xref: /linux/mm/page_alloc.c (revision bd49666974a12f39eb9c74044e0b1753efcd94c4)
1 /*
2  *  linux/mm/page_alloc.c
3  *
4  *  Manages the free list, the system allocates free pages here.
5  *  Note that kmalloc() lives in slab.c
6  *
7  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
8  *  Swap reorganised 29.12.95, Stephen Tweedie
9  *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10  *  Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11  *  Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12  *  Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13  *  Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14  *          (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15  */
16 
17 #include <linux/stddef.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/bootmem.h>
23 #include <linux/compiler.h>
24 #include <linux/kernel.h>
25 #include <linux/module.h>
26 #include <linux/suspend.h>
27 #include <linux/pagevec.h>
28 #include <linux/blkdev.h>
29 #include <linux/slab.h>
30 #include <linux/oom.h>
31 #include <linux/notifier.h>
32 #include <linux/topology.h>
33 #include <linux/sysctl.h>
34 #include <linux/cpu.h>
35 #include <linux/cpuset.h>
36 #include <linux/memory_hotplug.h>
37 #include <linux/nodemask.h>
38 #include <linux/vmalloc.h>
39 #include <linux/mempolicy.h>
40 #include <linux/stop_machine.h>
41 #include <linux/sort.h>
42 #include <linux/pfn.h>
43 #include <linux/backing-dev.h>
44 #include <linux/fault-inject.h>
45 #include <linux/page-isolation.h>
46 #include <linux/memcontrol.h>
47 
48 #include <asm/tlbflush.h>
49 #include <asm/div64.h>
50 #include "internal.h"
51 
52 /*
53  * Array of node states.
54  */
55 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
56 	[N_POSSIBLE] = NODE_MASK_ALL,
57 	[N_ONLINE] = { { [0] = 1UL } },
58 #ifndef CONFIG_NUMA
59 	[N_NORMAL_MEMORY] = { { [0] = 1UL } },
60 #ifdef CONFIG_HIGHMEM
61 	[N_HIGH_MEMORY] = { { [0] = 1UL } },
62 #endif
63 	[N_CPU] = { { [0] = 1UL } },
64 #endif	/* NUMA */
65 };
66 EXPORT_SYMBOL(node_states);
67 
68 unsigned long totalram_pages __read_mostly;
69 unsigned long totalreserve_pages __read_mostly;
70 long nr_swap_pages;
71 int percpu_pagelist_fraction;
72 
73 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
74 int pageblock_order __read_mostly;
75 #endif
76 
77 static void __free_pages_ok(struct page *page, unsigned int order);
78 
79 /*
80  * results with 256, 32 in the lowmem_reserve sysctl:
81  *	1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
82  *	1G machine -> (16M dma, 784M normal, 224M high)
83  *	NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
84  *	HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
85  *	HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
86  *
87  * TBD: should special case ZONE_DMA32 machines here - in those we normally
88  * don't need any ZONE_NORMAL reservation
89  */
90 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
91 #ifdef CONFIG_ZONE_DMA
92 	 256,
93 #endif
94 #ifdef CONFIG_ZONE_DMA32
95 	 256,
96 #endif
97 #ifdef CONFIG_HIGHMEM
98 	 32,
99 #endif
100 	 32,
101 };
102 
103 EXPORT_SYMBOL(totalram_pages);
104 
105 static char * const zone_names[MAX_NR_ZONES] = {
106 #ifdef CONFIG_ZONE_DMA
107 	 "DMA",
108 #endif
109 #ifdef CONFIG_ZONE_DMA32
110 	 "DMA32",
111 #endif
112 	 "Normal",
113 #ifdef CONFIG_HIGHMEM
114 	 "HighMem",
115 #endif
116 	 "Movable",
117 };
118 
119 int min_free_kbytes = 1024;
120 
121 unsigned long __meminitdata nr_kernel_pages;
122 unsigned long __meminitdata nr_all_pages;
123 static unsigned long __meminitdata dma_reserve;
124 
125 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
126   /*
127    * MAX_ACTIVE_REGIONS determines the maximum number of distinct
128    * ranges of memory (RAM) that may be registered with add_active_range().
129    * Ranges passed to add_active_range() will be merged if possible
130    * so the number of times add_active_range() can be called is
131    * related to the number of nodes and the number of holes
132    */
133   #ifdef CONFIG_MAX_ACTIVE_REGIONS
134     /* Allow an architecture to set MAX_ACTIVE_REGIONS to save memory */
135     #define MAX_ACTIVE_REGIONS CONFIG_MAX_ACTIVE_REGIONS
136   #else
137     #if MAX_NUMNODES >= 32
138       /* If there can be many nodes, allow up to 50 holes per node */
139       #define MAX_ACTIVE_REGIONS (MAX_NUMNODES*50)
140     #else
141       /* By default, allow up to 256 distinct regions */
142       #define MAX_ACTIVE_REGIONS 256
143     #endif
144   #endif
145 
146   static struct node_active_region __meminitdata early_node_map[MAX_ACTIVE_REGIONS];
147   static int __meminitdata nr_nodemap_entries;
148   static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
149   static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
150 #ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
151   static unsigned long __meminitdata node_boundary_start_pfn[MAX_NUMNODES];
152   static unsigned long __meminitdata node_boundary_end_pfn[MAX_NUMNODES];
153 #endif /* CONFIG_MEMORY_HOTPLUG_RESERVE */
154   unsigned long __initdata required_kernelcore;
155   static unsigned long __initdata required_movablecore;
156   unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
157 
158   /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
159   int movable_zone;
160   EXPORT_SYMBOL(movable_zone);
161 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
162 
163 #if MAX_NUMNODES > 1
164 int nr_node_ids __read_mostly = MAX_NUMNODES;
165 EXPORT_SYMBOL(nr_node_ids);
166 #endif
167 
168 int page_group_by_mobility_disabled __read_mostly;
169 
170 static void set_pageblock_migratetype(struct page *page, int migratetype)
171 {
172 	set_pageblock_flags_group(page, (unsigned long)migratetype,
173 					PB_migrate, PB_migrate_end);
174 }
175 
176 #ifdef CONFIG_DEBUG_VM
177 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
178 {
179 	int ret = 0;
180 	unsigned seq;
181 	unsigned long pfn = page_to_pfn(page);
182 
183 	do {
184 		seq = zone_span_seqbegin(zone);
185 		if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
186 			ret = 1;
187 		else if (pfn < zone->zone_start_pfn)
188 			ret = 1;
189 	} while (zone_span_seqretry(zone, seq));
190 
191 	return ret;
192 }
193 
194 static int page_is_consistent(struct zone *zone, struct page *page)
195 {
196 	if (!pfn_valid_within(page_to_pfn(page)))
197 		return 0;
198 	if (zone != page_zone(page))
199 		return 0;
200 
201 	return 1;
202 }
203 /*
204  * Temporary debugging check for pages not lying within a given zone.
205  */
206 static int bad_range(struct zone *zone, struct page *page)
207 {
208 	if (page_outside_zone_boundaries(zone, page))
209 		return 1;
210 	if (!page_is_consistent(zone, page))
211 		return 1;
212 
213 	return 0;
214 }
215 #else
216 static inline int bad_range(struct zone *zone, struct page *page)
217 {
218 	return 0;
219 }
220 #endif
221 
222 static void bad_page(struct page *page)
223 {
224 	printk(KERN_EMERG "Bad page state in process '%s'\n"
225 		KERN_EMERG "page:%p flags:0x%0*lx mapping:%p mapcount:%d count:%d\n"
226 		KERN_EMERG "Trying to fix it up, but a reboot is needed\n"
227 		KERN_EMERG "Backtrace:\n",
228 		current->comm, page, (int)(2*sizeof(unsigned long)),
229 		(unsigned long)page->flags, page->mapping,
230 		page_mapcount(page), page_count(page));
231 	dump_stack();
232 	page->flags &= ~(1 << PG_lru	|
233 			1 << PG_private |
234 			1 << PG_locked	|
235 			1 << PG_active	|
236 			1 << PG_dirty	|
237 			1 << PG_reclaim |
238 			1 << PG_slab    |
239 			1 << PG_swapcache |
240 			1 << PG_writeback |
241 			1 << PG_buddy );
242 	set_page_count(page, 0);
243 	reset_page_mapcount(page);
244 	page->mapping = NULL;
245 	add_taint(TAINT_BAD_PAGE);
246 }
247 
248 /*
249  * Higher-order pages are called "compound pages".  They are structured thusly:
250  *
251  * The first PAGE_SIZE page is called the "head page".
252  *
253  * The remaining PAGE_SIZE pages are called "tail pages".
254  *
255  * All pages have PG_compound set.  All pages have their ->private pointing at
256  * the head page (even the head page has this).
257  *
258  * The first tail page's ->lru.next holds the address of the compound page's
259  * put_page() function.  Its ->lru.prev holds the order of allocation.
260  * This usage means that zero-order pages may not be compound.
261  */
262 
263 static void free_compound_page(struct page *page)
264 {
265 	__free_pages_ok(page, compound_order(page));
266 }
267 
268 static void prep_compound_page(struct page *page, unsigned long order)
269 {
270 	int i;
271 	int nr_pages = 1 << order;
272 
273 	set_compound_page_dtor(page, free_compound_page);
274 	set_compound_order(page, order);
275 	__SetPageHead(page);
276 	for (i = 1; i < nr_pages; i++) {
277 		struct page *p = page + i;
278 
279 		__SetPageTail(p);
280 		p->first_page = page;
281 	}
282 }
283 
284 static void destroy_compound_page(struct page *page, unsigned long order)
285 {
286 	int i;
287 	int nr_pages = 1 << order;
288 
289 	if (unlikely(compound_order(page) != order))
290 		bad_page(page);
291 
292 	if (unlikely(!PageHead(page)))
293 			bad_page(page);
294 	__ClearPageHead(page);
295 	for (i = 1; i < nr_pages; i++) {
296 		struct page *p = page + i;
297 
298 		if (unlikely(!PageTail(p) |
299 				(p->first_page != page)))
300 			bad_page(page);
301 		__ClearPageTail(p);
302 	}
303 }
304 
305 static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
306 {
307 	int i;
308 
309 	/*
310 	 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
311 	 * and __GFP_HIGHMEM from hard or soft interrupt context.
312 	 */
313 	VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
314 	for (i = 0; i < (1 << order); i++)
315 		clear_highpage(page + i);
316 }
317 
318 static inline void set_page_order(struct page *page, int order)
319 {
320 	set_page_private(page, order);
321 	__SetPageBuddy(page);
322 }
323 
324 static inline void rmv_page_order(struct page *page)
325 {
326 	__ClearPageBuddy(page);
327 	set_page_private(page, 0);
328 }
329 
330 /*
331  * Locate the struct page for both the matching buddy in our
332  * pair (buddy1) and the combined O(n+1) page they form (page).
333  *
334  * 1) Any buddy B1 will have an order O twin B2 which satisfies
335  * the following equation:
336  *     B2 = B1 ^ (1 << O)
337  * For example, if the starting buddy (buddy2) is #8 its order
338  * 1 buddy is #10:
339  *     B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
340  *
341  * 2) Any buddy B will have an order O+1 parent P which
342  * satisfies the following equation:
343  *     P = B & ~(1 << O)
344  *
345  * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
346  */
347 static inline struct page *
348 __page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order)
349 {
350 	unsigned long buddy_idx = page_idx ^ (1 << order);
351 
352 	return page + (buddy_idx - page_idx);
353 }
354 
355 static inline unsigned long
356 __find_combined_index(unsigned long page_idx, unsigned int order)
357 {
358 	return (page_idx & ~(1 << order));
359 }
360 
361 /*
362  * This function checks whether a page is free && is the buddy
363  * we can do coalesce a page and its buddy if
364  * (a) the buddy is not in a hole &&
365  * (b) the buddy is in the buddy system &&
366  * (c) a page and its buddy have the same order &&
367  * (d) a page and its buddy are in the same zone.
368  *
369  * For recording whether a page is in the buddy system, we use PG_buddy.
370  * Setting, clearing, and testing PG_buddy is serialized by zone->lock.
371  *
372  * For recording page's order, we use page_private(page).
373  */
374 static inline int page_is_buddy(struct page *page, struct page *buddy,
375 								int order)
376 {
377 	if (!pfn_valid_within(page_to_pfn(buddy)))
378 		return 0;
379 
380 	if (page_zone_id(page) != page_zone_id(buddy))
381 		return 0;
382 
383 	if (PageBuddy(buddy) && page_order(buddy) == order) {
384 		BUG_ON(page_count(buddy) != 0);
385 		return 1;
386 	}
387 	return 0;
388 }
389 
390 /*
391  * Freeing function for a buddy system allocator.
392  *
393  * The concept of a buddy system is to maintain direct-mapped table
394  * (containing bit values) for memory blocks of various "orders".
395  * The bottom level table contains the map for the smallest allocatable
396  * units of memory (here, pages), and each level above it describes
397  * pairs of units from the levels below, hence, "buddies".
398  * At a high level, all that happens here is marking the table entry
399  * at the bottom level available, and propagating the changes upward
400  * as necessary, plus some accounting needed to play nicely with other
401  * parts of the VM system.
402  * At each level, we keep a list of pages, which are heads of continuous
403  * free pages of length of (1 << order) and marked with PG_buddy. Page's
404  * order is recorded in page_private(page) field.
405  * So when we are allocating or freeing one, we can derive the state of the
406  * other.  That is, if we allocate a small block, and both were
407  * free, the remainder of the region must be split into blocks.
408  * If a block is freed, and its buddy is also free, then this
409  * triggers coalescing into a block of larger size.
410  *
411  * -- wli
412  */
413 
414 static inline void __free_one_page(struct page *page,
415 		struct zone *zone, unsigned int order)
416 {
417 	unsigned long page_idx;
418 	int order_size = 1 << order;
419 	int migratetype = get_pageblock_migratetype(page);
420 
421 	if (unlikely(PageCompound(page)))
422 		destroy_compound_page(page, order);
423 
424 	page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
425 
426 	VM_BUG_ON(page_idx & (order_size - 1));
427 	VM_BUG_ON(bad_range(zone, page));
428 
429 	__mod_zone_page_state(zone, NR_FREE_PAGES, order_size);
430 	while (order < MAX_ORDER-1) {
431 		unsigned long combined_idx;
432 		struct page *buddy;
433 
434 		buddy = __page_find_buddy(page, page_idx, order);
435 		if (!page_is_buddy(page, buddy, order))
436 			break;		/* Move the buddy up one level. */
437 
438 		list_del(&buddy->lru);
439 		zone->free_area[order].nr_free--;
440 		rmv_page_order(buddy);
441 		combined_idx = __find_combined_index(page_idx, order);
442 		page = page + (combined_idx - page_idx);
443 		page_idx = combined_idx;
444 		order++;
445 	}
446 	set_page_order(page, order);
447 	list_add(&page->lru,
448 		&zone->free_area[order].free_list[migratetype]);
449 	zone->free_area[order].nr_free++;
450 }
451 
452 static inline int free_pages_check(struct page *page)
453 {
454 	if (unlikely(page_mapcount(page) |
455 		(page->mapping != NULL)  |
456 		(page_count(page) != 0)  |
457 		(page->flags & (
458 			1 << PG_lru	|
459 			1 << PG_private |
460 			1 << PG_locked	|
461 			1 << PG_active	|
462 			1 << PG_slab	|
463 			1 << PG_swapcache |
464 			1 << PG_writeback |
465 			1 << PG_reserved |
466 			1 << PG_buddy ))))
467 		bad_page(page);
468 	if (PageDirty(page))
469 		__ClearPageDirty(page);
470 	/*
471 	 * For now, we report if PG_reserved was found set, but do not
472 	 * clear it, and do not free the page.  But we shall soon need
473 	 * to do more, for when the ZERO_PAGE count wraps negative.
474 	 */
475 	return PageReserved(page);
476 }
477 
478 /*
479  * Frees a list of pages.
480  * Assumes all pages on list are in same zone, and of same order.
481  * count is the number of pages to free.
482  *
483  * If the zone was previously in an "all pages pinned" state then look to
484  * see if this freeing clears that state.
485  *
486  * And clear the zone's pages_scanned counter, to hold off the "all pages are
487  * pinned" detection logic.
488  */
489 static void free_pages_bulk(struct zone *zone, int count,
490 					struct list_head *list, int order)
491 {
492 	spin_lock(&zone->lock);
493 	zone_clear_flag(zone, ZONE_ALL_UNRECLAIMABLE);
494 	zone->pages_scanned = 0;
495 	while (count--) {
496 		struct page *page;
497 
498 		VM_BUG_ON(list_empty(list));
499 		page = list_entry(list->prev, struct page, lru);
500 		/* have to delete it as __free_one_page list manipulates */
501 		list_del(&page->lru);
502 		__free_one_page(page, zone, order);
503 	}
504 	spin_unlock(&zone->lock);
505 }
506 
507 static void free_one_page(struct zone *zone, struct page *page, int order)
508 {
509 	spin_lock(&zone->lock);
510 	zone_clear_flag(zone, ZONE_ALL_UNRECLAIMABLE);
511 	zone->pages_scanned = 0;
512 	__free_one_page(page, zone, order);
513 	spin_unlock(&zone->lock);
514 }
515 
516 static void __free_pages_ok(struct page *page, unsigned int order)
517 {
518 	unsigned long flags;
519 	int i;
520 	int reserved = 0;
521 
522 	for (i = 0 ; i < (1 << order) ; ++i)
523 		reserved += free_pages_check(page + i);
524 	if (reserved)
525 		return;
526 
527 	if (!PageHighMem(page))
528 		debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order);
529 	arch_free_page(page, order);
530 	kernel_map_pages(page, 1 << order, 0);
531 
532 	local_irq_save(flags);
533 	__count_vm_events(PGFREE, 1 << order);
534 	free_one_page(page_zone(page), page, order);
535 	local_irq_restore(flags);
536 }
537 
538 /*
539  * permit the bootmem allocator to evade page validation on high-order frees
540  */
541 void __init __free_pages_bootmem(struct page *page, unsigned int order)
542 {
543 	if (order == 0) {
544 		__ClearPageReserved(page);
545 		set_page_count(page, 0);
546 		set_page_refcounted(page);
547 		__free_page(page);
548 	} else {
549 		int loop;
550 
551 		prefetchw(page);
552 		for (loop = 0; loop < BITS_PER_LONG; loop++) {
553 			struct page *p = &page[loop];
554 
555 			if (loop + 1 < BITS_PER_LONG)
556 				prefetchw(p + 1);
557 			__ClearPageReserved(p);
558 			set_page_count(p, 0);
559 		}
560 
561 		set_page_refcounted(page);
562 		__free_pages(page, order);
563 	}
564 }
565 
566 
567 /*
568  * The order of subdivision here is critical for the IO subsystem.
569  * Please do not alter this order without good reasons and regression
570  * testing. Specifically, as large blocks of memory are subdivided,
571  * the order in which smaller blocks are delivered depends on the order
572  * they're subdivided in this function. This is the primary factor
573  * influencing the order in which pages are delivered to the IO
574  * subsystem according to empirical testing, and this is also justified
575  * by considering the behavior of a buddy system containing a single
576  * large block of memory acted on by a series of small allocations.
577  * This behavior is a critical factor in sglist merging's success.
578  *
579  * -- wli
580  */
581 static inline void expand(struct zone *zone, struct page *page,
582 	int low, int high, struct free_area *area,
583 	int migratetype)
584 {
585 	unsigned long size = 1 << high;
586 
587 	while (high > low) {
588 		area--;
589 		high--;
590 		size >>= 1;
591 		VM_BUG_ON(bad_range(zone, &page[size]));
592 		list_add(&page[size].lru, &area->free_list[migratetype]);
593 		area->nr_free++;
594 		set_page_order(&page[size], high);
595 	}
596 }
597 
598 /*
599  * This page is about to be returned from the page allocator
600  */
601 static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
602 {
603 	if (unlikely(page_mapcount(page) |
604 		(page->mapping != NULL)  |
605 		(page_count(page) != 0)  |
606 		(page->flags & (
607 			1 << PG_lru	|
608 			1 << PG_private	|
609 			1 << PG_locked	|
610 			1 << PG_active	|
611 			1 << PG_dirty	|
612 			1 << PG_slab    |
613 			1 << PG_swapcache |
614 			1 << PG_writeback |
615 			1 << PG_reserved |
616 			1 << PG_buddy ))))
617 		bad_page(page);
618 
619 	/*
620 	 * For now, we report if PG_reserved was found set, but do not
621 	 * clear it, and do not allocate the page: as a safety net.
