xref: /linux/mm/page_alloc.c (revision c0c9209ddd96bc4f1d70a8b9958710671e076080)
1 /*
2  *  linux/mm/page_alloc.c
3  *
4  *  Manages the free list, the system allocates free pages here.
5  *  Note that kmalloc() lives in slab.c
6  *
7  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
8  *  Swap reorganised 29.12.95, Stephen Tweedie
9  *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10  *  Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11  *  Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12  *  Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13  *  Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14  *          (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15  */
16 
17 #include <linux/stddef.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/compiler.h>
25 #include <linux/kernel.h>
26 #include <linux/module.h>
27 #include <linux/suspend.h>
28 #include <linux/pagevec.h>
29 #include <linux/blkdev.h>
30 #include <linux/slab.h>
31 #include <linux/oom.h>
32 #include <linux/notifier.h>
33 #include <linux/topology.h>
34 #include <linux/sysctl.h>
35 #include <linux/cpu.h>
36 #include <linux/cpuset.h>
37 #include <linux/memory_hotplug.h>
38 #include <linux/nodemask.h>
39 #include <linux/vmalloc.h>
40 #include <linux/mempolicy.h>
41 #include <linux/stop_machine.h>
42 #include <linux/sort.h>
43 #include <linux/pfn.h>
44 #include <linux/backing-dev.h>
45 #include <linux/fault-inject.h>
46 #include <linux/page-isolation.h>
47 #include <linux/memcontrol.h>
48 #include <linux/debugobjects.h>
49 
50 #include <asm/tlbflush.h>
51 #include <asm/div64.h>
52 #include "internal.h"
53 
54 /*
55  * Array of node states.
56  */
57 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
58 	[N_POSSIBLE] = NODE_MASK_ALL,
59 	[N_ONLINE] = { { [0] = 1UL } },
60 #ifndef CONFIG_NUMA
61 	[N_NORMAL_MEMORY] = { { [0] = 1UL } },
62 #ifdef CONFIG_HIGHMEM
63 	[N_HIGH_MEMORY] = { { [0] = 1UL } },
64 #endif
65 	[N_CPU] = { { [0] = 1UL } },
66 #endif	/* NUMA */
67 };
68 EXPORT_SYMBOL(node_states);
69 
70 unsigned long totalram_pages __read_mostly;
71 unsigned long totalreserve_pages __read_mostly;
72 long nr_swap_pages;
73 int percpu_pagelist_fraction;
74 
75 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
76 int pageblock_order __read_mostly;
77 #endif
78 
79 static void __free_pages_ok(struct page *page, unsigned int order);
80 
81 /*
82  * results with 256, 32 in the lowmem_reserve sysctl:
83  *	1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
84  *	1G machine -> (16M dma, 784M normal, 224M high)
85  *	NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
86  *	HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
87  *	HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
88  *
89  * TBD: should special case ZONE_DMA32 machines here - in those we normally
90  * don't need any ZONE_NORMAL reservation
91  */
92 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
93 #ifdef CONFIG_ZONE_DMA
94 	 256,
95 #endif
96 #ifdef CONFIG_ZONE_DMA32
97 	 256,
98 #endif
99 #ifdef CONFIG_HIGHMEM
100 	 32,
101 #endif
102 	 32,
103 };
104 
105 EXPORT_SYMBOL(totalram_pages);
106 
107 static char * const zone_names[MAX_NR_ZONES] = {
108 #ifdef CONFIG_ZONE_DMA
109 	 "DMA",
110 #endif
111 #ifdef CONFIG_ZONE_DMA32
112 	 "DMA32",
113 #endif
114 	 "Normal",
115 #ifdef CONFIG_HIGHMEM
116 	 "HighMem",
117 #endif
118 	 "Movable",
119 };
120 
121 int min_free_kbytes = 1024;
122 
123 unsigned long __meminitdata nr_kernel_pages;
124 unsigned long __meminitdata nr_all_pages;
125 static unsigned long __meminitdata dma_reserve;
126 
127 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
128   /*
129    * MAX_ACTIVE_REGIONS determines the maximum number of distinct
130    * ranges of memory (RAM) that may be registered with add_active_range().
131    * Ranges passed to add_active_range() will be merged if possible
132    * so the number of times add_active_range() can be called is
133    * related to the number of nodes and the number of holes
134    */
135   #ifdef CONFIG_MAX_ACTIVE_REGIONS
136     /* Allow an architecture to set MAX_ACTIVE_REGIONS to save memory */
137     #define MAX_ACTIVE_REGIONS CONFIG_MAX_ACTIVE_REGIONS
138   #else
139     #if MAX_NUMNODES >= 32
140       /* If there can be many nodes, allow up to 50 holes per node */
141       #define MAX_ACTIVE_REGIONS (MAX_NUMNODES*50)
142     #else
143       /* By default, allow up to 256 distinct regions */
144       #define MAX_ACTIVE_REGIONS 256
145     #endif
146   #endif
147 
148   static struct node_active_region __meminitdata early_node_map[MAX_ACTIVE_REGIONS];
149   static int __meminitdata nr_nodemap_entries;
150   static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
151   static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
152 #ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
153   static unsigned long __meminitdata node_boundary_start_pfn[MAX_NUMNODES];
154   static unsigned long __meminitdata node_boundary_end_pfn[MAX_NUMNODES];
155 #endif /* CONFIG_MEMORY_HOTPLUG_RESERVE */
156   static unsigned long __initdata required_kernelcore;
157   static unsigned long __initdata required_movablecore;
158   static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
159 
160   /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
161   int movable_zone;
162   EXPORT_SYMBOL(movable_zone);
163 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
164 
165 #if MAX_NUMNODES > 1
166 int nr_node_ids __read_mostly = MAX_NUMNODES;
167 EXPORT_SYMBOL(nr_node_ids);
168 #endif
169 
170 int page_group_by_mobility_disabled __read_mostly;
171 
172 static void set_pageblock_migratetype(struct page *page, int migratetype)
173 {
174 	set_pageblock_flags_group(page, (unsigned long)migratetype,
175 					PB_migrate, PB_migrate_end);
176 }
177 
178 #ifdef CONFIG_DEBUG_VM
179 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
180 {
181 	int ret = 0;
182 	unsigned seq;
183 	unsigned long pfn = page_to_pfn(page);
184 
185 	do {
186 		seq = zone_span_seqbegin(zone);
187 		if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
188 			ret = 1;
189 		else if (pfn < zone->zone_start_pfn)
190 			ret = 1;
191 	} while (zone_span_seqretry(zone, seq));
192 
193 	return ret;
194 }
195 
196 static int page_is_consistent(struct zone *zone, struct page *page)
197 {
198 	if (!pfn_valid_within(page_to_pfn(page)))
199 		return 0;
200 	if (zone != page_zone(page))
201 		return 0;
202 
203 	return 1;
204 }
205 /*
206  * Temporary debugging check for pages not lying within a given zone.
207  */
208 static int bad_range(struct zone *zone, struct page *page)
209 {
210 	if (page_outside_zone_boundaries(zone, page))
211 		return 1;
212 	if (!page_is_consistent(zone, page))
213 		return 1;
214 
215 	return 0;
216 }
217 #else
218 static inline int bad_range(struct zone *zone, struct page *page)
219 {
220 	return 0;
221 }
222 #endif
223 
224 static void bad_page(struct page *page)
225 {
226 	void *pc = page_get_page_cgroup(page);
227 
228 	printk(KERN_EMERG "Bad page state in process '%s'\n" KERN_EMERG
229 		"page:%p flags:0x%0*lx mapping:%p mapcount:%d count:%d\n",
230 		current->comm, page, (int)(2*sizeof(unsigned long)),
231 		(unsigned long)page->flags, page->mapping,
232 		page_mapcount(page), page_count(page));
233 	if (pc) {
234 		printk(KERN_EMERG "cgroup:%p\n", pc);
235 		page_reset_bad_cgroup(page);
236 	}
237 	printk(KERN_EMERG "Trying to fix it up, but a reboot is needed\n"
238 		KERN_EMERG "Backtrace:\n");
239 	dump_stack();
240 	page->flags &= ~PAGE_FLAGS_CLEAR_WHEN_BAD;
241 	set_page_count(page, 0);
242 	reset_page_mapcount(page);
243 	page->mapping = NULL;
244 	add_taint(TAINT_BAD_PAGE);
245 }
246 
247 /*
248  * Higher-order pages are called "compound pages".  They are structured thusly:
249  *
250  * The first PAGE_SIZE page is called the "head page".
251  *
252  * The remaining PAGE_SIZE pages are called "tail pages".
253  *
254  * All pages have PG_compound set.  All pages have their ->private pointing at
255  * the head page (even the head page has this).
256  *
257  * The first tail page's ->lru.next holds the address of the compound page's
258  * put_page() function.  Its ->lru.prev holds the order of allocation.
259  * This usage means that zero-order pages may not be compound.
260  */
261 
262 static void free_compound_page(struct page *page)
263 {
264 	__free_pages_ok(page, compound_order(page));
265 }
266 
267 void prep_compound_page(struct page *page, unsigned long order)
268 {
269 	int i;
270 	int nr_pages = 1 << order;
271 
272 	set_compound_page_dtor(page, free_compound_page);
273 	set_compound_order(page, order);
274 	__SetPageHead(page);
275 	for (i = 1; i < nr_pages; i++) {
276 		struct page *p = page + i;
277 
278 		__SetPageTail(p);
279 		p->first_page = page;
280 	}
281 }
282 
283 static void destroy_compound_page(struct page *page, unsigned long order)
284 {
285 	int i;
286 	int nr_pages = 1 << order;
287 
288 	if (unlikely(compound_order(page) != order))
289 		bad_page(page);
290 
291 	if (unlikely(!PageHead(page)))
292 			bad_page(page);
293 	__ClearPageHead(page);
294 	for (i = 1; i < nr_pages; i++) {
295 		struct page *p = page + i;
296 
297 		if (unlikely(!PageTail(p) |
298 				(p->first_page != page)))
299 			bad_page(page);
300 		__ClearPageTail(p);
301 	}
302 }
303 
304 static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
305 {
306 	int i;
307 
308 	/*
309 	 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
310 	 * and __GFP_HIGHMEM from hard or soft interrupt context.
311 	 */
312 	VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
313 	for (i = 0; i < (1 << order); i++)
314 		clear_highpage(page + i);
315 }
316 
317 static inline void set_page_order(struct page *page, int order)
318 {
319 	set_page_private(page, order);
320 	__SetPageBuddy(page);
321 }
322 
323 static inline void rmv_page_order(struct page *page)
324 {
325 	__ClearPageBuddy(page);
326 	set_page_private(page, 0);
327 }
328 
329 /*
330  * Locate the struct page for both the matching buddy in our
331  * pair (buddy1) and the combined O(n+1) page they form (page).
332  *
333  * 1) Any buddy B1 will have an order O twin B2 which satisfies
334  * the following equation:
335  *     B2 = B1 ^ (1 << O)
336  * For example, if the starting buddy (buddy2) is #8 its order
337  * 1 buddy is #10:
338  *     B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
339  *
340  * 2) Any buddy B will have an order O+1 parent P which
341  * satisfies the following equation:
342  *     P = B & ~(1 << O)
343  *
344  * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
345  */
346 static inline struct page *
347 __page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order)
348 {
349 	unsigned long buddy_idx = page_idx ^ (1 << order);
350 
351 	return page + (buddy_idx - page_idx);
352 }
353 
354 static inline unsigned long
355 __find_combined_index(unsigned long page_idx, unsigned int order)
356 {
357 	return (page_idx & ~(1 << order));
358 }
359 
360 /*
361  * This function checks whether a page is free && is the buddy
362  * we can do coalesce a page and its buddy if
363  * (a) the buddy is not in a hole &&
364  * (b) the buddy is in the buddy system &&
365  * (c) a page and its buddy have the same order &&
366  * (d) a page and its buddy are in the same zone.
367  *
368  * For recording whether a page is in the buddy system, we use PG_buddy.
369  * Setting, clearing, and testing PG_buddy is serialized by zone->lock.
370  *
371  * For recording page's order, we use page_private(page).
372  */
373 static inline int page_is_buddy(struct page *page, struct page *buddy,
374 								int order)
375 {
376 	if (!pfn_valid_within(page_to_pfn(buddy)))
377 		return 0;
378 
379 	if (page_zone_id(page) != page_zone_id(buddy))
380 		return 0;
381 
382 	if (PageBuddy(buddy) && page_order(buddy) == order) {
383 		BUG_ON(page_count(buddy) != 0);
384 		return 1;
385 	}
386 	return 0;
387 }
388 
389 /*
390  * Freeing function for a buddy system allocator.
391  *
392  * The concept of a buddy system is to maintain direct-mapped table
393  * (containing bit values) for memory blocks of various "orders".
394  * The bottom level table contains the map for the smallest allocatable
395  * units of memory (here, pages), and each level above it describes
396  * pairs of units from the levels below, hence, "buddies".
397  * At a high level, all that happens here is marking the table entry
398  * at the bottom level available, and propagating the changes upward
399  * as necessary, plus some accounting needed to play nicely with other
400  * parts of the VM system.
401  * At each level, we keep a list of pages, which are heads of continuous
402  * free pages of length of (1 << order) and marked with PG_buddy. Page's
403  * order is recorded in page_private(page) field.
404  * So when we are allocating or freeing one, we can derive the state of the
405  * other.  That is, if we allocate a small block, and both were
406  * free, the remainder of the region must be split into blocks.
407  * If a block is freed, and its buddy is also free, then this
408  * triggers coalescing into a block of larger size.
409  *
410  * -- wli
411  */
412 
413 static inline void __free_one_page(struct page *page,
414 		struct zone *zone, unsigned int order)
415 {
416 	unsigned long page_idx;
417 	int order_size = 1 << order;
418 	int migratetype = get_pageblock_migratetype(page);
419 
420 	if (unlikely(PageCompound(page)))
421 		destroy_compound_page(page, order);
422 
423 	page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
424 
425 	VM_BUG_ON(page_idx & (order_size - 1));
426 	VM_BUG_ON(bad_range(zone, page));
427 
428 	__mod_zone_page_state(zone, NR_FREE_PAGES, order_size);
429 	while (order < MAX_ORDER-1) {
430 		unsigned long combined_idx;
431 		struct page *buddy;
432 
433 		buddy = __page_find_buddy(page, page_idx, order);
434 		if (!page_is_buddy(page, buddy, order))
435 			break;
436 
437 		/* Our buddy is free, merge with it and move up one order. */
438 		list_del(&buddy->lru);
439 		zone->free_area[order].nr_free--;
440 		rmv_page_order(buddy);
441 		combined_idx = __find_combined_index(page_idx, order);
442 		page = page + (combined_idx - page_idx);
443 		page_idx = combined_idx;
444 		order++;
445 	}
446 	set_page_order(page, order);
447 	list_add(&page->lru,
448 		&zone->free_area[order].free_list[migratetype]);
449 	zone->free_area[order].nr_free++;
450 }
451 
452 static inline int free_pages_check(struct page *page)
453 {
454 	if (unlikely(page_mapcount(page) |
455 		(page->mapping != NULL)  |
456 		(page_get_page_cgroup(page) != NULL) |
457 		(page_count(page) != 0)  |
458 		(page->flags & PAGE_FLAGS_CHECK_AT_FREE)))
459 		bad_page(page);
460 	if (PageDirty(page))
461 		__ClearPageDirty(page);
462 	/*
463 	 * For now, we report if PG_reserved was found set, but do not
464 	 * clear it, and do not free the page.  But we shall soon need
465 	 * to do more, for when the ZERO_PAGE count wraps negative.
466 	 */
467 	return PageReserved(page);
468 }
469 
470 /*
471  * Frees a list of pages.
472  * Assumes all pages on list are in same zone, and of same order.
473  * count is the number of pages to free.
474  *
475  * If the zone was previously in an "all pages pinned" state then look to
476  * see if this freeing clears that state.
477  *
478  * And clear the zone's pages_scanned counter, to hold off the "all pages are
479  * pinned" detection logic.
480  */
481 static void free_pages_bulk(struct zone *zone, int count,
482 					struct list_head *list, int order)
483 {
484 	spin_lock(&zone->lock);
485 	zone_clear_flag(zone, ZONE_ALL_UNRECLAIMABLE);
486 	zone->pages_scanned = 0;
487 	while (count--) {
488 		struct page *page;
489 
490 		VM_BUG_ON(list_empty(list));
491 		page = list_entry(list->prev, struct page, lru);
492 		/* have to delete it as __free_one_page list manipulates */
493 		list_del(&page->lru);
494 		__free_one_page(page, zone, order);
495 	}
496 	spin_unlock(&zone->lock);
497 }
498 
499 static void free_one_page(struct zone *zone, struct page *page, int order)
500 {
501 	spin_lock(&zone->lock);
502 	zone_clear_flag(zone, ZONE_ALL_UNRECLAIMABLE);
503 	zone->pages_scanned = 0;
504 	__free_one_page(page, zone, order);
505 	spin_unlock(&zone->lock);
506 }
507 
508 static void __free_pages_ok(struct page *page, unsigned int order)
509 {
510 	unsigned long flags;
511 	int i;
512 	int reserved = 0;
513 
514 	for (i = 0 ; i < (1 << order) ; ++i)
515 		reserved += free_pages_check(page + i);
516 	if (reserved)
517 		return;
518 
519 	if (!PageHighMem(page)) {
520 		debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order);
521 		debug_check_no_obj_freed(page_address(page),
522 					   PAGE_SIZE << order);
523 	}
524 	arch_free_page(page, order);
525 	kernel_map_pages(page, 1 << order, 0);
526 
527 	local_irq_save(flags);
528 	__count_vm_events(PGFREE, 1 << order);
529 	free_one_page(page_zone(page), page, order);
530 	local_irq_restore(flags);
531 }
532 
533 /*
534  * permit the bootmem allocator to evade page validation on high-order frees
535  */
536 void __meminit __free_pages_bootmem(struct page *page, unsigned int order)
537 {
538 	if (order == 0) {
539 		__ClearPageReserved(page);
540 		set_page_count(page, 0);
541 		set_page_refcounted(page);
542 		__free_page(page);
543 	} else {
544 		int loop;
545 
546 		prefetchw(page);
547 		for (loop = 0; loop < BITS_PER_LONG; loop++) {
548 			struct page *p = &page[loop];
549 
550 			if (loop + 1 < BITS_PER_LONG)
551 				prefetchw(p + 1);
552 			__ClearPageReserved(p);
553 			set_page_count(p, 0);
554 		}
555 
556 		set_page_refcounted(page);
557 		__free_pages(page, order);
558 	}
559 }
560 
561 
562 /*
563  * The order of subdivision here is critical for the IO subsystem.
564  * Please do not alter this order without good reasons and regression
565  * testing. Specifically, as large blocks of memory are subdivided,
566  * the order in which smaller blocks are delivered depends on the order
567  * they're subdivided in this function. This is the primary factor
568  * influencing the order in which pages are delivered to the IO
569  * subsystem according to empirical testing, and this is also justified
570  * by considering the behavior of a buddy system containing a single
571  * large block of memory acted on by a series of small allocations.
572  * This behavior is a critical factor in sglist merging's success.
573  *
574  * -- wli
575  */
576 static inline void expand(struct zone *zone, struct page *page,
577 	int low, int high, struct free_area *area,
578 	int migratetype)
579 {
580 	unsigned long size = 1 << high;
581 
582 	while (high > low) {
583 		area--;
584 		high--;
585 		size >>= 1;
586 		VM_BUG_ON(bad_range(zone, &page[size]));
587 		list_add(&page[size].lru, &area->free_list[migratetype]);
588 		area->nr_free++;
589 		set_page_order(&page[size], high);
590 	}
591 }
592 
593 /*
594  * This page is about to be returned from the page allocator
595  */
596 static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
597 {
598 	if (unlikely(page_mapcount(page) |
599 		(page->mapping != NULL)  |
600 		(page_get_page_cgroup(page) != NULL) |
601 		(page_count(page) != 0)  |
602 		(page->flags & PAGE_FLAGS_CHECK_AT_PREP)))
603 		bad_page(page);
604 
605 	/*
606 	 * For now, we report if PG_reserved was found set, but do not
607 	 * clear it, and do not allocate the page: as a safety net.
