xref: /linux/mm/page_alloc.c (revision c532de5a67a70f8533d495f8f2aaa9a0491c3ad0)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/page_alloc.c
4  *
5  *  Manages the free list, the system allocates free pages here.
6  *  Note that kmalloc() lives in slab.c
7  *
8  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
9  *  Swap reorganised 29.12.95, Stephen Tweedie
10  *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
11  *  Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
12  *  Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
13  *  Zone balancing, Kanoj Sarcar, SGI, Jan 2000
14  *  Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
15  *          (lots of bits borrowed from Ingo Molnar & Andrew Morton)
16  */
17 
18 #include <linux/stddef.h>
19 #include <linux/mm.h>
20 #include <linux/highmem.h>
21 #include <linux/interrupt.h>
22 #include <linux/jiffies.h>
23 #include <linux/compiler.h>
24 #include <linux/kernel.h>
25 #include <linux/kasan.h>
26 #include <linux/kmsan.h>
27 #include <linux/module.h>
28 #include <linux/suspend.h>
29 #include <linux/ratelimit.h>
30 #include <linux/oom.h>
31 #include <linux/topology.h>
32 #include <linux/sysctl.h>
33 #include <linux/cpu.h>
34 #include <linux/cpuset.h>
35 #include <linux/pagevec.h>
36 #include <linux/memory_hotplug.h>
37 #include <linux/nodemask.h>
38 #include <linux/vmstat.h>
39 #include <linux/fault-inject.h>
40 #include <linux/compaction.h>
41 #include <trace/events/kmem.h>
42 #include <trace/events/oom.h>
43 #include <linux/prefetch.h>
44 #include <linux/mm_inline.h>
45 #include <linux/mmu_notifier.h>
46 #include <linux/migrate.h>
47 #include <linux/sched/mm.h>
48 #include <linux/page_owner.h>
49 #include <linux/page_table_check.h>
50 #include <linux/memcontrol.h>
51 #include <linux/ftrace.h>
52 #include <linux/lockdep.h>
53 #include <linux/psi.h>
54 #include <linux/khugepaged.h>
55 #include <linux/delayacct.h>
56 #include <linux/cacheinfo.h>
57 #include <linux/pgalloc_tag.h>
58 #include <asm/div64.h>
59 #include "internal.h"
60 #include "shuffle.h"
61 #include "page_reporting.h"
62 
63 /* Free Page Internal flags: for internal, non-pcp variants of free_pages(). */
64 typedef int __bitwise fpi_t;
65 
66 /* No special request */
67 #define FPI_NONE		((__force fpi_t)0)
68 
69 /*
70  * Skip free page reporting notification for the (possibly merged) page.
71  * This does not hinder free page reporting from grabbing the page,
72  * reporting it and marking it "reported" -  it only skips notifying
73  * the free page reporting infrastructure about a newly freed page. For
74  * example, used when temporarily pulling a page from a freelist and
75  * putting it back unmodified.
76  */
77 #define FPI_SKIP_REPORT_NOTIFY	((__force fpi_t)BIT(0))
78 
79 /*
80  * Place the (possibly merged) page to the tail of the freelist. Will ignore
81  * page shuffling (relevant code - e.g., memory onlining - is expected to
82  * shuffle the whole zone).
83  *
84  * Note: No code should rely on this flag for correctness - it's purely
85  *       to allow for optimizations when handing back either fresh pages
86  *       (memory onlining) or untouched pages (page isolation, free page
87  *       reporting).
88  */
89 #define FPI_TO_TAIL		((__force fpi_t)BIT(1))
90 
91 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
92 static DEFINE_MUTEX(pcp_batch_high_lock);
93 #define MIN_PERCPU_PAGELIST_HIGH_FRACTION (8)
94 
95 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT_RT)
96 /*
97  * On SMP, spin_trylock is sufficient protection.
98  * On PREEMPT_RT, spin_trylock is equivalent on both SMP and UP.
99  */
100 #define pcp_trylock_prepare(flags)	do { } while (0)
101 #define pcp_trylock_finish(flag)	do { } while (0)
102 #else
103 
104 /* UP spin_trylock always succeeds so disable IRQs to prevent re-entrancy. */
105 #define pcp_trylock_prepare(flags)	local_irq_save(flags)
106 #define pcp_trylock_finish(flags)	local_irq_restore(flags)
107 #endif
108 
109 /*
110  * Locking a pcp requires a PCP lookup followed by a spinlock. To avoid
111  * a migration causing the wrong PCP to be locked and remote memory being
112  * potentially allocated, pin the task to the CPU for the lookup+lock.
113  * preempt_disable is used on !RT because it is faster than migrate_disable.
114  * migrate_disable is used on RT because otherwise RT spinlock usage is
115  * interfered with and a high priority task cannot preempt the allocator.
116  */
117 #ifndef CONFIG_PREEMPT_RT
118 #define pcpu_task_pin()		preempt_disable()
119 #define pcpu_task_unpin()	preempt_enable()
120 #else
121 #define pcpu_task_pin()		migrate_disable()
122 #define pcpu_task_unpin()	migrate_enable()
123 #endif
124 
125 /*
126  * Generic helper to lookup and a per-cpu variable with an embedded spinlock.
127  * Return value should be used with equivalent unlock helper.
128  */
129 #define pcpu_spin_lock(type, member, ptr)				\
130 ({									\
131 	type *_ret;							\
132 	pcpu_task_pin();						\
133 	_ret = this_cpu_ptr(ptr);					\
134 	spin_lock(&_ret->member);					\
135 	_ret;								\
136 })
137 
138 #define pcpu_spin_trylock(type, member, ptr)				\
139 ({									\
140 	type *_ret;							\
141 	pcpu_task_pin();						\
142 	_ret = this_cpu_ptr(ptr);					\
143 	if (!spin_trylock(&_ret->member)) {				\
144 		pcpu_task_unpin();					\
145 		_ret = NULL;						\
146 	}								\
147 	_ret;								\
148 })
149 
150 #define pcpu_spin_unlock(member, ptr)					\
151 ({									\
152 	spin_unlock(&ptr->member);					\
153 	pcpu_task_unpin();						\
154 })
155 
156 /* struct per_cpu_pages specific helpers. */
157 #define pcp_spin_lock(ptr)						\
158 	pcpu_spin_lock(struct per_cpu_pages, lock, ptr)
159 
160 #define pcp_spin_trylock(ptr)						\
161 	pcpu_spin_trylock(struct per_cpu_pages, lock, ptr)
162 
163 #define pcp_spin_unlock(ptr)						\
164 	pcpu_spin_unlock(lock, ptr)
165 
166 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
167 DEFINE_PER_CPU(int, numa_node);
168 EXPORT_PER_CPU_SYMBOL(numa_node);
169 #endif
170 
171 DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key);
172 
173 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
174 /*
175  * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
176  * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
177  * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
178  * defined in <linux/topology.h>.
179  */
180 DEFINE_PER_CPU(int, _numa_mem_);		/* Kernel "local memory" node */
181 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
182 #endif
183 
184 static DEFINE_MUTEX(pcpu_drain_mutex);
185 
186 #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
187 volatile unsigned long latent_entropy __latent_entropy;
188 EXPORT_SYMBOL(latent_entropy);
189 #endif
190 
191 /*
192  * Array of node states.
193  */
194 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
195 	[N_POSSIBLE] = NODE_MASK_ALL,
196 	[N_ONLINE] = { { [0] = 1UL } },
197 #ifndef CONFIG_NUMA
198 	[N_NORMAL_MEMORY] = { { [0] = 1UL } },
199 #ifdef CONFIG_HIGHMEM
200 	[N_HIGH_MEMORY] = { { [0] = 1UL } },
201 #endif
202 	[N_MEMORY] = { { [0] = 1UL } },
203 	[N_CPU] = { { [0] = 1UL } },
204 #endif	/* NUMA */
205 };
206 EXPORT_SYMBOL(node_states);
207 
208 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
209 
210 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
211 unsigned int pageblock_order __read_mostly;
212 #endif
213 
214 static void __free_pages_ok(struct page *page, unsigned int order,
215 			    fpi_t fpi_flags);
216 
217 /*
218  * results with 256, 32 in the lowmem_reserve sysctl:
219  *	1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
220  *	1G machine -> (16M dma, 784M normal, 224M high)
221  *	NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
222  *	HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
223  *	HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
224  *
225  * TBD: should special case ZONE_DMA32 machines here - in those we normally
226  * don't need any ZONE_NORMAL reservation
227  */
228 static int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = {
229 #ifdef CONFIG_ZONE_DMA
230 	[ZONE_DMA] = 256,
231 #endif
232 #ifdef CONFIG_ZONE_DMA32
233 	[ZONE_DMA32] = 256,
234 #endif
235 	[ZONE_NORMAL] = 32,
236 #ifdef CONFIG_HIGHMEM
237 	[ZONE_HIGHMEM] = 0,
238 #endif
239 	[ZONE_MOVABLE] = 0,
240 };
241 
242 char * const zone_names[MAX_NR_ZONES] = {
243 #ifdef CONFIG_ZONE_DMA
244 	 "DMA",
245 #endif
246 #ifdef CONFIG_ZONE_DMA32
247 	 "DMA32",
248 #endif
249 	 "Normal",
250 #ifdef CONFIG_HIGHMEM
251 	 "HighMem",
252 #endif
253 	 "Movable",
254 #ifdef CONFIG_ZONE_DEVICE
255 	 "Device",
256 #endif
257 };
258 
259 const char * const migratetype_names[MIGRATE_TYPES] = {
260 	"Unmovable",
261 	"Movable",
262 	"Reclaimable",
263 	"HighAtomic",
264 #ifdef CONFIG_CMA
265 	"CMA",
266 #endif
267 #ifdef CONFIG_MEMORY_ISOLATION
268 	"Isolate",
269 #endif
270 };
271 
272 int min_free_kbytes = 1024;
273 int user_min_free_kbytes = -1;
274 static int watermark_boost_factor __read_mostly = 15000;
275 static int watermark_scale_factor = 10;
276 
277 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
278 int movable_zone;
279 EXPORT_SYMBOL(movable_zone);
280 
281 #if MAX_NUMNODES > 1
282 unsigned int nr_node_ids __read_mostly = MAX_NUMNODES;
283 unsigned int nr_online_nodes __read_mostly = 1;
284 EXPORT_SYMBOL(nr_node_ids);
285 EXPORT_SYMBOL(nr_online_nodes);
286 #endif
287 
288 static bool page_contains_unaccepted(struct page *page, unsigned int order);
289 static bool cond_accept_memory(struct zone *zone, unsigned int order);
290 static bool __free_unaccepted(struct page *page);
291 
292 int page_group_by_mobility_disabled __read_mostly;
293 
294 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
295 /*
296  * During boot we initialize deferred pages on-demand, as needed, but once
297  * page_alloc_init_late() has finished, the deferred pages are all initialized,
298  * and we can permanently disable that path.
299  */
300 DEFINE_STATIC_KEY_TRUE(deferred_pages);
301 
302 static inline bool deferred_pages_enabled(void)
303 {
304 	return static_branch_unlikely(&deferred_pages);
305 }
306 
307 /*
308  * deferred_grow_zone() is __init, but it is called from
309  * get_page_from_freelist() during early boot until deferred_pages permanently
310  * disables this call. This is why we have refdata wrapper to avoid warning,
311  * and to ensure that the function body gets unloaded.
312  */
313 static bool __ref
314 _deferred_grow_zone(struct zone *zone, unsigned int order)
315 {
316 	return deferred_grow_zone(zone, order);
317 }
318 #else
319 static inline bool deferred_pages_enabled(void)
320 {
321 	return false;
322 }
323 
324 static inline bool _deferred_grow_zone(struct zone *zone, unsigned int order)
325 {
326 	return false;
327 }
328 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
329 
330 /* Return a pointer to the bitmap storing bits affecting a block of pages */
331 static inline unsigned long *get_pageblock_bitmap(const struct page *page,
332 							unsigned long pfn)
333 {
334 #ifdef CONFIG_SPARSEMEM
335 	return section_to_usemap(__pfn_to_section(pfn));
336 #else
337 	return page_zone(page)->pageblock_flags;
338 #endif /* CONFIG_SPARSEMEM */
339 }
340 
341 static inline int pfn_to_bitidx(const struct page *page, unsigned long pfn)
342 {
343 #ifdef CONFIG_SPARSEMEM
344 	pfn &= (PAGES_PER_SECTION-1);
345 #else
346 	pfn = pfn - pageblock_start_pfn(page_zone(page)->zone_start_pfn);
347 #endif /* CONFIG_SPARSEMEM */
348 	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
349 }
350 
351 /**
352  * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
353  * @page: The page within the block of interest
354  * @pfn: The target page frame number
355  * @mask: mask of bits that the caller is interested in
356  *
357  * Return: pageblock_bits flags
358  */
359 unsigned long get_pfnblock_flags_mask(const struct page *page,
360 					unsigned long pfn, unsigned long mask)
361 {
362 	unsigned long *bitmap;
363 	unsigned long bitidx, word_bitidx;
364 	unsigned long word;
365 
366 	bitmap = get_pageblock_bitmap(page, pfn);
367 	bitidx = pfn_to_bitidx(page, pfn);
368 	word_bitidx = bitidx / BITS_PER_LONG;
369 	bitidx &= (BITS_PER_LONG-1);
370 	/*
371 	 * This races, without locks, with set_pfnblock_flags_mask(). Ensure
372 	 * a consistent read of the memory array, so that results, even though
373 	 * racy, are not corrupted.
374 	 */
375 	word = READ_ONCE(bitmap[word_bitidx]);
376 	return (word >> bitidx) & mask;
377 }
378 
379 static __always_inline int get_pfnblock_migratetype(const struct page *page,
380 					unsigned long pfn)
381 {
382 	return get_pfnblock_flags_mask(page, pfn, MIGRATETYPE_MASK);
383 }
384 
385 /**
386  * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
387  * @page: The page within the block of interest
388  * @flags: The flags to set
389  * @pfn: The target page frame number
390  * @mask: mask of bits that the caller is interested in
391  */
392 void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
393 					unsigned long pfn,
394 					unsigned long mask)
395 {
396 	unsigned long *bitmap;
397 	unsigned long bitidx, word_bitidx;
398 	unsigned long word;
399 
400 	BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
401 	BUILD_BUG_ON(MIGRATE_TYPES > (1 << PB_migratetype_bits));
402 
403 	bitmap = get_pageblock_bitmap(page, pfn);
404 	bitidx = pfn_to_bitidx(page, pfn);
405 	word_bitidx = bitidx / BITS_PER_LONG;
406 	bitidx &= (BITS_PER_LONG-1);
407 
408 	VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
409 
410 	mask <<= bitidx;
411 	flags <<= bitidx;
412 
413 	word = READ_ONCE(bitmap[word_bitidx]);
414 	do {
415 	} while (!try_cmpxchg(&bitmap[word_bitidx], &word, (word & ~mask) | flags));
416 }
417 
418 void set_pageblock_migratetype(struct page *page, int migratetype)
419 {
420 	if (unlikely(page_group_by_mobility_disabled &&
421 		     migratetype < MIGRATE_PCPTYPES))
422 		migratetype = MIGRATE_UNMOVABLE;
423 
424 	set_pfnblock_flags_mask(page, (unsigned long)migratetype,
425 				page_to_pfn(page), MIGRATETYPE_MASK);
426 }
427 
428 #ifdef CONFIG_DEBUG_VM
429 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
430 {
431 	int ret;
432 	unsigned seq;
433 	unsigned long pfn = page_to_pfn(page);
434 	unsigned long sp, start_pfn;
435 
436 	do {
437 		seq = zone_span_seqbegin(zone);
438 		start_pfn = zone->zone_start_pfn;
439 		sp = zone->spanned_pages;
440 		ret = !zone_spans_pfn(zone, pfn);
441 	} while (zone_span_seqretry(zone, seq));
442 
443 	if (ret)
444 		pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
445 			pfn, zone_to_nid(zone), zone->name,
446 			start_pfn, start_pfn + sp);
447 
448 	return ret;
449 }
450 
451 /*
452  * Temporary debugging check for pages not lying within a given zone.
453  */
454 static bool __maybe_unused bad_range(struct zone *zone, struct page *page)
455 {
456 	if (page_outside_zone_boundaries(zone, page))
457 		return true;
458 	if (zone != page_zone(page))
459 		return true;
460 
461 	return false;
462 }
463 #else
464 static inline bool __maybe_unused bad_range(struct zone *zone, struct page *page)
465 {
466 	return false;
467 }
468 #endif
469 
470 static void bad_page(struct page *page, const char *reason)
471 {
472 	static unsigned long resume;
473 	static unsigned long nr_shown;
474 	static unsigned long nr_unshown;
475 
476 	/*
477 	 * Allow a burst of 60 reports, then keep quiet for that minute;
478 	 * or allow a steady drip of one report per second.
479 	 */
480 	if (nr_shown == 60) {
481 		if (time_before(jiffies, resume)) {
482 			nr_unshown++;
483 			goto out;
484 		}
485 		if (nr_unshown) {
486 			pr_alert(
487 			      "BUG: Bad page state: %lu messages suppressed\n",
488 				nr_unshown);
489 			nr_unshown = 0;
490 		}
491 		nr_shown = 0;
492 	}
493 	if (nr_shown++ == 0)
494 		resume = jiffies + 60 * HZ;
495 
496 	pr_alert("BUG: Bad page state in process %s  pfn:%05lx\n",
497 		current->comm, page_to_pfn(page));
498 	dump_page(page, reason);
499 
500 	print_modules();
501 	dump_stack();
502 out:
503 	/* Leave bad fields for debug, except PageBuddy could make trouble */
504 	if (PageBuddy(page))
505 		__ClearPageBuddy(page);
506 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
507 }
508 
509 static inline unsigned int order_to_pindex(int migratetype, int order)
510 {
511 	bool __maybe_unused movable;
512 
513 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
514 	if (order > PAGE_ALLOC_COSTLY_ORDER) {
515 		VM_BUG_ON(order != HPAGE_PMD_ORDER);
516 
517 		movable = migratetype == MIGRATE_MOVABLE;
518 
519 		return NR_LOWORDER_PCP_LISTS + movable;
520 	}
521 #else
522 	VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER);
523 #endif
524 
525 	return (MIGRATE_PCPTYPES * order) + migratetype;
526 }
527 
528 static inline int pindex_to_order(unsigned int pindex)
529 {
530 	int order = pindex / MIGRATE_PCPTYPES;
531 
532 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
533 	if (pindex >= NR_LOWORDER_PCP_LISTS)
534 		order = HPAGE_PMD_ORDER;
535 #else
536 	VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER);
537 #endif
538 
539 	return order;
540 }
541 
542 static inline bool pcp_allowed_order(unsigned int order)
543 {
544 	if (order <= PAGE_ALLOC_COSTLY_ORDER)
545 		return true;
546 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
547 	if (order == HPAGE_PMD_ORDER)
548 		return true;
549 #endif
550 	return false;
551 }
552 
553 /*
554  * Higher-order pages are called "compound pages".  They are structured thusly:
555  *
556  * The first PAGE_SIZE page is called the "head page" and have PG_head set.
557  *
558  * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
559  * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
560  *
561  * The first tail page's ->compound_order holds the order of allocation.
562  * This usage means that zero-order pages may not be compound.
563  */
564 
565 void prep_compound_page(struct page *page, unsigned int order)
566 {
567 	int i;
568 	int nr_pages = 1 << order;
569 
570 	__SetPageHead(page);
571 	for (i = 1; i < nr_pages; i++)
572 		prep_compound_tail(page, i);
573 
574 	prep_compound_head(page, order);
575 }
576 
577 static inline void set_buddy_order(struct page *page, unsigned int order)
578 {
579 	set_page_private(page, order);
580 	__SetPageBuddy(page);
581 }
582 
583 #ifdef CONFIG_COMPACTION
584 static inline struct capture_control *task_capc(struct zone *zone)
585 {
586 	struct capture_control *capc = current->capture_control;
587 
588 	return unlikely(capc) &&
589 		!(current->flags & PF_KTHREAD) &&
590 		!capc->page &&
591 		capc->cc->zone == zone ? capc : NULL;
592 }
593 
594 static inline bool
595 compaction_capture(struct capture_control *capc, struct page *page,
596 		   int order, int migratetype)
597 {
598 	if (!capc || order != capc->cc->order)
599 		return false;
600 
601 	/* Do not accidentally pollute CMA or isolated regions*/
602 	if (is_migrate_cma(migratetype) ||
603 	    is_migrate_isolate(migratetype))
604 		return false;
605 
606 	/*
607 	 * Do not let lower order allocations pollute a movable pageblock
608 	 * unless compaction is also requesting movable pages.
609 	 * This might let an unmovable request use a reclaimable pageblock
610 	 * and vice-versa but no more than normal fallback logic which can
611 	 * have trouble finding a high-order free page.
612 	 */
613 	if (order < pageblock_order && migratetype == MIGRATE_MOVABLE &&
614 	    capc->cc->migratetype != MIGRATE_MOVABLE)
615 		return false;
616 
617 	capc->page = page;
618 	return true;
619 }
620 
621 #else
622 static inline struct capture_control *task_capc(struct zone *zone)
623 {
624 	return NULL;
625 }
626 
627 static inline bool
628 compaction_capture(struct capture_control *capc, struct page *page,
629 		   int order, int migratetype)
630 {
631 	return false;
632 }
633 #endif /* CONFIG_COMPACTION */
634 
635 static inline void account_freepages(struct zone *zone, int nr_pages,
636 				     int migratetype)
637 {
638 	lockdep_assert_held(&zone->lock);
639 
640 	if (is_migrate_isolate(migratetype))
641 		return;
642 
643 	__mod_zone_page_state(zone, NR_FREE_PAGES, nr_pages);
644 
645 	if (is_migrate_cma(migratetype))
646 		__mod_zone_page_state(zone, NR_FREE_CMA_PAGES, nr_pages);
647 	else if (is_migrate_highatomic(migratetype))
648 		WRITE_ONCE(zone->nr_free_highatomic,
649 			   zone->nr_free_highatomic + nr_pages);
650 }
651 
652 /* Used for pages not on another list */
653 static inline void __add_to_free_list(struct page *page, struct zone *zone,
654 				      unsigned int order, int migratetype,
655 				      bool tail)
656 {
657 	struct free_area *area = &zone->free_area[order];
658 
659 	VM_WARN_ONCE(get_pageblock_migratetype(page) != migratetype,
660 		     "page type is %lu, passed migratetype is %d (nr=%d)\n",
661 		     get_pageblock_migratetype(page), migratetype, 1 << order);
662 
663 	if (tail)
664 		list_add_tail(&page->buddy_list, &area->free_list[migratetype]);
665 	else
666 		list_add(&page->buddy_list, &area->free_list[migratetype]);
667 	area->nr_free++;
668 }
669 
670 /*
671  * Used for pages which are on another list. Move the pages to the tail
672  * of the list - so the moved pages won't immediately be considered for
673  * allocation again (e.g., optimization for memory onlining).
674  */
675 static inline void move_to_free_list(struct page *page, struct zone *zone,
676 				     unsigned int order, int old_mt, int new_mt)
677 {
678 	struct free_area *area = &zone->free_area[order];
679 
680 	/* Free page moving can fail, so it happens before the type update */
681 	VM_WARN_ONCE(get_pageblock_migratetype(page) != old_mt,
682 		     "page type is %lu, passed migratetype is %d (nr=%d)\n",
683 		     get_pageblock_migratetype(page), old_mt, 1 << order);
684 
685 	list_move_tail(&page->buddy_list, &area->free_list[new_mt]);
686 
687 	account_freepages(zone, -(1 << order), old_mt);
688 	account_freepages(zone, 1 << order, new_mt);
689 }
690 
691 static inline void __del_page_from_free_list(struct page *page, struct zone *zone,
692 					     unsigned int order, int migratetype)
693 {
694         VM_WARN_ONCE(get_pageblock_migratetype(page) != migratetype,
695 		     "page type is %lu, passed migratetype is %d (nr=%d)\n",
696 		     get_pageblock_migratetype(page), migratetype, 1 << order);
697 
698 	/* clear reported state and update reported page count */
699 	if (page_reported(page))
700 		__ClearPageReported(page);
701 
702 	list_del(&page->buddy_list);
703 	__ClearPageBuddy(page);
704 	set_page_private(page, 0);
705 	zone->free_area[order].nr_free--;
706 }
707 
708 static inline void del_page_from_free_list(struct page *page, struct zone *zone,
709 					   unsigned int order, int migratetype)
710 {
711 	__del_page_from_free_list(page, zone, order, migratetype);
712 	account_freepages(zone, -(1 << order), migratetype);
713 }
714 
715 static inline struct page *get_page_from_free_area(struct free_area *area,
716 					    int migratetype)
717 {
718 	return list_first_entry_or_null(&area->free_list[migratetype],
719 					struct page, buddy_list);
720 }
721 
722 /*
723  * If this is less than the 2nd largest possible page, check if the buddy
724  * of the next-higher order is free. If it is, it's possible
725  * that pages are being freed that will coalesce soon. In case,
726  * that is happening, add the free page to the tail of the list
727  * so it's less likely to be used soon and more likely to be merged
728  * as a 2-level higher order page
729  */
730 static inline bool
731 buddy_merge_likely(unsigned long pfn, unsigned long buddy_pfn,
732 		   struct page *page, unsigned int order)
733 {
734 	unsigned long higher_page_pfn;
735 	struct page *higher_page;
736 
737 	if (order >= MAX_PAGE_ORDER - 1)
738 		return false;
739 
740 	higher_page_pfn = buddy_pfn & pfn;
741 	higher_page = page + (higher_page_pfn - pfn);
742 
743 	return find_buddy_page_pfn(higher_page, higher_page_pfn, order + 1,
744 			NULL) != NULL;
745 }
746 
747 /*
748  * Freeing function for a buddy system allocator.
749  *
750  * The concept of a buddy system is to maintain direct-mapped table
751  * (containing bit values) for memory blocks of various "orders".
752  * The bottom level table contains the map for the smallest allocatable
753  * units of memory (here, pages), and each level above it describes
754  * pairs of units from the levels below, hence, "buddies".
755  * At a high level, all that happens here is marking the table entry
756  * at the bottom level available, and propagating the changes upward
757  * as necessary, plus some accounting needed to play nicely with other
758  * parts of the VM system.
759  * At each level, we keep a list of pages, which are heads of continuous
760  * free pages of length of (1 << order) and marked with PageBuddy.
761  * Page's order is recorded in page_private(page) field.
762  * So when we are allocating or freeing one, we can derive the state of the
763  * other.  That is, if we allocate a small block, and both were
764  * free, the remainder of the region must be split into blocks.
765  * If a block is freed, and its buddy is also free, then this
766  * triggers coalescing into a block of larger size.
767  *
768  * -- nyc
769  */
770 
771 static inline void __free_one_page(struct page *page,
772 		unsigned long pfn,
773 		struct zone *zone, unsigned int order,
774 		int migratetype, fpi_t fpi_flags)
775 {
776 	struct capture_control *capc = task_capc(zone);
777 	unsigned long buddy_pfn = 0;
778 	unsigned long combined_pfn;
779 	struct page *buddy;
780 	bool to_tail;
781 
782 	VM_BUG_ON(!zone_is_initialized(zone));
783 	VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
784 
785 	VM_BUG_ON(migratetype == -1);
786 	VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
787 	VM_BUG_ON_PAGE(bad_range(zone, page), page);
788 
789 	account_freepages(zone, 1 << order, migratetype);
790 
791 	while (order < MAX_PAGE_ORDER) {
792 		int buddy_mt = migratetype;
793 
794 		if (compaction_capture(capc, page, order, migratetype)) {
795 			account_freepages(zone, -(1 << order), migratetype);
796 			return;
797 		}
798 
799 		buddy = find_buddy_page_pfn(page, pfn, order, &buddy_pfn);
800 		if (!buddy)
801 			goto done_merging;
802 
803 		if (unlikely(order >= pageblock_order)) {
804 			/*
805 			 * We want to prevent merge between freepages on pageblock
806 			 * without fallbacks and normal pageblock. Without this,
807 			 * pageblock isolation could cause incorrect freepage or CMA
808 			 * accounting or HIGHATOMIC accounting.
809 			 */
810 			buddy_mt = get_pfnblock_migratetype(buddy, buddy_pfn);
811 
812 			if (migratetype != buddy_mt &&
813 			    (!migratetype_is_mergeable(migratetype) ||
814 			     !migratetype_is_mergeable(buddy_mt)))
815 				goto done_merging;
816 		}
817 
818 		/*
819 		 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
820 		 * merge with it and move up one order.
821 		 */
822 		if (page_is_guard(buddy))
823 			clear_page_guard(zone, buddy, order);
824 		else
825 			__del_page_from_free_list(buddy, zone, order, buddy_mt);
826 
827 		if (unlikely(buddy_mt != migratetype)) {
828 			/*
829 			 * Match buddy type. This ensures that an
830 			 * expand() down the line puts the sub-blocks
831 			 * on the right freelists.
832 			 */
833 			set_pageblock_migratetype(buddy, migratetype);
834 		}
835 
836 		combined_pfn = buddy_pfn & pfn;
837 		page = page + (combined_pfn - pfn);
838 		pfn = combined_pfn;
839 		order++;
840 	}
841 
842 done_merging:
843 	set_buddy_order(page, order);
844 
845 	if (fpi_flags & FPI_TO_TAIL)
846 		to_tail = true;
847 	else if (is_shuffle_order(order))
848 		to_tail = shuffle_pick_tail();
849 	else
850 		to_tail = buddy_merge_likely(pfn, buddy_pfn, page, order);
851 
852 	__add_to_free_list(page, zone, order, migratetype, to_tail);
853 
854 	/* Notify page reporting subsystem of freed page */
855 	if (!(fpi_flags & FPI_SKIP_REPORT_NOTIFY))
856 		page_reporting_notify_free(order);
857 }
858 
859 /*
860  * A bad page could be due to a number of fields. Instead of multiple branches,
861  * try and check multiple fields with one check. The caller must do a detailed
862  * check if necessary.
863  */
864 static inline bool page_expected_state(struct page *page,
865 					unsigned long check_flags)
866 {
867 	if (unlikely(atomic_read(&page->_mapcount) != -1))
868 		return false;
869 
870 	if (unlikely((unsigned long)page->mapping |
871 			page_ref_count(page) |
872 #ifdef CONFIG_MEMCG
873 			page->memcg_data |
874 #endif
875 #ifdef CONFIG_PAGE_POOL
876 			((page->pp_magic & ~0x3UL) == PP_SIGNATURE) |
877 #endif
878 			(page->flags & check_flags)))
879 		return false;
880 
881 	return true;
882 }
883 
884 static const char *page_bad_reason(struct page *page, unsigned long flags)
885 {
886 	const char *bad_reason = NULL;
887 
888 	if (unlikely(atomic_read(&page->_mapcount) != -1))
889 		bad_reason = "nonzero mapcount";
890 	if (unlikely(page->mapping != NULL))
891 		bad_reason = "non-NULL mapping";
892 	if (unlikely(page_ref_count(page) != 0))
893 		bad_reason = "nonzero _refcount";
894 	if (unlikely(page->flags & flags)) {
895 		if (flags == PAGE_FLAGS_CHECK_AT_PREP)
896 			bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag(s) set";
897 		else
898 			bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
899 	}
900 #ifdef CONFIG_MEMCG
901 	if (unlikely(page->memcg_data))
902 		bad_reason = "page still charged to cgroup";
903 #endif
904 #ifdef CONFIG_PAGE_POOL
905 	if (unlikely((page->pp_magic & ~0x3UL) == PP_SIGNATURE))
906 		bad_reason = "page_pool leak";
907 #endif
908 	return bad_reason;
909 }
910 
911 static void free_page_is_bad_report(struct page *page)
912 {
913 	bad_page(page,
914 		 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_FREE));
915 }
916 
917 static inline bool free_page_is_bad(struct page *page)
918 {
919 	if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
920 		return false;
921 
922 	/* Something has gone sideways, find it */
923 	free_page_is_bad_report(page);
924 	return true;
925 }
926 
927 static inline bool is_check_pages_enabled(void)
928 {
929 	return static_branch_unlikely(&check_pages_enabled);
930 }
931 
932 static int free_tail_page_prepare(struct page *head_page, struct page *page)
933 {
934 	struct folio *folio = (struct folio *)head_page;
935 	int ret = 1;
936 
937 	/*
938 	 * We rely page->lru.next never has bit 0 set, unless the page
939 	 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
940 	 */
941 	BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
942 
943 	if (!is_check_pages_enabled()) {
944 		ret = 0;
945 		goto out;
946 	}
947 	switch (page - head_page) {
948 	case 1:
949 		/* the first tail page: these may be in place of ->mapping */
950 		if (unlikely(folio_entire_mapcount(folio))) {
951 			bad_page(page, "nonzero entire_mapcount");
952 			goto out;
953 		}
954 		if (unlikely(folio_large_mapcount(folio))) {
955 			bad_page(page, "nonzero large_mapcount");
956 			goto out;
957 		}
958 		if (unlikely(atomic_read(&folio->_nr_pages_mapped))) {
959 			bad_page(page, "nonzero nr_pages_mapped");
960 			goto out;
961 		}
962 		if (unlikely(atomic_read(&folio->_pincount))) {
963 			bad_page(page, "nonzero pincount");
964 			goto out;
965 		}
966 		break;
967 	case 2:
968 		/* the second tail page: deferred_list overlaps ->mapping */
969 		if (unlikely(!list_empty(&folio->_deferred_list))) {
970 			bad_page(page, "on deferred list");
971 			goto out;
972 		}
973 		break;
974 	default:
975 		if (page->mapping != TAIL_MAPPING) {
976 			bad_page(page, "corrupted mapping in tail page");
977 			goto out;
978 		}
979 		break;
980 	}
981 	if (unlikely(!PageTail(page))) {
982 		bad_page(page, "PageTail not set");
983 		goto out;
984 	}
985 	if (unlikely(compound_head(page) != head_page)) {
986 		bad_page(page, "compound_head not consistent");
987 		goto out;
988 	}
989 	ret = 0;
990 out:
991 	page->mapping = NULL;
992 	clear_compound_head(page);
993 	return ret;
994 }
995 
996 /*
997  * Skip KASAN memory poisoning when either:
998  *
999  * 1. For generic KASAN: deferred memory initialization has not yet completed.
