1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/mm/page_alloc.c 4 * 5 * Manages the free list, the system allocates free pages here. 6 * Note that kmalloc() lives in slab.c 7 * 8 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 9 * Swap reorganised 29.12.95, Stephen Tweedie 10 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999 11 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999 12 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999 13 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000 14 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002 15 * (lots of bits borrowed from Ingo Molnar & Andrew Morton) 16 */ 17 18 #include <linux/stddef.h> 19 #include <linux/mm.h> 20 #include <linux/highmem.h> 21 #include <linux/swap.h> 22 #include <linux/swapops.h> 23 #include <linux/interrupt.h> 24 #include <linux/pagemap.h> 25 #include <linux/jiffies.h> 26 #include <linux/memblock.h> 27 #include <linux/compiler.h> 28 #include <linux/kernel.h> 29 #include <linux/kasan.h> 30 #include <linux/module.h> 31 #include <linux/suspend.h> 32 #include <linux/pagevec.h> 33 #include <linux/blkdev.h> 34 #include <linux/slab.h> 35 #include <linux/ratelimit.h> 36 #include <linux/oom.h> 37 #include <linux/topology.h> 38 #include <linux/sysctl.h> 39 #include <linux/cpu.h> 40 #include <linux/cpuset.h> 41 #include <linux/memory_hotplug.h> 42 #include <linux/nodemask.h> 43 #include <linux/vmalloc.h> 44 #include <linux/vmstat.h> 45 #include <linux/mempolicy.h> 46 #include <linux/memremap.h> 47 #include <linux/stop_machine.h> 48 #include <linux/random.h> 49 #include <linux/sort.h> 50 #include <linux/pfn.h> 51 #include <linux/backing-dev.h> 52 #include <linux/fault-inject.h> 53 #include <linux/page-isolation.h> 54 #include <linux/debugobjects.h> 55 #include <linux/kmemleak.h> 56 #include <linux/compaction.h> 57 #include <trace/events/kmem.h> 58 #include <trace/events/oom.h> 59 #include <linux/prefetch.h> 60 #include <linux/mm_inline.h> 61 #include <linux/mmu_notifier.h> 62 #include <linux/migrate.h> 63 #include <linux/hugetlb.h> 64 #include <linux/sched/rt.h> 65 #include <linux/sched/mm.h> 66 #include <linux/page_owner.h> 67 #include <linux/page_table_check.h> 68 #include <linux/kthread.h> 69 #include <linux/memcontrol.h> 70 #include <linux/ftrace.h> 71 #include <linux/lockdep.h> 72 #include <linux/nmi.h> 73 #include <linux/psi.h> 74 #include <linux/padata.h> 75 #include <linux/khugepaged.h> 76 #include <linux/buffer_head.h> 77 #include <linux/delayacct.h> 78 #include <asm/sections.h> 79 #include <asm/tlbflush.h> 80 #include <asm/div64.h> 81 #include "internal.h" 82 #include "shuffle.h" 83 #include "page_reporting.h" 84 85 /* Free Page Internal flags: for internal, non-pcp variants of free_pages(). */ 86 typedef int __bitwise fpi_t; 87 88 /* No special request */ 89 #define FPI_NONE ((__force fpi_t)0) 90 91 /* 92 * Skip free page reporting notification for the (possibly merged) page. 93 * This does not hinder free page reporting from grabbing the page, 94 * reporting it and marking it "reported" - it only skips notifying 95 * the free page reporting infrastructure about a newly freed page. For 96 * example, used when temporarily pulling a page from a freelist and 97 * putting it back unmodified. 98 */ 99 #define FPI_SKIP_REPORT_NOTIFY ((__force fpi_t)BIT(0)) 100 101 /* 102 * Place the (possibly merged) page to the tail of the freelist. Will ignore 103 * page shuffling (relevant code - e.g., memory onlining - is expected to 104 * shuffle the whole zone). 105 * 106 * Note: No code should rely on this flag for correctness - it's purely 107 * to allow for optimizations when handing back either fresh pages 108 * (memory onlining) or untouched pages (page isolation, free page 109 * reporting). 110 */ 111 #define FPI_TO_TAIL ((__force fpi_t)BIT(1)) 112 113 /* 114 * Don't poison memory with KASAN (only for the tag-based modes). 115 * During boot, all non-reserved memblock memory is exposed to page_alloc. 116 * Poisoning all that memory lengthens boot time, especially on systems with 117 * large amount of RAM. This flag is used to skip that poisoning. 118 * This is only done for the tag-based KASAN modes, as those are able to 119 * detect memory corruptions with the memory tags assigned by default. 120 * All memory allocated normally after boot gets poisoned as usual. 121 */ 122 #define FPI_SKIP_KASAN_POISON ((__force fpi_t)BIT(2)) 123 124 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */ 125 static DEFINE_MUTEX(pcp_batch_high_lock); 126 #define MIN_PERCPU_PAGELIST_HIGH_FRACTION (8) 127 128 struct pagesets { 129 local_lock_t lock; 130 }; 131 static DEFINE_PER_CPU(struct pagesets, pagesets) __maybe_unused = { 132 .lock = INIT_LOCAL_LOCK(lock), 133 }; 134 135 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID 136 DEFINE_PER_CPU(int, numa_node); 137 EXPORT_PER_CPU_SYMBOL(numa_node); 138 #endif 139 140 DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key); 141 142 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 143 /* 144 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly. 145 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined. 146 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem() 147 * defined in <linux/topology.h>. 148 */ 149 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */ 150 EXPORT_PER_CPU_SYMBOL(_numa_mem_); 151 #endif 152 153 /* work_structs for global per-cpu drains */ 154 struct pcpu_drain { 155 struct zone *zone; 156 struct work_struct work; 157 }; 158 static DEFINE_MUTEX(pcpu_drain_mutex); 159 static DEFINE_PER_CPU(struct pcpu_drain, pcpu_drain); 160 161 #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY 162 volatile unsigned long latent_entropy __latent_entropy; 163 EXPORT_SYMBOL(latent_entropy); 164 #endif 165 166 /* 167 * Array of node states. 168 */ 169 nodemask_t node_states[NR_NODE_STATES] __read_mostly = { 170 [N_POSSIBLE] = NODE_MASK_ALL, 171 [N_ONLINE] = { { [0] = 1UL } }, 172 #ifndef CONFIG_NUMA 173 [N_NORMAL_MEMORY] = { { [0] = 1UL } }, 174 #ifdef CONFIG_HIGHMEM 175 [N_HIGH_MEMORY] = { { [0] = 1UL } }, 176 #endif 177 [N_MEMORY] = { { [0] = 1UL } }, 178 [N_CPU] = { { [0] = 1UL } }, 179 #endif /* NUMA */ 180 }; 181 EXPORT_SYMBOL(node_states); 182 183 atomic_long_t _totalram_pages __read_mostly; 184 EXPORT_SYMBOL(_totalram_pages); 185 unsigned long totalreserve_pages __read_mostly; 186 unsigned long totalcma_pages __read_mostly; 187 188 int percpu_pagelist_high_fraction; 189 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK; 190 DEFINE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, init_on_alloc); 191 EXPORT_SYMBOL(init_on_alloc); 192 193 DEFINE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_FREE_DEFAULT_ON, init_on_free); 194 EXPORT_SYMBOL(init_on_free); 195 196 static bool _init_on_alloc_enabled_early __read_mostly 197 = IS_ENABLED(CONFIG_INIT_ON_ALLOC_DEFAULT_ON); 198 static int __init early_init_on_alloc(char *buf) 199 { 200 201 return kstrtobool(buf, &_init_on_alloc_enabled_early); 202 } 203 early_param("init_on_alloc", early_init_on_alloc); 204 205 static bool _init_on_free_enabled_early __read_mostly 206 = IS_ENABLED(CONFIG_INIT_ON_FREE_DEFAULT_ON); 207 static int __init early_init_on_free(char *buf) 208 { 209 return kstrtobool(buf, &_init_on_free_enabled_early); 210 } 211 early_param("init_on_free", early_init_on_free); 212 213 /* 214 * A cached value of the page's pageblock's migratetype, used when the page is 215 * put on a pcplist. Used to avoid the pageblock migratetype lookup when 216 * freeing from pcplists in most cases, at the cost of possibly becoming stale. 217 * Also the migratetype set in the page does not necessarily match the pcplist 218 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any 219 * other index - this ensures that it will be put on the correct CMA freelist. 220 */ 221 static inline int get_pcppage_migratetype(struct page *page) 222 { 223 return page->index; 224 } 225 226 static inline void set_pcppage_migratetype(struct page *page, int migratetype) 227 { 228 page->index = migratetype; 229 } 230 231 #ifdef CONFIG_PM_SLEEP 232 /* 233 * The following functions are used by the suspend/hibernate code to temporarily 234 * change gfp_allowed_mask in order to avoid using I/O during memory allocations 235 * while devices are suspended. To avoid races with the suspend/hibernate code, 236 * they should always be called with system_transition_mutex held 237 * (gfp_allowed_mask also should only be modified with system_transition_mutex 238 * held, unless the suspend/hibernate code is guaranteed not to run in parallel 239 * with that modification). 240 */ 241 242 static gfp_t saved_gfp_mask; 243 244 void pm_restore_gfp_mask(void) 245 { 246 WARN_ON(!mutex_is_locked(&system_transition_mutex)); 247 if (saved_gfp_mask) { 248 gfp_allowed_mask = saved_gfp_mask; 249 saved_gfp_mask = 0; 250 } 251 } 252 253 void pm_restrict_gfp_mask(void) 254 { 255 WARN_ON(!mutex_is_locked(&system_transition_mutex)); 256 WARN_ON(saved_gfp_mask); 257 saved_gfp_mask = gfp_allowed_mask; 258 gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS); 259 } 260 261 bool pm_suspended_storage(void) 262 { 263 if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS)) 264 return false; 265 return true; 266 } 267 #endif /* CONFIG_PM_SLEEP */ 268 269 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE 270 unsigned int pageblock_order __read_mostly; 271 #endif 272 273 static void __free_pages_ok(struct page *page, unsigned int order, 274 fpi_t fpi_flags); 275 276 /* 277 * results with 256, 32 in the lowmem_reserve sysctl: 278 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high) 279 * 1G machine -> (16M dma, 784M normal, 224M high) 280 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA 281 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL 282 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA 283 * 284 * TBD: should special case ZONE_DMA32 machines here - in those we normally 285 * don't need any ZONE_NORMAL reservation 286 */ 287 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = { 288 #ifdef CONFIG_ZONE_DMA 289 [ZONE_DMA] = 256, 290 #endif 291 #ifdef CONFIG_ZONE_DMA32 292 [ZONE_DMA32] = 256, 293 #endif 294 [ZONE_NORMAL] = 32, 295 #ifdef CONFIG_HIGHMEM 296 [ZONE_HIGHMEM] = 0, 297 #endif 298 [ZONE_MOVABLE] = 0, 299 }; 300 301 static char * const zone_names[MAX_NR_ZONES] = { 302 #ifdef CONFIG_ZONE_DMA 303 "DMA", 304 #endif 305 #ifdef CONFIG_ZONE_DMA32 306 "DMA32", 307 #endif 308 "Normal", 309 #ifdef CONFIG_HIGHMEM 310 "HighMem", 311 #endif 312 "Movable", 313 #ifdef CONFIG_ZONE_DEVICE 314 "Device", 315 #endif 316 }; 317 318 const char * const migratetype_names[MIGRATE_TYPES] = { 319 "Unmovable", 320 "Movable", 321 "Reclaimable", 322 "HighAtomic", 323 #ifdef CONFIG_CMA 324 "CMA", 325 #endif 326 #ifdef CONFIG_MEMORY_ISOLATION 327 "Isolate", 328 #endif 329 }; 330 331 compound_page_dtor * const compound_page_dtors[NR_COMPOUND_DTORS] = { 332 [NULL_COMPOUND_DTOR] = NULL, 333 [COMPOUND_PAGE_DTOR] = free_compound_page, 334 #ifdef CONFIG_HUGETLB_PAGE 335 [HUGETLB_PAGE_DTOR] = free_huge_page, 336 #endif 337 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 338 [TRANSHUGE_PAGE_DTOR] = free_transhuge_page, 339 #endif 340 }; 341 342 int min_free_kbytes = 1024; 343 int user_min_free_kbytes = -1; 344 int watermark_boost_factor __read_mostly = 15000; 345 int watermark_scale_factor = 10; 346 347 static unsigned long nr_kernel_pages __initdata; 348 static unsigned long nr_all_pages __initdata; 349 static unsigned long dma_reserve __initdata; 350 351 static unsigned long arch_zone_lowest_possible_pfn[MAX_NR_ZONES] __initdata; 352 static unsigned long arch_zone_highest_possible_pfn[MAX_NR_ZONES] __initdata; 353 static unsigned long required_kernelcore __initdata; 354 static unsigned long required_kernelcore_percent __initdata; 355 static unsigned long required_movablecore __initdata; 356 static unsigned long required_movablecore_percent __initdata; 357 static unsigned long zone_movable_pfn[MAX_NUMNODES] __initdata; 358 static bool mirrored_kernelcore __meminitdata; 359 360 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */ 361 int movable_zone; 362 EXPORT_SYMBOL(movable_zone); 363 364 #if MAX_NUMNODES > 1 365 unsigned int nr_node_ids __read_mostly = MAX_NUMNODES; 366 unsigned int nr_online_nodes __read_mostly = 1; 367 EXPORT_SYMBOL(nr_node_ids); 368 EXPORT_SYMBOL(nr_online_nodes); 369 #endif 370 371 int page_group_by_mobility_disabled __read_mostly; 372 373 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 374 /* 375 * During boot we initialize deferred pages on-demand, as needed, but once 376 * page_alloc_init_late() has finished, the deferred pages are all initialized, 377 * and we can permanently disable that path. 378 */ 379 static DEFINE_STATIC_KEY_TRUE(deferred_pages); 380 381 /* 382 * Calling kasan_poison_pages() only after deferred memory initialization 383 * has completed. Poisoning pages during deferred memory init will greatly 384 * lengthen the process and cause problem in large memory systems as the 385 * deferred pages initialization is done with interrupt disabled. 386 * 387 * Assuming that there will be no reference to those newly initialized 388 * pages before they are ever allocated, this should have no effect on 389 * KASAN memory tracking as the poison will be properly inserted at page 390 * allocation time. The only corner case is when pages are allocated by 391 * on-demand allocation and then freed again before the deferred pages 392 * initialization is done, but this is not likely to happen. 393 */ 394 static inline bool should_skip_kasan_poison(struct page *page, fpi_t fpi_flags) 395 { 396 return static_branch_unlikely(&deferred_pages) || 397 (!IS_ENABLED(CONFIG_KASAN_GENERIC) && 398 (fpi_flags & FPI_SKIP_KASAN_POISON)) || 399 PageSkipKASanPoison(page); 400 } 401 402 /* Returns true if the struct page for the pfn is uninitialised */ 403 static inline bool __meminit early_page_uninitialised(unsigned long pfn) 404 { 405 int nid = early_pfn_to_nid(pfn); 406 407 if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn) 408 return true; 409 410 return false; 411 } 412 413 /* 414 * Returns true when the remaining initialisation should be deferred until 415 * later in the boot cycle when it can be parallelised. 416 */ 417 static bool __meminit 418 defer_init(int nid, unsigned long pfn, unsigned long end_pfn) 419 { 420 static unsigned long prev_end_pfn, nr_initialised; 421 422 /* 423 * prev_end_pfn static that contains the end of previous zone 424 * No need to protect because called very early in boot before smp_init. 425 */ 426 if (prev_end_pfn != end_pfn) { 427 prev_end_pfn = end_pfn; 428 nr_initialised = 0; 429 } 430 431 /* Always populate low zones for address-constrained allocations */ 432 if (end_pfn < pgdat_end_pfn(NODE_DATA(nid))) 433 return false; 434 435 if (NODE_DATA(nid)->first_deferred_pfn != ULONG_MAX) 436 return true; 437 /* 438 * We start only with one section of pages, more pages are added as 439 * needed until the rest of deferred pages are initialized. 440 */ 441 nr_initialised++; 442 if ((nr_initialised > PAGES_PER_SECTION) && 443 (pfn & (PAGES_PER_SECTION - 1)) == 0) { 444 NODE_DATA(nid)->first_deferred_pfn = pfn; 445 return true; 446 } 447 return false; 448 } 449 #else 450 static inline bool should_skip_kasan_poison(struct page *page, fpi_t fpi_flags) 451 { 452 return (!IS_ENABLED(CONFIG_KASAN_GENERIC) && 453 (fpi_flags & FPI_SKIP_KASAN_POISON)) || 454 PageSkipKASanPoison(page); 455 } 456 457 static inline bool early_page_uninitialised(unsigned long pfn) 458 { 459 return false; 460 } 461 462 static inline bool defer_init(int nid, unsigned long pfn, unsigned long end_pfn) 463 { 464 return false; 465 } 466 #endif 467 468 /* Return a pointer to the bitmap storing bits affecting a block of pages */ 469 static inline unsigned long *get_pageblock_bitmap(const struct page *page, 470 unsigned long pfn) 471 { 472 #ifdef CONFIG_SPARSEMEM 473 return section_to_usemap(__pfn_to_section(pfn)); 474 #else 475 return page_zone(page)->pageblock_flags; 476 #endif /* CONFIG_SPARSEMEM */ 477 } 478 479 static inline int pfn_to_bitidx(const struct page *page, unsigned long pfn) 480 { 481 #ifdef CONFIG_SPARSEMEM 482 pfn &= (PAGES_PER_SECTION-1); 483 #else 484 pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages); 485 #endif /* CONFIG_SPARSEMEM */ 486 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS; 487 } 488 489 static __always_inline 490 unsigned long __get_pfnblock_flags_mask(const struct page *page, 491 unsigned long pfn, 492 unsigned long mask) 493 { 494 unsigned long *bitmap; 495 unsigned long bitidx, word_bitidx; 496 unsigned long word; 497 498 bitmap = get_pageblock_bitmap(page, pfn); 499 bitidx = pfn_to_bitidx(page, pfn); 500 word_bitidx = bitidx / BITS_PER_LONG; 501 bitidx &= (BITS_PER_LONG-1); 502 503 word = bitmap[word_bitidx]; 504 return (word >> bitidx) & mask; 505 } 506 507 /** 508 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages 509 * @page: The page within the block of interest 510 * @pfn: The target page frame number 511 * @mask: mask of bits that the caller is interested in 512 * 513 * Return: pageblock_bits flags 514 */ 515 unsigned long get_pfnblock_flags_mask(const struct page *page, 516 unsigned long pfn, unsigned long mask) 517 { 518 return __get_pfnblock_flags_mask(page, pfn, mask); 519 } 520 521 static __always_inline int get_pfnblock_migratetype(const struct page *page, 522 unsigned long pfn) 523 { 524 return __get_pfnblock_flags_mask(page, pfn, MIGRATETYPE_MASK); 525 } 526 527 /** 528 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages 529 * @page: The page within the block of interest 530 * @flags: The flags to set 531 * @pfn: The target page frame number 532 * @mask: mask of bits that the caller is interested in 533 */ 534 void set_pfnblock_flags_mask(struct page *page, unsigned long flags, 535 unsigned long pfn, 536 unsigned long mask) 537 { 538 unsigned long *bitmap; 539 unsigned long bitidx, word_bitidx; 540 unsigned long old_word, word; 541 542 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4); 543 BUILD_BUG_ON(MIGRATE_TYPES > (1 << PB_migratetype_bits)); 544 545 bitmap = get_pageblock_bitmap(page, pfn); 546 bitidx = pfn_to_bitidx(page, pfn); 547 word_bitidx = bitidx / BITS_PER_LONG; 548 bitidx &= (BITS_PER_LONG-1); 549 550 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page); 551 552 mask <<= bitidx; 553 flags <<= bitidx; 554 555 word = READ_ONCE(bitmap[word_bitidx]); 556 for (;;) { 557 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags); 558 if (word == old_word) 559 break; 560 word = old_word; 561 } 562 } 563 564 void set_pageblock_migratetype(struct page *page, int migratetype) 565 { 566 if (unlikely(page_group_by_mobility_disabled && 567 migratetype < MIGRATE_PCPTYPES)) 568 migratetype = MIGRATE_UNMOVABLE; 569 570 set_pfnblock_flags_mask(page, (unsigned long)migratetype, 571 page_to_pfn(page), MIGRATETYPE_MASK); 572 } 573 574 #ifdef CONFIG_DEBUG_VM 575 static int page_outside_zone_boundaries(struct zone *zone, struct page *page) 576 { 577 int ret = 0; 578 unsigned seq; 579 unsigned long pfn = page_to_pfn(page); 580 unsigned long sp, start_pfn; 581 582 do { 583 seq = zone_span_seqbegin(zone); 584 start_pfn = zone->zone_start_pfn; 585 sp = zone->spanned_pages; 586 if (!zone_spans_pfn(zone, pfn)) 587 ret = 1; 588 } while (zone_span_seqretry(zone, seq)); 589 590 if (ret) 591 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n", 592 pfn, zone_to_nid(zone), zone->name, 593 start_pfn, start_pfn + sp); 594 595 return ret; 596 } 597 598 static int page_is_consistent(struct zone *zone, struct page *page) 599 { 600 if (zone != page_zone(page)) 601 return 0; 602 603 return 1; 604 } 605 /* 606 * Temporary debugging check for pages not lying within a given zone. 607 */ 608 static int __maybe_unused bad_range(struct zone *zone, struct page *page) 609 { 610 if (page_outside_zone_boundaries(zone, page)) 611 return 1; 612 if (!page_is_consistent(zone, page)) 613 return 1; 614 615 return 0; 616 } 617 #else 618 static inline int __maybe_unused bad_range(struct zone *zone, struct page *page) 619 { 620 return 0; 621 } 622 #endif 623 624 static void bad_page(struct page *page, const char *reason) 625 { 626 static unsigned long resume; 627 static unsigned long nr_shown; 628 static unsigned long nr_unshown; 629 630 /* 631 * Allow a burst of 60 reports, then keep quiet for that minute; 632 * or allow a steady drip of one report per second. 633 */ 634 if (nr_shown == 60) { 635 if (time_before(jiffies, resume)) { 636 nr_unshown++; 637 goto out; 638 } 639 if (nr_unshown) { 640 pr_alert( 641 "BUG: Bad page state: %lu messages suppressed\n", 642 nr_unshown); 643 nr_unshown = 0; 644 } 645 nr_shown = 0; 646 } 647 if (nr_shown++ == 0) 648 resume = jiffies + 60 * HZ; 649 650 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n", 651 current->comm, page_to_pfn(page)); 652 dump_page(page, reason); 653 654 print_modules(); 655 dump_stack(); 656 out: 657 /* Leave bad fields for debug, except PageBuddy could make trouble */ 658 page_mapcount_reset(page); /* remove PageBuddy */ 659 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 660 } 661 662 static inline unsigned int order_to_pindex(int migratetype, int order) 663 { 664 int base = order; 665 666 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 667 if (order > PAGE_ALLOC_COSTLY_ORDER) { 668 VM_BUG_ON(order != pageblock_order); 669 base = PAGE_ALLOC_COSTLY_ORDER + 1; 670 } 671 #else 672 VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER); 673 #endif 674 675 return (MIGRATE_PCPTYPES * base) + migratetype; 676 } 677 678 static inline int pindex_to_order(unsigned int pindex) 679 { 680 int order = pindex / MIGRATE_PCPTYPES; 681 682 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 683 if (order > PAGE_ALLOC_COSTLY_ORDER) 684 order = pageblock_order; 685 #else 686 VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER); 687 #endif 688 689 return order; 690 } 691 692 static inline bool pcp_allowed_order(unsigned int order) 693 { 694 if (order <= PAGE_ALLOC_COSTLY_ORDER) 695 return true; 696 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 697 if (order == pageblock_order) 698 return true; 699 #endif 700 return false; 701 } 702 703 static inline void free_the_page(struct page *page, unsigned int order) 704 { 705 if (pcp_allowed_order(order)) /* Via pcp? */ 706 free_unref_page(page, order); 707 else 708 __free_pages_ok(page, order, FPI_NONE); 709 } 710 711 /* 712 * Higher-order pages are called "compound pages". They are structured thusly: 713 * 714 * The first PAGE_SIZE page is called the "head page" and have PG_head set. 715 * 716 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded 717 * in bit 0 of page->compound_head. The rest of bits is pointer to head page. 718 * 719 * The first tail page's ->compound_dtor holds the offset in array of compound 720 * page destructors. See compound_page_dtors. 721 * 722 * The first tail page's ->compound_order holds the order of allocation. 723 * This usage means that zero-order pages may not be compound. 724 */ 725 726 void free_compound_page(struct page *page) 727 { 728 mem_cgroup_uncharge(page_folio(page)); 729 free_the_page(page, compound_order(page)); 730 } 731 732 static void prep_compound_head(struct page *page, unsigned int order) 733 { 734 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR); 735 set_compound_order(page, order); 736 atomic_set(compound_mapcount_ptr(page), -1); 737 atomic_set(compound_pincount_ptr(page), 0); 738 } 739 740 static void prep_compound_tail(struct page *head, int tail_idx) 741 { 742 struct page *p = head + tail_idx; 743 744 p->mapping = TAIL_MAPPING; 745 set_compound_head(p, head); 746 } 747 748 void prep_compound_page(struct page *page, unsigned int order) 749 { 750 int i; 751 int nr_pages = 1 << order; 752 753 __SetPageHead(page); 754 for (i = 1; i < nr_pages; i++) 755 prep_compound_tail(page, i); 756 757 prep_compound_head(page, order); 758 } 759 760 #ifdef CONFIG_DEBUG_PAGEALLOC 761 unsigned int _debug_guardpage_minorder; 762 763 bool _debug_pagealloc_enabled_early __read_mostly 764 = IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT); 765 EXPORT_SYMBOL(_debug_pagealloc_enabled_early); 766 DEFINE_STATIC_KEY_FALSE(_debug_pagealloc_enabled); 767 EXPORT_SYMBOL(_debug_pagealloc_enabled); 768 769 DEFINE_STATIC_KEY_FALSE(_debug_guardpage_enabled); 770 771 static int __init early_debug_pagealloc(char *buf) 772 { 773 return kstrtobool(buf, &_debug_pagealloc_enabled_early); 774 } 775 early_param("debug_pagealloc", early_debug_pagealloc); 776 777 static int __init debug_guardpage_minorder_setup(char *buf) 778 { 779 unsigned long res; 780 781 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) { 782 pr_err("Bad debug_guardpage_minorder value\n"); 783 return 0; 784 } 785 _debug_guardpage_minorder = res; 786 pr_info("Setting debug_guardpage_minorder to %lu\n", res); 787 return 0; 788 } 789 early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup); 790 791 static inline bool set_page_guard(struct zone *zone, struct page *page, 792 unsigned int order, int migratetype) 793 { 794 if (!debug_guardpage_enabled()) 795 return false; 796 797 if (order >= debug_guardpage_minorder()) 798 return false; 799 800 __SetPageGuard(page); 801 INIT_LIST_HEAD(&page->lru); 802 set_page_private(page, order); 803 /* Guard pages are not available for any usage */ 804 __mod_zone_freepage_state(zone, -(1 << order), migratetype); 805 806 return true; 807 } 808 809 static inline void clear_page_guard(struct zone *zone, struct page *page, 810 unsigned int order, int migratetype) 811 { 812 if (!debug_guardpage_enabled()) 813 return; 814 815 __ClearPageGuard(page); 816 817 set_page_private(page, 0); 818 if (!is_migrate_isolate(migratetype)) 819 __mod_zone_freepage_state(zone, (1 << order), migratetype); 820 } 821 #else 822 static inline bool set_page_guard(struct zone *zone, struct page *page, 823 unsigned int order, int migratetype) { return false; } 824 static inline void clear_page_guard(struct zone *zone, struct page *page, 825 unsigned int order, int migratetype) {} 826 #endif 827 828 /* 829 * Enable static keys related to various memory debugging and hardening options. 830 * Some override others, and depend on early params that are evaluated in the 831 * order of appearance. So we need to first gather the full picture of what was 832 * enabled, and then make decisions. 833 */ 834 void init_mem_debugging_and_hardening(void) 835 { 836 bool page_poisoning_requested = false; 837 838 #ifdef CONFIG_PAGE_POISONING 839 /* 840 * Page poisoning is debug page alloc for some arches. If 841 * either of those options are enabled, enable poisoning. 842 */ 843 if (page_poisoning_enabled() || 844 (!IS_ENABLED(CONFIG_ARCH_SUPPORTS_DEBUG_PAGEALLOC) && 845 debug_pagealloc_enabled())) { 846 static_branch_enable(&_page_poisoning_enabled); 847 page_poisoning_requested = true; 848 } 849 #endif 850 851 if ((_init_on_alloc_enabled_early || _init_on_free_enabled_early) && 852 page_poisoning_requested) { 853 pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, " 854 "will take precedence over init_on_alloc and init_on_free\n"); 855 _init_on_alloc_enabled_early = false; 856 _init_on_free_enabled_early = false; 857 } 858 859 if (_init_on_alloc_enabled_early) 860 static_branch_enable(&init_on_alloc); 861 else 862 static_branch_disable(&init_on_alloc); 863 864 if (_init_on_free_enabled_early) 865 static_branch_enable(&init_on_free); 866 else 867 static_branch_disable(&init_on_free); 868 869 #ifdef CONFIG_DEBUG_PAGEALLOC 870 if (!debug_pagealloc_enabled()) 871 return; 872 873 static_branch_enable(&_debug_pagealloc_enabled); 874 875 if (!debug_guardpage_minorder()) 876 return; 877 878 static_branch_enable(&_debug_guardpage_enabled); 879 #endif 880 } 881 882 static inline void set_buddy_order(struct page *page, unsigned int order) 883 { 884 set_page_private(page, order); 885 __SetPageBuddy(page); 886 } 887 888 /* 889 * This function checks whether a page is free && is the buddy 890 * we can coalesce a page and its buddy if 891 * (a) the buddy is not in a hole (check before calling!) && 892 * (b) the buddy is in the buddy system && 893 * (c) a page and its buddy have the same order && 894 * (d) a page and its buddy are in the same zone. 895 * 896 * For recording whether a page is in the buddy system, we set PageBuddy. 897 * Setting, clearing, and testing PageBuddy is serialized by zone->lock. 898 * 899 * For recording page's order, we use page_private(page). 900 */ 901 static inline bool page_is_buddy(struct page *page, struct page *buddy, 902 unsigned int order) 903 { 904 if (!page_is_guard(buddy) && !PageBuddy(buddy)) 905 return false; 906 907 if (buddy_order(buddy) != order) 908 return false; 909 910 /* 911 * zone check is done late to avoid uselessly calculating 912 * zone/node ids for pages that could never merge. 913 */ 914 if (page_zone_id(page) != page_zone_id(buddy)) 915 return false; 916 917 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy); 918 919 return true; 920 } 921 922 #ifdef CONFIG_COMPACTION 923 static inline struct capture_control *task_capc(struct zone *zone) 924 { 925 struct capture_control *capc = current->capture_control; 926 927 return unlikely(capc) && 928 !(current->flags & PF_KTHREAD) && 929 !capc->page && 930 capc->cc->zone == zone ? capc : NULL; 931 } 932 933 static inline bool 934 compaction_capture(struct capture_control *capc, struct page *page, 935 int order, int migratetype) 936 { 937 if (!capc || order != capc->cc->order) 938 return false; 939 940 /* Do not accidentally pollute CMA or isolated regions*/ 941 if (is_migrate_cma(migratetype) || 942 is_migrate_isolate(migratetype)) 943 return false; 944 945 /* 946 * Do not let lower order allocations pollute a movable pageblock. 947 * This might let an unmovable request use a reclaimable pageblock 948 * and vice-versa but no more than normal fallback logic which can 949 * have trouble finding a high-order free page. 950 */ 951 if (order < pageblock_order && migratetype == MIGRATE_MOVABLE) 952 return false; 953 954 capc->page = page; 955 return true; 956 } 957 958 #else 959 static inline struct capture_control *task_capc(struct zone *zone) 960 { 961 return NULL; 962 } 963 964 static inline bool 965 compaction_capture(struct capture_control *capc, struct page *page, 966 int order, int migratetype) 967 { 968 return false; 969 } 970 #endif /* CONFIG_COMPACTION */ 971 972 /* Used for pages not on another list */ 973 static inline void add_to_free_list(struct page *page, struct zone *zone, 974 unsigned int order, int migratetype) 975 { 976 struct free_area *area = &zone->free_area[order]; 977 978 list_add(&page->lru, &area->free_list[migratetype]); 979 area->nr_free++; 980 } 981 982 /* Used for pages not on another list */ 983 static inline void add_to_free_list_tail(struct page *page, struct zone *zone, 984 unsigned int order, int migratetype) 985 { 986 struct free_area *area = &zone->free_area[order]; 987 988 list_add_tail(&page->lru, &area->free_list[migratetype]); 989 area->nr_free++; 990 } 991 992 /* 993 * Used for pages which are on another list. Move the pages to the tail 994 * of the list - so the moved pages won't immediately be considered for 995 * allocation again (e.g., optimization for memory onlining). 996 */ 997 static inline void move_to_free_list(struct page *page, struct zone *zone, 998 unsigned int order, int migratetype) 999 { 1000 struct free_area *area = &zone->free_area[order]; 1001 1002 list_move_tail(&page->lru, &area->free_list[migratetype]); 1003 } 1004 1005 static inline void del_page_from_free_list(struct page *page, struct zone *zone, 1006 unsigned int order) 1007 { 1008 /* clear reported state and update reported page count */ 1009 if (page_reported(page)) 1010 __ClearPageReported(page); 1011 1012 list_del(&page->lru); 1013 __ClearPageBuddy(page); 1014 set_page_private(page, 0); 1015 zone->free_area[order].nr_free--; 1016 } 1017 1018 /* 1019 * If this is not the largest possible page, check if the buddy 1020 * of the next-highest order is free. If it is, it's possible 1021 * that pages are being freed that will coalesce soon. In case, 1022 * that is happening, add the free page to the tail of the list 1023 * so it's less likely to be used soon and more likely to be merged 1024 * as a higher order page 1025 */ 1026 static inline bool 1027 buddy_merge_likely(unsigned long pfn, unsigned long buddy_pfn, 1028 struct page *page, unsigned int order) 1029 { 1030 struct page *higher_page, *higher_buddy; 1031 unsigned long combined_pfn; 1032 1033 if (order >= MAX_ORDER - 2) 1034 return false; 1035 1036 combined_pfn = buddy_pfn & pfn; 1037 higher_page = page + (combined_pfn - pfn); 1038 buddy_pfn = __find_buddy_pfn(combined_pfn, order + 1); 1039 higher_buddy = higher_page + (buddy_pfn - combined_pfn); 1040 1041 return page_is_buddy(higher_page, higher_buddy, order + 1); 1042 } 1043 1044 /* 1045 * Freeing function for a buddy system allocator. 1046 * 1047 * The concept of a buddy system is to maintain direct-mapped table 1048 * (containing bit values) for memory blocks of various "orders". 1049 * The bottom level table contains the map for the smallest allocatable 1050 * units of memory (here, pages), and each level above it describes 1051 * pairs of units from the levels below, hence, "buddies". 1052 * At a high level, all that happens here is marking the table entry 1053 * at the bottom level available, and propagating the changes upward 1054 * as necessary, plus some accounting needed to play nicely with other 1055 * parts of the VM system. 1056 * At each level, we keep a list of pages, which are heads of continuous 1057 * free pages of length of (1 << order) and marked with PageBuddy. 1058 * Page's order is recorded in page_private(page) field. 1059 * So when we are allocating or freeing one, we can derive the state of the 1060 * other. That is, if we allocate a small block, and both were 1061 * free, the remainder of the region must be split into blocks. 1062 * If a block is freed, and its buddy is also free, then this 1063 * triggers coalescing into a block of larger size. 1064 * 1065 * -- nyc 1066 */ 1067 1068 static inline void __free_one_page(struct page *page, 1069 unsigned long pfn, 1070 struct zone *zone, unsigned int order, 1071 int migratetype, fpi_t fpi_flags) 1072 { 1073 struct capture_control *capc = task_capc(zone); 1074 unsigned int max_order = pageblock_order; 1075 unsigned long buddy_pfn; 1076 unsigned long combined_pfn; 1077 struct page *buddy; 1078 bool to_tail; 1079 1080 VM_BUG_ON(!zone_is_initialized(zone)); 1081 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page); 1082 1083 VM_BUG_ON(migratetype == -1); 1084 if (likely(!is_migrate_isolate(migratetype))) 1085 __mod_zone_freepage_state(zone, 1 << order, migratetype); 1086 1087 VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page); 1088 VM_BUG_ON_PAGE(bad_range(zone, page), page); 1089 1090 continue_merging: 1091 while (order < max_order) { 1092 if (compaction_capture(capc, page, order, migratetype)) { 1093 __mod_zone_freepage_state(zone, -(1 << order), 1094 migratetype); 1095 return; 1096 } 1097 buddy_pfn = __find_buddy_pfn(pfn, order); 1098 buddy = page + (buddy_pfn - pfn); 1099 1100 if (!page_is_buddy(page, buddy, order)) 1101 goto done_merging; 1102 /* 1103 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page, 1104 * merge with it and move up one order. 1105 */ 1106 if (page_is_guard(buddy)) 1107 clear_page_guard(zone, buddy, order, migratetype); 1108 else 1109 del_page_from_free_list(buddy, zone, order); 1110 combined_pfn = buddy_pfn & pfn; 1111 page = page + (combined_pfn - pfn); 1112 pfn = combined_pfn; 1113 order++; 1114 } 1115 if (order < MAX_ORDER - 1) { 1116 /* If we are here, it means order is >= pageblock_order. 1117 * We want to prevent merge between freepages on pageblock 1118 * without fallbacks and normal pageblock. Without this, 1119 * pageblock isolation could cause incorrect freepage or CMA 1120 * accounting or HIGHATOMIC accounting. 1121 * 1122 * We don't want to hit this code for the more frequent 1123 * low-order merging. 1124 */ 1125 int buddy_mt; 1126 1127 buddy_pfn = __find_buddy_pfn(pfn, order); 1128 buddy = page + (buddy_pfn - pfn); 1129 buddy_mt = get_pageblock_migratetype(buddy); 1130 1131 if (migratetype != buddy_mt 1132 && (!migratetype_is_mergeable(migratetype) || 1133 !migratetype_is_mergeable(buddy_mt))) 1134 goto done_merging; 1135 max_order = order + 1; 1136 goto continue_merging; 1137 } 1138 1139 done_merging: 1140 set_buddy_order(page, order); 1141 1142 if (fpi_flags & FPI_TO_TAIL) 1143 to_tail = true; 1144 else if (is_shuffle_order(order)) 1145 to_tail = shuffle_pick_tail(); 1146 else 1147 to_tail = buddy_merge_likely(pfn, buddy_pfn, page, order); 1148 1149 if (to_tail) 1150 add_to_free_list_tail(page, zone, order, migratetype); 1151 else 1152 add_to_free_list(page, zone, order, migratetype); 1153 1154 /* Notify page reporting subsystem of freed page */ 1155 if (!(fpi_flags & FPI_SKIP_REPORT_NOTIFY)) 1156 page_reporting_notify_free(order); 1157 } 1158 1159 /* 1160 * A bad page could be due to a number of fields. Instead of multiple branches, 1161 * try and check multiple fields with one check. The caller must do a detailed 1162 * check if necessary. 