_pcplist(struct zone *preferred_zone, 3005 struct zone *zone, unsigned int order, 3006 int migratetype, unsigned int alloc_flags) 3007 { 3008 struct per_cpu_pages *pcp; 3009 struct list_head *list; 3010 struct page *page; 3011 unsigned long __maybe_unused UP_flags; 3012 3013 /* spin_trylock may fail due to a parallel drain or IRQ reentrancy. */ 3014 pcp_trylock_prepare(UP_flags); 3015 pcp = pcp_spin_trylock(zone->per_cpu_pageset); 3016 if (!pcp) { 3017 pcp_trylock_finish(UP_flags); 3018 return NULL; 3019 } 3020 3021 /* 3022 * On allocation, reduce the number of pages that are batch freed. 3023 * See nr_pcp_free() where free_factor is increased for subsequent 3024 * frees. 3025 */ 3026 pcp->free_count >>= 1; 3027 list = &pcp->lists[order_to_pindex(migratetype, order)]; 3028 page = __rmqueue_pcplist(zone, order, migratetype, alloc_flags, pcp, list); 3029 pcp_spin_unlock(pcp); 3030 pcp_trylock_finish(UP_flags); 3031 if (page) { 3032 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order); 3033 zone_statistics(preferred_zone, zone, 1); 3034 } 3035 return page; 3036 } 3037 3038 /* 3039 * Allocate a page from the given zone. 3040 * Use pcplists for THP or "cheap" high-order allocations. 3041 */ 3042 3043 /* 3044 * Do not instrument rmqueue() with KMSAN. This function may call 3045 * __msan_poison_alloca() through a call to set_pfnblock_flags_mask(). 3046 * If __msan_poison_alloca() attempts to allocate pages for the stack depot, it 3047 * may call rmqueue() again, which will result in a deadlock. 3048 */ 3049 __no_sanitize_memory 3050 static inline 3051 struct page *rmqueue(struct zone *preferred_zone, 3052 struct zone *zone, unsigned int order, 3053 gfp_t gfp_flags, unsigned int alloc_flags, 3054 int migratetype) 3055 { 3056 struct page *page; 3057 3058 if (likely(pcp_allowed_order(order))) { 3059 page = rmqueue_pcplist(preferred_zone, zone, order, 3060 migratetype, alloc_flags); 3061 if (likely(page)) 3062 goto out; 3063 } 3064 3065 page = rmqueue_buddy(preferred_zone, zone, order, alloc_flags, 3066 migratetype); 3067 3068 out: 3069 /* Separate test+clear to avoid unnecessary atomics */ 3070 if ((alloc_flags & ALLOC_KSWAPD) && 3071 unlikely(test_bit(ZONE_BOOSTED_WATERMARK, &zone->flags))) { 3072 clear_bit(ZONE_BOOSTED_WATERMARK, &zone->flags); 3073 wakeup_kswapd(zone, 0, 0, zone_idx(zone)); 3074 } 3075 3076 VM_BUG_ON_PAGE(page && bad_range(zone, page), page); 3077 return page; 3078 } 3079 3080 static inline long __zone_watermark_unusable_free(struct zone *z, 3081 unsigned int order, unsigned int alloc_flags) 3082 { 3083 long unusable_free = (1 << order) - 1; 3084 3085 /* 3086 * If the caller does not have rights to reserves below the min 3087 * watermark then subtract the free pages reserved for highatomic. 3088 */ 3089 if (likely(!(alloc_flags & ALLOC_RESERVES))) 3090 unusable_free += READ_ONCE(z->nr_free_highatomic); 3091 3092 #ifdef CONFIG_CMA 3093 /* If allocation can't use CMA areas don't use free CMA pages */ 3094 if (!(alloc_flags & ALLOC_CMA)) 3095 unusable_free += zone_page_state(z, NR_FREE_CMA_PAGES); 3096 #endif 3097 3098 return unusable_free; 3099 } 3100 3101 /* 3102 * Return true if free base pages are above 'mark'. For high-order checks it 3103 * will return true of the order-0 watermark is reached and there is at least 3104 * one free page of a suitable size. Checking now avoids taking the zone lock 3105 * to check in the allocation paths if no pages are free. 3106 */ 3107 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark, 3108 int highest_zoneidx, unsigned int alloc_flags, 3109 long free_pages) 3110 { 3111 long min = mark; 3112 int o; 3113 3114 /* free_pages may go negative - that's OK */ 3115 free_pages -= __zone_watermark_unusable_free(z, order, alloc_flags); 3116 3117 if (unlikely(alloc_flags & ALLOC_RESERVES)) { 3118 /* 3119 * __GFP_HIGH allows access to 50% of the min reserve as well 3120 * as OOM. 3121 */ 3122 if (alloc_flags & ALLOC_MIN_RESERVE) { 3123 min -= min / 2; 3124 3125 /* 3126 * Non-blocking allocations (e.g. GFP_ATOMIC) can 3127 * access more reserves than just __GFP_HIGH. Other 3128 * non-blocking allocations requests such as GFP_NOWAIT 3129 * or (GFP_KERNEL & ~__GFP_DIRECT_RECLAIM) do not get 3130 * access to the min reserve. 3131 */ 3132 if (alloc_flags & ALLOC_NON_BLOCK) 3133 min -= min / 4; 3134 } 3135 3136 /* 3137 * OOM victims can try even harder than the normal reserve 3138 * users on the grounds that it's definitely going to be in 3139 * the exit path shortly and free memory. Any allocation it 3140 * makes during the free path will be small and short-lived. 3141 */ 3142 if (alloc_flags & ALLOC_OOM) 3143 min -= min / 2; 3144 } 3145 3146 /* 3147 * Check watermarks for an order-0 allocation request. If these 3148 * are not met, then a high-order request also cannot go ahead 3149 * even if a suitable page happened to be free. 3150 */ 3151 if (free_pages <= min + z->lowmem_reserve[highest_zoneidx]) 3152 return false; 3153 3154 /* If this is an order-0 request then the watermark is fine */ 3155 if (!order) 3156 return true; 3157 3158 /* For a high-order request, check at least one suitable page is free */ 3159 for (o = order; o < NR_PAGE_ORDERS; o++) { 3160 struct free_area *area = &z->free_area[o]; 3161 int mt; 3162 3163 if (!area->nr_free) 3164 continue; 3165 3166 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) { 3167 if (!free_area_empty(area, mt)) 3168 return true; 3169 } 3170 3171 #ifdef CONFIG_CMA 3172 if ((alloc_flags & ALLOC_CMA) && 3173 !free_area_empty(area, MIGRATE_CMA)) { 3174 return true; 3175 } 3176 #endif 3177 if ((alloc_flags & (ALLOC_HIGHATOMIC|ALLOC_OOM)) && 3178 !free_area_empty(area, MIGRATE_HIGHATOMIC)) { 3179 return true; 3180 } 3181 } 3182 return false; 3183 } 3184 3185 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark, 3186 int highest_zoneidx, unsigned int alloc_flags) 3187 { 3188 return __zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags, 3189 zone_page_state(z, NR_FREE_PAGES)); 3190 } 3191 3192 static inline bool zone_watermark_fast(struct zone *z, unsigned int order, 3193 unsigned long mark, int highest_zoneidx, 3194 unsigned int alloc_flags, gfp_t gfp_mask) 3195 { 3196 long free_pages; 3197 3198 free_pages = zone_page_state(z, NR_FREE_PAGES); 3199 3200 /* 3201 * Fast check for order-0 only. If this fails then the reserves 3202 * need to be calculated. 3203 */ 3204 if (!order) { 3205 long usable_free; 3206 long reserved; 3207 3208 usable_free = free_pages; 3209 reserved = __zone_watermark_unusable_free(z, 0, alloc_flags); 3210 3211 /* reserved may over estimate high-atomic reserves. */ 3212 usable_free -= min(usable_free, reserved); 3213 if (usable_free > mark + z->lowmem_reserve[highest_zoneidx]) 3214 return true; 3215 } 3216 3217 if (__zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags, 3218 free_pages)) 3219 return true; 3220 3221 /* 3222 * Ignore watermark boosting for __GFP_HIGH order-0 allocations 3223 * when checking the min watermark. The min watermark is the 3224 * point where boosting is ignored so that kswapd is woken up 3225 * when below the low watermark. 3226 */ 3227 if (unlikely(!order && (alloc_flags & ALLOC_MIN_RESERVE) && z->watermark_boost 3228 && ((alloc_flags & ALLOC_WMARK_MASK) == WMARK_MIN))) { 3229 mark = z->_watermark[WMARK_MIN]; 3230 return __zone_watermark_ok(z, order, mark, highest_zoneidx, 3231 alloc_flags, free_pages); 3232 } 3233 3234 return false; 3235 } 3236 3237 bool zone_watermark_ok_safe(struct zone *z, unsigned int order, 3238 unsigned long mark, int highest_zoneidx) 3239 { 3240 long free_pages = zone_page_state(z, NR_FREE_PAGES); 3241 3242 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark) 3243 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES); 3244 3245 return __zone_watermark_ok(z, order, mark, highest_zoneidx, 0, 3246 free_pages); 3247 } 3248 3249 #ifdef CONFIG_NUMA 3250 int __read_mostly node_reclaim_distance = RECLAIM_DISTANCE; 3251 3252 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone) 3253 { 3254 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <= 3255 node_reclaim_distance; 3256 } 3257 #else /* CONFIG_NUMA */ 3258 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone) 3259 { 3260 return true; 3261 } 3262 #endif /* CONFIG_NUMA */ 3263 3264 /* 3265 * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid 3266 * fragmentation is subtle. If the preferred zone was HIGHMEM then 3267 * premature use of a lower zone may cause lowmem pressure problems that 3268 * are worse than fragmentation. If the next zone is ZONE_DMA then it is 3269 * probably too small. It only makes sense to spread allocations to avoid 3270 * fragmentation between the Normal and DMA32 zones. 3271 */ 3272 static inline unsigned int 3273 alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask) 3274 { 3275 unsigned int alloc_flags; 3276 3277 /* 3278 * __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD 3279 * to save a branch. 3280 */ 3281 alloc_flags = (__force int) (gfp_mask & __GFP_KSWAPD_RECLAIM); 3282 3283 #ifdef CONFIG_ZONE_DMA32 3284 if (!zone) 3285 return alloc_flags; 3286 3287 if (zone_idx(zone) != ZONE_NORMAL) 3288 return alloc_flags; 3289 3290 /* 3291 * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and 3292 * the pointer is within zone->zone_pgdat->node_zones[]. Also assume 3293 * on UMA that if Normal is populated then so is DMA32. 3294 */ 3295 BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1); 3296 if (nr_online_nodes > 1 && !populated_zone(--zone)) 3297 return alloc_flags; 3298 3299 alloc_flags |= ALLOC_NOFRAGMENT; 3300 #endif /* CONFIG_ZONE_DMA32 */ 3301 return alloc_flags; 3302 } 3303 3304 /* Must be called after current_gfp_context() which can change gfp_mask */ 3305 static inline unsigned int gfp_to_alloc_flags_cma(gfp_t gfp_mask, 3306 unsigned int alloc_flags) 3307 { 3308 #ifdef CONFIG_CMA 3309 if (gfp_migratetype(gfp_mask) == MIGRATE_MOVABLE) 3310 alloc_flags |= ALLOC_CMA; 3311 #endif 3312 return alloc_flags; 3313 } 3314 3315 /* 3316 * get_page_from_freelist goes through the zonelist trying to allocate 3317 * a page. 3318 */ 3319 static struct page * 3320 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags, 3321 const struct alloc_context *ac) 3322 { 3323 struct zoneref *z; 3324 struct zone *zone; 3325 struct pglist_data *last_pgdat = NULL; 3326 bool last_pgdat_dirty_ok = false; 3327 bool no_fallback; 3328 3329 retry: 3330 /* 3331 * Scan zonelist, looking for a zone with enough free. 3332 * See also cpuset_node_allowed() comment in kernel/cgroup/cpuset.c. 3333 */ 3334 no_fallback = alloc_flags & ALLOC_NOFRAGMENT; 3335 z = ac->preferred_zoneref; 3336 for_next_zone_zonelist_nodemask(zone, z, ac->highest_zoneidx, 3337 ac->nodemask) { 3338 struct page *page; 3339 unsigned long mark; 3340 3341 if (cpusets_enabled() && 3342 (alloc_flags & ALLOC_CPUSET) && 3343 !__cpuset_zone_allowed(zone, gfp_mask)) 3344 continue; 3345 /* 3346 * When allocating a page cache page for writing, we 3347 * want to get it from a node that is within its dirty 3348 * limit, such that no single node holds more than its 3349 * proportional share of globally allowed dirty pages. 3350 * The dirty limits take into account the node's 3351 * lowmem reserves and high watermark so that kswapd 3352 * should be able to balance it without having to 3353 * write pages from its LRU list. 3354 * 3355 * XXX: For now, allow allocations to potentially 3356 * exceed the per-node dirty limit in the slowpath 3357 * (spread_dirty_pages unset) before going into reclaim, 3358 * which is important when on a NUMA setup the allowed 3359 * nodes are together not big enough to reach the 3360 * global limit. The proper fix for these situations 3361 * will require awareness of nodes in the 3362 * dirty-throttling and the flusher threads. 3363 */ 3364 if (ac->spread_dirty_pages) { 3365 if (last_pgdat != zone->zone_pgdat) { 3366 last_pgdat = zone->zone_pgdat; 3367 last_pgdat_dirty_ok = node_dirty_ok(zone->zone_pgdat); 3368 } 3369 3370 if (!last_pgdat_dirty_ok) 3371 continue; 3372 } 3373 3374 if (no_fallback && nr_online_nodes > 1 && 3375 zone != zonelist_zone(ac->preferred_zoneref)) { 3376 int local_nid; 3377 3378 /* 3379 * If moving to a remote node, retry but allow 3380 * fragmenting fallbacks. Locality is more important 3381 * than fragmentation avoidance. 3382 */ 3383 local_nid = zonelist_node_idx(ac->preferred_zoneref); 3384 if (zone_to_nid(zone) != local_nid) { 3385 alloc_flags &= ~ALLOC_NOFRAGMENT; 3386 goto retry; 3387 } 3388 } 3389 3390 cond_accept_memory(zone, order); 3391 3392 /* 3393 * Detect whether the number of free pages is below high 3394 * watermark. If so, we will decrease pcp->high and free 3395 * PCP pages in free path to reduce the possibility of 3396 * premature page reclaiming. Detection is done here to 3397 * avoid to do that in hotter free path. 3398 */ 3399 if (test_bit(ZONE_BELOW_HIGH, &zone->flags)) 3400 goto check_alloc_wmark; 3401 3402 mark = high_wmark_pages(zone); 3403 if (zone_watermark_fast(zone, order, mark, 3404 ac->highest_zoneidx, alloc_flags, 3405 gfp_mask)) 3406 goto try_this_zone; 3407 else 3408 set_bit(ZONE_BELOW_HIGH, &zone->flags); 3409 3410 check_alloc_wmark: 3411 mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK); 3412 if (!zone_watermark_fast(zone, order, mark, 3413 ac->highest_zoneidx, alloc_flags, 3414 gfp_mask)) { 3415 int ret; 3416 3417 if (cond_accept_memory(zone, order)) 3418 goto try_this_zone; 3419 3420 /* 3421 * Watermark failed for this zone, but see if we can 3422 * grow this zone if it contains deferred pages. 3423 */ 3424 if (deferred_pages_enabled()) { 3425 if (_deferred_grow_zone(zone, order)) 3426 goto try_this_zone; 3427 } 3428 /* Checked here to keep the fast path fast */ 3429 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK); 3430 if (alloc_flags & ALLOC_NO_WATERMARKS) 3431 goto try_this_zone; 3432 3433 if (!node_reclaim_enabled() || 3434 !zone_allows_reclaim(zonelist_zone(ac->preferred_zoneref), zone)) 3435 continue; 3436 3437 ret = node_reclaim(zone->zone_pgdat, gfp_mask, order); 3438 switch (ret) { 3439 case NODE_RECLAIM_NOSCAN: 3440 /* did not scan */ 3441 continue; 3442 case NODE_RECLAIM_FULL: 3443 /* scanned but unreclaimable */ 3444 continue; 3445 default: 3446 /* did we reclaim enough */ 3447 if (zone_watermark_ok(zone, order, mark, 3448 ac->highest_zoneidx, alloc_flags)) 3449 goto try_this_zone; 3450 3451 continue; 3452 } 3453 } 3454 3455 try_this_zone: 3456 page = rmqueue(zonelist_zone(ac->preferred_zoneref), zone, order, 3457 gfp_mask, alloc_flags, ac->migratetype); 3458 if (page) { 3459 prep_new_page(page, order, gfp_mask, alloc_flags); 3460 3461 /* 3462 * If this is a high-order atomic allocation then check 3463 * if the pageblock should be reserved for the future 3464 */ 3465 if (unlikely(alloc_flags & ALLOC_HIGHATOMIC)) 3466 reserve_highatomic_pageblock(page, order, zone); 3467 3468 return page; 3469 } else { 3470 if (cond_accept_memory(zone, order)) 3471 goto try_this_zone; 3472 3473 /* Try again if zone has deferred pages */ 3474 if (deferred_pages_enabled()) { 3475 if (_deferred_grow_zone(zone, order)) 3476 goto try_this_zone; 3477 } 3478 } 3479 } 3480 3481 /* 3482 * It's possible on a UMA machine to get through all zones that are 3483 * fragmented. If avoiding fragmentation, reset and try again. 3484 */ 3485 if (no_fallback) { 3486 alloc_flags &= ~ALLOC_NOFRAGMENT; 3487 goto retry; 3488 } 3489 3490 return NULL; 3491 } 3492 3493 static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask) 3494 { 3495 unsigned int filter = SHOW_MEM_FILTER_NODES; 3496 3497 /* 3498 * This documents exceptions given to allocations in certain 3499 * contexts that are allowed to allocate outside current's set 3500 * of allowed nodes. 3501 */ 3502 if (!(gfp_mask & __GFP_NOMEMALLOC)) 3503 if (tsk_is_oom_victim(current) || 3504 (current->flags & (PF_MEMALLOC | PF_EXITING))) 3505 filter &= ~SHOW_MEM_FILTER_NODES; 3506 if (!in_task() || !(gfp_mask & __GFP_DIRECT_RECLAIM)) 3507 filter &= ~SHOW_MEM_FILTER_NODES; 3508 3509 __show_mem(filter, nodemask, gfp_zone(gfp_mask)); 3510 } 3511 3512 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...) 3513 { 3514 struct va_format vaf; 3515 va_list args; 3516 static DEFINE_RATELIMIT_STATE(nopage_rs, 10*HZ, 1); 3517 3518 if ((gfp_mask & __GFP_NOWARN) || 3519 !