1 /* 2 * linux/mm/page_alloc.c 3 * 4 * Manages the free list, the system allocates free pages here. 5 * Note that kmalloc() lives in slab.c 6 * 7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 8 * Swap reorganised 29.12.95, Stephen Tweedie 9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999 10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999 11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999 12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000 13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002 14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton) 15 */ 16 17 #include <linux/stddef.h> 18 #include <linux/mm.h> 19 #include <linux/swap.h> 20 #include <linux/interrupt.h> 21 #include <linux/pagemap.h> 22 #include <linux/jiffies.h> 23 #include <linux/bootmem.h> 24 #include <linux/memblock.h> 25 #include <linux/compiler.h> 26 #include <linux/kernel.h> 27 #include <linux/kmemcheck.h> 28 #include <linux/module.h> 29 #include <linux/suspend.h> 30 #include <linux/pagevec.h> 31 #include <linux/blkdev.h> 32 #include <linux/slab.h> 33 #include <linux/ratelimit.h> 34 #include <linux/oom.h> 35 #include <linux/notifier.h> 36 #include <linux/topology.h> 37 #include <linux/sysctl.h> 38 #include <linux/cpu.h> 39 #include <linux/cpuset.h> 40 #include <linux/memory_hotplug.h> 41 #include <linux/nodemask.h> 42 #include <linux/vmalloc.h> 43 #include <linux/vmstat.h> 44 #include <linux/mempolicy.h> 45 #include <linux/stop_machine.h> 46 #include <linux/sort.h> 47 #include <linux/pfn.h> 48 #include <linux/backing-dev.h> 49 #include <linux/fault-inject.h> 50 #include <linux/page-isolation.h> 51 #include <linux/page_cgroup.h> 52 #include <linux/debugobjects.h> 53 #include <linux/kmemleak.h> 54 #include <linux/compaction.h> 55 #include <trace/events/kmem.h> 56 #include <linux/ftrace_event.h> 57 #include <linux/memcontrol.h> 58 #include <linux/prefetch.h> 59 #include <linux/migrate.h> 60 #include <linux/page-debug-flags.h> 61 62 #include <asm/tlbflush.h> 63 #include <asm/div64.h> 64 #include "internal.h" 65 66 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID 67 DEFINE_PER_CPU(int, numa_node); 68 EXPORT_PER_CPU_SYMBOL(numa_node); 69 #endif 70 71 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 72 /* 73 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly. 74 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined. 75 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem() 76 * defined in <linux/topology.h>. 77 */ 78 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */ 79 EXPORT_PER_CPU_SYMBOL(_numa_mem_); 80 #endif 81 82 /* 83 * Array of node states. 84 */ 85 nodemask_t node_states[NR_NODE_STATES] __read_mostly = { 86 [N_POSSIBLE] = NODE_MASK_ALL, 87 [N_ONLINE] = { { [0] = 1UL } }, 88 #ifndef CONFIG_NUMA 89 [N_NORMAL_MEMORY] = { { [0] = 1UL } }, 90 #ifdef CONFIG_HIGHMEM 91 [N_HIGH_MEMORY] = { { [0] = 1UL } }, 92 #endif 93 #ifdef CONFIG_MOVABLE_NODE 94 [N_MEMORY] = { { [0] = 1UL } }, 95 #endif 96 [N_CPU] = { { [0] = 1UL } }, 97 #endif /* NUMA */ 98 }; 99 EXPORT_SYMBOL(node_states); 100 101 unsigned long totalram_pages __read_mostly; 102 unsigned long totalreserve_pages __read_mostly; 103 /* 104 * When calculating the number of globally allowed dirty pages, there 105 * is a certain number of per-zone reserves that should not be 106 * considered dirtyable memory. This is the sum of those reserves 107 * over all existing zones that contribute dirtyable memory. 108 */ 109 unsigned long dirty_balance_reserve __read_mostly; 110 111 int percpu_pagelist_fraction; 112 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK; 113 114 #ifdef CONFIG_PM_SLEEP 115 /* 116 * The following functions are used by the suspend/hibernate code to temporarily 117 * change gfp_allowed_mask in order to avoid using I/O during memory allocations 118 * while devices are suspended. To avoid races with the suspend/hibernate code, 119 * they should always be called with pm_mutex held (gfp_allowed_mask also should 120 * only be modified with pm_mutex held, unless the suspend/hibernate code is 121 * guaranteed not to run in parallel with that modification). 122 */ 123 124 static gfp_t saved_gfp_mask; 125 126 void pm_restore_gfp_mask(void) 127 { 128 WARN_ON(!mutex_is_locked(&pm_mutex)); 129 if (saved_gfp_mask) { 130 gfp_allowed_mask = saved_gfp_mask; 131 saved_gfp_mask = 0; 132 } 133 } 134 135 void pm_restrict_gfp_mask(void) 136 { 137 WARN_ON(!mutex_is_locked(&pm_mutex)); 138 WARN_ON(saved_gfp_mask); 139 saved_gfp_mask = gfp_allowed_mask; 140 gfp_allowed_mask &= ~GFP_IOFS; 141 } 142 143 bool pm_suspended_storage(void) 144 { 145 if ((gfp_allowed_mask & GFP_IOFS) == GFP_IOFS) 146 return false; 147 return true; 148 } 149 #endif /* CONFIG_PM_SLEEP */ 150 151 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE 152 int pageblock_order __read_mostly; 153 #endif 154 155 static void __free_pages_ok(struct page *page, unsigned int order); 156 157 /* 158 * results with 256, 32 in the lowmem_reserve sysctl: 159 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high) 160 * 1G machine -> (16M dma, 784M normal, 224M high) 161 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA 162 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL 163 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA 164 * 165 * TBD: should special case ZONE_DMA32 machines here - in those we normally 166 * don't need any ZONE_NORMAL reservation 167 */ 168 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = { 169 #ifdef CONFIG_ZONE_DMA 170 256, 171 #endif 172 #ifdef CONFIG_ZONE_DMA32 173 256, 174 #endif 175 #ifdef CONFIG_HIGHMEM 176 32, 177 #endif 178 32, 179 }; 180 181 EXPORT_SYMBOL(totalram_pages); 182 183 static char * const zone_names[MAX_NR_ZONES] = { 184 #ifdef CONFIG_ZONE_DMA 185 "DMA", 186 #endif 187 #ifdef CONFIG_ZONE_DMA32 188 "DMA32", 189 #endif 190 "Normal", 191 #ifdef CONFIG_HIGHMEM 192 "HighMem", 193 #endif 194 "Movable", 195 }; 196 197 int min_free_kbytes = 1024; 198 199 static unsigned long __meminitdata nr_kernel_pages; 200 static unsigned long __meminitdata nr_all_pages; 201 static unsigned long __meminitdata dma_reserve; 202 203 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 204 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES]; 205 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES]; 206 static unsigned long __initdata required_kernelcore; 207 static unsigned long __initdata required_movablecore; 208 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES]; 209 210 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */ 211 int movable_zone; 212 EXPORT_SYMBOL(movable_zone); 213 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 214 215 #if MAX_NUMNODES > 1 216 int nr_node_ids __read_mostly = MAX_NUMNODES; 217 int nr_online_nodes __read_mostly = 1; 218 EXPORT_SYMBOL(nr_node_ids); 219 EXPORT_SYMBOL(nr_online_nodes); 220 #endif 221 222 int page_group_by_mobility_disabled __read_mostly; 223 224 /* 225 * NOTE: 226 * Don't use set_pageblock_migratetype(page, MIGRATE_ISOLATE) directly. 227 * Instead, use {un}set_pageblock_isolate. 228 */ 229 void set_pageblock_migratetype(struct page *page, int migratetype) 230 { 231 232 if (unlikely(page_group_by_mobility_disabled)) 233 migratetype = MIGRATE_UNMOVABLE; 234 235 set_pageblock_flags_group(page, (unsigned long)migratetype, 236 PB_migrate, PB_migrate_end); 237 } 238 239 bool oom_killer_disabled __read_mostly; 240 241 #ifdef CONFIG_DEBUG_VM 242 static int page_outside_zone_boundaries(struct zone *zone, struct page *page) 243 { 244 int ret = 0; 245 unsigned seq; 246 unsigned long pfn = page_to_pfn(page); 247 248 do { 249 seq = zone_span_seqbegin(zone); 250 if (pfn >= zone->zone_start_pfn + zone->spanned_pages) 251 ret = 1; 252 else if (pfn < zone->zone_start_pfn) 253 ret = 1; 254 } while (zone_span_seqretry(zone, seq)); 255 256 return ret; 257 } 258 259 static int page_is_consistent(struct zone *zone, struct page *page) 260 { 261 if (!pfn_valid_within(page_to_pfn(page))) 262 return 0; 263 if (zone != page_zone(page)) 264 return 0; 265 266 return 1; 267 } 268 /* 269 * Temporary debugging check for pages not lying within a given zone. 270 */ 271 static int bad_range(struct zone *zone, struct page *page) 272 { 273 if (page_outside_zone_boundaries(zone, page)) 274 return 1; 275 if (!page_is_consistent(zone, page)) 276 return 1; 277 278 return 0; 279 } 280 #else 281 static inline int bad_range(struct zone *zone, struct page *page) 282 { 283 return 0; 284 } 285 #endif 286 287 static void bad_page(struct page *page) 288 { 289 static unsigned long resume; 290 static unsigned long nr_shown; 291 static unsigned long nr_unshown; 292 293 /* Don't complain about poisoned pages */ 294 if (PageHWPoison(page)) { 295 reset_page_mapcount(page); /* remove PageBuddy */ 296 return; 297 } 298 299 /* 300 * Allow a burst of 60 reports, then keep quiet for that minute; 301 * or allow a steady drip of one report per second. 302 */ 303 if (nr_shown == 60) { 304 if (time_before(jiffies, resume)) { 305 nr_unshown++; 306 goto out; 307 } 308 if (nr_unshown) { 309 printk(KERN_ALERT 310 "BUG: Bad page state: %lu messages suppressed\n", 311 nr_unshown); 312 nr_unshown = 0; 313 } 314 nr_shown = 0; 315 } 316 if (nr_shown++ == 0) 317 resume = jiffies + 60 * HZ; 318 319 printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n", 320 current->comm, page_to_pfn(page)); 321 dump_page(page); 322 323 print_modules(); 324 dump_stack(); 325 out: 326 /* Leave bad fields for debug, except PageBuddy could make trouble */ 327 reset_page_mapcount(page); /* remove PageBuddy */ 328 add_taint(TAINT_BAD_PAGE); 329 } 330 331 /* 332 * Higher-order pages are called "compound pages". They are structured thusly: 333 * 334 * The first PAGE_SIZE page is called the "head page". 335 * 336 * The remaining PAGE_SIZE pages are called "tail pages". 337 * 338 * All pages have PG_compound set. All tail pages have their ->first_page 339 * pointing at the head page. 340 * 341 * The first tail page's ->lru.next holds the address of the compound page's 342 * put_page() function. Its ->lru.prev holds the order of allocation. 343 * This usage means that zero-order pages may not be compound. 344 */ 345 346 static void free_compound_page(struct page *page) 347 { 348 __free_pages_ok(page, compound_order(page)); 349 } 350 351 void prep_compound_page(struct page *page, unsigned long order) 352 { 353 int i; 354 int nr_pages = 1 << order; 355 356 set_compound_page_dtor(page, free_compound_page); 357 set_compound_order(page, order); 358 __SetPageHead(page); 359 for (i = 1; i < nr_pages; i++) { 360 struct page *p = page + i; 361 __SetPageTail(p); 362 set_page_count(p, 0); 363 p->first_page = page; 364 } 365 } 366 367 /* update __split_huge_page_refcount if you change this function */ 368 static int destroy_compound_page(struct page *page, unsigned long order) 369 { 370 int i; 371 int nr_pages = 1 << order; 372 int bad = 0; 373 374 if (unlikely(compound_order(page) != order)) { 375 bad_page(page); 376 bad++; 377 } 378 379 __ClearPageHead(page); 380 381 for (i = 1; i < nr_pages; i++) { 382 struct page *p = page + i; 383 384 if (unlikely(!PageTail(p) || (p->first_page != page))) { 385 bad_page(page); 386 bad++; 387 } 388 __ClearPageTail(p); 389 } 390 391 return bad; 392 } 393 394 static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags) 395 { 396 int i; 397 398 /* 399 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO 400 * and __GFP_HIGHMEM from hard or soft interrupt context. 401 */ 402 VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt()); 403 for (i = 0; i < (1 << order); i++) 404 clear_highpage(page + i); 405 } 406 407 #ifdef CONFIG_DEBUG_PAGEALLOC 408 unsigned int _debug_guardpage_minorder; 409 410 static int __init debug_guardpage_minorder_setup(char *buf) 411 { 412 unsigned long res; 413 414 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) { 415 printk(KERN_ERR "Bad debug_guardpage_minorder value\n"); 416 return 0; 417 } 418 _debug_guardpage_minorder = res; 419 printk(KERN_INFO "Setting debug_guardpage_minorder to %lu\n", res); 420 return 0; 421 } 422 __setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup); 423 424 static inline void set_page_guard_flag(struct page *page) 425 { 426 __set_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags); 427 } 428 429 static inline void clear_page_guard_flag(struct page *page) 430 { 431 __clear_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags); 432 } 433 #else 434 static inline void set_page_guard_flag(struct page *page) { } 435 static inline void clear_page_guard_flag(struct page *page) { } 436 #endif 437 438 static inline void set_page_order(struct page *page, int order) 439 { 440 set_page_private(page, order); 441 __SetPageBuddy(page); 442 } 443 444 static inline void rmv_page_order(struct page *page) 445 { 446 __ClearPageBuddy(page); 447 set_page_private(page, 0); 448 } 449 450 /* 451 * Locate the struct page for both the matching buddy in our 452 * pair (buddy1) and the combined O(n+1) page they form (page). 453 * 454 * 1) Any buddy B1 will have an order O twin B2 which satisfies 455 * the following equation: 456 * B2 = B1 ^ (1 << O) 457 * For example, if the starting buddy (buddy2) is #8 its order 458 * 1 buddy is #10: 459 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10 460 * 461 * 2) Any buddy B will have an order O+1 parent P which 462 * satisfies the following equation: 463 * P = B & ~(1 << O) 464 * 465 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER 466 */ 467 static inline unsigned long 468 __find_buddy_index(unsigned long page_idx, unsigned int order) 469 { 470 return page_idx ^ (1 << order); 471 } 472 473 /* 474 * This function checks whether a page is free && is the buddy 475 * we can do coalesce a page and its buddy if 476 * (a) the buddy is not in a hole && 477 * (b) the buddy is in the buddy system && 478 * (c) a page and its buddy have the same order && 479 * (d) a page and its buddy are in the same zone. 480 * 481 * For recording whether a page is in the buddy system, we set ->_mapcount -2. 482 * Setting, clearing, and testing _mapcount -2 is serialized by zone->lock. 483 * 484 * For recording page's order, we use page_private(page). 485 */ 486 static inline int page_is_buddy(struct page *page, struct page *buddy, 487 int order) 488 { 489 if (!pfn_valid_within(page_to_pfn(buddy))) 490 return 0; 491 492 if (page_zone_id(page) != page_zone_id(buddy)) 493 return 0; 494 495 if (page_is_guard(buddy) && page_order(buddy) == order) { 496 VM_BUG_ON(page_count(buddy) != 0); 497 return 1; 498 } 499 500 if (PageBuddy(buddy) && page_order(buddy) == order) { 501 VM_BUG_ON(page_count(buddy) != 0); 502 return 1; 503 } 504 return 0; 505 } 506 507 /* 508 * Freeing function for a buddy system allocator. 509 * 510 * The concept of a buddy system is to maintain direct-mapped table 511 * (containing bit values) for memory blocks of various "orders". 512 * The bottom level table contains the map for the smallest allocatable 513 * units of memory (here, pages), and each level above it describes 514 * pairs of units from the levels below, hence, "buddies". 515 * At a high level, all that happens here is marking the table entry 516 * at the bottom level available, and propagating the changes upward 517 * as necessary, plus some accounting needed to play nicely with other 518 * parts of the VM system. 519 * At each level, we keep a list of pages, which are heads of continuous 520 * free pages of length of (1 << order) and marked with _mapcount -2. Page's 521 * order is recorded in page_private(page) field. 522 * So when we are allocating or freeing one, we can derive the state of the 523 * other. That is, if we allocate a small block, and both were 524 * free, the remainder of the region must be split into blocks. 525 * If a block is freed, and its buddy is also free, then this 526 * triggers coalescing into a block of larger size. 527 * 528 * -- nyc 529 */ 530 531 static inline void __free_one_page(struct page *page, 532 struct zone *zone, unsigned int order, 533 int migratetype) 534 { 535 unsigned long page_idx; 536 unsigned long combined_idx; 537 unsigned long uninitialized_var(buddy_idx); 538 struct page *buddy; 539 540 if (unlikely(PageCompound(page))) 541 if (unlikely(destroy_compound_page(page, order))) 542 return; 543 544 VM_BUG_ON(migratetype == -1); 545 546 page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1); 547 548 VM_BUG_ON(page_idx & ((1 << order) - 1)); 549 VM_BUG_ON(bad_range(zone, page)); 550 551 while (order < MAX_ORDER-1) { 552 buddy_idx = __find_buddy_index(page_idx, order); 553 buddy = page + (buddy_idx - page_idx); 554 if (!page_is_buddy(page, buddy, order)) 555 break; 556 /* 557 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page, 558 * merge with it and move up one order. 559 */ 560 if (page_is_guard(buddy)) { 561 clear_page_guard_flag(buddy); 562 set_page_private(page, 0); 563 __mod_zone_freepage_state(zone, 1 << order, 564 migratetype); 565 } else { 566 list_del(&buddy->lru); 567 zone->free_area[order].nr_free--; 568 rmv_page_order(buddy); 569 } 570 combined_idx = buddy_idx & page_idx; 571 page = page + (combined_idx - page_idx); 572 page_idx = combined_idx; 573 order++; 574 } 575 set_page_order(page, order); 576 577 /* 578 * If this is not the largest possible page, check if the buddy 579 * of the next-highest order is free. If it is, it's possible 580 * that pages are being freed that will coalesce soon. In case, 581 * that is happening, add the free page to the tail of the list 582 * so it's less likely to be used soon and more likely to be merged 583 * as a higher order page 584 */ 585 if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) { 586 struct page *higher_page, *higher_buddy; 587 combined_idx = buddy_idx & page_idx; 588 higher_page = page + (combined_idx - page_idx); 589 buddy_idx = __find_buddy_index(combined_idx, order + 1); 590 higher_buddy = higher_page + (buddy_idx - combined_idx); 591 if (page_is_buddy(higher_page, higher_buddy, order + 1)) { 592 list_add_tail(&page->lru, 593 &zone->free_area[order].free_list[migratetype]); 594 goto out; 595 } 596 } 597 598 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]); 599 out: 600 zone->free_area[order].nr_free++; 601 } 602 603 static inline int free_pages_check(struct page *page) 604 { 605 if (unlikely(page_mapcount(page) | 606 (page->mapping != NULL) | 607 (atomic_read(&page->_count) != 0) | 608 (page->flags & PAGE_FLAGS_CHECK_AT_FREE) | 609 (mem_cgroup_bad_page_check(page)))) { 610 bad_page(page); 611 return 1; 612 } 613 reset_page_last_nid(page); 614 if (page->flags & PAGE_FLAGS_CHECK_AT_PREP) 615 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP; 616 return 0; 617 } 618 619 /* 620 * Frees a number of pages from the PCP lists 621 * Assumes all pages on list are in same zone, and of same order. 622 * count is the number of pages to free. 623 * 624 * If the zone was previously in an "all pages pinned" state then look to 625 * see if this freeing clears that state. 626 * 627 * And clear the zone's pages_scanned counter, to hold off the "all pages are 628 * pinned" detection logic. 629 */ 630 static void free_pcppages_bulk(struct zone *zone, int count, 631 struct per_cpu_pages *pcp) 632 { 633 int migratetype = 0; 634 int batch_free = 0; 635 int to_free = count; 636 637 spin_lock(&zone->lock); 638 zone->all_unreclaimable = 0; 639 zone->pages_scanned = 0; 640 641 while (to_free) { 642 struct page *page; 643 struct list_head *list; 644 645 /* 646 * Remove pages from lists in a round-robin fashion. A 647 * batch_free count is maintained that is incremented when an 648 * empty list is encountered. This is so more pages are freed 649 * off fuller lists instead of spinning excessively around empty 650 * lists 651 */ 652 do { 653 batch_free++; 654 if (++migratetype == MIGRATE_PCPTYPES) 655 migratetype = 0; 656 list = &pcp->lists[migratetype]; 657 } while (list_empty(list)); 658 659 /* This is the only non-empty list. Free them all. */ 660 if (batch_free == MIGRATE_PCPTYPES) 661 batch_free = to_free; 662 663 do { 664 int mt; /* migratetype of the to-be-freed page */ 665 666 page = list_entry(list->prev, struct page, lru); 667 /* must delete as __free_one_page list manipulates */ 668 list_del(&page->lru); 669 mt = get_freepage_migratetype(page); 670 /* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */ 671 __free_one_page(page, zone, 0, mt); 672 trace_mm_page_pcpu_drain(page, 0, mt); 673 if (likely(get_pageblock_migratetype(page) != MIGRATE_ISOLATE)) { 674 __mod_zone_page_state(zone, NR_FREE_PAGES, 1); 675 if (is_migrate_cma(mt)) 676 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES, 1); 677 } 678 } while (--to_free && --batch_free && !list_empty(list)); 679 } 680 spin_unlock(&zone->lock); 681 } 682 683 static void free_one_page(struct zone *zone, struct page *page, int order, 684 int migratetype) 685 { 686 spin_lock(&zone->lock); 687 zone->all_unreclaimable = 0; 688 zone->pages_scanned = 0; 689 690 __free_one_page(page, zone, order, migratetype); 691 if (unlikely(migratetype != MIGRATE_ISOLATE)) 692 __mod_zone_freepage_state(zone, 1 << order, migratetype); 693 spin_unlock(&zone->lock); 694 } 695 696 static bool free_pages_prepare(struct page *page, unsigned int order) 697 { 698 int i; 699 int bad = 0; 700 701 trace_mm_page_free(page, order); 702 kmemcheck_free_shadow(page, order); 703 704 if (PageAnon(page)) 705 page->mapping = NULL; 706 for (i = 0; i < (1 << order); i++) 707 bad += free_pages_check(page + i); 708 if (bad) 709 return false; 710 711 if (!PageHighMem(page)) { 712 debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order); 713 debug_check_no_obj_freed(page_address(page), 714 PAGE_SIZE << order); 715 } 716 arch_free_page(page, order); 717 kernel_map_pages(page, 1 << order, 0); 718 719 return true; 720 } 721 722 static void __free_pages_ok(struct page *page, unsigned int order) 723 { 724 unsigned long flags; 725 int migratetype; 726 727 if (!free_pages_prepare(page, order)) 728 return; 729 730 local_irq_save(flags); 731 __count_vm_events(PGFREE, 1 << order); 732 migratetype = get_pageblock_migratetype(page); 733 set_freepage_migratetype(page, migratetype); 734 free_one_page(page_zone(page), page, order, migratetype); 735 local_irq_restore(flags); 736 } 737 738 /* 739 * Read access to zone->managed_pages is safe because it's unsigned long, 740 * but we still need to serialize writers. Currently all callers of 741 * __free_pages_bootmem() except put_page_bootmem() should only be used 742 * at boot time. So for shorter boot time, we shift the burden to 743 * put_page_bootmem() to serialize writers. 744 */ 745 void __meminit __free_pages_bootmem(struct page *page, unsigned int order) 746 { 747 unsigned int nr_pages = 1 << order; 748 unsigned int loop; 749 750 prefetchw(page); 751 for (loop = 0; loop < nr_pages; loop++) { 752 struct page *p = &page[loop]; 753 754 if (loop + 1 < nr_pages) 755 prefetchw(p + 1); 756 __ClearPageReserved(p); 757 set_page_count(p, 0); 758 } 759 760 page_zone(page)->managed_pages += 1 << order; 761 set_page_refcounted(page); 762 __free_pages(page, order); 763 } 764 765 #ifdef CONFIG_CMA 766 /* Free whole pageblock and set it's migration type to MIGRATE_CMA. */ 767 void __init init_cma_reserved_pageblock(struct page *page) 768 { 769 unsigned i = pageblock_nr_pages; 770 struct page *p = page; 771 772 do { 773 __ClearPageReserved(p); 774 set_page_count(p, 0); 775 } while (++p, --i); 776 777 set_page_refcounted(page); 778 set_pageblock_migratetype(page, MIGRATE_CMA); 779 __free_pages(page, pageblock_order); 780 totalram_pages += pageblock_nr_pages; 781 } 782 #endif 783 784 /* 785 * The order of subdivision here is critical for the IO subsystem. 786 * Please do not alter this order without good reasons and regression 787 * testing. Specifically, as large blocks of memory are subdivided, 788 * the order in which smaller blocks are delivered depends on the order 789 * they're subdivided in this function. This is the primary factor 790 * influencing the order in which pages are delivered to the IO 791 * subsystem according to empirical testing, and this is also justified 792 * by considering the behavior of a buddy system containing a single 793 * large block of memory acted on by a series of small allocations. 