xref: /linux/mm/page_alloc.c (revision baaa68a9796ef2cadfe5caaf4c730412eda0f31c)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/page_alloc.c
4  *
5  *  Manages the free list, the system allocates free pages here.
6  *  Note that kmalloc() lives in slab.c
7  *
8  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
9  *  Swap reorganised 29.12.95, Stephen Tweedie
10  *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
11  *  Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
12  *  Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
13  *  Zone balancing, Kanoj Sarcar, SGI, Jan 2000
14  *  Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
15  *          (lots of bits borrowed from Ingo Molnar & Andrew Morton)
16  */
17 
18 #include <linux/stddef.h>
19 #include <linux/mm.h>
20 #include <linux/highmem.h>
21 #include <linux/swap.h>
22 #include <linux/swapops.h>
23 #include <linux/interrupt.h>
24 #include <linux/pagemap.h>
25 #include <linux/jiffies.h>
26 #include <linux/memblock.h>
27 #include <linux/compiler.h>
28 #include <linux/kernel.h>
29 #include <linux/kasan.h>
30 #include <linux/module.h>
31 #include <linux/suspend.h>
32 #include <linux/pagevec.h>
33 #include <linux/blkdev.h>
34 #include <linux/slab.h>
35 #include <linux/ratelimit.h>
36 #include <linux/oom.h>
37 #include <linux/topology.h>
38 #include <linux/sysctl.h>
39 #include <linux/cpu.h>
40 #include <linux/cpuset.h>
41 #include <linux/memory_hotplug.h>
42 #include <linux/nodemask.h>
43 #include <linux/vmalloc.h>
44 #include <linux/vmstat.h>
45 #include <linux/mempolicy.h>
46 #include <linux/memremap.h>
47 #include <linux/stop_machine.h>
48 #include <linux/random.h>
49 #include <linux/sort.h>
50 #include <linux/pfn.h>
51 #include <linux/backing-dev.h>
52 #include <linux/fault-inject.h>
53 #include <linux/page-isolation.h>
54 #include <linux/debugobjects.h>
55 #include <linux/kmemleak.h>
56 #include <linux/compaction.h>
57 #include <trace/events/kmem.h>
58 #include <trace/events/oom.h>
59 #include <linux/prefetch.h>
60 #include <linux/mm_inline.h>
61 #include <linux/mmu_notifier.h>
62 #include <linux/migrate.h>
63 #include <linux/hugetlb.h>
64 #include <linux/sched/rt.h>
65 #include <linux/sched/mm.h>
66 #include <linux/page_owner.h>
67 #include <linux/page_table_check.h>
68 #include <linux/kthread.h>
69 #include <linux/memcontrol.h>
70 #include <linux/ftrace.h>
71 #include <linux/lockdep.h>
72 #include <linux/nmi.h>
73 #include <linux/psi.h>
74 #include <linux/padata.h>
75 #include <linux/khugepaged.h>
76 #include <linux/buffer_head.h>
77 #include <linux/delayacct.h>
78 #include <asm/sections.h>
79 #include <asm/tlbflush.h>
80 #include <asm/div64.h>
81 #include "internal.h"
82 #include "shuffle.h"
83 #include "page_reporting.h"
84 
85 /* Free Page Internal flags: for internal, non-pcp variants of free_pages(). */
86 typedef int __bitwise fpi_t;
87 
88 /* No special request */
89 #define FPI_NONE		((__force fpi_t)0)
90 
91 /*
92  * Skip free page reporting notification for the (possibly merged) page.
93  * This does not hinder free page reporting from grabbing the page,
94  * reporting it and marking it "reported" -  it only skips notifying
95  * the free page reporting infrastructure about a newly freed page. For
96  * example, used when temporarily pulling a page from a freelist and
97  * putting it back unmodified.
98  */
99 #define FPI_SKIP_REPORT_NOTIFY	((__force fpi_t)BIT(0))
100 
101 /*
102  * Place the (possibly merged) page to the tail of the freelist. Will ignore
103  * page shuffling (relevant code - e.g., memory onlining - is expected to
104  * shuffle the whole zone).
105  *
106  * Note: No code should rely on this flag for correctness - it's purely
107  *       to allow for optimizations when handing back either fresh pages
108  *       (memory onlining) or untouched pages (page isolation, free page
109  *       reporting).
110  */
111 #define FPI_TO_TAIL		((__force fpi_t)BIT(1))
112 
113 /*
114  * Don't poison memory with KASAN (only for the tag-based modes).
115  * During boot, all non-reserved memblock memory is exposed to page_alloc.
116  * Poisoning all that memory lengthens boot time, especially on systems with
117  * large amount of RAM. This flag is used to skip that poisoning.
118  * This is only done for the tag-based KASAN modes, as those are able to
119  * detect memory corruptions with the memory tags assigned by default.
120  * All memory allocated normally after boot gets poisoned as usual.
121  */
122 #define FPI_SKIP_KASAN_POISON	((__force fpi_t)BIT(2))
123 
124 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
125 static DEFINE_MUTEX(pcp_batch_high_lock);
126 #define MIN_PERCPU_PAGELIST_HIGH_FRACTION (8)
127 
128 struct pagesets {
129 	local_lock_t lock;
130 };
131 static DEFINE_PER_CPU(struct pagesets, pagesets) __maybe_unused = {
132 	.lock = INIT_LOCAL_LOCK(lock),
133 };
134 
135 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
136 DEFINE_PER_CPU(int, numa_node);
137 EXPORT_PER_CPU_SYMBOL(numa_node);
138 #endif
139 
140 DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key);
141 
142 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
143 /*
144  * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
145  * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
146  * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
147  * defined in <linux/topology.h>.
148  */
149 DEFINE_PER_CPU(int, _numa_mem_);		/* Kernel "local memory" node */
150 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
151 #endif
152 
153 /* work_structs for global per-cpu drains */
154 struct pcpu_drain {
155 	struct zone *zone;
156 	struct work_struct work;
157 };
158 static DEFINE_MUTEX(pcpu_drain_mutex);
159 static DEFINE_PER_CPU(struct pcpu_drain, pcpu_drain);
160 
161 #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
162 volatile unsigned long latent_entropy __latent_entropy;
163 EXPORT_SYMBOL(latent_entropy);
164 #endif
165 
166 /*
167  * Array of node states.
168  */
169 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
170 	[N_POSSIBLE] = NODE_MASK_ALL,
171 	[N_ONLINE] = { { [0] = 1UL } },
172 #ifndef CONFIG_NUMA
173 	[N_NORMAL_MEMORY] = { { [0] = 1UL } },
174 #ifdef CONFIG_HIGHMEM
175 	[N_HIGH_MEMORY] = { { [0] = 1UL } },
176 #endif
177 	[N_MEMORY] = { { [0] = 1UL } },
178 	[N_CPU] = { { [0] = 1UL } },
179 #endif	/* NUMA */
180 };
181 EXPORT_SYMBOL(node_states);
182 
183 atomic_long_t _totalram_pages __read_mostly;
184 EXPORT_SYMBOL(_totalram_pages);
185 unsigned long totalreserve_pages __read_mostly;
186 unsigned long totalcma_pages __read_mostly;
187 
188 int percpu_pagelist_high_fraction;
189 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
190 DEFINE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, init_on_alloc);
191 EXPORT_SYMBOL(init_on_alloc);
192 
193 DEFINE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_FREE_DEFAULT_ON, init_on_free);
194 EXPORT_SYMBOL(init_on_free);
195 
196 static bool _init_on_alloc_enabled_early __read_mostly
197 				= IS_ENABLED(CONFIG_INIT_ON_ALLOC_DEFAULT_ON);
198 static int __init early_init_on_alloc(char *buf)
199 {
200 
201 	return kstrtobool(buf, &_init_on_alloc_enabled_early);
202 }
203 early_param("init_on_alloc", early_init_on_alloc);
204 
205 static bool _init_on_free_enabled_early __read_mostly
206 				= IS_ENABLED(CONFIG_INIT_ON_FREE_DEFAULT_ON);
207 static int __init early_init_on_free(char *buf)
208 {
209 	return kstrtobool(buf, &_init_on_free_enabled_early);
210 }
211 early_param("init_on_free", early_init_on_free);
212 
213 /*
214  * A cached value of the page's pageblock's migratetype, used when the page is
215  * put on a pcplist. Used to avoid the pageblock migratetype lookup when
216  * freeing from pcplists in most cases, at the cost of possibly becoming stale.
217  * Also the migratetype set in the page does not necessarily match the pcplist
218  * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
219  * other index - this ensures that it will be put on the correct CMA freelist.
220  */
221 static inline int get_pcppage_migratetype(struct page *page)
222 {
223 	return page->index;
224 }
225 
226 static inline void set_pcppage_migratetype(struct page *page, int migratetype)
227 {
228 	page->index = migratetype;
229 }
230 
231 #ifdef CONFIG_PM_SLEEP
232 /*
233  * The following functions are used by the suspend/hibernate code to temporarily
234  * change gfp_allowed_mask in order to avoid using I/O during memory allocations
235  * while devices are suspended.  To avoid races with the suspend/hibernate code,
236  * they should always be called with system_transition_mutex held
237  * (gfp_allowed_mask also should only be modified with system_transition_mutex
238  * held, unless the suspend/hibernate code is guaranteed not to run in parallel
239  * with that modification).
240  */
241 
242 static gfp_t saved_gfp_mask;
243 
244 void pm_restore_gfp_mask(void)
245 {
246 	WARN_ON(!mutex_is_locked(&system_transition_mutex));
247 	if (saved_gfp_mask) {
248 		gfp_allowed_mask = saved_gfp_mask;
249 		saved_gfp_mask = 0;
250 	}
251 }
252 
253 void pm_restrict_gfp_mask(void)
254 {
255 	WARN_ON(!mutex_is_locked(&system_transition_mutex));
256 	WARN_ON(saved_gfp_mask);
257 	saved_gfp_mask = gfp_allowed_mask;
258 	gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
259 }
260 
261 bool pm_suspended_storage(void)
262 {
263 	if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
264 		return false;
265 	return true;
266 }
267 #endif /* CONFIG_PM_SLEEP */
268 
269 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
270 unsigned int pageblock_order __read_mostly;
271 #endif
272 
273 static void __free_pages_ok(struct page *page, unsigned int order,
274 			    fpi_t fpi_flags);
275 
276 /*
277  * results with 256, 32 in the lowmem_reserve sysctl:
278  *	1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
279  *	1G machine -> (16M dma, 784M normal, 224M high)
280  *	NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
281  *	HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
282  *	HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
283  *
284  * TBD: should special case ZONE_DMA32 machines here - in those we normally
285  * don't need any ZONE_NORMAL reservation
286  */
287 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = {
288 #ifdef CONFIG_ZONE_DMA
289 	[ZONE_DMA] = 256,
290 #endif
291 #ifdef CONFIG_ZONE_DMA32
292 	[ZONE_DMA32] = 256,
293 #endif
294 	[ZONE_NORMAL] = 32,
295 #ifdef CONFIG_HIGHMEM
296 	[ZONE_HIGHMEM] = 0,
297 #endif
298 	[ZONE_MOVABLE] = 0,
299 };
300 
301 static char * const zone_names[MAX_NR_ZONES] = {
302 #ifdef CONFIG_ZONE_DMA
303 	 "DMA",
304 #endif
305 #ifdef CONFIG_ZONE_DMA32
306 	 "DMA32",
307 #endif
308 	 "Normal",
309 #ifdef CONFIG_HIGHMEM
310 	 "HighMem",
311 #endif
312 	 "Movable",
313 #ifdef CONFIG_ZONE_DEVICE
314 	 "Device",
315 #endif
316 };
317 
318 const char * const migratetype_names[MIGRATE_TYPES] = {
319 	"Unmovable",
320 	"Movable",
321 	"Reclaimable",
322 	"HighAtomic",
323 #ifdef CONFIG_CMA
324 	"CMA",
325 #endif
326 #ifdef CONFIG_MEMORY_ISOLATION
327 	"Isolate",
328 #endif
329 };
330 
331 compound_page_dtor * const compound_page_dtors[NR_COMPOUND_DTORS] = {
332 	[NULL_COMPOUND_DTOR] = NULL,
333 	[COMPOUND_PAGE_DTOR] = free_compound_page,
334 #ifdef CONFIG_HUGETLB_PAGE
335 	[HUGETLB_PAGE_DTOR] = free_huge_page,
336 #endif
337 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
338 	[TRANSHUGE_PAGE_DTOR] = free_transhuge_page,
339 #endif
340 };
341 
342 int min_free_kbytes = 1024;
343 int user_min_free_kbytes = -1;
344 int watermark_boost_factor __read_mostly = 15000;
345 int watermark_scale_factor = 10;
346 
347 static unsigned long nr_kernel_pages __initdata;
348 static unsigned long nr_all_pages __initdata;
349 static unsigned long dma_reserve __initdata;
350 
351 static unsigned long arch_zone_lowest_possible_pfn[MAX_NR_ZONES] __initdata;
352 static unsigned long arch_zone_highest_possible_pfn[MAX_NR_ZONES] __initdata;
353 static unsigned long required_kernelcore __initdata;
354 static unsigned long required_kernelcore_percent __initdata;
355 static unsigned long required_movablecore __initdata;
356 static unsigned long required_movablecore_percent __initdata;
357 static unsigned long zone_movable_pfn[MAX_NUMNODES] __initdata;
358 static bool mirrored_kernelcore __meminitdata;
359 
360 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
361 int movable_zone;
362 EXPORT_SYMBOL(movable_zone);
363 
364 #if MAX_NUMNODES > 1
365 unsigned int nr_node_ids __read_mostly = MAX_NUMNODES;
366 unsigned int nr_online_nodes __read_mostly = 1;
367 EXPORT_SYMBOL(nr_node_ids);
368 EXPORT_SYMBOL(nr_online_nodes);
369 #endif
370 
371 int page_group_by_mobility_disabled __read_mostly;
372 
373 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
374 /*
375  * During boot we initialize deferred pages on-demand, as needed, but once
376  * page_alloc_init_late() has finished, the deferred pages are all initialized,
377  * and we can permanently disable that path.
378  */
379 static DEFINE_STATIC_KEY_TRUE(deferred_pages);
380 
381 /*
382  * Calling kasan_poison_pages() only after deferred memory initialization
383  * has completed. Poisoning pages during deferred memory init will greatly
384  * lengthen the process and cause problem in large memory systems as the
385  * deferred pages initialization is done with interrupt disabled.
386  *
387  * Assuming that there will be no reference to those newly initialized
388  * pages before they are ever allocated, this should have no effect on
389  * KASAN memory tracking as the poison will be properly inserted at page
390  * allocation time. The only corner case is when pages are allocated by
391  * on-demand allocation and then freed again before the deferred pages
392  * initialization is done, but this is not likely to happen.
393  */
394 static inline bool should_skip_kasan_poison(struct page *page, fpi_t fpi_flags)
395 {
396 	return static_branch_unlikely(&deferred_pages) ||
397 	       (!IS_ENABLED(CONFIG_KASAN_GENERIC) &&
398 		(fpi_flags & FPI_SKIP_KASAN_POISON)) ||
399 	       PageSkipKASanPoison(page);
400 }
401 
402 /* Returns true if the struct page for the pfn is uninitialised */
403 static inline bool __meminit early_page_uninitialised(unsigned long pfn)
404 {
405 	int nid = early_pfn_to_nid(pfn);
406 
407 	if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
408 		return true;
409 
410 	return false;
411 }
412 
413 /*
414  * Returns true when the remaining initialisation should be deferred until
415  * later in the boot cycle when it can be parallelised.
416  */
417 static bool __meminit
418 defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
419 {
420 	static unsigned long prev_end_pfn, nr_initialised;
421 
422 	/*
423 	 * prev_end_pfn static that contains the end of previous zone
424 	 * No need to protect because called very early in boot before smp_init.
425 	 */
426 	if (prev_end_pfn != end_pfn) {
427 		prev_end_pfn = end_pfn;
428 		nr_initialised = 0;
429 	}
430 
431 	/* Always populate low zones for address-constrained allocations */
432 	if (end_pfn < pgdat_end_pfn(NODE_DATA(nid)))
433 		return false;
434 
435 	if (NODE_DATA(nid)->first_deferred_pfn != ULONG_MAX)
436 		return true;
437 	/*
438 	 * We start only with one section of pages, more pages are added as
439 	 * needed until the rest of deferred pages are initialized.
440 	 */
441 	nr_initialised++;
442 	if ((nr_initialised > PAGES_PER_SECTION) &&
443 	    (pfn & (PAGES_PER_SECTION - 1)) == 0) {
444 		NODE_DATA(nid)->first_deferred_pfn = pfn;
445 		return true;
446 	}
447 	return false;
448 }
449 #else
450 static inline bool should_skip_kasan_poison(struct page *page, fpi_t fpi_flags)
451 {
452 	return (!IS_ENABLED(CONFIG_KASAN_GENERIC) &&
453 		(fpi_flags & FPI_SKIP_KASAN_POISON)) ||
454 	       PageSkipKASanPoison(page);
455 }
456 
457 static inline bool early_page_uninitialised(unsigned long pfn)
458 {
459 	return false;
460 }
461 
462 static inline bool defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
463 {
464 	return false;
465 }
466 #endif
467 
468 /* Return a pointer to the bitmap storing bits affecting a block of pages */
469 static inline unsigned long *get_pageblock_bitmap(const struct page *page,
470 							unsigned long pfn)
471 {
472 #ifdef CONFIG_SPARSEMEM
473 	return section_to_usemap(__pfn_to_section(pfn));
474 #else
475 	return page_zone(page)->pageblock_flags;
476 #endif /* CONFIG_SPARSEMEM */
477 }
478 
479 static inline int pfn_to_bitidx(const struct page *page, unsigned long pfn)
480 {
481 #ifdef CONFIG_SPARSEMEM
482 	pfn &= (PAGES_PER_SECTION-1);
483 #else
484 	pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
485 #endif /* CONFIG_SPARSEMEM */
486 	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
487 }
488 
489 static __always_inline
490 unsigned long __get_pfnblock_flags_mask(const struct page *page,
491 					unsigned long pfn,
492 					unsigned long mask)
493 {
494 	unsigned long *bitmap;
495 	unsigned long bitidx, word_bitidx;
496 	unsigned long word;
497 
498 	bitmap = get_pageblock_bitmap(page, pfn);
499 	bitidx = pfn_to_bitidx(page, pfn);
500 	word_bitidx = bitidx / BITS_PER_LONG;
501 	bitidx &= (BITS_PER_LONG-1);
502 
503 	word = bitmap[word_bitidx];
504 	return (word >> bitidx) & mask;
505 }
506 
507 /**
508  * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
509  * @page: The page within the block of interest
510  * @pfn: The target page frame number
511  * @mask: mask of bits that the caller is interested in
512  *
513  * Return: pageblock_bits flags
514  */
515 unsigned long get_pfnblock_flags_mask(const struct page *page,
516 					unsigned long pfn, unsigned long mask)
517 {
518 	return __get_pfnblock_flags_mask(page, pfn, mask);
519 }
520 
521 static __always_inline int get_pfnblock_migratetype(const struct page *page,
522 					unsigned long pfn)
523 {
524 	return __get_pfnblock_flags_mask(page, pfn, MIGRATETYPE_MASK);
525 }
526 
527 /**
528  * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
529  * @page: The page within the block of interest
530  * @flags: The flags to set
531  * @pfn: The target page frame number
532  * @mask: mask of bits that the caller is interested in
533  */
534 void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
535 					unsigned long pfn,
536 					unsigned long mask)
537 {
538 	unsigned long *bitmap;
539 	unsigned long bitidx, word_bitidx;
540 	unsigned long old_word, word;
541 
542 	BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
543 	BUILD_BUG_ON(MIGRATE_TYPES > (1 << PB_migratetype_bits));
544 
545 	bitmap = get_pageblock_bitmap(page, pfn);
546 	bitidx = pfn_to_bitidx(page, pfn);
547 	word_bitidx = bitidx / BITS_PER_LONG;
548 	bitidx &= (BITS_PER_LONG-1);
549 
550 	VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
551 
552 	mask <<= bitidx;
553 	flags <<= bitidx;
554 
555 	word = READ_ONCE(bitmap[word_bitidx]);
556 	for (;;) {
557 		old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
558 		if (word == old_word)
559 			break;
560 		word = old_word;
561 	}
562 }
563 
564 void set_pageblock_migratetype(struct page *page, int migratetype)
565 {
566 	if (unlikely(page_group_by_mobility_disabled &&
567 		     migratetype < MIGRATE_PCPTYPES))
568 		migratetype = MIGRATE_UNMOVABLE;
569 
570 	set_pfnblock_flags_mask(page, (unsigned long)migratetype,
571 				page_to_pfn(page), MIGRATETYPE_MASK);
572 }
573 
574 #ifdef CONFIG_DEBUG_VM
575 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
576 {
577 	int ret = 0;
578 	unsigned seq;
579 	unsigned long pfn = page_to_pfn(page);
580 	unsigned long sp, start_pfn;
581 
582 	do {
583 		seq = zone_span_seqbegin(zone);
584 		start_pfn = zone->zone_start_pfn;
585 		sp = zone->spanned_pages;
586 		if (!zone_spans_pfn(zone, pfn))
587 			ret = 1;
588 	} while (zone_span_seqretry(zone, seq));
589 
590 	if (ret)
591 		pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
592 			pfn, zone_to_nid(zone), zone->name,
593 			start_pfn, start_pfn + sp);
594 
595 	return ret;
596 }
597 
598 static int page_is_consistent(struct zone *zone, struct page *page)
599 {
600 	if (zone != page_zone(page))
601 		return 0;
602 
603 	return 1;
604 }
605 /*
606  * Temporary debugging check for pages not lying within a given zone.
607  */
608 static int __maybe_unused bad_range(struct zone *zone, struct page *page)
609 {
610 	if (page_outside_zone_boundaries(zone, page))
611 		return 1;
612 	if (!page_is_consistent(zone, page))
613 		return 1;
614 
615 	return 0;
616 }
617 #else
618 static inline int __maybe_unused bad_range(struct zone *zone, struct page *page)
619 {
620 	return 0;
621 }
622 #endif
623 
624 static void bad_page(struct page *page, const char *reason)
625 {
626 	static unsigned long resume;
627 	static unsigned long nr_shown;
628 	static unsigned long nr_unshown;
629 
630 	/*
631 	 * Allow a burst of 60 reports, then keep quiet for that minute;
632 	 * or allow a steady drip of one report per second.
633 	 */
634 	if (nr_shown == 60) {
635 		if (time_before(jiffies, resume)) {
636 			nr_unshown++;
637 			goto out;
638 		}
639 		if (nr_unshown) {
640 			pr_alert(
641 			      "BUG: Bad page state: %lu messages suppressed\n",
642 				nr_unshown);
643 			nr_unshown = 0;
644 		}
645 		nr_shown = 0;
646 	}
647 	if (nr_shown++ == 0)
648 		resume = jiffies + 60 * HZ;
649 
650 	pr_alert("BUG: Bad page state in process %s  pfn:%05lx\n",
651 		current->comm, page_to_pfn(page));
652 	dump_page(page, reason);
653 
654 	print_modules();
655 	dump_stack();
656 out:
657 	/* Leave bad fields for debug, except PageBuddy could make trouble */
658 	page_mapcount_reset(page); /* remove PageBuddy */
659 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
660 }
661 
662 static inline unsigned int order_to_pindex(int migratetype, int order)
663 {
664 	int base = order;
665 
666 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
667 	if (order > PAGE_ALLOC_COSTLY_ORDER) {
668 		VM_BUG_ON(order != pageblock_order);
669 		base = PAGE_ALLOC_COSTLY_ORDER + 1;
670 	}
671 #else
672 	VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER);
673 #endif
674 
675 	return (MIGRATE_PCPTYPES * base) + migratetype;
676 }
677 
678 static inline int pindex_to_order(unsigned int pindex)
679 {
680 	int order = pindex / MIGRATE_PCPTYPES;
681 
682 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
683 	if (order > PAGE_ALLOC_COSTLY_ORDER)
684 		order = pageblock_order;
685 #else
686 	VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER);
687 #endif
688 
689 	return order;
690 }
691 
692 static inline bool pcp_allowed_order(unsigned int order)
693 {
694 	if (order <= PAGE_ALLOC_COSTLY_ORDER)
695 		return true;
696 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
697 	if (order == pageblock_order)
698 		return true;
699 #endif
700 	return false;
701 }
702 
703 static inline void free_the_page(struct page *page, unsigned int order)
704 {
705 	if (pcp_allowed_order(order))		/* Via pcp? */
706 		free_unref_page(page, order);
707 	else
708 		__free_pages_ok(page, order, FPI_NONE);
709 }
710 
711 /*
712  * Higher-order pages are called "compound pages".  They are structured thusly:
713  *
714  * The first PAGE_SIZE page is called the "head page" and have PG_head set.
715  *
716  * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
717  * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
718  *
719  * The first tail page's ->compound_dtor holds the offset in array of compound
720  * page destructors. See compound_page_dtors.
721  *
722  * The first tail page's ->compound_order holds the order of allocation.
723  * This usage means that zero-order pages may not be compound.
724  */
725 
726 void free_compound_page(struct page *page)
727 {
728 	mem_cgroup_uncharge(page_folio(page));
729 	free_the_page(page, compound_order(page));
730 }
731 
732 static void prep_compound_head(struct page *page, unsigned int order)
733 {
734 	set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
735 	set_compound_order(page, order);
736 	atomic_set(compound_mapcount_ptr(page), -1);
737 	atomic_set(compound_pincount_ptr(page), 0);
738 }
739 
740 static void prep_compound_tail(struct page *head, int tail_idx)
741 {
742 	struct page *p = head + tail_idx;
743 
744 	p->mapping = TAIL_MAPPING;
745 	set_compound_head(p, head);
746 }
747 
748 void prep_compound_page(struct page *page, unsigned int order)
749 {
750 	int i;
751 	int nr_pages = 1 << order;
752 
753 	__SetPageHead(page);
754 	for (i = 1; i < nr_pages; i++)
755 		prep_compound_tail(page, i);
756 
757 	prep_compound_head(page, order);
758 }
759 
760 #ifdef CONFIG_DEBUG_PAGEALLOC
761 unsigned int _debug_guardpage_minorder;
762 
763 bool _debug_pagealloc_enabled_early __read_mostly
764 			= IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
765 EXPORT_SYMBOL(_debug_pagealloc_enabled_early);
766 DEFINE_STATIC_KEY_FALSE(_debug_pagealloc_enabled);
767 EXPORT_SYMBOL(_debug_pagealloc_enabled);
768 
769 DEFINE_STATIC_KEY_FALSE(_debug_guardpage_enabled);
770 
771 static int __init early_debug_pagealloc(char *buf)
772 {
773 	return kstrtobool(buf, &_debug_pagealloc_enabled_early);
774 }
775 early_param("debug_pagealloc", early_debug_pagealloc);
776 
777 static int __init debug_guardpage_minorder_setup(char *buf)
778 {
779 	unsigned long res;
780 
781 	if (kstrtoul(buf, 10, &res) < 0 ||  res > MAX_ORDER / 2) {
782 		pr_err("Bad debug_guardpage_minorder value\n");
783 		return 0;
784 	}
785 	_debug_guardpage_minorder = res;
786 	pr_info("Setting debug_guardpage_minorder to %lu\n", res);
787 	return 0;
788 }
789 early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup);
790 
791 static inline bool set_page_guard(struct zone *zone, struct page *page,
792 				unsigned int order, int migratetype)
793 {
794 	if (!debug_guardpage_enabled())
795 		return false;
796 
797 	if (order >= debug_guardpage_minorder())
798 		return false;
799 
800 	__SetPageGuard(page);
801 	INIT_LIST_HEAD(&page->lru);
802 	set_page_private(page, order);
803 	/* Guard pages are not available for any usage */
804 	__mod_zone_freepage_state(zone, -(1 << order), migratetype);
805 
806 	return true;
807 }
808 
809 static inline void clear_page_guard(struct zone *zone, struct page *page,
810 				unsigned int order, int migratetype)
811 {
812 	if (!debug_guardpage_enabled())
813 		return;
814 
815 	__ClearPageGuard(page);
816 
817 	set_page_private(page, 0);
818 	if (!is_migrate_isolate(migratetype))
819 		__mod_zone_freepage_state(zone, (1 << order), migratetype);
820 }
821 #else
822 static inline bool set_page_guard(struct zone *zone, struct page *page,
823 			unsigned int order, int migratetype) { return false; }
824 static inline void clear_page_guard(struct zone *zone, struct page *page,
825 				unsigned int order, int migratetype) {}
826 #endif
827 
828 /*
829  * Enable static keys related to various memory debugging and hardening options.
830  * Some override others, and depend on early params that are evaluated in the
831  * order of appearance. So we need to first gather the full picture of what was
832  * enabled, and then make decisions.
833  */
834 void init_mem_debugging_and_hardening(void)
835 {
836 	bool page_poisoning_requested = false;
837 
838 #ifdef CONFIG_PAGE_POISONING
839 	/*
840 	 * Page poisoning is debug page alloc for some arches. If
841 	 * either of those options are enabled, enable poisoning.
842 	 */
843 	if (page_poisoning_enabled() ||
844 	     (!IS_ENABLED(CONFIG_ARCH_SUPPORTS_DEBUG_PAGEALLOC) &&
845 	      debug_pagealloc_enabled())) {
846 		static_branch_enable(&_page_poisoning_enabled);
847 		page_poisoning_requested = true;
848 	}
849 #endif
850 
851 	if ((_init_on_alloc_enabled_early || _init_on_free_enabled_early) &&
852 	    page_poisoning_requested) {
853 		pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, "
854 			"will take precedence over init_on_alloc and init_on_free\n");
855 		_init_on_alloc_enabled_early = false;
856 		_init_on_free_enabled_early = false;
857 	}
858 
859 	if (_init_on_alloc_enabled_early)
860 		static_branch_enable(&init_on_alloc);
861 	else
862 		static_branch_disable(&init_on_alloc);
863 
864 	if (_init_on_free_enabled_early)
865 		static_branch_enable(&init_on_free);
866 	else
867 		static_branch_disable(&init_on_free);
868 
869 #ifdef CONFIG_DEBUG_PAGEALLOC
870 	if (!debug_pagealloc_enabled())
871 		return;
872 
873 	static_branch_enable(&_debug_pagealloc_enabled);
874 
875 	if (!debug_guardpage_minorder())
876 		return;
877 
878 	static_branch_enable(&_debug_guardpage_enabled);
879 #endif
880 }
881 
882 static inline void set_buddy_order(struct page *page, unsigned int order)
883 {
884 	set_page_private(page, order);
885 	__SetPageBuddy(page);
886 }
887 
888 /*
889  * This function checks whether a page is free && is the buddy
890  * we can coalesce a page and its buddy if
891  * (a) the buddy is not in a hole (check before calling!) &&
892  * (b) the buddy is in the buddy system &&
893  * (c) a page and its buddy have the same order &&
894  * (d) a page and its buddy are in the same zone.
895  *
896  * For recording whether a page is in the buddy system, we set PageBuddy.
897  * Setting, clearing, and testing PageBuddy is serialized by zone->lock.
898  *
899  * For recording page's order, we use page_private(page).
900  */
901 static inline bool page_is_buddy(struct page *page, struct page *buddy,
902 							unsigned int order)
903 {
904 	if (!page_is_guard(buddy) && !PageBuddy(buddy))
905 		return false;
906 
907 	if (buddy_order(buddy) != order)
908 		return false;
909 
910 	/*
911 	 * zone check is done late to avoid uselessly calculating
912 	 * zone/node ids for pages that could never merge.
913 	 */
914 	if (page_zone_id(page) != page_zone_id(buddy))
915 		return false;
916 
917 	VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
918 
919 	return true;
920 }
921 
922 #ifdef CONFIG_COMPACTION
923 static inline struct capture_control *task_capc(struct zone *zone)
924 {
925 	struct capture_control *capc = current->capture_control;
926 
927 	return unlikely(capc) &&
928 		!(current->flags & PF_KTHREAD) &&
929 		!capc->page &&
930 		capc->cc->zone == zone ? capc : NULL;
931 }
932 
933 static inline bool
934 compaction_capture(struct capture_control *capc, struct page *page,
935 		   int order, int migratetype)
936 {
937 	if (!capc || order != capc->cc->order)
938 		return false;
939 
940 	/* Do not accidentally pollute CMA or isolated regions*/
941 	if (is_migrate_cma(migratetype) ||
942 	    is_migrate_isolate(migratetype))
943 		return false;
944 
945 	/*
946 	 * Do not let lower order allocations pollute a movable pageblock.
947 	 * This might let an unmovable request use a reclaimable pageblock
948 	 * and vice-versa but no more than normal fallback logic which can
949 	 * have trouble finding a high-order free page.
950 	 */
951 	if (order < pageblock_order && migratetype == MIGRATE_MOVABLE)
952 		return false;
953 
954 	capc->page = page;
955 	return true;
956 }
957 
958 #else
959 static inline struct capture_control *task_capc(struct zone *zone)
960 {
961 	return NULL;
962 }
963 
964 static inline bool
965 compaction_capture(struct capture_control *capc, struct page *page,
966 		   int order, int migratetype)
967 {
968 	return false;
969 }
970 #endif /* CONFIG_COMPACTION */
971 
972 /* Used for pages not on another list */
973 static inline void add_to_free_list(struct page *page, struct zone *zone,
974 				    unsigned int order, int migratetype)
975 {
976 	struct free_area *area = &zone->free_area[order];
977 
978 	list_add(&page->lru, &area->free_list[migratetype]);
979 	area->nr_free++;
980 }
981 
982 /* Used for pages not on another list */
983 static inline void add_to_free_list_tail(struct page *page, struct zone *zone,
984 					 unsigned int order, int migratetype)
985 {
986 	struct free_area *area = &zone->free_area[order];
987 
988 	list_add_tail(&page->lru, &area->free_list[migratetype]);
989 	area->nr_free++;
990 }
991 
992 /*
993  * Used for pages which are on another list. Move the pages to the tail
994  * of the list - so the moved pages won't immediately be considered for
995  * allocation again (e.g., optimization for memory onlining).
996  */
997 static inline void move_to_free_list(struct page *page, struct zone *zone,
998 				     unsigned int order, int migratetype)
999 {
1000 	struct free_area *area = &zone->free_area[order];
1001 
1002 	list_move_tail(&page->lru, &area->free_list[migratetype]);
1003 }
1004 
1005 static inline void del_page_from_free_list(struct page *page, struct zone *zone,
1006 					   unsigned int order)
1007 {
1008 	/* clear reported state and update reported page count */
1009 	if (page_reported(page))
1010 		__ClearPageReported(page);
1011 
1012 	list_del(&page->lru);
1013 	__ClearPageBuddy(page);
1014 	set_page_private(page, 0);
1015 	zone->free_area[order].nr_free--;
1016 }
1017 
1018 /*
1019  * If this is not the largest possible page, check if the buddy
1020  * of the next-highest order is free. If it is, it's possible
1021  * that pages are being freed that will coalesce soon. In case,
1022  * that is happening, add the free page to the tail of the list
1023  * so it's less likely to be used soon and more likely to be merged
1024  * as a higher order page
1025  */
1026 static inline bool
1027 buddy_merge_likely(unsigned long pfn, unsigned long buddy_pfn,
1028 		   struct page *page, unsigned int order)
1029 {
1030 	struct page *higher_page, *higher_buddy;
1031 	unsigned long combined_pfn;
1032 
1033 	if (order >= MAX_ORDER - 2)
1034 		return false;
1035 
1036 	combined_pfn = buddy_pfn & pfn;
1037 	higher_page = page + (combined_pfn - pfn);
1038 	buddy_pfn = __find_buddy_pfn(combined_pfn, order + 1);
1039 	higher_buddy = higher_page + (buddy_pfn - combined_pfn);
1040 
1041 	return page_is_buddy(higher_page, higher_buddy, order + 1);
1042 }
1043 
1044 /*
1045  * Freeing function for a buddy system allocator.
1046  *
1047  * The concept of a buddy system is to maintain direct-mapped table
1048  * (containing bit values) for memory blocks of various "orders".
1049  * The bottom level table contains the map for the smallest allocatable
1050  * units of memory (here, pages), and each level above it describes
1051  * pairs of units from the levels below, hence, "buddies".
1052  * At a high level, all that happens here is marking the table entry
1053  * at the bottom level available, and propagating the changes upward
1054  * as necessary, plus some accounting needed to play nicely with other
1055  * parts of the VM system.
1056  * At each level, we keep a list of pages, which are heads of continuous
1057  * free pages of length of (1 << order) and marked with PageBuddy.
1058  * Page's order is recorded in page_private(page) field.
1059  * So when we are allocating or freeing one, we can derive the state of the
1060  * other.  That is, if we allocate a small block, and both were
1061  * free, the remainder of the region must be split into blocks.
1062  * If a block is freed, and its buddy is also free, then this
1063  * triggers coalescing into a block of larger size.
1064  *
1065  * -- nyc
1066  */
1067 
1068 static inline void __free_one_page(struct page *page,
1069 		unsigned long pfn,
1070 		struct zone *zone, unsigned int order,
1071 		int migratetype, fpi_t fpi_flags)
1072 {
1073 	struct capture_control *capc = task_capc(zone);
1074 	unsigned int max_order = pageblock_order;
1075 	unsigned long buddy_pfn;
1076 	unsigned long combined_pfn;
1077 	struct page *buddy;
1078 	bool to_tail;
1079 
1080 	VM_BUG_ON(!zone_is_initialized(zone));
1081 	VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
1082 
1083 	VM_BUG_ON(migratetype == -1);
1084 	if (likely(!is_migrate_isolate(migratetype)))
1085 		__mod_zone_freepage_state(zone, 1 << order, migratetype);
1086 
1087 	VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
1088 	VM_BUG_ON_PAGE(bad_range(zone, page), page);
1089 
1090 continue_merging:
1091 	while (order < max_order) {
1092 		if (compaction_capture(capc, page, order, migratetype)) {
1093 			__mod_zone_freepage_state(zone, -(1 << order),
1094 								migratetype);
1095 			return;
1096 		}
1097 		buddy_pfn = __find_buddy_pfn(pfn, order);
1098 		buddy = page + (buddy_pfn - pfn);
1099 
1100 		if (!page_is_buddy(page, buddy, order))
1101 			goto done_merging;
1102 		/*
1103 		 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
1104 		 * merge with it and move up one order.
1105 		 */
1106 		if (page_is_guard(buddy))
1107 			clear_page_guard(zone, buddy, order, migratetype);
1108 		else
1109 			del_page_from_free_list(buddy, zone, order);
1110 		combined_pfn = buddy_pfn & pfn;
1111 		page = page + (combined_pfn - pfn);
1112 		pfn = combined_pfn;
1113 		order++;
1114 	}
1115 	if (order < MAX_ORDER - 1) {
1116 		/* If we are here, it means order is >= pageblock_order.
1117 		 * We want to prevent merge between freepages on pageblock
1118 		 * without fallbacks and normal pageblock. Without this,
1119 		 * pageblock isolation could cause incorrect freepage or CMA
1120 		 * accounting or HIGHATOMIC accounting.
1121 		 *
1122 		 * We don't want to hit this code for the more frequent
1123 		 * low-order merging.
1124 		 */
1125 		int buddy_mt;
1126 
1127 		buddy_pfn = __find_buddy_pfn(pfn, order);
1128 		buddy = page + (buddy_pfn - pfn);
1129 		buddy_mt = get_pageblock_migratetype(buddy);
1130 
1131 		if (migratetype != buddy_mt
1132 				&& (!migratetype_is_mergeable(migratetype) ||
1133 					!migratetype_is_mergeable(buddy_mt)))
1134 			goto done_merging;
1135 		max_order = order + 1;
1136 		goto continue_merging;
1137 	}
1138 
1139 done_merging:
1140 	set_buddy_order(page, order);
1141 
1142 	if (fpi_flags & FPI_TO_TAIL)
1143 		to_tail = true;
1144 	else if (is_shuffle_order(order))
1145 		to_tail = shuffle_pick_tail();
1146 	else
1147 		to_tail = buddy_merge_likely(pfn, buddy_pfn, page, order);
1148 
1149 	if (to_tail)
1150 		add_to_free_list_tail(page, zone, order, migratetype);
1151 	else
1152 		add_to_free_list(page, zone, order, migratetype);
1153 
1154 	/* Notify page reporting subsystem of freed page */
1155 	if (!(fpi_flags & FPI_SKIP_REPORT_NOTIFY))
1156 		page_reporting_notify_free(order);
1157 }
1158 
1159 /*
1160  * A bad page could be due to a number of fields. Instead of multiple branches,
1161  * try and check multiple fields with one check. The caller must do a detailed
1162  * check if necessary.
1163  */
1164 static inline bool page_expected_state(struct page *page,
1165 					unsigned long check_flags)
1166 {
1167 	if (unlikely(atomic_read(&page->_mapcount) != -1))
1168 		return false;
1169 
1170 	if (unlikely((unsigned long)page->mapping |
1171 			page_ref_count(page) |
1172 #ifdef CONFIG_MEMCG
1173 			page->memcg_data |
1174 #endif
1175 			(page->flags & check_flags)))
1176 		return false;
1177 
1178 	return true;
1179 }
1180 
1181 static const char *page_bad_reason(struct page *page, unsigned long flags)
1182 {
1183 	const char *bad_reason = NULL;
1184 
1185 	if (unlikely(atomic_read(&page->_mapcount) != -1))
1186 		bad_reason = "nonzero mapcount";
1187 	if (unlikely(page->mapping != NULL))
1188 		bad_reason = "non-NULL mapping";
1189 	if (unlikely(page_ref_count(page) != 0))
1190 		bad_reason = "nonzero _refcount";
1191 	if (unlikely(page->flags & flags)) {
1192 		if (flags == PAGE_FLAGS_CHECK_AT_PREP)
1193 			bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag(s) set";
1194 		else
1195 			bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
1196 	}
1197 #ifdef CONFIG_MEMCG
1198 	if (unlikely(page->memcg_data))
1199 		bad_reason = "page still charged to cgroup";
1200 #endif
1201 	return bad_reason;
1202 }
1203 
1204 static void check_free_page_bad(struct page *page)
1205 {
1206 	bad_page(page,
1207 		 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_FREE));
1208 }
1209 
1210 static inline int check_free_page(struct page *page)
1211 {
1212 	if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
1213 		return 0;
1214 
1215 	/* Something has gone sideways, find it */
1216 	check_free_page_bad(page);
1217 	return 1;
1218 }
1219 
1220 static int free_tail_pages_check(struct page *head_page, struct page *page)
1221 {
1222 	int ret = 1;
1223 
1224 	/*
1225 	 * We rely page->lru.next never has bit 0 set, unless the page
1226 	 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
1227 	 */
1228 	BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
1229 
1230 	if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
1231 		ret = 0;
1232 		goto out;
1233 	}
1234 	switch (page - head_page) {
1235 	case 1:
1236 		/* the first tail page: ->mapping may be compound_mapcount() */
1237 		if (unlikely(compound_mapcount(page))) {
1238 			bad_page(page, "nonzero compound_mapcount");
1239 			goto out;
1240 		}
1241 		break;
1242 	case 2:
1243 		/*
1244 		 * the second tail page: ->mapping is
1245 		 * deferred_list.next -- ignore value.
