1 /* 2 * linux/mm/page_alloc.c 3 * 4 * Manages the free list, the system allocates free pages here. 5 * Note that kmalloc() lives in slab.c 6 * 7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 8 * Swap reorganised 29.12.95, Stephen Tweedie 9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999 10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999 11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999 12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000 13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002 14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton) 15 */ 16 17 #include <linux/stddef.h> 18 #include <linux/mm.h> 19 #include <linux/swap.h> 20 #include <linux/interrupt.h> 21 #include <linux/pagemap.h> 22 #include <linux/jiffies.h> 23 #include <linux/bootmem.h> 24 #include <linux/compiler.h> 25 #include <linux/kernel.h> 26 #include <linux/module.h> 27 #include <linux/suspend.h> 28 #include <linux/pagevec.h> 29 #include <linux/blkdev.h> 30 #include <linux/slab.h> 31 #include <linux/oom.h> 32 #include <linux/notifier.h> 33 #include <linux/topology.h> 34 #include <linux/sysctl.h> 35 #include <linux/cpu.h> 36 #include <linux/cpuset.h> 37 #include <linux/memory_hotplug.h> 38 #include <linux/nodemask.h> 39 #include <linux/vmalloc.h> 40 #include <linux/mempolicy.h> 41 #include <linux/stop_machine.h> 42 #include <linux/sort.h> 43 #include <linux/pfn.h> 44 #include <linux/backing-dev.h> 45 #include <linux/fault-inject.h> 46 #include <linux/page-isolation.h> 47 #include <linux/page_cgroup.h> 48 #include <linux/debugobjects.h> 49 50 #include <asm/tlbflush.h> 51 #include <asm/div64.h> 52 #include "internal.h" 53 54 /* 55 * Array of node states. 56 */ 57 nodemask_t node_states[NR_NODE_STATES] __read_mostly = { 58 [N_POSSIBLE] = NODE_MASK_ALL, 59 [N_ONLINE] = { { [0] = 1UL } }, 60 #ifndef CONFIG_NUMA 61 [N_NORMAL_MEMORY] = { { [0] = 1UL } }, 62 #ifdef CONFIG_HIGHMEM 63 [N_HIGH_MEMORY] = { { [0] = 1UL } }, 64 #endif 65 [N_CPU] = { { [0] = 1UL } }, 66 #endif /* NUMA */ 67 }; 68 EXPORT_SYMBOL(node_states); 69 70 unsigned long totalram_pages __read_mostly; 71 unsigned long totalreserve_pages __read_mostly; 72 unsigned long highest_memmap_pfn __read_mostly; 73 int percpu_pagelist_fraction; 74 75 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE 76 int pageblock_order __read_mostly; 77 #endif 78 79 static void __free_pages_ok(struct page *page, unsigned int order); 80 81 /* 82 * results with 256, 32 in the lowmem_reserve sysctl: 83 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high) 84 * 1G machine -> (16M dma, 784M normal, 224M high) 85 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA 86 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL 87 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA 88 * 89 * TBD: should special case ZONE_DMA32 machines here - in those we normally 90 * don't need any ZONE_NORMAL reservation 91 */ 92 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = { 93 #ifdef CONFIG_ZONE_DMA 94 256, 95 #endif 96 #ifdef CONFIG_ZONE_DMA32 97 256, 98 #endif 99 #ifdef CONFIG_HIGHMEM 100 32, 101 #endif 102 32, 103 }; 104 105 EXPORT_SYMBOL(totalram_pages); 106 107 static char * const zone_names[MAX_NR_ZONES] = { 108 #ifdef CONFIG_ZONE_DMA 109 "DMA", 110 #endif 111 #ifdef CONFIG_ZONE_DMA32 112 "DMA32", 113 #endif 114 "Normal", 115 #ifdef CONFIG_HIGHMEM 116 "HighMem", 117 #endif 118 "Movable", 119 }; 120 121 int min_free_kbytes = 1024; 122 123 unsigned long __meminitdata nr_kernel_pages; 124 unsigned long __meminitdata nr_all_pages; 125 static unsigned long __meminitdata dma_reserve; 126 127 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP 128 /* 129 * MAX_ACTIVE_REGIONS determines the maximum number of distinct 130 * ranges of memory (RAM) that may be registered with add_active_range(). 131 * Ranges passed to add_active_range() will be merged if possible 132 * so the number of times add_active_range() can be called is 133 * related to the number of nodes and the number of holes 134 */ 135 #ifdef CONFIG_MAX_ACTIVE_REGIONS 136 /* Allow an architecture to set MAX_ACTIVE_REGIONS to save memory */ 137 #define MAX_ACTIVE_REGIONS CONFIG_MAX_ACTIVE_REGIONS 138 #else 139 #if MAX_NUMNODES >= 32 140 /* If there can be many nodes, allow up to 50 holes per node */ 141 #define MAX_ACTIVE_REGIONS (MAX_NUMNODES*50) 142 #else 143 /* By default, allow up to 256 distinct regions */ 144 #define MAX_ACTIVE_REGIONS 256 145 #endif 146 #endif 147 148 static struct node_active_region __meminitdata early_node_map[MAX_ACTIVE_REGIONS]; 149 static int __meminitdata nr_nodemap_entries; 150 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES]; 151 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES]; 152 #ifdef CONFIG_MEMORY_HOTPLUG_RESERVE 153 static unsigned long __meminitdata node_boundary_start_pfn[MAX_NUMNODES]; 154 static unsigned long __meminitdata node_boundary_end_pfn[MAX_NUMNODES]; 155 #endif /* CONFIG_MEMORY_HOTPLUG_RESERVE */ 156 static unsigned long __initdata required_kernelcore; 157 static unsigned long __initdata required_movablecore; 158 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES]; 159 160 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */ 161 int movable_zone; 162 EXPORT_SYMBOL(movable_zone); 163 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */ 164 165 #if MAX_NUMNODES > 1 166 int nr_node_ids __read_mostly = MAX_NUMNODES; 167 EXPORT_SYMBOL(nr_node_ids); 168 #endif 169 170 int page_group_by_mobility_disabled __read_mostly; 171 172 static void set_pageblock_migratetype(struct page *page, int migratetype) 173 { 174 set_pageblock_flags_group(page, (unsigned long)migratetype, 175 PB_migrate, PB_migrate_end); 176 } 177 178 #ifdef CONFIG_DEBUG_VM 179 static int page_outside_zone_boundaries(struct zone *zone, struct page *page) 180 { 181 int ret = 0; 182 unsigned seq; 183 unsigned long pfn = page_to_pfn(page); 184 185 do { 186 seq = zone_span_seqbegin(zone); 187 if (pfn >= zone->zone_start_pfn + zone->spanned_pages) 188 ret = 1; 189 else if (pfn < zone->zone_start_pfn) 190 ret = 1; 191 } while (zone_span_seqretry(zone, seq)); 192 193 return ret; 194 } 195 196 static int page_is_consistent(struct zone *zone, struct page *page) 197 { 198 if (!pfn_valid_within(page_to_pfn(page))) 199 return 0; 200 if (zone != page_zone(page)) 201 return 0; 202 203 return 1; 204 } 205 /* 206 * Temporary debugging check for pages not lying within a given zone. 207 */ 208 static int bad_range(struct zone *zone, struct page *page) 209 { 210 if (page_outside_zone_boundaries(zone, page)) 211 return 1; 212 if (!page_is_consistent(zone, page)) 213 return 1; 214 215 return 0; 216 } 217 #else 218 static inline int bad_range(struct zone *zone, struct page *page) 219 { 220 return 0; 221 } 222 #endif 223 224 static void bad_page(struct page *page) 225 { 226 static unsigned long resume; 227 static unsigned long nr_shown; 228 static unsigned long nr_unshown; 229 230 /* 231 * Allow a burst of 60 reports, then keep quiet for that minute; 232 * or allow a steady drip of one report per second. 233 */ 234 if (nr_shown == 60) { 235 if (time_before(jiffies, resume)) { 236 nr_unshown++; 237 goto out; 238 } 239 if (nr_unshown) { 240 printk(KERN_ALERT 241 "BUG: Bad page state: %lu messages suppressed\n", 242 nr_unshown); 243 nr_unshown = 0; 244 } 245 nr_shown = 0; 246 } 247 if (nr_shown++ == 0) 248 resume = jiffies + 60 * HZ; 249 250 printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n", 251 current->comm, page_to_pfn(page)); 252 printk(KERN_ALERT 253 "page:%p flags:%p count:%d mapcount:%d mapping:%p index:%lx\n", 254 page, (void *)page->flags, page_count(page), 255 page_mapcount(page), page->mapping, page->index); 256 257 dump_stack(); 258 out: 259 /* Leave bad fields for debug, except PageBuddy could make trouble */ 260 __ClearPageBuddy(page); 261 add_taint(TAINT_BAD_PAGE); 262 } 263 264 /* 265 * Higher-order pages are called "compound pages". They are structured thusly: 266 * 267 * The first PAGE_SIZE page is called the "head page". 268 * 269 * The remaining PAGE_SIZE pages are called "tail pages". 270 * 271 * All pages have PG_compound set. All pages have their ->private pointing at 272 * the head page (even the head page has this). 273 * 274 * The first tail page's ->lru.next holds the address of the compound page's 275 * put_page() function. Its ->lru.prev holds the order of allocation. 276 * This usage means that zero-order pages may not be compound. 277 */ 278 279 static void free_compound_page(struct page *page) 280 { 281 __free_pages_ok(page, compound_order(page)); 282 } 283 284 void prep_compound_page(struct page *page, unsigned long order) 285 { 286 int i; 287 int nr_pages = 1 << order; 288 289 set_compound_page_dtor(page, free_compound_page); 290 set_compound_order(page, order); 291 __SetPageHead(page); 292 for (i = 1; i < nr_pages; i++) { 293 struct page *p = page + i; 294 295 __SetPageTail(p); 296 p->first_page = page; 297 } 298 } 299 300 #ifdef CONFIG_HUGETLBFS 301 void prep_compound_gigantic_page(struct page *page, unsigned long order) 302 { 303 int i; 304 int nr_pages = 1 << order; 305 struct page *p = page + 1; 306 307 set_compound_page_dtor(page, free_compound_page); 308 set_compound_order(page, order); 309 __SetPageHead(page); 310 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) { 311 __SetPageTail(p); 312 p->first_page = page; 313 } 314 } 315 #endif 316 317 static int destroy_compound_page(struct page *page, unsigned long order) 318 { 319 int i; 320 int nr_pages = 1 << order; 321 int bad = 0; 322 323 if (unlikely(compound_order(page) != order) || 324 unlikely(!PageHead(page))) { 325 bad_page(page); 326 bad++; 327 } 328 329 __ClearPageHead(page); 330 331 for (i = 1; i < nr_pages; i++) { 332 struct page *p = page + i; 333 334 if (unlikely(!PageTail(p) | (p->first_page != page))) { 335 bad_page(page); 336 bad++; 337 } 338 __ClearPageTail(p); 339 } 340 341 return bad; 342 } 343 344 static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags) 345 { 346 int i; 347 348 /* 349 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO 350 * and __GFP_HIGHMEM from hard or soft interrupt context. 351 */ 352 VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt()); 353 for (i = 0; i < (1 << order); i++) 354 clear_highpage(page + i); 355 } 356 357 static inline void set_page_order(struct page *page, int order) 358 { 359 set_page_private(page, order); 360 __SetPageBuddy(page); 361 } 362 363 static inline void rmv_page_order(struct page *page) 364 { 365 __ClearPageBuddy(page); 366 set_page_private(page, 0); 367 } 368 369 /* 370 * Locate the struct page for both the matching buddy in our 371 * pair (buddy1) and the combined O(n+1) page they form (page). 372 * 373 * 1) Any buddy B1 will have an order O twin B2 which satisfies 374 * the following equation: 375 * B2 = B1 ^ (1 << O) 376 * For example, if the starting buddy (buddy2) is #8 its order 377 * 1 buddy is #10: 378 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10 379 * 380 * 2) Any buddy B will have an order O+1 parent P which 381 * satisfies the following equation: 382 * P = B & ~(1 << O) 383 * 384 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER 385 */ 386 static inline struct page * 387 __page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order) 388 { 389 unsigned long buddy_idx = page_idx ^ (1 << order); 390 391 return page + (buddy_idx - page_idx); 392 } 393 394 static inline unsigned long 395 __find_combined_index(unsigned long page_idx, unsigned int order) 396 { 397 return (page_idx & ~(1 << order)); 398 } 399 400 /* 401 * This function checks whether a page is free && is the buddy 402 * we can do coalesce a page and its buddy if 403 * (a) the buddy is not in a hole && 404 * (b) the buddy is in the buddy system && 405 * (c) a page and its buddy have the same order && 406 * (d) a page and its buddy are in the same zone. 407 * 408 * For recording whether a page is in the buddy system, we use PG_buddy. 409 * Setting, clearing, and testing PG_buddy is serialized by zone->lock. 410 * 411 * For recording page's order, we use page_private(page). 412 */ 413 static inline int page_is_buddy(struct page *page, struct page *buddy, 414 int order) 415 { 416 if (!pfn_valid_within(page_to_pfn(buddy))) 417 return 0; 418 419 if (page_zone_id(page) != page_zone_id(buddy)) 420 return 0; 421 422 if (PageBuddy(buddy) && page_order(buddy) == order) { 423 BUG_ON(page_count(buddy) != 0); 424 return 1; 425 } 426 return 0; 427 } 428 429 /* 430 * Freeing function for a buddy system allocator. 431 * 432 * The concept of a buddy system is to maintain direct-mapped table 433 * (containing bit values) for memory blocks of various "orders". 434 * The bottom level table contains the map for the smallest allocatable 435 * units of memory (here, pages), and each level above it describes 436 * pairs of units from the levels below, hence, "buddies". 437 * At a high level, all that happens here is marking the table entry 438 * at the bottom level available, and propagating the changes upward 439 * as necessary, plus some accounting needed to play nicely with other 440 * parts of the VM system. 441 * At each level, we keep a list of pages, which are heads of continuous 442 * free pages of length of (1 << order) and marked with PG_buddy. Page's 443 * order is recorded in page_private(page) field. 444 * So when we are allocating or freeing one, we can derive the state of the 445 * other. That is, if we allocate a small block, and both were 446 * free, the remainder of the region must be split into blocks. 447 * If a block is freed, and its buddy is also free, then this 448 * triggers coalescing into a block of larger size. 449 * 450 * -- wli 451 */ 452 453 static inline void __free_one_page(struct page *page, 454 struct zone *zone, unsigned int order) 455 { 456 unsigned long page_idx; 457 int order_size = 1 << order; 458 int migratetype = get_pageblock_migratetype(page); 459 460 if (unlikely(PageCompound(page))) 461 if (unlikely(destroy_compound_page(page, order))) 462 return; 463 464 page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1); 465 466 VM_BUG_ON(page_idx & (order_size - 1)); 467 VM_BUG_ON(bad_range(zone, page)); 468 469 __mod_zone_page_state(zone, NR_FREE_PAGES, order_size); 470 while (order < MAX_ORDER-1) { 471 unsigned long combined_idx; 472 struct page *buddy; 473 474 buddy = __page_find_buddy(page, page_idx, order); 475 if (!page_is_buddy(page, buddy, order)) 476 break; 477 478 /* Our buddy is free, merge with it and move up one order. */ 479 list_del(&buddy->lru); 480 zone->free_area[order].nr_free--; 481 rmv_page_order(buddy); 482 combined_idx = __find_combined_index(page_idx, order); 483 page = page + (combined_idx - page_idx); 484 page_idx = combined_idx; 485 order++; 486 } 487 set_page_order(page, order); 488 list_add(&page->lru, 489 &zone->free_area[order].free_list[migratetype]); 490 zone->free_area[order].nr_free++; 491 } 492 493 static inline int free_pages_check(struct page *page) 494 { 495 free_page_mlock(page); 496 if (unlikely(page_mapcount(page) | 497 (page->mapping != NULL) | 498 (page_count(page) != 0) | 499 (page->flags & PAGE_FLAGS_CHECK_AT_FREE))) { 500 bad_page(page); 501 return 1; 502 } 503 if (page->flags & PAGE_FLAGS_CHECK_AT_PREP) 504 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP; 505 return 0; 506 } 507 508 /* 509 * Frees a list of pages. 510 * Assumes all pages on list are in same zone, and of same order. 511 * count is the number of pages to free. 512 * 513 * If the zone was previously in an "all pages pinned" state then look to 514 * see if this freeing clears that state. 515 * 516 * And clear the zone's pages_scanned counter, to hold off the "all pages are 517 * pinned" detection logic. 518 */ 519 static void free_pages_bulk(struct zone *zone, int count, 520 struct list_head *list, int order) 521 { 522 spin_lock(&zone->lock); 523 zone_clear_flag(zone, ZONE_ALL_UNRECLAIMABLE); 524 zone->pages_scanned = 0; 525 while (count--) { 526 struct page *page; 527 528 VM_BUG_ON(list_empty(list)); 529 page = list_entry(list->prev, struct page, lru); 530 /* have to delete it as __free_one_page list manipulates */ 531 list_del(&page->lru); 532 __free_one_page(page, zone, order); 533 } 534 spin_unlock(&zone->lock); 535 } 536 537 static void free_one_page(struct zone *zone, struct page *page, int order) 538 { 539 spin_lock(&zone->lock); 540 zone_clear_flag(zone, ZONE_ALL_UNRECLAIMABLE); 541 zone->pages_scanned = 0; 542 __free_one_page(page, zone, order); 543 spin_unlock(&zone->lock); 544 } 545 546 static void __free_pages_ok(struct page *page, unsigned int order) 547 { 548 unsigned long flags; 549 int i; 550 int bad = 0; 551 552 for (i = 0 ; i < (1 << order) ; ++i) 553 bad += free_pages_check(page + i); 554 if (bad) 555 return; 556 557 if (!PageHighMem(page)) { 558 debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order); 559 debug_check_no_obj_freed(page_address(page), 560 PAGE_SIZE << order); 561 } 562 arch_free_page(page, order); 563 kernel_map_pages(page, 1 << order, 0); 564 565 local_irq_save(flags); 566 __count_vm_events(PGFREE, 1 << order); 567 free_one_page(page_zone(page), page, order); 568 local_irq_restore(flags); 569 } 570 571 /* 572 * permit the bootmem allocator to evade page validation on high-order frees 573 */ 574 void __meminit __free_pages_bootmem(struct page *page, unsigned int order) 575 { 576 if (order == 0) { 577 __ClearPageReserved(page); 578 set_page_count(page, 0); 579 set_page_refcounted(page); 580 __free_page(page); 581 } else { 582 int loop; 583 584 prefetchw(page); 585 for (loop = 0; loop < BITS_PER_LONG; loop++) { 586 struct page *p = &page[loop]; 587 588 if (loop + 1 < BITS_PER_LONG) 589 prefetchw(p + 1); 590 __ClearPageReserved(p); 591 set_page_count(p, 0); 592 } 593 594 set_page_refcounted(page); 595 __free_pages(page, order); 596 } 597 } 598 599 600 /* 601 * The order of subdivision here is critical for the IO subsystem. 602 * Please do not alter this order without good reasons and regression 603 * testing. Specifically, as large blocks of memory are subdivided, 604 * the order in which smaller blocks are delivered depends on the order 605 * they're subdivided in this function. This is the primary factor 606 * influencing the order in which pages are delivered to the IO 607 * subsystem according to empirical testing, and this is also justified 608 * by considering the behavior of a buddy system containing a single 609 * large block of memory acted on by a series of small allocations. 