1 /* 2 * linux/mm/page_alloc.c 3 * 4 * Manages the free list, the system allocates free pages here. 5 * Note that kmalloc() lives in slab.c 6 * 7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 8 * Swap reorganised 29.12.95, Stephen Tweedie 9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999 10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999 11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999 12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000 13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002 14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton) 15 */ 16 17 #include <linux/stddef.h> 18 #include <linux/mm.h> 19 #include <linux/swap.h> 20 #include <linux/interrupt.h> 21 #include <linux/pagemap.h> 22 #include <linux/jiffies.h> 23 #include <linux/bootmem.h> 24 #include <linux/memblock.h> 25 #include <linux/compiler.h> 26 #include <linux/kernel.h> 27 #include <linux/kasan.h> 28 #include <linux/module.h> 29 #include <linux/suspend.h> 30 #include <linux/pagevec.h> 31 #include <linux/blkdev.h> 32 #include <linux/slab.h> 33 #include <linux/ratelimit.h> 34 #include <linux/oom.h> 35 #include <linux/notifier.h> 36 #include <linux/topology.h> 37 #include <linux/sysctl.h> 38 #include <linux/cpu.h> 39 #include <linux/cpuset.h> 40 #include <linux/memory_hotplug.h> 41 #include <linux/nodemask.h> 42 #include <linux/vmalloc.h> 43 #include <linux/vmstat.h> 44 #include <linux/mempolicy.h> 45 #include <linux/memremap.h> 46 #include <linux/stop_machine.h> 47 #include <linux/sort.h> 48 #include <linux/pfn.h> 49 #include <linux/backing-dev.h> 50 #include <linux/fault-inject.h> 51 #include <linux/page-isolation.h> 52 #include <linux/page_ext.h> 53 #include <linux/debugobjects.h> 54 #include <linux/kmemleak.h> 55 #include <linux/compaction.h> 56 #include <trace/events/kmem.h> 57 #include <trace/events/oom.h> 58 #include <linux/prefetch.h> 59 #include <linux/mm_inline.h> 60 #include <linux/migrate.h> 61 #include <linux/hugetlb.h> 62 #include <linux/sched/rt.h> 63 #include <linux/sched/mm.h> 64 #include <linux/page_owner.h> 65 #include <linux/kthread.h> 66 #include <linux/memcontrol.h> 67 #include <linux/ftrace.h> 68 #include <linux/lockdep.h> 69 #include <linux/nmi.h> 70 71 #include <asm/sections.h> 72 #include <asm/tlbflush.h> 73 #include <asm/div64.h> 74 #include "internal.h" 75 76 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */ 77 static DEFINE_MUTEX(pcp_batch_high_lock); 78 #define MIN_PERCPU_PAGELIST_FRACTION (8) 79 80 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID 81 DEFINE_PER_CPU(int, numa_node); 82 EXPORT_PER_CPU_SYMBOL(numa_node); 83 #endif 84 85 DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key); 86 87 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 88 /* 89 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly. 90 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined. 91 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem() 92 * defined in <linux/topology.h>. 93 */ 94 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */ 95 EXPORT_PER_CPU_SYMBOL(_numa_mem_); 96 int _node_numa_mem_[MAX_NUMNODES]; 97 #endif 98 99 /* work_structs for global per-cpu drains */ 100 DEFINE_MUTEX(pcpu_drain_mutex); 101 DEFINE_PER_CPU(struct work_struct, pcpu_drain); 102 103 #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY 104 volatile unsigned long latent_entropy __latent_entropy; 105 EXPORT_SYMBOL(latent_entropy); 106 #endif 107 108 /* 109 * Array of node states. 110 */ 111 nodemask_t node_states[NR_NODE_STATES] __read_mostly = { 112 [N_POSSIBLE] = NODE_MASK_ALL, 113 [N_ONLINE] = { { [0] = 1UL } }, 114 #ifndef CONFIG_NUMA 115 [N_NORMAL_MEMORY] = { { [0] = 1UL } }, 116 #ifdef CONFIG_HIGHMEM 117 [N_HIGH_MEMORY] = { { [0] = 1UL } }, 118 #endif 119 [N_MEMORY] = { { [0] = 1UL } }, 120 [N_CPU] = { { [0] = 1UL } }, 121 #endif /* NUMA */ 122 }; 123 EXPORT_SYMBOL(node_states); 124 125 /* Protect totalram_pages and zone->managed_pages */ 126 static DEFINE_SPINLOCK(managed_page_count_lock); 127 128 unsigned long totalram_pages __read_mostly; 129 unsigned long totalreserve_pages __read_mostly; 130 unsigned long totalcma_pages __read_mostly; 131 132 int percpu_pagelist_fraction; 133 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK; 134 135 /* 136 * A cached value of the page's pageblock's migratetype, used when the page is 137 * put on a pcplist. Used to avoid the pageblock migratetype lookup when 138 * freeing from pcplists in most cases, at the cost of possibly becoming stale. 139 * Also the migratetype set in the page does not necessarily match the pcplist 140 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any 141 * other index - this ensures that it will be put on the correct CMA freelist. 142 */ 143 static inline int get_pcppage_migratetype(struct page *page) 144 { 145 return page->index; 146 } 147 148 static inline void set_pcppage_migratetype(struct page *page, int migratetype) 149 { 150 page->index = migratetype; 151 } 152 153 #ifdef CONFIG_PM_SLEEP 154 /* 155 * The following functions are used by the suspend/hibernate code to temporarily 156 * change gfp_allowed_mask in order to avoid using I/O during memory allocations 157 * while devices are suspended. To avoid races with the suspend/hibernate code, 158 * they should always be called with pm_mutex held (gfp_allowed_mask also should 159 * only be modified with pm_mutex held, unless the suspend/hibernate code is 160 * guaranteed not to run in parallel with that modification). 161 */ 162 163 static gfp_t saved_gfp_mask; 164 165 void pm_restore_gfp_mask(void) 166 { 167 WARN_ON(!mutex_is_locked(&pm_mutex)); 168 if (saved_gfp_mask) { 169 gfp_allowed_mask = saved_gfp_mask; 170 saved_gfp_mask = 0; 171 } 172 } 173 174 void pm_restrict_gfp_mask(void) 175 { 176 WARN_ON(!mutex_is_locked(&pm_mutex)); 177 WARN_ON(saved_gfp_mask); 178 saved_gfp_mask = gfp_allowed_mask; 179 gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS); 180 } 181 182 bool pm_suspended_storage(void) 183 { 184 if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS)) 185 return false; 186 return true; 187 } 188 #endif /* CONFIG_PM_SLEEP */ 189 190 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE 191 unsigned int pageblock_order __read_mostly; 192 #endif 193 194 static void __free_pages_ok(struct page *page, unsigned int order); 195 196 /* 197 * results with 256, 32 in the lowmem_reserve sysctl: 198 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high) 199 * 1G machine -> (16M dma, 784M normal, 224M high) 200 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA 201 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL 202 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA 203 * 204 * TBD: should special case ZONE_DMA32 machines here - in those we normally 205 * don't need any ZONE_NORMAL reservation 206 */ 207 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = { 208 #ifdef CONFIG_ZONE_DMA 209 256, 210 #endif 211 #ifdef CONFIG_ZONE_DMA32 212 256, 213 #endif 214 #ifdef CONFIG_HIGHMEM 215 32, 216 #endif 217 32, 218 }; 219 220 EXPORT_SYMBOL(totalram_pages); 221 222 static char * const zone_names[MAX_NR_ZONES] = { 223 #ifdef CONFIG_ZONE_DMA 224 "DMA", 225 #endif 226 #ifdef CONFIG_ZONE_DMA32 227 "DMA32", 228 #endif 229 "Normal", 230 #ifdef CONFIG_HIGHMEM 231 "HighMem", 232 #endif 233 "Movable", 234 #ifdef CONFIG_ZONE_DEVICE 235 "Device", 236 #endif 237 }; 238 239 char * const migratetype_names[MIGRATE_TYPES] = { 240 "Unmovable", 241 "Movable", 242 "Reclaimable", 243 "HighAtomic", 244 #ifdef CONFIG_CMA 245 "CMA", 246 #endif 247 #ifdef CONFIG_MEMORY_ISOLATION 248 "Isolate", 249 #endif 250 }; 251 252 compound_page_dtor * const compound_page_dtors[] = { 253 NULL, 254 free_compound_page, 255 #ifdef CONFIG_HUGETLB_PAGE 256 free_huge_page, 257 #endif 258 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 259 free_transhuge_page, 260 #endif 261 }; 262 263 int min_free_kbytes = 1024; 264 int user_min_free_kbytes = -1; 265 int watermark_scale_factor = 10; 266 267 static unsigned long __meminitdata nr_kernel_pages; 268 static unsigned long __meminitdata nr_all_pages; 269 static unsigned long __meminitdata dma_reserve; 270 271 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 272 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES]; 273 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES]; 274 static unsigned long __initdata required_kernelcore; 275 static unsigned long __initdata required_movablecore; 276 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES]; 277 static bool mirrored_kernelcore; 278 279 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */ 280 int movable_zone; 281 EXPORT_SYMBOL(movable_zone); 282 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 283 284 #if MAX_NUMNODES > 1 285 int nr_node_ids __read_mostly = MAX_NUMNODES; 286 int nr_online_nodes __read_mostly = 1; 287 EXPORT_SYMBOL(nr_node_ids); 288 EXPORT_SYMBOL(nr_online_nodes); 289 #endif 290 291 int page_group_by_mobility_disabled __read_mostly; 292 293 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 294 295 /* 296 * Determine how many pages need to be initialized durig early boot 297 * (non-deferred initialization). 298 * The value of first_deferred_pfn will be set later, once non-deferred pages 299 * are initialized, but for now set it ULONG_MAX. 300 */ 301 static inline void reset_deferred_meminit(pg_data_t *pgdat) 302 { 303 phys_addr_t start_addr, end_addr; 304 unsigned long max_pgcnt; 305 unsigned long reserved; 306 307 /* 308 * Initialise at least 2G of a node but also take into account that 309 * two large system hashes that can take up 1GB for 0.25TB/node. 310 */ 311 max_pgcnt = max(2UL << (30 - PAGE_SHIFT), 312 (pgdat->node_spanned_pages >> 8)); 313 314 /* 315 * Compensate the all the memblock reservations (e.g. crash kernel) 316 * from the initial estimation to make sure we will initialize enough 317 * memory to boot. 318 */ 319 start_addr = PFN_PHYS(pgdat->node_start_pfn); 320 end_addr = PFN_PHYS(pgdat->node_start_pfn + max_pgcnt); 321 reserved = memblock_reserved_memory_within(start_addr, end_addr); 322 max_pgcnt += PHYS_PFN(reserved); 323 324 pgdat->static_init_pgcnt = min(max_pgcnt, pgdat->node_spanned_pages); 325 pgdat->first_deferred_pfn = ULONG_MAX; 326 } 327 328 /* Returns true if the struct page for the pfn is uninitialised */ 329 static inline bool __meminit early_page_uninitialised(unsigned long pfn) 330 { 331 int nid = early_pfn_to_nid(pfn); 332 333 if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn) 334 return true; 335 336 return false; 337 } 338 339 /* 340 * Returns false when the remaining initialisation should be deferred until 341 * later in the boot cycle when it can be parallelised. 342 */ 343 static inline bool update_defer_init(pg_data_t *pgdat, 344 unsigned long pfn, unsigned long zone_end, 345 unsigned long *nr_initialised) 346 { 347 /* Always populate low zones for address-contrained allocations */ 348 if (zone_end < pgdat_end_pfn(pgdat)) 349 return true; 350 (*nr_initialised)++; 351 if ((*nr_initialised > pgdat->static_init_pgcnt) && 352 (pfn & (PAGES_PER_SECTION - 1)) == 0) { 353 pgdat->first_deferred_pfn = pfn; 354 return false; 355 } 356 357 return true; 358 } 359 #else 360 static inline void reset_deferred_meminit(pg_data_t *pgdat) 361 { 362 } 363 364 static inline bool early_page_uninitialised(unsigned long pfn) 365 { 366 return false; 367 } 368 369 static inline bool update_defer_init(pg_data_t *pgdat, 370 unsigned long pfn, unsigned long zone_end, 371 unsigned long *nr_initialised) 372 { 373 return true; 374 } 375 #endif 376 377 /* Return a pointer to the bitmap storing bits affecting a block of pages */ 378 static inline unsigned long *get_pageblock_bitmap(struct page *page, 379 unsigned long pfn) 380 { 381 #ifdef CONFIG_SPARSEMEM 382 return __pfn_to_section(pfn)->pageblock_flags; 383 #else 384 return page_zone(page)->pageblock_flags; 385 #endif /* CONFIG_SPARSEMEM */ 386 } 387 388 static inline int pfn_to_bitidx(struct page *page, unsigned long pfn) 389 { 390 #ifdef CONFIG_SPARSEMEM 391 pfn &= (PAGES_PER_SECTION-1); 392 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS; 393 #else 394 pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages); 395 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS; 396 #endif /* CONFIG_SPARSEMEM */ 397 } 398 399 /** 400 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages 401 * @page: The page within the block of interest 402 * @pfn: The target page frame number 403 * @end_bitidx: The last bit of interest to retrieve 404 * @mask: mask of bits that the caller is interested in 405 * 406 * Return: pageblock_bits flags 407 */ 408 static __always_inline unsigned long __get_pfnblock_flags_mask(struct page *page, 409 unsigned long pfn, 410 unsigned long end_bitidx, 411 unsigned long mask) 412 { 413 unsigned long *bitmap; 414 unsigned long bitidx, word_bitidx; 415 unsigned long word; 416 417 bitmap = get_pageblock_bitmap(page, pfn); 418 bitidx = pfn_to_bitidx(page, pfn); 419 word_bitidx = bitidx / BITS_PER_LONG; 420 bitidx &= (BITS_PER_LONG-1); 421 422 word = bitmap[word_bitidx]; 423 bitidx += end_bitidx; 424 return (word >> (BITS_PER_LONG - bitidx - 1)) & mask; 425 } 426 427 unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn, 428 unsigned long end_bitidx, 429 unsigned long mask) 430 { 431 return __get_pfnblock_flags_mask(page, pfn, end_bitidx, mask); 432 } 433 434 static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn) 435 { 436 return __get_pfnblock_flags_mask(page, pfn, PB_migrate_end, MIGRATETYPE_MASK); 437 } 438 439 /** 440 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages 441 * @page: The page within the block of interest 442 * @flags: The flags to set 443 * @pfn: The target page frame number 444 * @end_bitidx: The last bit of interest 445 * @mask: mask of bits that the caller is interested in 446 */ 447 void set_pfnblock_flags_mask(struct page *page, unsigned long flags, 448 unsigned long pfn, 449 unsigned long end_bitidx, 450 unsigned long mask) 451 { 452 unsigned long *bitmap; 453 unsigned long bitidx, word_bitidx; 454 unsigned long old_word, word; 455 456 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4); 457 458 bitmap = get_pageblock_bitmap(page, pfn); 459 bitidx = pfn_to_bitidx(page, pfn); 460 word_bitidx = bitidx / BITS_PER_LONG; 461 bitidx &= (BITS_PER_LONG-1); 462 463 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page); 464 465 bitidx += end_bitidx; 466 mask <<= (BITS_PER_LONG - bitidx - 1); 467 flags <<= (BITS_PER_LONG - bitidx - 1); 468 469 word = READ_ONCE(bitmap[word_bitidx]); 470 for (;;) { 471 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags); 472 if (word == old_word) 473 break; 474 word = old_word; 475 } 476 } 477 478 void set_pageblock_migratetype(struct page *page, int migratetype) 479 { 480 if (unlikely(page_group_by_mobility_disabled && 481 migratetype < MIGRATE_PCPTYPES)) 482 migratetype = MIGRATE_UNMOVABLE; 483 484 set_pageblock_flags_group(page, (unsigned long)migratetype, 485 PB_migrate, PB_migrate_end); 486 } 487 488 #ifdef CONFIG_DEBUG_VM 489 static int page_outside_zone_boundaries(struct zone *zone, struct page *page) 490 { 491 int ret = 0; 492 unsigned seq; 493 unsigned long pfn = page_to_pfn(page); 494 unsigned long sp, start_pfn; 495 496 do { 497 seq = zone_span_seqbegin(zone); 498 start_pfn = zone->zone_start_pfn; 499 sp = zone->spanned_pages; 500 if (!zone_spans_pfn(zone, pfn)) 501 ret = 1; 502 } while (zone_span_seqretry(zone, seq)); 503 504 if (ret) 505 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n", 506 pfn, zone_to_nid(zone), zone->name, 507 start_pfn, start_pfn + sp); 508 509 return ret; 510 } 511 512 static int page_is_consistent(struct zone *zone, struct page *page) 513 { 514 if (!pfn_valid_within(page_to_pfn(page))) 515 return 0; 516 if (zone != page_zone(page)) 517 return 0; 518 519 return 1; 520 } 521 /* 522 * Temporary debugging check for pages not lying within a given zone. 523 */ 524 static int __maybe_unused bad_range(struct zone *zone, struct page *page) 525 { 526 if (page_outside_zone_boundaries(zone, page)) 527 return 1; 528 if (!page_is_consistent(zone, page)) 529 return 1; 530 531 return 0; 532 } 533 #else 534 static inline int __maybe_unused bad_range(struct zone *zone, struct page *page) 535 { 536 return 0; 537 } 538 #endif 539 540 static void bad_page(struct page *page, const char *reason, 541 unsigned long bad_flags) 542 { 543 static unsigned long resume; 544 static unsigned long nr_shown; 545 static unsigned long nr_unshown; 546 547 /* 548 * Allow a burst of 60 reports, then keep quiet for that minute; 549 * or allow a steady drip of one report per second. 550 */ 551 if (nr_shown == 60) { 552 if (time_before(jiffies, resume)) { 553 nr_unshown++; 554 goto out; 555 } 556 if (nr_unshown) { 557 pr_alert( 558 "BUG: Bad page state: %lu messages suppressed\n", 559 nr_unshown); 560 nr_unshown = 0; 561 } 562 nr_shown = 0; 563 } 564 if (nr_shown++ == 0) 565 resume = jiffies + 60 * HZ; 566 567 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n", 568 current->comm, page_to_pfn(page)); 569 __dump_page(page, reason); 570 bad_flags &= page->flags; 571 if (bad_flags) 572 pr_alert("bad because of flags: %#lx(%pGp)\n", 573 bad_flags, &bad_flags); 574 dump_page_owner(page); 575 576 print_modules(); 577 dump_stack(); 578 out: 579 /* Leave bad fields for debug, except PageBuddy could make trouble */ 580 page_mapcount_reset(page); /* remove PageBuddy */ 581 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 582 } 583 584 /* 585 * Higher-order pages are called "compound pages". They are structured thusly: 586 * 587 * The first PAGE_SIZE page is called the "head page" and have PG_head set. 588 * 589 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded 590 * in bit 0 of page->compound_head. The rest of bits is pointer to head page. 591 * 592 * The first tail page's ->compound_dtor holds the offset in array of compound 593 * page destructors. See compound_page_dtors. 594 * 595 * The first tail page's ->compound_order holds the order of allocation. 596 * This usage means that zero-order pages may not be compound. 597 */ 598 599 void free_compound_page(struct page *page) 600 { 601 __free_pages_ok(page, compound_order(page)); 602 } 603 604 void prep_compound_page(struct page *page, unsigned int order) 605 { 606 int i; 607 int nr_pages = 1 << order; 608 609 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR); 610 set_compound_order(page, order); 611 __SetPageHead(page); 612 for (i = 1; i < nr_pages; i++) { 613 struct page *p = page + i; 614 set_page_count(p, 0); 615 p->mapping = TAIL_MAPPING; 616 set_compound_head(p, page); 617 } 618 atomic_set(compound_mapcount_ptr(page), -1); 619 } 620 621 #ifdef CONFIG_DEBUG_PAGEALLOC 622 unsigned int _debug_guardpage_minorder; 623 bool _debug_pagealloc_enabled __read_mostly 624 = IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT); 625 EXPORT_SYMBOL(_debug_pagealloc_enabled); 626 bool _debug_guardpage_enabled __read_mostly; 627 628 static int __init early_debug_pagealloc(char *buf) 629 { 630 if (!buf) 631 return -EINVAL; 632 return kstrtobool(buf, &_debug_pagealloc_enabled); 633 } 634 early_param("debug_pagealloc", early_debug_pagealloc); 635 636 static bool need_debug_guardpage(void) 637 { 638 /* If we don't use debug_pagealloc, we don't need guard page */ 639 if (!debug_pagealloc_enabled()) 640 return false; 641 642 if (!debug_guardpage_minorder()) 643 return false; 644 645 return true; 646 } 647 648 static void init_debug_guardpage(void) 649 { 650 if (!debug_pagealloc_enabled()) 651 return; 652 653 if (!debug_guardpage_minorder()) 654 return; 655 656 _debug_guardpage_enabled = true; 657 } 658 659 struct page_ext_operations debug_guardpage_ops = { 660 .need = need_debug_guardpage, 661 .init = init_debug_guardpage, 662 }; 663 664 static int __init debug_guardpage_minorder_setup(char *buf) 665 { 666 unsigned long res; 667 668 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) { 669 pr_err("Bad debug_guardpage_minorder value\n"); 670 return 0; 671 } 672 _debug_guardpage_minorder = res; 673 pr_info("Setting debug_guardpage_minorder to %lu\n", res); 674 return 0; 675 } 676 early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup); 677 678 static inline bool set_page_guard(struct zone *zone, struct page *page, 679 unsigned int order, int migratetype) 680 { 681 struct page_ext *page_ext; 682 683 if (!debug_guardpage_enabled()) 684 return false; 685 686 if (order >= debug_guardpage_minorder()) 687 return false; 688 689 page_ext = lookup_page_ext(page); 690 if (unlikely(!page_ext)) 691 return false; 692 693 __set_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags); 694 695 INIT_LIST_HEAD(&page->lru); 696 set_page_private(page, order); 697 /* Guard pages are not available for any usage */ 698 __mod_zone_freepage_state(zone, -(1 << order), migratetype); 699 700 return true; 701 } 702 703 static inline void clear_page_guard(struct zone *zone, struct page *page, 704 unsigned int order, int migratetype) 705 { 706 struct page_ext *page_ext; 707 708 if (!debug_guardpage_enabled()) 709 return; 710 711 page_ext = lookup_page_ext(page); 712 if (unlikely(!page_ext)) 713 return; 714 715 __clear_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags); 716 717 set_page_private(page, 0); 718 if (!is_migrate_isolate(migratetype)) 719 __mod_zone_freepage_state(zone, (1 << order), migratetype); 720 } 721 #else 722 struct page_ext_operations debug_guardpage_ops; 723 static inline bool set_page_guard(struct zone *zone, struct page *page, 724 unsigned int order, int migratetype) { return false; } 725 static inline void clear_page_guard(struct zone *zone, struct page *page, 726 unsigned int order, int migratetype) {} 727 #endif 728 729 static inline void set_page_order(struct page *page, unsigned int order) 730 { 731 set_page_private(page, order); 732 __SetPageBuddy(page); 733 } 734 735 static inline void rmv_page_order(struct page *page) 736 { 737 __ClearPageBuddy(page); 738 set_page_private(page, 0); 739 } 740 741 /* 742 * This function checks whether a page is free && is the buddy 743 * we can do coalesce a page and its buddy if 744 * (a) the buddy is not in a hole (check before calling!) && 745 * (b) the buddy is in the buddy system && 746 * (c) a page and its buddy have the same order && 747 * (d) a page and its buddy are in the same zone. 748 * 749 * For recording whether a page is in the buddy system, we set ->_mapcount 750 * PAGE_BUDDY_MAPCOUNT_VALUE. 751 * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is 752 * serialized by zone->lock. 753 * 754 * For recording page's order, we use page_private(page). 755 */ 756 static inline int page_is_buddy(struct page *page, struct page *buddy, 757 unsigned int order) 758 { 759 if (page_is_guard(buddy) && page_order(buddy) == order) { 760 if (page_zone_id(page) != page_zone_id(buddy)) 761 return 0; 762 763 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy); 764 765 return 1; 766 } 767 768 if (PageBuddy(buddy) && page_order(buddy) == order) { 769 /* 770 * zone check is done late to avoid uselessly 771 * calculating zone/node ids for pages that could 772 * never merge. 773 */ 774 if (page_zone_id(page) != page_zone_id(buddy)) 775 return 0; 776 777 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy); 778 779 return 1; 780 } 781 return 0; 782 } 783 784 /* 785 * Freeing function for a buddy system allocator. 786 * 787 * The concept of a buddy system is to maintain direct-mapped table 788 * (containing bit values) for memory blocks of various "orders". 789 * The bottom level table contains the map for the smallest allocatable 790 * units of memory (here, pages), and each level above it describes 791 * pairs of units from the levels below, hence, "buddies". 792 * At a high level, all that happens here is marking the table entry 793 * at the bottom level available, and propagating the changes upward 794 * as necessary, plus some accounting needed to play nicely with other 795 * parts of the VM system. 796 * At each level, we keep a list of pages, which are heads of continuous 797 * free pages of length of (1 << order) and marked with _mapcount 798 * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page) 799 * field. 800 * So when we are allocating or freeing one, we can derive the state of the 801 * other. That is, if we allocate a small block, and both were 802 * free, the remainder of the region must be split into blocks. 803 * If a block is freed, and its buddy is also free, then this 804 * triggers coalescing into a block of larger size. 805 * 806 * -- nyc 807 */ 808 809 static inline void __free_one_page(struct page *page, 810 unsigned long pfn, 811 struct zone *zone, unsigned int order, 812 int migratetype) 813 { 814 unsigned long combined_pfn; 815 unsigned long uninitialized_var(buddy_pfn); 816 struct page *buddy; 817 unsigned int max_order; 818 819 max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1); 820 821 VM_BUG_ON(!zone_is_initialized(zone)); 822 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page); 823 824 VM_BUG_ON(migratetype == -1); 825 if (likely(!is_migrate_isolate(migratetype))) 826 __mod_zone_freepage_state(zone, 1 << order, migratetype); 827 828 VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page); 829 VM_BUG_ON_PAGE(bad_range(zone, page), page); 830 831 continue_merging: 832 while (order < max_order - 1) { 833 buddy_pfn = __find_buddy_pfn(pfn, order); 834 buddy = page + (buddy_pfn - pfn); 835 836 if (!pfn_valid_within(buddy_pfn)) 837 goto done_merging; 838 if (!page_is_buddy(page, buddy, order)) 839 goto done_merging; 840 /* 841 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page, 842 * merge with it and move up one order. 843 */ 844 if (page_is_guard(buddy)) { 845 clear_page_guard(zone, buddy, order, migratetype); 846 } else { 847 list_del(&buddy->lru); 848 zone->free_area[order].nr_free--; 849 rmv_page_order(buddy); 850 } 851 combined_pfn = buddy_pfn & pfn; 852 page = page + (combined_pfn - pfn); 853 pfn = combined_pfn; 854 order++; 855 } 856 if (max_order < MAX_ORDER) { 857 /* If we are here, it means order is >= pageblock_order. 858 * We want to prevent merge between freepages on isolate 859 * pageblock and normal pageblock. Without this, pageblock 860 * isolation could cause incorrect freepage or CMA accounting. 861 * 862 * We don't want to hit this code for the more frequent 863 * low-order merging. 864 */ 865 if (unlikely(has_isolate_pageblock(zone))) { 866 int buddy_mt; 867 868 buddy_pfn = __find_buddy_pfn(pfn, order); 869 buddy = page + (buddy_pfn - pfn); 870 buddy_mt = get_pageblock_migratetype(buddy); 871 872 if (migratetype != buddy_mt 873 && (is_migrate_isolate(migratetype) || 874 is_migrate_isolate(buddy_mt))) 875 goto done_merging; 876 } 877 max_order++; 878 goto continue_merging; 879 } 880 881 done_merging: 882 set_page_order(page, order); 883 884 /* 885 * If this is not the largest possible page, check if the buddy 886 * of the next-highest order is free. If it is, it's possible 887 * that pages are being freed that will coalesce soon. In case, 888 * that is happening, add the free page to the tail of the list 889 * so it's less likely to be used soon and more likely to be merged 890 * as a higher order page 891 */ 892 if ((order < MAX_ORDER-2) && pfn_valid_within(buddy_pfn)) { 893 struct page *higher_page, *higher_buddy; 894 combined_pfn = buddy_pfn & pfn; 895 higher_page = page + (combined_pfn - pfn); 896 buddy_pfn = __find_buddy_pfn(combined_pfn, order + 1); 897 higher_buddy = higher_page + (buddy_pfn - combined_pfn); 898 if (pfn_valid_within(buddy_pfn) && 899 page_is_buddy(higher_page, higher_buddy, order + 1)) { 900 list_add_tail(&page->lru, 901 &zone->free_area[order].free_list[migratetype]); 902 goto out; 903 } 904 } 905 906 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]); 907 out: 908 zone->free_area[order].nr_free++; 909 } 910 911 /* 912 * A bad page could be due to a number of fields. Instead of multiple branches, 913 * try and check multiple fields with one check. The caller must do a detailed 914 * check if necessary. 915 */ 916 static inline bool page_expected_state(struct page *page, 917 unsigned long check_flags) 918 { 919 if (unlikely(atomic_read(&page->_mapcount) != -1)) 920 return false; 921 922 if (unlikely((unsigned long)page->mapping | 923 page_ref_count(page) | 924 #ifdef CONFIG_MEMCG 925 (unsigned long)page->mem_cgroup | 926 #endif 927 (page->flags & check_flags))) 928 return false; 929 930 return true; 931 } 932 933 static void free_pages_check_bad(struct page *page) 934 { 935 const char *bad_reason; 936 unsigned long bad_flags; 937 938 bad_reason = NULL; 939 bad_flags = 0; 940 941 if (unlikely(atomic_read(&page->_mapcount) != -1)) 942 bad_reason = "nonzero mapcount"; 943 if (unlikely(page->mapping != NULL)) 944 bad_reason = "non-NULL mapping"; 945 if (unlikely(page_ref_count(page) != 0)) 946 bad_reason = "nonzero _refcount"; 947 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) { 948 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set"; 949 bad_flags = PAGE_FLAGS_CHECK_AT_FREE; 950 } 951 #ifdef CONFIG_MEMCG 952 if (unlikely(page->mem_cgroup)) 953 bad_reason = "page still charged to cgroup"; 954 #endif 955 bad_page(page, bad_reason, bad_flags); 956 } 957 958 static inline int free_pages_check(struct page *page) 959 { 960 if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE))) 961 return 0; 962 963 /* Something has gone sideways, find it */ 964 free_pages_check_bad(page); 965 return 1; 966 } 967 968 static int free_tail_pages_check(struct page *head_page, struct page *page) 969 { 970 int ret = 1; 971 972 /* 973 * We rely page->lru.next never has bit 0 set, unless the page 974 * is PageTail(). Let's make sure that's true even for poisoned ->lru. 975 */ 976 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1); 977 978 if (!IS_ENABLED(CONFIG_DEBUG_VM)) { 979 ret = 0; 980 goto out; 981 } 982 switch (page - head_page) { 983 case 1: 984 /* the first tail page: ->mapping is compound_mapcount() */ 985 if (unlikely(compound_mapcount(page))) { 986 bad_page(page, "nonzero compound_mapcount", 0); 987 goto out; 988 } 989 break; 990 case 2: 991 /* 992 * the second tail page: ->mapping is 993 * page_deferred_list().next -- ignore value. 