1163 */ 1164 static inline bool page_expected_state(struct page *page, 1165 unsigned long check_flags) 1166 { 1167 if (unlikely(atomic_read(&page->_mapcount) != -1)) 1168 return false; 1169 1170 if (unlikely((unsigned long)page->mapping | 1171 page_ref_count(page) | 1172 #ifdef CONFIG_MEMCG 1173 page->memcg_data | 1174 #endif 1175 (page->flags & check_flags))) 1176 return false; 1177 1178 return true; 1179 } 1180 1181 static const char *page_bad_reason(struct page *page, unsigned long flags) 1182 { 1183 const char *bad_reason = NULL; 1184 1185 if (unlikely(atomic_read(&page->_mapcount) != -1)) 1186 bad_reason = "nonzero mapcount"; 1187 if (unlikely(page->mapping != NULL)) 1188 bad_reason = "non-NULL mapping"; 1189 if (unlikely(page_ref_count(page) != 0)) 1190 bad_reason = "nonzero _refcount"; 1191 if (unlikely(page->flags & flags)) { 1192 if (flags == PAGE_FLAGS_CHECK_AT_PREP) 1193 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag(s) set"; 1194 else 1195 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set"; 1196 } 1197 #ifdef CONFIG_MEMCG 1198 if (unlikely(page->memcg_data)) 1199 bad_reason = "page still charged to cgroup"; 1200 #endif 1201 return bad_reason; 1202 } 1203 1204 static void check_free_page_bad(struct page *page) 1205 { 1206 bad_page(page, 1207 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_FREE)); 1208 } 1209 1210 static inline int check_free_page(struct page *page) 1211 { 1212 if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE))) 1213 return 0; 1214 1215 /* Something has gone sideways, find it */ 1216 check_free_page_bad(page); 1217 return 1; 1218 } 1219 1220 static int free_tail_pages_check(struct page *head_page, struct page *page) 1221 { 1222 int ret = 1; 1223 1224 /* 1225 * We rely page->lru.next never has bit 0 set, unless the page 1226 * is PageTail(). Let's make sure that's true even for poisoned ->lru. 1227 */ 1228 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1); 1229 1230 if (!IS_ENABLED(CONFIG_DEBUG_VM)) { 1231 ret = 0; 1232 goto out; 1233 } 1234 switch (page - head_page) { 1235 case 1: 1236 /* the first tail page: ->mapping may be compound_mapcount() */ 1237 if (unlikely(compound_mapcount(page))) { 1238 bad_page(page, "nonzero compound_mapcount"); 1239 goto out; 1240 } 1241 break; 1242 case 2: 1243 /* 1244 * the second tail page: ->mapping is 1245 * deferred_list.next -- ignore value. 1246 */ 1247 break; 1248 default: 1249 if (page->mapping != TAIL_MAPPING) { 1250 bad_page(page, "corrupted mapping in tail page"); 1251 goto out; 1252 } 1253 break; 1254 } 1255 if (unlikely(!PageTail(page))) { 1256 bad_page(page, "PageTail not set"); 1257 goto out; 1258 } 1259 if (unlikely(compound_head(page) != head_page)) { 1260 bad_page(page, "compound_head not consistent"); 1261 goto out; 1262 } 1263 ret = 0; 1264 out: 1265 page->mapping = NULL; 1266 clear_compound_head(page); 1267 return ret; 1268 } 1269 1270 static void kernel_init_free_pages(struct page *page, int numpages, bool zero_tags) 1271 { 1272 int i; 1273 1274 if (zero_tags) { 1275 for (i = 0; i < numpages; i++) 1276 tag_clear_highpage(page + i); 1277 return; 1278 } 1279 1280 /* s390's use of memset() could override KASAN redzones. */ 1281 kasan_disable_current(); 1282 for (i = 0; i < numpages; i++) { 1283 u8 tag = page_kasan_tag(page + i); 1284 page_kasan_tag_reset(page + i); 1285 clear_highpage(page + i); 1286 page_kasan_tag_set(page + i, tag); 1287 } 1288 kasan_enable_current(); 1289 } 1290 1291 static __always_inline bool free_pages_prepare(struct page *page, 1292 unsigned int order, bool check_free, fpi_t fpi_flags) 1293 { 1294 int bad = 0; 1295 bool skip_kasan_poison = should_skip_kasan_poison(page, fpi_flags); 1296 1297 VM_BUG_ON_PAGE(PageTail(page), page); 1298 1299 trace_mm_page_free(page, order); 1300 1301 if (unlikely(PageHWPoison(page)) && !order) { 1302 /* 1303 * Do not let hwpoison pages hit pcplists/buddy 1304 * Untie memcg state and reset page's owner 1305 */ 1306 if (memcg_kmem_enabled() && PageMemcgKmem(page)) 1307 __memcg_kmem_uncharge_page(page, order); 1308 reset_page_owner(page, order); 1309 page_table_check_free(page, order); 1310 return false; 1311 } 1312 1313 /* 1314 * Check tail pages before head page information is cleared to 1315 * avoid checking PageCompound for order-0 pages. 1316 */ 1317 if (unlikely(order)) { 1318 bool compound = PageCompound(page); 1319 int i; 1320 1321 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page); 1322 1323 if (compound) { 1324 ClearPageDoubleMap(page); 1325 ClearPageHasHWPoisoned(page); 1326 } 1327 for (i = 1; i < (1 << order); i++) { 1328 if (compound) 1329 bad += free_tail_pages_check(page, page + i); 1330 if (unlikely(check_free_page(page + i))) { 1331 bad++; 1332 continue; 1333 } 1334 (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP; 1335 } 1336 } 1337 if (PageMappingFlags(page)) 1338 page->mapping = NULL; 1339 if (memcg_kmem_enabled() && PageMemcgKmem(page)) 1340 __memcg_kmem_uncharge_page(page, order); 1341 if (check_free) 1342 bad += check_free_page(page); 1343 if (bad) 1344 return false; 1345 1346 page_cpupid_reset_last(page); 1347 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP; 1348 reset_page_owner(page, order); 1349 page_table_check_free(page, order); 1350 1351 if (!PageHighMem(page)) { 1352 debug_check_no_locks_freed(page_address(page), 1353 PAGE_SIZE << order); 1354 debug_check_no_obj_freed(page_address(page), 1355 PAGE_SIZE << order); 1356 } 1357 1358 kernel_poison_pages(page, 1 << order); 1359 1360 /* 1361 * As memory initialization might be integrated into KASAN, 1362 * kasan_free_pages and kernel_init_free_pages must be 1363 * kept together to avoid discrepancies in behavior. 1364 * 1365 * With hardware tag-based KASAN, memory tags must be set before the 1366 * page becomes unavailable via debug_pagealloc or arch_free_page. 1367 */ 1368 if (kasan_has_integrated_init()) { 1369 if (!skip_kasan_poison) 1370 kasan_free_pages(page, order); 1371 } else { 1372 bool init = want_init_on_free(); 1373 1374 if (init) 1375 kernel_init_free_pages(page, 1 << order, false); 1376 if (!skip_kasan_poison) 1377 kasan_poison_pages(page, order, init); 1378 } 1379 1380 /* 1381 * arch_free_page() can make the page's contents inaccessible. s390 1382 * does this. So nothing which can access the page's contents should 1383 * happen after this. 1384 */ 1385 arch_free_page(page, order); 1386 1387 debug_pagealloc_unmap_pages(page, 1 << order); 1388 1389 return true; 1390 } 1391 1392 #ifdef CONFIG_DEBUG_VM 1393 /* 1394 * With DEBUG_VM enabled, order-0 pages are checked immediately when being freed 1395 * to pcp lists. With debug_pagealloc also enabled, they are also rechecked when 1396 * moved from pcp lists to free lists. 1397 */ 1398 static bool free_pcp_prepare(struct page *page, unsigned int order) 1399 { 1400 return free_pages_prepare(page, order, true, FPI_NONE); 1401 } 1402 1403 static bool bulkfree_pcp_prepare(struct page *page) 1404 { 1405 if (debug_pagealloc_enabled_static()) 1406 return check_free_page(page); 1407 else 1408 return false; 1409 } 1410 #else 1411 /* 1412 * With DEBUG_VM disabled, order-0 pages being freed are checked only when 1413 * moving from pcp lists to free list in order to reduce overhead. With 1414 * debug_pagealloc enabled, they are checked also immediately when being freed 1415 * to the pcp lists. 1416 */ 1417 static bool free_pcp_prepare(struct page *page, unsigned int order) 1418 { 1419 if (debug_pagealloc_enabled_static()) 1420 return free_pages_prepare(page, order, true, FPI_NONE); 1421 else 1422 return free_pages_prepare(page, order, false, FPI_NONE); 1423 } 1424 1425 static bool bulkfree_pcp_prepare(struct page *page) 1426 { 1427 return check_free_page(page); 1428 } 1429 #endif /* CONFIG_DEBUG_VM */ 1430 1431 /* 1432 * Frees a number of pages from the PCP lists 1433 * Assumes all pages on list are in same zone. 1434 * count is the number of pages to free. 1435 */ 1436 static void free_pcppages_bulk(struct zone *zone, int count, 1437 struct per_cpu_pages *pcp, 1438 int pindex) 1439 { 1440 int min_pindex = 0; 1441 int max_pindex = NR_PCP_LISTS - 1; 1442 unsigned int order; 1443 bool isolated_pageblocks; 1444 struct page *page; 1445 1446 /* 1447 * Ensure proper count is passed which otherwise would stuck in the 1448 * below while (list_empty(list)) loop. 1449 */ 1450 count = min(pcp->count, count); 1451 1452 /* Ensure requested pindex is drained first. */ 1453 pindex = pindex - 1; 1454 1455 /* 1456 * local_lock_irq held so equivalent to spin_lock_irqsave for 1457 * both PREEMPT_RT and non-PREEMPT_RT configurations. 1458 */ 1459 spin_lock(&zone->lock); 1460 isolated_pageblocks = has_isolate_pageblock(zone); 1461 1462 while (count > 0) { 1463 struct list_head *list; 1464 int nr_pages; 1465 1466 /* Remove pages from lists in a round-robin fashion. */ 1467 do { 1468 if (++pindex > max_pindex) 1469 pindex = min_pindex; 1470 list = &pcp->lists[pindex]; 1471 if (!list_empty(list)) 1472 break; 1473 1474 if (pindex == max_pindex) 1475 max_pindex--; 1476 if (pindex == min_pindex) 1477 min_pindex++; 1478 } while (1); 1479 1480 order = pindex_to_order(pindex); 1481 nr_pages = 1 << order; 1482 BUILD_BUG_ON(MAX_ORDER >= (1<<NR_PCP_ORDER_WIDTH)); 1483 do { 1484 int mt; 1485 1486 page = list_last_entry(list, struct page, lru); 1487 mt = get_pcppage_migratetype(page); 1488 1489 /* must delete to avoid corrupting pcp list */ 1490 list_del(&page->lru); 1491 count -= nr_pages; 1492 pcp->count -= nr_pages; 1493 1494 if (bulkfree_pcp_prepare(page)) 1495 continue; 1496 1497 /* MIGRATE_ISOLATE page should not go to pcplists */ 1498 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page); 1499 /* Pageblock could have been isolated meanwhile */ 1500 if (unlikely(isolated_pageblocks)) 1501 mt = get_pageblock_migratetype(page); 1502 1503 __free_one_page(page, page_to_pfn(page), zone, order, mt, FPI_NONE); 1504 trace_mm_page_pcpu_drain(page, order, mt); 1505 } while (count > 0 && !list_empty(list)); 1506 } 1507 1508 spin_unlock(&zone->lock); 1509 } 1510 1511 static void free_one_page(struct zone *zone, 1512 struct page *page, unsigned long pfn, 1513 unsigned int order, 1514 int migratetype, fpi_t fpi_flags) 1515 { 1516 unsigned long flags; 1517 1518 spin_lock_irqsave(&zone->lock, flags); 1519 if (unlikely(has_isolate_pageblock(zone) || 1520 is_migrate_isolate(migratetype))) { 1521 migratetype = get_pfnblock_migratetype(page, pfn); 1522 } 1523 __free_one_page(page, pfn, zone, order, migratetype, fpi_flags); 1524 spin_unlock_irqrestore(&zone->lock, flags); 1525 } 1526 1527 static void __meminit __init_single_page(struct page *page, unsigned long pfn, 1528 unsigned long zone, int nid) 1529 { 1530 mm_zero_struct_page(page); 1531 set_page_links(page, zone, nid, pfn); 1532 init_page_count(page); 1533 page_mapcount_reset(page); 1534 page_cpupid_reset_last(page); 1535 page_kasan_tag_reset(page); 1536 1537 INIT_LIST_HEAD(&page->lru); 1538 #ifdef WANT_PAGE_VIRTUAL 1539 /* The shift won't overflow because ZONE_NORMAL is below 4G. */ 1540 if (!is_highmem_idx(zone)) 1541 set_page_address(page, __va(pfn << PAGE_SHIFT)); 1542 #endif 1543 } 1544 1545 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 1546 static void __meminit init_reserved_page(unsigned long pfn) 1547 { 1548 pg_data_t *pgdat; 1549 int nid, zid; 1550 1551 if (!early_page_uninitialised(pfn)) 1552 return; 1553 1554 nid = early_pfn_to_nid(pfn); 1555 pgdat = NODE_DATA(nid); 1556 1557 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 1558 struct zone *zone = &pgdat->node_zones[zid]; 1559 1560 if (zone_spans_pfn(zone, pfn)) 1561 break; 1562 } 1563 __init_single_page(pfn_to_page(pfn), pfn, zid, nid); 1564 } 1565 #else 1566 static inline void init_reserved_page(unsigned long pfn) 1567 { 1568 } 1569 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */ 1570 1571 /* 1572 * Initialised pages do not have PageReserved set. This function is 1573 * called for each range allocated by the bootmem allocator and 1574 * marks the pages PageReserved. The remaining valid pages are later 1575 * sent to the buddy page allocator. 1576 */ 1577 void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end) 1578 { 1579 unsigned long start_pfn = PFN_DOWN(start); 1580 unsigned long end_pfn = PFN_UP(end); 1581 1582 for (; start_pfn < end_pfn; start_pfn++) { 1583 if (pfn_valid(start_pfn)) { 1584 struct page *page = pfn_to_page(start_pfn); 1585 1586 init_reserved_page(start_pfn); 1587 1588 /* Avoid false-positive PageTail() */ 1589 INIT_LIST_HEAD(&page->lru); 1590 1591 /* 1592 * no need for atomic set_bit because the struct 1593 * page is not visible yet so nobody should 1594 * access it yet. 1595 */ 1596 __SetPageReserved(page); 1597 } 1598 } 1599 } 1600 1601 static void __free_pages_ok(struct page *page, unsigned int order, 1602 fpi_t fpi_flags) 1603 { 1604 unsigned long flags; 1605 int migratetype; 1606 unsigned long pfn = page_to_pfn(page); 1607 struct zone *zone = page_zone(page); 1608 1609 if (!free_pages_prepare(page, order, true, fpi_flags)) 1610 return; 1611 1612 migratetype = get_pfnblock_migratetype(page, pfn); 1613 1614 spin_lock_irqsave(&zone->lock, flags); 1615 if (unlikely(has_isolate_pageblock(zone) || 1616 is_migrate_isolate(migratetype))) { 1617 migratetype = get_pfnblock_migratetype(page, pfn); 1618 } 1619 __free_one_page(page, pfn, zone, order, migratetype, fpi_flags); 1620 spin_unlock_irqrestore(&zone->lock, flags); 1621 1622 __count_vm_events(PGFREE, 1 << order); 1623 } 1624 1625 void __free_pages_core(struct page *page, unsigned int order) 1626 { 1627 unsigned int nr_pages = 1 << order; 1628 struct page *p = page; 1629 unsigned int loop; 1630 1631 /* 1632 * When initializing the memmap, __init_single_page() sets the refcount 1633 * of all pages to 1 ("allocated"/"not free"). We have to set the 1634 * refcount of all involved pages to 0. 1635 */ 1636 prefetchw(p); 1637 for (loop = 0; loop < (nr_pages - 1); loop++, p++) { 1638 prefetchw(p + 1); 1639 __ClearPageReserved(p); 1640 set_page_count(p, 0); 1641 } 1642 __ClearPageReserved(p); 1643 set_page_count(p, 0); 1644 1645 atomic_long_add(nr_pages, &page_zone(page)->managed_pages); 1646 1647 /* 1648 * Bypass PCP and place fresh pages right to the tail, primarily 1649 * relevant for memory onlining. 1650 */ 1651 __free_pages_ok(page, order, FPI_TO_TAIL | FPI_SKIP_KASAN_POISON); 1652 } 1653 1654 #ifdef CONFIG_NUMA 1655 1656 /* 1657 * During memory init memblocks map pfns to nids. The search is expensive and 1658 * this caches recent lookups. The implementation of __early_pfn_to_nid 1659 * treats start/end as pfns. 1660 */ 1661 struct mminit_pfnnid_cache { 1662 unsigned long last_start; 1663 unsigned long last_end; 1664 int last_nid; 1665 }; 1666 1667 static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata; 1668 1669 /* 1670 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on. 1671 */ 1672 static int __meminit __early_pfn_to_nid(unsigned long pfn, 1673 struct mminit_pfnnid_cache *state) 1674 { 1675 unsigned long start_pfn, end_pfn; 1676 int nid; 1677 1678 if (state->last_start <= pfn && pfn < state->last_end) 1679 return state->last_nid; 1680 1681 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn); 1682 if (nid != NUMA_NO_NODE) { 1683 state->last_start = start_pfn; 1684 state->last_end = end_pfn; 1685 state->last_nid = nid; 1686 } 1687 1688 return nid; 1689 } 1690 1691 int __meminit early_pfn_to_nid(unsigned long pfn) 1692 { 1693 static DEFINE_SPINLOCK(early_pfn_lock); 1694 int nid; 1695 1696 spin_lock(&early_pfn_lock); 1697 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache); 1698 if (nid < 0) 1699 nid = first_online_node; 1700 spin_unlock(&early_pfn_lock); 1701 1702 return nid; 1703 } 1704 #endif /* CONFIG_NUMA */ 1705 1706 void __init memblock_free_pages(struct page *page, unsigned long pfn, 1707 unsigned int order) 1708 { 1709 if (early_page_uninitialised(pfn)) 1710 return; 1711 __free_pages_core(page, order); 1712 } 1713 1714 /* 1715 * Check that the whole (or subset of) a pageblock given by the interval of 1716 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it 1717 * with the migration of free compaction scanner. 1718 * 1719 * Return struct page pointer of start_pfn, or NULL if checks were not passed. 1720 * 1721 * It's possible on some configurations to have a setup like node0 node1 node0 1722 * i.e. it's possible that all pages within a zones range of pages do not 1723 * belong to a single zone. We assume that a border between node0 and node1 1724 * can occur within a single pageblock, but not a node0 node1 node0 1725 * interleaving within a single pageblock. It is therefore sufficient to check 1726 * the first and last page of a pageblock and avoid checking each individual 1727 * page in a pageblock. 1728 */ 1729 struct page *__pageblock_pfn_to_page(unsigned long start_pfn, 1730 unsigned long end_pfn, struct zone *zone) 1731 { 1732 struct page *start_page; 1733 struct page *end_page; 1734 1735 /* end_pfn is one past the range we are checking */ 1736 end_pfn--; 1737 1738 if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn)) 1739 return NULL; 1740 1741 start_page = pfn_to_online_page(start_pfn); 1742 if (!start_page) 1743 return NULL; 1744 1745 if (page_zone(start_page) != zone) 1746 return NULL; 1747 1748 end_page = pfn_to_page(end_pfn); 1749 1750 /* This gives a shorter code than deriving page_zone(end_page) */ 1751 if (page_zone_id(start_page) != page_zone_id(end_page)) 1752 return NULL; 1753 1754 return start_page; 1755 } 1756 1757 void set_zone_contiguous(struct zone *zone) 1758 { 1759 unsigned long block_start_pfn = zone->zone_start_pfn; 1760 unsigned long block_end_pfn; 1761 1762 block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages); 1763 for (; block_start_pfn < zone_end_pfn(zone); 1764 block_start_pfn = block_end_pfn, 1765 block_end_pfn += pageblock_nr_pages) { 1766 1767 block_end_pfn = min(block_end_pfn, zone_end_pfn(zone)); 1768 1769 if (!__pageblock_pfn_to_page(block_start_pfn, 1770 block_end_pfn, zone)) 1771 return; 1772 cond_resched(); 1773 } 1774 1775 /* We confirm that there is no hole */ 1776 zone->contiguous = true; 1777 } 1778 1779 void clear_zone_contiguous(struct zone *zone) 1780 { 1781 zone->contiguous = false; 1782 } 1783 1784 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 1785 static void __init deferred_free_range(unsigned long pfn, 1786 unsigned long nr_pages) 1787 { 1788 struct page *page; 1789 unsigned long i; 1790 1791 if (!nr_pages) 1792 return; 1793 1794 page = pfn_to_page(pfn); 1795 1796 /* Free a large naturally-aligned chunk if possible */ 1797 if (nr_pages == pageblock_nr_pages && 1798 (pfn & (pageblock_nr_pages - 1)) == 0) { 1799 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 1800 __free_pages_core(page, pageblock_order); 1801 return; 1802 } 1803 1804 for (i = 0; i < nr_pages; i++, page++, pfn++) { 1805 if ((pfn & (pageblock_nr_pages - 1)) == 0) 1806 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 1807 __free_pages_core(page, 0); 1808 } 1809 } 1810 1811 /* Completion tracking for deferred_init_memmap() threads */ 1812 static atomic_t pgdat_init_n_undone __initdata; 1813 static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp); 1814 1815 static inline void __init pgdat_init_report_one_done(void) 1816 { 1817 if (atomic_dec_and_test(&pgdat_init_n_undone)) 1818 complete(&pgdat_init_all_done_comp); 1819 } 1820 1821 /* 1822 * Returns true if page needs to be initialized or freed to buddy allocator. 1823 * 1824 * First we check if pfn is valid on architectures where it is possible to have 1825 * holes within pageblock_nr_pages. On systems where it is not possible, this 1826 * function is optimized out. 1827 * 1828 * Then, we check if a current large page is valid by only checking the validity 1829 * of the head pfn. 1830 */ 1831 static inline bool __init deferred_pfn_valid(unsigned long pfn) 1832 { 1833 if (!(pfn & (pageblock_nr_pages - 1)) && !pfn_valid(pfn)) 1834 return false; 1835 return true; 1836 } 1837 1838 /* 1839 * Free pages to buddy allocator. Try to free aligned pages in 1840 * pageblock_nr_pages sizes. 1841 */ 1842 static void __init deferred_free_pages(unsigned long pfn, 1843 unsigned long end_pfn) 1844 { 1845 unsigned long nr_pgmask = pageblock_nr_pages - 1; 1846 unsigned long nr_free = 0; 1847 1848 for (; pfn < end_pfn; pfn++) { 1849 if (!deferred_pfn_valid(pfn)) { 1850 deferred_free_range(pfn - nr_free, nr_free); 1851 nr_free = 0; 1852 } else if (!(pfn & nr_pgmask)) { 1853 deferred_free_range(pfn - nr_free, nr_free); 1854 nr_free = 1; 1855 } else { 1856 nr_free++; 1857 } 1858 } 1859 /* Free the last block of pages to allocator */ 1860 deferred_free_range(pfn - nr_free, nr_free); 1861 } 1862 1863 /* 1864 * Initialize struct pages. We minimize pfn page lookups and scheduler checks 1865 * by performing it only once every pageblock_nr_pages. 1866 * Return number of pages initialized. 1867 */ 1868 static unsigned long __init deferred_init_pages(struct zone *zone, 1869 unsigned long pfn, 1870 unsigned long end_pfn) 1871 { 1872 unsigned long nr_pgmask = pageblock_nr_pages - 1; 1873 int nid = zone_to_nid(zone); 1874 unsigned long nr_pages = 0; 1875 int zid = zone_idx(zone); 1876 struct page *page = NULL; 1877 1878 for (; pfn < end_pfn; pfn++) { 1879 if (!deferred_pfn_valid(pfn)) { 1880 page = NULL; 1881 continue; 1882 } else if (!page || !(pfn & nr_pgmask)) { 1883 page = pfn_to_page(pfn); 1884 } else { 1885 page++; 1886 } 1887 __init_single_page(page, pfn, zid, nid); 1888 nr_pages++; 1889 } 1890 return (nr_pages); 1891 } 1892 1893 /* 1894 * This function is meant to pre-load the iterator for the zone init. 1895 * Specifically it walks through the ranges until we are caught up to the 1896 * first_init_pfn value and exits there. If we never encounter the value we 1897 * return false indicating there are no valid ranges left. 1898 */ 1899 static bool __init 1900 deferred_init_mem_pfn_range_in_zone(u64 *i, struct zone *zone, 1901 unsigned long *spfn, unsigned long *epfn, 1902 unsigned long first_init_pfn) 1903 { 1904 u64 j; 1905 1906 /* 1907 * Start out by walking through the ranges in this zone that have 1908 * already been initialized. We don't need to do anything with them 1909 * so we just need to flush them out of the system. 1910 */ 1911 for_each_free_mem_pfn_range_in_zone(j, zone, spfn, epfn) { 1912 if (*epfn <= first_init_pfn) 1913 continue; 1914 if (*spfn < first_init_pfn) 1915 *spfn = first_init_pfn; 1916 *i = j; 1917 return true; 1918 } 1919 1920 return false; 1921 } 1922 1923 /* 1924 * Initialize and free pages. We do it in two loops: first we initialize 1925 * struct page, then free to buddy allocator, because while we are 1926 * freeing pages we can access pages that are ahead (computing buddy 1927 * page in __free_one_page()). 1928 * 1929 * In order to try and keep some memory in the cache we have the loop 1930 * broken along max page order boundaries. This way we will not cause 1931 * any issues with the buddy page computation. 1932 */ 1933 static unsigned long __init 1934 deferred_init_maxorder(u64 *i, struct zone *zone, unsigned long *start_pfn, 1935 unsigned long *end_pfn) 1936 { 1937 unsigned long mo_pfn = ALIGN(*start_pfn + 1, MAX_ORDER_NR_PAGES); 1938 unsigned long spfn = *start_pfn, epfn = *end_pfn; 1939 unsigned long nr_pages = 0; 1940 u64 j = *i; 1941 1942 /* First we loop through and initialize the page values */ 1943 for_each_free_mem_pfn_range_in_zone_from(j, zone, start_pfn, end_pfn) { 1944 unsigned long t; 1945 1946 if (mo_pfn <= *start_pfn) 1947 break; 1948 1949 t = min(mo_pfn, *end_pfn); 1950 nr_pages += deferred_init_pages(zone, *start_pfn, t); 1951 1952 if (mo_pfn < *end_pfn) { 1953 *start_pfn = mo_pfn; 1954 break; 1955 } 1956 } 1957 1958 /* Reset values and now loop through freeing pages as needed */ 1959 swap(j, *i); 1960 1961 for_each_free_mem_pfn_range_in_zone_from(j, zone, &spfn, &epfn) { 1962 unsigned long t; 1963 1964 if (mo_pfn <= spfn) 1965 break; 1966 1967 t = min(mo_pfn, epfn); 1968 deferred_free_pages(spfn, t); 1969 1970 if (mo_pfn <= epfn) 1971 break; 1972 } 1973 1974 return nr_pages; 1975 } 1976 1977 static void __init 1978 deferred_init_memmap_chunk(unsigned long start_pfn, unsigned long end_pfn, 1979 void *arg) 1980 { 1981 unsigned long spfn, epfn; 1982 struct zone *zone = arg; 1983 u64 i; 1984 1985 deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, start_pfn); 1986 1987 /* 1988 * Initialize and free pages in MAX_ORDER sized increments so that we 1989 * can avoid introducing any issues with the buddy allocator. 1990 */ 1991 while (spfn < end_pfn) { 1992 deferred_init_maxorder(&i, zone, &spfn, &epfn); 1993 cond_resched(); 1994 } 1995 } 1996 1997 /* An arch may override for more concurrency. */ 1998 __weak int __init 1999 deferred_page_init_max_threads(const struct cpumask *node_cpumask) 2000 { 2001 return 1; 2002 } 2003 2004 /* Initialise remaining memory on a node */ 2005 static int __init deferred_init_memmap(void *data) 2006 { 2007 pg_data_t *pgdat = data; 2008 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id); 2009 unsigned long spfn = 0, epfn = 0; 2010 unsigned long first_init_pfn, flags; 2011 unsigned long start = jiffies; 2012 struct zone *zone; 2013 int zid, max_threads; 2014 u64 i; 2015 2016 /* Bind memory initialisation thread to a local node if possible */ 2017 if (!cpumask_empty(cpumask)) 2018 set_cpus_allowed_ptr(current, cpumask); 2019 2020 pgdat_resize_lock(pgdat, &flags); 2021 first_init_pfn = pgdat->first_deferred_pfn; 2022 if (first_init_pfn == ULONG_MAX) { 2023 pgdat_resize_unlock(pgdat, &flags); 2024 pgdat_init_report_one_done(); 2025 return 0; 2026 } 2027 2028 /* Sanity check boundaries */ 2029 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn); 2030 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat)); 2031 pgdat->first_deferred_pfn = ULONG_MAX; 2032 2033 /* 2034 * Once we unlock here, the zone cannot be grown anymore, thus if an 2035 * interrupt thread must allocate this early in boot, zone must be 2036 * pre-grown prior to start of deferred page initialization. 2037 */ 2038 pgdat_resize_unlock(pgdat, &flags); 2039 2040 /* Only the highest zone is deferred so find it */ 2041 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 2042 zone = pgdat->node_zones + zid; 2043 if (first_init_pfn < zone_end_pfn(zone)) 2044 break; 2045 } 2046 2047 /* If the zone is empty somebody else may have cleared out the zone */ 2048 if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, 2049 first_init_pfn)) 2050 goto zone_empty; 2051 2052 max_threads = deferred_page_init_max_threads(cpumask); 2053 2054 while (spfn < epfn) { 2055 unsigned long epfn_align = ALIGN(epfn, PAGES_PER_SECTION); 2056 struct padata_mt_job job = { 2057 .thread_fn = deferred_init_memmap_chunk, 2058 .fn_arg = zone, 2059 .start = spfn, 2060 .size = epfn_align - spfn, 2061 .align = PAGES_PER_SECTION, 2062 .min_chunk = PAGES_PER_SECTION, 2063 .max_threads = max_threads, 2064 }; 2065 2066 padata_do_multithreaded(&job); 2067 deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, 2068 epfn_align); 2069 } 2070 zone_empty: 2071 /* Sanity check that the next zone really is unpopulated */ 2072 WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone)); 2073 2074 pr_info("node %d deferred pages initialised in %ums\n", 2075 pgdat->node_id, jiffies_to_msecs(jiffies - start)); 2076 2077 pgdat_init_report_one_done(); 2078 return 0; 2079 } 2080 2081 /* 2082 * If this zone has deferred pages, try to grow it by initializing enough 2083 * deferred pages to satisfy the allocation specified by order, rounded up to 2084 * the nearest PAGES_PER_SECTION boundary. So we're adding memory in increments 2085 * of SECTION_SIZE bytes by initializing struct pages in increments of 2086 * PAGES_PER_SECTION * sizeof(struct page) bytes. 2087 * 2088 * Return true when zone was grown, otherwise return false. We return true even 2089 * when we grow less than requested, to let the caller decide if there are 2090 * enough pages to satisfy the allocation. 2091 * 2092 * Note: We use noinline because this function is needed only during boot, and 2093 * it is called from a __ref function _deferred_grow_zone. This way we are 2094 * making sure that it is not inlined into permanent text section. 2095 */ 2096 static noinline bool __init 2097 deferred_grow_zone(struct zone *zone, unsigned int order) 2098 { 2099 unsigned long nr_pages_needed = ALIGN(1 << order, PAGES_PER_SECTION); 2100 pg_data_t *pgdat = zone->zone_pgdat; 2101 unsigned long first_deferred_pfn = pgdat->first_deferred_pfn; 2102 unsigned long spfn, epfn, flags; 2103 unsigned long nr_pages = 0; 2104 u64 i; 2105 2106 /* Only the last zone may have deferred pages */ 2107 if (zone_end_pfn(zone) != pgdat_end_pfn(pgdat)) 2108 return false; 2109 2110 pgdat_resize_lock(pgdat, &flags); 2111 2112 /* 2113 * If someone grew this zone while we were waiting for spinlock, return 2114 * true, as there might be enough pages already. 2115 */ 2116 if (first_deferred_pfn != pgdat->first_deferred_pfn) { 2117 pgdat_resize_unlock(pgdat, &flags); 2118 return true; 2119 } 2120 2121 /* If the zone is empty somebody else may have cleared out the zone */ 2122 if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, 2123 first_deferred_pfn)) { 2124 pgdat->first_deferred_pfn = ULONG_MAX; 2125 pgdat_resize_unlock(pgdat, &flags); 2126 /* Retry only once. */ 2127 return first_deferred_pfn != ULONG_MAX; 2128 } 2129 2130 /* 2131 * Initialize and free pages in MAX_ORDER sized increments so 2132 * that we can avoid introducing any issues with the buddy 2133 * allocator. 2134 */ 2135 while (spfn < epfn) { 2136 /* update our first deferred PFN for this section */ 2137 first_deferred_pfn = spfn; 2138 2139 nr_pages += deferred_init_maxorder(&i, zone, &spfn, &epfn); 2140 touch_nmi_watchdog(); 2141 2142 /* We should only stop along section boundaries */ 2143 if ((first_deferred_pfn ^ spfn) < PAGES_PER_SECTION) 2144 continue; 2145 2146 /* If our quota has been met we can stop here */ 2147 if (nr_pages >= nr_pages_needed) 2148 break; 2149 } 2150 2151 pgdat->first_deferred_pfn = spfn; 2152 pgdat_resize_unlock(pgdat, &flags); 2153 2154 return nr_pages > 0; 2155 } 2156 2157 /* 2158 * deferred_grow_zone() is __init, but it is called from 2159 * get_page_from_freelist() during early boot until deferred_pages permanently 2160 * disables this call. This is why we have refdata wrapper to avoid warning, 2161 * and to ensure that the function body gets unloaded. 2162 */ 2163 static bool __ref 2164 _deferred_grow_zone(struct zone *zone, unsigned int order) 2165 { 2166 return deferred_grow_zone(zone, order); 2167 } 2168 2169 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */ 2170 2171 void __init page_alloc_init_late(void) 2172 { 2173 struct zone *zone; 2174 int nid; 2175 2176 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 2177 2178 /* There will be num_node_state(N_MEMORY) threads */ 2179 atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY)); 2180 for_each_node_state(nid, N_MEMORY) { 2181 kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid); 2182 } 2183 2184 /* Block until all are initialised */ 2185 wait_for_completion(&pgdat_init_all_done_comp); 2186 2187 /* 2188 * We initialized the rest of the deferred pages. Permanently disable 2189 * on-demand struct page initialization. 2190 */ 2191 static_branch_disable(&deferred_pages); 2192 2193 /* Reinit limits that are based on free pages after the kernel is up */ 2194 files_maxfiles_init(); 2195 #endif 2196 2197 buffer_init(); 2198 2199 /* Discard memblock private memory */ 2200 memblock_discard(); 2201 2202 for_each_node_state(nid, N_MEMORY) 2203 shuffle_free_memory(NODE_DATA(nid)); 2204 2205 for_each_populated_zone(zone) 2206 set_zone_contiguous(zone); 2207 } 2208 2209 #ifdef CONFIG_CMA 2210 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */ 2211 void __init init_cma_reserved_pageblock(struct page *page) 2212 { 2213 unsigned i = pageblock_nr_pages; 2214 struct page *p = page; 2215 2216 do { 2217 __ClearPageReserved(p); 2218 set_page_count(p, 0); 2219 } while (++p, --i); 2220 2221 set_pageblock_migratetype(page, MIGRATE_CMA); 2222 set_page_refcounted(page); 2223 __free_pages(page, pageblock_order); 2224 2225 adjust_managed_page_count(page, pageblock_nr_pages); 2226 page_zone(page)->cma_pages += pageblock_nr_pages; 2227 } 2228 #endif 2229 2230 /* 2231 * The order of subdivision here is critical for the IO subsystem. 2232 * Please do not alter this order without good reasons and regression 2233 * testing. Specifically, as large blocks of memory are subdivided, 2234 * the order in which smaller blocks are delivered depends on the order 2235 * they're subdivided in this function. This is the primary factor 2236 * influencing the order in which pages are delivered to the IO 2237 * subsystem according to empirical testing, and this is also justified 2238 * by considering the behavior of a buddy system containing a single 2239 * large block of memory acted on by a series of small allocations. 2240 * This behavior is a critical factor in sglist merging's success. 2241 * 2242 * -- nyc 2243 */ 2244 static inline void expand(struct zone *zone, struct page *page, 2245 int low, int high, int migratetype) 2246 { 2247 unsigned long size = 1 << high; 2248 2249 while (high > low) { 2250 high--; 2251 size >>= 1; 2252 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]); 2253 2254 /* 2255 * Mark as guard pages (or page), that will allow to 2256 * merge back to allocator when buddy will be freed. 2257 * Corresponding page table entries will not be touched, 2258 * pages will stay not present in virtual address space 2259 */ 2260 if (set_page_guard(zone, &page[size], high, migratetype)) 2261 continue; 2262 2263 add_to_free_list(&page[size], zone, high, migratetype); 2264 set_buddy_order(&page[size], high); 2265 } 2266 } 2267 2268 static void check_new_page_bad(struct page *page) 2269 { 2270 if (unlikely(page->flags & __PG_HWPOISON)) { 2271 /* Don't complain about hwpoisoned pages */ 2272 page_mapcount_reset(page); /* remove PageBuddy */ 2273 return; 2274 } 2275 2276 bad_page(page, 2277 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_PREP)); 2278 } 2279 2280 /* 2281 * This page is about to be returned from the page allocator 2282 */ 2283 static inline int check_new_page(struct page *page) 2284 { 2285 if (likely(page_expected_state(page, 2286 PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON))) 2287 return 0; 2288 2289 check_new_page_bad(page); 2290 return 1; 2291 } 2292 2293 static bool check_new_pages(struct page *page, unsigned int order) 2294 { 2295 int i; 2296 for (i = 0; i < (1 << order); i++) { 2297 struct page *p = page + i; 2298 2299 if (unlikely(check_new_page(p))) 2300 return true; 2301 } 2302 2303 return false; 2304 } 2305 2306 #ifdef CONFIG_DEBUG_VM 2307 /* 2308 * With DEBUG_VM enabled, order-0 pages are checked for expected state when 2309 * being allocated from pcp lists. With debug_pagealloc also enabled, they are 2310 * also checked when pcp lists are refilled from the free lists. 2311 */ 2312 static inline bool check_pcp_refill(struct page *page, unsigned int order) 2313 { 2314 if (debug_pagealloc_enabled_static()) 2315 return check_new_pages(page, order); 2316 else 2317 return false; 2318 } 2319 2320 static inline bool check_new_pcp(struct page *page, unsigned int order) 2321 { 2322 return check_new_pages(page, order); 2323 } 2324 #else 2325 /* 2326 * With DEBUG_VM disabled, free order-0 pages are checked for expected state 2327 * when pcp lists are being refilled from the free lists. With debug_pagealloc 2328 * enabled, they are also checked when being allocated from the pcp lists. 2329 */ 2330 static inline bool check_pcp_refill(struct page *page, unsigned int order) 2331 { 2332 return check_new_pages(page, order); 2333 } 2334 static inline bool check_new_pcp(struct page *page, unsigned int order) 2335 { 2336 if (debug_pagealloc_enabled_static()) 2337 return check_new_pages(page, order); 2338 else 2339 return false; 2340 } 2341 #endif /* CONFIG_DEBUG_VM */ 2342 2343 inline void post_alloc_hook(struct page *page, unsigned int order, 2344 gfp_t gfp_flags) 2345 { 2346 set_page_private(page, 0); 2347 set_page_refcounted(page); 2348 2349 arch_alloc_page(page, order); 2350 debug_pagealloc_map_pages(page, 1 << order); 2351 2352 /* 2353 * Page unpoisoning must happen before memory initialization. 2354 * Otherwise, the poison pattern will be overwritten for __GFP_ZERO 2355 * allocations and the page unpoisoning code will complain. 2356 */ 2357 kernel_unpoison_pages(page, 1 << order); 2358 2359 /* 2360 * As memory initialization might be integrated into KASAN, 2361 * kasan_alloc_pages and kernel_init_free_pages must be 2362 * kept together to avoid discrepancies in behavior. 2363 */ 2364 if (kasan_has_integrated_init()) { 2365 kasan_alloc_pages(page, order, gfp_flags); 2366 } else { 2367 bool init = !want_init_on_free() && want_init_on_alloc(gfp_flags); 2368 2369 kasan_unpoison_pages(page, order, init); 2370 if (init) 2371 kernel_init_free_pages(page, 1 << order, 2372 gfp_flags & __GFP_ZEROTAGS); 2373 } 2374 2375 set_page_owner(page, order, gfp_flags); 2376 page_table_check_alloc(page, order); 2377 } 2378 2379 static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags, 2380 unsigned int alloc_flags) 2381 { 2382 post_alloc_hook(page, order, gfp_flags); 2383 2384 if (order && (gfp_flags & __GFP_COMP)) 2385 prep_compound_page(page, order); 2386 2387 /* 2388 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to 2389 * allocate the page. The expectation is that the caller is taking 2390 * steps that will free more memory. The caller should avoid the page 2391 * being used for !PFMEMALLOC purposes. 2392 */ 2393 if (alloc_flags & ALLOC_NO_WATERMARKS) 2394 set_page_pfmemalloc(page); 2395 else 2396 clear_page_pfmemalloc(page); 2397 } 2398 2399 /* 2400 * Go through the free lists for the given migratetype and remove 2401 * the smallest available page from the freelists 2402 */ 2403 static __always_inline 2404 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order, 2405 int migratetype) 2406 { 2407 unsigned int current_order; 2408 struct free_area *area; 2409 struct page *page; 2410 2411 /* Find a page of the appropriate size in the preferred list */ 2412 for (current_order = order; current_order < MAX_ORDER; ++current_order) { 2413 area = &(zone->free_area[current_order]); 2414 page = get_page_from_free_area(area, migratetype); 2415 if (!page) 2416 continue; 2417 del_page_from_free_list(page, zone, current_order); 2418 expand(zone, page, order, current_order, migratetype); 2419 set_pcppage_migratetype(page, migratetype); 2420 return page; 2421 } 2422 2423 return NULL; 2424 } 2425 2426 2427 /* 2428 * This array describes the order lists are fallen back to when 2429 * the free lists for the desirable migrate type are depleted 2430 * 2431 * The other migratetypes do not have fallbacks. 