1 /* 2 * linux/mm/page_alloc.c 3 * 4 * Manages the free list, the system allocates free pages here. 5 * Note that kmalloc() lives in slab.c 6 * 7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 8 * Swap reorganised 29.12.95, Stephen Tweedie 9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999 10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999 11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999 12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000 13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002 14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton) 15 */ 16 17 #include <linux/stddef.h> 18 #include <linux/mm.h> 19 #include <linux/highmem.h> 20 #include <linux/swap.h> 21 #include <linux/interrupt.h> 22 #include <linux/pagemap.h> 23 #include <linux/jiffies.h> 24 #include <linux/memblock.h> 25 #include <linux/compiler.h> 26 #include <linux/kernel.h> 27 #include <linux/kasan.h> 28 #include <linux/module.h> 29 #include <linux/suspend.h> 30 #include <linux/pagevec.h> 31 #include <linux/blkdev.h> 32 #include <linux/slab.h> 33 #include <linux/ratelimit.h> 34 #include <linux/oom.h> 35 #include <linux/topology.h> 36 #include <linux/sysctl.h> 37 #include <linux/cpu.h> 38 #include <linux/cpuset.h> 39 #include <linux/memory_hotplug.h> 40 #include <linux/nodemask.h> 41 #include <linux/vmalloc.h> 42 #include <linux/vmstat.h> 43 #include <linux/mempolicy.h> 44 #include <linux/memremap.h> 45 #include <linux/stop_machine.h> 46 #include <linux/sort.h> 47 #include <linux/pfn.h> 48 #include <linux/backing-dev.h> 49 #include <linux/fault-inject.h> 50 #include <linux/page-isolation.h> 51 #include <linux/page_ext.h> 52 #include <linux/debugobjects.h> 53 #include <linux/kmemleak.h> 54 #include <linux/compaction.h> 55 #include <trace/events/kmem.h> 56 #include <trace/events/oom.h> 57 #include <linux/prefetch.h> 58 #include <linux/mm_inline.h> 59 #include <linux/migrate.h> 60 #include <linux/hugetlb.h> 61 #include <linux/sched/rt.h> 62 #include <linux/sched/mm.h> 63 #include <linux/page_owner.h> 64 #include <linux/kthread.h> 65 #include <linux/memcontrol.h> 66 #include <linux/ftrace.h> 67 #include <linux/lockdep.h> 68 #include <linux/nmi.h> 69 #include <linux/psi.h> 70 71 #include <asm/sections.h> 72 #include <asm/tlbflush.h> 73 #include <asm/div64.h> 74 #include "internal.h" 75 76 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */ 77 static DEFINE_MUTEX(pcp_batch_high_lock); 78 #define MIN_PERCPU_PAGELIST_FRACTION (8) 79 80 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID 81 DEFINE_PER_CPU(int, numa_node); 82 EXPORT_PER_CPU_SYMBOL(numa_node); 83 #endif 84 85 DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key); 86 87 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 88 /* 89 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly. 90 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined. 91 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem() 92 * defined in <linux/topology.h>. 93 */ 94 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */ 95 EXPORT_PER_CPU_SYMBOL(_numa_mem_); 96 int _node_numa_mem_[MAX_NUMNODES]; 97 #endif 98 99 /* work_structs for global per-cpu drains */ 100 struct pcpu_drain { 101 struct zone *zone; 102 struct work_struct work; 103 }; 104 DEFINE_MUTEX(pcpu_drain_mutex); 105 DEFINE_PER_CPU(struct pcpu_drain, pcpu_drain); 106 107 #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY 108 volatile unsigned long latent_entropy __latent_entropy; 109 EXPORT_SYMBOL(latent_entropy); 110 #endif 111 112 /* 113 * Array of node states. 114 */ 115 nodemask_t node_states[NR_NODE_STATES] __read_mostly = { 116 [N_POSSIBLE] = NODE_MASK_ALL, 117 [N_ONLINE] = { { [0] = 1UL } }, 118 #ifndef CONFIG_NUMA 119 [N_NORMAL_MEMORY] = { { [0] = 1UL } }, 120 #ifdef CONFIG_HIGHMEM 121 [N_HIGH_MEMORY] = { { [0] = 1UL } }, 122 #endif 123 [N_MEMORY] = { { [0] = 1UL } }, 124 [N_CPU] = { { [0] = 1UL } }, 125 #endif /* NUMA */ 126 }; 127 EXPORT_SYMBOL(node_states); 128 129 atomic_long_t _totalram_pages __read_mostly; 130 EXPORT_SYMBOL(_totalram_pages); 131 unsigned long totalreserve_pages __read_mostly; 132 unsigned long totalcma_pages __read_mostly; 133 134 int percpu_pagelist_fraction; 135 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK; 136 137 /* 138 * A cached value of the page's pageblock's migratetype, used when the page is 139 * put on a pcplist. Used to avoid the pageblock migratetype lookup when 140 * freeing from pcplists in most cases, at the cost of possibly becoming stale. 141 * Also the migratetype set in the page does not necessarily match the pcplist 142 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any 143 * other index - this ensures that it will be put on the correct CMA freelist. 144 */ 145 static inline int get_pcppage_migratetype(struct page *page) 146 { 147 return page->index; 148 } 149 150 static inline void set_pcppage_migratetype(struct page *page, int migratetype) 151 { 152 page->index = migratetype; 153 } 154 155 #ifdef CONFIG_PM_SLEEP 156 /* 157 * The following functions are used by the suspend/hibernate code to temporarily 158 * change gfp_allowed_mask in order to avoid using I/O during memory allocations 159 * while devices are suspended. To avoid races with the suspend/hibernate code, 160 * they should always be called with system_transition_mutex held 161 * (gfp_allowed_mask also should only be modified with system_transition_mutex 162 * held, unless the suspend/hibernate code is guaranteed not to run in parallel 163 * with that modification). 164 */ 165 166 static gfp_t saved_gfp_mask; 167 168 void pm_restore_gfp_mask(void) 169 { 170 WARN_ON(!mutex_is_locked(&system_transition_mutex)); 171 if (saved_gfp_mask) { 172 gfp_allowed_mask = saved_gfp_mask; 173 saved_gfp_mask = 0; 174 } 175 } 176 177 void pm_restrict_gfp_mask(void) 178 { 179 WARN_ON(!mutex_is_locked(&system_transition_mutex)); 180 WARN_ON(saved_gfp_mask); 181 saved_gfp_mask = gfp_allowed_mask; 182 gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS); 183 } 184 185 bool pm_suspended_storage(void) 186 { 187 if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS)) 188 return false; 189 return true; 190 } 191 #endif /* CONFIG_PM_SLEEP */ 192 193 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE 194 unsigned int pageblock_order __read_mostly; 195 #endif 196 197 static void __free_pages_ok(struct page *page, unsigned int order); 198 199 /* 200 * results with 256, 32 in the lowmem_reserve sysctl: 201 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high) 202 * 1G machine -> (16M dma, 784M normal, 224M high) 203 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA 204 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL 205 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA 206 * 207 * TBD: should special case ZONE_DMA32 machines here - in those we normally 208 * don't need any ZONE_NORMAL reservation 209 */ 210 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = { 211 #ifdef CONFIG_ZONE_DMA 212 [ZONE_DMA] = 256, 213 #endif 214 #ifdef CONFIG_ZONE_DMA32 215 [ZONE_DMA32] = 256, 216 #endif 217 [ZONE_NORMAL] = 32, 218 #ifdef CONFIG_HIGHMEM 219 [ZONE_HIGHMEM] = 0, 220 #endif 221 [ZONE_MOVABLE] = 0, 222 }; 223 224 EXPORT_SYMBOL(totalram_pages); 225 226 static char * const zone_names[MAX_NR_ZONES] = { 227 #ifdef CONFIG_ZONE_DMA 228 "DMA", 229 #endif 230 #ifdef CONFIG_ZONE_DMA32 231 "DMA32", 232 #endif 233 "Normal", 234 #ifdef CONFIG_HIGHMEM 235 "HighMem", 236 #endif 237 "Movable", 238 #ifdef CONFIG_ZONE_DEVICE 239 "Device", 240 #endif 241 }; 242 243 const char * const migratetype_names[MIGRATE_TYPES] = { 244 "Unmovable", 245 "Movable", 246 "Reclaimable", 247 "HighAtomic", 248 #ifdef CONFIG_CMA 249 "CMA", 250 #endif 251 #ifdef CONFIG_MEMORY_ISOLATION 252 "Isolate", 253 #endif 254 }; 255 256 compound_page_dtor * const compound_page_dtors[] = { 257 NULL, 258 free_compound_page, 259 #ifdef CONFIG_HUGETLB_PAGE 260 free_huge_page, 261 #endif 262 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 263 free_transhuge_page, 264 #endif 265 }; 266 267 int min_free_kbytes = 1024; 268 int user_min_free_kbytes = -1; 269 int watermark_boost_factor __read_mostly = 15000; 270 int watermark_scale_factor = 10; 271 272 static unsigned long nr_kernel_pages __initdata; 273 static unsigned long nr_all_pages __initdata; 274 static unsigned long dma_reserve __initdata; 275 276 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 277 static unsigned long arch_zone_lowest_possible_pfn[MAX_NR_ZONES] __initdata; 278 static unsigned long arch_zone_highest_possible_pfn[MAX_NR_ZONES] __initdata; 279 static unsigned long required_kernelcore __initdata; 280 static unsigned long required_kernelcore_percent __initdata; 281 static unsigned long required_movablecore __initdata; 282 static unsigned long required_movablecore_percent __initdata; 283 static unsigned long zone_movable_pfn[MAX_NUMNODES] __initdata; 284 static bool mirrored_kernelcore __meminitdata; 285 286 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */ 287 int movable_zone; 288 EXPORT_SYMBOL(movable_zone); 289 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 290 291 #if MAX_NUMNODES > 1 292 int nr_node_ids __read_mostly = MAX_NUMNODES; 293 int nr_online_nodes __read_mostly = 1; 294 EXPORT_SYMBOL(nr_node_ids); 295 EXPORT_SYMBOL(nr_online_nodes); 296 #endif 297 298 int page_group_by_mobility_disabled __read_mostly; 299 300 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 301 /* 302 * During boot we initialize deferred pages on-demand, as needed, but once 303 * page_alloc_init_late() has finished, the deferred pages are all initialized, 304 * and we can permanently disable that path. 305 */ 306 static DEFINE_STATIC_KEY_TRUE(deferred_pages); 307 308 /* 309 * Calling kasan_free_pages() only after deferred memory initialization 310 * has completed. Poisoning pages during deferred memory init will greatly 311 * lengthen the process and cause problem in large memory systems as the 312 * deferred pages initialization is done with interrupt disabled. 313 * 314 * Assuming that there will be no reference to those newly initialized 315 * pages before they are ever allocated, this should have no effect on 316 * KASAN memory tracking as the poison will be properly inserted at page 317 * allocation time. The only corner case is when pages are allocated by 318 * on-demand allocation and then freed again before the deferred pages 319 * initialization is done, but this is not likely to happen. 320 */ 321 static inline void kasan_free_nondeferred_pages(struct page *page, int order) 322 { 323 if (!static_branch_unlikely(&deferred_pages)) 324 kasan_free_pages(page, order); 325 } 326 327 /* Returns true if the struct page for the pfn is uninitialised */ 328 static inline bool __meminit early_page_uninitialised(unsigned long pfn) 329 { 330 int nid = early_pfn_to_nid(pfn); 331 332 if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn) 333 return true; 334 335 return false; 336 } 337 338 /* 339 * Returns true when the remaining initialisation should be deferred until 340 * later in the boot cycle when it can be parallelised. 341 */ 342 static bool __meminit 343 defer_init(int nid, unsigned long pfn, unsigned long end_pfn) 344 { 345 static unsigned long prev_end_pfn, nr_initialised; 346 347 /* 348 * prev_end_pfn static that contains the end of previous zone 349 * No need to protect because called very early in boot before smp_init. 350 */ 351 if (prev_end_pfn != end_pfn) { 352 prev_end_pfn = end_pfn; 353 nr_initialised = 0; 354 } 355 356 /* Always populate low zones for address-constrained allocations */ 357 if (end_pfn < pgdat_end_pfn(NODE_DATA(nid))) 358 return false; 359 360 /* 361 * We start only with one section of pages, more pages are added as 362 * needed until the rest of deferred pages are initialized. 363 */ 364 nr_initialised++; 365 if ((nr_initialised > PAGES_PER_SECTION) && 366 (pfn & (PAGES_PER_SECTION - 1)) == 0) { 367 NODE_DATA(nid)->first_deferred_pfn = pfn; 368 return true; 369 } 370 return false; 371 } 372 #else 373 #define kasan_free_nondeferred_pages(p, o) kasan_free_pages(p, o) 374 375 static inline bool early_page_uninitialised(unsigned long pfn) 376 { 377 return false; 378 } 379 380 static inline bool defer_init(int nid, unsigned long pfn, unsigned long end_pfn) 381 { 382 return false; 383 } 384 #endif 385 386 /* Return a pointer to the bitmap storing bits affecting a block of pages */ 387 static inline unsigned long *get_pageblock_bitmap(struct page *page, 388 unsigned long pfn) 389 { 390 #ifdef CONFIG_SPARSEMEM 391 return __pfn_to_section(pfn)->pageblock_flags; 392 #else 393 return page_zone(page)->pageblock_flags; 394 #endif /* CONFIG_SPARSEMEM */ 395 } 396 397 static inline int pfn_to_bitidx(struct page *page, unsigned long pfn) 398 { 399 #ifdef CONFIG_SPARSEMEM 400 pfn &= (PAGES_PER_SECTION-1); 401 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS; 402 #else 403 pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages); 404 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS; 405 #endif /* CONFIG_SPARSEMEM */ 406 } 407 408 /** 409 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages 410 * @page: The page within the block of interest 411 * @pfn: The target page frame number 412 * @end_bitidx: The last bit of interest to retrieve 413 * @mask: mask of bits that the caller is interested in 414 * 415 * Return: pageblock_bits flags 416 */ 417 static __always_inline unsigned long __get_pfnblock_flags_mask(struct page *page, 418 unsigned long pfn, 419 unsigned long end_bitidx, 420 unsigned long mask) 421 { 422 unsigned long *bitmap; 423 unsigned long bitidx, word_bitidx; 424 unsigned long word; 425 426 bitmap = get_pageblock_bitmap(page, pfn); 427 bitidx = pfn_to_bitidx(page, pfn); 428 word_bitidx = bitidx / BITS_PER_LONG; 429 bitidx &= (BITS_PER_LONG-1); 430 431 word = bitmap[word_bitidx]; 432 bitidx += end_bitidx; 433 return (word >> (BITS_PER_LONG - bitidx - 1)) & mask; 434 } 435 436 unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn, 437 unsigned long end_bitidx, 438 unsigned long mask) 439 { 440 return __get_pfnblock_flags_mask(page, pfn, end_bitidx, mask); 441 } 442 443 static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn) 444 { 445 return __get_pfnblock_flags_mask(page, pfn, PB_migrate_end, MIGRATETYPE_MASK); 446 } 447 448 /** 449 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages 450 * @page: The page within the block of interest 451 * @flags: The flags to set 452 * @pfn: The target page frame number 453 * @end_bitidx: The last bit of interest 454 * @mask: mask of bits that the caller is interested in 455 */ 456 void set_pfnblock_flags_mask(struct page *page, unsigned long flags, 457 unsigned long pfn, 458 unsigned long end_bitidx, 459 unsigned long mask) 460 { 461 unsigned long *bitmap; 462 unsigned long bitidx, word_bitidx; 463 unsigned long old_word, word; 464 465 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4); 466 BUILD_BUG_ON(MIGRATE_TYPES > (1 << PB_migratetype_bits)); 467 468 bitmap = get_pageblock_bitmap(page, pfn); 469 bitidx = pfn_to_bitidx(page, pfn); 470 word_bitidx = bitidx / BITS_PER_LONG; 471 bitidx &= (BITS_PER_LONG-1); 472 473 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page); 474 475 bitidx += end_bitidx; 476 mask <<= (BITS_PER_LONG - bitidx - 1); 477 flags <<= (BITS_PER_LONG - bitidx - 1); 478 479 word = READ_ONCE(bitmap[word_bitidx]); 480 for (;;) { 481 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags); 482 if (word == old_word) 483 break; 484 word = old_word; 485 } 486 } 487 488 void set_pageblock_migratetype(struct page *page, int migratetype) 489 { 490 if (unlikely(page_group_by_mobility_disabled && 491 migratetype < MIGRATE_PCPTYPES)) 492 migratetype = MIGRATE_UNMOVABLE; 493 494 set_pageblock_flags_group(page, (unsigned long)migratetype, 495 PB_migrate, PB_migrate_end); 496 } 497 498 #ifdef CONFIG_DEBUG_VM 499 static int page_outside_zone_boundaries(struct zone *zone, struct page *page) 500 { 501 int ret = 0; 502 unsigned seq; 503 unsigned long pfn = page_to_pfn(page); 504 unsigned long sp, start_pfn; 505 506 do { 507 seq = zone_span_seqbegin(zone); 508 start_pfn = zone->zone_start_pfn; 509 sp = zone->spanned_pages; 510 if (!zone_spans_pfn(zone, pfn)) 511 ret = 1; 512 } while (zone_span_seqretry(zone, seq)); 513 514 if (ret) 515 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n", 516 pfn, zone_to_nid(zone), zone->name, 517 start_pfn, start_pfn + sp); 518 519 return ret; 520 } 521 522 static int page_is_consistent(struct zone *zone, struct page *page) 523 { 524 if (!pfn_valid_within(page_to_pfn(page))) 525 return 0; 526 if (zone != page_zone(page)) 527 return 0; 528 529 return 1; 530 } 531 /* 532 * Temporary debugging check for pages not lying within a given zone. 533 */ 534 static int __maybe_unused bad_range(struct zone *zone, struct page *page) 535 { 536 if (page_outside_zone_boundaries(zone, page)) 537 return 1; 538 if (!page_is_consistent(zone, page)) 539 return 1; 540 541 return 0; 542 } 543 #else 544 static inline int __maybe_unused bad_range(struct zone *zone, struct page *page) 545 { 546 return 0; 547 } 548 #endif 549 550 static void bad_page(struct page *page, const char *reason, 551 unsigned long bad_flags) 552 { 553 static unsigned long resume; 554 static unsigned long nr_shown; 555 static unsigned long nr_unshown; 556 557 /* 558 * Allow a burst of 60 reports, then keep quiet for that minute; 559 * or allow a steady drip of one report per second. 560 */ 561 if (nr_shown == 60) { 562 if (time_before(jiffies, resume)) { 563 nr_unshown++; 564 goto out; 565 } 566 if (nr_unshown) { 567 pr_alert( 568 "BUG: Bad page state: %lu messages suppressed\n", 569 nr_unshown); 570 nr_unshown = 0; 571 } 572 nr_shown = 0; 573 } 574 if (nr_shown++ == 0) 575 resume = jiffies + 60 * HZ; 576 577 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n", 578 current->comm, page_to_pfn(page)); 579 __dump_page(page, reason); 580 bad_flags &= page->flags; 581 if (bad_flags) 582 pr_alert("bad because of flags: %#lx(%pGp)\n", 583 bad_flags, &bad_flags); 584 dump_page_owner(page); 585 586 print_modules(); 587 dump_stack(); 588 out: 589 /* Leave bad fields for debug, except PageBuddy could make trouble */ 590 page_mapcount_reset(page); /* remove PageBuddy */ 591 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 592 } 593 594 /* 595 * Higher-order pages are called "compound pages". They are structured thusly: 596 * 597 * The first PAGE_SIZE page is called the "head page" and have PG_head set. 598 * 599 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded 600 * in bit 0 of page->compound_head. The rest of bits is pointer to head page. 601 * 602 * The first tail page's ->compound_dtor holds the offset in array of compound 603 * page destructors. See compound_page_dtors. 604 * 605 * The first tail page's ->compound_order holds the order of allocation. 606 * This usage means that zero-order pages may not be compound. 607 */ 608 609 void free_compound_page(struct page *page) 610 { 611 __free_pages_ok(page, compound_order(page)); 612 } 613 614 void prep_compound_page(struct page *page, unsigned int order) 615 { 616 int i; 617 int nr_pages = 1 << order; 618 619 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR); 620 set_compound_order(page, order); 621 __SetPageHead(page); 622 for (i = 1; i < nr_pages; i++) { 623 struct page *p = page + i; 624 set_page_count(p, 0); 625 p->mapping = TAIL_MAPPING; 626 set_compound_head(p, page); 627 } 628 atomic_set(compound_mapcount_ptr(page), -1); 629 } 630 631 #ifdef CONFIG_DEBUG_PAGEALLOC 632 unsigned int _debug_guardpage_minorder; 633 bool _debug_pagealloc_enabled __read_mostly 634 = IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT); 635 EXPORT_SYMBOL(_debug_pagealloc_enabled); 636 bool _debug_guardpage_enabled __read_mostly; 637 638 static int __init early_debug_pagealloc(char *buf) 639 { 640 if (!buf) 641 return -EINVAL; 642 return kstrtobool(buf, &_debug_pagealloc_enabled); 643 } 644 early_param("debug_pagealloc", early_debug_pagealloc); 645 646 static bool need_debug_guardpage(void) 647 { 648 /* If we don't use debug_pagealloc, we don't need guard page */ 649 if (!debug_pagealloc_enabled()) 650 return false; 651 652 if (!debug_guardpage_minorder()) 653 return false; 654 655 return true; 656 } 657 658 static void init_debug_guardpage(void) 659 { 660 if (!debug_pagealloc_enabled()) 661 return; 662 663 if (!debug_guardpage_minorder()) 664 return; 665 666 _debug_guardpage_enabled = true; 667 } 668 669 struct page_ext_operations debug_guardpage_ops = { 670 .need = need_debug_guardpage, 671 .init = init_debug_guardpage, 672 }; 673 674 static int __init debug_guardpage_minorder_setup(char *buf) 675 { 676 unsigned long res; 677 678 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) { 679 pr_err("Bad debug_guardpage_minorder value\n"); 680 return 0; 681 } 682 _debug_guardpage_minorder = res; 683 pr_info("Setting debug_guardpage_minorder to %lu\n", res); 684 return 0; 685 } 686 early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup); 687 688 static inline bool set_page_guard(struct zone *zone, struct page *page, 689 unsigned int order, int migratetype) 690 { 691 struct page_ext *page_ext; 692 693 if (!debug_guardpage_enabled()) 694 return false; 695 696 if (order >= debug_guardpage_minorder()) 697 return false; 698 699 page_ext = lookup_page_ext(page); 700 if (unlikely(!page_ext)) 701 return false; 702 703 __set_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags); 704 705 INIT_LIST_HEAD(&page->lru); 706 set_page_private(page, order); 707 /* Guard pages are not available for any usage */ 708 __mod_zone_freepage_state(zone, -(1 << order), migratetype); 709 710 return true; 711 } 712 713 static inline void clear_page_guard(struct zone *zone, struct page *page, 714 unsigned int order, int migratetype) 715 { 716 struct page_ext *page_ext; 717 718 if (!debug_guardpage_enabled()) 719 return; 720 721 page_ext = lookup_page_ext(page); 722 if (unlikely(!page_ext)) 723 return; 724 725 __clear_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags); 726 727 set_page_private(page, 0); 728 if (!is_migrate_isolate(migratetype)) 729 __mod_zone_freepage_state(zone, (1 << order), migratetype); 730 } 731 #else 732 struct page_ext_operations debug_guardpage_ops; 733 static inline bool set_page_guard(struct zone *zone, struct page *page, 734 unsigned int order, int migratetype) { return false; } 735 static inline void clear_page_guard(struct zone *zone, struct page *page, 736 unsigned int order, int migratetype) {} 737 #endif 738 739 static inline void set_page_order(struct page *page, unsigned int order) 740 { 741 set_page_private(page, order); 742 __SetPageBuddy(page); 743 } 744 745 static inline void rmv_page_order(struct page *page) 746 { 747 __ClearPageBuddy(page); 748 set_page_private(page, 0); 749 } 750 751 /* 752 * This function checks whether a page is free && is the buddy 753 * we can coalesce a page and its buddy if 754 * (a) the buddy is not in a hole (check before calling!) && 755 * (b) the buddy is in the buddy system && 756 * (c) a page and its buddy have the same order && 757 * (d) a page and its buddy are in the same zone. 758 * 759 * For recording whether a page is in the buddy system, we set PageBuddy. 760 * Setting, clearing, and testing PageBuddy is serialized by zone->lock. 761 * 762 * For recording page's order, we use page_private(page). 763 */ 764 static inline int page_is_buddy(struct page *page, struct page *buddy, 765 unsigned int order) 766 { 767 if (page_is_guard(buddy) && page_order(buddy) == order) { 768 if (page_zone_id(page) != page_zone_id(buddy)) 769 return 0; 770 771 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy); 772 773 return 1; 774 } 775 776 if (PageBuddy(buddy) && page_order(buddy) == order) { 777 /* 778 * zone check is done late to avoid uselessly 779 * calculating zone/node ids for pages that could 780 * never merge. 781 */ 782 if (page_zone_id(page) != page_zone_id(buddy)) 783 return 0; 784 785 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy); 786 787 return 1; 788 } 789 return 0; 790 } 791 792 /* 793 * Freeing function for a buddy system allocator. 794 * 795 * The concept of a buddy system is to maintain direct-mapped table 796 * (containing bit values) for memory blocks of various "orders". 797 * The bottom level table contains the map for the smallest allocatable 798 * units of memory (here, pages), and each level above it describes 799 * pairs of units from the levels below, hence, "buddies". 800 * At a high level, all that happens here is marking the table entry 801 * at the bottom level available, and propagating the changes upward 802 * as necessary, plus some accounting needed to play nicely with other 803 * parts of the VM system. 804 * At each level, we keep a list of pages, which are heads of continuous 805 * free pages of length of (1 << order) and marked with PageBuddy. 806 * Page's order is recorded in page_private(page) field. 807 * So when we are allocating or freeing one, we can derive the state of the 808 * other. That is, if we allocate a small block, and both were 809 * free, the remainder of the region must be split into blocks. 810 * If a block is freed, and its buddy is also free, then this 811 * triggers coalescing into a block of larger size. 812 * 813 * -- nyc 814 */ 815 816 static inline void __free_one_page(struct page *page, 817 unsigned long pfn, 818 struct zone *zone, unsigned int order, 819 int migratetype) 820 { 821 unsigned long combined_pfn; 822 unsigned long uninitialized_var(buddy_pfn); 823 struct page *buddy; 824 unsigned int max_order; 825 826 max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1); 827 828 VM_BUG_ON(!zone_is_initialized(zone)); 829 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page); 830 831 VM_BUG_ON(migratetype == -1); 832 if (likely(!is_migrate_isolate(migratetype))) 833 __mod_zone_freepage_state(zone, 1 << order, migratetype); 834 835 VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page); 836 VM_BUG_ON_PAGE(bad_range(zone, page), page); 837 838 continue_merging: 839 while (order < max_order - 1) { 840 buddy_pfn = __find_buddy_pfn(pfn, order); 841 buddy = page + (buddy_pfn - pfn); 842 843 if (!pfn_valid_within(buddy_pfn)) 844 goto done_merging; 845 if (!page_is_buddy(page, buddy, order)) 846 goto done_merging; 847 /* 848 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page, 849 * merge with it and move up one order. 850 */ 851 if (page_is_guard(buddy)) { 852 clear_page_guard(zone, buddy, order, migratetype); 853 } else { 854 list_del(&buddy->lru); 855 zone->free_area[order].nr_free--; 856 rmv_page_order(buddy); 857 } 858 combined_pfn = buddy_pfn & pfn; 859 page = page + (combined_pfn - pfn); 860 pfn = combined_pfn; 861 order++; 862 } 863 if (max_order < MAX_ORDER) { 864 /* If we are here, it means order is >= pageblock_order. 865 * We want to prevent merge between freepages on isolate 866 * pageblock and normal pageblock. Without this, pageblock 867 * isolation could cause incorrect freepage or CMA accounting. 868 * 869 * We don't want to hit this code for the more frequent 870 * low-order merging. 871 */ 872 if (unlikely(has_isolate_pageblock(zone))) { 873 int buddy_mt; 874 875 buddy_pfn = __find_buddy_pfn(pfn, order); 876 buddy = page + (buddy_pfn - pfn); 877 buddy_mt = get_pageblock_migratetype(buddy); 878 879 if (migratetype != buddy_mt 880 && (is_migrate_isolate(migratetype) || 881 is_migrate_isolate(buddy_mt))) 882 goto done_merging; 883 } 884 max_order++; 885 goto continue_merging; 886 } 887 888 done_merging: 889 set_page_order(page, order); 890 891 /* 892 * If this is not the largest possible page, check if the buddy 893 * of the next-highest order is free. If it is, it's possible 894 * that pages are being freed that will coalesce soon. In case, 895 * that is happening, add the free page to the tail of the list 896 * so it's less likely to be used soon and more likely to be merged 897 * as a higher order page 898 */ 899 if ((order < MAX_ORDER-2) && pfn_valid_within(buddy_pfn)) { 900 struct page *higher_page, *higher_buddy; 901 combined_pfn = buddy_pfn & pfn; 902 higher_page = page + (combined_pfn - pfn); 903 buddy_pfn = __find_buddy_pfn(combined_pfn, order + 1); 904 higher_buddy = higher_page + (buddy_pfn - combined_pfn); 905 if (pfn_valid_within(buddy_pfn) && 906 page_is_buddy(higher_page, higher_buddy, order + 1)) { 907 list_add_tail(&page->lru, 908 &zone->free_area[order].free_list[migratetype]); 909 goto out; 910 } 911 } 912 913 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]); 914 out: 915 zone->free_area[order].nr_free++; 916 } 917 918 /* 919 * A bad page could be due to a number of fields. Instead of multiple branches, 920 * try and check multiple fields with one check. The caller must do a detailed 921 * check if necessary. 922 */ 923 static inline bool page_expected_state(struct page *page, 924 unsigned long check_flags) 925 { 926 if (unlikely(atomic_read(&page->_mapcount) != -1)) 927 return false; 928 929 if (unlikely((unsigned long)page->mapping | 930 page_ref_count(page) | 931 #ifdef CONFIG_MEMCG 932 (unsigned long)page->mem_cgroup | 933 #endif 934 (page->flags & check_flags))) 935 return false; 936 937 return true; 938 } 939 940 static void free_pages_check_bad(struct page *page) 941 { 942 const char *bad_reason; 943 unsigned long bad_flags; 944 945 bad_reason = NULL; 946 bad_flags = 0; 947 948 if (unlikely(atomic_read(&page->_mapcount) != -1)) 949 bad_reason = "nonzero mapcount"; 950 if (unlikely(page->mapping != NULL)) 951 bad_reason = "non-NULL mapping"; 952 if (unlikely(page_ref_count(page) != 0)) 953 bad_reason = "nonzero _refcount"; 954 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) { 955 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set"; 956 bad_flags = PAGE_FLAGS_CHECK_AT_FREE; 957 } 958 #ifdef CONFIG_MEMCG 959 if (unlikely(page->mem_cgroup)) 960 bad_reason = "page still charged to cgroup"; 961 #endif 962 bad_page(page, bad_reason, bad_flags); 963 } 964 965 static inline int free_pages_check(struct page *page) 966 { 967 if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE))) 968 return 0; 969 970 /* Something has gone sideways, find it */ 971 free_pages_check_bad(page); 972 return 1; 973 } 974 975 static int free_tail_pages_check(struct page *head_page, struct page *page) 976 { 977 int ret = 1; 978 979 /* 980 * We rely page->lru.next never has bit 0 set, unless the page 981 * is PageTail(). Let's make sure that's true even for poisoned ->lru. 982 */ 983 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1); 984 985 if (!IS_ENABLED(CONFIG_DEBUG_VM)) { 986 ret = 0; 987 goto out; 988 } 989 switch (page - head_page) { 990 case 1: 991 /* the first tail page: ->mapping may be compound_mapcount() */ 992 if (unlikely(compound_mapcount(page))) { 993 bad_page(page, "nonzero compound_mapcount", 0); 994 goto out; 995 } 996 break; 997 case 2: 998 /* 999 * the second tail page: ->mapping is 1000 * deferred_list.next -- ignore value. 1001 */ 1002 break; 1003 default: 1004 if (page->mapping != TAIL_MAPPING) { 1005 bad_page(page, "corrupted mapping in tail page", 0); 1006 goto out; 1007 } 1008 break; 1009 } 1010 if (unlikely(!PageTail(page))) { 1011 bad_page(page, "PageTail not set", 0); 1012 goto out; 1013 } 1014 if (unlikely(compound_head(page) != head_page)) { 1015 bad_page(page, "compound_head not consistent", 0); 1016 goto out; 1017 } 1018 ret = 0; 1019 out: 1020 page->mapping = NULL; 1021 clear_compound_head(page); 1022 return ret; 1023 } 1024 1025 static __always_inline bool free_pages_prepare(struct page *page, 1026 unsigned int order, bool check_free) 1027 { 1028 int bad = 0; 1029 1030 VM_BUG_ON_PAGE(PageTail(page), page); 1031 1032 trace_mm_page_free(page, order); 1033 1034 /* 1035 * Check tail pages before head page information is cleared to 1036 * avoid checking PageCompound for order-0 pages. 