994 */ 995 break; 996 default: 997 if (page->mapping != TAIL_MAPPING) { 998 bad_page(page, "corrupted mapping in tail page", 0); 999 goto out; 1000 } 1001 break; 1002 } 1003 if (unlikely(!PageTail(page))) { 1004 bad_page(page, "PageTail not set", 0); 1005 goto out; 1006 } 1007 if (unlikely(compound_head(page) != head_page)) { 1008 bad_page(page, "compound_head not consistent", 0); 1009 goto out; 1010 } 1011 ret = 0; 1012 out: 1013 page->mapping = NULL; 1014 clear_compound_head(page); 1015 return ret; 1016 } 1017 1018 static __always_inline bool free_pages_prepare(struct page *page, 1019 unsigned int order, bool check_free) 1020 { 1021 int bad = 0; 1022 1023 VM_BUG_ON_PAGE(PageTail(page), page); 1024 1025 trace_mm_page_free(page, order); 1026 1027 /* 1028 * Check tail pages before head page information is cleared to 1029 * avoid checking PageCompound for order-0 pages. 1030 */ 1031 if (unlikely(order)) { 1032 bool compound = PageCompound(page); 1033 int i; 1034 1035 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page); 1036 1037 if (compound) 1038 ClearPageDoubleMap(page); 1039 for (i = 1; i < (1 << order); i++) { 1040 if (compound) 1041 bad += free_tail_pages_check(page, page + i); 1042 if (unlikely(free_pages_check(page + i))) { 1043 bad++; 1044 continue; 1045 } 1046 (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP; 1047 } 1048 } 1049 if (PageMappingFlags(page)) 1050 page->mapping = NULL; 1051 if (memcg_kmem_enabled() && PageKmemcg(page)) 1052 memcg_kmem_uncharge(page, order); 1053 if (check_free) 1054 bad += free_pages_check(page); 1055 if (bad) 1056 return false; 1057 1058 page_cpupid_reset_last(page); 1059 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP; 1060 reset_page_owner(page, order); 1061 1062 if (!PageHighMem(page)) { 1063 debug_check_no_locks_freed(page_address(page), 1064 PAGE_SIZE << order); 1065 debug_check_no_obj_freed(page_address(page), 1066 PAGE_SIZE << order); 1067 } 1068 arch_free_page(page, order); 1069 kernel_poison_pages(page, 1 << order, 0); 1070 kernel_map_pages(page, 1 << order, 0); 1071 kasan_free_pages(page, order); 1072 1073 return true; 1074 } 1075 1076 #ifdef CONFIG_DEBUG_VM 1077 static inline bool free_pcp_prepare(struct page *page) 1078 { 1079 return free_pages_prepare(page, 0, true); 1080 } 1081 1082 static inline bool bulkfree_pcp_prepare(struct page *page) 1083 { 1084 return false; 1085 } 1086 #else 1087 static bool free_pcp_prepare(struct page *page) 1088 { 1089 return free_pages_prepare(page, 0, false); 1090 } 1091 1092 static bool bulkfree_pcp_prepare(struct page *page) 1093 { 1094 return free_pages_check(page); 1095 } 1096 #endif /* CONFIG_DEBUG_VM */ 1097 1098 /* 1099 * Frees a number of pages from the PCP lists 1100 * Assumes all pages on list are in same zone, and of same order. 1101 * count is the number of pages to free. 1102 * 1103 * If the zone was previously in an "all pages pinned" state then look to 1104 * see if this freeing clears that state. 1105 * 1106 * And clear the zone's pages_scanned counter, to hold off the "all pages are 1107 * pinned" detection logic. 1108 */ 1109 static void free_pcppages_bulk(struct zone *zone, int count, 1110 struct per_cpu_pages *pcp) 1111 { 1112 int migratetype = 0; 1113 int batch_free = 0; 1114 bool isolated_pageblocks; 1115 1116 spin_lock(&zone->lock); 1117 isolated_pageblocks = has_isolate_pageblock(zone); 1118 1119 while (count) { 1120 struct page *page; 1121 struct list_head *list; 1122 1123 /* 1124 * Remove pages from lists in a round-robin fashion. A 1125 * batch_free count is maintained that is incremented when an 1126 * empty list is encountered. This is so more pages are freed 1127 * off fuller lists instead of spinning excessively around empty 1128 * lists 1129 */ 1130 do { 1131 batch_free++; 1132 if (++migratetype == MIGRATE_PCPTYPES) 1133 migratetype = 0; 1134 list = &pcp->lists[migratetype]; 1135 } while (list_empty(list)); 1136 1137 /* This is the only non-empty list. Free them all. */ 1138 if (batch_free == MIGRATE_PCPTYPES) 1139 batch_free = count; 1140 1141 do { 1142 int mt; /* migratetype of the to-be-freed page */ 1143 1144 page = list_last_entry(list, struct page, lru); 1145 /* must delete as __free_one_page list manipulates */ 1146 list_del(&page->lru); 1147 1148 mt = get_pcppage_migratetype(page); 1149 /* MIGRATE_ISOLATE page should not go to pcplists */ 1150 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page); 1151 /* Pageblock could have been isolated meanwhile */ 1152 if (unlikely(isolated_pageblocks)) 1153 mt = get_pageblock_migratetype(page); 1154 1155 if (bulkfree_pcp_prepare(page)) 1156 continue; 1157 1158 __free_one_page(page, page_to_pfn(page), zone, 0, mt); 1159 trace_mm_page_pcpu_drain(page, 0, mt); 1160 } while (--count && --batch_free && !list_empty(list)); 1161 } 1162 spin_unlock(&zone->lock); 1163 } 1164 1165 static void free_one_page(struct zone *zone, 1166 struct page *page, unsigned long pfn, 1167 unsigned int order, 1168 int migratetype) 1169 { 1170 spin_lock(&zone->lock); 1171 if (unlikely(has_isolate_pageblock(zone) || 1172 is_migrate_isolate(migratetype))) { 1173 migratetype = get_pfnblock_migratetype(page, pfn); 1174 } 1175 __free_one_page(page, pfn, zone, order, migratetype); 1176 spin_unlock(&zone->lock); 1177 } 1178 1179 static void __meminit __init_single_page(struct page *page, unsigned long pfn, 1180 unsigned long zone, int nid) 1181 { 1182 mm_zero_struct_page(page); 1183 set_page_links(page, zone, nid, pfn); 1184 init_page_count(page); 1185 page_mapcount_reset(page); 1186 page_cpupid_reset_last(page); 1187 1188 INIT_LIST_HEAD(&page->lru); 1189 #ifdef WANT_PAGE_VIRTUAL 1190 /* The shift won't overflow because ZONE_NORMAL is below 4G. */ 1191 if (!is_highmem_idx(zone)) 1192 set_page_address(page, __va(pfn << PAGE_SHIFT)); 1193 #endif 1194 } 1195 1196 static void __meminit __init_single_pfn(unsigned long pfn, unsigned long zone, 1197 int nid) 1198 { 1199 return __init_single_page(pfn_to_page(pfn), pfn, zone, nid); 1200 } 1201 1202 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 1203 static void __meminit init_reserved_page(unsigned long pfn) 1204 { 1205 pg_data_t *pgdat; 1206 int nid, zid; 1207 1208 if (!early_page_uninitialised(pfn)) 1209 return; 1210 1211 nid = early_pfn_to_nid(pfn); 1212 pgdat = NODE_DATA(nid); 1213 1214 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 1215 struct zone *zone = &pgdat->node_zones[zid]; 1216 1217 if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone)) 1218 break; 1219 } 1220 __init_single_pfn(pfn, zid, nid); 1221 } 1222 #else 1223 static inline void init_reserved_page(unsigned long pfn) 1224 { 1225 } 1226 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */ 1227 1228 /* 1229 * Initialised pages do not have PageReserved set. This function is 1230 * called for each range allocated by the bootmem allocator and 1231 * marks the pages PageReserved. The remaining valid pages are later 1232 * sent to the buddy page allocator. 1233 */ 1234 void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end) 1235 { 1236 unsigned long start_pfn = PFN_DOWN(start); 1237 unsigned long end_pfn = PFN_UP(end); 1238 1239 for (; start_pfn < end_pfn; start_pfn++) { 1240 if (pfn_valid(start_pfn)) { 1241 struct page *page = pfn_to_page(start_pfn); 1242 1243 init_reserved_page(start_pfn); 1244 1245 /* Avoid false-positive PageTail() */ 1246 INIT_LIST_HEAD(&page->lru); 1247 1248 SetPageReserved(page); 1249 } 1250 } 1251 } 1252 1253 static void __free_pages_ok(struct page *page, unsigned int order) 1254 { 1255 unsigned long flags; 1256 int migratetype; 1257 unsigned long pfn = page_to_pfn(page); 1258 1259 if (!free_pages_prepare(page, order, true)) 1260 return; 1261 1262 migratetype = get_pfnblock_migratetype(page, pfn); 1263 local_irq_save(flags); 1264 __count_vm_events(PGFREE, 1 << order); 1265 free_one_page(page_zone(page), page, pfn, order, migratetype); 1266 local_irq_restore(flags); 1267 } 1268 1269 static void __init __free_pages_boot_core(struct page *page, unsigned int order) 1270 { 1271 unsigned int nr_pages = 1 << order; 1272 struct page *p = page; 1273 unsigned int loop; 1274 1275 prefetchw(p); 1276 for (loop = 0; loop < (nr_pages - 1); loop++, p++) { 1277 prefetchw(p + 1); 1278 __ClearPageReserved(p); 1279 set_page_count(p, 0); 1280 } 1281 __ClearPageReserved(p); 1282 set_page_count(p, 0); 1283 1284 page_zone(page)->managed_pages += nr_pages; 1285 set_page_refcounted(page); 1286 __free_pages(page, order); 1287 } 1288 1289 #if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \ 1290 defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) 1291 1292 static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata; 1293 1294 int __meminit early_pfn_to_nid(unsigned long pfn) 1295 { 1296 static DEFINE_SPINLOCK(early_pfn_lock); 1297 int nid; 1298 1299 spin_lock(&early_pfn_lock); 1300 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache); 1301 if (nid < 0) 1302 nid = first_online_node; 1303 spin_unlock(&early_pfn_lock); 1304 1305 return nid; 1306 } 1307 #endif 1308 1309 #ifdef CONFIG_NODES_SPAN_OTHER_NODES 1310 static inline bool __meminit __maybe_unused 1311 meminit_pfn_in_nid(unsigned long pfn, int node, 1312 struct mminit_pfnnid_cache *state) 1313 { 1314 int nid; 1315 1316 nid = __early_pfn_to_nid(pfn, state); 1317 if (nid >= 0 && nid != node) 1318 return false; 1319 return true; 1320 } 1321 1322 /* Only safe to use early in boot when initialisation is single-threaded */ 1323 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node) 1324 { 1325 return meminit_pfn_in_nid(pfn, node, &early_pfnnid_cache); 1326 } 1327 1328 #else 1329 1330 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node) 1331 { 1332 return true; 1333 } 1334 static inline bool __meminit __maybe_unused 1335 meminit_pfn_in_nid(unsigned long pfn, int node, 1336 struct mminit_pfnnid_cache *state) 1337 { 1338 return true; 1339 } 1340 #endif 1341 1342 1343 void __init __free_pages_bootmem(struct page *page, unsigned long pfn, 1344 unsigned int order) 1345 { 1346 if (early_page_uninitialised(pfn)) 1347 return; 1348 return __free_pages_boot_core(page, order); 1349 } 1350 1351 /* 1352 * Check that the whole (or subset of) a pageblock given by the interval of 1353 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it 1354 * with the migration of free compaction scanner. The scanners then need to 1355 * use only pfn_valid_within() check for arches that allow holes within 1356 * pageblocks. 1357 * 1358 * Return struct page pointer of start_pfn, or NULL if checks were not passed. 1359 * 1360 * It's possible on some configurations to have a setup like node0 node1 node0 1361 * i.e. it's possible that all pages within a zones range of pages do not 1362 * belong to a single zone. We assume that a border between node0 and node1 1363 * can occur within a single pageblock, but not a node0 node1 node0 1364 * interleaving within a single pageblock. It is therefore sufficient to check 1365 * the first and last page of a pageblock and avoid checking each individual 1366 * page in a pageblock. 1367 */ 1368 struct page *__pageblock_pfn_to_page(unsigned long start_pfn, 1369 unsigned long end_pfn, struct zone *zone) 1370 { 1371 struct page *start_page; 1372 struct page *end_page; 1373 1374 /* end_pfn is one past the range we are checking */ 1375 end_pfn--; 1376 1377 if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn)) 1378 return NULL; 1379 1380 start_page = pfn_to_online_page(start_pfn); 1381 if (!start_page) 1382 return NULL; 1383 1384 if (page_zone(start_page) != zone) 1385 return NULL; 1386 1387 end_page = pfn_to_page(end_pfn); 1388 1389 /* This gives a shorter code than deriving page_zone(end_page) */ 1390 if (page_zone_id(start_page) != page_zone_id(end_page)) 1391 return NULL; 1392 1393 return start_page; 1394 } 1395 1396 void set_zone_contiguous(struct zone *zone) 1397 { 1398 unsigned long block_start_pfn = zone->zone_start_pfn; 1399 unsigned long block_end_pfn; 1400 1401 block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages); 1402 for (; block_start_pfn < zone_end_pfn(zone); 1403 block_start_pfn = block_end_pfn, 1404 block_end_pfn += pageblock_nr_pages) { 1405 1406 block_end_pfn = min(block_end_pfn, zone_end_pfn(zone)); 1407 1408 if (!__pageblock_pfn_to_page(block_start_pfn, 1409 block_end_pfn, zone)) 1410 return; 1411 } 1412 1413 /* We confirm that there is no hole */ 1414 zone->contiguous = true; 1415 } 1416 1417 void clear_zone_contiguous(struct zone *zone) 1418 { 1419 zone->contiguous = false; 1420 } 1421 1422 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 1423 static void __init deferred_free_range(unsigned long pfn, 1424 unsigned long nr_pages) 1425 { 1426 struct page *page; 1427 unsigned long i; 1428 1429 if (!nr_pages) 1430 return; 1431 1432 page = pfn_to_page(pfn); 1433 1434 /* Free a large naturally-aligned chunk if possible */ 1435 if (nr_pages == pageblock_nr_pages && 1436 (pfn & (pageblock_nr_pages - 1)) == 0) { 1437 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 1438 __free_pages_boot_core(page, pageblock_order); 1439 return; 1440 } 1441 1442 for (i = 0; i < nr_pages; i++, page++, pfn++) { 1443 if ((pfn & (pageblock_nr_pages - 1)) == 0) 1444 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 1445 __free_pages_boot_core(page, 0); 1446 } 1447 } 1448 1449 /* Completion tracking for deferred_init_memmap() threads */ 1450 static atomic_t pgdat_init_n_undone __initdata; 1451 static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp); 1452 1453 static inline void __init pgdat_init_report_one_done(void) 1454 { 1455 if (atomic_dec_and_test(&pgdat_init_n_undone)) 1456 complete(&pgdat_init_all_done_comp); 1457 } 1458 1459 /* 1460 * Helper for deferred_init_range, free the given range, reset the counters, and 1461 * return number of pages freed. 1462 */ 1463 static inline unsigned long __init __def_free(unsigned long *nr_free, 1464 unsigned long *free_base_pfn, 1465 struct page **page) 1466 { 1467 unsigned long nr = *nr_free; 1468 1469 deferred_free_range(*free_base_pfn, nr); 1470 *free_base_pfn = 0; 1471 *nr_free = 0; 1472 *page = NULL; 1473 1474 return nr; 1475 } 1476 1477 static unsigned long __init deferred_init_range(int nid, int zid, 1478 unsigned long start_pfn, 1479 unsigned long end_pfn) 1480 { 1481 struct mminit_pfnnid_cache nid_init_state = { }; 1482 unsigned long nr_pgmask = pageblock_nr_pages - 1; 1483 unsigned long free_base_pfn = 0; 1484 unsigned long nr_pages = 0; 1485 unsigned long nr_free = 0; 1486 struct page *page = NULL; 1487 unsigned long pfn; 1488 1489 /* 1490 * First we check if pfn is valid on architectures where it is possible 1491 * to have holes within pageblock_nr_pages. On systems where it is not 1492 * possible, this function is optimized out. 1493 * 1494 * Then, we check if a current large page is valid by only checking the 1495 * validity of the head pfn. 1496 * 1497 * meminit_pfn_in_nid is checked on systems where pfns can interleave 1498 * within a node: a pfn is between start and end of a node, but does not 1499 * belong to this memory node. 1500 * 1501 * Finally, we minimize pfn page lookups and scheduler checks by 1502 * performing it only once every pageblock_nr_pages. 1503 * 1504 * We do it in two loops: first we initialize struct page, than free to 1505 * buddy allocator, becuse while we are freeing pages we can access 1506 * pages that are ahead (computing buddy page in __free_one_page()). 1507 */ 1508 for (pfn = start_pfn; pfn < end_pfn; pfn++) { 1509 if (!pfn_valid_within(pfn)) 1510 continue; 1511 if ((pfn & nr_pgmask) || pfn_valid(pfn)) { 1512 if (meminit_pfn_in_nid(pfn, nid, &nid_init_state)) { 1513 if (page && (pfn & nr_pgmask)) 1514 page++; 1515 else 1516 page = pfn_to_page(pfn); 1517 __init_single_page(page, pfn, zid, nid); 1518 cond_resched(); 1519 } 1520 } 1521 } 1522 1523 page = NULL; 1524 for (pfn = start_pfn; pfn < end_pfn; pfn++) { 1525 if (!pfn_valid_within(pfn)) { 1526 nr_pages += __def_free(&nr_free, &free_base_pfn, &page); 1527 } else if (!(pfn & nr_pgmask) && !pfn_valid(pfn)) { 1528 nr_pages += __def_free(&nr_free, &free_base_pfn, &page); 1529 } else if (!meminit_pfn_in_nid(pfn, nid, &nid_init_state)) { 1530 nr_pages += __def_free(&nr_free, &free_base_pfn, &page); 1531 } else if (page && (pfn & nr_pgmask)) { 1532 page++; 1533 nr_free++; 1534 } else { 1535 nr_pages += __def_free(&nr_free, &free_base_pfn, &page); 1536 page = pfn_to_page(pfn); 1537 free_base_pfn = pfn; 1538 nr_free = 1; 1539 cond_resched(); 1540 } 1541 } 1542 /* Free the last block of pages to allocator */ 1543 nr_pages += __def_free(&nr_free, &free_base_pfn, &page); 1544 1545 return nr_pages; 1546 } 1547 1548 /* Initialise remaining memory on a node */ 1549 static int __init deferred_init_memmap(void *data) 1550 { 1551 pg_data_t *pgdat = data; 1552 int nid = pgdat->node_id; 1553 unsigned long start = jiffies; 1554 unsigned long nr_pages = 0; 1555 unsigned long spfn, epfn; 1556 phys_addr_t spa, epa; 1557 int zid; 1558 struct zone *zone; 1559 unsigned long first_init_pfn = pgdat->first_deferred_pfn; 1560 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id); 1561 u64 i; 1562 1563 if (first_init_pfn == ULONG_MAX) { 1564 pgdat_init_report_one_done(); 1565 return 0; 1566 } 1567 1568 /* Bind memory initialisation thread to a local node if possible */ 1569 if (!cpumask_empty(cpumask)) 1570 set_cpus_allowed_ptr(current, cpumask); 1571 1572 /* Sanity check boundaries */ 1573 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn); 1574 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat)); 1575 pgdat->first_deferred_pfn = ULONG_MAX; 1576 1577 /* Only the highest zone is deferred so find it */ 1578 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 1579 zone = pgdat->node_zones + zid; 1580 if (first_init_pfn < zone_end_pfn(zone)) 1581 break; 1582 } 1583 first_init_pfn = max(zone->zone_start_pfn, first_init_pfn); 1584 1585 for_each_free_mem_range(i, nid, MEMBLOCK_NONE, &spa, &epa, NULL) { 1586 spfn = max_t(unsigned long, first_init_pfn, PFN_UP(spa)); 1587 epfn = min_t(unsigned long, zone_end_pfn(zone), PFN_DOWN(epa)); 1588 nr_pages += deferred_init_range(nid, zid, spfn, epfn); 1589 } 1590 1591 /* Sanity check that the next zone really is unpopulated */ 1592 WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone)); 1593 1594 pr_info("node %d initialised, %lu pages in %ums\n", nid, nr_pages, 1595 jiffies_to_msecs(jiffies - start)); 1596 1597 pgdat_init_report_one_done(); 1598 return 0; 1599 } 1600 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */ 1601 1602 void __init page_alloc_init_late(void) 1603 { 1604 struct zone *zone; 1605 1606 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 1607 int nid; 1608 1609 /* There will be num_node_state(N_MEMORY) threads */ 1610 atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY)); 1611 for_each_node_state(nid, N_MEMORY) { 1612 kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid); 1613 } 1614 1615 /* Block until all are initialised */ 1616 wait_for_completion(&pgdat_init_all_done_comp); 1617 1618 /* Reinit limits that are based on free pages after the kernel is up */ 1619 files_maxfiles_init(); 1620 #endif 1621 #ifdef CONFIG_ARCH_DISCARD_MEMBLOCK 1622 /* Discard memblock private memory */ 1623 memblock_discard(); 1624 #endif 1625 1626 for_each_populated_zone(zone) 1627 set_zone_contiguous(zone); 1628 } 1629 1630 #ifdef CONFIG_CMA 1631 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */ 1632 void __init init_cma_reserved_pageblock(struct page *page) 1633 { 1634 unsigned i = pageblock_nr_pages; 1635 struct page *p = page; 1636 1637 do { 1638 __ClearPageReserved(p); 1639 set_page_count(p, 0); 1640 } while (++p, --i); 1641 1642 set_pageblock_migratetype(page, MIGRATE_CMA); 1643 1644 if (pageblock_order >= MAX_ORDER) { 1645 i = pageblock_nr_pages; 1646 p = page; 1647 do { 1648 set_page_refcounted(p); 1649 __free_pages(p, MAX_ORDER - 1); 1650 p += MAX_ORDER_NR_PAGES; 1651 } while (i -= MAX_ORDER_NR_PAGES); 1652 } else { 1653 set_page_refcounted(page); 1654 __free_pages(page, pageblock_order); 1655 } 1656 1657 adjust_managed_page_count(page, pageblock_nr_pages); 1658 } 1659 #endif 1660 1661 /* 1662 * The order of subdivision here is critical for the IO subsystem. 1663 * Please do not alter this order without good reasons and regression 1664 * testing. Specifically, as large blocks of memory are subdivided, 1665 * the order in which smaller blocks are delivered depends on the order 1666 * they're subdivided in this function. This is the primary factor 1667 * influencing the order in which pages are delivered to the IO 1668 * subsystem according to empirical testing, and this is also justified 1669 * by considering the behavior of a buddy system containing a single 1670 * large block of memory acted on by a series of small allocations. 1671 * This behavior is a critical factor in sglist merging's success. 1672 * 1673 * -- nyc 1674 */ 1675 static inline void expand(struct zone *zone, struct page *page, 1676 int low, int high, struct free_area *area, 1677 int migratetype) 1678 { 1679 unsigned long size = 1 << high; 1680 1681 while (high > low) { 1682 area--; 1683 high--; 1684 size >>= 1; 1685 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]); 1686 1687 /* 1688 * Mark as guard pages (or page), that will allow to 1689 * merge back to allocator when buddy will be freed. 1690 * Corresponding page table entries will not be touched, 1691 * pages will stay not present in virtual address space 1692 */ 1693 if (set_page_guard(zone, &page[size], high, migratetype)) 1694 continue; 1695 1696 list_add(&page[size].lru, &area->free_list[migratetype]); 1697 area->nr_free++; 1698 set_page_order(&page[size], high); 1699 } 1700 } 1701 1702 static void check_new_page_bad(struct page *page) 1703 { 1704 const char *bad_reason = NULL; 1705 unsigned long bad_flags = 0; 1706 1707 if (unlikely(atomic_read(&page->_mapcount) != -1)) 1708 bad_reason = "nonzero mapcount"; 1709 if (unlikely(page->mapping != NULL)) 1710 bad_reason = "non-NULL mapping"; 1711 if (unlikely(page_ref_count(page) != 0)) 1712 bad_reason = "nonzero _count"; 1713 if (unlikely(page->flags & __PG_HWPOISON)) { 1714 bad_reason = "HWPoisoned (hardware-corrupted)"; 1715 bad_flags = __PG_HWPOISON; 1716 /* Don't complain about hwpoisoned pages */ 1717 page_mapcount_reset(page); /* remove PageBuddy */ 1718 return; 1719 } 1720 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) { 1721 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set"; 1722 bad_flags = PAGE_FLAGS_CHECK_AT_PREP; 1723 } 1724 #ifdef CONFIG_MEMCG 1725 if (unlikely(page->mem_cgroup)) 1726 bad_reason = "page still charged to cgroup"; 1727 #endif 1728 bad_page(page, bad_reason, bad_flags); 1729 } 1730 1731 /* 1732 * This page is about to be returned from the page allocator 1733 */ 1734 static inline int check_new_page(struct page *page) 1735 { 1736 if (likely(page_expected_state(page, 1737 PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON))) 1738 return 0; 1739 1740 check_new_page_bad(page); 1741 return 1; 1742 } 1743 1744 static inline bool free_pages_prezeroed(void) 1745 { 1746 return IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) && 1747 page_poisoning_enabled(); 1748 } 1749 1750 #ifdef CONFIG_DEBUG_VM 1751 static bool check_pcp_refill(struct page *page) 1752 { 1753 return false; 1754 } 1755 1756 static bool check_new_pcp(struct page *page) 1757 { 1758 return check_new_page(page); 1759 } 1760 #else 1761 static bool check_pcp_refill(struct page *page) 1762 { 1763 return check_new_page(page); 1764 } 1765 static bool check_new_pcp(struct page *page) 1766 { 1767 return false; 1768 } 1769 #endif /* CONFIG_DEBUG_VM */ 1770 1771 static bool check_new_pages(struct page *page, unsigned int order) 1772 { 1773 int i; 1774 for (i = 0; i < (1 << order); i++) { 1775 struct page *p = page + i; 1776 1777 if (unlikely(check_new_page(p))) 1778 return true; 1779 } 1780 1781 return false; 1782 } 1783 1784 inline void post_alloc_hook(struct page *page, unsigned int order, 1785 gfp_t gfp_flags) 1786 { 1787 set_page_private(page, 0); 1788 set_page_refcounted(page); 1789 1790 arch_alloc_page(page, order); 1791 kernel_map_pages(page, 1 << order, 1); 1792 kernel_poison_pages(page, 1 << order, 1); 1793 kasan_alloc_pages(page, order); 1794 set_page_owner(page, order, gfp_flags); 1795 } 1796 1797 static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags, 1798 unsigned int alloc_flags) 1799 { 1800 int i; 1801 1802 post_alloc_hook(page, order, gfp_flags); 1803 1804 if (!free_pages_prezeroed() && (gfp_flags & __GFP_ZERO)) 1805 for (i = 0; i < (1 << order); i++) 1806 clear_highpage(page + i); 1807 1808 if (order && (gfp_flags & __GFP_COMP)) 1809 prep_compound_page(page, order); 1810 1811 /* 1812 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to 1813 * allocate the page. The expectation is that the caller is taking 1814 * steps that will free more memory. The caller should avoid the page 1815 * being used for !PFMEMALLOC purposes. 1816 */ 1817 if (alloc_flags & ALLOC_NO_WATERMARKS) 1818 set_page_pfmemalloc(page); 1819 else 1820 clear_page_pfmemalloc(page); 1821 } 1822 1823 /* 1824 * Go through the free lists for the given migratetype and remove 1825 * the smallest available page from the freelists 1826 */ 1827 static __always_inline 1828 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order, 1829 int migratetype) 1830 { 1831 unsigned int current_order; 1832 struct free_area *area; 1833 struct page *page; 1834 1835 /* Find a page of the appropriate size in the preferred list */ 1836 for (current_order = order; current_order < MAX_ORDER; ++current_order) { 1837 area = &(zone->free_area[current_order]); 1838 page = list_first_entry_or_null(&area->free_list[migratetype], 1839 struct page, lru); 1840 if (!page) 1841 continue; 1842 list_del(&page->lru); 1843 rmv_page_order(page); 1844 area->nr_free--; 1845 expand(zone, page, order, current_order, area, migratetype); 1846 set_pcppage_migratetype(page, migratetype); 1847 return page; 1848 } 1849 1850 return NULL; 1851 } 1852 1853 1854 /* 1855 * This array describes the order lists are fallen back to when 1856 * the free lists for the desirable migrate type are depleted 1857 */ 1858 static int fallbacks[MIGRATE_TYPES][4] = { 1859 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_TYPES }, 1860 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_TYPES }, 1861 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES }, 1862 #ifdef CONFIG_CMA 1863 [MIGRATE_CMA] = { MIGRATE_TYPES }, /* Never used */ 1864 #endif 1865 #ifdef CONFIG_MEMORY_ISOLATION 1866 [MIGRATE_ISOLATE] = { MIGRATE_TYPES }, /* Never used */ 1867 #endif 1868 }; 1869 1870 #ifdef CONFIG_CMA 1871 static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone, 1872 unsigned int order) 1873 { 1874 return __rmqueue_smallest(zone, order, MIGRATE_CMA); 1875 } 1876 #else 1877 static inline struct page *__rmqueue_cma_fallback(struct zone *zone, 1878 unsigned int order) { return NULL; } 1879 #endif 1880 1881 /* 1882 * Move the free pages in a range to the free lists of the requested type. 1883 * Note that start_page and end_pages are not aligned on a pageblock 1884 * boundary. If alignment is required, use move_freepages_block() 1885 */ 1886 static int move_freepages(struct zone *zone, 1887 struct page *start_page, struct page *end_page, 1888 int migratetype, int *num_movable) 1889 { 1890 struct page *page; 1891 unsigned int order; 1892 int pages_moved = 0; 1893 1894 #ifndef CONFIG_HOLES_IN_ZONE 1895 /* 1896 * page_zone is not safe to call in this context when 1897 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant 1898 * anyway as we check zone boundaries in move_freepages_block(). 1899 * Remove at a later date when no bug reports exist related to 1900 * grouping pages by mobility 1901 */ 1902 VM_BUG_ON(page_zone(start_page) != page_zone(end_page)); 1903 #endif 1904 1905 if (num_movable) 1906 *num_movable = 0; 1907 1908 for (page = start_page; page <= end_page;) { 1909 if (!pfn_valid_within(page_to_pfn(page))) { 1910 page++; 1911 continue; 1912 } 1913 1914 /* Make sure we are not inadvertently changing nodes */ 1915 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page); 1916 1917 if (!PageBuddy(page)) { 1918 /* 1919 * We assume that pages that could be isolated for 1920 * migration are movable. But we don't actually try 1921 * isolating, as that would be expensive. 1922 */ 1923 if (num_movable && 1924 (PageLRU(page) || __PageMovable(page))) 1925 (*num_movable)++; 1926 1927 page++; 1928 continue; 1929 } 1930 1931 order = page_order(page); 1932 list_move(&page->lru, 1933 &zone->free_area[order].free_list[migratetype]); 1934 page += 1 << order; 1935 pages_moved += 1 << order; 1936 } 1937 1938 return pages_moved; 1939 } 1940 1941 int move_freepages_block(struct zone *zone, struct page *page, 1942 int migratetype, int *num_movable) 1943 { 1944 unsigned long start_pfn, end_pfn; 1945 struct page *start_page, *end_page; 1946 1947 start_pfn = page_to_pfn(page); 1948 start_pfn = start_pfn & ~(pageblock_nr_pages-1); 1949 start_page = pfn_to_page(start_pfn); 1950 end_page = start_page + pageblock_nr_pages - 1; 1951 end_pfn = start_pfn + pageblock_nr_pages - 1; 1952 1953 /* Do not cross zone boundaries */ 1954 if (!zone_spans_pfn(zone, start_pfn)) 1955 start_page = page; 1956 if (!zone_spans_pfn(zone, end_pfn)) 1957 return 0; 1958 1959 return move_freepages(zone, start_page, end_page, migratetype, 1960 num_movable); 1961 } 1962 1963 static void change_pageblock_range(struct page *pageblock_page, 1964 int start_order, int migratetype) 1965 { 1966 int nr_pageblocks = 1 << (start_order - pageblock_order); 1967 1968 while (nr_pageblocks--) { 1969 set_pageblock_migratetype(pageblock_page, migratetype); 1970 pageblock_page += pageblock_nr_pages; 1971 } 1972 } 1973 1974 /* 1975 * When we are falling back to another migratetype during allocation, try to 1976 * steal extra free pages from the same pageblocks to satisfy further 1977 * allocations, instead of polluting multiple pageblocks. 1978 * 1979 * If we are stealing a relatively large buddy page, it is likely there will 1980 * be more free pages in the pageblock, so try to steal them all. For 1981 * reclaimable and unmovable allocations, we steal regardless of page size, 1982 * as fragmentation caused by those allocations polluting movable pageblocks 1983 * is worse than movable allocations stealing from unmovable and reclaimable 1984 * pageblocks. 1985 */ 1986 static bool can_steal_fallback(unsigned int order, int start_mt) 1987 { 1988 /* 1989 * Leaving this order check is intended, although there is 1990 * relaxed order check in next check. The reason is that 1991 * we can actually steal whole pageblock if this condition met, 1992 * but, below check doesn't guarantee it and that is just heuristic 1993 * so could be changed anytime. 