1000  *    Tag-based KASAN modes skip pages freed via deferred memory initialization
1001  *    using page tags instead (see below).
1002  * 2. For tag-based KASAN modes: the page has a match-all KASAN tag, indicating
1003  *    that error detection is disabled for accesses via the page address.
1004  *
1005  * Pages will have match-all tags in the following circumstances:
1006  *
1007  * 1. Pages are being initialized for the first time, including during deferred
1008  *    memory init; see the call to page_kasan_tag_reset in __init_single_page.
1009  * 2. The allocation was not unpoisoned due to __GFP_SKIP_KASAN, with the
1010  *    exception of pages unpoisoned by kasan_unpoison_vmalloc.
1011  * 3. The allocation was excluded from being checked due to sampling,
1012  *    see the call to kasan_unpoison_pages.
1013  *
1014  * Poisoning pages during deferred memory init will greatly lengthen the
1015  * process and cause problem in large memory systems as the deferred pages
1016  * initialization is done with interrupt disabled.
1017  *
1018  * Assuming that there will be no reference to those newly initialized
1019  * pages before they are ever allocated, this should have no effect on
1020  * KASAN memory tracking as the poison will be properly inserted at page
1021  * allocation time. The only corner case is when pages are allocated by
1022  * on-demand allocation and then freed again before the deferred pages
1023  * initialization is done, but this is not likely to happen.
1024  */
1025 static inline bool should_skip_kasan_poison(struct page *page)
1026 {
1027 	if (IS_ENABLED(CONFIG_KASAN_GENERIC))
1028 		return deferred_pages_enabled();
1029 
1030 	return page_kasan_tag(page) == KASAN_TAG_KERNEL;
1031 }
1032 
1033 static void kernel_init_pages(struct page *page, int numpages)
1034 {
1035 	int i;
1036 
1037 	/* s390's use of memset() could override KASAN redzones. */
1038 	kasan_disable_current();
1039 	for (i = 0; i < numpages; i++)
1040 		clear_highpage_kasan_tagged(page + i);
1041 	kasan_enable_current();
1042 }
1043 
1044 __always_inline bool free_pages_prepare(struct page *page,
1045 			unsigned int order)
1046 {
1047 	int bad = 0;
1048 	bool skip_kasan_poison = should_skip_kasan_poison(page);
1049 	bool init = want_init_on_free();
1050 	bool compound = PageCompound(page);
1051 
1052 	VM_BUG_ON_PAGE(PageTail(page), page);
1053 
1054 	trace_mm_page_free(page, order);
1055 	kmsan_free_page(page, order);
1056 
1057 	if (memcg_kmem_online() && PageMemcgKmem(page))
1058 		__memcg_kmem_uncharge_page(page, order);
1059 
1060 	if (unlikely(PageHWPoison(page)) && !order) {
1061 		/* Do not let hwpoison pages hit pcplists/buddy */
1062 		reset_page_owner(page, order);
1063 		page_table_check_free(page, order);
1064 		pgalloc_tag_sub(page, 1 << order);
1065 
1066 		/*
1067 		 * The page is isolated and accounted for.
1068 		 * Mark the codetag as empty to avoid accounting error
1069 		 * when the page is freed by unpoison_memory().
1070 		 */
1071 		clear_page_tag_ref(page);
1072 		return false;
1073 	}
1074 
1075 	VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
1076 
1077 	/*
1078 	 * Check tail pages before head page information is cleared to
1079 	 * avoid checking PageCompound for order-0 pages.
1080 	 */
1081 	if (unlikely(order)) {
1082 		int i;
1083 
1084 		if (compound)
1085 			page[1].flags &= ~PAGE_FLAGS_SECOND;
1086 		for (i = 1; i < (1 << order); i++) {
1087 			if (compound)
1088 				bad += free_tail_page_prepare(page, page + i);
1089 			if (is_check_pages_enabled()) {
1090 				if (free_page_is_bad(page + i)) {
1091 					bad++;
1092 					continue;
1093 				}
1094 			}
1095 			(page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1096 		}
1097 	}
1098 	if (PageMappingFlags(page)) {
1099 		if (PageAnon(page))
1100 			mod_mthp_stat(order, MTHP_STAT_NR_ANON, -1);
1101 		page->mapping = NULL;
1102 	}
1103 	if (is_check_pages_enabled()) {
1104 		if (free_page_is_bad(page))
1105 			bad++;
1106 		if (bad)
1107 			return false;
1108 	}
1109 
1110 	page_cpupid_reset_last(page);
1111 	page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1112 	reset_page_owner(page, order);
1113 	page_table_check_free(page, order);
1114 	pgalloc_tag_sub(page, 1 << order);
1115 
1116 	if (!PageHighMem(page)) {
1117 		debug_check_no_locks_freed(page_address(page),
1118 					   PAGE_SIZE << order);
1119 		debug_check_no_obj_freed(page_address(page),
1120 					   PAGE_SIZE << order);
1121 	}
1122 
1123 	kernel_poison_pages(page, 1 << order);
1124 
1125 	/*
1126 	 * As memory initialization might be integrated into KASAN,
1127 	 * KASAN poisoning and memory initialization code must be
1128 	 * kept together to avoid discrepancies in behavior.
1129 	 *
1130 	 * With hardware tag-based KASAN, memory tags must be set before the
1131 	 * page becomes unavailable via debug_pagealloc or arch_free_page.
1132 	 */
1133 	if (!skip_kasan_poison) {
1134 		kasan_poison_pages(page, order, init);
1135 
1136 		/* Memory is already initialized if KASAN did it internally. */
1137 		if (kasan_has_integrated_init())
1138 			init = false;
1139 	}
1140 	if (init)
1141 		kernel_init_pages(page, 1 << order);
1142 
1143 	/*
1144 	 * arch_free_page() can make the page's contents inaccessible.  s390
1145 	 * does this.  So nothing which can access the page's contents should
1146 	 * happen after this.
1147 	 */
1148 	arch_free_page(page, order);
1149 
1150 	debug_pagealloc_unmap_pages(page, 1 << order);
1151 
1152 	return true;
1153 }
1154 
1155 /*
1156  * Frees a number of pages from the PCP lists
1157  * Assumes all pages on list are in same zone.
1158  * count is the number of pages to free.
1159  */
1160 static void free_pcppages_bulk(struct zone *zone, int count,
1161 					struct per_cpu_pages *pcp,
1162 					int pindex)
1163 {
1164 	unsigned long flags;
1165 	unsigned int order;
1166 	struct page *page;
1167 
1168 	/*
1169 	 * Ensure proper count is passed which otherwise would stuck in the
1170 	 * below while (list_empty(list)) loop.
1171 	 */
1172 	count = min(pcp->count, count);
1173 
1174 	/* Ensure requested pindex is drained first. */
1175 	pindex = pindex - 1;
1176 
1177 	spin_lock_irqsave(&zone->lock, flags);
1178 
1179 	while (count > 0) {
1180 		struct list_head *list;
1181 		int nr_pages;
1182 
1183 		/* Remove pages from lists in a round-robin fashion. */
1184 		do {
1185 			if (++pindex > NR_PCP_LISTS - 1)
1186 				pindex = 0;
1187 			list = &pcp->lists[pindex];
1188 		} while (list_empty(list));
1189 
1190 		order = pindex_to_order(pindex);
1191 		nr_pages = 1 << order;
1192 		do {
1193 			unsigned long pfn;
1194 			int mt;
1195 
1196 			page = list_last_entry(list, struct page, pcp_list);
1197 			pfn = page_to_pfn(page);
1198 			mt = get_pfnblock_migratetype(page, pfn);
1199 
1200 			/* must delete to avoid corrupting pcp list */
1201 			list_del(&page->pcp_list);
1202 			count -= nr_pages;
1203 			pcp->count -= nr_pages;
1204 
1205 			__free_one_page(page, pfn, zone, order, mt, FPI_NONE);
1206 			trace_mm_page_pcpu_drain(page, order, mt);
1207 		} while (count > 0 && !list_empty(list));
1208 	}
1209 
1210 	spin_unlock_irqrestore(&zone->lock, flags);
1211 }
1212 
1213 /* Split a multi-block free page into its individual pageblocks. */
1214 static void split_large_buddy(struct zone *zone, struct page *page,
1215 			      unsigned long pfn, int order, fpi_t fpi)
1216 {
1217 	unsigned long end = pfn + (1 << order);
1218 
1219 	VM_WARN_ON_ONCE(!IS_ALIGNED(pfn, 1 << order));
1220 	/* Caller removed page from freelist, buddy info cleared! */
1221 	VM_WARN_ON_ONCE(PageBuddy(page));
1222 
1223 	if (order > pageblock_order)
1224 		order = pageblock_order;
1225 
1226 	while (pfn != end) {
1227 		int mt = get_pfnblock_migratetype(page, pfn);
1228 
1229 		__free_one_page(page, pfn, zone, order, mt, fpi);
1230 		pfn += 1 << order;
1231 		page = pfn_to_page(pfn);
1232 	}
1233 }
1234 
1235 static void free_one_page(struct zone *zone, struct page *page,
1236 			  unsigned long pfn, unsigned int order,
1237 			  fpi_t fpi_flags)
1238 {
1239 	unsigned long flags;
1240 
1241 	spin_lock_irqsave(&zone->lock, flags);
1242 	split_large_buddy(zone, page, pfn, order, fpi_flags);
1243 	spin_unlock_irqrestore(&zone->lock, flags);
1244 
1245 	__count_vm_events(PGFREE, 1 << order);
1246 }
1247 
1248 static void __free_pages_ok(struct page *page, unsigned int order,
1249 			    fpi_t fpi_flags)
1250 {
1251 	unsigned long pfn = page_to_pfn(page);
1252 	struct zone *zone = page_zone(page);
1253 
1254 	if (free_pages_prepare(page, order))
1255 		free_one_page(zone, page, pfn, order, fpi_flags);
1256 }
1257 
1258 void __meminit __free_pages_core(struct page *page, unsigned int order,
1259 		enum meminit_context context)
1260 {
1261 	unsigned int nr_pages = 1 << order;
1262 	struct page *p = page;
1263 	unsigned int loop;
1264 
1265 	/*
1266 	 * When initializing the memmap, __init_single_page() sets the refcount
1267 	 * of all pages to 1 ("allocated"/"not free"). We have to set the
1268 	 * refcount of all involved pages to 0.
1269 	 *
1270 	 * Note that hotplugged memory pages are initialized to PageOffline().
1271 	 * Pages freed from memblock might be marked as reserved.
1272 	 */
1273 	if (IS_ENABLED(CONFIG_MEMORY_HOTPLUG) &&
1274 	    unlikely(context == MEMINIT_HOTPLUG)) {
1275 		for (loop = 0; loop < nr_pages; loop++, p++) {
1276 			VM_WARN_ON_ONCE(PageReserved(p));
1277 			__ClearPageOffline(p);
1278 			set_page_count(p, 0);
1279 		}
1280 
1281 		/*
1282 		 * Freeing the page with debug_pagealloc enabled will try to
1283 		 * unmap it; some archs don't like double-unmappings, so
1284 		 * map it first.
1285 		 */
1286 		debug_pagealloc_map_pages(page, nr_pages);
1287 		adjust_managed_page_count(page, nr_pages);
1288 	} else {
1289 		for (loop = 0; loop < nr_pages; loop++, p++) {
1290 			__ClearPageReserved(p);
1291 			set_page_count(p, 0);
1292 		}
1293 
1294 		/* memblock adjusts totalram_pages() manually. */
1295 		atomic_long_add(nr_pages, &page_zone(page)->managed_pages);
1296 	}
1297 
1298 	if (page_contains_unaccepted(page, order)) {
1299 		if (order == MAX_PAGE_ORDER && __free_unaccepted(page))
1300 			return;
1301 
1302 		accept_memory(page_to_phys(page), PAGE_SIZE << order);
1303 	}
1304 
1305 	/*
1306 	 * Bypass PCP and place fresh pages right to the tail, primarily
1307 	 * relevant for memory onlining.
1308 	 */
1309 	__free_pages_ok(page, order, FPI_TO_TAIL);
1310 }
1311 
1312 /*
1313  * Check that the whole (or subset of) a pageblock given by the interval of
1314  * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1315  * with the migration of free compaction scanner.
1316  *
1317  * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1318  *
1319  * It's possible on some configurations to have a setup like node0 node1 node0
1320  * i.e. it's possible that all pages within a zones range of pages do not
1321  * belong to a single zone. We assume that a border between node0 and node1
1322  * can occur within a single pageblock, but not a node0 node1 node0
1323  * interleaving within a single pageblock. It is therefore sufficient to check
1324  * the first and last page of a pageblock and avoid checking each individual
1325  * page in a pageblock.
1326  *
1327  * Note: the function may return non-NULL struct page even for a page block
1328  * which contains a memory hole (i.e. there is no physical memory for a subset
1329  * of the pfn range). For example, if the pageblock order is MAX_PAGE_ORDER, which
1330  * will fall into 2 sub-sections, and the end pfn of the pageblock may be hole
1331  * even though the start pfn is online and valid. This should be safe most of
1332  * the time because struct pages are still initialized via init_unavailable_range()
1333  * and pfn walkers shouldn't touch any physical memory range for which they do
1334  * not recognize any specific metadata in struct pages.
1335  */
1336 struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1337 				     unsigned long end_pfn, struct zone *zone)
1338 {
1339 	struct page *start_page;
1340 	struct page *end_page;
1341 
1342 	/* end_pfn is one past the range we are checking */
1343 	end_pfn--;
1344 
1345 	if (!pfn_valid(end_pfn))
1346 		return NULL;
1347 
1348 	start_page = pfn_to_online_page(start_pfn);
1349 	if (!start_page)
1350 		return NULL;
1351 
1352 	if (page_zone(start_page) != zone)
1353 		return NULL;
1354 
1355 	end_page = pfn_to_page(end_pfn);
1356 
1357 	/* This gives a shorter code than deriving page_zone(end_page) */
1358 	if (page_zone_id(start_page) != page_zone_id(end_page))
1359 		return NULL;
1360 
1361 	return start_page;
1362 }
1363 
1364 /*
1365  * The order of subdivision here is critical for the IO subsystem.
1366  * Please do not alter this order without good reasons and regression
1367  * testing. Specifically, as large blocks of memory are subdivided,
1368  * the order in which smaller blocks are delivered depends on the order
1369  * they're subdivided in this function. This is the primary factor
1370  * influencing the order in which pages are delivered to the IO
1371  * subsystem according to empirical testing, and this is also justified
1372  * by considering the behavior of a buddy system containing a single
1373  * large block of memory acted on by a series of small allocations.
1374  * This behavior is a critical factor in sglist merging's success.
1375  *
1376  * -- nyc
1377  */
1378 static inline unsigned int expand(struct zone *zone, struct page *page, int low,
1379 				  int high, int migratetype)
1380 {
1381 	unsigned int size = 1 << high;
1382 	unsigned int nr_added = 0;
1383 
1384 	while (high > low) {
1385 		high--;
1386 		size >>= 1;
1387 		VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
1388 
1389 		/*
1390 		 * Mark as guard pages (or page), that will allow to
1391 		 * merge back to allocator when buddy will be freed.
1392 		 * Corresponding page table entries will not be touched,
1393 		 * pages will stay not present in virtual address space
1394 		 */
1395 		if (set_page_guard(zone, &page[size], high))
1396 			continue;
1397 
1398 		__add_to_free_list(&page[size], zone, high, migratetype, false);
1399 		set_buddy_order(&page[size], high);
1400 		nr_added += size;
1401 	}
1402 
1403 	return nr_added;
1404 }
1405 
1406 static __always_inline void page_del_and_expand(struct zone *zone,
1407 						struct page *page, int low,
1408 						int high, int migratetype)
1409 {
1410 	int nr_pages = 1 << high;
1411 
1412 	__del_page_from_free_list(page, zone, high, migratetype);
1413 	nr_pages -= expand(zone, page, low, high, migratetype);
1414 	account_freepages(zone, -nr_pages, migratetype);
1415 }
1416 
1417 static void check_new_page_bad(struct page *page)
1418 {
1419 	if (unlikely(page->flags & __PG_HWPOISON)) {
1420 		/* Don't complain about hwpoisoned pages */
1421 		if (PageBuddy(page))
1422 			__ClearPageBuddy(page);
1423 		return;
1424 	}
1425 
1426 	bad_page(page,
1427 		 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_PREP));
1428 }
1429 
1430 /*
1431  * This page is about to be returned from the page allocator
1432  */
1433 static bool check_new_page(struct page *page)
1434 {
1435 	if (likely(page_expected_state(page,
1436 				PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
1437 		return false;
1438 
1439 	check_new_page_bad(page);
1440 	return true;
1441 }
1442 
1443 static inline bool check_new_pages(struct page *page, unsigned int order)
1444 {
1445 	if (is_check_pages_enabled()) {
1446 		for (int i = 0; i < (1 << order); i++) {
1447 			struct page *p = page + i;
1448 
1449 			if (check_new_page(p))
1450 				return true;
1451 		}
1452 	}
1453 
1454 	return false;
1455 }
1456 
1457 static inline bool should_skip_kasan_unpoison(gfp_t flags)
1458 {
1459 	/* Don't skip if a software KASAN mode is enabled. */
1460 	if (IS_ENABLED(CONFIG_KASAN_GENERIC) ||
1461 	    IS_ENABLED(CONFIG_KASAN_SW_TAGS))
1462 		return false;
1463 
1464 	/* Skip, if hardware tag-based KASAN is not enabled. */
1465 	if (!kasan_hw_tags_enabled())
1466 		return true;
1467 
1468 	/*
1469 	 * With hardware tag-based KASAN enabled, skip if this has been
1470 	 * requested via __GFP_SKIP_KASAN.
1471 	 */
1472 	return flags & __GFP_SKIP_KASAN;
1473 }
1474 
1475 static inline bool should_skip_init(gfp_t flags)
1476 {
1477 	/* Don't skip, if hardware tag-based KASAN is not enabled. */
1478 	if (!kasan_hw_tags_enabled())
1479 		return false;
1480 
1481 	/* For hardware tag-based KASAN, skip if requested. */
1482 	return (flags & __GFP_SKIP_ZERO);
1483 }
1484 
1485 inline void post_alloc_hook(struct page *page, unsigned int order,
1486 				gfp_t gfp_flags)
1487 {
1488 	bool init = !want_init_on_free() && want_init_on_alloc(gfp_flags) &&
1489 			!should_skip_init(gfp_flags);
1490 	bool zero_tags = init && (gfp_flags & __GFP_ZEROTAGS);
1491 	int i;
1492 
1493 	set_page_private(page, 0);
1494 	set_page_refcounted(page);
1495 
1496 	arch_alloc_page(page, order);
1497 	debug_pagealloc_map_pages(page, 1 << order);
1498 
1499 	/*
1500 	 * Page unpoisoning must happen before memory initialization.
1501 	 * Otherwise, the poison pattern will be overwritten for __GFP_ZERO
1502 	 * allocations and the page unpoisoning code will complain.
1503 	 */
1504 	kernel_unpoison_pages(page, 1 << order);
1505 
1506 	/*
1507 	 * As memory initialization might be integrated into KASAN,
1508 	 * KASAN unpoisoning and memory initializion code must be
1509 	 * kept together to avoid discrepancies in behavior.
1510 	 */
1511 
1512 	/*
1513 	 * If memory tags should be zeroed
1514 	 * (which happens only when memory should be initialized as well).
1515 	 */
1516 	if (zero_tags) {
1517 		/* Initialize both memory and memory tags. */
1518 		for (i = 0; i != 1 << order; ++i)
1519 			tag_clear_highpage(page + i);
1520 
1521 		/* Take note that memory was initialized by the loop above. */
1522 		init = false;
1523 	}
1524 	if (!should_skip_kasan_unpoison(gfp_flags) &&
1525 	    kasan_unpoison_pages(page, order, init)) {
1526 		/* Take note that memory was initialized by KASAN. */
1527 		if (kasan_has_integrated_init())
1528 			init = false;
1529 	} else {
1530 		/*
1531 		 * If memory tags have not been set by KASAN, reset the page
1532 		 * tags to ensure page_address() dereferencing does not fault.
1533 		 */
1534 		for (i = 0; i != 1 << order; ++i)
1535 			page_kasan_tag_reset(page + i);
1536 	}
1537 	/* If memory is still not initialized, initialize it now. */
1538 	if (init)
1539 		kernel_init_pages(page, 1 << order);
1540 
1541 	set_page_owner(page, order, gfp_flags);
1542 	page_table_check_alloc(page, order);
1543 	pgalloc_tag_add(page, current, 1 << order);
1544 }
1545 
1546 static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
1547 							unsigned int alloc_flags)
1548 {
1549 	post_alloc_hook(page, order, gfp_flags);
1550 
1551 	if (order && (gfp_flags & __GFP_COMP))
1552 		prep_compound_page(page, order);
1553 
1554 	/*
1555 	 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
1556 	 * allocate the page. The expectation is that the caller is taking
1557 	 * steps that will free more memory. The caller should avoid the page
1558 	 * being used for !PFMEMALLOC purposes.
1559 	 */
1560 	if (alloc_flags & ALLOC_NO_WATERMARKS)
1561 		set_page_pfmemalloc(page);
1562 	else
1563 		clear_page_pfmemalloc(page);
1564 }
1565 
1566 /*
1567  * Go through the free lists for the given migratetype and remove
1568  * the smallest available page from the freelists
1569  */
1570 static __always_inline
1571 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
1572 						int migratetype)
1573 {
1574 	unsigned int current_order;
1575 	struct free_area *area;
1576 	struct page *page;
1577 
1578 	/* Find a page of the appropriate size in the preferred list */
1579 	for (current_order = order; current_order < NR_PAGE_ORDERS; ++current_order) {
1580 		area = &(zone->free_area[current_order]);
1581 		page = get_page_from_free_area(area, migratetype);
1582 		if (!page)
1583 			continue;
1584 
1585 		page_del_and_expand(zone, page, order, current_order,
1586 				    migratetype);
1587 		trace_mm_page_alloc_zone_locked(page, order, migratetype,
1588 				pcp_allowed_order(order) &&
1589 				migratetype < MIGRATE_PCPTYPES);
1590 		return page;
1591 	}
1592 
1593 	return NULL;
1594 }
1595 
1596 
1597 /*
1598  * This array describes the order lists are fallen back to when
1599  * the free lists for the desirable migrate type are depleted
1600  *
1601  * The other migratetypes do not have fallbacks.
1602  */
1603 static int fallbacks[MIGRATE_PCPTYPES][MIGRATE_PCPTYPES - 1] = {
1604 	[MIGRATE_UNMOVABLE]   = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE   },
1605 	[MIGRATE_MOVABLE]     = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE },
1606 	[MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE,   MIGRATE_MOVABLE   },
1607 };
1608 
1609 #ifdef CONFIG_CMA
1610 static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1611 					unsigned int order)
1612 {
1613 	return __rmqueue_smallest(zone, order, MIGRATE_CMA);
1614 }
1615 #else
1616 static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1617 					unsigned int order) { return NULL; }
1618 #endif
1619 
1620 /*
1621  * Change the type of a block and move all its free pages to that
1622  * type's freelist.
1623  */
1624 static int __move_freepages_block(struct zone *zone, unsigned long start_pfn,
1625 				  int old_mt, int new_mt)
1626 {
1627 	struct page *page;
1628 	unsigned long pfn, end_pfn;
1629 	unsigned int order;
1630 	int pages_moved = 0;
1631 
1632 	VM_WARN_ON(start_pfn & (pageblock_nr_pages - 1));
1633 	end_pfn = pageblock_end_pfn(start_pfn);
1634 
1635 	for (pfn = start_pfn; pfn < end_pfn;) {
1636 		page = pfn_to_page(pfn);
1637 		if (!PageBuddy(page)) {
1638 			pfn++;
1639 			continue;
1640 		}
1641 
1642 		/* Make sure we are not inadvertently changing nodes */
1643 		VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
1644 		VM_BUG_ON_PAGE(page_zone(page) != zone, page);
1645 
1646 		order = buddy_order(page);
1647 
1648 		move_to_free_list(page, zone, order, old_mt, new_mt);
1649 
1650 		pfn += 1 << order;
1651 		pages_moved += 1 << order;
1652 	}
1653 
1654 	set_pageblock_migratetype(pfn_to_page(start_pfn), new_mt);
1655 
1656 	return pages_moved;
1657 }
1658 
1659 static bool prep_move_freepages_block(struct zone *zone, struct page *page,
1660 				      unsigned long *start_pfn,
1661 				      int *num_free, int *num_movable)
1662 {
1663 	unsigned long pfn, start, end;
1664 
1665 	pfn = page_to_pfn(page);
1666 	start = pageblock_start_pfn(pfn);
1667 	end = pageblock_end_pfn(pfn);
1668 
1669 	/*
1670 	 * The caller only has the lock for @zone, don't touch ranges
1671 	 * that straddle into other zones. While we could move part of
1672 	 * the range that's inside the zone, this call is usually
1673 	 * accompanied by other operations such as migratetype updates
1674 	 * which also should be locked.
1675 	 */
1676 	if (!zone_spans_pfn(zone, start))
1677 		return false;
1678 	if (!zone_spans_pfn(zone, end - 1))
1679 		return false;
1680 
1681 	*start_pfn = start;
1682 
1683 	if (num_free) {
1684 		*num_free = 0;
1685 		*num_movable = 0;
1686 		for (pfn = start; pfn < end;) {
1687 			page = pfn_to_page(pfn);
1688 			if (PageBuddy(page)) {
1689 				int nr = 1 << buddy_order(page);
1690 
1691 				*num_free += nr;
1692 				pfn += nr;
1693 				continue;
1694 			}
1695 			/*
1696 			 * We assume that pages that could be isolated for
1697 			 * migration are movable. But we don't actually try
1698 			 * isolating, as that would be expensive.
1699 			 */
1700 			if (PageLRU(page) || __PageMovable(page))
1701 				(*num_movable)++;
1702 			pfn++;
1703 		}
1704 	}
1705 
1706 	return true;
1707 }
1708 
1709 static int move_freepages_block(struct zone *zone, struct page *page,
1710 				int old_mt, int new_mt)
1711 {
1712 	unsigned long start_pfn;
1713 
1714 	if (!prep_move_freepages_block(zone, page, &start_pfn, NULL, NULL))
1715 		return -1;
1716 
1717 	return __move_freepages_block(zone, start_pfn, old_mt, new_mt);
1718 }
1719 
1720 #ifdef CONFIG_MEMORY_ISOLATION
1721 /* Look for a buddy that straddles start_pfn */
1722 static unsigned long find_large_buddy(unsigned long start_pfn)
1723 {
1724 	int order = 0;
1725 	struct page *page;
1726 	unsigned long pfn = start_pfn;
1727 
1728 	while (!PageBuddy(page = pfn_to_page(pfn))) {
1729 		/* Nothing found */
1730 		if (++order > MAX_PAGE_ORDER)
1731 			return start_pfn;
1732 		pfn &= ~0UL << order;
1733 	}
1734 
1735 	/*
1736 	 * Found a preceding buddy, but does it straddle?
1737 	 */
1738 	if (pfn + (1 << buddy_order(page)) > start_pfn)
1739 		return pfn;
1740 
1741 	/* Nothing found */
1742 	return start_pfn;
1743 }
1744 
1745 /**
1746  * move_freepages_block_isolate - move free pages in block for page isolation
1747  * @zone: the zone
1748  * @page: the pageblock page
1749  * @migratetype: migratetype to set on the pageblock
1750  *
1751  * This is similar to move_freepages_block(), but handles the special
1752  * case encountered in page isolation, where the block of interest
1753  * might be part of a larger buddy spanning multiple pageblocks.
1754  *
1755  * Unlike the regular page allocator path, which moves pages while
1756  * stealing buddies off the freelist, page isolation is interested in
1757  * arbitrary pfn ranges that may have overlapping buddies on both ends.
1758  *
1759  * This function handles that. Straddling buddies are split into
1760  * individual pageblocks. Only the block of interest is moved.
1761  *
1762  * Returns %true if pages could be moved, %false otherwise.
1763  */
1764 bool move_freepages_block_isolate(struct zone *zone, struct page *page,
1765 				  int migratetype)
1766 {
1767 	unsigned long start_pfn, pfn;
1768 
1769 	if (!prep_move_freepages_block(zone, page, &start_pfn, NULL, NULL))
1770 		return false;
1771 
1772 	/* No splits needed if buddies can't span multiple blocks */
1773 	if (pageblock_order == MAX_PAGE_ORDER)
1774 		goto move;
1775 
1776 	/* We're a tail block in a larger buddy */
1777 	pfn = find_large_buddy(start_pfn);
1778 	if (pfn != start_pfn) {
1779 		struct page *buddy = pfn_to_page(pfn);
1780 		int order = buddy_order(buddy);
1781 
1782 		del_page_from_free_list(buddy, zone, order,
1783 					get_pfnblock_migratetype(buddy, pfn));
1784 		set_pageblock_migratetype(page, migratetype);
1785 		split_large_buddy(zone, buddy, pfn, order, FPI_NONE);
1786 		return true;
1787 	}
1788 
1789 	/* We're the starting block of a larger buddy */
1790 	if (PageBuddy(page) && buddy_order(page) > pageblock_order) {
1791 		int order = buddy_order(page);
1792 
1793 		del_page_from_free_list(page, zone, order,
1794 					get_pfnblock_migratetype(page, pfn));
1795 		set_pageblock_migratetype(page, migratetype);
1796 		split_large_buddy(zone, page, pfn, order, FPI_NONE);
1797 		return true;
1798 	}
1799 move:
1800 	__move_freepages_block(zone, start_pfn,
1801 			       get_pfnblock_migratetype(page, start_pfn),
1802 			       migratetype);
1803 	return true;
1804 }
1805 #endif /* CONFIG_MEMORY_ISOLATION */
1806 
1807 static void change_pageblock_range(struct page *pageblock_page,
1808 					int start_order, int migratetype)
1809 {
1810 	int nr_pageblocks = 1 << (start_order - pageblock_order);
1811 
1812 	while (nr_pageblocks--) {
1813 		set_pageblock_migratetype(pageblock_page, migratetype);
1814 		pageblock_page += pageblock_nr_pages;
1815 	}
1816 }
1817 
1818 /*
1819  * When we are falling back to another migratetype during allocation, try to
1820  * steal extra free pages from the same pageblocks to satisfy further
1821  * allocations, instead of polluting multiple pageblocks.
1822  *
1823  * If we are stealing a relatively large buddy page, it is likely there will
1824  * be more free pages in the pageblock, so try to steal them all. For
1825  * reclaimable and unmovable allocations, we steal regardless of page size,
1826  * as fragmentation caused by those allocations polluting movable pageblocks
1827  * is worse than movable allocations stealing from unmovable and reclaimable
1828  * pageblocks.
1829  */
1830 static bool can_steal_fallback(unsigned int order, int start_mt)
1831 {
1832 	/*
1833 	 * Leaving this order check is intended, although there is
1834 	 * relaxed order check in next check. The reason is that
1835 	 * we can actually steal whole pageblock if this condition met,
1836 	 * but, below check doesn't guarantee it and that is just heuristic
1837 	 * so could be changed anytime.
1838 	 */
1839 	if (order >= pageblock_order)
1840 		return true;
1841 
1842 	if (order >= pageblock_order / 2 ||
1843 		start_mt == MIGRATE_RECLAIMABLE ||
1844 		start_mt == MIGRATE_UNMOVABLE ||
1845 		page_group_by_mobility_disabled)
1846 		return true;
1847 
1848 	return false;
1849 }
1850 
1851 static inline bool boost_watermark(struct zone *zone)
1852 {
1853 	unsigned long max_boost;
1854 
1855 	if (!watermark_boost_factor)
1856 		return false;
1857 	/*
1858 	 * Don't bother in zones that are unlikely to produce results.
