xref: /linux/mm/page_alloc.c (revision bf070bb0e6c62ba3075db0a666763ba52c677102)
1 /*
2  *  linux/mm/page_alloc.c
3  *
4  *  Manages the free list, the system allocates free pages here.
5  *  Note that kmalloc() lives in slab.c
6  *
7  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
8  *  Swap reorganised 29.12.95, Stephen Tweedie
9  *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10  *  Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11  *  Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12  *  Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13  *  Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14  *          (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15  */
16 
17 #include <linux/stddef.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/memblock.h>
25 #include <linux/compiler.h>
26 #include <linux/kernel.h>
27 #include <linux/kasan.h>
28 #include <linux/module.h>
29 #include <linux/suspend.h>
30 #include <linux/pagevec.h>
31 #include <linux/blkdev.h>
32 #include <linux/slab.h>
33 #include <linux/ratelimit.h>
34 #include <linux/oom.h>
35 #include <linux/notifier.h>
36 #include <linux/topology.h>
37 #include <linux/sysctl.h>
38 #include <linux/cpu.h>
39 #include <linux/cpuset.h>
40 #include <linux/memory_hotplug.h>
41 #include <linux/nodemask.h>
42 #include <linux/vmalloc.h>
43 #include <linux/vmstat.h>
44 #include <linux/mempolicy.h>
45 #include <linux/memremap.h>
46 #include <linux/stop_machine.h>
47 #include <linux/sort.h>
48 #include <linux/pfn.h>
49 #include <linux/backing-dev.h>
50 #include <linux/fault-inject.h>
51 #include <linux/page-isolation.h>
52 #include <linux/page_ext.h>
53 #include <linux/debugobjects.h>
54 #include <linux/kmemleak.h>
55 #include <linux/compaction.h>
56 #include <trace/events/kmem.h>
57 #include <trace/events/oom.h>
58 #include <linux/prefetch.h>
59 #include <linux/mm_inline.h>
60 #include <linux/migrate.h>
61 #include <linux/hugetlb.h>
62 #include <linux/sched/rt.h>
63 #include <linux/sched/mm.h>
64 #include <linux/page_owner.h>
65 #include <linux/kthread.h>
66 #include <linux/memcontrol.h>
67 #include <linux/ftrace.h>
68 #include <linux/lockdep.h>
69 #include <linux/nmi.h>
70 
71 #include <asm/sections.h>
72 #include <asm/tlbflush.h>
73 #include <asm/div64.h>
74 #include "internal.h"
75 
76 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
77 static DEFINE_MUTEX(pcp_batch_high_lock);
78 #define MIN_PERCPU_PAGELIST_FRACTION	(8)
79 
80 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
81 DEFINE_PER_CPU(int, numa_node);
82 EXPORT_PER_CPU_SYMBOL(numa_node);
83 #endif
84 
85 DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key);
86 
87 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
88 /*
89  * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
90  * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
91  * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
92  * defined in <linux/topology.h>.
93  */
94 DEFINE_PER_CPU(int, _numa_mem_);		/* Kernel "local memory" node */
95 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
96 int _node_numa_mem_[MAX_NUMNODES];
97 #endif
98 
99 /* work_structs for global per-cpu drains */
100 DEFINE_MUTEX(pcpu_drain_mutex);
101 DEFINE_PER_CPU(struct work_struct, pcpu_drain);
102 
103 #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
104 volatile unsigned long latent_entropy __latent_entropy;
105 EXPORT_SYMBOL(latent_entropy);
106 #endif
107 
108 /*
109  * Array of node states.
110  */
111 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
112 	[N_POSSIBLE] = NODE_MASK_ALL,
113 	[N_ONLINE] = { { [0] = 1UL } },
114 #ifndef CONFIG_NUMA
115 	[N_NORMAL_MEMORY] = { { [0] = 1UL } },
116 #ifdef CONFIG_HIGHMEM
117 	[N_HIGH_MEMORY] = { { [0] = 1UL } },
118 #endif
119 	[N_MEMORY] = { { [0] = 1UL } },
120 	[N_CPU] = { { [0] = 1UL } },
121 #endif	/* NUMA */
122 };
123 EXPORT_SYMBOL(node_states);
124 
125 /* Protect totalram_pages and zone->managed_pages */
126 static DEFINE_SPINLOCK(managed_page_count_lock);
127 
128 unsigned long totalram_pages __read_mostly;
129 unsigned long totalreserve_pages __read_mostly;
130 unsigned long totalcma_pages __read_mostly;
131 
132 int percpu_pagelist_fraction;
133 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
134 
135 /*
136  * A cached value of the page's pageblock's migratetype, used when the page is
137  * put on a pcplist. Used to avoid the pageblock migratetype lookup when
138  * freeing from pcplists in most cases, at the cost of possibly becoming stale.
139  * Also the migratetype set in the page does not necessarily match the pcplist
140  * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
141  * other index - this ensures that it will be put on the correct CMA freelist.
142  */
143 static inline int get_pcppage_migratetype(struct page *page)
144 {
145 	return page->index;
146 }
147 
148 static inline void set_pcppage_migratetype(struct page *page, int migratetype)
149 {
150 	page->index = migratetype;
151 }
152 
153 #ifdef CONFIG_PM_SLEEP
154 /*
155  * The following functions are used by the suspend/hibernate code to temporarily
156  * change gfp_allowed_mask in order to avoid using I/O during memory allocations
157  * while devices are suspended.  To avoid races with the suspend/hibernate code,
158  * they should always be called with pm_mutex held (gfp_allowed_mask also should
159  * only be modified with pm_mutex held, unless the suspend/hibernate code is
160  * guaranteed not to run in parallel with that modification).
161  */
162 
163 static gfp_t saved_gfp_mask;
164 
165 void pm_restore_gfp_mask(void)
166 {
167 	WARN_ON(!mutex_is_locked(&pm_mutex));
168 	if (saved_gfp_mask) {
169 		gfp_allowed_mask = saved_gfp_mask;
170 		saved_gfp_mask = 0;
171 	}
172 }
173 
174 void pm_restrict_gfp_mask(void)
175 {
176 	WARN_ON(!mutex_is_locked(&pm_mutex));
177 	WARN_ON(saved_gfp_mask);
178 	saved_gfp_mask = gfp_allowed_mask;
179 	gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
180 }
181 
182 bool pm_suspended_storage(void)
183 {
184 	if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
185 		return false;
186 	return true;
187 }
188 #endif /* CONFIG_PM_SLEEP */
189 
190 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
191 unsigned int pageblock_order __read_mostly;
192 #endif
193 
194 static void __free_pages_ok(struct page *page, unsigned int order);
195 
196 /*
197  * results with 256, 32 in the lowmem_reserve sysctl:
198  *	1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
199  *	1G machine -> (16M dma, 784M normal, 224M high)
200  *	NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
201  *	HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
202  *	HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
203  *
204  * TBD: should special case ZONE_DMA32 machines here - in those we normally
205  * don't need any ZONE_NORMAL reservation
206  */
207 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
208 #ifdef CONFIG_ZONE_DMA
209 	 256,
210 #endif
211 #ifdef CONFIG_ZONE_DMA32
212 	 256,
213 #endif
214 #ifdef CONFIG_HIGHMEM
215 	 32,
216 #endif
217 	 32,
218 };
219 
220 EXPORT_SYMBOL(totalram_pages);
221 
222 static char * const zone_names[MAX_NR_ZONES] = {
223 #ifdef CONFIG_ZONE_DMA
224 	 "DMA",
225 #endif
226 #ifdef CONFIG_ZONE_DMA32
227 	 "DMA32",
228 #endif
229 	 "Normal",
230 #ifdef CONFIG_HIGHMEM
231 	 "HighMem",
232 #endif
233 	 "Movable",
234 #ifdef CONFIG_ZONE_DEVICE
235 	 "Device",
236 #endif
237 };
238 
239 char * const migratetype_names[MIGRATE_TYPES] = {
240 	"Unmovable",
241 	"Movable",
242 	"Reclaimable",
243 	"HighAtomic",
244 #ifdef CONFIG_CMA
245 	"CMA",
246 #endif
247 #ifdef CONFIG_MEMORY_ISOLATION
248 	"Isolate",
249 #endif
250 };
251 
252 compound_page_dtor * const compound_page_dtors[] = {
253 	NULL,
254 	free_compound_page,
255 #ifdef CONFIG_HUGETLB_PAGE
256 	free_huge_page,
257 #endif
258 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
259 	free_transhuge_page,
260 #endif
261 };
262 
263 int min_free_kbytes = 1024;
264 int user_min_free_kbytes = -1;
265 int watermark_scale_factor = 10;
266 
267 static unsigned long __meminitdata nr_kernel_pages;
268 static unsigned long __meminitdata nr_all_pages;
269 static unsigned long __meminitdata dma_reserve;
270 
271 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
272 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
273 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
274 static unsigned long __initdata required_kernelcore;
275 static unsigned long __initdata required_movablecore;
276 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
277 static bool mirrored_kernelcore;
278 
279 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
280 int movable_zone;
281 EXPORT_SYMBOL(movable_zone);
282 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
283 
284 #if MAX_NUMNODES > 1
285 int nr_node_ids __read_mostly = MAX_NUMNODES;
286 int nr_online_nodes __read_mostly = 1;
287 EXPORT_SYMBOL(nr_node_ids);
288 EXPORT_SYMBOL(nr_online_nodes);
289 #endif
290 
291 int page_group_by_mobility_disabled __read_mostly;
292 
293 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
294 
295 /*
296  * Determine how many pages need to be initialized durig early boot
297  * (non-deferred initialization).
298  * The value of first_deferred_pfn will be set later, once non-deferred pages
299  * are initialized, but for now set it ULONG_MAX.
300  */
301 static inline void reset_deferred_meminit(pg_data_t *pgdat)
302 {
303 	phys_addr_t start_addr, end_addr;
304 	unsigned long max_pgcnt;
305 	unsigned long reserved;
306 
307 	/*
308 	 * Initialise at least 2G of a node but also take into account that
309 	 * two large system hashes that can take up 1GB for 0.25TB/node.
310 	 */
311 	max_pgcnt = max(2UL << (30 - PAGE_SHIFT),
312 			(pgdat->node_spanned_pages >> 8));
313 
314 	/*
315 	 * Compensate the all the memblock reservations (e.g. crash kernel)
316 	 * from the initial estimation to make sure we will initialize enough
317 	 * memory to boot.
318 	 */
319 	start_addr = PFN_PHYS(pgdat->node_start_pfn);
320 	end_addr = PFN_PHYS(pgdat->node_start_pfn + max_pgcnt);
321 	reserved = memblock_reserved_memory_within(start_addr, end_addr);
322 	max_pgcnt += PHYS_PFN(reserved);
323 
324 	pgdat->static_init_pgcnt = min(max_pgcnt, pgdat->node_spanned_pages);
325 	pgdat->first_deferred_pfn = ULONG_MAX;
326 }
327 
328 /* Returns true if the struct page for the pfn is uninitialised */
329 static inline bool __meminit early_page_uninitialised(unsigned long pfn)
330 {
331 	int nid = early_pfn_to_nid(pfn);
332 
333 	if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
334 		return true;
335 
336 	return false;
337 }
338 
339 /*
340  * Returns false when the remaining initialisation should be deferred until
341  * later in the boot cycle when it can be parallelised.
342  */
343 static inline bool update_defer_init(pg_data_t *pgdat,
344 				unsigned long pfn, unsigned long zone_end,
345 				unsigned long *nr_initialised)
346 {
347 	/* Always populate low zones for address-contrained allocations */
348 	if (zone_end < pgdat_end_pfn(pgdat))
349 		return true;
350 	(*nr_initialised)++;
351 	if ((*nr_initialised > pgdat->static_init_pgcnt) &&
352 	    (pfn & (PAGES_PER_SECTION - 1)) == 0) {
353 		pgdat->first_deferred_pfn = pfn;
354 		return false;
355 	}
356 
357 	return true;
358 }
359 #else
360 static inline void reset_deferred_meminit(pg_data_t *pgdat)
361 {
362 }
363 
364 static inline bool early_page_uninitialised(unsigned long pfn)
365 {
366 	return false;
367 }
368 
369 static inline bool update_defer_init(pg_data_t *pgdat,
370 				unsigned long pfn, unsigned long zone_end,
371 				unsigned long *nr_initialised)
372 {
373 	return true;
374 }
375 #endif
376 
377 /* Return a pointer to the bitmap storing bits affecting a block of pages */
378 static inline unsigned long *get_pageblock_bitmap(struct page *page,
379 							unsigned long pfn)
380 {
381 #ifdef CONFIG_SPARSEMEM
382 	return __pfn_to_section(pfn)->pageblock_flags;
383 #else
384 	return page_zone(page)->pageblock_flags;
385 #endif /* CONFIG_SPARSEMEM */
386 }
387 
388 static inline int pfn_to_bitidx(struct page *page, unsigned long pfn)
389 {
390 #ifdef CONFIG_SPARSEMEM
391 	pfn &= (PAGES_PER_SECTION-1);
392 	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
393 #else
394 	pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
395 	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
396 #endif /* CONFIG_SPARSEMEM */
397 }
398 
399 /**
400  * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
401  * @page: The page within the block of interest
402  * @pfn: The target page frame number
403  * @end_bitidx: The last bit of interest to retrieve
404  * @mask: mask of bits that the caller is interested in
405  *
406  * Return: pageblock_bits flags
407  */
408 static __always_inline unsigned long __get_pfnblock_flags_mask(struct page *page,
409 					unsigned long pfn,
410 					unsigned long end_bitidx,
411 					unsigned long mask)
412 {
413 	unsigned long *bitmap;
414 	unsigned long bitidx, word_bitidx;
415 	unsigned long word;
416 
417 	bitmap = get_pageblock_bitmap(page, pfn);
418 	bitidx = pfn_to_bitidx(page, pfn);
419 	word_bitidx = bitidx / BITS_PER_LONG;
420 	bitidx &= (BITS_PER_LONG-1);
421 
422 	word = bitmap[word_bitidx];
423 	bitidx += end_bitidx;
424 	return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
425 }
426 
427 unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
428 					unsigned long end_bitidx,
429 					unsigned long mask)
430 {
431 	return __get_pfnblock_flags_mask(page, pfn, end_bitidx, mask);
432 }
433 
434 static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn)
435 {
436 	return __get_pfnblock_flags_mask(page, pfn, PB_migrate_end, MIGRATETYPE_MASK);
437 }
438 
439 /**
440  * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
441  * @page: The page within the block of interest
442  * @flags: The flags to set
443  * @pfn: The target page frame number
444  * @end_bitidx: The last bit of interest
445  * @mask: mask of bits that the caller is interested in
446  */
447 void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
448 					unsigned long pfn,
449 					unsigned long end_bitidx,
450 					unsigned long mask)
451 {
452 	unsigned long *bitmap;
453 	unsigned long bitidx, word_bitidx;
454 	unsigned long old_word, word;
455 
456 	BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
457 
458 	bitmap = get_pageblock_bitmap(page, pfn);
459 	bitidx = pfn_to_bitidx(page, pfn);
460 	word_bitidx = bitidx / BITS_PER_LONG;
461 	bitidx &= (BITS_PER_LONG-1);
462 
463 	VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
464 
465 	bitidx += end_bitidx;
466 	mask <<= (BITS_PER_LONG - bitidx - 1);
467 	flags <<= (BITS_PER_LONG - bitidx - 1);
468 
469 	word = READ_ONCE(bitmap[word_bitidx]);
470 	for (;;) {
471 		old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
472 		if (word == old_word)
473 			break;
474 		word = old_word;
475 	}
476 }
477 
478 void set_pageblock_migratetype(struct page *page, int migratetype)
479 {
480 	if (unlikely(page_group_by_mobility_disabled &&
481 		     migratetype < MIGRATE_PCPTYPES))
482 		migratetype = MIGRATE_UNMOVABLE;
483 
484 	set_pageblock_flags_group(page, (unsigned long)migratetype,
485 					PB_migrate, PB_migrate_end);
486 }
487 
488 #ifdef CONFIG_DEBUG_VM
489 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
490 {
491 	int ret = 0;
492 	unsigned seq;
493 	unsigned long pfn = page_to_pfn(page);
494 	unsigned long sp, start_pfn;
495 
496 	do {
497 		seq = zone_span_seqbegin(zone);
498 		start_pfn = zone->zone_start_pfn;
499 		sp = zone->spanned_pages;
500 		if (!zone_spans_pfn(zone, pfn))
501 			ret = 1;
502 	} while (zone_span_seqretry(zone, seq));
503 
504 	if (ret)
505 		pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
506 			pfn, zone_to_nid(zone), zone->name,
507 			start_pfn, start_pfn + sp);
508 
509 	return ret;
510 }
511 
512 static int page_is_consistent(struct zone *zone, struct page *page)
513 {
514 	if (!pfn_valid_within(page_to_pfn(page)))
515 		return 0;
516 	if (zone != page_zone(page))
517 		return 0;
518 
519 	return 1;
520 }
521 /*
522  * Temporary debugging check for pages not lying within a given zone.
523  */
524 static int __maybe_unused bad_range(struct zone *zone, struct page *page)
525 {
526 	if (page_outside_zone_boundaries(zone, page))
527 		return 1;
528 	if (!page_is_consistent(zone, page))
529 		return 1;
530 
531 	return 0;
532 }
533 #else
534 static inline int __maybe_unused bad_range(struct zone *zone, struct page *page)
535 {
536 	return 0;
537 }
538 #endif
539 
540 static void bad_page(struct page *page, const char *reason,
541 		unsigned long bad_flags)
542 {
543 	static unsigned long resume;
544 	static unsigned long nr_shown;
545 	static unsigned long nr_unshown;
546 
547 	/*
548 	 * Allow a burst of 60 reports, then keep quiet for that minute;
549 	 * or allow a steady drip of one report per second.
550 	 */
551 	if (nr_shown == 60) {
552 		if (time_before(jiffies, resume)) {
553 			nr_unshown++;
554 			goto out;
555 		}
556 		if (nr_unshown) {
557 			pr_alert(
558 			      "BUG: Bad page state: %lu messages suppressed\n",
559 				nr_unshown);
560 			nr_unshown = 0;
561 		}
562 		nr_shown = 0;
563 	}
564 	if (nr_shown++ == 0)
565 		resume = jiffies + 60 * HZ;
566 
567 	pr_alert("BUG: Bad page state in process %s  pfn:%05lx\n",
568 		current->comm, page_to_pfn(page));
569 	__dump_page(page, reason);
570 	bad_flags &= page->flags;
571 	if (bad_flags)
572 		pr_alert("bad because of flags: %#lx(%pGp)\n",
573 						bad_flags, &bad_flags);
574 	dump_page_owner(page);
575 
576 	print_modules();
577 	dump_stack();
578 out:
579 	/* Leave bad fields for debug, except PageBuddy could make trouble */
580 	page_mapcount_reset(page); /* remove PageBuddy */
581 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
582 }
583 
584 /*
585  * Higher-order pages are called "compound pages".  They are structured thusly:
586  *
587  * The first PAGE_SIZE page is called the "head page" and have PG_head set.
588  *
589  * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
590  * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
591  *
592  * The first tail page's ->compound_dtor holds the offset in array of compound
593  * page destructors. See compound_page_dtors.
594  *
595  * The first tail page's ->compound_order holds the order of allocation.
596  * This usage means that zero-order pages may not be compound.
597  */
598 
599 void free_compound_page(struct page *page)
600 {
601 	__free_pages_ok(page, compound_order(page));
602 }
603 
604 void prep_compound_page(struct page *page, unsigned int order)
605 {
606 	int i;
607 	int nr_pages = 1 << order;
608 
609 	set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
610 	set_compound_order(page, order);
611 	__SetPageHead(page);
612 	for (i = 1; i < nr_pages; i++) {
613 		struct page *p = page + i;
614 		set_page_count(p, 0);
615 		p->mapping = TAIL_MAPPING;
616 		set_compound_head(p, page);
617 	}
618 	atomic_set(compound_mapcount_ptr(page), -1);
619 }
620 
621 #ifdef CONFIG_DEBUG_PAGEALLOC
622 unsigned int _debug_guardpage_minorder;
623 bool _debug_pagealloc_enabled __read_mostly
624 			= IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
625 EXPORT_SYMBOL(_debug_pagealloc_enabled);
626 bool _debug_guardpage_enabled __read_mostly;
627 
628 static int __init early_debug_pagealloc(char *buf)
629 {
630 	if (!buf)
631 		return -EINVAL;
632 	return kstrtobool(buf, &_debug_pagealloc_enabled);
633 }
634 early_param("debug_pagealloc", early_debug_pagealloc);
635 
636 static bool need_debug_guardpage(void)
637 {
638 	/* If we don't use debug_pagealloc, we don't need guard page */
639 	if (!debug_pagealloc_enabled())
640 		return false;
641 
642 	if (!debug_guardpage_minorder())
643 		return false;
644 
645 	return true;
646 }
647 
648 static void init_debug_guardpage(void)
649 {
650 	if (!debug_pagealloc_enabled())
651 		return;
652 
653 	if (!debug_guardpage_minorder())
654 		return;
655 
656 	_debug_guardpage_enabled = true;
657 }
658 
659 struct page_ext_operations debug_guardpage_ops = {
660 	.need = need_debug_guardpage,
661 	.init = init_debug_guardpage,
662 };
663 
664 static int __init debug_guardpage_minorder_setup(char *buf)
665 {
666 	unsigned long res;
667 
668 	if (kstrtoul(buf, 10, &res) < 0 ||  res > MAX_ORDER / 2) {
669 		pr_err("Bad debug_guardpage_minorder value\n");
670 		return 0;
671 	}
672 	_debug_guardpage_minorder = res;
673 	pr_info("Setting debug_guardpage_minorder to %lu\n", res);
674 	return 0;
675 }
676 early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup);
677 
678 static inline bool set_page_guard(struct zone *zone, struct page *page,
679 				unsigned int order, int migratetype)
680 {
681 	struct page_ext *page_ext;
682 
683 	if (!debug_guardpage_enabled())
684 		return false;
685 
686 	if (order >= debug_guardpage_minorder())
687 		return false;
688 
689 	page_ext = lookup_page_ext(page);
690 	if (unlikely(!page_ext))
691 		return false;
692 
693 	__set_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
694 
695 	INIT_LIST_HEAD(&page->lru);
696 	set_page_private(page, order);
697 	/* Guard pages are not available for any usage */
698 	__mod_zone_freepage_state(zone, -(1 << order), migratetype);
699 
700 	return true;
701 }
702 
703 static inline void clear_page_guard(struct zone *zone, struct page *page,
704 				unsigned int order, int migratetype)
705 {
706 	struct page_ext *page_ext;
707 
708 	if (!debug_guardpage_enabled())
709 		return;
710 
711 	page_ext = lookup_page_ext(page);
712 	if (unlikely(!page_ext))
713 		return;
714 
715 	__clear_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
716 
717 	set_page_private(page, 0);
718 	if (!is_migrate_isolate(migratetype))
719 		__mod_zone_freepage_state(zone, (1 << order), migratetype);
720 }
721 #else
722 struct page_ext_operations debug_guardpage_ops;
723 static inline bool set_page_guard(struct zone *zone, struct page *page,
724 			unsigned int order, int migratetype) { return false; }
725 static inline void clear_page_guard(struct zone *zone, struct page *page,
726 				unsigned int order, int migratetype) {}
727 #endif
728 
729 static inline void set_page_order(struct page *page, unsigned int order)
730 {
731 	set_page_private(page, order);
732 	__SetPageBuddy(page);
733 }
734 
735 static inline void rmv_page_order(struct page *page)
736 {
737 	__ClearPageBuddy(page);
738 	set_page_private(page, 0);
739 }
740 
741 /*
742  * This function checks whether a page is free && is the buddy
743  * we can do coalesce a page and its buddy if
744  * (a) the buddy is not in a hole (check before calling!) &&
745  * (b) the buddy is in the buddy system &&
746  * (c) a page and its buddy have the same order &&
747  * (d) a page and its buddy are in the same zone.
748  *
749  * For recording whether a page is in the buddy system, we set ->_mapcount
750  * PAGE_BUDDY_MAPCOUNT_VALUE.
751  * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is
752  * serialized by zone->lock.
753  *
754  * For recording page's order, we use page_private(page).
755  */
756 static inline int page_is_buddy(struct page *page, struct page *buddy,
757 							unsigned int order)
758 {
759 	if (page_is_guard(buddy) && page_order(buddy) == order) {
760 		if (page_zone_id(page) != page_zone_id(buddy))
761 			return 0;
762 
763 		VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
764 
765 		return 1;
766 	}
767 
768 	if (PageBuddy(buddy) && page_order(buddy) == order) {
769 		/*
770 		 * zone check is done late to avoid uselessly
771 		 * calculating zone/node ids for pages that could
772 		 * never merge.
773 		 */
774 		if (page_zone_id(page) != page_zone_id(buddy))
775 			return 0;
776 
777 		VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
778 
779 		return 1;
780 	}
781 	return 0;
782 }
783 
784 /*
785  * Freeing function for a buddy system allocator.
786  *
787  * The concept of a buddy system is to maintain direct-mapped table
788  * (containing bit values) for memory blocks of various "orders".
789  * The bottom level table contains the map for the smallest allocatable
790  * units of memory (here, pages), and each level above it describes
791  * pairs of units from the levels below, hence, "buddies".
792  * At a high level, all that happens here is marking the table entry
793  * at the bottom level available, and propagating the changes upward
794  * as necessary, plus some accounting needed to play nicely with other
795  * parts of the VM system.
796  * At each level, we keep a list of pages, which are heads of continuous
797  * free pages of length of (1 << order) and marked with _mapcount
798  * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page)
799  * field.
800  * So when we are allocating or freeing one, we can derive the state of the
801  * other.  That is, if we allocate a small block, and both were
802  * free, the remainder of the region must be split into blocks.
803  * If a block is freed, and its buddy is also free, then this
804  * triggers coalescing into a block of larger size.
805  *
806  * -- nyc
807  */
808 
809 static inline void __free_one_page(struct page *page,
810 		unsigned long pfn,
811 		struct zone *zone, unsigned int order,
812 		int migratetype)
813 {
814 	unsigned long combined_pfn;
815 	unsigned long uninitialized_var(buddy_pfn);
816 	struct page *buddy;
817 	unsigned int max_order;
818 
819 	max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1);
820 
821 	VM_BUG_ON(!zone_is_initialized(zone));
822 	VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
823 
824 	VM_BUG_ON(migratetype == -1);
825 	if (likely(!is_migrate_isolate(migratetype)))
826 		__mod_zone_freepage_state(zone, 1 << order, migratetype);
827 
828 	VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
829 	VM_BUG_ON_PAGE(bad_range(zone, page), page);
830 
831 continue_merging:
832 	while (order < max_order - 1) {
833 		buddy_pfn = __find_buddy_pfn(pfn, order);
834 		buddy = page + (buddy_pfn - pfn);
835 
836 		if (!pfn_valid_within(buddy_pfn))
837 			goto done_merging;
838 		if (!page_is_buddy(page, buddy, order))
839 			goto done_merging;
840 		/*
841 		 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
842 		 * merge with it and move up one order.
843 		 */
844 		if (page_is_guard(buddy)) {
845 			clear_page_guard(zone, buddy, order, migratetype);
846 		} else {
847 			list_del(&buddy->lru);
848 			zone->free_area[order].nr_free--;
849 			rmv_page_order(buddy);
850 		}
851 		combined_pfn = buddy_pfn & pfn;
852 		page = page + (combined_pfn - pfn);
853 		pfn = combined_pfn;
854 		order++;
855 	}
856 	if (max_order < MAX_ORDER) {
857 		/* If we are here, it means order is >= pageblock_order.
858 		 * We want to prevent merge between freepages on isolate
859 		 * pageblock and normal pageblock. Without this, pageblock
860 		 * isolation could cause incorrect freepage or CMA accounting.
861 		 *
862 		 * We don't want to hit this code for the more frequent
863 		 * low-order merging.
864 		 */
865 		if (unlikely(has_isolate_pageblock(zone))) {
866 			int buddy_mt;
867 
868 			buddy_pfn = __find_buddy_pfn(pfn, order);
869 			buddy = page + (buddy_pfn - pfn);
870 			buddy_mt = get_pageblock_migratetype(buddy);
871 
872 			if (migratetype != buddy_mt
873 					&& (is_migrate_isolate(migratetype) ||
874 						is_migrate_isolate(buddy_mt)))
875 				goto done_merging;
876 		}
877 		max_order++;
878 		goto continue_merging;
879 	}
880 
881 done_merging:
882 	set_page_order(page, order);
883 
884 	/*
885 	 * If this is not the largest possible page, check if the buddy
886 	 * of the next-highest order is free. If it is, it's possible
887 	 * that pages are being freed that will coalesce soon. In case,
888 	 * that is happening, add the free page to the tail of the list
889 	 * so it's less likely to be used soon and more likely to be merged
890 	 * as a higher order page
891 	 */
892 	if ((order < MAX_ORDER-2) && pfn_valid_within(buddy_pfn)) {
893 		struct page *higher_page, *higher_buddy;
894 		combined_pfn = buddy_pfn & pfn;
895 		higher_page = page + (combined_pfn - pfn);
896 		buddy_pfn = __find_buddy_pfn(combined_pfn, order + 1);
897 		higher_buddy = higher_page + (buddy_pfn - combined_pfn);
898 		if (pfn_valid_within(buddy_pfn) &&
899 		    page_is_buddy(higher_page, higher_buddy, order + 1)) {
900 			list_add_tail(&page->lru,
901 				&zone->free_area[order].free_list[migratetype]);
902 			goto out;
903 		}
904 	}
905 
906 	list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
907 out:
908 	zone->free_area[order].nr_free++;
909 }
910 
911 /*
912  * A bad page could be due to a number of fields. Instead of multiple branches,
913  * try and check multiple fields with one check. The caller must do a detailed
914  * check if necessary.
915  */
916 static inline bool page_expected_state(struct page *page,
917 					unsigned long check_flags)
918 {
919 	if (unlikely(atomic_read(&page->_mapcount) != -1))
920 		return false;
921 
922 	if (unlikely((unsigned long)page->mapping |
923 			page_ref_count(page) |
924 #ifdef CONFIG_MEMCG
925 			(unsigned long)page->mem_cgroup |
926 #endif
927 			(page->flags & check_flags)))
928 		return false;
929 
930 	return true;
931 }
932 
933 static void free_pages_check_bad(struct page *page)
934 {
935 	const char *bad_reason;
936 	unsigned long bad_flags;
937 
938 	bad_reason = NULL;
939 	bad_flags = 0;
940 
941 	if (unlikely(atomic_read(&page->_mapcount) != -1))
942 		bad_reason = "nonzero mapcount";
943 	if (unlikely(page->mapping != NULL))
944 		bad_reason = "non-NULL mapping";
945 	if (unlikely(page_ref_count(page) != 0))
946 		bad_reason = "nonzero _refcount";
947 	if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
948 		bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
949 		bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
950 	}
951 #ifdef CONFIG_MEMCG
952 	if (unlikely(page->mem_cgroup))
953 		bad_reason = "page still charged to cgroup";
954 #endif
955 	bad_page(page, bad_reason, bad_flags);
956 }
957 
958 static inline int free_pages_check(struct page *page)
959 {
960 	if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
961 		return 0;
962 
963 	/* Something has gone sideways, find it */
964 	free_pages_check_bad(page);
965 	return 1;
966 }
967 
968 static int free_tail_pages_check(struct page *head_page, struct page *page)
969 {
970 	int ret = 1;
971 
972 	/*
973 	 * We rely page->lru.next never has bit 0 set, unless the page
974 	 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
975 	 */
976 	BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
977 
978 	if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
979 		ret = 0;
980 		goto out;
981 	}
982 	switch (page - head_page) {
983 	case 1:
984 		/* the first tail page: ->mapping is compound_mapcount() */
985 		if (unlikely(compound_mapcount(page))) {
986 			bad_page(page, "nonzero compound_mapcount", 0);
987 			goto out;
988 		}
989 		break;
990 	case 2:
991 		/*
992 		 * the second tail page: ->mapping is
993 		 * page_deferred_list().next -- ignore value.
994 		 */
995 		break;
996 	default:
997 		if (page->mapping != TAIL_MAPPING) {
998 			bad_page(page, "corrupted mapping in tail page", 0);
999 			goto out;
1000 		}
1001 		break;
1002 	}
1003 	if (unlikely(!PageTail(page))) {
1004 		bad_page(page, "PageTail not set", 0);
1005 		goto out;
1006 	}
1007 	if (unlikely(compound_head(page) != head_page)) {
1008 		bad_page(page, "compound_head not consistent", 0);
1009 		goto out;
1010 	}
1011 	ret = 0;
1012 out:
1013 	page->mapping = NULL;
1014 	clear_compound_head(page);
1015 	return ret;
1016 }
1017 
1018 static __always_inline bool free_pages_prepare(struct page *page,
1019 					unsigned int order, bool check_free)
1020 {
1021 	int bad = 0;
1022 
1023 	VM_BUG_ON_PAGE(PageTail(page), page);
1024 
1025 	trace_mm_page_free(page, order);
1026 
1027 	/*
1028 	 * Check tail pages before head page information is cleared to
1029 	 * avoid checking PageCompound for order-0 pages.
