xref: /linux/mm/page_alloc.c (revision bca844a8c92502b2aa5bd50a9094eaf01a1710c0)
1 /*
2  *  linux/mm/page_alloc.c
3  *
4  *  Manages the free list, the system allocates free pages here.
5  *  Note that kmalloc() lives in slab.c
6  *
7  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
8  *  Swap reorganised 29.12.95, Stephen Tweedie
9  *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10  *  Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11  *  Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12  *  Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13  *  Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14  *          (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15  */
16 
17 #include <linux/stddef.h>
18 #include <linux/mm.h>
19 #include <linux/highmem.h>
20 #include <linux/swap.h>
21 #include <linux/interrupt.h>
22 #include <linux/pagemap.h>
23 #include <linux/jiffies.h>
24 #include <linux/memblock.h>
25 #include <linux/compiler.h>
26 #include <linux/kernel.h>
27 #include <linux/kasan.h>
28 #include <linux/module.h>
29 #include <linux/suspend.h>
30 #include <linux/pagevec.h>
31 #include <linux/blkdev.h>
32 #include <linux/slab.h>
33 #include <linux/ratelimit.h>
34 #include <linux/oom.h>
35 #include <linux/topology.h>
36 #include <linux/sysctl.h>
37 #include <linux/cpu.h>
38 #include <linux/cpuset.h>
39 #include <linux/memory_hotplug.h>
40 #include <linux/nodemask.h>
41 #include <linux/vmalloc.h>
42 #include <linux/vmstat.h>
43 #include <linux/mempolicy.h>
44 #include <linux/memremap.h>
45 #include <linux/stop_machine.h>
46 #include <linux/sort.h>
47 #include <linux/pfn.h>
48 #include <linux/backing-dev.h>
49 #include <linux/fault-inject.h>
50 #include <linux/page-isolation.h>
51 #include <linux/page_ext.h>
52 #include <linux/debugobjects.h>
53 #include <linux/kmemleak.h>
54 #include <linux/compaction.h>
55 #include <trace/events/kmem.h>
56 #include <trace/events/oom.h>
57 #include <linux/prefetch.h>
58 #include <linux/mm_inline.h>
59 #include <linux/migrate.h>
60 #include <linux/hugetlb.h>
61 #include <linux/sched/rt.h>
62 #include <linux/sched/mm.h>
63 #include <linux/page_owner.h>
64 #include <linux/kthread.h>
65 #include <linux/memcontrol.h>
66 #include <linux/ftrace.h>
67 #include <linux/lockdep.h>
68 #include <linux/nmi.h>
69 #include <linux/psi.h>
70 
71 #include <asm/sections.h>
72 #include <asm/tlbflush.h>
73 #include <asm/div64.h>
74 #include "internal.h"
75 
76 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
77 static DEFINE_MUTEX(pcp_batch_high_lock);
78 #define MIN_PERCPU_PAGELIST_FRACTION	(8)
79 
80 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
81 DEFINE_PER_CPU(int, numa_node);
82 EXPORT_PER_CPU_SYMBOL(numa_node);
83 #endif
84 
85 DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key);
86 
87 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
88 /*
89  * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
90  * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
91  * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
92  * defined in <linux/topology.h>.
93  */
94 DEFINE_PER_CPU(int, _numa_mem_);		/* Kernel "local memory" node */
95 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
96 int _node_numa_mem_[MAX_NUMNODES];
97 #endif
98 
99 /* work_structs for global per-cpu drains */
100 struct pcpu_drain {
101 	struct zone *zone;
102 	struct work_struct work;
103 };
104 DEFINE_MUTEX(pcpu_drain_mutex);
105 DEFINE_PER_CPU(struct pcpu_drain, pcpu_drain);
106 
107 #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
108 volatile unsigned long latent_entropy __latent_entropy;
109 EXPORT_SYMBOL(latent_entropy);
110 #endif
111 
112 /*
113  * Array of node states.
114  */
115 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
116 	[N_POSSIBLE] = NODE_MASK_ALL,
117 	[N_ONLINE] = { { [0] = 1UL } },
118 #ifndef CONFIG_NUMA
119 	[N_NORMAL_MEMORY] = { { [0] = 1UL } },
120 #ifdef CONFIG_HIGHMEM
121 	[N_HIGH_MEMORY] = { { [0] = 1UL } },
122 #endif
123 	[N_MEMORY] = { { [0] = 1UL } },
124 	[N_CPU] = { { [0] = 1UL } },
125 #endif	/* NUMA */
126 };
127 EXPORT_SYMBOL(node_states);
128 
129 atomic_long_t _totalram_pages __read_mostly;
130 EXPORT_SYMBOL(_totalram_pages);
131 unsigned long totalreserve_pages __read_mostly;
132 unsigned long totalcma_pages __read_mostly;
133 
134 int percpu_pagelist_fraction;
135 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
136 
137 /*
138  * A cached value of the page's pageblock's migratetype, used when the page is
139  * put on a pcplist. Used to avoid the pageblock migratetype lookup when
140  * freeing from pcplists in most cases, at the cost of possibly becoming stale.
141  * Also the migratetype set in the page does not necessarily match the pcplist
142  * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
143  * other index - this ensures that it will be put on the correct CMA freelist.
144  */
145 static inline int get_pcppage_migratetype(struct page *page)
146 {
147 	return page->index;
148 }
149 
150 static inline void set_pcppage_migratetype(struct page *page, int migratetype)
151 {
152 	page->index = migratetype;
153 }
154 
155 #ifdef CONFIG_PM_SLEEP
156 /*
157  * The following functions are used by the suspend/hibernate code to temporarily
158  * change gfp_allowed_mask in order to avoid using I/O during memory allocations
159  * while devices are suspended.  To avoid races with the suspend/hibernate code,
160  * they should always be called with system_transition_mutex held
161  * (gfp_allowed_mask also should only be modified with system_transition_mutex
162  * held, unless the suspend/hibernate code is guaranteed not to run in parallel
163  * with that modification).
164  */
165 
166 static gfp_t saved_gfp_mask;
167 
168 void pm_restore_gfp_mask(void)
169 {
170 	WARN_ON(!mutex_is_locked(&system_transition_mutex));
171 	if (saved_gfp_mask) {
172 		gfp_allowed_mask = saved_gfp_mask;
173 		saved_gfp_mask = 0;
174 	}
175 }
176 
177 void pm_restrict_gfp_mask(void)
178 {
179 	WARN_ON(!mutex_is_locked(&system_transition_mutex));
180 	WARN_ON(saved_gfp_mask);
181 	saved_gfp_mask = gfp_allowed_mask;
182 	gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
183 }
184 
185 bool pm_suspended_storage(void)
186 {
187 	if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
188 		return false;
189 	return true;
190 }
191 #endif /* CONFIG_PM_SLEEP */
192 
193 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
194 unsigned int pageblock_order __read_mostly;
195 #endif
196 
197 static void __free_pages_ok(struct page *page, unsigned int order);
198 
199 /*
200  * results with 256, 32 in the lowmem_reserve sysctl:
201  *	1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
202  *	1G machine -> (16M dma, 784M normal, 224M high)
203  *	NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
204  *	HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
205  *	HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
206  *
207  * TBD: should special case ZONE_DMA32 machines here - in those we normally
208  * don't need any ZONE_NORMAL reservation
209  */
210 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = {
211 #ifdef CONFIG_ZONE_DMA
212 	[ZONE_DMA] = 256,
213 #endif
214 #ifdef CONFIG_ZONE_DMA32
215 	[ZONE_DMA32] = 256,
216 #endif
217 	[ZONE_NORMAL] = 32,
218 #ifdef CONFIG_HIGHMEM
219 	[ZONE_HIGHMEM] = 0,
220 #endif
221 	[ZONE_MOVABLE] = 0,
222 };
223 
224 EXPORT_SYMBOL(totalram_pages);
225 
226 static char * const zone_names[MAX_NR_ZONES] = {
227 #ifdef CONFIG_ZONE_DMA
228 	 "DMA",
229 #endif
230 #ifdef CONFIG_ZONE_DMA32
231 	 "DMA32",
232 #endif
233 	 "Normal",
234 #ifdef CONFIG_HIGHMEM
235 	 "HighMem",
236 #endif
237 	 "Movable",
238 #ifdef CONFIG_ZONE_DEVICE
239 	 "Device",
240 #endif
241 };
242 
243 const char * const migratetype_names[MIGRATE_TYPES] = {
244 	"Unmovable",
245 	"Movable",
246 	"Reclaimable",
247 	"HighAtomic",
248 #ifdef CONFIG_CMA
249 	"CMA",
250 #endif
251 #ifdef CONFIG_MEMORY_ISOLATION
252 	"Isolate",
253 #endif
254 };
255 
256 compound_page_dtor * const compound_page_dtors[] = {
257 	NULL,
258 	free_compound_page,
259 #ifdef CONFIG_HUGETLB_PAGE
260 	free_huge_page,
261 #endif
262 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
263 	free_transhuge_page,
264 #endif
265 };
266 
267 int min_free_kbytes = 1024;
268 int user_min_free_kbytes = -1;
269 #ifdef CONFIG_DISCONTIGMEM
270 /*
271  * DiscontigMem defines memory ranges as separate pg_data_t even if the ranges
272  * are not on separate NUMA nodes. Functionally this works but with
273  * watermark_boost_factor, it can reclaim prematurely as the ranges can be
274  * quite small. By default, do not boost watermarks on discontigmem as in
275  * many cases very high-order allocations like THP are likely to be
276  * unsupported and the premature reclaim offsets the advantage of long-term
277  * fragmentation avoidance.
278  */
279 int watermark_boost_factor __read_mostly;
280 #else
281 int watermark_boost_factor __read_mostly = 15000;
282 #endif
283 int watermark_scale_factor = 10;
284 
285 static unsigned long nr_kernel_pages __initdata;
286 static unsigned long nr_all_pages __initdata;
287 static unsigned long dma_reserve __initdata;
288 
289 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
290 static unsigned long arch_zone_lowest_possible_pfn[MAX_NR_ZONES] __initdata;
291 static unsigned long arch_zone_highest_possible_pfn[MAX_NR_ZONES] __initdata;
292 static unsigned long required_kernelcore __initdata;
293 static unsigned long required_kernelcore_percent __initdata;
294 static unsigned long required_movablecore __initdata;
295 static unsigned long required_movablecore_percent __initdata;
296 static unsigned long zone_movable_pfn[MAX_NUMNODES] __initdata;
297 static bool mirrored_kernelcore __meminitdata;
298 
299 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
300 int movable_zone;
301 EXPORT_SYMBOL(movable_zone);
302 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
303 
304 #if MAX_NUMNODES > 1
305 unsigned int nr_node_ids __read_mostly = MAX_NUMNODES;
306 unsigned int nr_online_nodes __read_mostly = 1;
307 EXPORT_SYMBOL(nr_node_ids);
308 EXPORT_SYMBOL(nr_online_nodes);
309 #endif
310 
311 int page_group_by_mobility_disabled __read_mostly;
312 
313 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
314 /*
315  * During boot we initialize deferred pages on-demand, as needed, but once
316  * page_alloc_init_late() has finished, the deferred pages are all initialized,
317  * and we can permanently disable that path.
318  */
319 static DEFINE_STATIC_KEY_TRUE(deferred_pages);
320 
321 /*
322  * Calling kasan_free_pages() only after deferred memory initialization
323  * has completed. Poisoning pages during deferred memory init will greatly
324  * lengthen the process and cause problem in large memory systems as the
325  * deferred pages initialization is done with interrupt disabled.
326  *
327  * Assuming that there will be no reference to those newly initialized
328  * pages before they are ever allocated, this should have no effect on
329  * KASAN memory tracking as the poison will be properly inserted at page
330  * allocation time. The only corner case is when pages are allocated by
331  * on-demand allocation and then freed again before the deferred pages
332  * initialization is done, but this is not likely to happen.
333  */
334 static inline void kasan_free_nondeferred_pages(struct page *page, int order)
335 {
336 	if (!static_branch_unlikely(&deferred_pages))
337 		kasan_free_pages(page, order);
338 }
339 
340 /* Returns true if the struct page for the pfn is uninitialised */
341 static inline bool __meminit early_page_uninitialised(unsigned long pfn)
342 {
343 	int nid = early_pfn_to_nid(pfn);
344 
345 	if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
346 		return true;
347 
348 	return false;
349 }
350 
351 /*
352  * Returns true when the remaining initialisation should be deferred until
353  * later in the boot cycle when it can be parallelised.
354  */
355 static bool __meminit
356 defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
357 {
358 	static unsigned long prev_end_pfn, nr_initialised;
359 
360 	/*
361 	 * prev_end_pfn static that contains the end of previous zone
362 	 * No need to protect because called very early in boot before smp_init.
363 	 */
364 	if (prev_end_pfn != end_pfn) {
365 		prev_end_pfn = end_pfn;
366 		nr_initialised = 0;
367 	}
368 
369 	/* Always populate low zones for address-constrained allocations */
370 	if (end_pfn < pgdat_end_pfn(NODE_DATA(nid)))
371 		return false;
372 
373 	/*
374 	 * We start only with one section of pages, more pages are added as
375 	 * needed until the rest of deferred pages are initialized.
376 	 */
377 	nr_initialised++;
378 	if ((nr_initialised > PAGES_PER_SECTION) &&
379 	    (pfn & (PAGES_PER_SECTION - 1)) == 0) {
380 		NODE_DATA(nid)->first_deferred_pfn = pfn;
381 		return true;
382 	}
383 	return false;
384 }
385 #else
386 #define kasan_free_nondeferred_pages(p, o)	kasan_free_pages(p, o)
387 
388 static inline bool early_page_uninitialised(unsigned long pfn)
389 {
390 	return false;
391 }
392 
393 static inline bool defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
394 {
395 	return false;
396 }
397 #endif
398 
399 /* Return a pointer to the bitmap storing bits affecting a block of pages */
400 static inline unsigned long *get_pageblock_bitmap(struct page *page,
401 							unsigned long pfn)
402 {
403 #ifdef CONFIG_SPARSEMEM
404 	return __pfn_to_section(pfn)->pageblock_flags;
405 #else
406 	return page_zone(page)->pageblock_flags;
407 #endif /* CONFIG_SPARSEMEM */
408 }
409 
410 static inline int pfn_to_bitidx(struct page *page, unsigned long pfn)
411 {
412 #ifdef CONFIG_SPARSEMEM
413 	pfn &= (PAGES_PER_SECTION-1);
414 	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
415 #else
416 	pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
417 	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
418 #endif /* CONFIG_SPARSEMEM */
419 }
420 
421 /**
422  * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
423  * @page: The page within the block of interest
424  * @pfn: The target page frame number
425  * @end_bitidx: The last bit of interest to retrieve
426  * @mask: mask of bits that the caller is interested in
427  *
428  * Return: pageblock_bits flags
429  */
430 static __always_inline unsigned long __get_pfnblock_flags_mask(struct page *page,
431 					unsigned long pfn,
432 					unsigned long end_bitidx,
433 					unsigned long mask)
434 {
435 	unsigned long *bitmap;
436 	unsigned long bitidx, word_bitidx;
437 	unsigned long word;
438 
439 	bitmap = get_pageblock_bitmap(page, pfn);
440 	bitidx = pfn_to_bitidx(page, pfn);
441 	word_bitidx = bitidx / BITS_PER_LONG;
442 	bitidx &= (BITS_PER_LONG-1);
443 
444 	word = bitmap[word_bitidx];
445 	bitidx += end_bitidx;
446 	return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
447 }
448 
449 unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
450 					unsigned long end_bitidx,
451 					unsigned long mask)
452 {
453 	return __get_pfnblock_flags_mask(page, pfn, end_bitidx, mask);
454 }
455 
456 static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn)
457 {
458 	return __get_pfnblock_flags_mask(page, pfn, PB_migrate_end, MIGRATETYPE_MASK);
459 }
460 
461 /**
462  * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
463  * @page: The page within the block of interest
464  * @flags: The flags to set
465  * @pfn: The target page frame number
466  * @end_bitidx: The last bit of interest
467  * @mask: mask of bits that the caller is interested in
468  */
469 void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
470 					unsigned long pfn,
471 					unsigned long end_bitidx,
472 					unsigned long mask)
473 {
474 	unsigned long *bitmap;
475 	unsigned long bitidx, word_bitidx;
476 	unsigned long old_word, word;
477 
478 	BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
479 	BUILD_BUG_ON(MIGRATE_TYPES > (1 << PB_migratetype_bits));
480 
481 	bitmap = get_pageblock_bitmap(page, pfn);
482 	bitidx = pfn_to_bitidx(page, pfn);
483 	word_bitidx = bitidx / BITS_PER_LONG;
484 	bitidx &= (BITS_PER_LONG-1);
485 
486 	VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
487 
488 	bitidx += end_bitidx;
489 	mask <<= (BITS_PER_LONG - bitidx - 1);
490 	flags <<= (BITS_PER_LONG - bitidx - 1);
491 
492 	word = READ_ONCE(bitmap[word_bitidx]);
493 	for (;;) {
494 		old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
495 		if (word == old_word)
496 			break;
497 		word = old_word;
498 	}
499 }
500 
501 void set_pageblock_migratetype(struct page *page, int migratetype)
502 {
503 	if (unlikely(page_group_by_mobility_disabled &&
504 		     migratetype < MIGRATE_PCPTYPES))
505 		migratetype = MIGRATE_UNMOVABLE;
506 
507 	set_pageblock_flags_group(page, (unsigned long)migratetype,
508 					PB_migrate, PB_migrate_end);
509 }
510 
511 #ifdef CONFIG_DEBUG_VM
512 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
513 {
514 	int ret = 0;
515 	unsigned seq;
516 	unsigned long pfn = page_to_pfn(page);
517 	unsigned long sp, start_pfn;
518 
519 	do {
520 		seq = zone_span_seqbegin(zone);
521 		start_pfn = zone->zone_start_pfn;
522 		sp = zone->spanned_pages;
523 		if (!zone_spans_pfn(zone, pfn))
524 			ret = 1;
525 	} while (zone_span_seqretry(zone, seq));
526 
527 	if (ret)
528 		pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
529 			pfn, zone_to_nid(zone), zone->name,
530 			start_pfn, start_pfn + sp);
531 
532 	return ret;
533 }
534 
535 static int page_is_consistent(struct zone *zone, struct page *page)
536 {
537 	if (!pfn_valid_within(page_to_pfn(page)))
538 		return 0;
539 	if (zone != page_zone(page))
540 		return 0;
541 
542 	return 1;
543 }
544 /*
545  * Temporary debugging check for pages not lying within a given zone.
546  */
547 static int __maybe_unused bad_range(struct zone *zone, struct page *page)
548 {
549 	if (page_outside_zone_boundaries(zone, page))
550 		return 1;
551 	if (!page_is_consistent(zone, page))
552 		return 1;
553 
554 	return 0;
555 }
556 #else
557 static inline int __maybe_unused bad_range(struct zone *zone, struct page *page)
558 {
559 	return 0;
560 }
561 #endif
562 
563 static void bad_page(struct page *page, const char *reason,
564 		unsigned long bad_flags)
565 {
566 	static unsigned long resume;
567 	static unsigned long nr_shown;
568 	static unsigned long nr_unshown;
569 
570 	/*
571 	 * Allow a burst of 60 reports, then keep quiet for that minute;
572 	 * or allow a steady drip of one report per second.
573 	 */
574 	if (nr_shown == 60) {
575 		if (time_before(jiffies, resume)) {
576 			nr_unshown++;
577 			goto out;
578 		}
579 		if (nr_unshown) {
580 			pr_alert(
581 			      "BUG: Bad page state: %lu messages suppressed\n",
582 				nr_unshown);
583 			nr_unshown = 0;
584 		}
585 		nr_shown = 0;
586 	}
587 	if (nr_shown++ == 0)
588 		resume = jiffies + 60 * HZ;
589 
590 	pr_alert("BUG: Bad page state in process %s  pfn:%05lx\n",
591 		current->comm, page_to_pfn(page));
592 	__dump_page(page, reason);
593 	bad_flags &= page->flags;
594 	if (bad_flags)
595 		pr_alert("bad because of flags: %#lx(%pGp)\n",
596 						bad_flags, &bad_flags);
597 	dump_page_owner(page);
598 
599 	print_modules();
600 	dump_stack();
601 out:
602 	/* Leave bad fields for debug, except PageBuddy could make trouble */
603 	page_mapcount_reset(page); /* remove PageBuddy */
604 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
605 }
606 
607 /*
608  * Higher-order pages are called "compound pages".  They are structured thusly:
609  *
610  * The first PAGE_SIZE page is called the "head page" and have PG_head set.
611  *
612  * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
613  * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
614  *
615  * The first tail page's ->compound_dtor holds the offset in array of compound
616  * page destructors. See compound_page_dtors.
617  *
618  * The first tail page's ->compound_order holds the order of allocation.
619  * This usage means that zero-order pages may not be compound.
620  */
621 
622 void free_compound_page(struct page *page)
623 {
624 	__free_pages_ok(page, compound_order(page));
625 }
626 
627 void prep_compound_page(struct page *page, unsigned int order)
628 {
629 	int i;
630 	int nr_pages = 1 << order;
631 
632 	set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
633 	set_compound_order(page, order);
634 	__SetPageHead(page);
635 	for (i = 1; i < nr_pages; i++) {
636 		struct page *p = page + i;
637 		set_page_count(p, 0);
638 		p->mapping = TAIL_MAPPING;
639 		set_compound_head(p, page);
640 	}
641 	atomic_set(compound_mapcount_ptr(page), -1);
642 }
643 
644 #ifdef CONFIG_DEBUG_PAGEALLOC
645 unsigned int _debug_guardpage_minorder;
646 bool _debug_pagealloc_enabled __read_mostly
647 			= IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
648 EXPORT_SYMBOL(_debug_pagealloc_enabled);
649 bool _debug_guardpage_enabled __read_mostly;
650 
651 static int __init early_debug_pagealloc(char *buf)
652 {
653 	if (!buf)
654 		return -EINVAL;
655 	return kstrtobool(buf, &_debug_pagealloc_enabled);
656 }
657 early_param("debug_pagealloc", early_debug_pagealloc);
658 
659 static bool need_debug_guardpage(void)
660 {
661 	/* If we don't use debug_pagealloc, we don't need guard page */
662 	if (!debug_pagealloc_enabled())
663 		return false;
664 
665 	if (!debug_guardpage_minorder())
666 		return false;
667 
668 	return true;
669 }
670 
671 static void init_debug_guardpage(void)
672 {
673 	if (!debug_pagealloc_enabled())
674 		return;
675 
676 	if (!debug_guardpage_minorder())
677 		return;
678 
679 	_debug_guardpage_enabled = true;
680 }
681 
682 struct page_ext_operations debug_guardpage_ops = {
683 	.need = need_debug_guardpage,
684 	.init = init_debug_guardpage,
685 };
686 
687 static int __init debug_guardpage_minorder_setup(char *buf)
688 {
689 	unsigned long res;
690 
691 	if (kstrtoul(buf, 10, &res) < 0 ||  res > MAX_ORDER / 2) {
692 		pr_err("Bad debug_guardpage_minorder value\n");
693 		return 0;
694 	}
695 	_debug_guardpage_minorder = res;
696 	pr_info("Setting debug_guardpage_minorder to %lu\n", res);
697 	return 0;
698 }
699 early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup);
700 
701 static inline bool set_page_guard(struct zone *zone, struct page *page,
702 				unsigned int order, int migratetype)
703 {
704 	struct page_ext *page_ext;
705 
706 	if (!debug_guardpage_enabled())
707 		return false;
708 
709 	if (order >= debug_guardpage_minorder())
710 		return false;
711 
712 	page_ext = lookup_page_ext(page);
713 	if (unlikely(!page_ext))
714 		return false;
715 
716 	__set_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
717 
718 	INIT_LIST_HEAD(&page->lru);
719 	set_page_private(page, order);
720 	/* Guard pages are not available for any usage */
721 	__mod_zone_freepage_state(zone, -(1 << order), migratetype);
722 
723 	return true;
724 }
725 
726 static inline void clear_page_guard(struct zone *zone, struct page *page,
727 				unsigned int order, int migratetype)
728 {
729 	struct page_ext *page_ext;
730 
731 	if (!debug_guardpage_enabled())
732 		return;
733 
734 	page_ext = lookup_page_ext(page);
735 	if (unlikely(!page_ext))
736 		return;
737 
738 	__clear_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
739 
740 	set_page_private(page, 0);
741 	if (!is_migrate_isolate(migratetype))
742 		__mod_zone_freepage_state(zone, (1 << order), migratetype);
743 }
744 #else
745 struct page_ext_operations debug_guardpage_ops;
746 static inline bool set_page_guard(struct zone *zone, struct page *page,
747 			unsigned int order, int migratetype) { return false; }
748 static inline void clear_page_guard(struct zone *zone, struct page *page,
749 				unsigned int order, int migratetype) {}
750 #endif
751 
752 static inline void set_page_order(struct page *page, unsigned int order)
753 {
754 	set_page_private(page, order);
755 	__SetPageBuddy(page);
756 }
757 
758 static inline void rmv_page_order(struct page *page)
759 {
760 	__ClearPageBuddy(page);
761 	set_page_private(page, 0);
762 }
763 
764 /*
765  * This function checks whether a page is free && is the buddy
766  * we can coalesce a page and its buddy if
767  * (a) the buddy is not in a hole (check before calling!) &&
768  * (b) the buddy is in the buddy system &&
769  * (c) a page and its buddy have the same order &&
770  * (d) a page and its buddy are in the same zone.
771  *
772  * For recording whether a page is in the buddy system, we set PageBuddy.
773  * Setting, clearing, and testing PageBuddy is serialized by zone->lock.
774  *
775  * For recording page's order, we use page_private(page).
776  */
777 static inline int page_is_buddy(struct page *page, struct page *buddy,
778 							unsigned int order)
779 {
780 	if (page_is_guard(buddy) && page_order(buddy) == order) {
781 		if (page_zone_id(page) != page_zone_id(buddy))
782 			return 0;
783 
784 		VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
785 
786 		return 1;
787 	}
788 
789 	if (PageBuddy(buddy) && page_order(buddy) == order) {
790 		/*
791 		 * zone check is done late to avoid uselessly
792 		 * calculating zone/node ids for pages that could
793 		 * never merge.
794 		 */
795 		if (page_zone_id(page) != page_zone_id(buddy))
796 			return 0;
797 
798 		VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
799 
800 		return 1;
801 	}
802 	return 0;
803 }
804 
805 #ifdef CONFIG_COMPACTION
806 static inline struct capture_control *task_capc(struct zone *zone)
807 {
808 	struct capture_control *capc = current->capture_control;
809 
810 	return capc &&
811 		!(current->flags & PF_KTHREAD) &&
812 		!capc->page &&
813 		capc->cc->zone == zone &&
814 		capc->cc->direct_compaction ? capc : NULL;
815 }
816 
817 static inline bool
818 compaction_capture(struct capture_control *capc, struct page *page,
819 		   int order, int migratetype)
820 {
821 	if (!capc || order != capc->cc->order)
822 		return false;
823 
824 	/* Do not accidentally pollute CMA or isolated regions*/
825 	if (is_migrate_cma(migratetype) ||
826 	    is_migrate_isolate(migratetype))
827 		return false;
828 
829 	/*
830 	 * Do not let lower order allocations polluate a movable pageblock.
831 	 * This might let an unmovable request use a reclaimable pageblock
832 	 * and vice-versa but no more than normal fallback logic which can
833 	 * have trouble finding a high-order free page.
834 	 */
835 	if (order < pageblock_order && migratetype == MIGRATE_MOVABLE)
836 		return false;
837 
838 	capc->page = page;
839 	return true;
840 }
841 
842 #else
843 static inline struct capture_control *task_capc(struct zone *zone)
844 {
845 	return NULL;
846 }
847 
848 static inline bool
849 compaction_capture(struct capture_control *capc, struct page *page,
850 		   int order, int migratetype)
851 {
852 	return false;
853 }
854 #endif /* CONFIG_COMPACTION */
855 
856 /*
857  * Freeing function for a buddy system allocator.
858  *
859  * The concept of a buddy system is to maintain direct-mapped table
860  * (containing bit values) for memory blocks of various "orders".
861  * The bottom level table contains the map for the smallest allocatable
862  * units of memory (here, pages), and each level above it describes
863  * pairs of units from the levels below, hence, "buddies".
864  * At a high level, all that happens here is marking the table entry
865  * at the bottom level available, and propagating the changes upward
866  * as necessary, plus some accounting needed to play nicely with other
867  * parts of the VM system.
868  * At each level, we keep a list of pages, which are heads of continuous
869  * free pages of length of (1 << order) and marked with PageBuddy.
870  * Page's order is recorded in page_private(page) field.
871  * So when we are allocating or freeing one, we can derive the state of the
872  * other.  That is, if we allocate a small block, and both were
873  * free, the remainder of the region must be split into blocks.
874  * If a block is freed, and its buddy is also free, then this
875  * triggers coalescing into a block of larger size.
876  *
877  * -- nyc
878  */
879 
880 static inline void __free_one_page(struct page *page,
881 		unsigned long pfn,
882 		struct zone *zone, unsigned int order,
883 		int migratetype)
884 {
885 	unsigned long combined_pfn;
886 	unsigned long uninitialized_var(buddy_pfn);
887 	struct page *buddy;
888 	unsigned int max_order;
889 	struct capture_control *capc = task_capc(zone);
890 
891 	max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1);
892 
893 	VM_BUG_ON(!zone_is_initialized(zone));
894 	VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
895 
896 	VM_BUG_ON(migratetype == -1);
897 	if (likely(!is_migrate_isolate(migratetype)))
898 		__mod_zone_freepage_state(zone, 1 << order, migratetype);
899 
900 	VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
901 	VM_BUG_ON_PAGE(bad_range(zone, page), page);
902 
903 continue_merging:
904 	while (order < max_order - 1) {
905 		if (compaction_capture(capc, page, order, migratetype)) {
906 			__mod_zone_freepage_state(zone, -(1 << order),
907 								migratetype);
908 			return;
909 		}
910 		buddy_pfn = __find_buddy_pfn(pfn, order);
911 		buddy = page + (buddy_pfn - pfn);
912 
913 		if (!pfn_valid_within(buddy_pfn))
914 			goto done_merging;
915 		if (!page_is_buddy(page, buddy, order))
916 			goto done_merging;
917 		/*
918 		 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
919 		 * merge with it and move up one order.
920 		 */
921 		if (page_is_guard(buddy)) {
922 			clear_page_guard(zone, buddy, order, migratetype);
923 		} else {
924 			list_del(&buddy->lru);
925 			zone->free_area[order].nr_free--;
926 			rmv_page_order(buddy);
927 		}
928 		combined_pfn = buddy_pfn & pfn;
929 		page = page + (combined_pfn - pfn);
930 		pfn = combined_pfn;
931 		order++;
932 	}
933 	if (max_order < MAX_ORDER) {
934 		/* If we are here, it means order is >= pageblock_order.
935 		 * We want to prevent merge between freepages on isolate
936 		 * pageblock and normal pageblock. Without this, pageblock
937 		 * isolation could cause incorrect freepage or CMA accounting.
938 		 *
939 		 * We don't want to hit this code for the more frequent
940 		 * low-order merging.
941 		 */
942 		if (unlikely(has_isolate_pageblock(zone))) {
943 			int buddy_mt;
944 
945 			buddy_pfn = __find_buddy_pfn(pfn, order);
946 			buddy = page + (buddy_pfn - pfn);
947 			buddy_mt = get_pageblock_migratetype(buddy);
948 
949 			if (migratetype != buddy_mt
950 					&& (is_migrate_isolate(migratetype) ||
951 						is_migrate_isolate(buddy_mt)))
952 				goto done_merging;
953 		}
954 		max_order++;
955 		goto continue_merging;
956 	}
957 
958 done_merging:
959 	set_page_order(page, order);
960 
961 	/*
962 	 * If this is not the largest possible page, check if the buddy
963 	 * of the next-highest order is free. If it is, it's possible
964 	 * that pages are being freed that will coalesce soon. In case,
965 	 * that is happening, add the free page to the tail of the list
966 	 * so it's less likely to be used soon and more likely to be merged
967 	 * as a higher order page
968 	 */
969 	if ((order < MAX_ORDER-2) && pfn_valid_within(buddy_pfn)) {
970 		struct page *higher_page, *higher_buddy;
971 		combined_pfn = buddy_pfn & pfn;
972 		higher_page = page + (combined_pfn - pfn);
973 		buddy_pfn = __find_buddy_pfn(combined_pfn, order + 1);
974 		higher_buddy = higher_page + (buddy_pfn - combined_pfn);
975 		if (pfn_valid_within(buddy_pfn) &&
976 		    page_is_buddy(higher_page, higher_buddy, order + 1)) {
977 			list_add_tail(&page->lru,
978 				&zone->free_area[order].free_list[migratetype]);
979 			goto out;
980 		}
981 	}
982 
983 	list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
984 out:
985 	zone->free_area[order].nr_free++;
986 }
987 
988 /*
989  * A bad page could be due to a number of fields. Instead of multiple branches,
990  * try and check multiple fields with one check. The caller must do a detailed
991  * check if necessary.
992  */
993 static inline bool page_expected_state(struct page *page,
994 					unsigned long check_flags)
995 {
996 	if (unlikely(atomic_read(&page->_mapcount) != -1))
997 		return false;
998 
999 	if (unlikely((unsigned long)page->mapping |
1000 			page_ref_count(page) |
1001 #ifdef CONFIG_MEMCG
1002 			(unsigned long)page->mem_cgroup |
1003 #endif
1004 			(page->flags & check_flags)))
1005 		return false;
1006 
1007 	return true;
1008 }
1009 
1010 static void free_pages_check_bad(struct page *page)
1011 {
1012 	const char *bad_reason;
1013 	unsigned long bad_flags;
1014 
1015 	bad_reason = NULL;
1016 	bad_flags = 0;
1017 
1018 	if (unlikely(atomic_read(&page->_mapcount) != -1))
1019 		bad_reason = "nonzero mapcount";
1020 	if (unlikely(page->mapping != NULL))
1021 		bad_reason = "non-NULL mapping";
1022 	if (unlikely(page_ref_count(page) != 0))
1023 		bad_reason = "nonzero _refcount";
1024 	if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
1025 		bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
1026 		bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
1027 	}
1028 #ifdef CONFIG_MEMCG
1029 	if (unlikely(page->mem_cgroup))
1030 		bad_reason = "page still charged to cgroup";
1031 #endif
1032 	bad_page(page, bad_reason, bad_flags);
1033 }
1034 
1035 static inline int free_pages_check(struct page *page)
1036 {
1037 	if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
1038 		return 0;
1039 
1040 	/* Something has gone sideways, find it */
1041 	free_pages_check_bad(page);
1042 	return 1;
1043 }
1044 
1045 static int free_tail_pages_check(struct page *head_page, struct page *page)
1046 {
1047 	int ret = 1;
1048 
1049 	/*
1050 	 * We rely page->lru.next never has bit 0 set, unless the page
1051 	 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
1052 	 */
1053 	BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
1054 
1055 	if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
1056 		ret = 0;
1057 		goto out;
1058 	}
1059 	switch (page - head_page) {
1060 	case 1:
1061 		/* the first tail page: ->mapping may be compound_mapcount() */
1062 		if (unlikely(compound_mapcount(page))) {
1063 			bad_page(page, "nonzero compound_mapcount", 0);
1064 			goto out;
1065 		}
1066 		break;
1067 	case 2:
1068 		/*
1069 		 * the second tail page: ->mapping is
1070 		 * deferred_list.next -- ignore value.
1071 		 */
1072 		break;
1073 	default:
1074 		if (page->mapping != TAIL_MAPPING) {
1075 			bad_page(page, "corrupted mapping in tail page", 0);
1076 			goto out;
1077 		}
1078 		break;
1079 	}
1080 	if (unlikely(!PageTail(page))) {
1081 		bad_page(page, "PageTail not set", 0);
1082 		goto out;
1083 	}
1084 	if (unlikely(compound_head(page) != head_page)) {
1085 		bad_page(page, "compound_head not consistent", 0);
1086 		goto out;
1087 	}
1088 	ret = 0;
1089 out:
1090 	page->mapping = NULL;
1091 	clear_compound_head(page);
1092 	return ret;
1093 }
1094 
1095 static __always_inline bool free_pages_prepare(struct page *page,
1096 					unsigned int order, bool check_free)
1097 {
1098 	int bad = 0;
1099 
1100 	VM_BUG_ON_PAGE(PageTail(page), page);
1101 
1102 	trace_mm_page_free(page, order);
1103 
1104 	/*
1105 	 * Check tail pages before head page information is cleared to
1106 	 * avoid checking PageCompound for order-0 pages.
