1 /* 2 * linux/mm/page_alloc.c 3 * 4 * Manages the free list, the system allocates free pages here. 5 * Note that kmalloc() lives in slab.c 6 * 7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 8 * Swap reorganised 29.12.95, Stephen Tweedie 9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999 10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999 11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999 12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000 13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002 14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton) 15 */ 16 17 #include <linux/stddef.h> 18 #include <linux/mm.h> 19 #include <linux/swap.h> 20 #include <linux/interrupt.h> 21 #include <linux/pagemap.h> 22 #include <linux/jiffies.h> 23 #include <linux/bootmem.h> 24 #include <linux/compiler.h> 25 #include <linux/kernel.h> 26 #include <linux/module.h> 27 #include <linux/suspend.h> 28 #include <linux/pagevec.h> 29 #include <linux/blkdev.h> 30 #include <linux/slab.h> 31 #include <linux/oom.h> 32 #include <linux/notifier.h> 33 #include <linux/topology.h> 34 #include <linux/sysctl.h> 35 #include <linux/cpu.h> 36 #include <linux/cpuset.h> 37 #include <linux/memory_hotplug.h> 38 #include <linux/nodemask.h> 39 #include <linux/vmalloc.h> 40 #include <linux/mempolicy.h> 41 #include <linux/stop_machine.h> 42 #include <linux/sort.h> 43 #include <linux/pfn.h> 44 #include <linux/backing-dev.h> 45 #include <linux/fault-inject.h> 46 #include <linux/page-isolation.h> 47 #include <linux/memcontrol.h> 48 #include <linux/debugobjects.h> 49 50 #include <asm/tlbflush.h> 51 #include <asm/div64.h> 52 #include "internal.h" 53 54 /* 55 * Array of node states. 56 */ 57 nodemask_t node_states[NR_NODE_STATES] __read_mostly = { 58 [N_POSSIBLE] = NODE_MASK_ALL, 59 [N_ONLINE] = { { [0] = 1UL } }, 60 #ifndef CONFIG_NUMA 61 [N_NORMAL_MEMORY] = { { [0] = 1UL } }, 62 #ifdef CONFIG_HIGHMEM 63 [N_HIGH_MEMORY] = { { [0] = 1UL } }, 64 #endif 65 [N_CPU] = { { [0] = 1UL } }, 66 #endif /* NUMA */ 67 }; 68 EXPORT_SYMBOL(node_states); 69 70 unsigned long totalram_pages __read_mostly; 71 unsigned long totalreserve_pages __read_mostly; 72 long nr_swap_pages; 73 int percpu_pagelist_fraction; 74 75 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE 76 int pageblock_order __read_mostly; 77 #endif 78 79 static void __free_pages_ok(struct page *page, unsigned int order); 80 81 /* 82 * results with 256, 32 in the lowmem_reserve sysctl: 83 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high) 84 * 1G machine -> (16M dma, 784M normal, 224M high) 85 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA 86 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL 87 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA 88 * 89 * TBD: should special case ZONE_DMA32 machines here - in those we normally 90 * don't need any ZONE_NORMAL reservation 91 */ 92 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = { 93 #ifdef CONFIG_ZONE_DMA 94 256, 95 #endif 96 #ifdef CONFIG_ZONE_DMA32 97 256, 98 #endif 99 #ifdef CONFIG_HIGHMEM 100 32, 101 #endif 102 32, 103 }; 104 105 EXPORT_SYMBOL(totalram_pages); 106 107 static char * const zone_names[MAX_NR_ZONES] = { 108 #ifdef CONFIG_ZONE_DMA 109 "DMA", 110 #endif 111 #ifdef CONFIG_ZONE_DMA32 112 "DMA32", 113 #endif 114 "Normal", 115 #ifdef CONFIG_HIGHMEM 116 "HighMem", 117 #endif 118 "Movable", 119 }; 120 121 int min_free_kbytes = 1024; 122 123 unsigned long __meminitdata nr_kernel_pages; 124 unsigned long __meminitdata nr_all_pages; 125 static unsigned long __meminitdata dma_reserve; 126 127 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP 128 /* 129 * MAX_ACTIVE_REGIONS determines the maximum number of distinct 130 * ranges of memory (RAM) that may be registered with add_active_range(). 131 * Ranges passed to add_active_range() will be merged if possible 132 * so the number of times add_active_range() can be called is 133 * related to the number of nodes and the number of holes 134 */ 135 #ifdef CONFIG_MAX_ACTIVE_REGIONS 136 /* Allow an architecture to set MAX_ACTIVE_REGIONS to save memory */ 137 #define MAX_ACTIVE_REGIONS CONFIG_MAX_ACTIVE_REGIONS 138 #else 139 #if MAX_NUMNODES >= 32 140 /* If there can be many nodes, allow up to 50 holes per node */ 141 #define MAX_ACTIVE_REGIONS (MAX_NUMNODES*50) 142 #else 143 /* By default, allow up to 256 distinct regions */ 144 #define MAX_ACTIVE_REGIONS 256 145 #endif 146 #endif 147 148 static struct node_active_region __meminitdata early_node_map[MAX_ACTIVE_REGIONS]; 149 static int __meminitdata nr_nodemap_entries; 150 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES]; 151 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES]; 152 #ifdef CONFIG_MEMORY_HOTPLUG_RESERVE 153 static unsigned long __meminitdata node_boundary_start_pfn[MAX_NUMNODES]; 154 static unsigned long __meminitdata node_boundary_end_pfn[MAX_NUMNODES]; 155 #endif /* CONFIG_MEMORY_HOTPLUG_RESERVE */ 156 static unsigned long __initdata required_kernelcore; 157 static unsigned long __initdata required_movablecore; 158 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES]; 159 160 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */ 161 int movable_zone; 162 EXPORT_SYMBOL(movable_zone); 163 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */ 164 165 #if MAX_NUMNODES > 1 166 int nr_node_ids __read_mostly = MAX_NUMNODES; 167 EXPORT_SYMBOL(nr_node_ids); 168 #endif 169 170 int page_group_by_mobility_disabled __read_mostly; 171 172 static void set_pageblock_migratetype(struct page *page, int migratetype) 173 { 174 set_pageblock_flags_group(page, (unsigned long)migratetype, 175 PB_migrate, PB_migrate_end); 176 } 177 178 #ifdef CONFIG_DEBUG_VM 179 static int page_outside_zone_boundaries(struct zone *zone, struct page *page) 180 { 181 int ret = 0; 182 unsigned seq; 183 unsigned long pfn = page_to_pfn(page); 184 185 do { 186 seq = zone_span_seqbegin(zone); 187 if (pfn >= zone->zone_start_pfn + zone->spanned_pages) 188 ret = 1; 189 else if (pfn < zone->zone_start_pfn) 190 ret = 1; 191 } while (zone_span_seqretry(zone, seq)); 192 193 return ret; 194 } 195 196 static int page_is_consistent(struct zone *zone, struct page *page) 197 { 198 if (!pfn_valid_within(page_to_pfn(page))) 199 return 0; 200 if (zone != page_zone(page)) 201 return 0; 202 203 return 1; 204 } 205 /* 206 * Temporary debugging check for pages not lying within a given zone. 207 */ 208 static int bad_range(struct zone *zone, struct page *page) 209 { 210 if (page_outside_zone_boundaries(zone, page)) 211 return 1; 212 if (!page_is_consistent(zone, page)) 213 return 1; 214 215 return 0; 216 } 217 #else 218 static inline int bad_range(struct zone *zone, struct page *page) 219 { 220 return 0; 221 } 222 #endif 223 224 static void bad_page(struct page *page) 225 { 226 void *pc = page_get_page_cgroup(page); 227 228 printk(KERN_EMERG "Bad page state in process '%s'\n" KERN_EMERG 229 "page:%p flags:0x%0*lx mapping:%p mapcount:%d count:%d\n", 230 current->comm, page, (int)(2*sizeof(unsigned long)), 231 (unsigned long)page->flags, page->mapping, 232 page_mapcount(page), page_count(page)); 233 if (pc) { 234 printk(KERN_EMERG "cgroup:%p\n", pc); 235 page_reset_bad_cgroup(page); 236 } 237 printk(KERN_EMERG "Trying to fix it up, but a reboot is needed\n" 238 KERN_EMERG "Backtrace:\n"); 239 dump_stack(); 240 page->flags &= ~PAGE_FLAGS_CLEAR_WHEN_BAD; 241 set_page_count(page, 0); 242 reset_page_mapcount(page); 243 page->mapping = NULL; 244 add_taint(TAINT_BAD_PAGE); 245 } 246 247 /* 248 * Higher-order pages are called "compound pages". They are structured thusly: 249 * 250 * The first PAGE_SIZE page is called the "head page". 251 * 252 * The remaining PAGE_SIZE pages are called "tail pages". 253 * 254 * All pages have PG_compound set. All pages have their ->private pointing at 255 * the head page (even the head page has this). 256 * 257 * The first tail page's ->lru.next holds the address of the compound page's 258 * put_page() function. Its ->lru.prev holds the order of allocation. 259 * This usage means that zero-order pages may not be compound. 260 */ 261 262 static void free_compound_page(struct page *page) 263 { 264 __free_pages_ok(page, compound_order(page)); 265 } 266 267 void prep_compound_page(struct page *page, unsigned long order) 268 { 269 int i; 270 int nr_pages = 1 << order; 271 272 set_compound_page_dtor(page, free_compound_page); 273 set_compound_order(page, order); 274 __SetPageHead(page); 275 for (i = 1; i < nr_pages; i++) { 276 struct page *p = page + i; 277 278 __SetPageTail(p); 279 p->first_page = page; 280 } 281 } 282 283 static void destroy_compound_page(struct page *page, unsigned long order) 284 { 285 int i; 286 int nr_pages = 1 << order; 287 288 if (unlikely(compound_order(page) != order)) 289 bad_page(page); 290 291 if (unlikely(!PageHead(page))) 292 bad_page(page); 293 __ClearPageHead(page); 294 for (i = 1; i < nr_pages; i++) { 295 struct page *p = page + i; 296 297 if (unlikely(!PageTail(p) | 298 (p->first_page != page))) 299 bad_page(page); 300 __ClearPageTail(p); 301 } 302 } 303 304 static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags) 305 { 306 int i; 307 308 /* 309 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO 310 * and __GFP_HIGHMEM from hard or soft interrupt context. 311 */ 312 VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt()); 313 for (i = 0; i < (1 << order); i++) 314 clear_highpage(page + i); 315 } 316 317 static inline void set_page_order(struct page *page, int order) 318 { 319 set_page_private(page, order); 320 __SetPageBuddy(page); 321 } 322 323 static inline void rmv_page_order(struct page *page) 324 { 325 __ClearPageBuddy(page); 326 set_page_private(page, 0); 327 } 328 329 /* 330 * Locate the struct page for both the matching buddy in our 331 * pair (buddy1) and the combined O(n+1) page they form (page). 332 * 333 * 1) Any buddy B1 will have an order O twin B2 which satisfies 334 * the following equation: 335 * B2 = B1 ^ (1 << O) 336 * For example, if the starting buddy (buddy2) is #8 its order 337 * 1 buddy is #10: 338 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10 339 * 340 * 2) Any buddy B will have an order O+1 parent P which 341 * satisfies the following equation: 342 * P = B & ~(1 << O) 343 * 344 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER 345 */ 346 static inline struct page * 347 __page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order) 348 { 349 unsigned long buddy_idx = page_idx ^ (1 << order); 350 351 return page + (buddy_idx - page_idx); 352 } 353 354 static inline unsigned long 355 __find_combined_index(unsigned long page_idx, unsigned int order) 356 { 357 return (page_idx & ~(1 << order)); 358 } 359 360 /* 361 * This function checks whether a page is free && is the buddy 362 * we can do coalesce a page and its buddy if 363 * (a) the buddy is not in a hole && 364 * (b) the buddy is in the buddy system && 365 * (c) a page and its buddy have the same order && 366 * (d) a page and its buddy are in the same zone. 367 * 368 * For recording whether a page is in the buddy system, we use PG_buddy. 369 * Setting, clearing, and testing PG_buddy is serialized by zone->lock. 370 * 371 * For recording page's order, we use page_private(page). 372 */ 373 static inline int page_is_buddy(struct page *page, struct page *buddy, 374 int order) 375 { 376 if (!pfn_valid_within(page_to_pfn(buddy))) 377 return 0; 378 379 if (page_zone_id(page) != page_zone_id(buddy)) 380 return 0; 381 382 if (PageBuddy(buddy) && page_order(buddy) == order) { 383 BUG_ON(page_count(buddy) != 0); 384 return 1; 385 } 386 return 0; 387 } 388 389 /* 390 * Freeing function for a buddy system allocator. 391 * 392 * The concept of a buddy system is to maintain direct-mapped table 393 * (containing bit values) for memory blocks of various "orders". 394 * The bottom level table contains the map for the smallest allocatable 395 * units of memory (here, pages), and each level above it describes 396 * pairs of units from the levels below, hence, "buddies". 397 * At a high level, all that happens here is marking the table entry 398 * at the bottom level available, and propagating the changes upward 399 * as necessary, plus some accounting needed to play nicely with other 400 * parts of the VM system. 401 * At each level, we keep a list of pages, which are heads of continuous 402 * free pages of length of (1 << order) and marked with PG_buddy. Page's 403 * order is recorded in page_private(page) field. 404 * So when we are allocating or freeing one, we can derive the state of the 405 * other. That is, if we allocate a small block, and both were 406 * free, the remainder of the region must be split into blocks. 407 * If a block is freed, and its buddy is also free, then this 408 * triggers coalescing into a block of larger size. 409 * 410 * -- wli 411 */ 412 413 static inline void __free_one_page(struct page *page, 414 struct zone *zone, unsigned int order) 415 { 416 unsigned long page_idx; 417 int order_size = 1 << order; 418 int migratetype = get_pageblock_migratetype(page); 419 420 if (unlikely(PageCompound(page))) 421 destroy_compound_page(page, order); 422 423 page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1); 424 425 VM_BUG_ON(page_idx & (order_size - 1)); 426 VM_BUG_ON(bad_range(zone, page)); 427 428 __mod_zone_page_state(zone, NR_FREE_PAGES, order_size); 429 while (order < MAX_ORDER-1) { 430 unsigned long combined_idx; 431 struct page *buddy; 432 433 buddy = __page_find_buddy(page, page_idx, order); 434 if (!page_is_buddy(page, buddy, order)) 435 break; 436 437 /* Our buddy is free, merge with it and move up one order. */ 438 list_del(&buddy->lru); 439 zone->free_area[order].nr_free--; 440 rmv_page_order(buddy); 441 combined_idx = __find_combined_index(page_idx, order); 442 page = page + (combined_idx - page_idx); 443 page_idx = combined_idx; 444 order++; 445 } 446 set_page_order(page, order); 447 list_add(&page->lru, 448 &zone->free_area[order].free_list[migratetype]); 449 zone->free_area[order].nr_free++; 450 } 451 452 static inline int free_pages_check(struct page *page) 453 { 454 if (unlikely(page_mapcount(page) | 455 (page->mapping != NULL) | 456 (page_get_page_cgroup(page) != NULL) | 457 (page_count(page) != 0) | 458 (page->flags & PAGE_FLAGS_CHECK_AT_FREE))) 459 bad_page(page); 460 if (PageDirty(page)) 461 __ClearPageDirty(page); 462 /* 463 * For now, we report if PG_reserved was found set, but do not 464 * clear it, and do not free the page. But we shall soon need 465 * to do more, for when the ZERO_PAGE count wraps negative. 466 */ 467 return PageReserved(page); 468 } 469 470 /* 471 * Frees a list of pages. 472 * Assumes all pages on list are in same zone, and of same order. 473 * count is the number of pages to free. 474 * 475 * If the zone was previously in an "all pages pinned" state then look to 476 * see if this freeing clears that state. 477 * 478 * And clear the zone's pages_scanned counter, to hold off the "all pages are 479 * pinned" detection logic. 480 */ 481 static void free_pages_bulk(struct zone *zone, int count, 482 struct list_head *list, int order) 483 { 484 spin_lock(&zone->lock); 485 zone_clear_flag(zone, ZONE_ALL_UNRECLAIMABLE); 486 zone->pages_scanned = 0; 487 while (count--) { 488 struct page *page; 489 490 VM_BUG_ON(list_empty(list)); 491 page = list_entry(list->prev, struct page, lru); 492 /* have to delete it as __free_one_page list manipulates */ 493 list_del(&page->lru); 494 __free_one_page(page, zone, order); 495 } 496 spin_unlock(&zone->lock); 497 } 498 499 static void free_one_page(struct zone *zone, struct page *page, int order) 500 { 501 spin_lock(&zone->lock); 502 zone_clear_flag(zone, ZONE_ALL_UNRECLAIMABLE); 503 zone->pages_scanned = 0; 504 __free_one_page(page, zone, order); 505 spin_unlock(&zone->lock); 506 } 507 508 static void __free_pages_ok(struct page *page, unsigned int order) 509 { 510 unsigned long flags; 511 int i; 512 int reserved = 0; 513 514 for (i = 0 ; i < (1 << order) ; ++i) 515 reserved += free_pages_check(page + i); 516 if (reserved) 517 return; 518 519 if (!PageHighMem(page)) { 520 debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order); 521 debug_check_no_obj_freed(page_address(page), 522 PAGE_SIZE << order); 523 } 524 arch_free_page(page, order); 525 kernel_map_pages(page, 1 << order, 0); 526 527 local_irq_save(flags); 528 __count_vm_events(PGFREE, 1 << order); 529 free_one_page(page_zone(page), page, order); 530 local_irq_restore(flags); 531 } 532 533 /* 534 * permit the bootmem allocator to evade page validation on high-order frees 535 */ 536 void __meminit __free_pages_bootmem(struct page *page, unsigned int order) 537 { 538 if (order == 0) { 539 __ClearPageReserved(page); 540 set_page_count(page, 0); 541 set_page_refcounted(page); 542 __free_page(page); 543 } else { 544 int loop; 545 546 prefetchw(page); 547 for (loop = 0; loop < BITS_PER_LONG; loop++) { 548 struct page *p = &page[loop]; 549 550 if (loop + 1 < BITS_PER_LONG) 551 prefetchw(p + 1); 552 __ClearPageReserved(p); 553 set_page_count(p, 0); 554 } 555 556 set_page_refcounted(page); 557 __free_pages(page, order); 558 } 559 } 560 561 562 /* 563 * The order of subdivision here is critical for the IO subsystem. 564 * Please do not alter this order without good reasons and regression 565 * testing. Specifically, as large blocks of memory are subdivided, 566 * the order in which smaller blocks are delivered depends on the order 567 * they're subdivided in this function. This is the primary factor 568 * influencing the order in which pages are delivered to the IO 569 * subsystem according to empirical testing, and this is also justified 570 * by considering the behavior of a buddy system containing a single 571 * large block of memory acted on by a series of small allocations. 572 * This behavior is a critical factor in sglist merging's success. 