794 * This behavior is a critical factor in sglist merging's success. 795 * 796 * -- nyc 797 */ 798 static inline void expand(struct zone *zone, struct page *page, 799 int low, int high, struct free_area *area, 800 int migratetype) 801 { 802 unsigned long size = 1 << high; 803 804 while (high > low) { 805 area--; 806 high--; 807 size >>= 1; 808 VM_BUG_ON(bad_range(zone, &page[size])); 809 810 #ifdef CONFIG_DEBUG_PAGEALLOC 811 if (high < debug_guardpage_minorder()) { 812 /* 813 * Mark as guard pages (or page), that will allow to 814 * merge back to allocator when buddy will be freed. 815 * Corresponding page table entries will not be touched, 816 * pages will stay not present in virtual address space 817 */ 818 INIT_LIST_HEAD(&page[size].lru); 819 set_page_guard_flag(&page[size]); 820 set_page_private(&page[size], high); 821 /* Guard pages are not available for any usage */ 822 __mod_zone_freepage_state(zone, -(1 << high), 823 migratetype); 824 continue; 825 } 826 #endif 827 list_add(&page[size].lru, &area->free_list[migratetype]); 828 area->nr_free++; 829 set_page_order(&page[size], high); 830 } 831 } 832 833 /* 834 * This page is about to be returned from the page allocator 835 */ 836 static inline int check_new_page(struct page *page) 837 { 838 if (unlikely(page_mapcount(page) | 839 (page->mapping != NULL) | 840 (atomic_read(&page->_count) != 0) | 841 (page->flags & PAGE_FLAGS_CHECK_AT_PREP) | 842 (mem_cgroup_bad_page_check(page)))) { 843 bad_page(page); 844 return 1; 845 } 846 return 0; 847 } 848 849 static int prep_new_page(struct page *page, int order, gfp_t gfp_flags) 850 { 851 int i; 852 853 for (i = 0; i < (1 << order); i++) { 854 struct page *p = page + i; 855 if (unlikely(check_new_page(p))) 856 return 1; 857 } 858 859 set_page_private(page, 0); 860 set_page_refcounted(page); 861 862 arch_alloc_page(page, order); 863 kernel_map_pages(page, 1 << order, 1); 864 865 if (gfp_flags & __GFP_ZERO) 866 prep_zero_page(page, order, gfp_flags); 867 868 if (order && (gfp_flags & __GFP_COMP)) 869 prep_compound_page(page, order); 870 871 return 0; 872 } 873 874 /* 875 * Go through the free lists for the given migratetype and remove 876 * the smallest available page from the freelists 877 */ 878 static inline 879 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order, 880 int migratetype) 881 { 882 unsigned int current_order; 883 struct free_area * area; 884 struct page *page; 885 886 /* Find a page of the appropriate size in the preferred list */ 887 for (current_order = order; current_order < MAX_ORDER; ++current_order) { 888 area = &(zone->free_area[current_order]); 889 if (list_empty(&area->free_list[migratetype])) 890 continue; 891 892 page = list_entry(area->free_list[migratetype].next, 893 struct page, lru); 894 list_del(&page->lru); 895 rmv_page_order(page); 896 area->nr_free--; 897 expand(zone, page, order, current_order, area, migratetype); 898 return page; 899 } 900 901 return NULL; 902 } 903 904 905 /* 906 * This array describes the order lists are fallen back to when 907 * the free lists for the desirable migrate type are depleted 908 */ 909 static int fallbacks[MIGRATE_TYPES][4] = { 910 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE }, 911 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE }, 912 #ifdef CONFIG_CMA 913 [MIGRATE_MOVABLE] = { MIGRATE_CMA, MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE }, 914 [MIGRATE_CMA] = { MIGRATE_RESERVE }, /* Never used */ 915 #else 916 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE }, 917 #endif 918 [MIGRATE_RESERVE] = { MIGRATE_RESERVE }, /* Never used */ 919 [MIGRATE_ISOLATE] = { MIGRATE_RESERVE }, /* Never used */ 920 }; 921 922 /* 923 * Move the free pages in a range to the free lists of the requested type. 924 * Note that start_page and end_pages are not aligned on a pageblock 925 * boundary. If alignment is required, use move_freepages_block() 926 */ 927 int move_freepages(struct zone *zone, 928 struct page *start_page, struct page *end_page, 929 int migratetype) 930 { 931 struct page *page; 932 unsigned long order; 933 int pages_moved = 0; 934 935 #ifndef CONFIG_HOLES_IN_ZONE 936 /* 937 * page_zone is not safe to call in this context when 938 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant 939 * anyway as we check zone boundaries in move_freepages_block(). 940 * Remove at a later date when no bug reports exist related to 941 * grouping pages by mobility 942 */ 943 BUG_ON(page_zone(start_page) != page_zone(end_page)); 944 #endif 945 946 for (page = start_page; page <= end_page;) { 947 /* Make sure we are not inadvertently changing nodes */ 948 VM_BUG_ON(page_to_nid(page) != zone_to_nid(zone)); 949 950 if (!pfn_valid_within(page_to_pfn(page))) { 951 page++; 952 continue; 953 } 954 955 if (!PageBuddy(page)) { 956 page++; 957 continue; 958 } 959 960 order = page_order(page); 961 list_move(&page->lru, 962 &zone->free_area[order].free_list[migratetype]); 963 set_freepage_migratetype(page, migratetype); 964 page += 1 << order; 965 pages_moved += 1 << order; 966 } 967 968 return pages_moved; 969 } 970 971 int move_freepages_block(struct zone *zone, struct page *page, 972 int migratetype) 973 { 974 unsigned long start_pfn, end_pfn; 975 struct page *start_page, *end_page; 976 977 start_pfn = page_to_pfn(page); 978 start_pfn = start_pfn & ~(pageblock_nr_pages-1); 979 start_page = pfn_to_page(start_pfn); 980 end_page = start_page + pageblock_nr_pages - 1; 981 end_pfn = start_pfn + pageblock_nr_pages - 1; 982 983 /* Do not cross zone boundaries */ 984 if (start_pfn < zone->zone_start_pfn) 985 start_page = page; 986 if (end_pfn >= zone->zone_start_pfn + zone->spanned_pages) 987 return 0; 988 989 return move_freepages(zone, start_page, end_page, migratetype); 990 } 991 992 static void change_pageblock_range(struct page *pageblock_page, 993 int start_order, int migratetype) 994 { 995 int nr_pageblocks = 1 << (start_order - pageblock_order); 996 997 while (nr_pageblocks--) { 998 set_pageblock_migratetype(pageblock_page, migratetype); 999 pageblock_page += pageblock_nr_pages; 1000 } 1001 } 1002 1003 /* Remove an element from the buddy allocator from the fallback list */ 1004 static inline struct page * 1005 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype) 1006 { 1007 struct free_area * area; 1008 int current_order; 1009 struct page *page; 1010 int migratetype, i; 1011 1012 /* Find the largest possible block of pages in the other list */ 1013 for (current_order = MAX_ORDER-1; current_order >= order; 1014 --current_order) { 1015 for (i = 0;; i++) { 1016 migratetype = fallbacks[start_migratetype][i]; 1017 1018 /* MIGRATE_RESERVE handled later if necessary */ 1019 if (migratetype == MIGRATE_RESERVE) 1020 break; 1021 1022 area = &(zone->free_area[current_order]); 1023 if (list_empty(&area->free_list[migratetype])) 1024 continue; 1025 1026 page = list_entry(area->free_list[migratetype].next, 1027 struct page, lru); 1028 area->nr_free--; 1029 1030 /* 1031 * If breaking a large block of pages, move all free 1032 * pages to the preferred allocation list. If falling 1033 * back for a reclaimable kernel allocation, be more 1034 * aggressive about taking ownership of free pages 1035 * 1036 * On the other hand, never change migration 1037 * type of MIGRATE_CMA pageblocks nor move CMA 1038 * pages on different free lists. We don't 1039 * want unmovable pages to be allocated from 1040 * MIGRATE_CMA areas. 1041 */ 1042 if (!is_migrate_cma(migratetype) && 1043 (unlikely(current_order >= pageblock_order / 2) || 1044 start_migratetype == MIGRATE_RECLAIMABLE || 1045 page_group_by_mobility_disabled)) { 1046 int pages; 1047 pages = move_freepages_block(zone, page, 1048 start_migratetype); 1049 1050 /* Claim the whole block if over half of it is free */ 1051 if (pages >= (1 << (pageblock_order-1)) || 1052 page_group_by_mobility_disabled) 1053 set_pageblock_migratetype(page, 1054 start_migratetype); 1055 1056 migratetype = start_migratetype; 1057 } 1058 1059 /* Remove the page from the freelists */ 1060 list_del(&page->lru); 1061 rmv_page_order(page); 1062 1063 /* Take ownership for orders >= pageblock_order */ 1064 if (current_order >= pageblock_order && 1065 !is_migrate_cma(migratetype)) 1066 change_pageblock_range(page, current_order, 1067 start_migratetype); 1068 1069 expand(zone, page, order, current_order, area, 1070 is_migrate_cma(migratetype) 1071 ? migratetype : start_migratetype); 1072 1073 trace_mm_page_alloc_extfrag(page, order, current_order, 1074 start_migratetype, migratetype); 1075 1076 return page; 1077 } 1078 } 1079 1080 return NULL; 1081 } 1082 1083 /* 1084 * Do the hard work of removing an element from the buddy allocator. 1085 * Call me with the zone->lock already held. 1086 */ 1087 static struct page *__rmqueue(struct zone *zone, unsigned int order, 1088 int migratetype) 1089 { 1090 struct page *page; 1091 1092 retry_reserve: 1093 page = __rmqueue_smallest(zone, order, migratetype); 1094 1095 if (unlikely(!page) && migratetype != MIGRATE_RESERVE) { 1096 page = __rmqueue_fallback(zone, order, migratetype); 1097 1098 /* 1099 * Use MIGRATE_RESERVE rather than fail an allocation. goto 1100 * is used because __rmqueue_smallest is an inline function 1101 * and we want just one call site 1102 */ 1103 if (!page) { 1104 migratetype = MIGRATE_RESERVE; 1105 goto retry_reserve; 1106 } 1107 } 1108 1109 trace_mm_page_alloc_zone_locked(page, order, migratetype); 1110 return page; 1111 } 1112 1113 /* 1114 * Obtain a specified number of elements from the buddy allocator, all under 1115 * a single hold of the lock, for efficiency. Add them to the supplied list. 1116 * Returns the number of new pages which were placed at *list. 1117 */ 1118 static int rmqueue_bulk(struct zone *zone, unsigned int order, 1119 unsigned long count, struct list_head *list, 1120 int migratetype, int cold) 1121 { 1122 int mt = migratetype, i; 1123 1124 spin_lock(&zone->lock); 1125 for (i = 0; i < count; ++i) { 1126 struct page *page = __rmqueue(zone, order, migratetype); 1127 if (unlikely(page == NULL)) 1128 break; 1129 1130 /* 1131 * Split buddy pages returned by expand() are received here 1132 * in physical page order. The page is added to the callers and 1133 * list and the list head then moves forward. From the callers 1134 * perspective, the linked list is ordered by page number in 1135 * some conditions. This is useful for IO devices that can 1136 * merge IO requests if the physical pages are ordered 1137 * properly. 1138 */ 1139 if (likely(cold == 0)) 1140 list_add(&page->lru, list); 1141 else 1142 list_add_tail(&page->lru, list); 1143 if (IS_ENABLED(CONFIG_CMA)) { 1144 mt = get_pageblock_migratetype(page); 1145 if (!is_migrate_cma(mt) && mt != MIGRATE_ISOLATE) 1146 mt = migratetype; 1147 } 1148 set_freepage_migratetype(page, mt); 1149 list = &page->lru; 1150 if (is_migrate_cma(mt)) 1151 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES, 1152 -(1 << order)); 1153 } 1154 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order)); 1155 spin_unlock(&zone->lock); 1156 return i; 1157 } 1158 1159 #ifdef CONFIG_NUMA 1160 /* 1161 * Called from the vmstat counter updater to drain pagesets of this 1162 * currently executing processor on remote nodes after they have 1163 * expired. 1164 * 1165 * Note that this function must be called with the thread pinned to 1166 * a single processor. 1167 */ 1168 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp) 1169 { 1170 unsigned long flags; 1171 int to_drain; 1172 1173 local_irq_save(flags); 1174 if (pcp->count >= pcp->batch) 1175 to_drain = pcp->batch; 1176 else 1177 to_drain = pcp->count; 1178 if (to_drain > 0) { 1179 free_pcppages_bulk(zone, to_drain, pcp); 1180 pcp->count -= to_drain; 1181 } 1182 local_irq_restore(flags); 1183 } 1184 #endif 1185 1186 /* 1187 * Drain pages of the indicated processor. 1188 * 1189 * The processor must either be the current processor and the 1190 * thread pinned to the current processor or a processor that 1191 * is not online. 1192 */ 1193 static void drain_pages(unsigned int cpu) 1194 { 1195 unsigned long flags; 1196 struct zone *zone; 1197 1198 for_each_populated_zone(zone) { 1199 struct per_cpu_pageset *pset; 1200 struct per_cpu_pages *pcp; 1201 1202 local_irq_save(flags); 1203 pset = per_cpu_ptr(zone->pageset, cpu); 1204 1205 pcp = &pset->pcp; 1206 if (pcp->count) { 1207 free_pcppages_bulk(zone, pcp->count, pcp); 1208 pcp->count = 0; 1209 } 1210 local_irq_restore(flags); 1211 } 1212 } 1213 1214 /* 1215 * Spill all of this CPU's per-cpu pages back into the buddy allocator. 1216 */ 1217 void drain_local_pages(void *arg) 1218 { 1219 drain_pages(smp_processor_id()); 1220 } 1221 1222 /* 1223 * Spill all the per-cpu pages from all CPUs back into the buddy allocator. 1224 * 1225 * Note that this code is protected against sending an IPI to an offline 1226 * CPU but does not guarantee sending an IPI to newly hotplugged CPUs: 1227 * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but 1228 * nothing keeps CPUs from showing up after we populated the cpumask and 1229 * before the call to on_each_cpu_mask(). 1230 */ 1231 void drain_all_pages(void) 1232 { 1233 int cpu; 1234 struct per_cpu_pageset *pcp; 1235 struct zone *zone; 1236 1237 /* 1238 * Allocate in the BSS so we wont require allocation in 1239 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y 1240 */ 1241 static cpumask_t cpus_with_pcps; 1242 1243 /* 1244 * We don't care about racing with CPU hotplug event 1245 * as offline notification will cause the notified 1246 * cpu to drain that CPU pcps and on_each_cpu_mask 1247 * disables preemption as part of its processing 1248 */ 1249 for_each_online_cpu(cpu) { 1250 bool has_pcps = false; 1251 for_each_populated_zone(zone) { 1252 pcp = per_cpu_ptr(zone->pageset, cpu); 1253 if (pcp->pcp.count) { 1254 has_pcps = true; 1255 break; 1256 } 1257 } 1258 if (has_pcps) 1259 cpumask_set_cpu(cpu, &cpus_with_pcps); 1260 else 1261 cpumask_clear_cpu(cpu, &cpus_with_pcps); 1262 } 1263 on_each_cpu_mask(&cpus_with_pcps, drain_local_pages, NULL, 1); 1264 } 1265 1266 #ifdef CONFIG_HIBERNATION 1267 1268 void mark_free_pages(struct zone *zone) 1269 { 1270 unsigned long pfn, max_zone_pfn; 1271 unsigned long flags; 1272 int order, t; 1273 struct list_head *curr; 1274 1275 if (!zone->spanned_pages) 1276 return; 1277 1278 spin_lock_irqsave(&zone->lock, flags); 1279 1280 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages; 1281 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) 1282 if (pfn_valid(pfn)) { 1283 struct page *page = pfn_to_page(pfn); 1284 1285 if (!swsusp_page_is_forbidden(page)) 1286 swsusp_unset_page_free(page); 1287 } 1288 1289 for_each_migratetype_order(order, t) { 1290 list_for_each(curr, &zone->free_area[order].free_list[t]) { 1291 unsigned long i; 1292 1293 pfn = page_to_pfn(list_entry(curr, struct page, lru)); 1294 for (i = 0; i < (1UL << order); i++) 1295 swsusp_set_page_free(pfn_to_page(pfn + i)); 1296 } 1297 } 1298 spin_unlock_irqrestore(&zone->lock, flags); 1299 } 1300 #endif /* CONFIG_PM */ 1301 1302 /* 1303 * Free a 0-order page 1304 * cold == 1 ? free a cold page : free a hot page 1305 */ 1306 void free_hot_cold_page(struct page *page, int cold) 1307 { 1308 struct zone *zone = page_zone(page); 1309 struct per_cpu_pages *pcp; 1310 unsigned long flags; 1311 int migratetype; 1312 1313 if (!free_pages_prepare(page, 0)) 1314 return; 1315 1316 migratetype = get_pageblock_migratetype(page); 1317 set_freepage_migratetype(page, migratetype); 1318 local_irq_save(flags); 1319 __count_vm_event(PGFREE); 1320 1321 /* 1322 * We only track unmovable, reclaimable and movable on pcp lists. 1323 * Free ISOLATE pages back to the allocator because they are being 1324 * offlined but treat RESERVE as movable pages so we can get those 1325 * areas back if necessary. Otherwise, we may have to free 1326 * excessively into the page allocator 1327 */ 1328 if (migratetype >= MIGRATE_PCPTYPES) { 1329 if (unlikely(migratetype == MIGRATE_ISOLATE)) { 1330 free_one_page(zone, page, 0, migratetype); 1331 goto out; 1332 } 1333 migratetype = MIGRATE_MOVABLE; 1334 } 1335 1336 pcp = &this_cpu_ptr(zone->pageset)->pcp; 1337 if (cold) 1338 list_add_tail(&page->lru, &pcp->lists[migratetype]); 1339 else 1340 list_add(&page->lru, &pcp->lists[migratetype]); 1341 pcp->count++; 1342 if (pcp->count >= pcp->high) { 1343 free_pcppages_bulk(zone, pcp->batch, pcp); 1344 pcp->count -= pcp->batch; 1345 } 1346 1347 out: 1348 local_irq_restore(flags); 1349 } 1350 1351 /* 1352 * Free a list of 0-order pages 1353 */ 1354 void free_hot_cold_page_list(struct list_head *list, int cold) 1355 { 1356 struct page *page, *next; 1357 1358 list_for_each_entry_safe(page, next, list, lru) { 1359 trace_mm_page_free_batched(page, cold); 1360 free_hot_cold_page(page, cold); 1361 } 1362 } 1363 1364 /* 1365 * split_page takes a non-compound higher-order page, and splits it into 1366 * n (1<<order) sub-pages: page[0..n] 1367 * Each sub-page must be freed individually. 1368 * 1369 * Note: this is probably too low level an operation for use in drivers. 1370 * Please consult with lkml before using this in your driver. 1371 */ 1372 void split_page(struct page *page, unsigned int order) 1373 { 1374 int i; 1375 1376 VM_BUG_ON(PageCompound(page)); 1377 VM_BUG_ON(!page_count(page)); 1378 1379 #ifdef CONFIG_KMEMCHECK 1380 /* 1381 * Split shadow pages too, because free(page[0]) would 1382 * otherwise free the whole shadow. 1383 */ 1384 if (kmemcheck_page_is_tracked(page)) 1385 split_page(virt_to_page(page[0].shadow), order); 1386 #endif 1387 1388 for (i = 1; i < (1 << order); i++) 1389 set_page_refcounted(page + i); 1390 } 1391 1392 /* 1393 * Similar to the split_page family of functions except that the page 1394 * required at the given order and being isolated now to prevent races 1395 * with parallel allocators 1396 */ 1397 int capture_free_page(struct page *page, int alloc_order, int migratetype) 1398 { 1399 unsigned int order; 1400 unsigned long watermark; 1401 struct zone *zone; 1402 int mt; 1403 1404 BUG_ON(!PageBuddy(page)); 1405 1406 zone = page_zone(page); 1407 order = page_order(page); 1408 mt = get_pageblock_migratetype(page); 1409 1410 if (mt != MIGRATE_ISOLATE) { 1411 /* Obey watermarks as if the page was being allocated */ 1412 watermark = low_wmark_pages(zone) + (1 << order); 1413 if (!zone_watermark_ok(zone, 0, watermark, 0, 0)) 1414 return 0; 1415 1416 __mod_zone_freepage_state(zone, -(1UL << alloc_order), mt); 1417 } 1418 1419 /* Remove page from free list */ 1420 list_del(&page->lru); 1421 zone->free_area[order].nr_free--; 1422 rmv_page_order(page); 1423 1424 if (alloc_order != order) 1425 expand(zone, page, alloc_order, order, 1426 &zone->free_area[order], migratetype); 1427 1428 /* Set the pageblock if the captured page is at least a pageblock */ 1429 if (order >= pageblock_order - 1) { 1430 struct page *endpage = page + (1 << order) - 1; 1431 for (; page < endpage; page += pageblock_nr_pages) { 1432 int mt = get_pageblock_migratetype(page); 1433 if (mt != MIGRATE_ISOLATE && !is_migrate_cma(mt)) 1434 set_pageblock_migratetype(page, 1435 MIGRATE_MOVABLE); 1436 } 1437 } 1438 1439 return 1UL << alloc_order; 1440 } 1441 1442 /* 1443 * Similar to split_page except the page is already free. As this is only 1444 * being used for migration, the migratetype of the block also changes. 1445 * As this is called with interrupts disabled, the caller is responsible 1446 * for calling arch_alloc_page() and kernel_map_page() after interrupts 1447 * are enabled. 1448 * 1449 * Note: this is probably too low level an operation for use in drivers. 1450 * Please consult with lkml before using this in your driver. 1451 */ 1452 int split_free_page(struct page *page) 1453 { 1454 unsigned int order; 1455 int nr_pages; 1456 1457 BUG_ON(!PageBuddy(page)); 1458 order = page_order(page); 1459 1460 nr_pages = capture_free_page(page, order, 0); 1461 if (!nr_pages) 1462 return 0; 1463 1464 /* Split into individual pages */ 1465 set_page_refcounted(page); 1466 split_page(page, order); 1467 return nr_pages; 1468 } 1469 1470 /* 1471 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But 1472 * we cheat by calling it from here, in the order > 0 path. Saves a branch 1473 * or two. 1474 */ 1475 static inline 1476 struct page *buffered_rmqueue(struct zone *preferred_zone, 1477 struct zone *zone, int order, gfp_t gfp_flags, 1478 int migratetype) 1479 { 1480 unsigned long flags; 1481 struct page *page; 1482 int cold = !!(gfp_flags & __GFP_COLD); 1483 1484 again: 1485 if (likely(order == 0)) { 1486 struct per_cpu_pages *pcp; 1487 struct list_head *list; 1488 1489 local_irq_save(flags); 1490 pcp = &this_cpu_ptr(zone->pageset)->pcp; 1491 list = &pcp->lists[migratetype]; 1492 if (list_empty(list)) { 1493 pcp->count += rmqueue_bulk(zone, 0, 1494 pcp->batch, list, 1495 migratetype, cold); 1496 if (unlikely(list_empty(list))) 1497 goto failed; 1498 } 1499 1500 if (cold) 1501 page = list_entry(list->prev, struct page, lru); 1502 else 1503 page = list_entry(list->next, struct page, lru); 1504 1505 list_del(&page->lru); 1506 pcp->count--; 1507 } else { 1508 if (unlikely(gfp_flags & __GFP_NOFAIL)) { 1509 /* 1510 * __GFP_NOFAIL is not to be used in new code. 1511 * 1512 * All __GFP_NOFAIL callers should be fixed so that they 1513 * properly detect and handle allocation failures. 1514 * 1515 * We most definitely don't want callers attempting to 1516 * allocate greater than order-1 page units with 1517 * __GFP_NOFAIL. 1518 */ 1519 WARN_ON_ONCE(order > 1); 1520 } 1521 spin_lock_irqsave(&zone->lock, flags); 1522 page = __rmqueue(zone, order, migratetype); 1523 spin_unlock(&zone->lock); 1524 if (!page) 1525 goto failed; 1526 __mod_zone_freepage_state(zone, -(1 << order), 1527 get_pageblock_migratetype(page)); 1528 } 1529 1530 __count_zone_vm_events(PGALLOC, zone, 1 << order); 1531 zone_statistics(preferred_zone, zone, gfp_flags); 1532 local_irq_restore(flags); 1533 1534 VM_BUG_ON(bad_range(zone, page)); 1535 if (prep_new_page(page, order, gfp_flags)) 1536 goto again; 1537 return page; 1538 1539 failed: 1540 local_irq_restore(flags); 1541 return NULL; 1542 } 1543 1544 #ifdef CONFIG_FAIL_PAGE_ALLOC 1545 1546 static struct { 1547 struct fault_attr attr; 1548 1549 u32 ignore_gfp_highmem; 1550 u32 ignore_gfp_wait; 1551 u32 min_order; 1552 } fail_page_alloc = { 1553 .attr = FAULT_ATTR_INITIALIZER, 1554 .ignore_gfp_wait = 1, 1555 .ignore_gfp_highmem = 1, 1556 .min_order = 1, 1557 }; 1558 1559 static int __init setup_fail_page_alloc(char *str) 1560 { 1561 return setup_fault_attr(&fail_page_alloc.attr, str); 1562 } 1563 __setup("fail_page_alloc=", setup_fail_page_alloc); 1564 1565 static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) 1566 { 1567 if (order < fail_page_alloc.min_order) 1568 return false; 1569 if (gfp_mask & __GFP_NOFAIL) 1570 return false; 1571 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM)) 1572 return false; 1573 if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT)) 1574 return false; 1575 1576 return should_fail(&fail_page_alloc.attr, 1 << order); 1577 } 1578 1579 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS 1580 1581 static int __init fail_page_alloc_debugfs(void) 1582 { 1583 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR; 1584 struct dentry *dir; 1585 1586 dir = fault_create_debugfs_attr("fail_page_alloc", NULL, 1587 &fail_page_alloc.attr); 1588 if (IS_ERR(dir)) 1589 return PTR_ERR(dir); 1590 1591 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir, 1592 &fail_page_alloc.ignore_gfp_wait)) 1593 goto fail; 1594 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir, 1595 &fail_page_alloc.ignore_gfp_highmem)) 1596 goto fail; 1597 if (!debugfs_create_u32("min-order", mode, dir, 1598 &fail_page_alloc.min_order)) 1599 goto fail; 1600 1601 return 0; 1602 fail: 1603 debugfs_remove_recursive(dir); 1604 1605 return -ENOMEM; 1606 } 1607 1608 late_initcall(fail_page_alloc_debugfs); 1609 1610 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */ 1611 1612 #else /* CONFIG_FAIL_PAGE_ALLOC */ 1613 1614 static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) 1615 { 1616 return false; 1617 } 1618 1619 #endif /* CONFIG_FAIL_PAGE_ALLOC */ 1620 1621 /* 1622 * Return true if free pages are above 'mark'. This takes into account the order 1623 * of the allocation. 