608 	 */
609 	if (PageReserved(page))
610 		return 1;
611 
612 	page->flags &= ~(1 << PG_uptodate | 1 << PG_error | 1 << PG_reclaim |
613 			1 << PG_referenced | 1 << PG_arch_1 |
614 			1 << PG_owner_priv_1 | 1 << PG_mappedtodisk);
615 	set_page_private(page, 0);
616 	set_page_refcounted(page);
617 
618 	arch_alloc_page(page, order);
619 	kernel_map_pages(page, 1 << order, 1);
620 
621 	if (gfp_flags & __GFP_ZERO)
622 		prep_zero_page(page, order, gfp_flags);
623 
624 	if (order && (gfp_flags & __GFP_COMP))
625 		prep_compound_page(page, order);
626 
627 	return 0;
628 }
629 
630 /*
631  * Go through the free lists for the given migratetype and remove
632  * the smallest available page from the freelists
633  */
634 static struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
635 						int migratetype)
636 {
637 	unsigned int current_order;
638 	struct free_area * area;
639 	struct page *page;
640 
641 	/* Find a page of the appropriate size in the preferred list */
642 	for (current_order = order; current_order < MAX_ORDER; ++current_order) {
643 		area = &(zone->free_area[current_order]);
644 		if (list_empty(&area->free_list[migratetype]))
645 			continue;
646 
647 		page = list_entry(area->free_list[migratetype].next,
648 							struct page, lru);
649 		list_del(&page->lru);
650 		rmv_page_order(page);
651 		area->nr_free--;
652 		__mod_zone_page_state(zone, NR_FREE_PAGES, - (1UL << order));
653 		expand(zone, page, order, current_order, area, migratetype);
654 		return page;
655 	}
656 
657 	return NULL;
658 }
659 
660 
661 /*
662  * This array describes the order lists are fallen back to when
663  * the free lists for the desirable migrate type are depleted
664  */
665 static int fallbacks[MIGRATE_TYPES][MIGRATE_TYPES-1] = {
666 	[MIGRATE_UNMOVABLE]   = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE,   MIGRATE_RESERVE },
667 	[MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE,   MIGRATE_MOVABLE,   MIGRATE_RESERVE },
668 	[MIGRATE_MOVABLE]     = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
669 	[MIGRATE_RESERVE]     = { MIGRATE_RESERVE,     MIGRATE_RESERVE,   MIGRATE_RESERVE }, /* Never used */
670 };
671 
672 /*
673  * Move the free pages in a range to the free lists of the requested type.
674  * Note that start_page and end_pages are not aligned on a pageblock
675  * boundary. If alignment is required, use move_freepages_block()
676  */
677 static int move_freepages(struct zone *zone,
678 			  struct page *start_page, struct page *end_page,
679 			  int migratetype)
680 {
681 	struct page *page;
682 	unsigned long order;
683 	int pages_moved = 0;
684 
685 #ifndef CONFIG_HOLES_IN_ZONE
686 	/*
687 	 * page_zone is not safe to call in this context when
688 	 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
689 	 * anyway as we check zone boundaries in move_freepages_block().
690 	 * Remove at a later date when no bug reports exist related to
691 	 * grouping pages by mobility
692 	 */
693 	BUG_ON(page_zone(start_page) != page_zone(end_page));
694 #endif
695 
696 	for (page = start_page; page <= end_page;) {
697 		/* Make sure we are not inadvertently changing nodes */
698 		VM_BUG_ON(page_to_nid(page) != zone_to_nid(zone));
699 
700 		if (!pfn_valid_within(page_to_pfn(page))) {
701 			page++;
702 			continue;
703 		}
704 
705 		if (!PageBuddy(page)) {
706 			page++;
707 			continue;
708 		}
709 
710 		order = page_order(page);
711 		list_del(&page->lru);
712 		list_add(&page->lru,
713 			&zone->free_area[order].free_list[migratetype]);
714 		page += 1 << order;
715 		pages_moved += 1 << order;
716 	}
717 
718 	return pages_moved;
719 }
720 
721 static int move_freepages_block(struct zone *zone, struct page *page,
722 				int migratetype)
723 {
724 	unsigned long start_pfn, end_pfn;
725 	struct page *start_page, *end_page;
726 
727 	start_pfn = page_to_pfn(page);
728 	start_pfn = start_pfn & ~(pageblock_nr_pages-1);
729 	start_page = pfn_to_page(start_pfn);
730 	end_page = start_page + pageblock_nr_pages - 1;
731 	end_pfn = start_pfn + pageblock_nr_pages - 1;
732 
733 	/* Do not cross zone boundaries */
734 	if (start_pfn < zone->zone_start_pfn)
735 		start_page = page;
736 	if (end_pfn >= zone->zone_start_pfn + zone->spanned_pages)
737 		return 0;
738 
739 	return move_freepages(zone, start_page, end_page, migratetype);
740 }
741 
742 /* Remove an element from the buddy allocator from the fallback list */
743 static struct page *__rmqueue_fallback(struct zone *zone, int order,
744 						int start_migratetype)
745 {
746 	struct free_area * area;
747 	int current_order;
748 	struct page *page;
749 	int migratetype, i;
750 
751 	/* Find the largest possible block of pages in the other list */
752 	for (current_order = MAX_ORDER-1; current_order >= order;
753 						--current_order) {
754 		for (i = 0; i < MIGRATE_TYPES - 1; i++) {
755 			migratetype = fallbacks[start_migratetype][i];
756 
757 			/* MIGRATE_RESERVE handled later if necessary */
758 			if (migratetype == MIGRATE_RESERVE)
759 				continue;
760 
761 			area = &(zone->free_area[current_order]);
762 			if (list_empty(&area->free_list[migratetype]))
763 				continue;
764 
765 			page = list_entry(area->free_list[migratetype].next,
766 					struct page, lru);
767 			area->nr_free--;
768 
769 			/*
770 			 * If breaking a large block of pages, move all free
771 			 * pages to the preferred allocation list. If falling
772 			 * back for a reclaimable kernel allocation, be more
773 			 * agressive about taking ownership of free pages
774 			 */
775 			if (unlikely(current_order >= (pageblock_order >> 1)) ||
776 					start_migratetype == MIGRATE_RECLAIMABLE) {
777 				unsigned long pages;
778 				pages = move_freepages_block(zone, page,
779 								start_migratetype);
780 
781 				/* Claim the whole block if over half of it is free */
782 				if (pages >= (1 << (pageblock_order-1)))
783 					set_pageblock_migratetype(page,
784 								start_migratetype);
785 
786 				migratetype = start_migratetype;
787 			}
788 
789 			/* Remove the page from the freelists */
790 			list_del(&page->lru);
791 			rmv_page_order(page);
792 			__mod_zone_page_state(zone, NR_FREE_PAGES,
793 							-(1UL << order));
794 
795 			if (current_order == pageblock_order)
796 				set_pageblock_migratetype(page,
797 							start_migratetype);
798 
799 			expand(zone, page, order, current_order, area, migratetype);
800 			return page;
801 		}
802 	}
803 
804 	/* Use MIGRATE_RESERVE rather than fail an allocation */
805 	return __rmqueue_smallest(zone, order, MIGRATE_RESERVE);
806 }
807 
808 /*
809  * Do the hard work of removing an element from the buddy allocator.
810  * Call me with the zone->lock already held.
811  */
812 static struct page *__rmqueue(struct zone *zone, unsigned int order,
813 						int migratetype)
814 {
815 	struct page *page;
816 
817 	page = __rmqueue_smallest(zone, order, migratetype);
818 
819 	if (unlikely(!page))
820 		page = __rmqueue_fallback(zone, order, migratetype);
821 
822 	return page;
823 }
824 
825 /*
826  * Obtain a specified number of elements from the buddy allocator, all under
827  * a single hold of the lock, for efficiency.  Add them to the supplied list.
828  * Returns the number of new pages which were placed at *list.
829  */
830 static int rmqueue_bulk(struct zone *zone, unsigned int order,
831 			unsigned long count, struct list_head *list,
832 			int migratetype)
833 {
834 	int i;
835 
836 	spin_lock(&zone->lock);
837 	for (i = 0; i < count; ++i) {
838 		struct page *page = __rmqueue(zone, order, migratetype);
839 		if (unlikely(page == NULL))
840 			break;
841 
842 		/*
843 		 * Split buddy pages returned by expand() are received here
844 		 * in physical page order. The page is added to the callers and
845 		 * list and the list head then moves forward. From the callers
846 		 * perspective, the linked list is ordered by page number in
847 		 * some conditions. This is useful for IO devices that can
848 		 * merge IO requests if the physical pages are ordered
849 		 * properly.
850 		 */
851 		list_add(&page->lru, list);
852 		set_page_private(page, migratetype);
853 		list = &page->lru;
854 	}
855 	spin_unlock(&zone->lock);
856 	return i;
857 }
858 
859 #ifdef CONFIG_NUMA
860 /*
861  * Called from the vmstat counter updater to drain pagesets of this
862  * currently executing processor on remote nodes after they have
863  * expired.
864  *
865  * Note that this function must be called with the thread pinned to
866  * a single processor.
867  */
868 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
869 {
870 	unsigned long flags;
871 	int to_drain;
872 
873 	local_irq_save(flags);
874 	if (pcp->count >= pcp->batch)
875 		to_drain = pcp->batch;
876 	else
877 		to_drain = pcp->count;
878 	free_pages_bulk(zone, to_drain, &pcp->list, 0);
879 	pcp->count -= to_drain;
880 	local_irq_restore(flags);
881 }
882 #endif
883 
884 /*
885  * Drain pages of the indicated processor.
886  *
887  * The processor must either be the current processor and the
888  * thread pinned to the current processor or a processor that
889  * is not online.
890  */
891 static void drain_pages(unsigned int cpu)
892 {
893 	unsigned long flags;
894 	struct zone *zone;
895 
896 	for_each_zone(zone) {
897 		struct per_cpu_pageset *pset;
898 		struct per_cpu_pages *pcp;
899 
900 		if (!populated_zone(zone))
901 			continue;
902 
903 		pset = zone_pcp(zone, cpu);
904 
905 		pcp = &pset->pcp;
906 		local_irq_save(flags);
907 		free_pages_bulk(zone, pcp->count, &pcp->list, 0);
908 		pcp->count = 0;
909 		local_irq_restore(flags);
910 	}
911 }
912 
913 /*
914  * Spill all of this CPU's per-cpu pages back into the buddy allocator.
915  */
916 void drain_local_pages(void *arg)
917 {
918 	drain_pages(smp_processor_id());
919 }
920 
921 /*
922  * Spill all the per-cpu pages from all CPUs back into the buddy allocator
923  */
924 void drain_all_pages(void)
925 {
926 	on_each_cpu(drain_local_pages, NULL, 1);
927 }
928 
929 #ifdef CONFIG_HIBERNATION
930 
931 void mark_free_pages(struct zone *zone)
932 {
933 	unsigned long pfn, max_zone_pfn;
934 	unsigned long flags;
935 	int order, t;
936 	struct list_head *curr;
937 
938 	if (!zone->spanned_pages)
939 		return;
940 
941 	spin_lock_irqsave(&zone->lock, flags);
942 
943 	max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
944 	for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
945 		if (pfn_valid(pfn)) {
946 			struct page *page = pfn_to_page(pfn);
947 
948 			if (!swsusp_page_is_forbidden(page))
949 				swsusp_unset_page_free(page);
950 		}
951 
952 	for_each_migratetype_order(order, t) {
953 		list_for_each(curr, &zone->free_area[order].free_list[t]) {
954 			unsigned long i;
955 
956 			pfn = page_to_pfn(list_entry(curr, struct page, lru));
957 			for (i = 0; i < (1UL << order); i++)
958 				swsusp_set_page_free(pfn_to_page(pfn + i));
959 		}
960 	}
961 	spin_unlock_irqrestore(&zone->lock, flags);
962 }
963 #endif /* CONFIG_PM */
964 
965 /*
966  * Free a 0-order page
967  */
968 static void free_hot_cold_page(struct page *page, int cold)
969 {
970 	struct zone *zone = page_zone(page);
971 	struct per_cpu_pages *pcp;
972 	unsigned long flags;
973 
974 	if (PageAnon(page))
975 		page->mapping = NULL;
976 	if (free_pages_check(page))
977 		return;
978 
979 	if (!PageHighMem(page)) {
980 		debug_check_no_locks_freed(page_address(page), PAGE_SIZE);
981 		debug_check_no_obj_freed(page_address(page), PAGE_SIZE);
982 	}
983 	arch_free_page(page, 0);
984 	kernel_map_pages(page, 1, 0);
985 
986 	pcp = &zone_pcp(zone, get_cpu())->pcp;
987 	local_irq_save(flags);
988 	__count_vm_event(PGFREE);
989 	if (cold)
990 		list_add_tail(&page->lru, &pcp->list);
991 	else
992 		list_add(&page->lru, &pcp->list);
993 	set_page_private(page, get_pageblock_migratetype(page));
994 	pcp->count++;
995 	if (pcp->count >= pcp->high) {
996 		free_pages_bulk(zone, pcp->batch, &pcp->list, 0);
997 		pcp->count -= pcp->batch;
998 	}
999 	local_irq_restore(flags);
1000 	put_cpu();
1001 }
1002 
1003 void free_hot_page(struct page *page)
1004 {
1005 	free_hot_cold_page(page, 0);
1006 }
1007 
1008 void free_cold_page(struct page *page)
1009 {
1010 	free_hot_cold_page(page, 1);
1011 }
1012 
1013 /*
1014  * split_page takes a non-compound higher-order page, and splits it into
1015  * n (1<<order) sub-pages: page[0..n]
1016  * Each sub-page must be freed individually.
1017  *
1018  * Note: this is probably too low level an operation for use in drivers.
1019  * Please consult with lkml before using this in your driver.
1020  */
1021 void split_page(struct page *page, unsigned int order)
1022 {
1023 	int i;
1024 
1025 	VM_BUG_ON(PageCompound(page));
1026 	VM_BUG_ON(!page_count(page));
1027 	for (i = 1; i < (1 << order); i++)
1028 		set_page_refcounted(page + i);
1029 }
1030 
1031 /*
1032  * Really, prep_compound_page() should be called from __rmqueue_bulk().  But
1033  * we cheat by calling it from here, in the order > 0 path.  Saves a branch
1034  * or two.
1035  */
1036 static struct page *buffered_rmqueue(struct zone *preferred_zone,
1037 			struct zone *zone, int order, gfp_t gfp_flags)
1038 {
1039 	unsigned long flags;
1040 	struct page *page;
1041 	int cold = !!(gfp_flags & __GFP_COLD);
1042 	int cpu;
1043 	int migratetype = allocflags_to_migratetype(gfp_flags);
1044 
1045 again:
1046 	cpu  = get_cpu();
1047 	if (likely(order == 0)) {
1048 		struct per_cpu_pages *pcp;
1049 
1050 		pcp = &zone_pcp(zone, cpu)->pcp;
1051 		local_irq_save(flags);
1052 		if (!pcp->count) {
1053 			pcp->count = rmqueue_bulk(zone, 0,
1054 					pcp->batch, &pcp->list, migratetype);
1055 			if (unlikely(!pcp->count))
1056 				goto failed;
1057 		}
1058 
1059 		/* Find a page of the appropriate migrate type */
1060 		if (cold) {
1061 			list_for_each_entry_reverse(page, &pcp->list, lru)
1062 				if (page_private(page) == migratetype)
1063 					break;
1064 		} else {
1065 			list_for_each_entry(page, &pcp->list, lru)
1066 				if (page_private(page) == migratetype)
1067 					break;
1068 		}
1069 
1070 		/* Allocate more to the pcp list if necessary */
1071 		if (unlikely(&page->lru == &pcp->list)) {
1072 			pcp->count += rmqueue_bulk(zone, 0,
1073 					pcp->batch, &pcp->list, migratetype);
1074 			page = list_entry(pcp->list.next, struct page, lru);
1075 		}
1076 
1077 		list_del(&page->lru);
1078 		pcp->count--;
1079 	} else {
1080 		spin_lock_irqsave(&zone->lock, flags);
1081 		page = __rmqueue(zone, order, migratetype);
1082 		spin_unlock(&zone->lock);
1083 		if (!page)
1084 			goto failed;
1085 	}
1086 
1087 	__count_zone_vm_events(PGALLOC, zone, 1 << order);
1088 	zone_statistics(preferred_zone, zone);
1089 	local_irq_restore(flags);
1090 	put_cpu();
1091 
1092 	VM_BUG_ON(bad_range(zone, page));
1093 	if (prep_new_page(page, order, gfp_flags))
1094 		goto again;
1095 	return page;
1096 
1097 failed:
1098 	local_irq_restore(flags);
1099 	put_cpu();
1100 	return NULL;
1101 }
1102 
1103 #define ALLOC_NO_WATERMARKS	0x01 /* don't check watermarks at all */
1104 #define ALLOC_WMARK_MIN		0x02 /* use pages_min watermark */
1105 #define ALLOC_WMARK_LOW		0x04 /* use pages_low watermark */
1106 #define ALLOC_WMARK_HIGH	0x08 /* use pages_high watermark */
1107 #define ALLOC_HARDER		0x10 /* try to alloc harder */
1108 #define ALLOC_HIGH		0x20 /* __GFP_HIGH set */
1109 #define ALLOC_CPUSET		0x40 /* check for correct cpuset */
1110 
1111 #ifdef CONFIG_FAIL_PAGE_ALLOC
1112 
1113 static struct fail_page_alloc_attr {
1114 	struct fault_attr attr;
1115 
1116 	u32 ignore_gfp_highmem;
1117 	u32 ignore_gfp_wait;
1118 	u32 min_order;
1119 
1120 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1121 
1122 	struct dentry *ignore_gfp_highmem_file;
1123 	struct dentry *ignore_gfp_wait_file;
1124 	struct dentry *min_order_file;
1125 
1126 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1127 
1128 } fail_page_alloc = {
1129 	.attr = FAULT_ATTR_INITIALIZER,
1130 	.ignore_gfp_wait = 1,
1131 	.ignore_gfp_highmem = 1,
1132 	.min_order = 1,
1133 };
1134 
1135 static int __init setup_fail_page_alloc(char *str)
1136 {
1137 	return setup_fault_attr(&fail_page_alloc.attr, str);
1138 }
1139 __setup("fail_page_alloc=", setup_fail_page_alloc);
1140 
1141 static int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1142 {
1143 	if (order < fail_page_alloc.min_order)
1144 		return 0;
1145 	if (gfp_mask & __GFP_NOFAIL)
1146 		return 0;
1147 	if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
1148 		return 0;
1149 	if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
1150 		return 0;
1151 
1152 	return should_fail(&fail_page_alloc.attr, 1 << order);
1153 }
1154 
1155 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1156 
1157 static int __init fail_page_alloc_debugfs(void)
1158 {
1159 	mode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
1160 	struct dentry *dir;
1161 	int err;
1162 
1163 	err = init_fault_attr_dentries(&fail_page_alloc.attr,
1164 				       "fail_page_alloc");
1165 	if (err)
1166 		return err;
1167 	dir = fail_page_alloc.attr.dentries.dir;
1168 
1169 	fail_page_alloc.ignore_gfp_wait_file =
1170 		debugfs_create_bool("ignore-gfp-wait", mode, dir,
1171 				      &fail_page_alloc.ignore_gfp_wait);
1172 
1173 	fail_page_alloc.ignore_gfp_highmem_file =
1174 		debugfs_create_bool("ignore-gfp-highmem", mode, dir,
1175 				      &fail_page_alloc.ignore_gfp_highmem);
1176 	fail_page_alloc.min_order_file =
1177 		debugfs_create_u32("min-order", mode, dir,
1178 				   &fail_page_alloc.min_order);
1179 
1180 	if (!fail_page_alloc.ignore_gfp_wait_file ||
1181             !fail_page_alloc.ignore_gfp_highmem_file ||
1182             !fail_page_alloc.min_order_file) {
1183 		err = -ENOMEM;
1184 		debugfs_remove(fail_page_alloc.ignore_gfp_wait_file);
1185 		debugfs_remove(fail_page_alloc.ignore_gfp_highmem_file);
1186 		debugfs_remove(fail_page_alloc.min_order_file);
1187 		cleanup_fault_attr_dentries(&fail_page_alloc.attr);
1188 	}
1189 
1190 	return err;
1191 }
1192 
1193 late_initcall(fail_page_alloc_debugfs);
1194 
1195 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1196 
1197 #else /* CONFIG_FAIL_PAGE_ALLOC */
1198 
1199 static inline int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1200 {
1201 	return 0;
1202 }
1203 
1204 #endif /* CONFIG_FAIL_PAGE_ALLOC */
1205 
1206 /*
1207  * Return 1 if free pages are above 'mark'. This takes into account the order
1208  * of the allocation.
1209  */
1210 int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1211 		      int classzone_idx, int alloc_flags)
1212 {
1213 	/* free_pages my go negative - that's OK */
1214 	long min = mark;
1215 	long free_pages = zone_page_state(z, NR_FREE_PAGES) - (1 << order) + 1;
1216 	int o;
1217 
1218 	if (alloc_flags & ALLOC_HIGH)
1219 		min -= min / 2;
1220 	if (alloc_flags & ALLOC_HARDER)
1221 		min -= min / 4;
1222 
1223 	if (free_pages <= min + z->lowmem_reserve[classzone_idx])
1224 		return 0;
1225 	for (o = 0; o < order; o++) {
1226 		/* At the next order, this order's pages become unavailable */
1227 		free_pages -= z->free_area[o].nr_free << o;
1228 
1229 		/* Require fewer higher order pages to be free */
1230 		min >>= 1;
1231 
1232 		if (free_pages <= min)
1233 			return 0;
1234 	}
1235 	return 1;
1236 }
1237 
1238 #ifdef CONFIG_NUMA
1239 /*
1240  * zlc_setup - Setup for "zonelist cache".  Uses cached zone data to
1241  * skip over zones that are not allowed by the cpuset, or that have
1242  * been recently (in last second) found to be nearly full.  See further
1243  * comments in mmzone.h.  Reduces cache footprint of zonelist scans
1244  * that have to skip over a lot of full or unallowed zones.