1246 		 */
1247 		break;
1248 	default:
1249 		if (page->mapping != TAIL_MAPPING) {
1250 			bad_page(page, "corrupted mapping in tail page");
1251 			goto out;
1252 		}
1253 		break;
1254 	}
1255 	if (unlikely(!PageTail(page))) {
1256 		bad_page(page, "PageTail not set");
1257 		goto out;
1258 	}
1259 	if (unlikely(compound_head(page) != head_page)) {
1260 		bad_page(page, "compound_head not consistent");
1261 		goto out;
1262 	}
1263 	ret = 0;
1264 out:
1265 	page->mapping = NULL;
1266 	clear_compound_head(page);
1267 	return ret;
1268 }
1269 
1270 static void kernel_init_free_pages(struct page *page, int numpages, bool zero_tags)
1271 {
1272 	int i;
1273 
1274 	if (zero_tags) {
1275 		for (i = 0; i < numpages; i++)
1276 			tag_clear_highpage(page + i);
1277 		return;
1278 	}
1279 
1280 	/* s390's use of memset() could override KASAN redzones. */
1281 	kasan_disable_current();
1282 	for (i = 0; i < numpages; i++) {
1283 		u8 tag = page_kasan_tag(page + i);
1284 		page_kasan_tag_reset(page + i);
1285 		clear_highpage(page + i);
1286 		page_kasan_tag_set(page + i, tag);
1287 	}
1288 	kasan_enable_current();
1289 }
1290 
1291 static __always_inline bool free_pages_prepare(struct page *page,
1292 			unsigned int order, bool check_free, fpi_t fpi_flags)
1293 {
1294 	int bad = 0;
1295 	bool skip_kasan_poison = should_skip_kasan_poison(page, fpi_flags);
1296 
1297 	VM_BUG_ON_PAGE(PageTail(page), page);
1298 
1299 	trace_mm_page_free(page, order);
1300 
1301 	if (unlikely(PageHWPoison(page)) && !order) {
1302 		/*
1303 		 * Do not let hwpoison pages hit pcplists/buddy
1304 		 * Untie memcg state and reset page's owner
1305 		 */
1306 		if (memcg_kmem_enabled() && PageMemcgKmem(page))
1307 			__memcg_kmem_uncharge_page(page, order);
1308 		reset_page_owner(page, order);
1309 		page_table_check_free(page, order);
1310 		return false;
1311 	}
1312 
1313 	/*
1314 	 * Check tail pages before head page information is cleared to
1315 	 * avoid checking PageCompound for order-0 pages.
1316 	 */
1317 	if (unlikely(order)) {
1318 		bool compound = PageCompound(page);
1319 		int i;
1320 
1321 		VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
1322 
1323 		if (compound) {
1324 			ClearPageDoubleMap(page);
1325 			ClearPageHasHWPoisoned(page);
1326 		}
1327 		for (i = 1; i < (1 << order); i++) {
1328 			if (compound)
1329 				bad += free_tail_pages_check(page, page + i);
1330 			if (unlikely(check_free_page(page + i))) {
1331 				bad++;
1332 				continue;
1333 			}
1334 			(page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1335 		}
1336 	}
1337 	if (PageMappingFlags(page))
1338 		page->mapping = NULL;
1339 	if (memcg_kmem_enabled() && PageMemcgKmem(page))
1340 		__memcg_kmem_uncharge_page(page, order);
1341 	if (check_free)
1342 		bad += check_free_page(page);
1343 	if (bad)
1344 		return false;
1345 
1346 	page_cpupid_reset_last(page);
1347 	page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1348 	reset_page_owner(page, order);
1349 	page_table_check_free(page, order);
1350 
1351 	if (!PageHighMem(page)) {
1352 		debug_check_no_locks_freed(page_address(page),
1353 					   PAGE_SIZE << order);
1354 		debug_check_no_obj_freed(page_address(page),
1355 					   PAGE_SIZE << order);
1356 	}
1357 
1358 	kernel_poison_pages(page, 1 << order);
1359 
1360 	/*
1361 	 * As memory initialization might be integrated into KASAN,
1362 	 * kasan_free_pages and kernel_init_free_pages must be
1363 	 * kept together to avoid discrepancies in behavior.
1364 	 *
1365 	 * With hardware tag-based KASAN, memory tags must be set before the
1366 	 * page becomes unavailable via debug_pagealloc or arch_free_page.
1367 	 */
1368 	if (kasan_has_integrated_init()) {
1369 		if (!skip_kasan_poison)
1370 			kasan_free_pages(page, order);
1371 	} else {
1372 		bool init = want_init_on_free();
1373 
1374 		if (init)
1375 			kernel_init_free_pages(page, 1 << order, false);
1376 		if (!skip_kasan_poison)
1377 			kasan_poison_pages(page, order, init);
1378 	}
1379 
1380 	/*
1381 	 * arch_free_page() can make the page's contents inaccessible.  s390
1382 	 * does this.  So nothing which can access the page's contents should
1383 	 * happen after this.
1384 	 */
1385 	arch_free_page(page, order);
1386 
1387 	debug_pagealloc_unmap_pages(page, 1 << order);
1388 
1389 	return true;
1390 }
1391 
1392 #ifdef CONFIG_DEBUG_VM
1393 /*
1394  * With DEBUG_VM enabled, order-0 pages are checked immediately when being freed
1395  * to pcp lists. With debug_pagealloc also enabled, they are also rechecked when
1396  * moved from pcp lists to free lists.
1397  */
1398 static bool free_pcp_prepare(struct page *page, unsigned int order)
1399 {
1400 	return free_pages_prepare(page, order, true, FPI_NONE);
1401 }
1402 
1403 static bool bulkfree_pcp_prepare(struct page *page)
1404 {
1405 	if (debug_pagealloc_enabled_static())
1406 		return check_free_page(page);
1407 	else
1408 		return false;
1409 }
1410 #else
1411 /*
1412  * With DEBUG_VM disabled, order-0 pages being freed are checked only when
1413  * moving from pcp lists to free list in order to reduce overhead. With
1414  * debug_pagealloc enabled, they are checked also immediately when being freed
1415  * to the pcp lists.
1416  */
1417 static bool free_pcp_prepare(struct page *page, unsigned int order)
1418 {
1419 	if (debug_pagealloc_enabled_static())
1420 		return free_pages_prepare(page, order, true, FPI_NONE);
1421 	else
1422 		return free_pages_prepare(page, order, false, FPI_NONE);
1423 }
1424 
1425 static bool bulkfree_pcp_prepare(struct page *page)
1426 {
1427 	return check_free_page(page);
1428 }
1429 #endif /* CONFIG_DEBUG_VM */
1430 
1431 /*
1432  * Frees a number of pages from the PCP lists
1433  * Assumes all pages on list are in same zone.
1434  * count is the number of pages to free.
1435  */
1436 static void free_pcppages_bulk(struct zone *zone, int count,
1437 					struct per_cpu_pages *pcp,
1438 					int pindex)
1439 {
1440 	int min_pindex = 0;
1441 	int max_pindex = NR_PCP_LISTS - 1;
1442 	unsigned int order;
1443 	bool isolated_pageblocks;
1444 	struct page *page;
1445 
1446 	/*
1447 	 * Ensure proper count is passed which otherwise would stuck in the
1448 	 * below while (list_empty(list)) loop.
1449 	 */
1450 	count = min(pcp->count, count);
1451 
1452 	/* Ensure requested pindex is drained first. */
1453 	pindex = pindex - 1;
1454 
1455 	/*
1456 	 * local_lock_irq held so equivalent to spin_lock_irqsave for
1457 	 * both PREEMPT_RT and non-PREEMPT_RT configurations.
1458 	 */
1459 	spin_lock(&zone->lock);
1460 	isolated_pageblocks = has_isolate_pageblock(zone);
1461 
1462 	while (count > 0) {
1463 		struct list_head *list;
1464 		int nr_pages;
1465 
1466 		/* Remove pages from lists in a round-robin fashion. */
1467 		do {
1468 			if (++pindex > max_pindex)
1469 				pindex = min_pindex;
1470 			list = &pcp->lists[pindex];
1471 			if (!list_empty(list))
1472 				break;
1473 
1474 			if (pindex == max_pindex)
1475 				max_pindex--;
1476 			if (pindex == min_pindex)
1477 				min_pindex++;
1478 		} while (1);
1479 
1480 		order = pindex_to_order(pindex);
1481 		nr_pages = 1 << order;
1482 		BUILD_BUG_ON(MAX_ORDER >= (1<<NR_PCP_ORDER_WIDTH));
1483 		do {
1484 			int mt;
1485 
1486 			page = list_last_entry(list, struct page, lru);
1487 			mt = get_pcppage_migratetype(page);
1488 
1489 			/* must delete to avoid corrupting pcp list */
1490 			list_del(&page->lru);
1491 			count -= nr_pages;
1492 			pcp->count -= nr_pages;
1493 
1494 			if (bulkfree_pcp_prepare(page))
1495 				continue;
1496 
1497 			/* MIGRATE_ISOLATE page should not go to pcplists */
1498 			VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1499 			/* Pageblock could have been isolated meanwhile */
1500 			if (unlikely(isolated_pageblocks))
1501 				mt = get_pageblock_migratetype(page);
1502 
1503 			__free_one_page(page, page_to_pfn(page), zone, order, mt, FPI_NONE);
1504 			trace_mm_page_pcpu_drain(page, order, mt);
1505 		} while (count > 0 && !list_empty(list));
1506 	}
1507 
1508 	spin_unlock(&zone->lock);
1509 }
1510 
1511 static void free_one_page(struct zone *zone,
1512 				struct page *page, unsigned long pfn,
1513 				unsigned int order,
1514 				int migratetype, fpi_t fpi_flags)
1515 {
1516 	unsigned long flags;
1517 
1518 	spin_lock_irqsave(&zone->lock, flags);
1519 	if (unlikely(has_isolate_pageblock(zone) ||
1520 		is_migrate_isolate(migratetype))) {
1521 		migratetype = get_pfnblock_migratetype(page, pfn);
1522 	}
1523 	__free_one_page(page, pfn, zone, order, migratetype, fpi_flags);
1524 	spin_unlock_irqrestore(&zone->lock, flags);
1525 }
1526 
1527 static void __meminit __init_single_page(struct page *page, unsigned long pfn,
1528 				unsigned long zone, int nid)
1529 {
1530 	mm_zero_struct_page(page);
1531 	set_page_links(page, zone, nid, pfn);
1532 	init_page_count(page);
1533 	page_mapcount_reset(page);
1534 	page_cpupid_reset_last(page);
1535 	page_kasan_tag_reset(page);
1536 
1537 	INIT_LIST_HEAD(&page->lru);
1538 #ifdef WANT_PAGE_VIRTUAL
1539 	/* The shift won't overflow because ZONE_NORMAL is below 4G. */
1540 	if (!is_highmem_idx(zone))
1541 		set_page_address(page, __va(pfn << PAGE_SHIFT));
1542 #endif
1543 }
1544 
1545 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1546 static void __meminit init_reserved_page(unsigned long pfn)
1547 {
1548 	pg_data_t *pgdat;
1549 	int nid, zid;
1550 
1551 	if (!early_page_uninitialised(pfn))
1552 		return;
1553 
1554 	nid = early_pfn_to_nid(pfn);
1555 	pgdat = NODE_DATA(nid);
1556 
1557 	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1558 		struct zone *zone = &pgdat->node_zones[zid];
1559 
1560 		if (zone_spans_pfn(zone, pfn))
1561 			break;
1562 	}
1563 	__init_single_page(pfn_to_page(pfn), pfn, zid, nid);
1564 }
1565 #else
1566 static inline void init_reserved_page(unsigned long pfn)
1567 {
1568 }
1569 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1570 
1571 /*
1572  * Initialised pages do not have PageReserved set. This function is
1573  * called for each range allocated by the bootmem allocator and
1574  * marks the pages PageReserved. The remaining valid pages are later
1575  * sent to the buddy page allocator.
1576  */
1577 void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
1578 {
1579 	unsigned long start_pfn = PFN_DOWN(start);
1580 	unsigned long end_pfn = PFN_UP(end);
1581 
1582 	for (; start_pfn < end_pfn; start_pfn++) {
1583 		if (pfn_valid(start_pfn)) {
1584 			struct page *page = pfn_to_page(start_pfn);
1585 
1586 			init_reserved_page(start_pfn);
1587 
1588 			/* Avoid false-positive PageTail() */
1589 			INIT_LIST_HEAD(&page->lru);
1590 
1591 			/*
1592 			 * no need for atomic set_bit because the struct
1593 			 * page is not visible yet so nobody should
1594 			 * access it yet.
1595 			 */
1596 			__SetPageReserved(page);
1597 		}
1598 	}
1599 }
1600 
1601 static void __free_pages_ok(struct page *page, unsigned int order,
1602 			    fpi_t fpi_flags)
1603 {
1604 	unsigned long flags;
1605 	int migratetype;
1606 	unsigned long pfn = page_to_pfn(page);
1607 	struct zone *zone = page_zone(page);
1608 
1609 	if (!free_pages_prepare(page, order, true, fpi_flags))
1610 		return;
1611 
1612 	migratetype = get_pfnblock_migratetype(page, pfn);
1613 
1614 	spin_lock_irqsave(&zone->lock, flags);
1615 	if (unlikely(has_isolate_pageblock(zone) ||
1616 		is_migrate_isolate(migratetype))) {
1617 		migratetype = get_pfnblock_migratetype(page, pfn);
1618 	}
1619 	__free_one_page(page, pfn, zone, order, migratetype, fpi_flags);
1620 	spin_unlock_irqrestore(&zone->lock, flags);
1621 
1622 	__count_vm_events(PGFREE, 1 << order);
1623 }
1624 
1625 void __free_pages_core(struct page *page, unsigned int order)
1626 {
1627 	unsigned int nr_pages = 1 << order;
1628 	struct page *p = page;
1629 	unsigned int loop;
1630 
1631 	/*
1632 	 * When initializing the memmap, __init_single_page() sets the refcount
1633 	 * of all pages to 1 ("allocated"/"not free"). We have to set the
1634 	 * refcount of all involved pages to 0.
1635 	 */
1636 	prefetchw(p);
1637 	for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1638 		prefetchw(p + 1);
1639 		__ClearPageReserved(p);
1640 		set_page_count(p, 0);
1641 	}
1642 	__ClearPageReserved(p);
1643 	set_page_count(p, 0);
1644 
1645 	atomic_long_add(nr_pages, &page_zone(page)->managed_pages);
1646 
1647 	/*
1648 	 * Bypass PCP and place fresh pages right to the tail, primarily
1649 	 * relevant for memory onlining.
1650 	 */
1651 	__free_pages_ok(page, order, FPI_TO_TAIL | FPI_SKIP_KASAN_POISON);
1652 }
1653 
1654 #ifdef CONFIG_NUMA
1655 
1656 /*
1657  * During memory init memblocks map pfns to nids. The search is expensive and
1658  * this caches recent lookups. The implementation of __early_pfn_to_nid
1659  * treats start/end as pfns.
1660  */
1661 struct mminit_pfnnid_cache {
1662 	unsigned long last_start;
1663 	unsigned long last_end;
1664 	int last_nid;
1665 };
1666 
1667 static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
1668 
1669 /*
1670  * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
1671  */
1672 static int __meminit __early_pfn_to_nid(unsigned long pfn,
1673 					struct mminit_pfnnid_cache *state)
1674 {
1675 	unsigned long start_pfn, end_pfn;
1676 	int nid;
1677 
1678 	if (state->last_start <= pfn && pfn < state->last_end)
1679 		return state->last_nid;
1680 
1681 	nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
1682 	if (nid != NUMA_NO_NODE) {
1683 		state->last_start = start_pfn;
1684 		state->last_end = end_pfn;
1685 		state->last_nid = nid;
1686 	}
1687 
1688 	return nid;
1689 }
1690 
1691 int __meminit early_pfn_to_nid(unsigned long pfn)
1692 {
1693 	static DEFINE_SPINLOCK(early_pfn_lock);
1694 	int nid;
1695 
1696 	spin_lock(&early_pfn_lock);
1697 	nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
1698 	if (nid < 0)
1699 		nid = first_online_node;
1700 	spin_unlock(&early_pfn_lock);
1701 
1702 	return nid;
1703 }
1704 #endif /* CONFIG_NUMA */
1705 
1706 void __init memblock_free_pages(struct page *page, unsigned long pfn,
1707 							unsigned int order)
1708 {
1709 	if (early_page_uninitialised(pfn))
1710 		return;
1711 	__free_pages_core(page, order);
1712 }
1713 
1714 /*
1715  * Check that the whole (or subset of) a pageblock given by the interval of
1716  * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1717  * with the migration of free compaction scanner.
1718  *
1719  * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1720  *
1721  * It's possible on some configurations to have a setup like node0 node1 node0
1722  * i.e. it's possible that all pages within a zones range of pages do not
1723  * belong to a single zone. We assume that a border between node0 and node1
1724  * can occur within a single pageblock, but not a node0 node1 node0
1725  * interleaving within a single pageblock. It is therefore sufficient to check
1726  * the first and last page of a pageblock and avoid checking each individual
1727  * page in a pageblock.
1728  */
1729 struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1730 				     unsigned long end_pfn, struct zone *zone)
1731 {
1732 	struct page *start_page;
1733 	struct page *end_page;
1734 
1735 	/* end_pfn is one past the range we are checking */
1736 	end_pfn--;
1737 
1738 	if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
1739 		return NULL;
1740 
1741 	start_page = pfn_to_online_page(start_pfn);
1742 	if (!start_page)
1743 		return NULL;
1744 
1745 	if (page_zone(start_page) != zone)
1746 		return NULL;
1747 
1748 	end_page = pfn_to_page(end_pfn);
1749 
1750 	/* This gives a shorter code than deriving page_zone(end_page) */
1751 	if (page_zone_id(start_page) != page_zone_id(end_page))
1752 		return NULL;
1753 
1754 	return start_page;
1755 }
1756 
1757 void set_zone_contiguous(struct zone *zone)
1758 {
1759 	unsigned long block_start_pfn = zone->zone_start_pfn;
1760 	unsigned long block_end_pfn;
1761 
1762 	block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
1763 	for (; block_start_pfn < zone_end_pfn(zone);
1764 			block_start_pfn = block_end_pfn,
1765 			 block_end_pfn += pageblock_nr_pages) {
1766 
1767 		block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
1768 
1769 		if (!__pageblock_pfn_to_page(block_start_pfn,
1770 					     block_end_pfn, zone))
1771 			return;
1772 		cond_resched();
1773 	}
1774 
1775 	/* We confirm that there is no hole */
1776 	zone->contiguous = true;
1777 }
1778 
1779 void clear_zone_contiguous(struct zone *zone)
1780 {
1781 	zone->contiguous = false;
1782 }
1783 
1784 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1785 static void __init deferred_free_range(unsigned long pfn,
1786 				       unsigned long nr_pages)
1787 {
1788 	struct page *page;
1789 	unsigned long i;
1790 
1791 	if (!nr_pages)
1792 		return;
1793 
1794 	page = pfn_to_page(pfn);
1795 
1796 	/* Free a large naturally-aligned chunk if possible */
1797 	if (nr_pages == pageblock_nr_pages &&
1798 	    (pfn & (pageblock_nr_pages - 1)) == 0) {
1799 		set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1800 		__free_pages_core(page, pageblock_order);
1801 		return;
1802 	}
1803 
1804 	for (i = 0; i < nr_pages; i++, page++, pfn++) {
1805 		if ((pfn & (pageblock_nr_pages - 1)) == 0)
1806 			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1807 		__free_pages_core(page, 0);
1808 	}
1809 }
1810 
1811 /* Completion tracking for deferred_init_memmap() threads */
1812 static atomic_t pgdat_init_n_undone __initdata;
1813 static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1814 
1815 static inline void __init pgdat_init_report_one_done(void)
1816 {
1817 	if (atomic_dec_and_test(&pgdat_init_n_undone))
1818 		complete(&pgdat_init_all_done_comp);
1819 }
1820 
1821 /*
1822  * Returns true if page needs to be initialized or freed to buddy allocator.
1823  *
1824  * First we check if pfn is valid on architectures where it is possible to have
1825  * holes within pageblock_nr_pages. On systems where it is not possible, this
1826  * function is optimized out.
1827  *
1828  * Then, we check if a current large page is valid by only checking the validity
1829  * of the head pfn.
1830  */
1831 static inline bool __init deferred_pfn_valid(unsigned long pfn)
1832 {
1833 	if (!(pfn & (pageblock_nr_pages - 1)) && !pfn_valid(pfn))
1834 		return false;
1835 	return true;
1836 }
1837 
1838 /*
1839  * Free pages to buddy allocator. Try to free aligned pages in
1840  * pageblock_nr_pages sizes.
1841  */
1842 static void __init deferred_free_pages(unsigned long pfn,
1843 				       unsigned long end_pfn)
1844 {
1845 	unsigned long nr_pgmask = pageblock_nr_pages - 1;
1846 	unsigned long nr_free = 0;
1847 
1848 	for (; pfn < end_pfn; pfn++) {
1849 		if (!deferred_pfn_valid(pfn)) {
1850 			deferred_free_range(pfn - nr_free, nr_free);
1851 			nr_free = 0;
1852 		} else if (!(pfn & nr_pgmask)) {
1853 			deferred_free_range(pfn - nr_free, nr_free);
1854 			nr_free = 1;
1855 		} else {
1856 			nr_free++;
1857 		}
1858 	}
1859 	/* Free the last block of pages to allocator */
1860 	deferred_free_range(pfn - nr_free, nr_free);
1861 }
1862 
1863 /*
1864  * Initialize struct pages.  We minimize pfn page lookups and scheduler checks
1865  * by performing it only once every pageblock_nr_pages.
1866  * Return number of pages initialized.
1867  */
1868 static unsigned long  __init deferred_init_pages(struct zone *zone,
1869 						 unsigned long pfn,
1870 						 unsigned long end_pfn)
1871 {
1872 	unsigned long nr_pgmask = pageblock_nr_pages - 1;
1873 	int nid = zone_to_nid(zone);
1874 	unsigned long nr_pages = 0;
1875 	int zid = zone_idx(zone);
1876 	struct page *page = NULL;
1877 
1878 	for (; pfn < end_pfn; pfn++) {
1879 		if (!deferred_pfn_valid(pfn)) {
1880 			page = NULL;
1881 			continue;
1882 		} else if (!page || !(pfn & nr_pgmask)) {
1883 			page = pfn_to_page(pfn);
1884 		} else {
1885 			page++;
1886 		}
1887 		__init_single_page(page, pfn, zid, nid);
1888 		nr_pages++;
1889 	}
1890 	return (nr_pages);
1891 }
1892 
1893 /*
1894  * This function is meant to pre-load the iterator for the zone init.
1895  * Specifically it walks through the ranges until we are caught up to the
1896  * first_init_pfn value and exits there. If we never encounter the value we
1897  * return false indicating there are no valid ranges left.
1898  */
1899 static bool __init
1900 deferred_init_mem_pfn_range_in_zone(u64 *i, struct zone *zone,
1901 				    unsigned long *spfn, unsigned long *epfn,
1902 				    unsigned long first_init_pfn)
1903 {
1904 	u64 j;
1905 
1906 	/*
1907 	 * Start out by walking through the ranges in this zone that have
1908 	 * already been initialized. We don't need to do anything with them
1909 	 * so we just need to flush them out of the system.
1910 	 */
1911 	for_each_free_mem_pfn_range_in_zone(j, zone, spfn, epfn) {
1912 		if (*epfn <= first_init_pfn)
1913 			continue;
1914 		if (*spfn < first_init_pfn)
1915 			*spfn = first_init_pfn;
1916 		*i = j;
1917 		return true;
1918 	}
1919 
1920 	return false;
1921 }
1922 
1923 /*
1924  * Initialize and free pages. We do it in two loops: first we initialize
1925  * struct page, then free to buddy allocator, because while we are
1926  * freeing pages we can access pages that are ahead (computing buddy
1927  * page in __free_one_page()).
1928  *
1929  * In order to try and keep some memory in the cache we have the loop
1930  * broken along max page order boundaries. This way we will not cause
1931  * any issues with the buddy page computation.
1932  */
1933 static unsigned long __init
1934 deferred_init_maxorder(u64 *i, struct zone *zone, unsigned long *start_pfn,
1935 		       unsigned long *end_pfn)
1936 {
1937 	unsigned long mo_pfn = ALIGN(*start_pfn + 1, MAX_ORDER_NR_PAGES);
1938 	unsigned long spfn = *start_pfn, epfn = *end_pfn;
1939 	unsigned long nr_pages = 0;
1940 	u64 j = *i;
1941 
1942 	/* First we loop through and initialize the page values */
1943 	for_each_free_mem_pfn_range_in_zone_from(j, zone, start_pfn, end_pfn) {
1944 		unsigned long t;
1945 
1946 		if (mo_pfn <= *start_pfn)
1947 			break;
1948 
1949 		t = min(mo_pfn, *end_pfn);
1950 		nr_pages += deferred_init_pages(zone, *start_pfn, t);
1951 
1952 		if (mo_pfn < *end_pfn) {
1953 			*start_pfn = mo_pfn;
1954 			break;
1955 		}
1956 	}
1957 
1958 	/* Reset values and now loop through freeing pages as needed */
1959 	swap(j, *i);
1960 
1961 	for_each_free_mem_pfn_range_in_zone_from(j, zone, &spfn, &epfn) {
1962 		unsigned long t;
1963 
1964 		if (mo_pfn <= spfn)
1965 			break;
1966 
1967 		t = min(mo_pfn, epfn);
1968 		deferred_free_pages(spfn, t);
1969 
1970 		if (mo_pfn <= epfn)
1971 			break;
1972 	}
1973 
1974 	return nr_pages;
1975 }
1976 
1977 static void __init
1978 deferred_init_memmap_chunk(unsigned long start_pfn, unsigned long end_pfn,
1979 			   void *arg)
1980 {
1981 	unsigned long spfn, epfn;
1982 	struct zone *zone = arg;
1983 	u64 i;
1984 
1985 	deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, start_pfn);
1986 
1987 	/*
1988 	 * Initialize and free pages in MAX_ORDER sized increments so that we
1989 	 * can avoid introducing any issues with the buddy allocator.
1990 	 */
1991 	while (spfn < end_pfn) {
1992 		deferred_init_maxorder(&i, zone, &spfn, &epfn);
1993 		cond_resched();
1994 	}
1995 }
1996 
1997 /* An arch may override for more concurrency. */
1998 __weak int __init
1999 deferred_page_init_max_threads(const struct cpumask *node_cpumask)
2000 {
2001 	return 1;
2002 }
2003 
2004 /* Initialise remaining memory on a node */
2005 static int __init deferred_init_memmap(void *data)
2006 {
2007 	pg_data_t *pgdat = data;
2008 	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
2009 	unsigned long spfn = 0, epfn = 0;
2010 	unsigned long first_init_pfn, flags;
2011 	unsigned long start = jiffies;
2012 	struct zone *zone;
2013 	int zid, max_threads;
2014 	u64 i;
2015 
2016 	/* Bind memory initialisation thread to a local node if possible */
2017 	if (!cpumask_empty(cpumask))
2018 		set_cpus_allowed_ptr(current, cpumask);
2019 
2020 	pgdat_resize_lock(pgdat, &flags);
2021 	first_init_pfn = pgdat->first_deferred_pfn;
2022 	if (first_init_pfn == ULONG_MAX) {
2023 		pgdat_resize_unlock(pgdat, &flags);
2024 		pgdat_init_report_one_done();
2025 		return 0;
2026 	}
2027 
2028 	/* Sanity check boundaries */
2029 	BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
2030 	BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
2031 	pgdat->first_deferred_pfn = ULONG_MAX;
2032 
2033 	/*
2034 	 * Once we unlock here, the zone cannot be grown anymore, thus if an
2035 	 * interrupt thread must allocate this early in boot, zone must be
2036 	 * pre-grown prior to start of deferred page initialization.
2037 	 */
2038 	pgdat_resize_unlock(pgdat, &flags);
2039 
2040 	/* Only the highest zone is deferred so find it */
2041 	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
2042 		zone = pgdat->node_zones + zid;
2043 		if (first_init_pfn < zone_end_pfn(zone))
2044 			break;
2045 	}
2046 
2047 	/* If the zone is empty somebody else may have cleared out the zone */
2048 	if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
2049 						 first_init_pfn))
2050 		goto zone_empty;
2051 
2052 	max_threads = deferred_page_init_max_threads(cpumask);
2053 
2054 	while (spfn < epfn) {
2055 		unsigned long epfn_align = ALIGN(epfn, PAGES_PER_SECTION);
2056 		struct padata_mt_job job = {
2057 			.thread_fn   = deferred_init_memmap_chunk,
2058 			.fn_arg      = zone,
2059 			.start       = spfn,
2060 			.size        = epfn_align - spfn,
2061 			.align       = PAGES_PER_SECTION,
2062 			.min_chunk   = PAGES_PER_SECTION,
2063 			.max_threads = max_threads,
2064 		};
2065 
2066 		padata_do_multithreaded(&job);
2067 		deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
2068 						    epfn_align);
2069 	}
2070 zone_empty:
2071 	/* Sanity check that the next zone really is unpopulated */
2072 	WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
2073 
2074 	pr_info("node %d deferred pages initialised in %ums\n",
2075 		pgdat->node_id, jiffies_to_msecs(jiffies - start));
2076 
2077 	pgdat_init_report_one_done();
2078 	return 0;
2079 }
2080 
2081 /*
2082  * If this zone has deferred pages, try to grow it by initializing enough
2083  * deferred pages to satisfy the allocation specified by order, rounded up to
2084  * the nearest PAGES_PER_SECTION boundary.  So we're adding memory in increments
2085  * of SECTION_SIZE bytes by initializing struct pages in increments of
2086  * PAGES_PER_SECTION * sizeof(struct page) bytes.
2087  *
2088  * Return true when zone was grown, otherwise return false. We return true even
2089  * when we grow less than requested, to let the caller decide if there are
2090  * enough pages to satisfy the allocation.
2091  *
2092  * Note: We use noinline because this function is needed only during boot, and
2093  * it is called from a __ref function _deferred_grow_zone. This way we are
2094  * making sure that it is not inlined into permanent text section.
2095  */
2096 static noinline bool __init
2097 deferred_grow_zone(struct zone *zone, unsigned int order)
2098 {
2099 	unsigned long nr_pages_needed = ALIGN(1 << order, PAGES_PER_SECTION);
2100 	pg_data_t *pgdat = zone->zone_pgdat;
2101 	unsigned long first_deferred_pfn = pgdat->first_deferred_pfn;
2102 	unsigned long spfn, epfn, flags;
2103 	unsigned long nr_pages = 0;
2104 	u64 i;
2105 
2106 	/* Only the last zone may have deferred pages */
2107 	if (zone_end_pfn(zone) != pgdat_end_pfn(pgdat))
2108 		return false;
2109 
2110 	pgdat_resize_lock(pgdat, &flags);
2111 
2112 	/*
2113 	 * If someone grew this zone while we were waiting for spinlock, return
2114 	 * true, as there might be enough pages already.
2115 	 */
2116 	if (first_deferred_pfn != pgdat->first_deferred_pfn) {
2117 		pgdat_resize_unlock(pgdat, &flags);
2118 		return true;
2119 	}
2120 
2121 	/* If the zone is empty somebody else may have cleared out the zone */
2122 	if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
2123 						 first_deferred_pfn)) {
2124 		pgdat->first_deferred_pfn = ULONG_MAX;
2125 		pgdat_resize_unlock(pgdat, &flags);
2126 		/* Retry only once. */
2127 		return first_deferred_pfn != ULONG_MAX;
2128 	}
2129 
2130 	/*
2131 	 * Initialize and free pages in MAX_ORDER sized increments so
2132 	 * that we can avoid introducing any issues with the buddy
2133 	 * allocator.
2134 	 */
2135 	while (spfn < epfn) {
2136 		/* update our first deferred PFN for this section */
2137 		first_deferred_pfn = spfn;
2138 
2139 		nr_pages += deferred_init_maxorder(&i, zone, &spfn, &epfn);
2140 		touch_nmi_watchdog();
2141 
2142 		/* We should only stop along section boundaries */
2143 		if ((first_deferred_pfn ^ spfn) < PAGES_PER_SECTION)
2144 			continue;
2145 
2146 		/* If our quota has been met we can stop here */
2147 		if (nr_pages >= nr_pages_needed)
2148 			break;
2149 	}
2150 
2151 	pgdat->first_deferred_pfn = spfn;
2152 	pgdat_resize_unlock(pgdat, &flags);
2153 
2154 	return nr_pages > 0;
2155 }
2156 
2157 /*
2158  * deferred_grow_zone() is __init, but it is called from
2159  * get_page_from_freelist() during early boot until deferred_pages permanently
2160  * disables this call. This is why we have refdata wrapper to avoid warning,
2161  * and to ensure that the function body gets unloaded.
2162  */
2163 static bool __ref
2164 _deferred_grow_zone(struct zone *zone, unsigned int order)
2165 {
2166 	return deferred_grow_zone(zone, order);
2167 }
2168 
2169 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
2170 
2171 void __init page_alloc_init_late(void)
2172 {
2173 	struct zone *zone;
2174 	int nid;
2175 
2176 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
2177 
2178 	/* There will be num_node_state(N_MEMORY) threads */
2179 	atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
2180 	for_each_node_state(nid, N_MEMORY) {
2181 		kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
2182 	}
2183 
2184 	/* Block until all are initialised */
2185 	wait_for_completion(&pgdat_init_all_done_comp);
2186 
2187 	/*
2188 	 * We initialized the rest of the deferred pages.  Permanently disable
2189 	 * on-demand struct page initialization.
2190 	 */
2191 	static_branch_disable(&deferred_pages);
2192 
2193 	/* Reinit limits that are based on free pages after the kernel is up */
2194 	files_maxfiles_init();
2195 #endif
2196 
2197 	buffer_init();
2198 
2199 	/* Discard memblock private memory */
2200 	memblock_discard();
2201 
2202 	for_each_node_state(nid, N_MEMORY)
2203 		shuffle_free_memory(NODE_DATA(nid));
2204 
2205 	for_each_populated_zone(zone)
2206 		set_zone_contiguous(zone);
2207 }
2208 
2209 #ifdef CONFIG_CMA
2210 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */
2211 void __init init_cma_reserved_pageblock(struct page *page)
2212 {
2213 	unsigned i = pageblock_nr_pages;
2214 	struct page *p = page;
2215 
2216 	do {
2217 		__ClearPageReserved(p);
2218 		set_page_count(p, 0);
2219 	} while (++p, --i);
2220 
2221 	set_pageblock_migratetype(page, MIGRATE_CMA);
2222 	set_page_refcounted(page);
2223 	__free_pages(page, pageblock_order);
2224 
2225 	adjust_managed_page_count(page, pageblock_nr_pages);
2226 	page_zone(page)->cma_pages += pageblock_nr_pages;
2227 }
2228 #endif
2229 
2230 /*
2231  * The order of subdivision here is critical for the IO subsystem.
2232  * Please do not alter this order without good reasons and regression
2233  * testing. Specifically, as large blocks of memory are subdivided,
2234  * the order in which smaller blocks are delivered depends on the order
2235  * they're subdivided in this function. This is the primary factor
2236  * influencing the order in which pages are delivered to the IO
2237  * subsystem according to empirical testing, and this is also justified
2238  * by considering the behavior of a buddy system containing a single
2239  * large block of memory acted on by a series of small allocations.
2240  * This behavior is a critical factor in sglist merging's success.
2241  *
2242  * -- nyc
2243  */
2244 static inline void expand(struct zone *zone, struct page *page,
2245 	int low, int high, int migratetype)
2246 {
2247 	unsigned long size = 1 << high;
2248 
2249 	while (high > low) {
2250 		high--;
2251 		size >>= 1;
2252 		VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
2253 
2254 		/*
2255 		 * Mark as guard pages (or page), that will allow to
2256 		 * merge back to allocator when buddy will be freed.
2257 		 * Corresponding page table entries will not be touched,
2258 		 * pages will stay not present in virtual address space
2259 		 */
2260 		if (set_page_guard(zone, &page[size], high, migratetype))
2261 			continue;
2262 
2263 		add_to_free_list(&page[size], zone, high, migratetype);
2264 		set_buddy_order(&page[size], high);
2265 	}
2266 }
2267 
2268 static void check_new_page_bad(struct page *page)
2269 {
2270 	if (unlikely(page->flags & __PG_HWPOISON)) {
2271 		/* Don't complain about hwpoisoned pages */
2272 		page_mapcount_reset(page); /* remove PageBuddy */
2273 		return;
2274 	}
2275 
2276 	bad_page(page,
2277 		 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_PREP));
2278 }
2279 
2280 /*
2281  * This page is about to be returned from the page allocator
2282  */
2283 static inline int check_new_page(struct page *page)
2284 {
2285 	if (likely(page_expected_state(page,
2286 				PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
2287 		return 0;
2288 
2289 	check_new_page_bad(page);
2290 	return 1;
2291 }
2292 
2293 static bool check_new_pages(struct page *page, unsigned int order)
2294 {
2295 	int i;
2296 	for (i = 0; i < (1 << order); i++) {
2297 		struct page *p = page + i;
2298 
2299 		if (unlikely(check_new_page(p)))
2300 			return true;
2301 	}
2302 
2303 	return false;
2304 }
2305 
2306 #ifdef CONFIG_DEBUG_VM
2307 /*
2308  * With DEBUG_VM enabled, order-0 pages are checked for expected state when
2309  * being allocated from pcp lists. With debug_pagealloc also enabled, they are
2310  * also checked when pcp lists are refilled from the free lists.
2311  */
2312 static inline bool check_pcp_refill(struct page *page, unsigned int order)
2313 {
2314 	if (debug_pagealloc_enabled_static())
2315 		return check_new_pages(page, order);
2316 	else
2317 		return false;
2318 }
2319 
2320 static inline bool check_new_pcp(struct page *page, unsigned int order)
2321 {
2322 	return check_new_pages(page, order);
2323 }
2324 #else
2325 /*
2326  * With DEBUG_VM disabled, free order-0 pages are checked for expected state
2327  * when pcp lists are being refilled from the free lists. With debug_pagealloc
2328  * enabled, they are also checked when being allocated from the pcp lists.
2329  */
2330 static inline bool check_pcp_refill(struct page *page, unsigned int order)
2331 {
2332 	return check_new_pages(page, order);
2333 }
2334 static inline bool check_new_pcp(struct page *page, unsigned int order)
2335 {
2336 	if (debug_pagealloc_enabled_static())
2337 		return check_new_pages(page, order);
2338 	else
2339 		return false;
2340 }
2341 #endif /* CONFIG_DEBUG_VM */
2342 
2343 inline void post_alloc_hook(struct page *page, unsigned int order,
2344 				gfp_t gfp_flags)
2345 {
2346 	set_page_private(page, 0);
2347 	set_page_refcounted(page);
2348 
2349 	arch_alloc_page(page, order);
2350 	debug_pagealloc_map_pages(page, 1 << order);
2351 
2352 	/*
2353 	 * Page unpoisoning must happen before memory initialization.
2354 	 * Otherwise, the poison pattern will be overwritten for __GFP_ZERO
2355 	 * allocations and the page unpoisoning code will complain.
2356 	 */
2357 	kernel_unpoison_pages(page, 1 << order);
2358 
2359 	/*
2360 	 * As memory initialization might be integrated into KASAN,
2361 	 * kasan_alloc_pages and kernel_init_free_pages must be
2362 	 * kept together to avoid discrepancies in behavior.
2363 	 */
2364 	if (kasan_has_integrated_init()) {
2365 		kasan_alloc_pages(page, order, gfp_flags);
2366 	} else {
2367 		bool init = !want_init_on_free() && want_init_on_alloc(gfp_flags);
2368 
2369 		kasan_unpoison_pages(page, order, init);
2370 		if (init)
2371 			kernel_init_free_pages(page, 1 << order,
2372 					       gfp_flags & __GFP_ZEROTAGS);
2373 	}
2374 
2375 	set_page_owner(page, order, gfp_flags);
2376 	page_table_check_alloc(page, order);
2377 }
2378 
2379 static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
2380 							unsigned int alloc_flags)
2381 {
2382 	post_alloc_hook(page, order, gfp_flags);
2383 
2384 	if (order && (gfp_flags & __GFP_COMP))
2385 		prep_compound_page(page, order);
2386 
2387 	/*
2388 	 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
2389 	 * allocate the page. The expectation is that the caller is taking
2390 	 * steps that will free more memory. The caller should avoid the page
2391 	 * being used for !PFMEMALLOC purposes.
2392 	 */
2393 	if (alloc_flags & ALLOC_NO_WATERMARKS)
2394 		set_page_pfmemalloc(page);
2395 	else
2396 		clear_page_pfmemalloc(page);
2397 }
2398 
2399 /*
2400  * Go through the free lists for the given migratetype and remove
2401  * the smallest available page from the freelists
2402  */
2403 static __always_inline
2404 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
2405 						int migratetype)
2406 {
2407 	unsigned int current_order;
2408 	struct free_area *area;
2409 	struct page *page;
2410 
2411 	/* Find a page of the appropriate size in the preferred list */
2412 	for (current_order = order; current_order < MAX_ORDER; ++current_order) {
2413 		area = &(zone->free_area[current_order]);
2414 		page = get_page_from_free_area(area, migratetype);
2415 		if (!page)
2416 			continue;
2417 		del_page_from_free_list(page, zone, current_order);
2418 		expand(zone, page, order, current_order, migratetype);
2419 		set_pcppage_migratetype(page, migratetype);
2420 		return page;
2421 	}
2422 
2423 	return NULL;
2424 }
2425 
2426 
2427 /*
2428  * This array describes the order lists are fallen back to when
2429  * the free lists for the desirable migrate type are depleted
2430  *
2431  * The other migratetypes do not have fallbacks.
2432  */
2433 static int fallbacks[MIGRATE_TYPES][3] = {
2434 	[MIGRATE_UNMOVABLE]   = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE,   MIGRATE_TYPES },
2435 	[MIGRATE_MOVABLE]     = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
2436 	[MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE,   MIGRATE_MOVABLE,   MIGRATE_TYPES },
2437 };
2438 
2439 #ifdef CONFIG_CMA
2440 static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone,
2441 					unsigned int order)
2442 {
2443 	return __rmqueue_smallest(zone, order, MIGRATE_CMA);
2444 }
2445 #else
2446 static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
2447 					unsigned int order) { return NULL; }
2448 #endif
2449 
2450 /*
2451  * Move the free pages in a range to the freelist tail of the requested type.
2452  * Note that start_page and end_pages are not aligned on a pageblock
2453  * boundary. If alignment is required, use move_freepages_block()
2454  */
2455 static int move_freepages(struct zone *zone,
2456 			  unsigned long start_pfn, unsigned long end_pfn,
2457 			  int migratetype, int *num_movable)
2458 {
2459 	struct page *page;
2460 	unsigned long pfn;
2461 	unsigned int order;
2462 	int pages_moved = 0;
2463 
2464 	for (pfn = start_pfn; pfn <= end_pfn;) {
2465 		page = pfn_to_page(pfn);
2466 		if (!PageBuddy(page)) {
2467 			/*
2468 			 * We assume that pages that could be isolated for
2469 			 * migration are movable. But we don't actually try
2470 			 * isolating, as that would be expensive.