1624 */ 1625 static bool __zone_watermark_ok(struct zone *z, int order, unsigned long mark, 1626 int classzone_idx, int alloc_flags, long free_pages) 1627 { 1628 /* free_pages my go negative - that's OK */ 1629 long min = mark; 1630 long lowmem_reserve = z->lowmem_reserve[classzone_idx]; 1631 int o; 1632 1633 free_pages -= (1 << order) - 1; 1634 if (alloc_flags & ALLOC_HIGH) 1635 min -= min / 2; 1636 if (alloc_flags & ALLOC_HARDER) 1637 min -= min / 4; 1638 #ifdef CONFIG_CMA 1639 /* If allocation can't use CMA areas don't use free CMA pages */ 1640 if (!(alloc_flags & ALLOC_CMA)) 1641 free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES); 1642 #endif 1643 if (free_pages <= min + lowmem_reserve) 1644 return false; 1645 for (o = 0; o < order; o++) { 1646 /* At the next order, this order's pages become unavailable */ 1647 free_pages -= z->free_area[o].nr_free << o; 1648 1649 /* Require fewer higher order pages to be free */ 1650 min >>= 1; 1651 1652 if (free_pages <= min) 1653 return false; 1654 } 1655 return true; 1656 } 1657 1658 #ifdef CONFIG_MEMORY_ISOLATION 1659 static inline unsigned long nr_zone_isolate_freepages(struct zone *zone) 1660 { 1661 if (unlikely(zone->nr_pageblock_isolate)) 1662 return zone->nr_pageblock_isolate * pageblock_nr_pages; 1663 return 0; 1664 } 1665 #else 1666 static inline unsigned long nr_zone_isolate_freepages(struct zone *zone) 1667 { 1668 return 0; 1669 } 1670 #endif 1671 1672 bool zone_watermark_ok(struct zone *z, int order, unsigned long mark, 1673 int classzone_idx, int alloc_flags) 1674 { 1675 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags, 1676 zone_page_state(z, NR_FREE_PAGES)); 1677 } 1678 1679 bool zone_watermark_ok_safe(struct zone *z, int order, unsigned long mark, 1680 int classzone_idx, int alloc_flags) 1681 { 1682 long free_pages = zone_page_state(z, NR_FREE_PAGES); 1683 1684 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark) 1685 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES); 1686 1687 /* 1688 * If the zone has MIGRATE_ISOLATE type free pages, we should consider 1689 * it. nr_zone_isolate_freepages is never accurate so kswapd might not 1690 * sleep although it could do so. But this is more desirable for memory 1691 * hotplug than sleeping which can cause a livelock in the direct 1692 * reclaim path. 1693 */ 1694 free_pages -= nr_zone_isolate_freepages(z); 1695 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags, 1696 free_pages); 1697 } 1698 1699 #ifdef CONFIG_NUMA 1700 /* 1701 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to 1702 * skip over zones that are not allowed by the cpuset, or that have 1703 * been recently (in last second) found to be nearly full. See further 1704 * comments in mmzone.h. Reduces cache footprint of zonelist scans 1705 * that have to skip over a lot of full or unallowed zones. 1706 * 1707 * If the zonelist cache is present in the passed in zonelist, then 1708 * returns a pointer to the allowed node mask (either the current 1709 * tasks mems_allowed, or node_states[N_MEMORY].) 1710 * 1711 * If the zonelist cache is not available for this zonelist, does 1712 * nothing and returns NULL. 1713 * 1714 * If the fullzones BITMAP in the zonelist cache is stale (more than 1715 * a second since last zap'd) then we zap it out (clear its bits.) 1716 * 1717 * We hold off even calling zlc_setup, until after we've checked the 1718 * first zone in the zonelist, on the theory that most allocations will 1719 * be satisfied from that first zone, so best to examine that zone as 1720 * quickly as we can. 1721 */ 1722 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags) 1723 { 1724 struct zonelist_cache *zlc; /* cached zonelist speedup info */ 1725 nodemask_t *allowednodes; /* zonelist_cache approximation */ 1726 1727 zlc = zonelist->zlcache_ptr; 1728 if (!zlc) 1729 return NULL; 1730 1731 if (time_after(jiffies, zlc->last_full_zap + HZ)) { 1732 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST); 1733 zlc->last_full_zap = jiffies; 1734 } 1735 1736 allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ? 1737 &cpuset_current_mems_allowed : 1738 &node_states[N_MEMORY]; 1739 return allowednodes; 1740 } 1741 1742 /* 1743 * Given 'z' scanning a zonelist, run a couple of quick checks to see 1744 * if it is worth looking at further for free memory: 1745 * 1) Check that the zone isn't thought to be full (doesn't have its 1746 * bit set in the zonelist_cache fullzones BITMAP). 1747 * 2) Check that the zones node (obtained from the zonelist_cache 1748 * z_to_n[] mapping) is allowed in the passed in allowednodes mask. 1749 * Return true (non-zero) if zone is worth looking at further, or 1750 * else return false (zero) if it is not. 1751 * 1752 * This check -ignores- the distinction between various watermarks, 1753 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is 1754 * found to be full for any variation of these watermarks, it will 1755 * be considered full for up to one second by all requests, unless 1756 * we are so low on memory on all allowed nodes that we are forced 1757 * into the second scan of the zonelist. 1758 * 1759 * In the second scan we ignore this zonelist cache and exactly 1760 * apply the watermarks to all zones, even it is slower to do so. 1761 * We are low on memory in the second scan, and should leave no stone 1762 * unturned looking for a free page. 1763 */ 1764 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z, 1765 nodemask_t *allowednodes) 1766 { 1767 struct zonelist_cache *zlc; /* cached zonelist speedup info */ 1768 int i; /* index of *z in zonelist zones */ 1769 int n; /* node that zone *z is on */ 1770 1771 zlc = zonelist->zlcache_ptr; 1772 if (!zlc) 1773 return 1; 1774 1775 i = z - zonelist->_zonerefs; 1776 n = zlc->z_to_n[i]; 1777 1778 /* This zone is worth trying if it is allowed but not full */ 1779 return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones); 1780 } 1781 1782 /* 1783 * Given 'z' scanning a zonelist, set the corresponding bit in 1784 * zlc->fullzones, so that subsequent attempts to allocate a page 1785 * from that zone don't waste time re-examining it. 1786 */ 1787 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z) 1788 { 1789 struct zonelist_cache *zlc; /* cached zonelist speedup info */ 1790 int i; /* index of *z in zonelist zones */ 1791 1792 zlc = zonelist->zlcache_ptr; 1793 if (!zlc) 1794 return; 1795 1796 i = z - zonelist->_zonerefs; 1797 1798 set_bit(i, zlc->fullzones); 1799 } 1800 1801 /* 1802 * clear all zones full, called after direct reclaim makes progress so that 1803 * a zone that was recently full is not skipped over for up to a second 1804 */ 1805 static void zlc_clear_zones_full(struct zonelist *zonelist) 1806 { 1807 struct zonelist_cache *zlc; /* cached zonelist speedup info */ 1808 1809 zlc = zonelist->zlcache_ptr; 1810 if (!zlc) 1811 return; 1812 1813 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST); 1814 } 1815 1816 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone) 1817 { 1818 return node_isset(local_zone->node, zone->zone_pgdat->reclaim_nodes); 1819 } 1820 1821 static void __paginginit init_zone_allows_reclaim(int nid) 1822 { 1823 int i; 1824 1825 for_each_online_node(i) 1826 if (node_distance(nid, i) <= RECLAIM_DISTANCE) 1827 node_set(i, NODE_DATA(nid)->reclaim_nodes); 1828 else 1829 zone_reclaim_mode = 1; 1830 } 1831 1832 #else /* CONFIG_NUMA */ 1833 1834 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags) 1835 { 1836 return NULL; 1837 } 1838 1839 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z, 1840 nodemask_t *allowednodes) 1841 { 1842 return 1; 1843 } 1844 1845 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z) 1846 { 1847 } 1848 1849 static void zlc_clear_zones_full(struct zonelist *zonelist) 1850 { 1851 } 1852 1853 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone) 1854 { 1855 return true; 1856 } 1857 1858 static inline void init_zone_allows_reclaim(int nid) 1859 { 1860 } 1861 #endif /* CONFIG_NUMA */ 1862 1863 /* 1864 * get_page_from_freelist goes through the zonelist trying to allocate 1865 * a page. 1866 */ 1867 static struct page * 1868 get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order, 1869 struct zonelist *zonelist, int high_zoneidx, int alloc_flags, 1870 struct zone *preferred_zone, int migratetype) 1871 { 1872 struct zoneref *z; 1873 struct page *page = NULL; 1874 int classzone_idx; 1875 struct zone *zone; 1876 nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */ 1877 int zlc_active = 0; /* set if using zonelist_cache */ 1878 int did_zlc_setup = 0; /* just call zlc_setup() one time */ 1879 1880 classzone_idx = zone_idx(preferred_zone); 1881 zonelist_scan: 1882 /* 1883 * Scan zonelist, looking for a zone with enough free. 1884 * See also cpuset_zone_allowed() comment in kernel/cpuset.c. 1885 */ 1886 for_each_zone_zonelist_nodemask(zone, z, zonelist, 1887 high_zoneidx, nodemask) { 1888 if (IS_ENABLED(CONFIG_NUMA) && zlc_active && 1889 !zlc_zone_worth_trying(zonelist, z, allowednodes)) 1890 continue; 1891 if ((alloc_flags & ALLOC_CPUSET) && 1892 !cpuset_zone_allowed_softwall(zone, gfp_mask)) 1893 continue; 1894 /* 1895 * When allocating a page cache page for writing, we 1896 * want to get it from a zone that is within its dirty 1897 * limit, such that no single zone holds more than its 1898 * proportional share of globally allowed dirty pages. 1899 * The dirty limits take into account the zone's 1900 * lowmem reserves and high watermark so that kswapd 1901 * should be able to balance it without having to 1902 * write pages from its LRU list. 1903 * 1904 * This may look like it could increase pressure on 1905 * lower zones by failing allocations in higher zones 1906 * before they are full. But the pages that do spill 1907 * over are limited as the lower zones are protected 1908 * by this very same mechanism. It should not become 1909 * a practical burden to them. 1910 * 1911 * XXX: For now, allow allocations to potentially 1912 * exceed the per-zone dirty limit in the slowpath 1913 * (ALLOC_WMARK_LOW unset) before going into reclaim, 1914 * which is important when on a NUMA setup the allowed 1915 * zones are together not big enough to reach the 1916 * global limit. The proper fix for these situations 1917 * will require awareness of zones in the 1918 * dirty-throttling and the flusher threads. 1919 */ 1920 if ((alloc_flags & ALLOC_WMARK_LOW) && 1921 (gfp_mask & __GFP_WRITE) && !zone_dirty_ok(zone)) 1922 goto this_zone_full; 1923 1924 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK); 1925 if (!(alloc_flags & ALLOC_NO_WATERMARKS)) { 1926 unsigned long mark; 1927 int ret; 1928 1929 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK]; 1930 if (zone_watermark_ok(zone, order, mark, 1931 classzone_idx, alloc_flags)) 1932 goto try_this_zone; 1933 1934 if (IS_ENABLED(CONFIG_NUMA) && 1935 !did_zlc_setup && nr_online_nodes > 1) { 1936 /* 1937 * we do zlc_setup if there are multiple nodes 1938 * and before considering the first zone allowed 1939 * by the cpuset. 1940 */ 1941 allowednodes = zlc_setup(zonelist, alloc_flags); 1942 zlc_active = 1; 1943 did_zlc_setup = 1; 1944 } 1945 1946 if (zone_reclaim_mode == 0 || 1947 !zone_allows_reclaim(preferred_zone, zone)) 1948 goto this_zone_full; 1949 1950 /* 1951 * As we may have just activated ZLC, check if the first 1952 * eligible zone has failed zone_reclaim recently. 1953 */ 1954 if (IS_ENABLED(CONFIG_NUMA) && zlc_active && 1955 !zlc_zone_worth_trying(zonelist, z, allowednodes)) 1956 continue; 1957 1958 ret = zone_reclaim(zone, gfp_mask, order); 1959 switch (ret) { 1960 case ZONE_RECLAIM_NOSCAN: 1961 /* did not scan */ 1962 continue; 1963 case ZONE_RECLAIM_FULL: 1964 /* scanned but unreclaimable */ 1965 continue; 1966 default: 1967 /* did we reclaim enough */ 1968 if (!zone_watermark_ok(zone, order, mark, 1969 classzone_idx, alloc_flags)) 1970 goto this_zone_full; 1971 } 1972 } 1973 1974 try_this_zone: 1975 page = buffered_rmqueue(preferred_zone, zone, order, 1976 gfp_mask, migratetype); 1977 if (page) 1978 break; 1979 this_zone_full: 1980 if (IS_ENABLED(CONFIG_NUMA)) 1981 zlc_mark_zone_full(zonelist, z); 1982 } 1983 1984 if (unlikely(IS_ENABLED(CONFIG_NUMA) && page == NULL && zlc_active)) { 1985 /* Disable zlc cache for second zonelist scan */ 1986 zlc_active = 0; 1987 goto zonelist_scan; 1988 } 1989 1990 if (page) 1991 /* 1992 * page->pfmemalloc is set when ALLOC_NO_WATERMARKS was 1993 * necessary to allocate the page. The expectation is 1994 * that the caller is taking steps that will free more 1995 * memory. The caller should avoid the page being used 1996 * for !PFMEMALLOC purposes. 1997 */ 1998 page->pfmemalloc = !!(alloc_flags & ALLOC_NO_WATERMARKS); 1999 2000 return page; 2001 } 2002 2003 /* 2004 * Large machines with many possible nodes should not always dump per-node 2005 * meminfo in irq context. 2006 */ 2007 static inline bool should_suppress_show_mem(void) 2008 { 2009 bool ret = false; 2010 2011 #if NODES_SHIFT > 8 2012 ret = in_interrupt(); 2013 #endif 2014 return ret; 2015 } 2016 2017 static DEFINE_RATELIMIT_STATE(nopage_rs, 2018 DEFAULT_RATELIMIT_INTERVAL, 2019 DEFAULT_RATELIMIT_BURST); 2020 2021 void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...) 2022 { 2023 unsigned int filter = SHOW_MEM_FILTER_NODES; 2024 2025 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) || 2026 debug_guardpage_minorder() > 0) 2027 return; 2028 2029 /* 2030 * This documents exceptions given to allocations in certain 2031 * contexts that are allowed to allocate outside current's set 2032 * of allowed nodes. 2033 */ 2034 if (!(gfp_mask & __GFP_NOMEMALLOC)) 2035 if (test_thread_flag(TIF_MEMDIE) || 2036 (current->flags & (PF_MEMALLOC | PF_EXITING))) 2037 filter &= ~SHOW_MEM_FILTER_NODES; 2038 if (in_interrupt() || !(gfp_mask & __GFP_WAIT)) 2039 filter &= ~SHOW_MEM_FILTER_NODES; 2040 2041 if (fmt) { 2042 struct va_format vaf; 2043 va_list args; 2044 2045 va_start(args, fmt); 2046 2047 vaf.fmt = fmt; 2048 vaf.va = &args; 2049 2050 pr_warn("%pV", &vaf); 2051 2052 va_end(args); 2053 } 2054 2055 pr_warn("%s: page allocation failure: order:%d, mode:0x%x\n", 2056 current->comm, order, gfp_mask); 2057 2058 dump_stack(); 2059 if (!should_suppress_show_mem()) 2060 show_mem(filter); 2061 } 2062 2063 static inline int 2064 should_alloc_retry(gfp_t gfp_mask, unsigned int order, 2065 unsigned long did_some_progress, 2066 unsigned long pages_reclaimed) 2067 { 2068 /* Do not loop if specifically requested */ 2069 if (gfp_mask & __GFP_NORETRY) 2070 return 0; 2071 2072 /* Always retry if specifically requested */ 2073 if (gfp_mask & __GFP_NOFAIL) 2074 return 1; 2075 2076 /* 2077 * Suspend converts GFP_KERNEL to __GFP_WAIT which can prevent reclaim 2078 * making forward progress without invoking OOM. Suspend also disables 2079 * storage devices so kswapd will not help. Bail if we are suspending. 2080 */ 2081 if (!did_some_progress && pm_suspended_storage()) 2082 return 0; 2083 2084 /* 2085 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER 2086 * means __GFP_NOFAIL, but that may not be true in other 2087 * implementations. 2088 */ 2089 if (order <= PAGE_ALLOC_COSTLY_ORDER) 2090 return 1; 2091 2092 /* 2093 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is 2094 * specified, then we retry until we no longer reclaim any pages 2095 * (above), or we've reclaimed an order of pages at least as 2096 * large as the allocation's order. In both cases, if the 2097 * allocation still fails, we stop retrying. 2098 */ 2099 if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order)) 2100 return 1; 2101 2102 return 0; 2103 } 2104 2105 static inline struct page * 2106 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order, 2107 struct zonelist *zonelist, enum zone_type high_zoneidx, 2108 nodemask_t *nodemask, struct zone *preferred_zone, 2109 int migratetype) 2110 { 2111 struct page *page; 2112 2113 /* Acquire the OOM killer lock for the zones in zonelist */ 2114 if (!try_set_zonelist_oom(zonelist, gfp_mask)) { 2115 schedule_timeout_uninterruptible(1); 2116 return NULL; 2117 } 2118 2119 /* 2120 * Go through the zonelist yet one more time, keep very high watermark 2121 * here, this is only to catch a parallel oom killing, we must fail if 2122 * we're still under heavy pressure. 2123 */ 2124 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, 2125 order, zonelist, high_zoneidx, 2126 ALLOC_WMARK_HIGH|ALLOC_CPUSET, 2127 preferred_zone, migratetype); 2128 if (page) 2129 goto out; 2130 2131 if (!(gfp_mask & __GFP_NOFAIL)) { 2132 /* The OOM killer will not help higher order allocs */ 2133 if (order > PAGE_ALLOC_COSTLY_ORDER) 2134 goto out; 2135 /* The OOM killer does not needlessly kill tasks for lowmem */ 2136 if (high_zoneidx < ZONE_NORMAL) 2137 goto out; 2138 /* 2139 * GFP_THISNODE contains __GFP_NORETRY and we never hit this. 2140 * Sanity check for bare calls of __GFP_THISNODE, not real OOM. 2141 * The caller should handle page allocation failure by itself if 2142 * it specifies __GFP_THISNODE. 2143 * Note: Hugepage uses it but will hit PAGE_ALLOC_COSTLY_ORDER. 2144 */ 2145 if (gfp_mask & __GFP_THISNODE) 2146 goto out; 2147 } 2148 /* Exhausted what can be done so it's blamo time */ 2149 out_of_memory(zonelist, gfp_mask, order, nodemask, false); 2150 2151 out: 2152 clear_zonelist_oom(zonelist, gfp_mask); 2153 return page; 2154 } 2155 2156 #ifdef CONFIG_COMPACTION 2157 /* Try memory compaction for high-order allocations before reclaim */ 2158 static struct page * 2159 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order, 2160 struct zonelist *zonelist, enum zone_type high_zoneidx, 2161 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone, 2162 int migratetype, bool sync_migration, 2163 bool *contended_compaction, bool *deferred_compaction, 2164 unsigned long *did_some_progress) 2165 { 2166 struct page *page = NULL; 2167 2168 if (!order) 2169 return NULL; 2170 2171 if (compaction_deferred(preferred_zone, order)) { 2172 *deferred_compaction = true; 2173 return NULL; 2174 } 2175 2176 current->flags |= PF_MEMALLOC; 2177 *did_some_progress = try_to_compact_pages(zonelist, order, gfp_mask, 2178 nodemask, sync_migration, 2179 contended_compaction, &page); 2180 current->flags &= ~PF_MEMALLOC; 2181 2182 /* If compaction captured a page, prep and use it */ 2183 if (page) { 2184 prep_new_page(page, order, gfp_mask); 2185 goto got_page; 2186 } 2187 2188 if (*did_some_progress != COMPACT_SKIPPED) { 2189 /* Page migration frees to the PCP lists but we want merging */ 2190 drain_pages(get_cpu()); 2191 put_cpu(); 2192 2193 page = get_page_from_freelist(gfp_mask, nodemask, 2194 order, zonelist, high_zoneidx, 2195 alloc_flags & ~ALLOC_NO_WATERMARKS, 2196 preferred_zone, migratetype); 2197 if (page) { 2198 got_page: 2199 preferred_zone->compact_blockskip_flush = false; 2200 preferred_zone->compact_considered = 0; 2201 preferred_zone->compact_defer_shift = 0; 2202 if (order >= preferred_zone->compact_order_failed) 2203 preferred_zone->compact_order_failed = order + 1; 2204 count_vm_event(COMPACTSUCCESS); 2205 return page; 2206 } 2207 2208 /* 2209 * It's bad if compaction run occurs and fails. 2210 * The most likely reason is that pages exist, 2211 * but not enough to satisfy watermarks. 2212 */ 2213 count_vm_event(COMPACTFAIL); 2214 2215 /* 2216 * As async compaction considers a subset of pageblocks, only 2217 * defer if the failure was a sync compaction failure. 2218 */ 2219 if (sync_migration) 2220 defer_compaction(preferred_zone, order); 2221 2222 cond_resched(); 2223 } 2224 2225 return NULL; 2226 } 2227 #else 2228 static inline struct page * 2229 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order, 2230 struct zonelist *zonelist, enum zone_type high_zoneidx, 2231 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone, 2232 int migratetype, bool sync_migration, 2233 bool *contended_compaction, bool *deferred_compaction, 2234 unsigned long *did_some_progress) 2235 { 2236 return NULL; 2237 } 2238 #endif /* CONFIG_COMPACTION */ 2239 2240 /* Perform direct synchronous page reclaim */ 2241 static int 2242 __perform_reclaim(gfp_t gfp_mask, unsigned int order, struct zonelist *zonelist, 2243 nodemask_t *nodemask) 2244 { 2245 struct reclaim_state reclaim_state; 2246 int progress; 2247 2248 cond_resched(); 2249 2250 /* We now go into synchronous reclaim */ 2251 cpuset_memory_pressure_bump(); 2252 current->flags |= PF_MEMALLOC; 2253 lockdep_set_current_reclaim_state(gfp_mask); 2254 reclaim_state.reclaimed_slab = 0; 2255 current->reclaim_state = &reclaim_state; 2256 2257 progress = try_to_free_pages(zonelist, order, gfp_mask, nodemask); 2258 2259 current->reclaim_state = NULL; 2260 lockdep_clear_current_reclaim_state(); 2261 current->flags &= ~PF_MEMALLOC; 2262 2263 cond_resched(); 2264 2265 return progress; 2266 } 2267 2268 /* The really slow allocator path where we enter direct reclaim */ 2269 static inline struct page * 2270 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order, 2271 struct zonelist *zonelist, enum zone_type high_zoneidx, 2272 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone, 2273 int migratetype, unsigned long *did_some_progress) 2274 { 2275 struct page *page = NULL; 2276 bool drained = false; 2277 2278 *did_some_progress = __perform_reclaim(gfp_mask, order, zonelist, 2279 nodemask); 2280 if (unlikely(!(*did_some_progress))) 2281 return NULL; 2282 2283 /* After successful reclaim, reconsider all zones for allocation */ 2284 if (IS_ENABLED(CONFIG_NUMA)) 2285 zlc_clear_zones_full(zonelist); 2286 2287 retry: 2288 page = get_page_from_freelist(gfp_mask, nodemask, order, 2289 zonelist, high_zoneidx, 2290 alloc_flags & ~ALLOC_NO_WATERMARKS, 2291 preferred_zone, migratetype); 2292 2293 /* 2294 * If an allocation failed after direct reclaim, it could be because 2295 * pages are pinned on the per-cpu lists. Drain them and try again 2296 */ 2297 if (!page && !drained) { 2298 drain_all_pages(); 2299 drained = true; 2300 goto retry; 2301 } 2302 2303 return page; 2304 } 2305 2306 /* 2307 * This is called in the allocator slow-path if the allocation request is of 2308 * sufficient urgency to ignore watermarks and take other desperate measures 2309 */ 2310 static inline struct page * 2311 __alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order, 2312 struct zonelist *zonelist, enum zone_type high_zoneidx, 2313 nodemask_t *nodemask, struct zone *preferred_zone, 2314 int migratetype) 2315 { 2316 struct page *page; 2317 2318 do { 2319 page = get_page_from_freelist(gfp_mask, nodemask, order, 2320 zonelist, high_zoneidx, ALLOC_NO_WATERMARKS, 2321 preferred_zone, migratetype); 2322 2323 if (!page && gfp_mask & __GFP_NOFAIL) 2324 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50); 2325 } while (!page && (gfp_mask & __GFP_NOFAIL)); 2326 2327 return page; 2328 } 2329 2330 static inline 2331 void wake_all_kswapd(unsigned int order, struct zonelist *zonelist, 2332 enum zone_type high_zoneidx, 2333 enum zone_type classzone_idx) 2334 { 2335 struct zoneref *z; 2336 struct zone *zone; 2337 2338 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) 2339 wakeup_kswapd(zone, order, classzone_idx); 2340 } 2341 2342 static inline int 2343 gfp_to_alloc_flags(gfp_t gfp_mask) 2344 { 2345 int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET; 2346 const gfp_t wait = gfp_mask & __GFP_WAIT; 2347 2348 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */ 2349 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH); 2350 2351 /* 2352 * The caller may dip into page reserves a bit more if the caller 2353 * cannot run direct reclaim, or if the caller has realtime scheduling 2354 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will 2355 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH). 2356 */ 2357 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH); 2358 2359 if (!wait) { 2360 /* 2361 * Not worth trying to allocate harder for 2362 * __GFP_NOMEMALLOC even if it can't schedule. 2363 */ 2364 if (!