1 /* 2 * linux/mm/page_alloc.c 3 * 4 * Manages the free list, the system allocates free pages here. 5 * Note that kmalloc() lives in slab.c 6 * 7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 8 * Swap reorganised 29.12.95, Stephen Tweedie 9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999 10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999 11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999 12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000 13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002 14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton) 15 */ 16 17 #include <linux/stddef.h> 18 #include <linux/mm.h> 19 #include <linux/highmem.h> 20 #include <linux/swap.h> 21 #include <linux/interrupt.h> 22 #include <linux/pagemap.h> 23 #include <linux/jiffies.h> 24 #include <linux/memblock.h> 25 #include <linux/compiler.h> 26 #include <linux/kernel.h> 27 #include <linux/kasan.h> 28 #include <linux/module.h> 29 #include <linux/suspend.h> 30 #include <linux/pagevec.h> 31 #include <linux/blkdev.h> 32 #include <linux/slab.h> 33 #include <linux/ratelimit.h> 34 #include <linux/oom.h> 35 #include <linux/topology.h> 36 #include <linux/sysctl.h> 37 #include <linux/cpu.h> 38 #include <linux/cpuset.h> 39 #include <linux/memory_hotplug.h> 40 #include <linux/nodemask.h> 41 #include <linux/vmalloc.h> 42 #include <linux/vmstat.h> 43 #include <linux/mempolicy.h> 44 #include <linux/memremap.h> 45 #include <linux/stop_machine.h> 46 #include <linux/sort.h> 47 #include <linux/pfn.h> 48 #include <linux/backing-dev.h> 49 #include <linux/fault-inject.h> 50 #include <linux/page-isolation.h> 51 #include <linux/page_ext.h> 52 #include <linux/debugobjects.h> 53 #include <linux/kmemleak.h> 54 #include <linux/compaction.h> 55 #include <trace/events/kmem.h> 56 #include <trace/events/oom.h> 57 #include <linux/prefetch.h> 58 #include <linux/mm_inline.h> 59 #include <linux/migrate.h> 60 #include <linux/hugetlb.h> 61 #include <linux/sched/rt.h> 62 #include <linux/sched/mm.h> 63 #include <linux/page_owner.h> 64 #include <linux/kthread.h> 65 #include <linux/memcontrol.h> 66 #include <linux/ftrace.h> 67 #include <linux/lockdep.h> 68 #include <linux/nmi.h> 69 #include <linux/psi.h> 70 71 #include <asm/sections.h> 72 #include <asm/tlbflush.h> 73 #include <asm/div64.h> 74 #include "internal.h" 75 76 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */ 77 static DEFINE_MUTEX(pcp_batch_high_lock); 78 #define MIN_PERCPU_PAGELIST_FRACTION (8) 79 80 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID 81 DEFINE_PER_CPU(int, numa_node); 82 EXPORT_PER_CPU_SYMBOL(numa_node); 83 #endif 84 85 DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key); 86 87 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 88 /* 89 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly. 90 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined. 91 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem() 92 * defined in <linux/topology.h>. 93 */ 94 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */ 95 EXPORT_PER_CPU_SYMBOL(_numa_mem_); 96 int _node_numa_mem_[MAX_NUMNODES]; 97 #endif 98 99 /* work_structs for global per-cpu drains */ 100 struct pcpu_drain { 101 struct zone *zone; 102 struct work_struct work; 103 }; 104 DEFINE_MUTEX(pcpu_drain_mutex); 105 DEFINE_PER_CPU(struct pcpu_drain, pcpu_drain); 106 107 #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY 108 volatile unsigned long latent_entropy __latent_entropy; 109 EXPORT_SYMBOL(latent_entropy); 110 #endif 111 112 /* 113 * Array of node states. 114 */ 115 nodemask_t node_states[NR_NODE_STATES] __read_mostly = { 116 [N_POSSIBLE] = NODE_MASK_ALL, 117 [N_ONLINE] = { { [0] = 1UL } }, 118 #ifndef CONFIG_NUMA 119 [N_NORMAL_MEMORY] = { { [0] = 1UL } }, 120 #ifdef CONFIG_HIGHMEM 121 [N_HIGH_MEMORY] = { { [0] = 1UL } }, 122 #endif 123 [N_MEMORY] = { { [0] = 1UL } }, 124 [N_CPU] = { { [0] = 1UL } }, 125 #endif /* NUMA */ 126 }; 127 EXPORT_SYMBOL(node_states); 128 129 atomic_long_t _totalram_pages __read_mostly; 130 EXPORT_SYMBOL(_totalram_pages); 131 unsigned long totalreserve_pages __read_mostly; 132 unsigned long totalcma_pages __read_mostly; 133 134 int percpu_pagelist_fraction; 135 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK; 136 137 /* 138 * A cached value of the page's pageblock's migratetype, used when the page is 139 * put on a pcplist. Used to avoid the pageblock migratetype lookup when 140 * freeing from pcplists in most cases, at the cost of possibly becoming stale. 141 * Also the migratetype set in the page does not necessarily match the pcplist 142 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any 143 * other index - this ensures that it will be put on the correct CMA freelist. 144 */ 145 static inline int get_pcppage_migratetype(struct page *page) 146 { 147 return page->index; 148 } 149 150 static inline void set_pcppage_migratetype(struct page *page, int migratetype) 151 { 152 page->index = migratetype; 153 } 154 155 #ifdef CONFIG_PM_SLEEP 156 /* 157 * The following functions are used by the suspend/hibernate code to temporarily 158 * change gfp_allowed_mask in order to avoid using I/O during memory allocations 159 * while devices are suspended. To avoid races with the suspend/hibernate code, 160 * they should always be called with system_transition_mutex held 161 * (gfp_allowed_mask also should only be modified with system_transition_mutex 162 * held, unless the suspend/hibernate code is guaranteed not to run in parallel 163 * with that modification). 164 */ 165 166 static gfp_t saved_gfp_mask; 167 168 void pm_restore_gfp_mask(void) 169 { 170 WARN_ON(!mutex_is_locked(&system_transition_mutex)); 171 if (saved_gfp_mask) { 172 gfp_allowed_mask = saved_gfp_mask; 173 saved_gfp_mask = 0; 174 } 175 } 176 177 void pm_restrict_gfp_mask(void) 178 { 179 WARN_ON(!mutex_is_locked(&system_transition_mutex)); 180 WARN_ON(saved_gfp_mask); 181 saved_gfp_mask = gfp_allowed_mask; 182 gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS); 183 } 184 185 bool pm_suspended_storage(void) 186 { 187 if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS)) 188 return false; 189 return true; 190 } 191 #endif /* CONFIG_PM_SLEEP */ 192 193 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE 194 unsigned int pageblock_order __read_mostly; 195 #endif 196 197 static void __free_pages_ok(struct page *page, unsigned int order); 198 199 /* 200 * results with 256, 32 in the lowmem_reserve sysctl: 201 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high) 202 * 1G machine -> (16M dma, 784M normal, 224M high) 203 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA 204 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL 205 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA 206 * 207 * TBD: should special case ZONE_DMA32 machines here - in those we normally 208 * don't need any ZONE_NORMAL reservation 209 */ 210 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = { 211 #ifdef CONFIG_ZONE_DMA 212 [ZONE_DMA] = 256, 213 #endif 214 #ifdef CONFIG_ZONE_DMA32 215 [ZONE_DMA32] = 256, 216 #endif 217 [ZONE_NORMAL] = 32, 218 #ifdef CONFIG_HIGHMEM 219 [ZONE_HIGHMEM] = 0, 220 #endif 221 [ZONE_MOVABLE] = 0, 222 }; 223 224 EXPORT_SYMBOL(totalram_pages); 225 226 static char * const zone_names[MAX_NR_ZONES] = { 227 #ifdef CONFIG_ZONE_DMA 228 "DMA", 229 #endif 230 #ifdef CONFIG_ZONE_DMA32 231 "DMA32", 232 #endif 233 "Normal", 234 #ifdef CONFIG_HIGHMEM 235 "HighMem", 236 #endif 237 "Movable", 238 #ifdef CONFIG_ZONE_DEVICE 239 "Device", 240 #endif 241 }; 242 243 const char * const migratetype_names[MIGRATE_TYPES] = { 244 "Unmovable", 245 "Movable", 246 "Reclaimable", 247 "HighAtomic", 248 #ifdef CONFIG_CMA 249 "CMA", 250 #endif 251 #ifdef CONFIG_MEMORY_ISOLATION 252 "Isolate", 253 #endif 254 }; 255 256 compound_page_dtor * const compound_page_dtors[] = { 257 NULL, 258 free_compound_page, 259 #ifdef CONFIG_HUGETLB_PAGE 260 free_huge_page, 261 #endif 262 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 263 free_transhuge_page, 264 #endif 265 }; 266 267 int min_free_kbytes = 1024; 268 int user_min_free_kbytes = -1; 269 #ifdef CONFIG_DISCONTIGMEM 270 /* 271 * DiscontigMem defines memory ranges as separate pg_data_t even if the ranges 272 * are not on separate NUMA nodes. Functionally this works but with 273 * watermark_boost_factor, it can reclaim prematurely as the ranges can be 274 * quite small. By default, do not boost watermarks on discontigmem as in 275 * many cases very high-order allocations like THP are likely to be 276 * unsupported and the premature reclaim offsets the advantage of long-term 277 * fragmentation avoidance. 278 */ 279 int watermark_boost_factor __read_mostly; 280 #else 281 int watermark_boost_factor __read_mostly = 15000; 282 #endif 283 int watermark_scale_factor = 10; 284 285 static unsigned long nr_kernel_pages __initdata; 286 static unsigned long nr_all_pages __initdata; 287 static unsigned long dma_reserve __initdata; 288 289 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 290 static unsigned long arch_zone_lowest_possible_pfn[MAX_NR_ZONES] __initdata; 291 static unsigned long arch_zone_highest_possible_pfn[MAX_NR_ZONES] __initdata; 292 static unsigned long required_kernelcore __initdata; 293 static unsigned long required_kernelcore_percent __initdata; 294 static unsigned long required_movablecore __initdata; 295 static unsigned long required_movablecore_percent __initdata; 296 static unsigned long zone_movable_pfn[MAX_NUMNODES] __initdata; 297 static bool mirrored_kernelcore __meminitdata; 298 299 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */ 300 int movable_zone; 301 EXPORT_SYMBOL(movable_zone); 302 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 303 304 #if MAX_NUMNODES > 1 305 unsigned int nr_node_ids __read_mostly = MAX_NUMNODES; 306 unsigned int nr_online_nodes __read_mostly = 1; 307 EXPORT_SYMBOL(nr_node_ids); 308 EXPORT_SYMBOL(nr_online_nodes); 309 #endif 310 311 int page_group_by_mobility_disabled __read_mostly; 312 313 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 314 /* 315 * During boot we initialize deferred pages on-demand, as needed, but once 316 * page_alloc_init_late() has finished, the deferred pages are all initialized, 317 * and we can permanently disable that path. 318 */ 319 static DEFINE_STATIC_KEY_TRUE(deferred_pages); 320 321 /* 322 * Calling kasan_free_pages() only after deferred memory initialization 323 * has completed. Poisoning pages during deferred memory init will greatly 324 * lengthen the process and cause problem in large memory systems as the 325 * deferred pages initialization is done with interrupt disabled. 326 * 327 * Assuming that there will be no reference to those newly initialized 328 * pages before they are ever allocated, this should have no effect on 329 * KASAN memory tracking as the poison will be properly inserted at page 330 * allocation time. The only corner case is when pages are allocated by 331 * on-demand allocation and then freed again before the deferred pages 332 * initialization is done, but this is not likely to happen. 333 */ 334 static inline void kasan_free_nondeferred_pages(struct page *page, int order) 335 { 336 if (!static_branch_unlikely(&deferred_pages)) 337 kasan_free_pages(page, order); 338 } 339 340 /* Returns true if the struct page for the pfn is uninitialised */ 341 static inline bool __meminit early_page_uninitialised(unsigned long pfn) 342 { 343 int nid = early_pfn_to_nid(pfn); 344 345 if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn) 346 return true; 347 348 return false; 349 } 350 351 /* 352 * Returns true when the remaining initialisation should be deferred until 353 * later in the boot cycle when it can be parallelised. 354 */ 355 static bool __meminit 356 defer_init(int nid, unsigned long pfn, unsigned long end_pfn) 357 { 358 static unsigned long prev_end_pfn, nr_initialised; 359 360 /* 361 * prev_end_pfn static that contains the end of previous zone 362 * No need to protect because called very early in boot before smp_init. 363 */ 364 if (prev_end_pfn != end_pfn) { 365 prev_end_pfn = end_pfn; 366 nr_initialised = 0; 367 } 368 369 /* Always populate low zones for address-constrained allocations */ 370 if (end_pfn < pgdat_end_pfn(NODE_DATA(nid))) 371 return false; 372 373 /* 374 * We start only with one section of pages, more pages are added as 375 * needed until the rest of deferred pages are initialized. 376 */ 377 nr_initialised++; 378 if ((nr_initialised > PAGES_PER_SECTION) && 379 (pfn & (PAGES_PER_SECTION - 1)) == 0) { 380 NODE_DATA(nid)->first_deferred_pfn = pfn; 381 return true; 382 } 383 return false; 384 } 385 #else 386 #define kasan_free_nondeferred_pages(p, o) kasan_free_pages(p, o) 387 388 static inline bool early_page_uninitialised(unsigned long pfn) 389 { 390 return false; 391 } 392 393 static inline bool defer_init(int nid, unsigned long pfn, unsigned long end_pfn) 394 { 395 return false; 396 } 397 #endif 398 399 /* Return a pointer to the bitmap storing bits affecting a block of pages */ 400 static inline unsigned long *get_pageblock_bitmap(struct page *page, 401 unsigned long pfn) 402 { 403 #ifdef CONFIG_SPARSEMEM 404 return __pfn_to_section(pfn)->pageblock_flags; 405 #else 406 return page_zone(page)->pageblock_flags; 407 #endif /* CONFIG_SPARSEMEM */ 408 } 409 410 static inline int pfn_to_bitidx(struct page *page, unsigned long pfn) 411 { 412 #ifdef CONFIG_SPARSEMEM 413 pfn &= (PAGES_PER_SECTION-1); 414 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS; 415 #else 416 pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages); 417 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS; 418 #endif /* CONFIG_SPARSEMEM */ 419 } 420 421 /** 422 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages 423 * @page: The page within the block of interest 424 * @pfn: The target page frame number 425 * @end_bitidx: The last bit of interest to retrieve 426 * @mask: mask of bits that the caller is interested in 427 * 428 * Return: pageblock_bits flags 429 */ 430 static __always_inline unsigned long __get_pfnblock_flags_mask(struct page *page, 431 unsigned long pfn, 432 unsigned long end_bitidx, 433 unsigned long mask) 434 { 435 unsigned long *bitmap; 436 unsigned long bitidx, word_bitidx; 437 unsigned long word; 438 439 bitmap = get_pageblock_bitmap(page, pfn); 440 bitidx = pfn_to_bitidx(page, pfn); 441 word_bitidx = bitidx / BITS_PER_LONG; 442 bitidx &= (BITS_PER_LONG-1); 443 444 word = bitmap[word_bitidx]; 445 bitidx += end_bitidx; 446 return (word >> (BITS_PER_LONG - bitidx - 1)) & mask; 447 } 448 449 unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn, 450 unsigned long end_bitidx, 451 unsigned long mask) 452 { 453 return __get_pfnblock_flags_mask(page, pfn, end_bitidx, mask); 454 } 455 456 static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn) 457 { 458 return __get_pfnblock_flags_mask(page, pfn, PB_migrate_end, MIGRATETYPE_MASK); 459 } 460 461 /** 462 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages 463 * @page: The page within the block of interest 464 * @flags: The flags to set 465 * @pfn: The target page frame number 466 * @end_bitidx: The last bit of interest 467 * @mask: mask of bits that the caller is interested in 468 */ 469 void set_pfnblock_flags_mask(struct page *page, unsigned long flags, 470 unsigned long pfn, 471 unsigned long end_bitidx, 472 unsigned long mask) 473 { 474 unsigned long *bitmap; 475 unsigned long bitidx, word_bitidx; 476 unsigned long old_word, word; 477 478 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4); 479 BUILD_BUG_ON(MIGRATE_TYPES > (1 << PB_migratetype_bits)); 480 481 bitmap = get_pageblock_bitmap(page, pfn); 482 bitidx = pfn_to_bitidx(page, pfn); 483 word_bitidx = bitidx / BITS_PER_LONG; 484 bitidx &= (BITS_PER_LONG-1); 485 486 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page); 487 488 bitidx += end_bitidx; 489 mask <<= (BITS_PER_LONG - bitidx - 1); 490 flags <<= (BITS_PER_LONG - bitidx - 1); 491 492 word = READ_ONCE(bitmap[word_bitidx]); 493 for (;;) { 494 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags); 495 if (word == old_word) 496 break; 497 word = old_word; 498 } 499 } 500 501 void set_pageblock_migratetype(struct page *page, int migratetype) 502 { 503 if (unlikely(page_group_by_mobility_disabled && 504 migratetype < MIGRATE_PCPTYPES)) 505 migratetype = MIGRATE_UNMOVABLE; 506 507 set_pageblock_flags_group(page, (unsigned long)migratetype, 508 PB_migrate, PB_migrate_end); 509 } 510 511 #ifdef CONFIG_DEBUG_VM 512 static int page_outside_zone_boundaries(struct zone *zone, struct page *page) 513 { 514 int ret = 0; 515 unsigned seq; 516 unsigned long pfn = page_to_pfn(page); 517 unsigned long sp, start_pfn; 518 519 do { 520 seq = zone_span_seqbegin(zone); 521 start_pfn = zone->zone_start_pfn; 522 sp = zone->spanned_pages; 523 if (!zone_spans_pfn(zone, pfn)) 524 ret = 1; 525 } while (zone_span_seqretry(zone, seq)); 526 527 if (ret) 528 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n", 529 pfn, zone_to_nid(zone), zone->name, 530 start_pfn, start_pfn + sp); 531 532 return ret; 533 } 534 535 static int page_is_consistent(struct zone *zone, struct page *page) 536 { 537 if (!pfn_valid_within(page_to_pfn(page))) 538 return 0; 539 if (zone != page_zone(page)) 540 return 0; 541 542 return 1; 543 } 544 /* 545 * Temporary debugging check for pages not lying within a given zone. 546 */ 547 static int __maybe_unused bad_range(struct zone *zone, struct page *page) 548 { 549 if (page_outside_zone_boundaries(zone, page)) 550 return 1; 551 if (!page_is_consistent(zone, page)) 552 return 1; 553 554 return 0; 555 } 556 #else 557 static inline int __maybe_unused bad_range(struct zone *zone, struct page *page) 558 { 559 return 0; 560 } 561 #endif 562 563 static void bad_page(struct page *page, const char *reason, 564 unsigned long bad_flags) 565 { 566 static unsigned long resume; 567 static unsigned long nr_shown; 568 static unsigned long nr_unshown; 569 570 /* 571 * Allow a burst of 60 reports, then keep quiet for that minute; 572 * or allow a steady drip of one report per second. 573 */ 574 if (nr_shown == 60) { 575 if (time_before(jiffies, resume)) { 576 nr_unshown++; 577 goto out; 578 } 579 if (nr_unshown) { 580 pr_alert( 581 "BUG: Bad page state: %lu messages suppressed\n", 582 nr_unshown); 583 nr_unshown = 0; 584 } 585 nr_shown = 0; 586 } 587 if (nr_shown++ == 0) 588 resume = jiffies + 60 * HZ; 589 590 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n", 591 current->comm, page_to_pfn(page)); 592 __dump_page(page, reason); 593 bad_flags &= page->flags; 594 if (bad_flags) 595 pr_alert("bad because of flags: %#lx(%pGp)\n", 596 bad_flags, &bad_flags); 597 dump_page_owner(page); 598 599 print_modules(); 600 dump_stack(); 601 out: 602 /* Leave bad fields for debug, except PageBuddy could make trouble */ 603 page_mapcount_reset(page); /* remove PageBuddy */ 604 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 605 } 606 607 /* 608 * Higher-order pages are called "compound pages". They are structured thusly: 609 * 610 * The first PAGE_SIZE page is called the "head page" and have PG_head set. 611 * 612 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded 613 * in bit 0 of page->compound_head. The rest of bits is pointer to head page. 614 * 615 * The first tail page's ->compound_dtor holds the offset in array of compound 616 * page destructors. See compound_page_dtors. 617 * 618 * The first tail page's ->compound_order holds the order of allocation. 619 * This usage means that zero-order pages may not be compound. 620 */ 621 622 void free_compound_page(struct page *page) 623 { 624 __free_pages_ok(page, compound_order(page)); 625 } 626 627 void prep_compound_page(struct page *page, unsigned int order) 628 { 629 int i; 630 int nr_pages = 1 << order; 631 632 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR); 633 set_compound_order(page, order); 634 __SetPageHead(page); 635 for (i = 1; i < nr_pages; i++) { 636 struct page *p = page + i; 637 set_page_count(p, 0); 638 p->mapping = TAIL_MAPPING; 639 set_compound_head(p, page); 640 } 641 atomic_set(compound_mapcount_ptr(page), -1); 642 } 643 644 #ifdef CONFIG_DEBUG_PAGEALLOC 645 unsigned int _debug_guardpage_minorder; 646 bool _debug_pagealloc_enabled __read_mostly 647 = IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT); 648 EXPORT_SYMBOL(_debug_pagealloc_enabled); 649 bool _debug_guardpage_enabled __read_mostly; 650 651 static int __init early_debug_pagealloc(char *buf) 652 { 653 if (!buf) 654 return -EINVAL; 655 return kstrtobool(buf, &_debug_pagealloc_enabled); 656 } 657 early_param("debug_pagealloc", early_debug_pagealloc); 658 659 static bool need_debug_guardpage(void) 660 { 661 /* If we don't use debug_pagealloc, we don't need guard page */ 662 if (!debug_pagealloc_enabled()) 663 return false; 664 665 if (!debug_guardpage_minorder()) 666 return false; 667 668 return true; 669 } 670 671 static void init_debug_guardpage(void) 672 { 673 if (!debug_pagealloc_enabled()) 674 return; 675 676 if (!debug_guardpage_minorder()) 677 return; 678 679 _debug_guardpage_enabled = true; 680 } 681 682 struct page_ext_operations debug_guardpage_ops = { 683 .need = need_debug_guardpage, 684 .init = init_debug_guardpage, 685 }; 686 687 static int __init debug_guardpage_minorder_setup(char *buf) 688 { 689 unsigned long res; 690 691 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) { 692 pr_err("Bad debug_guardpage_minorder value\n"); 693 return 0; 694 } 695 _debug_guardpage_minorder = res; 696 pr_info("Setting debug_guardpage_minorder to %lu\n", res); 697 return 0; 698 } 699 early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup); 700 701 static inline bool set_page_guard(struct zone *zone, struct page *page, 702 unsigned int order, int migratetype) 703 { 704 struct page_ext *page_ext; 705 706 if (!debug_guardpage_enabled()) 707 return false; 708 709 if (order >= debug_guardpage_minorder()) 710 return false; 711 712 page_ext = lookup_page_ext(page); 713 if (unlikely(!page_ext)) 714 return false; 715 716 __set_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags); 717 718 INIT_LIST_HEAD(&page->lru); 719 set_page_private(page, order); 720 /* Guard pages are not available for any usage */ 721 __mod_zone_freepage_state(zone, -(1 << order), migratetype); 722 723 return true; 724 } 725 726 static inline void clear_page_guard(struct zone *zone, struct page *page, 727 unsigned int order, int migratetype) 728 { 729 struct page_ext *page_ext; 730 731 if (!debug_guardpage_enabled()) 732 return; 733 734 page_ext = lookup_page_ext(page); 735 if (unlikely(!page_ext)) 736 return; 737 738 __clear_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags); 739 740 set_page_private(page, 0); 741 if (!is_migrate_isolate(migratetype)) 742 __mod_zone_freepage_state(zone, (1 << order), migratetype); 743 } 744 #else 745 struct page_ext_operations debug_guardpage_ops; 746 static inline bool set_page_guard(struct zone *zone, struct page *page, 747 unsigned int order, int migratetype) { return false; } 748 static inline void clear_page_guard(struct zone *zone, struct page *page, 749 unsigned int order, int migratetype) {} 750 #endif 751 752 static inline void set_page_order(struct page *page, unsigned int order) 753 { 754 set_page_private(page, order); 755 __SetPageBuddy(page); 756 } 757 758 static inline void rmv_page_order(struct page *page) 759 { 760 __ClearPageBuddy(page); 761 set_page_private(page, 0); 762 } 763 764 /* 765 * This function checks whether a page is free && is the buddy 766 * we can coalesce a page and its buddy if 767 * (a) the buddy is not in a hole (check before calling!) && 768 * (b) the buddy is in the buddy system && 769 * (c) a page and its buddy have the same order && 770 * (d) a page and its buddy are in the same zone. 771 * 772 * For recording whether a page is in the buddy system, we set PageBuddy. 773 * Setting, clearing, and testing PageBuddy is serialized by zone->lock. 774 * 775 * For recording page's order, we use page_private(page). 776 */ 777 static inline int page_is_buddy(struct page *page, struct page *buddy, 778 unsigned int order) 779 { 780 if (page_is_guard(buddy) && page_order(buddy) == order) { 781 if (page_zone_id(page) != page_zone_id(buddy)) 782 return 0; 783 784 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy); 785 786 return 1; 787 } 788 789 if (PageBuddy(buddy) && page_order(buddy) == order) { 790 /* 791 * zone check is done late to avoid uselessly 792 * calculating zone/node ids for pages that could 793 * never merge. 794 */ 795 if (page_zone_id(page) != page_zone_id(buddy)) 796 return 0; 797 798 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy); 799 800 return 1; 801 } 802 return 0; 803 } 804 805 #ifdef CONFIG_COMPACTION 806 static inline struct capture_control *task_capc(struct zone *zone) 807 { 808 struct capture_control *capc = current->capture_control; 809 810 return capc && 811 !(current->flags & PF_KTHREAD) && 812 !capc->page && 813 capc->cc->zone == zone && 814 capc->cc->direct_compaction ? capc : NULL; 815 } 816 817 static inline bool 818 compaction_capture(struct capture_control *capc, struct page *page, 819 int order, int migratetype) 820 { 821 if (!capc || order != capc->cc->order) 822 return false; 823 824 /* Do not accidentally pollute CMA or isolated regions*/ 825 if (is_migrate_cma(migratetype) || 826 is_migrate_isolate(migratetype)) 827 return false; 828 829 /* 830 * Do not let lower order allocations polluate a movable pageblock. 831 * This might let an unmovable request use a reclaimable pageblock 832 * and vice-versa but no more than normal fallback logic which can 833 * have trouble finding a high-order free page. 834 */ 835 if (order < pageblock_order && migratetype == MIGRATE_MOVABLE) 836 return false; 837 838 capc->page = page; 839 return true; 840 } 841 842 #else 843 static inline struct capture_control *task_capc(struct zone *zone) 844 { 845 return NULL; 846 } 847 848 static inline bool 849 compaction_capture(struct capture_control *capc, struct page *page, 850 int order, int migratetype) 851 { 852 return false; 853 } 854 #endif /* CONFIG_COMPACTION */ 855 856 /* 857 * Freeing function for a buddy system allocator. 858 * 859 * The concept of a buddy system is to maintain direct-mapped table 860 * (containing bit values) for memory blocks of various "orders". 861 * The bottom level table contains the map for the smallest allocatable 862 * units of memory (here, pages), and each level above it describes 863 * pairs of units from the levels below, hence, "buddies". 864 * At a high level, all that happens here is marking the table entry 865 * at the bottom level available, and propagating the changes upward 866 * as necessary, plus some accounting needed to play nicely with other 867 * parts of the VM system. 868 * At each level, we keep a list of pages, which are heads of continuous 869 * free pages of length of (1 << order) and marked with PageBuddy. 870 * Page's order is recorded in page_private(page) field. 871 * So when we are allocating or freeing one, we can derive the state of the 872 * other. That is, if we allocate a small block, and both were 873 * free, the remainder of the region must be split into blocks. 874 * If a block is freed, and its buddy is also free, then this 875 * triggers coalescing into a block of larger size. 876 * 877 * -- nyc 878 */ 879 880 static inline void __free_one_page(struct page *page, 881 unsigned long pfn, 882 struct zone *zone, unsigned int order, 883 int migratetype) 884 { 885 unsigned long combined_pfn; 886 unsigned long uninitialized_var(buddy_pfn); 887 struct page *buddy; 888 unsigned int max_order; 889 struct capture_control *capc = task_capc(zone); 890 891 max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1); 892 893 VM_BUG_ON(!zone_is_initialized(zone)); 894 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page); 895 896 VM_BUG_ON(migratetype == -1); 897 if (likely(!is_migrate_isolate(migratetype))) 898 __mod_zone_freepage_state(zone, 1 << order, migratetype); 899 900 VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page); 901 VM_BUG_ON_PAGE(bad_range(zone, page), page); 902 903 continue_merging: 904 while (order < max_order - 1) { 905 if (compaction_capture(capc, page, order, migratetype)) { 906 __mod_zone_freepage_state(zone, -(1 << order), 907 migratetype); 908 return; 909 } 910 buddy_pfn = __find_buddy_pfn(pfn, order); 911 buddy = page + (buddy_pfn - pfn); 912 913 if (!pfn_valid_within(buddy_pfn)) 914 goto done_merging; 915 if (!page_is_buddy(page, buddy, order)) 916 goto done_merging; 917 /* 918 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page, 919 * merge with it and move up one order. 920 */ 921 if (page_is_guard(buddy)) { 922 clear_page_guard(zone, buddy, order, migratetype); 923 } else { 924 list_del(&buddy->lru); 925 zone->free_area[order].nr_free--; 926 rmv_page_order(buddy); 927 } 928 combined_pfn = buddy_pfn & pfn; 929 page = page + (combined_pfn - pfn); 930 pfn = combined_pfn; 931 order++; 932 } 933 if (max_order < MAX_ORDER) { 934 /* If we are here, it means order is >= pageblock_order. 935 * We want to prevent merge between freepages on isolate 936 * pageblock and normal pageblock. Without this, pageblock 937 * isolation could cause incorrect freepage or CMA accounting. 938 * 939 * We don't want to hit this code for the more frequent 940 * low-order merging. 941 */ 942 if (unlikely(has_isolate_pageblock(zone))) { 943 int buddy_mt; 944 945 buddy_pfn = __find_buddy_pfn(pfn, order); 946 buddy = page + (buddy_pfn - pfn); 947 buddy_mt = get_pageblock_migratetype(buddy); 948 949 if (migratetype != buddy_mt 950 && (is_migrate_isolate(migratetype) || 951 is_migrate_isolate(buddy_mt))) 952 goto done_merging; 953 } 954 max_order++; 955 goto continue_merging; 956 } 957 958 done_merging: 959 set_page_order(page, order); 960 961 /* 962 * If this is not the largest possible page, check if the buddy 963 * of the next-highest order is free. If it is, it's possible 964 * that pages are being freed that will coalesce soon. In case, 965 * that is happening, add the free page to the tail of the list 966 * so it's less likely to be used soon and more likely to be merged 967 * as a higher order page 968 */ 969 if ((order < MAX_ORDER-2) && pfn_valid_within(buddy_pfn)) { 970 struct page *higher_page, *higher_buddy; 971 combined_pfn = buddy_pfn & pfn; 972 higher_page = page + (combined_pfn - pfn); 973 buddy_pfn = __find_buddy_pfn(combined_pfn, order + 1); 974 higher_buddy = higher_page + (buddy_pfn - combined_pfn); 975 if (pfn_valid_within(buddy_pfn) && 976 page_is_buddy(higher_page, higher_buddy, order + 1)) { 977 list_add_tail(&page->lru, 978 &zone->free_area[order].free_list[migratetype]); 979 goto out; 980 } 981 } 982 983 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]); 984 out: 985 zone->free_area[order].nr_free++; 986 } 987 988 /* 989 * A bad page could be due to a number of fields. Instead of multiple branches, 990 * try and check multiple fields with one check. The caller must do a detailed 991 * check if necessary. 992 */ 993 static inline bool page_expected_state(struct page *page, 994 unsigned long check_flags) 995 { 996 if (unlikely(atomic_read(&page->_mapcount) != -1)) 997 return false; 998 999 if (unlikely((unsigned long)page->mapping | 1000 page_ref_count(page) | 1001 #ifdef CONFIG_MEMCG 1002 (unsigned long)page->mem_cgroup | 1003 #endif 1004 (page->flags & check_flags))) 1005 return false; 1006 1007 return true; 1008 } 1009 1010 static void free_pages_check_bad(struct page *page) 1011 { 1012 const char *bad_reason; 1013 unsigned long bad_flags; 1014 1015 bad_reason = NULL; 1016 bad_flags = 0; 1017 1018 if (unlikely(atomic_read(&page->_mapcount) != -1)) 1019 bad_reason = "nonzero mapcount"; 1020 if (unlikely(page->mapping != NULL)) 1021 bad_reason = "non-NULL mapping"; 1022 if (unlikely(page_ref_count(page) != 0)) 1023 bad_reason = "nonzero _refcount"; 1024 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) { 1025 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set"; 1026 bad_flags = PAGE_FLAGS_CHECK_AT_FREE; 1027 } 1028 #ifdef CONFIG_MEMCG 1029 if (unlikely(page->mem_cgroup)) 1030 bad_reason = "page still charged to cgroup"; 1031 #endif 1032 bad_page(page, bad_reason, bad_flags); 1033 } 1034 1035 static inline int free_pages_check(struct page *page) 1036 { 1037 if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE))) 1038 return 0; 1039 1040 /* Something has gone sideways, find it */ 1041 free_pages_check_bad(page); 1042 return 1; 1043 } 1044 1045 static int free_tail_pages_check(struct page *head_page, struct page *page) 1046 { 1047 int ret = 1; 1048 1049 /* 1050 * We rely page->lru.next never has bit 0 set, unless the page 1051 * is PageTail(). Let's make sure that's true even for poisoned ->lru. 1052 */ 1053 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1); 1054 1055 if (!IS_ENABLED(CONFIG_DEBUG_VM)) { 1056 ret = 0; 1057 goto out; 1058 } 1059 switch (page - head_page) { 1060 case 1: 1061 /* the first tail page: ->mapping may be compound_mapcount() */ 1062 if (unlikely(compound_mapcount(page))) { 1063 bad_page(page, "nonzero compound_mapcount", 0); 1064 goto out; 1065 } 1066 break; 1067 case 2: 1068 /* 1069 * the second tail page: ->mapping is 1070 * deferred_list.next -- ignore value. 