1245  *
1246  * If the zonelist cache is present in the passed in zonelist, then
1247  * returns a pointer to the allowed node mask (either the current
1248  * tasks mems_allowed, or node_states[N_HIGH_MEMORY].)
1249  *
1250  * If the zonelist cache is not available for this zonelist, does
1251  * nothing and returns NULL.
1252  *
1253  * If the fullzones BITMAP in the zonelist cache is stale (more than
1254  * a second since last zap'd) then we zap it out (clear its bits.)
1255  *
1256  * We hold off even calling zlc_setup, until after we've checked the
1257  * first zone in the zonelist, on the theory that most allocations will
1258  * be satisfied from that first zone, so best to examine that zone as
1259  * quickly as we can.
1260  */
1261 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1262 {
1263 	struct zonelist_cache *zlc;	/* cached zonelist speedup info */
1264 	nodemask_t *allowednodes;	/* zonelist_cache approximation */
1265 
1266 	zlc = zonelist->zlcache_ptr;
1267 	if (!zlc)
1268 		return NULL;
1269 
1270 	if (time_after(jiffies, zlc->last_full_zap + HZ)) {
1271 		bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1272 		zlc->last_full_zap = jiffies;
1273 	}
1274 
1275 	allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1276 					&cpuset_current_mems_allowed :
1277 					&node_states[N_HIGH_MEMORY];
1278 	return allowednodes;
1279 }
1280 
1281 /*
1282  * Given 'z' scanning a zonelist, run a couple of quick checks to see
1283  * if it is worth looking at further for free memory:
1284  *  1) Check that the zone isn't thought to be full (doesn't have its
1285  *     bit set in the zonelist_cache fullzones BITMAP).
1286  *  2) Check that the zones node (obtained from the zonelist_cache
1287  *     z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1288  * Return true (non-zero) if zone is worth looking at further, or
1289  * else return false (zero) if it is not.
1290  *
1291  * This check -ignores- the distinction between various watermarks,
1292  * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ...  If a zone is
1293  * found to be full for any variation of these watermarks, it will
1294  * be considered full for up to one second by all requests, unless
1295  * we are so low on memory on all allowed nodes that we are forced
1296  * into the second scan of the zonelist.
1297  *
1298  * In the second scan we ignore this zonelist cache and exactly
1299  * apply the watermarks to all zones, even it is slower to do so.
1300  * We are low on memory in the second scan, and should leave no stone
1301  * unturned looking for a free page.
1302  */
1303 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1304 						nodemask_t *allowednodes)
1305 {
1306 	struct zonelist_cache *zlc;	/* cached zonelist speedup info */
1307 	int i;				/* index of *z in zonelist zones */
1308 	int n;				/* node that zone *z is on */
1309 
1310 	zlc = zonelist->zlcache_ptr;
1311 	if (!zlc)
1312 		return 1;
1313 
1314 	i = z - zonelist->_zonerefs;
1315 	n = zlc->z_to_n[i];
1316 
1317 	/* This zone is worth trying if it is allowed but not full */
1318 	return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1319 }
1320 
1321 /*
1322  * Given 'z' scanning a zonelist, set the corresponding bit in
1323  * zlc->fullzones, so that subsequent attempts to allocate a page
1324  * from that zone don't waste time re-examining it.
1325  */
1326 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1327 {
1328 	struct zonelist_cache *zlc;	/* cached zonelist speedup info */
1329 	int i;				/* index of *z in zonelist zones */
1330 
1331 	zlc = zonelist->zlcache_ptr;
1332 	if (!zlc)
1333 		return;
1334 
1335 	i = z - zonelist->_zonerefs;
1336 
1337 	set_bit(i, zlc->fullzones);
1338 }
1339 
1340 #else	/* CONFIG_NUMA */
1341 
1342 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1343 {
1344 	return NULL;
1345 }
1346 
1347 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1348 				nodemask_t *allowednodes)
1349 {
1350 	return 1;
1351 }
1352 
1353 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1354 {
1355 }
1356 #endif	/* CONFIG_NUMA */
1357 
1358 /*
1359  * get_page_from_freelist goes through the zonelist trying to allocate
1360  * a page.
1361  */
1362 static struct page *
1363 get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order,
1364 		struct zonelist *zonelist, int high_zoneidx, int alloc_flags)
1365 {
1366 	struct zoneref *z;
1367 	struct page *page = NULL;
1368 	int classzone_idx;
1369 	struct zone *zone, *preferred_zone;
1370 	nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
1371 	int zlc_active = 0;		/* set if using zonelist_cache */
1372 	int did_zlc_setup = 0;		/* just call zlc_setup() one time */
1373 
1374 	(void)first_zones_zonelist(zonelist, high_zoneidx, nodemask,
1375 							&preferred_zone);
1376 	if (!preferred_zone)
1377 		return NULL;
1378 
1379 	classzone_idx = zone_idx(preferred_zone);
1380 
1381 zonelist_scan:
1382 	/*
1383 	 * Scan zonelist, looking for a zone with enough free.
1384 	 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1385 	 */
1386 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
1387 						high_zoneidx, nodemask) {
1388 		if (NUMA_BUILD && zlc_active &&
1389 			!zlc_zone_worth_trying(zonelist, z, allowednodes))
1390 				continue;
1391 		if ((alloc_flags & ALLOC_CPUSET) &&
1392 			!cpuset_zone_allowed_softwall(zone, gfp_mask))
1393 				goto try_next_zone;
1394 
1395 		if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
1396 			unsigned long mark;
1397 			if (alloc_flags & ALLOC_WMARK_MIN)
1398 				mark = zone->pages_min;
1399 			else if (alloc_flags & ALLOC_WMARK_LOW)
1400 				mark = zone->pages_low;
1401 			else
1402 				mark = zone->pages_high;
1403 			if (!zone_watermark_ok(zone, order, mark,
1404 				    classzone_idx, alloc_flags)) {
1405 				if (!zone_reclaim_mode ||
1406 				    !zone_reclaim(zone, gfp_mask, order))
1407 					goto this_zone_full;
1408 			}
1409 		}
1410 
1411 		page = buffered_rmqueue(preferred_zone, zone, order, gfp_mask);
1412 		if (page)
1413 			break;
1414 this_zone_full:
1415 		if (NUMA_BUILD)
1416 			zlc_mark_zone_full(zonelist, z);
1417 try_next_zone:
1418 		if (NUMA_BUILD && !did_zlc_setup) {
1419 			/* we do zlc_setup after the first zone is tried */
1420 			allowednodes = zlc_setup(zonelist, alloc_flags);
1421 			zlc_active = 1;
1422 			did_zlc_setup = 1;
1423 		}
1424 	}
1425 
1426 	if (unlikely(NUMA_BUILD && page == NULL && zlc_active)) {
1427 		/* Disable zlc cache for second zonelist scan */
1428 		zlc_active = 0;
1429 		goto zonelist_scan;
1430 	}
1431 	return page;
1432 }
1433 
1434 /*
1435  * This is the 'heart' of the zoned buddy allocator.
1436  */
1437 struct page *
1438 __alloc_pages_internal(gfp_t gfp_mask, unsigned int order,
1439 			struct zonelist *zonelist, nodemask_t *nodemask)
1440 {
1441 	const gfp_t wait = gfp_mask & __GFP_WAIT;
1442 	enum zone_type high_zoneidx = gfp_zone(gfp_mask);
1443 	struct zoneref *z;
1444 	struct zone *zone;
1445 	struct page *page;
1446 	struct reclaim_state reclaim_state;
1447 	struct task_struct *p = current;
1448 	int do_retry;
1449 	int alloc_flags;
1450 	unsigned long did_some_progress;
1451 	unsigned long pages_reclaimed = 0;
1452 
1453 	might_sleep_if(wait);
1454 
1455 	if (should_fail_alloc_page(gfp_mask, order))
1456 		return NULL;
1457 
1458 restart:
1459 	z = zonelist->_zonerefs;  /* the list of zones suitable for gfp_mask */
1460 
1461 	if (unlikely(!z->zone)) {
1462 		/*
1463 		 * Happens if we have an empty zonelist as a result of
1464 		 * GFP_THISNODE being used on a memoryless node
1465 		 */
1466 		return NULL;
1467 	}
1468 
1469 	page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order,
1470 			zonelist, high_zoneidx, ALLOC_WMARK_LOW|ALLOC_CPUSET);
1471 	if (page)
1472 		goto got_pg;
1473 
1474 	/*
1475 	 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
1476 	 * __GFP_NOWARN set) should not cause reclaim since the subsystem
1477 	 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
1478 	 * using a larger set of nodes after it has established that the
1479 	 * allowed per node queues are empty and that nodes are
1480 	 * over allocated.
1481 	 */
1482 	if (NUMA_BUILD && (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
1483 		goto nopage;
1484 
1485 	for_each_zone_zonelist(zone, z, zonelist, high_zoneidx)
1486 		wakeup_kswapd(zone, order);
1487 
1488 	/*
1489 	 * OK, we're below the kswapd watermark and have kicked background
1490 	 * reclaim. Now things get more complex, so set up alloc_flags according
1491 	 * to how we want to proceed.
1492 	 *
1493 	 * The caller may dip into page reserves a bit more if the caller
1494 	 * cannot run direct reclaim, or if the caller has realtime scheduling
1495 	 * policy or is asking for __GFP_HIGH memory.  GFP_ATOMIC requests will
1496 	 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
1497 	 */
1498 	alloc_flags = ALLOC_WMARK_MIN;
1499 	if ((unlikely(rt_task(p)) && !in_interrupt()) || !wait)
1500 		alloc_flags |= ALLOC_HARDER;
1501 	if (gfp_mask & __GFP_HIGH)
1502 		alloc_flags |= ALLOC_HIGH;
1503 	if (wait)
1504 		alloc_flags |= ALLOC_CPUSET;
1505 
1506 	/*
1507 	 * Go through the zonelist again. Let __GFP_HIGH and allocations
1508 	 * coming from realtime tasks go deeper into reserves.
1509 	 *
1510 	 * This is the last chance, in general, before the goto nopage.
1511 	 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
1512 	 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1513 	 */
1514 	page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist,
1515 						high_zoneidx, alloc_flags);
1516 	if (page)
1517 		goto got_pg;
1518 
1519 	/* This allocation should allow future memory freeing. */
1520 
1521 rebalance:
1522 	if (((p->flags & PF_MEMALLOC) || unlikely(test_thread_flag(TIF_MEMDIE)))
1523 			&& !in_interrupt()) {
1524 		if (!(gfp_mask & __GFP_NOMEMALLOC)) {
1525 nofail_alloc:
1526 			/* go through the zonelist yet again, ignoring mins */
1527 			page = get_page_from_freelist(gfp_mask, nodemask, order,
1528 				zonelist, high_zoneidx, ALLOC_NO_WATERMARKS);
1529 			if (page)
1530 				goto got_pg;
1531 			if (gfp_mask & __GFP_NOFAIL) {
1532 				congestion_wait(WRITE, HZ/50);
1533 				goto nofail_alloc;
1534 			}
1535 		}
1536 		goto nopage;
1537 	}
1538 
1539 	/* Atomic allocations - we can't balance anything */
1540 	if (!wait)
1541 		goto nopage;
1542 
1543 	cond_resched();
1544 
1545 	/* We now go into synchronous reclaim */
1546 	cpuset_memory_pressure_bump();
1547 	p->flags |= PF_MEMALLOC;
1548 	reclaim_state.reclaimed_slab = 0;
1549 	p->reclaim_state = &reclaim_state;
1550 
1551 	did_some_progress = try_to_free_pages(zonelist, order, gfp_mask);
1552 
1553 	p->reclaim_state = NULL;
1554 	p->flags &= ~PF_MEMALLOC;
1555 
1556 	cond_resched();
1557 
1558 	if (order != 0)
1559 		drain_all_pages();
1560 
1561 	if (likely(did_some_progress)) {
1562 		page = get_page_from_freelist(gfp_mask, nodemask, order,
1563 					zonelist, high_zoneidx, alloc_flags);
1564 		if (page)
1565 			goto got_pg;
1566 	} else if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
1567 		if (!try_set_zone_oom(zonelist, gfp_mask)) {
1568 			schedule_timeout_uninterruptible(1);
1569 			goto restart;
1570 		}
1571 
1572 		/*
1573 		 * Go through the zonelist yet one more time, keep
1574 		 * very high watermark here, this is only to catch
1575 		 * a parallel oom killing, we must fail if we're still
1576 		 * under heavy pressure.
1577 		 */
1578 		page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask,
1579 			order, zonelist, high_zoneidx,
1580 			ALLOC_WMARK_HIGH|ALLOC_CPUSET);
1581 		if (page) {
1582 			clear_zonelist_oom(zonelist, gfp_mask);
1583 			goto got_pg;
1584 		}
1585 
1586 		/* The OOM killer will not help higher order allocs so fail */
1587 		if (order > PAGE_ALLOC_COSTLY_ORDER) {
1588 			clear_zonelist_oom(zonelist, gfp_mask);
1589 			goto nopage;
1590 		}
1591 
1592 		out_of_memory(zonelist, gfp_mask, order);
1593 		clear_zonelist_oom(zonelist, gfp_mask);
1594 		goto restart;
1595 	}
1596 
1597 	/*
1598 	 * Don't let big-order allocations loop unless the caller explicitly
1599 	 * requests that.  Wait for some write requests to complete then retry.
1600 	 *
1601 	 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
1602 	 * means __GFP_NOFAIL, but that may not be true in other
1603 	 * implementations.
1604 	 *
1605 	 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
1606 	 * specified, then we retry until we no longer reclaim any pages
1607 	 * (above), or we've reclaimed an order of pages at least as
1608 	 * large as the allocation's order. In both cases, if the
1609 	 * allocation still fails, we stop retrying.
1610 	 */
1611 	pages_reclaimed += did_some_progress;
1612 	do_retry = 0;
1613 	if (!(gfp_mask & __GFP_NORETRY)) {
1614 		if (order <= PAGE_ALLOC_COSTLY_ORDER) {
1615 			do_retry = 1;
1616 		} else {
1617 			if (gfp_mask & __GFP_REPEAT &&
1618 				pages_reclaimed < (1 << order))
1619 					do_retry = 1;
1620 		}
1621 		if (gfp_mask & __GFP_NOFAIL)
1622 			do_retry = 1;
1623 	}
1624 	if (do_retry) {
1625 		congestion_wait(WRITE, HZ/50);
1626 		goto rebalance;
1627 	}
1628 
1629 nopage:
1630 	if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) {
1631 		printk(KERN_WARNING "%s: page allocation failure."
1632 			" order:%d, mode:0x%x\n",
1633 			p->comm, order, gfp_mask);
1634 		dump_stack();
1635 		show_mem();
1636 	}
1637 got_pg:
1638 	return page;
1639 }
1640 EXPORT_SYMBOL(__alloc_pages_internal);
1641 
1642 /*
1643  * Common helper functions.
1644  */
1645 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1646 {
1647 	struct page * page;
1648 	page = alloc_pages(gfp_mask, order);
1649 	if (!page)
1650 		return 0;
1651 	return (unsigned long) page_address(page);
1652 }
1653 
1654 EXPORT_SYMBOL(__get_free_pages);
1655 
1656 unsigned long get_zeroed_page(gfp_t gfp_mask)
1657 {
1658 	struct page * page;
1659 
1660 	/*
1661 	 * get_zeroed_page() returns a 32-bit address, which cannot represent
1662 	 * a highmem page
1663 	 */
1664 	VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
1665 
1666 	page = alloc_pages(gfp_mask | __GFP_ZERO, 0);
1667 	if (page)
1668 		return (unsigned long) page_address(page);
1669 	return 0;
1670 }
1671 
1672 EXPORT_SYMBOL(get_zeroed_page);
1673 
1674 void __pagevec_free(struct pagevec *pvec)
1675 {
1676 	int i = pagevec_count(pvec);
1677 
1678 	while (--i >= 0)
1679 		free_hot_cold_page(pvec->pages[i], pvec->cold);
1680 }
1681 
1682 void __free_pages(struct page *page, unsigned int order)
1683 {
1684 	if (put_page_testzero(page)) {
1685 		if (order == 0)
1686 			free_hot_page(page);
1687 		else
1688 			__free_pages_ok(page, order);
1689 	}
1690 }
1691 
1692 EXPORT_SYMBOL(__free_pages);
1693 
1694 void free_pages(unsigned long addr, unsigned int order)
1695 {
1696 	if (addr != 0) {
1697 		VM_BUG_ON(!virt_addr_valid((void *)addr));
1698 		__free_pages(virt_to_page((void *)addr), order);
1699 	}
1700 }
1701 
1702 EXPORT_SYMBOL(free_pages);
1703 
1704 /**
1705  * alloc_pages_exact - allocate an exact number physically-contiguous pages.
1706  * @size: the number of bytes to allocate
1707  * @gfp_mask: GFP flags for the allocation
1708  *
1709  * This function is similar to alloc_pages(), except that it allocates the
1710  * minimum number of pages to satisfy the request.  alloc_pages() can only
1711  * allocate memory in power-of-two pages.
1712  *
1713  * This function is also limited by MAX_ORDER.
1714  *
1715  * Memory allocated by this function must be released by free_pages_exact().
1716  */
1717 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
1718 {
1719 	unsigned int order = get_order(size);
1720 	unsigned long addr;
1721 
1722 	addr = __get_free_pages(gfp_mask, order);
1723 	if (addr) {
1724 		unsigned long alloc_end = addr + (PAGE_SIZE << order);
1725 		unsigned long used = addr + PAGE_ALIGN(size);
1726 
1727 		split_page(virt_to_page(addr), order);
1728 		while (used < alloc_end) {
1729 			free_page(used);
1730 			used += PAGE_SIZE;
1731 		}
1732 	}
1733 
1734 	return (void *)addr;
1735 }
1736 EXPORT_SYMBOL(alloc_pages_exact);
1737 
1738 /**
1739  * free_pages_exact - release memory allocated via alloc_pages_exact()
1740  * @virt: the value returned by alloc_pages_exact.
1741  * @size: size of allocation, same value as passed to alloc_pages_exact().
1742  *
1743  * Release the memory allocated by a previous call to alloc_pages_exact.
1744  */
1745 void free_pages_exact(void *virt, size_t size)
1746 {
1747 	unsigned long addr = (unsigned long)virt;
1748 	unsigned long end = addr + PAGE_ALIGN(size);
1749 
1750 	while (addr < end) {
1751 		free_page(addr);
1752 		addr += PAGE_SIZE;
1753 	}
1754 }
1755 EXPORT_SYMBOL(free_pages_exact);
1756 
1757 static unsigned int nr_free_zone_pages(int offset)
1758 {
1759 	struct zoneref *z;
1760 	struct zone *zone;
1761 
1762 	/* Just pick one node, since fallback list is circular */
1763 	unsigned int sum = 0;
1764 
1765 	struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
1766 
1767 	for_each_zone_zonelist(zone, z, zonelist, offset) {
1768 		unsigned long size = zone->present_pages;
1769 		unsigned long high = zone->pages_high;
1770 		if (size > high)
1771 			sum += size - high;
1772 	}
1773 
1774 	return sum;
1775 }
1776 
1777 /*
1778  * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
1779  */
1780 unsigned int nr_free_buffer_pages(void)
1781 {
1782 	return nr_free_zone_pages(gfp_zone(GFP_USER));
1783 }
1784 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
1785 
1786 /*
1787  * Amount of free RAM allocatable within all zones
1788  */
1789 unsigned int nr_free_pagecache_pages(void)
1790 {
1791 	return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
1792 }
1793 
1794 static inline void show_node(struct zone *zone)
1795 {
1796 	if (NUMA_BUILD)
1797 		printk("Node %d ", zone_to_nid(zone));
1798 }
1799 
1800 void si_meminfo(struct sysinfo *val)
1801 {
1802 	val->totalram = totalram_pages;
1803 	val->sharedram = 0;
1804 	val->freeram = global_page_state(NR_FREE_PAGES);
1805 	val->bufferram = nr_blockdev_pages();
1806 	val->totalhigh = totalhigh_pages;
1807 	val->freehigh = nr_free_highpages();
1808 	val->mem_unit = PAGE_SIZE;
1809 }
1810 
1811 EXPORT_SYMBOL(si_meminfo);
1812 
1813 #ifdef CONFIG_NUMA
1814 void si_meminfo_node(struct sysinfo *val, int nid)
1815 {
1816 	pg_data_t *pgdat = NODE_DATA(nid);
1817 
1818 	val->totalram = pgdat->node_present_pages;
1819 	val->freeram = node_page_state(nid, NR_FREE_PAGES);
1820 #ifdef CONFIG_HIGHMEM
1821 	val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
1822 	val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
1823 			NR_FREE_PAGES);
1824 #else
1825 	val->totalhigh = 0;
1826 	val->freehigh = 0;
1827 #endif
1828 	val->mem_unit = PAGE_SIZE;
1829 }
1830 #endif
1831 
1832 #define K(x) ((x) << (PAGE_SHIFT-10))
1833 
1834 /*
1835  * Show free area list (used inside shift_scroll-lock stuff)
1836  * We also calculate the percentage fragmentation. We do this by counting the
1837  * memory on each free list with the exception of the first item on the list.