1037 */ 1038 if (unlikely(order)) { 1039 bool compound = PageCompound(page); 1040 int i; 1041 1042 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page); 1043 1044 if (compound) 1045 ClearPageDoubleMap(page); 1046 for (i = 1; i < (1 << order); i++) { 1047 if (compound) 1048 bad += free_tail_pages_check(page, page + i); 1049 if (unlikely(free_pages_check(page + i))) { 1050 bad++; 1051 continue; 1052 } 1053 (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP; 1054 } 1055 } 1056 if (PageMappingFlags(page)) 1057 page->mapping = NULL; 1058 if (memcg_kmem_enabled() && PageKmemcg(page)) 1059 memcg_kmem_uncharge(page, order); 1060 if (check_free) 1061 bad += free_pages_check(page); 1062 if (bad) 1063 return false; 1064 1065 page_cpupid_reset_last(page); 1066 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP; 1067 reset_page_owner(page, order); 1068 1069 if (!PageHighMem(page)) { 1070 debug_check_no_locks_freed(page_address(page), 1071 PAGE_SIZE << order); 1072 debug_check_no_obj_freed(page_address(page), 1073 PAGE_SIZE << order); 1074 } 1075 arch_free_page(page, order); 1076 kernel_poison_pages(page, 1 << order, 0); 1077 kernel_map_pages(page, 1 << order, 0); 1078 kasan_free_nondeferred_pages(page, order); 1079 1080 return true; 1081 } 1082 1083 #ifdef CONFIG_DEBUG_VM 1084 static inline bool free_pcp_prepare(struct page *page) 1085 { 1086 return free_pages_prepare(page, 0, true); 1087 } 1088 1089 static inline bool bulkfree_pcp_prepare(struct page *page) 1090 { 1091 return false; 1092 } 1093 #else 1094 static bool free_pcp_prepare(struct page *page) 1095 { 1096 return free_pages_prepare(page, 0, false); 1097 } 1098 1099 static bool bulkfree_pcp_prepare(struct page *page) 1100 { 1101 return free_pages_check(page); 1102 } 1103 #endif /* CONFIG_DEBUG_VM */ 1104 1105 static inline void prefetch_buddy(struct page *page) 1106 { 1107 unsigned long pfn = page_to_pfn(page); 1108 unsigned long buddy_pfn = __find_buddy_pfn(pfn, 0); 1109 struct page *buddy = page + (buddy_pfn - pfn); 1110 1111 prefetch(buddy); 1112 } 1113 1114 /* 1115 * Frees a number of pages from the PCP lists 1116 * Assumes all pages on list are in same zone, and of same order. 1117 * count is the number of pages to free. 1118 * 1119 * If the zone was previously in an "all pages pinned" state then look to 1120 * see if this freeing clears that state. 1121 * 1122 * And clear the zone's pages_scanned counter, to hold off the "all pages are 1123 * pinned" detection logic. 1124 */ 1125 static void free_pcppages_bulk(struct zone *zone, int count, 1126 struct per_cpu_pages *pcp) 1127 { 1128 int migratetype = 0; 1129 int batch_free = 0; 1130 int prefetch_nr = 0; 1131 bool isolated_pageblocks; 1132 struct page *page, *tmp; 1133 LIST_HEAD(head); 1134 1135 while (count) { 1136 struct list_head *list; 1137 1138 /* 1139 * Remove pages from lists in a round-robin fashion. A 1140 * batch_free count is maintained that is incremented when an 1141 * empty list is encountered. This is so more pages are freed 1142 * off fuller lists instead of spinning excessively around empty 1143 * lists 1144 */ 1145 do { 1146 batch_free++; 1147 if (++migratetype == MIGRATE_PCPTYPES) 1148 migratetype = 0; 1149 list = &pcp->lists[migratetype]; 1150 } while (list_empty(list)); 1151 1152 /* This is the only non-empty list. Free them all. */ 1153 if (batch_free == MIGRATE_PCPTYPES) 1154 batch_free = count; 1155 1156 do { 1157 page = list_last_entry(list, struct page, lru); 1158 /* must delete to avoid corrupting pcp list */ 1159 list_del(&page->lru); 1160 pcp->count--; 1161 1162 if (bulkfree_pcp_prepare(page)) 1163 continue; 1164 1165 list_add_tail(&page->lru, &head); 1166 1167 /* 1168 * We are going to put the page back to the global 1169 * pool, prefetch its buddy to speed up later access 1170 * under zone->lock. It is believed the overhead of 1171 * an additional test and calculating buddy_pfn here 1172 * can be offset by reduced memory latency later. To 1173 * avoid excessive prefetching due to large count, only 1174 * prefetch buddy for the first pcp->batch nr of pages. 1175 */ 1176 if (prefetch_nr++ < pcp->batch) 1177 prefetch_buddy(page); 1178 } while (--count && --batch_free && !list_empty(list)); 1179 } 1180 1181 spin_lock(&zone->lock); 1182 isolated_pageblocks = has_isolate_pageblock(zone); 1183 1184 /* 1185 * Use safe version since after __free_one_page(), 1186 * page->lru.next will not point to original list. 1187 */ 1188 list_for_each_entry_safe(page, tmp, &head, lru) { 1189 int mt = get_pcppage_migratetype(page); 1190 /* MIGRATE_ISOLATE page should not go to pcplists */ 1191 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page); 1192 /* Pageblock could have been isolated meanwhile */ 1193 if (unlikely(isolated_pageblocks)) 1194 mt = get_pageblock_migratetype(page); 1195 1196 __free_one_page(page, page_to_pfn(page), zone, 0, mt); 1197 trace_mm_page_pcpu_drain(page, 0, mt); 1198 } 1199 spin_unlock(&zone->lock); 1200 } 1201 1202 static void free_one_page(struct zone *zone, 1203 struct page *page, unsigned long pfn, 1204 unsigned int order, 1205 int migratetype) 1206 { 1207 spin_lock(&zone->lock); 1208 if (unlikely(has_isolate_pageblock(zone) || 1209 is_migrate_isolate(migratetype))) { 1210 migratetype = get_pfnblock_migratetype(page, pfn); 1211 } 1212 __free_one_page(page, pfn, zone, order, migratetype); 1213 spin_unlock(&zone->lock); 1214 } 1215 1216 static void __meminit __init_single_page(struct page *page, unsigned long pfn, 1217 unsigned long zone, int nid) 1218 { 1219 mm_zero_struct_page(page); 1220 set_page_links(page, zone, nid, pfn); 1221 init_page_count(page); 1222 page_mapcount_reset(page); 1223 page_cpupid_reset_last(page); 1224 page_kasan_tag_reset(page); 1225 1226 INIT_LIST_HEAD(&page->lru); 1227 #ifdef WANT_PAGE_VIRTUAL 1228 /* The shift won't overflow because ZONE_NORMAL is below 4G. */ 1229 if (!is_highmem_idx(zone)) 1230 set_page_address(page, __va(pfn << PAGE_SHIFT)); 1231 #endif 1232 } 1233 1234 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 1235 static void __meminit init_reserved_page(unsigned long pfn) 1236 { 1237 pg_data_t *pgdat; 1238 int nid, zid; 1239 1240 if (!early_page_uninitialised(pfn)) 1241 return; 1242 1243 nid = early_pfn_to_nid(pfn); 1244 pgdat = NODE_DATA(nid); 1245 1246 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 1247 struct zone *zone = &pgdat->node_zones[zid]; 1248 1249 if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone)) 1250 break; 1251 } 1252 __init_single_page(pfn_to_page(pfn), pfn, zid, nid); 1253 } 1254 #else 1255 static inline void init_reserved_page(unsigned long pfn) 1256 { 1257 } 1258 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */ 1259 1260 /* 1261 * Initialised pages do not have PageReserved set. This function is 1262 * called for each range allocated by the bootmem allocator and 1263 * marks the pages PageReserved. The remaining valid pages are later 1264 * sent to the buddy page allocator. 1265 */ 1266 void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end) 1267 { 1268 unsigned long start_pfn = PFN_DOWN(start); 1269 unsigned long end_pfn = PFN_UP(end); 1270 1271 for (; start_pfn < end_pfn; start_pfn++) { 1272 if (pfn_valid(start_pfn)) { 1273 struct page *page = pfn_to_page(start_pfn); 1274 1275 init_reserved_page(start_pfn); 1276 1277 /* Avoid false-positive PageTail() */ 1278 INIT_LIST_HEAD(&page->lru); 1279 1280 /* 1281 * no need for atomic set_bit because the struct 1282 * page is not visible yet so nobody should 1283 * access it yet. 1284 */ 1285 __SetPageReserved(page); 1286 } 1287 } 1288 } 1289 1290 static void __free_pages_ok(struct page *page, unsigned int order) 1291 { 1292 unsigned long flags; 1293 int migratetype; 1294 unsigned long pfn = page_to_pfn(page); 1295 1296 if (!free_pages_prepare(page, order, true)) 1297 return; 1298 1299 migratetype = get_pfnblock_migratetype(page, pfn); 1300 local_irq_save(flags); 1301 __count_vm_events(PGFREE, 1 << order); 1302 free_one_page(page_zone(page), page, pfn, order, migratetype); 1303 local_irq_restore(flags); 1304 } 1305 1306 static void __init __free_pages_boot_core(struct page *page, unsigned int order) 1307 { 1308 unsigned int nr_pages = 1 << order; 1309 struct page *p = page; 1310 unsigned int loop; 1311 1312 prefetchw(p); 1313 for (loop = 0; loop < (nr_pages - 1); loop++, p++) { 1314 prefetchw(p + 1); 1315 __ClearPageReserved(p); 1316 set_page_count(p, 0); 1317 } 1318 __ClearPageReserved(p); 1319 set_page_count(p, 0); 1320 1321 atomic_long_add(nr_pages, &page_zone(page)->managed_pages); 1322 set_page_refcounted(page); 1323 __free_pages(page, order); 1324 } 1325 1326 #if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \ 1327 defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) 1328 1329 static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata; 1330 1331 int __meminit early_pfn_to_nid(unsigned long pfn) 1332 { 1333 static DEFINE_SPINLOCK(early_pfn_lock); 1334 int nid; 1335 1336 spin_lock(&early_pfn_lock); 1337 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache); 1338 if (nid < 0) 1339 nid = first_online_node; 1340 spin_unlock(&early_pfn_lock); 1341 1342 return nid; 1343 } 1344 #endif 1345 1346 #ifdef CONFIG_NODES_SPAN_OTHER_NODES 1347 static inline bool __meminit __maybe_unused 1348 meminit_pfn_in_nid(unsigned long pfn, int node, 1349 struct mminit_pfnnid_cache *state) 1350 { 1351 int nid; 1352 1353 nid = __early_pfn_to_nid(pfn, state); 1354 if (nid >= 0 && nid != node) 1355 return false; 1356 return true; 1357 } 1358 1359 /* Only safe to use early in boot when initialisation is single-threaded */ 1360 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node) 1361 { 1362 return meminit_pfn_in_nid(pfn, node, &early_pfnnid_cache); 1363 } 1364 1365 #else 1366 1367 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node) 1368 { 1369 return true; 1370 } 1371 static inline bool __meminit __maybe_unused 1372 meminit_pfn_in_nid(unsigned long pfn, int node, 1373 struct mminit_pfnnid_cache *state) 1374 { 1375 return true; 1376 } 1377 #endif 1378 1379 1380 void __init memblock_free_pages(struct page *page, unsigned long pfn, 1381 unsigned int order) 1382 { 1383 if (early_page_uninitialised(pfn)) 1384 return; 1385 return __free_pages_boot_core(page, order); 1386 } 1387 1388 /* 1389 * Check that the whole (or subset of) a pageblock given by the interval of 1390 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it 1391 * with the migration of free compaction scanner. The scanners then need to 1392 * use only pfn_valid_within() check for arches that allow holes within 1393 * pageblocks. 1394 * 1395 * Return struct page pointer of start_pfn, or NULL if checks were not passed. 1396 * 1397 * It's possible on some configurations to have a setup like node0 node1 node0 1398 * i.e. it's possible that all pages within a zones range of pages do not 1399 * belong to a single zone. We assume that a border between node0 and node1 1400 * can occur within a single pageblock, but not a node0 node1 node0 1401 * interleaving within a single pageblock. It is therefore sufficient to check 1402 * the first and last page of a pageblock and avoid checking each individual 1403 * page in a pageblock. 1404 */ 1405 struct page *__pageblock_pfn_to_page(unsigned long start_pfn, 1406 unsigned long end_pfn, struct zone *zone) 1407 { 1408 struct page *start_page; 1409 struct page *end_page; 1410 1411 /* end_pfn is one past the range we are checking */ 1412 end_pfn--; 1413 1414 if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn)) 1415 return NULL; 1416 1417 start_page = pfn_to_online_page(start_pfn); 1418 if (!start_page) 1419 return NULL; 1420 1421 if (page_zone(start_page) != zone) 1422 return NULL; 1423 1424 end_page = pfn_to_page(end_pfn); 1425 1426 /* This gives a shorter code than deriving page_zone(end_page) */ 1427 if (page_zone_id(start_page) != page_zone_id(end_page)) 1428 return NULL; 1429 1430 return start_page; 1431 } 1432 1433 void set_zone_contiguous(struct zone *zone) 1434 { 1435 unsigned long block_start_pfn = zone->zone_start_pfn; 1436 unsigned long block_end_pfn; 1437 1438 block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages); 1439 for (; block_start_pfn < zone_end_pfn(zone); 1440 block_start_pfn = block_end_pfn, 1441 block_end_pfn += pageblock_nr_pages) { 1442 1443 block_end_pfn = min(block_end_pfn, zone_end_pfn(zone)); 1444 1445 if (!__pageblock_pfn_to_page(block_start_pfn, 1446 block_end_pfn, zone)) 1447 return; 1448 } 1449 1450 /* We confirm that there is no hole */ 1451 zone->contiguous = true; 1452 } 1453 1454 void clear_zone_contiguous(struct zone *zone) 1455 { 1456 zone->contiguous = false; 1457 } 1458 1459 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 1460 static void __init deferred_free_range(unsigned long pfn, 1461 unsigned long nr_pages) 1462 { 1463 struct page *page; 1464 unsigned long i; 1465 1466 if (!nr_pages) 1467 return; 1468 1469 page = pfn_to_page(pfn); 1470 1471 /* Free a large naturally-aligned chunk if possible */ 1472 if (nr_pages == pageblock_nr_pages && 1473 (pfn & (pageblock_nr_pages - 1)) == 0) { 1474 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 1475 __free_pages_boot_core(page, pageblock_order); 1476 return; 1477 } 1478 1479 for (i = 0; i < nr_pages; i++, page++, pfn++) { 1480 if ((pfn & (pageblock_nr_pages - 1)) == 0) 1481 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 1482 __free_pages_boot_core(page, 0); 1483 } 1484 } 1485 1486 /* Completion tracking for deferred_init_memmap() threads */ 1487 static atomic_t pgdat_init_n_undone __initdata; 1488 static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp); 1489 1490 static inline void __init pgdat_init_report_one_done(void) 1491 { 1492 if (atomic_dec_and_test(&pgdat_init_n_undone)) 1493 complete(&pgdat_init_all_done_comp); 1494 } 1495 1496 /* 1497 * Returns true if page needs to be initialized or freed to buddy allocator. 1498 * 1499 * First we check if pfn is valid on architectures where it is possible to have 1500 * holes within pageblock_nr_pages. On systems where it is not possible, this 1501 * function is optimized out. 1502 * 1503 * Then, we check if a current large page is valid by only checking the validity 1504 * of the head pfn. 1505 * 1506 * Finally, meminit_pfn_in_nid is checked on systems where pfns can interleave 1507 * within a node: a pfn is between start and end of a node, but does not belong 1508 * to this memory node. 1509 */ 1510 static inline bool __init 1511 deferred_pfn_valid(int nid, unsigned long pfn, 1512 struct mminit_pfnnid_cache *nid_init_state) 1513 { 1514 if (!pfn_valid_within(pfn)) 1515 return false; 1516 if (!(pfn & (pageblock_nr_pages - 1)) && !pfn_valid(pfn)) 1517 return false; 1518 if (!meminit_pfn_in_nid(pfn, nid, nid_init_state)) 1519 return false; 1520 return true; 1521 } 1522 1523 /* 1524 * Free pages to buddy allocator. Try to free aligned pages in 1525 * pageblock_nr_pages sizes. 1526 */ 1527 static void __init deferred_free_pages(int nid, int zid, unsigned long pfn, 1528 unsigned long end_pfn) 1529 { 1530 struct mminit_pfnnid_cache nid_init_state = { }; 1531 unsigned long nr_pgmask = pageblock_nr_pages - 1; 1532 unsigned long nr_free = 0; 1533 1534 for (; pfn < end_pfn; pfn++) { 1535 if (!deferred_pfn_valid(nid, pfn, &nid_init_state)) { 1536 deferred_free_range(pfn - nr_free, nr_free); 1537 nr_free = 0; 1538 } else if (!(pfn & nr_pgmask)) { 1539 deferred_free_range(pfn - nr_free, nr_free); 1540 nr_free = 1; 1541 touch_nmi_watchdog(); 1542 } else { 1543 nr_free++; 1544 } 1545 } 1546 /* Free the last block of pages to allocator */ 1547 deferred_free_range(pfn - nr_free, nr_free); 1548 } 1549 1550 /* 1551 * Initialize struct pages. We minimize pfn page lookups and scheduler checks 1552 * by performing it only once every pageblock_nr_pages. 1553 * Return number of pages initialized. 1554 */ 1555 static unsigned long __init deferred_init_pages(int nid, int zid, 1556 unsigned long pfn, 1557 unsigned long end_pfn) 1558 { 1559 struct mminit_pfnnid_cache nid_init_state = { }; 1560 unsigned long nr_pgmask = pageblock_nr_pages - 1; 1561 unsigned long nr_pages = 0; 1562 struct page *page = NULL; 1563 1564 for (; pfn < end_pfn; pfn++) { 1565 if (!deferred_pfn_valid(nid, pfn, &nid_init_state)) { 1566 page = NULL; 1567 continue; 1568 } else if (!page || !(pfn & nr_pgmask)) { 1569 page = pfn_to_page(pfn); 1570 touch_nmi_watchdog(); 1571 } else { 1572 page++; 1573 } 1574 __init_single_page(page, pfn, zid, nid); 1575 nr_pages++; 1576 } 1577 return (nr_pages); 1578 } 1579 1580 /* Initialise remaining memory on a node */ 1581 static int __init deferred_init_memmap(void *data) 1582 { 1583 pg_data_t *pgdat = data; 1584 int nid = pgdat->node_id; 1585 unsigned long start = jiffies; 1586 unsigned long nr_pages = 0; 1587 unsigned long spfn, epfn, first_init_pfn, flags; 1588 phys_addr_t spa, epa; 1589 int zid; 1590 struct zone *zone; 1591 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id); 1592 u64 i; 1593 1594 /* Bind memory initialisation thread to a local node if possible */ 1595 if (!cpumask_empty(cpumask)) 1596 set_cpus_allowed_ptr(current, cpumask); 1597 1598 pgdat_resize_lock(pgdat, &flags); 1599 first_init_pfn = pgdat->first_deferred_pfn; 1600 if (first_init_pfn == ULONG_MAX) { 1601 pgdat_resize_unlock(pgdat, &flags); 1602 pgdat_init_report_one_done(); 1603 return 0; 1604 } 1605 1606 /* Sanity check boundaries */ 1607 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn); 1608 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat)); 1609 pgdat->first_deferred_pfn = ULONG_MAX; 1610 1611 /* Only the highest zone is deferred so find it */ 1612 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 1613 zone = pgdat->node_zones + zid; 1614 if (first_init_pfn < zone_end_pfn(zone)) 1615 break; 1616 } 1617 first_init_pfn = max(zone->zone_start_pfn, first_init_pfn); 1618 1619 /* 1620 * Initialize and free pages. We do it in two loops: first we initialize 1621 * struct page, than free to buddy allocator, because while we are 1622 * freeing pages we can access pages that are ahead (computing buddy 1623 * page in __free_one_page()). 1624 */ 1625 for_each_free_mem_range(i, nid, MEMBLOCK_NONE, &spa, &epa, NULL) { 1626 spfn = max_t(unsigned long, first_init_pfn, PFN_UP(spa)); 1627 epfn = min_t(unsigned long, zone_end_pfn(zone), PFN_DOWN(epa)); 1628 nr_pages += deferred_init_pages(nid, zid, spfn, epfn); 1629 } 1630 for_each_free_mem_range(i, nid, MEMBLOCK_NONE, &spa, &epa, NULL) { 1631 spfn = max_t(unsigned long, first_init_pfn, PFN_UP(spa)); 1632 epfn = min_t(unsigned long, zone_end_pfn(zone), PFN_DOWN(epa)); 1633 deferred_free_pages(nid, zid, spfn, epfn); 1634 } 1635 pgdat_resize_unlock(pgdat, &flags); 1636 1637 /* Sanity check that the next zone really is unpopulated */ 1638 WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone)); 1639 1640 pr_info("node %d initialised, %lu pages in %ums\n", nid, nr_pages, 1641 jiffies_to_msecs(jiffies - start)); 1642 1643 pgdat_init_report_one_done(); 1644 return 0; 1645 } 1646 1647 /* 1648 * If this zone has deferred pages, try to grow it by initializing enough 1649 * deferred pages to satisfy the allocation specified by order, rounded up to 1650 * the nearest PAGES_PER_SECTION boundary. So we're adding memory in increments 1651 * of SECTION_SIZE bytes by initializing struct pages in increments of 1652 * PAGES_PER_SECTION * sizeof(struct page) bytes. 1653 * 1654 * Return true when zone was grown, otherwise return false. We return true even 1655 * when we grow less than requested, to let the caller decide if there are 1656 * enough pages to satisfy the allocation. 1657 * 1658 * Note: We use noinline because this function is needed only during boot, and 1659 * it is called from a __ref function _deferred_grow_zone. This way we are 1660 * making sure that it is not inlined into permanent text section. 1661 */ 1662 static noinline bool __init 1663 deferred_grow_zone(struct zone *zone, unsigned int order) 1664 { 1665 int zid = zone_idx(zone); 1666 int nid = zone_to_nid(zone); 1667 pg_data_t *pgdat = NODE_DATA(nid); 1668 unsigned long nr_pages_needed = ALIGN(1 << order, PAGES_PER_SECTION); 1669 unsigned long nr_pages = 0; 1670 unsigned long first_init_pfn, spfn, epfn, t, flags; 1671 unsigned long first_deferred_pfn = pgdat->first_deferred_pfn; 1672 phys_addr_t spa, epa; 1673 u64 i; 1674 1675 /* Only the last zone may have deferred pages */ 1676 if (zone_end_pfn(zone) != pgdat_end_pfn(pgdat)) 1677 return false; 1678 1679 pgdat_resize_lock(pgdat, &flags); 1680 1681 /* 1682 * If deferred pages have been initialized while we were waiting for 1683 * the lock, return true, as the zone was grown. The caller will retry 1684 * this zone. We won't return to this function since the caller also 1685 * has this static branch. 1686 */ 1687 if (!static_branch_unlikely(&deferred_pages)) { 1688 pgdat_resize_unlock(pgdat, &flags); 1689 return true; 1690 } 1691 1692 /* 1693 * If someone grew this zone while we were waiting for spinlock, return 1694 * true, as there might be enough pages already. 1695 */ 1696 if (first_deferred_pfn != pgdat->first_deferred_pfn) { 1697 pgdat_resize_unlock(pgdat, &flags); 1698 return true; 1699 } 1700 1701 first_init_pfn = max(zone->zone_start_pfn, first_deferred_pfn); 1702 1703 if (first_init_pfn >= pgdat_end_pfn(pgdat)) { 1704 pgdat_resize_unlock(pgdat, &flags); 1705 return false; 1706 } 1707 1708 for_each_free_mem_range(i, nid, MEMBLOCK_NONE, &spa, &epa, NULL) { 1709 spfn = max_t(unsigned long, first_init_pfn, PFN_UP(spa)); 1710 epfn = min_t(unsigned long, zone_end_pfn(zone), PFN_DOWN(epa)); 1711 1712 while (spfn < epfn && nr_pages < nr_pages_needed) { 1713 t = ALIGN(spfn + PAGES_PER_SECTION, PAGES_PER_SECTION); 1714 first_deferred_pfn = min(t, epfn); 1715 nr_pages += deferred_init_pages(nid, zid, spfn, 1716 first_deferred_pfn); 1717 spfn = first_deferred_pfn; 1718 } 1719 1720 if (nr_pages >= nr_pages_needed) 1721 break; 1722 } 1723 1724 for_each_free_mem_range(i, nid, MEMBLOCK_NONE, &spa, &epa, NULL) { 1725 spfn = max_t(unsigned long, first_init_pfn, PFN_UP(spa)); 1726 epfn = min_t(unsigned long, first_deferred_pfn, PFN_DOWN(epa)); 1727 deferred_free_pages(nid, zid, spfn, epfn); 1728 1729 if (first_deferred_pfn == epfn) 1730 break; 1731 } 1732 pgdat->first_deferred_pfn = first_deferred_pfn; 1733 pgdat_resize_unlock(pgdat, &flags); 1734 1735 return nr_pages > 0; 1736 } 1737 1738 /* 1739 * deferred_grow_zone() is __init, but it is called from 1740 * get_page_from_freelist() during early boot until deferred_pages permanently 1741 * disables this call. This is why we have refdata wrapper to avoid warning, 1742 * and to ensure that the function body gets unloaded. 1743 */ 1744 static bool __ref 1745 _deferred_grow_zone(struct zone *zone, unsigned int order) 1746 { 1747 return deferred_grow_zone(zone, order); 1748 } 1749 1750 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */ 1751 1752 void __init page_alloc_init_late(void) 1753 { 1754 struct zone *zone; 1755 1756 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 1757 int nid; 1758 1759 /* There will be num_node_state(N_MEMORY) threads */ 1760 atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY)); 1761 for_each_node_state(nid, N_MEMORY) { 1762 kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid); 1763 } 1764 1765 /* Block until all are initialised */ 1766 wait_for_completion(&pgdat_init_all_done_comp); 1767 1768 /* 1769 * We initialized the rest of the deferred pages. Permanently disable 1770 * on-demand struct page initialization. 1771 */ 1772 static_branch_disable(&deferred_pages); 1773 1774 /* Reinit limits that are based on free pages after the kernel is up */ 1775 files_maxfiles_init(); 1776 #endif 1777 #ifdef CONFIG_ARCH_DISCARD_MEMBLOCK 1778 /* Discard memblock private memory */ 1779 memblock_discard(); 1780 #endif 1781 1782 for_each_populated_zone(zone) 1783 set_zone_contiguous(zone); 1784 } 1785 1786 #ifdef CONFIG_CMA 1787 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */ 1788 void __init init_cma_reserved_pageblock(struct page *page) 1789 { 1790 unsigned i = pageblock_nr_pages; 1791 struct page *p = page; 1792 1793 do { 1794 __ClearPageReserved(p); 1795 set_page_count(p, 0); 1796 } while (++p, --i); 1797 1798 set_pageblock_migratetype(page, MIGRATE_CMA); 1799 1800 if (pageblock_order >= MAX_ORDER) { 1801 i = pageblock_nr_pages; 1802 p = page; 1803 do { 1804 set_page_refcounted(p); 1805 __free_pages(p, MAX_ORDER - 1); 1806 p += MAX_ORDER_NR_PAGES; 1807 } while (i -= MAX_ORDER_NR_PAGES); 1808 } else { 1809 set_page_refcounted(page); 1810 __free_pages(page, pageblock_order); 1811 } 1812 1813 adjust_managed_page_count(page, pageblock_nr_pages); 1814 } 1815 #endif 1816 1817 /* 1818 * The order of subdivision here is critical for the IO subsystem. 1819 * Please do not alter this order without good reasons and regression 1820 * testing. Specifically, as large blocks of memory are subdivided, 1821 * the order in which smaller blocks are delivered depends on the order 1822 * they're subdivided in this function. This is the primary factor 1823 * influencing the order in which pages are delivered to the IO 1824 * subsystem according to empirical testing, and this is also justified 1825 * by considering the behavior of a buddy system containing a single 1826 * large block of memory acted on by a series of small allocations. 1827 * This behavior is a critical factor in sglist merging's success. 1828 * 1829 * -- nyc 1830 */ 1831 static inline void expand(struct zone *zone, struct page *page, 1832 int low, int high, struct free_area *area, 1833 int migratetype) 1834 { 1835 unsigned long size = 1 << high; 1836 1837 while (high > low) { 1838 area--; 1839 high--; 1840 size >>= 1; 1841 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]); 1842 1843 /* 1844 * Mark as guard pages (or page), that will allow to 1845 * merge back to allocator when buddy will be freed. 1846 * Corresponding page table entries will not be touched, 1847 * pages will stay not present in virtual address space 1848 */ 1849 if (set_page_guard(zone, &page[size], high, migratetype)) 1850 continue; 1851 1852 list_add(&page[size].lru, &area->free_list[migratetype]); 1853 area->nr_free++; 1854 set_page_order(&page[size], high); 1855 } 1856 } 1857 1858 static void check_new_page_bad(struct page *page) 1859 { 1860 const char *bad_reason = NULL; 1861 unsigned long bad_flags = 0; 1862 1863 if (unlikely(atomic_read(&page->_mapcount) != -1)) 1864 bad_reason = "nonzero mapcount"; 1865 if (unlikely(page->mapping != NULL)) 1866 bad_reason = "non-NULL mapping"; 1867 if (unlikely(page_ref_count(page) != 0)) 1868 bad_reason = "nonzero _count"; 1869 if (unlikely(page->flags & __PG_HWPOISON)) { 1870 bad_reason = "HWPoisoned (hardware-corrupted)"; 1871 bad_flags = __PG_HWPOISON; 1872 /* Don't complain about hwpoisoned pages */ 1873 page_mapcount_reset(page); /* remove PageBuddy */ 1874 return; 1875 } 1876 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) { 1877 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set"; 1878 bad_flags = PAGE_FLAGS_CHECK_AT_PREP; 1879 } 1880 #ifdef CONFIG_MEMCG 1881 if (unlikely(page->mem_cgroup)) 1882 bad_reason = "page still charged to cgroup"; 1883 #endif 1884 bad_page(page, bad_reason, bad_flags); 1885 } 1886 1887 /* 1888 * This page is about to be returned from the page allocator 1889 */ 1890 static inline int check_new_page(struct page *page) 1891 { 1892 if (likely(page_expected_state(page, 1893 PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON))) 1894 return 0; 1895 1896 check_new_page_bad(page); 1897 return 1; 1898 } 1899 1900 static inline bool free_pages_prezeroed(void) 1901 { 1902 return IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) && 1903 page_poisoning_enabled(); 1904 } 1905 1906 #ifdef CONFIG_DEBUG_VM 1907 static bool check_pcp_refill(struct page *page) 1908 { 1909 return false; 1910 } 1911 1912 static bool check_new_pcp(struct page *page) 1913 { 1914 return check_new_page(page); 1915 } 1916 #else 1917 static bool check_pcp_refill(struct page *page) 1918 { 1919 return check_new_page(page); 1920 } 1921 static bool check_new_pcp(struct page *page) 1922 { 1923 return false; 1924 } 1925 #endif /* CONFIG_DEBUG_VM */ 1926 1927 static bool check_new_pages(struct page *page, unsigned int order) 1928 { 1929 int i; 1930 for (i = 0; i < (1 << order); i++) { 1931 struct page *p = page + i; 1932 1933 if (unlikely(check_new_page(p))) 1934 return true; 1935 } 1936 1937 return false; 1938 } 1939 1940 inline void post_alloc_hook(struct page *page, unsigned int order, 1941 gfp_t gfp_flags) 1942 { 1943 set_page_private(page, 0); 1944 set_page_refcounted(page); 1945 1946 arch_alloc_page(page, order); 1947 kernel_map_pages(page, 1 << order, 1); 1948 kernel_poison_pages(page, 1 << order, 1); 1949 kasan_alloc_pages(page, order); 1950 set_page_owner(page, order, gfp_flags); 1951 } 1952 1953 static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags, 1954 unsigned int alloc_flags) 1955 { 1956 int i; 1957 1958 post_alloc_hook(page, order, gfp_flags); 1959 1960 if (!free_pages_prezeroed() && (gfp_flags & __GFP_ZERO)) 1961 for (i = 0; i < (1 << order); i++) 1962 clear_highpage(page + i); 1963 1964 if (order && (gfp_flags & __GFP_COMP)) 1965 prep_compound_page(page, order); 1966 1967 /* 1968 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to 1969 * allocate the page. The expectation is that the caller is taking 1970 * steps that will free more memory. The caller should avoid the page 1971 * being used for !PFMEMALLOC purposes. 1972 */ 1973 if (alloc_flags & ALLOC_NO_WATERMARKS) 1974 set_page_pfmemalloc(page); 1975 else 1976 clear_page_pfmemalloc(page); 1977 } 1978 1979 /* 1980 * Go through the free lists for the given migratetype and remove 1981 * the smallest available page from the freelists 1982 */ 1983 static __always_inline 1984 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order, 1985 int migratetype) 1986 { 1987 unsigned int current_order; 1988 struct free_area *area; 1989 struct page *page; 1990 1991 /* Find a page of the appropriate size in the preferred list */ 1992 for (current_order = order; current_order < MAX_ORDER; ++current_order) { 1993 area = &(zone->free_area[current_order]); 1994 page = list_first_entry_or_null(&area->free_list[migratetype], 1995 struct page, lru); 1996 if (!page) 1997 continue; 1998 list_del(&page->lru); 1999 rmv_page_order(page); 2000 area->nr_free--; 2001 expand(zone, page, order, current_order, area, migratetype); 2002 set_pcppage_migratetype(page, migratetype); 2003 return page; 2004 } 2005 2006 return NULL; 2007 } 2008 2009 2010 /* 2011 * This array describes the order lists are fallen back to when 2012 * the free lists for the desirable migrate type are depleted 2013 */ 2014 static int fallbacks[MIGRATE_TYPES][4] = { 2015 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_TYPES }, 2016 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES }, 2017 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_TYPES }, 2018 #ifdef CONFIG_CMA 2019 [MIGRATE_CMA] = { MIGRATE_TYPES }, /* Never used */ 2020 #endif 2021 #ifdef CONFIG_MEMORY_ISOLATION 2022 [MIGRATE_ISOLATE] = { MIGRATE_TYPES }, /* Never used */ 2023 #endif 2024 }; 2025 2026 #ifdef CONFIG_CMA 2027 static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone, 2028 unsigned int order) 2029 { 2030 return __rmqueue_smallest(zone, order, MIGRATE_CMA); 2031 } 2032 #else 2033 static inline struct page *__rmqueue_cma_fallback(struct zone *zone, 2034 unsigned int order) { return NULL; } 2035 #endif 2036 2037 /* 2038 * Move the free pages in a range to the free lists of the requested type. 2039 * Note that start_page and end_pages are not aligned on a pageblock 2040 * boundary. If alignment is required, use move_freepages_block() 2041 */ 2042 static int move_freepages(struct zone *zone, 2043 struct page *start_page, struct page *end_page, 2044 int migratetype, int *num_movable) 2045 { 2046 struct page *page; 2047 unsigned int order; 2048 int pages_moved = 0; 2049 2050 #ifndef CONFIG_HOLES_IN_ZONE 2051 /* 2052 * page_zone is not safe to call in this context when 2053 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant 2054 * anyway as we check zone boundaries in move_freepages_block(). 2055 * Remove at a later date when no bug reports exist related to 2056 * grouping pages by mobility 2057 */ 2058 VM_BUG_ON(pfn_valid(page_to_pfn(start_page)) && 2059 pfn_valid(page_to_pfn(end_page)) && 2060 page_zone(start_page) != page_zone(end_page)); 2061 #endif 2062 for (page = start_page; page <= end_page;) { 2063 if (!pfn_valid_within(page_to_pfn(page))) { 2064 page++; 2065 continue; 2066 } 2067 2068 /* Make sure we are not inadvertently changing nodes */ 2069 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page); 2070 2071 if (!PageBuddy(page)) { 2072 /* 2073 * We assume that pages that could be isolated for 2074 * migration are movable. But we don't actually try 2075 * isolating, as that would be expensive. 2076 */ 2077 if (num_movable && 2078 (PageLRU(page) || __PageMovable(page))) 2079 (*num_movable)++; 2080 2081 page++; 2082 continue; 2083 } 2084 2085 order = page_order(page); 2086 list_move(&page->lru, 2087 &zone->free_area[order].free_list[migratetype]); 2088 page += 1 << order; 2089 pages_moved += 1 << order; 2090 } 2091 2092 return pages_moved; 2093 } 2094 2095 int move_freepages_block(struct zone *zone, struct page *page, 2096 int migratetype, int *num_movable) 2097 { 2098 unsigned long start_pfn, end_pfn; 2099 struct page *start_page, *end_page; 2100 2101 if (num_movable) 2102 *num_movable = 0; 2103 2104 start_pfn = page_to_pfn(page); 2105 start_pfn = start_pfn & ~(pageblock_nr_pages-1); 2106 start_page = pfn_to_page(start_pfn); 2107 end_page = start_page + pageblock_nr_pages - 1; 2108 end_pfn = start_pfn + pageblock_nr_pages - 1; 2109 2110 /* Do not cross zone boundaries */ 2111 if (!zone_spans_pfn(zone, start_pfn)) 2112 start_page = page; 2113 if (!zone_spans_pfn(zone, end_pfn)) 2114 return 0; 2115 2116 return move_freepages(zone, start_page, end_page, migratetype, 2117 num_movable); 2118 } 2119 2120 static void change_pageblock_range(struct page *pageblock_page, 2121 int start_order, int migratetype) 2122 { 2123 int nr_pageblocks = 1 << (start_order - pageblock_order); 2124 2125 while (nr_pageblocks--) { 2126 set_pageblock_migratetype(pageblock_page, migratetype); 2127 pageblock_page += pageblock_nr_pages; 2128 } 2129 } 2130 2131 /* 2132 * When we are falling back to another migratetype during allocation, try to 2133 * steal extra free pages from the same pageblocks to satisfy further 2134 * allocations, instead of polluting multiple pageblocks. 