1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/mm/page_alloc.c 4 * 5 * Manages the free list, the system allocates free pages here. 6 * Note that kmalloc() lives in slab.c 7 * 8 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 9 * Swap reorganised 29.12.95, Stephen Tweedie 10 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999 11 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999 12 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999 13 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000 14 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002 15 * (lots of bits borrowed from Ingo Molnar & Andrew Morton) 16 */ 17 18 #include <linux/stddef.h> 19 #include <linux/mm.h> 20 #include <linux/highmem.h> 21 #include <linux/swap.h> 22 #include <linux/swapops.h> 23 #include <linux/interrupt.h> 24 #include <linux/pagemap.h> 25 #include <linux/jiffies.h> 26 #include <linux/memblock.h> 27 #include <linux/compiler.h> 28 #include <linux/kernel.h> 29 #include <linux/kasan.h> 30 #include <linux/kmsan.h> 31 #include <linux/module.h> 32 #include <linux/suspend.h> 33 #include <linux/pagevec.h> 34 #include <linux/blkdev.h> 35 #include <linux/slab.h> 36 #include <linux/ratelimit.h> 37 #include <linux/oom.h> 38 #include <linux/topology.h> 39 #include <linux/sysctl.h> 40 #include <linux/cpu.h> 41 #include <linux/cpuset.h> 42 #include <linux/memory_hotplug.h> 43 #include <linux/nodemask.h> 44 #include <linux/vmalloc.h> 45 #include <linux/vmstat.h> 46 #include <linux/mempolicy.h> 47 #include <linux/memremap.h> 48 #include <linux/stop_machine.h> 49 #include <linux/random.h> 50 #include <linux/sort.h> 51 #include <linux/pfn.h> 52 #include <linux/backing-dev.h> 53 #include <linux/fault-inject.h> 54 #include <linux/page-isolation.h> 55 #include <linux/debugobjects.h> 56 #include <linux/kmemleak.h> 57 #include <linux/compaction.h> 58 #include <trace/events/kmem.h> 59 #include <trace/events/oom.h> 60 #include <linux/prefetch.h> 61 #include <linux/mm_inline.h> 62 #include <linux/mmu_notifier.h> 63 #include <linux/migrate.h> 64 #include <linux/hugetlb.h> 65 #include <linux/sched/rt.h> 66 #include <linux/sched/mm.h> 67 #include <linux/page_owner.h> 68 #include <linux/page_table_check.h> 69 #include <linux/kthread.h> 70 #include <linux/memcontrol.h> 71 #include <linux/ftrace.h> 72 #include <linux/lockdep.h> 73 #include <linux/nmi.h> 74 #include <linux/psi.h> 75 #include <linux/padata.h> 76 #include <linux/khugepaged.h> 77 #include <linux/buffer_head.h> 78 #include <linux/delayacct.h> 79 #include <asm/sections.h> 80 #include <asm/tlbflush.h> 81 #include <asm/div64.h> 82 #include "internal.h" 83 #include "shuffle.h" 84 #include "page_reporting.h" 85 #include "swap.h" 86 87 /* Free Page Internal flags: for internal, non-pcp variants of free_pages(). */ 88 typedef int __bitwise fpi_t; 89 90 /* No special request */ 91 #define FPI_NONE ((__force fpi_t)0) 92 93 /* 94 * Skip free page reporting notification for the (possibly merged) page. 95 * This does not hinder free page reporting from grabbing the page, 96 * reporting it and marking it "reported" - it only skips notifying 97 * the free page reporting infrastructure about a newly freed page. For 98 * example, used when temporarily pulling a page from a freelist and 99 * putting it back unmodified. 100 */ 101 #define FPI_SKIP_REPORT_NOTIFY ((__force fpi_t)BIT(0)) 102 103 /* 104 * Place the (possibly merged) page to the tail of the freelist. Will ignore 105 * page shuffling (relevant code - e.g., memory onlining - is expected to 106 * shuffle the whole zone). 107 * 108 * Note: No code should rely on this flag for correctness - it's purely 109 * to allow for optimizations when handing back either fresh pages 110 * (memory onlining) or untouched pages (page isolation, free page 111 * reporting). 112 */ 113 #define FPI_TO_TAIL ((__force fpi_t)BIT(1)) 114 115 /* 116 * Don't poison memory with KASAN (only for the tag-based modes). 117 * During boot, all non-reserved memblock memory is exposed to page_alloc. 118 * Poisoning all that memory lengthens boot time, especially on systems with 119 * large amount of RAM. This flag is used to skip that poisoning. 120 * This is only done for the tag-based KASAN modes, as those are able to 121 * detect memory corruptions with the memory tags assigned by default. 122 * All memory allocated normally after boot gets poisoned as usual. 123 */ 124 #define FPI_SKIP_KASAN_POISON ((__force fpi_t)BIT(2)) 125 126 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */ 127 static DEFINE_MUTEX(pcp_batch_high_lock); 128 #define MIN_PERCPU_PAGELIST_HIGH_FRACTION (8) 129 130 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT_RT) 131 /* 132 * On SMP, spin_trylock is sufficient protection. 133 * On PREEMPT_RT, spin_trylock is equivalent on both SMP and UP. 134 */ 135 #define pcp_trylock_prepare(flags) do { } while (0) 136 #define pcp_trylock_finish(flag) do { } while (0) 137 #else 138 139 /* UP spin_trylock always succeeds so disable IRQs to prevent re-entrancy. */ 140 #define pcp_trylock_prepare(flags) local_irq_save(flags) 141 #define pcp_trylock_finish(flags) local_irq_restore(flags) 142 #endif 143 144 /* 145 * Locking a pcp requires a PCP lookup followed by a spinlock. To avoid 146 * a migration causing the wrong PCP to be locked and remote memory being 147 * potentially allocated, pin the task to the CPU for the lookup+lock. 148 * preempt_disable is used on !RT because it is faster than migrate_disable. 149 * migrate_disable is used on RT because otherwise RT spinlock usage is 150 * interfered with and a high priority task cannot preempt the allocator. 151 */ 152 #ifndef CONFIG_PREEMPT_RT 153 #define pcpu_task_pin() preempt_disable() 154 #define pcpu_task_unpin() preempt_enable() 155 #else 156 #define pcpu_task_pin() migrate_disable() 157 #define pcpu_task_unpin() migrate_enable() 158 #endif 159 160 /* 161 * Generic helper to lookup and a per-cpu variable with an embedded spinlock. 162 * Return value should be used with equivalent unlock helper. 163 */ 164 #define pcpu_spin_lock(type, member, ptr) \ 165 ({ \ 166 type *_ret; \ 167 pcpu_task_pin(); \ 168 _ret = this_cpu_ptr(ptr); \ 169 spin_lock(&_ret->member); \ 170 _ret; \ 171 }) 172 173 #define pcpu_spin_lock_irqsave(type, member, ptr, flags) \ 174 ({ \ 175 type *_ret; \ 176 pcpu_task_pin(); \ 177 _ret = this_cpu_ptr(ptr); \ 178 spin_lock_irqsave(&_ret->member, flags); \ 179 _ret; \ 180 }) 181 182 #define pcpu_spin_trylock_irqsave(type, member, ptr, flags) \ 183 ({ \ 184 type *_ret; \ 185 pcpu_task_pin(); \ 186 _ret = this_cpu_ptr(ptr); \ 187 if (!spin_trylock_irqsave(&_ret->member, flags)) { \ 188 pcpu_task_unpin(); \ 189 _ret = NULL; \ 190 } \ 191 _ret; \ 192 }) 193 194 #define pcpu_spin_unlock(member, ptr) \ 195 ({ \ 196 spin_unlock(&ptr->member); \ 197 pcpu_task_unpin(); \ 198 }) 199 200 #define pcpu_spin_unlock_irqrestore(member, ptr, flags) \ 201 ({ \ 202 spin_unlock_irqrestore(&ptr->member, flags); \ 203 pcpu_task_unpin(); \ 204 }) 205 206 /* struct per_cpu_pages specific helpers. */ 207 #define pcp_spin_lock(ptr) \ 208 pcpu_spin_lock(struct per_cpu_pages, lock, ptr) 209 210 #define pcp_spin_lock_irqsave(ptr, flags) \ 211 pcpu_spin_lock_irqsave(struct per_cpu_pages, lock, ptr, flags) 212 213 #define pcp_spin_trylock_irqsave(ptr, flags) \ 214 pcpu_spin_trylock_irqsave(struct per_cpu_pages, lock, ptr, flags) 215 216 #define pcp_spin_unlock(ptr) \ 217 pcpu_spin_unlock(lock, ptr) 218 219 #define pcp_spin_unlock_irqrestore(ptr, flags) \ 220 pcpu_spin_unlock_irqrestore(lock, ptr, flags) 221 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID 222 DEFINE_PER_CPU(int, numa_node); 223 EXPORT_PER_CPU_SYMBOL(numa_node); 224 #endif 225 226 DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key); 227 228 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 229 /* 230 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly. 231 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined. 232 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem() 233 * defined in <linux/topology.h>. 234 */ 235 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */ 236 EXPORT_PER_CPU_SYMBOL(_numa_mem_); 237 #endif 238 239 static DEFINE_MUTEX(pcpu_drain_mutex); 240 241 #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY 242 volatile unsigned long latent_entropy __latent_entropy; 243 EXPORT_SYMBOL(latent_entropy); 244 #endif 245 246 /* 247 * Array of node states. 248 */ 249 nodemask_t node_states[NR_NODE_STATES] __read_mostly = { 250 [N_POSSIBLE] = NODE_MASK_ALL, 251 [N_ONLINE] = { { [0] = 1UL } }, 252 #ifndef CONFIG_NUMA 253 [N_NORMAL_MEMORY] = { { [0] = 1UL } }, 254 #ifdef CONFIG_HIGHMEM 255 [N_HIGH_MEMORY] = { { [0] = 1UL } }, 256 #endif 257 [N_MEMORY] = { { [0] = 1UL } }, 258 [N_CPU] = { { [0] = 1UL } }, 259 #endif /* NUMA */ 260 }; 261 EXPORT_SYMBOL(node_states); 262 263 atomic_long_t _totalram_pages __read_mostly; 264 EXPORT_SYMBOL(_totalram_pages); 265 unsigned long totalreserve_pages __read_mostly; 266 unsigned long totalcma_pages __read_mostly; 267 268 int percpu_pagelist_high_fraction; 269 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK; 270 DEFINE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, init_on_alloc); 271 EXPORT_SYMBOL(init_on_alloc); 272 273 DEFINE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_FREE_DEFAULT_ON, init_on_free); 274 EXPORT_SYMBOL(init_on_free); 275 276 static bool _init_on_alloc_enabled_early __read_mostly 277 = IS_ENABLED(CONFIG_INIT_ON_ALLOC_DEFAULT_ON); 278 static int __init early_init_on_alloc(char *buf) 279 { 280 281 return kstrtobool(buf, &_init_on_alloc_enabled_early); 282 } 283 early_param("init_on_alloc", early_init_on_alloc); 284 285 static bool _init_on_free_enabled_early __read_mostly 286 = IS_ENABLED(CONFIG_INIT_ON_FREE_DEFAULT_ON); 287 static int __init early_init_on_free(char *buf) 288 { 289 return kstrtobool(buf, &_init_on_free_enabled_early); 290 } 291 early_param("init_on_free", early_init_on_free); 292 293 /* 294 * A cached value of the page's pageblock's migratetype, used when the page is 295 * put on a pcplist. Used to avoid the pageblock migratetype lookup when 296 * freeing from pcplists in most cases, at the cost of possibly becoming stale. 297 * Also the migratetype set in the page does not necessarily match the pcplist 298 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any 299 * other index - this ensures that it will be put on the correct CMA freelist. 300 */ 301 static inline int get_pcppage_migratetype(struct page *page) 302 { 303 return page->index; 304 } 305 306 static inline void set_pcppage_migratetype(struct page *page, int migratetype) 307 { 308 page->index = migratetype; 309 } 310 311 #ifdef CONFIG_PM_SLEEP 312 /* 313 * The following functions are used by the suspend/hibernate code to temporarily 314 * change gfp_allowed_mask in order to avoid using I/O during memory allocations 315 * while devices are suspended. To avoid races with the suspend/hibernate code, 316 * they should always be called with system_transition_mutex held 317 * (gfp_allowed_mask also should only be modified with system_transition_mutex 318 * held, unless the suspend/hibernate code is guaranteed not to run in parallel 319 * with that modification). 320 */ 321 322 static gfp_t saved_gfp_mask; 323 324 void pm_restore_gfp_mask(void) 325 { 326 WARN_ON(!mutex_is_locked(&system_transition_mutex)); 327 if (saved_gfp_mask) { 328 gfp_allowed_mask = saved_gfp_mask; 329 saved_gfp_mask = 0; 330 } 331 } 332 333 void pm_restrict_gfp_mask(void) 334 { 335 WARN_ON(!mutex_is_locked(&system_transition_mutex)); 336 WARN_ON(saved_gfp_mask); 337 saved_gfp_mask = gfp_allowed_mask; 338 gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS); 339 } 340 341 bool pm_suspended_storage(void) 342 { 343 if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS)) 344 return false; 345 return true; 346 } 347 #endif /* CONFIG_PM_SLEEP */ 348 349 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE 350 unsigned int pageblock_order __read_mostly; 351 #endif 352 353 static void __free_pages_ok(struct page *page, unsigned int order, 354 fpi_t fpi_flags); 355 356 /* 357 * results with 256, 32 in the lowmem_reserve sysctl: 358 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high) 359 * 1G machine -> (16M dma, 784M normal, 224M high) 360 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA 361 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL 362 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA 363 * 364 * TBD: should special case ZONE_DMA32 machines here - in those we normally 365 * don't need any ZONE_NORMAL reservation 366 */ 367 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = { 368 #ifdef CONFIG_ZONE_DMA 369 [ZONE_DMA] = 256, 370 #endif 371 #ifdef CONFIG_ZONE_DMA32 372 [ZONE_DMA32] = 256, 373 #endif 374 [ZONE_NORMAL] = 32, 375 #ifdef CONFIG_HIGHMEM 376 [ZONE_HIGHMEM] = 0, 377 #endif 378 [ZONE_MOVABLE] = 0, 379 }; 380 381 static char * const zone_names[MAX_NR_ZONES] = { 382 #ifdef CONFIG_ZONE_DMA 383 "DMA", 384 #endif 385 #ifdef CONFIG_ZONE_DMA32 386 "DMA32", 387 #endif 388 "Normal", 389 #ifdef CONFIG_HIGHMEM 390 "HighMem", 391 #endif 392 "Movable", 393 #ifdef CONFIG_ZONE_DEVICE 394 "Device", 395 #endif 396 }; 397 398 const char * const migratetype_names[MIGRATE_TYPES] = { 399 "Unmovable", 400 "Movable", 401 "Reclaimable", 402 "HighAtomic", 403 #ifdef CONFIG_CMA 404 "CMA", 405 #endif 406 #ifdef CONFIG_MEMORY_ISOLATION 407 "Isolate", 408 #endif 409 }; 410 411 compound_page_dtor * const compound_page_dtors[NR_COMPOUND_DTORS] = { 412 [NULL_COMPOUND_DTOR] = NULL, 413 [COMPOUND_PAGE_DTOR] = free_compound_page, 414 #ifdef CONFIG_HUGETLB_PAGE 415 [HUGETLB_PAGE_DTOR] = free_huge_page, 416 #endif 417 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 418 [TRANSHUGE_PAGE_DTOR] = free_transhuge_page, 419 #endif 420 }; 421 422 int min_free_kbytes = 1024; 423 int user_min_free_kbytes = -1; 424 int watermark_boost_factor __read_mostly = 15000; 425 int watermark_scale_factor = 10; 426 427 static unsigned long nr_kernel_pages __initdata; 428 static unsigned long nr_all_pages __initdata; 429 static unsigned long dma_reserve __initdata; 430 431 static unsigned long arch_zone_lowest_possible_pfn[MAX_NR_ZONES] __initdata; 432 static unsigned long arch_zone_highest_possible_pfn[MAX_NR_ZONES] __initdata; 433 static unsigned long required_kernelcore __initdata; 434 static unsigned long required_kernelcore_percent __initdata; 435 static unsigned long required_movablecore __initdata; 436 static unsigned long required_movablecore_percent __initdata; 437 static unsigned long zone_movable_pfn[MAX_NUMNODES] __initdata; 438 bool mirrored_kernelcore __initdata_memblock; 439 440 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */ 441 int movable_zone; 442 EXPORT_SYMBOL(movable_zone); 443 444 #if MAX_NUMNODES > 1 445 unsigned int nr_node_ids __read_mostly = MAX_NUMNODES; 446 unsigned int nr_online_nodes __read_mostly = 1; 447 EXPORT_SYMBOL(nr_node_ids); 448 EXPORT_SYMBOL(nr_online_nodes); 449 #endif 450 451 int page_group_by_mobility_disabled __read_mostly; 452 453 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 454 /* 455 * During boot we initialize deferred pages on-demand, as needed, but once 456 * page_alloc_init_late() has finished, the deferred pages are all initialized, 457 * and we can permanently disable that path. 458 */ 459 static DEFINE_STATIC_KEY_TRUE(deferred_pages); 460 461 static inline bool deferred_pages_enabled(void) 462 { 463 return static_branch_unlikely(&deferred_pages); 464 } 465 466 /* Returns true if the struct page for the pfn is uninitialised */ 467 static inline bool __meminit early_page_uninitialised(unsigned long pfn) 468 { 469 int nid = early_pfn_to_nid(pfn); 470 471 if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn) 472 return true; 473 474 return false; 475 } 476 477 /* 478 * Returns true when the remaining initialisation should be deferred until 479 * later in the boot cycle when it can be parallelised. 480 */ 481 static bool __meminit 482 defer_init(int nid, unsigned long pfn, unsigned long end_pfn) 483 { 484 static unsigned long prev_end_pfn, nr_initialised; 485 486 if (early_page_ext_enabled()) 487 return false; 488 /* 489 * prev_end_pfn static that contains the end of previous zone 490 * No need to protect because called very early in boot before smp_init. 491 */ 492 if (prev_end_pfn != end_pfn) { 493 prev_end_pfn = end_pfn; 494 nr_initialised = 0; 495 } 496 497 /* Always populate low zones for address-constrained allocations */ 498 if (end_pfn < pgdat_end_pfn(NODE_DATA(nid))) 499 return false; 500 501 if (NODE_DATA(nid)->first_deferred_pfn != ULONG_MAX) 502 return true; 503 /* 504 * We start only with one section of pages, more pages are added as 505 * needed until the rest of deferred pages are initialized. 506 */ 507 nr_initialised++; 508 if ((nr_initialised > PAGES_PER_SECTION) && 509 (pfn & (PAGES_PER_SECTION - 1)) == 0) { 510 NODE_DATA(nid)->first_deferred_pfn = pfn; 511 return true; 512 } 513 return false; 514 } 515 #else 516 static inline bool deferred_pages_enabled(void) 517 { 518 return false; 519 } 520 521 static inline bool early_page_uninitialised(unsigned long pfn) 522 { 523 return false; 524 } 525 526 static inline bool defer_init(int nid, unsigned long pfn, unsigned long end_pfn) 527 { 528 return false; 529 } 530 #endif 531 532 /* Return a pointer to the bitmap storing bits affecting a block of pages */ 533 static inline unsigned long *get_pageblock_bitmap(const struct page *page, 534 unsigned long pfn) 535 { 536 #ifdef CONFIG_SPARSEMEM 537 return section_to_usemap(__pfn_to_section(pfn)); 538 #else 539 return page_zone(page)->pageblock_flags; 540 #endif /* CONFIG_SPARSEMEM */ 541 } 542 543 static inline int pfn_to_bitidx(const struct page *page, unsigned long pfn) 544 { 545 #ifdef CONFIG_SPARSEMEM 546 pfn &= (PAGES_PER_SECTION-1); 547 #else 548 pfn = pfn - pageblock_start_pfn(page_zone(page)->zone_start_pfn); 549 #endif /* CONFIG_SPARSEMEM */ 550 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS; 551 } 552 553 static __always_inline 554 unsigned long __get_pfnblock_flags_mask(const struct page *page, 555 unsigned long pfn, 556 unsigned long mask) 557 { 558 unsigned long *bitmap; 559 unsigned long bitidx, word_bitidx; 560 unsigned long word; 561 562 bitmap = get_pageblock_bitmap(page, pfn); 563 bitidx = pfn_to_bitidx(page, pfn); 564 word_bitidx = bitidx / BITS_PER_LONG; 565 bitidx &= (BITS_PER_LONG-1); 566 /* 567 * This races, without locks, with set_pfnblock_flags_mask(). Ensure 568 * a consistent read of the memory array, so that results, even though 569 * racy, are not corrupted. 570 */ 571 word = READ_ONCE(bitmap[word_bitidx]); 572 return (word >> bitidx) & mask; 573 } 574 575 /** 576 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages 577 * @page: The page within the block of interest 578 * @pfn: The target page frame number 579 * @mask: mask of bits that the caller is interested in 580 * 581 * Return: pageblock_bits flags 582 */ 583 unsigned long get_pfnblock_flags_mask(const struct page *page, 584 unsigned long pfn, unsigned long mask) 585 { 586 return __get_pfnblock_flags_mask(page, pfn, mask); 587 } 588 589 static __always_inline int get_pfnblock_migratetype(const struct page *page, 590 unsigned long pfn) 591 { 592 return __get_pfnblock_flags_mask(page, pfn, MIGRATETYPE_MASK); 593 } 594 595 /** 596 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages 597 * @page: The page within the block of interest 598 * @flags: The flags to set 599 * @pfn: The target page frame number 600 * @mask: mask of bits that the caller is interested in 601 */ 602 void set_pfnblock_flags_mask(struct page *page, unsigned long flags, 603 unsigned long pfn, 604 unsigned long mask) 605 { 606 unsigned long *bitmap; 607 unsigned long bitidx, word_bitidx; 608 unsigned long word; 609 610 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4); 611 BUILD_BUG_ON(MIGRATE_TYPES > (1 << PB_migratetype_bits)); 612 613 bitmap = get_pageblock_bitmap(page, pfn); 614 bitidx = pfn_to_bitidx(page, pfn); 615 word_bitidx = bitidx / BITS_PER_LONG; 616 bitidx &= (BITS_PER_LONG-1); 617 618 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page); 619 620 mask <<= bitidx; 621 flags <<= bitidx; 622 623 word = READ_ONCE(bitmap[word_bitidx]); 624 do { 625 } while (!try_cmpxchg(&bitmap[word_bitidx], &word, (word & ~mask) | flags)); 626 } 627 628 void set_pageblock_migratetype(struct page *page, int migratetype) 629 { 630 if (unlikely(page_group_by_mobility_disabled && 631 migratetype < MIGRATE_PCPTYPES)) 632 migratetype = MIGRATE_UNMOVABLE; 633 634 set_pfnblock_flags_mask(page, (unsigned long)migratetype, 635 page_to_pfn(page), MIGRATETYPE_MASK); 636 } 637 638 #ifdef CONFIG_DEBUG_VM 639 static int page_outside_zone_boundaries(struct zone *zone, struct page *page) 640 { 641 int ret = 0; 642 unsigned seq; 643 unsigned long pfn = page_to_pfn(page); 644 unsigned long sp, start_pfn; 645 646 do { 647 seq = zone_span_seqbegin(zone); 648 start_pfn = zone->zone_start_pfn; 649 sp = zone->spanned_pages; 650 if (!zone_spans_pfn(zone, pfn)) 651 ret = 1; 652 } while (zone_span_seqretry(zone, seq)); 653 654 if (ret) 655 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n", 656 pfn, zone_to_nid(zone), zone->name, 657 start_pfn, start_pfn + sp); 658 659 return ret; 660 } 661 662 static int page_is_consistent(struct zone *zone, struct page *page) 663 { 664 if (zone != page_zone(page)) 665 return 0; 666 667 return 1; 668 } 669 /* 670 * Temporary debugging check for pages not lying within a given zone. 671 */ 672 static int __maybe_unused bad_range(struct zone *zone, struct page *page) 673 { 674 if (page_outside_zone_boundaries(zone, page)) 675 return 1; 676 if (!page_is_consistent(zone, page)) 677 return 1; 678 679 return 0; 680 } 681 #else 682 static inline int __maybe_unused bad_range(struct zone *zone, struct page *page) 683 { 684 return 0; 685 } 686 #endif 687 688 static void bad_page(struct page *page, const char *reason) 689 { 690 static unsigned long resume; 691 static unsigned long nr_shown; 692 static unsigned long nr_unshown; 693 694 /* 695 * Allow a burst of 60 reports, then keep quiet for that minute; 696 * or allow a steady drip of one report per second. 