1994 */ 1995 if (order >= pageblock_order) 1996 return true; 1997 1998 if (order >= pageblock_order / 2 || 1999 start_mt == MIGRATE_RECLAIMABLE || 2000 start_mt == MIGRATE_UNMOVABLE || 2001 page_group_by_mobility_disabled) 2002 return true; 2003 2004 return false; 2005 } 2006 2007 /* 2008 * This function implements actual steal behaviour. If order is large enough, 2009 * we can steal whole pageblock. If not, we first move freepages in this 2010 * pageblock to our migratetype and determine how many already-allocated pages 2011 * are there in the pageblock with a compatible migratetype. If at least half 2012 * of pages are free or compatible, we can change migratetype of the pageblock 2013 * itself, so pages freed in the future will be put on the correct free list. 2014 */ 2015 static void steal_suitable_fallback(struct zone *zone, struct page *page, 2016 int start_type, bool whole_block) 2017 { 2018 unsigned int current_order = page_order(page); 2019 struct free_area *area; 2020 int free_pages, movable_pages, alike_pages; 2021 int old_block_type; 2022 2023 old_block_type = get_pageblock_migratetype(page); 2024 2025 /* 2026 * This can happen due to races and we want to prevent broken 2027 * highatomic accounting. 2028 */ 2029 if (is_migrate_highatomic(old_block_type)) 2030 goto single_page; 2031 2032 /* Take ownership for orders >= pageblock_order */ 2033 if (current_order >= pageblock_order) { 2034 change_pageblock_range(page, current_order, start_type); 2035 goto single_page; 2036 } 2037 2038 /* We are not allowed to try stealing from the whole block */ 2039 if (!whole_block) 2040 goto single_page; 2041 2042 free_pages = move_freepages_block(zone, page, start_type, 2043 &movable_pages); 2044 /* 2045 * Determine how many pages are compatible with our allocation. 2046 * For movable allocation, it's the number of movable pages which 2047 * we just obtained. For other types it's a bit more tricky. 2048 */ 2049 if (start_type == MIGRATE_MOVABLE) { 2050 alike_pages = movable_pages; 2051 } else { 2052 /* 2053 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation 2054 * to MOVABLE pageblock, consider all non-movable pages as 2055 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or 2056 * vice versa, be conservative since we can't distinguish the 2057 * exact migratetype of non-movable pages. 2058 */ 2059 if (old_block_type == MIGRATE_MOVABLE) 2060 alike_pages = pageblock_nr_pages 2061 - (free_pages + movable_pages); 2062 else 2063 alike_pages = 0; 2064 } 2065 2066 /* moving whole block can fail due to zone boundary conditions */ 2067 if (!free_pages) 2068 goto single_page; 2069 2070 /* 2071 * If a sufficient number of pages in the block are either free or of 2072 * comparable migratability as our allocation, claim the whole block. 2073 */ 2074 if (free_pages + alike_pages >= (1 << (pageblock_order-1)) || 2075 page_group_by_mobility_disabled) 2076 set_pageblock_migratetype(page, start_type); 2077 2078 return; 2079 2080 single_page: 2081 area = &zone->free_area[current_order]; 2082 list_move(&page->lru, &area->free_list[start_type]); 2083 } 2084 2085 /* 2086 * Check whether there is a suitable fallback freepage with requested order. 2087 * If only_stealable is true, this function returns fallback_mt only if 2088 * we can steal other freepages all together. This would help to reduce 2089 * fragmentation due to mixed migratetype pages in one pageblock. 2090 */ 2091 int find_suitable_fallback(struct free_area *area, unsigned int order, 2092 int migratetype, bool only_stealable, bool *can_steal) 2093 { 2094 int i; 2095 int fallback_mt; 2096 2097 if (area->nr_free == 0) 2098 return -1; 2099 2100 *can_steal = false; 2101 for (i = 0;; i++) { 2102 fallback_mt = fallbacks[migratetype][i]; 2103 if (fallback_mt == MIGRATE_TYPES) 2104 break; 2105 2106 if (list_empty(&area->free_list[fallback_mt])) 2107 continue; 2108 2109 if (can_steal_fallback(order, migratetype)) 2110 *can_steal = true; 2111 2112 if (!only_stealable) 2113 return fallback_mt; 2114 2115 if (*can_steal) 2116 return fallback_mt; 2117 } 2118 2119 return -1; 2120 } 2121 2122 /* 2123 * Reserve a pageblock for exclusive use of high-order atomic allocations if 2124 * there are no empty page blocks that contain a page with a suitable order 2125 */ 2126 static void reserve_highatomic_pageblock(struct page *page, struct zone *zone, 2127 unsigned int alloc_order) 2128 { 2129 int mt; 2130 unsigned long max_managed, flags; 2131 2132 /* 2133 * Limit the number reserved to 1 pageblock or roughly 1% of a zone. 2134 * Check is race-prone but harmless. 2135 */ 2136 max_managed = (zone->managed_pages / 100) + pageblock_nr_pages; 2137 if (zone->nr_reserved_highatomic >= max_managed) 2138 return; 2139 2140 spin_lock_irqsave(&zone->lock, flags); 2141 2142 /* Recheck the nr_reserved_highatomic limit under the lock */ 2143 if (zone->nr_reserved_highatomic >= max_managed) 2144 goto out_unlock; 2145 2146 /* Yoink! */ 2147 mt = get_pageblock_migratetype(page); 2148 if (!is_migrate_highatomic(mt) && !is_migrate_isolate(mt) 2149 && !is_migrate_cma(mt)) { 2150 zone->nr_reserved_highatomic += pageblock_nr_pages; 2151 set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC); 2152 move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL); 2153 } 2154 2155 out_unlock: 2156 spin_unlock_irqrestore(&zone->lock, flags); 2157 } 2158 2159 /* 2160 * Used when an allocation is about to fail under memory pressure. This 2161 * potentially hurts the reliability of high-order allocations when under 2162 * intense memory pressure but failed atomic allocations should be easier 2163 * to recover from than an OOM. 2164 * 2165 * If @force is true, try to unreserve a pageblock even though highatomic 2166 * pageblock is exhausted. 2167 */ 2168 static bool unreserve_highatomic_pageblock(const struct alloc_context *ac, 2169 bool force) 2170 { 2171 struct zonelist *zonelist = ac->zonelist; 2172 unsigned long flags; 2173 struct zoneref *z; 2174 struct zone *zone; 2175 struct page *page; 2176 int order; 2177 bool ret; 2178 2179 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx, 2180 ac->nodemask) { 2181 /* 2182 * Preserve at least one pageblock unless memory pressure 2183 * is really high. 2184 */ 2185 if (!force && zone->nr_reserved_highatomic <= 2186 pageblock_nr_pages) 2187 continue; 2188 2189 spin_lock_irqsave(&zone->lock, flags); 2190 for (order = 0; order < MAX_ORDER; order++) { 2191 struct free_area *area = &(zone->free_area[order]); 2192 2193 page = list_first_entry_or_null( 2194 &area->free_list[MIGRATE_HIGHATOMIC], 2195 struct page, lru); 2196 if (!page) 2197 continue; 2198 2199 /* 2200 * In page freeing path, migratetype change is racy so 2201 * we can counter several free pages in a pageblock 2202 * in this loop althoug we changed the pageblock type 2203 * from highatomic to ac->migratetype. So we should 2204 * adjust the count once. 2205 */ 2206 if (is_migrate_highatomic_page(page)) { 2207 /* 2208 * It should never happen but changes to 2209 * locking could inadvertently allow a per-cpu 2210 * drain to add pages to MIGRATE_HIGHATOMIC 2211 * while unreserving so be safe and watch for 2212 * underflows. 2213 */ 2214 zone->nr_reserved_highatomic -= min( 2215 pageblock_nr_pages, 2216 zone->nr_reserved_highatomic); 2217 } 2218 2219 /* 2220 * Convert to ac->migratetype and avoid the normal 2221 * pageblock stealing heuristics. Minimally, the caller 2222 * is doing the work and needs the pages. More 2223 * importantly, if the block was always converted to 2224 * MIGRATE_UNMOVABLE or another type then the number 2225 * of pageblocks that cannot be completely freed 2226 * may increase. 2227 */ 2228 set_pageblock_migratetype(page, ac->migratetype); 2229 ret = move_freepages_block(zone, page, ac->migratetype, 2230 NULL); 2231 if (ret) { 2232 spin_unlock_irqrestore(&zone->lock, flags); 2233 return ret; 2234 } 2235 } 2236 spin_unlock_irqrestore(&zone->lock, flags); 2237 } 2238 2239 return false; 2240 } 2241 2242 /* 2243 * Try finding a free buddy page on the fallback list and put it on the free 2244 * list of requested migratetype, possibly along with other pages from the same 2245 * block, depending on fragmentation avoidance heuristics. Returns true if 2246 * fallback was found so that __rmqueue_smallest() can grab it. 2247 * 2248 * The use of signed ints for order and current_order is a deliberate 2249 * deviation from the rest of this file, to make the for loop 2250 * condition simpler. 2251 */ 2252 static __always_inline bool 2253 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype) 2254 { 2255 struct free_area *area; 2256 int current_order; 2257 struct page *page; 2258 int fallback_mt; 2259 bool can_steal; 2260 2261 /* 2262 * Find the largest available free page in the other list. This roughly 2263 * approximates finding the pageblock with the most free pages, which 2264 * would be too costly to do exactly. 2265 */ 2266 for (current_order = MAX_ORDER - 1; current_order >= order; 2267 --current_order) { 2268 area = &(zone->free_area[current_order]); 2269 fallback_mt = find_suitable_fallback(area, current_order, 2270 start_migratetype, false, &can_steal); 2271 if (fallback_mt == -1) 2272 continue; 2273 2274 /* 2275 * We cannot steal all free pages from the pageblock and the 2276 * requested migratetype is movable. In that case it's better to 2277 * steal and split the smallest available page instead of the 2278 * largest available page, because even if the next movable 2279 * allocation falls back into a different pageblock than this 2280 * one, it won't cause permanent fragmentation. 2281 */ 2282 if (!can_steal && start_migratetype == MIGRATE_MOVABLE 2283 && current_order > order) 2284 goto find_smallest; 2285 2286 goto do_steal; 2287 } 2288 2289 return false; 2290 2291 find_smallest: 2292 for (current_order = order; current_order < MAX_ORDER; 2293 current_order++) { 2294 area = &(zone->free_area[current_order]); 2295 fallback_mt = find_suitable_fallback(area, current_order, 2296 start_migratetype, false, &can_steal); 2297 if (fallback_mt != -1) 2298 break; 2299 } 2300 2301 /* 2302 * This should not happen - we already found a suitable fallback 2303 * when looking for the largest page. 2304 */ 2305 VM_BUG_ON(current_order == MAX_ORDER); 2306 2307 do_steal: 2308 page = list_first_entry(&area->free_list[fallback_mt], 2309 struct page, lru); 2310 2311 steal_suitable_fallback(zone, page, start_migratetype, can_steal); 2312 2313 trace_mm_page_alloc_extfrag(page, order, current_order, 2314 start_migratetype, fallback_mt); 2315 2316 return true; 2317 2318 } 2319 2320 /* 2321 * Do the hard work of removing an element from the buddy allocator. 2322 * Call me with the zone->lock already held. 2323 */ 2324 static __always_inline struct page * 2325 __rmqueue(struct zone *zone, unsigned int order, int migratetype) 2326 { 2327 struct page *page; 2328 2329 retry: 2330 page = __rmqueue_smallest(zone, order, migratetype); 2331 if (unlikely(!page)) { 2332 if (migratetype == MIGRATE_MOVABLE) 2333 page = __rmqueue_cma_fallback(zone, order); 2334 2335 if (!page && __rmqueue_fallback(zone, order, migratetype)) 2336 goto retry; 2337 } 2338 2339 trace_mm_page_alloc_zone_locked(page, order, migratetype); 2340 return page; 2341 } 2342 2343 /* 2344 * Obtain a specified number of elements from the buddy allocator, all under 2345 * a single hold of the lock, for efficiency. Add them to the supplied list. 2346 * Returns the number of new pages which were placed at *list. 2347 */ 2348 static int rmqueue_bulk(struct zone *zone, unsigned int order, 2349 unsigned long count, struct list_head *list, 2350 int migratetype) 2351 { 2352 int i, alloced = 0; 2353 2354 spin_lock(&zone->lock); 2355 for (i = 0; i < count; ++i) { 2356 struct page *page = __rmqueue(zone, order, migratetype); 2357 if (unlikely(page == NULL)) 2358 break; 2359 2360 if (unlikely(check_pcp_refill(page))) 2361 continue; 2362 2363 /* 2364 * Split buddy pages returned by expand() are received here in 2365 * physical page order. The page is added to the tail of 2366 * caller's list. From the callers perspective, the linked list 2367 * is ordered by page number under some conditions. This is 2368 * useful for IO devices that can forward direction from the 2369 * head, thus also in the physical page order. This is useful 2370 * for IO devices that can merge IO requests if the physical 2371 * pages are ordered properly. 2372 */ 2373 list_add_tail(&page->lru, list); 2374 alloced++; 2375 if (is_migrate_cma(get_pcppage_migratetype(page))) 2376 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES, 2377 -(1 << order)); 2378 } 2379 2380 /* 2381 * i pages were removed from the buddy list even if some leak due 2382 * to check_pcp_refill failing so adjust NR_FREE_PAGES based 2383 * on i. Do not confuse with 'alloced' which is the number of 2384 * pages added to the pcp list. 2385 */ 2386 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order)); 2387 spin_unlock(&zone->lock); 2388 return alloced; 2389 } 2390 2391 #ifdef CONFIG_NUMA 2392 /* 2393 * Called from the vmstat counter updater to drain pagesets of this 2394 * currently executing processor on remote nodes after they have 2395 * expired. 2396 * 2397 * Note that this function must be called with the thread pinned to 2398 * a single processor. 2399 */ 2400 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp) 2401 { 2402 unsigned long flags; 2403 int to_drain, batch; 2404 2405 local_irq_save(flags); 2406 batch = READ_ONCE(pcp->batch); 2407 to_drain = min(pcp->count, batch); 2408 if (to_drain > 0) { 2409 free_pcppages_bulk(zone, to_drain, pcp); 2410 pcp->count -= to_drain; 2411 } 2412 local_irq_restore(flags); 2413 } 2414 #endif 2415 2416 /* 2417 * Drain pcplists of the indicated processor and zone. 2418 * 2419 * The processor must either be the current processor and the 2420 * thread pinned to the current processor or a processor that 2421 * is not online. 2422 */ 2423 static void drain_pages_zone(unsigned int cpu, struct zone *zone) 2424 { 2425 unsigned long flags; 2426 struct per_cpu_pageset *pset; 2427 struct per_cpu_pages *pcp; 2428 2429 local_irq_save(flags); 2430 pset = per_cpu_ptr(zone->pageset, cpu); 2431 2432 pcp = &pset->pcp; 2433 if (pcp->count) { 2434 free_pcppages_bulk(zone, pcp->count, pcp); 2435 pcp->count = 0; 2436 } 2437 local_irq_restore(flags); 2438 } 2439 2440 /* 2441 * Drain pcplists of all zones on the indicated processor. 2442 * 2443 * The processor must either be the current processor and the 2444 * thread pinned to the current processor or a processor that 2445 * is not online. 2446 */ 2447 static void drain_pages(unsigned int cpu) 2448 { 2449 struct zone *zone; 2450 2451 for_each_populated_zone(zone) { 2452 drain_pages_zone(cpu, zone); 2453 } 2454 } 2455 2456 /* 2457 * Spill all of this CPU's per-cpu pages back into the buddy allocator. 2458 * 2459 * The CPU has to be pinned. When zone parameter is non-NULL, spill just 2460 * the single zone's pages. 2461 */ 2462 void drain_local_pages(struct zone *zone) 2463 { 2464 int cpu = smp_processor_id(); 2465 2466 if (zone) 2467 drain_pages_zone(cpu, zone); 2468 else 2469 drain_pages(cpu); 2470 } 2471 2472 static void drain_local_pages_wq(struct work_struct *work) 2473 { 2474 /* 2475 * drain_all_pages doesn't use proper cpu hotplug protection so 2476 * we can race with cpu offline when the WQ can move this from 2477 * a cpu pinned worker to an unbound one. We can operate on a different 2478 * cpu which is allright but we also have to make sure to not move to 2479 * a different one. 2480 */ 2481 preempt_disable(); 2482 drain_local_pages(NULL); 2483 preempt_enable(); 2484 } 2485 2486 /* 2487 * Spill all the per-cpu pages from all CPUs back into the buddy allocator. 2488 * 2489 * When zone parameter is non-NULL, spill just the single zone's pages. 2490 * 2491 * Note that this can be extremely slow as the draining happens in a workqueue. 2492 */ 2493 void drain_all_pages(struct zone *zone) 2494 { 2495 int cpu; 2496 2497 /* 2498 * Allocate in the BSS so we wont require allocation in 2499 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y 2500 */ 2501 static cpumask_t cpus_with_pcps; 2502 2503 /* 2504 * Make sure nobody triggers this path before mm_percpu_wq is fully 2505 * initialized. 2506 */ 2507 if (WARN_ON_ONCE(!mm_percpu_wq)) 2508 return; 2509 2510 /* Workqueues cannot recurse */ 2511 if (current->flags & PF_WQ_WORKER) 2512 return; 2513 2514 /* 2515 * Do not drain if one is already in progress unless it's specific to 2516 * a zone. Such callers are primarily CMA and memory hotplug and need 2517 * the drain to be complete when the call returns. 2518 */ 2519 if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) { 2520 if (!zone) 2521 return; 2522 mutex_lock(&pcpu_drain_mutex); 2523 } 2524 2525 /* 2526 * We don't care about racing with CPU hotplug event 2527 * as offline notification will cause the notified 2528 * cpu to drain that CPU pcps and on_each_cpu_mask 2529 * disables preemption as part of its processing 2530 */ 2531 for_each_online_cpu(cpu) { 2532 struct per_cpu_pageset *pcp; 2533 struct zone *z; 2534 bool has_pcps = false; 2535 2536 if (zone) { 2537 pcp = per_cpu_ptr(zone->pageset, cpu); 2538 if (pcp->pcp.count) 2539 has_pcps = true; 2540 } else { 2541 for_each_populated_zone(z) { 2542 pcp = per_cpu_ptr(z->pageset, cpu); 2543 if (pcp->pcp.count) { 2544 has_pcps = true; 2545 break; 2546 } 2547 } 2548 } 2549 2550 if (has_pcps) 2551 cpumask_set_cpu(cpu, &cpus_with_pcps); 2552 else 2553 cpumask_clear_cpu(cpu, &cpus_with_pcps); 2554 } 2555 2556 for_each_cpu(cpu, &cpus_with_pcps) { 2557 struct work_struct *work = per_cpu_ptr(&pcpu_drain, cpu); 2558 INIT_WORK(work, drain_local_pages_wq); 2559 queue_work_on(cpu, mm_percpu_wq, work); 2560 } 2561 for_each_cpu(cpu, &cpus_with_pcps) 2562 flush_work(per_cpu_ptr(&pcpu_drain, cpu)); 2563 2564 mutex_unlock(&pcpu_drain_mutex); 2565 } 2566 2567 #ifdef CONFIG_HIBERNATION 2568 2569 /* 2570 * Touch the watchdog for every WD_PAGE_COUNT pages. 2571 */ 2572 #define WD_PAGE_COUNT (128*1024) 2573 2574 void mark_free_pages(struct zone *zone) 2575 { 2576 unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT; 2577 unsigned long flags; 2578 unsigned int order, t; 2579 struct page *page; 2580 2581 if (zone_is_empty(zone)) 2582 return; 2583 2584 spin_lock_irqsave(&zone->lock, flags); 2585 2586 max_zone_pfn = zone_end_pfn(zone); 2587 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) 2588 if (pfn_valid(pfn)) { 2589 page = pfn_to_page(pfn); 2590 2591 if (!--page_count) { 2592 touch_nmi_watchdog(); 2593 page_count = WD_PAGE_COUNT; 2594 } 2595 2596 if (page_zone(page) != zone) 2597 continue; 2598 2599 if (!swsusp_page_is_forbidden(page)) 2600 swsusp_unset_page_free(page); 2601 } 2602 2603 for_each_migratetype_order(order, t) { 2604 list_for_each_entry(page, 2605 &zone->free_area[order].free_list[t], lru) { 2606 unsigned long i; 2607 2608 pfn = page_to_pfn(page); 2609 for (i = 0; i < (1UL << order); i++) { 2610 if (!--page_count) { 2611 touch_nmi_watchdog(); 2612 page_count = WD_PAGE_COUNT; 2613 } 2614 swsusp_set_page_free(pfn_to_page(pfn + i)); 2615 } 2616 } 2617 } 2618 spin_unlock_irqrestore(&zone->lock, flags); 2619 } 2620 #endif /* CONFIG_PM */ 2621 2622 static bool free_unref_page_prepare(struct page *page, unsigned long pfn) 2623 { 2624 int migratetype; 2625 2626 if (!free_pcp_prepare(page)) 2627 return false; 2628 2629 migratetype = get_pfnblock_migratetype(page, pfn); 2630 set_pcppage_migratetype(page, migratetype); 2631 return true; 2632 } 2633 2634 static void free_unref_page_commit(struct page *page, unsigned long pfn) 2635 { 2636 struct zone *zone = page_zone(page); 2637 struct per_cpu_pages *pcp; 2638 int migratetype; 2639 2640 migratetype = get_pcppage_migratetype(page); 2641 __count_vm_event(PGFREE); 2642 2643 /* 2644 * We only track unmovable, reclaimable and movable on pcp lists. 2645 * Free ISOLATE pages back to the allocator because they are being 2646 * offlined but treat HIGHATOMIC as movable pages so we can get those 2647 * areas back if necessary. Otherwise, we may have to free 2648 * excessively into the page allocator 2649 */ 2650 if (migratetype >= MIGRATE_PCPTYPES) { 2651 if (unlikely(is_migrate_isolate(migratetype))) { 2652 free_one_page(zone, page, pfn, 0, migratetype); 2653 return; 2654 } 2655 migratetype = MIGRATE_MOVABLE; 2656 } 2657 2658 pcp = &this_cpu_ptr(zone->pageset)->pcp; 2659 list_add(&page->lru, &pcp->lists[migratetype]); 2660 pcp->count++; 2661 if (pcp->count >= pcp->high) { 2662 unsigned long batch = READ_ONCE(pcp->batch); 2663 free_pcppages_bulk(zone, batch, pcp); 2664 pcp->count -= batch; 2665 } 2666 } 2667 2668 /* 2669 * Free a 0-order page 2670 */ 2671 void free_unref_page(struct page *page) 2672 { 2673 unsigned long flags; 2674 unsigned long pfn = page_to_pfn(page); 2675 2676 if (!free_unref_page_prepare(page, pfn)) 2677 return; 2678 2679 local_irq_save(flags); 2680 free_unref_page_commit(page, pfn); 2681 local_irq_restore(flags); 2682 } 2683 2684 /* 2685 * Free a list of 0-order pages 2686 */ 2687 void free_unref_page_list(struct list_head *list) 2688 { 2689 struct page *page, *next; 2690 unsigned long flags, pfn; 2691 2692 /* Prepare pages for freeing */ 2693 list_for_each_entry_safe(page, next, list, lru) { 2694 pfn = page_to_pfn(page); 2695 if (!free_unref_page_prepare(page, pfn)) 2696 list_del(&page->lru); 2697 set_page_private(page, pfn); 2698 } 2699 2700 local_irq_save(flags); 2701 list_for_each_entry_safe(page, next, list, lru) { 2702 unsigned long pfn = page_private(page); 2703 2704 set_page_private(page, 0); 2705 trace_mm_page_free_batched(page); 2706 free_unref_page_commit(page, pfn); 2707 } 2708 local_irq_restore(flags); 2709 } 2710 2711 /* 2712 * split_page takes a non-compound higher-order page, and splits it into 2713 * n (1<<order) sub-pages: page[0..n] 2714 * Each sub-page must be freed individually. 2715 * 2716 * Note: this is probably too low level an operation for use in drivers. 2717 * Please consult with lkml before using this in your driver. 2718 */ 2719 void split_page(struct page *page, unsigned int order) 2720 { 2721 int i; 2722 2723 VM_BUG_ON_PAGE(PageCompound(page), page); 2724 VM_BUG_ON_PAGE(!page_count(page), page); 2725 2726 for (i = 1; i < (1 << order); i++) 2727 set_page_refcounted(page + i); 2728 split_page_owner(page, order); 2729 } 2730 EXPORT_SYMBOL_GPL(split_page); 2731 2732 int __isolate_free_page(struct page *page, unsigned int order) 2733 { 2734 unsigned long watermark; 2735 struct zone *zone; 2736 int mt; 2737 2738 BUG_ON(!PageBuddy(page)); 2739 2740 zone = page_zone(page); 2741 mt = get_pageblock_migratetype(page); 2742 2743 if (!is_migrate_isolate(mt)) { 2744 /* 2745 * Obey watermarks as if the page was being allocated. We can 2746 * emulate a high-order watermark check with a raised order-0 2747 * watermark, because we already know our high-order page 2748 * exists. 2749 */ 2750 watermark = min_wmark_pages(zone) + (1UL << order); 2751 if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA)) 2752 return 0; 2753 2754 __mod_zone_freepage_state(zone, -(1UL << order), mt); 2755 } 2756 2757 /* Remove page from free list */ 2758 list_del(&page->lru); 2759 zone->free_area[order].nr_free--; 2760 rmv_page_order(page); 2761 2762 /* 2763 * Set the pageblock if the isolated page is at least half of a 2764 * pageblock 2765 */ 2766 if (order >= pageblock_order - 1) { 2767 struct page *endpage = page + (1 << order) - 1; 2768 for (; page < endpage; page += pageblock_nr_pages) { 2769 int mt = get_pageblock_migratetype(page); 2770 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt) 2771 && !is_migrate_highatomic(mt)) 2772 set_pageblock_migratetype(page, 2773 MIGRATE_MOVABLE); 2774 } 2775 } 2776 2777 2778 return 1UL << order; 2779 } 2780 2781 /* 2782 * Update NUMA hit/miss statistics 2783 * 2784 * Must be called with interrupts disabled. 2785 */ 2786 static inline void zone_statistics(struct zone *preferred_zone, struct zone *z) 2787 { 2788 #ifdef CONFIG_NUMA 2789 enum numa_stat_item local_stat = NUMA_LOCAL; 2790 2791 /* skip numa counters update if numa stats is disabled */ 2792 if (!static_branch_likely(&vm_numa_stat_key)) 2793 return; 2794 2795 if (z->node != numa_node_id()) 2796 local_stat = NUMA_OTHER; 2797 2798 if (z->node == preferred_zone->node) 2799 __inc_numa_state(z, NUMA_HIT); 2800 else { 2801 __inc_numa_state(z, NUMA_MISS); 2802 __inc_numa_state(preferred_zone, NUMA_FOREIGN); 2803 } 2804 __inc_numa_state(z, local_stat); 2805 #endif 2806 } 2807 2808 /* Remove page from the per-cpu list, caller must protect the list */ 2809 static struct page *__rmqueue_pcplist(struct zone *zone, int migratetype, 2810 struct per_cpu_pages *pcp, 2811 struct list_head *list) 2812 { 2813 struct page *page; 2814 2815 do { 2816 if (list_empty(list)) { 2817 pcp->count += rmqueue_bulk(zone, 0, 2818 pcp->batch, list, 2819 migratetype); 2820 if (unlikely(list_empty(list))) 2821 return NULL; 2822 } 2823 2824 page = list_first_entry(list, struct page, lru); 2825 list_del(&page->lru); 2826 pcp->count--; 2827 } while (check_new_pcp(page)); 2828 2829 return page; 2830 } 2831 2832 /* Lock and remove page from the per-cpu list */ 2833 static struct page *rmqueue_pcplist(struct zone *preferred_zone, 2834 struct zone *zone, unsigned int order, 2835 gfp_t gfp_flags, int migratetype) 2836 { 2837 struct per_cpu_pages *pcp; 2838 struct list_head *list; 2839 struct page *page; 2840 unsigned long flags; 2841 2842 local_irq_save(flags); 2843 pcp = &this_cpu_ptr(zone->pageset)->pcp; 2844 list = &pcp->lists[migratetype]; 2845 page = __rmqueue_pcplist(zone, migratetype, pcp, list); 2846 if (page) { 2847 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order); 2848 zone_statistics(preferred_zone, zone); 2849 } 2850 local_irq_restore(flags); 2851 return page; 2852 } 2853 2854 /* 2855 * Allocate a page from the given zone. Use pcplists for order-0 allocations. 2856 */ 2857 static inline 2858 struct page *rmqueue(struct zone *preferred_zone, 2859 struct zone *zone, unsigned int order, 2860 gfp_t gfp_flags, unsigned int alloc_flags, 2861 int migratetype) 2862 { 2863 unsigned long flags; 2864 struct page *page; 2865 2866 if (likely(order == 0)) { 2867 page = rmqueue_pcplist(preferred_zone, zone, order, 2868 gfp_flags, migratetype); 2869 goto out; 2870 } 2871 2872 /* 2873 * We most definitely don't want callers attempting to 2874 * allocate greater than order-1 page units with __GFP_NOFAIL. 2875 */ 2876 WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1)); 2877 spin_lock_irqsave(&zone->lock, flags); 2878 2879 do { 2880 page = NULL; 2881 if (alloc_flags & ALLOC_HARDER) { 2882 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC); 2883 if (page) 2884 trace_mm_page_alloc_zone_locked(page, order, migratetype); 2885 } 2886 if (!page) 2887 page = __rmqueue(zone, order, migratetype); 2888 } while (page && check_new_pages(page, order)); 2889 spin_unlock(&zone->lock); 2890 if (!page) 2891 goto failed; 2892 __mod_zone_freepage_state(zone, -(1 << order), 2893 get_pcppage_migratetype(page)); 2894 2895 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order); 2896 zone_statistics(preferred_zone, zone); 2897 local_irq_restore(flags); 2898 2899 out: 2900 VM_BUG_ON_PAGE(page && bad_range(zone, page), page); 2901 return page; 2902 2903 failed: 2904 local_irq_restore(flags); 2905 return NULL; 2906 } 2907 2908 #ifdef CONFIG_FAIL_PAGE_ALLOC 2909 2910 static struct { 2911 struct fault_attr attr; 2912 2913 bool ignore_gfp_highmem; 2914 bool ignore_gfp_reclaim; 2915 u32 min_order; 2916 } fail_page_alloc = { 2917 .attr = FAULT_ATTR_INITIALIZER, 2918 .ignore_gfp_reclaim = true, 2919 .ignore_gfp_highmem = true, 2920 .min_order = 1, 2921 }; 2922 2923 static int __init setup_fail_page_alloc(char *str) 2924 { 2925 return setup_fault_attr(&fail_page_alloc.attr, str); 2926 } 2927 __setup("fail_page_alloc=", setup_fail_page_alloc); 2928 2929 static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) 2930 { 2931 if (order < fail_page_alloc.min_order) 2932 return false; 2933 if (gfp_mask & __GFP_NOFAIL) 2934 return false; 2935 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM)) 2936 return false; 2937 if (fail_page_alloc.ignore_gfp_reclaim && 2938 (gfp_mask & __GFP_DIRECT_RECLAIM)) 2939 return false; 2940 2941 return should_fail(&fail_page_alloc.attr, 1 << order); 2942 } 2943 2944 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS 2945 2946 static int __init fail_page_alloc_debugfs(void) 2947 { 2948 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR; 2949 struct dentry *dir; 2950 2951 dir = fault_create_debugfs_attr("fail_page_alloc", NULL, 2952 &fail_page_alloc.attr); 2953 if (IS_ERR(dir)) 2954 return PTR_ERR(dir); 2955 2956 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir, 2957 &fail_page_alloc.ignore_gfp_reclaim)) 2958 goto fail; 2959 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir, 2960 &fail_page_alloc.ignore_gfp_highmem)) 2961 goto fail; 2962 if (!debugfs_create_u32("min-order", mode, dir, 2963 &fail_page_alloc.min_order)) 2964 goto fail; 2965 2966 return 0; 2967 fail: 2968 debugfs_remove_recursive(dir); 2969 2970 return -ENOMEM; 2971 } 2972 2973 late_initcall(fail_page_alloc_debugfs); 2974 2975 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */ 2976 2977 #else /* CONFIG_FAIL_PAGE_ALLOC */ 2978 2979 static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) 2980 { 2981 return false; 2982 } 2983 2984 #endif /* CONFIG_FAIL_PAGE_ALLOC */ 2985 2986 /* 2987 * Return true if free base pages are above 'mark'. For high-order checks it 2988 * will return true of the order-0 watermark is reached and there is at least 2989 * one free page of a suitable size. Checking now avoids taking the zone lock 2990 * to check in the allocation paths if no pages are free. 2991 */ 2992 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark, 2993 int classzone_idx, unsigned int alloc_flags, 2994 long free_pages) 2995 { 2996 long min = mark; 2997 int o; 2998 const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM)); 2999 3000 /* free_pages may go negative - that's OK */ 3001 free_pages -= (1 << order) - 1; 3002 3003 if (alloc_flags & ALLOC_HIGH) 3004 min -= min / 2; 3005 3006 /* 3007 * If the caller does not have rights to ALLOC_HARDER then subtract 3008 * the high-atomic reserves. This will over-estimate the size of the 3009 * atomic reserve but it avoids a search. 