2135 * 2136 * If we are stealing a relatively large buddy page, it is likely there will 2137 * be more free pages in the pageblock, so try to steal them all. For 2138 * reclaimable and unmovable allocations, we steal regardless of page size, 2139 * as fragmentation caused by those allocations polluting movable pageblocks 2140 * is worse than movable allocations stealing from unmovable and reclaimable 2141 * pageblocks. 2142 */ 2143 static bool can_steal_fallback(unsigned int order, int start_mt) 2144 { 2145 /* 2146 * Leaving this order check is intended, although there is 2147 * relaxed order check in next check. The reason is that 2148 * we can actually steal whole pageblock if this condition met, 2149 * but, below check doesn't guarantee it and that is just heuristic 2150 * so could be changed anytime. 2151 */ 2152 if (order >= pageblock_order) 2153 return true; 2154 2155 if (order >= pageblock_order / 2 || 2156 start_mt == MIGRATE_RECLAIMABLE || 2157 start_mt == MIGRATE_UNMOVABLE || 2158 page_group_by_mobility_disabled) 2159 return true; 2160 2161 return false; 2162 } 2163 2164 static inline void boost_watermark(struct zone *zone) 2165 { 2166 unsigned long max_boost; 2167 2168 if (!watermark_boost_factor) 2169 return; 2170 2171 max_boost = mult_frac(zone->_watermark[WMARK_HIGH], 2172 watermark_boost_factor, 10000); 2173 2174 /* 2175 * high watermark may be uninitialised if fragmentation occurs 2176 * very early in boot so do not boost. We do not fall 2177 * through and boost by pageblock_nr_pages as failing 2178 * allocations that early means that reclaim is not going 2179 * to help and it may even be impossible to reclaim the 2180 * boosted watermark resulting in a hang. 2181 */ 2182 if (!max_boost) 2183 return; 2184 2185 max_boost = max(pageblock_nr_pages, max_boost); 2186 2187 zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages, 2188 max_boost); 2189 } 2190 2191 /* 2192 * This function implements actual steal behaviour. If order is large enough, 2193 * we can steal whole pageblock. If not, we first move freepages in this 2194 * pageblock to our migratetype and determine how many already-allocated pages 2195 * are there in the pageblock with a compatible migratetype. If at least half 2196 * of pages are free or compatible, we can change migratetype of the pageblock 2197 * itself, so pages freed in the future will be put on the correct free list. 2198 */ 2199 static void steal_suitable_fallback(struct zone *zone, struct page *page, 2200 unsigned int alloc_flags, int start_type, bool whole_block) 2201 { 2202 unsigned int current_order = page_order(page); 2203 struct free_area *area; 2204 int free_pages, movable_pages, alike_pages; 2205 int old_block_type; 2206 2207 old_block_type = get_pageblock_migratetype(page); 2208 2209 /* 2210 * This can happen due to races and we want to prevent broken 2211 * highatomic accounting. 2212 */ 2213 if (is_migrate_highatomic(old_block_type)) 2214 goto single_page; 2215 2216 /* Take ownership for orders >= pageblock_order */ 2217 if (current_order >= pageblock_order) { 2218 change_pageblock_range(page, current_order, start_type); 2219 goto single_page; 2220 } 2221 2222 /* 2223 * Boost watermarks to increase reclaim pressure to reduce the 2224 * likelihood of future fallbacks. Wake kswapd now as the node 2225 * may be balanced overall and kswapd will not wake naturally. 2226 */ 2227 boost_watermark(zone); 2228 if (alloc_flags & ALLOC_KSWAPD) 2229 set_bit(ZONE_BOOSTED_WATERMARK, &zone->flags); 2230 2231 /* We are not allowed to try stealing from the whole block */ 2232 if (!whole_block) 2233 goto single_page; 2234 2235 free_pages = move_freepages_block(zone, page, start_type, 2236 &movable_pages); 2237 /* 2238 * Determine how many pages are compatible with our allocation. 2239 * For movable allocation, it's the number of movable pages which 2240 * we just obtained. For other types it's a bit more tricky. 2241 */ 2242 if (start_type == MIGRATE_MOVABLE) { 2243 alike_pages = movable_pages; 2244 } else { 2245 /* 2246 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation 2247 * to MOVABLE pageblock, consider all non-movable pages as 2248 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or 2249 * vice versa, be conservative since we can't distinguish the 2250 * exact migratetype of non-movable pages. 2251 */ 2252 if (old_block_type == MIGRATE_MOVABLE) 2253 alike_pages = pageblock_nr_pages 2254 - (free_pages + movable_pages); 2255 else 2256 alike_pages = 0; 2257 } 2258 2259 /* moving whole block can fail due to zone boundary conditions */ 2260 if (!free_pages) 2261 goto single_page; 2262 2263 /* 2264 * If a sufficient number of pages in the block are either free or of 2265 * comparable migratability as our allocation, claim the whole block. 2266 */ 2267 if (free_pages + alike_pages >= (1 << (pageblock_order-1)) || 2268 page_group_by_mobility_disabled) 2269 set_pageblock_migratetype(page, start_type); 2270 2271 return; 2272 2273 single_page: 2274 area = &zone->free_area[current_order]; 2275 list_move(&page->lru, &area->free_list[start_type]); 2276 } 2277 2278 /* 2279 * Check whether there is a suitable fallback freepage with requested order. 2280 * If only_stealable is true, this function returns fallback_mt only if 2281 * we can steal other freepages all together. This would help to reduce 2282 * fragmentation due to mixed migratetype pages in one pageblock. 2283 */ 2284 int find_suitable_fallback(struct free_area *area, unsigned int order, 2285 int migratetype, bool only_stealable, bool *can_steal) 2286 { 2287 int i; 2288 int fallback_mt; 2289 2290 if (area->nr_free == 0) 2291 return -1; 2292 2293 *can_steal = false; 2294 for (i = 0;; i++) { 2295 fallback_mt = fallbacks[migratetype][i]; 2296 if (fallback_mt == MIGRATE_TYPES) 2297 break; 2298 2299 if (list_empty(&area->free_list[fallback_mt])) 2300 continue; 2301 2302 if (can_steal_fallback(order, migratetype)) 2303 *can_steal = true; 2304 2305 if (!only_stealable) 2306 return fallback_mt; 2307 2308 if (*can_steal) 2309 return fallback_mt; 2310 } 2311 2312 return -1; 2313 } 2314 2315 /* 2316 * Reserve a pageblock for exclusive use of high-order atomic allocations if 2317 * there are no empty page blocks that contain a page with a suitable order 2318 */ 2319 static void reserve_highatomic_pageblock(struct page *page, struct zone *zone, 2320 unsigned int alloc_order) 2321 { 2322 int mt; 2323 unsigned long max_managed, flags; 2324 2325 /* 2326 * Limit the number reserved to 1 pageblock or roughly 1% of a zone. 2327 * Check is race-prone but harmless. 2328 */ 2329 max_managed = (zone_managed_pages(zone) / 100) + pageblock_nr_pages; 2330 if (zone->nr_reserved_highatomic >= max_managed) 2331 return; 2332 2333 spin_lock_irqsave(&zone->lock, flags); 2334 2335 /* Recheck the nr_reserved_highatomic limit under the lock */ 2336 if (zone->nr_reserved_highatomic >= max_managed) 2337 goto out_unlock; 2338 2339 /* Yoink! */ 2340 mt = get_pageblock_migratetype(page); 2341 if (!is_migrate_highatomic(mt) && !is_migrate_isolate(mt) 2342 && !is_migrate_cma(mt)) { 2343 zone->nr_reserved_highatomic += pageblock_nr_pages; 2344 set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC); 2345 move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL); 2346 } 2347 2348 out_unlock: 2349 spin_unlock_irqrestore(&zone->lock, flags); 2350 } 2351 2352 /* 2353 * Used when an allocation is about to fail under memory pressure. This 2354 * potentially hurts the reliability of high-order allocations when under 2355 * intense memory pressure but failed atomic allocations should be easier 2356 * to recover from than an OOM. 2357 * 2358 * If @force is true, try to unreserve a pageblock even though highatomic 2359 * pageblock is exhausted. 2360 */ 2361 static bool unreserve_highatomic_pageblock(const struct alloc_context *ac, 2362 bool force) 2363 { 2364 struct zonelist *zonelist = ac->zonelist; 2365 unsigned long flags; 2366 struct zoneref *z; 2367 struct zone *zone; 2368 struct page *page; 2369 int order; 2370 bool ret; 2371 2372 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx, 2373 ac->nodemask) { 2374 /* 2375 * Preserve at least one pageblock unless memory pressure 2376 * is really high. 2377 */ 2378 if (!force && zone->nr_reserved_highatomic <= 2379 pageblock_nr_pages) 2380 continue; 2381 2382 spin_lock_irqsave(&zone->lock, flags); 2383 for (order = 0; order < MAX_ORDER; order++) { 2384 struct free_area *area = &(zone->free_area[order]); 2385 2386 page = list_first_entry_or_null( 2387 &area->free_list[MIGRATE_HIGHATOMIC], 2388 struct page, lru); 2389 if (!page) 2390 continue; 2391 2392 /* 2393 * In page freeing path, migratetype change is racy so 2394 * we can counter several free pages in a pageblock 2395 * in this loop althoug we changed the pageblock type 2396 * from highatomic to ac->migratetype. So we should 2397 * adjust the count once. 2398 */ 2399 if (is_migrate_highatomic_page(page)) { 2400 /* 2401 * It should never happen but changes to 2402 * locking could inadvertently allow a per-cpu 2403 * drain to add pages to MIGRATE_HIGHATOMIC 2404 * while unreserving so be safe and watch for 2405 * underflows. 2406 */ 2407 zone->nr_reserved_highatomic -= min( 2408 pageblock_nr_pages, 2409 zone->nr_reserved_highatomic); 2410 } 2411 2412 /* 2413 * Convert to ac->migratetype and avoid the normal 2414 * pageblock stealing heuristics. Minimally, the caller 2415 * is doing the work and needs the pages. More 2416 * importantly, if the block was always converted to 2417 * MIGRATE_UNMOVABLE or another type then the number 2418 * of pageblocks that cannot be completely freed 2419 * may increase. 2420 */ 2421 set_pageblock_migratetype(page, ac->migratetype); 2422 ret = move_freepages_block(zone, page, ac->migratetype, 2423 NULL); 2424 if (ret) { 2425 spin_unlock_irqrestore(&zone->lock, flags); 2426 return ret; 2427 } 2428 } 2429 spin_unlock_irqrestore(&zone->lock, flags); 2430 } 2431 2432 return false; 2433 } 2434 2435 /* 2436 * Try finding a free buddy page on the fallback list and put it on the free 2437 * list of requested migratetype, possibly along with other pages from the same 2438 * block, depending on fragmentation avoidance heuristics. Returns true if 2439 * fallback was found so that __rmqueue_smallest() can grab it. 2440 * 2441 * The use of signed ints for order and current_order is a deliberate 2442 * deviation from the rest of this file, to make the for loop 2443 * condition simpler. 2444 */ 2445 static __always_inline bool 2446 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype, 2447 unsigned int alloc_flags) 2448 { 2449 struct free_area *area; 2450 int current_order; 2451 int min_order = order; 2452 struct page *page; 2453 int fallback_mt; 2454 bool can_steal; 2455 2456 /* 2457 * Do not steal pages from freelists belonging to other pageblocks 2458 * i.e. orders < pageblock_order. If there are no local zones free, 2459 * the zonelists will be reiterated without ALLOC_NOFRAGMENT. 2460 */ 2461 if (alloc_flags & ALLOC_NOFRAGMENT) 2462 min_order = pageblock_order; 2463 2464 /* 2465 * Find the largest available free page in the other list. This roughly 2466 * approximates finding the pageblock with the most free pages, which 2467 * would be too costly to do exactly. 2468 */ 2469 for (current_order = MAX_ORDER - 1; current_order >= min_order; 2470 --current_order) { 2471 area = &(zone->free_area[current_order]); 2472 fallback_mt = find_suitable_fallback(area, current_order, 2473 start_migratetype, false, &can_steal); 2474 if (fallback_mt == -1) 2475 continue; 2476 2477 /* 2478 * We cannot steal all free pages from the pageblock and the 2479 * requested migratetype is movable. In that case it's better to 2480 * steal and split the smallest available page instead of the 2481 * largest available page, because even if the next movable 2482 * allocation falls back into a different pageblock than this 2483 * one, it won't cause permanent fragmentation. 2484 */ 2485 if (!can_steal && start_migratetype == MIGRATE_MOVABLE 2486 && current_order > order) 2487 goto find_smallest; 2488 2489 goto do_steal; 2490 } 2491 2492 return false; 2493 2494 find_smallest: 2495 for (current_order = order; current_order < MAX_ORDER; 2496 current_order++) { 2497 area = &(zone->free_area[current_order]); 2498 fallback_mt = find_suitable_fallback(area, current_order, 2499 start_migratetype, false, &can_steal); 2500 if (fallback_mt != -1) 2501 break; 2502 } 2503 2504 /* 2505 * This should not happen - we already found a suitable fallback 2506 * when looking for the largest page. 2507 */ 2508 VM_BUG_ON(current_order == MAX_ORDER); 2509 2510 do_steal: 2511 page = list_first_entry(&area->free_list[fallback_mt], 2512 struct page, lru); 2513 2514 steal_suitable_fallback(zone, page, alloc_flags, start_migratetype, 2515 can_steal); 2516 2517 trace_mm_page_alloc_extfrag(page, order, current_order, 2518 start_migratetype, fallback_mt); 2519 2520 return true; 2521 2522 } 2523 2524 /* 2525 * Do the hard work of removing an element from the buddy allocator. 2526 * Call me with the zone->lock already held. 2527 */ 2528 static __always_inline struct page * 2529 __rmqueue(struct zone *zone, unsigned int order, int migratetype, 2530 unsigned int alloc_flags) 2531 { 2532 struct page *page; 2533 2534 retry: 2535 page = __rmqueue_smallest(zone, order, migratetype); 2536 if (unlikely(!page)) { 2537 if (migratetype == MIGRATE_MOVABLE) 2538 page = __rmqueue_cma_fallback(zone, order); 2539 2540 if (!page && __rmqueue_fallback(zone, order, migratetype, 2541 alloc_flags)) 2542 goto retry; 2543 } 2544 2545 trace_mm_page_alloc_zone_locked(page, order, migratetype); 2546 return page; 2547 } 2548 2549 /* 2550 * Obtain a specified number of elements from the buddy allocator, all under 2551 * a single hold of the lock, for efficiency. Add them to the supplied list. 2552 * Returns the number of new pages which were placed at *list. 2553 */ 2554 static int rmqueue_bulk(struct zone *zone, unsigned int order, 2555 unsigned long count, struct list_head *list, 2556 int migratetype, unsigned int alloc_flags) 2557 { 2558 int i, alloced = 0; 2559 2560 spin_lock(&zone->lock); 2561 for (i = 0; i < count; ++i) { 2562 struct page *page = __rmqueue(zone, order, migratetype, 2563 alloc_flags); 2564 if (unlikely(page == NULL)) 2565 break; 2566 2567 if (unlikely(check_pcp_refill(page))) 2568 continue; 2569 2570 /* 2571 * Split buddy pages returned by expand() are received here in 2572 * physical page order. The page is added to the tail of 2573 * caller's list. From the callers perspective, the linked list 2574 * is ordered by page number under some conditions. This is 2575 * useful for IO devices that can forward direction from the 2576 * head, thus also in the physical page order. This is useful 2577 * for IO devices that can merge IO requests if the physical 2578 * pages are ordered properly. 2579 */ 2580 list_add_tail(&page->lru, list); 2581 alloced++; 2582 if (is_migrate_cma(get_pcppage_migratetype(page))) 2583 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES, 2584 -(1 << order)); 2585 } 2586 2587 /* 2588 * i pages were removed from the buddy list even if some leak due 2589 * to check_pcp_refill failing so adjust NR_FREE_PAGES based 2590 * on i. Do not confuse with 'alloced' which is the number of 2591 * pages added to the pcp list. 2592 */ 2593 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order)); 2594 spin_unlock(&zone->lock); 2595 return alloced; 2596 } 2597 2598 #ifdef CONFIG_NUMA 2599 /* 2600 * Called from the vmstat counter updater to drain pagesets of this 2601 * currently executing processor on remote nodes after they have 2602 * expired. 2603 * 2604 * Note that this function must be called with the thread pinned to 2605 * a single processor. 2606 */ 2607 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp) 2608 { 2609 unsigned long flags; 2610 int to_drain, batch; 2611 2612 local_irq_save(flags); 2613 batch = READ_ONCE(pcp->batch); 2614 to_drain = min(pcp->count, batch); 2615 if (to_drain > 0) 2616 free_pcppages_bulk(zone, to_drain, pcp); 2617 local_irq_restore(flags); 2618 } 2619 #endif 2620 2621 /* 2622 * Drain pcplists of the indicated processor and zone. 2623 * 2624 * The processor must either be the current processor and the 2625 * thread pinned to the current processor or a processor that 2626 * is not online. 2627 */ 2628 static void drain_pages_zone(unsigned int cpu, struct zone *zone) 2629 { 2630 unsigned long flags; 2631 struct per_cpu_pageset *pset; 2632 struct per_cpu_pages *pcp; 2633 2634 local_irq_save(flags); 2635 pset = per_cpu_ptr(zone->pageset, cpu); 2636 2637 pcp = &pset->pcp; 2638 if (pcp->count) 2639 free_pcppages_bulk(zone, pcp->count, pcp); 2640 local_irq_restore(flags); 2641 } 2642 2643 /* 2644 * Drain pcplists of all zones on the indicated processor. 2645 * 2646 * The processor must either be the current processor and the 2647 * thread pinned to the current processor or a processor that 2648 * is not online. 2649 */ 2650 static void drain_pages(unsigned int cpu) 2651 { 2652 struct zone *zone; 2653 2654 for_each_populated_zone(zone) { 2655 drain_pages_zone(cpu, zone); 2656 } 2657 } 2658 2659 /* 2660 * Spill all of this CPU's per-cpu pages back into the buddy allocator. 2661 * 2662 * The CPU has to be pinned. When zone parameter is non-NULL, spill just 2663 * the single zone's pages. 2664 */ 2665 void drain_local_pages(struct zone *zone) 2666 { 2667 int cpu = smp_processor_id(); 2668 2669 if (zone) 2670 drain_pages_zone(cpu, zone); 2671 else 2672 drain_pages(cpu); 2673 } 2674 2675 static void drain_local_pages_wq(struct work_struct *work) 2676 { 2677 struct pcpu_drain *drain; 2678 2679 drain = container_of(work, struct pcpu_drain, work); 2680 2681 /* 2682 * drain_all_pages doesn't use proper cpu hotplug protection so 2683 * we can race with cpu offline when the WQ can move this from 2684 * a cpu pinned worker to an unbound one. We can operate on a different 2685 * cpu which is allright but we also have to make sure to not move to 2686 * a different one. 2687 */ 2688 preempt_disable(); 2689 drain_local_pages(drain->zone); 2690 preempt_enable(); 2691 } 2692 2693 /* 2694 * Spill all the per-cpu pages from all CPUs back into the buddy allocator. 2695 * 2696 * When zone parameter is non-NULL, spill just the single zone's pages. 2697 * 2698 * Note that this can be extremely slow as the draining happens in a workqueue. 2699 */ 2700 void drain_all_pages(struct zone *zone) 2701 { 2702 int cpu; 2703 2704 /* 2705 * Allocate in the BSS so we wont require allocation in 2706 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y 2707 */ 2708 static cpumask_t cpus_with_pcps; 2709 2710 /* 2711 * Make sure nobody triggers this path before mm_percpu_wq is fully 2712 * initialized. 2713 */ 2714 if (WARN_ON_ONCE(!mm_percpu_wq)) 2715 return; 2716 2717 /* 2718 * Do not drain if one is already in progress unless it's specific to 2719 * a zone. Such callers are primarily CMA and memory hotplug and need 2720 * the drain to be complete when the call returns. 2721 */ 2722 if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) { 2723 if (!zone) 2724 return; 2725 mutex_lock(&pcpu_drain_mutex); 2726 } 2727 2728 /* 2729 * We don't care about racing with CPU hotplug event 2730 * as offline notification will cause the notified 2731 * cpu to drain that CPU pcps and on_each_cpu_mask 2732 * disables preemption as part of its processing 2733 */ 2734 for_each_online_cpu(cpu) { 2735 struct per_cpu_pageset *pcp; 2736 struct zone *z; 2737 bool has_pcps = false; 2738 2739 if (zone) { 2740 pcp = per_cpu_ptr(zone->pageset, cpu); 2741 if (pcp->pcp.count) 2742 has_pcps = true; 2743 } else { 2744 for_each_populated_zone(z) { 2745 pcp = per_cpu_ptr(z->pageset, cpu); 2746 if (pcp->pcp.count) { 2747 has_pcps = true; 2748 break; 2749 } 2750 } 2751 } 2752 2753 if (has_pcps) 2754 cpumask_set_cpu(cpu, &cpus_with_pcps); 2755 else 2756 cpumask_clear_cpu(cpu, &cpus_with_pcps); 2757 } 2758 2759 for_each_cpu(cpu, &cpus_with_pcps) { 2760 struct pcpu_drain *drain = per_cpu_ptr(&pcpu_drain, cpu); 2761 2762 drain->zone = zone; 2763 INIT_WORK(&drain->work, drain_local_pages_wq); 2764 queue_work_on(cpu, mm_percpu_wq, &drain->work); 2765 } 2766 for_each_cpu(cpu, &cpus_with_pcps) 2767 flush_work(&per_cpu_ptr(&pcpu_drain, cpu)->work); 2768 2769 mutex_unlock(&pcpu_drain_mutex); 2770 } 2771 2772 #ifdef CONFIG_HIBERNATION 2773 2774 /* 2775 * Touch the watchdog for every WD_PAGE_COUNT pages. 2776 */ 2777 #define WD_PAGE_COUNT (128*1024) 2778 2779 void mark_free_pages(struct zone *zone) 2780 { 2781 unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT; 2782 unsigned long flags; 2783 unsigned int order, t; 2784 struct page *page; 2785 2786 if (zone_is_empty(zone)) 2787 return; 2788 2789 spin_lock_irqsave(&zone->lock, flags); 2790 2791 max_zone_pfn = zone_end_pfn(zone); 2792 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) 2793 if (pfn_valid(pfn)) { 2794 page = pfn_to_page(pfn); 2795 2796 if (!--page_count) { 2797 touch_nmi_watchdog(); 2798 page_count = WD_PAGE_COUNT; 2799 } 2800 2801 if (page_zone(page) != zone) 2802 continue; 2803 2804 if (!swsusp_page_is_forbidden(page)) 2805 swsusp_unset_page_free(page); 2806 } 2807 2808 for_each_migratetype_order(order, t) { 2809 list_for_each_entry(page, 2810 &zone->free_area[order].free_list[t], lru) { 2811 unsigned long i; 2812 2813 pfn = page_to_pfn(page); 2814 for (i = 0; i < (1UL << order); i++) { 2815 if (!--page_count) { 2816 touch_nmi_watchdog(); 2817 page_count = WD_PAGE_COUNT; 2818 } 2819 swsusp_set_page_free(pfn_to_page(pfn + i)); 2820 } 2821 } 2822 } 2823 spin_unlock_irqrestore(&zone->lock, flags); 2824 } 2825 #endif /* CONFIG_PM */ 2826 2827 static bool free_unref_page_prepare(struct page *page, unsigned long pfn) 2828 { 2829 int migratetype; 2830 2831 if (!free_pcp_prepare(page)) 2832 return false; 2833 2834 migratetype = get_pfnblock_migratetype(page, pfn); 2835 set_pcppage_migratetype(page, migratetype); 2836 return true; 2837 } 2838 2839 static void free_unref_page_commit(struct page *page, unsigned long pfn) 2840 { 2841 struct zone *zone = page_zone(page); 2842 struct per_cpu_pages *pcp; 2843 int migratetype; 2844 2845 migratetype = get_pcppage_migratetype(page); 2846 __count_vm_event(PGFREE); 2847 2848 /* 2849 * We only track unmovable, reclaimable and movable on pcp lists. 2850 * Free ISOLATE pages back to the allocator because they are being 2851 * offlined but treat HIGHATOMIC as movable pages so we can get those 2852 * areas back if necessary. Otherwise, we may have to free 2853 * excessively into the page allocator 2854 */ 2855 if (migratetype >= MIGRATE_PCPTYPES) { 2856 if (unlikely(is_migrate_isolate(migratetype))) { 2857 free_one_page(zone, page, pfn, 0, migratetype); 2858 return; 2859 } 2860 migratetype = MIGRATE_MOVABLE; 2861 } 2862 2863 pcp = &this_cpu_ptr(zone->pageset)->pcp; 2864 list_add(&page->lru, &pcp->lists[migratetype]); 2865 pcp->count++; 2866 if (pcp->count >= pcp->high) { 2867 unsigned long batch = READ_ONCE(pcp->batch); 2868 free_pcppages_bulk(zone, batch, pcp); 2869 } 2870 } 2871 2872 /* 2873 * Free a 0-order page 2874 */ 2875 void free_unref_page(struct page *page) 2876 { 2877 unsigned long flags; 2878 unsigned long pfn = page_to_pfn(page); 2879 2880 if (!free_unref_page_prepare(page, pfn)) 2881 return; 2882 2883 local_irq_save(flags); 2884 free_unref_page_commit(page, pfn); 2885 local_irq_restore(flags); 2886 } 2887 2888 /* 2889 * Free a list of 0-order pages 2890 */ 2891 void free_unref_page_list(struct list_head *list) 2892 { 2893 struct page *page, *next; 2894 unsigned long flags, pfn; 2895 int batch_count = 0; 2896 2897 /* Prepare pages for freeing */ 2898 list_for_each_entry_safe(page, next, list, lru) { 2899 pfn = page_to_pfn(page); 2900 if (!free_unref_page_prepare(page, pfn)) 2901 list_del(&page->lru); 2902 set_page_private(page, pfn); 2903 } 2904 2905 local_irq_save(flags); 2906 list_for_each_entry_safe(page, next, list, lru) { 2907 unsigned long pfn = page_private(page); 2908 2909 set_page_private(page, 0); 2910 trace_mm_page_free_batched(page); 2911 free_unref_page_commit(page, pfn); 2912 2913 /* 2914 * Guard against excessive IRQ disabled times when we get 2915 * a large list of pages to free. 2916 */ 2917 if (++batch_count == SWAP_CLUSTER_MAX) { 2918 local_irq_restore(flags); 2919 batch_count = 0; 2920 local_irq_save(flags); 2921 } 2922 } 2923 local_irq_restore(flags); 2924 } 2925 2926 /* 2927 * split_page takes a non-compound higher-order page, and splits it into 2928 * n (1<<order) sub-pages: page[0..n] 2929 * Each sub-page must be freed individually. 2930 * 2931 * Note: this is probably too low level an operation for use in drivers. 2932 * Please consult with lkml before using this in your driver. 2933 */ 2934 void split_page(struct page *page, unsigned int order) 2935 { 2936 int i; 2937 2938 VM_BUG_ON_PAGE(PageCompound(page), page); 2939 VM_BUG_ON_PAGE(!page_count(page), page); 2940 2941 for (i = 1; i < (1 << order); i++) 2942 set_page_refcounted(page + i); 2943 split_page_owner(page, order); 2944 } 2945 EXPORT_SYMBOL_GPL(split_page); 2946 2947 int __isolate_free_page(struct page *page, unsigned int order) 2948 { 2949 unsigned long watermark; 2950 struct zone *zone; 2951 int mt; 2952 2953 BUG_ON(!PageBuddy(page)); 2954 2955 zone = page_zone(page); 2956 mt = get_pageblock_migratetype(page); 2957 2958 if (!is_migrate_isolate(mt)) { 2959 /* 2960 * Obey watermarks as if the page was being allocated. We can 2961 * emulate a high-order watermark check with a raised order-0 2962 * watermark, because we already know our high-order page 2963 * exists. 2964 */ 2965 watermark = min_wmark_pages(zone) + (1UL << order); 2966 if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA)) 2967 return 0; 2968 2969 __mod_zone_freepage_state(zone, -(1UL << order), mt); 2970 } 2971 2972 /* Remove page from free list */ 2973 list_del(&page->lru); 2974 zone->free_area[order].nr_free--; 2975 rmv_page_order(page); 2976 2977 /* 2978 * Set the pageblock if the isolated page is at least half of a 2979 * pageblock 2980 */ 2981 if (order >= pageblock_order - 1) { 2982 struct page *endpage = page + (1 << order) - 1; 2983 for (; page < endpage; page += pageblock_nr_pages) { 2984 int mt = get_pageblock_migratetype(page); 2985 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt) 2986 && !is_migrate_highatomic(mt)) 2987 set_pageblock_migratetype(page, 2988 MIGRATE_MOVABLE); 2989 } 2990 } 2991 2992 2993 return 1UL << order; 2994 } 2995 2996 /* 2997 * Update NUMA hit/miss statistics 2998 * 2999 * Must be called with interrupts disabled. 3000 */ 3001 static inline void zone_statistics(struct zone *preferred_zone, struct zone *z) 3002 { 3003 #ifdef CONFIG_NUMA 3004 enum numa_stat_item local_stat = NUMA_LOCAL; 3005 3006 /* skip numa counters update if numa stats is disabled */ 3007 if (!static_branch_likely(&vm_numa_stat_key)) 3008 return; 3009 3010 if (zone_to_nid(z) != numa_node_id()) 3011 local_stat = NUMA_OTHER; 3012 3013 if (zone_to_nid(z) == zone_to_nid(preferred_zone)) 3014 __inc_numa_state(z, NUMA_HIT); 3015 else { 3016 __inc_numa_state(z, NUMA_MISS); 3017 __inc_numa_state(preferred_zone, NUMA_FOREIGN); 3018 } 3019 __inc_numa_state(z, local_stat); 3020 #endif 3021 } 3022 3023 /* Remove page from the per-cpu list, caller must protect the list */ 3024 static struct page *__rmqueue_pcplist(struct zone *zone, int migratetype, 3025 unsigned int alloc_flags, 3026 struct per_cpu_pages *pcp, 3027 struct list_head *list) 3028 { 3029 struct page *page; 3030 3031 do { 3032 if (list_empty(list)) { 3033 pcp->count += rmqueue_bulk(zone, 0, 3034 pcp->batch, list, 3035 migratetype, alloc_flags); 3036 if (unlikely(list_empty(list))) 3037 return NULL; 3038 } 3039 3040 page = list_first_entry(list, struct page, lru); 3041 list_del(&page->lru); 3042 pcp->count--; 3043 } while (check_new_pcp(page)); 3044 3045 return page; 3046 } 3047 3048 /* Lock and remove page from the per-cpu list */ 3049 static struct page *rmqueue_pcplist(struct zone *preferred_zone, 3050 struct zone *zone, unsigned int order, 3051 gfp_t gfp_flags, int migratetype, 3052 unsigned int alloc_flags) 3053 { 3054 struct per_cpu_pages *pcp; 3055 struct list_head *list; 3056 struct page *page; 3057 unsigned long flags; 3058 3059 local_irq_save(flags); 3060 pcp = &this_cpu_ptr(zone->pageset)->pcp; 3061 list = &pcp->lists[migratetype]; 3062 page = __rmqueue_pcplist(zone, migratetype, alloc_flags, pcp, list); 3063 if (page) { 3064 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order); 3065 zone_statistics(preferred_zone, zone); 3066 } 3067 local_irq_restore(flags); 3068 return page; 3069 } 3070 3071 /* 3072 * Allocate a page from the given zone. Use pcplists for order-0 allocations. 3073 */ 3074 static inline 3075 struct page *rmqueue(struct zone *preferred_zone, 3076 struct zone *zone, unsigned int order, 3077 gfp_t gfp_flags, unsigned int alloc_flags, 3078 int migratetype) 3079 { 3080 unsigned long flags; 3081 struct page *page; 3082 3083 if (likely(order == 0)) { 3084 page = rmqueue_pcplist(preferred_zone, zone, order, 3085 gfp_flags, migratetype, alloc_flags); 3086 goto out; 3087 } 3088 3089 /* 3090 * We most definitely don't want callers attempting to 3091 * allocate greater than order-1 page units with __GFP_NOFAIL. 3092 */ 3093 WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1)); 3094 spin_lock_irqsave(&zone->lock, flags); 3095 3096 do { 3097 page = NULL; 3098 if (alloc_flags & ALLOC_HARDER) { 3099 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC); 3100 if (page) 3101 trace_mm_page_alloc_zone_locked(page, order, migratetype); 3102 } 3103 if (!page) 3104 page = __rmqueue(zone, order, migratetype, alloc_flags); 3105 } while (page && check_new_pages(page, order)); 3106 spin_unlock(&zone->lock); 3107 if (!page) 3108 goto failed; 3109 __mod_zone_freepage_state(zone, -(1 << order), 3110 get_pcppage_migratetype(page)); 3111 3112 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order); 3113 zone_statistics(preferred_zone, zone); 3114 local_irq_restore(flags); 3115 3116 out: 3117 /* Separate test+clear to avoid unnecessary atomics */ 3118 if (test_bit(ZONE_BOOSTED_WATERMARK, &zone->flags)) { 3119 clear_bit(ZONE_BOOSTED_WATERMARK, &zone->flags); 3120 wakeup_kswapd(zone, 0, 0, zone_idx(zone)); 3121 } 3122 3123 VM_BUG_ON_PAGE(page && bad_range(zone, page), page); 3124 return page; 3125 3126 failed: 3127 local_irq_restore(flags); 3128 return NULL; 3129 } 3130 3131 #ifdef CONFIG_FAIL_PAGE_ALLOC 3132 3133 static struct { 3134 struct fault_attr attr; 3135 3136 bool ignore_gfp_highmem; 3137 bool ignore_gfp_reclaim; 3138 u32 min_order; 3139 } fail_page_alloc = { 3140 .attr = FAULT_ATTR_INITIALIZER, 3141 .ignore_gfp_reclaim = true, 3142 .ignore_gfp_highmem = true, 3143 .min_order = 1, 3144 }; 3145 3146 static int __init setup_fail_page_alloc(char *str) 3147 { 3148 return setup_fault_attr(&fail_page_alloc.attr, str); 3149 } 3150 __setup("fail_page_alloc=", setup_fail_page_alloc); 3151 3152 static bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) 3153 { 3154 if (order < fail_page_alloc.min_order) 3155 return false; 3156 if (gfp_mask & __GFP_NOFAIL) 3157 return false; 3158 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM)) 3159 return false; 3160 if (fail_page_alloc.ignore_gfp_reclaim && 3161 (gfp_mask & __GFP_DIRECT_RECLAIM)) 3162 return false; 3163 3164 return should_fail(&fail_page_alloc.attr, 1 << order); 3165 } 3166 3167 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS 3168 3169 static int __init fail_page_alloc_debugfs(void) 3170 { 3171 umode_t mode = S_IFREG | 0600; 3172 struct dentry *dir; 3173 3174 dir = fault_create_debugfs_attr("fail_page_alloc", NULL, 3175 &fail_page_alloc.attr); 3176 if (IS_ERR(dir)) 3177 return PTR_ERR(dir); 3178 3179 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir, 3180 &fail_page_alloc.ignore_gfp_reclaim)) 3181 goto fail; 3182 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir, 3183 &fail_page_alloc.ignore_gfp_highmem)) 3184 goto fail; 3185 if (!debugfs_create_u32("min-order", mode, dir, 3186 &fail_page_alloc.min_order)) 3187 goto fail; 3188 3189 return 0; 3190 fail: 3191 debugfs_remove_recursive(dir); 3192 3193 return -ENOMEM; 3194 } 3195 3196 late_initcall(fail_page_alloc_debugfs); 3197 3198 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */ 3199 3200 #else /* CONFIG_FAIL_PAGE_ALLOC */ 3201 3202 static inline bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) 3203 { 3204 return false; 3205 } 3206 3207 #endif /* CONFIG_FAIL_PAGE_ALLOC */ 3208 3209 static noinline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) 3210 { 3211 return __should_fail_alloc_page(gfp_mask, order); 3212 } 3213 ALLOW_ERROR_INJECTION(should_fail_alloc_page, TRUE); 3214 3215 /* 3216 * Return true if free base pages are above 'mark'. For high-order checks it 3217 * will return true of the order-0 watermark is reached and there is at least 3218 * one free page of a suitable size. Checking now avoids taking the zone lock 3219 * to check in the allocation paths if no pages are free. 3220 */ 3221 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark, 3222 int classzone_idx, unsigned int alloc_flags, 3223 long free_pages) 3224 { 3225 long min = mark; 3226 int o; 3227 const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM)); 3228 3229 /* free_pages may go negative - that's OK */ 3230 free_pages -= (1 << order) - 1; 3231 3232 if (alloc_flags & ALLOC_HIGH) 3233 min -= min / 2; 3234 3235 /* 3236 * If the caller does not have rights to ALLOC_HARDER then subtract 3237 * the high-atomic reserves. This will over-estimate the size of the 3238 * atomic reserve but it avoids a search. 