1071 */ 1072 break; 1073 default: 1074 if (page->mapping != TAIL_MAPPING) { 1075 bad_page(page, "corrupted mapping in tail page", 0); 1076 goto out; 1077 } 1078 break; 1079 } 1080 if (unlikely(!PageTail(page))) { 1081 bad_page(page, "PageTail not set", 0); 1082 goto out; 1083 } 1084 if (unlikely(compound_head(page) != head_page)) { 1085 bad_page(page, "compound_head not consistent", 0); 1086 goto out; 1087 } 1088 ret = 0; 1089 out: 1090 page->mapping = NULL; 1091 clear_compound_head(page); 1092 return ret; 1093 } 1094 1095 static __always_inline bool free_pages_prepare(struct page *page, 1096 unsigned int order, bool check_free) 1097 { 1098 int bad = 0; 1099 1100 VM_BUG_ON_PAGE(PageTail(page), page); 1101 1102 trace_mm_page_free(page, order); 1103 1104 /* 1105 * Check tail pages before head page information is cleared to 1106 * avoid checking PageCompound for order-0 pages. 1107 */ 1108 if (unlikely(order)) { 1109 bool compound = PageCompound(page); 1110 int i; 1111 1112 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page); 1113 1114 if (compound) 1115 ClearPageDoubleMap(page); 1116 for (i = 1; i < (1 << order); i++) { 1117 if (compound) 1118 bad += free_tail_pages_check(page, page + i); 1119 if (unlikely(free_pages_check(page + i))) { 1120 bad++; 1121 continue; 1122 } 1123 (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP; 1124 } 1125 } 1126 if (PageMappingFlags(page)) 1127 page->mapping = NULL; 1128 if (memcg_kmem_enabled() && PageKmemcg(page)) 1129 __memcg_kmem_uncharge(page, order); 1130 if (check_free) 1131 bad += free_pages_check(page); 1132 if (bad) 1133 return false; 1134 1135 page_cpupid_reset_last(page); 1136 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP; 1137 reset_page_owner(page, order); 1138 1139 if (!PageHighMem(page)) { 1140 debug_check_no_locks_freed(page_address(page), 1141 PAGE_SIZE << order); 1142 debug_check_no_obj_freed(page_address(page), 1143 PAGE_SIZE << order); 1144 } 1145 arch_free_page(page, order); 1146 kernel_poison_pages(page, 1 << order, 0); 1147 if (debug_pagealloc_enabled()) 1148 kernel_map_pages(page, 1 << order, 0); 1149 1150 kasan_free_nondeferred_pages(page, order); 1151 1152 return true; 1153 } 1154 1155 #ifdef CONFIG_DEBUG_VM 1156 static inline bool free_pcp_prepare(struct page *page) 1157 { 1158 return free_pages_prepare(page, 0, true); 1159 } 1160 1161 static inline bool bulkfree_pcp_prepare(struct page *page) 1162 { 1163 return false; 1164 } 1165 #else 1166 static bool free_pcp_prepare(struct page *page) 1167 { 1168 return free_pages_prepare(page, 0, false); 1169 } 1170 1171 static bool bulkfree_pcp_prepare(struct page *page) 1172 { 1173 return free_pages_check(page); 1174 } 1175 #endif /* CONFIG_DEBUG_VM */ 1176 1177 static inline void prefetch_buddy(struct page *page) 1178 { 1179 unsigned long pfn = page_to_pfn(page); 1180 unsigned long buddy_pfn = __find_buddy_pfn(pfn, 0); 1181 struct page *buddy = page + (buddy_pfn - pfn); 1182 1183 prefetch(buddy); 1184 } 1185 1186 /* 1187 * Frees a number of pages from the PCP lists 1188 * Assumes all pages on list are in same zone, and of same order. 1189 * count is the number of pages to free. 1190 * 1191 * If the zone was previously in an "all pages pinned" state then look to 1192 * see if this freeing clears that state. 1193 * 1194 * And clear the zone's pages_scanned counter, to hold off the "all pages are 1195 * pinned" detection logic. 1196 */ 1197 static void free_pcppages_bulk(struct zone *zone, int count, 1198 struct per_cpu_pages *pcp) 1199 { 1200 int migratetype = 0; 1201 int batch_free = 0; 1202 int prefetch_nr = 0; 1203 bool isolated_pageblocks; 1204 struct page *page, *tmp; 1205 LIST_HEAD(head); 1206 1207 while (count) { 1208 struct list_head *list; 1209 1210 /* 1211 * Remove pages from lists in a round-robin fashion. A 1212 * batch_free count is maintained that is incremented when an 1213 * empty list is encountered. This is so more pages are freed 1214 * off fuller lists instead of spinning excessively around empty 1215 * lists 1216 */ 1217 do { 1218 batch_free++; 1219 if (++migratetype == MIGRATE_PCPTYPES) 1220 migratetype = 0; 1221 list = &pcp->lists[migratetype]; 1222 } while (list_empty(list)); 1223 1224 /* This is the only non-empty list. Free them all. */ 1225 if (batch_free == MIGRATE_PCPTYPES) 1226 batch_free = count; 1227 1228 do { 1229 page = list_last_entry(list, struct page, lru); 1230 /* must delete to avoid corrupting pcp list */ 1231 list_del(&page->lru); 1232 pcp->count--; 1233 1234 if (bulkfree_pcp_prepare(page)) 1235 continue; 1236 1237 list_add_tail(&page->lru, &head); 1238 1239 /* 1240 * We are going to put the page back to the global 1241 * pool, prefetch its buddy to speed up later access 1242 * under zone->lock. It is believed the overhead of 1243 * an additional test and calculating buddy_pfn here 1244 * can be offset by reduced memory latency later. To 1245 * avoid excessive prefetching due to large count, only 1246 * prefetch buddy for the first pcp->batch nr of pages. 1247 */ 1248 if (prefetch_nr++ < pcp->batch) 1249 prefetch_buddy(page); 1250 } while (--count && --batch_free && !list_empty(list)); 1251 } 1252 1253 spin_lock(&zone->lock); 1254 isolated_pageblocks = has_isolate_pageblock(zone); 1255 1256 /* 1257 * Use safe version since after __free_one_page(), 1258 * page->lru.next will not point to original list. 1259 */ 1260 list_for_each_entry_safe(page, tmp, &head, lru) { 1261 int mt = get_pcppage_migratetype(page); 1262 /* MIGRATE_ISOLATE page should not go to pcplists */ 1263 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page); 1264 /* Pageblock could have been isolated meanwhile */ 1265 if (unlikely(isolated_pageblocks)) 1266 mt = get_pageblock_migratetype(page); 1267 1268 __free_one_page(page, page_to_pfn(page), zone, 0, mt); 1269 trace_mm_page_pcpu_drain(page, 0, mt); 1270 } 1271 spin_unlock(&zone->lock); 1272 } 1273 1274 static void free_one_page(struct zone *zone, 1275 struct page *page, unsigned long pfn, 1276 unsigned int order, 1277 int migratetype) 1278 { 1279 spin_lock(&zone->lock); 1280 if (unlikely(has_isolate_pageblock(zone) || 1281 is_migrate_isolate(migratetype))) { 1282 migratetype = get_pfnblock_migratetype(page, pfn); 1283 } 1284 __free_one_page(page, pfn, zone, order, migratetype); 1285 spin_unlock(&zone->lock); 1286 } 1287 1288 static void __meminit __init_single_page(struct page *page, unsigned long pfn, 1289 unsigned long zone, int nid) 1290 { 1291 mm_zero_struct_page(page); 1292 set_page_links(page, zone, nid, pfn); 1293 init_page_count(page); 1294 page_mapcount_reset(page); 1295 page_cpupid_reset_last(page); 1296 page_kasan_tag_reset(page); 1297 1298 INIT_LIST_HEAD(&page->lru); 1299 #ifdef WANT_PAGE_VIRTUAL 1300 /* The shift won't overflow because ZONE_NORMAL is below 4G. */ 1301 if (!is_highmem_idx(zone)) 1302 set_page_address(page, __va(pfn << PAGE_SHIFT)); 1303 #endif 1304 } 1305 1306 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 1307 static void __meminit init_reserved_page(unsigned long pfn) 1308 { 1309 pg_data_t *pgdat; 1310 int nid, zid; 1311 1312 if (!early_page_uninitialised(pfn)) 1313 return; 1314 1315 nid = early_pfn_to_nid(pfn); 1316 pgdat = NODE_DATA(nid); 1317 1318 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 1319 struct zone *zone = &pgdat->node_zones[zid]; 1320 1321 if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone)) 1322 break; 1323 } 1324 __init_single_page(pfn_to_page(pfn), pfn, zid, nid); 1325 } 1326 #else 1327 static inline void init_reserved_page(unsigned long pfn) 1328 { 1329 } 1330 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */ 1331 1332 /* 1333 * Initialised pages do not have PageReserved set. This function is 1334 * called for each range allocated by the bootmem allocator and 1335 * marks the pages PageReserved. The remaining valid pages are later 1336 * sent to the buddy page allocator. 1337 */ 1338 void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end) 1339 { 1340 unsigned long start_pfn = PFN_DOWN(start); 1341 unsigned long end_pfn = PFN_UP(end); 1342 1343 for (; start_pfn < end_pfn; start_pfn++) { 1344 if (pfn_valid(start_pfn)) { 1345 struct page *page = pfn_to_page(start_pfn); 1346 1347 init_reserved_page(start_pfn); 1348 1349 /* Avoid false-positive PageTail() */ 1350 INIT_LIST_HEAD(&page->lru); 1351 1352 /* 1353 * no need for atomic set_bit because the struct 1354 * page is not visible yet so nobody should 1355 * access it yet. 1356 */ 1357 __SetPageReserved(page); 1358 } 1359 } 1360 } 1361 1362 static void __free_pages_ok(struct page *page, unsigned int order) 1363 { 1364 unsigned long flags; 1365 int migratetype; 1366 unsigned long pfn = page_to_pfn(page); 1367 1368 if (!free_pages_prepare(page, order, true)) 1369 return; 1370 1371 migratetype = get_pfnblock_migratetype(page, pfn); 1372 local_irq_save(flags); 1373 __count_vm_events(PGFREE, 1 << order); 1374 free_one_page(page_zone(page), page, pfn, order, migratetype); 1375 local_irq_restore(flags); 1376 } 1377 1378 void __free_pages_core(struct page *page, unsigned int order) 1379 { 1380 unsigned int nr_pages = 1 << order; 1381 struct page *p = page; 1382 unsigned int loop; 1383 1384 prefetchw(p); 1385 for (loop = 0; loop < (nr_pages - 1); loop++, p++) { 1386 prefetchw(p + 1); 1387 __ClearPageReserved(p); 1388 set_page_count(p, 0); 1389 } 1390 __ClearPageReserved(p); 1391 set_page_count(p, 0); 1392 1393 atomic_long_add(nr_pages, &page_zone(page)->managed_pages); 1394 set_page_refcounted(page); 1395 __free_pages(page, order); 1396 } 1397 1398 #if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \ 1399 defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) 1400 1401 static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata; 1402 1403 int __meminit early_pfn_to_nid(unsigned long pfn) 1404 { 1405 static DEFINE_SPINLOCK(early_pfn_lock); 1406 int nid; 1407 1408 spin_lock(&early_pfn_lock); 1409 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache); 1410 if (nid < 0) 1411 nid = first_online_node; 1412 spin_unlock(&early_pfn_lock); 1413 1414 return nid; 1415 } 1416 #endif 1417 1418 #ifdef CONFIG_NODES_SPAN_OTHER_NODES 1419 /* Only safe to use early in boot when initialisation is single-threaded */ 1420 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node) 1421 { 1422 int nid; 1423 1424 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache); 1425 if (nid >= 0 && nid != node) 1426 return false; 1427 return true; 1428 } 1429 1430 #else 1431 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node) 1432 { 1433 return true; 1434 } 1435 #endif 1436 1437 1438 void __init memblock_free_pages(struct page *page, unsigned long pfn, 1439 unsigned int order) 1440 { 1441 if (early_page_uninitialised(pfn)) 1442 return; 1443 __free_pages_core(page, order); 1444 } 1445 1446 /* 1447 * Check that the whole (or subset of) a pageblock given by the interval of 1448 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it 1449 * with the migration of free compaction scanner. The scanners then need to 1450 * use only pfn_valid_within() check for arches that allow holes within 1451 * pageblocks. 1452 * 1453 * Return struct page pointer of start_pfn, or NULL if checks were not passed. 1454 * 1455 * It's possible on some configurations to have a setup like node0 node1 node0 1456 * i.e. it's possible that all pages within a zones range of pages do not 1457 * belong to a single zone. We assume that a border between node0 and node1 1458 * can occur within a single pageblock, but not a node0 node1 node0 1459 * interleaving within a single pageblock. It is therefore sufficient to check 1460 * the first and last page of a pageblock and avoid checking each individual 1461 * page in a pageblock. 1462 */ 1463 struct page *__pageblock_pfn_to_page(unsigned long start_pfn, 1464 unsigned long end_pfn, struct zone *zone) 1465 { 1466 struct page *start_page; 1467 struct page *end_page; 1468 1469 /* end_pfn is one past the range we are checking */ 1470 end_pfn--; 1471 1472 if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn)) 1473 return NULL; 1474 1475 start_page = pfn_to_online_page(start_pfn); 1476 if (!start_page) 1477 return NULL; 1478 1479 if (page_zone(start_page) != zone) 1480 return NULL; 1481 1482 end_page = pfn_to_page(end_pfn); 1483 1484 /* This gives a shorter code than deriving page_zone(end_page) */ 1485 if (page_zone_id(start_page) != page_zone_id(end_page)) 1486 return NULL; 1487 1488 return start_page; 1489 } 1490 1491 void set_zone_contiguous(struct zone *zone) 1492 { 1493 unsigned long block_start_pfn = zone->zone_start_pfn; 1494 unsigned long block_end_pfn; 1495 1496 block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages); 1497 for (; block_start_pfn < zone_end_pfn(zone); 1498 block_start_pfn = block_end_pfn, 1499 block_end_pfn += pageblock_nr_pages) { 1500 1501 block_end_pfn = min(block_end_pfn, zone_end_pfn(zone)); 1502 1503 if (!__pageblock_pfn_to_page(block_start_pfn, 1504 block_end_pfn, zone)) 1505 return; 1506 } 1507 1508 /* We confirm that there is no hole */ 1509 zone->contiguous = true; 1510 } 1511 1512 void clear_zone_contiguous(struct zone *zone) 1513 { 1514 zone->contiguous = false; 1515 } 1516 1517 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 1518 static void __init deferred_free_range(unsigned long pfn, 1519 unsigned long nr_pages) 1520 { 1521 struct page *page; 1522 unsigned long i; 1523 1524 if (!nr_pages) 1525 return; 1526 1527 page = pfn_to_page(pfn); 1528 1529 /* Free a large naturally-aligned chunk if possible */ 1530 if (nr_pages == pageblock_nr_pages && 1531 (pfn & (pageblock_nr_pages - 1)) == 0) { 1532 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 1533 __free_pages_core(page, pageblock_order); 1534 return; 1535 } 1536 1537 for (i = 0; i < nr_pages; i++, page++, pfn++) { 1538 if ((pfn & (pageblock_nr_pages - 1)) == 0) 1539 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 1540 __free_pages_core(page, 0); 1541 } 1542 } 1543 1544 /* Completion tracking for deferred_init_memmap() threads */ 1545 static atomic_t pgdat_init_n_undone __initdata; 1546 static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp); 1547 1548 static inline void __init pgdat_init_report_one_done(void) 1549 { 1550 if (atomic_dec_and_test(&pgdat_init_n_undone)) 1551 complete(&pgdat_init_all_done_comp); 1552 } 1553 1554 /* 1555 * Returns true if page needs to be initialized or freed to buddy allocator. 1556 * 1557 * First we check if pfn is valid on architectures where it is possible to have 1558 * holes within pageblock_nr_pages. On systems where it is not possible, this 1559 * function is optimized out. 1560 * 1561 * Then, we check if a current large page is valid by only checking the validity 1562 * of the head pfn. 1563 */ 1564 static inline bool __init deferred_pfn_valid(unsigned long pfn) 1565 { 1566 if (!pfn_valid_within(pfn)) 1567 return false; 1568 if (!(pfn & (pageblock_nr_pages - 1)) && !pfn_valid(pfn)) 1569 return false; 1570 return true; 1571 } 1572 1573 /* 1574 * Free pages to buddy allocator. Try to free aligned pages in 1575 * pageblock_nr_pages sizes. 1576 */ 1577 static void __init deferred_free_pages(unsigned long pfn, 1578 unsigned long end_pfn) 1579 { 1580 unsigned long nr_pgmask = pageblock_nr_pages - 1; 1581 unsigned long nr_free = 0; 1582 1583 for (; pfn < end_pfn; pfn++) { 1584 if (!deferred_pfn_valid(pfn)) { 1585 deferred_free_range(pfn - nr_free, nr_free); 1586 nr_free = 0; 1587 } else if (!(pfn & nr_pgmask)) { 1588 deferred_free_range(pfn - nr_free, nr_free); 1589 nr_free = 1; 1590 touch_nmi_watchdog(); 1591 } else { 1592 nr_free++; 1593 } 1594 } 1595 /* Free the last block of pages to allocator */ 1596 deferred_free_range(pfn - nr_free, nr_free); 1597 } 1598 1599 /* 1600 * Initialize struct pages. We minimize pfn page lookups and scheduler checks 1601 * by performing it only once every pageblock_nr_pages. 1602 * Return number of pages initialized. 1603 */ 1604 static unsigned long __init deferred_init_pages(struct zone *zone, 1605 unsigned long pfn, 1606 unsigned long end_pfn) 1607 { 1608 unsigned long nr_pgmask = pageblock_nr_pages - 1; 1609 int nid = zone_to_nid(zone); 1610 unsigned long nr_pages = 0; 1611 int zid = zone_idx(zone); 1612 struct page *page = NULL; 1613 1614 for (; pfn < end_pfn; pfn++) { 1615 if (!deferred_pfn_valid(pfn)) { 1616 page = NULL; 1617 continue; 1618 } else if (!page || !(pfn & nr_pgmask)) { 1619 page = pfn_to_page(pfn); 1620 touch_nmi_watchdog(); 1621 } else { 1622 page++; 1623 } 1624 __init_single_page(page, pfn, zid, nid); 1625 nr_pages++; 1626 } 1627 return (nr_pages); 1628 } 1629 1630 /* 1631 * This function is meant to pre-load the iterator for the zone init. 1632 * Specifically it walks through the ranges until we are caught up to the 1633 * first_init_pfn value and exits there. If we never encounter the value we 1634 * return false indicating there are no valid ranges left. 1635 */ 1636 static bool __init 1637 deferred_init_mem_pfn_range_in_zone(u64 *i, struct zone *zone, 1638 unsigned long *spfn, unsigned long *epfn, 1639 unsigned long first_init_pfn) 1640 { 1641 u64 j; 1642 1643 /* 1644 * Start out by walking through the ranges in this zone that have 1645 * already been initialized. We don't need to do anything with them 1646 * so we just need to flush them out of the system. 1647 */ 1648 for_each_free_mem_pfn_range_in_zone(j, zone, spfn, epfn) { 1649 if (*epfn <= first_init_pfn) 1650 continue; 1651 if (*spfn < first_init_pfn) 1652 *spfn = first_init_pfn; 1653 *i = j; 1654 return true; 1655 } 1656 1657 return false; 1658 } 1659 1660 /* 1661 * Initialize and free pages. We do it in two loops: first we initialize 1662 * struct page, then free to buddy allocator, because while we are 1663 * freeing pages we can access pages that are ahead (computing buddy 1664 * page in __free_one_page()). 1665 * 1666 * In order to try and keep some memory in the cache we have the loop 1667 * broken along max page order boundaries. This way we will not cause 1668 * any issues with the buddy page computation. 1669 */ 1670 static unsigned long __init 1671 deferred_init_maxorder(u64 *i, struct zone *zone, unsigned long *start_pfn, 1672 unsigned long *end_pfn) 1673 { 1674 unsigned long mo_pfn = ALIGN(*start_pfn + 1, MAX_ORDER_NR_PAGES); 1675 unsigned long spfn = *start_pfn, epfn = *end_pfn; 1676 unsigned long nr_pages = 0; 1677 u64 j = *i; 1678 1679 /* First we loop through and initialize the page values */ 1680 for_each_free_mem_pfn_range_in_zone_from(j, zone, start_pfn, end_pfn) { 1681 unsigned long t; 1682 1683 if (mo_pfn <= *start_pfn) 1684 break; 1685 1686 t = min(mo_pfn, *end_pfn); 1687 nr_pages += deferred_init_pages(zone, *start_pfn, t); 1688 1689 if (mo_pfn < *end_pfn) { 1690 *start_pfn = mo_pfn; 1691 break; 1692 } 1693 } 1694 1695 /* Reset values and now loop through freeing pages as needed */ 1696 swap(j, *i); 1697 1698 for_each_free_mem_pfn_range_in_zone_from(j, zone, &spfn, &epfn) { 1699 unsigned long t; 1700 1701 if (mo_pfn <= spfn) 1702 break; 1703 1704 t = min(mo_pfn, epfn); 1705 deferred_free_pages(spfn, t); 1706 1707 if (mo_pfn <= epfn) 1708 break; 1709 } 1710 1711 return nr_pages; 1712 } 1713 1714 /* Initialise remaining memory on a node */ 1715 static int __init deferred_init_memmap(void *data) 1716 { 1717 pg_data_t *pgdat = data; 1718 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id); 1719 unsigned long spfn = 0, epfn = 0, nr_pages = 0; 1720 unsigned long first_init_pfn, flags; 1721 unsigned long start = jiffies; 1722 struct zone *zone; 1723 int zid; 1724 u64 i; 1725 1726 /* Bind memory initialisation thread to a local node if possible */ 1727 if (!cpumask_empty(cpumask)) 1728 set_cpus_allowed_ptr(current, cpumask); 1729 1730 pgdat_resize_lock(pgdat, &flags); 1731 first_init_pfn = pgdat->first_deferred_pfn; 1732 if (first_init_pfn == ULONG_MAX) { 1733 pgdat_resize_unlock(pgdat, &flags); 1734 pgdat_init_report_one_done(); 1735 return 0; 1736 } 1737 1738 /* Sanity check boundaries */ 1739 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn); 1740 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat)); 1741 pgdat->first_deferred_pfn = ULONG_MAX; 1742 1743 /* Only the highest zone is deferred so find it */ 1744 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 1745 zone = pgdat->node_zones + zid; 1746 if (first_init_pfn < zone_end_pfn(zone)) 1747 break; 1748 } 1749 1750 /* If the zone is empty somebody else may have cleared out the zone */ 1751 if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, 1752 first_init_pfn)) 1753 goto zone_empty; 1754 1755 /* 1756 * Initialize and free pages in MAX_ORDER sized increments so 1757 * that we can avoid introducing any issues with the buddy 1758 * allocator. 1759 */ 1760 while (spfn < epfn) 1761 nr_pages += deferred_init_maxorder(&i, zone, &spfn, &epfn); 1762 zone_empty: 1763 pgdat_resize_unlock(pgdat, &flags); 1764 1765 /* Sanity check that the next zone really is unpopulated */ 1766 WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone)); 1767 1768 pr_info("node %d initialised, %lu pages in %ums\n", 1769 pgdat->node_id, nr_pages, jiffies_to_msecs(jiffies - start)); 1770 1771 pgdat_init_report_one_done(); 1772 return 0; 1773 } 1774 1775 /* 1776 * If this zone has deferred pages, try to grow it by initializing enough 1777 * deferred pages to satisfy the allocation specified by order, rounded up to 1778 * the nearest PAGES_PER_SECTION boundary. So we're adding memory in increments 1779 * of SECTION_SIZE bytes by initializing struct pages in increments of 1780 * PAGES_PER_SECTION * sizeof(struct page) bytes. 1781 * 1782 * Return true when zone was grown, otherwise return false. We return true even 1783 * when we grow less than requested, to let the caller decide if there are 1784 * enough pages to satisfy the allocation. 1785 * 1786 * Note: We use noinline because this function is needed only during boot, and 1787 * it is called from a __ref function _deferred_grow_zone. This way we are 1788 * making sure that it is not inlined into permanent text section. 1789 */ 1790 static noinline bool __init 1791 deferred_grow_zone(struct zone *zone, unsigned int order) 1792 { 1793 unsigned long nr_pages_needed = ALIGN(1 << order, PAGES_PER_SECTION); 1794 pg_data_t *pgdat = zone->zone_pgdat; 1795 unsigned long first_deferred_pfn = pgdat->first_deferred_pfn; 1796 unsigned long spfn, epfn, flags; 1797 unsigned long nr_pages = 0; 1798 u64 i; 1799 1800 /* Only the last zone may have deferred pages */ 1801 if (zone_end_pfn(zone) != pgdat_end_pfn(pgdat)) 1802 return false; 1803 1804 pgdat_resize_lock(pgdat, &flags); 1805 1806 /* 1807 * If deferred pages have been initialized while we were waiting for 1808 * the lock, return true, as the zone was grown. The caller will retry 1809 * this zone. We won't return to this function since the caller also 1810 * has this static branch. 1811 */ 1812 if (!static_branch_unlikely(&deferred_pages)) { 1813 pgdat_resize_unlock(pgdat, &flags); 1814 return true; 1815 } 1816 1817 /* 1818 * If someone grew this zone while we were waiting for spinlock, return 1819 * true, as there might be enough pages already. 1820 */ 1821 if (first_deferred_pfn != pgdat->first_deferred_pfn) { 1822 pgdat_resize_unlock(pgdat, &flags); 1823 return true; 1824 } 1825 1826 /* If the zone is empty somebody else may have cleared out the zone */ 1827 if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, 1828 first_deferred_pfn)) { 1829 pgdat->first_deferred_pfn = ULONG_MAX; 1830 pgdat_resize_unlock(pgdat, &flags); 1831 return true; 1832 } 1833 1834 /* 1835 * Initialize and free pages in MAX_ORDER sized increments so 1836 * that we can avoid introducing any issues with the buddy 1837 * allocator. 1838 */ 1839 while (spfn < epfn) { 1840 /* update our first deferred PFN for this section */ 1841 first_deferred_pfn = spfn; 1842 1843 nr_pages += deferred_init_maxorder(&i, zone, &spfn, &epfn); 1844 1845 /* We should only stop along section boundaries */ 1846 if ((first_deferred_pfn ^ spfn) < PAGES_PER_SECTION) 1847 continue; 1848 1849 /* If our quota has been met we can stop here */ 1850 if (nr_pages >= nr_pages_needed) 1851 break; 1852 } 1853 1854 pgdat->first_deferred_pfn = spfn; 1855 pgdat_resize_unlock(pgdat, &flags); 1856 1857 return nr_pages > 0; 1858 } 1859 1860 /* 1861 * deferred_grow_zone() is __init, but it is called from 1862 * get_page_from_freelist() during early boot until deferred_pages permanently 1863 * disables this call. This is why we have refdata wrapper to avoid warning, 1864 * and to ensure that the function body gets unloaded. 1865 */ 1866 static bool __ref 1867 _deferred_grow_zone(struct zone *zone, unsigned int order) 1868 { 1869 return deferred_grow_zone(zone, order); 1870 } 1871 1872 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */ 1873 1874 void __init page_alloc_init_late(void) 1875 { 1876 struct zone *zone; 1877 1878 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 1879 int nid; 1880 1881 /* There will be num_node_state(N_MEMORY) threads */ 1882 atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY)); 1883 for_each_node_state(nid, N_MEMORY) { 1884 kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid); 1885 } 1886 1887 /* Block until all are initialised */ 1888 wait_for_completion(&pgdat_init_all_done_comp); 1889 1890 /* 1891 * We initialized the rest of the deferred pages. Permanently disable 1892 * on-demand struct page initialization. 1893 */ 1894 static_branch_disable(&deferred_pages); 1895 1896 /* Reinit limits that are based on free pages after the kernel is up */ 1897 files_maxfiles_init(); 1898 #endif 1899 1900 /* Discard memblock private memory */ 1901 memblock_discard(); 1902 1903 for_each_populated_zone(zone) 1904 set_zone_contiguous(zone); 1905 } 1906 1907 #ifdef CONFIG_CMA 1908 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */ 1909 void __init init_cma_reserved_pageblock(struct page *page) 1910 { 1911 unsigned i = pageblock_nr_pages; 1912 struct page *p = page; 1913 1914 do { 1915 __ClearPageReserved(p); 1916 set_page_count(p, 0); 1917 } while (++p, --i); 1918 1919 set_pageblock_migratetype(page, MIGRATE_CMA); 1920 1921 if (pageblock_order >= MAX_ORDER) { 1922 i = pageblock_nr_pages; 1923 p = page; 1924 do { 1925 set_page_refcounted(p); 1926 __free_pages(p, MAX_ORDER - 1); 1927 p += MAX_ORDER_NR_PAGES; 1928 } while (i -= MAX_ORDER_NR_PAGES); 1929 } else { 1930 set_page_refcounted(page); 1931 __free_pages(page, pageblock_order); 1932 } 1933 1934 adjust_managed_page_count(page, pageblock_nr_pages); 1935 } 1936 #endif 1937 1938 /* 1939 * The order of subdivision here is critical for the IO subsystem. 1940 * Please do not alter this order without good reasons and regression 1941 * testing. Specifically, as large blocks of memory are subdivided, 1942 * the order in which smaller blocks are delivered depends on the order 1943 * they're subdivided in this function. This is the primary factor 1944 * influencing the order in which pages are delivered to the IO 1945 * subsystem according to empirical testing, and this is also justified 1946 * by considering the behavior of a buddy system containing a single 1947 * large block of memory acted on by a series of small allocations. 1948 * This behavior is a critical factor in sglist merging's success. 1949 * 1950 * -- nyc 1951 */ 1952 static inline void expand(struct zone *zone, struct page *page, 1953 int low, int high, struct free_area *area, 1954 int migratetype) 1955 { 1956 unsigned long size = 1 << high; 1957 1958 while (high > low) { 1959 area--; 1960 high--; 1961 size >>= 1; 1962 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]); 1963 1964 /* 1965 * Mark as guard pages (or page), that will allow to 1966 * merge back to allocator when buddy will be freed. 1967 * Corresponding page table entries will not be touched, 1968 * pages will stay not present in virtual address space 1969 */ 1970 if (set_page_guard(zone, &page[size], high, migratetype)) 1971 continue; 1972 1973 list_add(&page[size].lru, &area->free_list[migratetype]); 1974 area->nr_free++; 1975 set_page_order(&page[size], high); 1976 } 1977 } 1978 1979 static void check_new_page_bad(struct page *page) 1980 { 1981 const char *bad_reason = NULL; 1982 unsigned long bad_flags = 0; 1983 1984 if (unlikely(atomic_read(&page->_mapcount) != -1)) 1985 bad_reason = "nonzero mapcount"; 1986 if (unlikely(page->mapping != NULL)) 1987 bad_reason = "non-NULL mapping"; 1988 if (unlikely(page_ref_count(page) != 0)) 1989 bad_reason = "nonzero _count"; 1990 if (unlikely(page->flags & __PG_HWPOISON)) { 1991 bad_reason = "HWPoisoned (hardware-corrupted)"; 1992 bad_flags = __PG_HWPOISON; 1993 /* Don't complain about hwpoisoned pages */ 1994 page_mapcount_reset(page); /* remove PageBuddy */ 1995 return; 1996 } 1997 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) { 1998 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set"; 1999 bad_flags = PAGE_FLAGS_CHECK_AT_PREP; 2000 } 2001 #ifdef CONFIG_MEMCG 2002 if (unlikely(page->mem_cgroup)) 2003 bad_reason = "page still charged to cgroup"; 2004 #endif 2005 bad_page(page, bad_reason, bad_flags); 2006 } 2007 2008 /* 2009 * This page is about to be returned from the page allocator 2010 */ 2011 static inline int check_new_page(struct page *page) 2012 { 2013 if (likely(page_expected_state(page, 2014 PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON))) 2015 return 0; 2016 2017 check_new_page_bad(page); 2018 return 1; 2019 } 2020 2021 static inline bool free_pages_prezeroed(void) 2022 { 2023 return IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) && 2024 page_poisoning_enabled(); 2025 } 2026 2027 #ifdef CONFIG_DEBUG_VM 2028 static bool check_pcp_refill(struct page *page) 2029 { 2030 return false; 2031 } 2032 2033 static bool check_new_pcp(struct page *page) 2034 { 2035 return check_new_page(page); 2036 } 2037 #else 2038 static bool check_pcp_refill(struct page *page) 2039 { 2040 return check_new_page(page); 2041 } 2042 static bool check_new_pcp(struct page *page) 2043 { 2044 return false; 2045 } 2046 #endif /* CONFIG_DEBUG_VM */ 2047 2048 static bool check_new_pages(struct page *page, unsigned int order) 2049 { 2050 int i; 2051 for (i = 0; i < (1 << order); i++) { 2052 struct page *p = page + i; 2053 2054 if (unlikely(check_new_page(p))) 2055 return true; 2056 } 2057 2058 return false; 2059 } 2060 2061 inline void post_alloc_hook(struct page *page, unsigned int order, 2062 gfp_t gfp_flags) 2063 { 2064 set_page_private(page, 0); 2065 set_page_refcounted(page); 2066 2067 arch_alloc_page(page, order); 2068 if (debug_pagealloc_enabled()) 2069 kernel_map_pages(page, 1 << order, 1); 2070 kasan_alloc_pages(page, order); 2071 kernel_poison_pages(page, 1 << order, 1); 2072 set_page_owner(page, order, gfp_flags); 2073 } 2074 2075 static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags, 2076 unsigned int alloc_flags) 2077 { 2078 int i; 2079 2080 post_alloc_hook(page, order, gfp_flags); 2081 2082 if (!free_pages_prezeroed() && (gfp_flags & __GFP_ZERO)) 2083 for (i = 0; i < (1 << order); i++) 2084 clear_highpage(page + i); 2085 2086 if (order && (gfp_flags & __GFP_COMP)) 2087 prep_compound_page(page, order); 2088 2089 /* 2090 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to 2091 * allocate the page. The expectation is that the caller is taking 2092 * steps that will free more memory. The caller should avoid the page 2093 * being used for !PFMEMALLOC purposes. 2094 */ 2095 if (alloc_flags & ALLOC_NO_WATERMARKS) 2096 set_page_pfmemalloc(page); 2097 else 2098 clear_page_pfmemalloc(page); 2099 } 2100 2101 /* 2102 * Go through the free lists for the given migratetype and remove 2103 * the smallest available page from the freelists 2104 */ 2105 static __always_inline 2106 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order, 2107 int migratetype) 2108 { 2109 unsigned int current_order; 2110 struct free_area *area; 2111 struct page *page; 2112 2113 /* Find a page of the appropriate size in the preferred list */ 2114 for (current_order = order; current_order < MAX_ORDER; ++current_order) { 2115 area = &(zone->free_area[current_order]); 2116 page = list_first_entry_or_null(&area->free_list[migratetype], 2117 struct page, lru); 2118 if (!page) 2119 continue; 2120 list_del(&page->lru); 2121 rmv_page_order(page); 2122 area->nr_free--; 2123 expand(zone, page, order, current_order, area, migratetype); 2124 set_pcppage_migratetype(page, migratetype); 2125 return page; 2126 } 2127 2128 return NULL; 2129 } 2130 2131 2132 /* 2133 * This array describes the order lists are fallen back to when 2134 * the free lists for the desirable migrate type are depleted 2135 */ 2136 static int fallbacks[MIGRATE_TYPES][4] = { 2137 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_TYPES }, 2138 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES }, 2139 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_TYPES }, 2140 #ifdef CONFIG_CMA 2141 [MIGRATE_CMA] = { MIGRATE_TYPES }, /* Never used */ 2142 #endif 2143 #ifdef CONFIG_MEMORY_ISOLATION 2144 [MIGRATE_ISOLATE] = { MIGRATE_TYPES }, /* Never used */ 2145 #endif 2146 }; 2147 2148 #ifdef CONFIG_CMA 2149 static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone, 2150 unsigned int order) 2151 { 2152 return __rmqueue_smallest(zone, order, MIGRATE_CMA); 2153 } 2154 #else 2155 static inline struct page *__rmqueue_cma_fallback(struct zone *zone, 2156 unsigned int order) { return NULL; } 2157 #endif 2158 2159 /* 2160 * Move the free pages in a range to the free lists of the requested type. 2161 * Note that start_page and end_pages are not aligned on a pageblock 2162 * boundary. If alignment is required, use move_freepages_block() 2163 */ 2164 static int move_freepages(struct zone *zone, 2165 struct page *start_page, struct page *end_page, 2166 int migratetype, int *num_movable) 2167 { 2168 struct page *page; 2169 unsigned int order; 2170 int pages_moved = 0; 2171 2172 #ifndef CONFIG_HOLES_IN_ZONE 2173 /* 2174 * page_zone is not safe to call in this context when 2175 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant 2176 * anyway as we check zone boundaries in move_freepages_block(). 