697 */ 698 if (nr_shown == 60) { 699 if (time_before(jiffies, resume)) { 700 nr_unshown++; 701 goto out; 702 } 703 if (nr_unshown) { 704 pr_alert( 705 "BUG: Bad page state: %lu messages suppressed\n", 706 nr_unshown); 707 nr_unshown = 0; 708 } 709 nr_shown = 0; 710 } 711 if (nr_shown++ == 0) 712 resume = jiffies + 60 * HZ; 713 714 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n", 715 current->comm, page_to_pfn(page)); 716 dump_page(page, reason); 717 718 print_modules(); 719 dump_stack(); 720 out: 721 /* Leave bad fields for debug, except PageBuddy could make trouble */ 722 page_mapcount_reset(page); /* remove PageBuddy */ 723 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 724 } 725 726 static inline unsigned int order_to_pindex(int migratetype, int order) 727 { 728 int base = order; 729 730 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 731 if (order > PAGE_ALLOC_COSTLY_ORDER) { 732 VM_BUG_ON(order != pageblock_order); 733 return NR_LOWORDER_PCP_LISTS; 734 } 735 #else 736 VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER); 737 #endif 738 739 return (MIGRATE_PCPTYPES * base) + migratetype; 740 } 741 742 static inline int pindex_to_order(unsigned int pindex) 743 { 744 int order = pindex / MIGRATE_PCPTYPES; 745 746 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 747 if (pindex == NR_LOWORDER_PCP_LISTS) 748 order = pageblock_order; 749 #else 750 VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER); 751 #endif 752 753 return order; 754 } 755 756 static inline bool pcp_allowed_order(unsigned int order) 757 { 758 if (order <= PAGE_ALLOC_COSTLY_ORDER) 759 return true; 760 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 761 if (order == pageblock_order) 762 return true; 763 #endif 764 return false; 765 } 766 767 static inline void free_the_page(struct page *page, unsigned int order) 768 { 769 if (pcp_allowed_order(order)) /* Via pcp? */ 770 free_unref_page(page, order); 771 else 772 __free_pages_ok(page, order, FPI_NONE); 773 } 774 775 /* 776 * Higher-order pages are called "compound pages". They are structured thusly: 777 * 778 * The first PAGE_SIZE page is called the "head page" and have PG_head set. 779 * 780 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded 781 * in bit 0 of page->compound_head. The rest of bits is pointer to head page. 782 * 783 * The first tail page's ->compound_dtor holds the offset in array of compound 784 * page destructors. See compound_page_dtors. 785 * 786 * The first tail page's ->compound_order holds the order of allocation. 787 * This usage means that zero-order pages may not be compound. 788 */ 789 790 void free_compound_page(struct page *page) 791 { 792 mem_cgroup_uncharge(page_folio(page)); 793 free_the_page(page, compound_order(page)); 794 } 795 796 static void prep_compound_head(struct page *page, unsigned int order) 797 { 798 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR); 799 set_compound_order(page, order); 800 atomic_set(compound_mapcount_ptr(page), -1); 801 atomic_set(compound_pincount_ptr(page), 0); 802 } 803 804 static void prep_compound_tail(struct page *head, int tail_idx) 805 { 806 struct page *p = head + tail_idx; 807 808 p->mapping = TAIL_MAPPING; 809 set_compound_head(p, head); 810 } 811 812 void prep_compound_page(struct page *page, unsigned int order) 813 { 814 int i; 815 int nr_pages = 1 << order; 816 817 __SetPageHead(page); 818 for (i = 1; i < nr_pages; i++) 819 prep_compound_tail(page, i); 820 821 prep_compound_head(page, order); 822 } 823 824 void destroy_large_folio(struct folio *folio) 825 { 826 enum compound_dtor_id dtor = folio_page(folio, 1)->compound_dtor; 827 828 VM_BUG_ON_FOLIO(dtor >= NR_COMPOUND_DTORS, folio); 829 compound_page_dtors[dtor](&folio->page); 830 } 831 832 #ifdef CONFIG_DEBUG_PAGEALLOC 833 unsigned int _debug_guardpage_minorder; 834 835 bool _debug_pagealloc_enabled_early __read_mostly 836 = IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT); 837 EXPORT_SYMBOL(_debug_pagealloc_enabled_early); 838 DEFINE_STATIC_KEY_FALSE(_debug_pagealloc_enabled); 839 EXPORT_SYMBOL(_debug_pagealloc_enabled); 840 841 DEFINE_STATIC_KEY_FALSE(_debug_guardpage_enabled); 842 843 static int __init early_debug_pagealloc(char *buf) 844 { 845 return kstrtobool(buf, &_debug_pagealloc_enabled_early); 846 } 847 early_param("debug_pagealloc", early_debug_pagealloc); 848 849 static int __init debug_guardpage_minorder_setup(char *buf) 850 { 851 unsigned long res; 852 853 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) { 854 pr_err("Bad debug_guardpage_minorder value\n"); 855 return 0; 856 } 857 _debug_guardpage_minorder = res; 858 pr_info("Setting debug_guardpage_minorder to %lu\n", res); 859 return 0; 860 } 861 early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup); 862 863 static inline bool set_page_guard(struct zone *zone, struct page *page, 864 unsigned int order, int migratetype) 865 { 866 if (!debug_guardpage_enabled()) 867 return false; 868 869 if (order >= debug_guardpage_minorder()) 870 return false; 871 872 __SetPageGuard(page); 873 INIT_LIST_HEAD(&page->buddy_list); 874 set_page_private(page, order); 875 /* Guard pages are not available for any usage */ 876 __mod_zone_freepage_state(zone, -(1 << order), migratetype); 877 878 return true; 879 } 880 881 static inline void clear_page_guard(struct zone *zone, struct page *page, 882 unsigned int order, int migratetype) 883 { 884 if (!debug_guardpage_enabled()) 885 return; 886 887 __ClearPageGuard(page); 888 889 set_page_private(page, 0); 890 if (!is_migrate_isolate(migratetype)) 891 __mod_zone_freepage_state(zone, (1 << order), migratetype); 892 } 893 #else 894 static inline bool set_page_guard(struct zone *zone, struct page *page, 895 unsigned int order, int migratetype) { return false; } 896 static inline void clear_page_guard(struct zone *zone, struct page *page, 897 unsigned int order, int migratetype) {} 898 #endif 899 900 /* 901 * Enable static keys related to various memory debugging and hardening options. 902 * Some override others, and depend on early params that are evaluated in the 903 * order of appearance. So we need to first gather the full picture of what was 904 * enabled, and then make decisions. 905 */ 906 void init_mem_debugging_and_hardening(void) 907 { 908 bool page_poisoning_requested = false; 909 910 #ifdef CONFIG_PAGE_POISONING 911 /* 912 * Page poisoning is debug page alloc for some arches. If 913 * either of those options are enabled, enable poisoning. 914 */ 915 if (page_poisoning_enabled() || 916 (!IS_ENABLED(CONFIG_ARCH_SUPPORTS_DEBUG_PAGEALLOC) && 917 debug_pagealloc_enabled())) { 918 static_branch_enable(&_page_poisoning_enabled); 919 page_poisoning_requested = true; 920 } 921 #endif 922 923 if ((_init_on_alloc_enabled_early || _init_on_free_enabled_early) && 924 page_poisoning_requested) { 925 pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, " 926 "will take precedence over init_on_alloc and init_on_free\n"); 927 _init_on_alloc_enabled_early = false; 928 _init_on_free_enabled_early = false; 929 } 930 931 if (_init_on_alloc_enabled_early) 932 static_branch_enable(&init_on_alloc); 933 else 934 static_branch_disable(&init_on_alloc); 935 936 if (_init_on_free_enabled_early) 937 static_branch_enable(&init_on_free); 938 else 939 static_branch_disable(&init_on_free); 940 941 #ifdef CONFIG_DEBUG_PAGEALLOC 942 if (!debug_pagealloc_enabled()) 943 return; 944 945 static_branch_enable(&_debug_pagealloc_enabled); 946 947 if (!debug_guardpage_minorder()) 948 return; 949 950 static_branch_enable(&_debug_guardpage_enabled); 951 #endif 952 } 953 954 static inline void set_buddy_order(struct page *page, unsigned int order) 955 { 956 set_page_private(page, order); 957 __SetPageBuddy(page); 958 } 959 960 #ifdef CONFIG_COMPACTION 961 static inline struct capture_control *task_capc(struct zone *zone) 962 { 963 struct capture_control *capc = current->capture_control; 964 965 return unlikely(capc) && 966 !(current->flags & PF_KTHREAD) && 967 !capc->page && 968 capc->cc->zone == zone ? capc : NULL; 969 } 970 971 static inline bool 972 compaction_capture(struct capture_control *capc, struct page *page, 973 int order, int migratetype) 974 { 975 if (!capc || order != capc->cc->order) 976 return false; 977 978 /* Do not accidentally pollute CMA or isolated regions*/ 979 if (is_migrate_cma(migratetype) || 980 is_migrate_isolate(migratetype)) 981 return false; 982 983 /* 984 * Do not let lower order allocations pollute a movable pageblock. 985 * This might let an unmovable request use a reclaimable pageblock 986 * and vice-versa but no more than normal fallback logic which can 987 * have trouble finding a high-order free page. 988 */ 989 if (order < pageblock_order && migratetype == MIGRATE_MOVABLE) 990 return false; 991 992 capc->page = page; 993 return true; 994 } 995 996 #else 997 static inline struct capture_control *task_capc(struct zone *zone) 998 { 999 return NULL; 1000 } 1001 1002 static inline bool 1003 compaction_capture(struct capture_control *capc, struct page *page, 1004 int order, int migratetype) 1005 { 1006 return false; 1007 } 1008 #endif /* CONFIG_COMPACTION */ 1009 1010 /* Used for pages not on another list */ 1011 static inline void add_to_free_list(struct page *page, struct zone *zone, 1012 unsigned int order, int migratetype) 1013 { 1014 struct free_area *area = &zone->free_area[order]; 1015 1016 list_add(&page->buddy_list, &area->free_list[migratetype]); 1017 area->nr_free++; 1018 } 1019 1020 /* Used for pages not on another list */ 1021 static inline void add_to_free_list_tail(struct page *page, struct zone *zone, 1022 unsigned int order, int migratetype) 1023 { 1024 struct free_area *area = &zone->free_area[order]; 1025 1026 list_add_tail(&page->buddy_list, &area->free_list[migratetype]); 1027 area->nr_free++; 1028 } 1029 1030 /* 1031 * Used for pages which are on another list. Move the pages to the tail 1032 * of the list - so the moved pages won't immediately be considered for 1033 * allocation again (e.g., optimization for memory onlining). 1034 */ 1035 static inline void move_to_free_list(struct page *page, struct zone *zone, 1036 unsigned int order, int migratetype) 1037 { 1038 struct free_area *area = &zone->free_area[order]; 1039 1040 list_move_tail(&page->buddy_list, &area->free_list[migratetype]); 1041 } 1042 1043 static inline void del_page_from_free_list(struct page *page, struct zone *zone, 1044 unsigned int order) 1045 { 1046 /* clear reported state and update reported page count */ 1047 if (page_reported(page)) 1048 __ClearPageReported(page); 1049 1050 list_del(&page->buddy_list); 1051 __ClearPageBuddy(page); 1052 set_page_private(page, 0); 1053 zone->free_area[order].nr_free--; 1054 } 1055 1056 /* 1057 * If this is not the largest possible page, check if the buddy 1058 * of the next-highest order is free. If it is, it's possible 1059 * that pages are being freed that will coalesce soon. In case, 1060 * that is happening, add the free page to the tail of the list 1061 * so it's less likely to be used soon and more likely to be merged 1062 * as a higher order page 1063 */ 1064 static inline bool 1065 buddy_merge_likely(unsigned long pfn, unsigned long buddy_pfn, 1066 struct page *page, unsigned int order) 1067 { 1068 unsigned long higher_page_pfn; 1069 struct page *higher_page; 1070 1071 if (order >= MAX_ORDER - 2) 1072 return false; 1073 1074 higher_page_pfn = buddy_pfn & pfn; 1075 higher_page = page + (higher_page_pfn - pfn); 1076 1077 return find_buddy_page_pfn(higher_page, higher_page_pfn, order + 1, 1078 NULL) != NULL; 1079 } 1080 1081 /* 1082 * Freeing function for a buddy system allocator. 1083 * 1084 * The concept of a buddy system is to maintain direct-mapped table 1085 * (containing bit values) for memory blocks of various "orders". 1086 * The bottom level table contains the map for the smallest allocatable 1087 * units of memory (here, pages), and each level above it describes 1088 * pairs of units from the levels below, hence, "buddies". 1089 * At a high level, all that happens here is marking the table entry 1090 * at the bottom level available, and propagating the changes upward 1091 * as necessary, plus some accounting needed to play nicely with other 1092 * parts of the VM system. 1093 * At each level, we keep a list of pages, which are heads of continuous 1094 * free pages of length of (1 << order) and marked with PageBuddy. 1095 * Page's order is recorded in page_private(page) field. 1096 * So when we are allocating or freeing one, we can derive the state of the 1097 * other. That is, if we allocate a small block, and both were 1098 * free, the remainder of the region must be split into blocks. 1099 * If a block is freed, and its buddy is also free, then this 1100 * triggers coalescing into a block of larger size. 1101 * 1102 * -- nyc 1103 */ 1104 1105 static inline void __free_one_page(struct page *page, 1106 unsigned long pfn, 1107 struct zone *zone, unsigned int order, 1108 int migratetype, fpi_t fpi_flags) 1109 { 1110 struct capture_control *capc = task_capc(zone); 1111 unsigned long buddy_pfn; 1112 unsigned long combined_pfn; 1113 struct page *buddy; 1114 bool to_tail; 1115 1116 VM_BUG_ON(!zone_is_initialized(zone)); 1117 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page); 1118 1119 VM_BUG_ON(migratetype == -1); 1120 if (likely(!is_migrate_isolate(migratetype))) 1121 __mod_zone_freepage_state(zone, 1 << order, migratetype); 1122 1123 VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page); 1124 VM_BUG_ON_PAGE(bad_range(zone, page), page); 1125 1126 while (order < MAX_ORDER - 1) { 1127 if (compaction_capture(capc, page, order, migratetype)) { 1128 __mod_zone_freepage_state(zone, -(1 << order), 1129 migratetype); 1130 return; 1131 } 1132 1133 buddy = find_buddy_page_pfn(page, pfn, order, &buddy_pfn); 1134 if (!buddy) 1135 goto done_merging; 1136 1137 if (unlikely(order >= pageblock_order)) { 1138 /* 1139 * We want to prevent merge between freepages on pageblock 1140 * without fallbacks and normal pageblock. Without this, 1141 * pageblock isolation could cause incorrect freepage or CMA 1142 * accounting or HIGHATOMIC accounting. 1143 */ 1144 int buddy_mt = get_pageblock_migratetype(buddy); 1145 1146 if (migratetype != buddy_mt 1147 && (!migratetype_is_mergeable(migratetype) || 1148 !migratetype_is_mergeable(buddy_mt))) 1149 goto done_merging; 1150 } 1151 1152 /* 1153 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page, 1154 * merge with it and move up one order. 1155 */ 1156 if (page_is_guard(buddy)) 1157 clear_page_guard(zone, buddy, order, migratetype); 1158 else 1159 del_page_from_free_list(buddy, zone, order); 1160 combined_pfn = buddy_pfn & pfn; 1161 page = page + (combined_pfn - pfn); 1162 pfn = combined_pfn; 1163 order++; 1164 } 1165 1166 done_merging: 1167 set_buddy_order(page, order); 1168 1169 if (fpi_flags & FPI_TO_TAIL) 1170 to_tail = true; 1171 else if (is_shuffle_order(order)) 1172 to_tail = shuffle_pick_tail(); 1173 else 1174 to_tail = buddy_merge_likely(pfn, buddy_pfn, page, order); 1175 1176 if (to_tail) 1177 add_to_free_list_tail(page, zone, order, migratetype); 1178 else 1179 add_to_free_list(page, zone, order, migratetype); 1180 1181 /* Notify page reporting subsystem of freed page */ 1182 if (!(fpi_flags & FPI_SKIP_REPORT_NOTIFY)) 1183 page_reporting_notify_free(order); 1184 } 1185 1186 /** 1187 * split_free_page() -- split a free page at split_pfn_offset 1188 * @free_page: the original free page 1189 * @order: the order of the page 1190 * @split_pfn_offset: split offset within the page 1191 * 1192 * Return -ENOENT if the free page is changed, otherwise 0 1193 * 1194 * It is used when the free page crosses two pageblocks with different migratetypes 1195 * at split_pfn_offset within the page. The split free page will be put into 1196 * separate migratetype lists afterwards. Otherwise, the function achieves 1197 * nothing. 1198 */ 1199 int split_free_page(struct page *free_page, 1200 unsigned int order, unsigned long split_pfn_offset) 1201 { 1202 struct zone *zone = page_zone(free_page); 1203 unsigned long free_page_pfn = page_to_pfn(free_page); 1204 unsigned long pfn; 1205 unsigned long flags; 1206 int free_page_order; 1207 int mt; 1208 int ret = 0; 1209 1210 if (split_pfn_offset == 0) 1211 return ret; 1212 1213 spin_lock_irqsave(&zone->lock, flags); 1214 1215 if (!PageBuddy(free_page) || buddy_order(free_page) != order) { 1216 ret = -ENOENT; 1217 goto out; 1218 } 1219 1220 mt = get_pageblock_migratetype(free_page); 1221 if (likely(!is_migrate_isolate(mt))) 1222 __mod_zone_freepage_state(zone, -(1UL << order), mt); 1223 1224 del_page_from_free_list(free_page, zone, order); 1225 for (pfn = free_page_pfn; 1226 pfn < free_page_pfn + (1UL << order);) { 1227 int mt = get_pfnblock_migratetype(pfn_to_page(pfn), pfn); 1228 1229 free_page_order = min_t(unsigned int, 1230 pfn ? __ffs(pfn) : order, 1231 __fls(split_pfn_offset)); 1232 __free_one_page(pfn_to_page(pfn), pfn, zone, free_page_order, 1233 mt, FPI_NONE); 1234 pfn += 1UL << free_page_order; 1235 split_pfn_offset -= (1UL << free_page_order); 1236 /* we have done the first part, now switch to second part */ 1237 if (split_pfn_offset == 0) 1238 split_pfn_offset = (1UL << order) - (pfn - free_page_pfn); 1239 } 1240 out: 1241 spin_unlock_irqrestore(&zone->lock, flags); 1242 return ret; 1243 } 1244 /* 1245 * A bad page could be due to a number of fields. Instead of multiple branches, 1246 * try and check multiple fields with one check. The caller must do a detailed 1247 * check if necessary. 1248 */ 1249 static inline bool page_expected_state(struct page *page, 1250 unsigned long check_flags) 1251 { 1252 if (unlikely(atomic_read(&page->_mapcount) != -1)) 1253 return false; 1254 1255 if (unlikely((unsigned long)page->mapping | 1256 page_ref_count(page) | 1257 #ifdef CONFIG_MEMCG 1258 page->memcg_data | 1259 #endif 1260 (page->flags & check_flags))) 1261 return false; 1262 1263 return true; 1264 } 1265 1266 static const char *page_bad_reason(struct page *page, unsigned long flags) 1267 { 1268 const char *bad_reason = NULL; 1269 1270 if (unlikely(atomic_read(&page->_mapcount) != -1)) 1271 bad_reason = "nonzero mapcount"; 1272 if (unlikely(page->mapping != NULL)) 1273 bad_reason = "non-NULL mapping"; 1274 if (unlikely(page_ref_count(page) != 0)) 1275 bad_reason = "nonzero _refcount"; 1276 if (unlikely(page->flags & flags)) { 1277 if (flags == PAGE_FLAGS_CHECK_AT_PREP) 1278 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag(s) set"; 1279 else 1280 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set"; 1281 } 1282 #ifdef CONFIG_MEMCG 1283 if (unlikely(page->memcg_data)) 1284 bad_reason = "page still charged to cgroup"; 1285 #endif 1286 return bad_reason; 1287 } 1288 1289 static void free_page_is_bad_report(struct page *page) 1290 { 1291 bad_page(page, 1292 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_FREE)); 1293 } 1294 1295 static inline bool free_page_is_bad(struct page *page) 1296 { 1297 if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE))) 1298 return false; 1299 1300 /* Something has gone sideways, find it */ 1301 free_page_is_bad_report(page); 1302 return true; 1303 } 1304 1305 static int free_tail_pages_check(struct page *head_page, struct page *page) 1306 { 1307 int ret = 1; 1308 1309 /* 1310 * We rely page->lru.next never has bit 0 set, unless the page 1311 * is PageTail(). Let's make sure that's true even for poisoned ->lru. 1312 */ 1313 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1); 1314 1315 if (!IS_ENABLED(CONFIG_DEBUG_VM)) { 1316 ret = 0; 1317 goto out; 1318 } 1319 switch (page - head_page) { 1320 case 1: 1321 /* the first tail page: ->mapping may be compound_mapcount() */ 1322 if (unlikely(compound_mapcount(page))) { 1323 bad_page(page, "nonzero compound_mapcount"); 1324 goto out; 1325 } 1326 break; 1327 case 2: 1328 /* 1329 * the second tail page: ->mapping is 1330 * deferred_list.next -- ignore value. 1331 */ 1332 break; 1333 default: 1334 if (page->mapping != TAIL_MAPPING) { 1335 bad_page(page, "corrupted mapping in tail page"); 1336 goto out; 1337 } 1338 break; 1339 } 1340 if (unlikely(!PageTail(page))) { 1341 bad_page(page, "PageTail not set"); 1342 goto out; 1343 } 1344 if (unlikely(compound_head(page) != head_page)) { 1345 bad_page(page, "compound_head not consistent"); 1346 goto out; 1347 } 1348 ret = 0; 1349 out: 1350 page->mapping = NULL; 1351 clear_compound_head(page); 1352 return ret; 1353 } 1354 1355 /* 1356 * Skip KASAN memory poisoning when either: 1357 * 1358 * 1. Deferred memory initialization has not yet completed, 1359 * see the explanation below. 1360 * 2. Skipping poisoning is requested via FPI_SKIP_KASAN_POISON, 1361 * see the comment next to it. 1362 * 3. Skipping poisoning is requested via __GFP_SKIP_KASAN_POISON, 1363 * see the comment next to it. 1364 * 1365 * Poisoning pages during deferred memory init will greatly lengthen the 1366 * process and cause problem in large memory systems as the deferred pages 1367 * initialization is done with interrupt disabled. 1368 * 1369 * Assuming that there will be no reference to those newly initialized 1370 * pages before they are ever allocated, this should have no effect on 1371 * KASAN memory tracking as the poison will be properly inserted at page 1372 * allocation time. The only corner case is when pages are allocated by 1373 * on-demand allocation and then freed again before the deferred pages 1374 * initialization is done, but this is not likely to happen. 