xref: /linux/mm/page_alloc.c (revision b889fcf63cb62e7fdb7816565e28f44dbe4a76a5)
1 /*
2  *  linux/mm/page_alloc.c
3  *
4  *  Manages the free list, the system allocates free pages here.
5  *  Note that kmalloc() lives in slab.c
6  *
7  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
8  *  Swap reorganised 29.12.95, Stephen Tweedie
9  *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10  *  Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11  *  Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12  *  Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13  *  Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14  *          (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15  */
16 
17 #include <linux/stddef.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/memblock.h>
25 #include <linux/compiler.h>
26 #include <linux/kernel.h>
27 #include <linux/kmemcheck.h>
28 #include <linux/module.h>
29 #include <linux/suspend.h>
30 #include <linux/pagevec.h>
31 #include <linux/blkdev.h>
32 #include <linux/slab.h>
33 #include <linux/ratelimit.h>
34 #include <linux/oom.h>
35 #include <linux/notifier.h>
36 #include <linux/topology.h>
37 #include <linux/sysctl.h>
38 #include <linux/cpu.h>
39 #include <linux/cpuset.h>
40 #include <linux/memory_hotplug.h>
41 #include <linux/nodemask.h>
42 #include <linux/vmalloc.h>
43 #include <linux/vmstat.h>
44 #include <linux/mempolicy.h>
45 #include <linux/stop_machine.h>
46 #include <linux/sort.h>
47 #include <linux/pfn.h>
48 #include <linux/backing-dev.h>
49 #include <linux/fault-inject.h>
50 #include <linux/page-isolation.h>
51 #include <linux/page_cgroup.h>
52 #include <linux/debugobjects.h>
53 #include <linux/kmemleak.h>
54 #include <linux/compaction.h>
55 #include <trace/events/kmem.h>
56 #include <linux/ftrace_event.h>
57 #include <linux/memcontrol.h>
58 #include <linux/prefetch.h>
59 #include <linux/migrate.h>
60 #include <linux/page-debug-flags.h>
61 
62 #include <asm/tlbflush.h>
63 #include <asm/div64.h>
64 #include "internal.h"
65 
66 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
67 DEFINE_PER_CPU(int, numa_node);
68 EXPORT_PER_CPU_SYMBOL(numa_node);
69 #endif
70 
71 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
72 /*
73  * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
74  * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
75  * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
76  * defined in <linux/topology.h>.
77  */
78 DEFINE_PER_CPU(int, _numa_mem_);		/* Kernel "local memory" node */
79 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
80 #endif
81 
82 /*
83  * Array of node states.
84  */
85 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
86 	[N_POSSIBLE] = NODE_MASK_ALL,
87 	[N_ONLINE] = { { [0] = 1UL } },
88 #ifndef CONFIG_NUMA
89 	[N_NORMAL_MEMORY] = { { [0] = 1UL } },
90 #ifdef CONFIG_HIGHMEM
91 	[N_HIGH_MEMORY] = { { [0] = 1UL } },
92 #endif
93 #ifdef CONFIG_MOVABLE_NODE
94 	[N_MEMORY] = { { [0] = 1UL } },
95 #endif
96 	[N_CPU] = { { [0] = 1UL } },
97 #endif	/* NUMA */
98 };
99 EXPORT_SYMBOL(node_states);
100 
101 unsigned long totalram_pages __read_mostly;
102 unsigned long totalreserve_pages __read_mostly;
103 /*
104  * When calculating the number of globally allowed dirty pages, there
105  * is a certain number of per-zone reserves that should not be
106  * considered dirtyable memory.  This is the sum of those reserves
107  * over all existing zones that contribute dirtyable memory.
108  */
109 unsigned long dirty_balance_reserve __read_mostly;
110 
111 int percpu_pagelist_fraction;
112 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
113 
114 #ifdef CONFIG_PM_SLEEP
115 /*
116  * The following functions are used by the suspend/hibernate code to temporarily
117  * change gfp_allowed_mask in order to avoid using I/O during memory allocations
118  * while devices are suspended.  To avoid races with the suspend/hibernate code,
119  * they should always be called with pm_mutex held (gfp_allowed_mask also should
120  * only be modified with pm_mutex held, unless the suspend/hibernate code is
121  * guaranteed not to run in parallel with that modification).
122  */
123 
124 static gfp_t saved_gfp_mask;
125 
126 void pm_restore_gfp_mask(void)
127 {
128 	WARN_ON(!mutex_is_locked(&pm_mutex));
129 	if (saved_gfp_mask) {
130 		gfp_allowed_mask = saved_gfp_mask;
131 		saved_gfp_mask = 0;
132 	}
133 }
134 
135 void pm_restrict_gfp_mask(void)
136 {
137 	WARN_ON(!mutex_is_locked(&pm_mutex));
138 	WARN_ON(saved_gfp_mask);
139 	saved_gfp_mask = gfp_allowed_mask;
140 	gfp_allowed_mask &= ~GFP_IOFS;
141 }
142 
143 bool pm_suspended_storage(void)
144 {
145 	if ((gfp_allowed_mask & GFP_IOFS) == GFP_IOFS)
146 		return false;
147 	return true;
148 }
149 #endif /* CONFIG_PM_SLEEP */
150 
151 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
152 int pageblock_order __read_mostly;
153 #endif
154 
155 static void __free_pages_ok(struct page *page, unsigned int order);
156 
157 /*
158  * results with 256, 32 in the lowmem_reserve sysctl:
159  *	1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
160  *	1G machine -> (16M dma, 784M normal, 224M high)
161  *	NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
162  *	HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
163  *	HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
164  *
165  * TBD: should special case ZONE_DMA32 machines here - in those we normally
166  * don't need any ZONE_NORMAL reservation
167  */
168 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
169 #ifdef CONFIG_ZONE_DMA
170 	 256,
171 #endif
172 #ifdef CONFIG_ZONE_DMA32
173 	 256,
174 #endif
175 #ifdef CONFIG_HIGHMEM
176 	 32,
177 #endif
178 	 32,
179 };
180 
181 EXPORT_SYMBOL(totalram_pages);
182 
183 static char * const zone_names[MAX_NR_ZONES] = {
184 #ifdef CONFIG_ZONE_DMA
185 	 "DMA",
186 #endif
187 #ifdef CONFIG_ZONE_DMA32
188 	 "DMA32",
189 #endif
190 	 "Normal",
191 #ifdef CONFIG_HIGHMEM
192 	 "HighMem",
193 #endif
194 	 "Movable",
195 };
196 
197 int min_free_kbytes = 1024;
198 
199 static unsigned long __meminitdata nr_kernel_pages;
200 static unsigned long __meminitdata nr_all_pages;
201 static unsigned long __meminitdata dma_reserve;
202 
203 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
204 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
205 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
206 static unsigned long __initdata required_kernelcore;
207 static unsigned long __initdata required_movablecore;
208 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
209 
210 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
211 int movable_zone;
212 EXPORT_SYMBOL(movable_zone);
213 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
214 
215 #if MAX_NUMNODES > 1
216 int nr_node_ids __read_mostly = MAX_NUMNODES;
217 int nr_online_nodes __read_mostly = 1;
218 EXPORT_SYMBOL(nr_node_ids);
219 EXPORT_SYMBOL(nr_online_nodes);
220 #endif
221 
222 int page_group_by_mobility_disabled __read_mostly;
223 
224 /*
225  * NOTE:
226  * Don't use set_pageblock_migratetype(page, MIGRATE_ISOLATE) directly.
227  * Instead, use {un}set_pageblock_isolate.
228  */
229 void set_pageblock_migratetype(struct page *page, int migratetype)
230 {
231 
232 	if (unlikely(page_group_by_mobility_disabled))
233 		migratetype = MIGRATE_UNMOVABLE;
234 
235 	set_pageblock_flags_group(page, (unsigned long)migratetype,
236 					PB_migrate, PB_migrate_end);
237 }
238 
239 bool oom_killer_disabled __read_mostly;
240 
241 #ifdef CONFIG_DEBUG_VM
242 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
243 {
244 	int ret = 0;
245 	unsigned seq;
246 	unsigned long pfn = page_to_pfn(page);
247 
248 	do {
249 		seq = zone_span_seqbegin(zone);
250 		if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
251 			ret = 1;
252 		else if (pfn < zone->zone_start_pfn)
253 			ret = 1;
254 	} while (zone_span_seqretry(zone, seq));
255 
256 	return ret;
257 }
258 
259 static int page_is_consistent(struct zone *zone, struct page *page)
260 {
261 	if (!pfn_valid_within(page_to_pfn(page)))
262 		return 0;
263 	if (zone != page_zone(page))
264 		return 0;
265 
266 	return 1;
267 }
268 /*
269  * Temporary debugging check for pages not lying within a given zone.
270  */
271 static int bad_range(struct zone *zone, struct page *page)
272 {
273 	if (page_outside_zone_boundaries(zone, page))
274 		return 1;
275 	if (!page_is_consistent(zone, page))
276 		return 1;
277 
278 	return 0;
279 }
280 #else
281 static inline int bad_range(struct zone *zone, struct page *page)
282 {
283 	return 0;
284 }
285 #endif
286 
287 static void bad_page(struct page *page)
288 {
289 	static unsigned long resume;
290 	static unsigned long nr_shown;
291 	static unsigned long nr_unshown;
292 
293 	/* Don't complain about poisoned pages */
294 	if (PageHWPoison(page)) {
295 		reset_page_mapcount(page); /* remove PageBuddy */
296 		return;
297 	}
298 
299 	/*
300 	 * Allow a burst of 60 reports, then keep quiet for that minute;
301 	 * or allow a steady drip of one report per second.
302 	 */
303 	if (nr_shown == 60) {
304 		if (time_before(jiffies, resume)) {
305 			nr_unshown++;
306 			goto out;
307 		}
308 		if (nr_unshown) {
309 			printk(KERN_ALERT
310 			      "BUG: Bad page state: %lu messages suppressed\n",
311 				nr_unshown);
312 			nr_unshown = 0;
313 		}
314 		nr_shown = 0;
315 	}
316 	if (nr_shown++ == 0)
317 		resume = jiffies + 60 * HZ;
318 
319 	printk(KERN_ALERT "BUG: Bad page state in process %s  pfn:%05lx\n",
320 		current->comm, page_to_pfn(page));
321 	dump_page(page);
322 
323 	print_modules();
324 	dump_stack();
325 out:
326 	/* Leave bad fields for debug, except PageBuddy could make trouble */
327 	reset_page_mapcount(page); /* remove PageBuddy */
328 	add_taint(TAINT_BAD_PAGE);
329 }
330 
331 /*
332  * Higher-order pages are called "compound pages".  They are structured thusly:
333  *
334  * The first PAGE_SIZE page is called the "head page".
335  *
336  * The remaining PAGE_SIZE pages are called "tail pages".
337  *
338  * All pages have PG_compound set.  All tail pages have their ->first_page
339  * pointing at the head page.
340  *
341  * The first tail page's ->lru.next holds the address of the compound page's
342  * put_page() function.  Its ->lru.prev holds the order of allocation.
343  * This usage means that zero-order pages may not be compound.
344  */
345 
346 static void free_compound_page(struct page *page)
347 {
348 	__free_pages_ok(page, compound_order(page));
349 }
350 
351 void prep_compound_page(struct page *page, unsigned long order)
352 {
353 	int i;
354 	int nr_pages = 1 << order;
355 
356 	set_compound_page_dtor(page, free_compound_page);
357 	set_compound_order(page, order);
358 	__SetPageHead(page);
359 	for (i = 1; i < nr_pages; i++) {
360 		struct page *p = page + i;
361 		__SetPageTail(p);
362 		set_page_count(p, 0);
363 		p->first_page = page;
364 	}
365 }
366 
367 /* update __split_huge_page_refcount if you change this function */
368 static int destroy_compound_page(struct page *page, unsigned long order)
369 {
370 	int i;
371 	int nr_pages = 1 << order;
372 	int bad = 0;
373 
374 	if (unlikely(compound_order(page) != order)) {
375 		bad_page(page);
376 		bad++;
377 	}
378 
379 	__ClearPageHead(page);
380 
381 	for (i = 1; i < nr_pages; i++) {
382 		struct page *p = page + i;
383 
384 		if (unlikely(!PageTail(p) || (p->first_page != page))) {
385 			bad_page(page);
386 			bad++;
387 		}
388 		__ClearPageTail(p);
389 	}
390 
391 	return bad;
392 }
393 
394 static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
395 {
396 	int i;
397 
398 	/*
399 	 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
400 	 * and __GFP_HIGHMEM from hard or soft interrupt context.
401 	 */
402 	VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
403 	for (i = 0; i < (1 << order); i++)
404 		clear_highpage(page + i);
405 }
406 
407 #ifdef CONFIG_DEBUG_PAGEALLOC
408 unsigned int _debug_guardpage_minorder;
409 
410 static int __init debug_guardpage_minorder_setup(char *buf)
411 {
412 	unsigned long res;
413 
414 	if (kstrtoul(buf, 10, &res) < 0 ||  res > MAX_ORDER / 2) {
415 		printk(KERN_ERR "Bad debug_guardpage_minorder value\n");
416 		return 0;
417 	}
418 	_debug_guardpage_minorder = res;
419 	printk(KERN_INFO "Setting debug_guardpage_minorder to %lu\n", res);
420 	return 0;
421 }
422 __setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup);
423 
424 static inline void set_page_guard_flag(struct page *page)
425 {
426 	__set_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
427 }
428 
429 static inline void clear_page_guard_flag(struct page *page)
430 {
431 	__clear_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
432 }
433 #else
434 static inline void set_page_guard_flag(struct page *page) { }
435 static inline void clear_page_guard_flag(struct page *page) { }
436 #endif
437 
438 static inline void set_page_order(struct page *page, int order)
439 {
440 	set_page_private(page, order);
441 	__SetPageBuddy(page);
442 }
443 
444 static inline void rmv_page_order(struct page *page)
445 {
446 	__ClearPageBuddy(page);
447 	set_page_private(page, 0);
448 }
449 
450 /*
451  * Locate the struct page for both the matching buddy in our
452  * pair (buddy1) and the combined O(n+1) page they form (page).
453  *
454  * 1) Any buddy B1 will have an order O twin B2 which satisfies
455  * the following equation:
456  *     B2 = B1 ^ (1 << O)
457  * For example, if the starting buddy (buddy2) is #8 its order
458  * 1 buddy is #10:
459  *     B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
460  *
461  * 2) Any buddy B will have an order O+1 parent P which
462  * satisfies the following equation:
463  *     P = B & ~(1 << O)
464  *
465  * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
466  */
467 static inline unsigned long
468 __find_buddy_index(unsigned long page_idx, unsigned int order)
469 {
470 	return page_idx ^ (1 << order);
471 }
472 
473 /*
474  * This function checks whether a page is free && is the buddy
475  * we can do coalesce a page and its buddy if
476  * (a) the buddy is not in a hole &&
477  * (b) the buddy is in the buddy system &&
478  * (c) a page and its buddy have the same order &&
479  * (d) a page and its buddy are in the same zone.
480  *
481  * For recording whether a page is in the buddy system, we set ->_mapcount -2.
482  * Setting, clearing, and testing _mapcount -2 is serialized by zone->lock.
483  *
484  * For recording page's order, we use page_private(page).
485  */
486 static inline int page_is_buddy(struct page *page, struct page *buddy,
487 								int order)
488 {
489 	if (!pfn_valid_within(page_to_pfn(buddy)))
490 		return 0;
491 
492 	if (page_zone_id(page) != page_zone_id(buddy))
493 		return 0;
494 
495 	if (page_is_guard(buddy) && page_order(buddy) == order) {
496 		VM_BUG_ON(page_count(buddy) != 0);
497 		return 1;
498 	}
499 
500 	if (PageBuddy(buddy) && page_order(buddy) == order) {
501 		VM_BUG_ON(page_count(buddy) != 0);
502 		return 1;
503 	}
504 	return 0;
505 }
506 
507 /*
508  * Freeing function for a buddy system allocator.
509  *
510  * The concept of a buddy system is to maintain direct-mapped table
511  * (containing bit values) for memory blocks of various "orders".
512  * The bottom level table contains the map for the smallest allocatable
513  * units of memory (here, pages), and each level above it describes
514  * pairs of units from the levels below, hence, "buddies".
515  * At a high level, all that happens here is marking the table entry
516  * at the bottom level available, and propagating the changes upward
517  * as necessary, plus some accounting needed to play nicely with other
518  * parts of the VM system.
519  * At each level, we keep a list of pages, which are heads of continuous
520  * free pages of length of (1 << order) and marked with _mapcount -2. Page's
521  * order is recorded in page_private(page) field.
522  * So when we are allocating or freeing one, we can derive the state of the
523  * other.  That is, if we allocate a small block, and both were
524  * free, the remainder of the region must be split into blocks.
525  * If a block is freed, and its buddy is also free, then this
526  * triggers coalescing into a block of larger size.
527  *
528  * -- nyc
529  */
530 
531 static inline void __free_one_page(struct page *page,
532 		struct zone *zone, unsigned int order,
533 		int migratetype)
534 {
535 	unsigned long page_idx;
536 	unsigned long combined_idx;
537 	unsigned long uninitialized_var(buddy_idx);
538 	struct page *buddy;
539 
540 	if (unlikely(PageCompound(page)))
541 		if (unlikely(destroy_compound_page(page, order)))
542 			return;
543 
544 	VM_BUG_ON(migratetype == -1);
545 
546 	page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
547 
548 	VM_BUG_ON(page_idx & ((1 << order) - 1));
549 	VM_BUG_ON(bad_range(zone, page));
550 
551 	while (order < MAX_ORDER-1) {
552 		buddy_idx = __find_buddy_index(page_idx, order);
553 		buddy = page + (buddy_idx - page_idx);
554 		if (!page_is_buddy(page, buddy, order))
555 			break;
556 		/*
557 		 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
558 		 * merge with it and move up one order.
559 		 */
560 		if (page_is_guard(buddy)) {
561 			clear_page_guard_flag(buddy);
562 			set_page_private(page, 0);
563 			__mod_zone_freepage_state(zone, 1 << order,
564 						  migratetype);
565 		} else {
566 			list_del(&buddy->lru);
567 			zone->free_area[order].nr_free--;
568 			rmv_page_order(buddy);
569 		}
570 		combined_idx = buddy_idx & page_idx;
571 		page = page + (combined_idx - page_idx);
572 		page_idx = combined_idx;
573 		order++;
574 	}
575 	set_page_order(page, order);
576 
577 	/*
578 	 * If this is not the largest possible page, check if the buddy
579 	 * of the next-highest order is free. If it is, it's possible
580 	 * that pages are being freed that will coalesce soon. In case,
581 	 * that is happening, add the free page to the tail of the list
582 	 * so it's less likely to be used soon and more likely to be merged
583 	 * as a higher order page
584 	 */
585 	if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
586 		struct page *higher_page, *higher_buddy;
587 		combined_idx = buddy_idx & page_idx;
588 		higher_page = page + (combined_idx - page_idx);
589 		buddy_idx = __find_buddy_index(combined_idx, order + 1);
590 		higher_buddy = higher_page + (buddy_idx - combined_idx);
591 		if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
592 			list_add_tail(&page->lru,
593 				&zone->free_area[order].free_list[migratetype]);
594 			goto out;
595 		}
596 	}
597 
598 	list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
599 out:
600 	zone->free_area[order].nr_free++;
601 }
602 
603 static inline int free_pages_check(struct page *page)
604 {
605 	if (unlikely(page_mapcount(page) |
606 		(page->mapping != NULL)  |
607 		(atomic_read(&page->_count) != 0) |
608 		(page->flags & PAGE_FLAGS_CHECK_AT_FREE) |
609 		(mem_cgroup_bad_page_check(page)))) {
610 		bad_page(page);
611 		return 1;
612 	}
613 	reset_page_last_nid(page);
614 	if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
615 		page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
616 	return 0;
617 }
618 
619 /*
620  * Frees a number of pages from the PCP lists
621  * Assumes all pages on list are in same zone, and of same order.
622  * count is the number of pages to free.
623  *
624  * If the zone was previously in an "all pages pinned" state then look to
625  * see if this freeing clears that state.
626  *
627  * And clear the zone's pages_scanned counter, to hold off the "all pages are
628  * pinned" detection logic.
629  */
630 static void free_pcppages_bulk(struct zone *zone, int count,
631 					struct per_cpu_pages *pcp)
632 {
633 	int migratetype = 0;
634 	int batch_free = 0;
635 	int to_free = count;
636 
637 	spin_lock(&zone->lock);
638 	zone->all_unreclaimable = 0;
639 	zone->pages_scanned = 0;
640 
641 	while (to_free) {
642 		struct page *page;
643 		struct list_head *list;
644 
645 		/*
646 		 * Remove pages from lists in a round-robin fashion. A
647 		 * batch_free count is maintained that is incremented when an
648 		 * empty list is encountered.  This is so more pages are freed
649 		 * off fuller lists instead of spinning excessively around empty
650 		 * lists
651 		 */
652 		do {
653 			batch_free++;
654 			if (++migratetype == MIGRATE_PCPTYPES)
655 				migratetype = 0;
656 			list = &pcp->lists[migratetype];
657 		} while (list_empty(list));
658 
659 		/* This is the only non-empty list. Free them all. */
660 		if (batch_free == MIGRATE_PCPTYPES)
661 			batch_free = to_free;
662 
663 		do {
664 			int mt;	/* migratetype of the to-be-freed page */
665 
666 			page = list_entry(list->prev, struct page, lru);
667 			/* must delete as __free_one_page list manipulates */
668 			list_del(&page->lru);
669 			mt = get_freepage_migratetype(page);
670 			/* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */
671 			__free_one_page(page, zone, 0, mt);
672 			trace_mm_page_pcpu_drain(page, 0, mt);
673 			if (likely(get_pageblock_migratetype(page) != MIGRATE_ISOLATE)) {
674 				__mod_zone_page_state(zone, NR_FREE_PAGES, 1);
675 				if (is_migrate_cma(mt))
676 					__mod_zone_page_state(zone, NR_FREE_CMA_PAGES, 1);
677 			}
678 		} while (--to_free && --batch_free && !list_empty(list));
679 	}
680 	spin_unlock(&zone->lock);
681 }
682 
683 static void free_one_page(struct zone *zone, struct page *page, int order,
684 				int migratetype)
685 {
686 	spin_lock(&zone->lock);
687 	zone->all_unreclaimable = 0;
688 	zone->pages_scanned = 0;
689 
690 	__free_one_page(page, zone, order, migratetype);
691 	if (unlikely(migratetype != MIGRATE_ISOLATE))
692 		__mod_zone_freepage_state(zone, 1 << order, migratetype);
693 	spin_unlock(&zone->lock);
694 }
695 
696 static bool free_pages_prepare(struct page *page, unsigned int order)
697 {
698 	int i;
699 	int bad = 0;
700 
701 	trace_mm_page_free(page, order);
702 	kmemcheck_free_shadow(page, order);
703 
704 	if (PageAnon(page))
705 		page->mapping = NULL;
706 	for (i = 0; i < (1 << order); i++)
707 		bad += free_pages_check(page + i);
708 	if (bad)
709 		return false;
710 
711 	if (!PageHighMem(page)) {
712 		debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order);
713 		debug_check_no_obj_freed(page_address(page),
714 					   PAGE_SIZE << order);
715 	}
716 	arch_free_page(page, order);
717 	kernel_map_pages(page, 1 << order, 0);
718 
719 	return true;
720 }
721 
722 static void __free_pages_ok(struct page *page, unsigned int order)
723 {
724 	unsigned long flags;
725 	int migratetype;
726 
727 	if (!free_pages_prepare(page, order))
728 		return;
729 
730 	local_irq_save(flags);
731 	__count_vm_events(PGFREE, 1 << order);
732 	migratetype = get_pageblock_migratetype(page);
733 	set_freepage_migratetype(page, migratetype);
734 	free_one_page(page_zone(page), page, order, migratetype);
735 	local_irq_restore(flags);
736 }
737 
738 /*
739  * Read access to zone->managed_pages is safe because it's unsigned long,
740  * but we still need to serialize writers. Currently all callers of
741  * __free_pages_bootmem() except put_page_bootmem() should only be used
742  * at boot time. So for shorter boot time, we shift the burden to
743  * put_page_bootmem() to serialize writers.
744  */
745 void __meminit __free_pages_bootmem(struct page *page, unsigned int order)
746 {
747 	unsigned int nr_pages = 1 << order;
748 	unsigned int loop;
749 
750 	prefetchw(page);
751 	for (loop = 0; loop < nr_pages; loop++) {
752 		struct page *p = &page[loop];
753 
754 		if (loop + 1 < nr_pages)
755 			prefetchw(p + 1);
756 		__ClearPageReserved(p);
757 		set_page_count(p, 0);
758 	}
759 
760 	page_zone(page)->managed_pages += 1 << order;
761 	set_page_refcounted(page);
762 	__free_pages(page, order);
763 }
764 
765 #ifdef CONFIG_CMA
766 /* Free whole pageblock and set it's migration type to MIGRATE_CMA. */
767 void __init init_cma_reserved_pageblock(struct page *page)
768 {
769 	unsigned i = pageblock_nr_pages;
770 	struct page *p = page;
771 
772 	do {
773 		__ClearPageReserved(p);
774 		set_page_count(p, 0);
775 	} while (++p, --i);
776 
777 	set_page_refcounted(page);
778 	set_pageblock_migratetype(page, MIGRATE_CMA);
779 	__free_pages(page, pageblock_order);
780 	totalram_pages += pageblock_nr_pages;
781 }
782 #endif
783 
784 /*
785  * The order of subdivision here is critical for the IO subsystem.
786  * Please do not alter this order without good reasons and regression
787  * testing. Specifically, as large blocks of memory are subdivided,
788  * the order in which smaller blocks are delivered depends on the order
789  * they're subdivided in this function. This is the primary factor
790  * influencing the order in which pages are delivered to the IO
791  * subsystem according to empirical testing, and this is also justified
792  * by considering the behavior of a buddy system containing a single
793  * large block of memory acted on by a series of small allocations.
794  * This behavior is a critical factor in sglist merging's success.
795  *
796  * -- nyc
797  */
798 static inline void expand(struct zone *zone, struct page *page,
799 	int low, int high, struct free_area *area,
800 	int migratetype)
801 {
802 	unsigned long size = 1 << high;
803 
804 	while (high > low) {
805 		area--;
806 		high--;
807 		size >>= 1;
808 		VM_BUG_ON(bad_range(zone, &page[size]));
809 
810 #ifdef CONFIG_DEBUG_PAGEALLOC
811 		if (high < debug_guardpage_minorder()) {
812 			/*
813 			 * Mark as guard pages (or page), that will allow to
814 			 * merge back to allocator when buddy will be freed.