2471 			 */
2472 			if (num_movable &&
2473 					(PageLRU(page) || __PageMovable(page)))
2474 				(*num_movable)++;
2475 			pfn++;
2476 			continue;
2477 		}
2478 
2479 		/* Make sure we are not inadvertently changing nodes */
2480 		VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
2481 		VM_BUG_ON_PAGE(page_zone(page) != zone, page);
2482 
2483 		order = buddy_order(page);
2484 		move_to_free_list(page, zone, order, migratetype);
2485 		pfn += 1 << order;
2486 		pages_moved += 1 << order;
2487 	}
2488 
2489 	return pages_moved;
2490 }
2491 
2492 int move_freepages_block(struct zone *zone, struct page *page,
2493 				int migratetype, int *num_movable)
2494 {
2495 	unsigned long start_pfn, end_pfn, pfn;
2496 
2497 	if (num_movable)
2498 		*num_movable = 0;
2499 
2500 	pfn = page_to_pfn(page);
2501 	start_pfn = pfn & ~(pageblock_nr_pages - 1);
2502 	end_pfn = start_pfn + pageblock_nr_pages - 1;
2503 
2504 	/* Do not cross zone boundaries */
2505 	if (!zone_spans_pfn(zone, start_pfn))
2506 		start_pfn = pfn;
2507 	if (!zone_spans_pfn(zone, end_pfn))
2508 		return 0;
2509 
2510 	return move_freepages(zone, start_pfn, end_pfn, migratetype,
2511 								num_movable);
2512 }
2513 
2514 static void change_pageblock_range(struct page *pageblock_page,
2515 					int start_order, int migratetype)
2516 {
2517 	int nr_pageblocks = 1 << (start_order - pageblock_order);
2518 
2519 	while (nr_pageblocks--) {
2520 		set_pageblock_migratetype(pageblock_page, migratetype);
2521 		pageblock_page += pageblock_nr_pages;
2522 	}
2523 }
2524 
2525 /*
2526  * When we are falling back to another migratetype during allocation, try to
2527  * steal extra free pages from the same pageblocks to satisfy further
2528  * allocations, instead of polluting multiple pageblocks.
2529  *
2530  * If we are stealing a relatively large buddy page, it is likely there will
2531  * be more free pages in the pageblock, so try to steal them all. For
2532  * reclaimable and unmovable allocations, we steal regardless of page size,
2533  * as fragmentation caused by those allocations polluting movable pageblocks
2534  * is worse than movable allocations stealing from unmovable and reclaimable
2535  * pageblocks.
2536  */
2537 static bool can_steal_fallback(unsigned int order, int start_mt)
2538 {
2539 	/*
2540 	 * Leaving this order check is intended, although there is
2541 	 * relaxed order check in next check. The reason is that
2542 	 * we can actually steal whole pageblock if this condition met,
2543 	 * but, below check doesn't guarantee it and that is just heuristic
2544 	 * so could be changed anytime.
2545 	 */
2546 	if (order >= pageblock_order)
2547 		return true;
2548 
2549 	if (order >= pageblock_order / 2 ||
2550 		start_mt == MIGRATE_RECLAIMABLE ||
2551 		start_mt == MIGRATE_UNMOVABLE ||
2552 		page_group_by_mobility_disabled)
2553 		return true;
2554 
2555 	return false;
2556 }
2557 
2558 static inline bool boost_watermark(struct zone *zone)
2559 {
2560 	unsigned long max_boost;
2561 
2562 	if (!watermark_boost_factor)
2563 		return false;
2564 	/*
2565 	 * Don't bother in zones that are unlikely to produce results.
2566 	 * On small machines, including kdump capture kernels running
2567 	 * in a small area, boosting the watermark can cause an out of
2568 	 * memory situation immediately.
2569 	 */
2570 	if ((pageblock_nr_pages * 4) > zone_managed_pages(zone))
2571 		return false;
2572 
2573 	max_boost = mult_frac(zone->_watermark[WMARK_HIGH],
2574 			watermark_boost_factor, 10000);
2575 
2576 	/*
2577 	 * high watermark may be uninitialised if fragmentation occurs
2578 	 * very early in boot so do not boost. We do not fall
2579 	 * through and boost by pageblock_nr_pages as failing
2580 	 * allocations that early means that reclaim is not going
2581 	 * to help and it may even be impossible to reclaim the
2582 	 * boosted watermark resulting in a hang.
2583 	 */
2584 	if (!max_boost)
2585 		return false;
2586 
2587 	max_boost = max(pageblock_nr_pages, max_boost);
2588 
2589 	zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages,
2590 		max_boost);
2591 
2592 	return true;
2593 }
2594 
2595 /*
2596  * This function implements actual steal behaviour. If order is large enough,
2597  * we can steal whole pageblock. If not, we first move freepages in this
2598  * pageblock to our migratetype and determine how many already-allocated pages
2599  * are there in the pageblock with a compatible migratetype. If at least half
2600  * of pages are free or compatible, we can change migratetype of the pageblock
2601  * itself, so pages freed in the future will be put on the correct free list.
2602  */
2603 static void steal_suitable_fallback(struct zone *zone, struct page *page,
2604 		unsigned int alloc_flags, int start_type, bool whole_block)
2605 {
2606 	unsigned int current_order = buddy_order(page);
2607 	int free_pages, movable_pages, alike_pages;
2608 	int old_block_type;
2609 
2610 	old_block_type = get_pageblock_migratetype(page);
2611 
2612 	/*
2613 	 * This can happen due to races and we want to prevent broken
2614 	 * highatomic accounting.
2615 	 */
2616 	if (is_migrate_highatomic(old_block_type))
2617 		goto single_page;
2618 
2619 	/* Take ownership for orders >= pageblock_order */
2620 	if (current_order >= pageblock_order) {
2621 		change_pageblock_range(page, current_order, start_type);
2622 		goto single_page;
2623 	}
2624 
2625 	/*
2626 	 * Boost watermarks to increase reclaim pressure to reduce the
2627 	 * likelihood of future fallbacks. Wake kswapd now as the node
2628 	 * may be balanced overall and kswapd will not wake naturally.
2629 	 */
2630 	if (boost_watermark(zone) && (alloc_flags & ALLOC_KSWAPD))
2631 		set_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
2632 
2633 	/* We are not allowed to try stealing from the whole block */
2634 	if (!whole_block)
2635 		goto single_page;
2636 
2637 	free_pages = move_freepages_block(zone, page, start_type,
2638 						&movable_pages);
2639 	/*
2640 	 * Determine how many pages are compatible with our allocation.
2641 	 * For movable allocation, it's the number of movable pages which
2642 	 * we just obtained. For other types it's a bit more tricky.
2643 	 */
2644 	if (start_type == MIGRATE_MOVABLE) {
2645 		alike_pages = movable_pages;
2646 	} else {
2647 		/*
2648 		 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
2649 		 * to MOVABLE pageblock, consider all non-movable pages as
2650 		 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
2651 		 * vice versa, be conservative since we can't distinguish the
2652 		 * exact migratetype of non-movable pages.
2653 		 */
2654 		if (old_block_type == MIGRATE_MOVABLE)
2655 			alike_pages = pageblock_nr_pages
2656 						- (free_pages + movable_pages);
2657 		else
2658 			alike_pages = 0;
2659 	}
2660 
2661 	/* moving whole block can fail due to zone boundary conditions */
2662 	if (!free_pages)
2663 		goto single_page;
2664 
2665 	/*
2666 	 * If a sufficient number of pages in the block are either free or of
2667 	 * comparable migratability as our allocation, claim the whole block.
2668 	 */
2669 	if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
2670 			page_group_by_mobility_disabled)
2671 		set_pageblock_migratetype(page, start_type);
2672 
2673 	return;
2674 
2675 single_page:
2676 	move_to_free_list(page, zone, current_order, start_type);
2677 }
2678 
2679 /*
2680  * Check whether there is a suitable fallback freepage with requested order.
2681  * If only_stealable is true, this function returns fallback_mt only if
2682  * we can steal other freepages all together. This would help to reduce
2683  * fragmentation due to mixed migratetype pages in one pageblock.
2684  */
2685 int find_suitable_fallback(struct free_area *area, unsigned int order,
2686 			int migratetype, bool only_stealable, bool *can_steal)
2687 {
2688 	int i;
2689 	int fallback_mt;
2690 
2691 	if (area->nr_free == 0)
2692 		return -1;
2693 
2694 	*can_steal = false;
2695 	for (i = 0;; i++) {
2696 		fallback_mt = fallbacks[migratetype][i];
2697 		if (fallback_mt == MIGRATE_TYPES)
2698 			break;
2699 
2700 		if (free_area_empty(area, fallback_mt))
2701 			continue;
2702 
2703 		if (can_steal_fallback(order, migratetype))
2704 			*can_steal = true;
2705 
2706 		if (!only_stealable)
2707 			return fallback_mt;
2708 
2709 		if (*can_steal)
2710 			return fallback_mt;
2711 	}
2712 
2713 	return -1;
2714 }
2715 
2716 /*
2717  * Reserve a pageblock for exclusive use of high-order atomic allocations if
2718  * there are no empty page blocks that contain a page with a suitable order
2719  */
2720 static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
2721 				unsigned int alloc_order)
2722 {
2723 	int mt;
2724 	unsigned long max_managed, flags;
2725 
2726 	/*
2727 	 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
2728 	 * Check is race-prone but harmless.
2729 	 */
2730 	max_managed = (zone_managed_pages(zone) / 100) + pageblock_nr_pages;
2731 	if (zone->nr_reserved_highatomic >= max_managed)
2732 		return;
2733 
2734 	spin_lock_irqsave(&zone->lock, flags);
2735 
2736 	/* Recheck the nr_reserved_highatomic limit under the lock */
2737 	if (zone->nr_reserved_highatomic >= max_managed)
2738 		goto out_unlock;
2739 
2740 	/* Yoink! */
2741 	mt = get_pageblock_migratetype(page);
2742 	/* Only reserve normal pageblocks (i.e., they can merge with others) */
2743 	if (migratetype_is_mergeable(mt)) {
2744 		zone->nr_reserved_highatomic += pageblock_nr_pages;
2745 		set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
2746 		move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL);
2747 	}
2748 
2749 out_unlock:
2750 	spin_unlock_irqrestore(&zone->lock, flags);
2751 }
2752 
2753 /*
2754  * Used when an allocation is about to fail under memory pressure. This
2755  * potentially hurts the reliability of high-order allocations when under
2756  * intense memory pressure but failed atomic allocations should be easier
2757  * to recover from than an OOM.
2758  *
2759  * If @force is true, try to unreserve a pageblock even though highatomic
2760  * pageblock is exhausted.
2761  */
2762 static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
2763 						bool force)
2764 {
2765 	struct zonelist *zonelist = ac->zonelist;
2766 	unsigned long flags;
2767 	struct zoneref *z;
2768 	struct zone *zone;
2769 	struct page *page;
2770 	int order;
2771 	bool ret;
2772 
2773 	for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->highest_zoneidx,
2774 								ac->nodemask) {
2775 		/*
2776 		 * Preserve at least one pageblock unless memory pressure
2777 		 * is really high.
2778 		 */
2779 		if (!force && zone->nr_reserved_highatomic <=
2780 					pageblock_nr_pages)
2781 			continue;
2782 
2783 		spin_lock_irqsave(&zone->lock, flags);
2784 		for (order = 0; order < MAX_ORDER; order++) {
2785 			struct free_area *area = &(zone->free_area[order]);
2786 
2787 			page = get_page_from_free_area(area, MIGRATE_HIGHATOMIC);
2788 			if (!page)
2789 				continue;
2790 
2791 			/*
2792 			 * In page freeing path, migratetype change is racy so
2793 			 * we can counter several free pages in a pageblock
2794 			 * in this loop although we changed the pageblock type
2795 			 * from highatomic to ac->migratetype. So we should
2796 			 * adjust the count once.
2797 			 */
2798 			if (is_migrate_highatomic_page(page)) {
2799 				/*
2800 				 * It should never happen but changes to
2801 				 * locking could inadvertently allow a per-cpu
2802 				 * drain to add pages to MIGRATE_HIGHATOMIC
2803 				 * while unreserving so be safe and watch for
2804 				 * underflows.
2805 				 */
2806 				zone->nr_reserved_highatomic -= min(
2807 						pageblock_nr_pages,
2808 						zone->nr_reserved_highatomic);
2809 			}
2810 
2811 			/*
2812 			 * Convert to ac->migratetype and avoid the normal
2813 			 * pageblock stealing heuristics. Minimally, the caller
2814 			 * is doing the work and needs the pages. More
2815 			 * importantly, if the block was always converted to
2816 			 * MIGRATE_UNMOVABLE or another type then the number
2817 			 * of pageblocks that cannot be completely freed
2818 			 * may increase.
2819 			 */
2820 			set_pageblock_migratetype(page, ac->migratetype);
2821 			ret = move_freepages_block(zone, page, ac->migratetype,
2822 									NULL);
2823 			if (ret) {
2824 				spin_unlock_irqrestore(&zone->lock, flags);
2825 				return ret;
2826 			}
2827 		}
2828 		spin_unlock_irqrestore(&zone->lock, flags);
2829 	}
2830 
2831 	return false;
2832 }
2833 
2834 /*
2835  * Try finding a free buddy page on the fallback list and put it on the free
2836  * list of requested migratetype, possibly along with other pages from the same
2837  * block, depending on fragmentation avoidance heuristics. Returns true if
2838  * fallback was found so that __rmqueue_smallest() can grab it.
2839  *
2840  * The use of signed ints for order and current_order is a deliberate
2841  * deviation from the rest of this file, to make the for loop
2842  * condition simpler.
2843  */
2844 static __always_inline bool
2845 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype,
2846 						unsigned int alloc_flags)
2847 {
2848 	struct free_area *area;
2849 	int current_order;
2850 	int min_order = order;
2851 	struct page *page;
2852 	int fallback_mt;
2853 	bool can_steal;
2854 
2855 	/*
2856 	 * Do not steal pages from freelists belonging to other pageblocks
2857 	 * i.e. orders < pageblock_order. If there are no local zones free,
2858 	 * the zonelists will be reiterated without ALLOC_NOFRAGMENT.
2859 	 */
2860 	if (alloc_flags & ALLOC_NOFRAGMENT)
2861 		min_order = pageblock_order;
2862 
2863 	/*
2864 	 * Find the largest available free page in the other list. This roughly
2865 	 * approximates finding the pageblock with the most free pages, which
2866 	 * would be too costly to do exactly.
2867 	 */
2868 	for (current_order = MAX_ORDER - 1; current_order >= min_order;
2869 				--current_order) {
2870 		area = &(zone->free_area[current_order]);
2871 		fallback_mt = find_suitable_fallback(area, current_order,
2872 				start_migratetype, false, &can_steal);
2873 		if (fallback_mt == -1)
2874 			continue;
2875 
2876 		/*
2877 		 * We cannot steal all free pages from the pageblock and the
2878 		 * requested migratetype is movable. In that case it's better to
2879 		 * steal and split the smallest available page instead of the
2880 		 * largest available page, because even if the next movable
2881 		 * allocation falls back into a different pageblock than this
2882 		 * one, it won't cause permanent fragmentation.
2883 		 */
2884 		if (!can_steal && start_migratetype == MIGRATE_MOVABLE
2885 					&& current_order > order)
2886 			goto find_smallest;
2887 
2888 		goto do_steal;
2889 	}
2890 
2891 	return false;
2892 
2893 find_smallest:
2894 	for (current_order = order; current_order < MAX_ORDER;
2895 							current_order++) {
2896 		area = &(zone->free_area[current_order]);
2897 		fallback_mt = find_suitable_fallback(area, current_order,
2898 				start_migratetype, false, &can_steal);
2899 		if (fallback_mt != -1)
2900 			break;
2901 	}
2902 
2903 	/*
2904 	 * This should not happen - we already found a suitable fallback
2905 	 * when looking for the largest page.
2906 	 */
2907 	VM_BUG_ON(current_order == MAX_ORDER);
2908 
2909 do_steal:
2910 	page = get_page_from_free_area(area, fallback_mt);
2911 
2912 	steal_suitable_fallback(zone, page, alloc_flags, start_migratetype,
2913 								can_steal);
2914 
2915 	trace_mm_page_alloc_extfrag(page, order, current_order,
2916 		start_migratetype, fallback_mt);
2917 
2918 	return true;
2919 
2920 }
2921 
2922 /*
2923  * Do the hard work of removing an element from the buddy allocator.
2924  * Call me with the zone->lock already held.
2925  */
2926 static __always_inline struct page *
2927 __rmqueue(struct zone *zone, unsigned int order, int migratetype,
2928 						unsigned int alloc_flags)
2929 {
2930 	struct page *page;
2931 
2932 	if (IS_ENABLED(CONFIG_CMA)) {
2933 		/*
2934 		 * Balance movable allocations between regular and CMA areas by
2935 		 * allocating from CMA when over half of the zone's free memory
2936 		 * is in the CMA area.
2937 		 */
2938 		if (alloc_flags & ALLOC_CMA &&
2939 		    zone_page_state(zone, NR_FREE_CMA_PAGES) >
2940 		    zone_page_state(zone, NR_FREE_PAGES) / 2) {
2941 			page = __rmqueue_cma_fallback(zone, order);
2942 			if (page)
2943 				goto out;
2944 		}
2945 	}
2946 retry:
2947 	page = __rmqueue_smallest(zone, order, migratetype);
2948 	if (unlikely(!page)) {
2949 		if (alloc_flags & ALLOC_CMA)
2950 			page = __rmqueue_cma_fallback(zone, order);
2951 
2952 		if (!page && __rmqueue_fallback(zone, order, migratetype,
2953 								alloc_flags))
2954 			goto retry;
2955 	}
2956 out:
2957 	if (page)
2958 		trace_mm_page_alloc_zone_locked(page, order, migratetype);
2959 	return page;
2960 }
2961 
2962 /*
2963  * Obtain a specified number of elements from the buddy allocator, all under
2964  * a single hold of the lock, for efficiency.  Add them to the supplied list.
2965  * Returns the number of new pages which were placed at *list.
2966  */
2967 static int rmqueue_bulk(struct zone *zone, unsigned int order,
2968 			unsigned long count, struct list_head *list,
2969 			int migratetype, unsigned int alloc_flags)
2970 {
2971 	int i, allocated = 0;
2972 
2973 	/*
2974 	 * local_lock_irq held so equivalent to spin_lock_irqsave for
2975 	 * both PREEMPT_RT and non-PREEMPT_RT configurations.
2976 	 */
2977 	spin_lock(&zone->lock);
2978 	for (i = 0; i < count; ++i) {
2979 		struct page *page = __rmqueue(zone, order, migratetype,
2980 								alloc_flags);
2981 		if (unlikely(page == NULL))
2982 			break;
2983 
2984 		if (unlikely(check_pcp_refill(page, order)))
2985 			continue;
2986 
2987 		/*
2988 		 * Split buddy pages returned by expand() are received here in
2989 		 * physical page order. The page is added to the tail of
2990 		 * caller's list. From the callers perspective, the linked list
2991 		 * is ordered by page number under some conditions. This is
2992 		 * useful for IO devices that can forward direction from the
2993 		 * head, thus also in the physical page order. This is useful
2994 		 * for IO devices that can merge IO requests if the physical
2995 		 * pages are ordered properly.
2996 		 */
2997 		list_add_tail(&page->lru, list);
2998 		allocated++;
2999 		if (is_migrate_cma(get_pcppage_migratetype(page)))
3000 			__mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
3001 					      -(1 << order));
3002 	}
3003 
3004 	/*
3005 	 * i pages were removed from the buddy list even if some leak due
3006 	 * to check_pcp_refill failing so adjust NR_FREE_PAGES based
3007 	 * on i. Do not confuse with 'allocated' which is the number of
3008 	 * pages added to the pcp list.
3009 	 */
3010 	__mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
3011 	spin_unlock(&zone->lock);
3012 	return allocated;
3013 }
3014 
3015 #ifdef CONFIG_NUMA
3016 /*
3017  * Called from the vmstat counter updater to drain pagesets of this
3018  * currently executing processor on remote nodes after they have
3019  * expired.
3020  *
3021  * Note that this function must be called with the thread pinned to
3022  * a single processor.
3023  */
3024 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
3025 {
3026 	unsigned long flags;
3027 	int to_drain, batch;
3028 
3029 	local_lock_irqsave(&pagesets.lock, flags);
3030 	batch = READ_ONCE(pcp->batch);
3031 	to_drain = min(pcp->count, batch);
3032 	if (to_drain > 0)
3033 		free_pcppages_bulk(zone, to_drain, pcp, 0);
3034 	local_unlock_irqrestore(&pagesets.lock, flags);
3035 }
3036 #endif
3037 
3038 /*
3039  * Drain pcplists of the indicated processor and zone.
3040  *
3041  * The processor must either be the current processor and the
3042  * thread pinned to the current processor or a processor that
3043  * is not online.
3044  */
3045 static void drain_pages_zone(unsigned int cpu, struct zone *zone)
3046 {
3047 	unsigned long flags;
3048 	struct per_cpu_pages *pcp;
3049 
3050 	local_lock_irqsave(&pagesets.lock, flags);
3051 
3052 	pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
3053 	if (pcp->count)
3054 		free_pcppages_bulk(zone, pcp->count, pcp, 0);
3055 
3056 	local_unlock_irqrestore(&pagesets.lock, flags);
3057 }
3058 
3059 /*
3060  * Drain pcplists of all zones on the indicated processor.
3061  *
3062  * The processor must either be the current processor and the
3063  * thread pinned to the current processor or a processor that
3064  * is not online.
3065  */
3066 static void drain_pages(unsigned int cpu)
3067 {
3068 	struct zone *zone;
3069 
3070 	for_each_populated_zone(zone) {
3071 		drain_pages_zone(cpu, zone);
3072 	}
3073 }
3074 
3075 /*
3076  * Spill all of this CPU's per-cpu pages back into the buddy allocator.
3077  *
3078  * The CPU has to be pinned. When zone parameter is non-NULL, spill just
3079  * the single zone's pages.
3080  */
3081 void drain_local_pages(struct zone *zone)
3082 {
3083 	int cpu = smp_processor_id();
3084 
3085 	if (zone)
3086 		drain_pages_zone(cpu, zone);
3087 	else
3088 		drain_pages(cpu);
3089 }
3090 
3091 static void drain_local_pages_wq(struct work_struct *work)
3092 {
3093 	struct pcpu_drain *drain;
3094 
3095 	drain = container_of(work, struct pcpu_drain, work);
3096 
3097 	/*
3098 	 * drain_all_pages doesn't use proper cpu hotplug protection so
3099 	 * we can race with cpu offline when the WQ can move this from
3100 	 * a cpu pinned worker to an unbound one. We can operate on a different
3101 	 * cpu which is alright but we also have to make sure to not move to
3102 	 * a different one.
3103 	 */
3104 	migrate_disable();
3105 	drain_local_pages(drain->zone);
3106 	migrate_enable();
3107 }
3108 
3109 /*
3110  * The implementation of drain_all_pages(), exposing an extra parameter to
3111  * drain on all cpus.
3112  *
3113  * drain_all_pages() is optimized to only execute on cpus where pcplists are
3114  * not empty. The check for non-emptiness can however race with a free to
3115  * pcplist that has not yet increased the pcp->count from 0 to 1. Callers
3116  * that need the guarantee that every CPU has drained can disable the
3117  * optimizing racy check.
3118  */
3119 static void __drain_all_pages(struct zone *zone, bool force_all_cpus)
3120 {
3121 	int cpu;
3122 
3123 	/*
3124 	 * Allocate in the BSS so we won't require allocation in
3125 	 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
3126 	 */
3127 	static cpumask_t cpus_with_pcps;
3128 
3129 	/*
3130 	 * Make sure nobody triggers this path before mm_percpu_wq is fully
3131 	 * initialized.
3132 	 */
3133 	if (WARN_ON_ONCE(!mm_percpu_wq))
3134 		return;
3135 
3136 	/*
3137 	 * Do not drain if one is already in progress unless it's specific to
3138 	 * a zone. Such callers are primarily CMA and memory hotplug and need
3139 	 * the drain to be complete when the call returns.
3140 	 */
3141 	if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
3142 		if (!zone)
3143 			return;
3144 		mutex_lock(&pcpu_drain_mutex);
3145 	}
3146 
3147 	/*
3148 	 * We don't care about racing with CPU hotplug event
3149 	 * as offline notification will cause the notified
3150 	 * cpu to drain that CPU pcps and on_each_cpu_mask
3151 	 * disables preemption as part of its processing
3152 	 */
3153 	for_each_online_cpu(cpu) {
3154 		struct per_cpu_pages *pcp;
3155 		struct zone *z;
3156 		bool has_pcps = false;
3157 
3158 		if (force_all_cpus) {
3159 			/*
3160 			 * The pcp.count check is racy, some callers need a
3161 			 * guarantee that no cpu is missed.
3162 			 */
3163 			has_pcps = true;
3164 		} else if (zone) {
3165 			pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
3166 			if (pcp->count)
3167 				has_pcps = true;
3168 		} else {
3169 			for_each_populated_zone(z) {
3170 				pcp = per_cpu_ptr(z->per_cpu_pageset, cpu);
3171 				if (pcp->count) {
3172 					has_pcps = true;
3173 					break;
3174 				}
3175 			}
3176 		}
3177 
3178 		if (has_pcps)
3179 			cpumask_set_cpu(cpu, &cpus_with_pcps);
3180 		else
3181 			cpumask_clear_cpu(cpu, &cpus_with_pcps);
3182 	}
3183 
3184 	for_each_cpu(cpu, &cpus_with_pcps) {
3185 		struct pcpu_drain *drain = per_cpu_ptr(&pcpu_drain, cpu);
3186 
3187 		drain->zone = zone;
3188 		INIT_WORK(&drain->work, drain_local_pages_wq);
3189 		queue_work_on(cpu, mm_percpu_wq, &drain->work);
3190 	}
3191 	for_each_cpu(cpu, &cpus_with_pcps)
3192 		flush_work(&per_cpu_ptr(&pcpu_drain, cpu)->work);
3193 
3194 	mutex_unlock(&pcpu_drain_mutex);
3195 }
3196 
3197 /*
3198  * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
3199  *
3200  * When zone parameter is non-NULL, spill just the single zone's pages.
3201  *
3202  * Note that this can be extremely slow as the draining happens in a workqueue.
3203  */
3204 void drain_all_pages(struct zone *zone)
3205 {
3206 	__drain_all_pages(zone, false);
3207 }
3208 
3209 #ifdef CONFIG_HIBERNATION
3210 
3211 /*
3212  * Touch the watchdog for every WD_PAGE_COUNT pages.
3213  */
3214 #define WD_PAGE_COUNT	(128*1024)
3215 
3216 void mark_free_pages(struct zone *zone)
3217 {
3218 	unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT;
3219 	unsigned long flags;
3220 	unsigned int order, t;
3221 	struct page *page;
3222 
3223 	if (zone_is_empty(zone))
3224 		return;
3225 
3226 	spin_lock_irqsave(&zone->lock, flags);
3227 
3228 	max_zone_pfn = zone_end_pfn(zone);
3229 	for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
3230 		if (pfn_valid(pfn)) {
3231 			page = pfn_to_page(pfn);
3232 
3233 			if (!--page_count) {
3234 				touch_nmi_watchdog();
3235 				page_count = WD_PAGE_COUNT;
3236 			}
3237 
3238 			if (page_zone(page) != zone)
3239 				continue;
3240 
3241 			if (!swsusp_page_is_forbidden(page))
3242 				swsusp_unset_page_free(page);
3243 		}
3244 
3245 	for_each_migratetype_order(order, t) {
3246 		list_for_each_entry(page,
3247 				&zone->free_area[order].free_list[t], lru) {
3248 			unsigned long i;
3249 
3250 			pfn = page_to_pfn(page);
3251 			for (i = 0; i < (1UL << order); i++) {
3252 				if (!--page_count) {
3253 					touch_nmi_watchdog();
3254 					page_count = WD_PAGE_COUNT;
3255 				}
3256 				swsusp_set_page_free(pfn_to_page(pfn + i));
3257 			}
3258 		}
3259 	}
3260 	spin_unlock_irqrestore(&zone->lock, flags);
3261 }
3262 #endif /* CONFIG_PM */
3263 
3264 static bool free_unref_page_prepare(struct page *page, unsigned long pfn,
3265 							unsigned int order)
3266 {
3267 	int migratetype;
3268 
3269 	if (!free_pcp_prepare(page, order))
3270 		return false;
3271 
3272 	migratetype = get_pfnblock_migratetype(page, pfn);
3273 	set_pcppage_migratetype(page, migratetype);
3274 	return true;
3275 }
3276 
3277 static int nr_pcp_free(struct per_cpu_pages *pcp, int high, int batch,
3278 		       bool free_high)
3279 {
3280 	int min_nr_free, max_nr_free;
3281 
3282 	/* Free everything if batch freeing high-order pages. */
3283 	if (unlikely(free_high))
3284 		return pcp->count;
3285 
3286 	/* Check for PCP disabled or boot pageset */
3287 	if (unlikely(high < batch))
3288 		return 1;
3289 
3290 	/* Leave at least pcp->batch pages on the list */
3291 	min_nr_free = batch;
3292 	max_nr_free = high - batch;
3293 
3294 	/*
3295 	 * Double the number of pages freed each time there is subsequent
3296 	 * freeing of pages without any allocation.
3297 	 */
3298 	batch <<= pcp->free_factor;
3299 	if (batch < max_nr_free)
3300 		pcp->free_factor++;
3301 	batch = clamp(batch, min_nr_free, max_nr_free);
3302 
3303 	return batch;
3304 }
3305 
3306 static int nr_pcp_high(struct per_cpu_pages *pcp, struct zone *zone,
3307 		       bool free_high)
3308 {
3309 	int high = READ_ONCE(pcp->high);
3310 
3311 	if (unlikely(!high || free_high))
3312 		return 0;
3313 
3314 	if (!test_bit(ZONE_RECLAIM_ACTIVE, &zone->flags))
3315 		return high;
3316 
3317 	/*
3318 	 * If reclaim is active, limit the number of pages that can be
3319 	 * stored on pcp lists
3320 	 */
3321 	return min(READ_ONCE(pcp->batch) << 2, high);
3322 }
3323 
3324 static void free_unref_page_commit(struct page *page, int migratetype,
3325 				   unsigned int order)
3326 {
3327 	struct zone *zone = page_zone(page);
3328 	struct per_cpu_pages *pcp;
3329 	int high;
3330 	int pindex;
3331 	bool free_high;
3332 
3333 	__count_vm_event(PGFREE);
3334 	pcp = this_cpu_ptr(zone->per_cpu_pageset);
3335 	pindex = order_to_pindex(migratetype, order);
3336 	list_add(&page->lru, &pcp->lists[pindex]);
3337 	pcp->count += 1 << order;
3338 
3339 	/*
3340 	 * As high-order pages other than THP's stored on PCP can contribute
3341 	 * to fragmentation, limit the number stored when PCP is heavily
3342 	 * freeing without allocation. The remainder after bulk freeing
3343 	 * stops will be drained from vmstat refresh context.
3344 	 */
3345 	free_high = (pcp->free_factor && order && order <= PAGE_ALLOC_COSTLY_ORDER);
3346 
3347 	high = nr_pcp_high(pcp, zone, free_high);
3348 	if (pcp->count >= high) {
3349 		int batch = READ_ONCE(pcp->batch);
3350 
3351 		free_pcppages_bulk(zone, nr_pcp_free(pcp, high, batch, free_high), pcp, pindex);
3352 	}
3353 }
3354 
3355 /*
3356  * Free a pcp page
3357  */
3358 void free_unref_page(struct page *page, unsigned int order)
3359 {
3360 	unsigned long flags;
3361 	unsigned long pfn = page_to_pfn(page);
3362 	int migratetype;
3363 
3364 	if (!free_unref_page_prepare(page, pfn, order))
3365 		return;
3366 
3367 	/*
3368 	 * We only track unmovable, reclaimable and movable on pcp lists.
3369 	 * Place ISOLATE pages on the isolated list because they are being
3370 	 * offlined but treat HIGHATOMIC as movable pages so we can get those
3371 	 * areas back if necessary. Otherwise, we may have to free
3372 	 * excessively into the page allocator
3373 	 */
3374 	migratetype = get_pcppage_migratetype(page);
3375 	if (unlikely(migratetype >= MIGRATE_PCPTYPES)) {
3376 		if (unlikely(is_migrate_isolate(migratetype))) {
3377 			free_one_page(page_zone(page), page, pfn, order, migratetype, FPI_NONE);
3378 			return;
3379 		}
3380 		migratetype = MIGRATE_MOVABLE;
3381 	}
3382 
3383 	local_lock_irqsave(&pagesets.lock, flags);
3384 	free_unref_page_commit(page, migratetype, order);
3385 	local_unlock_irqrestore(&pagesets.lock, flags);
3386 }
3387 
3388 /*
3389  * Free a list of 0-order pages
3390  */
3391 void free_unref_page_list(struct list_head *list)
3392 {
3393 	struct page *page, *next;
3394 	unsigned long flags;
3395 	int batch_count = 0;
3396 	int migratetype;
3397 
3398 	/* Prepare pages for freeing */
3399 	list_for_each_entry_safe(page, next, list, lru) {
3400 		unsigned long pfn = page_to_pfn(page);
3401 		if (!free_unref_page_prepare(page, pfn, 0)) {
3402 			list_del(&page->lru);
3403 			continue;
3404 		}
3405 
3406 		/*
3407 		 * Free isolated pages directly to the allocator, see
3408 		 * comment in free_unref_page.
3409 		 */
3410 		migratetype = get_pcppage_migratetype(page);
3411 		if (unlikely(is_migrate_isolate(migratetype))) {
3412 			list_del(&page->lru);
3413 			free_one_page(page_zone(page), page, pfn, 0, migratetype, FPI_NONE);
3414 			continue;
3415 		}
3416 	}
3417 
3418 	local_lock_irqsave(&pagesets.lock, flags);
3419 	list_for_each_entry_safe(page, next, list, lru) {
3420 		/*
3421 		 * Non-isolated types over MIGRATE_PCPTYPES get added
3422 		 * to the MIGRATE_MOVABLE pcp list.
3423 		 */
3424 		migratetype = get_pcppage_migratetype(page);
3425 		if (unlikely(migratetype >= MIGRATE_PCPTYPES))
3426 			migratetype = MIGRATE_MOVABLE;
3427 
3428 		trace_mm_page_free_batched(page);
3429 		free_unref_page_commit(page, migratetype, 0);
3430 
3431 		/*
3432 		 * Guard against excessive IRQ disabled times when we get
3433 		 * a large list of pages to free.
3434 		 */
3435 		if (++batch_count == SWAP_CLUSTER_MAX) {
3436 			local_unlock_irqrestore(&pagesets.lock, flags);
3437 			batch_count = 0;
3438 			local_lock_irqsave(&pagesets.lock, flags);
3439 		}
3440 	}
3441 	local_unlock_irqrestore(&pagesets.lock, flags);
3442 }
3443 
3444 /*
3445  * split_page takes a non-compound higher-order page, and splits it into
3446  * n (1<<order) sub-pages: page[0..n]
3447  * Each sub-page must be freed individually.
3448  *
3449  * Note: this is probably too low level an operation for use in drivers.
3450  * Please consult with lkml before using this in your driver.
3451  */
3452 void split_page(struct page *page, unsigned int order)
3453 {
3454 	int i;
3455 
3456 	VM_BUG_ON_PAGE(PageCompound(page), page);
3457 	VM_BUG_ON_PAGE(!page_count(page), page);
3458 
3459 	for (i = 1; i < (1 << order); i++)
3460 		set_page_refcounted(page + i);
3461 	split_page_owner(page, 1 << order);
3462 	split_page_memcg(page, 1 << order);
3463 }
3464 EXPORT_SYMBOL_GPL(split_page);
3465 
3466 int __isolate_free_page(struct page *page, unsigned int order)
3467 {
3468 	unsigned long watermark;
3469 	struct zone *zone;
3470 	int mt;
3471 
3472 	BUG_ON(!PageBuddy(page));
3473 
3474 	zone = page_zone(page);
3475 	mt = get_pageblock_migratetype(page);
3476 
3477 	if (!is_migrate_isolate(mt)) {
3478 		/*
3479 		 * Obey watermarks as if the page was being allocated. We can
3480 		 * emulate a high-order watermark check with a raised order-0
3481 		 * watermark, because we already know our high-order page
3482 		 * exists.
3483 		 */
3484 		watermark = zone->_watermark[WMARK_MIN] + (1UL << order);
3485 		if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
3486 			return 0;
3487 
3488 		__mod_zone_freepage_state(zone, -(1UL << order), mt);
3489 	}
3490 
3491 	/* Remove page from free list */
3492 
3493 	del_page_from_free_list(page, zone, order);
3494 
3495 	/*
3496 	 * Set the pageblock if the isolated page is at least half of a
3497 	 * pageblock
3498 	 */
3499 	if (order >= pageblock_order - 1) {
3500 		struct page *endpage = page + (1 << order) - 1;
3501 		for (; page < endpage; page += pageblock_nr_pages) {
3502 			int mt = get_pageblock_migratetype(page);
3503 			/*
3504 			 * Only change normal pageblocks (i.e., they can merge
3505 			 * with others)
3506 			 */
3507 			if (migratetype_is_mergeable(mt))
3508 				set_pageblock_migratetype(page,
3509 							  MIGRATE_MOVABLE);
3510 		}
3511 	}
3512 
3513 
3514 	return 1UL << order;
3515 }
3516 
3517 /**
3518  * __putback_isolated_page - Return a now-isolated page back where we got it
3519  * @page: Page that was isolated
3520  * @order: Order of the isolated page
3521  * @mt: The page's pageblock's migratetype
3522  *
3523  * This function is meant to return a page pulled from the free lists via
3524  * __isolate_free_page back to the free lists they were pulled from.
3525  */
3526 void __putback_isolated_page(struct page *page, unsigned int order, int mt)
3527 {
3528 	struct zone *zone = page_zone(page);
3529 
3530 	/* zone lock should be held when this function is called */
3531 	lockdep_assert_held(&zone->lock);
3532 
3533 	/* Return isolated page to tail of freelist. */
3534 	__free_one_page(page, page_to_pfn(page), zone, order, mt,
3535 			FPI_SKIP_REPORT_NOTIFY | FPI_TO_TAIL);
3536 }
3537 
3538 /*
3539  * Update NUMA hit/miss statistics
3540  *
3541  * Must be called with interrupts disabled.
3542  */
3543 static inline void zone_statistics(struct zone *preferred_zone, struct zone *z,
3544 				   long nr_account)
3545 {
3546 #ifdef CONFIG_NUMA
3547 	enum numa_stat_item local_stat = NUMA_LOCAL;
3548 
3549 	/* skip numa counters update if numa stats is disabled */
3550 	if (!static_branch_likely(&vm_numa_stat_key))
3551 		return;
3552 
3553 	if (zone_to_nid(z) != numa_node_id())
3554 		local_stat = NUMA_OTHER;
3555 
3556 	if (zone_to_nid(z) == zone_to_nid(preferred_zone))
3557 		__count_numa_events(z, NUMA_HIT, nr_account);
3558 	else {
3559 		__count_numa_events(z, NUMA_MISS, nr_account);
3560 		__count_numa_events(preferred_zone, NUMA_FOREIGN, nr_account);
3561 	}
3562 	__count_numa_events(z, local_stat, nr_account);
3563 #endif
3564 }
3565 
3566 /* Remove page from the per-cpu list, caller must protect the list */
3567 static inline
3568 struct page *__rmqueue_pcplist(struct zone *zone, unsigned int order,
3569 			int migratetype,
3570 			unsigned int alloc_flags,
3571 			struct per_cpu_pages *pcp,
3572 			struct list_head *list)
3573 {
3574 	struct page *page;
3575 
3576 	do {
3577 		if (list_empty(list)) {
3578 			int batch = READ_ONCE(pcp->batch);
3579 			int alloced;
3580 
3581 			/*
3582 			 * Scale batch relative to order if batch implies
3583 			 * free pages can be stored on the PCP. Batch can
3584 			 * be 1 for small zones or for boot pagesets which
3585 			 * should never store free pages as the pages may
3586 			 * belong to arbitrary zones.
3587 			 */
3588 			if (batch > 1)
3589 				batch = max(batch >> order, 2);
3590 			alloced = rmqueue_bulk(zone, order,
3591 					batch, list,
3592 					migratetype, alloc_flags);
3593 
3594 			pcp->count += alloced << order;
3595 			if (unlikely(list_empty(list)))
3596 				return NULL;
3597 		}
3598 
3599 		page = list_first_entry(list, struct page, lru);
3600 		list_del(&page->lru);
3601 		pcp->count -= 1 << order;
3602 	} while (check_new_pcp(page, order));
3603 
3604 	return page;
3605 }
3606 
3607 /* Lock and remove page from the per-cpu list */
3608 static struct page *rmqueue_pcplist(struct zone *preferred_zone,
3609 			struct zone *zone, unsigned int order,
3610 			gfp_t gfp_flags, int migratetype,
3611 			unsigned int alloc_flags)
3612 {
3613 	struct per_cpu_pages *pcp;
3614 	struct list_head *list;
3615 	struct page *page;
3616 	unsigned long flags;
3617 
3618 	local_lock_irqsave(&pagesets.lock, flags);
3619 
3620 	/*
3621 	 * On allocation, reduce the number of pages that are batch freed.
3622 	 * See nr_pcp_free() where free_factor is increased for subsequent
3623 	 * frees.
3624 	 */
3625 	pcp = this_cpu_ptr(zone->per_cpu_pageset);
3626 	pcp->free_factor >>= 1;
3627 	list = &pcp->lists[order_to_pindex(migratetype, order)];
3628 	page = __rmqueue_pcplist(zone, order, migratetype, alloc_flags, pcp, list);
3629 	local_unlock_irqrestore(&pagesets.lock, flags);
3630 	if (page) {
3631 		__count_zid_vm_events(PGALLOC, page_zonenum(page), 1);
3632 		zone_statistics(preferred_zone, zone, 1);
3633 	}
3634 	return page;
3635 }
3636 
3637 /*
3638  * Allocate a page from the given zone. Use pcplists for order-0 allocations.
3639  */
3640 static inline
3641 struct page *rmqueue(struct zone *preferred_zone,
3642 			struct zone *zone, unsigned int order,
3643 			gfp_t gfp_flags, unsigned int alloc_flags,
3644 			int migratetype)
3645 {
3646 	unsigned long flags;
3647 	struct page *page;
3648 
3649 	if (likely(pcp_allowed_order(order))) {
3650 		/*
3651 		 * MIGRATE_MOVABLE pcplist could have the pages on CMA area and
3652 		 * we need to skip it when CMA area isn't allowed.
3653 		 */
3654 		if (!IS_ENABLED(CONFIG_CMA) || alloc_flags & ALLOC_CMA ||
3655 				migratetype != MIGRATE_MOVABLE) {
3656 			page = rmqueue_pcplist(preferred_zone, zone, order,
3657 					gfp_flags, migratetype, alloc_flags);
3658 			goto out;
3659 		}
3660 	}
3661 
3662 	/*
3663 	 * We most definitely don't want callers attempting to
3664 	 * allocate greater than order-1 page units with __GFP_NOFAIL.
3665 	 */
3666 	WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
3667 
3668 	do {
3669 		page = NULL;
3670 		spin_lock_irqsave(&zone->lock, flags);
3671 		/*
3672 		 * order-0 request can reach here when the pcplist is skipped
3673 		 * due to non-CMA allocation context. HIGHATOMIC area is
3674 		 * reserved for high-order atomic allocation, so order-0
3675 		 * request should skip it.
