xref: /linux/mm/page_alloc.c (revision b8e4b0529d59a3ccd0b25a31d3cfc8b0f3b34068)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/page_alloc.c
4  *
5  *  Manages the free list, the system allocates free pages here.
6  *  Note that kmalloc() lives in slab.c
7  *
8  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
9  *  Swap reorganised 29.12.95, Stephen Tweedie
10  *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
11  *  Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
12  *  Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
13  *  Zone balancing, Kanoj Sarcar, SGI, Jan 2000
14  *  Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
15  *          (lots of bits borrowed from Ingo Molnar & Andrew Morton)
16  */
17 
18 #include <linux/stddef.h>
19 #include <linux/mm.h>
20 #include <linux/highmem.h>
21 #include <linux/interrupt.h>
22 #include <linux/jiffies.h>
23 #include <linux/compiler.h>
24 #include <linux/kernel.h>
25 #include <linux/kasan.h>
26 #include <linux/kmsan.h>
27 #include <linux/module.h>
28 #include <linux/suspend.h>
29 #include <linux/ratelimit.h>
30 #include <linux/oom.h>
31 #include <linux/topology.h>
32 #include <linux/sysctl.h>
33 #include <linux/cpu.h>
34 #include <linux/cpuset.h>
35 #include <linux/pagevec.h>
36 #include <linux/memory_hotplug.h>
37 #include <linux/nodemask.h>
38 #include <linux/vmstat.h>
39 #include <linux/fault-inject.h>
40 #include <linux/compaction.h>
41 #include <trace/events/kmem.h>
42 #include <trace/events/oom.h>
43 #include <linux/prefetch.h>
44 #include <linux/mm_inline.h>
45 #include <linux/mmu_notifier.h>
46 #include <linux/migrate.h>
47 #include <linux/sched/mm.h>
48 #include <linux/page_owner.h>
49 #include <linux/page_table_check.h>
50 #include <linux/memcontrol.h>
51 #include <linux/ftrace.h>
52 #include <linux/lockdep.h>
53 #include <linux/psi.h>
54 #include <linux/khugepaged.h>
55 #include <linux/delayacct.h>
56 #include <linux/cacheinfo.h>
57 #include <linux/pgalloc_tag.h>
58 #include <asm/div64.h>
59 #include "internal.h"
60 #include "shuffle.h"
61 #include "page_reporting.h"
62 
63 /* Free Page Internal flags: for internal, non-pcp variants of free_pages(). */
64 typedef int __bitwise fpi_t;
65 
66 /* No special request */
67 #define FPI_NONE		((__force fpi_t)0)
68 
69 /*
70  * Skip free page reporting notification for the (possibly merged) page.
71  * This does not hinder free page reporting from grabbing the page,
72  * reporting it and marking it "reported" -  it only skips notifying
73  * the free page reporting infrastructure about a newly freed page. For
74  * example, used when temporarily pulling a page from a freelist and
75  * putting it back unmodified.
76  */
77 #define FPI_SKIP_REPORT_NOTIFY	((__force fpi_t)BIT(0))
78 
79 /*
80  * Place the (possibly merged) page to the tail of the freelist. Will ignore
81  * page shuffling (relevant code - e.g., memory onlining - is expected to
82  * shuffle the whole zone).
83  *
84  * Note: No code should rely on this flag for correctness - it's purely
85  *       to allow for optimizations when handing back either fresh pages
86  *       (memory onlining) or untouched pages (page isolation, free page
87  *       reporting).
88  */
89 #define FPI_TO_TAIL		((__force fpi_t)BIT(1))
90 
91 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
92 static DEFINE_MUTEX(pcp_batch_high_lock);
93 #define MIN_PERCPU_PAGELIST_HIGH_FRACTION (8)
94 
95 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT_RT)
96 /*
97  * On SMP, spin_trylock is sufficient protection.
98  * On PREEMPT_RT, spin_trylock is equivalent on both SMP and UP.
99  */
100 #define pcp_trylock_prepare(flags)	do { } while (0)
101 #define pcp_trylock_finish(flag)	do { } while (0)
102 #else
103 
104 /* UP spin_trylock always succeeds so disable IRQs to prevent re-entrancy. */
105 #define pcp_trylock_prepare(flags)	local_irq_save(flags)
106 #define pcp_trylock_finish(flags)	local_irq_restore(flags)
107 #endif
108 
109 /*
110  * Locking a pcp requires a PCP lookup followed by a spinlock. To avoid
111  * a migration causing the wrong PCP to be locked and remote memory being
112  * potentially allocated, pin the task to the CPU for the lookup+lock.
113  * preempt_disable is used on !RT because it is faster than migrate_disable.
114  * migrate_disable is used on RT because otherwise RT spinlock usage is
115  * interfered with and a high priority task cannot preempt the allocator.
116  */
117 #ifndef CONFIG_PREEMPT_RT
118 #define pcpu_task_pin()		preempt_disable()
119 #define pcpu_task_unpin()	preempt_enable()
120 #else
121 #define pcpu_task_pin()		migrate_disable()
122 #define pcpu_task_unpin()	migrate_enable()
123 #endif
124 
125 /*
126  * Generic helper to lookup and a per-cpu variable with an embedded spinlock.
127  * Return value should be used with equivalent unlock helper.
128  */
129 #define pcpu_spin_lock(type, member, ptr)				\
130 ({									\
131 	type *_ret;							\
132 	pcpu_task_pin();						\
133 	_ret = this_cpu_ptr(ptr);					\
134 	spin_lock(&_ret->member);					\
135 	_ret;								\
136 })
137 
138 #define pcpu_spin_trylock(type, member, ptr)				\
139 ({									\
140 	type *_ret;							\
141 	pcpu_task_pin();						\
142 	_ret = this_cpu_ptr(ptr);					\
143 	if (!spin_trylock(&_ret->member)) {				\
144 		pcpu_task_unpin();					\
145 		_ret = NULL;						\
146 	}								\
147 	_ret;								\
148 })
149 
150 #define pcpu_spin_unlock(member, ptr)					\
151 ({									\
152 	spin_unlock(&ptr->member);					\
153 	pcpu_task_unpin();						\
154 })
155 
156 /* struct per_cpu_pages specific helpers. */
157 #define pcp_spin_lock(ptr)						\
158 	pcpu_spin_lock(struct per_cpu_pages, lock, ptr)
159 
160 #define pcp_spin_trylock(ptr)						\
161 	pcpu_spin_trylock(struct per_cpu_pages, lock, ptr)
162 
163 #define pcp_spin_unlock(ptr)						\
164 	pcpu_spin_unlock(lock, ptr)
165 
166 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
167 DEFINE_PER_CPU(int, numa_node);
168 EXPORT_PER_CPU_SYMBOL(numa_node);
169 #endif
170 
171 DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key);
172 
173 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
174 /*
175  * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
176  * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
177  * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
178  * defined in <linux/topology.h>.
179  */
180 DEFINE_PER_CPU(int, _numa_mem_);		/* Kernel "local memory" node */
181 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
182 #endif
183 
184 static DEFINE_MUTEX(pcpu_drain_mutex);
185 
186 #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
187 volatile unsigned long latent_entropy __latent_entropy;
188 EXPORT_SYMBOL(latent_entropy);
189 #endif
190 
191 /*
192  * Array of node states.
193  */
194 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
195 	[N_POSSIBLE] = NODE_MASK_ALL,
196 	[N_ONLINE] = { { [0] = 1UL } },
197 #ifndef CONFIG_NUMA
198 	[N_NORMAL_MEMORY] = { { [0] = 1UL } },
199 #ifdef CONFIG_HIGHMEM
200 	[N_HIGH_MEMORY] = { { [0] = 1UL } },
201 #endif
202 	[N_MEMORY] = { { [0] = 1UL } },
203 	[N_CPU] = { { [0] = 1UL } },
204 #endif	/* NUMA */
205 };
206 EXPORT_SYMBOL(node_states);
207 
208 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
209 
210 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
211 unsigned int pageblock_order __read_mostly;
212 #endif
213 
214 static void __free_pages_ok(struct page *page, unsigned int order,
215 			    fpi_t fpi_flags);
216 
217 /*
218  * results with 256, 32 in the lowmem_reserve sysctl:
219  *	1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
220  *	1G machine -> (16M dma, 784M normal, 224M high)
221  *	NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
222  *	HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
223  *	HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
224  *
225  * TBD: should special case ZONE_DMA32 machines here - in those we normally
226  * don't need any ZONE_NORMAL reservation
227  */
228 static int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = {
229 #ifdef CONFIG_ZONE_DMA
230 	[ZONE_DMA] = 256,
231 #endif
232 #ifdef CONFIG_ZONE_DMA32
233 	[ZONE_DMA32] = 256,
234 #endif
235 	[ZONE_NORMAL] = 32,
236 #ifdef CONFIG_HIGHMEM
237 	[ZONE_HIGHMEM] = 0,
238 #endif
239 	[ZONE_MOVABLE] = 0,
240 };
241 
242 char * const zone_names[MAX_NR_ZONES] = {
243 #ifdef CONFIG_ZONE_DMA
244 	 "DMA",
245 #endif
246 #ifdef CONFIG_ZONE_DMA32
247 	 "DMA32",
248 #endif
249 	 "Normal",
250 #ifdef CONFIG_HIGHMEM
251 	 "HighMem",
252 #endif
253 	 "Movable",
254 #ifdef CONFIG_ZONE_DEVICE
255 	 "Device",
256 #endif
257 };
258 
259 const char * const migratetype_names[MIGRATE_TYPES] = {
260 	"Unmovable",
261 	"Movable",
262 	"Reclaimable",
263 	"HighAtomic",
264 #ifdef CONFIG_CMA
265 	"CMA",
266 #endif
267 #ifdef CONFIG_MEMORY_ISOLATION
268 	"Isolate",
269 #endif
270 };
271 
272 int min_free_kbytes = 1024;
273 int user_min_free_kbytes = -1;
274 static int watermark_boost_factor __read_mostly = 15000;
275 static int watermark_scale_factor = 10;
276 
277 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
278 int movable_zone;
279 EXPORT_SYMBOL(movable_zone);
280 
281 #if MAX_NUMNODES > 1
282 unsigned int nr_node_ids __read_mostly = MAX_NUMNODES;
283 unsigned int nr_online_nodes __read_mostly = 1;
284 EXPORT_SYMBOL(nr_node_ids);
285 EXPORT_SYMBOL(nr_online_nodes);
286 #endif
287 
288 static bool page_contains_unaccepted(struct page *page, unsigned int order);
289 static void accept_page(struct page *page, unsigned int order);
290 static bool try_to_accept_memory(struct zone *zone, unsigned int order);
291 static inline bool has_unaccepted_memory(void);
292 static bool __free_unaccepted(struct page *page);
293 
294 int page_group_by_mobility_disabled __read_mostly;
295 
296 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
297 /*
298  * During boot we initialize deferred pages on-demand, as needed, but once
299  * page_alloc_init_late() has finished, the deferred pages are all initialized,
300  * and we can permanently disable that path.
301  */
302 DEFINE_STATIC_KEY_TRUE(deferred_pages);
303 
304 static inline bool deferred_pages_enabled(void)
305 {
306 	return static_branch_unlikely(&deferred_pages);
307 }
308 
309 /*
310  * deferred_grow_zone() is __init, but it is called from
311  * get_page_from_freelist() during early boot until deferred_pages permanently
312  * disables this call. This is why we have refdata wrapper to avoid warning,
313  * and to ensure that the function body gets unloaded.
314  */
315 static bool __ref
316 _deferred_grow_zone(struct zone *zone, unsigned int order)
317 {
318 	return deferred_grow_zone(zone, order);
319 }
320 #else
321 static inline bool deferred_pages_enabled(void)
322 {
323 	return false;
324 }
325 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
326 
327 /* Return a pointer to the bitmap storing bits affecting a block of pages */
328 static inline unsigned long *get_pageblock_bitmap(const struct page *page,
329 							unsigned long pfn)
330 {
331 #ifdef CONFIG_SPARSEMEM
332 	return section_to_usemap(__pfn_to_section(pfn));
333 #else
334 	return page_zone(page)->pageblock_flags;
335 #endif /* CONFIG_SPARSEMEM */
336 }
337 
338 static inline int pfn_to_bitidx(const struct page *page, unsigned long pfn)
339 {
340 #ifdef CONFIG_SPARSEMEM
341 	pfn &= (PAGES_PER_SECTION-1);
342 #else
343 	pfn = pfn - pageblock_start_pfn(page_zone(page)->zone_start_pfn);
344 #endif /* CONFIG_SPARSEMEM */
345 	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
346 }
347 
348 /**
349  * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
350  * @page: The page within the block of interest
351  * @pfn: The target page frame number
352  * @mask: mask of bits that the caller is interested in
353  *
354  * Return: pageblock_bits flags
355  */
356 unsigned long get_pfnblock_flags_mask(const struct page *page,
357 					unsigned long pfn, unsigned long mask)
358 {
359 	unsigned long *bitmap;
360 	unsigned long bitidx, word_bitidx;
361 	unsigned long word;
362 
363 	bitmap = get_pageblock_bitmap(page, pfn);
364 	bitidx = pfn_to_bitidx(page, pfn);
365 	word_bitidx = bitidx / BITS_PER_LONG;
366 	bitidx &= (BITS_PER_LONG-1);
367 	/*
368 	 * This races, without locks, with set_pfnblock_flags_mask(). Ensure
369 	 * a consistent read of the memory array, so that results, even though
370 	 * racy, are not corrupted.
371 	 */
372 	word = READ_ONCE(bitmap[word_bitidx]);
373 	return (word >> bitidx) & mask;
374 }
375 
376 static __always_inline int get_pfnblock_migratetype(const struct page *page,
377 					unsigned long pfn)
378 {
379 	return get_pfnblock_flags_mask(page, pfn, MIGRATETYPE_MASK);
380 }
381 
382 /**
383  * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
384  * @page: The page within the block of interest
385  * @flags: The flags to set
386  * @pfn: The target page frame number
387  * @mask: mask of bits that the caller is interested in
388  */
389 void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
390 					unsigned long pfn,
391 					unsigned long mask)
392 {
393 	unsigned long *bitmap;
394 	unsigned long bitidx, word_bitidx;
395 	unsigned long word;
396 
397 	BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
398 	BUILD_BUG_ON(MIGRATE_TYPES > (1 << PB_migratetype_bits));
399 
400 	bitmap = get_pageblock_bitmap(page, pfn);
401 	bitidx = pfn_to_bitidx(page, pfn);
402 	word_bitidx = bitidx / BITS_PER_LONG;
403 	bitidx &= (BITS_PER_LONG-1);
404 
405 	VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
406 
407 	mask <<= bitidx;
408 	flags <<= bitidx;
409 
410 	word = READ_ONCE(bitmap[word_bitidx]);
411 	do {
412 	} while (!try_cmpxchg(&bitmap[word_bitidx], &word, (word & ~mask) | flags));
413 }
414 
415 void set_pageblock_migratetype(struct page *page, int migratetype)
416 {
417 	if (unlikely(page_group_by_mobility_disabled &&
418 		     migratetype < MIGRATE_PCPTYPES))
419 		migratetype = MIGRATE_UNMOVABLE;
420 
421 	set_pfnblock_flags_mask(page, (unsigned long)migratetype,
422 				page_to_pfn(page), MIGRATETYPE_MASK);
423 }
424 
425 #ifdef CONFIG_DEBUG_VM
426 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
427 {
428 	int ret;
429 	unsigned seq;
430 	unsigned long pfn = page_to_pfn(page);
431 	unsigned long sp, start_pfn;
432 
433 	do {
434 		seq = zone_span_seqbegin(zone);
435 		start_pfn = zone->zone_start_pfn;
436 		sp = zone->spanned_pages;
437 		ret = !zone_spans_pfn(zone, pfn);
438 	} while (zone_span_seqretry(zone, seq));
439 
440 	if (ret)
441 		pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
442 			pfn, zone_to_nid(zone), zone->name,
443 			start_pfn, start_pfn + sp);
444 
445 	return ret;
446 }
447 
448 /*
449  * Temporary debugging check for pages not lying within a given zone.
450  */
451 static bool __maybe_unused bad_range(struct zone *zone, struct page *page)
452 {
453 	if (page_outside_zone_boundaries(zone, page))
454 		return true;
455 	if (zone != page_zone(page))
456 		return true;
457 
458 	return false;
459 }
460 #else
461 static inline bool __maybe_unused bad_range(struct zone *zone, struct page *page)
462 {
463 	return false;
464 }
465 #endif
466 
467 static void bad_page(struct page *page, const char *reason)
468 {
469 	static unsigned long resume;
470 	static unsigned long nr_shown;
471 	static unsigned long nr_unshown;
472 
473 	/*
474 	 * Allow a burst of 60 reports, then keep quiet for that minute;
475 	 * or allow a steady drip of one report per second.
476 	 */
477 	if (nr_shown == 60) {
478 		if (time_before(jiffies, resume)) {
479 			nr_unshown++;
480 			goto out;
481 		}
482 		if (nr_unshown) {
483 			pr_alert(
484 			      "BUG: Bad page state: %lu messages suppressed\n",
485 				nr_unshown);
486 			nr_unshown = 0;
487 		}
488 		nr_shown = 0;
489 	}
490 	if (nr_shown++ == 0)
491 		resume = jiffies + 60 * HZ;
492 
493 	pr_alert("BUG: Bad page state in process %s  pfn:%05lx\n",
494 		current->comm, page_to_pfn(page));
495 	dump_page(page, reason);
496 
497 	print_modules();
498 	dump_stack();
499 out:
500 	/* Leave bad fields for debug, except PageBuddy could make trouble */
501 	if (PageBuddy(page))
502 		__ClearPageBuddy(page);
503 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
504 }
505 
506 static inline unsigned int order_to_pindex(int migratetype, int order)
507 {
508 	bool __maybe_unused movable;
509 
510 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
511 	if (order > PAGE_ALLOC_COSTLY_ORDER) {
512 		VM_BUG_ON(order != HPAGE_PMD_ORDER);
513 
514 		movable = migratetype == MIGRATE_MOVABLE;
515 
516 		return NR_LOWORDER_PCP_LISTS + movable;
517 	}
518 #else
519 	VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER);
520 #endif
521 
522 	return (MIGRATE_PCPTYPES * order) + migratetype;
523 }
524 
525 static inline int pindex_to_order(unsigned int pindex)
526 {
527 	int order = pindex / MIGRATE_PCPTYPES;
528 
529 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
530 	if (pindex >= NR_LOWORDER_PCP_LISTS)
531 		order = HPAGE_PMD_ORDER;
532 #else
533 	VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER);
534 #endif
535 
536 	return order;
537 }
538 
539 static inline bool pcp_allowed_order(unsigned int order)
540 {
541 	if (order <= PAGE_ALLOC_COSTLY_ORDER)
542 		return true;
543 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
544 	if (order == HPAGE_PMD_ORDER)
545 		return true;
546 #endif
547 	return false;
548 }
549 
550 /*
551  * Higher-order pages are called "compound pages".  They are structured thusly:
552  *
553  * The first PAGE_SIZE page is called the "head page" and have PG_head set.
554  *
555  * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
556  * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
557  *
558  * The first tail page's ->compound_order holds the order of allocation.
559  * This usage means that zero-order pages may not be compound.
560  */
561 
562 void prep_compound_page(struct page *page, unsigned int order)
563 {
564 	int i;
565 	int nr_pages = 1 << order;
566 
567 	__SetPageHead(page);
568 	for (i = 1; i < nr_pages; i++)
569 		prep_compound_tail(page, i);
570 
571 	prep_compound_head(page, order);
572 }
573 
574 static inline void set_buddy_order(struct page *page, unsigned int order)
575 {
576 	set_page_private(page, order);
577 	__SetPageBuddy(page);
578 }
579 
580 #ifdef CONFIG_COMPACTION
581 static inline struct capture_control *task_capc(struct zone *zone)
582 {
583 	struct capture_control *capc = current->capture_control;
584 
585 	return unlikely(capc) &&
586 		!(current->flags & PF_KTHREAD) &&
587 		!capc->page &&
588 		capc->cc->zone == zone ? capc : NULL;
589 }
590 
591 static inline bool
592 compaction_capture(struct capture_control *capc, struct page *page,
593 		   int order, int migratetype)
594 {
595 	if (!capc || order != capc->cc->order)
596 		return false;
597 
598 	/* Do not accidentally pollute CMA or isolated regions*/
599 	if (is_migrate_cma(migratetype) ||
600 	    is_migrate_isolate(migratetype))
601 		return false;
602 
603 	/*
604 	 * Do not let lower order allocations pollute a movable pageblock
605 	 * unless compaction is also requesting movable pages.
606 	 * This might let an unmovable request use a reclaimable pageblock
607 	 * and vice-versa but no more than normal fallback logic which can
608 	 * have trouble finding a high-order free page.
609 	 */
610 	if (order < pageblock_order && migratetype == MIGRATE_MOVABLE &&
611 	    capc->cc->migratetype != MIGRATE_MOVABLE)
612 		return false;
613 
614 	capc->page = page;
615 	return true;
616 }
617 
618 #else
619 static inline struct capture_control *task_capc(struct zone *zone)
620 {
621 	return NULL;
622 }
623 
624 static inline bool
625 compaction_capture(struct capture_control *capc, struct page *page,
626 		   int order, int migratetype)
627 {
628 	return false;
629 }
630 #endif /* CONFIG_COMPACTION */
631 
632 static inline void account_freepages(struct zone *zone, int nr_pages,
633 				     int migratetype)
634 {
635 	if (is_migrate_isolate(migratetype))
636 		return;
637 
638 	__mod_zone_page_state(zone, NR_FREE_PAGES, nr_pages);
639 
640 	if (is_migrate_cma(migratetype))
641 		__mod_zone_page_state(zone, NR_FREE_CMA_PAGES, nr_pages);
642 }
643 
644 /* Used for pages not on another list */
645 static inline void __add_to_free_list(struct page *page, struct zone *zone,
646 				      unsigned int order, int migratetype,
647 				      bool tail)
648 {
649 	struct free_area *area = &zone->free_area[order];
650 
651 	VM_WARN_ONCE(get_pageblock_migratetype(page) != migratetype,
652 		     "page type is %lu, passed migratetype is %d (nr=%d)\n",
653 		     get_pageblock_migratetype(page), migratetype, 1 << order);
654 
655 	if (tail)
656 		list_add_tail(&page->buddy_list, &area->free_list[migratetype]);
657 	else
658 		list_add(&page->buddy_list, &area->free_list[migratetype]);
659 	area->nr_free++;
660 }
661 
662 /*
663  * Used for pages which are on another list. Move the pages to the tail
664  * of the list - so the moved pages won't immediately be considered for
665  * allocation again (e.g., optimization for memory onlining).
666  */
667 static inline void move_to_free_list(struct page *page, struct zone *zone,
668 				     unsigned int order, int old_mt, int new_mt)
669 {
670 	struct free_area *area = &zone->free_area[order];
671 
672 	/* Free page moving can fail, so it happens before the type update */
673 	VM_WARN_ONCE(get_pageblock_migratetype(page) != old_mt,
674 		     "page type is %lu, passed migratetype is %d (nr=%d)\n",
675 		     get_pageblock_migratetype(page), old_mt, 1 << order);
676 
677 	list_move_tail(&page->buddy_list, &area->free_list[new_mt]);
678 
679 	account_freepages(zone, -(1 << order), old_mt);
680 	account_freepages(zone, 1 << order, new_mt);
681 }
682 
683 static inline void __del_page_from_free_list(struct page *page, struct zone *zone,
684 					     unsigned int order, int migratetype)
685 {
686         VM_WARN_ONCE(get_pageblock_migratetype(page) != migratetype,
687 		     "page type is %lu, passed migratetype is %d (nr=%d)\n",
688 		     get_pageblock_migratetype(page), migratetype, 1 << order);
689 
690 	/* clear reported state and update reported page count */
691 	if (page_reported(page))
692 		__ClearPageReported(page);
693 
694 	list_del(&page->buddy_list);
695 	__ClearPageBuddy(page);
696 	set_page_private(page, 0);
697 	zone->free_area[order].nr_free--;
698 }
699 
700 static inline void del_page_from_free_list(struct page *page, struct zone *zone,
701 					   unsigned int order, int migratetype)
702 {
703 	__del_page_from_free_list(page, zone, order, migratetype);
704 	account_freepages(zone, -(1 << order), migratetype);
705 }
706 
707 static inline struct page *get_page_from_free_area(struct free_area *area,
708 					    int migratetype)
709 {
710 	return list_first_entry_or_null(&area->free_list[migratetype],
711 					struct page, buddy_list);
712 }
713 
714 /*
715  * If this is less than the 2nd largest possible page, check if the buddy
716  * of the next-higher order is free. If it is, it's possible
717  * that pages are being freed that will coalesce soon. In case,
718  * that is happening, add the free page to the tail of the list
719  * so it's less likely to be used soon and more likely to be merged
720  * as a 2-level higher order page
721  */
722 static inline bool
723 buddy_merge_likely(unsigned long pfn, unsigned long buddy_pfn,
724 		   struct page *page, unsigned int order)
725 {
726 	unsigned long higher_page_pfn;
727 	struct page *higher_page;
728 
729 	if (order >= MAX_PAGE_ORDER - 1)
730 		return false;
731 
732 	higher_page_pfn = buddy_pfn & pfn;
733 	higher_page = page + (higher_page_pfn - pfn);
734 
735 	return find_buddy_page_pfn(higher_page, higher_page_pfn, order + 1,
736 			NULL) != NULL;
737 }
738 
739 /*
740  * Freeing function for a buddy system allocator.
741  *
742  * The concept of a buddy system is to maintain direct-mapped table
743  * (containing bit values) for memory blocks of various "orders".
744  * The bottom level table contains the map for the smallest allocatable
745  * units of memory (here, pages), and each level above it describes
746  * pairs of units from the levels below, hence, "buddies".
747  * At a high level, all that happens here is marking the table entry
748  * at the bottom level available, and propagating the changes upward
749  * as necessary, plus some accounting needed to play nicely with other
750  * parts of the VM system.
751  * At each level, we keep a list of pages, which are heads of continuous
752  * free pages of length of (1 << order) and marked with PageBuddy.
753  * Page's order is recorded in page_private(page) field.
754  * So when we are allocating or freeing one, we can derive the state of the
755  * other.  That is, if we allocate a small block, and both were
756  * free, the remainder of the region must be split into blocks.
757  * If a block is freed, and its buddy is also free, then this
758  * triggers coalescing into a block of larger size.
759  *
760  * -- nyc
761  */
762 
763 static inline void __free_one_page(struct page *page,
764 		unsigned long pfn,
765 		struct zone *zone, unsigned int order,
766 		int migratetype, fpi_t fpi_flags)
767 {
768 	struct capture_control *capc = task_capc(zone);
769 	unsigned long buddy_pfn = 0;
770 	unsigned long combined_pfn;
771 	struct page *buddy;
772 	bool to_tail;
773 
774 	VM_BUG_ON(!zone_is_initialized(zone));
775 	VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
776 
777 	VM_BUG_ON(migratetype == -1);
778 	VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
779 	VM_BUG_ON_PAGE(bad_range(zone, page), page);
780 
781 	account_freepages(zone, 1 << order, migratetype);
782 
783 	while (order < MAX_PAGE_ORDER) {
784 		int buddy_mt = migratetype;
785 
786 		if (compaction_capture(capc, page, order, migratetype)) {
787 			account_freepages(zone, -(1 << order), migratetype);
788 			return;
789 		}
790 
791 		buddy = find_buddy_page_pfn(page, pfn, order, &buddy_pfn);
792 		if (!buddy)
793 			goto done_merging;
794 
795 		if (unlikely(order >= pageblock_order)) {
796 			/*
797 			 * We want to prevent merge between freepages on pageblock
798 			 * without fallbacks and normal pageblock. Without this,
799 			 * pageblock isolation could cause incorrect freepage or CMA
800 			 * accounting or HIGHATOMIC accounting.
801 			 */
802 			buddy_mt = get_pfnblock_migratetype(buddy, buddy_pfn);
803 
804 			if (migratetype != buddy_mt &&
805 			    (!migratetype_is_mergeable(migratetype) ||
806 			     !migratetype_is_mergeable(buddy_mt)))
807 				goto done_merging;
808 		}
809 
810 		/*
811 		 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
812 		 * merge with it and move up one order.
813 		 */
814 		if (page_is_guard(buddy))
815 			clear_page_guard(zone, buddy, order);
816 		else
817 			__del_page_from_free_list(buddy, zone, order, buddy_mt);
818 
819 		if (unlikely(buddy_mt != migratetype)) {
820 			/*
821 			 * Match buddy type. This ensures that an
822 			 * expand() down the line puts the sub-blocks
823 			 * on the right freelists.
824 			 */
825 			set_pageblock_migratetype(buddy, migratetype);
826 		}
827 
828 		combined_pfn = buddy_pfn & pfn;
829 		page = page + (combined_pfn - pfn);
830 		pfn = combined_pfn;
831 		order++;
832 	}
833 
834 done_merging:
835 	set_buddy_order(page, order);
836 
837 	if (fpi_flags & FPI_TO_TAIL)
838 		to_tail = true;
839 	else if (is_shuffle_order(order))
840 		to_tail = shuffle_pick_tail();
841 	else
842 		to_tail = buddy_merge_likely(pfn, buddy_pfn, page, order);
843 
844 	__add_to_free_list(page, zone, order, migratetype, to_tail);
845 
846 	/* Notify page reporting subsystem of freed page */
847 	if (!(fpi_flags & FPI_SKIP_REPORT_NOTIFY))
848 		page_reporting_notify_free(order);
849 }
850 
851 /*
852  * A bad page could be due to a number of fields. Instead of multiple branches,
853  * try and check multiple fields with one check. The caller must do a detailed
854  * check if necessary.
855  */
856 static inline bool page_expected_state(struct page *page,
857 					unsigned long check_flags)
858 {
859 	if (unlikely(atomic_read(&page->_mapcount) != -1))
860 		return false;
861 
862 	if (unlikely((unsigned long)page->mapping |
863 			page_ref_count(page) |
864 #ifdef CONFIG_MEMCG
865 			page->memcg_data |
866 #endif
867 #ifdef CONFIG_PAGE_POOL
868 			((page->pp_magic & ~0x3UL) == PP_SIGNATURE) |
869 #endif
870 			(page->flags & check_flags)))
871 		return false;
872 
873 	return true;
874 }
875 
876 static const char *page_bad_reason(struct page *page, unsigned long flags)
877 {
878 	const char *bad_reason = NULL;
879 
880 	if (unlikely(atomic_read(&page->_mapcount) != -1))
881 		bad_reason = "nonzero mapcount";
882 	if (unlikely(page->mapping != NULL))
883 		bad_reason = "non-NULL mapping";
884 	if (unlikely(page_ref_count(page) != 0))
885 		bad_reason = "nonzero _refcount";
886 	if (unlikely(page->flags & flags)) {
887 		if (flags == PAGE_FLAGS_CHECK_AT_PREP)
888 			bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag(s) set";
889 		else
890 			bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
891 	}
892 #ifdef CONFIG_MEMCG
893 	if (unlikely(page->memcg_data))
894 		bad_reason = "page still charged to cgroup";
895 #endif
896 #ifdef CONFIG_PAGE_POOL
897 	if (unlikely((page->pp_magic & ~0x3UL) == PP_SIGNATURE))
898 		bad_reason = "page_pool leak";
899 #endif
900 	return bad_reason;
901 }
902 
903 static void free_page_is_bad_report(struct page *page)
904 {
905 	bad_page(page,
906 		 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_FREE));
907 }
908 
909 static inline bool free_page_is_bad(struct page *page)
910 {
911 	if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
912 		return false;
913 
914 	/* Something has gone sideways, find it */
915 	free_page_is_bad_report(page);
916 	return true;
917 }
918 
919 static inline bool is_check_pages_enabled(void)
920 {
921 	return static_branch_unlikely(&check_pages_enabled);
922 }
923 
924 static int free_tail_page_prepare(struct page *head_page, struct page *page)
925 {
926 	struct folio *folio = (struct folio *)head_page;
927 	int ret = 1;
928 
929 	/*
930 	 * We rely page->lru.next never has bit 0 set, unless the page
931 	 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
932 	 */
933 	BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
934 
935 	if (!is_check_pages_enabled()) {
936 		ret = 0;
937 		goto out;
938 	}
939 	switch (page - head_page) {
940 	case 1:
941 		/* the first tail page: these may be in place of ->mapping */
942 		if (unlikely(folio_entire_mapcount(folio))) {
943 			bad_page(page, "nonzero entire_mapcount");
944 			goto out;
945 		}
946 		if (unlikely(folio_large_mapcount(folio))) {
947 			bad_page(page, "nonzero large_mapcount");
948 			goto out;
949 		}
950 		if (unlikely(atomic_read(&folio->_nr_pages_mapped))) {
951 			bad_page(page, "nonzero nr_pages_mapped");
952 			goto out;
953 		}
954 		if (unlikely(atomic_read(&folio->_pincount))) {
955 			bad_page(page, "nonzero pincount");
956 			goto out;
957 		}
958 		break;
959 	case 2:
960 		/* the second tail page: deferred_list overlaps ->mapping */
961 		if (unlikely(!list_empty(&folio->_deferred_list))) {
962 			bad_page(page, "on deferred list");
963 			goto out;
964 		}
965 		break;
966 	default:
967 		if (page->mapping != TAIL_MAPPING) {
968 			bad_page(page, "corrupted mapping in tail page");
969 			goto out;
970 		}
971 		break;
972 	}
973 	if (unlikely(!PageTail(page))) {
974 		bad_page(page, "PageTail not set");
975 		goto out;
976 	}
977 	if (unlikely(compound_head(page) != head_page)) {
978 		bad_page(page, "compound_head not consistent");
979 		goto out;
980 	}
981 	ret = 0;
982 out:
983 	page->mapping = NULL;
984 	clear_compound_head(page);
985 	return ret;
986 }
987 
988 /*
989  * Skip KASAN memory poisoning when either:
990  *
991  * 1. For generic KASAN: deferred memory initialization has not yet completed.