__ratelimit(&nopage_rs) || 3520 ((gfp_mask & __GFP_DMA) && !has_managed_dma())) 3521 return; 3522 3523 va_start(args, fmt); 3524 vaf.fmt = fmt; 3525 vaf.va = &args; 3526 pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl", 3527 current->comm, &vaf, gfp_mask, &gfp_mask, 3528 nodemask_pr_args(nodemask)); 3529 va_end(args); 3530 3531 cpuset_print_current_mems_allowed(); 3532 pr_cont("\n"); 3533 dump_stack(); 3534 warn_alloc_show_mem(gfp_mask, nodemask); 3535 } 3536 3537 static inline struct page * 3538 __alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order, 3539 unsigned int alloc_flags, 3540 const struct alloc_context *ac) 3541 { 3542 struct page *page; 3543 3544 page = get_page_from_freelist(gfp_mask, order, 3545 alloc_flags|ALLOC_CPUSET, ac); 3546 /* 3547 * fallback to ignore cpuset restriction if our nodes 3548 * are depleted 3549 */ 3550 if (!page) 3551 page = get_page_from_freelist(gfp_mask, order, 3552 alloc_flags, ac); 3553 3554 return page; 3555 } 3556 3557 static inline struct page * 3558 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order, 3559 const struct alloc_context *ac, unsigned long *did_some_progress) 3560 { 3561 struct oom_control oc = { 3562 .zonelist = ac->zonelist, 3563 .nodemask = ac->nodemask, 3564 .memcg = NULL, 3565 .gfp_mask = gfp_mask, 3566 .order = order, 3567 }; 3568 struct page *page; 3569 3570 *did_some_progress = 0; 3571 3572 /* 3573 * Acquire the oom lock. If that fails, somebody else is 3574 * making progress for us. 3575 */ 3576 if (!mutex_trylock(&oom_lock)) { 3577 *did_some_progress = 1; 3578 schedule_timeout_uninterruptible(1); 3579 return NULL; 3580 } 3581 3582 /* 3583 * Go through the zonelist yet one more time, keep very high watermark 3584 * here, this is only to catch a parallel oom killing, we must fail if 3585 * we're still under heavy pressure. But make sure that this reclaim 3586 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY 3587 * allocation which will never fail due to oom_lock already held. 3588 */ 3589 page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) & 3590 ~__GFP_DIRECT_RECLAIM, order, 3591 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac); 3592 if (page) 3593 goto out; 3594 3595 /* Coredumps can quickly deplete all memory reserves */ 3596 if (current->flags & PF_DUMPCORE) 3597 goto out; 3598 /* The OOM killer will not help higher order allocs */ 3599 if (order > PAGE_ALLOC_COSTLY_ORDER) 3600 goto out; 3601 /* 3602 * We have already exhausted all our reclaim opportunities without any 3603 * success so it is time to admit defeat. We will skip the OOM killer 3604 * because it is very likely that the caller has a more reasonable 3605 * fallback than shooting a random task. 3606 * 3607 * The OOM killer may not free memory on a specific node. 3608 */ 3609 if (gfp_mask & (__GFP_RETRY_MAYFAIL | __GFP_THISNODE)) 3610 goto out; 3611 /* The OOM killer does not needlessly kill tasks for lowmem */ 3612 if (ac->highest_zoneidx < ZONE_NORMAL) 3613 goto out; 3614 if (pm_suspended_storage()) 3615 goto out; 3616 /* 3617 * XXX: GFP_NOFS allocations should rather fail than rely on 3618 * other request to make a forward progress. 3619 * We are in an unfortunate situation where out_of_memory cannot 3620 * do much for this context but let's try it to at least get 3621 * access to memory reserved if the current task is killed (see 3622 * out_of_memory). Once filesystems are ready to handle allocation 3623 * failures more gracefully we should just bail out here. 3624 */ 3625 3626 /* Exhausted what can be done so it's blame time */ 3627 if (out_of_memory(&oc) || 3628 WARN_ON_ONCE_GFP(gfp_mask & __GFP_NOFAIL, gfp_mask)) { 3629 *did_some_progress = 1; 3630 3631 /* 3632 * Help non-failing allocations by giving them access to memory 3633 * reserves 3634 */ 3635 if (gfp_mask & __GFP_NOFAIL) 3636 page = __alloc_pages_cpuset_fallback(gfp_mask, order, 3637 ALLOC_NO_WATERMARKS, ac); 3638 } 3639 out: 3640 mutex_unlock(&oom_lock); 3641 return page; 3642 } 3643 3644 /* 3645 * Maximum number of compaction retries with a progress before OOM 3646 * killer is consider as the only way to move forward. 3647 */ 3648 #define MAX_COMPACT_RETRIES 16 3649 3650 #ifdef CONFIG_COMPACTION 3651 /* Try memory compaction for high-order allocations before reclaim */ 3652 static struct page * 3653 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order, 3654 unsigned int alloc_flags, const struct alloc_context *ac, 3655 enum compact_priority prio, enum compact_result *compact_result) 3656 { 3657 struct page *page = NULL; 3658 unsigned long pflags; 3659 unsigned int noreclaim_flag; 3660 3661 if (!order) 3662 return NULL; 3663 3664 psi_memstall_enter(&pflags); 3665 delayacct_compact_start(); 3666 noreclaim_flag = memalloc_noreclaim_save(); 3667 3668 *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac, 3669 prio, &page); 3670 3671 memalloc_noreclaim_restore(noreclaim_flag); 3672 psi_memstall_leave(&pflags); 3673 delayacct_compact_end(); 3674 3675 if (*compact_result == COMPACT_SKIPPED) 3676 return NULL; 3677 /* 3678 * At least in one zone compaction wasn't deferred or skipped, so let's 3679 * count a compaction stall 3680 */ 3681 count_vm_event(COMPACTSTALL); 3682 3683 /* Prep a captured page if available */ 3684 if (page) 3685 prep_new_page(page, order, gfp_mask, alloc_flags); 3686 3687 /* Try get a page from the freelist if available */ 3688 if (!page) 3689 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 3690 3691 if (page) { 3692 struct zone *zone = page_zone(page); 3693 3694 zone->compact_blockskip_flush = false; 3695 compaction_defer_reset(zone, order, true); 3696 count_vm_event(COMPACTSUCCESS); 3697 return page; 3698 } 3699 3700 /* 3701 * It's bad if compaction run occurs and fails. The most likely reason 3702 * is that pages exist, but not enough to satisfy watermarks. 3703 */ 3704 count_vm_event(COMPACTFAIL); 3705 3706 cond_resched(); 3707 3708 return NULL; 3709 } 3710 3711 static inline bool 3712 should_compact_retry(struct alloc_context *ac, int order, int alloc_flags, 3713 enum compact_result compact_result, 3714 enum compact_priority *compact_priority, 3715 int *compaction_retries) 3716 { 3717 int max_retries = MAX_COMPACT_RETRIES; 3718 int min_priority; 3719 bool ret = false; 3720 int retries = *compaction_retries; 3721 enum compact_priority priority = *compact_priority; 3722 3723 if (!order) 3724 return false; 3725 3726 if (fatal_signal_pending(current)) 3727 return false; 3728 3729 /* 3730 * Compaction was skipped due to a lack of free order-0 3731 * migration targets. Continue if reclaim can help. 3732 */ 3733 if (compact_result == COMPACT_SKIPPED) { 3734 ret = compaction_zonelist_suitable(ac, order, alloc_flags); 3735 goto out; 3736 } 3737 3738 /* 3739 * Compaction managed to coalesce some page blocks, but the 3740 * allocation failed presumably due to a race. Retry some. 3741 */ 3742 if (compact_result == COMPACT_SUCCESS) { 3743 /* 3744 * !costly requests are much more important than 3745 * __GFP_RETRY_MAYFAIL costly ones because they are de 3746 * facto nofail and invoke OOM killer to move on while 3747 * costly can fail and users are ready to cope with 3748 * that. 1/4 retries is rather arbitrary but we would 3749 * need much more detailed feedback from compaction to 3750 * make a better decision. 3751 */ 3752 if (order > PAGE_ALLOC_COSTLY_ORDER) 3753 max_retries /= 4; 3754 3755 if (++(*compaction_retries) <= max_retries) { 3756 ret = true; 3757 goto out; 3758 } 3759 } 3760 3761 /* 3762 * Compaction failed. Retry with increasing priority. 3763 */ 3764 min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ? 3765 MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY; 3766 3767 if (*compact_priority > min_priority) { 3768 (*compact_priority)--; 3769 *compaction_retries = 0; 3770 ret = true; 3771 } 3772 out: 3773 trace_compact_retry(order, priority, compact_result, retries, max_retries, ret); 3774 return ret; 3775 } 3776 #else 3777 static inline struct page * 3778 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order, 3779 unsigned int alloc_flags, const struct alloc_context *ac, 3780 enum compact_priority prio, enum compact_result *compact_result) 3781 { 3782 *compact_result = COMPACT_SKIPPED; 3783 return NULL; 3784 } 3785 3786 static inline bool 3787 should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags, 3788 enum compact_result compact_result, 3789 enum compact_priority *compact_priority, 3790 int *compaction_retries) 3791 { 3792 struct zone *zone; 3793 struct zoneref *z; 3794 3795 if (!order || order > PAGE_ALLOC_COSTLY_ORDER) 3796 return false; 3797 3798 /* 3799 * There are setups with compaction disabled which would prefer to loop 3800 * inside the allocator rather than hit the oom killer prematurely. 3801 * Let's give them a good hope and keep retrying while the order-0 3802 * watermarks are OK. 3803 */ 3804 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, 3805 ac->highest_zoneidx, ac->nodemask) { 3806 if (zone_watermark_ok(zone, 0, min_wmark_pages(zone), 3807 ac->highest_zoneidx, alloc_flags)) 3808 return true; 3809 } 3810 return false; 3811 } 3812 #endif /* CONFIG_COMPACTION */ 3813 3814 #ifdef CONFIG_LOCKDEP 3815 static struct lockdep_map __fs_reclaim_map = 3816 STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map); 3817 3818 static bool __need_reclaim(gfp_t gfp_mask) 3819 { 3820 /* no reclaim without waiting on it */ 3821 if (!(gfp_mask & __GFP_DIRECT_RECLAIM)) 3822 return false; 3823 3824 /* this guy won't enter reclaim */ 3825 if (current->flags & PF_MEMALLOC) 3826 return false; 3827 3828 if (gfp_mask & __GFP_NOLOCKDEP) 3829 return false; 3830 3831 return true; 3832 } 3833 3834 void __fs_reclaim_acquire(unsigned long ip) 3835 { 3836 lock_acquire_exclusive(&__fs_reclaim_map, 0, 0, NULL, ip); 3837 } 3838 3839 void __fs_reclaim_release(unsigned long ip) 3840 { 3841 lock_release(&__fs_reclaim_map, ip); 3842 } 3843 3844 void fs_reclaim_acquire(gfp_t gfp_mask) 3845 { 3846 gfp_mask = current_gfp_context(gfp_mask); 3847 3848 if (__need_reclaim(gfp_mask)) { 3849 if (gfp_mask & __GFP_FS) 3850 __fs_reclaim_acquire(_RET_IP_); 3851 3852 #ifdef CONFIG_MMU_NOTIFIER 3853 lock_map_acquire(&__mmu_notifier_invalidate_range_start_map); 3854 lock_map_release(&__mmu_notifier_invalidate_range_start_map); 3855 #endif 3856 3857 } 3858 } 3859 EXPORT_SYMBOL_GPL(fs_reclaim_acquire); 3860 3861 void fs_reclaim_release(gfp_t gfp_mask) 3862 { 3863 gfp_mask = current_gfp_context(gfp_mask); 3864 3865 if (__need_reclaim(gfp_mask)) { 3866 if (gfp_mask & __GFP_FS) 3867 __fs_reclaim_release(_RET_IP_); 3868 } 3869 } 3870 EXPORT_SYMBOL_GPL(fs_reclaim_release); 3871 #endif 3872 3873 /* 3874 * Zonelists may change due to hotplug during allocation. Detect when zonelists 3875 * have been rebuilt so allocation retries. Reader side does not lock and 3876 * retries the allocation if zonelist changes. Writer side is protected by the 3877 * embedded spin_lock. 3878 */ 3879 static DEFINE_SEQLOCK(zonelist_update_seq); 3880 3881 static unsigned int zonelist_iter_begin(void) 3882 { 3883 if (IS_ENABLED(CONFIG_MEMORY_HOTREMOVE)) 3884 return read_seqbegin(&zonelist_update_seq); 3885 3886 return 0; 3887 } 3888 3889 static unsigned int check_retry_zonelist(unsigned int seq) 3890 { 3891 if (IS_ENABLED(CONFIG_MEMORY_HOTREMOVE)) 3892 return read_seqretry(&zonelist_update_seq, seq); 3893 3894 return seq; 3895 } 3896 3897 /* Perform direct synchronous page reclaim */ 3898 static unsigned long 3899 __perform_reclaim(gfp_t gfp_mask, unsigned int order, 3900 const struct alloc_context *ac) 3901 { 3902 unsigned int noreclaim_flag; 3903 unsigned long progress; 3904 3905 cond_resched(); 3906 3907 /* We now go into synchronous reclaim */ 3908 cpuset_memory_pressure_bump(); 3909 fs_reclaim_acquire(gfp_mask); 3910 noreclaim_flag = memalloc_noreclaim_save(); 3911 3912 progress = try_to_free_pages(ac->zonelist, order, gfp_mask, 3913 ac->nodemask); 3914 3915 memalloc_noreclaim_restore(noreclaim_flag); 3916 fs_reclaim_release(gfp_mask); 3917 3918 cond_resched(); 3919 3920 return progress; 3921 } 3922 3923 /* The really slow allocator path where we enter direct reclaim */ 3924 static inline struct page * 3925 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order, 3926 unsigned int alloc_flags, const struct alloc_context *ac, 3927 unsigned long *did_some_progress) 3928 { 3929 struct page *page = NULL; 3930 unsigned long pflags; 3931 bool drained = false; 3932 3933 psi_memstall_enter(&pflags); 3934 *did_some_progress = __perform_reclaim(gfp_mask, order, ac); 3935 if (unlikely(!(*did_some_progress))) 3936 goto out; 3937 3938 retry: 3939 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 3940 3941 /* 3942 * If an allocation failed after direct reclaim, it could be because 3943 * pages are pinned on the per-cpu lists or in high alloc reserves. 3944 * Shrink them and try again 3945 */ 3946 if (!page && !drained) { 3947 unreserve_highatomic_pageblock(ac, false); 3948 drain_all_pages(NULL); 3949 drained = true; 3950 goto retry; 3951 } 3952 out: 3953 psi_memstall_leave(&pflags); 3954 3955 return page; 3956 } 3957 3958 static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask, 3959 const struct alloc_context *ac) 3960 { 3961 struct zoneref *z; 3962 struct zone *zone; 3963 pg_data_t *last_pgdat = NULL; 3964 enum zone_type highest_zoneidx = ac->highest_zoneidx; 3965 3966 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, highest_zoneidx, 3967 ac->nodemask) { 3968 if (!managed_zone(zone)) 3969 continue; 3970 if (last_pgdat != zone->zone_pgdat) { 3971 wakeup_kswapd(zone, gfp_mask, order, highest_zoneidx); 3972 last_pgdat = zone->zone_pgdat; 3973 } 3974 } 3975 } 3976 3977 static inline unsigned int 3978 gfp_to_alloc_flags(gfp_t gfp_mask, unsigned int order) 3979 { 3980 unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET; 3981 3982 /* 3983 * __GFP_HIGH is assumed to be the same as ALLOC_MIN_RESERVE 3984 * and __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD 3985 * to save two branches. 3986 */ 3987 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_MIN_RESERVE); 3988 BUILD_BUG_ON(__GFP_KSWAPD_RECLAIM != (__force gfp_t) ALLOC_KSWAPD); 3989 3990 /* 3991 * The caller may dip into page reserves a bit more if the caller 3992 * cannot run direct reclaim, or if the caller has realtime scheduling 3993 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will 3994 * set both ALLOC_NON_BLOCK and ALLOC_MIN_RESERVE(__GFP_HIGH). 3995 */ 3996 alloc_flags |= (__force int) 3997 (gfp_mask & (__GFP_HIGH | __GFP_KSWAPD_RECLAIM)); 3998 3999 if (!(gfp_mask & __GFP_DIRECT_RECLAIM)) { 4000 /* 4001 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even 4002 * if it can't schedule. 4003 */ 4004 if (!(gfp_mask & __GFP_NOMEMALLOC)) { 4005 alloc_flags |= ALLOC_NON_BLOCK; 4006 4007 if (order > 0) 4008 alloc_flags |= ALLOC_HIGHATOMIC; 4009 } 4010 4011 /* 4012 * Ignore cpuset mems for non-blocking __GFP_HIGH (probably 4013 * GFP_ATOMIC) rather than fail, see the comment for 4014 * cpuset_node_allowed(). 4015 */ 4016 if (alloc_flags & ALLOC_MIN_RESERVE) 4017 alloc_flags &= ~ALLOC_CPUSET; 4018 } else if (unlikely(rt_or_dl_task(current)) && in_task()) 4019 alloc_flags |= ALLOC_MIN_RESERVE; 4020 4021 alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, alloc_flags); 4022 4023 return alloc_flags; 4024 } 4025 4026 static bool oom_reserves_allowed(struct task_struct *tsk) 4027 { 4028 if (!tsk_is_oom_victim(tsk)) 4029 return false; 4030 4031 /* 4032 * !MMU doesn't have oom reaper so give access to memory reserves 4033 * only to the thread with TIF_MEMDIE set 4034 */ 4035 if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE)) 4036 return false; 4037 4038 return true; 4039 } 4040 4041 /* 4042 * Distinguish requests which really need access to full memory 4043 * reserves from oom victims which can live with a portion of it 4044 */ 4045 static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask) 4046 { 4047 if (unlikely(gfp_mask & __GFP_NOMEMALLOC)) 4048 return 0; 4049 if (gfp_mask & __GFP_MEMALLOC) 4050 return ALLOC_NO_WATERMARKS; 4051 if (in_serving_softirq() && (current->flags & PF_MEMALLOC)) 4052 return ALLOC_NO_WATERMARKS; 4053 if (!in_interrupt()) { 4054 if (current->flags & PF_MEMALLOC) 4055 return ALLOC_NO_WATERMARKS; 4056 else if (oom_reserves_allowed(current)) 4057 return ALLOC_OOM; 4058 } 4059 4060 return 0; 4061 } 4062 4063 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask) 4064 { 4065 return !!