1030 	 */
1031 	if (unlikely(order)) {
1032 		bool compound = PageCompound(page);
1033 		int i;
1034 
1035 		VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
1036 
1037 		if (compound)
1038 			ClearPageDoubleMap(page);
1039 		for (i = 1; i < (1 << order); i++) {
1040 			if (compound)
1041 				bad += free_tail_pages_check(page, page + i);
1042 			if (unlikely(free_pages_check(page + i))) {
1043 				bad++;
1044 				continue;
1045 			}
1046 			(page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1047 		}
1048 	}
1049 	if (PageMappingFlags(page))
1050 		page->mapping = NULL;
1051 	if (memcg_kmem_enabled() && PageKmemcg(page))
1052 		memcg_kmem_uncharge(page, order);
1053 	if (check_free)
1054 		bad += free_pages_check(page);
1055 	if (bad)
1056 		return false;
1057 
1058 	page_cpupid_reset_last(page);
1059 	page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1060 	reset_page_owner(page, order);
1061 
1062 	if (!PageHighMem(page)) {
1063 		debug_check_no_locks_freed(page_address(page),
1064 					   PAGE_SIZE << order);
1065 		debug_check_no_obj_freed(page_address(page),
1066 					   PAGE_SIZE << order);
1067 	}
1068 	arch_free_page(page, order);
1069 	kernel_poison_pages(page, 1 << order, 0);
1070 	kernel_map_pages(page, 1 << order, 0);
1071 	kasan_free_pages(page, order);
1072 
1073 	return true;
1074 }
1075 
1076 #ifdef CONFIG_DEBUG_VM
1077 static inline bool free_pcp_prepare(struct page *page)
1078 {
1079 	return free_pages_prepare(page, 0, true);
1080 }
1081 
1082 static inline bool bulkfree_pcp_prepare(struct page *page)
1083 {
1084 	return false;
1085 }
1086 #else
1087 static bool free_pcp_prepare(struct page *page)
1088 {
1089 	return free_pages_prepare(page, 0, false);
1090 }
1091 
1092 static bool bulkfree_pcp_prepare(struct page *page)
1093 {
1094 	return free_pages_check(page);
1095 }
1096 #endif /* CONFIG_DEBUG_VM */
1097 
1098 /*
1099  * Frees a number of pages from the PCP lists
1100  * Assumes all pages on list are in same zone, and of same order.
1101  * count is the number of pages to free.
1102  *
1103  * If the zone was previously in an "all pages pinned" state then look to
1104  * see if this freeing clears that state.
1105  *
1106  * And clear the zone's pages_scanned counter, to hold off the "all pages are
1107  * pinned" detection logic.
1108  */
1109 static void free_pcppages_bulk(struct zone *zone, int count,
1110 					struct per_cpu_pages *pcp)
1111 {
1112 	int migratetype = 0;
1113 	int batch_free = 0;
1114 	bool isolated_pageblocks;
1115 
1116 	spin_lock(&zone->lock);
1117 	isolated_pageblocks = has_isolate_pageblock(zone);
1118 
1119 	while (count) {
1120 		struct page *page;
1121 		struct list_head *list;
1122 
1123 		/*
1124 		 * Remove pages from lists in a round-robin fashion. A
1125 		 * batch_free count is maintained that is incremented when an
1126 		 * empty list is encountered.  This is so more pages are freed
1127 		 * off fuller lists instead of spinning excessively around empty
1128 		 * lists
1129 		 */
1130 		do {
1131 			batch_free++;
1132 			if (++migratetype == MIGRATE_PCPTYPES)
1133 				migratetype = 0;
1134 			list = &pcp->lists[migratetype];
1135 		} while (list_empty(list));
1136 
1137 		/* This is the only non-empty list. Free them all. */
1138 		if (batch_free == MIGRATE_PCPTYPES)
1139 			batch_free = count;
1140 
1141 		do {
1142 			int mt;	/* migratetype of the to-be-freed page */
1143 
1144 			page = list_last_entry(list, struct page, lru);
1145 			/* must delete as __free_one_page list manipulates */
1146 			list_del(&page->lru);
1147 
1148 			mt = get_pcppage_migratetype(page);
1149 			/* MIGRATE_ISOLATE page should not go to pcplists */
1150 			VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1151 			/* Pageblock could have been isolated meanwhile */
1152 			if (unlikely(isolated_pageblocks))
1153 				mt = get_pageblock_migratetype(page);
1154 
1155 			if (bulkfree_pcp_prepare(page))
1156 				continue;
1157 
1158 			__free_one_page(page, page_to_pfn(page), zone, 0, mt);
1159 			trace_mm_page_pcpu_drain(page, 0, mt);
1160 		} while (--count && --batch_free && !list_empty(list));
1161 	}
1162 	spin_unlock(&zone->lock);
1163 }
1164 
1165 static void free_one_page(struct zone *zone,
1166 				struct page *page, unsigned long pfn,
1167 				unsigned int order,
1168 				int migratetype)
1169 {
1170 	spin_lock(&zone->lock);
1171 	if (unlikely(has_isolate_pageblock(zone) ||
1172 		is_migrate_isolate(migratetype))) {
1173 		migratetype = get_pfnblock_migratetype(page, pfn);
1174 	}
1175 	__free_one_page(page, pfn, zone, order, migratetype);
1176 	spin_unlock(&zone->lock);
1177 }
1178 
1179 static void __meminit __init_single_page(struct page *page, unsigned long pfn,
1180 				unsigned long zone, int nid)
1181 {
1182 	mm_zero_struct_page(page);
1183 	set_page_links(page, zone, nid, pfn);
1184 	init_page_count(page);
1185 	page_mapcount_reset(page);
1186 	page_cpupid_reset_last(page);
1187 
1188 	INIT_LIST_HEAD(&page->lru);
1189 #ifdef WANT_PAGE_VIRTUAL
1190 	/* The shift won't overflow because ZONE_NORMAL is below 4G. */
1191 	if (!is_highmem_idx(zone))
1192 		set_page_address(page, __va(pfn << PAGE_SHIFT));
1193 #endif
1194 }
1195 
1196 static void __meminit __init_single_pfn(unsigned long pfn, unsigned long zone,
1197 					int nid)
1198 {
1199 	return __init_single_page(pfn_to_page(pfn), pfn, zone, nid);
1200 }
1201 
1202 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1203 static void __meminit init_reserved_page(unsigned long pfn)
1204 {
1205 	pg_data_t *pgdat;
1206 	int nid, zid;
1207 
1208 	if (!early_page_uninitialised(pfn))
1209 		return;
1210 
1211 	nid = early_pfn_to_nid(pfn);
1212 	pgdat = NODE_DATA(nid);
1213 
1214 	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1215 		struct zone *zone = &pgdat->node_zones[zid];
1216 
1217 		if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
1218 			break;
1219 	}
1220 	__init_single_pfn(pfn, zid, nid);
1221 }
1222 #else
1223 static inline void init_reserved_page(unsigned long pfn)
1224 {
1225 }
1226 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1227 
1228 /*
1229  * Initialised pages do not have PageReserved set. This function is
1230  * called for each range allocated by the bootmem allocator and
1231  * marks the pages PageReserved. The remaining valid pages are later
1232  * sent to the buddy page allocator.
1233  */
1234 void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
1235 {
1236 	unsigned long start_pfn = PFN_DOWN(start);
1237 	unsigned long end_pfn = PFN_UP(end);
1238 
1239 	for (; start_pfn < end_pfn; start_pfn++) {
1240 		if (pfn_valid(start_pfn)) {
1241 			struct page *page = pfn_to_page(start_pfn);
1242 
1243 			init_reserved_page(start_pfn);
1244 
1245 			/* Avoid false-positive PageTail() */
1246 			INIT_LIST_HEAD(&page->lru);
1247 
1248 			SetPageReserved(page);
1249 		}
1250 	}
1251 }
1252 
1253 static void __free_pages_ok(struct page *page, unsigned int order)
1254 {
1255 	unsigned long flags;
1256 	int migratetype;
1257 	unsigned long pfn = page_to_pfn(page);
1258 
1259 	if (!free_pages_prepare(page, order, true))
1260 		return;
1261 
1262 	migratetype = get_pfnblock_migratetype(page, pfn);
1263 	local_irq_save(flags);
1264 	__count_vm_events(PGFREE, 1 << order);
1265 	free_one_page(page_zone(page), page, pfn, order, migratetype);
1266 	local_irq_restore(flags);
1267 }
1268 
1269 static void __init __free_pages_boot_core(struct page *page, unsigned int order)
1270 {
1271 	unsigned int nr_pages = 1 << order;
1272 	struct page *p = page;
1273 	unsigned int loop;
1274 
1275 	prefetchw(p);
1276 	for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1277 		prefetchw(p + 1);
1278 		__ClearPageReserved(p);
1279 		set_page_count(p, 0);
1280 	}
1281 	__ClearPageReserved(p);
1282 	set_page_count(p, 0);
1283 
1284 	page_zone(page)->managed_pages += nr_pages;
1285 	set_page_refcounted(page);
1286 	__free_pages(page, order);
1287 }
1288 
1289 #if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \
1290 	defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
1291 
1292 static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
1293 
1294 int __meminit early_pfn_to_nid(unsigned long pfn)
1295 {
1296 	static DEFINE_SPINLOCK(early_pfn_lock);
1297 	int nid;
1298 
1299 	spin_lock(&early_pfn_lock);
1300 	nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
1301 	if (nid < 0)
1302 		nid = first_online_node;
1303 	spin_unlock(&early_pfn_lock);
1304 
1305 	return nid;
1306 }
1307 #endif
1308 
1309 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
1310 static inline bool __meminit __maybe_unused
1311 meminit_pfn_in_nid(unsigned long pfn, int node,
1312 		   struct mminit_pfnnid_cache *state)
1313 {
1314 	int nid;
1315 
1316 	nid = __early_pfn_to_nid(pfn, state);
1317 	if (nid >= 0 && nid != node)
1318 		return false;
1319 	return true;
1320 }
1321 
1322 /* Only safe to use early in boot when initialisation is single-threaded */
1323 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1324 {
1325 	return meminit_pfn_in_nid(pfn, node, &early_pfnnid_cache);
1326 }
1327 
1328 #else
1329 
1330 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1331 {
1332 	return true;
1333 }
1334 static inline bool __meminit  __maybe_unused
1335 meminit_pfn_in_nid(unsigned long pfn, int node,
1336 		   struct mminit_pfnnid_cache *state)
1337 {
1338 	return true;
1339 }
1340 #endif
1341 
1342 
1343 void __init __free_pages_bootmem(struct page *page, unsigned long pfn,
1344 							unsigned int order)
1345 {
1346 	if (early_page_uninitialised(pfn))
1347 		return;
1348 	return __free_pages_boot_core(page, order);
1349 }
1350 
1351 /*
1352  * Check that the whole (or subset of) a pageblock given by the interval of
1353  * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1354  * with the migration of free compaction scanner. The scanners then need to
1355  * use only pfn_valid_within() check for arches that allow holes within
1356  * pageblocks.
1357  *
1358  * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1359  *
1360  * It's possible on some configurations to have a setup like node0 node1 node0
1361  * i.e. it's possible that all pages within a zones range of pages do not
1362  * belong to a single zone. We assume that a border between node0 and node1
1363  * can occur within a single pageblock, but not a node0 node1 node0
1364  * interleaving within a single pageblock. It is therefore sufficient to check
1365  * the first and last page of a pageblock and avoid checking each individual
1366  * page in a pageblock.
1367  */
1368 struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1369 				     unsigned long end_pfn, struct zone *zone)
1370 {
1371 	struct page *start_page;
1372 	struct page *end_page;
1373 
1374 	/* end_pfn is one past the range we are checking */
1375 	end_pfn--;
1376 
1377 	if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
1378 		return NULL;
1379 
1380 	start_page = pfn_to_online_page(start_pfn);
1381 	if (!start_page)
1382 		return NULL;
1383 
1384 	if (page_zone(start_page) != zone)
1385 		return NULL;
1386 
1387 	end_page = pfn_to_page(end_pfn);
1388 
1389 	/* This gives a shorter code than deriving page_zone(end_page) */
1390 	if (page_zone_id(start_page) != page_zone_id(end_page))
1391 		return NULL;
1392 
1393 	return start_page;
1394 }
1395 
1396 void set_zone_contiguous(struct zone *zone)
1397 {
1398 	unsigned long block_start_pfn = zone->zone_start_pfn;
1399 	unsigned long block_end_pfn;
1400 
1401 	block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
1402 	for (; block_start_pfn < zone_end_pfn(zone);
1403 			block_start_pfn = block_end_pfn,
1404 			 block_end_pfn += pageblock_nr_pages) {
1405 
1406 		block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
1407 
1408 		if (!__pageblock_pfn_to_page(block_start_pfn,
1409 					     block_end_pfn, zone))
1410 			return;
1411 	}
1412 
1413 	/* We confirm that there is no hole */
1414 	zone->contiguous = true;
1415 }
1416 
1417 void clear_zone_contiguous(struct zone *zone)
1418 {
1419 	zone->contiguous = false;
1420 }
1421 
1422 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1423 static void __init deferred_free_range(unsigned long pfn,
1424 				       unsigned long nr_pages)
1425 {
1426 	struct page *page;
1427 	unsigned long i;
1428 
1429 	if (!nr_pages)
1430 		return;
1431 
1432 	page = pfn_to_page(pfn);
1433 
1434 	/* Free a large naturally-aligned chunk if possible */
1435 	if (nr_pages == pageblock_nr_pages &&
1436 	    (pfn & (pageblock_nr_pages - 1)) == 0) {
1437 		set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1438 		__free_pages_boot_core(page, pageblock_order);
1439 		return;
1440 	}
1441 
1442 	for (i = 0; i < nr_pages; i++, page++, pfn++) {
1443 		if ((pfn & (pageblock_nr_pages - 1)) == 0)
1444 			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1445 		__free_pages_boot_core(page, 0);
1446 	}
1447 }
1448 
1449 /* Completion tracking for deferred_init_memmap() threads */
1450 static atomic_t pgdat_init_n_undone __initdata;
1451 static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1452 
1453 static inline void __init pgdat_init_report_one_done(void)
1454 {
1455 	if (atomic_dec_and_test(&pgdat_init_n_undone))
1456 		complete(&pgdat_init_all_done_comp);
1457 }
1458 
1459 /*
1460  * Helper for deferred_init_range, free the given range, reset the counters, and
1461  * return number of pages freed.
1462  */
1463 static inline unsigned long __init __def_free(unsigned long *nr_free,
1464 					      unsigned long *free_base_pfn,
1465 					      struct page **page)
1466 {
1467 	unsigned long nr = *nr_free;
1468 
1469 	deferred_free_range(*free_base_pfn, nr);
1470 	*free_base_pfn = 0;
1471 	*nr_free = 0;
1472 	*page = NULL;
1473 
1474 	return nr;
1475 }
1476 
1477 static unsigned long __init deferred_init_range(int nid, int zid,
1478 						unsigned long start_pfn,
1479 						unsigned long end_pfn)
1480 {
1481 	struct mminit_pfnnid_cache nid_init_state = { };
1482 	unsigned long nr_pgmask = pageblock_nr_pages - 1;
1483 	unsigned long free_base_pfn = 0;
1484 	unsigned long nr_pages = 0;
1485 	unsigned long nr_free = 0;
1486 	struct page *page = NULL;
1487 	unsigned long pfn;
1488 
1489 	/*
1490 	 * First we check if pfn is valid on architectures where it is possible
1491 	 * to have holes within pageblock_nr_pages. On systems where it is not
1492 	 * possible, this function is optimized out.
1493 	 *
1494 	 * Then, we check if a current large page is valid by only checking the
1495 	 * validity of the head pfn.
1496 	 *
1497 	 * meminit_pfn_in_nid is checked on systems where pfns can interleave
1498 	 * within a node: a pfn is between start and end of a node, but does not
1499 	 * belong to this memory node.
1500 	 *
1501 	 * Finally, we minimize pfn page lookups and scheduler checks by
1502 	 * performing it only once every pageblock_nr_pages.
1503 	 *
1504 	 * We do it in two loops: first we initialize struct page, than free to
1505 	 * buddy allocator, becuse while we are freeing pages we can access
1506 	 * pages that are ahead (computing buddy page in __free_one_page()).
1507 	 */
1508 	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
1509 		if (!pfn_valid_within(pfn))
1510 			continue;
1511 		if ((pfn & nr_pgmask) || pfn_valid(pfn)) {
1512 			if (meminit_pfn_in_nid(pfn, nid, &nid_init_state)) {
1513 				if (page && (pfn & nr_pgmask))
1514 					page++;
1515 				else
1516 					page = pfn_to_page(pfn);
1517 				__init_single_page(page, pfn, zid, nid);
1518 				cond_resched();
1519 			}
1520 		}
1521 	}
1522 
1523 	page = NULL;
1524 	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
1525 		if (!pfn_valid_within(pfn)) {
1526 			nr_pages += __def_free(&nr_free, &free_base_pfn, &page);
1527 		} else if (!(pfn & nr_pgmask) && !pfn_valid(pfn)) {
1528 			nr_pages += __def_free(&nr_free, &free_base_pfn, &page);
1529 		} else if (!meminit_pfn_in_nid(pfn, nid, &nid_init_state)) {
1530 			nr_pages += __def_free(&nr_free, &free_base_pfn, &page);
1531 		} else if (page && (pfn & nr_pgmask)) {
1532 			page++;
1533 			nr_free++;
1534 		} else {
1535 			nr_pages += __def_free(&nr_free, &free_base_pfn, &page);
1536 			page = pfn_to_page(pfn);
1537 			free_base_pfn = pfn;
1538 			nr_free = 1;
1539 			cond_resched();
1540 		}
1541 	}
1542 	/* Free the last block of pages to allocator */
1543 	nr_pages += __def_free(&nr_free, &free_base_pfn, &page);
1544 
1545 	return nr_pages;
1546 }
1547 
1548 /* Initialise remaining memory on a node */
1549 static int __init deferred_init_memmap(void *data)
1550 {
1551 	pg_data_t *pgdat = data;
1552 	int nid = pgdat->node_id;
1553 	unsigned long start = jiffies;
1554 	unsigned long nr_pages = 0;
1555 	unsigned long spfn, epfn;
1556 	phys_addr_t spa, epa;
1557 	int zid;
1558 	struct zone *zone;
1559 	unsigned long first_init_pfn = pgdat->first_deferred_pfn;
1560 	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1561 	u64 i;
1562 
1563 	if (first_init_pfn == ULONG_MAX) {
1564 		pgdat_init_report_one_done();
1565 		return 0;
1566 	}
1567 
1568 	/* Bind memory initialisation thread to a local node if possible */
1569 	if (!cpumask_empty(cpumask))
1570 		set_cpus_allowed_ptr(current, cpumask);
1571 
1572 	/* Sanity check boundaries */
1573 	BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
1574 	BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
1575 	pgdat->first_deferred_pfn = ULONG_MAX;
1576 
1577 	/* Only the highest zone is deferred so find it */
1578 	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1579 		zone = pgdat->node_zones + zid;
1580 		if (first_init_pfn < zone_end_pfn(zone))
1581 			break;
1582 	}
1583 	first_init_pfn = max(zone->zone_start_pfn, first_init_pfn);
1584 
1585 	for_each_free_mem_range(i, nid, MEMBLOCK_NONE, &spa, &epa, NULL) {
1586 		spfn = max_t(unsigned long, first_init_pfn, PFN_UP(spa));
1587 		epfn = min_t(unsigned long, zone_end_pfn(zone), PFN_DOWN(epa));
1588 		nr_pages += deferred_init_range(nid, zid, spfn, epfn);
1589 	}
1590 
1591 	/* Sanity check that the next zone really is unpopulated */
1592 	WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
1593 
1594 	pr_info("node %d initialised, %lu pages in %ums\n", nid, nr_pages,
1595 					jiffies_to_msecs(jiffies - start));
1596 
1597 	pgdat_init_report_one_done();
1598 	return 0;
1599 }
1600 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1601 
1602 void __init page_alloc_init_late(void)
1603 {
1604 	struct zone *zone;
1605 
1606 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1607 	int nid;
1608 
1609 	/* There will be num_node_state(N_MEMORY) threads */
1610 	atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
1611 	for_each_node_state(nid, N_MEMORY) {
1612 		kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
1613 	}
1614 
1615 	/* Block until all are initialised */
1616 	wait_for_completion(&pgdat_init_all_done_comp);
1617 
1618 	/* Reinit limits that are based on free pages after the kernel is up */
1619 	files_maxfiles_init();
1620 #endif
1621 #ifdef CONFIG_ARCH_DISCARD_MEMBLOCK
1622 	/* Discard memblock private memory */
1623 	memblock_discard();
1624 #endif
1625 
1626 	for_each_populated_zone(zone)
1627 		set_zone_contiguous(zone);
1628 }
1629 
1630 #ifdef CONFIG_CMA
1631 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */
1632 void __init init_cma_reserved_pageblock(struct page *page)
1633 {
1634 	unsigned i = pageblock_nr_pages;
1635 	struct page *p = page;
1636 
1637 	do {
1638 		__ClearPageReserved(p);
1639 		set_page_count(p, 0);
1640 	} while (++p, --i);
1641 
1642 	set_pageblock_migratetype(page, MIGRATE_CMA);
1643 
1644 	if (pageblock_order >= MAX_ORDER) {
1645 		i = pageblock_nr_pages;
1646 		p = page;
1647 		do {
1648 			set_page_refcounted(p);
1649 			__free_pages(p, MAX_ORDER - 1);
1650 			p += MAX_ORDER_NR_PAGES;
1651 		} while (i -= MAX_ORDER_NR_PAGES);
1652 	} else {
1653 		set_page_refcounted(page);
1654 		__free_pages(page, pageblock_order);
1655 	}
1656 
1657 	adjust_managed_page_count(page, pageblock_nr_pages);
1658 }
1659 #endif
1660 
1661 /*
1662  * The order of subdivision here is critical for the IO subsystem.
1663  * Please do not alter this order without good reasons and regression
1664  * testing. Specifically, as large blocks of memory are subdivided,
1665  * the order in which smaller blocks are delivered depends on the order
1666  * they're subdivided in this function. This is the primary factor
1667  * influencing the order in which pages are delivered to the IO
1668  * subsystem according to empirical testing, and this is also justified
1669  * by considering the behavior of a buddy system containing a single
1670  * large block of memory acted on by a series of small allocations.
1671  * This behavior is a critical factor in sglist merging's success.
1672  *
1673  * -- nyc
1674  */
1675 static inline void expand(struct zone *zone, struct page *page,
1676 	int low, int high, struct free_area *area,
1677 	int migratetype)
1678 {
1679 	unsigned long size = 1 << high;
1680 
1681 	while (high > low) {
1682 		area--;
1683 		high--;
1684 		size >>= 1;
1685 		VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
1686 
1687 		/*
1688 		 * Mark as guard pages (or page), that will allow to
1689 		 * merge back to allocator when buddy will be freed.
1690 		 * Corresponding page table entries will not be touched,
1691 		 * pages will stay not present in virtual address space
1692 		 */
1693 		if (set_page_guard(zone, &page[size], high, migratetype))
1694 			continue;
1695 
1696 		list_add(&page[size].lru, &area->free_list[migratetype]);
1697 		area->nr_free++;
1698 		set_page_order(&page[size], high);
1699 	}
1700 }
1701 
1702 static void check_new_page_bad(struct page *page)
1703 {
1704 	const char *bad_reason = NULL;
1705 	unsigned long bad_flags = 0;
1706 
1707 	if (unlikely(atomic_read(&page->_mapcount) != -1))
1708 		bad_reason = "nonzero mapcount";
1709 	if (unlikely(page->mapping != NULL))
1710 		bad_reason = "non-NULL mapping";
1711 	if (unlikely(page_ref_count(page) != 0))
1712 		bad_reason = "nonzero _count";
1713 	if (unlikely(page->flags & __PG_HWPOISON)) {
1714 		bad_reason = "HWPoisoned (hardware-corrupted)";
1715 		bad_flags = __PG_HWPOISON;
1716 		/* Don't complain about hwpoisoned pages */
1717 		page_mapcount_reset(page); /* remove PageBuddy */
1718 		return;
1719 	}
1720 	if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
1721 		bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
1722 		bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
1723 	}
1724 #ifdef CONFIG_MEMCG
1725 	if (unlikely(page->mem_cgroup))
1726 		bad_reason = "page still charged to cgroup";
1727 #endif
1728 	bad_page(page, bad_reason, bad_flags);
1729 }
1730 
1731 /*
1732  * This page is about to be returned from the page allocator
1733  */
1734 static inline int check_new_page(struct page *page)
1735 {
1736 	if (likely(page_expected_state(page,
1737 				PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
1738 		return 0;
1739 
1740 	check_new_page_bad(page);
1741 	return 1;
1742 }
1743 
1744 static inline bool free_pages_prezeroed(void)
1745 {
1746 	return IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) &&
1747 		page_poisoning_enabled();
1748 }
1749 
1750 #ifdef CONFIG_DEBUG_VM
1751 static bool check_pcp_refill(struct page *page)
1752 {
1753 	return false;
1754 }
1755 
1756 static bool check_new_pcp(struct page *page)
1757 {
1758 	return check_new_page(page);
1759 }
1760 #else
1761 static bool check_pcp_refill(struct page *page)
1762 {
1763 	return check_new_page(page);
1764 }
1765 static bool check_new_pcp(struct page *page)
1766 {
1767 	return false;
1768 }
1769 #endif /* CONFIG_DEBUG_VM */
1770 
1771 static bool check_new_pages(struct page *page, unsigned int order)
1772 {
1773 	int i;
1774 	for (i = 0; i < (1 << order); i++) {
1775 		struct page *p = page + i;
1776 
1777 		if (unlikely(check_new_page(p)))
1778 			return true;
1779 	}
1780 
1781 	return false;
1782 }
1783 
1784 inline void post_alloc_hook(struct page *page, unsigned int order,
1785 				gfp_t gfp_flags)
1786 {
1787 	set_page_private(page, 0);
1788 	set_page_refcounted(page);
1789 
1790 	arch_alloc_page(page, order);
1791 	kernel_map_pages(page, 1 << order, 1);
1792 	kernel_poison_pages(page, 1 << order, 1);
1793 	kasan_alloc_pages(page, order);
1794 	set_page_owner(page, order, gfp_flags);
1795 }
1796 
1797 static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
1798 							unsigned int alloc_flags)
1799 {
1800 	int i;
1801 
1802 	post_alloc_hook(page, order, gfp_flags);
1803 
1804 	if (!free_pages_prezeroed() && (gfp_flags & __GFP_ZERO))
1805 		for (i = 0; i < (1 << order); i++)
1806 			clear_highpage(page + i);
1807 
1808 	if (order && (gfp_flags & __GFP_COMP))
1809 		prep_compound_page(page, order);
1810 
1811 	/*
1812 	 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
1813 	 * allocate the page. The expectation is that the caller is taking
1814 	 * steps that will free more memory. The caller should avoid the page
1815 	 * being used for !PFMEMALLOC purposes.
1816 	 */
1817 	if (alloc_flags & ALLOC_NO_WATERMARKS)
1818 		set_page_pfmemalloc(page);
1819 	else
1820 		clear_page_pfmemalloc(page);
1821 }
1822 
1823 /*
1824  * Go through the free lists for the given migratetype and remove
1825  * the smallest available page from the freelists
1826  */
1827 static __always_inline
1828 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
1829 						int migratetype)
1830 {
1831 	unsigned int current_order;
1832 	struct free_area *area;
1833 	struct page *page;
1834 
1835 	/* Find a page of the appropriate size in the preferred list */
1836 	for (current_order = order; current_order < MAX_ORDER; ++current_order) {
1837 		area = &(zone->free_area[current_order]);
1838 		page = list_first_entry_or_null(&area->free_list[migratetype],
1839 							struct page, lru);
1840 		if (!page)
1841 			continue;
1842 		list_del(&page->lru);
1843 		rmv_page_order(page);
1844 		area->nr_free--;
1845 		expand(zone, page, order, current_order, area, migratetype);
1846 		set_pcppage_migratetype(page, migratetype);
1847 		return page;
1848 	}
1849 
1850 	return NULL;
1851 }
1852 
1853 
1854 /*
1855  * This array describes the order lists are fallen back to when
1856  * the free lists for the desirable migrate type are depleted
1857  */
1858 static int fallbacks[MIGRATE_TYPES][4] = {
1859 	[MIGRATE_UNMOVABLE]   = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE,   MIGRATE_TYPES },
1860 	[MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE,   MIGRATE_MOVABLE,   MIGRATE_TYPES },
1861 	[MIGRATE_MOVABLE]     = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
1862 #ifdef CONFIG_CMA
1863 	[MIGRATE_CMA]         = { MIGRATE_TYPES }, /* Never used */
1864 #endif
1865 #ifdef CONFIG_MEMORY_ISOLATION
1866 	[MIGRATE_ISOLATE]     = { MIGRATE_TYPES }, /* Never used */
1867 #endif
1868 };
1869 
1870 #ifdef CONFIG_CMA
1871 static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1872 					unsigned int order)
1873 {
1874 	return __rmqueue_smallest(zone, order, MIGRATE_CMA);
1875 }
1876 #else
1877 static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1878 					unsigned int order) { return NULL; }
1879 #endif
1880 
1881 /*
1882  * Move the free pages in a range to the free lists of the requested type.
1883  * Note that start_page and end_pages are not aligned on a pageblock
1884  * boundary. If alignment is required, use move_freepages_block()
1885  */
1886 static int move_freepages(struct zone *zone,
1887 			  struct page *start_page, struct page *end_page,
1888 			  int migratetype, int *num_movable)
1889 {
1890 	struct page *page;
1891 	unsigned int order;
1892 	int pages_moved = 0;
1893 
1894 #ifndef CONFIG_HOLES_IN_ZONE
1895 	/*
1896 	 * page_zone is not safe to call in this context when
1897 	 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
1898 	 * anyway as we check zone boundaries in move_freepages_block().
1899 	 * Remove at a later date when no bug reports exist related to
1900 	 * grouping pages by mobility
1901 	 */
1902 	VM_BUG_ON(page_zone(start_page) != page_zone(end_page));
1903 #endif
1904 
1905 	if (num_movable)
1906 		*num_movable = 0;
1907 
1908 	for (page = start_page; page <= end_page;) {
1909 		if (!pfn_valid_within(page_to_pfn(page))) {
1910 			page++;
1911 			continue;
1912 		}
1913 
1914 		/* Make sure we are not inadvertently changing nodes */
1915 		VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
1916 
1917 		if (!PageBuddy(page)) {
1918 			/*
1919 			 * We assume that pages that could be isolated for
1920 			 * migration are movable. But we don't actually try
1921 			 * isolating, as that would be expensive.
1922 			 */
1923 			if (num_movable &&
1924 					(PageLRU(page) || __PageMovable(page)))
1925 				(*num_movable)++;
1926 
1927 			page++;
1928 			continue;
1929 		}
1930 
1931 		order = page_order(page);
1932 		list_move(&page->lru,
1933 			  &zone->free_area[order].free_list[migratetype]);
1934 		page += 1 << order;
1935 		pages_moved += 1 << order;
1936 	}
1937 
1938 	return pages_moved;
1939 }
1940 
1941 int move_freepages_block(struct zone *zone, struct page *page,
1942 				int migratetype, int *num_movable)
1943 {
1944 	unsigned long start_pfn, end_pfn;
1945 	struct page *start_page, *end_page;
1946 
1947 	start_pfn = page_to_pfn(page);
1948 	start_pfn = start_pfn & ~(pageblock_nr_pages-1);
1949 	start_page = pfn_to_page(start_pfn);
1950 	end_page = start_page + pageblock_nr_pages - 1;
1951 	end_pfn = start_pfn + pageblock_nr_pages - 1;
1952 
1953 	/* Do not cross zone boundaries */
1954 	if (!zone_spans_pfn(zone, start_pfn))
1955 		start_page = page;
1956 	if (!zone_spans_pfn(zone, end_pfn))
1957 		return 0;
1958 
1959 	return move_freepages(zone, start_page, end_page, migratetype,
1960 								num_movable);
1961 }
1962 
1963 static void change_pageblock_range(struct page *pageblock_page,
1964 					int start_order, int migratetype)
1965 {
1966 	int nr_pageblocks = 1 << (start_order - pageblock_order);
1967 
1968 	while (nr_pageblocks--) {
1969 		set_pageblock_migratetype(pageblock_page, migratetype);
1970 		pageblock_page += pageblock_nr_pages;
1971 	}
1972 }
1973 
1974 /*
1975  * When we are falling back to another migratetype during allocation, try to
1976  * steal extra free pages from the same pageblocks to satisfy further
1977  * allocations, instead of polluting multiple pageblocks.
1978  *
1979  * If we are stealing a relatively large buddy page, it is likely there will
1980  * be more free pages in the pageblock, so try to steal them all. For
1981  * reclaimable and unmovable allocations, we steal regardless of page size,
1982  * as fragmentation caused by those allocations polluting movable pageblocks
1983  * is worse than movable allocations stealing from unmovable and reclaimable
1984  * pageblocks.
1985  */
1986 static bool can_steal_fallback(unsigned int order, int start_mt)
1987 {
1988 	/*
1989 	 * Leaving this order check is intended, although there is
1990 	 * relaxed order check in next check. The reason is that
1991 	 * we can actually steal whole pageblock if this condition met,
1992 	 * but, below check doesn't guarantee it and that is just heuristic
1993 	 * so could be changed anytime.
1994 	 */
1995 	if (order >= pageblock_order)
1996 		return true;
1997 
1998 	if (order >= pageblock_order / 2 ||
1999 		start_mt == MIGRATE_RECLAIMABLE ||
2000 		start_mt == MIGRATE_UNMOVABLE ||
2001 		page_group_by_mobility_disabled)
2002 		return true;
2003 
2004 	return false;
2005 }
2006 
2007 /*
2008  * This function implements actual steal behaviour. If order is large enough,
2009  * we can steal whole pageblock. If not, we first move freepages in this
2010  * pageblock to our migratetype and determine how many already-allocated pages
2011  * are there in the pageblock with a compatible migratetype. If at least half
2012  * of pages are free or compatible, we can change migratetype of the pageblock
2013  * itself, so pages freed in the future will be put on the correct free list.
2014  */
2015 static void steal_suitable_fallback(struct zone *zone, struct page *page,
2016 					int start_type, bool whole_block)
2017 {
2018 	unsigned int current_order = page_order(page);
2019 	struct free_area *area;
2020 	int free_pages, movable_pages, alike_pages;
2021 	int old_block_type;
2022 
2023 	old_block_type = get_pageblock_migratetype(page);
2024 
2025 	/*
2026 	 * This can happen due to races and we want to prevent broken
2027 	 * highatomic accounting.
2028 	 */
2029 	if (is_migrate_highatomic(old_block_type))
2030 		goto single_page;
2031 
2032 	/* Take ownership for orders >= pageblock_order */
2033 	if (current_order >= pageblock_order) {
2034 		change_pageblock_range(page, current_order, start_type);
2035 		goto single_page;
2036 	}
2037 
2038 	/* We are not allowed to try stealing from the whole block */
2039 	if (!whole_block)
2040 		goto single_page;
2041 
2042 	free_pages = move_freepages_block(zone, page, start_type,
2043 						&movable_pages);
2044 	/*
2045 	 * Determine how many pages are compatible with our allocation.