610 * This behavior is a critical factor in sglist merging's success. 611 * 612 * -- wli 613 */ 614 static inline void expand(struct zone *zone, struct page *page, 615 int low, int high, struct free_area *area, 616 int migratetype) 617 { 618 unsigned long size = 1 << high; 619 620 while (high > low) { 621 area--; 622 high--; 623 size >>= 1; 624 VM_BUG_ON(bad_range(zone, &page[size])); 625 list_add(&page[size].lru, &area->free_list[migratetype]); 626 area->nr_free++; 627 set_page_order(&page[size], high); 628 } 629 } 630 631 /* 632 * This page is about to be returned from the page allocator 633 */ 634 static int prep_new_page(struct page *page, int order, gfp_t gfp_flags) 635 { 636 if (unlikely(page_mapcount(page) | 637 (page->mapping != NULL) | 638 (page_count(page) != 0) | 639 (page->flags & PAGE_FLAGS_CHECK_AT_PREP))) { 640 bad_page(page); 641 return 1; 642 } 643 644 set_page_private(page, 0); 645 set_page_refcounted(page); 646 647 arch_alloc_page(page, order); 648 kernel_map_pages(page, 1 << order, 1); 649 650 if (gfp_flags & __GFP_ZERO) 651 prep_zero_page(page, order, gfp_flags); 652 653 if (order && (gfp_flags & __GFP_COMP)) 654 prep_compound_page(page, order); 655 656 return 0; 657 } 658 659 /* 660 * Go through the free lists for the given migratetype and remove 661 * the smallest available page from the freelists 662 */ 663 static struct page *__rmqueue_smallest(struct zone *zone, unsigned int order, 664 int migratetype) 665 { 666 unsigned int current_order; 667 struct free_area * area; 668 struct page *page; 669 670 /* Find a page of the appropriate size in the preferred list */ 671 for (current_order = order; current_order < MAX_ORDER; ++current_order) { 672 area = &(zone->free_area[current_order]); 673 if (list_empty(&area->free_list[migratetype])) 674 continue; 675 676 page = list_entry(area->free_list[migratetype].next, 677 struct page, lru); 678 list_del(&page->lru); 679 rmv_page_order(page); 680 area->nr_free--; 681 __mod_zone_page_state(zone, NR_FREE_PAGES, - (1UL << order)); 682 expand(zone, page, order, current_order, area, migratetype); 683 return page; 684 } 685 686 return NULL; 687 } 688 689 690 /* 691 * This array describes the order lists are fallen back to when 692 * the free lists for the desirable migrate type are depleted 693 */ 694 static int fallbacks[MIGRATE_TYPES][MIGRATE_TYPES-1] = { 695 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE }, 696 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE }, 697 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE }, 698 [MIGRATE_RESERVE] = { MIGRATE_RESERVE, MIGRATE_RESERVE, MIGRATE_RESERVE }, /* Never used */ 699 }; 700 701 /* 702 * Move the free pages in a range to the free lists of the requested type. 703 * Note that start_page and end_pages are not aligned on a pageblock 704 * boundary. If alignment is required, use move_freepages_block() 705 */ 706 static int move_freepages(struct zone *zone, 707 struct page *start_page, struct page *end_page, 708 int migratetype) 709 { 710 struct page *page; 711 unsigned long order; 712 int pages_moved = 0; 713 714 #ifndef CONFIG_HOLES_IN_ZONE 715 /* 716 * page_zone is not safe to call in this context when 717 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant 718 * anyway as we check zone boundaries in move_freepages_block(). 719 * Remove at a later date when no bug reports exist related to 720 * grouping pages by mobility 721 */ 722 BUG_ON(page_zone(start_page) != page_zone(end_page)); 723 #endif 724 725 for (page = start_page; page <= end_page;) { 726 /* Make sure we are not inadvertently changing nodes */ 727 VM_BUG_ON(page_to_nid(page) != zone_to_nid(zone)); 728 729 if (!pfn_valid_within(page_to_pfn(page))) { 730 page++; 731 continue; 732 } 733 734 if (!PageBuddy(page)) { 735 page++; 736 continue; 737 } 738 739 order = page_order(page); 740 list_del(&page->lru); 741 list_add(&page->lru, 742 &zone->free_area[order].free_list[migratetype]); 743 page += 1 << order; 744 pages_moved += 1 << order; 745 } 746 747 return pages_moved; 748 } 749 750 static int move_freepages_block(struct zone *zone, struct page *page, 751 int migratetype) 752 { 753 unsigned long start_pfn, end_pfn; 754 struct page *start_page, *end_page; 755 756 start_pfn = page_to_pfn(page); 757 start_pfn = start_pfn & ~(pageblock_nr_pages-1); 758 start_page = pfn_to_page(start_pfn); 759 end_page = start_page + pageblock_nr_pages - 1; 760 end_pfn = start_pfn + pageblock_nr_pages - 1; 761 762 /* Do not cross zone boundaries */ 763 if (start_pfn < zone->zone_start_pfn) 764 start_page = page; 765 if (end_pfn >= zone->zone_start_pfn + zone->spanned_pages) 766 return 0; 767 768 return move_freepages(zone, start_page, end_page, migratetype); 769 } 770 771 /* Remove an element from the buddy allocator from the fallback list */ 772 static struct page *__rmqueue_fallback(struct zone *zone, int order, 773 int start_migratetype) 774 { 775 struct free_area * area; 776 int current_order; 777 struct page *page; 778 int migratetype, i; 779 780 /* Find the largest possible block of pages in the other list */ 781 for (current_order = MAX_ORDER-1; current_order >= order; 782 --current_order) { 783 for (i = 0; i < MIGRATE_TYPES - 1; i++) { 784 migratetype = fallbacks[start_migratetype][i]; 785 786 /* MIGRATE_RESERVE handled later if necessary */ 787 if (migratetype == MIGRATE_RESERVE) 788 continue; 789 790 area = &(zone->free_area[current_order]); 791 if (list_empty(&area->free_list[migratetype])) 792 continue; 793 794 page = list_entry(area->free_list[migratetype].next, 795 struct page, lru); 796 area->nr_free--; 797 798 /* 799 * If breaking a large block of pages, move all free 800 * pages to the preferred allocation list. If falling 801 * back for a reclaimable kernel allocation, be more 802 * agressive about taking ownership of free pages 803 */ 804 if (unlikely(current_order >= (pageblock_order >> 1)) || 805 start_migratetype == MIGRATE_RECLAIMABLE) { 806 unsigned long pages; 807 pages = move_freepages_block(zone, page, 808 start_migratetype); 809 810 /* Claim the whole block if over half of it is free */ 811 if (pages >= (1 << (pageblock_order-1))) 812 set_pageblock_migratetype(page, 813 start_migratetype); 814 815 migratetype = start_migratetype; 816 } 817 818 /* Remove the page from the freelists */ 819 list_del(&page->lru); 820 rmv_page_order(page); 821 __mod_zone_page_state(zone, NR_FREE_PAGES, 822 -(1UL << order)); 823 824 if (current_order == pageblock_order) 825 set_pageblock_migratetype(page, 826 start_migratetype); 827 828 expand(zone, page, order, current_order, area, migratetype); 829 return page; 830 } 831 } 832 833 /* Use MIGRATE_RESERVE rather than fail an allocation */ 834 return __rmqueue_smallest(zone, order, MIGRATE_RESERVE); 835 } 836 837 /* 838 * Do the hard work of removing an element from the buddy allocator. 839 * Call me with the zone->lock already held. 840 */ 841 static struct page *__rmqueue(struct zone *zone, unsigned int order, 842 int migratetype) 843 { 844 struct page *page; 845 846 page = __rmqueue_smallest(zone, order, migratetype); 847 848 if (unlikely(!page)) 849 page = __rmqueue_fallback(zone, order, migratetype); 850 851 return page; 852 } 853 854 /* 855 * Obtain a specified number of elements from the buddy allocator, all under 856 * a single hold of the lock, for efficiency. Add them to the supplied list. 857 * Returns the number of new pages which were placed at *list. 858 */ 859 static int rmqueue_bulk(struct zone *zone, unsigned int order, 860 unsigned long count, struct list_head *list, 861 int migratetype) 862 { 863 int i; 864 865 spin_lock(&zone->lock); 866 for (i = 0; i < count; ++i) { 867 struct page *page = __rmqueue(zone, order, migratetype); 868 if (unlikely(page == NULL)) 869 break; 870 871 /* 872 * Split buddy pages returned by expand() are received here 873 * in physical page order. The page is added to the callers and 874 * list and the list head then moves forward. From the callers 875 * perspective, the linked list is ordered by page number in 876 * some conditions. This is useful for IO devices that can 877 * merge IO requests if the physical pages are ordered 878 * properly. 879 */ 880 list_add(&page->lru, list); 881 set_page_private(page, migratetype); 882 list = &page->lru; 883 } 884 spin_unlock(&zone->lock); 885 return i; 886 } 887 888 #ifdef CONFIG_NUMA 889 /* 890 * Called from the vmstat counter updater to drain pagesets of this 891 * currently executing processor on remote nodes after they have 892 * expired. 893 * 894 * Note that this function must be called with the thread pinned to 895 * a single processor. 896 */ 897 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp) 898 { 899 unsigned long flags; 900 int to_drain; 901 902 local_irq_save(flags); 903 if (pcp->count >= pcp->batch) 904 to_drain = pcp->batch; 905 else 906 to_drain = pcp->count; 907 free_pages_bulk(zone, to_drain, &pcp->list, 0); 908 pcp->count -= to_drain; 909 local_irq_restore(flags); 910 } 911 #endif 912 913 /* 914 * Drain pages of the indicated processor. 915 * 916 * The processor must either be the current processor and the 917 * thread pinned to the current processor or a processor that 918 * is not online. 919 */ 920 static void drain_pages(unsigned int cpu) 921 { 922 unsigned long flags; 923 struct zone *zone; 924 925 for_each_populated_zone(zone) { 926 struct per_cpu_pageset *pset; 927 struct per_cpu_pages *pcp; 928 929 pset = zone_pcp(zone, cpu); 930 931 pcp = &pset->pcp; 932 local_irq_save(flags); 933 free_pages_bulk(zone, pcp->count, &pcp->list, 0); 934 pcp->count = 0; 935 local_irq_restore(flags); 936 } 937 } 938 939 /* 940 * Spill all of this CPU's per-cpu pages back into the buddy allocator. 941 */ 942 void drain_local_pages(void *arg) 943 { 944 drain_pages(smp_processor_id()); 945 } 946 947 /* 948 * Spill all the per-cpu pages from all CPUs back into the buddy allocator 949 */ 950 void drain_all_pages(void) 951 { 952 on_each_cpu(drain_local_pages, NULL, 1); 953 } 954 955 #ifdef CONFIG_HIBERNATION 956 957 void mark_free_pages(struct zone *zone) 958 { 959 unsigned long pfn, max_zone_pfn; 960 unsigned long flags; 961 int order, t; 962 struct list_head *curr; 963 964 if (!zone->spanned_pages) 965 return; 966 967 spin_lock_irqsave(&zone->lock, flags); 968 969 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages; 970 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) 971 if (pfn_valid(pfn)) { 972 struct page *page = pfn_to_page(pfn); 973 974 if (!swsusp_page_is_forbidden(page)) 975 swsusp_unset_page_free(page); 976 } 977 978 for_each_migratetype_order(order, t) { 979 list_for_each(curr, &zone->free_area[order].free_list[t]) { 980 unsigned long i; 981 982 pfn = page_to_pfn(list_entry(curr, struct page, lru)); 983 for (i = 0; i < (1UL << order); i++) 984 swsusp_set_page_free(pfn_to_page(pfn + i)); 985 } 986 } 987 spin_unlock_irqrestore(&zone->lock, flags); 988 } 989 #endif /* CONFIG_PM */ 990 991 /* 992 * Free a 0-order page 993 */ 994 static void free_hot_cold_page(struct page *page, int cold) 995 { 996 struct zone *zone = page_zone(page); 997 struct per_cpu_pages *pcp; 998 unsigned long flags; 999 1000 if (PageAnon(page)) 1001 page->mapping = NULL; 1002 if (free_pages_check(page)) 1003 return; 1004 1005 if (!PageHighMem(page)) { 1006 debug_check_no_locks_freed(page_address(page), PAGE_SIZE); 1007 debug_check_no_obj_freed(page_address(page), PAGE_SIZE); 1008 } 1009 arch_free_page(page, 0); 1010 kernel_map_pages(page, 1, 0); 1011 1012 pcp = &zone_pcp(zone, get_cpu())->pcp; 1013 local_irq_save(flags); 1014 __count_vm_event(PGFREE); 1015 if (cold) 1016 list_add_tail(&page->lru, &pcp->list); 1017 else 1018 list_add(&page->lru, &pcp->list); 1019 set_page_private(page, get_pageblock_migratetype(page)); 1020 pcp->count++; 1021 if (pcp->count >= pcp->high) { 1022 free_pages_bulk(zone, pcp->batch, &pcp->list, 0); 1023 pcp->count -= pcp->batch; 1024 } 1025 local_irq_restore(flags); 1026 put_cpu(); 1027 } 1028 1029 void free_hot_page(struct page *page) 1030 { 1031 free_hot_cold_page(page, 0); 1032 } 1033 1034 void free_cold_page(struct page *page) 1035 { 1036 free_hot_cold_page(page, 1); 1037 } 1038 1039 /* 1040 * split_page takes a non-compound higher-order page, and splits it into 1041 * n (1<<order) sub-pages: page[0..n] 1042 * Each sub-page must be freed individually. 1043 * 1044 * Note: this is probably too low level an operation for use in drivers. 1045 * Please consult with lkml before using this in your driver. 1046 */ 1047 void split_page(struct page *page, unsigned int order) 1048 { 1049 int i; 1050 1051 VM_BUG_ON(PageCompound(page)); 1052 VM_BUG_ON(!page_count(page)); 1053 for (i = 1; i < (1 << order); i++) 1054 set_page_refcounted(page + i); 1055 } 1056 1057 /* 1058 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But 1059 * we cheat by calling it from here, in the order > 0 path. Saves a branch 1060 * or two. 1061 */ 1062 static struct page *buffered_rmqueue(struct zone *preferred_zone, 1063 struct zone *zone, int order, gfp_t gfp_flags) 1064 { 1065 unsigned long flags; 1066 struct page *page; 1067 int cold = !!(gfp_flags & __GFP_COLD); 1068 int cpu; 1069 int migratetype = allocflags_to_migratetype(gfp_flags); 1070 1071 again: 1072 cpu = get_cpu(); 1073 if (likely(order == 0)) { 1074 struct per_cpu_pages *pcp; 1075 1076 pcp = &zone_pcp(zone, cpu)->pcp; 1077 local_irq_save(flags); 1078 if (!pcp->count) { 1079 pcp->count = rmqueue_bulk(zone, 0, 1080 pcp->batch, &pcp->list, migratetype); 1081 if (unlikely(!pcp->count)) 1082 goto failed; 1083 } 1084 1085 /* Find a page of the appropriate migrate type */ 1086 if (cold) { 1087 list_for_each_entry_reverse(page, &pcp->list, lru) 1088 if (page_private(page) == migratetype) 1089 break; 1090 } else { 1091 list_for_each_entry(page, &pcp->list, lru) 1092 if (page_private(page) == migratetype) 1093 break; 1094 } 1095 1096 /* Allocate more to the pcp list if necessary */ 1097 if (unlikely(&page->lru == &pcp->list)) { 1098 pcp->count += rmqueue_bulk(zone, 0, 1099 pcp->batch, &pcp->list, migratetype); 1100 page = list_entry(pcp->list.next, struct page, lru); 1101 } 1102 1103 list_del(&page->lru); 1104 pcp->count--; 1105 } else { 1106 spin_lock_irqsave(&zone->lock, flags); 1107 page = __rmqueue(zone, order, migratetype); 1108 spin_unlock(&zone->lock); 1109 if (!page) 1110 goto failed; 1111 } 1112 1113 __count_zone_vm_events(PGALLOC, zone, 1 << order); 1114 zone_statistics(preferred_zone, zone); 1115 local_irq_restore(flags); 1116 put_cpu(); 1117 1118 VM_BUG_ON(bad_range(zone, page)); 1119 if (prep_new_page(page, order, gfp_flags)) 1120 goto again; 1121 return page; 1122 1123 failed: 1124 local_irq_restore(flags); 1125 put_cpu(); 1126 return NULL; 1127 } 1128 1129 #define ALLOC_NO_WATERMARKS 0x01 /* don't check watermarks at all */ 1130 #define ALLOC_WMARK_MIN 0x02 /* use pages_min watermark */ 1131 #define ALLOC_WMARK_LOW 0x04 /* use pages_low watermark */ 1132 #define ALLOC_WMARK_HIGH 0x08 /* use pages_high watermark */ 1133 #define ALLOC_HARDER 0x10 /* try to alloc harder */ 1134 #define ALLOC_HIGH 0x20 /* __GFP_HIGH set */ 1135 #define ALLOC_CPUSET 0x40 /* check for correct cpuset */ 1136 1137 #ifdef CONFIG_FAIL_PAGE_ALLOC 1138 1139 static struct fail_page_alloc_attr { 1140 struct fault_attr attr; 1141 1142 u32 ignore_gfp_highmem; 1143 u32 ignore_gfp_wait; 1144 u32 min_order; 1145 1146 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS 1147 1148 struct dentry *ignore_gfp_highmem_file; 1149 struct dentry *ignore_gfp_wait_file; 1150 struct dentry *min_order_file; 1151 1152 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */ 1153 1154 } fail_page_alloc = { 1155 .attr = FAULT_ATTR_INITIALIZER, 1156 .ignore_gfp_wait = 1, 1157 .ignore_gfp_highmem = 1, 1158 .min_order = 1, 1159 }; 1160 1161 static int __init setup_fail_page_alloc(char *str) 1162 { 1163 return setup_fault_attr(&fail_page_alloc.attr, str); 1164 } 1165 __setup("fail_page_alloc=", setup_fail_page_alloc); 1166 1167 static int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) 1168 { 1169 if (order < fail_page_alloc.min_order) 1170 return 0; 1171 if (gfp_mask & __GFP_NOFAIL) 1172 return 0; 1173 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM)) 1174 return 0; 1175 if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT)) 1176 return 0; 1177 1178 return should_fail(&fail_page_alloc.attr, 1 << order); 1179 } 1180 1181 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS 1182 1183 static int __init fail_page_alloc_debugfs(void) 1184 { 1185 mode_t mode = S_IFREG | S_IRUSR | S_IWUSR; 1186 struct dentry *dir; 1187 int err; 1188 1189 err = init_fault_attr_dentries(&fail_page_alloc.attr, 1190 "fail_page_alloc"); 1191 if (err) 1192 return err; 1193 dir = fail_page_alloc.attr.dentries.dir; 1194 1195 fail_page_alloc.ignore_gfp_wait_file = 1196 debugfs_create_bool("ignore-gfp-wait", mode, dir, 1197 &fail_page_alloc.ignore_gfp_wait); 1198 1199 fail_page_alloc.ignore_gfp_highmem_file = 1200 debugfs_create_bool("ignore-gfp-highmem", mode, dir, 1201 &fail_page_alloc.ignore_gfp_highmem); 1202 fail_page_alloc.min_order_file = 1203 debugfs_create_u32("min-order", mode, dir, 1204 &fail_page_alloc.min_order); 1205 1206 if (!fail_page_alloc.ignore_gfp_wait_file || 1207 !fail_page_alloc.ignore_gfp_highmem_file || 1208 !fail_page_alloc.min_order_file) { 1209 err = -ENOMEM; 1210 debugfs_remove(fail_page_alloc.ignore_gfp_wait_file); 1211 debugfs_remove(fail_page_alloc.ignore_gfp_highmem_file); 1212 debugfs_remove(fail_page_alloc.min_order_file); 1213 cleanup_fault_attr_dentries(&fail_page_alloc.attr); 1214 } 1215 1216 return err; 1217 } 1218 1219 late_initcall(fail_page_alloc_debugfs); 1220 1221 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */ 1222 1223 #else /* CONFIG_FAIL_PAGE_ALLOC */ 1224 1225 static inline int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) 1226 { 1227 return 0; 1228 } 1229 1230 #endif /* CONFIG_FAIL_PAGE_ALLOC */ 1231 1232 /* 1233 * Return 1 if free pages are above 'mark'. This takes into account the order 1234 * of the allocation. 