3239 */ 3240 if (likely(!alloc_harder)) { 3241 free_pages -= z->nr_reserved_highatomic; 3242 } else { 3243 /* 3244 * OOM victims can try even harder than normal ALLOC_HARDER 3245 * users on the grounds that it's definitely going to be in 3246 * the exit path shortly and free memory. Any allocation it 3247 * makes during the free path will be small and short-lived. 3248 */ 3249 if (alloc_flags & ALLOC_OOM) 3250 min -= min / 2; 3251 else 3252 min -= min / 4; 3253 } 3254 3255 3256 #ifdef CONFIG_CMA 3257 /* If allocation can't use CMA areas don't use free CMA pages */ 3258 if (!(alloc_flags & ALLOC_CMA)) 3259 free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES); 3260 #endif 3261 3262 /* 3263 * Check watermarks for an order-0 allocation request. If these 3264 * are not met, then a high-order request also cannot go ahead 3265 * even if a suitable page happened to be free. 3266 */ 3267 if (free_pages <= min + z->lowmem_reserve[classzone_idx]) 3268 return false; 3269 3270 /* If this is an order-0 request then the watermark is fine */ 3271 if (!order) 3272 return true; 3273 3274 /* For a high-order request, check at least one suitable page is free */ 3275 for (o = order; o < MAX_ORDER; o++) { 3276 struct free_area *area = &z->free_area[o]; 3277 int mt; 3278 3279 if (!area->nr_free) 3280 continue; 3281 3282 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) { 3283 if (!list_empty(&area->free_list[mt])) 3284 return true; 3285 } 3286 3287 #ifdef CONFIG_CMA 3288 if ((alloc_flags & ALLOC_CMA) && 3289 !list_empty(&area->free_list[MIGRATE_CMA])) { 3290 return true; 3291 } 3292 #endif 3293 if (alloc_harder && 3294 !list_empty(&area->free_list[MIGRATE_HIGHATOMIC])) 3295 return true; 3296 } 3297 return false; 3298 } 3299 3300 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark, 3301 int classzone_idx, unsigned int alloc_flags) 3302 { 3303 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags, 3304 zone_page_state(z, NR_FREE_PAGES)); 3305 } 3306 3307 static inline bool zone_watermark_fast(struct zone *z, unsigned int order, 3308 unsigned long mark, int classzone_idx, unsigned int alloc_flags) 3309 { 3310 long free_pages = zone_page_state(z, NR_FREE_PAGES); 3311 long cma_pages = 0; 3312 3313 #ifdef CONFIG_CMA 3314 /* If allocation can't use CMA areas don't use free CMA pages */ 3315 if (!(alloc_flags & ALLOC_CMA)) 3316 cma_pages = zone_page_state(z, NR_FREE_CMA_PAGES); 3317 #endif 3318 3319 /* 3320 * Fast check for order-0 only. If this fails then the reserves 3321 * need to be calculated. There is a corner case where the check 3322 * passes but only the high-order atomic reserve are free. If 3323 * the caller is !atomic then it'll uselessly search the free 3324 * list. That corner case is then slower but it is harmless. 3325 */ 3326 if (!order && (free_pages - cma_pages) > mark + z->lowmem_reserve[classzone_idx]) 3327 return true; 3328 3329 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags, 3330 free_pages); 3331 } 3332 3333 bool zone_watermark_ok_safe(struct zone *z, unsigned int order, 3334 unsigned long mark, int classzone_idx) 3335 { 3336 long free_pages = zone_page_state(z, NR_FREE_PAGES); 3337 3338 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark) 3339 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES); 3340 3341 return __zone_watermark_ok(z, order, mark, classzone_idx, 0, 3342 free_pages); 3343 } 3344 3345 #ifdef CONFIG_NUMA 3346 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone) 3347 { 3348 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <= 3349 RECLAIM_DISTANCE; 3350 } 3351 #else /* CONFIG_NUMA */ 3352 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone) 3353 { 3354 return true; 3355 } 3356 #endif /* CONFIG_NUMA */ 3357 3358 /* 3359 * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid 3360 * fragmentation is subtle. If the preferred zone was HIGHMEM then 3361 * premature use of a lower zone may cause lowmem pressure problems that 3362 * are worse than fragmentation. If the next zone is ZONE_DMA then it is 3363 * probably too small. It only makes sense to spread allocations to avoid 3364 * fragmentation between the Normal and DMA32 zones. 3365 */ 3366 static inline unsigned int 3367 alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask) 3368 { 3369 unsigned int alloc_flags = 0; 3370 3371 if (gfp_mask & __GFP_KSWAPD_RECLAIM) 3372 alloc_flags |= ALLOC_KSWAPD; 3373 3374 #ifdef CONFIG_ZONE_DMA32 3375 if (zone_idx(zone) != ZONE_NORMAL) 3376 goto out; 3377 3378 /* 3379 * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and 3380 * the pointer is within zone->zone_pgdat->node_zones[]. Also assume 3381 * on UMA that if Normal is populated then so is DMA32. 3382 */ 3383 BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1); 3384 if (nr_online_nodes > 1 && !populated_zone(--zone)) 3385 goto out; 3386 3387 out: 3388 #endif /* CONFIG_ZONE_DMA32 */ 3389 return alloc_flags; 3390 } 3391 3392 /* 3393 * get_page_from_freelist goes through the zonelist trying to allocate 3394 * a page. 3395 */ 3396 static struct page * 3397 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags, 3398 const struct alloc_context *ac) 3399 { 3400 struct zoneref *z; 3401 struct zone *zone; 3402 struct pglist_data *last_pgdat_dirty_limit = NULL; 3403 bool no_fallback; 3404 3405 retry: 3406 /* 3407 * Scan zonelist, looking for a zone with enough free. 3408 * See also __cpuset_node_allowed() comment in kernel/cpuset.c. 3409 */ 3410 no_fallback = alloc_flags & ALLOC_NOFRAGMENT; 3411 z = ac->preferred_zoneref; 3412 for_next_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx, 3413 ac->nodemask) { 3414 struct page *page; 3415 unsigned long mark; 3416 3417 if (cpusets_enabled() && 3418 (alloc_flags & ALLOC_CPUSET) && 3419 !__cpuset_zone_allowed(zone, gfp_mask)) 3420 continue; 3421 /* 3422 * When allocating a page cache page for writing, we 3423 * want to get it from a node that is within its dirty 3424 * limit, such that no single node holds more than its 3425 * proportional share of globally allowed dirty pages. 3426 * The dirty limits take into account the node's 3427 * lowmem reserves and high watermark so that kswapd 3428 * should be able to balance it without having to 3429 * write pages from its LRU list. 3430 * 3431 * XXX: For now, allow allocations to potentially 3432 * exceed the per-node dirty limit in the slowpath 3433 * (spread_dirty_pages unset) before going into reclaim, 3434 * which is important when on a NUMA setup the allowed 3435 * nodes are together not big enough to reach the 3436 * global limit. The proper fix for these situations 3437 * will require awareness of nodes in the 3438 * dirty-throttling and the flusher threads. 3439 */ 3440 if (ac->spread_dirty_pages) { 3441 if (last_pgdat_dirty_limit == zone->zone_pgdat) 3442 continue; 3443 3444 if (!node_dirty_ok(zone->zone_pgdat)) { 3445 last_pgdat_dirty_limit = zone->zone_pgdat; 3446 continue; 3447 } 3448 } 3449 3450 if (no_fallback && nr_online_nodes > 1 && 3451 zone != ac->preferred_zoneref->zone) { 3452 int local_nid; 3453 3454 /* 3455 * If moving to a remote node, retry but allow 3456 * fragmenting fallbacks. Locality is more important 3457 * than fragmentation avoidance. 3458 */ 3459 local_nid = zone_to_nid(ac->preferred_zoneref->zone); 3460 if (zone_to_nid(zone) != local_nid) { 3461 alloc_flags &= ~ALLOC_NOFRAGMENT; 3462 goto retry; 3463 } 3464 } 3465 3466 mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK); 3467 if (!zone_watermark_fast(zone, order, mark, 3468 ac_classzone_idx(ac), alloc_flags)) { 3469 int ret; 3470 3471 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 3472 /* 3473 * Watermark failed for this zone, but see if we can 3474 * grow this zone if it contains deferred pages. 3475 */ 3476 if (static_branch_unlikely(&deferred_pages)) { 3477 if (_deferred_grow_zone(zone, order)) 3478 goto try_this_zone; 3479 } 3480 #endif 3481 /* Checked here to keep the fast path fast */ 3482 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK); 3483 if (alloc_flags & ALLOC_NO_WATERMARKS) 3484 goto try_this_zone; 3485 3486 if (node_reclaim_mode == 0 || 3487 !zone_allows_reclaim(ac->preferred_zoneref->zone, zone)) 3488 continue; 3489 3490 ret = node_reclaim(zone->zone_pgdat, gfp_mask, order); 3491 switch (ret) { 3492 case NODE_RECLAIM_NOSCAN: 3493 /* did not scan */ 3494 continue; 3495 case NODE_RECLAIM_FULL: 3496 /* scanned but unreclaimable */ 3497 continue; 3498 default: 3499 /* did we reclaim enough */ 3500 if (zone_watermark_ok(zone, order, mark, 3501 ac_classzone_idx(ac), alloc_flags)) 3502 goto try_this_zone; 3503 3504 continue; 3505 } 3506 } 3507 3508 try_this_zone: 3509 page = rmqueue(ac->preferred_zoneref->zone, zone, order, 3510 gfp_mask, alloc_flags, ac->migratetype); 3511 if (page) { 3512 prep_new_page(page, order, gfp_mask, alloc_flags); 3513 3514 /* 3515 * If this is a high-order atomic allocation then check 3516 * if the pageblock should be reserved for the future 3517 */ 3518 if (unlikely(order && (alloc_flags & ALLOC_HARDER))) 3519 reserve_highatomic_pageblock(page, zone, order); 3520 3521 return page; 3522 } else { 3523 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 3524 /* Try again if zone has deferred pages */ 3525 if (static_branch_unlikely(&deferred_pages)) { 3526 if (_deferred_grow_zone(zone, order)) 3527 goto try_this_zone; 3528 } 3529 #endif 3530 } 3531 } 3532 3533 /* 3534 * It's possible on a UMA machine to get through all zones that are 3535 * fragmented. If avoiding fragmentation, reset and try again. 3536 */ 3537 if (no_fallback) { 3538 alloc_flags &= ~ALLOC_NOFRAGMENT; 3539 goto retry; 3540 } 3541 3542 return NULL; 3543 } 3544 3545 static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask) 3546 { 3547 unsigned int filter = SHOW_MEM_FILTER_NODES; 3548 static DEFINE_RATELIMIT_STATE(show_mem_rs, HZ, 1); 3549 3550 if (!__ratelimit(&show_mem_rs)) 3551 return; 3552 3553 /* 3554 * This documents exceptions given to allocations in certain 3555 * contexts that are allowed to allocate outside current's set 3556 * of allowed nodes. 3557 */ 3558 if (!(gfp_mask & __GFP_NOMEMALLOC)) 3559 if (tsk_is_oom_victim(current) || 3560 (current->flags & (PF_MEMALLOC | PF_EXITING))) 3561 filter &= ~SHOW_MEM_FILTER_NODES; 3562 if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM)) 3563 filter &= ~SHOW_MEM_FILTER_NODES; 3564 3565 show_mem(filter, nodemask); 3566 } 3567 3568 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...) 3569 { 3570 struct va_format vaf; 3571 va_list args; 3572 static DEFINE_RATELIMIT_STATE(nopage_rs, DEFAULT_RATELIMIT_INTERVAL, 3573 DEFAULT_RATELIMIT_BURST); 3574 3575 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs)) 3576 return; 3577 3578 va_start(args, fmt); 3579 vaf.fmt = fmt; 3580 vaf.va = &args; 3581 pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl", 3582 current->comm, &vaf, gfp_mask, &gfp_mask, 3583 nodemask_pr_args(nodemask)); 3584 va_end(args); 3585 3586 cpuset_print_current_mems_allowed(); 3587 pr_cont("\n"); 3588 dump_stack(); 3589 warn_alloc_show_mem(gfp_mask, nodemask); 3590 } 3591 3592 static inline struct page * 3593 __alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order, 3594 unsigned int alloc_flags, 3595 const struct alloc_context *ac) 3596 { 3597 struct page *page; 3598 3599 page = get_page_from_freelist(gfp_mask, order, 3600 alloc_flags|ALLOC_CPUSET, ac); 3601 /* 3602 * fallback to ignore cpuset restriction if our nodes 3603 * are depleted 3604 */ 3605 if (!page) 3606 page = get_page_from_freelist(gfp_mask, order, 3607 alloc_flags, ac); 3608 3609 return page; 3610 } 3611 3612 static inline struct page * 3613 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order, 3614 const struct alloc_context *ac, unsigned long *did_some_progress) 3615 { 3616 struct oom_control oc = { 3617 .zonelist = ac->zonelist, 3618 .nodemask = ac->nodemask, 3619 .memcg = NULL, 3620 .gfp_mask = gfp_mask, 3621 .order = order, 3622 }; 3623 struct page *page; 3624 3625 *did_some_progress = 0; 3626 3627 /* 3628 * Acquire the oom lock. If that fails, somebody else is 3629 * making progress for us. 3630 */ 3631 if (!mutex_trylock(&oom_lock)) { 3632 *did_some_progress = 1; 3633 schedule_timeout_uninterruptible(1); 3634 return NULL; 3635 } 3636 3637 /* 3638 * Go through the zonelist yet one more time, keep very high watermark 3639 * here, this is only to catch a parallel oom killing, we must fail if 3640 * we're still under heavy pressure. But make sure that this reclaim 3641 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY 3642 * allocation which will never fail due to oom_lock already held. 3643 */ 3644 page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) & 3645 ~__GFP_DIRECT_RECLAIM, order, 3646 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac); 3647 if (page) 3648 goto out; 3649 3650 /* Coredumps can quickly deplete all memory reserves */ 3651 if (current->flags & PF_DUMPCORE) 3652 goto out; 3653 /* The OOM killer will not help higher order allocs */ 3654 if (order > PAGE_ALLOC_COSTLY_ORDER) 3655 goto out; 3656 /* 3657 * We have already exhausted all our reclaim opportunities without any 3658 * success so it is time to admit defeat. We will skip the OOM killer 3659 * because it is very likely that the caller has a more reasonable 3660 * fallback than shooting a random task. 3661 */ 3662 if (gfp_mask & __GFP_RETRY_MAYFAIL) 3663 goto out; 3664 /* The OOM killer does not needlessly kill tasks for lowmem */ 3665 if (ac->high_zoneidx < ZONE_NORMAL) 3666 goto out; 3667 if (pm_suspended_storage()) 3668 goto out; 3669 /* 3670 * XXX: GFP_NOFS allocations should rather fail than rely on 3671 * other request to make a forward progress. 3672 * We are in an unfortunate situation where out_of_memory cannot 3673 * do much for this context but let's try it to at least get 3674 * access to memory reserved if the current task is killed (see 3675 * out_of_memory). Once filesystems are ready to handle allocation 3676 * failures more gracefully we should just bail out here. 3677 */ 3678 3679 /* The OOM killer may not free memory on a specific node */ 3680 if (gfp_mask & __GFP_THISNODE) 3681 goto out; 3682 3683 /* Exhausted what can be done so it's blame time */ 3684 if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) { 3685 *did_some_progress = 1; 3686 3687 /* 3688 * Help non-failing allocations by giving them access to memory 3689 * reserves 3690 */ 3691 if (gfp_mask & __GFP_NOFAIL) 3692 page = __alloc_pages_cpuset_fallback(gfp_mask, order, 3693 ALLOC_NO_WATERMARKS, ac); 3694 } 3695 out: 3696 mutex_unlock(&oom_lock); 3697 return page; 3698 } 3699 3700 /* 3701 * Maximum number of compaction retries wit a progress before OOM 3702 * killer is consider as the only way to move forward. 3703 */ 3704 #define MAX_COMPACT_RETRIES 16 3705 3706 #ifdef CONFIG_COMPACTION 3707 /* Try memory compaction for high-order allocations before reclaim */ 3708 static struct page * 3709 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order, 3710 unsigned int alloc_flags, const struct alloc_context *ac, 3711 enum compact_priority prio, enum compact_result *compact_result) 3712 { 3713 struct page *page; 3714 unsigned long pflags; 3715 unsigned int noreclaim_flag; 3716 3717 if (!order) 3718 return NULL; 3719 3720 psi_memstall_enter(&pflags); 3721 noreclaim_flag = memalloc_noreclaim_save(); 3722 3723 *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac, 3724 prio); 3725 3726 memalloc_noreclaim_restore(noreclaim_flag); 3727 psi_memstall_leave(&pflags); 3728 3729 if (*compact_result <= COMPACT_INACTIVE) 3730 return NULL; 3731 3732 /* 3733 * At least in one zone compaction wasn't deferred or skipped, so let's 3734 * count a compaction stall 3735 */ 3736 count_vm_event(COMPACTSTALL); 3737 3738 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 3739 3740 if (page) { 3741 struct zone *zone = page_zone(page); 3742 3743 zone->compact_blockskip_flush = false; 3744 compaction_defer_reset(zone, order, true); 3745 count_vm_event(COMPACTSUCCESS); 3746 return page; 3747 } 3748 3749 /* 3750 * It's bad if compaction run occurs and fails. The most likely reason 3751 * is that pages exist, but not enough to satisfy watermarks. 3752 */ 3753 count_vm_event(COMPACTFAIL); 3754 3755 cond_resched(); 3756 3757 return NULL; 3758 } 3759 3760 static inline bool 3761 should_compact_retry(struct alloc_context *ac, int order, int alloc_flags, 3762 enum compact_result compact_result, 3763 enum compact_priority *compact_priority, 3764 int *compaction_retries) 3765 { 3766 int max_retries = MAX_COMPACT_RETRIES; 3767 int min_priority; 3768 bool ret = false; 3769 int retries = *compaction_retries; 3770 enum compact_priority priority = *compact_priority; 3771 3772 if (!order) 3773 return false; 3774 3775 if (compaction_made_progress(compact_result)) 3776 (*compaction_retries)++; 3777 3778 /* 3779 * compaction considers all the zone as desperately out of memory 3780 * so it doesn't really make much sense to retry except when the 3781 * failure could be caused by insufficient priority 3782 */ 3783 if (compaction_failed(compact_result)) 3784 goto check_priority; 3785 3786 /* 3787 * make sure the compaction wasn't deferred or didn't bail out early 3788 * due to locks contention before we declare that we should give up. 3789 * But do not retry if the given zonelist is not suitable for 3790 * compaction. 3791 */ 3792 if (compaction_withdrawn(compact_result)) { 3793 ret = compaction_zonelist_suitable(ac, order, alloc_flags); 3794 goto out; 3795 } 3796 3797 /* 3798 * !costly requests are much more important than __GFP_RETRY_MAYFAIL 3799 * costly ones because they are de facto nofail and invoke OOM 3800 * killer to move on while costly can fail and users are ready 3801 * to cope with that. 1/4 retries is rather arbitrary but we 3802 * would need much more detailed feedback from compaction to 3803 * make a better decision. 3804 */ 3805 if (order > PAGE_ALLOC_COSTLY_ORDER) 3806 max_retries /= 4; 3807 if (*compaction_retries <= max_retries) { 3808 ret = true; 3809 goto out; 3810 } 3811 3812 /* 3813 * Make sure there are attempts at the highest priority if we exhausted 3814 * all retries or failed at the lower priorities. 3815 */ 3816 check_priority: 3817 min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ? 3818 MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY; 3819 3820 if (*compact_priority > min_priority) { 3821 (*compact_priority)--; 3822 *compaction_retries = 0; 3823 ret = true; 3824 } 3825 out: 3826 trace_compact_retry(order, priority, compact_result, retries, max_retries, ret); 3827 return ret; 3828 } 3829 #else 3830 static inline struct page * 3831 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order, 3832 unsigned int alloc_flags, const struct alloc_context *ac, 3833 enum compact_priority prio, enum compact_result *compact_result) 3834 { 3835 *compact_result = COMPACT_SKIPPED; 3836 return NULL; 3837 } 3838 3839 static inline bool 3840 should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags, 3841 enum compact_result compact_result, 3842 enum compact_priority *compact_priority, 3843 int *compaction_retries) 3844 { 3845 struct zone *zone; 3846 struct zoneref *z; 3847 3848 if (!order || order > PAGE_ALLOC_COSTLY_ORDER) 3849 return false; 3850 3851 /* 3852 * There are setups with compaction disabled which would prefer to loop 3853 * inside the allocator rather than hit the oom killer prematurely. 3854 * Let's give them a good hope and keep retrying while the order-0 3855 * watermarks are OK. 3856 */ 3857 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx, 3858 ac->nodemask) { 3859 if (zone_watermark_ok(zone, 0, min_wmark_pages(zone), 3860 ac_classzone_idx(ac), alloc_flags)) 3861 return true; 3862 } 3863 return false; 3864 } 3865 #endif /* CONFIG_COMPACTION */ 3866 3867 #ifdef CONFIG_LOCKDEP 3868 static struct lockdep_map __fs_reclaim_map = 3869 STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map); 3870 3871 static bool __need_fs_reclaim(gfp_t gfp_mask) 3872 { 3873 gfp_mask = current_gfp_context(gfp_mask); 3874 3875 /* no reclaim without waiting on it */ 3876 if (!(gfp_mask & __GFP_DIRECT_RECLAIM)) 3877 return false; 3878 3879 /* this guy won't enter reclaim */ 3880 if (current->flags & PF_MEMALLOC) 3881 return false; 3882 3883 /* We're only interested __GFP_FS allocations for now */ 3884 if (!(gfp_mask & __GFP_FS)) 3885 return false; 3886 3887 if (gfp_mask & __GFP_NOLOCKDEP) 3888 return false; 3889 3890 return true; 3891 } 3892 3893 void __fs_reclaim_acquire(void) 3894 { 3895 lock_map_acquire(&__fs_reclaim_map); 3896 } 3897 3898 void __fs_reclaim_release(void) 3899 { 3900 lock_map_release(&__fs_reclaim_map); 3901 } 3902 3903 void fs_reclaim_acquire(gfp_t gfp_mask) 3904 { 3905 if (__need_fs_reclaim(gfp_mask)) 3906 __fs_reclaim_acquire(); 3907 } 3908 EXPORT_SYMBOL_GPL(fs_reclaim_acquire); 3909 3910 void fs_reclaim_release(gfp_t gfp_mask) 3911 { 3912 if (__need_fs_reclaim(gfp_mask)) 3913 __fs_reclaim_release(); 3914 } 3915 EXPORT_SYMBOL_GPL(fs_reclaim_release); 3916 #endif 3917 3918 /* Perform direct synchronous page reclaim */ 3919 static int 3920 __perform_reclaim(gfp_t gfp_mask, unsigned int order, 3921 const struct alloc_context *ac) 3922 { 3923 struct reclaim_state reclaim_state; 3924 int progress; 3925 unsigned int noreclaim_flag; 3926 unsigned long pflags; 3927 3928 cond_resched(); 3929 3930 /* We now go into synchronous reclaim */ 3931 cpuset_memory_pressure_bump(); 3932 psi_memstall_enter(&pflags); 3933 fs_reclaim_acquire(gfp_mask); 3934 noreclaim_flag = memalloc_noreclaim_save(); 3935 reclaim_state.reclaimed_slab = 0; 3936 current->reclaim_state = &reclaim_state; 3937 3938 progress = try_to_free_pages(ac->zonelist, order, gfp_mask, 3939 ac->nodemask); 3940 3941 current->reclaim_state = NULL; 3942 memalloc_noreclaim_restore(noreclaim_flag); 3943 fs_reclaim_release(gfp_mask); 3944 psi_memstall_leave(&pflags); 3945 3946 cond_resched(); 3947 3948 return progress; 3949 } 3950 3951 /* The really slow allocator path where we enter direct reclaim */ 3952 static inline struct page * 3953 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order, 3954 unsigned int alloc_flags, const struct alloc_context *ac, 3955 unsigned long *did_some_progress) 3956 { 3957 struct page *page = NULL; 3958 bool drained = false; 3959 3960 *did_some_progress = __perform_reclaim(gfp_mask, order, ac); 3961 if (unlikely(!(*did_some_progress))) 3962 return NULL; 3963 3964 retry: 3965 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 3966 3967 /* 3968 * If an allocation failed after direct reclaim, it could be because 3969 * pages are pinned on the per-cpu lists or in high alloc reserves. 3970 * Shrink them them and try again 3971 */ 3972 if (!page && !drained) { 3973 unreserve_highatomic_pageblock(ac, false); 3974 drain_all_pages(NULL); 3975 drained = true; 3976 goto retry; 3977 } 3978 3979 return page; 3980 } 3981 3982 static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask, 3983 const struct alloc_context *ac) 3984 { 3985 struct zoneref *z; 3986 struct zone *zone; 3987 pg_data_t *last_pgdat = NULL; 3988 enum zone_type high_zoneidx = ac->high_zoneidx; 3989 3990 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, high_zoneidx, 3991 ac->nodemask) { 3992 if (last_pgdat != zone->zone_pgdat) 3993 wakeup_kswapd(zone, gfp_mask, order, high_zoneidx); 3994 last_pgdat = zone->zone_pgdat; 3995 } 3996 } 3997 3998 static inline unsigned int 3999 gfp_to_alloc_flags(gfp_t gfp_mask) 4000 { 4001 unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET; 4002 4003 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */ 4004 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH); 4005 4006 /* 4007 * The caller may dip into page reserves a bit more if the caller 4008 * cannot run direct reclaim, or if the caller has realtime scheduling 4009 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will 4010 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH). 4011 */ 4012 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH); 4013 4014 if (gfp_mask & __GFP_ATOMIC) { 4015 /* 4016 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even 4017 * if it can't schedule. 4018 */ 4019 if (!(gfp_mask & __GFP_NOMEMALLOC)) 4020 alloc_flags |= ALLOC_HARDER; 4021 /* 4022 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the 4023 * comment for __cpuset_node_allowed(). 4024 */ 4025 alloc_flags &= ~ALLOC_CPUSET; 4026 } else if (unlikely(rt_task(current)) && !in_interrupt()) 4027 alloc_flags |= ALLOC_HARDER; 4028 4029 if (gfp_mask & __GFP_KSWAPD_RECLAIM) 4030 alloc_flags |= ALLOC_KSWAPD; 4031 4032 #ifdef CONFIG_CMA 4033 if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE) 4034 alloc_flags |= ALLOC_CMA; 4035 #endif 4036 return alloc_flags; 4037 } 4038 4039 static bool oom_reserves_allowed(struct task_struct *tsk) 4040 { 4041 if (!tsk_is_oom_victim(tsk)) 4042 return false; 4043 4044 /* 4045 * !MMU doesn't have oom reaper so give access to memory reserves 4046 * only to the thread with TIF_MEMDIE set 4047 */ 4048 if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE)) 4049 return false; 4050 4051 return true; 4052 } 4053 4054 /* 4055 * Distinguish requests which really need access to full memory 4056 * reserves from oom victims which can live with a portion of it 4057 */ 4058 static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask) 4059 { 4060 if (unlikely(gfp_mask & __GFP_NOMEMALLOC)) 4061 return 0; 4062 if (gfp_mask & __GFP_MEMALLOC) 4063 return ALLOC_NO_WATERMARKS; 4064 if (in_serving_softirq() && (current->flags & PF_MEMALLOC)) 4065 return ALLOC_NO_WATERMARKS; 4066 if (!in_interrupt()) { 4067 if (current->flags & PF_MEMALLOC) 4068 return ALLOC_NO_WATERMARKS; 4069 else if (oom_reserves_allowed(current)) 4070 return ALLOC_OOM; 4071 } 4072 4073 return 0; 4074 } 4075 4076 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask) 4077 { 4078 return !!__gfp_pfmemalloc_flags(gfp_mask); 4079 } 4080 4081 /* 4082 * Checks whether it makes sense to retry the reclaim to make a forward progress 4083 * for the given allocation request. 4084 * 4085 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row 4086 * without success, or when we couldn't even meet the watermark if we 4087 * reclaimed all remaining pages on the LRU lists. 4088 * 4089 * Returns true if a retry is viable or false to enter the oom path. 4090 */ 4091 static inline bool 4092 should_reclaim_retry(gfp_t gfp_mask, unsigned order, 4093 struct alloc_context *ac, int alloc_flags, 4094 bool did_some_progress, int *no_progress_loops) 4095 { 4096 struct zone *zone; 4097 struct zoneref *z; 4098 bool ret = false; 4099 4100 /* 4101 * Costly allocations might have made a progress but this doesn't mean 4102 * their order will become available due to high fragmentation so 4103 * always increment the no progress counter for them 4104 */ 4105 if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER) 4106 *no_progress_loops = 0; 4107 else 4108 (*no_progress_loops)++; 4109 4110 /* 4111 * Make sure we converge to OOM if we cannot make any progress 4112 * several times in the row. 4113 */ 4114 if (*no_progress_loops > MAX_RECLAIM_RETRIES) { 4115 /* Before OOM, exhaust highatomic_reserve */ 4116 return unreserve_highatomic_pageblock(ac, true); 4117 } 4118 4119 /* 4120 * Keep reclaiming pages while there is a chance this will lead 4121 * somewhere. If none of the target zones can satisfy our allocation 4122 * request even if all reclaimable pages are considered then we are 4123 * screwed and have to go OOM. 4124 */ 4125 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx, 4126 ac->nodemask) { 4127 unsigned long available; 4128 unsigned long reclaimable; 4129 unsigned long min_wmark = min_wmark_pages(zone); 4130 bool wmark; 4131 4132 available = reclaimable = zone_reclaimable_pages(zone); 4133 available += zone_page_state_snapshot(zone, NR_FREE_PAGES); 4134 4135 /* 4136 * Would the allocation succeed if we reclaimed all 4137 * reclaimable pages? 4138 */ 4139 wmark = __zone_watermark_ok(zone, order, min_wmark, 4140 ac_classzone_idx(ac), alloc_flags, available); 4141 trace_reclaim_retry_zone(z, order, reclaimable, 4142 available, min_wmark, *no_progress_loops, wmark); 4143 if (wmark) { 4144 /* 4145 * If we didn't make any progress and have a lot of 4146 * dirty + writeback pages then we should wait for 4147 * an IO to complete to slow down the reclaim and 4148 * prevent from pre mature OOM 4149 */ 4150 if (!did_some_progress) { 4151 unsigned long write_pending; 4152 4153 write_pending = zone_page_state_snapshot(zone, 4154 NR_ZONE_WRITE_PENDING); 4155 4156 if (2 * write_pending > reclaimable) { 4157 congestion_wait(BLK_RW_ASYNC, HZ/10); 4158 return true; 4159 } 4160 } 4161 4162 ret = true; 4163 goto out; 4164 } 4165 } 4166 4167 out: 4168 /* 4169 * Memory allocation/reclaim might be called from a WQ context and the 4170 * current implementation of the WQ concurrency control doesn't 4171 * recognize that a particular WQ is congested if the worker thread is 4172 * looping without ever sleeping. Therefore we have to do a short sleep 4173 * here rather than calling cond_resched(). 4174 */ 4175 if (current->flags & PF_WQ_WORKER) 4176 schedule_timeout_uninterruptible(1); 4177 else 4178 cond_resched(); 4179 return ret; 4180 } 4181 4182 static inline bool 4183 check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac) 4184 { 4185 /* 4186 * It's possible that cpuset's mems_allowed and the nodemask from 4187 * mempolicy don't intersect. This should be normally dealt with by 4188 * policy_nodemask(), but it's possible to race with cpuset update in 4189 * such a way the check therein was true, and then it became false 4190 * before we got our cpuset_mems_cookie here. 4191 * This assumes that for all allocations, ac->nodemask can come only 4192 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored 4193 * when it does not intersect with the cpuset restrictions) or the 4194 * caller can deal with a violated nodemask. 4195 */ 4196 if (cpusets_enabled() && ac->nodemask && 4197 !cpuset_nodemask_valid_mems_allowed(ac->nodemask)) { 4198 ac->nodemask = NULL; 4199 return true; 4200 } 4201 4202 /* 4203 * When updating a task's mems_allowed or mempolicy nodemask, it is 4204 * possible to race with parallel threads in such a way that our 4205 * allocation can fail while the mask is being updated. If we are about 4206 * to fail, check if the cpuset changed during allocation and if so, 4207 * retry. 4208 */ 4209 if (read_mems_allowed_retry(cpuset_mems_cookie)) 4210 return true; 4211 4212 return false; 4213 } 4214 4215 static inline struct page * 4216 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order, 4217 struct alloc_context *ac) 4218 { 4219 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM; 4220 const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER; 4221 struct page *page = NULL; 4222 unsigned int alloc_flags; 4223 unsigned long did_some_progress; 4224 enum compact_priority compact_priority; 4225 enum compact_result compact_result; 4226 int compaction_retries; 4227 int no_progress_loops; 4228 unsigned int cpuset_mems_cookie; 4229 int reserve_flags; 4230 4231 /* 4232 * We also sanity check to catch abuse of atomic reserves being used by 4233 * callers that are not in atomic context. 