2046 	 * For movable allocation, it's the number of movable pages which
2047 	 * we just obtained. For other types it's a bit more tricky.
2048 	 */
2049 	if (start_type == MIGRATE_MOVABLE) {
2050 		alike_pages = movable_pages;
2051 	} else {
2052 		/*
2053 		 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
2054 		 * to MOVABLE pageblock, consider all non-movable pages as
2055 		 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
2056 		 * vice versa, be conservative since we can't distinguish the
2057 		 * exact migratetype of non-movable pages.
2058 		 */
2059 		if (old_block_type == MIGRATE_MOVABLE)
2060 			alike_pages = pageblock_nr_pages
2061 						- (free_pages + movable_pages);
2062 		else
2063 			alike_pages = 0;
2064 	}
2065 
2066 	/* moving whole block can fail due to zone boundary conditions */
2067 	if (!free_pages)
2068 		goto single_page;
2069 
2070 	/*
2071 	 * If a sufficient number of pages in the block are either free or of
2072 	 * comparable migratability as our allocation, claim the whole block.
2073 	 */
2074 	if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
2075 			page_group_by_mobility_disabled)
2076 		set_pageblock_migratetype(page, start_type);
2077 
2078 	return;
2079 
2080 single_page:
2081 	area = &zone->free_area[current_order];
2082 	list_move(&page->lru, &area->free_list[start_type]);
2083 }
2084 
2085 /*
2086  * Check whether there is a suitable fallback freepage with requested order.
2087  * If only_stealable is true, this function returns fallback_mt only if
2088  * we can steal other freepages all together. This would help to reduce
2089  * fragmentation due to mixed migratetype pages in one pageblock.
2090  */
2091 int find_suitable_fallback(struct free_area *area, unsigned int order,
2092 			int migratetype, bool only_stealable, bool *can_steal)
2093 {
2094 	int i;
2095 	int fallback_mt;
2096 
2097 	if (area->nr_free == 0)
2098 		return -1;
2099 
2100 	*can_steal = false;
2101 	for (i = 0;; i++) {
2102 		fallback_mt = fallbacks[migratetype][i];
2103 		if (fallback_mt == MIGRATE_TYPES)
2104 			break;
2105 
2106 		if (list_empty(&area->free_list[fallback_mt]))
2107 			continue;
2108 
2109 		if (can_steal_fallback(order, migratetype))
2110 			*can_steal = true;
2111 
2112 		if (!only_stealable)
2113 			return fallback_mt;
2114 
2115 		if (*can_steal)
2116 			return fallback_mt;
2117 	}
2118 
2119 	return -1;
2120 }
2121 
2122 /*
2123  * Reserve a pageblock for exclusive use of high-order atomic allocations if
2124  * there are no empty page blocks that contain a page with a suitable order
2125  */
2126 static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
2127 				unsigned int alloc_order)
2128 {
2129 	int mt;
2130 	unsigned long max_managed, flags;
2131 
2132 	/*
2133 	 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
2134 	 * Check is race-prone but harmless.
2135 	 */
2136 	max_managed = (zone->managed_pages / 100) + pageblock_nr_pages;
2137 	if (zone->nr_reserved_highatomic >= max_managed)
2138 		return;
2139 
2140 	spin_lock_irqsave(&zone->lock, flags);
2141 
2142 	/* Recheck the nr_reserved_highatomic limit under the lock */
2143 	if (zone->nr_reserved_highatomic >= max_managed)
2144 		goto out_unlock;
2145 
2146 	/* Yoink! */
2147 	mt = get_pageblock_migratetype(page);
2148 	if (!is_migrate_highatomic(mt) && !is_migrate_isolate(mt)
2149 	    && !is_migrate_cma(mt)) {
2150 		zone->nr_reserved_highatomic += pageblock_nr_pages;
2151 		set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
2152 		move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL);
2153 	}
2154 
2155 out_unlock:
2156 	spin_unlock_irqrestore(&zone->lock, flags);
2157 }
2158 
2159 /*
2160  * Used when an allocation is about to fail under memory pressure. This
2161  * potentially hurts the reliability of high-order allocations when under
2162  * intense memory pressure but failed atomic allocations should be easier
2163  * to recover from than an OOM.
2164  *
2165  * If @force is true, try to unreserve a pageblock even though highatomic
2166  * pageblock is exhausted.
2167  */
2168 static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
2169 						bool force)
2170 {
2171 	struct zonelist *zonelist = ac->zonelist;
2172 	unsigned long flags;
2173 	struct zoneref *z;
2174 	struct zone *zone;
2175 	struct page *page;
2176 	int order;
2177 	bool ret;
2178 
2179 	for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
2180 								ac->nodemask) {
2181 		/*
2182 		 * Preserve at least one pageblock unless memory pressure
2183 		 * is really high.
2184 		 */
2185 		if (!force && zone->nr_reserved_highatomic <=
2186 					pageblock_nr_pages)
2187 			continue;
2188 
2189 		spin_lock_irqsave(&zone->lock, flags);
2190 		for (order = 0; order < MAX_ORDER; order++) {
2191 			struct free_area *area = &(zone->free_area[order]);
2192 
2193 			page = list_first_entry_or_null(
2194 					&area->free_list[MIGRATE_HIGHATOMIC],
2195 					struct page, lru);
2196 			if (!page)
2197 				continue;
2198 
2199 			/*
2200 			 * In page freeing path, migratetype change is racy so
2201 			 * we can counter several free pages in a pageblock
2202 			 * in this loop althoug we changed the pageblock type
2203 			 * from highatomic to ac->migratetype. So we should
2204 			 * adjust the count once.
2205 			 */
2206 			if (is_migrate_highatomic_page(page)) {
2207 				/*
2208 				 * It should never happen but changes to
2209 				 * locking could inadvertently allow a per-cpu
2210 				 * drain to add pages to MIGRATE_HIGHATOMIC
2211 				 * while unreserving so be safe and watch for
2212 				 * underflows.
2213 				 */
2214 				zone->nr_reserved_highatomic -= min(
2215 						pageblock_nr_pages,
2216 						zone->nr_reserved_highatomic);
2217 			}
2218 
2219 			/*
2220 			 * Convert to ac->migratetype and avoid the normal
2221 			 * pageblock stealing heuristics. Minimally, the caller
2222 			 * is doing the work and needs the pages. More
2223 			 * importantly, if the block was always converted to
2224 			 * MIGRATE_UNMOVABLE or another type then the number
2225 			 * of pageblocks that cannot be completely freed
2226 			 * may increase.
2227 			 */
2228 			set_pageblock_migratetype(page, ac->migratetype);
2229 			ret = move_freepages_block(zone, page, ac->migratetype,
2230 									NULL);
2231 			if (ret) {
2232 				spin_unlock_irqrestore(&zone->lock, flags);
2233 				return ret;
2234 			}
2235 		}
2236 		spin_unlock_irqrestore(&zone->lock, flags);
2237 	}
2238 
2239 	return false;
2240 }
2241 
2242 /*
2243  * Try finding a free buddy page on the fallback list and put it on the free
2244  * list of requested migratetype, possibly along with other pages from the same
2245  * block, depending on fragmentation avoidance heuristics. Returns true if
2246  * fallback was found so that __rmqueue_smallest() can grab it.
2247  *
2248  * The use of signed ints for order and current_order is a deliberate
2249  * deviation from the rest of this file, to make the for loop
2250  * condition simpler.
2251  */
2252 static __always_inline bool
2253 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype)
2254 {
2255 	struct free_area *area;
2256 	int current_order;
2257 	struct page *page;
2258 	int fallback_mt;
2259 	bool can_steal;
2260 
2261 	/*
2262 	 * Find the largest available free page in the other list. This roughly
2263 	 * approximates finding the pageblock with the most free pages, which
2264 	 * would be too costly to do exactly.
2265 	 */
2266 	for (current_order = MAX_ORDER - 1; current_order >= order;
2267 				--current_order) {
2268 		area = &(zone->free_area[current_order]);
2269 		fallback_mt = find_suitable_fallback(area, current_order,
2270 				start_migratetype, false, &can_steal);
2271 		if (fallback_mt == -1)
2272 			continue;
2273 
2274 		/*
2275 		 * We cannot steal all free pages from the pageblock and the
2276 		 * requested migratetype is movable. In that case it's better to
2277 		 * steal and split the smallest available page instead of the
2278 		 * largest available page, because even if the next movable
2279 		 * allocation falls back into a different pageblock than this
2280 		 * one, it won't cause permanent fragmentation.
2281 		 */
2282 		if (!can_steal && start_migratetype == MIGRATE_MOVABLE
2283 					&& current_order > order)
2284 			goto find_smallest;
2285 
2286 		goto do_steal;
2287 	}
2288 
2289 	return false;
2290 
2291 find_smallest:
2292 	for (current_order = order; current_order < MAX_ORDER;
2293 							current_order++) {
2294 		area = &(zone->free_area[current_order]);
2295 		fallback_mt = find_suitable_fallback(area, current_order,
2296 				start_migratetype, false, &can_steal);
2297 		if (fallback_mt != -1)
2298 			break;
2299 	}
2300 
2301 	/*
2302 	 * This should not happen - we already found a suitable fallback
2303 	 * when looking for the largest page.
2304 	 */
2305 	VM_BUG_ON(current_order == MAX_ORDER);
2306 
2307 do_steal:
2308 	page = list_first_entry(&area->free_list[fallback_mt],
2309 							struct page, lru);
2310 
2311 	steal_suitable_fallback(zone, page, start_migratetype, can_steal);
2312 
2313 	trace_mm_page_alloc_extfrag(page, order, current_order,
2314 		start_migratetype, fallback_mt);
2315 
2316 	return true;
2317 
2318 }
2319 
2320 /*
2321  * Do the hard work of removing an element from the buddy allocator.
2322  * Call me with the zone->lock already held.
2323  */
2324 static __always_inline struct page *
2325 __rmqueue(struct zone *zone, unsigned int order, int migratetype)
2326 {
2327 	struct page *page;
2328 
2329 retry:
2330 	page = __rmqueue_smallest(zone, order, migratetype);
2331 	if (unlikely(!page)) {
2332 		if (migratetype == MIGRATE_MOVABLE)
2333 			page = __rmqueue_cma_fallback(zone, order);
2334 
2335 		if (!page && __rmqueue_fallback(zone, order, migratetype))
2336 			goto retry;
2337 	}
2338 
2339 	trace_mm_page_alloc_zone_locked(page, order, migratetype);
2340 	return page;
2341 }
2342 
2343 /*
2344  * Obtain a specified number of elements from the buddy allocator, all under
2345  * a single hold of the lock, for efficiency.  Add them to the supplied list.
2346  * Returns the number of new pages which were placed at *list.
2347  */
2348 static int rmqueue_bulk(struct zone *zone, unsigned int order,
2349 			unsigned long count, struct list_head *list,
2350 			int migratetype)
2351 {
2352 	int i, alloced = 0;
2353 
2354 	spin_lock(&zone->lock);
2355 	for (i = 0; i < count; ++i) {
2356 		struct page *page = __rmqueue(zone, order, migratetype);
2357 		if (unlikely(page == NULL))
2358 			break;
2359 
2360 		if (unlikely(check_pcp_refill(page)))
2361 			continue;
2362 
2363 		/*
2364 		 * Split buddy pages returned by expand() are received here in
2365 		 * physical page order. The page is added to the tail of
2366 		 * caller's list. From the callers perspective, the linked list
2367 		 * is ordered by page number under some conditions. This is
2368 		 * useful for IO devices that can forward direction from the
2369 		 * head, thus also in the physical page order. This is useful
2370 		 * for IO devices that can merge IO requests if the physical
2371 		 * pages are ordered properly.
2372 		 */
2373 		list_add_tail(&page->lru, list);
2374 		alloced++;
2375 		if (is_migrate_cma(get_pcppage_migratetype(page)))
2376 			__mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
2377 					      -(1 << order));
2378 	}
2379 
2380 	/*
2381 	 * i pages were removed from the buddy list even if some leak due
2382 	 * to check_pcp_refill failing so adjust NR_FREE_PAGES based
2383 	 * on i. Do not confuse with 'alloced' which is the number of
2384 	 * pages added to the pcp list.
2385 	 */
2386 	__mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
2387 	spin_unlock(&zone->lock);
2388 	return alloced;
2389 }
2390 
2391 #ifdef CONFIG_NUMA
2392 /*
2393  * Called from the vmstat counter updater to drain pagesets of this
2394  * currently executing processor on remote nodes after they have
2395  * expired.
2396  *
2397  * Note that this function must be called with the thread pinned to
2398  * a single processor.
2399  */
2400 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
2401 {
2402 	unsigned long flags;
2403 	int to_drain, batch;
2404 
2405 	local_irq_save(flags);
2406 	batch = READ_ONCE(pcp->batch);
2407 	to_drain = min(pcp->count, batch);
2408 	if (to_drain > 0) {
2409 		free_pcppages_bulk(zone, to_drain, pcp);
2410 		pcp->count -= to_drain;
2411 	}
2412 	local_irq_restore(flags);
2413 }
2414 #endif
2415 
2416 /*
2417  * Drain pcplists of the indicated processor and zone.
2418  *
2419  * The processor must either be the current processor and the
2420  * thread pinned to the current processor or a processor that
2421  * is not online.
2422  */
2423 static void drain_pages_zone(unsigned int cpu, struct zone *zone)
2424 {
2425 	unsigned long flags;
2426 	struct per_cpu_pageset *pset;
2427 	struct per_cpu_pages *pcp;
2428 
2429 	local_irq_save(flags);
2430 	pset = per_cpu_ptr(zone->pageset, cpu);
2431 
2432 	pcp = &pset->pcp;
2433 	if (pcp->count) {
2434 		free_pcppages_bulk(zone, pcp->count, pcp);
2435 		pcp->count = 0;
2436 	}
2437 	local_irq_restore(flags);
2438 }
2439 
2440 /*
2441  * Drain pcplists of all zones on the indicated processor.
2442  *
2443  * The processor must either be the current processor and the
2444  * thread pinned to the current processor or a processor that
2445  * is not online.
2446  */
2447 static void drain_pages(unsigned int cpu)
2448 {
2449 	struct zone *zone;
2450 
2451 	for_each_populated_zone(zone) {
2452 		drain_pages_zone(cpu, zone);
2453 	}
2454 }
2455 
2456 /*
2457  * Spill all of this CPU's per-cpu pages back into the buddy allocator.
2458  *
2459  * The CPU has to be pinned. When zone parameter is non-NULL, spill just
2460  * the single zone's pages.
2461  */
2462 void drain_local_pages(struct zone *zone)
2463 {
2464 	int cpu = smp_processor_id();
2465 
2466 	if (zone)
2467 		drain_pages_zone(cpu, zone);
2468 	else
2469 		drain_pages(cpu);
2470 }
2471 
2472 static void drain_local_pages_wq(struct work_struct *work)
2473 {
2474 	/*
2475 	 * drain_all_pages doesn't use proper cpu hotplug protection so
2476 	 * we can race with cpu offline when the WQ can move this from
2477 	 * a cpu pinned worker to an unbound one. We can operate on a different
2478 	 * cpu which is allright but we also have to make sure to not move to
2479 	 * a different one.
2480 	 */
2481 	preempt_disable();
2482 	drain_local_pages(NULL);
2483 	preempt_enable();
2484 }
2485 
2486 /*
2487  * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
2488  *
2489  * When zone parameter is non-NULL, spill just the single zone's pages.
2490  *
2491  * Note that this can be extremely slow as the draining happens in a workqueue.
2492  */
2493 void drain_all_pages(struct zone *zone)
2494 {
2495 	int cpu;
2496 
2497 	/*
2498 	 * Allocate in the BSS so we wont require allocation in
2499 	 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
2500 	 */
2501 	static cpumask_t cpus_with_pcps;
2502 
2503 	/*
2504 	 * Make sure nobody triggers this path before mm_percpu_wq is fully
2505 	 * initialized.
2506 	 */
2507 	if (WARN_ON_ONCE(!mm_percpu_wq))
2508 		return;
2509 
2510 	/* Workqueues cannot recurse */
2511 	if (current->flags & PF_WQ_WORKER)
2512 		return;
2513 
2514 	/*
2515 	 * Do not drain if one is already in progress unless it's specific to
2516 	 * a zone. Such callers are primarily CMA and memory hotplug and need
2517 	 * the drain to be complete when the call returns.
2518 	 */
2519 	if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
2520 		if (!zone)
2521 			return;
2522 		mutex_lock(&pcpu_drain_mutex);
2523 	}
2524 
2525 	/*
2526 	 * We don't care about racing with CPU hotplug event
2527 	 * as offline notification will cause the notified
2528 	 * cpu to drain that CPU pcps and on_each_cpu_mask
2529 	 * disables preemption as part of its processing
2530 	 */
2531 	for_each_online_cpu(cpu) {
2532 		struct per_cpu_pageset *pcp;
2533 		struct zone *z;
2534 		bool has_pcps = false;
2535 
2536 		if (zone) {
2537 			pcp = per_cpu_ptr(zone->pageset, cpu);
2538 			if (pcp->pcp.count)
2539 				has_pcps = true;
2540 		} else {
2541 			for_each_populated_zone(z) {
2542 				pcp = per_cpu_ptr(z->pageset, cpu);
2543 				if (pcp->pcp.count) {
2544 					has_pcps = true;
2545 					break;
2546 				}
2547 			}
2548 		}
2549 
2550 		if (has_pcps)
2551 			cpumask_set_cpu(cpu, &cpus_with_pcps);
2552 		else
2553 			cpumask_clear_cpu(cpu, &cpus_with_pcps);
2554 	}
2555 
2556 	for_each_cpu(cpu, &cpus_with_pcps) {
2557 		struct work_struct *work = per_cpu_ptr(&pcpu_drain, cpu);
2558 		INIT_WORK(work, drain_local_pages_wq);
2559 		queue_work_on(cpu, mm_percpu_wq, work);
2560 	}
2561 	for_each_cpu(cpu, &cpus_with_pcps)
2562 		flush_work(per_cpu_ptr(&pcpu_drain, cpu));
2563 
2564 	mutex_unlock(&pcpu_drain_mutex);
2565 }
2566 
2567 #ifdef CONFIG_HIBERNATION
2568 
2569 /*
2570  * Touch the watchdog for every WD_PAGE_COUNT pages.
2571  */
2572 #define WD_PAGE_COUNT	(128*1024)
2573 
2574 void mark_free_pages(struct zone *zone)
2575 {
2576 	unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT;
2577 	unsigned long flags;
2578 	unsigned int order, t;
2579 	struct page *page;
2580 
2581 	if (zone_is_empty(zone))
2582 		return;
2583 
2584 	spin_lock_irqsave(&zone->lock, flags);
2585 
2586 	max_zone_pfn = zone_end_pfn(zone);
2587 	for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
2588 		if (pfn_valid(pfn)) {
2589 			page = pfn_to_page(pfn);
2590 
2591 			if (!--page_count) {
2592 				touch_nmi_watchdog();
2593 				page_count = WD_PAGE_COUNT;
2594 			}
2595 
2596 			if (page_zone(page) != zone)
2597 				continue;
2598 
2599 			if (!swsusp_page_is_forbidden(page))
2600 				swsusp_unset_page_free(page);
2601 		}
2602 
2603 	for_each_migratetype_order(order, t) {
2604 		list_for_each_entry(page,
2605 				&zone->free_area[order].free_list[t], lru) {
2606 			unsigned long i;
2607 
2608 			pfn = page_to_pfn(page);
2609 			for (i = 0; i < (1UL << order); i++) {
2610 				if (!--page_count) {
2611 					touch_nmi_watchdog();
2612 					page_count = WD_PAGE_COUNT;
2613 				}
2614 				swsusp_set_page_free(pfn_to_page(pfn + i));
2615 			}
2616 		}
2617 	}
2618 	spin_unlock_irqrestore(&zone->lock, flags);
2619 }
2620 #endif /* CONFIG_PM */
2621 
2622 static bool free_unref_page_prepare(struct page *page, unsigned long pfn)
2623 {
2624 	int migratetype;
2625 
2626 	if (!free_pcp_prepare(page))
2627 		return false;
2628 
2629 	migratetype = get_pfnblock_migratetype(page, pfn);
2630 	set_pcppage_migratetype(page, migratetype);
2631 	return true;
2632 }
2633 
2634 static void free_unref_page_commit(struct page *page, unsigned long pfn)
2635 {
2636 	struct zone *zone = page_zone(page);
2637 	struct per_cpu_pages *pcp;
2638 	int migratetype;
2639 
2640 	migratetype = get_pcppage_migratetype(page);
2641 	__count_vm_event(PGFREE);
2642 
2643 	/*
2644 	 * We only track unmovable, reclaimable and movable on pcp lists.
2645 	 * Free ISOLATE pages back to the allocator because they are being
2646 	 * offlined but treat HIGHATOMIC as movable pages so we can get those
2647 	 * areas back if necessary. Otherwise, we may have to free
2648 	 * excessively into the page allocator
2649 	 */
2650 	if (migratetype >= MIGRATE_PCPTYPES) {
2651 		if (unlikely(is_migrate_isolate(migratetype))) {
2652 			free_one_page(zone, page, pfn, 0, migratetype);
2653 			return;
2654 		}
2655 		migratetype = MIGRATE_MOVABLE;
2656 	}
2657 
2658 	pcp = &this_cpu_ptr(zone->pageset)->pcp;
2659 	list_add(&page->lru, &pcp->lists[migratetype]);
2660 	pcp->count++;
2661 	if (pcp->count >= pcp->high) {
2662 		unsigned long batch = READ_ONCE(pcp->batch);
2663 		free_pcppages_bulk(zone, batch, pcp);
2664 		pcp->count -= batch;
2665 	}
2666 }
2667 
2668 /*
2669  * Free a 0-order page
2670  */
2671 void free_unref_page(struct page *page)
2672 {
2673 	unsigned long flags;
2674 	unsigned long pfn = page_to_pfn(page);
2675 
2676 	if (!free_unref_page_prepare(page, pfn))
2677 		return;
2678 
2679 	local_irq_save(flags);
2680 	free_unref_page_commit(page, pfn);
2681 	local_irq_restore(flags);
2682 }
2683 
2684 /*
2685  * Free a list of 0-order pages
2686  */
2687 void free_unref_page_list(struct list_head *list)
2688 {
2689 	struct page *page, *next;
2690 	unsigned long flags, pfn;
2691 
2692 	/* Prepare pages for freeing */
2693 	list_for_each_entry_safe(page, next, list, lru) {
2694 		pfn = page_to_pfn(page);
2695 		if (!free_unref_page_prepare(page, pfn))
2696 			list_del(&page->lru);
2697 		set_page_private(page, pfn);
2698 	}
2699 
2700 	local_irq_save(flags);
2701 	list_for_each_entry_safe(page, next, list, lru) {
2702 		unsigned long pfn = page_private(page);
2703 
2704 		set_page_private(page, 0);
2705 		trace_mm_page_free_batched(page);
2706 		free_unref_page_commit(page, pfn);
2707 	}
2708 	local_irq_restore(flags);
2709 }
2710 
2711 /*
2712  * split_page takes a non-compound higher-order page, and splits it into
2713  * n (1<<order) sub-pages: page[0..n]
2714  * Each sub-page must be freed individually.
2715  *
2716  * Note: this is probably too low level an operation for use in drivers.
2717  * Please consult with lkml before using this in your driver.
2718  */
2719 void split_page(struct page *page, unsigned int order)
2720 {
2721 	int i;
2722 
2723 	VM_BUG_ON_PAGE(PageCompound(page), page);
2724 	VM_BUG_ON_PAGE(!page_count(page), page);
2725 
2726 	for (i = 1; i < (1 << order); i++)
2727 		set_page_refcounted(page + i);
2728 	split_page_owner(page, order);
2729 }
2730 EXPORT_SYMBOL_GPL(split_page);
2731 
2732 int __isolate_free_page(struct page *page, unsigned int order)
2733 {
2734 	unsigned long watermark;
2735 	struct zone *zone;
2736 	int mt;
2737 
2738 	BUG_ON(!PageBuddy(page));
2739 
2740 	zone = page_zone(page);
2741 	mt = get_pageblock_migratetype(page);
2742 
2743 	if (!is_migrate_isolate(mt)) {
2744 		/*
2745 		 * Obey watermarks as if the page was being allocated. We can
2746 		 * emulate a high-order watermark check with a raised order-0
2747 		 * watermark, because we already know our high-order page
2748 		 * exists.
2749 		 */
2750 		watermark = min_wmark_pages(zone) + (1UL << order);
2751 		if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
2752 			return 0;
2753 
2754 		__mod_zone_freepage_state(zone, -(1UL << order), mt);
2755 	}
2756 
2757 	/* Remove page from free list */
2758 	list_del(&page->lru);
2759 	zone->free_area[order].nr_free--;
2760 	rmv_page_order(page);
2761 
2762 	/*
2763 	 * Set the pageblock if the isolated page is at least half of a
2764 	 * pageblock
2765 	 */
2766 	if (order >= pageblock_order - 1) {
2767 		struct page *endpage = page + (1 << order) - 1;
2768 		for (; page < endpage; page += pageblock_nr_pages) {
2769 			int mt = get_pageblock_migratetype(page);
2770 			if (!is_migrate_isolate(mt) && !is_migrate_cma(mt)
2771 			    && !is_migrate_highatomic(mt))
2772 				set_pageblock_migratetype(page,
2773 							  MIGRATE_MOVABLE);
2774 		}
2775 	}
2776 
2777 
2778 	return 1UL << order;
2779 }
2780 
2781 /*
2782  * Update NUMA hit/miss statistics
2783  *
2784  * Must be called with interrupts disabled.
2785  */
2786 static inline void zone_statistics(struct zone *preferred_zone, struct zone *z)
2787 {
2788 #ifdef CONFIG_NUMA
2789 	enum numa_stat_item local_stat = NUMA_LOCAL;
2790 
2791 	/* skip numa counters update if numa stats is disabled */
2792 	if (!static_branch_likely(&vm_numa_stat_key))
2793 		return;
2794 
2795 	if (z->node != numa_node_id())
2796 		local_stat = NUMA_OTHER;
2797 
2798 	if (z->node == preferred_zone->node)
2799 		__inc_numa_state(z, NUMA_HIT);
2800 	else {
2801 		__inc_numa_state(z, NUMA_MISS);
2802 		__inc_numa_state(preferred_zone, NUMA_FOREIGN);
2803 	}
2804 	__inc_numa_state(z, local_stat);
2805 #endif
2806 }
2807 
2808 /* Remove page from the per-cpu list, caller must protect the list */
2809 static struct page *__rmqueue_pcplist(struct zone *zone, int migratetype,
2810 			struct per_cpu_pages *pcp,
2811 			struct list_head *list)
2812 {
2813 	struct page *page;
2814 
2815 	do {
2816 		if (list_empty(list)) {
2817 			pcp->count += rmqueue_bulk(zone, 0,
2818 					pcp->batch, list,
2819 					migratetype);
2820 			if (unlikely(list_empty(list)))
2821 				return NULL;
2822 		}
2823 
2824 		page = list_first_entry(list, struct page, lru);
2825 		list_del(&page->lru);
2826 		pcp->count--;
2827 	} while (check_new_pcp(page));
2828 
2829 	return page;
2830 }
2831 
2832 /* Lock and remove page from the per-cpu list */
2833 static struct page *rmqueue_pcplist(struct zone *preferred_zone,
2834 			struct zone *zone, unsigned int order,
2835 			gfp_t gfp_flags, int migratetype)
2836 {
2837 	struct per_cpu_pages *pcp;
2838 	struct list_head *list;
2839 	struct page *page;
2840 	unsigned long flags;
2841 
2842 	local_irq_save(flags);
2843 	pcp = &this_cpu_ptr(zone->pageset)->pcp;
2844 	list = &pcp->lists[migratetype];
2845 	page = __rmqueue_pcplist(zone,  migratetype, pcp, list);
2846 	if (page) {
2847 		__count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
2848 		zone_statistics(preferred_zone, zone);
2849 	}
2850 	local_irq_restore(flags);
2851 	return page;
2852 }
2853 
2854 /*
2855  * Allocate a page from the given zone. Use pcplists for order-0 allocations.
2856  */
2857 static inline
2858 struct page *rmqueue(struct zone *preferred_zone,
2859 			struct zone *zone, unsigned int order,
2860 			gfp_t gfp_flags, unsigned int alloc_flags,
2861 			int migratetype)
2862 {
2863 	unsigned long flags;
2864 	struct page *page;
2865 
2866 	if (likely(order == 0)) {
2867 		page = rmqueue_pcplist(preferred_zone, zone, order,
2868 				gfp_flags, migratetype);
2869 		goto out;
2870 	}
2871 
2872 	/*
2873 	 * We most definitely don't want callers attempting to
2874 	 * allocate greater than order-1 page units with __GFP_NOFAIL.
2875 	 */
2876 	WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
2877 	spin_lock_irqsave(&zone->lock, flags);
2878 
2879 	do {
2880 		page = NULL;
2881 		if (alloc_flags & ALLOC_HARDER) {
2882 			page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
2883 			if (page)
2884 				trace_mm_page_alloc_zone_locked(page, order, migratetype);
2885 		}
2886 		if (!page)
2887 			page = __rmqueue(zone, order, migratetype);
2888 	} while (page && check_new_pages(page, order));
2889 	spin_unlock(&zone->lock);
2890 	if (!page)
2891 		goto failed;
2892 	__mod_zone_freepage_state(zone, -(1 << order),
2893 				  get_pcppage_migratetype(page));
2894 
2895 	__count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
2896 	zone_statistics(preferred_zone, zone);
2897 	local_irq_restore(flags);
2898 
2899 out:
2900 	VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
2901 	return page;
2902 
2903 failed:
2904 	local_irq_restore(flags);
2905 	return NULL;
2906 }
2907 
2908 #ifdef CONFIG_FAIL_PAGE_ALLOC
2909 
2910 static struct {
2911 	struct fault_attr attr;
2912 
2913 	bool ignore_gfp_highmem;
2914 	bool ignore_gfp_reclaim;
2915 	u32 min_order;
2916 } fail_page_alloc = {
2917 	.attr = FAULT_ATTR_INITIALIZER,
2918 	.ignore_gfp_reclaim = true,
2919 	.ignore_gfp_highmem = true,
2920 	.min_order = 1,
2921 };
2922 
2923 static int __init setup_fail_page_alloc(char *str)
2924 {
2925 	return setup_fault_attr(&fail_page_alloc.attr, str);
2926 }
2927 __setup("fail_page_alloc=", setup_fail_page_alloc);
2928 
2929 static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
2930 {
2931 	if (order < fail_page_alloc.min_order)
2932 		return false;
2933 	if (gfp_mask & __GFP_NOFAIL)
2934 		return false;
2935 	if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
2936 		return false;
2937 	if (fail_page_alloc.ignore_gfp_reclaim &&
2938 			(gfp_mask & __GFP_DIRECT_RECLAIM))
2939 		return false;
2940 
2941 	return should_fail(&fail_page_alloc.attr, 1 << order);
2942 }
2943 
2944 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
2945 
2946 static int __init fail_page_alloc_debugfs(void)
2947 {
2948 	umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
2949 	struct dentry *dir;
2950 
2951 	dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
2952 					&fail_page_alloc.attr);
2953 	if (IS_ERR(dir))
2954 		return PTR_ERR(dir);
2955 
2956 	if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
2957 				&fail_page_alloc.ignore_gfp_reclaim))
2958 		goto fail;
2959 	if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
2960 				&fail_page_alloc.ignore_gfp_highmem))
2961 		goto fail;
2962 	if (!debugfs_create_u32("min-order", mode, dir,
2963 				&fail_page_alloc.min_order))
2964 		goto fail;
2965 
2966 	return 0;
2967 fail:
2968 	debugfs_remove_recursive(dir);
2969 
2970 	return -ENOMEM;
2971 }
2972 
2973 late_initcall(fail_page_alloc_debugfs);
2974 
2975 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
2976 
2977 #else /* CONFIG_FAIL_PAGE_ALLOC */
2978 
2979 static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
2980 {
2981 	return false;
2982 }
2983 
2984 #endif /* CONFIG_FAIL_PAGE_ALLOC */
2985 
2986 /*
2987  * Return true if free base pages are above 'mark'. For high-order checks it
2988  * will return true of the order-0 watermark is reached and there is at least
2989  * one free page of a suitable size. Checking now avoids taking the zone lock
2990  * to check in the allocation paths if no pages are free.
2991  */
2992 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
2993 			 int classzone_idx, unsigned int alloc_flags,
2994 			 long free_pages)
2995 {
2996 	long min = mark;
2997 	int o;
2998 	const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
2999 
3000 	/* free_pages may go negative - that's OK */
3001 	free_pages -= (1 << order) - 1;
3002 
3003 	if (alloc_flags & ALLOC_HIGH)
3004 		min -= min / 2;
3005 
3006 	/*
3007 	 * If the caller does not have rights to ALLOC_HARDER then subtract
3008 	 * the high-atomic reserves. This will over-estimate the size of the
3009 	 * atomic reserve but it avoids a search.
3010 	 */
3011 	if (likely(!alloc_harder)) {
3012 		free_pages -= z->nr_reserved_highatomic;
3013 	} else {
3014 		/*
3015 		 * OOM victims can try even harder than normal ALLOC_HARDER
3016 		 * users on the grounds that it's definitely going to be in
3017 		 * the exit path shortly and free memory. Any allocation it
3018 		 * makes during the free path will be small and short-lived.
3019 		 */
3020 		if (alloc_flags & ALLOC_OOM)
3021 			min -= min / 2;
3022 		else
3023 			min -= min / 4;
3024 	}
3025 
3026 
3027 #ifdef CONFIG_CMA
3028 	/* If allocation can't use CMA areas don't use free CMA pages */
3029 	if (!(alloc_flags & ALLOC_CMA))
3030 		free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES);
3031 #endif
3032 
3033 	/*
3034 	 * Check watermarks for an order-0 allocation request. If these
3035 	 * are not met, then a high-order request also cannot go ahead
3036 	 * even if a suitable page happened to be free.