1375 */ 1376 static inline bool should_skip_kasan_poison(struct page *page, fpi_t fpi_flags) 1377 { 1378 return deferred_pages_enabled() || 1379 (!IS_ENABLED(CONFIG_KASAN_GENERIC) && 1380 (fpi_flags & FPI_SKIP_KASAN_POISON)) || 1381 PageSkipKASanPoison(page); 1382 } 1383 1384 static void kernel_init_pages(struct page *page, int numpages) 1385 { 1386 int i; 1387 1388 /* s390's use of memset() could override KASAN redzones. */ 1389 kasan_disable_current(); 1390 for (i = 0; i < numpages; i++) 1391 clear_highpage_kasan_tagged(page + i); 1392 kasan_enable_current(); 1393 } 1394 1395 static __always_inline bool free_pages_prepare(struct page *page, 1396 unsigned int order, bool check_free, fpi_t fpi_flags) 1397 { 1398 int bad = 0; 1399 bool init = want_init_on_free(); 1400 1401 VM_BUG_ON_PAGE(PageTail(page), page); 1402 1403 trace_mm_page_free(page, order); 1404 kmsan_free_page(page, order); 1405 1406 if (unlikely(PageHWPoison(page)) && !order) { 1407 /* 1408 * Do not let hwpoison pages hit pcplists/buddy 1409 * Untie memcg state and reset page's owner 1410 */ 1411 if (memcg_kmem_enabled() && PageMemcgKmem(page)) 1412 __memcg_kmem_uncharge_page(page, order); 1413 reset_page_owner(page, order); 1414 page_table_check_free(page, order); 1415 return false; 1416 } 1417 1418 /* 1419 * Check tail pages before head page information is cleared to 1420 * avoid checking PageCompound for order-0 pages. 1421 */ 1422 if (unlikely(order)) { 1423 bool compound = PageCompound(page); 1424 int i; 1425 1426 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page); 1427 1428 if (compound) { 1429 ClearPageDoubleMap(page); 1430 ClearPageHasHWPoisoned(page); 1431 } 1432 for (i = 1; i < (1 << order); i++) { 1433 if (compound) 1434 bad += free_tail_pages_check(page, page + i); 1435 if (unlikely(free_page_is_bad(page + i))) { 1436 bad++; 1437 continue; 1438 } 1439 (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP; 1440 } 1441 } 1442 if (PageMappingFlags(page)) 1443 page->mapping = NULL; 1444 if (memcg_kmem_enabled() && PageMemcgKmem(page)) 1445 __memcg_kmem_uncharge_page(page, order); 1446 if (check_free && free_page_is_bad(page)) 1447 bad++; 1448 if (bad) 1449 return false; 1450 1451 page_cpupid_reset_last(page); 1452 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP; 1453 reset_page_owner(page, order); 1454 page_table_check_free(page, order); 1455 1456 if (!PageHighMem(page)) { 1457 debug_check_no_locks_freed(page_address(page), 1458 PAGE_SIZE << order); 1459 debug_check_no_obj_freed(page_address(page), 1460 PAGE_SIZE << order); 1461 } 1462 1463 kernel_poison_pages(page, 1 << order); 1464 1465 /* 1466 * As memory initialization might be integrated into KASAN, 1467 * KASAN poisoning and memory initialization code must be 1468 * kept together to avoid discrepancies in behavior. 1469 * 1470 * With hardware tag-based KASAN, memory tags must be set before the 1471 * page becomes unavailable via debug_pagealloc or arch_free_page. 1472 */ 1473 if (!should_skip_kasan_poison(page, fpi_flags)) { 1474 kasan_poison_pages(page, order, init); 1475 1476 /* Memory is already initialized if KASAN did it internally. */ 1477 if (kasan_has_integrated_init()) 1478 init = false; 1479 } 1480 if (init) 1481 kernel_init_pages(page, 1 << order); 1482 1483 /* 1484 * arch_free_page() can make the page's contents inaccessible. s390 1485 * does this. So nothing which can access the page's contents should 1486 * happen after this. 1487 */ 1488 arch_free_page(page, order); 1489 1490 debug_pagealloc_unmap_pages(page, 1 << order); 1491 1492 return true; 1493 } 1494 1495 #ifdef CONFIG_DEBUG_VM 1496 /* 1497 * With DEBUG_VM enabled, order-0 pages are checked immediately when being freed 1498 * to pcp lists. With debug_pagealloc also enabled, they are also rechecked when 1499 * moved from pcp lists to free lists. 1500 */ 1501 static bool free_pcp_prepare(struct page *page, unsigned int order) 1502 { 1503 return free_pages_prepare(page, order, true, FPI_NONE); 1504 } 1505 1506 /* return true if this page has an inappropriate state */ 1507 static bool bulkfree_pcp_prepare(struct page *page) 1508 { 1509 if (debug_pagealloc_enabled_static()) 1510 return free_page_is_bad(page); 1511 else 1512 return false; 1513 } 1514 #else 1515 /* 1516 * With DEBUG_VM disabled, order-0 pages being freed are checked only when 1517 * moving from pcp lists to free list in order to reduce overhead. With 1518 * debug_pagealloc enabled, they are checked also immediately when being freed 1519 * to the pcp lists. 1520 */ 1521 static bool free_pcp_prepare(struct page *page, unsigned int order) 1522 { 1523 if (debug_pagealloc_enabled_static()) 1524 return free_pages_prepare(page, order, true, FPI_NONE); 1525 else 1526 return free_pages_prepare(page, order, false, FPI_NONE); 1527 } 1528 1529 static bool bulkfree_pcp_prepare(struct page *page) 1530 { 1531 return free_page_is_bad(page); 1532 } 1533 #endif /* CONFIG_DEBUG_VM */ 1534 1535 /* 1536 * Frees a number of pages from the PCP lists 1537 * Assumes all pages on list are in same zone. 1538 * count is the number of pages to free. 1539 */ 1540 static void free_pcppages_bulk(struct zone *zone, int count, 1541 struct per_cpu_pages *pcp, 1542 int pindex) 1543 { 1544 int min_pindex = 0; 1545 int max_pindex = NR_PCP_LISTS - 1; 1546 unsigned int order; 1547 bool isolated_pageblocks; 1548 struct page *page; 1549 1550 /* 1551 * Ensure proper count is passed which otherwise would stuck in the 1552 * below while (list_empty(list)) loop. 1553 */ 1554 count = min(pcp->count, count); 1555 1556 /* Ensure requested pindex is drained first. */ 1557 pindex = pindex - 1; 1558 1559 /* Caller must hold IRQ-safe pcp->lock so IRQs are disabled. */ 1560 spin_lock(&zone->lock); 1561 isolated_pageblocks = has_isolate_pageblock(zone); 1562 1563 while (count > 0) { 1564 struct list_head *list; 1565 int nr_pages; 1566 1567 /* Remove pages from lists in a round-robin fashion. */ 1568 do { 1569 if (++pindex > max_pindex) 1570 pindex = min_pindex; 1571 list = &pcp->lists[pindex]; 1572 if (!list_empty(list)) 1573 break; 1574 1575 if (pindex == max_pindex) 1576 max_pindex--; 1577 if (pindex == min_pindex) 1578 min_pindex++; 1579 } while (1); 1580 1581 order = pindex_to_order(pindex); 1582 nr_pages = 1 << order; 1583 BUILD_BUG_ON(MAX_ORDER >= (1<<NR_PCP_ORDER_WIDTH)); 1584 do { 1585 int mt; 1586 1587 page = list_last_entry(list, struct page, pcp_list); 1588 mt = get_pcppage_migratetype(page); 1589 1590 /* must delete to avoid corrupting pcp list */ 1591 list_del(&page->pcp_list); 1592 count -= nr_pages; 1593 pcp->count -= nr_pages; 1594 1595 if (bulkfree_pcp_prepare(page)) 1596 continue; 1597 1598 /* MIGRATE_ISOLATE page should not go to pcplists */ 1599 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page); 1600 /* Pageblock could have been isolated meanwhile */ 1601 if (unlikely(isolated_pageblocks)) 1602 mt = get_pageblock_migratetype(page); 1603 1604 __free_one_page(page, page_to_pfn(page), zone, order, mt, FPI_NONE); 1605 trace_mm_page_pcpu_drain(page, order, mt); 1606 } while (count > 0 && !list_empty(list)); 1607 } 1608 1609 spin_unlock(&zone->lock); 1610 } 1611 1612 static void free_one_page(struct zone *zone, 1613 struct page *page, unsigned long pfn, 1614 unsigned int order, 1615 int migratetype, fpi_t fpi_flags) 1616 { 1617 unsigned long flags; 1618 1619 spin_lock_irqsave(&zone->lock, flags); 1620 if (unlikely(has_isolate_pageblock(zone) || 1621 is_migrate_isolate(migratetype))) { 1622 migratetype = get_pfnblock_migratetype(page, pfn); 1623 } 1624 __free_one_page(page, pfn, zone, order, migratetype, fpi_flags); 1625 spin_unlock_irqrestore(&zone->lock, flags); 1626 } 1627 1628 static void __meminit __init_single_page(struct page *page, unsigned long pfn, 1629 unsigned long zone, int nid) 1630 { 1631 mm_zero_struct_page(page); 1632 set_page_links(page, zone, nid, pfn); 1633 init_page_count(page); 1634 page_mapcount_reset(page); 1635 page_cpupid_reset_last(page); 1636 page_kasan_tag_reset(page); 1637 1638 INIT_LIST_HEAD(&page->lru); 1639 #ifdef WANT_PAGE_VIRTUAL 1640 /* The shift won't overflow because ZONE_NORMAL is below 4G. */ 1641 if (!is_highmem_idx(zone)) 1642 set_page_address(page, __va(pfn << PAGE_SHIFT)); 1643 #endif 1644 } 1645 1646 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 1647 static void __meminit init_reserved_page(unsigned long pfn) 1648 { 1649 pg_data_t *pgdat; 1650 int nid, zid; 1651 1652 if (!early_page_uninitialised(pfn)) 1653 return; 1654 1655 nid = early_pfn_to_nid(pfn); 1656 pgdat = NODE_DATA(nid); 1657 1658 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 1659 struct zone *zone = &pgdat->node_zones[zid]; 1660 1661 if (zone_spans_pfn(zone, pfn)) 1662 break; 1663 } 1664 __init_single_page(pfn_to_page(pfn), pfn, zid, nid); 1665 } 1666 #else 1667 static inline void init_reserved_page(unsigned long pfn) 1668 { 1669 } 1670 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */ 1671 1672 /* 1673 * Initialised pages do not have PageReserved set. This function is 1674 * called for each range allocated by the bootmem allocator and 1675 * marks the pages PageReserved. The remaining valid pages are later 1676 * sent to the buddy page allocator. 1677 */ 1678 void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end) 1679 { 1680 unsigned long start_pfn = PFN_DOWN(start); 1681 unsigned long end_pfn = PFN_UP(end); 1682 1683 for (; start_pfn < end_pfn; start_pfn++) { 1684 if (pfn_valid(start_pfn)) { 1685 struct page *page = pfn_to_page(start_pfn); 1686 1687 init_reserved_page(start_pfn); 1688 1689 /* Avoid false-positive PageTail() */ 1690 INIT_LIST_HEAD(&page->lru); 1691 1692 /* 1693 * no need for atomic set_bit because the struct 1694 * page is not visible yet so nobody should 1695 * access it yet. 1696 */ 1697 __SetPageReserved(page); 1698 } 1699 } 1700 } 1701 1702 static void __free_pages_ok(struct page *page, unsigned int order, 1703 fpi_t fpi_flags) 1704 { 1705 unsigned long flags; 1706 int migratetype; 1707 unsigned long pfn = page_to_pfn(page); 1708 struct zone *zone = page_zone(page); 1709 1710 if (!free_pages_prepare(page, order, true, fpi_flags)) 1711 return; 1712 1713 migratetype = get_pfnblock_migratetype(page, pfn); 1714 1715 spin_lock_irqsave(&zone->lock, flags); 1716 if (unlikely(has_isolate_pageblock(zone) || 1717 is_migrate_isolate(migratetype))) { 1718 migratetype = get_pfnblock_migratetype(page, pfn); 1719 } 1720 __free_one_page(page, pfn, zone, order, migratetype, fpi_flags); 1721 spin_unlock_irqrestore(&zone->lock, flags); 1722 1723 __count_vm_events(PGFREE, 1 << order); 1724 } 1725 1726 void __free_pages_core(struct page *page, unsigned int order) 1727 { 1728 unsigned int nr_pages = 1 << order; 1729 struct page *p = page; 1730 unsigned int loop; 1731 1732 /* 1733 * When initializing the memmap, __init_single_page() sets the refcount 1734 * of all pages to 1 ("allocated"/"not free"). We have to set the 1735 * refcount of all involved pages to 0. 1736 */ 1737 prefetchw(p); 1738 for (loop = 0; loop < (nr_pages - 1); loop++, p++) { 1739 prefetchw(p + 1); 1740 __ClearPageReserved(p); 1741 set_page_count(p, 0); 1742 } 1743 __ClearPageReserved(p); 1744 set_page_count(p, 0); 1745 1746 atomic_long_add(nr_pages, &page_zone(page)->managed_pages); 1747 1748 /* 1749 * Bypass PCP and place fresh pages right to the tail, primarily 1750 * relevant for memory onlining. 1751 */ 1752 __free_pages_ok(page, order, FPI_TO_TAIL | FPI_SKIP_KASAN_POISON); 1753 } 1754 1755 #ifdef CONFIG_NUMA 1756 1757 /* 1758 * During memory init memblocks map pfns to nids. The search is expensive and 1759 * this caches recent lookups. The implementation of __early_pfn_to_nid 1760 * treats start/end as pfns. 1761 */ 1762 struct mminit_pfnnid_cache { 1763 unsigned long last_start; 1764 unsigned long last_end; 1765 int last_nid; 1766 }; 1767 1768 static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata; 1769 1770 /* 1771 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on. 1772 */ 1773 static int __meminit __early_pfn_to_nid(unsigned long pfn, 1774 struct mminit_pfnnid_cache *state) 1775 { 1776 unsigned long start_pfn, end_pfn; 1777 int nid; 1778 1779 if (state->last_start <= pfn && pfn < state->last_end) 1780 return state->last_nid; 1781 1782 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn); 1783 if (nid != NUMA_NO_NODE) { 1784 state->last_start = start_pfn; 1785 state->last_end = end_pfn; 1786 state->last_nid = nid; 1787 } 1788 1789 return nid; 1790 } 1791 1792 int __meminit early_pfn_to_nid(unsigned long pfn) 1793 { 1794 static DEFINE_SPINLOCK(early_pfn_lock); 1795 int nid; 1796 1797 spin_lock(&early_pfn_lock); 1798 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache); 1799 if (nid < 0) 1800 nid = first_online_node; 1801 spin_unlock(&early_pfn_lock); 1802 1803 return nid; 1804 } 1805 #endif /* CONFIG_NUMA */ 1806 1807 void __init memblock_free_pages(struct page *page, unsigned long pfn, 1808 unsigned int order) 1809 { 1810 if (early_page_uninitialised(pfn)) 1811 return; 1812 __free_pages_core(page, order); 1813 } 1814 1815 /* 1816 * Check that the whole (or subset of) a pageblock given by the interval of 1817 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it 1818 * with the migration of free compaction scanner. 1819 * 1820 * Return struct page pointer of start_pfn, or NULL if checks were not passed. 1821 * 1822 * It's possible on some configurations to have a setup like node0 node1 node0 1823 * i.e. it's possible that all pages within a zones range of pages do not 1824 * belong to a single zone. We assume that a border between node0 and node1 1825 * can occur within a single pageblock, but not a node0 node1 node0 1826 * interleaving within a single pageblock. It is therefore sufficient to check 1827 * the first and last page of a pageblock and avoid checking each individual 1828 * page in a pageblock. 1829 */ 1830 struct page *__pageblock_pfn_to_page(unsigned long start_pfn, 1831 unsigned long end_pfn, struct zone *zone) 1832 { 1833 struct page *start_page; 1834 struct page *end_page; 1835 1836 /* end_pfn is one past the range we are checking */ 1837 end_pfn--; 1838 1839 if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn)) 1840 return NULL; 1841 1842 start_page = pfn_to_online_page(start_pfn); 1843 if (!start_page) 1844 return NULL; 1845 1846 if (page_zone(start_page) != zone) 1847 return NULL; 1848 1849 end_page = pfn_to_page(end_pfn); 1850 1851 /* This gives a shorter code than deriving page_zone(end_page) */ 1852 if (page_zone_id(start_page) != page_zone_id(end_page)) 1853 return NULL; 1854 1855 return start_page; 1856 } 1857 1858 void set_zone_contiguous(struct zone *zone) 1859 { 1860 unsigned long block_start_pfn = zone->zone_start_pfn; 1861 unsigned long block_end_pfn; 1862 1863 block_end_pfn = pageblock_end_pfn(block_start_pfn); 1864 for (; block_start_pfn < zone_end_pfn(zone); 1865 block_start_pfn = block_end_pfn, 1866 block_end_pfn += pageblock_nr_pages) { 1867 1868 block_end_pfn = min(block_end_pfn, zone_end_pfn(zone)); 1869 1870 if (!__pageblock_pfn_to_page(block_start_pfn, 1871 block_end_pfn, zone)) 1872 return; 1873 cond_resched(); 1874 } 1875 1876 /* We confirm that there is no hole */ 1877 zone->contiguous = true; 1878 } 1879 1880 void clear_zone_contiguous(struct zone *zone) 1881 { 1882 zone->contiguous = false; 1883 } 1884 1885 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 1886 static void __init deferred_free_range(unsigned long pfn, 1887 unsigned long nr_pages) 1888 { 1889 struct page *page; 1890 unsigned long i; 1891 1892 if (!nr_pages) 1893 return; 1894 1895 page = pfn_to_page(pfn); 1896 1897 /* Free a large naturally-aligned chunk if possible */ 1898 if (nr_pages == pageblock_nr_pages && pageblock_aligned(pfn)) { 1899 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 1900 __free_pages_core(page, pageblock_order); 1901 return; 1902 } 1903 1904 for (i = 0; i < nr_pages; i++, page++, pfn++) { 1905 if (pageblock_aligned(pfn)) 1906 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 1907 __free_pages_core(page, 0); 1908 } 1909 } 1910 1911 /* Completion tracking for deferred_init_memmap() threads */ 1912 static atomic_t pgdat_init_n_undone __initdata; 1913 static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp); 1914 1915 static inline void __init pgdat_init_report_one_done(void) 1916 { 1917 if (atomic_dec_and_test(&pgdat_init_n_undone)) 1918 complete(&pgdat_init_all_done_comp); 1919 } 1920 1921 /* 1922 * Returns true if page needs to be initialized or freed to buddy allocator. 1923 * 1924 * First we check if pfn is valid on architectures where it is possible to have 1925 * holes within pageblock_nr_pages. On systems where it is not possible, this 1926 * function is optimized out. 1927 * 1928 * Then, we check if a current large page is valid by only checking the validity 1929 * of the head pfn. 1930 */ 1931 static inline bool __init deferred_pfn_valid(unsigned long pfn) 1932 { 1933 if (pageblock_aligned(pfn) && !pfn_valid(pfn)) 1934 return false; 1935 return true; 1936 } 1937 1938 /* 1939 * Free pages to buddy allocator. Try to free aligned pages in 1940 * pageblock_nr_pages sizes. 1941 */ 1942 static void __init deferred_free_pages(unsigned long pfn, 1943 unsigned long end_pfn) 1944 { 1945 unsigned long nr_free = 0; 1946 1947 for (; pfn < end_pfn; pfn++) { 1948 if (!deferred_pfn_valid(pfn)) { 1949 deferred_free_range(pfn - nr_free, nr_free); 1950 nr_free = 0; 1951 } else if (pageblock_aligned(pfn)) { 1952 deferred_free_range(pfn - nr_free, nr_free); 1953 nr_free = 1; 1954 } else { 1955 nr_free++; 1956 } 1957 } 1958 /* Free the last block of pages to allocator */ 1959 deferred_free_range(pfn - nr_free, nr_free); 1960 } 1961 1962 /* 1963 * Initialize struct pages. We minimize pfn page lookups and scheduler checks 1964 * by performing it only once every pageblock_nr_pages. 1965 * Return number of pages initialized. 1966 */ 1967 static unsigned long __init deferred_init_pages(struct zone *zone, 1968 unsigned long pfn, 1969 unsigned long end_pfn) 1970 { 1971 int nid = zone_to_nid(zone); 1972 unsigned long nr_pages = 0; 1973 int zid = zone_idx(zone); 1974 struct page *page = NULL; 1975 1976 for (; pfn < end_pfn; pfn++) { 1977 if (!deferred_pfn_valid(pfn)) { 1978 page = NULL; 1979 continue; 1980 } else if (!page || pageblock_aligned(pfn)) { 1981 page = pfn_to_page(pfn); 1982 } else { 1983 page++; 1984 } 1985 __init_single_page(page, pfn, zid, nid); 1986 nr_pages++; 1987 } 1988 return (nr_pages); 1989 } 1990 1991 /* 1992 * This function is meant to pre-load the iterator for the zone init. 1993 * Specifically it walks through the ranges until we are caught up to the 1994 * first_init_pfn value and exits there. If we never encounter the value we 1995 * return false indicating there are no valid ranges left. 1996 */ 1997 static bool __init 1998 deferred_init_mem_pfn_range_in_zone(u64 *i, struct zone *zone, 1999 unsigned long *spfn, unsigned long *epfn, 2000 unsigned long first_init_pfn) 2001 { 2002 u64 j; 2003 2004 /* 2005 * Start out by walking through the ranges in this zone that have 2006 * already been initialized. We don't need to do anything with them 2007 * so we just need to flush them out of the system. 2008 */ 2009 for_each_free_mem_pfn_range_in_zone(j, zone, spfn, epfn) { 2010 if (*epfn <= first_init_pfn) 2011 continue; 2012 if (*spfn < first_init_pfn) 2013 *spfn = first_init_pfn; 2014 *i = j; 2015 return true; 2016 } 2017 2018 return false; 2019 } 2020 2021 /* 2022 * Initialize and free pages. We do it in two loops: first we initialize 2023 * struct page, then free to buddy allocator, because while we are 2024 * freeing pages we can access pages that are ahead (computing buddy 2025 * page in __free_one_page()). 2026 * 2027 * In order to try and keep some memory in the cache we have the loop 2028 * broken along max page order boundaries. This way we will not cause 2029 * any issues with the buddy page computation. 2030 */ 2031 static unsigned long __init 2032 deferred_init_maxorder(u64 *i, struct zone *zone, unsigned long *start_pfn, 2033 unsigned long *end_pfn) 2034 { 2035 unsigned long mo_pfn = ALIGN(*start_pfn + 1, MAX_ORDER_NR_PAGES); 2036 unsigned long spfn = *start_pfn, epfn = *end_pfn; 2037 unsigned long nr_pages = 0; 2038 u64 j = *i; 2039 2040 /* First we loop through and initialize the page values */ 2041 for_each_free_mem_pfn_range_in_zone_from(j, zone, start_pfn, end_pfn) { 2042 unsigned long t; 2043 2044 if (mo_pfn <= *start_pfn) 2045 break; 2046 2047 t = min(mo_pfn, *end_pfn); 2048 nr_pages += deferred_init_pages(zone, *start_pfn, t); 2049 2050 if (mo_pfn < *end_pfn) { 2051 *start_pfn = mo_pfn; 2052 break; 2053 } 2054 } 2055 2056 /* Reset values and now loop through freeing pages as needed */ 2057 swap(j, *i); 2058 2059 for_each_free_mem_pfn_range_in_zone_from(j, zone, &spfn, &epfn) { 2060 unsigned long t; 2061 2062 if (mo_pfn <= spfn) 2063 break; 2064 2065 t = min(mo_pfn, epfn); 2066 deferred_free_pages(spfn, t); 2067 2068 if (mo_pfn <= epfn) 2069 break; 2070 } 2071 2072 return nr_pages; 2073 } 2074 2075 static void __init 2076 deferred_init_memmap_chunk(unsigned long start_pfn, unsigned long end_pfn, 2077 void *arg) 2078 { 2079 unsigned long spfn, epfn; 2080 struct zone *zone = arg; 2081 u64 i; 2082 2083 deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, start_pfn); 2084 2085 /* 2086 * Initialize and free pages in MAX_ORDER sized increments so that we 2087 * can avoid introducing any issues with the buddy allocator. 2088 */ 2089 while (spfn < end_pfn) { 2090 deferred_init_maxorder(&i, zone, &spfn, &epfn); 2091 cond_resched(); 2092 } 2093 } 2094 2095 /* An arch may override for more concurrency. */ 2096 __weak int __init 2097 deferred_page_init_max_threads(const struct cpumask *node_cpumask) 2098 { 2099 return 1; 2100 } 2101 2102 /* Initialise remaining memory on a node */ 2103 static int __init deferred_init_memmap(void *data) 2104 { 2105 pg_data_t *pgdat = data; 2106 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id); 2107 unsigned long spfn = 0, epfn = 0; 2108 unsigned long first_init_pfn, flags; 2109 unsigned long start = jiffies; 2110 struct zone *zone; 2111 int zid, max_threads; 2112 u64 i; 2113 2114 /* Bind memory initialisation thread to a local node if possible */ 2115 if (!cpumask_empty(cpumask)) 2116 set_cpus_allowed_ptr(current, cpumask); 2117 2118 pgdat_resize_lock(pgdat, &flags); 2119 first_init_pfn = pgdat->first_deferred_pfn; 2120 if (first_init_pfn == ULONG_MAX) { 2121 pgdat_resize_unlock(pgdat, &flags); 2122 pgdat_init_report_one_done(); 2123 return 0; 2124 } 2125 2126 /* Sanity check boundaries */ 2127 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn); 2128 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat)); 2129 pgdat->first_deferred_pfn = ULONG_MAX; 2130 2131 /* 2132 * Once we unlock here, the zone cannot be grown anymore, thus if an 2133 * interrupt thread must allocate this early in boot, zone must be 2134 * pre-grown prior to start of deferred page initialization. 