3010 */ 3011 if (likely(!alloc_harder)) { 3012 free_pages -= z->nr_reserved_highatomic; 3013 } else { 3014 /* 3015 * OOM victims can try even harder than normal ALLOC_HARDER 3016 * users on the grounds that it's definitely going to be in 3017 * the exit path shortly and free memory. Any allocation it 3018 * makes during the free path will be small and short-lived. 3019 */ 3020 if (alloc_flags & ALLOC_OOM) 3021 min -= min / 2; 3022 else 3023 min -= min / 4; 3024 } 3025 3026 3027 #ifdef CONFIG_CMA 3028 /* If allocation can't use CMA areas don't use free CMA pages */ 3029 if (!(alloc_flags & ALLOC_CMA)) 3030 free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES); 3031 #endif 3032 3033 /* 3034 * Check watermarks for an order-0 allocation request. If these 3035 * are not met, then a high-order request also cannot go ahead 3036 * even if a suitable page happened to be free. 3037 */ 3038 if (free_pages <= min + z->lowmem_reserve[classzone_idx]) 3039 return false; 3040 3041 /* If this is an order-0 request then the watermark is fine */ 3042 if (!order) 3043 return true; 3044 3045 /* For a high-order request, check at least one suitable page is free */ 3046 for (o = order; o < MAX_ORDER; o++) { 3047 struct free_area *area = &z->free_area[o]; 3048 int mt; 3049 3050 if (!area->nr_free) 3051 continue; 3052 3053 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) { 3054 if (!list_empty(&area->free_list[mt])) 3055 return true; 3056 } 3057 3058 #ifdef CONFIG_CMA 3059 if ((alloc_flags & ALLOC_CMA) && 3060 !list_empty(&area->free_list[MIGRATE_CMA])) { 3061 return true; 3062 } 3063 #endif 3064 if (alloc_harder && 3065 !list_empty(&area->free_list[MIGRATE_HIGHATOMIC])) 3066 return true; 3067 } 3068 return false; 3069 } 3070 3071 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark, 3072 int classzone_idx, unsigned int alloc_flags) 3073 { 3074 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags, 3075 zone_page_state(z, NR_FREE_PAGES)); 3076 } 3077 3078 static inline bool zone_watermark_fast(struct zone *z, unsigned int order, 3079 unsigned long mark, int classzone_idx, unsigned int alloc_flags) 3080 { 3081 long free_pages = zone_page_state(z, NR_FREE_PAGES); 3082 long cma_pages = 0; 3083 3084 #ifdef CONFIG_CMA 3085 /* If allocation can't use CMA areas don't use free CMA pages */ 3086 if (!(alloc_flags & ALLOC_CMA)) 3087 cma_pages = zone_page_state(z, NR_FREE_CMA_PAGES); 3088 #endif 3089 3090 /* 3091 * Fast check for order-0 only. If this fails then the reserves 3092 * need to be calculated. There is a corner case where the check 3093 * passes but only the high-order atomic reserve are free. If 3094 * the caller is !atomic then it'll uselessly search the free 3095 * list. That corner case is then slower but it is harmless. 3096 */ 3097 if (!order && (free_pages - cma_pages) > mark + z->lowmem_reserve[classzone_idx]) 3098 return true; 3099 3100 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags, 3101 free_pages); 3102 } 3103 3104 bool zone_watermark_ok_safe(struct zone *z, unsigned int order, 3105 unsigned long mark, int classzone_idx) 3106 { 3107 long free_pages = zone_page_state(z, NR_FREE_PAGES); 3108 3109 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark) 3110 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES); 3111 3112 return __zone_watermark_ok(z, order, mark, classzone_idx, 0, 3113 free_pages); 3114 } 3115 3116 #ifdef CONFIG_NUMA 3117 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone) 3118 { 3119 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <= 3120 RECLAIM_DISTANCE; 3121 } 3122 #else /* CONFIG_NUMA */ 3123 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone) 3124 { 3125 return true; 3126 } 3127 #endif /* CONFIG_NUMA */ 3128 3129 /* 3130 * get_page_from_freelist goes through the zonelist trying to allocate 3131 * a page. 3132 */ 3133 static struct page * 3134 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags, 3135 const struct alloc_context *ac) 3136 { 3137 struct zoneref *z = ac->preferred_zoneref; 3138 struct zone *zone; 3139 struct pglist_data *last_pgdat_dirty_limit = NULL; 3140 3141 /* 3142 * Scan zonelist, looking for a zone with enough free. 3143 * See also __cpuset_node_allowed() comment in kernel/cpuset.c. 3144 */ 3145 for_next_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx, 3146 ac->nodemask) { 3147 struct page *page; 3148 unsigned long mark; 3149 3150 if (cpusets_enabled() && 3151 (alloc_flags & ALLOC_CPUSET) && 3152 !__cpuset_zone_allowed(zone, gfp_mask)) 3153 continue; 3154 /* 3155 * When allocating a page cache page for writing, we 3156 * want to get it from a node that is within its dirty 3157 * limit, such that no single node holds more than its 3158 * proportional share of globally allowed dirty pages. 3159 * The dirty limits take into account the node's 3160 * lowmem reserves and high watermark so that kswapd 3161 * should be able to balance it without having to 3162 * write pages from its LRU list. 3163 * 3164 * XXX: For now, allow allocations to potentially 3165 * exceed the per-node dirty limit in the slowpath 3166 * (spread_dirty_pages unset) before going into reclaim, 3167 * which is important when on a NUMA setup the allowed 3168 * nodes are together not big enough to reach the 3169 * global limit. The proper fix for these situations 3170 * will require awareness of nodes in the 3171 * dirty-throttling and the flusher threads. 3172 */ 3173 if (ac->spread_dirty_pages) { 3174 if (last_pgdat_dirty_limit == zone->zone_pgdat) 3175 continue; 3176 3177 if (!node_dirty_ok(zone->zone_pgdat)) { 3178 last_pgdat_dirty_limit = zone->zone_pgdat; 3179 continue; 3180 } 3181 } 3182 3183 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK]; 3184 if (!zone_watermark_fast(zone, order, mark, 3185 ac_classzone_idx(ac), alloc_flags)) { 3186 int ret; 3187 3188 /* Checked here to keep the fast path fast */ 3189 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK); 3190 if (alloc_flags & ALLOC_NO_WATERMARKS) 3191 goto try_this_zone; 3192 3193 if (node_reclaim_mode == 0 || 3194 !zone_allows_reclaim(ac->preferred_zoneref->zone, zone)) 3195 continue; 3196 3197 ret = node_reclaim(zone->zone_pgdat, gfp_mask, order); 3198 switch (ret) { 3199 case NODE_RECLAIM_NOSCAN: 3200 /* did not scan */ 3201 continue; 3202 case NODE_RECLAIM_FULL: 3203 /* scanned but unreclaimable */ 3204 continue; 3205 default: 3206 /* did we reclaim enough */ 3207 if (zone_watermark_ok(zone, order, mark, 3208 ac_classzone_idx(ac), alloc_flags)) 3209 goto try_this_zone; 3210 3211 continue; 3212 } 3213 } 3214 3215 try_this_zone: 3216 page = rmqueue(ac->preferred_zoneref->zone, zone, order, 3217 gfp_mask, alloc_flags, ac->migratetype); 3218 if (page) { 3219 prep_new_page(page, order, gfp_mask, alloc_flags); 3220 3221 /* 3222 * If this is a high-order atomic allocation then check 3223 * if the pageblock should be reserved for the future 3224 */ 3225 if (unlikely(order && (alloc_flags & ALLOC_HARDER))) 3226 reserve_highatomic_pageblock(page, zone, order); 3227 3228 return page; 3229 } 3230 } 3231 3232 return NULL; 3233 } 3234 3235 /* 3236 * Large machines with many possible nodes should not always dump per-node 3237 * meminfo in irq context. 3238 */ 3239 static inline bool should_suppress_show_mem(void) 3240 { 3241 bool ret = false; 3242 3243 #if NODES_SHIFT > 8 3244 ret = in_interrupt(); 3245 #endif 3246 return ret; 3247 } 3248 3249 static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask) 3250 { 3251 unsigned int filter = SHOW_MEM_FILTER_NODES; 3252 static DEFINE_RATELIMIT_STATE(show_mem_rs, HZ, 1); 3253 3254 if (should_suppress_show_mem() || !__ratelimit(&show_mem_rs)) 3255 return; 3256 3257 /* 3258 * This documents exceptions given to allocations in certain 3259 * contexts that are allowed to allocate outside current's set 3260 * of allowed nodes. 3261 */ 3262 if (!(gfp_mask & __GFP_NOMEMALLOC)) 3263 if (tsk_is_oom_victim(current) || 3264 (current->flags & (PF_MEMALLOC | PF_EXITING))) 3265 filter &= ~SHOW_MEM_FILTER_NODES; 3266 if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM)) 3267 filter &= ~SHOW_MEM_FILTER_NODES; 3268 3269 show_mem(filter, nodemask); 3270 } 3271 3272 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...) 3273 { 3274 struct va_format vaf; 3275 va_list args; 3276 static DEFINE_RATELIMIT_STATE(nopage_rs, DEFAULT_RATELIMIT_INTERVAL, 3277 DEFAULT_RATELIMIT_BURST); 3278 3279 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs)) 3280 return; 3281 3282 va_start(args, fmt); 3283 vaf.fmt = fmt; 3284 vaf.va = &args; 3285 pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl\n", 3286 current->comm, &vaf, gfp_mask, &gfp_mask, 3287 nodemask_pr_args(nodemask)); 3288 va_end(args); 3289 3290 cpuset_print_current_mems_allowed(); 3291 3292 dump_stack(); 3293 warn_alloc_show_mem(gfp_mask, nodemask); 3294 } 3295 3296 static inline struct page * 3297 __alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order, 3298 unsigned int alloc_flags, 3299 const struct alloc_context *ac) 3300 { 3301 struct page *page; 3302 3303 page = get_page_from_freelist(gfp_mask, order, 3304 alloc_flags|ALLOC_CPUSET, ac); 3305 /* 3306 * fallback to ignore cpuset restriction if our nodes 3307 * are depleted 3308 */ 3309 if (!page) 3310 page = get_page_from_freelist(gfp_mask, order, 3311 alloc_flags, ac); 3312 3313 return page; 3314 } 3315 3316 static inline struct page * 3317 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order, 3318 const struct alloc_context *ac, unsigned long *did_some_progress) 3319 { 3320 struct oom_control oc = { 3321 .zonelist = ac->zonelist, 3322 .nodemask = ac->nodemask, 3323 .memcg = NULL, 3324 .gfp_mask = gfp_mask, 3325 .order = order, 3326 }; 3327 struct page *page; 3328 3329 *did_some_progress = 0; 3330 3331 /* 3332 * Acquire the oom lock. If that fails, somebody else is 3333 * making progress for us. 3334 */ 3335 if (!mutex_trylock(&oom_lock)) { 3336 *did_some_progress = 1; 3337 schedule_timeout_uninterruptible(1); 3338 return NULL; 3339 } 3340 3341 /* 3342 * Go through the zonelist yet one more time, keep very high watermark 3343 * here, this is only to catch a parallel oom killing, we must fail if 3344 * we're still under heavy pressure. But make sure that this reclaim 3345 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY 3346 * allocation which will never fail due to oom_lock already held. 3347 */ 3348 page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) & 3349 ~__GFP_DIRECT_RECLAIM, order, 3350 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac); 3351 if (page) 3352 goto out; 3353 3354 /* Coredumps can quickly deplete all memory reserves */ 3355 if (current->flags & PF_DUMPCORE) 3356 goto out; 3357 /* The OOM killer will not help higher order allocs */ 3358 if (order > PAGE_ALLOC_COSTLY_ORDER) 3359 goto out; 3360 /* 3361 * We have already exhausted all our reclaim opportunities without any 3362 * success so it is time to admit defeat. We will skip the OOM killer 3363 * because it is very likely that the caller has a more reasonable 3364 * fallback than shooting a random task. 3365 */ 3366 if (gfp_mask & __GFP_RETRY_MAYFAIL) 3367 goto out; 3368 /* The OOM killer does not needlessly kill tasks for lowmem */ 3369 if (ac->high_zoneidx < ZONE_NORMAL) 3370 goto out; 3371 if (pm_suspended_storage()) 3372 goto out; 3373 /* 3374 * XXX: GFP_NOFS allocations should rather fail than rely on 3375 * other request to make a forward progress. 3376 * We are in an unfortunate situation where out_of_memory cannot 3377 * do much for this context but let's try it to at least get 3378 * access to memory reserved if the current task is killed (see 3379 * out_of_memory). Once filesystems are ready to handle allocation 3380 * failures more gracefully we should just bail out here. 3381 */ 3382 3383 /* The OOM killer may not free memory on a specific node */ 3384 if (gfp_mask & __GFP_THISNODE) 3385 goto out; 3386 3387 /* Exhausted what can be done so it's blamo time */ 3388 if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) { 3389 *did_some_progress = 1; 3390 3391 /* 3392 * Help non-failing allocations by giving them access to memory 3393 * reserves 3394 */ 3395 if (gfp_mask & __GFP_NOFAIL) 3396 page = __alloc_pages_cpuset_fallback(gfp_mask, order, 3397 ALLOC_NO_WATERMARKS, ac); 3398 } 3399 out: 3400 mutex_unlock(&oom_lock); 3401 return page; 3402 } 3403 3404 /* 3405 * Maximum number of compaction retries wit a progress before OOM 3406 * killer is consider as the only way to move forward. 3407 */ 3408 #define MAX_COMPACT_RETRIES 16 3409 3410 #ifdef CONFIG_COMPACTION 3411 /* Try memory compaction for high-order allocations before reclaim */ 3412 static struct page * 3413 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order, 3414 unsigned int alloc_flags, const struct alloc_context *ac, 3415 enum compact_priority prio, enum compact_result *compact_result) 3416 { 3417 struct page *page; 3418 unsigned int noreclaim_flag; 3419 3420 if (!order) 3421 return NULL; 3422 3423 noreclaim_flag = memalloc_noreclaim_save(); 3424 *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac, 3425 prio); 3426 memalloc_noreclaim_restore(noreclaim_flag); 3427 3428 if (*compact_result <= COMPACT_INACTIVE) 3429 return NULL; 3430 3431 /* 3432 * At least in one zone compaction wasn't deferred or skipped, so let's 3433 * count a compaction stall 3434 */ 3435 count_vm_event(COMPACTSTALL); 3436 3437 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 3438 3439 if (page) { 3440 struct zone *zone = page_zone(page); 3441 3442 zone->compact_blockskip_flush = false; 3443 compaction_defer_reset(zone, order, true); 3444 count_vm_event(COMPACTSUCCESS); 3445 return page; 3446 } 3447 3448 /* 3449 * It's bad if compaction run occurs and fails. The most likely reason 3450 * is that pages exist, but not enough to satisfy watermarks. 3451 */ 3452 count_vm_event(COMPACTFAIL); 3453 3454 cond_resched(); 3455 3456 return NULL; 3457 } 3458 3459 static inline bool 3460 should_compact_retry(struct alloc_context *ac, int order, int alloc_flags, 3461 enum compact_result compact_result, 3462 enum compact_priority *compact_priority, 3463 int *compaction_retries) 3464 { 3465 int max_retries = MAX_COMPACT_RETRIES; 3466 int min_priority; 3467 bool ret = false; 3468 int retries = *compaction_retries; 3469 enum compact_priority priority = *compact_priority; 3470 3471 if (!order) 3472 return false; 3473 3474 if (compaction_made_progress(compact_result)) 3475 (*compaction_retries)++; 3476 3477 /* 3478 * compaction considers all the zone as desperately out of memory 3479 * so it doesn't really make much sense to retry except when the 3480 * failure could be caused by insufficient priority 3481 */ 3482 if (compaction_failed(compact_result)) 3483 goto check_priority; 3484 3485 /* 3486 * make sure the compaction wasn't deferred or didn't bail out early 3487 * due to locks contention before we declare that we should give up. 3488 * But do not retry if the given zonelist is not suitable for 3489 * compaction. 3490 */ 3491 if (compaction_withdrawn(compact_result)) { 3492 ret = compaction_zonelist_suitable(ac, order, alloc_flags); 3493 goto out; 3494 } 3495 3496 /* 3497 * !costly requests are much more important than __GFP_RETRY_MAYFAIL 3498 * costly ones because they are de facto nofail and invoke OOM 3499 * killer to move on while costly can fail and users are ready 3500 * to cope with that. 1/4 retries is rather arbitrary but we 3501 * would need much more detailed feedback from compaction to 3502 * make a better decision. 3503 */ 3504 if (order > PAGE_ALLOC_COSTLY_ORDER) 3505 max_retries /= 4; 3506 if (*compaction_retries <= max_retries) { 3507 ret = true; 3508 goto out; 3509 } 3510 3511 /* 3512 * Make sure there are attempts at the highest priority if we exhausted 3513 * all retries or failed at the lower priorities. 3514 */ 3515 check_priority: 3516 min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ? 3517 MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY; 3518 3519 if (*compact_priority > min_priority) { 3520 (*compact_priority)--; 3521 *compaction_retries = 0; 3522 ret = true; 3523 } 3524 out: 3525 trace_compact_retry(order, priority, compact_result, retries, max_retries, ret); 3526 return ret; 3527 } 3528 #else 3529 static inline struct page * 3530 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order, 3531 unsigned int alloc_flags, const struct alloc_context *ac, 3532 enum compact_priority prio, enum compact_result *compact_result) 3533 { 3534 *compact_result = COMPACT_SKIPPED; 3535 return NULL; 3536 } 3537 3538 static inline bool 3539 should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags, 3540 enum compact_result compact_result, 3541 enum compact_priority *compact_priority, 3542 int *compaction_retries) 3543 { 3544 struct zone *zone; 3545 struct zoneref *z; 3546 3547 if (!order || order > PAGE_ALLOC_COSTLY_ORDER) 3548 return false; 3549 3550 /* 3551 * There are setups with compaction disabled which would prefer to loop 3552 * inside the allocator rather than hit the oom killer prematurely. 3553 * Let's give them a good hope and keep retrying while the order-0 3554 * watermarks are OK. 3555 */ 3556 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx, 3557 ac->nodemask) { 3558 if (zone_watermark_ok(zone, 0, min_wmark_pages(zone), 3559 ac_classzone_idx(ac), alloc_flags)) 3560 return true; 3561 } 3562 return false; 3563 } 3564 #endif /* CONFIG_COMPACTION */ 3565 3566 #ifdef CONFIG_LOCKDEP 3567 struct lockdep_map __fs_reclaim_map = 3568 STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map); 3569 3570 static bool __need_fs_reclaim(gfp_t gfp_mask) 3571 { 3572 gfp_mask = current_gfp_context(gfp_mask); 3573 3574 /* no reclaim without waiting on it */ 3575 if (!(gfp_mask & __GFP_DIRECT_RECLAIM)) 3576 return false; 3577 3578 /* this guy won't enter reclaim */ 3579 if ((current->flags & PF_MEMALLOC) && !(gfp_mask & __GFP_NOMEMALLOC)) 3580 return false; 3581 3582 /* We're only interested __GFP_FS allocations for now */ 3583 if (!(gfp_mask & __GFP_FS)) 3584 return false; 3585 3586 if (gfp_mask & __GFP_NOLOCKDEP) 3587 return false; 3588 3589 return true; 3590 } 3591 3592 void fs_reclaim_acquire(gfp_t gfp_mask) 3593 { 3594 if (__need_fs_reclaim(gfp_mask)) 3595 lock_map_acquire(&__fs_reclaim_map); 3596 } 3597 EXPORT_SYMBOL_GPL(fs_reclaim_acquire); 3598 3599 void fs_reclaim_release(gfp_t gfp_mask) 3600 { 3601 if (__need_fs_reclaim(gfp_mask)) 3602 lock_map_release(&__fs_reclaim_map); 3603 } 3604 EXPORT_SYMBOL_GPL(fs_reclaim_release); 3605 #endif 3606 3607 /* Perform direct synchronous page reclaim */ 3608 static int 3609 __perform_reclaim(gfp_t gfp_mask, unsigned int order, 3610 const struct alloc_context *ac) 3611 { 3612 struct reclaim_state reclaim_state; 3613 int progress; 3614 unsigned int noreclaim_flag; 3615 3616 cond_resched(); 3617 3618 /* We now go into synchronous reclaim */ 3619 cpuset_memory_pressure_bump(); 3620 noreclaim_flag = memalloc_noreclaim_save(); 3621 fs_reclaim_acquire(gfp_mask); 3622 reclaim_state.reclaimed_slab = 0; 3623 current->reclaim_state = &reclaim_state; 3624 3625 progress = try_to_free_pages(ac->zonelist, order, gfp_mask, 3626 ac->nodemask); 3627 3628 current->reclaim_state = NULL; 3629 fs_reclaim_release(gfp_mask); 3630 memalloc_noreclaim_restore(noreclaim_flag); 3631 3632 cond_resched(); 3633 3634 return progress; 3635 } 3636 3637 /* The really slow allocator path where we enter direct reclaim */ 3638 static inline struct page * 3639 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order, 3640 unsigned int alloc_flags, const struct alloc_context *ac, 3641 unsigned long *did_some_progress) 3642 { 3643 struct page *page = NULL; 3644 bool drained = false; 3645 3646 *did_some_progress = __perform_reclaim(gfp_mask, order, ac); 3647 if (unlikely(!(*did_some_progress))) 3648 return NULL; 3649 3650 retry: 3651 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 3652 3653 /* 3654 * If an allocation failed after direct reclaim, it could be because 3655 * pages are pinned on the per-cpu lists or in high alloc reserves. 3656 * Shrink them them and try again 3657 */ 3658 if (!page && !drained) { 3659 unreserve_highatomic_pageblock(ac, false); 3660 drain_all_pages(NULL); 3661 drained = true; 3662 goto retry; 3663 } 3664 3665 return page; 3666 } 3667 3668 static void wake_all_kswapds(unsigned int order, const struct alloc_context *ac) 3669 { 3670 struct zoneref *z; 3671 struct zone *zone; 3672 pg_data_t *last_pgdat = NULL; 3673 3674 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, 3675 ac->high_zoneidx, ac->nodemask) { 3676 if (last_pgdat != zone->zone_pgdat) 3677 wakeup_kswapd(zone, order, ac->high_zoneidx); 3678 last_pgdat = zone->zone_pgdat; 3679 } 3680 } 3681 3682 static inline unsigned int 3683 gfp_to_alloc_flags(gfp_t gfp_mask) 3684 { 3685 unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET; 3686 3687 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */ 3688 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH); 3689 3690 /* 3691 * The caller may dip into page reserves a bit more if the caller 3692 * cannot run direct reclaim, or if the caller has realtime scheduling 3693 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will 3694 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH). 3695 */ 3696 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH); 3697 3698 if (gfp_mask & __GFP_ATOMIC) { 3699 /* 3700 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even 3701 * if it can't schedule. 3702 */ 3703 if (!(gfp_mask & __GFP_NOMEMALLOC)) 3704 alloc_flags |= ALLOC_HARDER; 3705 /* 3706 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the 3707 * comment for __cpuset_node_allowed(). 3708 */ 3709 alloc_flags &= ~ALLOC_CPUSET; 3710 } else if (unlikely(rt_task(current)) && !in_interrupt()) 3711 alloc_flags |= ALLOC_HARDER; 3712 3713 #ifdef CONFIG_CMA 3714 if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE) 3715 alloc_flags |= ALLOC_CMA; 3716 #endif 3717 return alloc_flags; 3718 } 3719 3720 static bool oom_reserves_allowed(struct task_struct *tsk) 3721 { 3722 if (!tsk_is_oom_victim(tsk)) 3723 return false; 3724 3725 /* 3726 * !MMU doesn't have oom reaper so give access to memory reserves 3727 * only to the thread with TIF_MEMDIE set 3728 */ 3729 if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE)) 3730 return false; 3731 3732 return true; 3733 } 3734 3735 /* 3736 * Distinguish requests which really need access to full memory 3737 * reserves from oom victims which can live with a portion of it 3738 */ 3739 static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask) 3740 { 3741 if (unlikely(gfp_mask & __GFP_NOMEMALLOC)) 3742 return 0; 3743 if (gfp_mask & __GFP_MEMALLOC) 3744 return ALLOC_NO_WATERMARKS; 3745 if (in_serving_softirq() && (current->flags & PF_MEMALLOC)) 3746 return ALLOC_NO_WATERMARKS; 3747 if (!in_interrupt()) { 3748 if (current->flags & PF_MEMALLOC) 3749 return ALLOC_NO_WATERMARKS; 3750 else if (oom_reserves_allowed(current)) 3751 return ALLOC_OOM; 3752 } 3753 3754 return 0; 3755 } 3756 3757 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask) 3758 { 3759 return !!__gfp_pfmemalloc_flags(gfp_mask); 3760 } 3761 3762 /* 3763 * Checks whether it makes sense to retry the reclaim to make a forward progress 3764 * for the given allocation request. 3765 * 3766 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row 3767 * without success, or when we couldn't even meet the watermark if we 3768 * reclaimed all remaining pages on the LRU lists. 3769 * 3770 * Returns true if a retry is viable or false to enter the oom path. 3771 */ 3772 static inline bool 3773 should_reclaim_retry(gfp_t gfp_mask, unsigned order, 3774 struct alloc_context *ac, int alloc_flags, 3775 bool did_some_progress, int *no_progress_loops) 3776 { 3777 struct zone *zone; 3778 struct zoneref *z; 3779 3780 /* 3781 * Costly allocations might have made a progress but this doesn't mean 3782 * their order will become available due to high fragmentation so 3783 * always increment the no progress counter for them 3784 */ 3785 if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER) 3786 *no_progress_loops = 0; 3787 else 3788 (*no_progress_loops)++; 3789 3790 /* 3791 * Make sure we converge to OOM if we cannot make any progress 3792 * several times in the row. 3793 */ 3794 if (*no_progress_loops > MAX_RECLAIM_RETRIES) { 3795 /* Before OOM, exhaust highatomic_reserve */ 3796 return unreserve_highatomic_pageblock(ac, true); 3797 } 3798 3799 /* 3800 * Keep reclaiming pages while there is a chance this will lead 3801 * somewhere. If none of the target zones can satisfy our allocation 3802 * request even if all reclaimable pages are considered then we are 3803 * screwed and have to go OOM. 3804 */ 3805 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx, 3806 ac->nodemask) { 3807 unsigned long available; 3808 unsigned long reclaimable; 3809 unsigned long min_wmark = min_wmark_pages(zone); 3810 bool wmark; 3811 3812 available = reclaimable = zone_reclaimable_pages(zone); 3813 available += zone_page_state_snapshot(zone, NR_FREE_PAGES); 3814 3815 /* 3816 * Would the allocation succeed if we reclaimed all 3817 * reclaimable pages? 3818 */ 3819 wmark = __zone_watermark_ok(zone, order, min_wmark, 3820 ac_classzone_idx(ac), alloc_flags, available); 3821 trace_reclaim_retry_zone(z, order, reclaimable, 3822 available, min_wmark, *no_progress_loops, wmark); 3823 if (wmark) { 3824 /* 3825 * If we didn't make any progress and have a lot of 3826 * dirty + writeback pages then we should wait for 3827 * an IO to complete to slow down the reclaim and 3828 * prevent from pre mature OOM 3829 */ 3830 if (!did_some_progress) { 3831 unsigned long write_pending; 3832 3833 write_pending = zone_page_state_snapshot(zone, 3834 NR_ZONE_WRITE_PENDING); 3835 3836 if (2 * write_pending > reclaimable) { 3837 congestion_wait(BLK_RW_ASYNC, HZ/10); 3838 return true; 3839 } 3840 } 3841 3842 /* 3843 * Memory allocation/reclaim might be called from a WQ 3844 * context and the current implementation of the WQ 3845 * concurrency control doesn't recognize that 3846 * a particular WQ is congested if the worker thread is 3847 * looping without ever sleeping. Therefore we have to 3848 * do a short sleep here rather than calling 3849 * cond_resched(). 3850 */ 3851 if (current->flags & PF_WQ_WORKER) 3852 schedule_timeout_uninterruptible(1); 3853 else 3854 cond_resched(); 3855 3856 return true; 3857 } 3858 } 3859 3860 return false; 3861 } 3862 3863 static inline bool 3864 check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac) 3865 { 3866 /* 3867 * It's possible that cpuset's mems_allowed and the nodemask from 3868 * mempolicy don't intersect. This should be normally dealt with by 3869 * policy_nodemask(), but it's possible to race with cpuset update in 3870 * such a way the check therein was true, and then it became false 3871 * before we got our cpuset_mems_cookie here. 3872 * This assumes that for all allocations, ac->nodemask can come only 3873 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored 3874 * when it does not intersect with the cpuset restrictions) or the 3875 * caller can deal with a violated nodemask. 3876 */ 3877 if (cpusets_enabled() && ac->nodemask && 3878 !cpuset_nodemask_valid_mems_allowed(ac->nodemask)) { 3879 ac->nodemask = NULL; 3880 return true; 3881 } 3882 3883 /* 3884 * When updating a task's mems_allowed or mempolicy nodemask, it is 3885 * possible to race with parallel threads in such a way that our 3886 * allocation can fail while the mask is being updated. If we are about 3887 * to fail, check if the cpuset changed during allocation and if so, 3888 * retry. 3889 */ 3890 if (read_mems_allowed_retry(cpuset_mems_cookie)) 3891 return true; 3892 3893 return false; 3894 } 3895 3896 static inline struct page * 3897 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order, 3898 struct alloc_context *ac) 3899 { 3900 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM; 3901 const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER; 3902 struct page *page = NULL; 3903 unsigned int alloc_flags; 3904 unsigned long did_some_progress; 3905 enum compact_priority compact_priority; 3906 enum compact_result compact_result; 3907 int compaction_retries; 3908 int no_progress_loops; 3909 unsigned int cpuset_mems_cookie; 3910 int reserve_flags; 3911 3912 /* 3913 * In the slowpath, we sanity check order to avoid ever trying to 3914 * reclaim >= MAX_ORDER areas which will never succeed. Callers may 3915 * be using allocators in order of preference for an area that is 3916 * too large. 3917 */ 3918 if (order >= MAX_ORDER) { 3919 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN)); 3920 return NULL; 3921 } 3922 3923 /* 3924 * We also sanity check to catch abuse of atomic reserves being used by 3925 * callers that are not in atomic context. 3926 */ 3927 if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) == 3928 (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM))) 3929 gfp_mask &= ~__GFP_ATOMIC; 3930 3931 retry_cpuset: 3932 compaction_retries = 0; 3933 no_progress_loops = 0; 3934 compact_priority = DEF_COMPACT_PRIORITY; 3935 cpuset_mems_cookie = read_mems_allowed_begin(); 3936 3937 /* 3938 * The fast path uses conservative alloc_flags to succeed only until 3939 * kswapd needs to be woken up, and to avoid the cost of setting up 3940 * alloc_flags precisely. So we do that now. 3941 */ 3942 alloc_flags = gfp_to_alloc_flags(gfp_mask); 3943 3944 /* 3945 * We need to recalculate the starting point for the zonelist iterator 3946 * because we might have used different nodemask in the fast path, or 3947 * there was a cpuset modification and we are retrying - otherwise we 3948 * could end up iterating over non-eligible zones endlessly. 3949 */ 3950 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist, 3951 ac->high_zoneidx, ac->nodemask); 3952 if (!ac->preferred_zoneref->zone) 3953 goto nopage; 3954 3955 if (gfp_mask & __GFP_KSWAPD_RECLAIM) 3956 wake_all_kswapds(order, ac); 3957 3958 /* 3959 * The adjusted alloc_flags might result in immediate success, so try 3960 * that first 3961 */ 3962 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 3963 if (page) 3964 goto got_pg; 3965 3966 /* 3967 * For costly allocations, try direct compaction first, as it's likely 3968 * that we have enough base pages and don't need to reclaim. For non- 3969 * movable high-order allocations, do that as well, as compaction will 3970 * try prevent permanent fragmentation by migrating from blocks of the 3971 * same migratetype. 