1838  */
1839 void show_free_areas(void)
1840 {
1841 	int cpu;
1842 	struct zone *zone;
1843 
1844 	for_each_zone(zone) {
1845 		if (!populated_zone(zone))
1846 			continue;
1847 
1848 		show_node(zone);
1849 		printk("%s per-cpu:\n", zone->name);
1850 
1851 		for_each_online_cpu(cpu) {
1852 			struct per_cpu_pageset *pageset;
1853 
1854 			pageset = zone_pcp(zone, cpu);
1855 
1856 			printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
1857 			       cpu, pageset->pcp.high,
1858 			       pageset->pcp.batch, pageset->pcp.count);
1859 		}
1860 	}
1861 
1862 	printk("Active:%lu inactive:%lu dirty:%lu writeback:%lu unstable:%lu\n"
1863 		" free:%lu slab:%lu mapped:%lu pagetables:%lu bounce:%lu\n",
1864 		global_page_state(NR_ACTIVE),
1865 		global_page_state(NR_INACTIVE),
1866 		global_page_state(NR_FILE_DIRTY),
1867 		global_page_state(NR_WRITEBACK),
1868 		global_page_state(NR_UNSTABLE_NFS),
1869 		global_page_state(NR_FREE_PAGES),
1870 		global_page_state(NR_SLAB_RECLAIMABLE) +
1871 			global_page_state(NR_SLAB_UNRECLAIMABLE),
1872 		global_page_state(NR_FILE_MAPPED),
1873 		global_page_state(NR_PAGETABLE),
1874 		global_page_state(NR_BOUNCE));
1875 
1876 	for_each_zone(zone) {
1877 		int i;
1878 
1879 		if (!populated_zone(zone))
1880 			continue;
1881 
1882 		show_node(zone);
1883 		printk("%s"
1884 			" free:%lukB"
1885 			" min:%lukB"
1886 			" low:%lukB"
1887 			" high:%lukB"
1888 			" active:%lukB"
1889 			" inactive:%lukB"
1890 			" present:%lukB"
1891 			" pages_scanned:%lu"
1892 			" all_unreclaimable? %s"
1893 			"\n",
1894 			zone->name,
1895 			K(zone_page_state(zone, NR_FREE_PAGES)),
1896 			K(zone->pages_min),
1897 			K(zone->pages_low),
1898 			K(zone->pages_high),
1899 			K(zone_page_state(zone, NR_ACTIVE)),
1900 			K(zone_page_state(zone, NR_INACTIVE)),
1901 			K(zone->present_pages),
1902 			zone->pages_scanned,
1903 			(zone_is_all_unreclaimable(zone) ? "yes" : "no")
1904 			);
1905 		printk("lowmem_reserve[]:");
1906 		for (i = 0; i < MAX_NR_ZONES; i++)
1907 			printk(" %lu", zone->lowmem_reserve[i]);
1908 		printk("\n");
1909 	}
1910 
1911 	for_each_zone(zone) {
1912  		unsigned long nr[MAX_ORDER], flags, order, total = 0;
1913 
1914 		if (!populated_zone(zone))
1915 			continue;
1916 
1917 		show_node(zone);
1918 		printk("%s: ", zone->name);
1919 
1920 		spin_lock_irqsave(&zone->lock, flags);
1921 		for (order = 0; order < MAX_ORDER; order++) {
1922 			nr[order] = zone->free_area[order].nr_free;
1923 			total += nr[order] << order;
1924 		}
1925 		spin_unlock_irqrestore(&zone->lock, flags);
1926 		for (order = 0; order < MAX_ORDER; order++)
1927 			printk("%lu*%lukB ", nr[order], K(1UL) << order);
1928 		printk("= %lukB\n", K(total));
1929 	}
1930 
1931 	printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
1932 
1933 	show_swap_cache_info();
1934 }
1935 
1936 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
1937 {
1938 	zoneref->zone = zone;
1939 	zoneref->zone_idx = zone_idx(zone);
1940 }
1941 
1942 /*
1943  * Builds allocation fallback zone lists.
1944  *
1945  * Add all populated zones of a node to the zonelist.
1946  */
1947 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
1948 				int nr_zones, enum zone_type zone_type)
1949 {
1950 	struct zone *zone;
1951 
1952 	BUG_ON(zone_type >= MAX_NR_ZONES);
1953 	zone_type++;
1954 
1955 	do {
1956 		zone_type--;
1957 		zone = pgdat->node_zones + zone_type;
1958 		if (populated_zone(zone)) {
1959 			zoneref_set_zone(zone,
1960 				&zonelist->_zonerefs[nr_zones++]);
1961 			check_highest_zone(zone_type);
1962 		}
1963 
1964 	} while (zone_type);
1965 	return nr_zones;
1966 }
1967 
1968 
1969 /*
1970  *  zonelist_order:
1971  *  0 = automatic detection of better ordering.
1972  *  1 = order by ([node] distance, -zonetype)
1973  *  2 = order by (-zonetype, [node] distance)
1974  *
1975  *  If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
1976  *  the same zonelist. So only NUMA can configure this param.
1977  */
1978 #define ZONELIST_ORDER_DEFAULT  0
1979 #define ZONELIST_ORDER_NODE     1
1980 #define ZONELIST_ORDER_ZONE     2
1981 
1982 /* zonelist order in the kernel.
1983  * set_zonelist_order() will set this to NODE or ZONE.
1984  */
1985 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
1986 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
1987 
1988 
1989 #ifdef CONFIG_NUMA
1990 /* The value user specified ....changed by config */
1991 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
1992 /* string for sysctl */
1993 #define NUMA_ZONELIST_ORDER_LEN	16
1994 char numa_zonelist_order[16] = "default";
1995 
1996 /*
1997  * interface for configure zonelist ordering.
1998  * command line option "numa_zonelist_order"
1999  *	= "[dD]efault	- default, automatic configuration.
2000  *	= "[nN]ode 	- order by node locality, then by zone within node
2001  *	= "[zZ]one      - order by zone, then by locality within zone
2002  */
2003 
2004 static int __parse_numa_zonelist_order(char *s)
2005 {
2006 	if (*s == 'd' || *s == 'D') {
2007 		user_zonelist_order = ZONELIST_ORDER_DEFAULT;
2008 	} else if (*s == 'n' || *s == 'N') {
2009 		user_zonelist_order = ZONELIST_ORDER_NODE;
2010 	} else if (*s == 'z' || *s == 'Z') {
2011 		user_zonelist_order = ZONELIST_ORDER_ZONE;
2012 	} else {
2013 		printk(KERN_WARNING
2014 			"Ignoring invalid numa_zonelist_order value:  "
2015 			"%s\n", s);
2016 		return -EINVAL;
2017 	}
2018 	return 0;
2019 }
2020 
2021 static __init int setup_numa_zonelist_order(char *s)
2022 {
2023 	if (s)
2024 		return __parse_numa_zonelist_order(s);
2025 	return 0;
2026 }
2027 early_param("numa_zonelist_order", setup_numa_zonelist_order);
2028 
2029 /*
2030  * sysctl handler for numa_zonelist_order
2031  */
2032 int numa_zonelist_order_handler(ctl_table *table, int write,
2033 		struct file *file, void __user *buffer, size_t *length,
2034 		loff_t *ppos)
2035 {
2036 	char saved_string[NUMA_ZONELIST_ORDER_LEN];
2037 	int ret;
2038 
2039 	if (write)
2040 		strncpy(saved_string, (char*)table->data,
2041 			NUMA_ZONELIST_ORDER_LEN);
2042 	ret = proc_dostring(table, write, file, buffer, length, ppos);
2043 	if (ret)
2044 		return ret;
2045 	if (write) {
2046 		int oldval = user_zonelist_order;
2047 		if (__parse_numa_zonelist_order((char*)table->data)) {
2048 			/*
2049 			 * bogus value.  restore saved string
2050 			 */
2051 			strncpy((char*)table->data, saved_string,
2052 				NUMA_ZONELIST_ORDER_LEN);
2053 			user_zonelist_order = oldval;
2054 		} else if (oldval != user_zonelist_order)
2055 			build_all_zonelists();
2056 	}
2057 	return 0;
2058 }
2059 
2060 
2061 #define MAX_NODE_LOAD (num_online_nodes())
2062 static int node_load[MAX_NUMNODES];
2063 
2064 /**
2065  * find_next_best_node - find the next node that should appear in a given node's fallback list
2066  * @node: node whose fallback list we're appending
2067  * @used_node_mask: nodemask_t of already used nodes
2068  *
2069  * We use a number of factors to determine which is the next node that should
2070  * appear on a given node's fallback list.  The node should not have appeared
2071  * already in @node's fallback list, and it should be the next closest node
2072  * according to the distance array (which contains arbitrary distance values
2073  * from each node to each node in the system), and should also prefer nodes
2074  * with no CPUs, since presumably they'll have very little allocation pressure
2075  * on them otherwise.
2076  * It returns -1 if no node is found.
2077  */
2078 static int find_next_best_node(int node, nodemask_t *used_node_mask)
2079 {
2080 	int n, val;
2081 	int min_val = INT_MAX;
2082 	int best_node = -1;
2083 	node_to_cpumask_ptr(tmp, 0);
2084 
2085 	/* Use the local node if we haven't already */
2086 	if (!node_isset(node, *used_node_mask)) {
2087 		node_set(node, *used_node_mask);
2088 		return node;
2089 	}
2090 
2091 	for_each_node_state(n, N_HIGH_MEMORY) {
2092 
2093 		/* Don't want a node to appear more than once */
2094 		if (node_isset(n, *used_node_mask))
2095 			continue;
2096 
2097 		/* Use the distance array to find the distance */
2098 		val = node_distance(node, n);
2099 
2100 		/* Penalize nodes under us ("prefer the next node") */
2101 		val += (n < node);
2102 
2103 		/* Give preference to headless and unused nodes */
2104 		node_to_cpumask_ptr_next(tmp, n);
2105 		if (!cpus_empty(*tmp))
2106 			val += PENALTY_FOR_NODE_WITH_CPUS;
2107 
2108 		/* Slight preference for less loaded node */
2109 		val *= (MAX_NODE_LOAD*MAX_NUMNODES);
2110 		val += node_load[n];
2111 
2112 		if (val < min_val) {
2113 			min_val = val;
2114 			best_node = n;
2115 		}
2116 	}
2117 
2118 	if (best_node >= 0)
2119 		node_set(best_node, *used_node_mask);
2120 
2121 	return best_node;
2122 }
2123 
2124 
2125 /*
2126  * Build zonelists ordered by node and zones within node.
2127  * This results in maximum locality--normal zone overflows into local
2128  * DMA zone, if any--but risks exhausting DMA zone.
2129  */
2130 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
2131 {
2132 	int j;
2133 	struct zonelist *zonelist;
2134 
2135 	zonelist = &pgdat->node_zonelists[0];
2136 	for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
2137 		;
2138 	j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2139 							MAX_NR_ZONES - 1);
2140 	zonelist->_zonerefs[j].zone = NULL;
2141 	zonelist->_zonerefs[j].zone_idx = 0;
2142 }
2143 
2144 /*
2145  * Build gfp_thisnode zonelists
2146  */
2147 static void build_thisnode_zonelists(pg_data_t *pgdat)
2148 {
2149 	int j;
2150 	struct zonelist *zonelist;
2151 
2152 	zonelist = &pgdat->node_zonelists[1];
2153 	j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
2154 	zonelist->_zonerefs[j].zone = NULL;
2155 	zonelist->_zonerefs[j].zone_idx = 0;
2156 }
2157 
2158 /*
2159  * Build zonelists ordered by zone and nodes within zones.
2160  * This results in conserving DMA zone[s] until all Normal memory is
2161  * exhausted, but results in overflowing to remote node while memory
2162  * may still exist in local DMA zone.
2163  */
2164 static int node_order[MAX_NUMNODES];
2165 
2166 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
2167 {
2168 	int pos, j, node;
2169 	int zone_type;		/* needs to be signed */
2170 	struct zone *z;
2171 	struct zonelist *zonelist;
2172 
2173 	zonelist = &pgdat->node_zonelists[0];
2174 	pos = 0;
2175 	for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
2176 		for (j = 0; j < nr_nodes; j++) {
2177 			node = node_order[j];
2178 			z = &NODE_DATA(node)->node_zones[zone_type];
2179 			if (populated_zone(z)) {
2180 				zoneref_set_zone(z,
2181 					&zonelist->_zonerefs[pos++]);
2182 				check_highest_zone(zone_type);
2183 			}
2184 		}
2185 	}
2186 	zonelist->_zonerefs[pos].zone = NULL;
2187 	zonelist->_zonerefs[pos].zone_idx = 0;
2188 }
2189 
2190 static int default_zonelist_order(void)
2191 {
2192 	int nid, zone_type;
2193 	unsigned long low_kmem_size,total_size;
2194 	struct zone *z;
2195 	int average_size;
2196 	/*
2197          * ZONE_DMA and ZONE_DMA32 can be very small area in the sytem.
2198 	 * If they are really small and used heavily, the system can fall
2199 	 * into OOM very easily.
2200 	 * This function detect ZONE_DMA/DMA32 size and confgigures zone order.
2201 	 */
2202 	/* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
2203 	low_kmem_size = 0;
2204 	total_size = 0;
2205 	for_each_online_node(nid) {
2206 		for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
2207 			z = &NODE_DATA(nid)->node_zones[zone_type];
2208 			if (populated_zone(z)) {
2209 				if (zone_type < ZONE_NORMAL)
2210 					low_kmem_size += z->present_pages;
2211 				total_size += z->present_pages;
2212 			}
2213 		}
2214 	}
2215 	if (!low_kmem_size ||  /* there are no DMA area. */
2216 	    low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
2217 		return ZONELIST_ORDER_NODE;
2218 	/*
2219 	 * look into each node's config.
2220   	 * If there is a node whose DMA/DMA32 memory is very big area on
2221  	 * local memory, NODE_ORDER may be suitable.
2222          */
2223 	average_size = total_size /
2224 				(nodes_weight(node_states[N_HIGH_MEMORY]) + 1);
2225 	for_each_online_node(nid) {
2226 		low_kmem_size = 0;
2227 		total_size = 0;
2228 		for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
2229 			z = &NODE_DATA(nid)->node_zones[zone_type];
2230 			if (populated_zone(z)) {
2231 				if (zone_type < ZONE_NORMAL)
2232 					low_kmem_size += z->present_pages;
2233 				total_size += z->present_pages;
2234 			}
2235 		}
2236 		if (low_kmem_size &&
2237 		    total_size > average_size && /* ignore small node */
2238 		    low_kmem_size > total_size * 70/100)
2239 			return ZONELIST_ORDER_NODE;
2240 	}
2241 	return ZONELIST_ORDER_ZONE;
2242 }
2243 
2244 static void set_zonelist_order(void)
2245 {
2246 	if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
2247 		current_zonelist_order = default_zonelist_order();
2248 	else
2249 		current_zonelist_order = user_zonelist_order;
2250 }
2251 
2252 static void build_zonelists(pg_data_t *pgdat)
2253 {
2254 	int j, node, load;
2255 	enum zone_type i;
2256 	nodemask_t used_mask;
2257 	int local_node, prev_node;
2258 	struct zonelist *zonelist;
2259 	int order = current_zonelist_order;
2260 
2261 	/* initialize zonelists */
2262 	for (i = 0; i < MAX_ZONELISTS; i++) {
2263 		zonelist = pgdat->node_zonelists + i;
2264 		zonelist->_zonerefs[0].zone = NULL;
2265 		zonelist->_zonerefs[0].zone_idx = 0;
2266 	}
2267 
2268 	/* NUMA-aware ordering of nodes */
2269 	local_node = pgdat->node_id;
2270 	load = num_online_nodes();
2271 	prev_node = local_node;
2272 	nodes_clear(used_mask);
2273 
2274 	memset(node_load, 0, sizeof(node_load));
2275 	memset(node_order, 0, sizeof(node_order));
2276 	j = 0;
2277 
2278 	while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
2279 		int distance = node_distance(local_node, node);
2280 
2281 		/*
2282 		 * If another node is sufficiently far away then it is better
2283 		 * to reclaim pages in a zone before going off node.
2284 		 */
2285 		if (distance > RECLAIM_DISTANCE)
2286 			zone_reclaim_mode = 1;
2287 
2288 		/*
2289 		 * We don't want to pressure a particular node.
2290 		 * So adding penalty to the first node in same
2291 		 * distance group to make it round-robin.
2292 		 */
2293 		if (distance != node_distance(local_node, prev_node))
2294 			node_load[node] = load;
2295 
2296 		prev_node = node;
2297 		load--;
2298 		if (order == ZONELIST_ORDER_NODE)
2299 			build_zonelists_in_node_order(pgdat, node);
2300 		else
2301 			node_order[j++] = node;	/* remember order */
2302 	}
2303 
2304 	if (order == ZONELIST_ORDER_ZONE) {
2305 		/* calculate node order -- i.e., DMA last! */
2306 		build_zonelists_in_zone_order(pgdat, j);
2307 	}
2308 
2309 	build_thisnode_zonelists(pgdat);
2310 }
2311 
2312 /* Construct the zonelist performance cache - see further mmzone.h */
2313 static void build_zonelist_cache(pg_data_t *pgdat)
2314 {
2315 	struct zonelist *zonelist;
2316 	struct zonelist_cache *zlc;
2317 	struct zoneref *z;
2318 
2319 	zonelist = &pgdat->node_zonelists[0];
2320 	zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
2321 	bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
2322 	for (z = zonelist->_zonerefs; z->zone; z++)
2323 		zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
2324 }
2325 
2326 
2327 #else	/* CONFIG_NUMA */
2328 
2329 static void set_zonelist_order(void)
2330 {
2331 	current_zonelist_order = ZONELIST_ORDER_ZONE;
2332 }
2333 
2334 static void build_zonelists(pg_data_t *pgdat)
2335 {
2336 	int node, local_node;
2337 	enum zone_type j;
2338 	struct zonelist *zonelist;
2339 
2340 	local_node = pgdat->node_id;
2341 
2342 	zonelist = &pgdat->node_zonelists[0];
2343 	j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
2344 
2345 	/*
2346 	 * Now we build the zonelist so that it contains the zones
2347 	 * of all the other nodes.
2348 	 * We don't want to pressure a particular node, so when
2349 	 * building the zones for node N, we make sure that the
2350 	 * zones coming right after the local ones are those from
2351 	 * node N+1 (modulo N)
2352 	 */
2353 	for (node = local_node + 1; node < MAX_NUMNODES; node++) {
2354 		if (!node_online(node))
2355 			continue;
2356 		j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2357 							MAX_NR_ZONES - 1);
2358 	}
2359 	for (node = 0; node < local_node; node++) {
2360 		if (!node_online(node))
2361 			continue;
2362 		j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2363 							MAX_NR_ZONES - 1);
2364 	}
2365 
2366 	zonelist->_zonerefs[j].zone = NULL;
2367 	zonelist->_zonerefs[j].zone_idx = 0;
2368 }
2369 
2370 /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
2371 static void build_zonelist_cache(pg_data_t *pgdat)
2372 {
2373 	pgdat->node_zonelists[0].zlcache_ptr = NULL;
2374 }
2375 
2376 #endif	/* CONFIG_NUMA */
2377 
2378 /* return values int ....just for stop_machine() */
2379 static int __build_all_zonelists(void *dummy)
2380 {
2381 	int nid;
2382 
2383 	for_each_online_node(nid) {
2384 		pg_data_t *pgdat = NODE_DATA(nid);
2385 
2386 		build_zonelists(pgdat);
2387 		build_zonelist_cache(pgdat);
2388 	}
2389 	return 0;
2390 }
2391 
2392 void build_all_zonelists(void)
2393 {
2394 	set_zonelist_order();
2395 
2396 	if (system_state == SYSTEM_BOOTING) {
2397 		__build_all_zonelists(NULL);
2398 		mminit_verify_zonelist();
2399 		cpuset_init_current_mems_allowed();
2400 	} else {
2401 		/* we have to stop all cpus to guarantee there is no user
2402 		   of zonelist */
2403 		stop_machine(__build_all_zonelists, NULL, NULL);
2404 		/* cpuset refresh routine should be here */
2405 	}
2406 	vm_total_pages = nr_free_pagecache_pages();
2407 	/*
2408 	 * Disable grouping by mobility if the number of pages in the
2409 	 * system is too low to allow the mechanism to work. It would be
2410 	 * more accurate, but expensive to check per-zone. This check is
2411 	 * made on memory-hotadd so a system can start with mobility
2412 	 * disabled and enable it later
2413 	 */
2414 	if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
2415 		page_group_by_mobility_disabled = 1;
2416 	else
2417 		page_group_by_mobility_disabled = 0;
2418 
2419 	printk("Built %i zonelists in %s order, mobility grouping %s.  "
2420 		"Total pages: %ld\n",
2421 			num_online_nodes(),
2422 			zonelist_order_name[current_zonelist_order],
2423 			page_group_by_mobility_disabled ? "off" : "on",
2424 			vm_total_pages);
2425 #ifdef CONFIG_NUMA
2426 	printk("Policy zone: %s\n", zone_names[policy_zone]);
2427 #endif
2428 }
2429 
2430 /*
2431  * Helper functions to size the waitqueue hash table.