573 * 574 * -- wli 575 */ 576 static inline void expand(struct zone *zone, struct page *page, 577 int low, int high, struct free_area *area, 578 int migratetype) 579 { 580 unsigned long size = 1 << high; 581 582 while (high > low) { 583 area--; 584 high--; 585 size >>= 1; 586 VM_BUG_ON(bad_range(zone, &page[size])); 587 list_add(&page[size].lru, &area->free_list[migratetype]); 588 area->nr_free++; 589 set_page_order(&page[size], high); 590 } 591 } 592 593 /* 594 * This page is about to be returned from the page allocator 595 */ 596 static int prep_new_page(struct page *page, int order, gfp_t gfp_flags) 597 { 598 if (unlikely(page_mapcount(page) | 599 (page->mapping != NULL) | 600 (page_get_page_cgroup(page) != NULL) | 601 (page_count(page) != 0) | 602 (page->flags & PAGE_FLAGS_CHECK_AT_PREP))) 603 bad_page(page); 604 605 /* 606 * For now, we report if PG_reserved was found set, but do not 607 * clear it, and do not allocate the page: as a safety net. 608 */ 609 if (PageReserved(page)) 610 return 1; 611 612 page->flags &= ~(1 << PG_uptodate | 1 << PG_error | 1 << PG_reclaim | 613 1 << PG_referenced | 1 << PG_arch_1 | 614 1 << PG_owner_priv_1 | 1 << PG_mappedtodisk); 615 set_page_private(page, 0); 616 set_page_refcounted(page); 617 618 arch_alloc_page(page, order); 619 kernel_map_pages(page, 1 << order, 1); 620 621 if (gfp_flags & __GFP_ZERO) 622 prep_zero_page(page, order, gfp_flags); 623 624 if (order && (gfp_flags & __GFP_COMP)) 625 prep_compound_page(page, order); 626 627 return 0; 628 } 629 630 /* 631 * Go through the free lists for the given migratetype and remove 632 * the smallest available page from the freelists 633 */ 634 static struct page *__rmqueue_smallest(struct zone *zone, unsigned int order, 635 int migratetype) 636 { 637 unsigned int current_order; 638 struct free_area * area; 639 struct page *page; 640 641 /* Find a page of the appropriate size in the preferred list */ 642 for (current_order = order; current_order < MAX_ORDER; ++current_order) { 643 area = &(zone->free_area[current_order]); 644 if (list_empty(&area->free_list[migratetype])) 645 continue; 646 647 page = list_entry(area->free_list[migratetype].next, 648 struct page, lru); 649 list_del(&page->lru); 650 rmv_page_order(page); 651 area->nr_free--; 652 __mod_zone_page_state(zone, NR_FREE_PAGES, - (1UL << order)); 653 expand(zone, page, order, current_order, area, migratetype); 654 return page; 655 } 656 657 return NULL; 658 } 659 660 661 /* 662 * This array describes the order lists are fallen back to when 663 * the free lists for the desirable migrate type are depleted 664 */ 665 static int fallbacks[MIGRATE_TYPES][MIGRATE_TYPES-1] = { 666 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE }, 667 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE }, 668 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE }, 669 [MIGRATE_RESERVE] = { MIGRATE_RESERVE, MIGRATE_RESERVE, MIGRATE_RESERVE }, /* Never used */ 670 }; 671 672 /* 673 * Move the free pages in a range to the free lists of the requested type. 674 * Note that start_page and end_pages are not aligned on a pageblock 675 * boundary. If alignment is required, use move_freepages_block() 676 */ 677 static int move_freepages(struct zone *zone, 678 struct page *start_page, struct page *end_page, 679 int migratetype) 680 { 681 struct page *page; 682 unsigned long order; 683 int pages_moved = 0; 684 685 #ifndef CONFIG_HOLES_IN_ZONE 686 /* 687 * page_zone is not safe to call in this context when 688 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant 689 * anyway as we check zone boundaries in move_freepages_block(). 690 * Remove at a later date when no bug reports exist related to 691 * grouping pages by mobility 692 */ 693 BUG_ON(page_zone(start_page) != page_zone(end_page)); 694 #endif 695 696 for (page = start_page; page <= end_page;) { 697 /* Make sure we are not inadvertently changing nodes */ 698 VM_BUG_ON(page_to_nid(page) != zone_to_nid(zone)); 699 700 if (!pfn_valid_within(page_to_pfn(page))) { 701 page++; 702 continue; 703 } 704 705 if (!PageBuddy(page)) { 706 page++; 707 continue; 708 } 709 710 order = page_order(page); 711 list_del(&page->lru); 712 list_add(&page->lru, 713 &zone->free_area[order].free_list[migratetype]); 714 page += 1 << order; 715 pages_moved += 1 << order; 716 } 717 718 return pages_moved; 719 } 720 721 static int move_freepages_block(struct zone *zone, struct page *page, 722 int migratetype) 723 { 724 unsigned long start_pfn, end_pfn; 725 struct page *start_page, *end_page; 726 727 start_pfn = page_to_pfn(page); 728 start_pfn = start_pfn & ~(pageblock_nr_pages-1); 729 start_page = pfn_to_page(start_pfn); 730 end_page = start_page + pageblock_nr_pages - 1; 731 end_pfn = start_pfn + pageblock_nr_pages - 1; 732 733 /* Do not cross zone boundaries */ 734 if (start_pfn < zone->zone_start_pfn) 735 start_page = page; 736 if (end_pfn >= zone->zone_start_pfn + zone->spanned_pages) 737 return 0; 738 739 return move_freepages(zone, start_page, end_page, migratetype); 740 } 741 742 /* Remove an element from the buddy allocator from the fallback list */ 743 static struct page *__rmqueue_fallback(struct zone *zone, int order, 744 int start_migratetype) 745 { 746 struct free_area * area; 747 int current_order; 748 struct page *page; 749 int migratetype, i; 750 751 /* Find the largest possible block of pages in the other list */ 752 for (current_order = MAX_ORDER-1; current_order >= order; 753 --current_order) { 754 for (i = 0; i < MIGRATE_TYPES - 1; i++) { 755 migratetype = fallbacks[start_migratetype][i]; 756 757 /* MIGRATE_RESERVE handled later if necessary */ 758 if (migratetype == MIGRATE_RESERVE) 759 continue; 760 761 area = &(zone->free_area[current_order]); 762 if (list_empty(&area->free_list[migratetype])) 763 continue; 764 765 page = list_entry(area->free_list[migratetype].next, 766 struct page, lru); 767 area->nr_free--; 768 769 /* 770 * If breaking a large block of pages, move all free 771 * pages to the preferred allocation list. If falling 772 * back for a reclaimable kernel allocation, be more 773 * agressive about taking ownership of free pages 774 */ 775 if (unlikely(current_order >= (pageblock_order >> 1)) || 776 start_migratetype == MIGRATE_RECLAIMABLE) { 777 unsigned long pages; 778 pages = move_freepages_block(zone, page, 779 start_migratetype); 780 781 /* Claim the whole block if over half of it is free */ 782 if (pages >= (1 << (pageblock_order-1))) 783 set_pageblock_migratetype(page, 784 start_migratetype); 785 786 migratetype = start_migratetype; 787 } 788 789 /* Remove the page from the freelists */ 790 list_del(&page->lru); 791 rmv_page_order(page); 792 __mod_zone_page_state(zone, NR_FREE_PAGES, 793 -(1UL << order)); 794 795 if (current_order == pageblock_order) 796 set_pageblock_migratetype(page, 797 start_migratetype); 798 799 expand(zone, page, order, current_order, area, migratetype); 800 return page; 801 } 802 } 803 804 /* Use MIGRATE_RESERVE rather than fail an allocation */ 805 return __rmqueue_smallest(zone, order, MIGRATE_RESERVE); 806 } 807 808 /* 809 * Do the hard work of removing an element from the buddy allocator. 810 * Call me with the zone->lock already held. 811 */ 812 static struct page *__rmqueue(struct zone *zone, unsigned int order, 813 int migratetype) 814 { 815 struct page *page; 816 817 page = __rmqueue_smallest(zone, order, migratetype); 818 819 if (unlikely(!page)) 820 page = __rmqueue_fallback(zone, order, migratetype); 821 822 return page; 823 } 824 825 /* 826 * Obtain a specified number of elements from the buddy allocator, all under 827 * a single hold of the lock, for efficiency. Add them to the supplied list. 828 * Returns the number of new pages which were placed at *list. 829 */ 830 static int rmqueue_bulk(struct zone *zone, unsigned int order, 831 unsigned long count, struct list_head *list, 832 int migratetype) 833 { 834 int i; 835 836 spin_lock(&zone->lock); 837 for (i = 0; i < count; ++i) { 838 struct page *page = __rmqueue(zone, order, migratetype); 839 if (unlikely(page == NULL)) 840 break; 841 842 /* 843 * Split buddy pages returned by expand() are received here 844 * in physical page order. The page is added to the callers and 845 * list and the list head then moves forward. From the callers 846 * perspective, the linked list is ordered by page number in 847 * some conditions. This is useful for IO devices that can 848 * merge IO requests if the physical pages are ordered 849 * properly. 850 */ 851 list_add(&page->lru, list); 852 set_page_private(page, migratetype); 853 list = &page->lru; 854 } 855 spin_unlock(&zone->lock); 856 return i; 857 } 858 859 #ifdef CONFIG_NUMA 860 /* 861 * Called from the vmstat counter updater to drain pagesets of this 862 * currently executing processor on remote nodes after they have 863 * expired. 864 * 865 * Note that this function must be called with the thread pinned to 866 * a single processor. 867 */ 868 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp) 869 { 870 unsigned long flags; 871 int to_drain; 872 873 local_irq_save(flags); 874 if (pcp->count >= pcp->batch) 875 to_drain = pcp->batch; 876 else 877 to_drain = pcp->count; 878 free_pages_bulk(zone, to_drain, &pcp->list, 0); 879 pcp->count -= to_drain; 880 local_irq_restore(flags); 881 } 882 #endif 883 884 /* 885 * Drain pages of the indicated processor. 886 * 887 * The processor must either be the current processor and the 888 * thread pinned to the current processor or a processor that 889 * is not online. 890 */ 891 static void drain_pages(unsigned int cpu) 892 { 893 unsigned long flags; 894 struct zone *zone; 895 896 for_each_zone(zone) { 897 struct per_cpu_pageset *pset; 898 struct per_cpu_pages *pcp; 899 900 if (!populated_zone(zone)) 901 continue; 902 903 pset = zone_pcp(zone, cpu); 904 905 pcp = &pset->pcp; 906 local_irq_save(flags); 907 free_pages_bulk(zone, pcp->count, &pcp->list, 0); 908 pcp->count = 0; 909 local_irq_restore(flags); 910 } 911 } 912 913 /* 914 * Spill all of this CPU's per-cpu pages back into the buddy allocator. 915 */ 916 void drain_local_pages(void *arg) 917 { 918 drain_pages(smp_processor_id()); 919 } 920 921 /* 922 * Spill all the per-cpu pages from all CPUs back into the buddy allocator 923 */ 924 void drain_all_pages(void) 925 { 926 on_each_cpu(drain_local_pages, NULL, 1); 927 } 928 929 #ifdef CONFIG_HIBERNATION 930 931 void mark_free_pages(struct zone *zone) 932 { 933 unsigned long pfn, max_zone_pfn; 934 unsigned long flags; 935 int order, t; 936 struct list_head *curr; 937 938 if (!zone->spanned_pages) 939 return; 940 941 spin_lock_irqsave(&zone->lock, flags); 942 943 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages; 944 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) 945 if (pfn_valid(pfn)) { 946 struct page *page = pfn_to_page(pfn); 947 948 if (!swsusp_page_is_forbidden(page)) 949 swsusp_unset_page_free(page); 950 } 951 952 for_each_migratetype_order(order, t) { 953 list_for_each(curr, &zone->free_area[order].free_list[t]) { 954 unsigned long i; 955 956 pfn = page_to_pfn(list_entry(curr, struct page, lru)); 957 for (i = 0; i < (1UL << order); i++) 958 swsusp_set_page_free(pfn_to_page(pfn + i)); 959 } 960 } 961 spin_unlock_irqrestore(&zone->lock, flags); 962 } 963 #endif /* CONFIG_PM */ 964 965 /* 966 * Free a 0-order page 967 */ 968 static void free_hot_cold_page(struct page *page, int cold) 969 { 970 struct zone *zone = page_zone(page); 971 struct per_cpu_pages *pcp; 972 unsigned long flags; 973 974 if (PageAnon(page)) 975 page->mapping = NULL; 976 if (free_pages_check(page)) 977 return; 978 979 if (!PageHighMem(page)) { 980 debug_check_no_locks_freed(page_address(page), PAGE_SIZE); 981 debug_check_no_obj_freed(page_address(page), PAGE_SIZE); 982 } 983 arch_free_page(page, 0); 984 kernel_map_pages(page, 1, 0); 985 986 pcp = &zone_pcp(zone, get_cpu())->pcp; 987 local_irq_save(flags); 988 __count_vm_event(PGFREE); 989 if (cold) 990 list_add_tail(&page->lru, &pcp->list); 991 else 992 list_add(&page->lru, &pcp->list); 993 set_page_private(page, get_pageblock_migratetype(page)); 994 pcp->count++; 995 if (pcp->count >= pcp->high) { 996 free_pages_bulk(zone, pcp->batch, &pcp->list, 0); 997 pcp->count -= pcp->batch; 998 } 999 local_irq_restore(flags); 1000 put_cpu(); 1001 } 1002 1003 void free_hot_page(struct page *page) 1004 { 1005 free_hot_cold_page(page, 0); 1006 } 1007 1008 void free_cold_page(struct page *page) 1009 { 1010 free_hot_cold_page(page, 1); 1011 } 1012 1013 /* 1014 * split_page takes a non-compound higher-order page, and splits it into 1015 * n (1<<order) sub-pages: page[0..n] 1016 * Each sub-page must be freed individually. 1017 * 1018 * Note: this is probably too low level an operation for use in drivers. 1019 * Please consult with lkml before using this in your driver. 1020 */ 1021 void split_page(struct page *page, unsigned int order) 1022 { 1023 int i; 1024 1025 VM_BUG_ON(PageCompound(page)); 1026 VM_BUG_ON(!page_count(page)); 1027 for (i = 1; i < (1 << order); i++) 1028 set_page_refcounted(page + i); 1029 } 1030 1031 /* 1032 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But 1033 * we cheat by calling it from here, in the order > 0 path. Saves a branch 1034 * or two. 1035 */ 1036 static struct page *buffered_rmqueue(struct zone *preferred_zone, 1037 struct zone *zone, int order, gfp_t gfp_flags) 1038 { 1039 unsigned long flags; 1040 struct page *page; 1041 int cold = !!(gfp_flags & __GFP_COLD); 1042 int cpu; 1043 int migratetype = allocflags_to_migratetype(gfp_flags); 1044 1045 again: 1046 cpu = get_cpu(); 1047 if (likely(order == 0)) { 1048 struct per_cpu_pages *pcp; 1049 1050 pcp = &zone_pcp(zone, cpu)->pcp; 1051 local_irq_save(flags); 1052 if (!pcp->count) { 1053 pcp->count = rmqueue_bulk(zone, 0, 1054 pcp->batch, &pcp->list, migratetype); 1055 if (unlikely(!pcp->count)) 1056 goto failed; 1057 } 1058 1059 /* Find a page of the appropriate migrate type */ 1060 if (cold) { 1061 list_for_each_entry_reverse(page, &pcp->list, lru) 1062 if (page_private(page) == migratetype) 1063 break; 1064 } else { 1065 list_for_each_entry(page, &pcp->list, lru) 1066 if (page_private(page) == migratetype) 1067 break; 1068 } 1069 1070 /* Allocate more to the pcp list if necessary */ 1071 if (unlikely(&page->lru == &pcp->list)) { 1072 pcp->count += rmqueue_bulk(zone, 0, 1073 pcp->batch, &pcp->list, migratetype); 1074 page = list_entry(pcp->list.next, struct page, lru); 1075 } 1076 1077 list_del(&page->lru); 1078 pcp->count--; 1079 } else { 1080 spin_lock_irqsave(&zone->lock, flags); 1081 page = __rmqueue(zone, order, migratetype); 1082 spin_unlock(&zone->lock); 1083 if (!page) 1084 goto failed; 1085 } 1086 1087 __count_zone_vm_events(PGALLOC, zone, 1 << order); 1088 zone_statistics(preferred_zone, zone); 1089 local_irq_restore(flags); 1090 put_cpu(); 1091 1092 VM_BUG_ON(bad_range(zone, page)); 1093 if (prep_new_page(page, order, gfp_flags)) 1094 goto again; 1095 return page; 1096 1097 failed: 1098 local_irq_restore(flags); 1099 put_cpu(); 1100 return NULL; 1101 } 1102 1103 #define ALLOC_NO_WATERMARKS 0x01 /* don't check watermarks at all */ 1104 #define ALLOC_WMARK_MIN 0x02 /* use pages_min watermark */ 1105 #define ALLOC_WMARK_LOW 0x04 /* use pages_low watermark */ 1106 #define ALLOC_WMARK_HIGH 0x08 /* use pages_high watermark */ 1107 #define ALLOC_HARDER 0x10 /* try to alloc harder */ 1108 #define ALLOC_HIGH 0x20 /* __GFP_HIGH set */ 1109 #define ALLOC_CPUSET 0x40 /* check for correct cpuset */ 1110 1111 #ifdef CONFIG_FAIL_PAGE_ALLOC 1112 1113 static struct fail_page_alloc_attr { 1114 struct fault_attr attr; 1115 1116 u32 ignore_gfp_highmem; 1117 u32 ignore_gfp_wait; 1118 u32 min_order; 1119 1120 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS 1121 1122 struct dentry *ignore_gfp_highmem_file; 1123 struct dentry *ignore_gfp_wait_file; 1124 struct dentry *min_order_file; 1125 1126 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */ 1127 1128 } fail_page_alloc = { 1129 .attr = FAULT_ATTR_INITIALIZER, 1130 .ignore_gfp_wait = 1, 1131 .ignore_gfp_highmem = 1, 1132 .min_order = 1, 1133 }; 1134 1135 static int __init setup_fail_page_alloc(char *str) 1136 { 1137 return setup_fault_attr(&fail_page_alloc.attr, str); 1138 } 1139 __setup("fail_page_alloc=", setup_fail_page_alloc); 1140 1141 static int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) 1142 { 1143 if (order < fail_page_alloc.min_order) 1144 return 0; 1145 if (gfp_mask & __GFP_NOFAIL) 1146 return 0; 1147 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM)) 1148 return 0; 1149 if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT)) 1150 return 0; 1151 1152 return should_fail(&fail_page_alloc.attr, 1 << order); 1153 } 1154 1155 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS 1156 1157 static int __init fail_page_alloc_debugfs(void) 1158 { 1159 mode_t mode = S_IFREG | S_IRUSR | S_IWUSR; 1160 struct dentry *dir; 1161 int err; 1162 1163 err = init_fault_attr_dentries(&fail_page_alloc.attr, 1164 "fail_page_alloc"); 1165 if (err) 1166 return err; 1167 dir = fail_page_alloc.attr.dentries.dir; 1168 1169 fail_page_alloc.ignore_gfp_wait_file = 1170 debugfs_create_bool("ignore-gfp-wait", mode, dir, 1171 &fail_page_alloc.ignore_gfp_wait); 1172 1173 fail_page_alloc.ignore_gfp_highmem_file = 1174 debugfs_create_bool("ignore-gfp-highmem", mode, dir, 1175 &fail_page_alloc.ignore_gfp_highmem); 1176 fail_page_alloc.min_order_file = 1177 debugfs_create_u32("min-order", mode, dir, 1178 &fail_page_alloc.min_order); 1179 1180 if (!fail_page_alloc.ignore_gfp_wait_file || 1181 !fail_page_alloc.ignore_gfp_highmem_file || 1182 !fail_page_alloc.min_order_file) { 1183 err = -ENOMEM; 1184 debugfs_remove(fail_page_alloc.ignore_gfp_wait_file); 1185 debugfs_remove(fail_page_alloc.ignore_gfp_highmem_file); 1186 debugfs_remove(fail_page_alloc.min_order_file); 1187 cleanup_fault_attr_dentries(&fail_page_alloc.attr); 1188 } 1189 1190 return err; 1191 } 1192 1193 late_initcall(fail_page_alloc_debugfs); 1194 1195 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */ 1196 1197 #else /* CONFIG_FAIL_PAGE_ALLOC */ 1198 1199 static inline int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) 1200 { 1201 return 0; 1202 } 1203 1204 #endif /* CONFIG_FAIL_PAGE_ALLOC */ 1205 1206 /* 1207 * Return 1 if free pages are above 'mark'. This takes into account the order 1208 * of the allocation. 