(gfp_mask & __GFP_NOMEMALLOC)) 2365 alloc_flags |= ALLOC_HARDER; 2366 /* 2367 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc. 2368 * See also cpuset_zone_allowed() comment in kernel/cpuset.c. 2369 */ 2370 alloc_flags &= ~ALLOC_CPUSET; 2371 } else if (unlikely(rt_task(current)) && !in_interrupt()) 2372 alloc_flags |= ALLOC_HARDER; 2373 2374 if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) { 2375 if (gfp_mask & __GFP_MEMALLOC) 2376 alloc_flags |= ALLOC_NO_WATERMARKS; 2377 else if (in_serving_softirq() && (current->flags & PF_MEMALLOC)) 2378 alloc_flags |= ALLOC_NO_WATERMARKS; 2379 else if (!in_interrupt() && 2380 ((current->flags & PF_MEMALLOC) || 2381 unlikely(test_thread_flag(TIF_MEMDIE)))) 2382 alloc_flags |= ALLOC_NO_WATERMARKS; 2383 } 2384 #ifdef CONFIG_CMA 2385 if (allocflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE) 2386 alloc_flags |= ALLOC_CMA; 2387 #endif 2388 return alloc_flags; 2389 } 2390 2391 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask) 2392 { 2393 return !!(gfp_to_alloc_flags(gfp_mask) & ALLOC_NO_WATERMARKS); 2394 } 2395 2396 static inline struct page * 2397 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order, 2398 struct zonelist *zonelist, enum zone_type high_zoneidx, 2399 nodemask_t *nodemask, struct zone *preferred_zone, 2400 int migratetype) 2401 { 2402 const gfp_t wait = gfp_mask & __GFP_WAIT; 2403 struct page *page = NULL; 2404 int alloc_flags; 2405 unsigned long pages_reclaimed = 0; 2406 unsigned long did_some_progress; 2407 bool sync_migration = false; 2408 bool deferred_compaction = false; 2409 bool contended_compaction = false; 2410 2411 /* 2412 * In the slowpath, we sanity check order to avoid ever trying to 2413 * reclaim >= MAX_ORDER areas which will never succeed. Callers may 2414 * be using allocators in order of preference for an area that is 2415 * too large. 2416 */ 2417 if (order >= MAX_ORDER) { 2418 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN)); 2419 return NULL; 2420 } 2421 2422 /* 2423 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and 2424 * __GFP_NOWARN set) should not cause reclaim since the subsystem 2425 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim 2426 * using a larger set of nodes after it has established that the 2427 * allowed per node queues are empty and that nodes are 2428 * over allocated. 2429 */ 2430 if (IS_ENABLED(CONFIG_NUMA) && 2431 (gfp_mask & GFP_THISNODE) == GFP_THISNODE) 2432 goto nopage; 2433 2434 restart: 2435 if (!(gfp_mask & __GFP_NO_KSWAPD)) 2436 wake_all_kswapd(order, zonelist, high_zoneidx, 2437 zone_idx(preferred_zone)); 2438 2439 /* 2440 * OK, we're below the kswapd watermark and have kicked background 2441 * reclaim. Now things get more complex, so set up alloc_flags according 2442 * to how we want to proceed. 2443 */ 2444 alloc_flags = gfp_to_alloc_flags(gfp_mask); 2445 2446 /* 2447 * Find the true preferred zone if the allocation is unconstrained by 2448 * cpusets. 2449 */ 2450 if (!(alloc_flags & ALLOC_CPUSET) && !nodemask) 2451 first_zones_zonelist(zonelist, high_zoneidx, NULL, 2452 &preferred_zone); 2453 2454 rebalance: 2455 /* This is the last chance, in general, before the goto nopage. */ 2456 page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist, 2457 high_zoneidx, alloc_flags & ~ALLOC_NO_WATERMARKS, 2458 preferred_zone, migratetype); 2459 if (page) 2460 goto got_pg; 2461 2462 /* Allocate without watermarks if the context allows */ 2463 if (alloc_flags & ALLOC_NO_WATERMARKS) { 2464 /* 2465 * Ignore mempolicies if ALLOC_NO_WATERMARKS on the grounds 2466 * the allocation is high priority and these type of 2467 * allocations are system rather than user orientated 2468 */ 2469 zonelist = node_zonelist(numa_node_id(), gfp_mask); 2470 2471 page = __alloc_pages_high_priority(gfp_mask, order, 2472 zonelist, high_zoneidx, nodemask, 2473 preferred_zone, migratetype); 2474 if (page) { 2475 goto got_pg; 2476 } 2477 } 2478 2479 /* Atomic allocations - we can't balance anything */ 2480 if (!wait) 2481 goto nopage; 2482 2483 /* Avoid recursion of direct reclaim */ 2484 if (current->flags & PF_MEMALLOC) 2485 goto nopage; 2486 2487 /* Avoid allocations with no watermarks from looping endlessly */ 2488 if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL)) 2489 goto nopage; 2490 2491 /* 2492 * Try direct compaction. The first pass is asynchronous. Subsequent 2493 * attempts after direct reclaim are synchronous 2494 */ 2495 page = __alloc_pages_direct_compact(gfp_mask, order, 2496 zonelist, high_zoneidx, 2497 nodemask, 2498 alloc_flags, preferred_zone, 2499 migratetype, sync_migration, 2500 &contended_compaction, 2501 &deferred_compaction, 2502 &did_some_progress); 2503 if (page) 2504 goto got_pg; 2505 sync_migration = true; 2506 2507 /* 2508 * If compaction is deferred for high-order allocations, it is because 2509 * sync compaction recently failed. In this is the case and the caller 2510 * requested a movable allocation that does not heavily disrupt the 2511 * system then fail the allocation instead of entering direct reclaim. 2512 */ 2513 if ((deferred_compaction || contended_compaction) && 2514 (gfp_mask & __GFP_NO_KSWAPD)) 2515 goto nopage; 2516 2517 /* Try direct reclaim and then allocating */ 2518 page = __alloc_pages_direct_reclaim(gfp_mask, order, 2519 zonelist, high_zoneidx, 2520 nodemask, 2521 alloc_flags, preferred_zone, 2522 migratetype, &did_some_progress); 2523 if (page) 2524 goto got_pg; 2525 2526 /* 2527 * If we failed to make any progress reclaiming, then we are 2528 * running out of options and have to consider going OOM 2529 */ 2530 if (!did_some_progress) { 2531 if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) { 2532 if (oom_killer_disabled) 2533 goto nopage; 2534 /* Coredumps can quickly deplete all memory reserves */ 2535 if ((current->flags & PF_DUMPCORE) && 2536 !(gfp_mask & __GFP_NOFAIL)) 2537 goto nopage; 2538 page = __alloc_pages_may_oom(gfp_mask, order, 2539 zonelist, high_zoneidx, 2540 nodemask, preferred_zone, 2541 migratetype); 2542 if (page) 2543 goto got_pg; 2544 2545 if (!(gfp_mask & __GFP_NOFAIL)) { 2546 /* 2547 * The oom killer is not called for high-order 2548 * allocations that may fail, so if no progress 2549 * is being made, there are no other options and 2550 * retrying is unlikely to help. 2551 */ 2552 if (order > PAGE_ALLOC_COSTLY_ORDER) 2553 goto nopage; 2554 /* 2555 * The oom killer is not called for lowmem 2556 * allocations to prevent needlessly killing 2557 * innocent tasks. 2558 */ 2559 if (high_zoneidx < ZONE_NORMAL) 2560 goto nopage; 2561 } 2562 2563 goto restart; 2564 } 2565 } 2566 2567 /* Check if we should retry the allocation */ 2568 pages_reclaimed += did_some_progress; 2569 if (should_alloc_retry(gfp_mask, order, did_some_progress, 2570 pages_reclaimed)) { 2571 /* Wait for some write requests to complete then retry */ 2572 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50); 2573 goto rebalance; 2574 } else { 2575 /* 2576 * High-order allocations do not necessarily loop after 2577 * direct reclaim and reclaim/compaction depends on compaction 2578 * being called after reclaim so call directly if necessary 2579 */ 2580 page = __alloc_pages_direct_compact(gfp_mask, order, 2581 zonelist, high_zoneidx, 2582 nodemask, 2583 alloc_flags, preferred_zone, 2584 migratetype, sync_migration, 2585 &contended_compaction, 2586 &deferred_compaction, 2587 &did_some_progress); 2588 if (page) 2589 goto got_pg; 2590 } 2591 2592 nopage: 2593 warn_alloc_failed(gfp_mask, order, NULL); 2594 return page; 2595 got_pg: 2596 if (kmemcheck_enabled) 2597 kmemcheck_pagealloc_alloc(page, order, gfp_mask); 2598 2599 return page; 2600 } 2601 2602 /* 2603 * This is the 'heart' of the zoned buddy allocator. 2604 */ 2605 struct page * 2606 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order, 2607 struct zonelist *zonelist, nodemask_t *nodemask) 2608 { 2609 enum zone_type high_zoneidx = gfp_zone(gfp_mask); 2610 struct zone *preferred_zone; 2611 struct page *page = NULL; 2612 int migratetype = allocflags_to_migratetype(gfp_mask); 2613 unsigned int cpuset_mems_cookie; 2614 int alloc_flags = ALLOC_WMARK_LOW|ALLOC_CPUSET; 2615 struct mem_cgroup *memcg = NULL; 2616 2617 gfp_mask &= gfp_allowed_mask; 2618 2619 lockdep_trace_alloc(gfp_mask); 2620 2621 might_sleep_if(gfp_mask & __GFP_WAIT); 2622 2623 if (should_fail_alloc_page(gfp_mask, order)) 2624 return NULL; 2625 2626 /* 2627 * Check the zones suitable for the gfp_mask contain at least one 2628 * valid zone. It's possible to have an empty zonelist as a result 2629 * of GFP_THISNODE and a memoryless node 2630 */ 2631 if (unlikely(!zonelist->_zonerefs->zone)) 2632 return NULL; 2633 2634 /* 2635 * Will only have any effect when __GFP_KMEMCG is set. This is 2636 * verified in the (always inline) callee 2637 */ 2638 if (!memcg_kmem_newpage_charge(gfp_mask, &memcg, order)) 2639 return NULL; 2640 2641 retry_cpuset: 2642 cpuset_mems_cookie = get_mems_allowed(); 2643 2644 /* The preferred zone is used for statistics later */ 2645 first_zones_zonelist(zonelist, high_zoneidx, 2646 nodemask ? : &cpuset_current_mems_allowed, 2647 &preferred_zone); 2648 if (!preferred_zone) 2649 goto out; 2650 2651 #ifdef CONFIG_CMA 2652 if (allocflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE) 2653 alloc_flags |= ALLOC_CMA; 2654 #endif 2655 /* First allocation attempt */ 2656 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order, 2657 zonelist, high_zoneidx, alloc_flags, 2658 preferred_zone, migratetype); 2659 if (unlikely(!page)) 2660 page = __alloc_pages_slowpath(gfp_mask, order, 2661 zonelist, high_zoneidx, nodemask, 2662 preferred_zone, migratetype); 2663 2664 trace_mm_page_alloc(page, order, gfp_mask, migratetype); 2665 2666 out: 2667 /* 2668 * When updating a task's mems_allowed, it is possible to race with 2669 * parallel threads in such a way that an allocation can fail while 2670 * the mask is being updated. If a page allocation is about to fail, 2671 * check if the cpuset changed during allocation and if so, retry. 2672 */ 2673 if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page)) 2674 goto retry_cpuset; 2675 2676 memcg_kmem_commit_charge(page, memcg, order); 2677 2678 return page; 2679 } 2680 EXPORT_SYMBOL(__alloc_pages_nodemask); 2681 2682 /* 2683 * Common helper functions. 2684 */ 2685 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order) 2686 { 2687 struct page *page; 2688 2689 /* 2690 * __get_free_pages() returns a 32-bit address, which cannot represent 2691 * a highmem page 2692 */ 2693 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0); 2694 2695 page = alloc_pages(gfp_mask, order); 2696 if (!page) 2697 return 0; 2698 return (unsigned long) page_address(page); 2699 } 2700 EXPORT_SYMBOL(__get_free_pages); 2701 2702 unsigned long get_zeroed_page(gfp_t gfp_mask) 2703 { 2704 return __get_free_pages(gfp_mask | __GFP_ZERO, 0); 2705 } 2706 EXPORT_SYMBOL(get_zeroed_page); 2707 2708 void __free_pages(struct page *page, unsigned int order) 2709 { 2710 if (put_page_testzero(page)) { 2711 if (order == 0) 2712 free_hot_cold_page(page, 0); 2713 else 2714 __free_pages_ok(page, order); 2715 } 2716 } 2717 2718 EXPORT_SYMBOL(__free_pages); 2719 2720 void free_pages(unsigned long addr, unsigned int order) 2721 { 2722 if (addr != 0) { 2723 VM_BUG_ON(!virt_addr_valid((void *)addr)); 2724 __free_pages(virt_to_page((void *)addr), order); 2725 } 2726 } 2727 2728 EXPORT_SYMBOL(free_pages); 2729 2730 /* 2731 * __free_memcg_kmem_pages and free_memcg_kmem_pages will free 2732 * pages allocated with __GFP_KMEMCG. 2733 * 2734 * Those pages are accounted to a particular memcg, embedded in the 2735 * corresponding page_cgroup. To avoid adding a hit in the allocator to search 2736 * for that information only to find out that it is NULL for users who have no 2737 * interest in that whatsoever, we provide these functions. 2738 * 2739 * The caller knows better which flags it relies on. 2740 */ 2741 void __free_memcg_kmem_pages(struct page *page, unsigned int order) 2742 { 2743 memcg_kmem_uncharge_pages(page, order); 2744 __free_pages(page, order); 2745 } 2746 2747 void free_memcg_kmem_pages(unsigned long addr, unsigned int order) 2748 { 2749 if (addr != 0) { 2750 VM_BUG_ON(!virt_addr_valid((void *)addr)); 2751 __free_memcg_kmem_pages(virt_to_page((void *)addr), order); 2752 } 2753 } 2754 2755 static void *make_alloc_exact(unsigned long addr, unsigned order, size_t size) 2756 { 2757 if (addr) { 2758 unsigned long alloc_end = addr + (PAGE_SIZE << order); 2759 unsigned long used = addr + PAGE_ALIGN(size); 2760 2761 split_page(virt_to_page((void *)addr), order); 2762 while (used < alloc_end) { 2763 free_page(used); 2764 used += PAGE_SIZE; 2765 } 2766 } 2767 return (void *)addr; 2768 } 2769 2770 /** 2771 * alloc_pages_exact - allocate an exact number physically-contiguous pages. 2772 * @size: the number of bytes to allocate 2773 * @gfp_mask: GFP flags for the allocation 2774 * 2775 * This function is similar to alloc_pages(), except that it allocates the 2776 * minimum number of pages to satisfy the request. alloc_pages() can only 2777 * allocate memory in power-of-two pages. 2778 * 2779 * This function is also limited by MAX_ORDER. 2780 * 2781 * Memory allocated by this function must be released by free_pages_exact(). 2782 */ 2783 void *alloc_pages_exact(size_t size, gfp_t gfp_mask) 2784 { 2785 unsigned int order = get_order(size); 2786 unsigned long addr; 2787 2788 addr = __get_free_pages(gfp_mask, order); 2789 return make_alloc_exact(addr, order, size); 2790 } 2791 EXPORT_SYMBOL(alloc_pages_exact); 2792 2793 /** 2794 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous 2795 * pages on a node. 2796 * @nid: the preferred node ID where memory should be allocated 2797 * @size: the number of bytes to allocate 2798 * @gfp_mask: GFP flags for the allocation 2799 * 2800 * Like alloc_pages_exact(), but try to allocate on node nid first before falling 2801 * back. 2802 * Note this is not alloc_pages_exact_node() which allocates on a specific node, 2803 * but is not exact. 2804 */ 2805 void *alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask) 2806 { 2807 unsigned order = get_order(size); 2808 struct page *p = alloc_pages_node(nid, gfp_mask, order); 2809 if (!p) 2810 return NULL; 2811 return make_alloc_exact((unsigned long)page_address(p), order, size); 2812 } 2813 EXPORT_SYMBOL(alloc_pages_exact_nid); 2814 2815 /** 2816 * free_pages_exact - release memory allocated via alloc_pages_exact() 2817 * @virt: the value returned by alloc_pages_exact. 2818 * @size: size of allocation, same value as passed to alloc_pages_exact(). 2819 * 2820 * Release the memory allocated by a previous call to alloc_pages_exact. 2821 */ 2822 void free_pages_exact(void *virt, size_t size) 2823 { 2824 unsigned long addr = (unsigned long)virt; 2825 unsigned long end = addr + PAGE_ALIGN(size); 2826 2827 while (addr < end) { 2828 free_page(addr); 2829 addr += PAGE_SIZE; 2830 } 2831 } 2832 EXPORT_SYMBOL(free_pages_exact); 2833 2834 static unsigned int nr_free_zone_pages(int offset) 2835 { 2836 struct zoneref *z; 2837 struct zone *zone; 2838 2839 /* Just pick one node, since fallback list is circular */ 2840 unsigned int sum = 0; 2841 2842 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL); 2843 2844 for_each_zone_zonelist(zone, z, zonelist, offset) { 2845 unsigned long size = zone->present_pages; 2846 unsigned long high = high_wmark_pages(zone); 2847 if (size > high) 2848 sum += size - high; 2849 } 2850 2851 return sum; 2852 } 2853 2854 /* 2855 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL 2856 */ 2857 unsigned int nr_free_buffer_pages(void) 2858 { 2859 return nr_free_zone_pages(gfp_zone(GFP_USER)); 2860 } 2861 EXPORT_SYMBOL_GPL(nr_free_buffer_pages); 2862 2863 /* 2864 * Amount of free RAM allocatable within all zones 2865 */ 2866 unsigned int nr_free_pagecache_pages(void) 2867 { 2868 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE)); 2869 } 2870 2871 static inline void show_node(struct zone *zone) 2872 { 2873 if (IS_ENABLED(CONFIG_NUMA)) 2874 printk("Node %d ", zone_to_nid(zone)); 2875 } 2876 2877 void si_meminfo(struct sysinfo *val) 2878 { 2879 val->totalram = totalram_pages; 2880 val->sharedram = 0; 2881 val->freeram = global_page_state(NR_FREE_PAGES); 2882 val->bufferram = nr_blockdev_pages(); 2883 val->totalhigh = totalhigh_pages; 2884 val->freehigh = nr_free_highpages(); 2885 val->mem_unit = PAGE_SIZE; 2886 } 2887 2888 EXPORT_SYMBOL(si_meminfo); 2889 2890 #ifdef CONFIG_NUMA 2891 void si_meminfo_node(struct sysinfo *val, int nid) 2892 { 2893 pg_data_t *pgdat = NODE_DATA(nid); 2894 2895 val->totalram = pgdat->node_present_pages; 2896 val->freeram = node_page_state(nid, NR_FREE_PAGES); 2897 #ifdef CONFIG_HIGHMEM 2898 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages; 2899 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM], 2900 NR_FREE_PAGES); 2901 #else 2902 val->totalhigh = 0; 2903 val->freehigh = 0; 2904 #endif 2905 val->mem_unit = PAGE_SIZE; 2906 } 2907 #endif 2908 2909 /* 2910 * Determine whether the node should be displayed or not, depending on whether 2911 * SHOW_MEM_FILTER_NODES was passed to show_free_areas(). 2912 */ 2913 bool skip_free_areas_node(unsigned int flags, int nid) 2914 { 2915 bool ret = false; 2916 unsigned int cpuset_mems_cookie; 2917 2918 if (!(flags & SHOW_MEM_FILTER_NODES)) 2919 goto out; 2920 2921 do { 2922 cpuset_mems_cookie = get_mems_allowed(); 2923 ret = !node_isset(nid, cpuset_current_mems_allowed); 2924 } while (!put_mems_allowed(cpuset_mems_cookie)); 2925 out: 2926 return ret; 2927 } 2928 2929 #define K(x) ((x) << (PAGE_SHIFT-10)) 2930 2931 static void show_migration_types(unsigned char type) 2932 { 2933 static const char types[MIGRATE_TYPES] = { 2934 [MIGRATE_UNMOVABLE] = 'U', 2935 [MIGRATE_RECLAIMABLE] = 'E', 2936 [MIGRATE_MOVABLE] = 'M', 2937 [MIGRATE_RESERVE] = 'R', 2938 #ifdef CONFIG_CMA 2939 [MIGRATE_CMA] = 'C', 2940 #endif 2941 [MIGRATE_ISOLATE] = 'I', 2942 }; 2943 char tmp[MIGRATE_TYPES + 1]; 2944 char *p = tmp; 2945 int i; 2946 2947 for (i = 0; i < MIGRATE_TYPES; i++) { 2948 if (type & (1 << i)) 2949 *p++ = types[i]; 2950 } 2951 2952 *p = '\0'; 2953 printk("(%s) ", tmp); 2954 } 2955 2956 /* 2957 * Show free area list (used inside shift_scroll-lock stuff) 2958 * We also calculate the percentage fragmentation. We do this by counting the 2959 * memory on each free list with the exception of the first item on the list. 2960 * Suppresses nodes that are not allowed by current's cpuset if 2961 * SHOW_MEM_FILTER_NODES is passed. 2962 */ 2963 void show_free_areas(unsigned int filter) 2964 { 2965 int cpu; 2966 struct zone *zone; 2967 2968 for_each_populated_zone(zone) { 2969 if (skip_free_areas_node(filter, zone_to_nid(zone))) 2970 continue; 2971 show_node(zone); 2972 printk("%s per-cpu:\n", zone->name); 2973 2974 for_each_online_cpu(cpu) { 2975 struct per_cpu_pageset *pageset; 2976 2977 pageset = per_cpu_ptr(zone->pageset, cpu); 2978 2979 printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n", 2980 cpu, pageset->pcp.high, 2981 pageset->pcp.batch, pageset->pcp.count); 2982 } 2983 } 2984 2985 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n" 2986 " active_file:%lu inactive_file:%lu isolated_file:%lu\n" 2987 " unevictable:%lu" 2988 " dirty:%lu writeback:%lu unstable:%lu\n" 2989 " free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n" 2990 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n" 2991 " free_cma:%lu\n", 2992 global_page_state(NR_ACTIVE_ANON), 2993 global_page_state(NR_INACTIVE_ANON), 2994 global_page_state(NR_ISOLATED_ANON), 2995 global_page_state(NR_ACTIVE_FILE), 2996 global_page_state(NR_INACTIVE_FILE), 2997 global_page_state(NR_ISOLATED_FILE), 2998 global_page_state(NR_UNEVICTABLE), 2999 global_page_state(NR_FILE_DIRTY), 3000 global_page_state(NR_WRITEBACK), 3001 global_page_state(NR_UNSTABLE_NFS), 3002 global_page_state(NR_FREE_PAGES), 3003 global_page_state(NR_SLAB_RECLAIMABLE), 3004 global_page_state(NR_SLAB_UNRECLAIMABLE), 3005 global_page_state(NR_FILE_MAPPED), 3006 global_page_state(NR_SHMEM), 3007 global_page_state(NR_PAGETABLE), 3008 global_page_state(NR_BOUNCE), 3009 global_page_state(NR_FREE_CMA_PAGES)); 3010 3011 for_each_populated_zone(zone) { 3012 int i; 3013 3014 if (skip_free_areas_node(filter, zone_to_nid(zone))) 3015 continue; 3016 show_node(zone); 3017 printk("%s" 3018 " free:%lukB" 3019 " min:%lukB" 3020 " low:%lukB" 3021 " high:%lukB" 3022 " active_anon:%lukB" 3023 " inactive_anon:%lukB" 3024 " active_file:%lukB" 3025 " inactive_file:%lukB" 3026 " unevictable:%lukB" 3027 " isolated(anon):%lukB" 3028 " isolated(file):%lukB" 3029 " present:%lukB" 3030 " managed:%lukB" 3031 " mlocked:%lukB" 3032 " dirty:%lukB" 3033 " writeback:%lukB" 3034 " mapped:%lukB" 3035 " shmem:%lukB" 3036 " slab_reclaimable:%lukB" 3037 " slab_unreclaimable:%lukB" 3038 " kernel_stack:%lukB" 3039 " pagetables:%lukB" 3040 " unstable:%lukB" 3041 " bounce:%lukB" 3042 " free_cma:%lukB" 3043 " writeback_tmp:%lukB" 3044 " pages_scanned:%lu" 3045 " all_unreclaimable? %s" 3046 "\n", 3047 zone->name, 3048 K(zone_page_state(zone, NR_FREE_PAGES)), 3049 K(min_wmark_pages(zone)), 3050 K(low_wmark_pages(zone)), 3051 K(high_wmark_pages(zone)), 3052 K(zone_page_state(zone, NR_ACTIVE_ANON)), 3053 K(zone_page_state(zone, NR_INACTIVE_ANON)), 3054 K(zone_page_state(zone, NR_ACTIVE_FILE)), 3055 K(zone_page_state(zone, NR_INACTIVE_FILE)), 3056 K(zone_page_state(zone, NR_UNEVICTABLE)), 3057 K(zone_page_state(zone, NR_ISOLATED_ANON)), 3058 K(zone_page_state(zone, NR_ISOLATED_FILE)), 3059 K(zone->present_pages), 3060 K(zone->managed_pages), 3061 K(zone_page_state(zone, NR_MLOCK)), 3062 K(zone_page_state(zone, NR_FILE_DIRTY)), 3063 K(zone_page_state(zone, NR_WRITEBACK)), 3064 K(zone_page_state(zone, NR_FILE_MAPPED)), 3065 K(zone_page_state(zone, NR_SHMEM)), 3066 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)), 3067 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)), 3068 zone_page_state(zone, NR_KERNEL_STACK) * 3069 THREAD_SIZE / 1024, 3070 K(zone_page_state(zone, NR_PAGETABLE)), 3071 K(zone_page_state(zone, NR_UNSTABLE_NFS)), 3072 K(zone_page_state(zone, NR_BOUNCE)), 3073 K(zone_page_state(zone, NR_FREE_CMA_PAGES)), 3074 K(zone_page_state(zone, NR_WRITEBACK_TEMP)), 3075 zone->pages_scanned, 3076 (zone->all_unreclaimable ? "yes" : "no") 3077 ); 3078 printk("lowmem_reserve[]:"); 3079 for (i = 0; i < MAX_NR_ZONES; i++) 3080 printk(" %lu", zone->lowmem_reserve[i]); 3081 printk("\n"); 3082 } 3083 3084 for_each_populated_zone(zone) { 3085 unsigned long nr[MAX_ORDER], flags, order, total = 0; 3086 unsigned char types[MAX_ORDER]; 3087 3088 if (skip_free_areas_node(filter, zone_to_nid(zone))) 3089 continue; 3090 show_node(zone); 3091 printk("%s: ", zone->name); 3092 3093 spin_lock_irqsave(&zone->lock, flags); 3094 for (order = 0; order < MAX_ORDER; order++) { 3095 struct free_area *area = &zone->free_area[order]; 3096 int type; 3097 3098 nr[order] = area->nr_free; 3099 total += nr[order] << order; 3100 3101 types[order] = 0; 3102 for (type = 0; type < MIGRATE_TYPES; type++) { 3103 if (!list_empty(&area->free_list[type])) 3104 types[order] |= 1 << type; 3105 } 3106 } 3107 spin_unlock_irqrestore(&zone->lock, flags); 3108 for (order = 0; order < MAX_ORDER; order++) { 3109 printk("%lu*%lukB ", nr[order], K(1UL) << order); 3110 if (nr[order]) 3111 show_migration_types(types[order]); 3112 } 3113 printk("= %lukB\n", K(total)); 3114 } 3115 3116 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES)); 3117 3118 show_swap_cache_info(); 3119 } 3120 3121 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref) 3122 { 3123 zoneref->zone = zone; 3124 zoneref->zone_idx = zone_idx(zone); 3125 } 3126 3127 /* 3128 * Builds allocation fallback zone lists. 3129 * 3130 * Add all populated zones of a node to the zonelist. 3131 */ 3132 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist, 3133 int nr_zones, enum zone_type zone_type) 3134 { 3135 struct zone *zone; 3136 3137 BUG_ON(zone_type >= MAX_NR_ZONES); 3138 zone_type++; 3139 3140 do { 3141 zone_type--; 3142 zone = pgdat->node_zones + zone_type; 3143 if (populated_zone(zone)) { 3144 zoneref_set_zone(zone, 3145 &zonelist->_zonerefs[nr_zones++]); 3146 check_highest_zone(zone_type); 3147 } 3148 3149 } while (zone_type); 3150 return nr_zones; 3151 } 3152 3153 3154 /* 3155 * zonelist_order: 3156 * 0 = automatic detection of better ordering. 