3676 		 */
3677 		if (order > 0 && alloc_flags & ALLOC_HARDER) {
3678 			page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
3679 			if (page)
3680 				trace_mm_page_alloc_zone_locked(page, order, migratetype);
3681 		}
3682 		if (!page) {
3683 			page = __rmqueue(zone, order, migratetype, alloc_flags);
3684 			if (!page)
3685 				goto failed;
3686 		}
3687 		__mod_zone_freepage_state(zone, -(1 << order),
3688 					  get_pcppage_migratetype(page));
3689 		spin_unlock_irqrestore(&zone->lock, flags);
3690 	} while (check_new_pages(page, order));
3691 
3692 	__count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
3693 	zone_statistics(preferred_zone, zone, 1);
3694 
3695 out:
3696 	/* Separate test+clear to avoid unnecessary atomics */
3697 	if (test_bit(ZONE_BOOSTED_WATERMARK, &zone->flags)) {
3698 		clear_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
3699 		wakeup_kswapd(zone, 0, 0, zone_idx(zone));
3700 	}
3701 
3702 	VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
3703 	return page;
3704 
3705 failed:
3706 	spin_unlock_irqrestore(&zone->lock, flags);
3707 	return NULL;
3708 }
3709 
3710 #ifdef CONFIG_FAIL_PAGE_ALLOC
3711 
3712 static struct {
3713 	struct fault_attr attr;
3714 
3715 	bool ignore_gfp_highmem;
3716 	bool ignore_gfp_reclaim;
3717 	u32 min_order;
3718 } fail_page_alloc = {
3719 	.attr = FAULT_ATTR_INITIALIZER,
3720 	.ignore_gfp_reclaim = true,
3721 	.ignore_gfp_highmem = true,
3722 	.min_order = 1,
3723 };
3724 
3725 static int __init setup_fail_page_alloc(char *str)
3726 {
3727 	return setup_fault_attr(&fail_page_alloc.attr, str);
3728 }
3729 __setup("fail_page_alloc=", setup_fail_page_alloc);
3730 
3731 static bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3732 {
3733 	if (order < fail_page_alloc.min_order)
3734 		return false;
3735 	if (gfp_mask & __GFP_NOFAIL)
3736 		return false;
3737 	if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
3738 		return false;
3739 	if (fail_page_alloc.ignore_gfp_reclaim &&
3740 			(gfp_mask & __GFP_DIRECT_RECLAIM))
3741 		return false;
3742 
3743 	return should_fail(&fail_page_alloc.attr, 1 << order);
3744 }
3745 
3746 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
3747 
3748 static int __init fail_page_alloc_debugfs(void)
3749 {
3750 	umode_t mode = S_IFREG | 0600;
3751 	struct dentry *dir;
3752 
3753 	dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
3754 					&fail_page_alloc.attr);
3755 
3756 	debugfs_create_bool("ignore-gfp-wait", mode, dir,
3757 			    &fail_page_alloc.ignore_gfp_reclaim);
3758 	debugfs_create_bool("ignore-gfp-highmem", mode, dir,
3759 			    &fail_page_alloc.ignore_gfp_highmem);
3760 	debugfs_create_u32("min-order", mode, dir, &fail_page_alloc.min_order);
3761 
3762 	return 0;
3763 }
3764 
3765 late_initcall(fail_page_alloc_debugfs);
3766 
3767 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
3768 
3769 #else /* CONFIG_FAIL_PAGE_ALLOC */
3770 
3771 static inline bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3772 {
3773 	return false;
3774 }
3775 
3776 #endif /* CONFIG_FAIL_PAGE_ALLOC */
3777 
3778 noinline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3779 {
3780 	return __should_fail_alloc_page(gfp_mask, order);
3781 }
3782 ALLOW_ERROR_INJECTION(should_fail_alloc_page, TRUE);
3783 
3784 static inline long __zone_watermark_unusable_free(struct zone *z,
3785 				unsigned int order, unsigned int alloc_flags)
3786 {
3787 	const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
3788 	long unusable_free = (1 << order) - 1;
3789 
3790 	/*
3791 	 * If the caller does not have rights to ALLOC_HARDER then subtract
3792 	 * the high-atomic reserves. This will over-estimate the size of the
3793 	 * atomic reserve but it avoids a search.
3794 	 */
3795 	if (likely(!alloc_harder))
3796 		unusable_free += z->nr_reserved_highatomic;
3797 
3798 #ifdef CONFIG_CMA
3799 	/* If allocation can't use CMA areas don't use free CMA pages */
3800 	if (!(alloc_flags & ALLOC_CMA))
3801 		unusable_free += zone_page_state(z, NR_FREE_CMA_PAGES);
3802 #endif
3803 
3804 	return unusable_free;
3805 }
3806 
3807 /*
3808  * Return true if free base pages are above 'mark'. For high-order checks it
3809  * will return true of the order-0 watermark is reached and there is at least
3810  * one free page of a suitable size. Checking now avoids taking the zone lock
3811  * to check in the allocation paths if no pages are free.
3812  */
3813 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3814 			 int highest_zoneidx, unsigned int alloc_flags,
3815 			 long free_pages)
3816 {
3817 	long min = mark;
3818 	int o;
3819 	const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
3820 
3821 	/* free_pages may go negative - that's OK */
3822 	free_pages -= __zone_watermark_unusable_free(z, order, alloc_flags);
3823 
3824 	if (alloc_flags & ALLOC_HIGH)
3825 		min -= min / 2;
3826 
3827 	if (unlikely(alloc_harder)) {
3828 		/*
3829 		 * OOM victims can try even harder than normal ALLOC_HARDER
3830 		 * users on the grounds that it's definitely going to be in
3831 		 * the exit path shortly and free memory. Any allocation it
3832 		 * makes during the free path will be small and short-lived.
3833 		 */
3834 		if (alloc_flags & ALLOC_OOM)
3835 			min -= min / 2;
3836 		else
3837 			min -= min / 4;
3838 	}
3839 
3840 	/*
3841 	 * Check watermarks for an order-0 allocation request. If these
3842 	 * are not met, then a high-order request also cannot go ahead
3843 	 * even if a suitable page happened to be free.
3844 	 */
3845 	if (free_pages <= min + z->lowmem_reserve[highest_zoneidx])
3846 		return false;
3847 
3848 	/* If this is an order-0 request then the watermark is fine */
3849 	if (!order)
3850 		return true;
3851 
3852 	/* For a high-order request, check at least one suitable page is free */
3853 	for (o = order; o < MAX_ORDER; o++) {
3854 		struct free_area *area = &z->free_area[o];
3855 		int mt;
3856 
3857 		if (!area->nr_free)
3858 			continue;
3859 
3860 		for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
3861 			if (!free_area_empty(area, mt))
3862 				return true;
3863 		}
3864 
3865 #ifdef CONFIG_CMA
3866 		if ((alloc_flags & ALLOC_CMA) &&
3867 		    !free_area_empty(area, MIGRATE_CMA)) {
3868 			return true;
3869 		}
3870 #endif
3871 		if (alloc_harder && !free_area_empty(area, MIGRATE_HIGHATOMIC))
3872 			return true;
3873 	}
3874 	return false;
3875 }
3876 
3877 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3878 		      int highest_zoneidx, unsigned int alloc_flags)
3879 {
3880 	return __zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
3881 					zone_page_state(z, NR_FREE_PAGES));
3882 }
3883 
3884 static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
3885 				unsigned long mark, int highest_zoneidx,
3886 				unsigned int alloc_flags, gfp_t gfp_mask)
3887 {
3888 	long free_pages;
3889 
3890 	free_pages = zone_page_state(z, NR_FREE_PAGES);
3891 
3892 	/*
3893 	 * Fast check for order-0 only. If this fails then the reserves
3894 	 * need to be calculated.
3895 	 */
3896 	if (!order) {
3897 		long fast_free;
3898 
3899 		fast_free = free_pages;
3900 		fast_free -= __zone_watermark_unusable_free(z, 0, alloc_flags);
3901 		if (fast_free > mark + z->lowmem_reserve[highest_zoneidx])
3902 			return true;
3903 	}
3904 
3905 	if (__zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
3906 					free_pages))
3907 		return true;
3908 	/*
3909 	 * Ignore watermark boosting for GFP_ATOMIC order-0 allocations
3910 	 * when checking the min watermark. The min watermark is the
3911 	 * point where boosting is ignored so that kswapd is woken up
3912 	 * when below the low watermark.
3913 	 */
3914 	if (unlikely(!order && (gfp_mask & __GFP_ATOMIC) && z->watermark_boost
3915 		&& ((alloc_flags & ALLOC_WMARK_MASK) == WMARK_MIN))) {
3916 		mark = z->_watermark[WMARK_MIN];
3917 		return __zone_watermark_ok(z, order, mark, highest_zoneidx,
3918 					alloc_flags, free_pages);
3919 	}
3920 
3921 	return false;
3922 }
3923 
3924 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
3925 			unsigned long mark, int highest_zoneidx)
3926 {
3927 	long free_pages = zone_page_state(z, NR_FREE_PAGES);
3928 
3929 	if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
3930 		free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
3931 
3932 	return __zone_watermark_ok(z, order, mark, highest_zoneidx, 0,
3933 								free_pages);
3934 }
3935 
3936 #ifdef CONFIG_NUMA
3937 int __read_mostly node_reclaim_distance = RECLAIM_DISTANCE;
3938 
3939 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3940 {
3941 	return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
3942 				node_reclaim_distance;
3943 }
3944 #else	/* CONFIG_NUMA */
3945 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3946 {
3947 	return true;
3948 }
3949 #endif	/* CONFIG_NUMA */
3950 
3951 /*
3952  * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid
3953  * fragmentation is subtle. If the preferred zone was HIGHMEM then
3954  * premature use of a lower zone may cause lowmem pressure problems that
3955  * are worse than fragmentation. If the next zone is ZONE_DMA then it is
3956  * probably too small. It only makes sense to spread allocations to avoid
3957  * fragmentation between the Normal and DMA32 zones.
3958  */
3959 static inline unsigned int
3960 alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask)
3961 {
3962 	unsigned int alloc_flags;
3963 
3964 	/*
3965 	 * __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
3966 	 * to save a branch.
3967 	 */
3968 	alloc_flags = (__force int) (gfp_mask & __GFP_KSWAPD_RECLAIM);
3969 
3970 #ifdef CONFIG_ZONE_DMA32
3971 	if (!zone)
3972 		return alloc_flags;
3973 
3974 	if (zone_idx(zone) != ZONE_NORMAL)
3975 		return alloc_flags;
3976 
3977 	/*
3978 	 * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and
3979 	 * the pointer is within zone->zone_pgdat->node_zones[]. Also assume
3980 	 * on UMA that if Normal is populated then so is DMA32.
3981 	 */
3982 	BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1);
3983 	if (nr_online_nodes > 1 && !populated_zone(--zone))
3984 		return alloc_flags;
3985 
3986 	alloc_flags |= ALLOC_NOFRAGMENT;
3987 #endif /* CONFIG_ZONE_DMA32 */
3988 	return alloc_flags;
3989 }
3990 
3991 /* Must be called after current_gfp_context() which can change gfp_mask */
3992 static inline unsigned int gfp_to_alloc_flags_cma(gfp_t gfp_mask,
3993 						  unsigned int alloc_flags)
3994 {
3995 #ifdef CONFIG_CMA
3996 	if (gfp_migratetype(gfp_mask) == MIGRATE_MOVABLE)
3997 		alloc_flags |= ALLOC_CMA;
3998 #endif
3999 	return alloc_flags;
4000 }
4001 
4002 /*
4003  * get_page_from_freelist goes through the zonelist trying to allocate
4004  * a page.
4005  */
4006 static struct page *
4007 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
4008 						const struct alloc_context *ac)
4009 {
4010 	struct zoneref *z;
4011 	struct zone *zone;
4012 	struct pglist_data *last_pgdat_dirty_limit = NULL;
4013 	bool no_fallback;
4014 
4015 retry:
4016 	/*
4017 	 * Scan zonelist, looking for a zone with enough free.
4018 	 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
4019 	 */
4020 	no_fallback = alloc_flags & ALLOC_NOFRAGMENT;
4021 	z = ac->preferred_zoneref;
4022 	for_next_zone_zonelist_nodemask(zone, z, ac->highest_zoneidx,
4023 					ac->nodemask) {
4024 		struct page *page;
4025 		unsigned long mark;
4026 
4027 		if (cpusets_enabled() &&
4028 			(alloc_flags & ALLOC_CPUSET) &&
4029 			!__cpuset_zone_allowed(zone, gfp_mask))
4030 				continue;
4031 		/*
4032 		 * When allocating a page cache page for writing, we
4033 		 * want to get it from a node that is within its dirty
4034 		 * limit, such that no single node holds more than its
4035 		 * proportional share of globally allowed dirty pages.
4036 		 * The dirty limits take into account the node's
4037 		 * lowmem reserves and high watermark so that kswapd
4038 		 * should be able to balance it without having to
4039 		 * write pages from its LRU list.
4040 		 *
4041 		 * XXX: For now, allow allocations to potentially
4042 		 * exceed the per-node dirty limit in the slowpath
4043 		 * (spread_dirty_pages unset) before going into reclaim,
4044 		 * which is important when on a NUMA setup the allowed
4045 		 * nodes are together not big enough to reach the
4046 		 * global limit.  The proper fix for these situations
4047 		 * will require awareness of nodes in the
4048 		 * dirty-throttling and the flusher threads.
4049 		 */
4050 		if (ac->spread_dirty_pages) {
4051 			if (last_pgdat_dirty_limit == zone->zone_pgdat)
4052 				continue;
4053 
4054 			if (!node_dirty_ok(zone->zone_pgdat)) {
4055 				last_pgdat_dirty_limit = zone->zone_pgdat;
4056 				continue;
4057 			}
4058 		}
4059 
4060 		if (no_fallback && nr_online_nodes > 1 &&
4061 		    zone != ac->preferred_zoneref->zone) {
4062 			int local_nid;
4063 
4064 			/*
4065 			 * If moving to a remote node, retry but allow
4066 			 * fragmenting fallbacks. Locality is more important
4067 			 * than fragmentation avoidance.
4068 			 */
4069 			local_nid = zone_to_nid(ac->preferred_zoneref->zone);
4070 			if (zone_to_nid(zone) != local_nid) {
4071 				alloc_flags &= ~ALLOC_NOFRAGMENT;
4072 				goto retry;
4073 			}
4074 		}
4075 
4076 		mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
4077 		if (!zone_watermark_fast(zone, order, mark,
4078 				       ac->highest_zoneidx, alloc_flags,
4079 				       gfp_mask)) {
4080 			int ret;
4081 
4082 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
4083 			/*
4084 			 * Watermark failed for this zone, but see if we can
4085 			 * grow this zone if it contains deferred pages.
4086 			 */
4087 			if (static_branch_unlikely(&deferred_pages)) {
4088 				if (_deferred_grow_zone(zone, order))
4089 					goto try_this_zone;
4090 			}
4091 #endif
4092 			/* Checked here to keep the fast path fast */
4093 			BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
4094 			if (alloc_flags & ALLOC_NO_WATERMARKS)
4095 				goto try_this_zone;
4096 
4097 			if (!node_reclaim_enabled() ||
4098 			    !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
4099 				continue;
4100 
4101 			ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
4102 			switch (ret) {
4103 			case NODE_RECLAIM_NOSCAN:
4104 				/* did not scan */
4105 				continue;
4106 			case NODE_RECLAIM_FULL:
4107 				/* scanned but unreclaimable */
4108 				continue;
4109 			default:
4110 				/* did we reclaim enough */
4111 				if (zone_watermark_ok(zone, order, mark,
4112 					ac->highest_zoneidx, alloc_flags))
4113 					goto try_this_zone;
4114 
4115 				continue;
4116 			}
4117 		}
4118 
4119 try_this_zone:
4120 		page = rmqueue(ac->preferred_zoneref->zone, zone, order,
4121 				gfp_mask, alloc_flags, ac->migratetype);
4122 		if (page) {
4123 			prep_new_page(page, order, gfp_mask, alloc_flags);
4124 
4125 			/*
4126 			 * If this is a high-order atomic allocation then check
4127 			 * if the pageblock should be reserved for the future
4128 			 */
4129 			if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
4130 				reserve_highatomic_pageblock(page, zone, order);
4131 
4132 			return page;
4133 		} else {
4134 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
4135 			/* Try again if zone has deferred pages */
4136 			if (static_branch_unlikely(&deferred_pages)) {
4137 				if (_deferred_grow_zone(zone, order))
4138 					goto try_this_zone;
4139 			}
4140 #endif
4141 		}
4142 	}
4143 
4144 	/*
4145 	 * It's possible on a UMA machine to get through all zones that are
4146 	 * fragmented. If avoiding fragmentation, reset and try again.
4147 	 */
4148 	if (no_fallback) {
4149 		alloc_flags &= ~ALLOC_NOFRAGMENT;
4150 		goto retry;
4151 	}
4152 
4153 	return NULL;
4154 }
4155 
4156 static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
4157 {
4158 	unsigned int filter = SHOW_MEM_FILTER_NODES;
4159 
4160 	/*
4161 	 * This documents exceptions given to allocations in certain
4162 	 * contexts that are allowed to allocate outside current's set
4163 	 * of allowed nodes.
4164 	 */
4165 	if (!(gfp_mask & __GFP_NOMEMALLOC))
4166 		if (tsk_is_oom_victim(current) ||
4167 		    (current->flags & (PF_MEMALLOC | PF_EXITING)))
4168 			filter &= ~SHOW_MEM_FILTER_NODES;
4169 	if (!in_task() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
4170 		filter &= ~SHOW_MEM_FILTER_NODES;
4171 
4172 	show_mem(filter, nodemask);
4173 }
4174 
4175 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
4176 {
4177 	struct va_format vaf;
4178 	va_list args;
4179 	static DEFINE_RATELIMIT_STATE(nopage_rs, 10*HZ, 1);
4180 
4181 	if ((gfp_mask & __GFP_NOWARN) ||
4182 	     !__ratelimit(&nopage_rs) ||
4183 	     ((gfp_mask & __GFP_DMA) && !has_managed_dma()))
4184 		return;
4185 
4186 	va_start(args, fmt);
4187 	vaf.fmt = fmt;
4188 	vaf.va = &args;
4189 	pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl",
4190 			current->comm, &vaf, gfp_mask, &gfp_mask,
4191 			nodemask_pr_args(nodemask));
4192 	va_end(args);
4193 
4194 	cpuset_print_current_mems_allowed();
4195 	pr_cont("\n");
4196 	dump_stack();
4197 	warn_alloc_show_mem(gfp_mask, nodemask);
4198 }
4199 
4200 static inline struct page *
4201 __alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
4202 			      unsigned int alloc_flags,
4203 			      const struct alloc_context *ac)
4204 {
4205 	struct page *page;
4206 
4207 	page = get_page_from_freelist(gfp_mask, order,
4208 			alloc_flags|ALLOC_CPUSET, ac);
4209 	/*
4210 	 * fallback to ignore cpuset restriction if our nodes
4211 	 * are depleted
4212 	 */
4213 	if (!page)
4214 		page = get_page_from_freelist(gfp_mask, order,
4215 				alloc_flags, ac);
4216 
4217 	return page;
4218 }
4219 
4220 static inline struct page *
4221 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
4222 	const struct alloc_context *ac, unsigned long *did_some_progress)
4223 {
4224 	struct oom_control oc = {
4225 		.zonelist = ac->zonelist,
4226 		.nodemask = ac->nodemask,
4227 		.memcg = NULL,
4228 		.gfp_mask = gfp_mask,
4229 		.order = order,
4230 	};
4231 	struct page *page;
4232 
4233 	*did_some_progress = 0;
4234 
4235 	/*
4236 	 * Acquire the oom lock.  If that fails, somebody else is
4237 	 * making progress for us.
4238 	 */
4239 	if (!mutex_trylock(&oom_lock)) {
4240 		*did_some_progress = 1;
4241 		schedule_timeout_uninterruptible(1);
4242 		return NULL;
4243 	}
4244 
4245 	/*
4246 	 * Go through the zonelist yet one more time, keep very high watermark
4247 	 * here, this is only to catch a parallel oom killing, we must fail if
4248 	 * we're still under heavy pressure. But make sure that this reclaim
4249 	 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
4250 	 * allocation which will never fail due to oom_lock already held.
4251 	 */
4252 	page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) &
4253 				      ~__GFP_DIRECT_RECLAIM, order,
4254 				      ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
4255 	if (page)
4256 		goto out;
4257 
4258 	/* Coredumps can quickly deplete all memory reserves */
4259 	if (current->flags & PF_DUMPCORE)
4260 		goto out;
4261 	/* The OOM killer will not help higher order allocs */
4262 	if (order > PAGE_ALLOC_COSTLY_ORDER)
4263 		goto out;
4264 	/*
4265 	 * We have already exhausted all our reclaim opportunities without any
4266 	 * success so it is time to admit defeat. We will skip the OOM killer
4267 	 * because it is very likely that the caller has a more reasonable
4268 	 * fallback than shooting a random task.
4269 	 *
4270 	 * The OOM killer may not free memory on a specific node.
4271 	 */
4272 	if (gfp_mask & (__GFP_RETRY_MAYFAIL | __GFP_THISNODE))
4273 		goto out;
4274 	/* The OOM killer does not needlessly kill tasks for lowmem */
4275 	if (ac->highest_zoneidx < ZONE_NORMAL)
4276 		goto out;
4277 	if (pm_suspended_storage())
4278 		goto out;
4279 	/*
4280 	 * XXX: GFP_NOFS allocations should rather fail than rely on
4281 	 * other request to make a forward progress.
4282 	 * We are in an unfortunate situation where out_of_memory cannot
4283 	 * do much for this context but let's try it to at least get
4284 	 * access to memory reserved if the current task is killed (see
4285 	 * out_of_memory). Once filesystems are ready to handle allocation
4286 	 * failures more gracefully we should just bail out here.
4287 	 */
4288 
4289 	/* Exhausted what can be done so it's blame time */
4290 	if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
4291 		*did_some_progress = 1;
4292 
4293 		/*
4294 		 * Help non-failing allocations by giving them access to memory
4295 		 * reserves
4296 		 */
4297 		if (gfp_mask & __GFP_NOFAIL)
4298 			page = __alloc_pages_cpuset_fallback(gfp_mask, order,
4299 					ALLOC_NO_WATERMARKS, ac);
4300 	}
4301 out:
4302 	mutex_unlock(&oom_lock);
4303 	return page;
4304 }
4305 
4306 /*
4307  * Maximum number of compaction retries with a progress before OOM
4308  * killer is consider as the only way to move forward.
4309  */
4310 #define MAX_COMPACT_RETRIES 16
4311 
4312 #ifdef CONFIG_COMPACTION
4313 /* Try memory compaction for high-order allocations before reclaim */
4314 static struct page *
4315 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
4316 		unsigned int alloc_flags, const struct alloc_context *ac,
4317 		enum compact_priority prio, enum compact_result *compact_result)
4318 {
4319 	struct page *page = NULL;
4320 	unsigned long pflags;
4321 	unsigned int noreclaim_flag;
4322 
4323 	if (!order)
4324 		return NULL;
4325 
4326 	psi_memstall_enter(&pflags);
4327 	delayacct_compact_start();
4328 	noreclaim_flag = memalloc_noreclaim_save();
4329 
4330 	*compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
4331 								prio, &page);
4332 
4333 	memalloc_noreclaim_restore(noreclaim_flag);
4334 	psi_memstall_leave(&pflags);
4335 	delayacct_compact_end();
4336 
4337 	if (*compact_result == COMPACT_SKIPPED)
4338 		return NULL;
4339 	/*
4340 	 * At least in one zone compaction wasn't deferred or skipped, so let's
4341 	 * count a compaction stall
4342 	 */
4343 	count_vm_event(COMPACTSTALL);
4344 
4345 	/* Prep a captured page if available */
4346 	if (page)
4347 		prep_new_page(page, order, gfp_mask, alloc_flags);
4348 
4349 	/* Try get a page from the freelist if available */
4350 	if (!page)
4351 		page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4352 
4353 	if (page) {
4354 		struct zone *zone = page_zone(page);
4355 
4356 		zone->compact_blockskip_flush = false;
4357 		compaction_defer_reset(zone, order, true);
4358 		count_vm_event(COMPACTSUCCESS);
4359 		return page;
4360 	}
4361 
4362 	/*
4363 	 * It's bad if compaction run occurs and fails. The most likely reason
4364 	 * is that pages exist, but not enough to satisfy watermarks.
4365 	 */
4366 	count_vm_event(COMPACTFAIL);
4367 
4368 	cond_resched();
4369 
4370 	return NULL;
4371 }
4372 
4373 static inline bool
4374 should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
4375 		     enum compact_result compact_result,
4376 		     enum compact_priority *compact_priority,
4377 		     int *compaction_retries)
4378 {
4379 	int max_retries = MAX_COMPACT_RETRIES;
4380 	int min_priority;
4381 	bool ret = false;
4382 	int retries = *compaction_retries;
4383 	enum compact_priority priority = *compact_priority;
4384 
4385 	if (!order)
4386 		return false;
4387 
4388 	if (fatal_signal_pending(current))
4389 		return false;
4390 
4391 	if (compaction_made_progress(compact_result))
4392 		(*compaction_retries)++;
4393 
4394 	/*
4395 	 * compaction considers all the zone as desperately out of memory
4396 	 * so it doesn't really make much sense to retry except when the
4397 	 * failure could be caused by insufficient priority
4398 	 */
4399 	if (compaction_failed(compact_result))
4400 		goto check_priority;
4401 
4402 	/*
4403 	 * compaction was skipped because there are not enough order-0 pages
4404 	 * to work with, so we retry only if it looks like reclaim can help.
4405 	 */
4406 	if (compaction_needs_reclaim(compact_result)) {
4407 		ret = compaction_zonelist_suitable(ac, order, alloc_flags);
4408 		goto out;
4409 	}
4410 
4411 	/*
4412 	 * make sure the compaction wasn't deferred or didn't bail out early
4413 	 * due to locks contention before we declare that we should give up.
4414 	 * But the next retry should use a higher priority if allowed, so
4415 	 * we don't just keep bailing out endlessly.
4416 	 */
4417 	if (compaction_withdrawn(compact_result)) {
4418 		goto check_priority;
4419 	}
4420 
4421 	/*
4422 	 * !costly requests are much more important than __GFP_RETRY_MAYFAIL
4423 	 * costly ones because they are de facto nofail and invoke OOM
4424 	 * killer to move on while costly can fail and users are ready
4425 	 * to cope with that. 1/4 retries is rather arbitrary but we
4426 	 * would need much more detailed feedback from compaction to
4427 	 * make a better decision.
4428 	 */
4429 	if (order > PAGE_ALLOC_COSTLY_ORDER)
4430 		max_retries /= 4;
4431 	if (*compaction_retries <= max_retries) {
4432 		ret = true;
4433 		goto out;
4434 	}
4435 
4436 	/*
4437 	 * Make sure there are attempts at the highest priority if we exhausted
4438 	 * all retries or failed at the lower priorities.
4439 	 */
4440 check_priority:
4441 	min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
4442 			MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
4443 
4444 	if (*compact_priority > min_priority) {
4445 		(*compact_priority)--;
4446 		*compaction_retries = 0;
4447 		ret = true;
4448 	}
4449 out:
4450 	trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
4451 	return ret;
4452 }
4453 #else
4454 static inline struct page *
4455 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
4456 		unsigned int alloc_flags, const struct alloc_context *ac,
4457 		enum compact_priority prio, enum compact_result *compact_result)
4458 {
4459 	*compact_result = COMPACT_SKIPPED;
4460 	return NULL;
4461 }
4462 
4463 static inline bool
4464 should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
4465 		     enum compact_result compact_result,
4466 		     enum compact_priority *compact_priority,
4467 		     int *compaction_retries)
4468 {
4469 	struct zone *zone;
4470 	struct zoneref *z;
4471 
4472 	if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
4473 		return false;
4474 
4475 	/*
4476 	 * There are setups with compaction disabled which would prefer to loop
4477 	 * inside the allocator rather than hit the oom killer prematurely.
4478 	 * Let's give them a good hope and keep retrying while the order-0
4479 	 * watermarks are OK.
4480 	 */
4481 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
4482 				ac->highest_zoneidx, ac->nodemask) {
4483 		if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
4484 					ac->highest_zoneidx, alloc_flags))
4485 			return true;
4486 	}
4487 	return false;
4488 }
4489 #endif /* CONFIG_COMPACTION */
4490 
4491 #ifdef CONFIG_LOCKDEP
4492 static struct lockdep_map __fs_reclaim_map =
4493 	STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map);
4494 
4495 static bool __need_reclaim(gfp_t gfp_mask)
4496 {
4497 	/* no reclaim without waiting on it */
4498 	if (!(gfp_mask & __GFP_DIRECT_RECLAIM))
4499 		return false;
4500 
4501 	/* this guy won't enter reclaim */
4502 	if (current->flags & PF_MEMALLOC)
4503 		return false;
4504 
4505 	if (gfp_mask & __GFP_NOLOCKDEP)
4506 		return false;
4507 
4508 	return true;
4509 }
4510 
4511 void __fs_reclaim_acquire(unsigned long ip)
4512 {
4513 	lock_acquire_exclusive(&__fs_reclaim_map, 0, 0, NULL, ip);
4514 }
4515 
4516 void __fs_reclaim_release(unsigned long ip)
4517 {
4518 	lock_release(&__fs_reclaim_map, ip);
4519 }
4520 
4521 void fs_reclaim_acquire(gfp_t gfp_mask)
4522 {
4523 	gfp_mask = current_gfp_context(gfp_mask);
4524 
4525 	if (__need_reclaim(gfp_mask)) {
4526 		if (gfp_mask & __GFP_FS)
4527 			__fs_reclaim_acquire(_RET_IP_);
4528 
4529 #ifdef CONFIG_MMU_NOTIFIER
4530 		lock_map_acquire(&__mmu_notifier_invalidate_range_start_map);
4531 		lock_map_release(&__mmu_notifier_invalidate_range_start_map);
4532 #endif
4533 
4534 	}
4535 }
4536 EXPORT_SYMBOL_GPL(fs_reclaim_acquire);
4537 
4538 void fs_reclaim_release(gfp_t gfp_mask)
4539 {
4540 	gfp_mask = current_gfp_context(gfp_mask);
4541 
4542 	if (__need_reclaim(gfp_mask)) {
4543 		if (gfp_mask & __GFP_FS)
4544 			__fs_reclaim_release(_RET_IP_);
4545 	}
4546 }
4547 EXPORT_SYMBOL_GPL(fs_reclaim_release);
4548 #endif
4549 
4550 /* Perform direct synchronous page reclaim */
4551 static unsigned long
4552 __perform_reclaim(gfp_t gfp_mask, unsigned int order,
4553 					const struct alloc_context *ac)
4554 {
4555 	unsigned int noreclaim_flag;
4556 	unsigned long progress;
4557 
4558 	cond_resched();
4559 
4560 	/* We now go into synchronous reclaim */
4561 	cpuset_memory_pressure_bump();
4562 	fs_reclaim_acquire(gfp_mask);
4563 	noreclaim_flag = memalloc_noreclaim_save();
4564 
4565 	progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
4566 								ac->nodemask);
4567 
4568 	memalloc_noreclaim_restore(noreclaim_flag);
4569 	fs_reclaim_release(gfp_mask);
4570 
4571 	cond_resched();
4572 
4573 	return progress;
4574 }
4575 
4576 /* The really slow allocator path where we enter direct reclaim */
4577 static inline struct page *
4578 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
4579 		unsigned int alloc_flags, const struct alloc_context *ac,
4580 		unsigned long *did_some_progress)
4581 {
4582 	struct page *page = NULL;
4583 	unsigned long pflags;
4584 	bool drained = false;
4585 
4586 	psi_memstall_enter(&pflags);
4587 	*did_some_progress = __perform_reclaim(gfp_mask, order, ac);
4588 	if (unlikely(!(*did_some_progress)))
4589 		goto out;
4590 
4591 retry:
4592 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4593 
4594 	/*
4595 	 * If an allocation failed after direct reclaim, it could be because
4596 	 * pages are pinned on the per-cpu lists or in high alloc reserves.
4597 	 * Shrink them and try again
4598 	 */
4599 	if (!page && !drained) {
4600 		unreserve_highatomic_pageblock(ac, false);
4601 		drain_all_pages(NULL);
4602 		drained = true;
4603 		goto retry;
4604 	}
4605 out:
4606 	psi_memstall_leave(&pflags);
4607 
4608 	return page;
4609 }
4610 
4611 static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask,
4612 			     const struct alloc_context *ac)
4613 {
4614 	struct zoneref *z;
4615 	struct zone *zone;
4616 	pg_data_t *last_pgdat = NULL;
4617 	enum zone_type highest_zoneidx = ac->highest_zoneidx;
4618 
4619 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, highest_zoneidx,
4620 					ac->nodemask) {
4621 		if (last_pgdat != zone->zone_pgdat)
4622 			wakeup_kswapd(zone, gfp_mask, order, highest_zoneidx);
4623 		last_pgdat = zone->zone_pgdat;
4624 	}
4625 }
4626 
4627 static inline unsigned int
4628 gfp_to_alloc_flags(gfp_t gfp_mask)
4629 {
4630 	unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
4631 
4632 	/*
4633 	 * __GFP_HIGH is assumed to be the same as ALLOC_HIGH
4634 	 * and __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
4635 	 * to save two branches.
4636 	 */
4637 	BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
4638 	BUILD_BUG_ON(__GFP_KSWAPD_RECLAIM != (__force gfp_t) ALLOC_KSWAPD);
4639 
4640 	/*
4641 	 * The caller may dip into page reserves a bit more if the caller
4642 	 * cannot run direct reclaim, or if the caller has realtime scheduling
4643 	 * policy or is asking for __GFP_HIGH memory.  GFP_ATOMIC requests will
4644 	 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
4645 	 */
4646 	alloc_flags |= (__force int)
4647 		(gfp_mask & (__GFP_HIGH | __GFP_KSWAPD_RECLAIM));
4648 
4649 	if (gfp_mask & __GFP_ATOMIC) {
4650 		/*
4651 		 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
4652 		 * if it can't schedule.
4653 		 */
4654 		if (!(gfp_mask & __GFP_NOMEMALLOC))
4655 			alloc_flags |= ALLOC_HARDER;
4656 		/*
4657 		 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
4658 		 * comment for __cpuset_node_allowed().
4659 		 */
4660 		alloc_flags &= ~ALLOC_CPUSET;
4661 	} else if (unlikely(rt_task(current)) && in_task())
4662 		alloc_flags |= ALLOC_HARDER;
4663 
4664 	alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, alloc_flags);
4665 
4666 	return alloc_flags;
4667 }
4668 
4669 static bool oom_reserves_allowed(struct task_struct *tsk)
4670 {
4671 	if (!tsk_is_oom_victim(tsk))
4672 		return false;
4673 
4674 	/*
4675 	 * !MMU doesn't have oom reaper so give access to memory reserves
4676 	 * only to the thread with TIF_MEMDIE set
4677 	 */
4678 	if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE))
4679 		return false;
4680 
4681 	return true;
4682 }
4683 
4684 /*
4685  * Distinguish requests which really need access to full memory
4686  * reserves from oom victims which can live with a portion of it
4687  */
4688 static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask)
4689 {
4690 	if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
4691 		return 0;
4692 	if (gfp_mask & __GFP_MEMALLOC)
4693 		return ALLOC_NO_WATERMARKS;
4694 	if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
4695 		return ALLOC_NO_WATERMARKS;
4696 	if (!in_interrupt()) {
4697 		if (current->flags & PF_MEMALLOC)
4698 			return ALLOC_NO_WATERMARKS;
4699 		else if (oom_reserves_allowed(current))
4700 			return ALLOC_OOM;
4701 	}
4702 
4703 	return 0;
4704 }
4705 
4706 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
4707 {
4708 	return !!__gfp_pfmemalloc_flags(gfp_mask);
4709 }
4710 
4711 /*
4712  * Checks whether it makes sense to retry the reclaim to make a forward progress
4713  * for the given allocation request.
4714  *
4715  * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
4716  * without success, or when we couldn't even meet the watermark if we
4717  * reclaimed all remaining pages on the LRU lists.
4718  *
4719  * Returns true if a retry is viable or false to enter the oom path.
4720  */
4721 static inline bool
4722 should_reclaim_retry(gfp_t gfp_mask, unsigned order,
4723 		     struct alloc_context *ac, int alloc_flags,
4724 		     bool did_some_progress, int *no_progress_loops)
4725 {
4726 	struct zone *zone;
4727 	struct zoneref *z;
4728 	bool ret = false;
4729 
4730 	/*
4731 	 * Costly allocations might have made a progress but this doesn't mean
4732 	 * their order will become available due to high fragmentation so
4733 	 * always increment the no progress counter for them
4734 	 */
4735 	if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
4736 		*no_progress_loops = 0;
4737 	else
4738 		(*no_progress_loops)++;
4739 
4740 	/*
4741 	 * Make sure we converge to OOM if we cannot make any progress
4742 	 * several times in the row.
4743 	 */
4744 	if (*no_progress_loops > MAX_RECLAIM_RETRIES) {
4745 		/* Before OOM, exhaust highatomic_reserve */
4746 		return unreserve_highatomic_pageblock(ac, true);
4747 	}
4748 
4749 	/*
4750 	 * Keep reclaiming pages while there is a chance this will lead
4751 	 * somewhere.  If none of the target zones can satisfy our allocation
4752 	 * request even if all reclaimable pages are considered then we are
4753 	 * screwed and have to go OOM.
4754 	 */
4755 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
4756 				ac->highest_zoneidx, ac->nodemask) {
4757 		unsigned long available;
4758 		unsigned long reclaimable;
4759 		unsigned long min_wmark = min_wmark_pages(zone);
4760 		bool wmark;
4761 
4762 		available = reclaimable = zone_reclaimable_pages(zone);
4763 		available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
4764 
4765 		/*
4766 		 * Would the allocation succeed if we reclaimed all
4767 		 * reclaimable pages?
4768 		 */
4769 		wmark = __zone_watermark_ok(zone, order, min_wmark,
4770 				ac->highest_zoneidx, alloc_flags, available);
4771 		trace_reclaim_retry_zone(z, order, reclaimable,
4772 				available, min_wmark, *no_progress_loops, wmark);
4773 		if (wmark) {
4774 			ret = true;
4775 			break;
4776 		}
4777 	}
4778 
4779 	/*
4780 	 * Memory allocation/reclaim might be called from a WQ context and the
4781 	 * current implementation of the WQ concurrency control doesn't
4782 	 * recognize that a particular WQ is congested if the worker thread is
4783 	 * looping without ever sleeping. Therefore we have to do a short sleep
4784 	 * here rather than calling cond_resched().
4785 	 */
4786 	if (current->flags & PF_WQ_WORKER)
4787 		schedule_timeout_uninterruptible(1);
4788 	else
4789 		cond_resched();
4790 	return ret;
4791 }
4792 
4793 static inline bool
4794 check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
4795 {
4796 	/*
4797 	 * It's possible that cpuset's mems_allowed and the nodemask from
4798 	 * mempolicy don't intersect. This should be normally dealt with by
4799 	 * policy_nodemask(), but it's possible to race with cpuset update in
4800 	 * such a way the check therein was true, and then it became false
4801 	 * before we got our cpuset_mems_cookie here.
4802 	 * This assumes that for all allocations, ac->nodemask can come only
4803 	 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
4804 	 * when it does not intersect with the cpuset restrictions) or the
4805 	 * caller can deal with a violated nodemask.
4806 	 */
4807 	if (cpusets_enabled() && ac->nodemask &&
4808 			!cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
4809 		ac->nodemask = NULL;
4810 		return true;
4811 	}
4812 
4813 	/*
4814 	 * When updating a task's mems_allowed or mempolicy nodemask, it is
4815 	 * possible to race with parallel threads in such a way that our
4816 	 * allocation can fail while the mask is being updated. If we are about
4817 	 * to fail, check if the cpuset changed during allocation and if so,
4818 	 * retry.
4819 	 */
4820 	if (read_mems_allowed_retry(cpuset_mems_cookie))
4821 		return true;
4822 
4823 	return false;
4824 }
4825 
4826 static inline struct page *
4827 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
4828 						struct alloc_context *ac)
4829 {
4830 	bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
4831 	const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
4832 	struct page *page = NULL;
4833 	unsigned int alloc_flags;
4834 	unsigned long did_some_progress;
4835 	enum compact_priority compact_priority;
4836 	enum compact_result compact_result;
4837 	int compaction_retries;
4838 	int no_progress_loops;
4839 	unsigned int cpuset_mems_cookie;
4840 	int reserve_flags;
4841 
4842 	/*
4843 	 * We also sanity check to catch abuse of atomic reserves being used by
4844 	 * callers that are not in atomic context.
4845 	 */
4846 	if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
4847 				(__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
4848 		gfp_mask &= ~__GFP_ATOMIC;
4849 
4850 retry_cpuset:
4851 	compaction_retries = 0;
4852 	no_progress_loops = 0;
4853 	compact_priority = DEF_COMPACT_PRIORITY;
4854 	cpuset_mems_cookie = read_mems_allowed_begin();
4855 
4856 	/*
4857 	 * The fast path uses conservative alloc_flags to succeed only until
4858 	 * kswapd needs to be woken up, and to avoid the cost of setting up
4859 	 * alloc_flags precisely. So we do that now.
4860 	 */
4861 	alloc_flags = gfp_to_alloc_flags(gfp_mask);
4862 
4863 	/*
4864 	 * We need to recalculate the starting point for the zonelist iterator
4865 	 * because we might have used different nodemask in the fast path, or
4866 	 * there was a cpuset modification and we are retrying - otherwise we
4867 	 * could end up iterating over non-eligible zones endlessly.
4868 	 */
4869 	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4870 					ac->highest_zoneidx, ac->nodemask);
4871 	if (!ac->preferred_zoneref->zone)
4872 		goto nopage;
4873 
4874 	/*
4875 	 * Check for insane configurations where the cpuset doesn't contain
4876 	 * any suitable zone to satisfy the request - e.g. non-movable
4877 	 * GFP_HIGHUSER allocations from MOVABLE nodes only.
4878 	 */
4879 	if (cpusets_insane_config() && (gfp_mask & __GFP_HARDWALL)) {
4880 		struct zoneref *z = first_zones_zonelist(ac->zonelist,
4881 					ac->highest_zoneidx,
4882 					&cpuset_current_mems_allowed);
4883 		if (!z->zone)
4884 			goto nopage;
4885 	}
4886 
4887 	if (alloc_flags & ALLOC_KSWAPD)
4888 		wake_all_kswapds(order, gfp_mask, ac);
4889 
4890 	/*
4891 	 * The adjusted alloc_flags might result in immediate success, so try
4892 	 * that first
4893 	 */
4894 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4895 	if (page)
4896 		goto got_pg;
4897 
4898 	/*
4899 	 * For costly allocations, try direct compaction first, as it's likely
4900 	 * that we have enough base pages and don't need to reclaim. For non-
4901 	 * movable high-order allocations, do that as well, as compaction will
4902 	 * try prevent permanent fragmentation by migrating from blocks of the
4903 	 * same migratetype.