2177 * Remove at a later date when no bug reports exist related to 2178 * grouping pages by mobility 2179 */ 2180 VM_BUG_ON(pfn_valid(page_to_pfn(start_page)) && 2181 pfn_valid(page_to_pfn(end_page)) && 2182 page_zone(start_page) != page_zone(end_page)); 2183 #endif 2184 for (page = start_page; page <= end_page;) { 2185 if (!pfn_valid_within(page_to_pfn(page))) { 2186 page++; 2187 continue; 2188 } 2189 2190 /* Make sure we are not inadvertently changing nodes */ 2191 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page); 2192 2193 if (!PageBuddy(page)) { 2194 /* 2195 * We assume that pages that could be isolated for 2196 * migration are movable. But we don't actually try 2197 * isolating, as that would be expensive. 2198 */ 2199 if (num_movable && 2200 (PageLRU(page) || __PageMovable(page))) 2201 (*num_movable)++; 2202 2203 page++; 2204 continue; 2205 } 2206 2207 order = page_order(page); 2208 list_move(&page->lru, 2209 &zone->free_area[order].free_list[migratetype]); 2210 page += 1 << order; 2211 pages_moved += 1 << order; 2212 } 2213 2214 return pages_moved; 2215 } 2216 2217 int move_freepages_block(struct zone *zone, struct page *page, 2218 int migratetype, int *num_movable) 2219 { 2220 unsigned long start_pfn, end_pfn; 2221 struct page *start_page, *end_page; 2222 2223 if (num_movable) 2224 *num_movable = 0; 2225 2226 start_pfn = page_to_pfn(page); 2227 start_pfn = start_pfn & ~(pageblock_nr_pages-1); 2228 start_page = pfn_to_page(start_pfn); 2229 end_page = start_page + pageblock_nr_pages - 1; 2230 end_pfn = start_pfn + pageblock_nr_pages - 1; 2231 2232 /* Do not cross zone boundaries */ 2233 if (!zone_spans_pfn(zone, start_pfn)) 2234 start_page = page; 2235 if (!zone_spans_pfn(zone, end_pfn)) 2236 return 0; 2237 2238 return move_freepages(zone, start_page, end_page, migratetype, 2239 num_movable); 2240 } 2241 2242 static void change_pageblock_range(struct page *pageblock_page, 2243 int start_order, int migratetype) 2244 { 2245 int nr_pageblocks = 1 << (start_order - pageblock_order); 2246 2247 while (nr_pageblocks--) { 2248 set_pageblock_migratetype(pageblock_page, migratetype); 2249 pageblock_page += pageblock_nr_pages; 2250 } 2251 } 2252 2253 /* 2254 * When we are falling back to another migratetype during allocation, try to 2255 * steal extra free pages from the same pageblocks to satisfy further 2256 * allocations, instead of polluting multiple pageblocks. 2257 * 2258 * If we are stealing a relatively large buddy page, it is likely there will 2259 * be more free pages in the pageblock, so try to steal them all. For 2260 * reclaimable and unmovable allocations, we steal regardless of page size, 2261 * as fragmentation caused by those allocations polluting movable pageblocks 2262 * is worse than movable allocations stealing from unmovable and reclaimable 2263 * pageblocks. 2264 */ 2265 static bool can_steal_fallback(unsigned int order, int start_mt) 2266 { 2267 /* 2268 * Leaving this order check is intended, although there is 2269 * relaxed order check in next check. The reason is that 2270 * we can actually steal whole pageblock if this condition met, 2271 * but, below check doesn't guarantee it and that is just heuristic 2272 * so could be changed anytime. 2273 */ 2274 if (order >= pageblock_order) 2275 return true; 2276 2277 if (order >= pageblock_order / 2 || 2278 start_mt == MIGRATE_RECLAIMABLE || 2279 start_mt == MIGRATE_UNMOVABLE || 2280 page_group_by_mobility_disabled) 2281 return true; 2282 2283 return false; 2284 } 2285 2286 static inline void boost_watermark(struct zone *zone) 2287 { 2288 unsigned long max_boost; 2289 2290 if (!watermark_boost_factor) 2291 return; 2292 2293 max_boost = mult_frac(zone->_watermark[WMARK_HIGH], 2294 watermark_boost_factor, 10000); 2295 2296 /* 2297 * high watermark may be uninitialised if fragmentation occurs 2298 * very early in boot so do not boost. We do not fall 2299 * through and boost by pageblock_nr_pages as failing 2300 * allocations that early means that reclaim is not going 2301 * to help and it may even be impossible to reclaim the 2302 * boosted watermark resulting in a hang. 2303 */ 2304 if (!max_boost) 2305 return; 2306 2307 max_boost = max(pageblock_nr_pages, max_boost); 2308 2309 zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages, 2310 max_boost); 2311 } 2312 2313 /* 2314 * This function implements actual steal behaviour. If order is large enough, 2315 * we can steal whole pageblock. If not, we first move freepages in this 2316 * pageblock to our migratetype and determine how many already-allocated pages 2317 * are there in the pageblock with a compatible migratetype. If at least half 2318 * of pages are free or compatible, we can change migratetype of the pageblock 2319 * itself, so pages freed in the future will be put on the correct free list. 2320 */ 2321 static void steal_suitable_fallback(struct zone *zone, struct page *page, 2322 unsigned int alloc_flags, int start_type, bool whole_block) 2323 { 2324 unsigned int current_order = page_order(page); 2325 struct free_area *area; 2326 int free_pages, movable_pages, alike_pages; 2327 int old_block_type; 2328 2329 old_block_type = get_pageblock_migratetype(page); 2330 2331 /* 2332 * This can happen due to races and we want to prevent broken 2333 * highatomic accounting. 2334 */ 2335 if (is_migrate_highatomic(old_block_type)) 2336 goto single_page; 2337 2338 /* Take ownership for orders >= pageblock_order */ 2339 if (current_order >= pageblock_order) { 2340 change_pageblock_range(page, current_order, start_type); 2341 goto single_page; 2342 } 2343 2344 /* 2345 * Boost watermarks to increase reclaim pressure to reduce the 2346 * likelihood of future fallbacks. Wake kswapd now as the node 2347 * may be balanced overall and kswapd will not wake naturally. 2348 */ 2349 boost_watermark(zone); 2350 if (alloc_flags & ALLOC_KSWAPD) 2351 set_bit(ZONE_BOOSTED_WATERMARK, &zone->flags); 2352 2353 /* We are not allowed to try stealing from the whole block */ 2354 if (!whole_block) 2355 goto single_page; 2356 2357 free_pages = move_freepages_block(zone, page, start_type, 2358 &movable_pages); 2359 /* 2360 * Determine how many pages are compatible with our allocation. 2361 * For movable allocation, it's the number of movable pages which 2362 * we just obtained. For other types it's a bit more tricky. 2363 */ 2364 if (start_type == MIGRATE_MOVABLE) { 2365 alike_pages = movable_pages; 2366 } else { 2367 /* 2368 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation 2369 * to MOVABLE pageblock, consider all non-movable pages as 2370 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or 2371 * vice versa, be conservative since we can't distinguish the 2372 * exact migratetype of non-movable pages. 2373 */ 2374 if (old_block_type == MIGRATE_MOVABLE) 2375 alike_pages = pageblock_nr_pages 2376 - (free_pages + movable_pages); 2377 else 2378 alike_pages = 0; 2379 } 2380 2381 /* moving whole block can fail due to zone boundary conditions */ 2382 if (!free_pages) 2383 goto single_page; 2384 2385 /* 2386 * If a sufficient number of pages in the block are either free or of 2387 * comparable migratability as our allocation, claim the whole block. 2388 */ 2389 if (free_pages + alike_pages >= (1 << (pageblock_order-1)) || 2390 page_group_by_mobility_disabled) 2391 set_pageblock_migratetype(page, start_type); 2392 2393 return; 2394 2395 single_page: 2396 area = &zone->free_area[current_order]; 2397 list_move(&page->lru, &area->free_list[start_type]); 2398 } 2399 2400 /* 2401 * Check whether there is a suitable fallback freepage with requested order. 2402 * If only_stealable is true, this function returns fallback_mt only if 2403 * we can steal other freepages all together. This would help to reduce 2404 * fragmentation due to mixed migratetype pages in one pageblock. 2405 */ 2406 int find_suitable_fallback(struct free_area *area, unsigned int order, 2407 int migratetype, bool only_stealable, bool *can_steal) 2408 { 2409 int i; 2410 int fallback_mt; 2411 2412 if (area->nr_free == 0) 2413 return -1; 2414 2415 *can_steal = false; 2416 for (i = 0;; i++) { 2417 fallback_mt = fallbacks[migratetype][i]; 2418 if (fallback_mt == MIGRATE_TYPES) 2419 break; 2420 2421 if (list_empty(&area->free_list[fallback_mt])) 2422 continue; 2423 2424 if (can_steal_fallback(order, migratetype)) 2425 *can_steal = true; 2426 2427 if (!only_stealable) 2428 return fallback_mt; 2429 2430 if (*can_steal) 2431 return fallback_mt; 2432 } 2433 2434 return -1; 2435 } 2436 2437 /* 2438 * Reserve a pageblock for exclusive use of high-order atomic allocations if 2439 * there are no empty page blocks that contain a page with a suitable order 2440 */ 2441 static void reserve_highatomic_pageblock(struct page *page, struct zone *zone, 2442 unsigned int alloc_order) 2443 { 2444 int mt; 2445 unsigned long max_managed, flags; 2446 2447 /* 2448 * Limit the number reserved to 1 pageblock or roughly 1% of a zone. 2449 * Check is race-prone but harmless. 2450 */ 2451 max_managed = (zone_managed_pages(zone) / 100) + pageblock_nr_pages; 2452 if (zone->nr_reserved_highatomic >= max_managed) 2453 return; 2454 2455 spin_lock_irqsave(&zone->lock, flags); 2456 2457 /* Recheck the nr_reserved_highatomic limit under the lock */ 2458 if (zone->nr_reserved_highatomic >= max_managed) 2459 goto out_unlock; 2460 2461 /* Yoink! */ 2462 mt = get_pageblock_migratetype(page); 2463 if (!is_migrate_highatomic(mt) && !is_migrate_isolate(mt) 2464 && !is_migrate_cma(mt)) { 2465 zone->nr_reserved_highatomic += pageblock_nr_pages; 2466 set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC); 2467 move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL); 2468 } 2469 2470 out_unlock: 2471 spin_unlock_irqrestore(&zone->lock, flags); 2472 } 2473 2474 /* 2475 * Used when an allocation is about to fail under memory pressure. This 2476 * potentially hurts the reliability of high-order allocations when under 2477 * intense memory pressure but failed atomic allocations should be easier 2478 * to recover from than an OOM. 2479 * 2480 * If @force is true, try to unreserve a pageblock even though highatomic 2481 * pageblock is exhausted. 2482 */ 2483 static bool unreserve_highatomic_pageblock(const struct alloc_context *ac, 2484 bool force) 2485 { 2486 struct zonelist *zonelist = ac->zonelist; 2487 unsigned long flags; 2488 struct zoneref *z; 2489 struct zone *zone; 2490 struct page *page; 2491 int order; 2492 bool ret; 2493 2494 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx, 2495 ac->nodemask) { 2496 /* 2497 * Preserve at least one pageblock unless memory pressure 2498 * is really high. 2499 */ 2500 if (!force && zone->nr_reserved_highatomic <= 2501 pageblock_nr_pages) 2502 continue; 2503 2504 spin_lock_irqsave(&zone->lock, flags); 2505 for (order = 0; order < MAX_ORDER; order++) { 2506 struct free_area *area = &(zone->free_area[order]); 2507 2508 page = list_first_entry_or_null( 2509 &area->free_list[MIGRATE_HIGHATOMIC], 2510 struct page, lru); 2511 if (!page) 2512 continue; 2513 2514 /* 2515 * In page freeing path, migratetype change is racy so 2516 * we can counter several free pages in a pageblock 2517 * in this loop althoug we changed the pageblock type 2518 * from highatomic to ac->migratetype. So we should 2519 * adjust the count once. 2520 */ 2521 if (is_migrate_highatomic_page(page)) { 2522 /* 2523 * It should never happen but changes to 2524 * locking could inadvertently allow a per-cpu 2525 * drain to add pages to MIGRATE_HIGHATOMIC 2526 * while unreserving so be safe and watch for 2527 * underflows. 2528 */ 2529 zone->nr_reserved_highatomic -= min( 2530 pageblock_nr_pages, 2531 zone->nr_reserved_highatomic); 2532 } 2533 2534 /* 2535 * Convert to ac->migratetype and avoid the normal 2536 * pageblock stealing heuristics. Minimally, the caller 2537 * is doing the work and needs the pages. More 2538 * importantly, if the block was always converted to 2539 * MIGRATE_UNMOVABLE or another type then the number 2540 * of pageblocks that cannot be completely freed 2541 * may increase. 2542 */ 2543 set_pageblock_migratetype(page, ac->migratetype); 2544 ret = move_freepages_block(zone, page, ac->migratetype, 2545 NULL); 2546 if (ret) { 2547 spin_unlock_irqrestore(&zone->lock, flags); 2548 return ret; 2549 } 2550 } 2551 spin_unlock_irqrestore(&zone->lock, flags); 2552 } 2553 2554 return false; 2555 } 2556 2557 /* 2558 * Try finding a free buddy page on the fallback list and put it on the free 2559 * list of requested migratetype, possibly along with other pages from the same 2560 * block, depending on fragmentation avoidance heuristics. Returns true if 2561 * fallback was found so that __rmqueue_smallest() can grab it. 2562 * 2563 * The use of signed ints for order and current_order is a deliberate 2564 * deviation from the rest of this file, to make the for loop 2565 * condition simpler. 2566 */ 2567 static __always_inline bool 2568 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype, 2569 unsigned int alloc_flags) 2570 { 2571 struct free_area *area; 2572 int current_order; 2573 int min_order = order; 2574 struct page *page; 2575 int fallback_mt; 2576 bool can_steal; 2577 2578 /* 2579 * Do not steal pages from freelists belonging to other pageblocks 2580 * i.e. orders < pageblock_order. If there are no local zones free, 2581 * the zonelists will be reiterated without ALLOC_NOFRAGMENT. 2582 */ 2583 if (alloc_flags & ALLOC_NOFRAGMENT) 2584 min_order = pageblock_order; 2585 2586 /* 2587 * Find the largest available free page in the other list. This roughly 2588 * approximates finding the pageblock with the most free pages, which 2589 * would be too costly to do exactly. 2590 */ 2591 for (current_order = MAX_ORDER - 1; current_order >= min_order; 2592 --current_order) { 2593 area = &(zone->free_area[current_order]); 2594 fallback_mt = find_suitable_fallback(area, current_order, 2595 start_migratetype, false, &can_steal); 2596 if (fallback_mt == -1) 2597 continue; 2598 2599 /* 2600 * We cannot steal all free pages from the pageblock and the 2601 * requested migratetype is movable. In that case it's better to 2602 * steal and split the smallest available page instead of the 2603 * largest available page, because even if the next movable 2604 * allocation falls back into a different pageblock than this 2605 * one, it won't cause permanent fragmentation. 2606 */ 2607 if (!can_steal && start_migratetype == MIGRATE_MOVABLE 2608 && current_order > order) 2609 goto find_smallest; 2610 2611 goto do_steal; 2612 } 2613 2614 return false; 2615 2616 find_smallest: 2617 for (current_order = order; current_order < MAX_ORDER; 2618 current_order++) { 2619 area = &(zone->free_area[current_order]); 2620 fallback_mt = find_suitable_fallback(area, current_order, 2621 start_migratetype, false, &can_steal); 2622 if (fallback_mt != -1) 2623 break; 2624 } 2625 2626 /* 2627 * This should not happen - we already found a suitable fallback 2628 * when looking for the largest page. 2629 */ 2630 VM_BUG_ON(current_order == MAX_ORDER); 2631 2632 do_steal: 2633 page = list_first_entry(&area->free_list[fallback_mt], 2634 struct page, lru); 2635 2636 steal_suitable_fallback(zone, page, alloc_flags, start_migratetype, 2637 can_steal); 2638 2639 trace_mm_page_alloc_extfrag(page, order, current_order, 2640 start_migratetype, fallback_mt); 2641 2642 return true; 2643 2644 } 2645 2646 /* 2647 * Do the hard work of removing an element from the buddy allocator. 2648 * Call me with the zone->lock already held. 2649 */ 2650 static __always_inline struct page * 2651 __rmqueue(struct zone *zone, unsigned int order, int migratetype, 2652 unsigned int alloc_flags) 2653 { 2654 struct page *page; 2655 2656 retry: 2657 page = __rmqueue_smallest(zone, order, migratetype); 2658 if (unlikely(!page)) { 2659 if (migratetype == MIGRATE_MOVABLE) 2660 page = __rmqueue_cma_fallback(zone, order); 2661 2662 if (!page && __rmqueue_fallback(zone, order, migratetype, 2663 alloc_flags)) 2664 goto retry; 2665 } 2666 2667 trace_mm_page_alloc_zone_locked(page, order, migratetype); 2668 return page; 2669 } 2670 2671 /* 2672 * Obtain a specified number of elements from the buddy allocator, all under 2673 * a single hold of the lock, for efficiency. Add them to the supplied list. 2674 * Returns the number of new pages which were placed at *list. 2675 */ 2676 static int rmqueue_bulk(struct zone *zone, unsigned int order, 2677 unsigned long count, struct list_head *list, 2678 int migratetype, unsigned int alloc_flags) 2679 { 2680 int i, alloced = 0; 2681 2682 spin_lock(&zone->lock); 2683 for (i = 0; i < count; ++i) { 2684 struct page *page = __rmqueue(zone, order, migratetype, 2685 alloc_flags); 2686 if (unlikely(page == NULL)) 2687 break; 2688 2689 if (unlikely(check_pcp_refill(page))) 2690 continue; 2691 2692 /* 2693 * Split buddy pages returned by expand() are received here in 2694 * physical page order. The page is added to the tail of 2695 * caller's list. From the callers perspective, the linked list 2696 * is ordered by page number under some conditions. This is 2697 * useful for IO devices that can forward direction from the 2698 * head, thus also in the physical page order. This is useful 2699 * for IO devices that can merge IO requests if the physical 2700 * pages are ordered properly. 2701 */ 2702 list_add_tail(&page->lru, list); 2703 alloced++; 2704 if (is_migrate_cma(get_pcppage_migratetype(page))) 2705 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES, 2706 -(1 << order)); 2707 } 2708 2709 /* 2710 * i pages were removed from the buddy list even if some leak due 2711 * to check_pcp_refill failing so adjust NR_FREE_PAGES based 2712 * on i. Do not confuse with 'alloced' which is the number of 2713 * pages added to the pcp list. 2714 */ 2715 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order)); 2716 spin_unlock(&zone->lock); 2717 return alloced; 2718 } 2719 2720 #ifdef CONFIG_NUMA 2721 /* 2722 * Called from the vmstat counter updater to drain pagesets of this 2723 * currently executing processor on remote nodes after they have 2724 * expired. 2725 * 2726 * Note that this function must be called with the thread pinned to 2727 * a single processor. 2728 */ 2729 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp) 2730 { 2731 unsigned long flags; 2732 int to_drain, batch; 2733 2734 local_irq_save(flags); 2735 batch = READ_ONCE(pcp->batch); 2736 to_drain = min(pcp->count, batch); 2737 if (to_drain > 0) 2738 free_pcppages_bulk(zone, to_drain, pcp); 2739 local_irq_restore(flags); 2740 } 2741 #endif 2742 2743 /* 2744 * Drain pcplists of the indicated processor and zone. 2745 * 2746 * The processor must either be the current processor and the 2747 * thread pinned to the current processor or a processor that 2748 * is not online. 2749 */ 2750 static void drain_pages_zone(unsigned int cpu, struct zone *zone) 2751 { 2752 unsigned long flags; 2753 struct per_cpu_pageset *pset; 2754 struct per_cpu_pages *pcp; 2755 2756 local_irq_save(flags); 2757 pset = per_cpu_ptr(zone->pageset, cpu); 2758 2759 pcp = &pset->pcp; 2760 if (pcp->count) 2761 free_pcppages_bulk(zone, pcp->count, pcp); 2762 local_irq_restore(flags); 2763 } 2764 2765 /* 2766 * Drain pcplists of all zones on the indicated processor. 2767 * 2768 * The processor must either be the current processor and the 2769 * thread pinned to the current processor or a processor that 2770 * is not online. 2771 */ 2772 static void drain_pages(unsigned int cpu) 2773 { 2774 struct zone *zone; 2775 2776 for_each_populated_zone(zone) { 2777 drain_pages_zone(cpu, zone); 2778 } 2779 } 2780 2781 /* 2782 * Spill all of this CPU's per-cpu pages back into the buddy allocator. 2783 * 2784 * The CPU has to be pinned. When zone parameter is non-NULL, spill just 2785 * the single zone's pages. 2786 */ 2787 void drain_local_pages(struct zone *zone) 2788 { 2789 int cpu = smp_processor_id(); 2790 2791 if (zone) 2792 drain_pages_zone(cpu, zone); 2793 else 2794 drain_pages(cpu); 2795 } 2796 2797 static void drain_local_pages_wq(struct work_struct *work) 2798 { 2799 struct pcpu_drain *drain; 2800 2801 drain = container_of(work, struct pcpu_drain, work); 2802 2803 /* 2804 * drain_all_pages doesn't use proper cpu hotplug protection so 2805 * we can race with cpu offline when the WQ can move this from 2806 * a cpu pinned worker to an unbound one. We can operate on a different 2807 * cpu which is allright but we also have to make sure to not move to 2808 * a different one. 2809 */ 2810 preempt_disable(); 2811 drain_local_pages(drain->zone); 2812 preempt_enable(); 2813 } 2814 2815 /* 2816 * Spill all the per-cpu pages from all CPUs back into the buddy allocator. 2817 * 2818 * When zone parameter is non-NULL, spill just the single zone's pages. 2819 * 2820 * Note that this can be extremely slow as the draining happens in a workqueue. 2821 */ 2822 void drain_all_pages(struct zone *zone) 2823 { 2824 int cpu; 2825 2826 /* 2827 * Allocate in the BSS so we wont require allocation in 2828 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y 2829 */ 2830 static cpumask_t cpus_with_pcps; 2831 2832 /* 2833 * Make sure nobody triggers this path before mm_percpu_wq is fully 2834 * initialized. 2835 */ 2836 if (WARN_ON_ONCE(!mm_percpu_wq)) 2837 return; 2838 2839 /* 2840 * Do not drain if one is already in progress unless it's specific to 2841 * a zone. Such callers are primarily CMA and memory hotplug and need 2842 * the drain to be complete when the call returns. 2843 */ 2844 if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) { 2845 if (!zone) 2846 return; 2847 mutex_lock(&pcpu_drain_mutex); 2848 } 2849 2850 /* 2851 * We don't care about racing with CPU hotplug event 2852 * as offline notification will cause the notified 2853 * cpu to drain that CPU pcps and on_each_cpu_mask 2854 * disables preemption as part of its processing 2855 */ 2856 for_each_online_cpu(cpu) { 2857 struct per_cpu_pageset *pcp; 2858 struct zone *z; 2859 bool has_pcps = false; 2860 2861 if (zone) { 2862 pcp = per_cpu_ptr(zone->pageset, cpu); 2863 if (pcp->pcp.count) 2864 has_pcps = true; 2865 } else { 2866 for_each_populated_zone(z) { 2867 pcp = per_cpu_ptr(z->pageset, cpu); 2868 if (pcp->pcp.count) { 2869 has_pcps = true; 2870 break; 2871 } 2872 } 2873 } 2874 2875 if (has_pcps) 2876 cpumask_set_cpu(cpu, &cpus_with_pcps); 2877 else 2878 cpumask_clear_cpu(cpu, &cpus_with_pcps); 2879 } 2880 2881 for_each_cpu(cpu, &cpus_with_pcps) { 2882 struct pcpu_drain *drain = per_cpu_ptr(&pcpu_drain, cpu); 2883 2884 drain->zone = zone; 2885 INIT_WORK(&drain->work, drain_local_pages_wq); 2886 queue_work_on(cpu, mm_percpu_wq, &drain->work); 2887 } 2888 for_each_cpu(cpu, &cpus_with_pcps) 2889 flush_work(&per_cpu_ptr(&pcpu_drain, cpu)->work); 2890 2891 mutex_unlock(&pcpu_drain_mutex); 2892 } 2893 2894 #ifdef CONFIG_HIBERNATION 2895 2896 /* 2897 * Touch the watchdog for every WD_PAGE_COUNT pages. 2898 */ 2899 #define WD_PAGE_COUNT (128*1024) 2900 2901 void mark_free_pages(struct zone *zone) 2902 { 2903 unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT; 2904 unsigned long flags; 2905 unsigned int order, t; 2906 struct page *page; 2907 2908 if (zone_is_empty(zone)) 2909 return; 2910 2911 spin_lock_irqsave(&zone->lock, flags); 2912 2913 max_zone_pfn = zone_end_pfn(zone); 2914 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) 2915 if (pfn_valid(pfn)) { 2916 page = pfn_to_page(pfn); 2917 2918 if (!--page_count) { 2919 touch_nmi_watchdog(); 2920 page_count = WD_PAGE_COUNT; 2921 } 2922 2923 if (page_zone(page) != zone) 2924 continue; 2925 2926 if (!swsusp_page_is_forbidden(page)) 2927 swsusp_unset_page_free(page); 2928 } 2929 2930 for_each_migratetype_order(order, t) { 2931 list_for_each_entry(page, 2932 &zone->free_area[order].free_list[t], lru) { 2933 unsigned long i; 2934 2935 pfn = page_to_pfn(page); 2936 for (i = 0; i < (1UL << order); i++) { 2937 if (!--page_count) { 2938 touch_nmi_watchdog(); 2939 page_count = WD_PAGE_COUNT; 2940 } 2941 swsusp_set_page_free(pfn_to_page(pfn + i)); 2942 } 2943 } 2944 } 2945 spin_unlock_irqrestore(&zone->lock, flags); 2946 } 2947 #endif /* CONFIG_PM */ 2948 2949 static bool free_unref_page_prepare(struct page *page, unsigned long pfn) 2950 { 2951 int migratetype; 2952 2953 if (!free_pcp_prepare(page)) 2954 return false; 2955 2956 migratetype = get_pfnblock_migratetype(page, pfn); 2957 set_pcppage_migratetype(page, migratetype); 2958 return true; 2959 } 2960 2961 static void free_unref_page_commit(struct page *page, unsigned long pfn) 2962 { 2963 struct zone *zone = page_zone(page); 2964 struct per_cpu_pages *pcp; 2965 int migratetype; 2966 2967 migratetype = get_pcppage_migratetype(page); 2968 __count_vm_event(PGFREE); 2969 2970 /* 2971 * We only track unmovable, reclaimable and movable on pcp lists. 2972 * Free ISOLATE pages back to the allocator because they are being 2973 * offlined but treat HIGHATOMIC as movable pages so we can get those 2974 * areas back if necessary. Otherwise, we may have to free 2975 * excessively into the page allocator 2976 */ 2977 if (migratetype >= MIGRATE_PCPTYPES) { 2978 if (unlikely(is_migrate_isolate(migratetype))) { 2979 free_one_page(zone, page, pfn, 0, migratetype); 2980 return; 2981 } 2982 migratetype = MIGRATE_MOVABLE; 2983 } 2984 2985 pcp = &this_cpu_ptr(zone->pageset)->pcp; 2986 list_add(&page->lru, &pcp->lists[migratetype]); 2987 pcp->count++; 2988 if (pcp->count >= pcp->high) { 2989 unsigned long batch = READ_ONCE(pcp->batch); 2990 free_pcppages_bulk(zone, batch, pcp); 2991 } 2992 } 2993 2994 /* 2995 * Free a 0-order page 2996 */ 2997 void free_unref_page(struct page *page) 2998 { 2999 unsigned long flags; 3000 unsigned long pfn = page_to_pfn(page); 3001 3002 if (!free_unref_page_prepare(page, pfn)) 3003 return; 3004 3005 local_irq_save(flags); 3006 free_unref_page_commit(page, pfn); 3007 local_irq_restore(flags); 3008 } 3009 3010 /* 3011 * Free a list of 0-order pages 3012 */ 3013 void free_unref_page_list(struct list_head *list) 3014 { 3015 struct page *page, *next; 3016 unsigned long flags, pfn; 3017 int batch_count = 0; 3018 3019 /* Prepare pages for freeing */ 3020 list_for_each_entry_safe(page, next, list, lru) { 3021 pfn = page_to_pfn(page); 3022 if (!free_unref_page_prepare(page, pfn)) 3023 list_del(&page->lru); 3024 set_page_private(page, pfn); 3025 } 3026 3027 local_irq_save(flags); 3028 list_for_each_entry_safe(page, next, list, lru) { 3029 unsigned long pfn = page_private(page); 3030 3031 set_page_private(page, 0); 3032 trace_mm_page_free_batched(page); 3033 free_unref_page_commit(page, pfn); 3034 3035 /* 3036 * Guard against excessive IRQ disabled times when we get 3037 * a large list of pages to free. 3038 */ 3039 if (++batch_count == SWAP_CLUSTER_MAX) { 3040 local_irq_restore(flags); 3041 batch_count = 0; 3042 local_irq_save(flags); 3043 } 3044 } 3045 local_irq_restore(flags); 3046 } 3047 3048 /* 3049 * split_page takes a non-compound higher-order page, and splits it into 3050 * n (1<<order) sub-pages: page[0..n] 3051 * Each sub-page must be freed individually. 3052 * 3053 * Note: this is probably too low level an operation for use in drivers. 3054 * Please consult with lkml before using this in your driver. 3055 */ 3056 void split_page(struct page *page, unsigned int order) 3057 { 3058 int i; 3059 3060 VM_BUG_ON_PAGE(PageCompound(page), page); 3061 VM_BUG_ON_PAGE(!page_count(page), page); 3062 3063 for (i = 1; i < (1 << order); i++) 3064 set_page_refcounted(page + i); 3065 split_page_owner(page, order); 3066 } 3067 EXPORT_SYMBOL_GPL(split_page); 3068 3069 int __isolate_free_page(struct page *page, unsigned int order) 3070 { 3071 unsigned long watermark; 3072 struct zone *zone; 3073 int mt; 3074 3075 BUG_ON(!PageBuddy(page)); 3076 3077 zone = page_zone(page); 3078 mt = get_pageblock_migratetype(page); 3079 3080 if (!is_migrate_isolate(mt)) { 3081 /* 3082 * Obey watermarks as if the page was being allocated. We can 3083 * emulate a high-order watermark check with a raised order-0 3084 * watermark, because we already know our high-order page 3085 * exists. 3086 */ 3087 watermark = zone->_watermark[WMARK_MIN] + (1UL << order); 3088 if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA)) 3089 return 0; 3090 3091 __mod_zone_freepage_state(zone, -(1UL << order), mt); 3092 } 3093 3094 /* Remove page from free list */ 3095 list_del(&page->lru); 3096 zone->free_area[order].nr_free--; 3097 rmv_page_order(page); 3098 3099 /* 3100 * Set the pageblock if the isolated page is at least half of a 3101 * pageblock 3102 */ 3103 if (order >= pageblock_order - 1) { 3104 struct page *endpage = page + (1 << order) - 1; 3105 for (; page < endpage; page += pageblock_nr_pages) { 3106 int mt = get_pageblock_migratetype(page); 3107 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt) 3108 && !is_migrate_highatomic(mt)) 3109 set_pageblock_migratetype(page, 3110 MIGRATE_MOVABLE); 3111 } 3112 } 3113 3114 3115 return 1UL << order; 3116 } 3117 3118 /* 3119 * Update NUMA hit/miss statistics 3120 * 3121 * Must be called with interrupts disabled. 3122 */ 3123 static inline void zone_statistics(struct zone *preferred_zone, struct zone *z) 3124 { 3125 #ifdef CONFIG_NUMA 3126 enum numa_stat_item local_stat = NUMA_LOCAL; 3127 3128 /* skip numa counters update if numa stats is disabled */ 3129 if (!static_branch_likely(&vm_numa_stat_key)) 3130 return; 3131 3132 if (zone_to_nid(z) != numa_node_id()) 3133 local_stat = NUMA_OTHER; 3134 3135 if (zone_to_nid(z) == zone_to_nid(preferred_zone)) 3136 __inc_numa_state(z, NUMA_HIT); 3137 else { 3138 __inc_numa_state(z, NUMA_MISS); 3139 __inc_numa_state(preferred_zone, NUMA_FOREIGN); 3140 } 3141 __inc_numa_state(z, local_stat); 3142 #endif 3143 } 3144 3145 /* Remove page from the per-cpu list, caller must protect the list */ 3146 static struct page *__rmqueue_pcplist(struct zone *zone, int migratetype, 3147 unsigned int alloc_flags, 3148 struct per_cpu_pages *pcp, 3149 struct list_head *list) 3150 { 3151 struct page *page; 3152 3153 do { 3154 if (list_empty(list)) { 3155 pcp->count += rmqueue_bulk(zone, 0, 3156 pcp->batch, list, 3157 migratetype, alloc_flags); 3158 if (unlikely(list_empty(list))) 3159 return NULL; 3160 } 3161 3162 page = list_first_entry(list, struct page, lru); 3163 list_del(&page->lru); 3164 pcp->count--; 3165 } while (check_new_pcp(page)); 3166 3167 return page; 3168 } 3169 3170 /* Lock and remove page from the per-cpu list */ 3171 static struct page *rmqueue_pcplist(struct zone *preferred_zone, 3172 struct zone *zone, gfp_t gfp_flags, 3173 int migratetype, unsigned int alloc_flags) 3174 { 3175 struct per_cpu_pages *pcp; 3176 struct list_head *list; 3177 struct page *page; 3178 unsigned long flags; 3179 3180 local_irq_save(flags); 3181 pcp = &this_cpu_ptr(zone->pageset)->pcp; 3182 list = &pcp->lists[migratetype]; 3183 page = __rmqueue_pcplist(zone, migratetype, alloc_flags, pcp, list); 3184 if (page) { 3185 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1); 3186 zone_statistics(preferred_zone, zone); 3187 } 3188 local_irq_restore(flags); 3189 return page; 3190 } 3191 3192 /* 3193 * Allocate a page from the given zone. Use pcplists for order-0 allocations. 3194 */ 3195 static inline 3196 struct page *rmqueue(struct zone *preferred_zone, 3197 struct zone *zone, unsigned int order, 3198 gfp_t gfp_flags, unsigned int alloc_flags, 3199 int migratetype) 3200 { 3201 unsigned long flags; 3202 struct page *page; 3203 3204 if (likely(order == 0)) { 3205 page = rmqueue_pcplist(preferred_zone, zone, gfp_flags, 3206 migratetype, alloc_flags); 3207 goto out; 3208 } 3209 3210 /* 3211 * We most definitely don't want callers attempting to 3212 * allocate greater than order-1 page units with __GFP_NOFAIL. 