815 			 * Corresponding page table entries will not be touched,
816 			 * pages will stay not present in virtual address space
817 			 */
818 			INIT_LIST_HEAD(&page[size].lru);
819 			set_page_guard_flag(&page[size]);
820 			set_page_private(&page[size], high);
821 			/* Guard pages are not available for any usage */
822 			__mod_zone_freepage_state(zone, -(1 << high),
823 						  migratetype);
824 			continue;
825 		}
826 #endif
827 		list_add(&page[size].lru, &area->free_list[migratetype]);
828 		area->nr_free++;
829 		set_page_order(&page[size], high);
830 	}
831 }
832 
833 /*
834  * This page is about to be returned from the page allocator
835  */
836 static inline int check_new_page(struct page *page)
837 {
838 	if (unlikely(page_mapcount(page) |
839 		(page->mapping != NULL)  |
840 		(atomic_read(&page->_count) != 0)  |
841 		(page->flags & PAGE_FLAGS_CHECK_AT_PREP) |
842 		(mem_cgroup_bad_page_check(page)))) {
843 		bad_page(page);
844 		return 1;
845 	}
846 	return 0;
847 }
848 
849 static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
850 {
851 	int i;
852 
853 	for (i = 0; i < (1 << order); i++) {
854 		struct page *p = page + i;
855 		if (unlikely(check_new_page(p)))
856 			return 1;
857 	}
858 
859 	set_page_private(page, 0);
860 	set_page_refcounted(page);
861 
862 	arch_alloc_page(page, order);
863 	kernel_map_pages(page, 1 << order, 1);
864 
865 	if (gfp_flags & __GFP_ZERO)
866 		prep_zero_page(page, order, gfp_flags);
867 
868 	if (order && (gfp_flags & __GFP_COMP))
869 		prep_compound_page(page, order);
870 
871 	return 0;
872 }
873 
874 /*
875  * Go through the free lists for the given migratetype and remove
876  * the smallest available page from the freelists
877  */
878 static inline
879 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
880 						int migratetype)
881 {
882 	unsigned int current_order;
883 	struct free_area * area;
884 	struct page *page;
885 
886 	/* Find a page of the appropriate size in the preferred list */
887 	for (current_order = order; current_order < MAX_ORDER; ++current_order) {
888 		area = &(zone->free_area[current_order]);
889 		if (list_empty(&area->free_list[migratetype]))
890 			continue;
891 
892 		page = list_entry(area->free_list[migratetype].next,
893 							struct page, lru);
894 		list_del(&page->lru);
895 		rmv_page_order(page);
896 		area->nr_free--;
897 		expand(zone, page, order, current_order, area, migratetype);
898 		return page;
899 	}
900 
901 	return NULL;
902 }
903 
904 
905 /*
906  * This array describes the order lists are fallen back to when
907  * the free lists for the desirable migrate type are depleted
908  */
909 static int fallbacks[MIGRATE_TYPES][4] = {
910 	[MIGRATE_UNMOVABLE]   = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE,     MIGRATE_RESERVE },
911 	[MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE,   MIGRATE_MOVABLE,     MIGRATE_RESERVE },
912 #ifdef CONFIG_CMA
913 	[MIGRATE_MOVABLE]     = { MIGRATE_CMA,         MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
914 	[MIGRATE_CMA]         = { MIGRATE_RESERVE }, /* Never used */
915 #else
916 	[MIGRATE_MOVABLE]     = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE,   MIGRATE_RESERVE },
917 #endif
918 	[MIGRATE_RESERVE]     = { MIGRATE_RESERVE }, /* Never used */
919 	[MIGRATE_ISOLATE]     = { MIGRATE_RESERVE }, /* Never used */
920 };
921 
922 /*
923  * Move the free pages in a range to the free lists of the requested type.
924  * Note that start_page and end_pages are not aligned on a pageblock
925  * boundary. If alignment is required, use move_freepages_block()
926  */
927 int move_freepages(struct zone *zone,
928 			  struct page *start_page, struct page *end_page,
929 			  int migratetype)
930 {
931 	struct page *page;
932 	unsigned long order;
933 	int pages_moved = 0;
934 
935 #ifndef CONFIG_HOLES_IN_ZONE
936 	/*
937 	 * page_zone is not safe to call in this context when
938 	 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
939 	 * anyway as we check zone boundaries in move_freepages_block().
940 	 * Remove at a later date when no bug reports exist related to
941 	 * grouping pages by mobility
942 	 */
943 	BUG_ON(page_zone(start_page) != page_zone(end_page));
944 #endif
945 
946 	for (page = start_page; page <= end_page;) {
947 		/* Make sure we are not inadvertently changing nodes */
948 		VM_BUG_ON(page_to_nid(page) != zone_to_nid(zone));
949 
950 		if (!pfn_valid_within(page_to_pfn(page))) {
951 			page++;
952 			continue;
953 		}
954 
955 		if (!PageBuddy(page)) {
956 			page++;
957 			continue;
958 		}
959 
960 		order = page_order(page);
961 		list_move(&page->lru,
962 			  &zone->free_area[order].free_list[migratetype]);
963 		set_freepage_migratetype(page, migratetype);
964 		page += 1 << order;
965 		pages_moved += 1 << order;
966 	}
967 
968 	return pages_moved;
969 }
970 
971 int move_freepages_block(struct zone *zone, struct page *page,
972 				int migratetype)
973 {
974 	unsigned long start_pfn, end_pfn;
975 	struct page *start_page, *end_page;
976 
977 	start_pfn = page_to_pfn(page);
978 	start_pfn = start_pfn & ~(pageblock_nr_pages-1);
979 	start_page = pfn_to_page(start_pfn);
980 	end_page = start_page + pageblock_nr_pages - 1;
981 	end_pfn = start_pfn + pageblock_nr_pages - 1;
982 
983 	/* Do not cross zone boundaries */
984 	if (start_pfn < zone->zone_start_pfn)
985 		start_page = page;
986 	if (end_pfn >= zone->zone_start_pfn + zone->spanned_pages)
987 		return 0;
988 
989 	return move_freepages(zone, start_page, end_page, migratetype);
990 }
991 
992 static void change_pageblock_range(struct page *pageblock_page,
993 					int start_order, int migratetype)
994 {
995 	int nr_pageblocks = 1 << (start_order - pageblock_order);
996 
997 	while (nr_pageblocks--) {
998 		set_pageblock_migratetype(pageblock_page, migratetype);
999 		pageblock_page += pageblock_nr_pages;
1000 	}
1001 }
1002 
1003 /* Remove an element from the buddy allocator from the fallback list */
1004 static inline struct page *
1005 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype)
1006 {
1007 	struct free_area * area;
1008 	int current_order;
1009 	struct page *page;
1010 	int migratetype, i;
1011 
1012 	/* Find the largest possible block of pages in the other list */
1013 	for (current_order = MAX_ORDER-1; current_order >= order;
1014 						--current_order) {
1015 		for (i = 0;; i++) {
1016 			migratetype = fallbacks[start_migratetype][i];
1017 
1018 			/* MIGRATE_RESERVE handled later if necessary */
1019 			if (migratetype == MIGRATE_RESERVE)
1020 				break;
1021 
1022 			area = &(zone->free_area[current_order]);
1023 			if (list_empty(&area->free_list[migratetype]))
1024 				continue;
1025 
1026 			page = list_entry(area->free_list[migratetype].next,
1027 					struct page, lru);
1028 			area->nr_free--;
1029 
1030 			/*
1031 			 * If breaking a large block of pages, move all free
1032 			 * pages to the preferred allocation list. If falling
1033 			 * back for a reclaimable kernel allocation, be more
1034 			 * aggressive about taking ownership of free pages
1035 			 *
1036 			 * On the other hand, never change migration
1037 			 * type of MIGRATE_CMA pageblocks nor move CMA
1038 			 * pages on different free lists. We don't
1039 			 * want unmovable pages to be allocated from
1040 			 * MIGRATE_CMA areas.
1041 			 */
1042 			if (!is_migrate_cma(migratetype) &&
1043 			    (unlikely(current_order >= pageblock_order / 2) ||
1044 			     start_migratetype == MIGRATE_RECLAIMABLE ||
1045 			     page_group_by_mobility_disabled)) {
1046 				int pages;
1047 				pages = move_freepages_block(zone, page,
1048 								start_migratetype);
1049 
1050 				/* Claim the whole block if over half of it is free */
1051 				if (pages >= (1 << (pageblock_order-1)) ||
1052 						page_group_by_mobility_disabled)
1053 					set_pageblock_migratetype(page,
1054 								start_migratetype);
1055 
1056 				migratetype = start_migratetype;
1057 			}
1058 
1059 			/* Remove the page from the freelists */
1060 			list_del(&page->lru);
1061 			rmv_page_order(page);
1062 
1063 			/* Take ownership for orders >= pageblock_order */
1064 			if (current_order >= pageblock_order &&
1065 			    !is_migrate_cma(migratetype))
1066 				change_pageblock_range(page, current_order,
1067 							start_migratetype);
1068 
1069 			expand(zone, page, order, current_order, area,
1070 			       is_migrate_cma(migratetype)
1071 			     ? migratetype : start_migratetype);
1072 
1073 			trace_mm_page_alloc_extfrag(page, order, current_order,
1074 				start_migratetype, migratetype);
1075 
1076 			return page;
1077 		}
1078 	}
1079 
1080 	return NULL;
1081 }
1082 
1083 /*
1084  * Do the hard work of removing an element from the buddy allocator.
1085  * Call me with the zone->lock already held.
1086  */
1087 static struct page *__rmqueue(struct zone *zone, unsigned int order,
1088 						int migratetype)
1089 {
1090 	struct page *page;
1091 
1092 retry_reserve:
1093 	page = __rmqueue_smallest(zone, order, migratetype);
1094 
1095 	if (unlikely(!page) && migratetype != MIGRATE_RESERVE) {
1096 		page = __rmqueue_fallback(zone, order, migratetype);
1097 
1098 		/*
1099 		 * Use MIGRATE_RESERVE rather than fail an allocation. goto
1100 		 * is used because __rmqueue_smallest is an inline function
1101 		 * and we want just one call site
1102 		 */
1103 		if (!page) {
1104 			migratetype = MIGRATE_RESERVE;
1105 			goto retry_reserve;
1106 		}
1107 	}
1108 
1109 	trace_mm_page_alloc_zone_locked(page, order, migratetype);
1110 	return page;
1111 }
1112 
1113 /*
1114  * Obtain a specified number of elements from the buddy allocator, all under
1115  * a single hold of the lock, for efficiency.  Add them to the supplied list.
1116  * Returns the number of new pages which were placed at *list.
1117  */
1118 static int rmqueue_bulk(struct zone *zone, unsigned int order,
1119 			unsigned long count, struct list_head *list,
1120 			int migratetype, int cold)
1121 {
1122 	int mt = migratetype, i;
1123 
1124 	spin_lock(&zone->lock);
1125 	for (i = 0; i < count; ++i) {
1126 		struct page *page = __rmqueue(zone, order, migratetype);
1127 		if (unlikely(page == NULL))
1128 			break;
1129 
1130 		/*
1131 		 * Split buddy pages returned by expand() are received here
1132 		 * in physical page order. The page is added to the callers and
1133 		 * list and the list head then moves forward. From the callers
1134 		 * perspective, the linked list is ordered by page number in
1135 		 * some conditions. This is useful for IO devices that can
1136 		 * merge IO requests if the physical pages are ordered
1137 		 * properly.
1138 		 */
1139 		if (likely(cold == 0))
1140 			list_add(&page->lru, list);
1141 		else
1142 			list_add_tail(&page->lru, list);
1143 		if (IS_ENABLED(CONFIG_CMA)) {
1144 			mt = get_pageblock_migratetype(page);
1145 			if (!is_migrate_cma(mt) && mt != MIGRATE_ISOLATE)
1146 				mt = migratetype;
1147 		}
1148 		set_freepage_migratetype(page, mt);
1149 		list = &page->lru;
1150 		if (is_migrate_cma(mt))
1151 			__mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
1152 					      -(1 << order));
1153 	}
1154 	__mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
1155 	spin_unlock(&zone->lock);
1156 	return i;
1157 }
1158 
1159 #ifdef CONFIG_NUMA
1160 /*
1161  * Called from the vmstat counter updater to drain pagesets of this
1162  * currently executing processor on remote nodes after they have
1163  * expired.
1164  *
1165  * Note that this function must be called with the thread pinned to
1166  * a single processor.
1167  */
1168 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
1169 {
1170 	unsigned long flags;
1171 	int to_drain;
1172 
1173 	local_irq_save(flags);
1174 	if (pcp->count >= pcp->batch)
1175 		to_drain = pcp->batch;
1176 	else
1177 		to_drain = pcp->count;
1178 	if (to_drain > 0) {
1179 		free_pcppages_bulk(zone, to_drain, pcp);
1180 		pcp->count -= to_drain;
1181 	}
1182 	local_irq_restore(flags);
1183 }
1184 #endif
1185 
1186 /*
1187  * Drain pages of the indicated processor.
1188  *
1189  * The processor must either be the current processor and the
1190  * thread pinned to the current processor or a processor that
1191  * is not online.
1192  */
1193 static void drain_pages(unsigned int cpu)
1194 {
1195 	unsigned long flags;
1196 	struct zone *zone;
1197 
1198 	for_each_populated_zone(zone) {
1199 		struct per_cpu_pageset *pset;
1200 		struct per_cpu_pages *pcp;
1201 
1202 		local_irq_save(flags);
1203 		pset = per_cpu_ptr(zone->pageset, cpu);
1204 
1205 		pcp = &pset->pcp;
1206 		if (pcp->count) {
1207 			free_pcppages_bulk(zone, pcp->count, pcp);
1208 			pcp->count = 0;
1209 		}
1210 		local_irq_restore(flags);
1211 	}
1212 }
1213 
1214 /*
1215  * Spill all of this CPU's per-cpu pages back into the buddy allocator.
1216  */
1217 void drain_local_pages(void *arg)
1218 {
1219 	drain_pages(smp_processor_id());
1220 }
1221 
1222 /*
1223  * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
1224  *
1225  * Note that this code is protected against sending an IPI to an offline
1226  * CPU but does not guarantee sending an IPI to newly hotplugged CPUs:
1227  * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but
1228  * nothing keeps CPUs from showing up after we populated the cpumask and
1229  * before the call to on_each_cpu_mask().
1230  */
1231 void drain_all_pages(void)
1232 {
1233 	int cpu;
1234 	struct per_cpu_pageset *pcp;
1235 	struct zone *zone;
1236 
1237 	/*
1238 	 * Allocate in the BSS so we wont require allocation in
1239 	 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
1240 	 */
1241 	static cpumask_t cpus_with_pcps;
1242 
1243 	/*
1244 	 * We don't care about racing with CPU hotplug event
1245 	 * as offline notification will cause the notified
1246 	 * cpu to drain that CPU pcps and on_each_cpu_mask
1247 	 * disables preemption as part of its processing
1248 	 */
1249 	for_each_online_cpu(cpu) {
1250 		bool has_pcps = false;
1251 		for_each_populated_zone(zone) {
1252 			pcp = per_cpu_ptr(zone->pageset, cpu);
1253 			if (pcp->pcp.count) {
1254 				has_pcps = true;
1255 				break;
1256 			}
1257 		}
1258 		if (has_pcps)
1259 			cpumask_set_cpu(cpu, &cpus_with_pcps);
1260 		else
1261 			cpumask_clear_cpu(cpu, &cpus_with_pcps);
1262 	}
1263 	on_each_cpu_mask(&cpus_with_pcps, drain_local_pages, NULL, 1);
1264 }
1265 
1266 #ifdef CONFIG_HIBERNATION
1267 
1268 void mark_free_pages(struct zone *zone)
1269 {
1270 	unsigned long pfn, max_zone_pfn;
1271 	unsigned long flags;
1272 	int order, t;
1273 	struct list_head *curr;
1274 
1275 	if (!zone->spanned_pages)
1276 		return;
1277 
1278 	spin_lock_irqsave(&zone->lock, flags);
1279 
1280 	max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
1281 	for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1282 		if (pfn_valid(pfn)) {
1283 			struct page *page = pfn_to_page(pfn);
1284 
1285 			if (!swsusp_page_is_forbidden(page))
1286 				swsusp_unset_page_free(page);
1287 		}
1288 
1289 	for_each_migratetype_order(order, t) {
1290 		list_for_each(curr, &zone->free_area[order].free_list[t]) {
1291 			unsigned long i;
1292 
1293 			pfn = page_to_pfn(list_entry(curr, struct page, lru));
1294 			for (i = 0; i < (1UL << order); i++)
1295 				swsusp_set_page_free(pfn_to_page(pfn + i));
1296 		}
1297 	}
1298 	spin_unlock_irqrestore(&zone->lock, flags);
1299 }
1300 #endif /* CONFIG_PM */
1301 
1302 /*
1303  * Free a 0-order page
1304  * cold == 1 ? free a cold page : free a hot page
1305  */
1306 void free_hot_cold_page(struct page *page, int cold)
1307 {
1308 	struct zone *zone = page_zone(page);
1309 	struct per_cpu_pages *pcp;
1310 	unsigned long flags;
1311 	int migratetype;
1312 
1313 	if (!free_pages_prepare(page, 0))
1314 		return;
1315 
1316 	migratetype = get_pageblock_migratetype(page);
1317 	set_freepage_migratetype(page, migratetype);
1318 	local_irq_save(flags);
1319 	__count_vm_event(PGFREE);
1320 
1321 	/*
1322 	 * We only track unmovable, reclaimable and movable on pcp lists.
1323 	 * Free ISOLATE pages back to the allocator because they are being
1324 	 * offlined but treat RESERVE as movable pages so we can get those
1325 	 * areas back if necessary. Otherwise, we may have to free
1326 	 * excessively into the page allocator
1327 	 */
1328 	if (migratetype >= MIGRATE_PCPTYPES) {
1329 		if (unlikely(migratetype == MIGRATE_ISOLATE)) {
1330 			free_one_page(zone, page, 0, migratetype);
1331 			goto out;
1332 		}
1333 		migratetype = MIGRATE_MOVABLE;
1334 	}
1335 
1336 	pcp = &this_cpu_ptr(zone->pageset)->pcp;
1337 	if (cold)
1338 		list_add_tail(&page->lru, &pcp->lists[migratetype]);
1339 	else
1340 		list_add(&page->lru, &pcp->lists[migratetype]);
1341 	pcp->count++;
1342 	if (pcp->count >= pcp->high) {
1343 		free_pcppages_bulk(zone, pcp->batch, pcp);
1344 		pcp->count -= pcp->batch;
1345 	}
1346 
1347 out:
1348 	local_irq_restore(flags);
1349 }
1350 
1351 /*
1352  * Free a list of 0-order pages
1353  */
1354 void free_hot_cold_page_list(struct list_head *list, int cold)
1355 {
1356 	struct page *page, *next;
1357 
1358 	list_for_each_entry_safe(page, next, list, lru) {
1359 		trace_mm_page_free_batched(page, cold);
1360 		free_hot_cold_page(page, cold);
1361 	}
1362 }
1363 
1364 /*
1365  * split_page takes a non-compound higher-order page, and splits it into
1366  * n (1<<order) sub-pages: page[0..n]
1367  * Each sub-page must be freed individually.
1368  *
1369  * Note: this is probably too low level an operation for use in drivers.
1370  * Please consult with lkml before using this in your driver.
1371  */
1372 void split_page(struct page *page, unsigned int order)
1373 {
1374 	int i;
1375 
1376 	VM_BUG_ON(PageCompound(page));
1377 	VM_BUG_ON(!page_count(page));
1378 
1379 #ifdef CONFIG_KMEMCHECK
1380 	/*
1381 	 * Split shadow pages too, because free(page[0]) would
1382 	 * otherwise free the whole shadow.
1383 	 */
1384 	if (kmemcheck_page_is_tracked(page))
1385 		split_page(virt_to_page(page[0].shadow), order);
1386 #endif
1387 
1388 	for (i = 1; i < (1 << order); i++)
1389 		set_page_refcounted(page + i);
1390 }
1391 
1392 /*
1393  * Similar to the split_page family of functions except that the page
1394  * required at the given order and being isolated now to prevent races
1395  * with parallel allocators
1396  */
1397 int capture_free_page(struct page *page, int alloc_order, int migratetype)
1398 {
1399 	unsigned int order;
1400 	unsigned long watermark;
1401 	struct zone *zone;
1402 	int mt;
1403 
1404 	BUG_ON(!PageBuddy(page));
1405 
1406 	zone = page_zone(page);
1407 	order = page_order(page);
1408 	mt = get_pageblock_migratetype(page);
1409 
1410 	if (mt != MIGRATE_ISOLATE) {
1411 		/* Obey watermarks as if the page was being allocated */
1412 		watermark = low_wmark_pages(zone) + (1 << order);
1413 		if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
1414 			return 0;
1415 
1416 		__mod_zone_freepage_state(zone, -(1UL << alloc_order), mt);
1417 	}
1418 
1419 	/* Remove page from free list */
1420 	list_del(&page->lru);
1421 	zone->free_area[order].nr_free--;
1422 	rmv_page_order(page);
1423 
1424 	if (alloc_order != order)
1425 		expand(zone, page, alloc_order, order,
1426 			&zone->free_area[order], migratetype);
1427 
1428 	/* Set the pageblock if the captured page is at least a pageblock */
1429 	if (order >= pageblock_order - 1) {
1430 		struct page *endpage = page + (1 << order) - 1;
1431 		for (; page < endpage; page += pageblock_nr_pages) {
1432 			int mt = get_pageblock_migratetype(page);
1433 			if (mt != MIGRATE_ISOLATE && !is_migrate_cma(mt))
1434 				set_pageblock_migratetype(page,
1435 							  MIGRATE_MOVABLE);
1436 		}
1437 	}
1438 
1439 	return 1UL << alloc_order;
1440 }
1441 
1442 /*
1443  * Similar to split_page except the page is already free. As this is only
1444  * being used for migration, the migratetype of the block also changes.
1445  * As this is called with interrupts disabled, the caller is responsible
1446  * for calling arch_alloc_page() and kernel_map_page() after interrupts
1447  * are enabled.
1448  *
1449  * Note: this is probably too low level an operation for use in drivers.
1450  * Please consult with lkml before using this in your driver.
1451  */
1452 int split_free_page(struct page *page)
1453 {
1454 	unsigned int order;
1455 	int nr_pages;
1456 
1457 	BUG_ON(!PageBuddy(page));
1458 	order = page_order(page);
1459 
1460 	nr_pages = capture_free_page(page, order, 0);
1461 	if (!nr_pages)
1462 		return 0;
1463 
1464 	/* Split into individual pages */
1465 	set_page_refcounted(page);
1466 	split_page(page, order);
1467 	return nr_pages;
1468 }
1469 
1470 /*
1471  * Really, prep_compound_page() should be called from __rmqueue_bulk().  But
1472  * we cheat by calling it from here, in the order > 0 path.  Saves a branch
1473  * or two.
1474  */
1475 static inline
1476 struct page *buffered_rmqueue(struct zone *preferred_zone,
1477 			struct zone *zone, int order, gfp_t gfp_flags,
1478 			int migratetype)
1479 {
1480 	unsigned long flags;
1481 	struct page *page;
1482 	int cold = !!(gfp_flags & __GFP_COLD);
1483 
1484 again:
1485 	if (likely(order == 0)) {
1486 		struct per_cpu_pages *pcp;
1487 		struct list_head *list;
1488 
1489 		local_irq_save(flags);
1490 		pcp = &this_cpu_ptr(zone->pageset)->pcp;
1491 		list = &pcp->lists[migratetype];
1492 		if (list_empty(list)) {
1493 			pcp->count += rmqueue_bulk(zone, 0,
1494 					pcp->batch, list,
1495 					migratetype, cold);
1496 			if (unlikely(list_empty(list)))
1497 				goto failed;
1498 		}
1499 
1500 		if (cold)
1501 			page = list_entry(list->prev, struct page, lru);
1502 		else
1503 			page = list_entry(list->next, struct page, lru);
1504 
1505 		list_del(&page->lru);
1506 		pcp->count--;
1507 	} else {
1508 		if (unlikely(gfp_flags & __GFP_NOFAIL)) {
1509 			/*
1510 			 * __GFP_NOFAIL is not to be used in new code.
1511 			 *
1512 			 * All __GFP_NOFAIL callers should be fixed so that they
1513 			 * properly detect and handle allocation failures.
1514 			 *
1515 			 * We most definitely don't want callers attempting to
1516 			 * allocate greater than order-1 page units with
1517 			 * __GFP_NOFAIL.
1518 			 */
1519 			WARN_ON_ONCE(order > 1);
1520 		}
1521 		spin_lock_irqsave(&zone->lock, flags);
1522 		page = __rmqueue(zone, order, migratetype);
1523 		spin_unlock(&zone->lock);
1524 		if (!page)
1525 			goto failed;
1526 		__mod_zone_freepage_state(zone, -(1 << order),
1527 					  get_pageblock_migratetype(page));
1528 	}
1529 
1530 	__count_zone_vm_events(PGALLOC, zone, 1 << order);
1531 	zone_statistics(preferred_zone, zone, gfp_flags);
1532 	local_irq_restore(flags);
1533 
1534 	VM_BUG_ON(bad_range(zone, page));
1535 	if (prep_new_page(page, order, gfp_flags))
1536 		goto again;
1537 	return page;
1538 
1539 failed:
1540 	local_irq_restore(flags);
1541 	return NULL;
1542 }
1543 
1544 #ifdef CONFIG_FAIL_PAGE_ALLOC
1545 
1546 static struct {
1547 	struct fault_attr attr;
1548 
1549 	u32 ignore_gfp_highmem;
1550 	u32 ignore_gfp_wait;
1551 	u32 min_order;
1552 } fail_page_alloc = {
1553 	.attr = FAULT_ATTR_INITIALIZER,
1554 	.ignore_gfp_wait = 1,
1555 	.ignore_gfp_highmem = 1,
1556 	.min_order = 1,
1557 };
1558 
1559 static int __init setup_fail_page_alloc(char *str)
1560 {
1561 	return setup_fault_attr(&fail_page_alloc.attr, str);
1562 }
1563 __setup("fail_page_alloc=", setup_fail_page_alloc);
1564 
1565 static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1566 {
1567 	if (order < fail_page_alloc.min_order)
1568 		return false;
1569 	if (gfp_mask & __GFP_NOFAIL)
1570 		return false;
1571 	if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
1572 		return false;
1573 	if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
1574 		return false;
1575 
1576 	return should_fail(&fail_page_alloc.attr, 1 << order);
1577 }
1578 
1579 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1580 
1581 static int __init fail_page_alloc_debugfs(void)
1582 {
1583 	umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
1584 	struct dentry *dir;
1585 
1586 	dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
1587 					&fail_page_alloc.attr);
1588 	if (IS_ERR(dir))
1589 		return PTR_ERR(dir);
1590 
1591 	if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
1592 				&fail_page_alloc.ignore_gfp_wait))
1593 		goto fail;
1594 	if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
1595 				&fail_page_alloc.ignore_gfp_highmem))
1596 		goto fail;
1597 	if (!debugfs_create_u32("min-order", mode, dir,
1598 				&fail_page_alloc.min_order))
1599 		goto fail;
1600 
1601 	return 0;
1602 fail:
1603 	debugfs_remove_recursive(dir);
1604 
1605 	return -ENOMEM;
1606 }
1607 
1608 late_initcall(fail_page_alloc_debugfs);
1609 
1610 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1611 
1612 #else /* CONFIG_FAIL_PAGE_ALLOC */
1613 
1614 static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1615 {
1616 	return false;
1617 }
1618 
1619 #endif /* CONFIG_FAIL_PAGE_ALLOC */
1620 
1621 /*
1622  * Return true if free pages are above 'mark'. This takes into account the order
1623  * of the allocation.