3037 	 */
3038 	if (free_pages <= min + z->lowmem_reserve[classzone_idx])
3039 		return false;
3040 
3041 	/* If this is an order-0 request then the watermark is fine */
3042 	if (!order)
3043 		return true;
3044 
3045 	/* For a high-order request, check at least one suitable page is free */
3046 	for (o = order; o < MAX_ORDER; o++) {
3047 		struct free_area *area = &z->free_area[o];
3048 		int mt;
3049 
3050 		if (!area->nr_free)
3051 			continue;
3052 
3053 		for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
3054 			if (!list_empty(&area->free_list[mt]))
3055 				return true;
3056 		}
3057 
3058 #ifdef CONFIG_CMA
3059 		if ((alloc_flags & ALLOC_CMA) &&
3060 		    !list_empty(&area->free_list[MIGRATE_CMA])) {
3061 			return true;
3062 		}
3063 #endif
3064 		if (alloc_harder &&
3065 			!list_empty(&area->free_list[MIGRATE_HIGHATOMIC]))
3066 			return true;
3067 	}
3068 	return false;
3069 }
3070 
3071 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3072 		      int classzone_idx, unsigned int alloc_flags)
3073 {
3074 	return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
3075 					zone_page_state(z, NR_FREE_PAGES));
3076 }
3077 
3078 static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
3079 		unsigned long mark, int classzone_idx, unsigned int alloc_flags)
3080 {
3081 	long free_pages = zone_page_state(z, NR_FREE_PAGES);
3082 	long cma_pages = 0;
3083 
3084 #ifdef CONFIG_CMA
3085 	/* If allocation can't use CMA areas don't use free CMA pages */
3086 	if (!(alloc_flags & ALLOC_CMA))
3087 		cma_pages = zone_page_state(z, NR_FREE_CMA_PAGES);
3088 #endif
3089 
3090 	/*
3091 	 * Fast check for order-0 only. If this fails then the reserves
3092 	 * need to be calculated. There is a corner case where the check
3093 	 * passes but only the high-order atomic reserve are free. If
3094 	 * the caller is !atomic then it'll uselessly search the free
3095 	 * list. That corner case is then slower but it is harmless.
3096 	 */
3097 	if (!order && (free_pages - cma_pages) > mark + z->lowmem_reserve[classzone_idx])
3098 		return true;
3099 
3100 	return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
3101 					free_pages);
3102 }
3103 
3104 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
3105 			unsigned long mark, int classzone_idx)
3106 {
3107 	long free_pages = zone_page_state(z, NR_FREE_PAGES);
3108 
3109 	if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
3110 		free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
3111 
3112 	return __zone_watermark_ok(z, order, mark, classzone_idx, 0,
3113 								free_pages);
3114 }
3115 
3116 #ifdef CONFIG_NUMA
3117 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3118 {
3119 	return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
3120 				RECLAIM_DISTANCE;
3121 }
3122 #else	/* CONFIG_NUMA */
3123 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3124 {
3125 	return true;
3126 }
3127 #endif	/* CONFIG_NUMA */
3128 
3129 /*
3130  * get_page_from_freelist goes through the zonelist trying to allocate
3131  * a page.
3132  */
3133 static struct page *
3134 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
3135 						const struct alloc_context *ac)
3136 {
3137 	struct zoneref *z = ac->preferred_zoneref;
3138 	struct zone *zone;
3139 	struct pglist_data *last_pgdat_dirty_limit = NULL;
3140 
3141 	/*
3142 	 * Scan zonelist, looking for a zone with enough free.
3143 	 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
3144 	 */
3145 	for_next_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3146 								ac->nodemask) {
3147 		struct page *page;
3148 		unsigned long mark;
3149 
3150 		if (cpusets_enabled() &&
3151 			(alloc_flags & ALLOC_CPUSET) &&
3152 			!__cpuset_zone_allowed(zone, gfp_mask))
3153 				continue;
3154 		/*
3155 		 * When allocating a page cache page for writing, we
3156 		 * want to get it from a node that is within its dirty
3157 		 * limit, such that no single node holds more than its
3158 		 * proportional share of globally allowed dirty pages.
3159 		 * The dirty limits take into account the node's
3160 		 * lowmem reserves and high watermark so that kswapd
3161 		 * should be able to balance it without having to
3162 		 * write pages from its LRU list.
3163 		 *
3164 		 * XXX: For now, allow allocations to potentially
3165 		 * exceed the per-node dirty limit in the slowpath
3166 		 * (spread_dirty_pages unset) before going into reclaim,
3167 		 * which is important when on a NUMA setup the allowed
3168 		 * nodes are together not big enough to reach the
3169 		 * global limit.  The proper fix for these situations
3170 		 * will require awareness of nodes in the
3171 		 * dirty-throttling and the flusher threads.
3172 		 */
3173 		if (ac->spread_dirty_pages) {
3174 			if (last_pgdat_dirty_limit == zone->zone_pgdat)
3175 				continue;
3176 
3177 			if (!node_dirty_ok(zone->zone_pgdat)) {
3178 				last_pgdat_dirty_limit = zone->zone_pgdat;
3179 				continue;
3180 			}
3181 		}
3182 
3183 		mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
3184 		if (!zone_watermark_fast(zone, order, mark,
3185 				       ac_classzone_idx(ac), alloc_flags)) {
3186 			int ret;
3187 
3188 			/* Checked here to keep the fast path fast */
3189 			BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
3190 			if (alloc_flags & ALLOC_NO_WATERMARKS)
3191 				goto try_this_zone;
3192 
3193 			if (node_reclaim_mode == 0 ||
3194 			    !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
3195 				continue;
3196 
3197 			ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
3198 			switch (ret) {
3199 			case NODE_RECLAIM_NOSCAN:
3200 				/* did not scan */
3201 				continue;
3202 			case NODE_RECLAIM_FULL:
3203 				/* scanned but unreclaimable */
3204 				continue;
3205 			default:
3206 				/* did we reclaim enough */
3207 				if (zone_watermark_ok(zone, order, mark,
3208 						ac_classzone_idx(ac), alloc_flags))
3209 					goto try_this_zone;
3210 
3211 				continue;
3212 			}
3213 		}
3214 
3215 try_this_zone:
3216 		page = rmqueue(ac->preferred_zoneref->zone, zone, order,
3217 				gfp_mask, alloc_flags, ac->migratetype);
3218 		if (page) {
3219 			prep_new_page(page, order, gfp_mask, alloc_flags);
3220 
3221 			/*
3222 			 * If this is a high-order atomic allocation then check
3223 			 * if the pageblock should be reserved for the future
3224 			 */
3225 			if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
3226 				reserve_highatomic_pageblock(page, zone, order);
3227 
3228 			return page;
3229 		}
3230 	}
3231 
3232 	return NULL;
3233 }
3234 
3235 /*
3236  * Large machines with many possible nodes should not always dump per-node
3237  * meminfo in irq context.
3238  */
3239 static inline bool should_suppress_show_mem(void)
3240 {
3241 	bool ret = false;
3242 
3243 #if NODES_SHIFT > 8
3244 	ret = in_interrupt();
3245 #endif
3246 	return ret;
3247 }
3248 
3249 static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
3250 {
3251 	unsigned int filter = SHOW_MEM_FILTER_NODES;
3252 	static DEFINE_RATELIMIT_STATE(show_mem_rs, HZ, 1);
3253 
3254 	if (should_suppress_show_mem() || !__ratelimit(&show_mem_rs))
3255 		return;
3256 
3257 	/*
3258 	 * This documents exceptions given to allocations in certain
3259 	 * contexts that are allowed to allocate outside current's set
3260 	 * of allowed nodes.
3261 	 */
3262 	if (!(gfp_mask & __GFP_NOMEMALLOC))
3263 		if (tsk_is_oom_victim(current) ||
3264 		    (current->flags & (PF_MEMALLOC | PF_EXITING)))
3265 			filter &= ~SHOW_MEM_FILTER_NODES;
3266 	if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
3267 		filter &= ~SHOW_MEM_FILTER_NODES;
3268 
3269 	show_mem(filter, nodemask);
3270 }
3271 
3272 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
3273 {
3274 	struct va_format vaf;
3275 	va_list args;
3276 	static DEFINE_RATELIMIT_STATE(nopage_rs, DEFAULT_RATELIMIT_INTERVAL,
3277 				      DEFAULT_RATELIMIT_BURST);
3278 
3279 	if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs))
3280 		return;
3281 
3282 	va_start(args, fmt);
3283 	vaf.fmt = fmt;
3284 	vaf.va = &args;
3285 	pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl\n",
3286 			current->comm, &vaf, gfp_mask, &gfp_mask,
3287 			nodemask_pr_args(nodemask));
3288 	va_end(args);
3289 
3290 	cpuset_print_current_mems_allowed();
3291 
3292 	dump_stack();
3293 	warn_alloc_show_mem(gfp_mask, nodemask);
3294 }
3295 
3296 static inline struct page *
3297 __alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
3298 			      unsigned int alloc_flags,
3299 			      const struct alloc_context *ac)
3300 {
3301 	struct page *page;
3302 
3303 	page = get_page_from_freelist(gfp_mask, order,
3304 			alloc_flags|ALLOC_CPUSET, ac);
3305 	/*
3306 	 * fallback to ignore cpuset restriction if our nodes
3307 	 * are depleted
3308 	 */
3309 	if (!page)
3310 		page = get_page_from_freelist(gfp_mask, order,
3311 				alloc_flags, ac);
3312 
3313 	return page;
3314 }
3315 
3316 static inline struct page *
3317 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
3318 	const struct alloc_context *ac, unsigned long *did_some_progress)
3319 {
3320 	struct oom_control oc = {
3321 		.zonelist = ac->zonelist,
3322 		.nodemask = ac->nodemask,
3323 		.memcg = NULL,
3324 		.gfp_mask = gfp_mask,
3325 		.order = order,
3326 	};
3327 	struct page *page;
3328 
3329 	*did_some_progress = 0;
3330 
3331 	/*
3332 	 * Acquire the oom lock.  If that fails, somebody else is
3333 	 * making progress for us.
3334 	 */
3335 	if (!mutex_trylock(&oom_lock)) {
3336 		*did_some_progress = 1;
3337 		schedule_timeout_uninterruptible(1);
3338 		return NULL;
3339 	}
3340 
3341 	/*
3342 	 * Go through the zonelist yet one more time, keep very high watermark
3343 	 * here, this is only to catch a parallel oom killing, we must fail if
3344 	 * we're still under heavy pressure. But make sure that this reclaim
3345 	 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
3346 	 * allocation which will never fail due to oom_lock already held.
3347 	 */
3348 	page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) &
3349 				      ~__GFP_DIRECT_RECLAIM, order,
3350 				      ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
3351 	if (page)
3352 		goto out;
3353 
3354 	/* Coredumps can quickly deplete all memory reserves */
3355 	if (current->flags & PF_DUMPCORE)
3356 		goto out;
3357 	/* The OOM killer will not help higher order allocs */
3358 	if (order > PAGE_ALLOC_COSTLY_ORDER)
3359 		goto out;
3360 	/*
3361 	 * We have already exhausted all our reclaim opportunities without any
3362 	 * success so it is time to admit defeat. We will skip the OOM killer
3363 	 * because it is very likely that the caller has a more reasonable
3364 	 * fallback than shooting a random task.
3365 	 */
3366 	if (gfp_mask & __GFP_RETRY_MAYFAIL)
3367 		goto out;
3368 	/* The OOM killer does not needlessly kill tasks for lowmem */
3369 	if (ac->high_zoneidx < ZONE_NORMAL)
3370 		goto out;
3371 	if (pm_suspended_storage())
3372 		goto out;
3373 	/*
3374 	 * XXX: GFP_NOFS allocations should rather fail than rely on
3375 	 * other request to make a forward progress.
3376 	 * We are in an unfortunate situation where out_of_memory cannot
3377 	 * do much for this context but let's try it to at least get
3378 	 * access to memory reserved if the current task is killed (see
3379 	 * out_of_memory). Once filesystems are ready to handle allocation
3380 	 * failures more gracefully we should just bail out here.
3381 	 */
3382 
3383 	/* The OOM killer may not free memory on a specific node */
3384 	if (gfp_mask & __GFP_THISNODE)
3385 		goto out;
3386 
3387 	/* Exhausted what can be done so it's blamo time */
3388 	if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
3389 		*did_some_progress = 1;
3390 
3391 		/*
3392 		 * Help non-failing allocations by giving them access to memory
3393 		 * reserves
3394 		 */
3395 		if (gfp_mask & __GFP_NOFAIL)
3396 			page = __alloc_pages_cpuset_fallback(gfp_mask, order,
3397 					ALLOC_NO_WATERMARKS, ac);
3398 	}
3399 out:
3400 	mutex_unlock(&oom_lock);
3401 	return page;
3402 }
3403 
3404 /*
3405  * Maximum number of compaction retries wit a progress before OOM
3406  * killer is consider as the only way to move forward.
3407  */
3408 #define MAX_COMPACT_RETRIES 16
3409 
3410 #ifdef CONFIG_COMPACTION
3411 /* Try memory compaction for high-order allocations before reclaim */
3412 static struct page *
3413 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3414 		unsigned int alloc_flags, const struct alloc_context *ac,
3415 		enum compact_priority prio, enum compact_result *compact_result)
3416 {
3417 	struct page *page;
3418 	unsigned int noreclaim_flag;
3419 
3420 	if (!order)
3421 		return NULL;
3422 
3423 	noreclaim_flag = memalloc_noreclaim_save();
3424 	*compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
3425 									prio);
3426 	memalloc_noreclaim_restore(noreclaim_flag);
3427 
3428 	if (*compact_result <= COMPACT_INACTIVE)
3429 		return NULL;
3430 
3431 	/*
3432 	 * At least in one zone compaction wasn't deferred or skipped, so let's
3433 	 * count a compaction stall
3434 	 */
3435 	count_vm_event(COMPACTSTALL);
3436 
3437 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3438 
3439 	if (page) {
3440 		struct zone *zone = page_zone(page);
3441 
3442 		zone->compact_blockskip_flush = false;
3443 		compaction_defer_reset(zone, order, true);
3444 		count_vm_event(COMPACTSUCCESS);
3445 		return page;
3446 	}
3447 
3448 	/*
3449 	 * It's bad if compaction run occurs and fails. The most likely reason
3450 	 * is that pages exist, but not enough to satisfy watermarks.
3451 	 */
3452 	count_vm_event(COMPACTFAIL);
3453 
3454 	cond_resched();
3455 
3456 	return NULL;
3457 }
3458 
3459 static inline bool
3460 should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
3461 		     enum compact_result compact_result,
3462 		     enum compact_priority *compact_priority,
3463 		     int *compaction_retries)
3464 {
3465 	int max_retries = MAX_COMPACT_RETRIES;
3466 	int min_priority;
3467 	bool ret = false;
3468 	int retries = *compaction_retries;
3469 	enum compact_priority priority = *compact_priority;
3470 
3471 	if (!order)
3472 		return false;
3473 
3474 	if (compaction_made_progress(compact_result))
3475 		(*compaction_retries)++;
3476 
3477 	/*
3478 	 * compaction considers all the zone as desperately out of memory
3479 	 * so it doesn't really make much sense to retry except when the
3480 	 * failure could be caused by insufficient priority
3481 	 */
3482 	if (compaction_failed(compact_result))
3483 		goto check_priority;
3484 
3485 	/*
3486 	 * make sure the compaction wasn't deferred or didn't bail out early
3487 	 * due to locks contention before we declare that we should give up.
3488 	 * But do not retry if the given zonelist is not suitable for
3489 	 * compaction.
3490 	 */
3491 	if (compaction_withdrawn(compact_result)) {
3492 		ret = compaction_zonelist_suitable(ac, order, alloc_flags);
3493 		goto out;
3494 	}
3495 
3496 	/*
3497 	 * !costly requests are much more important than __GFP_RETRY_MAYFAIL
3498 	 * costly ones because they are de facto nofail and invoke OOM
3499 	 * killer to move on while costly can fail and users are ready
3500 	 * to cope with that. 1/4 retries is rather arbitrary but we
3501 	 * would need much more detailed feedback from compaction to
3502 	 * make a better decision.
3503 	 */
3504 	if (order > PAGE_ALLOC_COSTLY_ORDER)
3505 		max_retries /= 4;
3506 	if (*compaction_retries <= max_retries) {
3507 		ret = true;
3508 		goto out;
3509 	}
3510 
3511 	/*
3512 	 * Make sure there are attempts at the highest priority if we exhausted
3513 	 * all retries or failed at the lower priorities.
3514 	 */
3515 check_priority:
3516 	min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
3517 			MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
3518 
3519 	if (*compact_priority > min_priority) {
3520 		(*compact_priority)--;
3521 		*compaction_retries = 0;
3522 		ret = true;
3523 	}
3524 out:
3525 	trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
3526 	return ret;
3527 }
3528 #else
3529 static inline struct page *
3530 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3531 		unsigned int alloc_flags, const struct alloc_context *ac,
3532 		enum compact_priority prio, enum compact_result *compact_result)
3533 {
3534 	*compact_result = COMPACT_SKIPPED;
3535 	return NULL;
3536 }
3537 
3538 static inline bool
3539 should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
3540 		     enum compact_result compact_result,
3541 		     enum compact_priority *compact_priority,
3542 		     int *compaction_retries)
3543 {
3544 	struct zone *zone;
3545 	struct zoneref *z;
3546 
3547 	if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
3548 		return false;
3549 
3550 	/*
3551 	 * There are setups with compaction disabled which would prefer to loop
3552 	 * inside the allocator rather than hit the oom killer prematurely.
3553 	 * Let's give them a good hope and keep retrying while the order-0
3554 	 * watermarks are OK.
3555 	 */
3556 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3557 					ac->nodemask) {
3558 		if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
3559 					ac_classzone_idx(ac), alloc_flags))
3560 			return true;
3561 	}
3562 	return false;
3563 }
3564 #endif /* CONFIG_COMPACTION */
3565 
3566 #ifdef CONFIG_LOCKDEP
3567 struct lockdep_map __fs_reclaim_map =
3568 	STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map);
3569 
3570 static bool __need_fs_reclaim(gfp_t gfp_mask)
3571 {
3572 	gfp_mask = current_gfp_context(gfp_mask);
3573 
3574 	/* no reclaim without waiting on it */
3575 	if (!(gfp_mask & __GFP_DIRECT_RECLAIM))
3576 		return false;
3577 
3578 	/* this guy won't enter reclaim */
3579 	if ((current->flags & PF_MEMALLOC) && !(gfp_mask & __GFP_NOMEMALLOC))
3580 		return false;
3581 
3582 	/* We're only interested __GFP_FS allocations for now */
3583 	if (!(gfp_mask & __GFP_FS))
3584 		return false;
3585 
3586 	if (gfp_mask & __GFP_NOLOCKDEP)
3587 		return false;
3588 
3589 	return true;
3590 }
3591 
3592 void fs_reclaim_acquire(gfp_t gfp_mask)
3593 {
3594 	if (__need_fs_reclaim(gfp_mask))
3595 		lock_map_acquire(&__fs_reclaim_map);
3596 }
3597 EXPORT_SYMBOL_GPL(fs_reclaim_acquire);
3598 
3599 void fs_reclaim_release(gfp_t gfp_mask)
3600 {
3601 	if (__need_fs_reclaim(gfp_mask))
3602 		lock_map_release(&__fs_reclaim_map);
3603 }
3604 EXPORT_SYMBOL_GPL(fs_reclaim_release);
3605 #endif
3606 
3607 /* Perform direct synchronous page reclaim */
3608 static int
3609 __perform_reclaim(gfp_t gfp_mask, unsigned int order,
3610 					const struct alloc_context *ac)
3611 {
3612 	struct reclaim_state reclaim_state;
3613 	int progress;
3614 	unsigned int noreclaim_flag;
3615 
3616 	cond_resched();
3617 
3618 	/* We now go into synchronous reclaim */
3619 	cpuset_memory_pressure_bump();
3620 	noreclaim_flag = memalloc_noreclaim_save();
3621 	fs_reclaim_acquire(gfp_mask);
3622 	reclaim_state.reclaimed_slab = 0;
3623 	current->reclaim_state = &reclaim_state;
3624 
3625 	progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
3626 								ac->nodemask);
3627 
3628 	current->reclaim_state = NULL;
3629 	fs_reclaim_release(gfp_mask);
3630 	memalloc_noreclaim_restore(noreclaim_flag);
3631 
3632 	cond_resched();
3633 
3634 	return progress;
3635 }
3636 
3637 /* The really slow allocator path where we enter direct reclaim */
3638 static inline struct page *
3639 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
3640 		unsigned int alloc_flags, const struct alloc_context *ac,
3641 		unsigned long *did_some_progress)
3642 {
3643 	struct page *page = NULL;
3644 	bool drained = false;
3645 
3646 	*did_some_progress = __perform_reclaim(gfp_mask, order, ac);
3647 	if (unlikely(!(*did_some_progress)))
3648 		return NULL;
3649 
3650 retry:
3651 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3652 
3653 	/*
3654 	 * If an allocation failed after direct reclaim, it could be because
3655 	 * pages are pinned on the per-cpu lists or in high alloc reserves.
3656 	 * Shrink them them and try again
3657 	 */
3658 	if (!page && !drained) {
3659 		unreserve_highatomic_pageblock(ac, false);
3660 		drain_all_pages(NULL);
3661 		drained = true;
3662 		goto retry;
3663 	}
3664 
3665 	return page;
3666 }
3667 
3668 static void wake_all_kswapds(unsigned int order, const struct alloc_context *ac)
3669 {
3670 	struct zoneref *z;
3671 	struct zone *zone;
3672 	pg_data_t *last_pgdat = NULL;
3673 
3674 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
3675 					ac->high_zoneidx, ac->nodemask) {
3676 		if (last_pgdat != zone->zone_pgdat)
3677 			wakeup_kswapd(zone, order, ac->high_zoneidx);
3678 		last_pgdat = zone->zone_pgdat;
3679 	}
3680 }
3681 
3682 static inline unsigned int
3683 gfp_to_alloc_flags(gfp_t gfp_mask)
3684 {
3685 	unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
3686 
3687 	/* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
3688 	BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
3689 
3690 	/*
3691 	 * The caller may dip into page reserves a bit more if the caller
3692 	 * cannot run direct reclaim, or if the caller has realtime scheduling
3693 	 * policy or is asking for __GFP_HIGH memory.  GFP_ATOMIC requests will
3694 	 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
3695 	 */
3696 	alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
3697 
3698 	if (gfp_mask & __GFP_ATOMIC) {
3699 		/*
3700 		 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
3701 		 * if it can't schedule.
3702 		 */
3703 		if (!(gfp_mask & __GFP_NOMEMALLOC))
3704 			alloc_flags |= ALLOC_HARDER;
3705 		/*
3706 		 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
3707 		 * comment for __cpuset_node_allowed().
3708 		 */
3709 		alloc_flags &= ~ALLOC_CPUSET;
3710 	} else if (unlikely(rt_task(current)) && !in_interrupt())
3711 		alloc_flags |= ALLOC_HARDER;
3712 
3713 #ifdef CONFIG_CMA
3714 	if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
3715 		alloc_flags |= ALLOC_CMA;
3716 #endif
3717 	return alloc_flags;
3718 }
3719 
3720 static bool oom_reserves_allowed(struct task_struct *tsk)
3721 {
3722 	if (!tsk_is_oom_victim(tsk))
3723 		return false;
3724 
3725 	/*
3726 	 * !MMU doesn't have oom reaper so give access to memory reserves
3727 	 * only to the thread with TIF_MEMDIE set
3728 	 */
3729 	if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE))
3730 		return false;
3731 
3732 	return true;
3733 }
3734 
3735 /*
3736  * Distinguish requests which really need access to full memory
3737  * reserves from oom victims which can live with a portion of it
3738  */
3739 static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask)
3740 {
3741 	if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
3742 		return 0;
3743 	if (gfp_mask & __GFP_MEMALLOC)
3744 		return ALLOC_NO_WATERMARKS;
3745 	if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
3746 		return ALLOC_NO_WATERMARKS;
3747 	if (!in_interrupt()) {
3748 		if (current->flags & PF_MEMALLOC)
3749 			return ALLOC_NO_WATERMARKS;
3750 		else if (oom_reserves_allowed(current))
3751 			return ALLOC_OOM;
3752 	}
3753 
3754 	return 0;
3755 }
3756 
3757 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
3758 {
3759 	return !!__gfp_pfmemalloc_flags(gfp_mask);
3760 }
3761 
3762 /*
3763  * Checks whether it makes sense to retry the reclaim to make a forward progress
3764  * for the given allocation request.
3765  *
3766  * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
3767  * without success, or when we couldn't even meet the watermark if we
3768  * reclaimed all remaining pages on the LRU lists.
3769  *
3770  * Returns true if a retry is viable or false to enter the oom path.
3771  */
3772 static inline bool
3773 should_reclaim_retry(gfp_t gfp_mask, unsigned order,
3774 		     struct alloc_context *ac, int alloc_flags,
3775 		     bool did_some_progress, int *no_progress_loops)
3776 {
3777 	struct zone *zone;
3778 	struct zoneref *z;
3779 
3780 	/*
3781 	 * Costly allocations might have made a progress but this doesn't mean
3782 	 * their order will become available due to high fragmentation so
3783 	 * always increment the no progress counter for them
3784 	 */
3785 	if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
3786 		*no_progress_loops = 0;
3787 	else
3788 		(*no_progress_loops)++;
3789 
3790 	/*
3791 	 * Make sure we converge to OOM if we cannot make any progress
3792 	 * several times in the row.
3793 	 */
3794 	if (*no_progress_loops > MAX_RECLAIM_RETRIES) {
3795 		/* Before OOM, exhaust highatomic_reserve */
3796 		return unreserve_highatomic_pageblock(ac, true);
3797 	}
3798 
3799 	/*
3800 	 * Keep reclaiming pages while there is a chance this will lead
3801 	 * somewhere.  If none of the target zones can satisfy our allocation
3802 	 * request even if all reclaimable pages are considered then we are
3803 	 * screwed and have to go OOM.
3804 	 */
3805 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3806 					ac->nodemask) {
3807 		unsigned long available;
3808 		unsigned long reclaimable;
3809 		unsigned long min_wmark = min_wmark_pages(zone);
3810 		bool wmark;
3811 
3812 		available = reclaimable = zone_reclaimable_pages(zone);
3813 		available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
3814 
3815 		/*
3816 		 * Would the allocation succeed if we reclaimed all
3817 		 * reclaimable pages?
3818 		 */
3819 		wmark = __zone_watermark_ok(zone, order, min_wmark,
3820 				ac_classzone_idx(ac), alloc_flags, available);
3821 		trace_reclaim_retry_zone(z, order, reclaimable,
3822 				available, min_wmark, *no_progress_loops, wmark);
3823 		if (wmark) {
3824 			/*
3825 			 * If we didn't make any progress and have a lot of
3826 			 * dirty + writeback pages then we should wait for
3827 			 * an IO to complete to slow down the reclaim and
3828 			 * prevent from pre mature OOM
3829 			 */
3830 			if (!did_some_progress) {
3831 				unsigned long write_pending;
3832 
3833 				write_pending = zone_page_state_snapshot(zone,
3834 							NR_ZONE_WRITE_PENDING);
3835 
3836 				if (2 * write_pending > reclaimable) {
3837 					congestion_wait(BLK_RW_ASYNC, HZ/10);
3838 					return true;
3839 				}
3840 			}
3841 
3842 			/*
3843 			 * Memory allocation/reclaim might be called from a WQ
3844 			 * context and the current implementation of the WQ
3845 			 * concurrency control doesn't recognize that
3846 			 * a particular WQ is congested if the worker thread is
3847 			 * looping without ever sleeping. Therefore we have to
3848 			 * do a short sleep here rather than calling
3849 			 * cond_resched().
3850 			 */
3851 			if (current->flags & PF_WQ_WORKER)
3852 				schedule_timeout_uninterruptible(1);
3853 			else
3854 				cond_resched();
3855 
3856 			return true;
3857 		}
3858 	}
3859 
3860 	return false;
3861 }
3862 
3863 static inline bool
3864 check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
3865 {
3866 	/*
3867 	 * It's possible that cpuset's mems_allowed and the nodemask from
3868 	 * mempolicy don't intersect. This should be normally dealt with by
3869 	 * policy_nodemask(), but it's possible to race with cpuset update in
3870 	 * such a way the check therein was true, and then it became false
3871 	 * before we got our cpuset_mems_cookie here.
3872 	 * This assumes that for all allocations, ac->nodemask can come only
3873 	 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
3874 	 * when it does not intersect with the cpuset restrictions) or the
3875 	 * caller can deal with a violated nodemask.
3876 	 */
3877 	if (cpusets_enabled() && ac->nodemask &&
3878 			!cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
3879 		ac->nodemask = NULL;
3880 		return true;
3881 	}
3882 
3883 	/*
3884 	 * When updating a task's mems_allowed or mempolicy nodemask, it is
3885 	 * possible to race with parallel threads in such a way that our
3886 	 * allocation can fail while the mask is being updated. If we are about
3887 	 * to fail, check if the cpuset changed during allocation and if so,
3888 	 * retry.
3889 	 */
3890 	if (read_mems_allowed_retry(cpuset_mems_cookie))
3891 		return true;
3892 
3893 	return false;
3894 }
3895 
3896 static inline struct page *
3897 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
3898 						struct alloc_context *ac)
3899 {
3900 	bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
3901 	const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
3902 	struct page *page = NULL;
3903 	unsigned int alloc_flags;
3904 	unsigned long did_some_progress;
3905 	enum compact_priority compact_priority;
3906 	enum compact_result compact_result;
3907 	int compaction_retries;
3908 	int no_progress_loops;
3909 	unsigned int cpuset_mems_cookie;
3910 	int reserve_flags;
3911 
3912 	/*
3913 	 * In the slowpath, we sanity check order to avoid ever trying to
3914 	 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
3915 	 * be using allocators in order of preference for an area that is
3916 	 * too large.
3917 	 */
3918 	if (order >= MAX_ORDER) {
3919 		WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
3920 		return NULL;
3921 	}
3922 
3923 	/*
3924 	 * We also sanity check to catch abuse of atomic reserves being used by
3925 	 * callers that are not in atomic context.
3926 	 */
3927 	if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
3928 				(__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
3929 		gfp_mask &= ~__GFP_ATOMIC;
3930 
3931 retry_cpuset:
3932 	compaction_retries = 0;
3933 	no_progress_loops = 0;
3934 	compact_priority = DEF_COMPACT_PRIORITY;
3935 	cpuset_mems_cookie = read_mems_allowed_begin();
3936 
3937 	/*
3938 	 * The fast path uses conservative alloc_flags to succeed only until
3939 	 * kswapd needs to be woken up, and to avoid the cost of setting up
3940 	 * alloc_flags precisely. So we do that now.
3941 	 */
3942 	alloc_flags = gfp_to_alloc_flags(gfp_mask);
3943 
3944 	/*
3945 	 * We need to recalculate the starting point for the zonelist iterator
3946 	 * because we might have used different nodemask in the fast path, or
3947 	 * there was a cpuset modification and we are retrying - otherwise we
3948 	 * could end up iterating over non-eligible zones endlessly.
3949 	 */
3950 	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
3951 					ac->high_zoneidx, ac->nodemask);
3952 	if (!ac->preferred_zoneref->zone)
3953 		goto nopage;
3954 
3955 	if (gfp_mask & __GFP_KSWAPD_RECLAIM)
3956 		wake_all_kswapds(order, ac);
3957 
3958 	/*
3959 	 * The adjusted alloc_flags might result in immediate success, so try
3960 	 * that first
3961 	 */
3962 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3963 	if (page)
3964 		goto got_pg;
3965 
3966 	/*
3967 	 * For costly allocations, try direct compaction first, as it's likely
3968 	 * that we have enough base pages and don't need to reclaim. For non-
3969 	 * movable high-order allocations, do that as well, as compaction will
3970 	 * try prevent permanent fragmentation by migrating from blocks of the
3971 	 * same migratetype.
3972 	 * Don't try this for allocations that are allowed to ignore
3973 	 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
3974 	 */
3975 	if (can_direct_reclaim &&
3976 			(costly_order ||
3977 			   (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
3978 			&& !gfp_pfmemalloc_allowed(gfp_mask)) {
3979 		page = __alloc_pages_direct_compact(gfp_mask, order,
3980 						alloc_flags, ac,
3981 						INIT_COMPACT_PRIORITY,
3982 						&compact_result);
3983 		if (page)
3984 			goto got_pg;
3985 
3986 		/*
3987 		 * Checks for costly allocations with __GFP_NORETRY, which
3988 		 * includes THP page fault allocations
3989 		 */
3990 		if (costly_order && (gfp_mask & __GFP_NORETRY)) {
3991 			/*
3992 			 * If compaction is deferred for high-order allocations,
3993 			 * it is because sync compaction recently failed. If
3994 			 * this is the case and the caller requested a THP
3995 			 * allocation, we do not want to heavily disrupt the
3996 			 * system, so we fail the allocation instead of entering
3997 			 * direct reclaim.
3998 			 */
3999 			if (compact_result == COMPACT_DEFERRED)
4000 				goto nopage;
4001 
4002 			/*
4003 			 * Looks like reclaim/compaction is worth trying, but
4004 			 * sync compaction could be very expensive, so keep
4005 			 * using async compaction.
4006 			 */
4007 			compact_priority = INIT_COMPACT_PRIORITY;
4008 		}
4009 	}
4010 
4011 retry:
4012 	/* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
4013 	if (gfp_mask & __GFP_KSWAPD_RECLAIM)
4014 		wake_all_kswapds(order, ac);
4015 
4016 	reserve_flags = __gfp_pfmemalloc_flags(gfp_mask);
4017 	if (reserve_flags)
4018 		alloc_flags = reserve_flags;
4019 
4020 	/*
4021 	 * Reset the zonelist iterators if memory policies can be ignored.
4022 	 * These allocations are high priority and system rather than user
4023 	 * orientated.