4234 */ 4235 if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) == 4236 (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM))) 4237 gfp_mask &= ~__GFP_ATOMIC; 4238 4239 retry_cpuset: 4240 compaction_retries = 0; 4241 no_progress_loops = 0; 4242 compact_priority = DEF_COMPACT_PRIORITY; 4243 cpuset_mems_cookie = read_mems_allowed_begin(); 4244 4245 /* 4246 * The fast path uses conservative alloc_flags to succeed only until 4247 * kswapd needs to be woken up, and to avoid the cost of setting up 4248 * alloc_flags precisely. So we do that now. 4249 */ 4250 alloc_flags = gfp_to_alloc_flags(gfp_mask); 4251 4252 /* 4253 * We need to recalculate the starting point for the zonelist iterator 4254 * because we might have used different nodemask in the fast path, or 4255 * there was a cpuset modification and we are retrying - otherwise we 4256 * could end up iterating over non-eligible zones endlessly. 4257 */ 4258 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist, 4259 ac->high_zoneidx, ac->nodemask); 4260 if (!ac->preferred_zoneref->zone) 4261 goto nopage; 4262 4263 if (alloc_flags & ALLOC_KSWAPD) 4264 wake_all_kswapds(order, gfp_mask, ac); 4265 4266 /* 4267 * The adjusted alloc_flags might result in immediate success, so try 4268 * that first 4269 */ 4270 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 4271 if (page) 4272 goto got_pg; 4273 4274 /* 4275 * For costly allocations, try direct compaction first, as it's likely 4276 * that we have enough base pages and don't need to reclaim. For non- 4277 * movable high-order allocations, do that as well, as compaction will 4278 * try prevent permanent fragmentation by migrating from blocks of the 4279 * same migratetype. 4280 * Don't try this for allocations that are allowed to ignore 4281 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen. 4282 */ 4283 if (can_direct_reclaim && 4284 (costly_order || 4285 (order > 0 && ac->migratetype != MIGRATE_MOVABLE)) 4286 && !gfp_pfmemalloc_allowed(gfp_mask)) { 4287 page = __alloc_pages_direct_compact(gfp_mask, order, 4288 alloc_flags, ac, 4289 INIT_COMPACT_PRIORITY, 4290 &compact_result); 4291 if (page) 4292 goto got_pg; 4293 4294 /* 4295 * Checks for costly allocations with __GFP_NORETRY, which 4296 * includes THP page fault allocations 4297 */ 4298 if (costly_order && (gfp_mask & __GFP_NORETRY)) { 4299 /* 4300 * If compaction is deferred for high-order allocations, 4301 * it is because sync compaction recently failed. If 4302 * this is the case and the caller requested a THP 4303 * allocation, we do not want to heavily disrupt the 4304 * system, so we fail the allocation instead of entering 4305 * direct reclaim. 4306 */ 4307 if (compact_result == COMPACT_DEFERRED) 4308 goto nopage; 4309 4310 /* 4311 * Looks like reclaim/compaction is worth trying, but 4312 * sync compaction could be very expensive, so keep 4313 * using async compaction. 4314 */ 4315 compact_priority = INIT_COMPACT_PRIORITY; 4316 } 4317 } 4318 4319 retry: 4320 /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */ 4321 if (alloc_flags & ALLOC_KSWAPD) 4322 wake_all_kswapds(order, gfp_mask, ac); 4323 4324 reserve_flags = __gfp_pfmemalloc_flags(gfp_mask); 4325 if (reserve_flags) 4326 alloc_flags = reserve_flags; 4327 4328 /* 4329 * Reset the nodemask and zonelist iterators if memory policies can be 4330 * ignored. These allocations are high priority and system rather than 4331 * user oriented. 4332 */ 4333 if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) { 4334 ac->nodemask = NULL; 4335 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist, 4336 ac->high_zoneidx, ac->nodemask); 4337 } 4338 4339 /* Attempt with potentially adjusted zonelist and alloc_flags */ 4340 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 4341 if (page) 4342 goto got_pg; 4343 4344 /* Caller is not willing to reclaim, we can't balance anything */ 4345 if (!can_direct_reclaim) 4346 goto nopage; 4347 4348 /* Avoid recursion of direct reclaim */ 4349 if (current->flags & PF_MEMALLOC) 4350 goto nopage; 4351 4352 /* Try direct reclaim and then allocating */ 4353 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac, 4354 &did_some_progress); 4355 if (page) 4356 goto got_pg; 4357 4358 /* Try direct compaction and then allocating */ 4359 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac, 4360 compact_priority, &compact_result); 4361 if (page) 4362 goto got_pg; 4363 4364 /* Do not loop if specifically requested */ 4365 if (gfp_mask & __GFP_NORETRY) 4366 goto nopage; 4367 4368 /* 4369 * Do not retry costly high order allocations unless they are 4370 * __GFP_RETRY_MAYFAIL 4371 */ 4372 if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL)) 4373 goto nopage; 4374 4375 if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags, 4376 did_some_progress > 0, &no_progress_loops)) 4377 goto retry; 4378 4379 /* 4380 * It doesn't make any sense to retry for the compaction if the order-0 4381 * reclaim is not able to make any progress because the current 4382 * implementation of the compaction depends on the sufficient amount 4383 * of free memory (see __compaction_suitable) 4384 */ 4385 if (did_some_progress > 0 && 4386 should_compact_retry(ac, order, alloc_flags, 4387 compact_result, &compact_priority, 4388 &compaction_retries)) 4389 goto retry; 4390 4391 4392 /* Deal with possible cpuset update races before we start OOM killing */ 4393 if (check_retry_cpuset(cpuset_mems_cookie, ac)) 4394 goto retry_cpuset; 4395 4396 /* Reclaim has failed us, start killing things */ 4397 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress); 4398 if (page) 4399 goto got_pg; 4400 4401 /* Avoid allocations with no watermarks from looping endlessly */ 4402 if (tsk_is_oom_victim(current) && 4403 (alloc_flags == ALLOC_OOM || 4404 (gfp_mask & __GFP_NOMEMALLOC))) 4405 goto nopage; 4406 4407 /* Retry as long as the OOM killer is making progress */ 4408 if (did_some_progress) { 4409 no_progress_loops = 0; 4410 goto retry; 4411 } 4412 4413 nopage: 4414 /* Deal with possible cpuset update races before we fail */ 4415 if (check_retry_cpuset(cpuset_mems_cookie, ac)) 4416 goto retry_cpuset; 4417 4418 /* 4419 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure 4420 * we always retry 4421 */ 4422 if (gfp_mask & __GFP_NOFAIL) { 4423 /* 4424 * All existing users of the __GFP_NOFAIL are blockable, so warn 4425 * of any new users that actually require GFP_NOWAIT 4426 */ 4427 if (WARN_ON_ONCE(!can_direct_reclaim)) 4428 goto fail; 4429 4430 /* 4431 * PF_MEMALLOC request from this context is rather bizarre 4432 * because we cannot reclaim anything and only can loop waiting 4433 * for somebody to do a work for us 4434 */ 4435 WARN_ON_ONCE(current->flags & PF_MEMALLOC); 4436 4437 /* 4438 * non failing costly orders are a hard requirement which we 4439 * are not prepared for much so let's warn about these users 4440 * so that we can identify them and convert them to something 4441 * else. 4442 */ 4443 WARN_ON_ONCE(order > PAGE_ALLOC_COSTLY_ORDER); 4444 4445 /* 4446 * Help non-failing allocations by giving them access to memory 4447 * reserves but do not use ALLOC_NO_WATERMARKS because this 4448 * could deplete whole memory reserves which would just make 4449 * the situation worse 4450 */ 4451 page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac); 4452 if (page) 4453 goto got_pg; 4454 4455 cond_resched(); 4456 goto retry; 4457 } 4458 fail: 4459 warn_alloc(gfp_mask, ac->nodemask, 4460 "page allocation failure: order:%u", order); 4461 got_pg: 4462 return page; 4463 } 4464 4465 static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order, 4466 int preferred_nid, nodemask_t *nodemask, 4467 struct alloc_context *ac, gfp_t *alloc_mask, 4468 unsigned int *alloc_flags) 4469 { 4470 ac->high_zoneidx = gfp_zone(gfp_mask); 4471 ac->zonelist = node_zonelist(preferred_nid, gfp_mask); 4472 ac->nodemask = nodemask; 4473 ac->migratetype = gfpflags_to_migratetype(gfp_mask); 4474 4475 if (cpusets_enabled()) { 4476 *alloc_mask |= __GFP_HARDWALL; 4477 if (!ac->nodemask) 4478 ac->nodemask = &cpuset_current_mems_allowed; 4479 else 4480 *alloc_flags |= ALLOC_CPUSET; 4481 } 4482 4483 fs_reclaim_acquire(gfp_mask); 4484 fs_reclaim_release(gfp_mask); 4485 4486 might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM); 4487 4488 if (should_fail_alloc_page(gfp_mask, order)) 4489 return false; 4490 4491 if (IS_ENABLED(CONFIG_CMA) && ac->migratetype == MIGRATE_MOVABLE) 4492 *alloc_flags |= ALLOC_CMA; 4493 4494 return true; 4495 } 4496 4497 /* Determine whether to spread dirty pages and what the first usable zone */ 4498 static inline void finalise_ac(gfp_t gfp_mask, struct alloc_context *ac) 4499 { 4500 /* Dirty zone balancing only done in the fast path */ 4501 ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE); 4502 4503 /* 4504 * The preferred zone is used for statistics but crucially it is 4505 * also used as the starting point for the zonelist iterator. It 4506 * may get reset for allocations that ignore memory policies. 4507 */ 4508 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist, 4509 ac->high_zoneidx, ac->nodemask); 4510 } 4511 4512 /* 4513 * This is the 'heart' of the zoned buddy allocator. 4514 */ 4515 struct page * 4516 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order, int preferred_nid, 4517 nodemask_t *nodemask) 4518 { 4519 struct page *page; 4520 unsigned int alloc_flags = ALLOC_WMARK_LOW; 4521 gfp_t alloc_mask; /* The gfp_t that was actually used for allocation */ 4522 struct alloc_context ac = { }; 4523 4524 /* 4525 * There are several places where we assume that the order value is sane 4526 * so bail out early if the request is out of bound. 4527 */ 4528 if (unlikely(order >= MAX_ORDER)) { 4529 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN)); 4530 return NULL; 4531 } 4532 4533 gfp_mask &= gfp_allowed_mask; 4534 alloc_mask = gfp_mask; 4535 if (!prepare_alloc_pages(gfp_mask, order, preferred_nid, nodemask, &ac, &alloc_mask, &alloc_flags)) 4536 return NULL; 4537 4538 finalise_ac(gfp_mask, &ac); 4539 4540 /* 4541 * Forbid the first pass from falling back to types that fragment 4542 * memory until all local zones are considered. 4543 */ 4544 alloc_flags |= alloc_flags_nofragment(ac.preferred_zoneref->zone, gfp_mask); 4545 4546 /* First allocation attempt */ 4547 page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac); 4548 if (likely(page)) 4549 goto out; 4550 4551 /* 4552 * Apply scoped allocation constraints. This is mainly about GFP_NOFS 4553 * resp. GFP_NOIO which has to be inherited for all allocation requests 4554 * from a particular context which has been marked by 4555 * memalloc_no{fs,io}_{save,restore}. 4556 */ 4557 alloc_mask = current_gfp_context(gfp_mask); 4558 ac.spread_dirty_pages = false; 4559 4560 /* 4561 * Restore the original nodemask if it was potentially replaced with 4562 * &cpuset_current_mems_allowed to optimize the fast-path attempt. 4563 */ 4564 if (unlikely(ac.nodemask != nodemask)) 4565 ac.nodemask = nodemask; 4566 4567 page = __alloc_pages_slowpath(alloc_mask, order, &ac); 4568 4569 out: 4570 if (memcg_kmem_enabled() && (gfp_mask & __GFP_ACCOUNT) && page && 4571 unlikely(memcg_kmem_charge(page, gfp_mask, order) != 0)) { 4572 __free_pages(page, order); 4573 page = NULL; 4574 } 4575 4576 trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype); 4577 4578 return page; 4579 } 4580 EXPORT_SYMBOL(__alloc_pages_nodemask); 4581 4582 /* 4583 * Common helper functions. Never use with __GFP_HIGHMEM because the returned 4584 * address cannot represent highmem pages. Use alloc_pages and then kmap if 4585 * you need to access high mem. 4586 */ 4587 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order) 4588 { 4589 struct page *page; 4590 4591 page = alloc_pages(gfp_mask & ~__GFP_HIGHMEM, order); 4592 if (!page) 4593 return 0; 4594 return (unsigned long) page_address(page); 4595 } 4596 EXPORT_SYMBOL(__get_free_pages); 4597 4598 unsigned long get_zeroed_page(gfp_t gfp_mask) 4599 { 4600 return __get_free_pages(gfp_mask | __GFP_ZERO, 0); 4601 } 4602 EXPORT_SYMBOL(get_zeroed_page); 4603 4604 static inline void free_the_page(struct page *page, unsigned int order) 4605 { 4606 if (order == 0) /* Via pcp? */ 4607 free_unref_page(page); 4608 else 4609 __free_pages_ok(page, order); 4610 } 4611 4612 void __free_pages(struct page *page, unsigned int order) 4613 { 4614 if (put_page_testzero(page)) 4615 free_the_page(page, order); 4616 } 4617 EXPORT_SYMBOL(__free_pages); 4618 4619 void free_pages(unsigned long addr, unsigned int order) 4620 { 4621 if (addr != 0) { 4622 VM_BUG_ON(!virt_addr_valid((void *)addr)); 4623 __free_pages(virt_to_page((void *)addr), order); 4624 } 4625 } 4626 4627 EXPORT_SYMBOL(free_pages); 4628 4629 /* 4630 * Page Fragment: 4631 * An arbitrary-length arbitrary-offset area of memory which resides 4632 * within a 0 or higher order page. Multiple fragments within that page 4633 * are individually refcounted, in the page's reference counter. 4634 * 4635 * The page_frag functions below provide a simple allocation framework for 4636 * page fragments. This is used by the network stack and network device 4637 * drivers to provide a backing region of memory for use as either an 4638 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info. 4639 */ 4640 static struct page *__page_frag_cache_refill(struct page_frag_cache *nc, 4641 gfp_t gfp_mask) 4642 { 4643 struct page *page = NULL; 4644 gfp_t gfp = gfp_mask; 4645 4646 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE) 4647 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY | 4648 __GFP_NOMEMALLOC; 4649 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask, 4650 PAGE_FRAG_CACHE_MAX_ORDER); 4651 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE; 4652 #endif 4653 if (unlikely(!page)) 4654 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0); 4655 4656 nc->va = page ? page_address(page) : NULL; 4657 4658 return page; 4659 } 4660 4661 void __page_frag_cache_drain(struct page *page, unsigned int count) 4662 { 4663 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page); 4664 4665 if (page_ref_sub_and_test(page, count)) 4666 free_the_page(page, compound_order(page)); 4667 } 4668 EXPORT_SYMBOL(__page_frag_cache_drain); 4669 4670 void *page_frag_alloc(struct page_frag_cache *nc, 4671 unsigned int fragsz, gfp_t gfp_mask) 4672 { 4673 unsigned int size = PAGE_SIZE; 4674 struct page *page; 4675 int offset; 4676 4677 if (unlikely(!nc->va)) { 4678 refill: 4679 page = __page_frag_cache_refill(nc, gfp_mask); 4680 if (!page) 4681 return NULL; 4682 4683 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE) 4684 /* if size can vary use size else just use PAGE_SIZE */ 4685 size = nc->size; 4686 #endif 4687 /* Even if we own the page, we do not use atomic_set(). 4688 * This would break get_page_unless_zero() users. 4689 */ 4690 page_ref_add(page, PAGE_FRAG_CACHE_MAX_SIZE); 4691 4692 /* reset page count bias and offset to start of new frag */ 4693 nc->pfmemalloc = page_is_pfmemalloc(page); 4694 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1; 4695 nc->offset = size; 4696 } 4697 4698 offset = nc->offset - fragsz; 4699 if (unlikely(offset < 0)) { 4700 page = virt_to_page(nc->va); 4701 4702 if (!page_ref_sub_and_test(page, nc->pagecnt_bias)) 4703 goto refill; 4704 4705 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE) 4706 /* if size can vary use size else just use PAGE_SIZE */ 4707 size = nc->size; 4708 #endif 4709 /* OK, page count is 0, we can safely set it */ 4710 set_page_count(page, PAGE_FRAG_CACHE_MAX_SIZE + 1); 4711 4712 /* reset page count bias and offset to start of new frag */ 4713 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1; 4714 offset = size - fragsz; 4715 } 4716 4717 nc->pagecnt_bias--; 4718 nc->offset = offset; 4719 4720 return nc->va + offset; 4721 } 4722 EXPORT_SYMBOL(page_frag_alloc); 4723 4724 /* 4725 * Frees a page fragment allocated out of either a compound or order 0 page. 4726 */ 4727 void page_frag_free(void *addr) 4728 { 4729 struct page *page = virt_to_head_page(addr); 4730 4731 if (unlikely(put_page_testzero(page))) 4732 free_the_page(page, compound_order(page)); 4733 } 4734 EXPORT_SYMBOL(page_frag_free); 4735 4736 static void *make_alloc_exact(unsigned long addr, unsigned int order, 4737 size_t size) 4738 { 4739 if (addr) { 4740 unsigned long alloc_end = addr + (PAGE_SIZE << order); 4741 unsigned long used = addr + PAGE_ALIGN(size); 4742 4743 split_page(virt_to_page((void *)addr), order); 4744 while (used < alloc_end) { 4745 free_page(used); 4746 used += PAGE_SIZE; 4747 } 4748 } 4749 return (void *)addr; 4750 } 4751 4752 /** 4753 * alloc_pages_exact - allocate an exact number physically-contiguous pages. 4754 * @size: the number of bytes to allocate 4755 * @gfp_mask: GFP flags for the allocation 4756 * 4757 * This function is similar to alloc_pages(), except that it allocates the 4758 * minimum number of pages to satisfy the request. alloc_pages() can only 4759 * allocate memory in power-of-two pages. 4760 * 4761 * This function is also limited by MAX_ORDER. 4762 * 4763 * Memory allocated by this function must be released by free_pages_exact(). 4764 */ 4765 void *alloc_pages_exact(size_t size, gfp_t gfp_mask) 4766 { 4767 unsigned int order = get_order(size); 4768 unsigned long addr; 4769 4770 addr = __get_free_pages(gfp_mask, order); 4771 return make_alloc_exact(addr, order, size); 4772 } 4773 EXPORT_SYMBOL(alloc_pages_exact); 4774 4775 /** 4776 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous 4777 * pages on a node. 4778 * @nid: the preferred node ID where memory should be allocated 4779 * @size: the number of bytes to allocate 4780 * @gfp_mask: GFP flags for the allocation 4781 * 4782 * Like alloc_pages_exact(), but try to allocate on node nid first before falling 4783 * back. 4784 */ 4785 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask) 4786 { 4787 unsigned int order = get_order(size); 4788 struct page *p = alloc_pages_node(nid, gfp_mask, order); 4789 if (!p) 4790 return NULL; 4791 return make_alloc_exact((unsigned long)page_address(p), order, size); 4792 } 4793 4794 /** 4795 * free_pages_exact - release memory allocated via alloc_pages_exact() 4796 * @virt: the value returned by alloc_pages_exact. 4797 * @size: size of allocation, same value as passed to alloc_pages_exact(). 4798 * 4799 * Release the memory allocated by a previous call to alloc_pages_exact. 4800 */ 4801 void free_pages_exact(void *virt, size_t size) 4802 { 4803 unsigned long addr = (unsigned long)virt; 4804 unsigned long end = addr + PAGE_ALIGN(size); 4805 4806 while (addr < end) { 4807 free_page(addr); 4808 addr += PAGE_SIZE; 4809 } 4810 } 4811 EXPORT_SYMBOL(free_pages_exact); 4812 4813 /** 4814 * nr_free_zone_pages - count number of pages beyond high watermark 4815 * @offset: The zone index of the highest zone 4816 * 4817 * nr_free_zone_pages() counts the number of counts pages which are beyond the 4818 * high watermark within all zones at or below a given zone index. For each 4819 * zone, the number of pages is calculated as: 4820 * 4821 * nr_free_zone_pages = managed_pages - high_pages 4822 */ 4823 static unsigned long nr_free_zone_pages(int offset) 4824 { 4825 struct zoneref *z; 4826 struct zone *zone; 4827 4828 /* Just pick one node, since fallback list is circular */ 4829 unsigned long sum = 0; 4830 4831 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL); 4832 4833 for_each_zone_zonelist(zone, z, zonelist, offset) { 4834 unsigned long size = zone_managed_pages(zone); 4835 unsigned long high = high_wmark_pages(zone); 4836 if (size > high) 4837 sum += size - high; 4838 } 4839 4840 return sum; 4841 } 4842 4843 /** 4844 * nr_free_buffer_pages - count number of pages beyond high watermark 4845 * 4846 * nr_free_buffer_pages() counts the number of pages which are beyond the high 4847 * watermark within ZONE_DMA and ZONE_NORMAL. 4848 */ 4849 unsigned long nr_free_buffer_pages(void) 4850 { 4851 return nr_free_zone_pages(gfp_zone(GFP_USER)); 4852 } 4853 EXPORT_SYMBOL_GPL(nr_free_buffer_pages); 4854 4855 /** 4856 * nr_free_pagecache_pages - count number of pages beyond high watermark 4857 * 4858 * nr_free_pagecache_pages() counts the number of pages which are beyond the 4859 * high watermark within all zones. 4860 */ 4861 unsigned long nr_free_pagecache_pages(void) 4862 { 4863 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE)); 4864 } 4865 4866 static inline void show_node(struct zone *zone) 4867 { 4868 if (IS_ENABLED(CONFIG_NUMA)) 4869 printk("Node %d ", zone_to_nid(zone)); 4870 } 4871 4872 long si_mem_available(void) 4873 { 4874 long available; 4875 unsigned long pagecache; 4876 unsigned long wmark_low = 0; 4877 unsigned long pages[NR_LRU_LISTS]; 4878 unsigned long reclaimable; 4879 struct zone *zone; 4880 int lru; 4881 4882 for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++) 4883 pages[lru] = global_node_page_state(NR_LRU_BASE + lru); 4884 4885 for_each_zone(zone) 4886 wmark_low += low_wmark_pages(zone); 4887 4888 /* 4889 * Estimate the amount of memory available for userspace allocations, 4890 * without causing swapping. 4891 */ 4892 available = global_zone_page_state(NR_FREE_PAGES) - totalreserve_pages; 4893 4894 /* 4895 * Not all the page cache can be freed, otherwise the system will 4896 * start swapping. Assume at least half of the page cache, or the 4897 * low watermark worth of cache, needs to stay. 4898 */ 4899 pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE]; 4900 pagecache -= min(pagecache / 2, wmark_low); 4901 available += pagecache; 4902 4903 /* 4904 * Part of the reclaimable slab and other kernel memory consists of 4905 * items that are in use, and cannot be freed. Cap this estimate at the 4906 * low watermark. 4907 */ 4908 reclaimable = global_node_page_state(NR_SLAB_RECLAIMABLE) + 4909 global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE); 4910 available += reclaimable - min(reclaimable / 2, wmark_low); 4911 4912 if (available < 0) 4913 available = 0; 4914 return available; 4915 } 4916 EXPORT_SYMBOL_GPL(si_mem_available); 4917 4918 void si_meminfo(struct sysinfo *val) 4919 { 4920 val->totalram = totalram_pages(); 4921 val->sharedram = global_node_page_state(NR_SHMEM); 4922 val->freeram = global_zone_page_state(NR_FREE_PAGES); 4923 val->bufferram = nr_blockdev_pages(); 4924 val->totalhigh = totalhigh_pages(); 4925 val->freehigh = nr_free_highpages(); 4926 val->mem_unit = PAGE_SIZE; 4927 } 4928 4929 EXPORT_SYMBOL(si_meminfo); 4930 4931 #ifdef CONFIG_NUMA 4932 void si_meminfo_node(struct sysinfo *val, int nid) 4933 { 4934 int zone_type; /* needs to be signed */ 4935 unsigned long managed_pages = 0; 4936 unsigned long managed_highpages = 0; 4937 unsigned long free_highpages = 0; 4938 pg_data_t *pgdat = NODE_DATA(nid); 4939 4940 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) 4941 managed_pages += zone_managed_pages(&pgdat->node_zones[zone_type]); 4942 val->totalram = managed_pages; 4943 val->sharedram = node_page_state(pgdat, NR_SHMEM); 4944 val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES); 4945 #ifdef CONFIG_HIGHMEM 4946 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) { 4947 struct zone *zone = &pgdat->node_zones[zone_type]; 4948 4949 if (is_highmem(zone)) { 4950 managed_highpages += zone_managed_pages(zone); 4951 free_highpages += zone_page_state(zone, NR_FREE_PAGES); 4952 } 4953 } 4954 val->totalhigh = managed_highpages; 4955 val->freehigh = free_highpages; 4956 #else 4957 val->totalhigh = managed_highpages; 4958 val->freehigh = free_highpages; 4959 #endif 4960 val->mem_unit = PAGE_SIZE; 4961 } 4962 #endif 4963 4964 /* 4965 * Determine whether the node should be displayed or not, depending on whether 4966 * SHOW_MEM_FILTER_NODES was passed to show_free_areas(). 4967 */ 4968 static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask) 4969 { 4970 if (!(flags & SHOW_MEM_FILTER_NODES)) 4971 return false; 4972 4973 /* 4974 * no node mask - aka implicit memory numa policy. Do not bother with 4975 * the synchronization - read_mems_allowed_begin - because we do not 4976 * have to be precise here. 4977 */ 4978 if (!nodemask) 4979 nodemask = &cpuset_current_mems_allowed; 4980 4981 return !node_isset(nid, *nodemask); 4982 } 4983 4984 #define K(x) ((x) << (PAGE_SHIFT-10)) 4985 4986 static void show_migration_types(unsigned char type) 4987 { 4988 static const char types[MIGRATE_TYPES] = { 4989 [MIGRATE_UNMOVABLE] = 'U', 4990 [MIGRATE_MOVABLE] = 'M', 4991 [MIGRATE_RECLAIMABLE] = 'E', 4992 [MIGRATE_HIGHATOMIC] = 'H', 4993 #ifdef CONFIG_CMA 4994 [MIGRATE_CMA] = 'C', 4995 #endif 4996 #ifdef CONFIG_MEMORY_ISOLATION 4997 [MIGRATE_ISOLATE] = 'I', 4998 #endif 4999 }; 5000 char tmp[MIGRATE_TYPES + 1]; 5001 char *p = tmp; 5002 int i; 5003 5004 for (i = 0; i < MIGRATE_TYPES; i++) { 5005 if (type & (1 << i)) 5006 *p++ = types[i]; 5007 } 5008 5009 *p = '\0'; 5010 printk(KERN_CONT "(%s) ", tmp); 5011 } 5012 5013 /* 5014 * Show free area list (used inside shift_scroll-lock stuff) 5015 * We also calculate the percentage fragmentation. We do this by counting the 5016 * memory on each free list with the exception of the first item on the list. 5017 * 5018 * Bits in @filter: 5019 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's 5020 * cpuset. 5021 */ 5022 void show_free_areas(unsigned int filter, nodemask_t *nodemask) 5023 { 5024 unsigned long free_pcp = 0; 5025 int cpu; 5026 struct zone *zone; 5027 pg_data_t *pgdat; 5028 5029 for_each_populated_zone(zone) { 5030 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask)) 5031 continue; 5032 5033 for_each_online_cpu(cpu) 5034 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count; 5035 } 5036 5037 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n" 5038 " active_file:%lu inactive_file:%lu isolated_file:%lu\n" 5039 " unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n" 5040 " slab_reclaimable:%lu slab_unreclaimable:%lu\n" 5041 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n" 5042 " free:%lu free_pcp:%lu free_cma:%lu\n", 5043 global_node_page_state(NR_ACTIVE_ANON), 5044 global_node_page_state(NR_INACTIVE_ANON), 5045 global_node_page_state(NR_ISOLATED_ANON), 5046 global_node_page_state(NR_ACTIVE_FILE), 5047 global_node_page_state(NR_INACTIVE_FILE), 5048 global_node_page_state(NR_ISOLATED_FILE), 5049 global_node_page_state(NR_UNEVICTABLE), 5050 global_node_page_state(NR_FILE_DIRTY), 5051 global_node_page_state(NR_WRITEBACK), 5052 global_node_page_state(NR_UNSTABLE_NFS), 5053 global_node_page_state(NR_SLAB_RECLAIMABLE), 5054 global_node_page_state(NR_SLAB_UNRECLAIMABLE), 5055 global_node_page_state(NR_FILE_MAPPED), 5056 global_node_page_state(NR_SHMEM), 5057 global_zone_page_state(NR_PAGETABLE), 5058 global_zone_page_state(NR_BOUNCE), 5059 global_zone_page_state(NR_FREE_PAGES), 5060 free_pcp, 5061 global_zone_page_state(NR_FREE_CMA_PAGES)); 5062 5063 for_each_online_pgdat(pgdat) { 5064 if (show_mem_node_skip(filter, pgdat->node_id, nodemask)) 5065 continue; 5066 5067 printk("Node %d" 5068 " active_anon:%lukB" 5069 " inactive_anon:%lukB" 5070 " active_file:%lukB" 5071 " inactive_file:%lukB" 5072 " unevictable:%lukB" 5073 " isolated(anon):%lukB" 5074 " isolated(file):%lukB" 5075 " mapped:%lukB" 5076 " dirty:%lukB" 5077 " writeback:%lukB" 5078 " shmem:%lukB" 5079 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 5080 " shmem_thp: %lukB" 5081 " shmem_pmdmapped: %lukB" 5082 " anon_thp: %lukB" 5083 #endif 5084 " writeback_tmp:%lukB" 5085 " unstable:%lukB" 5086 " all_unreclaimable? %s" 5087 "\n", 5088 pgdat->node_id, 5089 K(node_page_state(pgdat, NR_ACTIVE_ANON)), 5090 K(node_page_state(pgdat, NR_INACTIVE_ANON)), 5091 K(node_page_state(pgdat, NR_ACTIVE_FILE)), 5092 K(node_page_state(pgdat, NR_INACTIVE_FILE)), 5093 K(node_page_state(pgdat, NR_UNEVICTABLE)), 5094 K(node_page_state(pgdat, NR_ISOLATED_ANON)), 5095 K(node_page_state(pgdat, NR_ISOLATED_FILE)), 5096 K(node_page_state(pgdat, NR_FILE_MAPPED)), 5097 K(node_page_state(pgdat, NR_FILE_DIRTY)), 5098 K(node_page_state(pgdat, NR_WRITEBACK)), 5099 K(node_page_state(pgdat, NR_SHMEM)), 5100 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 5101 K(node_page_state(pgdat, NR_SHMEM_THPS) * HPAGE_PMD_NR), 5102 K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED) 5103 * HPAGE_PMD_NR), 5104 K(node_page_state(pgdat, NR_ANON_THPS) * HPAGE_PMD_NR), 5105 #endif 5106 K(node_page_state(pgdat, NR_WRITEBACK_TEMP)), 5107 K(node_page_state(pgdat, NR_UNSTABLE_NFS)), 5108 pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ? 5109 "yes" : "no"); 5110 } 5111 5112 for_each_populated_zone(zone) { 5113 int i; 5114 5115 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask)) 5116 continue; 5117 5118 free_pcp = 0; 5119 for_each_online_cpu(cpu) 5120 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count; 5121 5122 show_node(zone); 5123 printk(KERN_CONT 5124 "%s" 5125 " free:%lukB" 5126 " min:%lukB" 5127 " low:%lukB" 5128 " high:%lukB" 5129 " active_anon:%lukB" 5130 " inactive_anon:%lukB" 5131 " active_file:%lukB" 5132 " inactive_file:%lukB" 5133 " unevictable:%lukB" 5134 " writepending:%lukB" 5135 " present:%lukB" 5136 " managed:%lukB" 5137 " mlocked:%lukB" 5138 " kernel_stack:%lukB" 5139 " pagetables:%lukB" 5140 " bounce:%lukB" 5141 " free_pcp:%lukB" 5142 " local_pcp:%ukB" 5143 " free_cma:%lukB" 5144 "\n", 5145 zone->name, 5146 K(zone_page_state(zone, NR_FREE_PAGES)), 5147 K(min_wmark_pages(zone)), 5148 K(low_wmark_pages(zone)), 5149 K(high_wmark_pages(zone)), 5150 K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)), 5151 K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)), 5152 K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)), 5153 K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)), 5154 K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)), 5155 K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)), 5156 K(zone->present_pages), 5157 K(zone_managed_pages(zone)), 5158 K(zone_page_state(zone, NR_MLOCK)), 5159 zone_page_state(zone, NR_KERNEL_STACK_KB), 5160 K(zone_page_state(zone, NR_PAGETABLE)), 5161 K(zone_page_state(zone, NR_BOUNCE)), 5162 K(free_pcp), 5163 K(this_cpu_read(zone->pageset->pcp.count)), 5164 K(zone_page_state(zone, NR_FREE_CMA_PAGES))); 5165 printk("lowmem_reserve[]:"); 5166 for (i = 0; i < MAX_NR_ZONES; i++) 5167 printk(KERN_CONT " %ld", zone->lowmem_reserve[i]); 5168 printk(KERN_CONT "\n"); 5169 } 5170 5171 for_each_populated_zone(zone) { 5172 unsigned int order; 5173 unsigned long nr[MAX_ORDER], flags, total = 0; 5174 unsigned char types[MAX_ORDER]; 5175 5176 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask)) 5177 continue; 5178 show_node(zone); 5179 printk(KERN_CONT "%s: ", zone->name); 5180 5181 spin_lock_irqsave(&zone->lock, flags); 5182 for (order = 0; order < MAX_ORDER; order++) { 5183 struct free_area *area = &zone->free_area[order]; 5184 int type; 5185 5186 nr[order] = area->nr_free; 5187 total += nr[order] << order; 5188 5189 types[order] = 0; 5190 for (type = 0; type < MIGRATE_TYPES; type++) { 5191 if (!list_empty(&area->free_list[type])) 5192 types[order] |= 1 << type; 5193 } 5194 } 5195 spin_unlock_irqrestore(&zone->lock, flags); 5196 for (order = 0; order < MAX_ORDER; order++) { 5197 printk(KERN_CONT "%lu*%lukB ", 5198 nr[order], K(1UL) << order); 5199 if (nr[order]) 5200 show_migration_types(types[order]); 5201 } 5202 printk(KERN_CONT "= %lukB\n", K(total)); 5203 } 5204 5205 hugetlb_show_meminfo(); 5206 5207 printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES)); 5208 5209 show_swap_cache_info(); 5210 } 5211 5212 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref) 5213 { 5214 zoneref->zone = zone; 5215 zoneref->zone_idx = zone_idx(zone); 5216 } 5217 5218 /* 5219 * Builds allocation fallback zone lists. 5220 * 5221 * Add all populated zones of a node to the zonelist. 