2432 */ 2433 static int fallbacks[MIGRATE_TYPES][3] = { 2434 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_TYPES }, 2435 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES }, 2436 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_TYPES }, 2437 }; 2438 2439 #ifdef CONFIG_CMA 2440 static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone, 2441 unsigned int order) 2442 { 2443 return __rmqueue_smallest(zone, order, MIGRATE_CMA); 2444 } 2445 #else 2446 static inline struct page *__rmqueue_cma_fallback(struct zone *zone, 2447 unsigned int order) { return NULL; } 2448 #endif 2449 2450 /* 2451 * Move the free pages in a range to the freelist tail of the requested type. 2452 * Note that start_page and end_pages are not aligned on a pageblock 2453 * boundary. If alignment is required, use move_freepages_block() 2454 */ 2455 static int move_freepages(struct zone *zone, 2456 unsigned long start_pfn, unsigned long end_pfn, 2457 int migratetype, int *num_movable) 2458 { 2459 struct page *page; 2460 unsigned long pfn; 2461 unsigned int order; 2462 int pages_moved = 0; 2463 2464 for (pfn = start_pfn; pfn <= end_pfn;) { 2465 page = pfn_to_page(pfn); 2466 if (!PageBuddy(page)) { 2467 /* 2468 * We assume that pages that could be isolated for 2469 * migration are movable. But we don't actually try 2470 * isolating, as that would be expensive. 2471 */ 2472 if (num_movable && 2473 (PageLRU(page) || __PageMovable(page))) 2474 (*num_movable)++; 2475 pfn++; 2476 continue; 2477 } 2478 2479 /* Make sure we are not inadvertently changing nodes */ 2480 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page); 2481 VM_BUG_ON_PAGE(page_zone(page) != zone, page); 2482 2483 order = buddy_order(page); 2484 move_to_free_list(page, zone, order, migratetype); 2485 pfn += 1 << order; 2486 pages_moved += 1 << order; 2487 } 2488 2489 return pages_moved; 2490 } 2491 2492 int move_freepages_block(struct zone *zone, struct page *page, 2493 int migratetype, int *num_movable) 2494 { 2495 unsigned long start_pfn, end_pfn, pfn; 2496 2497 if (num_movable) 2498 *num_movable = 0; 2499 2500 pfn = page_to_pfn(page); 2501 start_pfn = pfn & ~(pageblock_nr_pages - 1); 2502 end_pfn = start_pfn + pageblock_nr_pages - 1; 2503 2504 /* Do not cross zone boundaries */ 2505 if (!zone_spans_pfn(zone, start_pfn)) 2506 start_pfn = pfn; 2507 if (!zone_spans_pfn(zone, end_pfn)) 2508 return 0; 2509 2510 return move_freepages(zone, start_pfn, end_pfn, migratetype, 2511 num_movable); 2512 } 2513 2514 static void change_pageblock_range(struct page *pageblock_page, 2515 int start_order, int migratetype) 2516 { 2517 int nr_pageblocks = 1 << (start_order - pageblock_order); 2518 2519 while (nr_pageblocks--) { 2520 set_pageblock_migratetype(pageblock_page, migratetype); 2521 pageblock_page += pageblock_nr_pages; 2522 } 2523 } 2524 2525 /* 2526 * When we are falling back to another migratetype during allocation, try to 2527 * steal extra free pages from the same pageblocks to satisfy further 2528 * allocations, instead of polluting multiple pageblocks. 2529 * 2530 * If we are stealing a relatively large buddy page, it is likely there will 2531 * be more free pages in the pageblock, so try to steal them all. For 2532 * reclaimable and unmovable allocations, we steal regardless of page size, 2533 * as fragmentation caused by those allocations polluting movable pageblocks 2534 * is worse than movable allocations stealing from unmovable and reclaimable 2535 * pageblocks. 2536 */ 2537 static bool can_steal_fallback(unsigned int order, int start_mt) 2538 { 2539 /* 2540 * Leaving this order check is intended, although there is 2541 * relaxed order check in next check. The reason is that 2542 * we can actually steal whole pageblock if this condition met, 2543 * but, below check doesn't guarantee it and that is just heuristic 2544 * so could be changed anytime. 2545 */ 2546 if (order >= pageblock_order) 2547 return true; 2548 2549 if (order >= pageblock_order / 2 || 2550 start_mt == MIGRATE_RECLAIMABLE || 2551 start_mt == MIGRATE_UNMOVABLE || 2552 page_group_by_mobility_disabled) 2553 return true; 2554 2555 return false; 2556 } 2557 2558 static inline bool boost_watermark(struct zone *zone) 2559 { 2560 unsigned long max_boost; 2561 2562 if (!watermark_boost_factor) 2563 return false; 2564 /* 2565 * Don't bother in zones that are unlikely to produce results. 2566 * On small machines, including kdump capture kernels running 2567 * in a small area, boosting the watermark can cause an out of 2568 * memory situation immediately. 2569 */ 2570 if ((pageblock_nr_pages * 4) > zone_managed_pages(zone)) 2571 return false; 2572 2573 max_boost = mult_frac(zone->_watermark[WMARK_HIGH], 2574 watermark_boost_factor, 10000); 2575 2576 /* 2577 * high watermark may be uninitialised if fragmentation occurs 2578 * very early in boot so do not boost. We do not fall 2579 * through and boost by pageblock_nr_pages as failing 2580 * allocations that early means that reclaim is not going 2581 * to help and it may even be impossible to reclaim the 2582 * boosted watermark resulting in a hang. 2583 */ 2584 if (!max_boost) 2585 return false; 2586 2587 max_boost = max(pageblock_nr_pages, max_boost); 2588 2589 zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages, 2590 max_boost); 2591 2592 return true; 2593 } 2594 2595 /* 2596 * This function implements actual steal behaviour. If order is large enough, 2597 * we can steal whole pageblock. If not, we first move freepages in this 2598 * pageblock to our migratetype and determine how many already-allocated pages 2599 * are there in the pageblock with a compatible migratetype. If at least half 2600 * of pages are free or compatible, we can change migratetype of the pageblock 2601 * itself, so pages freed in the future will be put on the correct free list. 2602 */ 2603 static void steal_suitable_fallback(struct zone *zone, struct page *page, 2604 unsigned int alloc_flags, int start_type, bool whole_block) 2605 { 2606 unsigned int current_order = buddy_order(page); 2607 int free_pages, movable_pages, alike_pages; 2608 int old_block_type; 2609 2610 old_block_type = get_pageblock_migratetype(page); 2611 2612 /* 2613 * This can happen due to races and we want to prevent broken 2614 * highatomic accounting. 2615 */ 2616 if (is_migrate_highatomic(old_block_type)) 2617 goto single_page; 2618 2619 /* Take ownership for orders >= pageblock_order */ 2620 if (current_order >= pageblock_order) { 2621 change_pageblock_range(page, current_order, start_type); 2622 goto single_page; 2623 } 2624 2625 /* 2626 * Boost watermarks to increase reclaim pressure to reduce the 2627 * likelihood of future fallbacks. Wake kswapd now as the node 2628 * may be balanced overall and kswapd will not wake naturally. 2629 */ 2630 if (boost_watermark(zone) && (alloc_flags & ALLOC_KSWAPD)) 2631 set_bit(ZONE_BOOSTED_WATERMARK, &zone->flags); 2632 2633 /* We are not allowed to try stealing from the whole block */ 2634 if (!whole_block) 2635 goto single_page; 2636 2637 free_pages = move_freepages_block(zone, page, start_type, 2638 &movable_pages); 2639 /* 2640 * Determine how many pages are compatible with our allocation. 2641 * For movable allocation, it's the number of movable pages which 2642 * we just obtained. For other types it's a bit more tricky. 2643 */ 2644 if (start_type == MIGRATE_MOVABLE) { 2645 alike_pages = movable_pages; 2646 } else { 2647 /* 2648 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation 2649 * to MOVABLE pageblock, consider all non-movable pages as 2650 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or 2651 * vice versa, be conservative since we can't distinguish the 2652 * exact migratetype of non-movable pages. 2653 */ 2654 if (old_block_type == MIGRATE_MOVABLE) 2655 alike_pages = pageblock_nr_pages 2656 - (free_pages + movable_pages); 2657 else 2658 alike_pages = 0; 2659 } 2660 2661 /* moving whole block can fail due to zone boundary conditions */ 2662 if (!free_pages) 2663 goto single_page; 2664 2665 /* 2666 * If a sufficient number of pages in the block are either free or of 2667 * comparable migratability as our allocation, claim the whole block. 2668 */ 2669 if (free_pages + alike_pages >= (1 << (pageblock_order-1)) || 2670 page_group_by_mobility_disabled) 2671 set_pageblock_migratetype(page, start_type); 2672 2673 return; 2674 2675 single_page: 2676 move_to_free_list(page, zone, current_order, start_type); 2677 } 2678 2679 /* 2680 * Check whether there is a suitable fallback freepage with requested order. 2681 * If only_stealable is true, this function returns fallback_mt only if 2682 * we can steal other freepages all together. This would help to reduce 2683 * fragmentation due to mixed migratetype pages in one pageblock. 2684 */ 2685 int find_suitable_fallback(struct free_area *area, unsigned int order, 2686 int migratetype, bool only_stealable, bool *can_steal) 2687 { 2688 int i; 2689 int fallback_mt; 2690 2691 if (area->nr_free == 0) 2692 return -1; 2693 2694 *can_steal = false; 2695 for (i = 0;; i++) { 2696 fallback_mt = fallbacks[migratetype][i]; 2697 if (fallback_mt == MIGRATE_TYPES) 2698 break; 2699 2700 if (free_area_empty(area, fallback_mt)) 2701 continue; 2702 2703 if (can_steal_fallback(order, migratetype)) 2704 *can_steal = true; 2705 2706 if (!only_stealable) 2707 return fallback_mt; 2708 2709 if (*can_steal) 2710 return fallback_mt; 2711 } 2712 2713 return -1; 2714 } 2715 2716 /* 2717 * Reserve a pageblock for exclusive use of high-order atomic allocations if 2718 * there are no empty page blocks that contain a page with a suitable order 2719 */ 2720 static void reserve_highatomic_pageblock(struct page *page, struct zone *zone, 2721 unsigned int alloc_order) 2722 { 2723 int mt; 2724 unsigned long max_managed, flags; 2725 2726 /* 2727 * Limit the number reserved to 1 pageblock or roughly 1% of a zone. 2728 * Check is race-prone but harmless. 2729 */ 2730 max_managed = (zone_managed_pages(zone) / 100) + pageblock_nr_pages; 2731 if (zone->nr_reserved_highatomic >= max_managed) 2732 return; 2733 2734 spin_lock_irqsave(&zone->lock, flags); 2735 2736 /* Recheck the nr_reserved_highatomic limit under the lock */ 2737 if (zone->nr_reserved_highatomic >= max_managed) 2738 goto out_unlock; 2739 2740 /* Yoink! */ 2741 mt = get_pageblock_migratetype(page); 2742 /* Only reserve normal pageblocks (i.e., they can merge with others) */ 2743 if (migratetype_is_mergeable(mt)) { 2744 zone->nr_reserved_highatomic += pageblock_nr_pages; 2745 set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC); 2746 move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL); 2747 } 2748 2749 out_unlock: 2750 spin_unlock_irqrestore(&zone->lock, flags); 2751 } 2752 2753 /* 2754 * Used when an allocation is about to fail under memory pressure. This 2755 * potentially hurts the reliability of high-order allocations when under 2756 * intense memory pressure but failed atomic allocations should be easier 2757 * to recover from than an OOM. 2758 * 2759 * If @force is true, try to unreserve a pageblock even though highatomic 2760 * pageblock is exhausted. 2761 */ 2762 static bool unreserve_highatomic_pageblock(const struct alloc_context *ac, 2763 bool force) 2764 { 2765 struct zonelist *zonelist = ac->zonelist; 2766 unsigned long flags; 2767 struct zoneref *z; 2768 struct zone *zone; 2769 struct page *page; 2770 int order; 2771 bool ret; 2772 2773 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->highest_zoneidx, 2774 ac->nodemask) { 2775 /* 2776 * Preserve at least one pageblock unless memory pressure 2777 * is really high. 2778 */ 2779 if (!force && zone->nr_reserved_highatomic <= 2780 pageblock_nr_pages) 2781 continue; 2782 2783 spin_lock_irqsave(&zone->lock, flags); 2784 for (order = 0; order < MAX_ORDER; order++) { 2785 struct free_area *area = &(zone->free_area[order]); 2786 2787 page = get_page_from_free_area(area, MIGRATE_HIGHATOMIC); 2788 if (!page) 2789 continue; 2790 2791 /* 2792 * In page freeing path, migratetype change is racy so 2793 * we can counter several free pages in a pageblock 2794 * in this loop although we changed the pageblock type 2795 * from highatomic to ac->migratetype. So we should 2796 * adjust the count once. 2797 */ 2798 if (is_migrate_highatomic_page(page)) { 2799 /* 2800 * It should never happen but changes to 2801 * locking could inadvertently allow a per-cpu 2802 * drain to add pages to MIGRATE_HIGHATOMIC 2803 * while unreserving so be safe and watch for 2804 * underflows. 2805 */ 2806 zone->nr_reserved_highatomic -= min( 2807 pageblock_nr_pages, 2808 zone->nr_reserved_highatomic); 2809 } 2810 2811 /* 2812 * Convert to ac->migratetype and avoid the normal 2813 * pageblock stealing heuristics. Minimally, the caller 2814 * is doing the work and needs the pages. More 2815 * importantly, if the block was always converted to 2816 * MIGRATE_UNMOVABLE or another type then the number 2817 * of pageblocks that cannot be completely freed 2818 * may increase. 2819 */ 2820 set_pageblock_migratetype(page, ac->migratetype); 2821 ret = move_freepages_block(zone, page, ac->migratetype, 2822 NULL); 2823 if (ret) { 2824 spin_unlock_irqrestore(&zone->lock, flags); 2825 return ret; 2826 } 2827 } 2828 spin_unlock_irqrestore(&zone->lock, flags); 2829 } 2830 2831 return false; 2832 } 2833 2834 /* 2835 * Try finding a free buddy page on the fallback list and put it on the free 2836 * list of requested migratetype, possibly along with other pages from the same 2837 * block, depending on fragmentation avoidance heuristics. Returns true if 2838 * fallback was found so that __rmqueue_smallest() can grab it. 2839 * 2840 * The use of signed ints for order and current_order is a deliberate 2841 * deviation from the rest of this file, to make the for loop 2842 * condition simpler. 2843 */ 2844 static __always_inline bool 2845 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype, 2846 unsigned int alloc_flags) 2847 { 2848 struct free_area *area; 2849 int current_order; 2850 int min_order = order; 2851 struct page *page; 2852 int fallback_mt; 2853 bool can_steal; 2854 2855 /* 2856 * Do not steal pages from freelists belonging to other pageblocks 2857 * i.e. orders < pageblock_order. If there are no local zones free, 2858 * the zonelists will be reiterated without ALLOC_NOFRAGMENT. 2859 */ 2860 if (alloc_flags & ALLOC_NOFRAGMENT) 2861 min_order = pageblock_order; 2862 2863 /* 2864 * Find the largest available free page in the other list. This roughly 2865 * approximates finding the pageblock with the most free pages, which 2866 * would be too costly to do exactly. 2867 */ 2868 for (current_order = MAX_ORDER - 1; current_order >= min_order; 2869 --current_order) { 2870 area = &(zone->free_area[current_order]); 2871 fallback_mt = find_suitable_fallback(area, current_order, 2872 start_migratetype, false, &can_steal); 2873 if (fallback_mt == -1) 2874 continue; 2875 2876 /* 2877 * We cannot steal all free pages from the pageblock and the 2878 * requested migratetype is movable. In that case it's better to 2879 * steal and split the smallest available page instead of the 2880 * largest available page, because even if the next movable 2881 * allocation falls back into a different pageblock than this 2882 * one, it won't cause permanent fragmentation. 2883 */ 2884 if (!can_steal && start_migratetype == MIGRATE_MOVABLE 2885 && current_order > order) 2886 goto find_smallest; 2887 2888 goto do_steal; 2889 } 2890 2891 return false; 2892 2893 find_smallest: 2894 for (current_order = order; current_order < MAX_ORDER; 2895 current_order++) { 2896 area = &(zone->free_area[current_order]); 2897 fallback_mt = find_suitable_fallback(area, current_order, 2898 start_migratetype, false, &can_steal); 2899 if (fallback_mt != -1) 2900 break; 2901 } 2902 2903 /* 2904 * This should not happen - we already found a suitable fallback 2905 * when looking for the largest page. 2906 */ 2907 VM_BUG_ON(current_order == MAX_ORDER); 2908 2909 do_steal: 2910 page = get_page_from_free_area(area, fallback_mt); 2911 2912 steal_suitable_fallback(zone, page, alloc_flags, start_migratetype, 2913 can_steal); 2914 2915 trace_mm_page_alloc_extfrag(page, order, current_order, 2916 start_migratetype, fallback_mt); 2917 2918 return true; 2919 2920 } 2921 2922 /* 2923 * Do the hard work of removing an element from the buddy allocator. 2924 * Call me with the zone->lock already held. 2925 */ 2926 static __always_inline struct page * 2927 __rmqueue(struct zone *zone, unsigned int order, int migratetype, 2928 unsigned int alloc_flags) 2929 { 2930 struct page *page; 2931 2932 if (IS_ENABLED(CONFIG_CMA)) { 2933 /* 2934 * Balance movable allocations between regular and CMA areas by 2935 * allocating from CMA when over half of the zone's free memory 2936 * is in the CMA area. 2937 */ 2938 if (alloc_flags & ALLOC_CMA && 2939 zone_page_state(zone, NR_FREE_CMA_PAGES) > 2940 zone_page_state(zone, NR_FREE_PAGES) / 2) { 2941 page = __rmqueue_cma_fallback(zone, order); 2942 if (page) 2943 goto out; 2944 } 2945 } 2946 retry: 2947 page = __rmqueue_smallest(zone, order, migratetype); 2948 if (unlikely(!page)) { 2949 if (alloc_flags & ALLOC_CMA) 2950 page = __rmqueue_cma_fallback(zone, order); 2951 2952 if (!page && __rmqueue_fallback(zone, order, migratetype, 2953 alloc_flags)) 2954 goto retry; 2955 } 2956 out: 2957 if (page) 2958 trace_mm_page_alloc_zone_locked(page, order, migratetype); 2959 return page; 2960 } 2961 2962 /* 2963 * Obtain a specified number of elements from the buddy allocator, all under 2964 * a single hold of the lock, for efficiency. Add them to the supplied list. 2965 * Returns the number of new pages which were placed at *list. 2966 */ 2967 static int rmqueue_bulk(struct zone *zone, unsigned int order, 2968 unsigned long count, struct list_head *list, 2969 int migratetype, unsigned int alloc_flags) 2970 { 2971 int i, allocated = 0; 2972 2973 /* 2974 * local_lock_irq held so equivalent to spin_lock_irqsave for 2975 * both PREEMPT_RT and non-PREEMPT_RT configurations. 2976 */ 2977 spin_lock(&zone->lock); 2978 for (i = 0; i < count; ++i) { 2979 struct page *page = __rmqueue(zone, order, migratetype, 2980 alloc_flags); 2981 if (unlikely(page == NULL)) 2982 break; 2983 2984 if (unlikely(check_pcp_refill(page, order))) 2985 continue; 2986 2987 /* 2988 * Split buddy pages returned by expand() are received here in 2989 * physical page order. The page is added to the tail of 2990 * caller's list. From the callers perspective, the linked list 2991 * is ordered by page number under some conditions. This is 2992 * useful for IO devices that can forward direction from the 2993 * head, thus also in the physical page order. This is useful 2994 * for IO devices that can merge IO requests if the physical 2995 * pages are ordered properly. 2996 */ 2997 list_add_tail(&page->lru, list); 2998 allocated++; 2999 if (is_migrate_cma(get_pcppage_migratetype(page))) 3000 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES, 3001 -(1 << order)); 3002 } 3003 3004 /* 3005 * i pages were removed from the buddy list even if some leak due 3006 * to check_pcp_refill failing so adjust NR_FREE_PAGES based 3007 * on i. Do not confuse with 'allocated' which is the number of 3008 * pages added to the pcp list. 3009 */ 3010 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order)); 3011 spin_unlock(&zone->lock); 3012 return allocated; 3013 } 3014 3015 #ifdef CONFIG_NUMA 3016 /* 3017 * Called from the vmstat counter updater to drain pagesets of this 3018 * currently executing processor on remote nodes after they have 3019 * expired. 3020 * 3021 * Note that this function must be called with the thread pinned to 3022 * a single processor. 3023 */ 3024 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp) 3025 { 3026 unsigned long flags; 3027 int to_drain, batch; 3028 3029 local_lock_irqsave(&pagesets.lock, flags); 3030 batch = READ_ONCE(pcp->batch); 3031 to_drain = min(pcp->count, batch); 3032 if (to_drain > 0) 3033 free_pcppages_bulk(zone, to_drain, pcp, 0); 3034 local_unlock_irqrestore(&pagesets.lock, flags); 3035 } 3036 #endif 3037 3038 /* 3039 * Drain pcplists of the indicated processor and zone. 3040 * 3041 * The processor must either be the current processor and the 3042 * thread pinned to the current processor or a processor that 3043 * is not online. 3044 */ 3045 static void drain_pages_zone(unsigned int cpu, struct zone *zone) 3046 { 3047 unsigned long flags; 3048 struct per_cpu_pages *pcp; 3049 3050 local_lock_irqsave(&pagesets.lock, flags); 3051 3052 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu); 3053 if (pcp->count) 3054 free_pcppages_bulk(zone, pcp->count, pcp, 0); 3055 3056 local_unlock_irqrestore(&pagesets.lock, flags); 3057 } 3058 3059 /* 3060 * Drain pcplists of all zones on the indicated processor. 3061 * 3062 * The processor must either be the current processor and the 3063 * thread pinned to the current processor or a processor that 3064 * is not online. 3065 */ 3066 static void drain_pages(unsigned int cpu) 3067 { 3068 struct zone *zone; 3069 3070 for_each_populated_zone(zone) { 3071 drain_pages_zone(cpu, zone); 3072 } 3073 } 3074 3075 /* 3076 * Spill all of this CPU's per-cpu pages back into the buddy allocator. 3077 * 3078 * The CPU has to be pinned. When zone parameter is non-NULL, spill just 3079 * the single zone's pages. 3080 */ 3081 void drain_local_pages(struct zone *zone) 3082 { 3083 int cpu = smp_processor_id(); 3084 3085 if (zone) 3086 drain_pages_zone(cpu, zone); 3087 else 3088 drain_pages(cpu); 3089 } 3090 3091 static void drain_local_pages_wq(struct work_struct *work) 3092 { 3093 struct pcpu_drain *drain; 3094 3095 drain = container_of(work, struct pcpu_drain, work); 3096 3097 /* 3098 * drain_all_pages doesn't use proper cpu hotplug protection so 3099 * we can race with cpu offline when the WQ can move this from 3100 * a cpu pinned worker to an unbound one. We can operate on a different 3101 * cpu which is alright but we also have to make sure to not move to 3102 * a different one. 3103 */ 3104 migrate_disable(); 3105 drain_local_pages(drain->zone); 3106 migrate_enable(); 3107 } 3108 3109 /* 3110 * The implementation of drain_all_pages(), exposing an extra parameter to 3111 * drain on all cpus. 3112 * 3113 * drain_all_pages() is optimized to only execute on cpus where pcplists are 3114 * not empty. The check for non-emptiness can however race with a free to 3115 * pcplist that has not yet increased the pcp->count from 0 to 1. Callers 3116 * that need the guarantee that every CPU has drained can disable the 3117 * optimizing racy check. 3118 */ 3119 static void __drain_all_pages(struct zone *zone, bool force_all_cpus) 3120 { 3121 int cpu; 3122 3123 /* 3124 * Allocate in the BSS so we won't require allocation in 3125 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y 3126 */ 3127 static cpumask_t cpus_with_pcps; 3128 3129 /* 3130 * Make sure nobody triggers this path before mm_percpu_wq is fully 3131 * initialized. 3132 */ 3133 if (WARN_ON_ONCE(!mm_percpu_wq)) 3134 return; 3135 3136 /* 3137 * Do not drain if one is already in progress unless it's specific to 3138 * a zone. Such callers are primarily CMA and memory hotplug and need 3139 * the drain to be complete when the call returns. 3140 */ 3141 if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) { 3142 if (!zone) 3143 return; 3144 mutex_lock(&pcpu_drain_mutex); 3145 } 3146 3147 /* 3148 * We don't care about racing with CPU hotplug event 3149 * as offline notification will cause the notified 3150 * cpu to drain that CPU pcps and on_each_cpu_mask 3151 * disables preemption as part of its processing 3152 */ 3153 for_each_online_cpu(cpu) { 3154 struct per_cpu_pages *pcp; 3155 struct zone *z; 3156 bool has_pcps = false; 3157 3158 if (force_all_cpus) { 3159 /* 3160 * The pcp.count check is racy, some callers need a 3161 * guarantee that no cpu is missed. 3162 */ 3163 has_pcps = true; 3164 } else if (zone) { 3165 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu); 3166 if (pcp->count) 3167 has_pcps = true; 3168 } else { 3169 for_each_populated_zone(z) { 3170 pcp = per_cpu_ptr(z->per_cpu_pageset, cpu); 3171 if (pcp->count) { 3172 has_pcps = true; 3173 break; 3174 } 3175 } 3176 } 3177 3178 if (has_pcps) 3179 cpumask_set_cpu(cpu, &cpus_with_pcps); 3180 else 3181 cpumask_clear_cpu(cpu, &cpus_with_pcps); 3182 } 3183 3184 for_each_cpu(cpu, &cpus_with_pcps) { 3185 struct pcpu_drain *drain = per_cpu_ptr(&pcpu_drain, cpu); 3186 3187 drain->zone = zone; 3188 INIT_WORK(&drain->work, drain_local_pages_wq); 3189 queue_work_on(cpu, mm_percpu_wq, &drain->work); 3190 } 3191 for_each_cpu(cpu, &cpus_with_pcps) 3192 flush_work(&per_cpu_ptr(&pcpu_drain, cpu)->work); 3193 3194 mutex_unlock(&pcpu_drain_mutex); 3195 } 3196 3197 /* 3198 * Spill all the per-cpu pages from all CPUs back into the buddy allocator. 3199 * 3200 * When zone parameter is non-NULL, spill just the single zone's pages. 3201 * 3202 * Note that this can be extremely slow as the draining happens in a workqueue. 3203 */ 3204 void drain_all_pages(struct zone *zone) 3205 { 3206 __drain_all_pages(zone, false); 3207 } 3208 3209 #ifdef CONFIG_HIBERNATION 3210 3211 /* 3212 * Touch the watchdog for every WD_PAGE_COUNT pages. 3213 */ 3214 #define WD_PAGE_COUNT (128*1024) 3215 3216 void mark_free_pages(struct zone *zone) 3217 { 3218 unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT; 3219 unsigned long flags; 3220 unsigned int order, t; 3221 struct page *page; 3222 3223 if (zone_is_empty(zone)) 3224 return; 3225 3226 spin_lock_irqsave(&zone->lock, flags); 3227 3228 max_zone_pfn = zone_end_pfn(zone); 3229 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) 3230 if (pfn_valid(pfn)) { 3231 page = pfn_to_page(pfn); 3232 3233 if (!--page_count) { 3234 touch_nmi_watchdog(); 3235 page_count = WD_PAGE_COUNT; 3236 } 3237 3238 if (page_zone(page) != zone) 3239 continue; 3240 3241 if (!swsusp_page_is_forbidden(page)) 3242 swsusp_unset_page_free(page); 3243 } 3244 3245 for_each_migratetype_order(order, t) { 3246 list_for_each_entry(page, 3247 &zone->free_area[order].free_list[t], lru) { 3248 unsigned long i; 3249 3250 pfn = page_to_pfn(page); 3251 for (i = 0; i < (1UL << order); i++) { 3252 if (!--page_count) { 3253 touch_nmi_watchdog(); 3254 page_count = WD_PAGE_COUNT; 3255 } 3256 swsusp_set_page_free(pfn_to_page(pfn + i)); 3257 } 3258 } 3259 } 3260 spin_unlock_irqrestore(&zone->lock, flags); 3261 } 3262 #endif /* CONFIG_PM */ 3263 3264 static bool free_unref_page_prepare(struct page *page, unsigned long pfn, 3265 unsigned int order) 3266 { 3267 int migratetype; 3268 3269 if (!free_pcp_prepare(page, order)) 3270 return false; 3271 3272 migratetype = get_pfnblock_migratetype(page, pfn); 3273 set_pcppage_migratetype(page, migratetype); 3274 return true; 3275 } 3276 3277 static int nr_pcp_free(struct per_cpu_pages *pcp, int high, int batch, 3278 bool free_high) 3279 { 3280 int min_nr_free, max_nr_free; 3281 3282 /* Free everything if batch freeing high-order pages. */ 3283 if (unlikely(free_high)) 3284 return pcp->count; 3285 3286 /* Check for PCP disabled or boot pageset */ 3287 if (unlikely(high < batch)) 3288 return 1; 3289 3290 /* Leave at least pcp->batch pages on the list */ 3291 min_nr_free = batch; 3292 max_nr_free = high - batch; 3293 3294 /* 3295 * Double the number of pages freed each time there is subsequent 3296 * freeing of pages without any allocation. 3297 */ 3298 batch <<= pcp->free_factor; 3299 if (batch < max_nr_free) 3300 pcp->free_factor++; 3301 batch = clamp(batch, min_nr_free, max_nr_free); 3302 3303 return batch; 3304 } 3305 3306 static int nr_pcp_high(struct per_cpu_pages *pcp, struct zone *zone, 3307 bool free_high) 3308 { 3309 int high = READ_ONCE(pcp->high); 3310 3311 if (unlikely(!high || free_high)) 3312 return 0; 3313 3314 if (!test_bit(ZONE_RECLAIM_ACTIVE, &zone->flags)) 3315 return high; 3316 3317 /* 3318 * If reclaim is active, limit the number of pages that can be 3319 * stored on pcp lists 3320 */ 3321 return min(READ_ONCE(pcp->batch) << 2, high); 3322 } 3323 3324 static void free_unref_page_commit(struct page *page, int migratetype, 3325 unsigned int order) 3326 { 3327 struct zone *zone = page_zone(page); 3328 struct per_cpu_pages *pcp; 3329 int high; 3330 int pindex; 3331 bool free_high; 3332 3333 __count_vm_event(PGFREE); 3334 pcp = this_cpu_ptr(zone->per_cpu_pageset); 3335 pindex = order_to_pindex(migratetype, order); 3336 list_add(&page->lru, &pcp->lists[pindex]); 3337 pcp->count += 1 << order; 3338 3339 /* 3340 * As high-order pages other than THP's stored on PCP can contribute 3341 * to fragmentation, limit the number stored when PCP is heavily 3342 * freeing without allocation. The remainder after bulk freeing 3343 * stops will be drained from vmstat refresh context. 3344 */ 3345 free_high = (pcp->free_factor && order && order <= PAGE_ALLOC_COSTLY_ORDER); 3346 3347 high = nr_pcp_high(pcp, zone, free_high); 3348 if (pcp->count >= high) { 3349 int batch = READ_ONCE(pcp->batch); 3350 3351 free_pcppages_bulk(zone, nr_pcp_free(pcp, high, batch, free_high), pcp, pindex); 3352 } 3353 } 3354 3355 /* 3356 * Free a pcp page 3357 */ 3358 void free_unref_page(struct page *page, unsigned int order) 3359 { 3360 unsigned long flags; 3361 unsigned long pfn = page_to_pfn(page); 3362 int migratetype; 3363 3364 if (!free_unref_page_prepare(page, pfn, order)) 3365 return; 3366 3367 /* 3368 * We only track unmovable, reclaimable and movable on pcp lists. 3369 * Place ISOLATE pages on the isolated list because they are being 3370 * offlined but treat HIGHATOMIC as movable pages so we can get those 3371 * areas back if necessary. Otherwise, we may have to free 3372 * excessively into the page allocator 3373 */ 3374 migratetype = get_pcppage_migratetype(page); 3375 if (unlikely(migratetype >= MIGRATE_PCPTYPES)) { 3376 if (unlikely(is_migrate_isolate(migratetype))) { 3377 free_one_page(page_zone(page), page, pfn, order, migratetype, FPI_NONE); 3378 return; 3379 } 3380 migratetype = MIGRATE_MOVABLE; 3381 } 3382 3383 local_lock_irqsave(&pagesets.lock, flags); 3384 free_unref_page_commit(page, migratetype, order); 3385 local_unlock_irqrestore(&pagesets.lock, flags); 3386 } 3387 3388 /* 3389 * Free a list of 0-order pages 3390 */ 3391 void free_unref_page_list(struct list_head *list) 3392 { 3393 struct page *page, *next; 3394 unsigned long flags; 3395 int batch_count = 0; 3396 int migratetype; 3397 3398 /* Prepare pages for freeing */ 3399 list_for_each_entry_safe(page, next, list, lru) { 3400 unsigned long pfn = page_to_pfn(page); 3401 if (!free_unref_page_prepare(page, pfn, 0)) { 3402 list_del(&page->lru); 3403 continue; 3404 } 3405 3406 /* 3407 * Free isolated pages directly to the allocator, see 3408 * comment in free_unref_page. 3409 */ 3410 migratetype = get_pcppage_migratetype(page); 3411 if (unlikely(is_migrate_isolate(migratetype))) { 3412 list_del(&page->lru); 3413 free_one_page(page_zone(page), page, pfn, 0, migratetype, FPI_NONE); 3414 continue; 3415 } 3416 } 3417 3418 local_lock_irqsave(&pagesets.lock, flags); 3419 list_for_each_entry_safe(page, next, list, lru) { 3420 /* 3421 * Non-isolated types over MIGRATE_PCPTYPES get added 3422 * to the MIGRATE_MOVABLE pcp list. 3423 */ 3424 migratetype = get_pcppage_migratetype(page); 3425 if (unlikely(migratetype >= MIGRATE_PCPTYPES)) 3426 migratetype = MIGRATE_MOVABLE; 3427 3428 trace_mm_page_free_batched(page); 3429 free_unref_page_commit(page, migratetype, 0); 3430 3431 /* 3432 * Guard against excessive IRQ disabled times when we get 3433 * a large list of pages to free. 3434 */ 3435 if (++batch_count == SWAP_CLUSTER_MAX) { 3436 local_unlock_irqrestore(&pagesets.lock, flags); 3437 batch_count = 0; 3438 local_lock_irqsave(&pagesets.lock, flags); 3439 } 3440 } 3441 local_unlock_irqrestore(&pagesets.lock, flags); 3442 } 3443 3444 /* 3445 * split_page takes a non-compound higher-order page, and splits it into 3446 * n (1<<order) sub-pages: page[0..n] 3447 * Each sub-page must be freed individually. 3448 * 3449 * Note: this is probably too low level an operation for use in drivers. 3450 * Please consult with lkml before using this in your driver. 3451 */ 3452 void split_page(struct page *page, unsigned int order) 3453 { 3454 int i; 3455 3456 VM_BUG_ON_PAGE(PageCompound(page), page); 3457 VM_BUG_ON_PAGE(!page_count(page), page); 3458 3459 for (i = 1; i < (1 << order); i++) 3460 set_page_refcounted(page + i); 3461 split_page_owner(page, 1 << order); 3462 split_page_memcg(page, 1 << order); 3463 } 3464 EXPORT_SYMBOL_GPL(split_page); 3465 3466 int __isolate_free_page(struct page *page, unsigned int order) 3467 { 3468 unsigned long watermark; 3469 struct zone *zone; 3470 int mt; 3471 3472 BUG_ON(!PageBuddy(page)); 3473 3474 zone = page_zone(page); 3475 mt = get_pageblock_migratetype(page); 3476 3477 if (!is_migrate_isolate(mt)) { 3478 /* 3479 * Obey watermarks as if the page was being allocated. We can 3480 * emulate a high-order watermark check with a raised order-0 3481 * watermark, because we already know our high-order page 3482 * exists. 3483 */ 3484 watermark = zone->_watermark[WMARK_MIN] + (1UL << order); 3485 if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA)) 3486 return 0; 3487 3488 __mod_zone_freepage_state(zone, -(1UL << order), mt); 3489 } 3490 3491 /* Remove page from free list */ 3492 3493 del_page_from_free_list(page, zone, order); 3494 3495 /* 3496 * Set the pageblock if the isolated page is at least half of a 3497 * pageblock 3498 */ 3499 if (order >= pageblock_order - 1) { 3500 struct page *endpage = page + (1 << order) - 1; 3501 for (; page < endpage; page += pageblock_nr_pages) { 3502 int mt = get_pageblock_migratetype(page); 3503 /* 3504 * Only change normal pageblocks (i.e., they can merge 3505 * with others) 3506 */ 3507 if (migratetype_is_mergeable(mt)) 3508 set_pageblock_migratetype(page, 3509 MIGRATE_MOVABLE); 3510 } 3511 } 3512 3513 3514 return 1UL << order; 3515 } 3516 3517 /** 3518 * __putback_isolated_page - Return a now-isolated page back where we got it 3519 * @page: Page that was isolated 3520 * @order: Order of the isolated page 3521 * @mt: The page's pageblock's migratetype 3522 * 3523 * This function is meant to return a page pulled from the free lists via 3524 * __isolate_free_page back to the free lists they were pulled from. 3525 */ 3526 void __putback_isolated_page(struct page *page, unsigned int order, int mt) 3527 { 3528 struct zone *zone = page_zone(page); 3529 3530 /* zone lock should be held when this function is called */ 3531 lockdep_assert_held(&zone->lock); 3532 3533 /* Return isolated page to tail of freelist. */ 3534 __free_one_page(page, page_to_pfn(page), zone, order, mt, 3535 FPI_SKIP_REPORT_NOTIFY | FPI_TO_TAIL); 3536 } 3537 3538 /* 3539 * Update NUMA hit/miss statistics 3540 * 3541 * Must be called with interrupts disabled. 3542 */ 3543 static inline void zone_statistics(struct zone *preferred_zone, struct zone *z, 3544 long nr_account) 3545 { 3546 #ifdef CONFIG_NUMA 3547 enum numa_stat_item local_stat = NUMA_LOCAL; 3548 3549 /* skip numa counters update if numa stats is disabled */ 3550 if (!static_branch_likely(&vm_numa_stat_key)) 3551 return; 3552 3553 if (zone_to_nid(z) != numa_node_id()) 3554 local_stat = NUMA_OTHER; 3555 3556 if (zone_to_nid(z) == zone_to_nid(preferred_zone)) 3557 __count_numa_events(z, NUMA_HIT, nr_account); 3558 else { 3559 __count_numa_events(z, NUMA_MISS, nr_account); 3560 __count_numa_events(preferred_zone, NUMA_FOREIGN, nr_account); 3561 } 3562 __count_numa_events(z, local_stat, nr_account); 3563 #endif 3564 } 3565 3566 /* Remove page from the per-cpu list, caller must protect the list */ 3567 static inline 3568 struct page *__rmqueue_pcplist(struct zone *zone, unsigned int order, 3569 int migratetype, 3570 unsigned int alloc_flags, 3571 struct per_cpu_pages *pcp, 3572 struct list_head *list) 3573 { 3574 struct page *page; 3575 3576 do { 3577 if (list_empty(list)) { 3578 int batch = READ_ONCE(pcp->batch); 3579 int alloced; 3580 3581 /* 3582 * Scale batch relative to order if batch implies 3583 * free pages can be stored on the PCP. Batch can 3584 * be 1 for small zones or for boot pagesets which 3585 * should never store free pages as the pages may 3586 * belong to arbitrary zones. 3587 */ 3588 if (batch > 1) 3589 batch = max(batch >> order, 2); 3590 alloced = rmqueue_bulk(zone, order, 3591 batch, list, 3592 migratetype, alloc_flags); 3593 3594 pcp->count += alloced << order; 3595 if (unlikely(list_empty(list))) 3596 return NULL; 3597 } 3598 3599 page = list_first_entry(list, struct page, lru); 3600 list_del(&page->lru); 3601 pcp->count -= 1 << order; 3602 } while (check_new_pcp(page, order)); 3603 3604 return page; 3605 } 3606 3607 /* Lock and remove page from the per-cpu list */ 3608 static struct page *rmqueue_pcplist(struct zone *preferred_zone, 3609 struct zone *zone, unsigned int order, 3610 gfp_t gfp_flags, int migratetype, 3611 unsigned int alloc_flags) 3612 { 3613 struct per_cpu_pages *pcp; 3614 struct list_head *list; 3615 struct page *page; 3616 unsigned long flags; 3617 3618 local_lock_irqsave(&pagesets.lock, flags); 3619 3620 /* 3621 * On allocation, reduce the number of pages that are batch freed. 3622 * See nr_pcp_free() where free_factor is increased for subsequent 3623 * frees. 3624 */ 3625 pcp = this_cpu_ptr(zone->per_cpu_pageset); 3626 pcp->free_factor >>= 1; 3627 list = &pcp->lists[order_to_pindex(migratetype, order)]; 3628 page = __rmqueue_pcplist(zone, order, migratetype, alloc_flags, pcp, list); 3629 local_unlock_irqrestore(&pagesets.lock, flags); 3630 if (page) { 3631 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1); 3632 zone_statistics(preferred_zone, zone, 1); 3633 } 3634 return page; 3635 } 3636 3637 /* 3638 * Allocate a page from the given zone. Use pcplists for order-0 allocations. 