1235 */ 1236 int zone_watermark_ok(struct zone *z, int order, unsigned long mark, 1237 int classzone_idx, int alloc_flags) 1238 { 1239 /* free_pages my go negative - that's OK */ 1240 long min = mark; 1241 long free_pages = zone_page_state(z, NR_FREE_PAGES) - (1 << order) + 1; 1242 int o; 1243 1244 if (alloc_flags & ALLOC_HIGH) 1245 min -= min / 2; 1246 if (alloc_flags & ALLOC_HARDER) 1247 min -= min / 4; 1248 1249 if (free_pages <= min + z->lowmem_reserve[classzone_idx]) 1250 return 0; 1251 for (o = 0; o < order; o++) { 1252 /* At the next order, this order's pages become unavailable */ 1253 free_pages -= z->free_area[o].nr_free << o; 1254 1255 /* Require fewer higher order pages to be free */ 1256 min >>= 1; 1257 1258 if (free_pages <= min) 1259 return 0; 1260 } 1261 return 1; 1262 } 1263 1264 #ifdef CONFIG_NUMA 1265 /* 1266 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to 1267 * skip over zones that are not allowed by the cpuset, or that have 1268 * been recently (in last second) found to be nearly full. See further 1269 * comments in mmzone.h. Reduces cache footprint of zonelist scans 1270 * that have to skip over a lot of full or unallowed zones. 1271 * 1272 * If the zonelist cache is present in the passed in zonelist, then 1273 * returns a pointer to the allowed node mask (either the current 1274 * tasks mems_allowed, or node_states[N_HIGH_MEMORY].) 1275 * 1276 * If the zonelist cache is not available for this zonelist, does 1277 * nothing and returns NULL. 1278 * 1279 * If the fullzones BITMAP in the zonelist cache is stale (more than 1280 * a second since last zap'd) then we zap it out (clear its bits.) 1281 * 1282 * We hold off even calling zlc_setup, until after we've checked the 1283 * first zone in the zonelist, on the theory that most allocations will 1284 * be satisfied from that first zone, so best to examine that zone as 1285 * quickly as we can. 1286 */ 1287 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags) 1288 { 1289 struct zonelist_cache *zlc; /* cached zonelist speedup info */ 1290 nodemask_t *allowednodes; /* zonelist_cache approximation */ 1291 1292 zlc = zonelist->zlcache_ptr; 1293 if (!zlc) 1294 return NULL; 1295 1296 if (time_after(jiffies, zlc->last_full_zap + HZ)) { 1297 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST); 1298 zlc->last_full_zap = jiffies; 1299 } 1300 1301 allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ? 1302 &cpuset_current_mems_allowed : 1303 &node_states[N_HIGH_MEMORY]; 1304 return allowednodes; 1305 } 1306 1307 /* 1308 * Given 'z' scanning a zonelist, run a couple of quick checks to see 1309 * if it is worth looking at further for free memory: 1310 * 1) Check that the zone isn't thought to be full (doesn't have its 1311 * bit set in the zonelist_cache fullzones BITMAP). 1312 * 2) Check that the zones node (obtained from the zonelist_cache 1313 * z_to_n[] mapping) is allowed in the passed in allowednodes mask. 1314 * Return true (non-zero) if zone is worth looking at further, or 1315 * else return false (zero) if it is not. 1316 * 1317 * This check -ignores- the distinction between various watermarks, 1318 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is 1319 * found to be full for any variation of these watermarks, it will 1320 * be considered full for up to one second by all requests, unless 1321 * we are so low on memory on all allowed nodes that we are forced 1322 * into the second scan of the zonelist. 1323 * 1324 * In the second scan we ignore this zonelist cache and exactly 1325 * apply the watermarks to all zones, even it is slower to do so. 1326 * We are low on memory in the second scan, and should leave no stone 1327 * unturned looking for a free page. 1328 */ 1329 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z, 1330 nodemask_t *allowednodes) 1331 { 1332 struct zonelist_cache *zlc; /* cached zonelist speedup info */ 1333 int i; /* index of *z in zonelist zones */ 1334 int n; /* node that zone *z is on */ 1335 1336 zlc = zonelist->zlcache_ptr; 1337 if (!zlc) 1338 return 1; 1339 1340 i = z - zonelist->_zonerefs; 1341 n = zlc->z_to_n[i]; 1342 1343 /* This zone is worth trying if it is allowed but not full */ 1344 return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones); 1345 } 1346 1347 /* 1348 * Given 'z' scanning a zonelist, set the corresponding bit in 1349 * zlc->fullzones, so that subsequent attempts to allocate a page 1350 * from that zone don't waste time re-examining it. 1351 */ 1352 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z) 1353 { 1354 struct zonelist_cache *zlc; /* cached zonelist speedup info */ 1355 int i; /* index of *z in zonelist zones */ 1356 1357 zlc = zonelist->zlcache_ptr; 1358 if (!zlc) 1359 return; 1360 1361 i = z - zonelist->_zonerefs; 1362 1363 set_bit(i, zlc->fullzones); 1364 } 1365 1366 #else /* CONFIG_NUMA */ 1367 1368 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags) 1369 { 1370 return NULL; 1371 } 1372 1373 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z, 1374 nodemask_t *allowednodes) 1375 { 1376 return 1; 1377 } 1378 1379 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z) 1380 { 1381 } 1382 #endif /* CONFIG_NUMA */ 1383 1384 /* 1385 * get_page_from_freelist goes through the zonelist trying to allocate 1386 * a page. 1387 */ 1388 static struct page * 1389 get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order, 1390 struct zonelist *zonelist, int high_zoneidx, int alloc_flags) 1391 { 1392 struct zoneref *z; 1393 struct page *page = NULL; 1394 int classzone_idx; 1395 struct zone *zone, *preferred_zone; 1396 nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */ 1397 int zlc_active = 0; /* set if using zonelist_cache */ 1398 int did_zlc_setup = 0; /* just call zlc_setup() one time */ 1399 1400 (void)first_zones_zonelist(zonelist, high_zoneidx, nodemask, 1401 &preferred_zone); 1402 if (!preferred_zone) 1403 return NULL; 1404 1405 classzone_idx = zone_idx(preferred_zone); 1406 1407 zonelist_scan: 1408 /* 1409 * Scan zonelist, looking for a zone with enough free. 1410 * See also cpuset_zone_allowed() comment in kernel/cpuset.c. 1411 */ 1412 for_each_zone_zonelist_nodemask(zone, z, zonelist, 1413 high_zoneidx, nodemask) { 1414 if (NUMA_BUILD && zlc_active && 1415 !zlc_zone_worth_trying(zonelist, z, allowednodes)) 1416 continue; 1417 if ((alloc_flags & ALLOC_CPUSET) && 1418 !cpuset_zone_allowed_softwall(zone, gfp_mask)) 1419 goto try_next_zone; 1420 1421 if (!(alloc_flags & ALLOC_NO_WATERMARKS)) { 1422 unsigned long mark; 1423 if (alloc_flags & ALLOC_WMARK_MIN) 1424 mark = zone->pages_min; 1425 else if (alloc_flags & ALLOC_WMARK_LOW) 1426 mark = zone->pages_low; 1427 else 1428 mark = zone->pages_high; 1429 if (!zone_watermark_ok(zone, order, mark, 1430 classzone_idx, alloc_flags)) { 1431 if (!zone_reclaim_mode || 1432 !zone_reclaim(zone, gfp_mask, order)) 1433 goto this_zone_full; 1434 } 1435 } 1436 1437 page = buffered_rmqueue(preferred_zone, zone, order, gfp_mask); 1438 if (page) 1439 break; 1440 this_zone_full: 1441 if (NUMA_BUILD) 1442 zlc_mark_zone_full(zonelist, z); 1443 try_next_zone: 1444 if (NUMA_BUILD && !did_zlc_setup) { 1445 /* we do zlc_setup after the first zone is tried */ 1446 allowednodes = zlc_setup(zonelist, alloc_flags); 1447 zlc_active = 1; 1448 did_zlc_setup = 1; 1449 } 1450 } 1451 1452 if (unlikely(NUMA_BUILD && page == NULL && zlc_active)) { 1453 /* Disable zlc cache for second zonelist scan */ 1454 zlc_active = 0; 1455 goto zonelist_scan; 1456 } 1457 return page; 1458 } 1459 1460 /* 1461 * This is the 'heart' of the zoned buddy allocator. 1462 */ 1463 struct page * 1464 __alloc_pages_internal(gfp_t gfp_mask, unsigned int order, 1465 struct zonelist *zonelist, nodemask_t *nodemask) 1466 { 1467 const gfp_t wait = gfp_mask & __GFP_WAIT; 1468 enum zone_type high_zoneidx = gfp_zone(gfp_mask); 1469 struct zoneref *z; 1470 struct zone *zone; 1471 struct page *page; 1472 struct reclaim_state reclaim_state; 1473 struct task_struct *p = current; 1474 int do_retry; 1475 int alloc_flags; 1476 unsigned long did_some_progress; 1477 unsigned long pages_reclaimed = 0; 1478 1479 lockdep_trace_alloc(gfp_mask); 1480 1481 might_sleep_if(wait); 1482 1483 if (should_fail_alloc_page(gfp_mask, order)) 1484 return NULL; 1485 1486 restart: 1487 z = zonelist->_zonerefs; /* the list of zones suitable for gfp_mask */ 1488 1489 if (unlikely(!z->zone)) { 1490 /* 1491 * Happens if we have an empty zonelist as a result of 1492 * GFP_THISNODE being used on a memoryless node 1493 */ 1494 return NULL; 1495 } 1496 1497 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order, 1498 zonelist, high_zoneidx, ALLOC_WMARK_LOW|ALLOC_CPUSET); 1499 if (page) 1500 goto got_pg; 1501 1502 /* 1503 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and 1504 * __GFP_NOWARN set) should not cause reclaim since the subsystem 1505 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim 1506 * using a larger set of nodes after it has established that the 1507 * allowed per node queues are empty and that nodes are 1508 * over allocated. 1509 */ 1510 if (NUMA_BUILD && (gfp_mask & GFP_THISNODE) == GFP_THISNODE) 1511 goto nopage; 1512 1513 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) 1514 wakeup_kswapd(zone, order); 1515 1516 /* 1517 * OK, we're below the kswapd watermark and have kicked background 1518 * reclaim. Now things get more complex, so set up alloc_flags according 1519 * to how we want to proceed. 1520 * 1521 * The caller may dip into page reserves a bit more if the caller 1522 * cannot run direct reclaim, or if the caller has realtime scheduling 1523 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will 1524 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH). 1525 */ 1526 alloc_flags = ALLOC_WMARK_MIN; 1527 if ((unlikely(rt_task(p)) && !in_interrupt()) || !wait) 1528 alloc_flags |= ALLOC_HARDER; 1529 if (gfp_mask & __GFP_HIGH) 1530 alloc_flags |= ALLOC_HIGH; 1531 if (wait) 1532 alloc_flags |= ALLOC_CPUSET; 1533 1534 /* 1535 * Go through the zonelist again. Let __GFP_HIGH and allocations 1536 * coming from realtime tasks go deeper into reserves. 1537 * 1538 * This is the last chance, in general, before the goto nopage. 1539 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc. 1540 * See also cpuset_zone_allowed() comment in kernel/cpuset.c. 1541 */ 1542 page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist, 1543 high_zoneidx, alloc_flags); 1544 if (page) 1545 goto got_pg; 1546 1547 /* This allocation should allow future memory freeing. */ 1548 1549 rebalance: 1550 if (((p->flags & PF_MEMALLOC) || unlikely(test_thread_flag(TIF_MEMDIE))) 1551 && !in_interrupt()) { 1552 if (!(gfp_mask & __GFP_NOMEMALLOC)) { 1553 nofail_alloc: 1554 /* go through the zonelist yet again, ignoring mins */ 1555 page = get_page_from_freelist(gfp_mask, nodemask, order, 1556 zonelist, high_zoneidx, ALLOC_NO_WATERMARKS); 1557 if (page) 1558 goto got_pg; 1559 if (gfp_mask & __GFP_NOFAIL) { 1560 congestion_wait(WRITE, HZ/50); 1561 goto nofail_alloc; 1562 } 1563 } 1564 goto nopage; 1565 } 1566 1567 /* Atomic allocations - we can't balance anything */ 1568 if (!wait) 1569 goto nopage; 1570 1571 cond_resched(); 1572 1573 /* We now go into synchronous reclaim */ 1574 cpuset_memory_pressure_bump(); 1575 /* 1576 * The task's cpuset might have expanded its set of allowable nodes 1577 */ 1578 cpuset_update_task_memory_state(); 1579 p->flags |= PF_MEMALLOC; 1580 1581 lockdep_set_current_reclaim_state(gfp_mask); 1582 reclaim_state.reclaimed_slab = 0; 1583 p->reclaim_state = &reclaim_state; 1584 1585 did_some_progress = try_to_free_pages(zonelist, order, 1586 gfp_mask, nodemask); 1587 1588 p->reclaim_state = NULL; 1589 lockdep_clear_current_reclaim_state(); 1590 p->flags &= ~PF_MEMALLOC; 1591 1592 cond_resched(); 1593 1594 if (order != 0) 1595 drain_all_pages(); 1596 1597 if (likely(did_some_progress)) { 1598 page = get_page_from_freelist(gfp_mask, nodemask, order, 1599 zonelist, high_zoneidx, alloc_flags); 1600 if (page) 1601 goto got_pg; 1602 } else if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) { 1603 if (!try_set_zone_oom(zonelist, gfp_mask)) { 1604 schedule_timeout_uninterruptible(1); 1605 goto restart; 1606 } 1607 1608 /* 1609 * Go through the zonelist yet one more time, keep 1610 * very high watermark here, this is only to catch 1611 * a parallel oom killing, we must fail if we're still 1612 * under heavy pressure. 1613 */ 1614 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, 1615 order, zonelist, high_zoneidx, 1616 ALLOC_WMARK_HIGH|ALLOC_CPUSET); 1617 if (page) { 1618 clear_zonelist_oom(zonelist, gfp_mask); 1619 goto got_pg; 1620 } 1621 1622 /* The OOM killer will not help higher order allocs so fail */ 1623 if (order > PAGE_ALLOC_COSTLY_ORDER) { 1624 clear_zonelist_oom(zonelist, gfp_mask); 1625 goto nopage; 1626 } 1627 1628 out_of_memory(zonelist, gfp_mask, order); 1629 clear_zonelist_oom(zonelist, gfp_mask); 1630 goto restart; 1631 } 1632 1633 /* 1634 * Don't let big-order allocations loop unless the caller explicitly 1635 * requests that. Wait for some write requests to complete then retry. 1636 * 1637 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER 1638 * means __GFP_NOFAIL, but that may not be true in other 1639 * implementations. 1640 * 1641 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is 1642 * specified, then we retry until we no longer reclaim any pages 1643 * (above), or we've reclaimed an order of pages at least as 1644 * large as the allocation's order. In both cases, if the 1645 * allocation still fails, we stop retrying. 1646 */ 1647 pages_reclaimed += did_some_progress; 1648 do_retry = 0; 1649 if (!(gfp_mask & __GFP_NORETRY)) { 1650 if (order <= PAGE_ALLOC_COSTLY_ORDER) { 1651 do_retry = 1; 1652 } else { 1653 if (gfp_mask & __GFP_REPEAT && 1654 pages_reclaimed < (1 << order)) 1655 do_retry = 1; 1656 } 1657 if (gfp_mask & __GFP_NOFAIL) 1658 do_retry = 1; 1659 } 1660 if (do_retry) { 1661 congestion_wait(WRITE, HZ/50); 1662 goto rebalance; 1663 } 1664 1665 nopage: 1666 if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) { 1667 printk(KERN_WARNING "%s: page allocation failure." 1668 " order:%d, mode:0x%x\n", 1669 p->comm, order, gfp_mask); 1670 dump_stack(); 1671 show_mem(); 1672 } 1673 got_pg: 1674 return page; 1675 } 1676 EXPORT_SYMBOL(__alloc_pages_internal); 1677 1678 /* 1679 * Common helper functions. 1680 */ 1681 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order) 1682 { 1683 struct page * page; 1684 page = alloc_pages(gfp_mask, order); 1685 if (!page) 1686 return 0; 1687 return (unsigned long) page_address(page); 1688 } 1689 1690 EXPORT_SYMBOL(__get_free_pages); 1691 1692 unsigned long get_zeroed_page(gfp_t gfp_mask) 1693 { 1694 struct page * page; 1695 1696 /* 1697 * get_zeroed_page() returns a 32-bit address, which cannot represent 1698 * a highmem page 1699 */ 1700 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0); 1701 1702 page = alloc_pages(gfp_mask | __GFP_ZERO, 0); 1703 if (page) 1704 return (unsigned long) page_address(page); 1705 return 0; 1706 } 1707 1708 EXPORT_SYMBOL(get_zeroed_page); 1709 1710 void __pagevec_free(struct pagevec *pvec) 1711 { 1712 int i = pagevec_count(pvec); 1713 1714 while (--i >= 0) 1715 free_hot_cold_page(pvec->pages[i], pvec->cold); 1716 } 1717 1718 void __free_pages(struct page *page, unsigned int order) 1719 { 1720 if (put_page_testzero(page)) { 1721 if (order == 0) 1722 free_hot_page(page); 1723 else 1724 __free_pages_ok(page, order); 1725 } 1726 } 1727 1728 EXPORT_SYMBOL(__free_pages); 1729 1730 void free_pages(unsigned long addr, unsigned int order) 1731 { 1732 if (addr != 0) { 1733 VM_BUG_ON(!virt_addr_valid((void *)addr)); 1734 __free_pages(virt_to_page((void *)addr), order); 1735 } 1736 } 1737 1738 EXPORT_SYMBOL(free_pages); 1739 1740 /** 1741 * alloc_pages_exact - allocate an exact number physically-contiguous pages. 1742 * @size: the number of bytes to allocate 1743 * @gfp_mask: GFP flags for the allocation 1744 * 1745 * This function is similar to alloc_pages(), except that it allocates the 1746 * minimum number of pages to satisfy the request. alloc_pages() can only 1747 * allocate memory in power-of-two pages. 1748 * 1749 * This function is also limited by MAX_ORDER. 1750 * 1751 * Memory allocated by this function must be released by free_pages_exact(). 1752 */ 1753 void *alloc_pages_exact(size_t size, gfp_t gfp_mask) 1754 { 1755 unsigned int order = get_order(size); 1756 unsigned long addr; 1757 1758 addr = __get_free_pages(gfp_mask, order); 1759 if (addr) { 1760 unsigned long alloc_end = addr + (PAGE_SIZE << order); 1761 unsigned long used = addr + PAGE_ALIGN(size); 1762 1763 split_page(virt_to_page(addr), order); 1764 while (used < alloc_end) { 1765 free_page(used); 1766 used += PAGE_SIZE; 1767 } 1768 } 1769 1770 return (void *)addr; 1771 } 1772 EXPORT_SYMBOL(alloc_pages_exact); 1773 1774 /** 1775 * free_pages_exact - release memory allocated via alloc_pages_exact() 1776 * @virt: the value returned by alloc_pages_exact. 1777 * @size: size of allocation, same value as passed to alloc_pages_exact(). 1778 * 1779 * Release the memory allocated by a previous call to alloc_pages_exact. 