992  *    Tag-based KASAN modes skip pages freed via deferred memory initialization
993  *    using page tags instead (see below).
994  * 2. For tag-based KASAN modes: the page has a match-all KASAN tag, indicating
995  *    that error detection is disabled for accesses via the page address.
996  *
997  * Pages will have match-all tags in the following circumstances:
998  *
999  * 1. Pages are being initialized for the first time, including during deferred
1000  *    memory init; see the call to page_kasan_tag_reset in __init_single_page.
1001  * 2. The allocation was not unpoisoned due to __GFP_SKIP_KASAN, with the
1002  *    exception of pages unpoisoned by kasan_unpoison_vmalloc.
1003  * 3. The allocation was excluded from being checked due to sampling,
1004  *    see the call to kasan_unpoison_pages.
1005  *
1006  * Poisoning pages during deferred memory init will greatly lengthen the
1007  * process and cause problem in large memory systems as the deferred pages
1008  * initialization is done with interrupt disabled.
1009  *
1010  * Assuming that there will be no reference to those newly initialized
1011  * pages before they are ever allocated, this should have no effect on
1012  * KASAN memory tracking as the poison will be properly inserted at page
1013  * allocation time. The only corner case is when pages are allocated by
1014  * on-demand allocation and then freed again before the deferred pages
1015  * initialization is done, but this is not likely to happen.
1016  */
1017 static inline bool should_skip_kasan_poison(struct page *page)
1018 {
1019 	if (IS_ENABLED(CONFIG_KASAN_GENERIC))
1020 		return deferred_pages_enabled();
1021 
1022 	return page_kasan_tag(page) == KASAN_TAG_KERNEL;
1023 }
1024 
1025 static void kernel_init_pages(struct page *page, int numpages)
1026 {
1027 	int i;
1028 
1029 	/* s390's use of memset() could override KASAN redzones. */
1030 	kasan_disable_current();
1031 	for (i = 0; i < numpages; i++)
1032 		clear_highpage_kasan_tagged(page + i);
1033 	kasan_enable_current();
1034 }
1035 
1036 __always_inline bool free_pages_prepare(struct page *page,
1037 			unsigned int order)
1038 {
1039 	int bad = 0;
1040 	bool skip_kasan_poison = should_skip_kasan_poison(page);
1041 	bool init = want_init_on_free();
1042 	bool compound = PageCompound(page);
1043 
1044 	VM_BUG_ON_PAGE(PageTail(page), page);
1045 
1046 	trace_mm_page_free(page, order);
1047 	kmsan_free_page(page, order);
1048 
1049 	if (memcg_kmem_online() && PageMemcgKmem(page))
1050 		__memcg_kmem_uncharge_page(page, order);
1051 
1052 	if (unlikely(PageHWPoison(page)) && !order) {
1053 		/* Do not let hwpoison pages hit pcplists/buddy */
1054 		reset_page_owner(page, order);
1055 		page_table_check_free(page, order);
1056 		pgalloc_tag_sub(page, 1 << order);
1057 		return false;
1058 	}
1059 
1060 	VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
1061 
1062 	/*
1063 	 * Check tail pages before head page information is cleared to
1064 	 * avoid checking PageCompound for order-0 pages.
1065 	 */
1066 	if (unlikely(order)) {
1067 		int i;
1068 
1069 		if (compound)
1070 			page[1].flags &= ~PAGE_FLAGS_SECOND;
1071 		for (i = 1; i < (1 << order); i++) {
1072 			if (compound)
1073 				bad += free_tail_page_prepare(page, page + i);
1074 			if (is_check_pages_enabled()) {
1075 				if (free_page_is_bad(page + i)) {
1076 					bad++;
1077 					continue;
1078 				}
1079 			}
1080 			(page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1081 		}
1082 	}
1083 	if (PageMappingFlags(page))
1084 		page->mapping = NULL;
1085 	if (is_check_pages_enabled()) {
1086 		if (free_page_is_bad(page))
1087 			bad++;
1088 		if (bad)
1089 			return false;
1090 	}
1091 
1092 	page_cpupid_reset_last(page);
1093 	page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1094 	reset_page_owner(page, order);
1095 	page_table_check_free(page, order);
1096 	pgalloc_tag_sub(page, 1 << order);
1097 
1098 	if (!PageHighMem(page)) {
1099 		debug_check_no_locks_freed(page_address(page),
1100 					   PAGE_SIZE << order);
1101 		debug_check_no_obj_freed(page_address(page),
1102 					   PAGE_SIZE << order);
1103 	}
1104 
1105 	kernel_poison_pages(page, 1 << order);
1106 
1107 	/*
1108 	 * As memory initialization might be integrated into KASAN,
1109 	 * KASAN poisoning and memory initialization code must be
1110 	 * kept together to avoid discrepancies in behavior.
1111 	 *
1112 	 * With hardware tag-based KASAN, memory tags must be set before the
1113 	 * page becomes unavailable via debug_pagealloc or arch_free_page.
1114 	 */
1115 	if (!skip_kasan_poison) {
1116 		kasan_poison_pages(page, order, init);
1117 
1118 		/* Memory is already initialized if KASAN did it internally. */
1119 		if (kasan_has_integrated_init())
1120 			init = false;
1121 	}
1122 	if (init)
1123 		kernel_init_pages(page, 1 << order);
1124 
1125 	/*
1126 	 * arch_free_page() can make the page's contents inaccessible.  s390
1127 	 * does this.  So nothing which can access the page's contents should
1128 	 * happen after this.
1129 	 */
1130 	arch_free_page(page, order);
1131 
1132 	debug_pagealloc_unmap_pages(page, 1 << order);
1133 
1134 	return true;
1135 }
1136 
1137 /*
1138  * Frees a number of pages from the PCP lists
1139  * Assumes all pages on list are in same zone.
1140  * count is the number of pages to free.
1141  */
1142 static void free_pcppages_bulk(struct zone *zone, int count,
1143 					struct per_cpu_pages *pcp,
1144 					int pindex)
1145 {
1146 	unsigned long flags;
1147 	unsigned int order;
1148 	struct page *page;
1149 
1150 	/*
1151 	 * Ensure proper count is passed which otherwise would stuck in the
1152 	 * below while (list_empty(list)) loop.
1153 	 */
1154 	count = min(pcp->count, count);
1155 
1156 	/* Ensure requested pindex is drained first. */
1157 	pindex = pindex - 1;
1158 
1159 	spin_lock_irqsave(&zone->lock, flags);
1160 
1161 	while (count > 0) {
1162 		struct list_head *list;
1163 		int nr_pages;
1164 
1165 		/* Remove pages from lists in a round-robin fashion. */
1166 		do {
1167 			if (++pindex > NR_PCP_LISTS - 1)
1168 				pindex = 0;
1169 			list = &pcp->lists[pindex];
1170 		} while (list_empty(list));
1171 
1172 		order = pindex_to_order(pindex);
1173 		nr_pages = 1 << order;
1174 		do {
1175 			unsigned long pfn;
1176 			int mt;
1177 
1178 			page = list_last_entry(list, struct page, pcp_list);
1179 			pfn = page_to_pfn(page);
1180 			mt = get_pfnblock_migratetype(page, pfn);
1181 
1182 			/* must delete to avoid corrupting pcp list */
1183 			list_del(&page->pcp_list);
1184 			count -= nr_pages;
1185 			pcp->count -= nr_pages;
1186 
1187 			__free_one_page(page, pfn, zone, order, mt, FPI_NONE);
1188 			trace_mm_page_pcpu_drain(page, order, mt);
1189 		} while (count > 0 && !list_empty(list));
1190 	}
1191 
1192 	spin_unlock_irqrestore(&zone->lock, flags);
1193 }
1194 
1195 static void free_one_page(struct zone *zone, struct page *page,
1196 			  unsigned long pfn, unsigned int order,
1197 			  fpi_t fpi_flags)
1198 {
1199 	unsigned long flags;
1200 	int migratetype;
1201 
1202 	spin_lock_irqsave(&zone->lock, flags);
1203 	migratetype = get_pfnblock_migratetype(page, pfn);
1204 	__free_one_page(page, pfn, zone, order, migratetype, fpi_flags);
1205 	spin_unlock_irqrestore(&zone->lock, flags);
1206 }
1207 
1208 static void __free_pages_ok(struct page *page, unsigned int order,
1209 			    fpi_t fpi_flags)
1210 {
1211 	unsigned long pfn = page_to_pfn(page);
1212 	struct zone *zone = page_zone(page);
1213 
1214 	if (!free_pages_prepare(page, order))
1215 		return;
1216 
1217 	free_one_page(zone, page, pfn, order, fpi_flags);
1218 
1219 	__count_vm_events(PGFREE, 1 << order);
1220 }
1221 
1222 void __meminit __free_pages_core(struct page *page, unsigned int order,
1223 		enum meminit_context context)
1224 {
1225 	unsigned int nr_pages = 1 << order;
1226 	struct page *p = page;
1227 	unsigned int loop;
1228 
1229 	/*
1230 	 * When initializing the memmap, __init_single_page() sets the refcount
1231 	 * of all pages to 1 ("allocated"/"not free"). We have to set the
1232 	 * refcount of all involved pages to 0.
1233 	 *
1234 	 * Note that hotplugged memory pages are initialized to PageOffline().
1235 	 * Pages freed from memblock might be marked as reserved.
1236 	 */
1237 	if (IS_ENABLED(CONFIG_MEMORY_HOTPLUG) &&
1238 	    unlikely(context == MEMINIT_HOTPLUG)) {
1239 		for (loop = 0; loop < nr_pages; loop++, p++) {
1240 			VM_WARN_ON_ONCE(PageReserved(p));
1241 			__ClearPageOffline(p);
1242 			set_page_count(p, 0);
1243 		}
1244 
1245 		/*
1246 		 * Freeing the page with debug_pagealloc enabled will try to
1247 		 * unmap it; some archs don't like double-unmappings, so
1248 		 * map it first.
1249 		 */
1250 		debug_pagealloc_map_pages(page, nr_pages);
1251 		adjust_managed_page_count(page, nr_pages);
1252 	} else {
1253 		for (loop = 0; loop < nr_pages; loop++, p++) {
1254 			__ClearPageReserved(p);
1255 			set_page_count(p, 0);
1256 		}
1257 
1258 		/* memblock adjusts totalram_pages() manually. */
1259 		atomic_long_add(nr_pages, &page_zone(page)->managed_pages);
1260 	}
1261 
1262 	if (page_contains_unaccepted(page, order)) {
1263 		if (order == MAX_PAGE_ORDER && __free_unaccepted(page))
1264 			return;
1265 
1266 		accept_page(page, order);
1267 	}
1268 
1269 	/*
1270 	 * Bypass PCP and place fresh pages right to the tail, primarily
1271 	 * relevant for memory onlining.
1272 	 */
1273 	__free_pages_ok(page, order, FPI_TO_TAIL);
1274 }
1275 
1276 /*
1277  * Check that the whole (or subset of) a pageblock given by the interval of
1278  * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1279  * with the migration of free compaction scanner.
1280  *
1281  * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1282  *
1283  * It's possible on some configurations to have a setup like node0 node1 node0
1284  * i.e. it's possible that all pages within a zones range of pages do not
1285  * belong to a single zone. We assume that a border between node0 and node1
1286  * can occur within a single pageblock, but not a node0 node1 node0
1287  * interleaving within a single pageblock. It is therefore sufficient to check
1288  * the first and last page of a pageblock and avoid checking each individual
1289  * page in a pageblock.
1290  *
1291  * Note: the function may return non-NULL struct page even for a page block
1292  * which contains a memory hole (i.e. there is no physical memory for a subset
1293  * of the pfn range). For example, if the pageblock order is MAX_PAGE_ORDER, which
1294  * will fall into 2 sub-sections, and the end pfn of the pageblock may be hole
1295  * even though the start pfn is online and valid. This should be safe most of
1296  * the time because struct pages are still initialized via init_unavailable_range()
1297  * and pfn walkers shouldn't touch any physical memory range for which they do
1298  * not recognize any specific metadata in struct pages.
1299  */
1300 struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1301 				     unsigned long end_pfn, struct zone *zone)
1302 {
1303 	struct page *start_page;
1304 	struct page *end_page;
1305 
1306 	/* end_pfn is one past the range we are checking */
1307 	end_pfn--;
1308 
1309 	if (!pfn_valid(end_pfn))
1310 		return NULL;
1311 
1312 	start_page = pfn_to_online_page(start_pfn);
1313 	if (!start_page)
1314 		return NULL;
1315 
1316 	if (page_zone(start_page) != zone)
1317 		return NULL;
1318 
1319 	end_page = pfn_to_page(end_pfn);
1320 
1321 	/* This gives a shorter code than deriving page_zone(end_page) */
1322 	if (page_zone_id(start_page) != page_zone_id(end_page))
1323 		return NULL;
1324 
1325 	return start_page;
1326 }
1327 
1328 /*
1329  * The order of subdivision here is critical for the IO subsystem.
1330  * Please do not alter this order without good reasons and regression
1331  * testing. Specifically, as large blocks of memory are subdivided,
1332  * the order in which smaller blocks are delivered depends on the order
1333  * they're subdivided in this function. This is the primary factor
1334  * influencing the order in which pages are delivered to the IO
1335  * subsystem according to empirical testing, and this is also justified
1336  * by considering the behavior of a buddy system containing a single
1337  * large block of memory acted on by a series of small allocations.
1338  * This behavior is a critical factor in sglist merging's success.
1339  *
1340  * -- nyc
1341  */
1342 static inline void expand(struct zone *zone, struct page *page,
1343 	int low, int high, int migratetype)
1344 {
1345 	unsigned long size = 1 << high;
1346 	unsigned long nr_added = 0;
1347 
1348 	while (high > low) {
1349 		high--;
1350 		size >>= 1;
1351 		VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
1352 
1353 		/*
1354 		 * Mark as guard pages (or page), that will allow to
1355 		 * merge back to allocator when buddy will be freed.
1356 		 * Corresponding page table entries will not be touched,
1357 		 * pages will stay not present in virtual address space
1358 		 */
1359 		if (set_page_guard(zone, &page[size], high))
1360 			continue;
1361 
1362 		__add_to_free_list(&page[size], zone, high, migratetype, false);
1363 		set_buddy_order(&page[size], high);
1364 		nr_added += size;
1365 	}
1366 	account_freepages(zone, nr_added, migratetype);
1367 }
1368 
1369 static void check_new_page_bad(struct page *page)
1370 {
1371 	if (unlikely(page->flags & __PG_HWPOISON)) {
1372 		/* Don't complain about hwpoisoned pages */
1373 		if (PageBuddy(page))
1374 			__ClearPageBuddy(page);
1375 		return;
1376 	}
1377 
1378 	bad_page(page,
1379 		 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_PREP));
1380 }
1381 
1382 /*
1383  * This page is about to be returned from the page allocator
1384  */
1385 static bool check_new_page(struct page *page)
1386 {
1387 	if (likely(page_expected_state(page,
1388 				PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
1389 		return false;
1390 
1391 	check_new_page_bad(page);
1392 	return true;
1393 }
1394 
1395 static inline bool check_new_pages(struct page *page, unsigned int order)
1396 {
1397 	if (is_check_pages_enabled()) {
1398 		for (int i = 0; i < (1 << order); i++) {
1399 			struct page *p = page + i;
1400 
1401 			if (check_new_page(p))
1402 				return true;
1403 		}
1404 	}
1405 
1406 	return false;
1407 }
1408 
1409 static inline bool should_skip_kasan_unpoison(gfp_t flags)
1410 {
1411 	/* Don't skip if a software KASAN mode is enabled. */
1412 	if (IS_ENABLED(CONFIG_KASAN_GENERIC) ||
1413 	    IS_ENABLED(CONFIG_KASAN_SW_TAGS))
1414 		return false;
1415 
1416 	/* Skip, if hardware tag-based KASAN is not enabled. */
1417 	if (!kasan_hw_tags_enabled())
1418 		return true;
1419 
1420 	/*
1421 	 * With hardware tag-based KASAN enabled, skip if this has been
1422 	 * requested via __GFP_SKIP_KASAN.
1423 	 */
1424 	return flags & __GFP_SKIP_KASAN;
1425 }
1426 
1427 static inline bool should_skip_init(gfp_t flags)
1428 {
1429 	/* Don't skip, if hardware tag-based KASAN is not enabled. */
1430 	if (!kasan_hw_tags_enabled())
1431 		return false;
1432 
1433 	/* For hardware tag-based KASAN, skip if requested. */
1434 	return (flags & __GFP_SKIP_ZERO);
1435 }
1436 
1437 inline void post_alloc_hook(struct page *page, unsigned int order,
1438 				gfp_t gfp_flags)
1439 {
1440 	bool init = !want_init_on_free() && want_init_on_alloc(gfp_flags) &&
1441 			!should_skip_init(gfp_flags);
1442 	bool zero_tags = init && (gfp_flags & __GFP_ZEROTAGS);
1443 	int i;
1444 
1445 	set_page_private(page, 0);
1446 	set_page_refcounted(page);
1447 
1448 	arch_alloc_page(page, order);
1449 	debug_pagealloc_map_pages(page, 1 << order);
1450 
1451 	/*
1452 	 * Page unpoisoning must happen before memory initialization.
1453 	 * Otherwise, the poison pattern will be overwritten for __GFP_ZERO
1454 	 * allocations and the page unpoisoning code will complain.
1455 	 */
1456 	kernel_unpoison_pages(page, 1 << order);
1457 
1458 	/*
1459 	 * As memory initialization might be integrated into KASAN,
1460 	 * KASAN unpoisoning and memory initializion code must be
1461 	 * kept together to avoid discrepancies in behavior.
1462 	 */
1463 
1464 	/*
1465 	 * If memory tags should be zeroed
1466 	 * (which happens only when memory should be initialized as well).
1467 	 */
1468 	if (zero_tags) {
1469 		/* Initialize both memory and memory tags. */
1470 		for (i = 0; i != 1 << order; ++i)
1471 			tag_clear_highpage(page + i);
1472 
1473 		/* Take note that memory was initialized by the loop above. */
1474 		init = false;
1475 	}
1476 	if (!should_skip_kasan_unpoison(gfp_flags) &&
1477 	    kasan_unpoison_pages(page, order, init)) {
1478 		/* Take note that memory was initialized by KASAN. */
1479 		if (kasan_has_integrated_init())
1480 			init = false;
1481 	} else {
1482 		/*
1483 		 * If memory tags have not been set by KASAN, reset the page
1484 		 * tags to ensure page_address() dereferencing does not fault.
1485 		 */
1486 		for (i = 0; i != 1 << order; ++i)
1487 			page_kasan_tag_reset(page + i);
1488 	}
1489 	/* If memory is still not initialized, initialize it now. */
1490 	if (init)
1491 		kernel_init_pages(page, 1 << order);
1492 
1493 	set_page_owner(page, order, gfp_flags);
1494 	page_table_check_alloc(page, order);
1495 	pgalloc_tag_add(page, current, 1 << order);
1496 }
1497 
1498 static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
1499 							unsigned int alloc_flags)
1500 {
1501 	post_alloc_hook(page, order, gfp_flags);
1502 
1503 	if (order && (gfp_flags & __GFP_COMP))
1504 		prep_compound_page(page, order);
1505 
1506 	/*
1507 	 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
1508 	 * allocate the page. The expectation is that the caller is taking
1509 	 * steps that will free more memory. The caller should avoid the page
1510 	 * being used for !PFMEMALLOC purposes.
1511 	 */
1512 	if (alloc_flags & ALLOC_NO_WATERMARKS)
1513 		set_page_pfmemalloc(page);
1514 	else
1515 		clear_page_pfmemalloc(page);
1516 }
1517 
1518 /*
1519  * Go through the free lists for the given migratetype and remove
1520  * the smallest available page from the freelists
1521  */
1522 static __always_inline
1523 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
1524 						int migratetype)
1525 {
1526 	unsigned int current_order;
1527 	struct free_area *area;
1528 	struct page *page;
1529 
1530 	/* Find a page of the appropriate size in the preferred list */
1531 	for (current_order = order; current_order < NR_PAGE_ORDERS; ++current_order) {
1532 		area = &(zone->free_area[current_order]);
1533 		page = get_page_from_free_area(area, migratetype);
1534 		if (!page)
1535 			continue;
1536 		del_page_from_free_list(page, zone, current_order, migratetype);
1537 		expand(zone, page, order, current_order, migratetype);
1538 		trace_mm_page_alloc_zone_locked(page, order, migratetype,
1539 				pcp_allowed_order(order) &&
1540 				migratetype < MIGRATE_PCPTYPES);
1541 		return page;
1542 	}
1543 
1544 	return NULL;
1545 }
1546 
1547 
1548 /*
1549  * This array describes the order lists are fallen back to when
1550  * the free lists for the desirable migrate type are depleted
1551  *
1552  * The other migratetypes do not have fallbacks.
1553  */
1554 static int fallbacks[MIGRATE_PCPTYPES][MIGRATE_PCPTYPES - 1] = {
1555 	[MIGRATE_UNMOVABLE]   = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE   },
1556 	[MIGRATE_MOVABLE]     = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE },
1557 	[MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE,   MIGRATE_MOVABLE   },
1558 };
1559 
1560 #ifdef CONFIG_CMA
1561 static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1562 					unsigned int order)
1563 {
1564 	return __rmqueue_smallest(zone, order, MIGRATE_CMA);
1565 }
1566 #else
1567 static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1568 					unsigned int order) { return NULL; }
1569 #endif
1570 
1571 /*
1572  * Change the type of a block and move all its free pages to that
1573  * type's freelist.
1574  */
1575 static int __move_freepages_block(struct zone *zone, unsigned long start_pfn,
1576 				  int old_mt, int new_mt)
1577 {
1578 	struct page *page;
1579 	unsigned long pfn, end_pfn;
1580 	unsigned int order;
1581 	int pages_moved = 0;
1582 
1583 	VM_WARN_ON(start_pfn & (pageblock_nr_pages - 1));
1584 	end_pfn = pageblock_end_pfn(start_pfn);
1585 
1586 	for (pfn = start_pfn; pfn < end_pfn;) {
1587 		page = pfn_to_page(pfn);
1588 		if (!PageBuddy(page)) {
1589 			pfn++;
1590 			continue;
1591 		}
1592 
1593 		/* Make sure we are not inadvertently changing nodes */
1594 		VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
1595 		VM_BUG_ON_PAGE(page_zone(page) != zone, page);
1596 
1597 		order = buddy_order(page);
1598 
1599 		move_to_free_list(page, zone, order, old_mt, new_mt);
1600 
1601 		pfn += 1 << order;
1602 		pages_moved += 1 << order;
1603 	}
1604 
1605 	set_pageblock_migratetype(pfn_to_page(start_pfn), new_mt);
1606 
1607 	return pages_moved;
1608 }
1609 
1610 static bool prep_move_freepages_block(struct zone *zone, struct page *page,
1611 				      unsigned long *start_pfn,
1612 				      int *num_free, int *num_movable)
1613 {
1614 	unsigned long pfn, start, end;
1615 
1616 	pfn = page_to_pfn(page);
1617 	start = pageblock_start_pfn(pfn);
1618 	end = pageblock_end_pfn(pfn);
1619 
1620 	/*
1621 	 * The caller only has the lock for @zone, don't touch ranges
1622 	 * that straddle into other zones. While we could move part of
1623 	 * the range that's inside the zone, this call is usually
1624 	 * accompanied by other operations such as migratetype updates
1625 	 * which also should be locked.
1626 	 */
1627 	if (!zone_spans_pfn(zone, start))
1628 		return false;
1629 	if (!zone_spans_pfn(zone, end - 1))
1630 		return false;
1631 
1632 	*start_pfn = start;
1633 
1634 	if (num_free) {
1635 		*num_free = 0;
1636 		*num_movable = 0;
1637 		for (pfn = start; pfn < end;) {
1638 			page = pfn_to_page(pfn);
1639 			if (PageBuddy(page)) {
1640 				int nr = 1 << buddy_order(page);
1641 
1642 				*num_free += nr;
1643 				pfn += nr;
1644 				continue;
1645 			}
1646 			/*
1647 			 * We assume that pages that could be isolated for
1648 			 * migration are movable. But we don't actually try
1649 			 * isolating, as that would be expensive.
1650 			 */
1651 			if (PageLRU(page) || __PageMovable(page))
1652 				(*num_movable)++;
1653 			pfn++;
1654 		}
1655 	}
1656 
1657 	return true;
1658 }
1659 
1660 static int move_freepages_block(struct zone *zone, struct page *page,
1661 				int old_mt, int new_mt)
1662 {
1663 	unsigned long start_pfn;
1664 
1665 	if (!prep_move_freepages_block(zone, page, &start_pfn, NULL, NULL))
1666 		return -1;
1667 
1668 	return __move_freepages_block(zone, start_pfn, old_mt, new_mt);
1669 }
1670 
1671 #ifdef CONFIG_MEMORY_ISOLATION
1672 /* Look for a buddy that straddles start_pfn */
1673 static unsigned long find_large_buddy(unsigned long start_pfn)
1674 {
1675 	int order = 0;
1676 	struct page *page;
1677 	unsigned long pfn = start_pfn;
1678 
1679 	while (!PageBuddy(page = pfn_to_page(pfn))) {
1680 		/* Nothing found */
1681 		if (++order > MAX_PAGE_ORDER)
1682 			return start_pfn;
1683 		pfn &= ~0UL << order;
1684 	}
1685 
1686 	/*
1687 	 * Found a preceding buddy, but does it straddle?
1688 	 */
1689 	if (pfn + (1 << buddy_order(page)) > start_pfn)
1690 		return pfn;
1691 
1692 	/* Nothing found */
1693 	return start_pfn;
1694 }
1695 
1696 /* Split a multi-block free page into its individual pageblocks */
1697 static void split_large_buddy(struct zone *zone, struct page *page,
1698 			      unsigned long pfn, int order)
1699 {
1700 	unsigned long end_pfn = pfn + (1 << order);
1701 
1702 	VM_WARN_ON_ONCE(order <= pageblock_order);
1703 	VM_WARN_ON_ONCE(pfn & (pageblock_nr_pages - 1));
1704 
1705 	/* Caller removed page from freelist, buddy info cleared! */
1706 	VM_WARN_ON_ONCE(PageBuddy(page));
1707 
1708 	while (pfn != end_pfn) {
1709 		int mt = get_pfnblock_migratetype(page, pfn);
1710 
1711 		__free_one_page(page, pfn, zone, pageblock_order, mt, FPI_NONE);
1712 		pfn += pageblock_nr_pages;
1713 		page = pfn_to_page(pfn);
1714 	}
1715 }
1716 
1717 /**
1718  * move_freepages_block_isolate - move free pages in block for page isolation
1719  * @zone: the zone
1720  * @page: the pageblock page
1721  * @migratetype: migratetype to set on the pageblock
1722  *
1723  * This is similar to move_freepages_block(), but handles the special
1724  * case encountered in page isolation, where the block of interest
1725  * might be part of a larger buddy spanning multiple pageblocks.
1726  *
1727  * Unlike the regular page allocator path, which moves pages while
1728  * stealing buddies off the freelist, page isolation is interested in
1729  * arbitrary pfn ranges that may have overlapping buddies on both ends.
1730  *
1731  * This function handles that. Straddling buddies are split into
1732  * individual pageblocks. Only the block of interest is moved.
1733  *
1734  * Returns %true if pages could be moved, %false otherwise.
1735  */
1736 bool move_freepages_block_isolate(struct zone *zone, struct page *page,
1737 				  int migratetype)
1738 {
1739 	unsigned long start_pfn, pfn;
1740 
1741 	if (!prep_move_freepages_block(zone, page, &start_pfn, NULL, NULL))
1742 		return false;
1743 
1744 	/* No splits needed if buddies can't span multiple blocks */
1745 	if (pageblock_order == MAX_PAGE_ORDER)
1746 		goto move;
1747 
1748 	/* We're a tail block in a larger buddy */
1749 	pfn = find_large_buddy(start_pfn);
1750 	if (pfn != start_pfn) {
1751 		struct page *buddy = pfn_to_page(pfn);
1752 		int order = buddy_order(buddy);
1753 
1754 		del_page_from_free_list(buddy, zone, order,
1755 					get_pfnblock_migratetype(buddy, pfn));
1756 		set_pageblock_migratetype(page, migratetype);
1757 		split_large_buddy(zone, buddy, pfn, order);
1758 		return true;
1759 	}
1760 
1761 	/* We're the starting block of a larger buddy */
1762 	if (PageBuddy(page) && buddy_order(page) > pageblock_order) {
1763 		int order = buddy_order(page);
1764 
1765 		del_page_from_free_list(page, zone, order,
1766 					get_pfnblock_migratetype(page, pfn));
1767 		set_pageblock_migratetype(page, migratetype);
1768 		split_large_buddy(zone, page, pfn, order);
1769 		return true;
1770 	}
1771 move:
1772 	__move_freepages_block(zone, start_pfn,
1773 			       get_pfnblock_migratetype(page, start_pfn),
1774 			       migratetype);
1775 	return true;
1776 }
1777 #endif /* CONFIG_MEMORY_ISOLATION */
1778 
1779 static void change_pageblock_range(struct page *pageblock_page,
1780 					int start_order, int migratetype)
1781 {
1782 	int nr_pageblocks = 1 << (start_order - pageblock_order);
1783 
1784 	while (nr_pageblocks--) {
1785 		set_pageblock_migratetype(pageblock_page, migratetype);
1786 		pageblock_page += pageblock_nr_pages;
1787 	}
1788 }
1789 
1790 /*
1791  * When we are falling back to another migratetype during allocation, try to
1792  * steal extra free pages from the same pageblocks to satisfy further
1793  * allocations, instead of polluting multiple pageblocks.
1794  *
1795  * If we are stealing a relatively large buddy page, it is likely there will
1796  * be more free pages in the pageblock, so try to steal them all. For
1797  * reclaimable and unmovable allocations, we steal regardless of page size,
1798  * as fragmentation caused by those allocations polluting movable pageblocks
1799  * is worse than movable allocations stealing from unmovable and reclaimable
1800  * pageblocks.
1801  */
1802 static bool can_steal_fallback(unsigned int order, int start_mt)
1803 {
1804 	/*
1805 	 * Leaving this order check is intended, although there is
1806 	 * relaxed order check in next check. The reason is that
1807 	 * we can actually steal whole pageblock if this condition met,
1808 	 * but, below check doesn't guarantee it and that is just heuristic
1809 	 * so could be changed anytime.
1810 	 */
1811 	if (order >= pageblock_order)
1812 		return true;
1813 
1814 	if (order >= pageblock_order / 2 ||
1815 		start_mt == MIGRATE_RECLAIMABLE ||
1816 		start_mt == MIGRATE_UNMOVABLE ||
1817 		page_group_by_mobility_disabled)
1818 		return true;
1819 
1820 	return false;
1821 }
1822 
1823 static inline bool boost_watermark(struct zone *zone)
1824 {
1825 	unsigned long max_boost;
1826 
1827 	if (!watermark_boost_factor)
1828 		return false;
1829 	/*
1830 	 * Don't bother in zones that are unlikely to produce results.