622 	 */
623 	if (PageReserved(page))
624 		return 1;
625 
626 	page->flags &= ~(1 << PG_uptodate | 1 << PG_error | 1 << PG_readahead |
627 			1 << PG_referenced | 1 << PG_arch_1 |
628 			1 << PG_owner_priv_1 | 1 << PG_mappedtodisk);
629 	set_page_private(page, 0);
630 	set_page_refcounted(page);
631 
632 	arch_alloc_page(page, order);
633 	kernel_map_pages(page, 1 << order, 1);
634 
635 	if (gfp_flags & __GFP_ZERO)
636 		prep_zero_page(page, order, gfp_flags);
637 
638 	if (order && (gfp_flags & __GFP_COMP))
639 		prep_compound_page(page, order);
640 
641 	return 0;
642 }
643 
644 /*
645  * Go through the free lists for the given migratetype and remove
646  * the smallest available page from the freelists
647  */
648 static struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
649 						int migratetype)
650 {
651 	unsigned int current_order;
652 	struct free_area * area;
653 	struct page *page;
654 
655 	/* Find a page of the appropriate size in the preferred list */
656 	for (current_order = order; current_order < MAX_ORDER; ++current_order) {
657 		area = &(zone->free_area[current_order]);
658 		if (list_empty(&area->free_list[migratetype]))
659 			continue;
660 
661 		page = list_entry(area->free_list[migratetype].next,
662 							struct page, lru);
663 		list_del(&page->lru);
664 		rmv_page_order(page);
665 		area->nr_free--;
666 		__mod_zone_page_state(zone, NR_FREE_PAGES, - (1UL << order));
667 		expand(zone, page, order, current_order, area, migratetype);
668 		return page;
669 	}
670 
671 	return NULL;
672 }
673 
674 
675 /*
676  * This array describes the order lists are fallen back to when
677  * the free lists for the desirable migrate type are depleted
678  */
679 static int fallbacks[MIGRATE_TYPES][MIGRATE_TYPES-1] = {
680 	[MIGRATE_UNMOVABLE]   = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE,   MIGRATE_RESERVE },
681 	[MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE,   MIGRATE_MOVABLE,   MIGRATE_RESERVE },
682 	[MIGRATE_MOVABLE]     = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
683 	[MIGRATE_RESERVE]     = { MIGRATE_RESERVE,     MIGRATE_RESERVE,   MIGRATE_RESERVE }, /* Never used */
684 };
685 
686 /*
687  * Move the free pages in a range to the free lists of the requested type.
688  * Note that start_page and end_pages are not aligned on a pageblock
689  * boundary. If alignment is required, use move_freepages_block()
690  */
691 int move_freepages(struct zone *zone,
692 			struct page *start_page, struct page *end_page,
693 			int migratetype)
694 {
695 	struct page *page;
696 	unsigned long order;
697 	int pages_moved = 0;
698 
699 #ifndef CONFIG_HOLES_IN_ZONE
700 	/*
701 	 * page_zone is not safe to call in this context when
702 	 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
703 	 * anyway as we check zone boundaries in move_freepages_block().
704 	 * Remove at a later date when no bug reports exist related to
705 	 * grouping pages by mobility
706 	 */
707 	BUG_ON(page_zone(start_page) != page_zone(end_page));
708 #endif
709 
710 	for (page = start_page; page <= end_page;) {
711 		if (!pfn_valid_within(page_to_pfn(page))) {
712 			page++;
713 			continue;
714 		}
715 
716 		if (!PageBuddy(page)) {
717 			page++;
718 			continue;
719 		}
720 
721 		order = page_order(page);
722 		list_del(&page->lru);
723 		list_add(&page->lru,
724 			&zone->free_area[order].free_list[migratetype]);
725 		page += 1 << order;
726 		pages_moved += 1 << order;
727 	}
728 
729 	return pages_moved;
730 }
731 
732 int move_freepages_block(struct zone *zone, struct page *page, int migratetype)
733 {
734 	unsigned long start_pfn, end_pfn;
735 	struct page *start_page, *end_page;
736 
737 	start_pfn = page_to_pfn(page);
738 	start_pfn = start_pfn & ~(pageblock_nr_pages-1);
739 	start_page = pfn_to_page(start_pfn);
740 	end_page = start_page + pageblock_nr_pages - 1;
741 	end_pfn = start_pfn + pageblock_nr_pages - 1;
742 
743 	/* Do not cross zone boundaries */
744 	if (start_pfn < zone->zone_start_pfn)
745 		start_page = page;
746 	if (end_pfn >= zone->zone_start_pfn + zone->spanned_pages)
747 		return 0;
748 
749 	return move_freepages(zone, start_page, end_page, migratetype);
750 }
751 
752 /* Remove an element from the buddy allocator from the fallback list */
753 static struct page *__rmqueue_fallback(struct zone *zone, int order,
754 						int start_migratetype)
755 {
756 	struct free_area * area;
757 	int current_order;
758 	struct page *page;
759 	int migratetype, i;
760 
761 	/* Find the largest possible block of pages in the other list */
762 	for (current_order = MAX_ORDER-1; current_order >= order;
763 						--current_order) {
764 		for (i = 0; i < MIGRATE_TYPES - 1; i++) {
765 			migratetype = fallbacks[start_migratetype][i];
766 
767 			/* MIGRATE_RESERVE handled later if necessary */
768 			if (migratetype == MIGRATE_RESERVE)
769 				continue;
770 
771 			area = &(zone->free_area[current_order]);
772 			if (list_empty(&area->free_list[migratetype]))
773 				continue;
774 
775 			page = list_entry(area->free_list[migratetype].next,
776 					struct page, lru);
777 			area->nr_free--;
778 
779 			/*
780 			 * If breaking a large block of pages, move all free
781 			 * pages to the preferred allocation list. If falling
782 			 * back for a reclaimable kernel allocation, be more
783 			 * agressive about taking ownership of free pages
784 			 */
785 			if (unlikely(current_order >= (pageblock_order >> 1)) ||
786 					start_migratetype == MIGRATE_RECLAIMABLE) {
787 				unsigned long pages;
788 				pages = move_freepages_block(zone, page,
789 								start_migratetype);
790 
791 				/* Claim the whole block if over half of it is free */
792 				if (pages >= (1 << (pageblock_order-1)))
793 					set_pageblock_migratetype(page,
794 								start_migratetype);
795 
796 				migratetype = start_migratetype;
797 			}
798 
799 			/* Remove the page from the freelists */
800 			list_del(&page->lru);
801 			rmv_page_order(page);
802 			__mod_zone_page_state(zone, NR_FREE_PAGES,
803 							-(1UL << order));
804 
805 			if (current_order == pageblock_order)
806 				set_pageblock_migratetype(page,
807 							start_migratetype);
808 
809 			expand(zone, page, order, current_order, area, migratetype);
810 			return page;
811 		}
812 	}
813 
814 	/* Use MIGRATE_RESERVE rather than fail an allocation */
815 	return __rmqueue_smallest(zone, order, MIGRATE_RESERVE);
816 }
817 
818 /*
819  * Do the hard work of removing an element from the buddy allocator.
820  * Call me with the zone->lock already held.
821  */
822 static struct page *__rmqueue(struct zone *zone, unsigned int order,
823 						int migratetype)
824 {
825 	struct page *page;
826 
827 	page = __rmqueue_smallest(zone, order, migratetype);
828 
829 	if (unlikely(!page))
830 		page = __rmqueue_fallback(zone, order, migratetype);
831 
832 	return page;
833 }
834 
835 /*
836  * Obtain a specified number of elements from the buddy allocator, all under
837  * a single hold of the lock, for efficiency.  Add them to the supplied list.
838  * Returns the number of new pages which were placed at *list.
839  */
840 static int rmqueue_bulk(struct zone *zone, unsigned int order,
841 			unsigned long count, struct list_head *list,
842 			int migratetype)
843 {
844 	int i;
845 
846 	spin_lock(&zone->lock);
847 	for (i = 0; i < count; ++i) {
848 		struct page *page = __rmqueue(zone, order, migratetype);
849 		if (unlikely(page == NULL))
850 			break;
851 
852 		/*
853 		 * Split buddy pages returned by expand() are received here
854 		 * in physical page order. The page is added to the callers and
855 		 * list and the list head then moves forward. From the callers
856 		 * perspective, the linked list is ordered by page number in
857 		 * some conditions. This is useful for IO devices that can
858 		 * merge IO requests if the physical pages are ordered
859 		 * properly.
860 		 */
861 		list_add(&page->lru, list);
862 		set_page_private(page, migratetype);
863 		list = &page->lru;
864 	}
865 	spin_unlock(&zone->lock);
866 	return i;
867 }
868 
869 #ifdef CONFIG_NUMA
870 /*
871  * Called from the vmstat counter updater to drain pagesets of this
872  * currently executing processor on remote nodes after they have
873  * expired.
874  *
875  * Note that this function must be called with the thread pinned to
876  * a single processor.
877  */
878 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
879 {
880 	unsigned long flags;
881 	int to_drain;
882 
883 	local_irq_save(flags);
884 	if (pcp->count >= pcp->batch)
885 		to_drain = pcp->batch;
886 	else
887 		to_drain = pcp->count;
888 	free_pages_bulk(zone, to_drain, &pcp->list, 0);
889 	pcp->count -= to_drain;
890 	local_irq_restore(flags);
891 }
892 #endif
893 
894 /*
895  * Drain pages of the indicated processor.
896  *
897  * The processor must either be the current processor and the
898  * thread pinned to the current processor or a processor that
899  * is not online.
900  */
901 static void drain_pages(unsigned int cpu)
902 {
903 	unsigned long flags;
904 	struct zone *zone;
905 
906 	for_each_zone(zone) {
907 		struct per_cpu_pageset *pset;
908 		struct per_cpu_pages *pcp;
909 
910 		if (!populated_zone(zone))
911 			continue;
912 
913 		pset = zone_pcp(zone, cpu);
914 
915 		pcp = &pset->pcp;
916 		local_irq_save(flags);
917 		free_pages_bulk(zone, pcp->count, &pcp->list, 0);
918 		pcp->count = 0;
919 		local_irq_restore(flags);
920 	}
921 }
922 
923 /*
924  * Spill all of this CPU's per-cpu pages back into the buddy allocator.
925  */
926 void drain_local_pages(void *arg)
927 {
928 	drain_pages(smp_processor_id());
929 }
930 
931 /*
932  * Spill all the per-cpu pages from all CPUs back into the buddy allocator
933  */
934 void drain_all_pages(void)
935 {
936 	on_each_cpu(drain_local_pages, NULL, 0, 1);
937 }
938 
939 #ifdef CONFIG_HIBERNATION
940 
941 void mark_free_pages(struct zone *zone)
942 {
943 	unsigned long pfn, max_zone_pfn;
944 	unsigned long flags;
945 	int order, t;
946 	struct list_head *curr;
947 
948 	if (!zone->spanned_pages)
949 		return;
950 
951 	spin_lock_irqsave(&zone->lock, flags);
952 
953 	max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
954 	for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
955 		if (pfn_valid(pfn)) {
956 			struct page *page = pfn_to_page(pfn);
957 
958 			if (!swsusp_page_is_forbidden(page))
959 				swsusp_unset_page_free(page);
960 		}
961 
962 	for_each_migratetype_order(order, t) {
963 		list_for_each(curr, &zone->free_area[order].free_list[t]) {
964 			unsigned long i;
965 
966 			pfn = page_to_pfn(list_entry(curr, struct page, lru));
967 			for (i = 0; i < (1UL << order); i++)
968 				swsusp_set_page_free(pfn_to_page(pfn + i));
969 		}
970 	}
971 	spin_unlock_irqrestore(&zone->lock, flags);
972 }
973 #endif /* CONFIG_PM */
974 
975 /*
976  * Free a 0-order page
977  */
978 static void free_hot_cold_page(struct page *page, int cold)
979 {
980 	struct zone *zone = page_zone(page);
981 	struct per_cpu_pages *pcp;
982 	unsigned long flags;
983 
984 	if (PageAnon(page))
985 		page->mapping = NULL;
986 	if (free_pages_check(page))
987 		return;
988 
989 	if (!PageHighMem(page))
990 		debug_check_no_locks_freed(page_address(page), PAGE_SIZE);
991 	VM_BUG_ON(page_get_page_cgroup(page));
992 	arch_free_page(page, 0);
993 	kernel_map_pages(page, 1, 0);
994 
995 	pcp = &zone_pcp(zone, get_cpu())->pcp;
996 	local_irq_save(flags);
997 	__count_vm_event(PGFREE);
998 	if (cold)
999 		list_add_tail(&page->lru, &pcp->list);
1000 	else
1001 		list_add(&page->lru, &pcp->list);
1002 	set_page_private(page, get_pageblock_migratetype(page));
1003 	pcp->count++;
1004 	if (pcp->count >= pcp->high) {
1005 		free_pages_bulk(zone, pcp->batch, &pcp->list, 0);
1006 		pcp->count -= pcp->batch;
1007 	}
1008 	local_irq_restore(flags);
1009 	put_cpu();
1010 }
1011 
1012 void free_hot_page(struct page *page)
1013 {
1014 	free_hot_cold_page(page, 0);
1015 }
1016 
1017 void free_cold_page(struct page *page)
1018 {
1019 	free_hot_cold_page(page, 1);
1020 }
1021 
1022 /*
1023  * split_page takes a non-compound higher-order page, and splits it into
1024  * n (1<<order) sub-pages: page[0..n]
1025  * Each sub-page must be freed individually.
1026  *
1027  * Note: this is probably too low level an operation for use in drivers.
1028  * Please consult with lkml before using this in your driver.
1029  */
1030 void split_page(struct page *page, unsigned int order)
1031 {
1032 	int i;
1033 
1034 	VM_BUG_ON(PageCompound(page));
1035 	VM_BUG_ON(!page_count(page));
1036 	for (i = 1; i < (1 << order); i++)
1037 		set_page_refcounted(page + i);
1038 }
1039 
1040 /*
1041  * Really, prep_compound_page() should be called from __rmqueue_bulk().  But
1042  * we cheat by calling it from here, in the order > 0 path.  Saves a branch
1043  * or two.
1044  */
1045 static struct page *buffered_rmqueue(struct zonelist *zonelist,
1046 			struct zone *zone, int order, gfp_t gfp_flags)
1047 {
1048 	unsigned long flags;
1049 	struct page *page;
1050 	int cold = !!(gfp_flags & __GFP_COLD);
1051 	int cpu;
1052 	int migratetype = allocflags_to_migratetype(gfp_flags);
1053 
1054 again:
1055 	cpu  = get_cpu();
1056 	if (likely(order == 0)) {
1057 		struct per_cpu_pages *pcp;
1058 
1059 		pcp = &zone_pcp(zone, cpu)->pcp;
1060 		local_irq_save(flags);
1061 		if (!pcp->count) {
1062 			pcp->count = rmqueue_bulk(zone, 0,
1063 					pcp->batch, &pcp->list, migratetype);
1064 			if (unlikely(!pcp->count))
1065 				goto failed;
1066 		}
1067 
1068 		/* Find a page of the appropriate migrate type */
1069 		if (cold) {
1070 			list_for_each_entry_reverse(page, &pcp->list, lru)
1071 				if (page_private(page) == migratetype)
1072 					break;
1073 		} else {
1074 			list_for_each_entry(page, &pcp->list, lru)
1075 				if (page_private(page) == migratetype)
1076 					break;
1077 		}
1078 
1079 		/* Allocate more to the pcp list if necessary */
1080 		if (unlikely(&page->lru == &pcp->list)) {
1081 			pcp->count += rmqueue_bulk(zone, 0,
1082 					pcp->batch, &pcp->list, migratetype);
1083 			page = list_entry(pcp->list.next, struct page, lru);
1084 		}
1085 
1086 		list_del(&page->lru);
1087 		pcp->count--;
1088 	} else {
1089 		spin_lock_irqsave(&zone->lock, flags);
1090 		page = __rmqueue(zone, order, migratetype);
1091 		spin_unlock(&zone->lock);
1092 		if (!page)
1093 			goto failed;
1094 	}
1095 
1096 	__count_zone_vm_events(PGALLOC, zone, 1 << order);
1097 	zone_statistics(zonelist, zone);
1098 	local_irq_restore(flags);
1099 	put_cpu();
1100 
1101 	VM_BUG_ON(bad_range(zone, page));
1102 	if (prep_new_page(page, order, gfp_flags))
1103 		goto again;
1104 	return page;
1105 
1106 failed:
1107 	local_irq_restore(flags);
1108 	put_cpu();
1109 	return NULL;
1110 }
1111 
1112 #define ALLOC_NO_WATERMARKS	0x01 /* don't check watermarks at all */
1113 #define ALLOC_WMARK_MIN		0x02 /* use pages_min watermark */
1114 #define ALLOC_WMARK_LOW		0x04 /* use pages_low watermark */
1115 #define ALLOC_WMARK_HIGH	0x08 /* use pages_high watermark */
1116 #define ALLOC_HARDER		0x10 /* try to alloc harder */
1117 #define ALLOC_HIGH		0x20 /* __GFP_HIGH set */
1118 #define ALLOC_CPUSET		0x40 /* check for correct cpuset */
1119 
1120 #ifdef CONFIG_FAIL_PAGE_ALLOC
1121 
1122 static struct fail_page_alloc_attr {
1123 	struct fault_attr attr;
1124 
1125 	u32 ignore_gfp_highmem;
1126 	u32 ignore_gfp_wait;
1127 	u32 min_order;
1128 
1129 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1130 
1131 	struct dentry *ignore_gfp_highmem_file;
1132 	struct dentry *ignore_gfp_wait_file;
1133 	struct dentry *min_order_file;
1134 
1135 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1136 
1137 } fail_page_alloc = {
1138 	.attr = FAULT_ATTR_INITIALIZER,
1139 	.ignore_gfp_wait = 1,
1140 	.ignore_gfp_highmem = 1,
1141 	.min_order = 1,
1142 };
1143 
1144 static int __init setup_fail_page_alloc(char *str)
1145 {
1146 	return setup_fault_attr(&fail_page_alloc.attr, str);
1147 }
1148 __setup("fail_page_alloc=", setup_fail_page_alloc);
1149 
1150 static int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1151 {
1152 	if (order < fail_page_alloc.min_order)
1153 		return 0;
1154 	if (gfp_mask & __GFP_NOFAIL)
1155 		return 0;
1156 	if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
1157 		return 0;
1158 	if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
1159 		return 0;
1160 
1161 	return should_fail(&fail_page_alloc.attr, 1 << order);
1162 }
1163 
1164 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1165 
1166 static int __init fail_page_alloc_debugfs(void)
1167 {
1168 	mode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
1169 	struct dentry *dir;
1170 	int err;
1171 
1172 	err = init_fault_attr_dentries(&fail_page_alloc.attr,
1173 				       "fail_page_alloc");
1174 	if (err)
1175 		return err;
1176 	dir = fail_page_alloc.attr.dentries.dir;
1177 
1178 	fail_page_alloc.ignore_gfp_wait_file =
1179 		debugfs_create_bool("ignore-gfp-wait", mode, dir,
1180 				      &fail_page_alloc.ignore_gfp_wait);
1181 
1182 	fail_page_alloc.ignore_gfp_highmem_file =
1183 		debugfs_create_bool("ignore-gfp-highmem", mode, dir,
1184 				      &fail_page_alloc.ignore_gfp_highmem);
1185 	fail_page_alloc.min_order_file =
1186 		debugfs_create_u32("min-order", mode, dir,
1187 				   &fail_page_alloc.min_order);
1188 
1189 	if (!fail_page_alloc.ignore_gfp_wait_file ||
1190             !fail_page_alloc.ignore_gfp_highmem_file ||
1191             !fail_page_alloc.min_order_file) {
1192 		err = -ENOMEM;
1193 		debugfs_remove(fail_page_alloc.ignore_gfp_wait_file);
1194 		debugfs_remove(fail_page_alloc.ignore_gfp_highmem_file);
1195 		debugfs_remove(fail_page_alloc.min_order_file);
1196 		cleanup_fault_attr_dentries(&fail_page_alloc.attr);
1197 	}
1198 
1199 	return err;
1200 }
1201 
1202 late_initcall(fail_page_alloc_debugfs);
1203 
1204 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1205 
1206 #else /* CONFIG_FAIL_PAGE_ALLOC */
1207 
1208 static inline int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1209 {
1210 	return 0;
1211 }
1212 
1213 #endif /* CONFIG_FAIL_PAGE_ALLOC */
1214 
1215 /*
1216  * Return 1 if free pages are above 'mark'. This takes into account the order
1217  * of the allocation.