3157 * 1 = order by ([node] distance, -zonetype) 3158 * 2 = order by (-zonetype, [node] distance) 3159 * 3160 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create 3161 * the same zonelist. So only NUMA can configure this param. 3162 */ 3163 #define ZONELIST_ORDER_DEFAULT 0 3164 #define ZONELIST_ORDER_NODE 1 3165 #define ZONELIST_ORDER_ZONE 2 3166 3167 /* zonelist order in the kernel. 3168 * set_zonelist_order() will set this to NODE or ZONE. 3169 */ 3170 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT; 3171 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"}; 3172 3173 3174 #ifdef CONFIG_NUMA 3175 /* The value user specified ....changed by config */ 3176 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT; 3177 /* string for sysctl */ 3178 #define NUMA_ZONELIST_ORDER_LEN 16 3179 char numa_zonelist_order[16] = "default"; 3180 3181 /* 3182 * interface for configure zonelist ordering. 3183 * command line option "numa_zonelist_order" 3184 * = "[dD]efault - default, automatic configuration. 3185 * = "[nN]ode - order by node locality, then by zone within node 3186 * = "[zZ]one - order by zone, then by locality within zone 3187 */ 3188 3189 static int __parse_numa_zonelist_order(char *s) 3190 { 3191 if (*s == 'd' || *s == 'D') { 3192 user_zonelist_order = ZONELIST_ORDER_DEFAULT; 3193 } else if (*s == 'n' || *s == 'N') { 3194 user_zonelist_order = ZONELIST_ORDER_NODE; 3195 } else if (*s == 'z' || *s == 'Z') { 3196 user_zonelist_order = ZONELIST_ORDER_ZONE; 3197 } else { 3198 printk(KERN_WARNING 3199 "Ignoring invalid numa_zonelist_order value: " 3200 "%s\n", s); 3201 return -EINVAL; 3202 } 3203 return 0; 3204 } 3205 3206 static __init int setup_numa_zonelist_order(char *s) 3207 { 3208 int ret; 3209 3210 if (!s) 3211 return 0; 3212 3213 ret = __parse_numa_zonelist_order(s); 3214 if (ret == 0) 3215 strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN); 3216 3217 return ret; 3218 } 3219 early_param("numa_zonelist_order", setup_numa_zonelist_order); 3220 3221 /* 3222 * sysctl handler for numa_zonelist_order 3223 */ 3224 int numa_zonelist_order_handler(ctl_table *table, int write, 3225 void __user *buffer, size_t *length, 3226 loff_t *ppos) 3227 { 3228 char saved_string[NUMA_ZONELIST_ORDER_LEN]; 3229 int ret; 3230 static DEFINE_MUTEX(zl_order_mutex); 3231 3232 mutex_lock(&zl_order_mutex); 3233 if (write) 3234 strcpy(saved_string, (char*)table->data); 3235 ret = proc_dostring(table, write, buffer, length, ppos); 3236 if (ret) 3237 goto out; 3238 if (write) { 3239 int oldval = user_zonelist_order; 3240 if (__parse_numa_zonelist_order((char*)table->data)) { 3241 /* 3242 * bogus value. restore saved string 3243 */ 3244 strncpy((char*)table->data, saved_string, 3245 NUMA_ZONELIST_ORDER_LEN); 3246 user_zonelist_order = oldval; 3247 } else if (oldval != user_zonelist_order) { 3248 mutex_lock(&zonelists_mutex); 3249 build_all_zonelists(NULL, NULL); 3250 mutex_unlock(&zonelists_mutex); 3251 } 3252 } 3253 out: 3254 mutex_unlock(&zl_order_mutex); 3255 return ret; 3256 } 3257 3258 3259 #define MAX_NODE_LOAD (nr_online_nodes) 3260 static int node_load[MAX_NUMNODES]; 3261 3262 /** 3263 * find_next_best_node - find the next node that should appear in a given node's fallback list 3264 * @node: node whose fallback list we're appending 3265 * @used_node_mask: nodemask_t of already used nodes 3266 * 3267 * We use a number of factors to determine which is the next node that should 3268 * appear on a given node's fallback list. The node should not have appeared 3269 * already in @node's fallback list, and it should be the next closest node 3270 * according to the distance array (which contains arbitrary distance values 3271 * from each node to each node in the system), and should also prefer nodes 3272 * with no CPUs, since presumably they'll have very little allocation pressure 3273 * on them otherwise. 3274 * It returns -1 if no node is found. 3275 */ 3276 static int find_next_best_node(int node, nodemask_t *used_node_mask) 3277 { 3278 int n, val; 3279 int min_val = INT_MAX; 3280 int best_node = -1; 3281 const struct cpumask *tmp = cpumask_of_node(0); 3282 3283 /* Use the local node if we haven't already */ 3284 if (!node_isset(node, *used_node_mask)) { 3285 node_set(node, *used_node_mask); 3286 return node; 3287 } 3288 3289 for_each_node_state(n, N_MEMORY) { 3290 3291 /* Don't want a node to appear more than once */ 3292 if (node_isset(n, *used_node_mask)) 3293 continue; 3294 3295 /* Use the distance array to find the distance */ 3296 val = node_distance(node, n); 3297 3298 /* Penalize nodes under us ("prefer the next node") */ 3299 val += (n < node); 3300 3301 /* Give preference to headless and unused nodes */ 3302 tmp = cpumask_of_node(n); 3303 if (!cpumask_empty(tmp)) 3304 val += PENALTY_FOR_NODE_WITH_CPUS; 3305 3306 /* Slight preference for less loaded node */ 3307 val *= (MAX_NODE_LOAD*MAX_NUMNODES); 3308 val += node_load[n]; 3309 3310 if (val < min_val) { 3311 min_val = val; 3312 best_node = n; 3313 } 3314 } 3315 3316 if (best_node >= 0) 3317 node_set(best_node, *used_node_mask); 3318 3319 return best_node; 3320 } 3321 3322 3323 /* 3324 * Build zonelists ordered by node and zones within node. 3325 * This results in maximum locality--normal zone overflows into local 3326 * DMA zone, if any--but risks exhausting DMA zone. 3327 */ 3328 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node) 3329 { 3330 int j; 3331 struct zonelist *zonelist; 3332 3333 zonelist = &pgdat->node_zonelists[0]; 3334 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++) 3335 ; 3336 j = build_zonelists_node(NODE_DATA(node), zonelist, j, 3337 MAX_NR_ZONES - 1); 3338 zonelist->_zonerefs[j].zone = NULL; 3339 zonelist->_zonerefs[j].zone_idx = 0; 3340 } 3341 3342 /* 3343 * Build gfp_thisnode zonelists 3344 */ 3345 static void build_thisnode_zonelists(pg_data_t *pgdat) 3346 { 3347 int j; 3348 struct zonelist *zonelist; 3349 3350 zonelist = &pgdat->node_zonelists[1]; 3351 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1); 3352 zonelist->_zonerefs[j].zone = NULL; 3353 zonelist->_zonerefs[j].zone_idx = 0; 3354 } 3355 3356 /* 3357 * Build zonelists ordered by zone and nodes within zones. 3358 * This results in conserving DMA zone[s] until all Normal memory is 3359 * exhausted, but results in overflowing to remote node while memory 3360 * may still exist in local DMA zone. 3361 */ 3362 static int node_order[MAX_NUMNODES]; 3363 3364 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes) 3365 { 3366 int pos, j, node; 3367 int zone_type; /* needs to be signed */ 3368 struct zone *z; 3369 struct zonelist *zonelist; 3370 3371 zonelist = &pgdat->node_zonelists[0]; 3372 pos = 0; 3373 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) { 3374 for (j = 0; j < nr_nodes; j++) { 3375 node = node_order[j]; 3376 z = &NODE_DATA(node)->node_zones[zone_type]; 3377 if (populated_zone(z)) { 3378 zoneref_set_zone(z, 3379 &zonelist->_zonerefs[pos++]); 3380 check_highest_zone(zone_type); 3381 } 3382 } 3383 } 3384 zonelist->_zonerefs[pos].zone = NULL; 3385 zonelist->_zonerefs[pos].zone_idx = 0; 3386 } 3387 3388 static int default_zonelist_order(void) 3389 { 3390 int nid, zone_type; 3391 unsigned long low_kmem_size,total_size; 3392 struct zone *z; 3393 int average_size; 3394 /* 3395 * ZONE_DMA and ZONE_DMA32 can be very small area in the system. 3396 * If they are really small and used heavily, the system can fall 3397 * into OOM very easily. 3398 * This function detect ZONE_DMA/DMA32 size and configures zone order. 3399 */ 3400 /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */ 3401 low_kmem_size = 0; 3402 total_size = 0; 3403 for_each_online_node(nid) { 3404 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) { 3405 z = &NODE_DATA(nid)->node_zones[zone_type]; 3406 if (populated_zone(z)) { 3407 if (zone_type < ZONE_NORMAL) 3408 low_kmem_size += z->present_pages; 3409 total_size += z->present_pages; 3410 } else if (zone_type == ZONE_NORMAL) { 3411 /* 3412 * If any node has only lowmem, then node order 3413 * is preferred to allow kernel allocations 3414 * locally; otherwise, they can easily infringe 3415 * on other nodes when there is an abundance of 3416 * lowmem available to allocate from. 3417 */ 3418 return ZONELIST_ORDER_NODE; 3419 } 3420 } 3421 } 3422 if (!low_kmem_size || /* there are no DMA area. */ 3423 low_kmem_size > total_size/2) /* DMA/DMA32 is big. */ 3424 return ZONELIST_ORDER_NODE; 3425 /* 3426 * look into each node's config. 3427 * If there is a node whose DMA/DMA32 memory is very big area on 3428 * local memory, NODE_ORDER may be suitable. 3429 */ 3430 average_size = total_size / 3431 (nodes_weight(node_states[N_MEMORY]) + 1); 3432 for_each_online_node(nid) { 3433 low_kmem_size = 0; 3434 total_size = 0; 3435 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) { 3436 z = &NODE_DATA(nid)->node_zones[zone_type]; 3437 if (populated_zone(z)) { 3438 if (zone_type < ZONE_NORMAL) 3439 low_kmem_size += z->present_pages; 3440 total_size += z->present_pages; 3441 } 3442 } 3443 if (low_kmem_size && 3444 total_size > average_size && /* ignore small node */ 3445 low_kmem_size > total_size * 70/100) 3446 return ZONELIST_ORDER_NODE; 3447 } 3448 return ZONELIST_ORDER_ZONE; 3449 } 3450 3451 static void set_zonelist_order(void) 3452 { 3453 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT) 3454 current_zonelist_order = default_zonelist_order(); 3455 else 3456 current_zonelist_order = user_zonelist_order; 3457 } 3458 3459 static void build_zonelists(pg_data_t *pgdat) 3460 { 3461 int j, node, load; 3462 enum zone_type i; 3463 nodemask_t used_mask; 3464 int local_node, prev_node; 3465 struct zonelist *zonelist; 3466 int order = current_zonelist_order; 3467 3468 /* initialize zonelists */ 3469 for (i = 0; i < MAX_ZONELISTS; i++) { 3470 zonelist = pgdat->node_zonelists + i; 3471 zonelist->_zonerefs[0].zone = NULL; 3472 zonelist->_zonerefs[0].zone_idx = 0; 3473 } 3474 3475 /* NUMA-aware ordering of nodes */ 3476 local_node = pgdat->node_id; 3477 load = nr_online_nodes; 3478 prev_node = local_node; 3479 nodes_clear(used_mask); 3480 3481 memset(node_order, 0, sizeof(node_order)); 3482 j = 0; 3483 3484 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) { 3485 /* 3486 * We don't want to pressure a particular node. 3487 * So adding penalty to the first node in same 3488 * distance group to make it round-robin. 3489 */ 3490 if (node_distance(local_node, node) != 3491 node_distance(local_node, prev_node)) 3492 node_load[node] = load; 3493 3494 prev_node = node; 3495 load--; 3496 if (order == ZONELIST_ORDER_NODE) 3497 build_zonelists_in_node_order(pgdat, node); 3498 else 3499 node_order[j++] = node; /* remember order */ 3500 } 3501 3502 if (order == ZONELIST_ORDER_ZONE) { 3503 /* calculate node order -- i.e., DMA last! */ 3504 build_zonelists_in_zone_order(pgdat, j); 3505 } 3506 3507 build_thisnode_zonelists(pgdat); 3508 } 3509 3510 /* Construct the zonelist performance cache - see further mmzone.h */ 3511 static void build_zonelist_cache(pg_data_t *pgdat) 3512 { 3513 struct zonelist *zonelist; 3514 struct zonelist_cache *zlc; 3515 struct zoneref *z; 3516 3517 zonelist = &pgdat->node_zonelists[0]; 3518 zonelist->zlcache_ptr = zlc = &zonelist->zlcache; 3519 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST); 3520 for (z = zonelist->_zonerefs; z->zone; z++) 3521 zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z); 3522 } 3523 3524 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 3525 /* 3526 * Return node id of node used for "local" allocations. 3527 * I.e., first node id of first zone in arg node's generic zonelist. 3528 * Used for initializing percpu 'numa_mem', which is used primarily 3529 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist. 3530 */ 3531 int local_memory_node(int node) 3532 { 3533 struct zone *zone; 3534 3535 (void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL), 3536 gfp_zone(GFP_KERNEL), 3537 NULL, 3538 &zone); 3539 return zone->node; 3540 } 3541 #endif 3542 3543 #else /* CONFIG_NUMA */ 3544 3545 static void set_zonelist_order(void) 3546 { 3547 current_zonelist_order = ZONELIST_ORDER_ZONE; 3548 } 3549 3550 static void build_zonelists(pg_data_t *pgdat) 3551 { 3552 int node, local_node; 3553 enum zone_type j; 3554 struct zonelist *zonelist; 3555 3556 local_node = pgdat->node_id; 3557 3558 zonelist = &pgdat->node_zonelists[0]; 3559 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1); 3560 3561 /* 3562 * Now we build the zonelist so that it contains the zones 3563 * of all the other nodes. 3564 * We don't want to pressure a particular node, so when 3565 * building the zones for node N, we make sure that the 3566 * zones coming right after the local ones are those from 3567 * node N+1 (modulo N) 3568 */ 3569 for (node = local_node + 1; node < MAX_NUMNODES; node++) { 3570 if (!node_online(node)) 3571 continue; 3572 j = build_zonelists_node(NODE_DATA(node), zonelist, j, 3573 MAX_NR_ZONES - 1); 3574 } 3575 for (node = 0; node < local_node; node++) { 3576 if (!node_online(node)) 3577 continue; 3578 j = build_zonelists_node(NODE_DATA(node), zonelist, j, 3579 MAX_NR_ZONES - 1); 3580 } 3581 3582 zonelist->_zonerefs[j].zone = NULL; 3583 zonelist->_zonerefs[j].zone_idx = 0; 3584 } 3585 3586 /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */ 3587 static void build_zonelist_cache(pg_data_t *pgdat) 3588 { 3589 pgdat->node_zonelists[0].zlcache_ptr = NULL; 3590 } 3591 3592 #endif /* CONFIG_NUMA */ 3593 3594 /* 3595 * Boot pageset table. One per cpu which is going to be used for all 3596 * zones and all nodes. The parameters will be set in such a way 3597 * that an item put on a list will immediately be handed over to 3598 * the buddy list. This is safe since pageset manipulation is done 3599 * with interrupts disabled. 3600 * 3601 * The boot_pagesets must be kept even after bootup is complete for 3602 * unused processors and/or zones. They do play a role for bootstrapping 3603 * hotplugged processors. 3604 * 3605 * zoneinfo_show() and maybe other functions do 3606 * not check if the processor is online before following the pageset pointer. 3607 * Other parts of the kernel may not check if the zone is available. 3608 */ 3609 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch); 3610 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset); 3611 static void setup_zone_pageset(struct zone *zone); 3612 3613 /* 3614 * Global mutex to protect against size modification of zonelists 3615 * as well as to serialize pageset setup for the new populated zone. 3616 */ 3617 DEFINE_MUTEX(zonelists_mutex); 3618 3619 /* return values int ....just for stop_machine() */ 3620 static int __build_all_zonelists(void *data) 3621 { 3622 int nid; 3623 int cpu; 3624 pg_data_t *self = data; 3625 3626 #ifdef CONFIG_NUMA 3627 memset(node_load, 0, sizeof(node_load)); 3628 #endif 3629 3630 if (self && !node_online(self->node_id)) { 3631 build_zonelists(self); 3632 build_zonelist_cache(self); 3633 } 3634 3635 for_each_online_node(nid) { 3636 pg_data_t *pgdat = NODE_DATA(nid); 3637 3638 build_zonelists(pgdat); 3639 build_zonelist_cache(pgdat); 3640 } 3641 3642 /* 3643 * Initialize the boot_pagesets that are going to be used 3644 * for bootstrapping processors. The real pagesets for 3645 * each zone will be allocated later when the per cpu 3646 * allocator is available. 3647 * 3648 * boot_pagesets are used also for bootstrapping offline 3649 * cpus if the system is already booted because the pagesets 3650 * are needed to initialize allocators on a specific cpu too. 3651 * F.e. the percpu allocator needs the page allocator which 3652 * needs the percpu allocator in order to allocate its pagesets 3653 * (a chicken-egg dilemma). 3654 */ 3655 for_each_possible_cpu(cpu) { 3656 setup_pageset(&per_cpu(boot_pageset, cpu), 0); 3657 3658 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 3659 /* 3660 * We now know the "local memory node" for each node-- 3661 * i.e., the node of the first zone in the generic zonelist. 3662 * Set up numa_mem percpu variable for on-line cpus. During 3663 * boot, only the boot cpu should be on-line; we'll init the 3664 * secondary cpus' numa_mem as they come on-line. During 3665 * node/memory hotplug, we'll fixup all on-line cpus. 3666 */ 3667 if (cpu_online(cpu)) 3668 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu))); 3669 #endif 3670 } 3671 3672 return 0; 3673 } 3674 3675 /* 3676 * Called with zonelists_mutex held always 3677 * unless system_state == SYSTEM_BOOTING. 3678 */ 3679 void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone) 3680 { 3681 set_zonelist_order(); 3682 3683 if (system_state == SYSTEM_BOOTING) { 3684 __build_all_zonelists(NULL); 3685 mminit_verify_zonelist(); 3686 cpuset_init_current_mems_allowed(); 3687 } else { 3688 /* we have to stop all cpus to guarantee there is no user 3689 of zonelist */ 3690 #ifdef CONFIG_MEMORY_HOTPLUG 3691 if (zone) 3692 setup_zone_pageset(zone); 3693 #endif 3694 stop_machine(__build_all_zonelists, pgdat, NULL); 3695 /* cpuset refresh routine should be here */ 3696 } 3697 vm_total_pages = nr_free_pagecache_pages(); 3698 /* 3699 * Disable grouping by mobility if the number of pages in the 3700 * system is too low to allow the mechanism to work. It would be 3701 * more accurate, but expensive to check per-zone. This check is 3702 * made on memory-hotadd so a system can start with mobility 3703 * disabled and enable it later 3704 */ 3705 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES)) 3706 page_group_by_mobility_disabled = 1; 3707 else 3708 page_group_by_mobility_disabled = 0; 3709 3710 printk("Built %i zonelists in %s order, mobility grouping %s. " 3711 "Total pages: %ld\n", 3712 nr_online_nodes, 3713 zonelist_order_name[current_zonelist_order], 3714 page_group_by_mobility_disabled ? "off" : "on", 3715 vm_total_pages); 3716 #ifdef CONFIG_NUMA 3717 printk("Policy zone: %s\n", zone_names[policy_zone]); 3718 #endif 3719 } 3720 3721 /* 3722 * Helper functions to size the waitqueue hash table. 3723 * Essentially these want to choose hash table sizes sufficiently 3724 * large so that collisions trying to wait on pages are rare. 3725 * But in fact, the number of active page waitqueues on typical 3726 * systems is ridiculously low, less than 200. So this is even 3727 * conservative, even though it seems large. 3728 * 3729 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to 3730 * waitqueues, i.e. the size of the waitq table given the number of pages. 3731 */ 3732 #define PAGES_PER_WAITQUEUE 256 3733 3734 #ifndef CONFIG_MEMORY_HOTPLUG 3735 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages) 3736 { 3737 unsigned long size = 1; 3738 3739 pages /= PAGES_PER_WAITQUEUE; 3740 3741 while (size < pages) 3742 size <<= 1; 3743 3744 /* 3745 * Once we have dozens or even hundreds of threads sleeping 3746 * on IO we've got bigger problems than wait queue collision. 3747 * Limit the size of the wait table to a reasonable size. 3748 */ 3749 size = min(size, 4096UL); 3750 3751 return max(size, 4UL); 3752 } 3753 #else 3754 /* 3755 * A zone's size might be changed by hot-add, so it is not possible to determine 3756 * a suitable size for its wait_table. So we use the maximum size now. 3757 * 3758 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie: 3759 * 3760 * i386 (preemption config) : 4096 x 16 = 64Kbyte. 3761 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte. 3762 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte. 3763 * 3764 * The maximum entries are prepared when a zone's memory is (512K + 256) pages 3765 * or more by the traditional way. (See above). It equals: 3766 * 3767 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte. 3768 * ia64(16K page size) : = ( 8G + 4M)byte. 3769 * powerpc (64K page size) : = (32G +16M)byte. 3770 */ 3771 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages) 3772 { 3773 return 4096UL; 3774 } 3775 #endif 3776 3777 /* 3778 * This is an integer logarithm so that shifts can be used later 3779 * to extract the more random high bits from the multiplicative 3780 * hash function before the remainder is taken. 3781 */ 3782 static inline unsigned long wait_table_bits(unsigned long size) 3783 { 3784 return ffz(~size); 3785 } 3786 3787 #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1)) 3788 3789 /* 3790 * Check if a pageblock contains reserved pages 3791 */ 3792 static int pageblock_is_reserved(unsigned long start_pfn, unsigned long end_pfn) 3793 { 3794 unsigned long pfn; 3795 3796 for (pfn = start_pfn; pfn < end_pfn; pfn++) { 3797 if (!pfn_valid_within(pfn) || PageReserved(pfn_to_page(pfn))) 3798 return 1; 3799 } 3800 return 0; 3801 } 3802 3803 /* 3804 * Mark a number of pageblocks as MIGRATE_RESERVE. The number 3805 * of blocks reserved is based on min_wmark_pages(zone). The memory within 3806 * the reserve will tend to store contiguous free pages. Setting min_free_kbytes 3807 * higher will lead to a bigger reserve which will get freed as contiguous 3808 * blocks as reclaim kicks in 3809 */ 3810 static void setup_zone_migrate_reserve(struct zone *zone) 3811 { 3812 unsigned long start_pfn, pfn, end_pfn, block_end_pfn; 3813 struct page *page; 3814 unsigned long block_migratetype; 3815 int reserve; 3816 3817 /* 3818 * Get the start pfn, end pfn and the number of blocks to reserve 3819 * We have to be careful to be aligned to pageblock_nr_pages to 3820 * make sure that we always check pfn_valid for the first page in 3821 * the block. 3822 */ 3823 start_pfn = zone->zone_start_pfn; 3824 end_pfn = start_pfn + zone->spanned_pages; 3825 start_pfn = roundup(start_pfn, pageblock_nr_pages); 3826 reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >> 3827 pageblock_order; 3828 3829 /* 3830 * Reserve blocks are generally in place to help high-order atomic 3831 * allocations that are short-lived. A min_free_kbytes value that 3832 * would result in more than 2 reserve blocks for atomic allocations 3833 * is assumed to be in place to help anti-fragmentation for the 3834 * future allocation of hugepages at runtime. 3835 */ 3836 reserve = min(2, reserve); 3837 3838 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) { 3839 if (!pfn_valid(pfn)) 3840 continue; 3841 page = pfn_to_page(pfn); 3842 3843 /* Watch out for overlapping nodes */ 3844 if (page_to_nid(page) != zone_to_nid(zone)) 3845 continue; 3846 3847 block_migratetype = get_pageblock_migratetype(page); 3848 3849 /* Only test what is necessary when the reserves are not met */ 3850 if (reserve > 0) { 3851 /* 3852 * Blocks with reserved pages will never free, skip 3853 * them. 3854 */ 3855 block_end_pfn = min(pfn + pageblock_nr_pages, end_pfn); 3856 if (pageblock_is_reserved(pfn, block_end_pfn)) 3857 continue; 3858 3859 /* If this block is reserved, account for it */ 3860 if (block_migratetype == MIGRATE_RESERVE) { 3861 reserve--; 3862 continue; 3863 } 3864 3865 /* Suitable for reserving if this block is movable */ 3866 if (block_migratetype == MIGRATE_MOVABLE) { 3867 set_pageblock_migratetype(page, 3868 MIGRATE_RESERVE); 3869 move_freepages_block(zone, page, 3870 MIGRATE_RESERVE); 3871 reserve--; 3872 continue; 3873 } 3874 } 3875 3876 /* 3877 * If the reserve is met and this is a previous reserved block, 3878 * take it back 3879 */ 3880 if (block_migratetype == MIGRATE_RESERVE) { 3881 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 3882 move_freepages_block(zone, page, MIGRATE_MOVABLE); 3883 } 3884 } 3885 } 3886 3887 /* 3888 * Initially all pages are reserved - free ones are freed 3889 * up by free_all_bootmem() once the early boot process is 3890 * done. Non-atomic initialization, single-pass. 3891 */ 3892 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone, 3893 unsigned long start_pfn, enum memmap_context context) 3894 { 3895 struct page *page; 3896 unsigned long end_pfn = start_pfn + size; 3897 unsigned long pfn; 3898 struct zone *z; 3899 3900 if (highest_memmap_pfn < end_pfn - 1) 3901 highest_memmap_pfn = end_pfn - 1; 3902 3903 z = &NODE_DATA(nid)->node_zones[zone]; 3904 for (pfn = start_pfn; pfn < end_pfn; pfn++) { 3905 /* 3906 * There can be holes in boot-time mem_map[]s 3907 * handed to this function. They do not 3908 * exist on hotplugged memory. 