1780 */ 1781 void free_pages_exact(void *virt, size_t size) 1782 { 1783 unsigned long addr = (unsigned long)virt; 1784 unsigned long end = addr + PAGE_ALIGN(size); 1785 1786 while (addr < end) { 1787 free_page(addr); 1788 addr += PAGE_SIZE; 1789 } 1790 } 1791 EXPORT_SYMBOL(free_pages_exact); 1792 1793 static unsigned int nr_free_zone_pages(int offset) 1794 { 1795 struct zoneref *z; 1796 struct zone *zone; 1797 1798 /* Just pick one node, since fallback list is circular */ 1799 unsigned int sum = 0; 1800 1801 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL); 1802 1803 for_each_zone_zonelist(zone, z, zonelist, offset) { 1804 unsigned long size = zone->present_pages; 1805 unsigned long high = zone->pages_high; 1806 if (size > high) 1807 sum += size - high; 1808 } 1809 1810 return sum; 1811 } 1812 1813 /* 1814 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL 1815 */ 1816 unsigned int nr_free_buffer_pages(void) 1817 { 1818 return nr_free_zone_pages(gfp_zone(GFP_USER)); 1819 } 1820 EXPORT_SYMBOL_GPL(nr_free_buffer_pages); 1821 1822 /* 1823 * Amount of free RAM allocatable within all zones 1824 */ 1825 unsigned int nr_free_pagecache_pages(void) 1826 { 1827 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE)); 1828 } 1829 1830 static inline void show_node(struct zone *zone) 1831 { 1832 if (NUMA_BUILD) 1833 printk("Node %d ", zone_to_nid(zone)); 1834 } 1835 1836 void si_meminfo(struct sysinfo *val) 1837 { 1838 val->totalram = totalram_pages; 1839 val->sharedram = 0; 1840 val->freeram = global_page_state(NR_FREE_PAGES); 1841 val->bufferram = nr_blockdev_pages(); 1842 val->totalhigh = totalhigh_pages; 1843 val->freehigh = nr_free_highpages(); 1844 val->mem_unit = PAGE_SIZE; 1845 } 1846 1847 EXPORT_SYMBOL(si_meminfo); 1848 1849 #ifdef CONFIG_NUMA 1850 void si_meminfo_node(struct sysinfo *val, int nid) 1851 { 1852 pg_data_t *pgdat = NODE_DATA(nid); 1853 1854 val->totalram = pgdat->node_present_pages; 1855 val->freeram = node_page_state(nid, NR_FREE_PAGES); 1856 #ifdef CONFIG_HIGHMEM 1857 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages; 1858 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM], 1859 NR_FREE_PAGES); 1860 #else 1861 val->totalhigh = 0; 1862 val->freehigh = 0; 1863 #endif 1864 val->mem_unit = PAGE_SIZE; 1865 } 1866 #endif 1867 1868 #define K(x) ((x) << (PAGE_SHIFT-10)) 1869 1870 /* 1871 * Show free area list (used inside shift_scroll-lock stuff) 1872 * We also calculate the percentage fragmentation. We do this by counting the 1873 * memory on each free list with the exception of the first item on the list. 1874 */ 1875 void show_free_areas(void) 1876 { 1877 int cpu; 1878 struct zone *zone; 1879 1880 for_each_populated_zone(zone) { 1881 show_node(zone); 1882 printk("%s per-cpu:\n", zone->name); 1883 1884 for_each_online_cpu(cpu) { 1885 struct per_cpu_pageset *pageset; 1886 1887 pageset = zone_pcp(zone, cpu); 1888 1889 printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n", 1890 cpu, pageset->pcp.high, 1891 pageset->pcp.batch, pageset->pcp.count); 1892 } 1893 } 1894 1895 printk("Active_anon:%lu active_file:%lu inactive_anon:%lu\n" 1896 " inactive_file:%lu" 1897 //TODO: check/adjust line lengths 1898 #ifdef CONFIG_UNEVICTABLE_LRU 1899 " unevictable:%lu" 1900 #endif 1901 " dirty:%lu writeback:%lu unstable:%lu\n" 1902 " free:%lu slab:%lu mapped:%lu pagetables:%lu bounce:%lu\n", 1903 global_page_state(NR_ACTIVE_ANON), 1904 global_page_state(NR_ACTIVE_FILE), 1905 global_page_state(NR_INACTIVE_ANON), 1906 global_page_state(NR_INACTIVE_FILE), 1907 #ifdef CONFIG_UNEVICTABLE_LRU 1908 global_page_state(NR_UNEVICTABLE), 1909 #endif 1910 global_page_state(NR_FILE_DIRTY), 1911 global_page_state(NR_WRITEBACK), 1912 global_page_state(NR_UNSTABLE_NFS), 1913 global_page_state(NR_FREE_PAGES), 1914 global_page_state(NR_SLAB_RECLAIMABLE) + 1915 global_page_state(NR_SLAB_UNRECLAIMABLE), 1916 global_page_state(NR_FILE_MAPPED), 1917 global_page_state(NR_PAGETABLE), 1918 global_page_state(NR_BOUNCE)); 1919 1920 for_each_populated_zone(zone) { 1921 int i; 1922 1923 show_node(zone); 1924 printk("%s" 1925 " free:%lukB" 1926 " min:%lukB" 1927 " low:%lukB" 1928 " high:%lukB" 1929 " active_anon:%lukB" 1930 " inactive_anon:%lukB" 1931 " active_file:%lukB" 1932 " inactive_file:%lukB" 1933 #ifdef CONFIG_UNEVICTABLE_LRU 1934 " unevictable:%lukB" 1935 #endif 1936 " present:%lukB" 1937 " pages_scanned:%lu" 1938 " all_unreclaimable? %s" 1939 "\n", 1940 zone->name, 1941 K(zone_page_state(zone, NR_FREE_PAGES)), 1942 K(zone->pages_min), 1943 K(zone->pages_low), 1944 K(zone->pages_high), 1945 K(zone_page_state(zone, NR_ACTIVE_ANON)), 1946 K(zone_page_state(zone, NR_INACTIVE_ANON)), 1947 K(zone_page_state(zone, NR_ACTIVE_FILE)), 1948 K(zone_page_state(zone, NR_INACTIVE_FILE)), 1949 #ifdef CONFIG_UNEVICTABLE_LRU 1950 K(zone_page_state(zone, NR_UNEVICTABLE)), 1951 #endif 1952 K(zone->present_pages), 1953 zone->pages_scanned, 1954 (zone_is_all_unreclaimable(zone) ? "yes" : "no") 1955 ); 1956 printk("lowmem_reserve[]:"); 1957 for (i = 0; i < MAX_NR_ZONES; i++) 1958 printk(" %lu", zone->lowmem_reserve[i]); 1959 printk("\n"); 1960 } 1961 1962 for_each_populated_zone(zone) { 1963 unsigned long nr[MAX_ORDER], flags, order, total = 0; 1964 1965 show_node(zone); 1966 printk("%s: ", zone->name); 1967 1968 spin_lock_irqsave(&zone->lock, flags); 1969 for (order = 0; order < MAX_ORDER; order++) { 1970 nr[order] = zone->free_area[order].nr_free; 1971 total += nr[order] << order; 1972 } 1973 spin_unlock_irqrestore(&zone->lock, flags); 1974 for (order = 0; order < MAX_ORDER; order++) 1975 printk("%lu*%lukB ", nr[order], K(1UL) << order); 1976 printk("= %lukB\n", K(total)); 1977 } 1978 1979 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES)); 1980 1981 show_swap_cache_info(); 1982 } 1983 1984 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref) 1985 { 1986 zoneref->zone = zone; 1987 zoneref->zone_idx = zone_idx(zone); 1988 } 1989 1990 /* 1991 * Builds allocation fallback zone lists. 1992 * 1993 * Add all populated zones of a node to the zonelist. 1994 */ 1995 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist, 1996 int nr_zones, enum zone_type zone_type) 1997 { 1998 struct zone *zone; 1999 2000 BUG_ON(zone_type >= MAX_NR_ZONES); 2001 zone_type++; 2002 2003 do { 2004 zone_type--; 2005 zone = pgdat->node_zones + zone_type; 2006 if (populated_zone(zone)) { 2007 zoneref_set_zone(zone, 2008 &zonelist->_zonerefs[nr_zones++]); 2009 check_highest_zone(zone_type); 2010 } 2011 2012 } while (zone_type); 2013 return nr_zones; 2014 } 2015 2016 2017 /* 2018 * zonelist_order: 2019 * 0 = automatic detection of better ordering. 2020 * 1 = order by ([node] distance, -zonetype) 2021 * 2 = order by (-zonetype, [node] distance) 2022 * 2023 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create 2024 * the same zonelist. So only NUMA can configure this param. 2025 */ 2026 #define ZONELIST_ORDER_DEFAULT 0 2027 #define ZONELIST_ORDER_NODE 1 2028 #define ZONELIST_ORDER_ZONE 2 2029 2030 /* zonelist order in the kernel. 2031 * set_zonelist_order() will set this to NODE or ZONE. 2032 */ 2033 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT; 2034 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"}; 2035 2036 2037 #ifdef CONFIG_NUMA 2038 /* The value user specified ....changed by config */ 2039 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT; 2040 /* string for sysctl */ 2041 #define NUMA_ZONELIST_ORDER_LEN 16 2042 char numa_zonelist_order[16] = "default"; 2043 2044 /* 2045 * interface for configure zonelist ordering. 2046 * command line option "numa_zonelist_order" 2047 * = "[dD]efault - default, automatic configuration. 2048 * = "[nN]ode - order by node locality, then by zone within node 2049 * = "[zZ]one - order by zone, then by locality within zone 2050 */ 2051 2052 static int __parse_numa_zonelist_order(char *s) 2053 { 2054 if (*s == 'd' || *s == 'D') { 2055 user_zonelist_order = ZONELIST_ORDER_DEFAULT; 2056 } else if (*s == 'n' || *s == 'N') { 2057 user_zonelist_order = ZONELIST_ORDER_NODE; 2058 } else if (*s == 'z' || *s == 'Z') { 2059 user_zonelist_order = ZONELIST_ORDER_ZONE; 2060 } else { 2061 printk(KERN_WARNING 2062 "Ignoring invalid numa_zonelist_order value: " 2063 "%s\n", s); 2064 return -EINVAL; 2065 } 2066 return 0; 2067 } 2068 2069 static __init int setup_numa_zonelist_order(char *s) 2070 { 2071 if (s) 2072 return __parse_numa_zonelist_order(s); 2073 return 0; 2074 } 2075 early_param("numa_zonelist_order", setup_numa_zonelist_order); 2076 2077 /* 2078 * sysctl handler for numa_zonelist_order 2079 */ 2080 int numa_zonelist_order_handler(ctl_table *table, int write, 2081 struct file *file, void __user *buffer, size_t *length, 2082 loff_t *ppos) 2083 { 2084 char saved_string[NUMA_ZONELIST_ORDER_LEN]; 2085 int ret; 2086 2087 if (write) 2088 strncpy(saved_string, (char*)table->data, 2089 NUMA_ZONELIST_ORDER_LEN); 2090 ret = proc_dostring(table, write, file, buffer, length, ppos); 2091 if (ret) 2092 return ret; 2093 if (write) { 2094 int oldval = user_zonelist_order; 2095 if (__parse_numa_zonelist_order((char*)table->data)) { 2096 /* 2097 * bogus value. restore saved string 2098 */ 2099 strncpy((char*)table->data, saved_string, 2100 NUMA_ZONELIST_ORDER_LEN); 2101 user_zonelist_order = oldval; 2102 } else if (oldval != user_zonelist_order) 2103 build_all_zonelists(); 2104 } 2105 return 0; 2106 } 2107 2108 2109 #define MAX_NODE_LOAD (num_online_nodes()) 2110 static int node_load[MAX_NUMNODES]; 2111 2112 /** 2113 * find_next_best_node - find the next node that should appear in a given node's fallback list 2114 * @node: node whose fallback list we're appending 2115 * @used_node_mask: nodemask_t of already used nodes 2116 * 2117 * We use a number of factors to determine which is the next node that should 2118 * appear on a given node's fallback list. The node should not have appeared 2119 * already in @node's fallback list, and it should be the next closest node 2120 * according to the distance array (which contains arbitrary distance values 2121 * from each node to each node in the system), and should also prefer nodes 2122 * with no CPUs, since presumably they'll have very little allocation pressure 2123 * on them otherwise. 2124 * It returns -1 if no node is found. 2125 */ 2126 static int find_next_best_node(int node, nodemask_t *used_node_mask) 2127 { 2128 int n, val; 2129 int min_val = INT_MAX; 2130 int best_node = -1; 2131 node_to_cpumask_ptr(tmp, 0); 2132 2133 /* Use the local node if we haven't already */ 2134 if (!node_isset(node, *used_node_mask)) { 2135 node_set(node, *used_node_mask); 2136 return node; 2137 } 2138 2139 for_each_node_state(n, N_HIGH_MEMORY) { 2140 2141 /* Don't want a node to appear more than once */ 2142 if (node_isset(n, *used_node_mask)) 2143 continue; 2144 2145 /* Use the distance array to find the distance */ 2146 val = node_distance(node, n); 2147 2148 /* Penalize nodes under us ("prefer the next node") */ 2149 val += (n < node); 2150 2151 /* Give preference to headless and unused nodes */ 2152 node_to_cpumask_ptr_next(tmp, n); 2153 if (!cpus_empty(*tmp)) 2154 val += PENALTY_FOR_NODE_WITH_CPUS; 2155 2156 /* Slight preference for less loaded node */ 2157 val *= (MAX_NODE_LOAD*MAX_NUMNODES); 2158 val += node_load[n]; 2159 2160 if (val < min_val) { 2161 min_val = val; 2162 best_node = n; 2163 } 2164 } 2165 2166 if (best_node >= 0) 2167 node_set(best_node, *used_node_mask); 2168 2169 return best_node; 2170 } 2171 2172 2173 /* 2174 * Build zonelists ordered by node and zones within node. 2175 * This results in maximum locality--normal zone overflows into local 2176 * DMA zone, if any--but risks exhausting DMA zone. 2177 */ 2178 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node) 2179 { 2180 int j; 2181 struct zonelist *zonelist; 2182 2183 zonelist = &pgdat->node_zonelists[0]; 2184 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++) 2185 ; 2186 j = build_zonelists_node(NODE_DATA(node), zonelist, j, 2187 MAX_NR_ZONES - 1); 2188 zonelist->_zonerefs[j].zone = NULL; 2189 zonelist->_zonerefs[j].zone_idx = 0; 2190 } 2191 2192 /* 2193 * Build gfp_thisnode zonelists 2194 */ 2195 static void build_thisnode_zonelists(pg_data_t *pgdat) 2196 { 2197 int j; 2198 struct zonelist *zonelist; 2199 2200 zonelist = &pgdat->node_zonelists[1]; 2201 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1); 2202 zonelist->_zonerefs[j].zone = NULL; 2203 zonelist->_zonerefs[j].zone_idx = 0; 2204 } 2205 2206 /* 2207 * Build zonelists ordered by zone and nodes within zones. 2208 * This results in conserving DMA zone[s] until all Normal memory is 2209 * exhausted, but results in overflowing to remote node while memory 2210 * may still exist in local DMA zone. 2211 */ 2212 static int node_order[MAX_NUMNODES]; 2213 2214 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes) 2215 { 2216 int pos, j, node; 2217 int zone_type; /* needs to be signed */ 2218 struct zone *z; 2219 struct zonelist *zonelist; 2220 2221 zonelist = &pgdat->node_zonelists[0]; 2222 pos = 0; 2223 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) { 2224 for (j = 0; j < nr_nodes; j++) { 2225 node = node_order[j]; 2226 z = &NODE_DATA(node)->node_zones[zone_type]; 2227 if (populated_zone(z)) { 2228 zoneref_set_zone(z, 2229 &zonelist->_zonerefs[pos++]); 2230 check_highest_zone(zone_type); 2231 } 2232 } 2233 } 2234 zonelist->_zonerefs[pos].zone = NULL; 2235 zonelist->_zonerefs[pos].zone_idx = 0; 2236 } 2237 2238 static int default_zonelist_order(void) 2239 { 2240 int nid, zone_type; 2241 unsigned long low_kmem_size,total_size; 2242 struct zone *z; 2243 int average_size; 2244 /* 2245 * ZONE_DMA and ZONE_DMA32 can be very small area in the sytem. 2246 * If they are really small and used heavily, the system can fall 2247 * into OOM very easily. 2248 * This function detect ZONE_DMA/DMA32 size and confgigures zone order. 2249 */ 2250 /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */ 2251 low_kmem_size = 0; 2252 total_size = 0; 2253 for_each_online_node(nid) { 2254 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) { 2255 z = &NODE_DATA(nid)->node_zones[zone_type]; 2256 if (populated_zone(z)) { 2257 if (zone_type < ZONE_NORMAL) 2258 low_kmem_size += z->present_pages; 2259 total_size += z->present_pages; 2260 } 2261 } 2262 } 2263 if (!low_kmem_size || /* there are no DMA area. */ 2264 low_kmem_size > total_size/2) /* DMA/DMA32 is big. */ 2265 return ZONELIST_ORDER_NODE; 2266 /* 2267 * look into each node's config. 2268 * If there is a node whose DMA/DMA32 memory is very big area on 2269 * local memory, NODE_ORDER may be suitable. 2270 */ 2271 average_size = total_size / 2272 (nodes_weight(node_states[N_HIGH_MEMORY]) + 1); 2273 for_each_online_node(nid) { 2274 low_kmem_size = 0; 2275 total_size = 0; 2276 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) { 2277 z = &NODE_DATA(nid)->node_zones[zone_type]; 2278 if (populated_zone(z)) { 2279 if (zone_type < ZONE_NORMAL) 2280 low_kmem_size += z->present_pages; 2281 total_size += z->present_pages; 2282 } 2283 } 2284 if (low_kmem_size && 2285 total_size > average_size && /* ignore small node */ 2286 low_kmem_size > total_size * 70/100) 2287 return ZONELIST_ORDER_NODE; 2288 } 2289 return ZONELIST_ORDER_ZONE; 2290 } 2291 2292 static void set_zonelist_order(void) 2293 { 2294 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT) 2295 current_zonelist_order = default_zonelist_order(); 2296 else 2297 current_zonelist_order = user_zonelist_order; 2298 } 2299 2300 static void build_zonelists(pg_data_t *pgdat) 2301 { 2302 int j, node, load; 2303 enum zone_type i; 2304 nodemask_t used_mask; 2305 int local_node, prev_node; 2306 struct zonelist *zonelist; 2307 int order = current_zonelist_order; 2308 2309 /* initialize zonelists */ 2310 for (i = 0; i < MAX_ZONELISTS; i++) { 2311 zonelist = pgdat->node_zonelists + i; 2312 zonelist->_zonerefs[0].zone = NULL; 2313 zonelist->_zonerefs[0].zone_idx = 0; 2314 } 2315 2316 /* NUMA-aware ordering of nodes */ 2317 local_node = pgdat->node_id; 2318 load = num_online_nodes(); 2319 prev_node = local_node; 2320 nodes_clear(used_mask); 2321 2322 memset(node_load, 0, sizeof(node_load)); 2323 memset(node_order, 0, sizeof(node_order)); 2324 j = 0; 2325 2326 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) { 2327 int distance = node_distance(local_node, node); 2328 2329 /* 2330 * If another node is sufficiently far away then it is better 2331 * to reclaim pages in a zone before going off node. 2332 */ 2333 if (distance > RECLAIM_DISTANCE) 2334 zone_reclaim_mode = 1; 2335 2336 /* 2337 * We don't want to pressure a particular node. 2338 * So adding penalty to the first node in same 2339 * distance group to make it round-robin. 2340 */ 2341 if (distance != node_distance(local_node, prev_node)) 2342 node_load[node] = load; 2343 2344 prev_node = node; 2345 load--; 2346 if (order == ZONELIST_ORDER_NODE) 2347 build_zonelists_in_node_order(pgdat, node); 2348 else 2349 node_order[j++] = node; /* remember order */ 2350 } 2351 2352 if (order == ZONELIST_ORDER_ZONE) { 2353 /* calculate node order -- i.e., DMA last! */ 2354 build_zonelists_in_zone_order(pgdat, j); 2355 } 2356 2357 build_thisnode_zonelists(pgdat); 2358 } 2359 2360 /* Construct the zonelist performance cache - see further mmzone.h */ 2361 static void build_zonelist_cache(pg_data_t *pgdat) 2362 { 2363 struct zonelist *zonelist; 2364 struct zonelist_cache *zlc; 2365 struct zoneref *z; 2366 2367 zonelist = &pgdat->node_zonelists[0]; 2368 zonelist->zlcache_ptr = zlc = &zonelist->zlcache; 2369 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST); 2370 for (z = zonelist->_zonerefs; z->zone; z++) 2371 zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z); 2372 } 2373 2374 2375 #else /* CONFIG_NUMA */ 2376 2377 static void set_zonelist_order(void) 2378 { 2379 current_zonelist_order = ZONELIST_ORDER_ZONE; 2380 } 2381 2382 static void build_zonelists(pg_data_t *pgdat) 2383 { 2384 int node, local_node; 2385 enum zone_type j; 2386 struct zonelist *zonelist; 2387 2388 local_node = pgdat->node_id; 2389 2390 zonelist = &pgdat->node_zonelists[0]; 2391 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1); 2392 2393 /* 2394 * Now we build the zonelist so that it contains the zones 2395 * of all the other nodes. 2396 * We don't want to pressure a particular node, so when 2397 * building the zones for node N, we make sure that the 2398 * zones coming right after the local ones are those from 2399 * node N+1 (modulo N) 2400 */ 2401 for (node = local_node + 1; node < MAX_NUMNODES; node++) { 2402 if (!node_online(node)) 2403 continue; 2404 j = build_zonelists_node(NODE_DATA(node), zonelist, j, 2405 MAX_NR_ZONES - 1); 2406 } 2407 for (node = 0; node < local_node; node++) { 2408 if (!node_online(node)) 2409 continue; 2410 j = build_zonelists_node(NODE_DATA(node), zonelist, j, 2411 MAX_NR_ZONES - 1); 2412 } 2413 2414 zonelist->_zonerefs[j].zone = NULL; 2415 zonelist->_zonerefs[j].zone_idx = 0; 2416 } 2417 2418 /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */ 2419 static void build_zonelist_cache(pg_data_t *pgdat) 2420 { 2421 pgdat->node_zonelists[0].zlcache_ptr = NULL; 2422 } 2423 2424 #endif /* CONFIG_NUMA */ 2425 2426 /* return values int ....just for stop_machine() */ 2427 static int __build_all_zonelists(void *dummy) 2428 { 2429 int nid; 2430 2431 for_each_online_node(nid) { 2432 pg_data_t *pgdat = NODE_DATA(nid); 2433 2434 build_zonelists(pgdat); 2435 build_zonelist_cache(pgdat); 2436 } 2437 return 0; 2438 } 2439 2440 void build_all_zonelists(void) 2441 { 2442 set_zonelist_order(); 2443 2444 if (system_state == SYSTEM_BOOTING) { 2445 __build_all_zonelists(NULL); 2446 mminit_verify_zonelist(); 2447 cpuset_init_current_mems_allowed(); 2448 } else { 2449 /* we have to stop all cpus to guarantee there is no user 2450 of zonelist */ 2451 stop_machine(__build_all_zonelists, NULL, NULL); 2452 /* cpuset refresh routine should be here */ 2453 } 2454 vm_total_pages = nr_free_pagecache_pages(); 2455 /* 2456 * Disable grouping by mobility if the number of pages in the 2457 * system is too low to allow the mechanism to work. It would be 2458 * more accurate, but expensive to check per-zone. This check is 2459 * made on memory-hotadd so a system can start with mobility 2460 * disabled and enable it later 2461 */ 2462 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES)) 2463 page_group_by_mobility_disabled = 1; 2464 else 2465 page_group_by_mobility_disabled = 0; 2466 2467 printk("Built %i zonelists in %s order, mobility grouping %s. " 2468 "Total pages: %ld\n", 2469 num_online_nodes(), 2470 zonelist_order_name[current_zonelist_order], 2471 page_group_by_mobility_disabled ? "off" : "on", 2472 vm_total_pages); 2473 #ifdef CONFIG_NUMA 2474 printk("Policy zone: %s\n", zone_names[policy_zone]); 2475 #endif 2476 } 2477 2478 /* 2479 * Helper functions to size the waitqueue hash table. 