__gfp_pfmemalloc_flags(gfp_mask); 4066 } 4067 4068 /* 4069 * Checks whether it makes sense to retry the reclaim to make a forward progress 4070 * for the given allocation request. 4071 * 4072 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row 4073 * without success, or when we couldn't even meet the watermark if we 4074 * reclaimed all remaining pages on the LRU lists. 4075 * 4076 * Returns true if a retry is viable or false to enter the oom path. 4077 */ 4078 static inline bool 4079 should_reclaim_retry(gfp_t gfp_mask, unsigned order, 4080 struct alloc_context *ac, int alloc_flags, 4081 bool did_some_progress, int *no_progress_loops) 4082 { 4083 struct zone *zone; 4084 struct zoneref *z; 4085 bool ret = false; 4086 4087 /* 4088 * Costly allocations might have made a progress but this doesn't mean 4089 * their order will become available due to high fragmentation so 4090 * always increment the no progress counter for them 4091 */ 4092 if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER) 4093 *no_progress_loops = 0; 4094 else 4095 (*no_progress_loops)++; 4096 4097 if (*no_progress_loops > MAX_RECLAIM_RETRIES) 4098 goto out; 4099 4100 4101 /* 4102 * Keep reclaiming pages while there is a chance this will lead 4103 * somewhere. If none of the target zones can satisfy our allocation 4104 * request even if all reclaimable pages are considered then we are 4105 * screwed and have to go OOM. 4106 */ 4107 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, 4108 ac->highest_zoneidx, ac->nodemask) { 4109 unsigned long available; 4110 unsigned long reclaimable; 4111 unsigned long min_wmark = min_wmark_pages(zone); 4112 bool wmark; 4113 4114 if (cpusets_enabled() && 4115 (alloc_flags & ALLOC_CPUSET) && 4116 !__cpuset_zone_allowed(zone, gfp_mask)) 4117 continue; 4118 4119 available = reclaimable = zone_reclaimable_pages(zone); 4120 available += zone_page_state_snapshot(zone, NR_FREE_PAGES); 4121 4122 /* 4123 * Would the allocation succeed if we reclaimed all 4124 * reclaimable pages? 4125 */ 4126 wmark = __zone_watermark_ok(zone, order, min_wmark, 4127 ac->highest_zoneidx, alloc_flags, available); 4128 trace_reclaim_retry_zone(z, order, reclaimable, 4129 available, min_wmark, *no_progress_loops, wmark); 4130 if (wmark) { 4131 ret = true; 4132 break; 4133 } 4134 } 4135 4136 /* 4137 * Memory allocation/reclaim might be called from a WQ context and the 4138 * current implementation of the WQ concurrency control doesn't 4139 * recognize that a particular WQ is congested if the worker thread is 4140 * looping without ever sleeping. Therefore we have to do a short sleep 4141 * here rather than calling cond_resched(). 4142 */ 4143 if (current->flags & PF_WQ_WORKER) 4144 schedule_timeout_uninterruptible(1); 4145 else 4146 cond_resched(); 4147 out: 4148 /* Before OOM, exhaust highatomic_reserve */ 4149 if (!ret) 4150 return unreserve_highatomic_pageblock(ac, true); 4151 4152 return ret; 4153 } 4154 4155 static inline bool 4156 check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac) 4157 { 4158 /* 4159 * It's possible that cpuset's mems_allowed and the nodemask from 4160 * mempolicy don't intersect. This should be normally dealt with by 4161 * policy_nodemask(), but it's possible to race with cpuset update in 4162 * such a way the check therein was true, and then it became false 4163 * before we got our cpuset_mems_cookie here. 4164 * This assumes that for all allocations, ac->nodemask can come only 4165 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored 4166 * when it does not intersect with the cpuset restrictions) or the 4167 * caller can deal with a violated nodemask. 4168 */ 4169 if (cpusets_enabled() && ac->nodemask && 4170 !cpuset_nodemask_valid_mems_allowed(ac->nodemask)) { 4171 ac->nodemask = NULL; 4172 return true; 4173 } 4174 4175 /* 4176 * When updating a task's mems_allowed or mempolicy nodemask, it is 4177 * possible to race with parallel threads in such a way that our 4178 * allocation can fail while the mask is being updated. If we are about 4179 * to fail, check if the cpuset changed during allocation and if so, 4180 * retry. 4181 */ 4182 if (read_mems_allowed_retry(cpuset_mems_cookie)) 4183 return true; 4184 4185 return false; 4186 } 4187 4188 static inline struct page * 4189 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order, 4190 struct alloc_context *ac) 4191 { 4192 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM; 4193 bool can_compact = gfp_compaction_allowed(gfp_mask); 4194 bool nofail = gfp_mask & __GFP_NOFAIL; 4195 const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER; 4196 struct page *page = NULL; 4197 unsigned int alloc_flags; 4198 unsigned long did_some_progress; 4199 enum compact_priority compact_priority; 4200 enum compact_result compact_result; 4201 int compaction_retries; 4202 int no_progress_loops; 4203 unsigned int cpuset_mems_cookie; 4204 unsigned int zonelist_iter_cookie; 4205 int reserve_flags; 4206 4207 if (unlikely(nofail)) { 4208 /* 4209 * We most definitely don't want callers attempting to 4210 * allocate greater than order-1 page units with __GFP_NOFAIL. 4211 */ 4212 WARN_ON_ONCE(order > 1); 4213 /* 4214 * Also we don't support __GFP_NOFAIL without __GFP_DIRECT_RECLAIM, 4215 * otherwise, we may result in lockup. 4216 */ 4217 WARN_ON_ONCE(!can_direct_reclaim); 4218 /* 4219 * PF_MEMALLOC request from this context is rather bizarre 4220 * because we cannot reclaim anything and only can loop waiting 4221 * for somebody to do a work for us. 4222 */ 4223 WARN_ON_ONCE(current->flags & PF_MEMALLOC); 4224 } 4225 4226 restart: 4227 compaction_retries = 0; 4228 no_progress_loops = 0; 4229 compact_priority = DEF_COMPACT_PRIORITY; 4230 cpuset_mems_cookie = read_mems_allowed_begin(); 4231 zonelist_iter_cookie = zonelist_iter_begin(); 4232 4233 /* 4234 * The fast path uses conservative alloc_flags to succeed only until 4235 * kswapd needs to be woken up, and to avoid the cost of setting up 4236 * alloc_flags precisely. So we do that now. 4237 */ 4238 alloc_flags = gfp_to_alloc_flags(gfp_mask, order); 4239 4240 /* 4241 * We need to recalculate the starting point for the zonelist iterator 4242 * because we might have used different nodemask in the fast path, or 4243 * there was a cpuset modification and we are retrying - otherwise we 4244 * could end up iterating over non-eligible zones endlessly. 4245 */ 4246 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist, 4247 ac->highest_zoneidx, ac->nodemask); 4248 if (!zonelist_zone(ac->preferred_zoneref)) 4249 goto nopage; 4250 4251 /* 4252 * Check for insane configurations where the cpuset doesn't contain 4253 * any suitable zone to satisfy the request - e.g. non-movable 4254 * GFP_HIGHUSER allocations from MOVABLE nodes only. 4255 */ 4256 if (cpusets_insane_config() && (gfp_mask & __GFP_HARDWALL)) { 4257 struct zoneref *z = first_zones_zonelist(ac->zonelist, 4258 ac->highest_zoneidx, 4259 &cpuset_current_mems_allowed); 4260 if (!zonelist_zone(z)) 4261 goto nopage; 4262 } 4263 4264 if (alloc_flags & ALLOC_KSWAPD) 4265 wake_all_kswapds(order, gfp_mask, ac); 4266 4267 /* 4268 * The adjusted alloc_flags might result in immediate success, so try 4269 * that first 4270 */ 4271 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 4272 if (page) 4273 goto got_pg; 4274 4275 /* 4276 * For costly allocations, try direct compaction first, as it's likely 4277 * that we have enough base pages and don't need to reclaim. For non- 4278 * movable high-order allocations, do that as well, as compaction will 4279 * try prevent permanent fragmentation by migrating from blocks of the 4280 * same migratetype. 4281 * Don't try this for allocations that are allowed to ignore 4282 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen. 4283 */ 4284 if (can_direct_reclaim && can_compact && 4285 (costly_order || 4286 (order > 0 && ac->migratetype != MIGRATE_MOVABLE)) 4287 && !gfp_pfmemalloc_allowed(gfp_mask)) { 4288 page = __alloc_pages_direct_compact(gfp_mask, order, 4289 alloc_flags, ac, 4290 INIT_COMPACT_PRIORITY, 4291 &compact_result); 4292 if (page) 4293 goto got_pg; 4294 4295 /* 4296 * Checks for costly allocations with __GFP_NORETRY, which 4297 * includes some THP page fault allocations 4298 */ 4299 if (costly_order && (gfp_mask & __GFP_NORETRY)) { 4300 /* 4301 * If allocating entire pageblock(s) and compaction 4302 * failed because all zones are below low watermarks 4303 * or is prohibited because it recently failed at this 4304 * order, fail immediately unless the allocator has 4305 * requested compaction and reclaim retry. 4306 * 4307 * Reclaim is 4308 * - potentially very expensive because zones are far 4309 * below their low watermarks or this is part of very 4310 * bursty high order allocations, 4311 * - not guaranteed to help because isolate_freepages() 4312 * may not iterate over freed pages as part of its 4313 * linear scan, and 4314 * - unlikely to make entire pageblocks free on its 4315 * own. 4316 */ 4317 if (compact_result == COMPACT_SKIPPED || 4318 compact_result == COMPACT_DEFERRED) 4319 goto nopage; 4320 4321 /* 4322 * Looks like reclaim/compaction is worth trying, but 4323 * sync compaction could be very expensive, so keep 4324 * using async compaction. 4325 */ 4326 compact_priority = INIT_COMPACT_PRIORITY; 4327 } 4328 } 4329 4330 retry: 4331 /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */ 4332 if (alloc_flags & ALLOC_KSWAPD) 4333 wake_all_kswapds(order, gfp_mask, ac); 4334 4335 reserve_flags = __gfp_pfmemalloc_flags(gfp_mask); 4336 if (reserve_flags) 4337 alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, reserve_flags) | 4338 (alloc_flags & ALLOC_KSWAPD); 4339 4340 /* 4341 * Reset the nodemask and zonelist iterators if memory policies can be 4342 * ignored. These allocations are high priority and system rather than 4343 * user oriented. 4344 */ 4345 if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) { 4346 ac->nodemask = NULL; 4347 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist, 4348 ac->highest_zoneidx, ac->nodemask); 4349 } 4350 4351 /* Attempt with potentially adjusted zonelist and alloc_flags */ 4352 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 4353 if (page) 4354 goto got_pg; 4355 4356 /* Caller is not willing to reclaim, we can't balance anything */ 4357 if (!can_direct_reclaim) 4358 goto nopage; 4359 4360 /* Avoid recursion of direct reclaim */ 4361 if (current->flags & PF_MEMALLOC) 4362 goto nopage; 4363 4364 /* Try direct reclaim and then allocating */ 4365 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac, 4366 &did_some_progress); 4367 if (page) 4368 goto got_pg; 4369 4370 /* Try direct compaction and then allocating */ 4371 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac, 4372 compact_priority, &compact_result); 4373 if (page) 4374 goto got_pg; 4375 4376 /* Do not loop if specifically requested */ 4377 if (gfp_mask & __GFP_NORETRY) 4378 goto nopage; 4379 4380 /* 4381 * Do not retry costly high order allocations unless they are 4382 * __GFP_RETRY_MAYFAIL and we can compact 4383 */ 4384 if (costly_order && (!can_compact || 4385 !(gfp_mask & __GFP_RETRY_MAYFAIL))) 4386 goto nopage; 4387 4388 if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags, 4389 did_some_progress > 0, &no_progress_loops)) 4390 goto retry; 4391 4392 /* 4393 * It doesn't make any sense to retry for the compaction if the order-0 4394 * reclaim is not able to make any progress because the current 4395 * implementation of the compaction depends on the sufficient amount 4396 * of free memory (see __compaction_suitable) 4397 */ 4398 if (did_some_progress > 0 && can_compact && 4399 should_compact_retry(ac, order, alloc_flags, 4400 compact_result, &compact_priority, 4401 &compaction_retries)) 4402 goto retry; 4403 4404 4405 /* 4406 * Deal with possible cpuset update races or zonelist updates to avoid 4407 * a unnecessary OOM kill. 4408 */ 4409 if (check_retry_cpuset(cpuset_mems_cookie, ac) || 4410 check_retry_zonelist(zonelist_iter_cookie)) 4411 goto restart; 4412 4413 /* Reclaim has failed us, start killing things */ 4414 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress); 4415 if (page) 4416 goto got_pg; 4417 4418 /* Avoid allocations with no watermarks from looping endlessly */ 4419 if (tsk_is_oom_victim(current) && 4420 (alloc_flags & ALLOC_OOM || 4421 (gfp_mask & __GFP_NOMEMALLOC))) 4422 goto nopage; 4423 4424 /* Retry as long as the OOM killer is making progress */ 4425 if (did_some_progress) { 4426 no_progress_loops = 0; 4427 goto retry; 4428 } 4429 4430 nopage: 4431 /* 4432 * Deal with possible cpuset update races or zonelist updates to avoid 4433 * a unnecessary OOM kill. 4434 */ 4435 if (check_retry_cpuset(cpuset_mems_cookie, ac) || 4436 check_retry_zonelist(zonelist_iter_cookie)) 4437 goto restart; 4438 4439 /* 4440 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure 4441 * we always retry 4442 */ 4443 if (unlikely(nofail)) { 4444 /* 4445 * Lacking direct_reclaim we can't do anything to reclaim memory, 4446 * we disregard these unreasonable nofail requests and still 4447 * return NULL 4448 */ 4449 if (!can_direct_reclaim) 4450 goto fail; 4451 4452 /* 4453 * Help non-failing allocations by giving some access to memory 4454 * reserves normally used for high priority non-blocking 4455 * allocations but do not use ALLOC_NO_WATERMARKS because this 4456 * could deplete whole memory reserves which would just make 4457 * the situation worse. 4458 */ 4459 page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_MIN_RESERVE, ac); 4460 if (page) 4461 goto got_pg; 4462 4463 cond_resched(); 4464 goto retry; 4465 } 4466 fail: 4467 warn_alloc(gfp_mask, ac->nodemask, 4468 "page allocation failure: order:%u", order); 4469 got_pg: 4470 return page; 4471 } 4472 4473 static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order, 4474 int preferred_nid, nodemask_t *nodemask, 4475 struct alloc_context *ac, gfp_t *alloc_gfp, 4476 unsigned int *alloc_flags) 4477 { 4478 ac->highest_zoneidx = gfp_zone(gfp_mask); 4479 ac->zonelist = node_zonelist(preferred_nid, gfp_mask); 4480 ac->nodemask = nodemask; 4481 ac->migratetype = gfp_migratetype(gfp_mask); 4482 4483 if (cpusets_enabled()) { 4484 *alloc_gfp |= __GFP_HARDWALL; 4485 /* 4486 * When we are in the interrupt context, it is irrelevant 4487 * to the current task context. It means that any node ok. 4488 */ 4489 if (in_task() && !ac->nodemask) 4490 ac->nodemask = &cpuset_current_mems_allowed; 4491 else 4492 *alloc_flags |= ALLOC_CPUSET; 4493 } 4494 4495 might_alloc(gfp_mask); 4496 4497 if (should_fail_alloc_page(gfp_mask, order)) 4498 return false; 4499 4500 *alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, *alloc_flags); 4501 4502 /* Dirty zone balancing only done in the fast path */ 4503 ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE); 4504 4505 /* 4506 * The preferred zone is used for statistics but crucially it is 4507 * also used as the starting point for the zonelist iterator. It 4508 * may get reset for allocations that ignore memory policies. 4509 */ 4510 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist, 4511 ac->highest_zoneidx, ac->nodemask); 4512 4513 return true; 4514 } 4515 4516 /* 4517 * __alloc_pages_bulk - Allocate a number of order-0 pages to a list or array 4518 * @gfp: GFP flags for the allocation 4519 * @preferred_nid: The preferred NUMA node ID to allocate from 4520 * @nodemask: Set of nodes to allocate from, may be NULL 4521 * @nr_pages: The number of pages desired on the list or array 4522 * @page_list: Optional list to store the allocated pages 4523 * @page_array: Optional array to store the pages 4524 * 4525 * This is a batched version of the page allocator that attempts to 4526 * allocate nr_pages quickly. Pages are added to page_list if page_list 4527 * is not NULL, otherwise it is assumed that the page_array is valid. 4528 * 4529 * For lists, nr_pages is the number of pages that should be allocated. 4530 * 4531 * For arrays, only NULL elements are populated with pages and nr_pages 4532 * is the maximum number of pages that will be stored in the array. 4533 * 4534 * Returns the number of pages on the list or array. 