3972 * Don't try this for allocations that are allowed to ignore 3973 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen. 3974 */ 3975 if (can_direct_reclaim && 3976 (costly_order || 3977 (order > 0 && ac->migratetype != MIGRATE_MOVABLE)) 3978 && !gfp_pfmemalloc_allowed(gfp_mask)) { 3979 page = __alloc_pages_direct_compact(gfp_mask, order, 3980 alloc_flags, ac, 3981 INIT_COMPACT_PRIORITY, 3982 &compact_result); 3983 if (page) 3984 goto got_pg; 3985 3986 /* 3987 * Checks for costly allocations with __GFP_NORETRY, which 3988 * includes THP page fault allocations 3989 */ 3990 if (costly_order && (gfp_mask & __GFP_NORETRY)) { 3991 /* 3992 * If compaction is deferred for high-order allocations, 3993 * it is because sync compaction recently failed. If 3994 * this is the case and the caller requested a THP 3995 * allocation, we do not want to heavily disrupt the 3996 * system, so we fail the allocation instead of entering 3997 * direct reclaim. 3998 */ 3999 if (compact_result == COMPACT_DEFERRED) 4000 goto nopage; 4001 4002 /* 4003 * Looks like reclaim/compaction is worth trying, but 4004 * sync compaction could be very expensive, so keep 4005 * using async compaction. 4006 */ 4007 compact_priority = INIT_COMPACT_PRIORITY; 4008 } 4009 } 4010 4011 retry: 4012 /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */ 4013 if (gfp_mask & __GFP_KSWAPD_RECLAIM) 4014 wake_all_kswapds(order, ac); 4015 4016 reserve_flags = __gfp_pfmemalloc_flags(gfp_mask); 4017 if (reserve_flags) 4018 alloc_flags = reserve_flags; 4019 4020 /* 4021 * Reset the zonelist iterators if memory policies can be ignored. 4022 * These allocations are high priority and system rather than user 4023 * orientated. 4024 */ 4025 if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) { 4026 ac->zonelist = node_zonelist(numa_node_id(), gfp_mask); 4027 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist, 4028 ac->high_zoneidx, ac->nodemask); 4029 } 4030 4031 /* Attempt with potentially adjusted zonelist and alloc_flags */ 4032 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 4033 if (page) 4034 goto got_pg; 4035 4036 /* Caller is not willing to reclaim, we can't balance anything */ 4037 if (!can_direct_reclaim) 4038 goto nopage; 4039 4040 /* Avoid recursion of direct reclaim */ 4041 if (current->flags & PF_MEMALLOC) 4042 goto nopage; 4043 4044 /* Try direct reclaim and then allocating */ 4045 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac, 4046 &did_some_progress); 4047 if (page) 4048 goto got_pg; 4049 4050 /* Try direct compaction and then allocating */ 4051 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac, 4052 compact_priority, &compact_result); 4053 if (page) 4054 goto got_pg; 4055 4056 /* Do not loop if specifically requested */ 4057 if (gfp_mask & __GFP_NORETRY) 4058 goto nopage; 4059 4060 /* 4061 * Do not retry costly high order allocations unless they are 4062 * __GFP_RETRY_MAYFAIL 4063 */ 4064 if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL)) 4065 goto nopage; 4066 4067 if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags, 4068 did_some_progress > 0, &no_progress_loops)) 4069 goto retry; 4070 4071 /* 4072 * It doesn't make any sense to retry for the compaction if the order-0 4073 * reclaim is not able to make any progress because the current 4074 * implementation of the compaction depends on the sufficient amount 4075 * of free memory (see __compaction_suitable) 4076 */ 4077 if (did_some_progress > 0 && 4078 should_compact_retry(ac, order, alloc_flags, 4079 compact_result, &compact_priority, 4080 &compaction_retries)) 4081 goto retry; 4082 4083 4084 /* Deal with possible cpuset update races before we start OOM killing */ 4085 if (check_retry_cpuset(cpuset_mems_cookie, ac)) 4086 goto retry_cpuset; 4087 4088 /* Reclaim has failed us, start killing things */ 4089 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress); 4090 if (page) 4091 goto got_pg; 4092 4093 /* Avoid allocations with no watermarks from looping endlessly */ 4094 if (tsk_is_oom_victim(current) && 4095 (alloc_flags == ALLOC_OOM || 4096 (gfp_mask & __GFP_NOMEMALLOC))) 4097 goto nopage; 4098 4099 /* Retry as long as the OOM killer is making progress */ 4100 if (did_some_progress) { 4101 no_progress_loops = 0; 4102 goto retry; 4103 } 4104 4105 nopage: 4106 /* Deal with possible cpuset update races before we fail */ 4107 if (check_retry_cpuset(cpuset_mems_cookie, ac)) 4108 goto retry_cpuset; 4109 4110 /* 4111 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure 4112 * we always retry 4113 */ 4114 if (gfp_mask & __GFP_NOFAIL) { 4115 /* 4116 * All existing users of the __GFP_NOFAIL are blockable, so warn 4117 * of any new users that actually require GFP_NOWAIT 4118 */ 4119 if (WARN_ON_ONCE(!can_direct_reclaim)) 4120 goto fail; 4121 4122 /* 4123 * PF_MEMALLOC request from this context is rather bizarre 4124 * because we cannot reclaim anything and only can loop waiting 4125 * for somebody to do a work for us 4126 */ 4127 WARN_ON_ONCE(current->flags & PF_MEMALLOC); 4128 4129 /* 4130 * non failing costly orders are a hard requirement which we 4131 * are not prepared for much so let's warn about these users 4132 * so that we can identify them and convert them to something 4133 * else. 4134 */ 4135 WARN_ON_ONCE(order > PAGE_ALLOC_COSTLY_ORDER); 4136 4137 /* 4138 * Help non-failing allocations by giving them access to memory 4139 * reserves but do not use ALLOC_NO_WATERMARKS because this 4140 * could deplete whole memory reserves which would just make 4141 * the situation worse 4142 */ 4143 page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac); 4144 if (page) 4145 goto got_pg; 4146 4147 cond_resched(); 4148 goto retry; 4149 } 4150 fail: 4151 warn_alloc(gfp_mask, ac->nodemask, 4152 "page allocation failure: order:%u", order); 4153 got_pg: 4154 return page; 4155 } 4156 4157 static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order, 4158 int preferred_nid, nodemask_t *nodemask, 4159 struct alloc_context *ac, gfp_t *alloc_mask, 4160 unsigned int *alloc_flags) 4161 { 4162 ac->high_zoneidx = gfp_zone(gfp_mask); 4163 ac->zonelist = node_zonelist(preferred_nid, gfp_mask); 4164 ac->nodemask = nodemask; 4165 ac->migratetype = gfpflags_to_migratetype(gfp_mask); 4166 4167 if (cpusets_enabled()) { 4168 *alloc_mask |= __GFP_HARDWALL; 4169 if (!ac->nodemask) 4170 ac->nodemask = &cpuset_current_mems_allowed; 4171 else 4172 *alloc_flags |= ALLOC_CPUSET; 4173 } 4174 4175 fs_reclaim_acquire(gfp_mask); 4176 fs_reclaim_release(gfp_mask); 4177 4178 might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM); 4179 4180 if (should_fail_alloc_page(gfp_mask, order)) 4181 return false; 4182 4183 if (IS_ENABLED(CONFIG_CMA) && ac->migratetype == MIGRATE_MOVABLE) 4184 *alloc_flags |= ALLOC_CMA; 4185 4186 return true; 4187 } 4188 4189 /* Determine whether to spread dirty pages and what the first usable zone */ 4190 static inline void finalise_ac(gfp_t gfp_mask, 4191 unsigned int order, struct alloc_context *ac) 4192 { 4193 /* Dirty zone balancing only done in the fast path */ 4194 ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE); 4195 4196 /* 4197 * The preferred zone is used for statistics but crucially it is 4198 * also used as the starting point for the zonelist iterator. It 4199 * may get reset for allocations that ignore memory policies. 4200 */ 4201 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist, 4202 ac->high_zoneidx, ac->nodemask); 4203 } 4204 4205 /* 4206 * This is the 'heart' of the zoned buddy allocator. 4207 */ 4208 struct page * 4209 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order, int preferred_nid, 4210 nodemask_t *nodemask) 4211 { 4212 struct page *page; 4213 unsigned int alloc_flags = ALLOC_WMARK_LOW; 4214 gfp_t alloc_mask; /* The gfp_t that was actually used for allocation */ 4215 struct alloc_context ac = { }; 4216 4217 gfp_mask &= gfp_allowed_mask; 4218 alloc_mask = gfp_mask; 4219 if (!prepare_alloc_pages(gfp_mask, order, preferred_nid, nodemask, &ac, &alloc_mask, &alloc_flags)) 4220 return NULL; 4221 4222 finalise_ac(gfp_mask, order, &ac); 4223 4224 /* First allocation attempt */ 4225 page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac); 4226 if (likely(page)) 4227 goto out; 4228 4229 /* 4230 * Apply scoped allocation constraints. This is mainly about GFP_NOFS 4231 * resp. GFP_NOIO which has to be inherited for all allocation requests 4232 * from a particular context which has been marked by 4233 * memalloc_no{fs,io}_{save,restore}. 4234 */ 4235 alloc_mask = current_gfp_context(gfp_mask); 4236 ac.spread_dirty_pages = false; 4237 4238 /* 4239 * Restore the original nodemask if it was potentially replaced with 4240 * &cpuset_current_mems_allowed to optimize the fast-path attempt. 4241 */ 4242 if (unlikely(ac.nodemask != nodemask)) 4243 ac.nodemask = nodemask; 4244 4245 page = __alloc_pages_slowpath(alloc_mask, order, &ac); 4246 4247 out: 4248 if (memcg_kmem_enabled() && (gfp_mask & __GFP_ACCOUNT) && page && 4249 unlikely(memcg_kmem_charge(page, gfp_mask, order) != 0)) { 4250 __free_pages(page, order); 4251 page = NULL; 4252 } 4253 4254 trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype); 4255 4256 return page; 4257 } 4258 EXPORT_SYMBOL(__alloc_pages_nodemask); 4259 4260 /* 4261 * Common helper functions. 4262 */ 4263 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order) 4264 { 4265 struct page *page; 4266 4267 /* 4268 * __get_free_pages() returns a 32-bit address, which cannot represent 4269 * a highmem page 4270 */ 4271 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0); 4272 4273 page = alloc_pages(gfp_mask, order); 4274 if (!page) 4275 return 0; 4276 return (unsigned long) page_address(page); 4277 } 4278 EXPORT_SYMBOL(__get_free_pages); 4279 4280 unsigned long get_zeroed_page(gfp_t gfp_mask) 4281 { 4282 return __get_free_pages(gfp_mask | __GFP_ZERO, 0); 4283 } 4284 EXPORT_SYMBOL(get_zeroed_page); 4285 4286 void __free_pages(struct page *page, unsigned int order) 4287 { 4288 if (put_page_testzero(page)) { 4289 if (order == 0) 4290 free_unref_page(page); 4291 else 4292 __free_pages_ok(page, order); 4293 } 4294 } 4295 4296 EXPORT_SYMBOL(__free_pages); 4297 4298 void free_pages(unsigned long addr, unsigned int order) 4299 { 4300 if (addr != 0) { 4301 VM_BUG_ON(!virt_addr_valid((void *)addr)); 4302 __free_pages(virt_to_page((void *)addr), order); 4303 } 4304 } 4305 4306 EXPORT_SYMBOL(free_pages); 4307 4308 /* 4309 * Page Fragment: 4310 * An arbitrary-length arbitrary-offset area of memory which resides 4311 * within a 0 or higher order page. Multiple fragments within that page 4312 * are individually refcounted, in the page's reference counter. 4313 * 4314 * The page_frag functions below provide a simple allocation framework for 4315 * page fragments. This is used by the network stack and network device 4316 * drivers to provide a backing region of memory for use as either an 4317 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info. 4318 */ 4319 static struct page *__page_frag_cache_refill(struct page_frag_cache *nc, 4320 gfp_t gfp_mask) 4321 { 4322 struct page *page = NULL; 4323 gfp_t gfp = gfp_mask; 4324 4325 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE) 4326 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY | 4327 __GFP_NOMEMALLOC; 4328 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask, 4329 PAGE_FRAG_CACHE_MAX_ORDER); 4330 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE; 4331 #endif 4332 if (unlikely(!page)) 4333 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0); 4334 4335 nc->va = page ? page_address(page) : NULL; 4336 4337 return page; 4338 } 4339 4340 void __page_frag_cache_drain(struct page *page, unsigned int count) 4341 { 4342 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page); 4343 4344 if (page_ref_sub_and_test(page, count)) { 4345 unsigned int order = compound_order(page); 4346 4347 if (order == 0) 4348 free_unref_page(page); 4349 else 4350 __free_pages_ok(page, order); 4351 } 4352 } 4353 EXPORT_SYMBOL(__page_frag_cache_drain); 4354 4355 void *page_frag_alloc(struct page_frag_cache *nc, 4356 unsigned int fragsz, gfp_t gfp_mask) 4357 { 4358 unsigned int size = PAGE_SIZE; 4359 struct page *page; 4360 int offset; 4361 4362 if (unlikely(!nc->va)) { 4363 refill: 4364 page = __page_frag_cache_refill(nc, gfp_mask); 4365 if (!page) 4366 return NULL; 4367 4368 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE) 4369 /* if size can vary use size else just use PAGE_SIZE */ 4370 size = nc->size; 4371 #endif 4372 /* Even if we own the page, we do not use atomic_set(). 4373 * This would break get_page_unless_zero() users. 4374 */ 4375 page_ref_add(page, size - 1); 4376 4377 /* reset page count bias and offset to start of new frag */ 4378 nc->pfmemalloc = page_is_pfmemalloc(page); 4379 nc->pagecnt_bias = size; 4380 nc->offset = size; 4381 } 4382 4383 offset = nc->offset - fragsz; 4384 if (unlikely(offset < 0)) { 4385 page = virt_to_page(nc->va); 4386 4387 if (!page_ref_sub_and_test(page, nc->pagecnt_bias)) 4388 goto refill; 4389 4390 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE) 4391 /* if size can vary use size else just use PAGE_SIZE */ 4392 size = nc->size; 4393 #endif 4394 /* OK, page count is 0, we can safely set it */ 4395 set_page_count(page, size); 4396 4397 /* reset page count bias and offset to start of new frag */ 4398 nc->pagecnt_bias = size; 4399 offset = size - fragsz; 4400 } 4401 4402 nc->pagecnt_bias--; 4403 nc->offset = offset; 4404 4405 return nc->va + offset; 4406 } 4407 EXPORT_SYMBOL(page_frag_alloc); 4408 4409 /* 4410 * Frees a page fragment allocated out of either a compound or order 0 page. 4411 */ 4412 void page_frag_free(void *addr) 4413 { 4414 struct page *page = virt_to_head_page(addr); 4415 4416 if (unlikely(put_page_testzero(page))) 4417 __free_pages_ok(page, compound_order(page)); 4418 } 4419 EXPORT_SYMBOL(page_frag_free); 4420 4421 static void *make_alloc_exact(unsigned long addr, unsigned int order, 4422 size_t size) 4423 { 4424 if (addr) { 4425 unsigned long alloc_end = addr + (PAGE_SIZE << order); 4426 unsigned long used = addr + PAGE_ALIGN(size); 4427 4428 split_page(virt_to_page((void *)addr), order); 4429 while (used < alloc_end) { 4430 free_page(used); 4431 used += PAGE_SIZE; 4432 } 4433 } 4434 return (void *)addr; 4435 } 4436 4437 /** 4438 * alloc_pages_exact - allocate an exact number physically-contiguous pages. 4439 * @size: the number of bytes to allocate 4440 * @gfp_mask: GFP flags for the allocation 4441 * 4442 * This function is similar to alloc_pages(), except that it allocates the 4443 * minimum number of pages to satisfy the request. alloc_pages() can only 4444 * allocate memory in power-of-two pages. 4445 * 4446 * This function is also limited by MAX_ORDER. 4447 * 4448 * Memory allocated by this function must be released by free_pages_exact(). 4449 */ 4450 void *alloc_pages_exact(size_t size, gfp_t gfp_mask) 4451 { 4452 unsigned int order = get_order(size); 4453 unsigned long addr; 4454 4455 addr = __get_free_pages(gfp_mask, order); 4456 return make_alloc_exact(addr, order, size); 4457 } 4458 EXPORT_SYMBOL(alloc_pages_exact); 4459 4460 /** 4461 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous 4462 * pages on a node. 4463 * @nid: the preferred node ID where memory should be allocated 4464 * @size: the number of bytes to allocate 4465 * @gfp_mask: GFP flags for the allocation 4466 * 4467 * Like alloc_pages_exact(), but try to allocate on node nid first before falling 4468 * back. 4469 */ 4470 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask) 4471 { 4472 unsigned int order = get_order(size); 4473 struct page *p = alloc_pages_node(nid, gfp_mask, order); 4474 if (!p) 4475 return NULL; 4476 return make_alloc_exact((unsigned long)page_address(p), order, size); 4477 } 4478 4479 /** 4480 * free_pages_exact - release memory allocated via alloc_pages_exact() 4481 * @virt: the value returned by alloc_pages_exact. 4482 * @size: size of allocation, same value as passed to alloc_pages_exact(). 4483 * 4484 * Release the memory allocated by a previous call to alloc_pages_exact. 4485 */ 4486 void free_pages_exact(void *virt, size_t size) 4487 { 4488 unsigned long addr = (unsigned long)virt; 4489 unsigned long end = addr + PAGE_ALIGN(size); 4490 4491 while (addr < end) { 4492 free_page(addr); 4493 addr += PAGE_SIZE; 4494 } 4495 } 4496 EXPORT_SYMBOL(free_pages_exact); 4497 4498 /** 4499 * nr_free_zone_pages - count number of pages beyond high watermark 4500 * @offset: The zone index of the highest zone 4501 * 4502 * nr_free_zone_pages() counts the number of counts pages which are beyond the 4503 * high watermark within all zones at or below a given zone index. For each 4504 * zone, the number of pages is calculated as: 4505 * 4506 * nr_free_zone_pages = managed_pages - high_pages 4507 */ 4508 static unsigned long nr_free_zone_pages(int offset) 4509 { 4510 struct zoneref *z; 4511 struct zone *zone; 4512 4513 /* Just pick one node, since fallback list is circular */ 4514 unsigned long sum = 0; 4515 4516 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL); 4517 4518 for_each_zone_zonelist(zone, z, zonelist, offset) { 4519 unsigned long size = zone->managed_pages; 4520 unsigned long high = high_wmark_pages(zone); 4521 if (size > high) 4522 sum += size - high; 4523 } 4524 4525 return sum; 4526 } 4527 4528 /** 4529 * nr_free_buffer_pages - count number of pages beyond high watermark 4530 * 4531 * nr_free_buffer_pages() counts the number of pages which are beyond the high 4532 * watermark within ZONE_DMA and ZONE_NORMAL. 4533 */ 4534 unsigned long nr_free_buffer_pages(void) 4535 { 4536 return nr_free_zone_pages(gfp_zone(GFP_USER)); 4537 } 4538 EXPORT_SYMBOL_GPL(nr_free_buffer_pages); 4539 4540 /** 4541 * nr_free_pagecache_pages - count number of pages beyond high watermark 4542 * 4543 * nr_free_pagecache_pages() counts the number of pages which are beyond the 4544 * high watermark within all zones. 4545 */ 4546 unsigned long nr_free_pagecache_pages(void) 4547 { 4548 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE)); 4549 } 4550 4551 static inline void show_node(struct zone *zone) 4552 { 4553 if (IS_ENABLED(CONFIG_NUMA)) 4554 printk("Node %d ", zone_to_nid(zone)); 4555 } 4556 4557 long si_mem_available(void) 4558 { 4559 long available; 4560 unsigned long pagecache; 4561 unsigned long wmark_low = 0; 4562 unsigned long pages[NR_LRU_LISTS]; 4563 struct zone *zone; 4564 int lru; 4565 4566 for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++) 4567 pages[lru] = global_node_page_state(NR_LRU_BASE + lru); 4568 4569 for_each_zone(zone) 4570 wmark_low += zone->watermark[WMARK_LOW]; 4571 4572 /* 4573 * Estimate the amount of memory available for userspace allocations, 4574 * without causing swapping. 4575 */ 4576 available = global_zone_page_state(NR_FREE_PAGES) - totalreserve_pages; 4577 4578 /* 4579 * Not all the page cache can be freed, otherwise the system will 4580 * start swapping. Assume at least half of the page cache, or the 4581 * low watermark worth of cache, needs to stay. 4582 */ 4583 pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE]; 4584 pagecache -= min(pagecache / 2, wmark_low); 4585 available += pagecache; 4586 4587 /* 4588 * Part of the reclaimable slab consists of items that are in use, 4589 * and cannot be freed. Cap this estimate at the low watermark. 4590 */ 4591 available += global_node_page_state(NR_SLAB_RECLAIMABLE) - 4592 min(global_node_page_state(NR_SLAB_RECLAIMABLE) / 2, 4593 wmark_low); 4594 4595 if (available < 0) 4596 available = 0; 4597 return available; 4598 } 4599 EXPORT_SYMBOL_GPL(si_mem_available); 4600 4601 void si_meminfo(struct sysinfo *val) 4602 { 4603 val->totalram = totalram_pages; 4604 val->sharedram = global_node_page_state(NR_SHMEM); 4605 val->freeram = global_zone_page_state(NR_FREE_PAGES); 4606 val->bufferram = nr_blockdev_pages(); 4607 val->totalhigh = totalhigh_pages; 4608 val->freehigh = nr_free_highpages(); 4609 val->mem_unit = PAGE_SIZE; 4610 } 4611 4612 EXPORT_SYMBOL(si_meminfo); 4613 4614 #ifdef CONFIG_NUMA 4615 void si_meminfo_node(struct sysinfo *val, int nid) 4616 { 4617 int zone_type; /* needs to be signed */ 4618 unsigned long managed_pages = 0; 4619 unsigned long managed_highpages = 0; 4620 unsigned long free_highpages = 0; 4621 pg_data_t *pgdat = NODE_DATA(nid); 4622 4623 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) 4624 managed_pages += pgdat->node_zones[zone_type].managed_pages; 4625 val->totalram = managed_pages; 4626 val->sharedram = node_page_state(pgdat, NR_SHMEM); 4627 val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES); 4628 #ifdef CONFIG_HIGHMEM 4629 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) { 4630 struct zone *zone = &pgdat->node_zones[zone_type]; 4631 4632 if (is_highmem(zone)) { 4633 managed_highpages += zone->managed_pages; 4634 free_highpages += zone_page_state(zone, NR_FREE_PAGES); 4635 } 4636 } 4637 val->totalhigh = managed_highpages; 4638 val->freehigh = free_highpages; 4639 #else 4640 val->totalhigh = managed_highpages; 4641 val->freehigh = free_highpages; 4642 #endif 4643 val->mem_unit = PAGE_SIZE; 4644 } 4645 #endif 4646 4647 /* 4648 * Determine whether the node should be displayed or not, depending on whether 4649 * SHOW_MEM_FILTER_NODES was passed to show_free_areas(). 4650 */ 4651 static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask) 4652 { 4653 if (!(flags & SHOW_MEM_FILTER_NODES)) 4654 return false; 4655 4656 /* 4657 * no node mask - aka implicit memory numa policy. Do not bother with 4658 * the synchronization - read_mems_allowed_begin - because we do not 4659 * have to be precise here. 4660 */ 4661 if (!nodemask) 4662 nodemask = &cpuset_current_mems_allowed; 4663 4664 return !node_isset(nid, *nodemask); 4665 } 4666 4667 #define K(x) ((x) << (PAGE_SHIFT-10)) 4668 4669 static void show_migration_types(unsigned char type) 4670 { 4671 static const char types[MIGRATE_TYPES] = { 4672 [MIGRATE_UNMOVABLE] = 'U', 4673 [MIGRATE_MOVABLE] = 'M', 4674 [MIGRATE_RECLAIMABLE] = 'E', 4675 [MIGRATE_HIGHATOMIC] = 'H', 4676 #ifdef CONFIG_CMA 4677 [MIGRATE_CMA] = 'C', 4678 #endif 4679 #ifdef CONFIG_MEMORY_ISOLATION 4680 [MIGRATE_ISOLATE] = 'I', 4681 #endif 4682 }; 4683 char tmp[MIGRATE_TYPES + 1]; 4684 char *p = tmp; 4685 int i; 4686 4687 for (i = 0; i < MIGRATE_TYPES; i++) { 4688 if (type & (1 << i)) 4689 *p++ = types[i]; 4690 } 4691 4692 *p = '\0'; 4693 printk(KERN_CONT "(%s) ", tmp); 4694 } 4695 4696 /* 4697 * Show free area list (used inside shift_scroll-lock stuff) 4698 * We also calculate the percentage fragmentation. We do this by counting the 4699 * memory on each free list with the exception of the first item on the list. 4700 * 4701 * Bits in @filter: 4702 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's 4703 * cpuset. 4704 */ 4705 void show_free_areas(unsigned int filter, nodemask_t *nodemask) 4706 { 4707 unsigned long free_pcp = 0; 4708 int cpu; 4709 struct zone *zone; 4710 pg_data_t *pgdat; 4711 4712 for_each_populated_zone(zone) { 4713 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask)) 4714 continue; 4715 4716 for_each_online_cpu(cpu) 4717 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count; 4718 } 4719 4720 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n" 4721 " active_file:%lu inactive_file:%lu isolated_file:%lu\n" 4722 " unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n" 4723 " slab_reclaimable:%lu slab_unreclaimable:%lu\n" 4724 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n" 4725 " free:%lu free_pcp:%lu free_cma:%lu\n", 4726 global_node_page_state(NR_ACTIVE_ANON), 4727 global_node_page_state(NR_INACTIVE_ANON), 4728 global_node_page_state(NR_ISOLATED_ANON), 4729 global_node_page_state(NR_ACTIVE_FILE), 4730 global_node_page_state(NR_INACTIVE_FILE), 4731 global_node_page_state(NR_ISOLATED_FILE), 4732 global_node_page_state(NR_UNEVICTABLE), 4733 global_node_page_state(NR_FILE_DIRTY), 4734 global_node_page_state(NR_WRITEBACK), 4735 global_node_page_state(NR_UNSTABLE_NFS), 4736 global_node_page_state(NR_SLAB_RECLAIMABLE), 4737 global_node_page_state(NR_SLAB_UNRECLAIMABLE), 4738 global_node_page_state(NR_FILE_MAPPED), 4739 global_node_page_state(NR_SHMEM), 4740 global_zone_page_state(NR_PAGETABLE), 4741 global_zone_page_state(NR_BOUNCE), 4742 global_zone_page_state(NR_FREE_PAGES), 4743 free_pcp, 4744 global_zone_page_state(NR_FREE_CMA_PAGES)); 4745 4746 for_each_online_pgdat(pgdat) { 4747 if (show_mem_node_skip(filter, pgdat->node_id, nodemask)) 4748 continue; 4749 4750 printk("Node %d" 4751 " active_anon:%lukB" 4752 " inactive_anon:%lukB" 4753 " active_file:%lukB" 4754 " inactive_file:%lukB" 4755 " unevictable:%lukB" 4756 " isolated(anon):%lukB" 4757 " isolated(file):%lukB" 4758 " mapped:%lukB" 4759 " dirty:%lukB" 4760 " writeback:%lukB" 4761 " shmem:%lukB" 4762 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 4763 " shmem_thp: %lukB" 4764 " shmem_pmdmapped: %lukB" 4765 " anon_thp: %lukB" 4766 #endif 4767 " writeback_tmp:%lukB" 4768 " unstable:%lukB" 4769 " all_unreclaimable? %s" 4770 "\n", 4771 pgdat->node_id, 4772 K(node_page_state(pgdat, NR_ACTIVE_ANON)), 4773 K(node_page_state(pgdat, NR_INACTIVE_ANON)), 4774 K(node_page_state(pgdat, NR_ACTIVE_FILE)), 4775 K(node_page_state(pgdat, NR_INACTIVE_FILE)), 4776 K(node_page_state(pgdat, NR_UNEVICTABLE)), 4777 K(node_page_state(pgdat, NR_ISOLATED_ANON)), 4778 K(node_page_state(pgdat, NR_ISOLATED_FILE)), 4779 K(node_page_state(pgdat, NR_FILE_MAPPED)), 4780 K(node_page_state(pgdat, NR_FILE_DIRTY)), 4781 K(node_page_state(pgdat, NR_WRITEBACK)), 4782 K(node_page_state(pgdat, NR_SHMEM)), 4783 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 4784 K(node_page_state(pgdat, NR_SHMEM_THPS) * HPAGE_PMD_NR), 4785 K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED) 4786 * HPAGE_PMD_NR), 4787 K(node_page_state(pgdat, NR_ANON_THPS) * HPAGE_PMD_NR), 4788 #endif 4789 K(node_page_state(pgdat, NR_WRITEBACK_TEMP)), 4790 K(node_page_state(pgdat, NR_UNSTABLE_NFS)), 4791 pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ? 4792 "yes" : "no"); 4793 } 4794 4795 for_each_populated_zone(zone) { 4796 int i; 4797 4798 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask)) 4799 continue; 4800 4801 free_pcp = 0; 4802 for_each_online_cpu(cpu) 4803 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count; 4804 4805 show_node(zone); 4806 printk(KERN_CONT 4807 "%s" 4808 " free:%lukB" 4809 " min:%lukB" 4810 " low:%lukB" 4811 " high:%lukB" 4812 " active_anon:%lukB" 4813 " inactive_anon:%lukB" 4814 " active_file:%lukB" 4815 " inactive_file:%lukB" 4816 " unevictable:%lukB" 4817 " writepending:%lukB" 4818 " present:%lukB" 4819 " managed:%lukB" 4820 " mlocked:%lukB" 4821 " kernel_stack:%lukB" 4822 " pagetables:%lukB" 4823 " bounce:%lukB" 4824 " free_pcp:%lukB" 4825 " local_pcp:%ukB" 4826 " free_cma:%lukB" 4827 "\n", 4828 zone->name, 4829 K(zone_page_state(zone, NR_FREE_PAGES)), 4830 K(min_wmark_pages(zone)), 4831 K(low_wmark_pages(zone)), 4832 K(high_wmark_pages(zone)), 4833 K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)), 4834 K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)), 4835 K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)), 4836 K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)), 4837 K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)), 4838 K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)), 4839 K(zone->present_pages), 4840 K(zone->managed_pages), 4841 K(zone_page_state(zone, NR_MLOCK)), 4842 zone_page_state(zone, NR_KERNEL_STACK_KB), 4843 K(zone_page_state(zone, NR_PAGETABLE)), 4844 K(zone_page_state(zone, NR_BOUNCE)), 4845 K(free_pcp), 4846 K(this_cpu_read(zone->pageset->pcp.count)), 4847 K(zone_page_state(zone, NR_FREE_CMA_PAGES))); 4848 printk("lowmem_reserve[]:"); 4849 for (i = 0; i < MAX_NR_ZONES; i++) 4850 printk(KERN_CONT " %ld", zone->lowmem_reserve[i]); 4851 printk(KERN_CONT "\n"); 4852 } 4853 4854 for_each_populated_zone(zone) { 4855 unsigned int order; 4856 unsigned long nr[MAX_ORDER], flags, total = 0; 4857 unsigned char types[MAX_ORDER]; 4858 4859 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask)) 4860 continue; 4861 show_node(zone); 4862 printk(KERN_CONT "%s: ", zone->name); 4863 4864 spin_lock_irqsave(&zone->lock, flags); 4865 for (order = 0; order < MAX_ORDER; order++) { 4866 struct free_area *area = &zone->free_area[order]; 4867 int type; 4868 4869 nr[order] = area->nr_free; 4870 total += nr[order] << order; 4871 4872 types[order] = 0; 4873 for (type = 0; type < MIGRATE_TYPES; type++) { 4874 if (!list_empty(&area->free_list[type])) 4875 types[order] |= 1 << type; 4876 } 4877 } 4878 spin_unlock_irqrestore(&zone->lock, flags); 4879 for (order = 0; order < MAX_ORDER; order++) { 4880 printk(KERN_CONT "%lu*%lukB ", 4881 nr[order], K(1UL) << order); 4882 if (nr[order]) 4883 show_migration_types(types[order]); 4884 } 4885 printk(KERN_CONT "= %lukB\n", K(total)); 4886 } 4887 4888 hugetlb_show_meminfo(); 4889 4890 printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES)); 4891 4892 show_swap_cache_info(); 4893 } 4894 4895 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref) 4896 { 4897 zoneref->zone = zone; 4898 zoneref->zone_idx = zone_idx(zone); 4899 } 4900 4901 /* 4902 * Builds allocation fallback zone lists. 4903 * 4904 * Add all populated zones of a node to the zonelist. 