1218  */
1219 int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1220 		      int classzone_idx, int alloc_flags)
1221 {
1222 	/* free_pages my go negative - that's OK */
1223 	long min = mark;
1224 	long free_pages = zone_page_state(z, NR_FREE_PAGES) - (1 << order) + 1;
1225 	int o;
1226 
1227 	if (alloc_flags & ALLOC_HIGH)
1228 		min -= min / 2;
1229 	if (alloc_flags & ALLOC_HARDER)
1230 		min -= min / 4;
1231 
1232 	if (free_pages <= min + z->lowmem_reserve[classzone_idx])
1233 		return 0;
1234 	for (o = 0; o < order; o++) {
1235 		/* At the next order, this order's pages become unavailable */
1236 		free_pages -= z->free_area[o].nr_free << o;
1237 
1238 		/* Require fewer higher order pages to be free */
1239 		min >>= 1;
1240 
1241 		if (free_pages <= min)
1242 			return 0;
1243 	}
1244 	return 1;
1245 }
1246 
1247 #ifdef CONFIG_NUMA
1248 /*
1249  * zlc_setup - Setup for "zonelist cache".  Uses cached zone data to
1250  * skip over zones that are not allowed by the cpuset, or that have
1251  * been recently (in last second) found to be nearly full.  See further
1252  * comments in mmzone.h.  Reduces cache footprint of zonelist scans
1253  * that have to skip over a lot of full or unallowed zones.
1254  *
1255  * If the zonelist cache is present in the passed in zonelist, then
1256  * returns a pointer to the allowed node mask (either the current
1257  * tasks mems_allowed, or node_states[N_HIGH_MEMORY].)
1258  *
1259  * If the zonelist cache is not available for this zonelist, does
1260  * nothing and returns NULL.
1261  *
1262  * If the fullzones BITMAP in the zonelist cache is stale (more than
1263  * a second since last zap'd) then we zap it out (clear its bits.)
1264  *
1265  * We hold off even calling zlc_setup, until after we've checked the
1266  * first zone in the zonelist, on the theory that most allocations will
1267  * be satisfied from that first zone, so best to examine that zone as
1268  * quickly as we can.
1269  */
1270 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1271 {
1272 	struct zonelist_cache *zlc;	/* cached zonelist speedup info */
1273 	nodemask_t *allowednodes;	/* zonelist_cache approximation */
1274 
1275 	zlc = zonelist->zlcache_ptr;
1276 	if (!zlc)
1277 		return NULL;
1278 
1279 	if (jiffies - zlc->last_full_zap > 1 * HZ) {
1280 		bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1281 		zlc->last_full_zap = jiffies;
1282 	}
1283 
1284 	allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1285 					&cpuset_current_mems_allowed :
1286 					&node_states[N_HIGH_MEMORY];
1287 	return allowednodes;
1288 }
1289 
1290 /*
1291  * Given 'z' scanning a zonelist, run a couple of quick checks to see
1292  * if it is worth looking at further for free memory:
1293  *  1) Check that the zone isn't thought to be full (doesn't have its
1294  *     bit set in the zonelist_cache fullzones BITMAP).
1295  *  2) Check that the zones node (obtained from the zonelist_cache
1296  *     z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1297  * Return true (non-zero) if zone is worth looking at further, or
1298  * else return false (zero) if it is not.
1299  *
1300  * This check -ignores- the distinction between various watermarks,
1301  * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ...  If a zone is
1302  * found to be full for any variation of these watermarks, it will
1303  * be considered full for up to one second by all requests, unless
1304  * we are so low on memory on all allowed nodes that we are forced
1305  * into the second scan of the zonelist.
1306  *
1307  * In the second scan we ignore this zonelist cache and exactly
1308  * apply the watermarks to all zones, even it is slower to do so.
1309  * We are low on memory in the second scan, and should leave no stone
1310  * unturned looking for a free page.
1311  */
1312 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zone **z,
1313 						nodemask_t *allowednodes)
1314 {
1315 	struct zonelist_cache *zlc;	/* cached zonelist speedup info */
1316 	int i;				/* index of *z in zonelist zones */
1317 	int n;				/* node that zone *z is on */
1318 
1319 	zlc = zonelist->zlcache_ptr;
1320 	if (!zlc)
1321 		return 1;
1322 
1323 	i = z - zonelist->zones;
1324 	n = zlc->z_to_n[i];
1325 
1326 	/* This zone is worth trying if it is allowed but not full */
1327 	return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1328 }
1329 
1330 /*
1331  * Given 'z' scanning a zonelist, set the corresponding bit in
1332  * zlc->fullzones, so that subsequent attempts to allocate a page
1333  * from that zone don't waste time re-examining it.
1334  */
1335 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zone **z)
1336 {
1337 	struct zonelist_cache *zlc;	/* cached zonelist speedup info */
1338 	int i;				/* index of *z in zonelist zones */
1339 
1340 	zlc = zonelist->zlcache_ptr;
1341 	if (!zlc)
1342 		return;
1343 
1344 	i = z - zonelist->zones;
1345 
1346 	set_bit(i, zlc->fullzones);
1347 }
1348 
1349 #else	/* CONFIG_NUMA */
1350 
1351 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1352 {
1353 	return NULL;
1354 }
1355 
1356 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zone **z,
1357 				nodemask_t *allowednodes)
1358 {
1359 	return 1;
1360 }
1361 
1362 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zone **z)
1363 {
1364 }
1365 #endif	/* CONFIG_NUMA */
1366 
1367 /*
1368  * get_page_from_freelist goes through the zonelist trying to allocate
1369  * a page.
1370  */
1371 static struct page *
1372 get_page_from_freelist(gfp_t gfp_mask, unsigned int order,
1373 		struct zonelist *zonelist, int alloc_flags)
1374 {
1375 	struct zone **z;
1376 	struct page *page = NULL;
1377 	int classzone_idx = zone_idx(zonelist->zones[0]);
1378 	struct zone *zone;
1379 	nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
1380 	int zlc_active = 0;		/* set if using zonelist_cache */
1381 	int did_zlc_setup = 0;		/* just call zlc_setup() one time */
1382 	enum zone_type highest_zoneidx = -1; /* Gets set for policy zonelists */
1383 
1384 zonelist_scan:
1385 	/*
1386 	 * Scan zonelist, looking for a zone with enough free.
1387 	 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1388 	 */
1389 	z = zonelist->zones;
1390 
1391 	do {
1392 		/*
1393 		 * In NUMA, this could be a policy zonelist which contains
1394 		 * zones that may not be allowed by the current gfp_mask.
1395 		 * Check the zone is allowed by the current flags
1396 		 */
1397 		if (unlikely(alloc_should_filter_zonelist(zonelist))) {
1398 			if (highest_zoneidx == -1)
1399 				highest_zoneidx = gfp_zone(gfp_mask);
1400 			if (zone_idx(*z) > highest_zoneidx)
1401 				continue;
1402 		}
1403 
1404 		if (NUMA_BUILD && zlc_active &&
1405 			!zlc_zone_worth_trying(zonelist, z, allowednodes))
1406 				continue;
1407 		zone = *z;
1408 		if ((alloc_flags & ALLOC_CPUSET) &&
1409 			!cpuset_zone_allowed_softwall(zone, gfp_mask))
1410 				goto try_next_zone;
1411 
1412 		if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
1413 			unsigned long mark;
1414 			if (alloc_flags & ALLOC_WMARK_MIN)
1415 				mark = zone->pages_min;
1416 			else if (alloc_flags & ALLOC_WMARK_LOW)
1417 				mark = zone->pages_low;
1418 			else
1419 				mark = zone->pages_high;
1420 			if (!zone_watermark_ok(zone, order, mark,
1421 				    classzone_idx, alloc_flags)) {
1422 				if (!zone_reclaim_mode ||
1423 				    !zone_reclaim(zone, gfp_mask, order))
1424 					goto this_zone_full;
1425 			}
1426 		}
1427 
1428 		page = buffered_rmqueue(zonelist, zone, order, gfp_mask);
1429 		if (page)
1430 			break;
1431 this_zone_full:
1432 		if (NUMA_BUILD)
1433 			zlc_mark_zone_full(zonelist, z);
1434 try_next_zone:
1435 		if (NUMA_BUILD && !did_zlc_setup) {
1436 			/* we do zlc_setup after the first zone is tried */
1437 			allowednodes = zlc_setup(zonelist, alloc_flags);
1438 			zlc_active = 1;
1439 			did_zlc_setup = 1;
1440 		}
1441 	} while (*(++z) != NULL);
1442 
1443 	if (unlikely(NUMA_BUILD && page == NULL && zlc_active)) {
1444 		/* Disable zlc cache for second zonelist scan */
1445 		zlc_active = 0;
1446 		goto zonelist_scan;
1447 	}
1448 	return page;
1449 }
1450 
1451 /*
1452  * This is the 'heart' of the zoned buddy allocator.
1453  */
1454 struct page *
1455 __alloc_pages(gfp_t gfp_mask, unsigned int order,
1456 		struct zonelist *zonelist)
1457 {
1458 	const gfp_t wait = gfp_mask & __GFP_WAIT;
1459 	struct zone **z;
1460 	struct page *page;
1461 	struct reclaim_state reclaim_state;
1462 	struct task_struct *p = current;
1463 	int do_retry;
1464 	int alloc_flags;
1465 	int did_some_progress;
1466 
1467 	might_sleep_if(wait);
1468 
1469 	if (should_fail_alloc_page(gfp_mask, order))
1470 		return NULL;
1471 
1472 restart:
1473 	z = zonelist->zones;  /* the list of zones suitable for gfp_mask */
1474 
1475 	if (unlikely(*z == NULL)) {
1476 		/*
1477 		 * Happens if we have an empty zonelist as a result of
1478 		 * GFP_THISNODE being used on a memoryless node
1479 		 */
1480 		return NULL;
1481 	}
1482 
1483 	page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, order,
1484 				zonelist, ALLOC_WMARK_LOW|ALLOC_CPUSET);
1485 	if (page)
1486 		goto got_pg;
1487 
1488 	/*
1489 	 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
1490 	 * __GFP_NOWARN set) should not cause reclaim since the subsystem
1491 	 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
1492 	 * using a larger set of nodes after it has established that the
1493 	 * allowed per node queues are empty and that nodes are
1494 	 * over allocated.
1495 	 */
1496 	if (NUMA_BUILD && (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
1497 		goto nopage;
1498 
1499 	for (z = zonelist->zones; *z; z++)
1500 		wakeup_kswapd(*z, order);
1501 
1502 	/*
1503 	 * OK, we're below the kswapd watermark and have kicked background
1504 	 * reclaim. Now things get more complex, so set up alloc_flags according
1505 	 * to how we want to proceed.
1506 	 *
1507 	 * The caller may dip into page reserves a bit more if the caller
1508 	 * cannot run direct reclaim, or if the caller has realtime scheduling
1509 	 * policy or is asking for __GFP_HIGH memory.  GFP_ATOMIC requests will
1510 	 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
1511 	 */
1512 	alloc_flags = ALLOC_WMARK_MIN;
1513 	if ((unlikely(rt_task(p)) && !in_interrupt()) || !wait)
1514 		alloc_flags |= ALLOC_HARDER;
1515 	if (gfp_mask & __GFP_HIGH)
1516 		alloc_flags |= ALLOC_HIGH;
1517 	if (wait)
1518 		alloc_flags |= ALLOC_CPUSET;
1519 
1520 	/*
1521 	 * Go through the zonelist again. Let __GFP_HIGH and allocations
1522 	 * coming from realtime tasks go deeper into reserves.
1523 	 *
1524 	 * This is the last chance, in general, before the goto nopage.
1525 	 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
1526 	 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1527 	 */
1528 	page = get_page_from_freelist(gfp_mask, order, zonelist, alloc_flags);
1529 	if (page)
1530 		goto got_pg;
1531 
1532 	/* This allocation should allow future memory freeing. */
1533 
1534 rebalance:
1535 	if (((p->flags & PF_MEMALLOC) || unlikely(test_thread_flag(TIF_MEMDIE)))
1536 			&& !in_interrupt()) {
1537 		if (!(gfp_mask & __GFP_NOMEMALLOC)) {
1538 nofail_alloc:
1539 			/* go through the zonelist yet again, ignoring mins */
1540 			page = get_page_from_freelist(gfp_mask, order,
1541 				zonelist, ALLOC_NO_WATERMARKS);
1542 			if (page)
1543 				goto got_pg;
1544 			if (gfp_mask & __GFP_NOFAIL) {
1545 				congestion_wait(WRITE, HZ/50);
1546 				goto nofail_alloc;
1547 			}
1548 		}
1549 		goto nopage;
1550 	}
1551 
1552 	/* Atomic allocations - we can't balance anything */
1553 	if (!wait)
1554 		goto nopage;
1555 
1556 	cond_resched();
1557 
1558 	/* We now go into synchronous reclaim */
1559 	cpuset_memory_pressure_bump();
1560 	p->flags |= PF_MEMALLOC;
1561 	reclaim_state.reclaimed_slab = 0;
1562 	p->reclaim_state = &reclaim_state;
1563 
1564 	did_some_progress = try_to_free_pages(zonelist->zones, order, gfp_mask);
1565 
1566 	p->reclaim_state = NULL;
1567 	p->flags &= ~PF_MEMALLOC;
1568 
1569 	cond_resched();
1570 
1571 	if (order != 0)
1572 		drain_all_pages();
1573 
1574 	if (likely(did_some_progress)) {
1575 		page = get_page_from_freelist(gfp_mask, order,
1576 						zonelist, alloc_flags);
1577 		if (page)
1578 			goto got_pg;
1579 	} else if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
1580 		if (!try_set_zone_oom(zonelist)) {
1581 			schedule_timeout_uninterruptible(1);
1582 			goto restart;
1583 		}
1584 
1585 		/*
1586 		 * Go through the zonelist yet one more time, keep
1587 		 * very high watermark here, this is only to catch
1588 		 * a parallel oom killing, we must fail if we're still
1589 		 * under heavy pressure.
1590 		 */
1591 		page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, order,
1592 				zonelist, ALLOC_WMARK_HIGH|ALLOC_CPUSET);
1593 		if (page) {
1594 			clear_zonelist_oom(zonelist);
1595 			goto got_pg;
1596 		}
1597 
1598 		/* The OOM killer will not help higher order allocs so fail */
1599 		if (order > PAGE_ALLOC_COSTLY_ORDER) {
1600 			clear_zonelist_oom(zonelist);
1601 			goto nopage;
1602 		}
1603 
1604 		out_of_memory(zonelist, gfp_mask, order);
1605 		clear_zonelist_oom(zonelist);
1606 		goto restart;
1607 	}
1608 
1609 	/*
1610 	 * Don't let big-order allocations loop unless the caller explicitly
1611 	 * requests that.  Wait for some write requests to complete then retry.
1612 	 *
1613 	 * In this implementation, __GFP_REPEAT means __GFP_NOFAIL for order
1614 	 * <= 3, but that may not be true in other implementations.
1615 	 */
1616 	do_retry = 0;
1617 	if (!(gfp_mask & __GFP_NORETRY)) {
1618 		if ((order <= PAGE_ALLOC_COSTLY_ORDER) ||
1619 						(gfp_mask & __GFP_REPEAT))
1620 			do_retry = 1;
1621 		if (gfp_mask & __GFP_NOFAIL)
1622 			do_retry = 1;
1623 	}
1624 	if (do_retry) {
1625 		congestion_wait(WRITE, HZ/50);
1626 		goto rebalance;
1627 	}
1628 
1629 nopage:
1630 	if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) {
1631 		printk(KERN_WARNING "%s: page allocation failure."
1632 			" order:%d, mode:0x%x\n",
1633 			p->comm, order, gfp_mask);
1634 		dump_stack();
1635 		show_mem();
1636 	}
1637 got_pg:
1638 	return page;
1639 }
1640 
1641 EXPORT_SYMBOL(__alloc_pages);
1642 
1643 /*
1644  * Common helper functions.
1645  */
1646 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1647 {
1648 	struct page * page;
1649 	page = alloc_pages(gfp_mask, order);
1650 	if (!page)
1651 		return 0;
1652 	return (unsigned long) page_address(page);
1653 }
1654 
1655 EXPORT_SYMBOL(__get_free_pages);
1656 
1657 unsigned long get_zeroed_page(gfp_t gfp_mask)
1658 {
1659 	struct page * page;
1660 
1661 	/*
1662 	 * get_zeroed_page() returns a 32-bit address, which cannot represent
1663 	 * a highmem page
1664 	 */
1665 	VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
1666 
1667 	page = alloc_pages(gfp_mask | __GFP_ZERO, 0);
1668 	if (page)
1669 		return (unsigned long) page_address(page);
1670 	return 0;
1671 }
1672 
1673 EXPORT_SYMBOL(get_zeroed_page);
1674 
1675 void __pagevec_free(struct pagevec *pvec)
1676 {
1677 	int i = pagevec_count(pvec);
1678 
1679 	while (--i >= 0)
1680 		free_hot_cold_page(pvec->pages[i], pvec->cold);
1681 }
1682 
1683 void __free_pages(struct page *page, unsigned int order)
1684 {
1685 	if (put_page_testzero(page)) {
1686 		if (order == 0)
1687 			free_hot_page(page);
1688 		else
1689 			__free_pages_ok(page, order);
1690 	}
1691 }
1692 
1693 EXPORT_SYMBOL(__free_pages);
1694 
1695 void free_pages(unsigned long addr, unsigned int order)
1696 {
1697 	if (addr != 0) {
1698 		VM_BUG_ON(!virt_addr_valid((void *)addr));
1699 		__free_pages(virt_to_page((void *)addr), order);
1700 	}
1701 }
1702 
1703 EXPORT_SYMBOL(free_pages);
1704 
1705 static unsigned int nr_free_zone_pages(int offset)
1706 {
1707 	/* Just pick one node, since fallback list is circular */
1708 	pg_data_t *pgdat = NODE_DATA(numa_node_id());
1709 	unsigned int sum = 0;
1710 
1711 	struct zonelist *zonelist = pgdat->node_zonelists + offset;
1712 	struct zone **zonep = zonelist->zones;
1713 	struct zone *zone;
1714 
1715 	for (zone = *zonep++; zone; zone = *zonep++) {
1716 		unsigned long size = zone->present_pages;
1717 		unsigned long high = zone->pages_high;
1718 		if (size > high)
1719 			sum += size - high;
1720 	}
1721 
1722 	return sum;
1723 }
1724 
1725 /*
1726  * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
1727  */
1728 unsigned int nr_free_buffer_pages(void)
1729 {
1730 	return nr_free_zone_pages(gfp_zone(GFP_USER));
1731 }
1732 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
1733 
1734 /*
1735  * Amount of free RAM allocatable within all zones
1736  */
1737 unsigned int nr_free_pagecache_pages(void)
1738 {
1739 	return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
1740 }
1741 
1742 static inline void show_node(struct zone *zone)
1743 {
1744 	if (NUMA_BUILD)
1745 		printk("Node %d ", zone_to_nid(zone));
1746 }
1747 
1748 void si_meminfo(struct sysinfo *val)
1749 {
1750 	val->totalram = totalram_pages;
1751 	val->sharedram = 0;
1752 	val->freeram = global_page_state(NR_FREE_PAGES);
1753 	val->bufferram = nr_blockdev_pages();
1754 	val->totalhigh = totalhigh_pages;
1755 	val->freehigh = nr_free_highpages();
1756 	val->mem_unit = PAGE_SIZE;
1757 }
1758 
1759 EXPORT_SYMBOL(si_meminfo);
1760 
1761 #ifdef CONFIG_NUMA
1762 void si_meminfo_node(struct sysinfo *val, int nid)
1763 {
1764 	pg_data_t *pgdat = NODE_DATA(nid);
1765 
1766 	val->totalram = pgdat->node_present_pages;
1767 	val->freeram = node_page_state(nid, NR_FREE_PAGES);
1768 #ifdef CONFIG_HIGHMEM
1769 	val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
1770 	val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
1771 			NR_FREE_PAGES);
1772 #else
1773 	val->totalhigh = 0;
1774 	val->freehigh = 0;
1775 #endif
1776 	val->mem_unit = PAGE_SIZE;
1777 }
1778 #endif
1779 
1780 #define K(x) ((x) << (PAGE_SHIFT-10))
1781 
1782 /*
1783  * Show free area list (used inside shift_scroll-lock stuff)
1784  * We also calculate the percentage fragmentation. We do this by counting the
1785  * memory on each free list with the exception of the first item on the list.