4024 	 */
4025 	if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) {
4026 		ac->zonelist = node_zonelist(numa_node_id(), gfp_mask);
4027 		ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4028 					ac->high_zoneidx, ac->nodemask);
4029 	}
4030 
4031 	/* Attempt with potentially adjusted zonelist and alloc_flags */
4032 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4033 	if (page)
4034 		goto got_pg;
4035 
4036 	/* Caller is not willing to reclaim, we can't balance anything */
4037 	if (!can_direct_reclaim)
4038 		goto nopage;
4039 
4040 	/* Avoid recursion of direct reclaim */
4041 	if (current->flags & PF_MEMALLOC)
4042 		goto nopage;
4043 
4044 	/* Try direct reclaim and then allocating */
4045 	page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
4046 							&did_some_progress);
4047 	if (page)
4048 		goto got_pg;
4049 
4050 	/* Try direct compaction and then allocating */
4051 	page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
4052 					compact_priority, &compact_result);
4053 	if (page)
4054 		goto got_pg;
4055 
4056 	/* Do not loop if specifically requested */
4057 	if (gfp_mask & __GFP_NORETRY)
4058 		goto nopage;
4059 
4060 	/*
4061 	 * Do not retry costly high order allocations unless they are
4062 	 * __GFP_RETRY_MAYFAIL
4063 	 */
4064 	if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL))
4065 		goto nopage;
4066 
4067 	if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
4068 				 did_some_progress > 0, &no_progress_loops))
4069 		goto retry;
4070 
4071 	/*
4072 	 * It doesn't make any sense to retry for the compaction if the order-0
4073 	 * reclaim is not able to make any progress because the current
4074 	 * implementation of the compaction depends on the sufficient amount
4075 	 * of free memory (see __compaction_suitable)
4076 	 */
4077 	if (did_some_progress > 0 &&
4078 			should_compact_retry(ac, order, alloc_flags,
4079 				compact_result, &compact_priority,
4080 				&compaction_retries))
4081 		goto retry;
4082 
4083 
4084 	/* Deal with possible cpuset update races before we start OOM killing */
4085 	if (check_retry_cpuset(cpuset_mems_cookie, ac))
4086 		goto retry_cpuset;
4087 
4088 	/* Reclaim has failed us, start killing things */
4089 	page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
4090 	if (page)
4091 		goto got_pg;
4092 
4093 	/* Avoid allocations with no watermarks from looping endlessly */
4094 	if (tsk_is_oom_victim(current) &&
4095 	    (alloc_flags == ALLOC_OOM ||
4096 	     (gfp_mask & __GFP_NOMEMALLOC)))
4097 		goto nopage;
4098 
4099 	/* Retry as long as the OOM killer is making progress */
4100 	if (did_some_progress) {
4101 		no_progress_loops = 0;
4102 		goto retry;
4103 	}
4104 
4105 nopage:
4106 	/* Deal with possible cpuset update races before we fail */
4107 	if (check_retry_cpuset(cpuset_mems_cookie, ac))
4108 		goto retry_cpuset;
4109 
4110 	/*
4111 	 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
4112 	 * we always retry
4113 	 */
4114 	if (gfp_mask & __GFP_NOFAIL) {
4115 		/*
4116 		 * All existing users of the __GFP_NOFAIL are blockable, so warn
4117 		 * of any new users that actually require GFP_NOWAIT
4118 		 */
4119 		if (WARN_ON_ONCE(!can_direct_reclaim))
4120 			goto fail;
4121 
4122 		/*
4123 		 * PF_MEMALLOC request from this context is rather bizarre
4124 		 * because we cannot reclaim anything and only can loop waiting
4125 		 * for somebody to do a work for us
4126 		 */
4127 		WARN_ON_ONCE(current->flags & PF_MEMALLOC);
4128 
4129 		/*
4130 		 * non failing costly orders are a hard requirement which we
4131 		 * are not prepared for much so let's warn about these users
4132 		 * so that we can identify them and convert them to something
4133 		 * else.
4134 		 */
4135 		WARN_ON_ONCE(order > PAGE_ALLOC_COSTLY_ORDER);
4136 
4137 		/*
4138 		 * Help non-failing allocations by giving them access to memory
4139 		 * reserves but do not use ALLOC_NO_WATERMARKS because this
4140 		 * could deplete whole memory reserves which would just make
4141 		 * the situation worse
4142 		 */
4143 		page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac);
4144 		if (page)
4145 			goto got_pg;
4146 
4147 		cond_resched();
4148 		goto retry;
4149 	}
4150 fail:
4151 	warn_alloc(gfp_mask, ac->nodemask,
4152 			"page allocation failure: order:%u", order);
4153 got_pg:
4154 	return page;
4155 }
4156 
4157 static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
4158 		int preferred_nid, nodemask_t *nodemask,
4159 		struct alloc_context *ac, gfp_t *alloc_mask,
4160 		unsigned int *alloc_flags)
4161 {
4162 	ac->high_zoneidx = gfp_zone(gfp_mask);
4163 	ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
4164 	ac->nodemask = nodemask;
4165 	ac->migratetype = gfpflags_to_migratetype(gfp_mask);
4166 
4167 	if (cpusets_enabled()) {
4168 		*alloc_mask |= __GFP_HARDWALL;
4169 		if (!ac->nodemask)
4170 			ac->nodemask = &cpuset_current_mems_allowed;
4171 		else
4172 			*alloc_flags |= ALLOC_CPUSET;
4173 	}
4174 
4175 	fs_reclaim_acquire(gfp_mask);
4176 	fs_reclaim_release(gfp_mask);
4177 
4178 	might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
4179 
4180 	if (should_fail_alloc_page(gfp_mask, order))
4181 		return false;
4182 
4183 	if (IS_ENABLED(CONFIG_CMA) && ac->migratetype == MIGRATE_MOVABLE)
4184 		*alloc_flags |= ALLOC_CMA;
4185 
4186 	return true;
4187 }
4188 
4189 /* Determine whether to spread dirty pages and what the first usable zone */
4190 static inline void finalise_ac(gfp_t gfp_mask,
4191 		unsigned int order, struct alloc_context *ac)
4192 {
4193 	/* Dirty zone balancing only done in the fast path */
4194 	ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
4195 
4196 	/*
4197 	 * The preferred zone is used for statistics but crucially it is
4198 	 * also used as the starting point for the zonelist iterator. It
4199 	 * may get reset for allocations that ignore memory policies.
4200 	 */
4201 	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4202 					ac->high_zoneidx, ac->nodemask);
4203 }
4204 
4205 /*
4206  * This is the 'heart' of the zoned buddy allocator.
4207  */
4208 struct page *
4209 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order, int preferred_nid,
4210 							nodemask_t *nodemask)
4211 {
4212 	struct page *page;
4213 	unsigned int alloc_flags = ALLOC_WMARK_LOW;
4214 	gfp_t alloc_mask; /* The gfp_t that was actually used for allocation */
4215 	struct alloc_context ac = { };
4216 
4217 	gfp_mask &= gfp_allowed_mask;
4218 	alloc_mask = gfp_mask;
4219 	if (!prepare_alloc_pages(gfp_mask, order, preferred_nid, nodemask, &ac, &alloc_mask, &alloc_flags))
4220 		return NULL;
4221 
4222 	finalise_ac(gfp_mask, order, &ac);
4223 
4224 	/* First allocation attempt */
4225 	page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
4226 	if (likely(page))
4227 		goto out;
4228 
4229 	/*
4230 	 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
4231 	 * resp. GFP_NOIO which has to be inherited for all allocation requests
4232 	 * from a particular context which has been marked by
4233 	 * memalloc_no{fs,io}_{save,restore}.
4234 	 */
4235 	alloc_mask = current_gfp_context(gfp_mask);
4236 	ac.spread_dirty_pages = false;
4237 
4238 	/*
4239 	 * Restore the original nodemask if it was potentially replaced with
4240 	 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
4241 	 */
4242 	if (unlikely(ac.nodemask != nodemask))
4243 		ac.nodemask = nodemask;
4244 
4245 	page = __alloc_pages_slowpath(alloc_mask, order, &ac);
4246 
4247 out:
4248 	if (memcg_kmem_enabled() && (gfp_mask & __GFP_ACCOUNT) && page &&
4249 	    unlikely(memcg_kmem_charge(page, gfp_mask, order) != 0)) {
4250 		__free_pages(page, order);
4251 		page = NULL;
4252 	}
4253 
4254 	trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);
4255 
4256 	return page;
4257 }
4258 EXPORT_SYMBOL(__alloc_pages_nodemask);
4259 
4260 /*
4261  * Common helper functions.
4262  */
4263 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
4264 {
4265 	struct page *page;
4266 
4267 	/*
4268 	 * __get_free_pages() returns a 32-bit address, which cannot represent
4269 	 * a highmem page
4270 	 */
4271 	VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
4272 
4273 	page = alloc_pages(gfp_mask, order);
4274 	if (!page)
4275 		return 0;
4276 	return (unsigned long) page_address(page);
4277 }
4278 EXPORT_SYMBOL(__get_free_pages);
4279 
4280 unsigned long get_zeroed_page(gfp_t gfp_mask)
4281 {
4282 	return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
4283 }
4284 EXPORT_SYMBOL(get_zeroed_page);
4285 
4286 void __free_pages(struct page *page, unsigned int order)
4287 {
4288 	if (put_page_testzero(page)) {
4289 		if (order == 0)
4290 			free_unref_page(page);
4291 		else
4292 			__free_pages_ok(page, order);
4293 	}
4294 }
4295 
4296 EXPORT_SYMBOL(__free_pages);
4297 
4298 void free_pages(unsigned long addr, unsigned int order)
4299 {
4300 	if (addr != 0) {
4301 		VM_BUG_ON(!virt_addr_valid((void *)addr));
4302 		__free_pages(virt_to_page((void *)addr), order);
4303 	}
4304 }
4305 
4306 EXPORT_SYMBOL(free_pages);
4307 
4308 /*
4309  * Page Fragment:
4310  *  An arbitrary-length arbitrary-offset area of memory which resides
4311  *  within a 0 or higher order page.  Multiple fragments within that page
4312  *  are individually refcounted, in the page's reference counter.
4313  *
4314  * The page_frag functions below provide a simple allocation framework for
4315  * page fragments.  This is used by the network stack and network device
4316  * drivers to provide a backing region of memory for use as either an
4317  * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
4318  */
4319 static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
4320 					     gfp_t gfp_mask)
4321 {
4322 	struct page *page = NULL;
4323 	gfp_t gfp = gfp_mask;
4324 
4325 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4326 	gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
4327 		    __GFP_NOMEMALLOC;
4328 	page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
4329 				PAGE_FRAG_CACHE_MAX_ORDER);
4330 	nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
4331 #endif
4332 	if (unlikely(!page))
4333 		page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
4334 
4335 	nc->va = page ? page_address(page) : NULL;
4336 
4337 	return page;
4338 }
4339 
4340 void __page_frag_cache_drain(struct page *page, unsigned int count)
4341 {
4342 	VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
4343 
4344 	if (page_ref_sub_and_test(page, count)) {
4345 		unsigned int order = compound_order(page);
4346 
4347 		if (order == 0)
4348 			free_unref_page(page);
4349 		else
4350 			__free_pages_ok(page, order);
4351 	}
4352 }
4353 EXPORT_SYMBOL(__page_frag_cache_drain);
4354 
4355 void *page_frag_alloc(struct page_frag_cache *nc,
4356 		      unsigned int fragsz, gfp_t gfp_mask)
4357 {
4358 	unsigned int size = PAGE_SIZE;
4359 	struct page *page;
4360 	int offset;
4361 
4362 	if (unlikely(!nc->va)) {
4363 refill:
4364 		page = __page_frag_cache_refill(nc, gfp_mask);
4365 		if (!page)
4366 			return NULL;
4367 
4368 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4369 		/* if size can vary use size else just use PAGE_SIZE */
4370 		size = nc->size;
4371 #endif
4372 		/* Even if we own the page, we do not use atomic_set().
4373 		 * This would break get_page_unless_zero() users.
4374 		 */
4375 		page_ref_add(page, size - 1);
4376 
4377 		/* reset page count bias and offset to start of new frag */
4378 		nc->pfmemalloc = page_is_pfmemalloc(page);
4379 		nc->pagecnt_bias = size;
4380 		nc->offset = size;
4381 	}
4382 
4383 	offset = nc->offset - fragsz;
4384 	if (unlikely(offset < 0)) {
4385 		page = virt_to_page(nc->va);
4386 
4387 		if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
4388 			goto refill;
4389 
4390 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4391 		/* if size can vary use size else just use PAGE_SIZE */
4392 		size = nc->size;
4393 #endif
4394 		/* OK, page count is 0, we can safely set it */
4395 		set_page_count(page, size);
4396 
4397 		/* reset page count bias and offset to start of new frag */
4398 		nc->pagecnt_bias = size;
4399 		offset = size - fragsz;
4400 	}
4401 
4402 	nc->pagecnt_bias--;
4403 	nc->offset = offset;
4404 
4405 	return nc->va + offset;
4406 }
4407 EXPORT_SYMBOL(page_frag_alloc);
4408 
4409 /*
4410  * Frees a page fragment allocated out of either a compound or order 0 page.
4411  */
4412 void page_frag_free(void *addr)
4413 {
4414 	struct page *page = virt_to_head_page(addr);
4415 
4416 	if (unlikely(put_page_testzero(page)))
4417 		__free_pages_ok(page, compound_order(page));
4418 }
4419 EXPORT_SYMBOL(page_frag_free);
4420 
4421 static void *make_alloc_exact(unsigned long addr, unsigned int order,
4422 		size_t size)
4423 {
4424 	if (addr) {
4425 		unsigned long alloc_end = addr + (PAGE_SIZE << order);
4426 		unsigned long used = addr + PAGE_ALIGN(size);
4427 
4428 		split_page(virt_to_page((void *)addr), order);
4429 		while (used < alloc_end) {
4430 			free_page(used);
4431 			used += PAGE_SIZE;
4432 		}
4433 	}
4434 	return (void *)addr;
4435 }
4436 
4437 /**
4438  * alloc_pages_exact - allocate an exact number physically-contiguous pages.
4439  * @size: the number of bytes to allocate
4440  * @gfp_mask: GFP flags for the allocation
4441  *
4442  * This function is similar to alloc_pages(), except that it allocates the
4443  * minimum number of pages to satisfy the request.  alloc_pages() can only
4444  * allocate memory in power-of-two pages.
4445  *
4446  * This function is also limited by MAX_ORDER.
4447  *
4448  * Memory allocated by this function must be released by free_pages_exact().
4449  */
4450 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
4451 {
4452 	unsigned int order = get_order(size);
4453 	unsigned long addr;
4454 
4455 	addr = __get_free_pages(gfp_mask, order);
4456 	return make_alloc_exact(addr, order, size);
4457 }
4458 EXPORT_SYMBOL(alloc_pages_exact);
4459 
4460 /**
4461  * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
4462  *			   pages on a node.
4463  * @nid: the preferred node ID where memory should be allocated
4464  * @size: the number of bytes to allocate
4465  * @gfp_mask: GFP flags for the allocation
4466  *
4467  * Like alloc_pages_exact(), but try to allocate on node nid first before falling
4468  * back.
4469  */
4470 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
4471 {
4472 	unsigned int order = get_order(size);
4473 	struct page *p = alloc_pages_node(nid, gfp_mask, order);
4474 	if (!p)
4475 		return NULL;
4476 	return make_alloc_exact((unsigned long)page_address(p), order, size);
4477 }
4478 
4479 /**
4480  * free_pages_exact - release memory allocated via alloc_pages_exact()
4481  * @virt: the value returned by alloc_pages_exact.
4482  * @size: size of allocation, same value as passed to alloc_pages_exact().
4483  *
4484  * Release the memory allocated by a previous call to alloc_pages_exact.
4485  */
4486 void free_pages_exact(void *virt, size_t size)
4487 {
4488 	unsigned long addr = (unsigned long)virt;
4489 	unsigned long end = addr + PAGE_ALIGN(size);
4490 
4491 	while (addr < end) {
4492 		free_page(addr);
4493 		addr += PAGE_SIZE;
4494 	}
4495 }
4496 EXPORT_SYMBOL(free_pages_exact);
4497 
4498 /**
4499  * nr_free_zone_pages - count number of pages beyond high watermark
4500  * @offset: The zone index of the highest zone
4501  *
4502  * nr_free_zone_pages() counts the number of counts pages which are beyond the
4503  * high watermark within all zones at or below a given zone index.  For each
4504  * zone, the number of pages is calculated as:
4505  *
4506  *     nr_free_zone_pages = managed_pages - high_pages
4507  */
4508 static unsigned long nr_free_zone_pages(int offset)
4509 {
4510 	struct zoneref *z;
4511 	struct zone *zone;
4512 
4513 	/* Just pick one node, since fallback list is circular */
4514 	unsigned long sum = 0;
4515 
4516 	struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
4517 
4518 	for_each_zone_zonelist(zone, z, zonelist, offset) {
4519 		unsigned long size = zone->managed_pages;
4520 		unsigned long high = high_wmark_pages(zone);
4521 		if (size > high)
4522 			sum += size - high;
4523 	}
4524 
4525 	return sum;
4526 }
4527 
4528 /**
4529  * nr_free_buffer_pages - count number of pages beyond high watermark
4530  *
4531  * nr_free_buffer_pages() counts the number of pages which are beyond the high
4532  * watermark within ZONE_DMA and ZONE_NORMAL.
4533  */
4534 unsigned long nr_free_buffer_pages(void)
4535 {
4536 	return nr_free_zone_pages(gfp_zone(GFP_USER));
4537 }
4538 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
4539 
4540 /**
4541  * nr_free_pagecache_pages - count number of pages beyond high watermark
4542  *
4543  * nr_free_pagecache_pages() counts the number of pages which are beyond the
4544  * high watermark within all zones.
4545  */
4546 unsigned long nr_free_pagecache_pages(void)
4547 {
4548 	return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
4549 }
4550 
4551 static inline void show_node(struct zone *zone)
4552 {
4553 	if (IS_ENABLED(CONFIG_NUMA))
4554 		printk("Node %d ", zone_to_nid(zone));
4555 }
4556 
4557 long si_mem_available(void)
4558 {
4559 	long available;
4560 	unsigned long pagecache;
4561 	unsigned long wmark_low = 0;
4562 	unsigned long pages[NR_LRU_LISTS];
4563 	struct zone *zone;
4564 	int lru;
4565 
4566 	for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
4567 		pages[lru] = global_node_page_state(NR_LRU_BASE + lru);
4568 
4569 	for_each_zone(zone)
4570 		wmark_low += zone->watermark[WMARK_LOW];
4571 
4572 	/*
4573 	 * Estimate the amount of memory available for userspace allocations,
4574 	 * without causing swapping.
4575 	 */
4576 	available = global_zone_page_state(NR_FREE_PAGES) - totalreserve_pages;
4577 
4578 	/*
4579 	 * Not all the page cache can be freed, otherwise the system will
4580 	 * start swapping. Assume at least half of the page cache, or the
4581 	 * low watermark worth of cache, needs to stay.
4582 	 */
4583 	pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
4584 	pagecache -= min(pagecache / 2, wmark_low);
4585 	available += pagecache;
4586 
4587 	/*
4588 	 * Part of the reclaimable slab consists of items that are in use,
4589 	 * and cannot be freed. Cap this estimate at the low watermark.
4590 	 */
4591 	available += global_node_page_state(NR_SLAB_RECLAIMABLE) -
4592 		     min(global_node_page_state(NR_SLAB_RECLAIMABLE) / 2,
4593 			 wmark_low);
4594 
4595 	if (available < 0)
4596 		available = 0;
4597 	return available;
4598 }
4599 EXPORT_SYMBOL_GPL(si_mem_available);
4600 
4601 void si_meminfo(struct sysinfo *val)
4602 {
4603 	val->totalram = totalram_pages;
4604 	val->sharedram = global_node_page_state(NR_SHMEM);
4605 	val->freeram = global_zone_page_state(NR_FREE_PAGES);
4606 	val->bufferram = nr_blockdev_pages();
4607 	val->totalhigh = totalhigh_pages;
4608 	val->freehigh = nr_free_highpages();
4609 	val->mem_unit = PAGE_SIZE;
4610 }
4611 
4612 EXPORT_SYMBOL(si_meminfo);
4613 
4614 #ifdef CONFIG_NUMA
4615 void si_meminfo_node(struct sysinfo *val, int nid)
4616 {
4617 	int zone_type;		/* needs to be signed */
4618 	unsigned long managed_pages = 0;
4619 	unsigned long managed_highpages = 0;
4620 	unsigned long free_highpages = 0;
4621 	pg_data_t *pgdat = NODE_DATA(nid);
4622 
4623 	for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
4624 		managed_pages += pgdat->node_zones[zone_type].managed_pages;
4625 	val->totalram = managed_pages;
4626 	val->sharedram = node_page_state(pgdat, NR_SHMEM);
4627 	val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES);
4628 #ifdef CONFIG_HIGHMEM
4629 	for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
4630 		struct zone *zone = &pgdat->node_zones[zone_type];
4631 
4632 		if (is_highmem(zone)) {
4633 			managed_highpages += zone->managed_pages;
4634 			free_highpages += zone_page_state(zone, NR_FREE_PAGES);
4635 		}
4636 	}
4637 	val->totalhigh = managed_highpages;
4638 	val->freehigh = free_highpages;
4639 #else
4640 	val->totalhigh = managed_highpages;
4641 	val->freehigh = free_highpages;
4642 #endif
4643 	val->mem_unit = PAGE_SIZE;
4644 }
4645 #endif
4646 
4647 /*
4648  * Determine whether the node should be displayed or not, depending on whether
4649  * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
4650  */
4651 static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask)
4652 {
4653 	if (!(flags & SHOW_MEM_FILTER_NODES))
4654 		return false;
4655 
4656 	/*
4657 	 * no node mask - aka implicit memory numa policy. Do not bother with
4658 	 * the synchronization - read_mems_allowed_begin - because we do not
4659 	 * have to be precise here.
4660 	 */
4661 	if (!nodemask)
4662 		nodemask = &cpuset_current_mems_allowed;
4663 
4664 	return !node_isset(nid, *nodemask);
4665 }
4666 
4667 #define K(x) ((x) << (PAGE_SHIFT-10))
4668 
4669 static void show_migration_types(unsigned char type)
4670 {
4671 	static const char types[MIGRATE_TYPES] = {
4672 		[MIGRATE_UNMOVABLE]	= 'U',
4673 		[MIGRATE_MOVABLE]	= 'M',
4674 		[MIGRATE_RECLAIMABLE]	= 'E',
4675 		[MIGRATE_HIGHATOMIC]	= 'H',
4676 #ifdef CONFIG_CMA
4677 		[MIGRATE_CMA]		= 'C',
4678 #endif
4679 #ifdef CONFIG_MEMORY_ISOLATION
4680 		[MIGRATE_ISOLATE]	= 'I',
4681 #endif
4682 	};
4683 	char tmp[MIGRATE_TYPES + 1];
4684 	char *p = tmp;
4685 	int i;
4686 
4687 	for (i = 0; i < MIGRATE_TYPES; i++) {
4688 		if (type & (1 << i))
4689 			*p++ = types[i];
4690 	}
4691 
4692 	*p = '\0';
4693 	printk(KERN_CONT "(%s) ", tmp);
4694 }
4695 
4696 /*
4697  * Show free area list (used inside shift_scroll-lock stuff)
4698  * We also calculate the percentage fragmentation. We do this by counting the
4699  * memory on each free list with the exception of the first item on the list.
4700  *
4701  * Bits in @filter:
4702  * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
4703  *   cpuset.
4704  */
4705 void show_free_areas(unsigned int filter, nodemask_t *nodemask)
4706 {
4707 	unsigned long free_pcp = 0;
4708 	int cpu;
4709 	struct zone *zone;
4710 	pg_data_t *pgdat;
4711 
4712 	for_each_populated_zone(zone) {
4713 		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
4714 			continue;
4715 
4716 		for_each_online_cpu(cpu)
4717 			free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
4718 	}
4719 
4720 	printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
4721 		" active_file:%lu inactive_file:%lu isolated_file:%lu\n"
4722 		" unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n"
4723 		" slab_reclaimable:%lu slab_unreclaimable:%lu\n"
4724 		" mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
4725 		" free:%lu free_pcp:%lu free_cma:%lu\n",
4726 		global_node_page_state(NR_ACTIVE_ANON),
4727 		global_node_page_state(NR_INACTIVE_ANON),
4728 		global_node_page_state(NR_ISOLATED_ANON),
4729 		global_node_page_state(NR_ACTIVE_FILE),
4730 		global_node_page_state(NR_INACTIVE_FILE),
4731 		global_node_page_state(NR_ISOLATED_FILE),
4732 		global_node_page_state(NR_UNEVICTABLE),
4733 		global_node_page_state(NR_FILE_DIRTY),
4734 		global_node_page_state(NR_WRITEBACK),
4735 		global_node_page_state(NR_UNSTABLE_NFS),
4736 		global_node_page_state(NR_SLAB_RECLAIMABLE),
4737 		global_node_page_state(NR_SLAB_UNRECLAIMABLE),
4738 		global_node_page_state(NR_FILE_MAPPED),
4739 		global_node_page_state(NR_SHMEM),
4740 		global_zone_page_state(NR_PAGETABLE),
4741 		global_zone_page_state(NR_BOUNCE),
4742 		global_zone_page_state(NR_FREE_PAGES),
4743 		free_pcp,
4744 		global_zone_page_state(NR_FREE_CMA_PAGES));
4745 
4746 	for_each_online_pgdat(pgdat) {
4747 		if (show_mem_node_skip(filter, pgdat->node_id, nodemask))
4748 			continue;
4749 
4750 		printk("Node %d"
4751 			" active_anon:%lukB"
4752 			" inactive_anon:%lukB"
4753 			" active_file:%lukB"
4754 			" inactive_file:%lukB"
4755 			" unevictable:%lukB"
4756 			" isolated(anon):%lukB"
4757 			" isolated(file):%lukB"
4758 			" mapped:%lukB"
4759 			" dirty:%lukB"
4760 			" writeback:%lukB"
4761 			" shmem:%lukB"
4762 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4763 			" shmem_thp: %lukB"
4764 			" shmem_pmdmapped: %lukB"
4765 			" anon_thp: %lukB"
4766 #endif
4767 			" writeback_tmp:%lukB"
4768 			" unstable:%lukB"
4769 			" all_unreclaimable? %s"
4770 			"\n",
4771 			pgdat->node_id,
4772 			K(node_page_state(pgdat, NR_ACTIVE_ANON)),
4773 			K(node_page_state(pgdat, NR_INACTIVE_ANON)),
4774 			K(node_page_state(pgdat, NR_ACTIVE_FILE)),
4775 			K(node_page_state(pgdat, NR_INACTIVE_FILE)),
4776 			K(node_page_state(pgdat, NR_UNEVICTABLE)),
4777 			K(node_page_state(pgdat, NR_ISOLATED_ANON)),
4778 			K(node_page_state(pgdat, NR_ISOLATED_FILE)),
4779 			K(node_page_state(pgdat, NR_FILE_MAPPED)),
4780 			K(node_page_state(pgdat, NR_FILE_DIRTY)),
4781 			K(node_page_state(pgdat, NR_WRITEBACK)),
4782 			K(node_page_state(pgdat, NR_SHMEM)),
4783 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4784 			K(node_page_state(pgdat, NR_SHMEM_THPS) * HPAGE_PMD_NR),
4785 			K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)
4786 					* HPAGE_PMD_NR),
4787 			K(node_page_state(pgdat, NR_ANON_THPS) * HPAGE_PMD_NR),
4788 #endif
4789 			K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
4790 			K(node_page_state(pgdat, NR_UNSTABLE_NFS)),
4791 			pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ?
4792 				"yes" : "no");
4793 	}
4794 
4795 	for_each_populated_zone(zone) {
4796 		int i;
4797 
4798 		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
4799 			continue;
4800 
4801 		free_pcp = 0;
4802 		for_each_online_cpu(cpu)
4803 			free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
4804 
4805 		show_node(zone);
4806 		printk(KERN_CONT
4807 			"%s"
4808 			" free:%lukB"
4809 			" min:%lukB"
4810 			" low:%lukB"
4811 			" high:%lukB"
4812 			" active_anon:%lukB"
4813 			" inactive_anon:%lukB"
4814 			" active_file:%lukB"
4815 			" inactive_file:%lukB"
4816 			" unevictable:%lukB"
4817 			" writepending:%lukB"
4818 			" present:%lukB"
4819 			" managed:%lukB"
4820 			" mlocked:%lukB"
4821 			" kernel_stack:%lukB"
4822 			" pagetables:%lukB"
4823 			" bounce:%lukB"
4824 			" free_pcp:%lukB"
4825 			" local_pcp:%ukB"
4826 			" free_cma:%lukB"
4827 			"\n",
4828 			zone->name,
4829 			K(zone_page_state(zone, NR_FREE_PAGES)),
4830 			K(min_wmark_pages(zone)),
4831 			K(low_wmark_pages(zone)),
4832 			K(high_wmark_pages(zone)),
4833 			K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)),
4834 			K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)),
4835 			K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)),
4836 			K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)),
4837 			K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)),
4838 			K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)),
4839 			K(zone->present_pages),
4840 			K(zone->managed_pages),
4841 			K(zone_page_state(zone, NR_MLOCK)),
4842 			zone_page_state(zone, NR_KERNEL_STACK_KB),
4843 			K(zone_page_state(zone, NR_PAGETABLE)),
4844 			K(zone_page_state(zone, NR_BOUNCE)),
4845 			K(free_pcp),
4846 			K(this_cpu_read(zone->pageset->pcp.count)),
4847 			K(zone_page_state(zone, NR_FREE_CMA_PAGES)));
4848 		printk("lowmem_reserve[]:");
4849 		for (i = 0; i < MAX_NR_ZONES; i++)
4850 			printk(KERN_CONT " %ld", zone->lowmem_reserve[i]);
4851 		printk(KERN_CONT "\n");
4852 	}
4853 
4854 	for_each_populated_zone(zone) {
4855 		unsigned int order;
4856 		unsigned long nr[MAX_ORDER], flags, total = 0;
4857 		unsigned char types[MAX_ORDER];
4858 
4859 		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
4860 			continue;
4861 		show_node(zone);
4862 		printk(KERN_CONT "%s: ", zone->name);
4863 
4864 		spin_lock_irqsave(&zone->lock, flags);
4865 		for (order = 0; order < MAX_ORDER; order++) {
4866 			struct free_area *area = &zone->free_area[order];
4867 			int type;
4868 
4869 			nr[order] = area->nr_free;
4870 			total += nr[order] << order;
4871 
4872 			types[order] = 0;
4873 			for (type = 0; type < MIGRATE_TYPES; type++) {
4874 				if (!list_empty(&area->free_list[type]))
4875 					types[order] |= 1 << type;
4876 			}
4877 		}
4878 		spin_unlock_irqrestore(&zone->lock, flags);
4879 		for (order = 0; order < MAX_ORDER; order++) {
4880 			printk(KERN_CONT "%lu*%lukB ",
4881 			       nr[order], K(1UL) << order);
4882 			if (nr[order])
4883 				show_migration_types(types[order]);
4884 		}
4885 		printk(KERN_CONT "= %lukB\n", K(total));
4886 	}
4887 
4888 	hugetlb_show_meminfo();
4889 
4890 	printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES));
4891 
4892 	show_swap_cache_info();
4893 }
4894 
4895 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
4896 {
4897 	zoneref->zone = zone;
4898 	zoneref->zone_idx = zone_idx(zone);
4899 }
4900 
4901 /*
4902  * Builds allocation fallback zone lists.
4903  *
4904  * Add all populated zones of a node to the zonelist.
4905  */
4906 static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs)
4907 {
4908 	struct zone *zone;
4909 	enum zone_type zone_type = MAX_NR_ZONES;
4910 	int nr_zones = 0;
4911 
4912 	do {
4913 		zone_type--;
4914 		zone = pgdat->node_zones + zone_type;
4915 		if (managed_zone(zone)) {
4916 			zoneref_set_zone(zone, &zonerefs[nr_zones++]);
4917 			check_highest_zone(zone_type);
4918 		}
4919 	} while (zone_type);
4920 
4921 	return nr_zones;
4922 }
4923 
4924 #ifdef CONFIG_NUMA
4925 
4926 static int __parse_numa_zonelist_order(char *s)
4927 {
4928 	/*
4929 	 * We used to support different zonlists modes but they turned
4930 	 * out to be just not useful. Let's keep the warning in place
4931 	 * if somebody still use the cmd line parameter so that we do
4932 	 * not fail it silently
4933 	 */
4934 	if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) {
4935 		pr_warn("Ignoring unsupported numa_zonelist_order value:  %s\n", s);
4936 		return -EINVAL;
4937 	}
4938 	return 0;
4939 }
4940 
4941 static __init int setup_numa_zonelist_order(char *s)
4942 {
4943 	if (!s)
4944 		return 0;
4945 
4946 	return __parse_numa_zonelist_order(s);
4947 }
4948 early_param("numa_zonelist_order", setup_numa_zonelist_order);
4949 
4950 char numa_zonelist_order[] = "Node";
4951 
4952 /*
4953  * sysctl handler for numa_zonelist_order
4954  */
4955 int numa_zonelist_order_handler(struct ctl_table *table, int write,
4956 		void __user *buffer, size_t *length,
4957 		loff_t *ppos)
4958 {
4959 	char *str;
4960 	int ret;
4961 
4962 	if (!write)
4963 		return proc_dostring(table, write, buffer, length, ppos);
4964 	str = memdup_user_nul(buffer, 16);
4965 	if (IS_ERR(str))
4966 		return PTR_ERR(str);
4967 
4968 	ret = __parse_numa_zonelist_order(str);
4969 	kfree(str);
4970 	return ret;
4971 }
4972 
4973 
4974 #define MAX_NODE_LOAD (nr_online_nodes)
4975 static int node_load[MAX_NUMNODES];
4976 
4977 /**
4978  * find_next_best_node - find the next node that should appear in a given node's fallback list
4979  * @node: node whose fallback list we're appending
4980  * @used_node_mask: nodemask_t of already used nodes
4981  *
4982  * We use a number of factors to determine which is the next node that should
4983  * appear on a given node's fallback list.  The node should not have appeared
4984  * already in @node's fallback list, and it should be the next closest node
4985  * according to the distance array (which contains arbitrary distance values
4986  * from each node to each node in the system), and should also prefer nodes
4987  * with no CPUs, since presumably they'll have very little allocation pressure
4988  * on them otherwise.