1624  */
1625 static bool __zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1626 		      int classzone_idx, int alloc_flags, long free_pages)
1627 {
1628 	/* free_pages my go negative - that's OK */
1629 	long min = mark;
1630 	long lowmem_reserve = z->lowmem_reserve[classzone_idx];
1631 	int o;
1632 
1633 	free_pages -= (1 << order) - 1;
1634 	if (alloc_flags & ALLOC_HIGH)
1635 		min -= min / 2;
1636 	if (alloc_flags & ALLOC_HARDER)
1637 		min -= min / 4;
1638 #ifdef CONFIG_CMA
1639 	/* If allocation can't use CMA areas don't use free CMA pages */
1640 	if (!(alloc_flags & ALLOC_CMA))
1641 		free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES);
1642 #endif
1643 	if (free_pages <= min + lowmem_reserve)
1644 		return false;
1645 	for (o = 0; o < order; o++) {
1646 		/* At the next order, this order's pages become unavailable */
1647 		free_pages -= z->free_area[o].nr_free << o;
1648 
1649 		/* Require fewer higher order pages to be free */
1650 		min >>= 1;
1651 
1652 		if (free_pages <= min)
1653 			return false;
1654 	}
1655 	return true;
1656 }
1657 
1658 #ifdef CONFIG_MEMORY_ISOLATION
1659 static inline unsigned long nr_zone_isolate_freepages(struct zone *zone)
1660 {
1661 	if (unlikely(zone->nr_pageblock_isolate))
1662 		return zone->nr_pageblock_isolate * pageblock_nr_pages;
1663 	return 0;
1664 }
1665 #else
1666 static inline unsigned long nr_zone_isolate_freepages(struct zone *zone)
1667 {
1668 	return 0;
1669 }
1670 #endif
1671 
1672 bool zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1673 		      int classzone_idx, int alloc_flags)
1674 {
1675 	return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1676 					zone_page_state(z, NR_FREE_PAGES));
1677 }
1678 
1679 bool zone_watermark_ok_safe(struct zone *z, int order, unsigned long mark,
1680 		      int classzone_idx, int alloc_flags)
1681 {
1682 	long free_pages = zone_page_state(z, NR_FREE_PAGES);
1683 
1684 	if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
1685 		free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
1686 
1687 	/*
1688 	 * If the zone has MIGRATE_ISOLATE type free pages, we should consider
1689 	 * it.  nr_zone_isolate_freepages is never accurate so kswapd might not
1690 	 * sleep although it could do so.  But this is more desirable for memory
1691 	 * hotplug than sleeping which can cause a livelock in the direct
1692 	 * reclaim path.
1693 	 */
1694 	free_pages -= nr_zone_isolate_freepages(z);
1695 	return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1696 								free_pages);
1697 }
1698 
1699 #ifdef CONFIG_NUMA
1700 /*
1701  * zlc_setup - Setup for "zonelist cache".  Uses cached zone data to
1702  * skip over zones that are not allowed by the cpuset, or that have
1703  * been recently (in last second) found to be nearly full.  See further
1704  * comments in mmzone.h.  Reduces cache footprint of zonelist scans
1705  * that have to skip over a lot of full or unallowed zones.
1706  *
1707  * If the zonelist cache is present in the passed in zonelist, then
1708  * returns a pointer to the allowed node mask (either the current
1709  * tasks mems_allowed, or node_states[N_MEMORY].)
1710  *
1711  * If the zonelist cache is not available for this zonelist, does
1712  * nothing and returns NULL.
1713  *
1714  * If the fullzones BITMAP in the zonelist cache is stale (more than
1715  * a second since last zap'd) then we zap it out (clear its bits.)
1716  *
1717  * We hold off even calling zlc_setup, until after we've checked the
1718  * first zone in the zonelist, on the theory that most allocations will
1719  * be satisfied from that first zone, so best to examine that zone as
1720  * quickly as we can.
1721  */
1722 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1723 {
1724 	struct zonelist_cache *zlc;	/* cached zonelist speedup info */
1725 	nodemask_t *allowednodes;	/* zonelist_cache approximation */
1726 
1727 	zlc = zonelist->zlcache_ptr;
1728 	if (!zlc)
1729 		return NULL;
1730 
1731 	if (time_after(jiffies, zlc->last_full_zap + HZ)) {
1732 		bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1733 		zlc->last_full_zap = jiffies;
1734 	}
1735 
1736 	allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1737 					&cpuset_current_mems_allowed :
1738 					&node_states[N_MEMORY];
1739 	return allowednodes;
1740 }
1741 
1742 /*
1743  * Given 'z' scanning a zonelist, run a couple of quick checks to see
1744  * if it is worth looking at further for free memory:
1745  *  1) Check that the zone isn't thought to be full (doesn't have its
1746  *     bit set in the zonelist_cache fullzones BITMAP).
1747  *  2) Check that the zones node (obtained from the zonelist_cache
1748  *     z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1749  * Return true (non-zero) if zone is worth looking at further, or
1750  * else return false (zero) if it is not.
1751  *
1752  * This check -ignores- the distinction between various watermarks,
1753  * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ...  If a zone is
1754  * found to be full for any variation of these watermarks, it will
1755  * be considered full for up to one second by all requests, unless
1756  * we are so low on memory on all allowed nodes that we are forced
1757  * into the second scan of the zonelist.
1758  *
1759  * In the second scan we ignore this zonelist cache and exactly
1760  * apply the watermarks to all zones, even it is slower to do so.
1761  * We are low on memory in the second scan, and should leave no stone
1762  * unturned looking for a free page.
1763  */
1764 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1765 						nodemask_t *allowednodes)
1766 {
1767 	struct zonelist_cache *zlc;	/* cached zonelist speedup info */
1768 	int i;				/* index of *z in zonelist zones */
1769 	int n;				/* node that zone *z is on */
1770 
1771 	zlc = zonelist->zlcache_ptr;
1772 	if (!zlc)
1773 		return 1;
1774 
1775 	i = z - zonelist->_zonerefs;
1776 	n = zlc->z_to_n[i];
1777 
1778 	/* This zone is worth trying if it is allowed but not full */
1779 	return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1780 }
1781 
1782 /*
1783  * Given 'z' scanning a zonelist, set the corresponding bit in
1784  * zlc->fullzones, so that subsequent attempts to allocate a page
1785  * from that zone don't waste time re-examining it.
1786  */
1787 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1788 {
1789 	struct zonelist_cache *zlc;	/* cached zonelist speedup info */
1790 	int i;				/* index of *z in zonelist zones */
1791 
1792 	zlc = zonelist->zlcache_ptr;
1793 	if (!zlc)
1794 		return;
1795 
1796 	i = z - zonelist->_zonerefs;
1797 
1798 	set_bit(i, zlc->fullzones);
1799 }
1800 
1801 /*
1802  * clear all zones full, called after direct reclaim makes progress so that
1803  * a zone that was recently full is not skipped over for up to a second
1804  */
1805 static void zlc_clear_zones_full(struct zonelist *zonelist)
1806 {
1807 	struct zonelist_cache *zlc;	/* cached zonelist speedup info */
1808 
1809 	zlc = zonelist->zlcache_ptr;
1810 	if (!zlc)
1811 		return;
1812 
1813 	bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1814 }
1815 
1816 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
1817 {
1818 	return node_isset(local_zone->node, zone->zone_pgdat->reclaim_nodes);
1819 }
1820 
1821 static void __paginginit init_zone_allows_reclaim(int nid)
1822 {
1823 	int i;
1824 
1825 	for_each_online_node(i)
1826 		if (node_distance(nid, i) <= RECLAIM_DISTANCE)
1827 			node_set(i, NODE_DATA(nid)->reclaim_nodes);
1828 		else
1829 			zone_reclaim_mode = 1;
1830 }
1831 
1832 #else	/* CONFIG_NUMA */
1833 
1834 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1835 {
1836 	return NULL;
1837 }
1838 
1839 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1840 				nodemask_t *allowednodes)
1841 {
1842 	return 1;
1843 }
1844 
1845 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1846 {
1847 }
1848 
1849 static void zlc_clear_zones_full(struct zonelist *zonelist)
1850 {
1851 }
1852 
1853 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
1854 {
1855 	return true;
1856 }
1857 
1858 static inline void init_zone_allows_reclaim(int nid)
1859 {
1860 }
1861 #endif	/* CONFIG_NUMA */
1862 
1863 /*
1864  * get_page_from_freelist goes through the zonelist trying to allocate
1865  * a page.
1866  */
1867 static struct page *
1868 get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order,
1869 		struct zonelist *zonelist, int high_zoneidx, int alloc_flags,
1870 		struct zone *preferred_zone, int migratetype)
1871 {
1872 	struct zoneref *z;
1873 	struct page *page = NULL;
1874 	int classzone_idx;
1875 	struct zone *zone;
1876 	nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
1877 	int zlc_active = 0;		/* set if using zonelist_cache */
1878 	int did_zlc_setup = 0;		/* just call zlc_setup() one time */
1879 
1880 	classzone_idx = zone_idx(preferred_zone);
1881 zonelist_scan:
1882 	/*
1883 	 * Scan zonelist, looking for a zone with enough free.
1884 	 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1885 	 */
1886 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
1887 						high_zoneidx, nodemask) {
1888 		if (IS_ENABLED(CONFIG_NUMA) && zlc_active &&
1889 			!zlc_zone_worth_trying(zonelist, z, allowednodes))
1890 				continue;
1891 		if ((alloc_flags & ALLOC_CPUSET) &&
1892 			!cpuset_zone_allowed_softwall(zone, gfp_mask))
1893 				continue;
1894 		/*
1895 		 * When allocating a page cache page for writing, we
1896 		 * want to get it from a zone that is within its dirty
1897 		 * limit, such that no single zone holds more than its
1898 		 * proportional share of globally allowed dirty pages.
1899 		 * The dirty limits take into account the zone's
1900 		 * lowmem reserves and high watermark so that kswapd
1901 		 * should be able to balance it without having to
1902 		 * write pages from its LRU list.
1903 		 *
1904 		 * This may look like it could increase pressure on
1905 		 * lower zones by failing allocations in higher zones
1906 		 * before they are full.  But the pages that do spill
1907 		 * over are limited as the lower zones are protected
1908 		 * by this very same mechanism.  It should not become
1909 		 * a practical burden to them.
1910 		 *
1911 		 * XXX: For now, allow allocations to potentially
1912 		 * exceed the per-zone dirty limit in the slowpath
1913 		 * (ALLOC_WMARK_LOW unset) before going into reclaim,
1914 		 * which is important when on a NUMA setup the allowed
1915 		 * zones are together not big enough to reach the
1916 		 * global limit.  The proper fix for these situations
1917 		 * will require awareness of zones in the
1918 		 * dirty-throttling and the flusher threads.
1919 		 */
1920 		if ((alloc_flags & ALLOC_WMARK_LOW) &&
1921 		    (gfp_mask & __GFP_WRITE) && !zone_dirty_ok(zone))
1922 			goto this_zone_full;
1923 
1924 		BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
1925 		if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
1926 			unsigned long mark;
1927 			int ret;
1928 
1929 			mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
1930 			if (zone_watermark_ok(zone, order, mark,
1931 				    classzone_idx, alloc_flags))
1932 				goto try_this_zone;
1933 
1934 			if (IS_ENABLED(CONFIG_NUMA) &&
1935 					!did_zlc_setup && nr_online_nodes > 1) {
1936 				/*
1937 				 * we do zlc_setup if there are multiple nodes
1938 				 * and before considering the first zone allowed
1939 				 * by the cpuset.
1940 				 */
1941 				allowednodes = zlc_setup(zonelist, alloc_flags);
1942 				zlc_active = 1;
1943 				did_zlc_setup = 1;
1944 			}
1945 
1946 			if (zone_reclaim_mode == 0 ||
1947 			    !zone_allows_reclaim(preferred_zone, zone))
1948 				goto this_zone_full;
1949 
1950 			/*
1951 			 * As we may have just activated ZLC, check if the first
1952 			 * eligible zone has failed zone_reclaim recently.
1953 			 */
1954 			if (IS_ENABLED(CONFIG_NUMA) && zlc_active &&
1955 				!zlc_zone_worth_trying(zonelist, z, allowednodes))
1956 				continue;
1957 
1958 			ret = zone_reclaim(zone, gfp_mask, order);
1959 			switch (ret) {
1960 			case ZONE_RECLAIM_NOSCAN:
1961 				/* did not scan */
1962 				continue;
1963 			case ZONE_RECLAIM_FULL:
1964 				/* scanned but unreclaimable */
1965 				continue;
1966 			default:
1967 				/* did we reclaim enough */
1968 				if (!zone_watermark_ok(zone, order, mark,
1969 						classzone_idx, alloc_flags))
1970 					goto this_zone_full;
1971 			}
1972 		}
1973 
1974 try_this_zone:
1975 		page = buffered_rmqueue(preferred_zone, zone, order,
1976 						gfp_mask, migratetype);
1977 		if (page)
1978 			break;
1979 this_zone_full:
1980 		if (IS_ENABLED(CONFIG_NUMA))
1981 			zlc_mark_zone_full(zonelist, z);
1982 	}
1983 
1984 	if (unlikely(IS_ENABLED(CONFIG_NUMA) && page == NULL && zlc_active)) {
1985 		/* Disable zlc cache for second zonelist scan */
1986 		zlc_active = 0;
1987 		goto zonelist_scan;
1988 	}
1989 
1990 	if (page)
1991 		/*
1992 		 * page->pfmemalloc is set when ALLOC_NO_WATERMARKS was
1993 		 * necessary to allocate the page. The expectation is
1994 		 * that the caller is taking steps that will free more
1995 		 * memory. The caller should avoid the page being used
1996 		 * for !PFMEMALLOC purposes.
1997 		 */
1998 		page->pfmemalloc = !!(alloc_flags & ALLOC_NO_WATERMARKS);
1999 
2000 	return page;
2001 }
2002 
2003 /*
2004  * Large machines with many possible nodes should not always dump per-node
2005  * meminfo in irq context.
2006  */
2007 static inline bool should_suppress_show_mem(void)
2008 {
2009 	bool ret = false;
2010 
2011 #if NODES_SHIFT > 8
2012 	ret = in_interrupt();
2013 #endif
2014 	return ret;
2015 }
2016 
2017 static DEFINE_RATELIMIT_STATE(nopage_rs,
2018 		DEFAULT_RATELIMIT_INTERVAL,
2019 		DEFAULT_RATELIMIT_BURST);
2020 
2021 void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...)
2022 {
2023 	unsigned int filter = SHOW_MEM_FILTER_NODES;
2024 
2025 	if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) ||
2026 	    debug_guardpage_minorder() > 0)
2027 		return;
2028 
2029 	/*
2030 	 * This documents exceptions given to allocations in certain
2031 	 * contexts that are allowed to allocate outside current's set
2032 	 * of allowed nodes.
2033 	 */
2034 	if (!(gfp_mask & __GFP_NOMEMALLOC))
2035 		if (test_thread_flag(TIF_MEMDIE) ||
2036 		    (current->flags & (PF_MEMALLOC | PF_EXITING)))
2037 			filter &= ~SHOW_MEM_FILTER_NODES;
2038 	if (in_interrupt() || !(gfp_mask & __GFP_WAIT))
2039 		filter &= ~SHOW_MEM_FILTER_NODES;
2040 
2041 	if (fmt) {
2042 		struct va_format vaf;
2043 		va_list args;
2044 
2045 		va_start(args, fmt);
2046 
2047 		vaf.fmt = fmt;
2048 		vaf.va = &args;
2049 
2050 		pr_warn("%pV", &vaf);
2051 
2052 		va_end(args);
2053 	}
2054 
2055 	pr_warn("%s: page allocation failure: order:%d, mode:0x%x\n",
2056 		current->comm, order, gfp_mask);
2057 
2058 	dump_stack();
2059 	if (!should_suppress_show_mem())
2060 		show_mem(filter);
2061 }
2062 
2063 static inline int
2064 should_alloc_retry(gfp_t gfp_mask, unsigned int order,
2065 				unsigned long did_some_progress,
2066 				unsigned long pages_reclaimed)
2067 {
2068 	/* Do not loop if specifically requested */
2069 	if (gfp_mask & __GFP_NORETRY)
2070 		return 0;
2071 
2072 	/* Always retry if specifically requested */
2073 	if (gfp_mask & __GFP_NOFAIL)
2074 		return 1;
2075 
2076 	/*
2077 	 * Suspend converts GFP_KERNEL to __GFP_WAIT which can prevent reclaim
2078 	 * making forward progress without invoking OOM. Suspend also disables
2079 	 * storage devices so kswapd will not help. Bail if we are suspending.
2080 	 */
2081 	if (!did_some_progress && pm_suspended_storage())
2082 		return 0;
2083 
2084 	/*
2085 	 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
2086 	 * means __GFP_NOFAIL, but that may not be true in other
2087 	 * implementations.
2088 	 */
2089 	if (order <= PAGE_ALLOC_COSTLY_ORDER)
2090 		return 1;
2091 
2092 	/*
2093 	 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
2094 	 * specified, then we retry until we no longer reclaim any pages
2095 	 * (above), or we've reclaimed an order of pages at least as
2096 	 * large as the allocation's order. In both cases, if the
2097 	 * allocation still fails, we stop retrying.
2098 	 */
2099 	if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order))
2100 		return 1;
2101 
2102 	return 0;
2103 }
2104 
2105 static inline struct page *
2106 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
2107 	struct zonelist *zonelist, enum zone_type high_zoneidx,
2108 	nodemask_t *nodemask, struct zone *preferred_zone,
2109 	int migratetype)
2110 {
2111 	struct page *page;
2112 
2113 	/* Acquire the OOM killer lock for the zones in zonelist */
2114 	if (!try_set_zonelist_oom(zonelist, gfp_mask)) {
2115 		schedule_timeout_uninterruptible(1);
2116 		return NULL;
2117 	}
2118 
2119 	/*
2120 	 * Go through the zonelist yet one more time, keep very high watermark
2121 	 * here, this is only to catch a parallel oom killing, we must fail if
2122 	 * we're still under heavy pressure.
2123 	 */
2124 	page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask,
2125 		order, zonelist, high_zoneidx,
2126 		ALLOC_WMARK_HIGH|ALLOC_CPUSET,
2127 		preferred_zone, migratetype);
2128 	if (page)
2129 		goto out;
2130 
2131 	if (!(gfp_mask & __GFP_NOFAIL)) {
2132 		/* The OOM killer will not help higher order allocs */
2133 		if (order > PAGE_ALLOC_COSTLY_ORDER)
2134 			goto out;
2135 		/* The OOM killer does not needlessly kill tasks for lowmem */
2136 		if (high_zoneidx < ZONE_NORMAL)
2137 			goto out;
2138 		/*
2139 		 * GFP_THISNODE contains __GFP_NORETRY and we never hit this.
2140 		 * Sanity check for bare calls of __GFP_THISNODE, not real OOM.
2141 		 * The caller should handle page allocation failure by itself if
2142 		 * it specifies __GFP_THISNODE.
2143 		 * Note: Hugepage uses it but will hit PAGE_ALLOC_COSTLY_ORDER.
2144 		 */
2145 		if (gfp_mask & __GFP_THISNODE)
2146 			goto out;
2147 	}
2148 	/* Exhausted what can be done so it's blamo time */
2149 	out_of_memory(zonelist, gfp_mask, order, nodemask, false);
2150 
2151 out:
2152 	clear_zonelist_oom(zonelist, gfp_mask);
2153 	return page;
2154 }
2155 
2156 #ifdef CONFIG_COMPACTION
2157 /* Try memory compaction for high-order allocations before reclaim */
2158 static struct page *
2159 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2160 	struct zonelist *zonelist, enum zone_type high_zoneidx,
2161 	nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
2162 	int migratetype, bool sync_migration,
2163 	bool *contended_compaction, bool *deferred_compaction,
2164 	unsigned long *did_some_progress)
2165 {
2166 	struct page *page = NULL;
2167 
2168 	if (!order)
2169 		return NULL;
2170 
2171 	if (compaction_deferred(preferred_zone, order)) {
2172 		*deferred_compaction = true;
2173 		return NULL;
2174 	}
2175 
2176 	current->flags |= PF_MEMALLOC;
2177 	*did_some_progress = try_to_compact_pages(zonelist, order, gfp_mask,
2178 						nodemask, sync_migration,
2179 						contended_compaction, &page);
2180 	current->flags &= ~PF_MEMALLOC;
2181 
2182 	/* If compaction captured a page, prep and use it */
2183 	if (page) {
2184 		prep_new_page(page, order, gfp_mask);
2185 		goto got_page;
2186 	}
2187 
2188 	if (*did_some_progress != COMPACT_SKIPPED) {
2189 		/* Page migration frees to the PCP lists but we want merging */
2190 		drain_pages(get_cpu());
2191 		put_cpu();
2192 
2193 		page = get_page_from_freelist(gfp_mask, nodemask,
2194 				order, zonelist, high_zoneidx,
2195 				alloc_flags & ~ALLOC_NO_WATERMARKS,
2196 				preferred_zone, migratetype);
2197 		if (page) {
2198 got_page:
2199 			preferred_zone->compact_blockskip_flush = false;
2200 			preferred_zone->compact_considered = 0;
2201 			preferred_zone->compact_defer_shift = 0;
2202 			if (order >= preferred_zone->compact_order_failed)
2203 				preferred_zone->compact_order_failed = order + 1;
2204 			count_vm_event(COMPACTSUCCESS);
2205 			return page;
2206 		}
2207 
2208 		/*
2209 		 * It's bad if compaction run occurs and fails.
2210 		 * The most likely reason is that pages exist,
2211 		 * but not enough to satisfy watermarks.
2212 		 */
2213 		count_vm_event(COMPACTFAIL);
2214 
2215 		/*
2216 		 * As async compaction considers a subset of pageblocks, only
2217 		 * defer if the failure was a sync compaction failure.
2218 		 */
2219 		if (sync_migration)
2220 			defer_compaction(preferred_zone, order);
2221 
2222 		cond_resched();
2223 	}
2224 
2225 	return NULL;
2226 }
2227 #else
2228 static inline struct page *
2229 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2230 	struct zonelist *zonelist, enum zone_type high_zoneidx,
2231 	nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
2232 	int migratetype, bool sync_migration,
2233 	bool *contended_compaction, bool *deferred_compaction,
2234 	unsigned long *did_some_progress)
2235 {
2236 	return NULL;
2237 }
2238 #endif /* CONFIG_COMPACTION */
2239 
2240 /* Perform direct synchronous page reclaim */
2241 static int
2242 __perform_reclaim(gfp_t gfp_mask, unsigned int order, struct zonelist *zonelist,
2243 		  nodemask_t *nodemask)
2244 {
2245 	struct reclaim_state reclaim_state;
2246 	int progress;
2247 
2248 	cond_resched();
2249 
2250 	/* We now go into synchronous reclaim */
2251 	cpuset_memory_pressure_bump();
2252 	current->flags |= PF_MEMALLOC;
2253 	lockdep_set_current_reclaim_state(gfp_mask);
2254 	reclaim_state.reclaimed_slab = 0;
2255 	current->reclaim_state = &reclaim_state;
2256 
2257 	progress = try_to_free_pages(zonelist, order, gfp_mask, nodemask);
2258 
2259 	current->reclaim_state = NULL;
2260 	lockdep_clear_current_reclaim_state();
2261 	current->flags &= ~PF_MEMALLOC;
2262 
2263 	cond_resched();
2264 
2265 	return progress;
2266 }
2267 
2268 /* The really slow allocator path where we enter direct reclaim */
2269 static inline struct page *
2270 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
2271 	struct zonelist *zonelist, enum zone_type high_zoneidx,
2272 	nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
2273 	int migratetype, unsigned long *did_some_progress)
2274 {
2275 	struct page *page = NULL;
2276 	bool drained = false;
2277 
2278 	*did_some_progress = __perform_reclaim(gfp_mask, order, zonelist,
2279 					       nodemask);
2280 	if (unlikely(!(*did_some_progress)))
2281 		return NULL;
2282 
2283 	/* After successful reclaim, reconsider all zones for allocation */
2284 	if (IS_ENABLED(CONFIG_NUMA))
2285 		zlc_clear_zones_full(zonelist);
2286 
2287 retry:
2288 	page = get_page_from_freelist(gfp_mask, nodemask, order,
2289 					zonelist, high_zoneidx,
2290 					alloc_flags & ~ALLOC_NO_WATERMARKS,
2291 					preferred_zone, migratetype);
2292 
2293 	/*
2294 	 * If an allocation failed after direct reclaim, it could be because
2295 	 * pages are pinned on the per-cpu lists. Drain them and try again
2296 	 */
2297 	if (!page && !drained) {
2298 		drain_all_pages();
2299 		drained = true;
2300 		goto retry;
2301 	}
2302 
2303 	return page;
2304 }
2305 
2306 /*
2307  * This is called in the allocator slow-path if the allocation request is of
2308  * sufficient urgency to ignore watermarks and take other desperate measures
2309  */
2310 static inline struct page *
2311 __alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order,
2312 	struct zonelist *zonelist, enum zone_type high_zoneidx,
2313 	nodemask_t *nodemask, struct zone *preferred_zone,
2314 	int migratetype)
2315 {
2316 	struct page *page;
2317 
2318 	do {
2319 		page = get_page_from_freelist(gfp_mask, nodemask, order,
2320 			zonelist, high_zoneidx, ALLOC_NO_WATERMARKS,
2321 			preferred_zone, migratetype);
2322 
2323 		if (!page && gfp_mask & __GFP_NOFAIL)
2324 			wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
2325 	} while (!page && (gfp_mask & __GFP_NOFAIL));
2326 
2327 	return page;
2328 }
2329 
2330 static inline
2331 void wake_all_kswapd(unsigned int order, struct zonelist *zonelist,
2332 						enum zone_type high_zoneidx,
2333 						enum zone_type classzone_idx)
2334 {
2335 	struct zoneref *z;
2336 	struct zone *zone;
2337 
2338 	for_each_zone_zonelist(zone, z, zonelist, high_zoneidx)
2339 		wakeup_kswapd(zone, order, classzone_idx);
2340 }
2341 
2342 static inline int
2343 gfp_to_alloc_flags(gfp_t gfp_mask)
2344 {
2345 	int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
2346 	const gfp_t wait = gfp_mask & __GFP_WAIT;
2347 
2348 	/* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
2349 	BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
2350 
2351 	/*
2352 	 * The caller may dip into page reserves a bit more if the caller
2353 	 * cannot run direct reclaim, or if the caller has realtime scheduling
2354 	 * policy or is asking for __GFP_HIGH memory.  GFP_ATOMIC requests will
2355 	 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
2356 	 */
2357 	alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
2358 
2359 	if (!wait) {
2360 		/*
2361 		 * Not worth trying to allocate harder for
2362 		 * __GFP_NOMEMALLOC even if it can't schedule.
2363 		 */
2364 		if  (!(gfp_mask & __GFP_NOMEMALLOC))
2365 			alloc_flags |= ALLOC_HARDER;
2366 		/*
2367 		 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
2368 		 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
2369 		 */
2370 		alloc_flags &= ~ALLOC_CPUSET;
2371 	} else if (unlikely(rt_task(current)) && !in_interrupt())
2372 		alloc_flags |= ALLOC_HARDER;
2373 
2374 	if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
2375 		if (gfp_mask & __GFP_MEMALLOC)
2376 			alloc_flags |= ALLOC_NO_WATERMARKS;
2377 		else if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
2378 			alloc_flags |= ALLOC_NO_WATERMARKS;
2379 		else if (!in_interrupt() &&
2380 				((current->flags & PF_MEMALLOC) ||
2381 				 unlikely(test_thread_flag(TIF_MEMDIE))))
2382 			alloc_flags |= ALLOC_NO_WATERMARKS;
2383 	}
2384 #ifdef CONFIG_CMA
2385 	if (allocflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
2386 		alloc_flags |= ALLOC_CMA;
2387 #endif
2388 	return alloc_flags;
2389 }
2390 
2391 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
2392 {
2393 	return !!(gfp_to_alloc_flags(gfp_mask) & ALLOC_NO_WATERMARKS);
2394 }
2395 
2396 static inline struct page *
2397 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
2398 	struct zonelist *zonelist, enum zone_type high_zoneidx,
2399 	nodemask_t *nodemask, struct zone *preferred_zone,
2400 	int migratetype)
2401 {
2402 	const gfp_t wait = gfp_mask & __GFP_WAIT;
2403 	struct page *page = NULL;
2404 	int alloc_flags;
2405 	unsigned long pages_reclaimed = 0;
2406 	unsigned long did_some_progress;
2407 	bool sync_migration = false;
2408 	bool deferred_compaction = false;
2409 	bool contended_compaction = false;
2410 
2411 	/*
2412 	 * In the slowpath, we sanity check order to avoid ever trying to
2413 	 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
2414 	 * be using allocators in order of preference for an area that is
2415 	 * too large.