2480 * Essentially these want to choose hash table sizes sufficiently 2481 * large so that collisions trying to wait on pages are rare. 2482 * But in fact, the number of active page waitqueues on typical 2483 * systems is ridiculously low, less than 200. So this is even 2484 * conservative, even though it seems large. 2485 * 2486 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to 2487 * waitqueues, i.e. the size of the waitq table given the number of pages. 2488 */ 2489 #define PAGES_PER_WAITQUEUE 256 2490 2491 #ifndef CONFIG_MEMORY_HOTPLUG 2492 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages) 2493 { 2494 unsigned long size = 1; 2495 2496 pages /= PAGES_PER_WAITQUEUE; 2497 2498 while (size < pages) 2499 size <<= 1; 2500 2501 /* 2502 * Once we have dozens or even hundreds of threads sleeping 2503 * on IO we've got bigger problems than wait queue collision. 2504 * Limit the size of the wait table to a reasonable size. 2505 */ 2506 size = min(size, 4096UL); 2507 2508 return max(size, 4UL); 2509 } 2510 #else 2511 /* 2512 * A zone's size might be changed by hot-add, so it is not possible to determine 2513 * a suitable size for its wait_table. So we use the maximum size now. 2514 * 2515 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie: 2516 * 2517 * i386 (preemption config) : 4096 x 16 = 64Kbyte. 2518 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte. 2519 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte. 2520 * 2521 * The maximum entries are prepared when a zone's memory is (512K + 256) pages 2522 * or more by the traditional way. (See above). It equals: 2523 * 2524 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte. 2525 * ia64(16K page size) : = ( 8G + 4M)byte. 2526 * powerpc (64K page size) : = (32G +16M)byte. 2527 */ 2528 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages) 2529 { 2530 return 4096UL; 2531 } 2532 #endif 2533 2534 /* 2535 * This is an integer logarithm so that shifts can be used later 2536 * to extract the more random high bits from the multiplicative 2537 * hash function before the remainder is taken. 2538 */ 2539 static inline unsigned long wait_table_bits(unsigned long size) 2540 { 2541 return ffz(~size); 2542 } 2543 2544 #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1)) 2545 2546 /* 2547 * Mark a number of pageblocks as MIGRATE_RESERVE. The number 2548 * of blocks reserved is based on zone->pages_min. The memory within the 2549 * reserve will tend to store contiguous free pages. Setting min_free_kbytes 2550 * higher will lead to a bigger reserve which will get freed as contiguous 2551 * blocks as reclaim kicks in 2552 */ 2553 static void setup_zone_migrate_reserve(struct zone *zone) 2554 { 2555 unsigned long start_pfn, pfn, end_pfn; 2556 struct page *page; 2557 unsigned long reserve, block_migratetype; 2558 2559 /* Get the start pfn, end pfn and the number of blocks to reserve */ 2560 start_pfn = zone->zone_start_pfn; 2561 end_pfn = start_pfn + zone->spanned_pages; 2562 reserve = roundup(zone->pages_min, pageblock_nr_pages) >> 2563 pageblock_order; 2564 2565 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) { 2566 if (!pfn_valid(pfn)) 2567 continue; 2568 page = pfn_to_page(pfn); 2569 2570 /* Watch out for overlapping nodes */ 2571 if (page_to_nid(page) != zone_to_nid(zone)) 2572 continue; 2573 2574 /* Blocks with reserved pages will never free, skip them. */ 2575 if (PageReserved(page)) 2576 continue; 2577 2578 block_migratetype = get_pageblock_migratetype(page); 2579 2580 /* If this block is reserved, account for it */ 2581 if (reserve > 0 && block_migratetype == MIGRATE_RESERVE) { 2582 reserve--; 2583 continue; 2584 } 2585 2586 /* Suitable for reserving if this block is movable */ 2587 if (reserve > 0 && block_migratetype == MIGRATE_MOVABLE) { 2588 set_pageblock_migratetype(page, MIGRATE_RESERVE); 2589 move_freepages_block(zone, page, MIGRATE_RESERVE); 2590 reserve--; 2591 continue; 2592 } 2593 2594 /* 2595 * If the reserve is met and this is a previous reserved block, 2596 * take it back 2597 */ 2598 if (block_migratetype == MIGRATE_RESERVE) { 2599 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 2600 move_freepages_block(zone, page, MIGRATE_MOVABLE); 2601 } 2602 } 2603 } 2604 2605 /* 2606 * Initially all pages are reserved - free ones are freed 2607 * up by free_all_bootmem() once the early boot process is 2608 * done. Non-atomic initialization, single-pass. 2609 */ 2610 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone, 2611 unsigned long start_pfn, enum memmap_context context) 2612 { 2613 struct page *page; 2614 unsigned long end_pfn = start_pfn + size; 2615 unsigned long pfn; 2616 struct zone *z; 2617 2618 if (highest_memmap_pfn < end_pfn - 1) 2619 highest_memmap_pfn = end_pfn - 1; 2620 2621 z = &NODE_DATA(nid)->node_zones[zone]; 2622 for (pfn = start_pfn; pfn < end_pfn; pfn++) { 2623 /* 2624 * There can be holes in boot-time mem_map[]s 2625 * handed to this function. They do not 2626 * exist on hotplugged memory. 2627 */ 2628 if (context == MEMMAP_EARLY) { 2629 if (!early_pfn_valid(pfn)) 2630 continue; 2631 if (!early_pfn_in_nid(pfn, nid)) 2632 continue; 2633 } 2634 page = pfn_to_page(pfn); 2635 set_page_links(page, zone, nid, pfn); 2636 mminit_verify_page_links(page, zone, nid, pfn); 2637 init_page_count(page); 2638 reset_page_mapcount(page); 2639 SetPageReserved(page); 2640 /* 2641 * Mark the block movable so that blocks are reserved for 2642 * movable at startup. This will force kernel allocations 2643 * to reserve their blocks rather than leaking throughout 2644 * the address space during boot when many long-lived 2645 * kernel allocations are made. Later some blocks near 2646 * the start are marked MIGRATE_RESERVE by 2647 * setup_zone_migrate_reserve() 2648 * 2649 * bitmap is created for zone's valid pfn range. but memmap 2650 * can be created for invalid pages (for alignment) 2651 * check here not to call set_pageblock_migratetype() against 2652 * pfn out of zone. 2653 */ 2654 if ((z->zone_start_pfn <= pfn) 2655 && (pfn < z->zone_start_pfn + z->spanned_pages) 2656 && !(pfn & (pageblock_nr_pages - 1))) 2657 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 2658 2659 INIT_LIST_HEAD(&page->lru); 2660 #ifdef WANT_PAGE_VIRTUAL 2661 /* The shift won't overflow because ZONE_NORMAL is below 4G. */ 2662 if (!is_highmem_idx(zone)) 2663 set_page_address(page, __va(pfn << PAGE_SHIFT)); 2664 #endif 2665 } 2666 } 2667 2668 static void __meminit zone_init_free_lists(struct zone *zone) 2669 { 2670 int order, t; 2671 for_each_migratetype_order(order, t) { 2672 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]); 2673 zone->free_area[order].nr_free = 0; 2674 } 2675 } 2676 2677 #ifndef __HAVE_ARCH_MEMMAP_INIT 2678 #define memmap_init(size, nid, zone, start_pfn) \ 2679 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY) 2680 #endif 2681 2682 static int zone_batchsize(struct zone *zone) 2683 { 2684 int batch; 2685 2686 /* 2687 * The per-cpu-pages pools are set to around 1000th of the 2688 * size of the zone. But no more than 1/2 of a meg. 2689 * 2690 * OK, so we don't know how big the cache is. So guess. 2691 */ 2692 batch = zone->present_pages / 1024; 2693 if (batch * PAGE_SIZE > 512 * 1024) 2694 batch = (512 * 1024) / PAGE_SIZE; 2695 batch /= 4; /* We effectively *= 4 below */ 2696 if (batch < 1) 2697 batch = 1; 2698 2699 /* 2700 * Clamp the batch to a 2^n - 1 value. Having a power 2701 * of 2 value was found to be more likely to have 2702 * suboptimal cache aliasing properties in some cases. 2703 * 2704 * For example if 2 tasks are alternately allocating 2705 * batches of pages, one task can end up with a lot 2706 * of pages of one half of the possible page colors 2707 * and the other with pages of the other colors. 2708 */ 2709 batch = (1 << (fls(batch + batch/2)-1)) - 1; 2710 2711 return batch; 2712 } 2713 2714 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch) 2715 { 2716 struct per_cpu_pages *pcp; 2717 2718 memset(p, 0, sizeof(*p)); 2719 2720 pcp = &p->pcp; 2721 pcp->count = 0; 2722 pcp->high = 6 * batch; 2723 pcp->batch = max(1UL, 1 * batch); 2724 INIT_LIST_HEAD(&pcp->list); 2725 } 2726 2727 /* 2728 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist 2729 * to the value high for the pageset p. 2730 */ 2731 2732 static void setup_pagelist_highmark(struct per_cpu_pageset *p, 2733 unsigned long high) 2734 { 2735 struct per_cpu_pages *pcp; 2736 2737 pcp = &p->pcp; 2738 pcp->high = high; 2739 pcp->batch = max(1UL, high/4); 2740 if ((high/4) > (PAGE_SHIFT * 8)) 2741 pcp->batch = PAGE_SHIFT * 8; 2742 } 2743 2744 2745 #ifdef CONFIG_NUMA 2746 /* 2747 * Boot pageset table. One per cpu which is going to be used for all 2748 * zones and all nodes. The parameters will be set in such a way 2749 * that an item put on a list will immediately be handed over to 2750 * the buddy list. This is safe since pageset manipulation is done 2751 * with interrupts disabled. 2752 * 2753 * Some NUMA counter updates may also be caught by the boot pagesets. 2754 * 2755 * The boot_pagesets must be kept even after bootup is complete for 2756 * unused processors and/or zones. They do play a role for bootstrapping 2757 * hotplugged processors. 2758 * 2759 * zoneinfo_show() and maybe other functions do 2760 * not check if the processor is online before following the pageset pointer. 2761 * Other parts of the kernel may not check if the zone is available. 2762 */ 2763 static struct per_cpu_pageset boot_pageset[NR_CPUS]; 2764 2765 /* 2766 * Dynamically allocate memory for the 2767 * per cpu pageset array in struct zone. 2768 */ 2769 static int __cpuinit process_zones(int cpu) 2770 { 2771 struct zone *zone, *dzone; 2772 int node = cpu_to_node(cpu); 2773 2774 node_set_state(node, N_CPU); /* this node has a cpu */ 2775 2776 for_each_populated_zone(zone) { 2777 zone_pcp(zone, cpu) = kmalloc_node(sizeof(struct per_cpu_pageset), 2778 GFP_KERNEL, node); 2779 if (!zone_pcp(zone, cpu)) 2780 goto bad; 2781 2782 setup_pageset(zone_pcp(zone, cpu), zone_batchsize(zone)); 2783 2784 if (percpu_pagelist_fraction) 2785 setup_pagelist_highmark(zone_pcp(zone, cpu), 2786 (zone->present_pages / percpu_pagelist_fraction)); 2787 } 2788 2789 return 0; 2790 bad: 2791 for_each_zone(dzone) { 2792 if (!populated_zone(dzone)) 2793 continue; 2794 if (dzone == zone) 2795 break; 2796 kfree(zone_pcp(dzone, cpu)); 2797 zone_pcp(dzone, cpu) = NULL; 2798 } 2799 return -ENOMEM; 2800 } 2801 2802 static inline void free_zone_pagesets(int cpu) 2803 { 2804 struct zone *zone; 2805 2806 for_each_zone(zone) { 2807 struct per_cpu_pageset *pset = zone_pcp(zone, cpu); 2808 2809 /* Free per_cpu_pageset if it is slab allocated */ 2810 if (pset != &boot_pageset[cpu]) 2811 kfree(pset); 2812 zone_pcp(zone, cpu) = NULL; 2813 } 2814 } 2815 2816 static int __cpuinit pageset_cpuup_callback(struct notifier_block *nfb, 2817 unsigned long action, 2818 void *hcpu) 2819 { 2820 int cpu = (long)hcpu; 2821 int ret = NOTIFY_OK; 2822 2823 switch (action) { 2824 case CPU_UP_PREPARE: 2825 case CPU_UP_PREPARE_FROZEN: 2826 if (process_zones(cpu)) 2827 ret = NOTIFY_BAD; 2828 break; 2829 case CPU_UP_CANCELED: 2830 case CPU_UP_CANCELED_FROZEN: 2831 case CPU_DEAD: 2832 case CPU_DEAD_FROZEN: 2833 free_zone_pagesets(cpu); 2834 break; 2835 default: 2836 break; 2837 } 2838 return ret; 2839 } 2840 2841 static struct notifier_block __cpuinitdata pageset_notifier = 2842 { &pageset_cpuup_callback, NULL, 0 }; 2843 2844 void __init setup_per_cpu_pageset(void) 2845 { 2846 int err; 2847 2848 /* Initialize per_cpu_pageset for cpu 0. 2849 * A cpuup callback will do this for every cpu 2850 * as it comes online 2851 */ 2852 err = process_zones(smp_processor_id()); 2853 BUG_ON(err); 2854 register_cpu_notifier(&pageset_notifier); 2855 } 2856 2857 #endif 2858 2859 static noinline __init_refok 2860 int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages) 2861 { 2862 int i; 2863 struct pglist_data *pgdat = zone->zone_pgdat; 2864 size_t alloc_size; 2865 2866 /* 2867 * The per-page waitqueue mechanism uses hashed waitqueues 2868 * per zone. 2869 */ 2870 zone->wait_table_hash_nr_entries = 2871 wait_table_hash_nr_entries(zone_size_pages); 2872 zone->wait_table_bits = 2873 wait_table_bits(zone->wait_table_hash_nr_entries); 2874 alloc_size = zone->wait_table_hash_nr_entries 2875 * sizeof(wait_queue_head_t); 2876 2877 if (!slab_is_available()) { 2878 zone->wait_table = (wait_queue_head_t *) 2879 alloc_bootmem_node(pgdat, alloc_size); 2880 } else { 2881 /* 2882 * This case means that a zone whose size was 0 gets new memory 2883 * via memory hot-add. 2884 * But it may be the case that a new node was hot-added. In 2885 * this case vmalloc() will not be able to use this new node's 2886 * memory - this wait_table must be initialized to use this new 2887 * node itself as well. 2888 * To use this new node's memory, further consideration will be 2889 * necessary. 2890 */ 2891 zone->wait_table = vmalloc(alloc_size); 2892 } 2893 if (!zone->wait_table) 2894 return -ENOMEM; 2895 2896 for(i = 0; i < zone->wait_table_hash_nr_entries; ++i) 2897 init_waitqueue_head(zone->wait_table + i); 2898 2899 return 0; 2900 } 2901 2902 static __meminit void zone_pcp_init(struct zone *zone) 2903 { 2904 int cpu; 2905 unsigned long batch = zone_batchsize(zone); 2906 2907 for (cpu = 0; cpu < NR_CPUS; cpu++) { 2908 #ifdef CONFIG_NUMA 2909 /* Early boot. Slab allocator not functional yet */ 2910 zone_pcp(zone, cpu) = &boot_pageset[cpu]; 2911 setup_pageset(&boot_pageset[cpu],0); 2912 #else 2913 setup_pageset(zone_pcp(zone,cpu), batch); 2914 #endif 2915 } 2916 if (zone->present_pages) 2917 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%lu\n", 2918 zone->name, zone->present_pages, batch); 2919 } 2920 2921 __meminit int init_currently_empty_zone(struct zone *zone, 2922 unsigned long zone_start_pfn, 2923 unsigned long size, 2924 enum memmap_context context) 2925 { 2926 struct pglist_data *pgdat = zone->zone_pgdat; 2927 int ret; 2928 ret = zone_wait_table_init(zone, size); 2929 if (ret) 2930 return ret; 2931 pgdat->nr_zones = zone_idx(zone) + 1; 2932 2933 zone->zone_start_pfn = zone_start_pfn; 2934 2935 mminit_dprintk(MMINIT_TRACE, "memmap_init", 2936 "Initialising map node %d zone %lu pfns %lu -> %lu\n", 2937 pgdat->node_id, 2938 (unsigned long)zone_idx(zone), 2939 zone_start_pfn, (zone_start_pfn + size)); 2940 2941 zone_init_free_lists(zone); 2942 2943 return 0; 2944 } 2945 2946 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP 2947 /* 2948 * Basic iterator support. Return the first range of PFNs for a node 2949 * Note: nid == MAX_NUMNODES returns first region regardless of node 2950 */ 2951 static int __meminit first_active_region_index_in_nid(int nid) 2952 { 2953 int i; 2954 2955 for (i = 0; i < nr_nodemap_entries; i++) 2956 if (nid == MAX_NUMNODES || early_node_map[i].nid == nid) 2957 return i; 2958 2959 return -1; 2960 } 2961 2962 /* 2963 * Basic iterator support. Return the next active range of PFNs for a node 2964 * Note: nid == MAX_NUMNODES returns next region regardless of node 2965 */ 2966 static int __meminit next_active_region_index_in_nid(int index, int nid) 2967 { 2968 for (index = index + 1; index < nr_nodemap_entries; index++) 2969 if (nid == MAX_NUMNODES || early_node_map[index].nid == nid) 2970 return index; 2971 2972 return -1; 2973 } 2974 2975 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID 2976 /* 2977 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on. 2978 * Architectures may implement their own version but if add_active_range() 2979 * was used and there are no special requirements, this is a convenient 2980 * alternative 2981 */ 2982 int __meminit __early_pfn_to_nid(unsigned long pfn) 2983 { 2984 int i; 2985 2986 for (i = 0; i < nr_nodemap_entries; i++) { 2987 unsigned long start_pfn = early_node_map[i].start_pfn; 2988 unsigned long end_pfn = early_node_map[i].end_pfn; 2989 2990 if (start_pfn <= pfn && pfn < end_pfn) 2991 return early_node_map[i].nid; 2992 } 2993 /* This is a memory hole */ 2994 return -1; 2995 } 2996 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */ 2997 2998 int __meminit early_pfn_to_nid(unsigned long pfn) 2999 { 3000 int nid; 3001 3002 nid = __early_pfn_to_nid(pfn); 3003 if (nid >= 0) 3004 return nid; 3005 /* just returns 0 */ 3006 return 0; 3007 } 3008 3009 #ifdef CONFIG_NODES_SPAN_OTHER_NODES 3010 bool __meminit early_pfn_in_nid(unsigned long pfn, int node) 3011 { 3012 int nid; 3013 3014 nid = __early_pfn_to_nid(pfn); 3015 if (nid >= 0 && nid != node) 3016 return false; 3017 return true; 3018 } 3019 #endif 3020 3021 /* Basic iterator support to walk early_node_map[] */ 3022 #define for_each_active_range_index_in_nid(i, nid) \ 3023 for (i = first_active_region_index_in_nid(nid); i != -1; \ 3024 i = next_active_region_index_in_nid(i, nid)) 3025 3026 /** 3027 * free_bootmem_with_active_regions - Call free_bootmem_node for each active range 3028 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed. 3029 * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node 3030 * 3031 * If an architecture guarantees that all ranges registered with 3032 * add_active_ranges() contain no holes and may be freed, this 3033 * this function may be used instead of calling free_bootmem() manually. 3034 */ 3035 void __init free_bootmem_with_active_regions(int nid, 3036 unsigned long max_low_pfn) 3037 { 3038 int i; 3039 3040 for_each_active_range_index_in_nid(i, nid) { 3041 unsigned long size_pages = 0; 3042 unsigned long end_pfn = early_node_map[i].end_pfn; 3043 3044 if (early_node_map[i].start_pfn >= max_low_pfn) 3045 continue; 3046 3047 if (end_pfn > max_low_pfn) 3048 end_pfn = max_low_pfn; 3049 3050 size_pages = end_pfn - early_node_map[i].start_pfn; 3051 free_bootmem_node(NODE_DATA(early_node_map[i].nid), 3052 PFN_PHYS(early_node_map[i].start_pfn), 3053 size_pages << PAGE_SHIFT); 3054 } 3055 } 3056 3057 void __init work_with_active_regions(int nid, work_fn_t work_fn, void *data) 3058 { 3059 int i; 3060 int ret; 3061 3062 for_each_active_range_index_in_nid(i, nid) { 3063 ret = work_fn(early_node_map[i].start_pfn, 3064 early_node_map[i].end_pfn, data); 3065 if (ret) 3066 break; 3067 } 3068 } 3069 /** 3070 * sparse_memory_present_with_active_regions - Call memory_present for each active range 3071 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used. 3072 * 3073 * If an architecture guarantees that all ranges registered with 3074 * add_active_ranges() contain no holes and may be freed, this 3075 * function may be used instead of calling memory_present() manually. 