1209 */ 1210 int zone_watermark_ok(struct zone *z, int order, unsigned long mark, 1211 int classzone_idx, int alloc_flags) 1212 { 1213 /* free_pages my go negative - that's OK */ 1214 long min = mark; 1215 long free_pages = zone_page_state(z, NR_FREE_PAGES) - (1 << order) + 1; 1216 int o; 1217 1218 if (alloc_flags & ALLOC_HIGH) 1219 min -= min / 2; 1220 if (alloc_flags & ALLOC_HARDER) 1221 min -= min / 4; 1222 1223 if (free_pages <= min + z->lowmem_reserve[classzone_idx]) 1224 return 0; 1225 for (o = 0; o < order; o++) { 1226 /* At the next order, this order's pages become unavailable */ 1227 free_pages -= z->free_area[o].nr_free << o; 1228 1229 /* Require fewer higher order pages to be free */ 1230 min >>= 1; 1231 1232 if (free_pages <= min) 1233 return 0; 1234 } 1235 return 1; 1236 } 1237 1238 #ifdef CONFIG_NUMA 1239 /* 1240 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to 1241 * skip over zones that are not allowed by the cpuset, or that have 1242 * been recently (in last second) found to be nearly full. See further 1243 * comments in mmzone.h. Reduces cache footprint of zonelist scans 1244 * that have to skip over a lot of full or unallowed zones. 1245 * 1246 * If the zonelist cache is present in the passed in zonelist, then 1247 * returns a pointer to the allowed node mask (either the current 1248 * tasks mems_allowed, or node_states[N_HIGH_MEMORY].) 1249 * 1250 * If the zonelist cache is not available for this zonelist, does 1251 * nothing and returns NULL. 1252 * 1253 * If the fullzones BITMAP in the zonelist cache is stale (more than 1254 * a second since last zap'd) then we zap it out (clear its bits.) 1255 * 1256 * We hold off even calling zlc_setup, until after we've checked the 1257 * first zone in the zonelist, on the theory that most allocations will 1258 * be satisfied from that first zone, so best to examine that zone as 1259 * quickly as we can. 1260 */ 1261 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags) 1262 { 1263 struct zonelist_cache *zlc; /* cached zonelist speedup info */ 1264 nodemask_t *allowednodes; /* zonelist_cache approximation */ 1265 1266 zlc = zonelist->zlcache_ptr; 1267 if (!zlc) 1268 return NULL; 1269 1270 if (time_after(jiffies, zlc->last_full_zap + HZ)) { 1271 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST); 1272 zlc->last_full_zap = jiffies; 1273 } 1274 1275 allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ? 1276 &cpuset_current_mems_allowed : 1277 &node_states[N_HIGH_MEMORY]; 1278 return allowednodes; 1279 } 1280 1281 /* 1282 * Given 'z' scanning a zonelist, run a couple of quick checks to see 1283 * if it is worth looking at further for free memory: 1284 * 1) Check that the zone isn't thought to be full (doesn't have its 1285 * bit set in the zonelist_cache fullzones BITMAP). 1286 * 2) Check that the zones node (obtained from the zonelist_cache 1287 * z_to_n[] mapping) is allowed in the passed in allowednodes mask. 1288 * Return true (non-zero) if zone is worth looking at further, or 1289 * else return false (zero) if it is not. 1290 * 1291 * This check -ignores- the distinction between various watermarks, 1292 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is 1293 * found to be full for any variation of these watermarks, it will 1294 * be considered full for up to one second by all requests, unless 1295 * we are so low on memory on all allowed nodes that we are forced 1296 * into the second scan of the zonelist. 1297 * 1298 * In the second scan we ignore this zonelist cache and exactly 1299 * apply the watermarks to all zones, even it is slower to do so. 1300 * We are low on memory in the second scan, and should leave no stone 1301 * unturned looking for a free page. 1302 */ 1303 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z, 1304 nodemask_t *allowednodes) 1305 { 1306 struct zonelist_cache *zlc; /* cached zonelist speedup info */ 1307 int i; /* index of *z in zonelist zones */ 1308 int n; /* node that zone *z is on */ 1309 1310 zlc = zonelist->zlcache_ptr; 1311 if (!zlc) 1312 return 1; 1313 1314 i = z - zonelist->_zonerefs; 1315 n = zlc->z_to_n[i]; 1316 1317 /* This zone is worth trying if it is allowed but not full */ 1318 return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones); 1319 } 1320 1321 /* 1322 * Given 'z' scanning a zonelist, set the corresponding bit in 1323 * zlc->fullzones, so that subsequent attempts to allocate a page 1324 * from that zone don't waste time re-examining it. 1325 */ 1326 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z) 1327 { 1328 struct zonelist_cache *zlc; /* cached zonelist speedup info */ 1329 int i; /* index of *z in zonelist zones */ 1330 1331 zlc = zonelist->zlcache_ptr; 1332 if (!zlc) 1333 return; 1334 1335 i = z - zonelist->_zonerefs; 1336 1337 set_bit(i, zlc->fullzones); 1338 } 1339 1340 #else /* CONFIG_NUMA */ 1341 1342 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags) 1343 { 1344 return NULL; 1345 } 1346 1347 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z, 1348 nodemask_t *allowednodes) 1349 { 1350 return 1; 1351 } 1352 1353 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z) 1354 { 1355 } 1356 #endif /* CONFIG_NUMA */ 1357 1358 /* 1359 * get_page_from_freelist goes through the zonelist trying to allocate 1360 * a page. 1361 */ 1362 static struct page * 1363 get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order, 1364 struct zonelist *zonelist, int high_zoneidx, int alloc_flags) 1365 { 1366 struct zoneref *z; 1367 struct page *page = NULL; 1368 int classzone_idx; 1369 struct zone *zone, *preferred_zone; 1370 nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */ 1371 int zlc_active = 0; /* set if using zonelist_cache */ 1372 int did_zlc_setup = 0; /* just call zlc_setup() one time */ 1373 1374 (void)first_zones_zonelist(zonelist, high_zoneidx, nodemask, 1375 &preferred_zone); 1376 if (!preferred_zone) 1377 return NULL; 1378 1379 classzone_idx = zone_idx(preferred_zone); 1380 1381 zonelist_scan: 1382 /* 1383 * Scan zonelist, looking for a zone with enough free. 1384 * See also cpuset_zone_allowed() comment in kernel/cpuset.c. 1385 */ 1386 for_each_zone_zonelist_nodemask(zone, z, zonelist, 1387 high_zoneidx, nodemask) { 1388 if (NUMA_BUILD && zlc_active && 1389 !zlc_zone_worth_trying(zonelist, z, allowednodes)) 1390 continue; 1391 if ((alloc_flags & ALLOC_CPUSET) && 1392 !cpuset_zone_allowed_softwall(zone, gfp_mask)) 1393 goto try_next_zone; 1394 1395 if (!(alloc_flags & ALLOC_NO_WATERMARKS)) { 1396 unsigned long mark; 1397 if (alloc_flags & ALLOC_WMARK_MIN) 1398 mark = zone->pages_min; 1399 else if (alloc_flags & ALLOC_WMARK_LOW) 1400 mark = zone->pages_low; 1401 else 1402 mark = zone->pages_high; 1403 if (!zone_watermark_ok(zone, order, mark, 1404 classzone_idx, alloc_flags)) { 1405 if (!zone_reclaim_mode || 1406 !zone_reclaim(zone, gfp_mask, order)) 1407 goto this_zone_full; 1408 } 1409 } 1410 1411 page = buffered_rmqueue(preferred_zone, zone, order, gfp_mask); 1412 if (page) 1413 break; 1414 this_zone_full: 1415 if (NUMA_BUILD) 1416 zlc_mark_zone_full(zonelist, z); 1417 try_next_zone: 1418 if (NUMA_BUILD && !did_zlc_setup) { 1419 /* we do zlc_setup after the first zone is tried */ 1420 allowednodes = zlc_setup(zonelist, alloc_flags); 1421 zlc_active = 1; 1422 did_zlc_setup = 1; 1423 } 1424 } 1425 1426 if (unlikely(NUMA_BUILD && page == NULL && zlc_active)) { 1427 /* Disable zlc cache for second zonelist scan */ 1428 zlc_active = 0; 1429 goto zonelist_scan; 1430 } 1431 return page; 1432 } 1433 1434 /* 1435 * This is the 'heart' of the zoned buddy allocator. 1436 */ 1437 struct page * 1438 __alloc_pages_internal(gfp_t gfp_mask, unsigned int order, 1439 struct zonelist *zonelist, nodemask_t *nodemask) 1440 { 1441 const gfp_t wait = gfp_mask & __GFP_WAIT; 1442 enum zone_type high_zoneidx = gfp_zone(gfp_mask); 1443 struct zoneref *z; 1444 struct zone *zone; 1445 struct page *page; 1446 struct reclaim_state reclaim_state; 1447 struct task_struct *p = current; 1448 int do_retry; 1449 int alloc_flags; 1450 unsigned long did_some_progress; 1451 unsigned long pages_reclaimed = 0; 1452 1453 might_sleep_if(wait); 1454 1455 if (should_fail_alloc_page(gfp_mask, order)) 1456 return NULL; 1457 1458 restart: 1459 z = zonelist->_zonerefs; /* the list of zones suitable for gfp_mask */ 1460 1461 if (unlikely(!z->zone)) { 1462 /* 1463 * Happens if we have an empty zonelist as a result of 1464 * GFP_THISNODE being used on a memoryless node 1465 */ 1466 return NULL; 1467 } 1468 1469 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order, 1470 zonelist, high_zoneidx, ALLOC_WMARK_LOW|ALLOC_CPUSET); 1471 if (page) 1472 goto got_pg; 1473 1474 /* 1475 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and 1476 * __GFP_NOWARN set) should not cause reclaim since the subsystem 1477 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim 1478 * using a larger set of nodes after it has established that the 1479 * allowed per node queues are empty and that nodes are 1480 * over allocated. 1481 */ 1482 if (NUMA_BUILD && (gfp_mask & GFP_THISNODE) == GFP_THISNODE) 1483 goto nopage; 1484 1485 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) 1486 wakeup_kswapd(zone, order); 1487 1488 /* 1489 * OK, we're below the kswapd watermark and have kicked background 1490 * reclaim. Now things get more complex, so set up alloc_flags according 1491 * to how we want to proceed. 1492 * 1493 * The caller may dip into page reserves a bit more if the caller 1494 * cannot run direct reclaim, or if the caller has realtime scheduling 1495 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will 1496 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH). 1497 */ 1498 alloc_flags = ALLOC_WMARK_MIN; 1499 if ((unlikely(rt_task(p)) && !in_interrupt()) || !wait) 1500 alloc_flags |= ALLOC_HARDER; 1501 if (gfp_mask & __GFP_HIGH) 1502 alloc_flags |= ALLOC_HIGH; 1503 if (wait) 1504 alloc_flags |= ALLOC_CPUSET; 1505 1506 /* 1507 * Go through the zonelist again. Let __GFP_HIGH and allocations 1508 * coming from realtime tasks go deeper into reserves. 1509 * 1510 * This is the last chance, in general, before the goto nopage. 1511 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc. 1512 * See also cpuset_zone_allowed() comment in kernel/cpuset.c. 1513 */ 1514 page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist, 1515 high_zoneidx, alloc_flags); 1516 if (page) 1517 goto got_pg; 1518 1519 /* This allocation should allow future memory freeing. */ 1520 1521 rebalance: 1522 if (((p->flags & PF_MEMALLOC) || unlikely(test_thread_flag(TIF_MEMDIE))) 1523 && !in_interrupt()) { 1524 if (!(gfp_mask & __GFP_NOMEMALLOC)) { 1525 nofail_alloc: 1526 /* go through the zonelist yet again, ignoring mins */ 1527 page = get_page_from_freelist(gfp_mask, nodemask, order, 1528 zonelist, high_zoneidx, ALLOC_NO_WATERMARKS); 1529 if (page) 1530 goto got_pg; 1531 if (gfp_mask & __GFP_NOFAIL) { 1532 congestion_wait(WRITE, HZ/50); 1533 goto nofail_alloc; 1534 } 1535 } 1536 goto nopage; 1537 } 1538 1539 /* Atomic allocations - we can't balance anything */ 1540 if (!wait) 1541 goto nopage; 1542 1543 cond_resched(); 1544 1545 /* We now go into synchronous reclaim */ 1546 cpuset_memory_pressure_bump(); 1547 p->flags |= PF_MEMALLOC; 1548 reclaim_state.reclaimed_slab = 0; 1549 p->reclaim_state = &reclaim_state; 1550 1551 did_some_progress = try_to_free_pages(zonelist, order, gfp_mask); 1552 1553 p->reclaim_state = NULL; 1554 p->flags &= ~PF_MEMALLOC; 1555 1556 cond_resched(); 1557 1558 if (order != 0) 1559 drain_all_pages(); 1560 1561 if (likely(did_some_progress)) { 1562 page = get_page_from_freelist(gfp_mask, nodemask, order, 1563 zonelist, high_zoneidx, alloc_flags); 1564 if (page) 1565 goto got_pg; 1566 } else if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) { 1567 if (!try_set_zone_oom(zonelist, gfp_mask)) { 1568 schedule_timeout_uninterruptible(1); 1569 goto restart; 1570 } 1571 1572 /* 1573 * Go through the zonelist yet one more time, keep 1574 * very high watermark here, this is only to catch 1575 * a parallel oom killing, we must fail if we're still 1576 * under heavy pressure. 1577 */ 1578 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, 1579 order, zonelist, high_zoneidx, 1580 ALLOC_WMARK_HIGH|ALLOC_CPUSET); 1581 if (page) { 1582 clear_zonelist_oom(zonelist, gfp_mask); 1583 goto got_pg; 1584 } 1585 1586 /* The OOM killer will not help higher order allocs so fail */ 1587 if (order > PAGE_ALLOC_COSTLY_ORDER) { 1588 clear_zonelist_oom(zonelist, gfp_mask); 1589 goto nopage; 1590 } 1591 1592 out_of_memory(zonelist, gfp_mask, order); 1593 clear_zonelist_oom(zonelist, gfp_mask); 1594 goto restart; 1595 } 1596 1597 /* 1598 * Don't let big-order allocations loop unless the caller explicitly 1599 * requests that. Wait for some write requests to complete then retry. 1600 * 1601 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER 1602 * means __GFP_NOFAIL, but that may not be true in other 1603 * implementations. 1604 * 1605 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is 1606 * specified, then we retry until we no longer reclaim any pages 1607 * (above), or we've reclaimed an order of pages at least as 1608 * large as the allocation's order. In both cases, if the 1609 * allocation still fails, we stop retrying. 1610 */ 1611 pages_reclaimed += did_some_progress; 1612 do_retry = 0; 1613 if (!(gfp_mask & __GFP_NORETRY)) { 1614 if (order <= PAGE_ALLOC_COSTLY_ORDER) { 1615 do_retry = 1; 1616 } else { 1617 if (gfp_mask & __GFP_REPEAT && 1618 pages_reclaimed < (1 << order)) 1619 do_retry = 1; 1620 } 1621 if (gfp_mask & __GFP_NOFAIL) 1622 do_retry = 1; 1623 } 1624 if (do_retry) { 1625 congestion_wait(WRITE, HZ/50); 1626 goto rebalance; 1627 } 1628 1629 nopage: 1630 if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) { 1631 printk(KERN_WARNING "%s: page allocation failure." 1632 " order:%d, mode:0x%x\n", 1633 p->comm, order, gfp_mask); 1634 dump_stack(); 1635 show_mem(); 1636 } 1637 got_pg: 1638 return page; 1639 } 1640 EXPORT_SYMBOL(__alloc_pages_internal); 1641 1642 /* 1643 * Common helper functions. 1644 */ 1645 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order) 1646 { 1647 struct page * page; 1648 page = alloc_pages(gfp_mask, order); 1649 if (!page) 1650 return 0; 1651 return (unsigned long) page_address(page); 1652 } 1653 1654 EXPORT_SYMBOL(__get_free_pages); 1655 1656 unsigned long get_zeroed_page(gfp_t gfp_mask) 1657 { 1658 struct page * page; 1659 1660 /* 1661 * get_zeroed_page() returns a 32-bit address, which cannot represent 1662 * a highmem page 1663 */ 1664 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0); 1665 1666 page = alloc_pages(gfp_mask | __GFP_ZERO, 0); 1667 if (page) 1668 return (unsigned long) page_address(page); 1669 return 0; 1670 } 1671 1672 EXPORT_SYMBOL(get_zeroed_page); 1673 1674 void __pagevec_free(struct pagevec *pvec) 1675 { 1676 int i = pagevec_count(pvec); 1677 1678 while (--i >= 0) 1679 free_hot_cold_page(pvec->pages[i], pvec->cold); 1680 } 1681 1682 void __free_pages(struct page *page, unsigned int order) 1683 { 1684 if (put_page_testzero(page)) { 1685 if (order == 0) 1686 free_hot_page(page); 1687 else 1688 __free_pages_ok(page, order); 1689 } 1690 } 1691 1692 EXPORT_SYMBOL(__free_pages); 1693 1694 void free_pages(unsigned long addr, unsigned int order) 1695 { 1696 if (addr != 0) { 1697 VM_BUG_ON(!virt_addr_valid((void *)addr)); 1698 __free_pages(virt_to_page((void *)addr), order); 1699 } 1700 } 1701 1702 EXPORT_SYMBOL(free_pages); 1703 1704 /** 1705 * alloc_pages_exact - allocate an exact number physically-contiguous pages. 1706 * @size: the number of bytes to allocate 1707 * @gfp_mask: GFP flags for the allocation 1708 * 1709 * This function is similar to alloc_pages(), except that it allocates the 1710 * minimum number of pages to satisfy the request. alloc_pages() can only 1711 * allocate memory in power-of-two pages. 1712 * 1713 * This function is also limited by MAX_ORDER. 1714 * 1715 * Memory allocated by this function must be released by free_pages_exact(). 1716 */ 1717 void *alloc_pages_exact(size_t size, gfp_t gfp_mask) 1718 { 1719 unsigned int order = get_order(size); 1720 unsigned long addr; 1721 1722 addr = __get_free_pages(gfp_mask, order); 1723 if (addr) { 1724 unsigned long alloc_end = addr + (PAGE_SIZE << order); 1725 unsigned long used = addr + PAGE_ALIGN(size); 1726 1727 split_page(virt_to_page(addr), order); 1728 while (used < alloc_end) { 1729 free_page(used); 1730 used += PAGE_SIZE; 1731 } 1732 } 1733 1734 return (void *)addr; 1735 } 1736 EXPORT_SYMBOL(alloc_pages_exact); 1737 1738 /** 1739 * free_pages_exact - release memory allocated via alloc_pages_exact() 1740 * @virt: the value returned by alloc_pages_exact. 1741 * @size: size of allocation, same value as passed to alloc_pages_exact(). 1742 * 1743 * Release the memory allocated by a previous call to alloc_pages_exact. 