2432  * Essentially these want to choose hash table sizes sufficiently
2433  * large so that collisions trying to wait on pages are rare.
2434  * But in fact, the number of active page waitqueues on typical
2435  * systems is ridiculously low, less than 200. So this is even
2436  * conservative, even though it seems large.
2437  *
2438  * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
2439  * waitqueues, i.e. the size of the waitq table given the number of pages.
2440  */
2441 #define PAGES_PER_WAITQUEUE	256
2442 
2443 #ifndef CONFIG_MEMORY_HOTPLUG
2444 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
2445 {
2446 	unsigned long size = 1;
2447 
2448 	pages /= PAGES_PER_WAITQUEUE;
2449 
2450 	while (size < pages)
2451 		size <<= 1;
2452 
2453 	/*
2454 	 * Once we have dozens or even hundreds of threads sleeping
2455 	 * on IO we've got bigger problems than wait queue collision.
2456 	 * Limit the size of the wait table to a reasonable size.
2457 	 */
2458 	size = min(size, 4096UL);
2459 
2460 	return max(size, 4UL);
2461 }
2462 #else
2463 /*
2464  * A zone's size might be changed by hot-add, so it is not possible to determine
2465  * a suitable size for its wait_table.  So we use the maximum size now.
2466  *
2467  * The max wait table size = 4096 x sizeof(wait_queue_head_t).   ie:
2468  *
2469  *    i386 (preemption config)    : 4096 x 16 = 64Kbyte.
2470  *    ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
2471  *    ia64, x86-64 (preemption)   : 4096 x 24 = 96Kbyte.
2472  *
2473  * The maximum entries are prepared when a zone's memory is (512K + 256) pages
2474  * or more by the traditional way. (See above).  It equals:
2475  *
2476  *    i386, x86-64, powerpc(4K page size) : =  ( 2G + 1M)byte.
2477  *    ia64(16K page size)                 : =  ( 8G + 4M)byte.
2478  *    powerpc (64K page size)             : =  (32G +16M)byte.
2479  */
2480 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
2481 {
2482 	return 4096UL;
2483 }
2484 #endif
2485 
2486 /*
2487  * This is an integer logarithm so that shifts can be used later
2488  * to extract the more random high bits from the multiplicative
2489  * hash function before the remainder is taken.
2490  */
2491 static inline unsigned long wait_table_bits(unsigned long size)
2492 {
2493 	return ffz(~size);
2494 }
2495 
2496 #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
2497 
2498 /*
2499  * Mark a number of pageblocks as MIGRATE_RESERVE. The number
2500  * of blocks reserved is based on zone->pages_min. The memory within the
2501  * reserve will tend to store contiguous free pages. Setting min_free_kbytes
2502  * higher will lead to a bigger reserve which will get freed as contiguous
2503  * blocks as reclaim kicks in
2504  */
2505 static void setup_zone_migrate_reserve(struct zone *zone)
2506 {
2507 	unsigned long start_pfn, pfn, end_pfn;
2508 	struct page *page;
2509 	unsigned long reserve, block_migratetype;
2510 
2511 	/* Get the start pfn, end pfn and the number of blocks to reserve */
2512 	start_pfn = zone->zone_start_pfn;
2513 	end_pfn = start_pfn + zone->spanned_pages;
2514 	reserve = roundup(zone->pages_min, pageblock_nr_pages) >>
2515 							pageblock_order;
2516 
2517 	for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
2518 		if (!pfn_valid(pfn))
2519 			continue;
2520 		page = pfn_to_page(pfn);
2521 
2522 		/* Watch out for overlapping nodes */
2523 		if (page_to_nid(page) != zone_to_nid(zone))
2524 			continue;
2525 
2526 		/* Blocks with reserved pages will never free, skip them. */
2527 		if (PageReserved(page))
2528 			continue;
2529 
2530 		block_migratetype = get_pageblock_migratetype(page);
2531 
2532 		/* If this block is reserved, account for it */
2533 		if (reserve > 0 && block_migratetype == MIGRATE_RESERVE) {
2534 			reserve--;
2535 			continue;
2536 		}
2537 
2538 		/* Suitable for reserving if this block is movable */
2539 		if (reserve > 0 && block_migratetype == MIGRATE_MOVABLE) {
2540 			set_pageblock_migratetype(page, MIGRATE_RESERVE);
2541 			move_freepages_block(zone, page, MIGRATE_RESERVE);
2542 			reserve--;
2543 			continue;
2544 		}
2545 
2546 		/*
2547 		 * If the reserve is met and this is a previous reserved block,
2548 		 * take it back
2549 		 */
2550 		if (block_migratetype == MIGRATE_RESERVE) {
2551 			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
2552 			move_freepages_block(zone, page, MIGRATE_MOVABLE);
2553 		}
2554 	}
2555 }
2556 
2557 /*
2558  * Initially all pages are reserved - free ones are freed
2559  * up by free_all_bootmem() once the early boot process is
2560  * done. Non-atomic initialization, single-pass.
2561  */
2562 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
2563 		unsigned long start_pfn, enum memmap_context context)
2564 {
2565 	struct page *page;
2566 	unsigned long end_pfn = start_pfn + size;
2567 	unsigned long pfn;
2568 	struct zone *z;
2569 
2570 	z = &NODE_DATA(nid)->node_zones[zone];
2571 	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
2572 		/*
2573 		 * There can be holes in boot-time mem_map[]s
2574 		 * handed to this function.  They do not
2575 		 * exist on hotplugged memory.
2576 		 */
2577 		if (context == MEMMAP_EARLY) {
2578 			if (!early_pfn_valid(pfn))
2579 				continue;
2580 			if (!early_pfn_in_nid(pfn, nid))
2581 				continue;
2582 		}
2583 		page = pfn_to_page(pfn);
2584 		set_page_links(page, zone, nid, pfn);
2585 		mminit_verify_page_links(page, zone, nid, pfn);
2586 		init_page_count(page);
2587 		reset_page_mapcount(page);
2588 		SetPageReserved(page);
2589 		/*
2590 		 * Mark the block movable so that blocks are reserved for
2591 		 * movable at startup. This will force kernel allocations
2592 		 * to reserve their blocks rather than leaking throughout
2593 		 * the address space during boot when many long-lived
2594 		 * kernel allocations are made. Later some blocks near
2595 		 * the start are marked MIGRATE_RESERVE by
2596 		 * setup_zone_migrate_reserve()
2597 		 *
2598 		 * bitmap is created for zone's valid pfn range. but memmap
2599 		 * can be created for invalid pages (for alignment)
2600 		 * check here not to call set_pageblock_migratetype() against
2601 		 * pfn out of zone.
2602 		 */
2603 		if ((z->zone_start_pfn <= pfn)
2604 		    && (pfn < z->zone_start_pfn + z->spanned_pages)
2605 		    && !(pfn & (pageblock_nr_pages - 1)))
2606 			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
2607 
2608 		INIT_LIST_HEAD(&page->lru);
2609 #ifdef WANT_PAGE_VIRTUAL
2610 		/* The shift won't overflow because ZONE_NORMAL is below 4G. */
2611 		if (!is_highmem_idx(zone))
2612 			set_page_address(page, __va(pfn << PAGE_SHIFT));
2613 #endif
2614 	}
2615 }
2616 
2617 static void __meminit zone_init_free_lists(struct zone *zone)
2618 {
2619 	int order, t;
2620 	for_each_migratetype_order(order, t) {
2621 		INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
2622 		zone->free_area[order].nr_free = 0;
2623 	}
2624 }
2625 
2626 #ifndef __HAVE_ARCH_MEMMAP_INIT
2627 #define memmap_init(size, nid, zone, start_pfn) \
2628 	memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
2629 #endif
2630 
2631 static int zone_batchsize(struct zone *zone)
2632 {
2633 	int batch;
2634 
2635 	/*
2636 	 * The per-cpu-pages pools are set to around 1000th of the
2637 	 * size of the zone.  But no more than 1/2 of a meg.
2638 	 *
2639 	 * OK, so we don't know how big the cache is.  So guess.
2640 	 */
2641 	batch = zone->present_pages / 1024;
2642 	if (batch * PAGE_SIZE > 512 * 1024)
2643 		batch = (512 * 1024) / PAGE_SIZE;
2644 	batch /= 4;		/* We effectively *= 4 below */
2645 	if (batch < 1)
2646 		batch = 1;
2647 
2648 	/*
2649 	 * Clamp the batch to a 2^n - 1 value. Having a power
2650 	 * of 2 value was found to be more likely to have
2651 	 * suboptimal cache aliasing properties in some cases.
2652 	 *
2653 	 * For example if 2 tasks are alternately allocating
2654 	 * batches of pages, one task can end up with a lot
2655 	 * of pages of one half of the possible page colors
2656 	 * and the other with pages of the other colors.
2657 	 */
2658 	batch = (1 << (fls(batch + batch/2)-1)) - 1;
2659 
2660 	return batch;
2661 }
2662 
2663 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
2664 {
2665 	struct per_cpu_pages *pcp;
2666 
2667 	memset(p, 0, sizeof(*p));
2668 
2669 	pcp = &p->pcp;
2670 	pcp->count = 0;
2671 	pcp->high = 6 * batch;
2672 	pcp->batch = max(1UL, 1 * batch);
2673 	INIT_LIST_HEAD(&pcp->list);
2674 }
2675 
2676 /*
2677  * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
2678  * to the value high for the pageset p.
2679  */
2680 
2681 static void setup_pagelist_highmark(struct per_cpu_pageset *p,
2682 				unsigned long high)
2683 {
2684 	struct per_cpu_pages *pcp;
2685 
2686 	pcp = &p->pcp;
2687 	pcp->high = high;
2688 	pcp->batch = max(1UL, high/4);
2689 	if ((high/4) > (PAGE_SHIFT * 8))
2690 		pcp->batch = PAGE_SHIFT * 8;
2691 }
2692 
2693 
2694 #ifdef CONFIG_NUMA
2695 /*
2696  * Boot pageset table. One per cpu which is going to be used for all
2697  * zones and all nodes. The parameters will be set in such a way
2698  * that an item put on a list will immediately be handed over to
2699  * the buddy list. This is safe since pageset manipulation is done
2700  * with interrupts disabled.
2701  *
2702  * Some NUMA counter updates may also be caught by the boot pagesets.
2703  *
2704  * The boot_pagesets must be kept even after bootup is complete for
2705  * unused processors and/or zones. They do play a role for bootstrapping
2706  * hotplugged processors.
2707  *
2708  * zoneinfo_show() and maybe other functions do
2709  * not check if the processor is online before following the pageset pointer.
2710  * Other parts of the kernel may not check if the zone is available.
2711  */
2712 static struct per_cpu_pageset boot_pageset[NR_CPUS];
2713 
2714 /*
2715  * Dynamically allocate memory for the
2716  * per cpu pageset array in struct zone.
2717  */
2718 static int __cpuinit process_zones(int cpu)
2719 {
2720 	struct zone *zone, *dzone;
2721 	int node = cpu_to_node(cpu);
2722 
2723 	node_set_state(node, N_CPU);	/* this node has a cpu */
2724 
2725 	for_each_zone(zone) {
2726 
2727 		if (!populated_zone(zone))
2728 			continue;
2729 
2730 		zone_pcp(zone, cpu) = kmalloc_node(sizeof(struct per_cpu_pageset),
2731 					 GFP_KERNEL, node);
2732 		if (!zone_pcp(zone, cpu))
2733 			goto bad;
2734 
2735 		setup_pageset(zone_pcp(zone, cpu), zone_batchsize(zone));
2736 
2737 		if (percpu_pagelist_fraction)
2738 			setup_pagelist_highmark(zone_pcp(zone, cpu),
2739 			 	(zone->present_pages / percpu_pagelist_fraction));
2740 	}
2741 
2742 	return 0;
2743 bad:
2744 	for_each_zone(dzone) {
2745 		if (!populated_zone(dzone))
2746 			continue;
2747 		if (dzone == zone)
2748 			break;
2749 		kfree(zone_pcp(dzone, cpu));
2750 		zone_pcp(dzone, cpu) = NULL;
2751 	}
2752 	return -ENOMEM;
2753 }
2754 
2755 static inline void free_zone_pagesets(int cpu)
2756 {
2757 	struct zone *zone;
2758 
2759 	for_each_zone(zone) {
2760 		struct per_cpu_pageset *pset = zone_pcp(zone, cpu);
2761 
2762 		/* Free per_cpu_pageset if it is slab allocated */
2763 		if (pset != &boot_pageset[cpu])
2764 			kfree(pset);
2765 		zone_pcp(zone, cpu) = NULL;
2766 	}
2767 }
2768 
2769 static int __cpuinit pageset_cpuup_callback(struct notifier_block *nfb,
2770 		unsigned long action,
2771 		void *hcpu)
2772 {
2773 	int cpu = (long)hcpu;
2774 	int ret = NOTIFY_OK;
2775 
2776 	switch (action) {
2777 	case CPU_UP_PREPARE:
2778 	case CPU_UP_PREPARE_FROZEN:
2779 		if (process_zones(cpu))
2780 			ret = NOTIFY_BAD;
2781 		break;
2782 	case CPU_UP_CANCELED:
2783 	case CPU_UP_CANCELED_FROZEN:
2784 	case CPU_DEAD:
2785 	case CPU_DEAD_FROZEN:
2786 		free_zone_pagesets(cpu);
2787 		break;
2788 	default:
2789 		break;
2790 	}
2791 	return ret;
2792 }
2793 
2794 static struct notifier_block __cpuinitdata pageset_notifier =
2795 	{ &pageset_cpuup_callback, NULL, 0 };
2796 
2797 void __init setup_per_cpu_pageset(void)
2798 {
2799 	int err;
2800 
2801 	/* Initialize per_cpu_pageset for cpu 0.
2802 	 * A cpuup callback will do this for every cpu
2803 	 * as it comes online
2804 	 */
2805 	err = process_zones(smp_processor_id());
2806 	BUG_ON(err);
2807 	register_cpu_notifier(&pageset_notifier);
2808 }
2809 
2810 #endif
2811 
2812 static noinline __init_refok
2813 int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
2814 {
2815 	int i;
2816 	struct pglist_data *pgdat = zone->zone_pgdat;
2817 	size_t alloc_size;
2818 
2819 	/*
2820 	 * The per-page waitqueue mechanism uses hashed waitqueues
2821 	 * per zone.
2822 	 */
2823 	zone->wait_table_hash_nr_entries =
2824 		 wait_table_hash_nr_entries(zone_size_pages);
2825 	zone->wait_table_bits =
2826 		wait_table_bits(zone->wait_table_hash_nr_entries);
2827 	alloc_size = zone->wait_table_hash_nr_entries
2828 					* sizeof(wait_queue_head_t);
2829 
2830 	if (!slab_is_available()) {
2831 		zone->wait_table = (wait_queue_head_t *)
2832 			alloc_bootmem_node(pgdat, alloc_size);
2833 	} else {
2834 		/*
2835 		 * This case means that a zone whose size was 0 gets new memory
2836 		 * via memory hot-add.
2837 		 * But it may be the case that a new node was hot-added.  In
2838 		 * this case vmalloc() will not be able to use this new node's
2839 		 * memory - this wait_table must be initialized to use this new
2840 		 * node itself as well.
2841 		 * To use this new node's memory, further consideration will be
2842 		 * necessary.
2843 		 */
2844 		zone->wait_table = vmalloc(alloc_size);
2845 	}
2846 	if (!zone->wait_table)
2847 		return -ENOMEM;
2848 
2849 	for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
2850 		init_waitqueue_head(zone->wait_table + i);
2851 
2852 	return 0;
2853 }
2854 
2855 static __meminit void zone_pcp_init(struct zone *zone)
2856 {
2857 	int cpu;
2858 	unsigned long batch = zone_batchsize(zone);
2859 
2860 	for (cpu = 0; cpu < NR_CPUS; cpu++) {
2861 #ifdef CONFIG_NUMA
2862 		/* Early boot. Slab allocator not functional yet */
2863 		zone_pcp(zone, cpu) = &boot_pageset[cpu];
2864 		setup_pageset(&boot_pageset[cpu],0);
2865 #else
2866 		setup_pageset(zone_pcp(zone,cpu), batch);
2867 #endif
2868 	}
2869 	if (zone->present_pages)
2870 		printk(KERN_DEBUG "  %s zone: %lu pages, LIFO batch:%lu\n",
2871 			zone->name, zone->present_pages, batch);
2872 }
2873 
2874 __meminit int init_currently_empty_zone(struct zone *zone,
2875 					unsigned long zone_start_pfn,
2876 					unsigned long size,
2877 					enum memmap_context context)
2878 {
2879 	struct pglist_data *pgdat = zone->zone_pgdat;
2880 	int ret;
2881 	ret = zone_wait_table_init(zone, size);
2882 	if (ret)
2883 		return ret;
2884 	pgdat->nr_zones = zone_idx(zone) + 1;
2885 
2886 	zone->zone_start_pfn = zone_start_pfn;
2887 
2888 	mminit_dprintk(MMINIT_TRACE, "memmap_init",
2889 			"Initialising map node %d zone %lu pfns %lu -> %lu\n",
2890 			pgdat->node_id,
2891 			(unsigned long)zone_idx(zone),
2892 			zone_start_pfn, (zone_start_pfn + size));
2893 
2894 	zone_init_free_lists(zone);
2895 
2896 	return 0;
2897 }
2898 
2899 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
2900 /*
2901  * Basic iterator support. Return the first range of PFNs for a node
2902  * Note: nid == MAX_NUMNODES returns first region regardless of node
2903  */
2904 static int __meminit first_active_region_index_in_nid(int nid)
2905 {
2906 	int i;
2907 
2908 	for (i = 0; i < nr_nodemap_entries; i++)
2909 		if (nid == MAX_NUMNODES || early_node_map[i].nid == nid)
2910 			return i;
2911 
2912 	return -1;
2913 }
2914 
2915 /*
2916  * Basic iterator support. Return the next active range of PFNs for a node
2917  * Note: nid == MAX_NUMNODES returns next region regardless of node
2918  */
2919 static int __meminit next_active_region_index_in_nid(int index, int nid)
2920 {
2921 	for (index = index + 1; index < nr_nodemap_entries; index++)
2922 		if (nid == MAX_NUMNODES || early_node_map[index].nid == nid)
2923 			return index;
2924 
2925 	return -1;
2926 }
2927 
2928 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
2929 /*
2930  * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
2931  * Architectures may implement their own version but if add_active_range()
2932  * was used and there are no special requirements, this is a convenient
2933  * alternative
2934  */
2935 int __meminit early_pfn_to_nid(unsigned long pfn)
2936 {
2937 	int i;
2938 
2939 	for (i = 0; i < nr_nodemap_entries; i++) {
2940 		unsigned long start_pfn = early_node_map[i].start_pfn;
2941 		unsigned long end_pfn = early_node_map[i].end_pfn;
2942 
2943 		if (start_pfn <= pfn && pfn < end_pfn)
2944 			return early_node_map[i].nid;
2945 	}
2946 
2947 	return 0;
2948 }
2949 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
2950 
2951 /* Basic iterator support to walk early_node_map[] */
2952 #define for_each_active_range_index_in_nid(i, nid) \
2953 	for (i = first_active_region_index_in_nid(nid); i != -1; \
2954 				i = next_active_region_index_in_nid(i, nid))
2955 
2956 /**
2957  * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
2958  * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
2959  * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
2960  *
2961  * If an architecture guarantees that all ranges registered with
2962  * add_active_ranges() contain no holes and may be freed, this
2963  * this function may be used instead of calling free_bootmem() manually.
2964  */
2965 void __init free_bootmem_with_active_regions(int nid,
2966 						unsigned long max_low_pfn)
2967 {
2968 	int i;
2969 
2970 	for_each_active_range_index_in_nid(i, nid) {
2971 		unsigned long size_pages = 0;
2972 		unsigned long end_pfn = early_node_map[i].end_pfn;
2973 
2974 		if (early_node_map[i].start_pfn >= max_low_pfn)
2975 			continue;
2976 
2977 		if (end_pfn > max_low_pfn)
2978 			end_pfn = max_low_pfn;
2979 
2980 		size_pages = end_pfn - early_node_map[i].start_pfn;
2981 		free_bootmem_node(NODE_DATA(early_node_map[i].nid),
2982 				PFN_PHYS(early_node_map[i].start_pfn),
2983 				size_pages << PAGE_SHIFT);
2984 	}
2985 }
2986 
2987 void __init work_with_active_regions(int nid, work_fn_t work_fn, void *data)
2988 {
2989 	int i;
2990 	int ret;
2991 
2992 	for_each_active_range_index_in_nid(i, nid) {
2993 		ret = work_fn(early_node_map[i].start_pfn,
2994 			      early_node_map[i].end_pfn, data);
2995 		if (ret)
2996 			break;
2997 	}
2998 }
2999 /**
3000  * sparse_memory_present_with_active_regions - Call memory_present for each active range
3001  * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
3002  *
3003  * If an architecture guarantees that all ranges registered with
3004  * add_active_ranges() contain no holes and may be freed, this
3005  * function may be used instead of calling memory_present() manually.