3213 */ 3214 WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1)); 3215 spin_lock_irqsave(&zone->lock, flags); 3216 3217 do { 3218 page = NULL; 3219 if (alloc_flags & ALLOC_HARDER) { 3220 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC); 3221 if (page) 3222 trace_mm_page_alloc_zone_locked(page, order, migratetype); 3223 } 3224 if (!page) 3225 page = __rmqueue(zone, order, migratetype, alloc_flags); 3226 } while (page && check_new_pages(page, order)); 3227 spin_unlock(&zone->lock); 3228 if (!page) 3229 goto failed; 3230 __mod_zone_freepage_state(zone, -(1 << order), 3231 get_pcppage_migratetype(page)); 3232 3233 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order); 3234 zone_statistics(preferred_zone, zone); 3235 local_irq_restore(flags); 3236 3237 out: 3238 /* Separate test+clear to avoid unnecessary atomics */ 3239 if (test_bit(ZONE_BOOSTED_WATERMARK, &zone->flags)) { 3240 clear_bit(ZONE_BOOSTED_WATERMARK, &zone->flags); 3241 wakeup_kswapd(zone, 0, 0, zone_idx(zone)); 3242 } 3243 3244 VM_BUG_ON_PAGE(page && bad_range(zone, page), page); 3245 return page; 3246 3247 failed: 3248 local_irq_restore(flags); 3249 return NULL; 3250 } 3251 3252 #ifdef CONFIG_FAIL_PAGE_ALLOC 3253 3254 static struct { 3255 struct fault_attr attr; 3256 3257 bool ignore_gfp_highmem; 3258 bool ignore_gfp_reclaim; 3259 u32 min_order; 3260 } fail_page_alloc = { 3261 .attr = FAULT_ATTR_INITIALIZER, 3262 .ignore_gfp_reclaim = true, 3263 .ignore_gfp_highmem = true, 3264 .min_order = 1, 3265 }; 3266 3267 static int __init setup_fail_page_alloc(char *str) 3268 { 3269 return setup_fault_attr(&fail_page_alloc.attr, str); 3270 } 3271 __setup("fail_page_alloc=", setup_fail_page_alloc); 3272 3273 static bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) 3274 { 3275 if (order < fail_page_alloc.min_order) 3276 return false; 3277 if (gfp_mask & __GFP_NOFAIL) 3278 return false; 3279 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM)) 3280 return false; 3281 if (fail_page_alloc.ignore_gfp_reclaim && 3282 (gfp_mask & __GFP_DIRECT_RECLAIM)) 3283 return false; 3284 3285 return should_fail(&fail_page_alloc.attr, 1 << order); 3286 } 3287 3288 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS 3289 3290 static int __init fail_page_alloc_debugfs(void) 3291 { 3292 umode_t mode = S_IFREG | 0600; 3293 struct dentry *dir; 3294 3295 dir = fault_create_debugfs_attr("fail_page_alloc", NULL, 3296 &fail_page_alloc.attr); 3297 3298 debugfs_create_bool("ignore-gfp-wait", mode, dir, 3299 &fail_page_alloc.ignore_gfp_reclaim); 3300 debugfs_create_bool("ignore-gfp-highmem", mode, dir, 3301 &fail_page_alloc.ignore_gfp_highmem); 3302 debugfs_create_u32("min-order", mode, dir, &fail_page_alloc.min_order); 3303 3304 return 0; 3305 } 3306 3307 late_initcall(fail_page_alloc_debugfs); 3308 3309 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */ 3310 3311 #else /* CONFIG_FAIL_PAGE_ALLOC */ 3312 3313 static inline bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) 3314 { 3315 return false; 3316 } 3317 3318 #endif /* CONFIG_FAIL_PAGE_ALLOC */ 3319 3320 static noinline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) 3321 { 3322 return __should_fail_alloc_page(gfp_mask, order); 3323 } 3324 ALLOW_ERROR_INJECTION(should_fail_alloc_page, TRUE); 3325 3326 /* 3327 * Return true if free base pages are above 'mark'. For high-order checks it 3328 * will return true of the order-0 watermark is reached and there is at least 3329 * one free page of a suitable size. Checking now avoids taking the zone lock 3330 * to check in the allocation paths if no pages are free. 3331 */ 3332 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark, 3333 int classzone_idx, unsigned int alloc_flags, 3334 long free_pages) 3335 { 3336 long min = mark; 3337 int o; 3338 const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM)); 3339 3340 /* free_pages may go negative - that's OK */ 3341 free_pages -= (1 << order) - 1; 3342 3343 if (alloc_flags & ALLOC_HIGH) 3344 min -= min / 2; 3345 3346 /* 3347 * If the caller does not have rights to ALLOC_HARDER then subtract 3348 * the high-atomic reserves. This will over-estimate the size of the 3349 * atomic reserve but it avoids a search. 3350 */ 3351 if (likely(!alloc_harder)) { 3352 free_pages -= z->nr_reserved_highatomic; 3353 } else { 3354 /* 3355 * OOM victims can try even harder than normal ALLOC_HARDER 3356 * users on the grounds that it's definitely going to be in 3357 * the exit path shortly and free memory. Any allocation it 3358 * makes during the free path will be small and short-lived. 3359 */ 3360 if (alloc_flags & ALLOC_OOM) 3361 min -= min / 2; 3362 else 3363 min -= min / 4; 3364 } 3365 3366 3367 #ifdef CONFIG_CMA 3368 /* If allocation can't use CMA areas don't use free CMA pages */ 3369 if (!(alloc_flags & ALLOC_CMA)) 3370 free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES); 3371 #endif 3372 3373 /* 3374 * Check watermarks for an order-0 allocation request. If these 3375 * are not met, then a high-order request also cannot go ahead 3376 * even if a suitable page happened to be free. 3377 */ 3378 if (free_pages <= min + z->lowmem_reserve[classzone_idx]) 3379 return false; 3380 3381 /* If this is an order-0 request then the watermark is fine */ 3382 if (!order) 3383 return true; 3384 3385 /* For a high-order request, check at least one suitable page is free */ 3386 for (o = order; o < MAX_ORDER; o++) { 3387 struct free_area *area = &z->free_area[o]; 3388 int mt; 3389 3390 if (!area->nr_free) 3391 continue; 3392 3393 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) { 3394 if (!list_empty(&area->free_list[mt])) 3395 return true; 3396 } 3397 3398 #ifdef CONFIG_CMA 3399 if ((alloc_flags & ALLOC_CMA) && 3400 !list_empty(&area->free_list[MIGRATE_CMA])) { 3401 return true; 3402 } 3403 #endif 3404 if (alloc_harder && 3405 !list_empty(&area->free_list[MIGRATE_HIGHATOMIC])) 3406 return true; 3407 } 3408 return false; 3409 } 3410 3411 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark, 3412 int classzone_idx, unsigned int alloc_flags) 3413 { 3414 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags, 3415 zone_page_state(z, NR_FREE_PAGES)); 3416 } 3417 3418 static inline bool zone_watermark_fast(struct zone *z, unsigned int order, 3419 unsigned long mark, int classzone_idx, unsigned int alloc_flags) 3420 { 3421 long free_pages = zone_page_state(z, NR_FREE_PAGES); 3422 long cma_pages = 0; 3423 3424 #ifdef CONFIG_CMA 3425 /* If allocation can't use CMA areas don't use free CMA pages */ 3426 if (!(alloc_flags & ALLOC_CMA)) 3427 cma_pages = zone_page_state(z, NR_FREE_CMA_PAGES); 3428 #endif 3429 3430 /* 3431 * Fast check for order-0 only. If this fails then the reserves 3432 * need to be calculated. There is a corner case where the check 3433 * passes but only the high-order atomic reserve are free. If 3434 * the caller is !atomic then it'll uselessly search the free 3435 * list. That corner case is then slower but it is harmless. 3436 */ 3437 if (!order && (free_pages - cma_pages) > mark + z->lowmem_reserve[classzone_idx]) 3438 return true; 3439 3440 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags, 3441 free_pages); 3442 } 3443 3444 bool zone_watermark_ok_safe(struct zone *z, unsigned int order, 3445 unsigned long mark, int classzone_idx) 3446 { 3447 long free_pages = zone_page_state(z, NR_FREE_PAGES); 3448 3449 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark) 3450 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES); 3451 3452 return __zone_watermark_ok(z, order, mark, classzone_idx, 0, 3453 free_pages); 3454 } 3455 3456 #ifdef CONFIG_NUMA 3457 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone) 3458 { 3459 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <= 3460 RECLAIM_DISTANCE; 3461 } 3462 #else /* CONFIG_NUMA */ 3463 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone) 3464 { 3465 return true; 3466 } 3467 #endif /* CONFIG_NUMA */ 3468 3469 /* 3470 * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid 3471 * fragmentation is subtle. If the preferred zone was HIGHMEM then 3472 * premature use of a lower zone may cause lowmem pressure problems that 3473 * are worse than fragmentation. If the next zone is ZONE_DMA then it is 3474 * probably too small. It only makes sense to spread allocations to avoid 3475 * fragmentation between the Normal and DMA32 zones. 3476 */ 3477 static inline unsigned int 3478 alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask) 3479 { 3480 unsigned int alloc_flags = 0; 3481 3482 if (gfp_mask & __GFP_KSWAPD_RECLAIM) 3483 alloc_flags |= ALLOC_KSWAPD; 3484 3485 #ifdef CONFIG_ZONE_DMA32 3486 if (!zone) 3487 return alloc_flags; 3488 3489 if (zone_idx(zone) != ZONE_NORMAL) 3490 return alloc_flags; 3491 3492 /* 3493 * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and 3494 * the pointer is within zone->zone_pgdat->node_zones[]. Also assume 3495 * on UMA that if Normal is populated then so is DMA32. 3496 */ 3497 BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1); 3498 if (nr_online_nodes > 1 && !populated_zone(--zone)) 3499 return alloc_flags; 3500 3501 alloc_flags |= ALLOC_NOFRAGMENT; 3502 #endif /* CONFIG_ZONE_DMA32 */ 3503 return alloc_flags; 3504 } 3505 3506 /* 3507 * get_page_from_freelist goes through the zonelist trying to allocate 3508 * a page. 3509 */ 3510 static struct page * 3511 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags, 3512 const struct alloc_context *ac) 3513 { 3514 struct zoneref *z; 3515 struct zone *zone; 3516 struct pglist_data *last_pgdat_dirty_limit = NULL; 3517 bool no_fallback; 3518 3519 retry: 3520 /* 3521 * Scan zonelist, looking for a zone with enough free. 3522 * See also __cpuset_node_allowed() comment in kernel/cpuset.c. 3523 */ 3524 no_fallback = alloc_flags & ALLOC_NOFRAGMENT; 3525 z = ac->preferred_zoneref; 3526 for_next_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx, 3527 ac->nodemask) { 3528 struct page *page; 3529 unsigned long mark; 3530 3531 if (cpusets_enabled() && 3532 (alloc_flags & ALLOC_CPUSET) && 3533 !__cpuset_zone_allowed(zone, gfp_mask)) 3534 continue; 3535 /* 3536 * When allocating a page cache page for writing, we 3537 * want to get it from a node that is within its dirty 3538 * limit, such that no single node holds more than its 3539 * proportional share of globally allowed dirty pages. 3540 * The dirty limits take into account the node's 3541 * lowmem reserves and high watermark so that kswapd 3542 * should be able to balance it without having to 3543 * write pages from its LRU list. 3544 * 3545 * XXX: For now, allow allocations to potentially 3546 * exceed the per-node dirty limit in the slowpath 3547 * (spread_dirty_pages unset) before going into reclaim, 3548 * which is important when on a NUMA setup the allowed 3549 * nodes are together not big enough to reach the 3550 * global limit. The proper fix for these situations 3551 * will require awareness of nodes in the 3552 * dirty-throttling and the flusher threads. 3553 */ 3554 if (ac->spread_dirty_pages) { 3555 if (last_pgdat_dirty_limit == zone->zone_pgdat) 3556 continue; 3557 3558 if (!node_dirty_ok(zone->zone_pgdat)) { 3559 last_pgdat_dirty_limit = zone->zone_pgdat; 3560 continue; 3561 } 3562 } 3563 3564 if (no_fallback && nr_online_nodes > 1 && 3565 zone != ac->preferred_zoneref->zone) { 3566 int local_nid; 3567 3568 /* 3569 * If moving to a remote node, retry but allow 3570 * fragmenting fallbacks. Locality is more important 3571 * than fragmentation avoidance. 3572 */ 3573 local_nid = zone_to_nid(ac->preferred_zoneref->zone); 3574 if (zone_to_nid(zone) != local_nid) { 3575 alloc_flags &= ~ALLOC_NOFRAGMENT; 3576 goto retry; 3577 } 3578 } 3579 3580 mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK); 3581 if (!zone_watermark_fast(zone, order, mark, 3582 ac_classzone_idx(ac), alloc_flags)) { 3583 int ret; 3584 3585 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 3586 /* 3587 * Watermark failed for this zone, but see if we can 3588 * grow this zone if it contains deferred pages. 3589 */ 3590 if (static_branch_unlikely(&deferred_pages)) { 3591 if (_deferred_grow_zone(zone, order)) 3592 goto try_this_zone; 3593 } 3594 #endif 3595 /* Checked here to keep the fast path fast */ 3596 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK); 3597 if (alloc_flags & ALLOC_NO_WATERMARKS) 3598 goto try_this_zone; 3599 3600 if (node_reclaim_mode == 0 || 3601 !zone_allows_reclaim(ac->preferred_zoneref->zone, zone)) 3602 continue; 3603 3604 ret = node_reclaim(zone->zone_pgdat, gfp_mask, order); 3605 switch (ret) { 3606 case NODE_RECLAIM_NOSCAN: 3607 /* did not scan */ 3608 continue; 3609 case NODE_RECLAIM_FULL: 3610 /* scanned but unreclaimable */ 3611 continue; 3612 default: 3613 /* did we reclaim enough */ 3614 if (zone_watermark_ok(zone, order, mark, 3615 ac_classzone_idx(ac), alloc_flags)) 3616 goto try_this_zone; 3617 3618 continue; 3619 } 3620 } 3621 3622 try_this_zone: 3623 page = rmqueue(ac->preferred_zoneref->zone, zone, order, 3624 gfp_mask, alloc_flags, ac->migratetype); 3625 if (page) { 3626 prep_new_page(page, order, gfp_mask, alloc_flags); 3627 3628 /* 3629 * If this is a high-order atomic allocation then check 3630 * if the pageblock should be reserved for the future 3631 */ 3632 if (unlikely(order && (alloc_flags & ALLOC_HARDER))) 3633 reserve_highatomic_pageblock(page, zone, order); 3634 3635 return page; 3636 } else { 3637 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 3638 /* Try again if zone has deferred pages */ 3639 if (static_branch_unlikely(&deferred_pages)) { 3640 if (_deferred_grow_zone(zone, order)) 3641 goto try_this_zone; 3642 } 3643 #endif 3644 } 3645 } 3646 3647 /* 3648 * It's possible on a UMA machine to get through all zones that are 3649 * fragmented. If avoiding fragmentation, reset and try again. 3650 */ 3651 if (no_fallback) { 3652 alloc_flags &= ~ALLOC_NOFRAGMENT; 3653 goto retry; 3654 } 3655 3656 return NULL; 3657 } 3658 3659 static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask) 3660 { 3661 unsigned int filter = SHOW_MEM_FILTER_NODES; 3662 static DEFINE_RATELIMIT_STATE(show_mem_rs, HZ, 1); 3663 3664 if (!__ratelimit(&show_mem_rs)) 3665 return; 3666 3667 /* 3668 * This documents exceptions given to allocations in certain 3669 * contexts that are allowed to allocate outside current's set 3670 * of allowed nodes. 3671 */ 3672 if (!(gfp_mask & __GFP_NOMEMALLOC)) 3673 if (tsk_is_oom_victim(current) || 3674 (current->flags & (PF_MEMALLOC | PF_EXITING))) 3675 filter &= ~SHOW_MEM_FILTER_NODES; 3676 if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM)) 3677 filter &= ~SHOW_MEM_FILTER_NODES; 3678 3679 show_mem(filter, nodemask); 3680 } 3681 3682 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...) 3683 { 3684 struct va_format vaf; 3685 va_list args; 3686 static DEFINE_RATELIMIT_STATE(nopage_rs, DEFAULT_RATELIMIT_INTERVAL, 3687 DEFAULT_RATELIMIT_BURST); 3688 3689 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs)) 3690 return; 3691 3692 va_start(args, fmt); 3693 vaf.fmt = fmt; 3694 vaf.va = &args; 3695 pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl", 3696 current->comm, &vaf, gfp_mask, &gfp_mask, 3697 nodemask_pr_args(nodemask)); 3698 va_end(args); 3699 3700 cpuset_print_current_mems_allowed(); 3701 pr_cont("\n"); 3702 dump_stack(); 3703 warn_alloc_show_mem(gfp_mask, nodemask); 3704 } 3705 3706 static inline struct page * 3707 __alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order, 3708 unsigned int alloc_flags, 3709 const struct alloc_context *ac) 3710 { 3711 struct page *page; 3712 3713 page = get_page_from_freelist(gfp_mask, order, 3714 alloc_flags|ALLOC_CPUSET, ac); 3715 /* 3716 * fallback to ignore cpuset restriction if our nodes 3717 * are depleted 3718 */ 3719 if (!page) 3720 page = get_page_from_freelist(gfp_mask, order, 3721 alloc_flags, ac); 3722 3723 return page; 3724 } 3725 3726 static inline struct page * 3727 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order, 3728 const struct alloc_context *ac, unsigned long *did_some_progress) 3729 { 3730 struct oom_control oc = { 3731 .zonelist = ac->zonelist, 3732 .nodemask = ac->nodemask, 3733 .memcg = NULL, 3734 .gfp_mask = gfp_mask, 3735 .order = order, 3736 }; 3737 struct page *page; 3738 3739 *did_some_progress = 0; 3740 3741 /* 3742 * Acquire the oom lock. If that fails, somebody else is 3743 * making progress for us. 3744 */ 3745 if (!mutex_trylock(&oom_lock)) { 3746 *did_some_progress = 1; 3747 schedule_timeout_uninterruptible(1); 3748 return NULL; 3749 } 3750 3751 /* 3752 * Go through the zonelist yet one more time, keep very high watermark 3753 * here, this is only to catch a parallel oom killing, we must fail if 3754 * we're still under heavy pressure. But make sure that this reclaim 3755 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY 3756 * allocation which will never fail due to oom_lock already held. 3757 */ 3758 page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) & 3759 ~__GFP_DIRECT_RECLAIM, order, 3760 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac); 3761 if (page) 3762 goto out; 3763 3764 /* Coredumps can quickly deplete all memory reserves */ 3765 if (current->flags & PF_DUMPCORE) 3766 goto out; 3767 /* The OOM killer will not help higher order allocs */ 3768 if (order > PAGE_ALLOC_COSTLY_ORDER) 3769 goto out; 3770 /* 3771 * We have already exhausted all our reclaim opportunities without any 3772 * success so it is time to admit defeat. We will skip the OOM killer 3773 * because it is very likely that the caller has a more reasonable 3774 * fallback than shooting a random task. 3775 */ 3776 if (gfp_mask & __GFP_RETRY_MAYFAIL) 3777 goto out; 3778 /* The OOM killer does not needlessly kill tasks for lowmem */ 3779 if (ac->high_zoneidx < ZONE_NORMAL) 3780 goto out; 3781 if (pm_suspended_storage()) 3782 goto out; 3783 /* 3784 * XXX: GFP_NOFS allocations should rather fail than rely on 3785 * other request to make a forward progress. 3786 * We are in an unfortunate situation where out_of_memory cannot 3787 * do much for this context but let's try it to at least get 3788 * access to memory reserved if the current task is killed (see 3789 * out_of_memory). Once filesystems are ready to handle allocation 3790 * failures more gracefully we should just bail out here. 3791 */ 3792 3793 /* The OOM killer may not free memory on a specific node */ 3794 if (gfp_mask & __GFP_THISNODE) 3795 goto out; 3796 3797 /* Exhausted what can be done so it's blame time */ 3798 if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) { 3799 *did_some_progress = 1; 3800 3801 /* 3802 * Help non-failing allocations by giving them access to memory 3803 * reserves 3804 */ 3805 if (gfp_mask & __GFP_NOFAIL) 3806 page = __alloc_pages_cpuset_fallback(gfp_mask, order, 3807 ALLOC_NO_WATERMARKS, ac); 3808 } 3809 out: 3810 mutex_unlock(&oom_lock); 3811 return page; 3812 } 3813 3814 /* 3815 * Maximum number of compaction retries wit a progress before OOM 3816 * killer is consider as the only way to move forward. 3817 */ 3818 #define MAX_COMPACT_RETRIES 16 3819 3820 #ifdef CONFIG_COMPACTION 3821 /* Try memory compaction for high-order allocations before reclaim */ 3822 static struct page * 3823 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order, 3824 unsigned int alloc_flags, const struct alloc_context *ac, 3825 enum compact_priority prio, enum compact_result *compact_result) 3826 { 3827 struct page *page = NULL; 3828 unsigned long pflags; 3829 unsigned int noreclaim_flag; 3830 3831 if (!order) 3832 return NULL; 3833 3834 psi_memstall_enter(&pflags); 3835 noreclaim_flag = memalloc_noreclaim_save(); 3836 3837 *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac, 3838 prio, &page); 3839 3840 memalloc_noreclaim_restore(noreclaim_flag); 3841 psi_memstall_leave(&pflags); 3842 3843 /* 3844 * At least in one zone compaction wasn't deferred or skipped, so let's 3845 * count a compaction stall 3846 */ 3847 count_vm_event(COMPACTSTALL); 3848 3849 /* Prep a captured page if available */ 3850 if (page) 3851 prep_new_page(page, order, gfp_mask, alloc_flags); 3852 3853 /* Try get a page from the freelist if available */ 3854 if (!page) 3855 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 3856 3857 if (page) { 3858 struct zone *zone = page_zone(page); 3859 3860 zone->compact_blockskip_flush = false; 3861 compaction_defer_reset(zone, order, true); 3862 count_vm_event(COMPACTSUCCESS); 3863 return page; 3864 } 3865 3866 /* 3867 * It's bad if compaction run occurs and fails. The most likely reason 3868 * is that pages exist, but not enough to satisfy watermarks. 3869 */ 3870 count_vm_event(COMPACTFAIL); 3871 3872 cond_resched(); 3873 3874 return NULL; 3875 } 3876 3877 static inline bool 3878 should_compact_retry(struct alloc_context *ac, int order, int alloc_flags, 3879 enum compact_result compact_result, 3880 enum compact_priority *compact_priority, 3881 int *compaction_retries) 3882 { 3883 int max_retries = MAX_COMPACT_RETRIES; 3884 int min_priority; 3885 bool ret = false; 3886 int retries = *compaction_retries; 3887 enum compact_priority priority = *compact_priority; 3888 3889 if (!order) 3890 return false; 3891 3892 if (compaction_made_progress(compact_result)) 3893 (*compaction_retries)++; 3894 3895 /* 3896 * compaction considers all the zone as desperately out of memory 3897 * so it doesn't really make much sense to retry except when the 3898 * failure could be caused by insufficient priority 3899 */ 3900 if (compaction_failed(compact_result)) 3901 goto check_priority; 3902 3903 /* 3904 * make sure the compaction wasn't deferred or didn't bail out early 3905 * due to locks contention before we declare that we should give up. 3906 * But do not retry if the given zonelist is not suitable for 3907 * compaction. 3908 */ 3909 if (compaction_withdrawn(compact_result)) { 3910 ret = compaction_zonelist_suitable(ac, order, alloc_flags); 3911 goto out; 3912 } 3913 3914 /* 3915 * !costly requests are much more important than __GFP_RETRY_MAYFAIL 3916 * costly ones because they are de facto nofail and invoke OOM 3917 * killer to move on while costly can fail and users are ready 3918 * to cope with that. 1/4 retries is rather arbitrary but we 3919 * would need much more detailed feedback from compaction to 3920 * make a better decision. 3921 */ 3922 if (order > PAGE_ALLOC_COSTLY_ORDER) 3923 max_retries /= 4; 3924 if (*compaction_retries <= max_retries) { 3925 ret = true; 3926 goto out; 3927 } 3928 3929 /* 3930 * Make sure there are attempts at the highest priority if we exhausted 3931 * all retries or failed at the lower priorities. 3932 */ 3933 check_priority: 3934 min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ? 3935 MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY; 3936 3937 if (*compact_priority > min_priority) { 3938 (*compact_priority)--; 3939 *compaction_retries = 0; 3940 ret = true; 3941 } 3942 out: 3943 trace_compact_retry(order, priority, compact_result, retries, max_retries, ret); 3944 return ret; 3945 } 3946 #else 3947 static inline struct page * 3948 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order, 3949 unsigned int alloc_flags, const struct alloc_context *ac, 3950 enum compact_priority prio, enum compact_result *compact_result) 3951 { 3952 *compact_result = COMPACT_SKIPPED; 3953 return NULL; 3954 } 3955 3956 static inline bool 3957 should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags, 3958 enum compact_result compact_result, 3959 enum compact_priority *compact_priority, 3960 int *compaction_retries) 3961 { 3962 struct zone *zone; 3963 struct zoneref *z; 3964 3965 if (!order || order > PAGE_ALLOC_COSTLY_ORDER) 3966 return false; 3967 3968 /* 3969 * There are setups with compaction disabled which would prefer to loop 3970 * inside the allocator rather than hit the oom killer prematurely. 3971 * Let's give them a good hope and keep retrying while the order-0 3972 * watermarks are OK. 3973 */ 3974 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx, 3975 ac->nodemask) { 3976 if (zone_watermark_ok(zone, 0, min_wmark_pages(zone), 3977 ac_classzone_idx(ac), alloc_flags)) 3978 return true; 3979 } 3980 return false; 3981 } 3982 #endif /* CONFIG_COMPACTION */ 3983 3984 #ifdef CONFIG_LOCKDEP 3985 static struct lockdep_map __fs_reclaim_map = 3986 STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map); 3987 3988 static bool __need_fs_reclaim(gfp_t gfp_mask) 3989 { 3990 gfp_mask = current_gfp_context(gfp_mask); 3991 3992 /* no reclaim without waiting on it */ 3993 if (!(gfp_mask & __GFP_DIRECT_RECLAIM)) 3994 return false; 3995 3996 /* this guy won't enter reclaim */ 3997 if (current->flags & PF_MEMALLOC) 3998 return false; 3999 4000 /* We're only interested __GFP_FS allocations for now */ 4001 if (!(gfp_mask & __GFP_FS)) 4002 return false; 4003 4004 if (gfp_mask & __GFP_NOLOCKDEP) 4005 return false; 4006 4007 return true; 4008 } 4009 4010 void __fs_reclaim_acquire(void) 4011 { 4012 lock_map_acquire(&__fs_reclaim_map); 4013 } 4014 4015 void __fs_reclaim_release(void) 4016 { 4017 lock_map_release(&__fs_reclaim_map); 4018 } 4019 4020 void fs_reclaim_acquire(gfp_t gfp_mask) 4021 { 4022 if (__need_fs_reclaim(gfp_mask)) 4023 __fs_reclaim_acquire(); 4024 } 4025 EXPORT_SYMBOL_GPL(fs_reclaim_acquire); 4026 4027 void fs_reclaim_release(gfp_t gfp_mask) 4028 { 4029 if (__need_fs_reclaim(gfp_mask)) 4030 __fs_reclaim_release(); 4031 } 4032 EXPORT_SYMBOL_GPL(fs_reclaim_release); 4033 #endif 4034 4035 /* Perform direct synchronous page reclaim */ 4036 static int 4037 __perform_reclaim(gfp_t gfp_mask, unsigned int order, 4038 const struct alloc_context *ac) 4039 { 4040 struct reclaim_state reclaim_state; 4041 int progress; 4042 unsigned int noreclaim_flag; 4043 unsigned long pflags; 4044 4045 cond_resched(); 4046 4047 /* We now go into synchronous reclaim */ 4048 cpuset_memory_pressure_bump(); 4049 psi_memstall_enter(&pflags); 4050 fs_reclaim_acquire(gfp_mask); 4051 noreclaim_flag = memalloc_noreclaim_save(); 4052 reclaim_state.reclaimed_slab = 0; 4053 current->reclaim_state = &reclaim_state; 4054 4055 progress = try_to_free_pages(ac->zonelist, order, gfp_mask, 4056 ac->nodemask); 4057 4058 current->reclaim_state = NULL; 4059 memalloc_noreclaim_restore(noreclaim_flag); 4060 fs_reclaim_release(gfp_mask); 4061 psi_memstall_leave(&pflags); 4062 4063 cond_resched(); 4064 4065 return progress; 4066 } 4067 4068 /* The really slow allocator path where we enter direct reclaim */ 4069 static inline struct page * 4070 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order, 4071 unsigned int alloc_flags, const struct alloc_context *ac, 4072 unsigned long *did_some_progress) 4073 { 4074 struct page *page = NULL; 4075 bool drained = false; 4076 4077 *did_some_progress = __perform_reclaim(gfp_mask, order, ac); 4078 if (unlikely(!(*did_some_progress))) 4079 return NULL; 4080 4081 retry: 4082 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 4083 4084 /* 4085 * If an allocation failed after direct reclaim, it could be because 4086 * pages are pinned on the per-cpu lists or in high alloc reserves. 4087 * Shrink them them and try again 4088 */ 4089 if (!page && !drained) { 4090 unreserve_highatomic_pageblock(ac, false); 4091 drain_all_pages(NULL); 4092 drained = true; 4093 goto retry; 4094 } 4095 4096 return page; 4097 } 4098 4099 static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask, 4100 const struct alloc_context *ac) 4101 { 4102 struct zoneref *z; 4103 struct zone *zone; 4104 pg_data_t *last_pgdat = NULL; 4105 enum zone_type high_zoneidx = ac->high_zoneidx; 4106 4107 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, high_zoneidx, 4108 ac->nodemask) { 4109 if (last_pgdat != zone->zone_pgdat) 4110 wakeup_kswapd(zone, gfp_mask, order, high_zoneidx); 4111 last_pgdat = zone->zone_pgdat; 4112 } 4113 } 4114 4115 static inline unsigned int 4116 gfp_to_alloc_flags(gfp_t gfp_mask) 4117 { 4118 unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET; 4119 4120 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */ 4121 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH); 4122 4123 /* 4124 * The caller may dip into page reserves a bit more if the caller 4125 * cannot run direct reclaim, or if the caller has realtime scheduling 4126 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will 4127 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH). 4128 */ 4129 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH); 4130 4131 if (gfp_mask & __GFP_ATOMIC) { 4132 /* 4133 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even 4134 * if it can't schedule. 4135 */ 4136 if (!(gfp_mask & __GFP_NOMEMALLOC)) 4137 alloc_flags |= ALLOC_HARDER; 4138 /* 4139 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the 4140 * comment for __cpuset_node_allowed(). 4141 */ 4142 alloc_flags &= ~ALLOC_CPUSET; 4143 } else if (unlikely(rt_task(current)) && !in_interrupt()) 4144 alloc_flags |= ALLOC_HARDER; 4145 4146 if (gfp_mask & __GFP_KSWAPD_RECLAIM) 4147 alloc_flags |= ALLOC_KSWAPD; 4148 4149 #ifdef CONFIG_CMA 4150 if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE) 4151 alloc_flags |= ALLOC_CMA; 4152 #endif 4153 return alloc_flags; 4154 } 4155 4156 static bool oom_reserves_allowed(struct task_struct *tsk) 4157 { 4158 if (!tsk_is_oom_victim(tsk)) 4159 return false; 4160 4161 /* 4162 * !MMU doesn't have oom reaper so give access to memory reserves 4163 * only to the thread with TIF_MEMDIE set 4164 */ 4165 if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE)) 4166 return false; 4167 4168 return true; 4169 } 4170 4171 /* 4172 * Distinguish requests which really need access to full memory 4173 * reserves from oom victims which can live with a portion of it 4174 */ 4175 static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask) 4176 { 4177 if (unlikely(gfp_mask & __GFP_NOMEMALLOC)) 4178 return 0; 4179 if (gfp_mask & __GFP_MEMALLOC) 4180 return ALLOC_NO_WATERMARKS; 4181 if (in_serving_softirq() && (current->flags & PF_MEMALLOC)) 4182 return ALLOC_NO_WATERMARKS; 4183 if (!in_interrupt()) { 4184 if (current->flags & PF_MEMALLOC) 4185 return ALLOC_NO_WATERMARKS; 4186 else if (oom_reserves_allowed(current)) 4187 return ALLOC_OOM; 4188 } 4189 4190 return 0; 4191 } 4192 4193 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask) 4194 { 4195 return !!__gfp_pfmemalloc_flags(gfp_mask); 4196 } 4197 4198 /* 4199 * Checks whether it makes sense to retry the reclaim to make a forward progress 4200 * for the given allocation request. 4201 * 4202 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row 4203 * without success, or when we couldn't even meet the watermark if we 4204 * reclaimed all remaining pages on the LRU lists. 4205 * 4206 * Returns true if a retry is viable or false to enter the oom path. 4207 */ 4208 static inline bool 4209 should_reclaim_retry(gfp_t gfp_mask, unsigned order, 4210 struct alloc_context *ac, int alloc_flags, 4211 bool did_some_progress, int *no_progress_loops) 4212 { 4213 struct zone *zone; 4214 struct zoneref *z; 4215 bool ret = false; 4216 4217 /* 4218 * Costly allocations might have made a progress but this doesn't mean 4219 * their order will become available due to high fragmentation so 4220 * always increment the no progress counter for them 4221 */ 4222 if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER) 4223 *no_progress_loops = 0; 4224 else 4225 (*no_progress_loops)++; 4226 4227 /* 4228 * Make sure we converge to OOM if we cannot make any progress 4229 * several times in the row. 4230 */ 4231 if (*no_progress_loops > MAX_RECLAIM_RETRIES) { 4232 /* Before OOM, exhaust highatomic_reserve */ 4233 return unreserve_highatomic_pageblock(ac, true); 4234 } 4235 4236 /* 4237 * Keep reclaiming pages while there is a chance this will lead 4238 * somewhere. If none of the target zones can satisfy our allocation 4239 * request even if all reclaimable pages are considered then we are 4240 * screwed and have to go OOM. 4241 */ 4242 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx, 4243 ac->nodemask) { 4244 unsigned long available; 4245 unsigned long reclaimable; 4246 unsigned long min_wmark = min_wmark_pages(zone); 4247 bool wmark; 4248 4249 available = reclaimable = zone_reclaimable_pages(zone); 4250 available += zone_page_state_snapshot(zone, NR_FREE_PAGES); 4251 4252 /* 4253 * Would the allocation succeed if we reclaimed all 4254 * reclaimable pages? 4255 */ 4256 wmark = __zone_watermark_ok(zone, order, min_wmark, 4257 ac_classzone_idx(ac), alloc_flags, available); 4258 trace_reclaim_retry_zone(z, order, reclaimable, 4259 available, min_wmark, *no_progress_loops, wmark); 4260 if (wmark) { 4261 /* 4262 * If we didn't make any progress and have a lot of 4263 * dirty + writeback pages then we should wait for 4264 * an IO to complete to slow down the reclaim and 4265 * prevent from pre mature OOM 4266 */ 4267 if (!did_some_progress) { 4268 unsigned long write_pending; 4269 4270 write_pending = zone_page_state_snapshot(zone, 4271 NR_ZONE_WRITE_PENDING); 4272 4273 if (2 * write_pending > reclaimable) { 4274 congestion_wait(BLK_RW_ASYNC, HZ/10); 4275 return true; 4276 } 4277 } 4278 4279 ret = true; 4280 goto out; 4281 } 4282 } 4283 4284 out: 4285 /* 4286 * Memory allocation/reclaim might be called from a WQ context and the 4287 * current implementation of the WQ concurrency control doesn't 4288 * recognize that a particular WQ is congested if the worker thread is 4289 * looping without ever sleeping. Therefore we have to do a short sleep 4290 * here rather than calling cond_resched(). 4291 */ 4292 if (current->flags & PF_WQ_WORKER) 4293 schedule_timeout_uninterruptible(1); 4294 else 4295 cond_resched(); 4296 return ret; 4297 } 4298 4299 static inline bool 4300 check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac) 4301 { 4302 /* 4303 * It's possible that cpuset's mems_allowed and the nodemask from 4304 * mempolicy don't intersect. This should be normally dealt with by 4305 * policy_nodemask(), but it's possible to race with cpuset update in 4306 * such a way the check therein was true, and then it became false 4307 * before we got our cpuset_mems_cookie here. 4308 * This assumes that for all allocations, ac->nodemask can come only 4309 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored 4310 * when it does not intersect with the cpuset restrictions) or the 4311 * caller can deal with a violated nodemask. 4312 */ 4313 if (cpusets_enabled() && ac->nodemask && 4314 !cpuset_nodemask_valid_mems_allowed(ac->nodemask)) { 4315 ac->nodemask = NULL; 4316 return true; 4317 } 4318 4319 /* 4320 * When updating a task's mems_allowed or mempolicy nodemask, it is 4321 * possible to race with parallel threads in such a way that our 4322 * allocation can fail while the mask is being updated. If we are about 4323 * to fail, check if the cpuset changed during allocation and if so, 4324 * retry. 