1744 */ 1745 void free_pages_exact(void *virt, size_t size) 1746 { 1747 unsigned long addr = (unsigned long)virt; 1748 unsigned long end = addr + PAGE_ALIGN(size); 1749 1750 while (addr < end) { 1751 free_page(addr); 1752 addr += PAGE_SIZE; 1753 } 1754 } 1755 EXPORT_SYMBOL(free_pages_exact); 1756 1757 static unsigned int nr_free_zone_pages(int offset) 1758 { 1759 struct zoneref *z; 1760 struct zone *zone; 1761 1762 /* Just pick one node, since fallback list is circular */ 1763 unsigned int sum = 0; 1764 1765 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL); 1766 1767 for_each_zone_zonelist(zone, z, zonelist, offset) { 1768 unsigned long size = zone->present_pages; 1769 unsigned long high = zone->pages_high; 1770 if (size > high) 1771 sum += size - high; 1772 } 1773 1774 return sum; 1775 } 1776 1777 /* 1778 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL 1779 */ 1780 unsigned int nr_free_buffer_pages(void) 1781 { 1782 return nr_free_zone_pages(gfp_zone(GFP_USER)); 1783 } 1784 EXPORT_SYMBOL_GPL(nr_free_buffer_pages); 1785 1786 /* 1787 * Amount of free RAM allocatable within all zones 1788 */ 1789 unsigned int nr_free_pagecache_pages(void) 1790 { 1791 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE)); 1792 } 1793 1794 static inline void show_node(struct zone *zone) 1795 { 1796 if (NUMA_BUILD) 1797 printk("Node %d ", zone_to_nid(zone)); 1798 } 1799 1800 void si_meminfo(struct sysinfo *val) 1801 { 1802 val->totalram = totalram_pages; 1803 val->sharedram = 0; 1804 val->freeram = global_page_state(NR_FREE_PAGES); 1805 val->bufferram = nr_blockdev_pages(); 1806 val->totalhigh = totalhigh_pages; 1807 val->freehigh = nr_free_highpages(); 1808 val->mem_unit = PAGE_SIZE; 1809 } 1810 1811 EXPORT_SYMBOL(si_meminfo); 1812 1813 #ifdef CONFIG_NUMA 1814 void si_meminfo_node(struct sysinfo *val, int nid) 1815 { 1816 pg_data_t *pgdat = NODE_DATA(nid); 1817 1818 val->totalram = pgdat->node_present_pages; 1819 val->freeram = node_page_state(nid, NR_FREE_PAGES); 1820 #ifdef CONFIG_HIGHMEM 1821 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages; 1822 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM], 1823 NR_FREE_PAGES); 1824 #else 1825 val->totalhigh = 0; 1826 val->freehigh = 0; 1827 #endif 1828 val->mem_unit = PAGE_SIZE; 1829 } 1830 #endif 1831 1832 #define K(x) ((x) << (PAGE_SHIFT-10)) 1833 1834 /* 1835 * Show free area list (used inside shift_scroll-lock stuff) 1836 * We also calculate the percentage fragmentation. We do this by counting the 1837 * memory on each free list with the exception of the first item on the list. 1838 */ 1839 void show_free_areas(void) 1840 { 1841 int cpu; 1842 struct zone *zone; 1843 1844 for_each_zone(zone) { 1845 if (!populated_zone(zone)) 1846 continue; 1847 1848 show_node(zone); 1849 printk("%s per-cpu:\n", zone->name); 1850 1851 for_each_online_cpu(cpu) { 1852 struct per_cpu_pageset *pageset; 1853 1854 pageset = zone_pcp(zone, cpu); 1855 1856 printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n", 1857 cpu, pageset->pcp.high, 1858 pageset->pcp.batch, pageset->pcp.count); 1859 } 1860 } 1861 1862 printk("Active:%lu inactive:%lu dirty:%lu writeback:%lu unstable:%lu\n" 1863 " free:%lu slab:%lu mapped:%lu pagetables:%lu bounce:%lu\n", 1864 global_page_state(NR_ACTIVE), 1865 global_page_state(NR_INACTIVE), 1866 global_page_state(NR_FILE_DIRTY), 1867 global_page_state(NR_WRITEBACK), 1868 global_page_state(NR_UNSTABLE_NFS), 1869 global_page_state(NR_FREE_PAGES), 1870 global_page_state(NR_SLAB_RECLAIMABLE) + 1871 global_page_state(NR_SLAB_UNRECLAIMABLE), 1872 global_page_state(NR_FILE_MAPPED), 1873 global_page_state(NR_PAGETABLE), 1874 global_page_state(NR_BOUNCE)); 1875 1876 for_each_zone(zone) { 1877 int i; 1878 1879 if (!populated_zone(zone)) 1880 continue; 1881 1882 show_node(zone); 1883 printk("%s" 1884 " free:%lukB" 1885 " min:%lukB" 1886 " low:%lukB" 1887 " high:%lukB" 1888 " active:%lukB" 1889 " inactive:%lukB" 1890 " present:%lukB" 1891 " pages_scanned:%lu" 1892 " all_unreclaimable? %s" 1893 "\n", 1894 zone->name, 1895 K(zone_page_state(zone, NR_FREE_PAGES)), 1896 K(zone->pages_min), 1897 K(zone->pages_low), 1898 K(zone->pages_high), 1899 K(zone_page_state(zone, NR_ACTIVE)), 1900 K(zone_page_state(zone, NR_INACTIVE)), 1901 K(zone->present_pages), 1902 zone->pages_scanned, 1903 (zone_is_all_unreclaimable(zone) ? "yes" : "no") 1904 ); 1905 printk("lowmem_reserve[]:"); 1906 for (i = 0; i < MAX_NR_ZONES; i++) 1907 printk(" %lu", zone->lowmem_reserve[i]); 1908 printk("\n"); 1909 } 1910 1911 for_each_zone(zone) { 1912 unsigned long nr[MAX_ORDER], flags, order, total = 0; 1913 1914 if (!populated_zone(zone)) 1915 continue; 1916 1917 show_node(zone); 1918 printk("%s: ", zone->name); 1919 1920 spin_lock_irqsave(&zone->lock, flags); 1921 for (order = 0; order < MAX_ORDER; order++) { 1922 nr[order] = zone->free_area[order].nr_free; 1923 total += nr[order] << order; 1924 } 1925 spin_unlock_irqrestore(&zone->lock, flags); 1926 for (order = 0; order < MAX_ORDER; order++) 1927 printk("%lu*%lukB ", nr[order], K(1UL) << order); 1928 printk("= %lukB\n", K(total)); 1929 } 1930 1931 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES)); 1932 1933 show_swap_cache_info(); 1934 } 1935 1936 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref) 1937 { 1938 zoneref->zone = zone; 1939 zoneref->zone_idx = zone_idx(zone); 1940 } 1941 1942 /* 1943 * Builds allocation fallback zone lists. 1944 * 1945 * Add all populated zones of a node to the zonelist. 1946 */ 1947 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist, 1948 int nr_zones, enum zone_type zone_type) 1949 { 1950 struct zone *zone; 1951 1952 BUG_ON(zone_type >= MAX_NR_ZONES); 1953 zone_type++; 1954 1955 do { 1956 zone_type--; 1957 zone = pgdat->node_zones + zone_type; 1958 if (populated_zone(zone)) { 1959 zoneref_set_zone(zone, 1960 &zonelist->_zonerefs[nr_zones++]); 1961 check_highest_zone(zone_type); 1962 } 1963 1964 } while (zone_type); 1965 return nr_zones; 1966 } 1967 1968 1969 /* 1970 * zonelist_order: 1971 * 0 = automatic detection of better ordering. 1972 * 1 = order by ([node] distance, -zonetype) 1973 * 2 = order by (-zonetype, [node] distance) 1974 * 1975 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create 1976 * the same zonelist. So only NUMA can configure this param. 1977 */ 1978 #define ZONELIST_ORDER_DEFAULT 0 1979 #define ZONELIST_ORDER_NODE 1 1980 #define ZONELIST_ORDER_ZONE 2 1981 1982 /* zonelist order in the kernel. 1983 * set_zonelist_order() will set this to NODE or ZONE. 1984 */ 1985 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT; 1986 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"}; 1987 1988 1989 #ifdef CONFIG_NUMA 1990 /* The value user specified ....changed by config */ 1991 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT; 1992 /* string for sysctl */ 1993 #define NUMA_ZONELIST_ORDER_LEN 16 1994 char numa_zonelist_order[16] = "default"; 1995 1996 /* 1997 * interface for configure zonelist ordering. 1998 * command line option "numa_zonelist_order" 1999 * = "[dD]efault - default, automatic configuration. 2000 * = "[nN]ode - order by node locality, then by zone within node 2001 * = "[zZ]one - order by zone, then by locality within zone 2002 */ 2003 2004 static int __parse_numa_zonelist_order(char *s) 2005 { 2006 if (*s == 'd' || *s == 'D') { 2007 user_zonelist_order = ZONELIST_ORDER_DEFAULT; 2008 } else if (*s == 'n' || *s == 'N') { 2009 user_zonelist_order = ZONELIST_ORDER_NODE; 2010 } else if (*s == 'z' || *s == 'Z') { 2011 user_zonelist_order = ZONELIST_ORDER_ZONE; 2012 } else { 2013 printk(KERN_WARNING 2014 "Ignoring invalid numa_zonelist_order value: " 2015 "%s\n", s); 2016 return -EINVAL; 2017 } 2018 return 0; 2019 } 2020 2021 static __init int setup_numa_zonelist_order(char *s) 2022 { 2023 if (s) 2024 return __parse_numa_zonelist_order(s); 2025 return 0; 2026 } 2027 early_param("numa_zonelist_order", setup_numa_zonelist_order); 2028 2029 /* 2030 * sysctl handler for numa_zonelist_order 2031 */ 2032 int numa_zonelist_order_handler(ctl_table *table, int write, 2033 struct file *file, void __user *buffer, size_t *length, 2034 loff_t *ppos) 2035 { 2036 char saved_string[NUMA_ZONELIST_ORDER_LEN]; 2037 int ret; 2038 2039 if (write) 2040 strncpy(saved_string, (char*)table->data, 2041 NUMA_ZONELIST_ORDER_LEN); 2042 ret = proc_dostring(table, write, file, buffer, length, ppos); 2043 if (ret) 2044 return ret; 2045 if (write) { 2046 int oldval = user_zonelist_order; 2047 if (__parse_numa_zonelist_order((char*)table->data)) { 2048 /* 2049 * bogus value. restore saved string 2050 */ 2051 strncpy((char*)table->data, saved_string, 2052 NUMA_ZONELIST_ORDER_LEN); 2053 user_zonelist_order = oldval; 2054 } else if (oldval != user_zonelist_order) 2055 build_all_zonelists(); 2056 } 2057 return 0; 2058 } 2059 2060 2061 #define MAX_NODE_LOAD (num_online_nodes()) 2062 static int node_load[MAX_NUMNODES]; 2063 2064 /** 2065 * find_next_best_node - find the next node that should appear in a given node's fallback list 2066 * @node: node whose fallback list we're appending 2067 * @used_node_mask: nodemask_t of already used nodes 2068 * 2069 * We use a number of factors to determine which is the next node that should 2070 * appear on a given node's fallback list. The node should not have appeared 2071 * already in @node's fallback list, and it should be the next closest node 2072 * according to the distance array (which contains arbitrary distance values 2073 * from each node to each node in the system), and should also prefer nodes 2074 * with no CPUs, since presumably they'll have very little allocation pressure 2075 * on them otherwise. 2076 * It returns -1 if no node is found. 2077 */ 2078 static int find_next_best_node(int node, nodemask_t *used_node_mask) 2079 { 2080 int n, val; 2081 int min_val = INT_MAX; 2082 int best_node = -1; 2083 node_to_cpumask_ptr(tmp, 0); 2084 2085 /* Use the local node if we haven't already */ 2086 if (!node_isset(node, *used_node_mask)) { 2087 node_set(node, *used_node_mask); 2088 return node; 2089 } 2090 2091 for_each_node_state(n, N_HIGH_MEMORY) { 2092 2093 /* Don't want a node to appear more than once */ 2094 if (node_isset(n, *used_node_mask)) 2095 continue; 2096 2097 /* Use the distance array to find the distance */ 2098 val = node_distance(node, n); 2099 2100 /* Penalize nodes under us ("prefer the next node") */ 2101 val += (n < node); 2102 2103 /* Give preference to headless and unused nodes */ 2104 node_to_cpumask_ptr_next(tmp, n); 2105 if (!cpus_empty(*tmp)) 2106 val += PENALTY_FOR_NODE_WITH_CPUS; 2107 2108 /* Slight preference for less loaded node */ 2109 val *= (MAX_NODE_LOAD*MAX_NUMNODES); 2110 val += node_load[n]; 2111 2112 if (val < min_val) { 2113 min_val = val; 2114 best_node = n; 2115 } 2116 } 2117 2118 if (best_node >= 0) 2119 node_set(best_node, *used_node_mask); 2120 2121 return best_node; 2122 } 2123 2124 2125 /* 2126 * Build zonelists ordered by node and zones within node. 2127 * This results in maximum locality--normal zone overflows into local 2128 * DMA zone, if any--but risks exhausting DMA zone. 2129 */ 2130 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node) 2131 { 2132 int j; 2133 struct zonelist *zonelist; 2134 2135 zonelist = &pgdat->node_zonelists[0]; 2136 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++) 2137 ; 2138 j = build_zonelists_node(NODE_DATA(node), zonelist, j, 2139 MAX_NR_ZONES - 1); 2140 zonelist->_zonerefs[j].zone = NULL; 2141 zonelist->_zonerefs[j].zone_idx = 0; 2142 } 2143 2144 /* 2145 * Build gfp_thisnode zonelists 2146 */ 2147 static void build_thisnode_zonelists(pg_data_t *pgdat) 2148 { 2149 int j; 2150 struct zonelist *zonelist; 2151 2152 zonelist = &pgdat->node_zonelists[1]; 2153 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1); 2154 zonelist->_zonerefs[j].zone = NULL; 2155 zonelist->_zonerefs[j].zone_idx = 0; 2156 } 2157 2158 /* 2159 * Build zonelists ordered by zone and nodes within zones. 2160 * This results in conserving DMA zone[s] until all Normal memory is 2161 * exhausted, but results in overflowing to remote node while memory 2162 * may still exist in local DMA zone. 2163 */ 2164 static int node_order[MAX_NUMNODES]; 2165 2166 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes) 2167 { 2168 int pos, j, node; 2169 int zone_type; /* needs to be signed */ 2170 struct zone *z; 2171 struct zonelist *zonelist; 2172 2173 zonelist = &pgdat->node_zonelists[0]; 2174 pos = 0; 2175 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) { 2176 for (j = 0; j < nr_nodes; j++) { 2177 node = node_order[j]; 2178 z = &NODE_DATA(node)->node_zones[zone_type]; 2179 if (populated_zone(z)) { 2180 zoneref_set_zone(z, 2181 &zonelist->_zonerefs[pos++]); 2182 check_highest_zone(zone_type); 2183 } 2184 } 2185 } 2186 zonelist->_zonerefs[pos].zone = NULL; 2187 zonelist->_zonerefs[pos].zone_idx = 0; 2188 } 2189 2190 static int default_zonelist_order(void) 2191 { 2192 int nid, zone_type; 2193 unsigned long low_kmem_size,total_size; 2194 struct zone *z; 2195 int average_size; 2196 /* 2197 * ZONE_DMA and ZONE_DMA32 can be very small area in the sytem. 2198 * If they are really small and used heavily, the system can fall 2199 * into OOM very easily. 2200 * This function detect ZONE_DMA/DMA32 size and confgigures zone order. 2201 */ 2202 /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */ 2203 low_kmem_size = 0; 2204 total_size = 0; 2205 for_each_online_node(nid) { 2206 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) { 2207 z = &NODE_DATA(nid)->node_zones[zone_type]; 2208 if (populated_zone(z)) { 2209 if (zone_type < ZONE_NORMAL) 2210 low_kmem_size += z->present_pages; 2211 total_size += z->present_pages; 2212 } 2213 } 2214 } 2215 if (!low_kmem_size || /* there are no DMA area. */ 2216 low_kmem_size > total_size/2) /* DMA/DMA32 is big. */ 2217 return ZONELIST_ORDER_NODE; 2218 /* 2219 * look into each node's config. 2220 * If there is a node whose DMA/DMA32 memory is very big area on 2221 * local memory, NODE_ORDER may be suitable. 2222 */ 2223 average_size = total_size / 2224 (nodes_weight(node_states[N_HIGH_MEMORY]) + 1); 2225 for_each_online_node(nid) { 2226 low_kmem_size = 0; 2227 total_size = 0; 2228 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) { 2229 z = &NODE_DATA(nid)->node_zones[zone_type]; 2230 if (populated_zone(z)) { 2231 if (zone_type < ZONE_NORMAL) 2232 low_kmem_size += z->present_pages; 2233 total_size += z->present_pages; 2234 } 2235 } 2236 if (low_kmem_size && 2237 total_size > average_size && /* ignore small node */ 2238 low_kmem_size > total_size * 70/100) 2239 return ZONELIST_ORDER_NODE; 2240 } 2241 return ZONELIST_ORDER_ZONE; 2242 } 2243 2244 static void set_zonelist_order(void) 2245 { 2246 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT) 2247 current_zonelist_order = default_zonelist_order(); 2248 else 2249 current_zonelist_order = user_zonelist_order; 2250 } 2251 2252 static void build_zonelists(pg_data_t *pgdat) 2253 { 2254 int j, node, load; 2255 enum zone_type i; 2256 nodemask_t used_mask; 2257 int local_node, prev_node; 2258 struct zonelist *zonelist; 2259 int order = current_zonelist_order; 2260 2261 /* initialize zonelists */ 2262 for (i = 0; i < MAX_ZONELISTS; i++) { 2263 zonelist = pgdat->node_zonelists + i; 2264 zonelist->_zonerefs[0].zone = NULL; 2265 zonelist->_zonerefs[0].zone_idx = 0; 2266 } 2267 2268 /* NUMA-aware ordering of nodes */ 2269 local_node = pgdat->node_id; 2270 load = num_online_nodes(); 2271 prev_node = local_node; 2272 nodes_clear(used_mask); 2273 2274 memset(node_load, 0, sizeof(node_load)); 2275 memset(node_order, 0, sizeof(node_order)); 2276 j = 0; 2277 2278 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) { 2279 int distance = node_distance(local_node, node); 2280 2281 /* 2282 * If another node is sufficiently far away then it is better 2283 * to reclaim pages in a zone before going off node. 2284 */ 2285 if (distance > RECLAIM_DISTANCE) 2286 zone_reclaim_mode = 1; 2287 2288 /* 2289 * We don't want to pressure a particular node. 2290 * So adding penalty to the first node in same 2291 * distance group to make it round-robin. 2292 */ 2293 if (distance != node_distance(local_node, prev_node)) 2294 node_load[node] = load; 2295 2296 prev_node = node; 2297 load--; 2298 if (order == ZONELIST_ORDER_NODE) 2299 build_zonelists_in_node_order(pgdat, node); 2300 else 2301 node_order[j++] = node; /* remember order */ 2302 } 2303 2304 if (order == ZONELIST_ORDER_ZONE) { 2305 /* calculate node order -- i.e., DMA last! */ 2306 build_zonelists_in_zone_order(pgdat, j); 2307 } 2308 2309 build_thisnode_zonelists(pgdat); 2310 } 2311 2312 /* Construct the zonelist performance cache - see further mmzone.h */ 2313 static void build_zonelist_cache(pg_data_t *pgdat) 2314 { 2315 struct zonelist *zonelist; 2316 struct zonelist_cache *zlc; 2317 struct zoneref *z; 2318 2319 zonelist = &pgdat->node_zonelists[0]; 2320 zonelist->zlcache_ptr = zlc = &zonelist->zlcache; 2321 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST); 2322 for (z = zonelist->_zonerefs; z->zone; z++) 2323 zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z); 2324 } 2325 2326 2327 #else /* CONFIG_NUMA */ 2328 2329 static void set_zonelist_order(void) 2330 { 2331 current_zonelist_order = ZONELIST_ORDER_ZONE; 2332 } 2333 2334 static void build_zonelists(pg_data_t *pgdat) 2335 { 2336 int node, local_node; 2337 enum zone_type j; 2338 struct zonelist *zonelist; 2339 2340 local_node = pgdat->node_id; 2341 2342 zonelist = &pgdat->node_zonelists[0]; 2343 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1); 2344 2345 /* 2346 * Now we build the zonelist so that it contains the zones 2347 * of all the other nodes. 2348 * We don't want to pressure a particular node, so when 2349 * building the zones for node N, we make sure that the 2350 * zones coming right after the local ones are those from 2351 * node N+1 (modulo N) 2352 */ 2353 for (node = local_node + 1; node < MAX_NUMNODES; node++) { 2354 if (!node_online(node)) 2355 continue; 2356 j = build_zonelists_node(NODE_DATA(node), zonelist, j, 2357 MAX_NR_ZONES - 1); 2358 } 2359 for (node = 0; node < local_node; node++) { 2360 if (!node_online(node)) 2361 continue; 2362 j = build_zonelists_node(NODE_DATA(node), zonelist, j, 2363 MAX_NR_ZONES - 1); 2364 } 2365 2366 zonelist->_zonerefs[j].zone = NULL; 2367 zonelist->_zonerefs[j].zone_idx = 0; 2368 } 2369 2370 /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */ 2371 static void build_zonelist_cache(pg_data_t *pgdat) 2372 { 2373 pgdat->node_zonelists[0].zlcache_ptr = NULL; 2374 } 2375 2376 #endif /* CONFIG_NUMA */ 2377 2378 /* return values int ....just for stop_machine() */ 2379 static int __build_all_zonelists(void *dummy) 2380 { 2381 int nid; 2382 2383 for_each_online_node(nid) { 2384 pg_data_t *pgdat = NODE_DATA(nid); 2385 2386 build_zonelists(pgdat); 2387 build_zonelist_cache(pgdat); 2388 } 2389 return 0; 2390 } 2391 2392 void build_all_zonelists(void) 2393 { 2394 set_zonelist_order(); 2395 2396 if (system_state == SYSTEM_BOOTING) { 2397 __build_all_zonelists(NULL); 2398 mminit_verify_zonelist(); 2399 cpuset_init_current_mems_allowed(); 2400 } else { 2401 /* we have to stop all cpus to guarantee there is no user 2402 of zonelist */ 2403 stop_machine(__build_all_zonelists, NULL, NULL); 2404 /* cpuset refresh routine should be here */ 2405 } 2406 vm_total_pages = nr_free_pagecache_pages(); 2407 /* 2408 * Disable grouping by mobility if the number of pages in the 2409 * system is too low to allow the mechanism to work. It would be 2410 * more accurate, but expensive to check per-zone. This check is 2411 * made on memory-hotadd so a system can start with mobility 2412 * disabled and enable it later 2413 */ 2414 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES)) 2415 page_group_by_mobility_disabled = 1; 2416 else 2417 page_group_by_mobility_disabled = 0; 2418 2419 printk("Built %i zonelists in %s order, mobility grouping %s. " 2420 "Total pages: %ld\n", 2421 num_online_nodes(), 2422 zonelist_order_name[current_zonelist_order], 2423 page_group_by_mobility_disabled ? "off" : "on", 2424 vm_total_pages); 2425 #ifdef CONFIG_NUMA 2426 printk("Policy zone: %s\n", zone_names[policy_zone]); 2427 #endif 2428 } 2429 2430 /* 2431 * Helper functions to size the waitqueue hash table. 