3076 */ 3077 void __init sparse_memory_present_with_active_regions(int nid) 3078 { 3079 int i; 3080 3081 for_each_active_range_index_in_nid(i, nid) 3082 memory_present(early_node_map[i].nid, 3083 early_node_map[i].start_pfn, 3084 early_node_map[i].end_pfn); 3085 } 3086 3087 /** 3088 * push_node_boundaries - Push node boundaries to at least the requested boundary 3089 * @nid: The nid of the node to push the boundary for 3090 * @start_pfn: The start pfn of the node 3091 * @end_pfn: The end pfn of the node 3092 * 3093 * In reserve-based hot-add, mem_map is allocated that is unused until hotadd 3094 * time. Specifically, on x86_64, SRAT will report ranges that can potentially 3095 * be hotplugged even though no physical memory exists. This function allows 3096 * an arch to push out the node boundaries so mem_map is allocated that can 3097 * be used later. 3098 */ 3099 #ifdef CONFIG_MEMORY_HOTPLUG_RESERVE 3100 void __init push_node_boundaries(unsigned int nid, 3101 unsigned long start_pfn, unsigned long end_pfn) 3102 { 3103 mminit_dprintk(MMINIT_TRACE, "zoneboundary", 3104 "Entering push_node_boundaries(%u, %lu, %lu)\n", 3105 nid, start_pfn, end_pfn); 3106 3107 /* Initialise the boundary for this node if necessary */ 3108 if (node_boundary_end_pfn[nid] == 0) 3109 node_boundary_start_pfn[nid] = -1UL; 3110 3111 /* Update the boundaries */ 3112 if (node_boundary_start_pfn[nid] > start_pfn) 3113 node_boundary_start_pfn[nid] = start_pfn; 3114 if (node_boundary_end_pfn[nid] < end_pfn) 3115 node_boundary_end_pfn[nid] = end_pfn; 3116 } 3117 3118 /* If necessary, push the node boundary out for reserve hotadd */ 3119 static void __meminit account_node_boundary(unsigned int nid, 3120 unsigned long *start_pfn, unsigned long *end_pfn) 3121 { 3122 mminit_dprintk(MMINIT_TRACE, "zoneboundary", 3123 "Entering account_node_boundary(%u, %lu, %lu)\n", 3124 nid, *start_pfn, *end_pfn); 3125 3126 /* Return if boundary information has not been provided */ 3127 if (node_boundary_end_pfn[nid] == 0) 3128 return; 3129 3130 /* Check the boundaries and update if necessary */ 3131 if (node_boundary_start_pfn[nid] < *start_pfn) 3132 *start_pfn = node_boundary_start_pfn[nid]; 3133 if (node_boundary_end_pfn[nid] > *end_pfn) 3134 *end_pfn = node_boundary_end_pfn[nid]; 3135 } 3136 #else 3137 void __init push_node_boundaries(unsigned int nid, 3138 unsigned long start_pfn, unsigned long end_pfn) {} 3139 3140 static void __meminit account_node_boundary(unsigned int nid, 3141 unsigned long *start_pfn, unsigned long *end_pfn) {} 3142 #endif 3143 3144 3145 /** 3146 * get_pfn_range_for_nid - Return the start and end page frames for a node 3147 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned. 3148 * @start_pfn: Passed by reference. On return, it will have the node start_pfn. 3149 * @end_pfn: Passed by reference. On return, it will have the node end_pfn. 3150 * 3151 * It returns the start and end page frame of a node based on information 3152 * provided by an arch calling add_active_range(). If called for a node 3153 * with no available memory, a warning is printed and the start and end 3154 * PFNs will be 0. 3155 */ 3156 void __meminit get_pfn_range_for_nid(unsigned int nid, 3157 unsigned long *start_pfn, unsigned long *end_pfn) 3158 { 3159 int i; 3160 *start_pfn = -1UL; 3161 *end_pfn = 0; 3162 3163 for_each_active_range_index_in_nid(i, nid) { 3164 *start_pfn = min(*start_pfn, early_node_map[i].start_pfn); 3165 *end_pfn = max(*end_pfn, early_node_map[i].end_pfn); 3166 } 3167 3168 if (*start_pfn == -1UL) 3169 *start_pfn = 0; 3170 3171 /* Push the node boundaries out if requested */ 3172 account_node_boundary(nid, start_pfn, end_pfn); 3173 } 3174 3175 /* 3176 * This finds a zone that can be used for ZONE_MOVABLE pages. The 3177 * assumption is made that zones within a node are ordered in monotonic 3178 * increasing memory addresses so that the "highest" populated zone is used 3179 */ 3180 static void __init find_usable_zone_for_movable(void) 3181 { 3182 int zone_index; 3183 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) { 3184 if (zone_index == ZONE_MOVABLE) 3185 continue; 3186 3187 if (arch_zone_highest_possible_pfn[zone_index] > 3188 arch_zone_lowest_possible_pfn[zone_index]) 3189 break; 3190 } 3191 3192 VM_BUG_ON(zone_index == -1); 3193 movable_zone = zone_index; 3194 } 3195 3196 /* 3197 * The zone ranges provided by the architecture do not include ZONE_MOVABLE 3198 * because it is sized independant of architecture. Unlike the other zones, 3199 * the starting point for ZONE_MOVABLE is not fixed. It may be different 3200 * in each node depending on the size of each node and how evenly kernelcore 3201 * is distributed. This helper function adjusts the zone ranges 3202 * provided by the architecture for a given node by using the end of the 3203 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that 3204 * zones within a node are in order of monotonic increases memory addresses 3205 */ 3206 static void __meminit adjust_zone_range_for_zone_movable(int nid, 3207 unsigned long zone_type, 3208 unsigned long node_start_pfn, 3209 unsigned long node_end_pfn, 3210 unsigned long *zone_start_pfn, 3211 unsigned long *zone_end_pfn) 3212 { 3213 /* Only adjust if ZONE_MOVABLE is on this node */ 3214 if (zone_movable_pfn[nid]) { 3215 /* Size ZONE_MOVABLE */ 3216 if (zone_type == ZONE_MOVABLE) { 3217 *zone_start_pfn = zone_movable_pfn[nid]; 3218 *zone_end_pfn = min(node_end_pfn, 3219 arch_zone_highest_possible_pfn[movable_zone]); 3220 3221 /* Adjust for ZONE_MOVABLE starting within this range */ 3222 } else if (*zone_start_pfn < zone_movable_pfn[nid] && 3223 *zone_end_pfn > zone_movable_pfn[nid]) { 3224 *zone_end_pfn = zone_movable_pfn[nid]; 3225 3226 /* Check if this whole range is within ZONE_MOVABLE */ 3227 } else if (*zone_start_pfn >= zone_movable_pfn[nid]) 3228 *zone_start_pfn = *zone_end_pfn; 3229 } 3230 } 3231 3232 /* 3233 * Return the number of pages a zone spans in a node, including holes 3234 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node() 3235 */ 3236 static unsigned long __meminit zone_spanned_pages_in_node(int nid, 3237 unsigned long zone_type, 3238 unsigned long *ignored) 3239 { 3240 unsigned long node_start_pfn, node_end_pfn; 3241 unsigned long zone_start_pfn, zone_end_pfn; 3242 3243 /* Get the start and end of the node and zone */ 3244 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn); 3245 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type]; 3246 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type]; 3247 adjust_zone_range_for_zone_movable(nid, zone_type, 3248 node_start_pfn, node_end_pfn, 3249 &zone_start_pfn, &zone_end_pfn); 3250 3251 /* Check that this node has pages within the zone's required range */ 3252 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn) 3253 return 0; 3254 3255 /* Move the zone boundaries inside the node if necessary */ 3256 zone_end_pfn = min(zone_end_pfn, node_end_pfn); 3257 zone_start_pfn = max(zone_start_pfn, node_start_pfn); 3258 3259 /* Return the spanned pages */ 3260 return zone_end_pfn - zone_start_pfn; 3261 } 3262 3263 /* 3264 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES, 3265 * then all holes in the requested range will be accounted for. 3266 */ 3267 static unsigned long __meminit __absent_pages_in_range(int nid, 3268 unsigned long range_start_pfn, 3269 unsigned long range_end_pfn) 3270 { 3271 int i = 0; 3272 unsigned long prev_end_pfn = 0, hole_pages = 0; 3273 unsigned long start_pfn; 3274 3275 /* Find the end_pfn of the first active range of pfns in the node */ 3276 i = first_active_region_index_in_nid(nid); 3277 if (i == -1) 3278 return 0; 3279 3280 prev_end_pfn = min(early_node_map[i].start_pfn, range_end_pfn); 3281 3282 /* Account for ranges before physical memory on this node */ 3283 if (early_node_map[i].start_pfn > range_start_pfn) 3284 hole_pages = prev_end_pfn - range_start_pfn; 3285 3286 /* Find all holes for the zone within the node */ 3287 for (; i != -1; i = next_active_region_index_in_nid(i, nid)) { 3288 3289 /* No need to continue if prev_end_pfn is outside the zone */ 3290 if (prev_end_pfn >= range_end_pfn) 3291 break; 3292 3293 /* Make sure the end of the zone is not within the hole */ 3294 start_pfn = min(early_node_map[i].start_pfn, range_end_pfn); 3295 prev_end_pfn = max(prev_end_pfn, range_start_pfn); 3296 3297 /* Update the hole size cound and move on */ 3298 if (start_pfn > range_start_pfn) { 3299 BUG_ON(prev_end_pfn > start_pfn); 3300 hole_pages += start_pfn - prev_end_pfn; 3301 } 3302 prev_end_pfn = early_node_map[i].end_pfn; 3303 } 3304 3305 /* Account for ranges past physical memory on this node */ 3306 if (range_end_pfn > prev_end_pfn) 3307 hole_pages += range_end_pfn - 3308 max(range_start_pfn, prev_end_pfn); 3309 3310 return hole_pages; 3311 } 3312 3313 /** 3314 * absent_pages_in_range - Return number of page frames in holes within a range 3315 * @start_pfn: The start PFN to start searching for holes 3316 * @end_pfn: The end PFN to stop searching for holes 3317 * 3318 * It returns the number of pages frames in memory holes within a range. 3319 */ 3320 unsigned long __init absent_pages_in_range(unsigned long start_pfn, 3321 unsigned long end_pfn) 3322 { 3323 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn); 3324 } 3325 3326 /* Return the number of page frames in holes in a zone on a node */ 3327 static unsigned long __meminit zone_absent_pages_in_node(int nid, 3328 unsigned long zone_type, 3329 unsigned long *ignored) 3330 { 3331 unsigned long node_start_pfn, node_end_pfn; 3332 unsigned long zone_start_pfn, zone_end_pfn; 3333 3334 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn); 3335 zone_start_pfn = max(arch_zone_lowest_possible_pfn[zone_type], 3336 node_start_pfn); 3337 zone_end_pfn = min(arch_zone_highest_possible_pfn[zone_type], 3338 node_end_pfn); 3339 3340 adjust_zone_range_for_zone_movable(nid, zone_type, 3341 node_start_pfn, node_end_pfn, 3342 &zone_start_pfn, &zone_end_pfn); 3343 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn); 3344 } 3345 3346 #else 3347 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid, 3348 unsigned long zone_type, 3349 unsigned long *zones_size) 3350 { 3351 return zones_size[zone_type]; 3352 } 3353 3354 static inline unsigned long __meminit zone_absent_pages_in_node(int nid, 3355 unsigned long zone_type, 3356 unsigned long *zholes_size) 3357 { 3358 if (!zholes_size) 3359 return 0; 3360 3361 return zholes_size[zone_type]; 3362 } 3363 3364 #endif 3365 3366 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat, 3367 unsigned long *zones_size, unsigned long *zholes_size) 3368 { 3369 unsigned long realtotalpages, totalpages = 0; 3370 enum zone_type i; 3371 3372 for (i = 0; i < MAX_NR_ZONES; i++) 3373 totalpages += zone_spanned_pages_in_node(pgdat->node_id, i, 3374 zones_size); 3375 pgdat->node_spanned_pages = totalpages; 3376 3377 realtotalpages = totalpages; 3378 for (i = 0; i < MAX_NR_ZONES; i++) 3379 realtotalpages -= 3380 zone_absent_pages_in_node(pgdat->node_id, i, 3381 zholes_size); 3382 pgdat->node_present_pages = realtotalpages; 3383 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id, 3384 realtotalpages); 3385 } 3386 3387 #ifndef CONFIG_SPARSEMEM 3388 /* 3389 * Calculate the size of the zone->blockflags rounded to an unsigned long 3390 * Start by making sure zonesize is a multiple of pageblock_order by rounding 3391 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally 3392 * round what is now in bits to nearest long in bits, then return it in 3393 * bytes. 3394 */ 3395 static unsigned long __init usemap_size(unsigned long zonesize) 3396 { 3397 unsigned long usemapsize; 3398 3399 usemapsize = roundup(zonesize, pageblock_nr_pages); 3400 usemapsize = usemapsize >> pageblock_order; 3401 usemapsize *= NR_PAGEBLOCK_BITS; 3402 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long)); 3403 3404 return usemapsize / 8; 3405 } 3406 3407 static void __init setup_usemap(struct pglist_data *pgdat, 3408 struct zone *zone, unsigned long zonesize) 3409 { 3410 unsigned long usemapsize = usemap_size(zonesize); 3411 zone->pageblock_flags = NULL; 3412 if (usemapsize) 3413 zone->pageblock_flags = alloc_bootmem_node(pgdat, usemapsize); 3414 } 3415 #else 3416 static void inline setup_usemap(struct pglist_data *pgdat, 3417 struct zone *zone, unsigned long zonesize) {} 3418 #endif /* CONFIG_SPARSEMEM */ 3419 3420 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE 3421 3422 /* Return a sensible default order for the pageblock size. */ 3423 static inline int pageblock_default_order(void) 3424 { 3425 if (HPAGE_SHIFT > PAGE_SHIFT) 3426 return HUGETLB_PAGE_ORDER; 3427 3428 return MAX_ORDER-1; 3429 } 3430 3431 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */ 3432 static inline void __init set_pageblock_order(unsigned int order) 3433 { 3434 /* Check that pageblock_nr_pages has not already been setup */ 3435 if (pageblock_order) 3436 return; 3437 3438 /* 3439 * Assume the largest contiguous order of interest is a huge page. 3440 * This value may be variable depending on boot parameters on IA64 3441 */ 3442 pageblock_order = order; 3443 } 3444 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */ 3445 3446 /* 3447 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order() 3448 * and pageblock_default_order() are unused as pageblock_order is set 3449 * at compile-time. See include/linux/pageblock-flags.h for the values of 3450 * pageblock_order based on the kernel config 3451 */ 3452 static inline int pageblock_default_order(unsigned int order) 3453 { 3454 return MAX_ORDER-1; 3455 } 3456 #define set_pageblock_order(x) do {} while (0) 3457 3458 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */ 3459 3460 /* 3461 * Set up the zone data structures: 3462 * - mark all pages reserved 3463 * - mark all memory queues empty 3464 * - clear the memory bitmaps 3465 */ 3466 static void __paginginit free_area_init_core(struct pglist_data *pgdat, 3467 unsigned long *zones_size, unsigned long *zholes_size) 3468 { 3469 enum zone_type j; 3470 int nid = pgdat->node_id; 3471 unsigned long zone_start_pfn = pgdat->node_start_pfn; 3472 int ret; 3473 3474 pgdat_resize_init(pgdat); 3475 pgdat->nr_zones = 0; 3476 init_waitqueue_head(&pgdat->kswapd_wait); 3477 pgdat->kswapd_max_order = 0; 3478 pgdat_page_cgroup_init(pgdat); 3479 3480 for (j = 0; j < MAX_NR_ZONES; j++) { 3481 struct zone *zone = pgdat->node_zones + j; 3482 unsigned long size, realsize, memmap_pages; 3483 enum lru_list l; 3484 3485 size = zone_spanned_pages_in_node(nid, j, zones_size); 3486 realsize = size - zone_absent_pages_in_node(nid, j, 3487 zholes_size); 3488 3489 /* 3490 * Adjust realsize so that it accounts for how much memory 3491 * is used by this zone for memmap. This affects the watermark 3492 * and per-cpu initialisations 3493 */ 3494 memmap_pages = 3495 PAGE_ALIGN(size * sizeof(struct page)) >> PAGE_SHIFT; 3496 if (realsize >= memmap_pages) { 3497 realsize -= memmap_pages; 3498 if (memmap_pages) 3499 printk(KERN_DEBUG 3500 " %s zone: %lu pages used for memmap\n", 3501 zone_names[j], memmap_pages); 3502 } else 3503 printk(KERN_WARNING 3504 " %s zone: %lu pages exceeds realsize %lu\n", 3505 zone_names[j], memmap_pages, realsize); 3506 3507 /* Account for reserved pages */ 3508 if (j == 0 && realsize > dma_reserve) { 3509 realsize -= dma_reserve; 3510 printk(KERN_DEBUG " %s zone: %lu pages reserved\n", 3511 zone_names[0], dma_reserve); 3512 } 3513 3514 if (!is_highmem_idx(j)) 3515 nr_kernel_pages += realsize; 3516 nr_all_pages += realsize; 3517 3518 zone->spanned_pages = size; 3519 zone->present_pages = realsize; 3520 #ifdef CONFIG_NUMA 3521 zone->node = nid; 3522 zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio) 3523 / 100; 3524 zone->min_slab_pages = (realsize * sysctl_min_slab_ratio) / 100; 3525 #endif 3526 zone->name = zone_names[j]; 3527 spin_lock_init(&zone->lock); 3528 spin_lock_init(&zone->lru_lock); 3529 zone_seqlock_init(zone); 3530 zone->zone_pgdat = pgdat; 3531 3532 zone->prev_priority = DEF_PRIORITY; 3533 3534 zone_pcp_init(zone); 3535 for_each_lru(l) { 3536 INIT_LIST_HEAD(&zone->lru[l].list); 3537 zone->lru[l].nr_scan = 0; 3538 } 3539 zone->reclaim_stat.recent_rotated[0] = 0; 3540 zone->reclaim_stat.recent_rotated[1] = 0; 3541 zone->reclaim_stat.recent_scanned[0] = 0; 3542 zone->reclaim_stat.recent_scanned[1] = 0; 3543 zap_zone_vm_stats(zone); 3544 zone->flags = 0; 3545 if (!size) 3546 continue; 3547 3548 set_pageblock_order(pageblock_default_order()); 3549 setup_usemap(pgdat, zone, size); 3550 ret = init_currently_empty_zone(zone, zone_start_pfn, 3551 size, MEMMAP_EARLY); 3552 BUG_ON(ret); 3553 memmap_init(size, nid, j, zone_start_pfn); 3554 zone_start_pfn += size; 3555 } 3556 } 3557 3558 static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat) 3559 { 3560 /* Skip empty nodes */ 3561 if (!pgdat->node_spanned_pages) 3562 return; 3563 3564 #ifdef CONFIG_FLAT_NODE_MEM_MAP 3565 /* ia64 gets its own node_mem_map, before this, without bootmem */ 3566 if (!pgdat->node_mem_map) { 3567 unsigned long size, start, end; 3568 struct page *map; 3569 3570 /* 3571 * The zone's endpoints aren't required to be MAX_ORDER 3572 * aligned but the node_mem_map endpoints must be in order 3573 * for the buddy allocator to function correctly. 