2135 */ 2136 pgdat_resize_unlock(pgdat, &flags); 2137 2138 /* Only the highest zone is deferred so find it */ 2139 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 2140 zone = pgdat->node_zones + zid; 2141 if (first_init_pfn < zone_end_pfn(zone)) 2142 break; 2143 } 2144 2145 /* If the zone is empty somebody else may have cleared out the zone */ 2146 if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, 2147 first_init_pfn)) 2148 goto zone_empty; 2149 2150 max_threads = deferred_page_init_max_threads(cpumask); 2151 2152 while (spfn < epfn) { 2153 unsigned long epfn_align = ALIGN(epfn, PAGES_PER_SECTION); 2154 struct padata_mt_job job = { 2155 .thread_fn = deferred_init_memmap_chunk, 2156 .fn_arg = zone, 2157 .start = spfn, 2158 .size = epfn_align - spfn, 2159 .align = PAGES_PER_SECTION, 2160 .min_chunk = PAGES_PER_SECTION, 2161 .max_threads = max_threads, 2162 }; 2163 2164 padata_do_multithreaded(&job); 2165 deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, 2166 epfn_align); 2167 } 2168 zone_empty: 2169 /* Sanity check that the next zone really is unpopulated */ 2170 WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone)); 2171 2172 pr_info("node %d deferred pages initialised in %ums\n", 2173 pgdat->node_id, jiffies_to_msecs(jiffies - start)); 2174 2175 pgdat_init_report_one_done(); 2176 return 0; 2177 } 2178 2179 /* 2180 * If this zone has deferred pages, try to grow it by initializing enough 2181 * deferred pages to satisfy the allocation specified by order, rounded up to 2182 * the nearest PAGES_PER_SECTION boundary. So we're adding memory in increments 2183 * of SECTION_SIZE bytes by initializing struct pages in increments of 2184 * PAGES_PER_SECTION * sizeof(struct page) bytes. 2185 * 2186 * Return true when zone was grown, otherwise return false. We return true even 2187 * when we grow less than requested, to let the caller decide if there are 2188 * enough pages to satisfy the allocation. 2189 * 2190 * Note: We use noinline because this function is needed only during boot, and 2191 * it is called from a __ref function _deferred_grow_zone. This way we are 2192 * making sure that it is not inlined into permanent text section. 2193 */ 2194 static noinline bool __init 2195 deferred_grow_zone(struct zone *zone, unsigned int order) 2196 { 2197 unsigned long nr_pages_needed = ALIGN(1 << order, PAGES_PER_SECTION); 2198 pg_data_t *pgdat = zone->zone_pgdat; 2199 unsigned long first_deferred_pfn = pgdat->first_deferred_pfn; 2200 unsigned long spfn, epfn, flags; 2201 unsigned long nr_pages = 0; 2202 u64 i; 2203 2204 /* Only the last zone may have deferred pages */ 2205 if (zone_end_pfn(zone) != pgdat_end_pfn(pgdat)) 2206 return false; 2207 2208 pgdat_resize_lock(pgdat, &flags); 2209 2210 /* 2211 * If someone grew this zone while we were waiting for spinlock, return 2212 * true, as there might be enough pages already. 2213 */ 2214 if (first_deferred_pfn != pgdat->first_deferred_pfn) { 2215 pgdat_resize_unlock(pgdat, &flags); 2216 return true; 2217 } 2218 2219 /* If the zone is empty somebody else may have cleared out the zone */ 2220 if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, 2221 first_deferred_pfn)) { 2222 pgdat->first_deferred_pfn = ULONG_MAX; 2223 pgdat_resize_unlock(pgdat, &flags); 2224 /* Retry only once. */ 2225 return first_deferred_pfn != ULONG_MAX; 2226 } 2227 2228 /* 2229 * Initialize and free pages in MAX_ORDER sized increments so 2230 * that we can avoid introducing any issues with the buddy 2231 * allocator. 2232 */ 2233 while (spfn < epfn) { 2234 /* update our first deferred PFN for this section */ 2235 first_deferred_pfn = spfn; 2236 2237 nr_pages += deferred_init_maxorder(&i, zone, &spfn, &epfn); 2238 touch_nmi_watchdog(); 2239 2240 /* We should only stop along section boundaries */ 2241 if ((first_deferred_pfn ^ spfn) < PAGES_PER_SECTION) 2242 continue; 2243 2244 /* If our quota has been met we can stop here */ 2245 if (nr_pages >= nr_pages_needed) 2246 break; 2247 } 2248 2249 pgdat->first_deferred_pfn = spfn; 2250 pgdat_resize_unlock(pgdat, &flags); 2251 2252 return nr_pages > 0; 2253 } 2254 2255 /* 2256 * deferred_grow_zone() is __init, but it is called from 2257 * get_page_from_freelist() during early boot until deferred_pages permanently 2258 * disables this call. This is why we have refdata wrapper to avoid warning, 2259 * and to ensure that the function body gets unloaded. 2260 */ 2261 static bool __ref 2262 _deferred_grow_zone(struct zone *zone, unsigned int order) 2263 { 2264 return deferred_grow_zone(zone, order); 2265 } 2266 2267 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */ 2268 2269 void __init page_alloc_init_late(void) 2270 { 2271 struct zone *zone; 2272 int nid; 2273 2274 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 2275 2276 /* There will be num_node_state(N_MEMORY) threads */ 2277 atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY)); 2278 for_each_node_state(nid, N_MEMORY) { 2279 kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid); 2280 } 2281 2282 /* Block until all are initialised */ 2283 wait_for_completion(&pgdat_init_all_done_comp); 2284 2285 /* 2286 * We initialized the rest of the deferred pages. Permanently disable 2287 * on-demand struct page initialization. 2288 */ 2289 static_branch_disable(&deferred_pages); 2290 2291 /* Reinit limits that are based on free pages after the kernel is up */ 2292 files_maxfiles_init(); 2293 #endif 2294 2295 buffer_init(); 2296 2297 /* Discard memblock private memory */ 2298 memblock_discard(); 2299 2300 for_each_node_state(nid, N_MEMORY) 2301 shuffle_free_memory(NODE_DATA(nid)); 2302 2303 for_each_populated_zone(zone) 2304 set_zone_contiguous(zone); 2305 } 2306 2307 #ifdef CONFIG_CMA 2308 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */ 2309 void __init init_cma_reserved_pageblock(struct page *page) 2310 { 2311 unsigned i = pageblock_nr_pages; 2312 struct page *p = page; 2313 2314 do { 2315 __ClearPageReserved(p); 2316 set_page_count(p, 0); 2317 } while (++p, --i); 2318 2319 set_pageblock_migratetype(page, MIGRATE_CMA); 2320 set_page_refcounted(page); 2321 __free_pages(page, pageblock_order); 2322 2323 adjust_managed_page_count(page, pageblock_nr_pages); 2324 page_zone(page)->cma_pages += pageblock_nr_pages; 2325 } 2326 #endif 2327 2328 /* 2329 * The order of subdivision here is critical for the IO subsystem. 2330 * Please do not alter this order without good reasons and regression 2331 * testing. Specifically, as large blocks of memory are subdivided, 2332 * the order in which smaller blocks are delivered depends on the order 2333 * they're subdivided in this function. This is the primary factor 2334 * influencing the order in which pages are delivered to the IO 2335 * subsystem according to empirical testing, and this is also justified 2336 * by considering the behavior of a buddy system containing a single 2337 * large block of memory acted on by a series of small allocations. 2338 * This behavior is a critical factor in sglist merging's success. 2339 * 2340 * -- nyc 2341 */ 2342 static inline void expand(struct zone *zone, struct page *page, 2343 int low, int high, int migratetype) 2344 { 2345 unsigned long size = 1 << high; 2346 2347 while (high > low) { 2348 high--; 2349 size >>= 1; 2350 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]); 2351 2352 /* 2353 * Mark as guard pages (or page), that will allow to 2354 * merge back to allocator when buddy will be freed. 2355 * Corresponding page table entries will not be touched, 2356 * pages will stay not present in virtual address space 2357 */ 2358 if (set_page_guard(zone, &page[size], high, migratetype)) 2359 continue; 2360 2361 add_to_free_list(&page[size], zone, high, migratetype); 2362 set_buddy_order(&page[size], high); 2363 } 2364 } 2365 2366 static void check_new_page_bad(struct page *page) 2367 { 2368 if (unlikely(page->flags & __PG_HWPOISON)) { 2369 /* Don't complain about hwpoisoned pages */ 2370 page_mapcount_reset(page); /* remove PageBuddy */ 2371 return; 2372 } 2373 2374 bad_page(page, 2375 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_PREP)); 2376 } 2377 2378 /* 2379 * This page is about to be returned from the page allocator 2380 */ 2381 static inline int check_new_page(struct page *page) 2382 { 2383 if (likely(page_expected_state(page, 2384 PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON))) 2385 return 0; 2386 2387 check_new_page_bad(page); 2388 return 1; 2389 } 2390 2391 static bool check_new_pages(struct page *page, unsigned int order) 2392 { 2393 int i; 2394 for (i = 0; i < (1 << order); i++) { 2395 struct page *p = page + i; 2396 2397 if (unlikely(check_new_page(p))) 2398 return true; 2399 } 2400 2401 return false; 2402 } 2403 2404 #ifdef CONFIG_DEBUG_VM 2405 /* 2406 * With DEBUG_VM enabled, order-0 pages are checked for expected state when 2407 * being allocated from pcp lists. With debug_pagealloc also enabled, they are 2408 * also checked when pcp lists are refilled from the free lists. 2409 */ 2410 static inline bool check_pcp_refill(struct page *page, unsigned int order) 2411 { 2412 if (debug_pagealloc_enabled_static()) 2413 return check_new_pages(page, order); 2414 else 2415 return false; 2416 } 2417 2418 static inline bool check_new_pcp(struct page *page, unsigned int order) 2419 { 2420 return check_new_pages(page, order); 2421 } 2422 #else 2423 /* 2424 * With DEBUG_VM disabled, free order-0 pages are checked for expected state 2425 * when pcp lists are being refilled from the free lists. With debug_pagealloc 2426 * enabled, they are also checked when being allocated from the pcp lists. 2427 */ 2428 static inline bool check_pcp_refill(struct page *page, unsigned int order) 2429 { 2430 return check_new_pages(page, order); 2431 } 2432 static inline bool check_new_pcp(struct page *page, unsigned int order) 2433 { 2434 if (debug_pagealloc_enabled_static()) 2435 return check_new_pages(page, order); 2436 else 2437 return false; 2438 } 2439 #endif /* CONFIG_DEBUG_VM */ 2440 2441 static inline bool should_skip_kasan_unpoison(gfp_t flags) 2442 { 2443 /* Don't skip if a software KASAN mode is enabled. */ 2444 if (IS_ENABLED(CONFIG_KASAN_GENERIC) || 2445 IS_ENABLED(CONFIG_KASAN_SW_TAGS)) 2446 return false; 2447 2448 /* Skip, if hardware tag-based KASAN is not enabled. */ 2449 if (!kasan_hw_tags_enabled()) 2450 return true; 2451 2452 /* 2453 * With hardware tag-based KASAN enabled, skip if this has been 2454 * requested via __GFP_SKIP_KASAN_UNPOISON. 2455 */ 2456 return flags & __GFP_SKIP_KASAN_UNPOISON; 2457 } 2458 2459 static inline bool should_skip_init(gfp_t flags) 2460 { 2461 /* Don't skip, if hardware tag-based KASAN is not enabled. */ 2462 if (!kasan_hw_tags_enabled()) 2463 return false; 2464 2465 /* For hardware tag-based KASAN, skip if requested. */ 2466 return (flags & __GFP_SKIP_ZERO); 2467 } 2468 2469 inline void post_alloc_hook(struct page *page, unsigned int order, 2470 gfp_t gfp_flags) 2471 { 2472 bool init = !want_init_on_free() && want_init_on_alloc(gfp_flags) && 2473 !should_skip_init(gfp_flags); 2474 bool init_tags = init && (gfp_flags & __GFP_ZEROTAGS); 2475 int i; 2476 2477 set_page_private(page, 0); 2478 set_page_refcounted(page); 2479 2480 arch_alloc_page(page, order); 2481 debug_pagealloc_map_pages(page, 1 << order); 2482 2483 /* 2484 * Page unpoisoning must happen before memory initialization. 2485 * Otherwise, the poison pattern will be overwritten for __GFP_ZERO 2486 * allocations and the page unpoisoning code will complain. 2487 */ 2488 kernel_unpoison_pages(page, 1 << order); 2489 2490 /* 2491 * As memory initialization might be integrated into KASAN, 2492 * KASAN unpoisoning and memory initializion code must be 2493 * kept together to avoid discrepancies in behavior. 2494 */ 2495 2496 /* 2497 * If memory tags should be zeroed (which happens only when memory 2498 * should be initialized as well). 2499 */ 2500 if (init_tags) { 2501 /* Initialize both memory and tags. */ 2502 for (i = 0; i != 1 << order; ++i) 2503 tag_clear_highpage(page + i); 2504 2505 /* Note that memory is already initialized by the loop above. */ 2506 init = false; 2507 } 2508 if (!should_skip_kasan_unpoison(gfp_flags)) { 2509 /* Unpoison shadow memory or set memory tags. */ 2510 kasan_unpoison_pages(page, order, init); 2511 2512 /* Note that memory is already initialized by KASAN. */ 2513 if (kasan_has_integrated_init()) 2514 init = false; 2515 } else { 2516 /* Ensure page_address() dereferencing does not fault. */ 2517 for (i = 0; i != 1 << order; ++i) 2518 page_kasan_tag_reset(page + i); 2519 } 2520 /* If memory is still not initialized, do it now. */ 2521 if (init) 2522 kernel_init_pages(page, 1 << order); 2523 /* Propagate __GFP_SKIP_KASAN_POISON to page flags. */ 2524 if (kasan_hw_tags_enabled() && (gfp_flags & __GFP_SKIP_KASAN_POISON)) 2525 SetPageSkipKASanPoison(page); 2526 2527 set_page_owner(page, order, gfp_flags); 2528 page_table_check_alloc(page, order); 2529 } 2530 2531 static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags, 2532 unsigned int alloc_flags) 2533 { 2534 post_alloc_hook(page, order, gfp_flags); 2535 2536 if (order && (gfp_flags & __GFP_COMP)) 2537 prep_compound_page(page, order); 2538 2539 /* 2540 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to 2541 * allocate the page. The expectation is that the caller is taking 2542 * steps that will free more memory. The caller should avoid the page 2543 * being used for !PFMEMALLOC purposes. 2544 */ 2545 if (alloc_flags & ALLOC_NO_WATERMARKS) 2546 set_page_pfmemalloc(page); 2547 else 2548 clear_page_pfmemalloc(page); 2549 } 2550 2551 /* 2552 * Go through the free lists for the given migratetype and remove 2553 * the smallest available page from the freelists 2554 */ 2555 static __always_inline 2556 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order, 2557 int migratetype) 2558 { 2559 unsigned int current_order; 2560 struct free_area *area; 2561 struct page *page; 2562 2563 /* Find a page of the appropriate size in the preferred list */ 2564 for (current_order = order; current_order < MAX_ORDER; ++current_order) { 2565 area = &(zone->free_area[current_order]); 2566 page = get_page_from_free_area(area, migratetype); 2567 if (!page) 2568 continue; 2569 del_page_from_free_list(page, zone, current_order); 2570 expand(zone, page, order, current_order, migratetype); 2571 set_pcppage_migratetype(page, migratetype); 2572 trace_mm_page_alloc_zone_locked(page, order, migratetype, 2573 pcp_allowed_order(order) && 2574 migratetype < MIGRATE_PCPTYPES); 2575 return page; 2576 } 2577 2578 return NULL; 2579 } 2580 2581 2582 /* 2583 * This array describes the order lists are fallen back to when 2584 * the free lists for the desirable migrate type are depleted 2585 * 2586 * The other migratetypes do not have fallbacks. 2587 */ 2588 static int fallbacks[MIGRATE_TYPES][3] = { 2589 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_TYPES }, 2590 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES }, 2591 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_TYPES }, 2592 }; 2593 2594 #ifdef CONFIG_CMA 2595 static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone, 2596 unsigned int order) 2597 { 2598 return __rmqueue_smallest(zone, order, MIGRATE_CMA); 2599 } 2600 #else 2601 static inline struct page *__rmqueue_cma_fallback(struct zone *zone, 2602 unsigned int order) { return NULL; } 2603 #endif 2604 2605 /* 2606 * Move the free pages in a range to the freelist tail of the requested type. 2607 * Note that start_page and end_pages are not aligned on a pageblock 2608 * boundary. If alignment is required, use move_freepages_block() 2609 */ 2610 static int move_freepages(struct zone *zone, 2611 unsigned long start_pfn, unsigned long end_pfn, 2612 int migratetype, int *num_movable) 2613 { 2614 struct page *page; 2615 unsigned long pfn; 2616 unsigned int order; 2617 int pages_moved = 0; 2618 2619 for (pfn = start_pfn; pfn <= end_pfn;) { 2620 page = pfn_to_page(pfn); 2621 if (!PageBuddy(page)) { 2622 /* 2623 * We assume that pages that could be isolated for 2624 * migration are movable. But we don't actually try 2625 * isolating, as that would be expensive. 2626 */ 2627 if (num_movable && 2628 (PageLRU(page) || __PageMovable(page))) 2629 (*num_movable)++; 2630 pfn++; 2631 continue; 2632 } 2633 2634 /* Make sure we are not inadvertently changing nodes */ 2635 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page); 2636 VM_BUG_ON_PAGE(page_zone(page) != zone, page); 2637 2638 order = buddy_order(page); 2639 move_to_free_list(page, zone, order, migratetype); 2640 pfn += 1 << order; 2641 pages_moved += 1 << order; 2642 } 2643 2644 return pages_moved; 2645 } 2646 2647 int move_freepages_block(struct zone *zone, struct page *page, 2648 int migratetype, int *num_movable) 2649 { 2650 unsigned long start_pfn, end_pfn, pfn; 2651 2652 if (num_movable) 2653 *num_movable = 0; 2654 2655 pfn = page_to_pfn(page); 2656 start_pfn = pageblock_start_pfn(pfn); 2657 end_pfn = pageblock_end_pfn(pfn) - 1; 2658 2659 /* Do not cross zone boundaries */ 2660 if (!zone_spans_pfn(zone, start_pfn)) 2661 start_pfn = pfn; 2662 if (!zone_spans_pfn(zone, end_pfn)) 2663 return 0; 2664 2665 return move_freepages(zone, start_pfn, end_pfn, migratetype, 2666 num_movable); 2667 } 2668 2669 static void change_pageblock_range(struct page *pageblock_page, 2670 int start_order, int migratetype) 2671 { 2672 int nr_pageblocks = 1 << (start_order - pageblock_order); 2673 2674 while (nr_pageblocks--) { 2675 set_pageblock_migratetype(pageblock_page, migratetype); 2676 pageblock_page += pageblock_nr_pages; 2677 } 2678 } 2679 2680 /* 2681 * When we are falling back to another migratetype during allocation, try to 2682 * steal extra free pages from the same pageblocks to satisfy further 2683 * allocations, instead of polluting multiple pageblocks. 2684 * 2685 * If we are stealing a relatively large buddy page, it is likely there will 2686 * be more free pages in the pageblock, so try to steal them all. For 2687 * reclaimable and unmovable allocations, we steal regardless of page size, 2688 * as fragmentation caused by those allocations polluting movable pageblocks 2689 * is worse than movable allocations stealing from unmovable and reclaimable 2690 * pageblocks. 2691 */ 2692 static bool can_steal_fallback(unsigned int order, int start_mt) 2693 { 2694 /* 2695 * Leaving this order check is intended, although there is 2696 * relaxed order check in next check. The reason is that 2697 * we can actually steal whole pageblock if this condition met, 2698 * but, below check doesn't guarantee it and that is just heuristic 2699 * so could be changed anytime. 2700 */ 2701 if (order >= pageblock_order) 2702 return true; 2703 2704 if (order >= pageblock_order / 2 || 2705 start_mt == MIGRATE_RECLAIMABLE || 2706 start_mt == MIGRATE_UNMOVABLE || 2707 page_group_by_mobility_disabled) 2708 return true; 2709 2710 return false; 2711 } 2712 2713 static inline bool boost_watermark(struct zone *zone) 2714 { 2715 unsigned long max_boost; 2716 2717 if (!watermark_boost_factor) 2718 return false; 2719 /* 2720 * Don't bother in zones that are unlikely to produce results. 2721 * On small machines, including kdump capture kernels running 2722 * in a small area, boosting the watermark can cause an out of 2723 * memory situation immediately. 2724 */ 2725 if ((pageblock_nr_pages * 4) > zone_managed_pages(zone)) 2726 return false; 2727 2728 max_boost = mult_frac(zone->_watermark[WMARK_HIGH], 2729 watermark_boost_factor, 10000); 2730 2731 /* 2732 * high watermark may be uninitialised if fragmentation occurs 2733 * very early in boot so do not boost. We do not fall 2734 * through and boost by pageblock_nr_pages as failing 2735 * allocations that early means that reclaim is not going 2736 * to help and it may even be impossible to reclaim the 2737 * boosted watermark resulting in a hang. 2738 */ 2739 if (!max_boost) 2740 return false; 2741 2742 max_boost = max(pageblock_nr_pages, max_boost); 2743 2744 zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages, 2745 max_boost); 2746 2747 return true; 2748 } 2749 2750 /* 2751 * This function implements actual steal behaviour. If order is large enough, 2752 * we can steal whole pageblock. If not, we first move freepages in this 2753 * pageblock to our migratetype and determine how many already-allocated pages 2754 * are there in the pageblock with a compatible migratetype. If at least half 2755 * of pages are free or compatible, we can change migratetype of the pageblock 2756 * itself, so pages freed in the future will be put on the correct free list. 2757 */ 2758 static void steal_suitable_fallback(struct zone *zone, struct page *page, 2759 unsigned int alloc_flags, int start_type, bool whole_block) 2760 { 2761 unsigned int current_order = buddy_order(page); 2762 int free_pages, movable_pages, alike_pages; 2763 int old_block_type; 2764 2765 old_block_type = get_pageblock_migratetype(page); 2766 2767 /* 2768 * This can happen due to races and we want to prevent broken 2769 * highatomic accounting. 2770 */ 2771 if (is_migrate_highatomic(old_block_type)) 2772 goto single_page; 2773 2774 /* Take ownership for orders >= pageblock_order */ 2775 if (current_order >= pageblock_order) { 2776 change_pageblock_range(page, current_order, start_type); 2777 goto single_page; 2778 } 2779 2780 /* 2781 * Boost watermarks to increase reclaim pressure to reduce the 2782 * likelihood of future fallbacks. Wake kswapd now as the node 2783 * may be balanced overall and kswapd will not wake naturally. 2784 */ 2785 if (boost_watermark(zone) && (alloc_flags & ALLOC_KSWAPD)) 2786 set_bit(ZONE_BOOSTED_WATERMARK, &zone->flags); 2787 2788 /* We are not allowed to try stealing from the whole block */ 2789 if (!whole_block) 2790 goto single_page; 2791 2792 free_pages = move_freepages_block(zone, page, start_type, 2793 &movable_pages); 2794 /* 2795 * Determine how many pages are compatible with our allocation. 