4904 	 * Don't try this for allocations that are allowed to ignore
4905 	 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
4906 	 */
4907 	if (can_direct_reclaim &&
4908 			(costly_order ||
4909 			   (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
4910 			&& !gfp_pfmemalloc_allowed(gfp_mask)) {
4911 		page = __alloc_pages_direct_compact(gfp_mask, order,
4912 						alloc_flags, ac,
4913 						INIT_COMPACT_PRIORITY,
4914 						&compact_result);
4915 		if (page)
4916 			goto got_pg;
4917 
4918 		/*
4919 		 * Checks for costly allocations with __GFP_NORETRY, which
4920 		 * includes some THP page fault allocations
4921 		 */
4922 		if (costly_order && (gfp_mask & __GFP_NORETRY)) {
4923 			/*
4924 			 * If allocating entire pageblock(s) and compaction
4925 			 * failed because all zones are below low watermarks
4926 			 * or is prohibited because it recently failed at this
4927 			 * order, fail immediately unless the allocator has
4928 			 * requested compaction and reclaim retry.
4929 			 *
4930 			 * Reclaim is
4931 			 *  - potentially very expensive because zones are far
4932 			 *    below their low watermarks or this is part of very
4933 			 *    bursty high order allocations,
4934 			 *  - not guaranteed to help because isolate_freepages()
4935 			 *    may not iterate over freed pages as part of its
4936 			 *    linear scan, and
4937 			 *  - unlikely to make entire pageblocks free on its
4938 			 *    own.
4939 			 */
4940 			if (compact_result == COMPACT_SKIPPED ||
4941 			    compact_result == COMPACT_DEFERRED)
4942 				goto nopage;
4943 
4944 			/*
4945 			 * Looks like reclaim/compaction is worth trying, but
4946 			 * sync compaction could be very expensive, so keep
4947 			 * using async compaction.
4948 			 */
4949 			compact_priority = INIT_COMPACT_PRIORITY;
4950 		}
4951 	}
4952 
4953 retry:
4954 	/* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
4955 	if (alloc_flags & ALLOC_KSWAPD)
4956 		wake_all_kswapds(order, gfp_mask, ac);
4957 
4958 	reserve_flags = __gfp_pfmemalloc_flags(gfp_mask);
4959 	if (reserve_flags)
4960 		alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, reserve_flags);
4961 
4962 	/*
4963 	 * Reset the nodemask and zonelist iterators if memory policies can be
4964 	 * ignored. These allocations are high priority and system rather than
4965 	 * user oriented.
4966 	 */
4967 	if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) {
4968 		ac->nodemask = NULL;
4969 		ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4970 					ac->highest_zoneidx, ac->nodemask);
4971 	}
4972 
4973 	/* Attempt with potentially adjusted zonelist and alloc_flags */
4974 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4975 	if (page)
4976 		goto got_pg;
4977 
4978 	/* Caller is not willing to reclaim, we can't balance anything */
4979 	if (!can_direct_reclaim)
4980 		goto nopage;
4981 
4982 	/* Avoid recursion of direct reclaim */
4983 	if (current->flags & PF_MEMALLOC)
4984 		goto nopage;
4985 
4986 	/* Try direct reclaim and then allocating */
4987 	page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
4988 							&did_some_progress);
4989 	if (page)
4990 		goto got_pg;
4991 
4992 	/* Try direct compaction and then allocating */
4993 	page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
4994 					compact_priority, &compact_result);
4995 	if (page)
4996 		goto got_pg;
4997 
4998 	/* Do not loop if specifically requested */
4999 	if (gfp_mask & __GFP_NORETRY)
5000 		goto nopage;
5001 
5002 	/*
5003 	 * Do not retry costly high order allocations unless they are
5004 	 * __GFP_RETRY_MAYFAIL
5005 	 */
5006 	if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL))
5007 		goto nopage;
5008 
5009 	if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
5010 				 did_some_progress > 0, &no_progress_loops))
5011 		goto retry;
5012 
5013 	/*
5014 	 * It doesn't make any sense to retry for the compaction if the order-0
5015 	 * reclaim is not able to make any progress because the current
5016 	 * implementation of the compaction depends on the sufficient amount
5017 	 * of free memory (see __compaction_suitable)
5018 	 */
5019 	if (did_some_progress > 0 &&
5020 			should_compact_retry(ac, order, alloc_flags,
5021 				compact_result, &compact_priority,
5022 				&compaction_retries))
5023 		goto retry;
5024 
5025 
5026 	/* Deal with possible cpuset update races before we start OOM killing */
5027 	if (check_retry_cpuset(cpuset_mems_cookie, ac))
5028 		goto retry_cpuset;
5029 
5030 	/* Reclaim has failed us, start killing things */
5031 	page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
5032 	if (page)
5033 		goto got_pg;
5034 
5035 	/* Avoid allocations with no watermarks from looping endlessly */
5036 	if (tsk_is_oom_victim(current) &&
5037 	    (alloc_flags & ALLOC_OOM ||
5038 	     (gfp_mask & __GFP_NOMEMALLOC)))
5039 		goto nopage;
5040 
5041 	/* Retry as long as the OOM killer is making progress */
5042 	if (did_some_progress) {
5043 		no_progress_loops = 0;
5044 		goto retry;
5045 	}
5046 
5047 nopage:
5048 	/* Deal with possible cpuset update races before we fail */
5049 	if (check_retry_cpuset(cpuset_mems_cookie, ac))
5050 		goto retry_cpuset;
5051 
5052 	/*
5053 	 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
5054 	 * we always retry
5055 	 */
5056 	if (gfp_mask & __GFP_NOFAIL) {
5057 		/*
5058 		 * All existing users of the __GFP_NOFAIL are blockable, so warn
5059 		 * of any new users that actually require GFP_NOWAIT
5060 		 */
5061 		if (WARN_ON_ONCE(!can_direct_reclaim))
5062 			goto fail;
5063 
5064 		/*
5065 		 * PF_MEMALLOC request from this context is rather bizarre
5066 		 * because we cannot reclaim anything and only can loop waiting
5067 		 * for somebody to do a work for us
5068 		 */
5069 		WARN_ON_ONCE(current->flags & PF_MEMALLOC);
5070 
5071 		/*
5072 		 * non failing costly orders are a hard requirement which we
5073 		 * are not prepared for much so let's warn about these users
5074 		 * so that we can identify them and convert them to something
5075 		 * else.
5076 		 */
5077 		WARN_ON_ONCE(order > PAGE_ALLOC_COSTLY_ORDER);
5078 
5079 		/*
5080 		 * Help non-failing allocations by giving them access to memory
5081 		 * reserves but do not use ALLOC_NO_WATERMARKS because this
5082 		 * could deplete whole memory reserves which would just make
5083 		 * the situation worse
5084 		 */
5085 		page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac);
5086 		if (page)
5087 			goto got_pg;
5088 
5089 		cond_resched();
5090 		goto retry;
5091 	}
5092 fail:
5093 	warn_alloc(gfp_mask, ac->nodemask,
5094 			"page allocation failure: order:%u", order);
5095 got_pg:
5096 	return page;
5097 }
5098 
5099 static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
5100 		int preferred_nid, nodemask_t *nodemask,
5101 		struct alloc_context *ac, gfp_t *alloc_gfp,
5102 		unsigned int *alloc_flags)
5103 {
5104 	ac->highest_zoneidx = gfp_zone(gfp_mask);
5105 	ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
5106 	ac->nodemask = nodemask;
5107 	ac->migratetype = gfp_migratetype(gfp_mask);
5108 
5109 	if (cpusets_enabled()) {
5110 		*alloc_gfp |= __GFP_HARDWALL;
5111 		/*
5112 		 * When we are in the interrupt context, it is irrelevant
5113 		 * to the current task context. It means that any node ok.
5114 		 */
5115 		if (in_task() && !ac->nodemask)
5116 			ac->nodemask = &cpuset_current_mems_allowed;
5117 		else
5118 			*alloc_flags |= ALLOC_CPUSET;
5119 	}
5120 
5121 	fs_reclaim_acquire(gfp_mask);
5122 	fs_reclaim_release(gfp_mask);
5123 
5124 	might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
5125 
5126 	if (should_fail_alloc_page(gfp_mask, order))
5127 		return false;
5128 
5129 	*alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, *alloc_flags);
5130 
5131 	/* Dirty zone balancing only done in the fast path */
5132 	ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
5133 
5134 	/*
5135 	 * The preferred zone is used for statistics but crucially it is
5136 	 * also used as the starting point for the zonelist iterator. It
5137 	 * may get reset for allocations that ignore memory policies.
5138 	 */
5139 	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
5140 					ac->highest_zoneidx, ac->nodemask);
5141 
5142 	return true;
5143 }
5144 
5145 /*
5146  * __alloc_pages_bulk - Allocate a number of order-0 pages to a list or array
5147  * @gfp: GFP flags for the allocation
5148  * @preferred_nid: The preferred NUMA node ID to allocate from
5149  * @nodemask: Set of nodes to allocate from, may be NULL
5150  * @nr_pages: The number of pages desired on the list or array
5151  * @page_list: Optional list to store the allocated pages
5152  * @page_array: Optional array to store the pages
5153  *
5154  * This is a batched version of the page allocator that attempts to
5155  * allocate nr_pages quickly. Pages are added to page_list if page_list
5156  * is not NULL, otherwise it is assumed that the page_array is valid.
5157  *
5158  * For lists, nr_pages is the number of pages that should be allocated.
5159  *
5160  * For arrays, only NULL elements are populated with pages and nr_pages
5161  * is the maximum number of pages that will be stored in the array.
5162  *
5163  * Returns the number of pages on the list or array.
5164  */
5165 unsigned long __alloc_pages_bulk(gfp_t gfp, int preferred_nid,
5166 			nodemask_t *nodemask, int nr_pages,
5167 			struct list_head *page_list,
5168 			struct page **page_array)
5169 {
5170 	struct page *page;
5171 	unsigned long flags;
5172 	struct zone *zone;
5173 	struct zoneref *z;
5174 	struct per_cpu_pages *pcp;
5175 	struct list_head *pcp_list;
5176 	struct alloc_context ac;
5177 	gfp_t alloc_gfp;
5178 	unsigned int alloc_flags = ALLOC_WMARK_LOW;
5179 	int nr_populated = 0, nr_account = 0;
5180 
5181 	/*
5182 	 * Skip populated array elements to determine if any pages need
5183 	 * to be allocated before disabling IRQs.
5184 	 */
5185 	while (page_array && nr_populated < nr_pages && page_array[nr_populated])
5186 		nr_populated++;
5187 
5188 	/* No pages requested? */
5189 	if (unlikely(nr_pages <= 0))
5190 		goto out;
5191 
5192 	/* Already populated array? */
5193 	if (unlikely(page_array && nr_pages - nr_populated == 0))
5194 		goto out;
5195 
5196 	/* Bulk allocator does not support memcg accounting. */
5197 	if (memcg_kmem_enabled() && (gfp & __GFP_ACCOUNT))
5198 		goto failed;
5199 
5200 	/* Use the single page allocator for one page. */
5201 	if (nr_pages - nr_populated == 1)
5202 		goto failed;
5203 
5204 #ifdef CONFIG_PAGE_OWNER
5205 	/*
5206 	 * PAGE_OWNER may recurse into the allocator to allocate space to
5207 	 * save the stack with pagesets.lock held. Releasing/reacquiring
5208 	 * removes much of the performance benefit of bulk allocation so
5209 	 * force the caller to allocate one page at a time as it'll have
5210 	 * similar performance to added complexity to the bulk allocator.
5211 	 */
5212 	if (static_branch_unlikely(&page_owner_inited))
5213 		goto failed;
5214 #endif
5215 
5216 	/* May set ALLOC_NOFRAGMENT, fragmentation will return 1 page. */
5217 	gfp &= gfp_allowed_mask;
5218 	alloc_gfp = gfp;
5219 	if (!prepare_alloc_pages(gfp, 0, preferred_nid, nodemask, &ac, &alloc_gfp, &alloc_flags))
5220 		goto out;
5221 	gfp = alloc_gfp;
5222 
5223 	/* Find an allowed local zone that meets the low watermark. */
5224 	for_each_zone_zonelist_nodemask(zone, z, ac.zonelist, ac.highest_zoneidx, ac.nodemask) {
5225 		unsigned long mark;
5226 
5227 		if (cpusets_enabled() && (alloc_flags & ALLOC_CPUSET) &&
5228 		    !__cpuset_zone_allowed(zone, gfp)) {
5229 			continue;
5230 		}
5231 
5232 		if (nr_online_nodes > 1 && zone != ac.preferred_zoneref->zone &&
5233 		    zone_to_nid(zone) != zone_to_nid(ac.preferred_zoneref->zone)) {
5234 			goto failed;
5235 		}
5236 
5237 		mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK) + nr_pages;
5238 		if (zone_watermark_fast(zone, 0,  mark,
5239 				zonelist_zone_idx(ac.preferred_zoneref),
5240 				alloc_flags, gfp)) {
5241 			break;
5242 		}
5243 	}
5244 
5245 	/*
5246 	 * If there are no allowed local zones that meets the watermarks then
5247 	 * try to allocate a single page and reclaim if necessary.
5248 	 */
5249 	if (unlikely(!zone))
5250 		goto failed;
5251 
5252 	/* Attempt the batch allocation */
5253 	local_lock_irqsave(&pagesets.lock, flags);
5254 	pcp = this_cpu_ptr(zone->per_cpu_pageset);
5255 	pcp_list = &pcp->lists[order_to_pindex(ac.migratetype, 0)];
5256 
5257 	while (nr_populated < nr_pages) {
5258 
5259 		/* Skip existing pages */
5260 		if (page_array && page_array[nr_populated]) {
5261 			nr_populated++;
5262 			continue;
5263 		}
5264 
5265 		page = __rmqueue_pcplist(zone, 0, ac.migratetype, alloc_flags,
5266 								pcp, pcp_list);
5267 		if (unlikely(!page)) {
5268 			/* Try and get at least one page */
5269 			if (!nr_populated)
5270 				goto failed_irq;
5271 			break;
5272 		}
5273 		nr_account++;
5274 
5275 		prep_new_page(page, 0, gfp, 0);
5276 		if (page_list)
5277 			list_add(&page->lru, page_list);
5278 		else
5279 			page_array[nr_populated] = page;
5280 		nr_populated++;
5281 	}
5282 
5283 	local_unlock_irqrestore(&pagesets.lock, flags);
5284 
5285 	__count_zid_vm_events(PGALLOC, zone_idx(zone), nr_account);
5286 	zone_statistics(ac.preferred_zoneref->zone, zone, nr_account);
5287 
5288 out:
5289 	return nr_populated;
5290 
5291 failed_irq:
5292 	local_unlock_irqrestore(&pagesets.lock, flags);
5293 
5294 failed:
5295 	page = __alloc_pages(gfp, 0, preferred_nid, nodemask);
5296 	if (page) {
5297 		if (page_list)
5298 			list_add(&page->lru, page_list);
5299 		else
5300 			page_array[nr_populated] = page;
5301 		nr_populated++;
5302 	}
5303 
5304 	goto out;
5305 }
5306 EXPORT_SYMBOL_GPL(__alloc_pages_bulk);
5307 
5308 /*
5309  * This is the 'heart' of the zoned buddy allocator.
5310  */
5311 struct page *__alloc_pages(gfp_t gfp, unsigned int order, int preferred_nid,
5312 							nodemask_t *nodemask)
5313 {
5314 	struct page *page;
5315 	unsigned int alloc_flags = ALLOC_WMARK_LOW;
5316 	gfp_t alloc_gfp; /* The gfp_t that was actually used for allocation */
5317 	struct alloc_context ac = { };
5318 
5319 	/*
5320 	 * There are several places where we assume that the order value is sane
5321 	 * so bail out early if the request is out of bound.
5322 	 */
5323 	if (unlikely(order >= MAX_ORDER)) {
5324 		WARN_ON_ONCE(!(gfp & __GFP_NOWARN));
5325 		return NULL;
5326 	}
5327 
5328 	gfp &= gfp_allowed_mask;
5329 	/*
5330 	 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
5331 	 * resp. GFP_NOIO which has to be inherited for all allocation requests
5332 	 * from a particular context which has been marked by
5333 	 * memalloc_no{fs,io}_{save,restore}. And PF_MEMALLOC_PIN which ensures
5334 	 * movable zones are not used during allocation.
5335 	 */
5336 	gfp = current_gfp_context(gfp);
5337 	alloc_gfp = gfp;
5338 	if (!prepare_alloc_pages(gfp, order, preferred_nid, nodemask, &ac,
5339 			&alloc_gfp, &alloc_flags))
5340 		return NULL;
5341 
5342 	/*
5343 	 * Forbid the first pass from falling back to types that fragment
5344 	 * memory until all local zones are considered.
5345 	 */
5346 	alloc_flags |= alloc_flags_nofragment(ac.preferred_zoneref->zone, gfp);
5347 
5348 	/* First allocation attempt */
5349 	page = get_page_from_freelist(alloc_gfp, order, alloc_flags, &ac);
5350 	if (likely(page))
5351 		goto out;
5352 
5353 	alloc_gfp = gfp;
5354 	ac.spread_dirty_pages = false;
5355 
5356 	/*
5357 	 * Restore the original nodemask if it was potentially replaced with
5358 	 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
5359 	 */
5360 	ac.nodemask = nodemask;
5361 
5362 	page = __alloc_pages_slowpath(alloc_gfp, order, &ac);
5363 
5364 out:
5365 	if (memcg_kmem_enabled() && (gfp & __GFP_ACCOUNT) && page &&
5366 	    unlikely(__memcg_kmem_charge_page(page, gfp, order) != 0)) {
5367 		__free_pages(page, order);
5368 		page = NULL;
5369 	}
5370 
5371 	trace_mm_page_alloc(page, order, alloc_gfp, ac.migratetype);
5372 
5373 	return page;
5374 }
5375 EXPORT_SYMBOL(__alloc_pages);
5376 
5377 struct folio *__folio_alloc(gfp_t gfp, unsigned int order, int preferred_nid,
5378 		nodemask_t *nodemask)
5379 {
5380 	struct page *page = __alloc_pages(gfp | __GFP_COMP, order,
5381 			preferred_nid, nodemask);
5382 
5383 	if (page && order > 1)
5384 		prep_transhuge_page(page);
5385 	return (struct folio *)page;
5386 }
5387 EXPORT_SYMBOL(__folio_alloc);
5388 
5389 /*
5390  * Common helper functions. Never use with __GFP_HIGHMEM because the returned
5391  * address cannot represent highmem pages. Use alloc_pages and then kmap if
5392  * you need to access high mem.
5393  */
5394 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
5395 {
5396 	struct page *page;
5397 
5398 	page = alloc_pages(gfp_mask & ~__GFP_HIGHMEM, order);
5399 	if (!page)
5400 		return 0;
5401 	return (unsigned long) page_address(page);
5402 }
5403 EXPORT_SYMBOL(__get_free_pages);
5404 
5405 unsigned long get_zeroed_page(gfp_t gfp_mask)
5406 {
5407 	return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
5408 }
5409 EXPORT_SYMBOL(get_zeroed_page);
5410 
5411 /**
5412  * __free_pages - Free pages allocated with alloc_pages().
5413  * @page: The page pointer returned from alloc_pages().
5414  * @order: The order of the allocation.
5415  *
5416  * This function can free multi-page allocations that are not compound
5417  * pages.  It does not check that the @order passed in matches that of
5418  * the allocation, so it is easy to leak memory.  Freeing more memory
5419  * than was allocated will probably emit a warning.
5420  *
5421  * If the last reference to this page is speculative, it will be released
5422  * by put_page() which only frees the first page of a non-compound
5423  * allocation.  To prevent the remaining pages from being leaked, we free
5424  * the subsequent pages here.  If you want to use the page's reference
5425  * count to decide when to free the allocation, you should allocate a
5426  * compound page, and use put_page() instead of __free_pages().
5427  *
5428  * Context: May be called in interrupt context or while holding a normal
5429  * spinlock, but not in NMI context or while holding a raw spinlock.
5430  */
5431 void __free_pages(struct page *page, unsigned int order)
5432 {
5433 	if (put_page_testzero(page))
5434 		free_the_page(page, order);
5435 	else if (!PageHead(page))
5436 		while (order-- > 0)
5437 			free_the_page(page + (1 << order), order);
5438 }
5439 EXPORT_SYMBOL(__free_pages);
5440 
5441 void free_pages(unsigned long addr, unsigned int order)
5442 {
5443 	if (addr != 0) {
5444 		VM_BUG_ON(!virt_addr_valid((void *)addr));
5445 		__free_pages(virt_to_page((void *)addr), order);
5446 	}
5447 }
5448 
5449 EXPORT_SYMBOL(free_pages);
5450 
5451 /*
5452  * Page Fragment:
5453  *  An arbitrary-length arbitrary-offset area of memory which resides
5454  *  within a 0 or higher order page.  Multiple fragments within that page
5455  *  are individually refcounted, in the page's reference counter.
5456  *
5457  * The page_frag functions below provide a simple allocation framework for
5458  * page fragments.  This is used by the network stack and network device
5459  * drivers to provide a backing region of memory for use as either an
5460  * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
5461  */
5462 static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
5463 					     gfp_t gfp_mask)
5464 {
5465 	struct page *page = NULL;
5466 	gfp_t gfp = gfp_mask;
5467 
5468 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5469 	gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
5470 		    __GFP_NOMEMALLOC;
5471 	page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
5472 				PAGE_FRAG_CACHE_MAX_ORDER);
5473 	nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
5474 #endif
5475 	if (unlikely(!page))
5476 		page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
5477 
5478 	nc->va = page ? page_address(page) : NULL;
5479 
5480 	return page;
5481 }
5482 
5483 void __page_frag_cache_drain(struct page *page, unsigned int count)
5484 {
5485 	VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
5486 
5487 	if (page_ref_sub_and_test(page, count))
5488 		free_the_page(page, compound_order(page));
5489 }
5490 EXPORT_SYMBOL(__page_frag_cache_drain);
5491 
5492 void *page_frag_alloc_align(struct page_frag_cache *nc,
5493 		      unsigned int fragsz, gfp_t gfp_mask,
5494 		      unsigned int align_mask)
5495 {
5496 	unsigned int size = PAGE_SIZE;
5497 	struct page *page;
5498 	int offset;
5499 
5500 	if (unlikely(!nc->va)) {
5501 refill:
5502 		page = __page_frag_cache_refill(nc, gfp_mask);
5503 		if (!page)
5504 			return NULL;
5505 
5506 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5507 		/* if size can vary use size else just use PAGE_SIZE */
5508 		size = nc->size;
5509 #endif
5510 		/* Even if we own the page, we do not use atomic_set().
5511 		 * This would break get_page_unless_zero() users.
5512 		 */
5513 		page_ref_add(page, PAGE_FRAG_CACHE_MAX_SIZE);
5514 
5515 		/* reset page count bias and offset to start of new frag */
5516 		nc->pfmemalloc = page_is_pfmemalloc(page);
5517 		nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
5518 		nc->offset = size;
5519 	}
5520 
5521 	offset = nc->offset - fragsz;
5522 	if (unlikely(offset < 0)) {
5523 		page = virt_to_page(nc->va);
5524 
5525 		if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
5526 			goto refill;
5527 
5528 		if (unlikely(nc->pfmemalloc)) {
5529 			free_the_page(page, compound_order(page));
5530 			goto refill;
5531 		}
5532 
5533 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5534 		/* if size can vary use size else just use PAGE_SIZE */
5535 		size = nc->size;
5536 #endif
5537 		/* OK, page count is 0, we can safely set it */
5538 		set_page_count(page, PAGE_FRAG_CACHE_MAX_SIZE + 1);
5539 
5540 		/* reset page count bias and offset to start of new frag */
5541 		nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
5542 		offset = size - fragsz;
5543 	}
5544 
5545 	nc->pagecnt_bias--;
5546 	offset &= align_mask;
5547 	nc->offset = offset;
5548 
5549 	return nc->va + offset;
5550 }
5551 EXPORT_SYMBOL(page_frag_alloc_align);
5552 
5553 /*
5554  * Frees a page fragment allocated out of either a compound or order 0 page.
5555  */
5556 void page_frag_free(void *addr)
5557 {
5558 	struct page *page = virt_to_head_page(addr);
5559 
5560 	if (unlikely(put_page_testzero(page)))
5561 		free_the_page(page, compound_order(page));
5562 }
5563 EXPORT_SYMBOL(page_frag_free);
5564 
5565 static void *make_alloc_exact(unsigned long addr, unsigned int order,
5566 		size_t size)
5567 {
5568 	if (addr) {
5569 		unsigned long alloc_end = addr + (PAGE_SIZE << order);
5570 		unsigned long used = addr + PAGE_ALIGN(size);
5571 
5572 		split_page(virt_to_page((void *)addr), order);
5573 		while (used < alloc_end) {
5574 			free_page(used);
5575 			used += PAGE_SIZE;
5576 		}
5577 	}
5578 	return (void *)addr;
5579 }
5580 
5581 /**
5582  * alloc_pages_exact - allocate an exact number physically-contiguous pages.
5583  * @size: the number of bytes to allocate
5584  * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
5585  *
5586  * This function is similar to alloc_pages(), except that it allocates the
5587  * minimum number of pages to satisfy the request.  alloc_pages() can only
5588  * allocate memory in power-of-two pages.
5589  *
5590  * This function is also limited by MAX_ORDER.
5591  *
5592  * Memory allocated by this function must be released by free_pages_exact().
5593  *
5594  * Return: pointer to the allocated area or %NULL in case of error.
5595  */
5596 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
5597 {
5598 	unsigned int order = get_order(size);
5599 	unsigned long addr;
5600 
5601 	if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM)))
5602 		gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM);
5603 
5604 	addr = __get_free_pages(gfp_mask, order);
5605 	return make_alloc_exact(addr, order, size);
5606 }
5607 EXPORT_SYMBOL(alloc_pages_exact);
5608 
5609 /**
5610  * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
5611  *			   pages on a node.
5612  * @nid: the preferred node ID where memory should be allocated
5613  * @size: the number of bytes to allocate
5614  * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
5615  *
5616  * Like alloc_pages_exact(), but try to allocate on node nid first before falling
5617  * back.
5618  *
5619  * Return: pointer to the allocated area or %NULL in case of error.
5620  */
5621 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
5622 {
5623 	unsigned int order = get_order(size);
5624 	struct page *p;
5625 
5626 	if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM)))
5627 		gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM);
5628 
5629 	p = alloc_pages_node(nid, gfp_mask, order);
5630 	if (!p)
5631 		return NULL;
5632 	return make_alloc_exact((unsigned long)page_address(p), order, size);
5633 }
5634 
5635 /**
5636  * free_pages_exact - release memory allocated via alloc_pages_exact()
5637  * @virt: the value returned by alloc_pages_exact.
5638  * @size: size of allocation, same value as passed to alloc_pages_exact().
5639  *
5640  * Release the memory allocated by a previous call to alloc_pages_exact.
5641  */
5642 void free_pages_exact(void *virt, size_t size)
5643 {
5644 	unsigned long addr = (unsigned long)virt;
5645 	unsigned long end = addr + PAGE_ALIGN(size);
5646 
5647 	while (addr < end) {
5648 		free_page(addr);
5649 		addr += PAGE_SIZE;
5650 	}
5651 }
5652 EXPORT_SYMBOL(free_pages_exact);
5653 
5654 /**
5655  * nr_free_zone_pages - count number of pages beyond high watermark
5656  * @offset: The zone index of the highest zone
5657  *
5658  * nr_free_zone_pages() counts the number of pages which are beyond the
5659  * high watermark within all zones at or below a given zone index.  For each
5660  * zone, the number of pages is calculated as:
5661  *
5662  *     nr_free_zone_pages = managed_pages - high_pages
5663  *
5664  * Return: number of pages beyond high watermark.
5665  */
5666 static unsigned long nr_free_zone_pages(int offset)
5667 {
5668 	struct zoneref *z;
5669 	struct zone *zone;
5670 
5671 	/* Just pick one node, since fallback list is circular */
5672 	unsigned long sum = 0;
5673 
5674 	struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
5675 
5676 	for_each_zone_zonelist(zone, z, zonelist, offset) {
5677 		unsigned long size = zone_managed_pages(zone);
5678 		unsigned long high = high_wmark_pages(zone);
5679 		if (size > high)
5680 			sum += size - high;
5681 	}
5682 
5683 	return sum;
5684 }
5685 
5686 /**
5687  * nr_free_buffer_pages - count number of pages beyond high watermark
5688  *
5689  * nr_free_buffer_pages() counts the number of pages which are beyond the high
5690  * watermark within ZONE_DMA and ZONE_NORMAL.
5691  *
5692  * Return: number of pages beyond high watermark within ZONE_DMA and
5693  * ZONE_NORMAL.
5694  */
5695 unsigned long nr_free_buffer_pages(void)
5696 {
5697 	return nr_free_zone_pages(gfp_zone(GFP_USER));
5698 }
5699 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
5700 
5701 static inline void show_node(struct zone *zone)
5702 {
5703 	if (IS_ENABLED(CONFIG_NUMA))
5704 		printk("Node %d ", zone_to_nid(zone));
5705 }
5706 
5707 long si_mem_available(void)
5708 {
5709 	long available;
5710 	unsigned long pagecache;
5711 	unsigned long wmark_low = 0;
5712 	unsigned long pages[NR_LRU_LISTS];
5713 	unsigned long reclaimable;
5714 	struct zone *zone;
5715 	int lru;
5716 
5717 	for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
5718 		pages[lru] = global_node_page_state(NR_LRU_BASE + lru);
5719 
5720 	for_each_zone(zone)
5721 		wmark_low += low_wmark_pages(zone);
5722 
5723 	/*
5724 	 * Estimate the amount of memory available for userspace allocations,
5725 	 * without causing swapping.
5726 	 */
5727 	available = global_zone_page_state(NR_FREE_PAGES) - totalreserve_pages;
5728 
5729 	/*
5730 	 * Not all the page cache can be freed, otherwise the system will
5731 	 * start swapping. Assume at least half of the page cache, or the
5732 	 * low watermark worth of cache, needs to stay.
5733 	 */
5734 	pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
5735 	pagecache -= min(pagecache / 2, wmark_low);
5736 	available += pagecache;
5737 
5738 	/*
5739 	 * Part of the reclaimable slab and other kernel memory consists of
5740 	 * items that are in use, and cannot be freed. Cap this estimate at the
5741 	 * low watermark.
5742 	 */
5743 	reclaimable = global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B) +
5744 		global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE);
5745 	available += reclaimable - min(reclaimable / 2, wmark_low);
5746 
5747 	if (available < 0)
5748 		available = 0;
5749 	return available;
5750 }
5751 EXPORT_SYMBOL_GPL(si_mem_available);
5752 
5753 void si_meminfo(struct sysinfo *val)
5754 {
5755 	val->totalram = totalram_pages();
5756 	val->sharedram = global_node_page_state(NR_SHMEM);
5757 	val->freeram = global_zone_page_state(NR_FREE_PAGES);
5758 	val->bufferram = nr_blockdev_pages();
5759 	val->totalhigh = totalhigh_pages();
5760 	val->freehigh = nr_free_highpages();
5761 	val->mem_unit = PAGE_SIZE;
5762 }
5763 
5764 EXPORT_SYMBOL(si_meminfo);
5765 
5766 #ifdef CONFIG_NUMA
5767 void si_meminfo_node(struct sysinfo *val, int nid)
5768 {
5769 	int zone_type;		/* needs to be signed */
5770 	unsigned long managed_pages = 0;
5771 	unsigned long managed_highpages = 0;
5772 	unsigned long free_highpages = 0;
5773 	pg_data_t *pgdat = NODE_DATA(nid);
5774 
5775 	for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
5776 		managed_pages += zone_managed_pages(&pgdat->node_zones[zone_type]);
5777 	val->totalram = managed_pages;
5778 	val->sharedram = node_page_state(pgdat, NR_SHMEM);
5779 	val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES);
5780 #ifdef CONFIG_HIGHMEM
5781 	for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
5782 		struct zone *zone = &pgdat->node_zones[zone_type];
5783 
5784 		if (is_highmem(zone)) {
5785 			managed_highpages += zone_managed_pages(zone);
5786 			free_highpages += zone_page_state(zone, NR_FREE_PAGES);
5787 		}
5788 	}
5789 	val->totalhigh = managed_highpages;
5790 	val->freehigh = free_highpages;
5791 #else
5792 	val->totalhigh = managed_highpages;
5793 	val->freehigh = free_highpages;
5794 #endif
5795 	val->mem_unit = PAGE_SIZE;
5796 }
5797 #endif
5798 
5799 /*
5800  * Determine whether the node should be displayed or not, depending on whether
5801  * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
5802  */
5803 static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask)
5804 {
5805 	if (!(flags & SHOW_MEM_FILTER_NODES))
5806 		return false;
5807 
5808 	/*
5809 	 * no node mask - aka implicit memory numa policy. Do not bother with
5810 	 * the synchronization - read_mems_allowed_begin - because we do not
5811 	 * have to be precise here.
5812 	 */
5813 	if (!nodemask)
5814 		nodemask = &cpuset_current_mems_allowed;
5815 
5816 	return !node_isset(nid, *nodemask);
5817 }
5818 
5819 #define K(x) ((x) << (PAGE_SHIFT-10))
5820 
5821 static void show_migration_types(unsigned char type)
5822 {
5823 	static const char types[MIGRATE_TYPES] = {
5824 		[MIGRATE_UNMOVABLE]	= 'U',
5825 		[MIGRATE_MOVABLE]	= 'M',
5826 		[MIGRATE_RECLAIMABLE]	= 'E',
5827 		[MIGRATE_HIGHATOMIC]	= 'H',
5828 #ifdef CONFIG_CMA
5829 		[MIGRATE_CMA]		= 'C',
5830 #endif
5831 #ifdef CONFIG_MEMORY_ISOLATION
5832 		[MIGRATE_ISOLATE]	= 'I',
5833 #endif
5834 	};
5835 	char tmp[MIGRATE_TYPES + 1];
5836 	char *p = tmp;
5837 	int i;
5838 
5839 	for (i = 0; i < MIGRATE_TYPES; i++) {
5840 		if (type & (1 << i))
5841 			*p++ = types[i];
5842 	}
5843 
5844 	*p = '\0';
5845 	printk(KERN_CONT "(%s) ", tmp);
5846 }
5847 
5848 /*
5849  * Show free area list (used inside shift_scroll-lock stuff)
5850  * We also calculate the percentage fragmentation. We do this by counting the
5851  * memory on each free list with the exception of the first item on the list.
5852  *
5853  * Bits in @filter:
5854  * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
5855  *   cpuset.
5856  */
5857 void show_free_areas(unsigned int filter, nodemask_t *nodemask)
5858 {
5859 	unsigned long free_pcp = 0;
5860 	int cpu;
5861 	struct zone *zone;
5862 	pg_data_t *pgdat;
5863 
5864 	for_each_populated_zone(zone) {
5865 		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5866 			continue;
5867 
5868 		for_each_online_cpu(cpu)
5869 			free_pcp += per_cpu_ptr(zone->per_cpu_pageset, cpu)->count;
5870 	}
5871 
5872 	printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
5873 		" active_file:%lu inactive_file:%lu isolated_file:%lu\n"
5874 		" unevictable:%lu dirty:%lu writeback:%lu\n"
5875 		" slab_reclaimable:%lu slab_unreclaimable:%lu\n"
5876 		" mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
5877 		" kernel_misc_reclaimable:%lu\n"
5878 		" free:%lu free_pcp:%lu free_cma:%lu\n",
5879 		global_node_page_state(NR_ACTIVE_ANON),
5880 		global_node_page_state(NR_INACTIVE_ANON),
5881 		global_node_page_state(NR_ISOLATED_ANON),
5882 		global_node_page_state(NR_ACTIVE_FILE),
5883 		global_node_page_state(NR_INACTIVE_FILE),
5884 		global_node_page_state(NR_ISOLATED_FILE),
5885 		global_node_page_state(NR_UNEVICTABLE),
5886 		global_node_page_state(NR_FILE_DIRTY),
5887 		global_node_page_state(NR_WRITEBACK),
5888 		global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B),
5889 		global_node_page_state_pages(NR_SLAB_UNRECLAIMABLE_B),
5890 		global_node_page_state(NR_FILE_MAPPED),
5891 		global_node_page_state(NR_SHMEM),
5892 		global_node_page_state(NR_PAGETABLE),
5893 		global_zone_page_state(NR_BOUNCE),
5894 		global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE),
5895 		global_zone_page_state(NR_FREE_PAGES),
5896 		free_pcp,
5897 		global_zone_page_state(NR_FREE_CMA_PAGES));
5898 
5899 	for_each_online_pgdat(pgdat) {
5900 		if (show_mem_node_skip(filter, pgdat->node_id, nodemask))
5901 			continue;
5902 
5903 		printk("Node %d"
5904 			" active_anon:%lukB"
5905 			" inactive_anon:%lukB"
5906 			" active_file:%lukB"
5907 			" inactive_file:%lukB"
5908 			" unevictable:%lukB"
5909 			" isolated(anon):%lukB"
5910 			" isolated(file):%lukB"
5911 			" mapped:%lukB"
5912 			" dirty:%lukB"
5913 			" writeback:%lukB"
5914 			" shmem:%lukB"
5915 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5916 			" shmem_thp: %lukB"
5917 			" shmem_pmdmapped: %lukB"
5918 			" anon_thp: %lukB"
5919 #endif
5920 			" writeback_tmp:%lukB"
5921 			" kernel_stack:%lukB"
5922 #ifdef CONFIG_SHADOW_CALL_STACK
5923 			" shadow_call_stack:%lukB"
5924 #endif
5925 			" pagetables:%lukB"
5926 			" all_unreclaimable? %s"
5927 			"\n",
5928 			pgdat->node_id,
5929 			K(node_page_state(pgdat, NR_ACTIVE_ANON)),
5930 			K(node_page_state(pgdat, NR_INACTIVE_ANON)),
5931 			K(node_page_state(pgdat, NR_ACTIVE_FILE)),
5932 			K(node_page_state(pgdat, NR_INACTIVE_FILE)),
5933 			K(node_page_state(pgdat, NR_UNEVICTABLE)),
5934 			K(node_page_state(pgdat, NR_ISOLATED_ANON)),
5935 			K(node_page_state(pgdat, NR_ISOLATED_FILE)),
5936 			K(node_page_state(pgdat, NR_FILE_MAPPED)),
5937 			K(node_page_state(pgdat, NR_FILE_DIRTY)),
5938 			K(node_page_state(pgdat, NR_WRITEBACK)),
5939 			K(node_page_state(pgdat, NR_SHMEM)),
5940 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5941 			K(node_page_state(pgdat, NR_SHMEM_THPS)),
5942 			K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)),
5943 			K(node_page_state(pgdat, NR_ANON_THPS)),
5944 #endif
5945 			K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
5946 			node_page_state(pgdat, NR_KERNEL_STACK_KB),
5947 #ifdef CONFIG_SHADOW_CALL_STACK
5948 			node_page_state(pgdat, NR_KERNEL_SCS_KB),
5949 #endif
5950 			K(node_page_state(pgdat, NR_PAGETABLE)),
5951 			pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ?
5952 				"yes" : "no");
5953 	}
5954 
5955 	for_each_populated_zone(zone) {
5956 		int i;
5957 
5958 		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5959 			continue;
5960 
5961 		free_pcp = 0;
5962 		for_each_online_cpu(cpu)
5963 			free_pcp += per_cpu_ptr(zone->per_cpu_pageset, cpu)->count;
5964 
5965 		show_node(zone);
5966 		printk(KERN_CONT
5967 			"%s"
5968 			" free:%lukB"
5969 			" boost:%lukB"
5970 			" min:%lukB"
5971 			" low:%lukB"
5972 			" high:%lukB"
5973 			" reserved_highatomic:%luKB"
5974 			" active_anon:%lukB"
5975 			" inactive_anon:%lukB"
5976 			" active_file:%lukB"
5977 			" inactive_file:%lukB"
5978 			" unevictable:%lukB"
5979 			" writepending:%lukB"
5980 			" present:%lukB"
5981 			" managed:%lukB"
5982 			" mlocked:%lukB"
5983 			" bounce:%lukB"
5984 			" free_pcp:%lukB"
5985 			" local_pcp:%ukB"
5986 			" free_cma:%lukB"
5987 			"\n",
5988 			zone->name,
5989 			K(zone_page_state(zone, NR_FREE_PAGES)),
5990 			K(zone->watermark_boost),
5991 			K(min_wmark_pages(zone)),
5992 			K(low_wmark_pages(zone)),
5993 			K(high_wmark_pages(zone)),
5994 			K(zone->nr_reserved_highatomic),
5995 			K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)),
5996 			K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)),
5997 			K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)),
5998 			K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)),
5999 			K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)),
6000 			K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)),
6001 			K(zone->present_pages),
6002 			K(zone_managed_pages(zone)),
6003 			K(zone_page_state(zone, NR_MLOCK)),
6004 			K(zone_page_state(zone, NR_BOUNCE)),
6005 			K(free_pcp),
6006 			K(this_cpu_read(zone->per_cpu_pageset->count)),
6007 			K(zone_page_state(zone, NR_FREE_CMA_PAGES)));
6008 		printk("lowmem_reserve[]:");
6009 		for (i = 0; i < MAX_NR_ZONES; i++)
6010 			printk(KERN_CONT " %ld", zone->lowmem_reserve[i]);
6011 		printk(KERN_CONT "\n");
6012 	}
6013 
6014 	for_each_populated_zone(zone) {
6015 		unsigned int order;
6016 		unsigned long nr[MAX_ORDER], flags, total = 0;
6017 		unsigned char types[MAX_ORDER];
6018 
6019 		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
6020 			continue;
6021 		show_node(zone);
6022 		printk(KERN_CONT "%s: ", zone->name);
6023 
6024 		spin_lock_irqsave(&zone->lock, flags);
6025 		for (order = 0; order < MAX_ORDER; order++) {
6026 			struct free_area *area = &zone->free_area[order];
6027 			int type;
6028 
6029 			nr[order] = area->nr_free;
6030 			total += nr[order] << order;
6031 
6032 			types[order] = 0;
6033 			for (type = 0; type < MIGRATE_TYPES; type++) {
6034 				if (!free_area_empty(area, type))
6035 					types[order] |= 1 << type;
6036 			}
6037 		}
6038 		spin_unlock_irqrestore(&zone->lock, flags);
6039 		for (order = 0; order < MAX_ORDER; order++) {
6040 			printk(KERN_CONT "%lu*%lukB ",
6041 			       nr[order], K(1UL) << order);
6042 			if (nr[order])
6043 				show_migration_types(types[order]);
6044 		}
6045 		printk(KERN_CONT "= %lukB\n", K(total));
6046 	}
6047 
6048 	hugetlb_show_meminfo();
6049 
6050 	printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES));
6051 
6052 	show_swap_cache_info();
6053 }
6054 
6055 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
6056 {
6057 	zoneref->zone = zone;
6058 	zoneref->zone_idx = zone_idx(zone);
6059 }
6060 
6061 /*
6062  * Builds allocation fallback zone lists.
6063  *
6064  * Add all populated zones of a node to the zonelist.