2416 	 */
2417 	if (order >= MAX_ORDER) {
2418 		WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
2419 		return NULL;
2420 	}
2421 
2422 	/*
2423 	 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
2424 	 * __GFP_NOWARN set) should not cause reclaim since the subsystem
2425 	 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
2426 	 * using a larger set of nodes after it has established that the
2427 	 * allowed per node queues are empty and that nodes are
2428 	 * over allocated.
2429 	 */
2430 	if (IS_ENABLED(CONFIG_NUMA) &&
2431 			(gfp_mask & GFP_THISNODE) == GFP_THISNODE)
2432 		goto nopage;
2433 
2434 restart:
2435 	if (!(gfp_mask & __GFP_NO_KSWAPD))
2436 		wake_all_kswapd(order, zonelist, high_zoneidx,
2437 						zone_idx(preferred_zone));
2438 
2439 	/*
2440 	 * OK, we're below the kswapd watermark and have kicked background
2441 	 * reclaim. Now things get more complex, so set up alloc_flags according
2442 	 * to how we want to proceed.
2443 	 */
2444 	alloc_flags = gfp_to_alloc_flags(gfp_mask);
2445 
2446 	/*
2447 	 * Find the true preferred zone if the allocation is unconstrained by
2448 	 * cpusets.
2449 	 */
2450 	if (!(alloc_flags & ALLOC_CPUSET) && !nodemask)
2451 		first_zones_zonelist(zonelist, high_zoneidx, NULL,
2452 					&preferred_zone);
2453 
2454 rebalance:
2455 	/* This is the last chance, in general, before the goto nopage. */
2456 	page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist,
2457 			high_zoneidx, alloc_flags & ~ALLOC_NO_WATERMARKS,
2458 			preferred_zone, migratetype);
2459 	if (page)
2460 		goto got_pg;
2461 
2462 	/* Allocate without watermarks if the context allows */
2463 	if (alloc_flags & ALLOC_NO_WATERMARKS) {
2464 		/*
2465 		 * Ignore mempolicies if ALLOC_NO_WATERMARKS on the grounds
2466 		 * the allocation is high priority and these type of
2467 		 * allocations are system rather than user orientated
2468 		 */
2469 		zonelist = node_zonelist(numa_node_id(), gfp_mask);
2470 
2471 		page = __alloc_pages_high_priority(gfp_mask, order,
2472 				zonelist, high_zoneidx, nodemask,
2473 				preferred_zone, migratetype);
2474 		if (page) {
2475 			goto got_pg;
2476 		}
2477 	}
2478 
2479 	/* Atomic allocations - we can't balance anything */
2480 	if (!wait)
2481 		goto nopage;
2482 
2483 	/* Avoid recursion of direct reclaim */
2484 	if (current->flags & PF_MEMALLOC)
2485 		goto nopage;
2486 
2487 	/* Avoid allocations with no watermarks from looping endlessly */
2488 	if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
2489 		goto nopage;
2490 
2491 	/*
2492 	 * Try direct compaction. The first pass is asynchronous. Subsequent
2493 	 * attempts after direct reclaim are synchronous
2494 	 */
2495 	page = __alloc_pages_direct_compact(gfp_mask, order,
2496 					zonelist, high_zoneidx,
2497 					nodemask,
2498 					alloc_flags, preferred_zone,
2499 					migratetype, sync_migration,
2500 					&contended_compaction,
2501 					&deferred_compaction,
2502 					&did_some_progress);
2503 	if (page)
2504 		goto got_pg;
2505 	sync_migration = true;
2506 
2507 	/*
2508 	 * If compaction is deferred for high-order allocations, it is because
2509 	 * sync compaction recently failed. In this is the case and the caller
2510 	 * requested a movable allocation that does not heavily disrupt the
2511 	 * system then fail the allocation instead of entering direct reclaim.
2512 	 */
2513 	if ((deferred_compaction || contended_compaction) &&
2514 						(gfp_mask & __GFP_NO_KSWAPD))
2515 		goto nopage;
2516 
2517 	/* Try direct reclaim and then allocating */
2518 	page = __alloc_pages_direct_reclaim(gfp_mask, order,
2519 					zonelist, high_zoneidx,
2520 					nodemask,
2521 					alloc_flags, preferred_zone,
2522 					migratetype, &did_some_progress);
2523 	if (page)
2524 		goto got_pg;
2525 
2526 	/*
2527 	 * If we failed to make any progress reclaiming, then we are
2528 	 * running out of options and have to consider going OOM
2529 	 */
2530 	if (!did_some_progress) {
2531 		if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
2532 			if (oom_killer_disabled)
2533 				goto nopage;
2534 			/* Coredumps can quickly deplete all memory reserves */
2535 			if ((current->flags & PF_DUMPCORE) &&
2536 			    !(gfp_mask & __GFP_NOFAIL))
2537 				goto nopage;
2538 			page = __alloc_pages_may_oom(gfp_mask, order,
2539 					zonelist, high_zoneidx,
2540 					nodemask, preferred_zone,
2541 					migratetype);
2542 			if (page)
2543 				goto got_pg;
2544 
2545 			if (!(gfp_mask & __GFP_NOFAIL)) {
2546 				/*
2547 				 * The oom killer is not called for high-order
2548 				 * allocations that may fail, so if no progress
2549 				 * is being made, there are no other options and
2550 				 * retrying is unlikely to help.
2551 				 */
2552 				if (order > PAGE_ALLOC_COSTLY_ORDER)
2553 					goto nopage;
2554 				/*
2555 				 * The oom killer is not called for lowmem
2556 				 * allocations to prevent needlessly killing
2557 				 * innocent tasks.
2558 				 */
2559 				if (high_zoneidx < ZONE_NORMAL)
2560 					goto nopage;
2561 			}
2562 
2563 			goto restart;
2564 		}
2565 	}
2566 
2567 	/* Check if we should retry the allocation */
2568 	pages_reclaimed += did_some_progress;
2569 	if (should_alloc_retry(gfp_mask, order, did_some_progress,
2570 						pages_reclaimed)) {
2571 		/* Wait for some write requests to complete then retry */
2572 		wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
2573 		goto rebalance;
2574 	} else {
2575 		/*
2576 		 * High-order allocations do not necessarily loop after
2577 		 * direct reclaim and reclaim/compaction depends on compaction
2578 		 * being called after reclaim so call directly if necessary
2579 		 */
2580 		page = __alloc_pages_direct_compact(gfp_mask, order,
2581 					zonelist, high_zoneidx,
2582 					nodemask,
2583 					alloc_flags, preferred_zone,
2584 					migratetype, sync_migration,
2585 					&contended_compaction,
2586 					&deferred_compaction,
2587 					&did_some_progress);
2588 		if (page)
2589 			goto got_pg;
2590 	}
2591 
2592 nopage:
2593 	warn_alloc_failed(gfp_mask, order, NULL);
2594 	return page;
2595 got_pg:
2596 	if (kmemcheck_enabled)
2597 		kmemcheck_pagealloc_alloc(page, order, gfp_mask);
2598 
2599 	return page;
2600 }
2601 
2602 /*
2603  * This is the 'heart' of the zoned buddy allocator.
2604  */
2605 struct page *
2606 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
2607 			struct zonelist *zonelist, nodemask_t *nodemask)
2608 {
2609 	enum zone_type high_zoneidx = gfp_zone(gfp_mask);
2610 	struct zone *preferred_zone;
2611 	struct page *page = NULL;
2612 	int migratetype = allocflags_to_migratetype(gfp_mask);
2613 	unsigned int cpuset_mems_cookie;
2614 	int alloc_flags = ALLOC_WMARK_LOW|ALLOC_CPUSET;
2615 	struct mem_cgroup *memcg = NULL;
2616 
2617 	gfp_mask &= gfp_allowed_mask;
2618 
2619 	lockdep_trace_alloc(gfp_mask);
2620 
2621 	might_sleep_if(gfp_mask & __GFP_WAIT);
2622 
2623 	if (should_fail_alloc_page(gfp_mask, order))
2624 		return NULL;
2625 
2626 	/*
2627 	 * Check the zones suitable for the gfp_mask contain at least one
2628 	 * valid zone. It's possible to have an empty zonelist as a result
2629 	 * of GFP_THISNODE and a memoryless node
2630 	 */
2631 	if (unlikely(!zonelist->_zonerefs->zone))
2632 		return NULL;
2633 
2634 	/*
2635 	 * Will only have any effect when __GFP_KMEMCG is set.  This is
2636 	 * verified in the (always inline) callee
2637 	 */
2638 	if (!memcg_kmem_newpage_charge(gfp_mask, &memcg, order))
2639 		return NULL;
2640 
2641 retry_cpuset:
2642 	cpuset_mems_cookie = get_mems_allowed();
2643 
2644 	/* The preferred zone is used for statistics later */
2645 	first_zones_zonelist(zonelist, high_zoneidx,
2646 				nodemask ? : &cpuset_current_mems_allowed,
2647 				&preferred_zone);
2648 	if (!preferred_zone)
2649 		goto out;
2650 
2651 #ifdef CONFIG_CMA
2652 	if (allocflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
2653 		alloc_flags |= ALLOC_CMA;
2654 #endif
2655 	/* First allocation attempt */
2656 	page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order,
2657 			zonelist, high_zoneidx, alloc_flags,
2658 			preferred_zone, migratetype);
2659 	if (unlikely(!page))
2660 		page = __alloc_pages_slowpath(gfp_mask, order,
2661 				zonelist, high_zoneidx, nodemask,
2662 				preferred_zone, migratetype);
2663 
2664 	trace_mm_page_alloc(page, order, gfp_mask, migratetype);
2665 
2666 out:
2667 	/*
2668 	 * When updating a task's mems_allowed, it is possible to race with
2669 	 * parallel threads in such a way that an allocation can fail while
2670 	 * the mask is being updated. If a page allocation is about to fail,
2671 	 * check if the cpuset changed during allocation and if so, retry.
2672 	 */
2673 	if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page))
2674 		goto retry_cpuset;
2675 
2676 	memcg_kmem_commit_charge(page, memcg, order);
2677 
2678 	return page;
2679 }
2680 EXPORT_SYMBOL(__alloc_pages_nodemask);
2681 
2682 /*
2683  * Common helper functions.
2684  */
2685 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
2686 {
2687 	struct page *page;
2688 
2689 	/*
2690 	 * __get_free_pages() returns a 32-bit address, which cannot represent
2691 	 * a highmem page
2692 	 */
2693 	VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
2694 
2695 	page = alloc_pages(gfp_mask, order);
2696 	if (!page)
2697 		return 0;
2698 	return (unsigned long) page_address(page);
2699 }
2700 EXPORT_SYMBOL(__get_free_pages);
2701 
2702 unsigned long get_zeroed_page(gfp_t gfp_mask)
2703 {
2704 	return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
2705 }
2706 EXPORT_SYMBOL(get_zeroed_page);
2707 
2708 void __free_pages(struct page *page, unsigned int order)
2709 {
2710 	if (put_page_testzero(page)) {
2711 		if (order == 0)
2712 			free_hot_cold_page(page, 0);
2713 		else
2714 			__free_pages_ok(page, order);
2715 	}
2716 }
2717 
2718 EXPORT_SYMBOL(__free_pages);
2719 
2720 void free_pages(unsigned long addr, unsigned int order)
2721 {
2722 	if (addr != 0) {
2723 		VM_BUG_ON(!virt_addr_valid((void *)addr));
2724 		__free_pages(virt_to_page((void *)addr), order);
2725 	}
2726 }
2727 
2728 EXPORT_SYMBOL(free_pages);
2729 
2730 /*
2731  * __free_memcg_kmem_pages and free_memcg_kmem_pages will free
2732  * pages allocated with __GFP_KMEMCG.
2733  *
2734  * Those pages are accounted to a particular memcg, embedded in the
2735  * corresponding page_cgroup. To avoid adding a hit in the allocator to search
2736  * for that information only to find out that it is NULL for users who have no
2737  * interest in that whatsoever, we provide these functions.
2738  *
2739  * The caller knows better which flags it relies on.
2740  */
2741 void __free_memcg_kmem_pages(struct page *page, unsigned int order)
2742 {
2743 	memcg_kmem_uncharge_pages(page, order);
2744 	__free_pages(page, order);
2745 }
2746 
2747 void free_memcg_kmem_pages(unsigned long addr, unsigned int order)
2748 {
2749 	if (addr != 0) {
2750 		VM_BUG_ON(!virt_addr_valid((void *)addr));
2751 		__free_memcg_kmem_pages(virt_to_page((void *)addr), order);
2752 	}
2753 }
2754 
2755 static void *make_alloc_exact(unsigned long addr, unsigned order, size_t size)
2756 {
2757 	if (addr) {
2758 		unsigned long alloc_end = addr + (PAGE_SIZE << order);
2759 		unsigned long used = addr + PAGE_ALIGN(size);
2760 
2761 		split_page(virt_to_page((void *)addr), order);
2762 		while (used < alloc_end) {
2763 			free_page(used);
2764 			used += PAGE_SIZE;
2765 		}
2766 	}
2767 	return (void *)addr;
2768 }
2769 
2770 /**
2771  * alloc_pages_exact - allocate an exact number physically-contiguous pages.
2772  * @size: the number of bytes to allocate
2773  * @gfp_mask: GFP flags for the allocation
2774  *
2775  * This function is similar to alloc_pages(), except that it allocates the
2776  * minimum number of pages to satisfy the request.  alloc_pages() can only
2777  * allocate memory in power-of-two pages.
2778  *
2779  * This function is also limited by MAX_ORDER.
2780  *
2781  * Memory allocated by this function must be released by free_pages_exact().
2782  */
2783 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
2784 {
2785 	unsigned int order = get_order(size);
2786 	unsigned long addr;
2787 
2788 	addr = __get_free_pages(gfp_mask, order);
2789 	return make_alloc_exact(addr, order, size);
2790 }
2791 EXPORT_SYMBOL(alloc_pages_exact);
2792 
2793 /**
2794  * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
2795  *			   pages on a node.
2796  * @nid: the preferred node ID where memory should be allocated
2797  * @size: the number of bytes to allocate
2798  * @gfp_mask: GFP flags for the allocation
2799  *
2800  * Like alloc_pages_exact(), but try to allocate on node nid first before falling
2801  * back.
2802  * Note this is not alloc_pages_exact_node() which allocates on a specific node,
2803  * but is not exact.
2804  */
2805 void *alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
2806 {
2807 	unsigned order = get_order(size);
2808 	struct page *p = alloc_pages_node(nid, gfp_mask, order);
2809 	if (!p)
2810 		return NULL;
2811 	return make_alloc_exact((unsigned long)page_address(p), order, size);
2812 }
2813 EXPORT_SYMBOL(alloc_pages_exact_nid);
2814 
2815 /**
2816  * free_pages_exact - release memory allocated via alloc_pages_exact()
2817  * @virt: the value returned by alloc_pages_exact.
2818  * @size: size of allocation, same value as passed to alloc_pages_exact().
2819  *
2820  * Release the memory allocated by a previous call to alloc_pages_exact.
2821  */
2822 void free_pages_exact(void *virt, size_t size)
2823 {
2824 	unsigned long addr = (unsigned long)virt;
2825 	unsigned long end = addr + PAGE_ALIGN(size);
2826 
2827 	while (addr < end) {
2828 		free_page(addr);
2829 		addr += PAGE_SIZE;
2830 	}
2831 }
2832 EXPORT_SYMBOL(free_pages_exact);
2833 
2834 static unsigned int nr_free_zone_pages(int offset)
2835 {
2836 	struct zoneref *z;
2837 	struct zone *zone;
2838 
2839 	/* Just pick one node, since fallback list is circular */
2840 	unsigned int sum = 0;
2841 
2842 	struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
2843 
2844 	for_each_zone_zonelist(zone, z, zonelist, offset) {
2845 		unsigned long size = zone->present_pages;
2846 		unsigned long high = high_wmark_pages(zone);
2847 		if (size > high)
2848 			sum += size - high;
2849 	}
2850 
2851 	return sum;
2852 }
2853 
2854 /*
2855  * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
2856  */
2857 unsigned int nr_free_buffer_pages(void)
2858 {
2859 	return nr_free_zone_pages(gfp_zone(GFP_USER));
2860 }
2861 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
2862 
2863 /*
2864  * Amount of free RAM allocatable within all zones
2865  */
2866 unsigned int nr_free_pagecache_pages(void)
2867 {
2868 	return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
2869 }
2870 
2871 static inline void show_node(struct zone *zone)
2872 {
2873 	if (IS_ENABLED(CONFIG_NUMA))
2874 		printk("Node %d ", zone_to_nid(zone));
2875 }
2876 
2877 void si_meminfo(struct sysinfo *val)
2878 {
2879 	val->totalram = totalram_pages;
2880 	val->sharedram = 0;
2881 	val->freeram = global_page_state(NR_FREE_PAGES);
2882 	val->bufferram = nr_blockdev_pages();
2883 	val->totalhigh = totalhigh_pages;
2884 	val->freehigh = nr_free_highpages();
2885 	val->mem_unit = PAGE_SIZE;
2886 }
2887 
2888 EXPORT_SYMBOL(si_meminfo);
2889 
2890 #ifdef CONFIG_NUMA
2891 void si_meminfo_node(struct sysinfo *val, int nid)
2892 {
2893 	pg_data_t *pgdat = NODE_DATA(nid);
2894 
2895 	val->totalram = pgdat->node_present_pages;
2896 	val->freeram = node_page_state(nid, NR_FREE_PAGES);
2897 #ifdef CONFIG_HIGHMEM
2898 	val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
2899 	val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
2900 			NR_FREE_PAGES);
2901 #else
2902 	val->totalhigh = 0;
2903 	val->freehigh = 0;
2904 #endif
2905 	val->mem_unit = PAGE_SIZE;
2906 }
2907 #endif
2908 
2909 /*
2910  * Determine whether the node should be displayed or not, depending on whether
2911  * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
2912  */
2913 bool skip_free_areas_node(unsigned int flags, int nid)
2914 {
2915 	bool ret = false;
2916 	unsigned int cpuset_mems_cookie;
2917 
2918 	if (!(flags & SHOW_MEM_FILTER_NODES))
2919 		goto out;
2920 
2921 	do {
2922 		cpuset_mems_cookie = get_mems_allowed();
2923 		ret = !node_isset(nid, cpuset_current_mems_allowed);
2924 	} while (!put_mems_allowed(cpuset_mems_cookie));
2925 out:
2926 	return ret;
2927 }
2928 
2929 #define K(x) ((x) << (PAGE_SHIFT-10))
2930 
2931 static void show_migration_types(unsigned char type)
2932 {
2933 	static const char types[MIGRATE_TYPES] = {
2934 		[MIGRATE_UNMOVABLE]	= 'U',
2935 		[MIGRATE_RECLAIMABLE]	= 'E',
2936 		[MIGRATE_MOVABLE]	= 'M',
2937 		[MIGRATE_RESERVE]	= 'R',
2938 #ifdef CONFIG_CMA
2939 		[MIGRATE_CMA]		= 'C',
2940 #endif
2941 		[MIGRATE_ISOLATE]	= 'I',
2942 	};
2943 	char tmp[MIGRATE_TYPES + 1];
2944 	char *p = tmp;
2945 	int i;
2946 
2947 	for (i = 0; i < MIGRATE_TYPES; i++) {
2948 		if (type & (1 << i))
2949 			*p++ = types[i];
2950 	}
2951 
2952 	*p = '\0';
2953 	printk("(%s) ", tmp);
2954 }
2955 
2956 /*
2957  * Show free area list (used inside shift_scroll-lock stuff)
2958  * We also calculate the percentage fragmentation. We do this by counting the
2959  * memory on each free list with the exception of the first item on the list.
2960  * Suppresses nodes that are not allowed by current's cpuset if
2961  * SHOW_MEM_FILTER_NODES is passed.
2962  */
2963 void show_free_areas(unsigned int filter)
2964 {
2965 	int cpu;
2966 	struct zone *zone;
2967 
2968 	for_each_populated_zone(zone) {
2969 		if (skip_free_areas_node(filter, zone_to_nid(zone)))
2970 			continue;
2971 		show_node(zone);
2972 		printk("%s per-cpu:\n", zone->name);
2973 
2974 		for_each_online_cpu(cpu) {
2975 			struct per_cpu_pageset *pageset;
2976 
2977 			pageset = per_cpu_ptr(zone->pageset, cpu);
2978 
2979 			printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
2980 			       cpu, pageset->pcp.high,
2981 			       pageset->pcp.batch, pageset->pcp.count);
2982 		}
2983 	}
2984 
2985 	printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
2986 		" active_file:%lu inactive_file:%lu isolated_file:%lu\n"
2987 		" unevictable:%lu"
2988 		" dirty:%lu writeback:%lu unstable:%lu\n"
2989 		" free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n"
2990 		" mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
2991 		" free_cma:%lu\n",
2992 		global_page_state(NR_ACTIVE_ANON),
2993 		global_page_state(NR_INACTIVE_ANON),
2994 		global_page_state(NR_ISOLATED_ANON),
2995 		global_page_state(NR_ACTIVE_FILE),
2996 		global_page_state(NR_INACTIVE_FILE),
2997 		global_page_state(NR_ISOLATED_FILE),
2998 		global_page_state(NR_UNEVICTABLE),
2999 		global_page_state(NR_FILE_DIRTY),
3000 		global_page_state(NR_WRITEBACK),
3001 		global_page_state(NR_UNSTABLE_NFS),
3002 		global_page_state(NR_FREE_PAGES),
3003 		global_page_state(NR_SLAB_RECLAIMABLE),
3004 		global_page_state(NR_SLAB_UNRECLAIMABLE),
3005 		global_page_state(NR_FILE_MAPPED),
3006 		global_page_state(NR_SHMEM),
3007 		global_page_state(NR_PAGETABLE),
3008 		global_page_state(NR_BOUNCE),
3009 		global_page_state(NR_FREE_CMA_PAGES));
3010 
3011 	for_each_populated_zone(zone) {
3012 		int i;
3013 
3014 		if (skip_free_areas_node(filter, zone_to_nid(zone)))
3015 			continue;
3016 		show_node(zone);
3017 		printk("%s"
3018 			" free:%lukB"
3019 			" min:%lukB"
3020 			" low:%lukB"
3021 			" high:%lukB"
3022 			" active_anon:%lukB"
3023 			" inactive_anon:%lukB"
3024 			" active_file:%lukB"
3025 			" inactive_file:%lukB"
3026 			" unevictable:%lukB"
3027 			" isolated(anon):%lukB"
3028 			" isolated(file):%lukB"
3029 			" present:%lukB"
3030 			" managed:%lukB"
3031 			" mlocked:%lukB"
3032 			" dirty:%lukB"
3033 			" writeback:%lukB"
3034 			" mapped:%lukB"
3035 			" shmem:%lukB"
3036 			" slab_reclaimable:%lukB"
3037 			" slab_unreclaimable:%lukB"
3038 			" kernel_stack:%lukB"
3039 			" pagetables:%lukB"
3040 			" unstable:%lukB"
3041 			" bounce:%lukB"
3042 			" free_cma:%lukB"
3043 			" writeback_tmp:%lukB"
3044 			" pages_scanned:%lu"
3045 			" all_unreclaimable? %s"
3046 			"\n",
3047 			zone->name,
3048 			K(zone_page_state(zone, NR_FREE_PAGES)),
3049 			K(min_wmark_pages(zone)),
3050 			K(low_wmark_pages(zone)),
3051 			K(high_wmark_pages(zone)),
3052 			K(zone_page_state(zone, NR_ACTIVE_ANON)),
3053 			K(zone_page_state(zone, NR_INACTIVE_ANON)),
3054 			K(zone_page_state(zone, NR_ACTIVE_FILE)),
3055 			K(zone_page_state(zone, NR_INACTIVE_FILE)),
3056 			K(zone_page_state(zone, NR_UNEVICTABLE)),
3057 			K(zone_page_state(zone, NR_ISOLATED_ANON)),
3058 			K(zone_page_state(zone, NR_ISOLATED_FILE)),
3059 			K(zone->present_pages),
3060 			K(zone->managed_pages),
3061 			K(zone_page_state(zone, NR_MLOCK)),
3062 			K(zone_page_state(zone, NR_FILE_DIRTY)),
3063 			K(zone_page_state(zone, NR_WRITEBACK)),
3064 			K(zone_page_state(zone, NR_FILE_MAPPED)),
3065 			K(zone_page_state(zone, NR_SHMEM)),
3066 			K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
3067 			K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
3068 			zone_page_state(zone, NR_KERNEL_STACK) *
3069 				THREAD_SIZE / 1024,
3070 			K(zone_page_state(zone, NR_PAGETABLE)),
3071 			K(zone_page_state(zone, NR_UNSTABLE_NFS)),
3072 			K(zone_page_state(zone, NR_BOUNCE)),
3073 			K(zone_page_state(zone, NR_FREE_CMA_PAGES)),
3074 			K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
3075 			zone->pages_scanned,
3076 			(zone->all_unreclaimable ? "yes" : "no")
3077 			);
3078 		printk("lowmem_reserve[]:");
3079 		for (i = 0; i < MAX_NR_ZONES; i++)
3080 			printk(" %lu", zone->lowmem_reserve[i]);
3081 		printk("\n");
3082 	}
3083 
3084 	for_each_populated_zone(zone) {
3085  		unsigned long nr[MAX_ORDER], flags, order, total = 0;
3086 		unsigned char types[MAX_ORDER];
3087 
3088 		if (skip_free_areas_node(filter, zone_to_nid(zone)))
3089 			continue;
3090 		show_node(zone);
3091 		printk("%s: ", zone->name);
3092 
3093 		spin_lock_irqsave(&zone->lock, flags);
3094 		for (order = 0; order < MAX_ORDER; order++) {
3095 			struct free_area *area = &zone->free_area[order];
3096 			int type;
3097 
3098 			nr[order] = area->nr_free;
3099 			total += nr[order] << order;
3100 
3101 			types[order] = 0;
3102 			for (type = 0; type < MIGRATE_TYPES; type++) {
3103 				if (!list_empty(&area->free_list[type]))
3104 					types[order] |= 1 << type;
3105 			}
3106 		}
3107 		spin_unlock_irqrestore(&zone->lock, flags);
3108 		for (order = 0; order < MAX_ORDER; order++) {
3109 			printk("%lu*%lukB ", nr[order], K(1UL) << order);
3110 			if (nr[order])
3111 				show_migration_types(types[order]);
3112 		}
3113 		printk("= %lukB\n", K(total));
3114 	}
3115 
3116 	printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
3117 
3118 	show_swap_cache_info();
3119 }
3120 
3121 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
3122 {
3123 	zoneref->zone = zone;
3124 	zoneref->zone_idx = zone_idx(zone);
3125 }
3126 
3127 /*
3128  * Builds allocation fallback zone lists.
3129  *
3130  * Add all populated zones of a node to the zonelist.