1107 	 */
1108 	if (unlikely(order)) {
1109 		bool compound = PageCompound(page);
1110 		int i;
1111 
1112 		VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
1113 
1114 		if (compound)
1115 			ClearPageDoubleMap(page);
1116 		for (i = 1; i < (1 << order); i++) {
1117 			if (compound)
1118 				bad += free_tail_pages_check(page, page + i);
1119 			if (unlikely(free_pages_check(page + i))) {
1120 				bad++;
1121 				continue;
1122 			}
1123 			(page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1124 		}
1125 	}
1126 	if (PageMappingFlags(page))
1127 		page->mapping = NULL;
1128 	if (memcg_kmem_enabled() && PageKmemcg(page))
1129 		__memcg_kmem_uncharge(page, order);
1130 	if (check_free)
1131 		bad += free_pages_check(page);
1132 	if (bad)
1133 		return false;
1134 
1135 	page_cpupid_reset_last(page);
1136 	page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1137 	reset_page_owner(page, order);
1138 
1139 	if (!PageHighMem(page)) {
1140 		debug_check_no_locks_freed(page_address(page),
1141 					   PAGE_SIZE << order);
1142 		debug_check_no_obj_freed(page_address(page),
1143 					   PAGE_SIZE << order);
1144 	}
1145 	arch_free_page(page, order);
1146 	kernel_poison_pages(page, 1 << order, 0);
1147 	if (debug_pagealloc_enabled())
1148 		kernel_map_pages(page, 1 << order, 0);
1149 
1150 	kasan_free_nondeferred_pages(page, order);
1151 
1152 	return true;
1153 }
1154 
1155 #ifdef CONFIG_DEBUG_VM
1156 static inline bool free_pcp_prepare(struct page *page)
1157 {
1158 	return free_pages_prepare(page, 0, true);
1159 }
1160 
1161 static inline bool bulkfree_pcp_prepare(struct page *page)
1162 {
1163 	return false;
1164 }
1165 #else
1166 static bool free_pcp_prepare(struct page *page)
1167 {
1168 	return free_pages_prepare(page, 0, false);
1169 }
1170 
1171 static bool bulkfree_pcp_prepare(struct page *page)
1172 {
1173 	return free_pages_check(page);
1174 }
1175 #endif /* CONFIG_DEBUG_VM */
1176 
1177 static inline void prefetch_buddy(struct page *page)
1178 {
1179 	unsigned long pfn = page_to_pfn(page);
1180 	unsigned long buddy_pfn = __find_buddy_pfn(pfn, 0);
1181 	struct page *buddy = page + (buddy_pfn - pfn);
1182 
1183 	prefetch(buddy);
1184 }
1185 
1186 /*
1187  * Frees a number of pages from the PCP lists
1188  * Assumes all pages on list are in same zone, and of same order.
1189  * count is the number of pages to free.
1190  *
1191  * If the zone was previously in an "all pages pinned" state then look to
1192  * see if this freeing clears that state.
1193  *
1194  * And clear the zone's pages_scanned counter, to hold off the "all pages are
1195  * pinned" detection logic.
1196  */
1197 static void free_pcppages_bulk(struct zone *zone, int count,
1198 					struct per_cpu_pages *pcp)
1199 {
1200 	int migratetype = 0;
1201 	int batch_free = 0;
1202 	int prefetch_nr = 0;
1203 	bool isolated_pageblocks;
1204 	struct page *page, *tmp;
1205 	LIST_HEAD(head);
1206 
1207 	while (count) {
1208 		struct list_head *list;
1209 
1210 		/*
1211 		 * Remove pages from lists in a round-robin fashion. A
1212 		 * batch_free count is maintained that is incremented when an
1213 		 * empty list is encountered.  This is so more pages are freed
1214 		 * off fuller lists instead of spinning excessively around empty
1215 		 * lists
1216 		 */
1217 		do {
1218 			batch_free++;
1219 			if (++migratetype == MIGRATE_PCPTYPES)
1220 				migratetype = 0;
1221 			list = &pcp->lists[migratetype];
1222 		} while (list_empty(list));
1223 
1224 		/* This is the only non-empty list. Free them all. */
1225 		if (batch_free == MIGRATE_PCPTYPES)
1226 			batch_free = count;
1227 
1228 		do {
1229 			page = list_last_entry(list, struct page, lru);
1230 			/* must delete to avoid corrupting pcp list */
1231 			list_del(&page->lru);
1232 			pcp->count--;
1233 
1234 			if (bulkfree_pcp_prepare(page))
1235 				continue;
1236 
1237 			list_add_tail(&page->lru, &head);
1238 
1239 			/*
1240 			 * We are going to put the page back to the global
1241 			 * pool, prefetch its buddy to speed up later access
1242 			 * under zone->lock. It is believed the overhead of
1243 			 * an additional test and calculating buddy_pfn here
1244 			 * can be offset by reduced memory latency later. To
1245 			 * avoid excessive prefetching due to large count, only
1246 			 * prefetch buddy for the first pcp->batch nr of pages.
1247 			 */
1248 			if (prefetch_nr++ < pcp->batch)
1249 				prefetch_buddy(page);
1250 		} while (--count && --batch_free && !list_empty(list));
1251 	}
1252 
1253 	spin_lock(&zone->lock);
1254 	isolated_pageblocks = has_isolate_pageblock(zone);
1255 
1256 	/*
1257 	 * Use safe version since after __free_one_page(),
1258 	 * page->lru.next will not point to original list.
1259 	 */
1260 	list_for_each_entry_safe(page, tmp, &head, lru) {
1261 		int mt = get_pcppage_migratetype(page);
1262 		/* MIGRATE_ISOLATE page should not go to pcplists */
1263 		VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1264 		/* Pageblock could have been isolated meanwhile */
1265 		if (unlikely(isolated_pageblocks))
1266 			mt = get_pageblock_migratetype(page);
1267 
1268 		__free_one_page(page, page_to_pfn(page), zone, 0, mt);
1269 		trace_mm_page_pcpu_drain(page, 0, mt);
1270 	}
1271 	spin_unlock(&zone->lock);
1272 }
1273 
1274 static void free_one_page(struct zone *zone,
1275 				struct page *page, unsigned long pfn,
1276 				unsigned int order,
1277 				int migratetype)
1278 {
1279 	spin_lock(&zone->lock);
1280 	if (unlikely(has_isolate_pageblock(zone) ||
1281 		is_migrate_isolate(migratetype))) {
1282 		migratetype = get_pfnblock_migratetype(page, pfn);
1283 	}
1284 	__free_one_page(page, pfn, zone, order, migratetype);
1285 	spin_unlock(&zone->lock);
1286 }
1287 
1288 static void __meminit __init_single_page(struct page *page, unsigned long pfn,
1289 				unsigned long zone, int nid)
1290 {
1291 	mm_zero_struct_page(page);
1292 	set_page_links(page, zone, nid, pfn);
1293 	init_page_count(page);
1294 	page_mapcount_reset(page);
1295 	page_cpupid_reset_last(page);
1296 	page_kasan_tag_reset(page);
1297 
1298 	INIT_LIST_HEAD(&page->lru);
1299 #ifdef WANT_PAGE_VIRTUAL
1300 	/* The shift won't overflow because ZONE_NORMAL is below 4G. */
1301 	if (!is_highmem_idx(zone))
1302 		set_page_address(page, __va(pfn << PAGE_SHIFT));
1303 #endif
1304 }
1305 
1306 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1307 static void __meminit init_reserved_page(unsigned long pfn)
1308 {
1309 	pg_data_t *pgdat;
1310 	int nid, zid;
1311 
1312 	if (!early_page_uninitialised(pfn))
1313 		return;
1314 
1315 	nid = early_pfn_to_nid(pfn);
1316 	pgdat = NODE_DATA(nid);
1317 
1318 	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1319 		struct zone *zone = &pgdat->node_zones[zid];
1320 
1321 		if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
1322 			break;
1323 	}
1324 	__init_single_page(pfn_to_page(pfn), pfn, zid, nid);
1325 }
1326 #else
1327 static inline void init_reserved_page(unsigned long pfn)
1328 {
1329 }
1330 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1331 
1332 /*
1333  * Initialised pages do not have PageReserved set. This function is
1334  * called for each range allocated by the bootmem allocator and
1335  * marks the pages PageReserved. The remaining valid pages are later
1336  * sent to the buddy page allocator.
1337  */
1338 void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
1339 {
1340 	unsigned long start_pfn = PFN_DOWN(start);
1341 	unsigned long end_pfn = PFN_UP(end);
1342 
1343 	for (; start_pfn < end_pfn; start_pfn++) {
1344 		if (pfn_valid(start_pfn)) {
1345 			struct page *page = pfn_to_page(start_pfn);
1346 
1347 			init_reserved_page(start_pfn);
1348 
1349 			/* Avoid false-positive PageTail() */
1350 			INIT_LIST_HEAD(&page->lru);
1351 
1352 			/*
1353 			 * no need for atomic set_bit because the struct
1354 			 * page is not visible yet so nobody should
1355 			 * access it yet.
1356 			 */
1357 			__SetPageReserved(page);
1358 		}
1359 	}
1360 }
1361 
1362 static void __free_pages_ok(struct page *page, unsigned int order)
1363 {
1364 	unsigned long flags;
1365 	int migratetype;
1366 	unsigned long pfn = page_to_pfn(page);
1367 
1368 	if (!free_pages_prepare(page, order, true))
1369 		return;
1370 
1371 	migratetype = get_pfnblock_migratetype(page, pfn);
1372 	local_irq_save(flags);
1373 	__count_vm_events(PGFREE, 1 << order);
1374 	free_one_page(page_zone(page), page, pfn, order, migratetype);
1375 	local_irq_restore(flags);
1376 }
1377 
1378 void __free_pages_core(struct page *page, unsigned int order)
1379 {
1380 	unsigned int nr_pages = 1 << order;
1381 	struct page *p = page;
1382 	unsigned int loop;
1383 
1384 	prefetchw(p);
1385 	for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1386 		prefetchw(p + 1);
1387 		__ClearPageReserved(p);
1388 		set_page_count(p, 0);
1389 	}
1390 	__ClearPageReserved(p);
1391 	set_page_count(p, 0);
1392 
1393 	atomic_long_add(nr_pages, &page_zone(page)->managed_pages);
1394 	set_page_refcounted(page);
1395 	__free_pages(page, order);
1396 }
1397 
1398 #if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \
1399 	defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
1400 
1401 static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
1402 
1403 int __meminit early_pfn_to_nid(unsigned long pfn)
1404 {
1405 	static DEFINE_SPINLOCK(early_pfn_lock);
1406 	int nid;
1407 
1408 	spin_lock(&early_pfn_lock);
1409 	nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
1410 	if (nid < 0)
1411 		nid = first_online_node;
1412 	spin_unlock(&early_pfn_lock);
1413 
1414 	return nid;
1415 }
1416 #endif
1417 
1418 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
1419 /* Only safe to use early in boot when initialisation is single-threaded */
1420 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1421 {
1422 	int nid;
1423 
1424 	nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
1425 	if (nid >= 0 && nid != node)
1426 		return false;
1427 	return true;
1428 }
1429 
1430 #else
1431 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1432 {
1433 	return true;
1434 }
1435 #endif
1436 
1437 
1438 void __init memblock_free_pages(struct page *page, unsigned long pfn,
1439 							unsigned int order)
1440 {
1441 	if (early_page_uninitialised(pfn))
1442 		return;
1443 	__free_pages_core(page, order);
1444 }
1445 
1446 /*
1447  * Check that the whole (or subset of) a pageblock given by the interval of
1448  * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1449  * with the migration of free compaction scanner. The scanners then need to
1450  * use only pfn_valid_within() check for arches that allow holes within
1451  * pageblocks.
1452  *
1453  * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1454  *
1455  * It's possible on some configurations to have a setup like node0 node1 node0
1456  * i.e. it's possible that all pages within a zones range of pages do not
1457  * belong to a single zone. We assume that a border between node0 and node1
1458  * can occur within a single pageblock, but not a node0 node1 node0
1459  * interleaving within a single pageblock. It is therefore sufficient to check
1460  * the first and last page of a pageblock and avoid checking each individual
1461  * page in a pageblock.
1462  */
1463 struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1464 				     unsigned long end_pfn, struct zone *zone)
1465 {
1466 	struct page *start_page;
1467 	struct page *end_page;
1468 
1469 	/* end_pfn is one past the range we are checking */
1470 	end_pfn--;
1471 
1472 	if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
1473 		return NULL;
1474 
1475 	start_page = pfn_to_online_page(start_pfn);
1476 	if (!start_page)
1477 		return NULL;
1478 
1479 	if (page_zone(start_page) != zone)
1480 		return NULL;
1481 
1482 	end_page = pfn_to_page(end_pfn);
1483 
1484 	/* This gives a shorter code than deriving page_zone(end_page) */
1485 	if (page_zone_id(start_page) != page_zone_id(end_page))
1486 		return NULL;
1487 
1488 	return start_page;
1489 }
1490 
1491 void set_zone_contiguous(struct zone *zone)
1492 {
1493 	unsigned long block_start_pfn = zone->zone_start_pfn;
1494 	unsigned long block_end_pfn;
1495 
1496 	block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
1497 	for (; block_start_pfn < zone_end_pfn(zone);
1498 			block_start_pfn = block_end_pfn,
1499 			 block_end_pfn += pageblock_nr_pages) {
1500 
1501 		block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
1502 
1503 		if (!__pageblock_pfn_to_page(block_start_pfn,
1504 					     block_end_pfn, zone))
1505 			return;
1506 	}
1507 
1508 	/* We confirm that there is no hole */
1509 	zone->contiguous = true;
1510 }
1511 
1512 void clear_zone_contiguous(struct zone *zone)
1513 {
1514 	zone->contiguous = false;
1515 }
1516 
1517 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1518 static void __init deferred_free_range(unsigned long pfn,
1519 				       unsigned long nr_pages)
1520 {
1521 	struct page *page;
1522 	unsigned long i;
1523 
1524 	if (!nr_pages)
1525 		return;
1526 
1527 	page = pfn_to_page(pfn);
1528 
1529 	/* Free a large naturally-aligned chunk if possible */
1530 	if (nr_pages == pageblock_nr_pages &&
1531 	    (pfn & (pageblock_nr_pages - 1)) == 0) {
1532 		set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1533 		__free_pages_core(page, pageblock_order);
1534 		return;
1535 	}
1536 
1537 	for (i = 0; i < nr_pages; i++, page++, pfn++) {
1538 		if ((pfn & (pageblock_nr_pages - 1)) == 0)
1539 			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1540 		__free_pages_core(page, 0);
1541 	}
1542 }
1543 
1544 /* Completion tracking for deferred_init_memmap() threads */
1545 static atomic_t pgdat_init_n_undone __initdata;
1546 static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1547 
1548 static inline void __init pgdat_init_report_one_done(void)
1549 {
1550 	if (atomic_dec_and_test(&pgdat_init_n_undone))
1551 		complete(&pgdat_init_all_done_comp);
1552 }
1553 
1554 /*
1555  * Returns true if page needs to be initialized or freed to buddy allocator.
1556  *
1557  * First we check if pfn is valid on architectures where it is possible to have
1558  * holes within pageblock_nr_pages. On systems where it is not possible, this
1559  * function is optimized out.
1560  *
1561  * Then, we check if a current large page is valid by only checking the validity
1562  * of the head pfn.
1563  */
1564 static inline bool __init deferred_pfn_valid(unsigned long pfn)
1565 {
1566 	if (!pfn_valid_within(pfn))
1567 		return false;
1568 	if (!(pfn & (pageblock_nr_pages - 1)) && !pfn_valid(pfn))
1569 		return false;
1570 	return true;
1571 }
1572 
1573 /*
1574  * Free pages to buddy allocator. Try to free aligned pages in
1575  * pageblock_nr_pages sizes.
1576  */
1577 static void __init deferred_free_pages(unsigned long pfn,
1578 				       unsigned long end_pfn)
1579 {
1580 	unsigned long nr_pgmask = pageblock_nr_pages - 1;
1581 	unsigned long nr_free = 0;
1582 
1583 	for (; pfn < end_pfn; pfn++) {
1584 		if (!deferred_pfn_valid(pfn)) {
1585 			deferred_free_range(pfn - nr_free, nr_free);
1586 			nr_free = 0;
1587 		} else if (!(pfn & nr_pgmask)) {
1588 			deferred_free_range(pfn - nr_free, nr_free);
1589 			nr_free = 1;
1590 			touch_nmi_watchdog();
1591 		} else {
1592 			nr_free++;
1593 		}
1594 	}
1595 	/* Free the last block of pages to allocator */
1596 	deferred_free_range(pfn - nr_free, nr_free);
1597 }
1598 
1599 /*
1600  * Initialize struct pages.  We minimize pfn page lookups and scheduler checks
1601  * by performing it only once every pageblock_nr_pages.
1602  * Return number of pages initialized.
1603  */
1604 static unsigned long  __init deferred_init_pages(struct zone *zone,
1605 						 unsigned long pfn,
1606 						 unsigned long end_pfn)
1607 {
1608 	unsigned long nr_pgmask = pageblock_nr_pages - 1;
1609 	int nid = zone_to_nid(zone);
1610 	unsigned long nr_pages = 0;
1611 	int zid = zone_idx(zone);
1612 	struct page *page = NULL;
1613 
1614 	for (; pfn < end_pfn; pfn++) {
1615 		if (!deferred_pfn_valid(pfn)) {
1616 			page = NULL;
1617 			continue;
1618 		} else if (!page || !(pfn & nr_pgmask)) {
1619 			page = pfn_to_page(pfn);
1620 			touch_nmi_watchdog();
1621 		} else {
1622 			page++;
1623 		}
1624 		__init_single_page(page, pfn, zid, nid);
1625 		nr_pages++;
1626 	}
1627 	return (nr_pages);
1628 }
1629 
1630 /*
1631  * This function is meant to pre-load the iterator for the zone init.
1632  * Specifically it walks through the ranges until we are caught up to the
1633  * first_init_pfn value and exits there. If we never encounter the value we
1634  * return false indicating there are no valid ranges left.
1635  */
1636 static bool __init
1637 deferred_init_mem_pfn_range_in_zone(u64 *i, struct zone *zone,
1638 				    unsigned long *spfn, unsigned long *epfn,
1639 				    unsigned long first_init_pfn)
1640 {
1641 	u64 j;
1642 
1643 	/*
1644 	 * Start out by walking through the ranges in this zone that have
1645 	 * already been initialized. We don't need to do anything with them
1646 	 * so we just need to flush them out of the system.
1647 	 */
1648 	for_each_free_mem_pfn_range_in_zone(j, zone, spfn, epfn) {
1649 		if (*epfn <= first_init_pfn)
1650 			continue;
1651 		if (*spfn < first_init_pfn)
1652 			*spfn = first_init_pfn;
1653 		*i = j;
1654 		return true;
1655 	}
1656 
1657 	return false;
1658 }
1659 
1660 /*
1661  * Initialize and free pages. We do it in two loops: first we initialize
1662  * struct page, then free to buddy allocator, because while we are
1663  * freeing pages we can access pages that are ahead (computing buddy
1664  * page in __free_one_page()).
1665  *
1666  * In order to try and keep some memory in the cache we have the loop
1667  * broken along max page order boundaries. This way we will not cause
1668  * any issues with the buddy page computation.
1669  */
1670 static unsigned long __init
1671 deferred_init_maxorder(u64 *i, struct zone *zone, unsigned long *start_pfn,
1672 		       unsigned long *end_pfn)
1673 {
1674 	unsigned long mo_pfn = ALIGN(*start_pfn + 1, MAX_ORDER_NR_PAGES);
1675 	unsigned long spfn = *start_pfn, epfn = *end_pfn;
1676 	unsigned long nr_pages = 0;
1677 	u64 j = *i;
1678 
1679 	/* First we loop through and initialize the page values */
1680 	for_each_free_mem_pfn_range_in_zone_from(j, zone, start_pfn, end_pfn) {
1681 		unsigned long t;
1682 
1683 		if (mo_pfn <= *start_pfn)
1684 			break;
1685 
1686 		t = min(mo_pfn, *end_pfn);
1687 		nr_pages += deferred_init_pages(zone, *start_pfn, t);
1688 
1689 		if (mo_pfn < *end_pfn) {
1690 			*start_pfn = mo_pfn;
1691 			break;
1692 		}
1693 	}
1694 
1695 	/* Reset values and now loop through freeing pages as needed */
1696 	swap(j, *i);
1697 
1698 	for_each_free_mem_pfn_range_in_zone_from(j, zone, &spfn, &epfn) {
1699 		unsigned long t;
1700 
1701 		if (mo_pfn <= spfn)
1702 			break;
1703 
1704 		t = min(mo_pfn, epfn);
1705 		deferred_free_pages(spfn, t);
1706 
1707 		if (mo_pfn <= epfn)
1708 			break;
1709 	}
1710 
1711 	return nr_pages;
1712 }
1713 
1714 /* Initialise remaining memory on a node */
1715 static int __init deferred_init_memmap(void *data)
1716 {
1717 	pg_data_t *pgdat = data;
1718 	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1719 	unsigned long spfn = 0, epfn = 0, nr_pages = 0;
1720 	unsigned long first_init_pfn, flags;
1721 	unsigned long start = jiffies;
1722 	struct zone *zone;
1723 	int zid;
1724 	u64 i;
1725 
1726 	/* Bind memory initialisation thread to a local node if possible */
1727 	if (!cpumask_empty(cpumask))
1728 		set_cpus_allowed_ptr(current, cpumask);
1729 
1730 	pgdat_resize_lock(pgdat, &flags);
1731 	first_init_pfn = pgdat->first_deferred_pfn;
1732 	if (first_init_pfn == ULONG_MAX) {
1733 		pgdat_resize_unlock(pgdat, &flags);
1734 		pgdat_init_report_one_done();
1735 		return 0;
1736 	}
1737 
1738 	/* Sanity check boundaries */
1739 	BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
1740 	BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
1741 	pgdat->first_deferred_pfn = ULONG_MAX;
1742 
1743 	/* Only the highest zone is deferred so find it */
1744 	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1745 		zone = pgdat->node_zones + zid;
1746 		if (first_init_pfn < zone_end_pfn(zone))
1747 			break;
1748 	}
1749 
1750 	/* If the zone is empty somebody else may have cleared out the zone */
1751 	if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
1752 						 first_init_pfn))
1753 		goto zone_empty;
1754 
1755 	/*
1756 	 * Initialize and free pages in MAX_ORDER sized increments so
1757 	 * that we can avoid introducing any issues with the buddy
1758 	 * allocator.
1759 	 */
1760 	while (spfn < epfn)
1761 		nr_pages += deferred_init_maxorder(&i, zone, &spfn, &epfn);
1762 zone_empty:
1763 	pgdat_resize_unlock(pgdat, &flags);
1764 
1765 	/* Sanity check that the next zone really is unpopulated */
1766 	WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
1767 
1768 	pr_info("node %d initialised, %lu pages in %ums\n",
1769 		pgdat->node_id,	nr_pages, jiffies_to_msecs(jiffies - start));
1770 
1771 	pgdat_init_report_one_done();
1772 	return 0;
1773 }
1774 
1775 /*
1776  * If this zone has deferred pages, try to grow it by initializing enough
1777  * deferred pages to satisfy the allocation specified by order, rounded up to
1778  * the nearest PAGES_PER_SECTION boundary.  So we're adding memory in increments
1779  * of SECTION_SIZE bytes by initializing struct pages in increments of
1780  * PAGES_PER_SECTION * sizeof(struct page) bytes.
1781  *
1782  * Return true when zone was grown, otherwise return false. We return true even
1783  * when we grow less than requested, to let the caller decide if there are
1784  * enough pages to satisfy the allocation.
1785  *
1786  * Note: We use noinline because this function is needed only during boot, and
1787  * it is called from a __ref function _deferred_grow_zone. This way we are
1788  * making sure that it is not inlined into permanent text section.
1789  */
1790 static noinline bool __init
1791 deferred_grow_zone(struct zone *zone, unsigned int order)
1792 {
1793 	unsigned long nr_pages_needed = ALIGN(1 << order, PAGES_PER_SECTION);
1794 	pg_data_t *pgdat = zone->zone_pgdat;
1795 	unsigned long first_deferred_pfn = pgdat->first_deferred_pfn;
1796 	unsigned long spfn, epfn, flags;
1797 	unsigned long nr_pages = 0;
1798 	u64 i;
1799 
1800 	/* Only the last zone may have deferred pages */
1801 	if (zone_end_pfn(zone) != pgdat_end_pfn(pgdat))
1802 		return false;
1803 
1804 	pgdat_resize_lock(pgdat, &flags);
1805 
1806 	/*
1807 	 * If deferred pages have been initialized while we were waiting for
1808 	 * the lock, return true, as the zone was grown.  The caller will retry
1809 	 * this zone.  We won't return to this function since the caller also
1810 	 * has this static branch.
1811 	 */
1812 	if (!static_branch_unlikely(&deferred_pages)) {
1813 		pgdat_resize_unlock(pgdat, &flags);
1814 		return true;
1815 	}
1816 
1817 	/*
1818 	 * If someone grew this zone while we were waiting for spinlock, return
1819 	 * true, as there might be enough pages already.
1820 	 */
1821 	if (first_deferred_pfn != pgdat->first_deferred_pfn) {
1822 		pgdat_resize_unlock(pgdat, &flags);
1823 		return true;
1824 	}
1825 
1826 	/* If the zone is empty somebody else may have cleared out the zone */
1827 	if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
1828 						 first_deferred_pfn)) {
1829 		pgdat->first_deferred_pfn = ULONG_MAX;
1830 		pgdat_resize_unlock(pgdat, &flags);
1831 		return true;
1832 	}
1833 
1834 	/*
1835 	 * Initialize and free pages in MAX_ORDER sized increments so
1836 	 * that we can avoid introducing any issues with the buddy
1837 	 * allocator.
1838 	 */
1839 	while (spfn < epfn) {
1840 		/* update our first deferred PFN for this section */
1841 		first_deferred_pfn = spfn;
1842 
1843 		nr_pages += deferred_init_maxorder(&i, zone, &spfn, &epfn);
1844 
1845 		/* We should only stop along section boundaries */
1846 		if ((first_deferred_pfn ^ spfn) < PAGES_PER_SECTION)
1847 			continue;
1848 
1849 		/* If our quota has been met we can stop here */
1850 		if (nr_pages >= nr_pages_needed)
1851 			break;
1852 	}
1853 
1854 	pgdat->first_deferred_pfn = spfn;
1855 	pgdat_resize_unlock(pgdat, &flags);
1856 
1857 	return nr_pages > 0;
1858 }
1859 
1860 /*
1861  * deferred_grow_zone() is __init, but it is called from
1862  * get_page_from_freelist() during early boot until deferred_pages permanently
1863  * disables this call. This is why we have refdata wrapper to avoid warning,
1864  * and to ensure that the function body gets unloaded.
1865  */
1866 static bool __ref
1867 _deferred_grow_zone(struct zone *zone, unsigned int order)
1868 {
1869 	return deferred_grow_zone(zone, order);
1870 }
1871 
1872 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1873 
1874 void __init page_alloc_init_late(void)
1875 {
1876 	struct zone *zone;
1877 
1878 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1879 	int nid;
1880 
1881 	/* There will be num_node_state(N_MEMORY) threads */
1882 	atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
1883 	for_each_node_state(nid, N_MEMORY) {
1884 		kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
1885 	}
1886 
1887 	/* Block until all are initialised */
1888 	wait_for_completion(&pgdat_init_all_done_comp);
1889 
1890 	/*
1891 	 * We initialized the rest of the deferred pages.  Permanently disable
1892 	 * on-demand struct page initialization.
1893 	 */
1894 	static_branch_disable(&deferred_pages);
1895 
1896 	/* Reinit limits that are based on free pages after the kernel is up */
1897 	files_maxfiles_init();
1898 #endif
1899 
1900 	/* Discard memblock private memory */
1901 	memblock_discard();
1902 
1903 	for_each_populated_zone(zone)
1904 		set_zone_contiguous(zone);
1905 }
1906 
1907 #ifdef CONFIG_CMA
1908 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */
1909 void __init init_cma_reserved_pageblock(struct page *page)
1910 {
1911 	unsigned i = pageblock_nr_pages;
1912 	struct page *p = page;
1913 
1914 	do {
1915 		__ClearPageReserved(p);
1916 		set_page_count(p, 0);
1917 	} while (++p, --i);
1918 
1919 	set_pageblock_migratetype(page, MIGRATE_CMA);
1920 
1921 	if (pageblock_order >= MAX_ORDER) {
1922 		i = pageblock_nr_pages;
1923 		p = page;
1924 		do {
1925 			set_page_refcounted(p);
1926 			__free_pages(p, MAX_ORDER - 1);
1927 			p += MAX_ORDER_NR_PAGES;
1928 		} while (i -= MAX_ORDER_NR_PAGES);
1929 	} else {
1930 		set_page_refcounted(page);
1931 		__free_pages(page, pageblock_order);
1932 	}
1933 
1934 	adjust_managed_page_count(page, pageblock_nr_pages);
1935 }
1936 #endif
1937 
1938 /*
1939  * The order of subdivision here is critical for the IO subsystem.
1940  * Please do not alter this order without good reasons and regression
1941  * testing. Specifically, as large blocks of memory are subdivided,
1942  * the order in which smaller blocks are delivered depends on the order
1943  * they're subdivided in this function. This is the primary factor
1944  * influencing the order in which pages are delivered to the IO
1945  * subsystem according to empirical testing, and this is also justified
1946  * by considering the behavior of a buddy system containing a single
1947  * large block of memory acted on by a series of small allocations.
1948  * This behavior is a critical factor in sglist merging's success.
1949  *
1950  * -- nyc
1951  */
1952 static inline void expand(struct zone *zone, struct page *page,
1953 	int low, int high, struct free_area *area,
1954 	int migratetype)
1955 {
1956 	unsigned long size = 1 << high;
1957 
1958 	while (high > low) {
1959 		area--;
1960 		high--;
1961 		size >>= 1;
1962 		VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
1963 
1964 		/*
1965 		 * Mark as guard pages (or page), that will allow to
1966 		 * merge back to allocator when buddy will be freed.
1967 		 * Corresponding page table entries will not be touched,
1968 		 * pages will stay not present in virtual address space
1969 		 */
1970 		if (set_page_guard(zone, &page[size], high, migratetype))
1971 			continue;
1972 
1973 		list_add(&page[size].lru, &area->free_list[migratetype]);
1974 		area->nr_free++;
1975 		set_page_order(&page[size], high);
1976 	}
1977 }
1978 
1979 static void check_new_page_bad(struct page *page)
1980 {
1981 	const char *bad_reason = NULL;
1982 	unsigned long bad_flags = 0;
1983 
1984 	if (unlikely(atomic_read(&page->_mapcount) != -1))
1985 		bad_reason = "nonzero mapcount";
1986 	if (unlikely(page->mapping != NULL))
1987 		bad_reason = "non-NULL mapping";
1988 	if (unlikely(page_ref_count(page) != 0))
1989 		bad_reason = "nonzero _count";
1990 	if (unlikely(page->flags & __PG_HWPOISON)) {
1991 		bad_reason = "HWPoisoned (hardware-corrupted)";
1992 		bad_flags = __PG_HWPOISON;
1993 		/* Don't complain about hwpoisoned pages */
1994 		page_mapcount_reset(page); /* remove PageBuddy */
1995 		return;
1996 	}
1997 	if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
1998 		bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
1999 		bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
2000 	}
2001 #ifdef CONFIG_MEMCG
2002 	if (unlikely(page->mem_cgroup))
2003 		bad_reason = "page still charged to cgroup";
2004 #endif
2005 	bad_page(page, bad_reason, bad_flags);
2006 }
2007 
2008 /*
2009  * This page is about to be returned from the page allocator
2010  */
2011 static inline int check_new_page(struct page *page)
2012 {
2013 	if (likely(page_expected_state(page,
2014 				PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
2015 		return 0;
2016 
2017 	check_new_page_bad(page);
2018 	return 1;
2019 }
2020 
2021 static inline bool free_pages_prezeroed(void)
2022 {
2023 	return IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) &&
2024 		page_poisoning_enabled();
2025 }
2026 
2027 #ifdef CONFIG_DEBUG_VM
2028 static bool check_pcp_refill(struct page *page)
2029 {
2030 	return false;
2031 }
2032 
2033 static bool check_new_pcp(struct page *page)
2034 {
2035 	return check_new_page(page);
2036 }
2037 #else
2038 static bool check_pcp_refill(struct page *page)
2039 {
2040 	return check_new_page(page);
2041 }
2042 static bool check_new_pcp(struct page *page)
2043 {
2044 	return false;
2045 }
2046 #endif /* CONFIG_DEBUG_VM */
2047 
2048 static bool check_new_pages(struct page *page, unsigned int order)
2049 {
2050 	int i;
2051 	for (i = 0; i < (1 << order); i++) {
2052 		struct page *p = page + i;
2053 
2054 		if (unlikely(check_new_page(p)))
2055 			return true;
2056 	}
2057 
2058 	return false;
2059 }
2060 
2061 inline void post_alloc_hook(struct page *page, unsigned int order,
2062 				gfp_t gfp_flags)
2063 {
2064 	set_page_private(page, 0);
2065 	set_page_refcounted(page);
2066 
2067 	arch_alloc_page(page, order);
2068 	if (debug_pagealloc_enabled())
2069 		kernel_map_pages(page, 1 << order, 1);
2070 	kasan_alloc_pages(page, order);
2071 	kernel_poison_pages(page, 1 << order, 1);
2072 	set_page_owner(page, order, gfp_flags);
2073 }
2074 
2075 static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
2076 							unsigned int alloc_flags)
2077 {
2078 	int i;
2079 
2080 	post_alloc_hook(page, order, gfp_flags);
2081 
2082 	if (!free_pages_prezeroed() && (gfp_flags & __GFP_ZERO))
2083 		for (i = 0; i < (1 << order); i++)
2084 			clear_highpage(page + i);
2085 
2086 	if (order && (gfp_flags & __GFP_COMP))
2087 		prep_compound_page(page, order);
2088 
2089 	/*
2090 	 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
2091 	 * allocate the page. The expectation is that the caller is taking
2092 	 * steps that will free more memory. The caller should avoid the page
2093 	 * being used for !PFMEMALLOC purposes.
2094 	 */
2095 	if (alloc_flags & ALLOC_NO_WATERMARKS)
2096 		set_page_pfmemalloc(page);
2097 	else
2098 		clear_page_pfmemalloc(page);
2099 }
2100 
2101 /*
2102  * Go through the free lists for the given migratetype and remove
2103  * the smallest available page from the freelists
2104  */
2105 static __always_inline
2106 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
2107 						int migratetype)
2108 {
2109 	unsigned int current_order;
2110 	struct free_area *area;
2111 	struct page *page;
2112 
2113 	/* Find a page of the appropriate size in the preferred list */
2114 	for (current_order = order; current_order < MAX_ORDER; ++current_order) {
2115 		area = &(zone->free_area[current_order]);
2116 		page = list_first_entry_or_null(&area->free_list[migratetype],
2117 							struct page, lru);
2118 		if (!page)
2119 			continue;
2120 		list_del(&page->lru);
2121 		rmv_page_order(page);
2122 		area->nr_free--;
2123 		expand(zone, page, order, current_order, area, migratetype);
2124 		set_pcppage_migratetype(page, migratetype);
2125 		return page;
2126 	}
2127 
2128 	return NULL;
2129 }
2130 
2131 
2132 /*
2133  * This array describes the order lists are fallen back to when
2134  * the free lists for the desirable migrate type are depleted
2135  */
2136 static int fallbacks[MIGRATE_TYPES][4] = {
2137 	[MIGRATE_UNMOVABLE]   = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE,   MIGRATE_TYPES },
2138 	[MIGRATE_MOVABLE]     = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
2139 	[MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE,   MIGRATE_MOVABLE,   MIGRATE_TYPES },
2140 #ifdef CONFIG_CMA
2141 	[MIGRATE_CMA]         = { MIGRATE_TYPES }, /* Never used */
2142 #endif
2143 #ifdef CONFIG_MEMORY_ISOLATION
2144 	[MIGRATE_ISOLATE]     = { MIGRATE_TYPES }, /* Never used */
2145 #endif
2146 };
2147 
2148 #ifdef CONFIG_CMA
2149 static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone,
2150 					unsigned int order)
2151 {
2152 	return __rmqueue_smallest(zone, order, MIGRATE_CMA);
2153 }
2154 #else
2155 static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
2156 					unsigned int order) { return NULL; }
2157 #endif
2158 
2159 /*
2160  * Move the free pages in a range to the free lists of the requested type.
2161  * Note that start_page and end_pages are not aligned on a pageblock
2162  * boundary. If alignment is required, use move_freepages_block()
2163  */
2164 static int move_freepages(struct zone *zone,
2165 			  struct page *start_page, struct page *end_page,
2166 			  int migratetype, int *num_movable)
2167 {
2168 	struct page *page;
2169 	unsigned int order;
2170 	int pages_moved = 0;
2171 
2172 #ifndef CONFIG_HOLES_IN_ZONE
2173 	/*
2174 	 * page_zone is not safe to call in this context when
2175 	 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
2176 	 * anyway as we check zone boundaries in move_freepages_block().
2177 	 * Remove at a later date when no bug reports exist related to
2178 	 * grouping pages by mobility
2179 	 */
2180 	VM_BUG_ON(pfn_valid(page_to_pfn(start_page)) &&
2181 	          pfn_valid(page_to_pfn(end_page)) &&
2182 	          page_zone(start_page) != page_zone(end_page));
2183 #endif
2184 	for (page = start_page; page <= end_page;) {
2185 		if (!pfn_valid_within(page_to_pfn(page))) {
2186 			page++;
2187 			continue;
2188 		}
2189 
2190 		/* Make sure we are not inadvertently changing nodes */
2191 		VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
2192 
2193 		if (!PageBuddy(page)) {
2194 			/*
2195 			 * We assume that pages that could be isolated for
2196 			 * migration are movable. But we don't actually try
2197 			 * isolating, as that would be expensive.