6065  */
6066 static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs)
6067 {
6068 	struct zone *zone;
6069 	enum zone_type zone_type = MAX_NR_ZONES;
6070 	int nr_zones = 0;
6071 
6072 	do {
6073 		zone_type--;
6074 		zone = pgdat->node_zones + zone_type;
6075 		if (managed_zone(zone)) {
6076 			zoneref_set_zone(zone, &zonerefs[nr_zones++]);
6077 			check_highest_zone(zone_type);
6078 		}
6079 	} while (zone_type);
6080 
6081 	return nr_zones;
6082 }
6083 
6084 #ifdef CONFIG_NUMA
6085 
6086 static int __parse_numa_zonelist_order(char *s)
6087 {
6088 	/*
6089 	 * We used to support different zonelists modes but they turned
6090 	 * out to be just not useful. Let's keep the warning in place
6091 	 * if somebody still use the cmd line parameter so that we do
6092 	 * not fail it silently
6093 	 */
6094 	if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) {
6095 		pr_warn("Ignoring unsupported numa_zonelist_order value:  %s\n", s);
6096 		return -EINVAL;
6097 	}
6098 	return 0;
6099 }
6100 
6101 char numa_zonelist_order[] = "Node";
6102 
6103 /*
6104  * sysctl handler for numa_zonelist_order
6105  */
6106 int numa_zonelist_order_handler(struct ctl_table *table, int write,
6107 		void *buffer, size_t *length, loff_t *ppos)
6108 {
6109 	if (write)
6110 		return __parse_numa_zonelist_order(buffer);
6111 	return proc_dostring(table, write, buffer, length, ppos);
6112 }
6113 
6114 
6115 #define MAX_NODE_LOAD (nr_online_nodes)
6116 static int node_load[MAX_NUMNODES];
6117 
6118 /**
6119  * find_next_best_node - find the next node that should appear in a given node's fallback list
6120  * @node: node whose fallback list we're appending
6121  * @used_node_mask: nodemask_t of already used nodes
6122  *
6123  * We use a number of factors to determine which is the next node that should
6124  * appear on a given node's fallback list.  The node should not have appeared
6125  * already in @node's fallback list, and it should be the next closest node
6126  * according to the distance array (which contains arbitrary distance values
6127  * from each node to each node in the system), and should also prefer nodes
6128  * with no CPUs, since presumably they'll have very little allocation pressure
6129  * on them otherwise.
6130  *
6131  * Return: node id of the found node or %NUMA_NO_NODE if no node is found.
6132  */
6133 int find_next_best_node(int node, nodemask_t *used_node_mask)
6134 {
6135 	int n, val;
6136 	int min_val = INT_MAX;
6137 	int best_node = NUMA_NO_NODE;
6138 
6139 	/* Use the local node if we haven't already */
6140 	if (!node_isset(node, *used_node_mask)) {
6141 		node_set(node, *used_node_mask);
6142 		return node;
6143 	}
6144 
6145 	for_each_node_state(n, N_MEMORY) {
6146 
6147 		/* Don't want a node to appear more than once */
6148 		if (node_isset(n, *used_node_mask))
6149 			continue;
6150 
6151 		/* Use the distance array to find the distance */
6152 		val = node_distance(node, n);
6153 
6154 		/* Penalize nodes under us ("prefer the next node") */
6155 		val += (n < node);
6156 
6157 		/* Give preference to headless and unused nodes */
6158 		if (!cpumask_empty(cpumask_of_node(n)))
6159 			val += PENALTY_FOR_NODE_WITH_CPUS;
6160 
6161 		/* Slight preference for less loaded node */
6162 		val *= (MAX_NODE_LOAD*MAX_NUMNODES);
6163 		val += node_load[n];
6164 
6165 		if (val < min_val) {
6166 			min_val = val;
6167 			best_node = n;
6168 		}
6169 	}
6170 
6171 	if (best_node >= 0)
6172 		node_set(best_node, *used_node_mask);
6173 
6174 	return best_node;
6175 }
6176 
6177 
6178 /*
6179  * Build zonelists ordered by node and zones within node.
6180  * This results in maximum locality--normal zone overflows into local
6181  * DMA zone, if any--but risks exhausting DMA zone.
6182  */
6183 static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order,
6184 		unsigned nr_nodes)
6185 {
6186 	struct zoneref *zonerefs;
6187 	int i;
6188 
6189 	zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
6190 
6191 	for (i = 0; i < nr_nodes; i++) {
6192 		int nr_zones;
6193 
6194 		pg_data_t *node = NODE_DATA(node_order[i]);
6195 
6196 		nr_zones = build_zonerefs_node(node, zonerefs);
6197 		zonerefs += nr_zones;
6198 	}
6199 	zonerefs->zone = NULL;
6200 	zonerefs->zone_idx = 0;
6201 }
6202 
6203 /*
6204  * Build gfp_thisnode zonelists
6205  */
6206 static void build_thisnode_zonelists(pg_data_t *pgdat)
6207 {
6208 	struct zoneref *zonerefs;
6209 	int nr_zones;
6210 
6211 	zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs;
6212 	nr_zones = build_zonerefs_node(pgdat, zonerefs);
6213 	zonerefs += nr_zones;
6214 	zonerefs->zone = NULL;
6215 	zonerefs->zone_idx = 0;
6216 }
6217 
6218 /*
6219  * Build zonelists ordered by zone and nodes within zones.
6220  * This results in conserving DMA zone[s] until all Normal memory is
6221  * exhausted, but results in overflowing to remote node while memory
6222  * may still exist in local DMA zone.
6223  */
6224 
6225 static void build_zonelists(pg_data_t *pgdat)
6226 {
6227 	static int node_order[MAX_NUMNODES];
6228 	int node, load, nr_nodes = 0;
6229 	nodemask_t used_mask = NODE_MASK_NONE;
6230 	int local_node, prev_node;
6231 
6232 	/* NUMA-aware ordering of nodes */
6233 	local_node = pgdat->node_id;
6234 	load = nr_online_nodes;
6235 	prev_node = local_node;
6236 
6237 	memset(node_order, 0, sizeof(node_order));
6238 	while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
6239 		/*
6240 		 * We don't want to pressure a particular node.
6241 		 * So adding penalty to the first node in same
6242 		 * distance group to make it round-robin.
6243 		 */
6244 		if (node_distance(local_node, node) !=
6245 		    node_distance(local_node, prev_node))
6246 			node_load[node] += load;
6247 
6248 		node_order[nr_nodes++] = node;
6249 		prev_node = node;
6250 		load--;
6251 	}
6252 
6253 	build_zonelists_in_node_order(pgdat, node_order, nr_nodes);
6254 	build_thisnode_zonelists(pgdat);
6255 	pr_info("Fallback order for Node %d: ", local_node);
6256 	for (node = 0; node < nr_nodes; node++)
6257 		pr_cont("%d ", node_order[node]);
6258 	pr_cont("\n");
6259 }
6260 
6261 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
6262 /*
6263  * Return node id of node used for "local" allocations.
6264  * I.e., first node id of first zone in arg node's generic zonelist.
6265  * Used for initializing percpu 'numa_mem', which is used primarily
6266  * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
6267  */
6268 int local_memory_node(int node)
6269 {
6270 	struct zoneref *z;
6271 
6272 	z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
6273 				   gfp_zone(GFP_KERNEL),
6274 				   NULL);
6275 	return zone_to_nid(z->zone);
6276 }
6277 #endif
6278 
6279 static void setup_min_unmapped_ratio(void);
6280 static void setup_min_slab_ratio(void);
6281 #else	/* CONFIG_NUMA */
6282 
6283 static void build_zonelists(pg_data_t *pgdat)
6284 {
6285 	int node, local_node;
6286 	struct zoneref *zonerefs;
6287 	int nr_zones;
6288 
6289 	local_node = pgdat->node_id;
6290 
6291 	zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
6292 	nr_zones = build_zonerefs_node(pgdat, zonerefs);
6293 	zonerefs += nr_zones;
6294 
6295 	/*
6296 	 * Now we build the zonelist so that it contains the zones
6297 	 * of all the other nodes.
6298 	 * We don't want to pressure a particular node, so when
6299 	 * building the zones for node N, we make sure that the
6300 	 * zones coming right after the local ones are those from
6301 	 * node N+1 (modulo N)
6302 	 */
6303 	for (node = local_node + 1; node < MAX_NUMNODES; node++) {
6304 		if (!node_online(node))
6305 			continue;
6306 		nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
6307 		zonerefs += nr_zones;
6308 	}
6309 	for (node = 0; node < local_node; node++) {
6310 		if (!node_online(node))
6311 			continue;
6312 		nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
6313 		zonerefs += nr_zones;
6314 	}
6315 
6316 	zonerefs->zone = NULL;
6317 	zonerefs->zone_idx = 0;
6318 }
6319 
6320 #endif	/* CONFIG_NUMA */
6321 
6322 /*
6323  * Boot pageset table. One per cpu which is going to be used for all
6324  * zones and all nodes. The parameters will be set in such a way
6325  * that an item put on a list will immediately be handed over to
6326  * the buddy list. This is safe since pageset manipulation is done
6327  * with interrupts disabled.
6328  *
6329  * The boot_pagesets must be kept even after bootup is complete for
6330  * unused processors and/or zones. They do play a role for bootstrapping
6331  * hotplugged processors.
6332  *
6333  * zoneinfo_show() and maybe other functions do
6334  * not check if the processor is online before following the pageset pointer.
6335  * Other parts of the kernel may not check if the zone is available.
6336  */
6337 static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats);
6338 /* These effectively disable the pcplists in the boot pageset completely */
6339 #define BOOT_PAGESET_HIGH	0
6340 #define BOOT_PAGESET_BATCH	1
6341 static DEFINE_PER_CPU(struct per_cpu_pages, boot_pageset);
6342 static DEFINE_PER_CPU(struct per_cpu_zonestat, boot_zonestats);
6343 DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats);
6344 
6345 static void __build_all_zonelists(void *data)
6346 {
6347 	int nid;
6348 	int __maybe_unused cpu;
6349 	pg_data_t *self = data;
6350 	static DEFINE_SPINLOCK(lock);
6351 
6352 	spin_lock(&lock);
6353 
6354 #ifdef CONFIG_NUMA
6355 	memset(node_load, 0, sizeof(node_load));
6356 #endif
6357 
6358 	/*
6359 	 * This node is hotadded and no memory is yet present.   So just
6360 	 * building zonelists is fine - no need to touch other nodes.
6361 	 */
6362 	if (self && !node_online(self->node_id)) {
6363 		build_zonelists(self);
6364 	} else {
6365 		/*
6366 		 * All possible nodes have pgdat preallocated
6367 		 * in free_area_init
6368 		 */
6369 		for_each_node(nid) {
6370 			pg_data_t *pgdat = NODE_DATA(nid);
6371 
6372 			build_zonelists(pgdat);
6373 		}
6374 
6375 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
6376 		/*
6377 		 * We now know the "local memory node" for each node--
6378 		 * i.e., the node of the first zone in the generic zonelist.
6379 		 * Set up numa_mem percpu variable for on-line cpus.  During
6380 		 * boot, only the boot cpu should be on-line;  we'll init the
6381 		 * secondary cpus' numa_mem as they come on-line.  During
6382 		 * node/memory hotplug, we'll fixup all on-line cpus.
6383 		 */
6384 		for_each_online_cpu(cpu)
6385 			set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
6386 #endif
6387 	}
6388 
6389 	spin_unlock(&lock);
6390 }
6391 
6392 static noinline void __init
6393 build_all_zonelists_init(void)
6394 {
6395 	int cpu;
6396 
6397 	__build_all_zonelists(NULL);
6398 
6399 	/*
6400 	 * Initialize the boot_pagesets that are going to be used
6401 	 * for bootstrapping processors. The real pagesets for
6402 	 * each zone will be allocated later when the per cpu
6403 	 * allocator is available.
6404 	 *
6405 	 * boot_pagesets are used also for bootstrapping offline
6406 	 * cpus if the system is already booted because the pagesets
6407 	 * are needed to initialize allocators on a specific cpu too.
6408 	 * F.e. the percpu allocator needs the page allocator which
6409 	 * needs the percpu allocator in order to allocate its pagesets
6410 	 * (a chicken-egg dilemma).
6411 	 */
6412 	for_each_possible_cpu(cpu)
6413 		per_cpu_pages_init(&per_cpu(boot_pageset, cpu), &per_cpu(boot_zonestats, cpu));
6414 
6415 	mminit_verify_zonelist();
6416 	cpuset_init_current_mems_allowed();
6417 }
6418 
6419 /*
6420  * unless system_state == SYSTEM_BOOTING.
6421  *
6422  * __ref due to call of __init annotated helper build_all_zonelists_init
6423  * [protected by SYSTEM_BOOTING].
6424  */
6425 void __ref build_all_zonelists(pg_data_t *pgdat)
6426 {
6427 	unsigned long vm_total_pages;
6428 
6429 	if (system_state == SYSTEM_BOOTING) {
6430 		build_all_zonelists_init();
6431 	} else {
6432 		__build_all_zonelists(pgdat);
6433 		/* cpuset refresh routine should be here */
6434 	}
6435 	/* Get the number of free pages beyond high watermark in all zones. */
6436 	vm_total_pages = nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
6437 	/*
6438 	 * Disable grouping by mobility if the number of pages in the
6439 	 * system is too low to allow the mechanism to work. It would be
6440 	 * more accurate, but expensive to check per-zone. This check is
6441 	 * made on memory-hotadd so a system can start with mobility
6442 	 * disabled and enable it later
6443 	 */
6444 	if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
6445 		page_group_by_mobility_disabled = 1;
6446 	else
6447 		page_group_by_mobility_disabled = 0;
6448 
6449 	pr_info("Built %u zonelists, mobility grouping %s.  Total pages: %ld\n",
6450 		nr_online_nodes,
6451 		page_group_by_mobility_disabled ? "off" : "on",
6452 		vm_total_pages);
6453 #ifdef CONFIG_NUMA
6454 	pr_info("Policy zone: %s\n", zone_names[policy_zone]);
6455 #endif
6456 }
6457 
6458 /* If zone is ZONE_MOVABLE but memory is mirrored, it is an overlapped init */
6459 static bool __meminit
6460 overlap_memmap_init(unsigned long zone, unsigned long *pfn)
6461 {
6462 	static struct memblock_region *r;
6463 
6464 	if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
6465 		if (!r || *pfn >= memblock_region_memory_end_pfn(r)) {
6466 			for_each_mem_region(r) {
6467 				if (*pfn < memblock_region_memory_end_pfn(r))
6468 					break;
6469 			}
6470 		}
6471 		if (*pfn >= memblock_region_memory_base_pfn(r) &&
6472 		    memblock_is_mirror(r)) {
6473 			*pfn = memblock_region_memory_end_pfn(r);
6474 			return true;
6475 		}
6476 	}
6477 	return false;
6478 }
6479 
6480 /*
6481  * Initially all pages are reserved - free ones are freed
6482  * up by memblock_free_all() once the early boot process is
6483  * done. Non-atomic initialization, single-pass.
6484  *
6485  * All aligned pageblocks are initialized to the specified migratetype
6486  * (usually MIGRATE_MOVABLE). Besides setting the migratetype, no related
6487  * zone stats (e.g., nr_isolate_pageblock) are touched.
6488  */
6489 void __meminit memmap_init_range(unsigned long size, int nid, unsigned long zone,
6490 		unsigned long start_pfn, unsigned long zone_end_pfn,
6491 		enum meminit_context context,
6492 		struct vmem_altmap *altmap, int migratetype)
6493 {
6494 	unsigned long pfn, end_pfn = start_pfn + size;
6495 	struct page *page;
6496 
6497 	if (highest_memmap_pfn < end_pfn - 1)
6498 		highest_memmap_pfn = end_pfn - 1;
6499 
6500 #ifdef CONFIG_ZONE_DEVICE
6501 	/*
6502 	 * Honor reservation requested by the driver for this ZONE_DEVICE
6503 	 * memory. We limit the total number of pages to initialize to just
6504 	 * those that might contain the memory mapping. We will defer the
6505 	 * ZONE_DEVICE page initialization until after we have released
6506 	 * the hotplug lock.
6507 	 */
6508 	if (zone == ZONE_DEVICE) {
6509 		if (!altmap)
6510 			return;
6511 
6512 		if (start_pfn == altmap->base_pfn)
6513 			start_pfn += altmap->reserve;
6514 		end_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
6515 	}
6516 #endif
6517 
6518 	for (pfn = start_pfn; pfn < end_pfn; ) {
6519 		/*
6520 		 * There can be holes in boot-time mem_map[]s handed to this
6521 		 * function.  They do not exist on hotplugged memory.
6522 		 */
6523 		if (context == MEMINIT_EARLY) {
6524 			if (overlap_memmap_init(zone, &pfn))
6525 				continue;
6526 			if (defer_init(nid, pfn, zone_end_pfn))
6527 				break;
6528 		}
6529 
6530 		page = pfn_to_page(pfn);
6531 		__init_single_page(page, pfn, zone, nid);
6532 		if (context == MEMINIT_HOTPLUG)
6533 			__SetPageReserved(page);
6534 
6535 		/*
6536 		 * Usually, we want to mark the pageblock MIGRATE_MOVABLE,
6537 		 * such that unmovable allocations won't be scattered all
6538 		 * over the place during system boot.
6539 		 */
6540 		if (IS_ALIGNED(pfn, pageblock_nr_pages)) {
6541 			set_pageblock_migratetype(page, migratetype);
6542 			cond_resched();
6543 		}
6544 		pfn++;
6545 	}
6546 }
6547 
6548 #ifdef CONFIG_ZONE_DEVICE
6549 static void __ref __init_zone_device_page(struct page *page, unsigned long pfn,
6550 					  unsigned long zone_idx, int nid,
6551 					  struct dev_pagemap *pgmap)
6552 {
6553 
6554 	__init_single_page(page, pfn, zone_idx, nid);
6555 
6556 	/*
6557 	 * Mark page reserved as it will need to wait for onlining
6558 	 * phase for it to be fully associated with a zone.
6559 	 *
6560 	 * We can use the non-atomic __set_bit operation for setting
6561 	 * the flag as we are still initializing the pages.
6562 	 */
6563 	__SetPageReserved(page);
6564 
6565 	/*
6566 	 * ZONE_DEVICE pages union ->lru with a ->pgmap back pointer
6567 	 * and zone_device_data.  It is a bug if a ZONE_DEVICE page is
6568 	 * ever freed or placed on a driver-private list.
6569 	 */
6570 	page->pgmap = pgmap;
6571 	page->zone_device_data = NULL;
6572 
6573 	/*
6574 	 * Mark the block movable so that blocks are reserved for
6575 	 * movable at startup. This will force kernel allocations
6576 	 * to reserve their blocks rather than leaking throughout
6577 	 * the address space during boot when many long-lived
6578 	 * kernel allocations are made.
6579 	 *
6580 	 * Please note that MEMINIT_HOTPLUG path doesn't clear memmap
6581 	 * because this is done early in section_activate()
6582 	 */
6583 	if (IS_ALIGNED(pfn, pageblock_nr_pages)) {
6584 		set_pageblock_migratetype(page, MIGRATE_MOVABLE);
6585 		cond_resched();
6586 	}
6587 }
6588 
6589 static void __ref memmap_init_compound(struct page *head,
6590 				       unsigned long head_pfn,
6591 				       unsigned long zone_idx, int nid,
6592 				       struct dev_pagemap *pgmap,
6593 				       unsigned long nr_pages)
6594 {
6595 	unsigned long pfn, end_pfn = head_pfn + nr_pages;
6596 	unsigned int order = pgmap->vmemmap_shift;
6597 
6598 	__SetPageHead(head);
6599 	for (pfn = head_pfn + 1; pfn < end_pfn; pfn++) {
6600 		struct page *page = pfn_to_page(pfn);
6601 
6602 		__init_zone_device_page(page, pfn, zone_idx, nid, pgmap);
6603 		prep_compound_tail(head, pfn - head_pfn);
6604 		set_page_count(page, 0);
6605 
6606 		/*
6607 		 * The first tail page stores compound_mapcount_ptr() and
6608 		 * compound_order() and the second tail page stores
6609 		 * compound_pincount_ptr(). Call prep_compound_head() after
6610 		 * the first and second tail pages have been initialized to
6611 		 * not have the data overwritten.
6612 		 */
6613 		if (pfn == head_pfn + 2)
6614 			prep_compound_head(head, order);
6615 	}
6616 }
6617 
6618 void __ref memmap_init_zone_device(struct zone *zone,
6619 				   unsigned long start_pfn,
6620 				   unsigned long nr_pages,
6621 				   struct dev_pagemap *pgmap)
6622 {
6623 	unsigned long pfn, end_pfn = start_pfn + nr_pages;
6624 	struct pglist_data *pgdat = zone->zone_pgdat;
6625 	struct vmem_altmap *altmap = pgmap_altmap(pgmap);
6626 	unsigned int pfns_per_compound = pgmap_vmemmap_nr(pgmap);
6627 	unsigned long zone_idx = zone_idx(zone);
6628 	unsigned long start = jiffies;
6629 	int nid = pgdat->node_id;
6630 
6631 	if (WARN_ON_ONCE(!pgmap || zone_idx(zone) != ZONE_DEVICE))
6632 		return;
6633 
6634 	/*
6635 	 * The call to memmap_init should have already taken care
6636 	 * of the pages reserved for the memmap, so we can just jump to
6637 	 * the end of that region and start processing the device pages.
6638 	 */
6639 	if (altmap) {
6640 		start_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
6641 		nr_pages = end_pfn - start_pfn;
6642 	}
6643 
6644 	for (pfn = start_pfn; pfn < end_pfn; pfn += pfns_per_compound) {
6645 		struct page *page = pfn_to_page(pfn);
6646 
6647 		__init_zone_device_page(page, pfn, zone_idx, nid, pgmap);
6648 
6649 		if (pfns_per_compound == 1)
6650 			continue;
6651 
6652 		memmap_init_compound(page, pfn, zone_idx, nid, pgmap,
6653 				     pfns_per_compound);
6654 	}
6655 
6656 	pr_info("%s initialised %lu pages in %ums\n", __func__,
6657 		nr_pages, jiffies_to_msecs(jiffies - start));
6658 }
6659 
6660 #endif
6661 static void __meminit zone_init_free_lists(struct zone *zone)
6662 {
6663 	unsigned int order, t;
6664 	for_each_migratetype_order(order, t) {
6665 		INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
6666 		zone->free_area[order].nr_free = 0;
6667 	}
6668 }
6669 
6670 /*
6671  * Only struct pages that correspond to ranges defined by memblock.memory
6672  * are zeroed and initialized by going through __init_single_page() during
6673  * memmap_init_zone_range().
6674  *
6675  * But, there could be struct pages that correspond to holes in
6676  * memblock.memory. This can happen because of the following reasons:
6677  * - physical memory bank size is not necessarily the exact multiple of the
6678  *   arbitrary section size
6679  * - early reserved memory may not be listed in memblock.memory
6680  * - memory layouts defined with memmap= kernel parameter may not align
6681  *   nicely with memmap sections
6682  *
6683  * Explicitly initialize those struct pages so that:
6684  * - PG_Reserved is set
6685  * - zone and node links point to zone and node that span the page if the
6686  *   hole is in the middle of a zone
6687  * - zone and node links point to adjacent zone/node if the hole falls on
6688  *   the zone boundary; the pages in such holes will be prepended to the
6689  *   zone/node above the hole except for the trailing pages in the last
6690  *   section that will be appended to the zone/node below.
6691  */
6692 static void __init init_unavailable_range(unsigned long spfn,
6693 					  unsigned long epfn,
6694 					  int zone, int node)
6695 {
6696 	unsigned long pfn;
6697 	u64 pgcnt = 0;
6698 
6699 	for (pfn = spfn; pfn < epfn; pfn++) {
6700 		if (!pfn_valid(ALIGN_DOWN(pfn, pageblock_nr_pages))) {
6701 			pfn = ALIGN_DOWN(pfn, pageblock_nr_pages)
6702 				+ pageblock_nr_pages - 1;
6703 			continue;
6704 		}
6705 		__init_single_page(pfn_to_page(pfn), pfn, zone, node);
6706 		__SetPageReserved(pfn_to_page(pfn));
6707 		pgcnt++;
6708 	}
6709 
6710 	if (pgcnt)
6711 		pr_info("On node %d, zone %s: %lld pages in unavailable ranges",
6712 			node, zone_names[zone], pgcnt);
6713 }
6714 
6715 static void __init memmap_init_zone_range(struct zone *zone,
6716 					  unsigned long start_pfn,
6717 					  unsigned long end_pfn,
6718 					  unsigned long *hole_pfn)
6719 {
6720 	unsigned long zone_start_pfn = zone->zone_start_pfn;
6721 	unsigned long zone_end_pfn = zone_start_pfn + zone->spanned_pages;
6722 	int nid = zone_to_nid(zone), zone_id = zone_idx(zone);
6723 
6724 	start_pfn = clamp(start_pfn, zone_start_pfn, zone_end_pfn);
6725 	end_pfn = clamp(end_pfn, zone_start_pfn, zone_end_pfn);
6726 
6727 	if (start_pfn >= end_pfn)
6728 		return;
6729 
6730 	memmap_init_range(end_pfn - start_pfn, nid, zone_id, start_pfn,
6731 			  zone_end_pfn, MEMINIT_EARLY, NULL, MIGRATE_MOVABLE);
6732 
6733 	if (*hole_pfn < start_pfn)
6734 		init_unavailable_range(*hole_pfn, start_pfn, zone_id, nid);
6735 
6736 	*hole_pfn = end_pfn;
6737 }
6738 
6739 static void __init memmap_init(void)
6740 {
6741 	unsigned long start_pfn, end_pfn;
6742 	unsigned long hole_pfn = 0;
6743 	int i, j, zone_id = 0, nid;
6744 
6745 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
6746 		struct pglist_data *node = NODE_DATA(nid);
6747 
6748 		for (j = 0; j < MAX_NR_ZONES; j++) {
6749 			struct zone *zone = node->node_zones + j;
6750 
6751 			if (!populated_zone(zone))
6752 				continue;
6753 
6754 			memmap_init_zone_range(zone, start_pfn, end_pfn,
6755 					       &hole_pfn);
6756 			zone_id = j;
6757 		}
6758 	}
6759 
6760 #ifdef CONFIG_SPARSEMEM
6761 	/*
6762 	 * Initialize the memory map for hole in the range [memory_end,
6763 	 * section_end].
6764 	 * Append the pages in this hole to the highest zone in the last
6765 	 * node.
6766 	 * The call to init_unavailable_range() is outside the ifdef to
6767 	 * silence the compiler warining about zone_id set but not used;
6768 	 * for FLATMEM it is a nop anyway
6769 	 */
6770 	end_pfn = round_up(end_pfn, PAGES_PER_SECTION);
6771 	if (hole_pfn < end_pfn)
6772 #endif
6773 		init_unavailable_range(hole_pfn, end_pfn, zone_id, nid);
6774 }
6775 
6776 void __init *memmap_alloc(phys_addr_t size, phys_addr_t align,
6777 			  phys_addr_t min_addr, int nid, bool exact_nid)
6778 {
6779 	void *ptr;
6780 
6781 	if (exact_nid)
6782 		ptr = memblock_alloc_exact_nid_raw(size, align, min_addr,
6783 						   MEMBLOCK_ALLOC_ACCESSIBLE,
6784 						   nid);
6785 	else
6786 		ptr = memblock_alloc_try_nid_raw(size, align, min_addr,
6787 						 MEMBLOCK_ALLOC_ACCESSIBLE,
6788 						 nid);
6789 
6790 	if (ptr && size > 0)
6791 		page_init_poison(ptr, size);
6792 
6793 	return ptr;
6794 }
6795 
6796 static int zone_batchsize(struct zone *zone)
6797 {
6798 #ifdef CONFIG_MMU
6799 	int batch;
6800 
6801 	/*
6802 	 * The number of pages to batch allocate is either ~0.1%
6803 	 * of the zone or 1MB, whichever is smaller. The batch
6804 	 * size is striking a balance between allocation latency
6805 	 * and zone lock contention.
6806 	 */
6807 	batch = min(zone_managed_pages(zone) >> 10, (1024 * 1024) / PAGE_SIZE);
6808 	batch /= 4;		/* We effectively *= 4 below */
6809 	if (batch < 1)
6810 		batch = 1;
6811 
6812 	/*
6813 	 * Clamp the batch to a 2^n - 1 value. Having a power
6814 	 * of 2 value was found to be more likely to have
6815 	 * suboptimal cache aliasing properties in some cases.
6816 	 *
6817 	 * For example if 2 tasks are alternately allocating
6818 	 * batches of pages, one task can end up with a lot
6819 	 * of pages of one half of the possible page colors
6820 	 * and the other with pages of the other colors.
6821 	 */
6822 	batch = rounddown_pow_of_two(batch + batch/2) - 1;
6823 
6824 	return batch;
6825 
6826 #else
6827 	/* The deferral and batching of frees should be suppressed under NOMMU
6828 	 * conditions.
6829 	 *
6830 	 * The problem is that NOMMU needs to be able to allocate large chunks
6831 	 * of contiguous memory as there's no hardware page translation to
6832 	 * assemble apparent contiguous memory from discontiguous pages.
6833 	 *
6834 	 * Queueing large contiguous runs of pages for batching, however,
6835 	 * causes the pages to actually be freed in smaller chunks.  As there
6836 	 * can be a significant delay between the individual batches being
6837 	 * recycled, this leads to the once large chunks of space being
6838 	 * fragmented and becoming unavailable for high-order allocations.
6839 	 */
6840 	return 0;
6841 #endif
6842 }
6843 
6844 static int zone_highsize(struct zone *zone, int batch, int cpu_online)
6845 {
6846 #ifdef CONFIG_MMU
6847 	int high;
6848 	int nr_split_cpus;
6849 	unsigned long total_pages;
6850 
6851 	if (!percpu_pagelist_high_fraction) {
6852 		/*
6853 		 * By default, the high value of the pcp is based on the zone
6854 		 * low watermark so that if they are full then background
6855 		 * reclaim will not be started prematurely.
6856 		 */
6857 		total_pages = low_wmark_pages(zone);
6858 	} else {
6859 		/*
6860 		 * If percpu_pagelist_high_fraction is configured, the high
6861 		 * value is based on a fraction of the managed pages in the
6862 		 * zone.
6863 		 */
6864 		total_pages = zone_managed_pages(zone) / percpu_pagelist_high_fraction;
6865 	}
6866 
6867 	/*
6868 	 * Split the high value across all online CPUs local to the zone. Note
6869 	 * that early in boot that CPUs may not be online yet and that during
6870 	 * CPU hotplug that the cpumask is not yet updated when a CPU is being
6871 	 * onlined. For memory nodes that have no CPUs, split pcp->high across
6872 	 * all online CPUs to mitigate the risk that reclaim is triggered
6873 	 * prematurely due to pages stored on pcp lists.
6874 	 */
6875 	nr_split_cpus = cpumask_weight(cpumask_of_node(zone_to_nid(zone))) + cpu_online;
6876 	if (!nr_split_cpus)
6877 		nr_split_cpus = num_online_cpus();
6878 	high = total_pages / nr_split_cpus;
6879 
6880 	/*
6881 	 * Ensure high is at least batch*4. The multiple is based on the
6882 	 * historical relationship between high and batch.
6883 	 */
6884 	high = max(high, batch << 2);
6885 
6886 	return high;
6887 #else
6888 	return 0;
6889 #endif
6890 }
6891 
6892 /*
6893  * pcp->high and pcp->batch values are related and generally batch is lower
6894  * than high. They are also related to pcp->count such that count is lower
6895  * than high, and as soon as it reaches high, the pcplist is flushed.
6896  *
6897  * However, guaranteeing these relations at all times would require e.g. write
6898  * barriers here but also careful usage of read barriers at the read side, and
6899  * thus be prone to error and bad for performance. Thus the update only prevents
6900  * store tearing. Any new users of pcp->batch and pcp->high should ensure they
6901  * can cope with those fields changing asynchronously, and fully trust only the
6902  * pcp->count field on the local CPU with interrupts disabled.
6903  *
6904  * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
6905  * outside of boot time (or some other assurance that no concurrent updaters
6906  * exist).
6907  */
6908 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
6909 		unsigned long batch)
6910 {
6911 	WRITE_ONCE(pcp->batch, batch);
6912 	WRITE_ONCE(pcp->high, high);
6913 }
6914 
6915 static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats)
6916 {
6917 	int pindex;
6918 
6919 	memset(pcp, 0, sizeof(*pcp));
6920 	memset(pzstats, 0, sizeof(*pzstats));
6921 
6922 	for (pindex = 0; pindex < NR_PCP_LISTS; pindex++)
6923 		INIT_LIST_HEAD(&pcp->lists[pindex]);
6924 
6925 	/*
6926 	 * Set batch and high values safe for a boot pageset. A true percpu
6927 	 * pageset's initialization will update them subsequently. Here we don't
6928 	 * need to be as careful as pageset_update() as nobody can access the
6929 	 * pageset yet.
6930 	 */
6931 	pcp->high = BOOT_PAGESET_HIGH;
6932 	pcp->batch = BOOT_PAGESET_BATCH;
6933 	pcp->free_factor = 0;
6934 }
6935 
6936 static void __zone_set_pageset_high_and_batch(struct zone *zone, unsigned long high,
6937 		unsigned long batch)
6938 {
6939 	struct per_cpu_pages *pcp;
6940 	int cpu;
6941 
6942 	for_each_possible_cpu(cpu) {
6943 		pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
6944 		pageset_update(pcp, high, batch);
6945 	}
6946 }
6947 
6948 /*
6949  * Calculate and set new high and batch values for all per-cpu pagesets of a
6950  * zone based on the zone's size.
6951  */
6952 static void zone_set_pageset_high_and_batch(struct zone *zone, int cpu_online)
6953 {
6954 	int new_high, new_batch;
6955 
6956 	new_batch = max(1, zone_batchsize(zone));
6957 	new_high = zone_highsize(zone, new_batch, cpu_online);
6958 
6959 	if (zone->pageset_high == new_high &&
6960 	    zone->pageset_batch == new_batch)
6961 		return;
6962 
6963 	zone->pageset_high = new_high;
6964 	zone->pageset_batch = new_batch;
6965 
6966 	__zone_set_pageset_high_and_batch(zone, new_high, new_batch);
6967 }
6968 
6969 void __meminit setup_zone_pageset(struct zone *zone)
6970 {
6971 	int cpu;
6972 
6973 	/* Size may be 0 on !SMP && !NUMA */
6974 	if (sizeof(struct per_cpu_zonestat) > 0)
6975 		zone->per_cpu_zonestats = alloc_percpu(struct per_cpu_zonestat);
6976 
6977 	zone->per_cpu_pageset = alloc_percpu(struct per_cpu_pages);
6978 	for_each_possible_cpu(cpu) {
6979 		struct per_cpu_pages *pcp;
6980 		struct per_cpu_zonestat *pzstats;
6981 
6982 		pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
6983 		pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
6984 		per_cpu_pages_init(pcp, pzstats);
6985 	}
6986 
6987 	zone_set_pageset_high_and_batch(zone, 0);
6988 }
6989 
6990 /*
6991  * Allocate per cpu pagesets and initialize them.
6992  * Before this call only boot pagesets were available.
6993  */
6994 void __init setup_per_cpu_pageset(void)
6995 {
6996 	struct pglist_data *pgdat;
6997 	struct zone *zone;
6998 	int __maybe_unused cpu;
6999 
7000 	for_each_populated_zone(zone)
7001 		setup_zone_pageset(zone);
7002 
7003 #ifdef CONFIG_NUMA
7004 	/*
7005 	 * Unpopulated zones continue using the boot pagesets.
7006 	 * The numa stats for these pagesets need to be reset.
7007 	 * Otherwise, they will end up skewing the stats of
7008 	 * the nodes these zones are associated with.
7009 	 */
7010 	for_each_possible_cpu(cpu) {
7011 		struct per_cpu_zonestat *pzstats = &per_cpu(boot_zonestats, cpu);
7012 		memset(pzstats->vm_numa_event, 0,
7013 		       sizeof(pzstats->vm_numa_event));
7014 	}
7015 #endif
7016 
7017 	for_each_online_pgdat(pgdat)
7018 		pgdat->per_cpu_nodestats =
7019 			alloc_percpu(struct per_cpu_nodestat);
7020 }
7021 
7022 static __meminit void zone_pcp_init(struct zone *zone)
7023 {
7024 	/*
7025 	 * per cpu subsystem is not up at this point. The following code
7026 	 * relies on the ability of the linker to provide the
7027 	 * offset of a (static) per cpu variable into the per cpu area.
7028 	 */
7029 	zone->per_cpu_pageset = &boot_pageset;
7030 	zone->per_cpu_zonestats = &boot_zonestats;
7031 	zone->pageset_high = BOOT_PAGESET_HIGH;
7032 	zone->pageset_batch = BOOT_PAGESET_BATCH;
7033 
7034 	if (populated_zone(zone))
7035 		pr_debug("  %s zone: %lu pages, LIFO batch:%u\n", zone->name,
7036 			 zone->present_pages, zone_batchsize(zone));
7037 }
7038 
7039 void __meminit init_currently_empty_zone(struct zone *zone,
7040 					unsigned long zone_start_pfn,
7041 					unsigned long size)
7042 {
7043 	struct pglist_data *pgdat = zone->zone_pgdat;
7044 	int zone_idx = zone_idx(zone) + 1;
7045 
7046 	if (zone_idx > pgdat->nr_zones)
7047 		pgdat->nr_zones = zone_idx;
7048 
7049 	zone->zone_start_pfn = zone_start_pfn;
7050 
7051 	mminit_dprintk(MMINIT_TRACE, "memmap_init",
7052 			"Initialising map node %d zone %lu pfns %lu -> %lu\n",
7053 			pgdat->node_id,
7054 			(unsigned long)zone_idx(zone),
7055 			zone_start_pfn, (zone_start_pfn + size));
7056 
7057 	zone_init_free_lists(zone);
7058 	zone->initialized = 1;
7059 }
7060 
7061 /**
7062  * get_pfn_range_for_nid - Return the start and end page frames for a node
7063  * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
7064  * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
7065  * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
7066  *
7067  * It returns the start and end page frame of a node based on information
7068  * provided by memblock_set_node(). If called for a node
7069  * with no available memory, a warning is printed and the start and end
7070  * PFNs will be 0.
7071  */
7072 void __init get_pfn_range_for_nid(unsigned int nid,
7073 			unsigned long *start_pfn, unsigned long *end_pfn)
7074 {
7075 	unsigned long this_start_pfn, this_end_pfn;
7076 	int i;
7077 
7078 	*start_pfn = -1UL;
7079 	*end_pfn = 0;
7080 
7081 	for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
7082 		*start_pfn = min(*start_pfn, this_start_pfn);
7083 		*end_pfn = max(*end_pfn, this_end_pfn);
7084 	}
7085 
7086 	if (*start_pfn == -1UL)
7087 		*start_pfn = 0;
7088 }
7089 
7090 /*
7091  * This finds a zone that can be used for ZONE_MOVABLE pages. The
7092  * assumption is made that zones within a node are ordered in monotonic
7093  * increasing memory addresses so that the "highest" populated zone is used
7094  */
7095 static void __init find_usable_zone_for_movable(void)
7096 {
7097 	int zone_index;
7098 	for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
7099 		if (zone_index == ZONE_MOVABLE)
7100 			continue;
7101 
7102 		if (arch_zone_highest_possible_pfn[zone_index] >
7103 				arch_zone_lowest_possible_pfn[zone_index])
7104 			break;
7105 	}
7106 
7107 	VM_BUG_ON(zone_index == -1);
7108 	movable_zone = zone_index;
7109 }
7110 
7111 /*
7112  * The zone ranges provided by the architecture do not include ZONE_MOVABLE
7113  * because it is sized independent of architecture. Unlike the other zones,
7114  * the starting point for ZONE_MOVABLE is not fixed. It may be different
7115  * in each node depending on the size of each node and how evenly kernelcore
7116  * is distributed. This helper function adjusts the zone ranges
7117  * provided by the architecture for a given node by using the end of the
7118  * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
7119  * zones within a node are in order of monotonic increases memory addresses
7120  */
7121 static void __init adjust_zone_range_for_zone_movable(int nid,
7122 					unsigned long zone_type,
7123 					unsigned long node_start_pfn,
7124 					unsigned long node_end_pfn,
7125 					unsigned long *zone_start_pfn,
7126 					unsigned long *zone_end_pfn)
7127 {
7128 	/* Only adjust if ZONE_MOVABLE is on this node */
7129 	if (zone_movable_pfn[nid]) {
7130 		/* Size ZONE_MOVABLE */
7131 		if (zone_type == ZONE_MOVABLE) {
7132 			*zone_start_pfn = zone_movable_pfn[nid];
7133 			*zone_end_pfn = min(node_end_pfn,
7134 				arch_zone_highest_possible_pfn[movable_zone]);
7135 
7136 		/* Adjust for ZONE_MOVABLE starting within this range */
7137 		} else if (!mirrored_kernelcore &&
7138 			*zone_start_pfn < zone_movable_pfn[nid] &&
7139 			*zone_end_pfn > zone_movable_pfn[nid]) {
7140 			*zone_end_pfn = zone_movable_pfn[nid];
7141 
7142 		/* Check if this whole range is within ZONE_MOVABLE */
7143 		} else if (*zone_start_pfn >= zone_movable_pfn[nid])
7144 			*zone_start_pfn = *zone_end_pfn;
7145 	}
7146 }
7147 
7148 /*
7149  * Return the number of pages a zone spans in a node, including holes
7150  * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
7151  */
7152 static unsigned long __init zone_spanned_pages_in_node(int nid,
7153 					unsigned long zone_type,
7154 					unsigned long node_start_pfn,
7155 					unsigned long node_end_pfn,
7156 					unsigned long *zone_start_pfn,
7157 					unsigned long *zone_end_pfn)
7158 {
7159 	unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
7160 	unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
7161 	/* When hotadd a new node from cpu_up(), the node should be empty */
7162 	if (!node_start_pfn && !node_end_pfn)
7163 		return 0;
7164 
7165 	/* Get the start and end of the zone */
7166 	*zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
7167 	*zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
7168 	adjust_zone_range_for_zone_movable(nid, zone_type,
7169 				node_start_pfn, node_end_pfn,
7170 				zone_start_pfn, zone_end_pfn);
7171 
7172 	/* Check that this node has pages within the zone's required range */
7173 	if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
7174 		return 0;
7175 
7176 	/* Move the zone boundaries inside the node if necessary */
7177 	*zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
7178 	*zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
7179 
7180 	/* Return the spanned pages */
7181 	return *zone_end_pfn - *zone_start_pfn;
7182 }
7183 
7184 /*
7185  * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
7186  * then all holes in the requested range will be accounted for.
7187  */
7188 unsigned long __init __absent_pages_in_range(int nid,
7189 				unsigned long range_start_pfn,
7190 				unsigned long range_end_pfn)
7191 {
7192 	unsigned long nr_absent = range_end_pfn - range_start_pfn;
7193 	unsigned long start_pfn, end_pfn;
7194 	int i;
7195 
7196 	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
7197 		start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
7198 		end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
7199 		nr_absent -= end_pfn - start_pfn;
7200 	}
7201 	return nr_absent;
7202 }
7203 
7204 /**
7205  * absent_pages_in_range - Return number of page frames in holes within a range
7206  * @start_pfn: The start PFN to start searching for holes
7207  * @end_pfn: The end PFN to stop searching for holes
7208  *
7209  * Return: the number of pages frames in memory holes within a range.