1831 	 * On small machines, including kdump capture kernels running
1832 	 * in a small area, boosting the watermark can cause an out of
1833 	 * memory situation immediately.
1834 	 */
1835 	if ((pageblock_nr_pages * 4) > zone_managed_pages(zone))
1836 		return false;
1837 
1838 	max_boost = mult_frac(zone->_watermark[WMARK_HIGH],
1839 			watermark_boost_factor, 10000);
1840 
1841 	/*
1842 	 * high watermark may be uninitialised if fragmentation occurs
1843 	 * very early in boot so do not boost. We do not fall
1844 	 * through and boost by pageblock_nr_pages as failing
1845 	 * allocations that early means that reclaim is not going
1846 	 * to help and it may even be impossible to reclaim the
1847 	 * boosted watermark resulting in a hang.
1848 	 */
1849 	if (!max_boost)
1850 		return false;
1851 
1852 	max_boost = max(pageblock_nr_pages, max_boost);
1853 
1854 	zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages,
1855 		max_boost);
1856 
1857 	return true;
1858 }
1859 
1860 /*
1861  * This function implements actual steal behaviour. If order is large enough, we
1862  * can claim the whole pageblock for the requested migratetype. If not, we check
1863  * the pageblock for constituent pages; if at least half of the pages are free
1864  * or compatible, we can still claim the whole block, so pages freed in the
1865  * future will be put on the correct free list. Otherwise, we isolate exactly
1866  * the order we need from the fallback block and leave its migratetype alone.
1867  */
1868 static struct page *
1869 steal_suitable_fallback(struct zone *zone, struct page *page,
1870 			int current_order, int order, int start_type,
1871 			unsigned int alloc_flags, bool whole_block)
1872 {
1873 	int free_pages, movable_pages, alike_pages;
1874 	unsigned long start_pfn;
1875 	int block_type;
1876 
1877 	block_type = get_pageblock_migratetype(page);
1878 
1879 	/*
1880 	 * This can happen due to races and we want to prevent broken
1881 	 * highatomic accounting.
1882 	 */
1883 	if (is_migrate_highatomic(block_type))
1884 		goto single_page;
1885 
1886 	/* Take ownership for orders >= pageblock_order */
1887 	if (current_order >= pageblock_order) {
1888 		del_page_from_free_list(page, zone, current_order, block_type);
1889 		change_pageblock_range(page, current_order, start_type);
1890 		expand(zone, page, order, current_order, start_type);
1891 		return page;
1892 	}
1893 
1894 	/*
1895 	 * Boost watermarks to increase reclaim pressure to reduce the
1896 	 * likelihood of future fallbacks. Wake kswapd now as the node
1897 	 * may be balanced overall and kswapd will not wake naturally.
1898 	 */
1899 	if (boost_watermark(zone) && (alloc_flags & ALLOC_KSWAPD))
1900 		set_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
1901 
1902 	/* We are not allowed to try stealing from the whole block */
1903 	if (!whole_block)
1904 		goto single_page;
1905 
1906 	/* moving whole block can fail due to zone boundary conditions */
1907 	if (!prep_move_freepages_block(zone, page, &start_pfn, &free_pages,
1908 				       &movable_pages))
1909 		goto single_page;
1910 
1911 	/*
1912 	 * Determine how many pages are compatible with our allocation.
1913 	 * For movable allocation, it's the number of movable pages which
1914 	 * we just obtained. For other types it's a bit more tricky.
1915 	 */
1916 	if (start_type == MIGRATE_MOVABLE) {
1917 		alike_pages = movable_pages;
1918 	} else {
1919 		/*
1920 		 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
1921 		 * to MOVABLE pageblock, consider all non-movable pages as
1922 		 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
1923 		 * vice versa, be conservative since we can't distinguish the
1924 		 * exact migratetype of non-movable pages.
1925 		 */
1926 		if (block_type == MIGRATE_MOVABLE)
1927 			alike_pages = pageblock_nr_pages
1928 						- (free_pages + movable_pages);
1929 		else
1930 			alike_pages = 0;
1931 	}
1932 	/*
1933 	 * If a sufficient number of pages in the block are either free or of
1934 	 * compatible migratability as our allocation, claim the whole block.
1935 	 */
1936 	if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
1937 			page_group_by_mobility_disabled) {
1938 		__move_freepages_block(zone, start_pfn, block_type, start_type);
1939 		return __rmqueue_smallest(zone, order, start_type);
1940 	}
1941 
1942 single_page:
1943 	del_page_from_free_list(page, zone, current_order, block_type);
1944 	expand(zone, page, order, current_order, block_type);
1945 	return page;
1946 }
1947 
1948 /*
1949  * Check whether there is a suitable fallback freepage with requested order.
1950  * If only_stealable is true, this function returns fallback_mt only if
1951  * we can steal other freepages all together. This would help to reduce
1952  * fragmentation due to mixed migratetype pages in one pageblock.
1953  */
1954 int find_suitable_fallback(struct free_area *area, unsigned int order,
1955 			int migratetype, bool only_stealable, bool *can_steal)
1956 {
1957 	int i;
1958 	int fallback_mt;
1959 
1960 	if (area->nr_free == 0)
1961 		return -1;
1962 
1963 	*can_steal = false;
1964 	for (i = 0; i < MIGRATE_PCPTYPES - 1 ; i++) {
1965 		fallback_mt = fallbacks[migratetype][i];
1966 		if (free_area_empty(area, fallback_mt))
1967 			continue;
1968 
1969 		if (can_steal_fallback(order, migratetype))
1970 			*can_steal = true;
1971 
1972 		if (!only_stealable)
1973 			return fallback_mt;
1974 
1975 		if (*can_steal)
1976 			return fallback_mt;
1977 	}
1978 
1979 	return -1;
1980 }
1981 
1982 /*
1983  * Reserve the pageblock(s) surrounding an allocation request for
1984  * exclusive use of high-order atomic allocations if there are no
1985  * empty page blocks that contain a page with a suitable order
1986  */
1987 static void reserve_highatomic_pageblock(struct page *page, int order,
1988 					 struct zone *zone)
1989 {
1990 	int mt;
1991 	unsigned long max_managed, flags;
1992 
1993 	/*
1994 	 * The number reserved as: minimum is 1 pageblock, maximum is
1995 	 * roughly 1% of a zone. But if 1% of a zone falls below a
1996 	 * pageblock size, then don't reserve any pageblocks.
1997 	 * Check is race-prone but harmless.
1998 	 */
1999 	if ((zone_managed_pages(zone) / 100) < pageblock_nr_pages)
2000 		return;
2001 	max_managed = ALIGN((zone_managed_pages(zone) / 100), pageblock_nr_pages);
2002 	if (zone->nr_reserved_highatomic >= max_managed)
2003 		return;
2004 
2005 	spin_lock_irqsave(&zone->lock, flags);
2006 
2007 	/* Recheck the nr_reserved_highatomic limit under the lock */
2008 	if (zone->nr_reserved_highatomic >= max_managed)
2009 		goto out_unlock;
2010 
2011 	/* Yoink! */
2012 	mt = get_pageblock_migratetype(page);
2013 	/* Only reserve normal pageblocks (i.e., they can merge with others) */
2014 	if (!migratetype_is_mergeable(mt))
2015 		goto out_unlock;
2016 
2017 	if (order < pageblock_order) {
2018 		if (move_freepages_block(zone, page, mt, MIGRATE_HIGHATOMIC) == -1)
2019 			goto out_unlock;
2020 		zone->nr_reserved_highatomic += pageblock_nr_pages;
2021 	} else {
2022 		change_pageblock_range(page, order, MIGRATE_HIGHATOMIC);
2023 		zone->nr_reserved_highatomic += 1 << order;
2024 	}
2025 
2026 out_unlock:
2027 	spin_unlock_irqrestore(&zone->lock, flags);
2028 }
2029 
2030 /*
2031  * Used when an allocation is about to fail under memory pressure. This
2032  * potentially hurts the reliability of high-order allocations when under
2033  * intense memory pressure but failed atomic allocations should be easier
2034  * to recover from than an OOM.
2035  *
2036  * If @force is true, try to unreserve pageblocks even though highatomic
2037  * pageblock is exhausted.
2038  */
2039 static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
2040 						bool force)
2041 {
2042 	struct zonelist *zonelist = ac->zonelist;
2043 	unsigned long flags;
2044 	struct zoneref *z;
2045 	struct zone *zone;
2046 	struct page *page;
2047 	int order;
2048 	int ret;
2049 
2050 	for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->highest_zoneidx,
2051 								ac->nodemask) {
2052 		/*
2053 		 * Preserve at least one pageblock unless memory pressure
2054 		 * is really high.
2055 		 */
2056 		if (!force && zone->nr_reserved_highatomic <=
2057 					pageblock_nr_pages)
2058 			continue;
2059 
2060 		spin_lock_irqsave(&zone->lock, flags);
2061 		for (order = 0; order < NR_PAGE_ORDERS; order++) {
2062 			struct free_area *area = &(zone->free_area[order]);
2063 			int mt;
2064 
2065 			page = get_page_from_free_area(area, MIGRATE_HIGHATOMIC);
2066 			if (!page)
2067 				continue;
2068 
2069 			mt = get_pageblock_migratetype(page);
2070 			/*
2071 			 * In page freeing path, migratetype change is racy so
2072 			 * we can counter several free pages in a pageblock
2073 			 * in this loop although we changed the pageblock type
2074 			 * from highatomic to ac->migratetype. So we should
2075 			 * adjust the count once.
2076 			 */
2077 			if (is_migrate_highatomic(mt)) {
2078 				unsigned long size;
2079 				/*
2080 				 * It should never happen but changes to
2081 				 * locking could inadvertently allow a per-cpu
2082 				 * drain to add pages to MIGRATE_HIGHATOMIC
2083 				 * while unreserving so be safe and watch for
2084 				 * underflows.
2085 				 */
2086 				size = max(pageblock_nr_pages, 1UL << order);
2087 				size = min(size, zone->nr_reserved_highatomic);
2088 				zone->nr_reserved_highatomic -= size;
2089 			}
2090 
2091 			/*
2092 			 * Convert to ac->migratetype and avoid the normal
2093 			 * pageblock stealing heuristics. Minimally, the caller
2094 			 * is doing the work and needs the pages. More
2095 			 * importantly, if the block was always converted to
2096 			 * MIGRATE_UNMOVABLE or another type then the number
2097 			 * of pageblocks that cannot be completely freed
2098 			 * may increase.
2099 			 */
2100 			if (order < pageblock_order)
2101 				ret = move_freepages_block(zone, page, mt,
2102 							   ac->migratetype);
2103 			else {
2104 				move_to_free_list(page, zone, order, mt,
2105 						  ac->migratetype);
2106 				change_pageblock_range(page, order,
2107 						       ac->migratetype);
2108 				ret = 1;
2109 			}
2110 			/*
2111 			 * Reserving the block(s) already succeeded,
2112 			 * so this should not fail on zone boundaries.
2113 			 */
2114 			WARN_ON_ONCE(ret == -1);
2115 			if (ret > 0) {
2116 				spin_unlock_irqrestore(&zone->lock, flags);
2117 				return ret;
2118 			}
2119 		}
2120 		spin_unlock_irqrestore(&zone->lock, flags);
2121 	}
2122 
2123 	return false;
2124 }
2125 
2126 /*
2127  * Try finding a free buddy page on the fallback list and put it on the free
2128  * list of requested migratetype, possibly along with other pages from the same
2129  * block, depending on fragmentation avoidance heuristics. Returns true if
2130  * fallback was found so that __rmqueue_smallest() can grab it.
2131  *
2132  * The use of signed ints for order and current_order is a deliberate
2133  * deviation from the rest of this file, to make the for loop
2134  * condition simpler.
2135  */
2136 static __always_inline struct page *
2137 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype,
2138 						unsigned int alloc_flags)
2139 {
2140 	struct free_area *area;
2141 	int current_order;
2142 	int min_order = order;
2143 	struct page *page;
2144 	int fallback_mt;
2145 	bool can_steal;
2146 
2147 	/*
2148 	 * Do not steal pages from freelists belonging to other pageblocks
2149 	 * i.e. orders < pageblock_order. If there are no local zones free,
2150 	 * the zonelists will be reiterated without ALLOC_NOFRAGMENT.
2151 	 */
2152 	if (order < pageblock_order && alloc_flags & ALLOC_NOFRAGMENT)
2153 		min_order = pageblock_order;
2154 
2155 	/*
2156 	 * Find the largest available free page in the other list. This roughly
2157 	 * approximates finding the pageblock with the most free pages, which
2158 	 * would be too costly to do exactly.
2159 	 */
2160 	for (current_order = MAX_PAGE_ORDER; current_order >= min_order;
2161 				--current_order) {
2162 		area = &(zone->free_area[current_order]);
2163 		fallback_mt = find_suitable_fallback(area, current_order,
2164 				start_migratetype, false, &can_steal);
2165 		if (fallback_mt == -1)
2166 			continue;
2167 
2168 		/*
2169 		 * We cannot steal all free pages from the pageblock and the
2170 		 * requested migratetype is movable. In that case it's better to
2171 		 * steal and split the smallest available page instead of the
2172 		 * largest available page, because even if the next movable
2173 		 * allocation falls back into a different pageblock than this
2174 		 * one, it won't cause permanent fragmentation.
2175 		 */
2176 		if (!can_steal && start_migratetype == MIGRATE_MOVABLE
2177 					&& current_order > order)
2178 			goto find_smallest;
2179 
2180 		goto do_steal;
2181 	}
2182 
2183 	return NULL;
2184 
2185 find_smallest:
2186 	for (current_order = order; current_order < NR_PAGE_ORDERS; current_order++) {
2187 		area = &(zone->free_area[current_order]);
2188 		fallback_mt = find_suitable_fallback(area, current_order,
2189 				start_migratetype, false, &can_steal);
2190 		if (fallback_mt != -1)
2191 			break;
2192 	}
2193 
2194 	/*
2195 	 * This should not happen - we already found a suitable fallback
2196 	 * when looking for the largest page.
2197 	 */
2198 	VM_BUG_ON(current_order > MAX_PAGE_ORDER);
2199 
2200 do_steal:
2201 	page = get_page_from_free_area(area, fallback_mt);
2202 
2203 	/* take off list, maybe claim block, expand remainder */
2204 	page = steal_suitable_fallback(zone, page, current_order, order,
2205 				       start_migratetype, alloc_flags, can_steal);
2206 
2207 	trace_mm_page_alloc_extfrag(page, order, current_order,
2208 		start_migratetype, fallback_mt);
2209 
2210 	return page;
2211 }
2212 
2213 /*
2214  * Do the hard work of removing an element from the buddy allocator.
2215  * Call me with the zone->lock already held.
2216  */
2217 static __always_inline struct page *
2218 __rmqueue(struct zone *zone, unsigned int order, int migratetype,
2219 						unsigned int alloc_flags)
2220 {
2221 	struct page *page;
2222 
2223 	if (IS_ENABLED(CONFIG_CMA)) {
2224 		/*
2225 		 * Balance movable allocations between regular and CMA areas by
2226 		 * allocating from CMA when over half of the zone's free memory
2227 		 * is in the CMA area.
2228 		 */
2229 		if (alloc_flags & ALLOC_CMA &&
2230 		    zone_page_state(zone, NR_FREE_CMA_PAGES) >
2231 		    zone_page_state(zone, NR_FREE_PAGES) / 2) {
2232 			page = __rmqueue_cma_fallback(zone, order);
2233 			if (page)
2234 				return page;
2235 		}
2236 	}
2237 
2238 	page = __rmqueue_smallest(zone, order, migratetype);
2239 	if (unlikely(!page)) {
2240 		if (alloc_flags & ALLOC_CMA)
2241 			page = __rmqueue_cma_fallback(zone, order);
2242 
2243 		if (!page)
2244 			page = __rmqueue_fallback(zone, order, migratetype,
2245 						  alloc_flags);
2246 	}
2247 	return page;
2248 }
2249 
2250 /*
2251  * Obtain a specified number of elements from the buddy allocator, all under
2252  * a single hold of the lock, for efficiency.  Add them to the supplied list.
2253  * Returns the number of new pages which were placed at *list.
2254  */
2255 static int rmqueue_bulk(struct zone *zone, unsigned int order,
2256 			unsigned long count, struct list_head *list,
2257 			int migratetype, unsigned int alloc_flags)
2258 {
2259 	unsigned long flags;
2260 	int i;
2261 
2262 	spin_lock_irqsave(&zone->lock, flags);
2263 	for (i = 0; i < count; ++i) {
2264 		struct page *page = __rmqueue(zone, order, migratetype,
2265 								alloc_flags);
2266 		if (unlikely(page == NULL))
2267 			break;
2268 
2269 		/*
2270 		 * Split buddy pages returned by expand() are received here in
2271 		 * physical page order. The page is added to the tail of
2272 		 * caller's list. From the callers perspective, the linked list
2273 		 * is ordered by page number under some conditions. This is
2274 		 * useful for IO devices that can forward direction from the
2275 		 * head, thus also in the physical page order. This is useful
2276 		 * for IO devices that can merge IO requests if the physical
2277 		 * pages are ordered properly.
2278 		 */
2279 		list_add_tail(&page->pcp_list, list);
2280 	}
2281 	spin_unlock_irqrestore(&zone->lock, flags);
2282 
2283 	return i;
2284 }
2285 
2286 /*
2287  * Called from the vmstat counter updater to decay the PCP high.
2288  * Return whether there are addition works to do.
2289  */
2290 int decay_pcp_high(struct zone *zone, struct per_cpu_pages *pcp)
2291 {
2292 	int high_min, to_drain, batch;
2293 	int todo = 0;
2294 
2295 	high_min = READ_ONCE(pcp->high_min);
2296 	batch = READ_ONCE(pcp->batch);
2297 	/*
2298 	 * Decrease pcp->high periodically to try to free possible
2299 	 * idle PCP pages.  And, avoid to free too many pages to
2300 	 * control latency.  This caps pcp->high decrement too.
2301 	 */
2302 	if (pcp->high > high_min) {
2303 		pcp->high = max3(pcp->count - (batch << CONFIG_PCP_BATCH_SCALE_MAX),
2304 				 pcp->high - (pcp->high >> 3), high_min);
2305 		if (pcp->high > high_min)
2306 			todo++;
2307 	}
2308 
2309 	to_drain = pcp->count - pcp->high;
2310 	if (to_drain > 0) {
2311 		spin_lock(&pcp->lock);
2312 		free_pcppages_bulk(zone, to_drain, pcp, 0);
2313 		spin_unlock(&pcp->lock);
2314 		todo++;
2315 	}
2316 
2317 	return todo;
2318 }
2319 
2320 #ifdef CONFIG_NUMA
2321 /*
2322  * Called from the vmstat counter updater to drain pagesets of this
2323  * currently executing processor on remote nodes after they have
2324  * expired.
2325  */
2326 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
2327 {
2328 	int to_drain, batch;
2329 
2330 	batch = READ_ONCE(pcp->batch);
2331 	to_drain = min(pcp->count, batch);
2332 	if (to_drain > 0) {
2333 		spin_lock(&pcp->lock);
2334 		free_pcppages_bulk(zone, to_drain, pcp, 0);
2335 		spin_unlock(&pcp->lock);
2336 	}
2337 }
2338 #endif
2339 
2340 /*
2341  * Drain pcplists of the indicated processor and zone.
2342  */
2343 static void drain_pages_zone(unsigned int cpu, struct zone *zone)
2344 {
2345 	struct per_cpu_pages *pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
2346 	int count;
2347 
2348 	do {
2349 		spin_lock(&pcp->lock);
2350 		count = pcp->count;
2351 		if (count) {
2352 			int to_drain = min(count,
2353 				pcp->batch << CONFIG_PCP_BATCH_SCALE_MAX);
2354 
2355 			free_pcppages_bulk(zone, to_drain, pcp, 0);
2356 			count -= to_drain;
2357 		}
2358 		spin_unlock(&pcp->lock);
2359 	} while (count);
2360 }
2361 
2362 /*
2363  * Drain pcplists of all zones on the indicated processor.
2364  */
2365 static void drain_pages(unsigned int cpu)
2366 {
2367 	struct zone *zone;
2368 
2369 	for_each_populated_zone(zone) {
2370 		drain_pages_zone(cpu, zone);
2371 	}
2372 }
2373 
2374 /*
2375  * Spill all of this CPU's per-cpu pages back into the buddy allocator.
2376  */
2377 void drain_local_pages(struct zone *zone)
2378 {
2379 	int cpu = smp_processor_id();
2380 
2381 	if (zone)
2382 		drain_pages_zone(cpu, zone);
2383 	else
2384 		drain_pages(cpu);
2385 }
2386 
2387 /*
2388  * The implementation of drain_all_pages(), exposing an extra parameter to
2389  * drain on all cpus.
2390  *
2391  * drain_all_pages() is optimized to only execute on cpus where pcplists are
2392  * not empty. The check for non-emptiness can however race with a free to
2393  * pcplist that has not yet increased the pcp->count from 0 to 1. Callers
2394  * that need the guarantee that every CPU has drained can disable the
2395  * optimizing racy check.
2396  */
2397 static void __drain_all_pages(struct zone *zone, bool force_all_cpus)
2398 {
2399 	int cpu;
2400 
2401 	/*
2402 	 * Allocate in the BSS so we won't require allocation in
2403 	 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
2404 	 */
2405 	static cpumask_t cpus_with_pcps;
2406 
2407 	/*
2408 	 * Do not drain if one is already in progress unless it's specific to
2409 	 * a zone. Such callers are primarily CMA and memory hotplug and need
2410 	 * the drain to be complete when the call returns.
2411 	 */
2412 	if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
2413 		if (!zone)
2414 			return;
2415 		mutex_lock(&pcpu_drain_mutex);
2416 	}
2417 
2418 	/*
2419 	 * We don't care about racing with CPU hotplug event
2420 	 * as offline notification will cause the notified
2421 	 * cpu to drain that CPU pcps and on_each_cpu_mask
2422 	 * disables preemption as part of its processing
2423 	 */
2424 	for_each_online_cpu(cpu) {
2425 		struct per_cpu_pages *pcp;
2426 		struct zone *z;
2427 		bool has_pcps = false;
2428 
2429 		if (force_all_cpus) {
2430 			/*
2431 			 * The pcp.count check is racy, some callers need a
2432 			 * guarantee that no cpu is missed.
2433 			 */
2434 			has_pcps = true;
2435 		} else if (zone) {
2436 			pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
2437 			if (pcp->count)
2438 				has_pcps = true;
2439 		} else {
2440 			for_each_populated_zone(z) {
2441 				pcp = per_cpu_ptr(z->per_cpu_pageset, cpu);
2442 				if (pcp->count) {
2443 					has_pcps = true;
2444 					break;
2445 				}
2446 			}
2447 		}
2448 
2449 		if (has_pcps)
2450 			cpumask_set_cpu(cpu, &cpus_with_pcps);
2451 		else
2452 			cpumask_clear_cpu(cpu, &cpus_with_pcps);
2453 	}
2454 
2455 	for_each_cpu(cpu, &cpus_with_pcps) {
2456 		if (zone)
2457 			drain_pages_zone(cpu, zone);
2458 		else
2459 			drain_pages(cpu);
2460 	}
2461 
2462 	mutex_unlock(&pcpu_drain_mutex);
2463 }
2464 
2465 /*
2466  * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
2467  *
2468  * When zone parameter is non-NULL, spill just the single zone's pages.
2469  */
2470 void drain_all_pages(struct zone *zone)
2471 {
2472 	__drain_all_pages(zone, false);
2473 }
2474 
2475 static int nr_pcp_free(struct per_cpu_pages *pcp, int batch, int high, bool free_high)
2476 {
2477 	int min_nr_free, max_nr_free;
2478 
2479 	/* Free as much as possible if batch freeing high-order pages. */
2480 	if (unlikely(free_high))
2481 		return min(pcp->count, batch << CONFIG_PCP_BATCH_SCALE_MAX);
2482 
2483 	/* Check for PCP disabled or boot pageset */
2484 	if (unlikely(high < batch))
2485 		return 1;
2486 
2487 	/* Leave at least pcp->batch pages on the list */
2488 	min_nr_free = batch;
2489 	max_nr_free = high - batch;
2490 
2491 	/*
2492 	 * Increase the batch number to the number of the consecutive
2493 	 * freed pages to reduce zone lock contention.
2494 	 */
2495 	batch = clamp_t(int, pcp->free_count, min_nr_free, max_nr_free);
2496 
2497 	return batch;
2498 }
2499 
2500 static int nr_pcp_high(struct per_cpu_pages *pcp, struct zone *zone,
2501 		       int batch, bool free_high)
2502 {
2503 	int high, high_min, high_max;
2504 
2505 	high_min = READ_ONCE(pcp->high_min);
2506 	high_max = READ_ONCE(pcp->high_max);
2507 	high = pcp->high = clamp(pcp->high, high_min, high_max);
2508 
2509 	if (unlikely(!high))
2510 		return 0;
2511 
2512 	if (unlikely(free_high)) {
2513 		pcp->high = max(high - (batch << CONFIG_PCP_BATCH_SCALE_MAX),
2514 				high_min);
2515 		return 0;
2516 	}
2517 
2518 	/*
2519 	 * If reclaim is active, limit the number of pages that can be
2520 	 * stored on pcp lists
2521 	 */
2522 	if (test_bit(ZONE_RECLAIM_ACTIVE, &zone->flags)) {
2523 		int free_count = max_t(int, pcp->free_count, batch);
2524 
2525 		pcp->high = max(high - free_count, high_min);
2526 		return min(batch << 2, pcp->high);
2527 	}
2528 
2529 	if (high_min == high_max)
2530 		return high;
2531 
2532 	if (test_bit(ZONE_BELOW_HIGH, &zone->flags)) {
2533 		int free_count = max_t(int, pcp->free_count, batch);
2534 
2535 		pcp->high = max(high - free_count, high_min);
2536 		high = max(pcp->count, high_min);
2537 	} else if (pcp->count >= high) {
2538 		int need_high = pcp->free_count + batch;
2539 
2540 		/* pcp->high should be large enough to hold batch freed pages */
2541 		if (pcp->high < need_high)
2542 			pcp->high = clamp(need_high, high_min, high_max);
2543 	}
2544 
2545 	return high;
2546 }
2547 
2548 static void free_unref_page_commit(struct zone *zone, struct per_cpu_pages *pcp,
2549 				   struct page *page, int migratetype,
2550 				   unsigned int order)
2551 {
2552 	int high, batch;
2553 	int pindex;
2554 	bool free_high = false;
2555 
2556 	/*
2557 	 * On freeing, reduce the number of pages that are batch allocated.
2558 	 * See nr_pcp_alloc() where alloc_factor is increased for subsequent
2559 	 * allocations.
2560 	 */
2561 	pcp->alloc_factor >>= 1;
2562 	__count_vm_events(PGFREE, 1 << order);
2563 	pindex = order_to_pindex(migratetype, order);
2564 	list_add(&page->pcp_list, &pcp->lists[pindex]);
2565 	pcp->count += 1 << order;
2566 
2567 	batch = READ_ONCE(pcp->batch);
2568 	/*
2569 	 * As high-order pages other than THP's stored on PCP can contribute
2570 	 * to fragmentation, limit the number stored when PCP is heavily
2571 	 * freeing without allocation. The remainder after bulk freeing
2572 	 * stops will be drained from vmstat refresh context.
2573 	 */
2574 	if (order && order <= PAGE_ALLOC_COSTLY_ORDER) {
2575 		free_high = (pcp->free_count >= batch &&
2576 			     (pcp->flags & PCPF_PREV_FREE_HIGH_ORDER) &&
2577 			     (!(pcp->flags & PCPF_FREE_HIGH_BATCH) ||
2578 			      pcp->count >= READ_ONCE(batch)));
2579 		pcp->flags |= PCPF_PREV_FREE_HIGH_ORDER;
2580 	} else if (pcp->flags & PCPF_PREV_FREE_HIGH_ORDER) {
2581 		pcp->flags &= ~PCPF_PREV_FREE_HIGH_ORDER;
2582 	}
2583 	if (pcp->free_count < (batch << CONFIG_PCP_BATCH_SCALE_MAX))
2584 		pcp->free_count += (1 << order);
2585 	high = nr_pcp_high(pcp, zone, batch, free_high);
2586 	if (pcp->count >= high) {
2587 		free_pcppages_bulk(zone, nr_pcp_free(pcp, batch, high, free_high),
2588 				   pcp, pindex);
2589 		if (test_bit(ZONE_BELOW_HIGH, &zone->flags) &&
2590 		    zone_watermark_ok(zone, 0, high_wmark_pages(zone),
2591 				      ZONE_MOVABLE, 0))
2592 			clear_bit(ZONE_BELOW_HIGH, &zone->flags);
2593 	}
2594 }
2595 
2596 /*
2597  * Free a pcp page
2598  */
2599 void free_unref_page(struct page *page, unsigned int order)
2600 {
2601 	unsigned long __maybe_unused UP_flags;
2602 	struct per_cpu_pages *pcp;
2603 	struct zone *zone;
2604 	unsigned long pfn = page_to_pfn(page);
2605 	int migratetype;
2606 
2607 	if (!pcp_allowed_order(order)) {
2608 		__free_pages_ok(page, order, FPI_NONE);
2609 		return;
2610 	}
2611 
2612 	if (!free_pages_prepare(page, order))
2613 		return;
2614 
2615 	/*
2616 	 * We only track unmovable, reclaimable and movable on pcp lists.
2617 	 * Place ISOLATE pages on the isolated list because they are being
2618 	 * offlined but treat HIGHATOMIC and CMA as movable pages so we can
2619 	 * get those areas back if necessary. Otherwise, we may have to free
2620 	 * excessively into the page allocator
2621 	 */
2622 	migratetype = get_pfnblock_migratetype(page, pfn);
2623 	if (unlikely(migratetype >= MIGRATE_PCPTYPES)) {
2624 		if (unlikely(is_migrate_isolate(migratetype))) {
2625 			free_one_page(page_zone(page), page, pfn, order, FPI_NONE);
2626 			return;
2627 		}
2628 		migratetype = MIGRATE_MOVABLE;
2629 	}
2630 
2631 	zone = page_zone(page);
2632 	pcp_trylock_prepare(UP_flags);
2633 	pcp = pcp_spin_trylock(zone->per_cpu_pageset);
2634 	if (pcp) {
2635 		free_unref_page_commit(zone, pcp, page, migratetype, order);
2636 		pcp_spin_unlock(pcp);
2637 	} else {
2638 		free_one_page(zone, page, pfn, order, FPI_NONE);
2639 	}
2640 	pcp_trylock_finish(UP_flags);
2641 }
2642 
2643 /*
2644  * Free a batch of folios
2645  */
2646 void free_unref_folios(struct folio_batch *folios)
2647 {
2648 	unsigned long __maybe_unused UP_flags;
2649 	struct per_cpu_pages *pcp = NULL;
2650 	struct zone *locked_zone = NULL;
2651 	int i, j;
2652 
2653 	/* Prepare folios for freeing */
2654 	for (i = 0, j = 0; i < folios->nr; i++) {
2655 		struct folio *folio = folios->folios[i];
2656 		unsigned long pfn = folio_pfn(folio);
2657 		unsigned int order = folio_order(folio);
2658 
2659 		folio_undo_large_rmappable(folio);
2660 		if (!free_pages_prepare(&folio->page, order))
2661 			continue;
2662 		/*
2663 		 * Free orders not handled on the PCP directly to the
2664 		 * allocator.
2665 		 */
2666 		if (!pcp_allowed_order(order)) {
2667 			free_one_page(folio_zone(folio), &folio->page,
2668 				      pfn, order, FPI_NONE);
2669 			continue;
2670 		}
2671 		folio->private = (void *)(unsigned long)order;
2672 		if (j != i)
2673 			folios->folios[j] = folio;
2674 		j++;
2675 	}
2676 	folios->nr = j;
2677 
2678 	for (i = 0; i < folios->nr; i++) {
2679 		struct folio *folio = folios->folios[i];
2680 		struct zone *zone = folio_zone(folio);
2681 		unsigned long pfn = folio_pfn(folio);
2682 		unsigned int order = (unsigned long)folio->private;
2683 		int migratetype;
2684 
2685 		folio->private = NULL;
2686 		migratetype = get_pfnblock_migratetype(&folio->page, pfn);
2687 
2688 		/* Different zone requires a different pcp lock */
2689 		if (zone != locked_zone ||
2690 		    is_migrate_isolate(migratetype)) {
2691 			if (pcp) {
2692 				pcp_spin_unlock(pcp);
2693 				pcp_trylock_finish(UP_flags);
2694 				locked_zone = NULL;
2695 				pcp = NULL;
2696 			}
2697 
2698 			/*
2699 			 * Free isolated pages directly to the
2700 			 * allocator, see comment in free_unref_page.