3909 */ 3910 if (context == MEMMAP_EARLY) { 3911 if (!early_pfn_valid(pfn)) 3912 continue; 3913 if (!early_pfn_in_nid(pfn, nid)) 3914 continue; 3915 } 3916 page = pfn_to_page(pfn); 3917 set_page_links(page, zone, nid, pfn); 3918 mminit_verify_page_links(page, zone, nid, pfn); 3919 init_page_count(page); 3920 reset_page_mapcount(page); 3921 reset_page_last_nid(page); 3922 SetPageReserved(page); 3923 /* 3924 * Mark the block movable so that blocks are reserved for 3925 * movable at startup. This will force kernel allocations 3926 * to reserve their blocks rather than leaking throughout 3927 * the address space during boot when many long-lived 3928 * kernel allocations are made. Later some blocks near 3929 * the start are marked MIGRATE_RESERVE by 3930 * setup_zone_migrate_reserve() 3931 * 3932 * bitmap is created for zone's valid pfn range. but memmap 3933 * can be created for invalid pages (for alignment) 3934 * check here not to call set_pageblock_migratetype() against 3935 * pfn out of zone. 3936 */ 3937 if ((z->zone_start_pfn <= pfn) 3938 && (pfn < z->zone_start_pfn + z->spanned_pages) 3939 && !(pfn & (pageblock_nr_pages - 1))) 3940 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 3941 3942 INIT_LIST_HEAD(&page->lru); 3943 #ifdef WANT_PAGE_VIRTUAL 3944 /* The shift won't overflow because ZONE_NORMAL is below 4G. */ 3945 if (!is_highmem_idx(zone)) 3946 set_page_address(page, __va(pfn << PAGE_SHIFT)); 3947 #endif 3948 } 3949 } 3950 3951 static void __meminit zone_init_free_lists(struct zone *zone) 3952 { 3953 int order, t; 3954 for_each_migratetype_order(order, t) { 3955 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]); 3956 zone->free_area[order].nr_free = 0; 3957 } 3958 } 3959 3960 #ifndef __HAVE_ARCH_MEMMAP_INIT 3961 #define memmap_init(size, nid, zone, start_pfn) \ 3962 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY) 3963 #endif 3964 3965 static int __meminit zone_batchsize(struct zone *zone) 3966 { 3967 #ifdef CONFIG_MMU 3968 int batch; 3969 3970 /* 3971 * The per-cpu-pages pools are set to around 1000th of the 3972 * size of the zone. But no more than 1/2 of a meg. 3973 * 3974 * OK, so we don't know how big the cache is. So guess. 3975 */ 3976 batch = zone->present_pages / 1024; 3977 if (batch * PAGE_SIZE > 512 * 1024) 3978 batch = (512 * 1024) / PAGE_SIZE; 3979 batch /= 4; /* We effectively *= 4 below */ 3980 if (batch < 1) 3981 batch = 1; 3982 3983 /* 3984 * Clamp the batch to a 2^n - 1 value. Having a power 3985 * of 2 value was found to be more likely to have 3986 * suboptimal cache aliasing properties in some cases. 3987 * 3988 * For example if 2 tasks are alternately allocating 3989 * batches of pages, one task can end up with a lot 3990 * of pages of one half of the possible page colors 3991 * and the other with pages of the other colors. 3992 */ 3993 batch = rounddown_pow_of_two(batch + batch/2) - 1; 3994 3995 return batch; 3996 3997 #else 3998 /* The deferral and batching of frees should be suppressed under NOMMU 3999 * conditions. 4000 * 4001 * The problem is that NOMMU needs to be able to allocate large chunks 4002 * of contiguous memory as there's no hardware page translation to 4003 * assemble apparent contiguous memory from discontiguous pages. 4004 * 4005 * Queueing large contiguous runs of pages for batching, however, 4006 * causes the pages to actually be freed in smaller chunks. As there 4007 * can be a significant delay between the individual batches being 4008 * recycled, this leads to the once large chunks of space being 4009 * fragmented and becoming unavailable for high-order allocations. 4010 */ 4011 return 0; 4012 #endif 4013 } 4014 4015 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch) 4016 { 4017 struct per_cpu_pages *pcp; 4018 int migratetype; 4019 4020 memset(p, 0, sizeof(*p)); 4021 4022 pcp = &p->pcp; 4023 pcp->count = 0; 4024 pcp->high = 6 * batch; 4025 pcp->batch = max(1UL, 1 * batch); 4026 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++) 4027 INIT_LIST_HEAD(&pcp->lists[migratetype]); 4028 } 4029 4030 /* 4031 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist 4032 * to the value high for the pageset p. 4033 */ 4034 4035 static void setup_pagelist_highmark(struct per_cpu_pageset *p, 4036 unsigned long high) 4037 { 4038 struct per_cpu_pages *pcp; 4039 4040 pcp = &p->pcp; 4041 pcp->high = high; 4042 pcp->batch = max(1UL, high/4); 4043 if ((high/4) > (PAGE_SHIFT * 8)) 4044 pcp->batch = PAGE_SHIFT * 8; 4045 } 4046 4047 static void __meminit setup_zone_pageset(struct zone *zone) 4048 { 4049 int cpu; 4050 4051 zone->pageset = alloc_percpu(struct per_cpu_pageset); 4052 4053 for_each_possible_cpu(cpu) { 4054 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu); 4055 4056 setup_pageset(pcp, zone_batchsize(zone)); 4057 4058 if (percpu_pagelist_fraction) 4059 setup_pagelist_highmark(pcp, 4060 (zone->present_pages / 4061 percpu_pagelist_fraction)); 4062 } 4063 } 4064 4065 /* 4066 * Allocate per cpu pagesets and initialize them. 4067 * Before this call only boot pagesets were available. 4068 */ 4069 void __init setup_per_cpu_pageset(void) 4070 { 4071 struct zone *zone; 4072 4073 for_each_populated_zone(zone) 4074 setup_zone_pageset(zone); 4075 } 4076 4077 static noinline __init_refok 4078 int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages) 4079 { 4080 int i; 4081 struct pglist_data *pgdat = zone->zone_pgdat; 4082 size_t alloc_size; 4083 4084 /* 4085 * The per-page waitqueue mechanism uses hashed waitqueues 4086 * per zone. 4087 */ 4088 zone->wait_table_hash_nr_entries = 4089 wait_table_hash_nr_entries(zone_size_pages); 4090 zone->wait_table_bits = 4091 wait_table_bits(zone->wait_table_hash_nr_entries); 4092 alloc_size = zone->wait_table_hash_nr_entries 4093 * sizeof(wait_queue_head_t); 4094 4095 if (!slab_is_available()) { 4096 zone->wait_table = (wait_queue_head_t *) 4097 alloc_bootmem_node_nopanic(pgdat, alloc_size); 4098 } else { 4099 /* 4100 * This case means that a zone whose size was 0 gets new memory 4101 * via memory hot-add. 4102 * But it may be the case that a new node was hot-added. In 4103 * this case vmalloc() will not be able to use this new node's 4104 * memory - this wait_table must be initialized to use this new 4105 * node itself as well. 4106 * To use this new node's memory, further consideration will be 4107 * necessary. 4108 */ 4109 zone->wait_table = vmalloc(alloc_size); 4110 } 4111 if (!zone->wait_table) 4112 return -ENOMEM; 4113 4114 for(i = 0; i < zone->wait_table_hash_nr_entries; ++i) 4115 init_waitqueue_head(zone->wait_table + i); 4116 4117 return 0; 4118 } 4119 4120 static __meminit void zone_pcp_init(struct zone *zone) 4121 { 4122 /* 4123 * per cpu subsystem is not up at this point. The following code 4124 * relies on the ability of the linker to provide the 4125 * offset of a (static) per cpu variable into the per cpu area. 4126 */ 4127 zone->pageset = &boot_pageset; 4128 4129 if (zone->present_pages) 4130 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n", 4131 zone->name, zone->present_pages, 4132 zone_batchsize(zone)); 4133 } 4134 4135 int __meminit init_currently_empty_zone(struct zone *zone, 4136 unsigned long zone_start_pfn, 4137 unsigned long size, 4138 enum memmap_context context) 4139 { 4140 struct pglist_data *pgdat = zone->zone_pgdat; 4141 int ret; 4142 ret = zone_wait_table_init(zone, size); 4143 if (ret) 4144 return ret; 4145 pgdat->nr_zones = zone_idx(zone) + 1; 4146 4147 zone->zone_start_pfn = zone_start_pfn; 4148 4149 mminit_dprintk(MMINIT_TRACE, "memmap_init", 4150 "Initialising map node %d zone %lu pfns %lu -> %lu\n", 4151 pgdat->node_id, 4152 (unsigned long)zone_idx(zone), 4153 zone_start_pfn, (zone_start_pfn + size)); 4154 4155 zone_init_free_lists(zone); 4156 4157 return 0; 4158 } 4159 4160 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 4161 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID 4162 /* 4163 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on. 4164 * Architectures may implement their own version but if add_active_range() 4165 * was used and there are no special requirements, this is a convenient 4166 * alternative 4167 */ 4168 int __meminit __early_pfn_to_nid(unsigned long pfn) 4169 { 4170 unsigned long start_pfn, end_pfn; 4171 int i, nid; 4172 4173 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) 4174 if (start_pfn <= pfn && pfn < end_pfn) 4175 return nid; 4176 /* This is a memory hole */ 4177 return -1; 4178 } 4179 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */ 4180 4181 int __meminit early_pfn_to_nid(unsigned long pfn) 4182 { 4183 int nid; 4184 4185 nid = __early_pfn_to_nid(pfn); 4186 if (nid >= 0) 4187 return nid; 4188 /* just returns 0 */ 4189 return 0; 4190 } 4191 4192 #ifdef CONFIG_NODES_SPAN_OTHER_NODES 4193 bool __meminit early_pfn_in_nid(unsigned long pfn, int node) 4194 { 4195 int nid; 4196 4197 nid = __early_pfn_to_nid(pfn); 4198 if (nid >= 0 && nid != node) 4199 return false; 4200 return true; 4201 } 4202 #endif 4203 4204 /** 4205 * free_bootmem_with_active_regions - Call free_bootmem_node for each active range 4206 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed. 4207 * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node 4208 * 4209 * If an architecture guarantees that all ranges registered with 4210 * add_active_ranges() contain no holes and may be freed, this 4211 * this function may be used instead of calling free_bootmem() manually. 4212 */ 4213 void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn) 4214 { 4215 unsigned long start_pfn, end_pfn; 4216 int i, this_nid; 4217 4218 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) { 4219 start_pfn = min(start_pfn, max_low_pfn); 4220 end_pfn = min(end_pfn, max_low_pfn); 4221 4222 if (start_pfn < end_pfn) 4223 free_bootmem_node(NODE_DATA(this_nid), 4224 PFN_PHYS(start_pfn), 4225 (end_pfn - start_pfn) << PAGE_SHIFT); 4226 } 4227 } 4228 4229 /** 4230 * sparse_memory_present_with_active_regions - Call memory_present for each active range 4231 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used. 4232 * 4233 * If an architecture guarantees that all ranges registered with 4234 * add_active_ranges() contain no holes and may be freed, this 4235 * function may be used instead of calling memory_present() manually. 4236 */ 4237 void __init sparse_memory_present_with_active_regions(int nid) 4238 { 4239 unsigned long start_pfn, end_pfn; 4240 int i, this_nid; 4241 4242 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) 4243 memory_present(this_nid, start_pfn, end_pfn); 4244 } 4245 4246 /** 4247 * get_pfn_range_for_nid - Return the start and end page frames for a node 4248 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned. 4249 * @start_pfn: Passed by reference. On return, it will have the node start_pfn. 4250 * @end_pfn: Passed by reference. On return, it will have the node end_pfn. 4251 * 4252 * It returns the start and end page frame of a node based on information 4253 * provided by an arch calling add_active_range(). If called for a node 4254 * with no available memory, a warning is printed and the start and end 4255 * PFNs will be 0. 4256 */ 4257 void __meminit get_pfn_range_for_nid(unsigned int nid, 4258 unsigned long *start_pfn, unsigned long *end_pfn) 4259 { 4260 unsigned long this_start_pfn, this_end_pfn; 4261 int i; 4262 4263 *start_pfn = -1UL; 4264 *end_pfn = 0; 4265 4266 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) { 4267 *start_pfn = min(*start_pfn, this_start_pfn); 4268 *end_pfn = max(*end_pfn, this_end_pfn); 4269 } 4270 4271 if (*start_pfn == -1UL) 4272 *start_pfn = 0; 4273 } 4274 4275 /* 4276 * This finds a zone that can be used for ZONE_MOVABLE pages. The 4277 * assumption is made that zones within a node are ordered in monotonic 4278 * increasing memory addresses so that the "highest" populated zone is used 4279 */ 4280 static void __init find_usable_zone_for_movable(void) 4281 { 4282 int zone_index; 4283 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) { 4284 if (zone_index == ZONE_MOVABLE) 4285 continue; 4286 4287 if (arch_zone_highest_possible_pfn[zone_index] > 4288 arch_zone_lowest_possible_pfn[zone_index]) 4289 break; 4290 } 4291 4292 VM_BUG_ON(zone_index == -1); 4293 movable_zone = zone_index; 4294 } 4295 4296 /* 4297 * The zone ranges provided by the architecture do not include ZONE_MOVABLE 4298 * because it is sized independent of architecture. Unlike the other zones, 4299 * the starting point for ZONE_MOVABLE is not fixed. It may be different 4300 * in each node depending on the size of each node and how evenly kernelcore 4301 * is distributed. This helper function adjusts the zone ranges 4302 * provided by the architecture for a given node by using the end of the 4303 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that 4304 * zones within a node are in order of monotonic increases memory addresses 4305 */ 4306 static void __meminit adjust_zone_range_for_zone_movable(int nid, 4307 unsigned long zone_type, 4308 unsigned long node_start_pfn, 4309 unsigned long node_end_pfn, 4310 unsigned long *zone_start_pfn, 4311 unsigned long *zone_end_pfn) 4312 { 4313 /* Only adjust if ZONE_MOVABLE is on this node */ 4314 if (zone_movable_pfn[nid]) { 4315 /* Size ZONE_MOVABLE */ 4316 if (zone_type == ZONE_MOVABLE) { 4317 *zone_start_pfn = zone_movable_pfn[nid]; 4318 *zone_end_pfn = min(node_end_pfn, 4319 arch_zone_highest_possible_pfn[movable_zone]); 4320 4321 /* Adjust for ZONE_MOVABLE starting within this range */ 4322 } else if (*zone_start_pfn < zone_movable_pfn[nid] && 4323 *zone_end_pfn > zone_movable_pfn[nid]) { 4324 *zone_end_pfn = zone_movable_pfn[nid]; 4325 4326 /* Check if this whole range is within ZONE_MOVABLE */ 4327 } else if (*zone_start_pfn >= zone_movable_pfn[nid]) 4328 *zone_start_pfn = *zone_end_pfn; 4329 } 4330 } 4331 4332 /* 4333 * Return the number of pages a zone spans in a node, including holes 4334 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node() 4335 */ 4336 static unsigned long __meminit zone_spanned_pages_in_node(int nid, 4337 unsigned long zone_type, 4338 unsigned long *ignored) 4339 { 4340 unsigned long node_start_pfn, node_end_pfn; 4341 unsigned long zone_start_pfn, zone_end_pfn; 4342 4343 /* Get the start and end of the node and zone */ 4344 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn); 4345 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type]; 4346 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type]; 4347 adjust_zone_range_for_zone_movable(nid, zone_type, 4348 node_start_pfn, node_end_pfn, 4349 &zone_start_pfn, &zone_end_pfn); 4350 4351 /* Check that this node has pages within the zone's required range */ 4352 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn) 4353 return 0; 4354 4355 /* Move the zone boundaries inside the node if necessary */ 4356 zone_end_pfn = min(zone_end_pfn, node_end_pfn); 4357 zone_start_pfn = max(zone_start_pfn, node_start_pfn); 4358 4359 /* Return the spanned pages */ 4360 return zone_end_pfn - zone_start_pfn; 4361 } 4362 4363 /* 4364 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES, 4365 * then all holes in the requested range will be accounted for. 4366 */ 4367 unsigned long __meminit __absent_pages_in_range(int nid, 4368 unsigned long range_start_pfn, 4369 unsigned long range_end_pfn) 4370 { 4371 unsigned long nr_absent = range_end_pfn - range_start_pfn; 4372 unsigned long start_pfn, end_pfn; 4373 int i; 4374 4375 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) { 4376 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn); 4377 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn); 4378 nr_absent -= end_pfn - start_pfn; 4379 } 4380 return nr_absent; 4381 } 4382 4383 /** 4384 * absent_pages_in_range - Return number of page frames in holes within a range 4385 * @start_pfn: The start PFN to start searching for holes 4386 * @end_pfn: The end PFN to stop searching for holes 4387 * 4388 * It returns the number of pages frames in memory holes within a range. 4389 */ 4390 unsigned long __init absent_pages_in_range(unsigned long start_pfn, 4391 unsigned long end_pfn) 4392 { 4393 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn); 4394 } 4395 4396 /* Return the number of page frames in holes in a zone on a node */ 4397 static unsigned long __meminit zone_absent_pages_in_node(int nid, 4398 unsigned long zone_type, 4399 unsigned long *ignored) 4400 { 4401 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type]; 4402 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type]; 4403 unsigned long node_start_pfn, node_end_pfn; 4404 unsigned long zone_start_pfn, zone_end_pfn; 4405 4406 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn); 4407 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high); 4408 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high); 4409 4410 adjust_zone_range_for_zone_movable(nid, zone_type, 4411 node_start_pfn, node_end_pfn, 4412 &zone_start_pfn, &zone_end_pfn); 4413 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn); 4414 } 4415 4416 #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 4417 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid, 4418 unsigned long zone_type, 4419 unsigned long *zones_size) 4420 { 4421 return zones_size[zone_type]; 4422 } 4423 4424 static inline unsigned long __meminit zone_absent_pages_in_node(int nid, 4425 unsigned long zone_type, 4426 unsigned long *zholes_size) 4427 { 4428 if (!zholes_size) 4429 return 0; 4430 4431 return zholes_size[zone_type]; 4432 } 4433 4434 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 4435 4436 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat, 4437 unsigned long *zones_size, unsigned long *zholes_size) 4438 { 4439 unsigned long realtotalpages, totalpages = 0; 4440 enum zone_type i; 4441 4442 for (i = 0; i < MAX_NR_ZONES; i++) 4443 totalpages += zone_spanned_pages_in_node(pgdat->node_id, i, 4444 zones_size); 4445 pgdat->node_spanned_pages = totalpages; 4446 4447 realtotalpages = totalpages; 4448 for (i = 0; i < MAX_NR_ZONES; i++) 4449 realtotalpages -= 4450 zone_absent_pages_in_node(pgdat->node_id, i, 4451 zholes_size); 4452 pgdat->node_present_pages = realtotalpages; 4453 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id, 4454 realtotalpages); 4455 } 4456 4457 #ifndef CONFIG_SPARSEMEM 4458 /* 4459 * Calculate the size of the zone->blockflags rounded to an unsigned long 4460 * Start by making sure zonesize is a multiple of pageblock_order by rounding 4461 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally 4462 * round what is now in bits to nearest long in bits, then return it in 4463 * bytes. 4464 */ 4465 static unsigned long __init usemap_size(unsigned long zonesize) 4466 { 4467 unsigned long usemapsize; 4468 4469 usemapsize = roundup(zonesize, pageblock_nr_pages); 4470 usemapsize = usemapsize >> pageblock_order; 4471 usemapsize *= NR_PAGEBLOCK_BITS; 4472 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long)); 4473 4474 return usemapsize / 8; 4475 } 4476 4477 static void __init setup_usemap(struct pglist_data *pgdat, 4478 struct zone *zone, unsigned long zonesize) 4479 { 4480 unsigned long usemapsize = usemap_size(zonesize); 4481 zone->pageblock_flags = NULL; 4482 if (usemapsize) 4483 zone->pageblock_flags = alloc_bootmem_node_nopanic(pgdat, 4484 usemapsize); 4485 } 4486 #else 4487 static inline void setup_usemap(struct pglist_data *pgdat, 4488 struct zone *zone, unsigned long zonesize) {} 4489 #endif /* CONFIG_SPARSEMEM */ 4490 4491 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE 4492 4493 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */ 4494 void __init set_pageblock_order(void) 4495 { 4496 unsigned int order; 4497 4498 /* Check that pageblock_nr_pages has not already been setup */ 4499 if (pageblock_order) 4500 return; 4501 4502 if (HPAGE_SHIFT > PAGE_SHIFT) 4503 order = HUGETLB_PAGE_ORDER; 4504 else 4505 order = MAX_ORDER - 1; 4506 4507 /* 4508 * Assume the largest contiguous order of interest is a huge page. 4509 * This value may be variable depending on boot parameters on IA64 and 4510 * powerpc. 4511 */ 4512 pageblock_order = order; 4513 } 4514 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */ 4515 4516 /* 4517 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order() 4518 * is unused as pageblock_order is set at compile-time. See 4519 * include/linux/pageblock-flags.h for the values of pageblock_order based on 4520 * the kernel config 4521 */ 4522 void __init set_pageblock_order(void) 4523 { 4524 } 4525 4526 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */ 4527 4528 static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages, 4529 unsigned long present_pages) 4530 { 4531 unsigned long pages = spanned_pages; 4532 4533 /* 4534 * Provide a more accurate estimation if there are holes within 4535 * the zone and SPARSEMEM is in use. If there are holes within the 4536 * zone, each populated memory region may cost us one or two extra 4537 * memmap pages due to alignment because memmap pages for each 4538 * populated regions may not naturally algined on page boundary. 4539 * So the (present_pages >> 4) heuristic is a tradeoff for that. 4540 */ 4541 if (spanned_pages > present_pages + (present_pages >> 4) && 4542 IS_ENABLED(CONFIG_SPARSEMEM)) 4543 pages = present_pages; 4544 4545 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT; 4546 } 4547 4548 /* 4549 * Set up the zone data structures: 4550 * - mark all pages reserved 4551 * - mark all memory queues empty 4552 * - clear the memory bitmaps 4553 * 4554 * NOTE: pgdat should get zeroed by caller. 4555 */ 4556 static void __paginginit free_area_init_core(struct pglist_data *pgdat, 4557 unsigned long *zones_size, unsigned long *zholes_size) 4558 { 4559 enum zone_type j; 4560 int nid = pgdat->node_id; 4561 unsigned long zone_start_pfn = pgdat->node_start_pfn; 4562 int ret; 4563 4564 pgdat_resize_init(pgdat); 4565 #ifdef CONFIG_NUMA_BALANCING 4566 spin_lock_init(&pgdat->numabalancing_migrate_lock); 4567 pgdat->numabalancing_migrate_nr_pages = 0; 4568 pgdat->numabalancing_migrate_next_window = jiffies; 4569 #endif 4570 init_waitqueue_head(&pgdat->kswapd_wait); 4571 init_waitqueue_head(&pgdat->pfmemalloc_wait); 4572 pgdat_page_cgroup_init(pgdat); 4573 4574 for (j = 0; j < MAX_NR_ZONES; j++) { 4575 struct zone *zone = pgdat->node_zones + j; 4576 unsigned long size, realsize, freesize, memmap_pages; 4577 4578 size = zone_spanned_pages_in_node(nid, j, zones_size); 4579 realsize = freesize = size - zone_absent_pages_in_node(nid, j, 4580 zholes_size); 4581 4582 /* 4583 * Adjust freesize so that it accounts for how much memory 4584 * is used by this zone for memmap. This affects the watermark 4585 * and per-cpu initialisations 4586 */ 4587 memmap_pages = calc_memmap_size(size, realsize); 4588 if (freesize >= memmap_pages) { 4589 freesize -= memmap_pages; 4590 if (memmap_pages) 4591 printk(KERN_DEBUG 4592 " %s zone: %lu pages used for memmap\n", 4593 zone_names[j], memmap_pages); 4594 } else 4595 printk(KERN_WARNING 4596 " %s zone: %lu pages exceeds freesize %lu\n", 4597 zone_names[j], memmap_pages, freesize); 4598 4599 /* Account for reserved pages */ 4600 if (j == 0 && freesize > dma_reserve) { 4601 freesize -= dma_reserve; 4602 printk(KERN_DEBUG " %s zone: %lu pages reserved\n", 4603 zone_names[0], dma_reserve); 4604 } 4605 4606 if (!is_highmem_idx(j)) 4607 nr_kernel_pages += freesize; 4608 /* Charge for highmem memmap if there are enough kernel pages */ 4609 else if (nr_kernel_pages > memmap_pages * 2) 4610 nr_kernel_pages -= memmap_pages; 4611 nr_all_pages += freesize; 4612 4613 zone->spanned_pages = size; 4614 zone->present_pages = freesize; 4615 /* 4616 * Set an approximate value for lowmem here, it will be adjusted 4617 * when the bootmem allocator frees pages into the buddy system. 4618 * And all highmem pages will be managed by the buddy system. 