7210  */
7211 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
7212 							unsigned long end_pfn)
7213 {
7214 	return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
7215 }
7216 
7217 /* Return the number of page frames in holes in a zone on a node */
7218 static unsigned long __init zone_absent_pages_in_node(int nid,
7219 					unsigned long zone_type,
7220 					unsigned long node_start_pfn,
7221 					unsigned long node_end_pfn)
7222 {
7223 	unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
7224 	unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
7225 	unsigned long zone_start_pfn, zone_end_pfn;
7226 	unsigned long nr_absent;
7227 
7228 	/* When hotadd a new node from cpu_up(), the node should be empty */
7229 	if (!node_start_pfn && !node_end_pfn)
7230 		return 0;
7231 
7232 	zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
7233 	zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
7234 
7235 	adjust_zone_range_for_zone_movable(nid, zone_type,
7236 			node_start_pfn, node_end_pfn,
7237 			&zone_start_pfn, &zone_end_pfn);
7238 	nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
7239 
7240 	/*
7241 	 * ZONE_MOVABLE handling.
7242 	 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
7243 	 * and vice versa.
7244 	 */
7245 	if (mirrored_kernelcore && zone_movable_pfn[nid]) {
7246 		unsigned long start_pfn, end_pfn;
7247 		struct memblock_region *r;
7248 
7249 		for_each_mem_region(r) {
7250 			start_pfn = clamp(memblock_region_memory_base_pfn(r),
7251 					  zone_start_pfn, zone_end_pfn);
7252 			end_pfn = clamp(memblock_region_memory_end_pfn(r),
7253 					zone_start_pfn, zone_end_pfn);
7254 
7255 			if (zone_type == ZONE_MOVABLE &&
7256 			    memblock_is_mirror(r))
7257 				nr_absent += end_pfn - start_pfn;
7258 
7259 			if (zone_type == ZONE_NORMAL &&
7260 			    !memblock_is_mirror(r))
7261 				nr_absent += end_pfn - start_pfn;
7262 		}
7263 	}
7264 
7265 	return nr_absent;
7266 }
7267 
7268 static void __init calculate_node_totalpages(struct pglist_data *pgdat,
7269 						unsigned long node_start_pfn,
7270 						unsigned long node_end_pfn)
7271 {
7272 	unsigned long realtotalpages = 0, totalpages = 0;
7273 	enum zone_type i;
7274 
7275 	for (i = 0; i < MAX_NR_ZONES; i++) {
7276 		struct zone *zone = pgdat->node_zones + i;
7277 		unsigned long zone_start_pfn, zone_end_pfn;
7278 		unsigned long spanned, absent;
7279 		unsigned long size, real_size;
7280 
7281 		spanned = zone_spanned_pages_in_node(pgdat->node_id, i,
7282 						     node_start_pfn,
7283 						     node_end_pfn,
7284 						     &zone_start_pfn,
7285 						     &zone_end_pfn);
7286 		absent = zone_absent_pages_in_node(pgdat->node_id, i,
7287 						   node_start_pfn,
7288 						   node_end_pfn);
7289 
7290 		size = spanned;
7291 		real_size = size - absent;
7292 
7293 		if (size)
7294 			zone->zone_start_pfn = zone_start_pfn;
7295 		else
7296 			zone->zone_start_pfn = 0;
7297 		zone->spanned_pages = size;
7298 		zone->present_pages = real_size;
7299 #if defined(CONFIG_MEMORY_HOTPLUG)
7300 		zone->present_early_pages = real_size;
7301 #endif
7302 
7303 		totalpages += size;
7304 		realtotalpages += real_size;
7305 	}
7306 
7307 	pgdat->node_spanned_pages = totalpages;
7308 	pgdat->node_present_pages = realtotalpages;
7309 	pr_debug("On node %d totalpages: %lu\n", pgdat->node_id, realtotalpages);
7310 }
7311 
7312 #ifndef CONFIG_SPARSEMEM
7313 /*
7314  * Calculate the size of the zone->blockflags rounded to an unsigned long
7315  * Start by making sure zonesize is a multiple of pageblock_order by rounding
7316  * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
7317  * round what is now in bits to nearest long in bits, then return it in
7318  * bytes.
7319  */
7320 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
7321 {
7322 	unsigned long usemapsize;
7323 
7324 	zonesize += zone_start_pfn & (pageblock_nr_pages-1);
7325 	usemapsize = roundup(zonesize, pageblock_nr_pages);
7326 	usemapsize = usemapsize >> pageblock_order;
7327 	usemapsize *= NR_PAGEBLOCK_BITS;
7328 	usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
7329 
7330 	return usemapsize / 8;
7331 }
7332 
7333 static void __ref setup_usemap(struct zone *zone)
7334 {
7335 	unsigned long usemapsize = usemap_size(zone->zone_start_pfn,
7336 					       zone->spanned_pages);
7337 	zone->pageblock_flags = NULL;
7338 	if (usemapsize) {
7339 		zone->pageblock_flags =
7340 			memblock_alloc_node(usemapsize, SMP_CACHE_BYTES,
7341 					    zone_to_nid(zone));
7342 		if (!zone->pageblock_flags)
7343 			panic("Failed to allocate %ld bytes for zone %s pageblock flags on node %d\n",
7344 			      usemapsize, zone->name, zone_to_nid(zone));
7345 	}
7346 }
7347 #else
7348 static inline void setup_usemap(struct zone *zone) {}
7349 #endif /* CONFIG_SPARSEMEM */
7350 
7351 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
7352 
7353 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
7354 void __init set_pageblock_order(void)
7355 {
7356 	unsigned int order = MAX_ORDER - 1;
7357 
7358 	/* Check that pageblock_nr_pages has not already been setup */
7359 	if (pageblock_order)
7360 		return;
7361 
7362 	/* Don't let pageblocks exceed the maximum allocation granularity. */
7363 	if (HPAGE_SHIFT > PAGE_SHIFT && HUGETLB_PAGE_ORDER < order)
7364 		order = HUGETLB_PAGE_ORDER;
7365 
7366 	/*
7367 	 * Assume the largest contiguous order of interest is a huge page.
7368 	 * This value may be variable depending on boot parameters on IA64 and
7369 	 * powerpc.
7370 	 */
7371 	pageblock_order = order;
7372 }
7373 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
7374 
7375 /*
7376  * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
7377  * is unused as pageblock_order is set at compile-time. See
7378  * include/linux/pageblock-flags.h for the values of pageblock_order based on
7379  * the kernel config
7380  */
7381 void __init set_pageblock_order(void)
7382 {
7383 }
7384 
7385 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
7386 
7387 static unsigned long __init calc_memmap_size(unsigned long spanned_pages,
7388 						unsigned long present_pages)
7389 {
7390 	unsigned long pages = spanned_pages;
7391 
7392 	/*
7393 	 * Provide a more accurate estimation if there are holes within
7394 	 * the zone and SPARSEMEM is in use. If there are holes within the
7395 	 * zone, each populated memory region may cost us one or two extra
7396 	 * memmap pages due to alignment because memmap pages for each
7397 	 * populated regions may not be naturally aligned on page boundary.
7398 	 * So the (present_pages >> 4) heuristic is a tradeoff for that.
7399 	 */
7400 	if (spanned_pages > present_pages + (present_pages >> 4) &&
7401 	    IS_ENABLED(CONFIG_SPARSEMEM))
7402 		pages = present_pages;
7403 
7404 	return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
7405 }
7406 
7407 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
7408 static void pgdat_init_split_queue(struct pglist_data *pgdat)
7409 {
7410 	struct deferred_split *ds_queue = &pgdat->deferred_split_queue;
7411 
7412 	spin_lock_init(&ds_queue->split_queue_lock);
7413 	INIT_LIST_HEAD(&ds_queue->split_queue);
7414 	ds_queue->split_queue_len = 0;
7415 }
7416 #else
7417 static void pgdat_init_split_queue(struct pglist_data *pgdat) {}
7418 #endif
7419 
7420 #ifdef CONFIG_COMPACTION
7421 static void pgdat_init_kcompactd(struct pglist_data *pgdat)
7422 {
7423 	init_waitqueue_head(&pgdat->kcompactd_wait);
7424 }
7425 #else
7426 static void pgdat_init_kcompactd(struct pglist_data *pgdat) {}
7427 #endif
7428 
7429 static void __meminit pgdat_init_internals(struct pglist_data *pgdat)
7430 {
7431 	int i;
7432 
7433 	pgdat_resize_init(pgdat);
7434 
7435 	pgdat_init_split_queue(pgdat);
7436 	pgdat_init_kcompactd(pgdat);
7437 
7438 	init_waitqueue_head(&pgdat->kswapd_wait);
7439 	init_waitqueue_head(&pgdat->pfmemalloc_wait);
7440 
7441 	for (i = 0; i < NR_VMSCAN_THROTTLE; i++)
7442 		init_waitqueue_head(&pgdat->reclaim_wait[i]);
7443 
7444 	pgdat_page_ext_init(pgdat);
7445 	lruvec_init(&pgdat->__lruvec);
7446 }
7447 
7448 static void __meminit zone_init_internals(struct zone *zone, enum zone_type idx, int nid,
7449 							unsigned long remaining_pages)
7450 {
7451 	atomic_long_set(&zone->managed_pages, remaining_pages);
7452 	zone_set_nid(zone, nid);
7453 	zone->name = zone_names[idx];
7454 	zone->zone_pgdat = NODE_DATA(nid);
7455 	spin_lock_init(&zone->lock);
7456 	zone_seqlock_init(zone);
7457 	zone_pcp_init(zone);
7458 }
7459 
7460 /*
7461  * Set up the zone data structures
7462  * - init pgdat internals
7463  * - init all zones belonging to this node
7464  *
7465  * NOTE: this function is only called during memory hotplug
7466  */
7467 #ifdef CONFIG_MEMORY_HOTPLUG
7468 void __ref free_area_init_core_hotplug(struct pglist_data *pgdat)
7469 {
7470 	int nid = pgdat->node_id;
7471 	enum zone_type z;
7472 	int cpu;
7473 
7474 	pgdat_init_internals(pgdat);
7475 
7476 	if (pgdat->per_cpu_nodestats == &boot_nodestats)
7477 		pgdat->per_cpu_nodestats = alloc_percpu(struct per_cpu_nodestat);
7478 
7479 	/*
7480 	 * Reset the nr_zones, order and highest_zoneidx before reuse.
7481 	 * Note that kswapd will init kswapd_highest_zoneidx properly
7482 	 * when it starts in the near future.
7483 	 */
7484 	pgdat->nr_zones = 0;
7485 	pgdat->kswapd_order = 0;
7486 	pgdat->kswapd_highest_zoneidx = 0;
7487 	pgdat->node_start_pfn = 0;
7488 	for_each_online_cpu(cpu) {
7489 		struct per_cpu_nodestat *p;
7490 
7491 		p = per_cpu_ptr(pgdat->per_cpu_nodestats, cpu);
7492 		memset(p, 0, sizeof(*p));
7493 	}
7494 
7495 	for (z = 0; z < MAX_NR_ZONES; z++)
7496 		zone_init_internals(&pgdat->node_zones[z], z, nid, 0);
7497 }
7498 #endif
7499 
7500 /*
7501  * Set up the zone data structures:
7502  *   - mark all pages reserved
7503  *   - mark all memory queues empty
7504  *   - clear the memory bitmaps
7505  *
7506  * NOTE: pgdat should get zeroed by caller.
7507  * NOTE: this function is only called during early init.
7508  */
7509 static void __init free_area_init_core(struct pglist_data *pgdat)
7510 {
7511 	enum zone_type j;
7512 	int nid = pgdat->node_id;
7513 
7514 	pgdat_init_internals(pgdat);
7515 	pgdat->per_cpu_nodestats = &boot_nodestats;
7516 
7517 	for (j = 0; j < MAX_NR_ZONES; j++) {
7518 		struct zone *zone = pgdat->node_zones + j;
7519 		unsigned long size, freesize, memmap_pages;
7520 
7521 		size = zone->spanned_pages;
7522 		freesize = zone->present_pages;
7523 
7524 		/*
7525 		 * Adjust freesize so that it accounts for how much memory
7526 		 * is used by this zone for memmap. This affects the watermark
7527 		 * and per-cpu initialisations
7528 		 */
7529 		memmap_pages = calc_memmap_size(size, freesize);
7530 		if (!is_highmem_idx(j)) {
7531 			if (freesize >= memmap_pages) {
7532 				freesize -= memmap_pages;
7533 				if (memmap_pages)
7534 					pr_debug("  %s zone: %lu pages used for memmap\n",
7535 						 zone_names[j], memmap_pages);
7536 			} else
7537 				pr_warn("  %s zone: %lu memmap pages exceeds freesize %lu\n",
7538 					zone_names[j], memmap_pages, freesize);
7539 		}
7540 
7541 		/* Account for reserved pages */
7542 		if (j == 0 && freesize > dma_reserve) {
7543 			freesize -= dma_reserve;
7544 			pr_debug("  %s zone: %lu pages reserved\n", zone_names[0], dma_reserve);
7545 		}
7546 
7547 		if (!is_highmem_idx(j))
7548 			nr_kernel_pages += freesize;
7549 		/* Charge for highmem memmap if there are enough kernel pages */
7550 		else if (nr_kernel_pages > memmap_pages * 2)
7551 			nr_kernel_pages -= memmap_pages;
7552 		nr_all_pages += freesize;
7553 
7554 		/*
7555 		 * Set an approximate value for lowmem here, it will be adjusted
7556 		 * when the bootmem allocator frees pages into the buddy system.
7557 		 * And all highmem pages will be managed by the buddy system.
7558 		 */
7559 		zone_init_internals(zone, j, nid, freesize);
7560 
7561 		if (!size)
7562 			continue;
7563 
7564 		set_pageblock_order();
7565 		setup_usemap(zone);
7566 		init_currently_empty_zone(zone, zone->zone_start_pfn, size);
7567 	}
7568 }
7569 
7570 #ifdef CONFIG_FLATMEM
7571 static void __init alloc_node_mem_map(struct pglist_data *pgdat)
7572 {
7573 	unsigned long __maybe_unused start = 0;
7574 	unsigned long __maybe_unused offset = 0;
7575 
7576 	/* Skip empty nodes */
7577 	if (!pgdat->node_spanned_pages)
7578 		return;
7579 
7580 	start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
7581 	offset = pgdat->node_start_pfn - start;
7582 	/* ia64 gets its own node_mem_map, before this, without bootmem */
7583 	if (!pgdat->node_mem_map) {
7584 		unsigned long size, end;
7585 		struct page *map;
7586 
7587 		/*
7588 		 * The zone's endpoints aren't required to be MAX_ORDER
7589 		 * aligned but the node_mem_map endpoints must be in order
7590 		 * for the buddy allocator to function correctly.
7591 		 */
7592 		end = pgdat_end_pfn(pgdat);
7593 		end = ALIGN(end, MAX_ORDER_NR_PAGES);
7594 		size =  (end - start) * sizeof(struct page);
7595 		map = memmap_alloc(size, SMP_CACHE_BYTES, MEMBLOCK_LOW_LIMIT,
7596 				   pgdat->node_id, false);
7597 		if (!map)
7598 			panic("Failed to allocate %ld bytes for node %d memory map\n",
7599 			      size, pgdat->node_id);
7600 		pgdat->node_mem_map = map + offset;
7601 	}
7602 	pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n",
7603 				__func__, pgdat->node_id, (unsigned long)pgdat,
7604 				(unsigned long)pgdat->node_mem_map);
7605 #ifndef CONFIG_NUMA
7606 	/*
7607 	 * With no DISCONTIG, the global mem_map is just set as node 0's
7608 	 */
7609 	if (pgdat == NODE_DATA(0)) {
7610 		mem_map = NODE_DATA(0)->node_mem_map;
7611 		if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
7612 			mem_map -= offset;
7613 	}
7614 #endif
7615 }
7616 #else
7617 static inline void alloc_node_mem_map(struct pglist_data *pgdat) { }
7618 #endif /* CONFIG_FLATMEM */
7619 
7620 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
7621 static inline void pgdat_set_deferred_range(pg_data_t *pgdat)
7622 {
7623 	pgdat->first_deferred_pfn = ULONG_MAX;
7624 }
7625 #else
7626 static inline void pgdat_set_deferred_range(pg_data_t *pgdat) {}
7627 #endif
7628 
7629 static void __init free_area_init_node(int nid)
7630 {
7631 	pg_data_t *pgdat = NODE_DATA(nid);
7632 	unsigned long start_pfn = 0;
7633 	unsigned long end_pfn = 0;
7634 
7635 	/* pg_data_t should be reset to zero when it's allocated */
7636 	WARN_ON(pgdat->nr_zones || pgdat->kswapd_highest_zoneidx);
7637 
7638 	get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
7639 
7640 	pgdat->node_id = nid;
7641 	pgdat->node_start_pfn = start_pfn;
7642 	pgdat->per_cpu_nodestats = NULL;
7643 
7644 	if (start_pfn != end_pfn) {
7645 		pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
7646 			(u64)start_pfn << PAGE_SHIFT,
7647 			end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
7648 	} else {
7649 		pr_info("Initmem setup node %d as memoryless\n", nid);
7650 	}
7651 
7652 	calculate_node_totalpages(pgdat, start_pfn, end_pfn);
7653 
7654 	alloc_node_mem_map(pgdat);
7655 	pgdat_set_deferred_range(pgdat);
7656 
7657 	free_area_init_core(pgdat);
7658 }
7659 
7660 static void __init free_area_init_memoryless_node(int nid)
7661 {
7662 	free_area_init_node(nid);
7663 }
7664 
7665 #if MAX_NUMNODES > 1
7666 /*
7667  * Figure out the number of possible node ids.
7668  */
7669 void __init setup_nr_node_ids(void)
7670 {
7671 	unsigned int highest;
7672 
7673 	highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
7674 	nr_node_ids = highest + 1;
7675 }
7676 #endif
7677 
7678 /**
7679  * node_map_pfn_alignment - determine the maximum internode alignment
7680  *
7681  * This function should be called after node map is populated and sorted.
7682  * It calculates the maximum power of two alignment which can distinguish
7683  * all the nodes.
7684  *
7685  * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
7686  * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)).  If the
7687  * nodes are shifted by 256MiB, 256MiB.  Note that if only the last node is
7688  * shifted, 1GiB is enough and this function will indicate so.
7689  *
7690  * This is used to test whether pfn -> nid mapping of the chosen memory
7691  * model has fine enough granularity to avoid incorrect mapping for the
7692  * populated node map.
7693  *
7694  * Return: the determined alignment in pfn's.  0 if there is no alignment
7695  * requirement (single node).
7696  */
7697 unsigned long __init node_map_pfn_alignment(void)
7698 {
7699 	unsigned long accl_mask = 0, last_end = 0;
7700 	unsigned long start, end, mask;
7701 	int last_nid = NUMA_NO_NODE;
7702 	int i, nid;
7703 
7704 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
7705 		if (!start || last_nid < 0 || last_nid == nid) {
7706 			last_nid = nid;
7707 			last_end = end;
7708 			continue;
7709 		}
7710 
7711 		/*
7712 		 * Start with a mask granular enough to pin-point to the
7713 		 * start pfn and tick off bits one-by-one until it becomes
7714 		 * too coarse to separate the current node from the last.
7715 		 */
7716 		mask = ~((1 << __ffs(start)) - 1);
7717 		while (mask && last_end <= (start & (mask << 1)))
7718 			mask <<= 1;
7719 
7720 		/* accumulate all internode masks */
7721 		accl_mask |= mask;
7722 	}
7723 
7724 	/* convert mask to number of pages */
7725 	return ~accl_mask + 1;
7726 }
7727 
7728 /**
7729  * find_min_pfn_with_active_regions - Find the minimum PFN registered
7730  *
7731  * Return: the minimum PFN based on information provided via
7732  * memblock_set_node().
7733  */
7734 unsigned long __init find_min_pfn_with_active_regions(void)
7735 {
7736 	return PHYS_PFN(memblock_start_of_DRAM());
7737 }
7738 
7739 /*
7740  * early_calculate_totalpages()
7741  * Sum pages in active regions for movable zone.
7742  * Populate N_MEMORY for calculating usable_nodes.
7743  */
7744 static unsigned long __init early_calculate_totalpages(void)
7745 {
7746 	unsigned long totalpages = 0;
7747 	unsigned long start_pfn, end_pfn;
7748 	int i, nid;
7749 
7750 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
7751 		unsigned long pages = end_pfn - start_pfn;
7752 
7753 		totalpages += pages;
7754 		if (pages)
7755 			node_set_state(nid, N_MEMORY);
7756 	}
7757 	return totalpages;
7758 }
7759 
7760 /*
7761  * Find the PFN the Movable zone begins in each node. Kernel memory
7762  * is spread evenly between nodes as long as the nodes have enough
7763  * memory. When they don't, some nodes will have more kernelcore than
7764  * others
7765  */
7766 static void __init find_zone_movable_pfns_for_nodes(void)
7767 {
7768 	int i, nid;
7769 	unsigned long usable_startpfn;
7770 	unsigned long kernelcore_node, kernelcore_remaining;
7771 	/* save the state before borrow the nodemask */
7772 	nodemask_t saved_node_state = node_states[N_MEMORY];
7773 	unsigned long totalpages = early_calculate_totalpages();
7774 	int usable_nodes = nodes_weight(node_states[N_MEMORY]);
7775 	struct memblock_region *r;
7776 
7777 	/* Need to find movable_zone earlier when movable_node is specified. */
7778 	find_usable_zone_for_movable();
7779 
7780 	/*
7781 	 * If movable_node is specified, ignore kernelcore and movablecore
7782 	 * options.
7783 	 */
7784 	if (movable_node_is_enabled()) {
7785 		for_each_mem_region(r) {
7786 			if (!memblock_is_hotpluggable(r))
7787 				continue;
7788 
7789 			nid = memblock_get_region_node(r);
7790 
7791 			usable_startpfn = PFN_DOWN(r->base);
7792 			zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
7793 				min(usable_startpfn, zone_movable_pfn[nid]) :
7794 				usable_startpfn;
7795 		}
7796 
7797 		goto out2;
7798 	}
7799 
7800 	/*
7801 	 * If kernelcore=mirror is specified, ignore movablecore option
7802 	 */
7803 	if (mirrored_kernelcore) {
7804 		bool mem_below_4gb_not_mirrored = false;
7805 
7806 		for_each_mem_region(r) {
7807 			if (memblock_is_mirror(r))
7808 				continue;
7809 
7810 			nid = memblock_get_region_node(r);
7811 
7812 			usable_startpfn = memblock_region_memory_base_pfn(r);
7813 
7814 			if (usable_startpfn < 0x100000) {
7815 				mem_below_4gb_not_mirrored = true;
7816 				continue;
7817 			}
7818 
7819 			zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
7820 				min(usable_startpfn, zone_movable_pfn[nid]) :
7821 				usable_startpfn;
7822 		}
7823 
7824 		if (mem_below_4gb_not_mirrored)
7825 			pr_warn("This configuration results in unmirrored kernel memory.\n");
7826 
7827 		goto out2;
7828 	}
7829 
7830 	/*
7831 	 * If kernelcore=nn% or movablecore=nn% was specified, calculate the
7832 	 * amount of necessary memory.
7833 	 */
7834 	if (required_kernelcore_percent)
7835 		required_kernelcore = (totalpages * 100 * required_kernelcore_percent) /
7836 				       10000UL;
7837 	if (required_movablecore_percent)
7838 		required_movablecore = (totalpages * 100 * required_movablecore_percent) /
7839 					10000UL;
7840 
7841 	/*
7842 	 * If movablecore= was specified, calculate what size of
7843 	 * kernelcore that corresponds so that memory usable for
7844 	 * any allocation type is evenly spread. If both kernelcore
7845 	 * and movablecore are specified, then the value of kernelcore
7846 	 * will be used for required_kernelcore if it's greater than
7847 	 * what movablecore would have allowed.
7848 	 */
7849 	if (required_movablecore) {
7850 		unsigned long corepages;
7851 
7852 		/*
7853 		 * Round-up so that ZONE_MOVABLE is at least as large as what
7854 		 * was requested by the user
7855 		 */
7856 		required_movablecore =
7857 			roundup(required_movablecore, MAX_ORDER_NR_PAGES);
7858 		required_movablecore = min(totalpages, required_movablecore);
7859 		corepages = totalpages - required_movablecore;
7860 
7861 		required_kernelcore = max(required_kernelcore, corepages);
7862 	}
7863 
7864 	/*
7865 	 * If kernelcore was not specified or kernelcore size is larger
7866 	 * than totalpages, there is no ZONE_MOVABLE.
7867 	 */
7868 	if (!required_kernelcore || required_kernelcore >= totalpages)
7869 		goto out;
7870 
7871 	/* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
7872 	usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
7873 
7874 restart:
7875 	/* Spread kernelcore memory as evenly as possible throughout nodes */
7876 	kernelcore_node = required_kernelcore / usable_nodes;
7877 	for_each_node_state(nid, N_MEMORY) {
7878 		unsigned long start_pfn, end_pfn;
7879 
7880 		/*
7881 		 * Recalculate kernelcore_node if the division per node
7882 		 * now exceeds what is necessary to satisfy the requested
7883 		 * amount of memory for the kernel
7884 		 */
7885 		if (required_kernelcore < kernelcore_node)
7886 			kernelcore_node = required_kernelcore / usable_nodes;
7887 
7888 		/*
7889 		 * As the map is walked, we track how much memory is usable
7890 		 * by the kernel using kernelcore_remaining. When it is
7891 		 * 0, the rest of the node is usable by ZONE_MOVABLE
7892 		 */
7893 		kernelcore_remaining = kernelcore_node;
7894 
7895 		/* Go through each range of PFNs within this node */
7896 		for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
7897 			unsigned long size_pages;
7898 
7899 			start_pfn = max(start_pfn, zone_movable_pfn[nid]);
7900 			if (start_pfn >= end_pfn)
7901 				continue;
7902 
7903 			/* Account for what is only usable for kernelcore */
7904 			if (start_pfn < usable_startpfn) {
7905 				unsigned long kernel_pages;
7906 				kernel_pages = min(end_pfn, usable_startpfn)
7907 								- start_pfn;
7908 
7909 				kernelcore_remaining -= min(kernel_pages,
7910 							kernelcore_remaining);
7911 				required_kernelcore -= min(kernel_pages,
7912 							required_kernelcore);
7913 
7914 				/* Continue if range is now fully accounted */
7915 				if (end_pfn <= usable_startpfn) {
7916 
7917 					/*
7918 					 * Push zone_movable_pfn to the end so
7919 					 * that if we have to rebalance
7920 					 * kernelcore across nodes, we will
7921 					 * not double account here
7922 					 */
7923 					zone_movable_pfn[nid] = end_pfn;
7924 					continue;
7925 				}
7926 				start_pfn = usable_startpfn;
7927 			}
7928 
7929 			/*
7930 			 * The usable PFN range for ZONE_MOVABLE is from
7931 			 * start_pfn->end_pfn. Calculate size_pages as the
7932 			 * number of pages used as kernelcore
7933 			 */
7934 			size_pages = end_pfn - start_pfn;
7935 			if (size_pages > kernelcore_remaining)
7936 				size_pages = kernelcore_remaining;
7937 			zone_movable_pfn[nid] = start_pfn + size_pages;
7938 
7939 			/*
7940 			 * Some kernelcore has been met, update counts and
7941 			 * break if the kernelcore for this node has been
7942 			 * satisfied
7943 			 */
7944 			required_kernelcore -= min(required_kernelcore,
7945 								size_pages);
7946 			kernelcore_remaining -= size_pages;
7947 			if (!kernelcore_remaining)
7948 				break;
7949 		}
7950 	}
7951 
7952 	/*
7953 	 * If there is still required_kernelcore, we do another pass with one
7954 	 * less node in the count. This will push zone_movable_pfn[nid] further
7955 	 * along on the nodes that still have memory until kernelcore is
7956 	 * satisfied
7957 	 */
7958 	usable_nodes--;
7959 	if (usable_nodes && required_kernelcore > usable_nodes)
7960 		goto restart;
7961 
7962 out2:
7963 	/* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
7964 	for (nid = 0; nid < MAX_NUMNODES; nid++) {
7965 		unsigned long start_pfn, end_pfn;
7966 
7967 		zone_movable_pfn[nid] =
7968 			roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
7969 
7970 		get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
7971 		if (zone_movable_pfn[nid] >= end_pfn)
7972 			zone_movable_pfn[nid] = 0;
7973 	}
7974 
7975 out:
7976 	/* restore the node_state */
7977 	node_states[N_MEMORY] = saved_node_state;
7978 }
7979 
7980 /* Any regular or high memory on that node ? */
7981 static void check_for_memory(pg_data_t *pgdat, int nid)
7982 {
7983 	enum zone_type zone_type;
7984 
7985 	for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
7986 		struct zone *zone = &pgdat->node_zones[zone_type];
7987 		if (populated_zone(zone)) {
7988 			if (IS_ENABLED(CONFIG_HIGHMEM))
7989 				node_set_state(nid, N_HIGH_MEMORY);
7990 			if (zone_type <= ZONE_NORMAL)
7991 				node_set_state(nid, N_NORMAL_MEMORY);
7992 			break;
7993 		}
7994 	}
7995 }
7996 
7997 /*
7998  * Some architectures, e.g. ARC may have ZONE_HIGHMEM below ZONE_NORMAL. For
7999  * such cases we allow max_zone_pfn sorted in the descending order
8000  */
8001 bool __weak arch_has_descending_max_zone_pfns(void)
8002 {
8003 	return false;
8004 }
8005 
8006 /**
8007  * free_area_init - Initialise all pg_data_t and zone data
8008  * @max_zone_pfn: an array of max PFNs for each zone
8009  *
8010  * This will call free_area_init_node() for each active node in the system.
8011  * Using the page ranges provided by memblock_set_node(), the size of each
8012  * zone in each node and their holes is calculated. If the maximum PFN
8013  * between two adjacent zones match, it is assumed that the zone is empty.
8014  * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
8015  * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
8016  * starts where the previous one ended. For example, ZONE_DMA32 starts
8017  * at arch_max_dma_pfn.
8018  */
8019 void __init free_area_init(unsigned long *max_zone_pfn)
8020 {
8021 	unsigned long start_pfn, end_pfn;
8022 	int i, nid, zone;
8023 	bool descending;
8024 
8025 	/* Record where the zone boundaries are */
8026 	memset(arch_zone_lowest_possible_pfn, 0,
8027 				sizeof(arch_zone_lowest_possible_pfn));
8028 	memset(arch_zone_highest_possible_pfn, 0,
8029 				sizeof(arch_zone_highest_possible_pfn));
8030 
8031 	start_pfn = find_min_pfn_with_active_regions();
8032 	descending = arch_has_descending_max_zone_pfns();
8033 
8034 	for (i = 0; i < MAX_NR_ZONES; i++) {
8035 		if (descending)
8036 			zone = MAX_NR_ZONES - i - 1;
8037 		else
8038 			zone = i;
8039 
8040 		if (zone == ZONE_MOVABLE)
8041 			continue;
8042 
8043 		end_pfn = max(max_zone_pfn[zone], start_pfn);
8044 		arch_zone_lowest_possible_pfn[zone] = start_pfn;
8045 		arch_zone_highest_possible_pfn[zone] = end_pfn;
8046 
8047 		start_pfn = end_pfn;
8048 	}
8049 
8050 	/* Find the PFNs that ZONE_MOVABLE begins at in each node */
8051 	memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
8052 	find_zone_movable_pfns_for_nodes();
8053 
8054 	/* Print out the zone ranges */
8055 	pr_info("Zone ranges:\n");
8056 	for (i = 0; i < MAX_NR_ZONES; i++) {
8057 		if (i == ZONE_MOVABLE)
8058 			continue;
8059 		pr_info("  %-8s ", zone_names[i]);
8060 		if (arch_zone_lowest_possible_pfn[i] ==
8061 				arch_zone_highest_possible_pfn[i])
8062 			pr_cont("empty\n");
8063 		else
8064 			pr_cont("[mem %#018Lx-%#018Lx]\n",
8065 				(u64)arch_zone_lowest_possible_pfn[i]
8066 					<< PAGE_SHIFT,
8067 				((u64)arch_zone_highest_possible_pfn[i]
8068 					<< PAGE_SHIFT) - 1);
8069 	}
8070 
8071 	/* Print out the PFNs ZONE_MOVABLE begins at in each node */
8072 	pr_info("Movable zone start for each node\n");
8073 	for (i = 0; i < MAX_NUMNODES; i++) {
8074 		if (zone_movable_pfn[i])
8075 			pr_info("  Node %d: %#018Lx\n", i,
8076 			       (u64)zone_movable_pfn[i] << PAGE_SHIFT);
8077 	}
8078 
8079 	/*
8080 	 * Print out the early node map, and initialize the
8081 	 * subsection-map relative to active online memory ranges to
8082 	 * enable future "sub-section" extensions of the memory map.
8083 	 */
8084 	pr_info("Early memory node ranges\n");
8085 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
8086 		pr_info("  node %3d: [mem %#018Lx-%#018Lx]\n", nid,
8087 			(u64)start_pfn << PAGE_SHIFT,
8088 			((u64)end_pfn << PAGE_SHIFT) - 1);
8089 		subsection_map_init(start_pfn, end_pfn - start_pfn);
8090 	}
8091 
8092 	/* Initialise every node */
8093 	mminit_verify_pageflags_layout();
8094 	setup_nr_node_ids();
8095 	for_each_node(nid) {
8096 		pg_data_t *pgdat;
8097 
8098 		if (!node_online(nid)) {
8099 			pr_info("Initializing node %d as memoryless\n", nid);
8100 
8101 			/* Allocator not initialized yet */
8102 			pgdat = arch_alloc_nodedata(nid);
8103 			if (!pgdat) {
8104 				pr_err("Cannot allocate %zuB for node %d.\n",
8105 						sizeof(*pgdat), nid);
8106 				continue;
8107 			}
8108 			arch_refresh_nodedata(nid, pgdat);
8109 			free_area_init_memoryless_node(nid);
8110 
8111 			/*
8112 			 * We do not want to confuse userspace by sysfs
8113 			 * files/directories for node without any memory
8114 			 * attached to it, so this node is not marked as
8115 			 * N_MEMORY and not marked online so that no sysfs
8116 			 * hierarchy will be created via register_one_node for
8117 			 * it. The pgdat will get fully initialized by
8118 			 * hotadd_init_pgdat() when memory is hotplugged into
8119 			 * this node.
8120 			 */
8121 			continue;
8122 		}
8123 
8124 		pgdat = NODE_DATA(nid);
8125 		free_area_init_node(nid);
8126 
8127 		/* Any memory on that node */
8128 		if (pgdat->node_present_pages)
8129 			node_set_state(nid, N_MEMORY);
8130 		check_for_memory(pgdat, nid);
8131 	}
8132 
8133 	memmap_init();
8134 }
8135 
8136 static int __init cmdline_parse_core(char *p, unsigned long *core,
8137 				     unsigned long *percent)
8138 {
8139 	unsigned long long coremem;
8140 	char *endptr;
8141 
8142 	if (!p)
8143 		return -EINVAL;
8144 
8145 	/* Value may be a percentage of total memory, otherwise bytes */
8146 	coremem = simple_strtoull(p, &endptr, 0);
8147 	if (*endptr == '%') {
8148 		/* Paranoid check for percent values greater than 100 */
8149 		WARN_ON(coremem > 100);
8150 
8151 		*percent = coremem;
8152 	} else {
8153 		coremem = memparse(p, &p);
8154 		/* Paranoid check that UL is enough for the coremem value */
8155 		WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
8156 
8157 		*core = coremem >> PAGE_SHIFT;
8158 		*percent = 0UL;
8159 	}
8160 	return 0;
8161 }
8162 
8163 /*
8164  * kernelcore=size sets the amount of memory for use for allocations that
8165  * cannot be reclaimed or migrated.
8166  */
8167 static int __init cmdline_parse_kernelcore(char *p)
8168 {
8169 	/* parse kernelcore=mirror */
8170 	if (parse_option_str(p, "mirror")) {
8171 		mirrored_kernelcore = true;
8172 		return 0;
8173 	}
8174 
8175 	return cmdline_parse_core(p, &required_kernelcore,
8176 				  &required_kernelcore_percent);
8177 }
8178 
8179 /*
8180  * movablecore=size sets the amount of memory for use for allocations that
8181  * can be reclaimed or migrated.
8182  */
8183 static int __init cmdline_parse_movablecore(char *p)
8184 {
8185 	return cmdline_parse_core(p, &required_movablecore,
8186 				  &required_movablecore_percent);
8187 }
8188 
8189 early_param("kernelcore", cmdline_parse_kernelcore);
8190 early_param("movablecore", cmdline_parse_movablecore);
8191 
8192 void adjust_managed_page_count(struct page *page, long count)
8193 {
8194 	atomic_long_add(count, &page_zone(page)->managed_pages);
8195 	totalram_pages_add(count);
8196 #ifdef CONFIG_HIGHMEM
8197 	if (PageHighMem(page))
8198 		totalhigh_pages_add(count);
8199 #endif
8200 }
8201 EXPORT_SYMBOL(adjust_managed_page_count);
8202 
8203 unsigned long free_reserved_area(void *start, void *end, int poison, const char *s)
8204 {
8205 	void *pos;
8206 	unsigned long pages = 0;
8207 
8208 	start = (void *)PAGE_ALIGN((unsigned long)start);
8209 	end = (void *)((unsigned long)end & PAGE_MASK);
8210 	for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
8211 		struct page *page = virt_to_page(pos);
8212 		void *direct_map_addr;
8213 
8214 		/*
8215 		 * 'direct_map_addr' might be different from 'pos'
8216 		 * because some architectures' virt_to_page()
8217 		 * work with aliases.  Getting the direct map
8218 		 * address ensures that we get a _writeable_
8219 		 * alias for the memset().
8220 		 */
8221 		direct_map_addr = page_address(page);
8222 		/*
8223 		 * Perform a kasan-unchecked memset() since this memory
8224 		 * has not been initialized.
8225 		 */
8226 		direct_map_addr = kasan_reset_tag(direct_map_addr);
8227 		if ((unsigned int)poison <= 0xFF)
8228 			memset(direct_map_addr, poison, PAGE_SIZE);
8229 
8230 		free_reserved_page(page);
8231 	}
8232 
8233 	if (pages && s)
8234 		pr_info("Freeing %s memory: %ldK\n", s, K(pages));
8235 
8236 	return pages;
8237 }
8238 
8239 void __init mem_init_print_info(void)
8240 {
8241 	unsigned long physpages, codesize, datasize, rosize, bss_size;
8242 	unsigned long init_code_size, init_data_size;
8243 
8244 	physpages = get_num_physpages();
8245 	codesize = _etext - _stext;
8246 	datasize = _edata - _sdata;
8247 	rosize = __end_rodata - __start_rodata;
8248 	bss_size = __bss_stop - __bss_start;
8249 	init_data_size = __init_end - __init_begin;
8250 	init_code_size = _einittext - _sinittext;
8251 
8252 	/*
8253 	 * Detect special cases and adjust section sizes accordingly:
8254 	 * 1) .init.* may be embedded into .data sections
8255 	 * 2) .init.text.* may be out of [__init_begin, __init_end],
8256 	 *    please refer to arch/tile/kernel/vmlinux.lds.S.
8257 	 * 3) .rodata.* may be embedded into .text or .data sections.
8258 	 */
8259 #define adj_init_size(start, end, size, pos, adj) \
8260 	do { \
8261 		if (&start[0] <= &pos[0] && &pos[0] < &end[0] && size > adj) \
8262 			size -= adj; \
8263 	} while (0)
8264 
8265 	adj_init_size(__init_begin, __init_end, init_data_size,
8266 		     _sinittext, init_code_size);
8267 	adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
8268 	adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
8269 	adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
8270 	adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
8271 
8272 #undef	adj_init_size
8273 
8274 	pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
8275 #ifdef	CONFIG_HIGHMEM
8276 		", %luK highmem"
8277 #endif
8278 		")\n",
8279 		K(nr_free_pages()), K(physpages),
8280 		codesize >> 10, datasize >> 10, rosize >> 10,
8281 		(init_data_size + init_code_size) >> 10, bss_size >> 10,
8282 		K(physpages - totalram_pages() - totalcma_pages),
8283 		K(totalcma_pages)
8284 #ifdef	CONFIG_HIGHMEM
8285 		, K(totalhigh_pages())
8286 #endif
8287 		);
8288 }
8289 
8290 /**
8291  * set_dma_reserve - set the specified number of pages reserved in the first zone
8292  * @new_dma_reserve: The number of pages to mark reserved
8293  *
8294  * The per-cpu batchsize and zone watermarks are determined by managed_pages.
8295  * In the DMA zone, a significant percentage may be consumed by kernel image
8296  * and other unfreeable allocations which can skew the watermarks badly. This
8297  * function may optionally be used to account for unfreeable pages in the
8298  * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
8299  * smaller per-cpu batchsize.
8300  */
8301 void __init set_dma_reserve(unsigned long new_dma_reserve)
8302 {
8303 	dma_reserve = new_dma_reserve;
8304 }
8305 
8306 static int page_alloc_cpu_dead(unsigned int cpu)
8307 {
8308 	struct zone *zone;
8309 
8310 	lru_add_drain_cpu(cpu);
8311 	drain_pages(cpu);
8312 
8313 	/*
8314 	 * Spill the event counters of the dead processor
8315 	 * into the current processors event counters.
8316 	 * This artificially elevates the count of the current
8317 	 * processor.
8318 	 */
8319 	vm_events_fold_cpu(cpu);
8320 
8321 	/*
8322 	 * Zero the differential counters of the dead processor
8323 	 * so that the vm statistics are consistent.
8324 	 *
8325 	 * This is only okay since the processor is dead and cannot
8326 	 * race with what we are doing.
8327 	 */
8328 	cpu_vm_stats_fold(cpu);
8329 
8330 	for_each_populated_zone(zone)
8331 		zone_pcp_update(zone, 0);
8332 
8333 	return 0;
8334 }
8335 
8336 static int page_alloc_cpu_online(unsigned int cpu)
8337 {
8338 	struct zone *zone;
8339 
8340 	for_each_populated_zone(zone)
8341 		zone_pcp_update(zone, 1);
8342 	return 0;
8343 }
8344 
8345 #ifdef CONFIG_NUMA
8346 int hashdist = HASHDIST_DEFAULT;
8347 
8348 static int __init set_hashdist(char *str)
8349 {
8350 	if (!str)
8351 		return 0;
8352 	hashdist = simple_strtoul(str, &str, 0);
8353 	return 1;
8354 }
8355 __setup("hashdist=", set_hashdist);
8356 #endif
8357 
8358 void __init page_alloc_init(void)
8359 {
8360 	int ret;
8361 
8362 #ifdef CONFIG_NUMA
8363 	if (num_node_state(N_MEMORY) == 1)
8364 		hashdist = 0;
8365 #endif
8366 
8367 	ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC,
8368 					"mm/page_alloc:pcp",
8369 					page_alloc_cpu_online,
8370 					page_alloc_cpu_dead);
8371 	WARN_ON(ret < 0);
8372 }
8373 
8374 /*
8375  * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
8376  *	or min_free_kbytes changes.