4905 */ 4906 static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs) 4907 { 4908 struct zone *zone; 4909 enum zone_type zone_type = MAX_NR_ZONES; 4910 int nr_zones = 0; 4911 4912 do { 4913 zone_type--; 4914 zone = pgdat->node_zones + zone_type; 4915 if (managed_zone(zone)) { 4916 zoneref_set_zone(zone, &zonerefs[nr_zones++]); 4917 check_highest_zone(zone_type); 4918 } 4919 } while (zone_type); 4920 4921 return nr_zones; 4922 } 4923 4924 #ifdef CONFIG_NUMA 4925 4926 static int __parse_numa_zonelist_order(char *s) 4927 { 4928 /* 4929 * We used to support different zonlists modes but they turned 4930 * out to be just not useful. Let's keep the warning in place 4931 * if somebody still use the cmd line parameter so that we do 4932 * not fail it silently 4933 */ 4934 if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) { 4935 pr_warn("Ignoring unsupported numa_zonelist_order value: %s\n", s); 4936 return -EINVAL; 4937 } 4938 return 0; 4939 } 4940 4941 static __init int setup_numa_zonelist_order(char *s) 4942 { 4943 if (!s) 4944 return 0; 4945 4946 return __parse_numa_zonelist_order(s); 4947 } 4948 early_param("numa_zonelist_order", setup_numa_zonelist_order); 4949 4950 char numa_zonelist_order[] = "Node"; 4951 4952 /* 4953 * sysctl handler for numa_zonelist_order 4954 */ 4955 int numa_zonelist_order_handler(struct ctl_table *table, int write, 4956 void __user *buffer, size_t *length, 4957 loff_t *ppos) 4958 { 4959 char *str; 4960 int ret; 4961 4962 if (!write) 4963 return proc_dostring(table, write, buffer, length, ppos); 4964 str = memdup_user_nul(buffer, 16); 4965 if (IS_ERR(str)) 4966 return PTR_ERR(str); 4967 4968 ret = __parse_numa_zonelist_order(str); 4969 kfree(str); 4970 return ret; 4971 } 4972 4973 4974 #define MAX_NODE_LOAD (nr_online_nodes) 4975 static int node_load[MAX_NUMNODES]; 4976 4977 /** 4978 * find_next_best_node - find the next node that should appear in a given node's fallback list 4979 * @node: node whose fallback list we're appending 4980 * @used_node_mask: nodemask_t of already used nodes 4981 * 4982 * We use a number of factors to determine which is the next node that should 4983 * appear on a given node's fallback list. The node should not have appeared 4984 * already in @node's fallback list, and it should be the next closest node 4985 * according to the distance array (which contains arbitrary distance values 4986 * from each node to each node in the system), and should also prefer nodes 4987 * with no CPUs, since presumably they'll have very little allocation pressure 4988 * on them otherwise. 4989 * It returns -1 if no node is found. 4990 */ 4991 static int find_next_best_node(int node, nodemask_t *used_node_mask) 4992 { 4993 int n, val; 4994 int min_val = INT_MAX; 4995 int best_node = NUMA_NO_NODE; 4996 const struct cpumask *tmp = cpumask_of_node(0); 4997 4998 /* Use the local node if we haven't already */ 4999 if (!node_isset(node, *used_node_mask)) { 5000 node_set(node, *used_node_mask); 5001 return node; 5002 } 5003 5004 for_each_node_state(n, N_MEMORY) { 5005 5006 /* Don't want a node to appear more than once */ 5007 if (node_isset(n, *used_node_mask)) 5008 continue; 5009 5010 /* Use the distance array to find the distance */ 5011 val = node_distance(node, n); 5012 5013 /* Penalize nodes under us ("prefer the next node") */ 5014 val += (n < node); 5015 5016 /* Give preference to headless and unused nodes */ 5017 tmp = cpumask_of_node(n); 5018 if (!cpumask_empty(tmp)) 5019 val += PENALTY_FOR_NODE_WITH_CPUS; 5020 5021 /* Slight preference for less loaded node */ 5022 val *= (MAX_NODE_LOAD*MAX_NUMNODES); 5023 val += node_load[n]; 5024 5025 if (val < min_val) { 5026 min_val = val; 5027 best_node = n; 5028 } 5029 } 5030 5031 if (best_node >= 0) 5032 node_set(best_node, *used_node_mask); 5033 5034 return best_node; 5035 } 5036 5037 5038 /* 5039 * Build zonelists ordered by node and zones within node. 5040 * This results in maximum locality--normal zone overflows into local 5041 * DMA zone, if any--but risks exhausting DMA zone. 5042 */ 5043 static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order, 5044 unsigned nr_nodes) 5045 { 5046 struct zoneref *zonerefs; 5047 int i; 5048 5049 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs; 5050 5051 for (i = 0; i < nr_nodes; i++) { 5052 int nr_zones; 5053 5054 pg_data_t *node = NODE_DATA(node_order[i]); 5055 5056 nr_zones = build_zonerefs_node(node, zonerefs); 5057 zonerefs += nr_zones; 5058 } 5059 zonerefs->zone = NULL; 5060 zonerefs->zone_idx = 0; 5061 } 5062 5063 /* 5064 * Build gfp_thisnode zonelists 5065 */ 5066 static void build_thisnode_zonelists(pg_data_t *pgdat) 5067 { 5068 struct zoneref *zonerefs; 5069 int nr_zones; 5070 5071 zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs; 5072 nr_zones = build_zonerefs_node(pgdat, zonerefs); 5073 zonerefs += nr_zones; 5074 zonerefs->zone = NULL; 5075 zonerefs->zone_idx = 0; 5076 } 5077 5078 /* 5079 * Build zonelists ordered by zone and nodes within zones. 5080 * This results in conserving DMA zone[s] until all Normal memory is 5081 * exhausted, but results in overflowing to remote node while memory 5082 * may still exist in local DMA zone. 5083 */ 5084 5085 static void build_zonelists(pg_data_t *pgdat) 5086 { 5087 static int node_order[MAX_NUMNODES]; 5088 int node, load, nr_nodes = 0; 5089 nodemask_t used_mask; 5090 int local_node, prev_node; 5091 5092 /* NUMA-aware ordering of nodes */ 5093 local_node = pgdat->node_id; 5094 load = nr_online_nodes; 5095 prev_node = local_node; 5096 nodes_clear(used_mask); 5097 5098 memset(node_order, 0, sizeof(node_order)); 5099 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) { 5100 /* 5101 * We don't want to pressure a particular node. 5102 * So adding penalty to the first node in same 5103 * distance group to make it round-robin. 5104 */ 5105 if (node_distance(local_node, node) != 5106 node_distance(local_node, prev_node)) 5107 node_load[node] = load; 5108 5109 node_order[nr_nodes++] = node; 5110 prev_node = node; 5111 load--; 5112 } 5113 5114 build_zonelists_in_node_order(pgdat, node_order, nr_nodes); 5115 build_thisnode_zonelists(pgdat); 5116 } 5117 5118 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 5119 /* 5120 * Return node id of node used for "local" allocations. 5121 * I.e., first node id of first zone in arg node's generic zonelist. 5122 * Used for initializing percpu 'numa_mem', which is used primarily 5123 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist. 5124 */ 5125 int local_memory_node(int node) 5126 { 5127 struct zoneref *z; 5128 5129 z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL), 5130 gfp_zone(GFP_KERNEL), 5131 NULL); 5132 return z->zone->node; 5133 } 5134 #endif 5135 5136 static void setup_min_unmapped_ratio(void); 5137 static void setup_min_slab_ratio(void); 5138 #else /* CONFIG_NUMA */ 5139 5140 static void build_zonelists(pg_data_t *pgdat) 5141 { 5142 int node, local_node; 5143 struct zoneref *zonerefs; 5144 int nr_zones; 5145 5146 local_node = pgdat->node_id; 5147 5148 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs; 5149 nr_zones = build_zonerefs_node(pgdat, zonerefs); 5150 zonerefs += nr_zones; 5151 5152 /* 5153 * Now we build the zonelist so that it contains the zones 5154 * of all the other nodes. 5155 * We don't want to pressure a particular node, so when 5156 * building the zones for node N, we make sure that the 5157 * zones coming right after the local ones are those from 5158 * node N+1 (modulo N) 5159 */ 5160 for (node = local_node + 1; node < MAX_NUMNODES; node++) { 5161 if (!node_online(node)) 5162 continue; 5163 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs); 5164 zonerefs += nr_zones; 5165 } 5166 for (node = 0; node < local_node; node++) { 5167 if (!node_online(node)) 5168 continue; 5169 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs); 5170 zonerefs += nr_zones; 5171 } 5172 5173 zonerefs->zone = NULL; 5174 zonerefs->zone_idx = 0; 5175 } 5176 5177 #endif /* CONFIG_NUMA */ 5178 5179 /* 5180 * Boot pageset table. One per cpu which is going to be used for all 5181 * zones and all nodes. The parameters will be set in such a way 5182 * that an item put on a list will immediately be handed over to 5183 * the buddy list. This is safe since pageset manipulation is done 5184 * with interrupts disabled. 5185 * 5186 * The boot_pagesets must be kept even after bootup is complete for 5187 * unused processors and/or zones. They do play a role for bootstrapping 5188 * hotplugged processors. 5189 * 5190 * zoneinfo_show() and maybe other functions do 5191 * not check if the processor is online before following the pageset pointer. 5192 * Other parts of the kernel may not check if the zone is available. 5193 */ 5194 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch); 5195 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset); 5196 static DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats); 5197 5198 static void __build_all_zonelists(void *data) 5199 { 5200 int nid; 5201 int __maybe_unused cpu; 5202 pg_data_t *self = data; 5203 static DEFINE_SPINLOCK(lock); 5204 5205 spin_lock(&lock); 5206 5207 #ifdef CONFIG_NUMA 5208 memset(node_load, 0, sizeof(node_load)); 5209 #endif 5210 5211 /* 5212 * This node is hotadded and no memory is yet present. So just 5213 * building zonelists is fine - no need to touch other nodes. 5214 */ 5215 if (self && !node_online(self->node_id)) { 5216 build_zonelists(self); 5217 } else { 5218 for_each_online_node(nid) { 5219 pg_data_t *pgdat = NODE_DATA(nid); 5220 5221 build_zonelists(pgdat); 5222 } 5223 5224 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 5225 /* 5226 * We now know the "local memory node" for each node-- 5227 * i.e., the node of the first zone in the generic zonelist. 5228 * Set up numa_mem percpu variable for on-line cpus. During 5229 * boot, only the boot cpu should be on-line; we'll init the 5230 * secondary cpus' numa_mem as they come on-line. During 5231 * node/memory hotplug, we'll fixup all on-line cpus. 5232 */ 5233 for_each_online_cpu(cpu) 5234 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu))); 5235 #endif 5236 } 5237 5238 spin_unlock(&lock); 5239 } 5240 5241 static noinline void __init 5242 build_all_zonelists_init(void) 5243 { 5244 int cpu; 5245 5246 __build_all_zonelists(NULL); 5247 5248 /* 5249 * Initialize the boot_pagesets that are going to be used 5250 * for bootstrapping processors. The real pagesets for 5251 * each zone will be allocated later when the per cpu 5252 * allocator is available. 5253 * 5254 * boot_pagesets are used also for bootstrapping offline 5255 * cpus if the system is already booted because the pagesets 5256 * are needed to initialize allocators on a specific cpu too. 5257 * F.e. the percpu allocator needs the page allocator which 5258 * needs the percpu allocator in order to allocate its pagesets 5259 * (a chicken-egg dilemma). 5260 */ 5261 for_each_possible_cpu(cpu) 5262 setup_pageset(&per_cpu(boot_pageset, cpu), 0); 5263 5264 mminit_verify_zonelist(); 5265 cpuset_init_current_mems_allowed(); 5266 } 5267 5268 /* 5269 * unless system_state == SYSTEM_BOOTING. 5270 * 5271 * __ref due to call of __init annotated helper build_all_zonelists_init 5272 * [protected by SYSTEM_BOOTING]. 5273 */ 5274 void __ref build_all_zonelists(pg_data_t *pgdat) 5275 { 5276 if (system_state == SYSTEM_BOOTING) { 5277 build_all_zonelists_init(); 5278 } else { 5279 __build_all_zonelists(pgdat); 5280 /* cpuset refresh routine should be here */ 5281 } 5282 vm_total_pages = nr_free_pagecache_pages(); 5283 /* 5284 * Disable grouping by mobility if the number of pages in the 5285 * system is too low to allow the mechanism to work. It would be 5286 * more accurate, but expensive to check per-zone. This check is 5287 * made on memory-hotadd so a system can start with mobility 5288 * disabled and enable it later 5289 */ 5290 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES)) 5291 page_group_by_mobility_disabled = 1; 5292 else 5293 page_group_by_mobility_disabled = 0; 5294 5295 pr_info("Built %i zonelists, mobility grouping %s. Total pages: %ld\n", 5296 nr_online_nodes, 5297 page_group_by_mobility_disabled ? "off" : "on", 5298 vm_total_pages); 5299 #ifdef CONFIG_NUMA 5300 pr_info("Policy zone: %s\n", zone_names[policy_zone]); 5301 #endif 5302 } 5303 5304 /* 5305 * Initially all pages are reserved - free ones are freed 5306 * up by free_all_bootmem() once the early boot process is 5307 * done. Non-atomic initialization, single-pass. 5308 */ 5309 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone, 5310 unsigned long start_pfn, enum memmap_context context) 5311 { 5312 struct vmem_altmap *altmap = to_vmem_altmap(__pfn_to_phys(start_pfn)); 5313 unsigned long end_pfn = start_pfn + size; 5314 pg_data_t *pgdat = NODE_DATA(nid); 5315 unsigned long pfn; 5316 unsigned long nr_initialised = 0; 5317 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 5318 struct memblock_region *r = NULL, *tmp; 5319 #endif 5320 5321 if (highest_memmap_pfn < end_pfn - 1) 5322 highest_memmap_pfn = end_pfn - 1; 5323 5324 /* 5325 * Honor reservation requested by the driver for this ZONE_DEVICE 5326 * memory 5327 */ 5328 if (altmap && start_pfn == altmap->base_pfn) 5329 start_pfn += altmap->reserve; 5330 5331 for (pfn = start_pfn; pfn < end_pfn; pfn++) { 5332 /* 5333 * There can be holes in boot-time mem_map[]s handed to this 5334 * function. They do not exist on hotplugged memory. 5335 */ 5336 if (context != MEMMAP_EARLY) 5337 goto not_early; 5338 5339 if (!early_pfn_valid(pfn)) { 5340 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 5341 /* 5342 * Skip to the pfn preceding the next valid one (or 5343 * end_pfn), such that we hit a valid pfn (or end_pfn) 5344 * on our next iteration of the loop. 5345 */ 5346 pfn = memblock_next_valid_pfn(pfn, end_pfn) - 1; 5347 #endif 5348 continue; 5349 } 5350 if (!early_pfn_in_nid(pfn, nid)) 5351 continue; 5352 if (!update_defer_init(pgdat, pfn, end_pfn, &nr_initialised)) 5353 break; 5354 5355 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 5356 /* 5357 * Check given memblock attribute by firmware which can affect 5358 * kernel memory layout. If zone==ZONE_MOVABLE but memory is 5359 * mirrored, it's an overlapped memmap init. skip it. 5360 */ 5361 if (mirrored_kernelcore && zone == ZONE_MOVABLE) { 5362 if (!r || pfn >= memblock_region_memory_end_pfn(r)) { 5363 for_each_memblock(memory, tmp) 5364 if (pfn < memblock_region_memory_end_pfn(tmp)) 5365 break; 5366 r = tmp; 5367 } 5368 if (pfn >= memblock_region_memory_base_pfn(r) && 5369 memblock_is_mirror(r)) { 5370 /* already initialized as NORMAL */ 5371 pfn = memblock_region_memory_end_pfn(r); 5372 continue; 5373 } 5374 } 5375 #endif 5376 5377 not_early: 5378 /* 5379 * Mark the block movable so that blocks are reserved for 5380 * movable at startup. This will force kernel allocations 5381 * to reserve their blocks rather than leaking throughout 5382 * the address space during boot when many long-lived 5383 * kernel allocations are made. 5384 * 5385 * bitmap is created for zone's valid pfn range. but memmap 5386 * can be created for invalid pages (for alignment) 5387 * check here not to call set_pageblock_migratetype() against 5388 * pfn out of zone. 5389 */ 5390 if (!(pfn & (pageblock_nr_pages - 1))) { 5391 struct page *page = pfn_to_page(pfn); 5392 5393 __init_single_page(page, pfn, zone, nid); 5394 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 5395 cond_resched(); 5396 } else { 5397 __init_single_pfn(pfn, zone, nid); 5398 } 5399 } 5400 } 5401 5402 static void __meminit zone_init_free_lists(struct zone *zone) 5403 { 5404 unsigned int order, t; 5405 for_each_migratetype_order(order, t) { 5406 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]); 5407 zone->free_area[order].nr_free = 0; 5408 } 5409 } 5410 5411 #ifndef __HAVE_ARCH_MEMMAP_INIT 5412 #define memmap_init(size, nid, zone, start_pfn) \ 5413 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY) 5414 #endif 5415 5416 static int zone_batchsize(struct zone *zone) 5417 { 5418 #ifdef CONFIG_MMU 5419 int batch; 5420 5421 /* 5422 * The per-cpu-pages pools are set to around 1000th of the 5423 * size of the zone. But no more than 1/2 of a meg. 5424 * 5425 * OK, so we don't know how big the cache is. So guess. 5426 */ 5427 batch = zone->managed_pages / 1024; 5428 if (batch * PAGE_SIZE > 512 * 1024) 5429 batch = (512 * 1024) / PAGE_SIZE; 5430 batch /= 4; /* We effectively *= 4 below */ 5431 if (batch < 1) 5432 batch = 1; 5433 5434 /* 5435 * Clamp the batch to a 2^n - 1 value. Having a power 5436 * of 2 value was found to be more likely to have 5437 * suboptimal cache aliasing properties in some cases. 5438 * 5439 * For example if 2 tasks are alternately allocating 5440 * batches of pages, one task can end up with a lot 5441 * of pages of one half of the possible page colors 5442 * and the other with pages of the other colors. 5443 */ 5444 batch = rounddown_pow_of_two(batch + batch/2) - 1; 5445 5446 return batch; 5447 5448 #else 5449 /* The deferral and batching of frees should be suppressed under NOMMU 5450 * conditions. 5451 * 5452 * The problem is that NOMMU needs to be able to allocate large chunks 5453 * of contiguous memory as there's no hardware page translation to 5454 * assemble apparent contiguous memory from discontiguous pages. 5455 * 5456 * Queueing large contiguous runs of pages for batching, however, 5457 * causes the pages to actually be freed in smaller chunks. As there 5458 * can be a significant delay between the individual batches being 5459 * recycled, this leads to the once large chunks of space being 5460 * fragmented and becoming unavailable for high-order allocations. 5461 */ 5462 return 0; 5463 #endif 5464 } 5465 5466 /* 5467 * pcp->high and pcp->batch values are related and dependent on one another: 5468 * ->batch must never be higher then ->high. 5469 * The following function updates them in a safe manner without read side 5470 * locking. 5471 * 5472 * Any new users of pcp->batch and pcp->high should ensure they can cope with 5473 * those fields changing asynchronously (acording the the above rule). 5474 * 5475 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function 5476 * outside of boot time (or some other assurance that no concurrent updaters 5477 * exist). 5478 */ 5479 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high, 5480 unsigned long batch) 5481 { 5482 /* start with a fail safe value for batch */ 5483 pcp->batch = 1; 5484 smp_wmb(); 5485 5486 /* Update high, then batch, in order */ 5487 pcp->high = high; 5488 smp_wmb(); 5489 5490 pcp->batch = batch; 5491 } 5492 5493 /* a companion to pageset_set_high() */ 5494 static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch) 5495 { 5496 pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch)); 5497 } 5498 5499 static void pageset_init(struct per_cpu_pageset *p) 5500 { 5501 struct per_cpu_pages *pcp; 5502 int migratetype; 5503 5504 memset(p, 0, sizeof(*p)); 5505 5506 pcp = &p->pcp; 5507 pcp->count = 0; 5508 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++) 5509 INIT_LIST_HEAD(&pcp->lists[migratetype]); 5510 } 5511 5512 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch) 5513 { 5514 pageset_init(p); 5515 pageset_set_batch(p, batch); 5516 } 5517 5518 /* 5519 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist 5520 * to the value high for the pageset p. 5521 */ 5522 static void pageset_set_high(struct per_cpu_pageset *p, 5523 unsigned long high) 5524 { 5525 unsigned long batch = max(1UL, high / 4); 5526 if ((high / 4) > (PAGE_SHIFT * 8)) 5527 batch = PAGE_SHIFT * 8; 5528 5529 pageset_update(&p->pcp, high, batch); 5530 } 5531 5532 static void pageset_set_high_and_batch(struct zone *zone, 5533 struct per_cpu_pageset *pcp) 5534 { 5535 if (percpu_pagelist_fraction) 5536 pageset_set_high(pcp, 5537 (zone->managed_pages / 5538 percpu_pagelist_fraction)); 5539 else 5540 pageset_set_batch(pcp, zone_batchsize(zone)); 5541 } 5542 5543 static void __meminit zone_pageset_init(struct zone *zone, int cpu) 5544 { 5545 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu); 5546 5547 pageset_init(pcp); 5548 pageset_set_high_and_batch(zone, pcp); 5549 } 5550 5551 void __meminit setup_zone_pageset(struct zone *zone) 5552 { 5553 int cpu; 5554 zone->pageset = alloc_percpu(struct per_cpu_pageset); 5555 for_each_possible_cpu(cpu) 5556 zone_pageset_init(zone, cpu); 5557 } 5558 5559 /* 5560 * Allocate per cpu pagesets and initialize them. 5561 * Before this call only boot pagesets were available. 5562 */ 5563 void __init setup_per_cpu_pageset(void) 5564 { 5565 struct pglist_data *pgdat; 5566 struct zone *zone; 5567 5568 for_each_populated_zone(zone) 5569 setup_zone_pageset(zone); 5570 5571 for_each_online_pgdat(pgdat) 5572 pgdat->per_cpu_nodestats = 5573 alloc_percpu(struct per_cpu_nodestat); 5574 } 5575 5576 static __meminit void zone_pcp_init(struct zone *zone) 5577 { 5578 /* 5579 * per cpu subsystem is not up at this point. The following code 5580 * relies on the ability of the linker to provide the 5581 * offset of a (static) per cpu variable into the per cpu area. 5582 */ 5583 zone->pageset = &boot_pageset; 5584 5585 if (populated_zone(zone)) 5586 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n", 5587 zone->name, zone->present_pages, 5588 zone_batchsize(zone)); 5589 } 5590 5591 void __meminit init_currently_empty_zone(struct zone *zone, 5592 unsigned long zone_start_pfn, 5593 unsigned long size) 5594 { 5595 struct pglist_data *pgdat = zone->zone_pgdat; 5596 5597 pgdat->nr_zones = zone_idx(zone) + 1; 5598 5599 zone->zone_start_pfn = zone_start_pfn; 5600 5601 mminit_dprintk(MMINIT_TRACE, "memmap_init", 5602 "Initialising map node %d zone %lu pfns %lu -> %lu\n", 5603 pgdat->node_id, 5604 (unsigned long)zone_idx(zone), 5605 zone_start_pfn, (zone_start_pfn + size)); 5606 5607 zone_init_free_lists(zone); 5608 zone->initialized = 1; 5609 } 5610 5611 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 5612 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID 5613 5614 /* 5615 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on. 5616 */ 5617 int __meminit __early_pfn_to_nid(unsigned long pfn, 5618 struct mminit_pfnnid_cache *state) 5619 { 5620 unsigned long start_pfn, end_pfn; 5621 int nid; 5622 5623 if (state->last_start <= pfn && pfn < state->last_end) 5624 return state->last_nid; 5625 5626 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn); 5627 if (nid != -1) { 5628 state->last_start = start_pfn; 5629 state->last_end = end_pfn; 5630 state->last_nid = nid; 5631 } 5632 5633 return nid; 5634 } 5635 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */ 5636 5637 /** 5638 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range 5639 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed. 5640 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid 5641 * 5642 * If an architecture guarantees that all ranges registered contain no holes 5643 * and may be freed, this this function may be used instead of calling 5644 * memblock_free_early_nid() manually. 5645 */ 5646 void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn) 5647 { 5648 unsigned long start_pfn, end_pfn; 5649 int i, this_nid; 5650 5651 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) { 5652 start_pfn = min(start_pfn, max_low_pfn); 5653 end_pfn = min(end_pfn, max_low_pfn); 5654 5655 if (start_pfn < end_pfn) 5656 memblock_free_early_nid(PFN_PHYS(start_pfn), 5657 (end_pfn - start_pfn) << PAGE_SHIFT, 5658 this_nid); 5659 } 5660 } 5661 5662 /** 5663 * sparse_memory_present_with_active_regions - Call memory_present for each active range 5664 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used. 5665 * 5666 * If an architecture guarantees that all ranges registered contain no holes and may 5667 * be freed, this function may be used instead of calling memory_present() manually. 5668 */ 5669 void __init sparse_memory_present_with_active_regions(int nid) 5670 { 5671 unsigned long start_pfn, end_pfn; 5672 int i, this_nid; 5673 5674 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) 5675 memory_present(this_nid, start_pfn, end_pfn); 5676 } 5677 5678 /** 5679 * get_pfn_range_for_nid - Return the start and end page frames for a node 5680 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned. 5681 * @start_pfn: Passed by reference. On return, it will have the node start_pfn. 5682 * @end_pfn: Passed by reference. On return, it will have the node end_pfn. 5683 * 5684 * It returns the start and end page frame of a node based on information 5685 * provided by memblock_set_node(). If called for a node 5686 * with no available memory, a warning is printed and the start and end 5687 * PFNs will be 0. 5688 */ 5689 void __meminit get_pfn_range_for_nid(unsigned int nid, 5690 unsigned long *start_pfn, unsigned long *end_pfn) 5691 { 5692 unsigned long this_start_pfn, this_end_pfn; 5693 int i; 5694 5695 *start_pfn = -1UL; 5696 *end_pfn = 0; 5697 5698 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) { 5699 *start_pfn = min(*start_pfn, this_start_pfn); 5700 *end_pfn = max(*end_pfn, this_end_pfn); 5701 } 5702 5703 if (*start_pfn == -1UL) 5704 *start_pfn = 0; 5705 } 5706 5707 /* 5708 * This finds a zone that can be used for ZONE_MOVABLE pages. The 5709 * assumption is made that zones within a node are ordered in monotonic 5710 * increasing memory addresses so that the "highest" populated zone is used 5711 */ 5712 static void __init find_usable_zone_for_movable(void) 5713 { 5714 int zone_index; 5715 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) { 5716 if (zone_index == ZONE_MOVABLE) 5717 continue; 5718 5719 if (arch_zone_highest_possible_pfn[zone_index] > 5720 arch_zone_lowest_possible_pfn[zone_index]) 5721 break; 5722 } 5723 5724 VM_BUG_ON(zone_index == -1); 5725 movable_zone = zone_index; 5726 } 5727 5728 /* 5729 * The zone ranges provided by the architecture do not include ZONE_MOVABLE 5730 * because it is sized independent of architecture. Unlike the other zones, 5731 * the starting point for ZONE_MOVABLE is not fixed. It may be different 5732 * in each node depending on the size of each node and how evenly kernelcore 5733 * is distributed. This helper function adjusts the zone ranges 5734 * provided by the architecture for a given node by using the end of the 5735 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that 5736 * zones within a node are in order of monotonic increases memory addresses 5737 */ 5738 static void __meminit adjust_zone_range_for_zone_movable(int nid, 5739 unsigned long zone_type, 5740 unsigned long node_start_pfn, 5741 unsigned long node_end_pfn, 5742 unsigned long *zone_start_pfn, 5743 unsigned long *zone_end_pfn) 5744 { 5745 /* Only adjust if ZONE_MOVABLE is on this node */ 5746 if (zone_movable_pfn[nid]) { 5747 /* Size ZONE_MOVABLE */ 5748 if (zone_type == ZONE_MOVABLE) { 5749 *zone_start_pfn = zone_movable_pfn[nid]; 5750 *zone_end_pfn = min(node_end_pfn, 5751 arch_zone_highest_possible_pfn[movable_zone]); 5752 5753 /* Adjust for ZONE_MOVABLE starting within this range */ 5754 } else if (!mirrored_kernelcore && 5755 *zone_start_pfn < zone_movable_pfn[nid] && 5756 *zone_end_pfn > zone_movable_pfn[nid]) { 5757 *zone_end_pfn = zone_movable_pfn[nid]; 5758 5759 /* Check if this whole range is within ZONE_MOVABLE */ 5760 } else if (*zone_start_pfn >= zone_movable_pfn[nid]) 5761 *zone_start_pfn = *zone_end_pfn; 5762 } 5763 } 5764 5765 /* 5766 * Return the number of pages a zone spans in a node, including holes 5767 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node() 5768 */ 5769 static unsigned long __meminit zone_spanned_pages_in_node(int nid, 5770 unsigned long zone_type, 5771 unsigned long node_start_pfn, 5772 unsigned long node_end_pfn, 5773 unsigned long *zone_start_pfn, 5774 unsigned long *zone_end_pfn, 5775 unsigned long *ignored) 5776 { 5777 /* When hotadd a new node from cpu_up(), the node should be empty */ 5778 if (!node_start_pfn && !node_end_pfn) 5779 return 0; 5780 5781 /* Get the start and end of the zone */ 5782 *zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type]; 5783 *zone_end_pfn = arch_zone_highest_possible_pfn[zone_type]; 5784 adjust_zone_range_for_zone_movable(nid, zone_type, 5785 node_start_pfn, node_end_pfn, 5786 zone_start_pfn, zone_end_pfn); 5787 5788 /* Check that this node has pages within the zone's required range */ 5789 if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn) 5790 return 0; 5791 5792 /* Move the zone boundaries inside the node if necessary */ 5793 *zone_end_pfn = min(*zone_end_pfn, node_end_pfn); 5794 *zone_start_pfn = max(*zone_start_pfn, node_start_pfn); 5795 5796 /* Return the spanned pages */ 5797 return *zone_end_pfn - *zone_start_pfn; 5798 } 5799 5800 /* 5801 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES, 5802 * then all holes in the requested range will be accounted for. 5803 */ 5804 unsigned long __meminit __absent_pages_in_range(int nid, 5805 unsigned long range_start_pfn, 5806 unsigned long range_end_pfn) 5807 { 5808 unsigned long nr_absent = range_end_pfn - range_start_pfn; 5809 unsigned long start_pfn, end_pfn; 5810 int i; 5811 5812 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) { 5813 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn); 5814 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn); 5815 nr_absent -= end_pfn - start_pfn; 5816 } 5817 return nr_absent; 5818 } 5819 5820 /** 5821 * absent_pages_in_range - Return number of page frames in holes within a range 5822 * @start_pfn: The start PFN to start searching for holes 5823 * @end_pfn: The end PFN to stop searching for holes 5824 * 5825 * It returns the number of pages frames in memory holes within a range. 5826 */ 5827 unsigned long __init absent_pages_in_range(unsigned long start_pfn, 5828 unsigned long end_pfn) 5829 { 5830 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn); 5831 } 5832 5833 /* Return the number of page frames in holes in a zone on a node */ 5834 static unsigned long __meminit zone_absent_pages_in_node(int nid, 5835 unsigned long zone_type, 5836 unsigned long node_start_pfn, 5837 unsigned long node_end_pfn, 5838 unsigned long *ignored) 5839 { 5840 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type]; 5841 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type]; 5842 unsigned long zone_start_pfn, zone_end_pfn; 5843 unsigned long nr_absent; 5844 5845 /* When hotadd a new node from cpu_up(), the node should be empty */ 5846 if (!node_start_pfn && !node_end_pfn) 5847 return 0; 5848 5849 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high); 5850 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high); 5851 5852 adjust_zone_range_for_zone_movable(nid, zone_type, 5853 node_start_pfn, node_end_pfn, 5854 &zone_start_pfn, &zone_end_pfn); 5855 nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn); 5856 5857 /* 5858 * ZONE_MOVABLE handling. 5859 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages 5860 * and vice versa. 