2432 * Essentially these want to choose hash table sizes sufficiently 2433 * large so that collisions trying to wait on pages are rare. 2434 * But in fact, the number of active page waitqueues on typical 2435 * systems is ridiculously low, less than 200. So this is even 2436 * conservative, even though it seems large. 2437 * 2438 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to 2439 * waitqueues, i.e. the size of the waitq table given the number of pages. 2440 */ 2441 #define PAGES_PER_WAITQUEUE 256 2442 2443 #ifndef CONFIG_MEMORY_HOTPLUG 2444 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages) 2445 { 2446 unsigned long size = 1; 2447 2448 pages /= PAGES_PER_WAITQUEUE; 2449 2450 while (size < pages) 2451 size <<= 1; 2452 2453 /* 2454 * Once we have dozens or even hundreds of threads sleeping 2455 * on IO we've got bigger problems than wait queue collision. 2456 * Limit the size of the wait table to a reasonable size. 2457 */ 2458 size = min(size, 4096UL); 2459 2460 return max(size, 4UL); 2461 } 2462 #else 2463 /* 2464 * A zone's size might be changed by hot-add, so it is not possible to determine 2465 * a suitable size for its wait_table. So we use the maximum size now. 2466 * 2467 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie: 2468 * 2469 * i386 (preemption config) : 4096 x 16 = 64Kbyte. 2470 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte. 2471 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte. 2472 * 2473 * The maximum entries are prepared when a zone's memory is (512K + 256) pages 2474 * or more by the traditional way. (See above). It equals: 2475 * 2476 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte. 2477 * ia64(16K page size) : = ( 8G + 4M)byte. 2478 * powerpc (64K page size) : = (32G +16M)byte. 2479 */ 2480 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages) 2481 { 2482 return 4096UL; 2483 } 2484 #endif 2485 2486 /* 2487 * This is an integer logarithm so that shifts can be used later 2488 * to extract the more random high bits from the multiplicative 2489 * hash function before the remainder is taken. 2490 */ 2491 static inline unsigned long wait_table_bits(unsigned long size) 2492 { 2493 return ffz(~size); 2494 } 2495 2496 #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1)) 2497 2498 /* 2499 * Mark a number of pageblocks as MIGRATE_RESERVE. The number 2500 * of blocks reserved is based on zone->pages_min. The memory within the 2501 * reserve will tend to store contiguous free pages. Setting min_free_kbytes 2502 * higher will lead to a bigger reserve which will get freed as contiguous 2503 * blocks as reclaim kicks in 2504 */ 2505 static void setup_zone_migrate_reserve(struct zone *zone) 2506 { 2507 unsigned long start_pfn, pfn, end_pfn; 2508 struct page *page; 2509 unsigned long reserve, block_migratetype; 2510 2511 /* Get the start pfn, end pfn and the number of blocks to reserve */ 2512 start_pfn = zone->zone_start_pfn; 2513 end_pfn = start_pfn + zone->spanned_pages; 2514 reserve = roundup(zone->pages_min, pageblock_nr_pages) >> 2515 pageblock_order; 2516 2517 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) { 2518 if (!pfn_valid(pfn)) 2519 continue; 2520 page = pfn_to_page(pfn); 2521 2522 /* Watch out for overlapping nodes */ 2523 if (page_to_nid(page) != zone_to_nid(zone)) 2524 continue; 2525 2526 /* Blocks with reserved pages will never free, skip them. */ 2527 if (PageReserved(page)) 2528 continue; 2529 2530 block_migratetype = get_pageblock_migratetype(page); 2531 2532 /* If this block is reserved, account for it */ 2533 if (reserve > 0 && block_migratetype == MIGRATE_RESERVE) { 2534 reserve--; 2535 continue; 2536 } 2537 2538 /* Suitable for reserving if this block is movable */ 2539 if (reserve > 0 && block_migratetype == MIGRATE_MOVABLE) { 2540 set_pageblock_migratetype(page, MIGRATE_RESERVE); 2541 move_freepages_block(zone, page, MIGRATE_RESERVE); 2542 reserve--; 2543 continue; 2544 } 2545 2546 /* 2547 * If the reserve is met and this is a previous reserved block, 2548 * take it back 2549 */ 2550 if (block_migratetype == MIGRATE_RESERVE) { 2551 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 2552 move_freepages_block(zone, page, MIGRATE_MOVABLE); 2553 } 2554 } 2555 } 2556 2557 /* 2558 * Initially all pages are reserved - free ones are freed 2559 * up by free_all_bootmem() once the early boot process is 2560 * done. Non-atomic initialization, single-pass. 2561 */ 2562 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone, 2563 unsigned long start_pfn, enum memmap_context context) 2564 { 2565 struct page *page; 2566 unsigned long end_pfn = start_pfn + size; 2567 unsigned long pfn; 2568 struct zone *z; 2569 2570 z = &NODE_DATA(nid)->node_zones[zone]; 2571 for (pfn = start_pfn; pfn < end_pfn; pfn++) { 2572 /* 2573 * There can be holes in boot-time mem_map[]s 2574 * handed to this function. They do not 2575 * exist on hotplugged memory. 2576 */ 2577 if (context == MEMMAP_EARLY) { 2578 if (!early_pfn_valid(pfn)) 2579 continue; 2580 if (!early_pfn_in_nid(pfn, nid)) 2581 continue; 2582 } 2583 page = pfn_to_page(pfn); 2584 set_page_links(page, zone, nid, pfn); 2585 mminit_verify_page_links(page, zone, nid, pfn); 2586 init_page_count(page); 2587 reset_page_mapcount(page); 2588 SetPageReserved(page); 2589 /* 2590 * Mark the block movable so that blocks are reserved for 2591 * movable at startup. This will force kernel allocations 2592 * to reserve their blocks rather than leaking throughout 2593 * the address space during boot when many long-lived 2594 * kernel allocations are made. Later some blocks near 2595 * the start are marked MIGRATE_RESERVE by 2596 * setup_zone_migrate_reserve() 2597 * 2598 * bitmap is created for zone's valid pfn range. but memmap 2599 * can be created for invalid pages (for alignment) 2600 * check here not to call set_pageblock_migratetype() against 2601 * pfn out of zone. 2602 */ 2603 if ((z->zone_start_pfn <= pfn) 2604 && (pfn < z->zone_start_pfn + z->spanned_pages) 2605 && !(pfn & (pageblock_nr_pages - 1))) 2606 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 2607 2608 INIT_LIST_HEAD(&page->lru); 2609 #ifdef WANT_PAGE_VIRTUAL 2610 /* The shift won't overflow because ZONE_NORMAL is below 4G. */ 2611 if (!is_highmem_idx(zone)) 2612 set_page_address(page, __va(pfn << PAGE_SHIFT)); 2613 #endif 2614 } 2615 } 2616 2617 static void __meminit zone_init_free_lists(struct zone *zone) 2618 { 2619 int order, t; 2620 for_each_migratetype_order(order, t) { 2621 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]); 2622 zone->free_area[order].nr_free = 0; 2623 } 2624 } 2625 2626 #ifndef __HAVE_ARCH_MEMMAP_INIT 2627 #define memmap_init(size, nid, zone, start_pfn) \ 2628 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY) 2629 #endif 2630 2631 static int zone_batchsize(struct zone *zone) 2632 { 2633 int batch; 2634 2635 /* 2636 * The per-cpu-pages pools are set to around 1000th of the 2637 * size of the zone. But no more than 1/2 of a meg. 2638 * 2639 * OK, so we don't know how big the cache is. So guess. 2640 */ 2641 batch = zone->present_pages / 1024; 2642 if (batch * PAGE_SIZE > 512 * 1024) 2643 batch = (512 * 1024) / PAGE_SIZE; 2644 batch /= 4; /* We effectively *= 4 below */ 2645 if (batch < 1) 2646 batch = 1; 2647 2648 /* 2649 * Clamp the batch to a 2^n - 1 value. Having a power 2650 * of 2 value was found to be more likely to have 2651 * suboptimal cache aliasing properties in some cases. 2652 * 2653 * For example if 2 tasks are alternately allocating 2654 * batches of pages, one task can end up with a lot 2655 * of pages of one half of the possible page colors 2656 * and the other with pages of the other colors. 2657 */ 2658 batch = (1 << (fls(batch + batch/2)-1)) - 1; 2659 2660 return batch; 2661 } 2662 2663 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch) 2664 { 2665 struct per_cpu_pages *pcp; 2666 2667 memset(p, 0, sizeof(*p)); 2668 2669 pcp = &p->pcp; 2670 pcp->count = 0; 2671 pcp->high = 6 * batch; 2672 pcp->batch = max(1UL, 1 * batch); 2673 INIT_LIST_HEAD(&pcp->list); 2674 } 2675 2676 /* 2677 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist 2678 * to the value high for the pageset p. 2679 */ 2680 2681 static void setup_pagelist_highmark(struct per_cpu_pageset *p, 2682 unsigned long high) 2683 { 2684 struct per_cpu_pages *pcp; 2685 2686 pcp = &p->pcp; 2687 pcp->high = high; 2688 pcp->batch = max(1UL, high/4); 2689 if ((high/4) > (PAGE_SHIFT * 8)) 2690 pcp->batch = PAGE_SHIFT * 8; 2691 } 2692 2693 2694 #ifdef CONFIG_NUMA 2695 /* 2696 * Boot pageset table. One per cpu which is going to be used for all 2697 * zones and all nodes. The parameters will be set in such a way 2698 * that an item put on a list will immediately be handed over to 2699 * the buddy list. This is safe since pageset manipulation is done 2700 * with interrupts disabled. 2701 * 2702 * Some NUMA counter updates may also be caught by the boot pagesets. 2703 * 2704 * The boot_pagesets must be kept even after bootup is complete for 2705 * unused processors and/or zones. They do play a role for bootstrapping 2706 * hotplugged processors. 2707 * 2708 * zoneinfo_show() and maybe other functions do 2709 * not check if the processor is online before following the pageset pointer. 2710 * Other parts of the kernel may not check if the zone is available. 2711 */ 2712 static struct per_cpu_pageset boot_pageset[NR_CPUS]; 2713 2714 /* 2715 * Dynamically allocate memory for the 2716 * per cpu pageset array in struct zone. 2717 */ 2718 static int __cpuinit process_zones(int cpu) 2719 { 2720 struct zone *zone, *dzone; 2721 int node = cpu_to_node(cpu); 2722 2723 node_set_state(node, N_CPU); /* this node has a cpu */ 2724 2725 for_each_zone(zone) { 2726 2727 if (!populated_zone(zone)) 2728 continue; 2729 2730 zone_pcp(zone, cpu) = kmalloc_node(sizeof(struct per_cpu_pageset), 2731 GFP_KERNEL, node); 2732 if (!zone_pcp(zone, cpu)) 2733 goto bad; 2734 2735 setup_pageset(zone_pcp(zone, cpu), zone_batchsize(zone)); 2736 2737 if (percpu_pagelist_fraction) 2738 setup_pagelist_highmark(zone_pcp(zone, cpu), 2739 (zone->present_pages / percpu_pagelist_fraction)); 2740 } 2741 2742 return 0; 2743 bad: 2744 for_each_zone(dzone) { 2745 if (!populated_zone(dzone)) 2746 continue; 2747 if (dzone == zone) 2748 break; 2749 kfree(zone_pcp(dzone, cpu)); 2750 zone_pcp(dzone, cpu) = NULL; 2751 } 2752 return -ENOMEM; 2753 } 2754 2755 static inline void free_zone_pagesets(int cpu) 2756 { 2757 struct zone *zone; 2758 2759 for_each_zone(zone) { 2760 struct per_cpu_pageset *pset = zone_pcp(zone, cpu); 2761 2762 /* Free per_cpu_pageset if it is slab allocated */ 2763 if (pset != &boot_pageset[cpu]) 2764 kfree(pset); 2765 zone_pcp(zone, cpu) = NULL; 2766 } 2767 } 2768 2769 static int __cpuinit pageset_cpuup_callback(struct notifier_block *nfb, 2770 unsigned long action, 2771 void *hcpu) 2772 { 2773 int cpu = (long)hcpu; 2774 int ret = NOTIFY_OK; 2775 2776 switch (action) { 2777 case CPU_UP_PREPARE: 2778 case CPU_UP_PREPARE_FROZEN: 2779 if (process_zones(cpu)) 2780 ret = NOTIFY_BAD; 2781 break; 2782 case CPU_UP_CANCELED: 2783 case CPU_UP_CANCELED_FROZEN: 2784 case CPU_DEAD: 2785 case CPU_DEAD_FROZEN: 2786 free_zone_pagesets(cpu); 2787 break; 2788 default: 2789 break; 2790 } 2791 return ret; 2792 } 2793 2794 static struct notifier_block __cpuinitdata pageset_notifier = 2795 { &pageset_cpuup_callback, NULL, 0 }; 2796 2797 void __init setup_per_cpu_pageset(void) 2798 { 2799 int err; 2800 2801 /* Initialize per_cpu_pageset for cpu 0. 2802 * A cpuup callback will do this for every cpu 2803 * as it comes online 2804 */ 2805 err = process_zones(smp_processor_id()); 2806 BUG_ON(err); 2807 register_cpu_notifier(&pageset_notifier); 2808 } 2809 2810 #endif 2811 2812 static noinline __init_refok 2813 int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages) 2814 { 2815 int i; 2816 struct pglist_data *pgdat = zone->zone_pgdat; 2817 size_t alloc_size; 2818 2819 /* 2820 * The per-page waitqueue mechanism uses hashed waitqueues 2821 * per zone. 2822 */ 2823 zone->wait_table_hash_nr_entries = 2824 wait_table_hash_nr_entries(zone_size_pages); 2825 zone->wait_table_bits = 2826 wait_table_bits(zone->wait_table_hash_nr_entries); 2827 alloc_size = zone->wait_table_hash_nr_entries 2828 * sizeof(wait_queue_head_t); 2829 2830 if (!slab_is_available()) { 2831 zone->wait_table = (wait_queue_head_t *) 2832 alloc_bootmem_node(pgdat, alloc_size); 2833 } else { 2834 /* 2835 * This case means that a zone whose size was 0 gets new memory 2836 * via memory hot-add. 2837 * But it may be the case that a new node was hot-added. In 2838 * this case vmalloc() will not be able to use this new node's 2839 * memory - this wait_table must be initialized to use this new 2840 * node itself as well. 2841 * To use this new node's memory, further consideration will be 2842 * necessary. 2843 */ 2844 zone->wait_table = vmalloc(alloc_size); 2845 } 2846 if (!zone->wait_table) 2847 return -ENOMEM; 2848 2849 for(i = 0; i < zone->wait_table_hash_nr_entries; ++i) 2850 init_waitqueue_head(zone->wait_table + i); 2851 2852 return 0; 2853 } 2854 2855 static __meminit void zone_pcp_init(struct zone *zone) 2856 { 2857 int cpu; 2858 unsigned long batch = zone_batchsize(zone); 2859 2860 for (cpu = 0; cpu < NR_CPUS; cpu++) { 2861 #ifdef CONFIG_NUMA 2862 /* Early boot. Slab allocator not functional yet */ 2863 zone_pcp(zone, cpu) = &boot_pageset[cpu]; 2864 setup_pageset(&boot_pageset[cpu],0); 2865 #else 2866 setup_pageset(zone_pcp(zone,cpu), batch); 2867 #endif 2868 } 2869 if (zone->present_pages) 2870 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%lu\n", 2871 zone->name, zone->present_pages, batch); 2872 } 2873 2874 __meminit int init_currently_empty_zone(struct zone *zone, 2875 unsigned long zone_start_pfn, 2876 unsigned long size, 2877 enum memmap_context context) 2878 { 2879 struct pglist_data *pgdat = zone->zone_pgdat; 2880 int ret; 2881 ret = zone_wait_table_init(zone, size); 2882 if (ret) 2883 return ret; 2884 pgdat->nr_zones = zone_idx(zone) + 1; 2885 2886 zone->zone_start_pfn = zone_start_pfn; 2887 2888 mminit_dprintk(MMINIT_TRACE, "memmap_init", 2889 "Initialising map node %d zone %lu pfns %lu -> %lu\n", 2890 pgdat->node_id, 2891 (unsigned long)zone_idx(zone), 2892 zone_start_pfn, (zone_start_pfn + size)); 2893 2894 zone_init_free_lists(zone); 2895 2896 return 0; 2897 } 2898 2899 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP 2900 /* 2901 * Basic iterator support. Return the first range of PFNs for a node 2902 * Note: nid == MAX_NUMNODES returns first region regardless of node 2903 */ 2904 static int __meminit first_active_region_index_in_nid(int nid) 2905 { 2906 int i; 2907 2908 for (i = 0; i < nr_nodemap_entries; i++) 2909 if (nid == MAX_NUMNODES || early_node_map[i].nid == nid) 2910 return i; 2911 2912 return -1; 2913 } 2914 2915 /* 2916 * Basic iterator support. Return the next active range of PFNs for a node 2917 * Note: nid == MAX_NUMNODES returns next region regardless of node 2918 */ 2919 static int __meminit next_active_region_index_in_nid(int index, int nid) 2920 { 2921 for (index = index + 1; index < nr_nodemap_entries; index++) 2922 if (nid == MAX_NUMNODES || early_node_map[index].nid == nid) 2923 return index; 2924 2925 return -1; 2926 } 2927 2928 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID 2929 /* 2930 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on. 2931 * Architectures may implement their own version but if add_active_range() 2932 * was used and there are no special requirements, this is a convenient 2933 * alternative 2934 */ 2935 int __meminit early_pfn_to_nid(unsigned long pfn) 2936 { 2937 int i; 2938 2939 for (i = 0; i < nr_nodemap_entries; i++) { 2940 unsigned long start_pfn = early_node_map[i].start_pfn; 2941 unsigned long end_pfn = early_node_map[i].end_pfn; 2942 2943 if (start_pfn <= pfn && pfn < end_pfn) 2944 return early_node_map[i].nid; 2945 } 2946 2947 return 0; 2948 } 2949 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */ 2950 2951 /* Basic iterator support to walk early_node_map[] */ 2952 #define for_each_active_range_index_in_nid(i, nid) \ 2953 for (i = first_active_region_index_in_nid(nid); i != -1; \ 2954 i = next_active_region_index_in_nid(i, nid)) 2955 2956 /** 2957 * free_bootmem_with_active_regions - Call free_bootmem_node for each active range 2958 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed. 2959 * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node 2960 * 2961 * If an architecture guarantees that all ranges registered with 2962 * add_active_ranges() contain no holes and may be freed, this 2963 * this function may be used instead of calling free_bootmem() manually. 2964 */ 2965 void __init free_bootmem_with_active_regions(int nid, 2966 unsigned long max_low_pfn) 2967 { 2968 int i; 2969 2970 for_each_active_range_index_in_nid(i, nid) { 2971 unsigned long size_pages = 0; 2972 unsigned long end_pfn = early_node_map[i].end_pfn; 2973 2974 if (early_node_map[i].start_pfn >= max_low_pfn) 2975 continue; 2976 2977 if (end_pfn > max_low_pfn) 2978 end_pfn = max_low_pfn; 2979 2980 size_pages = end_pfn - early_node_map[i].start_pfn; 2981 free_bootmem_node(NODE_DATA(early_node_map[i].nid), 2982 PFN_PHYS(early_node_map[i].start_pfn), 2983 size_pages << PAGE_SHIFT); 2984 } 2985 } 2986 2987 void __init work_with_active_regions(int nid, work_fn_t work_fn, void *data) 2988 { 2989 int i; 2990 int ret; 2991 2992 for_each_active_range_index_in_nid(i, nid) { 2993 ret = work_fn(early_node_map[i].start_pfn, 2994 early_node_map[i].end_pfn, data); 2995 if (ret) 2996 break; 2997 } 2998 } 2999 /** 3000 * sparse_memory_present_with_active_regions - Call memory_present for each active range 3001 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used. 3002 * 3003 * If an architecture guarantees that all ranges registered with 3004 * add_active_ranges() contain no holes and may be freed, this 3005 * function may be used instead of calling memory_present() manually. 