8377  */
8378 static void calculate_totalreserve_pages(void)
8379 {
8380 	struct pglist_data *pgdat;
8381 	unsigned long reserve_pages = 0;
8382 	enum zone_type i, j;
8383 
8384 	for_each_online_pgdat(pgdat) {
8385 
8386 		pgdat->totalreserve_pages = 0;
8387 
8388 		for (i = 0; i < MAX_NR_ZONES; i++) {
8389 			struct zone *zone = pgdat->node_zones + i;
8390 			long max = 0;
8391 			unsigned long managed_pages = zone_managed_pages(zone);
8392 
8393 			/* Find valid and maximum lowmem_reserve in the zone */
8394 			for (j = i; j < MAX_NR_ZONES; j++) {
8395 				if (zone->lowmem_reserve[j] > max)
8396 					max = zone->lowmem_reserve[j];
8397 			}
8398 
8399 			/* we treat the high watermark as reserved pages. */
8400 			max += high_wmark_pages(zone);
8401 
8402 			if (max > managed_pages)
8403 				max = managed_pages;
8404 
8405 			pgdat->totalreserve_pages += max;
8406 
8407 			reserve_pages += max;
8408 		}
8409 	}
8410 	totalreserve_pages = reserve_pages;
8411 }
8412 
8413 /*
8414  * setup_per_zone_lowmem_reserve - called whenever
8415  *	sysctl_lowmem_reserve_ratio changes.  Ensures that each zone
8416  *	has a correct pages reserved value, so an adequate number of
8417  *	pages are left in the zone after a successful __alloc_pages().
8418  */
8419 static void setup_per_zone_lowmem_reserve(void)
8420 {
8421 	struct pglist_data *pgdat;
8422 	enum zone_type i, j;
8423 
8424 	for_each_online_pgdat(pgdat) {
8425 		for (i = 0; i < MAX_NR_ZONES - 1; i++) {
8426 			struct zone *zone = &pgdat->node_zones[i];
8427 			int ratio = sysctl_lowmem_reserve_ratio[i];
8428 			bool clear = !ratio || !zone_managed_pages(zone);
8429 			unsigned long managed_pages = 0;
8430 
8431 			for (j = i + 1; j < MAX_NR_ZONES; j++) {
8432 				struct zone *upper_zone = &pgdat->node_zones[j];
8433 
8434 				managed_pages += zone_managed_pages(upper_zone);
8435 
8436 				if (clear)
8437 					zone->lowmem_reserve[j] = 0;
8438 				else
8439 					zone->lowmem_reserve[j] = managed_pages / ratio;
8440 			}
8441 		}
8442 	}
8443 
8444 	/* update totalreserve_pages */
8445 	calculate_totalreserve_pages();
8446 }
8447 
8448 static void __setup_per_zone_wmarks(void)
8449 {
8450 	unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
8451 	unsigned long lowmem_pages = 0;
8452 	struct zone *zone;
8453 	unsigned long flags;
8454 
8455 	/* Calculate total number of !ZONE_HIGHMEM pages */
8456 	for_each_zone(zone) {
8457 		if (!is_highmem(zone))
8458 			lowmem_pages += zone_managed_pages(zone);
8459 	}
8460 
8461 	for_each_zone(zone) {
8462 		u64 tmp;
8463 
8464 		spin_lock_irqsave(&zone->lock, flags);
8465 		tmp = (u64)pages_min * zone_managed_pages(zone);
8466 		do_div(tmp, lowmem_pages);
8467 		if (is_highmem(zone)) {
8468 			/*
8469 			 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
8470 			 * need highmem pages, so cap pages_min to a small
8471 			 * value here.
8472 			 *
8473 			 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
8474 			 * deltas control async page reclaim, and so should
8475 			 * not be capped for highmem.
8476 			 */
8477 			unsigned long min_pages;
8478 
8479 			min_pages = zone_managed_pages(zone) / 1024;
8480 			min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
8481 			zone->_watermark[WMARK_MIN] = min_pages;
8482 		} else {
8483 			/*
8484 			 * If it's a lowmem zone, reserve a number of pages
8485 			 * proportionate to the zone's size.
8486 			 */
8487 			zone->_watermark[WMARK_MIN] = tmp;
8488 		}
8489 
8490 		/*
8491 		 * Set the kswapd watermarks distance according to the
8492 		 * scale factor in proportion to available memory, but
8493 		 * ensure a minimum size on small systems.
8494 		 */
8495 		tmp = max_t(u64, tmp >> 2,
8496 			    mult_frac(zone_managed_pages(zone),
8497 				      watermark_scale_factor, 10000));
8498 
8499 		zone->watermark_boost = 0;
8500 		zone->_watermark[WMARK_LOW]  = min_wmark_pages(zone) + tmp;
8501 		zone->_watermark[WMARK_HIGH] = low_wmark_pages(zone) + tmp;
8502 		zone->_watermark[WMARK_PROMO] = high_wmark_pages(zone) + tmp;
8503 
8504 		spin_unlock_irqrestore(&zone->lock, flags);
8505 	}
8506 
8507 	/* update totalreserve_pages */
8508 	calculate_totalreserve_pages();
8509 }
8510 
8511 /**
8512  * setup_per_zone_wmarks - called when min_free_kbytes changes
8513  * or when memory is hot-{added|removed}
8514  *
8515  * Ensures that the watermark[min,low,high] values for each zone are set
8516  * correctly with respect to min_free_kbytes.
8517  */
8518 void setup_per_zone_wmarks(void)
8519 {
8520 	struct zone *zone;
8521 	static DEFINE_SPINLOCK(lock);
8522 
8523 	spin_lock(&lock);
8524 	__setup_per_zone_wmarks();
8525 	spin_unlock(&lock);
8526 
8527 	/*
8528 	 * The watermark size have changed so update the pcpu batch
8529 	 * and high limits or the limits may be inappropriate.
8530 	 */
8531 	for_each_zone(zone)
8532 		zone_pcp_update(zone, 0);
8533 }
8534 
8535 /*
8536  * Initialise min_free_kbytes.
8537  *
8538  * For small machines we want it small (128k min).  For large machines
8539  * we want it large (256MB max).  But it is not linear, because network
8540  * bandwidth does not increase linearly with machine size.  We use
8541  *
8542  *	min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
8543  *	min_free_kbytes = sqrt(lowmem_kbytes * 16)
8544  *
8545  * which yields
8546  *
8547  * 16MB:	512k
8548  * 32MB:	724k
8549  * 64MB:	1024k
8550  * 128MB:	1448k
8551  * 256MB:	2048k
8552  * 512MB:	2896k
8553  * 1024MB:	4096k
8554  * 2048MB:	5792k
8555  * 4096MB:	8192k
8556  * 8192MB:	11584k
8557  * 16384MB:	16384k
8558  */
8559 void calculate_min_free_kbytes(void)
8560 {
8561 	unsigned long lowmem_kbytes;
8562 	int new_min_free_kbytes;
8563 
8564 	lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
8565 	new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
8566 
8567 	if (new_min_free_kbytes > user_min_free_kbytes)
8568 		min_free_kbytes = clamp(new_min_free_kbytes, 128, 262144);
8569 	else
8570 		pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
8571 				new_min_free_kbytes, user_min_free_kbytes);
8572 
8573 }
8574 
8575 int __meminit init_per_zone_wmark_min(void)
8576 {
8577 	calculate_min_free_kbytes();
8578 	setup_per_zone_wmarks();
8579 	refresh_zone_stat_thresholds();
8580 	setup_per_zone_lowmem_reserve();
8581 
8582 #ifdef CONFIG_NUMA
8583 	setup_min_unmapped_ratio();
8584 	setup_min_slab_ratio();
8585 #endif
8586 
8587 	khugepaged_min_free_kbytes_update();
8588 
8589 	return 0;
8590 }
8591 postcore_initcall(init_per_zone_wmark_min)
8592 
8593 /*
8594  * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
8595  *	that we can call two helper functions whenever min_free_kbytes
8596  *	changes.
8597  */
8598 int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
8599 		void *buffer, size_t *length, loff_t *ppos)
8600 {
8601 	int rc;
8602 
8603 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8604 	if (rc)
8605 		return rc;
8606 
8607 	if (write) {
8608 		user_min_free_kbytes = min_free_kbytes;
8609 		setup_per_zone_wmarks();
8610 	}
8611 	return 0;
8612 }
8613 
8614 int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
8615 		void *buffer, size_t *length, loff_t *ppos)
8616 {
8617 	int rc;
8618 
8619 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8620 	if (rc)
8621 		return rc;
8622 
8623 	if (write)
8624 		setup_per_zone_wmarks();
8625 
8626 	return 0;
8627 }
8628 
8629 #ifdef CONFIG_NUMA
8630 static void setup_min_unmapped_ratio(void)
8631 {
8632 	pg_data_t *pgdat;
8633 	struct zone *zone;
8634 
8635 	for_each_online_pgdat(pgdat)
8636 		pgdat->min_unmapped_pages = 0;
8637 
8638 	for_each_zone(zone)
8639 		zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) *
8640 						         sysctl_min_unmapped_ratio) / 100;
8641 }
8642 
8643 
8644 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
8645 		void *buffer, size_t *length, loff_t *ppos)
8646 {
8647 	int rc;
8648 
8649 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8650 	if (rc)
8651 		return rc;
8652 
8653 	setup_min_unmapped_ratio();
8654 
8655 	return 0;
8656 }
8657 
8658 static void setup_min_slab_ratio(void)
8659 {
8660 	pg_data_t *pgdat;
8661 	struct zone *zone;
8662 
8663 	for_each_online_pgdat(pgdat)
8664 		pgdat->min_slab_pages = 0;
8665 
8666 	for_each_zone(zone)
8667 		zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) *
8668 						     sysctl_min_slab_ratio) / 100;
8669 }
8670 
8671 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
8672 		void *buffer, size_t *length, loff_t *ppos)
8673 {
8674 	int rc;
8675 
8676 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8677 	if (rc)
8678 		return rc;
8679 
8680 	setup_min_slab_ratio();
8681 
8682 	return 0;
8683 }
8684 #endif
8685 
8686 /*
8687  * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
8688  *	proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
8689  *	whenever sysctl_lowmem_reserve_ratio changes.
8690  *
8691  * The reserve ratio obviously has absolutely no relation with the
8692  * minimum watermarks. The lowmem reserve ratio can only make sense
8693  * if in function of the boot time zone sizes.
8694  */
8695 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
8696 		void *buffer, size_t *length, loff_t *ppos)
8697 {
8698 	int i;
8699 
8700 	proc_dointvec_minmax(table, write, buffer, length, ppos);
8701 
8702 	for (i = 0; i < MAX_NR_ZONES; i++) {
8703 		if (sysctl_lowmem_reserve_ratio[i] < 1)
8704 			sysctl_lowmem_reserve_ratio[i] = 0;
8705 	}
8706 
8707 	setup_per_zone_lowmem_reserve();
8708 	return 0;
8709 }
8710 
8711 /*
8712  * percpu_pagelist_high_fraction - changes the pcp->high for each zone on each
8713  * cpu. It is the fraction of total pages in each zone that a hot per cpu
8714  * pagelist can have before it gets flushed back to buddy allocator.
8715  */
8716 int percpu_pagelist_high_fraction_sysctl_handler(struct ctl_table *table,
8717 		int write, void *buffer, size_t *length, loff_t *ppos)
8718 {
8719 	struct zone *zone;
8720 	int old_percpu_pagelist_high_fraction;
8721 	int ret;
8722 
8723 	mutex_lock(&pcp_batch_high_lock);
8724 	old_percpu_pagelist_high_fraction = percpu_pagelist_high_fraction;
8725 
8726 	ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
8727 	if (!write || ret < 0)
8728 		goto out;
8729 
8730 	/* Sanity checking to avoid pcp imbalance */
8731 	if (percpu_pagelist_high_fraction &&
8732 	    percpu_pagelist_high_fraction < MIN_PERCPU_PAGELIST_HIGH_FRACTION) {
8733 		percpu_pagelist_high_fraction = old_percpu_pagelist_high_fraction;
8734 		ret = -EINVAL;
8735 		goto out;
8736 	}
8737 
8738 	/* No change? */
8739 	if (percpu_pagelist_high_fraction == old_percpu_pagelist_high_fraction)
8740 		goto out;
8741 
8742 	for_each_populated_zone(zone)
8743 		zone_set_pageset_high_and_batch(zone, 0);
8744 out:
8745 	mutex_unlock(&pcp_batch_high_lock);
8746 	return ret;
8747 }
8748 
8749 #ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
8750 /*
8751  * Returns the number of pages that arch has reserved but
8752  * is not known to alloc_large_system_hash().
8753  */
8754 static unsigned long __init arch_reserved_kernel_pages(void)
8755 {
8756 	return 0;
8757 }
8758 #endif
8759 
8760 /*
8761  * Adaptive scale is meant to reduce sizes of hash tables on large memory
8762  * machines. As memory size is increased the scale is also increased but at
8763  * slower pace.  Starting from ADAPT_SCALE_BASE (64G), every time memory
8764  * quadruples the scale is increased by one, which means the size of hash table
8765  * only doubles, instead of quadrupling as well.
8766  * Because 32-bit systems cannot have large physical memory, where this scaling
8767  * makes sense, it is disabled on such platforms.
8768  */
8769 #if __BITS_PER_LONG > 32
8770 #define ADAPT_SCALE_BASE	(64ul << 30)
8771 #define ADAPT_SCALE_SHIFT	2
8772 #define ADAPT_SCALE_NPAGES	(ADAPT_SCALE_BASE >> PAGE_SHIFT)
8773 #endif
8774 
8775 /*
8776  * allocate a large system hash table from bootmem
8777  * - it is assumed that the hash table must contain an exact power-of-2
8778  *   quantity of entries
8779  * - limit is the number of hash buckets, not the total allocation size
8780  */
8781 void *__init alloc_large_system_hash(const char *tablename,
8782 				     unsigned long bucketsize,
8783 				     unsigned long numentries,
8784 				     int scale,
8785 				     int flags,
8786 				     unsigned int *_hash_shift,
8787 				     unsigned int *_hash_mask,
8788 				     unsigned long low_limit,
8789 				     unsigned long high_limit)
8790 {
8791 	unsigned long long max = high_limit;
8792 	unsigned long log2qty, size;
8793 	void *table = NULL;
8794 	gfp_t gfp_flags;
8795 	bool virt;
8796 	bool huge;
8797 
8798 	/* allow the kernel cmdline to have a say */
8799 	if (!numentries) {
8800 		/* round applicable memory size up to nearest megabyte */
8801 		numentries = nr_kernel_pages;
8802 		numentries -= arch_reserved_kernel_pages();
8803 
8804 		/* It isn't necessary when PAGE_SIZE >= 1MB */
8805 		if (PAGE_SHIFT < 20)
8806 			numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
8807 
8808 #if __BITS_PER_LONG > 32
8809 		if (!high_limit) {
8810 			unsigned long adapt;
8811 
8812 			for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries;
8813 			     adapt <<= ADAPT_SCALE_SHIFT)
8814 				scale++;
8815 		}
8816 #endif
8817 
8818 		/* limit to 1 bucket per 2^scale bytes of low memory */
8819 		if (scale > PAGE_SHIFT)
8820 			numentries >>= (scale - PAGE_SHIFT);
8821 		else
8822 			numentries <<= (PAGE_SHIFT - scale);
8823 
8824 		/* Make sure we've got at least a 0-order allocation.. */
8825 		if (unlikely(flags & HASH_SMALL)) {
8826 			/* Makes no sense without HASH_EARLY */
8827 			WARN_ON(!(flags & HASH_EARLY));
8828 			if (!(numentries >> *_hash_shift)) {
8829 				numentries = 1UL << *_hash_shift;
8830 				BUG_ON(!numentries);
8831 			}
8832 		} else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
8833 			numentries = PAGE_SIZE / bucketsize;
8834 	}
8835 	numentries = roundup_pow_of_two(numentries);
8836 
8837 	/* limit allocation size to 1/16 total memory by default */
8838 	if (max == 0) {
8839 		max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
8840 		do_div(max, bucketsize);
8841 	}
8842 	max = min(max, 0x80000000ULL);
8843 
8844 	if (numentries < low_limit)
8845 		numentries = low_limit;
8846 	if (numentries > max)
8847 		numentries = max;
8848 
8849 	log2qty = ilog2(numentries);
8850 
8851 	gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC;
8852 	do {
8853 		virt = false;
8854 		size = bucketsize << log2qty;
8855 		if (flags & HASH_EARLY) {
8856 			if (flags & HASH_ZERO)
8857 				table = memblock_alloc(size, SMP_CACHE_BYTES);
8858 			else
8859 				table = memblock_alloc_raw(size,
8860 							   SMP_CACHE_BYTES);
8861 		} else if (get_order(size) >= MAX_ORDER || hashdist) {
8862 			table = __vmalloc(size, gfp_flags);
8863 			virt = true;
8864 			if (table)
8865 				huge = is_vm_area_hugepages(table);
8866 		} else {
8867 			/*
8868 			 * If bucketsize is not a power-of-two, we may free
8869 			 * some pages at the end of hash table which
8870 			 * alloc_pages_exact() automatically does
8871 			 */
8872 			table = alloc_pages_exact(size, gfp_flags);
8873 			kmemleak_alloc(table, size, 1, gfp_flags);
8874 		}
8875 	} while (!table && size > PAGE_SIZE && --log2qty);
8876 
8877 	if (!table)
8878 		panic("Failed to allocate %s hash table\n", tablename);
8879 
8880 	pr_info("%s hash table entries: %ld (order: %d, %lu bytes, %s)\n",
8881 		tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size,
8882 		virt ? (huge ? "vmalloc hugepage" : "vmalloc") : "linear");
8883 
8884 	if (_hash_shift)
8885 		*_hash_shift = log2qty;
8886 	if (_hash_mask)
8887 		*_hash_mask = (1 << log2qty) - 1;
8888 
8889 	return table;
8890 }
8891 
8892 /*
8893  * This function checks whether pageblock includes unmovable pages or not.
8894  *
8895  * PageLRU check without isolation or lru_lock could race so that
8896  * MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable
8897  * check without lock_page also may miss some movable non-lru pages at
8898  * race condition. So you can't expect this function should be exact.
8899  *
8900  * Returns a page without holding a reference. If the caller wants to
8901  * dereference that page (e.g., dumping), it has to make sure that it
8902  * cannot get removed (e.g., via memory unplug) concurrently.
8903  *
8904  */
8905 struct page *has_unmovable_pages(struct zone *zone, struct page *page,
8906 				 int migratetype, int flags)
8907 {
8908 	unsigned long iter = 0;
8909 	unsigned long pfn = page_to_pfn(page);
8910 	unsigned long offset = pfn % pageblock_nr_pages;
8911 
8912 	if (is_migrate_cma_page(page)) {
8913 		/*
8914 		 * CMA allocations (alloc_contig_range) really need to mark
8915 		 * isolate CMA pageblocks even when they are not movable in fact
8916 		 * so consider them movable here.
8917 		 */
8918 		if (is_migrate_cma(migratetype))
8919 			return NULL;
8920 
8921 		return page;
8922 	}
8923 
8924 	for (; iter < pageblock_nr_pages - offset; iter++) {
8925 		page = pfn_to_page(pfn + iter);
8926 
8927 		/*
8928 		 * Both, bootmem allocations and memory holes are marked
8929 		 * PG_reserved and are unmovable. We can even have unmovable
8930 		 * allocations inside ZONE_MOVABLE, for example when
8931 		 * specifying "movablecore".
8932 		 */
8933 		if (PageReserved(page))
8934 			return page;
8935 
8936 		/*
8937 		 * If the zone is movable and we have ruled out all reserved
8938 		 * pages then it should be reasonably safe to assume the rest
8939 		 * is movable.
8940 		 */
8941 		if (zone_idx(zone) == ZONE_MOVABLE)
8942 			continue;
8943 
8944 		/*
8945 		 * Hugepages are not in LRU lists, but they're movable.
8946 		 * THPs are on the LRU, but need to be counted as #small pages.
8947 		 * We need not scan over tail pages because we don't
8948 		 * handle each tail page individually in migration.
8949 		 */
8950 		if (PageHuge(page) || PageTransCompound(page)) {
8951 			struct page *head = compound_head(page);
8952 			unsigned int skip_pages;
8953 
8954 			if (PageHuge(page)) {
8955 				if (!hugepage_migration_supported(page_hstate(head)))
8956 					return page;
8957 			} else if (!PageLRU(head) && !__PageMovable(head)) {
8958 				return page;
8959 			}
8960 
8961 			skip_pages = compound_nr(head) - (page - head);
8962 			iter += skip_pages - 1;
8963 			continue;
8964 		}
8965 
8966 		/*
8967 		 * We can't use page_count without pin a page
8968 		 * because another CPU can free compound page.
8969 		 * This check already skips compound tails of THP
8970 		 * because their page->_refcount is zero at all time.
8971 		 */
8972 		if (!page_ref_count(page)) {
8973 			if (PageBuddy(page))
8974 				iter += (1 << buddy_order(page)) - 1;
8975 			continue;
8976 		}
8977 
8978 		/*
8979 		 * The HWPoisoned page may be not in buddy system, and
8980 		 * page_count() is not 0.
8981 		 */
8982 		if ((flags & MEMORY_OFFLINE) && PageHWPoison(page))
8983 			continue;
8984 
8985 		/*
8986 		 * We treat all PageOffline() pages as movable when offlining
8987 		 * to give drivers a chance to decrement their reference count
8988 		 * in MEM_GOING_OFFLINE in order to indicate that these pages
8989 		 * can be offlined as there are no direct references anymore.
8990 		 * For actually unmovable PageOffline() where the driver does
8991 		 * not support this, we will fail later when trying to actually
8992 		 * move these pages that still have a reference count > 0.
8993 		 * (false negatives in this function only)
8994 		 */
8995 		if ((flags & MEMORY_OFFLINE) && PageOffline(page))
8996 			continue;
8997 
8998 		if (__PageMovable(page) || PageLRU(page))
8999 			continue;
9000 
9001 		/*
9002 		 * If there are RECLAIMABLE pages, we need to check
9003 		 * it.  But now, memory offline itself doesn't call
9004 		 * shrink_node_slabs() and it still to be fixed.
9005 		 */
9006 		return page;
9007 	}
9008 	return NULL;
9009 }
9010 
9011 #ifdef CONFIG_CONTIG_ALLOC
9012 static unsigned long pfn_max_align_down(unsigned long pfn)
9013 {
9014 	return ALIGN_DOWN(pfn, MAX_ORDER_NR_PAGES);
9015 }
9016 
9017 static unsigned long pfn_max_align_up(unsigned long pfn)
9018 {
9019 	return ALIGN(pfn, MAX_ORDER_NR_PAGES);
9020 }
9021 
9022 #if defined(CONFIG_DYNAMIC_DEBUG) || \
9023 	(defined(CONFIG_DYNAMIC_DEBUG_CORE) && defined(DYNAMIC_DEBUG_MODULE))
9024 /* Usage: See admin-guide/dynamic-debug-howto.rst */
9025 static void alloc_contig_dump_pages(struct list_head *page_list)
9026 {
9027 	DEFINE_DYNAMIC_DEBUG_METADATA(descriptor, "migrate failure");
9028 
9029 	if (DYNAMIC_DEBUG_BRANCH(descriptor)) {
9030 		struct page *page;
9031 
9032 		dump_stack();
9033 		list_for_each_entry(page, page_list, lru)
9034 			dump_page(page, "migration failure");
9035 	}
9036 }
9037 #else
9038 static inline void alloc_contig_dump_pages(struct list_head *page_list)
9039 {
9040 }
9041 #endif
9042 
9043 /* [start, end) must belong to a single zone. */
9044 static int __alloc_contig_migrate_range(struct compact_control *cc,
9045 					unsigned long start, unsigned long end)
9046 {
9047 	/* This function is based on compact_zone() from compaction.c. */
9048 	unsigned int nr_reclaimed;
9049 	unsigned long pfn = start;
9050 	unsigned int tries = 0;
9051 	int ret = 0;
9052 	struct migration_target_control mtc = {
9053 		.nid = zone_to_nid(cc->zone),
9054 		.gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL,
9055 	};
9056 
9057 	lru_cache_disable();
9058 
9059 	while (pfn < end || !list_empty(&cc->migratepages)) {
9060 		if (fatal_signal_pending(current)) {
9061 			ret = -EINTR;
9062 			break;
9063 		}
9064 
9065 		if (list_empty(&cc->migratepages)) {
9066 			cc->nr_migratepages = 0;
9067 			ret = isolate_migratepages_range(cc, pfn, end);
9068 			if (ret && ret != -EAGAIN)
9069 				break;
9070 			pfn = cc->migrate_pfn;
9071 			tries = 0;
9072 		} else if (++tries == 5) {
9073 			ret = -EBUSY;
9074 			break;
9075 		}
9076 
9077 		nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
9078 							&cc->migratepages);
9079 		cc->nr_migratepages -= nr_reclaimed;
9080 
9081 		ret = migrate_pages(&cc->migratepages, alloc_migration_target,
9082 			NULL, (unsigned long)&mtc, cc->mode, MR_CONTIG_RANGE, NULL);
9083 
9084 		/*
9085 		 * On -ENOMEM, migrate_pages() bails out right away. It is pointless
9086 		 * to retry again over this error, so do the same here.
9087 		 */
9088 		if (ret == -ENOMEM)
9089 			break;
9090 	}
9091 
9092 	lru_cache_enable();
9093 	if (ret < 0) {
9094 		if (ret == -EBUSY)
9095 			alloc_contig_dump_pages(&cc->migratepages);
9096 		putback_movable_pages(&cc->migratepages);
9097 		return ret;
9098 	}
9099 	return 0;
9100 }
9101 
9102 /**
9103  * alloc_contig_range() -- tries to allocate given range of pages
9104  * @start:	start PFN to allocate
9105  * @end:	one-past-the-last PFN to allocate
9106  * @migratetype:	migratetype of the underlying pageblocks (either
9107  *			#MIGRATE_MOVABLE or #MIGRATE_CMA).  All pageblocks
9108  *			in range must have the same migratetype and it must
9109  *			be either of the two.
9110  * @gfp_mask:	GFP mask to use during compaction
9111  *
9112  * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
9113  * aligned.  The PFN range must belong to a single zone.
9114  *
9115  * The first thing this routine does is attempt to MIGRATE_ISOLATE all
9116  * pageblocks in the range.  Once isolated, the pageblocks should not
9117  * be modified by others.
9118  *
9119  * Return: zero on success or negative error code.  On success all
9120  * pages which PFN is in [start, end) are allocated for the caller and
9121  * need to be freed with free_contig_range().
9122  */
9123 int alloc_contig_range(unsigned long start, unsigned long end,
9124 		       unsigned migratetype, gfp_t gfp_mask)
9125 {
9126 	unsigned long outer_start, outer_end;
9127 	unsigned int order;
9128 	int ret = 0;
9129 
9130 	struct compact_control cc = {
9131 		.nr_migratepages = 0,
9132 		.order = -1,
9133 		.zone = page_zone(pfn_to_page(start)),
9134 		.mode = MIGRATE_SYNC,
9135 		.ignore_skip_hint = true,
9136 		.no_set_skip_hint = true,
9137 		.gfp_mask = current_gfp_context(gfp_mask),
9138 		.alloc_contig = true,
9139 	};
9140 	INIT_LIST_HEAD(&cc.migratepages);
9141 
9142 	/*
9143 	 * What we do here is we mark all pageblocks in range as
9144 	 * MIGRATE_ISOLATE.  Because pageblock and max order pages may
9145 	 * have different sizes, and due to the way page allocator
9146 	 * work, we align the range to biggest of the two pages so
9147 	 * that page allocator won't try to merge buddies from
9148 	 * different pageblocks and change MIGRATE_ISOLATE to some
9149 	 * other migration type.
9150 	 *
9151 	 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
9152 	 * migrate the pages from an unaligned range (ie. pages that
9153 	 * we are interested in).  This will put all the pages in
9154 	 * range back to page allocator as MIGRATE_ISOLATE.
9155 	 *
9156 	 * When this is done, we take the pages in range from page
9157 	 * allocator removing them from the buddy system.  This way
9158 	 * page allocator will never consider using them.
9159 	 *
9160 	 * This lets us mark the pageblocks back as
9161 	 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
9162 	 * aligned range but not in the unaligned, original range are
9163 	 * put back to page allocator so that buddy can use them.
9164 	 */
9165 
9166 	ret = start_isolate_page_range(pfn_max_align_down(start),
9167 				       pfn_max_align_up(end), migratetype, 0);
9168 	if (ret)
9169 		return ret;
9170 
9171 	drain_all_pages(cc.zone);
9172 
9173 	/*
9174 	 * In case of -EBUSY, we'd like to know which page causes problem.
9175 	 * So, just fall through. test_pages_isolated() has a tracepoint
9176 	 * which will report the busy page.
9177 	 *
9178 	 * It is possible that busy pages could become available before
9179 	 * the call to test_pages_isolated, and the range will actually be
9180 	 * allocated.  So, if we fall through be sure to clear ret so that
9181 	 * -EBUSY is not accidentally used or returned to caller.
9182 	 */
9183 	ret = __alloc_contig_migrate_range(&cc, start, end);
9184 	if (ret && ret != -EBUSY)
9185 		goto done;
9186 	ret = 0;
9187 
9188 	/*
9189 	 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
9190 	 * aligned blocks that are marked as MIGRATE_ISOLATE.  What's
9191 	 * more, all pages in [start, end) are free in page allocator.
9192 	 * What we are going to do is to allocate all pages from
9193 	 * [start, end) (that is remove them from page allocator).
9194 	 *
9195 	 * The only problem is that pages at the beginning and at the
9196 	 * end of interesting range may be not aligned with pages that
9197 	 * page allocator holds, ie. they can be part of higher order
9198 	 * pages.  Because of this, we reserve the bigger range and
9199 	 * once this is done free the pages we are not interested in.
9200 	 *
9201 	 * We don't have to hold zone->lock here because the pages are
9202 	 * isolated thus they won't get removed from buddy.
9203 	 */
9204 
9205 	order = 0;
9206 	outer_start = start;
9207 	while (!PageBuddy(pfn_to_page(outer_start))) {
9208 		if (++order >= MAX_ORDER) {
9209 			outer_start = start;
9210 			break;
9211 		}
9212 		outer_start &= ~0UL << order;
9213 	}
9214 
9215 	if (outer_start != start) {
9216 		order = buddy_order(pfn_to_page(outer_start));
9217 
9218 		/*
9219 		 * outer_start page could be small order buddy page and
9220 		 * it doesn't include start page. Adjust outer_start
9221 		 * in this case to report failed page properly
9222 		 * on tracepoint in test_pages_isolated()
9223 		 */
9224 		if (outer_start + (1UL << order) <= start)
9225 			outer_start = start;
9226 	}
9227 
9228 	/* Make sure the range is really isolated. */
9229 	if (test_pages_isolated(outer_start, end, 0)) {
9230 		ret = -EBUSY;
9231 		goto done;
9232 	}
9233 
9234 	/* Grab isolated pages from freelists. */
9235 	outer_end = isolate_freepages_range(&cc, outer_start, end);
9236 	if (!outer_end) {
9237 		ret = -EBUSY;
9238 		goto done;
9239 	}
9240 
9241 	/* Free head and tail (if any) */
9242 	if (start != outer_start)
9243 		free_contig_range(outer_start, start - outer_start);
9244 	if (end != outer_end)
9245 		free_contig_range(end, outer_end - end);
9246 
9247 done:
9248 	undo_isolate_page_range(pfn_max_align_down(start),
9249 				pfn_max_align_up(end), migratetype);
9250 	return ret;
9251 }
9252 EXPORT_SYMBOL(alloc_contig_range);
9253 
9254 static int __alloc_contig_pages(unsigned long start_pfn,
9255 				unsigned long nr_pages, gfp_t gfp_mask)
9256 {
9257 	unsigned long end_pfn = start_pfn + nr_pages;
9258 
9259 	return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE,
9260 				  gfp_mask);
9261 }
9262 
9263 static bool pfn_range_valid_contig(struct zone *z, unsigned long start_pfn,
9264 				   unsigned long nr_pages)
9265 {
9266 	unsigned long i, end_pfn = start_pfn + nr_pages;
9267 	struct page *page;
9268 
9269 	for (i = start_pfn; i < end_pfn; i++) {
9270 		page = pfn_to_online_page(i);
9271 		if (!page)
9272 			return false;
9273 
9274 		if (page_zone(page) != z)
9275 			return false;
9276 
9277 		if (PageReserved(page))
9278 			return false;
9279 	}
9280 	return true;
9281 }
9282 
9283 static bool zone_spans_last_pfn(const struct zone *zone,
9284 				unsigned long start_pfn, unsigned long nr_pages)
9285 {
9286 	unsigned long last_pfn = start_pfn + nr_pages - 1;
9287 
9288 	return zone_spans_pfn(zone, last_pfn);
9289 }
9290 
9291 /**
9292  * alloc_contig_pages() -- tries to find and allocate contiguous range of pages
9293  * @nr_pages:	Number of contiguous pages to allocate
9294  * @gfp_mask:	GFP mask to limit search and used during compaction
9295  * @nid:	Target node
9296  * @nodemask:	Mask for other possible nodes
9297  *
9298  * This routine is a wrapper around alloc_contig_range(). It scans over zones
9299  * on an applicable zonelist to find a contiguous pfn range which can then be
9300  * tried for allocation with alloc_contig_range(). This routine is intended
9301  * for allocation requests which can not be fulfilled with the buddy allocator.
9302  *
9303  * The allocated memory is always aligned to a page boundary. If nr_pages is a
9304  * power of two, then allocated range is also guaranteed to be aligned to same
9305  * nr_pages (e.g. 1GB request would be aligned to 1GB).
9306  *
9307  * Allocated pages can be freed with free_contig_range() or by manually calling
9308  * __free_page() on each allocated page.
9309  *
9310  * Return: pointer to contiguous pages on success, or NULL if not successful.
9311  */
9312 struct page *alloc_contig_pages(unsigned long nr_pages, gfp_t gfp_mask,
9313 				int nid, nodemask_t *nodemask)
9314 {
9315 	unsigned long ret, pfn, flags;
9316 	struct zonelist *zonelist;
9317 	struct zone *zone;
9318 	struct zoneref *z;
9319 
9320 	zonelist = node_zonelist(nid, gfp_mask);
9321 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
9322 					gfp_zone(gfp_mask), nodemask) {
9323 		spin_lock_irqsave(&zone->lock, flags);
9324 
9325 		pfn = ALIGN(zone->zone_start_pfn, nr_pages);
9326 		while (zone_spans_last_pfn(zone, pfn, nr_pages)) {
9327 			if (pfn_range_valid_contig(zone, pfn, nr_pages)) {
9328 				/*
9329 				 * We release the zone lock here because
9330 				 * alloc_contig_range() will also lock the zone
9331 				 * at some point. If there's an allocation
9332 				 * spinning on this lock, it may win the race
9333 				 * and cause alloc_contig_range() to fail...
9334 				 */
9335 				spin_unlock_irqrestore(&zone->lock, flags);
9336 				ret = __alloc_contig_pages(pfn, nr_pages,
9337 							gfp_mask);
9338 				if (!ret)
9339 					return pfn_to_page(pfn);
9340 				spin_lock_irqsave(&zone->lock, flags);
9341 			}
9342 			pfn += nr_pages;
9343 		}
9344 		spin_unlock_irqrestore(&zone->lock, flags);
9345 	}
9346 	return NULL;
9347 }
9348 #endif /* CONFIG_CONTIG_ALLOC */
9349 
9350 void free_contig_range(unsigned long pfn, unsigned long nr_pages)
9351 {
9352 	unsigned long count = 0;
9353 
9354 	for (; nr_pages--; pfn++) {
9355 		struct page *page = pfn_to_page(pfn);
9356 
9357 		count += page_count(page) != 1;
9358 		__free_page(page);
9359 	}
9360 	WARN(count != 0, "%lu pages are still in use!\n", count);
9361 }
9362 EXPORT_SYMBOL(free_contig_range);
9363 
9364 /*
9365  * The zone indicated has a new number of managed_pages; batch sizes and percpu
9366  * page high values need to be recalculated.
9367  */
9368 void zone_pcp_update(struct zone *zone, int cpu_online)
9369 {
9370 	mutex_lock(&pcp_batch_high_lock);
9371 	zone_set_pageset_high_and_batch(zone, cpu_online);
9372 	mutex_unlock(&pcp_batch_high_lock);
9373 }
9374 
9375 /*
9376  * Effectively disable pcplists for the zone by setting the high limit to 0
9377  * and draining all cpus. A concurrent page freeing on another CPU that's about
9378  * to put the page on pcplist will either finish before the drain and the page
9379  * will be drained, or observe the new high limit and skip the pcplist.
9380  *
9381  * Must be paired with a call to zone_pcp_enable().
9382  */
9383 void zone_pcp_disable(struct zone *zone)
9384 {
9385 	mutex_lock(&pcp_batch_high_lock);
9386 	__zone_set_pageset_high_and_batch(zone, 0, 1);
9387 	__drain_all_pages(zone, true);
9388 }
9389 
9390 void zone_pcp_enable(struct zone *zone)
9391 {
9392 	__zone_set_pageset_high_and_batch(zone, zone->pageset_high, zone->pageset_batch);
9393 	mutex_unlock(&pcp_batch_high_lock);
9394 }
9395 
9396 void zone_pcp_reset(struct zone *zone)
9397 {
9398 	int cpu;
9399 	struct per_cpu_zonestat *pzstats;
9400 
9401 	if (zone->per_cpu_pageset != &boot_pageset) {
9402 		for_each_online_cpu(cpu) {
9403 			pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
9404 			drain_zonestat(zone, pzstats);
9405 		}
9406 		free_percpu(zone->per_cpu_pageset);
9407 		free_percpu(zone->per_cpu_zonestats);
9408 		zone->per_cpu_pageset = &boot_pageset;
9409 		zone->per_cpu_zonestats = &boot_zonestats;
9410 	}
9411 }
9412 
9413 #ifdef CONFIG_MEMORY_HOTREMOVE
9414 /*
9415  * All pages in the range must be in a single zone, must not contain holes,
9416  * must span full sections, and must be isolated before calling this function.
9417  */
9418 void __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
9419 {
9420 	unsigned long pfn = start_pfn;
9421 	struct page *page;
9422 	struct zone *zone;
9423 	unsigned int order;
9424 	unsigned long flags;
9425 
9426 	offline_mem_sections(pfn, end_pfn);
9427 	zone = page_zone(pfn_to_page(pfn));
9428 	spin_lock_irqsave(&zone->lock, flags);
9429 	while (pfn < end_pfn) {
9430 		page = pfn_to_page(pfn);
9431 		/*
9432 		 * The HWPoisoned page may be not in buddy system, and
9433 		 * page_count() is not 0.
9434 		 */
9435 		if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
9436 			pfn++;
9437 			continue;
9438 		}
9439 		/*
9440 		 * At this point all remaining PageOffline() pages have a
9441 		 * reference count of 0 and can simply be skipped.
9442 		 */
9443 		if (PageOffline(page)) {
9444 			BUG_ON(page_count(page));
9445 			BUG_ON(PageBuddy(page));
9446 			pfn++;
9447 			continue;
9448 		}
9449 
9450 		BUG_ON(page_count(page));
9451 		BUG_ON(!PageBuddy(page));
9452 		order = buddy_order(page);
9453 		del_page_from_free_list(page, zone, order);
9454 		pfn += (1 << order);
9455 	}
9456 	spin_unlock_irqrestore(&zone->lock, flags);
9457 }
9458 #endif
9459 
9460 /*
9461  * This function returns a stable result only if called under zone lock.
9462  */
9463 bool is_free_buddy_page(struct page *page)
9464 {
9465 	unsigned long pfn = page_to_pfn(page);
9466 	unsigned int order;
9467 
9468 	for (order = 0; order < MAX_ORDER; order++) {
9469 		struct page *page_head = page - (pfn & ((1 << order) - 1));
9470 
9471 		if (PageBuddy(page_head) &&
9472 		    buddy_order_unsafe(page_head) >= order)
9473 			break;
9474 	}
9475 
9476 	return order < MAX_ORDER;
9477 }
9478 EXPORT_SYMBOL(is_free_buddy_page);
9479 
9480 #ifdef CONFIG_MEMORY_FAILURE
9481 /*
9482  * Break down a higher-order page in sub-pages, and keep our target out of
9483  * buddy allocator.
9484  */
9485 static void break_down_buddy_pages(struct zone *zone, struct page *page,
9486 				   struct page *target, int low, int high,
9487 				   int migratetype)
9488 {
9489 	unsigned long size = 1 << high;
9490 	struct page *current_buddy, *next_page;
9491 
9492 	while (high > low) {
9493 		high--;
9494 		size >>= 1;
9495 
9496 		if (target >= &page[size]) {
9497 			next_page = page + size;
9498 			current_buddy = page;
9499 		} else {
9500 			next_page = page;
9501 			current_buddy = page + size;
9502 		}
9503 
9504 		if (set_page_guard(zone, current_buddy, high, migratetype))
9505 			continue;
9506 
9507 		if (current_buddy != target) {
9508 			add_to_free_list(current_buddy, zone, high, migratetype);
9509 			set_buddy_order(current_buddy, high);
9510 			page = next_page;
9511 		}
9512 	}
9513 }
9514 
9515 /*
9516  * Take a page that will be marked as poisoned off the buddy allocator.
9517  */
9518 bool take_page_off_buddy(struct page *page)
9519 {
9520 	struct zone *zone = page_zone(page);
9521 	unsigned long pfn = page_to_pfn(page);
9522 	unsigned long flags;
9523 	unsigned int order;
9524 	bool ret = false;
9525 
9526 	spin_lock_irqsave(&zone->lock, flags);
9527 	for (order = 0; order < MAX_ORDER; order++) {
9528 		struct page *page_head = page - (pfn & ((1 << order) - 1));
9529 		int page_order = buddy_order(page_head);
9530 
9531 		if (PageBuddy(page_head) && page_order >= order) {
9532 			unsigned long pfn_head = page_to_pfn(page_head);
9533 			int migratetype = get_pfnblock_migratetype(page_head,
9534 								   pfn_head);
9535 
9536 			del_page_from_free_list(page_head, zone, page_order);
9537 			break_down_buddy_pages(zone, page_head, page, 0,
9538 						page_order, migratetype);
9539 			SetPageHWPoisonTakenOff(page);
9540 			if (!is_migrate_isolate(migratetype))
9541 				__mod_zone_freepage_state(zone, -1, migratetype);
9542 			ret = true;
9543 			break;
9544 		}
9545 		if (page_count(page_head) > 0)
9546 			break;
9547 	}
9548 	spin_unlock_irqrestore(&zone->lock, flags);
9549 	return ret;
9550 }
9551 
9552 /*
9553  * Cancel takeoff done by take_page_off_buddy().
9554  */
9555 bool put_page_back_buddy(struct page *page)
9556 {
9557 	struct zone *zone = page_zone(page);
9558 	unsigned long pfn = page_to_pfn(page);
9559 	unsigned long flags;
9560 	int migratetype = get_pfnblock_migratetype(page, pfn);
9561 	bool ret = false;
9562 
9563 	spin_lock_irqsave(&zone->lock, flags);
9564 	if (put_page_testzero(page)) {
9565 		ClearPageHWPoisonTakenOff(page);
9566 		__free_one_page(page, pfn, zone, 0, migratetype, FPI_NONE);
9567 		if (TestClearPageHWPoison(page)) {
9568 			num_poisoned_pages_dec();
9569 			ret = true;
9570 		}
9571 	}
9572 	spin_unlock_irqrestore(&zone->lock, flags);
9573 
9574 	return ret;
9575 }
9576 #endif
9577 
9578 #ifdef CONFIG_ZONE_DMA
9579 bool has_managed_dma(void)
9580 {
9581 	struct pglist_data *pgdat;
9582 
9583 	for_each_online_pgdat(pgdat) {
9584 		struct zone *zone = &pgdat->node_zones[ZONE_DMA];
9585 
9586 		if (managed_zone(zone))
9587 			return true;
9588 	}
9589 	return false;
9590 }
9591 #endif /* CONFIG_ZONE_DMA */
9592