3574 */ 3575 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1); 3576 end = pgdat->node_start_pfn + pgdat->node_spanned_pages; 3577 end = ALIGN(end, MAX_ORDER_NR_PAGES); 3578 size = (end - start) * sizeof(struct page); 3579 map = alloc_remap(pgdat->node_id, size); 3580 if (!map) 3581 map = alloc_bootmem_node(pgdat, size); 3582 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start); 3583 } 3584 #ifndef CONFIG_NEED_MULTIPLE_NODES 3585 /* 3586 * With no DISCONTIG, the global mem_map is just set as node 0's 3587 */ 3588 if (pgdat == NODE_DATA(0)) { 3589 mem_map = NODE_DATA(0)->node_mem_map; 3590 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP 3591 if (page_to_pfn(mem_map) != pgdat->node_start_pfn) 3592 mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET); 3593 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */ 3594 } 3595 #endif 3596 #endif /* CONFIG_FLAT_NODE_MEM_MAP */ 3597 } 3598 3599 void __paginginit free_area_init_node(int nid, unsigned long *zones_size, 3600 unsigned long node_start_pfn, unsigned long *zholes_size) 3601 { 3602 pg_data_t *pgdat = NODE_DATA(nid); 3603 3604 pgdat->node_id = nid; 3605 pgdat->node_start_pfn = node_start_pfn; 3606 calculate_node_totalpages(pgdat, zones_size, zholes_size); 3607 3608 alloc_node_mem_map(pgdat); 3609 #ifdef CONFIG_FLAT_NODE_MEM_MAP 3610 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n", 3611 nid, (unsigned long)pgdat, 3612 (unsigned long)pgdat->node_mem_map); 3613 #endif 3614 3615 free_area_init_core(pgdat, zones_size, zholes_size); 3616 } 3617 3618 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP 3619 3620 #if MAX_NUMNODES > 1 3621 /* 3622 * Figure out the number of possible node ids. 3623 */ 3624 static void __init setup_nr_node_ids(void) 3625 { 3626 unsigned int node; 3627 unsigned int highest = 0; 3628 3629 for_each_node_mask(node, node_possible_map) 3630 highest = node; 3631 nr_node_ids = highest + 1; 3632 } 3633 #else 3634 static inline void setup_nr_node_ids(void) 3635 { 3636 } 3637 #endif 3638 3639 /** 3640 * add_active_range - Register a range of PFNs backed by physical memory 3641 * @nid: The node ID the range resides on 3642 * @start_pfn: The start PFN of the available physical memory 3643 * @end_pfn: The end PFN of the available physical memory 3644 * 3645 * These ranges are stored in an early_node_map[] and later used by 3646 * free_area_init_nodes() to calculate zone sizes and holes. If the 3647 * range spans a memory hole, it is up to the architecture to ensure 3648 * the memory is not freed by the bootmem allocator. If possible 3649 * the range being registered will be merged with existing ranges. 3650 */ 3651 void __init add_active_range(unsigned int nid, unsigned long start_pfn, 3652 unsigned long end_pfn) 3653 { 3654 int i; 3655 3656 mminit_dprintk(MMINIT_TRACE, "memory_register", 3657 "Entering add_active_range(%d, %#lx, %#lx) " 3658 "%d entries of %d used\n", 3659 nid, start_pfn, end_pfn, 3660 nr_nodemap_entries, MAX_ACTIVE_REGIONS); 3661 3662 mminit_validate_memmodel_limits(&start_pfn, &end_pfn); 3663 3664 /* Merge with existing active regions if possible */ 3665 for (i = 0; i < nr_nodemap_entries; i++) { 3666 if (early_node_map[i].nid != nid) 3667 continue; 3668 3669 /* Skip if an existing region covers this new one */ 3670 if (start_pfn >= early_node_map[i].start_pfn && 3671 end_pfn <= early_node_map[i].end_pfn) 3672 return; 3673 3674 /* Merge forward if suitable */ 3675 if (start_pfn <= early_node_map[i].end_pfn && 3676 end_pfn > early_node_map[i].end_pfn) { 3677 early_node_map[i].end_pfn = end_pfn; 3678 return; 3679 } 3680 3681 /* Merge backward if suitable */ 3682 if (start_pfn < early_node_map[i].end_pfn && 3683 end_pfn >= early_node_map[i].start_pfn) { 3684 early_node_map[i].start_pfn = start_pfn; 3685 return; 3686 } 3687 } 3688 3689 /* Check that early_node_map is large enough */ 3690 if (i >= MAX_ACTIVE_REGIONS) { 3691 printk(KERN_CRIT "More than %d memory regions, truncating\n", 3692 MAX_ACTIVE_REGIONS); 3693 return; 3694 } 3695 3696 early_node_map[i].nid = nid; 3697 early_node_map[i].start_pfn = start_pfn; 3698 early_node_map[i].end_pfn = end_pfn; 3699 nr_nodemap_entries = i + 1; 3700 } 3701 3702 /** 3703 * remove_active_range - Shrink an existing registered range of PFNs 3704 * @nid: The node id the range is on that should be shrunk 3705 * @start_pfn: The new PFN of the range 3706 * @end_pfn: The new PFN of the range 3707 * 3708 * i386 with NUMA use alloc_remap() to store a node_mem_map on a local node. 3709 * The map is kept near the end physical page range that has already been 3710 * registered. This function allows an arch to shrink an existing registered 3711 * range. 3712 */ 3713 void __init remove_active_range(unsigned int nid, unsigned long start_pfn, 3714 unsigned long end_pfn) 3715 { 3716 int i, j; 3717 int removed = 0; 3718 3719 printk(KERN_DEBUG "remove_active_range (%d, %lu, %lu)\n", 3720 nid, start_pfn, end_pfn); 3721 3722 /* Find the old active region end and shrink */ 3723 for_each_active_range_index_in_nid(i, nid) { 3724 if (early_node_map[i].start_pfn >= start_pfn && 3725 early_node_map[i].end_pfn <= end_pfn) { 3726 /* clear it */ 3727 early_node_map[i].start_pfn = 0; 3728 early_node_map[i].end_pfn = 0; 3729 removed = 1; 3730 continue; 3731 } 3732 if (early_node_map[i].start_pfn < start_pfn && 3733 early_node_map[i].end_pfn > start_pfn) { 3734 unsigned long temp_end_pfn = early_node_map[i].end_pfn; 3735 early_node_map[i].end_pfn = start_pfn; 3736 if (temp_end_pfn > end_pfn) 3737 add_active_range(nid, end_pfn, temp_end_pfn); 3738 continue; 3739 } 3740 if (early_node_map[i].start_pfn >= start_pfn && 3741 early_node_map[i].end_pfn > end_pfn && 3742 early_node_map[i].start_pfn < end_pfn) { 3743 early_node_map[i].start_pfn = end_pfn; 3744 continue; 3745 } 3746 } 3747 3748 if (!removed) 3749 return; 3750 3751 /* remove the blank ones */ 3752 for (i = nr_nodemap_entries - 1; i > 0; i--) { 3753 if (early_node_map[i].nid != nid) 3754 continue; 3755 if (early_node_map[i].end_pfn) 3756 continue; 3757 /* we found it, get rid of it */ 3758 for (j = i; j < nr_nodemap_entries - 1; j++) 3759 memcpy(&early_node_map[j], &early_node_map[j+1], 3760 sizeof(early_node_map[j])); 3761 j = nr_nodemap_entries - 1; 3762 memset(&early_node_map[j], 0, sizeof(early_node_map[j])); 3763 nr_nodemap_entries--; 3764 } 3765 } 3766 3767 /** 3768 * remove_all_active_ranges - Remove all currently registered regions 3769 * 3770 * During discovery, it may be found that a table like SRAT is invalid 3771 * and an alternative discovery method must be used. This function removes 3772 * all currently registered regions. 3773 */ 3774 void __init remove_all_active_ranges(void) 3775 { 3776 memset(early_node_map, 0, sizeof(early_node_map)); 3777 nr_nodemap_entries = 0; 3778 #ifdef CONFIG_MEMORY_HOTPLUG_RESERVE 3779 memset(node_boundary_start_pfn, 0, sizeof(node_boundary_start_pfn)); 3780 memset(node_boundary_end_pfn, 0, sizeof(node_boundary_end_pfn)); 3781 #endif /* CONFIG_MEMORY_HOTPLUG_RESERVE */ 3782 } 3783 3784 /* Compare two active node_active_regions */ 3785 static int __init cmp_node_active_region(const void *a, const void *b) 3786 { 3787 struct node_active_region *arange = (struct node_active_region *)a; 3788 struct node_active_region *brange = (struct node_active_region *)b; 3789 3790 /* Done this way to avoid overflows */ 3791 if (arange->start_pfn > brange->start_pfn) 3792 return 1; 3793 if (arange->start_pfn < brange->start_pfn) 3794 return -1; 3795 3796 return 0; 3797 } 3798 3799 /* sort the node_map by start_pfn */ 3800 static void __init sort_node_map(void) 3801 { 3802 sort(early_node_map, (size_t)nr_nodemap_entries, 3803 sizeof(struct node_active_region), 3804 cmp_node_active_region, NULL); 3805 } 3806 3807 /* Find the lowest pfn for a node */ 3808 static unsigned long __init find_min_pfn_for_node(int nid) 3809 { 3810 int i; 3811 unsigned long min_pfn = ULONG_MAX; 3812 3813 /* Assuming a sorted map, the first range found has the starting pfn */ 3814 for_each_active_range_index_in_nid(i, nid) 3815 min_pfn = min(min_pfn, early_node_map[i].start_pfn); 3816 3817 if (min_pfn == ULONG_MAX) { 3818 printk(KERN_WARNING 3819 "Could not find start_pfn for node %d\n", nid); 3820 return 0; 3821 } 3822 3823 return min_pfn; 3824 } 3825 3826 /** 3827 * find_min_pfn_with_active_regions - Find the minimum PFN registered 3828 * 3829 * It returns the minimum PFN based on information provided via 3830 * add_active_range(). 3831 */ 3832 unsigned long __init find_min_pfn_with_active_regions(void) 3833 { 3834 return find_min_pfn_for_node(MAX_NUMNODES); 3835 } 3836 3837 /* 3838 * early_calculate_totalpages() 3839 * Sum pages in active regions for movable zone. 3840 * Populate N_HIGH_MEMORY for calculating usable_nodes. 3841 */ 3842 static unsigned long __init early_calculate_totalpages(void) 3843 { 3844 int i; 3845 unsigned long totalpages = 0; 3846 3847 for (i = 0; i < nr_nodemap_entries; i++) { 3848 unsigned long pages = early_node_map[i].end_pfn - 3849 early_node_map[i].start_pfn; 3850 totalpages += pages; 3851 if (pages) 3852 node_set_state(early_node_map[i].nid, N_HIGH_MEMORY); 3853 } 3854 return totalpages; 3855 } 3856 3857 /* 3858 * Find the PFN the Movable zone begins in each node. Kernel memory 3859 * is spread evenly between nodes as long as the nodes have enough 3860 * memory. When they don't, some nodes will have more kernelcore than 3861 * others 3862 */ 3863 static void __init find_zone_movable_pfns_for_nodes(unsigned long *movable_pfn) 3864 { 3865 int i, nid; 3866 unsigned long usable_startpfn; 3867 unsigned long kernelcore_node, kernelcore_remaining; 3868 unsigned long totalpages = early_calculate_totalpages(); 3869 int usable_nodes = nodes_weight(node_states[N_HIGH_MEMORY]); 3870 3871 /* 3872 * If movablecore was specified, calculate what size of 3873 * kernelcore that corresponds so that memory usable for 3874 * any allocation type is evenly spread. If both kernelcore 3875 * and movablecore are specified, then the value of kernelcore 3876 * will be used for required_kernelcore if it's greater than 3877 * what movablecore would have allowed. 3878 */ 3879 if (required_movablecore) { 3880 unsigned long corepages; 3881 3882 /* 3883 * Round-up so that ZONE_MOVABLE is at least as large as what 3884 * was requested by the user 3885 */ 3886 required_movablecore = 3887 roundup(required_movablecore, MAX_ORDER_NR_PAGES); 3888 corepages = totalpages - required_movablecore; 3889 3890 required_kernelcore = max(required_kernelcore, corepages); 3891 } 3892 3893 /* If kernelcore was not specified, there is no ZONE_MOVABLE */ 3894 if (!required_kernelcore) 3895 return; 3896 3897 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */ 3898 find_usable_zone_for_movable(); 3899 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone]; 3900 3901 restart: 3902 /* Spread kernelcore memory as evenly as possible throughout nodes */ 3903 kernelcore_node = required_kernelcore / usable_nodes; 3904 for_each_node_state(nid, N_HIGH_MEMORY) { 3905 /* 3906 * Recalculate kernelcore_node if the division per node 3907 * now exceeds what is necessary to satisfy the requested 3908 * amount of memory for the kernel 3909 */ 3910 if (required_kernelcore < kernelcore_node) 3911 kernelcore_node = required_kernelcore / usable_nodes; 3912 3913 /* 3914 * As the map is walked, we track how much memory is usable 3915 * by the kernel using kernelcore_remaining. When it is 3916 * 0, the rest of the node is usable by ZONE_MOVABLE 3917 */ 3918 kernelcore_remaining = kernelcore_node; 3919 3920 /* Go through each range of PFNs within this node */ 3921 for_each_active_range_index_in_nid(i, nid) { 3922 unsigned long start_pfn, end_pfn; 3923 unsigned long size_pages; 3924 3925 start_pfn = max(early_node_map[i].start_pfn, 3926 zone_movable_pfn[nid]); 3927 end_pfn = early_node_map[i].end_pfn; 3928 if (start_pfn >= end_pfn) 3929 continue; 3930 3931 /* Account for what is only usable for kernelcore */ 3932 if (start_pfn < usable_startpfn) { 3933 unsigned long kernel_pages; 3934 kernel_pages = min(end_pfn, usable_startpfn) 3935 - start_pfn; 3936 3937 kernelcore_remaining -= min(kernel_pages, 3938 kernelcore_remaining); 3939 required_kernelcore -= min(kernel_pages, 3940 required_kernelcore); 3941 3942 /* Continue if range is now fully accounted */ 3943 if (end_pfn <= usable_startpfn) { 3944 3945 /* 3946 * Push zone_movable_pfn to the end so 3947 * that if we have to rebalance 3948 * kernelcore across nodes, we will 3949 * not double account here 3950 */ 3951 zone_movable_pfn[nid] = end_pfn; 3952 continue; 3953 } 3954 start_pfn = usable_startpfn; 3955 } 3956 3957 /* 3958 * The usable PFN range for ZONE_MOVABLE is from 3959 * start_pfn->end_pfn. Calculate size_pages as the 3960 * number of pages used as kernelcore 3961 */ 3962 size_pages = end_pfn - start_pfn; 3963 if (size_pages > kernelcore_remaining) 3964 size_pages = kernelcore_remaining; 3965 zone_movable_pfn[nid] = start_pfn + size_pages; 3966 3967 /* 3968 * Some kernelcore has been met, update counts and 3969 * break if the kernelcore for this node has been 3970 * satisified 3971 */ 3972 required_kernelcore -= min(required_kernelcore, 3973 size_pages); 3974 kernelcore_remaining -= size_pages; 3975 if (!kernelcore_remaining) 3976 break; 3977 } 3978 } 3979 3980 /* 3981 * If there is still required_kernelcore, we do another pass with one 3982 * less node in the count. This will push zone_movable_pfn[nid] further 3983 * along on the nodes that still have memory until kernelcore is 3984 * satisified 3985 */ 3986 usable_nodes--; 3987 if (usable_nodes && required_kernelcore > usable_nodes) 3988 goto restart; 3989 3990 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */ 3991 for (nid = 0; nid < MAX_NUMNODES; nid++) 3992 zone_movable_pfn[nid] = 3993 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES); 3994 } 3995 3996 /* Any regular memory on that node ? */ 3997 static void check_for_regular_memory(pg_data_t *pgdat) 3998 { 3999 #ifdef CONFIG_HIGHMEM 4000 enum zone_type zone_type; 4001 4002 for (zone_type = 0; zone_type <= ZONE_NORMAL; zone_type++) { 4003 struct zone *zone = &pgdat->node_zones[zone_type]; 4004 if (zone->present_pages) 4005 node_set_state(zone_to_nid(zone), N_NORMAL_MEMORY); 4006 } 4007 #endif 4008 } 4009 4010 /** 4011 * free_area_init_nodes - Initialise all pg_data_t and zone data 4012 * @max_zone_pfn: an array of max PFNs for each zone 4013 * 4014 * This will call free_area_init_node() for each active node in the system. 4015 * Using the page ranges provided by add_active_range(), the size of each 4016 * zone in each node and their holes is calculated. If the maximum PFN 4017 * between two adjacent zones match, it is assumed that the zone is empty. 4018 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed 4019 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone 4020 * starts where the previous one ended. For example, ZONE_DMA32 starts 4021 * at arch_max_dma_pfn. 4022 */ 4023 void __init free_area_init_nodes(unsigned long *max_zone_pfn) 4024 { 4025 unsigned long nid; 4026 int i; 4027 4028 /* Sort early_node_map as initialisation assumes it is sorted */ 4029 sort_node_map(); 4030 4031 /* Record where the zone boundaries are */ 4032 memset(arch_zone_lowest_possible_pfn, 0, 4033 sizeof(arch_zone_lowest_possible_pfn)); 4034 memset(arch_zone_highest_possible_pfn, 0, 4035 sizeof(arch_zone_highest_possible_pfn)); 4036 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions(); 4037 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0]; 4038 for (i = 1; i < MAX_NR_ZONES; i++) { 4039 if (i == ZONE_MOVABLE) 4040 continue; 4041 arch_zone_lowest_possible_pfn[i] = 4042 arch_zone_highest_possible_pfn[i-1]; 4043 arch_zone_highest_possible_pfn[i] = 4044 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]); 4045 } 4046 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0; 4047 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0; 4048 4049 /* Find the PFNs that ZONE_MOVABLE begins at in each node */ 4050 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn)); 4051 find_zone_movable_pfns_for_nodes(zone_movable_pfn); 4052 4053 /* Print out the zone ranges */ 4054 printk("Zone PFN ranges:\n"); 4055 for (i = 0; i < MAX_NR_ZONES; i++) { 4056 if (i == ZONE_MOVABLE) 4057 continue; 4058 printk(" %-8s %0#10lx -> %0#10lx\n", 4059 zone_names[i], 4060 arch_zone_lowest_possible_pfn[i], 4061 arch_zone_highest_possible_pfn[i]); 4062 } 4063 4064 /* Print out the PFNs ZONE_MOVABLE begins at in each node */ 4065 printk("Movable zone start PFN for each node\n"); 4066 for (i = 0; i < MAX_NUMNODES; i++) { 4067 if (zone_movable_pfn[i]) 4068 printk(" Node %d: %lu\n", i, zone_movable_pfn[i]); 4069 } 4070 4071 /* Print out the early_node_map[] */ 4072 printk("early_node_map[%d] active PFN ranges\n", nr_nodemap_entries); 4073 for (i = 0; i < nr_nodemap_entries; i++) 4074 printk(" %3d: %0#10lx -> %0#10lx\n", early_node_map[i].nid, 4075 early_node_map[i].start_pfn, 4076 early_node_map[i].end_pfn); 4077 4078 /* Initialise every node */ 4079 mminit_verify_pageflags_layout(); 4080 setup_nr_node_ids(); 4081 for_each_online_node(nid) { 4082 pg_data_t *pgdat = NODE_DATA(nid); 4083 free_area_init_node(nid, NULL, 4084 find_min_pfn_for_node(nid), NULL); 4085 4086 /* Any memory on that node */ 4087 if (pgdat->node_present_pages) 4088 node_set_state(nid, N_HIGH_MEMORY); 4089 check_for_regular_memory(pgdat); 4090 } 4091 } 4092 4093 static int __init cmdline_parse_core(char *p, unsigned long *core) 4094 { 4095 unsigned long long coremem; 4096 if (!p) 4097 return -EINVAL; 4098 4099 coremem = memparse(p, &p); 4100 *core = coremem >> PAGE_SHIFT; 4101 4102 /* Paranoid check that UL is enough for the coremem value */ 4103 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX); 4104 4105 return 0; 4106 } 4107 4108 /* 4109 * kernelcore=size sets the amount of memory for use for allocations that 4110 * cannot be reclaimed or migrated. 4111 */ 4112 static int __init cmdline_parse_kernelcore(char *p) 4113 { 4114 return cmdline_parse_core(p, &required_kernelcore); 4115 } 4116 4117 /* 4118 * movablecore=size sets the amount of memory for use for allocations that 4119 * can be reclaimed or migrated. 4120 */ 4121 static int __init cmdline_parse_movablecore(char *p) 4122 { 4123 return cmdline_parse_core(p, &required_movablecore); 4124 } 4125 4126 early_param("kernelcore", cmdline_parse_kernelcore); 4127 early_param("movablecore", cmdline_parse_movablecore); 4128 4129 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */ 4130 4131 /** 4132 * set_dma_reserve - set the specified number of pages reserved in the first zone 4133 * @new_dma_reserve: The number of pages to mark reserved 4134 * 4135 * The per-cpu batchsize and zone watermarks are determined by present_pages. 4136 * In the DMA zone, a significant percentage may be consumed by kernel image 4137 * and other unfreeable allocations which can skew the watermarks badly. This 4138 * function may optionally be used to account for unfreeable pages in the 4139 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and 4140 * smaller per-cpu batchsize. 