3006 */ 3007 void __init sparse_memory_present_with_active_regions(int nid) 3008 { 3009 int i; 3010 3011 for_each_active_range_index_in_nid(i, nid) 3012 memory_present(early_node_map[i].nid, 3013 early_node_map[i].start_pfn, 3014 early_node_map[i].end_pfn); 3015 } 3016 3017 /** 3018 * push_node_boundaries - Push node boundaries to at least the requested boundary 3019 * @nid: The nid of the node to push the boundary for 3020 * @start_pfn: The start pfn of the node 3021 * @end_pfn: The end pfn of the node 3022 * 3023 * In reserve-based hot-add, mem_map is allocated that is unused until hotadd 3024 * time. Specifically, on x86_64, SRAT will report ranges that can potentially 3025 * be hotplugged even though no physical memory exists. This function allows 3026 * an arch to push out the node boundaries so mem_map is allocated that can 3027 * be used later. 3028 */ 3029 #ifdef CONFIG_MEMORY_HOTPLUG_RESERVE 3030 void __init push_node_boundaries(unsigned int nid, 3031 unsigned long start_pfn, unsigned long end_pfn) 3032 { 3033 mminit_dprintk(MMINIT_TRACE, "zoneboundary", 3034 "Entering push_node_boundaries(%u, %lu, %lu)\n", 3035 nid, start_pfn, end_pfn); 3036 3037 /* Initialise the boundary for this node if necessary */ 3038 if (node_boundary_end_pfn[nid] == 0) 3039 node_boundary_start_pfn[nid] = -1UL; 3040 3041 /* Update the boundaries */ 3042 if (node_boundary_start_pfn[nid] > start_pfn) 3043 node_boundary_start_pfn[nid] = start_pfn; 3044 if (node_boundary_end_pfn[nid] < end_pfn) 3045 node_boundary_end_pfn[nid] = end_pfn; 3046 } 3047 3048 /* If necessary, push the node boundary out for reserve hotadd */ 3049 static void __meminit account_node_boundary(unsigned int nid, 3050 unsigned long *start_pfn, unsigned long *end_pfn) 3051 { 3052 mminit_dprintk(MMINIT_TRACE, "zoneboundary", 3053 "Entering account_node_boundary(%u, %lu, %lu)\n", 3054 nid, *start_pfn, *end_pfn); 3055 3056 /* Return if boundary information has not been provided */ 3057 if (node_boundary_end_pfn[nid] == 0) 3058 return; 3059 3060 /* Check the boundaries and update if necessary */ 3061 if (node_boundary_start_pfn[nid] < *start_pfn) 3062 *start_pfn = node_boundary_start_pfn[nid]; 3063 if (node_boundary_end_pfn[nid] > *end_pfn) 3064 *end_pfn = node_boundary_end_pfn[nid]; 3065 } 3066 #else 3067 void __init push_node_boundaries(unsigned int nid, 3068 unsigned long start_pfn, unsigned long end_pfn) {} 3069 3070 static void __meminit account_node_boundary(unsigned int nid, 3071 unsigned long *start_pfn, unsigned long *end_pfn) {} 3072 #endif 3073 3074 3075 /** 3076 * get_pfn_range_for_nid - Return the start and end page frames for a node 3077 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned. 3078 * @start_pfn: Passed by reference. On return, it will have the node start_pfn. 3079 * @end_pfn: Passed by reference. On return, it will have the node end_pfn. 3080 * 3081 * It returns the start and end page frame of a node based on information 3082 * provided by an arch calling add_active_range(). If called for a node 3083 * with no available memory, a warning is printed and the start and end 3084 * PFNs will be 0. 3085 */ 3086 void __meminit get_pfn_range_for_nid(unsigned int nid, 3087 unsigned long *start_pfn, unsigned long *end_pfn) 3088 { 3089 int i; 3090 *start_pfn = -1UL; 3091 *end_pfn = 0; 3092 3093 for_each_active_range_index_in_nid(i, nid) { 3094 *start_pfn = min(*start_pfn, early_node_map[i].start_pfn); 3095 *end_pfn = max(*end_pfn, early_node_map[i].end_pfn); 3096 } 3097 3098 if (*start_pfn == -1UL) 3099 *start_pfn = 0; 3100 3101 /* Push the node boundaries out if requested */ 3102 account_node_boundary(nid, start_pfn, end_pfn); 3103 } 3104 3105 /* 3106 * This finds a zone that can be used for ZONE_MOVABLE pages. The 3107 * assumption is made that zones within a node are ordered in monotonic 3108 * increasing memory addresses so that the "highest" populated zone is used 3109 */ 3110 static void __init find_usable_zone_for_movable(void) 3111 { 3112 int zone_index; 3113 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) { 3114 if (zone_index == ZONE_MOVABLE) 3115 continue; 3116 3117 if (arch_zone_highest_possible_pfn[zone_index] > 3118 arch_zone_lowest_possible_pfn[zone_index]) 3119 break; 3120 } 3121 3122 VM_BUG_ON(zone_index == -1); 3123 movable_zone = zone_index; 3124 } 3125 3126 /* 3127 * The zone ranges provided by the architecture do not include ZONE_MOVABLE 3128 * because it is sized independant of architecture. Unlike the other zones, 3129 * the starting point for ZONE_MOVABLE is not fixed. It may be different 3130 * in each node depending on the size of each node and how evenly kernelcore 3131 * is distributed. This helper function adjusts the zone ranges 3132 * provided by the architecture for a given node by using the end of the 3133 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that 3134 * zones within a node are in order of monotonic increases memory addresses 3135 */ 3136 static void __meminit adjust_zone_range_for_zone_movable(int nid, 3137 unsigned long zone_type, 3138 unsigned long node_start_pfn, 3139 unsigned long node_end_pfn, 3140 unsigned long *zone_start_pfn, 3141 unsigned long *zone_end_pfn) 3142 { 3143 /* Only adjust if ZONE_MOVABLE is on this node */ 3144 if (zone_movable_pfn[nid]) { 3145 /* Size ZONE_MOVABLE */ 3146 if (zone_type == ZONE_MOVABLE) { 3147 *zone_start_pfn = zone_movable_pfn[nid]; 3148 *zone_end_pfn = min(node_end_pfn, 3149 arch_zone_highest_possible_pfn[movable_zone]); 3150 3151 /* Adjust for ZONE_MOVABLE starting within this range */ 3152 } else if (*zone_start_pfn < zone_movable_pfn[nid] && 3153 *zone_end_pfn > zone_movable_pfn[nid]) { 3154 *zone_end_pfn = zone_movable_pfn[nid]; 3155 3156 /* Check if this whole range is within ZONE_MOVABLE */ 3157 } else if (*zone_start_pfn >= zone_movable_pfn[nid]) 3158 *zone_start_pfn = *zone_end_pfn; 3159 } 3160 } 3161 3162 /* 3163 * Return the number of pages a zone spans in a node, including holes 3164 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node() 3165 */ 3166 static unsigned long __meminit zone_spanned_pages_in_node(int nid, 3167 unsigned long zone_type, 3168 unsigned long *ignored) 3169 { 3170 unsigned long node_start_pfn, node_end_pfn; 3171 unsigned long zone_start_pfn, zone_end_pfn; 3172 3173 /* Get the start and end of the node and zone */ 3174 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn); 3175 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type]; 3176 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type]; 3177 adjust_zone_range_for_zone_movable(nid, zone_type, 3178 node_start_pfn, node_end_pfn, 3179 &zone_start_pfn, &zone_end_pfn); 3180 3181 /* Check that this node has pages within the zone's required range */ 3182 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn) 3183 return 0; 3184 3185 /* Move the zone boundaries inside the node if necessary */ 3186 zone_end_pfn = min(zone_end_pfn, node_end_pfn); 3187 zone_start_pfn = max(zone_start_pfn, node_start_pfn); 3188 3189 /* Return the spanned pages */ 3190 return zone_end_pfn - zone_start_pfn; 3191 } 3192 3193 /* 3194 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES, 3195 * then all holes in the requested range will be accounted for. 3196 */ 3197 static unsigned long __meminit __absent_pages_in_range(int nid, 3198 unsigned long range_start_pfn, 3199 unsigned long range_end_pfn) 3200 { 3201 int i = 0; 3202 unsigned long prev_end_pfn = 0, hole_pages = 0; 3203 unsigned long start_pfn; 3204 3205 /* Find the end_pfn of the first active range of pfns in the node */ 3206 i = first_active_region_index_in_nid(nid); 3207 if (i == -1) 3208 return 0; 3209 3210 prev_end_pfn = min(early_node_map[i].start_pfn, range_end_pfn); 3211 3212 /* Account for ranges before physical memory on this node */ 3213 if (early_node_map[i].start_pfn > range_start_pfn) 3214 hole_pages = prev_end_pfn - range_start_pfn; 3215 3216 /* Find all holes for the zone within the node */ 3217 for (; i != -1; i = next_active_region_index_in_nid(i, nid)) { 3218 3219 /* No need to continue if prev_end_pfn is outside the zone */ 3220 if (prev_end_pfn >= range_end_pfn) 3221 break; 3222 3223 /* Make sure the end of the zone is not within the hole */ 3224 start_pfn = min(early_node_map[i].start_pfn, range_end_pfn); 3225 prev_end_pfn = max(prev_end_pfn, range_start_pfn); 3226 3227 /* Update the hole size cound and move on */ 3228 if (start_pfn > range_start_pfn) { 3229 BUG_ON(prev_end_pfn > start_pfn); 3230 hole_pages += start_pfn - prev_end_pfn; 3231 } 3232 prev_end_pfn = early_node_map[i].end_pfn; 3233 } 3234 3235 /* Account for ranges past physical memory on this node */ 3236 if (range_end_pfn > prev_end_pfn) 3237 hole_pages += range_end_pfn - 3238 max(range_start_pfn, prev_end_pfn); 3239 3240 return hole_pages; 3241 } 3242 3243 /** 3244 * absent_pages_in_range - Return number of page frames in holes within a range 3245 * @start_pfn: The start PFN to start searching for holes 3246 * @end_pfn: The end PFN to stop searching for holes 3247 * 3248 * It returns the number of pages frames in memory holes within a range. 3249 */ 3250 unsigned long __init absent_pages_in_range(unsigned long start_pfn, 3251 unsigned long end_pfn) 3252 { 3253 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn); 3254 } 3255 3256 /* Return the number of page frames in holes in a zone on a node */ 3257 static unsigned long __meminit zone_absent_pages_in_node(int nid, 3258 unsigned long zone_type, 3259 unsigned long *ignored) 3260 { 3261 unsigned long node_start_pfn, node_end_pfn; 3262 unsigned long zone_start_pfn, zone_end_pfn; 3263 3264 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn); 3265 zone_start_pfn = max(arch_zone_lowest_possible_pfn[zone_type], 3266 node_start_pfn); 3267 zone_end_pfn = min(arch_zone_highest_possible_pfn[zone_type], 3268 node_end_pfn); 3269 3270 adjust_zone_range_for_zone_movable(nid, zone_type, 3271 node_start_pfn, node_end_pfn, 3272 &zone_start_pfn, &zone_end_pfn); 3273 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn); 3274 } 3275 3276 #else 3277 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid, 3278 unsigned long zone_type, 3279 unsigned long *zones_size) 3280 { 3281 return zones_size[zone_type]; 3282 } 3283 3284 static inline unsigned long __meminit zone_absent_pages_in_node(int nid, 3285 unsigned long zone_type, 3286 unsigned long *zholes_size) 3287 { 3288 if (!zholes_size) 3289 return 0; 3290 3291 return zholes_size[zone_type]; 3292 } 3293 3294 #endif 3295 3296 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat, 3297 unsigned long *zones_size, unsigned long *zholes_size) 3298 { 3299 unsigned long realtotalpages, totalpages = 0; 3300 enum zone_type i; 3301 3302 for (i = 0; i < MAX_NR_ZONES; i++) 3303 totalpages += zone_spanned_pages_in_node(pgdat->node_id, i, 3304 zones_size); 3305 pgdat->node_spanned_pages = totalpages; 3306 3307 realtotalpages = totalpages; 3308 for (i = 0; i < MAX_NR_ZONES; i++) 3309 realtotalpages -= 3310 zone_absent_pages_in_node(pgdat->node_id, i, 3311 zholes_size); 3312 pgdat->node_present_pages = realtotalpages; 3313 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id, 3314 realtotalpages); 3315 } 3316 3317 #ifndef CONFIG_SPARSEMEM 3318 /* 3319 * Calculate the size of the zone->blockflags rounded to an unsigned long 3320 * Start by making sure zonesize is a multiple of pageblock_order by rounding 3321 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally 3322 * round what is now in bits to nearest long in bits, then return it in 3323 * bytes. 3324 */ 3325 static unsigned long __init usemap_size(unsigned long zonesize) 3326 { 3327 unsigned long usemapsize; 3328 3329 usemapsize = roundup(zonesize, pageblock_nr_pages); 3330 usemapsize = usemapsize >> pageblock_order; 3331 usemapsize *= NR_PAGEBLOCK_BITS; 3332 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long)); 3333 3334 return usemapsize / 8; 3335 } 3336 3337 static void __init setup_usemap(struct pglist_data *pgdat, 3338 struct zone *zone, unsigned long zonesize) 3339 { 3340 unsigned long usemapsize = usemap_size(zonesize); 3341 zone->pageblock_flags = NULL; 3342 if (usemapsize) { 3343 zone->pageblock_flags = alloc_bootmem_node(pgdat, usemapsize); 3344 memset(zone->pageblock_flags, 0, usemapsize); 3345 } 3346 } 3347 #else 3348 static void inline setup_usemap(struct pglist_data *pgdat, 3349 struct zone *zone, unsigned long zonesize) {} 3350 #endif /* CONFIG_SPARSEMEM */ 3351 3352 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE 3353 3354 /* Return a sensible default order for the pageblock size. */ 3355 static inline int pageblock_default_order(void) 3356 { 3357 if (HPAGE_SHIFT > PAGE_SHIFT) 3358 return HUGETLB_PAGE_ORDER; 3359 3360 return MAX_ORDER-1; 3361 } 3362 3363 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */ 3364 static inline void __init set_pageblock_order(unsigned int order) 3365 { 3366 /* Check that pageblock_nr_pages has not already been setup */ 3367 if (pageblock_order) 3368 return; 3369 3370 /* 3371 * Assume the largest contiguous order of interest is a huge page. 3372 * This value may be variable depending on boot parameters on IA64 3373 */ 3374 pageblock_order = order; 3375 } 3376 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */ 3377 3378 /* 3379 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order() 3380 * and pageblock_default_order() are unused as pageblock_order is set 3381 * at compile-time. See include/linux/pageblock-flags.h for the values of 3382 * pageblock_order based on the kernel config 3383 */ 3384 static inline int pageblock_default_order(unsigned int order) 3385 { 3386 return MAX_ORDER-1; 3387 } 3388 #define set_pageblock_order(x) do {} while (0) 3389 3390 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */ 3391 3392 /* 3393 * Set up the zone data structures: 3394 * - mark all pages reserved 3395 * - mark all memory queues empty 3396 * - clear the memory bitmaps 3397 */ 3398 static void __paginginit free_area_init_core(struct pglist_data *pgdat, 3399 unsigned long *zones_size, unsigned long *zholes_size) 3400 { 3401 enum zone_type j; 3402 int nid = pgdat->node_id; 3403 unsigned long zone_start_pfn = pgdat->node_start_pfn; 3404 int ret; 3405 3406 pgdat_resize_init(pgdat); 3407 pgdat->nr_zones = 0; 3408 init_waitqueue_head(&pgdat->kswapd_wait); 3409 pgdat->kswapd_max_order = 0; 3410 3411 for (j = 0; j < MAX_NR_ZONES; j++) { 3412 struct zone *zone = pgdat->node_zones + j; 3413 unsigned long size, realsize, memmap_pages; 3414 3415 size = zone_spanned_pages_in_node(nid, j, zones_size); 3416 realsize = size - zone_absent_pages_in_node(nid, j, 3417 zholes_size); 3418 3419 /* 3420 * Adjust realsize so that it accounts for how much memory 3421 * is used by this zone for memmap. This affects the watermark 3422 * and per-cpu initialisations 3423 */ 3424 memmap_pages = 3425 PAGE_ALIGN(size * sizeof(struct page)) >> PAGE_SHIFT; 3426 if (realsize >= memmap_pages) { 3427 realsize -= memmap_pages; 3428 mminit_dprintk(MMINIT_TRACE, "memmap_init", 3429 "%s zone: %lu pages used for memmap\n", 3430 zone_names[j], memmap_pages); 3431 } else 3432 printk(KERN_WARNING 3433 " %s zone: %lu pages exceeds realsize %lu\n", 3434 zone_names[j], memmap_pages, realsize); 3435 3436 /* Account for reserved pages */ 3437 if (j == 0 && realsize > dma_reserve) { 3438 realsize -= dma_reserve; 3439 mminit_dprintk(MMINIT_TRACE, "memmap_init", 3440 "%s zone: %lu pages reserved\n", 3441 zone_names[0], dma_reserve); 3442 } 3443 3444 if (!is_highmem_idx(j)) 3445 nr_kernel_pages += realsize; 3446 nr_all_pages += realsize; 3447 3448 zone->spanned_pages = size; 3449 zone->present_pages = realsize; 3450 #ifdef CONFIG_NUMA 3451 zone->node = nid; 3452 zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio) 3453 / 100; 3454 zone->min_slab_pages = (realsize * sysctl_min_slab_ratio) / 100; 3455 #endif 3456 zone->name = zone_names[j]; 3457 spin_lock_init(&zone->lock); 3458 spin_lock_init(&zone->lru_lock); 3459 zone_seqlock_init(zone); 3460 zone->zone_pgdat = pgdat; 3461 3462 zone->prev_priority = DEF_PRIORITY; 3463 3464 zone_pcp_init(zone); 3465 INIT_LIST_HEAD(&zone->active_list); 3466 INIT_LIST_HEAD(&zone->inactive_list); 3467 zone->nr_scan_active = 0; 3468 zone->nr_scan_inactive = 0; 3469 zap_zone_vm_stats(zone); 3470 zone->flags = 0; 3471 if (!size) 3472 continue; 3473 3474 set_pageblock_order(pageblock_default_order()); 3475 setup_usemap(pgdat, zone, size); 3476 ret = init_currently_empty_zone(zone, zone_start_pfn, 3477 size, MEMMAP_EARLY); 3478 BUG_ON(ret); 3479 memmap_init(size, nid, j, zone_start_pfn); 3480 zone_start_pfn += size; 3481 } 3482 } 3483 3484 static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat) 3485 { 3486 /* Skip empty nodes */ 3487 if (!pgdat->node_spanned_pages) 3488 return; 3489 3490 #ifdef CONFIG_FLAT_NODE_MEM_MAP 3491 /* ia64 gets its own node_mem_map, before this, without bootmem */ 3492 if (!pgdat->node_mem_map) { 3493 unsigned long size, start, end; 3494 struct page *map; 3495 3496 /* 3497 * The zone's endpoints aren't required to be MAX_ORDER 3498 * aligned but the node_mem_map endpoints must be in order 3499 * for the buddy allocator to function correctly. 