2796 * For movable allocation, it's the number of movable pages which 2797 * we just obtained. For other types it's a bit more tricky. 2798 */ 2799 if (start_type == MIGRATE_MOVABLE) { 2800 alike_pages = movable_pages; 2801 } else { 2802 /* 2803 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation 2804 * to MOVABLE pageblock, consider all non-movable pages as 2805 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or 2806 * vice versa, be conservative since we can't distinguish the 2807 * exact migratetype of non-movable pages. 2808 */ 2809 if (old_block_type == MIGRATE_MOVABLE) 2810 alike_pages = pageblock_nr_pages 2811 - (free_pages + movable_pages); 2812 else 2813 alike_pages = 0; 2814 } 2815 2816 /* moving whole block can fail due to zone boundary conditions */ 2817 if (!free_pages) 2818 goto single_page; 2819 2820 /* 2821 * If a sufficient number of pages in the block are either free or of 2822 * comparable migratability as our allocation, claim the whole block. 2823 */ 2824 if (free_pages + alike_pages >= (1 << (pageblock_order-1)) || 2825 page_group_by_mobility_disabled) 2826 set_pageblock_migratetype(page, start_type); 2827 2828 return; 2829 2830 single_page: 2831 move_to_free_list(page, zone, current_order, start_type); 2832 } 2833 2834 /* 2835 * Check whether there is a suitable fallback freepage with requested order. 2836 * If only_stealable is true, this function returns fallback_mt only if 2837 * we can steal other freepages all together. This would help to reduce 2838 * fragmentation due to mixed migratetype pages in one pageblock. 2839 */ 2840 int find_suitable_fallback(struct free_area *area, unsigned int order, 2841 int migratetype, bool only_stealable, bool *can_steal) 2842 { 2843 int i; 2844 int fallback_mt; 2845 2846 if (area->nr_free == 0) 2847 return -1; 2848 2849 *can_steal = false; 2850 for (i = 0;; i++) { 2851 fallback_mt = fallbacks[migratetype][i]; 2852 if (fallback_mt == MIGRATE_TYPES) 2853 break; 2854 2855 if (free_area_empty(area, fallback_mt)) 2856 continue; 2857 2858 if (can_steal_fallback(order, migratetype)) 2859 *can_steal = true; 2860 2861 if (!only_stealable) 2862 return fallback_mt; 2863 2864 if (*can_steal) 2865 return fallback_mt; 2866 } 2867 2868 return -1; 2869 } 2870 2871 /* 2872 * Reserve a pageblock for exclusive use of high-order atomic allocations if 2873 * there are no empty page blocks that contain a page with a suitable order 2874 */ 2875 static void reserve_highatomic_pageblock(struct page *page, struct zone *zone, 2876 unsigned int alloc_order) 2877 { 2878 int mt; 2879 unsigned long max_managed, flags; 2880 2881 /* 2882 * Limit the number reserved to 1 pageblock or roughly 1% of a zone. 2883 * Check is race-prone but harmless. 2884 */ 2885 max_managed = (zone_managed_pages(zone) / 100) + pageblock_nr_pages; 2886 if (zone->nr_reserved_highatomic >= max_managed) 2887 return; 2888 2889 spin_lock_irqsave(&zone->lock, flags); 2890 2891 /* Recheck the nr_reserved_highatomic limit under the lock */ 2892 if (zone->nr_reserved_highatomic >= max_managed) 2893 goto out_unlock; 2894 2895 /* Yoink! */ 2896 mt = get_pageblock_migratetype(page); 2897 /* Only reserve normal pageblocks (i.e., they can merge with others) */ 2898 if (migratetype_is_mergeable(mt)) { 2899 zone->nr_reserved_highatomic += pageblock_nr_pages; 2900 set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC); 2901 move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL); 2902 } 2903 2904 out_unlock: 2905 spin_unlock_irqrestore(&zone->lock, flags); 2906 } 2907 2908 /* 2909 * Used when an allocation is about to fail under memory pressure. This 2910 * potentially hurts the reliability of high-order allocations when under 2911 * intense memory pressure but failed atomic allocations should be easier 2912 * to recover from than an OOM. 2913 * 2914 * If @force is true, try to unreserve a pageblock even though highatomic 2915 * pageblock is exhausted. 2916 */ 2917 static bool unreserve_highatomic_pageblock(const struct alloc_context *ac, 2918 bool force) 2919 { 2920 struct zonelist *zonelist = ac->zonelist; 2921 unsigned long flags; 2922 struct zoneref *z; 2923 struct zone *zone; 2924 struct page *page; 2925 int order; 2926 bool ret; 2927 2928 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->highest_zoneidx, 2929 ac->nodemask) { 2930 /* 2931 * Preserve at least one pageblock unless memory pressure 2932 * is really high. 2933 */ 2934 if (!force && zone->nr_reserved_highatomic <= 2935 pageblock_nr_pages) 2936 continue; 2937 2938 spin_lock_irqsave(&zone->lock, flags); 2939 for (order = 0; order < MAX_ORDER; order++) { 2940 struct free_area *area = &(zone->free_area[order]); 2941 2942 page = get_page_from_free_area(area, MIGRATE_HIGHATOMIC); 2943 if (!page) 2944 continue; 2945 2946 /* 2947 * In page freeing path, migratetype change is racy so 2948 * we can counter several free pages in a pageblock 2949 * in this loop although we changed the pageblock type 2950 * from highatomic to ac->migratetype. So we should 2951 * adjust the count once. 2952 */ 2953 if (is_migrate_highatomic_page(page)) { 2954 /* 2955 * It should never happen but changes to 2956 * locking could inadvertently allow a per-cpu 2957 * drain to add pages to MIGRATE_HIGHATOMIC 2958 * while unreserving so be safe and watch for 2959 * underflows. 2960 */ 2961 zone->nr_reserved_highatomic -= min( 2962 pageblock_nr_pages, 2963 zone->nr_reserved_highatomic); 2964 } 2965 2966 /* 2967 * Convert to ac->migratetype and avoid the normal 2968 * pageblock stealing heuristics. Minimally, the caller 2969 * is doing the work and needs the pages. More 2970 * importantly, if the block was always converted to 2971 * MIGRATE_UNMOVABLE or another type then the number 2972 * of pageblocks that cannot be completely freed 2973 * may increase. 2974 */ 2975 set_pageblock_migratetype(page, ac->migratetype); 2976 ret = move_freepages_block(zone, page, ac->migratetype, 2977 NULL); 2978 if (ret) { 2979 spin_unlock_irqrestore(&zone->lock, flags); 2980 return ret; 2981 } 2982 } 2983 spin_unlock_irqrestore(&zone->lock, flags); 2984 } 2985 2986 return false; 2987 } 2988 2989 /* 2990 * Try finding a free buddy page on the fallback list and put it on the free 2991 * list of requested migratetype, possibly along with other pages from the same 2992 * block, depending on fragmentation avoidance heuristics. Returns true if 2993 * fallback was found so that __rmqueue_smallest() can grab it. 2994 * 2995 * The use of signed ints for order and current_order is a deliberate 2996 * deviation from the rest of this file, to make the for loop 2997 * condition simpler. 2998 */ 2999 static __always_inline bool 3000 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype, 3001 unsigned int alloc_flags) 3002 { 3003 struct free_area *area; 3004 int current_order; 3005 int min_order = order; 3006 struct page *page; 3007 int fallback_mt; 3008 bool can_steal; 3009 3010 /* 3011 * Do not steal pages from freelists belonging to other pageblocks 3012 * i.e. orders < pageblock_order. If there are no local zones free, 3013 * the zonelists will be reiterated without ALLOC_NOFRAGMENT. 3014 */ 3015 if (order < pageblock_order && alloc_flags & ALLOC_NOFRAGMENT) 3016 min_order = pageblock_order; 3017 3018 /* 3019 * Find the largest available free page in the other list. This roughly 3020 * approximates finding the pageblock with the most free pages, which 3021 * would be too costly to do exactly. 3022 */ 3023 for (current_order = MAX_ORDER - 1; current_order >= min_order; 3024 --current_order) { 3025 area = &(zone->free_area[current_order]); 3026 fallback_mt = find_suitable_fallback(area, current_order, 3027 start_migratetype, false, &can_steal); 3028 if (fallback_mt == -1) 3029 continue; 3030 3031 /* 3032 * We cannot steal all free pages from the pageblock and the 3033 * requested migratetype is movable. In that case it's better to 3034 * steal and split the smallest available page instead of the 3035 * largest available page, because even if the next movable 3036 * allocation falls back into a different pageblock than this 3037 * one, it won't cause permanent fragmentation. 3038 */ 3039 if (!can_steal && start_migratetype == MIGRATE_MOVABLE 3040 && current_order > order) 3041 goto find_smallest; 3042 3043 goto do_steal; 3044 } 3045 3046 return false; 3047 3048 find_smallest: 3049 for (current_order = order; current_order < MAX_ORDER; 3050 current_order++) { 3051 area = &(zone->free_area[current_order]); 3052 fallback_mt = find_suitable_fallback(area, current_order, 3053 start_migratetype, false, &can_steal); 3054 if (fallback_mt != -1) 3055 break; 3056 } 3057 3058 /* 3059 * This should not happen - we already found a suitable fallback 3060 * when looking for the largest page. 3061 */ 3062 VM_BUG_ON(current_order == MAX_ORDER); 3063 3064 do_steal: 3065 page = get_page_from_free_area(area, fallback_mt); 3066 3067 steal_suitable_fallback(zone, page, alloc_flags, start_migratetype, 3068 can_steal); 3069 3070 trace_mm_page_alloc_extfrag(page, order, current_order, 3071 start_migratetype, fallback_mt); 3072 3073 return true; 3074 3075 } 3076 3077 /* 3078 * Do the hard work of removing an element from the buddy allocator. 3079 * Call me with the zone->lock already held. 3080 */ 3081 static __always_inline struct page * 3082 __rmqueue(struct zone *zone, unsigned int order, int migratetype, 3083 unsigned int alloc_flags) 3084 { 3085 struct page *page; 3086 3087 if (IS_ENABLED(CONFIG_CMA)) { 3088 /* 3089 * Balance movable allocations between regular and CMA areas by 3090 * allocating from CMA when over half of the zone's free memory 3091 * is in the CMA area. 3092 */ 3093 if (alloc_flags & ALLOC_CMA && 3094 zone_page_state(zone, NR_FREE_CMA_PAGES) > 3095 zone_page_state(zone, NR_FREE_PAGES) / 2) { 3096 page = __rmqueue_cma_fallback(zone, order); 3097 if (page) 3098 return page; 3099 } 3100 } 3101 retry: 3102 page = __rmqueue_smallest(zone, order, migratetype); 3103 if (unlikely(!page)) { 3104 if (alloc_flags & ALLOC_CMA) 3105 page = __rmqueue_cma_fallback(zone, order); 3106 3107 if (!page && __rmqueue_fallback(zone, order, migratetype, 3108 alloc_flags)) 3109 goto retry; 3110 } 3111 return page; 3112 } 3113 3114 /* 3115 * Obtain a specified number of elements from the buddy allocator, all under 3116 * a single hold of the lock, for efficiency. Add them to the supplied list. 3117 * Returns the number of new pages which were placed at *list. 3118 */ 3119 static int rmqueue_bulk(struct zone *zone, unsigned int order, 3120 unsigned long count, struct list_head *list, 3121 int migratetype, unsigned int alloc_flags) 3122 { 3123 int i, allocated = 0; 3124 3125 /* Caller must hold IRQ-safe pcp->lock so IRQs are disabled. */ 3126 spin_lock(&zone->lock); 3127 for (i = 0; i < count; ++i) { 3128 struct page *page = __rmqueue(zone, order, migratetype, 3129 alloc_flags); 3130 if (unlikely(page == NULL)) 3131 break; 3132 3133 if (unlikely(check_pcp_refill(page, order))) 3134 continue; 3135 3136 /* 3137 * Split buddy pages returned by expand() are received here in 3138 * physical page order. The page is added to the tail of 3139 * caller's list. From the callers perspective, the linked list 3140 * is ordered by page number under some conditions. This is 3141 * useful for IO devices that can forward direction from the 3142 * head, thus also in the physical page order. This is useful 3143 * for IO devices that can merge IO requests if the physical 3144 * pages are ordered properly. 3145 */ 3146 list_add_tail(&page->pcp_list, list); 3147 allocated++; 3148 if (is_migrate_cma(get_pcppage_migratetype(page))) 3149 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES, 3150 -(1 << order)); 3151 } 3152 3153 /* 3154 * i pages were removed from the buddy list even if some leak due 3155 * to check_pcp_refill failing so adjust NR_FREE_PAGES based 3156 * on i. Do not confuse with 'allocated' which is the number of 3157 * pages added to the pcp list. 3158 */ 3159 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order)); 3160 spin_unlock(&zone->lock); 3161 return allocated; 3162 } 3163 3164 #ifdef CONFIG_NUMA 3165 /* 3166 * Called from the vmstat counter updater to drain pagesets of this 3167 * currently executing processor on remote nodes after they have 3168 * expired. 3169 */ 3170 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp) 3171 { 3172 int to_drain, batch; 3173 3174 batch = READ_ONCE(pcp->batch); 3175 to_drain = min(pcp->count, batch); 3176 if (to_drain > 0) { 3177 unsigned long flags; 3178 3179 /* 3180 * free_pcppages_bulk expects IRQs disabled for zone->lock 3181 * so even though pcp->lock is not intended to be IRQ-safe, 3182 * it's needed in this context. 3183 */ 3184 spin_lock_irqsave(&pcp->lock, flags); 3185 free_pcppages_bulk(zone, to_drain, pcp, 0); 3186 spin_unlock_irqrestore(&pcp->lock, flags); 3187 } 3188 } 3189 #endif 3190 3191 /* 3192 * Drain pcplists of the indicated processor and zone. 3193 */ 3194 static void drain_pages_zone(unsigned int cpu, struct zone *zone) 3195 { 3196 struct per_cpu_pages *pcp; 3197 3198 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu); 3199 if (pcp->count) { 3200 unsigned long flags; 3201 3202 /* See drain_zone_pages on why this is disabling IRQs */ 3203 spin_lock_irqsave(&pcp->lock, flags); 3204 free_pcppages_bulk(zone, pcp->count, pcp, 0); 3205 spin_unlock_irqrestore(&pcp->lock, flags); 3206 } 3207 } 3208 3209 /* 3210 * Drain pcplists of all zones on the indicated processor. 3211 */ 3212 static void drain_pages(unsigned int cpu) 3213 { 3214 struct zone *zone; 3215 3216 for_each_populated_zone(zone) { 3217 drain_pages_zone(cpu, zone); 3218 } 3219 } 3220 3221 /* 3222 * Spill all of this CPU's per-cpu pages back into the buddy allocator. 3223 */ 3224 void drain_local_pages(struct zone *zone) 3225 { 3226 int cpu = smp_processor_id(); 3227 3228 if (zone) 3229 drain_pages_zone(cpu, zone); 3230 else 3231 drain_pages(cpu); 3232 } 3233 3234 /* 3235 * The implementation of drain_all_pages(), exposing an extra parameter to 3236 * drain on all cpus. 3237 * 3238 * drain_all_pages() is optimized to only execute on cpus where pcplists are 3239 * not empty. The check for non-emptiness can however race with a free to 3240 * pcplist that has not yet increased the pcp->count from 0 to 1. Callers 3241 * that need the guarantee that every CPU has drained can disable the 3242 * optimizing racy check. 3243 */ 3244 static void __drain_all_pages(struct zone *zone, bool force_all_cpus) 3245 { 3246 int cpu; 3247 3248 /* 3249 * Allocate in the BSS so we won't require allocation in 3250 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y 3251 */ 3252 static cpumask_t cpus_with_pcps; 3253 3254 /* 3255 * Do not drain if one is already in progress unless it's specific to 3256 * a zone. Such callers are primarily CMA and memory hotplug and need 3257 * the drain to be complete when the call returns. 3258 */ 3259 if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) { 3260 if (!zone) 3261 return; 3262 mutex_lock(&pcpu_drain_mutex); 3263 } 3264 3265 /* 3266 * We don't care about racing with CPU hotplug event 3267 * as offline notification will cause the notified 3268 * cpu to drain that CPU pcps and on_each_cpu_mask 3269 * disables preemption as part of its processing 3270 */ 3271 for_each_online_cpu(cpu) { 3272 struct per_cpu_pages *pcp; 3273 struct zone *z; 3274 bool has_pcps = false; 3275 3276 if (force_all_cpus) { 3277 /* 3278 * The pcp.count check is racy, some callers need a 3279 * guarantee that no cpu is missed. 3280 */ 3281 has_pcps = true; 3282 } else if (zone) { 3283 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu); 3284 if (pcp->count) 3285 has_pcps = true; 3286 } else { 3287 for_each_populated_zone(z) { 3288 pcp = per_cpu_ptr(z->per_cpu_pageset, cpu); 3289 if (pcp->count) { 3290 has_pcps = true; 3291 break; 3292 } 3293 } 3294 } 3295 3296 if (has_pcps) 3297 cpumask_set_cpu(cpu, &cpus_with_pcps); 3298 else 3299 cpumask_clear_cpu(cpu, &cpus_with_pcps); 3300 } 3301 3302 for_each_cpu(cpu, &cpus_with_pcps) { 3303 if (zone) 3304 drain_pages_zone(cpu, zone); 3305 else 3306 drain_pages(cpu); 3307 } 3308 3309 mutex_unlock(&pcpu_drain_mutex); 3310 } 3311 3312 /* 3313 * Spill all the per-cpu pages from all CPUs back into the buddy allocator. 3314 * 3315 * When zone parameter is non-NULL, spill just the single zone's pages. 3316 */ 3317 void drain_all_pages(struct zone *zone) 3318 { 3319 __drain_all_pages(zone, false); 3320 } 3321 3322 #ifdef CONFIG_HIBERNATION 3323 3324 /* 3325 * Touch the watchdog for every WD_PAGE_COUNT pages. 3326 */ 3327 #define WD_PAGE_COUNT (128*1024) 3328 3329 void mark_free_pages(struct zone *zone) 3330 { 3331 unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT; 3332 unsigned long flags; 3333 unsigned int order, t; 3334 struct page *page; 3335 3336 if (zone_is_empty(zone)) 3337 return; 3338 3339 spin_lock_irqsave(&zone->lock, flags); 3340 3341 max_zone_pfn = zone_end_pfn(zone); 3342 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) 3343 if (pfn_valid(pfn)) { 3344 page = pfn_to_page(pfn); 3345 3346 if (!--page_count) { 3347 touch_nmi_watchdog(); 3348 page_count = WD_PAGE_COUNT; 3349 } 3350 3351 if (page_zone(page) != zone) 3352 continue; 3353 3354 if (!swsusp_page_is_forbidden(page)) 3355 swsusp_unset_page_free(page); 3356 } 3357 3358 for_each_migratetype_order(order, t) { 3359 list_for_each_entry(page, 3360 &zone->free_area[order].free_list[t], buddy_list) { 3361 unsigned long i; 3362 3363 pfn = page_to_pfn(page); 3364 for (i = 0; i < (1UL << order); i++) { 3365 if (!--page_count) { 3366 touch_nmi_watchdog(); 3367 page_count = WD_PAGE_COUNT; 3368 } 3369 swsusp_set_page_free(pfn_to_page(pfn + i)); 3370 } 3371 } 3372 } 3373 spin_unlock_irqrestore(&zone->lock, flags); 3374 } 3375 #endif /* CONFIG_PM */ 3376 3377 static bool free_unref_page_prepare(struct page *page, unsigned long pfn, 3378 unsigned int order) 3379 { 3380 int migratetype; 3381 3382 if (!free_pcp_prepare(page, order)) 3383 return false; 3384 3385 migratetype = get_pfnblock_migratetype(page, pfn); 3386 set_pcppage_migratetype(page, migratetype); 3387 return true; 3388 } 3389 3390 static int nr_pcp_free(struct per_cpu_pages *pcp, int high, int batch, 3391 bool free_high) 3392 { 3393 int min_nr_free, max_nr_free; 3394 3395 /* Free everything if batch freeing high-order pages. */ 3396 if (unlikely(free_high)) 3397 return pcp->count; 3398 3399 /* Check for PCP disabled or boot pageset */ 3400 if (unlikely(high < batch)) 3401 return 1; 3402 3403 /* Leave at least pcp->batch pages on the list */ 3404 min_nr_free = batch; 3405 max_nr_free = high - batch; 3406 3407 /* 3408 * Double the number of pages freed each time there is subsequent 3409 * freeing of pages without any allocation. 3410 */ 3411 batch <<= pcp->free_factor; 3412 if (batch < max_nr_free) 3413 pcp->free_factor++; 3414 batch = clamp(batch, min_nr_free, max_nr_free); 3415 3416 return batch; 3417 } 3418 3419 static int nr_pcp_high(struct per_cpu_pages *pcp, struct zone *zone, 3420 bool free_high) 3421 { 3422 int high = READ_ONCE(pcp->high); 3423 3424 if (unlikely(!high || free_high)) 3425 return 0; 3426 3427 if (!test_bit(ZONE_RECLAIM_ACTIVE, &zone->flags)) 3428 return high; 3429 3430 /* 3431 * If reclaim is active, limit the number of pages that can be 3432 * stored on pcp lists 3433 */ 3434 return min(READ_ONCE(pcp->batch) << 2, high); 3435 } 3436 3437 static void free_unref_page_commit(struct zone *zone, struct per_cpu_pages *pcp, 3438 struct page *page, int migratetype, 3439 unsigned int order) 3440 { 3441 int high; 3442 int pindex; 3443 bool free_high; 3444 3445 __count_vm_event(PGFREE); 3446 pindex = order_to_pindex(migratetype, order); 3447 list_add(&page->pcp_list, &pcp->lists[pindex]); 3448 pcp->count += 1 << order; 3449 3450 /* 3451 * As high-order pages other than THP's stored on PCP can contribute 3452 * to fragmentation, limit the number stored when PCP is heavily 3453 * freeing without allocation. The remainder after bulk freeing 3454 * stops will be drained from vmstat refresh context. 3455 */ 3456 free_high = (pcp->free_factor && order && order <= PAGE_ALLOC_COSTLY_ORDER); 3457 3458 high = nr_pcp_high(pcp, zone, free_high); 3459 if (pcp->count >= high) { 3460 int batch = READ_ONCE(pcp->batch); 3461 3462 free_pcppages_bulk(zone, nr_pcp_free(pcp, high, batch, free_high), pcp, pindex); 3463 } 3464 } 3465 3466 /* 3467 * Free a pcp page 3468 */ 3469 void free_unref_page(struct page *page, unsigned int order) 3470 { 3471 unsigned long flags; 3472 unsigned long __maybe_unused UP_flags; 3473 struct per_cpu_pages *pcp; 3474 struct zone *zone; 3475 unsigned long pfn = page_to_pfn(page); 3476 int migratetype; 3477 3478 if (!free_unref_page_prepare(page, pfn, order)) 3479 return; 3480 3481 /* 3482 * We only track unmovable, reclaimable and movable on pcp lists. 