4989  * It returns -1 if no node is found.
4990  */
4991 static int find_next_best_node(int node, nodemask_t *used_node_mask)
4992 {
4993 	int n, val;
4994 	int min_val = INT_MAX;
4995 	int best_node = NUMA_NO_NODE;
4996 	const struct cpumask *tmp = cpumask_of_node(0);
4997 
4998 	/* Use the local node if we haven't already */
4999 	if (!node_isset(node, *used_node_mask)) {
5000 		node_set(node, *used_node_mask);
5001 		return node;
5002 	}
5003 
5004 	for_each_node_state(n, N_MEMORY) {
5005 
5006 		/* Don't want a node to appear more than once */
5007 		if (node_isset(n, *used_node_mask))
5008 			continue;
5009 
5010 		/* Use the distance array to find the distance */
5011 		val = node_distance(node, n);
5012 
5013 		/* Penalize nodes under us ("prefer the next node") */
5014 		val += (n < node);
5015 
5016 		/* Give preference to headless and unused nodes */
5017 		tmp = cpumask_of_node(n);
5018 		if (!cpumask_empty(tmp))
5019 			val += PENALTY_FOR_NODE_WITH_CPUS;
5020 
5021 		/* Slight preference for less loaded node */
5022 		val *= (MAX_NODE_LOAD*MAX_NUMNODES);
5023 		val += node_load[n];
5024 
5025 		if (val < min_val) {
5026 			min_val = val;
5027 			best_node = n;
5028 		}
5029 	}
5030 
5031 	if (best_node >= 0)
5032 		node_set(best_node, *used_node_mask);
5033 
5034 	return best_node;
5035 }
5036 
5037 
5038 /*
5039  * Build zonelists ordered by node and zones within node.
5040  * This results in maximum locality--normal zone overflows into local
5041  * DMA zone, if any--but risks exhausting DMA zone.
5042  */
5043 static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order,
5044 		unsigned nr_nodes)
5045 {
5046 	struct zoneref *zonerefs;
5047 	int i;
5048 
5049 	zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5050 
5051 	for (i = 0; i < nr_nodes; i++) {
5052 		int nr_zones;
5053 
5054 		pg_data_t *node = NODE_DATA(node_order[i]);
5055 
5056 		nr_zones = build_zonerefs_node(node, zonerefs);
5057 		zonerefs += nr_zones;
5058 	}
5059 	zonerefs->zone = NULL;
5060 	zonerefs->zone_idx = 0;
5061 }
5062 
5063 /*
5064  * Build gfp_thisnode zonelists
5065  */
5066 static void build_thisnode_zonelists(pg_data_t *pgdat)
5067 {
5068 	struct zoneref *zonerefs;
5069 	int nr_zones;
5070 
5071 	zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs;
5072 	nr_zones = build_zonerefs_node(pgdat, zonerefs);
5073 	zonerefs += nr_zones;
5074 	zonerefs->zone = NULL;
5075 	zonerefs->zone_idx = 0;
5076 }
5077 
5078 /*
5079  * Build zonelists ordered by zone and nodes within zones.
5080  * This results in conserving DMA zone[s] until all Normal memory is
5081  * exhausted, but results in overflowing to remote node while memory
5082  * may still exist in local DMA zone.
5083  */
5084 
5085 static void build_zonelists(pg_data_t *pgdat)
5086 {
5087 	static int node_order[MAX_NUMNODES];
5088 	int node, load, nr_nodes = 0;
5089 	nodemask_t used_mask;
5090 	int local_node, prev_node;
5091 
5092 	/* NUMA-aware ordering of nodes */
5093 	local_node = pgdat->node_id;
5094 	load = nr_online_nodes;
5095 	prev_node = local_node;
5096 	nodes_clear(used_mask);
5097 
5098 	memset(node_order, 0, sizeof(node_order));
5099 	while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
5100 		/*
5101 		 * We don't want to pressure a particular node.
5102 		 * So adding penalty to the first node in same
5103 		 * distance group to make it round-robin.
5104 		 */
5105 		if (node_distance(local_node, node) !=
5106 		    node_distance(local_node, prev_node))
5107 			node_load[node] = load;
5108 
5109 		node_order[nr_nodes++] = node;
5110 		prev_node = node;
5111 		load--;
5112 	}
5113 
5114 	build_zonelists_in_node_order(pgdat, node_order, nr_nodes);
5115 	build_thisnode_zonelists(pgdat);
5116 }
5117 
5118 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
5119 /*
5120  * Return node id of node used for "local" allocations.
5121  * I.e., first node id of first zone in arg node's generic zonelist.
5122  * Used for initializing percpu 'numa_mem', which is used primarily
5123  * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
5124  */
5125 int local_memory_node(int node)
5126 {
5127 	struct zoneref *z;
5128 
5129 	z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
5130 				   gfp_zone(GFP_KERNEL),
5131 				   NULL);
5132 	return z->zone->node;
5133 }
5134 #endif
5135 
5136 static void setup_min_unmapped_ratio(void);
5137 static void setup_min_slab_ratio(void);
5138 #else	/* CONFIG_NUMA */
5139 
5140 static void build_zonelists(pg_data_t *pgdat)
5141 {
5142 	int node, local_node;
5143 	struct zoneref *zonerefs;
5144 	int nr_zones;
5145 
5146 	local_node = pgdat->node_id;
5147 
5148 	zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5149 	nr_zones = build_zonerefs_node(pgdat, zonerefs);
5150 	zonerefs += nr_zones;
5151 
5152 	/*
5153 	 * Now we build the zonelist so that it contains the zones
5154 	 * of all the other nodes.
5155 	 * We don't want to pressure a particular node, so when
5156 	 * building the zones for node N, we make sure that the
5157 	 * zones coming right after the local ones are those from
5158 	 * node N+1 (modulo N)
5159 	 */
5160 	for (node = local_node + 1; node < MAX_NUMNODES; node++) {
5161 		if (!node_online(node))
5162 			continue;
5163 		nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5164 		zonerefs += nr_zones;
5165 	}
5166 	for (node = 0; node < local_node; node++) {
5167 		if (!node_online(node))
5168 			continue;
5169 		nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5170 		zonerefs += nr_zones;
5171 	}
5172 
5173 	zonerefs->zone = NULL;
5174 	zonerefs->zone_idx = 0;
5175 }
5176 
5177 #endif	/* CONFIG_NUMA */
5178 
5179 /*
5180  * Boot pageset table. One per cpu which is going to be used for all
5181  * zones and all nodes. The parameters will be set in such a way
5182  * that an item put on a list will immediately be handed over to
5183  * the buddy list. This is safe since pageset manipulation is done
5184  * with interrupts disabled.
5185  *
5186  * The boot_pagesets must be kept even after bootup is complete for
5187  * unused processors and/or zones. They do play a role for bootstrapping
5188  * hotplugged processors.
5189  *
5190  * zoneinfo_show() and maybe other functions do
5191  * not check if the processor is online before following the pageset pointer.
5192  * Other parts of the kernel may not check if the zone is available.
5193  */
5194 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
5195 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
5196 static DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats);
5197 
5198 static void __build_all_zonelists(void *data)
5199 {
5200 	int nid;
5201 	int __maybe_unused cpu;
5202 	pg_data_t *self = data;
5203 	static DEFINE_SPINLOCK(lock);
5204 
5205 	spin_lock(&lock);
5206 
5207 #ifdef CONFIG_NUMA
5208 	memset(node_load, 0, sizeof(node_load));
5209 #endif
5210 
5211 	/*
5212 	 * This node is hotadded and no memory is yet present.   So just
5213 	 * building zonelists is fine - no need to touch other nodes.
5214 	 */
5215 	if (self && !node_online(self->node_id)) {
5216 		build_zonelists(self);
5217 	} else {
5218 		for_each_online_node(nid) {
5219 			pg_data_t *pgdat = NODE_DATA(nid);
5220 
5221 			build_zonelists(pgdat);
5222 		}
5223 
5224 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
5225 		/*
5226 		 * We now know the "local memory node" for each node--
5227 		 * i.e., the node of the first zone in the generic zonelist.
5228 		 * Set up numa_mem percpu variable for on-line cpus.  During
5229 		 * boot, only the boot cpu should be on-line;  we'll init the
5230 		 * secondary cpus' numa_mem as they come on-line.  During
5231 		 * node/memory hotplug, we'll fixup all on-line cpus.
5232 		 */
5233 		for_each_online_cpu(cpu)
5234 			set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
5235 #endif
5236 	}
5237 
5238 	spin_unlock(&lock);
5239 }
5240 
5241 static noinline void __init
5242 build_all_zonelists_init(void)
5243 {
5244 	int cpu;
5245 
5246 	__build_all_zonelists(NULL);
5247 
5248 	/*
5249 	 * Initialize the boot_pagesets that are going to be used
5250 	 * for bootstrapping processors. The real pagesets for
5251 	 * each zone will be allocated later when the per cpu
5252 	 * allocator is available.
5253 	 *
5254 	 * boot_pagesets are used also for bootstrapping offline
5255 	 * cpus if the system is already booted because the pagesets
5256 	 * are needed to initialize allocators on a specific cpu too.
5257 	 * F.e. the percpu allocator needs the page allocator which
5258 	 * needs the percpu allocator in order to allocate its pagesets
5259 	 * (a chicken-egg dilemma).
5260 	 */
5261 	for_each_possible_cpu(cpu)
5262 		setup_pageset(&per_cpu(boot_pageset, cpu), 0);
5263 
5264 	mminit_verify_zonelist();
5265 	cpuset_init_current_mems_allowed();
5266 }
5267 
5268 /*
5269  * unless system_state == SYSTEM_BOOTING.
5270  *
5271  * __ref due to call of __init annotated helper build_all_zonelists_init
5272  * [protected by SYSTEM_BOOTING].
5273  */
5274 void __ref build_all_zonelists(pg_data_t *pgdat)
5275 {
5276 	if (system_state == SYSTEM_BOOTING) {
5277 		build_all_zonelists_init();
5278 	} else {
5279 		__build_all_zonelists(pgdat);
5280 		/* cpuset refresh routine should be here */
5281 	}
5282 	vm_total_pages = nr_free_pagecache_pages();
5283 	/*
5284 	 * Disable grouping by mobility if the number of pages in the
5285 	 * system is too low to allow the mechanism to work. It would be
5286 	 * more accurate, but expensive to check per-zone. This check is
5287 	 * made on memory-hotadd so a system can start with mobility
5288 	 * disabled and enable it later
5289 	 */
5290 	if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
5291 		page_group_by_mobility_disabled = 1;
5292 	else
5293 		page_group_by_mobility_disabled = 0;
5294 
5295 	pr_info("Built %i zonelists, mobility grouping %s.  Total pages: %ld\n",
5296 		nr_online_nodes,
5297 		page_group_by_mobility_disabled ? "off" : "on",
5298 		vm_total_pages);
5299 #ifdef CONFIG_NUMA
5300 	pr_info("Policy zone: %s\n", zone_names[policy_zone]);
5301 #endif
5302 }
5303 
5304 /*
5305  * Initially all pages are reserved - free ones are freed
5306  * up by free_all_bootmem() once the early boot process is
5307  * done. Non-atomic initialization, single-pass.
5308  */
5309 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
5310 		unsigned long start_pfn, enum memmap_context context)
5311 {
5312 	struct vmem_altmap *altmap = to_vmem_altmap(__pfn_to_phys(start_pfn));
5313 	unsigned long end_pfn = start_pfn + size;
5314 	pg_data_t *pgdat = NODE_DATA(nid);
5315 	unsigned long pfn;
5316 	unsigned long nr_initialised = 0;
5317 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5318 	struct memblock_region *r = NULL, *tmp;
5319 #endif
5320 
5321 	if (highest_memmap_pfn < end_pfn - 1)
5322 		highest_memmap_pfn = end_pfn - 1;
5323 
5324 	/*
5325 	 * Honor reservation requested by the driver for this ZONE_DEVICE
5326 	 * memory
5327 	 */
5328 	if (altmap && start_pfn == altmap->base_pfn)
5329 		start_pfn += altmap->reserve;
5330 
5331 	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
5332 		/*
5333 		 * There can be holes in boot-time mem_map[]s handed to this
5334 		 * function.  They do not exist on hotplugged memory.
5335 		 */
5336 		if (context != MEMMAP_EARLY)
5337 			goto not_early;
5338 
5339 		if (!early_pfn_valid(pfn)) {
5340 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5341 			/*
5342 			 * Skip to the pfn preceding the next valid one (or
5343 			 * end_pfn), such that we hit a valid pfn (or end_pfn)
5344 			 * on our next iteration of the loop.
5345 			 */
5346 			pfn = memblock_next_valid_pfn(pfn, end_pfn) - 1;
5347 #endif
5348 			continue;
5349 		}
5350 		if (!early_pfn_in_nid(pfn, nid))
5351 			continue;
5352 		if (!update_defer_init(pgdat, pfn, end_pfn, &nr_initialised))
5353 			break;
5354 
5355 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5356 		/*
5357 		 * Check given memblock attribute by firmware which can affect
5358 		 * kernel memory layout.  If zone==ZONE_MOVABLE but memory is
5359 		 * mirrored, it's an overlapped memmap init. skip it.
5360 		 */
5361 		if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
5362 			if (!r || pfn >= memblock_region_memory_end_pfn(r)) {
5363 				for_each_memblock(memory, tmp)
5364 					if (pfn < memblock_region_memory_end_pfn(tmp))
5365 						break;
5366 				r = tmp;
5367 			}
5368 			if (pfn >= memblock_region_memory_base_pfn(r) &&
5369 			    memblock_is_mirror(r)) {
5370 				/* already initialized as NORMAL */
5371 				pfn = memblock_region_memory_end_pfn(r);
5372 				continue;
5373 			}
5374 		}
5375 #endif
5376 
5377 not_early:
5378 		/*
5379 		 * Mark the block movable so that blocks are reserved for
5380 		 * movable at startup. This will force kernel allocations
5381 		 * to reserve their blocks rather than leaking throughout
5382 		 * the address space during boot when many long-lived
5383 		 * kernel allocations are made.
5384 		 *
5385 		 * bitmap is created for zone's valid pfn range. but memmap
5386 		 * can be created for invalid pages (for alignment)
5387 		 * check here not to call set_pageblock_migratetype() against
5388 		 * pfn out of zone.
5389 		 */
5390 		if (!(pfn & (pageblock_nr_pages - 1))) {
5391 			struct page *page = pfn_to_page(pfn);
5392 
5393 			__init_single_page(page, pfn, zone, nid);
5394 			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
5395 			cond_resched();
5396 		} else {
5397 			__init_single_pfn(pfn, zone, nid);
5398 		}
5399 	}
5400 }
5401 
5402 static void __meminit zone_init_free_lists(struct zone *zone)
5403 {
5404 	unsigned int order, t;
5405 	for_each_migratetype_order(order, t) {
5406 		INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
5407 		zone->free_area[order].nr_free = 0;
5408 	}
5409 }
5410 
5411 #ifndef __HAVE_ARCH_MEMMAP_INIT
5412 #define memmap_init(size, nid, zone, start_pfn) \
5413 	memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
5414 #endif
5415 
5416 static int zone_batchsize(struct zone *zone)
5417 {
5418 #ifdef CONFIG_MMU
5419 	int batch;
5420 
5421 	/*
5422 	 * The per-cpu-pages pools are set to around 1000th of the
5423 	 * size of the zone.  But no more than 1/2 of a meg.
5424 	 *
5425 	 * OK, so we don't know how big the cache is.  So guess.
5426 	 */
5427 	batch = zone->managed_pages / 1024;
5428 	if (batch * PAGE_SIZE > 512 * 1024)
5429 		batch = (512 * 1024) / PAGE_SIZE;
5430 	batch /= 4;		/* We effectively *= 4 below */
5431 	if (batch < 1)
5432 		batch = 1;
5433 
5434 	/*
5435 	 * Clamp the batch to a 2^n - 1 value. Having a power
5436 	 * of 2 value was found to be more likely to have
5437 	 * suboptimal cache aliasing properties in some cases.
5438 	 *
5439 	 * For example if 2 tasks are alternately allocating
5440 	 * batches of pages, one task can end up with a lot
5441 	 * of pages of one half of the possible page colors
5442 	 * and the other with pages of the other colors.
5443 	 */
5444 	batch = rounddown_pow_of_two(batch + batch/2) - 1;
5445 
5446 	return batch;
5447 
5448 #else
5449 	/* The deferral and batching of frees should be suppressed under NOMMU
5450 	 * conditions.
5451 	 *
5452 	 * The problem is that NOMMU needs to be able to allocate large chunks
5453 	 * of contiguous memory as there's no hardware page translation to
5454 	 * assemble apparent contiguous memory from discontiguous pages.
5455 	 *
5456 	 * Queueing large contiguous runs of pages for batching, however,
5457 	 * causes the pages to actually be freed in smaller chunks.  As there
5458 	 * can be a significant delay between the individual batches being
5459 	 * recycled, this leads to the once large chunks of space being
5460 	 * fragmented and becoming unavailable for high-order allocations.
5461 	 */
5462 	return 0;
5463 #endif
5464 }
5465 
5466 /*
5467  * pcp->high and pcp->batch values are related and dependent on one another:
5468  * ->batch must never be higher then ->high.
5469  * The following function updates them in a safe manner without read side
5470  * locking.
5471  *
5472  * Any new users of pcp->batch and pcp->high should ensure they can cope with
5473  * those fields changing asynchronously (acording the the above rule).
5474  *
5475  * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
5476  * outside of boot time (or some other assurance that no concurrent updaters
5477  * exist).
5478  */
5479 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
5480 		unsigned long batch)
5481 {
5482        /* start with a fail safe value for batch */
5483 	pcp->batch = 1;
5484 	smp_wmb();
5485 
5486        /* Update high, then batch, in order */
5487 	pcp->high = high;
5488 	smp_wmb();
5489 
5490 	pcp->batch = batch;
5491 }
5492 
5493 /* a companion to pageset_set_high() */
5494 static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
5495 {
5496 	pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
5497 }
5498 
5499 static void pageset_init(struct per_cpu_pageset *p)
5500 {
5501 	struct per_cpu_pages *pcp;
5502 	int migratetype;
5503 
5504 	memset(p, 0, sizeof(*p));
5505 
5506 	pcp = &p->pcp;
5507 	pcp->count = 0;
5508 	for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
5509 		INIT_LIST_HEAD(&pcp->lists[migratetype]);
5510 }
5511 
5512 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
5513 {
5514 	pageset_init(p);
5515 	pageset_set_batch(p, batch);
5516 }
5517 
5518 /*
5519  * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
5520  * to the value high for the pageset p.
5521  */
5522 static void pageset_set_high(struct per_cpu_pageset *p,
5523 				unsigned long high)
5524 {
5525 	unsigned long batch = max(1UL, high / 4);
5526 	if ((high / 4) > (PAGE_SHIFT * 8))
5527 		batch = PAGE_SHIFT * 8;
5528 
5529 	pageset_update(&p->pcp, high, batch);
5530 }
5531 
5532 static void pageset_set_high_and_batch(struct zone *zone,
5533 				       struct per_cpu_pageset *pcp)
5534 {
5535 	if (percpu_pagelist_fraction)
5536 		pageset_set_high(pcp,
5537 			(zone->managed_pages /
5538 				percpu_pagelist_fraction));
5539 	else
5540 		pageset_set_batch(pcp, zone_batchsize(zone));
5541 }
5542 
5543 static void __meminit zone_pageset_init(struct zone *zone, int cpu)
5544 {
5545 	struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
5546 
5547 	pageset_init(pcp);
5548 	pageset_set_high_and_batch(zone, pcp);
5549 }
5550 
5551 void __meminit setup_zone_pageset(struct zone *zone)
5552 {
5553 	int cpu;
5554 	zone->pageset = alloc_percpu(struct per_cpu_pageset);
5555 	for_each_possible_cpu(cpu)
5556 		zone_pageset_init(zone, cpu);
5557 }
5558 
5559 /*
5560  * Allocate per cpu pagesets and initialize them.
5561  * Before this call only boot pagesets were available.
5562  */
5563 void __init setup_per_cpu_pageset(void)
5564 {
5565 	struct pglist_data *pgdat;
5566 	struct zone *zone;
5567 
5568 	for_each_populated_zone(zone)
5569 		setup_zone_pageset(zone);
5570 
5571 	for_each_online_pgdat(pgdat)
5572 		pgdat->per_cpu_nodestats =
5573 			alloc_percpu(struct per_cpu_nodestat);
5574 }
5575 
5576 static __meminit void zone_pcp_init(struct zone *zone)
5577 {
5578 	/*
5579 	 * per cpu subsystem is not up at this point. The following code
5580 	 * relies on the ability of the linker to provide the
5581 	 * offset of a (static) per cpu variable into the per cpu area.
5582 	 */
5583 	zone->pageset = &boot_pageset;
5584 
5585 	if (populated_zone(zone))
5586 		printk(KERN_DEBUG "  %s zone: %lu pages, LIFO batch:%u\n",
5587 			zone->name, zone->present_pages,
5588 					 zone_batchsize(zone));
5589 }
5590 
5591 void __meminit init_currently_empty_zone(struct zone *zone,
5592 					unsigned long zone_start_pfn,
5593 					unsigned long size)
5594 {
5595 	struct pglist_data *pgdat = zone->zone_pgdat;
5596 
5597 	pgdat->nr_zones = zone_idx(zone) + 1;
5598 
5599 	zone->zone_start_pfn = zone_start_pfn;
5600 
5601 	mminit_dprintk(MMINIT_TRACE, "memmap_init",
5602 			"Initialising map node %d zone %lu pfns %lu -> %lu\n",
5603 			pgdat->node_id,
5604 			(unsigned long)zone_idx(zone),
5605 			zone_start_pfn, (zone_start_pfn + size));
5606 
5607 	zone_init_free_lists(zone);
5608 	zone->initialized = 1;
5609 }
5610 
5611 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5612 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
5613 
5614 /*
5615  * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
5616  */
5617 int __meminit __early_pfn_to_nid(unsigned long pfn,
5618 					struct mminit_pfnnid_cache *state)
5619 {
5620 	unsigned long start_pfn, end_pfn;
5621 	int nid;
5622 
5623 	if (state->last_start <= pfn && pfn < state->last_end)
5624 		return state->last_nid;
5625 
5626 	nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
5627 	if (nid != -1) {
5628 		state->last_start = start_pfn;
5629 		state->last_end = end_pfn;
5630 		state->last_nid = nid;
5631 	}
5632 
5633 	return nid;
5634 }
5635 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
5636 
5637 /**
5638  * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
5639  * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
5640  * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
5641  *
5642  * If an architecture guarantees that all ranges registered contain no holes
5643  * and may be freed, this this function may be used instead of calling
5644  * memblock_free_early_nid() manually.
5645  */
5646 void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
5647 {
5648 	unsigned long start_pfn, end_pfn;
5649 	int i, this_nid;
5650 
5651 	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
5652 		start_pfn = min(start_pfn, max_low_pfn);
5653 		end_pfn = min(end_pfn, max_low_pfn);
5654 
5655 		if (start_pfn < end_pfn)
5656 			memblock_free_early_nid(PFN_PHYS(start_pfn),
5657 					(end_pfn - start_pfn) << PAGE_SHIFT,
5658 					this_nid);
5659 	}
5660 }
5661 
5662 /**
5663  * sparse_memory_present_with_active_regions - Call memory_present for each active range
5664  * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
5665  *
5666  * If an architecture guarantees that all ranges registered contain no holes and may
5667  * be freed, this function may be used instead of calling memory_present() manually.
5668  */
5669 void __init sparse_memory_present_with_active_regions(int nid)
5670 {
5671 	unsigned long start_pfn, end_pfn;
5672 	int i, this_nid;
5673 
5674 	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
5675 		memory_present(this_nid, start_pfn, end_pfn);
5676 }
5677 
5678 /**
5679  * get_pfn_range_for_nid - Return the start and end page frames for a node
5680  * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
5681  * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
5682  * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
5683  *
5684  * It returns the start and end page frame of a node based on information
5685  * provided by memblock_set_node(). If called for a node
5686  * with no available memory, a warning is printed and the start and end
5687  * PFNs will be 0.
5688  */
5689 void __meminit get_pfn_range_for_nid(unsigned int nid,
5690 			unsigned long *start_pfn, unsigned long *end_pfn)
5691 {
5692 	unsigned long this_start_pfn, this_end_pfn;
5693 	int i;
5694 
5695 	*start_pfn = -1UL;
5696 	*end_pfn = 0;
5697 
5698 	for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
5699 		*start_pfn = min(*start_pfn, this_start_pfn);
5700 		*end_pfn = max(*end_pfn, this_end_pfn);
5701 	}
5702 
5703 	if (*start_pfn == -1UL)
5704 		*start_pfn = 0;
5705 }
5706 
5707 /*
5708  * This finds a zone that can be used for ZONE_MOVABLE pages. The
5709  * assumption is made that zones within a node are ordered in monotonic
5710  * increasing memory addresses so that the "highest" populated zone is used
5711  */
5712 static void __init find_usable_zone_for_movable(void)
5713 {
5714 	int zone_index;
5715 	for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
5716 		if (zone_index == ZONE_MOVABLE)
5717 			continue;
5718 
5719 		if (arch_zone_highest_possible_pfn[zone_index] >
5720 				arch_zone_lowest_possible_pfn[zone_index])
5721 			break;
5722 	}
5723 
5724 	VM_BUG_ON(zone_index == -1);
5725 	movable_zone = zone_index;
5726 }
5727 
5728 /*
5729  * The zone ranges provided by the architecture do not include ZONE_MOVABLE
5730  * because it is sized independent of architecture. Unlike the other zones,
5731  * the starting point for ZONE_MOVABLE is not fixed. It may be different
5732  * in each node depending on the size of each node and how evenly kernelcore
5733  * is distributed. This helper function adjusts the zone ranges
5734  * provided by the architecture for a given node by using the end of the
5735  * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
5736  * zones within a node are in order of monotonic increases memory addresses
5737  */
5738 static void __meminit adjust_zone_range_for_zone_movable(int nid,
5739 					unsigned long zone_type,
5740 					unsigned long node_start_pfn,
5741 					unsigned long node_end_pfn,
5742 					unsigned long *zone_start_pfn,
5743 					unsigned long *zone_end_pfn)
5744 {
5745 	/* Only adjust if ZONE_MOVABLE is on this node */
5746 	if (zone_movable_pfn[nid]) {
5747 		/* Size ZONE_MOVABLE */
5748 		if (zone_type == ZONE_MOVABLE) {
5749 			*zone_start_pfn = zone_movable_pfn[nid];
5750 			*zone_end_pfn = min(node_end_pfn,
5751 				arch_zone_highest_possible_pfn[movable_zone]);
5752 
5753 		/* Adjust for ZONE_MOVABLE starting within this range */
5754 		} else if (!mirrored_kernelcore &&
5755 			*zone_start_pfn < zone_movable_pfn[nid] &&
5756 			*zone_end_pfn > zone_movable_pfn[nid]) {
5757 			*zone_end_pfn = zone_movable_pfn[nid];
5758 
5759 		/* Check if this whole range is within ZONE_MOVABLE */
5760 		} else if (*zone_start_pfn >= zone_movable_pfn[nid])
5761 			*zone_start_pfn = *zone_end_pfn;
5762 	}
5763 }
5764 
5765 /*
5766  * Return the number of pages a zone spans in a node, including holes
5767  * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
5768  */
5769 static unsigned long __meminit zone_spanned_pages_in_node(int nid,
5770 					unsigned long zone_type,
5771 					unsigned long node_start_pfn,
5772 					unsigned long node_end_pfn,
5773 					unsigned long *zone_start_pfn,
5774 					unsigned long *zone_end_pfn,
5775 					unsigned long *ignored)
5776 {
5777 	/* When hotadd a new node from cpu_up(), the node should be empty */
5778 	if (!node_start_pfn && !node_end_pfn)
5779 		return 0;
5780 
5781 	/* Get the start and end of the zone */
5782 	*zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
5783 	*zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
5784 	adjust_zone_range_for_zone_movable(nid, zone_type,
5785 				node_start_pfn, node_end_pfn,
5786 				zone_start_pfn, zone_end_pfn);
5787 
5788 	/* Check that this node has pages within the zone's required range */
5789 	if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
5790 		return 0;
5791 
5792 	/* Move the zone boundaries inside the node if necessary */
5793 	*zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
5794 	*zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
5795 
5796 	/* Return the spanned pages */
5797 	return *zone_end_pfn - *zone_start_pfn;
5798 }
5799 
5800 /*
5801  * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
5802  * then all holes in the requested range will be accounted for.
5803  */
5804 unsigned long __meminit __absent_pages_in_range(int nid,
5805 				unsigned long range_start_pfn,
5806 				unsigned long range_end_pfn)
5807 {
5808 	unsigned long nr_absent = range_end_pfn - range_start_pfn;
5809 	unsigned long start_pfn, end_pfn;
5810 	int i;
5811 
5812 	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
5813 		start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
5814 		end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
5815 		nr_absent -= end_pfn - start_pfn;
5816 	}
5817 	return nr_absent;
5818 }
5819 
5820 /**
5821  * absent_pages_in_range - Return number of page frames in holes within a range
5822  * @start_pfn: The start PFN to start searching for holes
5823  * @end_pfn: The end PFN to stop searching for holes
5824  *
5825  * It returns the number of pages frames in memory holes within a range.
5826  */
5827 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
5828 							unsigned long end_pfn)
5829 {
5830 	return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
5831 }
5832 
5833 /* Return the number of page frames in holes in a zone on a node */
5834 static unsigned long __meminit zone_absent_pages_in_node(int nid,
5835 					unsigned long zone_type,
5836 					unsigned long node_start_pfn,
5837 					unsigned long node_end_pfn,
5838 					unsigned long *ignored)
5839 {
5840 	unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
5841 	unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
5842 	unsigned long zone_start_pfn, zone_end_pfn;
5843 	unsigned long nr_absent;
5844 
5845 	/* When hotadd a new node from cpu_up(), the node should be empty */
5846 	if (!node_start_pfn && !node_end_pfn)
5847 		return 0;
5848 
5849 	zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
5850 	zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
5851 
5852 	adjust_zone_range_for_zone_movable(nid, zone_type,
5853 			node_start_pfn, node_end_pfn,
5854 			&zone_start_pfn, &zone_end_pfn);
5855 	nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
5856 
5857 	/*
5858 	 * ZONE_MOVABLE handling.
5859 	 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
5860 	 * and vice versa.
5861 	 */
5862 	if (mirrored_kernelcore && zone_movable_pfn[nid]) {
5863 		unsigned long start_pfn, end_pfn;
5864 		struct memblock_region *r;
5865 
5866 		for_each_memblock(memory, r) {
5867 			start_pfn = clamp(memblock_region_memory_base_pfn(r),
5868 					  zone_start_pfn, zone_end_pfn);
5869 			end_pfn = clamp(memblock_region_memory_end_pfn(r),
5870 					zone_start_pfn, zone_end_pfn);
5871 
5872 			if (zone_type == ZONE_MOVABLE &&
5873 			    memblock_is_mirror(r))
5874 				nr_absent += end_pfn - start_pfn;
5875 
5876 			if (zone_type == ZONE_NORMAL &&
5877 			    !memblock_is_mirror(r))
5878 				nr_absent += end_pfn - start_pfn;
5879 		}
5880 	}
5881 
5882 	return nr_absent;
5883 }
5884 
5885 #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5886 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
5887 					unsigned long zone_type,
5888 					unsigned long node_start_pfn,
5889 					unsigned long node_end_pfn,
5890 					unsigned long *zone_start_pfn,
5891 					unsigned long *zone_end_pfn,
5892 					unsigned long *zones_size)
5893 {
5894 	unsigned int zone;
5895 
5896 	*zone_start_pfn = node_start_pfn;
5897 	for (zone = 0; zone < zone_type; zone++)
5898 		*zone_start_pfn += zones_size[zone];
5899 
5900 	*zone_end_pfn = *zone_start_pfn + zones_size[zone_type];
5901 
5902 	return zones_size[zone_type];
5903 }
5904 
5905 static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
5906 						unsigned long zone_type,
5907 						unsigned long node_start_pfn,
5908 						unsigned long node_end_pfn,
5909 						unsigned long *zholes_size)
5910 {
5911 	if (!zholes_size)
5912 		return 0;
5913 
5914 	return zholes_size[zone_type];
5915 }
5916 
5917 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5918 
5919 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
5920 						unsigned long node_start_pfn,
5921 						unsigned long node_end_pfn,
5922 						unsigned long *zones_size,
5923 						unsigned long *zholes_size)
5924 {
5925 	unsigned long realtotalpages = 0, totalpages = 0;
5926 	enum zone_type i;
5927 
5928 	for (i = 0; i < MAX_NR_ZONES; i++) {
5929 		struct zone *zone = pgdat->node_zones + i;
5930 		unsigned long zone_start_pfn, zone_end_pfn;
5931 		unsigned long size, real_size;
5932 
5933 		size = zone_spanned_pages_in_node(pgdat->node_id, i,
5934 						  node_start_pfn,
5935 						  node_end_pfn,
5936 						  &zone_start_pfn,
5937 						  &zone_end_pfn,
5938 						  zones_size);
5939 		real_size = size - zone_absent_pages_in_node(pgdat->node_id, i,
5940 						  node_start_pfn, node_end_pfn,
5941 						  zholes_size);
5942 		if (size)
5943 			zone->zone_start_pfn = zone_start_pfn;
5944 		else
5945 			zone->zone_start_pfn = 0;
5946 		zone->spanned_pages = size;
5947 		zone->present_pages = real_size;
5948 
5949 		totalpages += size;
5950 		realtotalpages += real_size;
5951 	}
5952 
5953 	pgdat->node_spanned_pages = totalpages;
5954 	pgdat->node_present_pages = realtotalpages;
5955 	printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
5956 							realtotalpages);
5957 }
5958 
5959 #ifndef CONFIG_SPARSEMEM
5960 /*
5961  * Calculate the size of the zone->blockflags rounded to an unsigned long
5962  * Start by making sure zonesize is a multiple of pageblock_order by rounding
5963  * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
5964  * round what is now in bits to nearest long in bits, then return it in
5965  * bytes.