2198 			 */
2199 			if (num_movable &&
2200 					(PageLRU(page) || __PageMovable(page)))
2201 				(*num_movable)++;
2202 
2203 			page++;
2204 			continue;
2205 		}
2206 
2207 		order = page_order(page);
2208 		list_move(&page->lru,
2209 			  &zone->free_area[order].free_list[migratetype]);
2210 		page += 1 << order;
2211 		pages_moved += 1 << order;
2212 	}
2213 
2214 	return pages_moved;
2215 }
2216 
2217 int move_freepages_block(struct zone *zone, struct page *page,
2218 				int migratetype, int *num_movable)
2219 {
2220 	unsigned long start_pfn, end_pfn;
2221 	struct page *start_page, *end_page;
2222 
2223 	if (num_movable)
2224 		*num_movable = 0;
2225 
2226 	start_pfn = page_to_pfn(page);
2227 	start_pfn = start_pfn & ~(pageblock_nr_pages-1);
2228 	start_page = pfn_to_page(start_pfn);
2229 	end_page = start_page + pageblock_nr_pages - 1;
2230 	end_pfn = start_pfn + pageblock_nr_pages - 1;
2231 
2232 	/* Do not cross zone boundaries */
2233 	if (!zone_spans_pfn(zone, start_pfn))
2234 		start_page = page;
2235 	if (!zone_spans_pfn(zone, end_pfn))
2236 		return 0;
2237 
2238 	return move_freepages(zone, start_page, end_page, migratetype,
2239 								num_movable);
2240 }
2241 
2242 static void change_pageblock_range(struct page *pageblock_page,
2243 					int start_order, int migratetype)
2244 {
2245 	int nr_pageblocks = 1 << (start_order - pageblock_order);
2246 
2247 	while (nr_pageblocks--) {
2248 		set_pageblock_migratetype(pageblock_page, migratetype);
2249 		pageblock_page += pageblock_nr_pages;
2250 	}
2251 }
2252 
2253 /*
2254  * When we are falling back to another migratetype during allocation, try to
2255  * steal extra free pages from the same pageblocks to satisfy further
2256  * allocations, instead of polluting multiple pageblocks.
2257  *
2258  * If we are stealing a relatively large buddy page, it is likely there will
2259  * be more free pages in the pageblock, so try to steal them all. For
2260  * reclaimable and unmovable allocations, we steal regardless of page size,
2261  * as fragmentation caused by those allocations polluting movable pageblocks
2262  * is worse than movable allocations stealing from unmovable and reclaimable
2263  * pageblocks.
2264  */
2265 static bool can_steal_fallback(unsigned int order, int start_mt)
2266 {
2267 	/*
2268 	 * Leaving this order check is intended, although there is
2269 	 * relaxed order check in next check. The reason is that
2270 	 * we can actually steal whole pageblock if this condition met,
2271 	 * but, below check doesn't guarantee it and that is just heuristic
2272 	 * so could be changed anytime.
2273 	 */
2274 	if (order >= pageblock_order)
2275 		return true;
2276 
2277 	if (order >= pageblock_order / 2 ||
2278 		start_mt == MIGRATE_RECLAIMABLE ||
2279 		start_mt == MIGRATE_UNMOVABLE ||
2280 		page_group_by_mobility_disabled)
2281 		return true;
2282 
2283 	return false;
2284 }
2285 
2286 static inline void boost_watermark(struct zone *zone)
2287 {
2288 	unsigned long max_boost;
2289 
2290 	if (!watermark_boost_factor)
2291 		return;
2292 
2293 	max_boost = mult_frac(zone->_watermark[WMARK_HIGH],
2294 			watermark_boost_factor, 10000);
2295 
2296 	/*
2297 	 * high watermark may be uninitialised if fragmentation occurs
2298 	 * very early in boot so do not boost. We do not fall
2299 	 * through and boost by pageblock_nr_pages as failing
2300 	 * allocations that early means that reclaim is not going
2301 	 * to help and it may even be impossible to reclaim the
2302 	 * boosted watermark resulting in a hang.
2303 	 */
2304 	if (!max_boost)
2305 		return;
2306 
2307 	max_boost = max(pageblock_nr_pages, max_boost);
2308 
2309 	zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages,
2310 		max_boost);
2311 }
2312 
2313 /*
2314  * This function implements actual steal behaviour. If order is large enough,
2315  * we can steal whole pageblock. If not, we first move freepages in this
2316  * pageblock to our migratetype and determine how many already-allocated pages
2317  * are there in the pageblock with a compatible migratetype. If at least half
2318  * of pages are free or compatible, we can change migratetype of the pageblock
2319  * itself, so pages freed in the future will be put on the correct free list.
2320  */
2321 static void steal_suitable_fallback(struct zone *zone, struct page *page,
2322 		unsigned int alloc_flags, int start_type, bool whole_block)
2323 {
2324 	unsigned int current_order = page_order(page);
2325 	struct free_area *area;
2326 	int free_pages, movable_pages, alike_pages;
2327 	int old_block_type;
2328 
2329 	old_block_type = get_pageblock_migratetype(page);
2330 
2331 	/*
2332 	 * This can happen due to races and we want to prevent broken
2333 	 * highatomic accounting.
2334 	 */
2335 	if (is_migrate_highatomic(old_block_type))
2336 		goto single_page;
2337 
2338 	/* Take ownership for orders >= pageblock_order */
2339 	if (current_order >= pageblock_order) {
2340 		change_pageblock_range(page, current_order, start_type);
2341 		goto single_page;
2342 	}
2343 
2344 	/*
2345 	 * Boost watermarks to increase reclaim pressure to reduce the
2346 	 * likelihood of future fallbacks. Wake kswapd now as the node
2347 	 * may be balanced overall and kswapd will not wake naturally.
2348 	 */
2349 	boost_watermark(zone);
2350 	if (alloc_flags & ALLOC_KSWAPD)
2351 		set_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
2352 
2353 	/* We are not allowed to try stealing from the whole block */
2354 	if (!whole_block)
2355 		goto single_page;
2356 
2357 	free_pages = move_freepages_block(zone, page, start_type,
2358 						&movable_pages);
2359 	/*
2360 	 * Determine how many pages are compatible with our allocation.
2361 	 * For movable allocation, it's the number of movable pages which
2362 	 * we just obtained. For other types it's a bit more tricky.
2363 	 */
2364 	if (start_type == MIGRATE_MOVABLE) {
2365 		alike_pages = movable_pages;
2366 	} else {
2367 		/*
2368 		 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
2369 		 * to MOVABLE pageblock, consider all non-movable pages as
2370 		 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
2371 		 * vice versa, be conservative since we can't distinguish the
2372 		 * exact migratetype of non-movable pages.
2373 		 */
2374 		if (old_block_type == MIGRATE_MOVABLE)
2375 			alike_pages = pageblock_nr_pages
2376 						- (free_pages + movable_pages);
2377 		else
2378 			alike_pages = 0;
2379 	}
2380 
2381 	/* moving whole block can fail due to zone boundary conditions */
2382 	if (!free_pages)
2383 		goto single_page;
2384 
2385 	/*
2386 	 * If a sufficient number of pages in the block are either free or of
2387 	 * comparable migratability as our allocation, claim the whole block.
2388 	 */
2389 	if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
2390 			page_group_by_mobility_disabled)
2391 		set_pageblock_migratetype(page, start_type);
2392 
2393 	return;
2394 
2395 single_page:
2396 	area = &zone->free_area[current_order];
2397 	list_move(&page->lru, &area->free_list[start_type]);
2398 }
2399 
2400 /*
2401  * Check whether there is a suitable fallback freepage with requested order.
2402  * If only_stealable is true, this function returns fallback_mt only if
2403  * we can steal other freepages all together. This would help to reduce
2404  * fragmentation due to mixed migratetype pages in one pageblock.
2405  */
2406 int find_suitable_fallback(struct free_area *area, unsigned int order,
2407 			int migratetype, bool only_stealable, bool *can_steal)
2408 {
2409 	int i;
2410 	int fallback_mt;
2411 
2412 	if (area->nr_free == 0)
2413 		return -1;
2414 
2415 	*can_steal = false;
2416 	for (i = 0;; i++) {
2417 		fallback_mt = fallbacks[migratetype][i];
2418 		if (fallback_mt == MIGRATE_TYPES)
2419 			break;
2420 
2421 		if (list_empty(&area->free_list[fallback_mt]))
2422 			continue;
2423 
2424 		if (can_steal_fallback(order, migratetype))
2425 			*can_steal = true;
2426 
2427 		if (!only_stealable)
2428 			return fallback_mt;
2429 
2430 		if (*can_steal)
2431 			return fallback_mt;
2432 	}
2433 
2434 	return -1;
2435 }
2436 
2437 /*
2438  * Reserve a pageblock for exclusive use of high-order atomic allocations if
2439  * there are no empty page blocks that contain a page with a suitable order
2440  */
2441 static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
2442 				unsigned int alloc_order)
2443 {
2444 	int mt;
2445 	unsigned long max_managed, flags;
2446 
2447 	/*
2448 	 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
2449 	 * Check is race-prone but harmless.
2450 	 */
2451 	max_managed = (zone_managed_pages(zone) / 100) + pageblock_nr_pages;
2452 	if (zone->nr_reserved_highatomic >= max_managed)
2453 		return;
2454 
2455 	spin_lock_irqsave(&zone->lock, flags);
2456 
2457 	/* Recheck the nr_reserved_highatomic limit under the lock */
2458 	if (zone->nr_reserved_highatomic >= max_managed)
2459 		goto out_unlock;
2460 
2461 	/* Yoink! */
2462 	mt = get_pageblock_migratetype(page);
2463 	if (!is_migrate_highatomic(mt) && !is_migrate_isolate(mt)
2464 	    && !is_migrate_cma(mt)) {
2465 		zone->nr_reserved_highatomic += pageblock_nr_pages;
2466 		set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
2467 		move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL);
2468 	}
2469 
2470 out_unlock:
2471 	spin_unlock_irqrestore(&zone->lock, flags);
2472 }
2473 
2474 /*
2475  * Used when an allocation is about to fail under memory pressure. This
2476  * potentially hurts the reliability of high-order allocations when under
2477  * intense memory pressure but failed atomic allocations should be easier
2478  * to recover from than an OOM.
2479  *
2480  * If @force is true, try to unreserve a pageblock even though highatomic
2481  * pageblock is exhausted.
2482  */
2483 static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
2484 						bool force)
2485 {
2486 	struct zonelist *zonelist = ac->zonelist;
2487 	unsigned long flags;
2488 	struct zoneref *z;
2489 	struct zone *zone;
2490 	struct page *page;
2491 	int order;
2492 	bool ret;
2493 
2494 	for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
2495 								ac->nodemask) {
2496 		/*
2497 		 * Preserve at least one pageblock unless memory pressure
2498 		 * is really high.
2499 		 */
2500 		if (!force && zone->nr_reserved_highatomic <=
2501 					pageblock_nr_pages)
2502 			continue;
2503 
2504 		spin_lock_irqsave(&zone->lock, flags);
2505 		for (order = 0; order < MAX_ORDER; order++) {
2506 			struct free_area *area = &(zone->free_area[order]);
2507 
2508 			page = list_first_entry_or_null(
2509 					&area->free_list[MIGRATE_HIGHATOMIC],
2510 					struct page, lru);
2511 			if (!page)
2512 				continue;
2513 
2514 			/*
2515 			 * In page freeing path, migratetype change is racy so
2516 			 * we can counter several free pages in a pageblock
2517 			 * in this loop althoug we changed the pageblock type
2518 			 * from highatomic to ac->migratetype. So we should
2519 			 * adjust the count once.
2520 			 */
2521 			if (is_migrate_highatomic_page(page)) {
2522 				/*
2523 				 * It should never happen but changes to
2524 				 * locking could inadvertently allow a per-cpu
2525 				 * drain to add pages to MIGRATE_HIGHATOMIC
2526 				 * while unreserving so be safe and watch for
2527 				 * underflows.
2528 				 */
2529 				zone->nr_reserved_highatomic -= min(
2530 						pageblock_nr_pages,
2531 						zone->nr_reserved_highatomic);
2532 			}
2533 
2534 			/*
2535 			 * Convert to ac->migratetype and avoid the normal
2536 			 * pageblock stealing heuristics. Minimally, the caller
2537 			 * is doing the work and needs the pages. More
2538 			 * importantly, if the block was always converted to
2539 			 * MIGRATE_UNMOVABLE or another type then the number
2540 			 * of pageblocks that cannot be completely freed
2541 			 * may increase.
2542 			 */
2543 			set_pageblock_migratetype(page, ac->migratetype);
2544 			ret = move_freepages_block(zone, page, ac->migratetype,
2545 									NULL);
2546 			if (ret) {
2547 				spin_unlock_irqrestore(&zone->lock, flags);
2548 				return ret;
2549 			}
2550 		}
2551 		spin_unlock_irqrestore(&zone->lock, flags);
2552 	}
2553 
2554 	return false;
2555 }
2556 
2557 /*
2558  * Try finding a free buddy page on the fallback list and put it on the free
2559  * list of requested migratetype, possibly along with other pages from the same
2560  * block, depending on fragmentation avoidance heuristics. Returns true if
2561  * fallback was found so that __rmqueue_smallest() can grab it.
2562  *
2563  * The use of signed ints for order and current_order is a deliberate
2564  * deviation from the rest of this file, to make the for loop
2565  * condition simpler.
2566  */
2567 static __always_inline bool
2568 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype,
2569 						unsigned int alloc_flags)
2570 {
2571 	struct free_area *area;
2572 	int current_order;
2573 	int min_order = order;
2574 	struct page *page;
2575 	int fallback_mt;
2576 	bool can_steal;
2577 
2578 	/*
2579 	 * Do not steal pages from freelists belonging to other pageblocks
2580 	 * i.e. orders < pageblock_order. If there are no local zones free,
2581 	 * the zonelists will be reiterated without ALLOC_NOFRAGMENT.
2582 	 */
2583 	if (alloc_flags & ALLOC_NOFRAGMENT)
2584 		min_order = pageblock_order;
2585 
2586 	/*
2587 	 * Find the largest available free page in the other list. This roughly
2588 	 * approximates finding the pageblock with the most free pages, which
2589 	 * would be too costly to do exactly.
2590 	 */
2591 	for (current_order = MAX_ORDER - 1; current_order >= min_order;
2592 				--current_order) {
2593 		area = &(zone->free_area[current_order]);
2594 		fallback_mt = find_suitable_fallback(area, current_order,
2595 				start_migratetype, false, &can_steal);
2596 		if (fallback_mt == -1)
2597 			continue;
2598 
2599 		/*
2600 		 * We cannot steal all free pages from the pageblock and the
2601 		 * requested migratetype is movable. In that case it's better to
2602 		 * steal and split the smallest available page instead of the
2603 		 * largest available page, because even if the next movable
2604 		 * allocation falls back into a different pageblock than this
2605 		 * one, it won't cause permanent fragmentation.
2606 		 */
2607 		if (!can_steal && start_migratetype == MIGRATE_MOVABLE
2608 					&& current_order > order)
2609 			goto find_smallest;
2610 
2611 		goto do_steal;
2612 	}
2613 
2614 	return false;
2615 
2616 find_smallest:
2617 	for (current_order = order; current_order < MAX_ORDER;
2618 							current_order++) {
2619 		area = &(zone->free_area[current_order]);
2620 		fallback_mt = find_suitable_fallback(area, current_order,
2621 				start_migratetype, false, &can_steal);
2622 		if (fallback_mt != -1)
2623 			break;
2624 	}
2625 
2626 	/*
2627 	 * This should not happen - we already found a suitable fallback
2628 	 * when looking for the largest page.
2629 	 */
2630 	VM_BUG_ON(current_order == MAX_ORDER);
2631 
2632 do_steal:
2633 	page = list_first_entry(&area->free_list[fallback_mt],
2634 							struct page, lru);
2635 
2636 	steal_suitable_fallback(zone, page, alloc_flags, start_migratetype,
2637 								can_steal);
2638 
2639 	trace_mm_page_alloc_extfrag(page, order, current_order,
2640 		start_migratetype, fallback_mt);
2641 
2642 	return true;
2643 
2644 }
2645 
2646 /*
2647  * Do the hard work of removing an element from the buddy allocator.
2648  * Call me with the zone->lock already held.
2649  */
2650 static __always_inline struct page *
2651 __rmqueue(struct zone *zone, unsigned int order, int migratetype,
2652 						unsigned int alloc_flags)
2653 {
2654 	struct page *page;
2655 
2656 retry:
2657 	page = __rmqueue_smallest(zone, order, migratetype);
2658 	if (unlikely(!page)) {
2659 		if (migratetype == MIGRATE_MOVABLE)
2660 			page = __rmqueue_cma_fallback(zone, order);
2661 
2662 		if (!page && __rmqueue_fallback(zone, order, migratetype,
2663 								alloc_flags))
2664 			goto retry;
2665 	}
2666 
2667 	trace_mm_page_alloc_zone_locked(page, order, migratetype);
2668 	return page;
2669 }
2670 
2671 /*
2672  * Obtain a specified number of elements from the buddy allocator, all under
2673  * a single hold of the lock, for efficiency.  Add them to the supplied list.
2674  * Returns the number of new pages which were placed at *list.
2675  */
2676 static int rmqueue_bulk(struct zone *zone, unsigned int order,
2677 			unsigned long count, struct list_head *list,
2678 			int migratetype, unsigned int alloc_flags)
2679 {
2680 	int i, alloced = 0;
2681 
2682 	spin_lock(&zone->lock);
2683 	for (i = 0; i < count; ++i) {
2684 		struct page *page = __rmqueue(zone, order, migratetype,
2685 								alloc_flags);
2686 		if (unlikely(page == NULL))
2687 			break;
2688 
2689 		if (unlikely(check_pcp_refill(page)))
2690 			continue;
2691 
2692 		/*
2693 		 * Split buddy pages returned by expand() are received here in
2694 		 * physical page order. The page is added to the tail of
2695 		 * caller's list. From the callers perspective, the linked list
2696 		 * is ordered by page number under some conditions. This is
2697 		 * useful for IO devices that can forward direction from the
2698 		 * head, thus also in the physical page order. This is useful
2699 		 * for IO devices that can merge IO requests if the physical
2700 		 * pages are ordered properly.
2701 		 */
2702 		list_add_tail(&page->lru, list);
2703 		alloced++;
2704 		if (is_migrate_cma(get_pcppage_migratetype(page)))
2705 			__mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
2706 					      -(1 << order));
2707 	}
2708 
2709 	/*
2710 	 * i pages were removed from the buddy list even if some leak due
2711 	 * to check_pcp_refill failing so adjust NR_FREE_PAGES based
2712 	 * on i. Do not confuse with 'alloced' which is the number of
2713 	 * pages added to the pcp list.
2714 	 */
2715 	__mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
2716 	spin_unlock(&zone->lock);
2717 	return alloced;
2718 }
2719 
2720 #ifdef CONFIG_NUMA
2721 /*
2722  * Called from the vmstat counter updater to drain pagesets of this
2723  * currently executing processor on remote nodes after they have
2724  * expired.
2725  *
2726  * Note that this function must be called with the thread pinned to
2727  * a single processor.
2728  */
2729 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
2730 {
2731 	unsigned long flags;
2732 	int to_drain, batch;
2733 
2734 	local_irq_save(flags);
2735 	batch = READ_ONCE(pcp->batch);
2736 	to_drain = min(pcp->count, batch);
2737 	if (to_drain > 0)
2738 		free_pcppages_bulk(zone, to_drain, pcp);
2739 	local_irq_restore(flags);
2740 }
2741 #endif
2742 
2743 /*
2744  * Drain pcplists of the indicated processor and zone.
2745  *
2746  * The processor must either be the current processor and the
2747  * thread pinned to the current processor or a processor that
2748  * is not online.
2749  */
2750 static void drain_pages_zone(unsigned int cpu, struct zone *zone)
2751 {
2752 	unsigned long flags;
2753 	struct per_cpu_pageset *pset;
2754 	struct per_cpu_pages *pcp;
2755 
2756 	local_irq_save(flags);
2757 	pset = per_cpu_ptr(zone->pageset, cpu);
2758 
2759 	pcp = &pset->pcp;
2760 	if (pcp->count)
2761 		free_pcppages_bulk(zone, pcp->count, pcp);
2762 	local_irq_restore(flags);
2763 }
2764 
2765 /*
2766  * Drain pcplists of all zones on the indicated processor.
2767  *
2768  * The processor must either be the current processor and the
2769  * thread pinned to the current processor or a processor that
2770  * is not online.
2771  */
2772 static void drain_pages(unsigned int cpu)
2773 {
2774 	struct zone *zone;
2775 
2776 	for_each_populated_zone(zone) {
2777 		drain_pages_zone(cpu, zone);
2778 	}
2779 }
2780 
2781 /*
2782  * Spill all of this CPU's per-cpu pages back into the buddy allocator.
2783  *
2784  * The CPU has to be pinned. When zone parameter is non-NULL, spill just
2785  * the single zone's pages.
2786  */
2787 void drain_local_pages(struct zone *zone)
2788 {
2789 	int cpu = smp_processor_id();
2790 
2791 	if (zone)
2792 		drain_pages_zone(cpu, zone);
2793 	else
2794 		drain_pages(cpu);
2795 }
2796 
2797 static void drain_local_pages_wq(struct work_struct *work)
2798 {
2799 	struct pcpu_drain *drain;
2800 
2801 	drain = container_of(work, struct pcpu_drain, work);
2802 
2803 	/*
2804 	 * drain_all_pages doesn't use proper cpu hotplug protection so
2805 	 * we can race with cpu offline when the WQ can move this from
2806 	 * a cpu pinned worker to an unbound one. We can operate on a different
2807 	 * cpu which is allright but we also have to make sure to not move to
2808 	 * a different one.
2809 	 */
2810 	preempt_disable();
2811 	drain_local_pages(drain->zone);
2812 	preempt_enable();
2813 }
2814 
2815 /*
2816  * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
2817  *
2818  * When zone parameter is non-NULL, spill just the single zone's pages.
2819  *
2820  * Note that this can be extremely slow as the draining happens in a workqueue.
2821  */
2822 void drain_all_pages(struct zone *zone)
2823 {
2824 	int cpu;
2825 
2826 	/*
2827 	 * Allocate in the BSS so we wont require allocation in
2828 	 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
2829 	 */
2830 	static cpumask_t cpus_with_pcps;
2831 
2832 	/*
2833 	 * Make sure nobody triggers this path before mm_percpu_wq is fully
2834 	 * initialized.
2835 	 */
2836 	if (WARN_ON_ONCE(!mm_percpu_wq))
2837 		return;
2838 
2839 	/*
2840 	 * Do not drain if one is already in progress unless it's specific to
2841 	 * a zone. Such callers are primarily CMA and memory hotplug and need
2842 	 * the drain to be complete when the call returns.
2843 	 */
2844 	if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
2845 		if (!zone)
2846 			return;
2847 		mutex_lock(&pcpu_drain_mutex);
2848 	}
2849 
2850 	/*
2851 	 * We don't care about racing with CPU hotplug event
2852 	 * as offline notification will cause the notified
2853 	 * cpu to drain that CPU pcps and on_each_cpu_mask
2854 	 * disables preemption as part of its processing
2855 	 */
2856 	for_each_online_cpu(cpu) {
2857 		struct per_cpu_pageset *pcp;
2858 		struct zone *z;
2859 		bool has_pcps = false;
2860 
2861 		if (zone) {
2862 			pcp = per_cpu_ptr(zone->pageset, cpu);
2863 			if (pcp->pcp.count)
2864 				has_pcps = true;
2865 		} else {
2866 			for_each_populated_zone(z) {
2867 				pcp = per_cpu_ptr(z->pageset, cpu);
2868 				if (pcp->pcp.count) {
2869 					has_pcps = true;
2870 					break;
2871 				}
2872 			}
2873 		}
2874 
2875 		if (has_pcps)
2876 			cpumask_set_cpu(cpu, &cpus_with_pcps);
2877 		else
2878 			cpumask_clear_cpu(cpu, &cpus_with_pcps);
2879 	}
2880 
2881 	for_each_cpu(cpu, &cpus_with_pcps) {
2882 		struct pcpu_drain *drain = per_cpu_ptr(&pcpu_drain, cpu);
2883 
2884 		drain->zone = zone;
2885 		INIT_WORK(&drain->work, drain_local_pages_wq);
2886 		queue_work_on(cpu, mm_percpu_wq, &drain->work);
2887 	}
2888 	for_each_cpu(cpu, &cpus_with_pcps)
2889 		flush_work(&per_cpu_ptr(&pcpu_drain, cpu)->work);
2890 
2891 	mutex_unlock(&pcpu_drain_mutex);
2892 }
2893 
2894 #ifdef CONFIG_HIBERNATION
2895 
2896 /*
2897  * Touch the watchdog for every WD_PAGE_COUNT pages.
2898  */
2899 #define WD_PAGE_COUNT	(128*1024)
2900 
2901 void mark_free_pages(struct zone *zone)
2902 {
2903 	unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT;
2904 	unsigned long flags;
2905 	unsigned int order, t;
2906 	struct page *page;
2907 
2908 	if (zone_is_empty(zone))
2909 		return;
2910 
2911 	spin_lock_irqsave(&zone->lock, flags);
2912 
2913 	max_zone_pfn = zone_end_pfn(zone);
2914 	for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
2915 		if (pfn_valid(pfn)) {
2916 			page = pfn_to_page(pfn);
2917 
2918 			if (!--page_count) {
2919 				touch_nmi_watchdog();
2920 				page_count = WD_PAGE_COUNT;
2921 			}
2922 
2923 			if (page_zone(page) != zone)
2924 				continue;
2925 
2926 			if (!swsusp_page_is_forbidden(page))
2927 				swsusp_unset_page_free(page);
2928 		}
2929 
2930 	for_each_migratetype_order(order, t) {
2931 		list_for_each_entry(page,
2932 				&zone->free_area[order].free_list[t], lru) {
2933 			unsigned long i;
2934 
2935 			pfn = page_to_pfn(page);
2936 			for (i = 0; i < (1UL << order); i++) {
2937 				if (!--page_count) {
2938 					touch_nmi_watchdog();
2939 					page_count = WD_PAGE_COUNT;
2940 				}
2941 				swsusp_set_page_free(pfn_to_page(pfn + i));
2942 			}
2943 		}
2944 	}
2945 	spin_unlock_irqrestore(&zone->lock, flags);
2946 }
2947 #endif /* CONFIG_PM */
2948 
2949 static bool free_unref_page_prepare(struct page *page, unsigned long pfn)
2950 {
2951 	int migratetype;
2952 
2953 	if (!free_pcp_prepare(page))
2954 		return false;
2955 
2956 	migratetype = get_pfnblock_migratetype(page, pfn);
2957 	set_pcppage_migratetype(page, migratetype);
2958 	return true;
2959 }
2960 
2961 static void free_unref_page_commit(struct page *page, unsigned long pfn)
2962 {
2963 	struct zone *zone = page_zone(page);
2964 	struct per_cpu_pages *pcp;
2965 	int migratetype;
2966 
2967 	migratetype = get_pcppage_migratetype(page);
2968 	__count_vm_event(PGFREE);
2969 
2970 	/*
2971 	 * We only track unmovable, reclaimable and movable on pcp lists.
2972 	 * Free ISOLATE pages back to the allocator because they are being
2973 	 * offlined but treat HIGHATOMIC as movable pages so we can get those
2974 	 * areas back if necessary. Otherwise, we may have to free
2975 	 * excessively into the page allocator
2976 	 */
2977 	if (migratetype >= MIGRATE_PCPTYPES) {
2978 		if (unlikely(is_migrate_isolate(migratetype))) {
2979 			free_one_page(zone, page, pfn, 0, migratetype);
2980 			return;
2981 		}
2982 		migratetype = MIGRATE_MOVABLE;
2983 	}
2984 
2985 	pcp = &this_cpu_ptr(zone->pageset)->pcp;
2986 	list_add(&page->lru, &pcp->lists[migratetype]);
2987 	pcp->count++;
2988 	if (pcp->count >= pcp->high) {
2989 		unsigned long batch = READ_ONCE(pcp->batch);
2990 		free_pcppages_bulk(zone, batch, pcp);
2991 	}
2992 }
2993 
2994 /*
2995  * Free a 0-order page
2996  */
2997 void free_unref_page(struct page *page)
2998 {
2999 	unsigned long flags;
3000 	unsigned long pfn = page_to_pfn(page);
3001 
3002 	if (!free_unref_page_prepare(page, pfn))
3003 		return;
3004 
3005 	local_irq_save(flags);
3006 	free_unref_page_commit(page, pfn);
3007 	local_irq_restore(flags);
3008 }
3009 
3010 /*
3011  * Free a list of 0-order pages
3012  */
3013 void free_unref_page_list(struct list_head *list)
3014 {
3015 	struct page *page, *next;
3016 	unsigned long flags, pfn;
3017 	int batch_count = 0;
3018 
3019 	/* Prepare pages for freeing */
3020 	list_for_each_entry_safe(page, next, list, lru) {
3021 		pfn = page_to_pfn(page);
3022 		if (!free_unref_page_prepare(page, pfn))
3023 			list_del(&page->lru);
3024 		set_page_private(page, pfn);
3025 	}
3026 
3027 	local_irq_save(flags);
3028 	list_for_each_entry_safe(page, next, list, lru) {
3029 		unsigned long pfn = page_private(page);
3030 
3031 		set_page_private(page, 0);
3032 		trace_mm_page_free_batched(page);
3033 		free_unref_page_commit(page, pfn);
3034 
3035 		/*
3036 		 * Guard against excessive IRQ disabled times when we get
3037 		 * a large list of pages to free.
3038 		 */
3039 		if (++batch_count == SWAP_CLUSTER_MAX) {
3040 			local_irq_restore(flags);
3041 			batch_count = 0;
3042 			local_irq_save(flags);
3043 		}
3044 	}
3045 	local_irq_restore(flags);
3046 }
3047 
3048 /*
3049  * split_page takes a non-compound higher-order page, and splits it into
3050  * n (1<<order) sub-pages: page[0..n]
3051  * Each sub-page must be freed individually.
3052  *
3053  * Note: this is probably too low level an operation for use in drivers.
3054  * Please consult with lkml before using this in your driver.
3055  */
3056 void split_page(struct page *page, unsigned int order)
3057 {
3058 	int i;
3059 
3060 	VM_BUG_ON_PAGE(PageCompound(page), page);
3061 	VM_BUG_ON_PAGE(!page_count(page), page);
3062 
3063 	for (i = 1; i < (1 << order); i++)
3064 		set_page_refcounted(page + i);
3065 	split_page_owner(page, order);
3066 }
3067 EXPORT_SYMBOL_GPL(split_page);
3068 
3069 int __isolate_free_page(struct page *page, unsigned int order)
3070 {
3071 	unsigned long watermark;
3072 	struct zone *zone;
3073 	int mt;
3074 
3075 	BUG_ON(!PageBuddy(page));
3076 
3077 	zone = page_zone(page);
3078 	mt = get_pageblock_migratetype(page);
3079 
3080 	if (!is_migrate_isolate(mt)) {
3081 		/*
3082 		 * Obey watermarks as if the page was being allocated. We can
3083 		 * emulate a high-order watermark check with a raised order-0
3084 		 * watermark, because we already know our high-order page
3085 		 * exists.
3086 		 */
3087 		watermark = zone->_watermark[WMARK_MIN] + (1UL << order);
3088 		if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
3089 			return 0;
3090 
3091 		__mod_zone_freepage_state(zone, -(1UL << order), mt);
3092 	}
3093 
3094 	/* Remove page from free list */
3095 	list_del(&page->lru);
3096 	zone->free_area[order].nr_free--;
3097 	rmv_page_order(page);
3098 
3099 	/*
3100 	 * Set the pageblock if the isolated page is at least half of a
3101 	 * pageblock
3102 	 */
3103 	if (order >= pageblock_order - 1) {
3104 		struct page *endpage = page + (1 << order) - 1;
3105 		for (; page < endpage; page += pageblock_nr_pages) {
3106 			int mt = get_pageblock_migratetype(page);
3107 			if (!is_migrate_isolate(mt) && !is_migrate_cma(mt)
3108 			    && !is_migrate_highatomic(mt))
3109 				set_pageblock_migratetype(page,
3110 							  MIGRATE_MOVABLE);
3111 		}
3112 	}
3113 
3114 
3115 	return 1UL << order;
3116 }
3117 
3118 /*
3119  * Update NUMA hit/miss statistics
3120  *
3121  * Must be called with interrupts disabled.
3122  */
3123 static inline void zone_statistics(struct zone *preferred_zone, struct zone *z)
3124 {
3125 #ifdef CONFIG_NUMA
3126 	enum numa_stat_item local_stat = NUMA_LOCAL;
3127 
3128 	/* skip numa counters update if numa stats is disabled */
3129 	if (!static_branch_likely(&vm_numa_stat_key))
3130 		return;
3131 
3132 	if (zone_to_nid(z) != numa_node_id())
3133 		local_stat = NUMA_OTHER;
3134 
3135 	if (zone_to_nid(z) == zone_to_nid(preferred_zone))
3136 		__inc_numa_state(z, NUMA_HIT);
3137 	else {
3138 		__inc_numa_state(z, NUMA_MISS);
3139 		__inc_numa_state(preferred_zone, NUMA_FOREIGN);
3140 	}
3141 	__inc_numa_state(z, local_stat);
3142 #endif
3143 }
3144 
3145 /* Remove page from the per-cpu list, caller must protect the list */
3146 static struct page *__rmqueue_pcplist(struct zone *zone, int migratetype,
3147 			unsigned int alloc_flags,
3148 			struct per_cpu_pages *pcp,
3149 			struct list_head *list)
3150 {
3151 	struct page *page;
3152 
3153 	do {
3154 		if (list_empty(list)) {
3155 			pcp->count += rmqueue_bulk(zone, 0,
3156 					pcp->batch, list,
3157 					migratetype, alloc_flags);
3158 			if (unlikely(list_empty(list)))
3159 				return NULL;
3160 		}
3161 
3162 		page = list_first_entry(list, struct page, lru);
3163 		list_del(&page->lru);
3164 		pcp->count--;
3165 	} while (check_new_pcp(page));
3166 
3167 	return page;
3168 }
3169 
3170 /* Lock and remove page from the per-cpu list */
3171 static struct page *rmqueue_pcplist(struct zone *preferred_zone,
3172 			struct zone *zone, gfp_t gfp_flags,
3173 			int migratetype, unsigned int alloc_flags)
3174 {
3175 	struct per_cpu_pages *pcp;
3176 	struct list_head *list;
3177 	struct page *page;
3178 	unsigned long flags;
3179 
3180 	local_irq_save(flags);
3181 	pcp = &this_cpu_ptr(zone->pageset)->pcp;
3182 	list = &pcp->lists[migratetype];
3183 	page = __rmqueue_pcplist(zone,  migratetype, alloc_flags, pcp, list);
3184 	if (page) {
3185 		__count_zid_vm_events(PGALLOC, page_zonenum(page), 1);
3186 		zone_statistics(preferred_zone, zone);
3187 	}
3188 	local_irq_restore(flags);
3189 	return page;
3190 }
3191 
3192 /*
3193  * Allocate a page from the given zone. Use pcplists for order-0 allocations.
3194  */
3195 static inline
3196 struct page *rmqueue(struct zone *preferred_zone,
3197 			struct zone *zone, unsigned int order,
3198 			gfp_t gfp_flags, unsigned int alloc_flags,
3199 			int migratetype)
3200 {
3201 	unsigned long flags;
3202 	struct page *page;
3203 
3204 	if (likely(order == 0)) {
3205 		page = rmqueue_pcplist(preferred_zone, zone, gfp_flags,
3206 					migratetype, alloc_flags);
3207 		goto out;
3208 	}
3209 
3210 	/*
3211 	 * We most definitely don't want callers attempting to
3212 	 * allocate greater than order-1 page units with __GFP_NOFAIL.
3213 	 */
3214 	WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
3215 	spin_lock_irqsave(&zone->lock, flags);
3216 
3217 	do {
3218 		page = NULL;
3219 		if (alloc_flags & ALLOC_HARDER) {
3220 			page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
3221 			if (page)
3222 				trace_mm_page_alloc_zone_locked(page, order, migratetype);
3223 		}
3224 		if (!page)
3225 			page = __rmqueue(zone, order, migratetype, alloc_flags);
3226 	} while (page && check_new_pages(page, order));
3227 	spin_unlock(&zone->lock);
3228 	if (!page)
3229 		goto failed;
3230 	__mod_zone_freepage_state(zone, -(1 << order),
3231 				  get_pcppage_migratetype(page));
3232 
3233 	__count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
3234 	zone_statistics(preferred_zone, zone);
3235 	local_irq_restore(flags);
3236 
3237 out:
3238 	/* Separate test+clear to avoid unnecessary atomics */
3239 	if (test_bit(ZONE_BOOSTED_WATERMARK, &zone->flags)) {
3240 		clear_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
3241 		wakeup_kswapd(zone, 0, 0, zone_idx(zone));
3242 	}
3243 
3244 	VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
3245 	return page;
3246 
3247 failed:
3248 	local_irq_restore(flags);
3249 	return NULL;
3250 }
3251 
3252 #ifdef CONFIG_FAIL_PAGE_ALLOC
3253 
3254 static struct {
3255 	struct fault_attr attr;
3256 
3257 	bool ignore_gfp_highmem;
3258 	bool ignore_gfp_reclaim;
3259 	u32 min_order;
3260 } fail_page_alloc = {
3261 	.attr = FAULT_ATTR_INITIALIZER,
3262 	.ignore_gfp_reclaim = true,
3263 	.ignore_gfp_highmem = true,
3264 	.min_order = 1,
3265 };
3266 
3267 static int __init setup_fail_page_alloc(char *str)
3268 {
3269 	return setup_fault_attr(&fail_page_alloc.attr, str);
3270 }
3271 __setup("fail_page_alloc=", setup_fail_page_alloc);
3272 
3273 static bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3274 {
3275 	if (order < fail_page_alloc.min_order)
3276 		return false;
3277 	if (gfp_mask & __GFP_NOFAIL)
3278 		return false;
3279 	if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
3280 		return false;
3281 	if (fail_page_alloc.ignore_gfp_reclaim &&
3282 			(gfp_mask & __GFP_DIRECT_RECLAIM))
3283 		return false;
3284 
3285 	return should_fail(&fail_page_alloc.attr, 1 << order);
3286 }
3287 
3288 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
3289 
3290 static int __init fail_page_alloc_debugfs(void)
3291 {
3292 	umode_t mode = S_IFREG | 0600;
3293 	struct dentry *dir;
3294 
3295 	dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
3296 					&fail_page_alloc.attr);
3297 
3298 	debugfs_create_bool("ignore-gfp-wait", mode, dir,
3299 			    &fail_page_alloc.ignore_gfp_reclaim);
3300 	debugfs_create_bool("ignore-gfp-highmem", mode, dir,
3301 			    &fail_page_alloc.ignore_gfp_highmem);
3302 	debugfs_create_u32("min-order", mode, dir, &fail_page_alloc.min_order);
3303 
3304 	return 0;
3305 }
3306 
3307 late_initcall(fail_page_alloc_debugfs);
3308 
3309 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
3310 
3311 #else /* CONFIG_FAIL_PAGE_ALLOC */
3312 
3313 static inline bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3314 {
3315 	return false;
3316 }
3317 
3318 #endif /* CONFIG_FAIL_PAGE_ALLOC */
3319 
3320 static noinline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3321 {
3322 	return __should_fail_alloc_page(gfp_mask, order);
3323 }
3324 ALLOW_ERROR_INJECTION(should_fail_alloc_page, TRUE);
3325 
3326 /*
3327  * Return true if free base pages are above 'mark'. For high-order checks it
3328  * will return true of the order-0 watermark is reached and there is at least
3329  * one free page of a suitable size. Checking now avoids taking the zone lock
3330  * to check in the allocation paths if no pages are free.