3483 * Place ISOLATE pages on the isolated list because they are being 3484 * offlined but treat HIGHATOMIC as movable pages so we can get those 3485 * areas back if necessary. Otherwise, we may have to free 3486 * excessively into the page allocator 3487 */ 3488 migratetype = get_pcppage_migratetype(page); 3489 if (unlikely(migratetype >= MIGRATE_PCPTYPES)) { 3490 if (unlikely(is_migrate_isolate(migratetype))) { 3491 free_one_page(page_zone(page), page, pfn, order, migratetype, FPI_NONE); 3492 return; 3493 } 3494 migratetype = MIGRATE_MOVABLE; 3495 } 3496 3497 zone = page_zone(page); 3498 pcp_trylock_prepare(UP_flags); 3499 pcp = pcp_spin_trylock_irqsave(zone->per_cpu_pageset, flags); 3500 if (pcp) { 3501 free_unref_page_commit(zone, pcp, page, migratetype, order); 3502 pcp_spin_unlock_irqrestore(pcp, flags); 3503 } else { 3504 free_one_page(zone, page, pfn, order, migratetype, FPI_NONE); 3505 } 3506 pcp_trylock_finish(UP_flags); 3507 } 3508 3509 /* 3510 * Free a list of 0-order pages 3511 */ 3512 void free_unref_page_list(struct list_head *list) 3513 { 3514 struct page *page, *next; 3515 struct per_cpu_pages *pcp = NULL; 3516 struct zone *locked_zone = NULL; 3517 unsigned long flags; 3518 int batch_count = 0; 3519 int migratetype; 3520 3521 /* Prepare pages for freeing */ 3522 list_for_each_entry_safe(page, next, list, lru) { 3523 unsigned long pfn = page_to_pfn(page); 3524 if (!free_unref_page_prepare(page, pfn, 0)) { 3525 list_del(&page->lru); 3526 continue; 3527 } 3528 3529 /* 3530 * Free isolated pages directly to the allocator, see 3531 * comment in free_unref_page. 3532 */ 3533 migratetype = get_pcppage_migratetype(page); 3534 if (unlikely(is_migrate_isolate(migratetype))) { 3535 list_del(&page->lru); 3536 free_one_page(page_zone(page), page, pfn, 0, migratetype, FPI_NONE); 3537 continue; 3538 } 3539 } 3540 3541 list_for_each_entry_safe(page, next, list, lru) { 3542 struct zone *zone = page_zone(page); 3543 3544 /* Different zone, different pcp lock. */ 3545 if (zone != locked_zone) { 3546 if (pcp) 3547 pcp_spin_unlock_irqrestore(pcp, flags); 3548 3549 locked_zone = zone; 3550 pcp = pcp_spin_lock_irqsave(locked_zone->per_cpu_pageset, flags); 3551 } 3552 3553 /* 3554 * Non-isolated types over MIGRATE_PCPTYPES get added 3555 * to the MIGRATE_MOVABLE pcp list. 3556 */ 3557 migratetype = get_pcppage_migratetype(page); 3558 if (unlikely(migratetype >= MIGRATE_PCPTYPES)) 3559 migratetype = MIGRATE_MOVABLE; 3560 3561 trace_mm_page_free_batched(page); 3562 free_unref_page_commit(zone, pcp, page, migratetype, 0); 3563 3564 /* 3565 * Guard against excessive IRQ disabled times when we get 3566 * a large list of pages to free. 3567 */ 3568 if (++batch_count == SWAP_CLUSTER_MAX) { 3569 pcp_spin_unlock_irqrestore(pcp, flags); 3570 batch_count = 0; 3571 pcp = pcp_spin_lock_irqsave(locked_zone->per_cpu_pageset, flags); 3572 } 3573 } 3574 3575 if (pcp) 3576 pcp_spin_unlock_irqrestore(pcp, flags); 3577 } 3578 3579 /* 3580 * split_page takes a non-compound higher-order page, and splits it into 3581 * n (1<<order) sub-pages: page[0..n] 3582 * Each sub-page must be freed individually. 3583 * 3584 * Note: this is probably too low level an operation for use in drivers. 3585 * Please consult with lkml before using this in your driver. 3586 */ 3587 void split_page(struct page *page, unsigned int order) 3588 { 3589 int i; 3590 3591 VM_BUG_ON_PAGE(PageCompound(page), page); 3592 VM_BUG_ON_PAGE(!page_count(page), page); 3593 3594 for (i = 1; i < (1 << order); i++) 3595 set_page_refcounted(page + i); 3596 split_page_owner(page, 1 << order); 3597 split_page_memcg(page, 1 << order); 3598 } 3599 EXPORT_SYMBOL_GPL(split_page); 3600 3601 int __isolate_free_page(struct page *page, unsigned int order) 3602 { 3603 struct zone *zone = page_zone(page); 3604 int mt = get_pageblock_migratetype(page); 3605 3606 if (!is_migrate_isolate(mt)) { 3607 unsigned long watermark; 3608 /* 3609 * Obey watermarks as if the page was being allocated. We can 3610 * emulate a high-order watermark check with a raised order-0 3611 * watermark, because we already know our high-order page 3612 * exists. 3613 */ 3614 watermark = zone->_watermark[WMARK_MIN] + (1UL << order); 3615 if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA)) 3616 return 0; 3617 3618 __mod_zone_freepage_state(zone, -(1UL << order), mt); 3619 } 3620 3621 del_page_from_free_list(page, zone, order); 3622 3623 /* 3624 * Set the pageblock if the isolated page is at least half of a 3625 * pageblock 3626 */ 3627 if (order >= pageblock_order - 1) { 3628 struct page *endpage = page + (1 << order) - 1; 3629 for (; page < endpage; page += pageblock_nr_pages) { 3630 int mt = get_pageblock_migratetype(page); 3631 /* 3632 * Only change normal pageblocks (i.e., they can merge 3633 * with others) 3634 */ 3635 if (migratetype_is_mergeable(mt)) 3636 set_pageblock_migratetype(page, 3637 MIGRATE_MOVABLE); 3638 } 3639 } 3640 3641 return 1UL << order; 3642 } 3643 3644 /** 3645 * __putback_isolated_page - Return a now-isolated page back where we got it 3646 * @page: Page that was isolated 3647 * @order: Order of the isolated page 3648 * @mt: The page's pageblock's migratetype 3649 * 3650 * This function is meant to return a page pulled from the free lists via 3651 * __isolate_free_page back to the free lists they were pulled from. 3652 */ 3653 void __putback_isolated_page(struct page *page, unsigned int order, int mt) 3654 { 3655 struct zone *zone = page_zone(page); 3656 3657 /* zone lock should be held when this function is called */ 3658 lockdep_assert_held(&zone->lock); 3659 3660 /* Return isolated page to tail of freelist. */ 3661 __free_one_page(page, page_to_pfn(page), zone, order, mt, 3662 FPI_SKIP_REPORT_NOTIFY | FPI_TO_TAIL); 3663 } 3664 3665 /* 3666 * Update NUMA hit/miss statistics 3667 * 3668 * Must be called with interrupts disabled. 3669 */ 3670 static inline void zone_statistics(struct zone *preferred_zone, struct zone *z, 3671 long nr_account) 3672 { 3673 #ifdef CONFIG_NUMA 3674 enum numa_stat_item local_stat = NUMA_LOCAL; 3675 3676 /* skip numa counters update if numa stats is disabled */ 3677 if (!static_branch_likely(&vm_numa_stat_key)) 3678 return; 3679 3680 if (zone_to_nid(z) != numa_node_id()) 3681 local_stat = NUMA_OTHER; 3682 3683 if (zone_to_nid(z) == zone_to_nid(preferred_zone)) 3684 __count_numa_events(z, NUMA_HIT, nr_account); 3685 else { 3686 __count_numa_events(z, NUMA_MISS, nr_account); 3687 __count_numa_events(preferred_zone, NUMA_FOREIGN, nr_account); 3688 } 3689 __count_numa_events(z, local_stat, nr_account); 3690 #endif 3691 } 3692 3693 static __always_inline 3694 struct page *rmqueue_buddy(struct zone *preferred_zone, struct zone *zone, 3695 unsigned int order, unsigned int alloc_flags, 3696 int migratetype) 3697 { 3698 struct page *page; 3699 unsigned long flags; 3700 3701 do { 3702 page = NULL; 3703 spin_lock_irqsave(&zone->lock, flags); 3704 /* 3705 * order-0 request can reach here when the pcplist is skipped 3706 * due to non-CMA allocation context. HIGHATOMIC area is 3707 * reserved for high-order atomic allocation, so order-0 3708 * request should skip it. 3709 */ 3710 if (order > 0 && alloc_flags & ALLOC_HARDER) 3711 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC); 3712 if (!page) { 3713 page = __rmqueue(zone, order, migratetype, alloc_flags); 3714 if (!page) { 3715 spin_unlock_irqrestore(&zone->lock, flags); 3716 return NULL; 3717 } 3718 } 3719 __mod_zone_freepage_state(zone, -(1 << order), 3720 get_pcppage_migratetype(page)); 3721 spin_unlock_irqrestore(&zone->lock, flags); 3722 } while (check_new_pages(page, order)); 3723 3724 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order); 3725 zone_statistics(preferred_zone, zone, 1); 3726 3727 return page; 3728 } 3729 3730 /* Remove page from the per-cpu list, caller must protect the list */ 3731 static inline 3732 struct page *__rmqueue_pcplist(struct zone *zone, unsigned int order, 3733 int migratetype, 3734 unsigned int alloc_flags, 3735 struct per_cpu_pages *pcp, 3736 struct list_head *list) 3737 { 3738 struct page *page; 3739 3740 do { 3741 if (list_empty(list)) { 3742 int batch = READ_ONCE(pcp->batch); 3743 int alloced; 3744 3745 /* 3746 * Scale batch relative to order if batch implies 3747 * free pages can be stored on the PCP. Batch can 3748 * be 1 for small zones or for boot pagesets which 3749 * should never store free pages as the pages may 3750 * belong to arbitrary zones. 3751 */ 3752 if (batch > 1) 3753 batch = max(batch >> order, 2); 3754 alloced = rmqueue_bulk(zone, order, 3755 batch, list, 3756 migratetype, alloc_flags); 3757 3758 pcp->count += alloced << order; 3759 if (unlikely(list_empty(list))) 3760 return NULL; 3761 } 3762 3763 page = list_first_entry(list, struct page, pcp_list); 3764 list_del(&page->pcp_list); 3765 pcp->count -= 1 << order; 3766 } while (check_new_pcp(page, order)); 3767 3768 return page; 3769 } 3770 3771 /* Lock and remove page from the per-cpu list */ 3772 static struct page *rmqueue_pcplist(struct zone *preferred_zone, 3773 struct zone *zone, unsigned int order, 3774 int migratetype, unsigned int alloc_flags) 3775 { 3776 struct per_cpu_pages *pcp; 3777 struct list_head *list; 3778 struct page *page; 3779 unsigned long flags; 3780 unsigned long __maybe_unused UP_flags; 3781 3782 /* 3783 * spin_trylock may fail due to a parallel drain. In the future, the 3784 * trylock will also protect against IRQ reentrancy. 3785 */ 3786 pcp_trylock_prepare(UP_flags); 3787 pcp = pcp_spin_trylock_irqsave(zone->per_cpu_pageset, flags); 3788 if (!pcp) { 3789 pcp_trylock_finish(UP_flags); 3790 return NULL; 3791 } 3792 3793 /* 3794 * On allocation, reduce the number of pages that are batch freed. 3795 * See nr_pcp_free() where free_factor is increased for subsequent 3796 * frees. 3797 */ 3798 pcp->free_factor >>= 1; 3799 list = &pcp->lists[order_to_pindex(migratetype, order)]; 3800 page = __rmqueue_pcplist(zone, order, migratetype, alloc_flags, pcp, list); 3801 pcp_spin_unlock_irqrestore(pcp, flags); 3802 pcp_trylock_finish(UP_flags); 3803 if (page) { 3804 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1); 3805 zone_statistics(preferred_zone, zone, 1); 3806 } 3807 return page; 3808 } 3809 3810 /* 3811 * Allocate a page from the given zone. Use pcplists for order-0 allocations. 3812 */ 3813 3814 /* 3815 * Do not instrument rmqueue() with KMSAN. This function may call 3816 * __msan_poison_alloca() through a call to set_pfnblock_flags_mask(). 3817 * If __msan_poison_alloca() attempts to allocate pages for the stack depot, it 3818 * may call rmqueue() again, which will result in a deadlock. 3819 */ 3820 __no_sanitize_memory 3821 static inline 3822 struct page *rmqueue(struct zone *preferred_zone, 3823 struct zone *zone, unsigned int order, 3824 gfp_t gfp_flags, unsigned int alloc_flags, 3825 int migratetype) 3826 { 3827 struct page *page; 3828 3829 /* 3830 * We most definitely don't want callers attempting to 3831 * allocate greater than order-1 page units with __GFP_NOFAIL. 3832 */ 3833 WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1)); 3834 3835 if (likely(pcp_allowed_order(order))) { 3836 /* 3837 * MIGRATE_MOVABLE pcplist could have the pages on CMA area and 3838 * we need to skip it when CMA area isn't allowed. 3839 */ 3840 if (!IS_ENABLED(CONFIG_CMA) || alloc_flags & ALLOC_CMA || 3841 migratetype != MIGRATE_MOVABLE) { 3842 page = rmqueue_pcplist(preferred_zone, zone, order, 3843 migratetype, alloc_flags); 3844 if (likely(page)) 3845 goto out; 3846 } 3847 } 3848 3849 page = rmqueue_buddy(preferred_zone, zone, order, alloc_flags, 3850 migratetype); 3851 3852 out: 3853 /* Separate test+clear to avoid unnecessary atomics */ 3854 if (unlikely(test_bit(ZONE_BOOSTED_WATERMARK, &zone->flags))) { 3855 clear_bit(ZONE_BOOSTED_WATERMARK, &zone->flags); 3856 wakeup_kswapd(zone, 0, 0, zone_idx(zone)); 3857 } 3858 3859 VM_BUG_ON_PAGE(page && bad_range(zone, page), page); 3860 return page; 3861 } 3862 3863 #ifdef CONFIG_FAIL_PAGE_ALLOC 3864 3865 static struct { 3866 struct fault_attr attr; 3867 3868 bool ignore_gfp_highmem; 3869 bool ignore_gfp_reclaim; 3870 u32 min_order; 3871 } fail_page_alloc = { 3872 .attr = FAULT_ATTR_INITIALIZER, 3873 .ignore_gfp_reclaim = true, 3874 .ignore_gfp_highmem = true, 3875 .min_order = 1, 3876 }; 3877 3878 static int __init setup_fail_page_alloc(char *str) 3879 { 3880 return setup_fault_attr(&fail_page_alloc.attr, str); 3881 } 3882 __setup("fail_page_alloc=", setup_fail_page_alloc); 3883 3884 static bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) 3885 { 3886 if (order < fail_page_alloc.min_order) 3887 return false; 3888 if (gfp_mask & __GFP_NOFAIL) 3889 return false; 3890 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM)) 3891 return false; 3892 if (fail_page_alloc.ignore_gfp_reclaim && 3893 (gfp_mask & __GFP_DIRECT_RECLAIM)) 3894 return false; 3895 3896 if (gfp_mask & __GFP_NOWARN) 3897 fail_page_alloc.attr.no_warn = true; 3898 3899 return should_fail(&fail_page_alloc.attr, 1 << order); 3900 } 3901 3902 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS 3903 3904 static int __init fail_page_alloc_debugfs(void) 3905 { 3906 umode_t mode = S_IFREG | 0600; 3907 struct dentry *dir; 3908 3909 dir = fault_create_debugfs_attr("fail_page_alloc", NULL, 3910 &fail_page_alloc.attr); 3911 3912 debugfs_create_bool("ignore-gfp-wait", mode, dir, 3913 &fail_page_alloc.ignore_gfp_reclaim); 3914 debugfs_create_bool("ignore-gfp-highmem", mode, dir, 3915 &fail_page_alloc.ignore_gfp_highmem); 3916 debugfs_create_u32("min-order", mode, dir, &fail_page_alloc.min_order); 3917 3918 return 0; 3919 } 3920 3921 late_initcall(fail_page_alloc_debugfs); 3922 3923 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */ 3924 3925 #else /* CONFIG_FAIL_PAGE_ALLOC */ 3926 3927 static inline bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) 3928 { 3929 return false; 3930 } 3931 3932 #endif /* CONFIG_FAIL_PAGE_ALLOC */ 3933 3934 noinline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) 3935 { 3936 return __should_fail_alloc_page(gfp_mask, order); 3937 } 3938 ALLOW_ERROR_INJECTION(should_fail_alloc_page, TRUE); 3939 3940 static inline long __zone_watermark_unusable_free(struct zone *z, 3941 unsigned int order, unsigned int alloc_flags) 3942 { 3943 const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM)); 3944 long unusable_free = (1 << order) - 1; 3945 3946 /* 3947 * If the caller does not have rights to ALLOC_HARDER then subtract 3948 * the high-atomic reserves. This will over-estimate the size of the 3949 * atomic reserve but it avoids a search. 3950 */ 3951 if (likely(!alloc_harder)) 3952 unusable_free += z->nr_reserved_highatomic; 3953 3954 #ifdef CONFIG_CMA 3955 /* If allocation can't use CMA areas don't use free CMA pages */ 3956 if (!(alloc_flags & ALLOC_CMA)) 3957 unusable_free += zone_page_state(z, NR_FREE_CMA_PAGES); 3958 #endif 3959 3960 return unusable_free; 3961 } 3962 3963 /* 3964 * Return true if free base pages are above 'mark'. For high-order checks it 3965 * will return true of the order-0 watermark is reached and there is at least 3966 * one free page of a suitable size. Checking now avoids taking the zone lock 3967 * to check in the allocation paths if no pages are free. 3968 */ 3969 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark, 3970 int highest_zoneidx, unsigned int alloc_flags, 3971 long free_pages) 3972 { 3973 long min = mark; 3974 int o; 3975 const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM)); 3976 3977 /* free_pages may go negative - that's OK */ 3978 free_pages -= __zone_watermark_unusable_free(z, order, alloc_flags); 3979 3980 if (alloc_flags & ALLOC_HIGH) 3981 min -= min / 2; 3982 3983 if (unlikely(alloc_harder)) { 3984 /* 3985 * OOM victims can try even harder than normal ALLOC_HARDER 3986 * users on the grounds that it's definitely going to be in 3987 * the exit path shortly and free memory. Any allocation it 3988 * makes during the free path will be small and short-lived. 3989 */ 3990 if (alloc_flags & ALLOC_OOM) 3991 min -= min / 2; 3992 else 3993 min -= min / 4; 3994 } 3995 3996 /* 3997 * Check watermarks for an order-0 allocation request. If these 3998 * are not met, then a high-order request also cannot go ahead 3999 * even if a suitable page happened to be free. 4000 */ 4001 if (free_pages <= min + z->lowmem_reserve[highest_zoneidx]) 4002 return false; 4003 4004 /* If this is an order-0 request then the watermark is fine */ 4005 if (!order) 4006 return true; 4007 4008 /* For a high-order request, check at least one suitable page is free */ 4009 for (o = order; o < MAX_ORDER; o++) { 4010 struct free_area *area = &z->free_area[o]; 4011 int mt; 4012 4013 if (!area->nr_free) 4014 continue; 4015 4016 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) { 4017 if (!free_area_empty(area, mt)) 4018 return true; 4019 } 4020 4021 #ifdef CONFIG_CMA 4022 if ((alloc_flags & ALLOC_CMA) && 4023 !free_area_empty(area, MIGRATE_CMA)) { 4024 return true; 4025 } 4026 #endif 4027 if (alloc_harder && !free_area_empty(area, MIGRATE_HIGHATOMIC)) 4028 return true; 4029 } 4030 return false; 4031 } 4032 4033 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark, 4034 int highest_zoneidx, unsigned int alloc_flags) 4035 { 4036 return __zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags, 4037 zone_page_state(z, NR_FREE_PAGES)); 4038 } 4039 4040 static inline bool zone_watermark_fast(struct zone *z, unsigned int order, 4041 unsigned long mark, int highest_zoneidx, 4042 unsigned int alloc_flags, gfp_t gfp_mask) 4043 { 4044 long free_pages; 4045 4046 free_pages = zone_page_state(z, NR_FREE_PAGES); 4047 4048 /* 4049 * Fast check for order-0 only. If this fails then the reserves 4050 * need to be calculated. 4051 */ 4052 if (!order) { 4053 long usable_free; 4054 long reserved; 4055 4056 usable_free = free_pages; 4057 reserved = __zone_watermark_unusable_free(z, 0, alloc_flags); 4058 4059 /* reserved may over estimate high-atomic reserves. */ 4060 usable_free -= min(usable_free, reserved); 4061 if (usable_free > mark + z->lowmem_reserve[highest_zoneidx]) 4062 return true; 4063 } 4064 4065 if (__zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags, 4066 free_pages)) 4067 return true; 4068 /* 4069 * Ignore watermark boosting for GFP_ATOMIC order-0 allocations 4070 * when checking the min watermark. The min watermark is the 4071 * point where boosting is ignored so that kswapd is woken up 4072 * when below the low watermark. 4073 */ 4074 if (unlikely(!order && (gfp_mask & __GFP_ATOMIC) && z->watermark_boost 4075 && ((alloc_flags & ALLOC_WMARK_MASK) == WMARK_MIN))) { 4076 mark = z->_watermark[WMARK_MIN]; 4077 return __zone_watermark_ok(z, order, mark, highest_zoneidx, 4078 alloc_flags, free_pages); 4079 } 4080 4081 return false; 4082 } 4083 4084 bool zone_watermark_ok_safe(struct zone *z, unsigned int order, 4085 unsigned long mark, int highest_zoneidx) 4086 { 4087 long free_pages = zone_page_state(z, NR_FREE_PAGES); 4088 4089 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark) 4090 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES); 4091 4092 return __zone_watermark_ok(z, order, mark, highest_zoneidx, 0, 4093 free_pages); 4094 } 4095 4096 #ifdef CONFIG_NUMA 4097 int __read_mostly node_reclaim_distance = RECLAIM_DISTANCE; 4098 4099 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone) 4100 { 4101 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <= 4102 node_reclaim_distance; 4103 } 4104 #else /* CONFIG_NUMA */ 4105 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone) 4106 { 4107 return true; 4108 } 4109 #endif /* CONFIG_NUMA */ 4110 4111 /* 4112 * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid 4113 * fragmentation is subtle. If the preferred zone was HIGHMEM then 4114 * premature use of a lower zone may cause lowmem pressure problems that 4115 * are worse than fragmentation. If the next zone is ZONE_DMA then it is 4116 * probably too small. It only makes sense to spread allocations to avoid 4117 * fragmentation between the Normal and DMA32 zones. 4118 */ 4119 static inline unsigned int 4120 alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask) 4121 { 4122 unsigned int alloc_flags; 4123 4124 /* 4125 * __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD 4126 * to save a branch. 4127 */ 4128 alloc_flags = (__force int) (gfp_mask & __GFP_KSWAPD_RECLAIM); 4129 4130 #ifdef CONFIG_ZONE_DMA32 4131 if (!zone) 4132 return alloc_flags; 4133 4134 if (zone_idx(zone) != ZONE_NORMAL) 4135 return alloc_flags; 4136 4137 /* 4138 * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and 4139 * the pointer is within zone->zone_pgdat->node_zones[]. Also assume 4140 * on UMA that if Normal is populated then so is DMA32. 4141 */ 4142 BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1); 4143 if (nr_online_nodes > 1 && !populated_zone(--zone)) 4144 return alloc_flags; 4145 4146 alloc_flags |= ALLOC_NOFRAGMENT; 4147 #endif /* CONFIG_ZONE_DMA32 */ 4148 return alloc_flags; 4149 } 4150 4151 /* Must be called after current_gfp_context() which can change gfp_mask */ 4152 static inline unsigned int gfp_to_alloc_flags_cma(gfp_t gfp_mask, 4153 unsigned int alloc_flags) 4154 { 4155 #ifdef CONFIG_CMA 4156 if (gfp_migratetype(gfp_mask) == MIGRATE_MOVABLE) 4157 alloc_flags |= ALLOC_CMA; 4158 #endif 4159 return alloc_flags; 4160 } 4161 4162 /* 4163 * get_page_from_freelist goes through the zonelist trying to allocate 4164 * a page. 4165 */ 4166 static struct page * 4167 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags, 4168 const struct alloc_context *ac) 4169 { 4170 struct zoneref *z; 4171 struct zone *zone; 4172 struct pglist_data *last_pgdat = NULL; 4173 bool last_pgdat_dirty_ok = false; 4174 bool no_fallback; 4175 4176 retry: 4177 /* 4178 * Scan zonelist, looking for a zone with enough free. 4179 * See also __cpuset_node_allowed() comment in kernel/cgroup/cpuset.c. 4180 */ 4181 no_fallback = alloc_flags & ALLOC_NOFRAGMENT; 4182 z = ac->preferred_zoneref; 4183 for_next_zone_zonelist_nodemask(zone, z, ac->highest_zoneidx, 4184 ac->nodemask) { 4185 struct page *page; 4186 unsigned long mark; 4187 4188 if (cpusets_enabled() && 4189 (alloc_flags & ALLOC_CPUSET) && 4190 !__cpuset_zone_allowed(zone, gfp_mask)) 4191 continue; 4192 /* 4193 * When allocating a page cache page for writing, we 4194 * want to get it from a node that is within its dirty 4195 * limit, such that no single node holds more than its 4196 * proportional share of globally allowed dirty pages. 4197 * The dirty limits take into account the node's 4198 * lowmem reserves and high watermark so that kswapd 4199 * should be able to balance it without having to 4200 * write pages from its LRU list. 4201 * 4202 * XXX: For now, allow allocations to potentially 4203 * exceed the per-node dirty limit in the slowpath 4204 * (spread_dirty_pages unset) before going into reclaim, 4205 * which is important when on a NUMA setup the allowed 4206 * nodes are together not big enough to reach the 4207 * global limit. The proper fix for these situations 4208 * will require awareness of nodes in the 4209 * dirty-throttling and the flusher threads. 4210 */ 4211 if (ac->spread_dirty_pages) { 4212 if (last_pgdat != zone->zone_pgdat) { 4213 last_pgdat = zone->zone_pgdat; 4214 last_pgdat_dirty_ok = node_dirty_ok(zone->zone_pgdat); 4215 } 4216 4217 if (!last_pgdat_dirty_ok) 4218 continue; 4219 } 4220 4221 if (no_fallback && nr_online_nodes > 1 && 4222 zone != ac->preferred_zoneref->zone) { 4223 int local_nid; 4224 4225 /* 4226 * If moving to a remote node, retry but allow 4227 * fragmenting fallbacks. Locality is more important 4228 * than fragmentation avoidance. 