3131  */
3132 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
3133 				int nr_zones, enum zone_type zone_type)
3134 {
3135 	struct zone *zone;
3136 
3137 	BUG_ON(zone_type >= MAX_NR_ZONES);
3138 	zone_type++;
3139 
3140 	do {
3141 		zone_type--;
3142 		zone = pgdat->node_zones + zone_type;
3143 		if (populated_zone(zone)) {
3144 			zoneref_set_zone(zone,
3145 				&zonelist->_zonerefs[nr_zones++]);
3146 			check_highest_zone(zone_type);
3147 		}
3148 
3149 	} while (zone_type);
3150 	return nr_zones;
3151 }
3152 
3153 
3154 /*
3155  *  zonelist_order:
3156  *  0 = automatic detection of better ordering.
3157  *  1 = order by ([node] distance, -zonetype)
3158  *  2 = order by (-zonetype, [node] distance)
3159  *
3160  *  If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
3161  *  the same zonelist. So only NUMA can configure this param.
3162  */
3163 #define ZONELIST_ORDER_DEFAULT  0
3164 #define ZONELIST_ORDER_NODE     1
3165 #define ZONELIST_ORDER_ZONE     2
3166 
3167 /* zonelist order in the kernel.
3168  * set_zonelist_order() will set this to NODE or ZONE.
3169  */
3170 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
3171 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
3172 
3173 
3174 #ifdef CONFIG_NUMA
3175 /* The value user specified ....changed by config */
3176 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
3177 /* string for sysctl */
3178 #define NUMA_ZONELIST_ORDER_LEN	16
3179 char numa_zonelist_order[16] = "default";
3180 
3181 /*
3182  * interface for configure zonelist ordering.
3183  * command line option "numa_zonelist_order"
3184  *	= "[dD]efault	- default, automatic configuration.
3185  *	= "[nN]ode 	- order by node locality, then by zone within node
3186  *	= "[zZ]one      - order by zone, then by locality within zone
3187  */
3188 
3189 static int __parse_numa_zonelist_order(char *s)
3190 {
3191 	if (*s == 'd' || *s == 'D') {
3192 		user_zonelist_order = ZONELIST_ORDER_DEFAULT;
3193 	} else if (*s == 'n' || *s == 'N') {
3194 		user_zonelist_order = ZONELIST_ORDER_NODE;
3195 	} else if (*s == 'z' || *s == 'Z') {
3196 		user_zonelist_order = ZONELIST_ORDER_ZONE;
3197 	} else {
3198 		printk(KERN_WARNING
3199 			"Ignoring invalid numa_zonelist_order value:  "
3200 			"%s\n", s);
3201 		return -EINVAL;
3202 	}
3203 	return 0;
3204 }
3205 
3206 static __init int setup_numa_zonelist_order(char *s)
3207 {
3208 	int ret;
3209 
3210 	if (!s)
3211 		return 0;
3212 
3213 	ret = __parse_numa_zonelist_order(s);
3214 	if (ret == 0)
3215 		strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
3216 
3217 	return ret;
3218 }
3219 early_param("numa_zonelist_order", setup_numa_zonelist_order);
3220 
3221 /*
3222  * sysctl handler for numa_zonelist_order
3223  */
3224 int numa_zonelist_order_handler(ctl_table *table, int write,
3225 		void __user *buffer, size_t *length,
3226 		loff_t *ppos)
3227 {
3228 	char saved_string[NUMA_ZONELIST_ORDER_LEN];
3229 	int ret;
3230 	static DEFINE_MUTEX(zl_order_mutex);
3231 
3232 	mutex_lock(&zl_order_mutex);
3233 	if (write)
3234 		strcpy(saved_string, (char*)table->data);
3235 	ret = proc_dostring(table, write, buffer, length, ppos);
3236 	if (ret)
3237 		goto out;
3238 	if (write) {
3239 		int oldval = user_zonelist_order;
3240 		if (__parse_numa_zonelist_order((char*)table->data)) {
3241 			/*
3242 			 * bogus value.  restore saved string
3243 			 */
3244 			strncpy((char*)table->data, saved_string,
3245 				NUMA_ZONELIST_ORDER_LEN);
3246 			user_zonelist_order = oldval;
3247 		} else if (oldval != user_zonelist_order) {
3248 			mutex_lock(&zonelists_mutex);
3249 			build_all_zonelists(NULL, NULL);
3250 			mutex_unlock(&zonelists_mutex);
3251 		}
3252 	}
3253 out:
3254 	mutex_unlock(&zl_order_mutex);
3255 	return ret;
3256 }
3257 
3258 
3259 #define MAX_NODE_LOAD (nr_online_nodes)
3260 static int node_load[MAX_NUMNODES];
3261 
3262 /**
3263  * find_next_best_node - find the next node that should appear in a given node's fallback list
3264  * @node: node whose fallback list we're appending
3265  * @used_node_mask: nodemask_t of already used nodes
3266  *
3267  * We use a number of factors to determine which is the next node that should
3268  * appear on a given node's fallback list.  The node should not have appeared
3269  * already in @node's fallback list, and it should be the next closest node
3270  * according to the distance array (which contains arbitrary distance values
3271  * from each node to each node in the system), and should also prefer nodes
3272  * with no CPUs, since presumably they'll have very little allocation pressure
3273  * on them otherwise.
3274  * It returns -1 if no node is found.
3275  */
3276 static int find_next_best_node(int node, nodemask_t *used_node_mask)
3277 {
3278 	int n, val;
3279 	int min_val = INT_MAX;
3280 	int best_node = -1;
3281 	const struct cpumask *tmp = cpumask_of_node(0);
3282 
3283 	/* Use the local node if we haven't already */
3284 	if (!node_isset(node, *used_node_mask)) {
3285 		node_set(node, *used_node_mask);
3286 		return node;
3287 	}
3288 
3289 	for_each_node_state(n, N_MEMORY) {
3290 
3291 		/* Don't want a node to appear more than once */
3292 		if (node_isset(n, *used_node_mask))
3293 			continue;
3294 
3295 		/* Use the distance array to find the distance */
3296 		val = node_distance(node, n);
3297 
3298 		/* Penalize nodes under us ("prefer the next node") */
3299 		val += (n < node);
3300 
3301 		/* Give preference to headless and unused nodes */
3302 		tmp = cpumask_of_node(n);
3303 		if (!cpumask_empty(tmp))
3304 			val += PENALTY_FOR_NODE_WITH_CPUS;
3305 
3306 		/* Slight preference for less loaded node */
3307 		val *= (MAX_NODE_LOAD*MAX_NUMNODES);
3308 		val += node_load[n];
3309 
3310 		if (val < min_val) {
3311 			min_val = val;
3312 			best_node = n;
3313 		}
3314 	}
3315 
3316 	if (best_node >= 0)
3317 		node_set(best_node, *used_node_mask);
3318 
3319 	return best_node;
3320 }
3321 
3322 
3323 /*
3324  * Build zonelists ordered by node and zones within node.
3325  * This results in maximum locality--normal zone overflows into local
3326  * DMA zone, if any--but risks exhausting DMA zone.
3327  */
3328 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
3329 {
3330 	int j;
3331 	struct zonelist *zonelist;
3332 
3333 	zonelist = &pgdat->node_zonelists[0];
3334 	for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
3335 		;
3336 	j = build_zonelists_node(NODE_DATA(node), zonelist, j,
3337 							MAX_NR_ZONES - 1);
3338 	zonelist->_zonerefs[j].zone = NULL;
3339 	zonelist->_zonerefs[j].zone_idx = 0;
3340 }
3341 
3342 /*
3343  * Build gfp_thisnode zonelists
3344  */
3345 static void build_thisnode_zonelists(pg_data_t *pgdat)
3346 {
3347 	int j;
3348 	struct zonelist *zonelist;
3349 
3350 	zonelist = &pgdat->node_zonelists[1];
3351 	j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
3352 	zonelist->_zonerefs[j].zone = NULL;
3353 	zonelist->_zonerefs[j].zone_idx = 0;
3354 }
3355 
3356 /*
3357  * Build zonelists ordered by zone and nodes within zones.
3358  * This results in conserving DMA zone[s] until all Normal memory is
3359  * exhausted, but results in overflowing to remote node while memory
3360  * may still exist in local DMA zone.
3361  */
3362 static int node_order[MAX_NUMNODES];
3363 
3364 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
3365 {
3366 	int pos, j, node;
3367 	int zone_type;		/* needs to be signed */
3368 	struct zone *z;
3369 	struct zonelist *zonelist;
3370 
3371 	zonelist = &pgdat->node_zonelists[0];
3372 	pos = 0;
3373 	for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
3374 		for (j = 0; j < nr_nodes; j++) {
3375 			node = node_order[j];
3376 			z = &NODE_DATA(node)->node_zones[zone_type];
3377 			if (populated_zone(z)) {
3378 				zoneref_set_zone(z,
3379 					&zonelist->_zonerefs[pos++]);
3380 				check_highest_zone(zone_type);
3381 			}
3382 		}
3383 	}
3384 	zonelist->_zonerefs[pos].zone = NULL;
3385 	zonelist->_zonerefs[pos].zone_idx = 0;
3386 }
3387 
3388 static int default_zonelist_order(void)
3389 {
3390 	int nid, zone_type;
3391 	unsigned long low_kmem_size,total_size;
3392 	struct zone *z;
3393 	int average_size;
3394 	/*
3395          * ZONE_DMA and ZONE_DMA32 can be very small area in the system.
3396 	 * If they are really small and used heavily, the system can fall
3397 	 * into OOM very easily.
3398 	 * This function detect ZONE_DMA/DMA32 size and configures zone order.
3399 	 */
3400 	/* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
3401 	low_kmem_size = 0;
3402 	total_size = 0;
3403 	for_each_online_node(nid) {
3404 		for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
3405 			z = &NODE_DATA(nid)->node_zones[zone_type];
3406 			if (populated_zone(z)) {
3407 				if (zone_type < ZONE_NORMAL)
3408 					low_kmem_size += z->present_pages;
3409 				total_size += z->present_pages;
3410 			} else if (zone_type == ZONE_NORMAL) {
3411 				/*
3412 				 * If any node has only lowmem, then node order
3413 				 * is preferred to allow kernel allocations
3414 				 * locally; otherwise, they can easily infringe
3415 				 * on other nodes when there is an abundance of
3416 				 * lowmem available to allocate from.
3417 				 */
3418 				return ZONELIST_ORDER_NODE;
3419 			}
3420 		}
3421 	}
3422 	if (!low_kmem_size ||  /* there are no DMA area. */
3423 	    low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
3424 		return ZONELIST_ORDER_NODE;
3425 	/*
3426 	 * look into each node's config.
3427   	 * If there is a node whose DMA/DMA32 memory is very big area on
3428  	 * local memory, NODE_ORDER may be suitable.
3429          */
3430 	average_size = total_size /
3431 				(nodes_weight(node_states[N_MEMORY]) + 1);
3432 	for_each_online_node(nid) {
3433 		low_kmem_size = 0;
3434 		total_size = 0;
3435 		for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
3436 			z = &NODE_DATA(nid)->node_zones[zone_type];
3437 			if (populated_zone(z)) {
3438 				if (zone_type < ZONE_NORMAL)
3439 					low_kmem_size += z->present_pages;
3440 				total_size += z->present_pages;
3441 			}
3442 		}
3443 		if (low_kmem_size &&
3444 		    total_size > average_size && /* ignore small node */
3445 		    low_kmem_size > total_size * 70/100)
3446 			return ZONELIST_ORDER_NODE;
3447 	}
3448 	return ZONELIST_ORDER_ZONE;
3449 }
3450 
3451 static void set_zonelist_order(void)
3452 {
3453 	if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
3454 		current_zonelist_order = default_zonelist_order();
3455 	else
3456 		current_zonelist_order = user_zonelist_order;
3457 }
3458 
3459 static void build_zonelists(pg_data_t *pgdat)
3460 {
3461 	int j, node, load;
3462 	enum zone_type i;
3463 	nodemask_t used_mask;
3464 	int local_node, prev_node;
3465 	struct zonelist *zonelist;
3466 	int order = current_zonelist_order;
3467 
3468 	/* initialize zonelists */
3469 	for (i = 0; i < MAX_ZONELISTS; i++) {
3470 		zonelist = pgdat->node_zonelists + i;
3471 		zonelist->_zonerefs[0].zone = NULL;
3472 		zonelist->_zonerefs[0].zone_idx = 0;
3473 	}
3474 
3475 	/* NUMA-aware ordering of nodes */
3476 	local_node = pgdat->node_id;
3477 	load = nr_online_nodes;
3478 	prev_node = local_node;
3479 	nodes_clear(used_mask);
3480 
3481 	memset(node_order, 0, sizeof(node_order));
3482 	j = 0;
3483 
3484 	while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
3485 		/*
3486 		 * We don't want to pressure a particular node.
3487 		 * So adding penalty to the first node in same
3488 		 * distance group to make it round-robin.
3489 		 */
3490 		if (node_distance(local_node, node) !=
3491 		    node_distance(local_node, prev_node))
3492 			node_load[node] = load;
3493 
3494 		prev_node = node;
3495 		load--;
3496 		if (order == ZONELIST_ORDER_NODE)
3497 			build_zonelists_in_node_order(pgdat, node);
3498 		else
3499 			node_order[j++] = node;	/* remember order */
3500 	}
3501 
3502 	if (order == ZONELIST_ORDER_ZONE) {
3503 		/* calculate node order -- i.e., DMA last! */
3504 		build_zonelists_in_zone_order(pgdat, j);
3505 	}
3506 
3507 	build_thisnode_zonelists(pgdat);
3508 }
3509 
3510 /* Construct the zonelist performance cache - see further mmzone.h */
3511 static void build_zonelist_cache(pg_data_t *pgdat)
3512 {
3513 	struct zonelist *zonelist;
3514 	struct zonelist_cache *zlc;
3515 	struct zoneref *z;
3516 
3517 	zonelist = &pgdat->node_zonelists[0];
3518 	zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
3519 	bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
3520 	for (z = zonelist->_zonerefs; z->zone; z++)
3521 		zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
3522 }
3523 
3524 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
3525 /*
3526  * Return node id of node used for "local" allocations.
3527  * I.e., first node id of first zone in arg node's generic zonelist.
3528  * Used for initializing percpu 'numa_mem', which is used primarily
3529  * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
3530  */
3531 int local_memory_node(int node)
3532 {
3533 	struct zone *zone;
3534 
3535 	(void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
3536 				   gfp_zone(GFP_KERNEL),
3537 				   NULL,
3538 				   &zone);
3539 	return zone->node;
3540 }
3541 #endif
3542 
3543 #else	/* CONFIG_NUMA */
3544 
3545 static void set_zonelist_order(void)
3546 {
3547 	current_zonelist_order = ZONELIST_ORDER_ZONE;
3548 }
3549 
3550 static void build_zonelists(pg_data_t *pgdat)
3551 {
3552 	int node, local_node;
3553 	enum zone_type j;
3554 	struct zonelist *zonelist;
3555 
3556 	local_node = pgdat->node_id;
3557 
3558 	zonelist = &pgdat->node_zonelists[0];
3559 	j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
3560 
3561 	/*
3562 	 * Now we build the zonelist so that it contains the zones
3563 	 * of all the other nodes.
3564 	 * We don't want to pressure a particular node, so when
3565 	 * building the zones for node N, we make sure that the
3566 	 * zones coming right after the local ones are those from
3567 	 * node N+1 (modulo N)
3568 	 */
3569 	for (node = local_node + 1; node < MAX_NUMNODES; node++) {
3570 		if (!node_online(node))
3571 			continue;
3572 		j = build_zonelists_node(NODE_DATA(node), zonelist, j,
3573 							MAX_NR_ZONES - 1);
3574 	}
3575 	for (node = 0; node < local_node; node++) {
3576 		if (!node_online(node))
3577 			continue;
3578 		j = build_zonelists_node(NODE_DATA(node), zonelist, j,
3579 							MAX_NR_ZONES - 1);
3580 	}
3581 
3582 	zonelist->_zonerefs[j].zone = NULL;
3583 	zonelist->_zonerefs[j].zone_idx = 0;
3584 }
3585 
3586 /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
3587 static void build_zonelist_cache(pg_data_t *pgdat)
3588 {
3589 	pgdat->node_zonelists[0].zlcache_ptr = NULL;
3590 }
3591 
3592 #endif	/* CONFIG_NUMA */
3593 
3594 /*
3595  * Boot pageset table. One per cpu which is going to be used for all
3596  * zones and all nodes. The parameters will be set in such a way
3597  * that an item put on a list will immediately be handed over to
3598  * the buddy list. This is safe since pageset manipulation is done
3599  * with interrupts disabled.
3600  *
3601  * The boot_pagesets must be kept even after bootup is complete for
3602  * unused processors and/or zones. They do play a role for bootstrapping
3603  * hotplugged processors.
3604  *
3605  * zoneinfo_show() and maybe other functions do
3606  * not check if the processor is online before following the pageset pointer.
3607  * Other parts of the kernel may not check if the zone is available.
3608  */
3609 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
3610 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
3611 static void setup_zone_pageset(struct zone *zone);
3612 
3613 /*
3614  * Global mutex to protect against size modification of zonelists
3615  * as well as to serialize pageset setup for the new populated zone.
3616  */
3617 DEFINE_MUTEX(zonelists_mutex);
3618 
3619 /* return values int ....just for stop_machine() */
3620 static int __build_all_zonelists(void *data)
3621 {
3622 	int nid;
3623 	int cpu;
3624 	pg_data_t *self = data;
3625 
3626 #ifdef CONFIG_NUMA
3627 	memset(node_load, 0, sizeof(node_load));
3628 #endif
3629 
3630 	if (self && !node_online(self->node_id)) {
3631 		build_zonelists(self);
3632 		build_zonelist_cache(self);
3633 	}
3634 
3635 	for_each_online_node(nid) {
3636 		pg_data_t *pgdat = NODE_DATA(nid);
3637 
3638 		build_zonelists(pgdat);
3639 		build_zonelist_cache(pgdat);
3640 	}
3641 
3642 	/*
3643 	 * Initialize the boot_pagesets that are going to be used
3644 	 * for bootstrapping processors. The real pagesets for
3645 	 * each zone will be allocated later when the per cpu
3646 	 * allocator is available.
3647 	 *
3648 	 * boot_pagesets are used also for bootstrapping offline
3649 	 * cpus if the system is already booted because the pagesets
3650 	 * are needed to initialize allocators on a specific cpu too.
3651 	 * F.e. the percpu allocator needs the page allocator which
3652 	 * needs the percpu allocator in order to allocate its pagesets
3653 	 * (a chicken-egg dilemma).
3654 	 */
3655 	for_each_possible_cpu(cpu) {
3656 		setup_pageset(&per_cpu(boot_pageset, cpu), 0);
3657 
3658 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
3659 		/*
3660 		 * We now know the "local memory node" for each node--
3661 		 * i.e., the node of the first zone in the generic zonelist.
3662 		 * Set up numa_mem percpu variable for on-line cpus.  During
3663 		 * boot, only the boot cpu should be on-line;  we'll init the
3664 		 * secondary cpus' numa_mem as they come on-line.  During
3665 		 * node/memory hotplug, we'll fixup all on-line cpus.
3666 		 */
3667 		if (cpu_online(cpu))
3668 			set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
3669 #endif
3670 	}
3671 
3672 	return 0;
3673 }
3674 
3675 /*
3676  * Called with zonelists_mutex held always
3677  * unless system_state == SYSTEM_BOOTING.
3678  */
3679 void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone)
3680 {
3681 	set_zonelist_order();
3682 
3683 	if (system_state == SYSTEM_BOOTING) {
3684 		__build_all_zonelists(NULL);
3685 		mminit_verify_zonelist();
3686 		cpuset_init_current_mems_allowed();
3687 	} else {
3688 		/* we have to stop all cpus to guarantee there is no user
3689 		   of zonelist */
3690 #ifdef CONFIG_MEMORY_HOTPLUG
3691 		if (zone)
3692 			setup_zone_pageset(zone);
3693 #endif
3694 		stop_machine(__build_all_zonelists, pgdat, NULL);
3695 		/* cpuset refresh routine should be here */
3696 	}
3697 	vm_total_pages = nr_free_pagecache_pages();
3698 	/*
3699 	 * Disable grouping by mobility if the number of pages in the
3700 	 * system is too low to allow the mechanism to work. It would be
3701 	 * more accurate, but expensive to check per-zone. This check is
3702 	 * made on memory-hotadd so a system can start with mobility
3703 	 * disabled and enable it later
3704 	 */
3705 	if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
3706 		page_group_by_mobility_disabled = 1;
3707 	else
3708 		page_group_by_mobility_disabled = 0;
3709 
3710 	printk("Built %i zonelists in %s order, mobility grouping %s.  "
3711 		"Total pages: %ld\n",
3712 			nr_online_nodes,
3713 			zonelist_order_name[current_zonelist_order],
3714 			page_group_by_mobility_disabled ? "off" : "on",
3715 			vm_total_pages);
3716 #ifdef CONFIG_NUMA
3717 	printk("Policy zone: %s\n", zone_names[policy_zone]);
3718 #endif
3719 }
3720 
3721 /*
3722  * Helper functions to size the waitqueue hash table.
3723  * Essentially these want to choose hash table sizes sufficiently
3724  * large so that collisions trying to wait on pages are rare.
3725  * But in fact, the number of active page waitqueues on typical
3726  * systems is ridiculously low, less than 200. So this is even
3727  * conservative, even though it seems large.
3728  *
3729  * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
3730  * waitqueues, i.e. the size of the waitq table given the number of pages.
3731  */
3732 #define PAGES_PER_WAITQUEUE	256
3733 
3734 #ifndef CONFIG_MEMORY_HOTPLUG
3735 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
3736 {
3737 	unsigned long size = 1;
3738 
3739 	pages /= PAGES_PER_WAITQUEUE;
3740 
3741 	while (size < pages)
3742 		size <<= 1;
3743 
3744 	/*
3745 	 * Once we have dozens or even hundreds of threads sleeping
3746 	 * on IO we've got bigger problems than wait queue collision.
3747 	 * Limit the size of the wait table to a reasonable size.
3748 	 */
3749 	size = min(size, 4096UL);
3750 
3751 	return max(size, 4UL);
3752 }
3753 #else
3754 /*
3755  * A zone's size might be changed by hot-add, so it is not possible to determine
3756  * a suitable size for its wait_table.  So we use the maximum size now.
3757  *
3758  * The max wait table size = 4096 x sizeof(wait_queue_head_t).   ie:
3759  *
3760  *    i386 (preemption config)    : 4096 x 16 = 64Kbyte.
3761  *    ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
3762  *    ia64, x86-64 (preemption)   : 4096 x 24 = 96Kbyte.
3763  *
3764  * The maximum entries are prepared when a zone's memory is (512K + 256) pages
3765  * or more by the traditional way. (See above).  It equals:
3766  *
3767  *    i386, x86-64, powerpc(4K page size) : =  ( 2G + 1M)byte.
3768  *    ia64(16K page size)                 : =  ( 8G + 4M)byte.
3769  *    powerpc (64K page size)             : =  (32G +16M)byte.
3770  */
3771 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
3772 {
3773 	return 4096UL;
3774 }
3775 #endif
3776 
3777 /*
3778  * This is an integer logarithm so that shifts can be used later
3779  * to extract the more random high bits from the multiplicative
3780  * hash function before the remainder is taken.
3781  */
3782 static inline unsigned long wait_table_bits(unsigned long size)
3783 {
3784 	return ffz(~size);
3785 }
3786 
3787 #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
3788 
3789 /*
3790  * Check if a pageblock contains reserved pages
3791  */
3792 static int pageblock_is_reserved(unsigned long start_pfn, unsigned long end_pfn)
3793 {
3794 	unsigned long pfn;
3795 
3796 	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
3797 		if (!pfn_valid_within(pfn) || PageReserved(pfn_to_page(pfn)))
3798 			return 1;
3799 	}
3800 	return 0;
3801 }
3802 
3803 /*
3804  * Mark a number of pageblocks as MIGRATE_RESERVE. The number
3805  * of blocks reserved is based on min_wmark_pages(zone). The memory within
3806  * the reserve will tend to store contiguous free pages. Setting min_free_kbytes
3807  * higher will lead to a bigger reserve which will get freed as contiguous
3808  * blocks as reclaim kicks in
3809  */
3810 static void setup_zone_migrate_reserve(struct zone *zone)
3811 {
3812 	unsigned long start_pfn, pfn, end_pfn, block_end_pfn;
3813 	struct page *page;
3814 	unsigned long block_migratetype;
3815 	int reserve;
3816 
3817 	/*
3818 	 * Get the start pfn, end pfn and the number of blocks to reserve
3819 	 * We have to be careful to be aligned to pageblock_nr_pages to
3820 	 * make sure that we always check pfn_valid for the first page in
3821 	 * the block.
3822 	 */
3823 	start_pfn = zone->zone_start_pfn;
3824 	end_pfn = start_pfn + zone->spanned_pages;
3825 	start_pfn = roundup(start_pfn, pageblock_nr_pages);
3826 	reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >>
3827 							pageblock_order;
3828 
3829 	/*
3830 	 * Reserve blocks are generally in place to help high-order atomic
3831 	 * allocations that are short-lived. A min_free_kbytes value that
3832 	 * would result in more than 2 reserve blocks for atomic allocations
3833 	 * is assumed to be in place to help anti-fragmentation for the
3834 	 * future allocation of hugepages at runtime.
3835 	 */
3836 	reserve = min(2, reserve);
3837 
3838 	for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
3839 		if (!pfn_valid(pfn))
3840 			continue;
3841 		page = pfn_to_page(pfn);
3842 
3843 		/* Watch out for overlapping nodes */
3844 		if (page_to_nid(page) != zone_to_nid(zone))
3845 			continue;
3846 
3847 		block_migratetype = get_pageblock_migratetype(page);
3848 
3849 		/* Only test what is necessary when the reserves are not met */
3850 		if (reserve > 0) {
3851 			/*
3852 			 * Blocks with reserved pages will never free, skip
3853 			 * them.
3854 			 */
3855 			block_end_pfn = min(pfn + pageblock_nr_pages, end_pfn);
3856 			if (pageblock_is_reserved(pfn, block_end_pfn))
3857 				continue;
3858 
3859 			/* If this block is reserved, account for it */
3860 			if (block_migratetype == MIGRATE_RESERVE) {
3861 				reserve--;
3862 				continue;
3863 			}
3864 
3865 			/* Suitable for reserving if this block is movable */
3866 			if (block_migratetype == MIGRATE_MOVABLE) {
3867 				set_pageblock_migratetype(page,
3868 							MIGRATE_RESERVE);
3869 				move_freepages_block(zone, page,
3870 							MIGRATE_RESERVE);
3871 				reserve--;
3872 				continue;
3873 			}
3874 		}
3875 
3876 		/*
3877 		 * If the reserve is met and this is a previous reserved block,
3878 		 * take it back
3879 		 */
3880 		if (block_migratetype == MIGRATE_RESERVE) {
3881 			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
3882 			move_freepages_block(zone, page, MIGRATE_MOVABLE);
3883 		}
3884 	}
3885 }
3886 
3887 /*
3888  * Initially all pages are reserved - free ones are freed
3889  * up by free_all_bootmem() once the early boot process is
3890  * done. Non-atomic initialization, single-pass.
3891  */
3892 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
3893 		unsigned long start_pfn, enum memmap_context context)
3894 {
3895 	struct page *page;
3896 	unsigned long end_pfn = start_pfn + size;
3897 	unsigned long pfn;
3898 	struct zone *z;
3899 
3900 	if (highest_memmap_pfn < end_pfn - 1)
3901 		highest_memmap_pfn = end_pfn - 1;
3902 
3903 	z = &NODE_DATA(nid)->node_zones[zone];
3904 	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
3905 		/*
3906 		 * There can be holes in boot-time mem_map[]s
3907 		 * handed to this function.  They do not
3908 		 * exist on hotplugged memory.