2701 			 */
2702 			if (is_migrate_isolate(migratetype)) {
2703 				free_one_page(zone, &folio->page, pfn,
2704 					      order, FPI_NONE);
2705 				continue;
2706 			}
2707 
2708 			/*
2709 			 * trylock is necessary as folios may be getting freed
2710 			 * from IRQ or SoftIRQ context after an IO completion.
2711 			 */
2712 			pcp_trylock_prepare(UP_flags);
2713 			pcp = pcp_spin_trylock(zone->per_cpu_pageset);
2714 			if (unlikely(!pcp)) {
2715 				pcp_trylock_finish(UP_flags);
2716 				free_one_page(zone, &folio->page, pfn,
2717 					      order, FPI_NONE);
2718 				continue;
2719 			}
2720 			locked_zone = zone;
2721 		}
2722 
2723 		/*
2724 		 * Non-isolated types over MIGRATE_PCPTYPES get added
2725 		 * to the MIGRATE_MOVABLE pcp list.
2726 		 */
2727 		if (unlikely(migratetype >= MIGRATE_PCPTYPES))
2728 			migratetype = MIGRATE_MOVABLE;
2729 
2730 		trace_mm_page_free_batched(&folio->page);
2731 		free_unref_page_commit(zone, pcp, &folio->page, migratetype,
2732 				order);
2733 	}
2734 
2735 	if (pcp) {
2736 		pcp_spin_unlock(pcp);
2737 		pcp_trylock_finish(UP_flags);
2738 	}
2739 	folio_batch_reinit(folios);
2740 }
2741 
2742 /*
2743  * split_page takes a non-compound higher-order page, and splits it into
2744  * n (1<<order) sub-pages: page[0..n]
2745  * Each sub-page must be freed individually.
2746  *
2747  * Note: this is probably too low level an operation for use in drivers.
2748  * Please consult with lkml before using this in your driver.
2749  */
2750 void split_page(struct page *page, unsigned int order)
2751 {
2752 	int i;
2753 
2754 	VM_BUG_ON_PAGE(PageCompound(page), page);
2755 	VM_BUG_ON_PAGE(!page_count(page), page);
2756 
2757 	for (i = 1; i < (1 << order); i++)
2758 		set_page_refcounted(page + i);
2759 	split_page_owner(page, order, 0);
2760 	pgalloc_tag_split(page, 1 << order);
2761 	split_page_memcg(page, order, 0);
2762 }
2763 EXPORT_SYMBOL_GPL(split_page);
2764 
2765 int __isolate_free_page(struct page *page, unsigned int order)
2766 {
2767 	struct zone *zone = page_zone(page);
2768 	int mt = get_pageblock_migratetype(page);
2769 
2770 	if (!is_migrate_isolate(mt)) {
2771 		unsigned long watermark;
2772 		/*
2773 		 * Obey watermarks as if the page was being allocated. We can
2774 		 * emulate a high-order watermark check with a raised order-0
2775 		 * watermark, because we already know our high-order page
2776 		 * exists.
2777 		 */
2778 		watermark = zone->_watermark[WMARK_MIN] + (1UL << order);
2779 		if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
2780 			return 0;
2781 	}
2782 
2783 	del_page_from_free_list(page, zone, order, mt);
2784 
2785 	/*
2786 	 * Set the pageblock if the isolated page is at least half of a
2787 	 * pageblock
2788 	 */
2789 	if (order >= pageblock_order - 1) {
2790 		struct page *endpage = page + (1 << order) - 1;
2791 		for (; page < endpage; page += pageblock_nr_pages) {
2792 			int mt = get_pageblock_migratetype(page);
2793 			/*
2794 			 * Only change normal pageblocks (i.e., they can merge
2795 			 * with others)
2796 			 */
2797 			if (migratetype_is_mergeable(mt))
2798 				move_freepages_block(zone, page, mt,
2799 						     MIGRATE_MOVABLE);
2800 		}
2801 	}
2802 
2803 	return 1UL << order;
2804 }
2805 
2806 /**
2807  * __putback_isolated_page - Return a now-isolated page back where we got it
2808  * @page: Page that was isolated
2809  * @order: Order of the isolated page
2810  * @mt: The page's pageblock's migratetype
2811  *
2812  * This function is meant to return a page pulled from the free lists via
2813  * __isolate_free_page back to the free lists they were pulled from.
2814  */
2815 void __putback_isolated_page(struct page *page, unsigned int order, int mt)
2816 {
2817 	struct zone *zone = page_zone(page);
2818 
2819 	/* zone lock should be held when this function is called */
2820 	lockdep_assert_held(&zone->lock);
2821 
2822 	/* Return isolated page to tail of freelist. */
2823 	__free_one_page(page, page_to_pfn(page), zone, order, mt,
2824 			FPI_SKIP_REPORT_NOTIFY | FPI_TO_TAIL);
2825 }
2826 
2827 /*
2828  * Update NUMA hit/miss statistics
2829  */
2830 static inline void zone_statistics(struct zone *preferred_zone, struct zone *z,
2831 				   long nr_account)
2832 {
2833 #ifdef CONFIG_NUMA
2834 	enum numa_stat_item local_stat = NUMA_LOCAL;
2835 
2836 	/* skip numa counters update if numa stats is disabled */
2837 	if (!static_branch_likely(&vm_numa_stat_key))
2838 		return;
2839 
2840 	if (zone_to_nid(z) != numa_node_id())
2841 		local_stat = NUMA_OTHER;
2842 
2843 	if (zone_to_nid(z) == zone_to_nid(preferred_zone))
2844 		__count_numa_events(z, NUMA_HIT, nr_account);
2845 	else {
2846 		__count_numa_events(z, NUMA_MISS, nr_account);
2847 		__count_numa_events(preferred_zone, NUMA_FOREIGN, nr_account);
2848 	}
2849 	__count_numa_events(z, local_stat, nr_account);
2850 #endif
2851 }
2852 
2853 static __always_inline
2854 struct page *rmqueue_buddy(struct zone *preferred_zone, struct zone *zone,
2855 			   unsigned int order, unsigned int alloc_flags,
2856 			   int migratetype)
2857 {
2858 	struct page *page;
2859 	unsigned long flags;
2860 
2861 	do {
2862 		page = NULL;
2863 		spin_lock_irqsave(&zone->lock, flags);
2864 		if (alloc_flags & ALLOC_HIGHATOMIC)
2865 			page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
2866 		if (!page) {
2867 			page = __rmqueue(zone, order, migratetype, alloc_flags);
2868 
2869 			/*
2870 			 * If the allocation fails, allow OOM handling access
2871 			 * to HIGHATOMIC reserves as failing now is worse than
2872 			 * failing a high-order atomic allocation in the
2873 			 * future.
2874 			 */
2875 			if (!page && (alloc_flags & ALLOC_OOM))
2876 				page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
2877 
2878 			if (!page) {
2879 				spin_unlock_irqrestore(&zone->lock, flags);
2880 				return NULL;
2881 			}
2882 		}
2883 		spin_unlock_irqrestore(&zone->lock, flags);
2884 	} while (check_new_pages(page, order));
2885 
2886 	__count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
2887 	zone_statistics(preferred_zone, zone, 1);
2888 
2889 	return page;
2890 }
2891 
2892 static int nr_pcp_alloc(struct per_cpu_pages *pcp, struct zone *zone, int order)
2893 {
2894 	int high, base_batch, batch, max_nr_alloc;
2895 	int high_max, high_min;
2896 
2897 	base_batch = READ_ONCE(pcp->batch);
2898 	high_min = READ_ONCE(pcp->high_min);
2899 	high_max = READ_ONCE(pcp->high_max);
2900 	high = pcp->high = clamp(pcp->high, high_min, high_max);
2901 
2902 	/* Check for PCP disabled or boot pageset */
2903 	if (unlikely(high < base_batch))
2904 		return 1;
2905 
2906 	if (order)
2907 		batch = base_batch;
2908 	else
2909 		batch = (base_batch << pcp->alloc_factor);
2910 
2911 	/*
2912 	 * If we had larger pcp->high, we could avoid to allocate from
2913 	 * zone.
2914 	 */
2915 	if (high_min != high_max && !test_bit(ZONE_BELOW_HIGH, &zone->flags))
2916 		high = pcp->high = min(high + batch, high_max);
2917 
2918 	if (!order) {
2919 		max_nr_alloc = max(high - pcp->count - base_batch, base_batch);
2920 		/*
2921 		 * Double the number of pages allocated each time there is
2922 		 * subsequent allocation of order-0 pages without any freeing.
2923 		 */
2924 		if (batch <= max_nr_alloc &&
2925 		    pcp->alloc_factor < CONFIG_PCP_BATCH_SCALE_MAX)
2926 			pcp->alloc_factor++;
2927 		batch = min(batch, max_nr_alloc);
2928 	}
2929 
2930 	/*
2931 	 * Scale batch relative to order if batch implies free pages
2932 	 * can be stored on the PCP. Batch can be 1 for small zones or
2933 	 * for boot pagesets which should never store free pages as
2934 	 * the pages may belong to arbitrary zones.
2935 	 */
2936 	if (batch > 1)
2937 		batch = max(batch >> order, 2);
2938 
2939 	return batch;
2940 }
2941 
2942 /* Remove page from the per-cpu list, caller must protect the list */
2943 static inline
2944 struct page *__rmqueue_pcplist(struct zone *zone, unsigned int order,
2945 			int migratetype,
2946 			unsigned int alloc_flags,
2947 			struct per_cpu_pages *pcp,
2948 			struct list_head *list)
2949 {
2950 	struct page *page;
2951 
2952 	do {
2953 		if (list_empty(list)) {
2954 			int batch = nr_pcp_alloc(pcp, zone, order);
2955 			int alloced;
2956 
2957 			alloced = rmqueue_bulk(zone, order,
2958 					batch, list,
2959 					migratetype, alloc_flags);
2960 
2961 			pcp->count += alloced << order;
2962 			if (unlikely(list_empty(list)))
2963 				return NULL;
2964 		}
2965 
2966 		page = list_first_entry(list, struct page, pcp_list);
2967 		list_del(&page->pcp_list);
2968 		pcp->count -= 1 << order;
2969 	} while (check_new_pages(page, order));
2970 
2971 	return page;
2972 }
2973 
2974 /* Lock and remove page from the per-cpu list */
2975 static struct page *rmqueue_pcplist(struct zone *preferred_zone,
2976 			struct zone *zone, unsigned int order,
2977 			int migratetype, unsigned int alloc_flags)
2978 {
2979 	struct per_cpu_pages *pcp;
2980 	struct list_head *list;
2981 	struct page *page;
2982 	unsigned long __maybe_unused UP_flags;
2983 
2984 	/* spin_trylock may fail due to a parallel drain or IRQ reentrancy. */
2985 	pcp_trylock_prepare(UP_flags);
2986 	pcp = pcp_spin_trylock(zone->per_cpu_pageset);
2987 	if (!pcp) {
2988 		pcp_trylock_finish(UP_flags);
2989 		return NULL;
2990 	}
2991 
2992 	/*
2993 	 * On allocation, reduce the number of pages that are batch freed.
2994 	 * See nr_pcp_free() where free_factor is increased for subsequent
2995 	 * frees.
2996 	 */
2997 	pcp->free_count >>= 1;
2998 	list = &pcp->lists[order_to_pindex(migratetype, order)];
2999 	page = __rmqueue_pcplist(zone, order, migratetype, alloc_flags, pcp, list);
3000 	pcp_spin_unlock(pcp);
3001 	pcp_trylock_finish(UP_flags);
3002 	if (page) {
3003 		__count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
3004 		zone_statistics(preferred_zone, zone, 1);
3005 	}
3006 	return page;
3007 }
3008 
3009 /*
3010  * Allocate a page from the given zone.
3011  * Use pcplists for THP or "cheap" high-order allocations.
3012  */
3013 
3014 /*
3015  * Do not instrument rmqueue() with KMSAN. This function may call
3016  * __msan_poison_alloca() through a call to set_pfnblock_flags_mask().
3017  * If __msan_poison_alloca() attempts to allocate pages for the stack depot, it
3018  * may call rmqueue() again, which will result in a deadlock.
3019  */
3020 __no_sanitize_memory
3021 static inline
3022 struct page *rmqueue(struct zone *preferred_zone,
3023 			struct zone *zone, unsigned int order,
3024 			gfp_t gfp_flags, unsigned int alloc_flags,
3025 			int migratetype)
3026 {
3027 	struct page *page;
3028 
3029 	/*
3030 	 * We most definitely don't want callers attempting to
3031 	 * allocate greater than order-1 page units with __GFP_NOFAIL.
3032 	 */
3033 	WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
3034 
3035 	if (likely(pcp_allowed_order(order))) {
3036 		page = rmqueue_pcplist(preferred_zone, zone, order,
3037 				       migratetype, alloc_flags);
3038 		if (likely(page))
3039 			goto out;
3040 	}
3041 
3042 	page = rmqueue_buddy(preferred_zone, zone, order, alloc_flags,
3043 							migratetype);
3044 
3045 out:
3046 	/* Separate test+clear to avoid unnecessary atomics */
3047 	if ((alloc_flags & ALLOC_KSWAPD) &&
3048 	    unlikely(test_bit(ZONE_BOOSTED_WATERMARK, &zone->flags))) {
3049 		clear_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
3050 		wakeup_kswapd(zone, 0, 0, zone_idx(zone));
3051 	}
3052 
3053 	VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
3054 	return page;
3055 }
3056 
3057 static inline long __zone_watermark_unusable_free(struct zone *z,
3058 				unsigned int order, unsigned int alloc_flags)
3059 {
3060 	long unusable_free = (1 << order) - 1;
3061 
3062 	/*
3063 	 * If the caller does not have rights to reserves below the min
3064 	 * watermark then subtract the high-atomic reserves. This will
3065 	 * over-estimate the size of the atomic reserve but it avoids a search.
3066 	 */
3067 	if (likely(!(alloc_flags & ALLOC_RESERVES)))
3068 		unusable_free += z->nr_reserved_highatomic;
3069 
3070 #ifdef CONFIG_CMA
3071 	/* If allocation can't use CMA areas don't use free CMA pages */
3072 	if (!(alloc_flags & ALLOC_CMA))
3073 		unusable_free += zone_page_state(z, NR_FREE_CMA_PAGES);
3074 #endif
3075 #ifdef CONFIG_UNACCEPTED_MEMORY
3076 	unusable_free += zone_page_state(z, NR_UNACCEPTED);
3077 #endif
3078 
3079 	return unusable_free;
3080 }
3081 
3082 /*
3083  * Return true if free base pages are above 'mark'. For high-order checks it
3084  * will return true of the order-0 watermark is reached and there is at least
3085  * one free page of a suitable size. Checking now avoids taking the zone lock
3086  * to check in the allocation paths if no pages are free.
3087  */
3088 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3089 			 int highest_zoneidx, unsigned int alloc_flags,
3090 			 long free_pages)
3091 {
3092 	long min = mark;
3093 	int o;
3094 
3095 	/* free_pages may go negative - that's OK */
3096 	free_pages -= __zone_watermark_unusable_free(z, order, alloc_flags);
3097 
3098 	if (unlikely(alloc_flags & ALLOC_RESERVES)) {
3099 		/*
3100 		 * __GFP_HIGH allows access to 50% of the min reserve as well
3101 		 * as OOM.
3102 		 */
3103 		if (alloc_flags & ALLOC_MIN_RESERVE) {
3104 			min -= min / 2;
3105 
3106 			/*
3107 			 * Non-blocking allocations (e.g. GFP_ATOMIC) can
3108 			 * access more reserves than just __GFP_HIGH. Other
3109 			 * non-blocking allocations requests such as GFP_NOWAIT
3110 			 * or (GFP_KERNEL & ~__GFP_DIRECT_RECLAIM) do not get
3111 			 * access to the min reserve.
3112 			 */
3113 			if (alloc_flags & ALLOC_NON_BLOCK)
3114 				min -= min / 4;
3115 		}
3116 
3117 		/*
3118 		 * OOM victims can try even harder than the normal reserve
3119 		 * users on the grounds that it's definitely going to be in
3120 		 * the exit path shortly and free memory. Any allocation it
3121 		 * makes during the free path will be small and short-lived.
3122 		 */
3123 		if (alloc_flags & ALLOC_OOM)
3124 			min -= min / 2;
3125 	}
3126 
3127 	/*
3128 	 * Check watermarks for an order-0 allocation request. If these
3129 	 * are not met, then a high-order request also cannot go ahead
3130 	 * even if a suitable page happened to be free.
3131 	 */
3132 	if (free_pages <= min + z->lowmem_reserve[highest_zoneidx])
3133 		return false;
3134 
3135 	/* If this is an order-0 request then the watermark is fine */
3136 	if (!order)
3137 		return true;
3138 
3139 	/* For a high-order request, check at least one suitable page is free */
3140 	for (o = order; o < NR_PAGE_ORDERS; o++) {
3141 		struct free_area *area = &z->free_area[o];
3142 		int mt;
3143 
3144 		if (!area->nr_free)
3145 			continue;
3146 
3147 		for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
3148 			if (!free_area_empty(area, mt))
3149 				return true;
3150 		}
3151 
3152 #ifdef CONFIG_CMA
3153 		if ((alloc_flags & ALLOC_CMA) &&
3154 		    !free_area_empty(area, MIGRATE_CMA)) {
3155 			return true;
3156 		}
3157 #endif
3158 		if ((alloc_flags & (ALLOC_HIGHATOMIC|ALLOC_OOM)) &&
3159 		    !free_area_empty(area, MIGRATE_HIGHATOMIC)) {
3160 			return true;
3161 		}
3162 	}
3163 	return false;
3164 }
3165 
3166 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3167 		      int highest_zoneidx, unsigned int alloc_flags)
3168 {
3169 	return __zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
3170 					zone_page_state(z, NR_FREE_PAGES));
3171 }
3172 
3173 static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
3174 				unsigned long mark, int highest_zoneidx,
3175 				unsigned int alloc_flags, gfp_t gfp_mask)
3176 {
3177 	long free_pages;
3178 
3179 	free_pages = zone_page_state(z, NR_FREE_PAGES);
3180 
3181 	/*
3182 	 * Fast check for order-0 only. If this fails then the reserves
3183 	 * need to be calculated.
3184 	 */
3185 	if (!order) {
3186 		long usable_free;
3187 		long reserved;
3188 
3189 		usable_free = free_pages;
3190 		reserved = __zone_watermark_unusable_free(z, 0, alloc_flags);
3191 
3192 		/* reserved may over estimate high-atomic reserves. */
3193 		usable_free -= min(usable_free, reserved);
3194 		if (usable_free > mark + z->lowmem_reserve[highest_zoneidx])
3195 			return true;
3196 	}
3197 
3198 	if (__zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
3199 					free_pages))
3200 		return true;
3201 
3202 	/*
3203 	 * Ignore watermark boosting for __GFP_HIGH order-0 allocations
3204 	 * when checking the min watermark. The min watermark is the
3205 	 * point where boosting is ignored so that kswapd is woken up
3206 	 * when below the low watermark.
3207 	 */
3208 	if (unlikely(!order && (alloc_flags & ALLOC_MIN_RESERVE) && z->watermark_boost
3209 		&& ((alloc_flags & ALLOC_WMARK_MASK) == WMARK_MIN))) {
3210 		mark = z->_watermark[WMARK_MIN];
3211 		return __zone_watermark_ok(z, order, mark, highest_zoneidx,
3212 					alloc_flags, free_pages);
3213 	}
3214 
3215 	return false;
3216 }
3217 
3218 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
3219 			unsigned long mark, int highest_zoneidx)
3220 {
3221 	long free_pages = zone_page_state(z, NR_FREE_PAGES);
3222 
3223 	if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
3224 		free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
3225 
3226 	return __zone_watermark_ok(z, order, mark, highest_zoneidx, 0,
3227 								free_pages);
3228 }
3229 
3230 #ifdef CONFIG_NUMA
3231 int __read_mostly node_reclaim_distance = RECLAIM_DISTANCE;
3232 
3233 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3234 {
3235 	return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
3236 				node_reclaim_distance;
3237 }
3238 #else	/* CONFIG_NUMA */
3239 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3240 {
3241 	return true;
3242 }
3243 #endif	/* CONFIG_NUMA */
3244 
3245 /*
3246  * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid
3247  * fragmentation is subtle. If the preferred zone was HIGHMEM then
3248  * premature use of a lower zone may cause lowmem pressure problems that
3249  * are worse than fragmentation. If the next zone is ZONE_DMA then it is
3250  * probably too small. It only makes sense to spread allocations to avoid
3251  * fragmentation between the Normal and DMA32 zones.
3252  */
3253 static inline unsigned int
3254 alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask)
3255 {
3256 	unsigned int alloc_flags;
3257 
3258 	/*
3259 	 * __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
3260 	 * to save a branch.
3261 	 */
3262 	alloc_flags = (__force int) (gfp_mask & __GFP_KSWAPD_RECLAIM);
3263 
3264 #ifdef CONFIG_ZONE_DMA32
3265 	if (!zone)
3266 		return alloc_flags;
3267 
3268 	if (zone_idx(zone) != ZONE_NORMAL)
3269 		return alloc_flags;
3270 
3271 	/*
3272 	 * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and
3273 	 * the pointer is within zone->zone_pgdat->node_zones[]. Also assume
3274 	 * on UMA that if Normal is populated then so is DMA32.
3275 	 */
3276 	BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1);
3277 	if (nr_online_nodes > 1 && !populated_zone(--zone))
3278 		return alloc_flags;
3279 
3280 	alloc_flags |= ALLOC_NOFRAGMENT;
3281 #endif /* CONFIG_ZONE_DMA32 */
3282 	return alloc_flags;
3283 }
3284 
3285 /* Must be called after current_gfp_context() which can change gfp_mask */
3286 static inline unsigned int gfp_to_alloc_flags_cma(gfp_t gfp_mask,
3287 						  unsigned int alloc_flags)
3288 {
3289 #ifdef CONFIG_CMA
3290 	if (gfp_migratetype(gfp_mask) == MIGRATE_MOVABLE)
3291 		alloc_flags |= ALLOC_CMA;
3292 #endif
3293 	return alloc_flags;
3294 }
3295 
3296 /*
3297  * get_page_from_freelist goes through the zonelist trying to allocate
3298  * a page.
3299  */
3300 static struct page *
3301 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
3302 						const struct alloc_context *ac)
3303 {
3304 	struct zoneref *z;
3305 	struct zone *zone;
3306 	struct pglist_data *last_pgdat = NULL;
3307 	bool last_pgdat_dirty_ok = false;
3308 	bool no_fallback;
3309 
3310 retry:
3311 	/*
3312 	 * Scan zonelist, looking for a zone with enough free.
3313 	 * See also cpuset_node_allowed() comment in kernel/cgroup/cpuset.c.
3314 	 */
3315 	no_fallback = alloc_flags & ALLOC_NOFRAGMENT;
3316 	z = ac->preferred_zoneref;
3317 	for_next_zone_zonelist_nodemask(zone, z, ac->highest_zoneidx,
3318 					ac->nodemask) {
3319 		struct page *page;
3320 		unsigned long mark;
3321 
3322 		if (cpusets_enabled() &&
3323 			(alloc_flags & ALLOC_CPUSET) &&
3324 			!__cpuset_zone_allowed(zone, gfp_mask))
3325 				continue;
3326 		/*
3327 		 * When allocating a page cache page for writing, we
3328 		 * want to get it from a node that is within its dirty
3329 		 * limit, such that no single node holds more than its
3330 		 * proportional share of globally allowed dirty pages.
3331 		 * The dirty limits take into account the node's
3332 		 * lowmem reserves and high watermark so that kswapd
3333 		 * should be able to balance it without having to
3334 		 * write pages from its LRU list.
3335 		 *
3336 		 * XXX: For now, allow allocations to potentially
3337 		 * exceed the per-node dirty limit in the slowpath
3338 		 * (spread_dirty_pages unset) before going into reclaim,
3339 		 * which is important when on a NUMA setup the allowed
3340 		 * nodes are together not big enough to reach the
3341 		 * global limit.  The proper fix for these situations
3342 		 * will require awareness of nodes in the
3343 		 * dirty-throttling and the flusher threads.
3344 		 */
3345 		if (ac->spread_dirty_pages) {
3346 			if (last_pgdat != zone->zone_pgdat) {
3347 				last_pgdat = zone->zone_pgdat;
3348 				last_pgdat_dirty_ok = node_dirty_ok(zone->zone_pgdat);
3349 			}
3350 
3351 			if (!last_pgdat_dirty_ok)
3352 				continue;
3353 		}
3354 
3355 		if (no_fallback && nr_online_nodes > 1 &&
3356 		    zone != ac->preferred_zoneref->zone) {
3357 			int local_nid;
3358 
3359 			/*
3360 			 * If moving to a remote node, retry but allow
3361 			 * fragmenting fallbacks. Locality is more important
3362 			 * than fragmentation avoidance.
3363 			 */
3364 			local_nid = zone_to_nid(ac->preferred_zoneref->zone);
3365 			if (zone_to_nid(zone) != local_nid) {
3366 				alloc_flags &= ~ALLOC_NOFRAGMENT;
3367 				goto retry;
3368 			}
3369 		}
3370 
3371 		/*
3372 		 * Detect whether the number of free pages is below high
3373 		 * watermark.  If so, we will decrease pcp->high and free
3374 		 * PCP pages in free path to reduce the possibility of
3375 		 * premature page reclaiming.  Detection is done here to
3376 		 * avoid to do that in hotter free path.
3377 		 */
3378 		if (test_bit(ZONE_BELOW_HIGH, &zone->flags))
3379 			goto check_alloc_wmark;
3380 
3381 		mark = high_wmark_pages(zone);
3382 		if (zone_watermark_fast(zone, order, mark,
3383 					ac->highest_zoneidx, alloc_flags,
3384 					gfp_mask))
3385 			goto try_this_zone;
3386 		else
3387 			set_bit(ZONE_BELOW_HIGH, &zone->flags);
3388 
3389 check_alloc_wmark:
3390 		mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
3391 		if (!zone_watermark_fast(zone, order, mark,
3392 				       ac->highest_zoneidx, alloc_flags,
3393 				       gfp_mask)) {
3394 			int ret;
3395 
3396 			if (has_unaccepted_memory()) {
3397 				if (try_to_accept_memory(zone, order))
3398 					goto try_this_zone;
3399 			}
3400 
3401 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3402 			/*
3403 			 * Watermark failed for this zone, but see if we can
3404 			 * grow this zone if it contains deferred pages.
3405 			 */
3406 			if (deferred_pages_enabled()) {
3407 				if (_deferred_grow_zone(zone, order))
3408 					goto try_this_zone;
3409 			}
3410 #endif
3411 			/* Checked here to keep the fast path fast */
3412 			BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
3413 			if (alloc_flags & ALLOC_NO_WATERMARKS)
3414 				goto try_this_zone;
3415 
3416 			if (!node_reclaim_enabled() ||
3417 			    !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
3418 				continue;
3419 
3420 			ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
3421 			switch (ret) {
3422 			case NODE_RECLAIM_NOSCAN:
3423 				/* did not scan */
3424 				continue;
3425 			case NODE_RECLAIM_FULL:
3426 				/* scanned but unreclaimable */
3427 				continue;
3428 			default:
3429 				/* did we reclaim enough */
3430 				if (zone_watermark_ok(zone, order, mark,
3431 					ac->highest_zoneidx, alloc_flags))
3432 					goto try_this_zone;
3433 
3434 				continue;
3435 			}
3436 		}
3437 
3438 try_this_zone:
3439 		page = rmqueue(ac->preferred_zoneref->zone, zone, order,
3440 				gfp_mask, alloc_flags, ac->migratetype);
3441 		if (page) {
3442 			prep_new_page(page, order, gfp_mask, alloc_flags);
3443 
3444 			/*
3445 			 * If this is a high-order atomic allocation then check
3446 			 * if the pageblock should be reserved for the future
3447 			 */
3448 			if (unlikely(alloc_flags & ALLOC_HIGHATOMIC))
3449 				reserve_highatomic_pageblock(page, order, zone);
3450 
3451 			return page;
3452 		} else {
3453 			if (has_unaccepted_memory()) {
3454 				if (try_to_accept_memory(zone, order))
3455 					goto try_this_zone;
3456 			}
3457 
3458 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3459 			/* Try again if zone has deferred pages */
3460 			if (deferred_pages_enabled()) {
3461 				if (_deferred_grow_zone(zone, order))
3462 					goto try_this_zone;
3463 			}
3464 #endif
3465 		}
3466 	}
3467 
3468 	/*
3469 	 * It's possible on a UMA machine to get through all zones that are
3470 	 * fragmented. If avoiding fragmentation, reset and try again.
3471 	 */
3472 	if (no_fallback) {
3473 		alloc_flags &= ~ALLOC_NOFRAGMENT;
3474 		goto retry;
3475 	}
3476 
3477 	return NULL;
3478 }
3479 
3480 static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
3481 {
3482 	unsigned int filter = SHOW_MEM_FILTER_NODES;
3483 
3484 	/*
3485 	 * This documents exceptions given to allocations in certain
3486 	 * contexts that are allowed to allocate outside current's set
3487 	 * of allowed nodes.
3488 	 */
3489 	if (!(gfp_mask & __GFP_NOMEMALLOC))
3490 		if (tsk_is_oom_victim(current) ||
3491 		    (current->flags & (PF_MEMALLOC | PF_EXITING)))
3492 			filter &= ~SHOW_MEM_FILTER_NODES;
3493 	if (!in_task() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
3494 		filter &= ~SHOW_MEM_FILTER_NODES;
3495 
3496 	__show_mem(filter, nodemask, gfp_zone(gfp_mask));
3497 }
3498 
3499 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
3500 {
3501 	struct va_format vaf;
3502 	va_list args;
3503 	static DEFINE_RATELIMIT_STATE(nopage_rs, 10*HZ, 1);
3504 
3505 	if ((gfp_mask & __GFP_NOWARN) ||
3506 	     !__ratelimit(&nopage_rs) ||
3507 	     ((gfp_mask & __GFP_DMA) && !has_managed_dma()))
3508 		return;
3509 
3510 	va_start(args, fmt);
3511 	vaf.fmt = fmt;
3512 	vaf.va = &args;
3513 	pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl",
3514 			current->comm, &vaf, gfp_mask, &gfp_mask,
3515 			nodemask_pr_args(nodemask));
3516 	va_end(args);
3517 
3518 	cpuset_print_current_mems_allowed();
3519 	pr_cont("\n");
3520 	dump_stack();
3521 	warn_alloc_show_mem(gfp_mask, nodemask);
3522 }
3523 
3524 static inline struct page *
3525 __alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
3526 			      unsigned int alloc_flags,
3527 			      const struct alloc_context *ac)
3528 {
3529 	struct page *page;
3530 
3531 	page = get_page_from_freelist(gfp_mask, order,
3532 			alloc_flags|ALLOC_CPUSET, ac);
3533 	/*
3534 	 * fallback to ignore cpuset restriction if our nodes
3535 	 * are depleted
3536 	 */
3537 	if (!page)
3538 		page = get_page_from_freelist(gfp_mask, order,
3539 				alloc_flags, ac);
3540 
3541 	return page;
3542 }
3543 
3544 static inline struct page *
3545 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
3546 	const struct alloc_context *ac, unsigned long *did_some_progress)
3547 {
3548 	struct oom_control oc = {
3549 		.zonelist = ac->zonelist,
3550 		.nodemask = ac->nodemask,
3551 		.memcg = NULL,
3552 		.gfp_mask = gfp_mask,
3553 		.order = order,
3554 	};
3555 	struct page *page;
3556 
3557 	*did_some_progress = 0;
3558 
3559 	/*
3560 	 * Acquire the oom lock.  If that fails, somebody else is
3561 	 * making progress for us.