1786  */
1787 void show_free_areas(void)
1788 {
1789 	int cpu;
1790 	struct zone *zone;
1791 
1792 	for_each_zone(zone) {
1793 		if (!populated_zone(zone))
1794 			continue;
1795 
1796 		show_node(zone);
1797 		printk("%s per-cpu:\n", zone->name);
1798 
1799 		for_each_online_cpu(cpu) {
1800 			struct per_cpu_pageset *pageset;
1801 
1802 			pageset = zone_pcp(zone, cpu);
1803 
1804 			printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
1805 			       cpu, pageset->pcp.high,
1806 			       pageset->pcp.batch, pageset->pcp.count);
1807 		}
1808 	}
1809 
1810 	printk("Active:%lu inactive:%lu dirty:%lu writeback:%lu unstable:%lu\n"
1811 		" free:%lu slab:%lu mapped:%lu pagetables:%lu bounce:%lu\n",
1812 		global_page_state(NR_ACTIVE),
1813 		global_page_state(NR_INACTIVE),
1814 		global_page_state(NR_FILE_DIRTY),
1815 		global_page_state(NR_WRITEBACK),
1816 		global_page_state(NR_UNSTABLE_NFS),
1817 		global_page_state(NR_FREE_PAGES),
1818 		global_page_state(NR_SLAB_RECLAIMABLE) +
1819 			global_page_state(NR_SLAB_UNRECLAIMABLE),
1820 		global_page_state(NR_FILE_MAPPED),
1821 		global_page_state(NR_PAGETABLE),
1822 		global_page_state(NR_BOUNCE));
1823 
1824 	for_each_zone(zone) {
1825 		int i;
1826 
1827 		if (!populated_zone(zone))
1828 			continue;
1829 
1830 		show_node(zone);
1831 		printk("%s"
1832 			" free:%lukB"
1833 			" min:%lukB"
1834 			" low:%lukB"
1835 			" high:%lukB"
1836 			" active:%lukB"
1837 			" inactive:%lukB"
1838 			" present:%lukB"
1839 			" pages_scanned:%lu"
1840 			" all_unreclaimable? %s"
1841 			"\n",
1842 			zone->name,
1843 			K(zone_page_state(zone, NR_FREE_PAGES)),
1844 			K(zone->pages_min),
1845 			K(zone->pages_low),
1846 			K(zone->pages_high),
1847 			K(zone_page_state(zone, NR_ACTIVE)),
1848 			K(zone_page_state(zone, NR_INACTIVE)),
1849 			K(zone->present_pages),
1850 			zone->pages_scanned,
1851 			(zone_is_all_unreclaimable(zone) ? "yes" : "no")
1852 			);
1853 		printk("lowmem_reserve[]:");
1854 		for (i = 0; i < MAX_NR_ZONES; i++)
1855 			printk(" %lu", zone->lowmem_reserve[i]);
1856 		printk("\n");
1857 	}
1858 
1859 	for_each_zone(zone) {
1860  		unsigned long nr[MAX_ORDER], flags, order, total = 0;
1861 
1862 		if (!populated_zone(zone))
1863 			continue;
1864 
1865 		show_node(zone);
1866 		printk("%s: ", zone->name);
1867 
1868 		spin_lock_irqsave(&zone->lock, flags);
1869 		for (order = 0; order < MAX_ORDER; order++) {
1870 			nr[order] = zone->free_area[order].nr_free;
1871 			total += nr[order] << order;
1872 		}
1873 		spin_unlock_irqrestore(&zone->lock, flags);
1874 		for (order = 0; order < MAX_ORDER; order++)
1875 			printk("%lu*%lukB ", nr[order], K(1UL) << order);
1876 		printk("= %lukB\n", K(total));
1877 	}
1878 
1879 	printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
1880 
1881 	show_swap_cache_info();
1882 }
1883 
1884 /*
1885  * Builds allocation fallback zone lists.
1886  *
1887  * Add all populated zones of a node to the zonelist.
1888  */
1889 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
1890 				int nr_zones, enum zone_type zone_type)
1891 {
1892 	struct zone *zone;
1893 
1894 	BUG_ON(zone_type >= MAX_NR_ZONES);
1895 	zone_type++;
1896 
1897 	do {
1898 		zone_type--;
1899 		zone = pgdat->node_zones + zone_type;
1900 		if (populated_zone(zone)) {
1901 			zonelist->zones[nr_zones++] = zone;
1902 			check_highest_zone(zone_type);
1903 		}
1904 
1905 	} while (zone_type);
1906 	return nr_zones;
1907 }
1908 
1909 
1910 /*
1911  *  zonelist_order:
1912  *  0 = automatic detection of better ordering.
1913  *  1 = order by ([node] distance, -zonetype)
1914  *  2 = order by (-zonetype, [node] distance)
1915  *
1916  *  If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
1917  *  the same zonelist. So only NUMA can configure this param.
1918  */
1919 #define ZONELIST_ORDER_DEFAULT  0
1920 #define ZONELIST_ORDER_NODE     1
1921 #define ZONELIST_ORDER_ZONE     2
1922 
1923 /* zonelist order in the kernel.
1924  * set_zonelist_order() will set this to NODE or ZONE.
1925  */
1926 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
1927 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
1928 
1929 
1930 #ifdef CONFIG_NUMA
1931 /* The value user specified ....changed by config */
1932 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
1933 /* string for sysctl */
1934 #define NUMA_ZONELIST_ORDER_LEN	16
1935 char numa_zonelist_order[16] = "default";
1936 
1937 /*
1938  * interface for configure zonelist ordering.
1939  * command line option "numa_zonelist_order"
1940  *	= "[dD]efault	- default, automatic configuration.
1941  *	= "[nN]ode 	- order by node locality, then by zone within node
1942  *	= "[zZ]one      - order by zone, then by locality within zone
1943  */
1944 
1945 static int __parse_numa_zonelist_order(char *s)
1946 {
1947 	if (*s == 'd' || *s == 'D') {
1948 		user_zonelist_order = ZONELIST_ORDER_DEFAULT;
1949 	} else if (*s == 'n' || *s == 'N') {
1950 		user_zonelist_order = ZONELIST_ORDER_NODE;
1951 	} else if (*s == 'z' || *s == 'Z') {
1952 		user_zonelist_order = ZONELIST_ORDER_ZONE;
1953 	} else {
1954 		printk(KERN_WARNING
1955 			"Ignoring invalid numa_zonelist_order value:  "
1956 			"%s\n", s);
1957 		return -EINVAL;
1958 	}
1959 	return 0;
1960 }
1961 
1962 static __init int setup_numa_zonelist_order(char *s)
1963 {
1964 	if (s)
1965 		return __parse_numa_zonelist_order(s);
1966 	return 0;
1967 }
1968 early_param("numa_zonelist_order", setup_numa_zonelist_order);
1969 
1970 /*
1971  * sysctl handler for numa_zonelist_order
1972  */
1973 int numa_zonelist_order_handler(ctl_table *table, int write,
1974 		struct file *file, void __user *buffer, size_t *length,
1975 		loff_t *ppos)
1976 {
1977 	char saved_string[NUMA_ZONELIST_ORDER_LEN];
1978 	int ret;
1979 
1980 	if (write)
1981 		strncpy(saved_string, (char*)table->data,
1982 			NUMA_ZONELIST_ORDER_LEN);
1983 	ret = proc_dostring(table, write, file, buffer, length, ppos);
1984 	if (ret)
1985 		return ret;
1986 	if (write) {
1987 		int oldval = user_zonelist_order;
1988 		if (__parse_numa_zonelist_order((char*)table->data)) {
1989 			/*
1990 			 * bogus value.  restore saved string
1991 			 */
1992 			strncpy((char*)table->data, saved_string,
1993 				NUMA_ZONELIST_ORDER_LEN);
1994 			user_zonelist_order = oldval;
1995 		} else if (oldval != user_zonelist_order)
1996 			build_all_zonelists();
1997 	}
1998 	return 0;
1999 }
2000 
2001 
2002 #define MAX_NODE_LOAD (num_online_nodes())
2003 static int node_load[MAX_NUMNODES];
2004 
2005 /**
2006  * find_next_best_node - find the next node that should appear in a given node's fallback list
2007  * @node: node whose fallback list we're appending
2008  * @used_node_mask: nodemask_t of already used nodes
2009  *
2010  * We use a number of factors to determine which is the next node that should
2011  * appear on a given node's fallback list.  The node should not have appeared
2012  * already in @node's fallback list, and it should be the next closest node
2013  * according to the distance array (which contains arbitrary distance values
2014  * from each node to each node in the system), and should also prefer nodes
2015  * with no CPUs, since presumably they'll have very little allocation pressure
2016  * on them otherwise.
2017  * It returns -1 if no node is found.
2018  */
2019 static int find_next_best_node(int node, nodemask_t *used_node_mask)
2020 {
2021 	int n, val;
2022 	int min_val = INT_MAX;
2023 	int best_node = -1;
2024 
2025 	/* Use the local node if we haven't already */
2026 	if (!node_isset(node, *used_node_mask)) {
2027 		node_set(node, *used_node_mask);
2028 		return node;
2029 	}
2030 
2031 	for_each_node_state(n, N_HIGH_MEMORY) {
2032 		cpumask_t tmp;
2033 
2034 		/* Don't want a node to appear more than once */
2035 		if (node_isset(n, *used_node_mask))
2036 			continue;
2037 
2038 		/* Use the distance array to find the distance */
2039 		val = node_distance(node, n);
2040 
2041 		/* Penalize nodes under us ("prefer the next node") */
2042 		val += (n < node);
2043 
2044 		/* Give preference to headless and unused nodes */
2045 		tmp = node_to_cpumask(n);
2046 		if (!cpus_empty(tmp))
2047 			val += PENALTY_FOR_NODE_WITH_CPUS;
2048 
2049 		/* Slight preference for less loaded node */
2050 		val *= (MAX_NODE_LOAD*MAX_NUMNODES);
2051 		val += node_load[n];
2052 
2053 		if (val < min_val) {
2054 			min_val = val;
2055 			best_node = n;
2056 		}
2057 	}
2058 
2059 	if (best_node >= 0)
2060 		node_set(best_node, *used_node_mask);
2061 
2062 	return best_node;
2063 }
2064 
2065 
2066 /*
2067  * Build zonelists ordered by node and zones within node.
2068  * This results in maximum locality--normal zone overflows into local
2069  * DMA zone, if any--but risks exhausting DMA zone.
2070  */
2071 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
2072 {
2073 	enum zone_type i;
2074 	int j;
2075 	struct zonelist *zonelist;
2076 
2077 	for (i = 0; i < MAX_NR_ZONES; i++) {
2078 		zonelist = pgdat->node_zonelists + i;
2079 		for (j = 0; zonelist->zones[j] != NULL; j++)
2080 			;
2081  		j = build_zonelists_node(NODE_DATA(node), zonelist, j, i);
2082 		zonelist->zones[j] = NULL;
2083 	}
2084 }
2085 
2086 /*
2087  * Build gfp_thisnode zonelists
2088  */
2089 static void build_thisnode_zonelists(pg_data_t *pgdat)
2090 {
2091 	enum zone_type i;
2092 	int j;
2093 	struct zonelist *zonelist;
2094 
2095 	for (i = 0; i < MAX_NR_ZONES; i++) {
2096 		zonelist = pgdat->node_zonelists + MAX_NR_ZONES + i;
2097 		j = build_zonelists_node(pgdat, zonelist, 0, i);
2098 		zonelist->zones[j] = NULL;
2099 	}
2100 }
2101 
2102 /*
2103  * Build zonelists ordered by zone and nodes within zones.
2104  * This results in conserving DMA zone[s] until all Normal memory is
2105  * exhausted, but results in overflowing to remote node while memory
2106  * may still exist in local DMA zone.
2107  */
2108 static int node_order[MAX_NUMNODES];
2109 
2110 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
2111 {
2112 	enum zone_type i;
2113 	int pos, j, node;
2114 	int zone_type;		/* needs to be signed */
2115 	struct zone *z;
2116 	struct zonelist *zonelist;
2117 
2118 	for (i = 0; i < MAX_NR_ZONES; i++) {
2119 		zonelist = pgdat->node_zonelists + i;
2120 		pos = 0;
2121 		for (zone_type = i; zone_type >= 0; zone_type--) {
2122 			for (j = 0; j < nr_nodes; j++) {
2123 				node = node_order[j];
2124 				z = &NODE_DATA(node)->node_zones[zone_type];
2125 				if (populated_zone(z)) {
2126 					zonelist->zones[pos++] = z;
2127 					check_highest_zone(zone_type);
2128 				}
2129 			}
2130 		}
2131 		zonelist->zones[pos] = NULL;
2132 	}
2133 }
2134 
2135 static int default_zonelist_order(void)
2136 {
2137 	int nid, zone_type;
2138 	unsigned long low_kmem_size,total_size;
2139 	struct zone *z;
2140 	int average_size;
2141 	/*
2142          * ZONE_DMA and ZONE_DMA32 can be very small area in the sytem.
2143 	 * If they are really small and used heavily, the system can fall
2144 	 * into OOM very easily.
2145 	 * This function detect ZONE_DMA/DMA32 size and confgigures zone order.
2146 	 */
2147 	/* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
2148 	low_kmem_size = 0;
2149 	total_size = 0;
2150 	for_each_online_node(nid) {
2151 		for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
2152 			z = &NODE_DATA(nid)->node_zones[zone_type];
2153 			if (populated_zone(z)) {
2154 				if (zone_type < ZONE_NORMAL)
2155 					low_kmem_size += z->present_pages;
2156 				total_size += z->present_pages;
2157 			}
2158 		}
2159 	}
2160 	if (!low_kmem_size ||  /* there are no DMA area. */
2161 	    low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
2162 		return ZONELIST_ORDER_NODE;
2163 	/*
2164 	 * look into each node's config.
2165   	 * If there is a node whose DMA/DMA32 memory is very big area on
2166  	 * local memory, NODE_ORDER may be suitable.
2167          */
2168 	average_size = total_size /
2169 				(nodes_weight(node_states[N_HIGH_MEMORY]) + 1);
2170 	for_each_online_node(nid) {
2171 		low_kmem_size = 0;
2172 		total_size = 0;
2173 		for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
2174 			z = &NODE_DATA(nid)->node_zones[zone_type];
2175 			if (populated_zone(z)) {
2176 				if (zone_type < ZONE_NORMAL)
2177 					low_kmem_size += z->present_pages;
2178 				total_size += z->present_pages;
2179 			}
2180 		}
2181 		if (low_kmem_size &&
2182 		    total_size > average_size && /* ignore small node */
2183 		    low_kmem_size > total_size * 70/100)
2184 			return ZONELIST_ORDER_NODE;
2185 	}
2186 	return ZONELIST_ORDER_ZONE;
2187 }
2188 
2189 static void set_zonelist_order(void)
2190 {
2191 	if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
2192 		current_zonelist_order = default_zonelist_order();
2193 	else
2194 		current_zonelist_order = user_zonelist_order;
2195 }
2196 
2197 static void build_zonelists(pg_data_t *pgdat)
2198 {
2199 	int j, node, load;
2200 	enum zone_type i;
2201 	nodemask_t used_mask;
2202 	int local_node, prev_node;
2203 	struct zonelist *zonelist;
2204 	int order = current_zonelist_order;
2205 
2206 	/* initialize zonelists */
2207 	for (i = 0; i < MAX_ZONELISTS; i++) {
2208 		zonelist = pgdat->node_zonelists + i;
2209 		zonelist->zones[0] = NULL;
2210 	}
2211 
2212 	/* NUMA-aware ordering of nodes */
2213 	local_node = pgdat->node_id;
2214 	load = num_online_nodes();
2215 	prev_node = local_node;
2216 	nodes_clear(used_mask);
2217 
2218 	memset(node_load, 0, sizeof(node_load));
2219 	memset(node_order, 0, sizeof(node_order));
2220 	j = 0;
2221 
2222 	while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
2223 		int distance = node_distance(local_node, node);
2224 
2225 		/*
2226 		 * If another node is sufficiently far away then it is better
2227 		 * to reclaim pages in a zone before going off node.
2228 		 */
2229 		if (distance > RECLAIM_DISTANCE)
2230 			zone_reclaim_mode = 1;
2231 
2232 		/*
2233 		 * We don't want to pressure a particular node.
2234 		 * So adding penalty to the first node in same
2235 		 * distance group to make it round-robin.
2236 		 */
2237 		if (distance != node_distance(local_node, prev_node))
2238 			node_load[node] = load;
2239 
2240 		prev_node = node;
2241 		load--;
2242 		if (order == ZONELIST_ORDER_NODE)
2243 			build_zonelists_in_node_order(pgdat, node);
2244 		else
2245 			node_order[j++] = node;	/* remember order */
2246 	}
2247 
2248 	if (order == ZONELIST_ORDER_ZONE) {
2249 		/* calculate node order -- i.e., DMA last! */
2250 		build_zonelists_in_zone_order(pgdat, j);
2251 	}
2252 
2253 	build_thisnode_zonelists(pgdat);
2254 }
2255 
2256 /* Construct the zonelist performance cache - see further mmzone.h */
2257 static void build_zonelist_cache(pg_data_t *pgdat)
2258 {
2259 	int i;
2260 
2261 	for (i = 0; i < MAX_NR_ZONES; i++) {
2262 		struct zonelist *zonelist;
2263 		struct zonelist_cache *zlc;
2264 		struct zone **z;
2265 
2266 		zonelist = pgdat->node_zonelists + i;
2267 		zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
2268 		bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
2269 		for (z = zonelist->zones; *z; z++)
2270 			zlc->z_to_n[z - zonelist->zones] = zone_to_nid(*z);
2271 	}
2272 }
2273 
2274 
2275 #else	/* CONFIG_NUMA */
2276 
2277 static void set_zonelist_order(void)
2278 {
2279 	current_zonelist_order = ZONELIST_ORDER_ZONE;
2280 }
2281 
2282 static void build_zonelists(pg_data_t *pgdat)
2283 {
2284 	int node, local_node;
2285 	enum zone_type i,j;
2286 
2287 	local_node = pgdat->node_id;
2288 	for (i = 0; i < MAX_NR_ZONES; i++) {
2289 		struct zonelist *zonelist;
2290 
2291 		zonelist = pgdat->node_zonelists + i;
2292 
2293  		j = build_zonelists_node(pgdat, zonelist, 0, i);
2294  		/*
2295  		 * Now we build the zonelist so that it contains the zones
2296  		 * of all the other nodes.
2297  		 * We don't want to pressure a particular node, so when
2298  		 * building the zones for node N, we make sure that the
2299  		 * zones coming right after the local ones are those from
2300  		 * node N+1 (modulo N)
2301  		 */
2302 		for (node = local_node + 1; node < MAX_NUMNODES; node++) {
2303 			if (!node_online(node))
2304 				continue;
2305 			j = build_zonelists_node(NODE_DATA(node), zonelist, j, i);
2306 		}
2307 		for (node = 0; node < local_node; node++) {
2308 			if (!node_online(node))
2309 				continue;
2310 			j = build_zonelists_node(NODE_DATA(node), zonelist, j, i);
2311 		}
2312 
2313 		zonelist->zones[j] = NULL;
2314 	}
2315 }
2316 
2317 /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
2318 static void build_zonelist_cache(pg_data_t *pgdat)
2319 {
2320 	int i;
2321 
2322 	for (i = 0; i < MAX_NR_ZONES; i++)
2323 		pgdat->node_zonelists[i].zlcache_ptr = NULL;
2324 }
2325 
2326 #endif	/* CONFIG_NUMA */
2327 
2328 /* return values int ....just for stop_machine_run() */
2329 static int __build_all_zonelists(void *dummy)
2330 {
2331 	int nid;
2332 
2333 	for_each_online_node(nid) {
2334 		pg_data_t *pgdat = NODE_DATA(nid);
2335 
2336 		build_zonelists(pgdat);
2337 		build_zonelist_cache(pgdat);
2338 	}
2339 	return 0;
2340 }
2341 
2342 void build_all_zonelists(void)
2343 {
2344 	set_zonelist_order();
2345 
2346 	if (system_state == SYSTEM_BOOTING) {
2347 		__build_all_zonelists(NULL);
2348 		cpuset_init_current_mems_allowed();
2349 	} else {
2350 		/* we have to stop all cpus to guarantee there is no user
2351 		   of zonelist */
2352 		stop_machine_run(__build_all_zonelists, NULL, NR_CPUS);
2353 		/* cpuset refresh routine should be here */
2354 	}
2355 	vm_total_pages = nr_free_pagecache_pages();
2356 	/*
2357 	 * Disable grouping by mobility if the number of pages in the
2358 	 * system is too low to allow the mechanism to work. It would be
2359 	 * more accurate, but expensive to check per-zone. This check is
2360 	 * made on memory-hotadd so a system can start with mobility
2361 	 * disabled and enable it later
2362 	 */
2363 	if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
2364 		page_group_by_mobility_disabled = 1;
2365 	else
2366 		page_group_by_mobility_disabled = 0;
2367 
2368 	printk("Built %i zonelists in %s order, mobility grouping %s.  "
2369 		"Total pages: %ld\n",
2370 			num_online_nodes(),
2371 			zonelist_order_name[current_zonelist_order],
2372 			page_group_by_mobility_disabled ? "off" : "on",
2373 			vm_total_pages);
2374 #ifdef CONFIG_NUMA
2375 	printk("Policy zone: %s\n", zone_names[policy_zone]);
2376 #endif
2377 }
2378 
2379 /*
2380  * Helper functions to size the waitqueue hash table.