5966  */
5967 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
5968 {
5969 	unsigned long usemapsize;
5970 
5971 	zonesize += zone_start_pfn & (pageblock_nr_pages-1);
5972 	usemapsize = roundup(zonesize, pageblock_nr_pages);
5973 	usemapsize = usemapsize >> pageblock_order;
5974 	usemapsize *= NR_PAGEBLOCK_BITS;
5975 	usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
5976 
5977 	return usemapsize / 8;
5978 }
5979 
5980 static void __init setup_usemap(struct pglist_data *pgdat,
5981 				struct zone *zone,
5982 				unsigned long zone_start_pfn,
5983 				unsigned long zonesize)
5984 {
5985 	unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
5986 	zone->pageblock_flags = NULL;
5987 	if (usemapsize)
5988 		zone->pageblock_flags =
5989 			memblock_virt_alloc_node_nopanic(usemapsize,
5990 							 pgdat->node_id);
5991 }
5992 #else
5993 static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
5994 				unsigned long zone_start_pfn, unsigned long zonesize) {}
5995 #endif /* CONFIG_SPARSEMEM */
5996 
5997 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
5998 
5999 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
6000 void __paginginit set_pageblock_order(void)
6001 {
6002 	unsigned int order;
6003 
6004 	/* Check that pageblock_nr_pages has not already been setup */
6005 	if (pageblock_order)
6006 		return;
6007 
6008 	if (HPAGE_SHIFT > PAGE_SHIFT)
6009 		order = HUGETLB_PAGE_ORDER;
6010 	else
6011 		order = MAX_ORDER - 1;
6012 
6013 	/*
6014 	 * Assume the largest contiguous order of interest is a huge page.
6015 	 * This value may be variable depending on boot parameters on IA64 and
6016 	 * powerpc.
6017 	 */
6018 	pageblock_order = order;
6019 }
6020 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
6021 
6022 /*
6023  * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
6024  * is unused as pageblock_order is set at compile-time. See
6025  * include/linux/pageblock-flags.h for the values of pageblock_order based on
6026  * the kernel config
6027  */
6028 void __paginginit set_pageblock_order(void)
6029 {
6030 }
6031 
6032 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
6033 
6034 static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages,
6035 						   unsigned long present_pages)
6036 {
6037 	unsigned long pages = spanned_pages;
6038 
6039 	/*
6040 	 * Provide a more accurate estimation if there are holes within
6041 	 * the zone and SPARSEMEM is in use. If there are holes within the
6042 	 * zone, each populated memory region may cost us one or two extra
6043 	 * memmap pages due to alignment because memmap pages for each
6044 	 * populated regions may not be naturally aligned on page boundary.
6045 	 * So the (present_pages >> 4) heuristic is a tradeoff for that.
6046 	 */
6047 	if (spanned_pages > present_pages + (present_pages >> 4) &&
6048 	    IS_ENABLED(CONFIG_SPARSEMEM))
6049 		pages = present_pages;
6050 
6051 	return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
6052 }
6053 
6054 /*
6055  * Set up the zone data structures:
6056  *   - mark all pages reserved
6057  *   - mark all memory queues empty
6058  *   - clear the memory bitmaps
6059  *
6060  * NOTE: pgdat should get zeroed by caller.
6061  */
6062 static void __paginginit free_area_init_core(struct pglist_data *pgdat)
6063 {
6064 	enum zone_type j;
6065 	int nid = pgdat->node_id;
6066 
6067 	pgdat_resize_init(pgdat);
6068 #ifdef CONFIG_NUMA_BALANCING
6069 	spin_lock_init(&pgdat->numabalancing_migrate_lock);
6070 	pgdat->numabalancing_migrate_nr_pages = 0;
6071 	pgdat->numabalancing_migrate_next_window = jiffies;
6072 #endif
6073 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
6074 	spin_lock_init(&pgdat->split_queue_lock);
6075 	INIT_LIST_HEAD(&pgdat->split_queue);
6076 	pgdat->split_queue_len = 0;
6077 #endif
6078 	init_waitqueue_head(&pgdat->kswapd_wait);
6079 	init_waitqueue_head(&pgdat->pfmemalloc_wait);
6080 #ifdef CONFIG_COMPACTION
6081 	init_waitqueue_head(&pgdat->kcompactd_wait);
6082 #endif
6083 	pgdat_page_ext_init(pgdat);
6084 	spin_lock_init(&pgdat->lru_lock);
6085 	lruvec_init(node_lruvec(pgdat));
6086 
6087 	pgdat->per_cpu_nodestats = &boot_nodestats;
6088 
6089 	for (j = 0; j < MAX_NR_ZONES; j++) {
6090 		struct zone *zone = pgdat->node_zones + j;
6091 		unsigned long size, realsize, freesize, memmap_pages;
6092 		unsigned long zone_start_pfn = zone->zone_start_pfn;
6093 
6094 		size = zone->spanned_pages;
6095 		realsize = freesize = zone->present_pages;
6096 
6097 		/*
6098 		 * Adjust freesize so that it accounts for how much memory
6099 		 * is used by this zone for memmap. This affects the watermark
6100 		 * and per-cpu initialisations
6101 		 */
6102 		memmap_pages = calc_memmap_size(size, realsize);
6103 		if (!is_highmem_idx(j)) {
6104 			if (freesize >= memmap_pages) {
6105 				freesize -= memmap_pages;
6106 				if (memmap_pages)
6107 					printk(KERN_DEBUG
6108 					       "  %s zone: %lu pages used for memmap\n",
6109 					       zone_names[j], memmap_pages);
6110 			} else
6111 				pr_warn("  %s zone: %lu pages exceeds freesize %lu\n",
6112 					zone_names[j], memmap_pages, freesize);
6113 		}
6114 
6115 		/* Account for reserved pages */
6116 		if (j == 0 && freesize > dma_reserve) {
6117 			freesize -= dma_reserve;
6118 			printk(KERN_DEBUG "  %s zone: %lu pages reserved\n",
6119 					zone_names[0], dma_reserve);
6120 		}
6121 
6122 		if (!is_highmem_idx(j))
6123 			nr_kernel_pages += freesize;
6124 		/* Charge for highmem memmap if there are enough kernel pages */
6125 		else if (nr_kernel_pages > memmap_pages * 2)
6126 			nr_kernel_pages -= memmap_pages;
6127 		nr_all_pages += freesize;
6128 
6129 		/*
6130 		 * Set an approximate value for lowmem here, it will be adjusted
6131 		 * when the bootmem allocator frees pages into the buddy system.
6132 		 * And all highmem pages will be managed by the buddy system.
6133 		 */
6134 		zone->managed_pages = is_highmem_idx(j) ? realsize : freesize;
6135 #ifdef CONFIG_NUMA
6136 		zone->node = nid;
6137 #endif
6138 		zone->name = zone_names[j];
6139 		zone->zone_pgdat = pgdat;
6140 		spin_lock_init(&zone->lock);
6141 		zone_seqlock_init(zone);
6142 		zone_pcp_init(zone);
6143 
6144 		if (!size)
6145 			continue;
6146 
6147 		set_pageblock_order();
6148 		setup_usemap(pgdat, zone, zone_start_pfn, size);
6149 		init_currently_empty_zone(zone, zone_start_pfn, size);
6150 		memmap_init(size, nid, j, zone_start_pfn);
6151 	}
6152 }
6153 
6154 #ifdef CONFIG_FLAT_NODE_MEM_MAP
6155 static void __ref alloc_node_mem_map(struct pglist_data *pgdat)
6156 {
6157 	unsigned long __maybe_unused start = 0;
6158 	unsigned long __maybe_unused offset = 0;
6159 
6160 	/* Skip empty nodes */
6161 	if (!pgdat->node_spanned_pages)
6162 		return;
6163 
6164 	start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
6165 	offset = pgdat->node_start_pfn - start;
6166 	/* ia64 gets its own node_mem_map, before this, without bootmem */
6167 	if (!pgdat->node_mem_map) {
6168 		unsigned long size, end;
6169 		struct page *map;
6170 
6171 		/*
6172 		 * The zone's endpoints aren't required to be MAX_ORDER
6173 		 * aligned but the node_mem_map endpoints must be in order
6174 		 * for the buddy allocator to function correctly.
6175 		 */
6176 		end = pgdat_end_pfn(pgdat);
6177 		end = ALIGN(end, MAX_ORDER_NR_PAGES);
6178 		size =  (end - start) * sizeof(struct page);
6179 		map = alloc_remap(pgdat->node_id, size);
6180 		if (!map)
6181 			map = memblock_virt_alloc_node_nopanic(size,
6182 							       pgdat->node_id);
6183 		pgdat->node_mem_map = map + offset;
6184 	}
6185 	pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n",
6186 				__func__, pgdat->node_id, (unsigned long)pgdat,
6187 				(unsigned long)pgdat->node_mem_map);
6188 #ifndef CONFIG_NEED_MULTIPLE_NODES
6189 	/*
6190 	 * With no DISCONTIG, the global mem_map is just set as node 0's
6191 	 */
6192 	if (pgdat == NODE_DATA(0)) {
6193 		mem_map = NODE_DATA(0)->node_mem_map;
6194 #if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM)
6195 		if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
6196 			mem_map -= offset;
6197 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6198 	}
6199 #endif
6200 }
6201 #else
6202 static void __ref alloc_node_mem_map(struct pglist_data *pgdat) { }
6203 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
6204 
6205 void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
6206 		unsigned long node_start_pfn, unsigned long *zholes_size)
6207 {
6208 	pg_data_t *pgdat = NODE_DATA(nid);
6209 	unsigned long start_pfn = 0;
6210 	unsigned long end_pfn = 0;
6211 
6212 	/* pg_data_t should be reset to zero when it's allocated */
6213 	WARN_ON(pgdat->nr_zones || pgdat->kswapd_classzone_idx);
6214 
6215 	pgdat->node_id = nid;
6216 	pgdat->node_start_pfn = node_start_pfn;
6217 	pgdat->per_cpu_nodestats = NULL;
6218 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
6219 	get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
6220 	pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
6221 		(u64)start_pfn << PAGE_SHIFT,
6222 		end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
6223 #else
6224 	start_pfn = node_start_pfn;
6225 #endif
6226 	calculate_node_totalpages(pgdat, start_pfn, end_pfn,
6227 				  zones_size, zholes_size);
6228 
6229 	alloc_node_mem_map(pgdat);
6230 
6231 	reset_deferred_meminit(pgdat);
6232 	free_area_init_core(pgdat);
6233 }
6234 
6235 #ifdef CONFIG_HAVE_MEMBLOCK
6236 /*
6237  * Only struct pages that are backed by physical memory are zeroed and
6238  * initialized by going through __init_single_page(). But, there are some
6239  * struct pages which are reserved in memblock allocator and their fields
6240  * may be accessed (for example page_to_pfn() on some configuration accesses
6241  * flags). We must explicitly zero those struct pages.
6242  */
6243 void __paginginit zero_resv_unavail(void)
6244 {
6245 	phys_addr_t start, end;
6246 	unsigned long pfn;
6247 	u64 i, pgcnt;
6248 
6249 	/*
6250 	 * Loop through ranges that are reserved, but do not have reported
6251 	 * physical memory backing.
6252 	 */
6253 	pgcnt = 0;
6254 	for_each_resv_unavail_range(i, &start, &end) {
6255 		for (pfn = PFN_DOWN(start); pfn < PFN_UP(end); pfn++) {
6256 			mm_zero_struct_page(pfn_to_page(pfn));
6257 			pgcnt++;
6258 		}
6259 	}
6260 
6261 	/*
6262 	 * Struct pages that do not have backing memory. This could be because
6263 	 * firmware is using some of this memory, or for some other reasons.
6264 	 * Once memblock is changed so such behaviour is not allowed: i.e.
6265 	 * list of "reserved" memory must be a subset of list of "memory", then
6266 	 * this code can be removed.
6267 	 */
6268 	if (pgcnt)
6269 		pr_info("Reserved but unavailable: %lld pages", pgcnt);
6270 }
6271 #endif /* CONFIG_HAVE_MEMBLOCK */
6272 
6273 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
6274 
6275 #if MAX_NUMNODES > 1
6276 /*
6277  * Figure out the number of possible node ids.
6278  */
6279 void __init setup_nr_node_ids(void)
6280 {
6281 	unsigned int highest;
6282 
6283 	highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
6284 	nr_node_ids = highest + 1;
6285 }
6286 #endif
6287 
6288 /**
6289  * node_map_pfn_alignment - determine the maximum internode alignment
6290  *
6291  * This function should be called after node map is populated and sorted.
6292  * It calculates the maximum power of two alignment which can distinguish
6293  * all the nodes.
6294  *
6295  * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
6296  * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)).  If the
6297  * nodes are shifted by 256MiB, 256MiB.  Note that if only the last node is
6298  * shifted, 1GiB is enough and this function will indicate so.
6299  *
6300  * This is used to test whether pfn -> nid mapping of the chosen memory
6301  * model has fine enough granularity to avoid incorrect mapping for the
6302  * populated node map.
6303  *
6304  * Returns the determined alignment in pfn's.  0 if there is no alignment
6305  * requirement (single node).
6306  */
6307 unsigned long __init node_map_pfn_alignment(void)
6308 {
6309 	unsigned long accl_mask = 0, last_end = 0;
6310 	unsigned long start, end, mask;
6311 	int last_nid = -1;
6312 	int i, nid;
6313 
6314 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
6315 		if (!start || last_nid < 0 || last_nid == nid) {
6316 			last_nid = nid;
6317 			last_end = end;
6318 			continue;
6319 		}
6320 
6321 		/*
6322 		 * Start with a mask granular enough to pin-point to the
6323 		 * start pfn and tick off bits one-by-one until it becomes
6324 		 * too coarse to separate the current node from the last.
6325 		 */
6326 		mask = ~((1 << __ffs(start)) - 1);
6327 		while (mask && last_end <= (start & (mask << 1)))
6328 			mask <<= 1;
6329 
6330 		/* accumulate all internode masks */
6331 		accl_mask |= mask;
6332 	}
6333 
6334 	/* convert mask to number of pages */
6335 	return ~accl_mask + 1;
6336 }
6337 
6338 /* Find the lowest pfn for a node */
6339 static unsigned long __init find_min_pfn_for_node(int nid)
6340 {
6341 	unsigned long min_pfn = ULONG_MAX;
6342 	unsigned long start_pfn;
6343 	int i;
6344 
6345 	for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
6346 		min_pfn = min(min_pfn, start_pfn);
6347 
6348 	if (min_pfn == ULONG_MAX) {
6349 		pr_warn("Could not find start_pfn for node %d\n", nid);
6350 		return 0;
6351 	}
6352 
6353 	return min_pfn;
6354 }
6355 
6356 /**
6357  * find_min_pfn_with_active_regions - Find the minimum PFN registered
6358  *
6359  * It returns the minimum PFN based on information provided via
6360  * memblock_set_node().
6361  */
6362 unsigned long __init find_min_pfn_with_active_regions(void)
6363 {
6364 	return find_min_pfn_for_node(MAX_NUMNODES);
6365 }
6366 
6367 /*
6368  * early_calculate_totalpages()
6369  * Sum pages in active regions for movable zone.
6370  * Populate N_MEMORY for calculating usable_nodes.
6371  */
6372 static unsigned long __init early_calculate_totalpages(void)
6373 {
6374 	unsigned long totalpages = 0;
6375 	unsigned long start_pfn, end_pfn;
6376 	int i, nid;
6377 
6378 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
6379 		unsigned long pages = end_pfn - start_pfn;
6380 
6381 		totalpages += pages;
6382 		if (pages)
6383 			node_set_state(nid, N_MEMORY);
6384 	}
6385 	return totalpages;
6386 }
6387 
6388 /*
6389  * Find the PFN the Movable zone begins in each node. Kernel memory
6390  * is spread evenly between nodes as long as the nodes have enough
6391  * memory. When they don't, some nodes will have more kernelcore than
6392  * others
6393  */
6394 static void __init find_zone_movable_pfns_for_nodes(void)
6395 {
6396 	int i, nid;
6397 	unsigned long usable_startpfn;
6398 	unsigned long kernelcore_node, kernelcore_remaining;
6399 	/* save the state before borrow the nodemask */
6400 	nodemask_t saved_node_state = node_states[N_MEMORY];
6401 	unsigned long totalpages = early_calculate_totalpages();
6402 	int usable_nodes = nodes_weight(node_states[N_MEMORY]);
6403 	struct memblock_region *r;
6404 
6405 	/* Need to find movable_zone earlier when movable_node is specified. */
6406 	find_usable_zone_for_movable();
6407 
6408 	/*
6409 	 * If movable_node is specified, ignore kernelcore and movablecore
6410 	 * options.
6411 	 */
6412 	if (movable_node_is_enabled()) {
6413 		for_each_memblock(memory, r) {
6414 			if (!memblock_is_hotpluggable(r))
6415 				continue;
6416 
6417 			nid = r->nid;
6418 
6419 			usable_startpfn = PFN_DOWN(r->base);
6420 			zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
6421 				min(usable_startpfn, zone_movable_pfn[nid]) :
6422 				usable_startpfn;
6423 		}
6424 
6425 		goto out2;
6426 	}
6427 
6428 	/*
6429 	 * If kernelcore=mirror is specified, ignore movablecore option
6430 	 */
6431 	if (mirrored_kernelcore) {
6432 		bool mem_below_4gb_not_mirrored = false;
6433 
6434 		for_each_memblock(memory, r) {
6435 			if (memblock_is_mirror(r))
6436 				continue;
6437 
6438 			nid = r->nid;
6439 
6440 			usable_startpfn = memblock_region_memory_base_pfn(r);
6441 
6442 			if (usable_startpfn < 0x100000) {
6443 				mem_below_4gb_not_mirrored = true;
6444 				continue;
6445 			}
6446 
6447 			zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
6448 				min(usable_startpfn, zone_movable_pfn[nid]) :
6449 				usable_startpfn;
6450 		}
6451 
6452 		if (mem_below_4gb_not_mirrored)
6453 			pr_warn("This configuration results in unmirrored kernel memory.");
6454 
6455 		goto out2;
6456 	}
6457 
6458 	/*
6459 	 * If movablecore=nn[KMG] was specified, calculate what size of
6460 	 * kernelcore that corresponds so that memory usable for
6461 	 * any allocation type is evenly spread. If both kernelcore
6462 	 * and movablecore are specified, then the value of kernelcore
6463 	 * will be used for required_kernelcore if it's greater than
6464 	 * what movablecore would have allowed.
6465 	 */
6466 	if (required_movablecore) {
6467 		unsigned long corepages;
6468 
6469 		/*
6470 		 * Round-up so that ZONE_MOVABLE is at least as large as what
6471 		 * was requested by the user
6472 		 */
6473 		required_movablecore =
6474 			roundup(required_movablecore, MAX_ORDER_NR_PAGES);
6475 		required_movablecore = min(totalpages, required_movablecore);
6476 		corepages = totalpages - required_movablecore;
6477 
6478 		required_kernelcore = max(required_kernelcore, corepages);
6479 	}
6480 
6481 	/*
6482 	 * If kernelcore was not specified or kernelcore size is larger
6483 	 * than totalpages, there is no ZONE_MOVABLE.
6484 	 */
6485 	if (!required_kernelcore || required_kernelcore >= totalpages)
6486 		goto out;
6487 
6488 	/* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
6489 	usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
6490 
6491 restart:
6492 	/* Spread kernelcore memory as evenly as possible throughout nodes */
6493 	kernelcore_node = required_kernelcore / usable_nodes;
6494 	for_each_node_state(nid, N_MEMORY) {
6495 		unsigned long start_pfn, end_pfn;
6496 
6497 		/*
6498 		 * Recalculate kernelcore_node if the division per node
6499 		 * now exceeds what is necessary to satisfy the requested
6500 		 * amount of memory for the kernel
6501 		 */
6502 		if (required_kernelcore < kernelcore_node)
6503 			kernelcore_node = required_kernelcore / usable_nodes;
6504 
6505 		/*
6506 		 * As the map is walked, we track how much memory is usable
6507 		 * by the kernel using kernelcore_remaining. When it is
6508 		 * 0, the rest of the node is usable by ZONE_MOVABLE
6509 		 */
6510 		kernelcore_remaining = kernelcore_node;
6511 
6512 		/* Go through each range of PFNs within this node */
6513 		for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
6514 			unsigned long size_pages;
6515 
6516 			start_pfn = max(start_pfn, zone_movable_pfn[nid]);
6517 			if (start_pfn >= end_pfn)
6518 				continue;
6519 
6520 			/* Account for what is only usable for kernelcore */
6521 			if (start_pfn < usable_startpfn) {
6522 				unsigned long kernel_pages;
6523 				kernel_pages = min(end_pfn, usable_startpfn)
6524 								- start_pfn;
6525 
6526 				kernelcore_remaining -= min(kernel_pages,
6527 							kernelcore_remaining);
6528 				required_kernelcore -= min(kernel_pages,
6529 							required_kernelcore);
6530 
6531 				/* Continue if range is now fully accounted */
6532 				if (end_pfn <= usable_startpfn) {
6533 
6534 					/*
6535 					 * Push zone_movable_pfn to the end so
6536 					 * that if we have to rebalance
6537 					 * kernelcore across nodes, we will
6538 					 * not double account here
6539 					 */
6540 					zone_movable_pfn[nid] = end_pfn;
6541 					continue;
6542 				}
6543 				start_pfn = usable_startpfn;
6544 			}
6545 
6546 			/*
6547 			 * The usable PFN range for ZONE_MOVABLE is from
6548 			 * start_pfn->end_pfn. Calculate size_pages as the
6549 			 * number of pages used as kernelcore
6550 			 */
6551 			size_pages = end_pfn - start_pfn;
6552 			if (size_pages > kernelcore_remaining)
6553 				size_pages = kernelcore_remaining;
6554 			zone_movable_pfn[nid] = start_pfn + size_pages;
6555 
6556 			/*
6557 			 * Some kernelcore has been met, update counts and
6558 			 * break if the kernelcore for this node has been
6559 			 * satisfied
6560 			 */
6561 			required_kernelcore -= min(required_kernelcore,
6562 								size_pages);
6563 			kernelcore_remaining -= size_pages;
6564 			if (!kernelcore_remaining)
6565 				break;
6566 		}
6567 	}
6568 
6569 	/*
6570 	 * If there is still required_kernelcore, we do another pass with one
6571 	 * less node in the count. This will push zone_movable_pfn[nid] further
6572 	 * along on the nodes that still have memory until kernelcore is
6573 	 * satisfied
6574 	 */
6575 	usable_nodes--;
6576 	if (usable_nodes && required_kernelcore > usable_nodes)
6577 		goto restart;
6578 
6579 out2:
6580 	/* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
6581 	for (nid = 0; nid < MAX_NUMNODES; nid++)
6582 		zone_movable_pfn[nid] =
6583 			roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
6584 
6585 out:
6586 	/* restore the node_state */
6587 	node_states[N_MEMORY] = saved_node_state;
6588 }
6589 
6590 /* Any regular or high memory on that node ? */
6591 static void check_for_memory(pg_data_t *pgdat, int nid)
6592 {
6593 	enum zone_type zone_type;
6594 
6595 	if (N_MEMORY == N_NORMAL_MEMORY)
6596 		return;
6597 
6598 	for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
6599 		struct zone *zone = &pgdat->node_zones[zone_type];
6600 		if (populated_zone(zone)) {
6601 			node_set_state(nid, N_HIGH_MEMORY);
6602 			if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
6603 			    zone_type <= ZONE_NORMAL)
6604 				node_set_state(nid, N_NORMAL_MEMORY);
6605 			break;
6606 		}
6607 	}
6608 }
6609 
6610 /**
6611  * free_area_init_nodes - Initialise all pg_data_t and zone data
6612  * @max_zone_pfn: an array of max PFNs for each zone
6613  *
6614  * This will call free_area_init_node() for each active node in the system.
6615  * Using the page ranges provided by memblock_set_node(), the size of each
6616  * zone in each node and their holes is calculated. If the maximum PFN
6617  * between two adjacent zones match, it is assumed that the zone is empty.
6618  * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
6619  * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
6620  * starts where the previous one ended. For example, ZONE_DMA32 starts
6621  * at arch_max_dma_pfn.
6622  */
6623 void __init free_area_init_nodes(unsigned long *max_zone_pfn)
6624 {
6625 	unsigned long start_pfn, end_pfn;
6626 	int i, nid;
6627 
6628 	/* Record where the zone boundaries are */
6629 	memset(arch_zone_lowest_possible_pfn, 0,
6630 				sizeof(arch_zone_lowest_possible_pfn));
6631 	memset(arch_zone_highest_possible_pfn, 0,
6632 				sizeof(arch_zone_highest_possible_pfn));
6633 
6634 	start_pfn = find_min_pfn_with_active_regions();
6635 
6636 	for (i = 0; i < MAX_NR_ZONES; i++) {
6637 		if (i == ZONE_MOVABLE)
6638 			continue;
6639 
6640 		end_pfn = max(max_zone_pfn[i], start_pfn);
6641 		arch_zone_lowest_possible_pfn[i] = start_pfn;
6642 		arch_zone_highest_possible_pfn[i] = end_pfn;
6643 
6644 		start_pfn = end_pfn;
6645 	}
6646 
6647 	/* Find the PFNs that ZONE_MOVABLE begins at in each node */
6648 	memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
6649 	find_zone_movable_pfns_for_nodes();
6650 
6651 	/* Print out the zone ranges */
6652 	pr_info("Zone ranges:\n");
6653 	for (i = 0; i < MAX_NR_ZONES; i++) {
6654 		if (i == ZONE_MOVABLE)
6655 			continue;
6656 		pr_info("  %-8s ", zone_names[i]);
6657 		if (arch_zone_lowest_possible_pfn[i] ==
6658 				arch_zone_highest_possible_pfn[i])
6659 			pr_cont("empty\n");
6660 		else
6661 			pr_cont("[mem %#018Lx-%#018Lx]\n",
6662 				(u64)arch_zone_lowest_possible_pfn[i]
6663 					<< PAGE_SHIFT,
6664 				((u64)arch_zone_highest_possible_pfn[i]
6665 					<< PAGE_SHIFT) - 1);
6666 	}
6667 
6668 	/* Print out the PFNs ZONE_MOVABLE begins at in each node */
6669 	pr_info("Movable zone start for each node\n");
6670 	for (i = 0; i < MAX_NUMNODES; i++) {
6671 		if (zone_movable_pfn[i])
6672 			pr_info("  Node %d: %#018Lx\n", i,
6673 			       (u64)zone_movable_pfn[i] << PAGE_SHIFT);
6674 	}
6675 
6676 	/* Print out the early node map */
6677 	pr_info("Early memory node ranges\n");
6678 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
6679 		pr_info("  node %3d: [mem %#018Lx-%#018Lx]\n", nid,
6680 			(u64)start_pfn << PAGE_SHIFT,
6681 			((u64)end_pfn << PAGE_SHIFT) - 1);
6682 
6683 	/* Initialise every node */
6684 	mminit_verify_pageflags_layout();
6685 	setup_nr_node_ids();
6686 	for_each_online_node(nid) {
6687 		pg_data_t *pgdat = NODE_DATA(nid);
6688 		free_area_init_node(nid, NULL,
6689 				find_min_pfn_for_node(nid), NULL);
6690 
6691 		/* Any memory on that node */
6692 		if (pgdat->node_present_pages)
6693 			node_set_state(nid, N_MEMORY);
6694 		check_for_memory(pgdat, nid);
6695 	}
6696 	zero_resv_unavail();
6697 }
6698 
6699 static int __init cmdline_parse_core(char *p, unsigned long *core)
6700 {
6701 	unsigned long long coremem;
6702 	if (!p)
6703 		return -EINVAL;
6704 
6705 	coremem = memparse(p, &p);
6706 	*core = coremem >> PAGE_SHIFT;
6707 
6708 	/* Paranoid check that UL is enough for the coremem value */
6709 	WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
6710 
6711 	return 0;
6712 }
6713 
6714 /*
6715  * kernelcore=size sets the amount of memory for use for allocations that
6716  * cannot be reclaimed or migrated.
6717  */
6718 static int __init cmdline_parse_kernelcore(char *p)
6719 {
6720 	/* parse kernelcore=mirror */
6721 	if (parse_option_str(p, "mirror")) {
6722 		mirrored_kernelcore = true;
6723 		return 0;
6724 	}
6725 
6726 	return cmdline_parse_core(p, &required_kernelcore);
6727 }
6728 
6729 /*
6730  * movablecore=size sets the amount of memory for use for allocations that
6731  * can be reclaimed or migrated.
6732  */
6733 static int __init cmdline_parse_movablecore(char *p)
6734 {
6735 	return cmdline_parse_core(p, &required_movablecore);
6736 }
6737 
6738 early_param("kernelcore", cmdline_parse_kernelcore);
6739 early_param("movablecore", cmdline_parse_movablecore);
6740 
6741 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6742 
6743 void adjust_managed_page_count(struct page *page, long count)
6744 {
6745 	spin_lock(&managed_page_count_lock);
6746 	page_zone(page)->managed_pages += count;
6747 	totalram_pages += count;
6748 #ifdef CONFIG_HIGHMEM
6749 	if (PageHighMem(page))
6750 		totalhigh_pages += count;
6751 #endif
6752 	spin_unlock(&managed_page_count_lock);
6753 }
6754 EXPORT_SYMBOL(adjust_managed_page_count);
6755 
6756 unsigned long free_reserved_area(void *start, void *end, int poison, char *s)
6757 {
6758 	void *pos;
6759 	unsigned long pages = 0;
6760 
6761 	start = (void *)PAGE_ALIGN((unsigned long)start);
6762 	end = (void *)((unsigned long)end & PAGE_MASK);
6763 	for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
6764 		if ((unsigned int)poison <= 0xFF)
6765 			memset(pos, poison, PAGE_SIZE);
6766 		free_reserved_page(virt_to_page(pos));
6767 	}
6768 
6769 	if (pages && s)
6770 		pr_info("Freeing %s memory: %ldK\n",
6771 			s, pages << (PAGE_SHIFT - 10));
6772 
6773 	return pages;
6774 }
6775 EXPORT_SYMBOL(free_reserved_area);
6776 
6777 #ifdef	CONFIG_HIGHMEM
6778 void free_highmem_page(struct page *page)
6779 {
6780 	__free_reserved_page(page);
6781 	totalram_pages++;
6782 	page_zone(page)->managed_pages++;
6783 	totalhigh_pages++;
6784 }
6785 #endif
6786 
6787 
6788 void __init mem_init_print_info(const char *str)
6789 {
6790 	unsigned long physpages, codesize, datasize, rosize, bss_size;
6791 	unsigned long init_code_size, init_data_size;
6792 
6793 	physpages = get_num_physpages();
6794 	codesize = _etext - _stext;
6795 	datasize = _edata - _sdata;
6796 	rosize = __end_rodata - __start_rodata;
6797 	bss_size = __bss_stop - __bss_start;
6798 	init_data_size = __init_end - __init_begin;
6799 	init_code_size = _einittext - _sinittext;
6800 
6801 	/*
6802 	 * Detect special cases and adjust section sizes accordingly:
6803 	 * 1) .init.* may be embedded into .data sections
6804 	 * 2) .init.text.* may be out of [__init_begin, __init_end],
6805 	 *    please refer to arch/tile/kernel/vmlinux.lds.S.
6806 	 * 3) .rodata.* may be embedded into .text or .data sections.
6807 	 */
6808 #define adj_init_size(start, end, size, pos, adj) \
6809 	do { \
6810 		if (start <= pos && pos < end && size > adj) \
6811 			size -= adj; \
6812 	} while (0)
6813 
6814 	adj_init_size(__init_begin, __init_end, init_data_size,
6815 		     _sinittext, init_code_size);
6816 	adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
6817 	adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
6818 	adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
6819 	adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
6820 
6821 #undef	adj_init_size
6822 
6823 	pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
6824 #ifdef	CONFIG_HIGHMEM
6825 		", %luK highmem"
6826 #endif
6827 		"%s%s)\n",
6828 		nr_free_pages() << (PAGE_SHIFT - 10),
6829 		physpages << (PAGE_SHIFT - 10),
6830 		codesize >> 10, datasize >> 10, rosize >> 10,
6831 		(init_data_size + init_code_size) >> 10, bss_size >> 10,
6832 		(physpages - totalram_pages - totalcma_pages) << (PAGE_SHIFT - 10),
6833 		totalcma_pages << (PAGE_SHIFT - 10),
6834 #ifdef	CONFIG_HIGHMEM
6835 		totalhigh_pages << (PAGE_SHIFT - 10),
6836 #endif
6837 		str ? ", " : "", str ? str : "");
6838 }
6839 
6840 /**
6841  * set_dma_reserve - set the specified number of pages reserved in the first zone
6842  * @new_dma_reserve: The number of pages to mark reserved
6843  *
6844  * The per-cpu batchsize and zone watermarks are determined by managed_pages.
6845  * In the DMA zone, a significant percentage may be consumed by kernel image
6846  * and other unfreeable allocations which can skew the watermarks badly. This
6847  * function may optionally be used to account for unfreeable pages in the
6848  * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
6849  * smaller per-cpu batchsize.
6850  */
6851 void __init set_dma_reserve(unsigned long new_dma_reserve)
6852 {
6853 	dma_reserve = new_dma_reserve;
6854 }
6855 
6856 void __init free_area_init(unsigned long *zones_size)
6857 {
6858 	free_area_init_node(0, zones_size,
6859 			__pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
6860 	zero_resv_unavail();
6861 }
6862 
6863 static int page_alloc_cpu_dead(unsigned int cpu)
6864 {
6865 
6866 	lru_add_drain_cpu(cpu);
6867 	drain_pages(cpu);
6868 
6869 	/*
6870 	 * Spill the event counters of the dead processor
6871 	 * into the current processors event counters.
6872 	 * This artificially elevates the count of the current
6873 	 * processor.