1859 	 * On small machines, including kdump capture kernels running
1860 	 * in a small area, boosting the watermark can cause an out of
1861 	 * memory situation immediately.
1862 	 */
1863 	if ((pageblock_nr_pages * 4) > zone_managed_pages(zone))
1864 		return false;
1865 
1866 	max_boost = mult_frac(zone->_watermark[WMARK_HIGH],
1867 			watermark_boost_factor, 10000);
1868 
1869 	/*
1870 	 * high watermark may be uninitialised if fragmentation occurs
1871 	 * very early in boot so do not boost. We do not fall
1872 	 * through and boost by pageblock_nr_pages as failing
1873 	 * allocations that early means that reclaim is not going
1874 	 * to help and it may even be impossible to reclaim the
1875 	 * boosted watermark resulting in a hang.
1876 	 */
1877 	if (!max_boost)
1878 		return false;
1879 
1880 	max_boost = max(pageblock_nr_pages, max_boost);
1881 
1882 	zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages,
1883 		max_boost);
1884 
1885 	return true;
1886 }
1887 
1888 /*
1889  * This function implements actual steal behaviour. If order is large enough, we
1890  * can claim the whole pageblock for the requested migratetype. If not, we check
1891  * the pageblock for constituent pages; if at least half of the pages are free
1892  * or compatible, we can still claim the whole block, so pages freed in the
1893  * future will be put on the correct free list. Otherwise, we isolate exactly
1894  * the order we need from the fallback block and leave its migratetype alone.
1895  */
1896 static struct page *
1897 steal_suitable_fallback(struct zone *zone, struct page *page,
1898 			int current_order, int order, int start_type,
1899 			unsigned int alloc_flags, bool whole_block)
1900 {
1901 	int free_pages, movable_pages, alike_pages;
1902 	unsigned long start_pfn;
1903 	int block_type;
1904 
1905 	block_type = get_pageblock_migratetype(page);
1906 
1907 	/*
1908 	 * This can happen due to races and we want to prevent broken
1909 	 * highatomic accounting.
1910 	 */
1911 	if (is_migrate_highatomic(block_type))
1912 		goto single_page;
1913 
1914 	/* Take ownership for orders >= pageblock_order */
1915 	if (current_order >= pageblock_order) {
1916 		unsigned int nr_added;
1917 
1918 		del_page_from_free_list(page, zone, current_order, block_type);
1919 		change_pageblock_range(page, current_order, start_type);
1920 		nr_added = expand(zone, page, order, current_order, start_type);
1921 		account_freepages(zone, nr_added, start_type);
1922 		return page;
1923 	}
1924 
1925 	/*
1926 	 * Boost watermarks to increase reclaim pressure to reduce the
1927 	 * likelihood of future fallbacks. Wake kswapd now as the node
1928 	 * may be balanced overall and kswapd will not wake naturally.
1929 	 */
1930 	if (boost_watermark(zone) && (alloc_flags & ALLOC_KSWAPD))
1931 		set_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
1932 
1933 	/* We are not allowed to try stealing from the whole block */
1934 	if (!whole_block)
1935 		goto single_page;
1936 
1937 	/* moving whole block can fail due to zone boundary conditions */
1938 	if (!prep_move_freepages_block(zone, page, &start_pfn, &free_pages,
1939 				       &movable_pages))
1940 		goto single_page;
1941 
1942 	/*
1943 	 * Determine how many pages are compatible with our allocation.
1944 	 * For movable allocation, it's the number of movable pages which
1945 	 * we just obtained. For other types it's a bit more tricky.
1946 	 */
1947 	if (start_type == MIGRATE_MOVABLE) {
1948 		alike_pages = movable_pages;
1949 	} else {
1950 		/*
1951 		 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
1952 		 * to MOVABLE pageblock, consider all non-movable pages as
1953 		 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
1954 		 * vice versa, be conservative since we can't distinguish the
1955 		 * exact migratetype of non-movable pages.
1956 		 */
1957 		if (block_type == MIGRATE_MOVABLE)
1958 			alike_pages = pageblock_nr_pages
1959 						- (free_pages + movable_pages);
1960 		else
1961 			alike_pages = 0;
1962 	}
1963 	/*
1964 	 * If a sufficient number of pages in the block are either free or of
1965 	 * compatible migratability as our allocation, claim the whole block.
1966 	 */
1967 	if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
1968 			page_group_by_mobility_disabled) {
1969 		__move_freepages_block(zone, start_pfn, block_type, start_type);
1970 		return __rmqueue_smallest(zone, order, start_type);
1971 	}
1972 
1973 single_page:
1974 	page_del_and_expand(zone, page, order, current_order, block_type);
1975 	return page;
1976 }
1977 
1978 /*
1979  * Check whether there is a suitable fallback freepage with requested order.
1980  * If only_stealable is true, this function returns fallback_mt only if
1981  * we can steal other freepages all together. This would help to reduce
1982  * fragmentation due to mixed migratetype pages in one pageblock.
1983  */
1984 int find_suitable_fallback(struct free_area *area, unsigned int order,
1985 			int migratetype, bool only_stealable, bool *can_steal)
1986 {
1987 	int i;
1988 	int fallback_mt;
1989 
1990 	if (area->nr_free == 0)
1991 		return -1;
1992 
1993 	*can_steal = false;
1994 	for (i = 0; i < MIGRATE_PCPTYPES - 1 ; i++) {
1995 		fallback_mt = fallbacks[migratetype][i];
1996 		if (free_area_empty(area, fallback_mt))
1997 			continue;
1998 
1999 		if (can_steal_fallback(order, migratetype))
2000 			*can_steal = true;
2001 
2002 		if (!only_stealable)
2003 			return fallback_mt;
2004 
2005 		if (*can_steal)
2006 			return fallback_mt;
2007 	}
2008 
2009 	return -1;
2010 }
2011 
2012 /*
2013  * Reserve the pageblock(s) surrounding an allocation request for
2014  * exclusive use of high-order atomic allocations if there are no
2015  * empty page blocks that contain a page with a suitable order
2016  */
2017 static void reserve_highatomic_pageblock(struct page *page, int order,
2018 					 struct zone *zone)
2019 {
2020 	int mt;
2021 	unsigned long max_managed, flags;
2022 
2023 	/*
2024 	 * The number reserved as: minimum is 1 pageblock, maximum is
2025 	 * roughly 1% of a zone. But if 1% of a zone falls below a
2026 	 * pageblock size, then don't reserve any pageblocks.
2027 	 * Check is race-prone but harmless.
2028 	 */
2029 	if ((zone_managed_pages(zone) / 100) < pageblock_nr_pages)
2030 		return;
2031 	max_managed = ALIGN((zone_managed_pages(zone) / 100), pageblock_nr_pages);
2032 	if (zone->nr_reserved_highatomic >= max_managed)
2033 		return;
2034 
2035 	spin_lock_irqsave(&zone->lock, flags);
2036 
2037 	/* Recheck the nr_reserved_highatomic limit under the lock */
2038 	if (zone->nr_reserved_highatomic >= max_managed)
2039 		goto out_unlock;
2040 
2041 	/* Yoink! */
2042 	mt = get_pageblock_migratetype(page);
2043 	/* Only reserve normal pageblocks (i.e., they can merge with others) */
2044 	if (!migratetype_is_mergeable(mt))
2045 		goto out_unlock;
2046 
2047 	if (order < pageblock_order) {
2048 		if (move_freepages_block(zone, page, mt, MIGRATE_HIGHATOMIC) == -1)
2049 			goto out_unlock;
2050 		zone->nr_reserved_highatomic += pageblock_nr_pages;
2051 	} else {
2052 		change_pageblock_range(page, order, MIGRATE_HIGHATOMIC);
2053 		zone->nr_reserved_highatomic += 1 << order;
2054 	}
2055 
2056 out_unlock:
2057 	spin_unlock_irqrestore(&zone->lock, flags);
2058 }
2059 
2060 /*
2061  * Used when an allocation is about to fail under memory pressure. This
2062  * potentially hurts the reliability of high-order allocations when under
2063  * intense memory pressure but failed atomic allocations should be easier
2064  * to recover from than an OOM.
2065  *
2066  * If @force is true, try to unreserve pageblocks even though highatomic
2067  * pageblock is exhausted.
2068  */
2069 static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
2070 						bool force)
2071 {
2072 	struct zonelist *zonelist = ac->zonelist;
2073 	unsigned long flags;
2074 	struct zoneref *z;
2075 	struct zone *zone;
2076 	struct page *page;
2077 	int order;
2078 	int ret;
2079 
2080 	for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->highest_zoneidx,
2081 								ac->nodemask) {
2082 		/*
2083 		 * Preserve at least one pageblock unless memory pressure
2084 		 * is really high.
2085 		 */
2086 		if (!force && zone->nr_reserved_highatomic <=
2087 					pageblock_nr_pages)
2088 			continue;
2089 
2090 		spin_lock_irqsave(&zone->lock, flags);
2091 		for (order = 0; order < NR_PAGE_ORDERS; order++) {
2092 			struct free_area *area = &(zone->free_area[order]);
2093 			int mt;
2094 
2095 			page = get_page_from_free_area(area, MIGRATE_HIGHATOMIC);
2096 			if (!page)
2097 				continue;
2098 
2099 			mt = get_pageblock_migratetype(page);
2100 			/*
2101 			 * In page freeing path, migratetype change is racy so
2102 			 * we can counter several free pages in a pageblock
2103 			 * in this loop although we changed the pageblock type
2104 			 * from highatomic to ac->migratetype. So we should
2105 			 * adjust the count once.
2106 			 */
2107 			if (is_migrate_highatomic(mt)) {
2108 				unsigned long size;
2109 				/*
2110 				 * It should never happen but changes to
2111 				 * locking could inadvertently allow a per-cpu
2112 				 * drain to add pages to MIGRATE_HIGHATOMIC
2113 				 * while unreserving so be safe and watch for
2114 				 * underflows.
2115 				 */
2116 				size = max(pageblock_nr_pages, 1UL << order);
2117 				size = min(size, zone->nr_reserved_highatomic);
2118 				zone->nr_reserved_highatomic -= size;
2119 			}
2120 
2121 			/*
2122 			 * Convert to ac->migratetype and avoid the normal
2123 			 * pageblock stealing heuristics. Minimally, the caller
2124 			 * is doing the work and needs the pages. More
2125 			 * importantly, if the block was always converted to
2126 			 * MIGRATE_UNMOVABLE or another type then the number
2127 			 * of pageblocks that cannot be completely freed
2128 			 * may increase.
2129 			 */
2130 			if (order < pageblock_order)
2131 				ret = move_freepages_block(zone, page, mt,
2132 							   ac->migratetype);
2133 			else {
2134 				move_to_free_list(page, zone, order, mt,
2135 						  ac->migratetype);
2136 				change_pageblock_range(page, order,
2137 						       ac->migratetype);
2138 				ret = 1;
2139 			}
2140 			/*
2141 			 * Reserving the block(s) already succeeded,
2142 			 * so this should not fail on zone boundaries.
2143 			 */
2144 			WARN_ON_ONCE(ret == -1);
2145 			if (ret > 0) {
2146 				spin_unlock_irqrestore(&zone->lock, flags);
2147 				return ret;
2148 			}
2149 		}
2150 		spin_unlock_irqrestore(&zone->lock, flags);
2151 	}
2152 
2153 	return false;
2154 }
2155 
2156 /*
2157  * Try finding a free buddy page on the fallback list and put it on the free
2158  * list of requested migratetype, possibly along with other pages from the same
2159  * block, depending on fragmentation avoidance heuristics. Returns true if
2160  * fallback was found so that __rmqueue_smallest() can grab it.
2161  *
2162  * The use of signed ints for order and current_order is a deliberate
2163  * deviation from the rest of this file, to make the for loop
2164  * condition simpler.
2165  */
2166 static __always_inline struct page *
2167 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype,
2168 						unsigned int alloc_flags)
2169 {
2170 	struct free_area *area;
2171 	int current_order;
2172 	int min_order = order;
2173 	struct page *page;
2174 	int fallback_mt;
2175 	bool can_steal;
2176 
2177 	/*
2178 	 * Do not steal pages from freelists belonging to other pageblocks
2179 	 * i.e. orders < pageblock_order. If there are no local zones free,
2180 	 * the zonelists will be reiterated without ALLOC_NOFRAGMENT.
2181 	 */
2182 	if (order < pageblock_order && alloc_flags & ALLOC_NOFRAGMENT)
2183 		min_order = pageblock_order;
2184 
2185 	/*
2186 	 * Find the largest available free page in the other list. This roughly
2187 	 * approximates finding the pageblock with the most free pages, which
2188 	 * would be too costly to do exactly.
2189 	 */
2190 	for (current_order = MAX_PAGE_ORDER; current_order >= min_order;
2191 				--current_order) {
2192 		area = &(zone->free_area[current_order]);
2193 		fallback_mt = find_suitable_fallback(area, current_order,
2194 				start_migratetype, false, &can_steal);
2195 		if (fallback_mt == -1)
2196 			continue;
2197 
2198 		/*
2199 		 * We cannot steal all free pages from the pageblock and the
2200 		 * requested migratetype is movable. In that case it's better to
2201 		 * steal and split the smallest available page instead of the
2202 		 * largest available page, because even if the next movable
2203 		 * allocation falls back into a different pageblock than this
2204 		 * one, it won't cause permanent fragmentation.
2205 		 */
2206 		if (!can_steal && start_migratetype == MIGRATE_MOVABLE
2207 					&& current_order > order)
2208 			goto find_smallest;
2209 
2210 		goto do_steal;
2211 	}
2212 
2213 	return NULL;
2214 
2215 find_smallest:
2216 	for (current_order = order; current_order < NR_PAGE_ORDERS; current_order++) {
2217 		area = &(zone->free_area[current_order]);
2218 		fallback_mt = find_suitable_fallback(area, current_order,
2219 				start_migratetype, false, &can_steal);
2220 		if (fallback_mt != -1)
2221 			break;
2222 	}
2223 
2224 	/*
2225 	 * This should not happen - we already found a suitable fallback
2226 	 * when looking for the largest page.
2227 	 */
2228 	VM_BUG_ON(current_order > MAX_PAGE_ORDER);
2229 
2230 do_steal:
2231 	page = get_page_from_free_area(area, fallback_mt);
2232 
2233 	/* take off list, maybe claim block, expand remainder */
2234 	page = steal_suitable_fallback(zone, page, current_order, order,
2235 				       start_migratetype, alloc_flags, can_steal);
2236 
2237 	trace_mm_page_alloc_extfrag(page, order, current_order,
2238 		start_migratetype, fallback_mt);
2239 
2240 	return page;
2241 }
2242 
2243 /*
2244  * Do the hard work of removing an element from the buddy allocator.
2245  * Call me with the zone->lock already held.
2246  */
2247 static __always_inline struct page *
2248 __rmqueue(struct zone *zone, unsigned int order, int migratetype,
2249 						unsigned int alloc_flags)
2250 {
2251 	struct page *page;
2252 
2253 	if (IS_ENABLED(CONFIG_CMA)) {
2254 		/*
2255 		 * Balance movable allocations between regular and CMA areas by
2256 		 * allocating from CMA when over half of the zone's free memory
2257 		 * is in the CMA area.
2258 		 */
2259 		if (alloc_flags & ALLOC_CMA &&
2260 		    zone_page_state(zone, NR_FREE_CMA_PAGES) >
2261 		    zone_page_state(zone, NR_FREE_PAGES) / 2) {
2262 			page = __rmqueue_cma_fallback(zone, order);
2263 			if (page)
2264 				return page;
2265 		}
2266 	}
2267 
2268 	page = __rmqueue_smallest(zone, order, migratetype);
2269 	if (unlikely(!page)) {
2270 		if (alloc_flags & ALLOC_CMA)
2271 			page = __rmqueue_cma_fallback(zone, order);
2272 
2273 		if (!page)
2274 			page = __rmqueue_fallback(zone, order, migratetype,
2275 						  alloc_flags);
2276 	}
2277 	return page;
2278 }
2279 
2280 /*
2281  * Obtain a specified number of elements from the buddy allocator, all under
2282  * a single hold of the lock, for efficiency.  Add them to the supplied list.
2283  * Returns the number of new pages which were placed at *list.
2284  */
2285 static int rmqueue_bulk(struct zone *zone, unsigned int order,
2286 			unsigned long count, struct list_head *list,
2287 			int migratetype, unsigned int alloc_flags)
2288 {
2289 	unsigned long flags;
2290 	int i;
2291 
2292 	spin_lock_irqsave(&zone->lock, flags);
2293 	for (i = 0; i < count; ++i) {
2294 		struct page *page = __rmqueue(zone, order, migratetype,
2295 								alloc_flags);
2296 		if (unlikely(page == NULL))
2297 			break;
2298 
2299 		/*
2300 		 * Split buddy pages returned by expand() are received here in
2301 		 * physical page order. The page is added to the tail of
2302 		 * caller's list. From the callers perspective, the linked list
2303 		 * is ordered by page number under some conditions. This is
2304 		 * useful for IO devices that can forward direction from the
2305 		 * head, thus also in the physical page order. This is useful
2306 		 * for IO devices that can merge IO requests if the physical
2307 		 * pages are ordered properly.
2308 		 */
2309 		list_add_tail(&page->pcp_list, list);
2310 	}
2311 	spin_unlock_irqrestore(&zone->lock, flags);
2312 
2313 	return i;
2314 }
2315 
2316 /*
2317  * Called from the vmstat counter updater to decay the PCP high.
2318  * Return whether there are addition works to do.
2319  */
2320 int decay_pcp_high(struct zone *zone, struct per_cpu_pages *pcp)
2321 {
2322 	int high_min, to_drain, batch;
2323 	int todo = 0;
2324 
2325 	high_min = READ_ONCE(pcp->high_min);
2326 	batch = READ_ONCE(pcp->batch);
2327 	/*
2328 	 * Decrease pcp->high periodically to try to free possible
2329 	 * idle PCP pages.  And, avoid to free too many pages to
2330 	 * control latency.  This caps pcp->high decrement too.
2331 	 */
2332 	if (pcp->high > high_min) {
2333 		pcp->high = max3(pcp->count - (batch << CONFIG_PCP_BATCH_SCALE_MAX),
2334 				 pcp->high - (pcp->high >> 3), high_min);
2335 		if (pcp->high > high_min)
2336 			todo++;
2337 	}
2338 
2339 	to_drain = pcp->count - pcp->high;
2340 	if (to_drain > 0) {
2341 		spin_lock(&pcp->lock);
2342 		free_pcppages_bulk(zone, to_drain, pcp, 0);
2343 		spin_unlock(&pcp->lock);
2344 		todo++;
2345 	}
2346 
2347 	return todo;
2348 }
2349 
2350 #ifdef CONFIG_NUMA
2351 /*
2352  * Called from the vmstat counter updater to drain pagesets of this
2353  * currently executing processor on remote nodes after they have
2354  * expired.
2355  */
2356 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
2357 {
2358 	int to_drain, batch;
2359 
2360 	batch = READ_ONCE(pcp->batch);
2361 	to_drain = min(pcp->count, batch);
2362 	if (to_drain > 0) {
2363 		spin_lock(&pcp->lock);
2364 		free_pcppages_bulk(zone, to_drain, pcp, 0);
2365 		spin_unlock(&pcp->lock);
2366 	}
2367 }
2368 #endif
2369 
2370 /*
2371  * Drain pcplists of the indicated processor and zone.
2372  */
2373 static void drain_pages_zone(unsigned int cpu, struct zone *zone)
2374 {
2375 	struct per_cpu_pages *pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
2376 	int count;
2377 
2378 	do {
2379 		spin_lock(&pcp->lock);
2380 		count = pcp->count;
2381 		if (count) {
2382 			int to_drain = min(count,
2383 				pcp->batch << CONFIG_PCP_BATCH_SCALE_MAX);
2384 
2385 			free_pcppages_bulk(zone, to_drain, pcp, 0);
2386 			count -= to_drain;
2387 		}
2388 		spin_unlock(&pcp->lock);
2389 	} while (count);
2390 }
2391 
2392 /*
2393  * Drain pcplists of all zones on the indicated processor.
2394  */
2395 static void drain_pages(unsigned int cpu)
2396 {
2397 	struct zone *zone;
2398 
2399 	for_each_populated_zone(zone) {
2400 		drain_pages_zone(cpu, zone);
2401 	}
2402 }
2403 
2404 /*
2405  * Spill all of this CPU's per-cpu pages back into the buddy allocator.
2406  */
2407 void drain_local_pages(struct zone *zone)
2408 {
2409 	int cpu = smp_processor_id();
2410 
2411 	if (zone)
2412 		drain_pages_zone(cpu, zone);
2413 	else
2414 		drain_pages(cpu);
2415 }
2416 
2417 /*
2418  * The implementation of drain_all_pages(), exposing an extra parameter to
2419  * drain on all cpus.
2420  *
2421  * drain_all_pages() is optimized to only execute on cpus where pcplists are
2422  * not empty. The check for non-emptiness can however race with a free to
2423  * pcplist that has not yet increased the pcp->count from 0 to 1. Callers
2424  * that need the guarantee that every CPU has drained can disable the
2425  * optimizing racy check.
2426  */
2427 static void __drain_all_pages(struct zone *zone, bool force_all_cpus)
2428 {
2429 	int cpu;
2430 
2431 	/*
2432 	 * Allocate in the BSS so we won't require allocation in
2433 	 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
2434 	 */
2435 	static cpumask_t cpus_with_pcps;
2436 
2437 	/*
2438 	 * Do not drain if one is already in progress unless it's specific to
2439 	 * a zone. Such callers are primarily CMA and memory hotplug and need
2440 	 * the drain to be complete when the call returns.
2441 	 */
2442 	if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
2443 		if (!zone)
2444 			return;
2445 		mutex_lock(&pcpu_drain_mutex);
2446 	}
2447 
2448 	/*
2449 	 * We don't care about racing with CPU hotplug event
2450 	 * as offline notification will cause the notified
2451 	 * cpu to drain that CPU pcps and on_each_cpu_mask
2452 	 * disables preemption as part of its processing
2453 	 */
2454 	for_each_online_cpu(cpu) {
2455 		struct per_cpu_pages *pcp;
2456 		struct zone *z;
2457 		bool has_pcps = false;
2458 
2459 		if (force_all_cpus) {
2460 			/*
2461 			 * The pcp.count check is racy, some callers need a
2462 			 * guarantee that no cpu is missed.
2463 			 */
2464 			has_pcps = true;
2465 		} else if (zone) {
2466 			pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
2467 			if (pcp->count)
2468 				has_pcps = true;
2469 		} else {
2470 			for_each_populated_zone(z) {
2471 				pcp = per_cpu_ptr(z->per_cpu_pageset, cpu);
2472 				if (pcp->count) {
2473 					has_pcps = true;
2474 					break;
2475 				}
2476 			}
2477 		}
2478 
2479 		if (has_pcps)
2480 			cpumask_set_cpu(cpu, &cpus_with_pcps);
2481 		else
2482 			cpumask_clear_cpu(cpu, &cpus_with_pcps);
2483 	}
2484 
2485 	for_each_cpu(cpu, &cpus_with_pcps) {
2486 		if (zone)
2487 			drain_pages_zone(cpu, zone);
2488 		else
2489 			drain_pages(cpu);
2490 	}
2491 
2492 	mutex_unlock(&pcpu_drain_mutex);
2493 }
2494 
2495 /*
2496  * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
2497  *
2498  * When zone parameter is non-NULL, spill just the single zone's pages.
2499  */
2500 void drain_all_pages(struct zone *zone)
2501 {
2502 	__drain_all_pages(zone, false);
2503 }
2504 
2505 static int nr_pcp_free(struct per_cpu_pages *pcp, int batch, int high, bool free_high)
2506 {
2507 	int min_nr_free, max_nr_free;
2508 
2509 	/* Free as much as possible if batch freeing high-order pages. */
2510 	if (unlikely(free_high))
2511 		return min(pcp->count, batch << CONFIG_PCP_BATCH_SCALE_MAX);
2512 
2513 	/* Check for PCP disabled or boot pageset */
2514 	if (unlikely(high < batch))
2515 		return 1;
2516 
2517 	/* Leave at least pcp->batch pages on the list */
2518 	min_nr_free = batch;
2519 	max_nr_free = high - batch;
2520 
2521 	/*
2522 	 * Increase the batch number to the number of the consecutive
2523 	 * freed pages to reduce zone lock contention.
2524 	 */
2525 	batch = clamp_t(int, pcp->free_count, min_nr_free, max_nr_free);
2526 
2527 	return batch;
2528 }
2529 
2530 static int nr_pcp_high(struct per_cpu_pages *pcp, struct zone *zone,
2531 		       int batch, bool free_high)
2532 {
2533 	int high, high_min, high_max;
2534 
2535 	high_min = READ_ONCE(pcp->high_min);
2536 	high_max = READ_ONCE(pcp->high_max);
2537 	high = pcp->high = clamp(pcp->high, high_min, high_max);
2538 
2539 	if (unlikely(!high))
2540 		return 0;
2541 
2542 	if (unlikely(free_high)) {
2543 		pcp->high = max(high - (batch << CONFIG_PCP_BATCH_SCALE_MAX),
2544 				high_min);
2545 		return 0;
2546 	}
2547 
2548 	/*
2549 	 * If reclaim is active, limit the number of pages that can be
2550 	 * stored on pcp lists
2551 	 */
2552 	if (test_bit(ZONE_RECLAIM_ACTIVE, &zone->flags)) {
2553 		int free_count = max_t(int, pcp->free_count, batch);
2554 
2555 		pcp->high = max(high - free_count, high_min);
2556 		return min(batch << 2, pcp->high);
2557 	}
2558 
2559 	if (high_min == high_max)
2560 		return high;
2561 
2562 	if (test_bit(ZONE_BELOW_HIGH, &zone->flags)) {
2563 		int free_count = max_t(int, pcp->free_count, batch);
2564 
2565 		pcp->high = max(high - free_count, high_min);
2566 		high = max(pcp->count, high_min);
2567 	} else if (pcp->count >= high) {
2568 		int need_high = pcp->free_count + batch;
2569 
2570 		/* pcp->high should be large enough to hold batch freed pages */
2571 		if (pcp->high < need_high)
2572 			pcp->high = clamp(need_high, high_min, high_max);
2573 	}
2574 
2575 	return high;
2576 }
2577 
2578 static void free_unref_page_commit(struct zone *zone, struct per_cpu_pages *pcp,
2579 				   struct page *page, int migratetype,
2580 				   unsigned int order)
2581 {
2582 	int high, batch;
2583 	int pindex;
2584 	bool free_high = false;
2585 
2586 	/*
2587 	 * On freeing, reduce the number of pages that are batch allocated.
2588 	 * See nr_pcp_alloc() where alloc_factor is increased for subsequent
2589 	 * allocations.
2590 	 */
2591 	pcp->alloc_factor >>= 1;
2592 	__count_vm_events(PGFREE, 1 << order);
2593 	pindex = order_to_pindex(migratetype, order);
2594 	list_add(&page->pcp_list, &pcp->lists[pindex]);
2595 	pcp->count += 1 << order;
2596 
2597 	batch = READ_ONCE(pcp->batch);
2598 	/*
2599 	 * As high-order pages other than THP's stored on PCP can contribute
2600 	 * to fragmentation, limit the number stored when PCP is heavily
2601 	 * freeing without allocation. The remainder after bulk freeing
2602 	 * stops will be drained from vmstat refresh context.
2603 	 */
2604 	if (order && order <= PAGE_ALLOC_COSTLY_ORDER) {
2605 		free_high = (pcp->free_count >= batch &&
2606 			     (pcp->flags & PCPF_PREV_FREE_HIGH_ORDER) &&
2607 			     (!(pcp->flags & PCPF_FREE_HIGH_BATCH) ||
2608 			      pcp->count >= READ_ONCE(batch)));
2609 		pcp->flags |= PCPF_PREV_FREE_HIGH_ORDER;
2610 	} else if (pcp->flags & PCPF_PREV_FREE_HIGH_ORDER) {
2611 		pcp->flags &= ~PCPF_PREV_FREE_HIGH_ORDER;
2612 	}
2613 	if (pcp->free_count < (batch << CONFIG_PCP_BATCH_SCALE_MAX))
2614 		pcp->free_count += (1 << order);
2615 	high = nr_pcp_high(pcp, zone, batch, free_high);
2616 	if (pcp->count >= high) {
2617 		free_pcppages_bulk(zone, nr_pcp_free(pcp, batch, high, free_high),
2618 				   pcp, pindex);
2619 		if (test_bit(ZONE_BELOW_HIGH, &zone->flags) &&
2620 		    zone_watermark_ok(zone, 0, high_wmark_pages(zone),
2621 				      ZONE_MOVABLE, 0))
2622 			clear_bit(ZONE_BELOW_HIGH, &zone->flags);
2623 	}
2624 }
2625 
2626 /*
2627  * Free a pcp page
2628  */
2629 void free_unref_page(struct page *page, unsigned int order)
2630 {
2631 	unsigned long __maybe_unused UP_flags;
2632 	struct per_cpu_pages *pcp;
2633 	struct zone *zone;
2634 	unsigned long pfn = page_to_pfn(page);
2635 	int migratetype;
2636 
2637 	if (!pcp_allowed_order(order)) {
2638 		__free_pages_ok(page, order, FPI_NONE);
2639 		return;
2640 	}
2641 
2642 	if (!free_pages_prepare(page, order))
2643 		return;
2644 
2645 	/*
2646 	 * We only track unmovable, reclaimable and movable on pcp lists.
2647 	 * Place ISOLATE pages on the isolated list because they are being
2648 	 * offlined but treat HIGHATOMIC and CMA as movable pages so we can
2649 	 * get those areas back if necessary. Otherwise, we may have to free
2650 	 * excessively into the page allocator
2651 	 */
2652 	migratetype = get_pfnblock_migratetype(page, pfn);
2653 	if (unlikely(migratetype >= MIGRATE_PCPTYPES)) {
2654 		if (unlikely(is_migrate_isolate(migratetype))) {
2655 			free_one_page(page_zone(page), page, pfn, order, FPI_NONE);
2656 			return;
2657 		}
2658 		migratetype = MIGRATE_MOVABLE;
2659 	}
2660 
2661 	zone = page_zone(page);
2662 	pcp_trylock_prepare(UP_flags);
2663 	pcp = pcp_spin_trylock(zone->per_cpu_pageset);
2664 	if (pcp) {
2665 		free_unref_page_commit(zone, pcp, page, migratetype, order);
2666 		pcp_spin_unlock(pcp);
2667 	} else {
2668 		free_one_page(zone, page, pfn, order, FPI_NONE);
2669 	}
2670 	pcp_trylock_finish(UP_flags);
2671 }
2672 
2673 /*
2674  * Free a batch of folios
2675  */
2676 void free_unref_folios(struct folio_batch *folios)
2677 {
2678 	unsigned long __maybe_unused UP_flags;
2679 	struct per_cpu_pages *pcp = NULL;
2680 	struct zone *locked_zone = NULL;
2681 	int i, j;
2682 
2683 	/* Prepare folios for freeing */
2684 	for (i = 0, j = 0; i < folios->nr; i++) {
2685 		struct folio *folio = folios->folios[i];
2686 		unsigned long pfn = folio_pfn(folio);
2687 		unsigned int order = folio_order(folio);
2688 
2689 		if (!free_pages_prepare(&folio->page, order))
2690 			continue;
2691 		/*
2692 		 * Free orders not handled on the PCP directly to the
2693 		 * allocator.
2694 		 */
2695 		if (!pcp_allowed_order(order)) {
2696 			free_one_page(folio_zone(folio), &folio->page,
2697 				      pfn, order, FPI_NONE);
2698 			continue;
2699 		}
2700 		folio->private = (void *)(unsigned long)order;
2701 		if (j != i)
2702 			folios->folios[j] = folio;
2703 		j++;
2704 	}
2705 	folios->nr = j;
2706 
2707 	for (i = 0; i < folios->nr; i++) {
2708 		struct folio *folio = folios->folios[i];
2709 		struct zone *zone = folio_zone(folio);
2710 		unsigned long pfn = folio_pfn(folio);
2711 		unsigned int order = (unsigned long)folio->private;
2712 		int migratetype;
2713 
2714 		folio->private = NULL;
2715 		migratetype = get_pfnblock_migratetype(&folio->page, pfn);
2716 
2717 		/* Different zone requires a different pcp lock */
2718 		if (zone != locked_zone ||
2719 		    is_migrate_isolate(migratetype)) {
2720 			if (pcp) {
2721 				pcp_spin_unlock(pcp);
2722 				pcp_trylock_finish(UP_flags);
2723 				locked_zone = NULL;
2724 				pcp = NULL;
2725 			}
2726 
2727 			/*
2728 			 * Free isolated pages directly to the
2729 			 * allocator, see comment in free_unref_page.