2381  * Essentially these want to choose hash table sizes sufficiently
2382  * large so that collisions trying to wait on pages are rare.
2383  * But in fact, the number of active page waitqueues on typical
2384  * systems is ridiculously low, less than 200. So this is even
2385  * conservative, even though it seems large.
2386  *
2387  * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
2388  * waitqueues, i.e. the size of the waitq table given the number of pages.
2389  */
2390 #define PAGES_PER_WAITQUEUE	256
2391 
2392 #ifndef CONFIG_MEMORY_HOTPLUG
2393 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
2394 {
2395 	unsigned long size = 1;
2396 
2397 	pages /= PAGES_PER_WAITQUEUE;
2398 
2399 	while (size < pages)
2400 		size <<= 1;
2401 
2402 	/*
2403 	 * Once we have dozens or even hundreds of threads sleeping
2404 	 * on IO we've got bigger problems than wait queue collision.
2405 	 * Limit the size of the wait table to a reasonable size.
2406 	 */
2407 	size = min(size, 4096UL);
2408 
2409 	return max(size, 4UL);
2410 }
2411 #else
2412 /*
2413  * A zone's size might be changed by hot-add, so it is not possible to determine
2414  * a suitable size for its wait_table.  So we use the maximum size now.
2415  *
2416  * The max wait table size = 4096 x sizeof(wait_queue_head_t).   ie:
2417  *
2418  *    i386 (preemption config)    : 4096 x 16 = 64Kbyte.
2419  *    ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
2420  *    ia64, x86-64 (preemption)   : 4096 x 24 = 96Kbyte.
2421  *
2422  * The maximum entries are prepared when a zone's memory is (512K + 256) pages
2423  * or more by the traditional way. (See above).  It equals:
2424  *
2425  *    i386, x86-64, powerpc(4K page size) : =  ( 2G + 1M)byte.
2426  *    ia64(16K page size)                 : =  ( 8G + 4M)byte.
2427  *    powerpc (64K page size)             : =  (32G +16M)byte.
2428  */
2429 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
2430 {
2431 	return 4096UL;
2432 }
2433 #endif
2434 
2435 /*
2436  * This is an integer logarithm so that shifts can be used later
2437  * to extract the more random high bits from the multiplicative
2438  * hash function before the remainder is taken.
2439  */
2440 static inline unsigned long wait_table_bits(unsigned long size)
2441 {
2442 	return ffz(~size);
2443 }
2444 
2445 #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
2446 
2447 /*
2448  * Mark a number of pageblocks as MIGRATE_RESERVE. The number
2449  * of blocks reserved is based on zone->pages_min. The memory within the
2450  * reserve will tend to store contiguous free pages. Setting min_free_kbytes
2451  * higher will lead to a bigger reserve which will get freed as contiguous
2452  * blocks as reclaim kicks in
2453  */
2454 static void setup_zone_migrate_reserve(struct zone *zone)
2455 {
2456 	unsigned long start_pfn, pfn, end_pfn;
2457 	struct page *page;
2458 	unsigned long reserve, block_migratetype;
2459 
2460 	/* Get the start pfn, end pfn and the number of blocks to reserve */
2461 	start_pfn = zone->zone_start_pfn;
2462 	end_pfn = start_pfn + zone->spanned_pages;
2463 	reserve = roundup(zone->pages_min, pageblock_nr_pages) >>
2464 							pageblock_order;
2465 
2466 	for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
2467 		if (!pfn_valid(pfn))
2468 			continue;
2469 		page = pfn_to_page(pfn);
2470 
2471 		/* Blocks with reserved pages will never free, skip them. */
2472 		if (PageReserved(page))
2473 			continue;
2474 
2475 		block_migratetype = get_pageblock_migratetype(page);
2476 
2477 		/* If this block is reserved, account for it */
2478 		if (reserve > 0 && block_migratetype == MIGRATE_RESERVE) {
2479 			reserve--;
2480 			continue;
2481 		}
2482 
2483 		/* Suitable for reserving if this block is movable */
2484 		if (reserve > 0 && block_migratetype == MIGRATE_MOVABLE) {
2485 			set_pageblock_migratetype(page, MIGRATE_RESERVE);
2486 			move_freepages_block(zone, page, MIGRATE_RESERVE);
2487 			reserve--;
2488 			continue;
2489 		}
2490 
2491 		/*
2492 		 * If the reserve is met and this is a previous reserved block,
2493 		 * take it back
2494 		 */
2495 		if (block_migratetype == MIGRATE_RESERVE) {
2496 			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
2497 			move_freepages_block(zone, page, MIGRATE_MOVABLE);
2498 		}
2499 	}
2500 }
2501 
2502 /*
2503  * Initially all pages are reserved - free ones are freed
2504  * up by free_all_bootmem() once the early boot process is
2505  * done. Non-atomic initialization, single-pass.
2506  */
2507 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
2508 		unsigned long start_pfn, enum memmap_context context)
2509 {
2510 	struct page *page;
2511 	unsigned long end_pfn = start_pfn + size;
2512 	unsigned long pfn;
2513 
2514 	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
2515 		/*
2516 		 * There can be holes in boot-time mem_map[]s
2517 		 * handed to this function.  They do not
2518 		 * exist on hotplugged memory.
2519 		 */
2520 		if (context == MEMMAP_EARLY) {
2521 			if (!early_pfn_valid(pfn))
2522 				continue;
2523 			if (!early_pfn_in_nid(pfn, nid))
2524 				continue;
2525 		}
2526 		page = pfn_to_page(pfn);
2527 		set_page_links(page, zone, nid, pfn);
2528 		init_page_count(page);
2529 		reset_page_mapcount(page);
2530 		page_assign_page_cgroup(page, NULL);
2531 		SetPageReserved(page);
2532 
2533 		/*
2534 		 * Mark the block movable so that blocks are reserved for
2535 		 * movable at startup. This will force kernel allocations
2536 		 * to reserve their blocks rather than leaking throughout
2537 		 * the address space during boot when many long-lived
2538 		 * kernel allocations are made. Later some blocks near
2539 		 * the start are marked MIGRATE_RESERVE by
2540 		 * setup_zone_migrate_reserve()
2541 		 */
2542 		if ((pfn & (pageblock_nr_pages-1)))
2543 			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
2544 
2545 		INIT_LIST_HEAD(&page->lru);
2546 #ifdef WANT_PAGE_VIRTUAL
2547 		/* The shift won't overflow because ZONE_NORMAL is below 4G. */
2548 		if (!is_highmem_idx(zone))
2549 			set_page_address(page, __va(pfn << PAGE_SHIFT));
2550 #endif
2551 	}
2552 }
2553 
2554 static void __meminit zone_init_free_lists(struct zone *zone)
2555 {
2556 	int order, t;
2557 	for_each_migratetype_order(order, t) {
2558 		INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
2559 		zone->free_area[order].nr_free = 0;
2560 	}
2561 }
2562 
2563 #ifndef __HAVE_ARCH_MEMMAP_INIT
2564 #define memmap_init(size, nid, zone, start_pfn) \
2565 	memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
2566 #endif
2567 
2568 static int zone_batchsize(struct zone *zone)
2569 {
2570 	int batch;
2571 
2572 	/*
2573 	 * The per-cpu-pages pools are set to around 1000th of the
2574 	 * size of the zone.  But no more than 1/2 of a meg.
2575 	 *
2576 	 * OK, so we don't know how big the cache is.  So guess.
2577 	 */
2578 	batch = zone->present_pages / 1024;
2579 	if (batch * PAGE_SIZE > 512 * 1024)
2580 		batch = (512 * 1024) / PAGE_SIZE;
2581 	batch /= 4;		/* We effectively *= 4 below */
2582 	if (batch < 1)
2583 		batch = 1;
2584 
2585 	/*
2586 	 * Clamp the batch to a 2^n - 1 value. Having a power
2587 	 * of 2 value was found to be more likely to have
2588 	 * suboptimal cache aliasing properties in some cases.
2589 	 *
2590 	 * For example if 2 tasks are alternately allocating
2591 	 * batches of pages, one task can end up with a lot
2592 	 * of pages of one half of the possible page colors
2593 	 * and the other with pages of the other colors.
2594 	 */
2595 	batch = (1 << (fls(batch + batch/2)-1)) - 1;
2596 
2597 	return batch;
2598 }
2599 
2600 inline void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
2601 {
2602 	struct per_cpu_pages *pcp;
2603 
2604 	memset(p, 0, sizeof(*p));
2605 
2606 	pcp = &p->pcp;
2607 	pcp->count = 0;
2608 	pcp->high = 6 * batch;
2609 	pcp->batch = max(1UL, 1 * batch);
2610 	INIT_LIST_HEAD(&pcp->list);
2611 }
2612 
2613 /*
2614  * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
2615  * to the value high for the pageset p.
2616  */
2617 
2618 static void setup_pagelist_highmark(struct per_cpu_pageset *p,
2619 				unsigned long high)
2620 {
2621 	struct per_cpu_pages *pcp;
2622 
2623 	pcp = &p->pcp;
2624 	pcp->high = high;
2625 	pcp->batch = max(1UL, high/4);
2626 	if ((high/4) > (PAGE_SHIFT * 8))
2627 		pcp->batch = PAGE_SHIFT * 8;
2628 }
2629 
2630 
2631 #ifdef CONFIG_NUMA
2632 /*
2633  * Boot pageset table. One per cpu which is going to be used for all
2634  * zones and all nodes. The parameters will be set in such a way
2635  * that an item put on a list will immediately be handed over to
2636  * the buddy list. This is safe since pageset manipulation is done
2637  * with interrupts disabled.
2638  *
2639  * Some NUMA counter updates may also be caught by the boot pagesets.
2640  *
2641  * The boot_pagesets must be kept even after bootup is complete for
2642  * unused processors and/or zones. They do play a role for bootstrapping
2643  * hotplugged processors.
2644  *
2645  * zoneinfo_show() and maybe other functions do
2646  * not check if the processor is online before following the pageset pointer.
2647  * Other parts of the kernel may not check if the zone is available.
2648  */
2649 static struct per_cpu_pageset boot_pageset[NR_CPUS];
2650 
2651 /*
2652  * Dynamically allocate memory for the
2653  * per cpu pageset array in struct zone.
2654  */
2655 static int __cpuinit process_zones(int cpu)
2656 {
2657 	struct zone *zone, *dzone;
2658 	int node = cpu_to_node(cpu);
2659 
2660 	node_set_state(node, N_CPU);	/* this node has a cpu */
2661 
2662 	for_each_zone(zone) {
2663 
2664 		if (!populated_zone(zone))
2665 			continue;
2666 
2667 		zone_pcp(zone, cpu) = kmalloc_node(sizeof(struct per_cpu_pageset),
2668 					 GFP_KERNEL, node);
2669 		if (!zone_pcp(zone, cpu))
2670 			goto bad;
2671 
2672 		setup_pageset(zone_pcp(zone, cpu), zone_batchsize(zone));
2673 
2674 		if (percpu_pagelist_fraction)
2675 			setup_pagelist_highmark(zone_pcp(zone, cpu),
2676 			 	(zone->present_pages / percpu_pagelist_fraction));
2677 	}
2678 
2679 	return 0;
2680 bad:
2681 	for_each_zone(dzone) {
2682 		if (!populated_zone(dzone))
2683 			continue;
2684 		if (dzone == zone)
2685 			break;
2686 		kfree(zone_pcp(dzone, cpu));
2687 		zone_pcp(dzone, cpu) = NULL;
2688 	}
2689 	return -ENOMEM;
2690 }
2691 
2692 static inline void free_zone_pagesets(int cpu)
2693 {
2694 	struct zone *zone;
2695 
2696 	for_each_zone(zone) {
2697 		struct per_cpu_pageset *pset = zone_pcp(zone, cpu);
2698 
2699 		/* Free per_cpu_pageset if it is slab allocated */
2700 		if (pset != &boot_pageset[cpu])
2701 			kfree(pset);
2702 		zone_pcp(zone, cpu) = NULL;
2703 	}
2704 }
2705 
2706 static int __cpuinit pageset_cpuup_callback(struct notifier_block *nfb,
2707 		unsigned long action,
2708 		void *hcpu)
2709 {
2710 	int cpu = (long)hcpu;
2711 	int ret = NOTIFY_OK;
2712 
2713 	switch (action) {
2714 	case CPU_UP_PREPARE:
2715 	case CPU_UP_PREPARE_FROZEN:
2716 		if (process_zones(cpu))
2717 			ret = NOTIFY_BAD;
2718 		break;
2719 	case CPU_UP_CANCELED:
2720 	case CPU_UP_CANCELED_FROZEN:
2721 	case CPU_DEAD:
2722 	case CPU_DEAD_FROZEN:
2723 		free_zone_pagesets(cpu);
2724 		break;
2725 	default:
2726 		break;
2727 	}
2728 	return ret;
2729 }
2730 
2731 static struct notifier_block __cpuinitdata pageset_notifier =
2732 	{ &pageset_cpuup_callback, NULL, 0 };
2733 
2734 void __init setup_per_cpu_pageset(void)
2735 {
2736 	int err;
2737 
2738 	/* Initialize per_cpu_pageset for cpu 0.
2739 	 * A cpuup callback will do this for every cpu
2740 	 * as it comes online
2741 	 */
2742 	err = process_zones(smp_processor_id());
2743 	BUG_ON(err);
2744 	register_cpu_notifier(&pageset_notifier);
2745 }
2746 
2747 #endif
2748 
2749 static noinline __init_refok
2750 int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
2751 {
2752 	int i;
2753 	struct pglist_data *pgdat = zone->zone_pgdat;
2754 	size_t alloc_size;
2755 
2756 	/*
2757 	 * The per-page waitqueue mechanism uses hashed waitqueues
2758 	 * per zone.
2759 	 */
2760 	zone->wait_table_hash_nr_entries =
2761 		 wait_table_hash_nr_entries(zone_size_pages);
2762 	zone->wait_table_bits =
2763 		wait_table_bits(zone->wait_table_hash_nr_entries);
2764 	alloc_size = zone->wait_table_hash_nr_entries
2765 					* sizeof(wait_queue_head_t);
2766 
2767  	if (system_state == SYSTEM_BOOTING) {
2768 		zone->wait_table = (wait_queue_head_t *)
2769 			alloc_bootmem_node(pgdat, alloc_size);
2770 	} else {
2771 		/*
2772 		 * This case means that a zone whose size was 0 gets new memory
2773 		 * via memory hot-add.
2774 		 * But it may be the case that a new node was hot-added.  In
2775 		 * this case vmalloc() will not be able to use this new node's
2776 		 * memory - this wait_table must be initialized to use this new
2777 		 * node itself as well.
2778 		 * To use this new node's memory, further consideration will be
2779 		 * necessary.
2780 		 */
2781 		zone->wait_table = vmalloc(alloc_size);
2782 	}
2783 	if (!zone->wait_table)
2784 		return -ENOMEM;
2785 
2786 	for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
2787 		init_waitqueue_head(zone->wait_table + i);
2788 
2789 	return 0;
2790 }
2791 
2792 static __meminit void zone_pcp_init(struct zone *zone)
2793 {
2794 	int cpu;
2795 	unsigned long batch = zone_batchsize(zone);
2796 
2797 	for (cpu = 0; cpu < NR_CPUS; cpu++) {
2798 #ifdef CONFIG_NUMA
2799 		/* Early boot. Slab allocator not functional yet */
2800 		zone_pcp(zone, cpu) = &boot_pageset[cpu];
2801 		setup_pageset(&boot_pageset[cpu],0);
2802 #else
2803 		setup_pageset(zone_pcp(zone,cpu), batch);
2804 #endif
2805 	}
2806 	if (zone->present_pages)
2807 		printk(KERN_DEBUG "  %s zone: %lu pages, LIFO batch:%lu\n",
2808 			zone->name, zone->present_pages, batch);
2809 }
2810 
2811 __meminit int init_currently_empty_zone(struct zone *zone,
2812 					unsigned long zone_start_pfn,
2813 					unsigned long size,
2814 					enum memmap_context context)
2815 {
2816 	struct pglist_data *pgdat = zone->zone_pgdat;
2817 	int ret;
2818 	ret = zone_wait_table_init(zone, size);
2819 	if (ret)
2820 		return ret;
2821 	pgdat->nr_zones = zone_idx(zone) + 1;
2822 
2823 	zone->zone_start_pfn = zone_start_pfn;
2824 
2825 	memmap_init(size, pgdat->node_id, zone_idx(zone), zone_start_pfn);
2826 
2827 	zone_init_free_lists(zone);
2828 
2829 	return 0;
2830 }
2831 
2832 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
2833 /*
2834  * Basic iterator support. Return the first range of PFNs for a node
2835  * Note: nid == MAX_NUMNODES returns first region regardless of node
2836  */
2837 static int __meminit first_active_region_index_in_nid(int nid)
2838 {
2839 	int i;
2840 
2841 	for (i = 0; i < nr_nodemap_entries; i++)
2842 		if (nid == MAX_NUMNODES || early_node_map[i].nid == nid)
2843 			return i;
2844 
2845 	return -1;
2846 }
2847 
2848 /*
2849  * Basic iterator support. Return the next active range of PFNs for a node
2850  * Note: nid == MAX_NUMNODES returns next region regardless of node
2851  */
2852 static int __meminit next_active_region_index_in_nid(int index, int nid)
2853 {
2854 	for (index = index + 1; index < nr_nodemap_entries; index++)
2855 		if (nid == MAX_NUMNODES || early_node_map[index].nid == nid)
2856 			return index;
2857 
2858 	return -1;
2859 }
2860 
2861 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
2862 /*
2863  * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
2864  * Architectures may implement their own version but if add_active_range()
2865  * was used and there are no special requirements, this is a convenient
2866  * alternative
2867  */
2868 int __meminit early_pfn_to_nid(unsigned long pfn)
2869 {
2870 	int i;
2871 
2872 	for (i = 0; i < nr_nodemap_entries; i++) {
2873 		unsigned long start_pfn = early_node_map[i].start_pfn;
2874 		unsigned long end_pfn = early_node_map[i].end_pfn;
2875 
2876 		if (start_pfn <= pfn && pfn < end_pfn)
2877 			return early_node_map[i].nid;
2878 	}
2879 
2880 	return 0;
2881 }
2882 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
2883 
2884 /* Basic iterator support to walk early_node_map[] */
2885 #define for_each_active_range_index_in_nid(i, nid) \
2886 	for (i = first_active_region_index_in_nid(nid); i != -1; \
2887 				i = next_active_region_index_in_nid(i, nid))
2888 
2889 /**
2890  * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
2891  * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
2892  * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
2893  *
2894  * If an architecture guarantees that all ranges registered with
2895  * add_active_ranges() contain no holes and may be freed, this
2896  * this function may be used instead of calling free_bootmem() manually.