3909 		 */
3910 		if (context == MEMMAP_EARLY) {
3911 			if (!early_pfn_valid(pfn))
3912 				continue;
3913 			if (!early_pfn_in_nid(pfn, nid))
3914 				continue;
3915 		}
3916 		page = pfn_to_page(pfn);
3917 		set_page_links(page, zone, nid, pfn);
3918 		mminit_verify_page_links(page, zone, nid, pfn);
3919 		init_page_count(page);
3920 		reset_page_mapcount(page);
3921 		reset_page_last_nid(page);
3922 		SetPageReserved(page);
3923 		/*
3924 		 * Mark the block movable so that blocks are reserved for
3925 		 * movable at startup. This will force kernel allocations
3926 		 * to reserve their blocks rather than leaking throughout
3927 		 * the address space during boot when many long-lived
3928 		 * kernel allocations are made. Later some blocks near
3929 		 * the start are marked MIGRATE_RESERVE by
3930 		 * setup_zone_migrate_reserve()
3931 		 *
3932 		 * bitmap is created for zone's valid pfn range. but memmap
3933 		 * can be created for invalid pages (for alignment)
3934 		 * check here not to call set_pageblock_migratetype() against
3935 		 * pfn out of zone.
3936 		 */
3937 		if ((z->zone_start_pfn <= pfn)
3938 		    && (pfn < z->zone_start_pfn + z->spanned_pages)
3939 		    && !(pfn & (pageblock_nr_pages - 1)))
3940 			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
3941 
3942 		INIT_LIST_HEAD(&page->lru);
3943 #ifdef WANT_PAGE_VIRTUAL
3944 		/* The shift won't overflow because ZONE_NORMAL is below 4G. */
3945 		if (!is_highmem_idx(zone))
3946 			set_page_address(page, __va(pfn << PAGE_SHIFT));
3947 #endif
3948 	}
3949 }
3950 
3951 static void __meminit zone_init_free_lists(struct zone *zone)
3952 {
3953 	int order, t;
3954 	for_each_migratetype_order(order, t) {
3955 		INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
3956 		zone->free_area[order].nr_free = 0;
3957 	}
3958 }
3959 
3960 #ifndef __HAVE_ARCH_MEMMAP_INIT
3961 #define memmap_init(size, nid, zone, start_pfn) \
3962 	memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
3963 #endif
3964 
3965 static int __meminit zone_batchsize(struct zone *zone)
3966 {
3967 #ifdef CONFIG_MMU
3968 	int batch;
3969 
3970 	/*
3971 	 * The per-cpu-pages pools are set to around 1000th of the
3972 	 * size of the zone.  But no more than 1/2 of a meg.
3973 	 *
3974 	 * OK, so we don't know how big the cache is.  So guess.
3975 	 */
3976 	batch = zone->present_pages / 1024;
3977 	if (batch * PAGE_SIZE > 512 * 1024)
3978 		batch = (512 * 1024) / PAGE_SIZE;
3979 	batch /= 4;		/* We effectively *= 4 below */
3980 	if (batch < 1)
3981 		batch = 1;
3982 
3983 	/*
3984 	 * Clamp the batch to a 2^n - 1 value. Having a power
3985 	 * of 2 value was found to be more likely to have
3986 	 * suboptimal cache aliasing properties in some cases.
3987 	 *
3988 	 * For example if 2 tasks are alternately allocating
3989 	 * batches of pages, one task can end up with a lot
3990 	 * of pages of one half of the possible page colors
3991 	 * and the other with pages of the other colors.
3992 	 */
3993 	batch = rounddown_pow_of_two(batch + batch/2) - 1;
3994 
3995 	return batch;
3996 
3997 #else
3998 	/* The deferral and batching of frees should be suppressed under NOMMU
3999 	 * conditions.
4000 	 *
4001 	 * The problem is that NOMMU needs to be able to allocate large chunks
4002 	 * of contiguous memory as there's no hardware page translation to
4003 	 * assemble apparent contiguous memory from discontiguous pages.
4004 	 *
4005 	 * Queueing large contiguous runs of pages for batching, however,
4006 	 * causes the pages to actually be freed in smaller chunks.  As there
4007 	 * can be a significant delay between the individual batches being
4008 	 * recycled, this leads to the once large chunks of space being
4009 	 * fragmented and becoming unavailable for high-order allocations.
4010 	 */
4011 	return 0;
4012 #endif
4013 }
4014 
4015 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
4016 {
4017 	struct per_cpu_pages *pcp;
4018 	int migratetype;
4019 
4020 	memset(p, 0, sizeof(*p));
4021 
4022 	pcp = &p->pcp;
4023 	pcp->count = 0;
4024 	pcp->high = 6 * batch;
4025 	pcp->batch = max(1UL, 1 * batch);
4026 	for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
4027 		INIT_LIST_HEAD(&pcp->lists[migratetype]);
4028 }
4029 
4030 /*
4031  * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
4032  * to the value high for the pageset p.
4033  */
4034 
4035 static void setup_pagelist_highmark(struct per_cpu_pageset *p,
4036 				unsigned long high)
4037 {
4038 	struct per_cpu_pages *pcp;
4039 
4040 	pcp = &p->pcp;
4041 	pcp->high = high;
4042 	pcp->batch = max(1UL, high/4);
4043 	if ((high/4) > (PAGE_SHIFT * 8))
4044 		pcp->batch = PAGE_SHIFT * 8;
4045 }
4046 
4047 static void __meminit setup_zone_pageset(struct zone *zone)
4048 {
4049 	int cpu;
4050 
4051 	zone->pageset = alloc_percpu(struct per_cpu_pageset);
4052 
4053 	for_each_possible_cpu(cpu) {
4054 		struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
4055 
4056 		setup_pageset(pcp, zone_batchsize(zone));
4057 
4058 		if (percpu_pagelist_fraction)
4059 			setup_pagelist_highmark(pcp,
4060 				(zone->present_pages /
4061 					percpu_pagelist_fraction));
4062 	}
4063 }
4064 
4065 /*
4066  * Allocate per cpu pagesets and initialize them.
4067  * Before this call only boot pagesets were available.
4068  */
4069 void __init setup_per_cpu_pageset(void)
4070 {
4071 	struct zone *zone;
4072 
4073 	for_each_populated_zone(zone)
4074 		setup_zone_pageset(zone);
4075 }
4076 
4077 static noinline __init_refok
4078 int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
4079 {
4080 	int i;
4081 	struct pglist_data *pgdat = zone->zone_pgdat;
4082 	size_t alloc_size;
4083 
4084 	/*
4085 	 * The per-page waitqueue mechanism uses hashed waitqueues
4086 	 * per zone.
4087 	 */
4088 	zone->wait_table_hash_nr_entries =
4089 		 wait_table_hash_nr_entries(zone_size_pages);
4090 	zone->wait_table_bits =
4091 		wait_table_bits(zone->wait_table_hash_nr_entries);
4092 	alloc_size = zone->wait_table_hash_nr_entries
4093 					* sizeof(wait_queue_head_t);
4094 
4095 	if (!slab_is_available()) {
4096 		zone->wait_table = (wait_queue_head_t *)
4097 			alloc_bootmem_node_nopanic(pgdat, alloc_size);
4098 	} else {
4099 		/*
4100 		 * This case means that a zone whose size was 0 gets new memory
4101 		 * via memory hot-add.
4102 		 * But it may be the case that a new node was hot-added.  In
4103 		 * this case vmalloc() will not be able to use this new node's
4104 		 * memory - this wait_table must be initialized to use this new
4105 		 * node itself as well.
4106 		 * To use this new node's memory, further consideration will be
4107 		 * necessary.
4108 		 */
4109 		zone->wait_table = vmalloc(alloc_size);
4110 	}
4111 	if (!zone->wait_table)
4112 		return -ENOMEM;
4113 
4114 	for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
4115 		init_waitqueue_head(zone->wait_table + i);
4116 
4117 	return 0;
4118 }
4119 
4120 static __meminit void zone_pcp_init(struct zone *zone)
4121 {
4122 	/*
4123 	 * per cpu subsystem is not up at this point. The following code
4124 	 * relies on the ability of the linker to provide the
4125 	 * offset of a (static) per cpu variable into the per cpu area.
4126 	 */
4127 	zone->pageset = &boot_pageset;
4128 
4129 	if (zone->present_pages)
4130 		printk(KERN_DEBUG "  %s zone: %lu pages, LIFO batch:%u\n",
4131 			zone->name, zone->present_pages,
4132 					 zone_batchsize(zone));
4133 }
4134 
4135 int __meminit init_currently_empty_zone(struct zone *zone,
4136 					unsigned long zone_start_pfn,
4137 					unsigned long size,
4138 					enum memmap_context context)
4139 {
4140 	struct pglist_data *pgdat = zone->zone_pgdat;
4141 	int ret;
4142 	ret = zone_wait_table_init(zone, size);
4143 	if (ret)
4144 		return ret;
4145 	pgdat->nr_zones = zone_idx(zone) + 1;
4146 
4147 	zone->zone_start_pfn = zone_start_pfn;
4148 
4149 	mminit_dprintk(MMINIT_TRACE, "memmap_init",
4150 			"Initialising map node %d zone %lu pfns %lu -> %lu\n",
4151 			pgdat->node_id,
4152 			(unsigned long)zone_idx(zone),
4153 			zone_start_pfn, (zone_start_pfn + size));
4154 
4155 	zone_init_free_lists(zone);
4156 
4157 	return 0;
4158 }
4159 
4160 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4161 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
4162 /*
4163  * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
4164  * Architectures may implement their own version but if add_active_range()
4165  * was used and there are no special requirements, this is a convenient
4166  * alternative
4167  */
4168 int __meminit __early_pfn_to_nid(unsigned long pfn)
4169 {
4170 	unsigned long start_pfn, end_pfn;
4171 	int i, nid;
4172 
4173 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
4174 		if (start_pfn <= pfn && pfn < end_pfn)
4175 			return nid;
4176 	/* This is a memory hole */
4177 	return -1;
4178 }
4179 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
4180 
4181 int __meminit early_pfn_to_nid(unsigned long pfn)
4182 {
4183 	int nid;
4184 
4185 	nid = __early_pfn_to_nid(pfn);
4186 	if (nid >= 0)
4187 		return nid;
4188 	/* just returns 0 */
4189 	return 0;
4190 }
4191 
4192 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
4193 bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
4194 {
4195 	int nid;
4196 
4197 	nid = __early_pfn_to_nid(pfn);
4198 	if (nid >= 0 && nid != node)
4199 		return false;
4200 	return true;
4201 }
4202 #endif
4203 
4204 /**
4205  * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
4206  * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
4207  * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
4208  *
4209  * If an architecture guarantees that all ranges registered with
4210  * add_active_ranges() contain no holes and may be freed, this
4211  * this function may be used instead of calling free_bootmem() manually.
4212  */
4213 void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
4214 {
4215 	unsigned long start_pfn, end_pfn;
4216 	int i, this_nid;
4217 
4218 	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
4219 		start_pfn = min(start_pfn, max_low_pfn);
4220 		end_pfn = min(end_pfn, max_low_pfn);
4221 
4222 		if (start_pfn < end_pfn)
4223 			free_bootmem_node(NODE_DATA(this_nid),
4224 					  PFN_PHYS(start_pfn),
4225 					  (end_pfn - start_pfn) << PAGE_SHIFT);
4226 	}
4227 }
4228 
4229 /**
4230  * sparse_memory_present_with_active_regions - Call memory_present for each active range
4231  * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
4232  *
4233  * If an architecture guarantees that all ranges registered with
4234  * add_active_ranges() contain no holes and may be freed, this
4235  * function may be used instead of calling memory_present() manually.
4236  */
4237 void __init sparse_memory_present_with_active_regions(int nid)
4238 {
4239 	unsigned long start_pfn, end_pfn;
4240 	int i, this_nid;
4241 
4242 	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
4243 		memory_present(this_nid, start_pfn, end_pfn);
4244 }
4245 
4246 /**
4247  * get_pfn_range_for_nid - Return the start and end page frames for a node
4248  * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
4249  * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
4250  * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
4251  *
4252  * It returns the start and end page frame of a node based on information
4253  * provided by an arch calling add_active_range(). If called for a node
4254  * with no available memory, a warning is printed and the start and end
4255  * PFNs will be 0.
4256  */
4257 void __meminit get_pfn_range_for_nid(unsigned int nid,
4258 			unsigned long *start_pfn, unsigned long *end_pfn)
4259 {
4260 	unsigned long this_start_pfn, this_end_pfn;
4261 	int i;
4262 
4263 	*start_pfn = -1UL;
4264 	*end_pfn = 0;
4265 
4266 	for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
4267 		*start_pfn = min(*start_pfn, this_start_pfn);
4268 		*end_pfn = max(*end_pfn, this_end_pfn);
4269 	}
4270 
4271 	if (*start_pfn == -1UL)
4272 		*start_pfn = 0;
4273 }
4274 
4275 /*
4276  * This finds a zone that can be used for ZONE_MOVABLE pages. The
4277  * assumption is made that zones within a node are ordered in monotonic
4278  * increasing memory addresses so that the "highest" populated zone is used
4279  */
4280 static void __init find_usable_zone_for_movable(void)
4281 {
4282 	int zone_index;
4283 	for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
4284 		if (zone_index == ZONE_MOVABLE)
4285 			continue;
4286 
4287 		if (arch_zone_highest_possible_pfn[zone_index] >
4288 				arch_zone_lowest_possible_pfn[zone_index])
4289 			break;
4290 	}
4291 
4292 	VM_BUG_ON(zone_index == -1);
4293 	movable_zone = zone_index;
4294 }
4295 
4296 /*
4297  * The zone ranges provided by the architecture do not include ZONE_MOVABLE
4298  * because it is sized independent of architecture. Unlike the other zones,
4299  * the starting point for ZONE_MOVABLE is not fixed. It may be different
4300  * in each node depending on the size of each node and how evenly kernelcore
4301  * is distributed. This helper function adjusts the zone ranges
4302  * provided by the architecture for a given node by using the end of the
4303  * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
4304  * zones within a node are in order of monotonic increases memory addresses
4305  */
4306 static void __meminit adjust_zone_range_for_zone_movable(int nid,
4307 					unsigned long zone_type,
4308 					unsigned long node_start_pfn,
4309 					unsigned long node_end_pfn,
4310 					unsigned long *zone_start_pfn,
4311 					unsigned long *zone_end_pfn)
4312 {
4313 	/* Only adjust if ZONE_MOVABLE is on this node */
4314 	if (zone_movable_pfn[nid]) {
4315 		/* Size ZONE_MOVABLE */
4316 		if (zone_type == ZONE_MOVABLE) {
4317 			*zone_start_pfn = zone_movable_pfn[nid];
4318 			*zone_end_pfn = min(node_end_pfn,
4319 				arch_zone_highest_possible_pfn[movable_zone]);
4320 
4321 		/* Adjust for ZONE_MOVABLE starting within this range */
4322 		} else if (*zone_start_pfn < zone_movable_pfn[nid] &&
4323 				*zone_end_pfn > zone_movable_pfn[nid]) {
4324 			*zone_end_pfn = zone_movable_pfn[nid];
4325 
4326 		/* Check if this whole range is within ZONE_MOVABLE */
4327 		} else if (*zone_start_pfn >= zone_movable_pfn[nid])
4328 			*zone_start_pfn = *zone_end_pfn;
4329 	}
4330 }
4331 
4332 /*
4333  * Return the number of pages a zone spans in a node, including holes
4334  * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
4335  */
4336 static unsigned long __meminit zone_spanned_pages_in_node(int nid,
4337 					unsigned long zone_type,
4338 					unsigned long *ignored)
4339 {
4340 	unsigned long node_start_pfn, node_end_pfn;
4341 	unsigned long zone_start_pfn, zone_end_pfn;
4342 
4343 	/* Get the start and end of the node and zone */
4344 	get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
4345 	zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
4346 	zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
4347 	adjust_zone_range_for_zone_movable(nid, zone_type,
4348 				node_start_pfn, node_end_pfn,
4349 				&zone_start_pfn, &zone_end_pfn);
4350 
4351 	/* Check that this node has pages within the zone's required range */
4352 	if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
4353 		return 0;
4354 
4355 	/* Move the zone boundaries inside the node if necessary */
4356 	zone_end_pfn = min(zone_end_pfn, node_end_pfn);
4357 	zone_start_pfn = max(zone_start_pfn, node_start_pfn);
4358 
4359 	/* Return the spanned pages */
4360 	return zone_end_pfn - zone_start_pfn;
4361 }
4362 
4363 /*
4364  * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
4365  * then all holes in the requested range will be accounted for.
4366  */
4367 unsigned long __meminit __absent_pages_in_range(int nid,
4368 				unsigned long range_start_pfn,
4369 				unsigned long range_end_pfn)
4370 {
4371 	unsigned long nr_absent = range_end_pfn - range_start_pfn;
4372 	unsigned long start_pfn, end_pfn;
4373 	int i;
4374 
4375 	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
4376 		start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
4377 		end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
4378 		nr_absent -= end_pfn - start_pfn;
4379 	}
4380 	return nr_absent;
4381 }
4382 
4383 /**
4384  * absent_pages_in_range - Return number of page frames in holes within a range
4385  * @start_pfn: The start PFN to start searching for holes
4386  * @end_pfn: The end PFN to stop searching for holes
4387  *
4388  * It returns the number of pages frames in memory holes within a range.
4389  */
4390 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
4391 							unsigned long end_pfn)
4392 {
4393 	return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
4394 }
4395 
4396 /* Return the number of page frames in holes in a zone on a node */
4397 static unsigned long __meminit zone_absent_pages_in_node(int nid,
4398 					unsigned long zone_type,
4399 					unsigned long *ignored)
4400 {
4401 	unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
4402 	unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
4403 	unsigned long node_start_pfn, node_end_pfn;
4404 	unsigned long zone_start_pfn, zone_end_pfn;
4405 
4406 	get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
4407 	zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
4408 	zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
4409 
4410 	adjust_zone_range_for_zone_movable(nid, zone_type,
4411 			node_start_pfn, node_end_pfn,
4412 			&zone_start_pfn, &zone_end_pfn);
4413 	return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
4414 }
4415 
4416 #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4417 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
4418 					unsigned long zone_type,
4419 					unsigned long *zones_size)
4420 {
4421 	return zones_size[zone_type];
4422 }
4423 
4424 static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
4425 						unsigned long zone_type,
4426 						unsigned long *zholes_size)
4427 {
4428 	if (!zholes_size)
4429 		return 0;
4430 
4431 	return zholes_size[zone_type];
4432 }
4433 
4434 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4435 
4436 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
4437 		unsigned long *zones_size, unsigned long *zholes_size)
4438 {
4439 	unsigned long realtotalpages, totalpages = 0;
4440 	enum zone_type i;
4441 
4442 	for (i = 0; i < MAX_NR_ZONES; i++)
4443 		totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
4444 								zones_size);
4445 	pgdat->node_spanned_pages = totalpages;
4446 
4447 	realtotalpages = totalpages;
4448 	for (i = 0; i < MAX_NR_ZONES; i++)
4449 		realtotalpages -=
4450 			zone_absent_pages_in_node(pgdat->node_id, i,
4451 								zholes_size);
4452 	pgdat->node_present_pages = realtotalpages;
4453 	printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
4454 							realtotalpages);
4455 }
4456 
4457 #ifndef CONFIG_SPARSEMEM
4458 /*
4459  * Calculate the size of the zone->blockflags rounded to an unsigned long
4460  * Start by making sure zonesize is a multiple of pageblock_order by rounding
4461  * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
4462  * round what is now in bits to nearest long in bits, then return it in
4463  * bytes.
4464  */
4465 static unsigned long __init usemap_size(unsigned long zonesize)
4466 {
4467 	unsigned long usemapsize;
4468 
4469 	usemapsize = roundup(zonesize, pageblock_nr_pages);
4470 	usemapsize = usemapsize >> pageblock_order;
4471 	usemapsize *= NR_PAGEBLOCK_BITS;
4472 	usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
4473 
4474 	return usemapsize / 8;
4475 }
4476 
4477 static void __init setup_usemap(struct pglist_data *pgdat,
4478 				struct zone *zone, unsigned long zonesize)
4479 {
4480 	unsigned long usemapsize = usemap_size(zonesize);
4481 	zone->pageblock_flags = NULL;
4482 	if (usemapsize)
4483 		zone->pageblock_flags = alloc_bootmem_node_nopanic(pgdat,
4484 								   usemapsize);
4485 }
4486 #else
4487 static inline void setup_usemap(struct pglist_data *pgdat,
4488 				struct zone *zone, unsigned long zonesize) {}
4489 #endif /* CONFIG_SPARSEMEM */
4490 
4491 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
4492 
4493 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
4494 void __init set_pageblock_order(void)
4495 {
4496 	unsigned int order;
4497 
4498 	/* Check that pageblock_nr_pages has not already been setup */
4499 	if (pageblock_order)
4500 		return;
4501 
4502 	if (HPAGE_SHIFT > PAGE_SHIFT)
4503 		order = HUGETLB_PAGE_ORDER;
4504 	else
4505 		order = MAX_ORDER - 1;
4506 
4507 	/*
4508 	 * Assume the largest contiguous order of interest is a huge page.
4509 	 * This value may be variable depending on boot parameters on IA64 and
4510 	 * powerpc.
4511 	 */
4512 	pageblock_order = order;
4513 }
4514 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4515 
4516 /*
4517  * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
4518  * is unused as pageblock_order is set at compile-time. See
4519  * include/linux/pageblock-flags.h for the values of pageblock_order based on
4520  * the kernel config
4521  */
4522 void __init set_pageblock_order(void)
4523 {
4524 }
4525 
4526 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4527 
4528 static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages,
4529 						   unsigned long present_pages)
4530 {
4531 	unsigned long pages = spanned_pages;
4532 
4533 	/*
4534 	 * Provide a more accurate estimation if there are holes within
4535 	 * the zone and SPARSEMEM is in use. If there are holes within the
4536 	 * zone, each populated memory region may cost us one or two extra
4537 	 * memmap pages due to alignment because memmap pages for each
4538 	 * populated regions may not naturally algined on page boundary.
4539 	 * So the (present_pages >> 4) heuristic is a tradeoff for that.
4540 	 */
4541 	if (spanned_pages > present_pages + (present_pages >> 4) &&
4542 	    IS_ENABLED(CONFIG_SPARSEMEM))
4543 		pages = present_pages;
4544 
4545 	return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
4546 }
4547 
4548 /*
4549  * Set up the zone data structures:
4550  *   - mark all pages reserved
4551  *   - mark all memory queues empty
4552  *   - clear the memory bitmaps
4553  *
4554  * NOTE: pgdat should get zeroed by caller.
4555  */
4556 static void __paginginit free_area_init_core(struct pglist_data *pgdat,
4557 		unsigned long *zones_size, unsigned long *zholes_size)
4558 {
4559 	enum zone_type j;
4560 	int nid = pgdat->node_id;
4561 	unsigned long zone_start_pfn = pgdat->node_start_pfn;
4562 	int ret;
4563 
4564 	pgdat_resize_init(pgdat);
4565 #ifdef CONFIG_NUMA_BALANCING
4566 	spin_lock_init(&pgdat->numabalancing_migrate_lock);
4567 	pgdat->numabalancing_migrate_nr_pages = 0;
4568 	pgdat->numabalancing_migrate_next_window = jiffies;
4569 #endif
4570 	init_waitqueue_head(&pgdat->kswapd_wait);
4571 	init_waitqueue_head(&pgdat->pfmemalloc_wait);
4572 	pgdat_page_cgroup_init(pgdat);
4573 
4574 	for (j = 0; j < MAX_NR_ZONES; j++) {
4575 		struct zone *zone = pgdat->node_zones + j;
4576 		unsigned long size, realsize, freesize, memmap_pages;
4577 
4578 		size = zone_spanned_pages_in_node(nid, j, zones_size);
4579 		realsize = freesize = size - zone_absent_pages_in_node(nid, j,
4580 								zholes_size);
4581 
4582 		/*
4583 		 * Adjust freesize so that it accounts for how much memory
4584 		 * is used by this zone for memmap. This affects the watermark
4585 		 * and per-cpu initialisations
4586 		 */
4587 		memmap_pages = calc_memmap_size(size, realsize);
4588 		if (freesize >= memmap_pages) {
4589 			freesize -= memmap_pages;
4590 			if (memmap_pages)
4591 				printk(KERN_DEBUG
4592 				       "  %s zone: %lu pages used for memmap\n",
4593 				       zone_names[j], memmap_pages);
4594 		} else
4595 			printk(KERN_WARNING
4596 				"  %s zone: %lu pages exceeds freesize %lu\n",
4597 				zone_names[j], memmap_pages, freesize);
4598 
4599 		/* Account for reserved pages */
4600 		if (j == 0 && freesize > dma_reserve) {
4601 			freesize -= dma_reserve;
4602 			printk(KERN_DEBUG "  %s zone: %lu pages reserved\n",
4603 					zone_names[0], dma_reserve);
4604 		}
4605 
4606 		if (!is_highmem_idx(j))
4607 			nr_kernel_pages += freesize;
4608 		/* Charge for highmem memmap if there are enough kernel pages */
4609 		else if (nr_kernel_pages > memmap_pages * 2)
4610 			nr_kernel_pages -= memmap_pages;
4611 		nr_all_pages += freesize;
4612 
4613 		zone->spanned_pages = size;
4614 		zone->present_pages = freesize;
4615 		/*
4616 		 * Set an approximate value for lowmem here, it will be adjusted
4617 		 * when the bootmem allocator frees pages into the buddy system.
4618 		 * And all highmem pages will be managed by the buddy system.
4619 		 */
4620 		zone->managed_pages = is_highmem_idx(j) ? realsize : freesize;
4621 #ifdef CONFIG_NUMA
4622 		zone->node = nid;
4623 		zone->min_unmapped_pages = (freesize*sysctl_min_unmapped_ratio)
4624 						/ 100;
4625 		zone->min_slab_pages = (freesize * sysctl_min_slab_ratio) / 100;
4626 #endif
4627 		zone->name = zone_names[j];
4628 		spin_lock_init(&zone->lock);
4629 		spin_lock_init(&zone->lru_lock);
4630 		zone_seqlock_init(zone);
4631 		zone->zone_pgdat = pgdat;
4632 
4633 		zone_pcp_init(zone);
4634 		lruvec_init(&zone->lruvec);
4635 		if (!size)
4636 			continue;
4637 
4638 		set_pageblock_order();
4639 		setup_usemap(pgdat, zone, size);
4640 		ret = init_currently_empty_zone(zone, zone_start_pfn,
4641 						size, MEMMAP_EARLY);
4642 		BUG_ON(ret);
4643 		memmap_init(size, nid, j, zone_start_pfn);
4644 		zone_start_pfn += size;
4645 	}
4646 }
4647 
4648 static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
4649 {
4650 	/* Skip empty nodes */
4651 	if (!pgdat->node_spanned_pages)
4652 		return;
4653 
4654 #ifdef CONFIG_FLAT_NODE_MEM_MAP
4655 	/* ia64 gets its own node_mem_map, before this, without bootmem */
4656 	if (!pgdat->node_mem_map) {
4657 		unsigned long size, start, end;
4658 		struct page *map;
4659 
4660 		/*
4661 		 * The zone's endpoints aren't required to be MAX_ORDER
4662 		 * aligned but the node_mem_map endpoints must be in order
4663 		 * for the buddy allocator to function correctly.