3331  */
3332 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3333 			 int classzone_idx, unsigned int alloc_flags,
3334 			 long free_pages)
3335 {
3336 	long min = mark;
3337 	int o;
3338 	const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
3339 
3340 	/* free_pages may go negative - that's OK */
3341 	free_pages -= (1 << order) - 1;
3342 
3343 	if (alloc_flags & ALLOC_HIGH)
3344 		min -= min / 2;
3345 
3346 	/*
3347 	 * If the caller does not have rights to ALLOC_HARDER then subtract
3348 	 * the high-atomic reserves. This will over-estimate the size of the
3349 	 * atomic reserve but it avoids a search.
3350 	 */
3351 	if (likely(!alloc_harder)) {
3352 		free_pages -= z->nr_reserved_highatomic;
3353 	} else {
3354 		/*
3355 		 * OOM victims can try even harder than normal ALLOC_HARDER
3356 		 * users on the grounds that it's definitely going to be in
3357 		 * the exit path shortly and free memory. Any allocation it
3358 		 * makes during the free path will be small and short-lived.
3359 		 */
3360 		if (alloc_flags & ALLOC_OOM)
3361 			min -= min / 2;
3362 		else
3363 			min -= min / 4;
3364 	}
3365 
3366 
3367 #ifdef CONFIG_CMA
3368 	/* If allocation can't use CMA areas don't use free CMA pages */
3369 	if (!(alloc_flags & ALLOC_CMA))
3370 		free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES);
3371 #endif
3372 
3373 	/*
3374 	 * Check watermarks for an order-0 allocation request. If these
3375 	 * are not met, then a high-order request also cannot go ahead
3376 	 * even if a suitable page happened to be free.
3377 	 */
3378 	if (free_pages <= min + z->lowmem_reserve[classzone_idx])
3379 		return false;
3380 
3381 	/* If this is an order-0 request then the watermark is fine */
3382 	if (!order)
3383 		return true;
3384 
3385 	/* For a high-order request, check at least one suitable page is free */
3386 	for (o = order; o < MAX_ORDER; o++) {
3387 		struct free_area *area = &z->free_area[o];
3388 		int mt;
3389 
3390 		if (!area->nr_free)
3391 			continue;
3392 
3393 		for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
3394 			if (!list_empty(&area->free_list[mt]))
3395 				return true;
3396 		}
3397 
3398 #ifdef CONFIG_CMA
3399 		if ((alloc_flags & ALLOC_CMA) &&
3400 		    !list_empty(&area->free_list[MIGRATE_CMA])) {
3401 			return true;
3402 		}
3403 #endif
3404 		if (alloc_harder &&
3405 			!list_empty(&area->free_list[MIGRATE_HIGHATOMIC]))
3406 			return true;
3407 	}
3408 	return false;
3409 }
3410 
3411 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3412 		      int classzone_idx, unsigned int alloc_flags)
3413 {
3414 	return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
3415 					zone_page_state(z, NR_FREE_PAGES));
3416 }
3417 
3418 static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
3419 		unsigned long mark, int classzone_idx, unsigned int alloc_flags)
3420 {
3421 	long free_pages = zone_page_state(z, NR_FREE_PAGES);
3422 	long cma_pages = 0;
3423 
3424 #ifdef CONFIG_CMA
3425 	/* If allocation can't use CMA areas don't use free CMA pages */
3426 	if (!(alloc_flags & ALLOC_CMA))
3427 		cma_pages = zone_page_state(z, NR_FREE_CMA_PAGES);
3428 #endif
3429 
3430 	/*
3431 	 * Fast check for order-0 only. If this fails then the reserves
3432 	 * need to be calculated. There is a corner case where the check
3433 	 * passes but only the high-order atomic reserve are free. If
3434 	 * the caller is !atomic then it'll uselessly search the free
3435 	 * list. That corner case is then slower but it is harmless.
3436 	 */
3437 	if (!order && (free_pages - cma_pages) > mark + z->lowmem_reserve[classzone_idx])
3438 		return true;
3439 
3440 	return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
3441 					free_pages);
3442 }
3443 
3444 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
3445 			unsigned long mark, int classzone_idx)
3446 {
3447 	long free_pages = zone_page_state(z, NR_FREE_PAGES);
3448 
3449 	if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
3450 		free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
3451 
3452 	return __zone_watermark_ok(z, order, mark, classzone_idx, 0,
3453 								free_pages);
3454 }
3455 
3456 #ifdef CONFIG_NUMA
3457 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3458 {
3459 	return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
3460 				RECLAIM_DISTANCE;
3461 }
3462 #else	/* CONFIG_NUMA */
3463 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3464 {
3465 	return true;
3466 }
3467 #endif	/* CONFIG_NUMA */
3468 
3469 /*
3470  * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid
3471  * fragmentation is subtle. If the preferred zone was HIGHMEM then
3472  * premature use of a lower zone may cause lowmem pressure problems that
3473  * are worse than fragmentation. If the next zone is ZONE_DMA then it is
3474  * probably too small. It only makes sense to spread allocations to avoid
3475  * fragmentation between the Normal and DMA32 zones.
3476  */
3477 static inline unsigned int
3478 alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask)
3479 {
3480 	unsigned int alloc_flags = 0;
3481 
3482 	if (gfp_mask & __GFP_KSWAPD_RECLAIM)
3483 		alloc_flags |= ALLOC_KSWAPD;
3484 
3485 #ifdef CONFIG_ZONE_DMA32
3486 	if (!zone)
3487 		return alloc_flags;
3488 
3489 	if (zone_idx(zone) != ZONE_NORMAL)
3490 		return alloc_flags;
3491 
3492 	/*
3493 	 * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and
3494 	 * the pointer is within zone->zone_pgdat->node_zones[]. Also assume
3495 	 * on UMA that if Normal is populated then so is DMA32.
3496 	 */
3497 	BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1);
3498 	if (nr_online_nodes > 1 && !populated_zone(--zone))
3499 		return alloc_flags;
3500 
3501 	alloc_flags |= ALLOC_NOFRAGMENT;
3502 #endif /* CONFIG_ZONE_DMA32 */
3503 	return alloc_flags;
3504 }
3505 
3506 /*
3507  * get_page_from_freelist goes through the zonelist trying to allocate
3508  * a page.
3509  */
3510 static struct page *
3511 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
3512 						const struct alloc_context *ac)
3513 {
3514 	struct zoneref *z;
3515 	struct zone *zone;
3516 	struct pglist_data *last_pgdat_dirty_limit = NULL;
3517 	bool no_fallback;
3518 
3519 retry:
3520 	/*
3521 	 * Scan zonelist, looking for a zone with enough free.
3522 	 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
3523 	 */
3524 	no_fallback = alloc_flags & ALLOC_NOFRAGMENT;
3525 	z = ac->preferred_zoneref;
3526 	for_next_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3527 								ac->nodemask) {
3528 		struct page *page;
3529 		unsigned long mark;
3530 
3531 		if (cpusets_enabled() &&
3532 			(alloc_flags & ALLOC_CPUSET) &&
3533 			!__cpuset_zone_allowed(zone, gfp_mask))
3534 				continue;
3535 		/*
3536 		 * When allocating a page cache page for writing, we
3537 		 * want to get it from a node that is within its dirty
3538 		 * limit, such that no single node holds more than its
3539 		 * proportional share of globally allowed dirty pages.
3540 		 * The dirty limits take into account the node's
3541 		 * lowmem reserves and high watermark so that kswapd
3542 		 * should be able to balance it without having to
3543 		 * write pages from its LRU list.
3544 		 *
3545 		 * XXX: For now, allow allocations to potentially
3546 		 * exceed the per-node dirty limit in the slowpath
3547 		 * (spread_dirty_pages unset) before going into reclaim,
3548 		 * which is important when on a NUMA setup the allowed
3549 		 * nodes are together not big enough to reach the
3550 		 * global limit.  The proper fix for these situations
3551 		 * will require awareness of nodes in the
3552 		 * dirty-throttling and the flusher threads.
3553 		 */
3554 		if (ac->spread_dirty_pages) {
3555 			if (last_pgdat_dirty_limit == zone->zone_pgdat)
3556 				continue;
3557 
3558 			if (!node_dirty_ok(zone->zone_pgdat)) {
3559 				last_pgdat_dirty_limit = zone->zone_pgdat;
3560 				continue;
3561 			}
3562 		}
3563 
3564 		if (no_fallback && nr_online_nodes > 1 &&
3565 		    zone != ac->preferred_zoneref->zone) {
3566 			int local_nid;
3567 
3568 			/*
3569 			 * If moving to a remote node, retry but allow
3570 			 * fragmenting fallbacks. Locality is more important
3571 			 * than fragmentation avoidance.
3572 			 */
3573 			local_nid = zone_to_nid(ac->preferred_zoneref->zone);
3574 			if (zone_to_nid(zone) != local_nid) {
3575 				alloc_flags &= ~ALLOC_NOFRAGMENT;
3576 				goto retry;
3577 			}
3578 		}
3579 
3580 		mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
3581 		if (!zone_watermark_fast(zone, order, mark,
3582 				       ac_classzone_idx(ac), alloc_flags)) {
3583 			int ret;
3584 
3585 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3586 			/*
3587 			 * Watermark failed for this zone, but see if we can
3588 			 * grow this zone if it contains deferred pages.
3589 			 */
3590 			if (static_branch_unlikely(&deferred_pages)) {
3591 				if (_deferred_grow_zone(zone, order))
3592 					goto try_this_zone;
3593 			}
3594 #endif
3595 			/* Checked here to keep the fast path fast */
3596 			BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
3597 			if (alloc_flags & ALLOC_NO_WATERMARKS)
3598 				goto try_this_zone;
3599 
3600 			if (node_reclaim_mode == 0 ||
3601 			    !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
3602 				continue;
3603 
3604 			ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
3605 			switch (ret) {
3606 			case NODE_RECLAIM_NOSCAN:
3607 				/* did not scan */
3608 				continue;
3609 			case NODE_RECLAIM_FULL:
3610 				/* scanned but unreclaimable */
3611 				continue;
3612 			default:
3613 				/* did we reclaim enough */
3614 				if (zone_watermark_ok(zone, order, mark,
3615 						ac_classzone_idx(ac), alloc_flags))
3616 					goto try_this_zone;
3617 
3618 				continue;
3619 			}
3620 		}
3621 
3622 try_this_zone:
3623 		page = rmqueue(ac->preferred_zoneref->zone, zone, order,
3624 				gfp_mask, alloc_flags, ac->migratetype);
3625 		if (page) {
3626 			prep_new_page(page, order, gfp_mask, alloc_flags);
3627 
3628 			/*
3629 			 * If this is a high-order atomic allocation then check
3630 			 * if the pageblock should be reserved for the future
3631 			 */
3632 			if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
3633 				reserve_highatomic_pageblock(page, zone, order);
3634 
3635 			return page;
3636 		} else {
3637 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3638 			/* Try again if zone has deferred pages */
3639 			if (static_branch_unlikely(&deferred_pages)) {
3640 				if (_deferred_grow_zone(zone, order))
3641 					goto try_this_zone;
3642 			}
3643 #endif
3644 		}
3645 	}
3646 
3647 	/*
3648 	 * It's possible on a UMA machine to get through all zones that are
3649 	 * fragmented. If avoiding fragmentation, reset and try again.
3650 	 */
3651 	if (no_fallback) {
3652 		alloc_flags &= ~ALLOC_NOFRAGMENT;
3653 		goto retry;
3654 	}
3655 
3656 	return NULL;
3657 }
3658 
3659 static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
3660 {
3661 	unsigned int filter = SHOW_MEM_FILTER_NODES;
3662 	static DEFINE_RATELIMIT_STATE(show_mem_rs, HZ, 1);
3663 
3664 	if (!__ratelimit(&show_mem_rs))
3665 		return;
3666 
3667 	/*
3668 	 * This documents exceptions given to allocations in certain
3669 	 * contexts that are allowed to allocate outside current's set
3670 	 * of allowed nodes.
3671 	 */
3672 	if (!(gfp_mask & __GFP_NOMEMALLOC))
3673 		if (tsk_is_oom_victim(current) ||
3674 		    (current->flags & (PF_MEMALLOC | PF_EXITING)))
3675 			filter &= ~SHOW_MEM_FILTER_NODES;
3676 	if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
3677 		filter &= ~SHOW_MEM_FILTER_NODES;
3678 
3679 	show_mem(filter, nodemask);
3680 }
3681 
3682 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
3683 {
3684 	struct va_format vaf;
3685 	va_list args;
3686 	static DEFINE_RATELIMIT_STATE(nopage_rs, DEFAULT_RATELIMIT_INTERVAL,
3687 				      DEFAULT_RATELIMIT_BURST);
3688 
3689 	if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs))
3690 		return;
3691 
3692 	va_start(args, fmt);
3693 	vaf.fmt = fmt;
3694 	vaf.va = &args;
3695 	pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl",
3696 			current->comm, &vaf, gfp_mask, &gfp_mask,
3697 			nodemask_pr_args(nodemask));
3698 	va_end(args);
3699 
3700 	cpuset_print_current_mems_allowed();
3701 	pr_cont("\n");
3702 	dump_stack();
3703 	warn_alloc_show_mem(gfp_mask, nodemask);
3704 }
3705 
3706 static inline struct page *
3707 __alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
3708 			      unsigned int alloc_flags,
3709 			      const struct alloc_context *ac)
3710 {
3711 	struct page *page;
3712 
3713 	page = get_page_from_freelist(gfp_mask, order,
3714 			alloc_flags|ALLOC_CPUSET, ac);
3715 	/*
3716 	 * fallback to ignore cpuset restriction if our nodes
3717 	 * are depleted
3718 	 */
3719 	if (!page)
3720 		page = get_page_from_freelist(gfp_mask, order,
3721 				alloc_flags, ac);
3722 
3723 	return page;
3724 }
3725 
3726 static inline struct page *
3727 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
3728 	const struct alloc_context *ac, unsigned long *did_some_progress)
3729 {
3730 	struct oom_control oc = {
3731 		.zonelist = ac->zonelist,
3732 		.nodemask = ac->nodemask,
3733 		.memcg = NULL,
3734 		.gfp_mask = gfp_mask,
3735 		.order = order,
3736 	};
3737 	struct page *page;
3738 
3739 	*did_some_progress = 0;
3740 
3741 	/*
3742 	 * Acquire the oom lock.  If that fails, somebody else is
3743 	 * making progress for us.
3744 	 */
3745 	if (!mutex_trylock(&oom_lock)) {
3746 		*did_some_progress = 1;
3747 		schedule_timeout_uninterruptible(1);
3748 		return NULL;
3749 	}
3750 
3751 	/*
3752 	 * Go through the zonelist yet one more time, keep very high watermark
3753 	 * here, this is only to catch a parallel oom killing, we must fail if
3754 	 * we're still under heavy pressure. But make sure that this reclaim
3755 	 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
3756 	 * allocation which will never fail due to oom_lock already held.
3757 	 */
3758 	page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) &
3759 				      ~__GFP_DIRECT_RECLAIM, order,
3760 				      ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
3761 	if (page)
3762 		goto out;
3763 
3764 	/* Coredumps can quickly deplete all memory reserves */
3765 	if (current->flags & PF_DUMPCORE)
3766 		goto out;
3767 	/* The OOM killer will not help higher order allocs */
3768 	if (order > PAGE_ALLOC_COSTLY_ORDER)
3769 		goto out;
3770 	/*
3771 	 * We have already exhausted all our reclaim opportunities without any
3772 	 * success so it is time to admit defeat. We will skip the OOM killer
3773 	 * because it is very likely that the caller has a more reasonable
3774 	 * fallback than shooting a random task.
3775 	 */
3776 	if (gfp_mask & __GFP_RETRY_MAYFAIL)
3777 		goto out;
3778 	/* The OOM killer does not needlessly kill tasks for lowmem */
3779 	if (ac->high_zoneidx < ZONE_NORMAL)
3780 		goto out;
3781 	if (pm_suspended_storage())
3782 		goto out;
3783 	/*
3784 	 * XXX: GFP_NOFS allocations should rather fail than rely on
3785 	 * other request to make a forward progress.
3786 	 * We are in an unfortunate situation where out_of_memory cannot
3787 	 * do much for this context but let's try it to at least get
3788 	 * access to memory reserved if the current task is killed (see
3789 	 * out_of_memory). Once filesystems are ready to handle allocation
3790 	 * failures more gracefully we should just bail out here.
3791 	 */
3792 
3793 	/* The OOM killer may not free memory on a specific node */
3794 	if (gfp_mask & __GFP_THISNODE)
3795 		goto out;
3796 
3797 	/* Exhausted what can be done so it's blame time */
3798 	if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
3799 		*did_some_progress = 1;
3800 
3801 		/*
3802 		 * Help non-failing allocations by giving them access to memory
3803 		 * reserves
3804 		 */
3805 		if (gfp_mask & __GFP_NOFAIL)
3806 			page = __alloc_pages_cpuset_fallback(gfp_mask, order,
3807 					ALLOC_NO_WATERMARKS, ac);
3808 	}
3809 out:
3810 	mutex_unlock(&oom_lock);
3811 	return page;
3812 }
3813 
3814 /*
3815  * Maximum number of compaction retries wit a progress before OOM
3816  * killer is consider as the only way to move forward.
3817  */
3818 #define MAX_COMPACT_RETRIES 16
3819 
3820 #ifdef CONFIG_COMPACTION
3821 /* Try memory compaction for high-order allocations before reclaim */
3822 static struct page *
3823 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3824 		unsigned int alloc_flags, const struct alloc_context *ac,
3825 		enum compact_priority prio, enum compact_result *compact_result)
3826 {
3827 	struct page *page = NULL;
3828 	unsigned long pflags;
3829 	unsigned int noreclaim_flag;
3830 
3831 	if (!order)
3832 		return NULL;
3833 
3834 	psi_memstall_enter(&pflags);
3835 	noreclaim_flag = memalloc_noreclaim_save();
3836 
3837 	*compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
3838 								prio, &page);
3839 
3840 	memalloc_noreclaim_restore(noreclaim_flag);
3841 	psi_memstall_leave(&pflags);
3842 
3843 	/*
3844 	 * At least in one zone compaction wasn't deferred or skipped, so let's
3845 	 * count a compaction stall
3846 	 */
3847 	count_vm_event(COMPACTSTALL);
3848 
3849 	/* Prep a captured page if available */
3850 	if (page)
3851 		prep_new_page(page, order, gfp_mask, alloc_flags);
3852 
3853 	/* Try get a page from the freelist if available */
3854 	if (!page)
3855 		page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3856 
3857 	if (page) {
3858 		struct zone *zone = page_zone(page);
3859 
3860 		zone->compact_blockskip_flush = false;
3861 		compaction_defer_reset(zone, order, true);
3862 		count_vm_event(COMPACTSUCCESS);
3863 		return page;
3864 	}
3865 
3866 	/*
3867 	 * It's bad if compaction run occurs and fails. The most likely reason
3868 	 * is that pages exist, but not enough to satisfy watermarks.
3869 	 */
3870 	count_vm_event(COMPACTFAIL);
3871 
3872 	cond_resched();
3873 
3874 	return NULL;
3875 }
3876 
3877 static inline bool
3878 should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
3879 		     enum compact_result compact_result,
3880 		     enum compact_priority *compact_priority,
3881 		     int *compaction_retries)
3882 {
3883 	int max_retries = MAX_COMPACT_RETRIES;
3884 	int min_priority;
3885 	bool ret = false;
3886 	int retries = *compaction_retries;
3887 	enum compact_priority priority = *compact_priority;
3888 
3889 	if (!order)
3890 		return false;
3891 
3892 	if (compaction_made_progress(compact_result))
3893 		(*compaction_retries)++;
3894 
3895 	/*
3896 	 * compaction considers all the zone as desperately out of memory
3897 	 * so it doesn't really make much sense to retry except when the
3898 	 * failure could be caused by insufficient priority
3899 	 */
3900 	if (compaction_failed(compact_result))
3901 		goto check_priority;
3902 
3903 	/*
3904 	 * make sure the compaction wasn't deferred or didn't bail out early
3905 	 * due to locks contention before we declare that we should give up.
3906 	 * But do not retry if the given zonelist is not suitable for
3907 	 * compaction.
3908 	 */
3909 	if (compaction_withdrawn(compact_result)) {
3910 		ret = compaction_zonelist_suitable(ac, order, alloc_flags);
3911 		goto out;
3912 	}
3913 
3914 	/*
3915 	 * !costly requests are much more important than __GFP_RETRY_MAYFAIL
3916 	 * costly ones because they are de facto nofail and invoke OOM
3917 	 * killer to move on while costly can fail and users are ready
3918 	 * to cope with that. 1/4 retries is rather arbitrary but we
3919 	 * would need much more detailed feedback from compaction to
3920 	 * make a better decision.
3921 	 */
3922 	if (order > PAGE_ALLOC_COSTLY_ORDER)
3923 		max_retries /= 4;
3924 	if (*compaction_retries <= max_retries) {
3925 		ret = true;
3926 		goto out;
3927 	}
3928 
3929 	/*
3930 	 * Make sure there are attempts at the highest priority if we exhausted
3931 	 * all retries or failed at the lower priorities.
3932 	 */
3933 check_priority:
3934 	min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
3935 			MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
3936 
3937 	if (*compact_priority > min_priority) {
3938 		(*compact_priority)--;
3939 		*compaction_retries = 0;
3940 		ret = true;
3941 	}
3942 out:
3943 	trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
3944 	return ret;
3945 }
3946 #else
3947 static inline struct page *
3948 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3949 		unsigned int alloc_flags, const struct alloc_context *ac,
3950 		enum compact_priority prio, enum compact_result *compact_result)
3951 {
3952 	*compact_result = COMPACT_SKIPPED;
3953 	return NULL;
3954 }
3955 
3956 static inline bool
3957 should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
3958 		     enum compact_result compact_result,
3959 		     enum compact_priority *compact_priority,
3960 		     int *compaction_retries)
3961 {
3962 	struct zone *zone;
3963 	struct zoneref *z;
3964 
3965 	if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
3966 		return false;
3967 
3968 	/*
3969 	 * There are setups with compaction disabled which would prefer to loop
3970 	 * inside the allocator rather than hit the oom killer prematurely.
3971 	 * Let's give them a good hope and keep retrying while the order-0
3972 	 * watermarks are OK.
3973 	 */
3974 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3975 					ac->nodemask) {
3976 		if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
3977 					ac_classzone_idx(ac), alloc_flags))
3978 			return true;
3979 	}
3980 	return false;
3981 }
3982 #endif /* CONFIG_COMPACTION */
3983 
3984 #ifdef CONFIG_LOCKDEP
3985 static struct lockdep_map __fs_reclaim_map =
3986 	STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map);
3987 
3988 static bool __need_fs_reclaim(gfp_t gfp_mask)
3989 {
3990 	gfp_mask = current_gfp_context(gfp_mask);
3991 
3992 	/* no reclaim without waiting on it */
3993 	if (!(gfp_mask & __GFP_DIRECT_RECLAIM))
3994 		return false;
3995 
3996 	/* this guy won't enter reclaim */
3997 	if (current->flags & PF_MEMALLOC)
3998 		return false;
3999 
4000 	/* We're only interested __GFP_FS allocations for now */
4001 	if (!(gfp_mask & __GFP_FS))
4002 		return false;
4003 
4004 	if (gfp_mask & __GFP_NOLOCKDEP)
4005 		return false;
4006 
4007 	return true;
4008 }
4009 
4010 void __fs_reclaim_acquire(void)
4011 {
4012 	lock_map_acquire(&__fs_reclaim_map);
4013 }
4014 
4015 void __fs_reclaim_release(void)
4016 {
4017 	lock_map_release(&__fs_reclaim_map);
4018 }
4019 
4020 void fs_reclaim_acquire(gfp_t gfp_mask)
4021 {
4022 	if (__need_fs_reclaim(gfp_mask))
4023 		__fs_reclaim_acquire();
4024 }
4025 EXPORT_SYMBOL_GPL(fs_reclaim_acquire);
4026 
4027 void fs_reclaim_release(gfp_t gfp_mask)
4028 {
4029 	if (__need_fs_reclaim(gfp_mask))
4030 		__fs_reclaim_release();
4031 }
4032 EXPORT_SYMBOL_GPL(fs_reclaim_release);
4033 #endif
4034 
4035 /* Perform direct synchronous page reclaim */
4036 static int
4037 __perform_reclaim(gfp_t gfp_mask, unsigned int order,
4038 					const struct alloc_context *ac)
4039 {
4040 	struct reclaim_state reclaim_state;
4041 	int progress;
4042 	unsigned int noreclaim_flag;
4043 	unsigned long pflags;
4044 
4045 	cond_resched();
4046 
4047 	/* We now go into synchronous reclaim */
4048 	cpuset_memory_pressure_bump();
4049 	psi_memstall_enter(&pflags);
4050 	fs_reclaim_acquire(gfp_mask);
4051 	noreclaim_flag = memalloc_noreclaim_save();
4052 	reclaim_state.reclaimed_slab = 0;
4053 	current->reclaim_state = &reclaim_state;
4054 
4055 	progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
4056 								ac->nodemask);
4057 
4058 	current->reclaim_state = NULL;
4059 	memalloc_noreclaim_restore(noreclaim_flag);
4060 	fs_reclaim_release(gfp_mask);
4061 	psi_memstall_leave(&pflags);
4062 
4063 	cond_resched();
4064 
4065 	return progress;
4066 }
4067 
4068 /* The really slow allocator path where we enter direct reclaim */
4069 static inline struct page *
4070 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
4071 		unsigned int alloc_flags, const struct alloc_context *ac,
4072 		unsigned long *did_some_progress)
4073 {
4074 	struct page *page = NULL;
4075 	bool drained = false;
4076 
4077 	*did_some_progress = __perform_reclaim(gfp_mask, order, ac);
4078 	if (unlikely(!(*did_some_progress)))
4079 		return NULL;
4080 
4081 retry:
4082 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4083 
4084 	/*
4085 	 * If an allocation failed after direct reclaim, it could be because
4086 	 * pages are pinned on the per-cpu lists or in high alloc reserves.
4087 	 * Shrink them them and try again
4088 	 */
4089 	if (!page && !drained) {
4090 		unreserve_highatomic_pageblock(ac, false);
4091 		drain_all_pages(NULL);
4092 		drained = true;
4093 		goto retry;
4094 	}
4095 
4096 	return page;
4097 }
4098 
4099 static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask,
4100 			     const struct alloc_context *ac)
4101 {
4102 	struct zoneref *z;
4103 	struct zone *zone;
4104 	pg_data_t *last_pgdat = NULL;
4105 	enum zone_type high_zoneidx = ac->high_zoneidx;
4106 
4107 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, high_zoneidx,
4108 					ac->nodemask) {
4109 		if (last_pgdat != zone->zone_pgdat)
4110 			wakeup_kswapd(zone, gfp_mask, order, high_zoneidx);
4111 		last_pgdat = zone->zone_pgdat;
4112 	}
4113 }
4114 
4115 static inline unsigned int
4116 gfp_to_alloc_flags(gfp_t gfp_mask)
4117 {
4118 	unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
4119 
4120 	/* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
4121 	BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
4122 
4123 	/*
4124 	 * The caller may dip into page reserves a bit more if the caller
4125 	 * cannot run direct reclaim, or if the caller has realtime scheduling
4126 	 * policy or is asking for __GFP_HIGH memory.  GFP_ATOMIC requests will
4127 	 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
4128 	 */
4129 	alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
4130 
4131 	if (gfp_mask & __GFP_ATOMIC) {
4132 		/*
4133 		 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
4134 		 * if it can't schedule.
4135 		 */
4136 		if (!(gfp_mask & __GFP_NOMEMALLOC))
4137 			alloc_flags |= ALLOC_HARDER;
4138 		/*
4139 		 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
4140 		 * comment for __cpuset_node_allowed().
4141 		 */
4142 		alloc_flags &= ~ALLOC_CPUSET;
4143 	} else if (unlikely(rt_task(current)) && !in_interrupt())
4144 		alloc_flags |= ALLOC_HARDER;
4145 
4146 	if (gfp_mask & __GFP_KSWAPD_RECLAIM)
4147 		alloc_flags |= ALLOC_KSWAPD;
4148 
4149 #ifdef CONFIG_CMA
4150 	if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
4151 		alloc_flags |= ALLOC_CMA;
4152 #endif
4153 	return alloc_flags;
4154 }
4155 
4156 static bool oom_reserves_allowed(struct task_struct *tsk)
4157 {
4158 	if (!tsk_is_oom_victim(tsk))
4159 		return false;
4160 
4161 	/*
4162 	 * !MMU doesn't have oom reaper so give access to memory reserves
4163 	 * only to the thread with TIF_MEMDIE set
4164 	 */
4165 	if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE))
4166 		return false;
4167 
4168 	return true;
4169 }
4170 
4171 /*
4172  * Distinguish requests which really need access to full memory
4173  * reserves from oom victims which can live with a portion of it
4174  */
4175 static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask)
4176 {
4177 	if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
4178 		return 0;
4179 	if (gfp_mask & __GFP_MEMALLOC)
4180 		return ALLOC_NO_WATERMARKS;
4181 	if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
4182 		return ALLOC_NO_WATERMARKS;
4183 	if (!in_interrupt()) {
4184 		if (current->flags & PF_MEMALLOC)
4185 			return ALLOC_NO_WATERMARKS;
4186 		else if (oom_reserves_allowed(current))
4187 			return ALLOC_OOM;
4188 	}
4189 
4190 	return 0;
4191 }
4192 
4193 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
4194 {
4195 	return !!__gfp_pfmemalloc_flags(gfp_mask);
4196 }
4197 
4198 /*
4199  * Checks whether it makes sense to retry the reclaim to make a forward progress
4200  * for the given allocation request.
4201  *
4202  * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
4203  * without success, or when we couldn't even meet the watermark if we
4204  * reclaimed all remaining pages on the LRU lists.
4205  *
4206  * Returns true if a retry is viable or false to enter the oom path.
4207  */
4208 static inline bool
4209 should_reclaim_retry(gfp_t gfp_mask, unsigned order,
4210 		     struct alloc_context *ac, int alloc_flags,
4211 		     bool did_some_progress, int *no_progress_loops)
4212 {
4213 	struct zone *zone;
4214 	struct zoneref *z;
4215 	bool ret = false;
4216 
4217 	/*
4218 	 * Costly allocations might have made a progress but this doesn't mean
4219 	 * their order will become available due to high fragmentation so
4220 	 * always increment the no progress counter for them
4221 	 */
4222 	if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
4223 		*no_progress_loops = 0;
4224 	else
4225 		(*no_progress_loops)++;
4226 
4227 	/*
4228 	 * Make sure we converge to OOM if we cannot make any progress
4229 	 * several times in the row.
4230 	 */
4231 	if (*no_progress_loops > MAX_RECLAIM_RETRIES) {
4232 		/* Before OOM, exhaust highatomic_reserve */
4233 		return unreserve_highatomic_pageblock(ac, true);
4234 	}
4235 
4236 	/*
4237 	 * Keep reclaiming pages while there is a chance this will lead
4238 	 * somewhere.  If none of the target zones can satisfy our allocation
4239 	 * request even if all reclaimable pages are considered then we are
4240 	 * screwed and have to go OOM.
4241 	 */
4242 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
4243 					ac->nodemask) {
4244 		unsigned long available;
4245 		unsigned long reclaimable;
4246 		unsigned long min_wmark = min_wmark_pages(zone);
4247 		bool wmark;
4248 
4249 		available = reclaimable = zone_reclaimable_pages(zone);
4250 		available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
4251 
4252 		/*
4253 		 * Would the allocation succeed if we reclaimed all
4254 		 * reclaimable pages?
4255 		 */
4256 		wmark = __zone_watermark_ok(zone, order, min_wmark,
4257 				ac_classzone_idx(ac), alloc_flags, available);
4258 		trace_reclaim_retry_zone(z, order, reclaimable,
4259 				available, min_wmark, *no_progress_loops, wmark);
4260 		if (wmark) {
4261 			/*
4262 			 * If we didn't make any progress and have a lot of
4263 			 * dirty + writeback pages then we should wait for
4264 			 * an IO to complete to slow down the reclaim and
4265 			 * prevent from pre mature OOM
4266 			 */
4267 			if (!did_some_progress) {
4268 				unsigned long write_pending;
4269 
4270 				write_pending = zone_page_state_snapshot(zone,
4271 							NR_ZONE_WRITE_PENDING);
4272 
4273 				if (2 * write_pending > reclaimable) {
4274 					congestion_wait(BLK_RW_ASYNC, HZ/10);
4275 					return true;
4276 				}
4277 			}
4278 
4279 			ret = true;
4280 			goto out;
4281 		}
4282 	}
4283 
4284 out:
4285 	/*
4286 	 * Memory allocation/reclaim might be called from a WQ context and the
4287 	 * current implementation of the WQ concurrency control doesn't
4288 	 * recognize that a particular WQ is congested if the worker thread is
4289 	 * looping without ever sleeping. Therefore we have to do a short sleep
4290 	 * here rather than calling cond_resched().
4291 	 */
4292 	if (current->flags & PF_WQ_WORKER)
4293 		schedule_timeout_uninterruptible(1);
4294 	else
4295 		cond_resched();
4296 	return ret;
4297 }
4298 
4299 static inline bool
4300 check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
4301 {
4302 	/*
4303 	 * It's possible that cpuset's mems_allowed and the nodemask from
4304 	 * mempolicy don't intersect. This should be normally dealt with by
4305 	 * policy_nodemask(), but it's possible to race with cpuset update in
4306 	 * such a way the check therein was true, and then it became false
4307 	 * before we got our cpuset_mems_cookie here.
4308 	 * This assumes that for all allocations, ac->nodemask can come only
4309 	 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
4310 	 * when it does not intersect with the cpuset restrictions) or the
4311 	 * caller can deal with a violated nodemask.
4312 	 */
4313 	if (cpusets_enabled() && ac->nodemask &&
4314 			!cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
4315 		ac->nodemask = NULL;
4316 		return true;
4317 	}
4318 
4319 	/*
4320 	 * When updating a task's mems_allowed or mempolicy nodemask, it is
4321 	 * possible to race with parallel threads in such a way that our
4322 	 * allocation can fail while the mask is being updated. If we are about
4323 	 * to fail, check if the cpuset changed during allocation and if so,
4324 	 * retry.
4325 	 */
4326 	if (read_mems_allowed_retry(cpuset_mems_cookie))
4327 		return true;
4328 
4329 	return false;
4330 }
4331 
4332 static inline struct page *
4333 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
4334 						struct alloc_context *ac)
4335 {
4336 	bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
4337 	const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
4338 	struct page *page = NULL;
4339 	unsigned int alloc_flags;
4340 	unsigned long did_some_progress;
4341 	enum compact_priority compact_priority;
4342 	enum compact_result compact_result;
4343 	int compaction_retries;
4344 	int no_progress_loops;
4345 	unsigned int cpuset_mems_cookie;
4346 	int reserve_flags;
4347 
4348 	/*
4349 	 * We also sanity check to catch abuse of atomic reserves being used by
4350 	 * callers that are not in atomic context.
4351 	 */
4352 	if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
4353 				(__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
4354 		gfp_mask &= ~__GFP_ATOMIC;
4355 
4356 retry_cpuset:
4357 	compaction_retries = 0;
4358 	no_progress_loops = 0;
4359 	compact_priority = DEF_COMPACT_PRIORITY;
4360 	cpuset_mems_cookie = read_mems_allowed_begin();
4361 
4362 	/*
4363 	 * The fast path uses conservative alloc_flags to succeed only until
4364 	 * kswapd needs to be woken up, and to avoid the cost of setting up
4365 	 * alloc_flags precisely. So we do that now.
4366 	 */
4367 	alloc_flags = gfp_to_alloc_flags(gfp_mask);
4368 
4369 	/*
4370 	 * We need to recalculate the starting point for the zonelist iterator
4371 	 * because we might have used different nodemask in the fast path, or
4372 	 * there was a cpuset modification and we are retrying - otherwise we
4373 	 * could end up iterating over non-eligible zones endlessly.