5861 */ 5862 if (mirrored_kernelcore && zone_movable_pfn[nid]) { 5863 unsigned long start_pfn, end_pfn; 5864 struct memblock_region *r; 5865 5866 for_each_memblock(memory, r) { 5867 start_pfn = clamp(memblock_region_memory_base_pfn(r), 5868 zone_start_pfn, zone_end_pfn); 5869 end_pfn = clamp(memblock_region_memory_end_pfn(r), 5870 zone_start_pfn, zone_end_pfn); 5871 5872 if (zone_type == ZONE_MOVABLE && 5873 memblock_is_mirror(r)) 5874 nr_absent += end_pfn - start_pfn; 5875 5876 if (zone_type == ZONE_NORMAL && 5877 !memblock_is_mirror(r)) 5878 nr_absent += end_pfn - start_pfn; 5879 } 5880 } 5881 5882 return nr_absent; 5883 } 5884 5885 #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 5886 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid, 5887 unsigned long zone_type, 5888 unsigned long node_start_pfn, 5889 unsigned long node_end_pfn, 5890 unsigned long *zone_start_pfn, 5891 unsigned long *zone_end_pfn, 5892 unsigned long *zones_size) 5893 { 5894 unsigned int zone; 5895 5896 *zone_start_pfn = node_start_pfn; 5897 for (zone = 0; zone < zone_type; zone++) 5898 *zone_start_pfn += zones_size[zone]; 5899 5900 *zone_end_pfn = *zone_start_pfn + zones_size[zone_type]; 5901 5902 return zones_size[zone_type]; 5903 } 5904 5905 static inline unsigned long __meminit zone_absent_pages_in_node(int nid, 5906 unsigned long zone_type, 5907 unsigned long node_start_pfn, 5908 unsigned long node_end_pfn, 5909 unsigned long *zholes_size) 5910 { 5911 if (!zholes_size) 5912 return 0; 5913 5914 return zholes_size[zone_type]; 5915 } 5916 5917 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 5918 5919 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat, 5920 unsigned long node_start_pfn, 5921 unsigned long node_end_pfn, 5922 unsigned long *zones_size, 5923 unsigned long *zholes_size) 5924 { 5925 unsigned long realtotalpages = 0, totalpages = 0; 5926 enum zone_type i; 5927 5928 for (i = 0; i < MAX_NR_ZONES; i++) { 5929 struct zone *zone = pgdat->node_zones + i; 5930 unsigned long zone_start_pfn, zone_end_pfn; 5931 unsigned long size, real_size; 5932 5933 size = zone_spanned_pages_in_node(pgdat->node_id, i, 5934 node_start_pfn, 5935 node_end_pfn, 5936 &zone_start_pfn, 5937 &zone_end_pfn, 5938 zones_size); 5939 real_size = size - zone_absent_pages_in_node(pgdat->node_id, i, 5940 node_start_pfn, node_end_pfn, 5941 zholes_size); 5942 if (size) 5943 zone->zone_start_pfn = zone_start_pfn; 5944 else 5945 zone->zone_start_pfn = 0; 5946 zone->spanned_pages = size; 5947 zone->present_pages = real_size; 5948 5949 totalpages += size; 5950 realtotalpages += real_size; 5951 } 5952 5953 pgdat->node_spanned_pages = totalpages; 5954 pgdat->node_present_pages = realtotalpages; 5955 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id, 5956 realtotalpages); 5957 } 5958 5959 #ifndef CONFIG_SPARSEMEM 5960 /* 5961 * Calculate the size of the zone->blockflags rounded to an unsigned long 5962 * Start by making sure zonesize is a multiple of pageblock_order by rounding 5963 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally 5964 * round what is now in bits to nearest long in bits, then return it in 5965 * bytes. 5966 */ 5967 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize) 5968 { 5969 unsigned long usemapsize; 5970 5971 zonesize += zone_start_pfn & (pageblock_nr_pages-1); 5972 usemapsize = roundup(zonesize, pageblock_nr_pages); 5973 usemapsize = usemapsize >> pageblock_order; 5974 usemapsize *= NR_PAGEBLOCK_BITS; 5975 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long)); 5976 5977 return usemapsize / 8; 5978 } 5979 5980 static void __init setup_usemap(struct pglist_data *pgdat, 5981 struct zone *zone, 5982 unsigned long zone_start_pfn, 5983 unsigned long zonesize) 5984 { 5985 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize); 5986 zone->pageblock_flags = NULL; 5987 if (usemapsize) 5988 zone->pageblock_flags = 5989 memblock_virt_alloc_node_nopanic(usemapsize, 5990 pgdat->node_id); 5991 } 5992 #else 5993 static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone, 5994 unsigned long zone_start_pfn, unsigned long zonesize) {} 5995 #endif /* CONFIG_SPARSEMEM */ 5996 5997 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE 5998 5999 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */ 6000 void __paginginit set_pageblock_order(void) 6001 { 6002 unsigned int order; 6003 6004 /* Check that pageblock_nr_pages has not already been setup */ 6005 if (pageblock_order) 6006 return; 6007 6008 if (HPAGE_SHIFT > PAGE_SHIFT) 6009 order = HUGETLB_PAGE_ORDER; 6010 else 6011 order = MAX_ORDER - 1; 6012 6013 /* 6014 * Assume the largest contiguous order of interest is a huge page. 6015 * This value may be variable depending on boot parameters on IA64 and 6016 * powerpc. 6017 */ 6018 pageblock_order = order; 6019 } 6020 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */ 6021 6022 /* 6023 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order() 6024 * is unused as pageblock_order is set at compile-time. See 6025 * include/linux/pageblock-flags.h for the values of pageblock_order based on 6026 * the kernel config 6027 */ 6028 void __paginginit set_pageblock_order(void) 6029 { 6030 } 6031 6032 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */ 6033 6034 static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages, 6035 unsigned long present_pages) 6036 { 6037 unsigned long pages = spanned_pages; 6038 6039 /* 6040 * Provide a more accurate estimation if there are holes within 6041 * the zone and SPARSEMEM is in use. If there are holes within the 6042 * zone, each populated memory region may cost us one or two extra 6043 * memmap pages due to alignment because memmap pages for each 6044 * populated regions may not be naturally aligned on page boundary. 6045 * So the (present_pages >> 4) heuristic is a tradeoff for that. 6046 */ 6047 if (spanned_pages > present_pages + (present_pages >> 4) && 6048 IS_ENABLED(CONFIG_SPARSEMEM)) 6049 pages = present_pages; 6050 6051 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT; 6052 } 6053 6054 /* 6055 * Set up the zone data structures: 6056 * - mark all pages reserved 6057 * - mark all memory queues empty 6058 * - clear the memory bitmaps 6059 * 6060 * NOTE: pgdat should get zeroed by caller. 6061 */ 6062 static void __paginginit free_area_init_core(struct pglist_data *pgdat) 6063 { 6064 enum zone_type j; 6065 int nid = pgdat->node_id; 6066 6067 pgdat_resize_init(pgdat); 6068 #ifdef CONFIG_NUMA_BALANCING 6069 spin_lock_init(&pgdat->numabalancing_migrate_lock); 6070 pgdat->numabalancing_migrate_nr_pages = 0; 6071 pgdat->numabalancing_migrate_next_window = jiffies; 6072 #endif 6073 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 6074 spin_lock_init(&pgdat->split_queue_lock); 6075 INIT_LIST_HEAD(&pgdat->split_queue); 6076 pgdat->split_queue_len = 0; 6077 #endif 6078 init_waitqueue_head(&pgdat->kswapd_wait); 6079 init_waitqueue_head(&pgdat->pfmemalloc_wait); 6080 #ifdef CONFIG_COMPACTION 6081 init_waitqueue_head(&pgdat->kcompactd_wait); 6082 #endif 6083 pgdat_page_ext_init(pgdat); 6084 spin_lock_init(&pgdat->lru_lock); 6085 lruvec_init(node_lruvec(pgdat)); 6086 6087 pgdat->per_cpu_nodestats = &boot_nodestats; 6088 6089 for (j = 0; j < MAX_NR_ZONES; j++) { 6090 struct zone *zone = pgdat->node_zones + j; 6091 unsigned long size, realsize, freesize, memmap_pages; 6092 unsigned long zone_start_pfn = zone->zone_start_pfn; 6093 6094 size = zone->spanned_pages; 6095 realsize = freesize = zone->present_pages; 6096 6097 /* 6098 * Adjust freesize so that it accounts for how much memory 6099 * is used by this zone for memmap. This affects the watermark 6100 * and per-cpu initialisations 6101 */ 6102 memmap_pages = calc_memmap_size(size, realsize); 6103 if (!is_highmem_idx(j)) { 6104 if (freesize >= memmap_pages) { 6105 freesize -= memmap_pages; 6106 if (memmap_pages) 6107 printk(KERN_DEBUG 6108 " %s zone: %lu pages used for memmap\n", 6109 zone_names[j], memmap_pages); 6110 } else 6111 pr_warn(" %s zone: %lu pages exceeds freesize %lu\n", 6112 zone_names[j], memmap_pages, freesize); 6113 } 6114 6115 /* Account for reserved pages */ 6116 if (j == 0 && freesize > dma_reserve) { 6117 freesize -= dma_reserve; 6118 printk(KERN_DEBUG " %s zone: %lu pages reserved\n", 6119 zone_names[0], dma_reserve); 6120 } 6121 6122 if (!is_highmem_idx(j)) 6123 nr_kernel_pages += freesize; 6124 /* Charge for highmem memmap if there are enough kernel pages */ 6125 else if (nr_kernel_pages > memmap_pages * 2) 6126 nr_kernel_pages -= memmap_pages; 6127 nr_all_pages += freesize; 6128 6129 /* 6130 * Set an approximate value for lowmem here, it will be adjusted 6131 * when the bootmem allocator frees pages into the buddy system. 6132 * And all highmem pages will be managed by the buddy system. 6133 */ 6134 zone->managed_pages = is_highmem_idx(j) ? realsize : freesize; 6135 #ifdef CONFIG_NUMA 6136 zone->node = nid; 6137 #endif 6138 zone->name = zone_names[j]; 6139 zone->zone_pgdat = pgdat; 6140 spin_lock_init(&zone->lock); 6141 zone_seqlock_init(zone); 6142 zone_pcp_init(zone); 6143 6144 if (!size) 6145 continue; 6146 6147 set_pageblock_order(); 6148 setup_usemap(pgdat, zone, zone_start_pfn, size); 6149 init_currently_empty_zone(zone, zone_start_pfn, size); 6150 memmap_init(size, nid, j, zone_start_pfn); 6151 } 6152 } 6153 6154 #ifdef CONFIG_FLAT_NODE_MEM_MAP 6155 static void __ref alloc_node_mem_map(struct pglist_data *pgdat) 6156 { 6157 unsigned long __maybe_unused start = 0; 6158 unsigned long __maybe_unused offset = 0; 6159 6160 /* Skip empty nodes */ 6161 if (!pgdat->node_spanned_pages) 6162 return; 6163 6164 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1); 6165 offset = pgdat->node_start_pfn - start; 6166 /* ia64 gets its own node_mem_map, before this, without bootmem */ 6167 if (!pgdat->node_mem_map) { 6168 unsigned long size, end; 6169 struct page *map; 6170 6171 /* 6172 * The zone's endpoints aren't required to be MAX_ORDER 6173 * aligned but the node_mem_map endpoints must be in order 6174 * for the buddy allocator to function correctly. 6175 */ 6176 end = pgdat_end_pfn(pgdat); 6177 end = ALIGN(end, MAX_ORDER_NR_PAGES); 6178 size = (end - start) * sizeof(struct page); 6179 map = alloc_remap(pgdat->node_id, size); 6180 if (!map) 6181 map = memblock_virt_alloc_node_nopanic(size, 6182 pgdat->node_id); 6183 pgdat->node_mem_map = map + offset; 6184 } 6185 pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n", 6186 __func__, pgdat->node_id, (unsigned long)pgdat, 6187 (unsigned long)pgdat->node_mem_map); 6188 #ifndef CONFIG_NEED_MULTIPLE_NODES 6189 /* 6190 * With no DISCONTIG, the global mem_map is just set as node 0's 6191 */ 6192 if (pgdat == NODE_DATA(0)) { 6193 mem_map = NODE_DATA(0)->node_mem_map; 6194 #if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM) 6195 if (page_to_pfn(mem_map) != pgdat->node_start_pfn) 6196 mem_map -= offset; 6197 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 6198 } 6199 #endif 6200 } 6201 #else 6202 static void __ref alloc_node_mem_map(struct pglist_data *pgdat) { } 6203 #endif /* CONFIG_FLAT_NODE_MEM_MAP */ 6204 6205 void __paginginit free_area_init_node(int nid, unsigned long *zones_size, 6206 unsigned long node_start_pfn, unsigned long *zholes_size) 6207 { 6208 pg_data_t *pgdat = NODE_DATA(nid); 6209 unsigned long start_pfn = 0; 6210 unsigned long end_pfn = 0; 6211 6212 /* pg_data_t should be reset to zero when it's allocated */ 6213 WARN_ON(pgdat->nr_zones || pgdat->kswapd_classzone_idx); 6214 6215 pgdat->node_id = nid; 6216 pgdat->node_start_pfn = node_start_pfn; 6217 pgdat->per_cpu_nodestats = NULL; 6218 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 6219 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn); 6220 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid, 6221 (u64)start_pfn << PAGE_SHIFT, 6222 end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0); 6223 #else 6224 start_pfn = node_start_pfn; 6225 #endif 6226 calculate_node_totalpages(pgdat, start_pfn, end_pfn, 6227 zones_size, zholes_size); 6228 6229 alloc_node_mem_map(pgdat); 6230 6231 reset_deferred_meminit(pgdat); 6232 free_area_init_core(pgdat); 6233 } 6234 6235 #ifdef CONFIG_HAVE_MEMBLOCK 6236 /* 6237 * Only struct pages that are backed by physical memory are zeroed and 6238 * initialized by going through __init_single_page(). But, there are some 6239 * struct pages which are reserved in memblock allocator and their fields 6240 * may be accessed (for example page_to_pfn() on some configuration accesses 6241 * flags). We must explicitly zero those struct pages. 6242 */ 6243 void __paginginit zero_resv_unavail(void) 6244 { 6245 phys_addr_t start, end; 6246 unsigned long pfn; 6247 u64 i, pgcnt; 6248 6249 /* 6250 * Loop through ranges that are reserved, but do not have reported 6251 * physical memory backing. 6252 */ 6253 pgcnt = 0; 6254 for_each_resv_unavail_range(i, &start, &end) { 6255 for (pfn = PFN_DOWN(start); pfn < PFN_UP(end); pfn++) { 6256 mm_zero_struct_page(pfn_to_page(pfn)); 6257 pgcnt++; 6258 } 6259 } 6260 6261 /* 6262 * Struct pages that do not have backing memory. This could be because 6263 * firmware is using some of this memory, or for some other reasons. 6264 * Once memblock is changed so such behaviour is not allowed: i.e. 6265 * list of "reserved" memory must be a subset of list of "memory", then 6266 * this code can be removed. 6267 */ 6268 if (pgcnt) 6269 pr_info("Reserved but unavailable: %lld pages", pgcnt); 6270 } 6271 #endif /* CONFIG_HAVE_MEMBLOCK */ 6272 6273 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 6274 6275 #if MAX_NUMNODES > 1 6276 /* 6277 * Figure out the number of possible node ids. 6278 */ 6279 void __init setup_nr_node_ids(void) 6280 { 6281 unsigned int highest; 6282 6283 highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES); 6284 nr_node_ids = highest + 1; 6285 } 6286 #endif 6287 6288 /** 6289 * node_map_pfn_alignment - determine the maximum internode alignment 6290 * 6291 * This function should be called after node map is populated and sorted. 6292 * It calculates the maximum power of two alignment which can distinguish 6293 * all the nodes. 6294 * 6295 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value 6296 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the 6297 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is 6298 * shifted, 1GiB is enough and this function will indicate so. 6299 * 6300 * This is used to test whether pfn -> nid mapping of the chosen memory 6301 * model has fine enough granularity to avoid incorrect mapping for the 6302 * populated node map. 6303 * 6304 * Returns the determined alignment in pfn's. 0 if there is no alignment 6305 * requirement (single node). 6306 */ 6307 unsigned long __init node_map_pfn_alignment(void) 6308 { 6309 unsigned long accl_mask = 0, last_end = 0; 6310 unsigned long start, end, mask; 6311 int last_nid = -1; 6312 int i, nid; 6313 6314 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) { 6315 if (!start || last_nid < 0 || last_nid == nid) { 6316 last_nid = nid; 6317 last_end = end; 6318 continue; 6319 } 6320 6321 /* 6322 * Start with a mask granular enough to pin-point to the 6323 * start pfn and tick off bits one-by-one until it becomes 6324 * too coarse to separate the current node from the last. 6325 */ 6326 mask = ~((1 << __ffs(start)) - 1); 6327 while (mask && last_end <= (start & (mask << 1))) 6328 mask <<= 1; 6329 6330 /* accumulate all internode masks */ 6331 accl_mask |= mask; 6332 } 6333 6334 /* convert mask to number of pages */ 6335 return ~accl_mask + 1; 6336 } 6337 6338 /* Find the lowest pfn for a node */ 6339 static unsigned long __init find_min_pfn_for_node(int nid) 6340 { 6341 unsigned long min_pfn = ULONG_MAX; 6342 unsigned long start_pfn; 6343 int i; 6344 6345 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL) 6346 min_pfn = min(min_pfn, start_pfn); 6347 6348 if (min_pfn == ULONG_MAX) { 6349 pr_warn("Could not find start_pfn for node %d\n", nid); 6350 return 0; 6351 } 6352 6353 return min_pfn; 6354 } 6355 6356 /** 6357 * find_min_pfn_with_active_regions - Find the minimum PFN registered 6358 * 6359 * It returns the minimum PFN based on information provided via 6360 * memblock_set_node(). 6361 */ 6362 unsigned long __init find_min_pfn_with_active_regions(void) 6363 { 6364 return find_min_pfn_for_node(MAX_NUMNODES); 6365 } 6366 6367 /* 6368 * early_calculate_totalpages() 6369 * Sum pages in active regions for movable zone. 6370 * Populate N_MEMORY for calculating usable_nodes. 6371 */ 6372 static unsigned long __init early_calculate_totalpages(void) 6373 { 6374 unsigned long totalpages = 0; 6375 unsigned long start_pfn, end_pfn; 6376 int i, nid; 6377 6378 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) { 6379 unsigned long pages = end_pfn - start_pfn; 6380 6381 totalpages += pages; 6382 if (pages) 6383 node_set_state(nid, N_MEMORY); 6384 } 6385 return totalpages; 6386 } 6387 6388 /* 6389 * Find the PFN the Movable zone begins in each node. Kernel memory 6390 * is spread evenly between nodes as long as the nodes have enough 6391 * memory. When they don't, some nodes will have more kernelcore than 6392 * others 6393 */ 6394 static void __init find_zone_movable_pfns_for_nodes(void) 6395 { 6396 int i, nid; 6397 unsigned long usable_startpfn; 6398 unsigned long kernelcore_node, kernelcore_remaining; 6399 /* save the state before borrow the nodemask */ 6400 nodemask_t saved_node_state = node_states[N_MEMORY]; 6401 unsigned long totalpages = early_calculate_totalpages(); 6402 int usable_nodes = nodes_weight(node_states[N_MEMORY]); 6403 struct memblock_region *r; 6404 6405 /* Need to find movable_zone earlier when movable_node is specified. */ 6406 find_usable_zone_for_movable(); 6407 6408 /* 6409 * If movable_node is specified, ignore kernelcore and movablecore 6410 * options. 6411 */ 6412 if (movable_node_is_enabled()) { 6413 for_each_memblock(memory, r) { 6414 if (!memblock_is_hotpluggable(r)) 6415 continue; 6416 6417 nid = r->nid; 6418 6419 usable_startpfn = PFN_DOWN(r->base); 6420 zone_movable_pfn[nid] = zone_movable_pfn[nid] ? 6421 min(usable_startpfn, zone_movable_pfn[nid]) : 6422 usable_startpfn; 6423 } 6424 6425 goto out2; 6426 } 6427 6428 /* 6429 * If kernelcore=mirror is specified, ignore movablecore option 6430 */ 6431 if (mirrored_kernelcore) { 6432 bool mem_below_4gb_not_mirrored = false; 6433 6434 for_each_memblock(memory, r) { 6435 if (memblock_is_mirror(r)) 6436 continue; 6437 6438 nid = r->nid; 6439 6440 usable_startpfn = memblock_region_memory_base_pfn(r); 6441 6442 if (usable_startpfn < 0x100000) { 6443 mem_below_4gb_not_mirrored = true; 6444 continue; 6445 } 6446 6447 zone_movable_pfn[nid] = zone_movable_pfn[nid] ? 6448 min(usable_startpfn, zone_movable_pfn[nid]) : 6449 usable_startpfn; 6450 } 6451 6452 if (mem_below_4gb_not_mirrored) 6453 pr_warn("This configuration results in unmirrored kernel memory."); 6454 6455 goto out2; 6456 } 6457 6458 /* 6459 * If movablecore=nn[KMG] was specified, calculate what size of 6460 * kernelcore that corresponds so that memory usable for 6461 * any allocation type is evenly spread. If both kernelcore 6462 * and movablecore are specified, then the value of kernelcore 6463 * will be used for required_kernelcore if it's greater than 6464 * what movablecore would have allowed. 6465 */ 6466 if (required_movablecore) { 6467 unsigned long corepages; 6468 6469 /* 6470 * Round-up so that ZONE_MOVABLE is at least as large as what 6471 * was requested by the user 6472 */ 6473 required_movablecore = 6474 roundup(required_movablecore, MAX_ORDER_NR_PAGES); 6475 required_movablecore = min(totalpages, required_movablecore); 6476 corepages = totalpages - required_movablecore; 6477 6478 required_kernelcore = max(required_kernelcore, corepages); 6479 } 6480 6481 /* 6482 * If kernelcore was not specified or kernelcore size is larger 6483 * than totalpages, there is no ZONE_MOVABLE. 6484 */ 6485 if (!required_kernelcore || required_kernelcore >= totalpages) 6486 goto out; 6487 6488 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */ 6489 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone]; 6490 6491 restart: 6492 /* Spread kernelcore memory as evenly as possible throughout nodes */ 6493 kernelcore_node = required_kernelcore / usable_nodes; 6494 for_each_node_state(nid, N_MEMORY) { 6495 unsigned long start_pfn, end_pfn; 6496 6497 /* 6498 * Recalculate kernelcore_node if the division per node 6499 * now exceeds what is necessary to satisfy the requested 6500 * amount of memory for the kernel 6501 */ 6502 if (required_kernelcore < kernelcore_node) 6503 kernelcore_node = required_kernelcore / usable_nodes; 6504 6505 /* 6506 * As the map is walked, we track how much memory is usable 6507 * by the kernel using kernelcore_remaining. When it is 6508 * 0, the rest of the node is usable by ZONE_MOVABLE 6509 */ 6510 kernelcore_remaining = kernelcore_node; 6511 6512 /* Go through each range of PFNs within this node */ 6513 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) { 6514 unsigned long size_pages; 6515 6516 start_pfn = max(start_pfn, zone_movable_pfn[nid]); 6517 if (start_pfn >= end_pfn) 6518 continue; 6519 6520 /* Account for what is only usable for kernelcore */ 6521 if (start_pfn < usable_startpfn) { 6522 unsigned long kernel_pages; 6523 kernel_pages = min(end_pfn, usable_startpfn) 6524 - start_pfn; 6525 6526 kernelcore_remaining -= min(kernel_pages, 6527 kernelcore_remaining); 6528 required_kernelcore -= min(kernel_pages, 6529 required_kernelcore); 6530 6531 /* Continue if range is now fully accounted */ 6532 if (end_pfn <= usable_startpfn) { 6533 6534 /* 6535 * Push zone_movable_pfn to the end so 6536 * that if we have to rebalance 6537 * kernelcore across nodes, we will 6538 * not double account here 6539 */ 6540 zone_movable_pfn[nid] = end_pfn; 6541 continue; 6542 } 6543 start_pfn = usable_startpfn; 6544 } 6545 6546 /* 6547 * The usable PFN range for ZONE_MOVABLE is from 6548 * start_pfn->end_pfn. Calculate size_pages as the 6549 * number of pages used as kernelcore 6550 */ 6551 size_pages = end_pfn - start_pfn; 6552 if (size_pages > kernelcore_remaining) 6553 size_pages = kernelcore_remaining; 6554 zone_movable_pfn[nid] = start_pfn + size_pages; 6555 6556 /* 6557 * Some kernelcore has been met, update counts and 6558 * break if the kernelcore for this node has been 6559 * satisfied 6560 */ 6561 required_kernelcore -= min(required_kernelcore, 6562 size_pages); 6563 kernelcore_remaining -= size_pages; 6564 if (!kernelcore_remaining) 6565 break; 6566 } 6567 } 6568 6569 /* 6570 * If there is still required_kernelcore, we do another pass with one 6571 * less node in the count. This will push zone_movable_pfn[nid] further 6572 * along on the nodes that still have memory until kernelcore is 6573 * satisfied 6574 */ 6575 usable_nodes--; 6576 if (usable_nodes && required_kernelcore > usable_nodes) 6577 goto restart; 6578 6579 out2: 6580 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */ 6581 for (nid = 0; nid < MAX_NUMNODES; nid++) 6582 zone_movable_pfn[nid] = 6583 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES); 6584 6585 out: 6586 /* restore the node_state */ 6587 node_states[N_MEMORY] = saved_node_state; 6588 } 6589 6590 /* Any regular or high memory on that node ? */ 6591 static void check_for_memory(pg_data_t *pgdat, int nid) 6592 { 6593 enum zone_type zone_type; 6594 6595 if (N_MEMORY == N_NORMAL_MEMORY) 6596 return; 6597 6598 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) { 6599 struct zone *zone = &pgdat->node_zones[zone_type]; 6600 if (populated_zone(zone)) { 6601 node_set_state(nid, N_HIGH_MEMORY); 6602 if (N_NORMAL_MEMORY != N_HIGH_MEMORY && 6603 zone_type <= ZONE_NORMAL) 6604 node_set_state(nid, N_NORMAL_MEMORY); 6605 break; 6606 } 6607 } 6608 } 6609 6610 /** 6611 * free_area_init_nodes - Initialise all pg_data_t and zone data 6612 * @max_zone_pfn: an array of max PFNs for each zone 6613 * 6614 * This will call free_area_init_node() for each active node in the system. 6615 * Using the page ranges provided by memblock_set_node(), the size of each 6616 * zone in each node and their holes is calculated. If the maximum PFN 6617 * between two adjacent zones match, it is assumed that the zone is empty. 6618 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed 6619 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone 6620 * starts where the previous one ended. For example, ZONE_DMA32 starts 6621 * at arch_max_dma_pfn. 6622 */ 6623 void __init free_area_init_nodes(unsigned long *max_zone_pfn) 6624 { 6625 unsigned long start_pfn, end_pfn; 6626 int i, nid; 6627 6628 /* Record where the zone boundaries are */ 6629 memset(arch_zone_lowest_possible_pfn, 0, 6630 sizeof(arch_zone_lowest_possible_pfn)); 6631 memset(arch_zone_highest_possible_pfn, 0, 6632 sizeof(arch_zone_highest_possible_pfn)); 6633 6634 start_pfn = find_min_pfn_with_active_regions(); 6635 6636 for (i = 0; i < MAX_NR_ZONES; i++) { 6637 if (i == ZONE_MOVABLE) 6638 continue; 6639 6640 end_pfn = max(max_zone_pfn[i], start_pfn); 6641 arch_zone_lowest_possible_pfn[i] = start_pfn; 6642 arch_zone_highest_possible_pfn[i] = end_pfn; 6643 6644 start_pfn = end_pfn; 6645 } 6646 6647 /* Find the PFNs that ZONE_MOVABLE begins at in each node */ 6648 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn)); 6649 find_zone_movable_pfns_for_nodes(); 6650 6651 /* Print out the zone ranges */ 6652 pr_info("Zone ranges:\n"); 6653 for (i = 0; i < MAX_NR_ZONES; i++) { 6654 if (i == ZONE_MOVABLE) 6655 continue; 6656 pr_info(" %-8s ", zone_names[i]); 6657 if (arch_zone_lowest_possible_pfn[i] == 6658 arch_zone_highest_possible_pfn[i]) 6659 pr_cont("empty\n"); 6660 else 6661 pr_cont("[mem %#018Lx-%#018Lx]\n", 6662 (u64)arch_zone_lowest_possible_pfn[i] 6663 << PAGE_SHIFT, 6664 ((u64)arch_zone_highest_possible_pfn[i] 6665 << PAGE_SHIFT) - 1); 6666 } 6667 6668 /* Print out the PFNs ZONE_MOVABLE begins at in each node */ 6669 pr_info("Movable zone start for each node\n"); 6670 for (i = 0; i < MAX_NUMNODES; i++) { 6671 if (zone_movable_pfn[i]) 6672 pr_info(" Node %d: %#018Lx\n", i, 6673 (u64)zone_movable_pfn[i] << PAGE_SHIFT); 6674 } 6675 6676 /* Print out the early node map */ 6677 pr_info("Early memory node ranges\n"); 6678 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) 6679 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid, 6680 (u64)start_pfn << PAGE_SHIFT, 6681 ((u64)end_pfn << PAGE_SHIFT) - 1); 6682 6683 /* Initialise every node */ 6684 mminit_verify_pageflags_layout(); 6685 setup_nr_node_ids(); 6686 for_each_online_node(nid) { 6687 pg_data_t *pgdat = NODE_DATA(nid); 6688 free_area_init_node(nid, NULL, 6689 find_min_pfn_for_node(nid), NULL); 6690 6691 /* Any memory on that node */ 6692 if (pgdat->node_present_pages) 6693 node_set_state(nid, N_MEMORY); 6694 check_for_memory(pgdat, nid); 6695 } 6696 zero_resv_unavail(); 6697 } 6698 6699 static int __init cmdline_parse_core(char *p, unsigned long *core) 6700 { 6701 unsigned long long coremem; 6702 if (!p) 6703 return -EINVAL; 6704 6705 coremem = memparse(p, &p); 6706 *core = coremem >> PAGE_SHIFT; 6707 6708 /* Paranoid check that UL is enough for the coremem value */ 6709 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX); 6710 6711 return 0; 6712 } 6713 6714 /* 6715 * kernelcore=size sets the amount of memory for use for allocations that 6716 * cannot be reclaimed or migrated. 6717 */ 6718 static int __init cmdline_parse_kernelcore(char *p) 6719 { 6720 /* parse kernelcore=mirror */ 6721 if (parse_option_str(p, "mirror")) { 6722 mirrored_kernelcore = true; 6723 return 0; 6724 } 6725 6726 return cmdline_parse_core(p, &required_kernelcore); 6727 } 6728 6729 /* 6730 * movablecore=size sets the amount of memory for use for allocations that 6731 * can be reclaimed or migrated. 6732 */ 6733 static int __init cmdline_parse_movablecore(char *p) 6734 { 6735 return cmdline_parse_core(p, &required_movablecore); 6736 } 6737 6738 early_param("kernelcore", cmdline_parse_kernelcore); 6739 early_param("movablecore", cmdline_parse_movablecore); 6740 6741 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 6742 6743 void adjust_managed_page_count(struct page *page, long count) 6744 { 6745 spin_lock(&managed_page_count_lock); 6746 page_zone(page)->managed_pages += count; 6747 totalram_pages += count; 6748 #ifdef CONFIG_HIGHMEM 6749 if (PageHighMem(page)) 6750 totalhigh_pages += count; 6751 #endif 6752 spin_unlock(&managed_page_count_lock); 6753 } 6754 EXPORT_SYMBOL(adjust_managed_page_count); 6755 6756 unsigned long free_reserved_area(void *start, void *end, int poison, char *s) 6757 { 6758 void *pos; 6759 unsigned long pages = 0; 6760 6761 start = (void *)PAGE_ALIGN((unsigned long)start); 6762 end = (void *)((unsigned long)end & PAGE_MASK); 6763 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) { 6764 if ((unsigned int)poison <= 0xFF) 6765 memset(pos, poison, PAGE_SIZE); 6766 free_reserved_page(virt_to_page(pos)); 6767 } 6768 6769 if (pages && s) 6770 pr_info("Freeing %s memory: %ldK\n", 6771 s, pages << (PAGE_SHIFT - 10)); 6772 6773 return pages; 6774 } 6775 EXPORT_SYMBOL(free_reserved_area); 6776 6777 #ifdef CONFIG_HIGHMEM 6778 void free_highmem_page(struct page *page) 6779 { 6780 __free_reserved_page(page); 6781 totalram_pages++; 6782 page_zone(page)->managed_pages++; 6783 totalhigh_pages++; 6784 } 6785 #endif 6786 6787 6788 void __init mem_init_print_info(const char *str) 6789 { 6790 unsigned long physpages, codesize, datasize, rosize, bss_size; 6791 unsigned long init_code_size, init_data_size; 6792 6793 physpages = get_num_physpages(); 6794 codesize = _etext - _stext; 6795 datasize = _edata - _sdata; 6796 rosize = __end_rodata - __start_rodata; 6797 bss_size = __bss_stop - __bss_start; 6798 init_data_size = __init_end - __init_begin; 6799 init_code_size = _einittext - _sinittext; 6800 6801 /* 6802 * Detect special cases and adjust section sizes accordingly: 6803 * 1) .init.* may be embedded into .data sections 6804 * 2) .init.text.* may be out of [__init_begin, __init_end], 6805 * please refer to arch/tile/kernel/vmlinux.lds.S. 6806 * 3) .rodata.* may be embedded into .text or .data sections. 6807 */ 6808 #define adj_init_size(start, end, size, pos, adj) \ 6809 do { \ 6810 if (start <= pos && pos < end && size > adj) \ 6811 size -= adj; \ 6812 } while (0) 6813 6814 adj_init_size(__init_begin, __init_end, init_data_size, 6815 _sinittext, init_code_size); 6816 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size); 6817 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size); 6818 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize); 6819 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize); 6820 6821 #undef adj_init_size 6822 6823 pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved" 6824 #ifdef CONFIG_HIGHMEM 6825 ", %luK highmem" 6826 #endif 6827 "%s%s)\n", 6828 nr_free_pages() << (PAGE_SHIFT - 10), 6829 physpages << (PAGE_SHIFT - 10), 6830 codesize >> 10, datasize >> 10, rosize >> 10, 6831 (init_data_size + init_code_size) >> 10, bss_size >> 10, 6832 (physpages - totalram_pages - totalcma_pages) << (PAGE_SHIFT - 10), 6833 totalcma_pages << (PAGE_SHIFT - 10), 6834 #ifdef CONFIG_HIGHMEM 6835 totalhigh_pages << (PAGE_SHIFT - 10), 6836 #endif 6837 str ? ", " : "", str ? str : ""); 6838 } 6839 6840 /** 6841 * set_dma_reserve - set the specified number of pages reserved in the first zone 6842 * @new_dma_reserve: The number of pages to mark reserved 6843 * 6844 * The per-cpu batchsize and zone watermarks are determined by managed_pages. 