4325 */ 4326 if (read_mems_allowed_retry(cpuset_mems_cookie)) 4327 return true; 4328 4329 return false; 4330 } 4331 4332 static inline struct page * 4333 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order, 4334 struct alloc_context *ac) 4335 { 4336 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM; 4337 const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER; 4338 struct page *page = NULL; 4339 unsigned int alloc_flags; 4340 unsigned long did_some_progress; 4341 enum compact_priority compact_priority; 4342 enum compact_result compact_result; 4343 int compaction_retries; 4344 int no_progress_loops; 4345 unsigned int cpuset_mems_cookie; 4346 int reserve_flags; 4347 4348 /* 4349 * We also sanity check to catch abuse of atomic reserves being used by 4350 * callers that are not in atomic context. 4351 */ 4352 if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) == 4353 (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM))) 4354 gfp_mask &= ~__GFP_ATOMIC; 4355 4356 retry_cpuset: 4357 compaction_retries = 0; 4358 no_progress_loops = 0; 4359 compact_priority = DEF_COMPACT_PRIORITY; 4360 cpuset_mems_cookie = read_mems_allowed_begin(); 4361 4362 /* 4363 * The fast path uses conservative alloc_flags to succeed only until 4364 * kswapd needs to be woken up, and to avoid the cost of setting up 4365 * alloc_flags precisely. So we do that now. 4366 */ 4367 alloc_flags = gfp_to_alloc_flags(gfp_mask); 4368 4369 /* 4370 * We need to recalculate the starting point for the zonelist iterator 4371 * because we might have used different nodemask in the fast path, or 4372 * there was a cpuset modification and we are retrying - otherwise we 4373 * could end up iterating over non-eligible zones endlessly. 4374 */ 4375 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist, 4376 ac->high_zoneidx, ac->nodemask); 4377 if (!ac->preferred_zoneref->zone) 4378 goto nopage; 4379 4380 if (alloc_flags & ALLOC_KSWAPD) 4381 wake_all_kswapds(order, gfp_mask, ac); 4382 4383 /* 4384 * The adjusted alloc_flags might result in immediate success, so try 4385 * that first 4386 */ 4387 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 4388 if (page) 4389 goto got_pg; 4390 4391 /* 4392 * For costly allocations, try direct compaction first, as it's likely 4393 * that we have enough base pages and don't need to reclaim. For non- 4394 * movable high-order allocations, do that as well, as compaction will 4395 * try prevent permanent fragmentation by migrating from blocks of the 4396 * same migratetype. 4397 * Don't try this for allocations that are allowed to ignore 4398 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen. 4399 */ 4400 if (can_direct_reclaim && 4401 (costly_order || 4402 (order > 0 && ac->migratetype != MIGRATE_MOVABLE)) 4403 && !gfp_pfmemalloc_allowed(gfp_mask)) { 4404 page = __alloc_pages_direct_compact(gfp_mask, order, 4405 alloc_flags, ac, 4406 INIT_COMPACT_PRIORITY, 4407 &compact_result); 4408 if (page) 4409 goto got_pg; 4410 4411 /* 4412 * Checks for costly allocations with __GFP_NORETRY, which 4413 * includes THP page fault allocations 4414 */ 4415 if (costly_order && (gfp_mask & __GFP_NORETRY)) { 4416 /* 4417 * If compaction is deferred for high-order allocations, 4418 * it is because sync compaction recently failed. If 4419 * this is the case and the caller requested a THP 4420 * allocation, we do not want to heavily disrupt the 4421 * system, so we fail the allocation instead of entering 4422 * direct reclaim. 4423 */ 4424 if (compact_result == COMPACT_DEFERRED) 4425 goto nopage; 4426 4427 /* 4428 * Looks like reclaim/compaction is worth trying, but 4429 * sync compaction could be very expensive, so keep 4430 * using async compaction. 4431 */ 4432 compact_priority = INIT_COMPACT_PRIORITY; 4433 } 4434 } 4435 4436 retry: 4437 /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */ 4438 if (alloc_flags & ALLOC_KSWAPD) 4439 wake_all_kswapds(order, gfp_mask, ac); 4440 4441 reserve_flags = __gfp_pfmemalloc_flags(gfp_mask); 4442 if (reserve_flags) 4443 alloc_flags = reserve_flags; 4444 4445 /* 4446 * Reset the nodemask and zonelist iterators if memory policies can be 4447 * ignored. These allocations are high priority and system rather than 4448 * user oriented. 4449 */ 4450 if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) { 4451 ac->nodemask = NULL; 4452 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist, 4453 ac->high_zoneidx, ac->nodemask); 4454 } 4455 4456 /* Attempt with potentially adjusted zonelist and alloc_flags */ 4457 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 4458 if (page) 4459 goto got_pg; 4460 4461 /* Caller is not willing to reclaim, we can't balance anything */ 4462 if (!can_direct_reclaim) 4463 goto nopage; 4464 4465 /* Avoid recursion of direct reclaim */ 4466 if (current->flags & PF_MEMALLOC) 4467 goto nopage; 4468 4469 /* Try direct reclaim and then allocating */ 4470 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac, 4471 &did_some_progress); 4472 if (page) 4473 goto got_pg; 4474 4475 /* Try direct compaction and then allocating */ 4476 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac, 4477 compact_priority, &compact_result); 4478 if (page) 4479 goto got_pg; 4480 4481 /* Do not loop if specifically requested */ 4482 if (gfp_mask & __GFP_NORETRY) 4483 goto nopage; 4484 4485 /* 4486 * Do not retry costly high order allocations unless they are 4487 * __GFP_RETRY_MAYFAIL 4488 */ 4489 if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL)) 4490 goto nopage; 4491 4492 if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags, 4493 did_some_progress > 0, &no_progress_loops)) 4494 goto retry; 4495 4496 /* 4497 * It doesn't make any sense to retry for the compaction if the order-0 4498 * reclaim is not able to make any progress because the current 4499 * implementation of the compaction depends on the sufficient amount 4500 * of free memory (see __compaction_suitable) 4501 */ 4502 if (did_some_progress > 0 && 4503 should_compact_retry(ac, order, alloc_flags, 4504 compact_result, &compact_priority, 4505 &compaction_retries)) 4506 goto retry; 4507 4508 4509 /* Deal with possible cpuset update races before we start OOM killing */ 4510 if (check_retry_cpuset(cpuset_mems_cookie, ac)) 4511 goto retry_cpuset; 4512 4513 /* Reclaim has failed us, start killing things */ 4514 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress); 4515 if (page) 4516 goto got_pg; 4517 4518 /* Avoid allocations with no watermarks from looping endlessly */ 4519 if (tsk_is_oom_victim(current) && 4520 (alloc_flags == ALLOC_OOM || 4521 (gfp_mask & __GFP_NOMEMALLOC))) 4522 goto nopage; 4523 4524 /* Retry as long as the OOM killer is making progress */ 4525 if (did_some_progress) { 4526 no_progress_loops = 0; 4527 goto retry; 4528 } 4529 4530 nopage: 4531 /* Deal with possible cpuset update races before we fail */ 4532 if (check_retry_cpuset(cpuset_mems_cookie, ac)) 4533 goto retry_cpuset; 4534 4535 /* 4536 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure 4537 * we always retry 4538 */ 4539 if (gfp_mask & __GFP_NOFAIL) { 4540 /* 4541 * All existing users of the __GFP_NOFAIL are blockable, so warn 4542 * of any new users that actually require GFP_NOWAIT 4543 */ 4544 if (WARN_ON_ONCE(!can_direct_reclaim)) 4545 goto fail; 4546 4547 /* 4548 * PF_MEMALLOC request from this context is rather bizarre 4549 * because we cannot reclaim anything and only can loop waiting 4550 * for somebody to do a work for us 4551 */ 4552 WARN_ON_ONCE(current->flags & PF_MEMALLOC); 4553 4554 /* 4555 * non failing costly orders are a hard requirement which we 4556 * are not prepared for much so let's warn about these users 4557 * so that we can identify them and convert them to something 4558 * else. 4559 */ 4560 WARN_ON_ONCE(order > PAGE_ALLOC_COSTLY_ORDER); 4561 4562 /* 4563 * Help non-failing allocations by giving them access to memory 4564 * reserves but do not use ALLOC_NO_WATERMARKS because this 4565 * could deplete whole memory reserves which would just make 4566 * the situation worse 4567 */ 4568 page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac); 4569 if (page) 4570 goto got_pg; 4571 4572 cond_resched(); 4573 goto retry; 4574 } 4575 fail: 4576 warn_alloc(gfp_mask, ac->nodemask, 4577 "page allocation failure: order:%u", order); 4578 got_pg: 4579 return page; 4580 } 4581 4582 static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order, 4583 int preferred_nid, nodemask_t *nodemask, 4584 struct alloc_context *ac, gfp_t *alloc_mask, 4585 unsigned int *alloc_flags) 4586 { 4587 ac->high_zoneidx = gfp_zone(gfp_mask); 4588 ac->zonelist = node_zonelist(preferred_nid, gfp_mask); 4589 ac->nodemask = nodemask; 4590 ac->migratetype = gfpflags_to_migratetype(gfp_mask); 4591 4592 if (cpusets_enabled()) { 4593 *alloc_mask |= __GFP_HARDWALL; 4594 if (!ac->nodemask) 4595 ac->nodemask = &cpuset_current_mems_allowed; 4596 else 4597 *alloc_flags |= ALLOC_CPUSET; 4598 } 4599 4600 fs_reclaim_acquire(gfp_mask); 4601 fs_reclaim_release(gfp_mask); 4602 4603 might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM); 4604 4605 if (should_fail_alloc_page(gfp_mask, order)) 4606 return false; 4607 4608 if (IS_ENABLED(CONFIG_CMA) && ac->migratetype == MIGRATE_MOVABLE) 4609 *alloc_flags |= ALLOC_CMA; 4610 4611 return true; 4612 } 4613 4614 /* Determine whether to spread dirty pages and what the first usable zone */ 4615 static inline void finalise_ac(gfp_t gfp_mask, struct alloc_context *ac) 4616 { 4617 /* Dirty zone balancing only done in the fast path */ 4618 ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE); 4619 4620 /* 4621 * The preferred zone is used for statistics but crucially it is 4622 * also used as the starting point for the zonelist iterator. It 4623 * may get reset for allocations that ignore memory policies. 4624 */ 4625 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist, 4626 ac->high_zoneidx, ac->nodemask); 4627 } 4628 4629 /* 4630 * This is the 'heart' of the zoned buddy allocator. 4631 */ 4632 struct page * 4633 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order, int preferred_nid, 4634 nodemask_t *nodemask) 4635 { 4636 struct page *page; 4637 unsigned int alloc_flags = ALLOC_WMARK_LOW; 4638 gfp_t alloc_mask; /* The gfp_t that was actually used for allocation */ 4639 struct alloc_context ac = { }; 4640 4641 /* 4642 * There are several places where we assume that the order value is sane 4643 * so bail out early if the request is out of bound. 4644 */ 4645 if (unlikely(order >= MAX_ORDER)) { 4646 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN)); 4647 return NULL; 4648 } 4649 4650 gfp_mask &= gfp_allowed_mask; 4651 alloc_mask = gfp_mask; 4652 if (!prepare_alloc_pages(gfp_mask, order, preferred_nid, nodemask, &ac, &alloc_mask, &alloc_flags)) 4653 return NULL; 4654 4655 finalise_ac(gfp_mask, &ac); 4656 4657 /* 4658 * Forbid the first pass from falling back to types that fragment 4659 * memory until all local zones are considered. 4660 */ 4661 alloc_flags |= alloc_flags_nofragment(ac.preferred_zoneref->zone, gfp_mask); 4662 4663 /* First allocation attempt */ 4664 page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac); 4665 if (likely(page)) 4666 goto out; 4667 4668 /* 4669 * Apply scoped allocation constraints. This is mainly about GFP_NOFS 4670 * resp. GFP_NOIO which has to be inherited for all allocation requests 4671 * from a particular context which has been marked by 4672 * memalloc_no{fs,io}_{save,restore}. 4673 */ 4674 alloc_mask = current_gfp_context(gfp_mask); 4675 ac.spread_dirty_pages = false; 4676 4677 /* 4678 * Restore the original nodemask if it was potentially replaced with 4679 * &cpuset_current_mems_allowed to optimize the fast-path attempt. 4680 */ 4681 if (unlikely(ac.nodemask != nodemask)) 4682 ac.nodemask = nodemask; 4683 4684 page = __alloc_pages_slowpath(alloc_mask, order, &ac); 4685 4686 out: 4687 if (memcg_kmem_enabled() && (gfp_mask & __GFP_ACCOUNT) && page && 4688 unlikely(__memcg_kmem_charge(page, gfp_mask, order) != 0)) { 4689 __free_pages(page, order); 4690 page = NULL; 4691 } 4692 4693 trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype); 4694 4695 return page; 4696 } 4697 EXPORT_SYMBOL(__alloc_pages_nodemask); 4698 4699 /* 4700 * Common helper functions. Never use with __GFP_HIGHMEM because the returned 4701 * address cannot represent highmem pages. Use alloc_pages and then kmap if 4702 * you need to access high mem. 4703 */ 4704 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order) 4705 { 4706 struct page *page; 4707 4708 page = alloc_pages(gfp_mask & ~__GFP_HIGHMEM, order); 4709 if (!page) 4710 return 0; 4711 return (unsigned long) page_address(page); 4712 } 4713 EXPORT_SYMBOL(__get_free_pages); 4714 4715 unsigned long get_zeroed_page(gfp_t gfp_mask) 4716 { 4717 return __get_free_pages(gfp_mask | __GFP_ZERO, 0); 4718 } 4719 EXPORT_SYMBOL(get_zeroed_page); 4720 4721 static inline void free_the_page(struct page *page, unsigned int order) 4722 { 4723 if (order == 0) /* Via pcp? */ 4724 free_unref_page(page); 4725 else 4726 __free_pages_ok(page, order); 4727 } 4728 4729 void __free_pages(struct page *page, unsigned int order) 4730 { 4731 if (put_page_testzero(page)) 4732 free_the_page(page, order); 4733 } 4734 EXPORT_SYMBOL(__free_pages); 4735 4736 void free_pages(unsigned long addr, unsigned int order) 4737 { 4738 if (addr != 0) { 4739 VM_BUG_ON(!virt_addr_valid((void *)addr)); 4740 __free_pages(virt_to_page((void *)addr), order); 4741 } 4742 } 4743 4744 EXPORT_SYMBOL(free_pages); 4745 4746 /* 4747 * Page Fragment: 4748 * An arbitrary-length arbitrary-offset area of memory which resides 4749 * within a 0 or higher order page. Multiple fragments within that page 4750 * are individually refcounted, in the page's reference counter. 4751 * 4752 * The page_frag functions below provide a simple allocation framework for 4753 * page fragments. This is used by the network stack and network device 4754 * drivers to provide a backing region of memory for use as either an 4755 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info. 4756 */ 4757 static struct page *__page_frag_cache_refill(struct page_frag_cache *nc, 4758 gfp_t gfp_mask) 4759 { 4760 struct page *page = NULL; 4761 gfp_t gfp = gfp_mask; 4762 4763 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE) 4764 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY | 4765 __GFP_NOMEMALLOC; 4766 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask, 4767 PAGE_FRAG_CACHE_MAX_ORDER); 4768 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE; 4769 #endif 4770 if (unlikely(!page)) 4771 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0); 4772 4773 nc->va = page ? page_address(page) : NULL; 4774 4775 return page; 4776 } 4777 4778 void __page_frag_cache_drain(struct page *page, unsigned int count) 4779 { 4780 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page); 4781 4782 if (page_ref_sub_and_test(page, count)) 4783 free_the_page(page, compound_order(page)); 4784 } 4785 EXPORT_SYMBOL(__page_frag_cache_drain); 4786 4787 void *page_frag_alloc(struct page_frag_cache *nc, 4788 unsigned int fragsz, gfp_t gfp_mask) 4789 { 4790 unsigned int size = PAGE_SIZE; 4791 struct page *page; 4792 int offset; 4793 4794 if (unlikely(!nc->va)) { 4795 refill: 4796 page = __page_frag_cache_refill(nc, gfp_mask); 4797 if (!page) 4798 return NULL; 4799 4800 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE) 4801 /* if size can vary use size else just use PAGE_SIZE */ 4802 size = nc->size; 4803 #endif 4804 /* Even if we own the page, we do not use atomic_set(). 4805 * This would break get_page_unless_zero() users. 4806 */ 4807 page_ref_add(page, PAGE_FRAG_CACHE_MAX_SIZE); 4808 4809 /* reset page count bias and offset to start of new frag */ 4810 nc->pfmemalloc = page_is_pfmemalloc(page); 4811 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1; 4812 nc->offset = size; 4813 } 4814 4815 offset = nc->offset - fragsz; 4816 if (unlikely(offset < 0)) { 4817 page = virt_to_page(nc->va); 4818 4819 if (!page_ref_sub_and_test(page, nc->pagecnt_bias)) 4820 goto refill; 4821 4822 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE) 4823 /* if size can vary use size else just use PAGE_SIZE */ 4824 size = nc->size; 4825 #endif 4826 /* OK, page count is 0, we can safely set it */ 4827 set_page_count(page, PAGE_FRAG_CACHE_MAX_SIZE + 1); 4828 4829 /* reset page count bias and offset to start of new frag */ 4830 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1; 4831 offset = size - fragsz; 4832 } 4833 4834 nc->pagecnt_bias--; 4835 nc->offset = offset; 4836 4837 return nc->va + offset; 4838 } 4839 EXPORT_SYMBOL(page_frag_alloc); 4840 4841 /* 4842 * Frees a page fragment allocated out of either a compound or order 0 page. 4843 */ 4844 void page_frag_free(void *addr) 4845 { 4846 struct page *page = virt_to_head_page(addr); 4847 4848 if (unlikely(put_page_testzero(page))) 4849 free_the_page(page, compound_order(page)); 4850 } 4851 EXPORT_SYMBOL(page_frag_free); 4852 4853 static void *make_alloc_exact(unsigned long addr, unsigned int order, 4854 size_t size) 4855 { 4856 if (addr) { 4857 unsigned long alloc_end = addr + (PAGE_SIZE << order); 4858 unsigned long used = addr + PAGE_ALIGN(size); 4859 4860 split_page(virt_to_page((void *)addr), order); 4861 while (used < alloc_end) { 4862 free_page(used); 4863 used += PAGE_SIZE; 4864 } 4865 } 4866 return (void *)addr; 4867 } 4868 4869 /** 4870 * alloc_pages_exact - allocate an exact number physically-contiguous pages. 4871 * @size: the number of bytes to allocate 4872 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP 4873 * 4874 * This function is similar to alloc_pages(), except that it allocates the 4875 * minimum number of pages to satisfy the request. alloc_pages() can only 4876 * allocate memory in power-of-two pages. 4877 * 4878 * This function is also limited by MAX_ORDER. 4879 * 4880 * Memory allocated by this function must be released by free_pages_exact(). 4881 * 4882 * Return: pointer to the allocated area or %NULL in case of error. 4883 */ 4884 void *alloc_pages_exact(size_t size, gfp_t gfp_mask) 4885 { 4886 unsigned int order = get_order(size); 4887 unsigned long addr; 4888 4889 if (WARN_ON_ONCE(gfp_mask & __GFP_COMP)) 4890 gfp_mask &= ~__GFP_COMP; 4891 4892 addr = __get_free_pages(gfp_mask, order); 4893 return make_alloc_exact(addr, order, size); 4894 } 4895 EXPORT_SYMBOL(alloc_pages_exact); 4896 4897 /** 4898 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous 4899 * pages on a node. 4900 * @nid: the preferred node ID where memory should be allocated 4901 * @size: the number of bytes to allocate 4902 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP 4903 * 4904 * Like alloc_pages_exact(), but try to allocate on node nid first before falling 4905 * back. 4906 * 4907 * Return: pointer to the allocated area or %NULL in case of error. 4908 */ 4909 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask) 4910 { 4911 unsigned int order = get_order(size); 4912 struct page *p; 4913 4914 if (WARN_ON_ONCE(gfp_mask & __GFP_COMP)) 4915 gfp_mask &= ~__GFP_COMP; 4916 4917 p = alloc_pages_node(nid, gfp_mask, order); 4918 if (!p) 4919 return NULL; 4920 return make_alloc_exact((unsigned long)page_address(p), order, size); 4921 } 4922 4923 /** 4924 * free_pages_exact - release memory allocated via alloc_pages_exact() 4925 * @virt: the value returned by alloc_pages_exact. 4926 * @size: size of allocation, same value as passed to alloc_pages_exact(). 4927 * 4928 * Release the memory allocated by a previous call to alloc_pages_exact. 4929 */ 4930 void free_pages_exact(void *virt, size_t size) 4931 { 4932 unsigned long addr = (unsigned long)virt; 4933 unsigned long end = addr + PAGE_ALIGN(size); 4934 4935 while (addr < end) { 4936 free_page(addr); 4937 addr += PAGE_SIZE; 4938 } 4939 } 4940 EXPORT_SYMBOL(free_pages_exact); 4941 4942 /** 4943 * nr_free_zone_pages - count number of pages beyond high watermark 4944 * @offset: The zone index of the highest zone 4945 * 4946 * nr_free_zone_pages() counts the number of pages which are beyond the 4947 * high watermark within all zones at or below a given zone index. For each 4948 * zone, the number of pages is calculated as: 4949 * 4950 * nr_free_zone_pages = managed_pages - high_pages 4951 * 4952 * Return: number of pages beyond high watermark. 4953 */ 4954 static unsigned long nr_free_zone_pages(int offset) 4955 { 4956 struct zoneref *z; 4957 struct zone *zone; 4958 4959 /* Just pick one node, since fallback list is circular */ 4960 unsigned long sum = 0; 4961 4962 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL); 4963 4964 for_each_zone_zonelist(zone, z, zonelist, offset) { 4965 unsigned long size = zone_managed_pages(zone); 4966 unsigned long high = high_wmark_pages(zone); 4967 if (size > high) 4968 sum += size - high; 4969 } 4970 4971 return sum; 4972 } 4973 4974 /** 4975 * nr_free_buffer_pages - count number of pages beyond high watermark 4976 * 4977 * nr_free_buffer_pages() counts the number of pages which are beyond the high 4978 * watermark within ZONE_DMA and ZONE_NORMAL. 4979 * 4980 * Return: number of pages beyond high watermark within ZONE_DMA and 4981 * ZONE_NORMAL. 4982 */ 4983 unsigned long nr_free_buffer_pages(void) 4984 { 4985 return nr_free_zone_pages(gfp_zone(GFP_USER)); 4986 } 4987 EXPORT_SYMBOL_GPL(nr_free_buffer_pages); 4988 4989 /** 4990 * nr_free_pagecache_pages - count number of pages beyond high watermark 4991 * 4992 * nr_free_pagecache_pages() counts the number of pages which are beyond the 4993 * high watermark within all zones. 4994 * 4995 * Return: number of pages beyond high watermark within all zones. 4996 */ 4997 unsigned long nr_free_pagecache_pages(void) 4998 { 4999 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE)); 5000 } 5001 5002 static inline void show_node(struct zone *zone) 5003 { 5004 if (IS_ENABLED(CONFIG_NUMA)) 5005 printk("Node %d ", zone_to_nid(zone)); 5006 } 5007 5008 long si_mem_available(void) 5009 { 5010 long available; 5011 unsigned long pagecache; 5012 unsigned long wmark_low = 0; 5013 unsigned long pages[NR_LRU_LISTS]; 5014 unsigned long reclaimable; 5015 struct zone *zone; 5016 int lru; 5017 5018 for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++) 5019 pages[lru] = global_node_page_state(NR_LRU_BASE + lru); 5020 5021 for_each_zone(zone) 5022 wmark_low += low_wmark_pages(zone); 5023 5024 /* 5025 * Estimate the amount of memory available for userspace allocations, 5026 * without causing swapping. 5027 */ 5028 available = global_zone_page_state(NR_FREE_PAGES) - totalreserve_pages; 5029 5030 /* 5031 * Not all the page cache can be freed, otherwise the system will 5032 * start swapping. Assume at least half of the page cache, or the 5033 * low watermark worth of cache, needs to stay. 5034 */ 5035 pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE]; 5036 pagecache -= min(pagecache / 2, wmark_low); 5037 available += pagecache; 5038 5039 /* 5040 * Part of the reclaimable slab and other kernel memory consists of 5041 * items that are in use, and cannot be freed. Cap this estimate at the 5042 * low watermark. 5043 */ 5044 reclaimable = global_node_page_state(NR_SLAB_RECLAIMABLE) + 5045 global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE); 5046 available += reclaimable - min(reclaimable / 2, wmark_low); 5047 5048 if (available < 0) 5049 available = 0; 5050 return available; 5051 } 5052 EXPORT_SYMBOL_GPL(si_mem_available); 5053 5054 void si_meminfo(struct sysinfo *val) 5055 { 5056 val->totalram = totalram_pages(); 5057 val->sharedram = global_node_page_state(NR_SHMEM); 5058 val->freeram = global_zone_page_state(NR_FREE_PAGES); 5059 val->bufferram = nr_blockdev_pages(); 5060 val->totalhigh = totalhigh_pages(); 5061 val->freehigh = nr_free_highpages(); 5062 val->mem_unit = PAGE_SIZE; 5063 } 5064 5065 EXPORT_SYMBOL(si_meminfo); 5066 5067 #ifdef CONFIG_NUMA 5068 void si_meminfo_node(struct sysinfo *val, int nid) 5069 { 5070 int zone_type; /* needs to be signed */ 5071 unsigned long managed_pages = 0; 5072 unsigned long managed_highpages = 0; 5073 unsigned long free_highpages = 0; 5074 pg_data_t *pgdat = NODE_DATA(nid); 5075 5076 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) 5077 managed_pages += zone_managed_pages(&pgdat->node_zones[zone_type]); 5078 val->totalram = managed_pages; 5079 val->sharedram = node_page_state(pgdat, NR_SHMEM); 5080 val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES); 5081 #ifdef CONFIG_HIGHMEM 5082 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) { 5083 struct zone *zone = &pgdat->node_zones[zone_type]; 5084 5085 if (is_highmem(zone)) { 5086 managed_highpages += zone_managed_pages(zone); 5087 free_highpages += zone_page_state(zone, NR_FREE_PAGES); 5088 } 5089 } 5090 val->totalhigh = managed_highpages; 5091 val->freehigh = free_highpages; 5092 #else 5093 val->totalhigh = managed_highpages; 5094 val->freehigh = free_highpages; 5095 #endif 5096 val->mem_unit = PAGE_SIZE; 5097 } 5098 #endif 5099 5100 /* 5101 * Determine whether the node should be displayed or not, depending on whether 5102 * SHOW_MEM_FILTER_NODES was passed to show_free_areas(). 5103 */ 5104 static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask) 5105 { 5106 if (!(flags & SHOW_MEM_FILTER_NODES)) 5107 return false; 5108 5109 /* 5110 * no node mask - aka implicit memory numa policy. Do not bother with 5111 * the synchronization - read_mems_allowed_begin - because we do not 5112 * have to be precise here. 5113 */ 5114 if (!nodemask) 5115 nodemask = &cpuset_current_mems_allowed; 5116 5117 return !node_isset(nid, *nodemask); 5118 } 5119 5120 #define K(x) ((x) << (PAGE_SHIFT-10)) 5121 5122 static void show_migration_types(unsigned char type) 5123 { 5124 static const char types[MIGRATE_TYPES] = { 5125 [MIGRATE_UNMOVABLE] = 'U', 5126 [MIGRATE_MOVABLE] = 'M', 5127 [MIGRATE_RECLAIMABLE] = 'E', 5128 [MIGRATE_HIGHATOMIC] = 'H', 5129 #ifdef CONFIG_CMA 5130 [MIGRATE_CMA] = 'C', 5131 #endif 5132 #ifdef CONFIG_MEMORY_ISOLATION 5133 [MIGRATE_ISOLATE] = 'I', 5134 #endif 5135 }; 5136 char tmp[MIGRATE_TYPES + 1]; 5137 char *p = tmp; 5138 int i; 5139 5140 for (i = 0; i < MIGRATE_TYPES; i++) { 5141 if (type & (1 << i)) 5142 *p++ = types[i]; 5143 } 5144 5145 *p = '\0'; 5146 printk(KERN_CONT "(%s) ", tmp); 5147 } 5148 5149 /* 5150 * Show free area list (used inside shift_scroll-lock stuff) 5151 * We also calculate the percentage fragmentation. We do this by counting the 5152 * memory on each free list with the exception of the first item on the list. 5153 * 5154 * Bits in @filter: 5155 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's 5156 * cpuset. 5157 */ 5158 void show_free_areas(unsigned int filter, nodemask_t *nodemask) 5159 { 5160 unsigned long free_pcp = 0; 5161 int cpu; 5162 struct zone *zone; 5163 pg_data_t *pgdat; 5164 5165 for_each_populated_zone(zone) { 5166 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask)) 5167 continue; 5168 5169 for_each_online_cpu(cpu) 5170 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count; 5171 } 5172 5173 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n" 5174 " active_file:%lu inactive_file:%lu isolated_file:%lu\n" 5175 " unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n" 5176 " slab_reclaimable:%lu slab_unreclaimable:%lu\n" 5177 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n" 5178 " free:%lu free_pcp:%lu free_cma:%lu\n", 5179 global_node_page_state(NR_ACTIVE_ANON), 5180 global_node_page_state(NR_INACTIVE_ANON), 5181 global_node_page_state(NR_ISOLATED_ANON), 5182 global_node_page_state(NR_ACTIVE_FILE), 5183 global_node_page_state(NR_INACTIVE_FILE), 5184 global_node_page_state(NR_ISOLATED_FILE), 5185 global_node_page_state(NR_UNEVICTABLE), 5186 global_node_page_state(NR_FILE_DIRTY), 5187 global_node_page_state(NR_WRITEBACK), 5188 global_node_page_state(NR_UNSTABLE_NFS), 5189 global_node_page_state(NR_SLAB_RECLAIMABLE), 5190 global_node_page_state(NR_SLAB_UNRECLAIMABLE), 5191 global_node_page_state(NR_FILE_MAPPED), 5192 global_node_page_state(NR_SHMEM), 5193 global_zone_page_state(NR_PAGETABLE), 5194 global_zone_page_state(NR_BOUNCE), 5195 global_zone_page_state(NR_FREE_PAGES), 5196 free_pcp, 5197 global_zone_page_state(NR_FREE_CMA_PAGES)); 5198 5199 for_each_online_pgdat(pgdat) { 5200 if (show_mem_node_skip(filter, pgdat->node_id, nodemask)) 5201 continue; 5202 5203 printk("Node %d" 5204 " active_anon:%lukB" 5205 " inactive_anon:%lukB" 5206 " active_file:%lukB" 5207 " inactive_file:%lukB" 5208 " unevictable:%lukB" 5209 " isolated(anon):%lukB" 5210 " isolated(file):%lukB" 5211 " mapped:%lukB" 5212 " dirty:%lukB" 5213 " writeback:%lukB" 5214 " shmem:%lukB" 5215 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 5216 " shmem_thp: %lukB" 5217 " shmem_pmdmapped: %lukB" 5218 " anon_thp: %lukB" 5219 #endif 5220 " writeback_tmp:%lukB" 5221 " unstable:%lukB" 5222 " all_unreclaimable? %s" 5223 "\n", 5224 pgdat->node_id, 5225 K(node_page_state(pgdat, NR_ACTIVE_ANON)), 5226 K(node_page_state(pgdat, NR_INACTIVE_ANON)), 5227 K(node_page_state(pgdat, NR_ACTIVE_FILE)), 5228 K(node_page_state(pgdat, NR_INACTIVE_FILE)), 5229 K(node_page_state(pgdat, NR_UNEVICTABLE)), 5230 K(node_page_state(pgdat, NR_ISOLATED_ANON)), 5231 K(node_page_state(pgdat, NR_ISOLATED_FILE)), 5232 K(node_page_state(pgdat, NR_FILE_MAPPED)), 5233 K(node_page_state(pgdat, NR_FILE_DIRTY)), 5234 K(node_page_state(pgdat, NR_WRITEBACK)), 5235 K(node_page_state(pgdat, NR_SHMEM)), 5236 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 5237 K(node_page_state(pgdat, NR_SHMEM_THPS) * HPAGE_PMD_NR), 5238 K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED) 5239 * HPAGE_PMD_NR), 5240 K(node_page_state(pgdat, NR_ANON_THPS) * HPAGE_PMD_NR), 5241 #endif 5242 K(node_page_state(pgdat, NR_WRITEBACK_TEMP)), 5243 K(node_page_state(pgdat, NR_UNSTABLE_NFS)), 5244 pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ? 5245 "yes" : "no"); 5246 } 5247 5248 for_each_populated_zone(zone) { 5249 int i; 5250 5251 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask)) 5252 continue; 5253 5254 free_pcp = 0; 5255 for_each_online_cpu(cpu) 5256 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count; 5257 5258 show_node(zone); 5259 printk(KERN_CONT 5260 "%s" 5261 " free:%lukB" 5262 " min:%lukB" 5263 " low:%lukB" 5264 " high:%lukB" 5265 " active_anon:%lukB" 5266 " inactive_anon:%lukB" 5267 " active_file:%lukB" 5268 " inactive_file:%lukB" 5269 " unevictable:%lukB" 5270 " writepending:%lukB" 5271 " present:%lukB" 5272 " managed:%lukB" 5273 " mlocked:%lukB" 5274 " kernel_stack:%lukB" 5275 " pagetables:%lukB" 5276 " bounce:%lukB" 5277 " free_pcp:%lukB" 5278 " local_pcp:%ukB" 5279 " free_cma:%lukB" 5280 "\n", 5281 zone->name, 5282 K(zone_page_state(zone, NR_FREE_PAGES)), 5283 K(min_wmark_pages(zone)), 5284 K(low_wmark_pages(zone)), 5285 K(high_wmark_pages(zone)), 5286 K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)), 5287 K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)), 5288 K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)), 5289 K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)), 5290 K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)), 5291 K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)), 5292 K(zone->present_pages), 5293 K(zone_managed_pages(zone)), 5294 K(zone_page_state(zone, NR_MLOCK)), 5295 zone_page_state(zone, NR_KERNEL_STACK_KB), 5296 K(zone_page_state(zone, NR_PAGETABLE)), 5297 K(zone_page_state(zone, NR_BOUNCE)), 5298 K(free_pcp), 5299 K(this_cpu_read(zone->pageset->pcp.count)), 5300 K(zone_page_state(zone, NR_FREE_CMA_PAGES))); 5301 printk("lowmem_reserve[]:"); 5302 for (i = 0; i < MAX_NR_ZONES; i++) 5303 printk(KERN_CONT " %ld", zone->lowmem_reserve[i]); 5304 printk(KERN_CONT "\n"); 5305 } 5306 5307 for_each_populated_zone(zone) { 5308 unsigned int order; 5309 unsigned long nr[MAX_ORDER], flags, total = 0; 5310 unsigned char types[MAX_ORDER]; 5311 5312 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask)) 5313 continue; 5314 show_node(zone); 5315 printk(KERN_CONT "%s: ", zone->name); 5316 5317 spin_lock_irqsave(&zone->lock, flags); 5318 for (order = 0; order < MAX_ORDER; order++) { 5319 struct free_area *area = &zone->free_area[order]; 5320 int type; 5321 5322 nr[order] = area->nr_free; 5323 total += nr[order] << order; 5324 5325 types[order] = 0; 5326 for (type = 0; type < MIGRATE_TYPES; type++) { 5327 if (!list_empty(&area->free_list[type])) 5328 types[order] |= 1 << type; 5329 } 5330 } 5331 spin_unlock_irqrestore(&zone->lock, flags); 5332 for (order = 0; order < MAX_ORDER; order++) { 5333 printk(KERN_CONT "%lu*%lukB ", 5334 nr[order], K(1UL) << order); 5335 if (nr[order]) 5336 show_migration_types(types[order]); 5337 } 5338 printk(KERN_CONT "= %lukB\n", K(total)); 5339 } 5340 5341 hugetlb_show_meminfo(); 5342 5343 printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES)); 5344 5345 show_swap_cache_info(); 5346 } 5347 5348 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref) 5349 { 5350 zoneref->zone = zone; 5351 zoneref->zone_idx = zone_idx(zone); 5352 } 5353 5354 /* 5355 * Builds allocation fallback zone lists. 5356 * 5357 * Add all populated zones of a node to the zonelist. 