4374 	 */
4375 	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4376 					ac->high_zoneidx, ac->nodemask);
4377 	if (!ac->preferred_zoneref->zone)
4378 		goto nopage;
4379 
4380 	if (alloc_flags & ALLOC_KSWAPD)
4381 		wake_all_kswapds(order, gfp_mask, ac);
4382 
4383 	/*
4384 	 * The adjusted alloc_flags might result in immediate success, so try
4385 	 * that first
4386 	 */
4387 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4388 	if (page)
4389 		goto got_pg;
4390 
4391 	/*
4392 	 * For costly allocations, try direct compaction first, as it's likely
4393 	 * that we have enough base pages and don't need to reclaim. For non-
4394 	 * movable high-order allocations, do that as well, as compaction will
4395 	 * try prevent permanent fragmentation by migrating from blocks of the
4396 	 * same migratetype.
4397 	 * Don't try this for allocations that are allowed to ignore
4398 	 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
4399 	 */
4400 	if (can_direct_reclaim &&
4401 			(costly_order ||
4402 			   (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
4403 			&& !gfp_pfmemalloc_allowed(gfp_mask)) {
4404 		page = __alloc_pages_direct_compact(gfp_mask, order,
4405 						alloc_flags, ac,
4406 						INIT_COMPACT_PRIORITY,
4407 						&compact_result);
4408 		if (page)
4409 			goto got_pg;
4410 
4411 		/*
4412 		 * Checks for costly allocations with __GFP_NORETRY, which
4413 		 * includes THP page fault allocations
4414 		 */
4415 		if (costly_order && (gfp_mask & __GFP_NORETRY)) {
4416 			/*
4417 			 * If compaction is deferred for high-order allocations,
4418 			 * it is because sync compaction recently failed. If
4419 			 * this is the case and the caller requested a THP
4420 			 * allocation, we do not want to heavily disrupt the
4421 			 * system, so we fail the allocation instead of entering
4422 			 * direct reclaim.
4423 			 */
4424 			if (compact_result == COMPACT_DEFERRED)
4425 				goto nopage;
4426 
4427 			/*
4428 			 * Looks like reclaim/compaction is worth trying, but
4429 			 * sync compaction could be very expensive, so keep
4430 			 * using async compaction.
4431 			 */
4432 			compact_priority = INIT_COMPACT_PRIORITY;
4433 		}
4434 	}
4435 
4436 retry:
4437 	/* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
4438 	if (alloc_flags & ALLOC_KSWAPD)
4439 		wake_all_kswapds(order, gfp_mask, ac);
4440 
4441 	reserve_flags = __gfp_pfmemalloc_flags(gfp_mask);
4442 	if (reserve_flags)
4443 		alloc_flags = reserve_flags;
4444 
4445 	/*
4446 	 * Reset the nodemask and zonelist iterators if memory policies can be
4447 	 * ignored. These allocations are high priority and system rather than
4448 	 * user oriented.
4449 	 */
4450 	if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) {
4451 		ac->nodemask = NULL;
4452 		ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4453 					ac->high_zoneidx, ac->nodemask);
4454 	}
4455 
4456 	/* Attempt with potentially adjusted zonelist and alloc_flags */
4457 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4458 	if (page)
4459 		goto got_pg;
4460 
4461 	/* Caller is not willing to reclaim, we can't balance anything */
4462 	if (!can_direct_reclaim)
4463 		goto nopage;
4464 
4465 	/* Avoid recursion of direct reclaim */
4466 	if (current->flags & PF_MEMALLOC)
4467 		goto nopage;
4468 
4469 	/* Try direct reclaim and then allocating */
4470 	page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
4471 							&did_some_progress);
4472 	if (page)
4473 		goto got_pg;
4474 
4475 	/* Try direct compaction and then allocating */
4476 	page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
4477 					compact_priority, &compact_result);
4478 	if (page)
4479 		goto got_pg;
4480 
4481 	/* Do not loop if specifically requested */
4482 	if (gfp_mask & __GFP_NORETRY)
4483 		goto nopage;
4484 
4485 	/*
4486 	 * Do not retry costly high order allocations unless they are
4487 	 * __GFP_RETRY_MAYFAIL
4488 	 */
4489 	if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL))
4490 		goto nopage;
4491 
4492 	if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
4493 				 did_some_progress > 0, &no_progress_loops))
4494 		goto retry;
4495 
4496 	/*
4497 	 * It doesn't make any sense to retry for the compaction if the order-0
4498 	 * reclaim is not able to make any progress because the current
4499 	 * implementation of the compaction depends on the sufficient amount
4500 	 * of free memory (see __compaction_suitable)
4501 	 */
4502 	if (did_some_progress > 0 &&
4503 			should_compact_retry(ac, order, alloc_flags,
4504 				compact_result, &compact_priority,
4505 				&compaction_retries))
4506 		goto retry;
4507 
4508 
4509 	/* Deal with possible cpuset update races before we start OOM killing */
4510 	if (check_retry_cpuset(cpuset_mems_cookie, ac))
4511 		goto retry_cpuset;
4512 
4513 	/* Reclaim has failed us, start killing things */
4514 	page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
4515 	if (page)
4516 		goto got_pg;
4517 
4518 	/* Avoid allocations with no watermarks from looping endlessly */
4519 	if (tsk_is_oom_victim(current) &&
4520 	    (alloc_flags == ALLOC_OOM ||
4521 	     (gfp_mask & __GFP_NOMEMALLOC)))
4522 		goto nopage;
4523 
4524 	/* Retry as long as the OOM killer is making progress */
4525 	if (did_some_progress) {
4526 		no_progress_loops = 0;
4527 		goto retry;
4528 	}
4529 
4530 nopage:
4531 	/* Deal with possible cpuset update races before we fail */
4532 	if (check_retry_cpuset(cpuset_mems_cookie, ac))
4533 		goto retry_cpuset;
4534 
4535 	/*
4536 	 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
4537 	 * we always retry
4538 	 */
4539 	if (gfp_mask & __GFP_NOFAIL) {
4540 		/*
4541 		 * All existing users of the __GFP_NOFAIL are blockable, so warn
4542 		 * of any new users that actually require GFP_NOWAIT
4543 		 */
4544 		if (WARN_ON_ONCE(!can_direct_reclaim))
4545 			goto fail;
4546 
4547 		/*
4548 		 * PF_MEMALLOC request from this context is rather bizarre
4549 		 * because we cannot reclaim anything and only can loop waiting
4550 		 * for somebody to do a work for us
4551 		 */
4552 		WARN_ON_ONCE(current->flags & PF_MEMALLOC);
4553 
4554 		/*
4555 		 * non failing costly orders are a hard requirement which we
4556 		 * are not prepared for much so let's warn about these users
4557 		 * so that we can identify them and convert them to something
4558 		 * else.
4559 		 */
4560 		WARN_ON_ONCE(order > PAGE_ALLOC_COSTLY_ORDER);
4561 
4562 		/*
4563 		 * Help non-failing allocations by giving them access to memory
4564 		 * reserves but do not use ALLOC_NO_WATERMARKS because this
4565 		 * could deplete whole memory reserves which would just make
4566 		 * the situation worse
4567 		 */
4568 		page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac);
4569 		if (page)
4570 			goto got_pg;
4571 
4572 		cond_resched();
4573 		goto retry;
4574 	}
4575 fail:
4576 	warn_alloc(gfp_mask, ac->nodemask,
4577 			"page allocation failure: order:%u", order);
4578 got_pg:
4579 	return page;
4580 }
4581 
4582 static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
4583 		int preferred_nid, nodemask_t *nodemask,
4584 		struct alloc_context *ac, gfp_t *alloc_mask,
4585 		unsigned int *alloc_flags)
4586 {
4587 	ac->high_zoneidx = gfp_zone(gfp_mask);
4588 	ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
4589 	ac->nodemask = nodemask;
4590 	ac->migratetype = gfpflags_to_migratetype(gfp_mask);
4591 
4592 	if (cpusets_enabled()) {
4593 		*alloc_mask |= __GFP_HARDWALL;
4594 		if (!ac->nodemask)
4595 			ac->nodemask = &cpuset_current_mems_allowed;
4596 		else
4597 			*alloc_flags |= ALLOC_CPUSET;
4598 	}
4599 
4600 	fs_reclaim_acquire(gfp_mask);
4601 	fs_reclaim_release(gfp_mask);
4602 
4603 	might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
4604 
4605 	if (should_fail_alloc_page(gfp_mask, order))
4606 		return false;
4607 
4608 	if (IS_ENABLED(CONFIG_CMA) && ac->migratetype == MIGRATE_MOVABLE)
4609 		*alloc_flags |= ALLOC_CMA;
4610 
4611 	return true;
4612 }
4613 
4614 /* Determine whether to spread dirty pages and what the first usable zone */
4615 static inline void finalise_ac(gfp_t gfp_mask, struct alloc_context *ac)
4616 {
4617 	/* Dirty zone balancing only done in the fast path */
4618 	ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
4619 
4620 	/*
4621 	 * The preferred zone is used for statistics but crucially it is
4622 	 * also used as the starting point for the zonelist iterator. It
4623 	 * may get reset for allocations that ignore memory policies.
4624 	 */
4625 	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4626 					ac->high_zoneidx, ac->nodemask);
4627 }
4628 
4629 /*
4630  * This is the 'heart' of the zoned buddy allocator.
4631  */
4632 struct page *
4633 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order, int preferred_nid,
4634 							nodemask_t *nodemask)
4635 {
4636 	struct page *page;
4637 	unsigned int alloc_flags = ALLOC_WMARK_LOW;
4638 	gfp_t alloc_mask; /* The gfp_t that was actually used for allocation */
4639 	struct alloc_context ac = { };
4640 
4641 	/*
4642 	 * There are several places where we assume that the order value is sane
4643 	 * so bail out early if the request is out of bound.
4644 	 */
4645 	if (unlikely(order >= MAX_ORDER)) {
4646 		WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
4647 		return NULL;
4648 	}
4649 
4650 	gfp_mask &= gfp_allowed_mask;
4651 	alloc_mask = gfp_mask;
4652 	if (!prepare_alloc_pages(gfp_mask, order, preferred_nid, nodemask, &ac, &alloc_mask, &alloc_flags))
4653 		return NULL;
4654 
4655 	finalise_ac(gfp_mask, &ac);
4656 
4657 	/*
4658 	 * Forbid the first pass from falling back to types that fragment
4659 	 * memory until all local zones are considered.
4660 	 */
4661 	alloc_flags |= alloc_flags_nofragment(ac.preferred_zoneref->zone, gfp_mask);
4662 
4663 	/* First allocation attempt */
4664 	page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
4665 	if (likely(page))
4666 		goto out;
4667 
4668 	/*
4669 	 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
4670 	 * resp. GFP_NOIO which has to be inherited for all allocation requests
4671 	 * from a particular context which has been marked by
4672 	 * memalloc_no{fs,io}_{save,restore}.
4673 	 */
4674 	alloc_mask = current_gfp_context(gfp_mask);
4675 	ac.spread_dirty_pages = false;
4676 
4677 	/*
4678 	 * Restore the original nodemask if it was potentially replaced with
4679 	 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
4680 	 */
4681 	if (unlikely(ac.nodemask != nodemask))
4682 		ac.nodemask = nodemask;
4683 
4684 	page = __alloc_pages_slowpath(alloc_mask, order, &ac);
4685 
4686 out:
4687 	if (memcg_kmem_enabled() && (gfp_mask & __GFP_ACCOUNT) && page &&
4688 	    unlikely(__memcg_kmem_charge(page, gfp_mask, order) != 0)) {
4689 		__free_pages(page, order);
4690 		page = NULL;
4691 	}
4692 
4693 	trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);
4694 
4695 	return page;
4696 }
4697 EXPORT_SYMBOL(__alloc_pages_nodemask);
4698 
4699 /*
4700  * Common helper functions. Never use with __GFP_HIGHMEM because the returned
4701  * address cannot represent highmem pages. Use alloc_pages and then kmap if
4702  * you need to access high mem.
4703  */
4704 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
4705 {
4706 	struct page *page;
4707 
4708 	page = alloc_pages(gfp_mask & ~__GFP_HIGHMEM, order);
4709 	if (!page)
4710 		return 0;
4711 	return (unsigned long) page_address(page);
4712 }
4713 EXPORT_SYMBOL(__get_free_pages);
4714 
4715 unsigned long get_zeroed_page(gfp_t gfp_mask)
4716 {
4717 	return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
4718 }
4719 EXPORT_SYMBOL(get_zeroed_page);
4720 
4721 static inline void free_the_page(struct page *page, unsigned int order)
4722 {
4723 	if (order == 0)		/* Via pcp? */
4724 		free_unref_page(page);
4725 	else
4726 		__free_pages_ok(page, order);
4727 }
4728 
4729 void __free_pages(struct page *page, unsigned int order)
4730 {
4731 	if (put_page_testzero(page))
4732 		free_the_page(page, order);
4733 }
4734 EXPORT_SYMBOL(__free_pages);
4735 
4736 void free_pages(unsigned long addr, unsigned int order)
4737 {
4738 	if (addr != 0) {
4739 		VM_BUG_ON(!virt_addr_valid((void *)addr));
4740 		__free_pages(virt_to_page((void *)addr), order);
4741 	}
4742 }
4743 
4744 EXPORT_SYMBOL(free_pages);
4745 
4746 /*
4747  * Page Fragment:
4748  *  An arbitrary-length arbitrary-offset area of memory which resides
4749  *  within a 0 or higher order page.  Multiple fragments within that page
4750  *  are individually refcounted, in the page's reference counter.
4751  *
4752  * The page_frag functions below provide a simple allocation framework for
4753  * page fragments.  This is used by the network stack and network device
4754  * drivers to provide a backing region of memory for use as either an
4755  * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
4756  */
4757 static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
4758 					     gfp_t gfp_mask)
4759 {
4760 	struct page *page = NULL;
4761 	gfp_t gfp = gfp_mask;
4762 
4763 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4764 	gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
4765 		    __GFP_NOMEMALLOC;
4766 	page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
4767 				PAGE_FRAG_CACHE_MAX_ORDER);
4768 	nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
4769 #endif
4770 	if (unlikely(!page))
4771 		page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
4772 
4773 	nc->va = page ? page_address(page) : NULL;
4774 
4775 	return page;
4776 }
4777 
4778 void __page_frag_cache_drain(struct page *page, unsigned int count)
4779 {
4780 	VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
4781 
4782 	if (page_ref_sub_and_test(page, count))
4783 		free_the_page(page, compound_order(page));
4784 }
4785 EXPORT_SYMBOL(__page_frag_cache_drain);
4786 
4787 void *page_frag_alloc(struct page_frag_cache *nc,
4788 		      unsigned int fragsz, gfp_t gfp_mask)
4789 {
4790 	unsigned int size = PAGE_SIZE;
4791 	struct page *page;
4792 	int offset;
4793 
4794 	if (unlikely(!nc->va)) {
4795 refill:
4796 		page = __page_frag_cache_refill(nc, gfp_mask);
4797 		if (!page)
4798 			return NULL;
4799 
4800 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4801 		/* if size can vary use size else just use PAGE_SIZE */
4802 		size = nc->size;
4803 #endif
4804 		/* Even if we own the page, we do not use atomic_set().
4805 		 * This would break get_page_unless_zero() users.
4806 		 */
4807 		page_ref_add(page, PAGE_FRAG_CACHE_MAX_SIZE);
4808 
4809 		/* reset page count bias and offset to start of new frag */
4810 		nc->pfmemalloc = page_is_pfmemalloc(page);
4811 		nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
4812 		nc->offset = size;
4813 	}
4814 
4815 	offset = nc->offset - fragsz;
4816 	if (unlikely(offset < 0)) {
4817 		page = virt_to_page(nc->va);
4818 
4819 		if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
4820 			goto refill;
4821 
4822 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4823 		/* if size can vary use size else just use PAGE_SIZE */
4824 		size = nc->size;
4825 #endif
4826 		/* OK, page count is 0, we can safely set it */
4827 		set_page_count(page, PAGE_FRAG_CACHE_MAX_SIZE + 1);
4828 
4829 		/* reset page count bias and offset to start of new frag */
4830 		nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
4831 		offset = size - fragsz;
4832 	}
4833 
4834 	nc->pagecnt_bias--;
4835 	nc->offset = offset;
4836 
4837 	return nc->va + offset;
4838 }
4839 EXPORT_SYMBOL(page_frag_alloc);
4840 
4841 /*
4842  * Frees a page fragment allocated out of either a compound or order 0 page.
4843  */
4844 void page_frag_free(void *addr)
4845 {
4846 	struct page *page = virt_to_head_page(addr);
4847 
4848 	if (unlikely(put_page_testzero(page)))
4849 		free_the_page(page, compound_order(page));
4850 }
4851 EXPORT_SYMBOL(page_frag_free);
4852 
4853 static void *make_alloc_exact(unsigned long addr, unsigned int order,
4854 		size_t size)
4855 {
4856 	if (addr) {
4857 		unsigned long alloc_end = addr + (PAGE_SIZE << order);
4858 		unsigned long used = addr + PAGE_ALIGN(size);
4859 
4860 		split_page(virt_to_page((void *)addr), order);
4861 		while (used < alloc_end) {
4862 			free_page(used);
4863 			used += PAGE_SIZE;
4864 		}
4865 	}
4866 	return (void *)addr;
4867 }
4868 
4869 /**
4870  * alloc_pages_exact - allocate an exact number physically-contiguous pages.
4871  * @size: the number of bytes to allocate
4872  * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
4873  *
4874  * This function is similar to alloc_pages(), except that it allocates the
4875  * minimum number of pages to satisfy the request.  alloc_pages() can only
4876  * allocate memory in power-of-two pages.
4877  *
4878  * This function is also limited by MAX_ORDER.
4879  *
4880  * Memory allocated by this function must be released by free_pages_exact().
4881  *
4882  * Return: pointer to the allocated area or %NULL in case of error.
4883  */
4884 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
4885 {
4886 	unsigned int order = get_order(size);
4887 	unsigned long addr;
4888 
4889 	if (WARN_ON_ONCE(gfp_mask & __GFP_COMP))
4890 		gfp_mask &= ~__GFP_COMP;
4891 
4892 	addr = __get_free_pages(gfp_mask, order);
4893 	return make_alloc_exact(addr, order, size);
4894 }
4895 EXPORT_SYMBOL(alloc_pages_exact);
4896 
4897 /**
4898  * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
4899  *			   pages on a node.
4900  * @nid: the preferred node ID where memory should be allocated
4901  * @size: the number of bytes to allocate
4902  * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
4903  *
4904  * Like alloc_pages_exact(), but try to allocate on node nid first before falling
4905  * back.
4906  *
4907  * Return: pointer to the allocated area or %NULL in case of error.
4908  */
4909 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
4910 {
4911 	unsigned int order = get_order(size);
4912 	struct page *p;
4913 
4914 	if (WARN_ON_ONCE(gfp_mask & __GFP_COMP))
4915 		gfp_mask &= ~__GFP_COMP;
4916 
4917 	p = alloc_pages_node(nid, gfp_mask, order);
4918 	if (!p)
4919 		return NULL;
4920 	return make_alloc_exact((unsigned long)page_address(p), order, size);
4921 }
4922 
4923 /**
4924  * free_pages_exact - release memory allocated via alloc_pages_exact()
4925  * @virt: the value returned by alloc_pages_exact.
4926  * @size: size of allocation, same value as passed to alloc_pages_exact().
4927  *
4928  * Release the memory allocated by a previous call to alloc_pages_exact.
4929  */
4930 void free_pages_exact(void *virt, size_t size)
4931 {
4932 	unsigned long addr = (unsigned long)virt;
4933 	unsigned long end = addr + PAGE_ALIGN(size);
4934 
4935 	while (addr < end) {
4936 		free_page(addr);
4937 		addr += PAGE_SIZE;
4938 	}
4939 }
4940 EXPORT_SYMBOL(free_pages_exact);
4941 
4942 /**
4943  * nr_free_zone_pages - count number of pages beyond high watermark
4944  * @offset: The zone index of the highest zone
4945  *
4946  * nr_free_zone_pages() counts the number of pages which are beyond the
4947  * high watermark within all zones at or below a given zone index.  For each
4948  * zone, the number of pages is calculated as:
4949  *
4950  *     nr_free_zone_pages = managed_pages - high_pages
4951  *
4952  * Return: number of pages beyond high watermark.
4953  */
4954 static unsigned long nr_free_zone_pages(int offset)
4955 {
4956 	struct zoneref *z;
4957 	struct zone *zone;
4958 
4959 	/* Just pick one node, since fallback list is circular */
4960 	unsigned long sum = 0;
4961 
4962 	struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
4963 
4964 	for_each_zone_zonelist(zone, z, zonelist, offset) {
4965 		unsigned long size = zone_managed_pages(zone);
4966 		unsigned long high = high_wmark_pages(zone);
4967 		if (size > high)
4968 			sum += size - high;
4969 	}
4970 
4971 	return sum;
4972 }
4973 
4974 /**
4975  * nr_free_buffer_pages - count number of pages beyond high watermark
4976  *
4977  * nr_free_buffer_pages() counts the number of pages which are beyond the high
4978  * watermark within ZONE_DMA and ZONE_NORMAL.
4979  *
4980  * Return: number of pages beyond high watermark within ZONE_DMA and
4981  * ZONE_NORMAL.
4982  */
4983 unsigned long nr_free_buffer_pages(void)
4984 {
4985 	return nr_free_zone_pages(gfp_zone(GFP_USER));
4986 }
4987 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
4988 
4989 /**
4990  * nr_free_pagecache_pages - count number of pages beyond high watermark
4991  *
4992  * nr_free_pagecache_pages() counts the number of pages which are beyond the
4993  * high watermark within all zones.
4994  *
4995  * Return: number of pages beyond high watermark within all zones.
4996  */
4997 unsigned long nr_free_pagecache_pages(void)
4998 {
4999 	return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
5000 }
5001 
5002 static inline void show_node(struct zone *zone)
5003 {
5004 	if (IS_ENABLED(CONFIG_NUMA))
5005 		printk("Node %d ", zone_to_nid(zone));
5006 }
5007 
5008 long si_mem_available(void)
5009 {
5010 	long available;
5011 	unsigned long pagecache;
5012 	unsigned long wmark_low = 0;
5013 	unsigned long pages[NR_LRU_LISTS];
5014 	unsigned long reclaimable;
5015 	struct zone *zone;
5016 	int lru;
5017 
5018 	for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
5019 		pages[lru] = global_node_page_state(NR_LRU_BASE + lru);
5020 
5021 	for_each_zone(zone)
5022 		wmark_low += low_wmark_pages(zone);
5023 
5024 	/*
5025 	 * Estimate the amount of memory available for userspace allocations,
5026 	 * without causing swapping.
5027 	 */
5028 	available = global_zone_page_state(NR_FREE_PAGES) - totalreserve_pages;
5029 
5030 	/*
5031 	 * Not all the page cache can be freed, otherwise the system will
5032 	 * start swapping. Assume at least half of the page cache, or the
5033 	 * low watermark worth of cache, needs to stay.
5034 	 */
5035 	pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
5036 	pagecache -= min(pagecache / 2, wmark_low);
5037 	available += pagecache;
5038 
5039 	/*
5040 	 * Part of the reclaimable slab and other kernel memory consists of
5041 	 * items that are in use, and cannot be freed. Cap this estimate at the
5042 	 * low watermark.
5043 	 */
5044 	reclaimable = global_node_page_state(NR_SLAB_RECLAIMABLE) +
5045 			global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE);
5046 	available += reclaimable - min(reclaimable / 2, wmark_low);
5047 
5048 	if (available < 0)
5049 		available = 0;
5050 	return available;
5051 }
5052 EXPORT_SYMBOL_GPL(si_mem_available);
5053 
5054 void si_meminfo(struct sysinfo *val)
5055 {
5056 	val->totalram = totalram_pages();
5057 	val->sharedram = global_node_page_state(NR_SHMEM);
5058 	val->freeram = global_zone_page_state(NR_FREE_PAGES);
5059 	val->bufferram = nr_blockdev_pages();
5060 	val->totalhigh = totalhigh_pages();
5061 	val->freehigh = nr_free_highpages();
5062 	val->mem_unit = PAGE_SIZE;
5063 }
5064 
5065 EXPORT_SYMBOL(si_meminfo);
5066 
5067 #ifdef CONFIG_NUMA
5068 void si_meminfo_node(struct sysinfo *val, int nid)
5069 {
5070 	int zone_type;		/* needs to be signed */
5071 	unsigned long managed_pages = 0;
5072 	unsigned long managed_highpages = 0;
5073 	unsigned long free_highpages = 0;
5074 	pg_data_t *pgdat = NODE_DATA(nid);
5075 
5076 	for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
5077 		managed_pages += zone_managed_pages(&pgdat->node_zones[zone_type]);
5078 	val->totalram = managed_pages;
5079 	val->sharedram = node_page_state(pgdat, NR_SHMEM);
5080 	val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES);
5081 #ifdef CONFIG_HIGHMEM
5082 	for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
5083 		struct zone *zone = &pgdat->node_zones[zone_type];
5084 
5085 		if (is_highmem(zone)) {
5086 			managed_highpages += zone_managed_pages(zone);
5087 			free_highpages += zone_page_state(zone, NR_FREE_PAGES);
5088 		}
5089 	}
5090 	val->totalhigh = managed_highpages;
5091 	val->freehigh = free_highpages;
5092 #else
5093 	val->totalhigh = managed_highpages;
5094 	val->freehigh = free_highpages;
5095 #endif
5096 	val->mem_unit = PAGE_SIZE;
5097 }
5098 #endif
5099 
5100 /*
5101  * Determine whether the node should be displayed or not, depending on whether
5102  * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
5103  */
5104 static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask)
5105 {
5106 	if (!(flags & SHOW_MEM_FILTER_NODES))
5107 		return false;
5108 
5109 	/*
5110 	 * no node mask - aka implicit memory numa policy. Do not bother with
5111 	 * the synchronization - read_mems_allowed_begin - because we do not
5112 	 * have to be precise here.
5113 	 */
5114 	if (!nodemask)
5115 		nodemask = &cpuset_current_mems_allowed;
5116 
5117 	return !node_isset(nid, *nodemask);
5118 }
5119 
5120 #define K(x) ((x) << (PAGE_SHIFT-10))
5121 
5122 static void show_migration_types(unsigned char type)
5123 {
5124 	static const char types[MIGRATE_TYPES] = {
5125 		[MIGRATE_UNMOVABLE]	= 'U',
5126 		[MIGRATE_MOVABLE]	= 'M',
5127 		[MIGRATE_RECLAIMABLE]	= 'E',
5128 		[MIGRATE_HIGHATOMIC]	= 'H',
5129 #ifdef CONFIG_CMA
5130 		[MIGRATE_CMA]		= 'C',
5131 #endif
5132 #ifdef CONFIG_MEMORY_ISOLATION
5133 		[MIGRATE_ISOLATE]	= 'I',
5134 #endif
5135 	};
5136 	char tmp[MIGRATE_TYPES + 1];
5137 	char *p = tmp;
5138 	int i;
5139 
5140 	for (i = 0; i < MIGRATE_TYPES; i++) {
5141 		if (type & (1 << i))
5142 			*p++ = types[i];
5143 	}
5144 
5145 	*p = '\0';
5146 	printk(KERN_CONT "(%s) ", tmp);
5147 }
5148 
5149 /*
5150  * Show free area list (used inside shift_scroll-lock stuff)
5151  * We also calculate the percentage fragmentation. We do this by counting the
5152  * memory on each free list with the exception of the first item on the list.
5153  *
5154  * Bits in @filter:
5155  * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
5156  *   cpuset.
5157  */
5158 void show_free_areas(unsigned int filter, nodemask_t *nodemask)
5159 {
5160 	unsigned long free_pcp = 0;
5161 	int cpu;
5162 	struct zone *zone;
5163 	pg_data_t *pgdat;
5164 
5165 	for_each_populated_zone(zone) {
5166 		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5167 			continue;
5168 
5169 		for_each_online_cpu(cpu)
5170 			free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
5171 	}
5172 
5173 	printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
5174 		" active_file:%lu inactive_file:%lu isolated_file:%lu\n"
5175 		" unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n"
5176 		" slab_reclaimable:%lu slab_unreclaimable:%lu\n"
5177 		" mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
5178 		" free:%lu free_pcp:%lu free_cma:%lu\n",
5179 		global_node_page_state(NR_ACTIVE_ANON),
5180 		global_node_page_state(NR_INACTIVE_ANON),
5181 		global_node_page_state(NR_ISOLATED_ANON),
5182 		global_node_page_state(NR_ACTIVE_FILE),
5183 		global_node_page_state(NR_INACTIVE_FILE),
5184 		global_node_page_state(NR_ISOLATED_FILE),
5185 		global_node_page_state(NR_UNEVICTABLE),
5186 		global_node_page_state(NR_FILE_DIRTY),
5187 		global_node_page_state(NR_WRITEBACK),
5188 		global_node_page_state(NR_UNSTABLE_NFS),
5189 		global_node_page_state(NR_SLAB_RECLAIMABLE),
5190 		global_node_page_state(NR_SLAB_UNRECLAIMABLE),
5191 		global_node_page_state(NR_FILE_MAPPED),
5192 		global_node_page_state(NR_SHMEM),
5193 		global_zone_page_state(NR_PAGETABLE),
5194 		global_zone_page_state(NR_BOUNCE),
5195 		global_zone_page_state(NR_FREE_PAGES),
5196 		free_pcp,
5197 		global_zone_page_state(NR_FREE_CMA_PAGES));
5198 
5199 	for_each_online_pgdat(pgdat) {
5200 		if (show_mem_node_skip(filter, pgdat->node_id, nodemask))
5201 			continue;
5202 
5203 		printk("Node %d"
5204 			" active_anon:%lukB"
5205 			" inactive_anon:%lukB"
5206 			" active_file:%lukB"
5207 			" inactive_file:%lukB"
5208 			" unevictable:%lukB"
5209 			" isolated(anon):%lukB"
5210 			" isolated(file):%lukB"
5211 			" mapped:%lukB"
5212 			" dirty:%lukB"
5213 			" writeback:%lukB"
5214 			" shmem:%lukB"
5215 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5216 			" shmem_thp: %lukB"
5217 			" shmem_pmdmapped: %lukB"
5218 			" anon_thp: %lukB"
5219 #endif
5220 			" writeback_tmp:%lukB"
5221 			" unstable:%lukB"
5222 			" all_unreclaimable? %s"
5223 			"\n",
5224 			pgdat->node_id,
5225 			K(node_page_state(pgdat, NR_ACTIVE_ANON)),
5226 			K(node_page_state(pgdat, NR_INACTIVE_ANON)),
5227 			K(node_page_state(pgdat, NR_ACTIVE_FILE)),
5228 			K(node_page_state(pgdat, NR_INACTIVE_FILE)),
5229 			K(node_page_state(pgdat, NR_UNEVICTABLE)),
5230 			K(node_page_state(pgdat, NR_ISOLATED_ANON)),
5231 			K(node_page_state(pgdat, NR_ISOLATED_FILE)),
5232 			K(node_page_state(pgdat, NR_FILE_MAPPED)),
5233 			K(node_page_state(pgdat, NR_FILE_DIRTY)),
5234 			K(node_page_state(pgdat, NR_WRITEBACK)),
5235 			K(node_page_state(pgdat, NR_SHMEM)),
5236 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5237 			K(node_page_state(pgdat, NR_SHMEM_THPS) * HPAGE_PMD_NR),
5238 			K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)
5239 					* HPAGE_PMD_NR),
5240 			K(node_page_state(pgdat, NR_ANON_THPS) * HPAGE_PMD_NR),
5241 #endif
5242 			K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
5243 			K(node_page_state(pgdat, NR_UNSTABLE_NFS)),
5244 			pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ?
5245 				"yes" : "no");
5246 	}
5247 
5248 	for_each_populated_zone(zone) {
5249 		int i;
5250 
5251 		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5252 			continue;
5253 
5254 		free_pcp = 0;
5255 		for_each_online_cpu(cpu)
5256 			free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
5257 
5258 		show_node(zone);
5259 		printk(KERN_CONT
5260 			"%s"
5261 			" free:%lukB"
5262 			" min:%lukB"
5263 			" low:%lukB"
5264 			" high:%lukB"
5265 			" active_anon:%lukB"
5266 			" inactive_anon:%lukB"
5267 			" active_file:%lukB"
5268 			" inactive_file:%lukB"
5269 			" unevictable:%lukB"
5270 			" writepending:%lukB"
5271 			" present:%lukB"
5272 			" managed:%lukB"
5273 			" mlocked:%lukB"
5274 			" kernel_stack:%lukB"
5275 			" pagetables:%lukB"
5276 			" bounce:%lukB"
5277 			" free_pcp:%lukB"
5278 			" local_pcp:%ukB"
5279 			" free_cma:%lukB"
5280 			"\n",
5281 			zone->name,
5282 			K(zone_page_state(zone, NR_FREE_PAGES)),
5283 			K(min_wmark_pages(zone)),
5284 			K(low_wmark_pages(zone)),
5285 			K(high_wmark_pages(zone)),
5286 			K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)),
5287 			K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)),
5288 			K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)),
5289 			K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)),
5290 			K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)),
5291 			K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)),
5292 			K(zone->present_pages),
5293 			K(zone_managed_pages(zone)),
5294 			K(zone_page_state(zone, NR_MLOCK)),
5295 			zone_page_state(zone, NR_KERNEL_STACK_KB),
5296 			K(zone_page_state(zone, NR_PAGETABLE)),
5297 			K(zone_page_state(zone, NR_BOUNCE)),
5298 			K(free_pcp),
5299 			K(this_cpu_read(zone->pageset->pcp.count)),
5300 			K(zone_page_state(zone, NR_FREE_CMA_PAGES)));
5301 		printk("lowmem_reserve[]:");
5302 		for (i = 0; i < MAX_NR_ZONES; i++)
5303 			printk(KERN_CONT " %ld", zone->lowmem_reserve[i]);
5304 		printk(KERN_CONT "\n");
5305 	}
5306 
5307 	for_each_populated_zone(zone) {
5308 		unsigned int order;
5309 		unsigned long nr[MAX_ORDER], flags, total = 0;
5310 		unsigned char types[MAX_ORDER];
5311 
5312 		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5313 			continue;
5314 		show_node(zone);
5315 		printk(KERN_CONT "%s: ", zone->name);
5316 
5317 		spin_lock_irqsave(&zone->lock, flags);
5318 		for (order = 0; order < MAX_ORDER; order++) {
5319 			struct free_area *area = &zone->free_area[order];
5320 			int type;
5321 
5322 			nr[order] = area->nr_free;
5323 			total += nr[order] << order;
5324 
5325 			types[order] = 0;
5326 			for (type = 0; type < MIGRATE_TYPES; type++) {
5327 				if (!list_empty(&area->free_list[type]))
5328 					types[order] |= 1 << type;
5329 			}
5330 		}
5331 		spin_unlock_irqrestore(&zone->lock, flags);
5332 		for (order = 0; order < MAX_ORDER; order++) {
5333 			printk(KERN_CONT "%lu*%lukB ",
5334 			       nr[order], K(1UL) << order);
5335 			if (nr[order])
5336 				show_migration_types(types[order]);
5337 		}
5338 		printk(KERN_CONT "= %lukB\n", K(total));
5339 	}
5340 
5341 	hugetlb_show_meminfo();
5342 
5343 	printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES));
5344 
5345 	show_swap_cache_info();
5346 }
5347 
5348 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
5349 {
5350 	zoneref->zone = zone;
5351 	zoneref->zone_idx = zone_idx(zone);
5352 }
5353 
5354 /*
5355  * Builds allocation fallback zone lists.
5356  *
5357  * Add all populated zones of a node to the zonelist.
5358  */
5359 static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs)
5360 {
5361 	struct zone *zone;
5362 	enum zone_type zone_type = MAX_NR_ZONES;
5363 	int nr_zones = 0;
5364 
5365 	do {
5366 		zone_type--;
5367 		zone = pgdat->node_zones + zone_type;
5368 		if (managed_zone(zone)) {
5369 			zoneref_set_zone(zone, &zonerefs[nr_zones++]);
5370 			check_highest_zone(zone_type);
5371 		}
5372 	} while (zone_type);
5373 
5374 	return nr_zones;
5375 }
5376 
5377 #ifdef CONFIG_NUMA
5378 
5379 static int __parse_numa_zonelist_order(char *s)
5380 {
5381 	/*
5382 	 * We used to support different zonlists modes but they turned
5383 	 * out to be just not useful. Let's keep the warning in place
5384 	 * if somebody still use the cmd line parameter so that we do
5385 	 * not fail it silently
5386 	 */
5387 	if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) {
5388 		pr_warn("Ignoring unsupported numa_zonelist_order value:  %s\n", s);
5389 		return -EINVAL;
5390 	}
5391 	return 0;
5392 }
5393 
5394 static __init int setup_numa_zonelist_order(char *s)
5395 {
5396 	if (!s)
5397 		return 0;
5398 
5399 	return __parse_numa_zonelist_order(s);
5400 }
5401 early_param("numa_zonelist_order", setup_numa_zonelist_order);
5402 
5403 char numa_zonelist_order[] = "Node";
5404 
5405 /*
5406  * sysctl handler for numa_zonelist_order
5407  */
5408 int numa_zonelist_order_handler(struct ctl_table *table, int write,
5409 		void __user *buffer, size_t *length,
5410 		loff_t *ppos)
5411 {
5412 	char *str;
5413 	int ret;
5414 
5415 	if (!write)
5416 		return proc_dostring(table, write, buffer, length, ppos);
5417 	str = memdup_user_nul(buffer, 16);
5418 	if (IS_ERR(str))
5419 		return PTR_ERR(str);
5420 
5421 	ret = __parse_numa_zonelist_order(str);
5422 	kfree(str);
5423 	return ret;
5424 }
5425 
5426 
5427 #define MAX_NODE_LOAD (nr_online_nodes)
5428 static int node_load[MAX_NUMNODES];
5429 
5430 /**
5431  * find_next_best_node - find the next node that should appear in a given node's fallback list
5432  * @node: node whose fallback list we're appending
5433  * @used_node_mask: nodemask_t of already used nodes
5434  *
5435  * We use a number of factors to determine which is the next node that should
5436  * appear on a given node's fallback list.  The node should not have appeared
5437  * already in @node's fallback list, and it should be the next closest node
5438  * according to the distance array (which contains arbitrary distance values
5439  * from each node to each node in the system), and should also prefer nodes
5440  * with no CPUs, since presumably they'll have very little allocation pressure
5441  * on them otherwise.