3639 */ 3640 static inline 3641 struct page *rmqueue(struct zone *preferred_zone, 3642 struct zone *zone, unsigned int order, 3643 gfp_t gfp_flags, unsigned int alloc_flags, 3644 int migratetype) 3645 { 3646 unsigned long flags; 3647 struct page *page; 3648 3649 if (likely(pcp_allowed_order(order))) { 3650 /* 3651 * MIGRATE_MOVABLE pcplist could have the pages on CMA area and 3652 * we need to skip it when CMA area isn't allowed. 3653 */ 3654 if (!IS_ENABLED(CONFIG_CMA) || alloc_flags & ALLOC_CMA || 3655 migratetype != MIGRATE_MOVABLE) { 3656 page = rmqueue_pcplist(preferred_zone, zone, order, 3657 gfp_flags, migratetype, alloc_flags); 3658 goto out; 3659 } 3660 } 3661 3662 /* 3663 * We most definitely don't want callers attempting to 3664 * allocate greater than order-1 page units with __GFP_NOFAIL. 3665 */ 3666 WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1)); 3667 3668 do { 3669 page = NULL; 3670 spin_lock_irqsave(&zone->lock, flags); 3671 /* 3672 * order-0 request can reach here when the pcplist is skipped 3673 * due to non-CMA allocation context. HIGHATOMIC area is 3674 * reserved for high-order atomic allocation, so order-0 3675 * request should skip it. 3676 */ 3677 if (order > 0 && alloc_flags & ALLOC_HARDER) { 3678 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC); 3679 if (page) 3680 trace_mm_page_alloc_zone_locked(page, order, migratetype); 3681 } 3682 if (!page) { 3683 page = __rmqueue(zone, order, migratetype, alloc_flags); 3684 if (!page) 3685 goto failed; 3686 } 3687 __mod_zone_freepage_state(zone, -(1 << order), 3688 get_pcppage_migratetype(page)); 3689 spin_unlock_irqrestore(&zone->lock, flags); 3690 } while (check_new_pages(page, order)); 3691 3692 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order); 3693 zone_statistics(preferred_zone, zone, 1); 3694 3695 out: 3696 /* Separate test+clear to avoid unnecessary atomics */ 3697 if (test_bit(ZONE_BOOSTED_WATERMARK, &zone->flags)) { 3698 clear_bit(ZONE_BOOSTED_WATERMARK, &zone->flags); 3699 wakeup_kswapd(zone, 0, 0, zone_idx(zone)); 3700 } 3701 3702 VM_BUG_ON_PAGE(page && bad_range(zone, page), page); 3703 return page; 3704 3705 failed: 3706 spin_unlock_irqrestore(&zone->lock, flags); 3707 return NULL; 3708 } 3709 3710 #ifdef CONFIG_FAIL_PAGE_ALLOC 3711 3712 static struct { 3713 struct fault_attr attr; 3714 3715 bool ignore_gfp_highmem; 3716 bool ignore_gfp_reclaim; 3717 u32 min_order; 3718 } fail_page_alloc = { 3719 .attr = FAULT_ATTR_INITIALIZER, 3720 .ignore_gfp_reclaim = true, 3721 .ignore_gfp_highmem = true, 3722 .min_order = 1, 3723 }; 3724 3725 static int __init setup_fail_page_alloc(char *str) 3726 { 3727 return setup_fault_attr(&fail_page_alloc.attr, str); 3728 } 3729 __setup("fail_page_alloc=", setup_fail_page_alloc); 3730 3731 static bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) 3732 { 3733 if (order < fail_page_alloc.min_order) 3734 return false; 3735 if (gfp_mask & __GFP_NOFAIL) 3736 return false; 3737 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM)) 3738 return false; 3739 if (fail_page_alloc.ignore_gfp_reclaim && 3740 (gfp_mask & __GFP_DIRECT_RECLAIM)) 3741 return false; 3742 3743 return should_fail(&fail_page_alloc.attr, 1 << order); 3744 } 3745 3746 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS 3747 3748 static int __init fail_page_alloc_debugfs(void) 3749 { 3750 umode_t mode = S_IFREG | 0600; 3751 struct dentry *dir; 3752 3753 dir = fault_create_debugfs_attr("fail_page_alloc", NULL, 3754 &fail_page_alloc.attr); 3755 3756 debugfs_create_bool("ignore-gfp-wait", mode, dir, 3757 &fail_page_alloc.ignore_gfp_reclaim); 3758 debugfs_create_bool("ignore-gfp-highmem", mode, dir, 3759 &fail_page_alloc.ignore_gfp_highmem); 3760 debugfs_create_u32("min-order", mode, dir, &fail_page_alloc.min_order); 3761 3762 return 0; 3763 } 3764 3765 late_initcall(fail_page_alloc_debugfs); 3766 3767 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */ 3768 3769 #else /* CONFIG_FAIL_PAGE_ALLOC */ 3770 3771 static inline bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) 3772 { 3773 return false; 3774 } 3775 3776 #endif /* CONFIG_FAIL_PAGE_ALLOC */ 3777 3778 noinline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) 3779 { 3780 return __should_fail_alloc_page(gfp_mask, order); 3781 } 3782 ALLOW_ERROR_INJECTION(should_fail_alloc_page, TRUE); 3783 3784 static inline long __zone_watermark_unusable_free(struct zone *z, 3785 unsigned int order, unsigned int alloc_flags) 3786 { 3787 const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM)); 3788 long unusable_free = (1 << order) - 1; 3789 3790 /* 3791 * If the caller does not have rights to ALLOC_HARDER then subtract 3792 * the high-atomic reserves. This will over-estimate the size of the 3793 * atomic reserve but it avoids a search. 3794 */ 3795 if (likely(!alloc_harder)) 3796 unusable_free += z->nr_reserved_highatomic; 3797 3798 #ifdef CONFIG_CMA 3799 /* If allocation can't use CMA areas don't use free CMA pages */ 3800 if (!(alloc_flags & ALLOC_CMA)) 3801 unusable_free += zone_page_state(z, NR_FREE_CMA_PAGES); 3802 #endif 3803 3804 return unusable_free; 3805 } 3806 3807 /* 3808 * Return true if free base pages are above 'mark'. For high-order checks it 3809 * will return true of the order-0 watermark is reached and there is at least 3810 * one free page of a suitable size. Checking now avoids taking the zone lock 3811 * to check in the allocation paths if no pages are free. 3812 */ 3813 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark, 3814 int highest_zoneidx, unsigned int alloc_flags, 3815 long free_pages) 3816 { 3817 long min = mark; 3818 int o; 3819 const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM)); 3820 3821 /* free_pages may go negative - that's OK */ 3822 free_pages -= __zone_watermark_unusable_free(z, order, alloc_flags); 3823 3824 if (alloc_flags & ALLOC_HIGH) 3825 min -= min / 2; 3826 3827 if (unlikely(alloc_harder)) { 3828 /* 3829 * OOM victims can try even harder than normal ALLOC_HARDER 3830 * users on the grounds that it's definitely going to be in 3831 * the exit path shortly and free memory. Any allocation it 3832 * makes during the free path will be small and short-lived. 3833 */ 3834 if (alloc_flags & ALLOC_OOM) 3835 min -= min / 2; 3836 else 3837 min -= min / 4; 3838 } 3839 3840 /* 3841 * Check watermarks for an order-0 allocation request. If these 3842 * are not met, then a high-order request also cannot go ahead 3843 * even if a suitable page happened to be free. 3844 */ 3845 if (free_pages <= min + z->lowmem_reserve[highest_zoneidx]) 3846 return false; 3847 3848 /* If this is an order-0 request then the watermark is fine */ 3849 if (!order) 3850 return true; 3851 3852 /* For a high-order request, check at least one suitable page is free */ 3853 for (o = order; o < MAX_ORDER; o++) { 3854 struct free_area *area = &z->free_area[o]; 3855 int mt; 3856 3857 if (!area->nr_free) 3858 continue; 3859 3860 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) { 3861 if (!free_area_empty(area, mt)) 3862 return true; 3863 } 3864 3865 #ifdef CONFIG_CMA 3866 if ((alloc_flags & ALLOC_CMA) && 3867 !free_area_empty(area, MIGRATE_CMA)) { 3868 return true; 3869 } 3870 #endif 3871 if (alloc_harder && !free_area_empty(area, MIGRATE_HIGHATOMIC)) 3872 return true; 3873 } 3874 return false; 3875 } 3876 3877 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark, 3878 int highest_zoneidx, unsigned int alloc_flags) 3879 { 3880 return __zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags, 3881 zone_page_state(z, NR_FREE_PAGES)); 3882 } 3883 3884 static inline bool zone_watermark_fast(struct zone *z, unsigned int order, 3885 unsigned long mark, int highest_zoneidx, 3886 unsigned int alloc_flags, gfp_t gfp_mask) 3887 { 3888 long free_pages; 3889 3890 free_pages = zone_page_state(z, NR_FREE_PAGES); 3891 3892 /* 3893 * Fast check for order-0 only. If this fails then the reserves 3894 * need to be calculated. 3895 */ 3896 if (!order) { 3897 long fast_free; 3898 3899 fast_free = free_pages; 3900 fast_free -= __zone_watermark_unusable_free(z, 0, alloc_flags); 3901 if (fast_free > mark + z->lowmem_reserve[highest_zoneidx]) 3902 return true; 3903 } 3904 3905 if (__zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags, 3906 free_pages)) 3907 return true; 3908 /* 3909 * Ignore watermark boosting for GFP_ATOMIC order-0 allocations 3910 * when checking the min watermark. The min watermark is the 3911 * point where boosting is ignored so that kswapd is woken up 3912 * when below the low watermark. 3913 */ 3914 if (unlikely(!order && (gfp_mask & __GFP_ATOMIC) && z->watermark_boost 3915 && ((alloc_flags & ALLOC_WMARK_MASK) == WMARK_MIN))) { 3916 mark = z->_watermark[WMARK_MIN]; 3917 return __zone_watermark_ok(z, order, mark, highest_zoneidx, 3918 alloc_flags, free_pages); 3919 } 3920 3921 return false; 3922 } 3923 3924 bool zone_watermark_ok_safe(struct zone *z, unsigned int order, 3925 unsigned long mark, int highest_zoneidx) 3926 { 3927 long free_pages = zone_page_state(z, NR_FREE_PAGES); 3928 3929 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark) 3930 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES); 3931 3932 return __zone_watermark_ok(z, order, mark, highest_zoneidx, 0, 3933 free_pages); 3934 } 3935 3936 #ifdef CONFIG_NUMA 3937 int __read_mostly node_reclaim_distance = RECLAIM_DISTANCE; 3938 3939 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone) 3940 { 3941 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <= 3942 node_reclaim_distance; 3943 } 3944 #else /* CONFIG_NUMA */ 3945 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone) 3946 { 3947 return true; 3948 } 3949 #endif /* CONFIG_NUMA */ 3950 3951 /* 3952 * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid 3953 * fragmentation is subtle. If the preferred zone was HIGHMEM then 3954 * premature use of a lower zone may cause lowmem pressure problems that 3955 * are worse than fragmentation. If the next zone is ZONE_DMA then it is 3956 * probably too small. It only makes sense to spread allocations to avoid 3957 * fragmentation between the Normal and DMA32 zones. 3958 */ 3959 static inline unsigned int 3960 alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask) 3961 { 3962 unsigned int alloc_flags; 3963 3964 /* 3965 * __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD 3966 * to save a branch. 3967 */ 3968 alloc_flags = (__force int) (gfp_mask & __GFP_KSWAPD_RECLAIM); 3969 3970 #ifdef CONFIG_ZONE_DMA32 3971 if (!zone) 3972 return alloc_flags; 3973 3974 if (zone_idx(zone) != ZONE_NORMAL) 3975 return alloc_flags; 3976 3977 /* 3978 * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and 3979 * the pointer is within zone->zone_pgdat->node_zones[]. Also assume 3980 * on UMA that if Normal is populated then so is DMA32. 3981 */ 3982 BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1); 3983 if (nr_online_nodes > 1 && !populated_zone(--zone)) 3984 return alloc_flags; 3985 3986 alloc_flags |= ALLOC_NOFRAGMENT; 3987 #endif /* CONFIG_ZONE_DMA32 */ 3988 return alloc_flags; 3989 } 3990 3991 /* Must be called after current_gfp_context() which can change gfp_mask */ 3992 static inline unsigned int gfp_to_alloc_flags_cma(gfp_t gfp_mask, 3993 unsigned int alloc_flags) 3994 { 3995 #ifdef CONFIG_CMA 3996 if (gfp_migratetype(gfp_mask) == MIGRATE_MOVABLE) 3997 alloc_flags |= ALLOC_CMA; 3998 #endif 3999 return alloc_flags; 4000 } 4001 4002 /* 4003 * get_page_from_freelist goes through the zonelist trying to allocate 4004 * a page. 4005 */ 4006 static struct page * 4007 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags, 4008 const struct alloc_context *ac) 4009 { 4010 struct zoneref *z; 4011 struct zone *zone; 4012 struct pglist_data *last_pgdat_dirty_limit = NULL; 4013 bool no_fallback; 4014 4015 retry: 4016 /* 4017 * Scan zonelist, looking for a zone with enough free. 4018 * See also __cpuset_node_allowed() comment in kernel/cpuset.c. 4019 */ 4020 no_fallback = alloc_flags & ALLOC_NOFRAGMENT; 4021 z = ac->preferred_zoneref; 4022 for_next_zone_zonelist_nodemask(zone, z, ac->highest_zoneidx, 4023 ac->nodemask) { 4024 struct page *page; 4025 unsigned long mark; 4026 4027 if (cpusets_enabled() && 4028 (alloc_flags & ALLOC_CPUSET) && 4029 !__cpuset_zone_allowed(zone, gfp_mask)) 4030 continue; 4031 /* 4032 * When allocating a page cache page for writing, we 4033 * want to get it from a node that is within its dirty 4034 * limit, such that no single node holds more than its 4035 * proportional share of globally allowed dirty pages. 4036 * The dirty limits take into account the node's 4037 * lowmem reserves and high watermark so that kswapd 4038 * should be able to balance it without having to 4039 * write pages from its LRU list. 4040 * 4041 * XXX: For now, allow allocations to potentially 4042 * exceed the per-node dirty limit in the slowpath 4043 * (spread_dirty_pages unset) before going into reclaim, 4044 * which is important when on a NUMA setup the allowed 4045 * nodes are together not big enough to reach the 4046 * global limit. The proper fix for these situations 4047 * will require awareness of nodes in the 4048 * dirty-throttling and the flusher threads. 4049 */ 4050 if (ac->spread_dirty_pages) { 4051 if (last_pgdat_dirty_limit == zone->zone_pgdat) 4052 continue; 4053 4054 if (!node_dirty_ok(zone->zone_pgdat)) { 4055 last_pgdat_dirty_limit = zone->zone_pgdat; 4056 continue; 4057 } 4058 } 4059 4060 if (no_fallback && nr_online_nodes > 1 && 4061 zone != ac->preferred_zoneref->zone) { 4062 int local_nid; 4063 4064 /* 4065 * If moving to a remote node, retry but allow 4066 * fragmenting fallbacks. Locality is more important 4067 * than fragmentation avoidance. 4068 */ 4069 local_nid = zone_to_nid(ac->preferred_zoneref->zone); 4070 if (zone_to_nid(zone) != local_nid) { 4071 alloc_flags &= ~ALLOC_NOFRAGMENT; 4072 goto retry; 4073 } 4074 } 4075 4076 mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK); 4077 if (!zone_watermark_fast(zone, order, mark, 4078 ac->highest_zoneidx, alloc_flags, 4079 gfp_mask)) { 4080 int ret; 4081 4082 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 4083 /* 4084 * Watermark failed for this zone, but see if we can 4085 * grow this zone if it contains deferred pages. 4086 */ 4087 if (static_branch_unlikely(&deferred_pages)) { 4088 if (_deferred_grow_zone(zone, order)) 4089 goto try_this_zone; 4090 } 4091 #endif 4092 /* Checked here to keep the fast path fast */ 4093 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK); 4094 if (alloc_flags & ALLOC_NO_WATERMARKS) 4095 goto try_this_zone; 4096 4097 if (!node_reclaim_enabled() || 4098 !zone_allows_reclaim(ac->preferred_zoneref->zone, zone)) 4099 continue; 4100 4101 ret = node_reclaim(zone->zone_pgdat, gfp_mask, order); 4102 switch (ret) { 4103 case NODE_RECLAIM_NOSCAN: 4104 /* did not scan */ 4105 continue; 4106 case NODE_RECLAIM_FULL: 4107 /* scanned but unreclaimable */ 4108 continue; 4109 default: 4110 /* did we reclaim enough */ 4111 if (zone_watermark_ok(zone, order, mark, 4112 ac->highest_zoneidx, alloc_flags)) 4113 goto try_this_zone; 4114 4115 continue; 4116 } 4117 } 4118 4119 try_this_zone: 4120 page = rmqueue(ac->preferred_zoneref->zone, zone, order, 4121 gfp_mask, alloc_flags, ac->migratetype); 4122 if (page) { 4123 prep_new_page(page, order, gfp_mask, alloc_flags); 4124 4125 /* 4126 * If this is a high-order atomic allocation then check 4127 * if the pageblock should be reserved for the future 4128 */ 4129 if (unlikely(order && (alloc_flags & ALLOC_HARDER))) 4130 reserve_highatomic_pageblock(page, zone, order); 4131 4132 return page; 4133 } else { 4134 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 4135 /* Try again if zone has deferred pages */ 4136 if (static_branch_unlikely(&deferred_pages)) { 4137 if (_deferred_grow_zone(zone, order)) 4138 goto try_this_zone; 4139 } 4140 #endif 4141 } 4142 } 4143 4144 /* 4145 * It's possible on a UMA machine to get through all zones that are 4146 * fragmented. If avoiding fragmentation, reset and try again. 4147 */ 4148 if (no_fallback) { 4149 alloc_flags &= ~ALLOC_NOFRAGMENT; 4150 goto retry; 4151 } 4152 4153 return NULL; 4154 } 4155 4156 static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask) 4157 { 4158 unsigned int filter = SHOW_MEM_FILTER_NODES; 4159 4160 /* 4161 * This documents exceptions given to allocations in certain 4162 * contexts that are allowed to allocate outside current's set 4163 * of allowed nodes. 4164 */ 4165 if (!(gfp_mask & __GFP_NOMEMALLOC)) 4166 if (tsk_is_oom_victim(current) || 4167 (current->flags & (PF_MEMALLOC | PF_EXITING))) 4168 filter &= ~SHOW_MEM_FILTER_NODES; 4169 if (!in_task() || !(gfp_mask & __GFP_DIRECT_RECLAIM)) 4170 filter &= ~SHOW_MEM_FILTER_NODES; 4171 4172 show_mem(filter, nodemask); 4173 } 4174 4175 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...) 4176 { 4177 struct va_format vaf; 4178 va_list args; 4179 static DEFINE_RATELIMIT_STATE(nopage_rs, 10*HZ, 1); 4180 4181 if ((gfp_mask & __GFP_NOWARN) || 4182 !__ratelimit(&nopage_rs) || 4183 ((gfp_mask & __GFP_DMA) && !has_managed_dma())) 4184 return; 4185 4186 va_start(args, fmt); 4187 vaf.fmt = fmt; 4188 vaf.va = &args; 4189 pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl", 4190 current->comm, &vaf, gfp_mask, &gfp_mask, 4191 nodemask_pr_args(nodemask)); 4192 va_end(args); 4193 4194 cpuset_print_current_mems_allowed(); 4195 pr_cont("\n"); 4196 dump_stack(); 4197 warn_alloc_show_mem(gfp_mask, nodemask); 4198 } 4199 4200 static inline struct page * 4201 __alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order, 4202 unsigned int alloc_flags, 4203 const struct alloc_context *ac) 4204 { 4205 struct page *page; 4206 4207 page = get_page_from_freelist(gfp_mask, order, 4208 alloc_flags|ALLOC_CPUSET, ac); 4209 /* 4210 * fallback to ignore cpuset restriction if our nodes 4211 * are depleted 4212 */ 4213 if (!page) 4214 page = get_page_from_freelist(gfp_mask, order, 4215 alloc_flags, ac); 4216 4217 return page; 4218 } 4219 4220 static inline struct page * 4221 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order, 4222 const struct alloc_context *ac, unsigned long *did_some_progress) 4223 { 4224 struct oom_control oc = { 4225 .zonelist = ac->zonelist, 4226 .nodemask = ac->nodemask, 4227 .memcg = NULL, 4228 .gfp_mask = gfp_mask, 4229 .order = order, 4230 }; 4231 struct page *page; 4232 4233 *did_some_progress = 0; 4234 4235 /* 4236 * Acquire the oom lock. If that fails, somebody else is 4237 * making progress for us. 4238 */ 4239 if (!mutex_trylock(&oom_lock)) { 4240 *did_some_progress = 1; 4241 schedule_timeout_uninterruptible(1); 4242 return NULL; 4243 } 4244 4245 /* 4246 * Go through the zonelist yet one more time, keep very high watermark 4247 * here, this is only to catch a parallel oom killing, we must fail if 4248 * we're still under heavy pressure. But make sure that this reclaim 4249 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY 4250 * allocation which will never fail due to oom_lock already held. 4251 */ 4252 page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) & 4253 ~__GFP_DIRECT_RECLAIM, order, 4254 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac); 4255 if (page) 4256 goto out; 4257 4258 /* Coredumps can quickly deplete all memory reserves */ 4259 if (current->flags & PF_DUMPCORE) 4260 goto out; 4261 /* The OOM killer will not help higher order allocs */ 4262 if (order > PAGE_ALLOC_COSTLY_ORDER) 4263 goto out; 4264 /* 4265 * We have already exhausted all our reclaim opportunities without any 4266 * success so it is time to admit defeat. We will skip the OOM killer 4267 * because it is very likely that the caller has a more reasonable 4268 * fallback than shooting a random task. 4269 * 4270 * The OOM killer may not free memory on a specific node. 4271 */ 4272 if (gfp_mask & (__GFP_RETRY_MAYFAIL | __GFP_THISNODE)) 4273 goto out; 4274 /* The OOM killer does not needlessly kill tasks for lowmem */ 4275 if (ac->highest_zoneidx < ZONE_NORMAL) 4276 goto out; 4277 if (pm_suspended_storage()) 4278 goto out; 4279 /* 4280 * XXX: GFP_NOFS allocations should rather fail than rely on 4281 * other request to make a forward progress. 4282 * We are in an unfortunate situation where out_of_memory cannot 4283 * do much for this context but let's try it to at least get 4284 * access to memory reserved if the current task is killed (see 4285 * out_of_memory). Once filesystems are ready to handle allocation 4286 * failures more gracefully we should just bail out here. 4287 */ 4288 4289 /* Exhausted what can be done so it's blame time */ 4290 if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) { 4291 *did_some_progress = 1; 4292 4293 /* 4294 * Help non-failing allocations by giving them access to memory 4295 * reserves 4296 */ 4297 if (gfp_mask & __GFP_NOFAIL) 4298 page = __alloc_pages_cpuset_fallback(gfp_mask, order, 4299 ALLOC_NO_WATERMARKS, ac); 4300 } 4301 out: 4302 mutex_unlock(&oom_lock); 4303 return page; 4304 } 4305 4306 /* 4307 * Maximum number of compaction retries with a progress before OOM 4308 * killer is consider as the only way to move forward. 4309 */ 4310 #define MAX_COMPACT_RETRIES 16 4311 4312 #ifdef CONFIG_COMPACTION 4313 /* Try memory compaction for high-order allocations before reclaim */ 4314 static struct page * 4315 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order, 4316 unsigned int alloc_flags, const struct alloc_context *ac, 4317 enum compact_priority prio, enum compact_result *compact_result) 4318 { 4319 struct page *page = NULL; 4320 unsigned long pflags; 4321 unsigned int noreclaim_flag; 4322 4323 if (!order) 4324 return NULL; 4325 4326 psi_memstall_enter(&pflags); 4327 delayacct_compact_start(); 4328 noreclaim_flag = memalloc_noreclaim_save(); 4329 4330 *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac, 4331 prio, &page); 4332 4333 memalloc_noreclaim_restore(noreclaim_flag); 4334 psi_memstall_leave(&pflags); 4335 delayacct_compact_end(); 4336 4337 if (*compact_result == COMPACT_SKIPPED) 4338 return NULL; 4339 /* 4340 * At least in one zone compaction wasn't deferred or skipped, so let's 4341 * count a compaction stall 4342 */ 4343 count_vm_event(COMPACTSTALL); 4344 4345 /* Prep a captured page if available */ 4346 if (page) 4347 prep_new_page(page, order, gfp_mask, alloc_flags); 4348 4349 /* Try get a page from the freelist if available */ 4350 if (!page) 4351 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 4352 4353 if (page) { 4354 struct zone *zone = page_zone(page); 4355 4356 zone->compact_blockskip_flush = false; 4357 compaction_defer_reset(zone, order, true); 4358 count_vm_event(COMPACTSUCCESS); 4359 return page; 4360 } 4361 4362 /* 4363 * It's bad if compaction run occurs and fails. The most likely reason 4364 * is that pages exist, but not enough to satisfy watermarks. 4365 */ 4366 count_vm_event(COMPACTFAIL); 4367 4368 cond_resched(); 4369 4370 return NULL; 4371 } 4372 4373 static inline bool 4374 should_compact_retry(struct alloc_context *ac, int order, int alloc_flags, 4375 enum compact_result compact_result, 4376 enum compact_priority *compact_priority, 4377 int *compaction_retries) 4378 { 4379 int max_retries = MAX_COMPACT_RETRIES; 4380 int min_priority; 4381 bool ret = false; 4382 int retries = *compaction_retries; 4383 enum compact_priority priority = *compact_priority; 4384 4385 if (!order) 4386 return false; 4387 4388 if (fatal_signal_pending(current)) 4389 return false; 4390 4391 if (compaction_made_progress(compact_result)) 4392 (*compaction_retries)++; 4393 4394 /* 4395 * compaction considers all the zone as desperately out of memory 4396 * so it doesn't really make much sense to retry except when the 4397 * failure could be caused by insufficient priority 4398 */ 4399 if (compaction_failed(compact_result)) 4400 goto check_priority; 4401 4402 /* 4403 * compaction was skipped because there are not enough order-0 pages 4404 * to work with, so we retry only if it looks like reclaim can help. 4405 */ 4406 if (compaction_needs_reclaim(compact_result)) { 4407 ret = compaction_zonelist_suitable(ac, order, alloc_flags); 4408 goto out; 4409 } 4410 4411 /* 4412 * make sure the compaction wasn't deferred or didn't bail out early 4413 * due to locks contention before we declare that we should give up. 4414 * But the next retry should use a higher priority if allowed, so 4415 * we don't just keep bailing out endlessly. 4416 */ 4417 if (compaction_withdrawn(compact_result)) { 4418 goto check_priority; 4419 } 4420 4421 /* 4422 * !costly requests are much more important than __GFP_RETRY_MAYFAIL 4423 * costly ones because they are de facto nofail and invoke OOM 4424 * killer to move on while costly can fail and users are ready 4425 * to cope with that. 1/4 retries is rather arbitrary but we 4426 * would need much more detailed feedback from compaction to 4427 * make a better decision. 4428 */ 4429 if (order > PAGE_ALLOC_COSTLY_ORDER) 4430 max_retries /= 4; 4431 if (*compaction_retries <= max_retries) { 4432 ret = true; 4433 goto out; 4434 } 4435 4436 /* 4437 * Make sure there are attempts at the highest priority if we exhausted 4438 * all retries or failed at the lower priorities. 4439 */ 4440 check_priority: 4441 min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ? 4442 MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY; 4443 4444 if (*compact_priority > min_priority) { 4445 (*compact_priority)--; 4446 *compaction_retries = 0; 4447 ret = true; 4448 } 4449 out: 4450 trace_compact_retry(order, priority, compact_result, retries, max_retries, ret); 4451 return ret; 4452 } 4453 #else 4454 static inline struct page * 4455 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order, 4456 unsigned int alloc_flags, const struct alloc_context *ac, 4457 enum compact_priority prio, enum compact_result *compact_result) 4458 { 4459 *compact_result = COMPACT_SKIPPED; 4460 return NULL; 4461 } 4462 4463 static inline bool 4464 should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags, 4465 enum compact_result compact_result, 4466 enum compact_priority *compact_priority, 4467 int *compaction_retries) 4468 { 4469 struct zone *zone; 4470 struct zoneref *z; 4471 4472 if (!order || order > PAGE_ALLOC_COSTLY_ORDER) 4473 return false; 4474 4475 /* 4476 * There are setups with compaction disabled which would prefer to loop 4477 * inside the allocator rather than hit the oom killer prematurely. 4478 * Let's give them a good hope and keep retrying while the order-0 4479 * watermarks are OK. 4480 */ 4481 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, 4482 ac->highest_zoneidx, ac->nodemask) { 4483 if (zone_watermark_ok(zone, 0, min_wmark_pages(zone), 4484 ac->highest_zoneidx, alloc_flags)) 4485 return true; 4486 } 4487 return false; 4488 } 4489 #endif /* CONFIG_COMPACTION */ 4490 4491 #ifdef CONFIG_LOCKDEP 4492 static struct lockdep_map __fs_reclaim_map = 4493 STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map); 4494 4495 static bool __need_reclaim(gfp_t gfp_mask) 4496 { 4497 /* no reclaim without waiting on it */ 4498 if (!(gfp_mask & __GFP_DIRECT_RECLAIM)) 4499 return false; 4500 4501 /* this guy won't enter reclaim */ 4502 if (current->flags & PF_MEMALLOC) 4503 return false; 4504 4505 if (gfp_mask & __GFP_NOLOCKDEP) 4506 return false; 4507 4508 return true; 4509 } 4510 4511 void __fs_reclaim_acquire(unsigned long ip) 4512 { 4513 lock_acquire_exclusive(&__fs_reclaim_map, 0, 0, NULL, ip); 4514 } 4515 4516 void __fs_reclaim_release(unsigned long ip) 4517 { 4518 lock_release(&__fs_reclaim_map, ip); 4519 } 4520 4521 void fs_reclaim_acquire(gfp_t gfp_mask) 4522 { 4523 gfp_mask = current_gfp_context(gfp_mask); 4524 4525 if (__need_reclaim(gfp_mask)) { 4526 if (gfp_mask & __GFP_FS) 4527 __fs_reclaim_acquire(_RET_IP_); 4528 4529 #ifdef CONFIG_MMU_NOTIFIER 4530 lock_map_acquire(&__mmu_notifier_invalidate_range_start_map); 4531 lock_map_release(&__mmu_notifier_invalidate_range_start_map); 4532 #endif 4533 4534 } 4535 } 4536 EXPORT_SYMBOL_GPL(fs_reclaim_acquire); 4537 4538 void fs_reclaim_release(gfp_t gfp_mask) 4539 { 4540 gfp_mask = current_gfp_context(gfp_mask); 4541 4542 if (__need_reclaim(gfp_mask)) { 4543 if (gfp_mask & __GFP_FS) 4544 __fs_reclaim_release(_RET_IP_); 4545 } 4546 } 4547 EXPORT_SYMBOL_GPL(fs_reclaim_release); 4548 #endif 4549 4550 /* Perform direct synchronous page reclaim */ 4551 static unsigned long 4552 __perform_reclaim(gfp_t gfp_mask, unsigned int order, 4553 const struct alloc_context *ac) 4554 { 4555 unsigned int noreclaim_flag; 4556 unsigned long progress; 4557 4558 cond_resched(); 4559 4560 /* We now go into synchronous reclaim */ 4561 cpuset_memory_pressure_bump(); 4562 fs_reclaim_acquire(gfp_mask); 4563 noreclaim_flag = memalloc_noreclaim_save(); 4564 4565 progress = try_to_free_pages(ac->zonelist, order, gfp_mask, 4566 ac->nodemask); 4567 4568 memalloc_noreclaim_restore(noreclaim_flag); 4569 fs_reclaim_release(gfp_mask); 4570 4571 cond_resched(); 4572 4573 return progress; 4574 } 4575 4576 /* The really slow allocator path where we enter direct reclaim */ 4577 static inline struct page * 4578 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order, 4579 unsigned int alloc_flags, const struct alloc_context *ac, 4580 unsigned long *did_some_progress) 4581 { 4582 struct page *page = NULL; 4583 unsigned long pflags; 4584 bool drained = false; 4585 4586 psi_memstall_enter(&pflags); 4587 *did_some_progress = __perform_reclaim(gfp_mask, order, ac); 4588 if (unlikely(!(*did_some_progress))) 4589 goto out; 4590 4591 retry: 4592 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 4593 4594 /* 4595 * If an allocation failed after direct reclaim, it could be because 4596 * pages are pinned on the per-cpu lists or in high alloc reserves. 4597 * Shrink them and try again 4598 */ 4599 if (!page && !drained) { 4600 unreserve_highatomic_pageblock(ac, false); 4601 drain_all_pages(NULL); 4602 drained = true; 4603 goto retry; 4604 } 4605 out: 4606 psi_memstall_leave(&pflags); 4607 4608 return page; 4609 } 4610 4611 static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask, 4612 const struct alloc_context *ac) 4613 { 4614 struct zoneref *z; 4615 struct zone *zone; 4616 pg_data_t *last_pgdat = NULL; 4617 enum zone_type highest_zoneidx = ac->highest_zoneidx; 4618 4619 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, highest_zoneidx, 4620 ac->nodemask) { 4621 if (last_pgdat != zone->zone_pgdat) 4622 wakeup_kswapd(zone, gfp_mask, order, highest_zoneidx); 4623 last_pgdat = zone->zone_pgdat; 4624 } 4625 } 4626 4627 static inline unsigned int 4628 gfp_to_alloc_flags(gfp_t gfp_mask) 4629 { 4630 unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET; 4631 4632 /* 4633 * __GFP_HIGH is assumed to be the same as ALLOC_HIGH 4634 * and __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD 4635 * to save two branches. 4636 */ 4637 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH); 4638 BUILD_BUG_ON(__GFP_KSWAPD_RECLAIM != (__force gfp_t) ALLOC_KSWAPD); 4639 4640 /* 4641 * The caller may dip into page reserves a bit more if the caller 4642 * cannot run direct reclaim, or if the caller has realtime scheduling 4643 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will 4644 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH). 4645 */ 4646 alloc_flags |= (__force int) 4647 (gfp_mask & (__GFP_HIGH | __GFP_KSWAPD_RECLAIM)); 4648 4649 if (gfp_mask & __GFP_ATOMIC) { 4650 /* 4651 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even 4652 * if it can't schedule. 4653 */ 4654 if (!(gfp_mask & __GFP_NOMEMALLOC)) 4655 alloc_flags |= ALLOC_HARDER; 4656 /* 4657 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the 4658 * comment for __cpuset_node_allowed(). 4659 */ 4660 alloc_flags &= ~ALLOC_CPUSET; 4661 } else if (unlikely(rt_task(current)) && in_task()) 4662 alloc_flags |= ALLOC_HARDER; 4663 4664 alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, alloc_flags); 4665 4666 return alloc_flags; 4667 } 4668 4669 static bool oom_reserves_allowed(struct task_struct *tsk) 4670 { 4671 if (!tsk_is_oom_victim(tsk)) 4672 return false; 4673 4674 /* 4675 * !MMU doesn't have oom reaper so give access to memory reserves 4676 * only to the thread with TIF_MEMDIE set 4677 */ 4678 if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE)) 4679 return false; 4680 4681 return true; 4682 } 4683 4684 /* 4685 * Distinguish requests which really need access to full memory 4686 * reserves from oom victims which can live with a portion of it 4687 */ 4688 static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask) 4689 { 4690 if (unlikely(gfp_mask & __GFP_NOMEMALLOC)) 4691 return 0; 4692 if (gfp_mask & __GFP_MEMALLOC) 4693 return ALLOC_NO_WATERMARKS; 4694 if (in_serving_softirq() && (current->flags & PF_MEMALLOC)) 4695 return ALLOC_NO_WATERMARKS; 4696 if (!in_interrupt()) { 4697 if (current->flags & PF_MEMALLOC) 4698 return ALLOC_NO_WATERMARKS; 4699 else if (oom_reserves_allowed(current)) 4700 return ALLOC_OOM; 4701 } 4702 4703 return 0; 4704 } 4705 4706 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask) 4707 { 4708 return !!__gfp_pfmemalloc_flags(gfp_mask); 4709 } 4710 4711 /* 4712 * Checks whether it makes sense to retry the reclaim to make a forward progress 4713 * for the given allocation request. 4714 * 4715 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row 4716 * without success, or when we couldn't even meet the watermark if we 4717 * reclaimed all remaining pages on the LRU lists. 4718 * 4719 * Returns true if a retry is viable or false to enter the oom path. 4720 */ 4721 static inline bool 4722 should_reclaim_retry(gfp_t gfp_mask, unsigned order, 4723 struct alloc_context *ac, int alloc_flags, 4724 bool did_some_progress, int *no_progress_loops) 4725 { 4726 struct zone *zone; 4727 struct zoneref *z; 4728 bool ret = false; 4729 4730 /* 4731 * Costly allocations might have made a progress but this doesn't mean 4732 * their order will become available due to high fragmentation so 4733 * always increment the no progress counter for them 4734 */ 4735 if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER) 4736 *no_progress_loops = 0; 4737 else 4738 (*no_progress_loops)++; 4739 4740 /* 4741 * Make sure we converge to OOM if we cannot make any progress 4742 * several times in the row. 4743 */ 4744 if (*no_progress_loops > MAX_RECLAIM_RETRIES) { 4745 /* Before OOM, exhaust highatomic_reserve */ 4746 return unreserve_highatomic_pageblock(ac, true); 4747 } 4748 4749 /* 4750 * Keep reclaiming pages while there is a chance this will lead 4751 * somewhere. If none of the target zones can satisfy our allocation 4752 * request even if all reclaimable pages are considered then we are 4753 * screwed and have to go OOM. 4754 */ 4755 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, 4756 ac->highest_zoneidx, ac->nodemask) { 4757 unsigned long available; 4758 unsigned long reclaimable; 4759 unsigned long min_wmark = min_wmark_pages(zone); 4760 bool wmark; 4761 4762 available = reclaimable = zone_reclaimable_pages(zone); 4763 available += zone_page_state_snapshot(zone, NR_FREE_PAGES); 4764 4765 /* 4766 * Would the allocation succeed if we reclaimed all 4767 * reclaimable pages? 4768 */ 4769 wmark = __zone_watermark_ok(zone, order, min_wmark, 4770 ac->highest_zoneidx, alloc_flags, available); 4771 trace_reclaim_retry_zone(z, order, reclaimable, 4772 available, min_wmark, *no_progress_loops, wmark); 4773 if (wmark) { 4774 ret = true; 4775 break; 4776 } 4777 } 4778 4779 /* 4780 * Memory allocation/reclaim might be called from a WQ context and the 4781 * current implementation of the WQ concurrency control doesn't 4782 * recognize that a particular WQ is congested if the worker thread is 4783 * looping without ever sleeping. Therefore we have to do a short sleep 4784 * here rather than calling cond_resched(). 4785 */ 4786 if (current->flags & PF_WQ_WORKER) 4787 schedule_timeout_uninterruptible(1); 4788 else 4789 cond_resched(); 4790 return ret; 4791 } 4792 4793 static inline bool 4794 check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac) 4795 { 4796 /* 4797 * It's possible that cpuset's mems_allowed and the nodemask from 4798 * mempolicy don't intersect. This should be normally dealt with by 4799 * policy_nodemask(), but it's possible to race with cpuset update in 4800 * such a way the check therein was true, and then it became false 4801 * before we got our cpuset_mems_cookie here. 4802 * This assumes that for all allocations, ac->nodemask can come only 4803 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored 4804 * when it does not intersect with the cpuset restrictions) or the 4805 * caller can deal with a violated nodemask. 4806 */ 4807 if (cpusets_enabled() && ac->nodemask && 4808 !cpuset_nodemask_valid_mems_allowed(ac->nodemask)) { 4809 ac->nodemask = NULL; 4810 return true; 4811 } 4812 4813 /* 4814 * When updating a task's mems_allowed or mempolicy nodemask, it is 4815 * possible to race with parallel threads in such a way that our 4816 * allocation can fail while the mask is being updated. If we are about 4817 * to fail, check if the cpuset changed during allocation and if so, 4818 * retry. 4819 */ 4820 if (read_mems_allowed_retry(cpuset_mems_cookie)) 4821 return true; 4822 4823 return false; 4824 } 4825 4826 static inline struct page * 4827 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order, 4828 struct alloc_context *ac) 4829 { 4830 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM; 4831 const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER; 4832 struct page *page = NULL; 4833 unsigned int alloc_flags; 4834 unsigned long did_some_progress; 4835 enum compact_priority compact_priority; 4836 enum compact_result compact_result; 4837 int compaction_retries; 4838 int no_progress_loops; 4839 unsigned int cpuset_mems_cookie; 4840 int reserve_flags; 4841 4842 /* 4843 * We also sanity check to catch abuse of atomic reserves being used by 4844 * callers that are not in atomic context. 