4619 */ 4620 zone->managed_pages = is_highmem_idx(j) ? realsize : freesize; 4621 #ifdef CONFIG_NUMA 4622 zone->node = nid; 4623 zone->min_unmapped_pages = (freesize*sysctl_min_unmapped_ratio) 4624 / 100; 4625 zone->min_slab_pages = (freesize * sysctl_min_slab_ratio) / 100; 4626 #endif 4627 zone->name = zone_names[j]; 4628 spin_lock_init(&zone->lock); 4629 spin_lock_init(&zone->lru_lock); 4630 zone_seqlock_init(zone); 4631 zone->zone_pgdat = pgdat; 4632 4633 zone_pcp_init(zone); 4634 lruvec_init(&zone->lruvec); 4635 if (!size) 4636 continue; 4637 4638 set_pageblock_order(); 4639 setup_usemap(pgdat, zone, size); 4640 ret = init_currently_empty_zone(zone, zone_start_pfn, 4641 size, MEMMAP_EARLY); 4642 BUG_ON(ret); 4643 memmap_init(size, nid, j, zone_start_pfn); 4644 zone_start_pfn += size; 4645 } 4646 } 4647 4648 static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat) 4649 { 4650 /* Skip empty nodes */ 4651 if (!pgdat->node_spanned_pages) 4652 return; 4653 4654 #ifdef CONFIG_FLAT_NODE_MEM_MAP 4655 /* ia64 gets its own node_mem_map, before this, without bootmem */ 4656 if (!pgdat->node_mem_map) { 4657 unsigned long size, start, end; 4658 struct page *map; 4659 4660 /* 4661 * The zone's endpoints aren't required to be MAX_ORDER 4662 * aligned but the node_mem_map endpoints must be in order 4663 * for the buddy allocator to function correctly. 4664 */ 4665 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1); 4666 end = pgdat->node_start_pfn + pgdat->node_spanned_pages; 4667 end = ALIGN(end, MAX_ORDER_NR_PAGES); 4668 size = (end - start) * sizeof(struct page); 4669 map = alloc_remap(pgdat->node_id, size); 4670 if (!map) 4671 map = alloc_bootmem_node_nopanic(pgdat, size); 4672 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start); 4673 } 4674 #ifndef CONFIG_NEED_MULTIPLE_NODES 4675 /* 4676 * With no DISCONTIG, the global mem_map is just set as node 0's 4677 */ 4678 if (pgdat == NODE_DATA(0)) { 4679 mem_map = NODE_DATA(0)->node_mem_map; 4680 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 4681 if (page_to_pfn(mem_map) != pgdat->node_start_pfn) 4682 mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET); 4683 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 4684 } 4685 #endif 4686 #endif /* CONFIG_FLAT_NODE_MEM_MAP */ 4687 } 4688 4689 void __paginginit free_area_init_node(int nid, unsigned long *zones_size, 4690 unsigned long node_start_pfn, unsigned long *zholes_size) 4691 { 4692 pg_data_t *pgdat = NODE_DATA(nid); 4693 4694 /* pg_data_t should be reset to zero when it's allocated */ 4695 WARN_ON(pgdat->nr_zones || pgdat->classzone_idx); 4696 4697 pgdat->node_id = nid; 4698 pgdat->node_start_pfn = node_start_pfn; 4699 init_zone_allows_reclaim(nid); 4700 calculate_node_totalpages(pgdat, zones_size, zholes_size); 4701 4702 alloc_node_mem_map(pgdat); 4703 #ifdef CONFIG_FLAT_NODE_MEM_MAP 4704 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n", 4705 nid, (unsigned long)pgdat, 4706 (unsigned long)pgdat->node_mem_map); 4707 #endif 4708 4709 free_area_init_core(pgdat, zones_size, zholes_size); 4710 } 4711 4712 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 4713 4714 #if MAX_NUMNODES > 1 4715 /* 4716 * Figure out the number of possible node ids. 4717 */ 4718 static void __init setup_nr_node_ids(void) 4719 { 4720 unsigned int node; 4721 unsigned int highest = 0; 4722 4723 for_each_node_mask(node, node_possible_map) 4724 highest = node; 4725 nr_node_ids = highest + 1; 4726 } 4727 #else 4728 static inline void setup_nr_node_ids(void) 4729 { 4730 } 4731 #endif 4732 4733 /** 4734 * node_map_pfn_alignment - determine the maximum internode alignment 4735 * 4736 * This function should be called after node map is populated and sorted. 4737 * It calculates the maximum power of two alignment which can distinguish 4738 * all the nodes. 4739 * 4740 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value 4741 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the 4742 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is 4743 * shifted, 1GiB is enough and this function will indicate so. 4744 * 4745 * This is used to test whether pfn -> nid mapping of the chosen memory 4746 * model has fine enough granularity to avoid incorrect mapping for the 4747 * populated node map. 4748 * 4749 * Returns the determined alignment in pfn's. 0 if there is no alignment 4750 * requirement (single node). 4751 */ 4752 unsigned long __init node_map_pfn_alignment(void) 4753 { 4754 unsigned long accl_mask = 0, last_end = 0; 4755 unsigned long start, end, mask; 4756 int last_nid = -1; 4757 int i, nid; 4758 4759 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) { 4760 if (!start || last_nid < 0 || last_nid == nid) { 4761 last_nid = nid; 4762 last_end = end; 4763 continue; 4764 } 4765 4766 /* 4767 * Start with a mask granular enough to pin-point to the 4768 * start pfn and tick off bits one-by-one until it becomes 4769 * too coarse to separate the current node from the last. 4770 */ 4771 mask = ~((1 << __ffs(start)) - 1); 4772 while (mask && last_end <= (start & (mask << 1))) 4773 mask <<= 1; 4774 4775 /* accumulate all internode masks */ 4776 accl_mask |= mask; 4777 } 4778 4779 /* convert mask to number of pages */ 4780 return ~accl_mask + 1; 4781 } 4782 4783 /* Find the lowest pfn for a node */ 4784 static unsigned long __init find_min_pfn_for_node(int nid) 4785 { 4786 unsigned long min_pfn = ULONG_MAX; 4787 unsigned long start_pfn; 4788 int i; 4789 4790 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL) 4791 min_pfn = min(min_pfn, start_pfn); 4792 4793 if (min_pfn == ULONG_MAX) { 4794 printk(KERN_WARNING 4795 "Could not find start_pfn for node %d\n", nid); 4796 return 0; 4797 } 4798 4799 return min_pfn; 4800 } 4801 4802 /** 4803 * find_min_pfn_with_active_regions - Find the minimum PFN registered 4804 * 4805 * It returns the minimum PFN based on information provided via 4806 * add_active_range(). 4807 */ 4808 unsigned long __init find_min_pfn_with_active_regions(void) 4809 { 4810 return find_min_pfn_for_node(MAX_NUMNODES); 4811 } 4812 4813 /* 4814 * early_calculate_totalpages() 4815 * Sum pages in active regions for movable zone. 4816 * Populate N_MEMORY for calculating usable_nodes. 4817 */ 4818 static unsigned long __init early_calculate_totalpages(void) 4819 { 4820 unsigned long totalpages = 0; 4821 unsigned long start_pfn, end_pfn; 4822 int i, nid; 4823 4824 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) { 4825 unsigned long pages = end_pfn - start_pfn; 4826 4827 totalpages += pages; 4828 if (pages) 4829 node_set_state(nid, N_MEMORY); 4830 } 4831 return totalpages; 4832 } 4833 4834 /* 4835 * Find the PFN the Movable zone begins in each node. Kernel memory 4836 * is spread evenly between nodes as long as the nodes have enough 4837 * memory. When they don't, some nodes will have more kernelcore than 4838 * others 4839 */ 4840 static void __init find_zone_movable_pfns_for_nodes(void) 4841 { 4842 int i, nid; 4843 unsigned long usable_startpfn; 4844 unsigned long kernelcore_node, kernelcore_remaining; 4845 /* save the state before borrow the nodemask */ 4846 nodemask_t saved_node_state = node_states[N_MEMORY]; 4847 unsigned long totalpages = early_calculate_totalpages(); 4848 int usable_nodes = nodes_weight(node_states[N_MEMORY]); 4849 4850 /* 4851 * If movablecore was specified, calculate what size of 4852 * kernelcore that corresponds so that memory usable for 4853 * any allocation type is evenly spread. If both kernelcore 4854 * and movablecore are specified, then the value of kernelcore 4855 * will be used for required_kernelcore if it's greater than 4856 * what movablecore would have allowed. 4857 */ 4858 if (required_movablecore) { 4859 unsigned long corepages; 4860 4861 /* 4862 * Round-up so that ZONE_MOVABLE is at least as large as what 4863 * was requested by the user 4864 */ 4865 required_movablecore = 4866 roundup(required_movablecore, MAX_ORDER_NR_PAGES); 4867 corepages = totalpages - required_movablecore; 4868 4869 required_kernelcore = max(required_kernelcore, corepages); 4870 } 4871 4872 /* If kernelcore was not specified, there is no ZONE_MOVABLE */ 4873 if (!required_kernelcore) 4874 goto out; 4875 4876 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */ 4877 find_usable_zone_for_movable(); 4878 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone]; 4879 4880 restart: 4881 /* Spread kernelcore memory as evenly as possible throughout nodes */ 4882 kernelcore_node = required_kernelcore / usable_nodes; 4883 for_each_node_state(nid, N_MEMORY) { 4884 unsigned long start_pfn, end_pfn; 4885 4886 /* 4887 * Recalculate kernelcore_node if the division per node 4888 * now exceeds what is necessary to satisfy the requested 4889 * amount of memory for the kernel 4890 */ 4891 if (required_kernelcore < kernelcore_node) 4892 kernelcore_node = required_kernelcore / usable_nodes; 4893 4894 /* 4895 * As the map is walked, we track how much memory is usable 4896 * by the kernel using kernelcore_remaining. When it is 4897 * 0, the rest of the node is usable by ZONE_MOVABLE 4898 */ 4899 kernelcore_remaining = kernelcore_node; 4900 4901 /* Go through each range of PFNs within this node */ 4902 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) { 4903 unsigned long size_pages; 4904 4905 start_pfn = max(start_pfn, zone_movable_pfn[nid]); 4906 if (start_pfn >= end_pfn) 4907 continue; 4908 4909 /* Account for what is only usable for kernelcore */ 4910 if (start_pfn < usable_startpfn) { 4911 unsigned long kernel_pages; 4912 kernel_pages = min(end_pfn, usable_startpfn) 4913 - start_pfn; 4914 4915 kernelcore_remaining -= min(kernel_pages, 4916 kernelcore_remaining); 4917 required_kernelcore -= min(kernel_pages, 4918 required_kernelcore); 4919 4920 /* Continue if range is now fully accounted */ 4921 if (end_pfn <= usable_startpfn) { 4922 4923 /* 4924 * Push zone_movable_pfn to the end so 4925 * that if we have to rebalance 4926 * kernelcore across nodes, we will 4927 * not double account here 4928 */ 4929 zone_movable_pfn[nid] = end_pfn; 4930 continue; 4931 } 4932 start_pfn = usable_startpfn; 4933 } 4934 4935 /* 4936 * The usable PFN range for ZONE_MOVABLE is from 4937 * start_pfn->end_pfn. Calculate size_pages as the 4938 * number of pages used as kernelcore 4939 */ 4940 size_pages = end_pfn - start_pfn; 4941 if (size_pages > kernelcore_remaining) 4942 size_pages = kernelcore_remaining; 4943 zone_movable_pfn[nid] = start_pfn + size_pages; 4944 4945 /* 4946 * Some kernelcore has been met, update counts and 4947 * break if the kernelcore for this node has been 4948 * satisified 4949 */ 4950 required_kernelcore -= min(required_kernelcore, 4951 size_pages); 4952 kernelcore_remaining -= size_pages; 4953 if (!kernelcore_remaining) 4954 break; 4955 } 4956 } 4957 4958 /* 4959 * If there is still required_kernelcore, we do another pass with one 4960 * less node in the count. This will push zone_movable_pfn[nid] further 4961 * along on the nodes that still have memory until kernelcore is 4962 * satisified 4963 */ 4964 usable_nodes--; 4965 if (usable_nodes && required_kernelcore > usable_nodes) 4966 goto restart; 4967 4968 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */ 4969 for (nid = 0; nid < MAX_NUMNODES; nid++) 4970 zone_movable_pfn[nid] = 4971 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES); 4972 4973 out: 4974 /* restore the node_state */ 4975 node_states[N_MEMORY] = saved_node_state; 4976 } 4977 4978 /* Any regular or high memory on that node ? */ 4979 static void check_for_memory(pg_data_t *pgdat, int nid) 4980 { 4981 enum zone_type zone_type; 4982 4983 if (N_MEMORY == N_NORMAL_MEMORY) 4984 return; 4985 4986 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) { 4987 struct zone *zone = &pgdat->node_zones[zone_type]; 4988 if (zone->present_pages) { 4989 node_set_state(nid, N_HIGH_MEMORY); 4990 if (N_NORMAL_MEMORY != N_HIGH_MEMORY && 4991 zone_type <= ZONE_NORMAL) 4992 node_set_state(nid, N_NORMAL_MEMORY); 4993 break; 4994 } 4995 } 4996 } 4997 4998 /** 4999 * free_area_init_nodes - Initialise all pg_data_t and zone data 5000 * @max_zone_pfn: an array of max PFNs for each zone 5001 * 5002 * This will call free_area_init_node() for each active node in the system. 5003 * Using the page ranges provided by add_active_range(), the size of each 5004 * zone in each node and their holes is calculated. If the maximum PFN 5005 * between two adjacent zones match, it is assumed that the zone is empty. 5006 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed 5007 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone 5008 * starts where the previous one ended. For example, ZONE_DMA32 starts 5009 * at arch_max_dma_pfn. 5010 */ 5011 void __init free_area_init_nodes(unsigned long *max_zone_pfn) 5012 { 5013 unsigned long start_pfn, end_pfn; 5014 int i, nid; 5015 5016 /* Record where the zone boundaries are */ 5017 memset(arch_zone_lowest_possible_pfn, 0, 5018 sizeof(arch_zone_lowest_possible_pfn)); 5019 memset(arch_zone_highest_possible_pfn, 0, 5020 sizeof(arch_zone_highest_possible_pfn)); 5021 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions(); 5022 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0]; 5023 for (i = 1; i < MAX_NR_ZONES; i++) { 5024 if (i == ZONE_MOVABLE) 5025 continue; 5026 arch_zone_lowest_possible_pfn[i] = 5027 arch_zone_highest_possible_pfn[i-1]; 5028 arch_zone_highest_possible_pfn[i] = 5029 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]); 5030 } 5031 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0; 5032 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0; 5033 5034 /* Find the PFNs that ZONE_MOVABLE begins at in each node */ 5035 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn)); 5036 find_zone_movable_pfns_for_nodes(); 5037 5038 /* Print out the zone ranges */ 5039 printk("Zone ranges:\n"); 5040 for (i = 0; i < MAX_NR_ZONES; i++) { 5041 if (i == ZONE_MOVABLE) 5042 continue; 5043 printk(KERN_CONT " %-8s ", zone_names[i]); 5044 if (arch_zone_lowest_possible_pfn[i] == 5045 arch_zone_highest_possible_pfn[i]) 5046 printk(KERN_CONT "empty\n"); 5047 else 5048 printk(KERN_CONT "[mem %0#10lx-%0#10lx]\n", 5049 arch_zone_lowest_possible_pfn[i] << PAGE_SHIFT, 5050 (arch_zone_highest_possible_pfn[i] 5051 << PAGE_SHIFT) - 1); 5052 } 5053 5054 /* Print out the PFNs ZONE_MOVABLE begins at in each node */ 5055 printk("Movable zone start for each node\n"); 5056 for (i = 0; i < MAX_NUMNODES; i++) { 5057 if (zone_movable_pfn[i]) 5058 printk(" Node %d: %#010lx\n", i, 5059 zone_movable_pfn[i] << PAGE_SHIFT); 5060 } 5061 5062 /* Print out the early node map */ 5063 printk("Early memory node ranges\n"); 5064 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) 5065 printk(" node %3d: [mem %#010lx-%#010lx]\n", nid, 5066 start_pfn << PAGE_SHIFT, (end_pfn << PAGE_SHIFT) - 1); 5067 5068 /* Initialise every node */ 5069 mminit_verify_pageflags_layout(); 5070 setup_nr_node_ids(); 5071 for_each_online_node(nid) { 5072 pg_data_t *pgdat = NODE_DATA(nid); 5073 free_area_init_node(nid, NULL, 5074 find_min_pfn_for_node(nid), NULL); 5075 5076 /* Any memory on that node */ 5077 if (pgdat->node_present_pages) 5078 node_set_state(nid, N_MEMORY); 5079 check_for_memory(pgdat, nid); 5080 } 5081 } 5082 5083 static int __init cmdline_parse_core(char *p, unsigned long *core) 5084 { 5085 unsigned long long coremem; 5086 if (!p) 5087 return -EINVAL; 5088 5089 coremem = memparse(p, &p); 5090 *core = coremem >> PAGE_SHIFT; 5091 5092 /* Paranoid check that UL is enough for the coremem value */ 5093 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX); 5094 5095 return 0; 5096 } 5097 5098 /* 5099 * kernelcore=size sets the amount of memory for use for allocations that 5100 * cannot be reclaimed or migrated. 5101 */ 5102 static int __init cmdline_parse_kernelcore(char *p) 5103 { 5104 return cmdline_parse_core(p, &required_kernelcore); 5105 } 5106 5107 /* 5108 * movablecore=size sets the amount of memory for use for allocations that 5109 * can be reclaimed or migrated. 5110 */ 5111 static int __init cmdline_parse_movablecore(char *p) 5112 { 5113 return cmdline_parse_core(p, &required_movablecore); 5114 } 5115 5116 early_param("kernelcore", cmdline_parse_kernelcore); 5117 early_param("movablecore", cmdline_parse_movablecore); 5118 5119 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 5120 5121 /** 5122 * set_dma_reserve - set the specified number of pages reserved in the first zone 5123 * @new_dma_reserve: The number of pages to mark reserved 5124 * 5125 * The per-cpu batchsize and zone watermarks are determined by present_pages. 5126 * In the DMA zone, a significant percentage may be consumed by kernel image 5127 * and other unfreeable allocations which can skew the watermarks badly. This 5128 * function may optionally be used to account for unfreeable pages in the 5129 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and 5130 * smaller per-cpu batchsize. 5131 */ 5132 void __init set_dma_reserve(unsigned long new_dma_reserve) 5133 { 5134 dma_reserve = new_dma_reserve; 5135 } 5136 5137 void __init free_area_init(unsigned long *zones_size) 5138 { 5139 free_area_init_node(0, zones_size, 5140 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL); 5141 } 5142 5143 static int page_alloc_cpu_notify(struct notifier_block *self, 5144 unsigned long action, void *hcpu) 5145 { 5146 int cpu = (unsigned long)hcpu; 5147 5148 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) { 5149 lru_add_drain_cpu(cpu); 5150 drain_pages(cpu); 5151 5152 /* 5153 * Spill the event counters of the dead processor 5154 * into the current processors event counters. 5155 * This artificially elevates the count of the current 5156 * processor. 5157 */ 5158 vm_events_fold_cpu(cpu); 5159 5160 /* 5161 * Zero the differential counters of the dead processor 5162 * so that the vm statistics are consistent. 5163 * 5164 * This is only okay since the processor is dead and cannot 5165 * race with what we are doing. 5166 */ 5167 refresh_cpu_vm_stats(cpu); 5168 } 5169 return NOTIFY_OK; 5170 } 5171 5172 void __init page_alloc_init(void) 5173 { 5174 hotcpu_notifier(page_alloc_cpu_notify, 0); 5175 } 5176 5177 /* 5178 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio 5179 * or min_free_kbytes changes. 5180 */ 5181 static void calculate_totalreserve_pages(void) 5182 { 5183 struct pglist_data *pgdat; 5184 unsigned long reserve_pages = 0; 5185 enum zone_type i, j; 5186 5187 for_each_online_pgdat(pgdat) { 5188 for (i = 0; i < MAX_NR_ZONES; i++) { 5189 struct zone *zone = pgdat->node_zones + i; 5190 unsigned long max = 0; 5191 5192 /* Find valid and maximum lowmem_reserve in the zone */ 5193 for (j = i; j < MAX_NR_ZONES; j++) { 5194 if (zone->lowmem_reserve[j] > max) 5195 max = zone->lowmem_reserve[j]; 5196 } 5197 5198 /* we treat the high watermark as reserved pages. */ 5199 max += high_wmark_pages(zone); 5200 5201 if (max > zone->present_pages) 5202 max = zone->present_pages; 5203 reserve_pages += max; 5204 /* 5205 * Lowmem reserves are not available to 5206 * GFP_HIGHUSER page cache allocations and 5207 * kswapd tries to balance zones to their high 5208 * watermark. As a result, neither should be 5209 * regarded as dirtyable memory, to prevent a 5210 * situation where reclaim has to clean pages 5211 * in order to balance the zones. 5212 */ 5213 zone->dirty_balance_reserve = max; 5214 } 5215 } 5216 dirty_balance_reserve = reserve_pages; 5217 totalreserve_pages = reserve_pages; 5218 } 5219 5220 /* 5221 * setup_per_zone_lowmem_reserve - called whenever 5222 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone 5223 * has a correct pages reserved value, so an adequate number of 5224 * pages are left in the zone after a successful __alloc_pages(). 5225 */ 5226 static void setup_per_zone_lowmem_reserve(void) 5227 { 5228 struct pglist_data *pgdat; 5229 enum zone_type j, idx; 5230 5231 for_each_online_pgdat(pgdat) { 5232 for (j = 0; j < MAX_NR_ZONES; j++) { 5233 struct zone *zone = pgdat->node_zones + j; 5234 unsigned long present_pages = zone->present_pages; 5235 5236 zone->lowmem_reserve[j] = 0; 5237 5238 idx = j; 5239 while (idx) { 5240 struct zone *lower_zone; 5241 5242 idx--; 5243 5244 if (sysctl_lowmem_reserve_ratio[idx] < 1) 5245 sysctl_lowmem_reserve_ratio[idx] = 1; 5246 5247 lower_zone = pgdat->node_zones + idx; 5248 lower_zone->lowmem_reserve[j] = present_pages / 5249 sysctl_lowmem_reserve_ratio[idx]; 5250 present_pages += lower_zone->present_pages; 5251 } 5252 } 5253 } 5254 5255 /* update totalreserve_pages */ 5256 calculate_totalreserve_pages(); 5257 } 5258 5259 static void __setup_per_zone_wmarks(void) 5260 { 5261 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10); 5262 unsigned long lowmem_pages = 0; 5263 struct zone *zone; 5264 unsigned long flags; 5265 5266 /* Calculate total number of !ZONE_HIGHMEM pages */ 5267 for_each_zone(zone) { 5268 if (!is_highmem(zone)) 5269 lowmem_pages += zone->present_pages; 5270 } 5271 5272 for_each_zone(zone) { 5273 u64 tmp; 5274 5275 spin_lock_irqsave(&zone->lock, flags); 5276 tmp = (u64)pages_min * zone->present_pages; 5277 do_div(tmp, lowmem_pages); 5278 if (is_highmem(zone)) { 5279 /* 5280 * __GFP_HIGH and PF_MEMALLOC allocations usually don't 5281 * need highmem pages, so cap pages_min to a small 5282 * value here. 5283 * 5284 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN) 5285 * deltas controls asynch page reclaim, and so should 5286 * not be capped for highmem. 5287 */ 5288 int min_pages; 5289 5290 min_pages = zone->present_pages / 1024; 5291 if (min_pages < SWAP_CLUSTER_MAX) 5292 min_pages = SWAP_CLUSTER_MAX; 5293 if (min_pages > 128) 5294 min_pages = 128; 5295 zone->watermark[WMARK_MIN] = min_pages; 5296 } else { 5297 /* 5298 * If it's a lowmem zone, reserve a number of pages 5299 * proportionate to the zone's size. 5300 */ 5301 zone->watermark[WMARK_MIN] = tmp; 5302 } 5303 5304 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + (tmp >> 2); 5305 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1); 5306 5307 setup_zone_migrate_reserve(zone); 5308 spin_unlock_irqrestore(&zone->lock, flags); 5309 } 5310 5311 /* update totalreserve_pages */ 5312 calculate_totalreserve_pages(); 5313 } 5314 5315 /** 5316 * setup_per_zone_wmarks - called when min_free_kbytes changes 5317 * or when memory is hot-{added|removed} 5318 * 5319 * Ensures that the watermark[min,low,high] values for each zone are set 5320 * correctly with respect to min_free_kbytes. 5321 */ 5322 void setup_per_zone_wmarks(void) 5323 { 5324 mutex_lock(&zonelists_mutex); 5325 __setup_per_zone_wmarks(); 5326 mutex_unlock(&zonelists_mutex); 5327 } 5328 5329 /* 5330 * The inactive anon list should be small enough that the VM never has to 5331 * do too much work, but large enough that each inactive page has a chance 5332 * to be referenced again before it is swapped out. 5333 * 5334 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to 5335 * INACTIVE_ANON pages on this zone's LRU, maintained by the 5336 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of 5337 * the anonymous pages are kept on the inactive list. 5338 * 5339 * total target max 5340 * memory ratio inactive anon 5341 * ------------------------------------- 5342 * 10MB 1 5MB 5343 * 100MB 1 50MB 5344 * 1GB 3 250MB 5345 * 10GB 10 0.9GB 5346 * 100GB 31 3GB 5347 * 1TB 101 10GB 5348 * 10TB 320 32GB 5349 */ 5350 static void __meminit calculate_zone_inactive_ratio(struct zone *zone) 5351 { 5352 unsigned int gb, ratio; 5353 5354 /* Zone size in gigabytes */ 5355 gb = zone->present_pages >> (30 - PAGE_SHIFT); 5356 if (gb) 5357 ratio = int_sqrt(10 * gb); 5358 else 5359 ratio = 1; 5360 5361 zone->inactive_ratio = ratio; 5362 } 5363 5364 static void __meminit setup_per_zone_inactive_ratio(void) 5365 { 5366 struct zone *zone; 5367 5368 for_each_zone(zone) 5369 calculate_zone_inactive_ratio(zone); 5370 } 5371 5372 /* 5373 * Initialise min_free_kbytes. 