5222 */ 5223 static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs) 5224 { 5225 struct zone *zone; 5226 enum zone_type zone_type = MAX_NR_ZONES; 5227 int nr_zones = 0; 5228 5229 do { 5230 zone_type--; 5231 zone = pgdat->node_zones + zone_type; 5232 if (managed_zone(zone)) { 5233 zoneref_set_zone(zone, &zonerefs[nr_zones++]); 5234 check_highest_zone(zone_type); 5235 } 5236 } while (zone_type); 5237 5238 return nr_zones; 5239 } 5240 5241 #ifdef CONFIG_NUMA 5242 5243 static int __parse_numa_zonelist_order(char *s) 5244 { 5245 /* 5246 * We used to support different zonlists modes but they turned 5247 * out to be just not useful. Let's keep the warning in place 5248 * if somebody still use the cmd line parameter so that we do 5249 * not fail it silently 5250 */ 5251 if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) { 5252 pr_warn("Ignoring unsupported numa_zonelist_order value: %s\n", s); 5253 return -EINVAL; 5254 } 5255 return 0; 5256 } 5257 5258 static __init int setup_numa_zonelist_order(char *s) 5259 { 5260 if (!s) 5261 return 0; 5262 5263 return __parse_numa_zonelist_order(s); 5264 } 5265 early_param("numa_zonelist_order", setup_numa_zonelist_order); 5266 5267 char numa_zonelist_order[] = "Node"; 5268 5269 /* 5270 * sysctl handler for numa_zonelist_order 5271 */ 5272 int numa_zonelist_order_handler(struct ctl_table *table, int write, 5273 void __user *buffer, size_t *length, 5274 loff_t *ppos) 5275 { 5276 char *str; 5277 int ret; 5278 5279 if (!write) 5280 return proc_dostring(table, write, buffer, length, ppos); 5281 str = memdup_user_nul(buffer, 16); 5282 if (IS_ERR(str)) 5283 return PTR_ERR(str); 5284 5285 ret = __parse_numa_zonelist_order(str); 5286 kfree(str); 5287 return ret; 5288 } 5289 5290 5291 #define MAX_NODE_LOAD (nr_online_nodes) 5292 static int node_load[MAX_NUMNODES]; 5293 5294 /** 5295 * find_next_best_node - find the next node that should appear in a given node's fallback list 5296 * @node: node whose fallback list we're appending 5297 * @used_node_mask: nodemask_t of already used nodes 5298 * 5299 * We use a number of factors to determine which is the next node that should 5300 * appear on a given node's fallback list. The node should not have appeared 5301 * already in @node's fallback list, and it should be the next closest node 5302 * according to the distance array (which contains arbitrary distance values 5303 * from each node to each node in the system), and should also prefer nodes 5304 * with no CPUs, since presumably they'll have very little allocation pressure 5305 * on them otherwise. 5306 * It returns -1 if no node is found. 5307 */ 5308 static int find_next_best_node(int node, nodemask_t *used_node_mask) 5309 { 5310 int n, val; 5311 int min_val = INT_MAX; 5312 int best_node = NUMA_NO_NODE; 5313 const struct cpumask *tmp = cpumask_of_node(0); 5314 5315 /* Use the local node if we haven't already */ 5316 if (!node_isset(node, *used_node_mask)) { 5317 node_set(node, *used_node_mask); 5318 return node; 5319 } 5320 5321 for_each_node_state(n, N_MEMORY) { 5322 5323 /* Don't want a node to appear more than once */ 5324 if (node_isset(n, *used_node_mask)) 5325 continue; 5326 5327 /* Use the distance array to find the distance */ 5328 val = node_distance(node, n); 5329 5330 /* Penalize nodes under us ("prefer the next node") */ 5331 val += (n < node); 5332 5333 /* Give preference to headless and unused nodes */ 5334 tmp = cpumask_of_node(n); 5335 if (!cpumask_empty(tmp)) 5336 val += PENALTY_FOR_NODE_WITH_CPUS; 5337 5338 /* Slight preference for less loaded node */ 5339 val *= (MAX_NODE_LOAD*MAX_NUMNODES); 5340 val += node_load[n]; 5341 5342 if (val < min_val) { 5343 min_val = val; 5344 best_node = n; 5345 } 5346 } 5347 5348 if (best_node >= 0) 5349 node_set(best_node, *used_node_mask); 5350 5351 return best_node; 5352 } 5353 5354 5355 /* 5356 * Build zonelists ordered by node and zones within node. 5357 * This results in maximum locality--normal zone overflows into local 5358 * DMA zone, if any--but risks exhausting DMA zone. 5359 */ 5360 static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order, 5361 unsigned nr_nodes) 5362 { 5363 struct zoneref *zonerefs; 5364 int i; 5365 5366 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs; 5367 5368 for (i = 0; i < nr_nodes; i++) { 5369 int nr_zones; 5370 5371 pg_data_t *node = NODE_DATA(node_order[i]); 5372 5373 nr_zones = build_zonerefs_node(node, zonerefs); 5374 zonerefs += nr_zones; 5375 } 5376 zonerefs->zone = NULL; 5377 zonerefs->zone_idx = 0; 5378 } 5379 5380 /* 5381 * Build gfp_thisnode zonelists 5382 */ 5383 static void build_thisnode_zonelists(pg_data_t *pgdat) 5384 { 5385 struct zoneref *zonerefs; 5386 int nr_zones; 5387 5388 zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs; 5389 nr_zones = build_zonerefs_node(pgdat, zonerefs); 5390 zonerefs += nr_zones; 5391 zonerefs->zone = NULL; 5392 zonerefs->zone_idx = 0; 5393 } 5394 5395 /* 5396 * Build zonelists ordered by zone and nodes within zones. 5397 * This results in conserving DMA zone[s] until all Normal memory is 5398 * exhausted, but results in overflowing to remote node while memory 5399 * may still exist in local DMA zone. 5400 */ 5401 5402 static void build_zonelists(pg_data_t *pgdat) 5403 { 5404 static int node_order[MAX_NUMNODES]; 5405 int node, load, nr_nodes = 0; 5406 nodemask_t used_mask; 5407 int local_node, prev_node; 5408 5409 /* NUMA-aware ordering of nodes */ 5410 local_node = pgdat->node_id; 5411 load = nr_online_nodes; 5412 prev_node = local_node; 5413 nodes_clear(used_mask); 5414 5415 memset(node_order, 0, sizeof(node_order)); 5416 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) { 5417 /* 5418 * We don't want to pressure a particular node. 5419 * So adding penalty to the first node in same 5420 * distance group to make it round-robin. 5421 */ 5422 if (node_distance(local_node, node) != 5423 node_distance(local_node, prev_node)) 5424 node_load[node] = load; 5425 5426 node_order[nr_nodes++] = node; 5427 prev_node = node; 5428 load--; 5429 } 5430 5431 build_zonelists_in_node_order(pgdat, node_order, nr_nodes); 5432 build_thisnode_zonelists(pgdat); 5433 } 5434 5435 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 5436 /* 5437 * Return node id of node used for "local" allocations. 5438 * I.e., first node id of first zone in arg node's generic zonelist. 5439 * Used for initializing percpu 'numa_mem', which is used primarily 5440 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist. 5441 */ 5442 int local_memory_node(int node) 5443 { 5444 struct zoneref *z; 5445 5446 z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL), 5447 gfp_zone(GFP_KERNEL), 5448 NULL); 5449 return zone_to_nid(z->zone); 5450 } 5451 #endif 5452 5453 static void setup_min_unmapped_ratio(void); 5454 static void setup_min_slab_ratio(void); 5455 #else /* CONFIG_NUMA */ 5456 5457 static void build_zonelists(pg_data_t *pgdat) 5458 { 5459 int node, local_node; 5460 struct zoneref *zonerefs; 5461 int nr_zones; 5462 5463 local_node = pgdat->node_id; 5464 5465 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs; 5466 nr_zones = build_zonerefs_node(pgdat, zonerefs); 5467 zonerefs += nr_zones; 5468 5469 /* 5470 * Now we build the zonelist so that it contains the zones 5471 * of all the other nodes. 5472 * We don't want to pressure a particular node, so when 5473 * building the zones for node N, we make sure that the 5474 * zones coming right after the local ones are those from 5475 * node N+1 (modulo N) 5476 */ 5477 for (node = local_node + 1; node < MAX_NUMNODES; node++) { 5478 if (!node_online(node)) 5479 continue; 5480 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs); 5481 zonerefs += nr_zones; 5482 } 5483 for (node = 0; node < local_node; node++) { 5484 if (!node_online(node)) 5485 continue; 5486 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs); 5487 zonerefs += nr_zones; 5488 } 5489 5490 zonerefs->zone = NULL; 5491 zonerefs->zone_idx = 0; 5492 } 5493 5494 #endif /* CONFIG_NUMA */ 5495 5496 /* 5497 * Boot pageset table. One per cpu which is going to be used for all 5498 * zones and all nodes. The parameters will be set in such a way 5499 * that an item put on a list will immediately be handed over to 5500 * the buddy list. This is safe since pageset manipulation is done 5501 * with interrupts disabled. 5502 * 5503 * The boot_pagesets must be kept even after bootup is complete for 5504 * unused processors and/or zones. They do play a role for bootstrapping 5505 * hotplugged processors. 5506 * 5507 * zoneinfo_show() and maybe other functions do 5508 * not check if the processor is online before following the pageset pointer. 5509 * Other parts of the kernel may not check if the zone is available. 5510 */ 5511 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch); 5512 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset); 5513 static DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats); 5514 5515 static void __build_all_zonelists(void *data) 5516 { 5517 int nid; 5518 int __maybe_unused cpu; 5519 pg_data_t *self = data; 5520 static DEFINE_SPINLOCK(lock); 5521 5522 spin_lock(&lock); 5523 5524 #ifdef CONFIG_NUMA 5525 memset(node_load, 0, sizeof(node_load)); 5526 #endif 5527 5528 /* 5529 * This node is hotadded and no memory is yet present. So just 5530 * building zonelists is fine - no need to touch other nodes. 5531 */ 5532 if (self && !node_online(self->node_id)) { 5533 build_zonelists(self); 5534 } else { 5535 for_each_online_node(nid) { 5536 pg_data_t *pgdat = NODE_DATA(nid); 5537 5538 build_zonelists(pgdat); 5539 } 5540 5541 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 5542 /* 5543 * We now know the "local memory node" for each node-- 5544 * i.e., the node of the first zone in the generic zonelist. 5545 * Set up numa_mem percpu variable for on-line cpus. During 5546 * boot, only the boot cpu should be on-line; we'll init the 5547 * secondary cpus' numa_mem as they come on-line. During 5548 * node/memory hotplug, we'll fixup all on-line cpus. 5549 */ 5550 for_each_online_cpu(cpu) 5551 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu))); 5552 #endif 5553 } 5554 5555 spin_unlock(&lock); 5556 } 5557 5558 static noinline void __init 5559 build_all_zonelists_init(void) 5560 { 5561 int cpu; 5562 5563 __build_all_zonelists(NULL); 5564 5565 /* 5566 * Initialize the boot_pagesets that are going to be used 5567 * for bootstrapping processors. The real pagesets for 5568 * each zone will be allocated later when the per cpu 5569 * allocator is available. 5570 * 5571 * boot_pagesets are used also for bootstrapping offline 5572 * cpus if the system is already booted because the pagesets 5573 * are needed to initialize allocators on a specific cpu too. 5574 * F.e. the percpu allocator needs the page allocator which 5575 * needs the percpu allocator in order to allocate its pagesets 5576 * (a chicken-egg dilemma). 5577 */ 5578 for_each_possible_cpu(cpu) 5579 setup_pageset(&per_cpu(boot_pageset, cpu), 0); 5580 5581 mminit_verify_zonelist(); 5582 cpuset_init_current_mems_allowed(); 5583 } 5584 5585 /* 5586 * unless system_state == SYSTEM_BOOTING. 5587 * 5588 * __ref due to call of __init annotated helper build_all_zonelists_init 5589 * [protected by SYSTEM_BOOTING]. 5590 */ 5591 void __ref build_all_zonelists(pg_data_t *pgdat) 5592 { 5593 if (system_state == SYSTEM_BOOTING) { 5594 build_all_zonelists_init(); 5595 } else { 5596 __build_all_zonelists(pgdat); 5597 /* cpuset refresh routine should be here */ 5598 } 5599 vm_total_pages = nr_free_pagecache_pages(); 5600 /* 5601 * Disable grouping by mobility if the number of pages in the 5602 * system is too low to allow the mechanism to work. It would be 5603 * more accurate, but expensive to check per-zone. This check is 5604 * made on memory-hotadd so a system can start with mobility 5605 * disabled and enable it later 5606 */ 5607 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES)) 5608 page_group_by_mobility_disabled = 1; 5609 else 5610 page_group_by_mobility_disabled = 0; 5611 5612 pr_info("Built %i zonelists, mobility grouping %s. Total pages: %ld\n", 5613 nr_online_nodes, 5614 page_group_by_mobility_disabled ? "off" : "on", 5615 vm_total_pages); 5616 #ifdef CONFIG_NUMA 5617 pr_info("Policy zone: %s\n", zone_names[policy_zone]); 5618 #endif 5619 } 5620 5621 /* If zone is ZONE_MOVABLE but memory is mirrored, it is an overlapped init */ 5622 static bool __meminit 5623 overlap_memmap_init(unsigned long zone, unsigned long *pfn) 5624 { 5625 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 5626 static struct memblock_region *r; 5627 5628 if (mirrored_kernelcore && zone == ZONE_MOVABLE) { 5629 if (!r || *pfn >= memblock_region_memory_end_pfn(r)) { 5630 for_each_memblock(memory, r) { 5631 if (*pfn < memblock_region_memory_end_pfn(r)) 5632 break; 5633 } 5634 } 5635 if (*pfn >= memblock_region_memory_base_pfn(r) && 5636 memblock_is_mirror(r)) { 5637 *pfn = memblock_region_memory_end_pfn(r); 5638 return true; 5639 } 5640 } 5641 #endif 5642 return false; 5643 } 5644 5645 /* 5646 * Initially all pages are reserved - free ones are freed 5647 * up by memblock_free_all() once the early boot process is 5648 * done. Non-atomic initialization, single-pass. 5649 */ 5650 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone, 5651 unsigned long start_pfn, enum memmap_context context, 5652 struct vmem_altmap *altmap) 5653 { 5654 unsigned long pfn, end_pfn = start_pfn + size; 5655 struct page *page; 5656 5657 if (highest_memmap_pfn < end_pfn - 1) 5658 highest_memmap_pfn = end_pfn - 1; 5659 5660 #ifdef CONFIG_ZONE_DEVICE 5661 /* 5662 * Honor reservation requested by the driver for this ZONE_DEVICE 5663 * memory. We limit the total number of pages to initialize to just 5664 * those that might contain the memory mapping. We will defer the 5665 * ZONE_DEVICE page initialization until after we have released 5666 * the hotplug lock. 5667 */ 5668 if (zone == ZONE_DEVICE) { 5669 if (!altmap) 5670 return; 5671 5672 if (start_pfn == altmap->base_pfn) 5673 start_pfn += altmap->reserve; 5674 end_pfn = altmap->base_pfn + vmem_altmap_offset(altmap); 5675 } 5676 #endif 5677 5678 for (pfn = start_pfn; pfn < end_pfn; pfn++) { 5679 /* 5680 * There can be holes in boot-time mem_map[]s handed to this 5681 * function. They do not exist on hotplugged memory. 5682 */ 5683 if (context == MEMMAP_EARLY) { 5684 if (!early_pfn_valid(pfn)) 5685 continue; 5686 if (!early_pfn_in_nid(pfn, nid)) 5687 continue; 5688 if (overlap_memmap_init(zone, &pfn)) 5689 continue; 5690 if (defer_init(nid, pfn, end_pfn)) 5691 break; 5692 } 5693 5694 page = pfn_to_page(pfn); 5695 __init_single_page(page, pfn, zone, nid); 5696 if (context == MEMMAP_HOTPLUG) 5697 __SetPageReserved(page); 5698 5699 /* 5700 * Mark the block movable so that blocks are reserved for 5701 * movable at startup. This will force kernel allocations 5702 * to reserve their blocks rather than leaking throughout 5703 * the address space during boot when many long-lived 5704 * kernel allocations are made. 5705 * 5706 * bitmap is created for zone's valid pfn range. but memmap 5707 * can be created for invalid pages (for alignment) 5708 * check here not to call set_pageblock_migratetype() against 5709 * pfn out of zone. 5710 */ 5711 if (!(pfn & (pageblock_nr_pages - 1))) { 5712 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 5713 cond_resched(); 5714 } 5715 } 5716 } 5717 5718 #ifdef CONFIG_ZONE_DEVICE 5719 void __ref memmap_init_zone_device(struct zone *zone, 5720 unsigned long start_pfn, 5721 unsigned long size, 5722 struct dev_pagemap *pgmap) 5723 { 5724 unsigned long pfn, end_pfn = start_pfn + size; 5725 struct pglist_data *pgdat = zone->zone_pgdat; 5726 unsigned long zone_idx = zone_idx(zone); 5727 unsigned long start = jiffies; 5728 int nid = pgdat->node_id; 5729 5730 if (WARN_ON_ONCE(!pgmap || !is_dev_zone(zone))) 5731 return; 5732 5733 /* 5734 * The call to memmap_init_zone should have already taken care 5735 * of the pages reserved for the memmap, so we can just jump to 5736 * the end of that region and start processing the device pages. 5737 */ 5738 if (pgmap->altmap_valid) { 5739 struct vmem_altmap *altmap = &pgmap->altmap; 5740 5741 start_pfn = altmap->base_pfn + vmem_altmap_offset(altmap); 5742 size = end_pfn - start_pfn; 5743 } 5744 5745 for (pfn = start_pfn; pfn < end_pfn; pfn++) { 5746 struct page *page = pfn_to_page(pfn); 5747 5748 __init_single_page(page, pfn, zone_idx, nid); 5749 5750 /* 5751 * Mark page reserved as it will need to wait for onlining 5752 * phase for it to be fully associated with a zone. 5753 * 5754 * We can use the non-atomic __set_bit operation for setting 5755 * the flag as we are still initializing the pages. 5756 */ 5757 __SetPageReserved(page); 5758 5759 /* 5760 * ZONE_DEVICE pages union ->lru with a ->pgmap back 5761 * pointer and hmm_data. It is a bug if a ZONE_DEVICE 5762 * page is ever freed or placed on a driver-private list. 5763 */ 5764 page->pgmap = pgmap; 5765 page->hmm_data = 0; 5766 5767 /* 5768 * Mark the block movable so that blocks are reserved for 5769 * movable at startup. This will force kernel allocations 5770 * to reserve their blocks rather than leaking throughout 5771 * the address space during boot when many long-lived 5772 * kernel allocations are made. 5773 * 5774 * bitmap is created for zone's valid pfn range. but memmap 5775 * can be created for invalid pages (for alignment) 5776 * check here not to call set_pageblock_migratetype() against 5777 * pfn out of zone. 5778 * 5779 * Please note that MEMMAP_HOTPLUG path doesn't clear memmap 5780 * because this is done early in sparse_add_one_section 5781 */ 5782 if (!(pfn & (pageblock_nr_pages - 1))) { 5783 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 5784 cond_resched(); 5785 } 5786 } 5787 5788 pr_info("%s initialised, %lu pages in %ums\n", dev_name(pgmap->dev), 5789 size, jiffies_to_msecs(jiffies - start)); 5790 } 5791 5792 #endif 5793 static void __meminit zone_init_free_lists(struct zone *zone) 5794 { 5795 unsigned int order, t; 5796 for_each_migratetype_order(order, t) { 5797 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]); 5798 zone->free_area[order].nr_free = 0; 5799 } 5800 } 5801 5802 void __meminit __weak memmap_init(unsigned long size, int nid, 5803 unsigned long zone, unsigned long start_pfn) 5804 { 5805 memmap_init_zone(size, nid, zone, start_pfn, MEMMAP_EARLY, NULL); 5806 } 5807 5808 static int zone_batchsize(struct zone *zone) 5809 { 5810 #ifdef CONFIG_MMU 5811 int batch; 5812 5813 /* 5814 * The per-cpu-pages pools are set to around 1000th of the 5815 * size of the zone. 5816 */ 5817 batch = zone_managed_pages(zone) / 1024; 5818 /* But no more than a meg. */ 5819 if (batch * PAGE_SIZE > 1024 * 1024) 5820 batch = (1024 * 1024) / PAGE_SIZE; 5821 batch /= 4; /* We effectively *= 4 below */ 5822 if (batch < 1) 5823 batch = 1; 5824 5825 /* 5826 * Clamp the batch to a 2^n - 1 value. Having a power 5827 * of 2 value was found to be more likely to have 5828 * suboptimal cache aliasing properties in some cases. 5829 * 5830 * For example if 2 tasks are alternately allocating 5831 * batches of pages, one task can end up with a lot 5832 * of pages of one half of the possible page colors 5833 * and the other with pages of the other colors. 5834 */ 5835 batch = rounddown_pow_of_two(batch + batch/2) - 1; 5836 5837 return batch; 5838 5839 #else 5840 /* The deferral and batching of frees should be suppressed under NOMMU 5841 * conditions. 5842 * 5843 * The problem is that NOMMU needs to be able to allocate large chunks 5844 * of contiguous memory as there's no hardware page translation to 5845 * assemble apparent contiguous memory from discontiguous pages. 5846 * 5847 * Queueing large contiguous runs of pages for batching, however, 5848 * causes the pages to actually be freed in smaller chunks. As there 5849 * can be a significant delay between the individual batches being 5850 * recycled, this leads to the once large chunks of space being 5851 * fragmented and becoming unavailable for high-order allocations. 5852 */ 5853 return 0; 5854 #endif 5855 } 5856 5857 /* 5858 * pcp->high and pcp->batch values are related and dependent on one another: 5859 * ->batch must never be higher then ->high. 5860 * The following function updates them in a safe manner without read side 5861 * locking. 5862 * 5863 * Any new users of pcp->batch and pcp->high should ensure they can cope with 5864 * those fields changing asynchronously (acording the the above rule). 5865 * 5866 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function 5867 * outside of boot time (or some other assurance that no concurrent updaters 5868 * exist). 5869 */ 5870 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high, 5871 unsigned long batch) 5872 { 5873 /* start with a fail safe value for batch */ 5874 pcp->batch = 1; 5875 smp_wmb(); 5876 5877 /* Update high, then batch, in order */ 5878 pcp->high = high; 5879 smp_wmb(); 5880 5881 pcp->batch = batch; 5882 } 5883 5884 /* a companion to pageset_set_high() */ 5885 static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch) 5886 { 5887 pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch)); 5888 } 5889 5890 static void pageset_init(struct per_cpu_pageset *p) 5891 { 5892 struct per_cpu_pages *pcp; 5893 int migratetype; 5894 5895 memset(p, 0, sizeof(*p)); 5896 5897 pcp = &p->pcp; 5898 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++) 5899 INIT_LIST_HEAD(&pcp->lists[migratetype]); 5900 } 5901 5902 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch) 5903 { 5904 pageset_init(p); 5905 pageset_set_batch(p, batch); 5906 } 5907 5908 /* 5909 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist 5910 * to the value high for the pageset p. 5911 */ 5912 static void pageset_set_high(struct per_cpu_pageset *p, 5913 unsigned long high) 5914 { 5915 unsigned long batch = max(1UL, high / 4); 5916 if ((high / 4) > (PAGE_SHIFT * 8)) 5917 batch = PAGE_SHIFT * 8; 5918 5919 pageset_update(&p->pcp, high, batch); 5920 } 5921 5922 static void pageset_set_high_and_batch(struct zone *zone, 5923 struct per_cpu_pageset *pcp) 5924 { 5925 if (percpu_pagelist_fraction) 5926 pageset_set_high(pcp, 5927 (zone_managed_pages(zone) / 5928 percpu_pagelist_fraction)); 5929 else 5930 pageset_set_batch(pcp, zone_batchsize(zone)); 5931 } 5932 5933 static void __meminit zone_pageset_init(struct zone *zone, int cpu) 5934 { 5935 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu); 5936 5937 pageset_init(pcp); 5938 pageset_set_high_and_batch(zone, pcp); 5939 } 5940 5941 void __meminit setup_zone_pageset(struct zone *zone) 5942 { 5943 int cpu; 5944 zone->pageset = alloc_percpu(struct per_cpu_pageset); 5945 for_each_possible_cpu(cpu) 5946 zone_pageset_init(zone, cpu); 5947 } 5948 5949 /* 5950 * Allocate per cpu pagesets and initialize them. 5951 * Before this call only boot pagesets were available. 5952 */ 5953 void __init setup_per_cpu_pageset(void) 5954 { 5955 struct pglist_data *pgdat; 5956 struct zone *zone; 5957 5958 for_each_populated_zone(zone) 5959 setup_zone_pageset(zone); 5960 5961 for_each_online_pgdat(pgdat) 5962 pgdat->per_cpu_nodestats = 5963 alloc_percpu(struct per_cpu_nodestat); 5964 } 5965 5966 static __meminit void zone_pcp_init(struct zone *zone) 5967 { 5968 /* 5969 * per cpu subsystem is not up at this point. The following code 5970 * relies on the ability of the linker to provide the 5971 * offset of a (static) per cpu variable into the per cpu area. 5972 */ 5973 zone->pageset = &boot_pageset; 5974 5975 if (populated_zone(zone)) 5976 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n", 5977 zone->name, zone->present_pages, 5978 zone_batchsize(zone)); 5979 } 5980 5981 void __meminit init_currently_empty_zone(struct zone *zone, 5982 unsigned long zone_start_pfn, 5983 unsigned long size) 5984 { 5985 struct pglist_data *pgdat = zone->zone_pgdat; 5986 int zone_idx = zone_idx(zone) + 1; 5987 5988 if (zone_idx > pgdat->nr_zones) 5989 pgdat->nr_zones = zone_idx; 5990 5991 zone->zone_start_pfn = zone_start_pfn; 5992 5993 mminit_dprintk(MMINIT_TRACE, "memmap_init", 5994 "Initialising map node %d zone %lu pfns %lu -> %lu\n", 5995 pgdat->node_id, 5996 (unsigned long)zone_idx(zone), 5997 zone_start_pfn, (zone_start_pfn + size)); 5998 5999 zone_init_free_lists(zone); 6000 zone->initialized = 1; 6001 } 6002 6003 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 6004 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID 6005 6006 /* 6007 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on. 6008 */ 6009 int __meminit __early_pfn_to_nid(unsigned long pfn, 6010 struct mminit_pfnnid_cache *state) 6011 { 6012 unsigned long start_pfn, end_pfn; 6013 int nid; 6014 6015 if (state->last_start <= pfn && pfn < state->last_end) 6016 return state->last_nid; 6017 6018 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn); 6019 if (nid != -1) { 6020 state->last_start = start_pfn; 6021 state->last_end = end_pfn; 6022 state->last_nid = nid; 6023 } 6024 6025 return nid; 6026 } 6027 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */ 6028 6029 /** 6030 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range 6031 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed. 6032 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid 6033 * 6034 * If an architecture guarantees that all ranges registered contain no holes 6035 * and may be freed, this this function may be used instead of calling 6036 * memblock_free_early_nid() manually. 6037 */ 6038 void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn) 6039 { 6040 unsigned long start_pfn, end_pfn; 6041 int i, this_nid; 6042 6043 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) { 6044 start_pfn = min(start_pfn, max_low_pfn); 6045 end_pfn = min(end_pfn, max_low_pfn); 6046 6047 if (start_pfn < end_pfn) 6048 memblock_free_early_nid(PFN_PHYS(start_pfn), 6049 (end_pfn - start_pfn) << PAGE_SHIFT, 6050 this_nid); 6051 } 6052 } 6053 6054 /** 6055 * sparse_memory_present_with_active_regions - Call memory_present for each active range 6056 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used. 6057 * 6058 * If an architecture guarantees that all ranges registered contain no holes and may 6059 * be freed, this function may be used instead of calling memory_present() manually. 6060 */ 6061 void __init sparse_memory_present_with_active_regions(int nid) 6062 { 6063 unsigned long start_pfn, end_pfn; 6064 int i, this_nid; 6065 6066 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) 6067 memory_present(this_nid, start_pfn, end_pfn); 6068 } 6069 6070 /** 6071 * get_pfn_range_for_nid - Return the start and end page frames for a node 6072 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned. 6073 * @start_pfn: Passed by reference. On return, it will have the node start_pfn. 6074 * @end_pfn: Passed by reference. On return, it will have the node end_pfn. 6075 * 6076 * It returns the start and end page frame of a node based on information 6077 * provided by memblock_set_node(). If called for a node 6078 * with no available memory, a warning is printed and the start and end 6079 * PFNs will be 0. 6080 */ 6081 void __init get_pfn_range_for_nid(unsigned int nid, 6082 unsigned long *start_pfn, unsigned long *end_pfn) 6083 { 6084 unsigned long this_start_pfn, this_end_pfn; 6085 int i; 6086 6087 *start_pfn = -1UL; 6088 *end_pfn = 0; 6089 6090 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) { 6091 *start_pfn = min(*start_pfn, this_start_pfn); 6092 *end_pfn = max(*end_pfn, this_end_pfn); 6093 } 6094 6095 if (*start_pfn == -1UL) 6096 *start_pfn = 0; 6097 } 6098 6099 /* 6100 * This finds a zone that can be used for ZONE_MOVABLE pages. The 6101 * assumption is made that zones within a node are ordered in monotonic 6102 * increasing memory addresses so that the "highest" populated zone is used 6103 */ 6104 static void __init find_usable_zone_for_movable(void) 6105 { 6106 int zone_index; 6107 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) { 6108 if (zone_index == ZONE_MOVABLE) 6109 continue; 6110 6111 if (arch_zone_highest_possible_pfn[zone_index] > 6112 arch_zone_lowest_possible_pfn[zone_index]) 6113 break; 6114 } 6115 6116 VM_BUG_ON(zone_index == -1); 6117 movable_zone = zone_index; 6118 } 6119 6120 /* 6121 * The zone ranges provided by the architecture do not include ZONE_MOVABLE 6122 * because it is sized independent of architecture. Unlike the other zones, 6123 * the starting point for ZONE_MOVABLE is not fixed. It may be different 6124 * in each node depending on the size of each node and how evenly kernelcore 6125 * is distributed. This helper function adjusts the zone ranges 6126 * provided by the architecture for a given node by using the end of the 6127 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that 6128 * zones within a node are in order of monotonic increases memory addresses 6129 */ 6130 static void __init adjust_zone_range_for_zone_movable(int nid, 6131 unsigned long zone_type, 6132 unsigned long node_start_pfn, 6133 unsigned long node_end_pfn, 6134 unsigned long *zone_start_pfn, 6135 unsigned long *zone_end_pfn) 6136 { 6137 /* Only adjust if ZONE_MOVABLE is on this node */ 6138 if (zone_movable_pfn[nid]) { 6139 /* Size ZONE_MOVABLE */ 6140 if (zone_type == ZONE_MOVABLE) { 6141 *zone_start_pfn = zone_movable_pfn[nid]; 6142 *zone_end_pfn = min(node_end_pfn, 6143 arch_zone_highest_possible_pfn[movable_zone]); 6144 6145 /* Adjust for ZONE_MOVABLE starting within this range */ 6146 } else if (!mirrored_kernelcore && 6147 *zone_start_pfn < zone_movable_pfn[nid] && 6148 *zone_end_pfn > zone_movable_pfn[nid]) { 6149 *zone_end_pfn = zone_movable_pfn[nid]; 6150 6151 /* Check if this whole range is within ZONE_MOVABLE */ 6152 } else if (*zone_start_pfn >= zone_movable_pfn[nid]) 6153 *zone_start_pfn = *zone_end_pfn; 6154 } 6155 } 6156 6157 /* 6158 * Return the number of pages a zone spans in a node, including holes 6159 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node() 6160 */ 6161 static unsigned long __init zone_spanned_pages_in_node(int nid, 6162 unsigned long zone_type, 6163 unsigned long node_start_pfn, 6164 unsigned long node_end_pfn, 6165 unsigned long *zone_start_pfn, 6166 unsigned long *zone_end_pfn, 6167 unsigned long *ignored) 6168 { 6169 /* When hotadd a new node from cpu_up(), the node should be empty */ 6170 if (!node_start_pfn && !node_end_pfn) 6171 return 0; 6172 6173 /* Get the start and end of the zone */ 6174 *zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type]; 6175 *zone_end_pfn = arch_zone_highest_possible_pfn[zone_type]; 6176 adjust_zone_range_for_zone_movable(nid, zone_type, 6177 node_start_pfn, node_end_pfn, 6178 zone_start_pfn, zone_end_pfn); 6179 6180 /* Check that this node has pages within the zone's required range */ 6181 if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn) 6182 return 0; 6183 6184 /* Move the zone boundaries inside the node if necessary */ 6185 *zone_end_pfn = min(*zone_end_pfn, node_end_pfn); 6186 *zone_start_pfn = max(*zone_start_pfn, node_start_pfn); 6187 6188 /* Return the spanned pages */ 6189 return *zone_end_pfn - *zone_start_pfn; 6190 } 6191 6192 /* 6193 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES, 6194 * then all holes in the requested range will be accounted for. 6195 */ 6196 unsigned long __init __absent_pages_in_range(int nid, 6197 unsigned long range_start_pfn, 6198 unsigned long range_end_pfn) 6199 { 6200 unsigned long nr_absent = range_end_pfn - range_start_pfn; 6201 unsigned long start_pfn, end_pfn; 6202 int i; 6203 6204 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) { 6205 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn); 6206 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn); 6207 nr_absent -= end_pfn - start_pfn; 6208 } 6209 return nr_absent; 6210 } 6211 6212 /** 6213 * absent_pages_in_range - Return number of page frames in holes within a range 6214 * @start_pfn: The start PFN to start searching for holes 6215 * @end_pfn: The end PFN to stop searching for holes 6216 * 6217 * It returns the number of pages frames in memory holes within a range. 6218 */ 6219 unsigned long __init absent_pages_in_range(unsigned long start_pfn, 6220 unsigned long end_pfn) 6221 { 6222 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn); 6223 } 6224 6225 /* Return the number of page frames in holes in a zone on a node */ 6226 static unsigned long __init zone_absent_pages_in_node(int nid, 6227 unsigned long zone_type, 6228 unsigned long node_start_pfn, 6229 unsigned long node_end_pfn, 6230 unsigned long *ignored) 6231 { 6232 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type]; 6233 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type]; 6234 unsigned long zone_start_pfn, zone_end_pfn; 6235 unsigned long nr_absent; 6236 6237 /* When hotadd a new node from cpu_up(), the node should be empty */ 6238 if (!node_start_pfn && !node_end_pfn) 6239 return 0; 6240 6241 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high); 6242 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high); 6243 6244 adjust_zone_range_for_zone_movable(nid, zone_type, 6245 node_start_pfn, node_end_pfn, 6246 &zone_start_pfn, &zone_end_pfn); 6247 nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn); 6248 6249 /* 6250 * ZONE_MOVABLE handling. 6251 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages 6252 * and vice versa. 