6874 	 */
6875 	vm_events_fold_cpu(cpu);
6876 
6877 	/*
6878 	 * Zero the differential counters of the dead processor
6879 	 * so that the vm statistics are consistent.
6880 	 *
6881 	 * This is only okay since the processor is dead and cannot
6882 	 * race with what we are doing.
6883 	 */
6884 	cpu_vm_stats_fold(cpu);
6885 	return 0;
6886 }
6887 
6888 void __init page_alloc_init(void)
6889 {
6890 	int ret;
6891 
6892 	ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC_DEAD,
6893 					"mm/page_alloc:dead", NULL,
6894 					page_alloc_cpu_dead);
6895 	WARN_ON(ret < 0);
6896 }
6897 
6898 /*
6899  * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
6900  *	or min_free_kbytes changes.
6901  */
6902 static void calculate_totalreserve_pages(void)
6903 {
6904 	struct pglist_data *pgdat;
6905 	unsigned long reserve_pages = 0;
6906 	enum zone_type i, j;
6907 
6908 	for_each_online_pgdat(pgdat) {
6909 
6910 		pgdat->totalreserve_pages = 0;
6911 
6912 		for (i = 0; i < MAX_NR_ZONES; i++) {
6913 			struct zone *zone = pgdat->node_zones + i;
6914 			long max = 0;
6915 
6916 			/* Find valid and maximum lowmem_reserve in the zone */
6917 			for (j = i; j < MAX_NR_ZONES; j++) {
6918 				if (zone->lowmem_reserve[j] > max)
6919 					max = zone->lowmem_reserve[j];
6920 			}
6921 
6922 			/* we treat the high watermark as reserved pages. */
6923 			max += high_wmark_pages(zone);
6924 
6925 			if (max > zone->managed_pages)
6926 				max = zone->managed_pages;
6927 
6928 			pgdat->totalreserve_pages += max;
6929 
6930 			reserve_pages += max;
6931 		}
6932 	}
6933 	totalreserve_pages = reserve_pages;
6934 }
6935 
6936 /*
6937  * setup_per_zone_lowmem_reserve - called whenever
6938  *	sysctl_lowmem_reserve_ratio changes.  Ensures that each zone
6939  *	has a correct pages reserved value, so an adequate number of
6940  *	pages are left in the zone after a successful __alloc_pages().
6941  */
6942 static void setup_per_zone_lowmem_reserve(void)
6943 {
6944 	struct pglist_data *pgdat;
6945 	enum zone_type j, idx;
6946 
6947 	for_each_online_pgdat(pgdat) {
6948 		for (j = 0; j < MAX_NR_ZONES; j++) {
6949 			struct zone *zone = pgdat->node_zones + j;
6950 			unsigned long managed_pages = zone->managed_pages;
6951 
6952 			zone->lowmem_reserve[j] = 0;
6953 
6954 			idx = j;
6955 			while (idx) {
6956 				struct zone *lower_zone;
6957 
6958 				idx--;
6959 
6960 				if (sysctl_lowmem_reserve_ratio[idx] < 1)
6961 					sysctl_lowmem_reserve_ratio[idx] = 1;
6962 
6963 				lower_zone = pgdat->node_zones + idx;
6964 				lower_zone->lowmem_reserve[j] = managed_pages /
6965 					sysctl_lowmem_reserve_ratio[idx];
6966 				managed_pages += lower_zone->managed_pages;
6967 			}
6968 		}
6969 	}
6970 
6971 	/* update totalreserve_pages */
6972 	calculate_totalreserve_pages();
6973 }
6974 
6975 static void __setup_per_zone_wmarks(void)
6976 {
6977 	unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
6978 	unsigned long lowmem_pages = 0;
6979 	struct zone *zone;
6980 	unsigned long flags;
6981 
6982 	/* Calculate total number of !ZONE_HIGHMEM pages */
6983 	for_each_zone(zone) {
6984 		if (!is_highmem(zone))
6985 			lowmem_pages += zone->managed_pages;
6986 	}
6987 
6988 	for_each_zone(zone) {
6989 		u64 tmp;
6990 
6991 		spin_lock_irqsave(&zone->lock, flags);
6992 		tmp = (u64)pages_min * zone->managed_pages;
6993 		do_div(tmp, lowmem_pages);
6994 		if (is_highmem(zone)) {
6995 			/*
6996 			 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
6997 			 * need highmem pages, so cap pages_min to a small
6998 			 * value here.
6999 			 *
7000 			 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
7001 			 * deltas control asynch page reclaim, and so should
7002 			 * not be capped for highmem.
7003 			 */
7004 			unsigned long min_pages;
7005 
7006 			min_pages = zone->managed_pages / 1024;
7007 			min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
7008 			zone->watermark[WMARK_MIN] = min_pages;
7009 		} else {
7010 			/*
7011 			 * If it's a lowmem zone, reserve a number of pages
7012 			 * proportionate to the zone's size.
7013 			 */
7014 			zone->watermark[WMARK_MIN] = tmp;
7015 		}
7016 
7017 		/*
7018 		 * Set the kswapd watermarks distance according to the
7019 		 * scale factor in proportion to available memory, but
7020 		 * ensure a minimum size on small systems.
7021 		 */
7022 		tmp = max_t(u64, tmp >> 2,
7023 			    mult_frac(zone->managed_pages,
7024 				      watermark_scale_factor, 10000));
7025 
7026 		zone->watermark[WMARK_LOW]  = min_wmark_pages(zone) + tmp;
7027 		zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2;
7028 
7029 		spin_unlock_irqrestore(&zone->lock, flags);
7030 	}
7031 
7032 	/* update totalreserve_pages */
7033 	calculate_totalreserve_pages();
7034 }
7035 
7036 /**
7037  * setup_per_zone_wmarks - called when min_free_kbytes changes
7038  * or when memory is hot-{added|removed}
7039  *
7040  * Ensures that the watermark[min,low,high] values for each zone are set
7041  * correctly with respect to min_free_kbytes.
7042  */
7043 void setup_per_zone_wmarks(void)
7044 {
7045 	static DEFINE_SPINLOCK(lock);
7046 
7047 	spin_lock(&lock);
7048 	__setup_per_zone_wmarks();
7049 	spin_unlock(&lock);
7050 }
7051 
7052 /*
7053  * Initialise min_free_kbytes.
7054  *
7055  * For small machines we want it small (128k min).  For large machines
7056  * we want it large (64MB max).  But it is not linear, because network
7057  * bandwidth does not increase linearly with machine size.  We use
7058  *
7059  *	min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
7060  *	min_free_kbytes = sqrt(lowmem_kbytes * 16)
7061  *
7062  * which yields
7063  *
7064  * 16MB:	512k
7065  * 32MB:	724k
7066  * 64MB:	1024k
7067  * 128MB:	1448k
7068  * 256MB:	2048k
7069  * 512MB:	2896k
7070  * 1024MB:	4096k
7071  * 2048MB:	5792k
7072  * 4096MB:	8192k
7073  * 8192MB:	11584k
7074  * 16384MB:	16384k
7075  */
7076 int __meminit init_per_zone_wmark_min(void)
7077 {
7078 	unsigned long lowmem_kbytes;
7079 	int new_min_free_kbytes;
7080 
7081 	lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
7082 	new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
7083 
7084 	if (new_min_free_kbytes > user_min_free_kbytes) {
7085 		min_free_kbytes = new_min_free_kbytes;
7086 		if (min_free_kbytes < 128)
7087 			min_free_kbytes = 128;
7088 		if (min_free_kbytes > 65536)
7089 			min_free_kbytes = 65536;
7090 	} else {
7091 		pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
7092 				new_min_free_kbytes, user_min_free_kbytes);
7093 	}
7094 	setup_per_zone_wmarks();
7095 	refresh_zone_stat_thresholds();
7096 	setup_per_zone_lowmem_reserve();
7097 
7098 #ifdef CONFIG_NUMA
7099 	setup_min_unmapped_ratio();
7100 	setup_min_slab_ratio();
7101 #endif
7102 
7103 	return 0;
7104 }
7105 core_initcall(init_per_zone_wmark_min)
7106 
7107 /*
7108  * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
7109  *	that we can call two helper functions whenever min_free_kbytes
7110  *	changes.
7111  */
7112 int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
7113 	void __user *buffer, size_t *length, loff_t *ppos)
7114 {
7115 	int rc;
7116 
7117 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7118 	if (rc)
7119 		return rc;
7120 
7121 	if (write) {
7122 		user_min_free_kbytes = min_free_kbytes;
7123 		setup_per_zone_wmarks();
7124 	}
7125 	return 0;
7126 }
7127 
7128 int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
7129 	void __user *buffer, size_t *length, loff_t *ppos)
7130 {
7131 	int rc;
7132 
7133 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7134 	if (rc)
7135 		return rc;
7136 
7137 	if (write)
7138 		setup_per_zone_wmarks();
7139 
7140 	return 0;
7141 }
7142 
7143 #ifdef CONFIG_NUMA
7144 static void setup_min_unmapped_ratio(void)
7145 {
7146 	pg_data_t *pgdat;
7147 	struct zone *zone;
7148 
7149 	for_each_online_pgdat(pgdat)
7150 		pgdat->min_unmapped_pages = 0;
7151 
7152 	for_each_zone(zone)
7153 		zone->zone_pgdat->min_unmapped_pages += (zone->managed_pages *
7154 				sysctl_min_unmapped_ratio) / 100;
7155 }
7156 
7157 
7158 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
7159 	void __user *buffer, size_t *length, loff_t *ppos)
7160 {
7161 	int rc;
7162 
7163 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7164 	if (rc)
7165 		return rc;
7166 
7167 	setup_min_unmapped_ratio();
7168 
7169 	return 0;
7170 }
7171 
7172 static void setup_min_slab_ratio(void)
7173 {
7174 	pg_data_t *pgdat;
7175 	struct zone *zone;
7176 
7177 	for_each_online_pgdat(pgdat)
7178 		pgdat->min_slab_pages = 0;
7179 
7180 	for_each_zone(zone)
7181 		zone->zone_pgdat->min_slab_pages += (zone->managed_pages *
7182 				sysctl_min_slab_ratio) / 100;
7183 }
7184 
7185 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
7186 	void __user *buffer, size_t *length, loff_t *ppos)
7187 {
7188 	int rc;
7189 
7190 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7191 	if (rc)
7192 		return rc;
7193 
7194 	setup_min_slab_ratio();
7195 
7196 	return 0;
7197 }
7198 #endif
7199 
7200 /*
7201  * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
7202  *	proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
7203  *	whenever sysctl_lowmem_reserve_ratio changes.
7204  *
7205  * The reserve ratio obviously has absolutely no relation with the
7206  * minimum watermarks. The lowmem reserve ratio can only make sense
7207  * if in function of the boot time zone sizes.
7208  */
7209 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
7210 	void __user *buffer, size_t *length, loff_t *ppos)
7211 {
7212 	proc_dointvec_minmax(table, write, buffer, length, ppos);
7213 	setup_per_zone_lowmem_reserve();
7214 	return 0;
7215 }
7216 
7217 /*
7218  * percpu_pagelist_fraction - changes the pcp->high for each zone on each
7219  * cpu.  It is the fraction of total pages in each zone that a hot per cpu
7220  * pagelist can have before it gets flushed back to buddy allocator.
7221  */
7222 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
7223 	void __user *buffer, size_t *length, loff_t *ppos)
7224 {
7225 	struct zone *zone;
7226 	int old_percpu_pagelist_fraction;
7227 	int ret;
7228 
7229 	mutex_lock(&pcp_batch_high_lock);
7230 	old_percpu_pagelist_fraction = percpu_pagelist_fraction;
7231 
7232 	ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
7233 	if (!write || ret < 0)
7234 		goto out;
7235 
7236 	/* Sanity checking to avoid pcp imbalance */
7237 	if (percpu_pagelist_fraction &&
7238 	    percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
7239 		percpu_pagelist_fraction = old_percpu_pagelist_fraction;
7240 		ret = -EINVAL;
7241 		goto out;
7242 	}
7243 
7244 	/* No change? */
7245 	if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
7246 		goto out;
7247 
7248 	for_each_populated_zone(zone) {
7249 		unsigned int cpu;
7250 
7251 		for_each_possible_cpu(cpu)
7252 			pageset_set_high_and_batch(zone,
7253 					per_cpu_ptr(zone->pageset, cpu));
7254 	}
7255 out:
7256 	mutex_unlock(&pcp_batch_high_lock);
7257 	return ret;
7258 }
7259 
7260 #ifdef CONFIG_NUMA
7261 int hashdist = HASHDIST_DEFAULT;
7262 
7263 static int __init set_hashdist(char *str)
7264 {
7265 	if (!str)
7266 		return 0;
7267 	hashdist = simple_strtoul(str, &str, 0);
7268 	return 1;
7269 }
7270 __setup("hashdist=", set_hashdist);
7271 #endif
7272 
7273 #ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
7274 /*
7275  * Returns the number of pages that arch has reserved but
7276  * is not known to alloc_large_system_hash().
7277  */
7278 static unsigned long __init arch_reserved_kernel_pages(void)
7279 {
7280 	return 0;
7281 }
7282 #endif
7283 
7284 /*
7285  * Adaptive scale is meant to reduce sizes of hash tables on large memory
7286  * machines. As memory size is increased the scale is also increased but at
7287  * slower pace.  Starting from ADAPT_SCALE_BASE (64G), every time memory
7288  * quadruples the scale is increased by one, which means the size of hash table
7289  * only doubles, instead of quadrupling as well.
7290  * Because 32-bit systems cannot have large physical memory, where this scaling
7291  * makes sense, it is disabled on such platforms.
7292  */
7293 #if __BITS_PER_LONG > 32
7294 #define ADAPT_SCALE_BASE	(64ul << 30)
7295 #define ADAPT_SCALE_SHIFT	2
7296 #define ADAPT_SCALE_NPAGES	(ADAPT_SCALE_BASE >> PAGE_SHIFT)
7297 #endif
7298 
7299 /*
7300  * allocate a large system hash table from bootmem
7301  * - it is assumed that the hash table must contain an exact power-of-2
7302  *   quantity of entries
7303  * - limit is the number of hash buckets, not the total allocation size
7304  */
7305 void *__init alloc_large_system_hash(const char *tablename,
7306 				     unsigned long bucketsize,
7307 				     unsigned long numentries,
7308 				     int scale,
7309 				     int flags,
7310 				     unsigned int *_hash_shift,
7311 				     unsigned int *_hash_mask,
7312 				     unsigned long low_limit,
7313 				     unsigned long high_limit)
7314 {
7315 	unsigned long long max = high_limit;
7316 	unsigned long log2qty, size;
7317 	void *table = NULL;
7318 	gfp_t gfp_flags;
7319 
7320 	/* allow the kernel cmdline to have a say */
7321 	if (!numentries) {
7322 		/* round applicable memory size up to nearest megabyte */
7323 		numentries = nr_kernel_pages;
7324 		numentries -= arch_reserved_kernel_pages();
7325 
7326 		/* It isn't necessary when PAGE_SIZE >= 1MB */
7327 		if (PAGE_SHIFT < 20)
7328 			numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
7329 
7330 #if __BITS_PER_LONG > 32
7331 		if (!high_limit) {
7332 			unsigned long adapt;
7333 
7334 			for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries;
7335 			     adapt <<= ADAPT_SCALE_SHIFT)
7336 				scale++;
7337 		}
7338 #endif
7339 
7340 		/* limit to 1 bucket per 2^scale bytes of low memory */
7341 		if (scale > PAGE_SHIFT)
7342 			numentries >>= (scale - PAGE_SHIFT);
7343 		else
7344 			numentries <<= (PAGE_SHIFT - scale);
7345 
7346 		/* Make sure we've got at least a 0-order allocation.. */
7347 		if (unlikely(flags & HASH_SMALL)) {
7348 			/* Makes no sense without HASH_EARLY */
7349 			WARN_ON(!(flags & HASH_EARLY));
7350 			if (!(numentries >> *_hash_shift)) {
7351 				numentries = 1UL << *_hash_shift;
7352 				BUG_ON(!numentries);
7353 			}
7354 		} else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
7355 			numentries = PAGE_SIZE / bucketsize;
7356 	}
7357 	numentries = roundup_pow_of_two(numentries);
7358 
7359 	/* limit allocation size to 1/16 total memory by default */
7360 	if (max == 0) {
7361 		max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
7362 		do_div(max, bucketsize);
7363 	}
7364 	max = min(max, 0x80000000ULL);
7365 
7366 	if (numentries < low_limit)
7367 		numentries = low_limit;
7368 	if (numentries > max)
7369 		numentries = max;
7370 
7371 	log2qty = ilog2(numentries);
7372 
7373 	gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC;
7374 	do {
7375 		size = bucketsize << log2qty;
7376 		if (flags & HASH_EARLY) {
7377 			if (flags & HASH_ZERO)
7378 				table = memblock_virt_alloc_nopanic(size, 0);
7379 			else
7380 				table = memblock_virt_alloc_raw(size, 0);
7381 		} else if (hashdist) {
7382 			table = __vmalloc(size, gfp_flags, PAGE_KERNEL);
7383 		} else {
7384 			/*
7385 			 * If bucketsize is not a power-of-two, we may free
7386 			 * some pages at the end of hash table which
7387 			 * alloc_pages_exact() automatically does
7388 			 */
7389 			if (get_order(size) < MAX_ORDER) {
7390 				table = alloc_pages_exact(size, gfp_flags);
7391 				kmemleak_alloc(table, size, 1, gfp_flags);
7392 			}
7393 		}
7394 	} while (!table && size > PAGE_SIZE && --log2qty);
7395 
7396 	if (!table)
7397 		panic("Failed to allocate %s hash table\n", tablename);
7398 
7399 	pr_info("%s hash table entries: %ld (order: %d, %lu bytes)\n",
7400 		tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size);
7401 
7402 	if (_hash_shift)
7403 		*_hash_shift = log2qty;
7404 	if (_hash_mask)
7405 		*_hash_mask = (1 << log2qty) - 1;
7406 
7407 	return table;
7408 }
7409 
7410 /*
7411  * This function checks whether pageblock includes unmovable pages or not.
7412  * If @count is not zero, it is okay to include less @count unmovable pages
7413  *
7414  * PageLRU check without isolation or lru_lock could race so that
7415  * MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable
7416  * check without lock_page also may miss some movable non-lru pages at
7417  * race condition. So you can't expect this function should be exact.
7418  */
7419 bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
7420 			 int migratetype,
7421 			 bool skip_hwpoisoned_pages)
7422 {
7423 	unsigned long pfn, iter, found;
7424 
7425 	/*
7426 	 * For avoiding noise data, lru_add_drain_all() should be called
7427 	 * If ZONE_MOVABLE, the zone never contains unmovable pages
7428 	 */
7429 	if (zone_idx(zone) == ZONE_MOVABLE)
7430 		return false;
7431 
7432 	/*
7433 	 * CMA allocations (alloc_contig_range) really need to mark isolate
7434 	 * CMA pageblocks even when they are not movable in fact so consider
7435 	 * them movable here.
7436 	 */
7437 	if (is_migrate_cma(migratetype) &&
7438 			is_migrate_cma(get_pageblock_migratetype(page)))
7439 		return false;
7440 
7441 	pfn = page_to_pfn(page);
7442 	for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
7443 		unsigned long check = pfn + iter;
7444 
7445 		if (!pfn_valid_within(check))
7446 			continue;
7447 
7448 		page = pfn_to_page(check);
7449 
7450 		if (PageReserved(page))
7451 			return true;
7452 
7453 		/*
7454 		 * Hugepages are not in LRU lists, but they're movable.
7455 		 * We need not scan over tail pages bacause we don't
7456 		 * handle each tail page individually in migration.
7457 		 */
7458 		if (PageHuge(page)) {
7459 			iter = round_up(iter + 1, 1<<compound_order(page)) - 1;
7460 			continue;
7461 		}
7462 
7463 		/*
7464 		 * We can't use page_count without pin a page
7465 		 * because another CPU can free compound page.
7466 		 * This check already skips compound tails of THP
7467 		 * because their page->_refcount is zero at all time.
7468 		 */
7469 		if (!page_ref_count(page)) {
7470 			if (PageBuddy(page))
7471 				iter += (1 << page_order(page)) - 1;
7472 			continue;
7473 		}
7474 
7475 		/*
7476 		 * The HWPoisoned page may be not in buddy system, and
7477 		 * page_count() is not 0.
7478 		 */
7479 		if (skip_hwpoisoned_pages && PageHWPoison(page))
7480 			continue;
7481 
7482 		if (__PageMovable(page))
7483 			continue;
7484 
7485 		if (!PageLRU(page))
7486 			found++;
7487 		/*
7488 		 * If there are RECLAIMABLE pages, we need to check
7489 		 * it.  But now, memory offline itself doesn't call
7490 		 * shrink_node_slabs() and it still to be fixed.
7491 		 */
7492 		/*
7493 		 * If the page is not RAM, page_count()should be 0.
7494 		 * we don't need more check. This is an _used_ not-movable page.
7495 		 *
7496 		 * The problematic thing here is PG_reserved pages. PG_reserved
7497 		 * is set to both of a memory hole page and a _used_ kernel
7498 		 * page at boot.
7499 		 */
7500 		if (found > count)
7501 			return true;
7502 	}
7503 	return false;
7504 }
7505 
7506 bool is_pageblock_removable_nolock(struct page *page)
7507 {
7508 	struct zone *zone;
7509 	unsigned long pfn;
7510 
7511 	/*
7512 	 * We have to be careful here because we are iterating over memory
7513 	 * sections which are not zone aware so we might end up outside of
7514 	 * the zone but still within the section.
7515 	 * We have to take care about the node as well. If the node is offline
7516 	 * its NODE_DATA will be NULL - see page_zone.
7517 	 */
7518 	if (!node_online(page_to_nid(page)))
7519 		return false;
7520 
7521 	zone = page_zone(page);
7522 	pfn = page_to_pfn(page);
7523 	if (!zone_spans_pfn(zone, pfn))
7524 		return false;
7525 
7526 	return !has_unmovable_pages(zone, page, 0, MIGRATE_MOVABLE, true);
7527 }
7528 
7529 #if (defined(CONFIG_MEMORY_ISOLATION) && defined(CONFIG_COMPACTION)) || defined(CONFIG_CMA)
7530 
7531 static unsigned long pfn_max_align_down(unsigned long pfn)
7532 {
7533 	return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
7534 			     pageblock_nr_pages) - 1);
7535 }
7536 
7537 static unsigned long pfn_max_align_up(unsigned long pfn)
7538 {
7539 	return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
7540 				pageblock_nr_pages));
7541 }
7542 
7543 /* [start, end) must belong to a single zone. */
7544 static int __alloc_contig_migrate_range(struct compact_control *cc,
7545 					unsigned long start, unsigned long end)
7546 {
7547 	/* This function is based on compact_zone() from compaction.c. */
7548 	unsigned long nr_reclaimed;
7549 	unsigned long pfn = start;
7550 	unsigned int tries = 0;
7551 	int ret = 0;
7552 
7553 	migrate_prep();
7554 
7555 	while (pfn < end || !list_empty(&cc->migratepages)) {
7556 		if (fatal_signal_pending(current)) {
7557 			ret = -EINTR;
7558 			break;
7559 		}
7560 
7561 		if (list_empty(&cc->migratepages)) {
7562 			cc->nr_migratepages = 0;
7563 			pfn = isolate_migratepages_range(cc, pfn, end);
7564 			if (!pfn) {
7565 				ret = -EINTR;
7566 				break;
7567 			}
7568 			tries = 0;
7569 		} else if (++tries == 5) {
7570 			ret = ret < 0 ? ret : -EBUSY;
7571 			break;
7572 		}
7573 
7574 		nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
7575 							&cc->migratepages);
7576 		cc->nr_migratepages -= nr_reclaimed;
7577 
7578 		ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
7579 				    NULL, 0, cc->mode, MR_CMA);
7580 	}
7581 	if (ret < 0) {
7582 		putback_movable_pages(&cc->migratepages);
7583 		return ret;
7584 	}
7585 	return 0;
7586 }
7587 
7588 /**
7589  * alloc_contig_range() -- tries to allocate given range of pages
7590  * @start:	start PFN to allocate
7591  * @end:	one-past-the-last PFN to allocate
7592  * @migratetype:	migratetype of the underlaying pageblocks (either
7593  *			#MIGRATE_MOVABLE or #MIGRATE_CMA).  All pageblocks
7594  *			in range must have the same migratetype and it must
7595  *			be either of the two.
7596  * @gfp_mask:	GFP mask to use during compaction
7597  *
7598  * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
7599  * aligned, however it's the caller's responsibility to guarantee that
7600  * we are the only thread that changes migrate type of pageblocks the
7601  * pages fall in.
7602  *
7603  * The PFN range must belong to a single zone.
7604  *
7605  * Returns zero on success or negative error code.  On success all
7606  * pages which PFN is in [start, end) are allocated for the caller and
7607  * need to be freed with free_contig_range().
7608  */
7609 int alloc_contig_range(unsigned long start, unsigned long end,
7610 		       unsigned migratetype, gfp_t gfp_mask)
7611 {
7612 	unsigned long outer_start, outer_end;
7613 	unsigned int order;
7614 	int ret = 0;
7615 
7616 	struct compact_control cc = {
7617 		.nr_migratepages = 0,
7618 		.order = -1,
7619 		.zone = page_zone(pfn_to_page(start)),
7620 		.mode = MIGRATE_SYNC,
7621 		.ignore_skip_hint = true,
7622 		.no_set_skip_hint = true,
7623 		.gfp_mask = current_gfp_context(gfp_mask),
7624 	};
7625 	INIT_LIST_HEAD(&cc.migratepages);
7626 
7627 	/*
7628 	 * What we do here is we mark all pageblocks in range as
7629 	 * MIGRATE_ISOLATE.  Because pageblock and max order pages may
7630 	 * have different sizes, and due to the way page allocator
7631 	 * work, we align the range to biggest of the two pages so
7632 	 * that page allocator won't try to merge buddies from
7633 	 * different pageblocks and change MIGRATE_ISOLATE to some
7634 	 * other migration type.
7635 	 *
7636 	 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
7637 	 * migrate the pages from an unaligned range (ie. pages that
7638 	 * we are interested in).  This will put all the pages in
7639 	 * range back to page allocator as MIGRATE_ISOLATE.
7640 	 *
7641 	 * When this is done, we take the pages in range from page
7642 	 * allocator removing them from the buddy system.  This way
7643 	 * page allocator will never consider using them.
7644 	 *
7645 	 * This lets us mark the pageblocks back as
7646 	 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
7647 	 * aligned range but not in the unaligned, original range are
7648 	 * put back to page allocator so that buddy can use them.
7649 	 */
7650 
7651 	ret = start_isolate_page_range(pfn_max_align_down(start),
7652 				       pfn_max_align_up(end), migratetype,
7653 				       false);
7654 	if (ret)
7655 		return ret;
7656 
7657 	/*
7658 	 * In case of -EBUSY, we'd like to know which page causes problem.
7659 	 * So, just fall through. We will check it in test_pages_isolated().
7660 	 */
7661 	ret = __alloc_contig_migrate_range(&cc, start, end);
7662 	if (ret && ret != -EBUSY)
7663 		goto done;
7664 
7665 	/*
7666 	 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
7667 	 * aligned blocks that are marked as MIGRATE_ISOLATE.  What's
7668 	 * more, all pages in [start, end) are free in page allocator.
7669 	 * What we are going to do is to allocate all pages from
7670 	 * [start, end) (that is remove them from page allocator).
7671 	 *
7672 	 * The only problem is that pages at the beginning and at the
7673 	 * end of interesting range may be not aligned with pages that
7674 	 * page allocator holds, ie. they can be part of higher order
7675 	 * pages.  Because of this, we reserve the bigger range and
7676 	 * once this is done free the pages we are not interested in.
7677 	 *
7678 	 * We don't have to hold zone->lock here because the pages are
7679 	 * isolated thus they won't get removed from buddy.
7680 	 */
7681 
7682 	lru_add_drain_all();
7683 	drain_all_pages(cc.zone);
7684 
7685 	order = 0;
7686 	outer_start = start;
7687 	while (!PageBuddy(pfn_to_page(outer_start))) {
7688 		if (++order >= MAX_ORDER) {
7689 			outer_start = start;
7690 			break;
7691 		}
7692 		outer_start &= ~0UL << order;
7693 	}
7694 
7695 	if (outer_start != start) {
7696 		order = page_order(pfn_to_page(outer_start));
7697 
7698 		/*
7699 		 * outer_start page could be small order buddy page and
7700 		 * it doesn't include start page. Adjust outer_start
7701 		 * in this case to report failed page properly
7702 		 * on tracepoint in test_pages_isolated()
7703 		 */
7704 		if (outer_start + (1UL << order) <= start)
7705 			outer_start = start;
7706 	}
7707 
7708 	/* Make sure the range is really isolated. */
7709 	if (test_pages_isolated(outer_start, end, false)) {
7710 		pr_info_ratelimited("%s: [%lx, %lx) PFNs busy\n",
7711 			__func__, outer_start, end);
7712 		ret = -EBUSY;
7713 		goto done;
7714 	}
7715 
7716 	/* Grab isolated pages from freelists. */
7717 	outer_end = isolate_freepages_range(&cc, outer_start, end);
7718 	if (!outer_end) {
7719 		ret = -EBUSY;
7720 		goto done;
7721 	}
7722 
7723 	/* Free head and tail (if any) */
7724 	if (start != outer_start)
7725 		free_contig_range(outer_start, start - outer_start);
7726 	if (end != outer_end)
7727 		free_contig_range(end, outer_end - end);
7728 
7729 done:
7730 	undo_isolate_page_range(pfn_max_align_down(start),
7731 				pfn_max_align_up(end), migratetype);
7732 	return ret;
7733 }
7734 
7735 void free_contig_range(unsigned long pfn, unsigned nr_pages)
7736 {
7737 	unsigned int count = 0;
7738 
7739 	for (; nr_pages--; pfn++) {
7740 		struct page *page = pfn_to_page(pfn);
7741 
7742 		count += page_count(page) != 1;
7743 		__free_page(page);
7744 	}
7745 	WARN(count != 0, "%d pages are still in use!\n", count);
7746 }
7747 #endif
7748 
7749 #ifdef CONFIG_MEMORY_HOTPLUG
7750 /*
7751  * The zone indicated has a new number of managed_pages; batch sizes and percpu
7752  * page high values need to be recalulated.
7753  */
7754 void __meminit zone_pcp_update(struct zone *zone)
7755 {
7756 	unsigned cpu;
7757 	mutex_lock(&pcp_batch_high_lock);
7758 	for_each_possible_cpu(cpu)
7759 		pageset_set_high_and_batch(zone,
7760 				per_cpu_ptr(zone->pageset, cpu));
7761 	mutex_unlock(&pcp_batch_high_lock);
7762 }
7763 #endif
7764 
7765 void zone_pcp_reset(struct zone *zone)
7766 {
7767 	unsigned long flags;
7768 	int cpu;
7769 	struct per_cpu_pageset *pset;
7770 
7771 	/* avoid races with drain_pages()  */
7772 	local_irq_save(flags);
7773 	if (zone->pageset != &boot_pageset) {
7774 		for_each_online_cpu(cpu) {
7775 			pset = per_cpu_ptr(zone->pageset, cpu);
7776 			drain_zonestat(zone, pset);
7777 		}
7778 		free_percpu(zone->pageset);
7779 		zone->pageset = &boot_pageset;
7780 	}
7781 	local_irq_restore(flags);
7782 }
7783 
7784 #ifdef CONFIG_MEMORY_HOTREMOVE
7785 /*
7786  * All pages in the range must be in a single zone and isolated
7787  * before calling this.
7788  */
7789 void
7790 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
7791 {
7792 	struct page *page;
7793 	struct zone *zone;
7794 	unsigned int order, i;
7795 	unsigned long pfn;
7796 	unsigned long flags;
7797 	/* find the first valid pfn */
7798 	for (pfn = start_pfn; pfn < end_pfn; pfn++)
7799 		if (pfn_valid(pfn))
7800 			break;
7801 	if (pfn == end_pfn)
7802 		return;
7803 	offline_mem_sections(pfn, end_pfn);
7804 	zone = page_zone(pfn_to_page(pfn));
7805 	spin_lock_irqsave(&zone->lock, flags);
7806 	pfn = start_pfn;
7807 	while (pfn < end_pfn) {
7808 		if (!pfn_valid(pfn)) {
7809 			pfn++;
7810 			continue;
7811 		}
7812 		page = pfn_to_page(pfn);
7813 		/*
7814 		 * The HWPoisoned page may be not in buddy system, and
7815 		 * page_count() is not 0.
7816 		 */
7817 		if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
7818 			pfn++;
7819 			SetPageReserved(page);
7820 			continue;
7821 		}
7822 
7823 		BUG_ON(page_count(page));
7824 		BUG_ON(!PageBuddy(page));
7825 		order = page_order(page);
7826 #ifdef CONFIG_DEBUG_VM
7827 		pr_info("remove from free list %lx %d %lx\n",
7828 			pfn, 1 << order, end_pfn);
7829 #endif
7830 		list_del(&page->lru);
7831 		rmv_page_order(page);
7832 		zone->free_area[order].nr_free--;
7833 		for (i = 0; i < (1 << order); i++)
7834 			SetPageReserved((page+i));
7835 		pfn += (1 << order);
7836 	}
7837 	spin_unlock_irqrestore(&zone->lock, flags);
7838 }
7839 #endif
7840 
7841 bool is_free_buddy_page(struct page *page)
7842 {
7843 	struct zone *zone = page_zone(page);
7844 	unsigned long pfn = page_to_pfn(page);
7845 	unsigned long flags;
7846 	unsigned int order;
7847 
7848 	spin_lock_irqsave(&zone->lock, flags);
7849 	for (order = 0; order < MAX_ORDER; order++) {
7850 		struct page *page_head = page - (pfn & ((1 << order) - 1));
7851 
7852 		if (PageBuddy(page_head) && page_order(page_head) >= order)
7853 			break;
7854 	}
7855 	spin_unlock_irqrestore(&zone->lock, flags);
7856 
7857 	return order < MAX_ORDER;
7858 }
7859