4535 */ 4536 unsigned long alloc_pages_bulk_noprof(gfp_t gfp, int preferred_nid, 4537 nodemask_t *nodemask, int nr_pages, 4538 struct list_head *page_list, 4539 struct page **page_array) 4540 { 4541 struct page *page; 4542 unsigned long __maybe_unused UP_flags; 4543 struct zone *zone; 4544 struct zoneref *z; 4545 struct per_cpu_pages *pcp; 4546 struct list_head *pcp_list; 4547 struct alloc_context ac; 4548 gfp_t alloc_gfp; 4549 unsigned int alloc_flags = ALLOC_WMARK_LOW; 4550 int nr_populated = 0, nr_account = 0; 4551 4552 /* 4553 * Skip populated array elements to determine if any pages need 4554 * to be allocated before disabling IRQs. 4555 */ 4556 while (page_array && nr_populated < nr_pages && page_array[nr_populated]) 4557 nr_populated++; 4558 4559 /* No pages requested? */ 4560 if (unlikely(nr_pages <= 0)) 4561 goto out; 4562 4563 /* Already populated array? */ 4564 if (unlikely(page_array && nr_pages - nr_populated == 0)) 4565 goto out; 4566 4567 /* Bulk allocator does not support memcg accounting. */ 4568 if (memcg_kmem_online() && (gfp & __GFP_ACCOUNT)) 4569 goto failed; 4570 4571 /* Use the single page allocator for one page. */ 4572 if (nr_pages - nr_populated == 1) 4573 goto failed; 4574 4575 #ifdef CONFIG_PAGE_OWNER 4576 /* 4577 * PAGE_OWNER may recurse into the allocator to allocate space to 4578 * save the stack with pagesets.lock held. Releasing/reacquiring 4579 * removes much of the performance benefit of bulk allocation so 4580 * force the caller to allocate one page at a time as it'll have 4581 * similar performance to added complexity to the bulk allocator. 4582 */ 4583 if (static_branch_unlikely(&page_owner_inited)) 4584 goto failed; 4585 #endif 4586 4587 /* May set ALLOC_NOFRAGMENT, fragmentation will return 1 page. */ 4588 gfp &= gfp_allowed_mask; 4589 alloc_gfp = gfp; 4590 if (!prepare_alloc_pages(gfp, 0, preferred_nid, nodemask, &ac, &alloc_gfp, &alloc_flags)) 4591 goto out; 4592 gfp = alloc_gfp; 4593 4594 /* Find an allowed local zone that meets the low watermark. */ 4595 for_each_zone_zonelist_nodemask(zone, z, ac.zonelist, ac.highest_zoneidx, ac.nodemask) { 4596 unsigned long mark; 4597 4598 if (cpusets_enabled() && (alloc_flags & ALLOC_CPUSET) && 4599 !__cpuset_zone_allowed(zone, gfp)) { 4600 continue; 4601 } 4602 4603 if (nr_online_nodes > 1 && zone != zonelist_zone(ac.preferred_zoneref) && 4604 zone_to_nid(zone) != zonelist_node_idx(ac.preferred_zoneref)) { 4605 goto failed; 4606 } 4607 4608 cond_accept_memory(zone, 0); 4609 retry_this_zone: 4610 mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK) + nr_pages; 4611 if (zone_watermark_fast(zone, 0, mark, 4612 zonelist_zone_idx(ac.preferred_zoneref), 4613 alloc_flags, gfp)) { 4614 break; 4615 } 4616 4617 if (cond_accept_memory(zone, 0)) 4618 goto retry_this_zone; 4619 4620 /* Try again if zone has deferred pages */ 4621 if (deferred_pages_enabled()) { 4622 if (_deferred_grow_zone(zone, 0)) 4623 goto retry_this_zone; 4624 } 4625 } 4626 4627 /* 4628 * If there are no allowed local zones that meets the watermarks then 4629 * try to allocate a single page and reclaim if necessary. 4630 */ 4631 if (unlikely(!zone)) 4632 goto failed; 4633 4634 /* spin_trylock may fail due to a parallel drain or IRQ reentrancy. */ 4635 pcp_trylock_prepare(UP_flags); 4636 pcp = pcp_spin_trylock(zone->per_cpu_pageset); 4637 if (!pcp) 4638 goto failed_irq; 4639 4640 /* Attempt the batch allocation */ 4641 pcp_list = &pcp->lists[order_to_pindex(ac.migratetype, 0)]; 4642 while (nr_populated < nr_pages) { 4643 4644 /* Skip existing pages */ 4645 if (page_array && page_array[nr_populated]) { 4646 nr_populated++; 4647 continue; 4648 } 4649 4650 page = __rmqueue_pcplist(zone, 0, ac.migratetype, alloc_flags, 4651 pcp, pcp_list); 4652 if (unlikely(!page)) { 4653 /* Try and allocate at least one page */ 4654 if (!nr_account) { 4655 pcp_spin_unlock(pcp); 4656 goto failed_irq; 4657 } 4658 break; 4659 } 4660 nr_account++; 4661 4662 prep_new_page(page, 0, gfp, 0); 4663 if (page_list) 4664 list_add(&page->lru, page_list); 4665 else 4666 page_array[nr_populated] = page; 4667 nr_populated++; 4668 } 4669 4670 pcp_spin_unlock(pcp); 4671 pcp_trylock_finish(UP_flags); 4672 4673 __count_zid_vm_events(PGALLOC, zone_idx(zone), nr_account); 4674 zone_statistics(zonelist_zone(ac.preferred_zoneref), zone, nr_account); 4675 4676 out: 4677 return nr_populated; 4678 4679 failed_irq: 4680 pcp_trylock_finish(UP_flags); 4681 4682 failed: 4683 page = __alloc_pages_noprof(gfp, 0, preferred_nid, nodemask); 4684 if (page) { 4685 if (page_list) 4686 list_add(&page->lru, page_list); 4687 else 4688 page_array[nr_populated] = page; 4689 nr_populated++; 4690 } 4691 4692 goto out; 4693 } 4694 EXPORT_SYMBOL_GPL(alloc_pages_bulk_noprof); 4695 4696 /* 4697 * This is the 'heart' of the zoned buddy allocator. 4698 */ 4699 struct page *__alloc_pages_noprof(gfp_t gfp, unsigned int order, 4700 int preferred_nid, nodemask_t *nodemask) 4701 { 4702 struct page *page; 4703 unsigned int alloc_flags = ALLOC_WMARK_LOW; 4704 gfp_t alloc_gfp; /* The gfp_t that was actually used for allocation */ 4705 struct alloc_context ac = { }; 4706 4707 /* 4708 * There are several places where we assume that the order value is sane 4709 * so bail out early if the request is out of bound. 4710 */ 4711 if (WARN_ON_ONCE_GFP(order > MAX_PAGE_ORDER, gfp)) 4712 return NULL; 4713 4714 gfp &= gfp_allowed_mask; 4715 /* 4716 * Apply scoped allocation constraints. This is mainly about GFP_NOFS 4717 * resp. GFP_NOIO which has to be inherited for all allocation requests 4718 * from a particular context which has been marked by 4719 * memalloc_no{fs,io}_{save,restore}. And PF_MEMALLOC_PIN which ensures 4720 * movable zones are not used during allocation. 4721 */ 4722 gfp = current_gfp_context(gfp); 4723 alloc_gfp = gfp; 4724 if (!prepare_alloc_pages(gfp, order, preferred_nid, nodemask, &ac, 4725 &alloc_gfp, &alloc_flags)) 4726 return NULL; 4727 4728 /* 4729 * Forbid the first pass from falling back to types that fragment 4730 * memory until all local zones are considered. 4731 */ 4732 alloc_flags |= alloc_flags_nofragment(zonelist_zone(ac.preferred_zoneref), gfp); 4733 4734 /* First allocation attempt */ 4735 page = get_page_from_freelist(alloc_gfp, order, alloc_flags, &ac); 4736 if (likely(page)) 4737 goto out; 4738 4739 alloc_gfp = gfp; 4740 ac.spread_dirty_pages = false; 4741 4742 /* 4743 * Restore the original nodemask if it was potentially replaced with 4744 * &cpuset_current_mems_allowed to optimize the fast-path attempt. 4745 */ 4746 ac.nodemask = nodemask; 4747 4748 page = __alloc_pages_slowpath(alloc_gfp, order, &ac); 4749 4750 out: 4751 if (memcg_kmem_online() && (gfp & __GFP_ACCOUNT) && page && 4752 unlikely(__memcg_kmem_charge_page(page, gfp, order) != 0)) { 4753 __free_pages(page, order); 4754 page = NULL; 4755 } 4756 4757 trace_mm_page_alloc(page, order, alloc_gfp, ac.migratetype); 4758 kmsan_alloc_page(page, order, alloc_gfp); 4759 4760 return page; 4761 } 4762 EXPORT_SYMBOL(__alloc_pages_noprof); 4763 4764 struct folio *__folio_alloc_noprof(gfp_t gfp, unsigned int order, int preferred_nid, 4765 nodemask_t *nodemask) 4766 { 4767 struct page *page = __alloc_pages_noprof(gfp | __GFP_COMP, order, 4768 preferred_nid, nodemask); 4769 return page_rmappable_folio(page); 4770 } 4771 EXPORT_SYMBOL(__folio_alloc_noprof); 4772 4773 /* 4774 * Common helper functions. Never use with __GFP_HIGHMEM because the returned 4775 * address cannot represent highmem pages. Use alloc_pages and then kmap if 4776 * you need to access high mem. 4777 */ 4778 unsigned long get_free_pages_noprof(gfp_t gfp_mask, unsigned int order) 4779 { 4780 struct page *page; 4781 4782 page = alloc_pages_noprof(gfp_mask & ~__GFP_HIGHMEM, order); 4783 if (!page) 4784 return 0; 4785 return (unsigned long) page_address(page); 4786 } 4787 EXPORT_SYMBOL(get_free_pages_noprof); 4788 4789 unsigned long get_zeroed_page_noprof(gfp_t gfp_mask) 4790 { 4791 return get_free_pages_noprof(gfp_mask | __GFP_ZERO, 0); 4792 } 4793 EXPORT_SYMBOL(get_zeroed_page_noprof); 4794 4795 /** 4796 * __free_pages - Free pages allocated with alloc_pages(). 4797 * @page: The page pointer returned from alloc_pages(). 4798 * @order: The order of the allocation. 4799 * 4800 * This function can free multi-page allocations that are not compound 4801 * pages. It does not check that the @order passed in matches that of 4802 * the allocation, so it is easy to leak memory. Freeing more memory 4803 * than was allocated will probably emit a warning. 4804 * 4805 * If the last reference to this page is speculative, it will be released 4806 * by put_page() which only frees the first page of a non-compound 4807 * allocation. To prevent the remaining pages from being leaked, we free 4808 * the subsequent pages here. If you want to use the page's reference 4809 * count to decide when to free the allocation, you should allocate a 4810 * compound page, and use put_page() instead of __free_pages(). 4811 * 4812 * Context: May be called in interrupt context or while holding a normal 4813 * spinlock, but not in NMI context or while holding a raw spinlock. 4814 */ 4815 void __free_pages(struct page *page, unsigned int order) 4816 { 4817 /* get PageHead before we drop reference */ 4818 int head = PageHead(page); 4819 struct alloc_tag *tag = pgalloc_tag_get(page); 4820 4821 if (put_page_testzero(page)) 4822 free_unref_page(page, order); 4823 else if (!head) { 4824 pgalloc_tag_sub_pages(tag, (1 << order) - 1); 4825 while (order-- > 0) 4826 free_unref_page(page + (1 << order), order); 4827 } 4828 } 4829 EXPORT_SYMBOL(__free_pages); 4830 4831 void free_pages(unsigned long addr, unsigned int order) 4832 { 4833 if (addr != 0) { 4834 VM_BUG_ON(!virt_addr_valid((void *)addr)); 4835 __free_pages(virt_to_page((void *)addr), order); 4836 } 4837 } 4838 4839 EXPORT_SYMBOL(free_pages); 4840 4841 /* 4842 * Page Fragment: 4843 * An arbitrary-length arbitrary-offset area of memory which resides 4844 * within a 0 or higher order page. Multiple fragments within that page 4845 * are individually refcounted, in the page's reference counter. 4846 * 4847 * The page_frag functions below provide a simple allocation framework for 4848 * page fragments. This is used by the network stack and network device 4849 * drivers to provide a backing region of memory for use as either an 4850 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info. 4851 */ 4852 static struct page *__page_frag_cache_refill(struct page_frag_cache *nc, 4853 gfp_t gfp_mask) 4854 { 4855 struct page *page = NULL; 4856 gfp_t gfp = gfp_mask; 4857 4858 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE) 4859 gfp_mask = (gfp_mask & ~__GFP_DIRECT_RECLAIM) | __GFP_COMP | 4860 __GFP_NOWARN | __GFP_NORETRY | __GFP_NOMEMALLOC; 4861 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask, 4862 PAGE_FRAG_CACHE_MAX_ORDER); 4863 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE; 4864 #endif 4865 if (unlikely(!page)) 4866 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0); 4867 4868 nc->va = page ? page_address(page) : NULL; 4869 4870 return page; 4871 } 4872 4873 void page_frag_cache_drain(struct page_frag_cache *nc) 4874 { 4875 if (!nc->va) 4876 return; 4877 4878 __page_frag_cache_drain(virt_to_head_page(nc->va), nc->pagecnt_bias); 4879 nc->va = NULL; 4880 } 4881 EXPORT_SYMBOL(page_frag_cache_drain); 4882 4883 void __page_frag_cache_drain(struct page *page, unsigned int count) 4884 { 4885 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page); 4886 4887 if (page_ref_sub_and_test(page, count)) 4888 free_unref_page(page, compound_order(page)); 4889 } 4890 EXPORT_SYMBOL(__page_frag_cache_drain); 4891 4892 void *__page_frag_alloc_align(struct page_frag_cache *nc, 4893 unsigned int fragsz, gfp_t gfp_mask, 4894 unsigned int align_mask) 4895 { 4896 unsigned int size = PAGE_SIZE; 4897 struct page *page; 4898 int offset; 4899 4900 if (unlikely(!nc->va)) { 4901 refill: 4902 page = __page_frag_cache_refill(nc, gfp_mask); 4903 if (!page) 4904 return NULL; 4905 4906 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE) 4907 /* if size can vary use size else just use PAGE_SIZE */ 4908 size = nc->size; 4909 #endif 4910 /* Even if we own the page, we do not use atomic_set(). 4911 * This would break get_page_unless_zero() users. 4912 */ 4913 page_ref_add(page, PAGE_FRAG_CACHE_MAX_SIZE); 4914 4915 /* reset page count bias and offset to start of new frag */ 4916 nc->pfmemalloc = page_is_pfmemalloc(page); 4917 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1; 4918 nc->offset = size; 4919 } 4920 4921 offset = nc->offset - fragsz; 4922 if (unlikely(offset < 0)) { 4923 page = virt_to_page(nc->va); 4924 4925 if (!page_ref_sub_and_test(page, nc->pagecnt_bias)) 4926 goto refill; 4927 4928 if (unlikely(nc->pfmemalloc)) { 4929 free_unref_page(page, compound_order(page)); 4930 goto refill; 4931 } 4932 4933 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE) 4934 /* if size can vary use size else just use PAGE_SIZE */ 4935 size = nc->size; 4936 #endif 4937 /* OK, page count is 0, we can safely set it */ 4938 set_page_count(page, PAGE_FRAG_CACHE_MAX_SIZE + 1); 4939 4940 /* reset page count bias and offset to start of new frag */ 4941 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1; 4942 offset = size - fragsz; 4943 if (unlikely(offset < 0)) { 4944 /* 4945 * The caller is trying to allocate a fragment 4946 * with fragsz > PAGE_SIZE but the cache isn't big 4947 * enough to satisfy the request, this may 4948 * happen in low memory conditions. 4949 * We don't release the cache page because 4950 * it could make memory pressure worse 4951 * so we simply return NULL here. 4952 */ 4953 return NULL; 4954 } 4955 } 4956 4957 nc->pagecnt_bias--; 4958 offset &= align_mask; 4959 nc->offset = offset; 4960 4961 return nc->va + offset; 4962 } 4963 EXPORT_SYMBOL(__page_frag_alloc_align); 4964 4965 /* 4966 * Frees a page fragment allocated out of either a compound or order 0 page. 4967 */ 4968 void page_frag_free(void *addr) 4969 { 4970 struct page *page = virt_to_head_page(addr); 4971 4972 if (unlikely(put_page_testzero(page))) 4973 free_unref_page(page, compound_order(page)); 4974 } 4975 EXPORT_SYMBOL(page_frag_free); 4976 4977 static void *make_alloc_exact(unsigned long addr, unsigned int order, 4978 size_t size) 4979 { 4980 if (addr) { 4981 unsigned long nr = DIV_ROUND_UP(size, PAGE_SIZE); 4982 struct page *page = virt_to_page((void *)addr); 4983 struct page *last = page + nr; 4984 4985 split_page_owner(page, order, 0); 4986 pgalloc_tag_split(page_folio(page), order, 0); 4987 split_page_memcg(page, order, 0); 4988 while (page < --last) 4989 set_page_refcounted(last); 4990 4991 last = page + (1UL << order); 4992 for (page += nr; page < last; page++) 4993 __free_pages_ok(page, 0, FPI_TO_TAIL); 4994 } 4995 return (void *)addr; 4996 } 4997 4998 /** 4999 * alloc_pages_exact - allocate an exact number physically-contiguous pages. 5000 * @size: the number of bytes to allocate 5001 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP 5002 * 5003 * This function is similar to alloc_pages(), except that it allocates the 5004 * minimum number of pages to satisfy the request. alloc_pages() can only 5005 * allocate memory in power-of-two pages. 5006 * 5007 * This function is also limited by MAX_PAGE_ORDER. 5008 * 5009 * Memory allocated by this function must be released by free_pages_exact(). 5010 * 5011 * Return: pointer to the allocated area or %NULL in case of error. 5012 */ 5013 void *alloc_pages_exact_noprof(size_t size, gfp_t gfp_mask) 5014 { 5015 unsigned int order = get_order(size); 5016 unsigned long addr; 5017 5018 if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM))) 5019 gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM); 5020 5021 addr = get_free_pages_noprof(gfp_mask, order); 5022 return make_alloc_exact(addr, order, size); 5023 } 5024 EXPORT_SYMBOL(alloc_pages_exact_noprof); 5025 5026 /** 5027 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous 5028 * pages on a node. 5029 * @nid: the preferred node ID where memory should be allocated 5030 * @size: the number of bytes to allocate 5031 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP 5032 * 5033 * Like alloc_pages_exact(), but try to allocate on node nid first before falling 5034 * back. 5035 * 5036 * Return: pointer to the allocated area or %NULL in case of error. 