5358 */ 5359 static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs) 5360 { 5361 struct zone *zone; 5362 enum zone_type zone_type = MAX_NR_ZONES; 5363 int nr_zones = 0; 5364 5365 do { 5366 zone_type--; 5367 zone = pgdat->node_zones + zone_type; 5368 if (managed_zone(zone)) { 5369 zoneref_set_zone(zone, &zonerefs[nr_zones++]); 5370 check_highest_zone(zone_type); 5371 } 5372 } while (zone_type); 5373 5374 return nr_zones; 5375 } 5376 5377 #ifdef CONFIG_NUMA 5378 5379 static int __parse_numa_zonelist_order(char *s) 5380 { 5381 /* 5382 * We used to support different zonlists modes but they turned 5383 * out to be just not useful. Let's keep the warning in place 5384 * if somebody still use the cmd line parameter so that we do 5385 * not fail it silently 5386 */ 5387 if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) { 5388 pr_warn("Ignoring unsupported numa_zonelist_order value: %s\n", s); 5389 return -EINVAL; 5390 } 5391 return 0; 5392 } 5393 5394 static __init int setup_numa_zonelist_order(char *s) 5395 { 5396 if (!s) 5397 return 0; 5398 5399 return __parse_numa_zonelist_order(s); 5400 } 5401 early_param("numa_zonelist_order", setup_numa_zonelist_order); 5402 5403 char numa_zonelist_order[] = "Node"; 5404 5405 /* 5406 * sysctl handler for numa_zonelist_order 5407 */ 5408 int numa_zonelist_order_handler(struct ctl_table *table, int write, 5409 void __user *buffer, size_t *length, 5410 loff_t *ppos) 5411 { 5412 char *str; 5413 int ret; 5414 5415 if (!write) 5416 return proc_dostring(table, write, buffer, length, ppos); 5417 str = memdup_user_nul(buffer, 16); 5418 if (IS_ERR(str)) 5419 return PTR_ERR(str); 5420 5421 ret = __parse_numa_zonelist_order(str); 5422 kfree(str); 5423 return ret; 5424 } 5425 5426 5427 #define MAX_NODE_LOAD (nr_online_nodes) 5428 static int node_load[MAX_NUMNODES]; 5429 5430 /** 5431 * find_next_best_node - find the next node that should appear in a given node's fallback list 5432 * @node: node whose fallback list we're appending 5433 * @used_node_mask: nodemask_t of already used nodes 5434 * 5435 * We use a number of factors to determine which is the next node that should 5436 * appear on a given node's fallback list. The node should not have appeared 5437 * already in @node's fallback list, and it should be the next closest node 5438 * according to the distance array (which contains arbitrary distance values 5439 * from each node to each node in the system), and should also prefer nodes 5440 * with no CPUs, since presumably they'll have very little allocation pressure 5441 * on them otherwise. 5442 * 5443 * Return: node id of the found node or %NUMA_NO_NODE if no node is found. 5444 */ 5445 static int find_next_best_node(int node, nodemask_t *used_node_mask) 5446 { 5447 int n, val; 5448 int min_val = INT_MAX; 5449 int best_node = NUMA_NO_NODE; 5450 const struct cpumask *tmp = cpumask_of_node(0); 5451 5452 /* Use the local node if we haven't already */ 5453 if (!node_isset(node, *used_node_mask)) { 5454 node_set(node, *used_node_mask); 5455 return node; 5456 } 5457 5458 for_each_node_state(n, N_MEMORY) { 5459 5460 /* Don't want a node to appear more than once */ 5461 if (node_isset(n, *used_node_mask)) 5462 continue; 5463 5464 /* Use the distance array to find the distance */ 5465 val = node_distance(node, n); 5466 5467 /* Penalize nodes under us ("prefer the next node") */ 5468 val += (n < node); 5469 5470 /* Give preference to headless and unused nodes */ 5471 tmp = cpumask_of_node(n); 5472 if (!cpumask_empty(tmp)) 5473 val += PENALTY_FOR_NODE_WITH_CPUS; 5474 5475 /* Slight preference for less loaded node */ 5476 val *= (MAX_NODE_LOAD*MAX_NUMNODES); 5477 val += node_load[n]; 5478 5479 if (val < min_val) { 5480 min_val = val; 5481 best_node = n; 5482 } 5483 } 5484 5485 if (best_node >= 0) 5486 node_set(best_node, *used_node_mask); 5487 5488 return best_node; 5489 } 5490 5491 5492 /* 5493 * Build zonelists ordered by node and zones within node. 5494 * This results in maximum locality--normal zone overflows into local 5495 * DMA zone, if any--but risks exhausting DMA zone. 5496 */ 5497 static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order, 5498 unsigned nr_nodes) 5499 { 5500 struct zoneref *zonerefs; 5501 int i; 5502 5503 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs; 5504 5505 for (i = 0; i < nr_nodes; i++) { 5506 int nr_zones; 5507 5508 pg_data_t *node = NODE_DATA(node_order[i]); 5509 5510 nr_zones = build_zonerefs_node(node, zonerefs); 5511 zonerefs += nr_zones; 5512 } 5513 zonerefs->zone = NULL; 5514 zonerefs->zone_idx = 0; 5515 } 5516 5517 /* 5518 * Build gfp_thisnode zonelists 5519 */ 5520 static void build_thisnode_zonelists(pg_data_t *pgdat) 5521 { 5522 struct zoneref *zonerefs; 5523 int nr_zones; 5524 5525 zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs; 5526 nr_zones = build_zonerefs_node(pgdat, zonerefs); 5527 zonerefs += nr_zones; 5528 zonerefs->zone = NULL; 5529 zonerefs->zone_idx = 0; 5530 } 5531 5532 /* 5533 * Build zonelists ordered by zone and nodes within zones. 5534 * This results in conserving DMA zone[s] until all Normal memory is 5535 * exhausted, but results in overflowing to remote node while memory 5536 * may still exist in local DMA zone. 5537 */ 5538 5539 static void build_zonelists(pg_data_t *pgdat) 5540 { 5541 static int node_order[MAX_NUMNODES]; 5542 int node, load, nr_nodes = 0; 5543 nodemask_t used_mask; 5544 int local_node, prev_node; 5545 5546 /* NUMA-aware ordering of nodes */ 5547 local_node = pgdat->node_id; 5548 load = nr_online_nodes; 5549 prev_node = local_node; 5550 nodes_clear(used_mask); 5551 5552 memset(node_order, 0, sizeof(node_order)); 5553 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) { 5554 /* 5555 * We don't want to pressure a particular node. 5556 * So adding penalty to the first node in same 5557 * distance group to make it round-robin. 5558 */ 5559 if (node_distance(local_node, node) != 5560 node_distance(local_node, prev_node)) 5561 node_load[node] = load; 5562 5563 node_order[nr_nodes++] = node; 5564 prev_node = node; 5565 load--; 5566 } 5567 5568 build_zonelists_in_node_order(pgdat, node_order, nr_nodes); 5569 build_thisnode_zonelists(pgdat); 5570 } 5571 5572 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 5573 /* 5574 * Return node id of node used for "local" allocations. 5575 * I.e., first node id of first zone in arg node's generic zonelist. 5576 * Used for initializing percpu 'numa_mem', which is used primarily 5577 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist. 5578 */ 5579 int local_memory_node(int node) 5580 { 5581 struct zoneref *z; 5582 5583 z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL), 5584 gfp_zone(GFP_KERNEL), 5585 NULL); 5586 return zone_to_nid(z->zone); 5587 } 5588 #endif 5589 5590 static void setup_min_unmapped_ratio(void); 5591 static void setup_min_slab_ratio(void); 5592 #else /* CONFIG_NUMA */ 5593 5594 static void build_zonelists(pg_data_t *pgdat) 5595 { 5596 int node, local_node; 5597 struct zoneref *zonerefs; 5598 int nr_zones; 5599 5600 local_node = pgdat->node_id; 5601 5602 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs; 5603 nr_zones = build_zonerefs_node(pgdat, zonerefs); 5604 zonerefs += nr_zones; 5605 5606 /* 5607 * Now we build the zonelist so that it contains the zones 5608 * of all the other nodes. 5609 * We don't want to pressure a particular node, so when 5610 * building the zones for node N, we make sure that the 5611 * zones coming right after the local ones are those from 5612 * node N+1 (modulo N) 5613 */ 5614 for (node = local_node + 1; node < MAX_NUMNODES; node++) { 5615 if (!node_online(node)) 5616 continue; 5617 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs); 5618 zonerefs += nr_zones; 5619 } 5620 for (node = 0; node < local_node; node++) { 5621 if (!node_online(node)) 5622 continue; 5623 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs); 5624 zonerefs += nr_zones; 5625 } 5626 5627 zonerefs->zone = NULL; 5628 zonerefs->zone_idx = 0; 5629 } 5630 5631 #endif /* CONFIG_NUMA */ 5632 5633 /* 5634 * Boot pageset table. One per cpu which is going to be used for all 5635 * zones and all nodes. The parameters will be set in such a way 5636 * that an item put on a list will immediately be handed over to 5637 * the buddy list. This is safe since pageset manipulation is done 5638 * with interrupts disabled. 5639 * 5640 * The boot_pagesets must be kept even after bootup is complete for 5641 * unused processors and/or zones. They do play a role for bootstrapping 5642 * hotplugged processors. 5643 * 5644 * zoneinfo_show() and maybe other functions do 5645 * not check if the processor is online before following the pageset pointer. 5646 * Other parts of the kernel may not check if the zone is available. 5647 */ 5648 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch); 5649 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset); 5650 static DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats); 5651 5652 static void __build_all_zonelists(void *data) 5653 { 5654 int nid; 5655 int __maybe_unused cpu; 5656 pg_data_t *self = data; 5657 static DEFINE_SPINLOCK(lock); 5658 5659 spin_lock(&lock); 5660 5661 #ifdef CONFIG_NUMA 5662 memset(node_load, 0, sizeof(node_load)); 5663 #endif 5664 5665 /* 5666 * This node is hotadded and no memory is yet present. So just 5667 * building zonelists is fine - no need to touch other nodes. 5668 */ 5669 if (self && !node_online(self->node_id)) { 5670 build_zonelists(self); 5671 } else { 5672 for_each_online_node(nid) { 5673 pg_data_t *pgdat = NODE_DATA(nid); 5674 5675 build_zonelists(pgdat); 5676 } 5677 5678 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 5679 /* 5680 * We now know the "local memory node" for each node-- 5681 * i.e., the node of the first zone in the generic zonelist. 5682 * Set up numa_mem percpu variable for on-line cpus. During 5683 * boot, only the boot cpu should be on-line; we'll init the 5684 * secondary cpus' numa_mem as they come on-line. During 5685 * node/memory hotplug, we'll fixup all on-line cpus. 5686 */ 5687 for_each_online_cpu(cpu) 5688 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu))); 5689 #endif 5690 } 5691 5692 spin_unlock(&lock); 5693 } 5694 5695 static noinline void __init 5696 build_all_zonelists_init(void) 5697 { 5698 int cpu; 5699 5700 __build_all_zonelists(NULL); 5701 5702 /* 5703 * Initialize the boot_pagesets that are going to be used 5704 * for bootstrapping processors. The real pagesets for 5705 * each zone will be allocated later when the per cpu 5706 * allocator is available. 5707 * 5708 * boot_pagesets are used also for bootstrapping offline 5709 * cpus if the system is already booted because the pagesets 5710 * are needed to initialize allocators on a specific cpu too. 5711 * F.e. the percpu allocator needs the page allocator which 5712 * needs the percpu allocator in order to allocate its pagesets 5713 * (a chicken-egg dilemma). 5714 */ 5715 for_each_possible_cpu(cpu) 5716 setup_pageset(&per_cpu(boot_pageset, cpu), 0); 5717 5718 mminit_verify_zonelist(); 5719 cpuset_init_current_mems_allowed(); 5720 } 5721 5722 /* 5723 * unless system_state == SYSTEM_BOOTING. 5724 * 5725 * __ref due to call of __init annotated helper build_all_zonelists_init 5726 * [protected by SYSTEM_BOOTING]. 5727 */ 5728 void __ref build_all_zonelists(pg_data_t *pgdat) 5729 { 5730 if (system_state == SYSTEM_BOOTING) { 5731 build_all_zonelists_init(); 5732 } else { 5733 __build_all_zonelists(pgdat); 5734 /* cpuset refresh routine should be here */ 5735 } 5736 vm_total_pages = nr_free_pagecache_pages(); 5737 /* 5738 * Disable grouping by mobility if the number of pages in the 5739 * system is too low to allow the mechanism to work. It would be 5740 * more accurate, but expensive to check per-zone. This check is 5741 * made on memory-hotadd so a system can start with mobility 5742 * disabled and enable it later 5743 */ 5744 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES)) 5745 page_group_by_mobility_disabled = 1; 5746 else 5747 page_group_by_mobility_disabled = 0; 5748 5749 pr_info("Built %u zonelists, mobility grouping %s. Total pages: %ld\n", 5750 nr_online_nodes, 5751 page_group_by_mobility_disabled ? "off" : "on", 5752 vm_total_pages); 5753 #ifdef CONFIG_NUMA 5754 pr_info("Policy zone: %s\n", zone_names[policy_zone]); 5755 #endif 5756 } 5757 5758 /* If zone is ZONE_MOVABLE but memory is mirrored, it is an overlapped init */ 5759 static bool __meminit 5760 overlap_memmap_init(unsigned long zone, unsigned long *pfn) 5761 { 5762 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 5763 static struct memblock_region *r; 5764 5765 if (mirrored_kernelcore && zone == ZONE_MOVABLE) { 5766 if (!r || *pfn >= memblock_region_memory_end_pfn(r)) { 5767 for_each_memblock(memory, r) { 5768 if (*pfn < memblock_region_memory_end_pfn(r)) 5769 break; 5770 } 5771 } 5772 if (*pfn >= memblock_region_memory_base_pfn(r) && 5773 memblock_is_mirror(r)) { 5774 *pfn = memblock_region_memory_end_pfn(r); 5775 return true; 5776 } 5777 } 5778 #endif 5779 return false; 5780 } 5781 5782 /* 5783 * Initially all pages are reserved - free ones are freed 5784 * up by memblock_free_all() once the early boot process is 5785 * done. Non-atomic initialization, single-pass. 5786 */ 5787 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone, 5788 unsigned long start_pfn, enum memmap_context context, 5789 struct vmem_altmap *altmap) 5790 { 5791 unsigned long pfn, end_pfn = start_pfn + size; 5792 struct page *page; 5793 5794 if (highest_memmap_pfn < end_pfn - 1) 5795 highest_memmap_pfn = end_pfn - 1; 5796 5797 #ifdef CONFIG_ZONE_DEVICE 5798 /* 5799 * Honor reservation requested by the driver for this ZONE_DEVICE 5800 * memory. We limit the total number of pages to initialize to just 5801 * those that might contain the memory mapping. We will defer the 5802 * ZONE_DEVICE page initialization until after we have released 5803 * the hotplug lock. 5804 */ 5805 if (zone == ZONE_DEVICE) { 5806 if (!altmap) 5807 return; 5808 5809 if (start_pfn == altmap->base_pfn) 5810 start_pfn += altmap->reserve; 5811 end_pfn = altmap->base_pfn + vmem_altmap_offset(altmap); 5812 } 5813 #endif 5814 5815 for (pfn = start_pfn; pfn < end_pfn; pfn++) { 5816 /* 5817 * There can be holes in boot-time mem_map[]s handed to this 5818 * function. They do not exist on hotplugged memory. 5819 */ 5820 if (context == MEMMAP_EARLY) { 5821 if (!early_pfn_valid(pfn)) 5822 continue; 5823 if (!early_pfn_in_nid(pfn, nid)) 5824 continue; 5825 if (overlap_memmap_init(zone, &pfn)) 5826 continue; 5827 if (defer_init(nid, pfn, end_pfn)) 5828 break; 5829 } 5830 5831 page = pfn_to_page(pfn); 5832 __init_single_page(page, pfn, zone, nid); 5833 if (context == MEMMAP_HOTPLUG) 5834 __SetPageReserved(page); 5835 5836 /* 5837 * Mark the block movable so that blocks are reserved for 5838 * movable at startup. This will force kernel allocations 5839 * to reserve their blocks rather than leaking throughout 5840 * the address space during boot when many long-lived 5841 * kernel allocations are made. 5842 * 5843 * bitmap is created for zone's valid pfn range. but memmap 5844 * can be created for invalid pages (for alignment) 5845 * check here not to call set_pageblock_migratetype() against 5846 * pfn out of zone. 5847 */ 5848 if (!(pfn & (pageblock_nr_pages - 1))) { 5849 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 5850 cond_resched(); 5851 } 5852 } 5853 } 5854 5855 #ifdef CONFIG_ZONE_DEVICE 5856 void __ref memmap_init_zone_device(struct zone *zone, 5857 unsigned long start_pfn, 5858 unsigned long size, 5859 struct dev_pagemap *pgmap) 5860 { 5861 unsigned long pfn, end_pfn = start_pfn + size; 5862 struct pglist_data *pgdat = zone->zone_pgdat; 5863 unsigned long zone_idx = zone_idx(zone); 5864 unsigned long start = jiffies; 5865 int nid = pgdat->node_id; 5866 5867 if (WARN_ON_ONCE(!pgmap || !is_dev_zone(zone))) 5868 return; 5869 5870 /* 5871 * The call to memmap_init_zone should have already taken care 5872 * of the pages reserved for the memmap, so we can just jump to 5873 * the end of that region and start processing the device pages. 5874 */ 5875 if (pgmap->altmap_valid) { 5876 struct vmem_altmap *altmap = &pgmap->altmap; 5877 5878 start_pfn = altmap->base_pfn + vmem_altmap_offset(altmap); 5879 size = end_pfn - start_pfn; 5880 } 5881 5882 for (pfn = start_pfn; pfn < end_pfn; pfn++) { 5883 struct page *page = pfn_to_page(pfn); 5884 5885 __init_single_page(page, pfn, zone_idx, nid); 5886 5887 /* 5888 * Mark page reserved as it will need to wait for onlining 5889 * phase for it to be fully associated with a zone. 5890 * 5891 * We can use the non-atomic __set_bit operation for setting 5892 * the flag as we are still initializing the pages. 5893 */ 5894 __SetPageReserved(page); 5895 5896 /* 5897 * ZONE_DEVICE pages union ->lru with a ->pgmap back 5898 * pointer and hmm_data. It is a bug if a ZONE_DEVICE 5899 * page is ever freed or placed on a driver-private list. 5900 */ 5901 page->pgmap = pgmap; 5902 page->hmm_data = 0; 5903 5904 /* 5905 * Mark the block movable so that blocks are reserved for 5906 * movable at startup. This will force kernel allocations 5907 * to reserve their blocks rather than leaking throughout 5908 * the address space during boot when many long-lived 5909 * kernel allocations are made. 5910 * 5911 * bitmap is created for zone's valid pfn range. but memmap 5912 * can be created for invalid pages (for alignment) 5913 * check here not to call set_pageblock_migratetype() against 5914 * pfn out of zone. 5915 * 5916 * Please note that MEMMAP_HOTPLUG path doesn't clear memmap 5917 * because this is done early in sparse_add_one_section 5918 */ 5919 if (!(pfn & (pageblock_nr_pages - 1))) { 5920 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 5921 cond_resched(); 5922 } 5923 } 5924 5925 pr_info("%s initialised, %lu pages in %ums\n", dev_name(pgmap->dev), 5926 size, jiffies_to_msecs(jiffies - start)); 5927 } 5928 5929 #endif 5930 static void __meminit zone_init_free_lists(struct zone *zone) 5931 { 5932 unsigned int order, t; 5933 for_each_migratetype_order(order, t) { 5934 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]); 5935 zone->free_area[order].nr_free = 0; 5936 } 5937 } 5938 5939 void __meminit __weak memmap_init(unsigned long size, int nid, 5940 unsigned long zone, unsigned long start_pfn) 5941 { 5942 memmap_init_zone(size, nid, zone, start_pfn, MEMMAP_EARLY, NULL); 5943 } 5944 5945 static int zone_batchsize(struct zone *zone) 5946 { 5947 #ifdef CONFIG_MMU 5948 int batch; 5949 5950 /* 5951 * The per-cpu-pages pools are set to around 1000th of the 5952 * size of the zone. 5953 */ 5954 batch = zone_managed_pages(zone) / 1024; 5955 /* But no more than a meg. */ 5956 if (batch * PAGE_SIZE > 1024 * 1024) 5957 batch = (1024 * 1024) / PAGE_SIZE; 5958 batch /= 4; /* We effectively *= 4 below */ 5959 if (batch < 1) 5960 batch = 1; 5961 5962 /* 5963 * Clamp the batch to a 2^n - 1 value. Having a power 5964 * of 2 value was found to be more likely to have 5965 * suboptimal cache aliasing properties in some cases. 5966 * 5967 * For example if 2 tasks are alternately allocating 5968 * batches of pages, one task can end up with a lot 5969 * of pages of one half of the possible page colors 5970 * and the other with pages of the other colors. 5971 */ 5972 batch = rounddown_pow_of_two(batch + batch/2) - 1; 5973 5974 return batch; 5975 5976 #else 5977 /* The deferral and batching of frees should be suppressed under NOMMU 5978 * conditions. 5979 * 5980 * The problem is that NOMMU needs to be able to allocate large chunks 5981 * of contiguous memory as there's no hardware page translation to 5982 * assemble apparent contiguous memory from discontiguous pages. 5983 * 5984 * Queueing large contiguous runs of pages for batching, however, 5985 * causes the pages to actually be freed in smaller chunks. As there 5986 * can be a significant delay between the individual batches being 5987 * recycled, this leads to the once large chunks of space being 5988 * fragmented and becoming unavailable for high-order allocations. 5989 */ 5990 return 0; 5991 #endif 5992 } 5993 5994 /* 5995 * pcp->high and pcp->batch values are related and dependent on one another: 5996 * ->batch must never be higher then ->high. 5997 * The following function updates them in a safe manner without read side 5998 * locking. 5999 * 6000 * Any new users of pcp->batch and pcp->high should ensure they can cope with 6001 * those fields changing asynchronously (acording the the above rule). 6002 * 6003 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function 6004 * outside of boot time (or some other assurance that no concurrent updaters 6005 * exist). 6006 */ 6007 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high, 6008 unsigned long batch) 6009 { 6010 /* start with a fail safe value for batch */ 6011 pcp->batch = 1; 6012 smp_wmb(); 6013 6014 /* Update high, then batch, in order */ 6015 pcp->high = high; 6016 smp_wmb(); 6017 6018 pcp->batch = batch; 6019 } 6020 6021 /* a companion to pageset_set_high() */ 6022 static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch) 6023 { 6024 pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch)); 6025 } 6026 6027 static void pageset_init(struct per_cpu_pageset *p) 6028 { 6029 struct per_cpu_pages *pcp; 6030 int migratetype; 6031 6032 memset(p, 0, sizeof(*p)); 6033 6034 pcp = &p->pcp; 6035 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++) 6036 INIT_LIST_HEAD(&pcp->lists[migratetype]); 6037 } 6038 6039 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch) 6040 { 6041 pageset_init(p); 6042 pageset_set_batch(p, batch); 6043 } 6044 6045 /* 6046 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist 6047 * to the value high for the pageset p. 6048 */ 6049 static void pageset_set_high(struct per_cpu_pageset *p, 6050 unsigned long high) 6051 { 6052 unsigned long batch = max(1UL, high / 4); 6053 if ((high / 4) > (PAGE_SHIFT * 8)) 6054 batch = PAGE_SHIFT * 8; 6055 6056 pageset_update(&p->pcp, high, batch); 6057 } 6058 6059 static void pageset_set_high_and_batch(struct zone *zone, 6060 struct per_cpu_pageset *pcp) 6061 { 6062 if (percpu_pagelist_fraction) 6063 pageset_set_high(pcp, 6064 (zone_managed_pages(zone) / 6065 percpu_pagelist_fraction)); 6066 else 6067 pageset_set_batch(pcp, zone_batchsize(zone)); 6068 } 6069 6070 static void __meminit zone_pageset_init(struct zone *zone, int cpu) 6071 { 6072 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu); 6073 6074 pageset_init(pcp); 6075 pageset_set_high_and_batch(zone, pcp); 6076 } 6077 6078 void __meminit setup_zone_pageset(struct zone *zone) 6079 { 6080 int cpu; 6081 zone->pageset = alloc_percpu(struct per_cpu_pageset); 6082 for_each_possible_cpu(cpu) 6083 zone_pageset_init(zone, cpu); 6084 } 6085 6086 /* 6087 * Allocate per cpu pagesets and initialize them. 6088 * Before this call only boot pagesets were available. 6089 */ 6090 void __init setup_per_cpu_pageset(void) 6091 { 6092 struct pglist_data *pgdat; 6093 struct zone *zone; 6094 6095 for_each_populated_zone(zone) 6096 setup_zone_pageset(zone); 6097 6098 for_each_online_pgdat(pgdat) 6099 pgdat->per_cpu_nodestats = 6100 alloc_percpu(struct per_cpu_nodestat); 6101 } 6102 6103 static __meminit void zone_pcp_init(struct zone *zone) 6104 { 6105 /* 6106 * per cpu subsystem is not up at this point. The following code 6107 * relies on the ability of the linker to provide the 6108 * offset of a (static) per cpu variable into the per cpu area. 6109 */ 6110 zone->pageset = &boot_pageset; 6111 6112 if (populated_zone(zone)) 6113 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n", 6114 zone->name, zone->present_pages, 6115 zone_batchsize(zone)); 6116 } 6117 6118 void __meminit init_currently_empty_zone(struct zone *zone, 6119 unsigned long zone_start_pfn, 6120 unsigned long size) 6121 { 6122 struct pglist_data *pgdat = zone->zone_pgdat; 6123 int zone_idx = zone_idx(zone) + 1; 6124 6125 if (zone_idx > pgdat->nr_zones) 6126 pgdat->nr_zones = zone_idx; 6127 6128 zone->zone_start_pfn = zone_start_pfn; 6129 6130 mminit_dprintk(MMINIT_TRACE, "memmap_init", 6131 "Initialising map node %d zone %lu pfns %lu -> %lu\n", 6132 pgdat->node_id, 6133 (unsigned long)zone_idx(zone), 6134 zone_start_pfn, (zone_start_pfn + size)); 6135 6136 zone_init_free_lists(zone); 6137 zone->initialized = 1; 6138 } 6139 6140 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 6141 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID 6142 6143 /* 6144 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on. 6145 */ 6146 int __meminit __early_pfn_to_nid(unsigned long pfn, 6147 struct mminit_pfnnid_cache *state) 6148 { 6149 unsigned long start_pfn, end_pfn; 6150 int nid; 6151 6152 if (state->last_start <= pfn && pfn < state->last_end) 6153 return state->last_nid; 6154 6155 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn); 6156 if (nid != NUMA_NO_NODE) { 6157 state->last_start = start_pfn; 6158 state->last_end = end_pfn; 6159 state->last_nid = nid; 6160 } 6161 6162 return nid; 6163 } 6164 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */ 6165 6166 /** 6167 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range 6168 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed. 6169 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid 6170 * 6171 * If an architecture guarantees that all ranges registered contain no holes 6172 * and may be freed, this this function may be used instead of calling 6173 * memblock_free_early_nid() manually. 6174 */ 6175 void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn) 6176 { 6177 unsigned long start_pfn, end_pfn; 6178 int i, this_nid; 6179 6180 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) { 6181 start_pfn = min(start_pfn, max_low_pfn); 6182 end_pfn = min(end_pfn, max_low_pfn); 6183 6184 if (start_pfn < end_pfn) 6185 memblock_free_early_nid(PFN_PHYS(start_pfn), 6186 (end_pfn - start_pfn) << PAGE_SHIFT, 6187 this_nid); 6188 } 6189 } 6190 6191 /** 6192 * sparse_memory_present_with_active_regions - Call memory_present for each active range 6193 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used. 6194 * 6195 * If an architecture guarantees that all ranges registered contain no holes and may 6196 * be freed, this function may be used instead of calling memory_present() manually. 6197 */ 6198 void __init sparse_memory_present_with_active_regions(int nid) 6199 { 6200 unsigned long start_pfn, end_pfn; 6201 int i, this_nid; 6202 6203 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) 6204 memory_present(this_nid, start_pfn, end_pfn); 6205 } 6206 6207 /** 6208 * get_pfn_range_for_nid - Return the start and end page frames for a node 6209 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned. 6210 * @start_pfn: Passed by reference. On return, it will have the node start_pfn. 6211 * @end_pfn: Passed by reference. On return, it will have the node end_pfn. 6212 * 6213 * It returns the start and end page frame of a node based on information 6214 * provided by memblock_set_node(). If called for a node 6215 * with no available memory, a warning is printed and the start and end 6216 * PFNs will be 0. 6217 */ 6218 void __init get_pfn_range_for_nid(unsigned int nid, 6219 unsigned long *start_pfn, unsigned long *end_pfn) 6220 { 6221 unsigned long this_start_pfn, this_end_pfn; 6222 int i; 6223 6224 *start_pfn = -1UL; 6225 *end_pfn = 0; 6226 6227 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) { 6228 *start_pfn = min(*start_pfn, this_start_pfn); 6229 *end_pfn = max(*end_pfn, this_end_pfn); 6230 } 6231 6232 if (*start_pfn == -1UL) 6233 *start_pfn = 0; 6234 } 6235 6236 /* 6237 * This finds a zone that can be used for ZONE_MOVABLE pages. The 6238 * assumption is made that zones within a node are ordered in monotonic 6239 * increasing memory addresses so that the "highest" populated zone is used 6240 */ 6241 static void __init find_usable_zone_for_movable(void) 6242 { 6243 int zone_index; 6244 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) { 6245 if (zone_index == ZONE_MOVABLE) 6246 continue; 6247 6248 if (arch_zone_highest_possible_pfn[zone_index] > 6249 arch_zone_lowest_possible_pfn[zone_index]) 6250 break; 6251 } 6252 6253 VM_BUG_ON(zone_index == -1); 6254 movable_zone = zone_index; 6255 } 6256 6257 /* 6258 * The zone ranges provided by the architecture do not include ZONE_MOVABLE 6259 * because it is sized independent of architecture. Unlike the other zones, 6260 * the starting point for ZONE_MOVABLE is not fixed. It may be different 6261 * in each node depending on the size of each node and how evenly kernelcore 6262 * is distributed. This helper function adjusts the zone ranges 6263 * provided by the architecture for a given node by using the end of the 6264 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that 6265 * zones within a node are in order of monotonic increases memory addresses 6266 */ 6267 static void __init adjust_zone_range_for_zone_movable(int nid, 6268 unsigned long zone_type, 6269 unsigned long node_start_pfn, 6270 unsigned long node_end_pfn, 6271 unsigned long *zone_start_pfn, 6272 unsigned long *zone_end_pfn) 6273 { 6274 /* Only adjust if ZONE_MOVABLE is on this node */ 6275 if (zone_movable_pfn[nid]) { 6276 /* Size ZONE_MOVABLE */ 6277 if (zone_type == ZONE_MOVABLE) { 6278 *zone_start_pfn = zone_movable_pfn[nid]; 6279 *zone_end_pfn = min(node_end_pfn, 6280 arch_zone_highest_possible_pfn[movable_zone]); 6281 6282 /* Adjust for ZONE_MOVABLE starting within this range */ 6283 } else if (!mirrored_kernelcore && 6284 *zone_start_pfn < zone_movable_pfn[nid] && 6285 *zone_end_pfn > zone_movable_pfn[nid]) { 6286 *zone_end_pfn = zone_movable_pfn[nid]; 6287 6288 /* Check if this whole range is within ZONE_MOVABLE */ 6289 } else if (*zone_start_pfn >= zone_movable_pfn[nid]) 6290 *zone_start_pfn = *zone_end_pfn; 6291 } 6292 } 6293 6294 /* 6295 * Return the number of pages a zone spans in a node, including holes 6296 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node() 6297 */ 6298 static unsigned long __init zone_spanned_pages_in_node(int nid, 6299 unsigned long zone_type, 6300 unsigned long node_start_pfn, 6301 unsigned long node_end_pfn, 6302 unsigned long *zone_start_pfn, 6303 unsigned long *zone_end_pfn, 6304 unsigned long *ignored) 6305 { 6306 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type]; 6307 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type]; 6308 /* When hotadd a new node from cpu_up(), the node should be empty */ 6309 if (!node_start_pfn && !node_end_pfn) 6310 return 0; 6311 6312 /* Get the start and end of the zone */ 6313 *zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high); 6314 *zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high); 6315 adjust_zone_range_for_zone_movable(nid, zone_type, 6316 node_start_pfn, node_end_pfn, 6317 zone_start_pfn, zone_end_pfn); 6318 6319 /* Check that this node has pages within the zone's required range */ 6320 if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn) 6321 return 0; 6322 6323 /* Move the zone boundaries inside the node if necessary */ 6324 *zone_end_pfn = min(*zone_end_pfn, node_end_pfn); 6325 *zone_start_pfn = max(*zone_start_pfn, node_start_pfn); 6326 6327 /* Return the spanned pages */ 6328 return *zone_end_pfn - *zone_start_pfn; 6329 } 6330 6331 /* 6332 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES, 6333 * then all holes in the requested range will be accounted for. 6334 */ 6335 unsigned long __init __absent_pages_in_range(int nid, 6336 unsigned long range_start_pfn, 6337 unsigned long range_end_pfn) 6338 { 6339 unsigned long nr_absent = range_end_pfn - range_start_pfn; 6340 unsigned long start_pfn, end_pfn; 6341 int i; 6342 6343 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) { 6344 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn); 6345 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn); 6346 nr_absent -= end_pfn - start_pfn; 6347 } 6348 return nr_absent; 6349 } 6350 6351 /** 6352 * absent_pages_in_range - Return number of page frames in holes within a range 6353 * @start_pfn: The start PFN to start searching for holes 6354 * @end_pfn: The end PFN to stop searching for holes 6355 * 6356 * Return: the number of pages frames in memory holes within a range. 6357 */ 6358 unsigned long __init absent_pages_in_range(unsigned long start_pfn, 6359 unsigned long end_pfn) 6360 { 6361 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn); 6362 } 6363 6364 /* Return the number of page frames in holes in a zone on a node */ 6365 static unsigned long __init zone_absent_pages_in_node(int nid, 6366 unsigned long zone_type, 6367 unsigned long node_start_pfn, 6368 unsigned long node_end_pfn, 6369 unsigned long *ignored) 6370 { 6371 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type]; 6372 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type]; 6373 unsigned long zone_start_pfn, zone_end_pfn; 6374 unsigned long nr_absent; 6375 6376 /* When hotadd a new node from cpu_up(), the node should be empty */ 6377 if (!node_start_pfn && !node_end_pfn) 6378 return 0; 6379 6380 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high); 6381 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high); 6382 6383 adjust_zone_range_for_zone_movable(nid, zone_type, 6384 node_start_pfn, node_end_pfn, 6385 &zone_start_pfn, &zone_end_pfn); 6386 nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn); 6387 6388 /* 6389 * ZONE_MOVABLE handling. 6390 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages 6391 * and vice versa. 