3500 */ 3501 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1); 3502 end = pgdat->node_start_pfn + pgdat->node_spanned_pages; 3503 end = ALIGN(end, MAX_ORDER_NR_PAGES); 3504 size = (end - start) * sizeof(struct page); 3505 map = alloc_remap(pgdat->node_id, size); 3506 if (!map) 3507 map = alloc_bootmem_node(pgdat, size); 3508 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start); 3509 } 3510 #ifndef CONFIG_NEED_MULTIPLE_NODES 3511 /* 3512 * With no DISCONTIG, the global mem_map is just set as node 0's 3513 */ 3514 if (pgdat == NODE_DATA(0)) { 3515 mem_map = NODE_DATA(0)->node_mem_map; 3516 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP 3517 if (page_to_pfn(mem_map) != pgdat->node_start_pfn) 3518 mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET); 3519 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */ 3520 } 3521 #endif 3522 #endif /* CONFIG_FLAT_NODE_MEM_MAP */ 3523 } 3524 3525 void __paginginit free_area_init_node(int nid, unsigned long *zones_size, 3526 unsigned long node_start_pfn, unsigned long *zholes_size) 3527 { 3528 pg_data_t *pgdat = NODE_DATA(nid); 3529 3530 pgdat->node_id = nid; 3531 pgdat->node_start_pfn = node_start_pfn; 3532 calculate_node_totalpages(pgdat, zones_size, zholes_size); 3533 3534 alloc_node_mem_map(pgdat); 3535 #ifdef CONFIG_FLAT_NODE_MEM_MAP 3536 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n", 3537 nid, (unsigned long)pgdat, 3538 (unsigned long)pgdat->node_mem_map); 3539 #endif 3540 3541 free_area_init_core(pgdat, zones_size, zholes_size); 3542 } 3543 3544 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP 3545 3546 #if MAX_NUMNODES > 1 3547 /* 3548 * Figure out the number of possible node ids. 3549 */ 3550 static void __init setup_nr_node_ids(void) 3551 { 3552 unsigned int node; 3553 unsigned int highest = 0; 3554 3555 for_each_node_mask(node, node_possible_map) 3556 highest = node; 3557 nr_node_ids = highest + 1; 3558 } 3559 #else 3560 static inline void setup_nr_node_ids(void) 3561 { 3562 } 3563 #endif 3564 3565 /** 3566 * add_active_range - Register a range of PFNs backed by physical memory 3567 * @nid: The node ID the range resides on 3568 * @start_pfn: The start PFN of the available physical memory 3569 * @end_pfn: The end PFN of the available physical memory 3570 * 3571 * These ranges are stored in an early_node_map[] and later used by 3572 * free_area_init_nodes() to calculate zone sizes and holes. If the 3573 * range spans a memory hole, it is up to the architecture to ensure 3574 * the memory is not freed by the bootmem allocator. If possible 3575 * the range being registered will be merged with existing ranges. 3576 */ 3577 void __init add_active_range(unsigned int nid, unsigned long start_pfn, 3578 unsigned long end_pfn) 3579 { 3580 int i; 3581 3582 mminit_dprintk(MMINIT_TRACE, "memory_register", 3583 "Entering add_active_range(%d, %#lx, %#lx) " 3584 "%d entries of %d used\n", 3585 nid, start_pfn, end_pfn, 3586 nr_nodemap_entries, MAX_ACTIVE_REGIONS); 3587 3588 mminit_validate_memmodel_limits(&start_pfn, &end_pfn); 3589 3590 /* Merge with existing active regions if possible */ 3591 for (i = 0; i < nr_nodemap_entries; i++) { 3592 if (early_node_map[i].nid != nid) 3593 continue; 3594 3595 /* Skip if an existing region covers this new one */ 3596 if (start_pfn >= early_node_map[i].start_pfn && 3597 end_pfn <= early_node_map[i].end_pfn) 3598 return; 3599 3600 /* Merge forward if suitable */ 3601 if (start_pfn <= early_node_map[i].end_pfn && 3602 end_pfn > early_node_map[i].end_pfn) { 3603 early_node_map[i].end_pfn = end_pfn; 3604 return; 3605 } 3606 3607 /* Merge backward if suitable */ 3608 if (start_pfn < early_node_map[i].end_pfn && 3609 end_pfn >= early_node_map[i].start_pfn) { 3610 early_node_map[i].start_pfn = start_pfn; 3611 return; 3612 } 3613 } 3614 3615 /* Check that early_node_map is large enough */ 3616 if (i >= MAX_ACTIVE_REGIONS) { 3617 printk(KERN_CRIT "More than %d memory regions, truncating\n", 3618 MAX_ACTIVE_REGIONS); 3619 return; 3620 } 3621 3622 early_node_map[i].nid = nid; 3623 early_node_map[i].start_pfn = start_pfn; 3624 early_node_map[i].end_pfn = end_pfn; 3625 nr_nodemap_entries = i + 1; 3626 } 3627 3628 /** 3629 * remove_active_range - Shrink an existing registered range of PFNs 3630 * @nid: The node id the range is on that should be shrunk 3631 * @start_pfn: The new PFN of the range 3632 * @end_pfn: The new PFN of the range 3633 * 3634 * i386 with NUMA use alloc_remap() to store a node_mem_map on a local node. 3635 * The map is kept near the end physical page range that has already been 3636 * registered. This function allows an arch to shrink an existing registered 3637 * range. 3638 */ 3639 void __init remove_active_range(unsigned int nid, unsigned long start_pfn, 3640 unsigned long end_pfn) 3641 { 3642 int i, j; 3643 int removed = 0; 3644 3645 printk(KERN_DEBUG "remove_active_range (%d, %lu, %lu)\n", 3646 nid, start_pfn, end_pfn); 3647 3648 /* Find the old active region end and shrink */ 3649 for_each_active_range_index_in_nid(i, nid) { 3650 if (early_node_map[i].start_pfn >= start_pfn && 3651 early_node_map[i].end_pfn <= end_pfn) { 3652 /* clear it */ 3653 early_node_map[i].start_pfn = 0; 3654 early_node_map[i].end_pfn = 0; 3655 removed = 1; 3656 continue; 3657 } 3658 if (early_node_map[i].start_pfn < start_pfn && 3659 early_node_map[i].end_pfn > start_pfn) { 3660 unsigned long temp_end_pfn = early_node_map[i].end_pfn; 3661 early_node_map[i].end_pfn = start_pfn; 3662 if (temp_end_pfn > end_pfn) 3663 add_active_range(nid, end_pfn, temp_end_pfn); 3664 continue; 3665 } 3666 if (early_node_map[i].start_pfn >= start_pfn && 3667 early_node_map[i].end_pfn > end_pfn && 3668 early_node_map[i].start_pfn < end_pfn) { 3669 early_node_map[i].start_pfn = end_pfn; 3670 continue; 3671 } 3672 } 3673 3674 if (!removed) 3675 return; 3676 3677 /* remove the blank ones */ 3678 for (i = nr_nodemap_entries - 1; i > 0; i--) { 3679 if (early_node_map[i].nid != nid) 3680 continue; 3681 if (early_node_map[i].end_pfn) 3682 continue; 3683 /* we found it, get rid of it */ 3684 for (j = i; j < nr_nodemap_entries - 1; j++) 3685 memcpy(&early_node_map[j], &early_node_map[j+1], 3686 sizeof(early_node_map[j])); 3687 j = nr_nodemap_entries - 1; 3688 memset(&early_node_map[j], 0, sizeof(early_node_map[j])); 3689 nr_nodemap_entries--; 3690 } 3691 } 3692 3693 /** 3694 * remove_all_active_ranges - Remove all currently registered regions 3695 * 3696 * During discovery, it may be found that a table like SRAT is invalid 3697 * and an alternative discovery method must be used. This function removes 3698 * all currently registered regions. 3699 */ 3700 void __init remove_all_active_ranges(void) 3701 { 3702 memset(early_node_map, 0, sizeof(early_node_map)); 3703 nr_nodemap_entries = 0; 3704 #ifdef CONFIG_MEMORY_HOTPLUG_RESERVE 3705 memset(node_boundary_start_pfn, 0, sizeof(node_boundary_start_pfn)); 3706 memset(node_boundary_end_pfn, 0, sizeof(node_boundary_end_pfn)); 3707 #endif /* CONFIG_MEMORY_HOTPLUG_RESERVE */ 3708 } 3709 3710 /* Compare two active node_active_regions */ 3711 static int __init cmp_node_active_region(const void *a, const void *b) 3712 { 3713 struct node_active_region *arange = (struct node_active_region *)a; 3714 struct node_active_region *brange = (struct node_active_region *)b; 3715 3716 /* Done this way to avoid overflows */ 3717 if (arange->start_pfn > brange->start_pfn) 3718 return 1; 3719 if (arange->start_pfn < brange->start_pfn) 3720 return -1; 3721 3722 return 0; 3723 } 3724 3725 /* sort the node_map by start_pfn */ 3726 static void __init sort_node_map(void) 3727 { 3728 sort(early_node_map, (size_t)nr_nodemap_entries, 3729 sizeof(struct node_active_region), 3730 cmp_node_active_region, NULL); 3731 } 3732 3733 /* Find the lowest pfn for a node */ 3734 static unsigned long __init find_min_pfn_for_node(int nid) 3735 { 3736 int i; 3737 unsigned long min_pfn = ULONG_MAX; 3738 3739 /* Assuming a sorted map, the first range found has the starting pfn */ 3740 for_each_active_range_index_in_nid(i, nid) 3741 min_pfn = min(min_pfn, early_node_map[i].start_pfn); 3742 3743 if (min_pfn == ULONG_MAX) { 3744 printk(KERN_WARNING 3745 "Could not find start_pfn for node %d\n", nid); 3746 return 0; 3747 } 3748 3749 return min_pfn; 3750 } 3751 3752 /** 3753 * find_min_pfn_with_active_regions - Find the minimum PFN registered 3754 * 3755 * It returns the minimum PFN based on information provided via 3756 * add_active_range(). 3757 */ 3758 unsigned long __init find_min_pfn_with_active_regions(void) 3759 { 3760 return find_min_pfn_for_node(MAX_NUMNODES); 3761 } 3762 3763 /* 3764 * early_calculate_totalpages() 3765 * Sum pages in active regions for movable zone. 3766 * Populate N_HIGH_MEMORY for calculating usable_nodes. 3767 */ 3768 static unsigned long __init early_calculate_totalpages(void) 3769 { 3770 int i; 3771 unsigned long totalpages = 0; 3772 3773 for (i = 0; i < nr_nodemap_entries; i++) { 3774 unsigned long pages = early_node_map[i].end_pfn - 3775 early_node_map[i].start_pfn; 3776 totalpages += pages; 3777 if (pages) 3778 node_set_state(early_node_map[i].nid, N_HIGH_MEMORY); 3779 } 3780 return totalpages; 3781 } 3782 3783 /* 3784 * Find the PFN the Movable zone begins in each node. Kernel memory 3785 * is spread evenly between nodes as long as the nodes have enough 3786 * memory. When they don't, some nodes will have more kernelcore than 3787 * others 3788 */ 3789 static void __init find_zone_movable_pfns_for_nodes(unsigned long *movable_pfn) 3790 { 3791 int i, nid; 3792 unsigned long usable_startpfn; 3793 unsigned long kernelcore_node, kernelcore_remaining; 3794 unsigned long totalpages = early_calculate_totalpages(); 3795 int usable_nodes = nodes_weight(node_states[N_HIGH_MEMORY]); 3796 3797 /* 3798 * If movablecore was specified, calculate what size of 3799 * kernelcore that corresponds so that memory usable for 3800 * any allocation type is evenly spread. If both kernelcore 3801 * and movablecore are specified, then the value of kernelcore 3802 * will be used for required_kernelcore if it's greater than 3803 * what movablecore would have allowed. 3804 */ 3805 if (required_movablecore) { 3806 unsigned long corepages; 3807 3808 /* 3809 * Round-up so that ZONE_MOVABLE is at least as large as what 3810 * was requested by the user 3811 */ 3812 required_movablecore = 3813 roundup(required_movablecore, MAX_ORDER_NR_PAGES); 3814 corepages = totalpages - required_movablecore; 3815 3816 required_kernelcore = max(required_kernelcore, corepages); 3817 } 3818 3819 /* If kernelcore was not specified, there is no ZONE_MOVABLE */ 3820 if (!required_kernelcore) 3821 return; 3822 3823 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */ 3824 find_usable_zone_for_movable(); 3825 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone]; 3826 3827 restart: 3828 /* Spread kernelcore memory as evenly as possible throughout nodes */ 3829 kernelcore_node = required_kernelcore / usable_nodes; 3830 for_each_node_state(nid, N_HIGH_MEMORY) { 3831 /* 3832 * Recalculate kernelcore_node if the division per node 3833 * now exceeds what is necessary to satisfy the requested 3834 * amount of memory for the kernel 3835 */ 3836 if (required_kernelcore < kernelcore_node) 3837 kernelcore_node = required_kernelcore / usable_nodes; 3838 3839 /* 3840 * As the map is walked, we track how much memory is usable 3841 * by the kernel using kernelcore_remaining. When it is 3842 * 0, the rest of the node is usable by ZONE_MOVABLE 3843 */ 3844 kernelcore_remaining = kernelcore_node; 3845 3846 /* Go through each range of PFNs within this node */ 3847 for_each_active_range_index_in_nid(i, nid) { 3848 unsigned long start_pfn, end_pfn; 3849 unsigned long size_pages; 3850 3851 start_pfn = max(early_node_map[i].start_pfn, 3852 zone_movable_pfn[nid]); 3853 end_pfn = early_node_map[i].end_pfn; 3854 if (start_pfn >= end_pfn) 3855 continue; 3856 3857 /* Account for what is only usable for kernelcore */ 3858 if (start_pfn < usable_startpfn) { 3859 unsigned long kernel_pages; 3860 kernel_pages = min(end_pfn, usable_startpfn) 3861 - start_pfn; 3862 3863 kernelcore_remaining -= min(kernel_pages, 3864 kernelcore_remaining); 3865 required_kernelcore -= min(kernel_pages, 3866 required_kernelcore); 3867 3868 /* Continue if range is now fully accounted */ 3869 if (end_pfn <= usable_startpfn) { 3870 3871 /* 3872 * Push zone_movable_pfn to the end so 3873 * that if we have to rebalance 3874 * kernelcore across nodes, we will 3875 * not double account here 3876 */ 3877 zone_movable_pfn[nid] = end_pfn; 3878 continue; 3879 } 3880 start_pfn = usable_startpfn; 3881 } 3882 3883 /* 3884 * The usable PFN range for ZONE_MOVABLE is from 3885 * start_pfn->end_pfn. Calculate size_pages as the 3886 * number of pages used as kernelcore 3887 */ 3888 size_pages = end_pfn - start_pfn; 3889 if (size_pages > kernelcore_remaining) 3890 size_pages = kernelcore_remaining; 3891 zone_movable_pfn[nid] = start_pfn + size_pages; 3892 3893 /* 3894 * Some kernelcore has been met, update counts and 3895 * break if the kernelcore for this node has been 3896 * satisified 3897 */ 3898 required_kernelcore -= min(required_kernelcore, 3899 size_pages); 3900 kernelcore_remaining -= size_pages; 3901 if (!kernelcore_remaining) 3902 break; 3903 } 3904 } 3905 3906 /* 3907 * If there is still required_kernelcore, we do another pass with one 3908 * less node in the count. This will push zone_movable_pfn[nid] further 3909 * along on the nodes that still have memory until kernelcore is 3910 * satisified 3911 */ 3912 usable_nodes--; 3913 if (usable_nodes && required_kernelcore > usable_nodes) 3914 goto restart; 3915 3916 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */ 3917 for (nid = 0; nid < MAX_NUMNODES; nid++) 3918 zone_movable_pfn[nid] = 3919 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES); 3920 } 3921 3922 /* Any regular memory on that node ? */ 3923 static void check_for_regular_memory(pg_data_t *pgdat) 3924 { 3925 #ifdef CONFIG_HIGHMEM 3926 enum zone_type zone_type; 3927 3928 for (zone_type = 0; zone_type <= ZONE_NORMAL; zone_type++) { 3929 struct zone *zone = &pgdat->node_zones[zone_type]; 3930 if (zone->present_pages) 3931 node_set_state(zone_to_nid(zone), N_NORMAL_MEMORY); 3932 } 3933 #endif 3934 } 3935 3936 /** 3937 * free_area_init_nodes - Initialise all pg_data_t and zone data 3938 * @max_zone_pfn: an array of max PFNs for each zone 3939 * 3940 * This will call free_area_init_node() for each active node in the system. 3941 * Using the page ranges provided by add_active_range(), the size of each 3942 * zone in each node and their holes is calculated. If the maximum PFN 3943 * between two adjacent zones match, it is assumed that the zone is empty. 3944 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed 3945 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone 3946 * starts where the previous one ended. For example, ZONE_DMA32 starts 3947 * at arch_max_dma_pfn. 3948 */ 3949 void __init free_area_init_nodes(unsigned long *max_zone_pfn) 3950 { 3951 unsigned long nid; 3952 enum zone_type i; 3953 3954 /* Sort early_node_map as initialisation assumes it is sorted */ 3955 sort_node_map(); 3956 3957 /* Record where the zone boundaries are */ 3958 memset(arch_zone_lowest_possible_pfn, 0, 3959 sizeof(arch_zone_lowest_possible_pfn)); 3960 memset(arch_zone_highest_possible_pfn, 0, 3961 sizeof(arch_zone_highest_possible_pfn)); 3962 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions(); 3963 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0]; 3964 for (i = 1; i < MAX_NR_ZONES; i++) { 3965 if (i == ZONE_MOVABLE) 3966 continue; 3967 arch_zone_lowest_possible_pfn[i] = 3968 arch_zone_highest_possible_pfn[i-1]; 3969 arch_zone_highest_possible_pfn[i] = 3970 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]); 3971 } 3972 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0; 3973 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0; 3974 3975 /* Find the PFNs that ZONE_MOVABLE begins at in each node */ 3976 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn)); 3977 find_zone_movable_pfns_for_nodes(zone_movable_pfn); 3978 3979 /* Print out the zone ranges */ 3980 printk("Zone PFN ranges:\n"); 3981 for (i = 0; i < MAX_NR_ZONES; i++) { 3982 if (i == ZONE_MOVABLE) 3983 continue; 3984 printk(" %-8s %0#10lx -> %0#10lx\n", 3985 zone_names[i], 3986 arch_zone_lowest_possible_pfn[i], 3987 arch_zone_highest_possible_pfn[i]); 3988 } 3989 3990 /* Print out the PFNs ZONE_MOVABLE begins at in each node */ 3991 printk("Movable zone start PFN for each node\n"); 3992 for (i = 0; i < MAX_NUMNODES; i++) { 3993 if (zone_movable_pfn[i]) 3994 printk(" Node %d: %lu\n", i, zone_movable_pfn[i]); 3995 } 3996 3997 /* Print out the early_node_map[] */ 3998 printk("early_node_map[%d] active PFN ranges\n", nr_nodemap_entries); 3999 for (i = 0; i < nr_nodemap_entries; i++) 4000 printk(" %3d: %0#10lx -> %0#10lx\n", early_node_map[i].nid, 4001 early_node_map[i].start_pfn, 4002 early_node_map[i].end_pfn); 4003 4004 /* Initialise every node */ 4005 mminit_verify_pageflags_layout(); 4006 setup_nr_node_ids(); 4007 for_each_online_node(nid) { 4008 pg_data_t *pgdat = NODE_DATA(nid); 4009 free_area_init_node(nid, NULL, 4010 find_min_pfn_for_node(nid), NULL); 4011 4012 /* Any memory on that node */ 4013 if (pgdat->node_present_pages) 4014 node_set_state(nid, N_HIGH_MEMORY); 4015 check_for_regular_memory(pgdat); 4016 } 4017 } 4018 4019 static int __init cmdline_parse_core(char *p, unsigned long *core) 4020 { 4021 unsigned long long coremem; 4022 if (!p) 4023 return -EINVAL; 4024 4025 coremem = memparse(p, &p); 4026 *core = coremem >> PAGE_SHIFT; 4027 4028 /* Paranoid check that UL is enough for the coremem value */ 4029 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX); 4030 4031 return 0; 4032 } 4033 4034 /* 4035 * kernelcore=size sets the amount of memory for use for allocations that 4036 * cannot be reclaimed or migrated. 4037 */ 4038 static int __init cmdline_parse_kernelcore(char *p) 4039 { 4040 return cmdline_parse_core(p, &required_kernelcore); 4041 } 4042 4043 /* 4044 * movablecore=size sets the amount of memory for use for allocations that 4045 * can be reclaimed or migrated. 4046 */ 4047 static int __init cmdline_parse_movablecore(char *p) 4048 { 4049 return cmdline_parse_core(p, &required_movablecore); 4050 } 4051 4052 early_param("kernelcore", cmdline_parse_kernelcore); 4053 early_param("movablecore", cmdline_parse_movablecore); 4054 4055 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */ 4056 4057 /** 4058 * set_dma_reserve - set the specified number of pages reserved in the first zone 4059 * @new_dma_reserve: The number of pages to mark reserved 4060 * 4061 * The per-cpu batchsize and zone watermarks are determined by present_pages. 