2730 			 */
2731 			if (is_migrate_isolate(migratetype)) {
2732 				free_one_page(zone, &folio->page, pfn,
2733 					      order, FPI_NONE);
2734 				continue;
2735 			}
2736 
2737 			/*
2738 			 * trylock is necessary as folios may be getting freed
2739 			 * from IRQ or SoftIRQ context after an IO completion.
2740 			 */
2741 			pcp_trylock_prepare(UP_flags);
2742 			pcp = pcp_spin_trylock(zone->per_cpu_pageset);
2743 			if (unlikely(!pcp)) {
2744 				pcp_trylock_finish(UP_flags);
2745 				free_one_page(zone, &folio->page, pfn,
2746 					      order, FPI_NONE);
2747 				continue;
2748 			}
2749 			locked_zone = zone;
2750 		}
2751 
2752 		/*
2753 		 * Non-isolated types over MIGRATE_PCPTYPES get added
2754 		 * to the MIGRATE_MOVABLE pcp list.
2755 		 */
2756 		if (unlikely(migratetype >= MIGRATE_PCPTYPES))
2757 			migratetype = MIGRATE_MOVABLE;
2758 
2759 		trace_mm_page_free_batched(&folio->page);
2760 		free_unref_page_commit(zone, pcp, &folio->page, migratetype,
2761 				order);
2762 	}
2763 
2764 	if (pcp) {
2765 		pcp_spin_unlock(pcp);
2766 		pcp_trylock_finish(UP_flags);
2767 	}
2768 	folio_batch_reinit(folios);
2769 }
2770 
2771 /*
2772  * split_page takes a non-compound higher-order page, and splits it into
2773  * n (1<<order) sub-pages: page[0..n]
2774  * Each sub-page must be freed individually.
2775  *
2776  * Note: this is probably too low level an operation for use in drivers.
2777  * Please consult with lkml before using this in your driver.
2778  */
2779 void split_page(struct page *page, unsigned int order)
2780 {
2781 	int i;
2782 
2783 	VM_BUG_ON_PAGE(PageCompound(page), page);
2784 	VM_BUG_ON_PAGE(!page_count(page), page);
2785 
2786 	for (i = 1; i < (1 << order); i++)
2787 		set_page_refcounted(page + i);
2788 	split_page_owner(page, order, 0);
2789 	pgalloc_tag_split(page_folio(page), order, 0);
2790 	split_page_memcg(page, order, 0);
2791 }
2792 EXPORT_SYMBOL_GPL(split_page);
2793 
2794 int __isolate_free_page(struct page *page, unsigned int order)
2795 {
2796 	struct zone *zone = page_zone(page);
2797 	int mt = get_pageblock_migratetype(page);
2798 
2799 	if (!is_migrate_isolate(mt)) {
2800 		unsigned long watermark;
2801 		/*
2802 		 * Obey watermarks as if the page was being allocated. We can
2803 		 * emulate a high-order watermark check with a raised order-0
2804 		 * watermark, because we already know our high-order page
2805 		 * exists.
2806 		 */
2807 		watermark = zone->_watermark[WMARK_MIN] + (1UL << order);
2808 		if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
2809 			return 0;
2810 	}
2811 
2812 	del_page_from_free_list(page, zone, order, mt);
2813 
2814 	/*
2815 	 * Set the pageblock if the isolated page is at least half of a
2816 	 * pageblock
2817 	 */
2818 	if (order >= pageblock_order - 1) {
2819 		struct page *endpage = page + (1 << order) - 1;
2820 		for (; page < endpage; page += pageblock_nr_pages) {
2821 			int mt = get_pageblock_migratetype(page);
2822 			/*
2823 			 * Only change normal pageblocks (i.e., they can merge
2824 			 * with others)
2825 			 */
2826 			if (migratetype_is_mergeable(mt))
2827 				move_freepages_block(zone, page, mt,
2828 						     MIGRATE_MOVABLE);
2829 		}
2830 	}
2831 
2832 	return 1UL << order;
2833 }
2834 
2835 /**
2836  * __putback_isolated_page - Return a now-isolated page back where we got it
2837  * @page: Page that was isolated
2838  * @order: Order of the isolated page
2839  * @mt: The page's pageblock's migratetype
2840  *
2841  * This function is meant to return a page pulled from the free lists via
2842  * __isolate_free_page back to the free lists they were pulled from.
2843  */
2844 void __putback_isolated_page(struct page *page, unsigned int order, int mt)
2845 {
2846 	struct zone *zone = page_zone(page);
2847 
2848 	/* zone lock should be held when this function is called */
2849 	lockdep_assert_held(&zone->lock);
2850 
2851 	/* Return isolated page to tail of freelist. */
2852 	__free_one_page(page, page_to_pfn(page), zone, order, mt,
2853 			FPI_SKIP_REPORT_NOTIFY | FPI_TO_TAIL);
2854 }
2855 
2856 /*
2857  * Update NUMA hit/miss statistics
2858  */
2859 static inline void zone_statistics(struct zone *preferred_zone, struct zone *z,
2860 				   long nr_account)
2861 {
2862 #ifdef CONFIG_NUMA
2863 	enum numa_stat_item local_stat = NUMA_LOCAL;
2864 
2865 	/* skip numa counters update if numa stats is disabled */
2866 	if (!static_branch_likely(&vm_numa_stat_key))
2867 		return;
2868 
2869 	if (zone_to_nid(z) != numa_node_id())
2870 		local_stat = NUMA_OTHER;
2871 
2872 	if (zone_to_nid(z) == zone_to_nid(preferred_zone))
2873 		__count_numa_events(z, NUMA_HIT, nr_account);
2874 	else {
2875 		__count_numa_events(z, NUMA_MISS, nr_account);
2876 		__count_numa_events(preferred_zone, NUMA_FOREIGN, nr_account);
2877 	}
2878 	__count_numa_events(z, local_stat, nr_account);
2879 #endif
2880 }
2881 
2882 static __always_inline
2883 struct page *rmqueue_buddy(struct zone *preferred_zone, struct zone *zone,
2884 			   unsigned int order, unsigned int alloc_flags,
2885 			   int migratetype)
2886 {
2887 	struct page *page;
2888 	unsigned long flags;
2889 
2890 	do {
2891 		page = NULL;
2892 		spin_lock_irqsave(&zone->lock, flags);
2893 		if (alloc_flags & ALLOC_HIGHATOMIC)
2894 			page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
2895 		if (!page) {
2896 			page = __rmqueue(zone, order, migratetype, alloc_flags);
2897 
2898 			/*
2899 			 * If the allocation fails, allow OOM handling and
2900 			 * order-0 (atomic) allocs access to HIGHATOMIC
2901 			 * reserves as failing now is worse than failing a
2902 			 * high-order atomic allocation in the future.
2903 			 */
2904 			if (!page && (alloc_flags & (ALLOC_OOM|ALLOC_NON_BLOCK)))
2905 				page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
2906 
2907 			if (!page) {
2908 				spin_unlock_irqrestore(&zone->lock, flags);
2909 				return NULL;
2910 			}
2911 		}
2912 		spin_unlock_irqrestore(&zone->lock, flags);
2913 	} while (check_new_pages(page, order));
2914 
2915 	__count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
2916 	zone_statistics(preferred_zone, zone, 1);
2917 
2918 	return page;
2919 }
2920 
2921 static int nr_pcp_alloc(struct per_cpu_pages *pcp, struct zone *zone, int order)
2922 {
2923 	int high, base_batch, batch, max_nr_alloc;
2924 	int high_max, high_min;
2925 
2926 	base_batch = READ_ONCE(pcp->batch);
2927 	high_min = READ_ONCE(pcp->high_min);
2928 	high_max = READ_ONCE(pcp->high_max);
2929 	high = pcp->high = clamp(pcp->high, high_min, high_max);
2930 
2931 	/* Check for PCP disabled or boot pageset */
2932 	if (unlikely(high < base_batch))
2933 		return 1;
2934 
2935 	if (order)
2936 		batch = base_batch;
2937 	else
2938 		batch = (base_batch << pcp->alloc_factor);
2939 
2940 	/*
2941 	 * If we had larger pcp->high, we could avoid to allocate from
2942 	 * zone.
2943 	 */
2944 	if (high_min != high_max && !test_bit(ZONE_BELOW_HIGH, &zone->flags))
2945 		high = pcp->high = min(high + batch, high_max);
2946 
2947 	if (!order) {
2948 		max_nr_alloc = max(high - pcp->count - base_batch, base_batch);
2949 		/*
2950 		 * Double the number of pages allocated each time there is
2951 		 * subsequent allocation of order-0 pages without any freeing.
2952 		 */
2953 		if (batch <= max_nr_alloc &&
2954 		    pcp->alloc_factor < CONFIG_PCP_BATCH_SCALE_MAX)
2955 			pcp->alloc_factor++;
2956 		batch = min(batch, max_nr_alloc);
2957 	}
2958 
2959 	/*
2960 	 * Scale batch relative to order if batch implies free pages
2961 	 * can be stored on the PCP. Batch can be 1 for small zones or
2962 	 * for boot pagesets which should never store free pages as
2963 	 * the pages may belong to arbitrary zones.
2964 	 */
2965 	if (batch > 1)
2966 		batch = max(batch >> order, 2);
2967 
2968 	return batch;
2969 }
2970 
2971 /* Remove page from the per-cpu list, caller must protect the list */
2972 static inline
2973 struct page *__rmqueue_pcplist(struct zone *zone, unsigned int order,
2974 			int migratetype,
2975 			unsigned int alloc_flags,
2976 			struct per_cpu_pages *pcp,
2977 			struct list_head *list)
2978 {
2979 	struct page *page;
2980 
2981 	do {
2982 		if (list_empty(list)) {
2983 			int batch = nr_pcp_alloc(pcp, zone, order);
2984 			int alloced;
2985 
2986 			alloced = rmqueue_bulk(zone, order,
2987 					batch, list,
2988 					migratetype, alloc_flags);
2989 
2990 			pcp->count += alloced << order;
2991 			if (unlikely(list_empty(list)))
2992 				return NULL;
2993 		}
2994 
2995 		page = list_first_entry(list, struct page, pcp_list);
2996 		list_del(&page->pcp_list);
2997 		pcp->count -= 1 << order;
2998 	} while (check_new_pages(page, order));
2999 
3000 	return page;
3001 }
3002 
3003 /* Lock and remove page from the per-cpu list */
3004 static struct page *rmqueue_pcplist(struct zone *preferred_zone,
3005 			struct zone *zone, unsigned int order,
3006 			int migratetype, unsigned int alloc_flags)
3007 {
3008 	struct per_cpu_pages *pcp;
3009 	struct list_head *list;
3010 	struct page *page;
3011 	unsigned long __maybe_unused UP_flags;
3012 
3013 	/* spin_trylock may fail due to a parallel drain or IRQ reentrancy. */
3014 	pcp_trylock_prepare(UP_flags);
3015 	pcp = pcp_spin_trylock(zone->per_cpu_pageset);
3016 	if (!pcp) {
3017 		pcp_trylock_finish(UP_flags);
3018 		return NULL;
3019 	}
3020 
3021 	/*
3022 	 * On allocation, reduce the number of pages that are batch freed.
3023 	 * See nr_pcp_free() where free_factor is increased for subsequent
3024 	 * frees.
3025 	 */
3026 	pcp->free_count >>= 1;
3027 	list = &pcp->lists[order_to_pindex(migratetype, order)];
3028 	page = __rmqueue_pcplist(zone, order, migratetype, alloc_flags, pcp, list);
3029 	pcp_spin_unlock(pcp);
3030 	pcp_trylock_finish(UP_flags);
3031 	if (page) {
3032 		__count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
3033 		zone_statistics(preferred_zone, zone, 1);
3034 	}
3035 	return page;
3036 }
3037 
3038 /*
3039  * Allocate a page from the given zone.
3040  * Use pcplists for THP or "cheap" high-order allocations.
3041  */
3042 
3043 /*
3044  * Do not instrument rmqueue() with KMSAN. This function may call
3045  * __msan_poison_alloca() through a call to set_pfnblock_flags_mask().
3046  * If __msan_poison_alloca() attempts to allocate pages for the stack depot, it
3047  * may call rmqueue() again, which will result in a deadlock.
3048  */
3049 __no_sanitize_memory
3050 static inline
3051 struct page *rmqueue(struct zone *preferred_zone,
3052 			struct zone *zone, unsigned int order,
3053 			gfp_t gfp_flags, unsigned int alloc_flags,
3054 			int migratetype)
3055 {
3056 	struct page *page;
3057 
3058 	if (likely(pcp_allowed_order(order))) {
3059 		page = rmqueue_pcplist(preferred_zone, zone, order,
3060 				       migratetype, alloc_flags);
3061 		if (likely(page))
3062 			goto out;
3063 	}
3064 
3065 	page = rmqueue_buddy(preferred_zone, zone, order, alloc_flags,
3066 							migratetype);
3067 
3068 out:
3069 	/* Separate test+clear to avoid unnecessary atomics */
3070 	if ((alloc_flags & ALLOC_KSWAPD) &&
3071 	    unlikely(test_bit(ZONE_BOOSTED_WATERMARK, &zone->flags))) {
3072 		clear_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
3073 		wakeup_kswapd(zone, 0, 0, zone_idx(zone));
3074 	}
3075 
3076 	VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
3077 	return page;
3078 }
3079 
3080 static inline long __zone_watermark_unusable_free(struct zone *z,
3081 				unsigned int order, unsigned int alloc_flags)
3082 {
3083 	long unusable_free = (1 << order) - 1;
3084 
3085 	/*
3086 	 * If the caller does not have rights to reserves below the min
3087 	 * watermark then subtract the free pages reserved for highatomic.
3088 	 */
3089 	if (likely(!(alloc_flags & ALLOC_RESERVES)))
3090 		unusable_free += READ_ONCE(z->nr_free_highatomic);
3091 
3092 #ifdef CONFIG_CMA
3093 	/* If allocation can't use CMA areas don't use free CMA pages */
3094 	if (!(alloc_flags & ALLOC_CMA))
3095 		unusable_free += zone_page_state(z, NR_FREE_CMA_PAGES);
3096 #endif
3097 
3098 	return unusable_free;
3099 }
3100 
3101 /*
3102  * Return true if free base pages are above 'mark'. For high-order checks it
3103  * will return true of the order-0 watermark is reached and there is at least
3104  * one free page of a suitable size. Checking now avoids taking the zone lock
3105  * to check in the allocation paths if no pages are free.
3106  */
3107 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3108 			 int highest_zoneidx, unsigned int alloc_flags,
3109 			 long free_pages)
3110 {
3111 	long min = mark;
3112 	int o;
3113 
3114 	/* free_pages may go negative - that's OK */
3115 	free_pages -= __zone_watermark_unusable_free(z, order, alloc_flags);
3116 
3117 	if (unlikely(alloc_flags & ALLOC_RESERVES)) {
3118 		/*
3119 		 * __GFP_HIGH allows access to 50% of the min reserve as well
3120 		 * as OOM.
3121 		 */
3122 		if (alloc_flags & ALLOC_MIN_RESERVE) {
3123 			min -= min / 2;
3124 
3125 			/*
3126 			 * Non-blocking allocations (e.g. GFP_ATOMIC) can
3127 			 * access more reserves than just __GFP_HIGH. Other
3128 			 * non-blocking allocations requests such as GFP_NOWAIT
3129 			 * or (GFP_KERNEL & ~__GFP_DIRECT_RECLAIM) do not get
3130 			 * access to the min reserve.
3131 			 */
3132 			if (alloc_flags & ALLOC_NON_BLOCK)
3133 				min -= min / 4;
3134 		}
3135 
3136 		/*
3137 		 * OOM victims can try even harder than the normal reserve
3138 		 * users on the grounds that it's definitely going to be in
3139 		 * the exit path shortly and free memory. Any allocation it
3140 		 * makes during the free path will be small and short-lived.
3141 		 */
3142 		if (alloc_flags & ALLOC_OOM)
3143 			min -= min / 2;
3144 	}
3145 
3146 	/*
3147 	 * Check watermarks for an order-0 allocation request. If these
3148 	 * are not met, then a high-order request also cannot go ahead
3149 	 * even if a suitable page happened to be free.
3150 	 */
3151 	if (free_pages <= min + z->lowmem_reserve[highest_zoneidx])
3152 		return false;
3153 
3154 	/* If this is an order-0 request then the watermark is fine */
3155 	if (!order)
3156 		return true;
3157 
3158 	/* For a high-order request, check at least one suitable page is free */
3159 	for (o = order; o < NR_PAGE_ORDERS; o++) {
3160 		struct free_area *area = &z->free_area[o];
3161 		int mt;
3162 
3163 		if (!area->nr_free)
3164 			continue;
3165 
3166 		for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
3167 			if (!free_area_empty(area, mt))
3168 				return true;
3169 		}
3170 
3171 #ifdef CONFIG_CMA
3172 		if ((alloc_flags & ALLOC_CMA) &&
3173 		    !free_area_empty(area, MIGRATE_CMA)) {
3174 			return true;
3175 		}
3176 #endif
3177 		if ((alloc_flags & (ALLOC_HIGHATOMIC|ALLOC_OOM)) &&
3178 		    !free_area_empty(area, MIGRATE_HIGHATOMIC)) {
3179 			return true;
3180 		}
3181 	}
3182 	return false;
3183 }
3184 
3185 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3186 		      int highest_zoneidx, unsigned int alloc_flags)
3187 {
3188 	return __zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
3189 					zone_page_state(z, NR_FREE_PAGES));
3190 }
3191 
3192 static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
3193 				unsigned long mark, int highest_zoneidx,
3194 				unsigned int alloc_flags, gfp_t gfp_mask)
3195 {
3196 	long free_pages;
3197 
3198 	free_pages = zone_page_state(z, NR_FREE_PAGES);
3199 
3200 	/*
3201 	 * Fast check for order-0 only. If this fails then the reserves
3202 	 * need to be calculated.
3203 	 */
3204 	if (!order) {
3205 		long usable_free;
3206 		long reserved;
3207 
3208 		usable_free = free_pages;
3209 		reserved = __zone_watermark_unusable_free(z, 0, alloc_flags);
3210 
3211 		/* reserved may over estimate high-atomic reserves. */
3212 		usable_free -= min(usable_free, reserved);
3213 		if (usable_free > mark + z->lowmem_reserve[highest_zoneidx])
3214 			return true;
3215 	}
3216 
3217 	if (__zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
3218 					free_pages))
3219 		return true;
3220 
3221 	/*
3222 	 * Ignore watermark boosting for __GFP_HIGH order-0 allocations
3223 	 * when checking the min watermark. The min watermark is the
3224 	 * point where boosting is ignored so that kswapd is woken up
3225 	 * when below the low watermark.
3226 	 */
3227 	if (unlikely(!order && (alloc_flags & ALLOC_MIN_RESERVE) && z->watermark_boost
3228 		&& ((alloc_flags & ALLOC_WMARK_MASK) == WMARK_MIN))) {
3229 		mark = z->_watermark[WMARK_MIN];
3230 		return __zone_watermark_ok(z, order, mark, highest_zoneidx,
3231 					alloc_flags, free_pages);
3232 	}
3233 
3234 	return false;
3235 }
3236 
3237 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
3238 			unsigned long mark, int highest_zoneidx)
3239 {
3240 	long free_pages = zone_page_state(z, NR_FREE_PAGES);
3241 
3242 	if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
3243 		free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
3244 
3245 	return __zone_watermark_ok(z, order, mark, highest_zoneidx, 0,
3246 								free_pages);
3247 }
3248 
3249 #ifdef CONFIG_NUMA
3250 int __read_mostly node_reclaim_distance = RECLAIM_DISTANCE;
3251 
3252 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3253 {
3254 	return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
3255 				node_reclaim_distance;
3256 }
3257 #else	/* CONFIG_NUMA */
3258 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3259 {
3260 	return true;
3261 }
3262 #endif	/* CONFIG_NUMA */
3263 
3264 /*
3265  * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid
3266  * fragmentation is subtle. If the preferred zone was HIGHMEM then
3267  * premature use of a lower zone may cause lowmem pressure problems that
3268  * are worse than fragmentation. If the next zone is ZONE_DMA then it is
3269  * probably too small. It only makes sense to spread allocations to avoid
3270  * fragmentation between the Normal and DMA32 zones.
3271  */
3272 static inline unsigned int
3273 alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask)
3274 {
3275 	unsigned int alloc_flags;
3276 
3277 	/*
3278 	 * __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
3279 	 * to save a branch.
3280 	 */
3281 	alloc_flags = (__force int) (gfp_mask & __GFP_KSWAPD_RECLAIM);
3282 
3283 #ifdef CONFIG_ZONE_DMA32
3284 	if (!zone)
3285 		return alloc_flags;
3286 
3287 	if (zone_idx(zone) != ZONE_NORMAL)
3288 		return alloc_flags;
3289 
3290 	/*
3291 	 * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and
3292 	 * the pointer is within zone->zone_pgdat->node_zones[]. Also assume
3293 	 * on UMA that if Normal is populated then so is DMA32.
3294 	 */
3295 	BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1);
3296 	if (nr_online_nodes > 1 && !populated_zone(--zone))
3297 		return alloc_flags;
3298 
3299 	alloc_flags |= ALLOC_NOFRAGMENT;
3300 #endif /* CONFIG_ZONE_DMA32 */
3301 	return alloc_flags;
3302 }
3303 
3304 /* Must be called after current_gfp_context() which can change gfp_mask */
3305 static inline unsigned int gfp_to_alloc_flags_cma(gfp_t gfp_mask,
3306 						  unsigned int alloc_flags)
3307 {
3308 #ifdef CONFIG_CMA
3309 	if (gfp_migratetype(gfp_mask) == MIGRATE_MOVABLE)
3310 		alloc_flags |= ALLOC_CMA;
3311 #endif
3312 	return alloc_flags;
3313 }
3314 
3315 /*
3316  * get_page_from_freelist goes through the zonelist trying to allocate
3317  * a page.
3318  */
3319 static struct page *
3320 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
3321 						const struct alloc_context *ac)
3322 {
3323 	struct zoneref *z;
3324 	struct zone *zone;
3325 	struct pglist_data *last_pgdat = NULL;
3326 	bool last_pgdat_dirty_ok = false;
3327 	bool no_fallback;
3328 
3329 retry:
3330 	/*
3331 	 * Scan zonelist, looking for a zone with enough free.
3332 	 * See also cpuset_node_allowed() comment in kernel/cgroup/cpuset.c.
3333 	 */
3334 	no_fallback = alloc_flags & ALLOC_NOFRAGMENT;
3335 	z = ac->preferred_zoneref;
3336 	for_next_zone_zonelist_nodemask(zone, z, ac->highest_zoneidx,
3337 					ac->nodemask) {
3338 		struct page *page;
3339 		unsigned long mark;
3340 
3341 		if (cpusets_enabled() &&
3342 			(alloc_flags & ALLOC_CPUSET) &&
3343 			!__cpuset_zone_allowed(zone, gfp_mask))
3344 				continue;
3345 		/*
3346 		 * When allocating a page cache page for writing, we
3347 		 * want to get it from a node that is within its dirty
3348 		 * limit, such that no single node holds more than its
3349 		 * proportional share of globally allowed dirty pages.
3350 		 * The dirty limits take into account the node's
3351 		 * lowmem reserves and high watermark so that kswapd
3352 		 * should be able to balance it without having to
3353 		 * write pages from its LRU list.
3354 		 *
3355 		 * XXX: For now, allow allocations to potentially
3356 		 * exceed the per-node dirty limit in the slowpath
3357 		 * (spread_dirty_pages unset) before going into reclaim,
3358 		 * which is important when on a NUMA setup the allowed
3359 		 * nodes are together not big enough to reach the
3360 		 * global limit.  The proper fix for these situations
3361 		 * will require awareness of nodes in the
3362 		 * dirty-throttling and the flusher threads.
3363 		 */
3364 		if (ac->spread_dirty_pages) {
3365 			if (last_pgdat != zone->zone_pgdat) {
3366 				last_pgdat = zone->zone_pgdat;
3367 				last_pgdat_dirty_ok = node_dirty_ok(zone->zone_pgdat);
3368 			}
3369 
3370 			if (!last_pgdat_dirty_ok)
3371 				continue;
3372 		}
3373 
3374 		if (no_fallback && nr_online_nodes > 1 &&
3375 		    zone != zonelist_zone(ac->preferred_zoneref)) {
3376 			int local_nid;
3377 
3378 			/*
3379 			 * If moving to a remote node, retry but allow
3380 			 * fragmenting fallbacks. Locality is more important
3381 			 * than fragmentation avoidance.
3382 			 */
3383 			local_nid = zonelist_node_idx(ac->preferred_zoneref);
3384 			if (zone_to_nid(zone) != local_nid) {
3385 				alloc_flags &= ~ALLOC_NOFRAGMENT;
3386 				goto retry;
3387 			}
3388 		}
3389 
3390 		cond_accept_memory(zone, order);
3391 
3392 		/*
3393 		 * Detect whether the number of free pages is below high
3394 		 * watermark.  If so, we will decrease pcp->high and free
3395 		 * PCP pages in free path to reduce the possibility of
3396 		 * premature page reclaiming.  Detection is done here to
3397 		 * avoid to do that in hotter free path.
3398 		 */
3399 		if (test_bit(ZONE_BELOW_HIGH, &zone->flags))
3400 			goto check_alloc_wmark;
3401 
3402 		mark = high_wmark_pages(zone);
3403 		if (zone_watermark_fast(zone, order, mark,
3404 					ac->highest_zoneidx, alloc_flags,
3405 					gfp_mask))
3406 			goto try_this_zone;
3407 		else
3408 			set_bit(ZONE_BELOW_HIGH, &zone->flags);
3409 
3410 check_alloc_wmark:
3411 		mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
3412 		if (!zone_watermark_fast(zone, order, mark,
3413 				       ac->highest_zoneidx, alloc_flags,
3414 				       gfp_mask)) {
3415 			int ret;
3416 
3417 			if (cond_accept_memory(zone, order))
3418 				goto try_this_zone;
3419 
3420 			/*
3421 			 * Watermark failed for this zone, but see if we can
3422 			 * grow this zone if it contains deferred pages.
3423 			 */
3424 			if (deferred_pages_enabled()) {
3425 				if (_deferred_grow_zone(zone, order))
3426 					goto try_this_zone;
3427 			}
3428 			/* Checked here to keep the fast path fast */
3429 			BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
3430 			if (alloc_flags & ALLOC_NO_WATERMARKS)
3431 				goto try_this_zone;
3432 
3433 			if (!node_reclaim_enabled() ||
3434 			    !zone_allows_reclaim(zonelist_zone(ac->preferred_zoneref), zone))
3435 				continue;
3436 
3437 			ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
3438 			switch (ret) {
3439 			case NODE_RECLAIM_NOSCAN:
3440 				/* did not scan */
3441 				continue;
3442 			case NODE_RECLAIM_FULL:
3443 				/* scanned but unreclaimable */
3444 				continue;
3445 			default:
3446 				/* did we reclaim enough */
3447 				if (zone_watermark_ok(zone, order, mark,
3448 					ac->highest_zoneidx, alloc_flags))
3449 					goto try_this_zone;
3450 
3451 				continue;
3452 			}
3453 		}
3454 
3455 try_this_zone:
3456 		page = rmqueue(zonelist_zone(ac->preferred_zoneref), zone, order,
3457 				gfp_mask, alloc_flags, ac->migratetype);
3458 		if (page) {
3459 			prep_new_page(page, order, gfp_mask, alloc_flags);
3460 
3461 			/*
3462 			 * If this is a high-order atomic allocation then check
3463 			 * if the pageblock should be reserved for the future
3464 			 */
3465 			if (unlikely(alloc_flags & ALLOC_HIGHATOMIC))
3466 				reserve_highatomic_pageblock(page, order, zone);
3467 
3468 			return page;
3469 		} else {
3470 			if (cond_accept_memory(zone, order))
3471 				goto try_this_zone;
3472 
3473 			/* Try again if zone has deferred pages */
3474 			if (deferred_pages_enabled()) {
3475 				if (_deferred_grow_zone(zone, order))
3476 					goto try_this_zone;
3477 			}
3478 		}
3479 	}
3480 
3481 	/*
3482 	 * It's possible on a UMA machine to get through all zones that are
3483 	 * fragmented. If avoiding fragmentation, reset and try again.
3484 	 */
3485 	if (no_fallback) {
3486 		alloc_flags &= ~ALLOC_NOFRAGMENT;
3487 		goto retry;
3488 	}
3489 
3490 	return NULL;
3491 }
3492 
3493 static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
3494 {
3495 	unsigned int filter = SHOW_MEM_FILTER_NODES;
3496 
3497 	/*
3498 	 * This documents exceptions given to allocations in certain
3499 	 * contexts that are allowed to allocate outside current's set
3500 	 * of allowed nodes.
3501 	 */
3502 	if (!(gfp_mask & __GFP_NOMEMALLOC))
3503 		if (tsk_is_oom_victim(current) ||
3504 		    (current->flags & (PF_MEMALLOC | PF_EXITING)))
3505 			filter &= ~SHOW_MEM_FILTER_NODES;
3506 	if (!in_task() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
3507 		filter &= ~SHOW_MEM_FILTER_NODES;
3508 
3509 	__show_mem(filter, nodemask, gfp_zone(gfp_mask));
3510 }
3511 
3512 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
3513 {
3514 	struct va_format vaf;
3515 	va_list args;
3516 	static DEFINE_RATELIMIT_STATE(nopage_rs, 10*HZ, 1);
3517 
3518 	if ((gfp_mask & __GFP_NOWARN) ||
3519 	     !__ratelimit(&nopage_rs) ||
3520 	     ((gfp_mask & __GFP_DMA) && !has_managed_dma()))
3521 		return;
3522 
3523 	va_start(args, fmt);
3524 	vaf.fmt = fmt;
3525 	vaf.va = &args;
3526 	pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl",
3527 			current->comm, &vaf, gfp_mask, &gfp_mask,
3528 			nodemask_pr_args(nodemask));
3529 	va_end(args);
3530 
3531 	cpuset_print_current_mems_allowed();
3532 	pr_cont("\n");
3533 	dump_stack();
3534 	warn_alloc_show_mem(gfp_mask, nodemask);
3535 }
3536 
3537 static inline struct page *
3538 __alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
3539 			      unsigned int alloc_flags,
3540 			      const struct alloc_context *ac)
3541 {
3542 	struct page *page;
3543 
3544 	page = get_page_from_freelist(gfp_mask, order,
3545 			alloc_flags|ALLOC_CPUSET, ac);
3546 	/*
3547 	 * fallback to ignore cpuset restriction if our nodes
3548 	 * are depleted
3549 	 */
3550 	if (!page)
3551 		page = get_page_from_freelist(gfp_mask, order,
3552 				alloc_flags, ac);
3553 
3554 	return page;
3555 }
3556 
3557 static inline struct page *
3558 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
3559 	const struct alloc_context *ac, unsigned long *did_some_progress)
3560 {
3561 	struct oom_control oc = {
3562 		.zonelist = ac->zonelist,
3563 		.nodemask = ac->nodemask,
3564 		.memcg = NULL,
3565 		.gfp_mask = gfp_mask,
3566 		.order = order,
3567 	};
3568 	struct page *page;
3569 
3570 	*did_some_progress = 0;
3571 
3572 	/*
3573 	 * Acquire the oom lock.  If that fails, somebody else is
3574 	 * making progress for us.
3575 	 */
3576 	if (!mutex_trylock(&oom_lock)) {
3577 		*did_some_progress = 1;
3578 		schedule_timeout_uninterruptible(1);
3579 		return NULL;
3580 	}
3581 
3582 	/*
3583 	 * Go through the zonelist yet one more time, keep very high watermark
3584 	 * here, this is only to catch a parallel oom killing, we must fail if
3585 	 * we're still under heavy pressure. But make sure that this reclaim
3586 	 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
3587 	 * allocation which will never fail due to oom_lock already held.
3588 	 */
3589 	page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) &
3590 				      ~__GFP_DIRECT_RECLAIM, order,
3591 				      ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
3592 	if (page)
3593 		goto out;
3594 
3595 	/* Coredumps can quickly deplete all memory reserves */
3596 	if (current->flags & PF_DUMPCORE)
3597 		goto out;
3598 	/* The OOM killer will not help higher order allocs */
3599 	if (order > PAGE_ALLOC_COSTLY_ORDER)
3600 		goto out;
3601 	/*
3602 	 * We have already exhausted all our reclaim opportunities without any
3603 	 * success so it is time to admit defeat. We will skip the OOM killer
3604 	 * because it is very likely that the caller has a more reasonable
3605 	 * fallback than shooting a random task.
3606 	 *
3607 	 * The OOM killer may not free memory on a specific node.