4664 		 */
4665 		start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
4666 		end = pgdat->node_start_pfn + pgdat->node_spanned_pages;
4667 		end = ALIGN(end, MAX_ORDER_NR_PAGES);
4668 		size =  (end - start) * sizeof(struct page);
4669 		map = alloc_remap(pgdat->node_id, size);
4670 		if (!map)
4671 			map = alloc_bootmem_node_nopanic(pgdat, size);
4672 		pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
4673 	}
4674 #ifndef CONFIG_NEED_MULTIPLE_NODES
4675 	/*
4676 	 * With no DISCONTIG, the global mem_map is just set as node 0's
4677 	 */
4678 	if (pgdat == NODE_DATA(0)) {
4679 		mem_map = NODE_DATA(0)->node_mem_map;
4680 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4681 		if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
4682 			mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
4683 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4684 	}
4685 #endif
4686 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
4687 }
4688 
4689 void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
4690 		unsigned long node_start_pfn, unsigned long *zholes_size)
4691 {
4692 	pg_data_t *pgdat = NODE_DATA(nid);
4693 
4694 	/* pg_data_t should be reset to zero when it's allocated */
4695 	WARN_ON(pgdat->nr_zones || pgdat->classzone_idx);
4696 
4697 	pgdat->node_id = nid;
4698 	pgdat->node_start_pfn = node_start_pfn;
4699 	init_zone_allows_reclaim(nid);
4700 	calculate_node_totalpages(pgdat, zones_size, zholes_size);
4701 
4702 	alloc_node_mem_map(pgdat);
4703 #ifdef CONFIG_FLAT_NODE_MEM_MAP
4704 	printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
4705 		nid, (unsigned long)pgdat,
4706 		(unsigned long)pgdat->node_mem_map);
4707 #endif
4708 
4709 	free_area_init_core(pgdat, zones_size, zholes_size);
4710 }
4711 
4712 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4713 
4714 #if MAX_NUMNODES > 1
4715 /*
4716  * Figure out the number of possible node ids.
4717  */
4718 static void __init setup_nr_node_ids(void)
4719 {
4720 	unsigned int node;
4721 	unsigned int highest = 0;
4722 
4723 	for_each_node_mask(node, node_possible_map)
4724 		highest = node;
4725 	nr_node_ids = highest + 1;
4726 }
4727 #else
4728 static inline void setup_nr_node_ids(void)
4729 {
4730 }
4731 #endif
4732 
4733 /**
4734  * node_map_pfn_alignment - determine the maximum internode alignment
4735  *
4736  * This function should be called after node map is populated and sorted.
4737  * It calculates the maximum power of two alignment which can distinguish
4738  * all the nodes.
4739  *
4740  * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
4741  * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)).  If the
4742  * nodes are shifted by 256MiB, 256MiB.  Note that if only the last node is
4743  * shifted, 1GiB is enough and this function will indicate so.
4744  *
4745  * This is used to test whether pfn -> nid mapping of the chosen memory
4746  * model has fine enough granularity to avoid incorrect mapping for the
4747  * populated node map.
4748  *
4749  * Returns the determined alignment in pfn's.  0 if there is no alignment
4750  * requirement (single node).
4751  */
4752 unsigned long __init node_map_pfn_alignment(void)
4753 {
4754 	unsigned long accl_mask = 0, last_end = 0;
4755 	unsigned long start, end, mask;
4756 	int last_nid = -1;
4757 	int i, nid;
4758 
4759 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
4760 		if (!start || last_nid < 0 || last_nid == nid) {
4761 			last_nid = nid;
4762 			last_end = end;
4763 			continue;
4764 		}
4765 
4766 		/*
4767 		 * Start with a mask granular enough to pin-point to the
4768 		 * start pfn and tick off bits one-by-one until it becomes
4769 		 * too coarse to separate the current node from the last.
4770 		 */
4771 		mask = ~((1 << __ffs(start)) - 1);
4772 		while (mask && last_end <= (start & (mask << 1)))
4773 			mask <<= 1;
4774 
4775 		/* accumulate all internode masks */
4776 		accl_mask |= mask;
4777 	}
4778 
4779 	/* convert mask to number of pages */
4780 	return ~accl_mask + 1;
4781 }
4782 
4783 /* Find the lowest pfn for a node */
4784 static unsigned long __init find_min_pfn_for_node(int nid)
4785 {
4786 	unsigned long min_pfn = ULONG_MAX;
4787 	unsigned long start_pfn;
4788 	int i;
4789 
4790 	for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
4791 		min_pfn = min(min_pfn, start_pfn);
4792 
4793 	if (min_pfn == ULONG_MAX) {
4794 		printk(KERN_WARNING
4795 			"Could not find start_pfn for node %d\n", nid);
4796 		return 0;
4797 	}
4798 
4799 	return min_pfn;
4800 }
4801 
4802 /**
4803  * find_min_pfn_with_active_regions - Find the minimum PFN registered
4804  *
4805  * It returns the minimum PFN based on information provided via
4806  * add_active_range().
4807  */
4808 unsigned long __init find_min_pfn_with_active_regions(void)
4809 {
4810 	return find_min_pfn_for_node(MAX_NUMNODES);
4811 }
4812 
4813 /*
4814  * early_calculate_totalpages()
4815  * Sum pages in active regions for movable zone.
4816  * Populate N_MEMORY for calculating usable_nodes.
4817  */
4818 static unsigned long __init early_calculate_totalpages(void)
4819 {
4820 	unsigned long totalpages = 0;
4821 	unsigned long start_pfn, end_pfn;
4822 	int i, nid;
4823 
4824 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
4825 		unsigned long pages = end_pfn - start_pfn;
4826 
4827 		totalpages += pages;
4828 		if (pages)
4829 			node_set_state(nid, N_MEMORY);
4830 	}
4831   	return totalpages;
4832 }
4833 
4834 /*
4835  * Find the PFN the Movable zone begins in each node. Kernel memory
4836  * is spread evenly between nodes as long as the nodes have enough
4837  * memory. When they don't, some nodes will have more kernelcore than
4838  * others
4839  */
4840 static void __init find_zone_movable_pfns_for_nodes(void)
4841 {
4842 	int i, nid;
4843 	unsigned long usable_startpfn;
4844 	unsigned long kernelcore_node, kernelcore_remaining;
4845 	/* save the state before borrow the nodemask */
4846 	nodemask_t saved_node_state = node_states[N_MEMORY];
4847 	unsigned long totalpages = early_calculate_totalpages();
4848 	int usable_nodes = nodes_weight(node_states[N_MEMORY]);
4849 
4850 	/*
4851 	 * If movablecore was specified, calculate what size of
4852 	 * kernelcore that corresponds so that memory usable for
4853 	 * any allocation type is evenly spread. If both kernelcore
4854 	 * and movablecore are specified, then the value of kernelcore
4855 	 * will be used for required_kernelcore if it's greater than
4856 	 * what movablecore would have allowed.
4857 	 */
4858 	if (required_movablecore) {
4859 		unsigned long corepages;
4860 
4861 		/*
4862 		 * Round-up so that ZONE_MOVABLE is at least as large as what
4863 		 * was requested by the user
4864 		 */
4865 		required_movablecore =
4866 			roundup(required_movablecore, MAX_ORDER_NR_PAGES);
4867 		corepages = totalpages - required_movablecore;
4868 
4869 		required_kernelcore = max(required_kernelcore, corepages);
4870 	}
4871 
4872 	/* If kernelcore was not specified, there is no ZONE_MOVABLE */
4873 	if (!required_kernelcore)
4874 		goto out;
4875 
4876 	/* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
4877 	find_usable_zone_for_movable();
4878 	usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
4879 
4880 restart:
4881 	/* Spread kernelcore memory as evenly as possible throughout nodes */
4882 	kernelcore_node = required_kernelcore / usable_nodes;
4883 	for_each_node_state(nid, N_MEMORY) {
4884 		unsigned long start_pfn, end_pfn;
4885 
4886 		/*
4887 		 * Recalculate kernelcore_node if the division per node
4888 		 * now exceeds what is necessary to satisfy the requested
4889 		 * amount of memory for the kernel
4890 		 */
4891 		if (required_kernelcore < kernelcore_node)
4892 			kernelcore_node = required_kernelcore / usable_nodes;
4893 
4894 		/*
4895 		 * As the map is walked, we track how much memory is usable
4896 		 * by the kernel using kernelcore_remaining. When it is
4897 		 * 0, the rest of the node is usable by ZONE_MOVABLE
4898 		 */
4899 		kernelcore_remaining = kernelcore_node;
4900 
4901 		/* Go through each range of PFNs within this node */
4902 		for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
4903 			unsigned long size_pages;
4904 
4905 			start_pfn = max(start_pfn, zone_movable_pfn[nid]);
4906 			if (start_pfn >= end_pfn)
4907 				continue;
4908 
4909 			/* Account for what is only usable for kernelcore */
4910 			if (start_pfn < usable_startpfn) {
4911 				unsigned long kernel_pages;
4912 				kernel_pages = min(end_pfn, usable_startpfn)
4913 								- start_pfn;
4914 
4915 				kernelcore_remaining -= min(kernel_pages,
4916 							kernelcore_remaining);
4917 				required_kernelcore -= min(kernel_pages,
4918 							required_kernelcore);
4919 
4920 				/* Continue if range is now fully accounted */
4921 				if (end_pfn <= usable_startpfn) {
4922 
4923 					/*
4924 					 * Push zone_movable_pfn to the end so
4925 					 * that if we have to rebalance
4926 					 * kernelcore across nodes, we will
4927 					 * not double account here
4928 					 */
4929 					zone_movable_pfn[nid] = end_pfn;
4930 					continue;
4931 				}
4932 				start_pfn = usable_startpfn;
4933 			}
4934 
4935 			/*
4936 			 * The usable PFN range for ZONE_MOVABLE is from
4937 			 * start_pfn->end_pfn. Calculate size_pages as the
4938 			 * number of pages used as kernelcore
4939 			 */
4940 			size_pages = end_pfn - start_pfn;
4941 			if (size_pages > kernelcore_remaining)
4942 				size_pages = kernelcore_remaining;
4943 			zone_movable_pfn[nid] = start_pfn + size_pages;
4944 
4945 			/*
4946 			 * Some kernelcore has been met, update counts and
4947 			 * break if the kernelcore for this node has been
4948 			 * satisified
4949 			 */
4950 			required_kernelcore -= min(required_kernelcore,
4951 								size_pages);
4952 			kernelcore_remaining -= size_pages;
4953 			if (!kernelcore_remaining)
4954 				break;
4955 		}
4956 	}
4957 
4958 	/*
4959 	 * If there is still required_kernelcore, we do another pass with one
4960 	 * less node in the count. This will push zone_movable_pfn[nid] further
4961 	 * along on the nodes that still have memory until kernelcore is
4962 	 * satisified
4963 	 */
4964 	usable_nodes--;
4965 	if (usable_nodes && required_kernelcore > usable_nodes)
4966 		goto restart;
4967 
4968 	/* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
4969 	for (nid = 0; nid < MAX_NUMNODES; nid++)
4970 		zone_movable_pfn[nid] =
4971 			roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
4972 
4973 out:
4974 	/* restore the node_state */
4975 	node_states[N_MEMORY] = saved_node_state;
4976 }
4977 
4978 /* Any regular or high memory on that node ? */
4979 static void check_for_memory(pg_data_t *pgdat, int nid)
4980 {
4981 	enum zone_type zone_type;
4982 
4983 	if (N_MEMORY == N_NORMAL_MEMORY)
4984 		return;
4985 
4986 	for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
4987 		struct zone *zone = &pgdat->node_zones[zone_type];
4988 		if (zone->present_pages) {
4989 			node_set_state(nid, N_HIGH_MEMORY);
4990 			if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
4991 			    zone_type <= ZONE_NORMAL)
4992 				node_set_state(nid, N_NORMAL_MEMORY);
4993 			break;
4994 		}
4995 	}
4996 }
4997 
4998 /**
4999  * free_area_init_nodes - Initialise all pg_data_t and zone data
5000  * @max_zone_pfn: an array of max PFNs for each zone
5001  *
5002  * This will call free_area_init_node() for each active node in the system.
5003  * Using the page ranges provided by add_active_range(), the size of each
5004  * zone in each node and their holes is calculated. If the maximum PFN
5005  * between two adjacent zones match, it is assumed that the zone is empty.
5006  * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
5007  * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
5008  * starts where the previous one ended. For example, ZONE_DMA32 starts
5009  * at arch_max_dma_pfn.
5010  */
5011 void __init free_area_init_nodes(unsigned long *max_zone_pfn)
5012 {
5013 	unsigned long start_pfn, end_pfn;
5014 	int i, nid;
5015 
5016 	/* Record where the zone boundaries are */
5017 	memset(arch_zone_lowest_possible_pfn, 0,
5018 				sizeof(arch_zone_lowest_possible_pfn));
5019 	memset(arch_zone_highest_possible_pfn, 0,
5020 				sizeof(arch_zone_highest_possible_pfn));
5021 	arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
5022 	arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
5023 	for (i = 1; i < MAX_NR_ZONES; i++) {
5024 		if (i == ZONE_MOVABLE)
5025 			continue;
5026 		arch_zone_lowest_possible_pfn[i] =
5027 			arch_zone_highest_possible_pfn[i-1];
5028 		arch_zone_highest_possible_pfn[i] =
5029 			max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
5030 	}
5031 	arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
5032 	arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
5033 
5034 	/* Find the PFNs that ZONE_MOVABLE begins at in each node */
5035 	memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
5036 	find_zone_movable_pfns_for_nodes();
5037 
5038 	/* Print out the zone ranges */
5039 	printk("Zone ranges:\n");
5040 	for (i = 0; i < MAX_NR_ZONES; i++) {
5041 		if (i == ZONE_MOVABLE)
5042 			continue;
5043 		printk(KERN_CONT "  %-8s ", zone_names[i]);
5044 		if (arch_zone_lowest_possible_pfn[i] ==
5045 				arch_zone_highest_possible_pfn[i])
5046 			printk(KERN_CONT "empty\n");
5047 		else
5048 			printk(KERN_CONT "[mem %0#10lx-%0#10lx]\n",
5049 				arch_zone_lowest_possible_pfn[i] << PAGE_SHIFT,
5050 				(arch_zone_highest_possible_pfn[i]
5051 					<< PAGE_SHIFT) - 1);
5052 	}
5053 
5054 	/* Print out the PFNs ZONE_MOVABLE begins at in each node */
5055 	printk("Movable zone start for each node\n");
5056 	for (i = 0; i < MAX_NUMNODES; i++) {
5057 		if (zone_movable_pfn[i])
5058 			printk("  Node %d: %#010lx\n", i,
5059 			       zone_movable_pfn[i] << PAGE_SHIFT);
5060 	}
5061 
5062 	/* Print out the early node map */
5063 	printk("Early memory node ranges\n");
5064 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
5065 		printk("  node %3d: [mem %#010lx-%#010lx]\n", nid,
5066 		       start_pfn << PAGE_SHIFT, (end_pfn << PAGE_SHIFT) - 1);
5067 
5068 	/* Initialise every node */
5069 	mminit_verify_pageflags_layout();
5070 	setup_nr_node_ids();
5071 	for_each_online_node(nid) {
5072 		pg_data_t *pgdat = NODE_DATA(nid);
5073 		free_area_init_node(nid, NULL,
5074 				find_min_pfn_for_node(nid), NULL);
5075 
5076 		/* Any memory on that node */
5077 		if (pgdat->node_present_pages)
5078 			node_set_state(nid, N_MEMORY);
5079 		check_for_memory(pgdat, nid);
5080 	}
5081 }
5082 
5083 static int __init cmdline_parse_core(char *p, unsigned long *core)
5084 {
5085 	unsigned long long coremem;
5086 	if (!p)
5087 		return -EINVAL;
5088 
5089 	coremem = memparse(p, &p);
5090 	*core = coremem >> PAGE_SHIFT;
5091 
5092 	/* Paranoid check that UL is enough for the coremem value */
5093 	WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
5094 
5095 	return 0;
5096 }
5097 
5098 /*
5099  * kernelcore=size sets the amount of memory for use for allocations that
5100  * cannot be reclaimed or migrated.
5101  */
5102 static int __init cmdline_parse_kernelcore(char *p)
5103 {
5104 	return cmdline_parse_core(p, &required_kernelcore);
5105 }
5106 
5107 /*
5108  * movablecore=size sets the amount of memory for use for allocations that
5109  * can be reclaimed or migrated.
5110  */
5111 static int __init cmdline_parse_movablecore(char *p)
5112 {
5113 	return cmdline_parse_core(p, &required_movablecore);
5114 }
5115 
5116 early_param("kernelcore", cmdline_parse_kernelcore);
5117 early_param("movablecore", cmdline_parse_movablecore);
5118 
5119 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5120 
5121 /**
5122  * set_dma_reserve - set the specified number of pages reserved in the first zone
5123  * @new_dma_reserve: The number of pages to mark reserved
5124  *
5125  * The per-cpu batchsize and zone watermarks are determined by present_pages.
5126  * In the DMA zone, a significant percentage may be consumed by kernel image
5127  * and other unfreeable allocations which can skew the watermarks badly. This
5128  * function may optionally be used to account for unfreeable pages in the
5129  * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
5130  * smaller per-cpu batchsize.
5131  */
5132 void __init set_dma_reserve(unsigned long new_dma_reserve)
5133 {
5134 	dma_reserve = new_dma_reserve;
5135 }
5136 
5137 void __init free_area_init(unsigned long *zones_size)
5138 {
5139 	free_area_init_node(0, zones_size,
5140 			__pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
5141 }
5142 
5143 static int page_alloc_cpu_notify(struct notifier_block *self,
5144 				 unsigned long action, void *hcpu)
5145 {
5146 	int cpu = (unsigned long)hcpu;
5147 
5148 	if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
5149 		lru_add_drain_cpu(cpu);
5150 		drain_pages(cpu);
5151 
5152 		/*
5153 		 * Spill the event counters of the dead processor
5154 		 * into the current processors event counters.
5155 		 * This artificially elevates the count of the current
5156 		 * processor.
5157 		 */
5158 		vm_events_fold_cpu(cpu);
5159 
5160 		/*
5161 		 * Zero the differential counters of the dead processor
5162 		 * so that the vm statistics are consistent.
5163 		 *
5164 		 * This is only okay since the processor is dead and cannot
5165 		 * race with what we are doing.
5166 		 */
5167 		refresh_cpu_vm_stats(cpu);
5168 	}
5169 	return NOTIFY_OK;
5170 }
5171 
5172 void __init page_alloc_init(void)
5173 {
5174 	hotcpu_notifier(page_alloc_cpu_notify, 0);
5175 }
5176 
5177 /*
5178  * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
5179  *	or min_free_kbytes changes.
5180  */
5181 static void calculate_totalreserve_pages(void)
5182 {
5183 	struct pglist_data *pgdat;
5184 	unsigned long reserve_pages = 0;
5185 	enum zone_type i, j;
5186 
5187 	for_each_online_pgdat(pgdat) {
5188 		for (i = 0; i < MAX_NR_ZONES; i++) {
5189 			struct zone *zone = pgdat->node_zones + i;
5190 			unsigned long max = 0;
5191 
5192 			/* Find valid and maximum lowmem_reserve in the zone */
5193 			for (j = i; j < MAX_NR_ZONES; j++) {
5194 				if (zone->lowmem_reserve[j] > max)
5195 					max = zone->lowmem_reserve[j];
5196 			}
5197 
5198 			/* we treat the high watermark as reserved pages. */
5199 			max += high_wmark_pages(zone);
5200 
5201 			if (max > zone->present_pages)
5202 				max = zone->present_pages;
5203 			reserve_pages += max;
5204 			/*
5205 			 * Lowmem reserves are not available to
5206 			 * GFP_HIGHUSER page cache allocations and
5207 			 * kswapd tries to balance zones to their high
5208 			 * watermark.  As a result, neither should be
5209 			 * regarded as dirtyable memory, to prevent a
5210 			 * situation where reclaim has to clean pages
5211 			 * in order to balance the zones.
5212 			 */
5213 			zone->dirty_balance_reserve = max;
5214 		}
5215 	}
5216 	dirty_balance_reserve = reserve_pages;
5217 	totalreserve_pages = reserve_pages;
5218 }
5219 
5220 /*
5221  * setup_per_zone_lowmem_reserve - called whenever
5222  *	sysctl_lower_zone_reserve_ratio changes.  Ensures that each zone
5223  *	has a correct pages reserved value, so an adequate number of
5224  *	pages are left in the zone after a successful __alloc_pages().
5225  */
5226 static void setup_per_zone_lowmem_reserve(void)
5227 {
5228 	struct pglist_data *pgdat;
5229 	enum zone_type j, idx;
5230 
5231 	for_each_online_pgdat(pgdat) {
5232 		for (j = 0; j < MAX_NR_ZONES; j++) {
5233 			struct zone *zone = pgdat->node_zones + j;
5234 			unsigned long present_pages = zone->present_pages;
5235 
5236 			zone->lowmem_reserve[j] = 0;
5237 
5238 			idx = j;
5239 			while (idx) {
5240 				struct zone *lower_zone;
5241 
5242 				idx--;
5243 
5244 				if (sysctl_lowmem_reserve_ratio[idx] < 1)
5245 					sysctl_lowmem_reserve_ratio[idx] = 1;
5246 
5247 				lower_zone = pgdat->node_zones + idx;
5248 				lower_zone->lowmem_reserve[j] = present_pages /
5249 					sysctl_lowmem_reserve_ratio[idx];
5250 				present_pages += lower_zone->present_pages;
5251 			}
5252 		}
5253 	}
5254 
5255 	/* update totalreserve_pages */
5256 	calculate_totalreserve_pages();
5257 }
5258 
5259 static void __setup_per_zone_wmarks(void)
5260 {
5261 	unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
5262 	unsigned long lowmem_pages = 0;
5263 	struct zone *zone;
5264 	unsigned long flags;
5265 
5266 	/* Calculate total number of !ZONE_HIGHMEM pages */
5267 	for_each_zone(zone) {
5268 		if (!is_highmem(zone))
5269 			lowmem_pages += zone->present_pages;
5270 	}
5271 
5272 	for_each_zone(zone) {
5273 		u64 tmp;
5274 
5275 		spin_lock_irqsave(&zone->lock, flags);
5276 		tmp = (u64)pages_min * zone->present_pages;
5277 		do_div(tmp, lowmem_pages);
5278 		if (is_highmem(zone)) {
5279 			/*
5280 			 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
5281 			 * need highmem pages, so cap pages_min to a small
5282 			 * value here.
5283 			 *
5284 			 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
5285 			 * deltas controls asynch page reclaim, and so should
5286 			 * not be capped for highmem.
5287 			 */
5288 			int min_pages;
5289 
5290 			min_pages = zone->present_pages / 1024;
5291 			if (min_pages < SWAP_CLUSTER_MAX)
5292 				min_pages = SWAP_CLUSTER_MAX;
5293 			if (min_pages > 128)
5294 				min_pages = 128;
5295 			zone->watermark[WMARK_MIN] = min_pages;
5296 		} else {
5297 			/*
5298 			 * If it's a lowmem zone, reserve a number of pages
5299 			 * proportionate to the zone's size.
5300 			 */
5301 			zone->watermark[WMARK_MIN] = tmp;
5302 		}
5303 
5304 		zone->watermark[WMARK_LOW]  = min_wmark_pages(zone) + (tmp >> 2);
5305 		zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1);
5306 
5307 		setup_zone_migrate_reserve(zone);
5308 		spin_unlock_irqrestore(&zone->lock, flags);
5309 	}
5310 
5311 	/* update totalreserve_pages */
5312 	calculate_totalreserve_pages();
5313 }
5314 
5315 /**
5316  * setup_per_zone_wmarks - called when min_free_kbytes changes
5317  * or when memory is hot-{added|removed}
5318  *
5319  * Ensures that the watermark[min,low,high] values for each zone are set
5320  * correctly with respect to min_free_kbytes.
5321  */
5322 void setup_per_zone_wmarks(void)
5323 {
5324 	mutex_lock(&zonelists_mutex);
5325 	__setup_per_zone_wmarks();
5326 	mutex_unlock(&zonelists_mutex);
5327 }
5328 
5329 /*
5330  * The inactive anon list should be small enough that the VM never has to
5331  * do too much work, but large enough that each inactive page has a chance
5332  * to be referenced again before it is swapped out.
5333  *
5334  * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
5335  * INACTIVE_ANON pages on this zone's LRU, maintained by the
5336  * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
5337  * the anonymous pages are kept on the inactive list.
5338  *
5339  * total     target    max
5340  * memory    ratio     inactive anon
5341  * -------------------------------------
5342  *   10MB       1         5MB
5343  *  100MB       1        50MB
5344  *    1GB       3       250MB
5345  *   10GB      10       0.9GB
5346  *  100GB      31         3GB
5347  *    1TB     101        10GB
5348  *   10TB     320        32GB
5349  */
5350 static void __meminit calculate_zone_inactive_ratio(struct zone *zone)
5351 {
5352 	unsigned int gb, ratio;
5353 
5354 	/* Zone size in gigabytes */
5355 	gb = zone->present_pages >> (30 - PAGE_SHIFT);
5356 	if (gb)
5357 		ratio = int_sqrt(10 * gb);
5358 	else
5359 		ratio = 1;
5360 
5361 	zone->inactive_ratio = ratio;
5362 }
5363 
5364 static void __meminit setup_per_zone_inactive_ratio(void)
5365 {
5366 	struct zone *zone;
5367 
5368 	for_each_zone(zone)
5369 		calculate_zone_inactive_ratio(zone);
5370 }
5371 
5372 /*
5373  * Initialise min_free_kbytes.
5374  *
5375  * For small machines we want it small (128k min).  For large machines
5376  * we want it large (64MB max).  But it is not linear, because network
5377  * bandwidth does not increase linearly with machine size.  We use
5378  *
5379  * 	min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
5380  *	min_free_kbytes = sqrt(lowmem_kbytes * 16)
5381  *
5382  * which yields
5383  *
5384  * 16MB:	512k
5385  * 32MB:	724k
5386  * 64MB:	1024k
5387  * 128MB:	1448k
5388  * 256MB:	2048k
5389  * 512MB:	2896k
5390  * 1024MB:	4096k
5391  * 2048MB:	5792k
5392  * 4096MB:	8192k
5393  * 8192MB:	11584k
5394  * 16384MB:	16384k
5395  */
5396 int __meminit init_per_zone_wmark_min(void)
5397 {
5398 	unsigned long lowmem_kbytes;
5399 
5400 	lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5401 
5402 	min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
5403 	if (min_free_kbytes < 128)
5404 		min_free_kbytes = 128;
5405 	if (min_free_kbytes > 65536)
5406 		min_free_kbytes = 65536;
5407 	setup_per_zone_wmarks();
5408 	refresh_zone_stat_thresholds();
5409 	setup_per_zone_lowmem_reserve();
5410 	setup_per_zone_inactive_ratio();
5411 	return 0;
5412 }
5413 module_init(init_per_zone_wmark_min)
5414 
5415 /*
5416  * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
5417  *	that we can call two helper functions whenever min_free_kbytes
5418  *	changes.