4845 */ 4846 if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) == 4847 (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM))) 4848 gfp_mask &= ~__GFP_ATOMIC; 4849 4850 retry_cpuset: 4851 compaction_retries = 0; 4852 no_progress_loops = 0; 4853 compact_priority = DEF_COMPACT_PRIORITY; 4854 cpuset_mems_cookie = read_mems_allowed_begin(); 4855 4856 /* 4857 * The fast path uses conservative alloc_flags to succeed only until 4858 * kswapd needs to be woken up, and to avoid the cost of setting up 4859 * alloc_flags precisely. So we do that now. 4860 */ 4861 alloc_flags = gfp_to_alloc_flags(gfp_mask); 4862 4863 /* 4864 * We need to recalculate the starting point for the zonelist iterator 4865 * because we might have used different nodemask in the fast path, or 4866 * there was a cpuset modification and we are retrying - otherwise we 4867 * could end up iterating over non-eligible zones endlessly. 4868 */ 4869 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist, 4870 ac->highest_zoneidx, ac->nodemask); 4871 if (!ac->preferred_zoneref->zone) 4872 goto nopage; 4873 4874 /* 4875 * Check for insane configurations where the cpuset doesn't contain 4876 * any suitable zone to satisfy the request - e.g. non-movable 4877 * GFP_HIGHUSER allocations from MOVABLE nodes only. 4878 */ 4879 if (cpusets_insane_config() && (gfp_mask & __GFP_HARDWALL)) { 4880 struct zoneref *z = first_zones_zonelist(ac->zonelist, 4881 ac->highest_zoneidx, 4882 &cpuset_current_mems_allowed); 4883 if (!z->zone) 4884 goto nopage; 4885 } 4886 4887 if (alloc_flags & ALLOC_KSWAPD) 4888 wake_all_kswapds(order, gfp_mask, ac); 4889 4890 /* 4891 * The adjusted alloc_flags might result in immediate success, so try 4892 * that first 4893 */ 4894 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 4895 if (page) 4896 goto got_pg; 4897 4898 /* 4899 * For costly allocations, try direct compaction first, as it's likely 4900 * that we have enough base pages and don't need to reclaim. For non- 4901 * movable high-order allocations, do that as well, as compaction will 4902 * try prevent permanent fragmentation by migrating from blocks of the 4903 * same migratetype. 4904 * Don't try this for allocations that are allowed to ignore 4905 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen. 4906 */ 4907 if (can_direct_reclaim && 4908 (costly_order || 4909 (order > 0 && ac->migratetype != MIGRATE_MOVABLE)) 4910 && !gfp_pfmemalloc_allowed(gfp_mask)) { 4911 page = __alloc_pages_direct_compact(gfp_mask, order, 4912 alloc_flags, ac, 4913 INIT_COMPACT_PRIORITY, 4914 &compact_result); 4915 if (page) 4916 goto got_pg; 4917 4918 /* 4919 * Checks for costly allocations with __GFP_NORETRY, which 4920 * includes some THP page fault allocations 4921 */ 4922 if (costly_order && (gfp_mask & __GFP_NORETRY)) { 4923 /* 4924 * If allocating entire pageblock(s) and compaction 4925 * failed because all zones are below low watermarks 4926 * or is prohibited because it recently failed at this 4927 * order, fail immediately unless the allocator has 4928 * requested compaction and reclaim retry. 4929 * 4930 * Reclaim is 4931 * - potentially very expensive because zones are far 4932 * below their low watermarks or this is part of very 4933 * bursty high order allocations, 4934 * - not guaranteed to help because isolate_freepages() 4935 * may not iterate over freed pages as part of its 4936 * linear scan, and 4937 * - unlikely to make entire pageblocks free on its 4938 * own. 4939 */ 4940 if (compact_result == COMPACT_SKIPPED || 4941 compact_result == COMPACT_DEFERRED) 4942 goto nopage; 4943 4944 /* 4945 * Looks like reclaim/compaction is worth trying, but 4946 * sync compaction could be very expensive, so keep 4947 * using async compaction. 4948 */ 4949 compact_priority = INIT_COMPACT_PRIORITY; 4950 } 4951 } 4952 4953 retry: 4954 /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */ 4955 if (alloc_flags & ALLOC_KSWAPD) 4956 wake_all_kswapds(order, gfp_mask, ac); 4957 4958 reserve_flags = __gfp_pfmemalloc_flags(gfp_mask); 4959 if (reserve_flags) 4960 alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, reserve_flags); 4961 4962 /* 4963 * Reset the nodemask and zonelist iterators if memory policies can be 4964 * ignored. These allocations are high priority and system rather than 4965 * user oriented. 4966 */ 4967 if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) { 4968 ac->nodemask = NULL; 4969 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist, 4970 ac->highest_zoneidx, ac->nodemask); 4971 } 4972 4973 /* Attempt with potentially adjusted zonelist and alloc_flags */ 4974 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 4975 if (page) 4976 goto got_pg; 4977 4978 /* Caller is not willing to reclaim, we can't balance anything */ 4979 if (!can_direct_reclaim) 4980 goto nopage; 4981 4982 /* Avoid recursion of direct reclaim */ 4983 if (current->flags & PF_MEMALLOC) 4984 goto nopage; 4985 4986 /* Try direct reclaim and then allocating */ 4987 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac, 4988 &did_some_progress); 4989 if (page) 4990 goto got_pg; 4991 4992 /* Try direct compaction and then allocating */ 4993 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac, 4994 compact_priority, &compact_result); 4995 if (page) 4996 goto got_pg; 4997 4998 /* Do not loop if specifically requested */ 4999 if (gfp_mask & __GFP_NORETRY) 5000 goto nopage; 5001 5002 /* 5003 * Do not retry costly high order allocations unless they are 5004 * __GFP_RETRY_MAYFAIL 5005 */ 5006 if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL)) 5007 goto nopage; 5008 5009 if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags, 5010 did_some_progress > 0, &no_progress_loops)) 5011 goto retry; 5012 5013 /* 5014 * It doesn't make any sense to retry for the compaction if the order-0 5015 * reclaim is not able to make any progress because the current 5016 * implementation of the compaction depends on the sufficient amount 5017 * of free memory (see __compaction_suitable) 5018 */ 5019 if (did_some_progress > 0 && 5020 should_compact_retry(ac, order, alloc_flags, 5021 compact_result, &compact_priority, 5022 &compaction_retries)) 5023 goto retry; 5024 5025 5026 /* Deal with possible cpuset update races before we start OOM killing */ 5027 if (check_retry_cpuset(cpuset_mems_cookie, ac)) 5028 goto retry_cpuset; 5029 5030 /* Reclaim has failed us, start killing things */ 5031 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress); 5032 if (page) 5033 goto got_pg; 5034 5035 /* Avoid allocations with no watermarks from looping endlessly */ 5036 if (tsk_is_oom_victim(current) && 5037 (alloc_flags & ALLOC_OOM || 5038 (gfp_mask & __GFP_NOMEMALLOC))) 5039 goto nopage; 5040 5041 /* Retry as long as the OOM killer is making progress */ 5042 if (did_some_progress) { 5043 no_progress_loops = 0; 5044 goto retry; 5045 } 5046 5047 nopage: 5048 /* Deal with possible cpuset update races before we fail */ 5049 if (check_retry_cpuset(cpuset_mems_cookie, ac)) 5050 goto retry_cpuset; 5051 5052 /* 5053 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure 5054 * we always retry 5055 */ 5056 if (gfp_mask & __GFP_NOFAIL) { 5057 /* 5058 * All existing users of the __GFP_NOFAIL are blockable, so warn 5059 * of any new users that actually require GFP_NOWAIT 5060 */ 5061 if (WARN_ON_ONCE(!can_direct_reclaim)) 5062 goto fail; 5063 5064 /* 5065 * PF_MEMALLOC request from this context is rather bizarre 5066 * because we cannot reclaim anything and only can loop waiting 5067 * for somebody to do a work for us 5068 */ 5069 WARN_ON_ONCE(current->flags & PF_MEMALLOC); 5070 5071 /* 5072 * non failing costly orders are a hard requirement which we 5073 * are not prepared for much so let's warn about these users 5074 * so that we can identify them and convert them to something 5075 * else. 5076 */ 5077 WARN_ON_ONCE(order > PAGE_ALLOC_COSTLY_ORDER); 5078 5079 /* 5080 * Help non-failing allocations by giving them access to memory 5081 * reserves but do not use ALLOC_NO_WATERMARKS because this 5082 * could deplete whole memory reserves which would just make 5083 * the situation worse 5084 */ 5085 page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac); 5086 if (page) 5087 goto got_pg; 5088 5089 cond_resched(); 5090 goto retry; 5091 } 5092 fail: 5093 warn_alloc(gfp_mask, ac->nodemask, 5094 "page allocation failure: order:%u", order); 5095 got_pg: 5096 return page; 5097 } 5098 5099 static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order, 5100 int preferred_nid, nodemask_t *nodemask, 5101 struct alloc_context *ac, gfp_t *alloc_gfp, 5102 unsigned int *alloc_flags) 5103 { 5104 ac->highest_zoneidx = gfp_zone(gfp_mask); 5105 ac->zonelist = node_zonelist(preferred_nid, gfp_mask); 5106 ac->nodemask = nodemask; 5107 ac->migratetype = gfp_migratetype(gfp_mask); 5108 5109 if (cpusets_enabled()) { 5110 *alloc_gfp |= __GFP_HARDWALL; 5111 /* 5112 * When we are in the interrupt context, it is irrelevant 5113 * to the current task context. It means that any node ok. 5114 */ 5115 if (in_task() && !ac->nodemask) 5116 ac->nodemask = &cpuset_current_mems_allowed; 5117 else 5118 *alloc_flags |= ALLOC_CPUSET; 5119 } 5120 5121 fs_reclaim_acquire(gfp_mask); 5122 fs_reclaim_release(gfp_mask); 5123 5124 might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM); 5125 5126 if (should_fail_alloc_page(gfp_mask, order)) 5127 return false; 5128 5129 *alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, *alloc_flags); 5130 5131 /* Dirty zone balancing only done in the fast path */ 5132 ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE); 5133 5134 /* 5135 * The preferred zone is used for statistics but crucially it is 5136 * also used as the starting point for the zonelist iterator. It 5137 * may get reset for allocations that ignore memory policies. 5138 */ 5139 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist, 5140 ac->highest_zoneidx, ac->nodemask); 5141 5142 return true; 5143 } 5144 5145 /* 5146 * __alloc_pages_bulk - Allocate a number of order-0 pages to a list or array 5147 * @gfp: GFP flags for the allocation 5148 * @preferred_nid: The preferred NUMA node ID to allocate from 5149 * @nodemask: Set of nodes to allocate from, may be NULL 5150 * @nr_pages: The number of pages desired on the list or array 5151 * @page_list: Optional list to store the allocated pages 5152 * @page_array: Optional array to store the pages 5153 * 5154 * This is a batched version of the page allocator that attempts to 5155 * allocate nr_pages quickly. Pages are added to page_list if page_list 5156 * is not NULL, otherwise it is assumed that the page_array is valid. 5157 * 5158 * For lists, nr_pages is the number of pages that should be allocated. 5159 * 5160 * For arrays, only NULL elements are populated with pages and nr_pages 5161 * is the maximum number of pages that will be stored in the array. 5162 * 5163 * Returns the number of pages on the list or array. 5164 */ 5165 unsigned long __alloc_pages_bulk(gfp_t gfp, int preferred_nid, 5166 nodemask_t *nodemask, int nr_pages, 5167 struct list_head *page_list, 5168 struct page **page_array) 5169 { 5170 struct page *page; 5171 unsigned long flags; 5172 struct zone *zone; 5173 struct zoneref *z; 5174 struct per_cpu_pages *pcp; 5175 struct list_head *pcp_list; 5176 struct alloc_context ac; 5177 gfp_t alloc_gfp; 5178 unsigned int alloc_flags = ALLOC_WMARK_LOW; 5179 int nr_populated = 0, nr_account = 0; 5180 5181 /* 5182 * Skip populated array elements to determine if any pages need 5183 * to be allocated before disabling IRQs. 5184 */ 5185 while (page_array && nr_populated < nr_pages && page_array[nr_populated]) 5186 nr_populated++; 5187 5188 /* No pages requested? */ 5189 if (unlikely(nr_pages <= 0)) 5190 goto out; 5191 5192 /* Already populated array? */ 5193 if (unlikely(page_array && nr_pages - nr_populated == 0)) 5194 goto out; 5195 5196 /* Bulk allocator does not support memcg accounting. */ 5197 if (memcg_kmem_enabled() && (gfp & __GFP_ACCOUNT)) 5198 goto failed; 5199 5200 /* Use the single page allocator for one page. */ 5201 if (nr_pages - nr_populated == 1) 5202 goto failed; 5203 5204 #ifdef CONFIG_PAGE_OWNER 5205 /* 5206 * PAGE_OWNER may recurse into the allocator to allocate space to 5207 * save the stack with pagesets.lock held. Releasing/reacquiring 5208 * removes much of the performance benefit of bulk allocation so 5209 * force the caller to allocate one page at a time as it'll have 5210 * similar performance to added complexity to the bulk allocator. 5211 */ 5212 if (static_branch_unlikely(&page_owner_inited)) 5213 goto failed; 5214 #endif 5215 5216 /* May set ALLOC_NOFRAGMENT, fragmentation will return 1 page. */ 5217 gfp &= gfp_allowed_mask; 5218 alloc_gfp = gfp; 5219 if (!prepare_alloc_pages(gfp, 0, preferred_nid, nodemask, &ac, &alloc_gfp, &alloc_flags)) 5220 goto out; 5221 gfp = alloc_gfp; 5222 5223 /* Find an allowed local zone that meets the low watermark. */ 5224 for_each_zone_zonelist_nodemask(zone, z, ac.zonelist, ac.highest_zoneidx, ac.nodemask) { 5225 unsigned long mark; 5226 5227 if (cpusets_enabled() && (alloc_flags & ALLOC_CPUSET) && 5228 !__cpuset_zone_allowed(zone, gfp)) { 5229 continue; 5230 } 5231 5232 if (nr_online_nodes > 1 && zone != ac.preferred_zoneref->zone && 5233 zone_to_nid(zone) != zone_to_nid(ac.preferred_zoneref->zone)) { 5234 goto failed; 5235 } 5236 5237 mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK) + nr_pages; 5238 if (zone_watermark_fast(zone, 0, mark, 5239 zonelist_zone_idx(ac.preferred_zoneref), 5240 alloc_flags, gfp)) { 5241 break; 5242 } 5243 } 5244 5245 /* 5246 * If there are no allowed local zones that meets the watermarks then 5247 * try to allocate a single page and reclaim if necessary. 5248 */ 5249 if (unlikely(!zone)) 5250 goto failed; 5251 5252 /* Attempt the batch allocation */ 5253 local_lock_irqsave(&pagesets.lock, flags); 5254 pcp = this_cpu_ptr(zone->per_cpu_pageset); 5255 pcp_list = &pcp->lists[order_to_pindex(ac.migratetype, 0)]; 5256 5257 while (nr_populated < nr_pages) { 5258 5259 /* Skip existing pages */ 5260 if (page_array && page_array[nr_populated]) { 5261 nr_populated++; 5262 continue; 5263 } 5264 5265 page = __rmqueue_pcplist(zone, 0, ac.migratetype, alloc_flags, 5266 pcp, pcp_list); 5267 if (unlikely(!page)) { 5268 /* Try and get at least one page */ 5269 if (!nr_populated) 5270 goto failed_irq; 5271 break; 5272 } 5273 nr_account++; 5274 5275 prep_new_page(page, 0, gfp, 0); 5276 if (page_list) 5277 list_add(&page->lru, page_list); 5278 else 5279 page_array[nr_populated] = page; 5280 nr_populated++; 5281 } 5282 5283 local_unlock_irqrestore(&pagesets.lock, flags); 5284 5285 __count_zid_vm_events(PGALLOC, zone_idx(zone), nr_account); 5286 zone_statistics(ac.preferred_zoneref->zone, zone, nr_account); 5287 5288 out: 5289 return nr_populated; 5290 5291 failed_irq: 5292 local_unlock_irqrestore(&pagesets.lock, flags); 5293 5294 failed: 5295 page = __alloc_pages(gfp, 0, preferred_nid, nodemask); 5296 if (page) { 5297 if (page_list) 5298 list_add(&page->lru, page_list); 5299 else 5300 page_array[nr_populated] = page; 5301 nr_populated++; 5302 } 5303 5304 goto out; 5305 } 5306 EXPORT_SYMBOL_GPL(__alloc_pages_bulk); 5307 5308 /* 5309 * This is the 'heart' of the zoned buddy allocator. 5310 */ 5311 struct page *__alloc_pages(gfp_t gfp, unsigned int order, int preferred_nid, 5312 nodemask_t *nodemask) 5313 { 5314 struct page *page; 5315 unsigned int alloc_flags = ALLOC_WMARK_LOW; 5316 gfp_t alloc_gfp; /* The gfp_t that was actually used for allocation */ 5317 struct alloc_context ac = { }; 5318 5319 /* 5320 * There are several places where we assume that the order value is sane 5321 * so bail out early if the request is out of bound. 5322 */ 5323 if (unlikely(order >= MAX_ORDER)) { 5324 WARN_ON_ONCE(!(gfp & __GFP_NOWARN)); 5325 return NULL; 5326 } 5327 5328 gfp &= gfp_allowed_mask; 5329 /* 5330 * Apply scoped allocation constraints. This is mainly about GFP_NOFS 5331 * resp. GFP_NOIO which has to be inherited for all allocation requests 5332 * from a particular context which has been marked by 5333 * memalloc_no{fs,io}_{save,restore}. And PF_MEMALLOC_PIN which ensures 5334 * movable zones are not used during allocation. 5335 */ 5336 gfp = current_gfp_context(gfp); 5337 alloc_gfp = gfp; 5338 if (!prepare_alloc_pages(gfp, order, preferred_nid, nodemask, &ac, 5339 &alloc_gfp, &alloc_flags)) 5340 return NULL; 5341 5342 /* 5343 * Forbid the first pass from falling back to types that fragment 5344 * memory until all local zones are considered. 5345 */ 5346 alloc_flags |= alloc_flags_nofragment(ac.preferred_zoneref->zone, gfp); 5347 5348 /* First allocation attempt */ 5349 page = get_page_from_freelist(alloc_gfp, order, alloc_flags, &ac); 5350 if (likely(page)) 5351 goto out; 5352 5353 alloc_gfp = gfp; 5354 ac.spread_dirty_pages = false; 5355 5356 /* 5357 * Restore the original nodemask if it was potentially replaced with 5358 * &cpuset_current_mems_allowed to optimize the fast-path attempt. 5359 */ 5360 ac.nodemask = nodemask; 5361 5362 page = __alloc_pages_slowpath(alloc_gfp, order, &ac); 5363 5364 out: 5365 if (memcg_kmem_enabled() && (gfp & __GFP_ACCOUNT) && page && 5366 unlikely(__memcg_kmem_charge_page(page, gfp, order) != 0)) { 5367 __free_pages(page, order); 5368 page = NULL; 5369 } 5370 5371 trace_mm_page_alloc(page, order, alloc_gfp, ac.migratetype); 5372 5373 return page; 5374 } 5375 EXPORT_SYMBOL(__alloc_pages); 5376 5377 struct folio *__folio_alloc(gfp_t gfp, unsigned int order, int preferred_nid, 5378 nodemask_t *nodemask) 5379 { 5380 struct page *page = __alloc_pages(gfp | __GFP_COMP, order, 5381 preferred_nid, nodemask); 5382 5383 if (page && order > 1) 5384 prep_transhuge_page(page); 5385 return (struct folio *)page; 5386 } 5387 EXPORT_SYMBOL(__folio_alloc); 5388 5389 /* 5390 * Common helper functions. Never use with __GFP_HIGHMEM because the returned 5391 * address cannot represent highmem pages. Use alloc_pages and then kmap if 5392 * you need to access high mem. 5393 */ 5394 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order) 5395 { 5396 struct page *page; 5397 5398 page = alloc_pages(gfp_mask & ~__GFP_HIGHMEM, order); 5399 if (!page) 5400 return 0; 5401 return (unsigned long) page_address(page); 5402 } 5403 EXPORT_SYMBOL(__get_free_pages); 5404 5405 unsigned long get_zeroed_page(gfp_t gfp_mask) 5406 { 5407 return __get_free_pages(gfp_mask | __GFP_ZERO, 0); 5408 } 5409 EXPORT_SYMBOL(get_zeroed_page); 5410 5411 /** 5412 * __free_pages - Free pages allocated with alloc_pages(). 5413 * @page: The page pointer returned from alloc_pages(). 5414 * @order: The order of the allocation. 5415 * 5416 * This function can free multi-page allocations that are not compound 5417 * pages. It does not check that the @order passed in matches that of 5418 * the allocation, so it is easy to leak memory. Freeing more memory 5419 * than was allocated will probably emit a warning. 5420 * 5421 * If the last reference to this page is speculative, it will be released 5422 * by put_page() which only frees the first page of a non-compound 5423 * allocation. To prevent the remaining pages from being leaked, we free 5424 * the subsequent pages here. If you want to use the page's reference 5425 * count to decide when to free the allocation, you should allocate a 5426 * compound page, and use put_page() instead of __free_pages(). 5427 * 5428 * Context: May be called in interrupt context or while holding a normal 5429 * spinlock, but not in NMI context or while holding a raw spinlock. 5430 */ 5431 void __free_pages(struct page *page, unsigned int order) 5432 { 5433 if (put_page_testzero(page)) 5434 free_the_page(page, order); 5435 else if (!PageHead(page)) 5436 while (order-- > 0) 5437 free_the_page(page + (1 << order), order); 5438 } 5439 EXPORT_SYMBOL(__free_pages); 5440 5441 void free_pages(unsigned long addr, unsigned int order) 5442 { 5443 if (addr != 0) { 5444 VM_BUG_ON(!virt_addr_valid((void *)addr)); 5445 __free_pages(virt_to_page((void *)addr), order); 5446 } 5447 } 5448 5449 EXPORT_SYMBOL(free_pages); 5450 5451 /* 5452 * Page Fragment: 5453 * An arbitrary-length arbitrary-offset area of memory which resides 5454 * within a 0 or higher order page. Multiple fragments within that page 5455 * are individually refcounted, in the page's reference counter. 5456 * 5457 * The page_frag functions below provide a simple allocation framework for 5458 * page fragments. This is used by the network stack and network device 5459 * drivers to provide a backing region of memory for use as either an 5460 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info. 5461 */ 5462 static struct page *__page_frag_cache_refill(struct page_frag_cache *nc, 5463 gfp_t gfp_mask) 5464 { 5465 struct page *page = NULL; 5466 gfp_t gfp = gfp_mask; 5467 5468 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE) 5469 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY | 5470 __GFP_NOMEMALLOC; 5471 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask, 5472 PAGE_FRAG_CACHE_MAX_ORDER); 5473 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE; 5474 #endif 5475 if (unlikely(!page)) 5476 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0); 5477 5478 nc->va = page ? page_address(page) : NULL; 5479 5480 return page; 5481 } 5482 5483 void __page_frag_cache_drain(struct page *page, unsigned int count) 5484 { 5485 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page); 5486 5487 if (page_ref_sub_and_test(page, count)) 5488 free_the_page(page, compound_order(page)); 5489 } 5490 EXPORT_SYMBOL(__page_frag_cache_drain); 5491 5492 void *page_frag_alloc_align(struct page_frag_cache *nc, 5493 unsigned int fragsz, gfp_t gfp_mask, 5494 unsigned int align_mask) 5495 { 5496 unsigned int size = PAGE_SIZE; 5497 struct page *page; 5498 int offset; 5499 5500 if (unlikely(!nc->va)) { 5501 refill: 5502 page = __page_frag_cache_refill(nc, gfp_mask); 5503 if (!page) 5504 return NULL; 5505 5506 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE) 5507 /* if size can vary use size else just use PAGE_SIZE */ 5508 size = nc->size; 5509 #endif 5510 /* Even if we own the page, we do not use atomic_set(). 5511 * This would break get_page_unless_zero() users. 5512 */ 5513 page_ref_add(page, PAGE_FRAG_CACHE_MAX_SIZE); 5514 5515 /* reset page count bias and offset to start of new frag */ 5516 nc->pfmemalloc = page_is_pfmemalloc(page); 5517 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1; 5518 nc->offset = size; 5519 } 5520 5521 offset = nc->offset - fragsz; 5522 if (unlikely(offset < 0)) { 5523 page = virt_to_page(nc->va); 5524 5525 if (!page_ref_sub_and_test(page, nc->pagecnt_bias)) 5526 goto refill; 5527 5528 if (unlikely(nc->pfmemalloc)) { 5529 free_the_page(page, compound_order(page)); 5530 goto refill; 5531 } 5532 5533 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE) 5534 /* if size can vary use size else just use PAGE_SIZE */ 5535 size = nc->size; 5536 #endif 5537 /* OK, page count is 0, we can safely set it */ 5538 set_page_count(page, PAGE_FRAG_CACHE_MAX_SIZE + 1); 5539 5540 /* reset page count bias and offset to start of new frag */ 5541 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1; 5542 offset = size - fragsz; 5543 } 5544 5545 nc->pagecnt_bias--; 5546 offset &= align_mask; 5547 nc->offset = offset; 5548 5549 return nc->va + offset; 5550 } 5551 EXPORT_SYMBOL(page_frag_alloc_align); 5552 5553 /* 5554 * Frees a page fragment allocated out of either a compound or order 0 page. 5555 */ 5556 void page_frag_free(void *addr) 5557 { 5558 struct page *page = virt_to_head_page(addr); 5559 5560 if (unlikely(put_page_testzero(page))) 5561 free_the_page(page, compound_order(page)); 5562 } 5563 EXPORT_SYMBOL(page_frag_free); 5564 5565 static void *make_alloc_exact(unsigned long addr, unsigned int order, 5566 size_t size) 5567 { 5568 if (addr) { 5569 unsigned long alloc_end = addr + (PAGE_SIZE << order); 5570 unsigned long used = addr + PAGE_ALIGN(size); 5571 5572 split_page(virt_to_page((void *)addr), order); 5573 while (used < alloc_end) { 5574 free_page(used); 5575 used += PAGE_SIZE; 5576 } 5577 } 5578 return (void *)addr; 5579 } 5580 5581 /** 5582 * alloc_pages_exact - allocate an exact number physically-contiguous pages. 5583 * @size: the number of bytes to allocate 5584 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP 5585 * 5586 * This function is similar to alloc_pages(), except that it allocates the 5587 * minimum number of pages to satisfy the request. alloc_pages() can only 5588 * allocate memory in power-of-two pages. 5589 * 5590 * This function is also limited by MAX_ORDER. 5591 * 5592 * Memory allocated by this function must be released by free_pages_exact(). 5593 * 5594 * Return: pointer to the allocated area or %NULL in case of error. 5595 */ 5596 void *alloc_pages_exact(size_t size, gfp_t gfp_mask) 5597 { 5598 unsigned int order = get_order(size); 5599 unsigned long addr; 5600 5601 if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM))) 5602 gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM); 5603 5604 addr = __get_free_pages(gfp_mask, order); 5605 return make_alloc_exact(addr, order, size); 5606 } 5607 EXPORT_SYMBOL(alloc_pages_exact); 5608 5609 /** 5610 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous 5611 * pages on a node. 5612 * @nid: the preferred node ID where memory should be allocated 5613 * @size: the number of bytes to allocate 5614 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP 5615 * 5616 * Like alloc_pages_exact(), but try to allocate on node nid first before falling 5617 * back. 5618 * 5619 * Return: pointer to the allocated area or %NULL in case of error. 5620 */ 5621 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask) 5622 { 5623 unsigned int order = get_order(size); 5624 struct page *p; 5625 5626 if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM))) 5627 gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM); 5628 5629 p = alloc_pages_node(nid, gfp_mask, order); 5630 if (!p) 5631 return NULL; 5632 return make_alloc_exact((unsigned long)page_address(p), order, size); 5633 } 5634 5635 /** 5636 * free_pages_exact - release memory allocated via alloc_pages_exact() 5637 * @virt: the value returned by alloc_pages_exact. 5638 * @size: size of allocation, same value as passed to alloc_pages_exact(). 5639 * 5640 * Release the memory allocated by a previous call to alloc_pages_exact. 5641 */ 5642 void free_pages_exact(void *virt, size_t size) 5643 { 5644 unsigned long addr = (unsigned long)virt; 5645 unsigned long end = addr + PAGE_ALIGN(size); 5646 5647 while (addr < end) { 5648 free_page(addr); 5649 addr += PAGE_SIZE; 5650 } 5651 } 5652 EXPORT_SYMBOL(free_pages_exact); 5653 5654 /** 5655 * nr_free_zone_pages - count number of pages beyond high watermark 5656 * @offset: The zone index of the highest zone 5657 * 5658 * nr_free_zone_pages() counts the number of pages which are beyond the 5659 * high watermark within all zones at or below a given zone index. For each 5660 * zone, the number of pages is calculated as: 5661 * 5662 * nr_free_zone_pages = managed_pages - high_pages 5663 * 5664 * Return: number of pages beyond high watermark. 5665 */ 5666 static unsigned long nr_free_zone_pages(int offset) 5667 { 5668 struct zoneref *z; 5669 struct zone *zone; 5670 5671 /* Just pick one node, since fallback list is circular */ 5672 unsigned long sum = 0; 5673 5674 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL); 5675 5676 for_each_zone_zonelist(zone, z, zonelist, offset) { 5677 unsigned long size = zone_managed_pages(zone); 5678 unsigned long high = high_wmark_pages(zone); 5679 if (size > high) 5680 sum += size - high; 5681 } 5682 5683 return sum; 5684 } 5685 5686 /** 5687 * nr_free_buffer_pages - count number of pages beyond high watermark 5688 * 5689 * nr_free_buffer_pages() counts the number of pages which are beyond the high 5690 * watermark within ZONE_DMA and ZONE_NORMAL. 5691 * 5692 * Return: number of pages beyond high watermark within ZONE_DMA and 5693 * ZONE_NORMAL. 5694 */ 5695 unsigned long nr_free_buffer_pages(void) 5696 { 5697 return nr_free_zone_pages(gfp_zone(GFP_USER)); 5698 } 5699 EXPORT_SYMBOL_GPL(nr_free_buffer_pages); 5700 5701 static inline void show_node(struct zone *zone) 5702 { 5703 if (IS_ENABLED(CONFIG_NUMA)) 5704 printk("Node %d ", zone_to_nid(zone)); 5705 } 5706 5707 long si_mem_available(void) 5708 { 5709 long available; 5710 unsigned long pagecache; 5711 unsigned long wmark_low = 0; 5712 unsigned long pages[NR_LRU_LISTS]; 5713 unsigned long reclaimable; 5714 struct zone *zone; 5715 int lru; 5716 5717 for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++) 5718 pages[lru] = global_node_page_state(NR_LRU_BASE + lru); 5719 5720 for_each_zone(zone) 5721 wmark_low += low_wmark_pages(zone); 5722 5723 /* 5724 * Estimate the amount of memory available for userspace allocations, 5725 * without causing swapping. 5726 */ 5727 available = global_zone_page_state(NR_FREE_PAGES) - totalreserve_pages; 5728 5729 /* 5730 * Not all the page cache can be freed, otherwise the system will 5731 * start swapping. Assume at least half of the page cache, or the 5732 * low watermark worth of cache, needs to stay. 5733 */ 5734 pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE]; 5735 pagecache -= min(pagecache / 2, wmark_low); 5736 available += pagecache; 5737 5738 /* 5739 * Part of the reclaimable slab and other kernel memory consists of 5740 * items that are in use, and cannot be freed. Cap this estimate at the 5741 * low watermark. 5742 */ 5743 reclaimable = global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B) + 5744 global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE); 5745 available += reclaimable - min(reclaimable / 2, wmark_low); 5746 5747 if (available < 0) 5748 available = 0; 5749 return available; 5750 } 5751 EXPORT_SYMBOL_GPL(si_mem_available); 5752 5753 void si_meminfo(struct sysinfo *val) 5754 { 5755 val->totalram = totalram_pages(); 5756 val->sharedram = global_node_page_state(NR_SHMEM); 5757 val->freeram = global_zone_page_state(NR_FREE_PAGES); 5758 val->bufferram = nr_blockdev_pages(); 5759 val->totalhigh = totalhigh_pages(); 5760 val->freehigh = nr_free_highpages(); 5761 val->mem_unit = PAGE_SIZE; 5762 } 5763 5764 EXPORT_SYMBOL(si_meminfo); 5765 5766 #ifdef CONFIG_NUMA 5767 void si_meminfo_node(struct sysinfo *val, int nid) 5768 { 5769 int zone_type; /* needs to be signed */ 5770 unsigned long managed_pages = 0; 5771 unsigned long managed_highpages = 0; 5772 unsigned long free_highpages = 0; 5773 pg_data_t *pgdat = NODE_DATA(nid); 5774 5775 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) 5776 managed_pages += zone_managed_pages(&pgdat->node_zones[zone_type]); 5777 val->totalram = managed_pages; 5778 val->sharedram = node_page_state(pgdat, NR_SHMEM); 5779 val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES); 5780 #ifdef CONFIG_HIGHMEM 5781 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) { 5782 struct zone *zone = &pgdat->node_zones[zone_type]; 5783 5784 if (is_highmem(zone)) { 5785 managed_highpages += zone_managed_pages(zone); 5786 free_highpages += zone_page_state(zone, NR_FREE_PAGES); 5787 } 5788 } 5789 val->totalhigh = managed_highpages; 5790 val->freehigh = free_highpages; 5791 #else 5792 val->totalhigh = managed_highpages; 5793 val->freehigh = free_highpages; 5794 #endif 5795 val->mem_unit = PAGE_SIZE; 5796 } 5797 #endif 5798 5799 /* 5800 * Determine whether the node should be displayed or not, depending on whether 5801 * SHOW_MEM_FILTER_NODES was passed to show_free_areas(). 5802 */ 5803 static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask) 5804 { 5805 if (!(flags & SHOW_MEM_FILTER_NODES)) 5806 return false; 5807 5808 /* 5809 * no node mask - aka implicit memory numa policy. Do not bother with 5810 * the synchronization - read_mems_allowed_begin - because we do not 5811 * have to be precise here. 5812 */ 5813 if (!nodemask) 5814 nodemask = &cpuset_current_mems_allowed; 5815 5816 return !node_isset(nid, *nodemask); 5817 } 5818 5819 #define K(x) ((x) << (PAGE_SHIFT-10)) 5820 5821 static void show_migration_types(unsigned char type) 5822 { 5823 static const char types[MIGRATE_TYPES] = { 5824 [MIGRATE_UNMOVABLE] = 'U', 5825 [MIGRATE_MOVABLE] = 'M', 5826 [MIGRATE_RECLAIMABLE] = 'E', 5827 [MIGRATE_HIGHATOMIC] = 'H', 5828 #ifdef CONFIG_CMA 5829 [MIGRATE_CMA] = 'C', 5830 #endif 5831 #ifdef CONFIG_MEMORY_ISOLATION 5832 [MIGRATE_ISOLATE] = 'I', 5833 #endif 5834 }; 5835 char tmp[MIGRATE_TYPES + 1]; 5836 char *p = tmp; 5837 int i; 5838 5839 for (i = 0; i < MIGRATE_TYPES; i++) { 5840 if (type & (1 << i)) 5841 *p++ = types[i]; 5842 } 5843 5844 *p = '\0'; 5845 printk(KERN_CONT "(%s) ", tmp); 5846 } 5847 5848 /* 5849 * Show free area list (used inside shift_scroll-lock stuff) 5850 * We also calculate the percentage fragmentation. We do this by counting the 5851 * memory on each free list with the exception of the first item on the list. 5852 * 5853 * Bits in @filter: 5854 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's 5855 * cpuset. 5856 */ 5857 void show_free_areas(unsigned int filter, nodemask_t *nodemask) 5858 { 5859 unsigned long free_pcp = 0; 5860 int cpu; 5861 struct zone *zone; 5862 pg_data_t *pgdat; 5863 5864 for_each_populated_zone(zone) { 5865 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask)) 5866 continue; 5867 5868 for_each_online_cpu(cpu) 5869 free_pcp += per_cpu_ptr(zone->per_cpu_pageset, cpu)->count; 5870 } 5871 5872 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n" 5873 " active_file:%lu inactive_file:%lu isolated_file:%lu\n" 5874 " unevictable:%lu dirty:%lu writeback:%lu\n" 5875 " slab_reclaimable:%lu slab_unreclaimable:%lu\n" 5876 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n" 5877 " kernel_misc_reclaimable:%lu\n" 5878 " free:%lu free_pcp:%lu free_cma:%lu\n", 5879 global_node_page_state(NR_ACTIVE_ANON), 5880 global_node_page_state(NR_INACTIVE_ANON), 5881 global_node_page_state(NR_ISOLATED_ANON), 5882 global_node_page_state(NR_ACTIVE_FILE), 5883 global_node_page_state(NR_INACTIVE_FILE), 5884 global_node_page_state(NR_ISOLATED_FILE), 5885 global_node_page_state(NR_UNEVICTABLE), 5886 global_node_page_state(NR_FILE_DIRTY), 5887 global_node_page_state(NR_WRITEBACK), 5888 global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B), 5889 global_node_page_state_pages(NR_SLAB_UNRECLAIMABLE_B), 5890 global_node_page_state(NR_FILE_MAPPED), 5891 global_node_page_state(NR_SHMEM), 5892 global_node_page_state(NR_PAGETABLE), 5893 global_zone_page_state(NR_BOUNCE), 5894 global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE), 5895 global_zone_page_state(NR_FREE_PAGES), 5896 free_pcp, 5897 global_zone_page_state(NR_FREE_CMA_PAGES)); 5898 5899 for_each_online_pgdat(pgdat) { 5900 if (show_mem_node_skip(filter, pgdat->node_id, nodemask)) 5901 continue; 5902 5903 printk("Node %d" 5904 " active_anon:%lukB" 5905 " inactive_anon:%lukB" 5906 " active_file:%lukB" 5907 " inactive_file:%lukB" 5908 " unevictable:%lukB" 5909 " isolated(anon):%lukB" 5910 " isolated(file):%lukB" 5911 " mapped:%lukB" 5912 " dirty:%lukB" 5913 " writeback:%lukB" 5914 " shmem:%lukB" 5915 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 5916 " shmem_thp: %lukB" 5917 " shmem_pmdmapped: %lukB" 5918 " anon_thp: %lukB" 5919 #endif 5920 " writeback_tmp:%lukB" 5921 " kernel_stack:%lukB" 5922 #ifdef CONFIG_SHADOW_CALL_STACK 5923 " shadow_call_stack:%lukB" 5924 #endif 5925 " pagetables:%lukB" 5926 " all_unreclaimable? %s" 5927 "\n", 5928 pgdat->node_id, 5929 K(node_page_state(pgdat, NR_ACTIVE_ANON)), 5930 K(node_page_state(pgdat, NR_INACTIVE_ANON)), 5931 K(node_page_state(pgdat, NR_ACTIVE_FILE)), 5932 K(node_page_state(pgdat, NR_INACTIVE_FILE)), 5933 K(node_page_state(pgdat, NR_UNEVICTABLE)), 5934 K(node_page_state(pgdat, NR_ISOLATED_ANON)), 5935 K(node_page_state(pgdat, NR_ISOLATED_FILE)), 5936 K(node_page_state(pgdat, NR_FILE_MAPPED)), 5937 K(node_page_state(pgdat, NR_FILE_DIRTY)), 5938 K(node_page_state(pgdat, NR_WRITEBACK)), 5939 K(node_page_state(pgdat, NR_SHMEM)), 5940 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 5941 K(node_page_state(pgdat, NR_SHMEM_THPS)), 5942 K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)), 5943 K(node_page_state(pgdat, NR_ANON_THPS)), 5944 #endif 5945 K(node_page_state(pgdat, NR_WRITEBACK_TEMP)), 5946 node_page_state(pgdat, NR_KERNEL_STACK_KB), 5947 #ifdef CONFIG_SHADOW_CALL_STACK 5948 node_page_state(pgdat, NR_KERNEL_SCS_KB), 5949 #endif 5950 K(node_page_state(pgdat, NR_PAGETABLE)), 5951 pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ? 