3562 	 */
3563 	if (!mutex_trylock(&oom_lock)) {
3564 		*did_some_progress = 1;
3565 		schedule_timeout_uninterruptible(1);
3566 		return NULL;
3567 	}
3568 
3569 	/*
3570 	 * Go through the zonelist yet one more time, keep very high watermark
3571 	 * here, this is only to catch a parallel oom killing, we must fail if
3572 	 * we're still under heavy pressure. But make sure that this reclaim
3573 	 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
3574 	 * allocation which will never fail due to oom_lock already held.
3575 	 */
3576 	page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) &
3577 				      ~__GFP_DIRECT_RECLAIM, order,
3578 				      ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
3579 	if (page)
3580 		goto out;
3581 
3582 	/* Coredumps can quickly deplete all memory reserves */
3583 	if (current->flags & PF_DUMPCORE)
3584 		goto out;
3585 	/* The OOM killer will not help higher order allocs */
3586 	if (order > PAGE_ALLOC_COSTLY_ORDER)
3587 		goto out;
3588 	/*
3589 	 * We have already exhausted all our reclaim opportunities without any
3590 	 * success so it is time to admit defeat. We will skip the OOM killer
3591 	 * because it is very likely that the caller has a more reasonable
3592 	 * fallback than shooting a random task.
3593 	 *
3594 	 * The OOM killer may not free memory on a specific node.
3595 	 */
3596 	if (gfp_mask & (__GFP_RETRY_MAYFAIL | __GFP_THISNODE))
3597 		goto out;
3598 	/* The OOM killer does not needlessly kill tasks for lowmem */
3599 	if (ac->highest_zoneidx < ZONE_NORMAL)
3600 		goto out;
3601 	if (pm_suspended_storage())
3602 		goto out;
3603 	/*
3604 	 * XXX: GFP_NOFS allocations should rather fail than rely on
3605 	 * other request to make a forward progress.
3606 	 * We are in an unfortunate situation where out_of_memory cannot
3607 	 * do much for this context but let's try it to at least get
3608 	 * access to memory reserved if the current task is killed (see
3609 	 * out_of_memory). Once filesystems are ready to handle allocation
3610 	 * failures more gracefully we should just bail out here.
3611 	 */
3612 
3613 	/* Exhausted what can be done so it's blame time */
3614 	if (out_of_memory(&oc) ||
3615 	    WARN_ON_ONCE_GFP(gfp_mask & __GFP_NOFAIL, gfp_mask)) {
3616 		*did_some_progress = 1;
3617 
3618 		/*
3619 		 * Help non-failing allocations by giving them access to memory
3620 		 * reserves
3621 		 */
3622 		if (gfp_mask & __GFP_NOFAIL)
3623 			page = __alloc_pages_cpuset_fallback(gfp_mask, order,
3624 					ALLOC_NO_WATERMARKS, ac);
3625 	}
3626 out:
3627 	mutex_unlock(&oom_lock);
3628 	return page;
3629 }
3630 
3631 /*
3632  * Maximum number of compaction retries with a progress before OOM
3633  * killer is consider as the only way to move forward.
3634  */
3635 #define MAX_COMPACT_RETRIES 16
3636 
3637 #ifdef CONFIG_COMPACTION
3638 /* Try memory compaction for high-order allocations before reclaim */
3639 static struct page *
3640 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3641 		unsigned int alloc_flags, const struct alloc_context *ac,
3642 		enum compact_priority prio, enum compact_result *compact_result)
3643 {
3644 	struct page *page = NULL;
3645 	unsigned long pflags;
3646 	unsigned int noreclaim_flag;
3647 
3648 	if (!order)
3649 		return NULL;
3650 
3651 	psi_memstall_enter(&pflags);
3652 	delayacct_compact_start();
3653 	noreclaim_flag = memalloc_noreclaim_save();
3654 
3655 	*compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
3656 								prio, &page);
3657 
3658 	memalloc_noreclaim_restore(noreclaim_flag);
3659 	psi_memstall_leave(&pflags);
3660 	delayacct_compact_end();
3661 
3662 	if (*compact_result == COMPACT_SKIPPED)
3663 		return NULL;
3664 	/*
3665 	 * At least in one zone compaction wasn't deferred or skipped, so let's
3666 	 * count a compaction stall
3667 	 */
3668 	count_vm_event(COMPACTSTALL);
3669 
3670 	/* Prep a captured page if available */
3671 	if (page)
3672 		prep_new_page(page, order, gfp_mask, alloc_flags);
3673 
3674 	/* Try get a page from the freelist if available */
3675 	if (!page)
3676 		page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3677 
3678 	if (page) {
3679 		struct zone *zone = page_zone(page);
3680 
3681 		zone->compact_blockskip_flush = false;
3682 		compaction_defer_reset(zone, order, true);
3683 		count_vm_event(COMPACTSUCCESS);
3684 		return page;
3685 	}
3686 
3687 	/*
3688 	 * It's bad if compaction run occurs and fails. The most likely reason
3689 	 * is that pages exist, but not enough to satisfy watermarks.
3690 	 */
3691 	count_vm_event(COMPACTFAIL);
3692 
3693 	cond_resched();
3694 
3695 	return NULL;
3696 }
3697 
3698 static inline bool
3699 should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
3700 		     enum compact_result compact_result,
3701 		     enum compact_priority *compact_priority,
3702 		     int *compaction_retries)
3703 {
3704 	int max_retries = MAX_COMPACT_RETRIES;
3705 	int min_priority;
3706 	bool ret = false;
3707 	int retries = *compaction_retries;
3708 	enum compact_priority priority = *compact_priority;
3709 
3710 	if (!order)
3711 		return false;
3712 
3713 	if (fatal_signal_pending(current))
3714 		return false;
3715 
3716 	/*
3717 	 * Compaction was skipped due to a lack of free order-0
3718 	 * migration targets. Continue if reclaim can help.
3719 	 */
3720 	if (compact_result == COMPACT_SKIPPED) {
3721 		ret = compaction_zonelist_suitable(ac, order, alloc_flags);
3722 		goto out;
3723 	}
3724 
3725 	/*
3726 	 * Compaction managed to coalesce some page blocks, but the
3727 	 * allocation failed presumably due to a race. Retry some.
3728 	 */
3729 	if (compact_result == COMPACT_SUCCESS) {
3730 		/*
3731 		 * !costly requests are much more important than
3732 		 * __GFP_RETRY_MAYFAIL costly ones because they are de
3733 		 * facto nofail and invoke OOM killer to move on while
3734 		 * costly can fail and users are ready to cope with
3735 		 * that. 1/4 retries is rather arbitrary but we would
3736 		 * need much more detailed feedback from compaction to
3737 		 * make a better decision.
3738 		 */
3739 		if (order > PAGE_ALLOC_COSTLY_ORDER)
3740 			max_retries /= 4;
3741 
3742 		if (++(*compaction_retries) <= max_retries) {
3743 			ret = true;
3744 			goto out;
3745 		}
3746 	}
3747 
3748 	/*
3749 	 * Compaction failed. Retry with increasing priority.
3750 	 */
3751 	min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
3752 			MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
3753 
3754 	if (*compact_priority > min_priority) {
3755 		(*compact_priority)--;
3756 		*compaction_retries = 0;
3757 		ret = true;
3758 	}
3759 out:
3760 	trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
3761 	return ret;
3762 }
3763 #else
3764 static inline struct page *
3765 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3766 		unsigned int alloc_flags, const struct alloc_context *ac,
3767 		enum compact_priority prio, enum compact_result *compact_result)
3768 {
3769 	*compact_result = COMPACT_SKIPPED;
3770 	return NULL;
3771 }
3772 
3773 static inline bool
3774 should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
3775 		     enum compact_result compact_result,
3776 		     enum compact_priority *compact_priority,
3777 		     int *compaction_retries)
3778 {
3779 	struct zone *zone;
3780 	struct zoneref *z;
3781 
3782 	if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
3783 		return false;
3784 
3785 	/*
3786 	 * There are setups with compaction disabled which would prefer to loop
3787 	 * inside the allocator rather than hit the oom killer prematurely.
3788 	 * Let's give them a good hope and keep retrying while the order-0
3789 	 * watermarks are OK.
3790 	 */
3791 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
3792 				ac->highest_zoneidx, ac->nodemask) {
3793 		if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
3794 					ac->highest_zoneidx, alloc_flags))
3795 			return true;
3796 	}
3797 	return false;
3798 }
3799 #endif /* CONFIG_COMPACTION */
3800 
3801 #ifdef CONFIG_LOCKDEP
3802 static struct lockdep_map __fs_reclaim_map =
3803 	STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map);
3804 
3805 static bool __need_reclaim(gfp_t gfp_mask)
3806 {
3807 	/* no reclaim without waiting on it */
3808 	if (!(gfp_mask & __GFP_DIRECT_RECLAIM))
3809 		return false;
3810 
3811 	/* this guy won't enter reclaim */
3812 	if (current->flags & PF_MEMALLOC)
3813 		return false;
3814 
3815 	if (gfp_mask & __GFP_NOLOCKDEP)
3816 		return false;
3817 
3818 	return true;
3819 }
3820 
3821 void __fs_reclaim_acquire(unsigned long ip)
3822 {
3823 	lock_acquire_exclusive(&__fs_reclaim_map, 0, 0, NULL, ip);
3824 }
3825 
3826 void __fs_reclaim_release(unsigned long ip)
3827 {
3828 	lock_release(&__fs_reclaim_map, ip);
3829 }
3830 
3831 void fs_reclaim_acquire(gfp_t gfp_mask)
3832 {
3833 	gfp_mask = current_gfp_context(gfp_mask);
3834 
3835 	if (__need_reclaim(gfp_mask)) {
3836 		if (gfp_mask & __GFP_FS)
3837 			__fs_reclaim_acquire(_RET_IP_);
3838 
3839 #ifdef CONFIG_MMU_NOTIFIER
3840 		lock_map_acquire(&__mmu_notifier_invalidate_range_start_map);
3841 		lock_map_release(&__mmu_notifier_invalidate_range_start_map);
3842 #endif
3843 
3844 	}
3845 }
3846 EXPORT_SYMBOL_GPL(fs_reclaim_acquire);
3847 
3848 void fs_reclaim_release(gfp_t gfp_mask)
3849 {
3850 	gfp_mask = current_gfp_context(gfp_mask);
3851 
3852 	if (__need_reclaim(gfp_mask)) {
3853 		if (gfp_mask & __GFP_FS)
3854 			__fs_reclaim_release(_RET_IP_);
3855 	}
3856 }
3857 EXPORT_SYMBOL_GPL(fs_reclaim_release);
3858 #endif
3859 
3860 /*
3861  * Zonelists may change due to hotplug during allocation. Detect when zonelists
3862  * have been rebuilt so allocation retries. Reader side does not lock and
3863  * retries the allocation if zonelist changes. Writer side is protected by the
3864  * embedded spin_lock.
3865  */
3866 static DEFINE_SEQLOCK(zonelist_update_seq);
3867 
3868 static unsigned int zonelist_iter_begin(void)
3869 {
3870 	if (IS_ENABLED(CONFIG_MEMORY_HOTREMOVE))
3871 		return read_seqbegin(&zonelist_update_seq);
3872 
3873 	return 0;
3874 }
3875 
3876 static unsigned int check_retry_zonelist(unsigned int seq)
3877 {
3878 	if (IS_ENABLED(CONFIG_MEMORY_HOTREMOVE))
3879 		return read_seqretry(&zonelist_update_seq, seq);
3880 
3881 	return seq;
3882 }
3883 
3884 /* Perform direct synchronous page reclaim */
3885 static unsigned long
3886 __perform_reclaim(gfp_t gfp_mask, unsigned int order,
3887 					const struct alloc_context *ac)
3888 {
3889 	unsigned int noreclaim_flag;
3890 	unsigned long progress;
3891 
3892 	cond_resched();
3893 
3894 	/* We now go into synchronous reclaim */
3895 	cpuset_memory_pressure_bump();
3896 	fs_reclaim_acquire(gfp_mask);
3897 	noreclaim_flag = memalloc_noreclaim_save();
3898 
3899 	progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
3900 								ac->nodemask);
3901 
3902 	memalloc_noreclaim_restore(noreclaim_flag);
3903 	fs_reclaim_release(gfp_mask);
3904 
3905 	cond_resched();
3906 
3907 	return progress;
3908 }
3909 
3910 /* The really slow allocator path where we enter direct reclaim */
3911 static inline struct page *
3912 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
3913 		unsigned int alloc_flags, const struct alloc_context *ac,
3914 		unsigned long *did_some_progress)
3915 {
3916 	struct page *page = NULL;
3917 	unsigned long pflags;
3918 	bool drained = false;
3919 
3920 	psi_memstall_enter(&pflags);
3921 	*did_some_progress = __perform_reclaim(gfp_mask, order, ac);
3922 	if (unlikely(!(*did_some_progress)))
3923 		goto out;
3924 
3925 retry:
3926 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3927 
3928 	/*
3929 	 * If an allocation failed after direct reclaim, it could be because
3930 	 * pages are pinned on the per-cpu lists or in high alloc reserves.
3931 	 * Shrink them and try again
3932 	 */
3933 	if (!page && !drained) {
3934 		unreserve_highatomic_pageblock(ac, false);
3935 		drain_all_pages(NULL);
3936 		drained = true;
3937 		goto retry;
3938 	}
3939 out:
3940 	psi_memstall_leave(&pflags);
3941 
3942 	return page;
3943 }
3944 
3945 static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask,
3946 			     const struct alloc_context *ac)
3947 {
3948 	struct zoneref *z;
3949 	struct zone *zone;
3950 	pg_data_t *last_pgdat = NULL;
3951 	enum zone_type highest_zoneidx = ac->highest_zoneidx;
3952 
3953 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, highest_zoneidx,
3954 					ac->nodemask) {
3955 		if (!managed_zone(zone))
3956 			continue;
3957 		if (last_pgdat != zone->zone_pgdat) {
3958 			wakeup_kswapd(zone, gfp_mask, order, highest_zoneidx);
3959 			last_pgdat = zone->zone_pgdat;
3960 		}
3961 	}
3962 }
3963 
3964 static inline unsigned int
3965 gfp_to_alloc_flags(gfp_t gfp_mask, unsigned int order)
3966 {
3967 	unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
3968 
3969 	/*
3970 	 * __GFP_HIGH is assumed to be the same as ALLOC_MIN_RESERVE
3971 	 * and __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
3972 	 * to save two branches.
3973 	 */
3974 	BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_MIN_RESERVE);
3975 	BUILD_BUG_ON(__GFP_KSWAPD_RECLAIM != (__force gfp_t) ALLOC_KSWAPD);
3976 
3977 	/*
3978 	 * The caller may dip into page reserves a bit more if the caller
3979 	 * cannot run direct reclaim, or if the caller has realtime scheduling
3980 	 * policy or is asking for __GFP_HIGH memory.  GFP_ATOMIC requests will
3981 	 * set both ALLOC_NON_BLOCK and ALLOC_MIN_RESERVE(__GFP_HIGH).
3982 	 */
3983 	alloc_flags |= (__force int)
3984 		(gfp_mask & (__GFP_HIGH | __GFP_KSWAPD_RECLAIM));
3985 
3986 	if (!(gfp_mask & __GFP_DIRECT_RECLAIM)) {
3987 		/*
3988 		 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
3989 		 * if it can't schedule.
3990 		 */
3991 		if (!(gfp_mask & __GFP_NOMEMALLOC)) {
3992 			alloc_flags |= ALLOC_NON_BLOCK;
3993 
3994 			if (order > 0)
3995 				alloc_flags |= ALLOC_HIGHATOMIC;
3996 		}
3997 
3998 		/*
3999 		 * Ignore cpuset mems for non-blocking __GFP_HIGH (probably
4000 		 * GFP_ATOMIC) rather than fail, see the comment for
4001 		 * cpuset_node_allowed().
4002 		 */
4003 		if (alloc_flags & ALLOC_MIN_RESERVE)
4004 			alloc_flags &= ~ALLOC_CPUSET;
4005 	} else if (unlikely(rt_task(current)) && in_task())
4006 		alloc_flags |= ALLOC_MIN_RESERVE;
4007 
4008 	alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, alloc_flags);
4009 
4010 	return alloc_flags;
4011 }
4012 
4013 static bool oom_reserves_allowed(struct task_struct *tsk)
4014 {
4015 	if (!tsk_is_oom_victim(tsk))
4016 		return false;
4017 
4018 	/*
4019 	 * !MMU doesn't have oom reaper so give access to memory reserves
4020 	 * only to the thread with TIF_MEMDIE set
4021 	 */
4022 	if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE))
4023 		return false;
4024 
4025 	return true;
4026 }
4027 
4028 /*
4029  * Distinguish requests which really need access to full memory
4030  * reserves from oom victims which can live with a portion of it
4031  */
4032 static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask)
4033 {
4034 	if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
4035 		return 0;
4036 	if (gfp_mask & __GFP_MEMALLOC)
4037 		return ALLOC_NO_WATERMARKS;
4038 	if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
4039 		return ALLOC_NO_WATERMARKS;
4040 	if (!in_interrupt()) {
4041 		if (current->flags & PF_MEMALLOC)
4042 			return ALLOC_NO_WATERMARKS;
4043 		else if (oom_reserves_allowed(current))
4044 			return ALLOC_OOM;
4045 	}
4046 
4047 	return 0;
4048 }
4049 
4050 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
4051 {
4052 	return !!__gfp_pfmemalloc_flags(gfp_mask);
4053 }
4054 
4055 /*
4056  * Checks whether it makes sense to retry the reclaim to make a forward progress
4057  * for the given allocation request.
4058  *
4059  * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
4060  * without success, or when we couldn't even meet the watermark if we
4061  * reclaimed all remaining pages on the LRU lists.
4062  *
4063  * Returns true if a retry is viable or false to enter the oom path.
4064  */
4065 static inline bool
4066 should_reclaim_retry(gfp_t gfp_mask, unsigned order,
4067 		     struct alloc_context *ac, int alloc_flags,
4068 		     bool did_some_progress, int *no_progress_loops)
4069 {
4070 	struct zone *zone;
4071 	struct zoneref *z;
4072 	bool ret = false;
4073 
4074 	/*
4075 	 * Costly allocations might have made a progress but this doesn't mean
4076 	 * their order will become available due to high fragmentation so
4077 	 * always increment the no progress counter for them
4078 	 */
4079 	if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
4080 		*no_progress_loops = 0;
4081 	else
4082 		(*no_progress_loops)++;
4083 
4084 	if (*no_progress_loops > MAX_RECLAIM_RETRIES)
4085 		goto out;
4086 
4087 
4088 	/*
4089 	 * Keep reclaiming pages while there is a chance this will lead
4090 	 * somewhere.  If none of the target zones can satisfy our allocation
4091 	 * request even if all reclaimable pages are considered then we are
4092 	 * screwed and have to go OOM.
4093 	 */
4094 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
4095 				ac->highest_zoneidx, ac->nodemask) {
4096 		unsigned long available;
4097 		unsigned long reclaimable;
4098 		unsigned long min_wmark = min_wmark_pages(zone);
4099 		bool wmark;
4100 
4101 		available = reclaimable = zone_reclaimable_pages(zone);
4102 		available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
4103 
4104 		/*
4105 		 * Would the allocation succeed if we reclaimed all
4106 		 * reclaimable pages?
4107 		 */
4108 		wmark = __zone_watermark_ok(zone, order, min_wmark,
4109 				ac->highest_zoneidx, alloc_flags, available);
4110 		trace_reclaim_retry_zone(z, order, reclaimable,
4111 				available, min_wmark, *no_progress_loops, wmark);
4112 		if (wmark) {
4113 			ret = true;
4114 			break;
4115 		}
4116 	}
4117 
4118 	/*
4119 	 * Memory allocation/reclaim might be called from a WQ context and the
4120 	 * current implementation of the WQ concurrency control doesn't
4121 	 * recognize that a particular WQ is congested if the worker thread is
4122 	 * looping without ever sleeping. Therefore we have to do a short sleep
4123 	 * here rather than calling cond_resched().
4124 	 */
4125 	if (current->flags & PF_WQ_WORKER)
4126 		schedule_timeout_uninterruptible(1);
4127 	else
4128 		cond_resched();
4129 out:
4130 	/* Before OOM, exhaust highatomic_reserve */
4131 	if (!ret)
4132 		return unreserve_highatomic_pageblock(ac, true);
4133 
4134 	return ret;
4135 }
4136 
4137 static inline bool
4138 check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
4139 {
4140 	/*
4141 	 * It's possible that cpuset's mems_allowed and the nodemask from
4142 	 * mempolicy don't intersect. This should be normally dealt with by
4143 	 * policy_nodemask(), but it's possible to race with cpuset update in
4144 	 * such a way the check therein was true, and then it became false
4145 	 * before we got our cpuset_mems_cookie here.
4146 	 * This assumes that for all allocations, ac->nodemask can come only
4147 	 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
4148 	 * when it does not intersect with the cpuset restrictions) or the
4149 	 * caller can deal with a violated nodemask.
4150 	 */
4151 	if (cpusets_enabled() && ac->nodemask &&
4152 			!cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
4153 		ac->nodemask = NULL;
4154 		return true;
4155 	}
4156 
4157 	/*
4158 	 * When updating a task's mems_allowed or mempolicy nodemask, it is
4159 	 * possible to race with parallel threads in such a way that our
4160 	 * allocation can fail while the mask is being updated. If we are about
4161 	 * to fail, check if the cpuset changed during allocation and if so,
4162 	 * retry.
4163 	 */
4164 	if (read_mems_allowed_retry(cpuset_mems_cookie))
4165 		return true;
4166 
4167 	return false;
4168 }
4169 
4170 static inline struct page *
4171 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
4172 						struct alloc_context *ac)
4173 {
4174 	bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
4175 	bool can_compact = gfp_compaction_allowed(gfp_mask);
4176 	const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
4177 	struct page *page = NULL;
4178 	unsigned int alloc_flags;
4179 	unsigned long did_some_progress;
4180 	enum compact_priority compact_priority;
4181 	enum compact_result compact_result;
4182 	int compaction_retries;
4183 	int no_progress_loops;
4184 	unsigned int cpuset_mems_cookie;
4185 	unsigned int zonelist_iter_cookie;
4186 	int reserve_flags;
4187 
4188 restart:
4189 	compaction_retries = 0;
4190 	no_progress_loops = 0;
4191 	compact_priority = DEF_COMPACT_PRIORITY;
4192 	cpuset_mems_cookie = read_mems_allowed_begin();
4193 	zonelist_iter_cookie = zonelist_iter_begin();
4194 
4195 	/*
4196 	 * The fast path uses conservative alloc_flags to succeed only until
4197 	 * kswapd needs to be woken up, and to avoid the cost of setting up
4198 	 * alloc_flags precisely. So we do that now.
4199 	 */
4200 	alloc_flags = gfp_to_alloc_flags(gfp_mask, order);
4201 
4202 	/*
4203 	 * We need to recalculate the starting point for the zonelist iterator
4204 	 * because we might have used different nodemask in the fast path, or
4205 	 * there was a cpuset modification and we are retrying - otherwise we
4206 	 * could end up iterating over non-eligible zones endlessly.
4207 	 */
4208 	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4209 					ac->highest_zoneidx, ac->nodemask);
4210 	if (!ac->preferred_zoneref->zone)
4211 		goto nopage;
4212 
4213 	/*
4214 	 * Check for insane configurations where the cpuset doesn't contain
4215 	 * any suitable zone to satisfy the request - e.g. non-movable
4216 	 * GFP_HIGHUSER allocations from MOVABLE nodes only.
4217 	 */
4218 	if (cpusets_insane_config() && (gfp_mask & __GFP_HARDWALL)) {
4219 		struct zoneref *z = first_zones_zonelist(ac->zonelist,
4220 					ac->highest_zoneidx,
4221 					&cpuset_current_mems_allowed);
4222 		if (!z->zone)
4223 			goto nopage;
4224 	}
4225 
4226 	if (alloc_flags & ALLOC_KSWAPD)
4227 		wake_all_kswapds(order, gfp_mask, ac);
4228 
4229 	/*
4230 	 * The adjusted alloc_flags might result in immediate success, so try
4231 	 * that first
4232 	 */
4233 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4234 	if (page)
4235 		goto got_pg;
4236 
4237 	/*
4238 	 * For costly allocations, try direct compaction first, as it's likely
4239 	 * that we have enough base pages and don't need to reclaim. For non-
4240 	 * movable high-order allocations, do that as well, as compaction will
4241 	 * try prevent permanent fragmentation by migrating from blocks of the
4242 	 * same migratetype.
4243 	 * Don't try this for allocations that are allowed to ignore
4244 	 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
4245 	 */
4246 	if (can_direct_reclaim && can_compact &&
4247 			(costly_order ||
4248 			   (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
4249 			&& !gfp_pfmemalloc_allowed(gfp_mask)) {
4250 		page = __alloc_pages_direct_compact(gfp_mask, order,
4251 						alloc_flags, ac,
4252 						INIT_COMPACT_PRIORITY,
4253 						&compact_result);
4254 		if (page)
4255 			goto got_pg;
4256 
4257 		/*
4258 		 * Checks for costly allocations with __GFP_NORETRY, which
4259 		 * includes some THP page fault allocations
4260 		 */
4261 		if (costly_order && (gfp_mask & __GFP_NORETRY)) {
4262 			/*
4263 			 * If allocating entire pageblock(s) and compaction
4264 			 * failed because all zones are below low watermarks
4265 			 * or is prohibited because it recently failed at this
4266 			 * order, fail immediately unless the allocator has
4267 			 * requested compaction and reclaim retry.
4268 			 *
4269 			 * Reclaim is
4270 			 *  - potentially very expensive because zones are far
4271 			 *    below their low watermarks or this is part of very
4272 			 *    bursty high order allocations,
4273 			 *  - not guaranteed to help because isolate_freepages()
4274 			 *    may not iterate over freed pages as part of its
4275 			 *    linear scan, and
4276 			 *  - unlikely to make entire pageblocks free on its
4277 			 *    own.
4278 			 */
4279 			if (compact_result == COMPACT_SKIPPED ||
4280 			    compact_result == COMPACT_DEFERRED)
4281 				goto nopage;
4282 
4283 			/*
4284 			 * Looks like reclaim/compaction is worth trying, but
4285 			 * sync compaction could be very expensive, so keep
4286 			 * using async compaction.
4287 			 */
4288 			compact_priority = INIT_COMPACT_PRIORITY;
4289 		}
4290 	}
4291 
4292 retry:
4293 	/* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
4294 	if (alloc_flags & ALLOC_KSWAPD)
4295 		wake_all_kswapds(order, gfp_mask, ac);
4296 
4297 	reserve_flags = __gfp_pfmemalloc_flags(gfp_mask);
4298 	if (reserve_flags)
4299 		alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, reserve_flags) |
4300 					  (alloc_flags & ALLOC_KSWAPD);
4301 
4302 	/*
4303 	 * Reset the nodemask and zonelist iterators if memory policies can be
4304 	 * ignored. These allocations are high priority and system rather than
4305 	 * user oriented.
4306 	 */
4307 	if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) {
4308 		ac->nodemask = NULL;
4309 		ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4310 					ac->highest_zoneidx, ac->nodemask);
4311 	}
4312 
4313 	/* Attempt with potentially adjusted zonelist and alloc_flags */
4314 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4315 	if (page)
4316 		goto got_pg;
4317 
4318 	/* Caller is not willing to reclaim, we can't balance anything */
4319 	if (!can_direct_reclaim)
4320 		goto nopage;
4321 
4322 	/* Avoid recursion of direct reclaim */
4323 	if (current->flags & PF_MEMALLOC)
4324 		goto nopage;
4325 
4326 	/* Try direct reclaim and then allocating */
4327 	page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
4328 							&did_some_progress);
4329 	if (page)
4330 		goto got_pg;
4331 
4332 	/* Try direct compaction and then allocating */
4333 	page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
4334 					compact_priority, &compact_result);
4335 	if (page)
4336 		goto got_pg;
4337 
4338 	/* Do not loop if specifically requested */
4339 	if (gfp_mask & __GFP_NORETRY)
4340 		goto nopage;
4341 
4342 	/*
4343 	 * Do not retry costly high order allocations unless they are
4344 	 * __GFP_RETRY_MAYFAIL and we can compact
4345 	 */
4346 	if (costly_order && (!can_compact ||
4347 			     !(gfp_mask & __GFP_RETRY_MAYFAIL)))
4348 		goto nopage;
4349 
4350 	if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
4351 				 did_some_progress > 0, &no_progress_loops))
4352 		goto retry;
4353 
4354 	/*
4355 	 * It doesn't make any sense to retry for the compaction if the order-0
4356 	 * reclaim is not able to make any progress because the current
4357 	 * implementation of the compaction depends on the sufficient amount
4358 	 * of free memory (see __compaction_suitable)
4359 	 */
4360 	if (did_some_progress > 0 && can_compact &&
4361 			should_compact_retry(ac, order, alloc_flags,
4362 				compact_result, &compact_priority,
4363 				&compaction_retries))
4364 		goto retry;
4365 
4366 
4367 	/*
4368 	 * Deal with possible cpuset update races or zonelist updates to avoid
4369 	 * a unnecessary OOM kill.
4370 	 */
4371 	if (check_retry_cpuset(cpuset_mems_cookie, ac) ||
4372 	    check_retry_zonelist(zonelist_iter_cookie))
4373 		goto restart;
4374 
4375 	/* Reclaim has failed us, start killing things */
4376 	page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
4377 	if (page)
4378 		goto got_pg;
4379 
4380 	/* Avoid allocations with no watermarks from looping endlessly */
4381 	if (tsk_is_oom_victim(current) &&
4382 	    (alloc_flags & ALLOC_OOM ||
4383 	     (gfp_mask & __GFP_NOMEMALLOC)))
4384 		goto nopage;
4385 
4386 	/* Retry as long as the OOM killer is making progress */
4387 	if (did_some_progress) {
4388 		no_progress_loops = 0;
4389 		goto retry;
4390 	}
4391 
4392 nopage:
4393 	/*
4394 	 * Deal with possible cpuset update races or zonelist updates to avoid
4395 	 * a unnecessary OOM kill.
4396 	 */
4397 	if (check_retry_cpuset(cpuset_mems_cookie, ac) ||
4398 	    check_retry_zonelist(zonelist_iter_cookie))
4399 		goto restart;
4400 
4401 	/*
4402 	 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
4403 	 * we always retry
4404 	 */
4405 	if (gfp_mask & __GFP_NOFAIL) {
4406 		/*
4407 		 * All existing users of the __GFP_NOFAIL are blockable, so warn
4408 		 * of any new users that actually require GFP_NOWAIT
4409 		 */
4410 		if (WARN_ON_ONCE_GFP(!can_direct_reclaim, gfp_mask))
4411 			goto fail;
4412 
4413 		/*
4414 		 * PF_MEMALLOC request from this context is rather bizarre
4415 		 * because we cannot reclaim anything and only can loop waiting
4416 		 * for somebody to do a work for us
4417 		 */
4418 		WARN_ON_ONCE_GFP(current->flags & PF_MEMALLOC, gfp_mask);
4419 
4420 		/*
4421 		 * non failing costly orders are a hard requirement which we
4422 		 * are not prepared for much so let's warn about these users
4423 		 * so that we can identify them and convert them to something
4424 		 * else.
4425 		 */
4426 		WARN_ON_ONCE_GFP(costly_order, gfp_mask);
4427 
4428 		/*
4429 		 * Help non-failing allocations by giving some access to memory
4430 		 * reserves normally used for high priority non-blocking
4431 		 * allocations but do not use ALLOC_NO_WATERMARKS because this
4432 		 * could deplete whole memory reserves which would just make
4433 		 * the situation worse.
4434 		 */
4435 		page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_MIN_RESERVE, ac);
4436 		if (page)
4437 			goto got_pg;
4438 
4439 		cond_resched();
4440 		goto retry;
4441 	}
4442 fail:
4443 	warn_alloc(gfp_mask, ac->nodemask,
4444 			"page allocation failure: order:%u", order);
4445 got_pg:
4446 	return page;
4447 }
4448 
4449 static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
4450 		int preferred_nid, nodemask_t *nodemask,
4451 		struct alloc_context *ac, gfp_t *alloc_gfp,
4452 		unsigned int *alloc_flags)
4453 {
4454 	ac->highest_zoneidx = gfp_zone(gfp_mask);
4455 	ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
4456 	ac->nodemask = nodemask;
4457 	ac->migratetype = gfp_migratetype(gfp_mask);
4458 
4459 	if (cpusets_enabled()) {
4460 		*alloc_gfp |= __GFP_HARDWALL;
4461 		/*
4462 		 * When we are in the interrupt context, it is irrelevant
4463 		 * to the current task context. It means that any node ok.