5442  *
5443  * Return: node id of the found node or %NUMA_NO_NODE if no node is found.
5444  */
5445 static int find_next_best_node(int node, nodemask_t *used_node_mask)
5446 {
5447 	int n, val;
5448 	int min_val = INT_MAX;
5449 	int best_node = NUMA_NO_NODE;
5450 	const struct cpumask *tmp = cpumask_of_node(0);
5451 
5452 	/* Use the local node if we haven't already */
5453 	if (!node_isset(node, *used_node_mask)) {
5454 		node_set(node, *used_node_mask);
5455 		return node;
5456 	}
5457 
5458 	for_each_node_state(n, N_MEMORY) {
5459 
5460 		/* Don't want a node to appear more than once */
5461 		if (node_isset(n, *used_node_mask))
5462 			continue;
5463 
5464 		/* Use the distance array to find the distance */
5465 		val = node_distance(node, n);
5466 
5467 		/* Penalize nodes under us ("prefer the next node") */
5468 		val += (n < node);
5469 
5470 		/* Give preference to headless and unused nodes */
5471 		tmp = cpumask_of_node(n);
5472 		if (!cpumask_empty(tmp))
5473 			val += PENALTY_FOR_NODE_WITH_CPUS;
5474 
5475 		/* Slight preference for less loaded node */
5476 		val *= (MAX_NODE_LOAD*MAX_NUMNODES);
5477 		val += node_load[n];
5478 
5479 		if (val < min_val) {
5480 			min_val = val;
5481 			best_node = n;
5482 		}
5483 	}
5484 
5485 	if (best_node >= 0)
5486 		node_set(best_node, *used_node_mask);
5487 
5488 	return best_node;
5489 }
5490 
5491 
5492 /*
5493  * Build zonelists ordered by node and zones within node.
5494  * This results in maximum locality--normal zone overflows into local
5495  * DMA zone, if any--but risks exhausting DMA zone.
5496  */
5497 static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order,
5498 		unsigned nr_nodes)
5499 {
5500 	struct zoneref *zonerefs;
5501 	int i;
5502 
5503 	zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5504 
5505 	for (i = 0; i < nr_nodes; i++) {
5506 		int nr_zones;
5507 
5508 		pg_data_t *node = NODE_DATA(node_order[i]);
5509 
5510 		nr_zones = build_zonerefs_node(node, zonerefs);
5511 		zonerefs += nr_zones;
5512 	}
5513 	zonerefs->zone = NULL;
5514 	zonerefs->zone_idx = 0;
5515 }
5516 
5517 /*
5518  * Build gfp_thisnode zonelists
5519  */
5520 static void build_thisnode_zonelists(pg_data_t *pgdat)
5521 {
5522 	struct zoneref *zonerefs;
5523 	int nr_zones;
5524 
5525 	zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs;
5526 	nr_zones = build_zonerefs_node(pgdat, zonerefs);
5527 	zonerefs += nr_zones;
5528 	zonerefs->zone = NULL;
5529 	zonerefs->zone_idx = 0;
5530 }
5531 
5532 /*
5533  * Build zonelists ordered by zone and nodes within zones.
5534  * This results in conserving DMA zone[s] until all Normal memory is
5535  * exhausted, but results in overflowing to remote node while memory
5536  * may still exist in local DMA zone.
5537  */
5538 
5539 static void build_zonelists(pg_data_t *pgdat)
5540 {
5541 	static int node_order[MAX_NUMNODES];
5542 	int node, load, nr_nodes = 0;
5543 	nodemask_t used_mask;
5544 	int local_node, prev_node;
5545 
5546 	/* NUMA-aware ordering of nodes */
5547 	local_node = pgdat->node_id;
5548 	load = nr_online_nodes;
5549 	prev_node = local_node;
5550 	nodes_clear(used_mask);
5551 
5552 	memset(node_order, 0, sizeof(node_order));
5553 	while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
5554 		/*
5555 		 * We don't want to pressure a particular node.
5556 		 * So adding penalty to the first node in same
5557 		 * distance group to make it round-robin.
5558 		 */
5559 		if (node_distance(local_node, node) !=
5560 		    node_distance(local_node, prev_node))
5561 			node_load[node] = load;
5562 
5563 		node_order[nr_nodes++] = node;
5564 		prev_node = node;
5565 		load--;
5566 	}
5567 
5568 	build_zonelists_in_node_order(pgdat, node_order, nr_nodes);
5569 	build_thisnode_zonelists(pgdat);
5570 }
5571 
5572 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
5573 /*
5574  * Return node id of node used for "local" allocations.
5575  * I.e., first node id of first zone in arg node's generic zonelist.
5576  * Used for initializing percpu 'numa_mem', which is used primarily
5577  * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
5578  */
5579 int local_memory_node(int node)
5580 {
5581 	struct zoneref *z;
5582 
5583 	z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
5584 				   gfp_zone(GFP_KERNEL),
5585 				   NULL);
5586 	return zone_to_nid(z->zone);
5587 }
5588 #endif
5589 
5590 static void setup_min_unmapped_ratio(void);
5591 static void setup_min_slab_ratio(void);
5592 #else	/* CONFIG_NUMA */
5593 
5594 static void build_zonelists(pg_data_t *pgdat)
5595 {
5596 	int node, local_node;
5597 	struct zoneref *zonerefs;
5598 	int nr_zones;
5599 
5600 	local_node = pgdat->node_id;
5601 
5602 	zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5603 	nr_zones = build_zonerefs_node(pgdat, zonerefs);
5604 	zonerefs += nr_zones;
5605 
5606 	/*
5607 	 * Now we build the zonelist so that it contains the zones
5608 	 * of all the other nodes.
5609 	 * We don't want to pressure a particular node, so when
5610 	 * building the zones for node N, we make sure that the
5611 	 * zones coming right after the local ones are those from
5612 	 * node N+1 (modulo N)
5613 	 */
5614 	for (node = local_node + 1; node < MAX_NUMNODES; node++) {
5615 		if (!node_online(node))
5616 			continue;
5617 		nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5618 		zonerefs += nr_zones;
5619 	}
5620 	for (node = 0; node < local_node; node++) {
5621 		if (!node_online(node))
5622 			continue;
5623 		nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5624 		zonerefs += nr_zones;
5625 	}
5626 
5627 	zonerefs->zone = NULL;
5628 	zonerefs->zone_idx = 0;
5629 }
5630 
5631 #endif	/* CONFIG_NUMA */
5632 
5633 /*
5634  * Boot pageset table. One per cpu which is going to be used for all
5635  * zones and all nodes. The parameters will be set in such a way
5636  * that an item put on a list will immediately be handed over to
5637  * the buddy list. This is safe since pageset manipulation is done
5638  * with interrupts disabled.
5639  *
5640  * The boot_pagesets must be kept even after bootup is complete for
5641  * unused processors and/or zones. They do play a role for bootstrapping
5642  * hotplugged processors.
5643  *
5644  * zoneinfo_show() and maybe other functions do
5645  * not check if the processor is online before following the pageset pointer.
5646  * Other parts of the kernel may not check if the zone is available.
5647  */
5648 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
5649 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
5650 static DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats);
5651 
5652 static void __build_all_zonelists(void *data)
5653 {
5654 	int nid;
5655 	int __maybe_unused cpu;
5656 	pg_data_t *self = data;
5657 	static DEFINE_SPINLOCK(lock);
5658 
5659 	spin_lock(&lock);
5660 
5661 #ifdef CONFIG_NUMA
5662 	memset(node_load, 0, sizeof(node_load));
5663 #endif
5664 
5665 	/*
5666 	 * This node is hotadded and no memory is yet present.   So just
5667 	 * building zonelists is fine - no need to touch other nodes.
5668 	 */
5669 	if (self && !node_online(self->node_id)) {
5670 		build_zonelists(self);
5671 	} else {
5672 		for_each_online_node(nid) {
5673 			pg_data_t *pgdat = NODE_DATA(nid);
5674 
5675 			build_zonelists(pgdat);
5676 		}
5677 
5678 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
5679 		/*
5680 		 * We now know the "local memory node" for each node--
5681 		 * i.e., the node of the first zone in the generic zonelist.
5682 		 * Set up numa_mem percpu variable for on-line cpus.  During
5683 		 * boot, only the boot cpu should be on-line;  we'll init the
5684 		 * secondary cpus' numa_mem as they come on-line.  During
5685 		 * node/memory hotplug, we'll fixup all on-line cpus.
5686 		 */
5687 		for_each_online_cpu(cpu)
5688 			set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
5689 #endif
5690 	}
5691 
5692 	spin_unlock(&lock);
5693 }
5694 
5695 static noinline void __init
5696 build_all_zonelists_init(void)
5697 {
5698 	int cpu;
5699 
5700 	__build_all_zonelists(NULL);
5701 
5702 	/*
5703 	 * Initialize the boot_pagesets that are going to be used
5704 	 * for bootstrapping processors. The real pagesets for
5705 	 * each zone will be allocated later when the per cpu
5706 	 * allocator is available.
5707 	 *
5708 	 * boot_pagesets are used also for bootstrapping offline
5709 	 * cpus if the system is already booted because the pagesets
5710 	 * are needed to initialize allocators on a specific cpu too.
5711 	 * F.e. the percpu allocator needs the page allocator which
5712 	 * needs the percpu allocator in order to allocate its pagesets
5713 	 * (a chicken-egg dilemma).
5714 	 */
5715 	for_each_possible_cpu(cpu)
5716 		setup_pageset(&per_cpu(boot_pageset, cpu), 0);
5717 
5718 	mminit_verify_zonelist();
5719 	cpuset_init_current_mems_allowed();
5720 }
5721 
5722 /*
5723  * unless system_state == SYSTEM_BOOTING.
5724  *
5725  * __ref due to call of __init annotated helper build_all_zonelists_init
5726  * [protected by SYSTEM_BOOTING].
5727  */
5728 void __ref build_all_zonelists(pg_data_t *pgdat)
5729 {
5730 	if (system_state == SYSTEM_BOOTING) {
5731 		build_all_zonelists_init();
5732 	} else {
5733 		__build_all_zonelists(pgdat);
5734 		/* cpuset refresh routine should be here */
5735 	}
5736 	vm_total_pages = nr_free_pagecache_pages();
5737 	/*
5738 	 * Disable grouping by mobility if the number of pages in the
5739 	 * system is too low to allow the mechanism to work. It would be
5740 	 * more accurate, but expensive to check per-zone. This check is
5741 	 * made on memory-hotadd so a system can start with mobility
5742 	 * disabled and enable it later
5743 	 */
5744 	if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
5745 		page_group_by_mobility_disabled = 1;
5746 	else
5747 		page_group_by_mobility_disabled = 0;
5748 
5749 	pr_info("Built %u zonelists, mobility grouping %s.  Total pages: %ld\n",
5750 		nr_online_nodes,
5751 		page_group_by_mobility_disabled ? "off" : "on",
5752 		vm_total_pages);
5753 #ifdef CONFIG_NUMA
5754 	pr_info("Policy zone: %s\n", zone_names[policy_zone]);
5755 #endif
5756 }
5757 
5758 /* If zone is ZONE_MOVABLE but memory is mirrored, it is an overlapped init */
5759 static bool __meminit
5760 overlap_memmap_init(unsigned long zone, unsigned long *pfn)
5761 {
5762 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5763 	static struct memblock_region *r;
5764 
5765 	if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
5766 		if (!r || *pfn >= memblock_region_memory_end_pfn(r)) {
5767 			for_each_memblock(memory, r) {
5768 				if (*pfn < memblock_region_memory_end_pfn(r))
5769 					break;
5770 			}
5771 		}
5772 		if (*pfn >= memblock_region_memory_base_pfn(r) &&
5773 		    memblock_is_mirror(r)) {
5774 			*pfn = memblock_region_memory_end_pfn(r);
5775 			return true;
5776 		}
5777 	}
5778 #endif
5779 	return false;
5780 }
5781 
5782 /*
5783  * Initially all pages are reserved - free ones are freed
5784  * up by memblock_free_all() once the early boot process is
5785  * done. Non-atomic initialization, single-pass.
5786  */
5787 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
5788 		unsigned long start_pfn, enum memmap_context context,
5789 		struct vmem_altmap *altmap)
5790 {
5791 	unsigned long pfn, end_pfn = start_pfn + size;
5792 	struct page *page;
5793 
5794 	if (highest_memmap_pfn < end_pfn - 1)
5795 		highest_memmap_pfn = end_pfn - 1;
5796 
5797 #ifdef CONFIG_ZONE_DEVICE
5798 	/*
5799 	 * Honor reservation requested by the driver for this ZONE_DEVICE
5800 	 * memory. We limit the total number of pages to initialize to just
5801 	 * those that might contain the memory mapping. We will defer the
5802 	 * ZONE_DEVICE page initialization until after we have released
5803 	 * the hotplug lock.
5804 	 */
5805 	if (zone == ZONE_DEVICE) {
5806 		if (!altmap)
5807 			return;
5808 
5809 		if (start_pfn == altmap->base_pfn)
5810 			start_pfn += altmap->reserve;
5811 		end_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
5812 	}
5813 #endif
5814 
5815 	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
5816 		/*
5817 		 * There can be holes in boot-time mem_map[]s handed to this
5818 		 * function.  They do not exist on hotplugged memory.
5819 		 */
5820 		if (context == MEMMAP_EARLY) {
5821 			if (!early_pfn_valid(pfn))
5822 				continue;
5823 			if (!early_pfn_in_nid(pfn, nid))
5824 				continue;
5825 			if (overlap_memmap_init(zone, &pfn))
5826 				continue;
5827 			if (defer_init(nid, pfn, end_pfn))
5828 				break;
5829 		}
5830 
5831 		page = pfn_to_page(pfn);
5832 		__init_single_page(page, pfn, zone, nid);
5833 		if (context == MEMMAP_HOTPLUG)
5834 			__SetPageReserved(page);
5835 
5836 		/*
5837 		 * Mark the block movable so that blocks are reserved for
5838 		 * movable at startup. This will force kernel allocations
5839 		 * to reserve their blocks rather than leaking throughout
5840 		 * the address space during boot when many long-lived
5841 		 * kernel allocations are made.
5842 		 *
5843 		 * bitmap is created for zone's valid pfn range. but memmap
5844 		 * can be created for invalid pages (for alignment)
5845 		 * check here not to call set_pageblock_migratetype() against
5846 		 * pfn out of zone.
5847 		 */
5848 		if (!(pfn & (pageblock_nr_pages - 1))) {
5849 			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
5850 			cond_resched();
5851 		}
5852 	}
5853 }
5854 
5855 #ifdef CONFIG_ZONE_DEVICE
5856 void __ref memmap_init_zone_device(struct zone *zone,
5857 				   unsigned long start_pfn,
5858 				   unsigned long size,
5859 				   struct dev_pagemap *pgmap)
5860 {
5861 	unsigned long pfn, end_pfn = start_pfn + size;
5862 	struct pglist_data *pgdat = zone->zone_pgdat;
5863 	unsigned long zone_idx = zone_idx(zone);
5864 	unsigned long start = jiffies;
5865 	int nid = pgdat->node_id;
5866 
5867 	if (WARN_ON_ONCE(!pgmap || !is_dev_zone(zone)))
5868 		return;
5869 
5870 	/*
5871 	 * The call to memmap_init_zone should have already taken care
5872 	 * of the pages reserved for the memmap, so we can just jump to
5873 	 * the end of that region and start processing the device pages.
5874 	 */
5875 	if (pgmap->altmap_valid) {
5876 		struct vmem_altmap *altmap = &pgmap->altmap;
5877 
5878 		start_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
5879 		size = end_pfn - start_pfn;
5880 	}
5881 
5882 	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
5883 		struct page *page = pfn_to_page(pfn);
5884 
5885 		__init_single_page(page, pfn, zone_idx, nid);
5886 
5887 		/*
5888 		 * Mark page reserved as it will need to wait for onlining
5889 		 * phase for it to be fully associated with a zone.
5890 		 *
5891 		 * We can use the non-atomic __set_bit operation for setting
5892 		 * the flag as we are still initializing the pages.
5893 		 */
5894 		__SetPageReserved(page);
5895 
5896 		/*
5897 		 * ZONE_DEVICE pages union ->lru with a ->pgmap back
5898 		 * pointer and hmm_data.  It is a bug if a ZONE_DEVICE
5899 		 * page is ever freed or placed on a driver-private list.
5900 		 */
5901 		page->pgmap = pgmap;
5902 		page->hmm_data = 0;
5903 
5904 		/*
5905 		 * Mark the block movable so that blocks are reserved for
5906 		 * movable at startup. This will force kernel allocations
5907 		 * to reserve their blocks rather than leaking throughout
5908 		 * the address space during boot when many long-lived
5909 		 * kernel allocations are made.
5910 		 *
5911 		 * bitmap is created for zone's valid pfn range. but memmap
5912 		 * can be created for invalid pages (for alignment)
5913 		 * check here not to call set_pageblock_migratetype() against
5914 		 * pfn out of zone.
5915 		 *
5916 		 * Please note that MEMMAP_HOTPLUG path doesn't clear memmap
5917 		 * because this is done early in sparse_add_one_section
5918 		 */
5919 		if (!(pfn & (pageblock_nr_pages - 1))) {
5920 			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
5921 			cond_resched();
5922 		}
5923 	}
5924 
5925 	pr_info("%s initialised, %lu pages in %ums\n", dev_name(pgmap->dev),
5926 		size, jiffies_to_msecs(jiffies - start));
5927 }
5928 
5929 #endif
5930 static void __meminit zone_init_free_lists(struct zone *zone)
5931 {
5932 	unsigned int order, t;
5933 	for_each_migratetype_order(order, t) {
5934 		INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
5935 		zone->free_area[order].nr_free = 0;
5936 	}
5937 }
5938 
5939 void __meminit __weak memmap_init(unsigned long size, int nid,
5940 				  unsigned long zone, unsigned long start_pfn)
5941 {
5942 	memmap_init_zone(size, nid, zone, start_pfn, MEMMAP_EARLY, NULL);
5943 }
5944 
5945 static int zone_batchsize(struct zone *zone)
5946 {
5947 #ifdef CONFIG_MMU
5948 	int batch;
5949 
5950 	/*
5951 	 * The per-cpu-pages pools are set to around 1000th of the
5952 	 * size of the zone.
5953 	 */
5954 	batch = zone_managed_pages(zone) / 1024;
5955 	/* But no more than a meg. */
5956 	if (batch * PAGE_SIZE > 1024 * 1024)
5957 		batch = (1024 * 1024) / PAGE_SIZE;
5958 	batch /= 4;		/* We effectively *= 4 below */
5959 	if (batch < 1)
5960 		batch = 1;
5961 
5962 	/*
5963 	 * Clamp the batch to a 2^n - 1 value. Having a power
5964 	 * of 2 value was found to be more likely to have
5965 	 * suboptimal cache aliasing properties in some cases.
5966 	 *
5967 	 * For example if 2 tasks are alternately allocating
5968 	 * batches of pages, one task can end up with a lot
5969 	 * of pages of one half of the possible page colors
5970 	 * and the other with pages of the other colors.
5971 	 */
5972 	batch = rounddown_pow_of_two(batch + batch/2) - 1;
5973 
5974 	return batch;
5975 
5976 #else
5977 	/* The deferral and batching of frees should be suppressed under NOMMU
5978 	 * conditions.
5979 	 *
5980 	 * The problem is that NOMMU needs to be able to allocate large chunks
5981 	 * of contiguous memory as there's no hardware page translation to
5982 	 * assemble apparent contiguous memory from discontiguous pages.
5983 	 *
5984 	 * Queueing large contiguous runs of pages for batching, however,
5985 	 * causes the pages to actually be freed in smaller chunks.  As there
5986 	 * can be a significant delay between the individual batches being
5987 	 * recycled, this leads to the once large chunks of space being
5988 	 * fragmented and becoming unavailable for high-order allocations.
5989 	 */
5990 	return 0;
5991 #endif
5992 }
5993 
5994 /*
5995  * pcp->high and pcp->batch values are related and dependent on one another:
5996  * ->batch must never be higher then ->high.
5997  * The following function updates them in a safe manner without read side
5998  * locking.
5999  *
6000  * Any new users of pcp->batch and pcp->high should ensure they can cope with
6001  * those fields changing asynchronously (acording the the above rule).
6002  *
6003  * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
6004  * outside of boot time (or some other assurance that no concurrent updaters
6005  * exist).
6006  */
6007 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
6008 		unsigned long batch)
6009 {
6010        /* start with a fail safe value for batch */
6011 	pcp->batch = 1;
6012 	smp_wmb();
6013 
6014        /* Update high, then batch, in order */
6015 	pcp->high = high;
6016 	smp_wmb();
6017 
6018 	pcp->batch = batch;
6019 }
6020 
6021 /* a companion to pageset_set_high() */
6022 static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
6023 {
6024 	pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
6025 }
6026 
6027 static void pageset_init(struct per_cpu_pageset *p)
6028 {
6029 	struct per_cpu_pages *pcp;
6030 	int migratetype;
6031 
6032 	memset(p, 0, sizeof(*p));
6033 
6034 	pcp = &p->pcp;
6035 	for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
6036 		INIT_LIST_HEAD(&pcp->lists[migratetype]);
6037 }
6038 
6039 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
6040 {
6041 	pageset_init(p);
6042 	pageset_set_batch(p, batch);
6043 }
6044 
6045 /*
6046  * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
6047  * to the value high for the pageset p.
6048  */
6049 static void pageset_set_high(struct per_cpu_pageset *p,
6050 				unsigned long high)
6051 {
6052 	unsigned long batch = max(1UL, high / 4);
6053 	if ((high / 4) > (PAGE_SHIFT * 8))
6054 		batch = PAGE_SHIFT * 8;
6055 
6056 	pageset_update(&p->pcp, high, batch);
6057 }
6058 
6059 static void pageset_set_high_and_batch(struct zone *zone,
6060 				       struct per_cpu_pageset *pcp)
6061 {
6062 	if (percpu_pagelist_fraction)
6063 		pageset_set_high(pcp,
6064 			(zone_managed_pages(zone) /
6065 				percpu_pagelist_fraction));
6066 	else
6067 		pageset_set_batch(pcp, zone_batchsize(zone));
6068 }
6069 
6070 static void __meminit zone_pageset_init(struct zone *zone, int cpu)
6071 {
6072 	struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
6073 
6074 	pageset_init(pcp);
6075 	pageset_set_high_and_batch(zone, pcp);
6076 }
6077 
6078 void __meminit setup_zone_pageset(struct zone *zone)
6079 {
6080 	int cpu;
6081 	zone->pageset = alloc_percpu(struct per_cpu_pageset);
6082 	for_each_possible_cpu(cpu)
6083 		zone_pageset_init(zone, cpu);
6084 }
6085 
6086 /*
6087  * Allocate per cpu pagesets and initialize them.
6088  * Before this call only boot pagesets were available.
6089  */
6090 void __init setup_per_cpu_pageset(void)
6091 {
6092 	struct pglist_data *pgdat;
6093 	struct zone *zone;
6094 
6095 	for_each_populated_zone(zone)
6096 		setup_zone_pageset(zone);
6097 
6098 	for_each_online_pgdat(pgdat)
6099 		pgdat->per_cpu_nodestats =
6100 			alloc_percpu(struct per_cpu_nodestat);
6101 }
6102 
6103 static __meminit void zone_pcp_init(struct zone *zone)
6104 {
6105 	/*
6106 	 * per cpu subsystem is not up at this point. The following code
6107 	 * relies on the ability of the linker to provide the
6108 	 * offset of a (static) per cpu variable into the per cpu area.
6109 	 */
6110 	zone->pageset = &boot_pageset;
6111 
6112 	if (populated_zone(zone))
6113 		printk(KERN_DEBUG "  %s zone: %lu pages, LIFO batch:%u\n",
6114 			zone->name, zone->present_pages,
6115 					 zone_batchsize(zone));
6116 }
6117 
6118 void __meminit init_currently_empty_zone(struct zone *zone,
6119 					unsigned long zone_start_pfn,
6120 					unsigned long size)
6121 {
6122 	struct pglist_data *pgdat = zone->zone_pgdat;
6123 	int zone_idx = zone_idx(zone) + 1;
6124 
6125 	if (zone_idx > pgdat->nr_zones)
6126 		pgdat->nr_zones = zone_idx;
6127 
6128 	zone->zone_start_pfn = zone_start_pfn;
6129 
6130 	mminit_dprintk(MMINIT_TRACE, "memmap_init",
6131 			"Initialising map node %d zone %lu pfns %lu -> %lu\n",
6132 			pgdat->node_id,
6133 			(unsigned long)zone_idx(zone),
6134 			zone_start_pfn, (zone_start_pfn + size));
6135 
6136 	zone_init_free_lists(zone);
6137 	zone->initialized = 1;
6138 }
6139 
6140 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
6141 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
6142 
6143 /*
6144  * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
6145  */
6146 int __meminit __early_pfn_to_nid(unsigned long pfn,
6147 					struct mminit_pfnnid_cache *state)
6148 {
6149 	unsigned long start_pfn, end_pfn;
6150 	int nid;
6151 
6152 	if (state->last_start <= pfn && pfn < state->last_end)
6153 		return state->last_nid;
6154 
6155 	nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
6156 	if (nid != NUMA_NO_NODE) {
6157 		state->last_start = start_pfn;
6158 		state->last_end = end_pfn;
6159 		state->last_nid = nid;
6160 	}
6161 
6162 	return nid;
6163 }
6164 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
6165 
6166 /**
6167  * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
6168  * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
6169  * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
6170  *
6171  * If an architecture guarantees that all ranges registered contain no holes
6172  * and may be freed, this this function may be used instead of calling
6173  * memblock_free_early_nid() manually.
6174  */
6175 void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
6176 {
6177 	unsigned long start_pfn, end_pfn;
6178 	int i, this_nid;
6179 
6180 	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
6181 		start_pfn = min(start_pfn, max_low_pfn);
6182 		end_pfn = min(end_pfn, max_low_pfn);
6183 
6184 		if (start_pfn < end_pfn)
6185 			memblock_free_early_nid(PFN_PHYS(start_pfn),
6186 					(end_pfn - start_pfn) << PAGE_SHIFT,
6187 					this_nid);
6188 	}
6189 }
6190 
6191 /**
6192  * sparse_memory_present_with_active_regions - Call memory_present for each active range
6193  * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
6194  *
6195  * If an architecture guarantees that all ranges registered contain no holes and may
6196  * be freed, this function may be used instead of calling memory_present() manually.
6197  */
6198 void __init sparse_memory_present_with_active_regions(int nid)
6199 {
6200 	unsigned long start_pfn, end_pfn;
6201 	int i, this_nid;
6202 
6203 	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
6204 		memory_present(this_nid, start_pfn, end_pfn);
6205 }
6206 
6207 /**
6208  * get_pfn_range_for_nid - Return the start and end page frames for a node
6209  * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
6210  * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
6211  * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
6212  *
6213  * It returns the start and end page frame of a node based on information
6214  * provided by memblock_set_node(). If called for a node
6215  * with no available memory, a warning is printed and the start and end
6216  * PFNs will be 0.
6217  */
6218 void __init get_pfn_range_for_nid(unsigned int nid,
6219 			unsigned long *start_pfn, unsigned long *end_pfn)
6220 {
6221 	unsigned long this_start_pfn, this_end_pfn;
6222 	int i;
6223 
6224 	*start_pfn = -1UL;
6225 	*end_pfn = 0;
6226 
6227 	for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
6228 		*start_pfn = min(*start_pfn, this_start_pfn);
6229 		*end_pfn = max(*end_pfn, this_end_pfn);
6230 	}
6231 
6232 	if (*start_pfn == -1UL)
6233 		*start_pfn = 0;
6234 }
6235 
6236 /*
6237  * This finds a zone that can be used for ZONE_MOVABLE pages. The
6238  * assumption is made that zones within a node are ordered in monotonic
6239  * increasing memory addresses so that the "highest" populated zone is used
6240  */
6241 static void __init find_usable_zone_for_movable(void)
6242 {
6243 	int zone_index;
6244 	for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
6245 		if (zone_index == ZONE_MOVABLE)
6246 			continue;
6247 
6248 		if (arch_zone_highest_possible_pfn[zone_index] >
6249 				arch_zone_lowest_possible_pfn[zone_index])
6250 			break;
6251 	}
6252 
6253 	VM_BUG_ON(zone_index == -1);
6254 	movable_zone = zone_index;
6255 }
6256 
6257 /*
6258  * The zone ranges provided by the architecture do not include ZONE_MOVABLE
6259  * because it is sized independent of architecture. Unlike the other zones,
6260  * the starting point for ZONE_MOVABLE is not fixed. It may be different
6261  * in each node depending on the size of each node and how evenly kernelcore
6262  * is distributed. This helper function adjusts the zone ranges
6263  * provided by the architecture for a given node by using the end of the
6264  * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
6265  * zones within a node are in order of monotonic increases memory addresses
6266  */
6267 static void __init adjust_zone_range_for_zone_movable(int nid,
6268 					unsigned long zone_type,
6269 					unsigned long node_start_pfn,
6270 					unsigned long node_end_pfn,
6271 					unsigned long *zone_start_pfn,
6272 					unsigned long *zone_end_pfn)
6273 {
6274 	/* Only adjust if ZONE_MOVABLE is on this node */
6275 	if (zone_movable_pfn[nid]) {
6276 		/* Size ZONE_MOVABLE */
6277 		if (zone_type == ZONE_MOVABLE) {
6278 			*zone_start_pfn = zone_movable_pfn[nid];
6279 			*zone_end_pfn = min(node_end_pfn,
6280 				arch_zone_highest_possible_pfn[movable_zone]);
6281 
6282 		/* Adjust for ZONE_MOVABLE starting within this range */
6283 		} else if (!mirrored_kernelcore &&
6284 			*zone_start_pfn < zone_movable_pfn[nid] &&
6285 			*zone_end_pfn > zone_movable_pfn[nid]) {
6286 			*zone_end_pfn = zone_movable_pfn[nid];
6287 
6288 		/* Check if this whole range is within ZONE_MOVABLE */
6289 		} else if (*zone_start_pfn >= zone_movable_pfn[nid])
6290 			*zone_start_pfn = *zone_end_pfn;
6291 	}
6292 }
6293 
6294 /*
6295  * Return the number of pages a zone spans in a node, including holes
6296  * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
6297  */
6298 static unsigned long __init zone_spanned_pages_in_node(int nid,
6299 					unsigned long zone_type,
6300 					unsigned long node_start_pfn,
6301 					unsigned long node_end_pfn,
6302 					unsigned long *zone_start_pfn,
6303 					unsigned long *zone_end_pfn,
6304 					unsigned long *ignored)
6305 {
6306 	unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
6307 	unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
6308 	/* When hotadd a new node from cpu_up(), the node should be empty */
6309 	if (!node_start_pfn && !node_end_pfn)
6310 		return 0;
6311 
6312 	/* Get the start and end of the zone */
6313 	*zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
6314 	*zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
6315 	adjust_zone_range_for_zone_movable(nid, zone_type,
6316 				node_start_pfn, node_end_pfn,
6317 				zone_start_pfn, zone_end_pfn);
6318 
6319 	/* Check that this node has pages within the zone's required range */
6320 	if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
6321 		return 0;
6322 
6323 	/* Move the zone boundaries inside the node if necessary */
6324 	*zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
6325 	*zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
6326 
6327 	/* Return the spanned pages */
6328 	return *zone_end_pfn - *zone_start_pfn;
6329 }
6330 
6331 /*
6332  * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
6333  * then all holes in the requested range will be accounted for.
6334  */
6335 unsigned long __init __absent_pages_in_range(int nid,
6336 				unsigned long range_start_pfn,
6337 				unsigned long range_end_pfn)
6338 {
6339 	unsigned long nr_absent = range_end_pfn - range_start_pfn;
6340 	unsigned long start_pfn, end_pfn;
6341 	int i;
6342 
6343 	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
6344 		start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
6345 		end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
6346 		nr_absent -= end_pfn - start_pfn;
6347 	}
6348 	return nr_absent;
6349 }
6350 
6351 /**
6352  * absent_pages_in_range - Return number of page frames in holes within a range
6353  * @start_pfn: The start PFN to start searching for holes
6354  * @end_pfn: The end PFN to stop searching for holes
6355  *
6356  * Return: the number of pages frames in memory holes within a range.
6357  */
6358 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
6359 							unsigned long end_pfn)
6360 {
6361 	return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
6362 }
6363 
6364 /* Return the number of page frames in holes in a zone on a node */
6365 static unsigned long __init zone_absent_pages_in_node(int nid,
6366 					unsigned long zone_type,
6367 					unsigned long node_start_pfn,
6368 					unsigned long node_end_pfn,
6369 					unsigned long *ignored)
6370 {
6371 	unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
6372 	unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
6373 	unsigned long zone_start_pfn, zone_end_pfn;
6374 	unsigned long nr_absent;
6375 
6376 	/* When hotadd a new node from cpu_up(), the node should be empty */
6377 	if (!node_start_pfn && !node_end_pfn)
6378 		return 0;
6379 
6380 	zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
6381 	zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
6382 
6383 	adjust_zone_range_for_zone_movable(nid, zone_type,
6384 			node_start_pfn, node_end_pfn,
6385 			&zone_start_pfn, &zone_end_pfn);
6386 	nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
6387 
6388 	/*
6389 	 * ZONE_MOVABLE handling.
6390 	 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
6391 	 * and vice versa.
6392 	 */
6393 	if (mirrored_kernelcore && zone_movable_pfn[nid]) {
6394 		unsigned long start_pfn, end_pfn;
6395 		struct memblock_region *r;
6396 
6397 		for_each_memblock(memory, r) {
6398 			start_pfn = clamp(memblock_region_memory_base_pfn(r),
6399 					  zone_start_pfn, zone_end_pfn);
6400 			end_pfn = clamp(memblock_region_memory_end_pfn(r),
6401 					zone_start_pfn, zone_end_pfn);
6402 
6403 			if (zone_type == ZONE_MOVABLE &&
6404 			    memblock_is_mirror(r))
6405 				nr_absent += end_pfn - start_pfn;
6406 
6407 			if (zone_type == ZONE_NORMAL &&
6408 			    !memblock_is_mirror(r))
6409 				nr_absent += end_pfn - start_pfn;
6410 		}
6411 	}
6412 
6413 	return nr_absent;
6414 }
6415 
6416 #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6417 static inline unsigned long __init zone_spanned_pages_in_node(int nid,
6418 					unsigned long zone_type,
6419 					unsigned long node_start_pfn,
6420 					unsigned long node_end_pfn,
6421 					unsigned long *zone_start_pfn,
6422 					unsigned long *zone_end_pfn,
6423 					unsigned long *zones_size)
6424 {
6425 	unsigned int zone;
6426 
6427 	*zone_start_pfn = node_start_pfn;
6428 	for (zone = 0; zone < zone_type; zone++)
6429 		*zone_start_pfn += zones_size[zone];
6430 
6431 	*zone_end_pfn = *zone_start_pfn + zones_size[zone_type];
6432 
6433 	return zones_size[zone_type];
6434 }
6435 
6436 static inline unsigned long __init zone_absent_pages_in_node(int nid,
6437 						unsigned long zone_type,
6438 						unsigned long node_start_pfn,
6439 						unsigned long node_end_pfn,
6440 						unsigned long *zholes_size)
6441 {
6442 	if (!zholes_size)
6443 		return 0;
6444 
6445 	return zholes_size[zone_type];
6446 }
6447 
6448 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6449 
6450 static void __init calculate_node_totalpages(struct pglist_data *pgdat,
6451 						unsigned long node_start_pfn,
6452 						unsigned long node_end_pfn,
6453 						unsigned long *zones_size,
6454 						unsigned long *zholes_size)
6455 {
6456 	unsigned long realtotalpages = 0, totalpages = 0;
6457 	enum zone_type i;
6458 
6459 	for (i = 0; i < MAX_NR_ZONES; i++) {
6460 		struct zone *zone = pgdat->node_zones + i;
6461 		unsigned long zone_start_pfn, zone_end_pfn;
6462 		unsigned long size, real_size;
6463 
6464 		size = zone_spanned_pages_in_node(pgdat->node_id, i,
6465 						  node_start_pfn,
6466 						  node_end_pfn,
6467 						  &zone_start_pfn,
6468 						  &zone_end_pfn,
6469 						  zones_size);
6470 		real_size = size - zone_absent_pages_in_node(pgdat->node_id, i,
6471 						  node_start_pfn, node_end_pfn,
6472 						  zholes_size);
6473 		if (size)
6474 			zone->zone_start_pfn = zone_start_pfn;
6475 		else
6476 			zone->zone_start_pfn = 0;
6477 		zone->spanned_pages = size;
6478 		zone->present_pages = real_size;
6479 
6480 		totalpages += size;
6481 		realtotalpages += real_size;
6482 	}
6483 
6484 	pgdat->node_spanned_pages = totalpages;
6485 	pgdat->node_present_pages = realtotalpages;
6486 	printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
6487 							realtotalpages);
6488 }
6489 
6490 #ifndef CONFIG_SPARSEMEM
6491 /*
6492  * Calculate the size of the zone->blockflags rounded to an unsigned long
6493  * Start by making sure zonesize is a multiple of pageblock_order by rounding
6494  * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
6495  * round what is now in bits to nearest long in bits, then return it in
6496  * bytes.