5952 "yes" : "no"); 5953 } 5954 5955 for_each_populated_zone(zone) { 5956 int i; 5957 5958 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask)) 5959 continue; 5960 5961 free_pcp = 0; 5962 for_each_online_cpu(cpu) 5963 free_pcp += per_cpu_ptr(zone->per_cpu_pageset, cpu)->count; 5964 5965 show_node(zone); 5966 printk(KERN_CONT 5967 "%s" 5968 " free:%lukB" 5969 " boost:%lukB" 5970 " min:%lukB" 5971 " low:%lukB" 5972 " high:%lukB" 5973 " reserved_highatomic:%luKB" 5974 " active_anon:%lukB" 5975 " inactive_anon:%lukB" 5976 " active_file:%lukB" 5977 " inactive_file:%lukB" 5978 " unevictable:%lukB" 5979 " writepending:%lukB" 5980 " present:%lukB" 5981 " managed:%lukB" 5982 " mlocked:%lukB" 5983 " bounce:%lukB" 5984 " free_pcp:%lukB" 5985 " local_pcp:%ukB" 5986 " free_cma:%lukB" 5987 "\n", 5988 zone->name, 5989 K(zone_page_state(zone, NR_FREE_PAGES)), 5990 K(zone->watermark_boost), 5991 K(min_wmark_pages(zone)), 5992 K(low_wmark_pages(zone)), 5993 K(high_wmark_pages(zone)), 5994 K(zone->nr_reserved_highatomic), 5995 K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)), 5996 K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)), 5997 K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)), 5998 K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)), 5999 K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)), 6000 K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)), 6001 K(zone->present_pages), 6002 K(zone_managed_pages(zone)), 6003 K(zone_page_state(zone, NR_MLOCK)), 6004 K(zone_page_state(zone, NR_BOUNCE)), 6005 K(free_pcp), 6006 K(this_cpu_read(zone->per_cpu_pageset->count)), 6007 K(zone_page_state(zone, NR_FREE_CMA_PAGES))); 6008 printk("lowmem_reserve[]:"); 6009 for (i = 0; i < MAX_NR_ZONES; i++) 6010 printk(KERN_CONT " %ld", zone->lowmem_reserve[i]); 6011 printk(KERN_CONT "\n"); 6012 } 6013 6014 for_each_populated_zone(zone) { 6015 unsigned int order; 6016 unsigned long nr[MAX_ORDER], flags, total = 0; 6017 unsigned char types[MAX_ORDER]; 6018 6019 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask)) 6020 continue; 6021 show_node(zone); 6022 printk(KERN_CONT "%s: ", zone->name); 6023 6024 spin_lock_irqsave(&zone->lock, flags); 6025 for (order = 0; order < MAX_ORDER; order++) { 6026 struct free_area *area = &zone->free_area[order]; 6027 int type; 6028 6029 nr[order] = area->nr_free; 6030 total += nr[order] << order; 6031 6032 types[order] = 0; 6033 for (type = 0; type < MIGRATE_TYPES; type++) { 6034 if (!free_area_empty(area, type)) 6035 types[order] |= 1 << type; 6036 } 6037 } 6038 spin_unlock_irqrestore(&zone->lock, flags); 6039 for (order = 0; order < MAX_ORDER; order++) { 6040 printk(KERN_CONT "%lu*%lukB ", 6041 nr[order], K(1UL) << order); 6042 if (nr[order]) 6043 show_migration_types(types[order]); 6044 } 6045 printk(KERN_CONT "= %lukB\n", K(total)); 6046 } 6047 6048 hugetlb_show_meminfo(); 6049 6050 printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES)); 6051 6052 show_swap_cache_info(); 6053 } 6054 6055 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref) 6056 { 6057 zoneref->zone = zone; 6058 zoneref->zone_idx = zone_idx(zone); 6059 } 6060 6061 /* 6062 * Builds allocation fallback zone lists. 6063 * 6064 * Add all populated zones of a node to the zonelist. 6065 */ 6066 static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs) 6067 { 6068 struct zone *zone; 6069 enum zone_type zone_type = MAX_NR_ZONES; 6070 int nr_zones = 0; 6071 6072 do { 6073 zone_type--; 6074 zone = pgdat->node_zones + zone_type; 6075 if (managed_zone(zone)) { 6076 zoneref_set_zone(zone, &zonerefs[nr_zones++]); 6077 check_highest_zone(zone_type); 6078 } 6079 } while (zone_type); 6080 6081 return nr_zones; 6082 } 6083 6084 #ifdef CONFIG_NUMA 6085 6086 static int __parse_numa_zonelist_order(char *s) 6087 { 6088 /* 6089 * We used to support different zonelists modes but they turned 6090 * out to be just not useful. Let's keep the warning in place 6091 * if somebody still use the cmd line parameter so that we do 6092 * not fail it silently 6093 */ 6094 if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) { 6095 pr_warn("Ignoring unsupported numa_zonelist_order value: %s\n", s); 6096 return -EINVAL; 6097 } 6098 return 0; 6099 } 6100 6101 char numa_zonelist_order[] = "Node"; 6102 6103 /* 6104 * sysctl handler for numa_zonelist_order 6105 */ 6106 int numa_zonelist_order_handler(struct ctl_table *table, int write, 6107 void *buffer, size_t *length, loff_t *ppos) 6108 { 6109 if (write) 6110 return __parse_numa_zonelist_order(buffer); 6111 return proc_dostring(table, write, buffer, length, ppos); 6112 } 6113 6114 6115 #define MAX_NODE_LOAD (nr_online_nodes) 6116 static int node_load[MAX_NUMNODES]; 6117 6118 /** 6119 * find_next_best_node - find the next node that should appear in a given node's fallback list 6120 * @node: node whose fallback list we're appending 6121 * @used_node_mask: nodemask_t of already used nodes 6122 * 6123 * We use a number of factors to determine which is the next node that should 6124 * appear on a given node's fallback list. The node should not have appeared 6125 * already in @node's fallback list, and it should be the next closest node 6126 * according to the distance array (which contains arbitrary distance values 6127 * from each node to each node in the system), and should also prefer nodes 6128 * with no CPUs, since presumably they'll have very little allocation pressure 6129 * on them otherwise. 6130 * 6131 * Return: node id of the found node or %NUMA_NO_NODE if no node is found. 6132 */ 6133 int find_next_best_node(int node, nodemask_t *used_node_mask) 6134 { 6135 int n, val; 6136 int min_val = INT_MAX; 6137 int best_node = NUMA_NO_NODE; 6138 6139 /* Use the local node if we haven't already */ 6140 if (!node_isset(node, *used_node_mask)) { 6141 node_set(node, *used_node_mask); 6142 return node; 6143 } 6144 6145 for_each_node_state(n, N_MEMORY) { 6146 6147 /* Don't want a node to appear more than once */ 6148 if (node_isset(n, *used_node_mask)) 6149 continue; 6150 6151 /* Use the distance array to find the distance */ 6152 val = node_distance(node, n); 6153 6154 /* Penalize nodes under us ("prefer the next node") */ 6155 val += (n < node); 6156 6157 /* Give preference to headless and unused nodes */ 6158 if (!cpumask_empty(cpumask_of_node(n))) 6159 val += PENALTY_FOR_NODE_WITH_CPUS; 6160 6161 /* Slight preference for less loaded node */ 6162 val *= (MAX_NODE_LOAD*MAX_NUMNODES); 6163 val += node_load[n]; 6164 6165 if (val < min_val) { 6166 min_val = val; 6167 best_node = n; 6168 } 6169 } 6170 6171 if (best_node >= 0) 6172 node_set(best_node, *used_node_mask); 6173 6174 return best_node; 6175 } 6176 6177 6178 /* 6179 * Build zonelists ordered by node and zones within node. 6180 * This results in maximum locality--normal zone overflows into local 6181 * DMA zone, if any--but risks exhausting DMA zone. 6182 */ 6183 static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order, 6184 unsigned nr_nodes) 6185 { 6186 struct zoneref *zonerefs; 6187 int i; 6188 6189 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs; 6190 6191 for (i = 0; i < nr_nodes; i++) { 6192 int nr_zones; 6193 6194 pg_data_t *node = NODE_DATA(node_order[i]); 6195 6196 nr_zones = build_zonerefs_node(node, zonerefs); 6197 zonerefs += nr_zones; 6198 } 6199 zonerefs->zone = NULL; 6200 zonerefs->zone_idx = 0; 6201 } 6202 6203 /* 6204 * Build gfp_thisnode zonelists 6205 */ 6206 static void build_thisnode_zonelists(pg_data_t *pgdat) 6207 { 6208 struct zoneref *zonerefs; 6209 int nr_zones; 6210 6211 zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs; 6212 nr_zones = build_zonerefs_node(pgdat, zonerefs); 6213 zonerefs += nr_zones; 6214 zonerefs->zone = NULL; 6215 zonerefs->zone_idx = 0; 6216 } 6217 6218 /* 6219 * Build zonelists ordered by zone and nodes within zones. 6220 * This results in conserving DMA zone[s] until all Normal memory is 6221 * exhausted, but results in overflowing to remote node while memory 6222 * may still exist in local DMA zone. 6223 */ 6224 6225 static void build_zonelists(pg_data_t *pgdat) 6226 { 6227 static int node_order[MAX_NUMNODES]; 6228 int node, load, nr_nodes = 0; 6229 nodemask_t used_mask = NODE_MASK_NONE; 6230 int local_node, prev_node; 6231 6232 /* NUMA-aware ordering of nodes */ 6233 local_node = pgdat->node_id; 6234 load = nr_online_nodes; 6235 prev_node = local_node; 6236 6237 memset(node_order, 0, sizeof(node_order)); 6238 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) { 6239 /* 6240 * We don't want to pressure a particular node. 6241 * So adding penalty to the first node in same 6242 * distance group to make it round-robin. 6243 */ 6244 if (node_distance(local_node, node) != 6245 node_distance(local_node, prev_node)) 6246 node_load[node] += load; 6247 6248 node_order[nr_nodes++] = node; 6249 prev_node = node; 6250 load--; 6251 } 6252 6253 build_zonelists_in_node_order(pgdat, node_order, nr_nodes); 6254 build_thisnode_zonelists(pgdat); 6255 pr_info("Fallback order for Node %d: ", local_node); 6256 for (node = 0; node < nr_nodes; node++) 6257 pr_cont("%d ", node_order[node]); 6258 pr_cont("\n"); 6259 } 6260 6261 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 6262 /* 6263 * Return node id of node used for "local" allocations. 6264 * I.e., first node id of first zone in arg node's generic zonelist. 6265 * Used for initializing percpu 'numa_mem', which is used primarily 6266 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist. 6267 */ 6268 int local_memory_node(int node) 6269 { 6270 struct zoneref *z; 6271 6272 z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL), 6273 gfp_zone(GFP_KERNEL), 6274 NULL); 6275 return zone_to_nid(z->zone); 6276 } 6277 #endif 6278 6279 static void setup_min_unmapped_ratio(void); 6280 static void setup_min_slab_ratio(void); 6281 #else /* CONFIG_NUMA */ 6282 6283 static void build_zonelists(pg_data_t *pgdat) 6284 { 6285 int node, local_node; 6286 struct zoneref *zonerefs; 6287 int nr_zones; 6288 6289 local_node = pgdat->node_id; 6290 6291 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs; 6292 nr_zones = build_zonerefs_node(pgdat, zonerefs); 6293 zonerefs += nr_zones; 6294 6295 /* 6296 * Now we build the zonelist so that it contains the zones 6297 * of all the other nodes. 6298 * We don't want to pressure a particular node, so when 6299 * building the zones for node N, we make sure that the 6300 * zones coming right after the local ones are those from 6301 * node N+1 (modulo N) 6302 */ 6303 for (node = local_node + 1; node < MAX_NUMNODES; node++) { 6304 if (!node_online(node)) 6305 continue; 6306 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs); 6307 zonerefs += nr_zones; 6308 } 6309 for (node = 0; node < local_node; node++) { 6310 if (!node_online(node)) 6311 continue; 6312 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs); 6313 zonerefs += nr_zones; 6314 } 6315 6316 zonerefs->zone = NULL; 6317 zonerefs->zone_idx = 0; 6318 } 6319 6320 #endif /* CONFIG_NUMA */ 6321 6322 /* 6323 * Boot pageset table. One per cpu which is going to be used for all 6324 * zones and all nodes. The parameters will be set in such a way 6325 * that an item put on a list will immediately be handed over to 6326 * the buddy list. This is safe since pageset manipulation is done 6327 * with interrupts disabled. 6328 * 6329 * The boot_pagesets must be kept even after bootup is complete for 6330 * unused processors and/or zones. They do play a role for bootstrapping 6331 * hotplugged processors. 6332 * 6333 * zoneinfo_show() and maybe other functions do 6334 * not check if the processor is online before following the pageset pointer. 6335 * Other parts of the kernel may not check if the zone is available. 6336 */ 6337 static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats); 6338 /* These effectively disable the pcplists in the boot pageset completely */ 6339 #define BOOT_PAGESET_HIGH 0 6340 #define BOOT_PAGESET_BATCH 1 6341 static DEFINE_PER_CPU(struct per_cpu_pages, boot_pageset); 6342 static DEFINE_PER_CPU(struct per_cpu_zonestat, boot_zonestats); 6343 DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats); 6344 6345 static void __build_all_zonelists(void *data) 6346 { 6347 int nid; 6348 int __maybe_unused cpu; 6349 pg_data_t *self = data; 6350 static DEFINE_SPINLOCK(lock); 6351 6352 spin_lock(&lock); 6353 6354 #ifdef CONFIG_NUMA 6355 memset(node_load, 0, sizeof(node_load)); 6356 #endif 6357 6358 /* 6359 * This node is hotadded and no memory is yet present. So just 6360 * building zonelists is fine - no need to touch other nodes. 6361 */ 6362 if (self && !node_online(self->node_id)) { 6363 build_zonelists(self); 6364 } else { 6365 /* 6366 * All possible nodes have pgdat preallocated 6367 * in free_area_init 6368 */ 6369 for_each_node(nid) { 6370 pg_data_t *pgdat = NODE_DATA(nid); 6371 6372 build_zonelists(pgdat); 6373 } 6374 6375 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 6376 /* 6377 * We now know the "local memory node" for each node-- 6378 * i.e., the node of the first zone in the generic zonelist. 6379 * Set up numa_mem percpu variable for on-line cpus. During 6380 * boot, only the boot cpu should be on-line; we'll init the 6381 * secondary cpus' numa_mem as they come on-line. During 6382 * node/memory hotplug, we'll fixup all on-line cpus. 6383 */ 6384 for_each_online_cpu(cpu) 6385 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu))); 6386 #endif 6387 } 6388 6389 spin_unlock(&lock); 6390 } 6391 6392 static noinline void __init 6393 build_all_zonelists_init(void) 6394 { 6395 int cpu; 6396 6397 __build_all_zonelists(NULL); 6398 6399 /* 6400 * Initialize the boot_pagesets that are going to be used 6401 * for bootstrapping processors. The real pagesets for 6402 * each zone will be allocated later when the per cpu 6403 * allocator is available. 6404 * 6405 * boot_pagesets are used also for bootstrapping offline 6406 * cpus if the system is already booted because the pagesets 6407 * are needed to initialize allocators on a specific cpu too. 6408 * F.e. the percpu allocator needs the page allocator which 6409 * needs the percpu allocator in order to allocate its pagesets 6410 * (a chicken-egg dilemma). 6411 */ 6412 for_each_possible_cpu(cpu) 6413 per_cpu_pages_init(&per_cpu(boot_pageset, cpu), &per_cpu(boot_zonestats, cpu)); 6414 6415 mminit_verify_zonelist(); 6416 cpuset_init_current_mems_allowed(); 6417 } 6418 6419 /* 6420 * unless system_state == SYSTEM_BOOTING. 6421 * 6422 * __ref due to call of __init annotated helper build_all_zonelists_init 6423 * [protected by SYSTEM_BOOTING]. 6424 */ 6425 void __ref build_all_zonelists(pg_data_t *pgdat) 6426 { 6427 unsigned long vm_total_pages; 6428 6429 if (system_state == SYSTEM_BOOTING) { 6430 build_all_zonelists_init(); 6431 } else { 6432 __build_all_zonelists(pgdat); 6433 /* cpuset refresh routine should be here */ 6434 } 6435 /* Get the number of free pages beyond high watermark in all zones. */ 6436 vm_total_pages = nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE)); 6437 /* 6438 * Disable grouping by mobility if the number of pages in the 6439 * system is too low to allow the mechanism to work. It would be 6440 * more accurate, but expensive to check per-zone. This check is 6441 * made on memory-hotadd so a system can start with mobility 6442 * disabled and enable it later 6443 */ 6444 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES)) 6445 page_group_by_mobility_disabled = 1; 6446 else 6447 page_group_by_mobility_disabled = 0; 6448 6449 pr_info("Built %u zonelists, mobility grouping %s. Total pages: %ld\n", 6450 nr_online_nodes, 6451 page_group_by_mobility_disabled ? "off" : "on", 6452 vm_total_pages); 6453 #ifdef CONFIG_NUMA 6454 pr_info("Policy zone: %s\n", zone_names[policy_zone]); 6455 #endif 6456 } 6457 6458 /* If zone is ZONE_MOVABLE but memory is mirrored, it is an overlapped init */ 6459 static bool __meminit 6460 overlap_memmap_init(unsigned long zone, unsigned long *pfn) 6461 { 6462 static struct memblock_region *r; 6463 6464 if (mirrored_kernelcore && zone == ZONE_MOVABLE) { 6465 if (!r || *pfn >= memblock_region_memory_end_pfn(r)) { 6466 for_each_mem_region(r) { 6467 if (*pfn < memblock_region_memory_end_pfn(r)) 6468 break; 6469 } 6470 } 6471 if (*pfn >= memblock_region_memory_base_pfn(r) && 6472 memblock_is_mirror(r)) { 6473 *pfn = memblock_region_memory_end_pfn(r); 6474 return true; 6475 } 6476 } 6477 return false; 6478 } 6479 6480 /* 6481 * Initially all pages are reserved - free ones are freed 6482 * up by memblock_free_all() once the early boot process is 6483 * done. Non-atomic initialization, single-pass. 6484 * 6485 * All aligned pageblocks are initialized to the specified migratetype 6486 * (usually MIGRATE_MOVABLE). Besides setting the migratetype, no related 6487 * zone stats (e.g., nr_isolate_pageblock) are touched. 6488 */ 6489 void __meminit memmap_init_range(unsigned long size, int nid, unsigned long zone, 6490 unsigned long start_pfn, unsigned long zone_end_pfn, 6491 enum meminit_context context, 6492 struct vmem_altmap *altmap, int migratetype) 6493 { 6494 unsigned long pfn, end_pfn = start_pfn + size; 6495 struct page *page; 6496 6497 if (highest_memmap_pfn < end_pfn - 1) 6498 highest_memmap_pfn = end_pfn - 1; 6499 6500 #ifdef CONFIG_ZONE_DEVICE 6501 /* 6502 * Honor reservation requested by the driver for this ZONE_DEVICE 6503 * memory. We limit the total number of pages to initialize to just 6504 * those that might contain the memory mapping. We will defer the 6505 * ZONE_DEVICE page initialization until after we have released 6506 * the hotplug lock. 6507 */ 6508 if (zone == ZONE_DEVICE) { 6509 if (!altmap) 6510 return; 6511 6512 if (start_pfn == altmap->base_pfn) 6513 start_pfn += altmap->reserve; 6514 end_pfn = altmap->base_pfn + vmem_altmap_offset(altmap); 6515 } 6516 #endif 6517 6518 for (pfn = start_pfn; pfn < end_pfn; ) { 6519 /* 6520 * There can be holes in boot-time mem_map[]s handed to this 6521 * function. They do not exist on hotplugged memory. 6522 */ 6523 if (context == MEMINIT_EARLY) { 6524 if (overlap_memmap_init(zone, &pfn)) 6525 continue; 6526 if (defer_init(nid, pfn, zone_end_pfn)) 6527 break; 6528 } 6529 6530 page = pfn_to_page(pfn); 6531 __init_single_page(page, pfn, zone, nid); 6532 if (context == MEMINIT_HOTPLUG) 6533 __SetPageReserved(page); 6534 6535 /* 6536 * Usually, we want to mark the pageblock MIGRATE_MOVABLE, 6537 * such that unmovable allocations won't be scattered all 6538 * over the place during system boot. 6539 */ 6540 if (IS_ALIGNED(pfn, pageblock_nr_pages)) { 6541 set_pageblock_migratetype(page, migratetype); 6542 cond_resched(); 6543 } 6544 pfn++; 6545 } 6546 } 6547 6548 #ifdef CONFIG_ZONE_DEVICE 6549 static void __ref __init_zone_device_page(struct page *page, unsigned long pfn, 6550 unsigned long zone_idx, int nid, 6551 struct dev_pagemap *pgmap) 6552 { 6553 6554 __init_single_page(page, pfn, zone_idx, nid); 6555 6556 /* 6557 * Mark page reserved as it will need to wait for onlining 6558 * phase for it to be fully associated with a zone. 6559 * 6560 * We can use the non-atomic __set_bit operation for setting 6561 * the flag as we are still initializing the pages. 6562 */ 6563 __SetPageReserved(page); 6564 6565 /* 6566 * ZONE_DEVICE pages union ->lru with a ->pgmap back pointer 6567 * and zone_device_data. It is a bug if a ZONE_DEVICE page is 6568 * ever freed or placed on a driver-private list. 6569 */ 6570 page->pgmap = pgmap; 6571 page->zone_device_data = NULL; 6572 6573 /* 6574 * Mark the block movable so that blocks are reserved for 6575 * movable at startup. This will force kernel allocations 6576 * to reserve their blocks rather than leaking throughout 6577 * the address space during boot when many long-lived 6578 * kernel allocations are made. 6579 * 6580 * Please note that MEMINIT_HOTPLUG path doesn't clear memmap 6581 * because this is done early in section_activate() 6582 */ 6583 if (IS_ALIGNED(pfn, pageblock_nr_pages)) { 6584 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 6585 cond_resched(); 6586 } 6587 } 6588 6589 static void __ref memmap_init_compound(struct page *head, 6590 unsigned long head_pfn, 6591 unsigned long zone_idx, int nid, 6592 struct dev_pagemap *pgmap, 6593 unsigned long nr_pages) 6594 { 6595 unsigned long pfn, end_pfn = head_pfn + nr_pages; 6596 unsigned int order = pgmap->vmemmap_shift; 6597 6598 __SetPageHead(head); 6599 for (pfn = head_pfn + 1; pfn < end_pfn; pfn++) { 6600 struct page *page = pfn_to_page(pfn); 6601 6602 __init_zone_device_page(page, pfn, zone_idx, nid, pgmap); 6603 prep_compound_tail(head, pfn - head_pfn); 6604 set_page_count(page, 0); 6605 6606 /* 6607 * The first tail page stores compound_mapcount_ptr() and 6608 * compound_order() and the second tail page stores 6609 * compound_pincount_ptr(). Call prep_compound_head() after 6610 * the first and second tail pages have been initialized to 6611 * not have the data overwritten. 6612 */ 6613 if (pfn == head_pfn + 2) 6614 prep_compound_head(head, order); 6615 } 6616 } 6617 6618 void __ref memmap_init_zone_device(struct zone *zone, 6619 unsigned long start_pfn, 6620 unsigned long nr_pages, 6621 struct dev_pagemap *pgmap) 6622 { 6623 unsigned long pfn, end_pfn = start_pfn + nr_pages; 6624 struct pglist_data *pgdat = zone->zone_pgdat; 6625 struct vmem_altmap *altmap = pgmap_altmap(pgmap); 6626 unsigned int pfns_per_compound = pgmap_vmemmap_nr(pgmap); 6627 unsigned long zone_idx = zone_idx(zone); 6628 unsigned long start = jiffies; 6629 int nid = pgdat->node_id; 6630 6631 if (WARN_ON_ONCE(!pgmap || zone_idx(zone) != ZONE_DEVICE)) 6632 return; 6633 6634 /* 6635 * The call to memmap_init should have already taken care 6636 * of the pages reserved for the memmap, so we can just jump to 6637 * the end of that region and start processing the device pages. 6638 */ 6639 if (altmap) { 6640 start_pfn = altmap->base_pfn + vmem_altmap_offset(altmap); 6641 nr_pages = end_pfn - start_pfn; 6642 } 6643 6644 for (pfn = start_pfn; pfn < end_pfn; pfn += pfns_per_compound) { 6645 struct page *page = pfn_to_page(pfn); 6646 6647 __init_zone_device_page(page, pfn, zone_idx, nid, pgmap); 6648 6649 if (pfns_per_compound == 1) 6650 continue; 6651 6652 memmap_init_compound(page, pfn, zone_idx, nid, pgmap, 6653 pfns_per_compound); 6654 } 6655 6656 pr_info("%s initialised %lu pages in %ums\n", __func__, 6657 nr_pages, jiffies_to_msecs(jiffies - start)); 6658 } 6659 6660 #endif 6661 static void __meminit zone_init_free_lists(struct zone *zone) 6662 { 6663 unsigned int order, t; 6664 for_each_migratetype_order(order, t) { 6665 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]); 6666 zone->free_area[order].nr_free = 0; 6667 } 6668 } 6669 6670 /* 6671 * Only struct pages that correspond to ranges defined by memblock.memory 6672 * are zeroed and initialized by going through __init_single_page() during 6673 * memmap_init_zone_range(). 6674 * 6675 * But, there could be struct pages that correspond to holes in 6676 * memblock.memory. This can happen because of the following reasons: 6677 * - physical memory bank size is not necessarily the exact multiple of the 6678 * arbitrary section size 6679 * - early reserved memory may not be listed in memblock.memory 6680 * - memory layouts defined with memmap= kernel parameter may not align 6681 * nicely with memmap sections 6682 * 6683 * Explicitly initialize those struct pages so that: 6684 * - PG_Reserved is set 6685 * - zone and node links point to zone and node that span the page if the 6686 * hole is in the middle of a zone 6687 * - zone and node links point to adjacent zone/node if the hole falls on 6688 * the zone boundary; the pages in such holes will be prepended to the 6689 * zone/node above the hole except for the trailing pages in the last 6690 * section that will be appended to the zone/node below. 6691 */ 6692 static void __init init_unavailable_range(unsigned long spfn, 6693 unsigned long epfn, 6694 int zone, int node) 6695 { 6696 unsigned long pfn; 6697 u64 pgcnt = 0; 6698 6699 for (pfn = spfn; pfn < epfn; pfn++) { 6700 if (!pfn_valid(ALIGN_DOWN(pfn, pageblock_nr_pages))) { 6701 pfn = ALIGN_DOWN(pfn, pageblock_nr_pages) 6702 + pageblock_nr_pages - 1; 6703 continue; 6704 } 6705 __init_single_page(pfn_to_page(pfn), pfn, zone, node); 6706 __SetPageReserved(pfn_to_page(pfn)); 6707 pgcnt++; 6708 } 6709 6710 if (pgcnt) 6711 pr_info("On node %d, zone %s: %lld pages in unavailable ranges", 6712 node, zone_names[zone], pgcnt); 6713 } 6714 6715 static void __init memmap_init_zone_range(struct zone *zone, 6716 unsigned long start_pfn, 6717 unsigned long end_pfn, 6718 unsigned long *hole_pfn) 6719 { 6720 unsigned long zone_start_pfn = zone->zone_start_pfn; 6721 unsigned long zone_end_pfn = zone_start_pfn + zone->spanned_pages; 6722 int nid = zone_to_nid(zone), zone_id = zone_idx(zone); 6723 6724 start_pfn = clamp(start_pfn, zone_start_pfn, zone_end_pfn); 6725 end_pfn = clamp(end_pfn, zone_start_pfn, zone_end_pfn); 6726 6727 if (start_pfn >= end_pfn) 6728 return; 6729 6730 memmap_init_range(end_pfn - start_pfn, nid, zone_id, start_pfn, 6731 zone_end_pfn, MEMINIT_EARLY, NULL, MIGRATE_MOVABLE); 6732 6733 if (*hole_pfn < start_pfn) 6734 init_unavailable_range(*hole_pfn, start_pfn, zone_id, nid); 6735 6736 *hole_pfn = end_pfn; 6737 } 6738 6739 static void __init memmap_init(void) 6740 { 6741 unsigned long start_pfn, end_pfn; 6742 unsigned long hole_pfn = 0; 6743 int i, j, zone_id = 0, nid; 6744 6745 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) { 6746 struct pglist_data *node = NODE_DATA(nid); 6747 6748 for (j = 0; j < MAX_NR_ZONES; j++) { 6749 struct zone *zone = node->node_zones + j; 6750 6751 if (!populated_zone(zone)) 6752 continue; 6753 6754 memmap_init_zone_range(zone, start_pfn, end_pfn, 6755 &hole_pfn); 6756 zone_id = j; 6757 } 6758 } 6759 6760 #ifdef CONFIG_SPARSEMEM 6761 /* 6762 * Initialize the memory map for hole in the range [memory_end, 6763 * section_end]. 6764 * Append the pages in this hole to the highest zone in the last 6765 * node. 6766 * The call to init_unavailable_range() is outside the ifdef to 6767 * silence the compiler warining about zone_id set but not used; 6768 * for FLATMEM it is a nop anyway 6769 */ 6770 end_pfn = round_up(end_pfn, PAGES_PER_SECTION); 6771 if (hole_pfn < end_pfn) 6772 #endif 6773 init_unavailable_range(hole_pfn, end_pfn, zone_id, nid); 6774 } 6775 6776 void __init *memmap_alloc(phys_addr_t size, phys_addr_t align, 6777 phys_addr_t min_addr, int nid, bool exact_nid) 6778 { 6779 void *ptr; 6780 6781 if (exact_nid) 6782 ptr = memblock_alloc_exact_nid_raw(size, align, min_addr, 6783 MEMBLOCK_ALLOC_ACCESSIBLE, 6784 nid); 6785 else 6786 ptr = memblock_alloc_try_nid_raw(size, align, min_addr, 6787 MEMBLOCK_ALLOC_ACCESSIBLE, 6788 nid); 6789 6790 if (ptr && size > 0) 6791 page_init_poison(ptr, size); 6792 6793 return ptr; 6794 } 6795 6796 static int zone_batchsize(struct zone *zone) 6797 { 6798 #ifdef CONFIG_MMU 6799 int batch; 6800 6801 /* 6802 * The number of pages to batch allocate is either ~0.1% 6803 * of the zone or 1MB, whichever is smaller. The batch 6804 * size is striking a balance between allocation latency 6805 * and zone lock contention. 6806 */ 6807 batch = min(zone_managed_pages(zone) >> 10, (1024 * 1024) / PAGE_SIZE); 6808 batch /= 4; /* We effectively *= 4 below */ 6809 if (batch < 1) 6810 batch = 1; 6811 6812 /* 6813 * Clamp the batch to a 2^n - 1 value. Having a power 6814 * of 2 value was found to be more likely to have 6815 * suboptimal cache aliasing properties in some cases. 6816 * 6817 * For example if 2 tasks are alternately allocating 6818 * batches of pages, one task can end up with a lot 6819 * of pages of one half of the possible page colors 6820 * and the other with pages of the other colors. 6821 */ 6822 batch = rounddown_pow_of_two(batch + batch/2) - 1; 6823 6824 return batch; 6825 6826 #else 6827 /* The deferral and batching of frees should be suppressed under NOMMU 6828 * conditions. 6829 * 6830 * The problem is that NOMMU needs to be able to allocate large chunks 6831 * of contiguous memory as there's no hardware page translation to 6832 * assemble apparent contiguous memory from discontiguous pages. 6833 * 6834 * Queueing large contiguous runs of pages for batching, however, 6835 * causes the pages to actually be freed in smaller chunks. As there 6836 * can be a significant delay between the individual batches being 6837 * recycled, this leads to the once large chunks of space being 6838 * fragmented and becoming unavailable for high-order allocations. 6839 */ 6840 return 0; 6841 #endif 6842 } 6843 6844 static int zone_highsize(struct zone *zone, int batch, int cpu_online) 6845 { 6846 #ifdef CONFIG_MMU 6847 int high; 6848 int nr_split_cpus; 6849 unsigned long total_pages; 6850 6851 if (!percpu_pagelist_high_fraction) { 6852 /* 6853 * By default, the high value of the pcp is based on the zone 6854 * low watermark so that if they are full then background 6855 * reclaim will not be started prematurely. 6856 */ 6857 total_pages = low_wmark_pages(zone); 6858 } else { 6859 /* 6860 * If percpu_pagelist_high_fraction is configured, the high 6861 * value is based on a fraction of the managed pages in the 6862 * zone. 6863 */ 6864 total_pages = zone_managed_pages(zone) / percpu_pagelist_high_fraction; 6865 } 6866 6867 /* 6868 * Split the high value across all online CPUs local to the zone. Note 6869 * that early in boot that CPUs may not be online yet and that during 6870 * CPU hotplug that the cpumask is not yet updated when a CPU is being 6871 * onlined. For memory nodes that have no CPUs, split pcp->high across 6872 * all online CPUs to mitigate the risk that reclaim is triggered 6873 * prematurely due to pages stored on pcp lists. 6874 */ 6875 nr_split_cpus = cpumask_weight(cpumask_of_node(zone_to_nid(zone))) + cpu_online; 6876 if (!nr_split_cpus) 6877 nr_split_cpus = num_online_cpus(); 6878 high = total_pages / nr_split_cpus; 6879 6880 /* 6881 * Ensure high is at least batch*4. The multiple is based on the 6882 * historical relationship between high and batch. 6883 */ 6884 high = max(high, batch << 2); 6885 6886 return high; 6887 #else 6888 return 0; 6889 #endif 6890 } 6891 6892 /* 6893 * pcp->high and pcp->batch values are related and generally batch is lower 6894 * than high. They are also related to pcp->count such that count is lower 6895 * than high, and as soon as it reaches high, the pcplist is flushed. 6896 * 6897 * However, guaranteeing these relations at all times would require e.g. write 6898 * barriers here but also careful usage of read barriers at the read side, and 6899 * thus be prone to error and bad for performance. Thus the update only prevents 6900 * store tearing. Any new users of pcp->batch and pcp->high should ensure they 6901 * can cope with those fields changing asynchronously, and fully trust only the 6902 * pcp->count field on the local CPU with interrupts disabled. 6903 * 6904 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function 6905 * outside of boot time (or some other assurance that no concurrent updaters 6906 * exist). 6907 */ 6908 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high, 6909 unsigned long batch) 6910 { 6911 WRITE_ONCE(pcp->batch, batch); 6912 WRITE_ONCE(pcp->high, high); 6913 } 6914 6915 static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats) 6916 { 6917 int pindex; 6918 6919 memset(pcp, 0, sizeof(*pcp)); 6920 memset(pzstats, 0, sizeof(*pzstats)); 6921 6922 for (pindex = 0; pindex < NR_PCP_LISTS; pindex++) 6923 INIT_LIST_HEAD(&pcp->lists[pindex]); 6924 6925 /* 6926 * Set batch and high values safe for a boot pageset. A true percpu 6927 * pageset's initialization will update them subsequently. Here we don't 6928 * need to be as careful as pageset_update() as nobody can access the 6929 * pageset yet. 6930 */ 6931 pcp->high = BOOT_PAGESET_HIGH; 6932 pcp->batch = BOOT_PAGESET_BATCH; 6933 pcp->free_factor = 0; 6934 } 6935 6936 static void __zone_set_pageset_high_and_batch(struct zone *zone, unsigned long high, 6937 unsigned long batch) 6938 { 6939 struct per_cpu_pages *pcp; 6940 int cpu; 6941 6942 for_each_possible_cpu(cpu) { 6943 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu); 6944 pageset_update(pcp, high, batch); 6945 } 6946 } 6947 6948 /* 6949 * Calculate and set new high and batch values for all per-cpu pagesets of a 6950 * zone based on the zone's size. 6951 */ 6952 static void zone_set_pageset_high_and_batch(struct zone *zone, int cpu_online) 6953 { 6954 int new_high, new_batch; 6955 6956 new_batch = max(1, zone_batchsize(zone)); 6957 new_high = zone_highsize(zone, new_batch, cpu_online); 6958 6959 if (zone->pageset_high == new_high && 6960 zone->pageset_batch == new_batch) 6961 return; 6962 6963 zone->pageset_high = new_high; 6964 zone->pageset_batch = new_batch; 6965 6966 __zone_set_pageset_high_and_batch(zone, new_high, new_batch); 6967 } 6968 6969 void __meminit setup_zone_pageset(struct zone *zone) 6970 { 6971 int cpu; 6972 6973 /* Size may be 0 on !SMP && !NUMA */ 6974 if (sizeof(struct per_cpu_zonestat) > 0) 6975 zone->per_cpu_zonestats = alloc_percpu(struct per_cpu_zonestat); 6976 6977 zone->per_cpu_pageset = alloc_percpu(struct per_cpu_pages); 6978 for_each_possible_cpu(cpu) { 6979 struct per_cpu_pages *pcp; 6980 struct per_cpu_zonestat *pzstats; 6981 6982 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu); 6983 pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu); 6984 per_cpu_pages_init(pcp, pzstats); 6985 } 6986 6987 zone_set_pageset_high_and_batch(zone, 0); 6988 } 6989 6990 /* 6991 * Allocate per cpu pagesets and initialize them. 6992 * Before this call only boot pagesets were available. 6993 */ 6994 void __init setup_per_cpu_pageset(void) 6995 { 6996 struct pglist_data *pgdat; 6997 struct zone *zone; 6998 int __maybe_unused cpu; 6999 7000 for_each_populated_zone(zone) 7001 setup_zone_pageset(zone); 7002 7003 #ifdef CONFIG_NUMA 7004 /* 7005 * Unpopulated zones continue using the boot pagesets. 7006 * The numa stats for these pagesets need to be reset. 7007 * Otherwise, they will end up skewing the stats of 7008 * the nodes these zones are associated with. 7009 */ 7010 for_each_possible_cpu(cpu) { 7011 struct per_cpu_zonestat *pzstats = &per_cpu(boot_zonestats, cpu); 7012 memset(pzstats->vm_numa_event, 0, 7013 sizeof(pzstats->vm_numa_event)); 7014 } 7015 #endif 7016 7017 for_each_online_pgdat(pgdat) 7018 pgdat->per_cpu_nodestats = 7019 alloc_percpu(struct per_cpu_nodestat); 7020 } 7021 7022 static __meminit void zone_pcp_init(struct zone *zone) 7023 { 7024 /* 7025 * per cpu subsystem is not up at this point. The following code 7026 * relies on the ability of the linker to provide the 7027 * offset of a (static) per cpu variable into the per cpu area. 7028 */ 7029 zone->per_cpu_pageset = &boot_pageset; 7030 zone->per_cpu_zonestats = &boot_zonestats; 7031 zone->pageset_high = BOOT_PAGESET_HIGH; 7032 zone->pageset_batch = BOOT_PAGESET_BATCH; 7033 7034 if (populated_zone(zone)) 7035 pr_debug(" %s zone: %lu pages, LIFO batch:%u\n", zone->name, 7036 zone->present_pages, zone_batchsize(zone)); 7037 } 7038 7039 void __meminit init_currently_empty_zone(struct zone *zone, 7040 unsigned long zone_start_pfn, 7041 unsigned long size) 7042 { 7043 struct pglist_data *pgdat = zone->zone_pgdat; 7044 int zone_idx = zone_idx(zone) + 1; 7045 7046 if (zone_idx > pgdat->nr_zones) 7047 pgdat->nr_zones = zone_idx; 7048 7049 zone->zone_start_pfn = zone_start_pfn; 7050 7051 mminit_dprintk(MMINIT_TRACE, "memmap_init", 7052 "Initialising map node %d zone %lu pfns %lu -> %lu\n", 7053 pgdat->node_id, 7054 (unsigned long)zone_idx(zone), 7055 zone_start_pfn, (zone_start_pfn + size)); 7056 7057 zone_init_free_lists(zone); 7058 zone->initialized = 1; 7059 } 7060 7061 /** 7062 * get_pfn_range_for_nid - Return the start and end page frames for a node 7063 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned. 7064 * @start_pfn: Passed by reference. On return, it will have the node start_pfn. 7065 * @end_pfn: Passed by reference. On return, it will have the node end_pfn. 7066 * 7067 * It returns the start and end page frame of a node based on information 7068 * provided by memblock_set_node(). If called for a node 7069 * with no available memory, a warning is printed and the start and end 7070 * PFNs will be 0. 7071 */ 7072 void __init get_pfn_range_for_nid(unsigned int nid, 7073 unsigned long *start_pfn, unsigned long *end_pfn) 7074 { 7075 unsigned long this_start_pfn, this_end_pfn; 7076 int i; 7077 7078 *start_pfn = -1UL; 7079 *end_pfn = 0; 7080 7081 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) { 7082 *start_pfn = min(*start_pfn, this_start_pfn); 7083 *end_pfn = max(*end_pfn, this_end_pfn); 7084 } 7085 7086 if (*start_pfn == -1UL) 7087 *start_pfn = 0; 7088 } 7089 7090 /* 7091 * This finds a zone that can be used for ZONE_MOVABLE pages. The 7092 * assumption is made that zones within a node are ordered in monotonic 7093 * increasing memory addresses so that the "highest" populated zone is used 7094 */ 7095 static void __init find_usable_zone_for_movable(void) 7096 { 7097 int zone_index; 7098 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) { 7099 if (zone_index == ZONE_MOVABLE) 7100 continue; 7101 7102 if (arch_zone_highest_possible_pfn[zone_index] > 7103 arch_zone_lowest_possible_pfn[zone_index]) 7104 break; 7105 } 7106 7107 VM_BUG_ON(zone_index == -1); 7108 movable_zone = zone_index; 7109 } 7110 7111 /* 7112 * The zone ranges provided by the architecture do not include ZONE_MOVABLE 7113 * because it is sized independent of architecture. Unlike the other zones, 7114 * the starting point for ZONE_MOVABLE is not fixed. It may be different 7115 * in each node depending on the size of each node and how evenly kernelcore 7116 * is distributed. This helper function adjusts the zone ranges 7117 * provided by the architecture for a given node by using the end of the 7118 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that 7119 * zones within a node are in order of monotonic increases memory addresses 7120 */ 7121 static void __init adjust_zone_range_for_zone_movable(int nid, 7122 unsigned long zone_type, 7123 unsigned long node_start_pfn, 7124 unsigned long node_end_pfn, 7125 unsigned long *zone_start_pfn, 7126 unsigned long *zone_end_pfn) 7127 { 7128 /* Only adjust if ZONE_MOVABLE is on this node */ 7129 if (zone_movable_pfn[nid]) { 7130 /* Size ZONE_MOVABLE */ 7131 if (zone_type == ZONE_MOVABLE) { 7132 *zone_start_pfn = zone_movable_pfn[nid]; 7133 *zone_end_pfn = min(node_end_pfn, 7134 arch_zone_highest_possible_pfn[movable_zone]); 7135 7136 /* Adjust for ZONE_MOVABLE starting within this range */ 7137 } else if (!mirrored_kernelcore && 7138 *zone_start_pfn < zone_movable_pfn[nid] && 7139 *zone_end_pfn > zone_movable_pfn[nid]) { 7140 *zone_end_pfn = zone_movable_pfn[nid]; 7141 7142 /* Check if this whole range is within ZONE_MOVABLE */ 7143 } else if (*zone_start_pfn >= zone_movable_pfn[nid]) 7144 *zone_start_pfn = *zone_end_pfn; 7145 } 7146 } 7147 7148 /* 7149 * Return the number of pages a zone spans in a node, including holes 7150 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node() 7151 */ 7152 static unsigned long __init zone_spanned_pages_in_node(int nid, 7153 unsigned long zone_type, 7154 unsigned long node_start_pfn, 7155 unsigned long node_end_pfn, 7156 unsigned long *zone_start_pfn, 7157 unsigned long *zone_end_pfn) 7158 { 7159 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type]; 7160 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type]; 7161 /* When hotadd a new node from cpu_up(), the node should be empty */ 7162 if (!node_start_pfn && !node_end_pfn) 7163 return 0; 7164 7165 /* Get the start and end of the zone */ 7166 *zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high); 7167 *zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high); 7168 adjust_zone_range_for_zone_movable(nid, zone_type, 7169 node_start_pfn, node_end_pfn, 7170 zone_start_pfn, zone_end_pfn); 7171 7172 /* Check that this node has pages within the zone's required range */ 7173 if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn) 7174 return 0; 7175 7176 /* Move the zone boundaries inside the node if necessary */ 7177 *zone_end_pfn = min(*zone_end_pfn, node_end_pfn); 7178 *zone_start_pfn = max(*zone_start_pfn, node_start_pfn); 7179 7180 /* Return the spanned pages */ 7181 return *zone_end_pfn - *zone_start_pfn; 7182 } 7183 7184 /* 7185 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES, 7186 * then all holes in the requested range will be accounted for. 7187 */ 7188 unsigned long __init __absent_pages_in_range(int nid, 7189 unsigned long range_start_pfn, 7190 unsigned long range_end_pfn) 7191 { 7192 unsigned long nr_absent = range_end_pfn - range_start_pfn; 7193 unsigned long start_pfn, end_pfn; 7194 int i; 7195 7196 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) { 7197 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn); 7198 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn); 7199 nr_absent -= end_pfn - start_pfn; 7200 } 7201 return nr_absent; 7202 } 7203 7204 /** 7205 * absent_pages_in_range - Return number of page frames in holes within a range 7206 * @start_pfn: The start PFN to start searching for holes 7207 * @end_pfn: The end PFN to stop searching for holes 7208 * 7209 * Return: the number of pages frames in memory holes within a range. 