6845 * In the DMA zone, a significant percentage may be consumed by kernel image 6846 * and other unfreeable allocations which can skew the watermarks badly. This 6847 * function may optionally be used to account for unfreeable pages in the 6848 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and 6849 * smaller per-cpu batchsize. 6850 */ 6851 void __init set_dma_reserve(unsigned long new_dma_reserve) 6852 { 6853 dma_reserve = new_dma_reserve; 6854 } 6855 6856 void __init free_area_init(unsigned long *zones_size) 6857 { 6858 free_area_init_node(0, zones_size, 6859 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL); 6860 zero_resv_unavail(); 6861 } 6862 6863 static int page_alloc_cpu_dead(unsigned int cpu) 6864 { 6865 6866 lru_add_drain_cpu(cpu); 6867 drain_pages(cpu); 6868 6869 /* 6870 * Spill the event counters of the dead processor 6871 * into the current processors event counters. 6872 * This artificially elevates the count of the current 6873 * processor. 6874 */ 6875 vm_events_fold_cpu(cpu); 6876 6877 /* 6878 * Zero the differential counters of the dead processor 6879 * so that the vm statistics are consistent. 6880 * 6881 * This is only okay since the processor is dead and cannot 6882 * race with what we are doing. 6883 */ 6884 cpu_vm_stats_fold(cpu); 6885 return 0; 6886 } 6887 6888 void __init page_alloc_init(void) 6889 { 6890 int ret; 6891 6892 ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC_DEAD, 6893 "mm/page_alloc:dead", NULL, 6894 page_alloc_cpu_dead); 6895 WARN_ON(ret < 0); 6896 } 6897 6898 /* 6899 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio 6900 * or min_free_kbytes changes. 6901 */ 6902 static void calculate_totalreserve_pages(void) 6903 { 6904 struct pglist_data *pgdat; 6905 unsigned long reserve_pages = 0; 6906 enum zone_type i, j; 6907 6908 for_each_online_pgdat(pgdat) { 6909 6910 pgdat->totalreserve_pages = 0; 6911 6912 for (i = 0; i < MAX_NR_ZONES; i++) { 6913 struct zone *zone = pgdat->node_zones + i; 6914 long max = 0; 6915 6916 /* Find valid and maximum lowmem_reserve in the zone */ 6917 for (j = i; j < MAX_NR_ZONES; j++) { 6918 if (zone->lowmem_reserve[j] > max) 6919 max = zone->lowmem_reserve[j]; 6920 } 6921 6922 /* we treat the high watermark as reserved pages. */ 6923 max += high_wmark_pages(zone); 6924 6925 if (max > zone->managed_pages) 6926 max = zone->managed_pages; 6927 6928 pgdat->totalreserve_pages += max; 6929 6930 reserve_pages += max; 6931 } 6932 } 6933 totalreserve_pages = reserve_pages; 6934 } 6935 6936 /* 6937 * setup_per_zone_lowmem_reserve - called whenever 6938 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone 6939 * has a correct pages reserved value, so an adequate number of 6940 * pages are left in the zone after a successful __alloc_pages(). 6941 */ 6942 static void setup_per_zone_lowmem_reserve(void) 6943 { 6944 struct pglist_data *pgdat; 6945 enum zone_type j, idx; 6946 6947 for_each_online_pgdat(pgdat) { 6948 for (j = 0; j < MAX_NR_ZONES; j++) { 6949 struct zone *zone = pgdat->node_zones + j; 6950 unsigned long managed_pages = zone->managed_pages; 6951 6952 zone->lowmem_reserve[j] = 0; 6953 6954 idx = j; 6955 while (idx) { 6956 struct zone *lower_zone; 6957 6958 idx--; 6959 6960 if (sysctl_lowmem_reserve_ratio[idx] < 1) 6961 sysctl_lowmem_reserve_ratio[idx] = 1; 6962 6963 lower_zone = pgdat->node_zones + idx; 6964 lower_zone->lowmem_reserve[j] = managed_pages / 6965 sysctl_lowmem_reserve_ratio[idx]; 6966 managed_pages += lower_zone->managed_pages; 6967 } 6968 } 6969 } 6970 6971 /* update totalreserve_pages */ 6972 calculate_totalreserve_pages(); 6973 } 6974 6975 static void __setup_per_zone_wmarks(void) 6976 { 6977 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10); 6978 unsigned long lowmem_pages = 0; 6979 struct zone *zone; 6980 unsigned long flags; 6981 6982 /* Calculate total number of !ZONE_HIGHMEM pages */ 6983 for_each_zone(zone) { 6984 if (!is_highmem(zone)) 6985 lowmem_pages += zone->managed_pages; 6986 } 6987 6988 for_each_zone(zone) { 6989 u64 tmp; 6990 6991 spin_lock_irqsave(&zone->lock, flags); 6992 tmp = (u64)pages_min * zone->managed_pages; 6993 do_div(tmp, lowmem_pages); 6994 if (is_highmem(zone)) { 6995 /* 6996 * __GFP_HIGH and PF_MEMALLOC allocations usually don't 6997 * need highmem pages, so cap pages_min to a small 6998 * value here. 6999 * 7000 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN) 7001 * deltas control asynch page reclaim, and so should 7002 * not be capped for highmem. 7003 */ 7004 unsigned long min_pages; 7005 7006 min_pages = zone->managed_pages / 1024; 7007 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL); 7008 zone->watermark[WMARK_MIN] = min_pages; 7009 } else { 7010 /* 7011 * If it's a lowmem zone, reserve a number of pages 7012 * proportionate to the zone's size. 7013 */ 7014 zone->watermark[WMARK_MIN] = tmp; 7015 } 7016 7017 /* 7018 * Set the kswapd watermarks distance according to the 7019 * scale factor in proportion to available memory, but 7020 * ensure a minimum size on small systems. 7021 */ 7022 tmp = max_t(u64, tmp >> 2, 7023 mult_frac(zone->managed_pages, 7024 watermark_scale_factor, 10000)); 7025 7026 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp; 7027 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2; 7028 7029 spin_unlock_irqrestore(&zone->lock, flags); 7030 } 7031 7032 /* update totalreserve_pages */ 7033 calculate_totalreserve_pages(); 7034 } 7035 7036 /** 7037 * setup_per_zone_wmarks - called when min_free_kbytes changes 7038 * or when memory is hot-{added|removed} 7039 * 7040 * Ensures that the watermark[min,low,high] values for each zone are set 7041 * correctly with respect to min_free_kbytes. 7042 */ 7043 void setup_per_zone_wmarks(void) 7044 { 7045 static DEFINE_SPINLOCK(lock); 7046 7047 spin_lock(&lock); 7048 __setup_per_zone_wmarks(); 7049 spin_unlock(&lock); 7050 } 7051 7052 /* 7053 * Initialise min_free_kbytes. 7054 * 7055 * For small machines we want it small (128k min). For large machines 7056 * we want it large (64MB max). But it is not linear, because network 7057 * bandwidth does not increase linearly with machine size. We use 7058 * 7059 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy: 7060 * min_free_kbytes = sqrt(lowmem_kbytes * 16) 7061 * 7062 * which yields 7063 * 7064 * 16MB: 512k 7065 * 32MB: 724k 7066 * 64MB: 1024k 7067 * 128MB: 1448k 7068 * 256MB: 2048k 7069 * 512MB: 2896k 7070 * 1024MB: 4096k 7071 * 2048MB: 5792k 7072 * 4096MB: 8192k 7073 * 8192MB: 11584k 7074 * 16384MB: 16384k 7075 */ 7076 int __meminit init_per_zone_wmark_min(void) 7077 { 7078 unsigned long lowmem_kbytes; 7079 int new_min_free_kbytes; 7080 7081 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10); 7082 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16); 7083 7084 if (new_min_free_kbytes > user_min_free_kbytes) { 7085 min_free_kbytes = new_min_free_kbytes; 7086 if (min_free_kbytes < 128) 7087 min_free_kbytes = 128; 7088 if (min_free_kbytes > 65536) 7089 min_free_kbytes = 65536; 7090 } else { 7091 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n", 7092 new_min_free_kbytes, user_min_free_kbytes); 7093 } 7094 setup_per_zone_wmarks(); 7095 refresh_zone_stat_thresholds(); 7096 setup_per_zone_lowmem_reserve(); 7097 7098 #ifdef CONFIG_NUMA 7099 setup_min_unmapped_ratio(); 7100 setup_min_slab_ratio(); 7101 #endif 7102 7103 return 0; 7104 } 7105 core_initcall(init_per_zone_wmark_min) 7106 7107 /* 7108 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so 7109 * that we can call two helper functions whenever min_free_kbytes 7110 * changes. 7111 */ 7112 int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write, 7113 void __user *buffer, size_t *length, loff_t *ppos) 7114 { 7115 int rc; 7116 7117 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 7118 if (rc) 7119 return rc; 7120 7121 if (write) { 7122 user_min_free_kbytes = min_free_kbytes; 7123 setup_per_zone_wmarks(); 7124 } 7125 return 0; 7126 } 7127 7128 int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write, 7129 void __user *buffer, size_t *length, loff_t *ppos) 7130 { 7131 int rc; 7132 7133 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 7134 if (rc) 7135 return rc; 7136 7137 if (write) 7138 setup_per_zone_wmarks(); 7139 7140 return 0; 7141 } 7142 7143 #ifdef CONFIG_NUMA 7144 static void setup_min_unmapped_ratio(void) 7145 { 7146 pg_data_t *pgdat; 7147 struct zone *zone; 7148 7149 for_each_online_pgdat(pgdat) 7150 pgdat->min_unmapped_pages = 0; 7151 7152 for_each_zone(zone) 7153 zone->zone_pgdat->min_unmapped_pages += (zone->managed_pages * 7154 sysctl_min_unmapped_ratio) / 100; 7155 } 7156 7157 7158 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write, 7159 void __user *buffer, size_t *length, loff_t *ppos) 7160 { 7161 int rc; 7162 7163 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 7164 if (rc) 7165 return rc; 7166 7167 setup_min_unmapped_ratio(); 7168 7169 return 0; 7170 } 7171 7172 static void setup_min_slab_ratio(void) 7173 { 7174 pg_data_t *pgdat; 7175 struct zone *zone; 7176 7177 for_each_online_pgdat(pgdat) 7178 pgdat->min_slab_pages = 0; 7179 7180 for_each_zone(zone) 7181 zone->zone_pgdat->min_slab_pages += (zone->managed_pages * 7182 sysctl_min_slab_ratio) / 100; 7183 } 7184 7185 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write, 7186 void __user *buffer, size_t *length, loff_t *ppos) 7187 { 7188 int rc; 7189 7190 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 7191 if (rc) 7192 return rc; 7193 7194 setup_min_slab_ratio(); 7195 7196 return 0; 7197 } 7198 #endif 7199 7200 /* 7201 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around 7202 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve() 7203 * whenever sysctl_lowmem_reserve_ratio changes. 7204 * 7205 * The reserve ratio obviously has absolutely no relation with the 7206 * minimum watermarks. The lowmem reserve ratio can only make sense 7207 * if in function of the boot time zone sizes. 7208 */ 7209 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write, 7210 void __user *buffer, size_t *length, loff_t *ppos) 7211 { 7212 proc_dointvec_minmax(table, write, buffer, length, ppos); 7213 setup_per_zone_lowmem_reserve(); 7214 return 0; 7215 } 7216 7217 /* 7218 * percpu_pagelist_fraction - changes the pcp->high for each zone on each 7219 * cpu. It is the fraction of total pages in each zone that a hot per cpu 7220 * pagelist can have before it gets flushed back to buddy allocator. 7221 */ 7222 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write, 7223 void __user *buffer, size_t *length, loff_t *ppos) 7224 { 7225 struct zone *zone; 7226 int old_percpu_pagelist_fraction; 7227 int ret; 7228 7229 mutex_lock(&pcp_batch_high_lock); 7230 old_percpu_pagelist_fraction = percpu_pagelist_fraction; 7231 7232 ret = proc_dointvec_minmax(table, write, buffer, length, ppos); 7233 if (!write || ret < 0) 7234 goto out; 7235 7236 /* Sanity checking to avoid pcp imbalance */ 7237 if (percpu_pagelist_fraction && 7238 percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) { 7239 percpu_pagelist_fraction = old_percpu_pagelist_fraction; 7240 ret = -EINVAL; 7241 goto out; 7242 } 7243 7244 /* No change? */ 7245 if (percpu_pagelist_fraction == old_percpu_pagelist_fraction) 7246 goto out; 7247 7248 for_each_populated_zone(zone) { 7249 unsigned int cpu; 7250 7251 for_each_possible_cpu(cpu) 7252 pageset_set_high_and_batch(zone, 7253 per_cpu_ptr(zone->pageset, cpu)); 7254 } 7255 out: 7256 mutex_unlock(&pcp_batch_high_lock); 7257 return ret; 7258 } 7259 7260 #ifdef CONFIG_NUMA 7261 int hashdist = HASHDIST_DEFAULT; 7262 7263 static int __init set_hashdist(char *str) 7264 { 7265 if (!str) 7266 return 0; 7267 hashdist = simple_strtoul(str, &str, 0); 7268 return 1; 7269 } 7270 __setup("hashdist=", set_hashdist); 7271 #endif 7272 7273 #ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES 7274 /* 7275 * Returns the number of pages that arch has reserved but 7276 * is not known to alloc_large_system_hash(). 7277 */ 7278 static unsigned long __init arch_reserved_kernel_pages(void) 7279 { 7280 return 0; 7281 } 7282 #endif 7283 7284 /* 7285 * Adaptive scale is meant to reduce sizes of hash tables on large memory 7286 * machines. As memory size is increased the scale is also increased but at 7287 * slower pace. Starting from ADAPT_SCALE_BASE (64G), every time memory 7288 * quadruples the scale is increased by one, which means the size of hash table 7289 * only doubles, instead of quadrupling as well. 7290 * Because 32-bit systems cannot have large physical memory, where this scaling 7291 * makes sense, it is disabled on such platforms. 7292 */ 7293 #if __BITS_PER_LONG > 32 7294 #define ADAPT_SCALE_BASE (64ul << 30) 7295 #define ADAPT_SCALE_SHIFT 2 7296 #define ADAPT_SCALE_NPAGES (ADAPT_SCALE_BASE >> PAGE_SHIFT) 7297 #endif 7298 7299 /* 7300 * allocate a large system hash table from bootmem 7301 * - it is assumed that the hash table must contain an exact power-of-2 7302 * quantity of entries 7303 * - limit is the number of hash buckets, not the total allocation size 7304 */ 7305 void *__init alloc_large_system_hash(const char *tablename, 7306 unsigned long bucketsize, 7307 unsigned long numentries, 7308 int scale, 7309 int flags, 7310 unsigned int *_hash_shift, 7311 unsigned int *_hash_mask, 7312 unsigned long low_limit, 7313 unsigned long high_limit) 7314 { 7315 unsigned long long max = high_limit; 7316 unsigned long log2qty, size; 7317 void *table = NULL; 7318 gfp_t gfp_flags; 7319 7320 /* allow the kernel cmdline to have a say */ 7321 if (!numentries) { 7322 /* round applicable memory size up to nearest megabyte */ 7323 numentries = nr_kernel_pages; 7324 numentries -= arch_reserved_kernel_pages(); 7325 7326 /* It isn't necessary when PAGE_SIZE >= 1MB */ 7327 if (PAGE_SHIFT < 20) 7328 numentries = round_up(numentries, (1<<20)/PAGE_SIZE); 7329 7330 #if __BITS_PER_LONG > 32 7331 if (!high_limit) { 7332 unsigned long adapt; 7333 7334 for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries; 7335 adapt <<= ADAPT_SCALE_SHIFT) 7336 scale++; 7337 } 7338 #endif 7339 7340 /* limit to 1 bucket per 2^scale bytes of low memory */ 7341 if (scale > PAGE_SHIFT) 7342 numentries >>= (scale - PAGE_SHIFT); 7343 else 7344 numentries <<= (PAGE_SHIFT - scale); 7345 7346 /* Make sure we've got at least a 0-order allocation.. */ 7347 if (unlikely(flags & HASH_SMALL)) { 7348 /* Makes no sense without HASH_EARLY */ 7349 WARN_ON(!(flags & HASH_EARLY)); 7350 if (!(numentries >> *_hash_shift)) { 7351 numentries = 1UL << *_hash_shift; 7352 BUG_ON(!numentries); 7353 } 7354 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE)) 7355 numentries = PAGE_SIZE / bucketsize; 7356 } 7357 numentries = roundup_pow_of_two(numentries); 7358 7359 /* limit allocation size to 1/16 total memory by default */ 7360 if (max == 0) { 7361 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4; 7362 do_div(max, bucketsize); 7363 } 7364 max = min(max, 0x80000000ULL); 7365 7366 if (numentries < low_limit) 7367 numentries = low_limit; 7368 if (numentries > max) 7369 numentries = max; 7370 7371 log2qty = ilog2(numentries); 7372 7373 gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC; 7374 do { 7375 size = bucketsize << log2qty; 7376 if (flags & HASH_EARLY) { 7377 if (flags & HASH_ZERO) 7378 table = memblock_virt_alloc_nopanic(size, 0); 7379 else 7380 table = memblock_virt_alloc_raw(size, 0); 7381 } else if (hashdist) { 7382 table = __vmalloc(size, gfp_flags, PAGE_KERNEL); 7383 } else { 7384 /* 7385 * If bucketsize is not a power-of-two, we may free 7386 * some pages at the end of hash table which 7387 * alloc_pages_exact() automatically does 7388 */ 7389 if (get_order(size) < MAX_ORDER) { 7390 table = alloc_pages_exact(size, gfp_flags); 7391 kmemleak_alloc(table, size, 1, gfp_flags); 7392 } 7393 } 7394 } while (!table && size > PAGE_SIZE && --log2qty); 7395 7396 if (!table) 7397 panic("Failed to allocate %s hash table\n", tablename); 7398 7399 pr_info("%s hash table entries: %ld (order: %d, %lu bytes)\n", 7400 tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size); 7401 7402 if (_hash_shift) 7403 *_hash_shift = log2qty; 7404 if (_hash_mask) 7405 *_hash_mask = (1 << log2qty) - 1; 7406 7407 return table; 7408 } 7409 7410 /* 7411 * This function checks whether pageblock includes unmovable pages or not. 7412 * If @count is not zero, it is okay to include less @count unmovable pages 7413 * 7414 * PageLRU check without isolation or lru_lock could race so that 7415 * MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable 7416 * check without lock_page also may miss some movable non-lru pages at 7417 * race condition. So you can't expect this function should be exact. 7418 */ 7419 bool has_unmovable_pages(struct zone *zone, struct page *page, int count, 7420 int migratetype, 7421 bool skip_hwpoisoned_pages) 7422 { 7423 unsigned long pfn, iter, found; 7424 7425 /* 7426 * For avoiding noise data, lru_add_drain_all() should be called 7427 * If ZONE_MOVABLE, the zone never contains unmovable pages 7428 */ 7429 if (zone_idx(zone) == ZONE_MOVABLE) 7430 return false; 7431 7432 /* 7433 * CMA allocations (alloc_contig_range) really need to mark isolate 7434 * CMA pageblocks even when they are not movable in fact so consider 7435 * them movable here. 7436 */ 7437 if (is_migrate_cma(migratetype) && 7438 is_migrate_cma(get_pageblock_migratetype(page))) 7439 return false; 7440 7441 pfn = page_to_pfn(page); 7442 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) { 7443 unsigned long check = pfn + iter; 7444 7445 if (!pfn_valid_within(check)) 7446 continue; 7447 7448 page = pfn_to_page(check); 7449 7450 if (PageReserved(page)) 7451 return true; 7452 7453 /* 7454 * Hugepages are not in LRU lists, but they're movable. 7455 * We need not scan over tail pages bacause we don't 7456 * handle each tail page individually in migration. 7457 */ 7458 if (PageHuge(page)) { 7459 iter = round_up(iter + 1, 1<<compound_order(page)) - 1; 7460 continue; 7461 } 7462 7463 /* 7464 * We can't use page_count without pin a page 7465 * because another CPU can free compound page. 7466 * This check already skips compound tails of THP 7467 * because their page->_refcount is zero at all time. 7468 */ 7469 if (!page_ref_count(page)) { 7470 if (PageBuddy(page)) 7471 iter += (1 << page_order(page)) - 1; 7472 continue; 7473 } 7474 7475 /* 7476 * The HWPoisoned page may be not in buddy system, and 7477 * page_count() is not 0. 7478 */ 7479 if (skip_hwpoisoned_pages && PageHWPoison(page)) 7480 continue; 7481 7482 if (__PageMovable(page)) 7483 continue; 7484 7485 if (!PageLRU(page)) 7486 found++; 7487 /* 7488 * If there are RECLAIMABLE pages, we need to check 7489 * it. But now, memory offline itself doesn't call 7490 * shrink_node_slabs() and it still to be fixed. 7491 */ 7492 /* 7493 * If the page is not RAM, page_count()should be 0. 7494 * we don't need more check. This is an _used_ not-movable page. 7495 * 7496 * The problematic thing here is PG_reserved pages. PG_reserved 7497 * is set to both of a memory hole page and a _used_ kernel 7498 * page at boot. 7499 */ 7500 if (found > count) 7501 return true; 7502 } 7503 return false; 7504 } 7505 7506 bool is_pageblock_removable_nolock(struct page *page) 7507 { 7508 struct zone *zone; 7509 unsigned long pfn; 7510 7511 /* 7512 * We have to be careful here because we are iterating over memory 7513 * sections which are not zone aware so we might end up outside of 7514 * the zone but still within the section. 7515 * We have to take care about the node as well. If the node is offline 7516 * its NODE_DATA will be NULL - see page_zone. 7517 */ 7518 if (!node_online(page_to_nid(page))) 7519 return false; 7520 7521 zone = page_zone(page); 7522 pfn = page_to_pfn(page); 7523 if (!zone_spans_pfn(zone, pfn)) 7524 return false; 7525 7526 return !has_unmovable_pages(zone, page, 0, MIGRATE_MOVABLE, true); 7527 } 7528 7529 #if (defined(CONFIG_MEMORY_ISOLATION) && defined(CONFIG_COMPACTION)) || defined(CONFIG_CMA) 7530 7531 static unsigned long pfn_max_align_down(unsigned long pfn) 7532 { 7533 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES, 7534 pageblock_nr_pages) - 1); 7535 } 7536 7537 static unsigned long pfn_max_align_up(unsigned long pfn) 7538 { 7539 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES, 7540 pageblock_nr_pages)); 7541 } 7542 7543 /* [start, end) must belong to a single zone. */ 7544 static int __alloc_contig_migrate_range(struct compact_control *cc, 7545 unsigned long start, unsigned long end) 7546 { 7547 /* This function is based on compact_zone() from compaction.c. */ 7548 unsigned long nr_reclaimed; 7549 unsigned long pfn = start; 7550 unsigned int tries = 0; 7551 int ret = 0; 7552 7553 migrate_prep(); 7554 7555 while (pfn < end || !list_empty(&cc->migratepages)) { 7556 if (fatal_signal_pending(current)) { 7557 ret = -EINTR; 7558 break; 7559 } 7560 7561 if (list_empty(&cc->migratepages)) { 7562 cc->nr_migratepages = 0; 7563 pfn = isolate_migratepages_range(cc, pfn, end); 7564 if (!pfn) { 7565 ret = -EINTR; 7566 break; 7567 } 7568 tries = 0; 7569 } else if (++tries == 5) { 7570 ret = ret < 0 ? ret : -EBUSY; 7571 break; 7572 } 7573 7574 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone, 7575 &cc->migratepages); 7576 cc->nr_migratepages -= nr_reclaimed; 7577 7578 ret = migrate_pages(&cc->migratepages, alloc_migrate_target, 7579 NULL, 0, cc->mode, MR_CMA); 7580 } 7581 if (ret < 0) { 7582 putback_movable_pages(&cc->migratepages); 7583 return ret; 7584 } 7585 return 0; 7586 } 7587 7588 /** 7589 * alloc_contig_range() -- tries to allocate given range of pages 7590 * @start: start PFN to allocate 7591 * @end: one-past-the-last PFN to allocate 7592 * @migratetype: migratetype of the underlaying pageblocks (either 7593 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks 7594 * in range must have the same migratetype and it must 7595 * be either of the two. 7596 * @gfp_mask: GFP mask to use during compaction 7597 * 7598 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES 7599 * aligned, however it's the caller's responsibility to guarantee that 7600 * we are the only thread that changes migrate type of pageblocks the 7601 * pages fall in. 7602 * 7603 * The PFN range must belong to a single zone. 7604 * 7605 * Returns zero on success or negative error code. On success all 7606 * pages which PFN is in [start, end) are allocated for the caller and 7607 * need to be freed with free_contig_range(). 7608 */ 7609 int alloc_contig_range(unsigned long start, unsigned long end, 7610 unsigned migratetype, gfp_t gfp_mask) 7611 { 7612 unsigned long outer_start, outer_end; 7613 unsigned int order; 7614 int ret = 0; 7615 7616 struct compact_control cc = { 7617 .nr_migratepages = 0, 7618 .order = -1, 7619 .zone = page_zone(pfn_to_page(start)), 7620 .mode = MIGRATE_SYNC, 7621 .ignore_skip_hint = true, 7622 .no_set_skip_hint = true, 7623 .gfp_mask = current_gfp_context(gfp_mask), 7624 }; 7625 INIT_LIST_HEAD(&cc.migratepages); 7626 7627 /* 7628 * What we do here is we mark all pageblocks in range as 7629 * MIGRATE_ISOLATE. Because pageblock and max order pages may 7630 * have different sizes, and due to the way page allocator 7631 * work, we align the range to biggest of the two pages so 7632 * that page allocator won't try to merge buddies from 7633 * different pageblocks and change MIGRATE_ISOLATE to some 7634 * other migration type. 7635 * 7636 * Once the pageblocks are marked as MIGRATE_ISOLATE, we 7637 * migrate the pages from an unaligned range (ie. pages that 7638 * we are interested in). This will put all the pages in 7639 * range back to page allocator as MIGRATE_ISOLATE. 7640 * 7641 * When this is done, we take the pages in range from page 7642 * allocator removing them from the buddy system. This way 7643 * page allocator will never consider using them. 7644 * 7645 * This lets us mark the pageblocks back as 7646 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the 7647 * aligned range but not in the unaligned, original range are 7648 * put back to page allocator so that buddy can use them. 7649 */ 7650 7651 ret = start_isolate_page_range(pfn_max_align_down(start), 7652 pfn_max_align_up(end), migratetype, 7653 false); 7654 if (ret) 7655 return ret; 7656 7657 /* 7658 * In case of -EBUSY, we'd like to know which page causes problem. 7659 * So, just fall through. We will check it in test_pages_isolated(). 7660 */ 7661 ret = __alloc_contig_migrate_range(&cc, start, end); 7662 if (ret && ret != -EBUSY) 7663 goto done; 7664 7665 /* 7666 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES 7667 * aligned blocks that are marked as MIGRATE_ISOLATE. What's 7668 * more, all pages in [start, end) are free in page allocator. 7669 * What we are going to do is to allocate all pages from 7670 * [start, end) (that is remove them from page allocator). 7671 * 7672 * The only problem is that pages at the beginning and at the 7673 * end of interesting range may be not aligned with pages that 7674 * page allocator holds, ie. they can be part of higher order 7675 * pages. Because of this, we reserve the bigger range and 7676 * once this is done free the pages we are not interested in. 7677 * 7678 * We don't have to hold zone->lock here because the pages are 7679 * isolated thus they won't get removed from buddy. 7680 */ 7681 7682 lru_add_drain_all(); 7683 drain_all_pages(cc.zone); 7684 7685 order = 0; 7686 outer_start = start; 7687 while (!PageBuddy(pfn_to_page(outer_start))) { 7688 if (++order >= MAX_ORDER) { 7689 outer_start = start; 7690 break; 7691 } 7692 outer_start &= ~0UL << order; 7693 } 7694 7695 if (outer_start != start) { 7696 order = page_order(pfn_to_page(outer_start)); 7697 7698 /* 7699 * outer_start page could be small order buddy page and 7700 * it doesn't include start page. Adjust outer_start 7701 * in this case to report failed page properly 7702 * on tracepoint in test_pages_isolated() 7703 */ 7704 if (outer_start + (1UL << order) <= start) 7705 outer_start = start; 7706 } 7707 7708 /* Make sure the range is really isolated. */ 7709 if (test_pages_isolated(outer_start, end, false)) { 7710 pr_info_ratelimited("%s: [%lx, %lx) PFNs busy\n", 7711 __func__, outer_start, end); 7712 ret = -EBUSY; 7713 goto done; 7714 } 7715 7716 /* Grab isolated pages from freelists. */ 7717 outer_end = isolate_freepages_range(&cc, outer_start, end); 7718 if (!outer_end) { 7719 ret = -EBUSY; 7720 goto done; 7721 } 7722 7723 /* Free head and tail (if any) */ 7724 if (start != outer_start) 7725 free_contig_range(outer_start, start - outer_start); 7726 if (end != outer_end) 7727 free_contig_range(end, outer_end - end); 7728 7729 done: 7730 undo_isolate_page_range(pfn_max_align_down(start), 7731 pfn_max_align_up(end), migratetype); 7732 return ret; 7733 } 7734 7735 void free_contig_range(unsigned long pfn, unsigned nr_pages) 7736 { 7737 unsigned int count = 0; 7738 7739 for (; nr_pages--; pfn++) { 7740 struct page *page = pfn_to_page(pfn); 7741 7742 count += page_count(page) != 1; 7743 __free_page(page); 7744 } 7745 WARN(count != 0, "%d pages are still in use!\n", count); 7746 } 7747 #endif 7748 7749 #ifdef CONFIG_MEMORY_HOTPLUG 7750 /* 7751 * The zone indicated has a new number of managed_pages; batch sizes and percpu 7752 * page high values need to be recalulated. 7753 */ 7754 void __meminit zone_pcp_update(struct zone *zone) 7755 { 7756 unsigned cpu; 7757 mutex_lock(&pcp_batch_high_lock); 7758 for_each_possible_cpu(cpu) 7759 pageset_set_high_and_batch(zone, 7760 per_cpu_ptr(zone->pageset, cpu)); 7761 mutex_unlock(&pcp_batch_high_lock); 7762 } 7763 #endif 7764 7765 void zone_pcp_reset(struct zone *zone) 7766 { 7767 unsigned long flags; 7768 int cpu; 7769 struct per_cpu_pageset *pset; 7770 7771 /* avoid races with drain_pages() */ 7772 local_irq_save(flags); 7773 if (zone->pageset != &boot_pageset) { 7774 for_each_online_cpu(cpu) { 7775 pset = per_cpu_ptr(zone->pageset, cpu); 7776 drain_zonestat(zone, pset); 7777 } 7778 free_percpu(zone->pageset); 7779 zone->pageset = &boot_pageset; 7780 } 7781 local_irq_restore(flags); 7782 } 7783 7784 #ifdef CONFIG_MEMORY_HOTREMOVE 7785 /* 7786 * All pages in the range must be in a single zone and isolated 7787 * before calling this. 7788 */ 7789 void 7790 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn) 7791 { 7792 struct page *page; 7793 struct zone *zone; 7794 unsigned int order, i; 7795 unsigned long pfn; 7796 unsigned long flags; 7797 /* find the first valid pfn */ 7798 for (pfn = start_pfn; pfn < end_pfn; pfn++) 7799 if (pfn_valid(pfn)) 7800 break; 7801 if (pfn == end_pfn) 7802 return; 7803 offline_mem_sections(pfn, end_pfn); 7804 zone = page_zone(pfn_to_page(pfn)); 7805 spin_lock_irqsave(&zone->lock, flags); 7806 pfn = start_pfn; 7807 while (pfn < end_pfn) { 7808 if (!pfn_valid(pfn)) { 7809 pfn++; 7810 continue; 7811 } 7812 page = pfn_to_page(pfn); 7813 /* 7814 * The HWPoisoned page may be not in buddy system, and 7815 * page_count() is not 0. 7816 */ 7817 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) { 7818 pfn++; 7819 SetPageReserved(page); 7820 continue; 7821 } 7822 7823 BUG_ON(page_count(page)); 7824 BUG_ON(!PageBuddy(page)); 7825 order = page_order(page); 7826 #ifdef CONFIG_DEBUG_VM 7827 pr_info("remove from free list %lx %d %lx\n", 7828 pfn, 1 << order, end_pfn); 7829 #endif 7830 list_del(&page->lru); 7831 rmv_page_order(page); 7832 zone->free_area[order].nr_free--; 7833 for (i = 0; i < (1 << order); i++) 7834 SetPageReserved((page+i)); 7835 pfn += (1 << order); 7836 } 7837 spin_unlock_irqrestore(&zone->lock, flags); 7838 } 7839 #endif 7840 7841 bool is_free_buddy_page(struct page *page) 7842 { 7843 struct zone *zone = page_zone(page); 7844 unsigned long pfn = page_to_pfn(page); 7845 unsigned long flags; 7846 unsigned int order; 7847 7848 spin_lock_irqsave(&zone->lock, flags); 7849 for (order = 0; order < MAX_ORDER; order++) { 7850 struct page *page_head = page - (pfn & ((1 << order) - 1)); 7851 7852 if (PageBuddy(page_head) && page_order(page_head) >= order) 7853 break; 7854 } 7855 spin_unlock_irqrestore(&zone->lock, flags); 7856 7857 return order < MAX_ORDER; 7858 } 7859