2897  */
2898 void __init free_bootmem_with_active_regions(int nid,
2899 						unsigned long max_low_pfn)
2900 {
2901 	int i;
2902 
2903 	for_each_active_range_index_in_nid(i, nid) {
2904 		unsigned long size_pages = 0;
2905 		unsigned long end_pfn = early_node_map[i].end_pfn;
2906 
2907 		if (early_node_map[i].start_pfn >= max_low_pfn)
2908 			continue;
2909 
2910 		if (end_pfn > max_low_pfn)
2911 			end_pfn = max_low_pfn;
2912 
2913 		size_pages = end_pfn - early_node_map[i].start_pfn;
2914 		free_bootmem_node(NODE_DATA(early_node_map[i].nid),
2915 				PFN_PHYS(early_node_map[i].start_pfn),
2916 				size_pages << PAGE_SHIFT);
2917 	}
2918 }
2919 
2920 /**
2921  * sparse_memory_present_with_active_regions - Call memory_present for each active range
2922  * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
2923  *
2924  * If an architecture guarantees that all ranges registered with
2925  * add_active_ranges() contain no holes and may be freed, this
2926  * function may be used instead of calling memory_present() manually.
2927  */
2928 void __init sparse_memory_present_with_active_regions(int nid)
2929 {
2930 	int i;
2931 
2932 	for_each_active_range_index_in_nid(i, nid)
2933 		memory_present(early_node_map[i].nid,
2934 				early_node_map[i].start_pfn,
2935 				early_node_map[i].end_pfn);
2936 }
2937 
2938 /**
2939  * push_node_boundaries - Push node boundaries to at least the requested boundary
2940  * @nid: The nid of the node to push the boundary for
2941  * @start_pfn: The start pfn of the node
2942  * @end_pfn: The end pfn of the node
2943  *
2944  * In reserve-based hot-add, mem_map is allocated that is unused until hotadd
2945  * time. Specifically, on x86_64, SRAT will report ranges that can potentially
2946  * be hotplugged even though no physical memory exists. This function allows
2947  * an arch to push out the node boundaries so mem_map is allocated that can
2948  * be used later.
2949  */
2950 #ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
2951 void __init push_node_boundaries(unsigned int nid,
2952 		unsigned long start_pfn, unsigned long end_pfn)
2953 {
2954 	printk(KERN_DEBUG "Entering push_node_boundaries(%u, %lu, %lu)\n",
2955 			nid, start_pfn, end_pfn);
2956 
2957 	/* Initialise the boundary for this node if necessary */
2958 	if (node_boundary_end_pfn[nid] == 0)
2959 		node_boundary_start_pfn[nid] = -1UL;
2960 
2961 	/* Update the boundaries */
2962 	if (node_boundary_start_pfn[nid] > start_pfn)
2963 		node_boundary_start_pfn[nid] = start_pfn;
2964 	if (node_boundary_end_pfn[nid] < end_pfn)
2965 		node_boundary_end_pfn[nid] = end_pfn;
2966 }
2967 
2968 /* If necessary, push the node boundary out for reserve hotadd */
2969 static void __meminit account_node_boundary(unsigned int nid,
2970 		unsigned long *start_pfn, unsigned long *end_pfn)
2971 {
2972 	printk(KERN_DEBUG "Entering account_node_boundary(%u, %lu, %lu)\n",
2973 			nid, *start_pfn, *end_pfn);
2974 
2975 	/* Return if boundary information has not been provided */
2976 	if (node_boundary_end_pfn[nid] == 0)
2977 		return;
2978 
2979 	/* Check the boundaries and update if necessary */
2980 	if (node_boundary_start_pfn[nid] < *start_pfn)
2981 		*start_pfn = node_boundary_start_pfn[nid];
2982 	if (node_boundary_end_pfn[nid] > *end_pfn)
2983 		*end_pfn = node_boundary_end_pfn[nid];
2984 }
2985 #else
2986 void __init push_node_boundaries(unsigned int nid,
2987 		unsigned long start_pfn, unsigned long end_pfn) {}
2988 
2989 static void __meminit account_node_boundary(unsigned int nid,
2990 		unsigned long *start_pfn, unsigned long *end_pfn) {}
2991 #endif
2992 
2993 
2994 /**
2995  * get_pfn_range_for_nid - Return the start and end page frames for a node
2996  * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
2997  * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
2998  * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
2999  *
3000  * It returns the start and end page frame of a node based on information
3001  * provided by an arch calling add_active_range(). If called for a node
3002  * with no available memory, a warning is printed and the start and end
3003  * PFNs will be 0.
3004  */
3005 void __meminit get_pfn_range_for_nid(unsigned int nid,
3006 			unsigned long *start_pfn, unsigned long *end_pfn)
3007 {
3008 	int i;
3009 	*start_pfn = -1UL;
3010 	*end_pfn = 0;
3011 
3012 	for_each_active_range_index_in_nid(i, nid) {
3013 		*start_pfn = min(*start_pfn, early_node_map[i].start_pfn);
3014 		*end_pfn = max(*end_pfn, early_node_map[i].end_pfn);
3015 	}
3016 
3017 	if (*start_pfn == -1UL)
3018 		*start_pfn = 0;
3019 
3020 	/* Push the node boundaries out if requested */
3021 	account_node_boundary(nid, start_pfn, end_pfn);
3022 }
3023 
3024 /*
3025  * This finds a zone that can be used for ZONE_MOVABLE pages. The
3026  * assumption is made that zones within a node are ordered in monotonic
3027  * increasing memory addresses so that the "highest" populated zone is used
3028  */
3029 void __init find_usable_zone_for_movable(void)
3030 {
3031 	int zone_index;
3032 	for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
3033 		if (zone_index == ZONE_MOVABLE)
3034 			continue;
3035 
3036 		if (arch_zone_highest_possible_pfn[zone_index] >
3037 				arch_zone_lowest_possible_pfn[zone_index])
3038 			break;
3039 	}
3040 
3041 	VM_BUG_ON(zone_index == -1);
3042 	movable_zone = zone_index;
3043 }
3044 
3045 /*
3046  * The zone ranges provided by the architecture do not include ZONE_MOVABLE
3047  * because it is sized independant of architecture. Unlike the other zones,
3048  * the starting point for ZONE_MOVABLE is not fixed. It may be different
3049  * in each node depending on the size of each node and how evenly kernelcore
3050  * is distributed. This helper function adjusts the zone ranges
3051  * provided by the architecture for a given node by using the end of the
3052  * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
3053  * zones within a node are in order of monotonic increases memory addresses
3054  */
3055 void __meminit adjust_zone_range_for_zone_movable(int nid,
3056 					unsigned long zone_type,
3057 					unsigned long node_start_pfn,
3058 					unsigned long node_end_pfn,
3059 					unsigned long *zone_start_pfn,
3060 					unsigned long *zone_end_pfn)
3061 {
3062 	/* Only adjust if ZONE_MOVABLE is on this node */
3063 	if (zone_movable_pfn[nid]) {
3064 		/* Size ZONE_MOVABLE */
3065 		if (zone_type == ZONE_MOVABLE) {
3066 			*zone_start_pfn = zone_movable_pfn[nid];
3067 			*zone_end_pfn = min(node_end_pfn,
3068 				arch_zone_highest_possible_pfn[movable_zone]);
3069 
3070 		/* Adjust for ZONE_MOVABLE starting within this range */
3071 		} else if (*zone_start_pfn < zone_movable_pfn[nid] &&
3072 				*zone_end_pfn > zone_movable_pfn[nid]) {
3073 			*zone_end_pfn = zone_movable_pfn[nid];
3074 
3075 		/* Check if this whole range is within ZONE_MOVABLE */
3076 		} else if (*zone_start_pfn >= zone_movable_pfn[nid])
3077 			*zone_start_pfn = *zone_end_pfn;
3078 	}
3079 }
3080 
3081 /*
3082  * Return the number of pages a zone spans in a node, including holes
3083  * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
3084  */
3085 static unsigned long __meminit zone_spanned_pages_in_node(int nid,
3086 					unsigned long zone_type,
3087 					unsigned long *ignored)
3088 {
3089 	unsigned long node_start_pfn, node_end_pfn;
3090 	unsigned long zone_start_pfn, zone_end_pfn;
3091 
3092 	/* Get the start and end of the node and zone */
3093 	get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
3094 	zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
3095 	zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
3096 	adjust_zone_range_for_zone_movable(nid, zone_type,
3097 				node_start_pfn, node_end_pfn,
3098 				&zone_start_pfn, &zone_end_pfn);
3099 
3100 	/* Check that this node has pages within the zone's required range */
3101 	if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
3102 		return 0;
3103 
3104 	/* Move the zone boundaries inside the node if necessary */
3105 	zone_end_pfn = min(zone_end_pfn, node_end_pfn);
3106 	zone_start_pfn = max(zone_start_pfn, node_start_pfn);
3107 
3108 	/* Return the spanned pages */
3109 	return zone_end_pfn - zone_start_pfn;
3110 }
3111 
3112 /*
3113  * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
3114  * then all holes in the requested range will be accounted for.
3115  */
3116 unsigned long __meminit __absent_pages_in_range(int nid,
3117 				unsigned long range_start_pfn,
3118 				unsigned long range_end_pfn)
3119 {
3120 	int i = 0;
3121 	unsigned long prev_end_pfn = 0, hole_pages = 0;
3122 	unsigned long start_pfn;
3123 
3124 	/* Find the end_pfn of the first active range of pfns in the node */
3125 	i = first_active_region_index_in_nid(nid);
3126 	if (i == -1)
3127 		return 0;
3128 
3129 	prev_end_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
3130 
3131 	/* Account for ranges before physical memory on this node */
3132 	if (early_node_map[i].start_pfn > range_start_pfn)
3133 		hole_pages = prev_end_pfn - range_start_pfn;
3134 
3135 	/* Find all holes for the zone within the node */
3136 	for (; i != -1; i = next_active_region_index_in_nid(i, nid)) {
3137 
3138 		/* No need to continue if prev_end_pfn is outside the zone */
3139 		if (prev_end_pfn >= range_end_pfn)
3140 			break;
3141 
3142 		/* Make sure the end of the zone is not within the hole */
3143 		start_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
3144 		prev_end_pfn = max(prev_end_pfn, range_start_pfn);
3145 
3146 		/* Update the hole size cound and move on */
3147 		if (start_pfn > range_start_pfn) {
3148 			BUG_ON(prev_end_pfn > start_pfn);
3149 			hole_pages += start_pfn - prev_end_pfn;
3150 		}
3151 		prev_end_pfn = early_node_map[i].end_pfn;
3152 	}
3153 
3154 	/* Account for ranges past physical memory on this node */
3155 	if (range_end_pfn > prev_end_pfn)
3156 		hole_pages += range_end_pfn -
3157 				max(range_start_pfn, prev_end_pfn);
3158 
3159 	return hole_pages;
3160 }
3161 
3162 /**
3163  * absent_pages_in_range - Return number of page frames in holes within a range
3164  * @start_pfn: The start PFN to start searching for holes
3165  * @end_pfn: The end PFN to stop searching for holes
3166  *
3167  * It returns the number of pages frames in memory holes within a range.
3168  */
3169 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
3170 							unsigned long end_pfn)
3171 {
3172 	return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
3173 }
3174 
3175 /* Return the number of page frames in holes in a zone on a node */
3176 static unsigned long __meminit zone_absent_pages_in_node(int nid,
3177 					unsigned long zone_type,
3178 					unsigned long *ignored)
3179 {
3180 	unsigned long node_start_pfn, node_end_pfn;
3181 	unsigned long zone_start_pfn, zone_end_pfn;
3182 
3183 	get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
3184 	zone_start_pfn = max(arch_zone_lowest_possible_pfn[zone_type],
3185 							node_start_pfn);
3186 	zone_end_pfn = min(arch_zone_highest_possible_pfn[zone_type],
3187 							node_end_pfn);
3188 
3189 	adjust_zone_range_for_zone_movable(nid, zone_type,
3190 			node_start_pfn, node_end_pfn,
3191 			&zone_start_pfn, &zone_end_pfn);
3192 	return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
3193 }
3194 
3195 #else
3196 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
3197 					unsigned long zone_type,
3198 					unsigned long *zones_size)
3199 {
3200 	return zones_size[zone_type];
3201 }
3202 
3203 static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
3204 						unsigned long zone_type,
3205 						unsigned long *zholes_size)
3206 {
3207 	if (!zholes_size)
3208 		return 0;
3209 
3210 	return zholes_size[zone_type];
3211 }
3212 
3213 #endif
3214 
3215 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
3216 		unsigned long *zones_size, unsigned long *zholes_size)
3217 {
3218 	unsigned long realtotalpages, totalpages = 0;
3219 	enum zone_type i;
3220 
3221 	for (i = 0; i < MAX_NR_ZONES; i++)
3222 		totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
3223 								zones_size);
3224 	pgdat->node_spanned_pages = totalpages;
3225 
3226 	realtotalpages = totalpages;
3227 	for (i = 0; i < MAX_NR_ZONES; i++)
3228 		realtotalpages -=
3229 			zone_absent_pages_in_node(pgdat->node_id, i,
3230 								zholes_size);
3231 	pgdat->node_present_pages = realtotalpages;
3232 	printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
3233 							realtotalpages);
3234 }
3235 
3236 #ifndef CONFIG_SPARSEMEM
3237 /*
3238  * Calculate the size of the zone->blockflags rounded to an unsigned long
3239  * Start by making sure zonesize is a multiple of pageblock_order by rounding
3240  * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
3241  * round what is now in bits to nearest long in bits, then return it in
3242  * bytes.
3243  */
3244 static unsigned long __init usemap_size(unsigned long zonesize)
3245 {
3246 	unsigned long usemapsize;
3247 
3248 	usemapsize = roundup(zonesize, pageblock_nr_pages);
3249 	usemapsize = usemapsize >> pageblock_order;
3250 	usemapsize *= NR_PAGEBLOCK_BITS;
3251 	usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
3252 
3253 	return usemapsize / 8;
3254 }
3255 
3256 static void __init setup_usemap(struct pglist_data *pgdat,
3257 				struct zone *zone, unsigned long zonesize)
3258 {
3259 	unsigned long usemapsize = usemap_size(zonesize);
3260 	zone->pageblock_flags = NULL;
3261 	if (usemapsize) {
3262 		zone->pageblock_flags = alloc_bootmem_node(pgdat, usemapsize);
3263 		memset(zone->pageblock_flags, 0, usemapsize);
3264 	}
3265 }
3266 #else
3267 static void inline setup_usemap(struct pglist_data *pgdat,
3268 				struct zone *zone, unsigned long zonesize) {}
3269 #endif /* CONFIG_SPARSEMEM */
3270 
3271 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
3272 
3273 /* Return a sensible default order for the pageblock size. */
3274 static inline int pageblock_default_order(void)
3275 {
3276 	if (HPAGE_SHIFT > PAGE_SHIFT)
3277 		return HUGETLB_PAGE_ORDER;
3278 
3279 	return MAX_ORDER-1;
3280 }
3281 
3282 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
3283 static inline void __init set_pageblock_order(unsigned int order)
3284 {
3285 	/* Check that pageblock_nr_pages has not already been setup */
3286 	if (pageblock_order)
3287 		return;
3288 
3289 	/*
3290 	 * Assume the largest contiguous order of interest is a huge page.
3291 	 * This value may be variable depending on boot parameters on IA64
3292 	 */
3293 	pageblock_order = order;
3294 }
3295 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
3296 
3297 /*
3298  * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
3299  * and pageblock_default_order() are unused as pageblock_order is set
3300  * at compile-time. See include/linux/pageblock-flags.h for the values of
3301  * pageblock_order based on the kernel config
3302  */
3303 static inline int pageblock_default_order(unsigned int order)
3304 {
3305 	return MAX_ORDER-1;
3306 }
3307 #define set_pageblock_order(x)	do {} while (0)
3308 
3309 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
3310 
3311 /*
3312  * Set up the zone data structures:
3313  *   - mark all pages reserved
3314  *   - mark all memory queues empty
3315  *   - clear the memory bitmaps
3316  */
3317 static void __paginginit free_area_init_core(struct pglist_data *pgdat,
3318 		unsigned long *zones_size, unsigned long *zholes_size)
3319 {
3320 	enum zone_type j;
3321 	int nid = pgdat->node_id;
3322 	unsigned long zone_start_pfn = pgdat->node_start_pfn;
3323 	int ret;
3324 
3325 	pgdat_resize_init(pgdat);
3326 	pgdat->nr_zones = 0;
3327 	init_waitqueue_head(&pgdat->kswapd_wait);
3328 	pgdat->kswapd_max_order = 0;
3329 
3330 	for (j = 0; j < MAX_NR_ZONES; j++) {
3331 		struct zone *zone = pgdat->node_zones + j;
3332 		unsigned long size, realsize, memmap_pages;
3333 
3334 		size = zone_spanned_pages_in_node(nid, j, zones_size);
3335 		realsize = size - zone_absent_pages_in_node(nid, j,
3336 								zholes_size);
3337 
3338 		/*
3339 		 * Adjust realsize so that it accounts for how much memory
3340 		 * is used by this zone for memmap. This affects the watermark
3341 		 * and per-cpu initialisations
3342 		 */
3343 		memmap_pages = (size * sizeof(struct page)) >> PAGE_SHIFT;
3344 		if (realsize >= memmap_pages) {
3345 			realsize -= memmap_pages;
3346 			printk(KERN_DEBUG
3347 				"  %s zone: %lu pages used for memmap\n",
3348 				zone_names[j], memmap_pages);
3349 		} else
3350 			printk(KERN_WARNING
3351 				"  %s zone: %lu pages exceeds realsize %lu\n",
3352 				zone_names[j], memmap_pages, realsize);
3353 
3354 		/* Account for reserved pages */
3355 		if (j == 0 && realsize > dma_reserve) {
3356 			realsize -= dma_reserve;
3357 			printk(KERN_DEBUG "  %s zone: %lu pages reserved\n",
3358 					zone_names[0], dma_reserve);
3359 		}
3360 
3361 		if (!is_highmem_idx(j))
3362 			nr_kernel_pages += realsize;
3363 		nr_all_pages += realsize;
3364 
3365 		zone->spanned_pages = size;
3366 		zone->present_pages = realsize;
3367 #ifdef CONFIG_NUMA
3368 		zone->node = nid;
3369 		zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio)
3370 						/ 100;
3371 		zone->min_slab_pages = (realsize * sysctl_min_slab_ratio) / 100;
3372 #endif
3373 		zone->name = zone_names[j];
3374 		spin_lock_init(&zone->lock);
3375 		spin_lock_init(&zone->lru_lock);
3376 		zone_seqlock_init(zone);
3377 		zone->zone_pgdat = pgdat;
3378 
3379 		zone->prev_priority = DEF_PRIORITY;
3380 
3381 		zone_pcp_init(zone);
3382 		INIT_LIST_HEAD(&zone->active_list);
3383 		INIT_LIST_HEAD(&zone->inactive_list);
3384 		zone->nr_scan_active = 0;
3385 		zone->nr_scan_inactive = 0;
3386 		zap_zone_vm_stats(zone);
3387 		zone->flags = 0;
3388 		if (!size)
3389 			continue;
3390 
3391 		set_pageblock_order(pageblock_default_order());
3392 		setup_usemap(pgdat, zone, size);
3393 		ret = init_currently_empty_zone(zone, zone_start_pfn,
3394 						size, MEMMAP_EARLY);
3395 		BUG_ON(ret);
3396 		zone_start_pfn += size;
3397 	}
3398 }
3399 
3400 static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
3401 {
3402 	/* Skip empty nodes */
3403 	if (!pgdat->node_spanned_pages)
3404 		return;
3405 
3406 #ifdef CONFIG_FLAT_NODE_MEM_MAP
3407 	/* ia64 gets its own node_mem_map, before this, without bootmem */
3408 	if (!pgdat->node_mem_map) {
3409 		unsigned long size, start, end;
3410 		struct page *map;
3411 
3412 		/*
3413 		 * The zone's endpoints aren't required to be MAX_ORDER
3414 		 * aligned but the node_mem_map endpoints must be in order
3415 		 * for the buddy allocator to function correctly.