4464 		 */
4465 		if (in_task() && !ac->nodemask)
4466 			ac->nodemask = &cpuset_current_mems_allowed;
4467 		else
4468 			*alloc_flags |= ALLOC_CPUSET;
4469 	}
4470 
4471 	might_alloc(gfp_mask);
4472 
4473 	if (should_fail_alloc_page(gfp_mask, order))
4474 		return false;
4475 
4476 	*alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, *alloc_flags);
4477 
4478 	/* Dirty zone balancing only done in the fast path */
4479 	ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
4480 
4481 	/*
4482 	 * The preferred zone is used for statistics but crucially it is
4483 	 * also used as the starting point for the zonelist iterator. It
4484 	 * may get reset for allocations that ignore memory policies.
4485 	 */
4486 	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4487 					ac->highest_zoneidx, ac->nodemask);
4488 
4489 	return true;
4490 }
4491 
4492 /*
4493  * __alloc_pages_bulk - Allocate a number of order-0 pages to a list or array
4494  * @gfp: GFP flags for the allocation
4495  * @preferred_nid: The preferred NUMA node ID to allocate from
4496  * @nodemask: Set of nodes to allocate from, may be NULL
4497  * @nr_pages: The number of pages desired on the list or array
4498  * @page_list: Optional list to store the allocated pages
4499  * @page_array: Optional array to store the pages
4500  *
4501  * This is a batched version of the page allocator that attempts to
4502  * allocate nr_pages quickly. Pages are added to page_list if page_list
4503  * is not NULL, otherwise it is assumed that the page_array is valid.
4504  *
4505  * For lists, nr_pages is the number of pages that should be allocated.
4506  *
4507  * For arrays, only NULL elements are populated with pages and nr_pages
4508  * is the maximum number of pages that will be stored in the array.
4509  *
4510  * Returns the number of pages on the list or array.
4511  */
4512 unsigned long alloc_pages_bulk_noprof(gfp_t gfp, int preferred_nid,
4513 			nodemask_t *nodemask, int nr_pages,
4514 			struct list_head *page_list,
4515 			struct page **page_array)
4516 {
4517 	struct page *page;
4518 	unsigned long __maybe_unused UP_flags;
4519 	struct zone *zone;
4520 	struct zoneref *z;
4521 	struct per_cpu_pages *pcp;
4522 	struct list_head *pcp_list;
4523 	struct alloc_context ac;
4524 	gfp_t alloc_gfp;
4525 	unsigned int alloc_flags = ALLOC_WMARK_LOW;
4526 	int nr_populated = 0, nr_account = 0;
4527 
4528 	/*
4529 	 * Skip populated array elements to determine if any pages need
4530 	 * to be allocated before disabling IRQs.
4531 	 */
4532 	while (page_array && nr_populated < nr_pages && page_array[nr_populated])
4533 		nr_populated++;
4534 
4535 	/* No pages requested? */
4536 	if (unlikely(nr_pages <= 0))
4537 		goto out;
4538 
4539 	/* Already populated array? */
4540 	if (unlikely(page_array && nr_pages - nr_populated == 0))
4541 		goto out;
4542 
4543 	/* Bulk allocator does not support memcg accounting. */
4544 	if (memcg_kmem_online() && (gfp & __GFP_ACCOUNT))
4545 		goto failed;
4546 
4547 	/* Use the single page allocator for one page. */
4548 	if (nr_pages - nr_populated == 1)
4549 		goto failed;
4550 
4551 #ifdef CONFIG_PAGE_OWNER
4552 	/*
4553 	 * PAGE_OWNER may recurse into the allocator to allocate space to
4554 	 * save the stack with pagesets.lock held. Releasing/reacquiring
4555 	 * removes much of the performance benefit of bulk allocation so
4556 	 * force the caller to allocate one page at a time as it'll have
4557 	 * similar performance to added complexity to the bulk allocator.
4558 	 */
4559 	if (static_branch_unlikely(&page_owner_inited))
4560 		goto failed;
4561 #endif
4562 
4563 	/* May set ALLOC_NOFRAGMENT, fragmentation will return 1 page. */
4564 	gfp &= gfp_allowed_mask;
4565 	alloc_gfp = gfp;
4566 	if (!prepare_alloc_pages(gfp, 0, preferred_nid, nodemask, &ac, &alloc_gfp, &alloc_flags))
4567 		goto out;
4568 	gfp = alloc_gfp;
4569 
4570 	/* Find an allowed local zone that meets the low watermark. */
4571 	for_each_zone_zonelist_nodemask(zone, z, ac.zonelist, ac.highest_zoneidx, ac.nodemask) {
4572 		unsigned long mark;
4573 
4574 		if (cpusets_enabled() && (alloc_flags & ALLOC_CPUSET) &&
4575 		    !__cpuset_zone_allowed(zone, gfp)) {
4576 			continue;
4577 		}
4578 
4579 		if (nr_online_nodes > 1 && zone != ac.preferred_zoneref->zone &&
4580 		    zone_to_nid(zone) != zone_to_nid(ac.preferred_zoneref->zone)) {
4581 			goto failed;
4582 		}
4583 
4584 		mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK) + nr_pages;
4585 		if (zone_watermark_fast(zone, 0,  mark,
4586 				zonelist_zone_idx(ac.preferred_zoneref),
4587 				alloc_flags, gfp)) {
4588 			break;
4589 		}
4590 	}
4591 
4592 	/*
4593 	 * If there are no allowed local zones that meets the watermarks then
4594 	 * try to allocate a single page and reclaim if necessary.
4595 	 */
4596 	if (unlikely(!zone))
4597 		goto failed;
4598 
4599 	/* spin_trylock may fail due to a parallel drain or IRQ reentrancy. */
4600 	pcp_trylock_prepare(UP_flags);
4601 	pcp = pcp_spin_trylock(zone->per_cpu_pageset);
4602 	if (!pcp)
4603 		goto failed_irq;
4604 
4605 	/* Attempt the batch allocation */
4606 	pcp_list = &pcp->lists[order_to_pindex(ac.migratetype, 0)];
4607 	while (nr_populated < nr_pages) {
4608 
4609 		/* Skip existing pages */
4610 		if (page_array && page_array[nr_populated]) {
4611 			nr_populated++;
4612 			continue;
4613 		}
4614 
4615 		page = __rmqueue_pcplist(zone, 0, ac.migratetype, alloc_flags,
4616 								pcp, pcp_list);
4617 		if (unlikely(!page)) {
4618 			/* Try and allocate at least one page */
4619 			if (!nr_account) {
4620 				pcp_spin_unlock(pcp);
4621 				goto failed_irq;
4622 			}
4623 			break;
4624 		}
4625 		nr_account++;
4626 
4627 		prep_new_page(page, 0, gfp, 0);
4628 		if (page_list)
4629 			list_add(&page->lru, page_list);
4630 		else
4631 			page_array[nr_populated] = page;
4632 		nr_populated++;
4633 	}
4634 
4635 	pcp_spin_unlock(pcp);
4636 	pcp_trylock_finish(UP_flags);
4637 
4638 	__count_zid_vm_events(PGALLOC, zone_idx(zone), nr_account);
4639 	zone_statistics(ac.preferred_zoneref->zone, zone, nr_account);
4640 
4641 out:
4642 	return nr_populated;
4643 
4644 failed_irq:
4645 	pcp_trylock_finish(UP_flags);
4646 
4647 failed:
4648 	page = __alloc_pages_noprof(gfp, 0, preferred_nid, nodemask);
4649 	if (page) {
4650 		if (page_list)
4651 			list_add(&page->lru, page_list);
4652 		else
4653 			page_array[nr_populated] = page;
4654 		nr_populated++;
4655 	}
4656 
4657 	goto out;
4658 }
4659 EXPORT_SYMBOL_GPL(alloc_pages_bulk_noprof);
4660 
4661 /*
4662  * This is the 'heart' of the zoned buddy allocator.
4663  */
4664 struct page *__alloc_pages_noprof(gfp_t gfp, unsigned int order,
4665 				      int preferred_nid, nodemask_t *nodemask)
4666 {
4667 	struct page *page;
4668 	unsigned int alloc_flags = ALLOC_WMARK_LOW;
4669 	gfp_t alloc_gfp; /* The gfp_t that was actually used for allocation */
4670 	struct alloc_context ac = { };
4671 
4672 	/*
4673 	 * There are several places where we assume that the order value is sane
4674 	 * so bail out early if the request is out of bound.
4675 	 */
4676 	if (WARN_ON_ONCE_GFP(order > MAX_PAGE_ORDER, gfp))
4677 		return NULL;
4678 
4679 	gfp &= gfp_allowed_mask;
4680 	/*
4681 	 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
4682 	 * resp. GFP_NOIO which has to be inherited for all allocation requests
4683 	 * from a particular context which has been marked by
4684 	 * memalloc_no{fs,io}_{save,restore}. And PF_MEMALLOC_PIN which ensures
4685 	 * movable zones are not used during allocation.
4686 	 */
4687 	gfp = current_gfp_context(gfp);
4688 	alloc_gfp = gfp;
4689 	if (!prepare_alloc_pages(gfp, order, preferred_nid, nodemask, &ac,
4690 			&alloc_gfp, &alloc_flags))
4691 		return NULL;
4692 
4693 	/*
4694 	 * Forbid the first pass from falling back to types that fragment
4695 	 * memory until all local zones are considered.
4696 	 */
4697 	alloc_flags |= alloc_flags_nofragment(ac.preferred_zoneref->zone, gfp);
4698 
4699 	/* First allocation attempt */
4700 	page = get_page_from_freelist(alloc_gfp, order, alloc_flags, &ac);
4701 	if (likely(page))
4702 		goto out;
4703 
4704 	alloc_gfp = gfp;
4705 	ac.spread_dirty_pages = false;
4706 
4707 	/*
4708 	 * Restore the original nodemask if it was potentially replaced with
4709 	 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
4710 	 */
4711 	ac.nodemask = nodemask;
4712 
4713 	page = __alloc_pages_slowpath(alloc_gfp, order, &ac);
4714 
4715 out:
4716 	if (memcg_kmem_online() && (gfp & __GFP_ACCOUNT) && page &&
4717 	    unlikely(__memcg_kmem_charge_page(page, gfp, order) != 0)) {
4718 		__free_pages(page, order);
4719 		page = NULL;
4720 	}
4721 
4722 	trace_mm_page_alloc(page, order, alloc_gfp, ac.migratetype);
4723 	kmsan_alloc_page(page, order, alloc_gfp);
4724 
4725 	return page;
4726 }
4727 EXPORT_SYMBOL(__alloc_pages_noprof);
4728 
4729 struct folio *__folio_alloc_noprof(gfp_t gfp, unsigned int order, int preferred_nid,
4730 		nodemask_t *nodemask)
4731 {
4732 	struct page *page = __alloc_pages_noprof(gfp | __GFP_COMP, order,
4733 					preferred_nid, nodemask);
4734 	return page_rmappable_folio(page);
4735 }
4736 EXPORT_SYMBOL(__folio_alloc_noprof);
4737 
4738 /*
4739  * Common helper functions. Never use with __GFP_HIGHMEM because the returned
4740  * address cannot represent highmem pages. Use alloc_pages and then kmap if
4741  * you need to access high mem.
4742  */
4743 unsigned long get_free_pages_noprof(gfp_t gfp_mask, unsigned int order)
4744 {
4745 	struct page *page;
4746 
4747 	page = alloc_pages_noprof(gfp_mask & ~__GFP_HIGHMEM, order);
4748 	if (!page)
4749 		return 0;
4750 	return (unsigned long) page_address(page);
4751 }
4752 EXPORT_SYMBOL(get_free_pages_noprof);
4753 
4754 unsigned long get_zeroed_page_noprof(gfp_t gfp_mask)
4755 {
4756 	return get_free_pages_noprof(gfp_mask | __GFP_ZERO, 0);
4757 }
4758 EXPORT_SYMBOL(get_zeroed_page_noprof);
4759 
4760 /**
4761  * __free_pages - Free pages allocated with alloc_pages().
4762  * @page: The page pointer returned from alloc_pages().
4763  * @order: The order of the allocation.
4764  *
4765  * This function can free multi-page allocations that are not compound
4766  * pages.  It does not check that the @order passed in matches that of
4767  * the allocation, so it is easy to leak memory.  Freeing more memory
4768  * than was allocated will probably emit a warning.
4769  *
4770  * If the last reference to this page is speculative, it will be released
4771  * by put_page() which only frees the first page of a non-compound
4772  * allocation.  To prevent the remaining pages from being leaked, we free
4773  * the subsequent pages here.  If you want to use the page's reference
4774  * count to decide when to free the allocation, you should allocate a
4775  * compound page, and use put_page() instead of __free_pages().
4776  *
4777  * Context: May be called in interrupt context or while holding a normal
4778  * spinlock, but not in NMI context or while holding a raw spinlock.
4779  */
4780 void __free_pages(struct page *page, unsigned int order)
4781 {
4782 	/* get PageHead before we drop reference */
4783 	int head = PageHead(page);
4784 	struct alloc_tag *tag = pgalloc_tag_get(page);
4785 
4786 	if (put_page_testzero(page))
4787 		free_unref_page(page, order);
4788 	else if (!head) {
4789 		pgalloc_tag_sub_pages(tag, (1 << order) - 1);
4790 		while (order-- > 0)
4791 			free_unref_page(page + (1 << order), order);
4792 	}
4793 }
4794 EXPORT_SYMBOL(__free_pages);
4795 
4796 void free_pages(unsigned long addr, unsigned int order)
4797 {
4798 	if (addr != 0) {
4799 		VM_BUG_ON(!virt_addr_valid((void *)addr));
4800 		__free_pages(virt_to_page((void *)addr), order);
4801 	}
4802 }
4803 
4804 EXPORT_SYMBOL(free_pages);
4805 
4806 /*
4807  * Page Fragment:
4808  *  An arbitrary-length arbitrary-offset area of memory which resides
4809  *  within a 0 or higher order page.  Multiple fragments within that page
4810  *  are individually refcounted, in the page's reference counter.
4811  *
4812  * The page_frag functions below provide a simple allocation framework for
4813  * page fragments.  This is used by the network stack and network device
4814  * drivers to provide a backing region of memory for use as either an
4815  * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
4816  */
4817 static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
4818 					     gfp_t gfp_mask)
4819 {
4820 	struct page *page = NULL;
4821 	gfp_t gfp = gfp_mask;
4822 
4823 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4824 	gfp_mask = (gfp_mask & ~__GFP_DIRECT_RECLAIM) |  __GFP_COMP |
4825 		   __GFP_NOWARN | __GFP_NORETRY | __GFP_NOMEMALLOC;
4826 	page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
4827 				PAGE_FRAG_CACHE_MAX_ORDER);
4828 	nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
4829 #endif
4830 	if (unlikely(!page))
4831 		page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
4832 
4833 	nc->va = page ? page_address(page) : NULL;
4834 
4835 	return page;
4836 }
4837 
4838 void page_frag_cache_drain(struct page_frag_cache *nc)
4839 {
4840 	if (!nc->va)
4841 		return;
4842 
4843 	__page_frag_cache_drain(virt_to_head_page(nc->va), nc->pagecnt_bias);
4844 	nc->va = NULL;
4845 }
4846 EXPORT_SYMBOL(page_frag_cache_drain);
4847 
4848 void __page_frag_cache_drain(struct page *page, unsigned int count)
4849 {
4850 	VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
4851 
4852 	if (page_ref_sub_and_test(page, count))
4853 		free_unref_page(page, compound_order(page));
4854 }
4855 EXPORT_SYMBOL(__page_frag_cache_drain);
4856 
4857 void *__page_frag_alloc_align(struct page_frag_cache *nc,
4858 			      unsigned int fragsz, gfp_t gfp_mask,
4859 			      unsigned int align_mask)
4860 {
4861 	unsigned int size = PAGE_SIZE;
4862 	struct page *page;
4863 	int offset;
4864 
4865 	if (unlikely(!nc->va)) {
4866 refill:
4867 		page = __page_frag_cache_refill(nc, gfp_mask);
4868 		if (!page)
4869 			return NULL;
4870 
4871 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4872 		/* if size can vary use size else just use PAGE_SIZE */
4873 		size = nc->size;
4874 #endif
4875 		/* Even if we own the page, we do not use atomic_set().
4876 		 * This would break get_page_unless_zero() users.
4877 		 */
4878 		page_ref_add(page, PAGE_FRAG_CACHE_MAX_SIZE);
4879 
4880 		/* reset page count bias and offset to start of new frag */
4881 		nc->pfmemalloc = page_is_pfmemalloc(page);
4882 		nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
4883 		nc->offset = size;
4884 	}
4885 
4886 	offset = nc->offset - fragsz;
4887 	if (unlikely(offset < 0)) {
4888 		page = virt_to_page(nc->va);
4889 
4890 		if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
4891 			goto refill;
4892 
4893 		if (unlikely(nc->pfmemalloc)) {
4894 			free_unref_page(page, compound_order(page));
4895 			goto refill;
4896 		}
4897 
4898 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4899 		/* if size can vary use size else just use PAGE_SIZE */
4900 		size = nc->size;
4901 #endif
4902 		/* OK, page count is 0, we can safely set it */
4903 		set_page_count(page, PAGE_FRAG_CACHE_MAX_SIZE + 1);
4904 
4905 		/* reset page count bias and offset to start of new frag */
4906 		nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
4907 		offset = size - fragsz;
4908 		if (unlikely(offset < 0)) {
4909 			/*
4910 			 * The caller is trying to allocate a fragment
4911 			 * with fragsz > PAGE_SIZE but the cache isn't big
4912 			 * enough to satisfy the request, this may
4913 			 * happen in low memory conditions.
4914 			 * We don't release the cache page because
4915 			 * it could make memory pressure worse
4916 			 * so we simply return NULL here.
4917 			 */
4918 			return NULL;
4919 		}
4920 	}
4921 
4922 	nc->pagecnt_bias--;
4923 	offset &= align_mask;
4924 	nc->offset = offset;
4925 
4926 	return nc->va + offset;
4927 }
4928 EXPORT_SYMBOL(__page_frag_alloc_align);
4929 
4930 /*
4931  * Frees a page fragment allocated out of either a compound or order 0 page.
4932  */
4933 void page_frag_free(void *addr)
4934 {
4935 	struct page *page = virt_to_head_page(addr);
4936 
4937 	if (unlikely(put_page_testzero(page)))
4938 		free_unref_page(page, compound_order(page));
4939 }
4940 EXPORT_SYMBOL(page_frag_free);
4941 
4942 static void *make_alloc_exact(unsigned long addr, unsigned int order,
4943 		size_t size)
4944 {
4945 	if (addr) {
4946 		unsigned long nr = DIV_ROUND_UP(size, PAGE_SIZE);
4947 		struct page *page = virt_to_page((void *)addr);
4948 		struct page *last = page + nr;
4949 
4950 		split_page_owner(page, order, 0);
4951 		pgalloc_tag_split(page, 1 << order);
4952 		split_page_memcg(page, order, 0);
4953 		while (page < --last)
4954 			set_page_refcounted(last);
4955 
4956 		last = page + (1UL << order);
4957 		for (page += nr; page < last; page++)
4958 			__free_pages_ok(page, 0, FPI_TO_TAIL);
4959 	}
4960 	return (void *)addr;
4961 }
4962 
4963 /**
4964  * alloc_pages_exact - allocate an exact number physically-contiguous pages.
4965  * @size: the number of bytes to allocate
4966  * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
4967  *
4968  * This function is similar to alloc_pages(), except that it allocates the
4969  * minimum number of pages to satisfy the request.  alloc_pages() can only
4970  * allocate memory in power-of-two pages.
4971  *
4972  * This function is also limited by MAX_PAGE_ORDER.
4973  *
4974  * Memory allocated by this function must be released by free_pages_exact().
4975  *
4976  * Return: pointer to the allocated area or %NULL in case of error.
4977  */
4978 void *alloc_pages_exact_noprof(size_t size, gfp_t gfp_mask)
4979 {
4980 	unsigned int order = get_order(size);
4981 	unsigned long addr;
4982 
4983 	if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM)))
4984 		gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM);
4985 
4986 	addr = get_free_pages_noprof(gfp_mask, order);
4987 	return make_alloc_exact(addr, order, size);
4988 }
4989 EXPORT_SYMBOL(alloc_pages_exact_noprof);
4990 
4991 /**
4992  * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
4993  *			   pages on a node.
4994  * @nid: the preferred node ID where memory should be allocated
4995  * @size: the number of bytes to allocate
4996  * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
4997  *
4998  * Like alloc_pages_exact(), but try to allocate on node nid first before falling
4999  * back.
5000  *
5001  * Return: pointer to the allocated area or %NULL in case of error.
5002  */
5003 void * __meminit alloc_pages_exact_nid_noprof(int nid, size_t size, gfp_t gfp_mask)
5004 {
5005 	unsigned int order = get_order(size);
5006 	struct page *p;
5007 
5008 	if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM)))
5009 		gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM);
5010 
5011 	p = alloc_pages_node_noprof(nid, gfp_mask, order);
5012 	if (!p)
5013 		return NULL;
5014 	return make_alloc_exact((unsigned long)page_address(p), order, size);
5015 }
5016 
5017 /**
5018  * free_pages_exact - release memory allocated via alloc_pages_exact()
5019  * @virt: the value returned by alloc_pages_exact.
5020  * @size: size of allocation, same value as passed to alloc_pages_exact().
5021  *
5022  * Release the memory allocated by a previous call to alloc_pages_exact.
5023  */
5024 void free_pages_exact(void *virt, size_t size)
5025 {
5026 	unsigned long addr = (unsigned long)virt;
5027 	unsigned long end = addr + PAGE_ALIGN(size);
5028 
5029 	while (addr < end) {
5030 		free_page(addr);
5031 		addr += PAGE_SIZE;
5032 	}
5033 }
5034 EXPORT_SYMBOL(free_pages_exact);
5035 
5036 /**
5037  * nr_free_zone_pages - count number of pages beyond high watermark
5038  * @offset: The zone index of the highest zone
5039  *
5040  * nr_free_zone_pages() counts the number of pages which are beyond the
5041  * high watermark within all zones at or below a given zone index.  For each
5042  * zone, the number of pages is calculated as:
5043  *
5044  *     nr_free_zone_pages = managed_pages - high_pages
5045  *
5046  * Return: number of pages beyond high watermark.
5047  */
5048 static unsigned long nr_free_zone_pages(int offset)
5049 {
5050 	struct zoneref *z;
5051 	struct zone *zone;
5052 
5053 	/* Just pick one node, since fallback list is circular */
5054 	unsigned long sum = 0;
5055 
5056 	struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
5057 
5058 	for_each_zone_zonelist(zone, z, zonelist, offset) {
5059 		unsigned long size = zone_managed_pages(zone);
5060 		unsigned long high = high_wmark_pages(zone);
5061 		if (size > high)
5062 			sum += size - high;
5063 	}
5064 
5065 	return sum;
5066 }
5067 
5068 /**
5069  * nr_free_buffer_pages - count number of pages beyond high watermark
5070  *
5071  * nr_free_buffer_pages() counts the number of pages which are beyond the high
5072  * watermark within ZONE_DMA and ZONE_NORMAL.
5073  *
5074  * Return: number of pages beyond high watermark within ZONE_DMA and
5075  * ZONE_NORMAL.
5076  */
5077 unsigned long nr_free_buffer_pages(void)
5078 {
5079 	return nr_free_zone_pages(gfp_zone(GFP_USER));
5080 }
5081 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
5082 
5083 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
5084 {
5085 	zoneref->zone = zone;
5086 	zoneref->zone_idx = zone_idx(zone);
5087 }
5088 
5089 /*
5090  * Builds allocation fallback zone lists.
5091  *
5092  * Add all populated zones of a node to the zonelist.
5093  */
5094 static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs)
5095 {
5096 	struct zone *zone;
5097 	enum zone_type zone_type = MAX_NR_ZONES;
5098 	int nr_zones = 0;
5099 
5100 	do {
5101 		zone_type--;
5102 		zone = pgdat->node_zones + zone_type;
5103 		if (populated_zone(zone)) {
5104 			zoneref_set_zone(zone, &zonerefs[nr_zones++]);
5105 			check_highest_zone(zone_type);
5106 		}
5107 	} while (zone_type);
5108 
5109 	return nr_zones;
5110 }
5111 
5112 #ifdef CONFIG_NUMA
5113 
5114 static int __parse_numa_zonelist_order(char *s)
5115 {
5116 	/*
5117 	 * We used to support different zonelists modes but they turned
5118 	 * out to be just not useful. Let's keep the warning in place
5119 	 * if somebody still use the cmd line parameter so that we do
5120 	 * not fail it silently
5121 	 */
5122 	if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) {
5123 		pr_warn("Ignoring unsupported numa_zonelist_order value:  %s\n", s);
5124 		return -EINVAL;
5125 	}
5126 	return 0;
5127 }
5128 
5129 static char numa_zonelist_order[] = "Node";
5130 #define NUMA_ZONELIST_ORDER_LEN	16
5131 /*
5132  * sysctl handler for numa_zonelist_order
5133  */
5134 static int numa_zonelist_order_handler(const struct ctl_table *table, int write,
5135 		void *buffer, size_t *length, loff_t *ppos)
5136 {
5137 	if (write)
5138 		return __parse_numa_zonelist_order(buffer);
5139 	return proc_dostring(table, write, buffer, length, ppos);
5140 }
5141 
5142 static int node_load[MAX_NUMNODES];
5143 
5144 /**
5145  * find_next_best_node - find the next node that should appear in a given node's fallback list
5146  * @node: node whose fallback list we're appending
5147  * @used_node_mask: nodemask_t of already used nodes
5148  *
5149  * We use a number of factors to determine which is the next node that should
5150  * appear on a given node's fallback list.  The node should not have appeared
5151  * already in @node's fallback list, and it should be the next closest node
5152  * according to the distance array (which contains arbitrary distance values
5153  * from each node to each node in the system), and should also prefer nodes
5154  * with no CPUs, since presumably they'll have very little allocation pressure
5155  * on them otherwise.
5156  *
5157  * Return: node id of the found node or %NUMA_NO_NODE if no node is found.
5158  */
5159 int find_next_best_node(int node, nodemask_t *used_node_mask)
5160 {
5161 	int n, val;
5162 	int min_val = INT_MAX;
5163 	int best_node = NUMA_NO_NODE;
5164 
5165 	/*
5166 	 * Use the local node if we haven't already, but for memoryless local
5167 	 * node, we should skip it and fall back to other nodes.
5168 	 */
5169 	if (!node_isset(node, *used_node_mask) && node_state(node, N_MEMORY)) {
5170 		node_set(node, *used_node_mask);
5171 		return node;
5172 	}
5173 
5174 	for_each_node_state(n, N_MEMORY) {
5175 
5176 		/* Don't want a node to appear more than once */
5177 		if (node_isset(n, *used_node_mask))
5178 			continue;
5179 
5180 		/* Use the distance array to find the distance */
5181 		val = node_distance(node, n);
5182 
5183 		/* Penalize nodes under us ("prefer the next node") */
5184 		val += (n < node);
5185 
5186 		/* Give preference to headless and unused nodes */
5187 		if (!cpumask_empty(cpumask_of_node(n)))
5188 			val += PENALTY_FOR_NODE_WITH_CPUS;
5189 
5190 		/* Slight preference for less loaded node */
5191 		val *= MAX_NUMNODES;
5192 		val += node_load[n];
5193 
5194 		if (val < min_val) {
5195 			min_val = val;
5196 			best_node = n;
5197 		}
5198 	}
5199 
5200 	if (best_node >= 0)
5201 		node_set(best_node, *used_node_mask);
5202 
5203 	return best_node;
5204 }
5205 
5206 
5207 /*
5208  * Build zonelists ordered by node and zones within node.
5209  * This results in maximum locality--normal zone overflows into local
5210  * DMA zone, if any--but risks exhausting DMA zone.
5211  */
5212 static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order,
5213 		unsigned nr_nodes)
5214 {
5215 	struct zoneref *zonerefs;
5216 	int i;
5217 
5218 	zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5219 
5220 	for (i = 0; i < nr_nodes; i++) {
5221 		int nr_zones;
5222 
5223 		pg_data_t *node = NODE_DATA(node_order[i]);
5224 
5225 		nr_zones = build_zonerefs_node(node, zonerefs);
5226 		zonerefs += nr_zones;
5227 	}
5228 	zonerefs->zone = NULL;
5229 	zonerefs->zone_idx = 0;
5230 }
5231 
5232 /*
5233  * Build __GFP_THISNODE zonelists
5234  */
5235 static void build_thisnode_zonelists(pg_data_t *pgdat)
5236 {
5237 	struct zoneref *zonerefs;
5238 	int nr_zones;
5239 
5240 	zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs;
5241 	nr_zones = build_zonerefs_node(pgdat, zonerefs);
5242 	zonerefs += nr_zones;
5243 	zonerefs->zone = NULL;
5244 	zonerefs->zone_idx = 0;
5245 }
5246 
5247 /*
5248  * Build zonelists ordered by zone and nodes within zones.
5249  * This results in conserving DMA zone[s] until all Normal memory is
5250  * exhausted, but results in overflowing to remote node while memory
5251  * may still exist in local DMA zone.
5252  */
5253 
5254 static void build_zonelists(pg_data_t *pgdat)
5255 {
5256 	static int node_order[MAX_NUMNODES];
5257 	int node, nr_nodes = 0;
5258 	nodemask_t used_mask = NODE_MASK_NONE;
5259 	int local_node, prev_node;
5260 
5261 	/* NUMA-aware ordering of nodes */
5262 	local_node = pgdat->node_id;
5263 	prev_node = local_node;
5264 
5265 	memset(node_order, 0, sizeof(node_order));
5266 	while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
5267 		/*
5268 		 * We don't want to pressure a particular node.
5269 		 * So adding penalty to the first node in same
5270 		 * distance group to make it round-robin.
5271 		 */
5272 		if (node_distance(local_node, node) !=
5273 		    node_distance(local_node, prev_node))
5274 			node_load[node] += 1;
5275 
5276 		node_order[nr_nodes++] = node;
5277 		prev_node = node;
5278 	}
5279 
5280 	build_zonelists_in_node_order(pgdat, node_order, nr_nodes);
5281 	build_thisnode_zonelists(pgdat);
5282 	pr_info("Fallback order for Node %d: ", local_node);
5283 	for (node = 0; node < nr_nodes; node++)
5284 		pr_cont("%d ", node_order[node]);
5285 	pr_cont("\n");
5286 }
5287 
5288 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
5289 /*
5290  * Return node id of node used for "local" allocations.
5291  * I.e., first node id of first zone in arg node's generic zonelist.
5292  * Used for initializing percpu 'numa_mem', which is used primarily
5293  * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
5294  */
5295 int local_memory_node(int node)
5296 {
5297 	struct zoneref *z;
5298 
5299 	z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
5300 				   gfp_zone(GFP_KERNEL),
5301 				   NULL);
5302 	return zone_to_nid(z->zone);
5303 }
5304 #endif
5305 
5306 static void setup_min_unmapped_ratio(void);
5307 static void setup_min_slab_ratio(void);
5308 #else	/* CONFIG_NUMA */
5309 
5310 static void build_zonelists(pg_data_t *pgdat)
5311 {
5312 	struct zoneref *zonerefs;
5313 	int nr_zones;
5314 
5315 	zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5316 	nr_zones = build_zonerefs_node(pgdat, zonerefs);
5317 	zonerefs += nr_zones;
5318 
5319 	zonerefs->zone = NULL;
5320 	zonerefs->zone_idx = 0;
5321 }
5322 
5323 #endif	/* CONFIG_NUMA */
5324 
5325 /*
5326  * Boot pageset table. One per cpu which is going to be used for all
5327  * zones and all nodes. The parameters will be set in such a way
5328  * that an item put on a list will immediately be handed over to
5329  * the buddy list. This is safe since pageset manipulation is done
5330  * with interrupts disabled.
5331  *
5332  * The boot_pagesets must be kept even after bootup is complete for
5333  * unused processors and/or zones. They do play a role for bootstrapping
5334  * hotplugged processors.
5335  *
5336  * zoneinfo_show() and maybe other functions do
5337  * not check if the processor is online before following the pageset pointer.
5338  * Other parts of the kernel may not check if the zone is available.