3608 	 */
3609 	if (gfp_mask & (__GFP_RETRY_MAYFAIL | __GFP_THISNODE))
3610 		goto out;
3611 	/* The OOM killer does not needlessly kill tasks for lowmem */
3612 	if (ac->highest_zoneidx < ZONE_NORMAL)
3613 		goto out;
3614 	if (pm_suspended_storage())
3615 		goto out;
3616 	/*
3617 	 * XXX: GFP_NOFS allocations should rather fail than rely on
3618 	 * other request to make a forward progress.
3619 	 * We are in an unfortunate situation where out_of_memory cannot
3620 	 * do much for this context but let's try it to at least get
3621 	 * access to memory reserved if the current task is killed (see
3622 	 * out_of_memory). Once filesystems are ready to handle allocation
3623 	 * failures more gracefully we should just bail out here.
3624 	 */
3625 
3626 	/* Exhausted what can be done so it's blame time */
3627 	if (out_of_memory(&oc) ||
3628 	    WARN_ON_ONCE_GFP(gfp_mask & __GFP_NOFAIL, gfp_mask)) {
3629 		*did_some_progress = 1;
3630 
3631 		/*
3632 		 * Help non-failing allocations by giving them access to memory
3633 		 * reserves
3634 		 */
3635 		if (gfp_mask & __GFP_NOFAIL)
3636 			page = __alloc_pages_cpuset_fallback(gfp_mask, order,
3637 					ALLOC_NO_WATERMARKS, ac);
3638 	}
3639 out:
3640 	mutex_unlock(&oom_lock);
3641 	return page;
3642 }
3643 
3644 /*
3645  * Maximum number of compaction retries with a progress before OOM
3646  * killer is consider as the only way to move forward.
3647  */
3648 #define MAX_COMPACT_RETRIES 16
3649 
3650 #ifdef CONFIG_COMPACTION
3651 /* Try memory compaction for high-order allocations before reclaim */
3652 static struct page *
3653 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3654 		unsigned int alloc_flags, const struct alloc_context *ac,
3655 		enum compact_priority prio, enum compact_result *compact_result)
3656 {
3657 	struct page *page = NULL;
3658 	unsigned long pflags;
3659 	unsigned int noreclaim_flag;
3660 
3661 	if (!order)
3662 		return NULL;
3663 
3664 	psi_memstall_enter(&pflags);
3665 	delayacct_compact_start();
3666 	noreclaim_flag = memalloc_noreclaim_save();
3667 
3668 	*compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
3669 								prio, &page);
3670 
3671 	memalloc_noreclaim_restore(noreclaim_flag);
3672 	psi_memstall_leave(&pflags);
3673 	delayacct_compact_end();
3674 
3675 	if (*compact_result == COMPACT_SKIPPED)
3676 		return NULL;
3677 	/*
3678 	 * At least in one zone compaction wasn't deferred or skipped, so let's
3679 	 * count a compaction stall
3680 	 */
3681 	count_vm_event(COMPACTSTALL);
3682 
3683 	/* Prep a captured page if available */
3684 	if (page)
3685 		prep_new_page(page, order, gfp_mask, alloc_flags);
3686 
3687 	/* Try get a page from the freelist if available */
3688 	if (!page)
3689 		page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3690 
3691 	if (page) {
3692 		struct zone *zone = page_zone(page);
3693 
3694 		zone->compact_blockskip_flush = false;
3695 		compaction_defer_reset(zone, order, true);
3696 		count_vm_event(COMPACTSUCCESS);
3697 		return page;
3698 	}
3699 
3700 	/*
3701 	 * It's bad if compaction run occurs and fails. The most likely reason
3702 	 * is that pages exist, but not enough to satisfy watermarks.
3703 	 */
3704 	count_vm_event(COMPACTFAIL);
3705 
3706 	cond_resched();
3707 
3708 	return NULL;
3709 }
3710 
3711 static inline bool
3712 should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
3713 		     enum compact_result compact_result,
3714 		     enum compact_priority *compact_priority,
3715 		     int *compaction_retries)
3716 {
3717 	int max_retries = MAX_COMPACT_RETRIES;
3718 	int min_priority;
3719 	bool ret = false;
3720 	int retries = *compaction_retries;
3721 	enum compact_priority priority = *compact_priority;
3722 
3723 	if (!order)
3724 		return false;
3725 
3726 	if (fatal_signal_pending(current))
3727 		return false;
3728 
3729 	/*
3730 	 * Compaction was skipped due to a lack of free order-0
3731 	 * migration targets. Continue if reclaim can help.
3732 	 */
3733 	if (compact_result == COMPACT_SKIPPED) {
3734 		ret = compaction_zonelist_suitable(ac, order, alloc_flags);
3735 		goto out;
3736 	}
3737 
3738 	/*
3739 	 * Compaction managed to coalesce some page blocks, but the
3740 	 * allocation failed presumably due to a race. Retry some.
3741 	 */
3742 	if (compact_result == COMPACT_SUCCESS) {
3743 		/*
3744 		 * !costly requests are much more important than
3745 		 * __GFP_RETRY_MAYFAIL costly ones because they are de
3746 		 * facto nofail and invoke OOM killer to move on while
3747 		 * costly can fail and users are ready to cope with
3748 		 * that. 1/4 retries is rather arbitrary but we would
3749 		 * need much more detailed feedback from compaction to
3750 		 * make a better decision.
3751 		 */
3752 		if (order > PAGE_ALLOC_COSTLY_ORDER)
3753 			max_retries /= 4;
3754 
3755 		if (++(*compaction_retries) <= max_retries) {
3756 			ret = true;
3757 			goto out;
3758 		}
3759 	}
3760 
3761 	/*
3762 	 * Compaction failed. Retry with increasing priority.
3763 	 */
3764 	min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
3765 			MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
3766 
3767 	if (*compact_priority > min_priority) {
3768 		(*compact_priority)--;
3769 		*compaction_retries = 0;
3770 		ret = true;
3771 	}
3772 out:
3773 	trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
3774 	return ret;
3775 }
3776 #else
3777 static inline struct page *
3778 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3779 		unsigned int alloc_flags, const struct alloc_context *ac,
3780 		enum compact_priority prio, enum compact_result *compact_result)
3781 {
3782 	*compact_result = COMPACT_SKIPPED;
3783 	return NULL;
3784 }
3785 
3786 static inline bool
3787 should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
3788 		     enum compact_result compact_result,
3789 		     enum compact_priority *compact_priority,
3790 		     int *compaction_retries)
3791 {
3792 	struct zone *zone;
3793 	struct zoneref *z;
3794 
3795 	if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
3796 		return false;
3797 
3798 	/*
3799 	 * There are setups with compaction disabled which would prefer to loop
3800 	 * inside the allocator rather than hit the oom killer prematurely.
3801 	 * Let's give them a good hope and keep retrying while the order-0
3802 	 * watermarks are OK.
3803 	 */
3804 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
3805 				ac->highest_zoneidx, ac->nodemask) {
3806 		if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
3807 					ac->highest_zoneidx, alloc_flags))
3808 			return true;
3809 	}
3810 	return false;
3811 }
3812 #endif /* CONFIG_COMPACTION */
3813 
3814 #ifdef CONFIG_LOCKDEP
3815 static struct lockdep_map __fs_reclaim_map =
3816 	STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map);
3817 
3818 static bool __need_reclaim(gfp_t gfp_mask)
3819 {
3820 	/* no reclaim without waiting on it */
3821 	if (!(gfp_mask & __GFP_DIRECT_RECLAIM))
3822 		return false;
3823 
3824 	/* this guy won't enter reclaim */
3825 	if (current->flags & PF_MEMALLOC)
3826 		return false;
3827 
3828 	if (gfp_mask & __GFP_NOLOCKDEP)
3829 		return false;
3830 
3831 	return true;
3832 }
3833 
3834 void __fs_reclaim_acquire(unsigned long ip)
3835 {
3836 	lock_acquire_exclusive(&__fs_reclaim_map, 0, 0, NULL, ip);
3837 }
3838 
3839 void __fs_reclaim_release(unsigned long ip)
3840 {
3841 	lock_release(&__fs_reclaim_map, ip);
3842 }
3843 
3844 void fs_reclaim_acquire(gfp_t gfp_mask)
3845 {
3846 	gfp_mask = current_gfp_context(gfp_mask);
3847 
3848 	if (__need_reclaim(gfp_mask)) {
3849 		if (gfp_mask & __GFP_FS)
3850 			__fs_reclaim_acquire(_RET_IP_);
3851 
3852 #ifdef CONFIG_MMU_NOTIFIER
3853 		lock_map_acquire(&__mmu_notifier_invalidate_range_start_map);
3854 		lock_map_release(&__mmu_notifier_invalidate_range_start_map);
3855 #endif
3856 
3857 	}
3858 }
3859 EXPORT_SYMBOL_GPL(fs_reclaim_acquire);
3860 
3861 void fs_reclaim_release(gfp_t gfp_mask)
3862 {
3863 	gfp_mask = current_gfp_context(gfp_mask);
3864 
3865 	if (__need_reclaim(gfp_mask)) {
3866 		if (gfp_mask & __GFP_FS)
3867 			__fs_reclaim_release(_RET_IP_);
3868 	}
3869 }
3870 EXPORT_SYMBOL_GPL(fs_reclaim_release);
3871 #endif
3872 
3873 /*
3874  * Zonelists may change due to hotplug during allocation. Detect when zonelists
3875  * have been rebuilt so allocation retries. Reader side does not lock and
3876  * retries the allocation if zonelist changes. Writer side is protected by the
3877  * embedded spin_lock.
3878  */
3879 static DEFINE_SEQLOCK(zonelist_update_seq);
3880 
3881 static unsigned int zonelist_iter_begin(void)
3882 {
3883 	if (IS_ENABLED(CONFIG_MEMORY_HOTREMOVE))
3884 		return read_seqbegin(&zonelist_update_seq);
3885 
3886 	return 0;
3887 }
3888 
3889 static unsigned int check_retry_zonelist(unsigned int seq)
3890 {
3891 	if (IS_ENABLED(CONFIG_MEMORY_HOTREMOVE))
3892 		return read_seqretry(&zonelist_update_seq, seq);
3893 
3894 	return seq;
3895 }
3896 
3897 /* Perform direct synchronous page reclaim */
3898 static unsigned long
3899 __perform_reclaim(gfp_t gfp_mask, unsigned int order,
3900 					const struct alloc_context *ac)
3901 {
3902 	unsigned int noreclaim_flag;
3903 	unsigned long progress;
3904 
3905 	cond_resched();
3906 
3907 	/* We now go into synchronous reclaim */
3908 	cpuset_memory_pressure_bump();
3909 	fs_reclaim_acquire(gfp_mask);
3910 	noreclaim_flag = memalloc_noreclaim_save();
3911 
3912 	progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
3913 								ac->nodemask);
3914 
3915 	memalloc_noreclaim_restore(noreclaim_flag);
3916 	fs_reclaim_release(gfp_mask);
3917 
3918 	cond_resched();
3919 
3920 	return progress;
3921 }
3922 
3923 /* The really slow allocator path where we enter direct reclaim */
3924 static inline struct page *
3925 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
3926 		unsigned int alloc_flags, const struct alloc_context *ac,
3927 		unsigned long *did_some_progress)
3928 {
3929 	struct page *page = NULL;
3930 	unsigned long pflags;
3931 	bool drained = false;
3932 
3933 	psi_memstall_enter(&pflags);
3934 	*did_some_progress = __perform_reclaim(gfp_mask, order, ac);
3935 	if (unlikely(!(*did_some_progress)))
3936 		goto out;
3937 
3938 retry:
3939 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3940 
3941 	/*
3942 	 * If an allocation failed after direct reclaim, it could be because
3943 	 * pages are pinned on the per-cpu lists or in high alloc reserves.
3944 	 * Shrink them and try again
3945 	 */
3946 	if (!page && !drained) {
3947 		unreserve_highatomic_pageblock(ac, false);
3948 		drain_all_pages(NULL);
3949 		drained = true;
3950 		goto retry;
3951 	}
3952 out:
3953 	psi_memstall_leave(&pflags);
3954 
3955 	return page;
3956 }
3957 
3958 static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask,
3959 			     const struct alloc_context *ac)
3960 {
3961 	struct zoneref *z;
3962 	struct zone *zone;
3963 	pg_data_t *last_pgdat = NULL;
3964 	enum zone_type highest_zoneidx = ac->highest_zoneidx;
3965 
3966 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, highest_zoneidx,
3967 					ac->nodemask) {
3968 		if (!managed_zone(zone))
3969 			continue;
3970 		if (last_pgdat != zone->zone_pgdat) {
3971 			wakeup_kswapd(zone, gfp_mask, order, highest_zoneidx);
3972 			last_pgdat = zone->zone_pgdat;
3973 		}
3974 	}
3975 }
3976 
3977 static inline unsigned int
3978 gfp_to_alloc_flags(gfp_t gfp_mask, unsigned int order)
3979 {
3980 	unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
3981 
3982 	/*
3983 	 * __GFP_HIGH is assumed to be the same as ALLOC_MIN_RESERVE
3984 	 * and __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
3985 	 * to save two branches.
3986 	 */
3987 	BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_MIN_RESERVE);
3988 	BUILD_BUG_ON(__GFP_KSWAPD_RECLAIM != (__force gfp_t) ALLOC_KSWAPD);
3989 
3990 	/*
3991 	 * The caller may dip into page reserves a bit more if the caller
3992 	 * cannot run direct reclaim, or if the caller has realtime scheduling
3993 	 * policy or is asking for __GFP_HIGH memory.  GFP_ATOMIC requests will
3994 	 * set both ALLOC_NON_BLOCK and ALLOC_MIN_RESERVE(__GFP_HIGH).
3995 	 */
3996 	alloc_flags |= (__force int)
3997 		(gfp_mask & (__GFP_HIGH | __GFP_KSWAPD_RECLAIM));
3998 
3999 	if (!(gfp_mask & __GFP_DIRECT_RECLAIM)) {
4000 		/*
4001 		 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
4002 		 * if it can't schedule.
4003 		 */
4004 		if (!(gfp_mask & __GFP_NOMEMALLOC)) {
4005 			alloc_flags |= ALLOC_NON_BLOCK;
4006 
4007 			if (order > 0)
4008 				alloc_flags |= ALLOC_HIGHATOMIC;
4009 		}
4010 
4011 		/*
4012 		 * Ignore cpuset mems for non-blocking __GFP_HIGH (probably
4013 		 * GFP_ATOMIC) rather than fail, see the comment for
4014 		 * cpuset_node_allowed().
4015 		 */
4016 		if (alloc_flags & ALLOC_MIN_RESERVE)
4017 			alloc_flags &= ~ALLOC_CPUSET;
4018 	} else if (unlikely(rt_or_dl_task(current)) && in_task())
4019 		alloc_flags |= ALLOC_MIN_RESERVE;
4020 
4021 	alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, alloc_flags);
4022 
4023 	return alloc_flags;
4024 }
4025 
4026 static bool oom_reserves_allowed(struct task_struct *tsk)
4027 {
4028 	if (!tsk_is_oom_victim(tsk))
4029 		return false;
4030 
4031 	/*
4032 	 * !MMU doesn't have oom reaper so give access to memory reserves
4033 	 * only to the thread with TIF_MEMDIE set
4034 	 */
4035 	if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE))
4036 		return false;
4037 
4038 	return true;
4039 }
4040 
4041 /*
4042  * Distinguish requests which really need access to full memory
4043  * reserves from oom victims which can live with a portion of it
4044  */
4045 static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask)
4046 {
4047 	if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
4048 		return 0;
4049 	if (gfp_mask & __GFP_MEMALLOC)
4050 		return ALLOC_NO_WATERMARKS;
4051 	if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
4052 		return ALLOC_NO_WATERMARKS;
4053 	if (!in_interrupt()) {
4054 		if (current->flags & PF_MEMALLOC)
4055 			return ALLOC_NO_WATERMARKS;
4056 		else if (oom_reserves_allowed(current))
4057 			return ALLOC_OOM;
4058 	}
4059 
4060 	return 0;
4061 }
4062 
4063 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
4064 {
4065 	return !!__gfp_pfmemalloc_flags(gfp_mask);
4066 }
4067 
4068 /*
4069  * Checks whether it makes sense to retry the reclaim to make a forward progress
4070  * for the given allocation request.
4071  *
4072  * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
4073  * without success, or when we couldn't even meet the watermark if we
4074  * reclaimed all remaining pages on the LRU lists.
4075  *
4076  * Returns true if a retry is viable or false to enter the oom path.
4077  */
4078 static inline bool
4079 should_reclaim_retry(gfp_t gfp_mask, unsigned order,
4080 		     struct alloc_context *ac, int alloc_flags,
4081 		     bool did_some_progress, int *no_progress_loops)
4082 {
4083 	struct zone *zone;
4084 	struct zoneref *z;
4085 	bool ret = false;
4086 
4087 	/*
4088 	 * Costly allocations might have made a progress but this doesn't mean
4089 	 * their order will become available due to high fragmentation so
4090 	 * always increment the no progress counter for them
4091 	 */
4092 	if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
4093 		*no_progress_loops = 0;
4094 	else
4095 		(*no_progress_loops)++;
4096 
4097 	if (*no_progress_loops > MAX_RECLAIM_RETRIES)
4098 		goto out;
4099 
4100 
4101 	/*
4102 	 * Keep reclaiming pages while there is a chance this will lead
4103 	 * somewhere.  If none of the target zones can satisfy our allocation
4104 	 * request even if all reclaimable pages are considered then we are
4105 	 * screwed and have to go OOM.
4106 	 */
4107 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
4108 				ac->highest_zoneidx, ac->nodemask) {
4109 		unsigned long available;
4110 		unsigned long reclaimable;
4111 		unsigned long min_wmark = min_wmark_pages(zone);
4112 		bool wmark;
4113 
4114 		if (cpusets_enabled() &&
4115 			(alloc_flags & ALLOC_CPUSET) &&
4116 			!__cpuset_zone_allowed(zone, gfp_mask))
4117 				continue;
4118 
4119 		available = reclaimable = zone_reclaimable_pages(zone);
4120 		available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
4121 
4122 		/*
4123 		 * Would the allocation succeed if we reclaimed all
4124 		 * reclaimable pages?
4125 		 */
4126 		wmark = __zone_watermark_ok(zone, order, min_wmark,
4127 				ac->highest_zoneidx, alloc_flags, available);
4128 		trace_reclaim_retry_zone(z, order, reclaimable,
4129 				available, min_wmark, *no_progress_loops, wmark);
4130 		if (wmark) {
4131 			ret = true;
4132 			break;
4133 		}
4134 	}
4135 
4136 	/*
4137 	 * Memory allocation/reclaim might be called from a WQ context and the
4138 	 * current implementation of the WQ concurrency control doesn't
4139 	 * recognize that a particular WQ is congested if the worker thread is
4140 	 * looping without ever sleeping. Therefore we have to do a short sleep
4141 	 * here rather than calling cond_resched().
4142 	 */
4143 	if (current->flags & PF_WQ_WORKER)
4144 		schedule_timeout_uninterruptible(1);
4145 	else
4146 		cond_resched();
4147 out:
4148 	/* Before OOM, exhaust highatomic_reserve */
4149 	if (!ret)
4150 		return unreserve_highatomic_pageblock(ac, true);
4151 
4152 	return ret;
4153 }
4154 
4155 static inline bool
4156 check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
4157 {
4158 	/*
4159 	 * It's possible that cpuset's mems_allowed and the nodemask from
4160 	 * mempolicy don't intersect. This should be normally dealt with by
4161 	 * policy_nodemask(), but it's possible to race with cpuset update in
4162 	 * such a way the check therein was true, and then it became false
4163 	 * before we got our cpuset_mems_cookie here.
4164 	 * This assumes that for all allocations, ac->nodemask can come only
4165 	 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
4166 	 * when it does not intersect with the cpuset restrictions) or the
4167 	 * caller can deal with a violated nodemask.
4168 	 */
4169 	if (cpusets_enabled() && ac->nodemask &&
4170 			!cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
4171 		ac->nodemask = NULL;
4172 		return true;
4173 	}
4174 
4175 	/*
4176 	 * When updating a task's mems_allowed or mempolicy nodemask, it is
4177 	 * possible to race with parallel threads in such a way that our
4178 	 * allocation can fail while the mask is being updated. If we are about
4179 	 * to fail, check if the cpuset changed during allocation and if so,
4180 	 * retry.
4181 	 */
4182 	if (read_mems_allowed_retry(cpuset_mems_cookie))
4183 		return true;
4184 
4185 	return false;
4186 }
4187 
4188 static inline struct page *
4189 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
4190 						struct alloc_context *ac)
4191 {
4192 	bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
4193 	bool can_compact = gfp_compaction_allowed(gfp_mask);
4194 	bool nofail = gfp_mask & __GFP_NOFAIL;
4195 	const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
4196 	struct page *page = NULL;
4197 	unsigned int alloc_flags;
4198 	unsigned long did_some_progress;
4199 	enum compact_priority compact_priority;
4200 	enum compact_result compact_result;
4201 	int compaction_retries;
4202 	int no_progress_loops;
4203 	unsigned int cpuset_mems_cookie;
4204 	unsigned int zonelist_iter_cookie;
4205 	int reserve_flags;
4206 
4207 	if (unlikely(nofail)) {
4208 		/*
4209 		 * We most definitely don't want callers attempting to
4210 		 * allocate greater than order-1 page units with __GFP_NOFAIL.
4211 		 */
4212 		WARN_ON_ONCE(order > 1);
4213 		/*
4214 		 * Also we don't support __GFP_NOFAIL without __GFP_DIRECT_RECLAIM,
4215 		 * otherwise, we may result in lockup.
4216 		 */
4217 		WARN_ON_ONCE(!can_direct_reclaim);
4218 		/*
4219 		 * PF_MEMALLOC request from this context is rather bizarre
4220 		 * because we cannot reclaim anything and only can loop waiting
4221 		 * for somebody to do a work for us.
4222 		 */
4223 		WARN_ON_ONCE(current->flags & PF_MEMALLOC);
4224 	}
4225 
4226 restart:
4227 	compaction_retries = 0;
4228 	no_progress_loops = 0;
4229 	compact_priority = DEF_COMPACT_PRIORITY;
4230 	cpuset_mems_cookie = read_mems_allowed_begin();
4231 	zonelist_iter_cookie = zonelist_iter_begin();
4232 
4233 	/*
4234 	 * The fast path uses conservative alloc_flags to succeed only until
4235 	 * kswapd needs to be woken up, and to avoid the cost of setting up
4236 	 * alloc_flags precisely. So we do that now.
4237 	 */
4238 	alloc_flags = gfp_to_alloc_flags(gfp_mask, order);
4239 
4240 	/*
4241 	 * We need to recalculate the starting point for the zonelist iterator
4242 	 * because we might have used different nodemask in the fast path, or
4243 	 * there was a cpuset modification and we are retrying - otherwise we
4244 	 * could end up iterating over non-eligible zones endlessly.
4245 	 */
4246 	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4247 					ac->highest_zoneidx, ac->nodemask);
4248 	if (!zonelist_zone(ac->preferred_zoneref))
4249 		goto nopage;
4250 
4251 	/*
4252 	 * Check for insane configurations where the cpuset doesn't contain
4253 	 * any suitable zone to satisfy the request - e.g. non-movable
4254 	 * GFP_HIGHUSER allocations from MOVABLE nodes only.
4255 	 */
4256 	if (cpusets_insane_config() && (gfp_mask & __GFP_HARDWALL)) {
4257 		struct zoneref *z = first_zones_zonelist(ac->zonelist,
4258 					ac->highest_zoneidx,
4259 					&cpuset_current_mems_allowed);
4260 		if (!zonelist_zone(z))
4261 			goto nopage;
4262 	}
4263 
4264 	if (alloc_flags & ALLOC_KSWAPD)
4265 		wake_all_kswapds(order, gfp_mask, ac);
4266 
4267 	/*
4268 	 * The adjusted alloc_flags might result in immediate success, so try
4269 	 * that first
4270 	 */
4271 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4272 	if (page)
4273 		goto got_pg;
4274 
4275 	/*
4276 	 * For costly allocations, try direct compaction first, as it's likely
4277 	 * that we have enough base pages and don't need to reclaim. For non-
4278 	 * movable high-order allocations, do that as well, as compaction will
4279 	 * try prevent permanent fragmentation by migrating from blocks of the
4280 	 * same migratetype.
4281 	 * Don't try this for allocations that are allowed to ignore
4282 	 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
4283 	 */
4284 	if (can_direct_reclaim && can_compact &&
4285 			(costly_order ||
4286 			   (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
4287 			&& !gfp_pfmemalloc_allowed(gfp_mask)) {
4288 		page = __alloc_pages_direct_compact(gfp_mask, order,
4289 						alloc_flags, ac,
4290 						INIT_COMPACT_PRIORITY,
4291 						&compact_result);
4292 		if (page)
4293 			goto got_pg;
4294 
4295 		/*
4296 		 * Checks for costly allocations with __GFP_NORETRY, which
4297 		 * includes some THP page fault allocations
4298 		 */
4299 		if (costly_order && (gfp_mask & __GFP_NORETRY)) {
4300 			/*
4301 			 * If allocating entire pageblock(s) and compaction
4302 			 * failed because all zones are below low watermarks
4303 			 * or is prohibited because it recently failed at this
4304 			 * order, fail immediately unless the allocator has
4305 			 * requested compaction and reclaim retry.
4306 			 *
4307 			 * Reclaim is
4308 			 *  - potentially very expensive because zones are far
4309 			 *    below their low watermarks or this is part of very
4310 			 *    bursty high order allocations,
4311 			 *  - not guaranteed to help because isolate_freepages()
4312 			 *    may not iterate over freed pages as part of its
4313 			 *    linear scan, and
4314 			 *  - unlikely to make entire pageblocks free on its
4315 			 *    own.
4316 			 */
4317 			if (compact_result == COMPACT_SKIPPED ||
4318 			    compact_result == COMPACT_DEFERRED)
4319 				goto nopage;
4320 
4321 			/*
4322 			 * Looks like reclaim/compaction is worth trying, but
4323 			 * sync compaction could be very expensive, so keep
4324 			 * using async compaction.
4325 			 */
4326 			compact_priority = INIT_COMPACT_PRIORITY;
4327 		}
4328 	}
4329 
4330 retry:
4331 	/* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
4332 	if (alloc_flags & ALLOC_KSWAPD)
4333 		wake_all_kswapds(order, gfp_mask, ac);
4334 
4335 	reserve_flags = __gfp_pfmemalloc_flags(gfp_mask);
4336 	if (reserve_flags)
4337 		alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, reserve_flags) |
4338 					  (alloc_flags & ALLOC_KSWAPD);
4339 
4340 	/*
4341 	 * Reset the nodemask and zonelist iterators if memory policies can be
4342 	 * ignored. These allocations are high priority and system rather than
4343 	 * user oriented.
4344 	 */
4345 	if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) {
4346 		ac->nodemask = NULL;
4347 		ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4348 					ac->highest_zoneidx, ac->nodemask);
4349 	}
4350 
4351 	/* Attempt with potentially adjusted zonelist and alloc_flags */
4352 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4353 	if (page)
4354 		goto got_pg;
4355 
4356 	/* Caller is not willing to reclaim, we can't balance anything */
4357 	if (!can_direct_reclaim)
4358 		goto nopage;
4359 
4360 	/* Avoid recursion of direct reclaim */
4361 	if (current->flags & PF_MEMALLOC)
4362 		goto nopage;
4363 
4364 	/* Try direct reclaim and then allocating */
4365 	page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
4366 							&did_some_progress);
4367 	if (page)
4368 		goto got_pg;
4369 
4370 	/* Try direct compaction and then allocating */
4371 	page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
4372 					compact_priority, &compact_result);
4373 	if (page)
4374 		goto got_pg;
4375 
4376 	/* Do not loop if specifically requested */
4377 	if (gfp_mask & __GFP_NORETRY)
4378 		goto nopage;
4379 
4380 	/*
4381 	 * Do not retry costly high order allocations unless they are
4382 	 * __GFP_RETRY_MAYFAIL and we can compact
4383 	 */
4384 	if (costly_order && (!can_compact ||
4385 			     !(gfp_mask & __GFP_RETRY_MAYFAIL)))
4386 		goto nopage;
4387 
4388 	if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
4389 				 did_some_progress > 0, &no_progress_loops))
4390 		goto retry;
4391 
4392 	/*
4393 	 * It doesn't make any sense to retry for the compaction if the order-0
4394 	 * reclaim is not able to make any progress because the current
4395 	 * implementation of the compaction depends on the sufficient amount
4396 	 * of free memory (see __compaction_suitable)
4397 	 */
4398 	if (did_some_progress > 0 && can_compact &&
4399 			should_compact_retry(ac, order, alloc_flags,
4400 				compact_result, &compact_priority,
4401 				&compaction_retries))
4402 		goto retry;
4403 
4404 
4405 	/*
4406 	 * Deal with possible cpuset update races or zonelist updates to avoid
4407 	 * a unnecessary OOM kill.
4408 	 */
4409 	if (check_retry_cpuset(cpuset_mems_cookie, ac) ||
4410 	    check_retry_zonelist(zonelist_iter_cookie))
4411 		goto restart;
4412 
4413 	/* Reclaim has failed us, start killing things */
4414 	page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
4415 	if (page)
4416 		goto got_pg;
4417 
4418 	/* Avoid allocations with no watermarks from looping endlessly */
4419 	if (tsk_is_oom_victim(current) &&
4420 	    (alloc_flags & ALLOC_OOM ||
4421 	     (gfp_mask & __GFP_NOMEMALLOC)))
4422 		goto nopage;
4423 
4424 	/* Retry as long as the OOM killer is making progress */
4425 	if (did_some_progress) {
4426 		no_progress_loops = 0;
4427 		goto retry;
4428 	}
4429 
4430 nopage:
4431 	/*
4432 	 * Deal with possible cpuset update races or zonelist updates to avoid
4433 	 * a unnecessary OOM kill.
4434 	 */
4435 	if (check_retry_cpuset(cpuset_mems_cookie, ac) ||
4436 	    check_retry_zonelist(zonelist_iter_cookie))
4437 		goto restart;
4438 
4439 	/*
4440 	 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
4441 	 * we always retry
4442 	 */
4443 	if (unlikely(nofail)) {
4444 		/*
4445 		 * Lacking direct_reclaim we can't do anything to reclaim memory,
4446 		 * we disregard these unreasonable nofail requests and still
4447 		 * return NULL
4448 		 */
4449 		if (!can_direct_reclaim)
4450 			goto fail;
4451 
4452 		/*
4453 		 * Help non-failing allocations by giving some access to memory
4454 		 * reserves normally used for high priority non-blocking
4455 		 * allocations but do not use ALLOC_NO_WATERMARKS because this
4456 		 * could deplete whole memory reserves which would just make
4457 		 * the situation worse.
4458 		 */
4459 		page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_MIN_RESERVE, ac);
4460 		if (page)
4461 			goto got_pg;
4462 
4463 		cond_resched();
4464 		goto retry;
4465 	}
4466 fail:
4467 	warn_alloc(gfp_mask, ac->nodemask,
4468 			"page allocation failure: order:%u", order);
4469 got_pg:
4470 	return page;
4471 }
4472 
4473 static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
4474 		int preferred_nid, nodemask_t *nodemask,
4475 		struct alloc_context *ac, gfp_t *alloc_gfp,
4476 		unsigned int *alloc_flags)
4477 {
4478 	ac->highest_zoneidx = gfp_zone(gfp_mask);
4479 	ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
4480 	ac->nodemask = nodemask;
4481 	ac->migratetype = gfp_migratetype(gfp_mask);
4482 
4483 	if (cpusets_enabled()) {
4484 		*alloc_gfp |= __GFP_HARDWALL;
4485 		/*
4486 		 * When we are in the interrupt context, it is irrelevant
4487 		 * to the current task context. It means that any node ok.
4488 		 */
4489 		if (in_task() && !ac->nodemask)
4490 			ac->nodemask = &cpuset_current_mems_allowed;
4491 		else
4492 			*alloc_flags |= ALLOC_CPUSET;
4493 	}
4494 
4495 	might_alloc(gfp_mask);
4496 
4497 	if (should_fail_alloc_page(gfp_mask, order))
4498 		return false;
4499 
4500 	*alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, *alloc_flags);
4501 
4502 	/* Dirty zone balancing only done in the fast path */
4503 	ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
4504 
4505 	/*
4506 	 * The preferred zone is used for statistics but crucially it is
4507 	 * also used as the starting point for the zonelist iterator. It
4508 	 * may get reset for allocations that ignore memory policies.