3006  */
3007 void __init sparse_memory_present_with_active_regions(int nid)
3008 {
3009 	int i;
3010 
3011 	for_each_active_range_index_in_nid(i, nid)
3012 		memory_present(early_node_map[i].nid,
3013 				early_node_map[i].start_pfn,
3014 				early_node_map[i].end_pfn);
3015 }
3016 
3017 /**
3018  * push_node_boundaries - Push node boundaries to at least the requested boundary
3019  * @nid: The nid of the node to push the boundary for
3020  * @start_pfn: The start pfn of the node
3021  * @end_pfn: The end pfn of the node
3022  *
3023  * In reserve-based hot-add, mem_map is allocated that is unused until hotadd
3024  * time. Specifically, on x86_64, SRAT will report ranges that can potentially
3025  * be hotplugged even though no physical memory exists. This function allows
3026  * an arch to push out the node boundaries so mem_map is allocated that can
3027  * be used later.
3028  */
3029 #ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
3030 void __init push_node_boundaries(unsigned int nid,
3031 		unsigned long start_pfn, unsigned long end_pfn)
3032 {
3033 	mminit_dprintk(MMINIT_TRACE, "zoneboundary",
3034 			"Entering push_node_boundaries(%u, %lu, %lu)\n",
3035 			nid, start_pfn, end_pfn);
3036 
3037 	/* Initialise the boundary for this node if necessary */
3038 	if (node_boundary_end_pfn[nid] == 0)
3039 		node_boundary_start_pfn[nid] = -1UL;
3040 
3041 	/* Update the boundaries */
3042 	if (node_boundary_start_pfn[nid] > start_pfn)
3043 		node_boundary_start_pfn[nid] = start_pfn;
3044 	if (node_boundary_end_pfn[nid] < end_pfn)
3045 		node_boundary_end_pfn[nid] = end_pfn;
3046 }
3047 
3048 /* If necessary, push the node boundary out for reserve hotadd */
3049 static void __meminit account_node_boundary(unsigned int nid,
3050 		unsigned long *start_pfn, unsigned long *end_pfn)
3051 {
3052 	mminit_dprintk(MMINIT_TRACE, "zoneboundary",
3053 			"Entering account_node_boundary(%u, %lu, %lu)\n",
3054 			nid, *start_pfn, *end_pfn);
3055 
3056 	/* Return if boundary information has not been provided */
3057 	if (node_boundary_end_pfn[nid] == 0)
3058 		return;
3059 
3060 	/* Check the boundaries and update if necessary */
3061 	if (node_boundary_start_pfn[nid] < *start_pfn)
3062 		*start_pfn = node_boundary_start_pfn[nid];
3063 	if (node_boundary_end_pfn[nid] > *end_pfn)
3064 		*end_pfn = node_boundary_end_pfn[nid];
3065 }
3066 #else
3067 void __init push_node_boundaries(unsigned int nid,
3068 		unsigned long start_pfn, unsigned long end_pfn) {}
3069 
3070 static void __meminit account_node_boundary(unsigned int nid,
3071 		unsigned long *start_pfn, unsigned long *end_pfn) {}
3072 #endif
3073 
3074 
3075 /**
3076  * get_pfn_range_for_nid - Return the start and end page frames for a node
3077  * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
3078  * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
3079  * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
3080  *
3081  * It returns the start and end page frame of a node based on information
3082  * provided by an arch calling add_active_range(). If called for a node
3083  * with no available memory, a warning is printed and the start and end
3084  * PFNs will be 0.
3085  */
3086 void __meminit get_pfn_range_for_nid(unsigned int nid,
3087 			unsigned long *start_pfn, unsigned long *end_pfn)
3088 {
3089 	int i;
3090 	*start_pfn = -1UL;
3091 	*end_pfn = 0;
3092 
3093 	for_each_active_range_index_in_nid(i, nid) {
3094 		*start_pfn = min(*start_pfn, early_node_map[i].start_pfn);
3095 		*end_pfn = max(*end_pfn, early_node_map[i].end_pfn);
3096 	}
3097 
3098 	if (*start_pfn == -1UL)
3099 		*start_pfn = 0;
3100 
3101 	/* Push the node boundaries out if requested */
3102 	account_node_boundary(nid, start_pfn, end_pfn);
3103 }
3104 
3105 /*
3106  * This finds a zone that can be used for ZONE_MOVABLE pages. The
3107  * assumption is made that zones within a node are ordered in monotonic
3108  * increasing memory addresses so that the "highest" populated zone is used
3109  */
3110 static void __init find_usable_zone_for_movable(void)
3111 {
3112 	int zone_index;
3113 	for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
3114 		if (zone_index == ZONE_MOVABLE)
3115 			continue;
3116 
3117 		if (arch_zone_highest_possible_pfn[zone_index] >
3118 				arch_zone_lowest_possible_pfn[zone_index])
3119 			break;
3120 	}
3121 
3122 	VM_BUG_ON(zone_index == -1);
3123 	movable_zone = zone_index;
3124 }
3125 
3126 /*
3127  * The zone ranges provided by the architecture do not include ZONE_MOVABLE
3128  * because it is sized independant of architecture. Unlike the other zones,
3129  * the starting point for ZONE_MOVABLE is not fixed. It may be different
3130  * in each node depending on the size of each node and how evenly kernelcore
3131  * is distributed. This helper function adjusts the zone ranges
3132  * provided by the architecture for a given node by using the end of the
3133  * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
3134  * zones within a node are in order of monotonic increases memory addresses
3135  */
3136 static void __meminit adjust_zone_range_for_zone_movable(int nid,
3137 					unsigned long zone_type,
3138 					unsigned long node_start_pfn,
3139 					unsigned long node_end_pfn,
3140 					unsigned long *zone_start_pfn,
3141 					unsigned long *zone_end_pfn)
3142 {
3143 	/* Only adjust if ZONE_MOVABLE is on this node */
3144 	if (zone_movable_pfn[nid]) {
3145 		/* Size ZONE_MOVABLE */
3146 		if (zone_type == ZONE_MOVABLE) {
3147 			*zone_start_pfn = zone_movable_pfn[nid];
3148 			*zone_end_pfn = min(node_end_pfn,
3149 				arch_zone_highest_possible_pfn[movable_zone]);
3150 
3151 		/* Adjust for ZONE_MOVABLE starting within this range */
3152 		} else if (*zone_start_pfn < zone_movable_pfn[nid] &&
3153 				*zone_end_pfn > zone_movable_pfn[nid]) {
3154 			*zone_end_pfn = zone_movable_pfn[nid];
3155 
3156 		/* Check if this whole range is within ZONE_MOVABLE */
3157 		} else if (*zone_start_pfn >= zone_movable_pfn[nid])
3158 			*zone_start_pfn = *zone_end_pfn;
3159 	}
3160 }
3161 
3162 /*
3163  * Return the number of pages a zone spans in a node, including holes
3164  * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
3165  */
3166 static unsigned long __meminit zone_spanned_pages_in_node(int nid,
3167 					unsigned long zone_type,
3168 					unsigned long *ignored)
3169 {
3170 	unsigned long node_start_pfn, node_end_pfn;
3171 	unsigned long zone_start_pfn, zone_end_pfn;
3172 
3173 	/* Get the start and end of the node and zone */
3174 	get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
3175 	zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
3176 	zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
3177 	adjust_zone_range_for_zone_movable(nid, zone_type,
3178 				node_start_pfn, node_end_pfn,
3179 				&zone_start_pfn, &zone_end_pfn);
3180 
3181 	/* Check that this node has pages within the zone's required range */
3182 	if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
3183 		return 0;
3184 
3185 	/* Move the zone boundaries inside the node if necessary */
3186 	zone_end_pfn = min(zone_end_pfn, node_end_pfn);
3187 	zone_start_pfn = max(zone_start_pfn, node_start_pfn);
3188 
3189 	/* Return the spanned pages */
3190 	return zone_end_pfn - zone_start_pfn;
3191 }
3192 
3193 /*
3194  * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
3195  * then all holes in the requested range will be accounted for.
3196  */
3197 static unsigned long __meminit __absent_pages_in_range(int nid,
3198 				unsigned long range_start_pfn,
3199 				unsigned long range_end_pfn)
3200 {
3201 	int i = 0;
3202 	unsigned long prev_end_pfn = 0, hole_pages = 0;
3203 	unsigned long start_pfn;
3204 
3205 	/* Find the end_pfn of the first active range of pfns in the node */
3206 	i = first_active_region_index_in_nid(nid);
3207 	if (i == -1)
3208 		return 0;
3209 
3210 	prev_end_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
3211 
3212 	/* Account for ranges before physical memory on this node */
3213 	if (early_node_map[i].start_pfn > range_start_pfn)
3214 		hole_pages = prev_end_pfn - range_start_pfn;
3215 
3216 	/* Find all holes for the zone within the node */
3217 	for (; i != -1; i = next_active_region_index_in_nid(i, nid)) {
3218 
3219 		/* No need to continue if prev_end_pfn is outside the zone */
3220 		if (prev_end_pfn >= range_end_pfn)
3221 			break;
3222 
3223 		/* Make sure the end of the zone is not within the hole */
3224 		start_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
3225 		prev_end_pfn = max(prev_end_pfn, range_start_pfn);
3226 
3227 		/* Update the hole size cound and move on */
3228 		if (start_pfn > range_start_pfn) {
3229 			BUG_ON(prev_end_pfn > start_pfn);
3230 			hole_pages += start_pfn - prev_end_pfn;
3231 		}
3232 		prev_end_pfn = early_node_map[i].end_pfn;
3233 	}
3234 
3235 	/* Account for ranges past physical memory on this node */
3236 	if (range_end_pfn > prev_end_pfn)
3237 		hole_pages += range_end_pfn -
3238 				max(range_start_pfn, prev_end_pfn);
3239 
3240 	return hole_pages;
3241 }
3242 
3243 /**
3244  * absent_pages_in_range - Return number of page frames in holes within a range
3245  * @start_pfn: The start PFN to start searching for holes
3246  * @end_pfn: The end PFN to stop searching for holes
3247  *
3248  * It returns the number of pages frames in memory holes within a range.
3249  */
3250 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
3251 							unsigned long end_pfn)
3252 {
3253 	return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
3254 }
3255 
3256 /* Return the number of page frames in holes in a zone on a node */
3257 static unsigned long __meminit zone_absent_pages_in_node(int nid,
3258 					unsigned long zone_type,
3259 					unsigned long *ignored)
3260 {
3261 	unsigned long node_start_pfn, node_end_pfn;
3262 	unsigned long zone_start_pfn, zone_end_pfn;
3263 
3264 	get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
3265 	zone_start_pfn = max(arch_zone_lowest_possible_pfn[zone_type],
3266 							node_start_pfn);
3267 	zone_end_pfn = min(arch_zone_highest_possible_pfn[zone_type],
3268 							node_end_pfn);
3269 
3270 	adjust_zone_range_for_zone_movable(nid, zone_type,
3271 			node_start_pfn, node_end_pfn,
3272 			&zone_start_pfn, &zone_end_pfn);
3273 	return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
3274 }
3275 
3276 #else
3277 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
3278 					unsigned long zone_type,
3279 					unsigned long *zones_size)
3280 {
3281 	return zones_size[zone_type];
3282 }
3283 
3284 static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
3285 						unsigned long zone_type,
3286 						unsigned long *zholes_size)
3287 {
3288 	if (!zholes_size)
3289 		return 0;
3290 
3291 	return zholes_size[zone_type];
3292 }
3293 
3294 #endif
3295 
3296 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
3297 		unsigned long *zones_size, unsigned long *zholes_size)
3298 {
3299 	unsigned long realtotalpages, totalpages = 0;
3300 	enum zone_type i;
3301 
3302 	for (i = 0; i < MAX_NR_ZONES; i++)
3303 		totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
3304 								zones_size);
3305 	pgdat->node_spanned_pages = totalpages;
3306 
3307 	realtotalpages = totalpages;
3308 	for (i = 0; i < MAX_NR_ZONES; i++)
3309 		realtotalpages -=
3310 			zone_absent_pages_in_node(pgdat->node_id, i,
3311 								zholes_size);
3312 	pgdat->node_present_pages = realtotalpages;
3313 	printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
3314 							realtotalpages);
3315 }
3316 
3317 #ifndef CONFIG_SPARSEMEM
3318 /*
3319  * Calculate the size of the zone->blockflags rounded to an unsigned long
3320  * Start by making sure zonesize is a multiple of pageblock_order by rounding
3321  * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
3322  * round what is now in bits to nearest long in bits, then return it in
3323  * bytes.
3324  */
3325 static unsigned long __init usemap_size(unsigned long zonesize)
3326 {
3327 	unsigned long usemapsize;
3328 
3329 	usemapsize = roundup(zonesize, pageblock_nr_pages);
3330 	usemapsize = usemapsize >> pageblock_order;
3331 	usemapsize *= NR_PAGEBLOCK_BITS;
3332 	usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
3333 
3334 	return usemapsize / 8;
3335 }
3336 
3337 static void __init setup_usemap(struct pglist_data *pgdat,
3338 				struct zone *zone, unsigned long zonesize)
3339 {
3340 	unsigned long usemapsize = usemap_size(zonesize);
3341 	zone->pageblock_flags = NULL;
3342 	if (usemapsize) {
3343 		zone->pageblock_flags = alloc_bootmem_node(pgdat, usemapsize);
3344 		memset(zone->pageblock_flags, 0, usemapsize);
3345 	}
3346 }
3347 #else
3348 static void inline setup_usemap(struct pglist_data *pgdat,
3349 				struct zone *zone, unsigned long zonesize) {}
3350 #endif /* CONFIG_SPARSEMEM */
3351 
3352 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
3353 
3354 /* Return a sensible default order for the pageblock size. */
3355 static inline int pageblock_default_order(void)
3356 {
3357 	if (HPAGE_SHIFT > PAGE_SHIFT)
3358 		return HUGETLB_PAGE_ORDER;
3359 
3360 	return MAX_ORDER-1;
3361 }
3362 
3363 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
3364 static inline void __init set_pageblock_order(unsigned int order)
3365 {
3366 	/* Check that pageblock_nr_pages has not already been setup */
3367 	if (pageblock_order)
3368 		return;
3369 
3370 	/*
3371 	 * Assume the largest contiguous order of interest is a huge page.
3372 	 * This value may be variable depending on boot parameters on IA64
3373 	 */
3374 	pageblock_order = order;
3375 }
3376 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
3377 
3378 /*
3379  * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
3380  * and pageblock_default_order() are unused as pageblock_order is set
3381  * at compile-time. See include/linux/pageblock-flags.h for the values of
3382  * pageblock_order based on the kernel config
3383  */
3384 static inline int pageblock_default_order(unsigned int order)
3385 {
3386 	return MAX_ORDER-1;
3387 }
3388 #define set_pageblock_order(x)	do {} while (0)
3389 
3390 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
3391 
3392 /*
3393  * Set up the zone data structures:
3394  *   - mark all pages reserved
3395  *   - mark all memory queues empty
3396  *   - clear the memory bitmaps
3397  */
3398 static void __paginginit free_area_init_core(struct pglist_data *pgdat,
3399 		unsigned long *zones_size, unsigned long *zholes_size)
3400 {
3401 	enum zone_type j;
3402 	int nid = pgdat->node_id;
3403 	unsigned long zone_start_pfn = pgdat->node_start_pfn;
3404 	int ret;
3405 
3406 	pgdat_resize_init(pgdat);
3407 	pgdat->nr_zones = 0;
3408 	init_waitqueue_head(&pgdat->kswapd_wait);
3409 	pgdat->kswapd_max_order = 0;
3410 
3411 	for (j = 0; j < MAX_NR_ZONES; j++) {
3412 		struct zone *zone = pgdat->node_zones + j;
3413 		unsigned long size, realsize, memmap_pages;
3414 
3415 		size = zone_spanned_pages_in_node(nid, j, zones_size);
3416 		realsize = size - zone_absent_pages_in_node(nid, j,
3417 								zholes_size);
3418 
3419 		/*
3420 		 * Adjust realsize so that it accounts for how much memory
3421 		 * is used by this zone for memmap. This affects the watermark
3422 		 * and per-cpu initialisations
3423 		 */
3424 		memmap_pages =
3425 			PAGE_ALIGN(size * sizeof(struct page)) >> PAGE_SHIFT;
3426 		if (realsize >= memmap_pages) {
3427 			realsize -= memmap_pages;
3428 			mminit_dprintk(MMINIT_TRACE, "memmap_init",
3429 				"%s zone: %lu pages used for memmap\n",
3430 				zone_names[j], memmap_pages);
3431 		} else
3432 			printk(KERN_WARNING
3433 				"  %s zone: %lu pages exceeds realsize %lu\n",
3434 				zone_names[j], memmap_pages, realsize);
3435 
3436 		/* Account for reserved pages */
3437 		if (j == 0 && realsize > dma_reserve) {
3438 			realsize -= dma_reserve;
3439 			mminit_dprintk(MMINIT_TRACE, "memmap_init",
3440 					"%s zone: %lu pages reserved\n",
3441 					zone_names[0], dma_reserve);
3442 		}
3443 
3444 		if (!is_highmem_idx(j))
3445 			nr_kernel_pages += realsize;
3446 		nr_all_pages += realsize;
3447 
3448 		zone->spanned_pages = size;
3449 		zone->present_pages = realsize;
3450 #ifdef CONFIG_NUMA
3451 		zone->node = nid;
3452 		zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio)
3453 						/ 100;
3454 		zone->min_slab_pages = (realsize * sysctl_min_slab_ratio) / 100;
3455 #endif
3456 		zone->name = zone_names[j];
3457 		spin_lock_init(&zone->lock);
3458 		spin_lock_init(&zone->lru_lock);
3459 		zone_seqlock_init(zone);
3460 		zone->zone_pgdat = pgdat;
3461 
3462 		zone->prev_priority = DEF_PRIORITY;
3463 
3464 		zone_pcp_init(zone);
3465 		INIT_LIST_HEAD(&zone->active_list);
3466 		INIT_LIST_HEAD(&zone->inactive_list);
3467 		zone->nr_scan_active = 0;
3468 		zone->nr_scan_inactive = 0;
3469 		zap_zone_vm_stats(zone);
3470 		zone->flags = 0;
3471 		if (!size)
3472 			continue;
3473 
3474 		set_pageblock_order(pageblock_default_order());
3475 		setup_usemap(pgdat, zone, size);
3476 		ret = init_currently_empty_zone(zone, zone_start_pfn,
3477 						size, MEMMAP_EARLY);
3478 		BUG_ON(ret);
3479 		memmap_init(size, nid, j, zone_start_pfn);
3480 		zone_start_pfn += size;
3481 	}
3482 }
3483 
3484 static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
3485 {
3486 	/* Skip empty nodes */
3487 	if (!pgdat->node_spanned_pages)
3488 		return;
3489 
3490 #ifdef CONFIG_FLAT_NODE_MEM_MAP
3491 	/* ia64 gets its own node_mem_map, before this, without bootmem */
3492 	if (!pgdat->node_mem_map) {
3493 		unsigned long size, start, end;
3494 		struct page *map;
3495 
3496 		/*
3497 		 * The zone's endpoints aren't required to be MAX_ORDER
3498 		 * aligned but the node_mem_map endpoints must be in order
3499 		 * for the buddy allocator to function correctly.
3500 		 */
3501 		start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
3502 		end = pgdat->node_start_pfn + pgdat->node_spanned_pages;
3503 		end = ALIGN(end, MAX_ORDER_NR_PAGES);
3504 		size =  (end - start) * sizeof(struct page);
3505 		map = alloc_remap(pgdat->node_id, size);
3506 		if (!map)
3507 			map = alloc_bootmem_node(pgdat, size);
3508 		pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
3509 	}
3510 #ifndef CONFIG_NEED_MULTIPLE_NODES
3511 	/*
3512 	 * With no DISCONTIG, the global mem_map is just set as node 0's
3513 	 */
3514 	if (pgdat == NODE_DATA(0)) {
3515 		mem_map = NODE_DATA(0)->node_mem_map;
3516 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3517 		if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
3518 			mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
3519 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
3520 	}
3521 #endif
3522 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
3523 }
3524 
3525 void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
3526 		unsigned long node_start_pfn, unsigned long *zholes_size)
3527 {
3528 	pg_data_t *pgdat = NODE_DATA(nid);
3529 
3530 	pgdat->node_id = nid;
3531 	pgdat->node_start_pfn = node_start_pfn;
3532 	calculate_node_totalpages(pgdat, zones_size, zholes_size);
3533 
3534 	alloc_node_mem_map(pgdat);
3535 #ifdef CONFIG_FLAT_NODE_MEM_MAP
3536 	printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
3537 		nid, (unsigned long)pgdat,
3538 		(unsigned long)pgdat->node_mem_map);
3539 #endif
3540 
3541 	free_area_init_core(pgdat, zones_size, zholes_size);
3542 }
3543 
3544 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3545 
3546 #if MAX_NUMNODES > 1
3547 /*
3548  * Figure out the number of possible node ids.