7210 */ 7211 unsigned long __init absent_pages_in_range(unsigned long start_pfn, 7212 unsigned long end_pfn) 7213 { 7214 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn); 7215 } 7216 7217 /* Return the number of page frames in holes in a zone on a node */ 7218 static unsigned long __init zone_absent_pages_in_node(int nid, 7219 unsigned long zone_type, 7220 unsigned long node_start_pfn, 7221 unsigned long node_end_pfn) 7222 { 7223 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type]; 7224 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type]; 7225 unsigned long zone_start_pfn, zone_end_pfn; 7226 unsigned long nr_absent; 7227 7228 /* When hotadd a new node from cpu_up(), the node should be empty */ 7229 if (!node_start_pfn && !node_end_pfn) 7230 return 0; 7231 7232 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high); 7233 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high); 7234 7235 adjust_zone_range_for_zone_movable(nid, zone_type, 7236 node_start_pfn, node_end_pfn, 7237 &zone_start_pfn, &zone_end_pfn); 7238 nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn); 7239 7240 /* 7241 * ZONE_MOVABLE handling. 7242 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages 7243 * and vice versa. 7244 */ 7245 if (mirrored_kernelcore && zone_movable_pfn[nid]) { 7246 unsigned long start_pfn, end_pfn; 7247 struct memblock_region *r; 7248 7249 for_each_mem_region(r) { 7250 start_pfn = clamp(memblock_region_memory_base_pfn(r), 7251 zone_start_pfn, zone_end_pfn); 7252 end_pfn = clamp(memblock_region_memory_end_pfn(r), 7253 zone_start_pfn, zone_end_pfn); 7254 7255 if (zone_type == ZONE_MOVABLE && 7256 memblock_is_mirror(r)) 7257 nr_absent += end_pfn - start_pfn; 7258 7259 if (zone_type == ZONE_NORMAL && 7260 !memblock_is_mirror(r)) 7261 nr_absent += end_pfn - start_pfn; 7262 } 7263 } 7264 7265 return nr_absent; 7266 } 7267 7268 static void __init calculate_node_totalpages(struct pglist_data *pgdat, 7269 unsigned long node_start_pfn, 7270 unsigned long node_end_pfn) 7271 { 7272 unsigned long realtotalpages = 0, totalpages = 0; 7273 enum zone_type i; 7274 7275 for (i = 0; i < MAX_NR_ZONES; i++) { 7276 struct zone *zone = pgdat->node_zones + i; 7277 unsigned long zone_start_pfn, zone_end_pfn; 7278 unsigned long spanned, absent; 7279 unsigned long size, real_size; 7280 7281 spanned = zone_spanned_pages_in_node(pgdat->node_id, i, 7282 node_start_pfn, 7283 node_end_pfn, 7284 &zone_start_pfn, 7285 &zone_end_pfn); 7286 absent = zone_absent_pages_in_node(pgdat->node_id, i, 7287 node_start_pfn, 7288 node_end_pfn); 7289 7290 size = spanned; 7291 real_size = size - absent; 7292 7293 if (size) 7294 zone->zone_start_pfn = zone_start_pfn; 7295 else 7296 zone->zone_start_pfn = 0; 7297 zone->spanned_pages = size; 7298 zone->present_pages = real_size; 7299 #if defined(CONFIG_MEMORY_HOTPLUG) 7300 zone->present_early_pages = real_size; 7301 #endif 7302 7303 totalpages += size; 7304 realtotalpages += real_size; 7305 } 7306 7307 pgdat->node_spanned_pages = totalpages; 7308 pgdat->node_present_pages = realtotalpages; 7309 pr_debug("On node %d totalpages: %lu\n", pgdat->node_id, realtotalpages); 7310 } 7311 7312 #ifndef CONFIG_SPARSEMEM 7313 /* 7314 * Calculate the size of the zone->blockflags rounded to an unsigned long 7315 * Start by making sure zonesize is a multiple of pageblock_order by rounding 7316 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally 7317 * round what is now in bits to nearest long in bits, then return it in 7318 * bytes. 7319 */ 7320 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize) 7321 { 7322 unsigned long usemapsize; 7323 7324 zonesize += zone_start_pfn & (pageblock_nr_pages-1); 7325 usemapsize = roundup(zonesize, pageblock_nr_pages); 7326 usemapsize = usemapsize >> pageblock_order; 7327 usemapsize *= NR_PAGEBLOCK_BITS; 7328 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long)); 7329 7330 return usemapsize / 8; 7331 } 7332 7333 static void __ref setup_usemap(struct zone *zone) 7334 { 7335 unsigned long usemapsize = usemap_size(zone->zone_start_pfn, 7336 zone->spanned_pages); 7337 zone->pageblock_flags = NULL; 7338 if (usemapsize) { 7339 zone->pageblock_flags = 7340 memblock_alloc_node(usemapsize, SMP_CACHE_BYTES, 7341 zone_to_nid(zone)); 7342 if (!zone->pageblock_flags) 7343 panic("Failed to allocate %ld bytes for zone %s pageblock flags on node %d\n", 7344 usemapsize, zone->name, zone_to_nid(zone)); 7345 } 7346 } 7347 #else 7348 static inline void setup_usemap(struct zone *zone) {} 7349 #endif /* CONFIG_SPARSEMEM */ 7350 7351 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE 7352 7353 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */ 7354 void __init set_pageblock_order(void) 7355 { 7356 unsigned int order = MAX_ORDER - 1; 7357 7358 /* Check that pageblock_nr_pages has not already been setup */ 7359 if (pageblock_order) 7360 return; 7361 7362 /* Don't let pageblocks exceed the maximum allocation granularity. */ 7363 if (HPAGE_SHIFT > PAGE_SHIFT && HUGETLB_PAGE_ORDER < order) 7364 order = HUGETLB_PAGE_ORDER; 7365 7366 /* 7367 * Assume the largest contiguous order of interest is a huge page. 7368 * This value may be variable depending on boot parameters on IA64 and 7369 * powerpc. 7370 */ 7371 pageblock_order = order; 7372 } 7373 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */ 7374 7375 /* 7376 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order() 7377 * is unused as pageblock_order is set at compile-time. See 7378 * include/linux/pageblock-flags.h for the values of pageblock_order based on 7379 * the kernel config 7380 */ 7381 void __init set_pageblock_order(void) 7382 { 7383 } 7384 7385 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */ 7386 7387 static unsigned long __init calc_memmap_size(unsigned long spanned_pages, 7388 unsigned long present_pages) 7389 { 7390 unsigned long pages = spanned_pages; 7391 7392 /* 7393 * Provide a more accurate estimation if there are holes within 7394 * the zone and SPARSEMEM is in use. If there are holes within the 7395 * zone, each populated memory region may cost us one or two extra 7396 * memmap pages due to alignment because memmap pages for each 7397 * populated regions may not be naturally aligned on page boundary. 7398 * So the (present_pages >> 4) heuristic is a tradeoff for that. 7399 */ 7400 if (spanned_pages > present_pages + (present_pages >> 4) && 7401 IS_ENABLED(CONFIG_SPARSEMEM)) 7402 pages = present_pages; 7403 7404 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT; 7405 } 7406 7407 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 7408 static void pgdat_init_split_queue(struct pglist_data *pgdat) 7409 { 7410 struct deferred_split *ds_queue = &pgdat->deferred_split_queue; 7411 7412 spin_lock_init(&ds_queue->split_queue_lock); 7413 INIT_LIST_HEAD(&ds_queue->split_queue); 7414 ds_queue->split_queue_len = 0; 7415 } 7416 #else 7417 static void pgdat_init_split_queue(struct pglist_data *pgdat) {} 7418 #endif 7419 7420 #ifdef CONFIG_COMPACTION 7421 static void pgdat_init_kcompactd(struct pglist_data *pgdat) 7422 { 7423 init_waitqueue_head(&pgdat->kcompactd_wait); 7424 } 7425 #else 7426 static void pgdat_init_kcompactd(struct pglist_data *pgdat) {} 7427 #endif 7428 7429 static void __meminit pgdat_init_internals(struct pglist_data *pgdat) 7430 { 7431 int i; 7432 7433 pgdat_resize_init(pgdat); 7434 7435 pgdat_init_split_queue(pgdat); 7436 pgdat_init_kcompactd(pgdat); 7437 7438 init_waitqueue_head(&pgdat->kswapd_wait); 7439 init_waitqueue_head(&pgdat->pfmemalloc_wait); 7440 7441 for (i = 0; i < NR_VMSCAN_THROTTLE; i++) 7442 init_waitqueue_head(&pgdat->reclaim_wait[i]); 7443 7444 pgdat_page_ext_init(pgdat); 7445 lruvec_init(&pgdat->__lruvec); 7446 } 7447 7448 static void __meminit zone_init_internals(struct zone *zone, enum zone_type idx, int nid, 7449 unsigned long remaining_pages) 7450 { 7451 atomic_long_set(&zone->managed_pages, remaining_pages); 7452 zone_set_nid(zone, nid); 7453 zone->name = zone_names[idx]; 7454 zone->zone_pgdat = NODE_DATA(nid); 7455 spin_lock_init(&zone->lock); 7456 zone_seqlock_init(zone); 7457 zone_pcp_init(zone); 7458 } 7459 7460 /* 7461 * Set up the zone data structures 7462 * - init pgdat internals 7463 * - init all zones belonging to this node 7464 * 7465 * NOTE: this function is only called during memory hotplug 7466 */ 7467 #ifdef CONFIG_MEMORY_HOTPLUG 7468 void __ref free_area_init_core_hotplug(struct pglist_data *pgdat) 7469 { 7470 int nid = pgdat->node_id; 7471 enum zone_type z; 7472 int cpu; 7473 7474 pgdat_init_internals(pgdat); 7475 7476 if (pgdat->per_cpu_nodestats == &boot_nodestats) 7477 pgdat->per_cpu_nodestats = alloc_percpu(struct per_cpu_nodestat); 7478 7479 /* 7480 * Reset the nr_zones, order and highest_zoneidx before reuse. 7481 * Note that kswapd will init kswapd_highest_zoneidx properly 7482 * when it starts in the near future. 7483 */ 7484 pgdat->nr_zones = 0; 7485 pgdat->kswapd_order = 0; 7486 pgdat->kswapd_highest_zoneidx = 0; 7487 pgdat->node_start_pfn = 0; 7488 for_each_online_cpu(cpu) { 7489 struct per_cpu_nodestat *p; 7490 7491 p = per_cpu_ptr(pgdat->per_cpu_nodestats, cpu); 7492 memset(p, 0, sizeof(*p)); 7493 } 7494 7495 for (z = 0; z < MAX_NR_ZONES; z++) 7496 zone_init_internals(&pgdat->node_zones[z], z, nid, 0); 7497 } 7498 #endif 7499 7500 /* 7501 * Set up the zone data structures: 7502 * - mark all pages reserved 7503 * - mark all memory queues empty 7504 * - clear the memory bitmaps 7505 * 7506 * NOTE: pgdat should get zeroed by caller. 7507 * NOTE: this function is only called during early init. 7508 */ 7509 static void __init free_area_init_core(struct pglist_data *pgdat) 7510 { 7511 enum zone_type j; 7512 int nid = pgdat->node_id; 7513 7514 pgdat_init_internals(pgdat); 7515 pgdat->per_cpu_nodestats = &boot_nodestats; 7516 7517 for (j = 0; j < MAX_NR_ZONES; j++) { 7518 struct zone *zone = pgdat->node_zones + j; 7519 unsigned long size, freesize, memmap_pages; 7520 7521 size = zone->spanned_pages; 7522 freesize = zone->present_pages; 7523 7524 /* 7525 * Adjust freesize so that it accounts for how much memory 7526 * is used by this zone for memmap. This affects the watermark 7527 * and per-cpu initialisations 7528 */ 7529 memmap_pages = calc_memmap_size(size, freesize); 7530 if (!is_highmem_idx(j)) { 7531 if (freesize >= memmap_pages) { 7532 freesize -= memmap_pages; 7533 if (memmap_pages) 7534 pr_debug(" %s zone: %lu pages used for memmap\n", 7535 zone_names[j], memmap_pages); 7536 } else 7537 pr_warn(" %s zone: %lu memmap pages exceeds freesize %lu\n", 7538 zone_names[j], memmap_pages, freesize); 7539 } 7540 7541 /* Account for reserved pages */ 7542 if (j == 0 && freesize > dma_reserve) { 7543 freesize -= dma_reserve; 7544 pr_debug(" %s zone: %lu pages reserved\n", zone_names[0], dma_reserve); 7545 } 7546 7547 if (!is_highmem_idx(j)) 7548 nr_kernel_pages += freesize; 7549 /* Charge for highmem memmap if there are enough kernel pages */ 7550 else if (nr_kernel_pages > memmap_pages * 2) 7551 nr_kernel_pages -= memmap_pages; 7552 nr_all_pages += freesize; 7553 7554 /* 7555 * Set an approximate value for lowmem here, it will be adjusted 7556 * when the bootmem allocator frees pages into the buddy system. 7557 * And all highmem pages will be managed by the buddy system. 7558 */ 7559 zone_init_internals(zone, j, nid, freesize); 7560 7561 if (!size) 7562 continue; 7563 7564 set_pageblock_order(); 7565 setup_usemap(zone); 7566 init_currently_empty_zone(zone, zone->zone_start_pfn, size); 7567 } 7568 } 7569 7570 #ifdef CONFIG_FLATMEM 7571 static void __init alloc_node_mem_map(struct pglist_data *pgdat) 7572 { 7573 unsigned long __maybe_unused start = 0; 7574 unsigned long __maybe_unused offset = 0; 7575 7576 /* Skip empty nodes */ 7577 if (!pgdat->node_spanned_pages) 7578 return; 7579 7580 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1); 7581 offset = pgdat->node_start_pfn - start; 7582 /* ia64 gets its own node_mem_map, before this, without bootmem */ 7583 if (!pgdat->node_mem_map) { 7584 unsigned long size, end; 7585 struct page *map; 7586 7587 /* 7588 * The zone's endpoints aren't required to be MAX_ORDER 7589 * aligned but the node_mem_map endpoints must be in order 7590 * for the buddy allocator to function correctly. 7591 */ 7592 end = pgdat_end_pfn(pgdat); 7593 end = ALIGN(end, MAX_ORDER_NR_PAGES); 7594 size = (end - start) * sizeof(struct page); 7595 map = memmap_alloc(size, SMP_CACHE_BYTES, MEMBLOCK_LOW_LIMIT, 7596 pgdat->node_id, false); 7597 if (!map) 7598 panic("Failed to allocate %ld bytes for node %d memory map\n", 7599 size, pgdat->node_id); 7600 pgdat->node_mem_map = map + offset; 7601 } 7602 pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n", 7603 __func__, pgdat->node_id, (unsigned long)pgdat, 7604 (unsigned long)pgdat->node_mem_map); 7605 #ifndef CONFIG_NUMA 7606 /* 7607 * With no DISCONTIG, the global mem_map is just set as node 0's 7608 */ 7609 if (pgdat == NODE_DATA(0)) { 7610 mem_map = NODE_DATA(0)->node_mem_map; 7611 if (page_to_pfn(mem_map) != pgdat->node_start_pfn) 7612 mem_map -= offset; 7613 } 7614 #endif 7615 } 7616 #else 7617 static inline void alloc_node_mem_map(struct pglist_data *pgdat) { } 7618 #endif /* CONFIG_FLATMEM */ 7619 7620 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 7621 static inline void pgdat_set_deferred_range(pg_data_t *pgdat) 7622 { 7623 pgdat->first_deferred_pfn = ULONG_MAX; 7624 } 7625 #else 7626 static inline void pgdat_set_deferred_range(pg_data_t *pgdat) {} 7627 #endif 7628 7629 static void __init free_area_init_node(int nid) 7630 { 7631 pg_data_t *pgdat = NODE_DATA(nid); 7632 unsigned long start_pfn = 0; 7633 unsigned long end_pfn = 0; 7634 7635 /* pg_data_t should be reset to zero when it's allocated */ 7636 WARN_ON(pgdat->nr_zones || pgdat->kswapd_highest_zoneidx); 7637 7638 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn); 7639 7640 pgdat->node_id = nid; 7641 pgdat->node_start_pfn = start_pfn; 7642 pgdat->per_cpu_nodestats = NULL; 7643 7644 if (start_pfn != end_pfn) { 7645 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid, 7646 (u64)start_pfn << PAGE_SHIFT, 7647 end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0); 7648 } else { 7649 pr_info("Initmem setup node %d as memoryless\n", nid); 7650 } 7651 7652 calculate_node_totalpages(pgdat, start_pfn, end_pfn); 7653 7654 alloc_node_mem_map(pgdat); 7655 pgdat_set_deferred_range(pgdat); 7656 7657 free_area_init_core(pgdat); 7658 } 7659 7660 static void __init free_area_init_memoryless_node(int nid) 7661 { 7662 free_area_init_node(nid); 7663 } 7664 7665 #if MAX_NUMNODES > 1 7666 /* 7667 * Figure out the number of possible node ids. 7668 */ 7669 void __init setup_nr_node_ids(void) 7670 { 7671 unsigned int highest; 7672 7673 highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES); 7674 nr_node_ids = highest + 1; 7675 } 7676 #endif 7677 7678 /** 7679 * node_map_pfn_alignment - determine the maximum internode alignment 7680 * 7681 * This function should be called after node map is populated and sorted. 7682 * It calculates the maximum power of two alignment which can distinguish 7683 * all the nodes. 7684 * 7685 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value 7686 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the 7687 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is 7688 * shifted, 1GiB is enough and this function will indicate so. 7689 * 7690 * This is used to test whether pfn -> nid mapping of the chosen memory 7691 * model has fine enough granularity to avoid incorrect mapping for the 7692 * populated node map. 7693 * 7694 * Return: the determined alignment in pfn's. 0 if there is no alignment 7695 * requirement (single node). 7696 */ 7697 unsigned long __init node_map_pfn_alignment(void) 7698 { 7699 unsigned long accl_mask = 0, last_end = 0; 7700 unsigned long start, end, mask; 7701 int last_nid = NUMA_NO_NODE; 7702 int i, nid; 7703 7704 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) { 7705 if (!start || last_nid < 0 || last_nid == nid) { 7706 last_nid = nid; 7707 last_end = end; 7708 continue; 7709 } 7710 7711 /* 7712 * Start with a mask granular enough to pin-point to the 7713 * start pfn and tick off bits one-by-one until it becomes 7714 * too coarse to separate the current node from the last. 7715 */ 7716 mask = ~((1 << __ffs(start)) - 1); 7717 while (mask && last_end <= (start & (mask << 1))) 7718 mask <<= 1; 7719 7720 /* accumulate all internode masks */ 7721 accl_mask |= mask; 7722 } 7723 7724 /* convert mask to number of pages */ 7725 return ~accl_mask + 1; 7726 } 7727 7728 /** 7729 * find_min_pfn_with_active_regions - Find the minimum PFN registered 7730 * 7731 * Return: the minimum PFN based on information provided via 7732 * memblock_set_node(). 7733 */ 7734 unsigned long __init find_min_pfn_with_active_regions(void) 7735 { 7736 return PHYS_PFN(memblock_start_of_DRAM()); 7737 } 7738 7739 /* 7740 * early_calculate_totalpages() 7741 * Sum pages in active regions for movable zone. 7742 * Populate N_MEMORY for calculating usable_nodes. 7743 */ 7744 static unsigned long __init early_calculate_totalpages(void) 7745 { 7746 unsigned long totalpages = 0; 7747 unsigned long start_pfn, end_pfn; 7748 int i, nid; 7749 7750 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) { 7751 unsigned long pages = end_pfn - start_pfn; 7752 7753 totalpages += pages; 7754 if (pages) 7755 node_set_state(nid, N_MEMORY); 7756 } 7757 return totalpages; 7758 } 7759 7760 /* 7761 * Find the PFN the Movable zone begins in each node. Kernel memory 7762 * is spread evenly between nodes as long as the nodes have enough 7763 * memory. When they don't, some nodes will have more kernelcore than 7764 * others 7765 */ 7766 static void __init find_zone_movable_pfns_for_nodes(void) 7767 { 7768 int i, nid; 7769 unsigned long usable_startpfn; 7770 unsigned long kernelcore_node, kernelcore_remaining; 7771 /* save the state before borrow the nodemask */ 7772 nodemask_t saved_node_state = node_states[N_MEMORY]; 7773 unsigned long totalpages = early_calculate_totalpages(); 7774 int usable_nodes = nodes_weight(node_states[N_MEMORY]); 7775 struct memblock_region *r; 7776 7777 /* Need to find movable_zone earlier when movable_node is specified. */ 7778 find_usable_zone_for_movable(); 7779 7780 /* 7781 * If movable_node is specified, ignore kernelcore and movablecore 7782 * options. 7783 */ 7784 if (movable_node_is_enabled()) { 7785 for_each_mem_region(r) { 7786 if (!memblock_is_hotpluggable(r)) 7787 continue; 7788 7789 nid = memblock_get_region_node(r); 7790 7791 usable_startpfn = PFN_DOWN(r->base); 7792 zone_movable_pfn[nid] = zone_movable_pfn[nid] ? 7793 min(usable_startpfn, zone_movable_pfn[nid]) : 7794 usable_startpfn; 7795 } 7796 7797 goto out2; 7798 } 7799 7800 /* 7801 * If kernelcore=mirror is specified, ignore movablecore option 7802 */ 7803 if (mirrored_kernelcore) { 7804 bool mem_below_4gb_not_mirrored = false; 7805 7806 for_each_mem_region(r) { 7807 if (memblock_is_mirror(r)) 7808 continue; 7809 7810 nid = memblock_get_region_node(r); 7811 7812 usable_startpfn = memblock_region_memory_base_pfn(r); 7813 7814 if (usable_startpfn < 0x100000) { 7815 mem_below_4gb_not_mirrored = true; 7816 continue; 7817 } 7818 7819 zone_movable_pfn[nid] = zone_movable_pfn[nid] ? 7820 min(usable_startpfn, zone_movable_pfn[nid]) : 7821 usable_startpfn; 7822 } 7823 7824 if (mem_below_4gb_not_mirrored) 7825 pr_warn("This configuration results in unmirrored kernel memory.\n"); 7826 7827 goto out2; 7828 } 7829 7830 /* 7831 * If kernelcore=nn% or movablecore=nn% was specified, calculate the 7832 * amount of necessary memory. 7833 */ 7834 if (required_kernelcore_percent) 7835 required_kernelcore = (totalpages * 100 * required_kernelcore_percent) / 7836 10000UL; 7837 if (required_movablecore_percent) 7838 required_movablecore = (totalpages * 100 * required_movablecore_percent) / 7839 10000UL; 7840 7841 /* 7842 * If movablecore= was specified, calculate what size of 7843 * kernelcore that corresponds so that memory usable for 7844 * any allocation type is evenly spread. If both kernelcore 7845 * and movablecore are specified, then the value of kernelcore 7846 * will be used for required_kernelcore if it's greater than 7847 * what movablecore would have allowed. 7848 */ 7849 if (required_movablecore) { 7850 unsigned long corepages; 7851 7852 /* 7853 * Round-up so that ZONE_MOVABLE is at least as large as what 7854 * was requested by the user 7855 */ 7856 required_movablecore = 7857 roundup(required_movablecore, MAX_ORDER_NR_PAGES); 7858 required_movablecore = min(totalpages, required_movablecore); 7859 corepages = totalpages - required_movablecore; 7860 7861 required_kernelcore = max(required_kernelcore, corepages); 7862 } 7863 7864 /* 7865 * If kernelcore was not specified or kernelcore size is larger 7866 * than totalpages, there is no ZONE_MOVABLE. 7867 */ 7868 if (!required_kernelcore || required_kernelcore >= totalpages) 7869 goto out; 7870 7871 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */ 7872 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone]; 7873 7874 restart: 7875 /* Spread kernelcore memory as evenly as possible throughout nodes */ 7876 kernelcore_node = required_kernelcore / usable_nodes; 7877 for_each_node_state(nid, N_MEMORY) { 7878 unsigned long start_pfn, end_pfn; 7879 7880 /* 7881 * Recalculate kernelcore_node if the division per node 7882 * now exceeds what is necessary to satisfy the requested 7883 * amount of memory for the kernel 7884 */ 7885 if (required_kernelcore < kernelcore_node) 7886 kernelcore_node = required_kernelcore / usable_nodes; 7887 7888 /* 7889 * As the map is walked, we track how much memory is usable 7890 * by the kernel using kernelcore_remaining. When it is 7891 * 0, the rest of the node is usable by ZONE_MOVABLE 7892 */ 7893 kernelcore_remaining = kernelcore_node; 7894 7895 /* Go through each range of PFNs within this node */ 7896 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) { 7897 unsigned long size_pages; 7898 7899 start_pfn = max(start_pfn, zone_movable_pfn[nid]); 7900 if (start_pfn >= end_pfn) 7901 continue; 7902 7903 /* Account for what is only usable for kernelcore */ 7904 if (start_pfn < usable_startpfn) { 7905 unsigned long kernel_pages; 7906 kernel_pages = min(end_pfn, usable_startpfn) 7907 - start_pfn; 7908 7909 kernelcore_remaining -= min(kernel_pages, 7910 kernelcore_remaining); 7911 required_kernelcore -= min(kernel_pages, 7912 required_kernelcore); 7913 7914 /* Continue if range is now fully accounted */ 7915 if (end_pfn <= usable_startpfn) { 7916 7917 /* 7918 * Push zone_movable_pfn to the end so 7919 * that if we have to rebalance 7920 * kernelcore across nodes, we will 7921 * not double account here 7922 */ 7923 zone_movable_pfn[nid] = end_pfn; 7924 continue; 7925 } 7926 start_pfn = usable_startpfn; 7927 } 7928 7929 /* 7930 * The usable PFN range for ZONE_MOVABLE is from 7931 * start_pfn->end_pfn. Calculate size_pages as the 7932 * number of pages used as kernelcore 7933 */ 7934 size_pages = end_pfn - start_pfn; 7935 if (size_pages > kernelcore_remaining) 7936 size_pages = kernelcore_remaining; 7937 zone_movable_pfn[nid] = start_pfn + size_pages; 7938 7939 /* 7940 * Some kernelcore has been met, update counts and 7941 * break if the kernelcore for this node has been 7942 * satisfied 7943 */ 7944 required_kernelcore -= min(required_kernelcore, 7945 size_pages); 7946 kernelcore_remaining -= size_pages; 7947 if (!kernelcore_remaining) 7948 break; 7949 } 7950 } 7951 7952 /* 7953 * If there is still required_kernelcore, we do another pass with one 7954 * less node in the count. This will push zone_movable_pfn[nid] further 7955 * along on the nodes that still have memory until kernelcore is 7956 * satisfied 7957 */ 7958 usable_nodes--; 7959 if (usable_nodes && required_kernelcore > usable_nodes) 7960 goto restart; 7961 7962 out2: 7963 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */ 7964 for (nid = 0; nid < MAX_NUMNODES; nid++) { 7965 unsigned long start_pfn, end_pfn; 7966 7967 zone_movable_pfn[nid] = 7968 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES); 7969 7970 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn); 7971 if (zone_movable_pfn[nid] >= end_pfn) 7972 zone_movable_pfn[nid] = 0; 7973 } 7974 7975 out: 7976 /* restore the node_state */ 7977 node_states[N_MEMORY] = saved_node_state; 7978 } 7979 7980 /* Any regular or high memory on that node ? */ 7981 static void check_for_memory(pg_data_t *pgdat, int nid) 7982 { 7983 enum zone_type zone_type; 7984 7985 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) { 7986 struct zone *zone = &pgdat->node_zones[zone_type]; 7987 if (populated_zone(zone)) { 7988 if (IS_ENABLED(CONFIG_HIGHMEM)) 7989 node_set_state(nid, N_HIGH_MEMORY); 7990 if (zone_type <= ZONE_NORMAL) 7991 node_set_state(nid, N_NORMAL_MEMORY); 7992 break; 7993 } 7994 } 7995 } 7996 7997 /* 7998 * Some architectures, e.g. ARC may have ZONE_HIGHMEM below ZONE_NORMAL. For 7999 * such cases we allow max_zone_pfn sorted in the descending order 8000 */ 8001 bool __weak arch_has_descending_max_zone_pfns(void) 8002 { 8003 return false; 8004 } 8005 8006 /** 8007 * free_area_init - Initialise all pg_data_t and zone data 8008 * @max_zone_pfn: an array of max PFNs for each zone 8009 * 8010 * This will call free_area_init_node() for each active node in the system. 8011 * Using the page ranges provided by memblock_set_node(), the size of each 8012 * zone in each node and their holes is calculated. If the maximum PFN 8013 * between two adjacent zones match, it is assumed that the zone is empty. 8014 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed 8015 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone 8016 * starts where the previous one ended. For example, ZONE_DMA32 starts 8017 * at arch_max_dma_pfn. 8018 */ 8019 void __init free_area_init(unsigned long *max_zone_pfn) 8020 { 8021 unsigned long start_pfn, end_pfn; 8022 int i, nid, zone; 8023 bool descending; 8024 8025 /* Record where the zone boundaries are */ 8026 memset(arch_zone_lowest_possible_pfn, 0, 8027 sizeof(arch_zone_lowest_possible_pfn)); 8028 memset(arch_zone_highest_possible_pfn, 0, 8029 sizeof(arch_zone_highest_possible_pfn)); 8030 8031 start_pfn = find_min_pfn_with_active_regions(); 8032 descending = arch_has_descending_max_zone_pfns(); 8033 8034 for (i = 0; i < MAX_NR_ZONES; i++) { 8035 if (descending) 8036 zone = MAX_NR_ZONES - i - 1; 8037 else 8038 zone = i; 8039 8040 if (zone == ZONE_MOVABLE) 8041 continue; 8042 8043 end_pfn = max(max_zone_pfn[zone], start_pfn); 8044 arch_zone_lowest_possible_pfn[zone] = start_pfn; 8045 arch_zone_highest_possible_pfn[zone] = end_pfn; 8046 8047 start_pfn = end_pfn; 8048 } 8049 8050 /* Find the PFNs that ZONE_MOVABLE begins at in each node */ 8051 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn)); 8052 find_zone_movable_pfns_for_nodes(); 8053 8054 /* Print out the zone ranges */ 8055 pr_info("Zone ranges:\n"); 8056 for (i = 0; i < MAX_NR_ZONES; i++) { 8057 if (i == ZONE_MOVABLE) 8058 continue; 8059 pr_info(" %-8s ", zone_names[i]); 8060 if (arch_zone_lowest_possible_pfn[i] == 8061 arch_zone_highest_possible_pfn[i]) 8062 pr_cont("empty\n"); 8063 else 8064 pr_cont("[mem %#018Lx-%#018Lx]\n", 8065 (u64)arch_zone_lowest_possible_pfn[i] 8066 << PAGE_SHIFT, 8067 ((u64)arch_zone_highest_possible_pfn[i] 8068 << PAGE_SHIFT) - 1); 8069 } 8070 8071 /* Print out the PFNs ZONE_MOVABLE begins at in each node */ 8072 pr_info("Movable zone start for each node\n"); 8073 for (i = 0; i < MAX_NUMNODES; i++) { 8074 if (zone_movable_pfn[i]) 8075 pr_info(" Node %d: %#018Lx\n", i, 8076 (u64)zone_movable_pfn[i] << PAGE_SHIFT); 8077 } 8078 8079 /* 8080 * Print out the early node map, and initialize the 8081 * subsection-map relative to active online memory ranges to 8082 * enable future "sub-section" extensions of the memory map. 8083 */ 8084 pr_info("Early memory node ranges\n"); 8085 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) { 8086 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid, 8087 (u64)start_pfn << PAGE_SHIFT, 8088 ((u64)end_pfn << PAGE_SHIFT) - 1); 8089 subsection_map_init(start_pfn, end_pfn - start_pfn); 8090 } 8091 8092 /* Initialise every node */ 8093 mminit_verify_pageflags_layout(); 8094 setup_nr_node_ids(); 8095 for_each_node(nid) { 8096 pg_data_t *pgdat; 8097 8098 if (!node_online(nid)) { 8099 pr_info("Initializing node %d as memoryless\n", nid); 8100 8101 /* Allocator not initialized yet */ 8102 pgdat = arch_alloc_nodedata(nid); 8103 if (!pgdat) { 8104 pr_err("Cannot allocate %zuB for node %d.\n", 8105 sizeof(*pgdat), nid); 8106 continue; 8107 } 8108 arch_refresh_nodedata(nid, pgdat); 8109 free_area_init_memoryless_node(nid); 8110 8111 /* 8112 * We do not want to confuse userspace by sysfs 8113 * files/directories for node without any memory 8114 * attached to it, so this node is not marked as 8115 * N_MEMORY and not marked online so that no sysfs 8116 * hierarchy will be created via register_one_node for 8117 * it. The pgdat will get fully initialized by 8118 * hotadd_init_pgdat() when memory is hotplugged into 8119 * this node. 8120 */ 8121 continue; 8122 } 8123 8124 pgdat = NODE_DATA(nid); 8125 free_area_init_node(nid); 8126 8127 /* Any memory on that node */ 8128 if (pgdat->node_present_pages) 8129 node_set_state(nid, N_MEMORY); 8130 check_for_memory(pgdat, nid); 8131 } 8132 8133 memmap_init(); 8134 } 8135 8136 static int __init cmdline_parse_core(char *p, unsigned long *core, 8137 unsigned long *percent) 8138 { 8139 unsigned long long coremem; 8140 char *endptr; 8141 8142 if (!p) 8143 return -EINVAL; 8144 8145 /* Value may be a percentage of total memory, otherwise bytes */ 8146 coremem = simple_strtoull(p, &endptr, 0); 8147 if (*endptr == '%') { 8148 /* Paranoid check for percent values greater than 100 */ 8149 WARN_ON(coremem > 100); 8150 8151 *percent = coremem; 8152 } else { 8153 coremem = memparse(p, &p); 8154 /* Paranoid check that UL is enough for the coremem value */ 8155 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX); 8156 8157 *core = coremem >> PAGE_SHIFT; 8158 *percent = 0UL; 8159 } 8160 return 0; 8161 } 8162 8163 /* 8164 * kernelcore=size sets the amount of memory for use for allocations that 8165 * cannot be reclaimed or migrated. 8166 */ 8167 static int __init cmdline_parse_kernelcore(char *p) 8168 { 8169 /* parse kernelcore=mirror */ 8170 if (parse_option_str(p, "mirror")) { 8171 mirrored_kernelcore = true; 8172 return 0; 8173 } 8174 8175 return cmdline_parse_core(p, &required_kernelcore, 8176 &required_kernelcore_percent); 8177 } 8178 8179 /* 8180 * movablecore=size sets the amount of memory for use for allocations that 8181 * can be reclaimed or migrated. 8182 */ 8183 static int __init cmdline_parse_movablecore(char *p) 8184 { 8185 return cmdline_parse_core(p, &required_movablecore, 8186 &required_movablecore_percent); 8187 } 8188 8189 early_param("kernelcore", cmdline_parse_kernelcore); 8190 early_param("movablecore", cmdline_parse_movablecore); 8191 8192 void adjust_managed_page_count(struct page *page, long count) 8193 { 8194 atomic_long_add(count, &page_zone(page)->managed_pages); 8195 totalram_pages_add(count); 8196 #ifdef CONFIG_HIGHMEM 8197 if (PageHighMem(page)) 8198 totalhigh_pages_add(count); 8199 #endif 8200 } 8201 EXPORT_SYMBOL(adjust_managed_page_count); 8202 8203 unsigned long free_reserved_area(void *start, void *end, int poison, const char *s) 8204 { 8205 void *pos; 8206 unsigned long pages = 0; 8207 8208 start = (void *)PAGE_ALIGN((unsigned long)start); 8209 end = (void *)((unsigned long)end & PAGE_MASK); 8210 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) { 8211 struct page *page = virt_to_page(pos); 8212 void *direct_map_addr; 8213 8214 /* 8215 * 'direct_map_addr' might be different from 'pos' 8216 * because some architectures' virt_to_page() 8217 * work with aliases. Getting the direct map 8218 * address ensures that we get a _writeable_ 8219 * alias for the memset(). 8220 */ 8221 direct_map_addr = page_address(page); 8222 /* 8223 * Perform a kasan-unchecked memset() since this memory 8224 * has not been initialized. 8225 */ 8226 direct_map_addr = kasan_reset_tag(direct_map_addr); 8227 if ((unsigned int)poison <= 0xFF) 8228 memset(direct_map_addr, poison, PAGE_SIZE); 8229 8230 free_reserved_page(page); 8231 } 8232 8233 if (pages && s) 8234 pr_info("Freeing %s memory: %ldK\n", s, K(pages)); 8235 8236 return pages; 8237 } 8238 8239 void __init mem_init_print_info(void) 8240 { 8241 unsigned long physpages, codesize, datasize, rosize, bss_size; 8242 unsigned long init_code_size, init_data_size; 8243 8244 physpages = get_num_physpages(); 8245 codesize = _etext - _stext; 8246 datasize = _edata - _sdata; 8247 rosize = __end_rodata - __start_rodata; 8248 bss_size = __bss_stop - __bss_start; 8249 init_data_size = __init_end - __init_begin; 8250 init_code_size = _einittext - _sinittext; 8251 8252 /* 8253 * Detect special cases and adjust section sizes accordingly: 8254 * 1) .init.* may be embedded into .data sections 8255 * 2) .init.text.* may be out of [__init_begin, __init_end], 8256 * please refer to arch/tile/kernel/vmlinux.lds.S. 8257 * 3) .rodata.* may be embedded into .text or .data sections. 8258 */ 8259 #define adj_init_size(start, end, size, pos, adj) \ 8260 do { \ 8261 if (&start[0] <= &pos[0] && &pos[0] < &end[0] && size > adj) \ 8262 size -= adj; \ 8263 } while (0) 8264 8265 adj_init_size(__init_begin, __init_end, init_data_size, 8266 _sinittext, init_code_size); 8267 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size); 8268 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size); 8269 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize); 8270 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize); 8271 8272 #undef adj_init_size 8273 8274 pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved" 8275 #ifdef CONFIG_HIGHMEM 8276 ", %luK highmem" 8277 #endif 8278 ")\n", 8279 K(nr_free_pages()), K(physpages), 8280 codesize >> 10, datasize >> 10, rosize >> 10, 8281 (init_data_size + init_code_size) >> 10, bss_size >> 10, 8282 K(physpages - totalram_pages() - totalcma_pages), 8283 K(totalcma_pages) 8284 #ifdef CONFIG_HIGHMEM 8285 , K(totalhigh_pages()) 8286 #endif 8287 ); 8288 } 8289 8290 /** 8291 * set_dma_reserve - set the specified number of pages reserved in the first zone 8292 * @new_dma_reserve: The number of pages to mark reserved 8293 * 8294 * The per-cpu batchsize and zone watermarks are determined by managed_pages. 8295 * In the DMA zone, a significant percentage may be consumed by kernel image 8296 * and other unfreeable allocations which can skew the watermarks badly. This 8297 * function may optionally be used to account for unfreeable pages in the 8298 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and 8299 * smaller per-cpu batchsize. 8300 */ 8301 void __init set_dma_reserve(unsigned long new_dma_reserve) 8302 { 8303 dma_reserve = new_dma_reserve; 8304 } 8305 8306 static int page_alloc_cpu_dead(unsigned int cpu) 8307 { 8308 struct zone *zone; 8309 8310 lru_add_drain_cpu(cpu); 8311 drain_pages(cpu); 8312 8313 /* 8314 * Spill the event counters of the dead processor 8315 * into the current processors event counters. 8316 * This artificially elevates the count of the current 8317 * processor. 8318 */ 8319 vm_events_fold_cpu(cpu); 8320 8321 /* 8322 * Zero the differential counters of the dead processor 8323 * so that the vm statistics are consistent. 8324 * 8325 * This is only okay since the processor is dead and cannot 8326 * race with what we are doing. 