4509 	 */
4510 	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4511 					ac->highest_zoneidx, ac->nodemask);
4512 
4513 	return true;
4514 }
4515 
4516 /*
4517  * __alloc_pages_bulk - Allocate a number of order-0 pages to a list or array
4518  * @gfp: GFP flags for the allocation
4519  * @preferred_nid: The preferred NUMA node ID to allocate from
4520  * @nodemask: Set of nodes to allocate from, may be NULL
4521  * @nr_pages: The number of pages desired on the list or array
4522  * @page_list: Optional list to store the allocated pages
4523  * @page_array: Optional array to store the pages
4524  *
4525  * This is a batched version of the page allocator that attempts to
4526  * allocate nr_pages quickly. Pages are added to page_list if page_list
4527  * is not NULL, otherwise it is assumed that the page_array is valid.
4528  *
4529  * For lists, nr_pages is the number of pages that should be allocated.
4530  *
4531  * For arrays, only NULL elements are populated with pages and nr_pages
4532  * is the maximum number of pages that will be stored in the array.
4533  *
4534  * Returns the number of pages on the list or array.
4535  */
4536 unsigned long alloc_pages_bulk_noprof(gfp_t gfp, int preferred_nid,
4537 			nodemask_t *nodemask, int nr_pages,
4538 			struct list_head *page_list,
4539 			struct page **page_array)
4540 {
4541 	struct page *page;
4542 	unsigned long __maybe_unused UP_flags;
4543 	struct zone *zone;
4544 	struct zoneref *z;
4545 	struct per_cpu_pages *pcp;
4546 	struct list_head *pcp_list;
4547 	struct alloc_context ac;
4548 	gfp_t alloc_gfp;
4549 	unsigned int alloc_flags = ALLOC_WMARK_LOW;
4550 	int nr_populated = 0, nr_account = 0;
4551 
4552 	/*
4553 	 * Skip populated array elements to determine if any pages need
4554 	 * to be allocated before disabling IRQs.
4555 	 */
4556 	while (page_array && nr_populated < nr_pages && page_array[nr_populated])
4557 		nr_populated++;
4558 
4559 	/* No pages requested? */
4560 	if (unlikely(nr_pages <= 0))
4561 		goto out;
4562 
4563 	/* Already populated array? */
4564 	if (unlikely(page_array && nr_pages - nr_populated == 0))
4565 		goto out;
4566 
4567 	/* Bulk allocator does not support memcg accounting. */
4568 	if (memcg_kmem_online() && (gfp & __GFP_ACCOUNT))
4569 		goto failed;
4570 
4571 	/* Use the single page allocator for one page. */
4572 	if (nr_pages - nr_populated == 1)
4573 		goto failed;
4574 
4575 #ifdef CONFIG_PAGE_OWNER
4576 	/*
4577 	 * PAGE_OWNER may recurse into the allocator to allocate space to
4578 	 * save the stack with pagesets.lock held. Releasing/reacquiring
4579 	 * removes much of the performance benefit of bulk allocation so
4580 	 * force the caller to allocate one page at a time as it'll have
4581 	 * similar performance to added complexity to the bulk allocator.
4582 	 */
4583 	if (static_branch_unlikely(&page_owner_inited))
4584 		goto failed;
4585 #endif
4586 
4587 	/* May set ALLOC_NOFRAGMENT, fragmentation will return 1 page. */
4588 	gfp &= gfp_allowed_mask;
4589 	alloc_gfp = gfp;
4590 	if (!prepare_alloc_pages(gfp, 0, preferred_nid, nodemask, &ac, &alloc_gfp, &alloc_flags))
4591 		goto out;
4592 	gfp = alloc_gfp;
4593 
4594 	/* Find an allowed local zone that meets the low watermark. */
4595 	for_each_zone_zonelist_nodemask(zone, z, ac.zonelist, ac.highest_zoneidx, ac.nodemask) {
4596 		unsigned long mark;
4597 
4598 		if (cpusets_enabled() && (alloc_flags & ALLOC_CPUSET) &&
4599 		    !__cpuset_zone_allowed(zone, gfp)) {
4600 			continue;
4601 		}
4602 
4603 		if (nr_online_nodes > 1 && zone != zonelist_zone(ac.preferred_zoneref) &&
4604 		    zone_to_nid(zone) != zonelist_node_idx(ac.preferred_zoneref)) {
4605 			goto failed;
4606 		}
4607 
4608 		cond_accept_memory(zone, 0);
4609 retry_this_zone:
4610 		mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK) + nr_pages;
4611 		if (zone_watermark_fast(zone, 0,  mark,
4612 				zonelist_zone_idx(ac.preferred_zoneref),
4613 				alloc_flags, gfp)) {
4614 			break;
4615 		}
4616 
4617 		if (cond_accept_memory(zone, 0))
4618 			goto retry_this_zone;
4619 
4620 		/* Try again if zone has deferred pages */
4621 		if (deferred_pages_enabled()) {
4622 			if (_deferred_grow_zone(zone, 0))
4623 				goto retry_this_zone;
4624 		}
4625 	}
4626 
4627 	/*
4628 	 * If there are no allowed local zones that meets the watermarks then
4629 	 * try to allocate a single page and reclaim if necessary.
4630 	 */
4631 	if (unlikely(!zone))
4632 		goto failed;
4633 
4634 	/* spin_trylock may fail due to a parallel drain or IRQ reentrancy. */
4635 	pcp_trylock_prepare(UP_flags);
4636 	pcp = pcp_spin_trylock(zone->per_cpu_pageset);
4637 	if (!pcp)
4638 		goto failed_irq;
4639 
4640 	/* Attempt the batch allocation */
4641 	pcp_list = &pcp->lists[order_to_pindex(ac.migratetype, 0)];
4642 	while (nr_populated < nr_pages) {
4643 
4644 		/* Skip existing pages */
4645 		if (page_array && page_array[nr_populated]) {
4646 			nr_populated++;
4647 			continue;
4648 		}
4649 
4650 		page = __rmqueue_pcplist(zone, 0, ac.migratetype, alloc_flags,
4651 								pcp, pcp_list);
4652 		if (unlikely(!page)) {
4653 			/* Try and allocate at least one page */
4654 			if (!nr_account) {
4655 				pcp_spin_unlock(pcp);
4656 				goto failed_irq;
4657 			}
4658 			break;
4659 		}
4660 		nr_account++;
4661 
4662 		prep_new_page(page, 0, gfp, 0);
4663 		if (page_list)
4664 			list_add(&page->lru, page_list);
4665 		else
4666 			page_array[nr_populated] = page;
4667 		nr_populated++;
4668 	}
4669 
4670 	pcp_spin_unlock(pcp);
4671 	pcp_trylock_finish(UP_flags);
4672 
4673 	__count_zid_vm_events(PGALLOC, zone_idx(zone), nr_account);
4674 	zone_statistics(zonelist_zone(ac.preferred_zoneref), zone, nr_account);
4675 
4676 out:
4677 	return nr_populated;
4678 
4679 failed_irq:
4680 	pcp_trylock_finish(UP_flags);
4681 
4682 failed:
4683 	page = __alloc_pages_noprof(gfp, 0, preferred_nid, nodemask);
4684 	if (page) {
4685 		if (page_list)
4686 			list_add(&page->lru, page_list);
4687 		else
4688 			page_array[nr_populated] = page;
4689 		nr_populated++;
4690 	}
4691 
4692 	goto out;
4693 }
4694 EXPORT_SYMBOL_GPL(alloc_pages_bulk_noprof);
4695 
4696 /*
4697  * This is the 'heart' of the zoned buddy allocator.
4698  */
4699 struct page *__alloc_pages_noprof(gfp_t gfp, unsigned int order,
4700 				      int preferred_nid, nodemask_t *nodemask)
4701 {
4702 	struct page *page;
4703 	unsigned int alloc_flags = ALLOC_WMARK_LOW;
4704 	gfp_t alloc_gfp; /* The gfp_t that was actually used for allocation */
4705 	struct alloc_context ac = { };
4706 
4707 	/*
4708 	 * There are several places where we assume that the order value is sane
4709 	 * so bail out early if the request is out of bound.
4710 	 */
4711 	if (WARN_ON_ONCE_GFP(order > MAX_PAGE_ORDER, gfp))
4712 		return NULL;
4713 
4714 	gfp &= gfp_allowed_mask;
4715 	/*
4716 	 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
4717 	 * resp. GFP_NOIO which has to be inherited for all allocation requests
4718 	 * from a particular context which has been marked by
4719 	 * memalloc_no{fs,io}_{save,restore}. And PF_MEMALLOC_PIN which ensures
4720 	 * movable zones are not used during allocation.
4721 	 */
4722 	gfp = current_gfp_context(gfp);
4723 	alloc_gfp = gfp;
4724 	if (!prepare_alloc_pages(gfp, order, preferred_nid, nodemask, &ac,
4725 			&alloc_gfp, &alloc_flags))
4726 		return NULL;
4727 
4728 	/*
4729 	 * Forbid the first pass from falling back to types that fragment
4730 	 * memory until all local zones are considered.
4731 	 */
4732 	alloc_flags |= alloc_flags_nofragment(zonelist_zone(ac.preferred_zoneref), gfp);
4733 
4734 	/* First allocation attempt */
4735 	page = get_page_from_freelist(alloc_gfp, order, alloc_flags, &ac);
4736 	if (likely(page))
4737 		goto out;
4738 
4739 	alloc_gfp = gfp;
4740 	ac.spread_dirty_pages = false;
4741 
4742 	/*
4743 	 * Restore the original nodemask if it was potentially replaced with
4744 	 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
4745 	 */
4746 	ac.nodemask = nodemask;
4747 
4748 	page = __alloc_pages_slowpath(alloc_gfp, order, &ac);
4749 
4750 out:
4751 	if (memcg_kmem_online() && (gfp & __GFP_ACCOUNT) && page &&
4752 	    unlikely(__memcg_kmem_charge_page(page, gfp, order) != 0)) {
4753 		__free_pages(page, order);
4754 		page = NULL;
4755 	}
4756 
4757 	trace_mm_page_alloc(page, order, alloc_gfp, ac.migratetype);
4758 	kmsan_alloc_page(page, order, alloc_gfp);
4759 
4760 	return page;
4761 }
4762 EXPORT_SYMBOL(__alloc_pages_noprof);
4763 
4764 struct folio *__folio_alloc_noprof(gfp_t gfp, unsigned int order, int preferred_nid,
4765 		nodemask_t *nodemask)
4766 {
4767 	struct page *page = __alloc_pages_noprof(gfp | __GFP_COMP, order,
4768 					preferred_nid, nodemask);
4769 	return page_rmappable_folio(page);
4770 }
4771 EXPORT_SYMBOL(__folio_alloc_noprof);
4772 
4773 /*
4774  * Common helper functions. Never use with __GFP_HIGHMEM because the returned
4775  * address cannot represent highmem pages. Use alloc_pages and then kmap if
4776  * you need to access high mem.
4777  */
4778 unsigned long get_free_pages_noprof(gfp_t gfp_mask, unsigned int order)
4779 {
4780 	struct page *page;
4781 
4782 	page = alloc_pages_noprof(gfp_mask & ~__GFP_HIGHMEM, order);
4783 	if (!page)
4784 		return 0;
4785 	return (unsigned long) page_address(page);
4786 }
4787 EXPORT_SYMBOL(get_free_pages_noprof);
4788 
4789 unsigned long get_zeroed_page_noprof(gfp_t gfp_mask)
4790 {
4791 	return get_free_pages_noprof(gfp_mask | __GFP_ZERO, 0);
4792 }
4793 EXPORT_SYMBOL(get_zeroed_page_noprof);
4794 
4795 /**
4796  * __free_pages - Free pages allocated with alloc_pages().
4797  * @page: The page pointer returned from alloc_pages().
4798  * @order: The order of the allocation.
4799  *
4800  * This function can free multi-page allocations that are not compound
4801  * pages.  It does not check that the @order passed in matches that of
4802  * the allocation, so it is easy to leak memory.  Freeing more memory
4803  * than was allocated will probably emit a warning.
4804  *
4805  * If the last reference to this page is speculative, it will be released
4806  * by put_page() which only frees the first page of a non-compound
4807  * allocation.  To prevent the remaining pages from being leaked, we free
4808  * the subsequent pages here.  If you want to use the page's reference
4809  * count to decide when to free the allocation, you should allocate a
4810  * compound page, and use put_page() instead of __free_pages().
4811  *
4812  * Context: May be called in interrupt context or while holding a normal
4813  * spinlock, but not in NMI context or while holding a raw spinlock.
4814  */
4815 void __free_pages(struct page *page, unsigned int order)
4816 {
4817 	/* get PageHead before we drop reference */
4818 	int head = PageHead(page);
4819 	struct alloc_tag *tag = pgalloc_tag_get(page);
4820 
4821 	if (put_page_testzero(page))
4822 		free_unref_page(page, order);
4823 	else if (!head) {
4824 		pgalloc_tag_sub_pages(tag, (1 << order) - 1);
4825 		while (order-- > 0)
4826 			free_unref_page(page + (1 << order), order);
4827 	}
4828 }
4829 EXPORT_SYMBOL(__free_pages);
4830 
4831 void free_pages(unsigned long addr, unsigned int order)
4832 {
4833 	if (addr != 0) {
4834 		VM_BUG_ON(!virt_addr_valid((void *)addr));
4835 		__free_pages(virt_to_page((void *)addr), order);
4836 	}
4837 }
4838 
4839 EXPORT_SYMBOL(free_pages);
4840 
4841 /*
4842  * Page Fragment:
4843  *  An arbitrary-length arbitrary-offset area of memory which resides
4844  *  within a 0 or higher order page.  Multiple fragments within that page
4845  *  are individually refcounted, in the page's reference counter.
4846  *
4847  * The page_frag functions below provide a simple allocation framework for
4848  * page fragments.  This is used by the network stack and network device
4849  * drivers to provide a backing region of memory for use as either an
4850  * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
4851  */
4852 static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
4853 					     gfp_t gfp_mask)
4854 {
4855 	struct page *page = NULL;
4856 	gfp_t gfp = gfp_mask;
4857 
4858 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4859 	gfp_mask = (gfp_mask & ~__GFP_DIRECT_RECLAIM) |  __GFP_COMP |
4860 		   __GFP_NOWARN | __GFP_NORETRY | __GFP_NOMEMALLOC;
4861 	page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
4862 				PAGE_FRAG_CACHE_MAX_ORDER);
4863 	nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
4864 #endif
4865 	if (unlikely(!page))
4866 		page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
4867 
4868 	nc->va = page ? page_address(page) : NULL;
4869 
4870 	return page;
4871 }
4872 
4873 void page_frag_cache_drain(struct page_frag_cache *nc)
4874 {
4875 	if (!nc->va)
4876 		return;
4877 
4878 	__page_frag_cache_drain(virt_to_head_page(nc->va), nc->pagecnt_bias);
4879 	nc->va = NULL;
4880 }
4881 EXPORT_SYMBOL(page_frag_cache_drain);
4882 
4883 void __page_frag_cache_drain(struct page *page, unsigned int count)
4884 {
4885 	VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
4886 
4887 	if (page_ref_sub_and_test(page, count))
4888 		free_unref_page(page, compound_order(page));
4889 }
4890 EXPORT_SYMBOL(__page_frag_cache_drain);
4891 
4892 void *__page_frag_alloc_align(struct page_frag_cache *nc,
4893 			      unsigned int fragsz, gfp_t gfp_mask,
4894 			      unsigned int align_mask)
4895 {
4896 	unsigned int size = PAGE_SIZE;
4897 	struct page *page;
4898 	int offset;
4899 
4900 	if (unlikely(!nc->va)) {
4901 refill:
4902 		page = __page_frag_cache_refill(nc, gfp_mask);
4903 		if (!page)
4904 			return NULL;
4905 
4906 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4907 		/* if size can vary use size else just use PAGE_SIZE */
4908 		size = nc->size;
4909 #endif
4910 		/* Even if we own the page, we do not use atomic_set().
4911 		 * This would break get_page_unless_zero() users.
4912 		 */
4913 		page_ref_add(page, PAGE_FRAG_CACHE_MAX_SIZE);
4914 
4915 		/* reset page count bias and offset to start of new frag */
4916 		nc->pfmemalloc = page_is_pfmemalloc(page);
4917 		nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
4918 		nc->offset = size;
4919 	}
4920 
4921 	offset = nc->offset - fragsz;
4922 	if (unlikely(offset < 0)) {
4923 		page = virt_to_page(nc->va);
4924 
4925 		if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
4926 			goto refill;
4927 
4928 		if (unlikely(nc->pfmemalloc)) {
4929 			free_unref_page(page, compound_order(page));
4930 			goto refill;
4931 		}
4932 
4933 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4934 		/* if size can vary use size else just use PAGE_SIZE */
4935 		size = nc->size;
4936 #endif
4937 		/* OK, page count is 0, we can safely set it */
4938 		set_page_count(page, PAGE_FRAG_CACHE_MAX_SIZE + 1);
4939 
4940 		/* reset page count bias and offset to start of new frag */
4941 		nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
4942 		offset = size - fragsz;
4943 		if (unlikely(offset < 0)) {
4944 			/*
4945 			 * The caller is trying to allocate a fragment
4946 			 * with fragsz > PAGE_SIZE but the cache isn't big
4947 			 * enough to satisfy the request, this may
4948 			 * happen in low memory conditions.
4949 			 * We don't release the cache page because
4950 			 * it could make memory pressure worse
4951 			 * so we simply return NULL here.
4952 			 */
4953 			return NULL;
4954 		}
4955 	}
4956 
4957 	nc->pagecnt_bias--;
4958 	offset &= align_mask;
4959 	nc->offset = offset;
4960 
4961 	return nc->va + offset;
4962 }
4963 EXPORT_SYMBOL(__page_frag_alloc_align);
4964 
4965 /*
4966  * Frees a page fragment allocated out of either a compound or order 0 page.
4967  */
4968 void page_frag_free(void *addr)
4969 {
4970 	struct page *page = virt_to_head_page(addr);
4971 
4972 	if (unlikely(put_page_testzero(page)))
4973 		free_unref_page(page, compound_order(page));
4974 }
4975 EXPORT_SYMBOL(page_frag_free);
4976 
4977 static void *make_alloc_exact(unsigned long addr, unsigned int order,
4978 		size_t size)
4979 {
4980 	if (addr) {
4981 		unsigned long nr = DIV_ROUND_UP(size, PAGE_SIZE);
4982 		struct page *page = virt_to_page((void *)addr);
4983 		struct page *last = page + nr;
4984 
4985 		split_page_owner(page, order, 0);
4986 		pgalloc_tag_split(page_folio(page), order, 0);
4987 		split_page_memcg(page, order, 0);
4988 		while (page < --last)
4989 			set_page_refcounted(last);
4990 
4991 		last = page + (1UL << order);
4992 		for (page += nr; page < last; page++)
4993 			__free_pages_ok(page, 0, FPI_TO_TAIL);
4994 	}
4995 	return (void *)addr;
4996 }
4997 
4998 /**
4999  * alloc_pages_exact - allocate an exact number physically-contiguous pages.
5000  * @size: the number of bytes to allocate
5001  * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
5002  *
5003  * This function is similar to alloc_pages(), except that it allocates the
5004  * minimum number of pages to satisfy the request.  alloc_pages() can only
5005  * allocate memory in power-of-two pages.
5006  *
5007  * This function is also limited by MAX_PAGE_ORDER.
5008  *
5009  * Memory allocated by this function must be released by free_pages_exact().
5010  *
5011  * Return: pointer to the allocated area or %NULL in case of error.
5012  */
5013 void *alloc_pages_exact_noprof(size_t size, gfp_t gfp_mask)
5014 {
5015 	unsigned int order = get_order(size);
5016 	unsigned long addr;
5017 
5018 	if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM)))
5019 		gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM);
5020 
5021 	addr = get_free_pages_noprof(gfp_mask, order);
5022 	return make_alloc_exact(addr, order, size);
5023 }
5024 EXPORT_SYMBOL(alloc_pages_exact_noprof);
5025 
5026 /**
5027  * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
5028  *			   pages on a node.
5029  * @nid: the preferred node ID where memory should be allocated
5030  * @size: the number of bytes to allocate
5031  * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
5032  *
5033  * Like alloc_pages_exact(), but try to allocate on node nid first before falling
5034  * back.
5035  *
5036  * Return: pointer to the allocated area or %NULL in case of error.
5037  */
5038 void * __meminit alloc_pages_exact_nid_noprof(int nid, size_t size, gfp_t gfp_mask)
5039 {
5040 	unsigned int order = get_order(size);
5041 	struct page *p;
5042 
5043 	if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM)))
5044 		gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM);
5045 
5046 	p = alloc_pages_node_noprof(nid, gfp_mask, order);
5047 	if (!p)
5048 		return NULL;
5049 	return make_alloc_exact((unsigned long)page_address(p), order, size);
5050 }
5051 
5052 /**
5053  * free_pages_exact - release memory allocated via alloc_pages_exact()
5054  * @virt: the value returned by alloc_pages_exact.
5055  * @size: size of allocation, same value as passed to alloc_pages_exact().
5056  *
5057  * Release the memory allocated by a previous call to alloc_pages_exact.
5058  */
5059 void free_pages_exact(void *virt, size_t size)
5060 {
5061 	unsigned long addr = (unsigned long)virt;
5062 	unsigned long end = addr + PAGE_ALIGN(size);
5063 
5064 	while (addr < end) {
5065 		free_page(addr);
5066 		addr += PAGE_SIZE;
5067 	}
5068 }
5069 EXPORT_SYMBOL(free_pages_exact);
5070 
5071 /**
5072  * nr_free_zone_pages - count number of pages beyond high watermark
5073  * @offset: The zone index of the highest zone
5074  *
5075  * nr_free_zone_pages() counts the number of pages which are beyond the
5076  * high watermark within all zones at or below a given zone index.  For each
5077  * zone, the number of pages is calculated as:
5078  *
5079  *     nr_free_zone_pages = managed_pages - high_pages
5080  *
5081  * Return: number of pages beyond high watermark.
5082  */
5083 static unsigned long nr_free_zone_pages(int offset)
5084 {
5085 	struct zoneref *z;
5086 	struct zone *zone;
5087 
5088 	/* Just pick one node, since fallback list is circular */
5089 	unsigned long sum = 0;
5090 
5091 	struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
5092 
5093 	for_each_zone_zonelist(zone, z, zonelist, offset) {
5094 		unsigned long size = zone_managed_pages(zone);
5095 		unsigned long high = high_wmark_pages(zone);
5096 		if (size > high)
5097 			sum += size - high;
5098 	}
5099 
5100 	return sum;
5101 }
5102 
5103 /**
5104  * nr_free_buffer_pages - count number of pages beyond high watermark
5105  *
5106  * nr_free_buffer_pages() counts the number of pages which are beyond the high
5107  * watermark within ZONE_DMA and ZONE_NORMAL.
5108  *
5109  * Return: number of pages beyond high watermark within ZONE_DMA and
5110  * ZONE_NORMAL.
5111  */
5112 unsigned long nr_free_buffer_pages(void)
5113 {
5114 	return nr_free_zone_pages(gfp_zone(GFP_USER));
5115 }
5116 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
5117 
5118 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
5119 {
5120 	zoneref->zone = zone;
5121 	zoneref->zone_idx = zone_idx(zone);
5122 }
5123 
5124 /*
5125  * Builds allocation fallback zone lists.
5126  *
5127  * Add all populated zones of a node to the zonelist.
5128  */
5129 static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs)
5130 {
5131 	struct zone *zone;
5132 	enum zone_type zone_type = MAX_NR_ZONES;
5133 	int nr_zones = 0;
5134 
5135 	do {
5136 		zone_type--;
5137 		zone = pgdat->node_zones + zone_type;
5138 		if (populated_zone(zone)) {
5139 			zoneref_set_zone(zone, &zonerefs[nr_zones++]);
5140 			check_highest_zone(zone_type);
5141 		}
5142 	} while (zone_type);
5143 
5144 	return nr_zones;
5145 }
5146 
5147 #ifdef CONFIG_NUMA
5148 
5149 static int __parse_numa_zonelist_order(char *s)
5150 {
5151 	/*
5152 	 * We used to support different zonelists modes but they turned
5153 	 * out to be just not useful. Let's keep the warning in place
5154 	 * if somebody still use the cmd line parameter so that we do
5155 	 * not fail it silently
5156 	 */
5157 	if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) {
5158 		pr_warn("Ignoring unsupported numa_zonelist_order value:  %s\n", s);
5159 		return -EINVAL;
5160 	}
5161 	return 0;
5162 }
5163 
5164 static char numa_zonelist_order[] = "Node";
5165 #define NUMA_ZONELIST_ORDER_LEN	16
5166 /*
5167  * sysctl handler for numa_zonelist_order
5168  */
5169 static int numa_zonelist_order_handler(const struct ctl_table *table, int write,
5170 		void *buffer, size_t *length, loff_t *ppos)
5171 {
5172 	if (write)
5173 		return __parse_numa_zonelist_order(buffer);
5174 	return proc_dostring(table, write, buffer, length, ppos);
5175 }
5176 
5177 static int node_load[MAX_NUMNODES];
5178 
5179 /**
5180  * find_next_best_node - find the next node that should appear in a given node's fallback list
5181  * @node: node whose fallback list we're appending
5182  * @used_node_mask: nodemask_t of already used nodes
5183  *
5184  * We use a number of factors to determine which is the next node that should
5185  * appear on a given node's fallback list.  The node should not have appeared
5186  * already in @node's fallback list, and it should be the next closest node
5187  * according to the distance array (which contains arbitrary distance values
5188  * from each node to each node in the system), and should also prefer nodes
5189  * with no CPUs, since presumably they'll have very little allocation pressure
5190  * on them otherwise.
5191  *
5192  * Return: node id of the found node or %NUMA_NO_NODE if no node is found.
5193  */
5194 int find_next_best_node(int node, nodemask_t *used_node_mask)
5195 {
5196 	int n, val;
5197 	int min_val = INT_MAX;
5198 	int best_node = NUMA_NO_NODE;
5199 
5200 	/*
5201 	 * Use the local node if we haven't already, but for memoryless local
5202 	 * node, we should skip it and fall back to other nodes.
5203 	 */
5204 	if (!node_isset(node, *used_node_mask) && node_state(node, N_MEMORY)) {
5205 		node_set(node, *used_node_mask);
5206 		return node;
5207 	}
5208 
5209 	for_each_node_state(n, N_MEMORY) {
5210 
5211 		/* Don't want a node to appear more than once */
5212 		if (node_isset(n, *used_node_mask))
5213 			continue;
5214 
5215 		/* Use the distance array to find the distance */
5216 		val = node_distance(node, n);
5217 
5218 		/* Penalize nodes under us ("prefer the next node") */
5219 		val += (n < node);
5220 
5221 		/* Give preference to headless and unused nodes */
5222 		if (!cpumask_empty(cpumask_of_node(n)))
5223 			val += PENALTY_FOR_NODE_WITH_CPUS;
5224 
5225 		/* Slight preference for less loaded node */
5226 		val *= MAX_NUMNODES;
5227 		val += node_load[n];
5228 
5229 		if (val < min_val) {
5230 			min_val = val;
5231 			best_node = n;
5232 		}
5233 	}
5234 
5235 	if (best_node >= 0)
5236 		node_set(best_node, *used_node_mask);
5237 
5238 	return best_node;
5239 }
5240 
5241 
5242 /*
5243  * Build zonelists ordered by node and zones within node.
5244  * This results in maximum locality--normal zone overflows into local
5245  * DMA zone, if any--but risks exhausting DMA zone.
5246  */
5247 static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order,
5248 		unsigned nr_nodes)
5249 {
5250 	struct zoneref *zonerefs;
5251 	int i;
5252 
5253 	zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5254 
5255 	for (i = 0; i < nr_nodes; i++) {
5256 		int nr_zones;
5257 
5258 		pg_data_t *node = NODE_DATA(node_order[i]);
5259 
5260 		nr_zones = build_zonerefs_node(node, zonerefs);
5261 		zonerefs += nr_zones;
5262 	}
5263 	zonerefs->zone = NULL;
5264 	zonerefs->zone_idx = 0;
5265 }
5266 
5267 /*
5268  * Build __GFP_THISNODE zonelists
5269  */
5270 static void build_thisnode_zonelists(pg_data_t *pgdat)
5271 {
5272 	struct zoneref *zonerefs;
5273 	int nr_zones;
5274 
5275 	zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs;
5276 	nr_zones = build_zonerefs_node(pgdat, zonerefs);
5277 	zonerefs += nr_zones;
5278 	zonerefs->zone = NULL;
5279 	zonerefs->zone_idx = 0;
5280 }
5281 
5282 /*
5283  * Build zonelists ordered by zone and nodes within zones.
5284  * This results in conserving DMA zone[s] until all Normal memory is
5285  * exhausted, but results in overflowing to remote node while memory
5286  * may still exist in local DMA zone.
5287  */
5288 
5289 static void build_zonelists(pg_data_t *pgdat)
5290 {
5291 	static int node_order[MAX_NUMNODES];
5292 	int node, nr_nodes = 0;
5293 	nodemask_t used_mask = NODE_MASK_NONE;
5294 	int local_node, prev_node;
5295 
5296 	/* NUMA-aware ordering of nodes */
5297 	local_node = pgdat->node_id;
5298 	prev_node = local_node;
5299 
5300 	memset(node_order, 0, sizeof(node_order));
5301 	while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
5302 		/*
5303 		 * We don't want to pressure a particular node.
5304 		 * So adding penalty to the first node in same
5305 		 * distance group to make it round-robin.
5306 		 */
5307 		if (node_distance(local_node, node) !=
5308 		    node_distance(local_node, prev_node))
5309 			node_load[node] += 1;
5310 
5311 		node_order[nr_nodes++] = node;
5312 		prev_node = node;
5313 	}
5314 
5315 	build_zonelists_in_node_order(pgdat, node_order, nr_nodes);
5316 	build_thisnode_zonelists(pgdat);
5317 	pr_info("Fallback order for Node %d: ", local_node);
5318 	for (node = 0; node < nr_nodes; node++)
5319 		pr_cont("%d ", node_order[node]);
5320 	pr_cont("\n");
5321 }
5322 
5323 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
5324 /*
5325  * Return node id of node used for "local" allocations.
5326  * I.e., first node id of first zone in arg node's generic zonelist.
5327  * Used for initializing percpu 'numa_mem', which is used primarily
5328  * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
5329  */
5330 int local_memory_node(int node)
5331 {
5332 	struct zoneref *z;
5333 
5334 	z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
5335 				   gfp_zone(GFP_KERNEL),
5336 				   NULL);
5337 	return zonelist_node_idx(z);
5338 }
5339 #endif
5340 
5341 static void setup_min_unmapped_ratio(void);
5342 static void setup_min_slab_ratio(void);
5343 #else	/* CONFIG_NUMA */
5344 
5345 static void build_zonelists(pg_data_t *pgdat)
5346 {
5347 	struct zoneref *zonerefs;
5348 	int nr_zones;
5349 
5350 	zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5351 	nr_zones = build_zonerefs_node(pgdat, zonerefs);
5352 	zonerefs += nr_zones;
5353 
5354 	zonerefs->zone = NULL;
5355 	zonerefs->zone_idx = 0;
5356 }
5357 
5358 #endif	/* CONFIG_NUMA */
5359 
5360 /*
5361  * Boot pageset table. One per cpu which is going to be used for all
5362  * zones and all nodes. The parameters will be set in such a way
5363  * that an item put on a list will immediately be handed over to
5364  * the buddy list. This is safe since pageset manipulation is done
5365  * with interrupts disabled.
5366  *
5367  * The boot_pagesets must be kept even after bootup is complete for
5368  * unused processors and/or zones. They do play a role for bootstrapping
5369  * hotplugged processors.
5370  *
5371  * zoneinfo_show() and maybe other functions do
5372  * not check if the processor is online before following the pageset pointer.
5373  * Other parts of the kernel may not check if the zone is available.
5374  */
5375 static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats);
5376 /* These effectively disable the pcplists in the boot pageset completely */
5377 #define BOOT_PAGESET_HIGH	0
5378 #define BOOT_PAGESET_BATCH	1
5379 static DEFINE_PER_CPU(struct per_cpu_pages, boot_pageset);
5380 static DEFINE_PER_CPU(struct per_cpu_zonestat, boot_zonestats);
5381 
5382 static void __build_all_zonelists(void *data)
5383 {
5384 	int nid;
5385 	int __maybe_unused cpu;
5386 	pg_data_t *self = data;
5387 	unsigned long flags;
5388 
5389 	/*
5390 	 * The zonelist_update_seq must be acquired with irqsave because the
5391 	 * reader can be invoked from IRQ with GFP_ATOMIC.
5392 	 */
5393 	write_seqlock_irqsave(&zonelist_update_seq, flags);
5394 	/*
5395 	 * Also disable synchronous printk() to prevent any printk() from
5396 	 * trying to hold port->lock, for
5397 	 * tty_insert_flip_string_and_push_buffer() on other CPU might be
5398 	 * calling kmalloc(GFP_ATOMIC | __GFP_NOWARN) with port->lock held.