5339  */
5340 static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats);
5341 /* These effectively disable the pcplists in the boot pageset completely */
5342 #define BOOT_PAGESET_HIGH	0
5343 #define BOOT_PAGESET_BATCH	1
5344 static DEFINE_PER_CPU(struct per_cpu_pages, boot_pageset);
5345 static DEFINE_PER_CPU(struct per_cpu_zonestat, boot_zonestats);
5346 
5347 static void __build_all_zonelists(void *data)
5348 {
5349 	int nid;
5350 	int __maybe_unused cpu;
5351 	pg_data_t *self = data;
5352 	unsigned long flags;
5353 
5354 	/*
5355 	 * The zonelist_update_seq must be acquired with irqsave because the
5356 	 * reader can be invoked from IRQ with GFP_ATOMIC.
5357 	 */
5358 	write_seqlock_irqsave(&zonelist_update_seq, flags);
5359 	/*
5360 	 * Also disable synchronous printk() to prevent any printk() from
5361 	 * trying to hold port->lock, for
5362 	 * tty_insert_flip_string_and_push_buffer() on other CPU might be
5363 	 * calling kmalloc(GFP_ATOMIC | __GFP_NOWARN) with port->lock held.
5364 	 */
5365 	printk_deferred_enter();
5366 
5367 #ifdef CONFIG_NUMA
5368 	memset(node_load, 0, sizeof(node_load));
5369 #endif
5370 
5371 	/*
5372 	 * This node is hotadded and no memory is yet present.   So just
5373 	 * building zonelists is fine - no need to touch other nodes.
5374 	 */
5375 	if (self && !node_online(self->node_id)) {
5376 		build_zonelists(self);
5377 	} else {
5378 		/*
5379 		 * All possible nodes have pgdat preallocated
5380 		 * in free_area_init
5381 		 */
5382 		for_each_node(nid) {
5383 			pg_data_t *pgdat = NODE_DATA(nid);
5384 
5385 			build_zonelists(pgdat);
5386 		}
5387 
5388 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
5389 		/*
5390 		 * We now know the "local memory node" for each node--
5391 		 * i.e., the node of the first zone in the generic zonelist.
5392 		 * Set up numa_mem percpu variable for on-line cpus.  During
5393 		 * boot, only the boot cpu should be on-line;  we'll init the
5394 		 * secondary cpus' numa_mem as they come on-line.  During
5395 		 * node/memory hotplug, we'll fixup all on-line cpus.
5396 		 */
5397 		for_each_online_cpu(cpu)
5398 			set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
5399 #endif
5400 	}
5401 
5402 	printk_deferred_exit();
5403 	write_sequnlock_irqrestore(&zonelist_update_seq, flags);
5404 }
5405 
5406 static noinline void __init
5407 build_all_zonelists_init(void)
5408 {
5409 	int cpu;
5410 
5411 	__build_all_zonelists(NULL);
5412 
5413 	/*
5414 	 * Initialize the boot_pagesets that are going to be used
5415 	 * for bootstrapping processors. The real pagesets for
5416 	 * each zone will be allocated later when the per cpu
5417 	 * allocator is available.
5418 	 *
5419 	 * boot_pagesets are used also for bootstrapping offline
5420 	 * cpus if the system is already booted because the pagesets
5421 	 * are needed to initialize allocators on a specific cpu too.
5422 	 * F.e. the percpu allocator needs the page allocator which
5423 	 * needs the percpu allocator in order to allocate its pagesets
5424 	 * (a chicken-egg dilemma).
5425 	 */
5426 	for_each_possible_cpu(cpu)
5427 		per_cpu_pages_init(&per_cpu(boot_pageset, cpu), &per_cpu(boot_zonestats, cpu));
5428 
5429 	mminit_verify_zonelist();
5430 	cpuset_init_current_mems_allowed();
5431 }
5432 
5433 /*
5434  * unless system_state == SYSTEM_BOOTING.
5435  *
5436  * __ref due to call of __init annotated helper build_all_zonelists_init
5437  * [protected by SYSTEM_BOOTING].
5438  */
5439 void __ref build_all_zonelists(pg_data_t *pgdat)
5440 {
5441 	unsigned long vm_total_pages;
5442 
5443 	if (system_state == SYSTEM_BOOTING) {
5444 		build_all_zonelists_init();
5445 	} else {
5446 		__build_all_zonelists(pgdat);
5447 		/* cpuset refresh routine should be here */
5448 	}
5449 	/* Get the number of free pages beyond high watermark in all zones. */
5450 	vm_total_pages = nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
5451 	/*
5452 	 * Disable grouping by mobility if the number of pages in the
5453 	 * system is too low to allow the mechanism to work. It would be
5454 	 * more accurate, but expensive to check per-zone. This check is
5455 	 * made on memory-hotadd so a system can start with mobility
5456 	 * disabled and enable it later
5457 	 */
5458 	if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
5459 		page_group_by_mobility_disabled = 1;
5460 	else
5461 		page_group_by_mobility_disabled = 0;
5462 
5463 	pr_info("Built %u zonelists, mobility grouping %s.  Total pages: %ld\n",
5464 		nr_online_nodes,
5465 		page_group_by_mobility_disabled ? "off" : "on",
5466 		vm_total_pages);
5467 #ifdef CONFIG_NUMA
5468 	pr_info("Policy zone: %s\n", zone_names[policy_zone]);
5469 #endif
5470 }
5471 
5472 static int zone_batchsize(struct zone *zone)
5473 {
5474 #ifdef CONFIG_MMU
5475 	int batch;
5476 
5477 	/*
5478 	 * The number of pages to batch allocate is either ~0.1%
5479 	 * of the zone or 1MB, whichever is smaller. The batch
5480 	 * size is striking a balance between allocation latency
5481 	 * and zone lock contention.
5482 	 */
5483 	batch = min(zone_managed_pages(zone) >> 10, SZ_1M / PAGE_SIZE);
5484 	batch /= 4;		/* We effectively *= 4 below */
5485 	if (batch < 1)
5486 		batch = 1;
5487 
5488 	/*
5489 	 * Clamp the batch to a 2^n - 1 value. Having a power
5490 	 * of 2 value was found to be more likely to have
5491 	 * suboptimal cache aliasing properties in some cases.
5492 	 *
5493 	 * For example if 2 tasks are alternately allocating
5494 	 * batches of pages, one task can end up with a lot
5495 	 * of pages of one half of the possible page colors
5496 	 * and the other with pages of the other colors.
5497 	 */
5498 	batch = rounddown_pow_of_two(batch + batch/2) - 1;
5499 
5500 	return batch;
5501 
5502 #else
5503 	/* The deferral and batching of frees should be suppressed under NOMMU
5504 	 * conditions.
5505 	 *
5506 	 * The problem is that NOMMU needs to be able to allocate large chunks
5507 	 * of contiguous memory as there's no hardware page translation to
5508 	 * assemble apparent contiguous memory from discontiguous pages.
5509 	 *
5510 	 * Queueing large contiguous runs of pages for batching, however,
5511 	 * causes the pages to actually be freed in smaller chunks.  As there
5512 	 * can be a significant delay between the individual batches being
5513 	 * recycled, this leads to the once large chunks of space being
5514 	 * fragmented and becoming unavailable for high-order allocations.
5515 	 */
5516 	return 0;
5517 #endif
5518 }
5519 
5520 static int percpu_pagelist_high_fraction;
5521 static int zone_highsize(struct zone *zone, int batch, int cpu_online,
5522 			 int high_fraction)
5523 {
5524 #ifdef CONFIG_MMU
5525 	int high;
5526 	int nr_split_cpus;
5527 	unsigned long total_pages;
5528 
5529 	if (!high_fraction) {
5530 		/*
5531 		 * By default, the high value of the pcp is based on the zone
5532 		 * low watermark so that if they are full then background
5533 		 * reclaim will not be started prematurely.
5534 		 */
5535 		total_pages = low_wmark_pages(zone);
5536 	} else {
5537 		/*
5538 		 * If percpu_pagelist_high_fraction is configured, the high
5539 		 * value is based on a fraction of the managed pages in the
5540 		 * zone.
5541 		 */
5542 		total_pages = zone_managed_pages(zone) / high_fraction;
5543 	}
5544 
5545 	/*
5546 	 * Split the high value across all online CPUs local to the zone. Note
5547 	 * that early in boot that CPUs may not be online yet and that during
5548 	 * CPU hotplug that the cpumask is not yet updated when a CPU is being
5549 	 * onlined. For memory nodes that have no CPUs, split the high value
5550 	 * across all online CPUs to mitigate the risk that reclaim is triggered
5551 	 * prematurely due to pages stored on pcp lists.
5552 	 */
5553 	nr_split_cpus = cpumask_weight(cpumask_of_node(zone_to_nid(zone))) + cpu_online;
5554 	if (!nr_split_cpus)
5555 		nr_split_cpus = num_online_cpus();
5556 	high = total_pages / nr_split_cpus;
5557 
5558 	/*
5559 	 * Ensure high is at least batch*4. The multiple is based on the
5560 	 * historical relationship between high and batch.
5561 	 */
5562 	high = max(high, batch << 2);
5563 
5564 	return high;
5565 #else
5566 	return 0;
5567 #endif
5568 }
5569 
5570 /*
5571  * pcp->high and pcp->batch values are related and generally batch is lower
5572  * than high. They are also related to pcp->count such that count is lower
5573  * than high, and as soon as it reaches high, the pcplist is flushed.
5574  *
5575  * However, guaranteeing these relations at all times would require e.g. write
5576  * barriers here but also careful usage of read barriers at the read side, and
5577  * thus be prone to error and bad for performance. Thus the update only prevents
5578  * store tearing. Any new users of pcp->batch, pcp->high_min and pcp->high_max
5579  * should ensure they can cope with those fields changing asynchronously, and
5580  * fully trust only the pcp->count field on the local CPU with interrupts
5581  * disabled.
5582  *
5583  * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
5584  * outside of boot time (or some other assurance that no concurrent updaters
5585  * exist).
5586  */
5587 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high_min,
5588 			   unsigned long high_max, unsigned long batch)
5589 {
5590 	WRITE_ONCE(pcp->batch, batch);
5591 	WRITE_ONCE(pcp->high_min, high_min);
5592 	WRITE_ONCE(pcp->high_max, high_max);
5593 }
5594 
5595 static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats)
5596 {
5597 	int pindex;
5598 
5599 	memset(pcp, 0, sizeof(*pcp));
5600 	memset(pzstats, 0, sizeof(*pzstats));
5601 
5602 	spin_lock_init(&pcp->lock);
5603 	for (pindex = 0; pindex < NR_PCP_LISTS; pindex++)
5604 		INIT_LIST_HEAD(&pcp->lists[pindex]);
5605 
5606 	/*
5607 	 * Set batch and high values safe for a boot pageset. A true percpu
5608 	 * pageset's initialization will update them subsequently. Here we don't
5609 	 * need to be as careful as pageset_update() as nobody can access the
5610 	 * pageset yet.
5611 	 */
5612 	pcp->high_min = BOOT_PAGESET_HIGH;
5613 	pcp->high_max = BOOT_PAGESET_HIGH;
5614 	pcp->batch = BOOT_PAGESET_BATCH;
5615 	pcp->free_count = 0;
5616 }
5617 
5618 static void __zone_set_pageset_high_and_batch(struct zone *zone, unsigned long high_min,
5619 					      unsigned long high_max, unsigned long batch)
5620 {
5621 	struct per_cpu_pages *pcp;
5622 	int cpu;
5623 
5624 	for_each_possible_cpu(cpu) {
5625 		pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
5626 		pageset_update(pcp, high_min, high_max, batch);
5627 	}
5628 }
5629 
5630 /*
5631  * Calculate and set new high and batch values for all per-cpu pagesets of a
5632  * zone based on the zone's size.
5633  */
5634 static void zone_set_pageset_high_and_batch(struct zone *zone, int cpu_online)
5635 {
5636 	int new_high_min, new_high_max, new_batch;
5637 
5638 	new_batch = max(1, zone_batchsize(zone));
5639 	if (percpu_pagelist_high_fraction) {
5640 		new_high_min = zone_highsize(zone, new_batch, cpu_online,
5641 					     percpu_pagelist_high_fraction);
5642 		/*
5643 		 * PCP high is tuned manually, disable auto-tuning via
5644 		 * setting high_min and high_max to the manual value.
5645 		 */
5646 		new_high_max = new_high_min;
5647 	} else {
5648 		new_high_min = zone_highsize(zone, new_batch, cpu_online, 0);
5649 		new_high_max = zone_highsize(zone, new_batch, cpu_online,
5650 					     MIN_PERCPU_PAGELIST_HIGH_FRACTION);
5651 	}
5652 
5653 	if (zone->pageset_high_min == new_high_min &&
5654 	    zone->pageset_high_max == new_high_max &&
5655 	    zone->pageset_batch == new_batch)
5656 		return;
5657 
5658 	zone->pageset_high_min = new_high_min;
5659 	zone->pageset_high_max = new_high_max;
5660 	zone->pageset_batch = new_batch;
5661 
5662 	__zone_set_pageset_high_and_batch(zone, new_high_min, new_high_max,
5663 					  new_batch);
5664 }
5665 
5666 void __meminit setup_zone_pageset(struct zone *zone)
5667 {
5668 	int cpu;
5669 
5670 	/* Size may be 0 on !SMP && !NUMA */
5671 	if (sizeof(struct per_cpu_zonestat) > 0)
5672 		zone->per_cpu_zonestats = alloc_percpu(struct per_cpu_zonestat);
5673 
5674 	zone->per_cpu_pageset = alloc_percpu(struct per_cpu_pages);
5675 	for_each_possible_cpu(cpu) {
5676 		struct per_cpu_pages *pcp;
5677 		struct per_cpu_zonestat *pzstats;
5678 
5679 		pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
5680 		pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
5681 		per_cpu_pages_init(pcp, pzstats);
5682 	}
5683 
5684 	zone_set_pageset_high_and_batch(zone, 0);
5685 }
5686 
5687 /*
5688  * The zone indicated has a new number of managed_pages; batch sizes and percpu
5689  * page high values need to be recalculated.
5690  */
5691 static void zone_pcp_update(struct zone *zone, int cpu_online)
5692 {
5693 	mutex_lock(&pcp_batch_high_lock);
5694 	zone_set_pageset_high_and_batch(zone, cpu_online);
5695 	mutex_unlock(&pcp_batch_high_lock);
5696 }
5697 
5698 static void zone_pcp_update_cacheinfo(struct zone *zone, unsigned int cpu)
5699 {
5700 	struct per_cpu_pages *pcp;
5701 	struct cpu_cacheinfo *cci;
5702 
5703 	pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
5704 	cci = get_cpu_cacheinfo(cpu);
5705 	/*
5706 	 * If data cache slice of CPU is large enough, "pcp->batch"
5707 	 * pages can be preserved in PCP before draining PCP for
5708 	 * consecutive high-order pages freeing without allocation.
5709 	 * This can reduce zone lock contention without hurting
5710 	 * cache-hot pages sharing.
5711 	 */
5712 	spin_lock(&pcp->lock);
5713 	if ((cci->per_cpu_data_slice_size >> PAGE_SHIFT) > 3 * pcp->batch)
5714 		pcp->flags |= PCPF_FREE_HIGH_BATCH;
5715 	else
5716 		pcp->flags &= ~PCPF_FREE_HIGH_BATCH;
5717 	spin_unlock(&pcp->lock);
5718 }
5719 
5720 void setup_pcp_cacheinfo(unsigned int cpu)
5721 {
5722 	struct zone *zone;
5723 
5724 	for_each_populated_zone(zone)
5725 		zone_pcp_update_cacheinfo(zone, cpu);
5726 }
5727 
5728 /*
5729  * Allocate per cpu pagesets and initialize them.
5730  * Before this call only boot pagesets were available.
5731  */
5732 void __init setup_per_cpu_pageset(void)
5733 {
5734 	struct pglist_data *pgdat;
5735 	struct zone *zone;
5736 	int __maybe_unused cpu;
5737 
5738 	for_each_populated_zone(zone)
5739 		setup_zone_pageset(zone);
5740 
5741 #ifdef CONFIG_NUMA
5742 	/*
5743 	 * Unpopulated zones continue using the boot pagesets.
5744 	 * The numa stats for these pagesets need to be reset.
5745 	 * Otherwise, they will end up skewing the stats of
5746 	 * the nodes these zones are associated with.
5747 	 */
5748 	for_each_possible_cpu(cpu) {
5749 		struct per_cpu_zonestat *pzstats = &per_cpu(boot_zonestats, cpu);
5750 		memset(pzstats->vm_numa_event, 0,
5751 		       sizeof(pzstats->vm_numa_event));
5752 	}
5753 #endif
5754 
5755 	for_each_online_pgdat(pgdat)
5756 		pgdat->per_cpu_nodestats =
5757 			alloc_percpu(struct per_cpu_nodestat);
5758 	store_early_perpage_metadata();
5759 }
5760 
5761 __meminit void zone_pcp_init(struct zone *zone)
5762 {
5763 	/*
5764 	 * per cpu subsystem is not up at this point. The following code
5765 	 * relies on the ability of the linker to provide the
5766 	 * offset of a (static) per cpu variable into the per cpu area.
5767 	 */
5768 	zone->per_cpu_pageset = &boot_pageset;
5769 	zone->per_cpu_zonestats = &boot_zonestats;
5770 	zone->pageset_high_min = BOOT_PAGESET_HIGH;
5771 	zone->pageset_high_max = BOOT_PAGESET_HIGH;
5772 	zone->pageset_batch = BOOT_PAGESET_BATCH;
5773 
5774 	if (populated_zone(zone))
5775 		pr_debug("  %s zone: %lu pages, LIFO batch:%u\n", zone->name,
5776 			 zone->present_pages, zone_batchsize(zone));
5777 }
5778 
5779 void adjust_managed_page_count(struct page *page, long count)
5780 {
5781 	atomic_long_add(count, &page_zone(page)->managed_pages);
5782 	totalram_pages_add(count);
5783 }
5784 EXPORT_SYMBOL(adjust_managed_page_count);
5785 
5786 unsigned long free_reserved_area(void *start, void *end, int poison, const char *s)
5787 {
5788 	void *pos;
5789 	unsigned long pages = 0;
5790 
5791 	start = (void *)PAGE_ALIGN((unsigned long)start);
5792 	end = (void *)((unsigned long)end & PAGE_MASK);
5793 	for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
5794 		struct page *page = virt_to_page(pos);
5795 		void *direct_map_addr;
5796 
5797 		/*
5798 		 * 'direct_map_addr' might be different from 'pos'
5799 		 * because some architectures' virt_to_page()
5800 		 * work with aliases.  Getting the direct map
5801 		 * address ensures that we get a _writeable_
5802 		 * alias for the memset().
5803 		 */
5804 		direct_map_addr = page_address(page);
5805 		/*
5806 		 * Perform a kasan-unchecked memset() since this memory
5807 		 * has not been initialized.
5808 		 */
5809 		direct_map_addr = kasan_reset_tag(direct_map_addr);
5810 		if ((unsigned int)poison <= 0xFF)
5811 			memset(direct_map_addr, poison, PAGE_SIZE);
5812 
5813 		free_reserved_page(page);
5814 	}
5815 
5816 	if (pages && s)
5817 		pr_info("Freeing %s memory: %ldK\n", s, K(pages));
5818 
5819 	return pages;
5820 }
5821 
5822 void free_reserved_page(struct page *page)
5823 {
5824 	if (mem_alloc_profiling_enabled()) {
5825 		union codetag_ref *ref = get_page_tag_ref(page);
5826 
5827 		if (ref) {
5828 			set_codetag_empty(ref);
5829 			put_page_tag_ref(ref);
5830 		}
5831 	}
5832 	ClearPageReserved(page);
5833 	init_page_count(page);
5834 	__free_page(page);
5835 	adjust_managed_page_count(page, 1);
5836 }
5837 EXPORT_SYMBOL(free_reserved_page);
5838 
5839 static int page_alloc_cpu_dead(unsigned int cpu)
5840 {
5841 	struct zone *zone;
5842 
5843 	lru_add_drain_cpu(cpu);
5844 	mlock_drain_remote(cpu);
5845 	drain_pages(cpu);
5846 
5847 	/*
5848 	 * Spill the event counters of the dead processor
5849 	 * into the current processors event counters.
5850 	 * This artificially elevates the count of the current
5851 	 * processor.
5852 	 */
5853 	vm_events_fold_cpu(cpu);
5854 
5855 	/*
5856 	 * Zero the differential counters of the dead processor
5857 	 * so that the vm statistics are consistent.
5858 	 *
5859 	 * This is only okay since the processor is dead and cannot
5860 	 * race with what we are doing.
5861 	 */
5862 	cpu_vm_stats_fold(cpu);
5863 
5864 	for_each_populated_zone(zone)
5865 		zone_pcp_update(zone, 0);
5866 
5867 	return 0;
5868 }
5869 
5870 static int page_alloc_cpu_online(unsigned int cpu)
5871 {
5872 	struct zone *zone;
5873 
5874 	for_each_populated_zone(zone)
5875 		zone_pcp_update(zone, 1);
5876 	return 0;
5877 }
5878 
5879 void __init page_alloc_init_cpuhp(void)
5880 {
5881 	int ret;
5882 
5883 	ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC,
5884 					"mm/page_alloc:pcp",
5885 					page_alloc_cpu_online,
5886 					page_alloc_cpu_dead);
5887 	WARN_ON(ret < 0);
5888 }
5889 
5890 /*
5891  * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
5892  *	or min_free_kbytes changes.
5893  */
5894 static void calculate_totalreserve_pages(void)
5895 {
5896 	struct pglist_data *pgdat;
5897 	unsigned long reserve_pages = 0;
5898 	enum zone_type i, j;
5899 
5900 	for_each_online_pgdat(pgdat) {
5901 
5902 		pgdat->totalreserve_pages = 0;
5903 
5904 		for (i = 0; i < MAX_NR_ZONES; i++) {
5905 			struct zone *zone = pgdat->node_zones + i;
5906 			long max = 0;
5907 			unsigned long managed_pages = zone_managed_pages(zone);
5908 
5909 			/* Find valid and maximum lowmem_reserve in the zone */
5910 			for (j = i; j < MAX_NR_ZONES; j++) {
5911 				if (zone->lowmem_reserve[j] > max)
5912 					max = zone->lowmem_reserve[j];
5913 			}
5914 
5915 			/* we treat the high watermark as reserved pages. */
5916 			max += high_wmark_pages(zone);
5917 
5918 			if (max > managed_pages)
5919 				max = managed_pages;
5920 
5921 			pgdat->totalreserve_pages += max;
5922 
5923 			reserve_pages += max;
5924 		}
5925 	}
5926 	totalreserve_pages = reserve_pages;
5927 }
5928 
5929 /*
5930  * setup_per_zone_lowmem_reserve - called whenever
5931  *	sysctl_lowmem_reserve_ratio changes.  Ensures that each zone
5932  *	has a correct pages reserved value, so an adequate number of
5933  *	pages are left in the zone after a successful __alloc_pages().
5934  */
5935 static void setup_per_zone_lowmem_reserve(void)
5936 {
5937 	struct pglist_data *pgdat;
5938 	enum zone_type i, j;
5939 
5940 	for_each_online_pgdat(pgdat) {
5941 		for (i = 0; i < MAX_NR_ZONES - 1; i++) {
5942 			struct zone *zone = &pgdat->node_zones[i];
5943 			int ratio = sysctl_lowmem_reserve_ratio[i];
5944 			bool clear = !ratio || !zone_managed_pages(zone);
5945 			unsigned long managed_pages = 0;
5946 
5947 			for (j = i + 1; j < MAX_NR_ZONES; j++) {
5948 				struct zone *upper_zone = &pgdat->node_zones[j];
5949 				bool empty = !zone_managed_pages(upper_zone);
5950 
5951 				managed_pages += zone_managed_pages(upper_zone);
5952 
5953 				if (clear || empty)
5954 					zone->lowmem_reserve[j] = 0;
5955 				else
5956 					zone->lowmem_reserve[j] = managed_pages / ratio;
5957 			}
5958 		}
5959 	}
5960 
5961 	/* update totalreserve_pages */
5962 	calculate_totalreserve_pages();
5963 }
5964 
5965 static void __setup_per_zone_wmarks(void)
5966 {
5967 	unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
5968 	unsigned long lowmem_pages = 0;
5969 	struct zone *zone;
5970 	unsigned long flags;
5971 
5972 	/* Calculate total number of !ZONE_HIGHMEM and !ZONE_MOVABLE pages */
5973 	for_each_zone(zone) {
5974 		if (!is_highmem(zone) && zone_idx(zone) != ZONE_MOVABLE)
5975 			lowmem_pages += zone_managed_pages(zone);
5976 	}
5977 
5978 	for_each_zone(zone) {
5979 		u64 tmp;
5980 
5981 		spin_lock_irqsave(&zone->lock, flags);
5982 		tmp = (u64)pages_min * zone_managed_pages(zone);
5983 		tmp = div64_ul(tmp, lowmem_pages);
5984 		if (is_highmem(zone) || zone_idx(zone) == ZONE_MOVABLE) {
5985 			/*
5986 			 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
5987 			 * need highmem and movable zones pages, so cap pages_min
5988 			 * to a small  value here.
5989 			 *
5990 			 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
5991 			 * deltas control async page reclaim, and so should
5992 			 * not be capped for highmem and movable zones.
5993 			 */
5994 			unsigned long min_pages;
5995 
5996 			min_pages = zone_managed_pages(zone) / 1024;
5997 			min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
5998 			zone->_watermark[WMARK_MIN] = min_pages;
5999 		} else {
6000 			/*
6001 			 * If it's a lowmem zone, reserve a number of pages
6002 			 * proportionate to the zone's size.
6003 			 */
6004 			zone->_watermark[WMARK_MIN] = tmp;
6005 		}
6006 
6007 		/*
6008 		 * Set the kswapd watermarks distance according to the
6009 		 * scale factor in proportion to available memory, but
6010 		 * ensure a minimum size on small systems.
6011 		 */
6012 		tmp = max_t(u64, tmp >> 2,
6013 			    mult_frac(zone_managed_pages(zone),
6014 				      watermark_scale_factor, 10000));
6015 
6016 		zone->watermark_boost = 0;
6017 		zone->_watermark[WMARK_LOW]  = min_wmark_pages(zone) + tmp;
6018 		zone->_watermark[WMARK_HIGH] = low_wmark_pages(zone) + tmp;
6019 		zone->_watermark[WMARK_PROMO] = high_wmark_pages(zone) + tmp;
6020 
6021 		spin_unlock_irqrestore(&zone->lock, flags);
6022 	}
6023 
6024 	/* update totalreserve_pages */
6025 	calculate_totalreserve_pages();
6026 }
6027 
6028 /**
6029  * setup_per_zone_wmarks - called when min_free_kbytes changes
6030  * or when memory is hot-{added|removed}
6031  *
6032  * Ensures that the watermark[min,low,high] values for each zone are set
6033  * correctly with respect to min_free_kbytes.
6034  */
6035 void setup_per_zone_wmarks(void)
6036 {
6037 	struct zone *zone;
6038 	static DEFINE_SPINLOCK(lock);
6039 
6040 	spin_lock(&lock);
6041 	__setup_per_zone_wmarks();
6042 	spin_unlock(&lock);
6043 
6044 	/*
6045 	 * The watermark size have changed so update the pcpu batch
6046 	 * and high limits or the limits may be inappropriate.
6047 	 */
6048 	for_each_zone(zone)
6049 		zone_pcp_update(zone, 0);
6050 }
6051 
6052 /*
6053  * Initialise min_free_kbytes.
6054  *
6055  * For small machines we want it small (128k min).  For large machines
6056  * we want it large (256MB max).  But it is not linear, because network
6057  * bandwidth does not increase linearly with machine size.  We use
6058  *
6059  *	min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
6060  *	min_free_kbytes = sqrt(lowmem_kbytes * 16)
6061  *
6062  * which yields
6063  *
6064  * 16MB:	512k
6065  * 32MB:	724k
6066  * 64MB:	1024k
6067  * 128MB:	1448k
6068  * 256MB:	2048k
6069  * 512MB:	2896k
6070  * 1024MB:	4096k
6071  * 2048MB:	5792k
6072  * 4096MB:	8192k
6073  * 8192MB:	11584k
6074  * 16384MB:	16384k
6075  */
6076 void calculate_min_free_kbytes(void)
6077 {
6078 	unsigned long lowmem_kbytes;
6079 	int new_min_free_kbytes;
6080 
6081 	lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
6082 	new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
6083 
6084 	if (new_min_free_kbytes > user_min_free_kbytes)
6085 		min_free_kbytes = clamp(new_min_free_kbytes, 128, 262144);
6086 	else
6087 		pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
6088 				new_min_free_kbytes, user_min_free_kbytes);
6089 
6090 }
6091 
6092 int __meminit init_per_zone_wmark_min(void)
6093 {
6094 	calculate_min_free_kbytes();
6095 	setup_per_zone_wmarks();
6096 	refresh_zone_stat_thresholds();
6097 	setup_per_zone_lowmem_reserve();
6098 
6099 #ifdef CONFIG_NUMA
6100 	setup_min_unmapped_ratio();
6101 	setup_min_slab_ratio();
6102 #endif
6103 
6104 	khugepaged_min_free_kbytes_update();
6105 
6106 	return 0;
6107 }
6108 postcore_initcall(init_per_zone_wmark_min)
6109 
6110 /*
6111  * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
6112  *	that we can call two helper functions whenever min_free_kbytes
6113  *	changes.
6114  */
6115 static int min_free_kbytes_sysctl_handler(const struct ctl_table *table, int write,
6116 		void *buffer, size_t *length, loff_t *ppos)
6117 {
6118 	int rc;
6119 
6120 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6121 	if (rc)
6122 		return rc;
6123 
6124 	if (write) {
6125 		user_min_free_kbytes = min_free_kbytes;
6126 		setup_per_zone_wmarks();
6127 	}
6128 	return 0;
6129 }
6130 
6131 static int watermark_scale_factor_sysctl_handler(const struct ctl_table *table, int write,
6132 		void *buffer, size_t *length, loff_t *ppos)
6133 {
6134 	int rc;
6135 
6136 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6137 	if (rc)
6138 		return rc;
6139 
6140 	if (write)
6141 		setup_per_zone_wmarks();
6142 
6143 	return 0;
6144 }
6145 
6146 #ifdef CONFIG_NUMA
6147 static void setup_min_unmapped_ratio(void)
6148 {
6149 	pg_data_t *pgdat;
6150 	struct zone *zone;
6151 
6152 	for_each_online_pgdat(pgdat)
6153 		pgdat->min_unmapped_pages = 0;
6154 
6155 	for_each_zone(zone)
6156 		zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) *
6157 						         sysctl_min_unmapped_ratio) / 100;
6158 }
6159 
6160 
6161 static int sysctl_min_unmapped_ratio_sysctl_handler(const struct ctl_table *table, int write,
6162 		void *buffer, size_t *length, loff_t *ppos)
6163 {
6164 	int rc;
6165 
6166 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6167 	if (rc)
6168 		return rc;
6169 
6170 	setup_min_unmapped_ratio();
6171 
6172 	return 0;
6173 }
6174 
6175 static void setup_min_slab_ratio(void)
6176 {
6177 	pg_data_t *pgdat;
6178 	struct zone *zone;
6179 
6180 	for_each_online_pgdat(pgdat)
6181 		pgdat->min_slab_pages = 0;
6182 
6183 	for_each_zone(zone)
6184 		zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) *
6185 						     sysctl_min_slab_ratio) / 100;
6186 }
6187 
6188 static int sysctl_min_slab_ratio_sysctl_handler(const struct ctl_table *table, int write,
6189 		void *buffer, size_t *length, loff_t *ppos)
6190 {
6191 	int rc;
6192 
6193 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6194 	if (rc)
6195 		return rc;
6196 
6197 	setup_min_slab_ratio();
6198 
6199 	return 0;
6200 }
6201 #endif
6202 
6203 /*
6204  * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
6205  *	proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
6206  *	whenever sysctl_lowmem_reserve_ratio changes.
6207  *
6208  * The reserve ratio obviously has absolutely no relation with the
6209  * minimum watermarks. The lowmem reserve ratio can only make sense
6210  * if in function of the boot time zone sizes.