5419  */
5420 int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
5421 	void __user *buffer, size_t *length, loff_t *ppos)
5422 {
5423 	proc_dointvec(table, write, buffer, length, ppos);
5424 	if (write)
5425 		setup_per_zone_wmarks();
5426 	return 0;
5427 }
5428 
5429 #ifdef CONFIG_NUMA
5430 int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
5431 	void __user *buffer, size_t *length, loff_t *ppos)
5432 {
5433 	struct zone *zone;
5434 	int rc;
5435 
5436 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5437 	if (rc)
5438 		return rc;
5439 
5440 	for_each_zone(zone)
5441 		zone->min_unmapped_pages = (zone->present_pages *
5442 				sysctl_min_unmapped_ratio) / 100;
5443 	return 0;
5444 }
5445 
5446 int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
5447 	void __user *buffer, size_t *length, loff_t *ppos)
5448 {
5449 	struct zone *zone;
5450 	int rc;
5451 
5452 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5453 	if (rc)
5454 		return rc;
5455 
5456 	for_each_zone(zone)
5457 		zone->min_slab_pages = (zone->present_pages *
5458 				sysctl_min_slab_ratio) / 100;
5459 	return 0;
5460 }
5461 #endif
5462 
5463 /*
5464  * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
5465  *	proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
5466  *	whenever sysctl_lowmem_reserve_ratio changes.
5467  *
5468  * The reserve ratio obviously has absolutely no relation with the
5469  * minimum watermarks. The lowmem reserve ratio can only make sense
5470  * if in function of the boot time zone sizes.
5471  */
5472 int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
5473 	void __user *buffer, size_t *length, loff_t *ppos)
5474 {
5475 	proc_dointvec_minmax(table, write, buffer, length, ppos);
5476 	setup_per_zone_lowmem_reserve();
5477 	return 0;
5478 }
5479 
5480 /*
5481  * percpu_pagelist_fraction - changes the pcp->high for each zone on each
5482  * cpu.  It is the fraction of total pages in each zone that a hot per cpu pagelist
5483  * can have before it gets flushed back to buddy allocator.
5484  */
5485 
5486 int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
5487 	void __user *buffer, size_t *length, loff_t *ppos)
5488 {
5489 	struct zone *zone;
5490 	unsigned int cpu;
5491 	int ret;
5492 
5493 	ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
5494 	if (!write || (ret < 0))
5495 		return ret;
5496 	for_each_populated_zone(zone) {
5497 		for_each_possible_cpu(cpu) {
5498 			unsigned long  high;
5499 			high = zone->present_pages / percpu_pagelist_fraction;
5500 			setup_pagelist_highmark(
5501 				per_cpu_ptr(zone->pageset, cpu), high);
5502 		}
5503 	}
5504 	return 0;
5505 }
5506 
5507 int hashdist = HASHDIST_DEFAULT;
5508 
5509 #ifdef CONFIG_NUMA
5510 static int __init set_hashdist(char *str)
5511 {
5512 	if (!str)
5513 		return 0;
5514 	hashdist = simple_strtoul(str, &str, 0);
5515 	return 1;
5516 }
5517 __setup("hashdist=", set_hashdist);
5518 #endif
5519 
5520 /*
5521  * allocate a large system hash table from bootmem
5522  * - it is assumed that the hash table must contain an exact power-of-2
5523  *   quantity of entries
5524  * - limit is the number of hash buckets, not the total allocation size
5525  */
5526 void *__init alloc_large_system_hash(const char *tablename,
5527 				     unsigned long bucketsize,
5528 				     unsigned long numentries,
5529 				     int scale,
5530 				     int flags,
5531 				     unsigned int *_hash_shift,
5532 				     unsigned int *_hash_mask,
5533 				     unsigned long low_limit,
5534 				     unsigned long high_limit)
5535 {
5536 	unsigned long long max = high_limit;
5537 	unsigned long log2qty, size;
5538 	void *table = NULL;
5539 
5540 	/* allow the kernel cmdline to have a say */
5541 	if (!numentries) {
5542 		/* round applicable memory size up to nearest megabyte */
5543 		numentries = nr_kernel_pages;
5544 		numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
5545 		numentries >>= 20 - PAGE_SHIFT;
5546 		numentries <<= 20 - PAGE_SHIFT;
5547 
5548 		/* limit to 1 bucket per 2^scale bytes of low memory */
5549 		if (scale > PAGE_SHIFT)
5550 			numentries >>= (scale - PAGE_SHIFT);
5551 		else
5552 			numentries <<= (PAGE_SHIFT - scale);
5553 
5554 		/* Make sure we've got at least a 0-order allocation.. */
5555 		if (unlikely(flags & HASH_SMALL)) {
5556 			/* Makes no sense without HASH_EARLY */
5557 			WARN_ON(!(flags & HASH_EARLY));
5558 			if (!(numentries >> *_hash_shift)) {
5559 				numentries = 1UL << *_hash_shift;
5560 				BUG_ON(!numentries);
5561 			}
5562 		} else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
5563 			numentries = PAGE_SIZE / bucketsize;
5564 	}
5565 	numentries = roundup_pow_of_two(numentries);
5566 
5567 	/* limit allocation size to 1/16 total memory by default */
5568 	if (max == 0) {
5569 		max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
5570 		do_div(max, bucketsize);
5571 	}
5572 	max = min(max, 0x80000000ULL);
5573 
5574 	if (numentries < low_limit)
5575 		numentries = low_limit;
5576 	if (numentries > max)
5577 		numentries = max;
5578 
5579 	log2qty = ilog2(numentries);
5580 
5581 	do {
5582 		size = bucketsize << log2qty;
5583 		if (flags & HASH_EARLY)
5584 			table = alloc_bootmem_nopanic(size);
5585 		else if (hashdist)
5586 			table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
5587 		else {
5588 			/*
5589 			 * If bucketsize is not a power-of-two, we may free
5590 			 * some pages at the end of hash table which
5591 			 * alloc_pages_exact() automatically does
5592 			 */
5593 			if (get_order(size) < MAX_ORDER) {
5594 				table = alloc_pages_exact(size, GFP_ATOMIC);
5595 				kmemleak_alloc(table, size, 1, GFP_ATOMIC);
5596 			}
5597 		}
5598 	} while (!table && size > PAGE_SIZE && --log2qty);
5599 
5600 	if (!table)
5601 		panic("Failed to allocate %s hash table\n", tablename);
5602 
5603 	printk(KERN_INFO "%s hash table entries: %ld (order: %d, %lu bytes)\n",
5604 	       tablename,
5605 	       (1UL << log2qty),
5606 	       ilog2(size) - PAGE_SHIFT,
5607 	       size);
5608 
5609 	if (_hash_shift)
5610 		*_hash_shift = log2qty;
5611 	if (_hash_mask)
5612 		*_hash_mask = (1 << log2qty) - 1;
5613 
5614 	return table;
5615 }
5616 
5617 /* Return a pointer to the bitmap storing bits affecting a block of pages */
5618 static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
5619 							unsigned long pfn)
5620 {
5621 #ifdef CONFIG_SPARSEMEM
5622 	return __pfn_to_section(pfn)->pageblock_flags;
5623 #else
5624 	return zone->pageblock_flags;
5625 #endif /* CONFIG_SPARSEMEM */
5626 }
5627 
5628 static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
5629 {
5630 #ifdef CONFIG_SPARSEMEM
5631 	pfn &= (PAGES_PER_SECTION-1);
5632 	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
5633 #else
5634 	pfn = pfn - zone->zone_start_pfn;
5635 	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
5636 #endif /* CONFIG_SPARSEMEM */
5637 }
5638 
5639 /**
5640  * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
5641  * @page: The page within the block of interest
5642  * @start_bitidx: The first bit of interest to retrieve
5643  * @end_bitidx: The last bit of interest
5644  * returns pageblock_bits flags
5645  */
5646 unsigned long get_pageblock_flags_group(struct page *page,
5647 					int start_bitidx, int end_bitidx)
5648 {
5649 	struct zone *zone;
5650 	unsigned long *bitmap;
5651 	unsigned long pfn, bitidx;
5652 	unsigned long flags = 0;
5653 	unsigned long value = 1;
5654 
5655 	zone = page_zone(page);
5656 	pfn = page_to_pfn(page);
5657 	bitmap = get_pageblock_bitmap(zone, pfn);
5658 	bitidx = pfn_to_bitidx(zone, pfn);
5659 
5660 	for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
5661 		if (test_bit(bitidx + start_bitidx, bitmap))
5662 			flags |= value;
5663 
5664 	return flags;
5665 }
5666 
5667 /**
5668  * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
5669  * @page: The page within the block of interest
5670  * @start_bitidx: The first bit of interest
5671  * @end_bitidx: The last bit of interest
5672  * @flags: The flags to set
5673  */
5674 void set_pageblock_flags_group(struct page *page, unsigned long flags,
5675 					int start_bitidx, int end_bitidx)
5676 {
5677 	struct zone *zone;
5678 	unsigned long *bitmap;
5679 	unsigned long pfn, bitidx;
5680 	unsigned long value = 1;
5681 
5682 	zone = page_zone(page);
5683 	pfn = page_to_pfn(page);
5684 	bitmap = get_pageblock_bitmap(zone, pfn);
5685 	bitidx = pfn_to_bitidx(zone, pfn);
5686 	VM_BUG_ON(pfn < zone->zone_start_pfn);
5687 	VM_BUG_ON(pfn >= zone->zone_start_pfn + zone->spanned_pages);
5688 
5689 	for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
5690 		if (flags & value)
5691 			__set_bit(bitidx + start_bitidx, bitmap);
5692 		else
5693 			__clear_bit(bitidx + start_bitidx, bitmap);
5694 }
5695 
5696 /*
5697  * This function checks whether pageblock includes unmovable pages or not.
5698  * If @count is not zero, it is okay to include less @count unmovable pages
5699  *
5700  * PageLRU check wihtout isolation or lru_lock could race so that
5701  * MIGRATE_MOVABLE block might include unmovable pages. It means you can't
5702  * expect this function should be exact.
5703  */
5704 bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
5705 			 bool skip_hwpoisoned_pages)
5706 {
5707 	unsigned long pfn, iter, found;
5708 	int mt;
5709 
5710 	/*
5711 	 * For avoiding noise data, lru_add_drain_all() should be called
5712 	 * If ZONE_MOVABLE, the zone never contains unmovable pages
5713 	 */
5714 	if (zone_idx(zone) == ZONE_MOVABLE)
5715 		return false;
5716 	mt = get_pageblock_migratetype(page);
5717 	if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt))
5718 		return false;
5719 
5720 	pfn = page_to_pfn(page);
5721 	for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
5722 		unsigned long check = pfn + iter;
5723 
5724 		if (!pfn_valid_within(check))
5725 			continue;
5726 
5727 		page = pfn_to_page(check);
5728 		/*
5729 		 * We can't use page_count without pin a page
5730 		 * because another CPU can free compound page.
5731 		 * This check already skips compound tails of THP
5732 		 * because their page->_count is zero at all time.
5733 		 */
5734 		if (!atomic_read(&page->_count)) {
5735 			if (PageBuddy(page))
5736 				iter += (1 << page_order(page)) - 1;
5737 			continue;
5738 		}
5739 
5740 		/*
5741 		 * The HWPoisoned page may be not in buddy system, and
5742 		 * page_count() is not 0.
5743 		 */
5744 		if (skip_hwpoisoned_pages && PageHWPoison(page))
5745 			continue;
5746 
5747 		if (!PageLRU(page))
5748 			found++;
5749 		/*
5750 		 * If there are RECLAIMABLE pages, we need to check it.
5751 		 * But now, memory offline itself doesn't call shrink_slab()
5752 		 * and it still to be fixed.
5753 		 */
5754 		/*
5755 		 * If the page is not RAM, page_count()should be 0.
5756 		 * we don't need more check. This is an _used_ not-movable page.
5757 		 *
5758 		 * The problematic thing here is PG_reserved pages. PG_reserved
5759 		 * is set to both of a memory hole page and a _used_ kernel
5760 		 * page at boot.
5761 		 */
5762 		if (found > count)
5763 			return true;
5764 	}
5765 	return false;
5766 }
5767 
5768 bool is_pageblock_removable_nolock(struct page *page)
5769 {
5770 	struct zone *zone;
5771 	unsigned long pfn;
5772 
5773 	/*
5774 	 * We have to be careful here because we are iterating over memory
5775 	 * sections which are not zone aware so we might end up outside of
5776 	 * the zone but still within the section.
5777 	 * We have to take care about the node as well. If the node is offline
5778 	 * its NODE_DATA will be NULL - see page_zone.
5779 	 */
5780 	if (!node_online(page_to_nid(page)))
5781 		return false;
5782 
5783 	zone = page_zone(page);
5784 	pfn = page_to_pfn(page);
5785 	if (zone->zone_start_pfn > pfn ||
5786 			zone->zone_start_pfn + zone->spanned_pages <= pfn)
5787 		return false;
5788 
5789 	return !has_unmovable_pages(zone, page, 0, true);
5790 }
5791 
5792 #ifdef CONFIG_CMA
5793 
5794 static unsigned long pfn_max_align_down(unsigned long pfn)
5795 {
5796 	return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
5797 			     pageblock_nr_pages) - 1);
5798 }
5799 
5800 static unsigned long pfn_max_align_up(unsigned long pfn)
5801 {
5802 	return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
5803 				pageblock_nr_pages));
5804 }
5805 
5806 /* [start, end) must belong to a single zone. */
5807 static int __alloc_contig_migrate_range(struct compact_control *cc,
5808 					unsigned long start, unsigned long end)
5809 {
5810 	/* This function is based on compact_zone() from compaction.c. */
5811 	unsigned long nr_reclaimed;
5812 	unsigned long pfn = start;
5813 	unsigned int tries = 0;
5814 	int ret = 0;
5815 
5816 	migrate_prep();
5817 
5818 	while (pfn < end || !list_empty(&cc->migratepages)) {
5819 		if (fatal_signal_pending(current)) {
5820 			ret = -EINTR;
5821 			break;
5822 		}
5823 
5824 		if (list_empty(&cc->migratepages)) {
5825 			cc->nr_migratepages = 0;
5826 			pfn = isolate_migratepages_range(cc->zone, cc,
5827 							 pfn, end, true);
5828 			if (!pfn) {
5829 				ret = -EINTR;
5830 				break;
5831 			}
5832 			tries = 0;
5833 		} else if (++tries == 5) {
5834 			ret = ret < 0 ? ret : -EBUSY;
5835 			break;
5836 		}
5837 
5838 		nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
5839 							&cc->migratepages);
5840 		cc->nr_migratepages -= nr_reclaimed;
5841 
5842 		ret = migrate_pages(&cc->migratepages,
5843 				    alloc_migrate_target,
5844 				    0, false, MIGRATE_SYNC,
5845 				    MR_CMA);
5846 	}
5847 
5848 	putback_movable_pages(&cc->migratepages);
5849 	return ret > 0 ? 0 : ret;
5850 }
5851 
5852 /**
5853  * alloc_contig_range() -- tries to allocate given range of pages
5854  * @start:	start PFN to allocate
5855  * @end:	one-past-the-last PFN to allocate
5856  * @migratetype:	migratetype of the underlaying pageblocks (either
5857  *			#MIGRATE_MOVABLE or #MIGRATE_CMA).  All pageblocks
5858  *			in range must have the same migratetype and it must
5859  *			be either of the two.
5860  *
5861  * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
5862  * aligned, however it's the caller's responsibility to guarantee that
5863  * we are the only thread that changes migrate type of pageblocks the
5864  * pages fall in.
5865  *
5866  * The PFN range must belong to a single zone.
5867  *
5868  * Returns zero on success or negative error code.  On success all
5869  * pages which PFN is in [start, end) are allocated for the caller and
5870  * need to be freed with free_contig_range().
5871  */
5872 int alloc_contig_range(unsigned long start, unsigned long end,
5873 		       unsigned migratetype)
5874 {
5875 	unsigned long outer_start, outer_end;
5876 	int ret = 0, order;
5877 
5878 	struct compact_control cc = {
5879 		.nr_migratepages = 0,
5880 		.order = -1,
5881 		.zone = page_zone(pfn_to_page(start)),
5882 		.sync = true,
5883 		.ignore_skip_hint = true,
5884 	};
5885 	INIT_LIST_HEAD(&cc.migratepages);
5886 
5887 	/*
5888 	 * What we do here is we mark all pageblocks in range as
5889 	 * MIGRATE_ISOLATE.  Because pageblock and max order pages may
5890 	 * have different sizes, and due to the way page allocator
5891 	 * work, we align the range to biggest of the two pages so
5892 	 * that page allocator won't try to merge buddies from
5893 	 * different pageblocks and change MIGRATE_ISOLATE to some
5894 	 * other migration type.
5895 	 *
5896 	 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
5897 	 * migrate the pages from an unaligned range (ie. pages that
5898 	 * we are interested in).  This will put all the pages in
5899 	 * range back to page allocator as MIGRATE_ISOLATE.
5900 	 *
5901 	 * When this is done, we take the pages in range from page
5902 	 * allocator removing them from the buddy system.  This way
5903 	 * page allocator will never consider using them.
5904 	 *
5905 	 * This lets us mark the pageblocks back as
5906 	 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
5907 	 * aligned range but not in the unaligned, original range are
5908 	 * put back to page allocator so that buddy can use them.
5909 	 */
5910 
5911 	ret = start_isolate_page_range(pfn_max_align_down(start),
5912 				       pfn_max_align_up(end), migratetype,
5913 				       false);
5914 	if (ret)
5915 		return ret;
5916 
5917 	ret = __alloc_contig_migrate_range(&cc, start, end);
5918 	if (ret)
5919 		goto done;
5920 
5921 	/*
5922 	 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
5923 	 * aligned blocks that are marked as MIGRATE_ISOLATE.  What's
5924 	 * more, all pages in [start, end) are free in page allocator.
5925 	 * What we are going to do is to allocate all pages from
5926 	 * [start, end) (that is remove them from page allocator).
5927 	 *
5928 	 * The only problem is that pages at the beginning and at the
5929 	 * end of interesting range may be not aligned with pages that
5930 	 * page allocator holds, ie. they can be part of higher order
5931 	 * pages.  Because of this, we reserve the bigger range and
5932 	 * once this is done free the pages we are not interested in.
5933 	 *
5934 	 * We don't have to hold zone->lock here because the pages are
5935 	 * isolated thus they won't get removed from buddy.
5936 	 */
5937 
5938 	lru_add_drain_all();
5939 	drain_all_pages();
5940 
5941 	order = 0;
5942 	outer_start = start;
5943 	while (!PageBuddy(pfn_to_page(outer_start))) {
5944 		if (++order >= MAX_ORDER) {
5945 			ret = -EBUSY;
5946 			goto done;
5947 		}
5948 		outer_start &= ~0UL << order;
5949 	}
5950 
5951 	/* Make sure the range is really isolated. */
5952 	if (test_pages_isolated(outer_start, end, false)) {
5953 		pr_warn("alloc_contig_range test_pages_isolated(%lx, %lx) failed\n",
5954 		       outer_start, end);
5955 		ret = -EBUSY;
5956 		goto done;
5957 	}
5958 
5959 
5960 	/* Grab isolated pages from freelists. */
5961 	outer_end = isolate_freepages_range(&cc, outer_start, end);
5962 	if (!outer_end) {
5963 		ret = -EBUSY;
5964 		goto done;
5965 	}
5966 
5967 	/* Free head and tail (if any) */
5968 	if (start != outer_start)
5969 		free_contig_range(outer_start, start - outer_start);
5970 	if (end != outer_end)
5971 		free_contig_range(end, outer_end - end);
5972 
5973 done:
5974 	undo_isolate_page_range(pfn_max_align_down(start),
5975 				pfn_max_align_up(end), migratetype);
5976 	return ret;
5977 }
5978 
5979 void free_contig_range(unsigned long pfn, unsigned nr_pages)
5980 {
5981 	for (; nr_pages--; ++pfn)
5982 		__free_page(pfn_to_page(pfn));
5983 }
5984 #endif
5985 
5986 #ifdef CONFIG_MEMORY_HOTPLUG
5987 static int __meminit __zone_pcp_update(void *data)
5988 {
5989 	struct zone *zone = data;
5990 	int cpu;
5991 	unsigned long batch = zone_batchsize(zone), flags;
5992 
5993 	for_each_possible_cpu(cpu) {
5994 		struct per_cpu_pageset *pset;
5995 		struct per_cpu_pages *pcp;
5996 
5997 		pset = per_cpu_ptr(zone->pageset, cpu);
5998 		pcp = &pset->pcp;
5999 
6000 		local_irq_save(flags);
6001 		if (pcp->count > 0)
6002 			free_pcppages_bulk(zone, pcp->count, pcp);
6003 		drain_zonestat(zone, pset);
6004 		setup_pageset(pset, batch);
6005 		local_irq_restore(flags);
6006 	}
6007 	return 0;
6008 }
6009 
6010 void __meminit zone_pcp_update(struct zone *zone)
6011 {
6012 	stop_machine(__zone_pcp_update, zone, NULL);
6013 }
6014 #endif
6015 
6016 void zone_pcp_reset(struct zone *zone)
6017 {
6018 	unsigned long flags;
6019 	int cpu;
6020 	struct per_cpu_pageset *pset;
6021 
6022 	/* avoid races with drain_pages()  */
6023 	local_irq_save(flags);
6024 	if (zone->pageset != &boot_pageset) {
6025 		for_each_online_cpu(cpu) {
6026 			pset = per_cpu_ptr(zone->pageset, cpu);
6027 			drain_zonestat(zone, pset);
6028 		}
6029 		free_percpu(zone->pageset);
6030 		zone->pageset = &boot_pageset;
6031 	}
6032 	local_irq_restore(flags);
6033 }
6034 
6035 #ifdef CONFIG_MEMORY_HOTREMOVE
6036 /*
6037  * All pages in the range must be isolated before calling this.
6038  */
6039 void
6040 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
6041 {
6042 	struct page *page;
6043 	struct zone *zone;
6044 	int order, i;
6045 	unsigned long pfn;
6046 	unsigned long flags;
6047 	/* find the first valid pfn */
6048 	for (pfn = start_pfn; pfn < end_pfn; pfn++)
6049 		if (pfn_valid(pfn))
6050 			break;
6051 	if (pfn == end_pfn)
6052 		return;
6053 	zone = page_zone(pfn_to_page(pfn));
6054 	spin_lock_irqsave(&zone->lock, flags);
6055 	pfn = start_pfn;
6056 	while (pfn < end_pfn) {
6057 		if (!pfn_valid(pfn)) {
6058 			pfn++;
6059 			continue;
6060 		}
6061 		page = pfn_to_page(pfn);
6062 		/*
6063 		 * The HWPoisoned page may be not in buddy system, and
6064 		 * page_count() is not 0.
6065 		 */
6066 		if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
6067 			pfn++;
6068 			SetPageReserved(page);
6069 			continue;
6070 		}
6071 
6072 		BUG_ON(page_count(page));
6073 		BUG_ON(!PageBuddy(page));
6074 		order = page_order(page);
6075 #ifdef CONFIG_DEBUG_VM
6076 		printk(KERN_INFO "remove from free list %lx %d %lx\n",
6077 		       pfn, 1 << order, end_pfn);
6078 #endif
6079 		list_del(&page->lru);
6080 		rmv_page_order(page);
6081 		zone->free_area[order].nr_free--;
6082 		for (i = 0; i < (1 << order); i++)
6083 			SetPageReserved((page+i));
6084 		pfn += (1 << order);
6085 	}
6086 	spin_unlock_irqrestore(&zone->lock, flags);
6087 }
6088 #endif
6089 
6090 #ifdef CONFIG_MEMORY_FAILURE
6091 bool is_free_buddy_page(struct page *page)
6092 {
6093 	struct zone *zone = page_zone(page);
6094 	unsigned long pfn = page_to_pfn(page);
6095 	unsigned long flags;
6096 	int order;
6097 
6098 	spin_lock_irqsave(&zone->lock, flags);
6099 	for (order = 0; order < MAX_ORDER; order++) {
6100 		struct page *page_head = page - (pfn & ((1 << order) - 1));
6101 
6102 		if (PageBuddy(page_head) && page_order(page_head) >= order)
6103 			break;
6104 	}
6105 	spin_unlock_irqrestore(&zone->lock, flags);
6106 
6107 	return order < MAX_ORDER;
6108 }
6109 #endif
6110 
6111 static const struct trace_print_flags pageflag_names[] = {
6112 	{1UL << PG_locked,		"locked"	},
6113 	{1UL << PG_error,		"error"		},
6114 	{1UL << PG_referenced,		"referenced"	},
6115 	{1UL << PG_uptodate,		"uptodate"	},
6116 	{1UL << PG_dirty,		"dirty"		},
6117 	{1UL << PG_lru,			"lru"		},
6118 	{1UL << PG_active,		"active"	},
6119 	{1UL << PG_slab,		"slab"		},
6120 	{1UL << PG_owner_priv_1,	"owner_priv_1"	},
6121 	{1UL << PG_arch_1,		"arch_1"	},
6122 	{1UL << PG_reserved,		"reserved"	},
6123 	{1UL << PG_private,		"private"	},
6124 	{1UL << PG_private_2,		"private_2"	},
6125 	{1UL << PG_writeback,		"writeback"	},
6126 #ifdef CONFIG_PAGEFLAGS_EXTENDED
6127 	{1UL << PG_head,		"head"		},
6128 	{1UL << PG_tail,		"tail"		},
6129 #else
6130 	{1UL << PG_compound,		"compound"	},
6131 #endif
6132 	{1UL << PG_swapcache,		"swapcache"	},
6133 	{1UL << PG_mappedtodisk,	"mappedtodisk"	},
6134 	{1UL << PG_reclaim,		"reclaim"	},
6135 	{1UL << PG_swapbacked,		"swapbacked"	},
6136 	{1UL << PG_unevictable,		"unevictable"	},
6137 #ifdef CONFIG_MMU
6138 	{1UL << PG_mlocked,		"mlocked"	},
6139 #endif
6140 #ifdef CONFIG_ARCH_USES_PG_UNCACHED
6141 	{1UL << PG_uncached,		"uncached"	},
6142 #endif
6143 #ifdef CONFIG_MEMORY_FAILURE
6144 	{1UL << PG_hwpoison,		"hwpoison"	},
6145 #endif
6146 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
6147 	{1UL << PG_compound_lock,	"compound_lock"	},
6148 #endif
6149 };
6150 
6151 static void dump_page_flags(unsigned long flags)
6152 {
6153 	const char *delim = "";
6154 	unsigned long mask;
6155 	int i;
6156 
6157 	BUILD_BUG_ON(ARRAY_SIZE(pageflag_names) != __NR_PAGEFLAGS);
6158 
6159 	printk(KERN_ALERT "page flags: %#lx(", flags);
6160 
6161 	/* remove zone id */
6162 	flags &= (1UL << NR_PAGEFLAGS) - 1;
6163 
6164 	for (i = 0; i < ARRAY_SIZE(pageflag_names) && flags; i++) {
6165 
6166 		mask = pageflag_names[i].mask;
6167 		if ((flags & mask) != mask)
6168 			continue;
6169 
6170 		flags &= ~mask;
6171 		printk("%s%s", delim, pageflag_names[i].name);
6172 		delim = "|";
6173 	}
6174 
6175 	/* check for left over flags */
6176 	if (flags)
6177 		printk("%s%#lx", delim, flags);
6178 
6179 	printk(")\n");
6180 }
6181 
6182 void dump_page(struct page *page)
6183 {
6184 	printk(KERN_ALERT
6185 	       "page:%p count:%d mapcount:%d mapping:%p index:%#lx\n",
6186 		page, atomic_read(&page->_count), page_mapcount(page),
6187 		page->mapping, page->index);
6188 	dump_page_flags(page->flags);
6189 	mem_cgroup_print_bad_page(page);
6190 }
6191