5399 	 */
5400 	printk_deferred_enter();
5401 
5402 #ifdef CONFIG_NUMA
5403 	memset(node_load, 0, sizeof(node_load));
5404 #endif
5405 
5406 	/*
5407 	 * This node is hotadded and no memory is yet present.   So just
5408 	 * building zonelists is fine - no need to touch other nodes.
5409 	 */
5410 	if (self && !node_online(self->node_id)) {
5411 		build_zonelists(self);
5412 	} else {
5413 		/*
5414 		 * All possible nodes have pgdat preallocated
5415 		 * in free_area_init
5416 		 */
5417 		for_each_node(nid) {
5418 			pg_data_t *pgdat = NODE_DATA(nid);
5419 
5420 			build_zonelists(pgdat);
5421 		}
5422 
5423 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
5424 		/*
5425 		 * We now know the "local memory node" for each node--
5426 		 * i.e., the node of the first zone in the generic zonelist.
5427 		 * Set up numa_mem percpu variable for on-line cpus.  During
5428 		 * boot, only the boot cpu should be on-line;  we'll init the
5429 		 * secondary cpus' numa_mem as they come on-line.  During
5430 		 * node/memory hotplug, we'll fixup all on-line cpus.
5431 		 */
5432 		for_each_online_cpu(cpu)
5433 			set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
5434 #endif
5435 	}
5436 
5437 	printk_deferred_exit();
5438 	write_sequnlock_irqrestore(&zonelist_update_seq, flags);
5439 }
5440 
5441 static noinline void __init
5442 build_all_zonelists_init(void)
5443 {
5444 	int cpu;
5445 
5446 	__build_all_zonelists(NULL);
5447 
5448 	/*
5449 	 * Initialize the boot_pagesets that are going to be used
5450 	 * for bootstrapping processors. The real pagesets for
5451 	 * each zone will be allocated later when the per cpu
5452 	 * allocator is available.
5453 	 *
5454 	 * boot_pagesets are used also for bootstrapping offline
5455 	 * cpus if the system is already booted because the pagesets
5456 	 * are needed to initialize allocators on a specific cpu too.
5457 	 * F.e. the percpu allocator needs the page allocator which
5458 	 * needs the percpu allocator in order to allocate its pagesets
5459 	 * (a chicken-egg dilemma).
5460 	 */
5461 	for_each_possible_cpu(cpu)
5462 		per_cpu_pages_init(&per_cpu(boot_pageset, cpu), &per_cpu(boot_zonestats, cpu));
5463 
5464 	mminit_verify_zonelist();
5465 	cpuset_init_current_mems_allowed();
5466 }
5467 
5468 /*
5469  * unless system_state == SYSTEM_BOOTING.
5470  *
5471  * __ref due to call of __init annotated helper build_all_zonelists_init
5472  * [protected by SYSTEM_BOOTING].
5473  */
5474 void __ref build_all_zonelists(pg_data_t *pgdat)
5475 {
5476 	unsigned long vm_total_pages;
5477 
5478 	if (system_state == SYSTEM_BOOTING) {
5479 		build_all_zonelists_init();
5480 	} else {
5481 		__build_all_zonelists(pgdat);
5482 		/* cpuset refresh routine should be here */
5483 	}
5484 	/* Get the number of free pages beyond high watermark in all zones. */
5485 	vm_total_pages = nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
5486 	/*
5487 	 * Disable grouping by mobility if the number of pages in the
5488 	 * system is too low to allow the mechanism to work. It would be
5489 	 * more accurate, but expensive to check per-zone. This check is
5490 	 * made on memory-hotadd so a system can start with mobility
5491 	 * disabled and enable it later
5492 	 */
5493 	if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
5494 		page_group_by_mobility_disabled = 1;
5495 	else
5496 		page_group_by_mobility_disabled = 0;
5497 
5498 	pr_info("Built %u zonelists, mobility grouping %s.  Total pages: %ld\n",
5499 		nr_online_nodes,
5500 		page_group_by_mobility_disabled ? "off" : "on",
5501 		vm_total_pages);
5502 #ifdef CONFIG_NUMA
5503 	pr_info("Policy zone: %s\n", zone_names[policy_zone]);
5504 #endif
5505 }
5506 
5507 static int zone_batchsize(struct zone *zone)
5508 {
5509 #ifdef CONFIG_MMU
5510 	int batch;
5511 
5512 	/*
5513 	 * The number of pages to batch allocate is either ~0.1%
5514 	 * of the zone or 1MB, whichever is smaller. The batch
5515 	 * size is striking a balance between allocation latency
5516 	 * and zone lock contention.
5517 	 */
5518 	batch = min(zone_managed_pages(zone) >> 10, SZ_1M / PAGE_SIZE);
5519 	batch /= 4;		/* We effectively *= 4 below */
5520 	if (batch < 1)
5521 		batch = 1;
5522 
5523 	/*
5524 	 * Clamp the batch to a 2^n - 1 value. Having a power
5525 	 * of 2 value was found to be more likely to have
5526 	 * suboptimal cache aliasing properties in some cases.
5527 	 *
5528 	 * For example if 2 tasks are alternately allocating
5529 	 * batches of pages, one task can end up with a lot
5530 	 * of pages of one half of the possible page colors
5531 	 * and the other with pages of the other colors.
5532 	 */
5533 	batch = rounddown_pow_of_two(batch + batch/2) - 1;
5534 
5535 	return batch;
5536 
5537 #else
5538 	/* The deferral and batching of frees should be suppressed under NOMMU
5539 	 * conditions.
5540 	 *
5541 	 * The problem is that NOMMU needs to be able to allocate large chunks
5542 	 * of contiguous memory as there's no hardware page translation to
5543 	 * assemble apparent contiguous memory from discontiguous pages.
5544 	 *
5545 	 * Queueing large contiguous runs of pages for batching, however,
5546 	 * causes the pages to actually be freed in smaller chunks.  As there
5547 	 * can be a significant delay between the individual batches being
5548 	 * recycled, this leads to the once large chunks of space being
5549 	 * fragmented and becoming unavailable for high-order allocations.
5550 	 */
5551 	return 0;
5552 #endif
5553 }
5554 
5555 static int percpu_pagelist_high_fraction;
5556 static int zone_highsize(struct zone *zone, int batch, int cpu_online,
5557 			 int high_fraction)
5558 {
5559 #ifdef CONFIG_MMU
5560 	int high;
5561 	int nr_split_cpus;
5562 	unsigned long total_pages;
5563 
5564 	if (!high_fraction) {
5565 		/*
5566 		 * By default, the high value of the pcp is based on the zone
5567 		 * low watermark so that if they are full then background
5568 		 * reclaim will not be started prematurely.
5569 		 */
5570 		total_pages = low_wmark_pages(zone);
5571 	} else {
5572 		/*
5573 		 * If percpu_pagelist_high_fraction is configured, the high
5574 		 * value is based on a fraction of the managed pages in the
5575 		 * zone.
5576 		 */
5577 		total_pages = zone_managed_pages(zone) / high_fraction;
5578 	}
5579 
5580 	/*
5581 	 * Split the high value across all online CPUs local to the zone. Note
5582 	 * that early in boot that CPUs may not be online yet and that during
5583 	 * CPU hotplug that the cpumask is not yet updated when a CPU is being
5584 	 * onlined. For memory nodes that have no CPUs, split the high value
5585 	 * across all online CPUs to mitigate the risk that reclaim is triggered
5586 	 * prematurely due to pages stored on pcp lists.
5587 	 */
5588 	nr_split_cpus = cpumask_weight(cpumask_of_node(zone_to_nid(zone))) + cpu_online;
5589 	if (!nr_split_cpus)
5590 		nr_split_cpus = num_online_cpus();
5591 	high = total_pages / nr_split_cpus;
5592 
5593 	/*
5594 	 * Ensure high is at least batch*4. The multiple is based on the
5595 	 * historical relationship between high and batch.
5596 	 */
5597 	high = max(high, batch << 2);
5598 
5599 	return high;
5600 #else
5601 	return 0;
5602 #endif
5603 }
5604 
5605 /*
5606  * pcp->high and pcp->batch values are related and generally batch is lower
5607  * than high. They are also related to pcp->count such that count is lower
5608  * than high, and as soon as it reaches high, the pcplist is flushed.
5609  *
5610  * However, guaranteeing these relations at all times would require e.g. write
5611  * barriers here but also careful usage of read barriers at the read side, and
5612  * thus be prone to error and bad for performance. Thus the update only prevents
5613  * store tearing. Any new users of pcp->batch, pcp->high_min and pcp->high_max
5614  * should ensure they can cope with those fields changing asynchronously, and
5615  * fully trust only the pcp->count field on the local CPU with interrupts
5616  * disabled.
5617  *
5618  * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
5619  * outside of boot time (or some other assurance that no concurrent updaters
5620  * exist).
5621  */
5622 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high_min,
5623 			   unsigned long high_max, unsigned long batch)
5624 {
5625 	WRITE_ONCE(pcp->batch, batch);
5626 	WRITE_ONCE(pcp->high_min, high_min);
5627 	WRITE_ONCE(pcp->high_max, high_max);
5628 }
5629 
5630 static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats)
5631 {
5632 	int pindex;
5633 
5634 	memset(pcp, 0, sizeof(*pcp));
5635 	memset(pzstats, 0, sizeof(*pzstats));
5636 
5637 	spin_lock_init(&pcp->lock);
5638 	for (pindex = 0; pindex < NR_PCP_LISTS; pindex++)
5639 		INIT_LIST_HEAD(&pcp->lists[pindex]);
5640 
5641 	/*
5642 	 * Set batch and high values safe for a boot pageset. A true percpu
5643 	 * pageset's initialization will update them subsequently. Here we don't
5644 	 * need to be as careful as pageset_update() as nobody can access the
5645 	 * pageset yet.
5646 	 */
5647 	pcp->high_min = BOOT_PAGESET_HIGH;
5648 	pcp->high_max = BOOT_PAGESET_HIGH;
5649 	pcp->batch = BOOT_PAGESET_BATCH;
5650 	pcp->free_count = 0;
5651 }
5652 
5653 static void __zone_set_pageset_high_and_batch(struct zone *zone, unsigned long high_min,
5654 					      unsigned long high_max, unsigned long batch)
5655 {
5656 	struct per_cpu_pages *pcp;
5657 	int cpu;
5658 
5659 	for_each_possible_cpu(cpu) {
5660 		pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
5661 		pageset_update(pcp, high_min, high_max, batch);
5662 	}
5663 }
5664 
5665 /*
5666  * Calculate and set new high and batch values for all per-cpu pagesets of a
5667  * zone based on the zone's size.
5668  */
5669 static void zone_set_pageset_high_and_batch(struct zone *zone, int cpu_online)
5670 {
5671 	int new_high_min, new_high_max, new_batch;
5672 
5673 	new_batch = max(1, zone_batchsize(zone));
5674 	if (percpu_pagelist_high_fraction) {
5675 		new_high_min = zone_highsize(zone, new_batch, cpu_online,
5676 					     percpu_pagelist_high_fraction);
5677 		/*
5678 		 * PCP high is tuned manually, disable auto-tuning via
5679 		 * setting high_min and high_max to the manual value.
5680 		 */
5681 		new_high_max = new_high_min;
5682 	} else {
5683 		new_high_min = zone_highsize(zone, new_batch, cpu_online, 0);
5684 		new_high_max = zone_highsize(zone, new_batch, cpu_online,
5685 					     MIN_PERCPU_PAGELIST_HIGH_FRACTION);
5686 	}
5687 
5688 	if (zone->pageset_high_min == new_high_min &&
5689 	    zone->pageset_high_max == new_high_max &&
5690 	    zone->pageset_batch == new_batch)
5691 		return;
5692 
5693 	zone->pageset_high_min = new_high_min;
5694 	zone->pageset_high_max = new_high_max;
5695 	zone->pageset_batch = new_batch;
5696 
5697 	__zone_set_pageset_high_and_batch(zone, new_high_min, new_high_max,
5698 					  new_batch);
5699 }
5700 
5701 void __meminit setup_zone_pageset(struct zone *zone)
5702 {
5703 	int cpu;
5704 
5705 	/* Size may be 0 on !SMP && !NUMA */
5706 	if (sizeof(struct per_cpu_zonestat) > 0)
5707 		zone->per_cpu_zonestats = alloc_percpu(struct per_cpu_zonestat);
5708 
5709 	zone->per_cpu_pageset = alloc_percpu(struct per_cpu_pages);
5710 	for_each_possible_cpu(cpu) {
5711 		struct per_cpu_pages *pcp;
5712 		struct per_cpu_zonestat *pzstats;
5713 
5714 		pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
5715 		pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
5716 		per_cpu_pages_init(pcp, pzstats);
5717 	}
5718 
5719 	zone_set_pageset_high_and_batch(zone, 0);
5720 }
5721 
5722 /*
5723  * The zone indicated has a new number of managed_pages; batch sizes and percpu
5724  * page high values need to be recalculated.
5725  */
5726 static void zone_pcp_update(struct zone *zone, int cpu_online)
5727 {
5728 	mutex_lock(&pcp_batch_high_lock);
5729 	zone_set_pageset_high_and_batch(zone, cpu_online);
5730 	mutex_unlock(&pcp_batch_high_lock);
5731 }
5732 
5733 static void zone_pcp_update_cacheinfo(struct zone *zone, unsigned int cpu)
5734 {
5735 	struct per_cpu_pages *pcp;
5736 	struct cpu_cacheinfo *cci;
5737 
5738 	pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
5739 	cci = get_cpu_cacheinfo(cpu);
5740 	/*
5741 	 * If data cache slice of CPU is large enough, "pcp->batch"
5742 	 * pages can be preserved in PCP before draining PCP for
5743 	 * consecutive high-order pages freeing without allocation.
5744 	 * This can reduce zone lock contention without hurting
5745 	 * cache-hot pages sharing.
5746 	 */
5747 	spin_lock(&pcp->lock);
5748 	if ((cci->per_cpu_data_slice_size >> PAGE_SHIFT) > 3 * pcp->batch)
5749 		pcp->flags |= PCPF_FREE_HIGH_BATCH;
5750 	else
5751 		pcp->flags &= ~PCPF_FREE_HIGH_BATCH;
5752 	spin_unlock(&pcp->lock);
5753 }
5754 
5755 void setup_pcp_cacheinfo(unsigned int cpu)
5756 {
5757 	struct zone *zone;
5758 
5759 	for_each_populated_zone(zone)
5760 		zone_pcp_update_cacheinfo(zone, cpu);
5761 }
5762 
5763 /*
5764  * Allocate per cpu pagesets and initialize them.
5765  * Before this call only boot pagesets were available.
5766  */
5767 void __init setup_per_cpu_pageset(void)
5768 {
5769 	struct pglist_data *pgdat;
5770 	struct zone *zone;
5771 	int __maybe_unused cpu;
5772 
5773 	for_each_populated_zone(zone)
5774 		setup_zone_pageset(zone);
5775 
5776 #ifdef CONFIG_NUMA
5777 	/*
5778 	 * Unpopulated zones continue using the boot pagesets.
5779 	 * The numa stats for these pagesets need to be reset.
5780 	 * Otherwise, they will end up skewing the stats of
5781 	 * the nodes these zones are associated with.
5782 	 */
5783 	for_each_possible_cpu(cpu) {
5784 		struct per_cpu_zonestat *pzstats = &per_cpu(boot_zonestats, cpu);
5785 		memset(pzstats->vm_numa_event, 0,
5786 		       sizeof(pzstats->vm_numa_event));
5787 	}
5788 #endif
5789 
5790 	for_each_online_pgdat(pgdat)
5791 		pgdat->per_cpu_nodestats =
5792 			alloc_percpu(struct per_cpu_nodestat);
5793 }
5794 
5795 __meminit void zone_pcp_init(struct zone *zone)
5796 {
5797 	/*
5798 	 * per cpu subsystem is not up at this point. The following code
5799 	 * relies on the ability of the linker to provide the
5800 	 * offset of a (static) per cpu variable into the per cpu area.
5801 	 */
5802 	zone->per_cpu_pageset = &boot_pageset;
5803 	zone->per_cpu_zonestats = &boot_zonestats;
5804 	zone->pageset_high_min = BOOT_PAGESET_HIGH;
5805 	zone->pageset_high_max = BOOT_PAGESET_HIGH;
5806 	zone->pageset_batch = BOOT_PAGESET_BATCH;
5807 
5808 	if (populated_zone(zone))
5809 		pr_debug("  %s zone: %lu pages, LIFO batch:%u\n", zone->name,
5810 			 zone->present_pages, zone_batchsize(zone));
5811 }
5812 
5813 void adjust_managed_page_count(struct page *page, long count)
5814 {
5815 	atomic_long_add(count, &page_zone(page)->managed_pages);
5816 	totalram_pages_add(count);
5817 }
5818 EXPORT_SYMBOL(adjust_managed_page_count);
5819 
5820 unsigned long free_reserved_area(void *start, void *end, int poison, const char *s)
5821 {
5822 	void *pos;
5823 	unsigned long pages = 0;
5824 
5825 	start = (void *)PAGE_ALIGN((unsigned long)start);
5826 	end = (void *)((unsigned long)end & PAGE_MASK);
5827 	for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
5828 		struct page *page = virt_to_page(pos);
5829 		void *direct_map_addr;
5830 
5831 		/*
5832 		 * 'direct_map_addr' might be different from 'pos'
5833 		 * because some architectures' virt_to_page()
5834 		 * work with aliases.  Getting the direct map
5835 		 * address ensures that we get a _writeable_
5836 		 * alias for the memset().
5837 		 */
5838 		direct_map_addr = page_address(page);
5839 		/*
5840 		 * Perform a kasan-unchecked memset() since this memory
5841 		 * has not been initialized.
5842 		 */
5843 		direct_map_addr = kasan_reset_tag(direct_map_addr);
5844 		if ((unsigned int)poison <= 0xFF)
5845 			memset(direct_map_addr, poison, PAGE_SIZE);
5846 
5847 		free_reserved_page(page);
5848 	}
5849 
5850 	if (pages && s)
5851 		pr_info("Freeing %s memory: %ldK\n", s, K(pages));
5852 
5853 	return pages;
5854 }
5855 
5856 void free_reserved_page(struct page *page)
5857 {
5858 	clear_page_tag_ref(page);
5859 	ClearPageReserved(page);
5860 	init_page_count(page);
5861 	__free_page(page);
5862 	adjust_managed_page_count(page, 1);
5863 }
5864 EXPORT_SYMBOL(free_reserved_page);
5865 
5866 static int page_alloc_cpu_dead(unsigned int cpu)
5867 {
5868 	struct zone *zone;
5869 
5870 	lru_add_drain_cpu(cpu);
5871 	mlock_drain_remote(cpu);
5872 	drain_pages(cpu);
5873 
5874 	/*
5875 	 * Spill the event counters of the dead processor
5876 	 * into the current processors event counters.
5877 	 * This artificially elevates the count of the current
5878 	 * processor.
5879 	 */
5880 	vm_events_fold_cpu(cpu);
5881 
5882 	/*
5883 	 * Zero the differential counters of the dead processor
5884 	 * so that the vm statistics are consistent.
5885 	 *
5886 	 * This is only okay since the processor is dead and cannot
5887 	 * race with what we are doing.
5888 	 */
5889 	cpu_vm_stats_fold(cpu);
5890 
5891 	for_each_populated_zone(zone)
5892 		zone_pcp_update(zone, 0);
5893 
5894 	return 0;
5895 }
5896 
5897 static int page_alloc_cpu_online(unsigned int cpu)
5898 {
5899 	struct zone *zone;
5900 
5901 	for_each_populated_zone(zone)
5902 		zone_pcp_update(zone, 1);
5903 	return 0;
5904 }
5905 
5906 void __init page_alloc_init_cpuhp(void)
5907 {
5908 	int ret;
5909 
5910 	ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC,
5911 					"mm/page_alloc:pcp",
5912 					page_alloc_cpu_online,
5913 					page_alloc_cpu_dead);
5914 	WARN_ON(ret < 0);
5915 }
5916 
5917 /*
5918  * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
5919  *	or min_free_kbytes changes.
5920  */
5921 static void calculate_totalreserve_pages(void)
5922 {
5923 	struct pglist_data *pgdat;
5924 	unsigned long reserve_pages = 0;
5925 	enum zone_type i, j;
5926 
5927 	for_each_online_pgdat(pgdat) {
5928 
5929 		pgdat->totalreserve_pages = 0;
5930 
5931 		for (i = 0; i < MAX_NR_ZONES; i++) {
5932 			struct zone *zone = pgdat->node_zones + i;
5933 			long max = 0;
5934 			unsigned long managed_pages = zone_managed_pages(zone);
5935 
5936 			/* Find valid and maximum lowmem_reserve in the zone */
5937 			for (j = i; j < MAX_NR_ZONES; j++) {
5938 				if (zone->lowmem_reserve[j] > max)
5939 					max = zone->lowmem_reserve[j];
5940 			}
5941 
5942 			/* we treat the high watermark as reserved pages. */
5943 			max += high_wmark_pages(zone);
5944 
5945 			if (max > managed_pages)
5946 				max = managed_pages;
5947 
5948 			pgdat->totalreserve_pages += max;
5949 
5950 			reserve_pages += max;
5951 		}
5952 	}
5953 	totalreserve_pages = reserve_pages;
5954 }
5955 
5956 /*
5957  * setup_per_zone_lowmem_reserve - called whenever
5958  *	sysctl_lowmem_reserve_ratio changes.  Ensures that each zone
5959  *	has a correct pages reserved value, so an adequate number of
5960  *	pages are left in the zone after a successful __alloc_pages().
5961  */
5962 static void setup_per_zone_lowmem_reserve(void)
5963 {
5964 	struct pglist_data *pgdat;
5965 	enum zone_type i, j;
5966 
5967 	for_each_online_pgdat(pgdat) {
5968 		for (i = 0; i < MAX_NR_ZONES - 1; i++) {
5969 			struct zone *zone = &pgdat->node_zones[i];
5970 			int ratio = sysctl_lowmem_reserve_ratio[i];
5971 			bool clear = !ratio || !zone_managed_pages(zone);
5972 			unsigned long managed_pages = 0;
5973 
5974 			for (j = i + 1; j < MAX_NR_ZONES; j++) {
5975 				struct zone *upper_zone = &pgdat->node_zones[j];
5976 				bool empty = !zone_managed_pages(upper_zone);
5977 
5978 				managed_pages += zone_managed_pages(upper_zone);
5979 
5980 				if (clear || empty)
5981 					zone->lowmem_reserve[j] = 0;
5982 				else
5983 					zone->lowmem_reserve[j] = managed_pages / ratio;
5984 			}
5985 		}
5986 	}
5987 
5988 	/* update totalreserve_pages */
5989 	calculate_totalreserve_pages();
5990 }
5991 
5992 static void __setup_per_zone_wmarks(void)
5993 {
5994 	unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
5995 	unsigned long lowmem_pages = 0;
5996 	struct zone *zone;
5997 	unsigned long flags;
5998 
5999 	/* Calculate total number of !ZONE_HIGHMEM and !ZONE_MOVABLE pages */
6000 	for_each_zone(zone) {
6001 		if (!is_highmem(zone) && zone_idx(zone) != ZONE_MOVABLE)
6002 			lowmem_pages += zone_managed_pages(zone);
6003 	}
6004 
6005 	for_each_zone(zone) {
6006 		u64 tmp;
6007 
6008 		spin_lock_irqsave(&zone->lock, flags);
6009 		tmp = (u64)pages_min * zone_managed_pages(zone);
6010 		tmp = div64_ul(tmp, lowmem_pages);
6011 		if (is_highmem(zone) || zone_idx(zone) == ZONE_MOVABLE) {
6012 			/*
6013 			 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
6014 			 * need highmem and movable zones pages, so cap pages_min
6015 			 * to a small  value here.
6016 			 *
6017 			 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
6018 			 * deltas control async page reclaim, and so should
6019 			 * not be capped for highmem and movable zones.
6020 			 */
6021 			unsigned long min_pages;
6022 
6023 			min_pages = zone_managed_pages(zone) / 1024;
6024 			min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
6025 			zone->_watermark[WMARK_MIN] = min_pages;
6026 		} else {
6027 			/*
6028 			 * If it's a lowmem zone, reserve a number of pages
6029 			 * proportionate to the zone's size.
6030 			 */
6031 			zone->_watermark[WMARK_MIN] = tmp;
6032 		}
6033 
6034 		/*
6035 		 * Set the kswapd watermarks distance according to the
6036 		 * scale factor in proportion to available memory, but
6037 		 * ensure a minimum size on small systems.
6038 		 */
6039 		tmp = max_t(u64, tmp >> 2,
6040 			    mult_frac(zone_managed_pages(zone),
6041 				      watermark_scale_factor, 10000));
6042 
6043 		zone->watermark_boost = 0;
6044 		zone->_watermark[WMARK_LOW]  = min_wmark_pages(zone) + tmp;
6045 		zone->_watermark[WMARK_HIGH] = low_wmark_pages(zone) + tmp;
6046 		zone->_watermark[WMARK_PROMO] = high_wmark_pages(zone) + tmp;
6047 
6048 		spin_unlock_irqrestore(&zone->lock, flags);
6049 	}
6050 
6051 	/* update totalreserve_pages */
6052 	calculate_totalreserve_pages();
6053 }
6054 
6055 /**
6056  * setup_per_zone_wmarks - called when min_free_kbytes changes
6057  * or when memory is hot-{added|removed}
6058  *
6059  * Ensures that the watermark[min,low,high] values for each zone are set
6060  * correctly with respect to min_free_kbytes.
6061  */
6062 void setup_per_zone_wmarks(void)
6063 {
6064 	struct zone *zone;
6065 	static DEFINE_SPINLOCK(lock);
6066 
6067 	spin_lock(&lock);
6068 	__setup_per_zone_wmarks();
6069 	spin_unlock(&lock);
6070 
6071 	/*
6072 	 * The watermark size have changed so update the pcpu batch
6073 	 * and high limits or the limits may be inappropriate.
6074 	 */
6075 	for_each_zone(zone)
6076 		zone_pcp_update(zone, 0);
6077 }
6078 
6079 /*
6080  * Initialise min_free_kbytes.
6081  *
6082  * For small machines we want it small (128k min).  For large machines
6083  * we want it large (256MB max).  But it is not linear, because network
6084  * bandwidth does not increase linearly with machine size.  We use
6085  *
6086  *	min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
6087  *	min_free_kbytes = sqrt(lowmem_kbytes * 16)
6088  *
6089  * which yields
6090  *
6091  * 16MB:	512k
6092  * 32MB:	724k
6093  * 64MB:	1024k
6094  * 128MB:	1448k
6095  * 256MB:	2048k
6096  * 512MB:	2896k
6097  * 1024MB:	4096k
6098  * 2048MB:	5792k
6099  * 4096MB:	8192k
6100  * 8192MB:	11584k
6101  * 16384MB:	16384k
6102  */
6103 void calculate_min_free_kbytes(void)
6104 {
6105 	unsigned long lowmem_kbytes;
6106 	int new_min_free_kbytes;
6107 
6108 	lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
6109 	new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
6110 
6111 	if (new_min_free_kbytes > user_min_free_kbytes)
6112 		min_free_kbytes = clamp(new_min_free_kbytes, 128, 262144);
6113 	else
6114 		pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
6115 				new_min_free_kbytes, user_min_free_kbytes);
6116 
6117 }
6118 
6119 int __meminit init_per_zone_wmark_min(void)
6120 {
6121 	calculate_min_free_kbytes();
6122 	setup_per_zone_wmarks();
6123 	refresh_zone_stat_thresholds();
6124 	setup_per_zone_lowmem_reserve();
6125 
6126 #ifdef CONFIG_NUMA
6127 	setup_min_unmapped_ratio();
6128 	setup_min_slab_ratio();
6129 #endif
6130 
6131 	khugepaged_min_free_kbytes_update();
6132 
6133 	return 0;
6134 }
6135 postcore_initcall(init_per_zone_wmark_min)
6136 
6137 /*
6138  * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
6139  *	that we can call two helper functions whenever min_free_kbytes
6140  *	changes.
6141  */
6142 static int min_free_kbytes_sysctl_handler(const struct ctl_table *table, int write,
6143 		void *buffer, size_t *length, loff_t *ppos)
6144 {
6145 	int rc;
6146 
6147 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6148 	if (rc)
6149 		return rc;
6150 
6151 	if (write) {
6152 		user_min_free_kbytes = min_free_kbytes;
6153 		setup_per_zone_wmarks();
6154 	}
6155 	return 0;
6156 }
6157 
6158 static int watermark_scale_factor_sysctl_handler(const struct ctl_table *table, int write,
6159 		void *buffer, size_t *length, loff_t *ppos)
6160 {
6161 	int rc;
6162 
6163 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6164 	if (rc)
6165 		return rc;
6166 
6167 	if (write)
6168 		setup_per_zone_wmarks();
6169 
6170 	return 0;
6171 }
6172 
6173 #ifdef CONFIG_NUMA
6174 static void setup_min_unmapped_ratio(void)
6175 {
6176 	pg_data_t *pgdat;
6177 	struct zone *zone;
6178 
6179 	for_each_online_pgdat(pgdat)
6180 		pgdat->min_unmapped_pages = 0;
6181 
6182 	for_each_zone(zone)
6183 		zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) *
6184 						         sysctl_min_unmapped_ratio) / 100;
6185 }
6186 
6187 
6188 static int sysctl_min_unmapped_ratio_sysctl_handler(const struct ctl_table *table, int write,
6189 		void *buffer, size_t *length, loff_t *ppos)
6190 {
6191 	int rc;
6192 
6193 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6194 	if (rc)
6195 		return rc;
6196 
6197 	setup_min_unmapped_ratio();
6198 
6199 	return 0;
6200 }
6201 
6202 static void setup_min_slab_ratio(void)
6203 {
6204 	pg_data_t *pgdat;
6205 	struct zone *zone;
6206 
6207 	for_each_online_pgdat(pgdat)
6208 		pgdat->min_slab_pages = 0;
6209 
6210 	for_each_zone(zone)
6211 		zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) *
6212 						     sysctl_min_slab_ratio) / 100;
6213 }
6214 
6215 static int sysctl_min_slab_ratio_sysctl_handler(const struct ctl_table *table, int write,
6216 		void *buffer, size_t *length, loff_t *ppos)
6217 {
6218 	int rc;
6219 
6220 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6221 	if (rc)
6222 		return rc;
6223 
6224 	setup_min_slab_ratio();
6225 
6226 	return 0;
6227 }
6228 #endif
6229 
6230 /*
6231  * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
6232  *	proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
6233  *	whenever sysctl_lowmem_reserve_ratio changes.
6234  *
6235  * The reserve ratio obviously has absolutely no relation with the
6236  * minimum watermarks. The lowmem reserve ratio can only make sense
6237  * if in function of the boot time zone sizes.
6238  */
6239 static int lowmem_reserve_ratio_sysctl_handler(const struct ctl_table *table,
6240 		int write, void *buffer, size_t *length, loff_t *ppos)
6241 {
6242 	int i;
6243 
6244 	proc_dointvec_minmax(table, write, buffer, length, ppos);
6245 
6246 	for (i = 0; i < MAX_NR_ZONES; i++) {
6247 		if (sysctl_lowmem_reserve_ratio[i] < 1)
6248 			sysctl_lowmem_reserve_ratio[i] = 0;
6249 	}
6250 
6251 	setup_per_zone_lowmem_reserve();
6252 	return 0;
6253 }
6254 
6255 /*
6256  * percpu_pagelist_high_fraction - changes the pcp->high for each zone on each
6257  * cpu. It is the fraction of total pages in each zone that a hot per cpu
6258  * pagelist can have before it gets flushed back to buddy allocator.