4229 */ 4230 local_nid = zone_to_nid(ac->preferred_zoneref->zone); 4231 if (zone_to_nid(zone) != local_nid) { 4232 alloc_flags &= ~ALLOC_NOFRAGMENT; 4233 goto retry; 4234 } 4235 } 4236 4237 mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK); 4238 if (!zone_watermark_fast(zone, order, mark, 4239 ac->highest_zoneidx, alloc_flags, 4240 gfp_mask)) { 4241 int ret; 4242 4243 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 4244 /* 4245 * Watermark failed for this zone, but see if we can 4246 * grow this zone if it contains deferred pages. 4247 */ 4248 if (static_branch_unlikely(&deferred_pages)) { 4249 if (_deferred_grow_zone(zone, order)) 4250 goto try_this_zone; 4251 } 4252 #endif 4253 /* Checked here to keep the fast path fast */ 4254 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK); 4255 if (alloc_flags & ALLOC_NO_WATERMARKS) 4256 goto try_this_zone; 4257 4258 if (!node_reclaim_enabled() || 4259 !zone_allows_reclaim(ac->preferred_zoneref->zone, zone)) 4260 continue; 4261 4262 ret = node_reclaim(zone->zone_pgdat, gfp_mask, order); 4263 switch (ret) { 4264 case NODE_RECLAIM_NOSCAN: 4265 /* did not scan */ 4266 continue; 4267 case NODE_RECLAIM_FULL: 4268 /* scanned but unreclaimable */ 4269 continue; 4270 default: 4271 /* did we reclaim enough */ 4272 if (zone_watermark_ok(zone, order, mark, 4273 ac->highest_zoneidx, alloc_flags)) 4274 goto try_this_zone; 4275 4276 continue; 4277 } 4278 } 4279 4280 try_this_zone: 4281 page = rmqueue(ac->preferred_zoneref->zone, zone, order, 4282 gfp_mask, alloc_flags, ac->migratetype); 4283 if (page) { 4284 prep_new_page(page, order, gfp_mask, alloc_flags); 4285 4286 /* 4287 * If this is a high-order atomic allocation then check 4288 * if the pageblock should be reserved for the future 4289 */ 4290 if (unlikely(order && (alloc_flags & ALLOC_HARDER))) 4291 reserve_highatomic_pageblock(page, zone, order); 4292 4293 return page; 4294 } else { 4295 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 4296 /* Try again if zone has deferred pages */ 4297 if (static_branch_unlikely(&deferred_pages)) { 4298 if (_deferred_grow_zone(zone, order)) 4299 goto try_this_zone; 4300 } 4301 #endif 4302 } 4303 } 4304 4305 /* 4306 * It's possible on a UMA machine to get through all zones that are 4307 * fragmented. If avoiding fragmentation, reset and try again. 4308 */ 4309 if (no_fallback) { 4310 alloc_flags &= ~ALLOC_NOFRAGMENT; 4311 goto retry; 4312 } 4313 4314 return NULL; 4315 } 4316 4317 static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask) 4318 { 4319 unsigned int filter = SHOW_MEM_FILTER_NODES; 4320 4321 /* 4322 * This documents exceptions given to allocations in certain 4323 * contexts that are allowed to allocate outside current's set 4324 * of allowed nodes. 4325 */ 4326 if (!(gfp_mask & __GFP_NOMEMALLOC)) 4327 if (tsk_is_oom_victim(current) || 4328 (current->flags & (PF_MEMALLOC | PF_EXITING))) 4329 filter &= ~SHOW_MEM_FILTER_NODES; 4330 if (!in_task() || !(gfp_mask & __GFP_DIRECT_RECLAIM)) 4331 filter &= ~SHOW_MEM_FILTER_NODES; 4332 4333 __show_mem(filter, nodemask, gfp_zone(gfp_mask)); 4334 } 4335 4336 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...) 4337 { 4338 struct va_format vaf; 4339 va_list args; 4340 static DEFINE_RATELIMIT_STATE(nopage_rs, 10*HZ, 1); 4341 4342 if ((gfp_mask & __GFP_NOWARN) || 4343 !__ratelimit(&nopage_rs) || 4344 ((gfp_mask & __GFP_DMA) && !has_managed_dma())) 4345 return; 4346 4347 va_start(args, fmt); 4348 vaf.fmt = fmt; 4349 vaf.va = &args; 4350 pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl", 4351 current->comm, &vaf, gfp_mask, &gfp_mask, 4352 nodemask_pr_args(nodemask)); 4353 va_end(args); 4354 4355 cpuset_print_current_mems_allowed(); 4356 pr_cont("\n"); 4357 dump_stack(); 4358 warn_alloc_show_mem(gfp_mask, nodemask); 4359 } 4360 4361 static inline struct page * 4362 __alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order, 4363 unsigned int alloc_flags, 4364 const struct alloc_context *ac) 4365 { 4366 struct page *page; 4367 4368 page = get_page_from_freelist(gfp_mask, order, 4369 alloc_flags|ALLOC_CPUSET, ac); 4370 /* 4371 * fallback to ignore cpuset restriction if our nodes 4372 * are depleted 4373 */ 4374 if (!page) 4375 page = get_page_from_freelist(gfp_mask, order, 4376 alloc_flags, ac); 4377 4378 return page; 4379 } 4380 4381 static inline struct page * 4382 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order, 4383 const struct alloc_context *ac, unsigned long *did_some_progress) 4384 { 4385 struct oom_control oc = { 4386 .zonelist = ac->zonelist, 4387 .nodemask = ac->nodemask, 4388 .memcg = NULL, 4389 .gfp_mask = gfp_mask, 4390 .order = order, 4391 }; 4392 struct page *page; 4393 4394 *did_some_progress = 0; 4395 4396 /* 4397 * Acquire the oom lock. If that fails, somebody else is 4398 * making progress for us. 4399 */ 4400 if (!mutex_trylock(&oom_lock)) { 4401 *did_some_progress = 1; 4402 schedule_timeout_uninterruptible(1); 4403 return NULL; 4404 } 4405 4406 /* 4407 * Go through the zonelist yet one more time, keep very high watermark 4408 * here, this is only to catch a parallel oom killing, we must fail if 4409 * we're still under heavy pressure. But make sure that this reclaim 4410 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY 4411 * allocation which will never fail due to oom_lock already held. 4412 */ 4413 page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) & 4414 ~__GFP_DIRECT_RECLAIM, order, 4415 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac); 4416 if (page) 4417 goto out; 4418 4419 /* Coredumps can quickly deplete all memory reserves */ 4420 if (current->flags & PF_DUMPCORE) 4421 goto out; 4422 /* The OOM killer will not help higher order allocs */ 4423 if (order > PAGE_ALLOC_COSTLY_ORDER) 4424 goto out; 4425 /* 4426 * We have already exhausted all our reclaim opportunities without any 4427 * success so it is time to admit defeat. We will skip the OOM killer 4428 * because it is very likely that the caller has a more reasonable 4429 * fallback than shooting a random task. 4430 * 4431 * The OOM killer may not free memory on a specific node. 4432 */ 4433 if (gfp_mask & (__GFP_RETRY_MAYFAIL | __GFP_THISNODE)) 4434 goto out; 4435 /* The OOM killer does not needlessly kill tasks for lowmem */ 4436 if (ac->highest_zoneidx < ZONE_NORMAL) 4437 goto out; 4438 if (pm_suspended_storage()) 4439 goto out; 4440 /* 4441 * XXX: GFP_NOFS allocations should rather fail than rely on 4442 * other request to make a forward progress. 4443 * We are in an unfortunate situation where out_of_memory cannot 4444 * do much for this context but let's try it to at least get 4445 * access to memory reserved if the current task is killed (see 4446 * out_of_memory). Once filesystems are ready to handle allocation 4447 * failures more gracefully we should just bail out here. 4448 */ 4449 4450 /* Exhausted what can be done so it's blame time */ 4451 if (out_of_memory(&oc) || 4452 WARN_ON_ONCE_GFP(gfp_mask & __GFP_NOFAIL, gfp_mask)) { 4453 *did_some_progress = 1; 4454 4455 /* 4456 * Help non-failing allocations by giving them access to memory 4457 * reserves 4458 */ 4459 if (gfp_mask & __GFP_NOFAIL) 4460 page = __alloc_pages_cpuset_fallback(gfp_mask, order, 4461 ALLOC_NO_WATERMARKS, ac); 4462 } 4463 out: 4464 mutex_unlock(&oom_lock); 4465 return page; 4466 } 4467 4468 /* 4469 * Maximum number of compaction retries with a progress before OOM 4470 * killer is consider as the only way to move forward. 4471 */ 4472 #define MAX_COMPACT_RETRIES 16 4473 4474 #ifdef CONFIG_COMPACTION 4475 /* Try memory compaction for high-order allocations before reclaim */ 4476 static struct page * 4477 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order, 4478 unsigned int alloc_flags, const struct alloc_context *ac, 4479 enum compact_priority prio, enum compact_result *compact_result) 4480 { 4481 struct page *page = NULL; 4482 unsigned long pflags; 4483 unsigned int noreclaim_flag; 4484 4485 if (!order) 4486 return NULL; 4487 4488 psi_memstall_enter(&pflags); 4489 delayacct_compact_start(); 4490 noreclaim_flag = memalloc_noreclaim_save(); 4491 4492 *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac, 4493 prio, &page); 4494 4495 memalloc_noreclaim_restore(noreclaim_flag); 4496 psi_memstall_leave(&pflags); 4497 delayacct_compact_end(); 4498 4499 if (*compact_result == COMPACT_SKIPPED) 4500 return NULL; 4501 /* 4502 * At least in one zone compaction wasn't deferred or skipped, so let's 4503 * count a compaction stall 4504 */ 4505 count_vm_event(COMPACTSTALL); 4506 4507 /* Prep a captured page if available */ 4508 if (page) 4509 prep_new_page(page, order, gfp_mask, alloc_flags); 4510 4511 /* Try get a page from the freelist if available */ 4512 if (!page) 4513 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 4514 4515 if (page) { 4516 struct zone *zone = page_zone(page); 4517 4518 zone->compact_blockskip_flush = false; 4519 compaction_defer_reset(zone, order, true); 4520 count_vm_event(COMPACTSUCCESS); 4521 return page; 4522 } 4523 4524 /* 4525 * It's bad if compaction run occurs and fails. The most likely reason 4526 * is that pages exist, but not enough to satisfy watermarks. 4527 */ 4528 count_vm_event(COMPACTFAIL); 4529 4530 cond_resched(); 4531 4532 return NULL; 4533 } 4534 4535 static inline bool 4536 should_compact_retry(struct alloc_context *ac, int order, int alloc_flags, 4537 enum compact_result compact_result, 4538 enum compact_priority *compact_priority, 4539 int *compaction_retries) 4540 { 4541 int max_retries = MAX_COMPACT_RETRIES; 4542 int min_priority; 4543 bool ret = false; 4544 int retries = *compaction_retries; 4545 enum compact_priority priority = *compact_priority; 4546 4547 if (!order) 4548 return false; 4549 4550 if (fatal_signal_pending(current)) 4551 return false; 4552 4553 if (compaction_made_progress(compact_result)) 4554 (*compaction_retries)++; 4555 4556 /* 4557 * compaction considers all the zone as desperately out of memory 4558 * so it doesn't really make much sense to retry except when the 4559 * failure could be caused by insufficient priority 4560 */ 4561 if (compaction_failed(compact_result)) 4562 goto check_priority; 4563 4564 /* 4565 * compaction was skipped because there are not enough order-0 pages 4566 * to work with, so we retry only if it looks like reclaim can help. 4567 */ 4568 if (compaction_needs_reclaim(compact_result)) { 4569 ret = compaction_zonelist_suitable(ac, order, alloc_flags); 4570 goto out; 4571 } 4572 4573 /* 4574 * make sure the compaction wasn't deferred or didn't bail out early 4575 * due to locks contention before we declare that we should give up. 4576 * But the next retry should use a higher priority if allowed, so 4577 * we don't just keep bailing out endlessly. 4578 */ 4579 if (compaction_withdrawn(compact_result)) { 4580 goto check_priority; 4581 } 4582 4583 /* 4584 * !costly requests are much more important than __GFP_RETRY_MAYFAIL 4585 * costly ones because they are de facto nofail and invoke OOM 4586 * killer to move on while costly can fail and users are ready 4587 * to cope with that. 1/4 retries is rather arbitrary but we 4588 * would need much more detailed feedback from compaction to 4589 * make a better decision. 4590 */ 4591 if (order > PAGE_ALLOC_COSTLY_ORDER) 4592 max_retries /= 4; 4593 if (*compaction_retries <= max_retries) { 4594 ret = true; 4595 goto out; 4596 } 4597 4598 /* 4599 * Make sure there are attempts at the highest priority if we exhausted 4600 * all retries or failed at the lower priorities. 4601 */ 4602 check_priority: 4603 min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ? 4604 MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY; 4605 4606 if (*compact_priority > min_priority) { 4607 (*compact_priority)--; 4608 *compaction_retries = 0; 4609 ret = true; 4610 } 4611 out: 4612 trace_compact_retry(order, priority, compact_result, retries, max_retries, ret); 4613 return ret; 4614 } 4615 #else 4616 static inline struct page * 4617 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order, 4618 unsigned int alloc_flags, const struct alloc_context *ac, 4619 enum compact_priority prio, enum compact_result *compact_result) 4620 { 4621 *compact_result = COMPACT_SKIPPED; 4622 return NULL; 4623 } 4624 4625 static inline bool 4626 should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags, 4627 enum compact_result compact_result, 4628 enum compact_priority *compact_priority, 4629 int *compaction_retries) 4630 { 4631 struct zone *zone; 4632 struct zoneref *z; 4633 4634 if (!order || order > PAGE_ALLOC_COSTLY_ORDER) 4635 return false; 4636 4637 /* 4638 * There are setups with compaction disabled which would prefer to loop 4639 * inside the allocator rather than hit the oom killer prematurely. 4640 * Let's give them a good hope and keep retrying while the order-0 4641 * watermarks are OK. 4642 */ 4643 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, 4644 ac->highest_zoneidx, ac->nodemask) { 4645 if (zone_watermark_ok(zone, 0, min_wmark_pages(zone), 4646 ac->highest_zoneidx, alloc_flags)) 4647 return true; 4648 } 4649 return false; 4650 } 4651 #endif /* CONFIG_COMPACTION */ 4652 4653 #ifdef CONFIG_LOCKDEP 4654 static struct lockdep_map __fs_reclaim_map = 4655 STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map); 4656 4657 static bool __need_reclaim(gfp_t gfp_mask) 4658 { 4659 /* no reclaim without waiting on it */ 4660 if (!(gfp_mask & __GFP_DIRECT_RECLAIM)) 4661 return false; 4662 4663 /* this guy won't enter reclaim */ 4664 if (current->flags & PF_MEMALLOC) 4665 return false; 4666 4667 if (gfp_mask & __GFP_NOLOCKDEP) 4668 return false; 4669 4670 return true; 4671 } 4672 4673 void __fs_reclaim_acquire(unsigned long ip) 4674 { 4675 lock_acquire_exclusive(&__fs_reclaim_map, 0, 0, NULL, ip); 4676 } 4677 4678 void __fs_reclaim_release(unsigned long ip) 4679 { 4680 lock_release(&__fs_reclaim_map, ip); 4681 } 4682 4683 void fs_reclaim_acquire(gfp_t gfp_mask) 4684 { 4685 gfp_mask = current_gfp_context(gfp_mask); 4686 4687 if (__need_reclaim(gfp_mask)) { 4688 if (gfp_mask & __GFP_FS) 4689 __fs_reclaim_acquire(_RET_IP_); 4690 4691 #ifdef CONFIG_MMU_NOTIFIER 4692 lock_map_acquire(&__mmu_notifier_invalidate_range_start_map); 4693 lock_map_release(&__mmu_notifier_invalidate_range_start_map); 4694 #endif 4695 4696 } 4697 } 4698 EXPORT_SYMBOL_GPL(fs_reclaim_acquire); 4699 4700 void fs_reclaim_release(gfp_t gfp_mask) 4701 { 4702 gfp_mask = current_gfp_context(gfp_mask); 4703 4704 if (__need_reclaim(gfp_mask)) { 4705 if (gfp_mask & __GFP_FS) 4706 __fs_reclaim_release(_RET_IP_); 4707 } 4708 } 4709 EXPORT_SYMBOL_GPL(fs_reclaim_release); 4710 #endif 4711 4712 /* 4713 * Zonelists may change due to hotplug during allocation. Detect when zonelists 4714 * have been rebuilt so allocation retries. Reader side does not lock and 4715 * retries the allocation if zonelist changes. Writer side is protected by the 4716 * embedded spin_lock. 4717 */ 4718 static DEFINE_SEQLOCK(zonelist_update_seq); 4719 4720 static unsigned int zonelist_iter_begin(void) 4721 { 4722 if (IS_ENABLED(CONFIG_MEMORY_HOTREMOVE)) 4723 return read_seqbegin(&zonelist_update_seq); 4724 4725 return 0; 4726 } 4727 4728 static unsigned int check_retry_zonelist(unsigned int seq) 4729 { 4730 if (IS_ENABLED(CONFIG_MEMORY_HOTREMOVE)) 4731 return read_seqretry(&zonelist_update_seq, seq); 4732 4733 return seq; 4734 } 4735 4736 /* Perform direct synchronous page reclaim */ 4737 static unsigned long 4738 __perform_reclaim(gfp_t gfp_mask, unsigned int order, 4739 const struct alloc_context *ac) 4740 { 4741 unsigned int noreclaim_flag; 4742 unsigned long progress; 4743 4744 cond_resched(); 4745 4746 /* We now go into synchronous reclaim */ 4747 cpuset_memory_pressure_bump(); 4748 fs_reclaim_acquire(gfp_mask); 4749 noreclaim_flag = memalloc_noreclaim_save(); 4750 4751 progress = try_to_free_pages(ac->zonelist, order, gfp_mask, 4752 ac->nodemask); 4753 4754 memalloc_noreclaim_restore(noreclaim_flag); 4755 fs_reclaim_release(gfp_mask); 4756 4757 cond_resched(); 4758 4759 return progress; 4760 } 4761 4762 /* The really slow allocator path where we enter direct reclaim */ 4763 static inline struct page * 4764 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order, 4765 unsigned int alloc_flags, const struct alloc_context *ac, 4766 unsigned long *did_some_progress) 4767 { 4768 struct page *page = NULL; 4769 unsigned long pflags; 4770 bool drained = false; 4771 4772 psi_memstall_enter(&pflags); 4773 *did_some_progress = __perform_reclaim(gfp_mask, order, ac); 4774 if (unlikely(!(*did_some_progress))) 4775 goto out; 4776 4777 retry: 4778 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 4779 4780 /* 4781 * If an allocation failed after direct reclaim, it could be because 4782 * pages are pinned on the per-cpu lists or in high alloc reserves. 4783 * Shrink them and try again 4784 */ 4785 if (!page && !drained) { 4786 unreserve_highatomic_pageblock(ac, false); 4787 drain_all_pages(NULL); 4788 drained = true; 4789 goto retry; 4790 } 4791 out: 4792 psi_memstall_leave(&pflags); 4793 4794 return page; 4795 } 4796 4797 static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask, 4798 const struct alloc_context *ac) 4799 { 4800 struct zoneref *z; 4801 struct zone *zone; 4802 pg_data_t *last_pgdat = NULL; 4803 enum zone_type highest_zoneidx = ac->highest_zoneidx; 4804 4805 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, highest_zoneidx, 4806 ac->nodemask) { 4807 if (!managed_zone(zone)) 4808 continue; 4809 if (last_pgdat != zone->zone_pgdat) { 4810 wakeup_kswapd(zone, gfp_mask, order, highest_zoneidx); 4811 last_pgdat = zone->zone_pgdat; 4812 } 4813 } 4814 } 4815 4816 static inline unsigned int 4817 gfp_to_alloc_flags(gfp_t gfp_mask) 4818 { 4819 unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET; 4820 4821 /* 4822 * __GFP_HIGH is assumed to be the same as ALLOC_HIGH 4823 * and __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD 4824 * to save two branches. 4825 */ 4826 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH); 4827 BUILD_BUG_ON(__GFP_KSWAPD_RECLAIM != (__force gfp_t) ALLOC_KSWAPD); 4828 4829 /* 4830 * The caller may dip into page reserves a bit more if the caller 4831 * cannot run direct reclaim, or if the caller has realtime scheduling 4832 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will 4833 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH). 4834 */ 4835 alloc_flags |= (__force int) 4836 (gfp_mask & (__GFP_HIGH | __GFP_KSWAPD_RECLAIM)); 4837 4838 if (gfp_mask & __GFP_ATOMIC) { 4839 /* 4840 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even 4841 * if it can't schedule. 4842 */ 4843 if (!(gfp_mask & __GFP_NOMEMALLOC)) 4844 alloc_flags |= ALLOC_HARDER; 4845 /* 4846 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the 4847 * comment for __cpuset_node_allowed(). 4848 */ 4849 alloc_flags &= ~ALLOC_CPUSET; 4850 } else if (unlikely(rt_task(current)) && in_task()) 4851 alloc_flags |= ALLOC_HARDER; 4852 4853 alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, alloc_flags); 4854 4855 return alloc_flags; 4856 } 4857 4858 static bool oom_reserves_allowed(struct task_struct *tsk) 4859 { 4860 if (!tsk_is_oom_victim(tsk)) 4861 return false; 4862 4863 /* 4864 * !MMU doesn't have oom reaper so give access to memory reserves 4865 * only to the thread with TIF_MEMDIE set 4866 */ 4867 if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE)) 4868 return false; 4869 4870 return true; 4871 } 4872 4873 /* 4874 * Distinguish requests which really need access to full memory 4875 * reserves from oom victims which can live with a portion of it 4876 */ 4877 static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask) 4878 { 4879 if (unlikely(gfp_mask & __GFP_NOMEMALLOC)) 4880 return 0; 4881 if (gfp_mask & __GFP_MEMALLOC) 4882 return ALLOC_NO_WATERMARKS; 4883 if (in_serving_softirq() && (current->flags & PF_MEMALLOC)) 4884 return ALLOC_NO_WATERMARKS; 4885 if (!in_interrupt()) { 4886 if (current->flags & PF_MEMALLOC) 4887 return ALLOC_NO_WATERMARKS; 4888 else if (oom_reserves_allowed(current)) 4889 return ALLOC_OOM; 4890 } 4891 4892 return 0; 4893 } 4894 4895 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask) 4896 { 4897 return !!__gfp_pfmemalloc_flags(gfp_mask); 4898 } 4899 4900 /* 4901 * Checks whether it makes sense to retry the reclaim to make a forward progress 4902 * for the given allocation request. 4903 * 4904 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row 4905 * without success, or when we couldn't even meet the watermark if we 4906 * reclaimed all remaining pages on the LRU lists. 4907 * 4908 * Returns true if a retry is viable or false to enter the oom path. 4909 */ 4910 static inline bool 4911 should_reclaim_retry(gfp_t gfp_mask, unsigned order, 4912 struct alloc_context *ac, int alloc_flags, 4913 bool did_some_progress, int *no_progress_loops) 4914 { 4915 struct zone *zone; 4916 struct zoneref *z; 4917 bool ret = false; 4918 4919 /* 4920 * Costly allocations might have made a progress but this doesn't mean 4921 * their order will become available due to high fragmentation so 4922 * always increment the no progress counter for them 4923 */ 4924 if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER) 4925 *no_progress_loops = 0; 4926 else 4927 (*no_progress_loops)++; 4928 4929 /* 4930 * Make sure we converge to OOM if we cannot make any progress 4931 * several times in the row. 4932 */ 4933 if (*no_progress_loops > MAX_RECLAIM_RETRIES) { 4934 /* Before OOM, exhaust highatomic_reserve */ 4935 return unreserve_highatomic_pageblock(ac, true); 4936 } 4937 4938 /* 4939 * Keep reclaiming pages while there is a chance this will lead 4940 * somewhere. If none of the target zones can satisfy our allocation 4941 * request even if all reclaimable pages are considered then we are 4942 * screwed and have to go OOM. 4943 */ 4944 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, 4945 ac->highest_zoneidx, ac->nodemask) { 4946 unsigned long available; 4947 unsigned long reclaimable; 4948 unsigned long min_wmark = min_wmark_pages(zone); 4949 bool wmark; 4950 4951 available = reclaimable = zone_reclaimable_pages(zone); 4952 available += zone_page_state_snapshot(zone, NR_FREE_PAGES); 4953 4954 /* 4955 * Would the allocation succeed if we reclaimed all 4956 * reclaimable pages? 