5374 * 5375 * For small machines we want it small (128k min). For large machines 5376 * we want it large (64MB max). But it is not linear, because network 5377 * bandwidth does not increase linearly with machine size. We use 5378 * 5379 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy: 5380 * min_free_kbytes = sqrt(lowmem_kbytes * 16) 5381 * 5382 * which yields 5383 * 5384 * 16MB: 512k 5385 * 32MB: 724k 5386 * 64MB: 1024k 5387 * 128MB: 1448k 5388 * 256MB: 2048k 5389 * 512MB: 2896k 5390 * 1024MB: 4096k 5391 * 2048MB: 5792k 5392 * 4096MB: 8192k 5393 * 8192MB: 11584k 5394 * 16384MB: 16384k 5395 */ 5396 int __meminit init_per_zone_wmark_min(void) 5397 { 5398 unsigned long lowmem_kbytes; 5399 5400 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10); 5401 5402 min_free_kbytes = int_sqrt(lowmem_kbytes * 16); 5403 if (min_free_kbytes < 128) 5404 min_free_kbytes = 128; 5405 if (min_free_kbytes > 65536) 5406 min_free_kbytes = 65536; 5407 setup_per_zone_wmarks(); 5408 refresh_zone_stat_thresholds(); 5409 setup_per_zone_lowmem_reserve(); 5410 setup_per_zone_inactive_ratio(); 5411 return 0; 5412 } 5413 module_init(init_per_zone_wmark_min) 5414 5415 /* 5416 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so 5417 * that we can call two helper functions whenever min_free_kbytes 5418 * changes. 5419 */ 5420 int min_free_kbytes_sysctl_handler(ctl_table *table, int write, 5421 void __user *buffer, size_t *length, loff_t *ppos) 5422 { 5423 proc_dointvec(table, write, buffer, length, ppos); 5424 if (write) 5425 setup_per_zone_wmarks(); 5426 return 0; 5427 } 5428 5429 #ifdef CONFIG_NUMA 5430 int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write, 5431 void __user *buffer, size_t *length, loff_t *ppos) 5432 { 5433 struct zone *zone; 5434 int rc; 5435 5436 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 5437 if (rc) 5438 return rc; 5439 5440 for_each_zone(zone) 5441 zone->min_unmapped_pages = (zone->present_pages * 5442 sysctl_min_unmapped_ratio) / 100; 5443 return 0; 5444 } 5445 5446 int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write, 5447 void __user *buffer, size_t *length, loff_t *ppos) 5448 { 5449 struct zone *zone; 5450 int rc; 5451 5452 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 5453 if (rc) 5454 return rc; 5455 5456 for_each_zone(zone) 5457 zone->min_slab_pages = (zone->present_pages * 5458 sysctl_min_slab_ratio) / 100; 5459 return 0; 5460 } 5461 #endif 5462 5463 /* 5464 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around 5465 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve() 5466 * whenever sysctl_lowmem_reserve_ratio changes. 5467 * 5468 * The reserve ratio obviously has absolutely no relation with the 5469 * minimum watermarks. The lowmem reserve ratio can only make sense 5470 * if in function of the boot time zone sizes. 5471 */ 5472 int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write, 5473 void __user *buffer, size_t *length, loff_t *ppos) 5474 { 5475 proc_dointvec_minmax(table, write, buffer, length, ppos); 5476 setup_per_zone_lowmem_reserve(); 5477 return 0; 5478 } 5479 5480 /* 5481 * percpu_pagelist_fraction - changes the pcp->high for each zone on each 5482 * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist 5483 * can have before it gets flushed back to buddy allocator. 5484 */ 5485 5486 int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write, 5487 void __user *buffer, size_t *length, loff_t *ppos) 5488 { 5489 struct zone *zone; 5490 unsigned int cpu; 5491 int ret; 5492 5493 ret = proc_dointvec_minmax(table, write, buffer, length, ppos); 5494 if (!write || (ret < 0)) 5495 return ret; 5496 for_each_populated_zone(zone) { 5497 for_each_possible_cpu(cpu) { 5498 unsigned long high; 5499 high = zone->present_pages / percpu_pagelist_fraction; 5500 setup_pagelist_highmark( 5501 per_cpu_ptr(zone->pageset, cpu), high); 5502 } 5503 } 5504 return 0; 5505 } 5506 5507 int hashdist = HASHDIST_DEFAULT; 5508 5509 #ifdef CONFIG_NUMA 5510 static int __init set_hashdist(char *str) 5511 { 5512 if (!str) 5513 return 0; 5514 hashdist = simple_strtoul(str, &str, 0); 5515 return 1; 5516 } 5517 __setup("hashdist=", set_hashdist); 5518 #endif 5519 5520 /* 5521 * allocate a large system hash table from bootmem 5522 * - it is assumed that the hash table must contain an exact power-of-2 5523 * quantity of entries 5524 * - limit is the number of hash buckets, not the total allocation size 5525 */ 5526 void *__init alloc_large_system_hash(const char *tablename, 5527 unsigned long bucketsize, 5528 unsigned long numentries, 5529 int scale, 5530 int flags, 5531 unsigned int *_hash_shift, 5532 unsigned int *_hash_mask, 5533 unsigned long low_limit, 5534 unsigned long high_limit) 5535 { 5536 unsigned long long max = high_limit; 5537 unsigned long log2qty, size; 5538 void *table = NULL; 5539 5540 /* allow the kernel cmdline to have a say */ 5541 if (!numentries) { 5542 /* round applicable memory size up to nearest megabyte */ 5543 numentries = nr_kernel_pages; 5544 numentries += (1UL << (20 - PAGE_SHIFT)) - 1; 5545 numentries >>= 20 - PAGE_SHIFT; 5546 numentries <<= 20 - PAGE_SHIFT; 5547 5548 /* limit to 1 bucket per 2^scale bytes of low memory */ 5549 if (scale > PAGE_SHIFT) 5550 numentries >>= (scale - PAGE_SHIFT); 5551 else 5552 numentries <<= (PAGE_SHIFT - scale); 5553 5554 /* Make sure we've got at least a 0-order allocation.. */ 5555 if (unlikely(flags & HASH_SMALL)) { 5556 /* Makes no sense without HASH_EARLY */ 5557 WARN_ON(!(flags & HASH_EARLY)); 5558 if (!(numentries >> *_hash_shift)) { 5559 numentries = 1UL << *_hash_shift; 5560 BUG_ON(!numentries); 5561 } 5562 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE)) 5563 numentries = PAGE_SIZE / bucketsize; 5564 } 5565 numentries = roundup_pow_of_two(numentries); 5566 5567 /* limit allocation size to 1/16 total memory by default */ 5568 if (max == 0) { 5569 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4; 5570 do_div(max, bucketsize); 5571 } 5572 max = min(max, 0x80000000ULL); 5573 5574 if (numentries < low_limit) 5575 numentries = low_limit; 5576 if (numentries > max) 5577 numentries = max; 5578 5579 log2qty = ilog2(numentries); 5580 5581 do { 5582 size = bucketsize << log2qty; 5583 if (flags & HASH_EARLY) 5584 table = alloc_bootmem_nopanic(size); 5585 else if (hashdist) 5586 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL); 5587 else { 5588 /* 5589 * If bucketsize is not a power-of-two, we may free 5590 * some pages at the end of hash table which 5591 * alloc_pages_exact() automatically does 5592 */ 5593 if (get_order(size) < MAX_ORDER) { 5594 table = alloc_pages_exact(size, GFP_ATOMIC); 5595 kmemleak_alloc(table, size, 1, GFP_ATOMIC); 5596 } 5597 } 5598 } while (!table && size > PAGE_SIZE && --log2qty); 5599 5600 if (!table) 5601 panic("Failed to allocate %s hash table\n", tablename); 5602 5603 printk(KERN_INFO "%s hash table entries: %ld (order: %d, %lu bytes)\n", 5604 tablename, 5605 (1UL << log2qty), 5606 ilog2(size) - PAGE_SHIFT, 5607 size); 5608 5609 if (_hash_shift) 5610 *_hash_shift = log2qty; 5611 if (_hash_mask) 5612 *_hash_mask = (1 << log2qty) - 1; 5613 5614 return table; 5615 } 5616 5617 /* Return a pointer to the bitmap storing bits affecting a block of pages */ 5618 static inline unsigned long *get_pageblock_bitmap(struct zone *zone, 5619 unsigned long pfn) 5620 { 5621 #ifdef CONFIG_SPARSEMEM 5622 return __pfn_to_section(pfn)->pageblock_flags; 5623 #else 5624 return zone->pageblock_flags; 5625 #endif /* CONFIG_SPARSEMEM */ 5626 } 5627 5628 static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn) 5629 { 5630 #ifdef CONFIG_SPARSEMEM 5631 pfn &= (PAGES_PER_SECTION-1); 5632 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS; 5633 #else 5634 pfn = pfn - zone->zone_start_pfn; 5635 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS; 5636 #endif /* CONFIG_SPARSEMEM */ 5637 } 5638 5639 /** 5640 * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages 5641 * @page: The page within the block of interest 5642 * @start_bitidx: The first bit of interest to retrieve 5643 * @end_bitidx: The last bit of interest 5644 * returns pageblock_bits flags 5645 */ 5646 unsigned long get_pageblock_flags_group(struct page *page, 5647 int start_bitidx, int end_bitidx) 5648 { 5649 struct zone *zone; 5650 unsigned long *bitmap; 5651 unsigned long pfn, bitidx; 5652 unsigned long flags = 0; 5653 unsigned long value = 1; 5654 5655 zone = page_zone(page); 5656 pfn = page_to_pfn(page); 5657 bitmap = get_pageblock_bitmap(zone, pfn); 5658 bitidx = pfn_to_bitidx(zone, pfn); 5659 5660 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1) 5661 if (test_bit(bitidx + start_bitidx, bitmap)) 5662 flags |= value; 5663 5664 return flags; 5665 } 5666 5667 /** 5668 * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages 5669 * @page: The page within the block of interest 5670 * @start_bitidx: The first bit of interest 5671 * @end_bitidx: The last bit of interest 5672 * @flags: The flags to set 5673 */ 5674 void set_pageblock_flags_group(struct page *page, unsigned long flags, 5675 int start_bitidx, int end_bitidx) 5676 { 5677 struct zone *zone; 5678 unsigned long *bitmap; 5679 unsigned long pfn, bitidx; 5680 unsigned long value = 1; 5681 5682 zone = page_zone(page); 5683 pfn = page_to_pfn(page); 5684 bitmap = get_pageblock_bitmap(zone, pfn); 5685 bitidx = pfn_to_bitidx(zone, pfn); 5686 VM_BUG_ON(pfn < zone->zone_start_pfn); 5687 VM_BUG_ON(pfn >= zone->zone_start_pfn + zone->spanned_pages); 5688 5689 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1) 5690 if (flags & value) 5691 __set_bit(bitidx + start_bitidx, bitmap); 5692 else 5693 __clear_bit(bitidx + start_bitidx, bitmap); 5694 } 5695 5696 /* 5697 * This function checks whether pageblock includes unmovable pages or not. 5698 * If @count is not zero, it is okay to include less @count unmovable pages 5699 * 5700 * PageLRU check wihtout isolation or lru_lock could race so that 5701 * MIGRATE_MOVABLE block might include unmovable pages. It means you can't 5702 * expect this function should be exact. 5703 */ 5704 bool has_unmovable_pages(struct zone *zone, struct page *page, int count, 5705 bool skip_hwpoisoned_pages) 5706 { 5707 unsigned long pfn, iter, found; 5708 int mt; 5709 5710 /* 5711 * For avoiding noise data, lru_add_drain_all() should be called 5712 * If ZONE_MOVABLE, the zone never contains unmovable pages 5713 */ 5714 if (zone_idx(zone) == ZONE_MOVABLE) 5715 return false; 5716 mt = get_pageblock_migratetype(page); 5717 if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt)) 5718 return false; 5719 5720 pfn = page_to_pfn(page); 5721 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) { 5722 unsigned long check = pfn + iter; 5723 5724 if (!pfn_valid_within(check)) 5725 continue; 5726 5727 page = pfn_to_page(check); 5728 /* 5729 * We can't use page_count without pin a page 5730 * because another CPU can free compound page. 5731 * This check already skips compound tails of THP 5732 * because their page->_count is zero at all time. 5733 */ 5734 if (!atomic_read(&page->_count)) { 5735 if (PageBuddy(page)) 5736 iter += (1 << page_order(page)) - 1; 5737 continue; 5738 } 5739 5740 /* 5741 * The HWPoisoned page may be not in buddy system, and 5742 * page_count() is not 0. 5743 */ 5744 if (skip_hwpoisoned_pages && PageHWPoison(page)) 5745 continue; 5746 5747 if (!PageLRU(page)) 5748 found++; 5749 /* 5750 * If there are RECLAIMABLE pages, we need to check it. 5751 * But now, memory offline itself doesn't call shrink_slab() 5752 * and it still to be fixed. 5753 */ 5754 /* 5755 * If the page is not RAM, page_count()should be 0. 5756 * we don't need more check. This is an _used_ not-movable page. 5757 * 5758 * The problematic thing here is PG_reserved pages. PG_reserved 5759 * is set to both of a memory hole page and a _used_ kernel 5760 * page at boot. 5761 */ 5762 if (found > count) 5763 return true; 5764 } 5765 return false; 5766 } 5767 5768 bool is_pageblock_removable_nolock(struct page *page) 5769 { 5770 struct zone *zone; 5771 unsigned long pfn; 5772 5773 /* 5774 * We have to be careful here because we are iterating over memory 5775 * sections which are not zone aware so we might end up outside of 5776 * the zone but still within the section. 5777 * We have to take care about the node as well. If the node is offline 5778 * its NODE_DATA will be NULL - see page_zone. 5779 */ 5780 if (!node_online(page_to_nid(page))) 5781 return false; 5782 5783 zone = page_zone(page); 5784 pfn = page_to_pfn(page); 5785 if (zone->zone_start_pfn > pfn || 5786 zone->zone_start_pfn + zone->spanned_pages <= pfn) 5787 return false; 5788 5789 return !has_unmovable_pages(zone, page, 0, true); 5790 } 5791 5792 #ifdef CONFIG_CMA 5793 5794 static unsigned long pfn_max_align_down(unsigned long pfn) 5795 { 5796 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES, 5797 pageblock_nr_pages) - 1); 5798 } 5799 5800 static unsigned long pfn_max_align_up(unsigned long pfn) 5801 { 5802 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES, 5803 pageblock_nr_pages)); 5804 } 5805 5806 /* [start, end) must belong to a single zone. */ 5807 static int __alloc_contig_migrate_range(struct compact_control *cc, 5808 unsigned long start, unsigned long end) 5809 { 5810 /* This function is based on compact_zone() from compaction.c. */ 5811 unsigned long nr_reclaimed; 5812 unsigned long pfn = start; 5813 unsigned int tries = 0; 5814 int ret = 0; 5815 5816 migrate_prep(); 5817 5818 while (pfn < end || !list_empty(&cc->migratepages)) { 5819 if (fatal_signal_pending(current)) { 5820 ret = -EINTR; 5821 break; 5822 } 5823 5824 if (list_empty(&cc->migratepages)) { 5825 cc->nr_migratepages = 0; 5826 pfn = isolate_migratepages_range(cc->zone, cc, 5827 pfn, end, true); 5828 if (!pfn) { 5829 ret = -EINTR; 5830 break; 5831 } 5832 tries = 0; 5833 } else if (++tries == 5) { 5834 ret = ret < 0 ? ret : -EBUSY; 5835 break; 5836 } 5837 5838 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone, 5839 &cc->migratepages); 5840 cc->nr_migratepages -= nr_reclaimed; 5841 5842 ret = migrate_pages(&cc->migratepages, 5843 alloc_migrate_target, 5844 0, false, MIGRATE_SYNC, 5845 MR_CMA); 5846 } 5847 5848 putback_movable_pages(&cc->migratepages); 5849 return ret > 0 ? 0 : ret; 5850 } 5851 5852 /** 5853 * alloc_contig_range() -- tries to allocate given range of pages 5854 * @start: start PFN to allocate 5855 * @end: one-past-the-last PFN to allocate 5856 * @migratetype: migratetype of the underlaying pageblocks (either 5857 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks 5858 * in range must have the same migratetype and it must 5859 * be either of the two. 5860 * 5861 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES 5862 * aligned, however it's the caller's responsibility to guarantee that 5863 * we are the only thread that changes migrate type of pageblocks the 5864 * pages fall in. 5865 * 5866 * The PFN range must belong to a single zone. 5867 * 5868 * Returns zero on success or negative error code. On success all 5869 * pages which PFN is in [start, end) are allocated for the caller and 5870 * need to be freed with free_contig_range(). 5871 */ 5872 int alloc_contig_range(unsigned long start, unsigned long end, 5873 unsigned migratetype) 5874 { 5875 unsigned long outer_start, outer_end; 5876 int ret = 0, order; 5877 5878 struct compact_control cc = { 5879 .nr_migratepages = 0, 5880 .order = -1, 5881 .zone = page_zone(pfn_to_page(start)), 5882 .sync = true, 5883 .ignore_skip_hint = true, 5884 }; 5885 INIT_LIST_HEAD(&cc.migratepages); 5886 5887 /* 5888 * What we do here is we mark all pageblocks in range as 5889 * MIGRATE_ISOLATE. Because pageblock and max order pages may 5890 * have different sizes, and due to the way page allocator 5891 * work, we align the range to biggest of the two pages so 5892 * that page allocator won't try to merge buddies from 5893 * different pageblocks and change MIGRATE_ISOLATE to some 5894 * other migration type. 5895 * 5896 * Once the pageblocks are marked as MIGRATE_ISOLATE, we 5897 * migrate the pages from an unaligned range (ie. pages that 5898 * we are interested in). This will put all the pages in 5899 * range back to page allocator as MIGRATE_ISOLATE. 5900 * 5901 * When this is done, we take the pages in range from page 5902 * allocator removing them from the buddy system. This way 5903 * page allocator will never consider using them. 5904 * 5905 * This lets us mark the pageblocks back as 5906 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the 5907 * aligned range but not in the unaligned, original range are 5908 * put back to page allocator so that buddy can use them. 5909 */ 5910 5911 ret = start_isolate_page_range(pfn_max_align_down(start), 5912 pfn_max_align_up(end), migratetype, 5913 false); 5914 if (ret) 5915 return ret; 5916 5917 ret = __alloc_contig_migrate_range(&cc, start, end); 5918 if (ret) 5919 goto done; 5920 5921 /* 5922 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES 5923 * aligned blocks that are marked as MIGRATE_ISOLATE. What's 5924 * more, all pages in [start, end) are free in page allocator. 5925 * What we are going to do is to allocate all pages from 5926 * [start, end) (that is remove them from page allocator). 5927 * 5928 * The only problem is that pages at the beginning and at the 5929 * end of interesting range may be not aligned with pages that 5930 * page allocator holds, ie. they can be part of higher order 5931 * pages. Because of this, we reserve the bigger range and 5932 * once this is done free the pages we are not interested in. 5933 * 5934 * We don't have to hold zone->lock here because the pages are 5935 * isolated thus they won't get removed from buddy. 5936 */ 5937 5938 lru_add_drain_all(); 5939 drain_all_pages(); 5940 5941 order = 0; 5942 outer_start = start; 5943 while (!PageBuddy(pfn_to_page(outer_start))) { 5944 if (++order >= MAX_ORDER) { 5945 ret = -EBUSY; 5946 goto done; 5947 } 5948 outer_start &= ~0UL << order; 5949 } 5950 5951 /* Make sure the range is really isolated. */ 5952 if (test_pages_isolated(outer_start, end, false)) { 5953 pr_warn("alloc_contig_range test_pages_isolated(%lx, %lx) failed\n", 5954 outer_start, end); 5955 ret = -EBUSY; 5956 goto done; 5957 } 5958 5959 5960 /* Grab isolated pages from freelists. */ 5961 outer_end = isolate_freepages_range(&cc, outer_start, end); 5962 if (!outer_end) { 5963 ret = -EBUSY; 5964 goto done; 5965 } 5966 5967 /* Free head and tail (if any) */ 5968 if (start != outer_start) 5969 free_contig_range(outer_start, start - outer_start); 5970 if (end != outer_end) 5971 free_contig_range(end, outer_end - end); 5972 5973 done: 5974 undo_isolate_page_range(pfn_max_align_down(start), 5975 pfn_max_align_up(end), migratetype); 5976 return ret; 5977 } 5978 5979 void free_contig_range(unsigned long pfn, unsigned nr_pages) 5980 { 5981 for (; nr_pages--; ++pfn) 5982 __free_page(pfn_to_page(pfn)); 5983 } 5984 #endif 5985 5986 #ifdef CONFIG_MEMORY_HOTPLUG 5987 static int __meminit __zone_pcp_update(void *data) 5988 { 5989 struct zone *zone = data; 5990 int cpu; 5991 unsigned long batch = zone_batchsize(zone), flags; 5992 5993 for_each_possible_cpu(cpu) { 5994 struct per_cpu_pageset *pset; 5995 struct per_cpu_pages *pcp; 5996 5997 pset = per_cpu_ptr(zone->pageset, cpu); 5998 pcp = &pset->pcp; 5999 6000 local_irq_save(flags); 6001 if (pcp->count > 0) 6002 free_pcppages_bulk(zone, pcp->count, pcp); 6003 drain_zonestat(zone, pset); 6004 setup_pageset(pset, batch); 6005 local_irq_restore(flags); 6006 } 6007 return 0; 6008 } 6009 6010 void __meminit zone_pcp_update(struct zone *zone) 6011 { 6012 stop_machine(__zone_pcp_update, zone, NULL); 6013 } 6014 #endif 6015 6016 void zone_pcp_reset(struct zone *zone) 6017 { 6018 unsigned long flags; 6019 int cpu; 6020 struct per_cpu_pageset *pset; 6021 6022 /* avoid races with drain_pages() */ 6023 local_irq_save(flags); 6024 if (zone->pageset != &boot_pageset) { 6025 for_each_online_cpu(cpu) { 6026 pset = per_cpu_ptr(zone->pageset, cpu); 6027 drain_zonestat(zone, pset); 6028 } 6029 free_percpu(zone->pageset); 6030 zone->pageset = &boot_pageset; 6031 } 6032 local_irq_restore(flags); 6033 } 6034 6035 #ifdef CONFIG_MEMORY_HOTREMOVE 6036 /* 6037 * All pages in the range must be isolated before calling this. 6038 */ 6039 void 6040 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn) 6041 { 6042 struct page *page; 6043 struct zone *zone; 6044 int order, i; 6045 unsigned long pfn; 6046 unsigned long flags; 6047 /* find the first valid pfn */ 6048 for (pfn = start_pfn; pfn < end_pfn; pfn++) 6049 if (pfn_valid(pfn)) 6050 break; 6051 if (pfn == end_pfn) 6052 return; 6053 zone = page_zone(pfn_to_page(pfn)); 6054 spin_lock_irqsave(&zone->lock, flags); 6055 pfn = start_pfn; 6056 while (pfn < end_pfn) { 6057 if (!pfn_valid(pfn)) { 6058 pfn++; 6059 continue; 6060 } 6061 page = pfn_to_page(pfn); 6062 /* 6063 * The HWPoisoned page may be not in buddy system, and 6064 * page_count() is not 0. 6065 */ 6066 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) { 6067 pfn++; 6068 SetPageReserved(page); 6069 continue; 6070 } 6071 6072 BUG_ON(page_count(page)); 6073 BUG_ON(!PageBuddy(page)); 6074 order = page_order(page); 6075 #ifdef CONFIG_DEBUG_VM 6076 printk(KERN_INFO "remove from free list %lx %d %lx\n", 6077 pfn, 1 << order, end_pfn); 6078 #endif 6079 list_del(&page->lru); 6080 rmv_page_order(page); 6081 zone->free_area[order].nr_free--; 6082 for (i = 0; i < (1 << order); i++) 6083 SetPageReserved((page+i)); 6084 pfn += (1 << order); 6085 } 6086 spin_unlock_irqrestore(&zone->lock, flags); 6087 } 6088 #endif 6089 6090 #ifdef CONFIG_MEMORY_FAILURE 6091 bool is_free_buddy_page(struct page *page) 6092 { 6093 struct zone *zone = page_zone(page); 6094 unsigned long pfn = page_to_pfn(page); 6095 unsigned long flags; 6096 int order; 6097 6098 spin_lock_irqsave(&zone->lock, flags); 6099 for (order = 0; order < MAX_ORDER; order++) { 6100 struct page *page_head = page - (pfn & ((1 << order) - 1)); 6101 6102 if (PageBuddy(page_head) && page_order(page_head) >= order) 6103 break; 6104 } 6105 spin_unlock_irqrestore(&zone->lock, flags); 6106 6107 return order < MAX_ORDER; 6108 } 6109 #endif 6110 6111 static const struct trace_print_flags pageflag_names[] = { 6112 {1UL << PG_locked, "locked" }, 6113 {1UL << PG_error, "error" }, 6114 {1UL << PG_referenced, "referenced" }, 6115 {1UL << PG_uptodate, "uptodate" }, 6116 {1UL << PG_dirty, "dirty" }, 6117 {1UL << PG_lru, "lru" }, 6118 {1UL << PG_active, "active" }, 6119 {1UL << PG_slab, "slab" }, 6120 {1UL << PG_owner_priv_1, "owner_priv_1" }, 6121 {1UL << PG_arch_1, "arch_1" }, 6122 {1UL << PG_reserved, "reserved" }, 6123 {1UL << PG_private, "private" }, 6124 {1UL << PG_private_2, "private_2" }, 6125 {1UL << PG_writeback, "writeback" }, 6126 #ifdef CONFIG_PAGEFLAGS_EXTENDED 6127 {1UL << PG_head, "head" }, 6128 {1UL << PG_tail, "tail" }, 6129 #else 6130 {1UL << PG_compound, "compound" }, 6131 #endif 6132 {1UL << PG_swapcache, "swapcache" }, 6133 {1UL << PG_mappedtodisk, "mappedtodisk" }, 6134 {1UL << PG_reclaim, "reclaim" }, 6135 {1UL << PG_swapbacked, "swapbacked" }, 6136 {1UL << PG_unevictable, "unevictable" }, 6137 #ifdef CONFIG_MMU 6138 {1UL << PG_mlocked, "mlocked" }, 6139 #endif 6140 #ifdef CONFIG_ARCH_USES_PG_UNCACHED 6141 {1UL << PG_uncached, "uncached" }, 6142 #endif 6143 #ifdef CONFIG_MEMORY_FAILURE 6144 {1UL << PG_hwpoison, "hwpoison" }, 6145 #endif 6146 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 6147 {1UL << PG_compound_lock, "compound_lock" }, 6148 #endif 6149 }; 6150 6151 static void dump_page_flags(unsigned long flags) 6152 { 6153 const char *delim = ""; 6154 unsigned long mask; 6155 int i; 6156 6157 BUILD_BUG_ON(ARRAY_SIZE(pageflag_names) != __NR_PAGEFLAGS); 6158 6159 printk(KERN_ALERT "page flags: %#lx(", flags); 6160 6161 /* remove zone id */ 6162 flags &= (1UL << NR_PAGEFLAGS) - 1; 6163 6164 for (i = 0; i < ARRAY_SIZE(pageflag_names) && flags; i++) { 6165 6166 mask = pageflag_names[i].mask; 6167 if ((flags & mask) != mask) 6168 continue; 6169 6170 flags &= ~mask; 6171 printk("%s%s", delim, pageflag_names[i].name); 6172 delim = "|"; 6173 } 6174 6175 /* check for left over flags */ 6176 if (flags) 6177 printk("%s%#lx", delim, flags); 6178 6179 printk(")\n"); 6180 } 6181 6182 void dump_page(struct page *page) 6183 { 6184 printk(KERN_ALERT 6185 "page:%p count:%d mapcount:%d mapping:%p index:%#lx\n", 6186 page, atomic_read(&page->_count), page_mapcount(page), 6187 page->mapping, page->index); 6188 dump_page_flags(page->flags); 6189 mem_cgroup_print_bad_page(page); 6190 } 6191