6497  */
6498 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
6499 {
6500 	unsigned long usemapsize;
6501 
6502 	zonesize += zone_start_pfn & (pageblock_nr_pages-1);
6503 	usemapsize = roundup(zonesize, pageblock_nr_pages);
6504 	usemapsize = usemapsize >> pageblock_order;
6505 	usemapsize *= NR_PAGEBLOCK_BITS;
6506 	usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
6507 
6508 	return usemapsize / 8;
6509 }
6510 
6511 static void __ref setup_usemap(struct pglist_data *pgdat,
6512 				struct zone *zone,
6513 				unsigned long zone_start_pfn,
6514 				unsigned long zonesize)
6515 {
6516 	unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
6517 	zone->pageblock_flags = NULL;
6518 	if (usemapsize) {
6519 		zone->pageblock_flags =
6520 			memblock_alloc_node(usemapsize, SMP_CACHE_BYTES,
6521 					    pgdat->node_id);
6522 		if (!zone->pageblock_flags)
6523 			panic("Failed to allocate %ld bytes for zone %s pageblock flags on node %d\n",
6524 			      usemapsize, zone->name, pgdat->node_id);
6525 	}
6526 }
6527 #else
6528 static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
6529 				unsigned long zone_start_pfn, unsigned long zonesize) {}
6530 #endif /* CONFIG_SPARSEMEM */
6531 
6532 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
6533 
6534 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
6535 void __init set_pageblock_order(void)
6536 {
6537 	unsigned int order;
6538 
6539 	/* Check that pageblock_nr_pages has not already been setup */
6540 	if (pageblock_order)
6541 		return;
6542 
6543 	if (HPAGE_SHIFT > PAGE_SHIFT)
6544 		order = HUGETLB_PAGE_ORDER;
6545 	else
6546 		order = MAX_ORDER - 1;
6547 
6548 	/*
6549 	 * Assume the largest contiguous order of interest is a huge page.
6550 	 * This value may be variable depending on boot parameters on IA64 and
6551 	 * powerpc.
6552 	 */
6553 	pageblock_order = order;
6554 }
6555 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
6556 
6557 /*
6558  * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
6559  * is unused as pageblock_order is set at compile-time. See
6560  * include/linux/pageblock-flags.h for the values of pageblock_order based on
6561  * the kernel config
6562  */
6563 void __init set_pageblock_order(void)
6564 {
6565 }
6566 
6567 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
6568 
6569 static unsigned long __init calc_memmap_size(unsigned long spanned_pages,
6570 						unsigned long present_pages)
6571 {
6572 	unsigned long pages = spanned_pages;
6573 
6574 	/*
6575 	 * Provide a more accurate estimation if there are holes within
6576 	 * the zone and SPARSEMEM is in use. If there are holes within the
6577 	 * zone, each populated memory region may cost us one or two extra
6578 	 * memmap pages due to alignment because memmap pages for each
6579 	 * populated regions may not be naturally aligned on page boundary.
6580 	 * So the (present_pages >> 4) heuristic is a tradeoff for that.
6581 	 */
6582 	if (spanned_pages > present_pages + (present_pages >> 4) &&
6583 	    IS_ENABLED(CONFIG_SPARSEMEM))
6584 		pages = present_pages;
6585 
6586 	return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
6587 }
6588 
6589 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
6590 static void pgdat_init_split_queue(struct pglist_data *pgdat)
6591 {
6592 	spin_lock_init(&pgdat->split_queue_lock);
6593 	INIT_LIST_HEAD(&pgdat->split_queue);
6594 	pgdat->split_queue_len = 0;
6595 }
6596 #else
6597 static void pgdat_init_split_queue(struct pglist_data *pgdat) {}
6598 #endif
6599 
6600 #ifdef CONFIG_COMPACTION
6601 static void pgdat_init_kcompactd(struct pglist_data *pgdat)
6602 {
6603 	init_waitqueue_head(&pgdat->kcompactd_wait);
6604 }
6605 #else
6606 static void pgdat_init_kcompactd(struct pglist_data *pgdat) {}
6607 #endif
6608 
6609 static void __meminit pgdat_init_internals(struct pglist_data *pgdat)
6610 {
6611 	pgdat_resize_init(pgdat);
6612 
6613 	pgdat_init_split_queue(pgdat);
6614 	pgdat_init_kcompactd(pgdat);
6615 
6616 	init_waitqueue_head(&pgdat->kswapd_wait);
6617 	init_waitqueue_head(&pgdat->pfmemalloc_wait);
6618 
6619 	pgdat_page_ext_init(pgdat);
6620 	spin_lock_init(&pgdat->lru_lock);
6621 	lruvec_init(node_lruvec(pgdat));
6622 }
6623 
6624 static void __meminit zone_init_internals(struct zone *zone, enum zone_type idx, int nid,
6625 							unsigned long remaining_pages)
6626 {
6627 	atomic_long_set(&zone->managed_pages, remaining_pages);
6628 	zone_set_nid(zone, nid);
6629 	zone->name = zone_names[idx];
6630 	zone->zone_pgdat = NODE_DATA(nid);
6631 	spin_lock_init(&zone->lock);
6632 	zone_seqlock_init(zone);
6633 	zone_pcp_init(zone);
6634 }
6635 
6636 /*
6637  * Set up the zone data structures
6638  * - init pgdat internals
6639  * - init all zones belonging to this node
6640  *
6641  * NOTE: this function is only called during memory hotplug
6642  */
6643 #ifdef CONFIG_MEMORY_HOTPLUG
6644 void __ref free_area_init_core_hotplug(int nid)
6645 {
6646 	enum zone_type z;
6647 	pg_data_t *pgdat = NODE_DATA(nid);
6648 
6649 	pgdat_init_internals(pgdat);
6650 	for (z = 0; z < MAX_NR_ZONES; z++)
6651 		zone_init_internals(&pgdat->node_zones[z], z, nid, 0);
6652 }
6653 #endif
6654 
6655 /*
6656  * Set up the zone data structures:
6657  *   - mark all pages reserved
6658  *   - mark all memory queues empty
6659  *   - clear the memory bitmaps
6660  *
6661  * NOTE: pgdat should get zeroed by caller.
6662  * NOTE: this function is only called during early init.
6663  */
6664 static void __init free_area_init_core(struct pglist_data *pgdat)
6665 {
6666 	enum zone_type j;
6667 	int nid = pgdat->node_id;
6668 
6669 	pgdat_init_internals(pgdat);
6670 	pgdat->per_cpu_nodestats = &boot_nodestats;
6671 
6672 	for (j = 0; j < MAX_NR_ZONES; j++) {
6673 		struct zone *zone = pgdat->node_zones + j;
6674 		unsigned long size, freesize, memmap_pages;
6675 		unsigned long zone_start_pfn = zone->zone_start_pfn;
6676 
6677 		size = zone->spanned_pages;
6678 		freesize = zone->present_pages;
6679 
6680 		/*
6681 		 * Adjust freesize so that it accounts for how much memory
6682 		 * is used by this zone for memmap. This affects the watermark
6683 		 * and per-cpu initialisations
6684 		 */
6685 		memmap_pages = calc_memmap_size(size, freesize);
6686 		if (!is_highmem_idx(j)) {
6687 			if (freesize >= memmap_pages) {
6688 				freesize -= memmap_pages;
6689 				if (memmap_pages)
6690 					printk(KERN_DEBUG
6691 					       "  %s zone: %lu pages used for memmap\n",
6692 					       zone_names[j], memmap_pages);
6693 			} else
6694 				pr_warn("  %s zone: %lu pages exceeds freesize %lu\n",
6695 					zone_names[j], memmap_pages, freesize);
6696 		}
6697 
6698 		/* Account for reserved pages */
6699 		if (j == 0 && freesize > dma_reserve) {
6700 			freesize -= dma_reserve;
6701 			printk(KERN_DEBUG "  %s zone: %lu pages reserved\n",
6702 					zone_names[0], dma_reserve);
6703 		}
6704 
6705 		if (!is_highmem_idx(j))
6706 			nr_kernel_pages += freesize;
6707 		/* Charge for highmem memmap if there are enough kernel pages */
6708 		else if (nr_kernel_pages > memmap_pages * 2)
6709 			nr_kernel_pages -= memmap_pages;
6710 		nr_all_pages += freesize;
6711 
6712 		/*
6713 		 * Set an approximate value for lowmem here, it will be adjusted
6714 		 * when the bootmem allocator frees pages into the buddy system.
6715 		 * And all highmem pages will be managed by the buddy system.
6716 		 */
6717 		zone_init_internals(zone, j, nid, freesize);
6718 
6719 		if (!size)
6720 			continue;
6721 
6722 		set_pageblock_order();
6723 		setup_usemap(pgdat, zone, zone_start_pfn, size);
6724 		init_currently_empty_zone(zone, zone_start_pfn, size);
6725 		memmap_init(size, nid, j, zone_start_pfn);
6726 	}
6727 }
6728 
6729 #ifdef CONFIG_FLAT_NODE_MEM_MAP
6730 static void __ref alloc_node_mem_map(struct pglist_data *pgdat)
6731 {
6732 	unsigned long __maybe_unused start = 0;
6733 	unsigned long __maybe_unused offset = 0;
6734 
6735 	/* Skip empty nodes */
6736 	if (!pgdat->node_spanned_pages)
6737 		return;
6738 
6739 	start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
6740 	offset = pgdat->node_start_pfn - start;
6741 	/* ia64 gets its own node_mem_map, before this, without bootmem */
6742 	if (!pgdat->node_mem_map) {
6743 		unsigned long size, end;
6744 		struct page *map;
6745 
6746 		/*
6747 		 * The zone's endpoints aren't required to be MAX_ORDER
6748 		 * aligned but the node_mem_map endpoints must be in order
6749 		 * for the buddy allocator to function correctly.
6750 		 */
6751 		end = pgdat_end_pfn(pgdat);
6752 		end = ALIGN(end, MAX_ORDER_NR_PAGES);
6753 		size =  (end - start) * sizeof(struct page);
6754 		map = memblock_alloc_node(size, SMP_CACHE_BYTES,
6755 					  pgdat->node_id);
6756 		if (!map)
6757 			panic("Failed to allocate %ld bytes for node %d memory map\n",
6758 			      size, pgdat->node_id);
6759 		pgdat->node_mem_map = map + offset;
6760 	}
6761 	pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n",
6762 				__func__, pgdat->node_id, (unsigned long)pgdat,
6763 				(unsigned long)pgdat->node_mem_map);
6764 #ifndef CONFIG_NEED_MULTIPLE_NODES
6765 	/*
6766 	 * With no DISCONTIG, the global mem_map is just set as node 0's
6767 	 */
6768 	if (pgdat == NODE_DATA(0)) {
6769 		mem_map = NODE_DATA(0)->node_mem_map;
6770 #if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM)
6771 		if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
6772 			mem_map -= offset;
6773 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6774 	}
6775 #endif
6776 }
6777 #else
6778 static void __ref alloc_node_mem_map(struct pglist_data *pgdat) { }
6779 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
6780 
6781 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
6782 static inline void pgdat_set_deferred_range(pg_data_t *pgdat)
6783 {
6784 	pgdat->first_deferred_pfn = ULONG_MAX;
6785 }
6786 #else
6787 static inline void pgdat_set_deferred_range(pg_data_t *pgdat) {}
6788 #endif
6789 
6790 void __init free_area_init_node(int nid, unsigned long *zones_size,
6791 				   unsigned long node_start_pfn,
6792 				   unsigned long *zholes_size)
6793 {
6794 	pg_data_t *pgdat = NODE_DATA(nid);
6795 	unsigned long start_pfn = 0;
6796 	unsigned long end_pfn = 0;
6797 
6798 	/* pg_data_t should be reset to zero when it's allocated */
6799 	WARN_ON(pgdat->nr_zones || pgdat->kswapd_classzone_idx);
6800 
6801 	pgdat->node_id = nid;
6802 	pgdat->node_start_pfn = node_start_pfn;
6803 	pgdat->per_cpu_nodestats = NULL;
6804 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
6805 	get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
6806 	pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
6807 		(u64)start_pfn << PAGE_SHIFT,
6808 		end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
6809 #else
6810 	start_pfn = node_start_pfn;
6811 #endif
6812 	calculate_node_totalpages(pgdat, start_pfn, end_pfn,
6813 				  zones_size, zholes_size);
6814 
6815 	alloc_node_mem_map(pgdat);
6816 	pgdat_set_deferred_range(pgdat);
6817 
6818 	free_area_init_core(pgdat);
6819 }
6820 
6821 #if !defined(CONFIG_FLAT_NODE_MEM_MAP)
6822 /*
6823  * Zero all valid struct pages in range [spfn, epfn), return number of struct
6824  * pages zeroed
6825  */
6826 static u64 zero_pfn_range(unsigned long spfn, unsigned long epfn)
6827 {
6828 	unsigned long pfn;
6829 	u64 pgcnt = 0;
6830 
6831 	for (pfn = spfn; pfn < epfn; pfn++) {
6832 		if (!pfn_valid(ALIGN_DOWN(pfn, pageblock_nr_pages))) {
6833 			pfn = ALIGN_DOWN(pfn, pageblock_nr_pages)
6834 				+ pageblock_nr_pages - 1;
6835 			continue;
6836 		}
6837 		mm_zero_struct_page(pfn_to_page(pfn));
6838 		pgcnt++;
6839 	}
6840 
6841 	return pgcnt;
6842 }
6843 
6844 /*
6845  * Only struct pages that are backed by physical memory are zeroed and
6846  * initialized by going through __init_single_page(). But, there are some
6847  * struct pages which are reserved in memblock allocator and their fields
6848  * may be accessed (for example page_to_pfn() on some configuration accesses
6849  * flags). We must explicitly zero those struct pages.
6850  *
6851  * This function also addresses a similar issue where struct pages are left
6852  * uninitialized because the physical address range is not covered by
6853  * memblock.memory or memblock.reserved. That could happen when memblock
6854  * layout is manually configured via memmap=.
6855  */
6856 void __init zero_resv_unavail(void)
6857 {
6858 	phys_addr_t start, end;
6859 	u64 i, pgcnt;
6860 	phys_addr_t next = 0;
6861 
6862 	/*
6863 	 * Loop through unavailable ranges not covered by memblock.memory.
6864 	 */
6865 	pgcnt = 0;
6866 	for_each_mem_range(i, &memblock.memory, NULL,
6867 			NUMA_NO_NODE, MEMBLOCK_NONE, &start, &end, NULL) {
6868 		if (next < start)
6869 			pgcnt += zero_pfn_range(PFN_DOWN(next), PFN_UP(start));
6870 		next = end;
6871 	}
6872 	pgcnt += zero_pfn_range(PFN_DOWN(next), max_pfn);
6873 
6874 	/*
6875 	 * Struct pages that do not have backing memory. This could be because
6876 	 * firmware is using some of this memory, or for some other reasons.
6877 	 */
6878 	if (pgcnt)
6879 		pr_info("Zeroed struct page in unavailable ranges: %lld pages", pgcnt);
6880 }
6881 #endif /* !CONFIG_FLAT_NODE_MEM_MAP */
6882 
6883 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
6884 
6885 #if MAX_NUMNODES > 1
6886 /*
6887  * Figure out the number of possible node ids.
6888  */
6889 void __init setup_nr_node_ids(void)
6890 {
6891 	unsigned int highest;
6892 
6893 	highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
6894 	nr_node_ids = highest + 1;
6895 }
6896 #endif
6897 
6898 /**
6899  * node_map_pfn_alignment - determine the maximum internode alignment
6900  *
6901  * This function should be called after node map is populated and sorted.
6902  * It calculates the maximum power of two alignment which can distinguish
6903  * all the nodes.
6904  *
6905  * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
6906  * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)).  If the
6907  * nodes are shifted by 256MiB, 256MiB.  Note that if only the last node is
6908  * shifted, 1GiB is enough and this function will indicate so.
6909  *
6910  * This is used to test whether pfn -> nid mapping of the chosen memory
6911  * model has fine enough granularity to avoid incorrect mapping for the
6912  * populated node map.
6913  *
6914  * Return: the determined alignment in pfn's.  0 if there is no alignment
6915  * requirement (single node).
6916  */
6917 unsigned long __init node_map_pfn_alignment(void)
6918 {
6919 	unsigned long accl_mask = 0, last_end = 0;
6920 	unsigned long start, end, mask;
6921 	int last_nid = NUMA_NO_NODE;
6922 	int i, nid;
6923 
6924 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
6925 		if (!start || last_nid < 0 || last_nid == nid) {
6926 			last_nid = nid;
6927 			last_end = end;
6928 			continue;
6929 		}
6930 
6931 		/*
6932 		 * Start with a mask granular enough to pin-point to the
6933 		 * start pfn and tick off bits one-by-one until it becomes
6934 		 * too coarse to separate the current node from the last.
6935 		 */
6936 		mask = ~((1 << __ffs(start)) - 1);
6937 		while (mask && last_end <= (start & (mask << 1)))
6938 			mask <<= 1;
6939 
6940 		/* accumulate all internode masks */
6941 		accl_mask |= mask;
6942 	}
6943 
6944 	/* convert mask to number of pages */
6945 	return ~accl_mask + 1;
6946 }
6947 
6948 /* Find the lowest pfn for a node */
6949 static unsigned long __init find_min_pfn_for_node(int nid)
6950 {
6951 	unsigned long min_pfn = ULONG_MAX;
6952 	unsigned long start_pfn;
6953 	int i;
6954 
6955 	for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
6956 		min_pfn = min(min_pfn, start_pfn);
6957 
6958 	if (min_pfn == ULONG_MAX) {
6959 		pr_warn("Could not find start_pfn for node %d\n", nid);
6960 		return 0;
6961 	}
6962 
6963 	return min_pfn;
6964 }
6965 
6966 /**
6967  * find_min_pfn_with_active_regions - Find the minimum PFN registered
6968  *
6969  * Return: the minimum PFN based on information provided via
6970  * memblock_set_node().
6971  */
6972 unsigned long __init find_min_pfn_with_active_regions(void)
6973 {
6974 	return find_min_pfn_for_node(MAX_NUMNODES);
6975 }
6976 
6977 /*
6978  * early_calculate_totalpages()
6979  * Sum pages in active regions for movable zone.
6980  * Populate N_MEMORY for calculating usable_nodes.
6981  */
6982 static unsigned long __init early_calculate_totalpages(void)
6983 {
6984 	unsigned long totalpages = 0;
6985 	unsigned long start_pfn, end_pfn;
6986 	int i, nid;
6987 
6988 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
6989 		unsigned long pages = end_pfn - start_pfn;
6990 
6991 		totalpages += pages;
6992 		if (pages)
6993 			node_set_state(nid, N_MEMORY);
6994 	}
6995 	return totalpages;
6996 }
6997 
6998 /*
6999  * Find the PFN the Movable zone begins in each node. Kernel memory
7000  * is spread evenly between nodes as long as the nodes have enough
7001  * memory. When they don't, some nodes will have more kernelcore than
7002  * others
7003  */
7004 static void __init find_zone_movable_pfns_for_nodes(void)
7005 {
7006 	int i, nid;
7007 	unsigned long usable_startpfn;
7008 	unsigned long kernelcore_node, kernelcore_remaining;
7009 	/* save the state before borrow the nodemask */
7010 	nodemask_t saved_node_state = node_states[N_MEMORY];
7011 	unsigned long totalpages = early_calculate_totalpages();
7012 	int usable_nodes = nodes_weight(node_states[N_MEMORY]);
7013 	struct memblock_region *r;
7014 
7015 	/* Need to find movable_zone earlier when movable_node is specified. */
7016 	find_usable_zone_for_movable();
7017 
7018 	/*
7019 	 * If movable_node is specified, ignore kernelcore and movablecore
7020 	 * options.
7021 	 */
7022 	if (movable_node_is_enabled()) {
7023 		for_each_memblock(memory, r) {
7024 			if (!memblock_is_hotpluggable(r))
7025 				continue;
7026 
7027 			nid = r->nid;
7028 
7029 			usable_startpfn = PFN_DOWN(r->base);
7030 			zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
7031 				min(usable_startpfn, zone_movable_pfn[nid]) :
7032 				usable_startpfn;
7033 		}
7034 
7035 		goto out2;
7036 	}
7037 
7038 	/*
7039 	 * If kernelcore=mirror is specified, ignore movablecore option
7040 	 */
7041 	if (mirrored_kernelcore) {
7042 		bool mem_below_4gb_not_mirrored = false;
7043 
7044 		for_each_memblock(memory, r) {
7045 			if (memblock_is_mirror(r))
7046 				continue;
7047 
7048 			nid = r->nid;
7049 
7050 			usable_startpfn = memblock_region_memory_base_pfn(r);
7051 
7052 			if (usable_startpfn < 0x100000) {
7053 				mem_below_4gb_not_mirrored = true;
7054 				continue;
7055 			}
7056 
7057 			zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
7058 				min(usable_startpfn, zone_movable_pfn[nid]) :
7059 				usable_startpfn;
7060 		}
7061 
7062 		if (mem_below_4gb_not_mirrored)
7063 			pr_warn("This configuration results in unmirrored kernel memory.");
7064 
7065 		goto out2;
7066 	}
7067 
7068 	/*
7069 	 * If kernelcore=nn% or movablecore=nn% was specified, calculate the
7070 	 * amount of necessary memory.
7071 	 */
7072 	if (required_kernelcore_percent)
7073 		required_kernelcore = (totalpages * 100 * required_kernelcore_percent) /
7074 				       10000UL;
7075 	if (required_movablecore_percent)
7076 		required_movablecore = (totalpages * 100 * required_movablecore_percent) /
7077 					10000UL;
7078 
7079 	/*
7080 	 * If movablecore= was specified, calculate what size of
7081 	 * kernelcore that corresponds so that memory usable for
7082 	 * any allocation type is evenly spread. If both kernelcore
7083 	 * and movablecore are specified, then the value of kernelcore
7084 	 * will be used for required_kernelcore if it's greater than
7085 	 * what movablecore would have allowed.
7086 	 */
7087 	if (required_movablecore) {
7088 		unsigned long corepages;
7089 
7090 		/*
7091 		 * Round-up so that ZONE_MOVABLE is at least as large as what
7092 		 * was requested by the user
7093 		 */
7094 		required_movablecore =
7095 			roundup(required_movablecore, MAX_ORDER_NR_PAGES);
7096 		required_movablecore = min(totalpages, required_movablecore);
7097 		corepages = totalpages - required_movablecore;
7098 
7099 		required_kernelcore = max(required_kernelcore, corepages);
7100 	}
7101 
7102 	/*
7103 	 * If kernelcore was not specified or kernelcore size is larger
7104 	 * than totalpages, there is no ZONE_MOVABLE.
7105 	 */
7106 	if (!required_kernelcore || required_kernelcore >= totalpages)
7107 		goto out;
7108 
7109 	/* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
7110 	usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
7111 
7112 restart:
7113 	/* Spread kernelcore memory as evenly as possible throughout nodes */
7114 	kernelcore_node = required_kernelcore / usable_nodes;
7115 	for_each_node_state(nid, N_MEMORY) {
7116 		unsigned long start_pfn, end_pfn;
7117 
7118 		/*
7119 		 * Recalculate kernelcore_node if the division per node
7120 		 * now exceeds what is necessary to satisfy the requested
7121 		 * amount of memory for the kernel
7122 		 */
7123 		if (required_kernelcore < kernelcore_node)
7124 			kernelcore_node = required_kernelcore / usable_nodes;
7125 
7126 		/*
7127 		 * As the map is walked, we track how much memory is usable
7128 		 * by the kernel using kernelcore_remaining. When it is
7129 		 * 0, the rest of the node is usable by ZONE_MOVABLE
7130 		 */
7131 		kernelcore_remaining = kernelcore_node;
7132 
7133 		/* Go through each range of PFNs within this node */
7134 		for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
7135 			unsigned long size_pages;
7136 
7137 			start_pfn = max(start_pfn, zone_movable_pfn[nid]);
7138 			if (start_pfn >= end_pfn)
7139 				continue;
7140 
7141 			/* Account for what is only usable for kernelcore */
7142 			if (start_pfn < usable_startpfn) {
7143 				unsigned long kernel_pages;
7144 				kernel_pages = min(end_pfn, usable_startpfn)
7145 								- start_pfn;
7146 
7147 				kernelcore_remaining -= min(kernel_pages,
7148 							kernelcore_remaining);
7149 				required_kernelcore -= min(kernel_pages,
7150 							required_kernelcore);
7151 
7152 				/* Continue if range is now fully accounted */
7153 				if (end_pfn <= usable_startpfn) {
7154 
7155 					/*
7156 					 * Push zone_movable_pfn to the end so
7157 					 * that if we have to rebalance
7158 					 * kernelcore across nodes, we will
7159 					 * not double account here
7160 					 */
7161 					zone_movable_pfn[nid] = end_pfn;
7162 					continue;
7163 				}
7164 				start_pfn = usable_startpfn;
7165 			}
7166 
7167 			/*
7168 			 * The usable PFN range for ZONE_MOVABLE is from
7169 			 * start_pfn->end_pfn. Calculate size_pages as the
7170 			 * number of pages used as kernelcore
7171 			 */
7172 			size_pages = end_pfn - start_pfn;
7173 			if (size_pages > kernelcore_remaining)
7174 				size_pages = kernelcore_remaining;
7175 			zone_movable_pfn[nid] = start_pfn + size_pages;
7176 
7177 			/*
7178 			 * Some kernelcore has been met, update counts and
7179 			 * break if the kernelcore for this node has been
7180 			 * satisfied
7181 			 */
7182 			required_kernelcore -= min(required_kernelcore,
7183 								size_pages);
7184 			kernelcore_remaining -= size_pages;
7185 			if (!kernelcore_remaining)
7186 				break;
7187 		}
7188 	}
7189 
7190 	/*
7191 	 * If there is still required_kernelcore, we do another pass with one
7192 	 * less node in the count. This will push zone_movable_pfn[nid] further
7193 	 * along on the nodes that still have memory until kernelcore is
7194 	 * satisfied
7195 	 */
7196 	usable_nodes--;
7197 	if (usable_nodes && required_kernelcore > usable_nodes)
7198 		goto restart;
7199 
7200 out2:
7201 	/* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
7202 	for (nid = 0; nid < MAX_NUMNODES; nid++)
7203 		zone_movable_pfn[nid] =
7204 			roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
7205 
7206 out:
7207 	/* restore the node_state */
7208 	node_states[N_MEMORY] = saved_node_state;
7209 }
7210 
7211 /* Any regular or high memory on that node ? */
7212 static void check_for_memory(pg_data_t *pgdat, int nid)
7213 {
7214 	enum zone_type zone_type;
7215 
7216 	for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
7217 		struct zone *zone = &pgdat->node_zones[zone_type];
7218 		if (populated_zone(zone)) {
7219 			if (IS_ENABLED(CONFIG_HIGHMEM))
7220 				node_set_state(nid, N_HIGH_MEMORY);
7221 			if (zone_type <= ZONE_NORMAL)
7222 				node_set_state(nid, N_NORMAL_MEMORY);
7223 			break;
7224 		}
7225 	}
7226 }
7227 
7228 /**
7229  * free_area_init_nodes - Initialise all pg_data_t and zone data
7230  * @max_zone_pfn: an array of max PFNs for each zone
7231  *
7232  * This will call free_area_init_node() for each active node in the system.
7233  * Using the page ranges provided by memblock_set_node(), the size of each
7234  * zone in each node and their holes is calculated. If the maximum PFN
7235  * between two adjacent zones match, it is assumed that the zone is empty.
7236  * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
7237  * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
7238  * starts where the previous one ended. For example, ZONE_DMA32 starts
7239  * at arch_max_dma_pfn.
7240  */
7241 void __init free_area_init_nodes(unsigned long *max_zone_pfn)
7242 {
7243 	unsigned long start_pfn, end_pfn;
7244 	int i, nid;
7245 
7246 	/* Record where the zone boundaries are */
7247 	memset(arch_zone_lowest_possible_pfn, 0,
7248 				sizeof(arch_zone_lowest_possible_pfn));
7249 	memset(arch_zone_highest_possible_pfn, 0,
7250 				sizeof(arch_zone_highest_possible_pfn));
7251 
7252 	start_pfn = find_min_pfn_with_active_regions();
7253 
7254 	for (i = 0; i < MAX_NR_ZONES; i++) {
7255 		if (i == ZONE_MOVABLE)
7256 			continue;
7257 
7258 		end_pfn = max(max_zone_pfn[i], start_pfn);
7259 		arch_zone_lowest_possible_pfn[i] = start_pfn;
7260 		arch_zone_highest_possible_pfn[i] = end_pfn;
7261 
7262 		start_pfn = end_pfn;
7263 	}
7264 
7265 	/* Find the PFNs that ZONE_MOVABLE begins at in each node */
7266 	memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
7267 	find_zone_movable_pfns_for_nodes();
7268 
7269 	/* Print out the zone ranges */
7270 	pr_info("Zone ranges:\n");
7271 	for (i = 0; i < MAX_NR_ZONES; i++) {
7272 		if (i == ZONE_MOVABLE)
7273 			continue;
7274 		pr_info("  %-8s ", zone_names[i]);
7275 		if (arch_zone_lowest_possible_pfn[i] ==
7276 				arch_zone_highest_possible_pfn[i])
7277 			pr_cont("empty\n");
7278 		else
7279 			pr_cont("[mem %#018Lx-%#018Lx]\n",
7280 				(u64)arch_zone_lowest_possible_pfn[i]
7281 					<< PAGE_SHIFT,
7282 				((u64)arch_zone_highest_possible_pfn[i]
7283 					<< PAGE_SHIFT) - 1);
7284 	}
7285 
7286 	/* Print out the PFNs ZONE_MOVABLE begins at in each node */
7287 	pr_info("Movable zone start for each node\n");
7288 	for (i = 0; i < MAX_NUMNODES; i++) {
7289 		if (zone_movable_pfn[i])
7290 			pr_info("  Node %d: %#018Lx\n", i,
7291 			       (u64)zone_movable_pfn[i] << PAGE_SHIFT);
7292 	}
7293 
7294 	/* Print out the early node map */
7295 	pr_info("Early memory node ranges\n");
7296 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
7297 		pr_info("  node %3d: [mem %#018Lx-%#018Lx]\n", nid,
7298 			(u64)start_pfn << PAGE_SHIFT,
7299 			((u64)end_pfn << PAGE_SHIFT) - 1);
7300 
7301 	/* Initialise every node */
7302 	mminit_verify_pageflags_layout();
7303 	setup_nr_node_ids();
7304 	zero_resv_unavail();
7305 	for_each_online_node(nid) {
7306 		pg_data_t *pgdat = NODE_DATA(nid);
7307 		free_area_init_node(nid, NULL,
7308 				find_min_pfn_for_node(nid), NULL);
7309 
7310 		/* Any memory on that node */
7311 		if (pgdat->node_present_pages)
7312 			node_set_state(nid, N_MEMORY);
7313 		check_for_memory(pgdat, nid);
7314 	}
7315 }
7316 
7317 static int __init cmdline_parse_core(char *p, unsigned long *core,
7318 				     unsigned long *percent)
7319 {
7320 	unsigned long long coremem;
7321 	char *endptr;
7322 
7323 	if (!p)
7324 		return -EINVAL;
7325 
7326 	/* Value may be a percentage of total memory, otherwise bytes */
7327 	coremem = simple_strtoull(p, &endptr, 0);
7328 	if (*endptr == '%') {
7329 		/* Paranoid check for percent values greater than 100 */
7330 		WARN_ON(coremem > 100);
7331 
7332 		*percent = coremem;
7333 	} else {
7334 		coremem = memparse(p, &p);
7335 		/* Paranoid check that UL is enough for the coremem value */
7336 		WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
7337 
7338 		*core = coremem >> PAGE_SHIFT;
7339 		*percent = 0UL;
7340 	}
7341 	return 0;
7342 }
7343 
7344 /*
7345  * kernelcore=size sets the amount of memory for use for allocations that
7346  * cannot be reclaimed or migrated.
7347  */
7348 static int __init cmdline_parse_kernelcore(char *p)
7349 {
7350 	/* parse kernelcore=mirror */
7351 	if (parse_option_str(p, "mirror")) {
7352 		mirrored_kernelcore = true;
7353 		return 0;
7354 	}
7355 
7356 	return cmdline_parse_core(p, &required_kernelcore,
7357 				  &required_kernelcore_percent);
7358 }
7359 
7360 /*
7361  * movablecore=size sets the amount of memory for use for allocations that
7362  * can be reclaimed or migrated.
7363  */
7364 static int __init cmdline_parse_movablecore(char *p)
7365 {
7366 	return cmdline_parse_core(p, &required_movablecore,
7367 				  &required_movablecore_percent);
7368 }
7369 
7370 early_param("kernelcore", cmdline_parse_kernelcore);
7371 early_param("movablecore", cmdline_parse_movablecore);
7372 
7373 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
7374 
7375 void adjust_managed_page_count(struct page *page, long count)
7376 {
7377 	atomic_long_add(count, &page_zone(page)->managed_pages);
7378 	totalram_pages_add(count);
7379 #ifdef CONFIG_HIGHMEM
7380 	if (PageHighMem(page))
7381 		totalhigh_pages_add(count);
7382 #endif
7383 }
7384 EXPORT_SYMBOL(adjust_managed_page_count);
7385 
7386 unsigned long free_reserved_area(void *start, void *end, int poison, const char *s)
7387 {
7388 	void *pos;
7389 	unsigned long pages = 0;
7390 
7391 	start = (void *)PAGE_ALIGN((unsigned long)start);
7392 	end = (void *)((unsigned long)end & PAGE_MASK);
7393 	for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
7394 		struct page *page = virt_to_page(pos);
7395 		void *direct_map_addr;
7396 
7397 		/*
7398 		 * 'direct_map_addr' might be different from 'pos'
7399 		 * because some architectures' virt_to_page()
7400 		 * work with aliases.  Getting the direct map
7401 		 * address ensures that we get a _writeable_
7402 		 * alias for the memset().
7403 		 */
7404 		direct_map_addr = page_address(page);
7405 		if ((unsigned int)poison <= 0xFF)
7406 			memset(direct_map_addr, poison, PAGE_SIZE);
7407 
7408 		free_reserved_page(page);
7409 	}
7410 
7411 	if (pages && s)
7412 		pr_info("Freeing %s memory: %ldK\n",
7413 			s, pages << (PAGE_SHIFT - 10));
7414 
7415 	return pages;
7416 }
7417 
7418 #ifdef	CONFIG_HIGHMEM
7419 void free_highmem_page(struct page *page)
7420 {
7421 	__free_reserved_page(page);
7422 	totalram_pages_inc();
7423 	atomic_long_inc(&page_zone(page)->managed_pages);
7424 	totalhigh_pages_inc();
7425 }
7426 #endif
7427 
7428 
7429 void __init mem_init_print_info(const char *str)
7430 {
7431 	unsigned long physpages, codesize, datasize, rosize, bss_size;
7432 	unsigned long init_code_size, init_data_size;
7433 
7434 	physpages = get_num_physpages();
7435 	codesize = _etext - _stext;
7436 	datasize = _edata - _sdata;
7437 	rosize = __end_rodata - __start_rodata;
7438 	bss_size = __bss_stop - __bss_start;
7439 	init_data_size = __init_end - __init_begin;
7440 	init_code_size = _einittext - _sinittext;
7441 
7442 	/*
7443 	 * Detect special cases and adjust section sizes accordingly:
7444 	 * 1) .init.* may be embedded into .data sections
7445 	 * 2) .init.text.* may be out of [__init_begin, __init_end],
7446 	 *    please refer to arch/tile/kernel/vmlinux.lds.S.
7447 	 * 3) .rodata.* may be embedded into .text or .data sections.
7448 	 */
7449 #define adj_init_size(start, end, size, pos, adj) \
7450 	do { \
7451 		if (start <= pos && pos < end && size > adj) \
7452 			size -= adj; \
7453 	} while (0)
7454 
7455 	adj_init_size(__init_begin, __init_end, init_data_size,
7456 		     _sinittext, init_code_size);
7457 	adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
7458 	adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
7459 	adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
7460 	adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
7461 
7462 #undef	adj_init_size
7463 
7464 	pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
7465 #ifdef	CONFIG_HIGHMEM
7466 		", %luK highmem"
7467 #endif
7468 		"%s%s)\n",
7469 		nr_free_pages() << (PAGE_SHIFT - 10),
7470 		physpages << (PAGE_SHIFT - 10),
7471 		codesize >> 10, datasize >> 10, rosize >> 10,
7472 		(init_data_size + init_code_size) >> 10, bss_size >> 10,
7473 		(physpages - totalram_pages() - totalcma_pages) << (PAGE_SHIFT - 10),
7474 		totalcma_pages << (PAGE_SHIFT - 10),
7475 #ifdef	CONFIG_HIGHMEM
7476 		totalhigh_pages() << (PAGE_SHIFT - 10),
7477 #endif
7478 		str ? ", " : "", str ? str : "");
7479 }
7480 
7481 /**
7482  * set_dma_reserve - set the specified number of pages reserved in the first zone
7483  * @new_dma_reserve: The number of pages to mark reserved
7484  *
7485  * The per-cpu batchsize and zone watermarks are determined by managed_pages.