3416 		 */
3417 		start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
3418 		end = pgdat->node_start_pfn + pgdat->node_spanned_pages;
3419 		end = ALIGN(end, MAX_ORDER_NR_PAGES);
3420 		size =  (end - start) * sizeof(struct page);
3421 		map = alloc_remap(pgdat->node_id, size);
3422 		if (!map)
3423 			map = alloc_bootmem_node(pgdat, size);
3424 		pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
3425 	}
3426 #ifndef CONFIG_NEED_MULTIPLE_NODES
3427 	/*
3428 	 * With no DISCONTIG, the global mem_map is just set as node 0's
3429 	 */
3430 	if (pgdat == NODE_DATA(0)) {
3431 		mem_map = NODE_DATA(0)->node_mem_map;
3432 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3433 		if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
3434 			mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
3435 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
3436 	}
3437 #endif
3438 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
3439 }
3440 
3441 void __paginginit free_area_init_node(int nid, struct pglist_data *pgdat,
3442 		unsigned long *zones_size, unsigned long node_start_pfn,
3443 		unsigned long *zholes_size)
3444 {
3445 	pgdat->node_id = nid;
3446 	pgdat->node_start_pfn = node_start_pfn;
3447 	calculate_node_totalpages(pgdat, zones_size, zholes_size);
3448 
3449 	alloc_node_mem_map(pgdat);
3450 
3451 	free_area_init_core(pgdat, zones_size, zholes_size);
3452 }
3453 
3454 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3455 
3456 #if MAX_NUMNODES > 1
3457 /*
3458  * Figure out the number of possible node ids.
3459  */
3460 static void __init setup_nr_node_ids(void)
3461 {
3462 	unsigned int node;
3463 	unsigned int highest = 0;
3464 
3465 	for_each_node_mask(node, node_possible_map)
3466 		highest = node;
3467 	nr_node_ids = highest + 1;
3468 }
3469 #else
3470 static inline void setup_nr_node_ids(void)
3471 {
3472 }
3473 #endif
3474 
3475 /**
3476  * add_active_range - Register a range of PFNs backed by physical memory
3477  * @nid: The node ID the range resides on
3478  * @start_pfn: The start PFN of the available physical memory
3479  * @end_pfn: The end PFN of the available physical memory
3480  *
3481  * These ranges are stored in an early_node_map[] and later used by
3482  * free_area_init_nodes() to calculate zone sizes and holes. If the
3483  * range spans a memory hole, it is up to the architecture to ensure
3484  * the memory is not freed by the bootmem allocator. If possible
3485  * the range being registered will be merged with existing ranges.
3486  */
3487 void __init add_active_range(unsigned int nid, unsigned long start_pfn,
3488 						unsigned long end_pfn)
3489 {
3490 	int i;
3491 
3492 	printk(KERN_DEBUG "Entering add_active_range(%d, %lu, %lu) "
3493 			  "%d entries of %d used\n",
3494 			  nid, start_pfn, end_pfn,
3495 			  nr_nodemap_entries, MAX_ACTIVE_REGIONS);
3496 
3497 	/* Merge with existing active regions if possible */
3498 	for (i = 0; i < nr_nodemap_entries; i++) {
3499 		if (early_node_map[i].nid != nid)
3500 			continue;
3501 
3502 		/* Skip if an existing region covers this new one */
3503 		if (start_pfn >= early_node_map[i].start_pfn &&
3504 				end_pfn <= early_node_map[i].end_pfn)
3505 			return;
3506 
3507 		/* Merge forward if suitable */
3508 		if (start_pfn <= early_node_map[i].end_pfn &&
3509 				end_pfn > early_node_map[i].end_pfn) {
3510 			early_node_map[i].end_pfn = end_pfn;
3511 			return;
3512 		}
3513 
3514 		/* Merge backward if suitable */
3515 		if (start_pfn < early_node_map[i].end_pfn &&
3516 				end_pfn >= early_node_map[i].start_pfn) {
3517 			early_node_map[i].start_pfn = start_pfn;
3518 			return;
3519 		}
3520 	}
3521 
3522 	/* Check that early_node_map is large enough */
3523 	if (i >= MAX_ACTIVE_REGIONS) {
3524 		printk(KERN_CRIT "More than %d memory regions, truncating\n",
3525 							MAX_ACTIVE_REGIONS);
3526 		return;
3527 	}
3528 
3529 	early_node_map[i].nid = nid;
3530 	early_node_map[i].start_pfn = start_pfn;
3531 	early_node_map[i].end_pfn = end_pfn;
3532 	nr_nodemap_entries = i + 1;
3533 }
3534 
3535 /**
3536  * shrink_active_range - Shrink an existing registered range of PFNs
3537  * @nid: The node id the range is on that should be shrunk
3538  * @old_end_pfn: The old end PFN of the range
3539  * @new_end_pfn: The new PFN of the range
3540  *
3541  * i386 with NUMA use alloc_remap() to store a node_mem_map on a local node.
3542  * The map is kept at the end physical page range that has already been
3543  * registered with add_active_range(). This function allows an arch to shrink
3544  * an existing registered range.
3545  */
3546 void __init shrink_active_range(unsigned int nid, unsigned long old_end_pfn,
3547 						unsigned long new_end_pfn)
3548 {
3549 	int i;
3550 
3551 	/* Find the old active region end and shrink */
3552 	for_each_active_range_index_in_nid(i, nid)
3553 		if (early_node_map[i].end_pfn == old_end_pfn) {
3554 			early_node_map[i].end_pfn = new_end_pfn;
3555 			break;
3556 		}
3557 }
3558 
3559 /**
3560  * remove_all_active_ranges - Remove all currently registered regions
3561  *
3562  * During discovery, it may be found that a table like SRAT is invalid
3563  * and an alternative discovery method must be used. This function removes
3564  * all currently registered regions.
3565  */
3566 void __init remove_all_active_ranges(void)
3567 {
3568 	memset(early_node_map, 0, sizeof(early_node_map));
3569 	nr_nodemap_entries = 0;
3570 #ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
3571 	memset(node_boundary_start_pfn, 0, sizeof(node_boundary_start_pfn));
3572 	memset(node_boundary_end_pfn, 0, sizeof(node_boundary_end_pfn));
3573 #endif /* CONFIG_MEMORY_HOTPLUG_RESERVE */
3574 }
3575 
3576 /* Compare two active node_active_regions */
3577 static int __init cmp_node_active_region(const void *a, const void *b)
3578 {
3579 	struct node_active_region *arange = (struct node_active_region *)a;
3580 	struct node_active_region *brange = (struct node_active_region *)b;
3581 
3582 	/* Done this way to avoid overflows */
3583 	if (arange->start_pfn > brange->start_pfn)
3584 		return 1;
3585 	if (arange->start_pfn < brange->start_pfn)
3586 		return -1;
3587 
3588 	return 0;
3589 }
3590 
3591 /* sort the node_map by start_pfn */
3592 static void __init sort_node_map(void)
3593 {
3594 	sort(early_node_map, (size_t)nr_nodemap_entries,
3595 			sizeof(struct node_active_region),
3596 			cmp_node_active_region, NULL);
3597 }
3598 
3599 /* Find the lowest pfn for a node */
3600 unsigned long __init find_min_pfn_for_node(unsigned long nid)
3601 {
3602 	int i;
3603 	unsigned long min_pfn = ULONG_MAX;
3604 
3605 	/* Assuming a sorted map, the first range found has the starting pfn */
3606 	for_each_active_range_index_in_nid(i, nid)
3607 		min_pfn = min(min_pfn, early_node_map[i].start_pfn);
3608 
3609 	if (min_pfn == ULONG_MAX) {
3610 		printk(KERN_WARNING
3611 			"Could not find start_pfn for node %lu\n", nid);
3612 		return 0;
3613 	}
3614 
3615 	return min_pfn;
3616 }
3617 
3618 /**
3619  * find_min_pfn_with_active_regions - Find the minimum PFN registered
3620  *
3621  * It returns the minimum PFN based on information provided via
3622  * add_active_range().
3623  */
3624 unsigned long __init find_min_pfn_with_active_regions(void)
3625 {
3626 	return find_min_pfn_for_node(MAX_NUMNODES);
3627 }
3628 
3629 /**
3630  * find_max_pfn_with_active_regions - Find the maximum PFN registered
3631  *
3632  * It returns the maximum PFN based on information provided via
3633  * add_active_range().
3634  */
3635 unsigned long __init find_max_pfn_with_active_regions(void)
3636 {
3637 	int i;
3638 	unsigned long max_pfn = 0;
3639 
3640 	for (i = 0; i < nr_nodemap_entries; i++)
3641 		max_pfn = max(max_pfn, early_node_map[i].end_pfn);
3642 
3643 	return max_pfn;
3644 }
3645 
3646 /*
3647  * early_calculate_totalpages()
3648  * Sum pages in active regions for movable zone.
3649  * Populate N_HIGH_MEMORY for calculating usable_nodes.
3650  */
3651 static unsigned long __init early_calculate_totalpages(void)
3652 {
3653 	int i;
3654 	unsigned long totalpages = 0;
3655 
3656 	for (i = 0; i < nr_nodemap_entries; i++) {
3657 		unsigned long pages = early_node_map[i].end_pfn -
3658 						early_node_map[i].start_pfn;
3659 		totalpages += pages;
3660 		if (pages)
3661 			node_set_state(early_node_map[i].nid, N_HIGH_MEMORY);
3662 	}
3663   	return totalpages;
3664 }
3665 
3666 /*
3667  * Find the PFN the Movable zone begins in each node. Kernel memory
3668  * is spread evenly between nodes as long as the nodes have enough
3669  * memory. When they don't, some nodes will have more kernelcore than
3670  * others
3671  */
3672 void __init find_zone_movable_pfns_for_nodes(unsigned long *movable_pfn)
3673 {
3674 	int i, nid;
3675 	unsigned long usable_startpfn;
3676 	unsigned long kernelcore_node, kernelcore_remaining;
3677 	unsigned long totalpages = early_calculate_totalpages();
3678 	int usable_nodes = nodes_weight(node_states[N_HIGH_MEMORY]);
3679 
3680 	/*
3681 	 * If movablecore was specified, calculate what size of
3682 	 * kernelcore that corresponds so that memory usable for
3683 	 * any allocation type is evenly spread. If both kernelcore
3684 	 * and movablecore are specified, then the value of kernelcore
3685 	 * will be used for required_kernelcore if it's greater than
3686 	 * what movablecore would have allowed.
3687 	 */
3688 	if (required_movablecore) {
3689 		unsigned long corepages;
3690 
3691 		/*
3692 		 * Round-up so that ZONE_MOVABLE is at least as large as what
3693 		 * was requested by the user
3694 		 */
3695 		required_movablecore =
3696 			roundup(required_movablecore, MAX_ORDER_NR_PAGES);
3697 		corepages = totalpages - required_movablecore;
3698 
3699 		required_kernelcore = max(required_kernelcore, corepages);
3700 	}
3701 
3702 	/* If kernelcore was not specified, there is no ZONE_MOVABLE */
3703 	if (!required_kernelcore)
3704 		return;
3705 
3706 	/* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
3707 	find_usable_zone_for_movable();
3708 	usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
3709 
3710 restart:
3711 	/* Spread kernelcore memory as evenly as possible throughout nodes */
3712 	kernelcore_node = required_kernelcore / usable_nodes;
3713 	for_each_node_state(nid, N_HIGH_MEMORY) {
3714 		/*
3715 		 * Recalculate kernelcore_node if the division per node
3716 		 * now exceeds what is necessary to satisfy the requested
3717 		 * amount of memory for the kernel
3718 		 */
3719 		if (required_kernelcore < kernelcore_node)
3720 			kernelcore_node = required_kernelcore / usable_nodes;
3721 
3722 		/*
3723 		 * As the map is walked, we track how much memory is usable
3724 		 * by the kernel using kernelcore_remaining. When it is
3725 		 * 0, the rest of the node is usable by ZONE_MOVABLE
3726 		 */
3727 		kernelcore_remaining = kernelcore_node;
3728 
3729 		/* Go through each range of PFNs within this node */
3730 		for_each_active_range_index_in_nid(i, nid) {
3731 			unsigned long start_pfn, end_pfn;
3732 			unsigned long size_pages;
3733 
3734 			start_pfn = max(early_node_map[i].start_pfn,
3735 						zone_movable_pfn[nid]);
3736 			end_pfn = early_node_map[i].end_pfn;
3737 			if (start_pfn >= end_pfn)
3738 				continue;
3739 
3740 			/* Account for what is only usable for kernelcore */
3741 			if (start_pfn < usable_startpfn) {
3742 				unsigned long kernel_pages;
3743 				kernel_pages = min(end_pfn, usable_startpfn)
3744 								- start_pfn;
3745 
3746 				kernelcore_remaining -= min(kernel_pages,
3747 							kernelcore_remaining);
3748 				required_kernelcore -= min(kernel_pages,
3749 							required_kernelcore);
3750 
3751 				/* Continue if range is now fully accounted */
3752 				if (end_pfn <= usable_startpfn) {
3753 
3754 					/*
3755 					 * Push zone_movable_pfn to the end so
3756 					 * that if we have to rebalance
3757 					 * kernelcore across nodes, we will
3758 					 * not double account here
3759 					 */
3760 					zone_movable_pfn[nid] = end_pfn;
3761 					continue;
3762 				}
3763 				start_pfn = usable_startpfn;
3764 			}
3765 
3766 			/*
3767 			 * The usable PFN range for ZONE_MOVABLE is from
3768 			 * start_pfn->end_pfn. Calculate size_pages as the
3769 			 * number of pages used as kernelcore
3770 			 */
3771 			size_pages = end_pfn - start_pfn;
3772 			if (size_pages > kernelcore_remaining)
3773 				size_pages = kernelcore_remaining;
3774 			zone_movable_pfn[nid] = start_pfn + size_pages;
3775 
3776 			/*
3777 			 * Some kernelcore has been met, update counts and
3778 			 * break if the kernelcore for this node has been
3779 			 * satisified
3780 			 */
3781 			required_kernelcore -= min(required_kernelcore,
3782 								size_pages);
3783 			kernelcore_remaining -= size_pages;
3784 			if (!kernelcore_remaining)
3785 				break;
3786 		}
3787 	}
3788 
3789 	/*
3790 	 * If there is still required_kernelcore, we do another pass with one
3791 	 * less node in the count. This will push zone_movable_pfn[nid] further
3792 	 * along on the nodes that still have memory until kernelcore is
3793 	 * satisified
3794 	 */
3795 	usable_nodes--;
3796 	if (usable_nodes && required_kernelcore > usable_nodes)
3797 		goto restart;
3798 
3799 	/* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
3800 	for (nid = 0; nid < MAX_NUMNODES; nid++)
3801 		zone_movable_pfn[nid] =
3802 			roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
3803 }
3804 
3805 /* Any regular memory on that node ? */
3806 static void check_for_regular_memory(pg_data_t *pgdat)
3807 {
3808 #ifdef CONFIG_HIGHMEM
3809 	enum zone_type zone_type;
3810 
3811 	for (zone_type = 0; zone_type <= ZONE_NORMAL; zone_type++) {
3812 		struct zone *zone = &pgdat->node_zones[zone_type];
3813 		if (zone->present_pages)
3814 			node_set_state(zone_to_nid(zone), N_NORMAL_MEMORY);
3815 	}
3816 #endif
3817 }
3818 
3819 /**
3820  * free_area_init_nodes - Initialise all pg_data_t and zone data
3821  * @max_zone_pfn: an array of max PFNs for each zone
3822  *
3823  * This will call free_area_init_node() for each active node in the system.
3824  * Using the page ranges provided by add_active_range(), the size of each
3825  * zone in each node and their holes is calculated. If the maximum PFN
3826  * between two adjacent zones match, it is assumed that the zone is empty.
3827  * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
3828  * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
3829  * starts where the previous one ended. For example, ZONE_DMA32 starts
3830  * at arch_max_dma_pfn.
3831  */
3832 void __init free_area_init_nodes(unsigned long *max_zone_pfn)
3833 {
3834 	unsigned long nid;
3835 	enum zone_type i;
3836 
3837 	/* Sort early_node_map as initialisation assumes it is sorted */
3838 	sort_node_map();
3839 
3840 	/* Record where the zone boundaries are */
3841 	memset(arch_zone_lowest_possible_pfn, 0,
3842 				sizeof(arch_zone_lowest_possible_pfn));
3843 	memset(arch_zone_highest_possible_pfn, 0,
3844 				sizeof(arch_zone_highest_possible_pfn));
3845 	arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
3846 	arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
3847 	for (i = 1; i < MAX_NR_ZONES; i++) {
3848 		if (i == ZONE_MOVABLE)
3849 			continue;
3850 		arch_zone_lowest_possible_pfn[i] =
3851 			arch_zone_highest_possible_pfn[i-1];
3852 		arch_zone_highest_possible_pfn[i] =
3853 			max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
3854 	}
3855 	arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
3856 	arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
3857 
3858 	/* Find the PFNs that ZONE_MOVABLE begins at in each node */
3859 	memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
3860 	find_zone_movable_pfns_for_nodes(zone_movable_pfn);
3861 
3862 	/* Print out the zone ranges */
3863 	printk("Zone PFN ranges:\n");
3864 	for (i = 0; i < MAX_NR_ZONES; i++) {
3865 		if (i == ZONE_MOVABLE)
3866 			continue;
3867 		printk("  %-8s %8lu -> %8lu\n",
3868 				zone_names[i],
3869 				arch_zone_lowest_possible_pfn[i],
3870 				arch_zone_highest_possible_pfn[i]);
3871 	}
3872 
3873 	/* Print out the PFNs ZONE_MOVABLE begins at in each node */
3874 	printk("Movable zone start PFN for each node\n");
3875 	for (i = 0; i < MAX_NUMNODES; i++) {
3876 		if (zone_movable_pfn[i])
3877 			printk("  Node %d: %lu\n", i, zone_movable_pfn[i]);
3878 	}
3879 
3880 	/* Print out the early_node_map[] */
3881 	printk("early_node_map[%d] active PFN ranges\n", nr_nodemap_entries);
3882 	for (i = 0; i < nr_nodemap_entries; i++)
3883 		printk("  %3d: %8lu -> %8lu\n", early_node_map[i].nid,
3884 						early_node_map[i].start_pfn,
3885 						early_node_map[i].end_pfn);
3886 
3887 	/* Initialise every node */
3888 	setup_nr_node_ids();
3889 	for_each_online_node(nid) {
3890 		pg_data_t *pgdat = NODE_DATA(nid);
3891 		free_area_init_node(nid, pgdat, NULL,
3892 				find_min_pfn_for_node(nid), NULL);
3893 
3894 		/* Any memory on that node */
3895 		if (pgdat->node_present_pages)
3896 			node_set_state(nid, N_HIGH_MEMORY);
3897 		check_for_regular_memory(pgdat);
3898 	}
3899 }
3900 
3901 static int __init cmdline_parse_core(char *p, unsigned long *core)
3902 {
3903 	unsigned long long coremem;
3904 	if (!p)
3905 		return -EINVAL;
3906 
3907 	coremem = memparse(p, &p);
3908 	*core = coremem >> PAGE_SHIFT;
3909 
3910 	/* Paranoid check that UL is enough for the coremem value */
3911 	WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
3912 
3913 	return 0;
3914 }
3915 
3916 /*
3917  * kernelcore=size sets the amount of memory for use for allocations that
3918  * cannot be reclaimed or migrated.
3919  */
3920 static int __init cmdline_parse_kernelcore(char *p)
3921 {
3922 	return cmdline_parse_core(p, &required_kernelcore);
3923 }
3924 
3925 /*
3926  * movablecore=size sets the amount of memory for use for allocations that
3927  * can be reclaimed or migrated.
3928  */
3929 static int __init cmdline_parse_movablecore(char *p)
3930 {
3931 	return cmdline_parse_core(p, &required_movablecore);
3932 }
3933 
3934 early_param("kernelcore", cmdline_parse_kernelcore);
3935 early_param("movablecore", cmdline_parse_movablecore);
3936 
3937 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
3938 
3939 /**
3940  * set_dma_reserve - set the specified number of pages reserved in the first zone
3941  * @new_dma_reserve: The number of pages to mark reserved
3942  *
3943  * The per-cpu batchsize and zone watermarks are determined by present_pages.
3944  * In the DMA zone, a significant percentage may be consumed by kernel image
3945  * and other unfreeable allocations which can skew the watermarks badly. This
3946  * function may optionally be used to account for unfreeable pages in the
3947  * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
3948  * smaller per-cpu batchsize.