6392 */ 6393 if (mirrored_kernelcore && zone_movable_pfn[nid]) { 6394 unsigned long start_pfn, end_pfn; 6395 struct memblock_region *r; 6396 6397 for_each_memblock(memory, r) { 6398 start_pfn = clamp(memblock_region_memory_base_pfn(r), 6399 zone_start_pfn, zone_end_pfn); 6400 end_pfn = clamp(memblock_region_memory_end_pfn(r), 6401 zone_start_pfn, zone_end_pfn); 6402 6403 if (zone_type == ZONE_MOVABLE && 6404 memblock_is_mirror(r)) 6405 nr_absent += end_pfn - start_pfn; 6406 6407 if (zone_type == ZONE_NORMAL && 6408 !memblock_is_mirror(r)) 6409 nr_absent += end_pfn - start_pfn; 6410 } 6411 } 6412 6413 return nr_absent; 6414 } 6415 6416 #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 6417 static inline unsigned long __init zone_spanned_pages_in_node(int nid, 6418 unsigned long zone_type, 6419 unsigned long node_start_pfn, 6420 unsigned long node_end_pfn, 6421 unsigned long *zone_start_pfn, 6422 unsigned long *zone_end_pfn, 6423 unsigned long *zones_size) 6424 { 6425 unsigned int zone; 6426 6427 *zone_start_pfn = node_start_pfn; 6428 for (zone = 0; zone < zone_type; zone++) 6429 *zone_start_pfn += zones_size[zone]; 6430 6431 *zone_end_pfn = *zone_start_pfn + zones_size[zone_type]; 6432 6433 return zones_size[zone_type]; 6434 } 6435 6436 static inline unsigned long __init zone_absent_pages_in_node(int nid, 6437 unsigned long zone_type, 6438 unsigned long node_start_pfn, 6439 unsigned long node_end_pfn, 6440 unsigned long *zholes_size) 6441 { 6442 if (!zholes_size) 6443 return 0; 6444 6445 return zholes_size[zone_type]; 6446 } 6447 6448 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 6449 6450 static void __init calculate_node_totalpages(struct pglist_data *pgdat, 6451 unsigned long node_start_pfn, 6452 unsigned long node_end_pfn, 6453 unsigned long *zones_size, 6454 unsigned long *zholes_size) 6455 { 6456 unsigned long realtotalpages = 0, totalpages = 0; 6457 enum zone_type i; 6458 6459 for (i = 0; i < MAX_NR_ZONES; i++) { 6460 struct zone *zone = pgdat->node_zones + i; 6461 unsigned long zone_start_pfn, zone_end_pfn; 6462 unsigned long size, real_size; 6463 6464 size = zone_spanned_pages_in_node(pgdat->node_id, i, 6465 node_start_pfn, 6466 node_end_pfn, 6467 &zone_start_pfn, 6468 &zone_end_pfn, 6469 zones_size); 6470 real_size = size - zone_absent_pages_in_node(pgdat->node_id, i, 6471 node_start_pfn, node_end_pfn, 6472 zholes_size); 6473 if (size) 6474 zone->zone_start_pfn = zone_start_pfn; 6475 else 6476 zone->zone_start_pfn = 0; 6477 zone->spanned_pages = size; 6478 zone->present_pages = real_size; 6479 6480 totalpages += size; 6481 realtotalpages += real_size; 6482 } 6483 6484 pgdat->node_spanned_pages = totalpages; 6485 pgdat->node_present_pages = realtotalpages; 6486 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id, 6487 realtotalpages); 6488 } 6489 6490 #ifndef CONFIG_SPARSEMEM 6491 /* 6492 * Calculate the size of the zone->blockflags rounded to an unsigned long 6493 * Start by making sure zonesize is a multiple of pageblock_order by rounding 6494 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally 6495 * round what is now in bits to nearest long in bits, then return it in 6496 * bytes. 6497 */ 6498 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize) 6499 { 6500 unsigned long usemapsize; 6501 6502 zonesize += zone_start_pfn & (pageblock_nr_pages-1); 6503 usemapsize = roundup(zonesize, pageblock_nr_pages); 6504 usemapsize = usemapsize >> pageblock_order; 6505 usemapsize *= NR_PAGEBLOCK_BITS; 6506 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long)); 6507 6508 return usemapsize / 8; 6509 } 6510 6511 static void __ref setup_usemap(struct pglist_data *pgdat, 6512 struct zone *zone, 6513 unsigned long zone_start_pfn, 6514 unsigned long zonesize) 6515 { 6516 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize); 6517 zone->pageblock_flags = NULL; 6518 if (usemapsize) { 6519 zone->pageblock_flags = 6520 memblock_alloc_node(usemapsize, SMP_CACHE_BYTES, 6521 pgdat->node_id); 6522 if (!zone->pageblock_flags) 6523 panic("Failed to allocate %ld bytes for zone %s pageblock flags on node %d\n", 6524 usemapsize, zone->name, pgdat->node_id); 6525 } 6526 } 6527 #else 6528 static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone, 6529 unsigned long zone_start_pfn, unsigned long zonesize) {} 6530 #endif /* CONFIG_SPARSEMEM */ 6531 6532 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE 6533 6534 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */ 6535 void __init set_pageblock_order(void) 6536 { 6537 unsigned int order; 6538 6539 /* Check that pageblock_nr_pages has not already been setup */ 6540 if (pageblock_order) 6541 return; 6542 6543 if (HPAGE_SHIFT > PAGE_SHIFT) 6544 order = HUGETLB_PAGE_ORDER; 6545 else 6546 order = MAX_ORDER - 1; 6547 6548 /* 6549 * Assume the largest contiguous order of interest is a huge page. 6550 * This value may be variable depending on boot parameters on IA64 and 6551 * powerpc. 6552 */ 6553 pageblock_order = order; 6554 } 6555 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */ 6556 6557 /* 6558 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order() 6559 * is unused as pageblock_order is set at compile-time. See 6560 * include/linux/pageblock-flags.h for the values of pageblock_order based on 6561 * the kernel config 6562 */ 6563 void __init set_pageblock_order(void) 6564 { 6565 } 6566 6567 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */ 6568 6569 static unsigned long __init calc_memmap_size(unsigned long spanned_pages, 6570 unsigned long present_pages) 6571 { 6572 unsigned long pages = spanned_pages; 6573 6574 /* 6575 * Provide a more accurate estimation if there are holes within 6576 * the zone and SPARSEMEM is in use. If there are holes within the 6577 * zone, each populated memory region may cost us one or two extra 6578 * memmap pages due to alignment because memmap pages for each 6579 * populated regions may not be naturally aligned on page boundary. 6580 * So the (present_pages >> 4) heuristic is a tradeoff for that. 6581 */ 6582 if (spanned_pages > present_pages + (present_pages >> 4) && 6583 IS_ENABLED(CONFIG_SPARSEMEM)) 6584 pages = present_pages; 6585 6586 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT; 6587 } 6588 6589 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 6590 static void pgdat_init_split_queue(struct pglist_data *pgdat) 6591 { 6592 spin_lock_init(&pgdat->split_queue_lock); 6593 INIT_LIST_HEAD(&pgdat->split_queue); 6594 pgdat->split_queue_len = 0; 6595 } 6596 #else 6597 static void pgdat_init_split_queue(struct pglist_data *pgdat) {} 6598 #endif 6599 6600 #ifdef CONFIG_COMPACTION 6601 static void pgdat_init_kcompactd(struct pglist_data *pgdat) 6602 { 6603 init_waitqueue_head(&pgdat->kcompactd_wait); 6604 } 6605 #else 6606 static void pgdat_init_kcompactd(struct pglist_data *pgdat) {} 6607 #endif 6608 6609 static void __meminit pgdat_init_internals(struct pglist_data *pgdat) 6610 { 6611 pgdat_resize_init(pgdat); 6612 6613 pgdat_init_split_queue(pgdat); 6614 pgdat_init_kcompactd(pgdat); 6615 6616 init_waitqueue_head(&pgdat->kswapd_wait); 6617 init_waitqueue_head(&pgdat->pfmemalloc_wait); 6618 6619 pgdat_page_ext_init(pgdat); 6620 spin_lock_init(&pgdat->lru_lock); 6621 lruvec_init(node_lruvec(pgdat)); 6622 } 6623 6624 static void __meminit zone_init_internals(struct zone *zone, enum zone_type idx, int nid, 6625 unsigned long remaining_pages) 6626 { 6627 atomic_long_set(&zone->managed_pages, remaining_pages); 6628 zone_set_nid(zone, nid); 6629 zone->name = zone_names[idx]; 6630 zone->zone_pgdat = NODE_DATA(nid); 6631 spin_lock_init(&zone->lock); 6632 zone_seqlock_init(zone); 6633 zone_pcp_init(zone); 6634 } 6635 6636 /* 6637 * Set up the zone data structures 6638 * - init pgdat internals 6639 * - init all zones belonging to this node 6640 * 6641 * NOTE: this function is only called during memory hotplug 6642 */ 6643 #ifdef CONFIG_MEMORY_HOTPLUG 6644 void __ref free_area_init_core_hotplug(int nid) 6645 { 6646 enum zone_type z; 6647 pg_data_t *pgdat = NODE_DATA(nid); 6648 6649 pgdat_init_internals(pgdat); 6650 for (z = 0; z < MAX_NR_ZONES; z++) 6651 zone_init_internals(&pgdat->node_zones[z], z, nid, 0); 6652 } 6653 #endif 6654 6655 /* 6656 * Set up the zone data structures: 6657 * - mark all pages reserved 6658 * - mark all memory queues empty 6659 * - clear the memory bitmaps 6660 * 6661 * NOTE: pgdat should get zeroed by caller. 6662 * NOTE: this function is only called during early init. 6663 */ 6664 static void __init free_area_init_core(struct pglist_data *pgdat) 6665 { 6666 enum zone_type j; 6667 int nid = pgdat->node_id; 6668 6669 pgdat_init_internals(pgdat); 6670 pgdat->per_cpu_nodestats = &boot_nodestats; 6671 6672 for (j = 0; j < MAX_NR_ZONES; j++) { 6673 struct zone *zone = pgdat->node_zones + j; 6674 unsigned long size, freesize, memmap_pages; 6675 unsigned long zone_start_pfn = zone->zone_start_pfn; 6676 6677 size = zone->spanned_pages; 6678 freesize = zone->present_pages; 6679 6680 /* 6681 * Adjust freesize so that it accounts for how much memory 6682 * is used by this zone for memmap. This affects the watermark 6683 * and per-cpu initialisations 6684 */ 6685 memmap_pages = calc_memmap_size(size, freesize); 6686 if (!is_highmem_idx(j)) { 6687 if (freesize >= memmap_pages) { 6688 freesize -= memmap_pages; 6689 if (memmap_pages) 6690 printk(KERN_DEBUG 6691 " %s zone: %lu pages used for memmap\n", 6692 zone_names[j], memmap_pages); 6693 } else 6694 pr_warn(" %s zone: %lu pages exceeds freesize %lu\n", 6695 zone_names[j], memmap_pages, freesize); 6696 } 6697 6698 /* Account for reserved pages */ 6699 if (j == 0 && freesize > dma_reserve) { 6700 freesize -= dma_reserve; 6701 printk(KERN_DEBUG " %s zone: %lu pages reserved\n", 6702 zone_names[0], dma_reserve); 6703 } 6704 6705 if (!is_highmem_idx(j)) 6706 nr_kernel_pages += freesize; 6707 /* Charge for highmem memmap if there are enough kernel pages */ 6708 else if (nr_kernel_pages > memmap_pages * 2) 6709 nr_kernel_pages -= memmap_pages; 6710 nr_all_pages += freesize; 6711 6712 /* 6713 * Set an approximate value for lowmem here, it will be adjusted 6714 * when the bootmem allocator frees pages into the buddy system. 6715 * And all highmem pages will be managed by the buddy system. 6716 */ 6717 zone_init_internals(zone, j, nid, freesize); 6718 6719 if (!size) 6720 continue; 6721 6722 set_pageblock_order(); 6723 setup_usemap(pgdat, zone, zone_start_pfn, size); 6724 init_currently_empty_zone(zone, zone_start_pfn, size); 6725 memmap_init(size, nid, j, zone_start_pfn); 6726 } 6727 } 6728 6729 #ifdef CONFIG_FLAT_NODE_MEM_MAP 6730 static void __ref alloc_node_mem_map(struct pglist_data *pgdat) 6731 { 6732 unsigned long __maybe_unused start = 0; 6733 unsigned long __maybe_unused offset = 0; 6734 6735 /* Skip empty nodes */ 6736 if (!pgdat->node_spanned_pages) 6737 return; 6738 6739 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1); 6740 offset = pgdat->node_start_pfn - start; 6741 /* ia64 gets its own node_mem_map, before this, without bootmem */ 6742 if (!pgdat->node_mem_map) { 6743 unsigned long size, end; 6744 struct page *map; 6745 6746 /* 6747 * The zone's endpoints aren't required to be MAX_ORDER 6748 * aligned but the node_mem_map endpoints must be in order 6749 * for the buddy allocator to function correctly. 6750 */ 6751 end = pgdat_end_pfn(pgdat); 6752 end = ALIGN(end, MAX_ORDER_NR_PAGES); 6753 size = (end - start) * sizeof(struct page); 6754 map = memblock_alloc_node(size, SMP_CACHE_BYTES, 6755 pgdat->node_id); 6756 if (!map) 6757 panic("Failed to allocate %ld bytes for node %d memory map\n", 6758 size, pgdat->node_id); 6759 pgdat->node_mem_map = map + offset; 6760 } 6761 pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n", 6762 __func__, pgdat->node_id, (unsigned long)pgdat, 6763 (unsigned long)pgdat->node_mem_map); 6764 #ifndef CONFIG_NEED_MULTIPLE_NODES 6765 /* 6766 * With no DISCONTIG, the global mem_map is just set as node 0's 6767 */ 6768 if (pgdat == NODE_DATA(0)) { 6769 mem_map = NODE_DATA(0)->node_mem_map; 6770 #if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM) 6771 if (page_to_pfn(mem_map) != pgdat->node_start_pfn) 6772 mem_map -= offset; 6773 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 6774 } 6775 #endif 6776 } 6777 #else 6778 static void __ref alloc_node_mem_map(struct pglist_data *pgdat) { } 6779 #endif /* CONFIG_FLAT_NODE_MEM_MAP */ 6780 6781 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 6782 static inline void pgdat_set_deferred_range(pg_data_t *pgdat) 6783 { 6784 pgdat->first_deferred_pfn = ULONG_MAX; 6785 } 6786 #else 6787 static inline void pgdat_set_deferred_range(pg_data_t *pgdat) {} 6788 #endif 6789 6790 void __init free_area_init_node(int nid, unsigned long *zones_size, 6791 unsigned long node_start_pfn, 6792 unsigned long *zholes_size) 6793 { 6794 pg_data_t *pgdat = NODE_DATA(nid); 6795 unsigned long start_pfn = 0; 6796 unsigned long end_pfn = 0; 6797 6798 /* pg_data_t should be reset to zero when it's allocated */ 6799 WARN_ON(pgdat->nr_zones || pgdat->kswapd_classzone_idx); 6800 6801 pgdat->node_id = nid; 6802 pgdat->node_start_pfn = node_start_pfn; 6803 pgdat->per_cpu_nodestats = NULL; 6804 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 6805 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn); 6806 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid, 6807 (u64)start_pfn << PAGE_SHIFT, 6808 end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0); 6809 #else 6810 start_pfn = node_start_pfn; 6811 #endif 6812 calculate_node_totalpages(pgdat, start_pfn, end_pfn, 6813 zones_size, zholes_size); 6814 6815 alloc_node_mem_map(pgdat); 6816 pgdat_set_deferred_range(pgdat); 6817 6818 free_area_init_core(pgdat); 6819 } 6820 6821 #if !defined(CONFIG_FLAT_NODE_MEM_MAP) 6822 /* 6823 * Zero all valid struct pages in range [spfn, epfn), return number of struct 6824 * pages zeroed 6825 */ 6826 static u64 zero_pfn_range(unsigned long spfn, unsigned long epfn) 6827 { 6828 unsigned long pfn; 6829 u64 pgcnt = 0; 6830 6831 for (pfn = spfn; pfn < epfn; pfn++) { 6832 if (!pfn_valid(ALIGN_DOWN(pfn, pageblock_nr_pages))) { 6833 pfn = ALIGN_DOWN(pfn, pageblock_nr_pages) 6834 + pageblock_nr_pages - 1; 6835 continue; 6836 } 6837 mm_zero_struct_page(pfn_to_page(pfn)); 6838 pgcnt++; 6839 } 6840 6841 return pgcnt; 6842 } 6843 6844 /* 6845 * Only struct pages that are backed by physical memory are zeroed and 6846 * initialized by going through __init_single_page(). But, there are some 6847 * struct pages which are reserved in memblock allocator and their fields 6848 * may be accessed (for example page_to_pfn() on some configuration accesses 6849 * flags). We must explicitly zero those struct pages. 6850 * 6851 * This function also addresses a similar issue where struct pages are left 6852 * uninitialized because the physical address range is not covered by 6853 * memblock.memory or memblock.reserved. That could happen when memblock 6854 * layout is manually configured via memmap=. 6855 */ 6856 void __init zero_resv_unavail(void) 6857 { 6858 phys_addr_t start, end; 6859 u64 i, pgcnt; 6860 phys_addr_t next = 0; 6861 6862 /* 6863 * Loop through unavailable ranges not covered by memblock.memory. 6864 */ 6865 pgcnt = 0; 6866 for_each_mem_range(i, &memblock.memory, NULL, 6867 NUMA_NO_NODE, MEMBLOCK_NONE, &start, &end, NULL) { 6868 if (next < start) 6869 pgcnt += zero_pfn_range(PFN_DOWN(next), PFN_UP(start)); 6870 next = end; 6871 } 6872 pgcnt += zero_pfn_range(PFN_DOWN(next), max_pfn); 6873 6874 /* 6875 * Struct pages that do not have backing memory. This could be because 6876 * firmware is using some of this memory, or for some other reasons. 6877 */ 6878 if (pgcnt) 6879 pr_info("Zeroed struct page in unavailable ranges: %lld pages", pgcnt); 6880 } 6881 #endif /* !CONFIG_FLAT_NODE_MEM_MAP */ 6882 6883 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 6884 6885 #if MAX_NUMNODES > 1 6886 /* 6887 * Figure out the number of possible node ids. 6888 */ 6889 void __init setup_nr_node_ids(void) 6890 { 6891 unsigned int highest; 6892 6893 highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES); 6894 nr_node_ids = highest + 1; 6895 } 6896 #endif 6897 6898 /** 6899 * node_map_pfn_alignment - determine the maximum internode alignment 6900 * 6901 * This function should be called after node map is populated and sorted. 6902 * It calculates the maximum power of two alignment which can distinguish 6903 * all the nodes. 6904 * 6905 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value 6906 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the 6907 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is 6908 * shifted, 1GiB is enough and this function will indicate so. 6909 * 6910 * This is used to test whether pfn -> nid mapping of the chosen memory 6911 * model has fine enough granularity to avoid incorrect mapping for the 6912 * populated node map. 6913 * 6914 * Return: the determined alignment in pfn's. 0 if there is no alignment 6915 * requirement (single node). 6916 */ 6917 unsigned long __init node_map_pfn_alignment(void) 6918 { 6919 unsigned long accl_mask = 0, last_end = 0; 6920 unsigned long start, end, mask; 6921 int last_nid = NUMA_NO_NODE; 6922 int i, nid; 6923 6924 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) { 6925 if (!start || last_nid < 0 || last_nid == nid) { 6926 last_nid = nid; 6927 last_end = end; 6928 continue; 6929 } 6930 6931 /* 6932 * Start with a mask granular enough to pin-point to the 6933 * start pfn and tick off bits one-by-one until it becomes 6934 * too coarse to separate the current node from the last. 6935 */ 6936 mask = ~((1 << __ffs(start)) - 1); 6937 while (mask && last_end <= (start & (mask << 1))) 6938 mask <<= 1; 6939 6940 /* accumulate all internode masks */ 6941 accl_mask |= mask; 6942 } 6943 6944 /* convert mask to number of pages */ 6945 return ~accl_mask + 1; 6946 } 6947 6948 /* Find the lowest pfn for a node */ 6949 static unsigned long __init find_min_pfn_for_node(int nid) 6950 { 6951 unsigned long min_pfn = ULONG_MAX; 6952 unsigned long start_pfn; 6953 int i; 6954 6955 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL) 6956 min_pfn = min(min_pfn, start_pfn); 6957 6958 if (min_pfn == ULONG_MAX) { 6959 pr_warn("Could not find start_pfn for node %d\n", nid); 6960 return 0; 6961 } 6962 6963 return min_pfn; 6964 } 6965 6966 /** 6967 * find_min_pfn_with_active_regions - Find the minimum PFN registered 6968 * 6969 * Return: the minimum PFN based on information provided via 6970 * memblock_set_node(). 6971 */ 6972 unsigned long __init find_min_pfn_with_active_regions(void) 6973 { 6974 return find_min_pfn_for_node(MAX_NUMNODES); 6975 } 6976 6977 /* 6978 * early_calculate_totalpages() 6979 * Sum pages in active regions for movable zone. 6980 * Populate N_MEMORY for calculating usable_nodes. 6981 */ 6982 static unsigned long __init early_calculate_totalpages(void) 6983 { 6984 unsigned long totalpages = 0; 6985 unsigned long start_pfn, end_pfn; 6986 int i, nid; 6987 6988 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) { 6989 unsigned long pages = end_pfn - start_pfn; 6990 6991 totalpages += pages; 6992 if (pages) 6993 node_set_state(nid, N_MEMORY); 6994 } 6995 return totalpages; 6996 } 6997 6998 /* 6999 * Find the PFN the Movable zone begins in each node. Kernel memory 7000 * is spread evenly between nodes as long as the nodes have enough 7001 * memory. When they don't, some nodes will have more kernelcore than 7002 * others 7003 */ 7004 static void __init find_zone_movable_pfns_for_nodes(void) 7005 { 7006 int i, nid; 7007 unsigned long usable_startpfn; 7008 unsigned long kernelcore_node, kernelcore_remaining; 7009 /* save the state before borrow the nodemask */ 7010 nodemask_t saved_node_state = node_states[N_MEMORY]; 7011 unsigned long totalpages = early_calculate_totalpages(); 7012 int usable_nodes = nodes_weight(node_states[N_MEMORY]); 7013 struct memblock_region *r; 7014 7015 /* Need to find movable_zone earlier when movable_node is specified. */ 7016 find_usable_zone_for_movable(); 7017 7018 /* 7019 * If movable_node is specified, ignore kernelcore and movablecore 7020 * options. 7021 */ 7022 if (movable_node_is_enabled()) { 7023 for_each_memblock(memory, r) { 7024 if (!memblock_is_hotpluggable(r)) 7025 continue; 7026 7027 nid = r->nid; 7028 7029 usable_startpfn = PFN_DOWN(r->base); 7030 zone_movable_pfn[nid] = zone_movable_pfn[nid] ? 7031 min(usable_startpfn, zone_movable_pfn[nid]) : 7032 usable_startpfn; 7033 } 7034 7035 goto out2; 7036 } 7037 7038 /* 7039 * If kernelcore=mirror is specified, ignore movablecore option 7040 */ 7041 if (mirrored_kernelcore) { 7042 bool mem_below_4gb_not_mirrored = false; 7043 7044 for_each_memblock(memory, r) { 7045 if (memblock_is_mirror(r)) 7046 continue; 7047 7048 nid = r->nid; 7049 7050 usable_startpfn = memblock_region_memory_base_pfn(r); 7051 7052 if (usable_startpfn < 0x100000) { 7053 mem_below_4gb_not_mirrored = true; 7054 continue; 7055 } 7056 7057 zone_movable_pfn[nid] = zone_movable_pfn[nid] ? 7058 min(usable_startpfn, zone_movable_pfn[nid]) : 7059 usable_startpfn; 7060 } 7061 7062 if (mem_below_4gb_not_mirrored) 7063 pr_warn("This configuration results in unmirrored kernel memory."); 7064 7065 goto out2; 7066 } 7067 7068 /* 7069 * If kernelcore=nn% or movablecore=nn% was specified, calculate the 7070 * amount of necessary memory. 7071 */ 7072 if (required_kernelcore_percent) 7073 required_kernelcore = (totalpages * 100 * required_kernelcore_percent) / 7074 10000UL; 7075 if (required_movablecore_percent) 7076 required_movablecore = (totalpages * 100 * required_movablecore_percent) / 7077 10000UL; 7078 7079 /* 7080 * If movablecore= was specified, calculate what size of 7081 * kernelcore that corresponds so that memory usable for 7082 * any allocation type is evenly spread. If both kernelcore 7083 * and movablecore are specified, then the value of kernelcore 7084 * will be used for required_kernelcore if it's greater than 7085 * what movablecore would have allowed. 7086 */ 7087 if (required_movablecore) { 7088 unsigned long corepages; 7089 7090 /* 7091 * Round-up so that ZONE_MOVABLE is at least as large as what 7092 * was requested by the user 7093 */ 7094 required_movablecore = 7095 roundup(required_movablecore, MAX_ORDER_NR_PAGES); 7096 required_movablecore = min(totalpages, required_movablecore); 7097 corepages = totalpages - required_movablecore; 7098 7099 required_kernelcore = max(required_kernelcore, corepages); 7100 } 7101 7102 /* 7103 * If kernelcore was not specified or kernelcore size is larger 7104 * than totalpages, there is no ZONE_MOVABLE. 7105 */ 7106 if (!required_kernelcore || required_kernelcore >= totalpages) 7107 goto out; 7108 7109 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */ 7110 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone]; 7111 7112 restart: 7113 /* Spread kernelcore memory as evenly as possible throughout nodes */ 7114 kernelcore_node = required_kernelcore / usable_nodes; 7115 for_each_node_state(nid, N_MEMORY) { 7116 unsigned long start_pfn, end_pfn; 7117 7118 /* 7119 * Recalculate kernelcore_node if the division per node 7120 * now exceeds what is necessary to satisfy the requested 7121 * amount of memory for the kernel 7122 */ 7123 if (required_kernelcore < kernelcore_node) 7124 kernelcore_node = required_kernelcore / usable_nodes; 7125 7126 /* 7127 * As the map is walked, we track how much memory is usable 7128 * by the kernel using kernelcore_remaining. When it is 7129 * 0, the rest of the node is usable by ZONE_MOVABLE 7130 */ 7131 kernelcore_remaining = kernelcore_node; 7132 7133 /* Go through each range of PFNs within this node */ 7134 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) { 7135 unsigned long size_pages; 7136 7137 start_pfn = max(start_pfn, zone_movable_pfn[nid]); 7138 if (start_pfn >= end_pfn) 7139 continue; 7140 7141 /* Account for what is only usable for kernelcore */ 7142 if (start_pfn < usable_startpfn) { 7143 unsigned long kernel_pages; 7144 kernel_pages = min(end_pfn, usable_startpfn) 7145 - start_pfn; 7146 7147 kernelcore_remaining -= min(kernel_pages, 7148 kernelcore_remaining); 7149 required_kernelcore -= min(kernel_pages, 7150 required_kernelcore); 7151 7152 /* Continue if range is now fully accounted */ 7153 if (end_pfn <= usable_startpfn) { 7154 7155 /* 7156 * Push zone_movable_pfn to the end so 7157 * that if we have to rebalance 7158 * kernelcore across nodes, we will 7159 * not double account here 7160 */ 7161 zone_movable_pfn[nid] = end_pfn; 7162 continue; 7163 } 7164 start_pfn = usable_startpfn; 7165 } 7166 7167 /* 7168 * The usable PFN range for ZONE_MOVABLE is from 7169 * start_pfn->end_pfn. Calculate size_pages as the 7170 * number of pages used as kernelcore 7171 */ 7172 size_pages = end_pfn - start_pfn; 7173 if (size_pages > kernelcore_remaining) 7174 size_pages = kernelcore_remaining; 7175 zone_movable_pfn[nid] = start_pfn + size_pages; 7176 7177 /* 7178 * Some kernelcore has been met, update counts and 7179 * break if the kernelcore for this node has been 7180 * satisfied 7181 */ 7182 required_kernelcore -= min(required_kernelcore, 7183 size_pages); 7184 kernelcore_remaining -= size_pages; 7185 if (!kernelcore_remaining) 7186 break; 7187 } 7188 } 7189 7190 /* 7191 * If there is still required_kernelcore, we do another pass with one 7192 * less node in the count. This will push zone_movable_pfn[nid] further 7193 * along on the nodes that still have memory until kernelcore is 7194 * satisfied 7195 */ 7196 usable_nodes--; 7197 if (usable_nodes && required_kernelcore > usable_nodes) 7198 goto restart; 7199 7200 out2: 7201 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */ 7202 for (nid = 0; nid < MAX_NUMNODES; nid++) 7203 zone_movable_pfn[nid] = 7204 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES); 7205 7206 out: 7207 /* restore the node_state */ 7208 node_states[N_MEMORY] = saved_node_state; 7209 } 7210 7211 /* Any regular or high memory on that node ? */ 7212 static void check_for_memory(pg_data_t *pgdat, int nid) 7213 { 7214 enum zone_type zone_type; 7215 7216 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) { 7217 struct zone *zone = &pgdat->node_zones[zone_type]; 7218 if (populated_zone(zone)) { 7219 if (IS_ENABLED(CONFIG_HIGHMEM)) 7220 node_set_state(nid, N_HIGH_MEMORY); 7221 if (zone_type <= ZONE_NORMAL) 7222 node_set_state(nid, N_NORMAL_MEMORY); 7223 break; 7224 } 7225 } 7226 } 7227 7228 /** 7229 * free_area_init_nodes - Initialise all pg_data_t and zone data 7230 * @max_zone_pfn: an array of max PFNs for each zone 7231 * 7232 * This will call free_area_init_node() for each active node in the system. 7233 * Using the page ranges provided by memblock_set_node(), the size of each 7234 * zone in each node and their holes is calculated. If the maximum PFN 7235 * between two adjacent zones match, it is assumed that the zone is empty. 7236 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed 7237 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone 7238 * starts where the previous one ended. For example, ZONE_DMA32 starts 7239 * at arch_max_dma_pfn. 7240 */ 7241 void __init free_area_init_nodes(unsigned long *max_zone_pfn) 7242 { 7243 unsigned long start_pfn, end_pfn; 7244 int i, nid; 7245 7246 /* Record where the zone boundaries are */ 7247 memset(arch_zone_lowest_possible_pfn, 0, 7248 sizeof(arch_zone_lowest_possible_pfn)); 7249 memset(arch_zone_highest_possible_pfn, 0, 7250 sizeof(arch_zone_highest_possible_pfn)); 7251 7252 start_pfn = find_min_pfn_with_active_regions(); 7253 7254 for (i = 0; i < MAX_NR_ZONES; i++) { 7255 if (i == ZONE_MOVABLE) 7256 continue; 7257 7258 end_pfn = max(max_zone_pfn[i], start_pfn); 7259 arch_zone_lowest_possible_pfn[i] = start_pfn; 7260 arch_zone_highest_possible_pfn[i] = end_pfn; 7261 7262 start_pfn = end_pfn; 7263 } 7264 7265 /* Find the PFNs that ZONE_MOVABLE begins at in each node */ 7266 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn)); 7267 find_zone_movable_pfns_for_nodes(); 7268 7269 /* Print out the zone ranges */ 7270 pr_info("Zone ranges:\n"); 7271 for (i = 0; i < MAX_NR_ZONES; i++) { 7272 if (i == ZONE_MOVABLE) 7273 continue; 7274 pr_info(" %-8s ", zone_names[i]); 7275 if (arch_zone_lowest_possible_pfn[i] == 7276 arch_zone_highest_possible_pfn[i]) 7277 pr_cont("empty\n"); 7278 else 7279 pr_cont("[mem %#018Lx-%#018Lx]\n", 7280 (u64)arch_zone_lowest_possible_pfn[i] 7281 << PAGE_SHIFT, 7282 ((u64)arch_zone_highest_possible_pfn[i] 7283 << PAGE_SHIFT) - 1); 7284 } 7285 7286 /* Print out the PFNs ZONE_MOVABLE begins at in each node */ 7287 pr_info("Movable zone start for each node\n"); 7288 for (i = 0; i < MAX_NUMNODES; i++) { 7289 if (zone_movable_pfn[i]) 7290 pr_info(" Node %d: %#018Lx\n", i, 7291 (u64)zone_movable_pfn[i] << PAGE_SHIFT); 7292 } 7293 7294 /* Print out the early node map */ 7295 pr_info("Early memory node ranges\n"); 7296 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) 7297 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid, 7298 (u64)start_pfn << PAGE_SHIFT, 7299 ((u64)end_pfn << PAGE_SHIFT) - 1); 7300 7301 /* Initialise every node */ 7302 mminit_verify_pageflags_layout(); 7303 setup_nr_node_ids(); 7304 zero_resv_unavail(); 7305 for_each_online_node(nid) { 7306 pg_data_t *pgdat = NODE_DATA(nid); 7307 free_area_init_node(nid, NULL, 7308 find_min_pfn_for_node(nid), NULL); 7309 7310 /* Any memory on that node */ 7311 if (pgdat->node_present_pages) 7312 node_set_state(nid, N_MEMORY); 7313 check_for_memory(pgdat, nid); 7314 } 7315 } 7316 7317 static int __init cmdline_parse_core(char *p, unsigned long *core, 7318 unsigned long *percent) 7319 { 7320 unsigned long long coremem; 7321 char *endptr; 7322 7323 if (!p) 7324 return -EINVAL; 7325 7326 /* Value may be a percentage of total memory, otherwise bytes */ 7327 coremem = simple_strtoull(p, &endptr, 0); 7328 if (*endptr == '%') { 7329 /* Paranoid check for percent values greater than 100 */ 7330 WARN_ON(coremem > 100); 7331 7332 *percent = coremem; 7333 } else { 7334 coremem = memparse(p, &p); 7335 /* Paranoid check that UL is enough for the coremem value */ 7336 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX); 7337 7338 *core = coremem >> PAGE_SHIFT; 7339 *percent = 0UL; 7340 } 7341 return 0; 7342 } 7343 7344 /* 7345 * kernelcore=size sets the amount of memory for use for allocations that 7346 * cannot be reclaimed or migrated. 7347 */ 7348 static int __init cmdline_parse_kernelcore(char *p) 7349 { 7350 /* parse kernelcore=mirror */ 7351 if (parse_option_str(p, "mirror")) { 7352 mirrored_kernelcore = true; 7353 return 0; 7354 } 7355 7356 return cmdline_parse_core(p, &required_kernelcore, 7357 &required_kernelcore_percent); 7358 } 7359 7360 /* 7361 * movablecore=size sets the amount of memory for use for allocations that 7362 * can be reclaimed or migrated. 7363 */ 7364 static int __init cmdline_parse_movablecore(char *p) 7365 { 7366 return cmdline_parse_core(p, &required_movablecore, 7367 &required_movablecore_percent); 7368 } 7369 7370 early_param("kernelcore", cmdline_parse_kernelcore); 7371 early_param("movablecore", cmdline_parse_movablecore); 7372 7373 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 7374 7375 void adjust_managed_page_count(struct page *page, long count) 7376 { 7377 atomic_long_add(count, &page_zone(page)->managed_pages); 7378 totalram_pages_add(count); 7379 #ifdef CONFIG_HIGHMEM 7380 if (PageHighMem(page)) 7381 totalhigh_pages_add(count); 7382 #endif 7383 } 7384 EXPORT_SYMBOL(adjust_managed_page_count); 7385 7386 unsigned long free_reserved_area(void *start, void *end, int poison, const char *s) 7387 { 7388 void *pos; 7389 unsigned long pages = 0; 7390 7391 start = (void *)PAGE_ALIGN((unsigned long)start); 7392 end = (void *)((unsigned long)end & PAGE_MASK); 7393 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) { 7394 struct page *page = virt_to_page(pos); 7395 void *direct_map_addr; 7396 7397 /* 7398 * 'direct_map_addr' might be different from 'pos' 7399 * because some architectures' virt_to_page() 7400 * work with aliases. Getting the direct map 7401 * address ensures that we get a _writeable_ 7402 * alias for the memset(). 7403 */ 7404 direct_map_addr = page_address(page); 7405 if ((unsigned int)poison <= 0xFF) 7406 memset(direct_map_addr, poison, PAGE_SIZE); 7407 7408 free_reserved_page(page); 7409 } 7410 7411 if (pages && s) 7412 pr_info("Freeing %s memory: %ldK\n", 7413 s, pages << (PAGE_SHIFT - 10)); 7414 7415 return pages; 7416 } 7417 7418 #ifdef CONFIG_HIGHMEM 7419 void free_highmem_page(struct page *page) 7420 { 7421 __free_reserved_page(page); 7422 totalram_pages_inc(); 7423 atomic_long_inc(&page_zone(page)->managed_pages); 7424 totalhigh_pages_inc(); 7425 } 7426 #endif 7427 7428 7429 void __init mem_init_print_info(const char *str) 7430 { 7431 unsigned long physpages, codesize, datasize, rosize, bss_size; 7432 unsigned long init_code_size, init_data_size; 7433 7434 physpages = get_num_physpages(); 7435 codesize = _etext - _stext; 7436 datasize = _edata - _sdata; 7437 rosize = __end_rodata - __start_rodata; 7438 bss_size = __bss_stop - __bss_start; 7439 init_data_size = __init_end - __init_begin; 7440 init_code_size = _einittext - _sinittext; 7441 7442 /* 7443 * Detect special cases and adjust section sizes accordingly: 7444 * 1) .init.* may be embedded into .data sections 7445 * 2) .init.text.* may be out of [__init_begin, __init_end], 7446 * please refer to arch/tile/kernel/vmlinux.lds.S. 7447 * 3) .rodata.