3549  */
3550 static void __init setup_nr_node_ids(void)
3551 {
3552 	unsigned int node;
3553 	unsigned int highest = 0;
3554 
3555 	for_each_node_mask(node, node_possible_map)
3556 		highest = node;
3557 	nr_node_ids = highest + 1;
3558 }
3559 #else
3560 static inline void setup_nr_node_ids(void)
3561 {
3562 }
3563 #endif
3564 
3565 /**
3566  * add_active_range - Register a range of PFNs backed by physical memory
3567  * @nid: The node ID the range resides on
3568  * @start_pfn: The start PFN of the available physical memory
3569  * @end_pfn: The end PFN of the available physical memory
3570  *
3571  * These ranges are stored in an early_node_map[] and later used by
3572  * free_area_init_nodes() to calculate zone sizes and holes. If the
3573  * range spans a memory hole, it is up to the architecture to ensure
3574  * the memory is not freed by the bootmem allocator. If possible
3575  * the range being registered will be merged with existing ranges.
3576  */
3577 void __init add_active_range(unsigned int nid, unsigned long start_pfn,
3578 						unsigned long end_pfn)
3579 {
3580 	int i;
3581 
3582 	mminit_dprintk(MMINIT_TRACE, "memory_register",
3583 			"Entering add_active_range(%d, %#lx, %#lx) "
3584 			"%d entries of %d used\n",
3585 			nid, start_pfn, end_pfn,
3586 			nr_nodemap_entries, MAX_ACTIVE_REGIONS);
3587 
3588 	mminit_validate_memmodel_limits(&start_pfn, &end_pfn);
3589 
3590 	/* Merge with existing active regions if possible */
3591 	for (i = 0; i < nr_nodemap_entries; i++) {
3592 		if (early_node_map[i].nid != nid)
3593 			continue;
3594 
3595 		/* Skip if an existing region covers this new one */
3596 		if (start_pfn >= early_node_map[i].start_pfn &&
3597 				end_pfn <= early_node_map[i].end_pfn)
3598 			return;
3599 
3600 		/* Merge forward if suitable */
3601 		if (start_pfn <= early_node_map[i].end_pfn &&
3602 				end_pfn > early_node_map[i].end_pfn) {
3603 			early_node_map[i].end_pfn = end_pfn;
3604 			return;
3605 		}
3606 
3607 		/* Merge backward if suitable */
3608 		if (start_pfn < early_node_map[i].end_pfn &&
3609 				end_pfn >= early_node_map[i].start_pfn) {
3610 			early_node_map[i].start_pfn = start_pfn;
3611 			return;
3612 		}
3613 	}
3614 
3615 	/* Check that early_node_map is large enough */
3616 	if (i >= MAX_ACTIVE_REGIONS) {
3617 		printk(KERN_CRIT "More than %d memory regions, truncating\n",
3618 							MAX_ACTIVE_REGIONS);
3619 		return;
3620 	}
3621 
3622 	early_node_map[i].nid = nid;
3623 	early_node_map[i].start_pfn = start_pfn;
3624 	early_node_map[i].end_pfn = end_pfn;
3625 	nr_nodemap_entries = i + 1;
3626 }
3627 
3628 /**
3629  * remove_active_range - Shrink an existing registered range of PFNs
3630  * @nid: The node id the range is on that should be shrunk
3631  * @start_pfn: The new PFN of the range
3632  * @end_pfn: The new PFN of the range
3633  *
3634  * i386 with NUMA use alloc_remap() to store a node_mem_map on a local node.
3635  * The map is kept near the end physical page range that has already been
3636  * registered. This function allows an arch to shrink an existing registered
3637  * range.
3638  */
3639 void __init remove_active_range(unsigned int nid, unsigned long start_pfn,
3640 				unsigned long end_pfn)
3641 {
3642 	int i, j;
3643 	int removed = 0;
3644 
3645 	printk(KERN_DEBUG "remove_active_range (%d, %lu, %lu)\n",
3646 			  nid, start_pfn, end_pfn);
3647 
3648 	/* Find the old active region end and shrink */
3649 	for_each_active_range_index_in_nid(i, nid) {
3650 		if (early_node_map[i].start_pfn >= start_pfn &&
3651 		    early_node_map[i].end_pfn <= end_pfn) {
3652 			/* clear it */
3653 			early_node_map[i].start_pfn = 0;
3654 			early_node_map[i].end_pfn = 0;
3655 			removed = 1;
3656 			continue;
3657 		}
3658 		if (early_node_map[i].start_pfn < start_pfn &&
3659 		    early_node_map[i].end_pfn > start_pfn) {
3660 			unsigned long temp_end_pfn = early_node_map[i].end_pfn;
3661 			early_node_map[i].end_pfn = start_pfn;
3662 			if (temp_end_pfn > end_pfn)
3663 				add_active_range(nid, end_pfn, temp_end_pfn);
3664 			continue;
3665 		}
3666 		if (early_node_map[i].start_pfn >= start_pfn &&
3667 		    early_node_map[i].end_pfn > end_pfn &&
3668 		    early_node_map[i].start_pfn < end_pfn) {
3669 			early_node_map[i].start_pfn = end_pfn;
3670 			continue;
3671 		}
3672 	}
3673 
3674 	if (!removed)
3675 		return;
3676 
3677 	/* remove the blank ones */
3678 	for (i = nr_nodemap_entries - 1; i > 0; i--) {
3679 		if (early_node_map[i].nid != nid)
3680 			continue;
3681 		if (early_node_map[i].end_pfn)
3682 			continue;
3683 		/* we found it, get rid of it */
3684 		for (j = i; j < nr_nodemap_entries - 1; j++)
3685 			memcpy(&early_node_map[j], &early_node_map[j+1],
3686 				sizeof(early_node_map[j]));
3687 		j = nr_nodemap_entries - 1;
3688 		memset(&early_node_map[j], 0, sizeof(early_node_map[j]));
3689 		nr_nodemap_entries--;
3690 	}
3691 }
3692 
3693 /**
3694  * remove_all_active_ranges - Remove all currently registered regions
3695  *
3696  * During discovery, it may be found that a table like SRAT is invalid
3697  * and an alternative discovery method must be used. This function removes
3698  * all currently registered regions.
3699  */
3700 void __init remove_all_active_ranges(void)
3701 {
3702 	memset(early_node_map, 0, sizeof(early_node_map));
3703 	nr_nodemap_entries = 0;
3704 #ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
3705 	memset(node_boundary_start_pfn, 0, sizeof(node_boundary_start_pfn));
3706 	memset(node_boundary_end_pfn, 0, sizeof(node_boundary_end_pfn));
3707 #endif /* CONFIG_MEMORY_HOTPLUG_RESERVE */
3708 }
3709 
3710 /* Compare two active node_active_regions */
3711 static int __init cmp_node_active_region(const void *a, const void *b)
3712 {
3713 	struct node_active_region *arange = (struct node_active_region *)a;
3714 	struct node_active_region *brange = (struct node_active_region *)b;
3715 
3716 	/* Done this way to avoid overflows */
3717 	if (arange->start_pfn > brange->start_pfn)
3718 		return 1;
3719 	if (arange->start_pfn < brange->start_pfn)
3720 		return -1;
3721 
3722 	return 0;
3723 }
3724 
3725 /* sort the node_map by start_pfn */
3726 static void __init sort_node_map(void)
3727 {
3728 	sort(early_node_map, (size_t)nr_nodemap_entries,
3729 			sizeof(struct node_active_region),
3730 			cmp_node_active_region, NULL);
3731 }
3732 
3733 /* Find the lowest pfn for a node */
3734 static unsigned long __init find_min_pfn_for_node(int nid)
3735 {
3736 	int i;
3737 	unsigned long min_pfn = ULONG_MAX;
3738 
3739 	/* Assuming a sorted map, the first range found has the starting pfn */
3740 	for_each_active_range_index_in_nid(i, nid)
3741 		min_pfn = min(min_pfn, early_node_map[i].start_pfn);
3742 
3743 	if (min_pfn == ULONG_MAX) {
3744 		printk(KERN_WARNING
3745 			"Could not find start_pfn for node %d\n", nid);
3746 		return 0;
3747 	}
3748 
3749 	return min_pfn;
3750 }
3751 
3752 /**
3753  * find_min_pfn_with_active_regions - Find the minimum PFN registered
3754  *
3755  * It returns the minimum PFN based on information provided via
3756  * add_active_range().
3757  */
3758 unsigned long __init find_min_pfn_with_active_regions(void)
3759 {
3760 	return find_min_pfn_for_node(MAX_NUMNODES);
3761 }
3762 
3763 /*
3764  * early_calculate_totalpages()
3765  * Sum pages in active regions for movable zone.
3766  * Populate N_HIGH_MEMORY for calculating usable_nodes.
3767  */
3768 static unsigned long __init early_calculate_totalpages(void)
3769 {
3770 	int i;
3771 	unsigned long totalpages = 0;
3772 
3773 	for (i = 0; i < nr_nodemap_entries; i++) {
3774 		unsigned long pages = early_node_map[i].end_pfn -
3775 						early_node_map[i].start_pfn;
3776 		totalpages += pages;
3777 		if (pages)
3778 			node_set_state(early_node_map[i].nid, N_HIGH_MEMORY);
3779 	}
3780   	return totalpages;
3781 }
3782 
3783 /*
3784  * Find the PFN the Movable zone begins in each node. Kernel memory
3785  * is spread evenly between nodes as long as the nodes have enough
3786  * memory. When they don't, some nodes will have more kernelcore than
3787  * others
3788  */
3789 static void __init find_zone_movable_pfns_for_nodes(unsigned long *movable_pfn)
3790 {
3791 	int i, nid;
3792 	unsigned long usable_startpfn;
3793 	unsigned long kernelcore_node, kernelcore_remaining;
3794 	unsigned long totalpages = early_calculate_totalpages();
3795 	int usable_nodes = nodes_weight(node_states[N_HIGH_MEMORY]);
3796 
3797 	/*
3798 	 * If movablecore was specified, calculate what size of
3799 	 * kernelcore that corresponds so that memory usable for
3800 	 * any allocation type is evenly spread. If both kernelcore
3801 	 * and movablecore are specified, then the value of kernelcore
3802 	 * will be used for required_kernelcore if it's greater than
3803 	 * what movablecore would have allowed.
3804 	 */
3805 	if (required_movablecore) {
3806 		unsigned long corepages;
3807 
3808 		/*
3809 		 * Round-up so that ZONE_MOVABLE is at least as large as what
3810 		 * was requested by the user
3811 		 */
3812 		required_movablecore =
3813 			roundup(required_movablecore, MAX_ORDER_NR_PAGES);
3814 		corepages = totalpages - required_movablecore;
3815 
3816 		required_kernelcore = max(required_kernelcore, corepages);
3817 	}
3818 
3819 	/* If kernelcore was not specified, there is no ZONE_MOVABLE */
3820 	if (!required_kernelcore)
3821 		return;
3822 
3823 	/* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
3824 	find_usable_zone_for_movable();
3825 	usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
3826 
3827 restart:
3828 	/* Spread kernelcore memory as evenly as possible throughout nodes */
3829 	kernelcore_node = required_kernelcore / usable_nodes;
3830 	for_each_node_state(nid, N_HIGH_MEMORY) {
3831 		/*
3832 		 * Recalculate kernelcore_node if the division per node
3833 		 * now exceeds what is necessary to satisfy the requested
3834 		 * amount of memory for the kernel
3835 		 */
3836 		if (required_kernelcore < kernelcore_node)
3837 			kernelcore_node = required_kernelcore / usable_nodes;
3838 
3839 		/*
3840 		 * As the map is walked, we track how much memory is usable
3841 		 * by the kernel using kernelcore_remaining. When it is
3842 		 * 0, the rest of the node is usable by ZONE_MOVABLE
3843 		 */
3844 		kernelcore_remaining = kernelcore_node;
3845 
3846 		/* Go through each range of PFNs within this node */
3847 		for_each_active_range_index_in_nid(i, nid) {
3848 			unsigned long start_pfn, end_pfn;
3849 			unsigned long size_pages;
3850 
3851 			start_pfn = max(early_node_map[i].start_pfn,
3852 						zone_movable_pfn[nid]);
3853 			end_pfn = early_node_map[i].end_pfn;
3854 			if (start_pfn >= end_pfn)
3855 				continue;
3856 
3857 			/* Account for what is only usable for kernelcore */
3858 			if (start_pfn < usable_startpfn) {
3859 				unsigned long kernel_pages;
3860 				kernel_pages = min(end_pfn, usable_startpfn)
3861 								- start_pfn;
3862 
3863 				kernelcore_remaining -= min(kernel_pages,
3864 							kernelcore_remaining);
3865 				required_kernelcore -= min(kernel_pages,
3866 							required_kernelcore);
3867 
3868 				/* Continue if range is now fully accounted */
3869 				if (end_pfn <= usable_startpfn) {
3870 
3871 					/*
3872 					 * Push zone_movable_pfn to the end so
3873 					 * that if we have to rebalance
3874 					 * kernelcore across nodes, we will
3875 					 * not double account here
3876 					 */
3877 					zone_movable_pfn[nid] = end_pfn;
3878 					continue;
3879 				}
3880 				start_pfn = usable_startpfn;
3881 			}
3882 
3883 			/*
3884 			 * The usable PFN range for ZONE_MOVABLE is from
3885 			 * start_pfn->end_pfn. Calculate size_pages as the
3886 			 * number of pages used as kernelcore
3887 			 */
3888 			size_pages = end_pfn - start_pfn;
3889 			if (size_pages > kernelcore_remaining)
3890 				size_pages = kernelcore_remaining;
3891 			zone_movable_pfn[nid] = start_pfn + size_pages;
3892 
3893 			/*
3894 			 * Some kernelcore has been met, update counts and
3895 			 * break if the kernelcore for this node has been
3896 			 * satisified
3897 			 */
3898 			required_kernelcore -= min(required_kernelcore,
3899 								size_pages);
3900 			kernelcore_remaining -= size_pages;
3901 			if (!kernelcore_remaining)
3902 				break;
3903 		}
3904 	}
3905 
3906 	/*
3907 	 * If there is still required_kernelcore, we do another pass with one
3908 	 * less node in the count. This will push zone_movable_pfn[nid] further
3909 	 * along on the nodes that still have memory until kernelcore is
3910 	 * satisified
3911 	 */
3912 	usable_nodes--;
3913 	if (usable_nodes && required_kernelcore > usable_nodes)
3914 		goto restart;
3915 
3916 	/* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
3917 	for (nid = 0; nid < MAX_NUMNODES; nid++)
3918 		zone_movable_pfn[nid] =
3919 			roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
3920 }
3921 
3922 /* Any regular memory on that node ? */
3923 static void check_for_regular_memory(pg_data_t *pgdat)
3924 {
3925 #ifdef CONFIG_HIGHMEM
3926 	enum zone_type zone_type;
3927 
3928 	for (zone_type = 0; zone_type <= ZONE_NORMAL; zone_type++) {
3929 		struct zone *zone = &pgdat->node_zones[zone_type];
3930 		if (zone->present_pages)
3931 			node_set_state(zone_to_nid(zone), N_NORMAL_MEMORY);
3932 	}
3933 #endif
3934 }
3935 
3936 /**
3937  * free_area_init_nodes - Initialise all pg_data_t and zone data
3938  * @max_zone_pfn: an array of max PFNs for each zone
3939  *
3940  * This will call free_area_init_node() for each active node in the system.
3941  * Using the page ranges provided by add_active_range(), the size of each
3942  * zone in each node and their holes is calculated. If the maximum PFN
3943  * between two adjacent zones match, it is assumed that the zone is empty.
3944  * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
3945  * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
3946  * starts where the previous one ended. For example, ZONE_DMA32 starts
3947  * at arch_max_dma_pfn.
3948  */
3949 void __init free_area_init_nodes(unsigned long *max_zone_pfn)
3950 {
3951 	unsigned long nid;
3952 	enum zone_type i;
3953 
3954 	/* Sort early_node_map as initialisation assumes it is sorted */
3955 	sort_node_map();
3956 
3957 	/* Record where the zone boundaries are */
3958 	memset(arch_zone_lowest_possible_pfn, 0,
3959 				sizeof(arch_zone_lowest_possible_pfn));
3960 	memset(arch_zone_highest_possible_pfn, 0,
3961 				sizeof(arch_zone_highest_possible_pfn));
3962 	arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
3963 	arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
3964 	for (i = 1; i < MAX_NR_ZONES; i++) {
3965 		if (i == ZONE_MOVABLE)
3966 			continue;
3967 		arch_zone_lowest_possible_pfn[i] =
3968 			arch_zone_highest_possible_pfn[i-1];
3969 		arch_zone_highest_possible_pfn[i] =
3970 			max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
3971 	}
3972 	arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
3973 	arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
3974 
3975 	/* Find the PFNs that ZONE_MOVABLE begins at in each node */
3976 	memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
3977 	find_zone_movable_pfns_for_nodes(zone_movable_pfn);
3978 
3979 	/* Print out the zone ranges */
3980 	printk("Zone PFN ranges:\n");
3981 	for (i = 0; i < MAX_NR_ZONES; i++) {
3982 		if (i == ZONE_MOVABLE)
3983 			continue;
3984 		printk("  %-8s %0#10lx -> %0#10lx\n",
3985 				zone_names[i],
3986 				arch_zone_lowest_possible_pfn[i],
3987 				arch_zone_highest_possible_pfn[i]);
3988 	}
3989 
3990 	/* Print out the PFNs ZONE_MOVABLE begins at in each node */
3991 	printk("Movable zone start PFN for each node\n");
3992 	for (i = 0; i < MAX_NUMNODES; i++) {
3993 		if (zone_movable_pfn[i])
3994 			printk("  Node %d: %lu\n", i, zone_movable_pfn[i]);
3995 	}
3996 
3997 	/* Print out the early_node_map[] */
3998 	printk("early_node_map[%d] active PFN ranges\n", nr_nodemap_entries);
3999 	for (i = 0; i < nr_nodemap_entries; i++)
4000 		printk("  %3d: %0#10lx -> %0#10lx\n", early_node_map[i].nid,
4001 						early_node_map[i].start_pfn,
4002 						early_node_map[i].end_pfn);
4003 
4004 	/* Initialise every node */
4005 	mminit_verify_pageflags_layout();
4006 	setup_nr_node_ids();
4007 	for_each_online_node(nid) {
4008 		pg_data_t *pgdat = NODE_DATA(nid);
4009 		free_area_init_node(nid, NULL,
4010 				find_min_pfn_for_node(nid), NULL);
4011 
4012 		/* Any memory on that node */
4013 		if (pgdat->node_present_pages)
4014 			node_set_state(nid, N_HIGH_MEMORY);
4015 		check_for_regular_memory(pgdat);
4016 	}
4017 }
4018 
4019 static int __init cmdline_parse_core(char *p, unsigned long *core)
4020 {
4021 	unsigned long long coremem;
4022 	if (!p)
4023 		return -EINVAL;
4024 
4025 	coremem = memparse(p, &p);
4026 	*core = coremem >> PAGE_SHIFT;
4027 
4028 	/* Paranoid check that UL is enough for the coremem value */
4029 	WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
4030 
4031 	return 0;
4032 }
4033 
4034 /*
4035  * kernelcore=size sets the amount of memory for use for allocations that
4036  * cannot be reclaimed or migrated.
4037  */
4038 static int __init cmdline_parse_kernelcore(char *p)
4039 {
4040 	return cmdline_parse_core(p, &required_kernelcore);
4041 }
4042 
4043 /*
4044  * movablecore=size sets the amount of memory for use for allocations that
4045  * can be reclaimed or migrated.
4046  */
4047 static int __init cmdline_parse_movablecore(char *p)
4048 {
4049 	return cmdline_parse_core(p, &required_movablecore);
4050 }
4051 
4052 early_param("kernelcore", cmdline_parse_kernelcore);
4053 early_param("movablecore", cmdline_parse_movablecore);
4054 
4055 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
4056 
4057 /**
4058  * set_dma_reserve - set the specified number of pages reserved in the first zone
4059  * @new_dma_reserve: The number of pages to mark reserved
4060  *
4061  * The per-cpu batchsize and zone watermarks are determined by present_pages.
4062  * In the DMA zone, a significant percentage may be consumed by kernel image
4063  * and other unfreeable allocations which can skew the watermarks badly. This
4064  * function may optionally be used to account for unfreeable pages in the
4065  * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
4066  * smaller per-cpu batchsize.