3949  */
3950 void __init set_dma_reserve(unsigned long new_dma_reserve)
3951 {
3952 	dma_reserve = new_dma_reserve;
3953 }
3954 
3955 #ifndef CONFIG_NEED_MULTIPLE_NODES
3956 static bootmem_data_t contig_bootmem_data;
3957 struct pglist_data contig_page_data = { .bdata = &contig_bootmem_data };
3958 
3959 EXPORT_SYMBOL(contig_page_data);
3960 #endif
3961 
3962 void __init free_area_init(unsigned long *zones_size)
3963 {
3964 	free_area_init_node(0, NODE_DATA(0), zones_size,
3965 			__pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
3966 }
3967 
3968 static int page_alloc_cpu_notify(struct notifier_block *self,
3969 				 unsigned long action, void *hcpu)
3970 {
3971 	int cpu = (unsigned long)hcpu;
3972 
3973 	if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
3974 		drain_pages(cpu);
3975 
3976 		/*
3977 		 * Spill the event counters of the dead processor
3978 		 * into the current processors event counters.
3979 		 * This artificially elevates the count of the current
3980 		 * processor.
3981 		 */
3982 		vm_events_fold_cpu(cpu);
3983 
3984 		/*
3985 		 * Zero the differential counters of the dead processor
3986 		 * so that the vm statistics are consistent.
3987 		 *
3988 		 * This is only okay since the processor is dead and cannot
3989 		 * race with what we are doing.
3990 		 */
3991 		refresh_cpu_vm_stats(cpu);
3992 	}
3993 	return NOTIFY_OK;
3994 }
3995 
3996 void __init page_alloc_init(void)
3997 {
3998 	hotcpu_notifier(page_alloc_cpu_notify, 0);
3999 }
4000 
4001 /*
4002  * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
4003  *	or min_free_kbytes changes.
4004  */
4005 static void calculate_totalreserve_pages(void)
4006 {
4007 	struct pglist_data *pgdat;
4008 	unsigned long reserve_pages = 0;
4009 	enum zone_type i, j;
4010 
4011 	for_each_online_pgdat(pgdat) {
4012 		for (i = 0; i < MAX_NR_ZONES; i++) {
4013 			struct zone *zone = pgdat->node_zones + i;
4014 			unsigned long max = 0;
4015 
4016 			/* Find valid and maximum lowmem_reserve in the zone */
4017 			for (j = i; j < MAX_NR_ZONES; j++) {
4018 				if (zone->lowmem_reserve[j] > max)
4019 					max = zone->lowmem_reserve[j];
4020 			}
4021 
4022 			/* we treat pages_high as reserved pages. */
4023 			max += zone->pages_high;
4024 
4025 			if (max > zone->present_pages)
4026 				max = zone->present_pages;
4027 			reserve_pages += max;
4028 		}
4029 	}
4030 	totalreserve_pages = reserve_pages;
4031 }
4032 
4033 /*
4034  * setup_per_zone_lowmem_reserve - called whenever
4035  *	sysctl_lower_zone_reserve_ratio changes.  Ensures that each zone
4036  *	has a correct pages reserved value, so an adequate number of
4037  *	pages are left in the zone after a successful __alloc_pages().
4038  */
4039 static void setup_per_zone_lowmem_reserve(void)
4040 {
4041 	struct pglist_data *pgdat;
4042 	enum zone_type j, idx;
4043 
4044 	for_each_online_pgdat(pgdat) {
4045 		for (j = 0; j < MAX_NR_ZONES; j++) {
4046 			struct zone *zone = pgdat->node_zones + j;
4047 			unsigned long present_pages = zone->present_pages;
4048 
4049 			zone->lowmem_reserve[j] = 0;
4050 
4051 			idx = j;
4052 			while (idx) {
4053 				struct zone *lower_zone;
4054 
4055 				idx--;
4056 
4057 				if (sysctl_lowmem_reserve_ratio[idx] < 1)
4058 					sysctl_lowmem_reserve_ratio[idx] = 1;
4059 
4060 				lower_zone = pgdat->node_zones + idx;
4061 				lower_zone->lowmem_reserve[j] = present_pages /
4062 					sysctl_lowmem_reserve_ratio[idx];
4063 				present_pages += lower_zone->present_pages;
4064 			}
4065 		}
4066 	}
4067 
4068 	/* update totalreserve_pages */
4069 	calculate_totalreserve_pages();
4070 }
4071 
4072 /**
4073  * setup_per_zone_pages_min - called when min_free_kbytes changes.
4074  *
4075  * Ensures that the pages_{min,low,high} values for each zone are set correctly
4076  * with respect to min_free_kbytes.
4077  */
4078 void setup_per_zone_pages_min(void)
4079 {
4080 	unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
4081 	unsigned long lowmem_pages = 0;
4082 	struct zone *zone;
4083 	unsigned long flags;
4084 
4085 	/* Calculate total number of !ZONE_HIGHMEM pages */
4086 	for_each_zone(zone) {
4087 		if (!is_highmem(zone))
4088 			lowmem_pages += zone->present_pages;
4089 	}
4090 
4091 	for_each_zone(zone) {
4092 		u64 tmp;
4093 
4094 		spin_lock_irqsave(&zone->lru_lock, flags);
4095 		tmp = (u64)pages_min * zone->present_pages;
4096 		do_div(tmp, lowmem_pages);
4097 		if (is_highmem(zone)) {
4098 			/*
4099 			 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
4100 			 * need highmem pages, so cap pages_min to a small
4101 			 * value here.
4102 			 *
4103 			 * The (pages_high-pages_low) and (pages_low-pages_min)
4104 			 * deltas controls asynch page reclaim, and so should
4105 			 * not be capped for highmem.
4106 			 */
4107 			int min_pages;
4108 
4109 			min_pages = zone->present_pages / 1024;
4110 			if (min_pages < SWAP_CLUSTER_MAX)
4111 				min_pages = SWAP_CLUSTER_MAX;
4112 			if (min_pages > 128)
4113 				min_pages = 128;
4114 			zone->pages_min = min_pages;
4115 		} else {
4116 			/*
4117 			 * If it's a lowmem zone, reserve a number of pages
4118 			 * proportionate to the zone's size.
4119 			 */
4120 			zone->pages_min = tmp;
4121 		}
4122 
4123 		zone->pages_low   = zone->pages_min + (tmp >> 2);
4124 		zone->pages_high  = zone->pages_min + (tmp >> 1);
4125 		setup_zone_migrate_reserve(zone);
4126 		spin_unlock_irqrestore(&zone->lru_lock, flags);
4127 	}
4128 
4129 	/* update totalreserve_pages */
4130 	calculate_totalreserve_pages();
4131 }
4132 
4133 /*
4134  * Initialise min_free_kbytes.
4135  *
4136  * For small machines we want it small (128k min).  For large machines
4137  * we want it large (64MB max).  But it is not linear, because network
4138  * bandwidth does not increase linearly with machine size.  We use
4139  *
4140  * 	min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
4141  *	min_free_kbytes = sqrt(lowmem_kbytes * 16)
4142  *
4143  * which yields
4144  *
4145  * 16MB:	512k
4146  * 32MB:	724k
4147  * 64MB:	1024k
4148  * 128MB:	1448k
4149  * 256MB:	2048k
4150  * 512MB:	2896k
4151  * 1024MB:	4096k
4152  * 2048MB:	5792k
4153  * 4096MB:	8192k
4154  * 8192MB:	11584k
4155  * 16384MB:	16384k
4156  */
4157 static int __init init_per_zone_pages_min(void)
4158 {
4159 	unsigned long lowmem_kbytes;
4160 
4161 	lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
4162 
4163 	min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
4164 	if (min_free_kbytes < 128)
4165 		min_free_kbytes = 128;
4166 	if (min_free_kbytes > 65536)
4167 		min_free_kbytes = 65536;
4168 	setup_per_zone_pages_min();
4169 	setup_per_zone_lowmem_reserve();
4170 	return 0;
4171 }
4172 module_init(init_per_zone_pages_min)
4173 
4174 /*
4175  * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
4176  *	that we can call two helper functions whenever min_free_kbytes
4177  *	changes.
4178  */
4179 int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
4180 	struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4181 {
4182 	proc_dointvec(table, write, file, buffer, length, ppos);
4183 	if (write)
4184 		setup_per_zone_pages_min();
4185 	return 0;
4186 }
4187 
4188 #ifdef CONFIG_NUMA
4189 int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
4190 	struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4191 {
4192 	struct zone *zone;
4193 	int rc;
4194 
4195 	rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4196 	if (rc)
4197 		return rc;
4198 
4199 	for_each_zone(zone)
4200 		zone->min_unmapped_pages = (zone->present_pages *
4201 				sysctl_min_unmapped_ratio) / 100;
4202 	return 0;
4203 }
4204 
4205 int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
4206 	struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4207 {
4208 	struct zone *zone;
4209 	int rc;
4210 
4211 	rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4212 	if (rc)
4213 		return rc;
4214 
4215 	for_each_zone(zone)
4216 		zone->min_slab_pages = (zone->present_pages *
4217 				sysctl_min_slab_ratio) / 100;
4218 	return 0;
4219 }
4220 #endif
4221 
4222 /*
4223  * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
4224  *	proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
4225  *	whenever sysctl_lowmem_reserve_ratio changes.
4226  *
4227  * The reserve ratio obviously has absolutely no relation with the
4228  * pages_min watermarks. The lowmem reserve ratio can only make sense
4229  * if in function of the boot time zone sizes.
4230  */
4231 int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
4232 	struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4233 {
4234 	proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4235 	setup_per_zone_lowmem_reserve();
4236 	return 0;
4237 }
4238 
4239 /*
4240  * percpu_pagelist_fraction - changes the pcp->high for each zone on each
4241  * cpu.  It is the fraction of total pages in each zone that a hot per cpu pagelist
4242  * can have before it gets flushed back to buddy allocator.
4243  */
4244 
4245 int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
4246 	struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4247 {
4248 	struct zone *zone;
4249 	unsigned int cpu;
4250 	int ret;
4251 
4252 	ret = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4253 	if (!write || (ret == -EINVAL))
4254 		return ret;
4255 	for_each_zone(zone) {
4256 		for_each_online_cpu(cpu) {
4257 			unsigned long  high;
4258 			high = zone->present_pages / percpu_pagelist_fraction;
4259 			setup_pagelist_highmark(zone_pcp(zone, cpu), high);
4260 		}
4261 	}
4262 	return 0;
4263 }
4264 
4265 int hashdist = HASHDIST_DEFAULT;
4266 
4267 #ifdef CONFIG_NUMA
4268 static int __init set_hashdist(char *str)
4269 {
4270 	if (!str)
4271 		return 0;
4272 	hashdist = simple_strtoul(str, &str, 0);
4273 	return 1;
4274 }
4275 __setup("hashdist=", set_hashdist);
4276 #endif
4277 
4278 /*
4279  * allocate a large system hash table from bootmem
4280  * - it is assumed that the hash table must contain an exact power-of-2
4281  *   quantity of entries
4282  * - limit is the number of hash buckets, not the total allocation size
4283  */
4284 void *__init alloc_large_system_hash(const char *tablename,
4285 				     unsigned long bucketsize,
4286 				     unsigned long numentries,
4287 				     int scale,
4288 				     int flags,
4289 				     unsigned int *_hash_shift,
4290 				     unsigned int *_hash_mask,
4291 				     unsigned long limit)
4292 {
4293 	unsigned long long max = limit;
4294 	unsigned long log2qty, size;
4295 	void *table = NULL;
4296 
4297 	/* allow the kernel cmdline to have a say */
4298 	if (!numentries) {
4299 		/* round applicable memory size up to nearest megabyte */
4300 		numentries = nr_kernel_pages;
4301 		numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
4302 		numentries >>= 20 - PAGE_SHIFT;
4303 		numentries <<= 20 - PAGE_SHIFT;
4304 
4305 		/* limit to 1 bucket per 2^scale bytes of low memory */
4306 		if (scale > PAGE_SHIFT)
4307 			numentries >>= (scale - PAGE_SHIFT);
4308 		else
4309 			numentries <<= (PAGE_SHIFT - scale);
4310 
4311 		/* Make sure we've got at least a 0-order allocation.. */
4312 		if (unlikely((numentries * bucketsize) < PAGE_SIZE))
4313 			numentries = PAGE_SIZE / bucketsize;
4314 	}
4315 	numentries = roundup_pow_of_two(numentries);
4316 
4317 	/* limit allocation size to 1/16 total memory by default */
4318 	if (max == 0) {
4319 		max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
4320 		do_div(max, bucketsize);
4321 	}
4322 
4323 	if (numentries > max)
4324 		numentries = max;
4325 
4326 	log2qty = ilog2(numentries);
4327 
4328 	do {
4329 		size = bucketsize << log2qty;
4330 		if (flags & HASH_EARLY)
4331 			table = alloc_bootmem(size);
4332 		else if (hashdist)
4333 			table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
4334 		else {
4335 			unsigned long order;
4336 			for (order = 0; ((1UL << order) << PAGE_SHIFT) < size; order++)
4337 				;
4338 			table = (void*) __get_free_pages(GFP_ATOMIC, order);
4339 			/*
4340 			 * If bucketsize is not a power-of-two, we may free
4341 			 * some pages at the end of hash table.
4342 			 */
4343 			if (table) {
4344 				unsigned long alloc_end = (unsigned long)table +
4345 						(PAGE_SIZE << order);
4346 				unsigned long used = (unsigned long)table +
4347 						PAGE_ALIGN(size);
4348 				split_page(virt_to_page(table), order);
4349 				while (used < alloc_end) {
4350 					free_page(used);
4351 					used += PAGE_SIZE;
4352 				}
4353 			}
4354 		}
4355 	} while (!table && size > PAGE_SIZE && --log2qty);
4356 
4357 	if (!table)
4358 		panic("Failed to allocate %s hash table\n", tablename);
4359 
4360 	printk(KERN_INFO "%s hash table entries: %d (order: %d, %lu bytes)\n",
4361 	       tablename,
4362 	       (1U << log2qty),
4363 	       ilog2(size) - PAGE_SHIFT,
4364 	       size);
4365 
4366 	if (_hash_shift)
4367 		*_hash_shift = log2qty;
4368 	if (_hash_mask)
4369 		*_hash_mask = (1 << log2qty) - 1;
4370 
4371 	return table;
4372 }
4373 
4374 #ifdef CONFIG_OUT_OF_LINE_PFN_TO_PAGE
4375 struct page *pfn_to_page(unsigned long pfn)
4376 {
4377 	return __pfn_to_page(pfn);
4378 }
4379 unsigned long page_to_pfn(struct page *page)
4380 {
4381 	return __page_to_pfn(page);
4382 }
4383 EXPORT_SYMBOL(pfn_to_page);
4384 EXPORT_SYMBOL(page_to_pfn);
4385 #endif /* CONFIG_OUT_OF_LINE_PFN_TO_PAGE */
4386 
4387 /* Return a pointer to the bitmap storing bits affecting a block of pages */
4388 static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
4389 							unsigned long pfn)
4390 {
4391 #ifdef CONFIG_SPARSEMEM
4392 	return __pfn_to_section(pfn)->pageblock_flags;
4393 #else
4394 	return zone->pageblock_flags;
4395 #endif /* CONFIG_SPARSEMEM */
4396 }
4397 
4398 static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
4399 {
4400 #ifdef CONFIG_SPARSEMEM
4401 	pfn &= (PAGES_PER_SECTION-1);
4402 	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
4403 #else
4404 	pfn = pfn - zone->zone_start_pfn;
4405 	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
4406 #endif /* CONFIG_SPARSEMEM */
4407 }
4408 
4409 /**
4410  * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
4411  * @page: The page within the block of interest
4412  * @start_bitidx: The first bit of interest to retrieve
4413  * @end_bitidx: The last bit of interest
4414  * returns pageblock_bits flags
4415  */
4416 unsigned long get_pageblock_flags_group(struct page *page,
4417 					int start_bitidx, int end_bitidx)
4418 {
4419 	struct zone *zone;
4420 	unsigned long *bitmap;
4421 	unsigned long pfn, bitidx;
4422 	unsigned long flags = 0;
4423 	unsigned long value = 1;
4424 
4425 	zone = page_zone(page);
4426 	pfn = page_to_pfn(page);
4427 	bitmap = get_pageblock_bitmap(zone, pfn);
4428 	bitidx = pfn_to_bitidx(zone, pfn);
4429 
4430 	for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
4431 		if (test_bit(bitidx + start_bitidx, bitmap))
4432 			flags |= value;
4433 
4434 	return flags;
4435 }
4436 
4437 /**
4438  * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
4439  * @page: The page within the block of interest
4440  * @start_bitidx: The first bit of interest
4441  * @end_bitidx: The last bit of interest
4442  * @flags: The flags to set
4443  */
4444 void set_pageblock_flags_group(struct page *page, unsigned long flags,
4445 					int start_bitidx, int end_bitidx)
4446 {
4447 	struct zone *zone;
4448 	unsigned long *bitmap;
4449 	unsigned long pfn, bitidx;
4450 	unsigned long value = 1;
4451 
4452 	zone = page_zone(page);
4453 	pfn = page_to_pfn(page);
4454 	bitmap = get_pageblock_bitmap(zone, pfn);
4455 	bitidx = pfn_to_bitidx(zone, pfn);
4456 
4457 	for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
4458 		if (flags & value)
4459 			__set_bit(bitidx + start_bitidx, bitmap);
4460 		else
4461 			__clear_bit(bitidx + start_bitidx, bitmap);
4462 }
4463 
4464 /*
4465  * This is designed as sub function...plz see page_isolation.c also.
4466  * set/clear page block's type to be ISOLATE.
4467  * page allocater never alloc memory from ISOLATE block.
4468  */
4469 
4470 int set_migratetype_isolate(struct page *page)
4471 {
4472 	struct zone *zone;
4473 	unsigned long flags;
4474 	int ret = -EBUSY;
4475 
4476 	zone = page_zone(page);
4477 	spin_lock_irqsave(&zone->lock, flags);
4478 	/*
4479 	 * In future, more migrate types will be able to be isolation target.
4480 	 */
4481 	if (get_pageblock_migratetype(page) != MIGRATE_MOVABLE)
4482 		goto out;
4483 	set_pageblock_migratetype(page, MIGRATE_ISOLATE);
4484 	move_freepages_block(zone, page, MIGRATE_ISOLATE);
4485 	ret = 0;
4486 out:
4487 	spin_unlock_irqrestore(&zone->lock, flags);
4488 	if (!ret)
4489 		drain_all_pages();
4490 	return ret;
4491 }
4492 
4493 void unset_migratetype_isolate(struct page *page)
4494 {
4495 	struct zone *zone;
4496 	unsigned long flags;
4497 	zone = page_zone(page);
4498 	spin_lock_irqsave(&zone->lock, flags);
4499 	if (get_pageblock_migratetype(page) != MIGRATE_ISOLATE)
4500 		goto out;
4501 	set_pageblock_migratetype(page, MIGRATE_MOVABLE);
4502 	move_freepages_block(zone, page, MIGRATE_MOVABLE);
4503 out:
4504 	spin_unlock_irqrestore(&zone->lock, flags);
4505 }
4506 
4507 #ifdef CONFIG_MEMORY_HOTREMOVE
4508 /*
4509  * All pages in the range must be isolated before calling this.
4510  */
4511 void
4512 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
4513 {
4514 	struct page *page;
4515 	struct zone *zone;
4516 	int order, i;
4517 	unsigned long pfn;
4518 	unsigned long flags;
4519 	/* find the first valid pfn */
4520 	for (pfn = start_pfn; pfn < end_pfn; pfn++)
4521 		if (pfn_valid(pfn))
4522 			break;
4523 	if (pfn == end_pfn)
4524 		return;
4525 	zone = page_zone(pfn_to_page(pfn));
4526 	spin_lock_irqsave(&zone->lock, flags);
4527 	pfn = start_pfn;
4528 	while (pfn < end_pfn) {
4529 		if (!pfn_valid(pfn)) {
4530 			pfn++;
4531 			continue;
4532 		}
4533 		page = pfn_to_page(pfn);
4534 		BUG_ON(page_count(page));
4535 		BUG_ON(!PageBuddy(page));
4536 		order = page_order(page);
4537 #ifdef CONFIG_DEBUG_VM
4538 		printk(KERN_INFO "remove from free list %lx %d %lx\n",
4539 		       pfn, 1 << order, end_pfn);
4540 #endif
4541 		list_del(&page->lru);
4542 		rmv_page_order(page);
4543 		zone->free_area[order].nr_free--;
4544 		__mod_zone_page_state(zone, NR_FREE_PAGES,
4545 				      - (1UL << order));
4546 		for (i = 0; i < (1 << order); i++)
4547 			SetPageReserved((page+i));
4548 		pfn += (1 << order);
4549 	}
4550 	spin_unlock_irqrestore(&zone->lock, flags);
4551 }
4552 #endif
4553