4062 * In the DMA zone, a significant percentage may be consumed by kernel image 4063 * and other unfreeable allocations which can skew the watermarks badly. This 4064 * function may optionally be used to account for unfreeable pages in the 4065 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and 4066 * smaller per-cpu batchsize. 4067 */ 4068 void __init set_dma_reserve(unsigned long new_dma_reserve) 4069 { 4070 dma_reserve = new_dma_reserve; 4071 } 4072 4073 #ifndef CONFIG_NEED_MULTIPLE_NODES 4074 struct pglist_data __refdata contig_page_data = { .bdata = &bootmem_node_data[0] }; 4075 EXPORT_SYMBOL(contig_page_data); 4076 #endif 4077 4078 void __init free_area_init(unsigned long *zones_size) 4079 { 4080 free_area_init_node(0, zones_size, 4081 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL); 4082 } 4083 4084 static int page_alloc_cpu_notify(struct notifier_block *self, 4085 unsigned long action, void *hcpu) 4086 { 4087 int cpu = (unsigned long)hcpu; 4088 4089 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) { 4090 drain_pages(cpu); 4091 4092 /* 4093 * Spill the event counters of the dead processor 4094 * into the current processors event counters. 4095 * This artificially elevates the count of the current 4096 * processor. 4097 */ 4098 vm_events_fold_cpu(cpu); 4099 4100 /* 4101 * Zero the differential counters of the dead processor 4102 * so that the vm statistics are consistent. 4103 * 4104 * This is only okay since the processor is dead and cannot 4105 * race with what we are doing. 4106 */ 4107 refresh_cpu_vm_stats(cpu); 4108 } 4109 return NOTIFY_OK; 4110 } 4111 4112 void __init page_alloc_init(void) 4113 { 4114 hotcpu_notifier(page_alloc_cpu_notify, 0); 4115 } 4116 4117 /* 4118 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio 4119 * or min_free_kbytes changes. 4120 */ 4121 static void calculate_totalreserve_pages(void) 4122 { 4123 struct pglist_data *pgdat; 4124 unsigned long reserve_pages = 0; 4125 enum zone_type i, j; 4126 4127 for_each_online_pgdat(pgdat) { 4128 for (i = 0; i < MAX_NR_ZONES; i++) { 4129 struct zone *zone = pgdat->node_zones + i; 4130 unsigned long max = 0; 4131 4132 /* Find valid and maximum lowmem_reserve in the zone */ 4133 for (j = i; j < MAX_NR_ZONES; j++) { 4134 if (zone->lowmem_reserve[j] > max) 4135 max = zone->lowmem_reserve[j]; 4136 } 4137 4138 /* we treat pages_high as reserved pages. */ 4139 max += zone->pages_high; 4140 4141 if (max > zone->present_pages) 4142 max = zone->present_pages; 4143 reserve_pages += max; 4144 } 4145 } 4146 totalreserve_pages = reserve_pages; 4147 } 4148 4149 /* 4150 * setup_per_zone_lowmem_reserve - called whenever 4151 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone 4152 * has a correct pages reserved value, so an adequate number of 4153 * pages are left in the zone after a successful __alloc_pages(). 4154 */ 4155 static void setup_per_zone_lowmem_reserve(void) 4156 { 4157 struct pglist_data *pgdat; 4158 enum zone_type j, idx; 4159 4160 for_each_online_pgdat(pgdat) { 4161 for (j = 0; j < MAX_NR_ZONES; j++) { 4162 struct zone *zone = pgdat->node_zones + j; 4163 unsigned long present_pages = zone->present_pages; 4164 4165 zone->lowmem_reserve[j] = 0; 4166 4167 idx = j; 4168 while (idx) { 4169 struct zone *lower_zone; 4170 4171 idx--; 4172 4173 if (sysctl_lowmem_reserve_ratio[idx] < 1) 4174 sysctl_lowmem_reserve_ratio[idx] = 1; 4175 4176 lower_zone = pgdat->node_zones + idx; 4177 lower_zone->lowmem_reserve[j] = present_pages / 4178 sysctl_lowmem_reserve_ratio[idx]; 4179 present_pages += lower_zone->present_pages; 4180 } 4181 } 4182 } 4183 4184 /* update totalreserve_pages */ 4185 calculate_totalreserve_pages(); 4186 } 4187 4188 /** 4189 * setup_per_zone_pages_min - called when min_free_kbytes changes. 4190 * 4191 * Ensures that the pages_{min,low,high} values for each zone are set correctly 4192 * with respect to min_free_kbytes. 4193 */ 4194 void setup_per_zone_pages_min(void) 4195 { 4196 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10); 4197 unsigned long lowmem_pages = 0; 4198 struct zone *zone; 4199 unsigned long flags; 4200 4201 /* Calculate total number of !ZONE_HIGHMEM pages */ 4202 for_each_zone(zone) { 4203 if (!is_highmem(zone)) 4204 lowmem_pages += zone->present_pages; 4205 } 4206 4207 for_each_zone(zone) { 4208 u64 tmp; 4209 4210 spin_lock_irqsave(&zone->lru_lock, flags); 4211 tmp = (u64)pages_min * zone->present_pages; 4212 do_div(tmp, lowmem_pages); 4213 if (is_highmem(zone)) { 4214 /* 4215 * __GFP_HIGH and PF_MEMALLOC allocations usually don't 4216 * need highmem pages, so cap pages_min to a small 4217 * value here. 4218 * 4219 * The (pages_high-pages_low) and (pages_low-pages_min) 4220 * deltas controls asynch page reclaim, and so should 4221 * not be capped for highmem. 4222 */ 4223 int min_pages; 4224 4225 min_pages = zone->present_pages / 1024; 4226 if (min_pages < SWAP_CLUSTER_MAX) 4227 min_pages = SWAP_CLUSTER_MAX; 4228 if (min_pages > 128) 4229 min_pages = 128; 4230 zone->pages_min = min_pages; 4231 } else { 4232 /* 4233 * If it's a lowmem zone, reserve a number of pages 4234 * proportionate to the zone's size. 4235 */ 4236 zone->pages_min = tmp; 4237 } 4238 4239 zone->pages_low = zone->pages_min + (tmp >> 2); 4240 zone->pages_high = zone->pages_min + (tmp >> 1); 4241 setup_zone_migrate_reserve(zone); 4242 spin_unlock_irqrestore(&zone->lru_lock, flags); 4243 } 4244 4245 /* update totalreserve_pages */ 4246 calculate_totalreserve_pages(); 4247 } 4248 4249 /* 4250 * Initialise min_free_kbytes. 4251 * 4252 * For small machines we want it small (128k min). For large machines 4253 * we want it large (64MB max). But it is not linear, because network 4254 * bandwidth does not increase linearly with machine size. We use 4255 * 4256 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy: 4257 * min_free_kbytes = sqrt(lowmem_kbytes * 16) 4258 * 4259 * which yields 4260 * 4261 * 16MB: 512k 4262 * 32MB: 724k 4263 * 64MB: 1024k 4264 * 128MB: 1448k 4265 * 256MB: 2048k 4266 * 512MB: 2896k 4267 * 1024MB: 4096k 4268 * 2048MB: 5792k 4269 * 4096MB: 8192k 4270 * 8192MB: 11584k 4271 * 16384MB: 16384k 4272 */ 4273 static int __init init_per_zone_pages_min(void) 4274 { 4275 unsigned long lowmem_kbytes; 4276 4277 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10); 4278 4279 min_free_kbytes = int_sqrt(lowmem_kbytes * 16); 4280 if (min_free_kbytes < 128) 4281 min_free_kbytes = 128; 4282 if (min_free_kbytes > 65536) 4283 min_free_kbytes = 65536; 4284 setup_per_zone_pages_min(); 4285 setup_per_zone_lowmem_reserve(); 4286 return 0; 4287 } 4288 module_init(init_per_zone_pages_min) 4289 4290 /* 4291 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so 4292 * that we can call two helper functions whenever min_free_kbytes 4293 * changes. 4294 */ 4295 int min_free_kbytes_sysctl_handler(ctl_table *table, int write, 4296 struct file *file, void __user *buffer, size_t *length, loff_t *ppos) 4297 { 4298 proc_dointvec(table, write, file, buffer, length, ppos); 4299 if (write) 4300 setup_per_zone_pages_min(); 4301 return 0; 4302 } 4303 4304 #ifdef CONFIG_NUMA 4305 int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write, 4306 struct file *file, void __user *buffer, size_t *length, loff_t *ppos) 4307 { 4308 struct zone *zone; 4309 int rc; 4310 4311 rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos); 4312 if (rc) 4313 return rc; 4314 4315 for_each_zone(zone) 4316 zone->min_unmapped_pages = (zone->present_pages * 4317 sysctl_min_unmapped_ratio) / 100; 4318 return 0; 4319 } 4320 4321 int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write, 4322 struct file *file, void __user *buffer, size_t *length, loff_t *ppos) 4323 { 4324 struct zone *zone; 4325 int rc; 4326 4327 rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos); 4328 if (rc) 4329 return rc; 4330 4331 for_each_zone(zone) 4332 zone->min_slab_pages = (zone->present_pages * 4333 sysctl_min_slab_ratio) / 100; 4334 return 0; 4335 } 4336 #endif 4337 4338 /* 4339 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around 4340 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve() 4341 * whenever sysctl_lowmem_reserve_ratio changes. 4342 * 4343 * The reserve ratio obviously has absolutely no relation with the 4344 * pages_min watermarks. The lowmem reserve ratio can only make sense 4345 * if in function of the boot time zone sizes. 4346 */ 4347 int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write, 4348 struct file *file, void __user *buffer, size_t *length, loff_t *ppos) 4349 { 4350 proc_dointvec_minmax(table, write, file, buffer, length, ppos); 4351 setup_per_zone_lowmem_reserve(); 4352 return 0; 4353 } 4354 4355 /* 4356 * percpu_pagelist_fraction - changes the pcp->high for each zone on each 4357 * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist 4358 * can have before it gets flushed back to buddy allocator. 4359 */ 4360 4361 int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write, 4362 struct file *file, void __user *buffer, size_t *length, loff_t *ppos) 4363 { 4364 struct zone *zone; 4365 unsigned int cpu; 4366 int ret; 4367 4368 ret = proc_dointvec_minmax(table, write, file, buffer, length, ppos); 4369 if (!write || (ret == -EINVAL)) 4370 return ret; 4371 for_each_zone(zone) { 4372 for_each_online_cpu(cpu) { 4373 unsigned long high; 4374 high = zone->present_pages / percpu_pagelist_fraction; 4375 setup_pagelist_highmark(zone_pcp(zone, cpu), high); 4376 } 4377 } 4378 return 0; 4379 } 4380 4381 int hashdist = HASHDIST_DEFAULT; 4382 4383 #ifdef CONFIG_NUMA 4384 static int __init set_hashdist(char *str) 4385 { 4386 if (!str) 4387 return 0; 4388 hashdist = simple_strtoul(str, &str, 0); 4389 return 1; 4390 } 4391 __setup("hashdist=", set_hashdist); 4392 #endif 4393 4394 /* 4395 * allocate a large system hash table from bootmem 4396 * - it is assumed that the hash table must contain an exact power-of-2 4397 * quantity of entries 4398 * - limit is the number of hash buckets, not the total allocation size 4399 */ 4400 void *__init alloc_large_system_hash(const char *tablename, 4401 unsigned long bucketsize, 4402 unsigned long numentries, 4403 int scale, 4404 int flags, 4405 unsigned int *_hash_shift, 4406 unsigned int *_hash_mask, 4407 unsigned long limit) 4408 { 4409 unsigned long long max = limit; 4410 unsigned long log2qty, size; 4411 void *table = NULL; 4412 4413 /* allow the kernel cmdline to have a say */ 4414 if (!numentries) { 4415 /* round applicable memory size up to nearest megabyte */ 4416 numentries = nr_kernel_pages; 4417 numentries += (1UL << (20 - PAGE_SHIFT)) - 1; 4418 numentries >>= 20 - PAGE_SHIFT; 4419 numentries <<= 20 - PAGE_SHIFT; 4420 4421 /* limit to 1 bucket per 2^scale bytes of low memory */ 4422 if (scale > PAGE_SHIFT) 4423 numentries >>= (scale - PAGE_SHIFT); 4424 else 4425 numentries <<= (PAGE_SHIFT - scale); 4426 4427 /* Make sure we've got at least a 0-order allocation.. */ 4428 if (unlikely((numentries * bucketsize) < PAGE_SIZE)) 4429 numentries = PAGE_SIZE / bucketsize; 4430 } 4431 numentries = roundup_pow_of_two(numentries); 4432 4433 /* limit allocation size to 1/16 total memory by default */ 4434 if (max == 0) { 4435 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4; 4436 do_div(max, bucketsize); 4437 } 4438 4439 if (numentries > max) 4440 numentries = max; 4441 4442 log2qty = ilog2(numentries); 4443 4444 do { 4445 size = bucketsize << log2qty; 4446 if (flags & HASH_EARLY) 4447 table = alloc_bootmem_nopanic(size); 4448 else if (hashdist) 4449 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL); 4450 else { 4451 unsigned long order = get_order(size); 4452 table = (void*) __get_free_pages(GFP_ATOMIC, order); 4453 /* 4454 * If bucketsize is not a power-of-two, we may free 4455 * some pages at the end of hash table. 4456 */ 4457 if (table) { 4458 unsigned long alloc_end = (unsigned long)table + 4459 (PAGE_SIZE << order); 4460 unsigned long used = (unsigned long)table + 4461 PAGE_ALIGN(size); 4462 split_page(virt_to_page(table), order); 4463 while (used < alloc_end) { 4464 free_page(used); 4465 used += PAGE_SIZE; 4466 } 4467 } 4468 } 4469 } while (!table && size > PAGE_SIZE && --log2qty); 4470 4471 if (!table) 4472 panic("Failed to allocate %s hash table\n", tablename); 4473 4474 printk(KERN_INFO "%s hash table entries: %d (order: %d, %lu bytes)\n", 4475 tablename, 4476 (1U << log2qty), 4477 ilog2(size) - PAGE_SHIFT, 4478 size); 4479 4480 if (_hash_shift) 4481 *_hash_shift = log2qty; 4482 if (_hash_mask) 4483 *_hash_mask = (1 << log2qty) - 1; 4484 4485 return table; 4486 } 4487 4488 #ifdef CONFIG_OUT_OF_LINE_PFN_TO_PAGE 4489 struct page *pfn_to_page(unsigned long pfn) 4490 { 4491 return __pfn_to_page(pfn); 4492 } 4493 unsigned long page_to_pfn(struct page *page) 4494 { 4495 return __page_to_pfn(page); 4496 } 4497 EXPORT_SYMBOL(pfn_to_page); 4498 EXPORT_SYMBOL(page_to_pfn); 4499 #endif /* CONFIG_OUT_OF_LINE_PFN_TO_PAGE */ 4500 4501 /* Return a pointer to the bitmap storing bits affecting a block of pages */ 4502 static inline unsigned long *get_pageblock_bitmap(struct zone *zone, 4503 unsigned long pfn) 4504 { 4505 #ifdef CONFIG_SPARSEMEM 4506 return __pfn_to_section(pfn)->pageblock_flags; 4507 #else 4508 return zone->pageblock_flags; 4509 #endif /* CONFIG_SPARSEMEM */ 4510 } 4511 4512 static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn) 4513 { 4514 #ifdef CONFIG_SPARSEMEM 4515 pfn &= (PAGES_PER_SECTION-1); 4516 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS; 4517 #else 4518 pfn = pfn - zone->zone_start_pfn; 4519 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS; 4520 #endif /* CONFIG_SPARSEMEM */ 4521 } 4522 4523 /** 4524 * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages 4525 * @page: The page within the block of interest 4526 * @start_bitidx: The first bit of interest to retrieve 4527 * @end_bitidx: The last bit of interest 4528 * returns pageblock_bits flags 4529 */ 4530 unsigned long get_pageblock_flags_group(struct page *page, 4531 int start_bitidx, int end_bitidx) 4532 { 4533 struct zone *zone; 4534 unsigned long *bitmap; 4535 unsigned long pfn, bitidx; 4536 unsigned long flags = 0; 4537 unsigned long value = 1; 4538 4539 zone = page_zone(page); 4540 pfn = page_to_pfn(page); 4541 bitmap = get_pageblock_bitmap(zone, pfn); 4542 bitidx = pfn_to_bitidx(zone, pfn); 4543 4544 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1) 4545 if (test_bit(bitidx + start_bitidx, bitmap)) 4546 flags |= value; 4547 4548 return flags; 4549 } 4550 4551 /** 4552 * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages 4553 * @page: The page within the block of interest 4554 * @start_bitidx: The first bit of interest 4555 * @end_bitidx: The last bit of interest 4556 * @flags: The flags to set 4557 */ 4558 void set_pageblock_flags_group(struct page *page, unsigned long flags, 4559 int start_bitidx, int end_bitidx) 4560 { 4561 struct zone *zone; 4562 unsigned long *bitmap; 4563 unsigned long pfn, bitidx; 4564 unsigned long value = 1; 4565 4566 zone = page_zone(page); 4567 pfn = page_to_pfn(page); 4568 bitmap = get_pageblock_bitmap(zone, pfn); 4569 bitidx = pfn_to_bitidx(zone, pfn); 4570 VM_BUG_ON(pfn < zone->zone_start_pfn); 4571 VM_BUG_ON(pfn >= zone->zone_start_pfn + zone->spanned_pages); 4572 4573 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1) 4574 if (flags & value) 4575 __set_bit(bitidx + start_bitidx, bitmap); 4576 else 4577 __clear_bit(bitidx + start_bitidx, bitmap); 4578 } 4579 4580 /* 4581 * This is designed as sub function...plz see page_isolation.c also. 4582 * set/clear page block's type to be ISOLATE. 4583 * page allocater never alloc memory from ISOLATE block. 4584 */ 4585 4586 int set_migratetype_isolate(struct page *page) 4587 { 4588 struct zone *zone; 4589 unsigned long flags; 4590 int ret = -EBUSY; 4591 4592 zone = page_zone(page); 4593 spin_lock_irqsave(&zone->lock, flags); 4594 /* 4595 * In future, more migrate types will be able to be isolation target. 4596 */ 4597 if (get_pageblock_migratetype(page) != MIGRATE_MOVABLE) 4598 goto out; 4599 set_pageblock_migratetype(page, MIGRATE_ISOLATE); 4600 move_freepages_block(zone, page, MIGRATE_ISOLATE); 4601 ret = 0; 4602 out: 4603 spin_unlock_irqrestore(&zone->lock, flags); 4604 if (!ret) 4605 drain_all_pages(); 4606 return ret; 4607 } 4608 4609 void unset_migratetype_isolate(struct page *page) 4610 { 4611 struct zone *zone; 4612 unsigned long flags; 4613 zone = page_zone(page); 4614 spin_lock_irqsave(&zone->lock, flags); 4615 if (get_pageblock_migratetype(page) != MIGRATE_ISOLATE) 4616 goto out; 4617 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 4618 move_freepages_block(zone, page, MIGRATE_MOVABLE); 4619 out: 4620 spin_unlock_irqrestore(&zone->lock, flags); 4621 } 4622 4623 #ifdef CONFIG_MEMORY_HOTREMOVE 4624 /* 4625 * All pages in the range must be isolated before calling this. 4626 */ 4627 void 4628 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn) 4629 { 4630 struct page *page; 4631 struct zone *zone; 4632 int order, i; 4633 unsigned long pfn; 4634 unsigned long flags; 4635 /* find the first valid pfn */ 4636 for (pfn = start_pfn; pfn < end_pfn; pfn++) 4637 if (pfn_valid(pfn)) 4638 break; 4639 if (pfn == end_pfn) 4640 return; 4641 zone = page_zone(pfn_to_page(pfn)); 4642 spin_lock_irqsave(&zone->lock, flags); 4643 pfn = start_pfn; 4644 while (pfn < end_pfn) { 4645 if (!pfn_valid(pfn)) { 4646 pfn++; 4647 continue; 4648 } 4649 page = pfn_to_page(pfn); 4650 BUG_ON(page_count(page)); 4651 BUG_ON(!PageBuddy(page)); 4652 order = page_order(page); 4653 #ifdef CONFIG_DEBUG_VM 4654 printk(KERN_INFO "remove from free list %lx %d %lx\n", 4655 pfn, 1 << order, end_pfn); 4656 #endif 4657 list_del(&page->lru); 4658 rmv_page_order(page); 4659 zone->free_area[order].nr_free--; 4660 __mod_zone_page_state(zone, NR_FREE_PAGES, 4661 - (1UL << order)); 4662 for (i = 0; i < (1 << order); i++) 4663 SetPageReserved((page+i)); 4664 pfn += (1 << order); 4665 } 4666 spin_unlock_irqrestore(&zone->lock, flags); 4667 } 4668 #endif 4669