6253 */ 6254 if (mirrored_kernelcore && zone_movable_pfn[nid]) { 6255 unsigned long start_pfn, end_pfn; 6256 struct memblock_region *r; 6257 6258 for_each_memblock(memory, r) { 6259 start_pfn = clamp(memblock_region_memory_base_pfn(r), 6260 zone_start_pfn, zone_end_pfn); 6261 end_pfn = clamp(memblock_region_memory_end_pfn(r), 6262 zone_start_pfn, zone_end_pfn); 6263 6264 if (zone_type == ZONE_MOVABLE && 6265 memblock_is_mirror(r)) 6266 nr_absent += end_pfn - start_pfn; 6267 6268 if (zone_type == ZONE_NORMAL && 6269 !memblock_is_mirror(r)) 6270 nr_absent += end_pfn - start_pfn; 6271 } 6272 } 6273 6274 return nr_absent; 6275 } 6276 6277 #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 6278 static inline unsigned long __init zone_spanned_pages_in_node(int nid, 6279 unsigned long zone_type, 6280 unsigned long node_start_pfn, 6281 unsigned long node_end_pfn, 6282 unsigned long *zone_start_pfn, 6283 unsigned long *zone_end_pfn, 6284 unsigned long *zones_size) 6285 { 6286 unsigned int zone; 6287 6288 *zone_start_pfn = node_start_pfn; 6289 for (zone = 0; zone < zone_type; zone++) 6290 *zone_start_pfn += zones_size[zone]; 6291 6292 *zone_end_pfn = *zone_start_pfn + zones_size[zone_type]; 6293 6294 return zones_size[zone_type]; 6295 } 6296 6297 static inline unsigned long __init zone_absent_pages_in_node(int nid, 6298 unsigned long zone_type, 6299 unsigned long node_start_pfn, 6300 unsigned long node_end_pfn, 6301 unsigned long *zholes_size) 6302 { 6303 if (!zholes_size) 6304 return 0; 6305 6306 return zholes_size[zone_type]; 6307 } 6308 6309 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 6310 6311 static void __init calculate_node_totalpages(struct pglist_data *pgdat, 6312 unsigned long node_start_pfn, 6313 unsigned long node_end_pfn, 6314 unsigned long *zones_size, 6315 unsigned long *zholes_size) 6316 { 6317 unsigned long realtotalpages = 0, totalpages = 0; 6318 enum zone_type i; 6319 6320 for (i = 0; i < MAX_NR_ZONES; i++) { 6321 struct zone *zone = pgdat->node_zones + i; 6322 unsigned long zone_start_pfn, zone_end_pfn; 6323 unsigned long size, real_size; 6324 6325 size = zone_spanned_pages_in_node(pgdat->node_id, i, 6326 node_start_pfn, 6327 node_end_pfn, 6328 &zone_start_pfn, 6329 &zone_end_pfn, 6330 zones_size); 6331 real_size = size - zone_absent_pages_in_node(pgdat->node_id, i, 6332 node_start_pfn, node_end_pfn, 6333 zholes_size); 6334 if (size) 6335 zone->zone_start_pfn = zone_start_pfn; 6336 else 6337 zone->zone_start_pfn = 0; 6338 zone->spanned_pages = size; 6339 zone->present_pages = real_size; 6340 6341 totalpages += size; 6342 realtotalpages += real_size; 6343 } 6344 6345 pgdat->node_spanned_pages = totalpages; 6346 pgdat->node_present_pages = realtotalpages; 6347 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id, 6348 realtotalpages); 6349 } 6350 6351 #ifndef CONFIG_SPARSEMEM 6352 /* 6353 * Calculate the size of the zone->blockflags rounded to an unsigned long 6354 * Start by making sure zonesize is a multiple of pageblock_order by rounding 6355 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally 6356 * round what is now in bits to nearest long in bits, then return it in 6357 * bytes. 6358 */ 6359 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize) 6360 { 6361 unsigned long usemapsize; 6362 6363 zonesize += zone_start_pfn & (pageblock_nr_pages-1); 6364 usemapsize = roundup(zonesize, pageblock_nr_pages); 6365 usemapsize = usemapsize >> pageblock_order; 6366 usemapsize *= NR_PAGEBLOCK_BITS; 6367 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long)); 6368 6369 return usemapsize / 8; 6370 } 6371 6372 static void __ref setup_usemap(struct pglist_data *pgdat, 6373 struct zone *zone, 6374 unsigned long zone_start_pfn, 6375 unsigned long zonesize) 6376 { 6377 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize); 6378 zone->pageblock_flags = NULL; 6379 if (usemapsize) 6380 zone->pageblock_flags = 6381 memblock_alloc_node_nopanic(usemapsize, 6382 pgdat->node_id); 6383 } 6384 #else 6385 static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone, 6386 unsigned long zone_start_pfn, unsigned long zonesize) {} 6387 #endif /* CONFIG_SPARSEMEM */ 6388 6389 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE 6390 6391 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */ 6392 void __init set_pageblock_order(void) 6393 { 6394 unsigned int order; 6395 6396 /* Check that pageblock_nr_pages has not already been setup */ 6397 if (pageblock_order) 6398 return; 6399 6400 if (HPAGE_SHIFT > PAGE_SHIFT) 6401 order = HUGETLB_PAGE_ORDER; 6402 else 6403 order = MAX_ORDER - 1; 6404 6405 /* 6406 * Assume the largest contiguous order of interest is a huge page. 6407 * This value may be variable depending on boot parameters on IA64 and 6408 * powerpc. 6409 */ 6410 pageblock_order = order; 6411 } 6412 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */ 6413 6414 /* 6415 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order() 6416 * is unused as pageblock_order is set at compile-time. See 6417 * include/linux/pageblock-flags.h for the values of pageblock_order based on 6418 * the kernel config 6419 */ 6420 void __init set_pageblock_order(void) 6421 { 6422 } 6423 6424 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */ 6425 6426 static unsigned long __init calc_memmap_size(unsigned long spanned_pages, 6427 unsigned long present_pages) 6428 { 6429 unsigned long pages = spanned_pages; 6430 6431 /* 6432 * Provide a more accurate estimation if there are holes within 6433 * the zone and SPARSEMEM is in use. If there are holes within the 6434 * zone, each populated memory region may cost us one or two extra 6435 * memmap pages due to alignment because memmap pages for each 6436 * populated regions may not be naturally aligned on page boundary. 6437 * So the (present_pages >> 4) heuristic is a tradeoff for that. 6438 */ 6439 if (spanned_pages > present_pages + (present_pages >> 4) && 6440 IS_ENABLED(CONFIG_SPARSEMEM)) 6441 pages = present_pages; 6442 6443 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT; 6444 } 6445 6446 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 6447 static void pgdat_init_split_queue(struct pglist_data *pgdat) 6448 { 6449 spin_lock_init(&pgdat->split_queue_lock); 6450 INIT_LIST_HEAD(&pgdat->split_queue); 6451 pgdat->split_queue_len = 0; 6452 } 6453 #else 6454 static void pgdat_init_split_queue(struct pglist_data *pgdat) {} 6455 #endif 6456 6457 #ifdef CONFIG_COMPACTION 6458 static void pgdat_init_kcompactd(struct pglist_data *pgdat) 6459 { 6460 init_waitqueue_head(&pgdat->kcompactd_wait); 6461 } 6462 #else 6463 static void pgdat_init_kcompactd(struct pglist_data *pgdat) {} 6464 #endif 6465 6466 static void __meminit pgdat_init_internals(struct pglist_data *pgdat) 6467 { 6468 pgdat_resize_init(pgdat); 6469 6470 pgdat_init_split_queue(pgdat); 6471 pgdat_init_kcompactd(pgdat); 6472 6473 init_waitqueue_head(&pgdat->kswapd_wait); 6474 init_waitqueue_head(&pgdat->pfmemalloc_wait); 6475 6476 pgdat_page_ext_init(pgdat); 6477 spin_lock_init(&pgdat->lru_lock); 6478 lruvec_init(node_lruvec(pgdat)); 6479 } 6480 6481 static void __meminit zone_init_internals(struct zone *zone, enum zone_type idx, int nid, 6482 unsigned long remaining_pages) 6483 { 6484 atomic_long_set(&zone->managed_pages, remaining_pages); 6485 zone_set_nid(zone, nid); 6486 zone->name = zone_names[idx]; 6487 zone->zone_pgdat = NODE_DATA(nid); 6488 spin_lock_init(&zone->lock); 6489 zone_seqlock_init(zone); 6490 zone_pcp_init(zone); 6491 } 6492 6493 /* 6494 * Set up the zone data structures 6495 * - init pgdat internals 6496 * - init all zones belonging to this node 6497 * 6498 * NOTE: this function is only called during memory hotplug 6499 */ 6500 #ifdef CONFIG_MEMORY_HOTPLUG 6501 void __ref free_area_init_core_hotplug(int nid) 6502 { 6503 enum zone_type z; 6504 pg_data_t *pgdat = NODE_DATA(nid); 6505 6506 pgdat_init_internals(pgdat); 6507 for (z = 0; z < MAX_NR_ZONES; z++) 6508 zone_init_internals(&pgdat->node_zones[z], z, nid, 0); 6509 } 6510 #endif 6511 6512 /* 6513 * Set up the zone data structures: 6514 * - mark all pages reserved 6515 * - mark all memory queues empty 6516 * - clear the memory bitmaps 6517 * 6518 * NOTE: pgdat should get zeroed by caller. 6519 * NOTE: this function is only called during early init. 6520 */ 6521 static void __init free_area_init_core(struct pglist_data *pgdat) 6522 { 6523 enum zone_type j; 6524 int nid = pgdat->node_id; 6525 6526 pgdat_init_internals(pgdat); 6527 pgdat->per_cpu_nodestats = &boot_nodestats; 6528 6529 for (j = 0; j < MAX_NR_ZONES; j++) { 6530 struct zone *zone = pgdat->node_zones + j; 6531 unsigned long size, freesize, memmap_pages; 6532 unsigned long zone_start_pfn = zone->zone_start_pfn; 6533 6534 size = zone->spanned_pages; 6535 freesize = zone->present_pages; 6536 6537 /* 6538 * Adjust freesize so that it accounts for how much memory 6539 * is used by this zone for memmap. This affects the watermark 6540 * and per-cpu initialisations 6541 */ 6542 memmap_pages = calc_memmap_size(size, freesize); 6543 if (!is_highmem_idx(j)) { 6544 if (freesize >= memmap_pages) { 6545 freesize -= memmap_pages; 6546 if (memmap_pages) 6547 printk(KERN_DEBUG 6548 " %s zone: %lu pages used for memmap\n", 6549 zone_names[j], memmap_pages); 6550 } else 6551 pr_warn(" %s zone: %lu pages exceeds freesize %lu\n", 6552 zone_names[j], memmap_pages, freesize); 6553 } 6554 6555 /* Account for reserved pages */ 6556 if (j == 0 && freesize > dma_reserve) { 6557 freesize -= dma_reserve; 6558 printk(KERN_DEBUG " %s zone: %lu pages reserved\n", 6559 zone_names[0], dma_reserve); 6560 } 6561 6562 if (!is_highmem_idx(j)) 6563 nr_kernel_pages += freesize; 6564 /* Charge for highmem memmap if there are enough kernel pages */ 6565 else if (nr_kernel_pages > memmap_pages * 2) 6566 nr_kernel_pages -= memmap_pages; 6567 nr_all_pages += freesize; 6568 6569 /* 6570 * Set an approximate value for lowmem here, it will be adjusted 6571 * when the bootmem allocator frees pages into the buddy system. 6572 * And all highmem pages will be managed by the buddy system. 6573 */ 6574 zone_init_internals(zone, j, nid, freesize); 6575 6576 if (!size) 6577 continue; 6578 6579 set_pageblock_order(); 6580 setup_usemap(pgdat, zone, zone_start_pfn, size); 6581 init_currently_empty_zone(zone, zone_start_pfn, size); 6582 memmap_init(size, nid, j, zone_start_pfn); 6583 } 6584 } 6585 6586 #ifdef CONFIG_FLAT_NODE_MEM_MAP 6587 static void __ref alloc_node_mem_map(struct pglist_data *pgdat) 6588 { 6589 unsigned long __maybe_unused start = 0; 6590 unsigned long __maybe_unused offset = 0; 6591 6592 /* Skip empty nodes */ 6593 if (!pgdat->node_spanned_pages) 6594 return; 6595 6596 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1); 6597 offset = pgdat->node_start_pfn - start; 6598 /* ia64 gets its own node_mem_map, before this, without bootmem */ 6599 if (!pgdat->node_mem_map) { 6600 unsigned long size, end; 6601 struct page *map; 6602 6603 /* 6604 * The zone's endpoints aren't required to be MAX_ORDER 6605 * aligned but the node_mem_map endpoints must be in order 6606 * for the buddy allocator to function correctly. 6607 */ 6608 end = pgdat_end_pfn(pgdat); 6609 end = ALIGN(end, MAX_ORDER_NR_PAGES); 6610 size = (end - start) * sizeof(struct page); 6611 map = memblock_alloc_node_nopanic(size, pgdat->node_id); 6612 pgdat->node_mem_map = map + offset; 6613 } 6614 pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n", 6615 __func__, pgdat->node_id, (unsigned long)pgdat, 6616 (unsigned long)pgdat->node_mem_map); 6617 #ifndef CONFIG_NEED_MULTIPLE_NODES 6618 /* 6619 * With no DISCONTIG, the global mem_map is just set as node 0's 6620 */ 6621 if (pgdat == NODE_DATA(0)) { 6622 mem_map = NODE_DATA(0)->node_mem_map; 6623 #if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM) 6624 if (page_to_pfn(mem_map) != pgdat->node_start_pfn) 6625 mem_map -= offset; 6626 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 6627 } 6628 #endif 6629 } 6630 #else 6631 static void __ref alloc_node_mem_map(struct pglist_data *pgdat) { } 6632 #endif /* CONFIG_FLAT_NODE_MEM_MAP */ 6633 6634 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 6635 static inline void pgdat_set_deferred_range(pg_data_t *pgdat) 6636 { 6637 pgdat->first_deferred_pfn = ULONG_MAX; 6638 } 6639 #else 6640 static inline void pgdat_set_deferred_range(pg_data_t *pgdat) {} 6641 #endif 6642 6643 void __init free_area_init_node(int nid, unsigned long *zones_size, 6644 unsigned long node_start_pfn, 6645 unsigned long *zholes_size) 6646 { 6647 pg_data_t *pgdat = NODE_DATA(nid); 6648 unsigned long start_pfn = 0; 6649 unsigned long end_pfn = 0; 6650 6651 /* pg_data_t should be reset to zero when it's allocated */ 6652 WARN_ON(pgdat->nr_zones || pgdat->kswapd_classzone_idx); 6653 6654 pgdat->node_id = nid; 6655 pgdat->node_start_pfn = node_start_pfn; 6656 pgdat->per_cpu_nodestats = NULL; 6657 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 6658 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn); 6659 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid, 6660 (u64)start_pfn << PAGE_SHIFT, 6661 end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0); 6662 #else 6663 start_pfn = node_start_pfn; 6664 #endif 6665 calculate_node_totalpages(pgdat, start_pfn, end_pfn, 6666 zones_size, zholes_size); 6667 6668 alloc_node_mem_map(pgdat); 6669 pgdat_set_deferred_range(pgdat); 6670 6671 free_area_init_core(pgdat); 6672 } 6673 6674 #if !defined(CONFIG_FLAT_NODE_MEM_MAP) 6675 /* 6676 * Zero all valid struct pages in range [spfn, epfn), return number of struct 6677 * pages zeroed 6678 */ 6679 static u64 zero_pfn_range(unsigned long spfn, unsigned long epfn) 6680 { 6681 unsigned long pfn; 6682 u64 pgcnt = 0; 6683 6684 for (pfn = spfn; pfn < epfn; pfn++) { 6685 if (!pfn_valid(ALIGN_DOWN(pfn, pageblock_nr_pages))) { 6686 pfn = ALIGN_DOWN(pfn, pageblock_nr_pages) 6687 + pageblock_nr_pages - 1; 6688 continue; 6689 } 6690 mm_zero_struct_page(pfn_to_page(pfn)); 6691 pgcnt++; 6692 } 6693 6694 return pgcnt; 6695 } 6696 6697 /* 6698 * Only struct pages that are backed by physical memory are zeroed and 6699 * initialized by going through __init_single_page(). But, there are some 6700 * struct pages which are reserved in memblock allocator and their fields 6701 * may be accessed (for example page_to_pfn() on some configuration accesses 6702 * flags). We must explicitly zero those struct pages. 6703 * 6704 * This function also addresses a similar issue where struct pages are left 6705 * uninitialized because the physical address range is not covered by 6706 * memblock.memory or memblock.reserved. That could happen when memblock 6707 * layout is manually configured via memmap=. 6708 */ 6709 void __init zero_resv_unavail(void) 6710 { 6711 phys_addr_t start, end; 6712 u64 i, pgcnt; 6713 phys_addr_t next = 0; 6714 6715 /* 6716 * Loop through unavailable ranges not covered by memblock.memory. 6717 */ 6718 pgcnt = 0; 6719 for_each_mem_range(i, &memblock.memory, NULL, 6720 NUMA_NO_NODE, MEMBLOCK_NONE, &start, &end, NULL) { 6721 if (next < start) 6722 pgcnt += zero_pfn_range(PFN_DOWN(next), PFN_UP(start)); 6723 next = end; 6724 } 6725 pgcnt += zero_pfn_range(PFN_DOWN(next), max_pfn); 6726 6727 /* 6728 * Struct pages that do not have backing memory. This could be because 6729 * firmware is using some of this memory, or for some other reasons. 6730 */ 6731 if (pgcnt) 6732 pr_info("Zeroed struct page in unavailable ranges: %lld pages", pgcnt); 6733 } 6734 #endif /* !CONFIG_FLAT_NODE_MEM_MAP */ 6735 6736 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 6737 6738 #if MAX_NUMNODES > 1 6739 /* 6740 * Figure out the number of possible node ids. 6741 */ 6742 void __init setup_nr_node_ids(void) 6743 { 6744 unsigned int highest; 6745 6746 highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES); 6747 nr_node_ids = highest + 1; 6748 } 6749 #endif 6750 6751 /** 6752 * node_map_pfn_alignment - determine the maximum internode alignment 6753 * 6754 * This function should be called after node map is populated and sorted. 6755 * It calculates the maximum power of two alignment which can distinguish 6756 * all the nodes. 6757 * 6758 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value 6759 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the 6760 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is 6761 * shifted, 1GiB is enough and this function will indicate so. 6762 * 6763 * This is used to test whether pfn -> nid mapping of the chosen memory 6764 * model has fine enough granularity to avoid incorrect mapping for the 6765 * populated node map. 6766 * 6767 * Returns the determined alignment in pfn's. 0 if there is no alignment 6768 * requirement (single node). 6769 */ 6770 unsigned long __init node_map_pfn_alignment(void) 6771 { 6772 unsigned long accl_mask = 0, last_end = 0; 6773 unsigned long start, end, mask; 6774 int last_nid = -1; 6775 int i, nid; 6776 6777 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) { 6778 if (!start || last_nid < 0 || last_nid == nid) { 6779 last_nid = nid; 6780 last_end = end; 6781 continue; 6782 } 6783 6784 /* 6785 * Start with a mask granular enough to pin-point to the 6786 * start pfn and tick off bits one-by-one until it becomes 6787 * too coarse to separate the current node from the last. 6788 */ 6789 mask = ~((1 << __ffs(start)) - 1); 6790 while (mask && last_end <= (start & (mask << 1))) 6791 mask <<= 1; 6792 6793 /* accumulate all internode masks */ 6794 accl_mask |= mask; 6795 } 6796 6797 /* convert mask to number of pages */ 6798 return ~accl_mask + 1; 6799 } 6800 6801 /* Find the lowest pfn for a node */ 6802 static unsigned long __init find_min_pfn_for_node(int nid) 6803 { 6804 unsigned long min_pfn = ULONG_MAX; 6805 unsigned long start_pfn; 6806 int i; 6807 6808 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL) 6809 min_pfn = min(min_pfn, start_pfn); 6810 6811 if (min_pfn == ULONG_MAX) { 6812 pr_warn("Could not find start_pfn for node %d\n", nid); 6813 return 0; 6814 } 6815 6816 return min_pfn; 6817 } 6818 6819 /** 6820 * find_min_pfn_with_active_regions - Find the minimum PFN registered 6821 * 6822 * It returns the minimum PFN based on information provided via 6823 * memblock_set_node(). 6824 */ 6825 unsigned long __init find_min_pfn_with_active_regions(void) 6826 { 6827 return find_min_pfn_for_node(MAX_NUMNODES); 6828 } 6829 6830 /* 6831 * early_calculate_totalpages() 6832 * Sum pages in active regions for movable zone. 6833 * Populate N_MEMORY for calculating usable_nodes. 6834 */ 6835 static unsigned long __init early_calculate_totalpages(void) 6836 { 6837 unsigned long totalpages = 0; 6838 unsigned long start_pfn, end_pfn; 6839 int i, nid; 6840 6841 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) { 6842 unsigned long pages = end_pfn - start_pfn; 6843 6844 totalpages += pages; 6845 if (pages) 6846 node_set_state(nid, N_MEMORY); 6847 } 6848 return totalpages; 6849 } 6850 6851 /* 6852 * Find the PFN the Movable zone begins in each node. Kernel memory 6853 * is spread evenly between nodes as long as the nodes have enough 6854 * memory. When they don't, some nodes will have more kernelcore than 6855 * others 6856 */ 6857 static void __init find_zone_movable_pfns_for_nodes(void) 6858 { 6859 int i, nid; 6860 unsigned long usable_startpfn; 6861 unsigned long kernelcore_node, kernelcore_remaining; 6862 /* save the state before borrow the nodemask */ 6863 nodemask_t saved_node_state = node_states[N_MEMORY]; 6864 unsigned long totalpages = early_calculate_totalpages(); 6865 int usable_nodes = nodes_weight(node_states[N_MEMORY]); 6866 struct memblock_region *r; 6867 6868 /* Need to find movable_zone earlier when movable_node is specified. */ 6869 find_usable_zone_for_movable(); 6870 6871 /* 6872 * If movable_node is specified, ignore kernelcore and movablecore 6873 * options. 6874 */ 6875 if (movable_node_is_enabled()) { 6876 for_each_memblock(memory, r) { 6877 if (!memblock_is_hotpluggable(r)) 6878 continue; 6879 6880 nid = r->nid; 6881 6882 usable_startpfn = PFN_DOWN(r->base); 6883 zone_movable_pfn[nid] = zone_movable_pfn[nid] ? 6884 min(usable_startpfn, zone_movable_pfn[nid]) : 6885 usable_startpfn; 6886 } 6887 6888 goto out2; 6889 } 6890 6891 /* 6892 * If kernelcore=mirror is specified, ignore movablecore option 6893 */ 6894 if (mirrored_kernelcore) { 6895 bool mem_below_4gb_not_mirrored = false; 6896 6897 for_each_memblock(memory, r) { 6898 if (memblock_is_mirror(r)) 6899 continue; 6900 6901 nid = r->nid; 6902 6903 usable_startpfn = memblock_region_memory_base_pfn(r); 6904 6905 if (usable_startpfn < 0x100000) { 6906 mem_below_4gb_not_mirrored = true; 6907 continue; 6908 } 6909 6910 zone_movable_pfn[nid] = zone_movable_pfn[nid] ? 6911 min(usable_startpfn, zone_movable_pfn[nid]) : 6912 usable_startpfn; 6913 } 6914 6915 if (mem_below_4gb_not_mirrored) 6916 pr_warn("This configuration results in unmirrored kernel memory."); 6917 6918 goto out2; 6919 } 6920 6921 /* 6922 * If kernelcore=nn% or movablecore=nn% was specified, calculate the 6923 * amount of necessary memory. 6924 */ 6925 if (required_kernelcore_percent) 6926 required_kernelcore = (totalpages * 100 * required_kernelcore_percent) / 6927 10000UL; 6928 if (required_movablecore_percent) 6929 required_movablecore = (totalpages * 100 * required_movablecore_percent) / 6930 10000UL; 6931 6932 /* 6933 * If movablecore= was specified, calculate what size of 6934 * kernelcore that corresponds so that memory usable for 6935 * any allocation type is evenly spread. If both kernelcore 6936 * and movablecore are specified, then the value of kernelcore 6937 * will be used for required_kernelcore if it's greater than 6938 * what movablecore would have allowed. 6939 */ 6940 if (required_movablecore) { 6941 unsigned long corepages; 6942 6943 /* 6944 * Round-up so that ZONE_MOVABLE is at least as large as what 6945 * was requested by the user 6946 */ 6947 required_movablecore = 6948 roundup(required_movablecore, MAX_ORDER_NR_PAGES); 6949 required_movablecore = min(totalpages, required_movablecore); 6950 corepages = totalpages - required_movablecore; 6951 6952 required_kernelcore = max(required_kernelcore, corepages); 6953 } 6954 6955 /* 6956 * If kernelcore was not specified or kernelcore size is larger 6957 * than totalpages, there is no ZONE_MOVABLE. 6958 */ 6959 if (!required_kernelcore || required_kernelcore >= totalpages) 6960 goto out; 6961 6962 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */ 6963 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone]; 6964 6965 restart: 6966 /* Spread kernelcore memory as evenly as possible throughout nodes */ 6967 kernelcore_node = required_kernelcore / usable_nodes; 6968 for_each_node_state(nid, N_MEMORY) { 6969 unsigned long start_pfn, end_pfn; 6970 6971 /* 6972 * Recalculate kernelcore_node if the division per node 6973 * now exceeds what is necessary to satisfy the requested 6974 * amount of memory for the kernel 6975 */ 6976 if (required_kernelcore < kernelcore_node) 6977 kernelcore_node = required_kernelcore / usable_nodes; 6978 6979 /* 6980 * As the map is walked, we track how much memory is usable 6981 * by the kernel using kernelcore_remaining. When it is 6982 * 0, the rest of the node is usable by ZONE_MOVABLE 6983 */ 6984 kernelcore_remaining = kernelcore_node; 6985 6986 /* Go through each range of PFNs within this node */ 6987 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) { 6988 unsigned long size_pages; 6989 6990 start_pfn = max(start_pfn, zone_movable_pfn[nid]); 6991 if (start_pfn >= end_pfn) 6992 continue; 6993 6994 /* Account for what is only usable for kernelcore */ 6995 if (start_pfn < usable_startpfn) { 6996 unsigned long kernel_pages; 6997 kernel_pages = min(end_pfn, usable_startpfn) 6998 - start_pfn; 6999 7000 kernelcore_remaining -= min(kernel_pages, 7001 kernelcore_remaining); 7002 required_kernelcore -= min(kernel_pages, 7003 required_kernelcore); 7004 7005 /* Continue if range is now fully accounted */ 7006 if (end_pfn <= usable_startpfn) { 7007 7008 /* 7009 * Push zone_movable_pfn to the end so 7010 * that if we have to rebalance 7011 * kernelcore across nodes, we will 7012 * not double account here 7013 */ 7014 zone_movable_pfn[nid] = end_pfn; 7015 continue; 7016 } 7017 start_pfn = usable_startpfn; 7018 } 7019 7020 /* 7021 * The usable PFN range for ZONE_MOVABLE is from 7022 * start_pfn->end_pfn. Calculate size_pages as the 7023 * number of pages used as kernelcore 7024 */ 7025 size_pages = end_pfn - start_pfn; 7026 if (size_pages > kernelcore_remaining) 7027 size_pages = kernelcore_remaining; 7028 zone_movable_pfn[nid] = start_pfn + size_pages; 7029 7030 /* 7031 * Some kernelcore has been met, update counts and 7032 * break if the kernelcore for this node has been 7033 * satisfied 7034 */ 7035 required_kernelcore -= min(required_kernelcore, 7036 size_pages); 7037 kernelcore_remaining -= size_pages; 7038 if (!kernelcore_remaining) 7039 break; 7040 } 7041 } 7042 7043 /* 7044 * If there is still required_kernelcore, we do another pass with one 7045 * less node in the count. This will push zone_movable_pfn[nid] further 7046 * along on the nodes that still have memory until kernelcore is 7047 * satisfied 7048 */ 7049 usable_nodes--; 7050 if (usable_nodes && required_kernelcore > usable_nodes) 7051 goto restart; 7052 7053 out2: 7054 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */ 7055 for (nid = 0; nid < MAX_NUMNODES; nid++) 7056 zone_movable_pfn[nid] = 7057 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES); 7058 7059 out: 7060 /* restore the node_state */ 7061 node_states[N_MEMORY] = saved_node_state; 7062 } 7063 7064 /* Any regular or high memory on that node ? */ 7065 static void check_for_memory(pg_data_t *pgdat, int nid) 7066 { 7067 enum zone_type zone_type; 7068 7069 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) { 7070 struct zone *zone = &pgdat->node_zones[zone_type]; 7071 if (populated_zone(zone)) { 7072 if (IS_ENABLED(CONFIG_HIGHMEM)) 7073 node_set_state(nid, N_HIGH_MEMORY); 7074 if (zone_type <= ZONE_NORMAL) 7075 node_set_state(nid, N_NORMAL_MEMORY); 7076 break; 7077 } 7078 } 7079 } 7080 7081 /** 7082 * free_area_init_nodes - Initialise all pg_data_t and zone data 7083 * @max_zone_pfn: an array of max PFNs for each zone 7084 * 7085 * This will call free_area_init_node() for each active node in the system. 7086 * Using the page ranges provided by memblock_set_node(), the size of each 7087 * zone in each node and their holes is calculated. If the maximum PFN 7088 * between two adjacent zones match, it is assumed that the zone is empty. 7089 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed 7090 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone 7091 * starts where the previous one ended. For example, ZONE_DMA32 starts 7092 * at arch_max_dma_pfn. 7093 */ 7094 void __init free_area_init_nodes(unsigned long *max_zone_pfn) 7095 { 7096 unsigned long start_pfn, end_pfn; 7097 int i, nid; 7098 7099 /* Record where the zone boundaries are */ 7100 memset(arch_zone_lowest_possible_pfn, 0, 7101 sizeof(arch_zone_lowest_possible_pfn)); 7102 memset(arch_zone_highest_possible_pfn, 0, 7103 sizeof(arch_zone_highest_possible_pfn)); 7104 7105 start_pfn = find_min_pfn_with_active_regions(); 7106 7107 for (i = 0; i < MAX_NR_ZONES; i++) { 7108 if (i == ZONE_MOVABLE) 7109 continue; 7110 7111 end_pfn = max(max_zone_pfn[i], start_pfn); 7112 arch_zone_lowest_possible_pfn[i] = start_pfn; 7113 arch_zone_highest_possible_pfn[i] = end_pfn; 7114 7115 start_pfn = end_pfn; 7116 } 7117 7118 /* Find the PFNs that ZONE_MOVABLE begins at in each node */ 7119 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn)); 7120 find_zone_movable_pfns_for_nodes(); 7121 7122 /* Print out the zone ranges */ 7123 pr_info("Zone ranges:\n"); 7124 for (i = 0; i < MAX_NR_ZONES; i++) { 7125 if (i == ZONE_MOVABLE) 7126 continue; 7127 pr_info(" %-8s ", zone_names[i]); 7128 if (arch_zone_lowest_possible_pfn[i] == 7129 arch_zone_highest_possible_pfn[i]) 7130 pr_cont("empty\n"); 7131 else 7132 pr_cont("[mem %#018Lx-%#018Lx]\n", 7133 (u64)arch_zone_lowest_possible_pfn[i] 7134 << PAGE_SHIFT, 7135 ((u64)arch_zone_highest_possible_pfn[i] 7136 << PAGE_SHIFT) - 1); 7137 } 7138 7139 /* Print out the PFNs ZONE_MOVABLE begins at in each node */ 7140 pr_info("Movable zone start for each node\n"); 7141 for (i = 0; i < MAX_NUMNODES; i++) { 7142 if (zone_movable_pfn[i]) 7143 pr_info(" Node %d: %#018Lx\n", i, 7144 (u64)zone_movable_pfn[i] << PAGE_SHIFT); 7145 } 7146 7147 /* Print out the early node map */ 7148 pr_info("Early memory node ranges\n"); 7149 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) 7150 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid, 7151 (u64)start_pfn << PAGE_SHIFT, 7152 ((u64)end_pfn << PAGE_SHIFT) - 1); 7153 7154 /* Initialise every node */ 7155 mminit_verify_pageflags_layout(); 7156 setup_nr_node_ids(); 7157 zero_resv_unavail(); 7158 for_each_online_node(nid) { 7159 pg_data_t *pgdat = NODE_DATA(nid); 7160 free_area_init_node(nid, NULL, 7161 find_min_pfn_for_node(nid), NULL); 7162 7163 /* Any memory on that node */ 7164 if (pgdat->node_present_pages) 7165 node_set_state(nid, N_MEMORY); 7166 check_for_memory(pgdat, nid); 7167 } 7168 } 7169 7170 static int __init cmdline_parse_core(char *p, unsigned long *core, 7171 unsigned long *percent) 7172 { 7173 unsigned long long coremem; 7174 char *endptr; 7175 7176 if (!p) 7177 return -EINVAL; 7178 7179 /* Value may be a percentage of total memory, otherwise bytes */ 7180 coremem = simple_strtoull(p, &endptr, 0); 7181 if (*endptr == '%') { 7182 /* Paranoid check for percent values greater than 100 */ 7183 WARN_ON(coremem > 100); 7184 7185 *percent = coremem; 7186 } else { 7187 coremem = memparse(p, &p); 7188 /* Paranoid check that UL is enough for the coremem value */ 7189 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX); 7190 7191 *core = coremem >> PAGE_SHIFT; 7192 *percent = 0UL; 7193 } 7194 return 0; 7195 } 7196 7197 /* 7198 * kernelcore=size sets the amount of memory for use for allocations that 7199 * cannot be reclaimed or migrated. 7200 */ 7201 static int __init cmdline_parse_kernelcore(char *p) 7202 { 7203 /* parse kernelcore=mirror */ 7204 if (parse_option_str(p, "mirror")) { 7205 mirrored_kernelcore = true; 7206 return 0; 7207 } 7208 7209 return cmdline_parse_core(p, &required_kernelcore, 7210 &required_kernelcore_percent); 7211 } 7212 7213 /* 7214 * movablecore=size sets the amount of memory for use for allocations that 7215 * can be reclaimed or migrated. 7216 */ 7217 static int __init cmdline_parse_movablecore(char *p) 7218 { 7219 return cmdline_parse_core(p, &required_movablecore, 7220 &required_movablecore_percent); 7221 } 7222 7223 early_param("kernelcore", cmdline_parse_kernelcore); 7224 early_param("movablecore", cmdline_parse_movablecore); 7225 7226 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 7227 7228 void adjust_managed_page_count(struct page *page, long count) 7229 { 7230 atomic_long_add(count, &page_zone(page)->managed_pages); 7231 totalram_pages_add(count); 7232 #ifdef CONFIG_HIGHMEM 7233 if (PageHighMem(page)) 7234 totalhigh_pages_add(count); 7235 #endif 7236 } 7237 EXPORT_SYMBOL(adjust_managed_page_count); 7238 7239 unsigned long free_reserved_area(void *start, void *end, int poison, const char *s) 7240 { 7241 void *pos; 7242 unsigned long pages = 0; 7243 7244 start = (void *)PAGE_ALIGN((unsigned long)start); 7245 end = (void *)((unsigned long)end & PAGE_MASK); 7246 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) { 7247 struct page *page = virt_to_page(pos); 7248 void *direct_map_addr; 7249 7250 /* 7251 * 'direct_map_addr' might be different from 'pos' 7252 * because some architectures' virt_to_page() 7253 * work with aliases. Getting the direct map 7254 * address ensures that we get a _writeable_ 7255 * alias for the memset(). 7256 */ 7257 direct_map_addr = page_address(page); 7258 if ((unsigned int)poison <= 0xFF) 7259 memset(direct_map_addr, poison, PAGE_SIZE); 7260 7261 free_reserved_page(page); 7262 } 7263 7264 if (pages && s) 7265 pr_info("Freeing %s memory: %ldK\n", 7266 s, pages << (PAGE_SHIFT - 10)); 7267 7268 return pages; 7269 } 7270 EXPORT_SYMBOL(free_reserved_area); 7271 7272 #ifdef CONFIG_HIGHMEM 7273 void free_highmem_page(struct page *page) 7274 { 7275 __free_reserved_page(page); 7276 totalram_pages_inc(); 7277 atomic_long_inc(&page_zone(page)->managed_pages); 7278 totalhigh_pages_inc(); 7279 } 7280 #endif 7281 7282 7283 void __init mem_init_print_info(const char *str) 7284 { 7285 unsigned long physpages, codesize, datasize, rosize, bss_size; 7286 unsigned long init_code_size, init_data_size; 7287 7288 physpages = get_num_physpages(); 7289 codesize = _etext - _stext; 7290 datasize = _edata - _sdata; 7291 rosize = __end_rodata - __start_rodata; 7292 bss_size = __bss_stop - __bss_start; 7293 init_data_size = __init_end - __init_begin; 7294 init_code_size = _einittext - _sinittext; 7295 7296 /* 7297 * Detect special cases and adjust section sizes accordingly: 7298 * 1) .init.* may be embedded into .data sections 7299 * 2) .init.text.* may be out of [__init_begin, __init_end], 7300 * please refer to arch/tile/kernel/vmlinux.lds.S. 7301 * 3) .rodata.* may be embedded into .text or .data sections. 