6211  */
6212 static int lowmem_reserve_ratio_sysctl_handler(const struct ctl_table *table,
6213 		int write, void *buffer, size_t *length, loff_t *ppos)
6214 {
6215 	int i;
6216 
6217 	proc_dointvec_minmax(table, write, buffer, length, ppos);
6218 
6219 	for (i = 0; i < MAX_NR_ZONES; i++) {
6220 		if (sysctl_lowmem_reserve_ratio[i] < 1)
6221 			sysctl_lowmem_reserve_ratio[i] = 0;
6222 	}
6223 
6224 	setup_per_zone_lowmem_reserve();
6225 	return 0;
6226 }
6227 
6228 /*
6229  * percpu_pagelist_high_fraction - changes the pcp->high for each zone on each
6230  * cpu. It is the fraction of total pages in each zone that a hot per cpu
6231  * pagelist can have before it gets flushed back to buddy allocator.
6232  */
6233 static int percpu_pagelist_high_fraction_sysctl_handler(const struct ctl_table *table,
6234 		int write, void *buffer, size_t *length, loff_t *ppos)
6235 {
6236 	struct zone *zone;
6237 	int old_percpu_pagelist_high_fraction;
6238 	int ret;
6239 
6240 	mutex_lock(&pcp_batch_high_lock);
6241 	old_percpu_pagelist_high_fraction = percpu_pagelist_high_fraction;
6242 
6243 	ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
6244 	if (!write || ret < 0)
6245 		goto out;
6246 
6247 	/* Sanity checking to avoid pcp imbalance */
6248 	if (percpu_pagelist_high_fraction &&
6249 	    percpu_pagelist_high_fraction < MIN_PERCPU_PAGELIST_HIGH_FRACTION) {
6250 		percpu_pagelist_high_fraction = old_percpu_pagelist_high_fraction;
6251 		ret = -EINVAL;
6252 		goto out;
6253 	}
6254 
6255 	/* No change? */
6256 	if (percpu_pagelist_high_fraction == old_percpu_pagelist_high_fraction)
6257 		goto out;
6258 
6259 	for_each_populated_zone(zone)
6260 		zone_set_pageset_high_and_batch(zone, 0);
6261 out:
6262 	mutex_unlock(&pcp_batch_high_lock);
6263 	return ret;
6264 }
6265 
6266 static struct ctl_table page_alloc_sysctl_table[] = {
6267 	{
6268 		.procname	= "min_free_kbytes",
6269 		.data		= &min_free_kbytes,
6270 		.maxlen		= sizeof(min_free_kbytes),
6271 		.mode		= 0644,
6272 		.proc_handler	= min_free_kbytes_sysctl_handler,
6273 		.extra1		= SYSCTL_ZERO,
6274 	},
6275 	{
6276 		.procname	= "watermark_boost_factor",
6277 		.data		= &watermark_boost_factor,
6278 		.maxlen		= sizeof(watermark_boost_factor),
6279 		.mode		= 0644,
6280 		.proc_handler	= proc_dointvec_minmax,
6281 		.extra1		= SYSCTL_ZERO,
6282 	},
6283 	{
6284 		.procname	= "watermark_scale_factor",
6285 		.data		= &watermark_scale_factor,
6286 		.maxlen		= sizeof(watermark_scale_factor),
6287 		.mode		= 0644,
6288 		.proc_handler	= watermark_scale_factor_sysctl_handler,
6289 		.extra1		= SYSCTL_ONE,
6290 		.extra2		= SYSCTL_THREE_THOUSAND,
6291 	},
6292 	{
6293 		.procname	= "percpu_pagelist_high_fraction",
6294 		.data		= &percpu_pagelist_high_fraction,
6295 		.maxlen		= sizeof(percpu_pagelist_high_fraction),
6296 		.mode		= 0644,
6297 		.proc_handler	= percpu_pagelist_high_fraction_sysctl_handler,
6298 		.extra1		= SYSCTL_ZERO,
6299 	},
6300 	{
6301 		.procname	= "lowmem_reserve_ratio",
6302 		.data		= &sysctl_lowmem_reserve_ratio,
6303 		.maxlen		= sizeof(sysctl_lowmem_reserve_ratio),
6304 		.mode		= 0644,
6305 		.proc_handler	= lowmem_reserve_ratio_sysctl_handler,
6306 	},
6307 #ifdef CONFIG_NUMA
6308 	{
6309 		.procname	= "numa_zonelist_order",
6310 		.data		= &numa_zonelist_order,
6311 		.maxlen		= NUMA_ZONELIST_ORDER_LEN,
6312 		.mode		= 0644,
6313 		.proc_handler	= numa_zonelist_order_handler,
6314 	},
6315 	{
6316 		.procname	= "min_unmapped_ratio",
6317 		.data		= &sysctl_min_unmapped_ratio,
6318 		.maxlen		= sizeof(sysctl_min_unmapped_ratio),
6319 		.mode		= 0644,
6320 		.proc_handler	= sysctl_min_unmapped_ratio_sysctl_handler,
6321 		.extra1		= SYSCTL_ZERO,
6322 		.extra2		= SYSCTL_ONE_HUNDRED,
6323 	},
6324 	{
6325 		.procname	= "min_slab_ratio",
6326 		.data		= &sysctl_min_slab_ratio,
6327 		.maxlen		= sizeof(sysctl_min_slab_ratio),
6328 		.mode		= 0644,
6329 		.proc_handler	= sysctl_min_slab_ratio_sysctl_handler,
6330 		.extra1		= SYSCTL_ZERO,
6331 		.extra2		= SYSCTL_ONE_HUNDRED,
6332 	},
6333 #endif
6334 };
6335 
6336 void __init page_alloc_sysctl_init(void)
6337 {
6338 	register_sysctl_init("vm", page_alloc_sysctl_table);
6339 }
6340 
6341 #ifdef CONFIG_CONTIG_ALLOC
6342 /* Usage: See admin-guide/dynamic-debug-howto.rst */
6343 static void alloc_contig_dump_pages(struct list_head *page_list)
6344 {
6345 	DEFINE_DYNAMIC_DEBUG_METADATA(descriptor, "migrate failure");
6346 
6347 	if (DYNAMIC_DEBUG_BRANCH(descriptor)) {
6348 		struct page *page;
6349 
6350 		dump_stack();
6351 		list_for_each_entry(page, page_list, lru)
6352 			dump_page(page, "migration failure");
6353 	}
6354 }
6355 
6356 /*
6357  * [start, end) must belong to a single zone.
6358  * @migratetype: using migratetype to filter the type of migration in
6359  *		trace_mm_alloc_contig_migrate_range_info.
6360  */
6361 int __alloc_contig_migrate_range(struct compact_control *cc,
6362 					unsigned long start, unsigned long end,
6363 					int migratetype)
6364 {
6365 	/* This function is based on compact_zone() from compaction.c. */
6366 	unsigned int nr_reclaimed;
6367 	unsigned long pfn = start;
6368 	unsigned int tries = 0;
6369 	int ret = 0;
6370 	struct migration_target_control mtc = {
6371 		.nid = zone_to_nid(cc->zone),
6372 		.gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL,
6373 		.reason = MR_CONTIG_RANGE,
6374 	};
6375 	struct page *page;
6376 	unsigned long total_mapped = 0;
6377 	unsigned long total_migrated = 0;
6378 	unsigned long total_reclaimed = 0;
6379 
6380 	lru_cache_disable();
6381 
6382 	while (pfn < end || !list_empty(&cc->migratepages)) {
6383 		if (fatal_signal_pending(current)) {
6384 			ret = -EINTR;
6385 			break;
6386 		}
6387 
6388 		if (list_empty(&cc->migratepages)) {
6389 			cc->nr_migratepages = 0;
6390 			ret = isolate_migratepages_range(cc, pfn, end);
6391 			if (ret && ret != -EAGAIN)
6392 				break;
6393 			pfn = cc->migrate_pfn;
6394 			tries = 0;
6395 		} else if (++tries == 5) {
6396 			ret = -EBUSY;
6397 			break;
6398 		}
6399 
6400 		nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
6401 							&cc->migratepages);
6402 		cc->nr_migratepages -= nr_reclaimed;
6403 
6404 		if (trace_mm_alloc_contig_migrate_range_info_enabled()) {
6405 			total_reclaimed += nr_reclaimed;
6406 			list_for_each_entry(page, &cc->migratepages, lru) {
6407 				struct folio *folio = page_folio(page);
6408 
6409 				total_mapped += folio_mapped(folio) *
6410 						folio_nr_pages(folio);
6411 			}
6412 		}
6413 
6414 		ret = migrate_pages(&cc->migratepages, alloc_migration_target,
6415 			NULL, (unsigned long)&mtc, cc->mode, MR_CONTIG_RANGE, NULL);
6416 
6417 		if (trace_mm_alloc_contig_migrate_range_info_enabled() && !ret)
6418 			total_migrated += cc->nr_migratepages;
6419 
6420 		/*
6421 		 * On -ENOMEM, migrate_pages() bails out right away. It is pointless
6422 		 * to retry again over this error, so do the same here.
6423 		 */
6424 		if (ret == -ENOMEM)
6425 			break;
6426 	}
6427 
6428 	lru_cache_enable();
6429 	if (ret < 0) {
6430 		if (!(cc->gfp_mask & __GFP_NOWARN) && ret == -EBUSY)
6431 			alloc_contig_dump_pages(&cc->migratepages);
6432 		putback_movable_pages(&cc->migratepages);
6433 	}
6434 
6435 	trace_mm_alloc_contig_migrate_range_info(start, end, migratetype,
6436 						 total_migrated,
6437 						 total_reclaimed,
6438 						 total_mapped);
6439 	return (ret < 0) ? ret : 0;
6440 }
6441 
6442 /**
6443  * alloc_contig_range() -- tries to allocate given range of pages
6444  * @start:	start PFN to allocate
6445  * @end:	one-past-the-last PFN to allocate
6446  * @migratetype:	migratetype of the underlying pageblocks (either
6447  *			#MIGRATE_MOVABLE or #MIGRATE_CMA).  All pageblocks
6448  *			in range must have the same migratetype and it must
6449  *			be either of the two.
6450  * @gfp_mask:	GFP mask to use during compaction
6451  *
6452  * The PFN range does not have to be pageblock aligned. The PFN range must
6453  * belong to a single zone.
6454  *
6455  * The first thing this routine does is attempt to MIGRATE_ISOLATE all
6456  * pageblocks in the range.  Once isolated, the pageblocks should not
6457  * be modified by others.
6458  *
6459  * Return: zero on success or negative error code.  On success all
6460  * pages which PFN is in [start, end) are allocated for the caller and
6461  * need to be freed with free_contig_range().
6462  */
6463 int alloc_contig_range_noprof(unsigned long start, unsigned long end,
6464 		       unsigned migratetype, gfp_t gfp_mask)
6465 {
6466 	unsigned long outer_start, outer_end;
6467 	int ret = 0;
6468 
6469 	struct compact_control cc = {
6470 		.nr_migratepages = 0,
6471 		.order = -1,
6472 		.zone = page_zone(pfn_to_page(start)),
6473 		.mode = MIGRATE_SYNC,
6474 		.ignore_skip_hint = true,
6475 		.no_set_skip_hint = true,
6476 		.gfp_mask = current_gfp_context(gfp_mask),
6477 		.alloc_contig = true,
6478 	};
6479 	INIT_LIST_HEAD(&cc.migratepages);
6480 
6481 	/*
6482 	 * What we do here is we mark all pageblocks in range as
6483 	 * MIGRATE_ISOLATE.  Because pageblock and max order pages may
6484 	 * have different sizes, and due to the way page allocator
6485 	 * work, start_isolate_page_range() has special handlings for this.
6486 	 *
6487 	 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
6488 	 * migrate the pages from an unaligned range (ie. pages that
6489 	 * we are interested in). This will put all the pages in
6490 	 * range back to page allocator as MIGRATE_ISOLATE.
6491 	 *
6492 	 * When this is done, we take the pages in range from page
6493 	 * allocator removing them from the buddy system.  This way
6494 	 * page allocator will never consider using them.
6495 	 *
6496 	 * This lets us mark the pageblocks back as
6497 	 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
6498 	 * aligned range but not in the unaligned, original range are
6499 	 * put back to page allocator so that buddy can use them.
6500 	 */
6501 
6502 	ret = start_isolate_page_range(start, end, migratetype, 0, gfp_mask);
6503 	if (ret)
6504 		goto done;
6505 
6506 	drain_all_pages(cc.zone);
6507 
6508 	/*
6509 	 * In case of -EBUSY, we'd like to know which page causes problem.
6510 	 * So, just fall through. test_pages_isolated() has a tracepoint
6511 	 * which will report the busy page.
6512 	 *
6513 	 * It is possible that busy pages could become available before
6514 	 * the call to test_pages_isolated, and the range will actually be
6515 	 * allocated.  So, if we fall through be sure to clear ret so that
6516 	 * -EBUSY is not accidentally used or returned to caller.
6517 	 */
6518 	ret = __alloc_contig_migrate_range(&cc, start, end, migratetype);
6519 	if (ret && ret != -EBUSY)
6520 		goto done;
6521 	ret = 0;
6522 
6523 	/*
6524 	 * Pages from [start, end) are within a pageblock_nr_pages
6525 	 * aligned blocks that are marked as MIGRATE_ISOLATE.  What's
6526 	 * more, all pages in [start, end) are free in page allocator.
6527 	 * What we are going to do is to allocate all pages from
6528 	 * [start, end) (that is remove them from page allocator).
6529 	 *
6530 	 * The only problem is that pages at the beginning and at the
6531 	 * end of interesting range may be not aligned with pages that
6532 	 * page allocator holds, ie. they can be part of higher order
6533 	 * pages.  Because of this, we reserve the bigger range and
6534 	 * once this is done free the pages we are not interested in.
6535 	 *
6536 	 * We don't have to hold zone->lock here because the pages are
6537 	 * isolated thus they won't get removed from buddy.
6538 	 */
6539 	outer_start = find_large_buddy(start);
6540 
6541 	/* Make sure the range is really isolated. */
6542 	if (test_pages_isolated(outer_start, end, 0)) {
6543 		ret = -EBUSY;
6544 		goto done;
6545 	}
6546 
6547 	/* Grab isolated pages from freelists. */
6548 	outer_end = isolate_freepages_range(&cc, outer_start, end);
6549 	if (!outer_end) {
6550 		ret = -EBUSY;
6551 		goto done;
6552 	}
6553 
6554 	/* Free head and tail (if any) */
6555 	if (start != outer_start)
6556 		free_contig_range(outer_start, start - outer_start);
6557 	if (end != outer_end)
6558 		free_contig_range(end, outer_end - end);
6559 
6560 done:
6561 	undo_isolate_page_range(start, end, migratetype);
6562 	return ret;
6563 }
6564 EXPORT_SYMBOL(alloc_contig_range_noprof);
6565 
6566 static int __alloc_contig_pages(unsigned long start_pfn,
6567 				unsigned long nr_pages, gfp_t gfp_mask)
6568 {
6569 	unsigned long end_pfn = start_pfn + nr_pages;
6570 
6571 	return alloc_contig_range_noprof(start_pfn, end_pfn, MIGRATE_MOVABLE,
6572 				   gfp_mask);
6573 }
6574 
6575 static bool pfn_range_valid_contig(struct zone *z, unsigned long start_pfn,
6576 				   unsigned long nr_pages)
6577 {
6578 	unsigned long i, end_pfn = start_pfn + nr_pages;
6579 	struct page *page;
6580 
6581 	for (i = start_pfn; i < end_pfn; i++) {
6582 		page = pfn_to_online_page(i);
6583 		if (!page)
6584 			return false;
6585 
6586 		if (page_zone(page) != z)
6587 			return false;
6588 
6589 		if (PageReserved(page))
6590 			return false;
6591 
6592 		if (PageHuge(page))
6593 			return false;
6594 	}
6595 	return true;
6596 }
6597 
6598 static bool zone_spans_last_pfn(const struct zone *zone,
6599 				unsigned long start_pfn, unsigned long nr_pages)
6600 {
6601 	unsigned long last_pfn = start_pfn + nr_pages - 1;
6602 
6603 	return zone_spans_pfn(zone, last_pfn);
6604 }
6605 
6606 /**
6607  * alloc_contig_pages() -- tries to find and allocate contiguous range of pages
6608  * @nr_pages:	Number of contiguous pages to allocate
6609  * @gfp_mask:	GFP mask to limit search and used during compaction
6610  * @nid:	Target node
6611  * @nodemask:	Mask for other possible nodes
6612  *
6613  * This routine is a wrapper around alloc_contig_range(). It scans over zones
6614  * on an applicable zonelist to find a contiguous pfn range which can then be
6615  * tried for allocation with alloc_contig_range(). This routine is intended
6616  * for allocation requests which can not be fulfilled with the buddy allocator.
6617  *
6618  * The allocated memory is always aligned to a page boundary. If nr_pages is a
6619  * power of two, then allocated range is also guaranteed to be aligned to same
6620  * nr_pages (e.g. 1GB request would be aligned to 1GB).
6621  *
6622  * Allocated pages can be freed with free_contig_range() or by manually calling
6623  * __free_page() on each allocated page.
6624  *
6625  * Return: pointer to contiguous pages on success, or NULL if not successful.
6626  */
6627 struct page *alloc_contig_pages_noprof(unsigned long nr_pages, gfp_t gfp_mask,
6628 				 int nid, nodemask_t *nodemask)
6629 {
6630 	unsigned long ret, pfn, flags;
6631 	struct zonelist *zonelist;
6632 	struct zone *zone;
6633 	struct zoneref *z;
6634 
6635 	zonelist = node_zonelist(nid, gfp_mask);
6636 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
6637 					gfp_zone(gfp_mask), nodemask) {
6638 		spin_lock_irqsave(&zone->lock, flags);
6639 
6640 		pfn = ALIGN(zone->zone_start_pfn, nr_pages);
6641 		while (zone_spans_last_pfn(zone, pfn, nr_pages)) {
6642 			if (pfn_range_valid_contig(zone, pfn, nr_pages)) {
6643 				/*
6644 				 * We release the zone lock here because
6645 				 * alloc_contig_range() will also lock the zone
6646 				 * at some point. If there's an allocation
6647 				 * spinning on this lock, it may win the race
6648 				 * and cause alloc_contig_range() to fail...
6649 				 */
6650 				spin_unlock_irqrestore(&zone->lock, flags);
6651 				ret = __alloc_contig_pages(pfn, nr_pages,
6652 							gfp_mask);
6653 				if (!ret)
6654 					return pfn_to_page(pfn);
6655 				spin_lock_irqsave(&zone->lock, flags);
6656 			}
6657 			pfn += nr_pages;
6658 		}
6659 		spin_unlock_irqrestore(&zone->lock, flags);
6660 	}
6661 	return NULL;
6662 }
6663 #endif /* CONFIG_CONTIG_ALLOC */
6664 
6665 void free_contig_range(unsigned long pfn, unsigned long nr_pages)
6666 {
6667 	unsigned long count = 0;
6668 
6669 	for (; nr_pages--; pfn++) {
6670 		struct page *page = pfn_to_page(pfn);
6671 
6672 		count += page_count(page) != 1;
6673 		__free_page(page);
6674 	}
6675 	WARN(count != 0, "%lu pages are still in use!\n", count);
6676 }
6677 EXPORT_SYMBOL(free_contig_range);
6678 
6679 /*
6680  * Effectively disable pcplists for the zone by setting the high limit to 0
6681  * and draining all cpus. A concurrent page freeing on another CPU that's about
6682  * to put the page on pcplist will either finish before the drain and the page
6683  * will be drained, or observe the new high limit and skip the pcplist.
6684  *
6685  * Must be paired with a call to zone_pcp_enable().
6686  */
6687 void zone_pcp_disable(struct zone *zone)
6688 {
6689 	mutex_lock(&pcp_batch_high_lock);
6690 	__zone_set_pageset_high_and_batch(zone, 0, 0, 1);
6691 	__drain_all_pages(zone, true);
6692 }
6693 
6694 void zone_pcp_enable(struct zone *zone)
6695 {
6696 	__zone_set_pageset_high_and_batch(zone, zone->pageset_high_min,
6697 		zone->pageset_high_max, zone->pageset_batch);
6698 	mutex_unlock(&pcp_batch_high_lock);
6699 }
6700 
6701 void zone_pcp_reset(struct zone *zone)
6702 {
6703 	int cpu;
6704 	struct per_cpu_zonestat *pzstats;
6705 
6706 	if (zone->per_cpu_pageset != &boot_pageset) {
6707 		for_each_online_cpu(cpu) {
6708 			pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
6709 			drain_zonestat(zone, pzstats);
6710 		}
6711 		free_percpu(zone->per_cpu_pageset);
6712 		zone->per_cpu_pageset = &boot_pageset;
6713 		if (zone->per_cpu_zonestats != &boot_zonestats) {
6714 			free_percpu(zone->per_cpu_zonestats);
6715 			zone->per_cpu_zonestats = &boot_zonestats;
6716 		}
6717 	}
6718 }
6719 
6720 #ifdef CONFIG_MEMORY_HOTREMOVE
6721 /*
6722  * All pages in the range must be in a single zone, must not contain holes,
6723  * must span full sections, and must be isolated before calling this function.
6724  *
6725  * Returns the number of managed (non-PageOffline()) pages in the range: the
6726  * number of pages for which memory offlining code must adjust managed page
6727  * counters using adjust_managed_page_count().
6728  */
6729 unsigned long __offline_isolated_pages(unsigned long start_pfn,
6730 		unsigned long end_pfn)
6731 {
6732 	unsigned long already_offline = 0, flags;
6733 	unsigned long pfn = start_pfn;
6734 	struct page *page;
6735 	struct zone *zone;
6736 	unsigned int order;
6737 
6738 	offline_mem_sections(pfn, end_pfn);
6739 	zone = page_zone(pfn_to_page(pfn));
6740 	spin_lock_irqsave(&zone->lock, flags);
6741 	while (pfn < end_pfn) {
6742 		page = pfn_to_page(pfn);
6743 		/*
6744 		 * The HWPoisoned page may be not in buddy system, and
6745 		 * page_count() is not 0.
6746 		 */
6747 		if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
6748 			pfn++;
6749 			continue;
6750 		}
6751 		/*
6752 		 * At this point all remaining PageOffline() pages have a
6753 		 * reference count of 0 and can simply be skipped.
6754 		 */
6755 		if (PageOffline(page)) {
6756 			BUG_ON(page_count(page));
6757 			BUG_ON(PageBuddy(page));
6758 			already_offline++;
6759 			pfn++;
6760 			continue;
6761 		}
6762 
6763 		BUG_ON(page_count(page));
6764 		BUG_ON(!PageBuddy(page));
6765 		VM_WARN_ON(get_pageblock_migratetype(page) != MIGRATE_ISOLATE);
6766 		order = buddy_order(page);
6767 		del_page_from_free_list(page, zone, order, MIGRATE_ISOLATE);
6768 		pfn += (1 << order);
6769 	}
6770 	spin_unlock_irqrestore(&zone->lock, flags);
6771 
6772 	return end_pfn - start_pfn - already_offline;
6773 }
6774 #endif
6775 
6776 /*
6777  * This function returns a stable result only if called under zone lock.
6778  */
6779 bool is_free_buddy_page(const struct page *page)
6780 {
6781 	unsigned long pfn = page_to_pfn(page);
6782 	unsigned int order;
6783 
6784 	for (order = 0; order < NR_PAGE_ORDERS; order++) {
6785 		const struct page *head = page - (pfn & ((1 << order) - 1));
6786 
6787 		if (PageBuddy(head) &&
6788 		    buddy_order_unsafe(head) >= order)
6789 			break;
6790 	}
6791 
6792 	return order <= MAX_PAGE_ORDER;
6793 }
6794 EXPORT_SYMBOL(is_free_buddy_page);
6795 
6796 #ifdef CONFIG_MEMORY_FAILURE
6797 static inline void add_to_free_list(struct page *page, struct zone *zone,
6798 				    unsigned int order, int migratetype,
6799 				    bool tail)
6800 {
6801 	__add_to_free_list(page, zone, order, migratetype, tail);
6802 	account_freepages(zone, 1 << order, migratetype);
6803 }
6804 
6805 /*
6806  * Break down a higher-order page in sub-pages, and keep our target out of
6807  * buddy allocator.
6808  */
6809 static void break_down_buddy_pages(struct zone *zone, struct page *page,
6810 				   struct page *target, int low, int high,
6811 				   int migratetype)
6812 {
6813 	unsigned long size = 1 << high;
6814 	struct page *current_buddy;
6815 
6816 	while (high > low) {
6817 		high--;
6818 		size >>= 1;
6819 
6820 		if (target >= &page[size]) {
6821 			current_buddy = page;
6822 			page = page + size;
6823 		} else {
6824 			current_buddy = page + size;
6825 		}
6826 
6827 		if (set_page_guard(zone, current_buddy, high))
6828 			continue;
6829 
6830 		add_to_free_list(current_buddy, zone, high, migratetype, false);
6831 		set_buddy_order(current_buddy, high);
6832 	}
6833 }
6834 
6835 /*
6836  * Take a page that will be marked as poisoned off the buddy allocator.
6837  */
6838 bool take_page_off_buddy(struct page *page)
6839 {
6840 	struct zone *zone = page_zone(page);
6841 	unsigned long pfn = page_to_pfn(page);
6842 	unsigned long flags;
6843 	unsigned int order;
6844 	bool ret = false;
6845 
6846 	spin_lock_irqsave(&zone->lock, flags);
6847 	for (order = 0; order < NR_PAGE_ORDERS; order++) {
6848 		struct page *page_head = page - (pfn & ((1 << order) - 1));
6849 		int page_order = buddy_order(page_head);
6850 
6851 		if (PageBuddy(page_head) && page_order >= order) {
6852 			unsigned long pfn_head = page_to_pfn(page_head);
6853 			int migratetype = get_pfnblock_migratetype(page_head,
6854 								   pfn_head);
6855 
6856 			del_page_from_free_list(page_head, zone, page_order,
6857 						migratetype);
6858 			break_down_buddy_pages(zone, page_head, page, 0,
6859 						page_order, migratetype);
6860 			SetPageHWPoisonTakenOff(page);
6861 			ret = true;
6862 			break;
6863 		}
6864 		if (page_count(page_head) > 0)
6865 			break;
6866 	}
6867 	spin_unlock_irqrestore(&zone->lock, flags);
6868 	return ret;
6869 }
6870 
6871 /*
6872  * Cancel takeoff done by take_page_off_buddy().
6873  */
6874 bool put_page_back_buddy(struct page *page)
6875 {
6876 	struct zone *zone = page_zone(page);
6877 	unsigned long flags;
6878 	bool ret = false;
6879 
6880 	spin_lock_irqsave(&zone->lock, flags);
6881 	if (put_page_testzero(page)) {
6882 		unsigned long pfn = page_to_pfn(page);
6883 		int migratetype = get_pfnblock_migratetype(page, pfn);
6884 
6885 		ClearPageHWPoisonTakenOff(page);
6886 		__free_one_page(page, pfn, zone, 0, migratetype, FPI_NONE);
6887 		if (TestClearPageHWPoison(page)) {
6888 			ret = true;
6889 		}
6890 	}
6891 	spin_unlock_irqrestore(&zone->lock, flags);
6892 
6893 	return ret;
6894 }
6895 #endif
6896 
6897 #ifdef CONFIG_ZONE_DMA
6898 bool has_managed_dma(void)
6899 {
6900 	struct pglist_data *pgdat;
6901 
6902 	for_each_online_pgdat(pgdat) {
6903 		struct zone *zone = &pgdat->node_zones[ZONE_DMA];
6904 
6905 		if (managed_zone(zone))
6906 			return true;
6907 	}
6908 	return false;
6909 }
6910 #endif /* CONFIG_ZONE_DMA */
6911 
6912 #ifdef CONFIG_UNACCEPTED_MEMORY
6913 
6914 /* Counts number of zones with unaccepted pages. */
6915 static DEFINE_STATIC_KEY_FALSE(zones_with_unaccepted_pages);
6916 
6917 static bool lazy_accept = true;
6918 
6919 static int __init accept_memory_parse(char *p)
6920 {
6921 	if (!strcmp(p, "lazy")) {
6922 		lazy_accept = true;
6923 		return 0;
6924 	} else if (!strcmp(p, "eager")) {
6925 		lazy_accept = false;
6926 		return 0;
6927 	} else {
6928 		return -EINVAL;
6929 	}
6930 }
6931 early_param("accept_memory", accept_memory_parse);
6932 
6933 static bool page_contains_unaccepted(struct page *page, unsigned int order)
6934 {
6935 	phys_addr_t start = page_to_phys(page);
6936 	phys_addr_t end = start + (PAGE_SIZE << order);
6937 
6938 	return range_contains_unaccepted_memory(start, end);
6939 }
6940 
6941 static void accept_page(struct page *page, unsigned int order)
6942 {
6943 	phys_addr_t start = page_to_phys(page);
6944 
6945 	accept_memory(start, start + (PAGE_SIZE << order));
6946 }
6947 
6948 static bool try_to_accept_memory_one(struct zone *zone)
6949 {
6950 	unsigned long flags;
6951 	struct page *page;
6952 	bool last;
6953 
6954 	if (list_empty(&zone->unaccepted_pages))
6955 		return false;
6956 
6957 	spin_lock_irqsave(&zone->lock, flags);
6958 	page = list_first_entry_or_null(&zone->unaccepted_pages,
6959 					struct page, lru);
6960 	if (!page) {
6961 		spin_unlock_irqrestore(&zone->lock, flags);
6962 		return false;
6963 	}
6964 
6965 	list_del(&page->lru);
6966 	last = list_empty(&zone->unaccepted_pages);
6967 
6968 	account_freepages(zone, -MAX_ORDER_NR_PAGES, MIGRATE_MOVABLE);
6969 	__mod_zone_page_state(zone, NR_UNACCEPTED, -MAX_ORDER_NR_PAGES);
6970 	spin_unlock_irqrestore(&zone->lock, flags);
6971 
6972 	accept_page(page, MAX_PAGE_ORDER);
6973 
6974 	__free_pages_ok(page, MAX_PAGE_ORDER, FPI_TO_TAIL);
6975 
6976 	if (last)
6977 		static_branch_dec(&zones_with_unaccepted_pages);
6978 
6979 	return true;
6980 }
6981 
6982 static bool try_to_accept_memory(struct zone *zone, unsigned int order)
6983 {
6984 	long to_accept;
6985 	int ret = false;
6986 
6987 	/* How much to accept to get to high watermark? */
6988 	to_accept = high_wmark_pages(zone) -
6989 		    (zone_page_state(zone, NR_FREE_PAGES) -
6990 		    __zone_watermark_unusable_free(zone, order, 0));
6991 
6992 	/* Accept at least one page */
6993 	do {
6994 		if (!try_to_accept_memory_one(zone))
6995 			break;
6996 		ret = true;
6997 		to_accept -= MAX_ORDER_NR_PAGES;
6998 	} while (to_accept > 0);
6999 
7000 	return ret;
7001 }
7002 
7003 static inline bool has_unaccepted_memory(void)
7004 {
7005 	return static_branch_unlikely(&zones_with_unaccepted_pages);
7006 }
7007 
7008 static bool __free_unaccepted(struct page *page)
7009 {
7010 	struct zone *zone = page_zone(page);
7011 	unsigned long flags;
7012 	bool first = false;
7013 
7014 	if (!lazy_accept)
7015 		return false;
7016 
7017 	spin_lock_irqsave(&zone->lock, flags);
7018 	first = list_empty(&zone->unaccepted_pages);
7019 	list_add_tail(&page->lru, &zone->unaccepted_pages);
7020 	account_freepages(zone, MAX_ORDER_NR_PAGES, MIGRATE_MOVABLE);
7021 	__mod_zone_page_state(zone, NR_UNACCEPTED, MAX_ORDER_NR_PAGES);
7022 	spin_unlock_irqrestore(&zone->lock, flags);
7023 
7024 	if (first)
7025 		static_branch_inc(&zones_with_unaccepted_pages);
7026 
7027 	return true;
7028 }
7029 
7030 #else
7031 
7032 static bool page_contains_unaccepted(struct page *page, unsigned int order)
7033 {
7034 	return false;
7035 }
7036 
7037 static void accept_page(struct page *page, unsigned int order)
7038 {
7039 }
7040 
7041 static bool try_to_accept_memory(struct zone *zone, unsigned int order)
7042 {
7043 	return false;
7044 }
7045 
7046 static inline bool has_unaccepted_memory(void)
7047 {
7048 	return false;
7049 }
7050 
7051 static bool __free_unaccepted(struct page *page)
7052 {
7053 	BUILD_BUG();
7054 	return false;
7055 }
7056 
7057 #endif /* CONFIG_UNACCEPTED_MEMORY */
7058