7486  * In the DMA zone, a significant percentage may be consumed by kernel image
7487  * and other unfreeable allocations which can skew the watermarks badly. This
7488  * function may optionally be used to account for unfreeable pages in the
7489  * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
7490  * smaller per-cpu batchsize.
7491  */
7492 void __init set_dma_reserve(unsigned long new_dma_reserve)
7493 {
7494 	dma_reserve = new_dma_reserve;
7495 }
7496 
7497 void __init free_area_init(unsigned long *zones_size)
7498 {
7499 	zero_resv_unavail();
7500 	free_area_init_node(0, zones_size,
7501 			__pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
7502 }
7503 
7504 static int page_alloc_cpu_dead(unsigned int cpu)
7505 {
7506 
7507 	lru_add_drain_cpu(cpu);
7508 	drain_pages(cpu);
7509 
7510 	/*
7511 	 * Spill the event counters of the dead processor
7512 	 * into the current processors event counters.
7513 	 * This artificially elevates the count of the current
7514 	 * processor.
7515 	 */
7516 	vm_events_fold_cpu(cpu);
7517 
7518 	/*
7519 	 * Zero the differential counters of the dead processor
7520 	 * so that the vm statistics are consistent.
7521 	 *
7522 	 * This is only okay since the processor is dead and cannot
7523 	 * race with what we are doing.
7524 	 */
7525 	cpu_vm_stats_fold(cpu);
7526 	return 0;
7527 }
7528 
7529 void __init page_alloc_init(void)
7530 {
7531 	int ret;
7532 
7533 	ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC_DEAD,
7534 					"mm/page_alloc:dead", NULL,
7535 					page_alloc_cpu_dead);
7536 	WARN_ON(ret < 0);
7537 }
7538 
7539 /*
7540  * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
7541  *	or min_free_kbytes changes.
7542  */
7543 static void calculate_totalreserve_pages(void)
7544 {
7545 	struct pglist_data *pgdat;
7546 	unsigned long reserve_pages = 0;
7547 	enum zone_type i, j;
7548 
7549 	for_each_online_pgdat(pgdat) {
7550 
7551 		pgdat->totalreserve_pages = 0;
7552 
7553 		for (i = 0; i < MAX_NR_ZONES; i++) {
7554 			struct zone *zone = pgdat->node_zones + i;
7555 			long max = 0;
7556 			unsigned long managed_pages = zone_managed_pages(zone);
7557 
7558 			/* Find valid and maximum lowmem_reserve in the zone */
7559 			for (j = i; j < MAX_NR_ZONES; j++) {
7560 				if (zone->lowmem_reserve[j] > max)
7561 					max = zone->lowmem_reserve[j];
7562 			}
7563 
7564 			/* we treat the high watermark as reserved pages. */
7565 			max += high_wmark_pages(zone);
7566 
7567 			if (max > managed_pages)
7568 				max = managed_pages;
7569 
7570 			pgdat->totalreserve_pages += max;
7571 
7572 			reserve_pages += max;
7573 		}
7574 	}
7575 	totalreserve_pages = reserve_pages;
7576 }
7577 
7578 /*
7579  * setup_per_zone_lowmem_reserve - called whenever
7580  *	sysctl_lowmem_reserve_ratio changes.  Ensures that each zone
7581  *	has a correct pages reserved value, so an adequate number of
7582  *	pages are left in the zone after a successful __alloc_pages().
7583  */
7584 static void setup_per_zone_lowmem_reserve(void)
7585 {
7586 	struct pglist_data *pgdat;
7587 	enum zone_type j, idx;
7588 
7589 	for_each_online_pgdat(pgdat) {
7590 		for (j = 0; j < MAX_NR_ZONES; j++) {
7591 			struct zone *zone = pgdat->node_zones + j;
7592 			unsigned long managed_pages = zone_managed_pages(zone);
7593 
7594 			zone->lowmem_reserve[j] = 0;
7595 
7596 			idx = j;
7597 			while (idx) {
7598 				struct zone *lower_zone;
7599 
7600 				idx--;
7601 				lower_zone = pgdat->node_zones + idx;
7602 
7603 				if (sysctl_lowmem_reserve_ratio[idx] < 1) {
7604 					sysctl_lowmem_reserve_ratio[idx] = 0;
7605 					lower_zone->lowmem_reserve[j] = 0;
7606 				} else {
7607 					lower_zone->lowmem_reserve[j] =
7608 						managed_pages / sysctl_lowmem_reserve_ratio[idx];
7609 				}
7610 				managed_pages += zone_managed_pages(lower_zone);
7611 			}
7612 		}
7613 	}
7614 
7615 	/* update totalreserve_pages */
7616 	calculate_totalreserve_pages();
7617 }
7618 
7619 static void __setup_per_zone_wmarks(void)
7620 {
7621 	unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
7622 	unsigned long lowmem_pages = 0;
7623 	struct zone *zone;
7624 	unsigned long flags;
7625 
7626 	/* Calculate total number of !ZONE_HIGHMEM pages */
7627 	for_each_zone(zone) {
7628 		if (!is_highmem(zone))
7629 			lowmem_pages += zone_managed_pages(zone);
7630 	}
7631 
7632 	for_each_zone(zone) {
7633 		u64 tmp;
7634 
7635 		spin_lock_irqsave(&zone->lock, flags);
7636 		tmp = (u64)pages_min * zone_managed_pages(zone);
7637 		do_div(tmp, lowmem_pages);
7638 		if (is_highmem(zone)) {
7639 			/*
7640 			 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
7641 			 * need highmem pages, so cap pages_min to a small
7642 			 * value here.
7643 			 *
7644 			 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
7645 			 * deltas control async page reclaim, and so should
7646 			 * not be capped for highmem.
7647 			 */
7648 			unsigned long min_pages;
7649 
7650 			min_pages = zone_managed_pages(zone) / 1024;
7651 			min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
7652 			zone->_watermark[WMARK_MIN] = min_pages;
7653 		} else {
7654 			/*
7655 			 * If it's a lowmem zone, reserve a number of pages
7656 			 * proportionate to the zone's size.
7657 			 */
7658 			zone->_watermark[WMARK_MIN] = tmp;
7659 		}
7660 
7661 		/*
7662 		 * Set the kswapd watermarks distance according to the
7663 		 * scale factor in proportion to available memory, but
7664 		 * ensure a minimum size on small systems.
7665 		 */
7666 		tmp = max_t(u64, tmp >> 2,
7667 			    mult_frac(zone_managed_pages(zone),
7668 				      watermark_scale_factor, 10000));
7669 
7670 		zone->_watermark[WMARK_LOW]  = min_wmark_pages(zone) + tmp;
7671 		zone->_watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2;
7672 		zone->watermark_boost = 0;
7673 
7674 		spin_unlock_irqrestore(&zone->lock, flags);
7675 	}
7676 
7677 	/* update totalreserve_pages */
7678 	calculate_totalreserve_pages();
7679 }
7680 
7681 /**
7682  * setup_per_zone_wmarks - called when min_free_kbytes changes
7683  * or when memory is hot-{added|removed}
7684  *
7685  * Ensures that the watermark[min,low,high] values for each zone are set
7686  * correctly with respect to min_free_kbytes.
7687  */
7688 void setup_per_zone_wmarks(void)
7689 {
7690 	static DEFINE_SPINLOCK(lock);
7691 
7692 	spin_lock(&lock);
7693 	__setup_per_zone_wmarks();
7694 	spin_unlock(&lock);
7695 }
7696 
7697 /*
7698  * Initialise min_free_kbytes.
7699  *
7700  * For small machines we want it small (128k min).  For large machines
7701  * we want it large (64MB max).  But it is not linear, because network
7702  * bandwidth does not increase linearly with machine size.  We use
7703  *
7704  *	min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
7705  *	min_free_kbytes = sqrt(lowmem_kbytes * 16)
7706  *
7707  * which yields
7708  *
7709  * 16MB:	512k
7710  * 32MB:	724k
7711  * 64MB:	1024k
7712  * 128MB:	1448k
7713  * 256MB:	2048k
7714  * 512MB:	2896k
7715  * 1024MB:	4096k
7716  * 2048MB:	5792k
7717  * 4096MB:	8192k
7718  * 8192MB:	11584k
7719  * 16384MB:	16384k
7720  */
7721 int __meminit init_per_zone_wmark_min(void)
7722 {
7723 	unsigned long lowmem_kbytes;
7724 	int new_min_free_kbytes;
7725 
7726 	lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
7727 	new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
7728 
7729 	if (new_min_free_kbytes > user_min_free_kbytes) {
7730 		min_free_kbytes = new_min_free_kbytes;
7731 		if (min_free_kbytes < 128)
7732 			min_free_kbytes = 128;
7733 		if (min_free_kbytes > 65536)
7734 			min_free_kbytes = 65536;
7735 	} else {
7736 		pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
7737 				new_min_free_kbytes, user_min_free_kbytes);
7738 	}
7739 	setup_per_zone_wmarks();
7740 	refresh_zone_stat_thresholds();
7741 	setup_per_zone_lowmem_reserve();
7742 
7743 #ifdef CONFIG_NUMA
7744 	setup_min_unmapped_ratio();
7745 	setup_min_slab_ratio();
7746 #endif
7747 
7748 	return 0;
7749 }
7750 core_initcall(init_per_zone_wmark_min)
7751 
7752 /*
7753  * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
7754  *	that we can call two helper functions whenever min_free_kbytes
7755  *	changes.
7756  */
7757 int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
7758 	void __user *buffer, size_t *length, loff_t *ppos)
7759 {
7760 	int rc;
7761 
7762 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7763 	if (rc)
7764 		return rc;
7765 
7766 	if (write) {
7767 		user_min_free_kbytes = min_free_kbytes;
7768 		setup_per_zone_wmarks();
7769 	}
7770 	return 0;
7771 }
7772 
7773 int watermark_boost_factor_sysctl_handler(struct ctl_table *table, int write,
7774 	void __user *buffer, size_t *length, loff_t *ppos)
7775 {
7776 	int rc;
7777 
7778 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7779 	if (rc)
7780 		return rc;
7781 
7782 	return 0;
7783 }
7784 
7785 int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
7786 	void __user *buffer, size_t *length, loff_t *ppos)
7787 {
7788 	int rc;
7789 
7790 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7791 	if (rc)
7792 		return rc;
7793 
7794 	if (write)
7795 		setup_per_zone_wmarks();
7796 
7797 	return 0;
7798 }
7799 
7800 #ifdef CONFIG_NUMA
7801 static void setup_min_unmapped_ratio(void)
7802 {
7803 	pg_data_t *pgdat;
7804 	struct zone *zone;
7805 
7806 	for_each_online_pgdat(pgdat)
7807 		pgdat->min_unmapped_pages = 0;
7808 
7809 	for_each_zone(zone)
7810 		zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) *
7811 						         sysctl_min_unmapped_ratio) / 100;
7812 }
7813 
7814 
7815 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
7816 	void __user *buffer, size_t *length, loff_t *ppos)
7817 {
7818 	int rc;
7819 
7820 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7821 	if (rc)
7822 		return rc;
7823 
7824 	setup_min_unmapped_ratio();
7825 
7826 	return 0;
7827 }
7828 
7829 static void setup_min_slab_ratio(void)
7830 {
7831 	pg_data_t *pgdat;
7832 	struct zone *zone;
7833 
7834 	for_each_online_pgdat(pgdat)
7835 		pgdat->min_slab_pages = 0;
7836 
7837 	for_each_zone(zone)
7838 		zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) *
7839 						     sysctl_min_slab_ratio) / 100;
7840 }
7841 
7842 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
7843 	void __user *buffer, size_t *length, loff_t *ppos)
7844 {
7845 	int rc;
7846 
7847 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7848 	if (rc)
7849 		return rc;
7850 
7851 	setup_min_slab_ratio();
7852 
7853 	return 0;
7854 }
7855 #endif
7856 
7857 /*
7858  * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
7859  *	proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
7860  *	whenever sysctl_lowmem_reserve_ratio changes.
7861  *
7862  * The reserve ratio obviously has absolutely no relation with the
7863  * minimum watermarks. The lowmem reserve ratio can only make sense
7864  * if in function of the boot time zone sizes.
7865  */
7866 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
7867 	void __user *buffer, size_t *length, loff_t *ppos)
7868 {
7869 	proc_dointvec_minmax(table, write, buffer, length, ppos);
7870 	setup_per_zone_lowmem_reserve();
7871 	return 0;
7872 }
7873 
7874 /*
7875  * percpu_pagelist_fraction - changes the pcp->high for each zone on each
7876  * cpu.  It is the fraction of total pages in each zone that a hot per cpu
7877  * pagelist can have before it gets flushed back to buddy allocator.
7878  */
7879 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
7880 	void __user *buffer, size_t *length, loff_t *ppos)
7881 {
7882 	struct zone *zone;
7883 	int old_percpu_pagelist_fraction;
7884 	int ret;
7885 
7886 	mutex_lock(&pcp_batch_high_lock);
7887 	old_percpu_pagelist_fraction = percpu_pagelist_fraction;
7888 
7889 	ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
7890 	if (!write || ret < 0)
7891 		goto out;
7892 
7893 	/* Sanity checking to avoid pcp imbalance */
7894 	if (percpu_pagelist_fraction &&
7895 	    percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
7896 		percpu_pagelist_fraction = old_percpu_pagelist_fraction;
7897 		ret = -EINVAL;
7898 		goto out;
7899 	}
7900 
7901 	/* No change? */
7902 	if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
7903 		goto out;
7904 
7905 	for_each_populated_zone(zone) {
7906 		unsigned int cpu;
7907 
7908 		for_each_possible_cpu(cpu)
7909 			pageset_set_high_and_batch(zone,
7910 					per_cpu_ptr(zone->pageset, cpu));
7911 	}
7912 out:
7913 	mutex_unlock(&pcp_batch_high_lock);
7914 	return ret;
7915 }
7916 
7917 #ifdef CONFIG_NUMA
7918 int hashdist = HASHDIST_DEFAULT;
7919 
7920 static int __init set_hashdist(char *str)
7921 {
7922 	if (!str)
7923 		return 0;
7924 	hashdist = simple_strtoul(str, &str, 0);
7925 	return 1;
7926 }
7927 __setup("hashdist=", set_hashdist);
7928 #endif
7929 
7930 #ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
7931 /*
7932  * Returns the number of pages that arch has reserved but
7933  * is not known to alloc_large_system_hash().
7934  */
7935 static unsigned long __init arch_reserved_kernel_pages(void)
7936 {
7937 	return 0;
7938 }
7939 #endif
7940 
7941 /*
7942  * Adaptive scale is meant to reduce sizes of hash tables on large memory
7943  * machines. As memory size is increased the scale is also increased but at
7944  * slower pace.  Starting from ADAPT_SCALE_BASE (64G), every time memory
7945  * quadruples the scale is increased by one, which means the size of hash table
7946  * only doubles, instead of quadrupling as well.
7947  * Because 32-bit systems cannot have large physical memory, where this scaling
7948  * makes sense, it is disabled on such platforms.
7949  */
7950 #if __BITS_PER_LONG > 32
7951 #define ADAPT_SCALE_BASE	(64ul << 30)
7952 #define ADAPT_SCALE_SHIFT	2
7953 #define ADAPT_SCALE_NPAGES	(ADAPT_SCALE_BASE >> PAGE_SHIFT)
7954 #endif
7955 
7956 /*
7957  * allocate a large system hash table from bootmem
7958  * - it is assumed that the hash table must contain an exact power-of-2
7959  *   quantity of entries
7960  * - limit is the number of hash buckets, not the total allocation size
7961  */
7962 void *__init alloc_large_system_hash(const char *tablename,
7963 				     unsigned long bucketsize,
7964 				     unsigned long numentries,
7965 				     int scale,
7966 				     int flags,
7967 				     unsigned int *_hash_shift,
7968 				     unsigned int *_hash_mask,
7969 				     unsigned long low_limit,
7970 				     unsigned long high_limit)
7971 {
7972 	unsigned long long max = high_limit;
7973 	unsigned long log2qty, size;
7974 	void *table = NULL;
7975 	gfp_t gfp_flags;
7976 
7977 	/* allow the kernel cmdline to have a say */
7978 	if (!numentries) {
7979 		/* round applicable memory size up to nearest megabyte */
7980 		numentries = nr_kernel_pages;
7981 		numentries -= arch_reserved_kernel_pages();
7982 
7983 		/* It isn't necessary when PAGE_SIZE >= 1MB */
7984 		if (PAGE_SHIFT < 20)
7985 			numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
7986 
7987 #if __BITS_PER_LONG > 32
7988 		if (!high_limit) {
7989 			unsigned long adapt;
7990 
7991 			for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries;
7992 			     adapt <<= ADAPT_SCALE_SHIFT)
7993 				scale++;
7994 		}
7995 #endif
7996 
7997 		/* limit to 1 bucket per 2^scale bytes of low memory */
7998 		if (scale > PAGE_SHIFT)
7999 			numentries >>= (scale - PAGE_SHIFT);
8000 		else
8001 			numentries <<= (PAGE_SHIFT - scale);
8002 
8003 		/* Make sure we've got at least a 0-order allocation.. */
8004 		if (unlikely(flags & HASH_SMALL)) {
8005 			/* Makes no sense without HASH_EARLY */
8006 			WARN_ON(!(flags & HASH_EARLY));
8007 			if (!(numentries >> *_hash_shift)) {
8008 				numentries = 1UL << *_hash_shift;
8009 				BUG_ON(!numentries);
8010 			}
8011 		} else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
8012 			numentries = PAGE_SIZE / bucketsize;
8013 	}
8014 	numentries = roundup_pow_of_two(numentries);
8015 
8016 	/* limit allocation size to 1/16 total memory by default */
8017 	if (max == 0) {
8018 		max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
8019 		do_div(max, bucketsize);
8020 	}
8021 	max = min(max, 0x80000000ULL);
8022 
8023 	if (numentries < low_limit)
8024 		numentries = low_limit;
8025 	if (numentries > max)
8026 		numentries = max;
8027 
8028 	log2qty = ilog2(numentries);
8029 
8030 	gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC;
8031 	do {
8032 		size = bucketsize << log2qty;
8033 		if (flags & HASH_EARLY) {
8034 			if (flags & HASH_ZERO)
8035 				table = memblock_alloc(size, SMP_CACHE_BYTES);
8036 			else
8037 				table = memblock_alloc_raw(size,
8038 							   SMP_CACHE_BYTES);
8039 		} else if (hashdist) {
8040 			table = __vmalloc(size, gfp_flags, PAGE_KERNEL);
8041 		} else {
8042 			/*
8043 			 * If bucketsize is not a power-of-two, we may free
8044 			 * some pages at the end of hash table which
8045 			 * alloc_pages_exact() automatically does
8046 			 */
8047 			if (get_order(size) < MAX_ORDER) {
8048 				table = alloc_pages_exact(size, gfp_flags);
8049 				kmemleak_alloc(table, size, 1, gfp_flags);
8050 			}
8051 		}
8052 	} while (!table && size > PAGE_SIZE && --log2qty);
8053 
8054 	if (!table)
8055 		panic("Failed to allocate %s hash table\n", tablename);
8056 
8057 	pr_info("%s hash table entries: %ld (order: %d, %lu bytes)\n",
8058 		tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size);
8059 
8060 	if (_hash_shift)
8061 		*_hash_shift = log2qty;
8062 	if (_hash_mask)
8063 		*_hash_mask = (1 << log2qty) - 1;
8064 
8065 	return table;
8066 }
8067 
8068 /*
8069  * This function checks whether pageblock includes unmovable pages or not.
8070  * If @count is not zero, it is okay to include less @count unmovable pages
8071  *
8072  * PageLRU check without isolation or lru_lock could race so that
8073  * MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable
8074  * check without lock_page also may miss some movable non-lru pages at
8075  * race condition. So you can't expect this function should be exact.
8076  */
8077 bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
8078 			 int migratetype, int flags)
8079 {
8080 	unsigned long found;
8081 	unsigned long iter = 0;
8082 	unsigned long pfn = page_to_pfn(page);
8083 	const char *reason = "unmovable page";
8084 
8085 	/*
8086 	 * TODO we could make this much more efficient by not checking every
8087 	 * page in the range if we know all of them are in MOVABLE_ZONE and
8088 	 * that the movable zone guarantees that pages are migratable but
8089 	 * the later is not the case right now unfortunatelly. E.g. movablecore
8090 	 * can still lead to having bootmem allocations in zone_movable.
8091 	 */
8092 
8093 	if (is_migrate_cma_page(page)) {
8094 		/*
8095 		 * CMA allocations (alloc_contig_range) really need to mark
8096 		 * isolate CMA pageblocks even when they are not movable in fact
8097 		 * so consider them movable here.
8098 		 */
8099 		if (is_migrate_cma(migratetype))
8100 			return false;
8101 
8102 		reason = "CMA page";
8103 		goto unmovable;
8104 	}
8105 
8106 	for (found = 0; iter < pageblock_nr_pages; iter++) {
8107 		unsigned long check = pfn + iter;
8108 
8109 		if (!pfn_valid_within(check))
8110 			continue;
8111 
8112 		page = pfn_to_page(check);
8113 
8114 		if (PageReserved(page))
8115 			goto unmovable;
8116 
8117 		/*
8118 		 * If the zone is movable and we have ruled out all reserved
8119 		 * pages then it should be reasonably safe to assume the rest
8120 		 * is movable.
8121 		 */
8122 		if (zone_idx(zone) == ZONE_MOVABLE)
8123 			continue;
8124 
8125 		/*
8126 		 * Hugepages are not in LRU lists, but they're movable.
8127 		 * We need not scan over tail pages because we don't
8128 		 * handle each tail page individually in migration.
8129 		 */
8130 		if (PageHuge(page)) {
8131 			struct page *head = compound_head(page);
8132 			unsigned int skip_pages;
8133 
8134 			if (!hugepage_migration_supported(page_hstate(head)))
8135 				goto unmovable;
8136 
8137 			skip_pages = (1 << compound_order(head)) - (page - head);
8138 			iter += skip_pages - 1;
8139 			continue;
8140 		}
8141 
8142 		/*
8143 		 * We can't use page_count without pin a page
8144 		 * because another CPU can free compound page.
8145 		 * This check already skips compound tails of THP
8146 		 * because their page->_refcount is zero at all time.
8147 		 */
8148 		if (!page_ref_count(page)) {
8149 			if (PageBuddy(page))
8150 				iter += (1 << page_order(page)) - 1;
8151 			continue;
8152 		}
8153 
8154 		/*
8155 		 * The HWPoisoned page may be not in buddy system, and
8156 		 * page_count() is not 0.
8157 		 */
8158 		if ((flags & SKIP_HWPOISON) && PageHWPoison(page))
8159 			continue;
8160 
8161 		if (__PageMovable(page))
8162 			continue;
8163 
8164 		if (!PageLRU(page))
8165 			found++;
8166 		/*
8167 		 * If there are RECLAIMABLE pages, we need to check
8168 		 * it.  But now, memory offline itself doesn't call
8169 		 * shrink_node_slabs() and it still to be fixed.
8170 		 */
8171 		/*
8172 		 * If the page is not RAM, page_count()should be 0.
8173 		 * we don't need more check. This is an _used_ not-movable page.
8174 		 *
8175 		 * The problematic thing here is PG_reserved pages. PG_reserved
8176 		 * is set to both of a memory hole page and a _used_ kernel
8177 		 * page at boot.
8178 		 */
8179 		if (found > count)
8180 			goto unmovable;
8181 	}
8182 	return false;
8183 unmovable:
8184 	WARN_ON_ONCE(zone_idx(zone) == ZONE_MOVABLE);
8185 	if (flags & REPORT_FAILURE)
8186 		dump_page(pfn_to_page(pfn + iter), reason);
8187 	return true;
8188 }
8189 
8190 #ifdef CONFIG_CONTIG_ALLOC
8191 static unsigned long pfn_max_align_down(unsigned long pfn)
8192 {
8193 	return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
8194 			     pageblock_nr_pages) - 1);
8195 }
8196 
8197 static unsigned long pfn_max_align_up(unsigned long pfn)
8198 {
8199 	return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
8200 				pageblock_nr_pages));
8201 }
8202 
8203 /* [start, end) must belong to a single zone. */
8204 static int __alloc_contig_migrate_range(struct compact_control *cc,
8205 					unsigned long start, unsigned long end)
8206 {
8207 	/* This function is based on compact_zone() from compaction.c. */
8208 	unsigned long nr_reclaimed;
8209 	unsigned long pfn = start;
8210 	unsigned int tries = 0;
8211 	int ret = 0;
8212 
8213 	migrate_prep();
8214 
8215 	while (pfn < end || !list_empty(&cc->migratepages)) {
8216 		if (fatal_signal_pending(current)) {
8217 			ret = -EINTR;
8218 			break;
8219 		}
8220 
8221 		if (list_empty(&cc->migratepages)) {
8222 			cc->nr_migratepages = 0;
8223 			pfn = isolate_migratepages_range(cc, pfn, end);
8224 			if (!pfn) {
8225 				ret = -EINTR;
8226 				break;
8227 			}
8228 			tries = 0;
8229 		} else if (++tries == 5) {
8230 			ret = ret < 0 ? ret : -EBUSY;
8231 			break;
8232 		}
8233 
8234 		nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
8235 							&cc->migratepages);
8236 		cc->nr_migratepages -= nr_reclaimed;
8237 
8238 		ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
8239 				    NULL, 0, cc->mode, MR_CONTIG_RANGE);
8240 	}
8241 	if (ret < 0) {
8242 		putback_movable_pages(&cc->migratepages);
8243 		return ret;
8244 	}
8245 	return 0;
8246 }
8247 
8248 /**
8249  * alloc_contig_range() -- tries to allocate given range of pages
8250  * @start:	start PFN to allocate
8251  * @end:	one-past-the-last PFN to allocate
8252  * @migratetype:	migratetype of the underlaying pageblocks (either
8253  *			#MIGRATE_MOVABLE or #MIGRATE_CMA).  All pageblocks
8254  *			in range must have the same migratetype and it must
8255  *			be either of the two.
8256  * @gfp_mask:	GFP mask to use during compaction
8257  *
8258  * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
8259  * aligned.  The PFN range must belong to a single zone.
8260  *
8261  * The first thing this routine does is attempt to MIGRATE_ISOLATE all
8262  * pageblocks in the range.  Once isolated, the pageblocks should not
8263  * be modified by others.
8264  *
8265  * Return: zero on success or negative error code.  On success all
8266  * pages which PFN is in [start, end) are allocated for the caller and
8267  * need to be freed with free_contig_range().
8268  */
8269 int alloc_contig_range(unsigned long start, unsigned long end,
8270 		       unsigned migratetype, gfp_t gfp_mask)
8271 {
8272 	unsigned long outer_start, outer_end;
8273 	unsigned int order;
8274 	int ret = 0;
8275 
8276 	struct compact_control cc = {
8277 		.nr_migratepages = 0,
8278 		.order = -1,
8279 		.zone = page_zone(pfn_to_page(start)),
8280 		.mode = MIGRATE_SYNC,
8281 		.ignore_skip_hint = true,
8282 		.no_set_skip_hint = true,
8283 		.gfp_mask = current_gfp_context(gfp_mask),
8284 	};
8285 	INIT_LIST_HEAD(&cc.migratepages);
8286 
8287 	/*
8288 	 * What we do here is we mark all pageblocks in range as
8289 	 * MIGRATE_ISOLATE.  Because pageblock and max order pages may
8290 	 * have different sizes, and due to the way page allocator
8291 	 * work, we align the range to biggest of the two pages so
8292 	 * that page allocator won't try to merge buddies from
8293 	 * different pageblocks and change MIGRATE_ISOLATE to some
8294 	 * other migration type.
8295 	 *
8296 	 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
8297 	 * migrate the pages from an unaligned range (ie. pages that
8298 	 * we are interested in).  This will put all the pages in
8299 	 * range back to page allocator as MIGRATE_ISOLATE.
8300 	 *
8301 	 * When this is done, we take the pages in range from page
8302 	 * allocator removing them from the buddy system.  This way
8303 	 * page allocator will never consider using them.
8304 	 *
8305 	 * This lets us mark the pageblocks back as
8306 	 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
8307 	 * aligned range but not in the unaligned, original range are
8308 	 * put back to page allocator so that buddy can use them.
8309 	 */
8310 
8311 	ret = start_isolate_page_range(pfn_max_align_down(start),
8312 				       pfn_max_align_up(end), migratetype, 0);
8313 	if (ret < 0)
8314 		return ret;
8315 
8316 	/*
8317 	 * In case of -EBUSY, we'd like to know which page causes problem.
8318 	 * So, just fall through. test_pages_isolated() has a tracepoint
8319 	 * which will report the busy page.
8320 	 *
8321 	 * It is possible that busy pages could become available before
8322 	 * the call to test_pages_isolated, and the range will actually be
8323 	 * allocated.  So, if we fall through be sure to clear ret so that
8324 	 * -EBUSY is not accidentally used or returned to caller.
8325 	 */
8326 	ret = __alloc_contig_migrate_range(&cc, start, end);
8327 	if (ret && ret != -EBUSY)
8328 		goto done;
8329 	ret =0;
8330 
8331 	/*
8332 	 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
8333 	 * aligned blocks that are marked as MIGRATE_ISOLATE.  What's
8334 	 * more, all pages in [start, end) are free in page allocator.
8335 	 * What we are going to do is to allocate all pages from
8336 	 * [start, end) (that is remove them from page allocator).
8337 	 *
8338 	 * The only problem is that pages at the beginning and at the
8339 	 * end of interesting range may be not aligned with pages that
8340 	 * page allocator holds, ie. they can be part of higher order
8341 	 * pages.  Because of this, we reserve the bigger range and
8342 	 * once this is done free the pages we are not interested in.
8343 	 *
8344 	 * We don't have to hold zone->lock here because the pages are
8345 	 * isolated thus they won't get removed from buddy.
8346 	 */
8347 
8348 	lru_add_drain_all();
8349 
8350 	order = 0;
8351 	outer_start = start;
8352 	while (!PageBuddy(pfn_to_page(outer_start))) {
8353 		if (++order >= MAX_ORDER) {
8354 			outer_start = start;
8355 			break;
8356 		}
8357 		outer_start &= ~0UL << order;
8358 	}
8359 
8360 	if (outer_start != start) {
8361 		order = page_order(pfn_to_page(outer_start));
8362 
8363 		/*
8364 		 * outer_start page could be small order buddy page and
8365 		 * it doesn't include start page. Adjust outer_start
8366 		 * in this case to report failed page properly
8367 		 * on tracepoint in test_pages_isolated()
8368 		 */
8369 		if (outer_start + (1UL << order) <= start)
8370 			outer_start = start;
8371 	}
8372 
8373 	/* Make sure the range is really isolated. */
8374 	if (test_pages_isolated(outer_start, end, false)) {
8375 		pr_info_ratelimited("%s: [%lx, %lx) PFNs busy\n",
8376 			__func__, outer_start, end);
8377 		ret = -EBUSY;
8378 		goto done;
8379 	}
8380 
8381 	/* Grab isolated pages from freelists. */
8382 	outer_end = isolate_freepages_range(&cc, outer_start, end);
8383 	if (!outer_end) {
8384 		ret = -EBUSY;
8385 		goto done;
8386 	}
8387 
8388 	/* Free head and tail (if any) */
8389 	if (start != outer_start)
8390 		free_contig_range(outer_start, start - outer_start);
8391 	if (end != outer_end)
8392 		free_contig_range(end, outer_end - end);
8393 
8394 done:
8395 	undo_isolate_page_range(pfn_max_align_down(start),
8396 				pfn_max_align_up(end), migratetype);
8397 	return ret;
8398 }
8399 #endif /* CONFIG_CONTIG_ALLOC */
8400 
8401 void free_contig_range(unsigned long pfn, unsigned int nr_pages)
8402 {
8403 	unsigned int count = 0;
8404 
8405 	for (; nr_pages--; pfn++) {
8406 		struct page *page = pfn_to_page(pfn);
8407 
8408 		count += page_count(page) != 1;
8409 		__free_page(page);
8410 	}
8411 	WARN(count != 0, "%d pages are still in use!\n", count);
8412 }
8413 
8414 #ifdef CONFIG_MEMORY_HOTPLUG
8415 /*
8416  * The zone indicated has a new number of managed_pages; batch sizes and percpu
8417  * page high values need to be recalulated.
8418  */
8419 void __meminit zone_pcp_update(struct zone *zone)
8420 {
8421 	unsigned cpu;
8422 	mutex_lock(&pcp_batch_high_lock);
8423 	for_each_possible_cpu(cpu)
8424 		pageset_set_high_and_batch(zone,
8425 				per_cpu_ptr(zone->pageset, cpu));
8426 	mutex_unlock(&pcp_batch_high_lock);
8427 }
8428 #endif
8429 
8430 void zone_pcp_reset(struct zone *zone)
8431 {
8432 	unsigned long flags;
8433 	int cpu;
8434 	struct per_cpu_pageset *pset;
8435 
8436 	/* avoid races with drain_pages()  */
8437 	local_irq_save(flags);
8438 	if (zone->pageset != &boot_pageset) {
8439 		for_each_online_cpu(cpu) {
8440 			pset = per_cpu_ptr(zone->pageset, cpu);
8441 			drain_zonestat(zone, pset);
8442 		}
8443 		free_percpu(zone->pageset);
8444 		zone->pageset = &boot_pageset;
8445 	}
8446 	local_irq_restore(flags);
8447 }
8448 
8449 #ifdef CONFIG_MEMORY_HOTREMOVE
8450 /*
8451  * All pages in the range must be in a single zone and isolated
8452  * before calling this.
8453  */
8454 unsigned long
8455 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
8456 {
8457 	struct page *page;
8458 	struct zone *zone;
8459 	unsigned int order, i;
8460 	unsigned long pfn;
8461 	unsigned long flags;
8462 	unsigned long offlined_pages = 0;
8463 
8464 	/* find the first valid pfn */
8465 	for (pfn = start_pfn; pfn < end_pfn; pfn++)
8466 		if (pfn_valid(pfn))
8467 			break;
8468 	if (pfn == end_pfn)
8469 		return offlined_pages;
8470 
8471 	offline_mem_sections(pfn, end_pfn);
8472 	zone = page_zone(pfn_to_page(pfn));
8473 	spin_lock_irqsave(&zone->lock, flags);
8474 	pfn = start_pfn;
8475 	while (pfn < end_pfn) {
8476 		if (!pfn_valid(pfn)) {
8477 			pfn++;
8478 			continue;
8479 		}
8480 		page = pfn_to_page(pfn);
8481 		/*
8482 		 * The HWPoisoned page may be not in buddy system, and
8483 		 * page_count() is not 0.
8484 		 */
8485 		if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
8486 			pfn++;
8487 			SetPageReserved(page);
8488 			offlined_pages++;
8489 			continue;
8490 		}
8491 
8492 		BUG_ON(page_count(page));
8493 		BUG_ON(!PageBuddy(page));
8494 		order = page_order(page);
8495 		offlined_pages += 1 << order;
8496 #ifdef CONFIG_DEBUG_VM
8497 		pr_info("remove from free list %lx %d %lx\n",
8498 			pfn, 1 << order, end_pfn);
8499 #endif
8500 		list_del(&page->lru);
8501 		rmv_page_order(page);
8502 		zone->free_area[order].nr_free--;
8503 		for (i = 0; i < (1 << order); i++)
8504 			SetPageReserved((page+i));
8505 		pfn += (1 << order);
8506 	}
8507 	spin_unlock_irqrestore(&zone->lock, flags);
8508 
8509 	return offlined_pages;
8510 }
8511 #endif
8512 
8513 bool is_free_buddy_page(struct page *page)
8514 {
8515 	struct zone *zone = page_zone(page);
8516 	unsigned long pfn = page_to_pfn(page);
8517 	unsigned long flags;
8518 	unsigned int order;
8519 
8520 	spin_lock_irqsave(&zone->lock, flags);
8521 	for (order = 0; order < MAX_ORDER; order++) {
8522 		struct page *page_head = page - (pfn & ((1 << order) - 1));
8523 
8524 		if (PageBuddy(page_head) && page_order(page_head) >= order)
8525 			break;
8526 	}
8527 	spin_unlock_irqrestore(&zone->lock, flags);
8528 
8529 	return order < MAX_ORDER;
8530 }
8531 
8532 #ifdef CONFIG_MEMORY_FAILURE
8533 /*
8534  * Set PG_hwpoison flag if a given page is confirmed to be a free page.  This
8535  * test is performed under the zone lock to prevent a race against page
8536  * allocation.
8537  */
8538 bool set_hwpoison_free_buddy_page(struct page *page)
8539 {
8540 	struct zone *zone = page_zone(page);
8541 	unsigned long pfn = page_to_pfn(page);
8542 	unsigned long flags;
8543 	unsigned int order;
8544 	bool hwpoisoned = false;
8545 
8546 	spin_lock_irqsave(&zone->lock, flags);
8547 	for (order = 0; order < MAX_ORDER; order++) {
8548 		struct page *page_head = page - (pfn & ((1 << order) - 1));
8549 
8550 		if (PageBuddy(page_head) && page_order(page_head) >= order) {
8551 			if (!TestSetPageHWPoison(page))
8552 				hwpoisoned = true;
8553 			break;
8554 		}
8555 	}
8556 	spin_unlock_irqrestore(&zone->lock, flags);
8557 
8558 	return hwpoisoned;
8559 }
8560 #endif
8561