6259  */
6260 static int percpu_pagelist_high_fraction_sysctl_handler(const struct ctl_table *table,
6261 		int write, void *buffer, size_t *length, loff_t *ppos)
6262 {
6263 	struct zone *zone;
6264 	int old_percpu_pagelist_high_fraction;
6265 	int ret;
6266 
6267 	mutex_lock(&pcp_batch_high_lock);
6268 	old_percpu_pagelist_high_fraction = percpu_pagelist_high_fraction;
6269 
6270 	ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
6271 	if (!write || ret < 0)
6272 		goto out;
6273 
6274 	/* Sanity checking to avoid pcp imbalance */
6275 	if (percpu_pagelist_high_fraction &&
6276 	    percpu_pagelist_high_fraction < MIN_PERCPU_PAGELIST_HIGH_FRACTION) {
6277 		percpu_pagelist_high_fraction = old_percpu_pagelist_high_fraction;
6278 		ret = -EINVAL;
6279 		goto out;
6280 	}
6281 
6282 	/* No change? */
6283 	if (percpu_pagelist_high_fraction == old_percpu_pagelist_high_fraction)
6284 		goto out;
6285 
6286 	for_each_populated_zone(zone)
6287 		zone_set_pageset_high_and_batch(zone, 0);
6288 out:
6289 	mutex_unlock(&pcp_batch_high_lock);
6290 	return ret;
6291 }
6292 
6293 static struct ctl_table page_alloc_sysctl_table[] = {
6294 	{
6295 		.procname	= "min_free_kbytes",
6296 		.data		= &min_free_kbytes,
6297 		.maxlen		= sizeof(min_free_kbytes),
6298 		.mode		= 0644,
6299 		.proc_handler	= min_free_kbytes_sysctl_handler,
6300 		.extra1		= SYSCTL_ZERO,
6301 	},
6302 	{
6303 		.procname	= "watermark_boost_factor",
6304 		.data		= &watermark_boost_factor,
6305 		.maxlen		= sizeof(watermark_boost_factor),
6306 		.mode		= 0644,
6307 		.proc_handler	= proc_dointvec_minmax,
6308 		.extra1		= SYSCTL_ZERO,
6309 	},
6310 	{
6311 		.procname	= "watermark_scale_factor",
6312 		.data		= &watermark_scale_factor,
6313 		.maxlen		= sizeof(watermark_scale_factor),
6314 		.mode		= 0644,
6315 		.proc_handler	= watermark_scale_factor_sysctl_handler,
6316 		.extra1		= SYSCTL_ONE,
6317 		.extra2		= SYSCTL_THREE_THOUSAND,
6318 	},
6319 	{
6320 		.procname	= "percpu_pagelist_high_fraction",
6321 		.data		= &percpu_pagelist_high_fraction,
6322 		.maxlen		= sizeof(percpu_pagelist_high_fraction),
6323 		.mode		= 0644,
6324 		.proc_handler	= percpu_pagelist_high_fraction_sysctl_handler,
6325 		.extra1		= SYSCTL_ZERO,
6326 	},
6327 	{
6328 		.procname	= "lowmem_reserve_ratio",
6329 		.data		= &sysctl_lowmem_reserve_ratio,
6330 		.maxlen		= sizeof(sysctl_lowmem_reserve_ratio),
6331 		.mode		= 0644,
6332 		.proc_handler	= lowmem_reserve_ratio_sysctl_handler,
6333 	},
6334 #ifdef CONFIG_NUMA
6335 	{
6336 		.procname	= "numa_zonelist_order",
6337 		.data		= &numa_zonelist_order,
6338 		.maxlen		= NUMA_ZONELIST_ORDER_LEN,
6339 		.mode		= 0644,
6340 		.proc_handler	= numa_zonelist_order_handler,
6341 	},
6342 	{
6343 		.procname	= "min_unmapped_ratio",
6344 		.data		= &sysctl_min_unmapped_ratio,
6345 		.maxlen		= sizeof(sysctl_min_unmapped_ratio),
6346 		.mode		= 0644,
6347 		.proc_handler	= sysctl_min_unmapped_ratio_sysctl_handler,
6348 		.extra1		= SYSCTL_ZERO,
6349 		.extra2		= SYSCTL_ONE_HUNDRED,
6350 	},
6351 	{
6352 		.procname	= "min_slab_ratio",
6353 		.data		= &sysctl_min_slab_ratio,
6354 		.maxlen		= sizeof(sysctl_min_slab_ratio),
6355 		.mode		= 0644,
6356 		.proc_handler	= sysctl_min_slab_ratio_sysctl_handler,
6357 		.extra1		= SYSCTL_ZERO,
6358 		.extra2		= SYSCTL_ONE_HUNDRED,
6359 	},
6360 #endif
6361 };
6362 
6363 void __init page_alloc_sysctl_init(void)
6364 {
6365 	register_sysctl_init("vm", page_alloc_sysctl_table);
6366 }
6367 
6368 #ifdef CONFIG_CONTIG_ALLOC
6369 /* Usage: See admin-guide/dynamic-debug-howto.rst */
6370 static void alloc_contig_dump_pages(struct list_head *page_list)
6371 {
6372 	DEFINE_DYNAMIC_DEBUG_METADATA(descriptor, "migrate failure");
6373 
6374 	if (DYNAMIC_DEBUG_BRANCH(descriptor)) {
6375 		struct page *page;
6376 
6377 		dump_stack();
6378 		list_for_each_entry(page, page_list, lru)
6379 			dump_page(page, "migration failure");
6380 	}
6381 }
6382 
6383 /*
6384  * [start, end) must belong to a single zone.
6385  * @migratetype: using migratetype to filter the type of migration in
6386  *		trace_mm_alloc_contig_migrate_range_info.
6387  */
6388 int __alloc_contig_migrate_range(struct compact_control *cc,
6389 					unsigned long start, unsigned long end,
6390 					int migratetype)
6391 {
6392 	/* This function is based on compact_zone() from compaction.c. */
6393 	unsigned int nr_reclaimed;
6394 	unsigned long pfn = start;
6395 	unsigned int tries = 0;
6396 	int ret = 0;
6397 	struct migration_target_control mtc = {
6398 		.nid = zone_to_nid(cc->zone),
6399 		.gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL,
6400 		.reason = MR_CONTIG_RANGE,
6401 	};
6402 	struct page *page;
6403 	unsigned long total_mapped = 0;
6404 	unsigned long total_migrated = 0;
6405 	unsigned long total_reclaimed = 0;
6406 
6407 	lru_cache_disable();
6408 
6409 	while (pfn < end || !list_empty(&cc->migratepages)) {
6410 		if (fatal_signal_pending(current)) {
6411 			ret = -EINTR;
6412 			break;
6413 		}
6414 
6415 		if (list_empty(&cc->migratepages)) {
6416 			cc->nr_migratepages = 0;
6417 			ret = isolate_migratepages_range(cc, pfn, end);
6418 			if (ret && ret != -EAGAIN)
6419 				break;
6420 			pfn = cc->migrate_pfn;
6421 			tries = 0;
6422 		} else if (++tries == 5) {
6423 			ret = -EBUSY;
6424 			break;
6425 		}
6426 
6427 		nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
6428 							&cc->migratepages);
6429 		cc->nr_migratepages -= nr_reclaimed;
6430 
6431 		if (trace_mm_alloc_contig_migrate_range_info_enabled()) {
6432 			total_reclaimed += nr_reclaimed;
6433 			list_for_each_entry(page, &cc->migratepages, lru) {
6434 				struct folio *folio = page_folio(page);
6435 
6436 				total_mapped += folio_mapped(folio) *
6437 						folio_nr_pages(folio);
6438 			}
6439 		}
6440 
6441 		ret = migrate_pages(&cc->migratepages, alloc_migration_target,
6442 			NULL, (unsigned long)&mtc, cc->mode, MR_CONTIG_RANGE, NULL);
6443 
6444 		if (trace_mm_alloc_contig_migrate_range_info_enabled() && !ret)
6445 			total_migrated += cc->nr_migratepages;
6446 
6447 		/*
6448 		 * On -ENOMEM, migrate_pages() bails out right away. It is pointless
6449 		 * to retry again over this error, so do the same here.
6450 		 */
6451 		if (ret == -ENOMEM)
6452 			break;
6453 	}
6454 
6455 	lru_cache_enable();
6456 	if (ret < 0) {
6457 		if (!(cc->gfp_mask & __GFP_NOWARN) && ret == -EBUSY)
6458 			alloc_contig_dump_pages(&cc->migratepages);
6459 		putback_movable_pages(&cc->migratepages);
6460 	}
6461 
6462 	trace_mm_alloc_contig_migrate_range_info(start, end, migratetype,
6463 						 total_migrated,
6464 						 total_reclaimed,
6465 						 total_mapped);
6466 	return (ret < 0) ? ret : 0;
6467 }
6468 
6469 static void split_free_pages(struct list_head *list)
6470 {
6471 	int order;
6472 
6473 	for (order = 0; order < NR_PAGE_ORDERS; order++) {
6474 		struct page *page, *next;
6475 		int nr_pages = 1 << order;
6476 
6477 		list_for_each_entry_safe(page, next, &list[order], lru) {
6478 			int i;
6479 
6480 			post_alloc_hook(page, order, __GFP_MOVABLE);
6481 			if (!order)
6482 				continue;
6483 
6484 			split_page(page, order);
6485 
6486 			/* Add all subpages to the order-0 head, in sequence. */
6487 			list_del(&page->lru);
6488 			for (i = 0; i < nr_pages; i++)
6489 				list_add_tail(&page[i].lru, &list[0]);
6490 		}
6491 	}
6492 }
6493 
6494 /**
6495  * alloc_contig_range() -- tries to allocate given range of pages
6496  * @start:	start PFN to allocate
6497  * @end:	one-past-the-last PFN to allocate
6498  * @migratetype:	migratetype of the underlying pageblocks (either
6499  *			#MIGRATE_MOVABLE or #MIGRATE_CMA).  All pageblocks
6500  *			in range must have the same migratetype and it must
6501  *			be either of the two.
6502  * @gfp_mask:	GFP mask to use during compaction
6503  *
6504  * The PFN range does not have to be pageblock aligned. The PFN range must
6505  * belong to a single zone.
6506  *
6507  * The first thing this routine does is attempt to MIGRATE_ISOLATE all
6508  * pageblocks in the range.  Once isolated, the pageblocks should not
6509  * be modified by others.
6510  *
6511  * Return: zero on success or negative error code.  On success all
6512  * pages which PFN is in [start, end) are allocated for the caller and
6513  * need to be freed with free_contig_range().
6514  */
6515 int alloc_contig_range_noprof(unsigned long start, unsigned long end,
6516 		       unsigned migratetype, gfp_t gfp_mask)
6517 {
6518 	unsigned long outer_start, outer_end;
6519 	int ret = 0;
6520 
6521 	struct compact_control cc = {
6522 		.nr_migratepages = 0,
6523 		.order = -1,
6524 		.zone = page_zone(pfn_to_page(start)),
6525 		.mode = MIGRATE_SYNC,
6526 		.ignore_skip_hint = true,
6527 		.no_set_skip_hint = true,
6528 		.gfp_mask = current_gfp_context(gfp_mask),
6529 		.alloc_contig = true,
6530 	};
6531 	INIT_LIST_HEAD(&cc.migratepages);
6532 
6533 	/*
6534 	 * What we do here is we mark all pageblocks in range as
6535 	 * MIGRATE_ISOLATE.  Because pageblock and max order pages may
6536 	 * have different sizes, and due to the way page allocator
6537 	 * work, start_isolate_page_range() has special handlings for this.
6538 	 *
6539 	 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
6540 	 * migrate the pages from an unaligned range (ie. pages that
6541 	 * we are interested in). This will put all the pages in
6542 	 * range back to page allocator as MIGRATE_ISOLATE.
6543 	 *
6544 	 * When this is done, we take the pages in range from page
6545 	 * allocator removing them from the buddy system.  This way
6546 	 * page allocator will never consider using them.
6547 	 *
6548 	 * This lets us mark the pageblocks back as
6549 	 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
6550 	 * aligned range but not in the unaligned, original range are
6551 	 * put back to page allocator so that buddy can use them.
6552 	 */
6553 
6554 	ret = start_isolate_page_range(start, end, migratetype, 0, gfp_mask);
6555 	if (ret)
6556 		goto done;
6557 
6558 	drain_all_pages(cc.zone);
6559 
6560 	/*
6561 	 * In case of -EBUSY, we'd like to know which page causes problem.
6562 	 * So, just fall through. test_pages_isolated() has a tracepoint
6563 	 * which will report the busy page.
6564 	 *
6565 	 * It is possible that busy pages could become available before
6566 	 * the call to test_pages_isolated, and the range will actually be
6567 	 * allocated.  So, if we fall through be sure to clear ret so that
6568 	 * -EBUSY is not accidentally used or returned to caller.
6569 	 */
6570 	ret = __alloc_contig_migrate_range(&cc, start, end, migratetype);
6571 	if (ret && ret != -EBUSY)
6572 		goto done;
6573 	ret = 0;
6574 
6575 	/*
6576 	 * Pages from [start, end) are within a pageblock_nr_pages
6577 	 * aligned blocks that are marked as MIGRATE_ISOLATE.  What's
6578 	 * more, all pages in [start, end) are free in page allocator.
6579 	 * What we are going to do is to allocate all pages from
6580 	 * [start, end) (that is remove them from page allocator).
6581 	 *
6582 	 * The only problem is that pages at the beginning and at the
6583 	 * end of interesting range may be not aligned with pages that
6584 	 * page allocator holds, ie. they can be part of higher order
6585 	 * pages.  Because of this, we reserve the bigger range and
6586 	 * once this is done free the pages we are not interested in.
6587 	 *
6588 	 * We don't have to hold zone->lock here because the pages are
6589 	 * isolated thus they won't get removed from buddy.
6590 	 */
6591 	outer_start = find_large_buddy(start);
6592 
6593 	/* Make sure the range is really isolated. */
6594 	if (test_pages_isolated(outer_start, end, 0)) {
6595 		ret = -EBUSY;
6596 		goto done;
6597 	}
6598 
6599 	/* Grab isolated pages from freelists. */
6600 	outer_end = isolate_freepages_range(&cc, outer_start, end);
6601 	if (!outer_end) {
6602 		ret = -EBUSY;
6603 		goto done;
6604 	}
6605 
6606 	if (!(gfp_mask & __GFP_COMP)) {
6607 		split_free_pages(cc.freepages);
6608 
6609 		/* Free head and tail (if any) */
6610 		if (start != outer_start)
6611 			free_contig_range(outer_start, start - outer_start);
6612 		if (end != outer_end)
6613 			free_contig_range(end, outer_end - end);
6614 	} else if (start == outer_start && end == outer_end && is_power_of_2(end - start)) {
6615 		struct page *head = pfn_to_page(start);
6616 		int order = ilog2(end - start);
6617 
6618 		check_new_pages(head, order);
6619 		prep_new_page(head, order, gfp_mask, 0);
6620 	} else {
6621 		ret = -EINVAL;
6622 		WARN(true, "PFN range: requested [%lu, %lu), allocated [%lu, %lu)\n",
6623 		     start, end, outer_start, outer_end);
6624 	}
6625 done:
6626 	undo_isolate_page_range(start, end, migratetype);
6627 	return ret;
6628 }
6629 EXPORT_SYMBOL(alloc_contig_range_noprof);
6630 
6631 static int __alloc_contig_pages(unsigned long start_pfn,
6632 				unsigned long nr_pages, gfp_t gfp_mask)
6633 {
6634 	unsigned long end_pfn = start_pfn + nr_pages;
6635 
6636 	return alloc_contig_range_noprof(start_pfn, end_pfn, MIGRATE_MOVABLE,
6637 				   gfp_mask);
6638 }
6639 
6640 static bool pfn_range_valid_contig(struct zone *z, unsigned long start_pfn,
6641 				   unsigned long nr_pages)
6642 {
6643 	unsigned long i, end_pfn = start_pfn + nr_pages;
6644 	struct page *page;
6645 
6646 	for (i = start_pfn; i < end_pfn; i++) {
6647 		page = pfn_to_online_page(i);
6648 		if (!page)
6649 			return false;
6650 
6651 		if (page_zone(page) != z)
6652 			return false;
6653 
6654 		if (PageReserved(page))
6655 			return false;
6656 
6657 		if (PageHuge(page))
6658 			return false;
6659 	}
6660 	return true;
6661 }
6662 
6663 static bool zone_spans_last_pfn(const struct zone *zone,
6664 				unsigned long start_pfn, unsigned long nr_pages)
6665 {
6666 	unsigned long last_pfn = start_pfn + nr_pages - 1;
6667 
6668 	return zone_spans_pfn(zone, last_pfn);
6669 }
6670 
6671 /**
6672  * alloc_contig_pages() -- tries to find and allocate contiguous range of pages
6673  * @nr_pages:	Number of contiguous pages to allocate
6674  * @gfp_mask:	GFP mask to limit search and used during compaction
6675  * @nid:	Target node
6676  * @nodemask:	Mask for other possible nodes
6677  *
6678  * This routine is a wrapper around alloc_contig_range(). It scans over zones
6679  * on an applicable zonelist to find a contiguous pfn range which can then be
6680  * tried for allocation with alloc_contig_range(). This routine is intended
6681  * for allocation requests which can not be fulfilled with the buddy allocator.
6682  *
6683  * The allocated memory is always aligned to a page boundary. If nr_pages is a
6684  * power of two, then allocated range is also guaranteed to be aligned to same
6685  * nr_pages (e.g. 1GB request would be aligned to 1GB).
6686  *
6687  * Allocated pages can be freed with free_contig_range() or by manually calling
6688  * __free_page() on each allocated page.
6689  *
6690  * Return: pointer to contiguous pages on success, or NULL if not successful.
6691  */
6692 struct page *alloc_contig_pages_noprof(unsigned long nr_pages, gfp_t gfp_mask,
6693 				 int nid, nodemask_t *nodemask)
6694 {
6695 	unsigned long ret, pfn, flags;
6696 	struct zonelist *zonelist;
6697 	struct zone *zone;
6698 	struct zoneref *z;
6699 
6700 	zonelist = node_zonelist(nid, gfp_mask);
6701 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
6702 					gfp_zone(gfp_mask), nodemask) {
6703 		spin_lock_irqsave(&zone->lock, flags);
6704 
6705 		pfn = ALIGN(zone->zone_start_pfn, nr_pages);
6706 		while (zone_spans_last_pfn(zone, pfn, nr_pages)) {
6707 			if (pfn_range_valid_contig(zone, pfn, nr_pages)) {
6708 				/*
6709 				 * We release the zone lock here because
6710 				 * alloc_contig_range() will also lock the zone
6711 				 * at some point. If there's an allocation
6712 				 * spinning on this lock, it may win the race
6713 				 * and cause alloc_contig_range() to fail...
6714 				 */
6715 				spin_unlock_irqrestore(&zone->lock, flags);
6716 				ret = __alloc_contig_pages(pfn, nr_pages,
6717 							gfp_mask);
6718 				if (!ret)
6719 					return pfn_to_page(pfn);
6720 				spin_lock_irqsave(&zone->lock, flags);
6721 			}
6722 			pfn += nr_pages;
6723 		}
6724 		spin_unlock_irqrestore(&zone->lock, flags);
6725 	}
6726 	return NULL;
6727 }
6728 #endif /* CONFIG_CONTIG_ALLOC */
6729 
6730 void free_contig_range(unsigned long pfn, unsigned long nr_pages)
6731 {
6732 	unsigned long count = 0;
6733 	struct folio *folio = pfn_folio(pfn);
6734 
6735 	if (folio_test_large(folio)) {
6736 		int expected = folio_nr_pages(folio);
6737 
6738 		if (nr_pages == expected)
6739 			folio_put(folio);
6740 		else
6741 			WARN(true, "PFN %lu: nr_pages %lu != expected %d\n",
6742 			     pfn, nr_pages, expected);
6743 		return;
6744 	}
6745 
6746 	for (; nr_pages--; pfn++) {
6747 		struct page *page = pfn_to_page(pfn);
6748 
6749 		count += page_count(page) != 1;
6750 		__free_page(page);
6751 	}
6752 	WARN(count != 0, "%lu pages are still in use!\n", count);
6753 }
6754 EXPORT_SYMBOL(free_contig_range);
6755 
6756 /*
6757  * Effectively disable pcplists for the zone by setting the high limit to 0
6758  * and draining all cpus. A concurrent page freeing on another CPU that's about
6759  * to put the page on pcplist will either finish before the drain and the page
6760  * will be drained, or observe the new high limit and skip the pcplist.
6761  *
6762  * Must be paired with a call to zone_pcp_enable().
6763  */
6764 void zone_pcp_disable(struct zone *zone)
6765 {
6766 	mutex_lock(&pcp_batch_high_lock);
6767 	__zone_set_pageset_high_and_batch(zone, 0, 0, 1);
6768 	__drain_all_pages(zone, true);
6769 }
6770 
6771 void zone_pcp_enable(struct zone *zone)
6772 {
6773 	__zone_set_pageset_high_and_batch(zone, zone->pageset_high_min,
6774 		zone->pageset_high_max, zone->pageset_batch);
6775 	mutex_unlock(&pcp_batch_high_lock);
6776 }
6777 
6778 void zone_pcp_reset(struct zone *zone)
6779 {
6780 	int cpu;
6781 	struct per_cpu_zonestat *pzstats;
6782 
6783 	if (zone->per_cpu_pageset != &boot_pageset) {
6784 		for_each_online_cpu(cpu) {
6785 			pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
6786 			drain_zonestat(zone, pzstats);
6787 		}
6788 		free_percpu(zone->per_cpu_pageset);
6789 		zone->per_cpu_pageset = &boot_pageset;
6790 		if (zone->per_cpu_zonestats != &boot_zonestats) {
6791 			free_percpu(zone->per_cpu_zonestats);
6792 			zone->per_cpu_zonestats = &boot_zonestats;
6793 		}
6794 	}
6795 }
6796 
6797 #ifdef CONFIG_MEMORY_HOTREMOVE
6798 /*
6799  * All pages in the range must be in a single zone, must not contain holes,
6800  * must span full sections, and must be isolated before calling this function.
6801  *
6802  * Returns the number of managed (non-PageOffline()) pages in the range: the
6803  * number of pages for which memory offlining code must adjust managed page
6804  * counters using adjust_managed_page_count().
6805  */
6806 unsigned long __offline_isolated_pages(unsigned long start_pfn,
6807 		unsigned long end_pfn)
6808 {
6809 	unsigned long already_offline = 0, flags;
6810 	unsigned long pfn = start_pfn;
6811 	struct page *page;
6812 	struct zone *zone;
6813 	unsigned int order;
6814 
6815 	offline_mem_sections(pfn, end_pfn);
6816 	zone = page_zone(pfn_to_page(pfn));
6817 	spin_lock_irqsave(&zone->lock, flags);
6818 	while (pfn < end_pfn) {
6819 		page = pfn_to_page(pfn);
6820 		/*
6821 		 * The HWPoisoned page may be not in buddy system, and
6822 		 * page_count() is not 0.
6823 		 */
6824 		if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
6825 			pfn++;
6826 			continue;
6827 		}
6828 		/*
6829 		 * At this point all remaining PageOffline() pages have a
6830 		 * reference count of 0 and can simply be skipped.
6831 		 */
6832 		if (PageOffline(page)) {
6833 			BUG_ON(page_count(page));
6834 			BUG_ON(PageBuddy(page));
6835 			already_offline++;
6836 			pfn++;
6837 			continue;
6838 		}
6839 
6840 		BUG_ON(page_count(page));
6841 		BUG_ON(!PageBuddy(page));
6842 		VM_WARN_ON(get_pageblock_migratetype(page) != MIGRATE_ISOLATE);
6843 		order = buddy_order(page);
6844 		del_page_from_free_list(page, zone, order, MIGRATE_ISOLATE);
6845 		pfn += (1 << order);
6846 	}
6847 	spin_unlock_irqrestore(&zone->lock, flags);
6848 
6849 	return end_pfn - start_pfn - already_offline;
6850 }
6851 #endif
6852 
6853 /*
6854  * This function returns a stable result only if called under zone lock.
6855  */
6856 bool is_free_buddy_page(const struct page *page)
6857 {
6858 	unsigned long pfn = page_to_pfn(page);
6859 	unsigned int order;
6860 
6861 	for (order = 0; order < NR_PAGE_ORDERS; order++) {
6862 		const struct page *head = page - (pfn & ((1 << order) - 1));
6863 
6864 		if (PageBuddy(head) &&
6865 		    buddy_order_unsafe(head) >= order)
6866 			break;
6867 	}
6868 
6869 	return order <= MAX_PAGE_ORDER;
6870 }
6871 EXPORT_SYMBOL(is_free_buddy_page);
6872 
6873 #ifdef CONFIG_MEMORY_FAILURE
6874 static inline void add_to_free_list(struct page *page, struct zone *zone,
6875 				    unsigned int order, int migratetype,
6876 				    bool tail)
6877 {
6878 	__add_to_free_list(page, zone, order, migratetype, tail);
6879 	account_freepages(zone, 1 << order, migratetype);
6880 }
6881 
6882 /*
6883  * Break down a higher-order page in sub-pages, and keep our target out of
6884  * buddy allocator.
6885  */
6886 static void break_down_buddy_pages(struct zone *zone, struct page *page,
6887 				   struct page *target, int low, int high,
6888 				   int migratetype)
6889 {
6890 	unsigned long size = 1 << high;
6891 	struct page *current_buddy;
6892 
6893 	while (high > low) {
6894 		high--;
6895 		size >>= 1;
6896 
6897 		if (target >= &page[size]) {
6898 			current_buddy = page;
6899 			page = page + size;
6900 		} else {
6901 			current_buddy = page + size;
6902 		}
6903 
6904 		if (set_page_guard(zone, current_buddy, high))
6905 			continue;
6906 
6907 		add_to_free_list(current_buddy, zone, high, migratetype, false);
6908 		set_buddy_order(current_buddy, high);
6909 	}
6910 }
6911 
6912 /*
6913  * Take a page that will be marked as poisoned off the buddy allocator.
6914  */
6915 bool take_page_off_buddy(struct page *page)
6916 {
6917 	struct zone *zone = page_zone(page);
6918 	unsigned long pfn = page_to_pfn(page);
6919 	unsigned long flags;
6920 	unsigned int order;
6921 	bool ret = false;
6922 
6923 	spin_lock_irqsave(&zone->lock, flags);
6924 	for (order = 0; order < NR_PAGE_ORDERS; order++) {
6925 		struct page *page_head = page - (pfn & ((1 << order) - 1));
6926 		int page_order = buddy_order(page_head);
6927 
6928 		if (PageBuddy(page_head) && page_order >= order) {
6929 			unsigned long pfn_head = page_to_pfn(page_head);
6930 			int migratetype = get_pfnblock_migratetype(page_head,
6931 								   pfn_head);
6932 
6933 			del_page_from_free_list(page_head, zone, page_order,
6934 						migratetype);
6935 			break_down_buddy_pages(zone, page_head, page, 0,
6936 						page_order, migratetype);
6937 			SetPageHWPoisonTakenOff(page);
6938 			ret = true;
6939 			break;
6940 		}
6941 		if (page_count(page_head) > 0)
6942 			break;
6943 	}
6944 	spin_unlock_irqrestore(&zone->lock, flags);
6945 	return ret;
6946 }
6947 
6948 /*
6949  * Cancel takeoff done by take_page_off_buddy().
6950  */
6951 bool put_page_back_buddy(struct page *page)
6952 {
6953 	struct zone *zone = page_zone(page);
6954 	unsigned long flags;
6955 	bool ret = false;
6956 
6957 	spin_lock_irqsave(&zone->lock, flags);
6958 	if (put_page_testzero(page)) {
6959 		unsigned long pfn = page_to_pfn(page);
6960 		int migratetype = get_pfnblock_migratetype(page, pfn);
6961 
6962 		ClearPageHWPoisonTakenOff(page);
6963 		__free_one_page(page, pfn, zone, 0, migratetype, FPI_NONE);
6964 		if (TestClearPageHWPoison(page)) {
6965 			ret = true;
6966 		}
6967 	}
6968 	spin_unlock_irqrestore(&zone->lock, flags);
6969 
6970 	return ret;
6971 }
6972 #endif
6973 
6974 #ifdef CONFIG_ZONE_DMA
6975 bool has_managed_dma(void)
6976 {
6977 	struct pglist_data *pgdat;
6978 
6979 	for_each_online_pgdat(pgdat) {
6980 		struct zone *zone = &pgdat->node_zones[ZONE_DMA];
6981 
6982 		if (managed_zone(zone))
6983 			return true;
6984 	}
6985 	return false;
6986 }
6987 #endif /* CONFIG_ZONE_DMA */
6988 
6989 #ifdef CONFIG_UNACCEPTED_MEMORY
6990 
6991 /* Counts number of zones with unaccepted pages. */
6992 static DEFINE_STATIC_KEY_FALSE(zones_with_unaccepted_pages);
6993 
6994 static bool lazy_accept = true;
6995 
6996 static int __init accept_memory_parse(char *p)
6997 {
6998 	if (!strcmp(p, "lazy")) {
6999 		lazy_accept = true;
7000 		return 0;
7001 	} else if (!strcmp(p, "eager")) {
7002 		lazy_accept = false;
7003 		return 0;
7004 	} else {
7005 		return -EINVAL;
7006 	}
7007 }
7008 early_param("accept_memory", accept_memory_parse);
7009 
7010 static bool page_contains_unaccepted(struct page *page, unsigned int order)
7011 {
7012 	phys_addr_t start = page_to_phys(page);
7013 
7014 	return range_contains_unaccepted_memory(start, PAGE_SIZE << order);
7015 }
7016 
7017 static void __accept_page(struct zone *zone, unsigned long *flags,
7018 			  struct page *page)
7019 {
7020 	bool last;
7021 
7022 	list_del(&page->lru);
7023 	last = list_empty(&zone->unaccepted_pages);
7024 
7025 	account_freepages(zone, -MAX_ORDER_NR_PAGES, MIGRATE_MOVABLE);
7026 	__mod_zone_page_state(zone, NR_UNACCEPTED, -MAX_ORDER_NR_PAGES);
7027 	__ClearPageUnaccepted(page);
7028 	spin_unlock_irqrestore(&zone->lock, *flags);
7029 
7030 	accept_memory(page_to_phys(page), PAGE_SIZE << MAX_PAGE_ORDER);
7031 
7032 	__free_pages_ok(page, MAX_PAGE_ORDER, FPI_TO_TAIL);
7033 
7034 	if (last)
7035 		static_branch_dec(&zones_with_unaccepted_pages);
7036 }
7037 
7038 void accept_page(struct page *page)
7039 {
7040 	struct zone *zone = page_zone(page);
7041 	unsigned long flags;
7042 
7043 	spin_lock_irqsave(&zone->lock, flags);
7044 	if (!PageUnaccepted(page)) {
7045 		spin_unlock_irqrestore(&zone->lock, flags);
7046 		return;
7047 	}
7048 
7049 	/* Unlocks zone->lock */
7050 	__accept_page(zone, &flags, page);
7051 }
7052 
7053 static bool try_to_accept_memory_one(struct zone *zone)
7054 {
7055 	unsigned long flags;
7056 	struct page *page;
7057 
7058 	spin_lock_irqsave(&zone->lock, flags);
7059 	page = list_first_entry_or_null(&zone->unaccepted_pages,
7060 					struct page, lru);
7061 	if (!page) {
7062 		spin_unlock_irqrestore(&zone->lock, flags);
7063 		return false;
7064 	}
7065 
7066 	/* Unlocks zone->lock */
7067 	__accept_page(zone, &flags, page);
7068 
7069 	return true;
7070 }
7071 
7072 static inline bool has_unaccepted_memory(void)
7073 {
7074 	return static_branch_unlikely(&zones_with_unaccepted_pages);
7075 }
7076 
7077 static bool cond_accept_memory(struct zone *zone, unsigned int order)
7078 {
7079 	long to_accept;
7080 	bool ret = false;
7081 
7082 	if (!has_unaccepted_memory())
7083 		return false;
7084 
7085 	if (list_empty(&zone->unaccepted_pages))
7086 		return false;
7087 
7088 	/* How much to accept to get to promo watermark? */
7089 	to_accept = promo_wmark_pages(zone) -
7090 		    (zone_page_state(zone, NR_FREE_PAGES) -
7091 		    __zone_watermark_unusable_free(zone, order, 0) -
7092 		    zone_page_state(zone, NR_UNACCEPTED));
7093 
7094 	while (to_accept > 0) {
7095 		if (!try_to_accept_memory_one(zone))
7096 			break;
7097 		ret = true;
7098 		to_accept -= MAX_ORDER_NR_PAGES;
7099 	}
7100 
7101 	return ret;
7102 }
7103 
7104 static bool __free_unaccepted(struct page *page)
7105 {
7106 	struct zone *zone = page_zone(page);
7107 	unsigned long flags;
7108 	bool first = false;
7109 
7110 	if (!lazy_accept)
7111 		return false;
7112 
7113 	spin_lock_irqsave(&zone->lock, flags);
7114 	first = list_empty(&zone->unaccepted_pages);
7115 	list_add_tail(&page->lru, &zone->unaccepted_pages);
7116 	account_freepages(zone, MAX_ORDER_NR_PAGES, MIGRATE_MOVABLE);
7117 	__mod_zone_page_state(zone, NR_UNACCEPTED, MAX_ORDER_NR_PAGES);
7118 	__SetPageUnaccepted(page);
7119 	spin_unlock_irqrestore(&zone->lock, flags);
7120 
7121 	if (first)
7122 		static_branch_inc(&zones_with_unaccepted_pages);
7123 
7124 	return true;
7125 }
7126 
7127 #else
7128 
7129 static bool page_contains_unaccepted(struct page *page, unsigned int order)
7130 {
7131 	return false;
7132 }
7133 
7134 static bool cond_accept_memory(struct zone *zone, unsigned int order)
7135 {
7136 	return false;
7137 }
7138 
7139 static bool __free_unaccepted(struct page *page)
7140 {
7141 	BUILD_BUG();
7142 	return false;
7143 }
7144 
7145 #endif /* CONFIG_UNACCEPTED_MEMORY */
7146