4141 */ 4142 void __init set_dma_reserve(unsigned long new_dma_reserve) 4143 { 4144 dma_reserve = new_dma_reserve; 4145 } 4146 4147 #ifndef CONFIG_NEED_MULTIPLE_NODES 4148 struct pglist_data __refdata contig_page_data = { .bdata = &bootmem_node_data[0] }; 4149 EXPORT_SYMBOL(contig_page_data); 4150 #endif 4151 4152 void __init free_area_init(unsigned long *zones_size) 4153 { 4154 free_area_init_node(0, zones_size, 4155 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL); 4156 } 4157 4158 static int page_alloc_cpu_notify(struct notifier_block *self, 4159 unsigned long action, void *hcpu) 4160 { 4161 int cpu = (unsigned long)hcpu; 4162 4163 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) { 4164 drain_pages(cpu); 4165 4166 /* 4167 * Spill the event counters of the dead processor 4168 * into the current processors event counters. 4169 * This artificially elevates the count of the current 4170 * processor. 4171 */ 4172 vm_events_fold_cpu(cpu); 4173 4174 /* 4175 * Zero the differential counters of the dead processor 4176 * so that the vm statistics are consistent. 4177 * 4178 * This is only okay since the processor is dead and cannot 4179 * race with what we are doing. 4180 */ 4181 refresh_cpu_vm_stats(cpu); 4182 } 4183 return NOTIFY_OK; 4184 } 4185 4186 void __init page_alloc_init(void) 4187 { 4188 hotcpu_notifier(page_alloc_cpu_notify, 0); 4189 } 4190 4191 /* 4192 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio 4193 * or min_free_kbytes changes. 4194 */ 4195 static void calculate_totalreserve_pages(void) 4196 { 4197 struct pglist_data *pgdat; 4198 unsigned long reserve_pages = 0; 4199 enum zone_type i, j; 4200 4201 for_each_online_pgdat(pgdat) { 4202 for (i = 0; i < MAX_NR_ZONES; i++) { 4203 struct zone *zone = pgdat->node_zones + i; 4204 unsigned long max = 0; 4205 4206 /* Find valid and maximum lowmem_reserve in the zone */ 4207 for (j = i; j < MAX_NR_ZONES; j++) { 4208 if (zone->lowmem_reserve[j] > max) 4209 max = zone->lowmem_reserve[j]; 4210 } 4211 4212 /* we treat pages_high as reserved pages. */ 4213 max += zone->pages_high; 4214 4215 if (max > zone->present_pages) 4216 max = zone->present_pages; 4217 reserve_pages += max; 4218 } 4219 } 4220 totalreserve_pages = reserve_pages; 4221 } 4222 4223 /* 4224 * setup_per_zone_lowmem_reserve - called whenever 4225 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone 4226 * has a correct pages reserved value, so an adequate number of 4227 * pages are left in the zone after a successful __alloc_pages(). 4228 */ 4229 static void setup_per_zone_lowmem_reserve(void) 4230 { 4231 struct pglist_data *pgdat; 4232 enum zone_type j, idx; 4233 4234 for_each_online_pgdat(pgdat) { 4235 for (j = 0; j < MAX_NR_ZONES; j++) { 4236 struct zone *zone = pgdat->node_zones + j; 4237 unsigned long present_pages = zone->present_pages; 4238 4239 zone->lowmem_reserve[j] = 0; 4240 4241 idx = j; 4242 while (idx) { 4243 struct zone *lower_zone; 4244 4245 idx--; 4246 4247 if (sysctl_lowmem_reserve_ratio[idx] < 1) 4248 sysctl_lowmem_reserve_ratio[idx] = 1; 4249 4250 lower_zone = pgdat->node_zones + idx; 4251 lower_zone->lowmem_reserve[j] = present_pages / 4252 sysctl_lowmem_reserve_ratio[idx]; 4253 present_pages += lower_zone->present_pages; 4254 } 4255 } 4256 } 4257 4258 /* update totalreserve_pages */ 4259 calculate_totalreserve_pages(); 4260 } 4261 4262 /** 4263 * setup_per_zone_pages_min - called when min_free_kbytes changes. 4264 * 4265 * Ensures that the pages_{min,low,high} values for each zone are set correctly 4266 * with respect to min_free_kbytes. 4267 */ 4268 void setup_per_zone_pages_min(void) 4269 { 4270 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10); 4271 unsigned long lowmem_pages = 0; 4272 struct zone *zone; 4273 unsigned long flags; 4274 4275 /* Calculate total number of !ZONE_HIGHMEM pages */ 4276 for_each_zone(zone) { 4277 if (!is_highmem(zone)) 4278 lowmem_pages += zone->present_pages; 4279 } 4280 4281 for_each_zone(zone) { 4282 u64 tmp; 4283 4284 spin_lock_irqsave(&zone->lock, flags); 4285 tmp = (u64)pages_min * zone->present_pages; 4286 do_div(tmp, lowmem_pages); 4287 if (is_highmem(zone)) { 4288 /* 4289 * __GFP_HIGH and PF_MEMALLOC allocations usually don't 4290 * need highmem pages, so cap pages_min to a small 4291 * value here. 4292 * 4293 * The (pages_high-pages_low) and (pages_low-pages_min) 4294 * deltas controls asynch page reclaim, and so should 4295 * not be capped for highmem. 4296 */ 4297 int min_pages; 4298 4299 min_pages = zone->present_pages / 1024; 4300 if (min_pages < SWAP_CLUSTER_MAX) 4301 min_pages = SWAP_CLUSTER_MAX; 4302 if (min_pages > 128) 4303 min_pages = 128; 4304 zone->pages_min = min_pages; 4305 } else { 4306 /* 4307 * If it's a lowmem zone, reserve a number of pages 4308 * proportionate to the zone's size. 4309 */ 4310 zone->pages_min = tmp; 4311 } 4312 4313 zone->pages_low = zone->pages_min + (tmp >> 2); 4314 zone->pages_high = zone->pages_min + (tmp >> 1); 4315 setup_zone_migrate_reserve(zone); 4316 spin_unlock_irqrestore(&zone->lock, flags); 4317 } 4318 4319 /* update totalreserve_pages */ 4320 calculate_totalreserve_pages(); 4321 } 4322 4323 /** 4324 * setup_per_zone_inactive_ratio - called when min_free_kbytes changes. 4325 * 4326 * The inactive anon list should be small enough that the VM never has to 4327 * do too much work, but large enough that each inactive page has a chance 4328 * to be referenced again before it is swapped out. 4329 * 4330 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to 4331 * INACTIVE_ANON pages on this zone's LRU, maintained by the 4332 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of 4333 * the anonymous pages are kept on the inactive list. 4334 * 4335 * total target max 4336 * memory ratio inactive anon 4337 * ------------------------------------- 4338 * 10MB 1 5MB 4339 * 100MB 1 50MB 4340 * 1GB 3 250MB 4341 * 10GB 10 0.9GB 4342 * 100GB 31 3GB 4343 * 1TB 101 10GB 4344 * 10TB 320 32GB 4345 */ 4346 static void setup_per_zone_inactive_ratio(void) 4347 { 4348 struct zone *zone; 4349 4350 for_each_zone(zone) { 4351 unsigned int gb, ratio; 4352 4353 /* Zone size in gigabytes */ 4354 gb = zone->present_pages >> (30 - PAGE_SHIFT); 4355 ratio = int_sqrt(10 * gb); 4356 if (!ratio) 4357 ratio = 1; 4358 4359 zone->inactive_ratio = ratio; 4360 } 4361 } 4362 4363 /* 4364 * Initialise min_free_kbytes. 4365 * 4366 * For small machines we want it small (128k min). For large machines 4367 * we want it large (64MB max). But it is not linear, because network 4368 * bandwidth does not increase linearly with machine size. We use 4369 * 4370 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy: 4371 * min_free_kbytes = sqrt(lowmem_kbytes * 16) 4372 * 4373 * which yields 4374 * 4375 * 16MB: 512k 4376 * 32MB: 724k 4377 * 64MB: 1024k 4378 * 128MB: 1448k 4379 * 256MB: 2048k 4380 * 512MB: 2896k 4381 * 1024MB: 4096k 4382 * 2048MB: 5792k 4383 * 4096MB: 8192k 4384 * 8192MB: 11584k 4385 * 16384MB: 16384k 4386 */ 4387 static int __init init_per_zone_pages_min(void) 4388 { 4389 unsigned long lowmem_kbytes; 4390 4391 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10); 4392 4393 min_free_kbytes = int_sqrt(lowmem_kbytes * 16); 4394 if (min_free_kbytes < 128) 4395 min_free_kbytes = 128; 4396 if (min_free_kbytes > 65536) 4397 min_free_kbytes = 65536; 4398 setup_per_zone_pages_min(); 4399 setup_per_zone_lowmem_reserve(); 4400 setup_per_zone_inactive_ratio(); 4401 return 0; 4402 } 4403 module_init(init_per_zone_pages_min) 4404 4405 /* 4406 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so 4407 * that we can call two helper functions whenever min_free_kbytes 4408 * changes. 4409 */ 4410 int min_free_kbytes_sysctl_handler(ctl_table *table, int write, 4411 struct file *file, void __user *buffer, size_t *length, loff_t *ppos) 4412 { 4413 proc_dointvec(table, write, file, buffer, length, ppos); 4414 if (write) 4415 setup_per_zone_pages_min(); 4416 return 0; 4417 } 4418 4419 #ifdef CONFIG_NUMA 4420 int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write, 4421 struct file *file, void __user *buffer, size_t *length, loff_t *ppos) 4422 { 4423 struct zone *zone; 4424 int rc; 4425 4426 rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos); 4427 if (rc) 4428 return rc; 4429 4430 for_each_zone(zone) 4431 zone->min_unmapped_pages = (zone->present_pages * 4432 sysctl_min_unmapped_ratio) / 100; 4433 return 0; 4434 } 4435 4436 int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write, 4437 struct file *file, void __user *buffer, size_t *length, loff_t *ppos) 4438 { 4439 struct zone *zone; 4440 int rc; 4441 4442 rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos); 4443 if (rc) 4444 return rc; 4445 4446 for_each_zone(zone) 4447 zone->min_slab_pages = (zone->present_pages * 4448 sysctl_min_slab_ratio) / 100; 4449 return 0; 4450 } 4451 #endif 4452 4453 /* 4454 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around 4455 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve() 4456 * whenever sysctl_lowmem_reserve_ratio changes. 4457 * 4458 * The reserve ratio obviously has absolutely no relation with the 4459 * pages_min watermarks. The lowmem reserve ratio can only make sense 4460 * if in function of the boot time zone sizes. 4461 */ 4462 int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write, 4463 struct file *file, void __user *buffer, size_t *length, loff_t *ppos) 4464 { 4465 proc_dointvec_minmax(table, write, file, buffer, length, ppos); 4466 setup_per_zone_lowmem_reserve(); 4467 return 0; 4468 } 4469 4470 /* 4471 * percpu_pagelist_fraction - changes the pcp->high for each zone on each 4472 * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist 4473 * can have before it gets flushed back to buddy allocator. 4474 */ 4475 4476 int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write, 4477 struct file *file, void __user *buffer, size_t *length, loff_t *ppos) 4478 { 4479 struct zone *zone; 4480 unsigned int cpu; 4481 int ret; 4482 4483 ret = proc_dointvec_minmax(table, write, file, buffer, length, ppos); 4484 if (!write || (ret == -EINVAL)) 4485 return ret; 4486 for_each_zone(zone) { 4487 for_each_online_cpu(cpu) { 4488 unsigned long high; 4489 high = zone->present_pages / percpu_pagelist_fraction; 4490 setup_pagelist_highmark(zone_pcp(zone, cpu), high); 4491 } 4492 } 4493 return 0; 4494 } 4495 4496 int hashdist = HASHDIST_DEFAULT; 4497 4498 #ifdef CONFIG_NUMA 4499 static int __init set_hashdist(char *str) 4500 { 4501 if (!str) 4502 return 0; 4503 hashdist = simple_strtoul(str, &str, 0); 4504 return 1; 4505 } 4506 __setup("hashdist=", set_hashdist); 4507 #endif 4508 4509 /* 4510 * allocate a large system hash table from bootmem 4511 * - it is assumed that the hash table must contain an exact power-of-2 4512 * quantity of entries 4513 * - limit is the number of hash buckets, not the total allocation size 4514 */ 4515 void *__init alloc_large_system_hash(const char *tablename, 4516 unsigned long bucketsize, 4517 unsigned long numentries, 4518 int scale, 4519 int flags, 4520 unsigned int *_hash_shift, 4521 unsigned int *_hash_mask, 4522 unsigned long limit) 4523 { 4524 unsigned long long max = limit; 4525 unsigned long log2qty, size; 4526 void *table = NULL; 4527 4528 /* allow the kernel cmdline to have a say */ 4529 if (!numentries) { 4530 /* round applicable memory size up to nearest megabyte */ 4531 numentries = nr_kernel_pages; 4532 numentries += (1UL << (20 - PAGE_SHIFT)) - 1; 4533 numentries >>= 20 - PAGE_SHIFT; 4534 numentries <<= 20 - PAGE_SHIFT; 4535 4536 /* limit to 1 bucket per 2^scale bytes of low memory */ 4537 if (scale > PAGE_SHIFT) 4538 numentries >>= (scale - PAGE_SHIFT); 4539 else 4540 numentries <<= (PAGE_SHIFT - scale); 4541 4542 /* Make sure we've got at least a 0-order allocation.. */ 4543 if (unlikely((numentries * bucketsize) < PAGE_SIZE)) 4544 numentries = PAGE_SIZE / bucketsize; 4545 } 4546 numentries = roundup_pow_of_two(numentries); 4547 4548 /* limit allocation size to 1/16 total memory by default */ 4549 if (max == 0) { 4550 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4; 4551 do_div(max, bucketsize); 4552 } 4553 4554 if (numentries > max) 4555 numentries = max; 4556 4557 log2qty = ilog2(numentries); 4558 4559 do { 4560 size = bucketsize << log2qty; 4561 if (flags & HASH_EARLY) 4562 table = alloc_bootmem_nopanic(size); 4563 else if (hashdist) 4564 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL); 4565 else { 4566 unsigned long order = get_order(size); 4567 table = (void*) __get_free_pages(GFP_ATOMIC, order); 4568 /* 4569 * If bucketsize is not a power-of-two, we may free 4570 * some pages at the end of hash table. 4571 */ 4572 if (table) { 4573 unsigned long alloc_end = (unsigned long)table + 4574 (PAGE_SIZE << order); 4575 unsigned long used = (unsigned long)table + 4576 PAGE_ALIGN(size); 4577 split_page(virt_to_page(table), order); 4578 while (used < alloc_end) { 4579 free_page(used); 4580 used += PAGE_SIZE; 4581 } 4582 } 4583 } 4584 } while (!table && size > PAGE_SIZE && --log2qty); 4585 4586 if (!table) 4587 panic("Failed to allocate %s hash table\n", tablename); 4588 4589 printk(KERN_INFO "%s hash table entries: %d (order: %d, %lu bytes)\n", 4590 tablename, 4591 (1U << log2qty), 4592 ilog2(size) - PAGE_SHIFT, 4593 size); 4594 4595 if (_hash_shift) 4596 *_hash_shift = log2qty; 4597 if (_hash_mask) 4598 *_hash_mask = (1 << log2qty) - 1; 4599 4600 return table; 4601 } 4602 4603 /* Return a pointer to the bitmap storing bits affecting a block of pages */ 4604 static inline unsigned long *get_pageblock_bitmap(struct zone *zone, 4605 unsigned long pfn) 4606 { 4607 #ifdef CONFIG_SPARSEMEM 4608 return __pfn_to_section(pfn)->pageblock_flags; 4609 #else 4610 return zone->pageblock_flags; 4611 #endif /* CONFIG_SPARSEMEM */ 4612 } 4613 4614 static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn) 4615 { 4616 #ifdef CONFIG_SPARSEMEM 4617 pfn &= (PAGES_PER_SECTION-1); 4618 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS; 4619 #else 4620 pfn = pfn - zone->zone_start_pfn; 4621 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS; 4622 #endif /* CONFIG_SPARSEMEM */ 4623 } 4624 4625 /** 4626 * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages 4627 * @page: The page within the block of interest 4628 * @start_bitidx: The first bit of interest to retrieve 4629 * @end_bitidx: The last bit of interest 4630 * returns pageblock_bits flags 4631 */ 4632 unsigned long get_pageblock_flags_group(struct page *page, 4633 int start_bitidx, int end_bitidx) 4634 { 4635 struct zone *zone; 4636 unsigned long *bitmap; 4637 unsigned long pfn, bitidx; 4638 unsigned long flags = 0; 4639 unsigned long value = 1; 4640 4641 zone = page_zone(page); 4642 pfn = page_to_pfn(page); 4643 bitmap = get_pageblock_bitmap(zone, pfn); 4644 bitidx = pfn_to_bitidx(zone, pfn); 4645 4646 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1) 4647 if (test_bit(bitidx + start_bitidx, bitmap)) 4648 flags |= value; 4649 4650 return flags; 4651 } 4652 4653 /** 4654 * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages 4655 * @page: The page within the block of interest 4656 * @start_bitidx: The first bit of interest 4657 * @end_bitidx: The last bit of interest 4658 * @flags: The flags to set 4659 */ 4660 void set_pageblock_flags_group(struct page *page, unsigned long flags, 4661 int start_bitidx, int end_bitidx) 4662 { 4663 struct zone *zone; 4664 unsigned long *bitmap; 4665 unsigned long pfn, bitidx; 4666 unsigned long value = 1; 4667 4668 zone = page_zone(page); 4669 pfn = page_to_pfn(page); 4670 bitmap = get_pageblock_bitmap(zone, pfn); 4671 bitidx = pfn_to_bitidx(zone, pfn); 4672 VM_BUG_ON(pfn < zone->zone_start_pfn); 4673 VM_BUG_ON(pfn >= zone->zone_start_pfn + zone->spanned_pages); 4674 4675 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1) 4676 if (flags & value) 4677 __set_bit(bitidx + start_bitidx, bitmap); 4678 else 4679 __clear_bit(bitidx + start_bitidx, bitmap); 4680 } 4681 4682 /* 4683 * This is designed as sub function...plz see page_isolation.c also. 4684 * set/clear page block's type to be ISOLATE. 4685 * page allocater never alloc memory from ISOLATE block. 4686 */ 4687 4688 int set_migratetype_isolate(struct page *page) 4689 { 4690 struct zone *zone; 4691 unsigned long flags; 4692 int ret = -EBUSY; 4693 4694 zone = page_zone(page); 4695 spin_lock_irqsave(&zone->lock, flags); 4696 /* 4697 * In future, more migrate types will be able to be isolation target. 4698 */ 4699 if (get_pageblock_migratetype(page) != MIGRATE_MOVABLE) 4700 goto out; 4701 set_pageblock_migratetype(page, MIGRATE_ISOLATE); 4702 move_freepages_block(zone, page, MIGRATE_ISOLATE); 4703 ret = 0; 4704 out: 4705 spin_unlock_irqrestore(&zone->lock, flags); 4706 if (!ret) 4707 drain_all_pages(); 4708 return ret; 4709 } 4710 4711 void unset_migratetype_isolate(struct page *page) 4712 { 4713 struct zone *zone; 4714 unsigned long flags; 4715 zone = page_zone(page); 4716 spin_lock_irqsave(&zone->lock, flags); 4717 if (get_pageblock_migratetype(page) != MIGRATE_ISOLATE) 4718 goto out; 4719 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 4720 move_freepages_block(zone, page, MIGRATE_MOVABLE); 4721 out: 4722 spin_unlock_irqrestore(&zone->lock, flags); 4723 } 4724 4725 #ifdef CONFIG_MEMORY_HOTREMOVE 4726 /* 4727 * All pages in the range must be isolated before calling this. 4728 */ 4729 void 4730 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn) 4731 { 4732 struct page *page; 4733 struct zone *zone; 4734 int order, i; 4735 unsigned long pfn; 4736 unsigned long flags; 4737 /* find the first valid pfn */ 4738 for (pfn = start_pfn; pfn < end_pfn; pfn++) 4739 if (pfn_valid(pfn)) 4740 break; 4741 if (pfn == end_pfn) 4742 return; 4743 zone = page_zone(pfn_to_page(pfn)); 4744 spin_lock_irqsave(&zone->lock, flags); 4745 pfn = start_pfn; 4746 while (pfn < end_pfn) { 4747 if (!pfn_valid(pfn)) { 4748 pfn++; 4749 continue; 4750 } 4751 page = pfn_to_page(pfn); 4752 BUG_ON(page_count(page)); 4753 BUG_ON(!PageBuddy(page)); 4754 order = page_order(page); 4755 #ifdef CONFIG_DEBUG_VM 4756 printk(KERN_INFO "remove from free list %lx %d %lx\n", 4757 pfn, 1 << order, end_pfn); 4758 #endif 4759 list_del(&page->lru); 4760 rmv_page_order(page); 4761 zone->free_area[order].nr_free--; 4762 __mod_zone_page_state(zone, NR_FREE_PAGES, 4763 - (1UL << order)); 4764 for (i = 0; i < (1 << order); i++) 4765 SetPageReserved((page+i)); 4766 pfn += (1 << order); 4767 } 4768 spin_unlock_irqrestore(&zone->lock, flags); 4769 } 4770 #endif 4771