5037 */ 5038 void * __meminit alloc_pages_exact_nid_noprof(int nid, size_t size, gfp_t gfp_mask) 5039 { 5040 unsigned int order = get_order(size); 5041 struct page *p; 5042 5043 if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM))) 5044 gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM); 5045 5046 p = alloc_pages_node_noprof(nid, gfp_mask, order); 5047 if (!p) 5048 return NULL; 5049 return make_alloc_exact((unsigned long)page_address(p), order, size); 5050 } 5051 5052 /** 5053 * free_pages_exact - release memory allocated via alloc_pages_exact() 5054 * @virt: the value returned by alloc_pages_exact. 5055 * @size: size of allocation, same value as passed to alloc_pages_exact(). 5056 * 5057 * Release the memory allocated by a previous call to alloc_pages_exact. 5058 */ 5059 void free_pages_exact(void *virt, size_t size) 5060 { 5061 unsigned long addr = (unsigned long)virt; 5062 unsigned long end = addr + PAGE_ALIGN(size); 5063 5064 while (addr < end) { 5065 free_page(addr); 5066 addr += PAGE_SIZE; 5067 } 5068 } 5069 EXPORT_SYMBOL(free_pages_exact); 5070 5071 /** 5072 * nr_free_zone_pages - count number of pages beyond high watermark 5073 * @offset: The zone index of the highest zone 5074 * 5075 * nr_free_zone_pages() counts the number of pages which are beyond the 5076 * high watermark within all zones at or below a given zone index. For each 5077 * zone, the number of pages is calculated as: 5078 * 5079 * nr_free_zone_pages = managed_pages - high_pages 5080 * 5081 * Return: number of pages beyond high watermark. 5082 */ 5083 static unsigned long nr_free_zone_pages(int offset) 5084 { 5085 struct zoneref *z; 5086 struct zone *zone; 5087 5088 /* Just pick one node, since fallback list is circular */ 5089 unsigned long sum = 0; 5090 5091 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL); 5092 5093 for_each_zone_zonelist(zone, z, zonelist, offset) { 5094 unsigned long size = zone_managed_pages(zone); 5095 unsigned long high = high_wmark_pages(zone); 5096 if (size > high) 5097 sum += size - high; 5098 } 5099 5100 return sum; 5101 } 5102 5103 /** 5104 * nr_free_buffer_pages - count number of pages beyond high watermark 5105 * 5106 * nr_free_buffer_pages() counts the number of pages which are beyond the high 5107 * watermark within ZONE_DMA and ZONE_NORMAL. 5108 * 5109 * Return: number of pages beyond high watermark within ZONE_DMA and 5110 * ZONE_NORMAL. 5111 */ 5112 unsigned long nr_free_buffer_pages(void) 5113 { 5114 return nr_free_zone_pages(gfp_zone(GFP_USER)); 5115 } 5116 EXPORT_SYMBOL_GPL(nr_free_buffer_pages); 5117 5118 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref) 5119 { 5120 zoneref->zone = zone; 5121 zoneref->zone_idx = zone_idx(zone); 5122 } 5123 5124 /* 5125 * Builds allocation fallback zone lists. 5126 * 5127 * Add all populated zones of a node to the zonelist. 5128 */ 5129 static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs) 5130 { 5131 struct zone *zone; 5132 enum zone_type zone_type = MAX_NR_ZONES; 5133 int nr_zones = 0; 5134 5135 do { 5136 zone_type--; 5137 zone = pgdat->node_zones + zone_type; 5138 if (populated_zone(zone)) { 5139 zoneref_set_zone(zone, &zonerefs[nr_zones++]); 5140 check_highest_zone(zone_type); 5141 } 5142 } while (zone_type); 5143 5144 return nr_zones; 5145 } 5146 5147 #ifdef CONFIG_NUMA 5148 5149 static int __parse_numa_zonelist_order(char *s) 5150 { 5151 /* 5152 * We used to support different zonelists modes but they turned 5153 * out to be just not useful. Let's keep the warning in place 5154 * if somebody still use the cmd line parameter so that we do 5155 * not fail it silently 5156 */ 5157 if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) { 5158 pr_warn("Ignoring unsupported numa_zonelist_order value: %s\n", s); 5159 return -EINVAL; 5160 } 5161 return 0; 5162 } 5163 5164 static char numa_zonelist_order[] = "Node"; 5165 #define NUMA_ZONELIST_ORDER_LEN 16 5166 /* 5167 * sysctl handler for numa_zonelist_order 5168 */ 5169 static int numa_zonelist_order_handler(const struct ctl_table *table, int write, 5170 void *buffer, size_t *length, loff_t *ppos) 5171 { 5172 if (write) 5173 return __parse_numa_zonelist_order(buffer); 5174 return proc_dostring(table, write, buffer, length, ppos); 5175 } 5176 5177 static int node_load[MAX_NUMNODES]; 5178 5179 /** 5180 * find_next_best_node - find the next node that should appear in a given node's fallback list 5181 * @node: node whose fallback list we're appending 5182 * @used_node_mask: nodemask_t of already used nodes 5183 * 5184 * We use a number of factors to determine which is the next node that should 5185 * appear on a given node's fallback list. The node should not have appeared 5186 * already in @node's fallback list, and it should be the next closest node 5187 * according to the distance array (which contains arbitrary distance values 5188 * from each node to each node in the system), and should also prefer nodes 5189 * with no CPUs, since presumably they'll have very little allocation pressure 5190 * on them otherwise. 5191 * 5192 * Return: node id of the found node or %NUMA_NO_NODE if no node is found. 5193 */ 5194 int find_next_best_node(int node, nodemask_t *used_node_mask) 5195 { 5196 int n, val; 5197 int min_val = INT_MAX; 5198 int best_node = NUMA_NO_NODE; 5199 5200 /* 5201 * Use the local node if we haven't already, but for memoryless local 5202 * node, we should skip it and fall back to other nodes. 5203 */ 5204 if (!node_isset(node, *used_node_mask) && node_state(node, N_MEMORY)) { 5205 node_set(node, *used_node_mask); 5206 return node; 5207 } 5208 5209 for_each_node_state(n, N_MEMORY) { 5210 5211 /* Don't want a node to appear more than once */ 5212 if (node_isset(n, *used_node_mask)) 5213 continue; 5214 5215 /* Use the distance array to find the distance */ 5216 val = node_distance(node, n); 5217 5218 /* Penalize nodes under us ("prefer the next node") */ 5219 val += (n < node); 5220 5221 /* Give preference to headless and unused nodes */ 5222 if (!cpumask_empty(cpumask_of_node(n))) 5223 val += PENALTY_FOR_NODE_WITH_CPUS; 5224 5225 /* Slight preference for less loaded node */ 5226 val *= MAX_NUMNODES; 5227 val += node_load[n]; 5228 5229 if (val < min_val) { 5230 min_val = val; 5231 best_node = n; 5232 } 5233 } 5234 5235 if (best_node >= 0) 5236 node_set(best_node, *used_node_mask); 5237 5238 return best_node; 5239 } 5240 5241 5242 /* 5243 * Build zonelists ordered by node and zones within node. 5244 * This results in maximum locality--normal zone overflows into local 5245 * DMA zone, if any--but risks exhausting DMA zone. 5246 */ 5247 static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order, 5248 unsigned nr_nodes) 5249 { 5250 struct zoneref *zonerefs; 5251 int i; 5252 5253 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs; 5254 5255 for (i = 0; i < nr_nodes; i++) { 5256 int nr_zones; 5257 5258 pg_data_t *node = NODE_DATA(node_order[i]); 5259 5260 nr_zones = build_zonerefs_node(node, zonerefs); 5261 zonerefs += nr_zones; 5262 } 5263 zonerefs->zone = NULL; 5264 zonerefs->zone_idx = 0; 5265 } 5266 5267 /* 5268 * Build __GFP_THISNODE zonelists 5269 */ 5270 static void build_thisnode_zonelists(pg_data_t *pgdat) 5271 { 5272 struct zoneref *zonerefs; 5273 int nr_zones; 5274 5275 zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs; 5276 nr_zones = build_zonerefs_node(pgdat, zonerefs); 5277 zonerefs += nr_zones; 5278 zonerefs->zone = NULL; 5279 zonerefs->zone_idx = 0; 5280 } 5281 5282 /* 5283 * Build zonelists ordered by zone and nodes within zones. 5284 * This results in conserving DMA zone[s] until all Normal memory is 5285 * exhausted, but results in overflowing to remote node while memory 5286 * may still exist in local DMA zone. 5287 */ 5288 5289 static void build_zonelists(pg_data_t *pgdat) 5290 { 5291 static int node_order[MAX_NUMNODES]; 5292 int node, nr_nodes = 0; 5293 nodemask_t used_mask = NODE_MASK_NONE; 5294 int local_node, prev_node; 5295 5296 /* NUMA-aware ordering of nodes */ 5297 local_node = pgdat->node_id; 5298 prev_node = local_node; 5299 5300 memset(node_order, 0, sizeof(node_order)); 5301 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) { 5302 /* 5303 * We don't want to pressure a particular node. 5304 * So adding penalty to the first node in same 5305 * distance group to make it round-robin. 5306 */ 5307 if (node_distance(local_node, node) != 5308 node_distance(local_node, prev_node)) 5309 node_load[node] += 1; 5310 5311 node_order[nr_nodes++] = node; 5312 prev_node = node; 5313 } 5314 5315 build_zonelists_in_node_order(pgdat, node_order, nr_nodes); 5316 build_thisnode_zonelists(pgdat); 5317 pr_info("Fallback order for Node %d: ", local_node); 5318 for (node = 0; node < nr_nodes; node++) 5319 pr_cont("%d ", node_order[node]); 5320 pr_cont("\n"); 5321 } 5322 5323 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 5324 /* 5325 * Return node id of node used for "local" allocations. 5326 * I.e., first node id of first zone in arg node's generic zonelist. 5327 * Used for initializing percpu 'numa_mem', which is used primarily 5328 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist. 5329 */ 5330 int local_memory_node(int node) 5331 { 5332 struct zoneref *z; 5333 5334 z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL), 5335 gfp_zone(GFP_KERNEL), 5336 NULL); 5337 return zonelist_node_idx(z); 5338 } 5339 #endif 5340 5341 static void setup_min_unmapped_ratio(void); 5342 static void setup_min_slab_ratio(void); 5343 #else /* CONFIG_NUMA */ 5344 5345 static void build_zonelists(pg_data_t *pgdat) 5346 { 5347 struct zoneref *zonerefs; 5348 int nr_zones; 5349 5350 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs; 5351 nr_zones = build_zonerefs_node(pgdat, zonerefs); 5352 zonerefs += nr_zones; 5353 5354 zonerefs->zone = NULL; 5355 zonerefs->zone_idx = 0; 5356 } 5357 5358 #endif /* CONFIG_NUMA */ 5359 5360 /* 5361 * Boot pageset table. One per cpu which is going to be used for all 5362 * zones and all nodes. The parameters will be set in such a way 5363 * that an item put on a list will immediately be handed over to 5364 * the buddy list. This is safe since pageset manipulation is done 5365 * with interrupts disabled. 5366 * 5367 * The boot_pagesets must be kept even after bootup is complete for 5368 * unused processors and/or zones. They do play a role for bootstrapping 5369 * hotplugged processors. 5370 * 5371 * zoneinfo_show() and maybe other functions do 5372 * not check if the processor is online before following the pageset pointer. 5373 * Other parts of the kernel may not check if the zone is available. 5374 */ 5375 static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats); 5376 /* These effectively disable the pcplists in the boot pageset completely */ 5377 #define BOOT_PAGESET_HIGH 0 5378 #define BOOT_PAGESET_BATCH 1 5379 static DEFINE_PER_CPU(struct per_cpu_pages, boot_pageset); 5380 static DEFINE_PER_CPU(struct per_cpu_zonestat, boot_zonestats); 5381 5382 static void __build_all_zonelists(void *data) 5383 { 5384 int nid; 5385 int __maybe_unused cpu; 5386 pg_data_t *self = data; 5387 unsigned long flags; 5388 5389 /* 5390 * The zonelist_update_seq must be acquired with irqsave because the 5391 * reader can be invoked from IRQ with GFP_ATOMIC. 5392 */ 5393 write_seqlock_irqsave(&zonelist_update_seq, flags); 5394 /* 5395 * Also disable synchronous printk() to prevent any printk() from 5396 * trying to hold port->lock, for 5397 * tty_insert_flip_string_and_push_buffer() on other CPU might be 5398 * calling kmalloc(GFP_ATOMIC | __GFP_NOWARN) with port->lock held. 5399 */ 5400 printk_deferred_enter(); 5401 5402 #ifdef CONFIG_NUMA 5403 memset(node_load, 0, sizeof(node_load)); 5404 #endif 5405 5406 /* 5407 * This node is hotadded and no memory is yet present. So just 5408 * building zonelists is fine - no need to touch other nodes. 5409 */ 5410 if (self && !node_online(self->node_id)) { 5411 build_zonelists(self); 5412 } else { 5413 /* 5414 * All possible nodes have pgdat preallocated 5415 * in free_area_init 5416 */ 5417 for_each_node(nid) { 5418 pg_data_t *pgdat = NODE_DATA(nid); 5419 5420 build_zonelists(pgdat); 5421 } 5422 5423 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 5424 /* 5425 * We now know the "local memory node" for each node-- 5426 * i.e., the node of the first zone in the generic zonelist. 5427 * Set up numa_mem percpu variable for on-line cpus. During 5428 * boot, only the boot cpu should be on-line; we'll init the 5429 * secondary cpus' numa_mem as they come on-line. During 5430 * node/memory hotplug, we'll fixup all on-line cpus. 5431 */ 5432 for_each_online_cpu(cpu) 5433 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu))); 5434 #endif 5435 } 5436 5437 printk_deferred_exit(); 5438 write_sequnlock_irqrestore(&zonelist_update_seq, flags); 5439 } 5440 5441 static noinline void __init 5442 build_all_zonelists_init(void) 5443 { 5444 int cpu; 5445 5446 __build_all_zonelists(NULL); 5447 5448 /* 5449 * Initialize the boot_pagesets that are going to be used 5450 * for bootstrapping processors. The real pagesets for 5451 * each zone will be allocated later when the per cpu 5452 * allocator is available. 5453 * 5454 * boot_pagesets are used also for bootstrapping offline 5455 * cpus if the system is already booted because the pagesets 5456 * are needed to initialize allocators on a specific cpu too. 5457 * F.e. the percpu allocator needs the page allocator which 5458 * needs the percpu allocator in order to allocate its pagesets 5459 * (a chicken-egg dilemma). 5460 */ 5461 for_each_possible_cpu(cpu) 5462 per_cpu_pages_init(&per_cpu(boot_pageset, cpu), &per_cpu(boot_zonestats, cpu)); 5463 5464 mminit_verify_zonelist(); 5465 cpuset_init_current_mems_allowed(); 5466 } 5467 5468 /* 5469 * unless system_state == SYSTEM_BOOTING. 5470 * 5471 * __ref due to call of __init annotated helper build_all_zonelists_init 5472 * [protected by SYSTEM_BOOTING]. 5473 */ 5474 void __ref build_all_zonelists(pg_data_t *pgdat) 5475 { 5476 unsigned long vm_total_pages; 5477 5478 if (system_state == SYSTEM_BOOTING) { 5479 build_all_zonelists_init(); 5480 } else { 5481 __build_all_zonelists(pgdat); 5482 /* cpuset refresh routine should be here */ 5483 } 5484 /* Get the number of free pages beyond high watermark in all zones. */ 5485 vm_total_pages = nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE)); 5486 /* 5487 * Disable grouping by mobility if the number of pages in the 5488 * system is too low to allow the mechanism to work. It would be 5489 * more accurate, but expensive to check per-zone. This check is 5490 * made on memory-hotadd so a system can start with mobility 5491 * disabled and enable it later 5492 */ 5493 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES)) 5494 page_group_by_mobility_disabled = 1; 5495 else 5496 page_group_by_mobility_disabled = 0; 5497 5498 pr_info("Built %u zonelists, mobility grouping %s. Total pages: %ld\n", 5499 nr_online_nodes, 5500 page_group_by_mobility_disabled ? "off" : "on", 5501 vm_total_pages); 5502 #ifdef CONFIG_NUMA 5503 pr_info("Policy zone: %s\n", zone_names[policy_zone]); 5504 #endif 5505 } 5506 5507 static int zone_batchsize(struct zone *zone) 5508 { 5509 #ifdef CONFIG_MMU 5510 int batch; 5511 5512 /* 5513 * The number of pages to batch allocate is either ~0.1% 5514 * of the zone or 1MB, whichever is smaller. The batch 5515 * size is striking a balance between allocation latency 5516 * and zone lock contention. 5517 */ 5518 batch = min(zone_managed_pages(zone) >> 10, SZ_1M / PAGE_SIZE); 5519 batch /= 4; /* We effectively *= 4 below */ 5520 if (batch < 1) 5521 batch = 1; 5522 5523 /* 5524 * Clamp the batch to a 2^n - 1 value. Having a power 5525 * of 2 value was found to be more likely to have 5526 * suboptimal cache aliasing properties in some cases. 5527 * 5528 * For example if 2 tasks are alternately allocating 5529 * batches of pages, one task can end up with a lot 5530 * of pages of one half of the possible page colors 5531 * and the other with pages of the other colors. 5532 */ 5533 batch = rounddown_pow_of_two(batch + batch/2) - 1; 5534 5535 return batch; 5536 5537 #else 5538 /* The deferral and batching of frees should be suppressed under NOMMU 5539 * conditions. 