7302 */ 7303 #define adj_init_size(start, end, size, pos, adj) \ 7304 do { \ 7305 if (start <= pos && pos < end && size > adj) \ 7306 size -= adj; \ 7307 } while (0) 7308 7309 adj_init_size(__init_begin, __init_end, init_data_size, 7310 _sinittext, init_code_size); 7311 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size); 7312 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size); 7313 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize); 7314 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize); 7315 7316 #undef adj_init_size 7317 7318 pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved" 7319 #ifdef CONFIG_HIGHMEM 7320 ", %luK highmem" 7321 #endif 7322 "%s%s)\n", 7323 nr_free_pages() << (PAGE_SHIFT - 10), 7324 physpages << (PAGE_SHIFT - 10), 7325 codesize >> 10, datasize >> 10, rosize >> 10, 7326 (init_data_size + init_code_size) >> 10, bss_size >> 10, 7327 (physpages - totalram_pages() - totalcma_pages) << (PAGE_SHIFT - 10), 7328 totalcma_pages << (PAGE_SHIFT - 10), 7329 #ifdef CONFIG_HIGHMEM 7330 totalhigh_pages() << (PAGE_SHIFT - 10), 7331 #endif 7332 str ? ", " : "", str ? str : ""); 7333 } 7334 7335 /** 7336 * set_dma_reserve - set the specified number of pages reserved in the first zone 7337 * @new_dma_reserve: The number of pages to mark reserved 7338 * 7339 * The per-cpu batchsize and zone watermarks are determined by managed_pages. 7340 * In the DMA zone, a significant percentage may be consumed by kernel image 7341 * and other unfreeable allocations which can skew the watermarks badly. This 7342 * function may optionally be used to account for unfreeable pages in the 7343 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and 7344 * smaller per-cpu batchsize. 7345 */ 7346 void __init set_dma_reserve(unsigned long new_dma_reserve) 7347 { 7348 dma_reserve = new_dma_reserve; 7349 } 7350 7351 void __init free_area_init(unsigned long *zones_size) 7352 { 7353 zero_resv_unavail(); 7354 free_area_init_node(0, zones_size, 7355 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL); 7356 } 7357 7358 static int page_alloc_cpu_dead(unsigned int cpu) 7359 { 7360 7361 lru_add_drain_cpu(cpu); 7362 drain_pages(cpu); 7363 7364 /* 7365 * Spill the event counters of the dead processor 7366 * into the current processors event counters. 7367 * This artificially elevates the count of the current 7368 * processor. 7369 */ 7370 vm_events_fold_cpu(cpu); 7371 7372 /* 7373 * Zero the differential counters of the dead processor 7374 * so that the vm statistics are consistent. 7375 * 7376 * This is only okay since the processor is dead and cannot 7377 * race with what we are doing. 7378 */ 7379 cpu_vm_stats_fold(cpu); 7380 return 0; 7381 } 7382 7383 void __init page_alloc_init(void) 7384 { 7385 int ret; 7386 7387 ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC_DEAD, 7388 "mm/page_alloc:dead", NULL, 7389 page_alloc_cpu_dead); 7390 WARN_ON(ret < 0); 7391 } 7392 7393 /* 7394 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio 7395 * or min_free_kbytes changes. 7396 */ 7397 static void calculate_totalreserve_pages(void) 7398 { 7399 struct pglist_data *pgdat; 7400 unsigned long reserve_pages = 0; 7401 enum zone_type i, j; 7402 7403 for_each_online_pgdat(pgdat) { 7404 7405 pgdat->totalreserve_pages = 0; 7406 7407 for (i = 0; i < MAX_NR_ZONES; i++) { 7408 struct zone *zone = pgdat->node_zones + i; 7409 long max = 0; 7410 unsigned long managed_pages = zone_managed_pages(zone); 7411 7412 /* Find valid and maximum lowmem_reserve in the zone */ 7413 for (j = i; j < MAX_NR_ZONES; j++) { 7414 if (zone->lowmem_reserve[j] > max) 7415 max = zone->lowmem_reserve[j]; 7416 } 7417 7418 /* we treat the high watermark as reserved pages. */ 7419 max += high_wmark_pages(zone); 7420 7421 if (max > managed_pages) 7422 max = managed_pages; 7423 7424 pgdat->totalreserve_pages += max; 7425 7426 reserve_pages += max; 7427 } 7428 } 7429 totalreserve_pages = reserve_pages; 7430 } 7431 7432 /* 7433 * setup_per_zone_lowmem_reserve - called whenever 7434 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone 7435 * has a correct pages reserved value, so an adequate number of 7436 * pages are left in the zone after a successful __alloc_pages(). 7437 */ 7438 static void setup_per_zone_lowmem_reserve(void) 7439 { 7440 struct pglist_data *pgdat; 7441 enum zone_type j, idx; 7442 7443 for_each_online_pgdat(pgdat) { 7444 for (j = 0; j < MAX_NR_ZONES; j++) { 7445 struct zone *zone = pgdat->node_zones + j; 7446 unsigned long managed_pages = zone_managed_pages(zone); 7447 7448 zone->lowmem_reserve[j] = 0; 7449 7450 idx = j; 7451 while (idx) { 7452 struct zone *lower_zone; 7453 7454 idx--; 7455 lower_zone = pgdat->node_zones + idx; 7456 7457 if (sysctl_lowmem_reserve_ratio[idx] < 1) { 7458 sysctl_lowmem_reserve_ratio[idx] = 0; 7459 lower_zone->lowmem_reserve[j] = 0; 7460 } else { 7461 lower_zone->lowmem_reserve[j] = 7462 managed_pages / sysctl_lowmem_reserve_ratio[idx]; 7463 } 7464 managed_pages += zone_managed_pages(lower_zone); 7465 } 7466 } 7467 } 7468 7469 /* update totalreserve_pages */ 7470 calculate_totalreserve_pages(); 7471 } 7472 7473 static void __setup_per_zone_wmarks(void) 7474 { 7475 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10); 7476 unsigned long lowmem_pages = 0; 7477 struct zone *zone; 7478 unsigned long flags; 7479 7480 /* Calculate total number of !ZONE_HIGHMEM pages */ 7481 for_each_zone(zone) { 7482 if (!is_highmem(zone)) 7483 lowmem_pages += zone_managed_pages(zone); 7484 } 7485 7486 for_each_zone(zone) { 7487 u64 tmp; 7488 7489 spin_lock_irqsave(&zone->lock, flags); 7490 tmp = (u64)pages_min * zone_managed_pages(zone); 7491 do_div(tmp, lowmem_pages); 7492 if (is_highmem(zone)) { 7493 /* 7494 * __GFP_HIGH and PF_MEMALLOC allocations usually don't 7495 * need highmem pages, so cap pages_min to a small 7496 * value here. 7497 * 7498 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN) 7499 * deltas control asynch page reclaim, and so should 7500 * not be capped for highmem. 7501 */ 7502 unsigned long min_pages; 7503 7504 min_pages = zone_managed_pages(zone) / 1024; 7505 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL); 7506 zone->_watermark[WMARK_MIN] = min_pages; 7507 } else { 7508 /* 7509 * If it's a lowmem zone, reserve a number of pages 7510 * proportionate to the zone's size. 7511 */ 7512 zone->_watermark[WMARK_MIN] = tmp; 7513 } 7514 7515 /* 7516 * Set the kswapd watermarks distance according to the 7517 * scale factor in proportion to available memory, but 7518 * ensure a minimum size on small systems. 7519 */ 7520 tmp = max_t(u64, tmp >> 2, 7521 mult_frac(zone_managed_pages(zone), 7522 watermark_scale_factor, 10000)); 7523 7524 zone->_watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp; 7525 zone->_watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2; 7526 zone->watermark_boost = 0; 7527 7528 spin_unlock_irqrestore(&zone->lock, flags); 7529 } 7530 7531 /* update totalreserve_pages */ 7532 calculate_totalreserve_pages(); 7533 } 7534 7535 /** 7536 * setup_per_zone_wmarks - called when min_free_kbytes changes 7537 * or when memory is hot-{added|removed} 7538 * 7539 * Ensures that the watermark[min,low,high] values for each zone are set 7540 * correctly with respect to min_free_kbytes. 7541 */ 7542 void setup_per_zone_wmarks(void) 7543 { 7544 static DEFINE_SPINLOCK(lock); 7545 7546 spin_lock(&lock); 7547 __setup_per_zone_wmarks(); 7548 spin_unlock(&lock); 7549 } 7550 7551 /* 7552 * Initialise min_free_kbytes. 7553 * 7554 * For small machines we want it small (128k min). For large machines 7555 * we want it large (64MB max). But it is not linear, because network 7556 * bandwidth does not increase linearly with machine size. We use 7557 * 7558 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy: 7559 * min_free_kbytes = sqrt(lowmem_kbytes * 16) 7560 * 7561 * which yields 7562 * 7563 * 16MB: 512k 7564 * 32MB: 724k 7565 * 64MB: 1024k 7566 * 128MB: 1448k 7567 * 256MB: 2048k 7568 * 512MB: 2896k 7569 * 1024MB: 4096k 7570 * 2048MB: 5792k 7571 * 4096MB: 8192k 7572 * 8192MB: 11584k 7573 * 16384MB: 16384k 7574 */ 7575 int __meminit init_per_zone_wmark_min(void) 7576 { 7577 unsigned long lowmem_kbytes; 7578 int new_min_free_kbytes; 7579 7580 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10); 7581 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16); 7582 7583 if (new_min_free_kbytes > user_min_free_kbytes) { 7584 min_free_kbytes = new_min_free_kbytes; 7585 if (min_free_kbytes < 128) 7586 min_free_kbytes = 128; 7587 if (min_free_kbytes > 65536) 7588 min_free_kbytes = 65536; 7589 } else { 7590 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n", 7591 new_min_free_kbytes, user_min_free_kbytes); 7592 } 7593 setup_per_zone_wmarks(); 7594 refresh_zone_stat_thresholds(); 7595 setup_per_zone_lowmem_reserve(); 7596 7597 #ifdef CONFIG_NUMA 7598 setup_min_unmapped_ratio(); 7599 setup_min_slab_ratio(); 7600 #endif 7601 7602 return 0; 7603 } 7604 core_initcall(init_per_zone_wmark_min) 7605 7606 /* 7607 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so 7608 * that we can call two helper functions whenever min_free_kbytes 7609 * changes. 7610 */ 7611 int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write, 7612 void __user *buffer, size_t *length, loff_t *ppos) 7613 { 7614 int rc; 7615 7616 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 7617 if (rc) 7618 return rc; 7619 7620 if (write) { 7621 user_min_free_kbytes = min_free_kbytes; 7622 setup_per_zone_wmarks(); 7623 } 7624 return 0; 7625 } 7626 7627 int watermark_boost_factor_sysctl_handler(struct ctl_table *table, int write, 7628 void __user *buffer, size_t *length, loff_t *ppos) 7629 { 7630 int rc; 7631 7632 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 7633 if (rc) 7634 return rc; 7635 7636 return 0; 7637 } 7638 7639 int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write, 7640 void __user *buffer, size_t *length, loff_t *ppos) 7641 { 7642 int rc; 7643 7644 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 7645 if (rc) 7646 return rc; 7647 7648 if (write) 7649 setup_per_zone_wmarks(); 7650 7651 return 0; 7652 } 7653 7654 #ifdef CONFIG_NUMA 7655 static void setup_min_unmapped_ratio(void) 7656 { 7657 pg_data_t *pgdat; 7658 struct zone *zone; 7659 7660 for_each_online_pgdat(pgdat) 7661 pgdat->min_unmapped_pages = 0; 7662 7663 for_each_zone(zone) 7664 zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) * 7665 sysctl_min_unmapped_ratio) / 100; 7666 } 7667 7668 7669 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write, 7670 void __user *buffer, size_t *length, loff_t *ppos) 7671 { 7672 int rc; 7673 7674 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 7675 if (rc) 7676 return rc; 7677 7678 setup_min_unmapped_ratio(); 7679 7680 return 0; 7681 } 7682 7683 static void setup_min_slab_ratio(void) 7684 { 7685 pg_data_t *pgdat; 7686 struct zone *zone; 7687 7688 for_each_online_pgdat(pgdat) 7689 pgdat->min_slab_pages = 0; 7690 7691 for_each_zone(zone) 7692 zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) * 7693 sysctl_min_slab_ratio) / 100; 7694 } 7695 7696 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write, 7697 void __user *buffer, size_t *length, loff_t *ppos) 7698 { 7699 int rc; 7700 7701 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 7702 if (rc) 7703 return rc; 7704 7705 setup_min_slab_ratio(); 7706 7707 return 0; 7708 } 7709 #endif 7710 7711 /* 7712 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around 7713 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve() 7714 * whenever sysctl_lowmem_reserve_ratio changes. 7715 * 7716 * The reserve ratio obviously has absolutely no relation with the 7717 * minimum watermarks. The lowmem reserve ratio can only make sense 7718 * if in function of the boot time zone sizes. 7719 */ 7720 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write, 7721 void __user *buffer, size_t *length, loff_t *ppos) 7722 { 7723 proc_dointvec_minmax(table, write, buffer, length, ppos); 7724 setup_per_zone_lowmem_reserve(); 7725 return 0; 7726 } 7727 7728 /* 7729 * percpu_pagelist_fraction - changes the pcp->high for each zone on each 7730 * cpu. It is the fraction of total pages in each zone that a hot per cpu 7731 * pagelist can have before it gets flushed back to buddy allocator. 7732 */ 7733 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write, 7734 void __user *buffer, size_t *length, loff_t *ppos) 7735 { 7736 struct zone *zone; 7737 int old_percpu_pagelist_fraction; 7738 int ret; 7739 7740 mutex_lock(&pcp_batch_high_lock); 7741 old_percpu_pagelist_fraction = percpu_pagelist_fraction; 7742 7743 ret = proc_dointvec_minmax(table, write, buffer, length, ppos); 7744 if (!write || ret < 0) 7745 goto out; 7746 7747 /* Sanity checking to avoid pcp imbalance */ 7748 if (percpu_pagelist_fraction && 7749 percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) { 7750 percpu_pagelist_fraction = old_percpu_pagelist_fraction; 7751 ret = -EINVAL; 7752 goto out; 7753 } 7754 7755 /* No change? */ 7756 if (percpu_pagelist_fraction == old_percpu_pagelist_fraction) 7757 goto out; 7758 7759 for_each_populated_zone(zone) { 7760 unsigned int cpu; 7761 7762 for_each_possible_cpu(cpu) 7763 pageset_set_high_and_batch(zone, 7764 per_cpu_ptr(zone->pageset, cpu)); 7765 } 7766 out: 7767 mutex_unlock(&pcp_batch_high_lock); 7768 return ret; 7769 } 7770 7771 #ifdef CONFIG_NUMA 7772 int hashdist = HASHDIST_DEFAULT; 7773 7774 static int __init set_hashdist(char *str) 7775 { 7776 if (!str) 7777 return 0; 7778 hashdist = simple_strtoul(str, &str, 0); 7779 return 1; 7780 } 7781 __setup("hashdist=", set_hashdist); 7782 #endif 7783 7784 #ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES 7785 /* 7786 * Returns the number of pages that arch has reserved but 7787 * is not known to alloc_large_system_hash(). 7788 */ 7789 static unsigned long __init arch_reserved_kernel_pages(void) 7790 { 7791 return 0; 7792 } 7793 #endif 7794 7795 /* 7796 * Adaptive scale is meant to reduce sizes of hash tables on large memory 7797 * machines. As memory size is increased the scale is also increased but at 7798 * slower pace. Starting from ADAPT_SCALE_BASE (64G), every time memory 7799 * quadruples the scale is increased by one, which means the size of hash table 7800 * only doubles, instead of quadrupling as well. 7801 * Because 32-bit systems cannot have large physical memory, where this scaling 7802 * makes sense, it is disabled on such platforms. 7803 */ 7804 #if __BITS_PER_LONG > 32 7805 #define ADAPT_SCALE_BASE (64ul << 30) 7806 #define ADAPT_SCALE_SHIFT 2 7807 #define ADAPT_SCALE_NPAGES (ADAPT_SCALE_BASE >> PAGE_SHIFT) 7808 #endif 7809 7810 /* 7811 * allocate a large system hash table from bootmem 7812 * - it is assumed that the hash table must contain an exact power-of-2 7813 * quantity of entries 7814 * - limit is the number of hash buckets, not the total allocation size 7815 */ 7816 void *__init alloc_large_system_hash(const char *tablename, 7817 unsigned long bucketsize, 7818 unsigned long numentries, 7819 int scale, 7820 int flags, 7821 unsigned int *_hash_shift, 7822 unsigned int *_hash_mask, 7823 unsigned long low_limit, 7824 unsigned long high_limit) 7825 { 7826 unsigned long long max = high_limit; 7827 unsigned long log2qty, size; 7828 void *table = NULL; 7829 gfp_t gfp_flags; 7830 7831 /* allow the kernel cmdline to have a say */ 7832 if (!numentries) { 7833 /* round applicable memory size up to nearest megabyte */ 7834 numentries = nr_kernel_pages; 7835 numentries -= arch_reserved_kernel_pages(); 7836 7837 /* It isn't necessary when PAGE_SIZE >= 1MB */ 7838 if (PAGE_SHIFT < 20) 7839 numentries = round_up(numentries, (1<<20)/PAGE_SIZE); 7840 7841 #if __BITS_PER_LONG > 32 7842 if (!high_limit) { 7843 unsigned long adapt; 7844 7845 for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries; 7846 adapt <<= ADAPT_SCALE_SHIFT) 7847 scale++; 7848 } 7849 #endif 7850 7851 /* limit to 1 bucket per 2^scale bytes of low memory */ 7852 if (scale > PAGE_SHIFT) 7853 numentries >>= (scale - PAGE_SHIFT); 7854 else 7855 numentries <<= (PAGE_SHIFT - scale); 7856 7857 /* Make sure we've got at least a 0-order allocation.. */ 7858 if (unlikely(flags & HASH_SMALL)) { 7859 /* Makes no sense without HASH_EARLY */ 7860 WARN_ON(!(flags & HASH_EARLY)); 7861 if (!(numentries >> *_hash_shift)) { 7862 numentries = 1UL << *_hash_shift; 7863 BUG_ON(!numentries); 7864 } 7865 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE)) 7866 numentries = PAGE_SIZE / bucketsize; 7867 } 7868 numentries = roundup_pow_of_two(numentries); 7869 7870 /* limit allocation size to 1/16 total memory by default */ 7871 if (max == 0) { 7872 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4; 7873 do_div(max, bucketsize); 7874 } 7875 max = min(max, 0x80000000ULL); 7876 7877 if (numentries < low_limit) 7878 numentries = low_limit; 7879 if (numentries > max) 7880 numentries = max; 7881 7882 log2qty = ilog2(numentries); 7883 7884 gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC; 7885 do { 7886 size = bucketsize << log2qty; 7887 if (flags & HASH_EARLY) { 7888 if (flags & HASH_ZERO) 7889 table = memblock_alloc_nopanic(size, 7890 SMP_CACHE_BYTES); 7891 else 7892 table = memblock_alloc_raw(size, 7893 SMP_CACHE_BYTES); 7894 } else if (hashdist) { 7895 table = __vmalloc(size, gfp_flags, PAGE_KERNEL); 7896 } else { 7897 /* 7898 * If bucketsize is not a power-of-two, we may free 7899 * some pages at the end of hash table which 7900 * alloc_pages_exact() automatically does 7901 */ 7902 if (get_order(size) < MAX_ORDER) { 7903 table = alloc_pages_exact(size, gfp_flags); 7904 kmemleak_alloc(table, size, 1, gfp_flags); 7905 } 7906 } 7907 } while (!table && size > PAGE_SIZE && --log2qty); 7908 7909 if (!table) 7910 panic("Failed to allocate %s hash table\n", tablename); 7911 7912 pr_info("%s hash table entries: %ld (order: %d, %lu bytes)\n", 7913 tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size); 7914 7915 if (_hash_shift) 7916 *_hash_shift = log2qty; 7917 if (_hash_mask) 7918 *_hash_mask = (1 << log2qty) - 1; 7919 7920 return table; 7921 } 7922 7923 /* 7924 * This function checks whether pageblock includes unmovable pages or not. 7925 * If @count is not zero, it is okay to include less @count unmovable pages 7926 * 7927 * PageLRU check without isolation or lru_lock could race so that 7928 * MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable 7929 * check without lock_page also may miss some movable non-lru pages at 7930 * race condition. So you can't expect this function should be exact. 7931 */ 7932 bool has_unmovable_pages(struct zone *zone, struct page *page, int count, 7933 int migratetype, int flags) 7934 { 7935 unsigned long pfn, iter, found; 7936 7937 /* 7938 * TODO we could make this much more efficient by not checking every 7939 * page in the range if we know all of them are in MOVABLE_ZONE and 7940 * that the movable zone guarantees that pages are migratable but 7941 * the later is not the case right now unfortunatelly. E.g. movablecore 7942 * can still lead to having bootmem allocations in zone_movable. 7943 */ 7944 7945 /* 7946 * CMA allocations (alloc_contig_range) really need to mark isolate 7947 * CMA pageblocks even when they are not movable in fact so consider 7948 * them movable here. 7949 */ 7950 if (is_migrate_cma(migratetype) && 7951 is_migrate_cma(get_pageblock_migratetype(page))) 7952 return false; 7953 7954 pfn = page_to_pfn(page); 7955 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) { 7956 unsigned long check = pfn + iter; 7957 7958 if (!pfn_valid_within(check)) 7959 continue; 7960 7961 page = pfn_to_page(check); 7962 7963 if (PageReserved(page)) 7964 goto unmovable; 7965 7966 /* 7967 * If the zone is movable and we have ruled out all reserved 7968 * pages then it should be reasonably safe to assume the rest 7969 * is movable. 7970 */ 7971 if (zone_idx(zone) == ZONE_MOVABLE) 7972 continue; 7973 7974 /* 7975 * Hugepages are not in LRU lists, but they're movable. 7976 * We need not scan over tail pages bacause we don't 7977 * handle each tail page individually in migration. 7978 */ 7979 if (PageHuge(page)) { 7980 struct page *head = compound_head(page); 7981 unsigned int skip_pages; 7982 7983 if (!hugepage_migration_supported(page_hstate(head))) 7984 goto unmovable; 7985 7986 skip_pages = (1 << compound_order(head)) - (page - head); 7987 iter += skip_pages - 1; 7988 continue; 7989 } 7990 7991 /* 7992 * We can't use page_count without pin a page 7993 * because another CPU can free compound page. 7994 * This check already skips compound tails of THP 7995 * because their page->_refcount is zero at all time. 7996 */ 7997 if (!page_ref_count(page)) { 7998 if (PageBuddy(page)) 7999 iter += (1 << page_order(page)) - 1; 8000 continue; 8001 } 8002 8003 /* 8004 * The HWPoisoned page may be not in buddy system, and 8005 * page_count() is not 0. 8006 */ 8007 if ((flags & SKIP_HWPOISON) && PageHWPoison(page)) 8008 continue; 8009 8010 if (__PageMovable(page)) 8011 continue; 8012 8013 if (!PageLRU(page)) 8014 found++; 8015 /* 8016 * If there are RECLAIMABLE pages, we need to check 8017 * it. But now, memory offline itself doesn't call 8018 * shrink_node_slabs() and it still to be fixed. 8019 */ 8020 /* 8021 * If the page is not RAM, page_count()should be 0. 8022 * we don't need more check. This is an _used_ not-movable page. 8023 * 8024 * The problematic thing here is PG_reserved pages. PG_reserved 8025 * is set to both of a memory hole page and a _used_ kernel 8026 * page at boot. 8027 */ 8028 if (found > count) 8029 goto unmovable; 8030 } 8031 return false; 8032 unmovable: 8033 WARN_ON_ONCE(zone_idx(zone) == ZONE_MOVABLE); 8034 if (flags & REPORT_FAILURE) 8035 dump_page(pfn_to_page(pfn+iter), "unmovable page"); 8036 return true; 8037 } 8038 8039 #if (defined(CONFIG_MEMORY_ISOLATION) && defined(CONFIG_COMPACTION)) || defined(CONFIG_CMA) 8040 8041 static unsigned long pfn_max_align_down(unsigned long pfn) 8042 { 8043 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES, 8044 pageblock_nr_pages) - 1); 8045 } 8046 8047 static unsigned long pfn_max_align_up(unsigned long pfn) 8048 { 8049 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES, 8050 pageblock_nr_pages)); 8051 } 8052 8053 /* [start, end) must belong to a single zone. */ 8054 static int __alloc_contig_migrate_range(struct compact_control *cc, 8055 unsigned long start, unsigned long end) 8056 { 8057 /* This function is based on compact_zone() from compaction.c. */ 8058 unsigned long nr_reclaimed; 8059 unsigned long pfn = start; 8060 unsigned int tries = 0; 8061 int ret = 0; 8062 8063 migrate_prep(); 8064 8065 while (pfn < end || !list_empty(&cc->migratepages)) { 8066 if (fatal_signal_pending(current)) { 8067 ret = -EINTR; 8068 break; 8069 } 8070 8071 if (list_empty(&cc->migratepages)) { 8072 cc->nr_migratepages = 0; 8073 pfn = isolate_migratepages_range(cc, pfn, end); 8074 if (!pfn) { 8075 ret = -EINTR; 8076 break; 8077 } 8078 tries = 0; 8079 } else if (++tries == 5) { 8080 ret = ret < 0 ? ret : -EBUSY; 8081 break; 8082 } 8083 8084 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone, 8085 &cc->migratepages); 8086 cc->nr_migratepages -= nr_reclaimed; 8087 8088 ret = migrate_pages(&cc->migratepages, alloc_migrate_target, 8089 NULL, 0, cc->mode, MR_CONTIG_RANGE); 8090 } 8091 if (ret < 0) { 8092 putback_movable_pages(&cc->migratepages); 8093 return ret; 8094 } 8095 return 0; 8096 } 8097 8098 /** 8099 * alloc_contig_range() -- tries to allocate given range of pages 8100 * @start: start PFN to allocate 8101 * @end: one-past-the-last PFN to allocate 8102 * @migratetype: migratetype of the underlaying pageblocks (either 8103 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks 8104 * in range must have the same migratetype and it must 8105 * be either of the two. 8106 * @gfp_mask: GFP mask to use during compaction 8107 * 8108 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES 8109 * aligned. The PFN range must belong to a single zone. 8110 * 8111 * The first thing this routine does is attempt to MIGRATE_ISOLATE all 8112 * pageblocks in the range. Once isolated, the pageblocks should not 8113 * be modified by others. 8114 * 8115 * Returns zero on success or negative error code. On success all 8116 * pages which PFN is in [start, end) are allocated for the caller and 8117 * need to be freed with free_contig_range(). 8118 */ 8119 int alloc_contig_range(unsigned long start, unsigned long end, 8120 unsigned migratetype, gfp_t gfp_mask) 8121 { 8122 unsigned long outer_start, outer_end; 8123 unsigned int order; 8124 int ret = 0; 8125 8126 struct compact_control cc = { 8127 .nr_migratepages = 0, 8128 .order = -1, 8129 .zone = page_zone(pfn_to_page(start)), 8130 .mode = MIGRATE_SYNC, 8131 .ignore_skip_hint = true, 8132 .no_set_skip_hint = true, 8133 .gfp_mask = current_gfp_context(gfp_mask), 8134 }; 8135 INIT_LIST_HEAD(&cc.migratepages); 8136 8137 /* 8138 * What we do here is we mark all pageblocks in range as 8139 * MIGRATE_ISOLATE. Because pageblock and max order pages may 8140 * have different sizes, and due to the way page allocator 8141 * work, we align the range to biggest of the two pages so 8142 * that page allocator won't try to merge buddies from 8143 * different pageblocks and change MIGRATE_ISOLATE to some 8144 * other migration type. 8145 * 8146 * Once the pageblocks are marked as MIGRATE_ISOLATE, we 8147 * migrate the pages from an unaligned range (ie. pages that 8148 * we are interested in). This will put all the pages in 8149 * range back to page allocator as MIGRATE_ISOLATE. 8150 * 8151 * When this is done, we take the pages in range from page 8152 * allocator removing them from the buddy system. This way 8153 * page allocator will never consider using them. 8154 * 8155 * This lets us mark the pageblocks back as 8156 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the 8157 * aligned range but not in the unaligned, original range are 8158 * put back to page allocator so that buddy can use them. 8159 */ 8160 8161 ret = start_isolate_page_range(pfn_max_align_down(start), 8162 pfn_max_align_up(end), migratetype, 0); 8163 if (ret) 8164 return ret; 8165 8166 /* 8167 * In case of -EBUSY, we'd like to know which page causes problem. 8168 * So, just fall through. test_pages_isolated() has a tracepoint 8169 * which will report the busy page. 8170 * 8171 * It is possible that busy pages could become available before 8172 * the call to test_pages_isolated, and the range will actually be 8173 * allocated. So, if we fall through be sure to clear ret so that 8174 * -EBUSY is not accidentally used or returned to caller. 8175 */ 8176 ret = __alloc_contig_migrate_range(&cc, start, end); 8177 if (ret && ret != -EBUSY) 8178 goto done; 8179 ret =0; 8180 8181 /* 8182 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES 8183 * aligned blocks that are marked as MIGRATE_ISOLATE. What's 8184 * more, all pages in [start, end) are free in page allocator. 8185 * What we are going to do is to allocate all pages from 8186 * [start, end) (that is remove them from page allocator). 8187 * 8188 * The only problem is that pages at the beginning and at the 8189 * end of interesting range may be not aligned with pages that 8190 * page allocator holds, ie. they can be part of higher order 8191 * pages. Because of this, we reserve the bigger range and 8192 * once this is done free the pages we are not interested in. 8193 * 8194 * We don't have to hold zone->lock here because the pages are 8195 * isolated thus they won't get removed from buddy. 8196 */ 8197 8198 lru_add_drain_all(); 8199 drain_all_pages(cc.zone); 8200 8201 order = 0; 8202 outer_start = start; 8203 while (!PageBuddy(pfn_to_page(outer_start))) { 8204 if (++order >= MAX_ORDER) { 8205 outer_start = start; 8206 break; 8207 } 8208 outer_start &= ~0UL << order; 8209 } 8210 8211 if (outer_start != start) { 8212 order = page_order(pfn_to_page(outer_start)); 8213 8214 /* 8215 * outer_start page could be small order buddy page and 8216 * it doesn't include start page. Adjust outer_start 8217 * in this case to report failed page properly 8218 * on tracepoint in test_pages_isolated() 8219 */ 8220 if (outer_start + (1UL << order) <= start) 8221 outer_start = start; 8222 } 8223 8224 /* Make sure the range is really isolated. */ 8225 if (test_pages_isolated(outer_start, end, false)) { 8226 pr_info_ratelimited("%s: [%lx, %lx) PFNs busy\n", 8227 __func__, outer_start, end); 8228 ret = -EBUSY; 8229 goto done; 8230 } 8231 8232 /* Grab isolated pages from freelists. */ 8233 outer_end = isolate_freepages_range(&cc, outer_start, end); 8234 if (!outer_end) { 8235 ret = -EBUSY; 8236 goto done; 8237 } 8238 8239 /* Free head and tail (if any) */ 8240 if (start != outer_start) 8241 free_contig_range(outer_start, start - outer_start); 8242 if (end != outer_end) 8243 free_contig_range(end, outer_end - end); 8244 8245 done: 8246 undo_isolate_page_range(pfn_max_align_down(start), 8247 pfn_max_align_up(end), migratetype); 8248 return ret; 8249 } 8250 8251 void free_contig_range(unsigned long pfn, unsigned nr_pages) 8252 { 8253 unsigned int count = 0; 8254 8255 for (; nr_pages--; pfn++) { 8256 struct page *page = pfn_to_page(pfn); 8257 8258 count += page_count(page) != 1; 8259 __free_page(page); 8260 } 8261 WARN(count != 0, "%d pages are still in use!\n", count); 8262 } 8263 #endif 8264 8265 #ifdef CONFIG_MEMORY_HOTPLUG 8266 /* 8267 * The zone indicated has a new number of managed_pages; batch sizes and percpu 8268 * page high values need to be recalulated. 8269 */ 8270 void __meminit zone_pcp_update(struct zone *zone) 8271 { 8272 unsigned cpu; 8273 mutex_lock(&pcp_batch_high_lock); 8274 for_each_possible_cpu(cpu) 8275 pageset_set_high_and_batch(zone, 8276 per_cpu_ptr(zone->pageset, cpu)); 8277 mutex_unlock(&pcp_batch_high_lock); 8278 } 8279 #endif 8280 8281 void zone_pcp_reset(struct zone *zone) 8282 { 8283 unsigned long flags; 8284 int cpu; 8285 struct per_cpu_pageset *pset; 8286 8287 /* avoid races with drain_pages() */ 8288 local_irq_save(flags); 8289 if (zone->pageset != &boot_pageset) { 8290 for_each_online_cpu(cpu) { 8291 pset = per_cpu_ptr(zone->pageset, cpu); 8292 drain_zonestat(zone, pset); 8293 } 8294 free_percpu(zone->pageset); 8295 zone->pageset = &boot_pageset; 8296 } 8297 local_irq_restore(flags); 8298 } 8299 8300 #ifdef CONFIG_MEMORY_HOTREMOVE 8301 /* 8302 * All pages in the range must be in a single zone and isolated 8303 * before calling this. 8304 */ 8305 void 8306 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn) 8307 { 8308 struct page *page; 8309 struct zone *zone; 8310 unsigned int order, i; 8311 unsigned long pfn; 8312 unsigned long flags; 8313 /* find the first valid pfn */ 8314 for (pfn = start_pfn; pfn < end_pfn; pfn++) 8315 if (pfn_valid(pfn)) 8316 break; 8317 if (pfn == end_pfn) 8318 return; 8319 offline_mem_sections(pfn, end_pfn); 8320 zone = page_zone(pfn_to_page(pfn)); 8321 spin_lock_irqsave(&zone->lock, flags); 8322 pfn = start_pfn; 8323 while (pfn < end_pfn) { 8324 if (!pfn_valid(pfn)) { 8325 pfn++; 8326 continue; 8327 } 8328 page = pfn_to_page(pfn); 8329 /* 8330 * The HWPoisoned page may be not in buddy system, and 8331 * page_count() is not 0. 8332 */ 8333 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) { 8334 pfn++; 8335 SetPageReserved(page); 8336 continue; 8337 } 8338 8339 BUG_ON(page_count(page)); 8340 BUG_ON(!PageBuddy(page)); 8341 order = page_order(page); 8342 #ifdef CONFIG_DEBUG_VM 8343 pr_info("remove from free list %lx %d %lx\n", 8344 pfn, 1 << order, end_pfn); 8345 #endif 8346 list_del(&page->lru); 8347 rmv_page_order(page); 8348 zone->free_area[order].nr_free--; 8349 for (i = 0; i < (1 << order); i++) 8350 SetPageReserved((page+i)); 8351 pfn += (1 << order); 8352 } 8353 spin_unlock_irqrestore(&zone->lock, flags); 8354 } 8355 #endif 8356 8357 bool is_free_buddy_page(struct page *page) 8358 { 8359 struct zone *zone = page_zone(page); 8360 unsigned long pfn = page_to_pfn(page); 8361 unsigned long flags; 8362 unsigned int order; 8363 8364 spin_lock_irqsave(&zone->lock, flags); 8365 for (order = 0; order < MAX_ORDER; order++) { 8366 struct page *page_head = page - (pfn & ((1 << order) - 1)); 8367 8368 if (PageBuddy(page_head) && page_order(page_head) >= order) 8369 break; 8370 } 8371 spin_unlock_irqrestore(&zone->lock, flags); 8372 8373 return order < MAX_ORDER; 8374 } 8375 8376 #ifdef CONFIG_MEMORY_FAILURE 8377 /* 8378 * Set PG_hwpoison flag if a given page is confirmed to be a free page. This 8379 * test is performed under the zone lock to prevent a race against page 8380 * allocation. 8381 */ 8382 bool set_hwpoison_free_buddy_page(struct page *page) 8383 { 8384 struct zone *zone = page_zone(page); 8385 unsigned long pfn = page_to_pfn(page); 8386 unsigned long flags; 8387 unsigned int order; 8388 bool hwpoisoned = false; 8389 8390 spin_lock_irqsave(&zone->lock, flags); 8391 for (order = 0; order < MAX_ORDER; order++) { 8392 struct page *page_head = page - (pfn & ((1 << order) - 1)); 8393 8394 if (PageBuddy(page_head) && page_order(page_head) >= order) { 8395 if (!TestSetPageHWPoison(page)) 8396 hwpoisoned = true; 8397 break; 8398 } 8399 } 8400 spin_unlock_irqrestore(&zone->lock, flags); 8401 8402 return hwpoisoned; 8403 } 8404 #endif 8405