* may be embedded into .text or .data sections. 7448 */ 7449 #define adj_init_size(start, end, size, pos, adj) \ 7450 do { \ 7451 if (start <= pos && pos < end && size > adj) \ 7452 size -= adj; \ 7453 } while (0) 7454 7455 adj_init_size(__init_begin, __init_end, init_data_size, 7456 _sinittext, init_code_size); 7457 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size); 7458 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size); 7459 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize); 7460 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize); 7461 7462 #undef adj_init_size 7463 7464 pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved" 7465 #ifdef CONFIG_HIGHMEM 7466 ", %luK highmem" 7467 #endif 7468 "%s%s)\n", 7469 nr_free_pages() << (PAGE_SHIFT - 10), 7470 physpages << (PAGE_SHIFT - 10), 7471 codesize >> 10, datasize >> 10, rosize >> 10, 7472 (init_data_size + init_code_size) >> 10, bss_size >> 10, 7473 (physpages - totalram_pages() - totalcma_pages) << (PAGE_SHIFT - 10), 7474 totalcma_pages << (PAGE_SHIFT - 10), 7475 #ifdef CONFIG_HIGHMEM 7476 totalhigh_pages() << (PAGE_SHIFT - 10), 7477 #endif 7478 str ? ", " : "", str ? str : ""); 7479 } 7480 7481 /** 7482 * set_dma_reserve - set the specified number of pages reserved in the first zone 7483 * @new_dma_reserve: The number of pages to mark reserved 7484 * 7485 * The per-cpu batchsize and zone watermarks are determined by managed_pages. 7486 * In the DMA zone, a significant percentage may be consumed by kernel image 7487 * and other unfreeable allocations which can skew the watermarks badly. This 7488 * function may optionally be used to account for unfreeable pages in the 7489 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and 7490 * smaller per-cpu batchsize. 7491 */ 7492 void __init set_dma_reserve(unsigned long new_dma_reserve) 7493 { 7494 dma_reserve = new_dma_reserve; 7495 } 7496 7497 void __init free_area_init(unsigned long *zones_size) 7498 { 7499 zero_resv_unavail(); 7500 free_area_init_node(0, zones_size, 7501 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL); 7502 } 7503 7504 static int page_alloc_cpu_dead(unsigned int cpu) 7505 { 7506 7507 lru_add_drain_cpu(cpu); 7508 drain_pages(cpu); 7509 7510 /* 7511 * Spill the event counters of the dead processor 7512 * into the current processors event counters. 7513 * This artificially elevates the count of the current 7514 * processor. 7515 */ 7516 vm_events_fold_cpu(cpu); 7517 7518 /* 7519 * Zero the differential counters of the dead processor 7520 * so that the vm statistics are consistent. 7521 * 7522 * This is only okay since the processor is dead and cannot 7523 * race with what we are doing. 7524 */ 7525 cpu_vm_stats_fold(cpu); 7526 return 0; 7527 } 7528 7529 void __init page_alloc_init(void) 7530 { 7531 int ret; 7532 7533 ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC_DEAD, 7534 "mm/page_alloc:dead", NULL, 7535 page_alloc_cpu_dead); 7536 WARN_ON(ret < 0); 7537 } 7538 7539 /* 7540 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio 7541 * or min_free_kbytes changes. 7542 */ 7543 static void calculate_totalreserve_pages(void) 7544 { 7545 struct pglist_data *pgdat; 7546 unsigned long reserve_pages = 0; 7547 enum zone_type i, j; 7548 7549 for_each_online_pgdat(pgdat) { 7550 7551 pgdat->totalreserve_pages = 0; 7552 7553 for (i = 0; i < MAX_NR_ZONES; i++) { 7554 struct zone *zone = pgdat->node_zones + i; 7555 long max = 0; 7556 unsigned long managed_pages = zone_managed_pages(zone); 7557 7558 /* Find valid and maximum lowmem_reserve in the zone */ 7559 for (j = i; j < MAX_NR_ZONES; j++) { 7560 if (zone->lowmem_reserve[j] > max) 7561 max = zone->lowmem_reserve[j]; 7562 } 7563 7564 /* we treat the high watermark as reserved pages. */ 7565 max += high_wmark_pages(zone); 7566 7567 if (max > managed_pages) 7568 max = managed_pages; 7569 7570 pgdat->totalreserve_pages += max; 7571 7572 reserve_pages += max; 7573 } 7574 } 7575 totalreserve_pages = reserve_pages; 7576 } 7577 7578 /* 7579 * setup_per_zone_lowmem_reserve - called whenever 7580 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone 7581 * has a correct pages reserved value, so an adequate number of 7582 * pages are left in the zone after a successful __alloc_pages(). 7583 */ 7584 static void setup_per_zone_lowmem_reserve(void) 7585 { 7586 struct pglist_data *pgdat; 7587 enum zone_type j, idx; 7588 7589 for_each_online_pgdat(pgdat) { 7590 for (j = 0; j < MAX_NR_ZONES; j++) { 7591 struct zone *zone = pgdat->node_zones + j; 7592 unsigned long managed_pages = zone_managed_pages(zone); 7593 7594 zone->lowmem_reserve[j] = 0; 7595 7596 idx = j; 7597 while (idx) { 7598 struct zone *lower_zone; 7599 7600 idx--; 7601 lower_zone = pgdat->node_zones + idx; 7602 7603 if (sysctl_lowmem_reserve_ratio[idx] < 1) { 7604 sysctl_lowmem_reserve_ratio[idx] = 0; 7605 lower_zone->lowmem_reserve[j] = 0; 7606 } else { 7607 lower_zone->lowmem_reserve[j] = 7608 managed_pages / sysctl_lowmem_reserve_ratio[idx]; 7609 } 7610 managed_pages += zone_managed_pages(lower_zone); 7611 } 7612 } 7613 } 7614 7615 /* update totalreserve_pages */ 7616 calculate_totalreserve_pages(); 7617 } 7618 7619 static void __setup_per_zone_wmarks(void) 7620 { 7621 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10); 7622 unsigned long lowmem_pages = 0; 7623 struct zone *zone; 7624 unsigned long flags; 7625 7626 /* Calculate total number of !ZONE_HIGHMEM pages */ 7627 for_each_zone(zone) { 7628 if (!is_highmem(zone)) 7629 lowmem_pages += zone_managed_pages(zone); 7630 } 7631 7632 for_each_zone(zone) { 7633 u64 tmp; 7634 7635 spin_lock_irqsave(&zone->lock, flags); 7636 tmp = (u64)pages_min * zone_managed_pages(zone); 7637 do_div(tmp, lowmem_pages); 7638 if (is_highmem(zone)) { 7639 /* 7640 * __GFP_HIGH and PF_MEMALLOC allocations usually don't 7641 * need highmem pages, so cap pages_min to a small 7642 * value here. 7643 * 7644 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN) 7645 * deltas control async page reclaim, and so should 7646 * not be capped for highmem. 7647 */ 7648 unsigned long min_pages; 7649 7650 min_pages = zone_managed_pages(zone) / 1024; 7651 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL); 7652 zone->_watermark[WMARK_MIN] = min_pages; 7653 } else { 7654 /* 7655 * If it's a lowmem zone, reserve a number of pages 7656 * proportionate to the zone's size. 7657 */ 7658 zone->_watermark[WMARK_MIN] = tmp; 7659 } 7660 7661 /* 7662 * Set the kswapd watermarks distance according to the 7663 * scale factor in proportion to available memory, but 7664 * ensure a minimum size on small systems. 7665 */ 7666 tmp = max_t(u64, tmp >> 2, 7667 mult_frac(zone_managed_pages(zone), 7668 watermark_scale_factor, 10000)); 7669 7670 zone->_watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp; 7671 zone->_watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2; 7672 zone->watermark_boost = 0; 7673 7674 spin_unlock_irqrestore(&zone->lock, flags); 7675 } 7676 7677 /* update totalreserve_pages */ 7678 calculate_totalreserve_pages(); 7679 } 7680 7681 /** 7682 * setup_per_zone_wmarks - called when min_free_kbytes changes 7683 * or when memory is hot-{added|removed} 7684 * 7685 * Ensures that the watermark[min,low,high] values for each zone are set 7686 * correctly with respect to min_free_kbytes. 7687 */ 7688 void setup_per_zone_wmarks(void) 7689 { 7690 static DEFINE_SPINLOCK(lock); 7691 7692 spin_lock(&lock); 7693 __setup_per_zone_wmarks(); 7694 spin_unlock(&lock); 7695 } 7696 7697 /* 7698 * Initialise min_free_kbytes. 7699 * 7700 * For small machines we want it small (128k min). For large machines 7701 * we want it large (64MB max). But it is not linear, because network 7702 * bandwidth does not increase linearly with machine size. We use 7703 * 7704 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy: 7705 * min_free_kbytes = sqrt(lowmem_kbytes * 16) 7706 * 7707 * which yields 7708 * 7709 * 16MB: 512k 7710 * 32MB: 724k 7711 * 64MB: 1024k 7712 * 128MB: 1448k 7713 * 256MB: 2048k 7714 * 512MB: 2896k 7715 * 1024MB: 4096k 7716 * 2048MB: 5792k 7717 * 4096MB: 8192k 7718 * 8192MB: 11584k 7719 * 16384MB: 16384k 7720 */ 7721 int __meminit init_per_zone_wmark_min(void) 7722 { 7723 unsigned long lowmem_kbytes; 7724 int new_min_free_kbytes; 7725 7726 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10); 7727 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16); 7728 7729 if (new_min_free_kbytes > user_min_free_kbytes) { 7730 min_free_kbytes = new_min_free_kbytes; 7731 if (min_free_kbytes < 128) 7732 min_free_kbytes = 128; 7733 if (min_free_kbytes > 65536) 7734 min_free_kbytes = 65536; 7735 } else { 7736 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n", 7737 new_min_free_kbytes, user_min_free_kbytes); 7738 } 7739 setup_per_zone_wmarks(); 7740 refresh_zone_stat_thresholds(); 7741 setup_per_zone_lowmem_reserve(); 7742 7743 #ifdef CONFIG_NUMA 7744 setup_min_unmapped_ratio(); 7745 setup_min_slab_ratio(); 7746 #endif 7747 7748 return 0; 7749 } 7750 core_initcall(init_per_zone_wmark_min) 7751 7752 /* 7753 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so 7754 * that we can call two helper functions whenever min_free_kbytes 7755 * changes. 7756 */ 7757 int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write, 7758 void __user *buffer, size_t *length, loff_t *ppos) 7759 { 7760 int rc; 7761 7762 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 7763 if (rc) 7764 return rc; 7765 7766 if (write) { 7767 user_min_free_kbytes = min_free_kbytes; 7768 setup_per_zone_wmarks(); 7769 } 7770 return 0; 7771 } 7772 7773 int watermark_boost_factor_sysctl_handler(struct ctl_table *table, int write, 7774 void __user *buffer, size_t *length, loff_t *ppos) 7775 { 7776 int rc; 7777 7778 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 7779 if (rc) 7780 return rc; 7781 7782 return 0; 7783 } 7784 7785 int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write, 7786 void __user *buffer, size_t *length, loff_t *ppos) 7787 { 7788 int rc; 7789 7790 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 7791 if (rc) 7792 return rc; 7793 7794 if (write) 7795 setup_per_zone_wmarks(); 7796 7797 return 0; 7798 } 7799 7800 #ifdef CONFIG_NUMA 7801 static void setup_min_unmapped_ratio(void) 7802 { 7803 pg_data_t *pgdat; 7804 struct zone *zone; 7805 7806 for_each_online_pgdat(pgdat) 7807 pgdat->min_unmapped_pages = 0; 7808 7809 for_each_zone(zone) 7810 zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) * 7811 sysctl_min_unmapped_ratio) / 100; 7812 } 7813 7814 7815 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write, 7816 void __user *buffer, size_t *length, loff_t *ppos) 7817 { 7818 int rc; 7819 7820 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 7821 if (rc) 7822 return rc; 7823 7824 setup_min_unmapped_ratio(); 7825 7826 return 0; 7827 } 7828 7829 static void setup_min_slab_ratio(void) 7830 { 7831 pg_data_t *pgdat; 7832 struct zone *zone; 7833 7834 for_each_online_pgdat(pgdat) 7835 pgdat->min_slab_pages = 0; 7836 7837 for_each_zone(zone) 7838 zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) * 7839 sysctl_min_slab_ratio) / 100; 7840 } 7841 7842 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write, 7843 void __user *buffer, size_t *length, loff_t *ppos) 7844 { 7845 int rc; 7846 7847 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 7848 if (rc) 7849 return rc; 7850 7851 setup_min_slab_ratio(); 7852 7853 return 0; 7854 } 7855 #endif 7856 7857 /* 7858 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around 7859 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve() 7860 * whenever sysctl_lowmem_reserve_ratio changes. 7861 * 7862 * The reserve ratio obviously has absolutely no relation with the 7863 * minimum watermarks. The lowmem reserve ratio can only make sense 7864 * if in function of the boot time zone sizes. 7865 */ 7866 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write, 7867 void __user *buffer, size_t *length, loff_t *ppos) 7868 { 7869 proc_dointvec_minmax(table, write, buffer, length, ppos); 7870 setup_per_zone_lowmem_reserve(); 7871 return 0; 7872 } 7873 7874 /* 7875 * percpu_pagelist_fraction - changes the pcp->high for each zone on each 7876 * cpu. It is the fraction of total pages in each zone that a hot per cpu 7877 * pagelist can have before it gets flushed back to buddy allocator. 7878 */ 7879 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write, 7880 void __user *buffer, size_t *length, loff_t *ppos) 7881 { 7882 struct zone *zone; 7883 int old_percpu_pagelist_fraction; 7884 int ret; 7885 7886 mutex_lock(&pcp_batch_high_lock); 7887 old_percpu_pagelist_fraction = percpu_pagelist_fraction; 7888 7889 ret = proc_dointvec_minmax(table, write, buffer, length, ppos); 7890 if (!write || ret < 0) 7891 goto out; 7892 7893 /* Sanity checking to avoid pcp imbalance */ 7894 if (percpu_pagelist_fraction && 7895 percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) { 7896 percpu_pagelist_fraction = old_percpu_pagelist_fraction; 7897 ret = -EINVAL; 7898 goto out; 7899 } 7900 7901 /* No change? */ 7902 if (percpu_pagelist_fraction == old_percpu_pagelist_fraction) 7903 goto out; 7904 7905 for_each_populated_zone(zone) { 7906 unsigned int cpu; 7907 7908 for_each_possible_cpu(cpu) 7909 pageset_set_high_and_batch(zone, 7910 per_cpu_ptr(zone->pageset, cpu)); 7911 } 7912 out: 7913 mutex_unlock(&pcp_batch_high_lock); 7914 return ret; 7915 } 7916 7917 #ifdef CONFIG_NUMA 7918 int hashdist = HASHDIST_DEFAULT; 7919 7920 static int __init set_hashdist(char *str) 7921 { 7922 if (!str) 7923 return 0; 7924 hashdist = simple_strtoul(str, &str, 0); 7925 return 1; 7926 } 7927 __setup("hashdist=", set_hashdist); 7928 #endif 7929 7930 #ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES 7931 /* 7932 * Returns the number of pages that arch has reserved but 7933 * is not known to alloc_large_system_hash(). 7934 */ 7935 static unsigned long __init arch_reserved_kernel_pages(void) 7936 { 7937 return 0; 7938 } 7939 #endif 7940 7941 /* 7942 * Adaptive scale is meant to reduce sizes of hash tables on large memory 7943 * machines. As memory size is increased the scale is also increased but at 7944 * slower pace. Starting from ADAPT_SCALE_BASE (64G), every time memory 7945 * quadruples the scale is increased by one, which means the size of hash table 7946 * only doubles, instead of quadrupling as well. 7947 * Because 32-bit systems cannot have large physical memory, where this scaling 7948 * makes sense, it is disabled on such platforms. 7949 */ 7950 #if __BITS_PER_LONG > 32 7951 #define ADAPT_SCALE_BASE (64ul << 30) 7952 #define ADAPT_SCALE_SHIFT 2 7953 #define ADAPT_SCALE_NPAGES (ADAPT_SCALE_BASE >> PAGE_SHIFT) 7954 #endif 7955 7956 /* 7957 * allocate a large system hash table from bootmem 7958 * - it is assumed that the hash table must contain an exact power-of-2 7959 * quantity of entries 7960 * - limit is the number of hash buckets, not the total allocation size 7961 */ 7962 void *__init alloc_large_system_hash(const char *tablename, 7963 unsigned long bucketsize, 7964 unsigned long numentries, 7965 int scale, 7966 int flags, 7967 unsigned int *_hash_shift, 7968 unsigned int *_hash_mask, 7969 unsigned long low_limit, 7970 unsigned long high_limit) 7971 { 7972 unsigned long long max = high_limit; 7973 unsigned long log2qty, size; 7974 void *table = NULL; 7975 gfp_t gfp_flags; 7976 7977 /* allow the kernel cmdline to have a say */ 7978 if (!numentries) { 7979 /* round applicable memory size up to nearest megabyte */ 7980 numentries = nr_kernel_pages; 7981 numentries -= arch_reserved_kernel_pages(); 7982 7983 /* It isn't necessary when PAGE_SIZE >= 1MB */ 7984 if (PAGE_SHIFT < 20) 7985 numentries = round_up(numentries, (1<<20)/PAGE_SIZE); 7986 7987 #if __BITS_PER_LONG > 32 7988 if (!high_limit) { 7989 unsigned long adapt; 7990 7991 for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries; 7992 adapt <<= ADAPT_SCALE_SHIFT) 7993 scale++; 7994 } 7995 #endif 7996 7997 /* limit to 1 bucket per 2^scale bytes of low memory */ 7998 if (scale > PAGE_SHIFT) 7999 numentries >>= (scale - PAGE_SHIFT); 8000 else 8001 numentries <<= (PAGE_SHIFT - scale); 8002 8003 /* Make sure we've got at least a 0-order allocation.. */ 8004 if (unlikely(flags & HASH_SMALL)) { 8005 /* Makes no sense without HASH_EARLY */ 8006 WARN_ON(!(flags & HASH_EARLY)); 8007 if (!(numentries >> *_hash_shift)) { 8008 numentries = 1UL << *_hash_shift; 8009 BUG_ON(!numentries); 8010 } 8011 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE)) 8012 numentries = PAGE_SIZE / bucketsize; 8013 } 8014 numentries = roundup_pow_of_two(numentries); 8015 8016 /* limit allocation size to 1/16 total memory by default */ 8017 if (max == 0) { 8018 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4; 8019 do_div(max, bucketsize); 8020 } 8021 max = min(max, 0x80000000ULL); 8022 8023 if (numentries < low_limit) 8024 numentries = low_limit; 8025 if (numentries > max) 8026 numentries = max; 8027 8028 log2qty = ilog2(numentries); 8029 8030 gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC; 8031 do { 8032 size = bucketsize << log2qty; 8033 if (flags & HASH_EARLY) { 8034 if (flags & HASH_ZERO) 8035 table = memblock_alloc(size, SMP_CACHE_BYTES); 8036 else 8037 table = memblock_alloc_raw(size, 8038 SMP_CACHE_BYTES); 8039 } else if (hashdist) { 8040 table = __vmalloc(size, gfp_flags, PAGE_KERNEL); 8041 } else { 8042 /* 8043 * If bucketsize is not a power-of-two, we may free 8044 * some pages at the end of hash table which 8045 * alloc_pages_exact() automatically does 8046 */ 8047 if (get_order(size) < MAX_ORDER) { 8048 table = alloc_pages_exact(size, gfp_flags); 8049 kmemleak_alloc(table, size, 1, gfp_flags); 8050 } 8051 } 8052 } while (!table && size > PAGE_SIZE && --log2qty); 8053 8054 if (!table) 8055 panic("Failed to allocate %s hash table\n", tablename); 8056 8057 pr_info("%s hash table entries: %ld (order: %d, %lu bytes)\n", 8058 tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size); 8059 8060 if (_hash_shift) 8061 *_hash_shift = log2qty; 8062 if (_hash_mask) 8063 *_hash_mask = (1 << log2qty) - 1; 8064 8065 return table; 8066 } 8067 8068 /* 8069 * This function checks whether pageblock includes unmovable pages or not. 8070 * If @count is not zero, it is okay to include less @count unmovable pages 8071 * 8072 * PageLRU check without isolation or lru_lock could race so that 8073 * MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable 8074 * check without lock_page also may miss some movable non-lru pages at 8075 * race condition. So you can't expect this function should be exact. 8076 */ 8077 bool has_unmovable_pages(struct zone *zone, struct page *page, int count, 8078 int migratetype, int flags) 8079 { 8080 unsigned long found; 8081 unsigned long iter = 0; 8082 unsigned long pfn = page_to_pfn(page); 8083 const char *reason = "unmovable page"; 8084 8085 /* 8086 * TODO we could make this much more efficient by not checking every 8087 * page in the range if we know all of them are in MOVABLE_ZONE and 8088 * that the movable zone guarantees that pages are migratable but 8089 * the later is not the case right now unfortunatelly. E.g. movablecore 8090 * can still lead to having bootmem allocations in zone_movable. 8091 */ 8092 8093 if (is_migrate_cma_page(page)) { 8094 /* 8095 * CMA allocations (alloc_contig_range) really need to mark 8096 * isolate CMA pageblocks even when they are not movable in fact 8097 * so consider them movable here. 8098 */ 8099 if (is_migrate_cma(migratetype)) 8100 return false; 8101 8102 reason = "CMA page"; 8103 goto unmovable; 8104 } 8105 8106 for (found = 0; iter < pageblock_nr_pages; iter++) { 8107 unsigned long check = pfn + iter; 8108 8109 if (!pfn_valid_within(check)) 8110 continue; 8111 8112 page = pfn_to_page(check); 8113 8114 if (PageReserved(page)) 8115 goto unmovable; 8116 8117 /* 8118 * If the zone is movable and we have ruled out all reserved 8119 * pages then it should be reasonably safe to assume the rest 8120 * is movable. 8121 */ 8122 if (zone_idx(zone) == ZONE_MOVABLE) 8123 continue; 8124 8125 /* 8126 * Hugepages are not in LRU lists, but they're movable. 8127 * We need not scan over tail pages because we don't 8128 * handle each tail page individually in migration. 8129 */ 8130 if (PageHuge(page)) { 8131 struct page *head = compound_head(page); 8132 unsigned int skip_pages; 8133 8134 if (!hugepage_migration_supported(page_hstate(head))) 8135 goto unmovable; 8136 8137 skip_pages = (1 << compound_order(head)) - (page - head); 8138 iter += skip_pages - 1; 8139 continue; 8140 } 8141 8142 /* 8143 * We can't use page_count without pin a page 8144 * because another CPU can free compound page. 8145 * This check already skips compound tails of THP 8146 * because their page->_refcount is zero at all time. 8147 */ 8148 if (!page_ref_count(page)) { 8149 if (PageBuddy(page)) 8150 iter += (1 << page_order(page)) - 1; 8151 continue; 8152 } 8153 8154 /* 8155 * The HWPoisoned page may be not in buddy system, and 8156 * page_count() is not 0. 8157 */ 8158 if ((flags & SKIP_HWPOISON) && PageHWPoison(page)) 8159 continue; 8160 8161 if (__PageMovable(page)) 8162 continue; 8163 8164 if (!PageLRU(page)) 8165 found++; 8166 /* 8167 * If there are RECLAIMABLE pages, we need to check 8168 * it. But now, memory offline itself doesn't call 8169 * shrink_node_slabs() and it still to be fixed. 8170 */ 8171 /* 8172 * If the page is not RAM, page_count()should be 0. 8173 * we don't need more check. This is an _used_ not-movable page. 8174 * 8175 * The problematic thing here is PG_reserved pages. PG_reserved 8176 * is set to both of a memory hole page and a _used_ kernel 8177 * page at boot. 8178 */ 8179 if (found > count) 8180 goto unmovable; 8181 } 8182 return false; 8183 unmovable: 8184 WARN_ON_ONCE(zone_idx(zone) == ZONE_MOVABLE); 8185 if (flags & REPORT_FAILURE) 8186 dump_page(pfn_to_page(pfn + iter), reason); 8187 return true; 8188 } 8189 8190 #ifdef CONFIG_CONTIG_ALLOC 8191 static unsigned long pfn_max_align_down(unsigned long pfn) 8192 { 8193 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES, 8194 pageblock_nr_pages) - 1); 8195 } 8196 8197 static unsigned long pfn_max_align_up(unsigned long pfn) 8198 { 8199 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES, 8200 pageblock_nr_pages)); 8201 } 8202 8203 /* [start, end) must belong to a single zone. */ 8204 static int __alloc_contig_migrate_range(struct compact_control *cc, 8205 unsigned long start, unsigned long end) 8206 { 8207 /* This function is based on compact_zone() from compaction.c. */ 8208 unsigned long nr_reclaimed; 8209 unsigned long pfn = start; 8210 unsigned int tries = 0; 8211 int ret = 0; 8212 8213 migrate_prep(); 8214 8215 while (pfn < end || !list_empty(&cc->migratepages)) { 8216 if (fatal_signal_pending(current)) { 8217 ret = -EINTR; 8218 break; 8219 } 8220 8221 if (list_empty(&cc->migratepages)) { 8222 cc->nr_migratepages = 0; 8223 pfn = isolate_migratepages_range(cc, pfn, end); 8224 if (!pfn) { 8225 ret = -EINTR; 8226 break; 8227 } 8228 tries = 0; 8229 } else if (++tries == 5) { 8230 ret = ret < 0 ? ret : -EBUSY; 8231 break; 8232 } 8233 8234 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone, 8235 &cc->migratepages); 8236 cc->nr_migratepages -= nr_reclaimed; 8237 8238 ret = migrate_pages(&cc->migratepages, alloc_migrate_target, 8239 NULL, 0, cc->mode, MR_CONTIG_RANGE); 8240 } 8241 if (ret < 0) { 8242 putback_movable_pages(&cc->migratepages); 8243 return ret; 8244 } 8245 return 0; 8246 } 8247 8248 /** 8249 * alloc_contig_range() -- tries to allocate given range of pages 8250 * @start: start PFN to allocate 8251 * @end: one-past-the-last PFN to allocate 8252 * @migratetype: migratetype of the underlaying pageblocks (either 8253 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks 8254 * in range must have the same migratetype and it must 8255 * be either of the two. 8256 * @gfp_mask: GFP mask to use during compaction 8257 * 8258 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES 8259 * aligned. The PFN range must belong to a single zone. 8260 * 8261 * The first thing this routine does is attempt to MIGRATE_ISOLATE all 8262 * pageblocks in the range. Once isolated, the pageblocks should not 8263 * be modified by others. 8264 * 8265 * Return: zero on success or negative error code. On success all 8266 * pages which PFN is in [start, end) are allocated for the caller and 8267 * need to be freed with free_contig_range(). 8268 */ 8269 int alloc_contig_range(unsigned long start, unsigned long end, 8270 unsigned migratetype, gfp_t gfp_mask) 8271 { 8272 unsigned long outer_start, outer_end; 8273 unsigned int order; 8274 int ret = 0; 8275 8276 struct compact_control cc = { 8277 .nr_migratepages = 0, 8278 .order = -1, 8279 .zone = page_zone(pfn_to_page(start)), 8280 .mode = MIGRATE_SYNC, 8281 .ignore_skip_hint = true, 8282 .no_set_skip_hint = true, 8283 .gfp_mask = current_gfp_context(gfp_mask), 8284 }; 8285 INIT_LIST_HEAD(&cc.migratepages); 8286 8287 /* 8288 * What we do here is we mark all pageblocks in range as 8289 * MIGRATE_ISOLATE. Because pageblock and max order pages may 8290 * have different sizes, and due to the way page allocator 8291 * work, we align the range to biggest of the two pages so 8292 * that page allocator won't try to merge buddies from 8293 * different pageblocks and change MIGRATE_ISOLATE to some 8294 * other migration type. 8295 * 8296 * Once the pageblocks are marked as MIGRATE_ISOLATE, we 8297 * migrate the pages from an unaligned range (ie. pages that 8298 * we are interested in). This will put all the pages in 8299 * range back to page allocator as MIGRATE_ISOLATE. 8300 * 8301 * When this is done, we take the pages in range from page 8302 * allocator removing them from the buddy system. This way 8303 * page allocator will never consider using them. 8304 * 8305 * This lets us mark the pageblocks back as 8306 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the 8307 * aligned range but not in the unaligned, original range are 8308 * put back to page allocator so that buddy can use them. 8309 */ 8310 8311 ret = start_isolate_page_range(pfn_max_align_down(start), 8312 pfn_max_align_up(end), migratetype, 0); 8313 if (ret < 0) 8314 return ret; 8315 8316 /* 8317 * In case of -EBUSY, we'd like to know which page causes problem. 8318 * So, just fall through. test_pages_isolated() has a tracepoint 8319 * which will report the busy page. 8320 * 8321 * It is possible that busy pages could become available before 8322 * the call to test_pages_isolated, and the range will actually be 8323 * allocated. So, if we fall through be sure to clear ret so that 8324 * -EBUSY is not accidentally used or returned to caller. 8325 */ 8326 ret = __alloc_contig_migrate_range(&cc, start, end); 8327 if (ret && ret != -EBUSY) 8328 goto done; 8329 ret =0; 8330 8331 /* 8332 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES 8333 * aligned blocks that are marked as MIGRATE_ISOLATE. What's 8334 * more, all pages in [start, end) are free in page allocator. 8335 * What we are going to do is to allocate all pages from 8336 * [start, end) (that is remove them from page allocator). 8337 * 8338 * The only problem is that pages at the beginning and at the 8339 * end of interesting range may be not aligned with pages that 8340 * page allocator holds, ie. they can be part of higher order 8341 * pages. Because of this, we reserve the bigger range and 8342 * once this is done free the pages we are not interested in. 8343 * 8344 * We don't have to hold zone->lock here because the pages are 8345 * isolated thus they won't get removed from buddy. 8346 */ 8347 8348 lru_add_drain_all(); 8349 8350 order = 0; 8351 outer_start = start; 8352 while (!PageBuddy(pfn_to_page(outer_start))) { 8353 if (++order >= MAX_ORDER) { 8354 outer_start = start; 8355 break; 8356 } 8357 outer_start &= ~0UL << order; 8358 } 8359 8360 if (outer_start != start) { 8361 order = page_order(pfn_to_page(outer_start)); 8362 8363 /* 8364 * outer_start page could be small order buddy page and 8365 * it doesn't include start page. Adjust outer_start 8366 * in this case to report failed page properly 8367 * on tracepoint in test_pages_isolated() 8368 */ 8369 if (outer_start + (1UL << order) <= start) 8370 outer_start = start; 8371 } 8372 8373 /* Make sure the range is really isolated. */ 8374 if (test_pages_isolated(outer_start, end, false)) { 8375 pr_info_ratelimited("%s: [%lx, %lx) PFNs busy\n", 8376 __func__, outer_start, end); 8377 ret = -EBUSY; 8378 goto done; 8379 } 8380 8381 /* Grab isolated pages from freelists. */ 8382 outer_end = isolate_freepages_range(&cc, outer_start, end); 8383 if (!outer_end) { 8384 ret = -EBUSY; 8385 goto done; 8386 } 8387 8388 /* Free head and tail (if any) */ 8389 if (start != outer_start) 8390 free_contig_range(outer_start, start - outer_start); 8391 if (end != outer_end) 8392 free_contig_range(end, outer_end - end); 8393 8394 done: 8395 undo_isolate_page_range(pfn_max_align_down(start), 8396 pfn_max_align_up(end), migratetype); 8397 return ret; 8398 } 8399 #endif /* CONFIG_CONTIG_ALLOC */ 8400 8401 void free_contig_range(unsigned long pfn, unsigned int nr_pages) 8402 { 8403 unsigned int count = 0; 8404 8405 for (; nr_pages--; pfn++) { 8406 struct page *page = pfn_to_page(pfn); 8407 8408 count += page_count(page) != 1; 8409 __free_page(page); 8410 } 8411 WARN(count != 0, "%d pages are still in use!\n", count); 8412 } 8413 8414 #ifdef CONFIG_MEMORY_HOTPLUG 8415 /* 8416 * The zone indicated has a new number of managed_pages; batch sizes and percpu 8417 * page high values need to be recalulated. 8418 */ 8419 void __meminit zone_pcp_update(struct zone *zone) 8420 { 8421 unsigned cpu; 8422 mutex_lock(&pcp_batch_high_lock); 8423 for_each_possible_cpu(cpu) 8424 pageset_set_high_and_batch(zone, 8425 per_cpu_ptr(zone->pageset, cpu)); 8426 mutex_unlock(&pcp_batch_high_lock); 8427 } 8428 #endif 8429 8430 void zone_pcp_reset(struct zone *zone) 8431 { 8432 unsigned long flags; 8433 int cpu; 8434 struct per_cpu_pageset *pset; 8435 8436 /* avoid races with drain_pages() */ 8437 local_irq_save(flags); 8438 if (zone->pageset != &boot_pageset) { 8439 for_each_online_cpu(cpu) { 8440 pset = per_cpu_ptr(zone->pageset, cpu); 8441 drain_zonestat(zone, pset); 8442 } 8443 free_percpu(zone->pageset); 8444 zone->pageset = &boot_pageset; 8445 } 8446 local_irq_restore(flags); 8447 } 8448 8449 #ifdef CONFIG_MEMORY_HOTREMOVE 8450 /* 8451 * All pages in the range must be in a single zone and isolated 8452 * before calling this. 8453 */ 8454 unsigned long 8455 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn) 8456 { 8457 struct page *page; 8458 struct zone *zone; 8459 unsigned int order, i; 8460 unsigned long pfn; 8461 unsigned long flags; 8462 unsigned long offlined_pages = 0; 8463 8464 /* find the first valid pfn */ 8465 for (pfn = start_pfn; pfn < end_pfn; pfn++) 8466 if (pfn_valid(pfn)) 8467 break; 8468 if (pfn == end_pfn) 8469 return offlined_pages; 8470 8471 offline_mem_sections(pfn, end_pfn); 8472 zone = page_zone(pfn_to_page(pfn)); 8473 spin_lock_irqsave(&zone->lock, flags); 8474 pfn = start_pfn; 8475 while (pfn < end_pfn) { 8476 if (!pfn_valid(pfn)) { 8477 pfn++; 8478 continue; 8479 } 8480 page = pfn_to_page(pfn); 8481 /* 8482 * The HWPoisoned page may be not in buddy system, and 8483 * page_count() is not 0. 8484 */ 8485 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) { 8486 pfn++; 8487 SetPageReserved(page); 8488 offlined_pages++; 8489 continue; 8490 } 8491 8492 BUG_ON(page_count(page)); 8493 BUG_ON(!PageBuddy(page)); 8494 order = page_order(page); 8495 offlined_pages += 1 << order; 8496 #ifdef CONFIG_DEBUG_VM 8497 pr_info("remove from free list %lx %d %lx\n", 8498 pfn, 1 << order, end_pfn); 8499 #endif 8500 list_del(&page->lru); 8501 rmv_page_order(page); 8502 zone->free_area[order].nr_free--; 8503 for (i = 0; i < (1 << order); i++) 8504 SetPageReserved((page+i)); 8505 pfn += (1 << order); 8506 } 8507 spin_unlock_irqrestore(&zone->lock, flags); 8508 8509 return offlined_pages; 8510 } 8511 #endif 8512 8513 bool is_free_buddy_page(struct page *page) 8514 { 8515 struct zone *zone = page_zone(page); 8516 unsigned long pfn = page_to_pfn(page); 8517 unsigned long flags; 8518 unsigned int order; 8519 8520 spin_lock_irqsave(&zone->lock, flags); 8521 for (order = 0; order < MAX_ORDER; order++) { 8522 struct page *page_head = page - (pfn & ((1 << order) - 1)); 8523 8524 if (PageBuddy(page_head) && page_order(page_head) >= order) 8525 break; 8526 } 8527 spin_unlock_irqrestore(&zone->lock, flags); 8528 8529 return order < MAX_ORDER; 8530 } 8531 8532 #ifdef CONFIG_MEMORY_FAILURE 8533 /* 8534 * Set PG_hwpoison flag if a given page is confirmed to be a free page. This 8535 * test is performed under the zone lock to prevent a race against page 8536 * allocation. 8537 */ 8538 bool set_hwpoison_free_buddy_page(struct page *page) 8539 { 8540 struct zone *zone = page_zone(page); 8541 unsigned long pfn = page_to_pfn(page); 8542 unsigned long flags; 8543 unsigned int order; 8544 bool hwpoisoned = false; 8545 8546 spin_lock_irqsave(&zone->lock, flags); 8547 for (order = 0; order < MAX_ORDER; order++) { 8548 struct page *page_head = page - (pfn & ((1 << order) - 1)); 8549 8550 if (PageBuddy(page_head) && page_order(page_head) >= order) { 8551 if (!TestSetPageHWPoison(page)) 8552 hwpoisoned = true; 8553 break; 8554 } 8555 } 8556 spin_unlock_irqrestore(&zone->lock, flags); 8557 8558 return hwpoisoned; 8559 } 8560 #endif 8561