5540 * 5541 * The problem is that NOMMU needs to be able to allocate large chunks 5542 * of contiguous memory as there's no hardware page translation to 5543 * assemble apparent contiguous memory from discontiguous pages. 5544 * 5545 * Queueing large contiguous runs of pages for batching, however, 5546 * causes the pages to actually be freed in smaller chunks. As there 5547 * can be a significant delay between the individual batches being 5548 * recycled, this leads to the once large chunks of space being 5549 * fragmented and becoming unavailable for high-order allocations. 5550 */ 5551 return 0; 5552 #endif 5553 } 5554 5555 static int percpu_pagelist_high_fraction; 5556 static int zone_highsize(struct zone *zone, int batch, int cpu_online, 5557 int high_fraction) 5558 { 5559 #ifdef CONFIG_MMU 5560 int high; 5561 int nr_split_cpus; 5562 unsigned long total_pages; 5563 5564 if (!high_fraction) { 5565 /* 5566 * By default, the high value of the pcp is based on the zone 5567 * low watermark so that if they are full then background 5568 * reclaim will not be started prematurely. 5569 */ 5570 total_pages = low_wmark_pages(zone); 5571 } else { 5572 /* 5573 * If percpu_pagelist_high_fraction is configured, the high 5574 * value is based on a fraction of the managed pages in the 5575 * zone. 5576 */ 5577 total_pages = zone_managed_pages(zone) / high_fraction; 5578 } 5579 5580 /* 5581 * Split the high value across all online CPUs local to the zone. Note 5582 * that early in boot that CPUs may not be online yet and that during 5583 * CPU hotplug that the cpumask is not yet updated when a CPU is being 5584 * onlined. For memory nodes that have no CPUs, split the high value 5585 * across all online CPUs to mitigate the risk that reclaim is triggered 5586 * prematurely due to pages stored on pcp lists. 5587 */ 5588 nr_split_cpus = cpumask_weight(cpumask_of_node(zone_to_nid(zone))) + cpu_online; 5589 if (!nr_split_cpus) 5590 nr_split_cpus = num_online_cpus(); 5591 high = total_pages / nr_split_cpus; 5592 5593 /* 5594 * Ensure high is at least batch*4. The multiple is based on the 5595 * historical relationship between high and batch. 5596 */ 5597 high = max(high, batch << 2); 5598 5599 return high; 5600 #else 5601 return 0; 5602 #endif 5603 } 5604 5605 /* 5606 * pcp->high and pcp->batch values are related and generally batch is lower 5607 * than high. They are also related to pcp->count such that count is lower 5608 * than high, and as soon as it reaches high, the pcplist is flushed. 5609 * 5610 * However, guaranteeing these relations at all times would require e.g. write 5611 * barriers here but also careful usage of read barriers at the read side, and 5612 * thus be prone to error and bad for performance. Thus the update only prevents 5613 * store tearing. Any new users of pcp->batch, pcp->high_min and pcp->high_max 5614 * should ensure they can cope with those fields changing asynchronously, and 5615 * fully trust only the pcp->count field on the local CPU with interrupts 5616 * disabled. 5617 * 5618 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function 5619 * outside of boot time (or some other assurance that no concurrent updaters 5620 * exist). 5621 */ 5622 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high_min, 5623 unsigned long high_max, unsigned long batch) 5624 { 5625 WRITE_ONCE(pcp->batch, batch); 5626 WRITE_ONCE(pcp->high_min, high_min); 5627 WRITE_ONCE(pcp->high_max, high_max); 5628 } 5629 5630 static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats) 5631 { 5632 int pindex; 5633 5634 memset(pcp, 0, sizeof(*pcp)); 5635 memset(pzstats, 0, sizeof(*pzstats)); 5636 5637 spin_lock_init(&pcp->lock); 5638 for (pindex = 0; pindex < NR_PCP_LISTS; pindex++) 5639 INIT_LIST_HEAD(&pcp->lists[pindex]); 5640 5641 /* 5642 * Set batch and high values safe for a boot pageset. A true percpu 5643 * pageset's initialization will update them subsequently. Here we don't 5644 * need to be as careful as pageset_update() as nobody can access the 5645 * pageset yet. 5646 */ 5647 pcp->high_min = BOOT_PAGESET_HIGH; 5648 pcp->high_max = BOOT_PAGESET_HIGH; 5649 pcp->batch = BOOT_PAGESET_BATCH; 5650 pcp->free_count = 0; 5651 } 5652 5653 static void __zone_set_pageset_high_and_batch(struct zone *zone, unsigned long high_min, 5654 unsigned long high_max, unsigned long batch) 5655 { 5656 struct per_cpu_pages *pcp; 5657 int cpu; 5658 5659 for_each_possible_cpu(cpu) { 5660 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu); 5661 pageset_update(pcp, high_min, high_max, batch); 5662 } 5663 } 5664 5665 /* 5666 * Calculate and set new high and batch values for all per-cpu pagesets of a 5667 * zone based on the zone's size. 5668 */ 5669 static void zone_set_pageset_high_and_batch(struct zone *zone, int cpu_online) 5670 { 5671 int new_high_min, new_high_max, new_batch; 5672 5673 new_batch = max(1, zone_batchsize(zone)); 5674 if (percpu_pagelist_high_fraction) { 5675 new_high_min = zone_highsize(zone, new_batch, cpu_online, 5676 percpu_pagelist_high_fraction); 5677 /* 5678 * PCP high is tuned manually, disable auto-tuning via 5679 * setting high_min and high_max to the manual value. 5680 */ 5681 new_high_max = new_high_min; 5682 } else { 5683 new_high_min = zone_highsize(zone, new_batch, cpu_online, 0); 5684 new_high_max = zone_highsize(zone, new_batch, cpu_online, 5685 MIN_PERCPU_PAGELIST_HIGH_FRACTION); 5686 } 5687 5688 if (zone->pageset_high_min == new_high_min && 5689 zone->pageset_high_max == new_high_max && 5690 zone->pageset_batch == new_batch) 5691 return; 5692 5693 zone->pageset_high_min = new_high_min; 5694 zone->pageset_high_max = new_high_max; 5695 zone->pageset_batch = new_batch; 5696 5697 __zone_set_pageset_high_and_batch(zone, new_high_min, new_high_max, 5698 new_batch); 5699 } 5700 5701 void __meminit setup_zone_pageset(struct zone *zone) 5702 { 5703 int cpu; 5704 5705 /* Size may be 0 on !SMP && !NUMA */ 5706 if (sizeof(struct per_cpu_zonestat) > 0) 5707 zone->per_cpu_zonestats = alloc_percpu(struct per_cpu_zonestat); 5708 5709 zone->per_cpu_pageset = alloc_percpu(struct per_cpu_pages); 5710 for_each_possible_cpu(cpu) { 5711 struct per_cpu_pages *pcp; 5712 struct per_cpu_zonestat *pzstats; 5713 5714 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu); 5715 pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu); 5716 per_cpu_pages_init(pcp, pzstats); 5717 } 5718 5719 zone_set_pageset_high_and_batch(zone, 0); 5720 } 5721 5722 /* 5723 * The zone indicated has a new number of managed_pages; batch sizes and percpu 5724 * page high values need to be recalculated. 5725 */ 5726 static void zone_pcp_update(struct zone *zone, int cpu_online) 5727 { 5728 mutex_lock(&pcp_batch_high_lock); 5729 zone_set_pageset_high_and_batch(zone, cpu_online); 5730 mutex_unlock(&pcp_batch_high_lock); 5731 } 5732 5733 static void zone_pcp_update_cacheinfo(struct zone *zone, unsigned int cpu) 5734 { 5735 struct per_cpu_pages *pcp; 5736 struct cpu_cacheinfo *cci; 5737 5738 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu); 5739 cci = get_cpu_cacheinfo(cpu); 5740 /* 5741 * If data cache slice of CPU is large enough, "pcp->batch" 5742 * pages can be preserved in PCP before draining PCP for 5743 * consecutive high-order pages freeing without allocation. 5744 * This can reduce zone lock contention without hurting 5745 * cache-hot pages sharing. 5746 */ 5747 spin_lock(&pcp->lock); 5748 if ((cci->per_cpu_data_slice_size >> PAGE_SHIFT) > 3 * pcp->batch) 5749 pcp->flags |= PCPF_FREE_HIGH_BATCH; 5750 else 5751 pcp->flags &= ~PCPF_FREE_HIGH_BATCH; 5752 spin_unlock(&pcp->lock); 5753 } 5754 5755 void setup_pcp_cacheinfo(unsigned int cpu) 5756 { 5757 struct zone *zone; 5758 5759 for_each_populated_zone(zone) 5760 zone_pcp_update_cacheinfo(zone, cpu); 5761 } 5762 5763 /* 5764 * Allocate per cpu pagesets and initialize them. 5765 * Before this call only boot pagesets were available. 5766 */ 5767 void __init setup_per_cpu_pageset(void) 5768 { 5769 struct pglist_data *pgdat; 5770 struct zone *zone; 5771 int __maybe_unused cpu; 5772 5773 for_each_populated_zone(zone) 5774 setup_zone_pageset(zone); 5775 5776 #ifdef CONFIG_NUMA 5777 /* 5778 * Unpopulated zones continue using the boot pagesets. 5779 * The numa stats for these pagesets need to be reset. 5780 * Otherwise, they will end up skewing the stats of 5781 * the nodes these zones are associated with. 5782 */ 5783 for_each_possible_cpu(cpu) { 5784 struct per_cpu_zonestat *pzstats = &per_cpu(boot_zonestats, cpu); 5785 memset(pzstats->vm_numa_event, 0, 5786 sizeof(pzstats->vm_numa_event)); 5787 } 5788 #endif 5789 5790 for_each_online_pgdat(pgdat) 5791 pgdat->per_cpu_nodestats = 5792 alloc_percpu(struct per_cpu_nodestat); 5793 } 5794 5795 __meminit void zone_pcp_init(struct zone *zone) 5796 { 5797 /* 5798 * per cpu subsystem is not up at this point. The following code 5799 * relies on the ability of the linker to provide the 5800 * offset of a (static) per cpu variable into the per cpu area. 5801 */ 5802 zone->per_cpu_pageset = &boot_pageset; 5803 zone->per_cpu_zonestats = &boot_zonestats; 5804 zone->pageset_high_min = BOOT_PAGESET_HIGH; 5805 zone->pageset_high_max = BOOT_PAGESET_HIGH; 5806 zone->pageset_batch = BOOT_PAGESET_BATCH; 5807 5808 if (populated_zone(zone)) 5809 pr_debug(" %s zone: %lu pages, LIFO batch:%u\n", zone->name, 5810 zone->present_pages, zone_batchsize(zone)); 5811 } 5812 5813 void adjust_managed_page_count(struct page *page, long count) 5814 { 5815 atomic_long_add(count, &page_zone(page)->managed_pages); 5816 totalram_pages_add(count); 5817 } 5818 EXPORT_SYMBOL(adjust_managed_page_count); 5819 5820 unsigned long free_reserved_area(void *start, void *end, int poison, const char *s) 5821 { 5822 void *pos; 5823 unsigned long pages = 0; 5824 5825 start = (void *)PAGE_ALIGN((unsigned long)start); 5826 end = (void *)((unsigned long)end & PAGE_MASK); 5827 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) { 5828 struct page *page = virt_to_page(pos); 5829 void *direct_map_addr; 5830 5831 /* 5832 * 'direct_map_addr' might be different from 'pos' 5833 * because some architectures' virt_to_page() 5834 * work with aliases. Getting the direct map 5835 * address ensures that we get a _writeable_ 5836 * alias for the memset(). 5837 */ 5838 direct_map_addr = page_address(page); 5839 /* 5840 * Perform a kasan-unchecked memset() since this memory 5841 * has not been initialized. 5842 */ 5843 direct_map_addr = kasan_reset_tag(direct_map_addr); 5844 if ((unsigned int)poison <= 0xFF) 5845 memset(direct_map_addr, poison, PAGE_SIZE); 5846 5847 free_reserved_page(page); 5848 } 5849 5850 if (pages && s) 5851 pr_info("Freeing %s memory: %ldK\n", s, K(pages)); 5852 5853 return pages; 5854 } 5855 5856 void free_reserved_page(struct page *page) 5857 { 5858 clear_page_tag_ref(page); 5859 ClearPageReserved(page); 5860 init_page_count(page); 5861 __free_page(page); 5862 adjust_managed_page_count(page, 1); 5863 } 5864 EXPORT_SYMBOL(free_reserved_page); 5865 5866 static int page_alloc_cpu_dead(unsigned int cpu) 5867 { 5868 struct zone *zone; 5869 5870 lru_add_drain_cpu(cpu); 5871 mlock_drain_remote(cpu); 5872 drain_pages(cpu); 5873 5874 /* 5875 * Spill the event counters of the dead processor 5876 * into the current processors event counters. 5877 * This artificially elevates the count of the current 5878 * processor. 5879 */ 5880 vm_events_fold_cpu(cpu); 5881 5882 /* 5883 * Zero the differential counters of the dead processor 5884 * so that the vm statistics are consistent. 5885 * 5886 * This is only okay since the processor is dead and cannot 5887 * race with what we are doing. 5888 */ 5889 cpu_vm_stats_fold(cpu); 5890 5891 for_each_populated_zone(zone) 5892 zone_pcp_update(zone, 0); 5893 5894 return 0; 5895 } 5896 5897 static int page_alloc_cpu_online(unsigned int cpu) 5898 { 5899 struct zone *zone; 5900 5901 for_each_populated_zone(zone) 5902 zone_pcp_update(zone, 1); 5903 return 0; 5904 } 5905 5906 void __init page_alloc_init_cpuhp(void) 5907 { 5908 int ret; 5909 5910 ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC, 5911 "mm/page_alloc:pcp", 5912 page_alloc_cpu_online, 5913 page_alloc_cpu_dead); 5914 WARN_ON(ret < 0); 5915 } 5916 5917 /* 5918 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio 5919 * or min_free_kbytes changes. 5920 */ 5921 static void calculate_totalreserve_pages(void) 5922 { 5923 struct pglist_data *pgdat; 5924 unsigned long reserve_pages = 0; 5925 enum zone_type i, j; 5926 5927 for_each_online_pgdat(pgdat) { 5928 5929 pgdat->totalreserve_pages = 0; 5930 5931 for (i = 0; i < MAX_NR_ZONES; i++) { 5932 struct zone *zone = pgdat->node_zones + i; 5933 long max = 0; 5934 unsigned long managed_pages = zone_managed_pages(zone); 5935 5936 /* Find valid and maximum lowmem_reserve in the zone */ 5937 for (j = i; j < MAX_NR_ZONES; j++) { 5938 if (zone->lowmem_reserve[j] > max) 5939 max = zone->lowmem_reserve[j]; 5940 } 5941 5942 /* we treat the high watermark as reserved pages. */ 5943 max += high_wmark_pages(zone); 5944 5945 if (max > managed_pages) 5946 max = managed_pages; 5947 5948 pgdat->totalreserve_pages += max; 5949 5950 reserve_pages += max; 5951 } 5952 } 5953 totalreserve_pages = reserve_pages; 5954 } 5955 5956 /* 5957 * setup_per_zone_lowmem_reserve - called whenever 5958 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone 5959 * has a correct pages reserved value, so an adequate number of 5960 * pages are left in the zone after a successful __alloc_pages(). 5961 */ 5962 static void setup_per_zone_lowmem_reserve(void) 5963 { 5964 struct pglist_data *pgdat; 5965 enum zone_type i, j; 5966 5967 for_each_online_pgdat(pgdat) { 5968 for (i = 0; i < MAX_NR_ZONES - 1; i++) { 5969 struct zone *zone = &pgdat->node_zones[i]; 5970 int ratio = sysctl_lowmem_reserve_ratio[i]; 5971 bool clear = !ratio || !zone_managed_pages(zone); 5972 unsigned long managed_pages = 0; 5973 5974 for (j = i + 1; j < MAX_NR_ZONES; j++) { 5975 struct zone *upper_zone = &pgdat->node_zones[j]; 5976 bool empty = !zone_managed_pages(upper_zone); 5977 5978 managed_pages += zone_managed_pages(upper_zone); 5979 5980 if (clear || empty) 5981 zone->lowmem_reserve[j] = 0; 5982 else 5983 zone->lowmem_reserve[j] = managed_pages / ratio; 5984 } 5985 } 5986 } 5987 5988 /* update totalreserve_pages */ 5989 calculate_totalreserve_pages(); 5990 } 5991 5992 static void __setup_per_zone_wmarks(void) 5993 { 5994 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10); 5995 unsigned long lowmem_pages = 0; 5996 struct zone *zone; 5997 unsigned long flags; 5998 5999 /* Calculate total number of !ZONE_HIGHMEM and !ZONE_MOVABLE pages */ 6000 for_each_zone(zone) { 6001 if (!is_highmem(zone) && zone_idx(zone) != ZONE_MOVABLE) 6002 lowmem_pages += zone_managed_pages(zone); 6003 } 6004 6005 for_each_zone(zone) { 6006 u64 tmp; 6007 6008 spin_lock_irqsave(&zone->lock, flags); 6009 tmp = (u64)pages_min * zone_managed_pages(zone); 6010 tmp = div64_ul(tmp, lowmem_pages); 6011 if (is_highmem(zone) || zone_idx(zone) == ZONE_MOVABLE) { 6012 /* 6013 * __GFP_HIGH and PF_MEMALLOC allocations usually don't 6014 * need highmem and movable zones pages, so cap pages_min 6015 * to a small value here. 6016 * 6017 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN) 6018 * deltas control async page reclaim, and so should 6019 * not be capped for highmem and movable zones. 6020 */ 6021 unsigned long min_pages; 6022 6023 min_pages = zone_managed_pages(zone) / 1024; 6024 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL); 6025 zone->_watermark[WMARK_MIN] = min_pages; 6026 } else { 6027 /* 6028 * If it's a lowmem zone, reserve a number of pages 6029 * proportionate to the zone's size. 6030 */ 6031 zone->_watermark[WMARK_MIN] = tmp; 6032 } 6033 6034 /* 6035 * Set the kswapd watermarks distance according to the 6036 * scale factor in proportion to available memory, but 6037 * ensure a minimum size on small systems. 6038 */ 6039 tmp = max_t(u64, tmp >> 2, 6040 mult_frac(zone_managed_pages(zone), 6041 watermark_scale_factor, 10000)); 6042 6043 zone->watermark_boost = 0; 6044 zone->_watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp; 6045 zone->_watermark[WMARK_HIGH] = low_wmark_pages(zone) + tmp; 6046 zone->_watermark[WMARK_PROMO] = high_wmark_pages(zone) + tmp; 6047 6048 spin_unlock_irqrestore(&zone->lock, flags); 6049 } 6050 6051 /* update totalreserve_pages */ 6052 calculate_totalreserve_pages(); 6053 } 6054 6055 /** 6056 * setup_per_zone_wmarks - called when min_free_kbytes changes 6057 * or when memory is hot-{added|removed} 6058 * 6059 * Ensures that the watermark[min,low,high] values for each zone are set 6060 * correctly with respect to min_free_kbytes. 