8327 */ 8328 cpu_vm_stats_fold(cpu); 8329 8330 for_each_populated_zone(zone) 8331 zone_pcp_update(zone, 0); 8332 8333 return 0; 8334 } 8335 8336 static int page_alloc_cpu_online(unsigned int cpu) 8337 { 8338 struct zone *zone; 8339 8340 for_each_populated_zone(zone) 8341 zone_pcp_update(zone, 1); 8342 return 0; 8343 } 8344 8345 #ifdef CONFIG_NUMA 8346 int hashdist = HASHDIST_DEFAULT; 8347 8348 static int __init set_hashdist(char *str) 8349 { 8350 if (!str) 8351 return 0; 8352 hashdist = simple_strtoul(str, &str, 0); 8353 return 1; 8354 } 8355 __setup("hashdist=", set_hashdist); 8356 #endif 8357 8358 void __init page_alloc_init(void) 8359 { 8360 int ret; 8361 8362 #ifdef CONFIG_NUMA 8363 if (num_node_state(N_MEMORY) == 1) 8364 hashdist = 0; 8365 #endif 8366 8367 ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC, 8368 "mm/page_alloc:pcp", 8369 page_alloc_cpu_online, 8370 page_alloc_cpu_dead); 8371 WARN_ON(ret < 0); 8372 } 8373 8374 /* 8375 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio 8376 * or min_free_kbytes changes. 8377 */ 8378 static void calculate_totalreserve_pages(void) 8379 { 8380 struct pglist_data *pgdat; 8381 unsigned long reserve_pages = 0; 8382 enum zone_type i, j; 8383 8384 for_each_online_pgdat(pgdat) { 8385 8386 pgdat->totalreserve_pages = 0; 8387 8388 for (i = 0; i < MAX_NR_ZONES; i++) { 8389 struct zone *zone = pgdat->node_zones + i; 8390 long max = 0; 8391 unsigned long managed_pages = zone_managed_pages(zone); 8392 8393 /* Find valid and maximum lowmem_reserve in the zone */ 8394 for (j = i; j < MAX_NR_ZONES; j++) { 8395 if (zone->lowmem_reserve[j] > max) 8396 max = zone->lowmem_reserve[j]; 8397 } 8398 8399 /* we treat the high watermark as reserved pages. */ 8400 max += high_wmark_pages(zone); 8401 8402 if (max > managed_pages) 8403 max = managed_pages; 8404 8405 pgdat->totalreserve_pages += max; 8406 8407 reserve_pages += max; 8408 } 8409 } 8410 totalreserve_pages = reserve_pages; 8411 } 8412 8413 /* 8414 * setup_per_zone_lowmem_reserve - called whenever 8415 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone 8416 * has a correct pages reserved value, so an adequate number of 8417 * pages are left in the zone after a successful __alloc_pages(). 8418 */ 8419 static void setup_per_zone_lowmem_reserve(void) 8420 { 8421 struct pglist_data *pgdat; 8422 enum zone_type i, j; 8423 8424 for_each_online_pgdat(pgdat) { 8425 for (i = 0; i < MAX_NR_ZONES - 1; i++) { 8426 struct zone *zone = &pgdat->node_zones[i]; 8427 int ratio = sysctl_lowmem_reserve_ratio[i]; 8428 bool clear = !ratio || !zone_managed_pages(zone); 8429 unsigned long managed_pages = 0; 8430 8431 for (j = i + 1; j < MAX_NR_ZONES; j++) { 8432 struct zone *upper_zone = &pgdat->node_zones[j]; 8433 8434 managed_pages += zone_managed_pages(upper_zone); 8435 8436 if (clear) 8437 zone->lowmem_reserve[j] = 0; 8438 else 8439 zone->lowmem_reserve[j] = managed_pages / ratio; 8440 } 8441 } 8442 } 8443 8444 /* update totalreserve_pages */ 8445 calculate_totalreserve_pages(); 8446 } 8447 8448 static void __setup_per_zone_wmarks(void) 8449 { 8450 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10); 8451 unsigned long lowmem_pages = 0; 8452 struct zone *zone; 8453 unsigned long flags; 8454 8455 /* Calculate total number of !ZONE_HIGHMEM pages */ 8456 for_each_zone(zone) { 8457 if (!is_highmem(zone)) 8458 lowmem_pages += zone_managed_pages(zone); 8459 } 8460 8461 for_each_zone(zone) { 8462 u64 tmp; 8463 8464 spin_lock_irqsave(&zone->lock, flags); 8465 tmp = (u64)pages_min * zone_managed_pages(zone); 8466 do_div(tmp, lowmem_pages); 8467 if (is_highmem(zone)) { 8468 /* 8469 * __GFP_HIGH and PF_MEMALLOC allocations usually don't 8470 * need highmem pages, so cap pages_min to a small 8471 * value here. 8472 * 8473 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN) 8474 * deltas control async page reclaim, and so should 8475 * not be capped for highmem. 8476 */ 8477 unsigned long min_pages; 8478 8479 min_pages = zone_managed_pages(zone) / 1024; 8480 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL); 8481 zone->_watermark[WMARK_MIN] = min_pages; 8482 } else { 8483 /* 8484 * If it's a lowmem zone, reserve a number of pages 8485 * proportionate to the zone's size. 8486 */ 8487 zone->_watermark[WMARK_MIN] = tmp; 8488 } 8489 8490 /* 8491 * Set the kswapd watermarks distance according to the 8492 * scale factor in proportion to available memory, but 8493 * ensure a minimum size on small systems. 8494 */ 8495 tmp = max_t(u64, tmp >> 2, 8496 mult_frac(zone_managed_pages(zone), 8497 watermark_scale_factor, 10000)); 8498 8499 zone->watermark_boost = 0; 8500 zone->_watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp; 8501 zone->_watermark[WMARK_HIGH] = low_wmark_pages(zone) + tmp; 8502 zone->_watermark[WMARK_PROMO] = high_wmark_pages(zone) + tmp; 8503 8504 spin_unlock_irqrestore(&zone->lock, flags); 8505 } 8506 8507 /* update totalreserve_pages */ 8508 calculate_totalreserve_pages(); 8509 } 8510 8511 /** 8512 * setup_per_zone_wmarks - called when min_free_kbytes changes 8513 * or when memory is hot-{added|removed} 8514 * 8515 * Ensures that the watermark[min,low,high] values for each zone are set 8516 * correctly with respect to min_free_kbytes. 8517 */ 8518 void setup_per_zone_wmarks(void) 8519 { 8520 struct zone *zone; 8521 static DEFINE_SPINLOCK(lock); 8522 8523 spin_lock(&lock); 8524 __setup_per_zone_wmarks(); 8525 spin_unlock(&lock); 8526 8527 /* 8528 * The watermark size have changed so update the pcpu batch 8529 * and high limits or the limits may be inappropriate. 8530 */ 8531 for_each_zone(zone) 8532 zone_pcp_update(zone, 0); 8533 } 8534 8535 /* 8536 * Initialise min_free_kbytes. 8537 * 8538 * For small machines we want it small (128k min). For large machines 8539 * we want it large (256MB max). But it is not linear, because network 8540 * bandwidth does not increase linearly with machine size. We use 8541 * 8542 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy: 8543 * min_free_kbytes = sqrt(lowmem_kbytes * 16) 8544 * 8545 * which yields 8546 * 8547 * 16MB: 512k 8548 * 32MB: 724k 8549 * 64MB: 1024k 8550 * 128MB: 1448k 8551 * 256MB: 2048k 8552 * 512MB: 2896k 8553 * 1024MB: 4096k 8554 * 2048MB: 5792k 8555 * 4096MB: 8192k 8556 * 8192MB: 11584k 8557 * 16384MB: 16384k 8558 */ 8559 void calculate_min_free_kbytes(void) 8560 { 8561 unsigned long lowmem_kbytes; 8562 int new_min_free_kbytes; 8563 8564 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10); 8565 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16); 8566 8567 if (new_min_free_kbytes > user_min_free_kbytes) 8568 min_free_kbytes = clamp(new_min_free_kbytes, 128, 262144); 8569 else 8570 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n", 8571 new_min_free_kbytes, user_min_free_kbytes); 8572 8573 } 8574 8575 int __meminit init_per_zone_wmark_min(void) 8576 { 8577 calculate_min_free_kbytes(); 8578 setup_per_zone_wmarks(); 8579 refresh_zone_stat_thresholds(); 8580 setup_per_zone_lowmem_reserve(); 8581 8582 #ifdef CONFIG_NUMA 8583 setup_min_unmapped_ratio(); 8584 setup_min_slab_ratio(); 8585 #endif 8586 8587 khugepaged_min_free_kbytes_update(); 8588 8589 return 0; 8590 } 8591 postcore_initcall(init_per_zone_wmark_min) 8592 8593 /* 8594 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so 8595 * that we can call two helper functions whenever min_free_kbytes 8596 * changes. 8597 */ 8598 int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write, 8599 void *buffer, size_t *length, loff_t *ppos) 8600 { 8601 int rc; 8602 8603 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 8604 if (rc) 8605 return rc; 8606 8607 if (write) { 8608 user_min_free_kbytes = min_free_kbytes; 8609 setup_per_zone_wmarks(); 8610 } 8611 return 0; 8612 } 8613 8614 int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write, 8615 void *buffer, size_t *length, loff_t *ppos) 8616 { 8617 int rc; 8618 8619 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 8620 if (rc) 8621 return rc; 8622 8623 if (write) 8624 setup_per_zone_wmarks(); 8625 8626 return 0; 8627 } 8628 8629 #ifdef CONFIG_NUMA 8630 static void setup_min_unmapped_ratio(void) 8631 { 8632 pg_data_t *pgdat; 8633 struct zone *zone; 8634 8635 for_each_online_pgdat(pgdat) 8636 pgdat->min_unmapped_pages = 0; 8637 8638 for_each_zone(zone) 8639 zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) * 8640 sysctl_min_unmapped_ratio) / 100; 8641 } 8642 8643 8644 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write, 8645 void *buffer, size_t *length, loff_t *ppos) 8646 { 8647 int rc; 8648 8649 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 8650 if (rc) 8651 return rc; 8652 8653 setup_min_unmapped_ratio(); 8654 8655 return 0; 8656 } 8657 8658 static void setup_min_slab_ratio(void) 8659 { 8660 pg_data_t *pgdat; 8661 struct zone *zone; 8662 8663 for_each_online_pgdat(pgdat) 8664 pgdat->min_slab_pages = 0; 8665 8666 for_each_zone(zone) 8667 zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) * 8668 sysctl_min_slab_ratio) / 100; 8669 } 8670 8671 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write, 8672 void *buffer, size_t *length, loff_t *ppos) 8673 { 8674 int rc; 8675 8676 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 8677 if (rc) 8678 return rc; 8679 8680 setup_min_slab_ratio(); 8681 8682 return 0; 8683 } 8684 #endif 8685 8686 /* 8687 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around 8688 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve() 8689 * whenever sysctl_lowmem_reserve_ratio changes. 8690 * 8691 * The reserve ratio obviously has absolutely no relation with the 8692 * minimum watermarks. The lowmem reserve ratio can only make sense 8693 * if in function of the boot time zone sizes. 8694 */ 8695 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write, 8696 void *buffer, size_t *length, loff_t *ppos) 8697 { 8698 int i; 8699 8700 proc_dointvec_minmax(table, write, buffer, length, ppos); 8701 8702 for (i = 0; i < MAX_NR_ZONES; i++) { 8703 if (sysctl_lowmem_reserve_ratio[i] < 1) 8704 sysctl_lowmem_reserve_ratio[i] = 0; 8705 } 8706 8707 setup_per_zone_lowmem_reserve(); 8708 return 0; 8709 } 8710 8711 /* 8712 * percpu_pagelist_high_fraction - changes the pcp->high for each zone on each 8713 * cpu. It is the fraction of total pages in each zone that a hot per cpu 8714 * pagelist can have before it gets flushed back to buddy allocator. 8715 */ 8716 int percpu_pagelist_high_fraction_sysctl_handler(struct ctl_table *table, 8717 int write, void *buffer, size_t *length, loff_t *ppos) 8718 { 8719 struct zone *zone; 8720 int old_percpu_pagelist_high_fraction; 8721 int ret; 8722 8723 mutex_lock(&pcp_batch_high_lock); 8724 old_percpu_pagelist_high_fraction = percpu_pagelist_high_fraction; 8725 8726 ret = proc_dointvec_minmax(table, write, buffer, length, ppos); 8727 if (!write || ret < 0) 8728 goto out; 8729 8730 /* Sanity checking to avoid pcp imbalance */ 8731 if (percpu_pagelist_high_fraction && 8732 percpu_pagelist_high_fraction < MIN_PERCPU_PAGELIST_HIGH_FRACTION) { 8733 percpu_pagelist_high_fraction = old_percpu_pagelist_high_fraction; 8734 ret = -EINVAL; 8735 goto out; 8736 } 8737 8738 /* No change? */ 8739 if (percpu_pagelist_high_fraction == old_percpu_pagelist_high_fraction) 8740 goto out; 8741 8742 for_each_populated_zone(zone) 8743 zone_set_pageset_high_and_batch(zone, 0); 8744 out: 8745 mutex_unlock(&pcp_batch_high_lock); 8746 return ret; 8747 } 8748 8749 #ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES 8750 /* 8751 * Returns the number of pages that arch has reserved but 8752 * is not known to alloc_large_system_hash(). 8753 */ 8754 static unsigned long __init arch_reserved_kernel_pages(void) 8755 { 8756 return 0; 8757 } 8758 #endif 8759 8760 /* 8761 * Adaptive scale is meant to reduce sizes of hash tables on large memory 8762 * machines. As memory size is increased the scale is also increased but at 8763 * slower pace. Starting from ADAPT_SCALE_BASE (64G), every time memory 8764 * quadruples the scale is increased by one, which means the size of hash table 8765 * only doubles, instead of quadrupling as well. 8766 * Because 32-bit systems cannot have large physical memory, where this scaling 8767 * makes sense, it is disabled on such platforms. 8768 */ 8769 #if __BITS_PER_LONG > 32 8770 #define ADAPT_SCALE_BASE (64ul << 30) 8771 #define ADAPT_SCALE_SHIFT 2 8772 #define ADAPT_SCALE_NPAGES (ADAPT_SCALE_BASE >> PAGE_SHIFT) 8773 #endif 8774 8775 /* 8776 * allocate a large system hash table from bootmem 8777 * - it is assumed that the hash table must contain an exact power-of-2 8778 * quantity of entries 8779 * - limit is the number of hash buckets, not the total allocation size 8780 */ 8781 void *__init alloc_large_system_hash(const char *tablename, 8782 unsigned long bucketsize, 8783 unsigned long numentries, 8784 int scale, 8785 int flags, 8786 unsigned int *_hash_shift, 8787 unsigned int *_hash_mask, 8788 unsigned long low_limit, 8789 unsigned long high_limit) 8790 { 8791 unsigned long long max = high_limit; 8792 unsigned long log2qty, size; 8793 void *table = NULL; 8794 gfp_t gfp_flags; 8795 bool virt; 8796 bool huge; 8797 8798 /* allow the kernel cmdline to have a say */ 8799 if (!numentries) { 8800 /* round applicable memory size up to nearest megabyte */ 8801 numentries = nr_kernel_pages; 8802 numentries -= arch_reserved_kernel_pages(); 8803 8804 /* It isn't necessary when PAGE_SIZE >= 1MB */ 8805 if (PAGE_SHIFT < 20) 8806 numentries = round_up(numentries, (1<<20)/PAGE_SIZE); 8807 8808 #if __BITS_PER_LONG > 32 8809 if (!high_limit) { 8810 unsigned long adapt; 8811 8812 for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries; 8813 adapt <<= ADAPT_SCALE_SHIFT) 8814 scale++; 8815 } 8816 #endif 8817 8818 /* limit to 1 bucket per 2^scale bytes of low memory */ 8819 if (scale > PAGE_SHIFT) 8820 numentries >>= (scale - PAGE_SHIFT); 8821 else 8822 numentries <<= (PAGE_SHIFT - scale); 8823 8824 /* Make sure we've got at least a 0-order allocation.. */ 8825 if (unlikely(flags & HASH_SMALL)) { 8826 /* Makes no sense without HASH_EARLY */ 8827 WARN_ON(!(flags & HASH_EARLY)); 8828 if (!(numentries >> *_hash_shift)) { 8829 numentries = 1UL << *_hash_shift; 8830 BUG_ON(!numentries); 8831 } 8832 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE)) 8833 numentries = PAGE_SIZE / bucketsize; 8834 } 8835 numentries = roundup_pow_of_two(numentries); 8836 8837 /* limit allocation size to 1/16 total memory by default */ 8838 if (max == 0) { 8839 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4; 8840 do_div(max, bucketsize); 8841 } 8842 max = min(max, 0x80000000ULL); 8843 8844 if (numentries < low_limit) 8845 numentries = low_limit; 8846 if (numentries > max) 8847 numentries = max; 8848 8849 log2qty = ilog2(numentries); 8850 8851 gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC; 8852 do { 8853 virt = false; 8854 size = bucketsize << log2qty; 8855 if (flags & HASH_EARLY) { 8856 if (flags & HASH_ZERO) 8857 table = memblock_alloc(size, SMP_CACHE_BYTES); 8858 else 8859 table = memblock_alloc_raw(size, 8860 SMP_CACHE_BYTES); 8861 } else if (get_order(size) >= MAX_ORDER || hashdist) { 8862 table = __vmalloc(size, gfp_flags); 8863 virt = true; 8864 if (table) 8865 huge = is_vm_area_hugepages(table); 8866 } else { 8867 /* 8868 * If bucketsize is not a power-of-two, we may free 8869 * some pages at the end of hash table which 8870 * alloc_pages_exact() automatically does 8871 */ 8872 table = alloc_pages_exact(size, gfp_flags); 8873 kmemleak_alloc(table, size, 1, gfp_flags); 8874 } 8875 } while (!table && size > PAGE_SIZE && --log2qty); 8876 8877 if (!table) 8878 panic("Failed to allocate %s hash table\n", tablename); 8879 8880 pr_info("%s hash table entries: %ld (order: %d, %lu bytes, %s)\n", 8881 tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size, 8882 virt ? (huge ? "vmalloc hugepage" : "vmalloc") : "linear"); 8883 8884 if (_hash_shift) 8885 *_hash_shift = log2qty; 8886 if (_hash_mask) 8887 *_hash_mask = (1 << log2qty) - 1; 8888 8889 return table; 8890 } 8891 8892 /* 8893 * This function checks whether pageblock includes unmovable pages or not. 8894 * 8895 * PageLRU check without isolation or lru_lock could race so that 8896 * MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable 8897 * check without lock_page also may miss some movable non-lru pages at 8898 * race condition. So you can't expect this function should be exact. 8899 * 8900 * Returns a page without holding a reference. If the caller wants to 8901 * dereference that page (e.g., dumping), it has to make sure that it 8902 * cannot get removed (e.g., via memory unplug) concurrently. 8903 * 8904 */ 8905 struct page *has_unmovable_pages(struct zone *zone, struct page *page, 8906 int migratetype, int flags) 8907 { 8908 unsigned long iter = 0; 8909 unsigned long pfn = page_to_pfn(page); 8910 unsigned long offset = pfn % pageblock_nr_pages; 8911 8912 if (is_migrate_cma_page(page)) { 8913 /* 8914 * CMA allocations (alloc_contig_range) really need to mark 8915 * isolate CMA pageblocks even when they are not movable in fact 8916 * so consider them movable here. 8917 */ 8918 if (is_migrate_cma(migratetype)) 8919 return NULL; 8920 8921 return page; 8922 } 8923 8924 for (; iter < pageblock_nr_pages - offset; iter++) { 8925 page = pfn_to_page(pfn + iter); 8926 8927 /* 8928 * Both, bootmem allocations and memory holes are marked 8929 * PG_reserved and are unmovable. We can even have unmovable 8930 * allocations inside ZONE_MOVABLE, for example when 8931 * specifying "movablecore". 8932 */ 8933 if (PageReserved(page)) 8934 return page; 8935 8936 /* 8937 * If the zone is movable and we have ruled out all reserved 8938 * pages then it should be reasonably safe to assume the rest 8939 * is movable. 8940 */ 8941 if (zone_idx(zone) == ZONE_MOVABLE) 8942 continue; 8943 8944 /* 8945 * Hugepages are not in LRU lists, but they're movable. 8946 * THPs are on the LRU, but need to be counted as #small pages. 8947 * We need not scan over tail pages because we don't 8948 * handle each tail page individually in migration. 8949 */ 8950 if (PageHuge(page) || PageTransCompound(page)) { 8951 struct page *head = compound_head(page); 8952 unsigned int skip_pages; 8953 8954 if (PageHuge(page)) { 8955 if (!hugepage_migration_supported(page_hstate(head))) 8956 return page; 8957 } else if (!PageLRU(head) && !__PageMovable(head)) { 8958 return page; 8959 } 8960 8961 skip_pages = compound_nr(head) - (page - head); 8962 iter += skip_pages - 1; 8963 continue; 8964 } 8965 8966 /* 8967 * We can't use page_count without pin a page 8968 * because another CPU can free compound page. 8969 * This check already skips compound tails of THP 8970 * because their page->_refcount is zero at all time. 8971 */ 8972 if (!page_ref_count(page)) { 8973 if (PageBuddy(page)) 8974 iter += (1 << buddy_order(page)) - 1; 8975 continue; 8976 } 8977 8978 /* 8979 * The HWPoisoned page may be not in buddy system, and 8980 * page_count() is not 0. 8981 */ 8982 if ((flags & MEMORY_OFFLINE) && PageHWPoison(page)) 8983 continue; 8984 8985 /* 8986 * We treat all PageOffline() pages as movable when offlining 8987 * to give drivers a chance to decrement their reference count 8988 * in MEM_GOING_OFFLINE in order to indicate that these pages 8989 * can be offlined as there are no direct references anymore. 8990 * For actually unmovable PageOffline() where the driver does 8991 * not support this, we will fail later when trying to actually 8992 * move these pages that still have a reference count > 0. 8993 * (false negatives in this function only) 8994 */ 8995 if ((flags & MEMORY_OFFLINE) && PageOffline(page)) 8996 continue; 8997 8998 if (__PageMovable(page) || PageLRU(page)) 8999 continue; 9000 9001 /* 9002 * If there are RECLAIMABLE pages, we need to check 9003 * it. But now, memory offline itself doesn't call 9004 * shrink_node_slabs() and it still to be fixed. 9005 */ 9006 return page; 9007 } 9008 return NULL; 9009 } 9010 9011 #ifdef CONFIG_CONTIG_ALLOC 9012 static unsigned long pfn_max_align_down(unsigned long pfn) 9013 { 9014 return ALIGN_DOWN(pfn, MAX_ORDER_NR_PAGES); 9015 } 9016 9017 static unsigned long pfn_max_align_up(unsigned long pfn) 9018 { 9019 return ALIGN(pfn, MAX_ORDER_NR_PAGES); 9020 } 9021 9022 #if defined(CONFIG_DYNAMIC_DEBUG) || \ 9023 (defined(CONFIG_DYNAMIC_DEBUG_CORE) && defined(DYNAMIC_DEBUG_MODULE)) 9024 /* Usage: See admin-guide/dynamic-debug-howto.rst */ 9025 static void alloc_contig_dump_pages(struct list_head *page_list) 9026 { 9027 DEFINE_DYNAMIC_DEBUG_METADATA(descriptor, "migrate failure"); 9028 9029 if (DYNAMIC_DEBUG_BRANCH(descriptor)) { 9030 struct page *page; 9031 9032 dump_stack(); 9033 list_for_each_entry(page, page_list, lru) 9034 dump_page(page, "migration failure"); 9035 } 9036 } 9037 #else 9038 static inline void alloc_contig_dump_pages(struct list_head *page_list) 9039 { 9040 } 9041 #endif 9042 9043 /* [start, end) must belong to a single zone. */ 9044 static int __alloc_contig_migrate_range(struct compact_control *cc, 9045 unsigned long start, unsigned long end) 9046 { 9047 /* This function is based on compact_zone() from compaction.c. */ 9048 unsigned int nr_reclaimed; 9049 unsigned long pfn = start; 9050 unsigned int tries = 0; 9051 int ret = 0; 9052 struct migration_target_control mtc = { 9053 .nid = zone_to_nid(cc->zone), 9054 .gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL, 9055 }; 9056 9057 lru_cache_disable(); 9058 9059 while (pfn < end || !list_empty(&cc->migratepages)) { 9060 if (fatal_signal_pending(current)) { 9061 ret = -EINTR; 9062 break; 9063 } 9064 9065 if (list_empty(&cc->migratepages)) { 9066 cc->nr_migratepages = 0; 9067 ret = isolate_migratepages_range(cc, pfn, end); 9068 if (ret && ret != -EAGAIN) 9069 break; 9070 pfn = cc->migrate_pfn; 9071 tries = 0; 9072 } else if (++tries == 5) { 9073 ret = -EBUSY; 9074 break; 9075 } 9076 9077 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone, 9078 &cc->migratepages); 9079 cc->nr_migratepages -= nr_reclaimed; 9080 9081 ret = migrate_pages(&cc->migratepages, alloc_migration_target, 9082 NULL, (unsigned long)&mtc, cc->mode, MR_CONTIG_RANGE, NULL); 9083 9084 /* 9085 * On -ENOMEM, migrate_pages() bails out right away. It is pointless 9086 * to retry again over this error, so do the same here. 9087 */ 9088 if (ret == -ENOMEM) 9089 break; 9090 } 9091 9092 lru_cache_enable(); 9093 if (ret < 0) { 9094 if (ret == -EBUSY) 9095 alloc_contig_dump_pages(&cc->migratepages); 9096 putback_movable_pages(&cc->migratepages); 9097 return ret; 9098 } 9099 return 0; 9100 } 9101 9102 /** 9103 * alloc_contig_range() -- tries to allocate given range of pages 9104 * @start: start PFN to allocate 9105 * @end: one-past-the-last PFN to allocate 9106 * @migratetype: migratetype of the underlying pageblocks (either 9107 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks 9108 * in range must have the same migratetype and it must 9109 * be either of the two. 9110 * @gfp_mask: GFP mask to use during compaction 9111 * 9112 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES 9113 * aligned. The PFN range must belong to a single zone. 9114 * 9115 * The first thing this routine does is attempt to MIGRATE_ISOLATE all 9116 * pageblocks in the range. Once isolated, the pageblocks should not 9117 * be modified by others. 9118 * 9119 * Return: zero on success or negative error code. On success all 9120 * pages which PFN is in [start, end) are allocated for the caller and 9121 * need to be freed with free_contig_range(). 9122 */ 9123 int alloc_contig_range(unsigned long start, unsigned long end, 9124 unsigned migratetype, gfp_t gfp_mask) 9125 { 9126 unsigned long outer_start, outer_end; 9127 unsigned int order; 9128 int ret = 0; 9129 9130 struct compact_control cc = { 9131 .nr_migratepages = 0, 9132 .order = -1, 9133 .zone = page_zone(pfn_to_page(start)), 9134 .mode = MIGRATE_SYNC, 9135 .ignore_skip_hint = true, 9136 .no_set_skip_hint = true, 9137 .gfp_mask = current_gfp_context(gfp_mask), 9138 .alloc_contig = true, 9139 }; 9140 INIT_LIST_HEAD(&cc.migratepages); 9141 9142 /* 9143 * What we do here is we mark all pageblocks in range as 9144 * MIGRATE_ISOLATE. Because pageblock and max order pages may 9145 * have different sizes, and due to the way page allocator 9146 * work, we align the range to biggest of the two pages so 9147 * that page allocator won't try to merge buddies from 9148 * different pageblocks and change MIGRATE_ISOLATE to some 9149 * other migration type. 9150 * 9151 * Once the pageblocks are marked as MIGRATE_ISOLATE, we 9152 * migrate the pages from an unaligned range (ie. pages that 9153 * we are interested in). This will put all the pages in 9154 * range back to page allocator as MIGRATE_ISOLATE. 9155 * 9156 * When this is done, we take the pages in range from page 9157 * allocator removing them from the buddy system. This way 9158 * page allocator will never consider using them. 9159 * 9160 * This lets us mark the pageblocks back as 9161 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the 9162 * aligned range but not in the unaligned, original range are 9163 * put back to page allocator so that buddy can use them. 9164 */ 9165 9166 ret = start_isolate_page_range(pfn_max_align_down(start), 9167 pfn_max_align_up(end), migratetype, 0); 9168 if (ret) 9169 return ret; 9170 9171 drain_all_pages(cc.zone); 9172 9173 /* 9174 * In case of -EBUSY, we'd like to know which page causes problem. 9175 * So, just fall through. test_pages_isolated() has a tracepoint 9176 * which will report the busy page. 9177 * 9178 * It is possible that busy pages could become available before 9179 * the call to test_pages_isolated, and the range will actually be 9180 * allocated. So, if we fall through be sure to clear ret so that 9181 * -EBUSY is not accidentally used or returned to caller. 9182 */ 9183 ret = __alloc_contig_migrate_range(&cc, start, end); 9184 if (ret && ret != -EBUSY) 9185 goto done; 9186 ret = 0; 9187 9188 /* 9189 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES 9190 * aligned blocks that are marked as MIGRATE_ISOLATE. What's 9191 * more, all pages in [start, end) are free in page allocator. 9192 * What we are going to do is to allocate all pages from 9193 * [start, end) (that is remove them from page allocator). 9194 * 9195 * The only problem is that pages at the beginning and at the 9196 * end of interesting range may be not aligned with pages that 9197 * page allocator holds, ie. they can be part of higher order 9198 * pages. Because of this, we reserve the bigger range and 9199 * once this is done free the pages we are not interested in. 9200 * 9201 * We don't have to hold zone->lock here because the pages are 9202 * isolated thus they won't get removed from buddy. 9203 */ 9204 9205 order = 0; 9206 outer_start = start; 9207 while (!PageBuddy(pfn_to_page(outer_start))) { 9208 if (++order >= MAX_ORDER) { 9209 outer_start = start; 9210 break; 9211 } 9212 outer_start &= ~0UL << order; 9213 } 9214 9215 if (outer_start != start) { 9216 order = buddy_order(pfn_to_page(outer_start)); 9217 9218 /* 9219 * outer_start page could be small order buddy page and 9220 * it doesn't include start page. Adjust outer_start 9221 * in this case to report failed page properly 9222 * on tracepoint in test_pages_isolated() 9223 */ 9224 if (outer_start + (1UL << order) <= start) 9225 outer_start = start; 9226 } 9227 9228 /* Make sure the range is really isolated. */ 9229 if (test_pages_isolated(outer_start, end, 0)) { 9230 ret = -EBUSY; 9231 goto done; 9232 } 9233 9234 /* Grab isolated pages from freelists. */ 9235 outer_end = isolate_freepages_range(&cc, outer_start, end); 9236 if (!outer_end) { 9237 ret = -EBUSY; 9238 goto done; 9239 } 9240 9241 /* Free head and tail (if any) */ 9242 if (start != outer_start) 9243 free_contig_range(outer_start, start - outer_start); 9244 if (end != outer_end) 9245 free_contig_range(end, outer_end - end); 9246 9247 done: 9248 undo_isolate_page_range(pfn_max_align_down(start), 9249 pfn_max_align_up(end), migratetype); 9250 return ret; 9251 } 9252 EXPORT_SYMBOL(alloc_contig_range); 9253 9254 static int __alloc_contig_pages(unsigned long start_pfn, 9255 unsigned long nr_pages, gfp_t gfp_mask) 9256 { 9257 unsigned long end_pfn = start_pfn + nr_pages; 9258 9259 return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE, 9260 gfp_mask); 9261 } 9262 9263 static bool pfn_range_valid_contig(struct zone *z, unsigned long start_pfn, 9264 unsigned long nr_pages) 9265 { 9266 unsigned long i, end_pfn = start_pfn + nr_pages; 9267 struct page *page; 9268 9269 for (i = start_pfn; i < end_pfn; i++) { 9270 page = pfn_to_online_page(i); 9271 if (!page) 9272 return false; 9273 9274 if (page_zone(page) != z) 9275 return false; 9276 9277 if (PageReserved(page)) 9278 return false; 9279 } 9280 return true; 9281 } 9282 9283 static bool zone_spans_last_pfn(const struct zone *zone, 9284 unsigned long start_pfn, unsigned long nr_pages) 9285 { 9286 unsigned long last_pfn = start_pfn + nr_pages - 1; 9287 9288 return zone_spans_pfn(zone, last_pfn); 9289 } 9290 9291 /** 9292 * alloc_contig_pages() -- tries to find and allocate contiguous range of pages 9293 * @nr_pages: Number of contiguous pages to allocate 9294 * @gfp_mask: GFP mask to limit search and used during compaction 9295 * @nid: Target node 9296 * @nodemask: Mask for other possible nodes 9297 * 9298 * This routine is a wrapper around alloc_contig_range(). It scans over zones 9299 * on an applicable zonelist to find a contiguous pfn range which can then be 9300 * tried for allocation with alloc_contig_range(). This routine is intended 9301 * for allocation requests which can not be fulfilled with the buddy allocator. 9302 * 9303 * The allocated memory is always aligned to a page boundary. If nr_pages is a 9304 * power of two, then allocated range is also guaranteed to be aligned to same 9305 * nr_pages (e.g. 1GB request would be aligned to 1GB). 9306 * 9307 * Allocated pages can be freed with free_contig_range() or by manually calling 9308 * __free_page() on each allocated page. 9309 * 9310 * Return: pointer to contiguous pages on success, or NULL if not successful. 9311 */ 9312 struct page *alloc_contig_pages(unsigned long nr_pages, gfp_t gfp_mask, 9313 int nid, nodemask_t *nodemask) 9314 { 9315 unsigned long ret, pfn, flags; 9316 struct zonelist *zonelist; 9317 struct zone *zone; 9318 struct zoneref *z; 9319 9320 zonelist = node_zonelist(nid, gfp_mask); 9321 for_each_zone_zonelist_nodemask(zone, z, zonelist, 9322 gfp_zone(gfp_mask), nodemask) { 9323 spin_lock_irqsave(&zone->lock, flags); 9324 9325 pfn = ALIGN(zone->zone_start_pfn, nr_pages); 9326 while (zone_spans_last_pfn(zone, pfn, nr_pages)) { 9327 if (pfn_range_valid_contig(zone, pfn, nr_pages)) { 9328 /* 9329 * We release the zone lock here because 9330 * alloc_contig_range() will also lock the zone 9331 * at some point. If there's an allocation 9332 * spinning on this lock, it may win the race 9333 * and cause alloc_contig_range() to fail... 9334 */ 9335 spin_unlock_irqrestore(&zone->lock, flags); 9336 ret = __alloc_contig_pages(pfn, nr_pages, 9337 gfp_mask); 9338 if (!ret) 9339 return pfn_to_page(pfn); 9340 spin_lock_irqsave(&zone->lock, flags); 9341 } 9342 pfn += nr_pages; 9343 } 9344 spin_unlock_irqrestore(&zone->lock, flags); 9345 } 9346 return NULL; 9347 } 9348 #endif /* CONFIG_CONTIG_ALLOC */ 9349 9350 void free_contig_range(unsigned long pfn, unsigned long nr_pages) 9351 { 9352 unsigned long count = 0; 9353 9354 for (; nr_pages--; pfn++) { 9355 struct page *page = pfn_to_page(pfn); 9356 9357 count += page_count(page) != 1; 9358 __free_page(page); 9359 } 9360 WARN(count != 0, "%lu pages are still in use!\n", count); 9361 } 9362 EXPORT_SYMBOL(free_contig_range); 9363 9364 /* 9365 * The zone indicated has a new number of managed_pages; batch sizes and percpu 9366 * page high values need to be recalculated. 9367 */ 9368 void zone_pcp_update(struct zone *zone, int cpu_online) 9369 { 9370 mutex_lock(&pcp_batch_high_lock); 9371 zone_set_pageset_high_and_batch(zone, cpu_online); 9372 mutex_unlock(&pcp_batch_high_lock); 9373 } 9374 9375 /* 9376 * Effectively disable pcplists for the zone by setting the high limit to 0 9377 * and draining all cpus. A concurrent page freeing on another CPU that's about 9378 * to put the page on pcplist will either finish before the drain and the page 9379 * will be drained, or observe the new high limit and skip the pcplist. 9380 * 9381 * Must be paired with a call to zone_pcp_enable(). 9382 */ 9383 void zone_pcp_disable(struct zone *zone) 9384 { 9385 mutex_lock(&pcp_batch_high_lock); 9386 __zone_set_pageset_high_and_batch(zone, 0, 1); 9387 __drain_all_pages(zone, true); 9388 } 9389 9390 void zone_pcp_enable(struct zone *zone) 9391 { 9392 __zone_set_pageset_high_and_batch(zone, zone->pageset_high, zone->pageset_batch); 9393 mutex_unlock(&pcp_batch_high_lock); 9394 } 9395 9396 void zone_pcp_reset(struct zone *zone) 9397 { 9398 int cpu; 9399 struct per_cpu_zonestat *pzstats; 9400 9401 if (zone->per_cpu_pageset != &boot_pageset) { 9402 for_each_online_cpu(cpu) { 9403 pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu); 9404 drain_zonestat(zone, pzstats); 9405 } 9406 free_percpu(zone->per_cpu_pageset); 9407 free_percpu(zone->per_cpu_zonestats); 9408 zone->per_cpu_pageset = &boot_pageset; 9409 zone->per_cpu_zonestats = &boot_zonestats; 9410 } 9411 } 9412 9413 #ifdef CONFIG_MEMORY_HOTREMOVE 9414 /* 9415 * All pages in the range must be in a single zone, must not contain holes, 9416 * must span full sections, and must be isolated before calling this function. 9417 */ 9418 void __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn) 9419 { 9420 unsigned long pfn = start_pfn; 9421 struct page *page; 9422 struct zone *zone; 9423 unsigned int order; 9424 unsigned long flags; 9425 9426 offline_mem_sections(pfn, end_pfn); 9427 zone = page_zone(pfn_to_page(pfn)); 9428 spin_lock_irqsave(&zone->lock, flags); 9429 while (pfn < end_pfn) { 9430 page = pfn_to_page(pfn); 9431 /* 9432 * The HWPoisoned page may be not in buddy system, and 9433 * page_count() is not 0. 9434 */ 9435 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) { 9436 pfn++; 9437 continue; 9438 } 9439 /* 9440 * At this point all remaining PageOffline() pages have a 9441 * reference count of 0 and can simply be skipped. 9442 */ 9443 if (PageOffline(page)) { 9444 BUG_ON(page_count(page)); 9445 BUG_ON(PageBuddy(page)); 9446 pfn++; 9447 continue; 9448 } 9449 9450 BUG_ON(page_count(page)); 9451 BUG_ON(!PageBuddy(page)); 9452 order = buddy_order(page); 9453 del_page_from_free_list(page, zone, order); 9454 pfn += (1 << order); 9455 } 9456 spin_unlock_irqrestore(&zone->lock, flags); 9457 } 9458 #endif 9459 9460 /* 9461 * This function returns a stable result only if called under zone lock. 9462 */ 9463 bool is_free_buddy_page(struct page *page) 9464 { 9465 unsigned long pfn = page_to_pfn(page); 9466 unsigned int order; 9467 9468 for (order = 0; order < MAX_ORDER; order++) { 9469 struct page *page_head = page - (pfn & ((1 << order) - 1)); 9470 9471 if (PageBuddy(page_head) && 9472 buddy_order_unsafe(page_head) >= order) 9473 break; 9474 } 9475 9476 return order < MAX_ORDER; 9477 } 9478 EXPORT_SYMBOL(is_free_buddy_page); 9479 9480 #ifdef CONFIG_MEMORY_FAILURE 9481 /* 9482 * Break down a higher-order page in sub-pages, and keep our target out of 9483 * buddy allocator. 9484 */ 9485 static void break_down_buddy_pages(struct zone *zone, struct page *page, 9486 struct page *target, int low, int high, 9487 int migratetype) 9488 { 9489 unsigned long size = 1 << high; 9490 struct page *current_buddy, *next_page; 9491 9492 while (high > low) { 9493 high--; 9494 size >>= 1; 9495 9496 if (target >= &page[size]) { 9497 next_page = page + size; 9498 current_buddy = page; 9499 } else { 9500 next_page = page; 9501 current_buddy = page + size; 9502 } 9503 9504 if (set_page_guard(zone, current_buddy, high, migratetype)) 9505 continue; 9506 9507 if (current_buddy != target) { 9508 add_to_free_list(current_buddy, zone, high, migratetype); 9509 set_buddy_order(current_buddy, high); 9510 page = next_page; 9511 } 9512 } 9513 } 9514 9515 /* 9516 * Take a page that will be marked as poisoned off the buddy allocator. 9517 */ 9518 bool take_page_off_buddy(struct page *page) 9519 { 9520 struct zone *zone = page_zone(page); 9521 unsigned long pfn = page_to_pfn(page); 9522 unsigned long flags; 9523 unsigned int order; 9524 bool ret = false; 9525 9526 spin_lock_irqsave(&zone->lock, flags); 9527 for (order = 0; order < MAX_ORDER; order++) { 9528 struct page *page_head = page - (pfn & ((1 << order) - 1)); 9529 int page_order = buddy_order(page_head); 9530 9531 if (PageBuddy(page_head) && page_order >= order) { 9532 unsigned long pfn_head = page_to_pfn(page_head); 9533 int migratetype = get_pfnblock_migratetype(page_head, 9534 pfn_head); 9535 9536 del_page_from_free_list(page_head, zone, page_order); 9537 break_down_buddy_pages(zone, page_head, page, 0, 9538 page_order, migratetype); 9539 SetPageHWPoisonTakenOff(page); 9540 if (!is_migrate_isolate(migratetype)) 9541 __mod_zone_freepage_state(zone, -1, migratetype); 9542 ret = true; 9543 break; 9544 } 9545 if (page_count(page_head) > 0) 9546 break; 9547 } 9548 spin_unlock_irqrestore(&zone->lock, flags); 9549 return ret; 9550 } 9551 9552 /* 9553 * Cancel takeoff done by take_page_off_buddy(). 9554 */ 9555 bool put_page_back_buddy(struct page *page) 9556 { 9557 struct zone *zone = page_zone(page); 9558 unsigned long pfn = page_to_pfn(page); 9559 unsigned long flags; 9560 int migratetype = get_pfnblock_migratetype(page, pfn); 9561 bool ret = false; 9562 9563 spin_lock_irqsave(&zone->lock, flags); 9564 if (put_page_testzero(page)) { 9565 ClearPageHWPoisonTakenOff(page); 9566 __free_one_page(page, pfn, zone, 0, migratetype, FPI_NONE); 9567 if (TestClearPageHWPoison(page)) { 9568 num_poisoned_pages_dec(); 9569 ret = true; 9570 } 9571 } 9572 spin_unlock_irqrestore(&zone->lock, flags); 9573 9574 return ret; 9575 } 9576 #endif 9577 9578 #ifdef CONFIG_ZONE_DMA 9579 bool has_managed_dma(void) 9580 { 9581 struct pglist_data *pgdat; 9582 9583 for_each_online_pgdat(pgdat) { 9584 struct zone *zone = &pgdat->node_zones[ZONE_DMA]; 9585 9586 if (managed_zone(zone)) 9587 return true; 9588 } 9589 return false; 9590 } 9591 #endif /* CONFIG_ZONE_DMA */ 9592