4067  */
4068 void __init set_dma_reserve(unsigned long new_dma_reserve)
4069 {
4070 	dma_reserve = new_dma_reserve;
4071 }
4072 
4073 #ifndef CONFIG_NEED_MULTIPLE_NODES
4074 struct pglist_data __refdata contig_page_data = { .bdata = &bootmem_node_data[0] };
4075 EXPORT_SYMBOL(contig_page_data);
4076 #endif
4077 
4078 void __init free_area_init(unsigned long *zones_size)
4079 {
4080 	free_area_init_node(0, zones_size,
4081 			__pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
4082 }
4083 
4084 static int page_alloc_cpu_notify(struct notifier_block *self,
4085 				 unsigned long action, void *hcpu)
4086 {
4087 	int cpu = (unsigned long)hcpu;
4088 
4089 	if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
4090 		drain_pages(cpu);
4091 
4092 		/*
4093 		 * Spill the event counters of the dead processor
4094 		 * into the current processors event counters.
4095 		 * This artificially elevates the count of the current
4096 		 * processor.
4097 		 */
4098 		vm_events_fold_cpu(cpu);
4099 
4100 		/*
4101 		 * Zero the differential counters of the dead processor
4102 		 * so that the vm statistics are consistent.
4103 		 *
4104 		 * This is only okay since the processor is dead and cannot
4105 		 * race with what we are doing.
4106 		 */
4107 		refresh_cpu_vm_stats(cpu);
4108 	}
4109 	return NOTIFY_OK;
4110 }
4111 
4112 void __init page_alloc_init(void)
4113 {
4114 	hotcpu_notifier(page_alloc_cpu_notify, 0);
4115 }
4116 
4117 /*
4118  * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
4119  *	or min_free_kbytes changes.
4120  */
4121 static void calculate_totalreserve_pages(void)
4122 {
4123 	struct pglist_data *pgdat;
4124 	unsigned long reserve_pages = 0;
4125 	enum zone_type i, j;
4126 
4127 	for_each_online_pgdat(pgdat) {
4128 		for (i = 0; i < MAX_NR_ZONES; i++) {
4129 			struct zone *zone = pgdat->node_zones + i;
4130 			unsigned long max = 0;
4131 
4132 			/* Find valid and maximum lowmem_reserve in the zone */
4133 			for (j = i; j < MAX_NR_ZONES; j++) {
4134 				if (zone->lowmem_reserve[j] > max)
4135 					max = zone->lowmem_reserve[j];
4136 			}
4137 
4138 			/* we treat pages_high as reserved pages. */
4139 			max += zone->pages_high;
4140 
4141 			if (max > zone->present_pages)
4142 				max = zone->present_pages;
4143 			reserve_pages += max;
4144 		}
4145 	}
4146 	totalreserve_pages = reserve_pages;
4147 }
4148 
4149 /*
4150  * setup_per_zone_lowmem_reserve - called whenever
4151  *	sysctl_lower_zone_reserve_ratio changes.  Ensures that each zone
4152  *	has a correct pages reserved value, so an adequate number of
4153  *	pages are left in the zone after a successful __alloc_pages().
4154  */
4155 static void setup_per_zone_lowmem_reserve(void)
4156 {
4157 	struct pglist_data *pgdat;
4158 	enum zone_type j, idx;
4159 
4160 	for_each_online_pgdat(pgdat) {
4161 		for (j = 0; j < MAX_NR_ZONES; j++) {
4162 			struct zone *zone = pgdat->node_zones + j;
4163 			unsigned long present_pages = zone->present_pages;
4164 
4165 			zone->lowmem_reserve[j] = 0;
4166 
4167 			idx = j;
4168 			while (idx) {
4169 				struct zone *lower_zone;
4170 
4171 				idx--;
4172 
4173 				if (sysctl_lowmem_reserve_ratio[idx] < 1)
4174 					sysctl_lowmem_reserve_ratio[idx] = 1;
4175 
4176 				lower_zone = pgdat->node_zones + idx;
4177 				lower_zone->lowmem_reserve[j] = present_pages /
4178 					sysctl_lowmem_reserve_ratio[idx];
4179 				present_pages += lower_zone->present_pages;
4180 			}
4181 		}
4182 	}
4183 
4184 	/* update totalreserve_pages */
4185 	calculate_totalreserve_pages();
4186 }
4187 
4188 /**
4189  * setup_per_zone_pages_min - called when min_free_kbytes changes.
4190  *
4191  * Ensures that the pages_{min,low,high} values for each zone are set correctly
4192  * with respect to min_free_kbytes.
4193  */
4194 void setup_per_zone_pages_min(void)
4195 {
4196 	unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
4197 	unsigned long lowmem_pages = 0;
4198 	struct zone *zone;
4199 	unsigned long flags;
4200 
4201 	/* Calculate total number of !ZONE_HIGHMEM pages */
4202 	for_each_zone(zone) {
4203 		if (!is_highmem(zone))
4204 			lowmem_pages += zone->present_pages;
4205 	}
4206 
4207 	for_each_zone(zone) {
4208 		u64 tmp;
4209 
4210 		spin_lock_irqsave(&zone->lru_lock, flags);
4211 		tmp = (u64)pages_min * zone->present_pages;
4212 		do_div(tmp, lowmem_pages);
4213 		if (is_highmem(zone)) {
4214 			/*
4215 			 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
4216 			 * need highmem pages, so cap pages_min to a small
4217 			 * value here.
4218 			 *
4219 			 * The (pages_high-pages_low) and (pages_low-pages_min)
4220 			 * deltas controls asynch page reclaim, and so should
4221 			 * not be capped for highmem.
4222 			 */
4223 			int min_pages;
4224 
4225 			min_pages = zone->present_pages / 1024;
4226 			if (min_pages < SWAP_CLUSTER_MAX)
4227 				min_pages = SWAP_CLUSTER_MAX;
4228 			if (min_pages > 128)
4229 				min_pages = 128;
4230 			zone->pages_min = min_pages;
4231 		} else {
4232 			/*
4233 			 * If it's a lowmem zone, reserve a number of pages
4234 			 * proportionate to the zone's size.
4235 			 */
4236 			zone->pages_min = tmp;
4237 		}
4238 
4239 		zone->pages_low   = zone->pages_min + (tmp >> 2);
4240 		zone->pages_high  = zone->pages_min + (tmp >> 1);
4241 		setup_zone_migrate_reserve(zone);
4242 		spin_unlock_irqrestore(&zone->lru_lock, flags);
4243 	}
4244 
4245 	/* update totalreserve_pages */
4246 	calculate_totalreserve_pages();
4247 }
4248 
4249 /*
4250  * Initialise min_free_kbytes.
4251  *
4252  * For small machines we want it small (128k min).  For large machines
4253  * we want it large (64MB max).  But it is not linear, because network
4254  * bandwidth does not increase linearly with machine size.  We use
4255  *
4256  * 	min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
4257  *	min_free_kbytes = sqrt(lowmem_kbytes * 16)
4258  *
4259  * which yields
4260  *
4261  * 16MB:	512k
4262  * 32MB:	724k
4263  * 64MB:	1024k
4264  * 128MB:	1448k
4265  * 256MB:	2048k
4266  * 512MB:	2896k
4267  * 1024MB:	4096k
4268  * 2048MB:	5792k
4269  * 4096MB:	8192k
4270  * 8192MB:	11584k
4271  * 16384MB:	16384k
4272  */
4273 static int __init init_per_zone_pages_min(void)
4274 {
4275 	unsigned long lowmem_kbytes;
4276 
4277 	lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
4278 
4279 	min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
4280 	if (min_free_kbytes < 128)
4281 		min_free_kbytes = 128;
4282 	if (min_free_kbytes > 65536)
4283 		min_free_kbytes = 65536;
4284 	setup_per_zone_pages_min();
4285 	setup_per_zone_lowmem_reserve();
4286 	return 0;
4287 }
4288 module_init(init_per_zone_pages_min)
4289 
4290 /*
4291  * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
4292  *	that we can call two helper functions whenever min_free_kbytes
4293  *	changes.
4294  */
4295 int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
4296 	struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4297 {
4298 	proc_dointvec(table, write, file, buffer, length, ppos);
4299 	if (write)
4300 		setup_per_zone_pages_min();
4301 	return 0;
4302 }
4303 
4304 #ifdef CONFIG_NUMA
4305 int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
4306 	struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4307 {
4308 	struct zone *zone;
4309 	int rc;
4310 
4311 	rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4312 	if (rc)
4313 		return rc;
4314 
4315 	for_each_zone(zone)
4316 		zone->min_unmapped_pages = (zone->present_pages *
4317 				sysctl_min_unmapped_ratio) / 100;
4318 	return 0;
4319 }
4320 
4321 int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
4322 	struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4323 {
4324 	struct zone *zone;
4325 	int rc;
4326 
4327 	rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4328 	if (rc)
4329 		return rc;
4330 
4331 	for_each_zone(zone)
4332 		zone->min_slab_pages = (zone->present_pages *
4333 				sysctl_min_slab_ratio) / 100;
4334 	return 0;
4335 }
4336 #endif
4337 
4338 /*
4339  * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
4340  *	proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
4341  *	whenever sysctl_lowmem_reserve_ratio changes.
4342  *
4343  * The reserve ratio obviously has absolutely no relation with the
4344  * pages_min watermarks. The lowmem reserve ratio can only make sense
4345  * if in function of the boot time zone sizes.
4346  */
4347 int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
4348 	struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4349 {
4350 	proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4351 	setup_per_zone_lowmem_reserve();
4352 	return 0;
4353 }
4354 
4355 /*
4356  * percpu_pagelist_fraction - changes the pcp->high for each zone on each
4357  * cpu.  It is the fraction of total pages in each zone that a hot per cpu pagelist
4358  * can have before it gets flushed back to buddy allocator.
4359  */
4360 
4361 int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
4362 	struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4363 {
4364 	struct zone *zone;
4365 	unsigned int cpu;
4366 	int ret;
4367 
4368 	ret = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4369 	if (!write || (ret == -EINVAL))
4370 		return ret;
4371 	for_each_zone(zone) {
4372 		for_each_online_cpu(cpu) {
4373 			unsigned long  high;
4374 			high = zone->present_pages / percpu_pagelist_fraction;
4375 			setup_pagelist_highmark(zone_pcp(zone, cpu), high);
4376 		}
4377 	}
4378 	return 0;
4379 }
4380 
4381 int hashdist = HASHDIST_DEFAULT;
4382 
4383 #ifdef CONFIG_NUMA
4384 static int __init set_hashdist(char *str)
4385 {
4386 	if (!str)
4387 		return 0;
4388 	hashdist = simple_strtoul(str, &str, 0);
4389 	return 1;
4390 }
4391 __setup("hashdist=", set_hashdist);
4392 #endif
4393 
4394 /*
4395  * allocate a large system hash table from bootmem
4396  * - it is assumed that the hash table must contain an exact power-of-2
4397  *   quantity of entries
4398  * - limit is the number of hash buckets, not the total allocation size
4399  */
4400 void *__init alloc_large_system_hash(const char *tablename,
4401 				     unsigned long bucketsize,
4402 				     unsigned long numentries,
4403 				     int scale,
4404 				     int flags,
4405 				     unsigned int *_hash_shift,
4406 				     unsigned int *_hash_mask,
4407 				     unsigned long limit)
4408 {
4409 	unsigned long long max = limit;
4410 	unsigned long log2qty, size;
4411 	void *table = NULL;
4412 
4413 	/* allow the kernel cmdline to have a say */
4414 	if (!numentries) {
4415 		/* round applicable memory size up to nearest megabyte */
4416 		numentries = nr_kernel_pages;
4417 		numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
4418 		numentries >>= 20 - PAGE_SHIFT;
4419 		numentries <<= 20 - PAGE_SHIFT;
4420 
4421 		/* limit to 1 bucket per 2^scale bytes of low memory */
4422 		if (scale > PAGE_SHIFT)
4423 			numentries >>= (scale - PAGE_SHIFT);
4424 		else
4425 			numentries <<= (PAGE_SHIFT - scale);
4426 
4427 		/* Make sure we've got at least a 0-order allocation.. */
4428 		if (unlikely((numentries * bucketsize) < PAGE_SIZE))
4429 			numentries = PAGE_SIZE / bucketsize;
4430 	}
4431 	numentries = roundup_pow_of_two(numentries);
4432 
4433 	/* limit allocation size to 1/16 total memory by default */
4434 	if (max == 0) {
4435 		max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
4436 		do_div(max, bucketsize);
4437 	}
4438 
4439 	if (numentries > max)
4440 		numentries = max;
4441 
4442 	log2qty = ilog2(numentries);
4443 
4444 	do {
4445 		size = bucketsize << log2qty;
4446 		if (flags & HASH_EARLY)
4447 			table = alloc_bootmem_nopanic(size);
4448 		else if (hashdist)
4449 			table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
4450 		else {
4451 			unsigned long order = get_order(size);
4452 			table = (void*) __get_free_pages(GFP_ATOMIC, order);
4453 			/*
4454 			 * If bucketsize is not a power-of-two, we may free
4455 			 * some pages at the end of hash table.
4456 			 */
4457 			if (table) {
4458 				unsigned long alloc_end = (unsigned long)table +
4459 						(PAGE_SIZE << order);
4460 				unsigned long used = (unsigned long)table +
4461 						PAGE_ALIGN(size);
4462 				split_page(virt_to_page(table), order);
4463 				while (used < alloc_end) {
4464 					free_page(used);
4465 					used += PAGE_SIZE;
4466 				}
4467 			}
4468 		}
4469 	} while (!table && size > PAGE_SIZE && --log2qty);
4470 
4471 	if (!table)
4472 		panic("Failed to allocate %s hash table\n", tablename);
4473 
4474 	printk(KERN_INFO "%s hash table entries: %d (order: %d, %lu bytes)\n",
4475 	       tablename,
4476 	       (1U << log2qty),
4477 	       ilog2(size) - PAGE_SHIFT,
4478 	       size);
4479 
4480 	if (_hash_shift)
4481 		*_hash_shift = log2qty;
4482 	if (_hash_mask)
4483 		*_hash_mask = (1 << log2qty) - 1;
4484 
4485 	return table;
4486 }
4487 
4488 #ifdef CONFIG_OUT_OF_LINE_PFN_TO_PAGE
4489 struct page *pfn_to_page(unsigned long pfn)
4490 {
4491 	return __pfn_to_page(pfn);
4492 }
4493 unsigned long page_to_pfn(struct page *page)
4494 {
4495 	return __page_to_pfn(page);
4496 }
4497 EXPORT_SYMBOL(pfn_to_page);
4498 EXPORT_SYMBOL(page_to_pfn);
4499 #endif /* CONFIG_OUT_OF_LINE_PFN_TO_PAGE */
4500 
4501 /* Return a pointer to the bitmap storing bits affecting a block of pages */
4502 static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
4503 							unsigned long pfn)
4504 {
4505 #ifdef CONFIG_SPARSEMEM
4506 	return __pfn_to_section(pfn)->pageblock_flags;
4507 #else
4508 	return zone->pageblock_flags;
4509 #endif /* CONFIG_SPARSEMEM */
4510 }
4511 
4512 static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
4513 {
4514 #ifdef CONFIG_SPARSEMEM
4515 	pfn &= (PAGES_PER_SECTION-1);
4516 	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
4517 #else
4518 	pfn = pfn - zone->zone_start_pfn;
4519 	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
4520 #endif /* CONFIG_SPARSEMEM */
4521 }
4522 
4523 /**
4524  * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
4525  * @page: The page within the block of interest
4526  * @start_bitidx: The first bit of interest to retrieve
4527  * @end_bitidx: The last bit of interest
4528  * returns pageblock_bits flags
4529  */
4530 unsigned long get_pageblock_flags_group(struct page *page,
4531 					int start_bitidx, int end_bitidx)
4532 {
4533 	struct zone *zone;
4534 	unsigned long *bitmap;
4535 	unsigned long pfn, bitidx;
4536 	unsigned long flags = 0;
4537 	unsigned long value = 1;
4538 
4539 	zone = page_zone(page);
4540 	pfn = page_to_pfn(page);
4541 	bitmap = get_pageblock_bitmap(zone, pfn);
4542 	bitidx = pfn_to_bitidx(zone, pfn);
4543 
4544 	for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
4545 		if (test_bit(bitidx + start_bitidx, bitmap))
4546 			flags |= value;
4547 
4548 	return flags;
4549 }
4550 
4551 /**
4552  * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
4553  * @page: The page within the block of interest
4554  * @start_bitidx: The first bit of interest
4555  * @end_bitidx: The last bit of interest
4556  * @flags: The flags to set
4557  */
4558 void set_pageblock_flags_group(struct page *page, unsigned long flags,
4559 					int start_bitidx, int end_bitidx)
4560 {
4561 	struct zone *zone;
4562 	unsigned long *bitmap;
4563 	unsigned long pfn, bitidx;
4564 	unsigned long value = 1;
4565 
4566 	zone = page_zone(page);
4567 	pfn = page_to_pfn(page);
4568 	bitmap = get_pageblock_bitmap(zone, pfn);
4569 	bitidx = pfn_to_bitidx(zone, pfn);
4570 	VM_BUG_ON(pfn < zone->zone_start_pfn);
4571 	VM_BUG_ON(pfn >= zone->zone_start_pfn + zone->spanned_pages);
4572 
4573 	for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
4574 		if (flags & value)
4575 			__set_bit(bitidx + start_bitidx, bitmap);
4576 		else
4577 			__clear_bit(bitidx + start_bitidx, bitmap);
4578 }
4579 
4580 /*
4581  * This is designed as sub function...plz see page_isolation.c also.
4582  * set/clear page block's type to be ISOLATE.
4583  * page allocater never alloc memory from ISOLATE block.
4584  */
4585 
4586 int set_migratetype_isolate(struct page *page)
4587 {
4588 	struct zone *zone;
4589 	unsigned long flags;
4590 	int ret = -EBUSY;
4591 
4592 	zone = page_zone(page);
4593 	spin_lock_irqsave(&zone->lock, flags);
4594 	/*
4595 	 * In future, more migrate types will be able to be isolation target.
4596 	 */
4597 	if (get_pageblock_migratetype(page) != MIGRATE_MOVABLE)
4598 		goto out;
4599 	set_pageblock_migratetype(page, MIGRATE_ISOLATE);
4600 	move_freepages_block(zone, page, MIGRATE_ISOLATE);
4601 	ret = 0;
4602 out:
4603 	spin_unlock_irqrestore(&zone->lock, flags);
4604 	if (!ret)
4605 		drain_all_pages();
4606 	return ret;
4607 }
4608 
4609 void unset_migratetype_isolate(struct page *page)
4610 {
4611 	struct zone *zone;
4612 	unsigned long flags;
4613 	zone = page_zone(page);
4614 	spin_lock_irqsave(&zone->lock, flags);
4615 	if (get_pageblock_migratetype(page) != MIGRATE_ISOLATE)
4616 		goto out;
4617 	set_pageblock_migratetype(page, MIGRATE_MOVABLE);
4618 	move_freepages_block(zone, page, MIGRATE_MOVABLE);
4619 out:
4620 	spin_unlock_irqrestore(&zone->lock, flags);
4621 }
4622 
4623 #ifdef CONFIG_MEMORY_HOTREMOVE
4624 /*
4625  * All pages in the range must be isolated before calling this.
4626  */
4627 void
4628 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
4629 {
4630 	struct page *page;
4631 	struct zone *zone;
4632 	int order, i;
4633 	unsigned long pfn;
4634 	unsigned long flags;
4635 	/* find the first valid pfn */
4636 	for (pfn = start_pfn; pfn < end_pfn; pfn++)
4637 		if (pfn_valid(pfn))
4638 			break;
4639 	if (pfn == end_pfn)
4640 		return;
4641 	zone = page_zone(pfn_to_page(pfn));
4642 	spin_lock_irqsave(&zone->lock, flags);
4643 	pfn = start_pfn;
4644 	while (pfn < end_pfn) {
4645 		if (!pfn_valid(pfn)) {
4646 			pfn++;
4647 			continue;
4648 		}
4649 		page = pfn_to_page(pfn);
4650 		BUG_ON(page_count(page));
4651 		BUG_ON(!PageBuddy(page));
4652 		order = page_order(page);
4653 #ifdef CONFIG_DEBUG_VM
4654 		printk(KERN_INFO "remove from free list %lx %d %lx\n",
4655 		       pfn, 1 << order, end_pfn);
4656 #endif
4657 		list_del(&page->lru);
4658 		rmv_page_order(page);
4659 		zone->free_area[order].nr_free--;
4660 		__mod_zone_page_state(zone, NR_FREE_PAGES,
4661 				      - (1UL << order));
4662 		for (i = 0; i < (1 << order); i++)
4663 			SetPageReserved((page+i));
4664 		pfn += (1 << order);
4665 	}
4666 	spin_unlock_irqrestore(&zone->lock, flags);
4667 }
4668 #endif
4669