6061 */ 6062 void setup_per_zone_wmarks(void) 6063 { 6064 struct zone *zone; 6065 static DEFINE_SPINLOCK(lock); 6066 6067 spin_lock(&lock); 6068 __setup_per_zone_wmarks(); 6069 spin_unlock(&lock); 6070 6071 /* 6072 * The watermark size have changed so update the pcpu batch 6073 * and high limits or the limits may be inappropriate. 6074 */ 6075 for_each_zone(zone) 6076 zone_pcp_update(zone, 0); 6077 } 6078 6079 /* 6080 * Initialise min_free_kbytes. 6081 * 6082 * For small machines we want it small (128k min). For large machines 6083 * we want it large (256MB max). But it is not linear, because network 6084 * bandwidth does not increase linearly with machine size. We use 6085 * 6086 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy: 6087 * min_free_kbytes = sqrt(lowmem_kbytes * 16) 6088 * 6089 * which yields 6090 * 6091 * 16MB: 512k 6092 * 32MB: 724k 6093 * 64MB: 1024k 6094 * 128MB: 1448k 6095 * 256MB: 2048k 6096 * 512MB: 2896k 6097 * 1024MB: 4096k 6098 * 2048MB: 5792k 6099 * 4096MB: 8192k 6100 * 8192MB: 11584k 6101 * 16384MB: 16384k 6102 */ 6103 void calculate_min_free_kbytes(void) 6104 { 6105 unsigned long lowmem_kbytes; 6106 int new_min_free_kbytes; 6107 6108 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10); 6109 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16); 6110 6111 if (new_min_free_kbytes > user_min_free_kbytes) 6112 min_free_kbytes = clamp(new_min_free_kbytes, 128, 262144); 6113 else 6114 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n", 6115 new_min_free_kbytes, user_min_free_kbytes); 6116 6117 } 6118 6119 int __meminit init_per_zone_wmark_min(void) 6120 { 6121 calculate_min_free_kbytes(); 6122 setup_per_zone_wmarks(); 6123 refresh_zone_stat_thresholds(); 6124 setup_per_zone_lowmem_reserve(); 6125 6126 #ifdef CONFIG_NUMA 6127 setup_min_unmapped_ratio(); 6128 setup_min_slab_ratio(); 6129 #endif 6130 6131 khugepaged_min_free_kbytes_update(); 6132 6133 return 0; 6134 } 6135 postcore_initcall(init_per_zone_wmark_min) 6136 6137 /* 6138 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so 6139 * that we can call two helper functions whenever min_free_kbytes 6140 * changes. 6141 */ 6142 static int min_free_kbytes_sysctl_handler(const struct ctl_table *table, int write, 6143 void *buffer, size_t *length, loff_t *ppos) 6144 { 6145 int rc; 6146 6147 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 6148 if (rc) 6149 return rc; 6150 6151 if (write) { 6152 user_min_free_kbytes = min_free_kbytes; 6153 setup_per_zone_wmarks(); 6154 } 6155 return 0; 6156 } 6157 6158 static int watermark_scale_factor_sysctl_handler(const struct ctl_table *table, int write, 6159 void *buffer, size_t *length, loff_t *ppos) 6160 { 6161 int rc; 6162 6163 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 6164 if (rc) 6165 return rc; 6166 6167 if (write) 6168 setup_per_zone_wmarks(); 6169 6170 return 0; 6171 } 6172 6173 #ifdef CONFIG_NUMA 6174 static void setup_min_unmapped_ratio(void) 6175 { 6176 pg_data_t *pgdat; 6177 struct zone *zone; 6178 6179 for_each_online_pgdat(pgdat) 6180 pgdat->min_unmapped_pages = 0; 6181 6182 for_each_zone(zone) 6183 zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) * 6184 sysctl_min_unmapped_ratio) / 100; 6185 } 6186 6187 6188 static int sysctl_min_unmapped_ratio_sysctl_handler(const struct ctl_table *table, int write, 6189 void *buffer, size_t *length, loff_t *ppos) 6190 { 6191 int rc; 6192 6193 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 6194 if (rc) 6195 return rc; 6196 6197 setup_min_unmapped_ratio(); 6198 6199 return 0; 6200 } 6201 6202 static void setup_min_slab_ratio(void) 6203 { 6204 pg_data_t *pgdat; 6205 struct zone *zone; 6206 6207 for_each_online_pgdat(pgdat) 6208 pgdat->min_slab_pages = 0; 6209 6210 for_each_zone(zone) 6211 zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) * 6212 sysctl_min_slab_ratio) / 100; 6213 } 6214 6215 static int sysctl_min_slab_ratio_sysctl_handler(const struct ctl_table *table, int write, 6216 void *buffer, size_t *length, loff_t *ppos) 6217 { 6218 int rc; 6219 6220 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 6221 if (rc) 6222 return rc; 6223 6224 setup_min_slab_ratio(); 6225 6226 return 0; 6227 } 6228 #endif 6229 6230 /* 6231 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around 6232 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve() 6233 * whenever sysctl_lowmem_reserve_ratio changes. 6234 * 6235 * The reserve ratio obviously has absolutely no relation with the 6236 * minimum watermarks. The lowmem reserve ratio can only make sense 6237 * if in function of the boot time zone sizes. 6238 */ 6239 static int lowmem_reserve_ratio_sysctl_handler(const struct ctl_table *table, 6240 int write, void *buffer, size_t *length, loff_t *ppos) 6241 { 6242 int i; 6243 6244 proc_dointvec_minmax(table, write, buffer, length, ppos); 6245 6246 for (i = 0; i < MAX_NR_ZONES; i++) { 6247 if (sysctl_lowmem_reserve_ratio[i] < 1) 6248 sysctl_lowmem_reserve_ratio[i] = 0; 6249 } 6250 6251 setup_per_zone_lowmem_reserve(); 6252 return 0; 6253 } 6254 6255 /* 6256 * percpu_pagelist_high_fraction - changes the pcp->high for each zone on each 6257 * cpu. It is the fraction of total pages in each zone that a hot per cpu 6258 * pagelist can have before it gets flushed back to buddy allocator. 6259 */ 6260 static int percpu_pagelist_high_fraction_sysctl_handler(const struct ctl_table *table, 6261 int write, void *buffer, size_t *length, loff_t *ppos) 6262 { 6263 struct zone *zone; 6264 int old_percpu_pagelist_high_fraction; 6265 int ret; 6266 6267 mutex_lock(&pcp_batch_high_lock); 6268 old_percpu_pagelist_high_fraction = percpu_pagelist_high_fraction; 6269 6270 ret = proc_dointvec_minmax(table, write, buffer, length, ppos); 6271 if (!write || ret < 0) 6272 goto out; 6273 6274 /* Sanity checking to avoid pcp imbalance */ 6275 if (percpu_pagelist_high_fraction && 6276 percpu_pagelist_high_fraction < MIN_PERCPU_PAGELIST_HIGH_FRACTION) { 6277 percpu_pagelist_high_fraction = old_percpu_pagelist_high_fraction; 6278 ret = -EINVAL; 6279 goto out; 6280 } 6281 6282 /* No change? */ 6283 if (percpu_pagelist_high_fraction == old_percpu_pagelist_high_fraction) 6284 goto out; 6285 6286 for_each_populated_zone(zone) 6287 zone_set_pageset_high_and_batch(zone, 0); 6288 out: 6289 mutex_unlock(&pcp_batch_high_lock); 6290 return ret; 6291 } 6292 6293 static struct ctl_table page_alloc_sysctl_table[] = { 6294 { 6295 .procname = "min_free_kbytes", 6296 .data = &min_free_kbytes, 6297 .maxlen = sizeof(min_free_kbytes), 6298 .mode = 0644, 6299 .proc_handler = min_free_kbytes_sysctl_handler, 6300 .extra1 = SYSCTL_ZERO, 6301 }, 6302 { 6303 .procname = "watermark_boost_factor", 6304 .data = &watermark_boost_factor, 6305 .maxlen = sizeof(watermark_boost_factor), 6306 .mode = 0644, 6307 .proc_handler = proc_dointvec_minmax, 6308 .extra1 = SYSCTL_ZERO, 6309 }, 6310 { 6311 .procname = "watermark_scale_factor", 6312 .data = &watermark_scale_factor, 6313 .maxlen = sizeof(watermark_scale_factor), 6314 .mode = 0644, 6315 .proc_handler = watermark_scale_factor_sysctl_handler, 6316 .extra1 = SYSCTL_ONE, 6317 .extra2 = SYSCTL_THREE_THOUSAND, 6318 }, 6319 { 6320 .procname = "percpu_pagelist_high_fraction", 6321 .data = &percpu_pagelist_high_fraction, 6322 .maxlen = sizeof(percpu_pagelist_high_fraction), 6323 .mode = 0644, 6324 .proc_handler = percpu_pagelist_high_fraction_sysctl_handler, 6325 .extra1 = SYSCTL_ZERO, 6326 }, 6327 { 6328 .procname = "lowmem_reserve_ratio", 6329 .data = &sysctl_lowmem_reserve_ratio, 6330 .maxlen = sizeof(sysctl_lowmem_reserve_ratio), 6331 .mode = 0644, 6332 .proc_handler = lowmem_reserve_ratio_sysctl_handler, 6333 }, 6334 #ifdef CONFIG_NUMA 6335 { 6336 .procname = "numa_zonelist_order", 6337 .data = &numa_zonelist_order, 6338 .maxlen = NUMA_ZONELIST_ORDER_LEN, 6339 .mode = 0644, 6340 .proc_handler = numa_zonelist_order_handler, 6341 }, 6342 { 6343 .procname = "min_unmapped_ratio", 6344 .data = &sysctl_min_unmapped_ratio, 6345 .maxlen = sizeof(sysctl_min_unmapped_ratio), 6346 .mode = 0644, 6347 .proc_handler = sysctl_min_unmapped_ratio_sysctl_handler, 6348 .extra1 = SYSCTL_ZERO, 6349 .extra2 = SYSCTL_ONE_HUNDRED, 6350 }, 6351 { 6352 .procname = "min_slab_ratio", 6353 .data = &sysctl_min_slab_ratio, 6354 .maxlen = sizeof(sysctl_min_slab_ratio), 6355 .mode = 0644, 6356 .proc_handler = sysctl_min_slab_ratio_sysctl_handler, 6357 .extra1 = SYSCTL_ZERO, 6358 .extra2 = SYSCTL_ONE_HUNDRED, 6359 }, 6360 #endif 6361 }; 6362 6363 void __init page_alloc_sysctl_init(void) 6364 { 6365 register_sysctl_init("vm", page_alloc_sysctl_table); 6366 } 6367 6368 #ifdef CONFIG_CONTIG_ALLOC 6369 /* Usage: See admin-guide/dynamic-debug-howto.rst */ 6370 static void alloc_contig_dump_pages(struct list_head *page_list) 6371 { 6372 DEFINE_DYNAMIC_DEBUG_METADATA(descriptor, "migrate failure"); 6373 6374 if (DYNAMIC_DEBUG_BRANCH(descriptor)) { 6375 struct page *page; 6376 6377 dump_stack(); 6378 list_for_each_entry(page, page_list, lru) 6379 dump_page(page, "migration failure"); 6380 } 6381 } 6382 6383 /* 6384 * [start, end) must belong to a single zone. 6385 * @migratetype: using migratetype to filter the type of migration in 6386 * trace_mm_alloc_contig_migrate_range_info. 6387 */ 6388 int __alloc_contig_migrate_range(struct compact_control *cc, 6389 unsigned long start, unsigned long end, 6390 int migratetype) 6391 { 6392 /* This function is based on compact_zone() from compaction.c. */ 6393 unsigned int nr_reclaimed; 6394 unsigned long pfn = start; 6395 unsigned int tries = 0; 6396 int ret = 0; 6397 struct migration_target_control mtc = { 6398 .nid = zone_to_nid(cc->zone), 6399 .gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL, 6400 .reason = MR_CONTIG_RANGE, 6401 }; 6402 struct page *page; 6403 unsigned long total_mapped = 0; 6404 unsigned long total_migrated = 0; 6405 unsigned long total_reclaimed = 0; 6406 6407 lru_cache_disable(); 6408 6409 while (pfn < end || !list_empty(&cc->migratepages)) { 6410 if (fatal_signal_pending(current)) { 6411 ret = -EINTR; 6412 break; 6413 } 6414 6415 if (list_empty(&cc->migratepages)) { 6416 cc->nr_migratepages = 0; 6417 ret = isolate_migratepages_range(cc, pfn, end); 6418 if (ret && ret != -EAGAIN) 6419 break; 6420 pfn = cc->migrate_pfn; 6421 tries = 0; 6422 } else if (++tries == 5) { 6423 ret = -EBUSY; 6424 break; 6425 } 6426 6427 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone, 6428 &cc->migratepages); 6429 cc->nr_migratepages -= nr_reclaimed; 6430 6431 if (trace_mm_alloc_contig_migrate_range_info_enabled()) { 6432 total_reclaimed += nr_reclaimed; 6433 list_for_each_entry(page, &cc->migratepages, lru) { 6434 struct folio *folio = page_folio(page); 6435 6436 total_mapped += folio_mapped(folio) * 6437 folio_nr_pages(folio); 6438 } 6439 } 6440 6441 ret = migrate_pages(&cc->migratepages, alloc_migration_target, 6442 NULL, (unsigned long)&mtc, cc->mode, MR_CONTIG_RANGE, NULL); 6443 6444 if (trace_mm_alloc_contig_migrate_range_info_enabled() && !ret) 6445 total_migrated += cc->nr_migratepages; 6446 6447 /* 6448 * On -ENOMEM, migrate_pages() bails out right away. It is pointless 6449 * to retry again over this error, so do the same here. 6450 */ 6451 if (ret == -ENOMEM) 6452 break; 6453 } 6454 6455 lru_cache_enable(); 6456 if (ret < 0) { 6457 if (!(cc->gfp_mask & __GFP_NOWARN) && ret == -EBUSY) 6458 alloc_contig_dump_pages(&cc->migratepages); 6459 putback_movable_pages(&cc->migratepages); 6460 } 6461 6462 trace_mm_alloc_contig_migrate_range_info(start, end, migratetype, 6463 total_migrated, 6464 total_reclaimed, 6465 total_mapped); 6466 return (ret < 0) ? ret : 0; 6467 } 6468 6469 static void split_free_pages(struct list_head *list) 6470 { 6471 int order; 6472 6473 for (order = 0; order < NR_PAGE_ORDERS; order++) { 6474 struct page *page, *next; 6475 int nr_pages = 1 << order; 6476 6477 list_for_each_entry_safe(page, next, &list[order], lru) { 6478 int i; 6479 6480 post_alloc_hook(page, order, __GFP_MOVABLE); 6481 if (!order) 6482 continue; 6483 6484 split_page(page, order); 6485 6486 /* Add all subpages to the order-0 head, in sequence. */ 6487 list_del(&page->lru); 6488 for (i = 0; i < nr_pages; i++) 6489 list_add_tail(&page[i].lru, &list[0]); 6490 } 6491 } 6492 } 6493 6494 /** 6495 * alloc_contig_range() -- tries to allocate given range of pages 6496 * @start: start PFN to allocate 6497 * @end: one-past-the-last PFN to allocate 6498 * @migratetype: migratetype of the underlying pageblocks (either 6499 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks 6500 * in range must have the same migratetype and it must 6501 * be either of the two. 6502 * @gfp_mask: GFP mask to use during compaction 6503 * 6504 * The PFN range does not have to be pageblock aligned. The PFN range must 6505 * belong to a single zone. 6506 * 6507 * The first thing this routine does is attempt to MIGRATE_ISOLATE all 6508 * pageblocks in the range. Once isolated, the pageblocks should not 6509 * be modified by others. 6510 * 6511 * Return: zero on success or negative error code. On success all 6512 * pages which PFN is in [start, end) are allocated for the caller and 6513 * need to be freed with free_contig_range(). 6514 */ 6515 int alloc_contig_range_noprof(unsigned long start, unsigned long end, 6516 unsigned migratetype, gfp_t gfp_mask) 6517 { 6518 unsigned long outer_start, outer_end; 6519 int ret = 0; 6520 6521 struct compact_control cc = { 6522 .nr_migratepages = 0, 6523 .order = -1, 6524 .zone = page_zone(pfn_to_page(start)), 6525 .mode = MIGRATE_SYNC, 6526 .ignore_skip_hint = true, 6527 .no_set_skip_hint = true, 6528 .gfp_mask = current_gfp_context(gfp_mask), 6529 .alloc_contig = true, 6530 }; 6531 INIT_LIST_HEAD(&cc.migratepages); 6532 6533 /* 6534 * What we do here is we mark all pageblocks in range as 6535 * MIGRATE_ISOLATE. Because pageblock and max order pages may 6536 * have different sizes, and due to the way page allocator 6537 * work, start_isolate_page_range() has special handlings for this. 6538 * 6539 * Once the pageblocks are marked as MIGRATE_ISOLATE, we 6540 * migrate the pages from an unaligned range (ie. pages that 6541 * we are interested in). This will put all the pages in 6542 * range back to page allocator as MIGRATE_ISOLATE. 6543 * 6544 * When this is done, we take the pages in range from page 6545 * allocator removing them from the buddy system. This way 6546 * page allocator will never consider using them. 6547 * 6548 * This lets us mark the pageblocks back as 6549 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the 6550 * aligned range but not in the unaligned, original range are 6551 * put back to page allocator so that buddy can use them. 6552 */ 6553 6554 ret = start_isolate_page_range(start, end, migratetype, 0, gfp_mask); 6555 if (ret) 6556 goto done; 6557 6558 drain_all_pages(cc.zone); 6559 6560 /* 6561 * In case of -EBUSY, we'd like to know which page causes problem. 6562 * So, just fall through. test_pages_isolated() has a tracepoint 6563 * which will report the busy page. 6564 * 6565 * It is possible that busy pages could become available before 6566 * the call to test_pages_isolated, and the range will actually be 6567 * allocated. So, if we fall through be sure to clear ret so that 6568 * -EBUSY is not accidentally used or returned to caller. 6569 */ 6570 ret = __alloc_contig_migrate_range(&cc, start, end, migratetype); 6571 if (ret && ret != -EBUSY) 6572 goto done; 6573 ret = 0; 6574 6575 /* 6576 * Pages from [start, end) are within a pageblock_nr_pages 6577 * aligned blocks that are marked as MIGRATE_ISOLATE. What's 6578 * more, all pages in [start, end) are free in page allocator. 6579 * What we are going to do is to allocate all pages from 6580 * [start, end) (that is remove them from page allocator). 6581 * 6582 * The only problem is that pages at the beginning and at the 6583 * end of interesting range may be not aligned with pages that 6584 * page allocator holds, ie. they can be part of higher order 6585 * pages. Because of this, we reserve the bigger range and 6586 * once this is done free the pages we are not interested in. 6587 * 6588 * We don't have to hold zone->lock here because the pages are 6589 * isolated thus they won't get removed from buddy. 6590 */ 6591 outer_start = find_large_buddy(start); 6592 6593 /* Make sure the range is really isolated. */ 6594 if (test_pages_isolated(outer_start, end, 0)) { 6595 ret = -EBUSY; 6596 goto done; 6597 } 6598 6599 /* Grab isolated pages from freelists. */ 6600 outer_end = isolate_freepages_range(&cc, outer_start, end); 6601 if (!outer_end) { 6602 ret = -EBUSY; 6603 goto done; 6604 } 6605 6606 if (!(gfp_mask & __GFP_COMP)) { 6607 split_free_pages(cc.freepages); 6608 6609 /* Free head and tail (if any) */ 6610 if (start != outer_start) 6611 free_contig_range(outer_start, start - outer_start); 6612 if (end != outer_end) 6613 free_contig_range(end, outer_end - end); 6614 } else if (start == outer_start && end == outer_end && is_power_of_2(end - start)) { 6615 struct page *head = pfn_to_page(start); 6616 int order = ilog2(end - start); 6617 6618 check_new_pages(head, order); 6619 prep_new_page(head, order, gfp_mask, 0); 6620 } else { 6621 ret = -EINVAL; 6622 WARN(true, "PFN range: requested [%lu, %lu), allocated [%lu, %lu)\n", 6623 start, end, outer_start, outer_end); 6624 } 6625 done: 6626 undo_isolate_page_range(start, end, migratetype); 6627 return ret; 6628 } 6629 EXPORT_SYMBOL(alloc_contig_range_noprof); 6630 6631 static int __alloc_contig_pages(unsigned long start_pfn, 6632 unsigned long nr_pages, gfp_t gfp_mask) 6633 { 6634 unsigned long end_pfn = start_pfn + nr_pages; 6635 6636 return alloc_contig_range_noprof(start_pfn, end_pfn, MIGRATE_MOVABLE, 6637 gfp_mask); 6638 } 6639 6640 static bool pfn_range_valid_contig(struct zone *z, unsigned long start_pfn, 6641 unsigned long nr_pages) 6642 { 6643 unsigned long i, end_pfn = start_pfn + nr_pages; 6644 struct page *page; 6645 6646 for (i = start_pfn; i < end_pfn; i++) { 6647 page = pfn_to_online_page(i); 6648 if (!page) 6649 return false; 6650 6651 if (page_zone(page) != z) 6652 return false; 6653 6654 if (PageReserved(page)) 6655 return false; 6656 6657 if (PageHuge(page)) 6658 return false; 6659 } 6660 return true; 6661 } 6662 6663 static bool zone_spans_last_pfn(const struct zone *zone, 6664 unsigned long start_pfn, unsigned long nr_pages) 6665 { 6666 unsigned long last_pfn = start_pfn + nr_pages - 1; 6667 6668 return zone_spans_pfn(zone, last_pfn); 6669 } 6670 6671 /** 6672 * alloc_contig_pages() -- tries to find and allocate contiguous range of pages 6673 * @nr_pages: Number of contiguous pages to allocate 6674 * @gfp_mask: GFP mask to limit search and used during compaction 6675 * @nid: Target node 6676 * @nodemask: Mask for other possible nodes 6677 * 6678 * This routine is a wrapper around alloc_contig_range(). It scans over zones 6679 * on an applicable zonelist to find a contiguous pfn range which can then be 6680 * tried for allocation with alloc_contig_range(). This routine is intended 6681 * for allocation requests which can not be fulfilled with the buddy allocator. 6682 * 6683 * The allocated memory is always aligned to a page boundary. If nr_pages is a 6684 * power of two, then allocated range is also guaranteed to be aligned to same 6685 * nr_pages (e.g. 1GB request would be aligned to 1GB). 6686 * 6687 * Allocated pages can be freed with free_contig_range() or by manually calling 6688 * __free_page() on each allocated page. 6689 * 6690 * Return: pointer to contiguous pages on success, or NULL if not successful. 6691 */ 6692 struct page *alloc_contig_pages_noprof(unsigned long nr_pages, gfp_t gfp_mask, 6693 int nid, nodemask_t *nodemask) 6694 { 6695 unsigned long ret, pfn, flags; 6696 struct zonelist *zonelist; 6697 struct zone *zone; 6698 struct zoneref *z; 6699 6700 zonelist = node_zonelist(nid, gfp_mask); 6701 for_each_zone_zonelist_nodemask(zone, z, zonelist, 6702 gfp_zone(gfp_mask), nodemask) { 6703 spin_lock_irqsave(&zone->lock, flags); 6704 6705 pfn = ALIGN(zone->zone_start_pfn, nr_pages); 6706 while (zone_spans_last_pfn(zone, pfn, nr_pages)) { 6707 if (pfn_range_valid_contig(zone, pfn, nr_pages)) { 6708 /* 6709 * We release the zone lock here because 6710 * alloc_contig_range() will also lock the zone 6711 * at some point. If there's an allocation 6712 * spinning on this lock, it may win the race 6713 * and cause alloc_contig_range() to fail... 6714 */ 6715 spin_unlock_irqrestore(&zone->lock, flags); 6716 ret = __alloc_contig_pages(pfn, nr_pages, 6717 gfp_mask); 6718 if (!ret) 6719 return pfn_to_page(pfn); 6720 spin_lock_irqsave(&zone->lock, flags); 6721 } 6722 pfn += nr_pages; 6723 } 6724 spin_unlock_irqrestore(&zone->lock, flags); 6725 } 6726 return NULL; 6727 } 6728 #endif /* CONFIG_CONTIG_ALLOC */ 6729 6730 void free_contig_range(unsigned long pfn, unsigned long nr_pages) 6731 { 6732 unsigned long count = 0; 6733 struct folio *folio = pfn_folio(pfn); 6734 6735 if (folio_test_large(folio)) { 6736 int expected = folio_nr_pages(folio); 6737 6738 if (nr_pages == expected) 6739 folio_put(folio); 6740 else 6741 WARN(true, "PFN %lu: nr_pages %lu != expected %d\n", 6742 pfn, nr_pages, expected); 6743 return; 6744 } 6745 6746 for (; nr_pages--; pfn++) { 6747 struct page *page = pfn_to_page(pfn); 6748 6749 count += page_count(page) != 1; 6750 __free_page(page); 6751 } 6752 WARN(count != 0, "%lu pages are still in use!\n", count); 6753 } 6754 EXPORT_SYMBOL(free_contig_range); 6755 6756 /* 6757 * Effectively disable pcplists for the zone by setting the high limit to 0 6758 * and draining all cpus. A concurrent page freeing on another CPU that's about 6759 * to put the page on pcplist will either finish before the drain and the page 6760 * will be drained, or observe the new high limit and skip the pcplist. 6761 * 6762 * Must be paired with a call to zone_pcp_enable(). 6763 */ 6764 void zone_pcp_disable(struct zone *zone) 6765 { 6766 mutex_lock(&pcp_batch_high_lock); 6767 __zone_set_pageset_high_and_batch(zone, 0, 0, 1); 6768 __drain_all_pages(zone, true); 6769 } 6770 6771 void zone_pcp_enable(struct zone *zone) 6772 { 6773 __zone_set_pageset_high_and_batch(zone, zone->pageset_high_min, 6774 zone->pageset_high_max, zone->pageset_batch); 6775 mutex_unlock(&pcp_batch_high_lock); 6776 } 6777 6778 void zone_pcp_reset(struct zone *zone) 6779 { 6780 int cpu; 6781 struct per_cpu_zonestat *pzstats; 6782 6783 if (zone->per_cpu_pageset != &boot_pageset) { 6784 for_each_online_cpu(cpu) { 6785 pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu); 6786 drain_zonestat(zone, pzstats); 6787 } 6788 free_percpu(zone->per_cpu_pageset); 6789 zone->per_cpu_pageset = &boot_pageset; 6790 if (zone->per_cpu_zonestats != &boot_zonestats) { 6791 free_percpu(zone->per_cpu_zonestats); 6792 zone->per_cpu_zonestats = &boot_zonestats; 6793 } 6794 } 6795 } 6796 6797 #ifdef CONFIG_MEMORY_HOTREMOVE 6798 /* 6799 * All pages in the range must be in a single zone, must not contain holes, 6800 * must span full sections, and must be isolated before calling this function. 6801 * 6802 * Returns the number of managed (non-PageOffline()) pages in the range: the 6803 * number of pages for which memory offlining code must adjust managed page 6804 * counters using adjust_managed_page_count(). 6805 */ 6806 unsigned long __offline_isolated_pages(unsigned long start_pfn, 6807 unsigned long end_pfn) 6808 { 6809 unsigned long already_offline = 0, flags; 6810 unsigned long pfn = start_pfn; 6811 struct page *page; 6812 struct zone *zone; 6813 unsigned int order; 6814 6815 offline_mem_sections(pfn, end_pfn); 6816 zone = page_zone(pfn_to_page(pfn)); 6817 spin_lock_irqsave(&zone->lock, flags); 6818 while (pfn < end_pfn) { 6819 page = pfn_to_page(pfn); 6820 /* 6821 * The HWPoisoned page may be not in buddy system, and 6822 * page_count() is not 0. 6823 */ 6824 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) { 6825 pfn++; 6826 continue; 6827 } 6828 /* 6829 * At this point all remaining PageOffline() pages have a 6830 * reference count of 0 and can simply be skipped. 6831 */ 6832 if (PageOffline(page)) { 6833 BUG_ON(page_count(page)); 6834 BUG_ON(PageBuddy(page)); 6835 already_offline++; 6836 pfn++; 6837 continue; 6838 } 6839 6840 BUG_ON(page_count(page)); 6841 BUG_ON(!PageBuddy(page)); 6842 VM_WARN_ON(get_pageblock_migratetype(page) != MIGRATE_ISOLATE); 6843 order = buddy_order(page); 6844 del_page_from_free_list(page, zone, order, MIGRATE_ISOLATE); 6845 pfn += (1 << order); 6846 } 6847 spin_unlock_irqrestore(&zone->lock, flags); 6848 6849 return end_pfn - start_pfn - already_offline; 6850 } 6851 #endif 6852 6853 /* 6854 * This function returns a stable result only if called under zone lock. 6855 */ 6856 bool is_free_buddy_page(const struct page *page) 6857 { 6858 unsigned long pfn = page_to_pfn(page); 6859 unsigned int order; 6860 6861 for (order = 0; order < NR_PAGE_ORDERS; order++) { 6862 const struct page *head = page - (pfn & ((1 << order) - 1)); 6863 6864 if (PageBuddy(head) && 6865 buddy_order_unsafe(head) >= order) 6866 break; 6867 } 6868 6869 return order <= MAX_PAGE_ORDER; 6870 } 6871 EXPORT_SYMBOL(is_free_buddy_page); 6872 6873 #ifdef CONFIG_MEMORY_FAILURE 6874 static inline void add_to_free_list(struct page *page, struct zone *zone, 6875 unsigned int order, int migratetype, 6876 bool tail) 6877 { 6878 __add_to_free_list(page, zone, order, migratetype, tail); 6879 account_freepages(zone, 1 << order, migratetype); 6880 } 6881 6882 /* 6883 * Break down a higher-order page in sub-pages, and keep our target out of 6884 * buddy allocator. 6885 */ 6886 static void break_down_buddy_pages(struct zone *zone, struct page *page, 6887 struct page *target, int low, int high, 6888 int migratetype) 6889 { 6890 unsigned long size = 1 << high; 6891 struct page *current_buddy; 6892 6893 while (high > low) { 6894 high--; 6895 size >>= 1; 6896 6897 if (target >= &page[size]) { 6898 current_buddy = page; 6899 page = page + size; 6900 } else { 6901 current_buddy = page + size; 6902 } 6903 6904 if (set_page_guard(zone, current_buddy, high)) 6905 continue; 6906 6907 add_to_free_list(current_buddy, zone, high, migratetype, false); 6908 set_buddy_order(current_buddy, high); 6909 } 6910 } 6911 6912 /* 6913 * Take a page that will be marked as poisoned off the buddy allocator. 6914 */ 6915 bool take_page_off_buddy(struct page *page) 6916 { 6917 struct zone *zone = page_zone(page); 6918 unsigned long pfn = page_to_pfn(page); 6919 unsigned long flags; 6920 unsigned int order; 6921 bool ret = false; 6922 6923 spin_lock_irqsave(&zone->lock, flags); 6924 for (order = 0; order < NR_PAGE_ORDERS; order++) { 6925 struct page *page_head = page - (pfn & ((1 << order) - 1)); 6926 int page_order = buddy_order(page_head); 6927 6928 if (PageBuddy(page_head) && page_order >= order) { 6929 unsigned long pfn_head = page_to_pfn(page_head); 6930 int migratetype = get_pfnblock_migratetype(page_head, 6931 pfn_head); 6932 6933 del_page_from_free_list(page_head, zone, page_order, 6934 migratetype); 6935 break_down_buddy_pages(zone, page_head, page, 0, 6936 page_order, migratetype); 6937 SetPageHWPoisonTakenOff(page); 6938 ret = true; 6939 break; 6940 } 6941 if (page_count(page_head) > 0) 6942 break; 6943 } 6944 spin_unlock_irqrestore(&zone->lock, flags); 6945 return ret; 6946 } 6947 6948 /* 6949 * Cancel takeoff done by take_page_off_buddy(). 6950 */ 6951 bool put_page_back_buddy(struct page *page) 6952 { 6953 struct zone *zone = page_zone(page); 6954 unsigned long flags; 6955 bool ret = false; 6956 6957 spin_lock_irqsave(&zone->lock, flags); 6958 if (put_page_testzero(page)) { 6959 unsigned long pfn = page_to_pfn(page); 6960 int migratetype = get_pfnblock_migratetype(page, pfn); 6961 6962 ClearPageHWPoisonTakenOff(page); 6963 __free_one_page(page, pfn, zone, 0, migratetype, FPI_NONE); 6964 if (TestClearPageHWPoison(page)) { 6965 ret = true; 6966 } 6967 } 6968 spin_unlock_irqrestore(&zone->lock, flags); 6969 6970 return ret; 6971 } 6972 #endif 6973 6974 #ifdef CONFIG_ZONE_DMA 6975 bool has_managed_dma(void) 6976 { 6977 struct pglist_data *pgdat; 6978 6979 for_each_online_pgdat(pgdat) { 6980 struct zone *zone = &pgdat->node_zones[ZONE_DMA]; 6981 6982 if (managed_zone(zone)) 6983 return true; 6984 } 6985 return false; 6986 } 6987 #endif /* CONFIG_ZONE_DMA */ 6988 6989 #ifdef CONFIG_UNACCEPTED_MEMORY 6990 6991 /* Counts number of zones with unaccepted pages. */ 6992 static DEFINE_STATIC_KEY_FALSE(zones_with_unaccepted_pages); 6993 6994 static bool lazy_accept = true; 6995 6996 static int __init accept_memory_parse(char *p) 6997 { 6998 if (!strcmp(p, "lazy")) { 6999 lazy_accept = true; 7000 return 0; 7001 } else if (!strcmp(p, "eager")) { 7002 lazy_accept = false; 7003 return 0; 7004 } else { 7005 return -EINVAL; 7006 } 7007 } 7008 early_param("accept_memory", accept_memory_parse); 7009 7010 static bool page_contains_unaccepted(struct page *page, unsigned int order) 7011 { 7012 phys_addr_t start = page_to_phys(page); 7013 7014 return range_contains_unaccepted_memory(start, PAGE_SIZE << order); 7015 } 7016 7017 static void __accept_page(struct zone *zone, unsigned long *flags, 7018 struct page *page) 7019 { 7020 bool last; 7021 7022 list_del(&page->lru); 7023 last = list_empty(&zone->unaccepted_pages); 7024 7025 account_freepages(zone, -MAX_ORDER_NR_PAGES, MIGRATE_MOVABLE); 7026 __mod_zone_page_state(zone, NR_UNACCEPTED, -MAX_ORDER_NR_PAGES); 7027 __ClearPageUnaccepted(page); 7028 spin_unlock_irqrestore(&zone->lock, *flags); 7029 7030 accept_memory(page_to_phys(page), PAGE_SIZE << MAX_PAGE_ORDER); 7031 7032 __free_pages_ok(page, MAX_PAGE_ORDER, FPI_TO_TAIL); 7033 7034 if (last) 7035 static_branch_dec(&zones_with_unaccepted_pages); 7036 } 7037 7038 void accept_page(struct page *page) 7039 { 7040 struct zone *zone = page_zone(page); 7041 unsigned long flags; 7042 7043 spin_lock_irqsave(&zone->lock, flags); 7044 if (!PageUnaccepted(page)) { 7045 spin_unlock_irqrestore(&zone->lock, flags); 7046 return; 7047 } 7048 7049 /* Unlocks zone->lock */ 7050 __accept_page(zone, &flags, page); 7051 } 7052 7053 static bool try_to_accept_memory_one(struct zone *zone) 7054 { 7055 unsigned long flags; 7056 struct page *page; 7057 7058 spin_lock_irqsave(&zone->lock, flags); 7059 page = list_first_entry_or_null(&zone->unaccepted_pages, 7060 struct page, lru); 7061 if (!page) { 7062 spin_unlock_irqrestore(&zone->lock, flags); 7063 return false; 7064 } 7065 7066 /* Unlocks zone->lock */ 7067 __accept_page(zone, &flags, page); 7068 7069 return true; 7070 } 7071 7072 static inline bool has_unaccepted_memory(void) 7073 { 7074 return static_branch_unlikely(&zones_with_unaccepted_pages); 7075 } 7076 7077 static bool cond_accept_memory(struct zone *zone, unsigned int order) 7078 { 7079 long to_accept; 7080 bool ret = false; 7081 7082 if (!has_unaccepted_memory()) 7083 return false; 7084 7085 if (list_empty(&zone->unaccepted_pages)) 7086 return false; 7087 7088 /* How much to accept to get to promo watermark? */ 7089 to_accept = promo_wmark_pages(zone) - 7090 (zone_page_state(zone, NR_FREE_PAGES) - 7091 __zone_watermark_unusable_free(zone, order, 0) - 7092 zone_page_state(zone, NR_UNACCEPTED)); 7093 7094 while (to_accept > 0) { 7095 if (!try_to_accept_memory_one(zone)) 7096 break; 7097 ret = true; 7098 to_accept -= MAX_ORDER_NR_PAGES; 7099 } 7100 7101 return ret; 7102 } 7103 7104 static bool __free_unaccepted(struct page *page) 7105 { 7106 struct zone *zone = page_zone(page); 7107 unsigned long flags; 7108 bool first = false; 7109 7110 if (!lazy_accept) 7111 return false; 7112 7113 spin_lock_irqsave(&zone->lock, flags); 7114 first = list_empty(&zone->unaccepted_pages); 7115 list_add_tail(&page->lru, &zone->unaccepted_pages); 7116 account_freepages(zone, MAX_ORDER_NR_PAGES, MIGRATE_MOVABLE); 7117 __mod_zone_page_state(zone, NR_UNACCEPTED, MAX_ORDER_NR_PAGES); 7118 __SetPageUnaccepted(page); 7119 spin_unlock_irqrestore(&zone->lock, flags); 7120 7121 if (first) 7122 static_branch_inc(&zones_with_unaccepted_pages); 7123 7124 return true; 7125 } 7126 7127 #else 7128 7129 static bool page_contains_unaccepted(struct page *page, unsigned int order) 7130 { 7131 return false; 7132 } 7133 7134 static bool cond_accept_memory(struct zone *zone, unsigned int order) 7135 { 7136 return false; 7137 } 7138 7139 static bool __free_unaccepted(struct page *page) 7140 { 7141 BUILD_BUG(); 7142 return false; 7143 } 7144 7145 #endif /* CONFIG_UNACCEPTED_MEMORY */ 7146