4957 */ 4958 wmark = __zone_watermark_ok(zone, order, min_wmark, 4959 ac->highest_zoneidx, alloc_flags, available); 4960 trace_reclaim_retry_zone(z, order, reclaimable, 4961 available, min_wmark, *no_progress_loops, wmark); 4962 if (wmark) { 4963 ret = true; 4964 break; 4965 } 4966 } 4967 4968 /* 4969 * Memory allocation/reclaim might be called from a WQ context and the 4970 * current implementation of the WQ concurrency control doesn't 4971 * recognize that a particular WQ is congested if the worker thread is 4972 * looping without ever sleeping. Therefore we have to do a short sleep 4973 * here rather than calling cond_resched(). 4974 */ 4975 if (current->flags & PF_WQ_WORKER) 4976 schedule_timeout_uninterruptible(1); 4977 else 4978 cond_resched(); 4979 return ret; 4980 } 4981 4982 static inline bool 4983 check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac) 4984 { 4985 /* 4986 * It's possible that cpuset's mems_allowed and the nodemask from 4987 * mempolicy don't intersect. This should be normally dealt with by 4988 * policy_nodemask(), but it's possible to race with cpuset update in 4989 * such a way the check therein was true, and then it became false 4990 * before we got our cpuset_mems_cookie here. 4991 * This assumes that for all allocations, ac->nodemask can come only 4992 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored 4993 * when it does not intersect with the cpuset restrictions) or the 4994 * caller can deal with a violated nodemask. 4995 */ 4996 if (cpusets_enabled() && ac->nodemask && 4997 !cpuset_nodemask_valid_mems_allowed(ac->nodemask)) { 4998 ac->nodemask = NULL; 4999 return true; 5000 } 5001 5002 /* 5003 * When updating a task's mems_allowed or mempolicy nodemask, it is 5004 * possible to race with parallel threads in such a way that our 5005 * allocation can fail while the mask is being updated. If we are about 5006 * to fail, check if the cpuset changed during allocation and if so, 5007 * retry. 5008 */ 5009 if (read_mems_allowed_retry(cpuset_mems_cookie)) 5010 return true; 5011 5012 return false; 5013 } 5014 5015 static inline struct page * 5016 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order, 5017 struct alloc_context *ac) 5018 { 5019 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM; 5020 const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER; 5021 struct page *page = NULL; 5022 unsigned int alloc_flags; 5023 unsigned long did_some_progress; 5024 enum compact_priority compact_priority; 5025 enum compact_result compact_result; 5026 int compaction_retries; 5027 int no_progress_loops; 5028 unsigned int cpuset_mems_cookie; 5029 unsigned int zonelist_iter_cookie; 5030 int reserve_flags; 5031 5032 /* 5033 * We also sanity check to catch abuse of atomic reserves being used by 5034 * callers that are not in atomic context. 5035 */ 5036 if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) == 5037 (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM))) 5038 gfp_mask &= ~__GFP_ATOMIC; 5039 5040 restart: 5041 compaction_retries = 0; 5042 no_progress_loops = 0; 5043 compact_priority = DEF_COMPACT_PRIORITY; 5044 cpuset_mems_cookie = read_mems_allowed_begin(); 5045 zonelist_iter_cookie = zonelist_iter_begin(); 5046 5047 /* 5048 * The fast path uses conservative alloc_flags to succeed only until 5049 * kswapd needs to be woken up, and to avoid the cost of setting up 5050 * alloc_flags precisely. So we do that now. 5051 */ 5052 alloc_flags = gfp_to_alloc_flags(gfp_mask); 5053 5054 /* 5055 * We need to recalculate the starting point for the zonelist iterator 5056 * because we might have used different nodemask in the fast path, or 5057 * there was a cpuset modification and we are retrying - otherwise we 5058 * could end up iterating over non-eligible zones endlessly. 5059 */ 5060 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist, 5061 ac->highest_zoneidx, ac->nodemask); 5062 if (!ac->preferred_zoneref->zone) 5063 goto nopage; 5064 5065 /* 5066 * Check for insane configurations where the cpuset doesn't contain 5067 * any suitable zone to satisfy the request - e.g. non-movable 5068 * GFP_HIGHUSER allocations from MOVABLE nodes only. 5069 */ 5070 if (cpusets_insane_config() && (gfp_mask & __GFP_HARDWALL)) { 5071 struct zoneref *z = first_zones_zonelist(ac->zonelist, 5072 ac->highest_zoneidx, 5073 &cpuset_current_mems_allowed); 5074 if (!z->zone) 5075 goto nopage; 5076 } 5077 5078 if (alloc_flags & ALLOC_KSWAPD) 5079 wake_all_kswapds(order, gfp_mask, ac); 5080 5081 /* 5082 * The adjusted alloc_flags might result in immediate success, so try 5083 * that first 5084 */ 5085 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 5086 if (page) 5087 goto got_pg; 5088 5089 /* 5090 * For costly allocations, try direct compaction first, as it's likely 5091 * that we have enough base pages and don't need to reclaim. For non- 5092 * movable high-order allocations, do that as well, as compaction will 5093 * try prevent permanent fragmentation by migrating from blocks of the 5094 * same migratetype. 5095 * Don't try this for allocations that are allowed to ignore 5096 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen. 5097 */ 5098 if (can_direct_reclaim && 5099 (costly_order || 5100 (order > 0 && ac->migratetype != MIGRATE_MOVABLE)) 5101 && !gfp_pfmemalloc_allowed(gfp_mask)) { 5102 page = __alloc_pages_direct_compact(gfp_mask, order, 5103 alloc_flags, ac, 5104 INIT_COMPACT_PRIORITY, 5105 &compact_result); 5106 if (page) 5107 goto got_pg; 5108 5109 /* 5110 * Checks for costly allocations with __GFP_NORETRY, which 5111 * includes some THP page fault allocations 5112 */ 5113 if (costly_order && (gfp_mask & __GFP_NORETRY)) { 5114 /* 5115 * If allocating entire pageblock(s) and compaction 5116 * failed because all zones are below low watermarks 5117 * or is prohibited because it recently failed at this 5118 * order, fail immediately unless the allocator has 5119 * requested compaction and reclaim retry. 5120 * 5121 * Reclaim is 5122 * - potentially very expensive because zones are far 5123 * below their low watermarks or this is part of very 5124 * bursty high order allocations, 5125 * - not guaranteed to help because isolate_freepages() 5126 * may not iterate over freed pages as part of its 5127 * linear scan, and 5128 * - unlikely to make entire pageblocks free on its 5129 * own. 5130 */ 5131 if (compact_result == COMPACT_SKIPPED || 5132 compact_result == COMPACT_DEFERRED) 5133 goto nopage; 5134 5135 /* 5136 * Looks like reclaim/compaction is worth trying, but 5137 * sync compaction could be very expensive, so keep 5138 * using async compaction. 5139 */ 5140 compact_priority = INIT_COMPACT_PRIORITY; 5141 } 5142 } 5143 5144 retry: 5145 /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */ 5146 if (alloc_flags & ALLOC_KSWAPD) 5147 wake_all_kswapds(order, gfp_mask, ac); 5148 5149 reserve_flags = __gfp_pfmemalloc_flags(gfp_mask); 5150 if (reserve_flags) 5151 alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, reserve_flags); 5152 5153 /* 5154 * Reset the nodemask and zonelist iterators if memory policies can be 5155 * ignored. These allocations are high priority and system rather than 5156 * user oriented. 5157 */ 5158 if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) { 5159 ac->nodemask = NULL; 5160 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist, 5161 ac->highest_zoneidx, ac->nodemask); 5162 } 5163 5164 /* Attempt with potentially adjusted zonelist and alloc_flags */ 5165 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 5166 if (page) 5167 goto got_pg; 5168 5169 /* Caller is not willing to reclaim, we can't balance anything */ 5170 if (!can_direct_reclaim) 5171 goto nopage; 5172 5173 /* Avoid recursion of direct reclaim */ 5174 if (current->flags & PF_MEMALLOC) 5175 goto nopage; 5176 5177 /* Try direct reclaim and then allocating */ 5178 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac, 5179 &did_some_progress); 5180 if (page) 5181 goto got_pg; 5182 5183 /* Try direct compaction and then allocating */ 5184 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac, 5185 compact_priority, &compact_result); 5186 if (page) 5187 goto got_pg; 5188 5189 /* Do not loop if specifically requested */ 5190 if (gfp_mask & __GFP_NORETRY) 5191 goto nopage; 5192 5193 /* 5194 * Do not retry costly high order allocations unless they are 5195 * __GFP_RETRY_MAYFAIL 5196 */ 5197 if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL)) 5198 goto nopage; 5199 5200 if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags, 5201 did_some_progress > 0, &no_progress_loops)) 5202 goto retry; 5203 5204 /* 5205 * It doesn't make any sense to retry for the compaction if the order-0 5206 * reclaim is not able to make any progress because the current 5207 * implementation of the compaction depends on the sufficient amount 5208 * of free memory (see __compaction_suitable) 5209 */ 5210 if (did_some_progress > 0 && 5211 should_compact_retry(ac, order, alloc_flags, 5212 compact_result, &compact_priority, 5213 &compaction_retries)) 5214 goto retry; 5215 5216 5217 /* 5218 * Deal with possible cpuset update races or zonelist updates to avoid 5219 * a unnecessary OOM kill. 5220 */ 5221 if (check_retry_cpuset(cpuset_mems_cookie, ac) || 5222 check_retry_zonelist(zonelist_iter_cookie)) 5223 goto restart; 5224 5225 /* Reclaim has failed us, start killing things */ 5226 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress); 5227 if (page) 5228 goto got_pg; 5229 5230 /* Avoid allocations with no watermarks from looping endlessly */ 5231 if (tsk_is_oom_victim(current) && 5232 (alloc_flags & ALLOC_OOM || 5233 (gfp_mask & __GFP_NOMEMALLOC))) 5234 goto nopage; 5235 5236 /* Retry as long as the OOM killer is making progress */ 5237 if (did_some_progress) { 5238 no_progress_loops = 0; 5239 goto retry; 5240 } 5241 5242 nopage: 5243 /* 5244 * Deal with possible cpuset update races or zonelist updates to avoid 5245 * a unnecessary OOM kill. 5246 */ 5247 if (check_retry_cpuset(cpuset_mems_cookie, ac) || 5248 check_retry_zonelist(zonelist_iter_cookie)) 5249 goto restart; 5250 5251 /* 5252 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure 5253 * we always retry 5254 */ 5255 if (gfp_mask & __GFP_NOFAIL) { 5256 /* 5257 * All existing users of the __GFP_NOFAIL are blockable, so warn 5258 * of any new users that actually require GFP_NOWAIT 5259 */ 5260 if (WARN_ON_ONCE_GFP(!can_direct_reclaim, gfp_mask)) 5261 goto fail; 5262 5263 /* 5264 * PF_MEMALLOC request from this context is rather bizarre 5265 * because we cannot reclaim anything and only can loop waiting 5266 * for somebody to do a work for us 5267 */ 5268 WARN_ON_ONCE_GFP(current->flags & PF_MEMALLOC, gfp_mask); 5269 5270 /* 5271 * non failing costly orders are a hard requirement which we 5272 * are not prepared for much so let's warn about these users 5273 * so that we can identify them and convert them to something 5274 * else. 5275 */ 5276 WARN_ON_ONCE_GFP(order > PAGE_ALLOC_COSTLY_ORDER, gfp_mask); 5277 5278 /* 5279 * Help non-failing allocations by giving them access to memory 5280 * reserves but do not use ALLOC_NO_WATERMARKS because this 5281 * could deplete whole memory reserves which would just make 5282 * the situation worse 5283 */ 5284 page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac); 5285 if (page) 5286 goto got_pg; 5287 5288 cond_resched(); 5289 goto retry; 5290 } 5291 fail: 5292 warn_alloc(gfp_mask, ac->nodemask, 5293 "page allocation failure: order:%u", order); 5294 got_pg: 5295 return page; 5296 } 5297 5298 static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order, 5299 int preferred_nid, nodemask_t *nodemask, 5300 struct alloc_context *ac, gfp_t *alloc_gfp, 5301 unsigned int *alloc_flags) 5302 { 5303 ac->highest_zoneidx = gfp_zone(gfp_mask); 5304 ac->zonelist = node_zonelist(preferred_nid, gfp_mask); 5305 ac->nodemask = nodemask; 5306 ac->migratetype = gfp_migratetype(gfp_mask); 5307 5308 if (cpusets_enabled()) { 5309 *alloc_gfp |= __GFP_HARDWALL; 5310 /* 5311 * When we are in the interrupt context, it is irrelevant 5312 * to the current task context. It means that any node ok. 5313 */ 5314 if (in_task() && !ac->nodemask) 5315 ac->nodemask = &cpuset_current_mems_allowed; 5316 else 5317 *alloc_flags |= ALLOC_CPUSET; 5318 } 5319 5320 might_alloc(gfp_mask); 5321 5322 if (should_fail_alloc_page(gfp_mask, order)) 5323 return false; 5324 5325 *alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, *alloc_flags); 5326 5327 /* Dirty zone balancing only done in the fast path */ 5328 ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE); 5329 5330 /* 5331 * The preferred zone is used for statistics but crucially it is 5332 * also used as the starting point for the zonelist iterator. It 5333 * may get reset for allocations that ignore memory policies. 5334 */ 5335 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist, 5336 ac->highest_zoneidx, ac->nodemask); 5337 5338 return true; 5339 } 5340 5341 /* 5342 * __alloc_pages_bulk - Allocate a number of order-0 pages to a list or array 5343 * @gfp: GFP flags for the allocation 5344 * @preferred_nid: The preferred NUMA node ID to allocate from 5345 * @nodemask: Set of nodes to allocate from, may be NULL 5346 * @nr_pages: The number of pages desired on the list or array 5347 * @page_list: Optional list to store the allocated pages 5348 * @page_array: Optional array to store the pages 5349 * 5350 * This is a batched version of the page allocator that attempts to 5351 * allocate nr_pages quickly. Pages are added to page_list if page_list 5352 * is not NULL, otherwise it is assumed that the page_array is valid. 5353 * 5354 * For lists, nr_pages is the number of pages that should be allocated. 5355 * 5356 * For arrays, only NULL elements are populated with pages and nr_pages 5357 * is the maximum number of pages that will be stored in the array. 5358 * 5359 * Returns the number of pages on the list or array. 5360 */ 5361 unsigned long __alloc_pages_bulk(gfp_t gfp, int preferred_nid, 5362 nodemask_t *nodemask, int nr_pages, 5363 struct list_head *page_list, 5364 struct page **page_array) 5365 { 5366 struct page *page; 5367 unsigned long flags; 5368 unsigned long __maybe_unused UP_flags; 5369 struct zone *zone; 5370 struct zoneref *z; 5371 struct per_cpu_pages *pcp; 5372 struct list_head *pcp_list; 5373 struct alloc_context ac; 5374 gfp_t alloc_gfp; 5375 unsigned int alloc_flags = ALLOC_WMARK_LOW; 5376 int nr_populated = 0, nr_account = 0; 5377 5378 /* 5379 * Skip populated array elements to determine if any pages need 5380 * to be allocated before disabling IRQs. 5381 */ 5382 while (page_array && nr_populated < nr_pages && page_array[nr_populated]) 5383 nr_populated++; 5384 5385 /* No pages requested? */ 5386 if (unlikely(nr_pages <= 0)) 5387 goto out; 5388 5389 /* Already populated array? */ 5390 if (unlikely(page_array && nr_pages - nr_populated == 0)) 5391 goto out; 5392 5393 /* Bulk allocator does not support memcg accounting. */ 5394 if (memcg_kmem_enabled() && (gfp & __GFP_ACCOUNT)) 5395 goto failed; 5396 5397 /* Use the single page allocator for one page. */ 5398 if (nr_pages - nr_populated == 1) 5399 goto failed; 5400 5401 #ifdef CONFIG_PAGE_OWNER 5402 /* 5403 * PAGE_OWNER may recurse into the allocator to allocate space to 5404 * save the stack with pagesets.lock held. Releasing/reacquiring 5405 * removes much of the performance benefit of bulk allocation so 5406 * force the caller to allocate one page at a time as it'll have 5407 * similar performance to added complexity to the bulk allocator. 5408 */ 5409 if (static_branch_unlikely(&page_owner_inited)) 5410 goto failed; 5411 #endif 5412 5413 /* May set ALLOC_NOFRAGMENT, fragmentation will return 1 page. */ 5414 gfp &= gfp_allowed_mask; 5415 alloc_gfp = gfp; 5416 if (!prepare_alloc_pages(gfp, 0, preferred_nid, nodemask, &ac, &alloc_gfp, &alloc_flags)) 5417 goto out; 5418 gfp = alloc_gfp; 5419 5420 /* Find an allowed local zone that meets the low watermark. */ 5421 for_each_zone_zonelist_nodemask(zone, z, ac.zonelist, ac.highest_zoneidx, ac.nodemask) { 5422 unsigned long mark; 5423 5424 if (cpusets_enabled() && (alloc_flags & ALLOC_CPUSET) && 5425 !__cpuset_zone_allowed(zone, gfp)) { 5426 continue; 5427 } 5428 5429 if (nr_online_nodes > 1 && zone != ac.preferred_zoneref->zone && 5430 zone_to_nid(zone) != zone_to_nid(ac.preferred_zoneref->zone)) { 5431 goto failed; 5432 } 5433 5434 mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK) + nr_pages; 5435 if (zone_watermark_fast(zone, 0, mark, 5436 zonelist_zone_idx(ac.preferred_zoneref), 5437 alloc_flags, gfp)) { 5438 break; 5439 } 5440 } 5441 5442 /* 5443 * If there are no allowed local zones that meets the watermarks then 5444 * try to allocate a single page and reclaim if necessary. 5445 */ 5446 if (unlikely(!zone)) 5447 goto failed; 5448 5449 /* Is a parallel drain in progress? */ 5450 pcp_trylock_prepare(UP_flags); 5451 pcp = pcp_spin_trylock_irqsave(zone->per_cpu_pageset, flags); 5452 if (!pcp) 5453 goto failed_irq; 5454 5455 /* Attempt the batch allocation */ 5456 pcp_list = &pcp->lists[order_to_pindex(ac.migratetype, 0)]; 5457 while (nr_populated < nr_pages) { 5458 5459 /* Skip existing pages */ 5460 if (page_array && page_array[nr_populated]) { 5461 nr_populated++; 5462 continue; 5463 } 5464 5465 page = __rmqueue_pcplist(zone, 0, ac.migratetype, alloc_flags, 5466 pcp, pcp_list); 5467 if (unlikely(!page)) { 5468 /* Try and allocate at least one page */ 5469 if (!nr_account) { 5470 pcp_spin_unlock_irqrestore(pcp, flags); 5471 goto failed_irq; 5472 } 5473 break; 5474 } 5475 nr_account++; 5476 5477 prep_new_page(page, 0, gfp, 0); 5478 if (page_list) 5479 list_add(&page->lru, page_list); 5480 else 5481 page_array[nr_populated] = page; 5482 nr_populated++; 5483 } 5484 5485 pcp_spin_unlock_irqrestore(pcp, flags); 5486 pcp_trylock_finish(UP_flags); 5487 5488 __count_zid_vm_events(PGALLOC, zone_idx(zone), nr_account); 5489 zone_statistics(ac.preferred_zoneref->zone, zone, nr_account); 5490 5491 out: 5492 return nr_populated; 5493 5494 failed_irq: 5495 pcp_trylock_finish(UP_flags); 5496 5497 failed: 5498 page = __alloc_pages(gfp, 0, preferred_nid, nodemask); 5499 if (page) { 5500 if (page_list) 5501 list_add(&page->lru, page_list); 5502 else 5503 page_array[nr_populated] = page; 5504 nr_populated++; 5505 } 5506 5507 goto out; 5508 } 5509 EXPORT_SYMBOL_GPL(__alloc_pages_bulk); 5510 5511 /* 5512 * This is the 'heart' of the zoned buddy allocator. 5513 */ 5514 struct page *__alloc_pages(gfp_t gfp, unsigned int order, int preferred_nid, 5515 nodemask_t *nodemask) 5516 { 5517 struct page *page; 5518 unsigned int alloc_flags = ALLOC_WMARK_LOW; 5519 gfp_t alloc_gfp; /* The gfp_t that was actually used for allocation */ 5520 struct alloc_context ac = { }; 5521 5522 /* 5523 * There are several places where we assume that the order value is sane 5524 * so bail out early if the request is out of bound. 5525 */ 5526 if (WARN_ON_ONCE_GFP(order >= MAX_ORDER, gfp)) 5527 return NULL; 5528 5529 gfp &= gfp_allowed_mask; 5530 /* 5531 * Apply scoped allocation constraints. This is mainly about GFP_NOFS 5532 * resp. GFP_NOIO which has to be inherited for all allocation requests 5533 * from a particular context which has been marked by 5534 * memalloc_no{fs,io}_{save,restore}. And PF_MEMALLOC_PIN which ensures 5535 * movable zones are not used during allocation. 5536 */ 5537 gfp = current_gfp_context(gfp); 5538 alloc_gfp = gfp; 5539 if (!prepare_alloc_pages(gfp, order, preferred_nid, nodemask, &ac, 5540 &alloc_gfp, &alloc_flags)) 5541 return NULL; 5542 5543 /* 5544 * Forbid the first pass from falling back to types that fragment 5545 * memory until all local zones are considered. 5546 */ 5547 alloc_flags |= alloc_flags_nofragment(ac.preferred_zoneref->zone, gfp); 5548 5549 /* First allocation attempt */ 5550 page = get_page_from_freelist(alloc_gfp, order, alloc_flags, &ac); 5551 if (likely(page)) 5552 goto out; 5553 5554 alloc_gfp = gfp; 5555 ac.spread_dirty_pages = false; 5556 5557 /* 5558 * Restore the original nodemask if it was potentially replaced with 5559 * &cpuset_current_mems_allowed to optimize the fast-path attempt. 5560 */ 5561 ac.nodemask = nodemask; 5562 5563 page = __alloc_pages_slowpath(alloc_gfp, order, &ac); 5564 5565 out: 5566 if (memcg_kmem_enabled() && (gfp & __GFP_ACCOUNT) && page && 5567 unlikely(__memcg_kmem_charge_page(page, gfp, order) != 0)) { 5568 __free_pages(page, order); 5569 page = NULL; 5570 } 5571 5572 trace_mm_page_alloc(page, order, alloc_gfp, ac.migratetype); 5573 kmsan_alloc_page(page, order, alloc_gfp); 5574 5575 return page; 5576 } 5577 EXPORT_SYMBOL(__alloc_pages); 5578 5579 struct folio *__folio_alloc(gfp_t gfp, unsigned int order, int preferred_nid, 5580 nodemask_t *nodemask) 5581 { 5582 struct page *page = __alloc_pages(gfp | __GFP_COMP, order, 5583 preferred_nid, nodemask); 5584 5585 if (page && order > 1) 5586 prep_transhuge_page(page); 5587 return (struct folio *)page; 5588 } 5589 EXPORT_SYMBOL(__folio_alloc); 5590 5591 /* 5592 * Common helper functions. Never use with __GFP_HIGHMEM because the returned 5593 * address cannot represent highmem pages. Use alloc_pages and then kmap if 5594 * you need to access high mem. 5595 */ 5596 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order) 5597 { 5598 struct page *page; 5599 5600 page = alloc_pages(gfp_mask & ~__GFP_HIGHMEM, order); 5601 if (!page) 5602 return 0; 5603 return (unsigned long) page_address(page); 5604 } 5605 EXPORT_SYMBOL(__get_free_pages); 5606 5607 unsigned long get_zeroed_page(gfp_t gfp_mask) 5608 { 5609 return __get_free_pages(gfp_mask | __GFP_ZERO, 0); 5610 } 5611 EXPORT_SYMBOL(get_zeroed_page); 5612 5613 /** 5614 * __free_pages - Free pages allocated with alloc_pages(). 5615 * @page: The page pointer returned from alloc_pages(). 5616 * @order: The order of the allocation. 5617 * 5618 * This function can free multi-page allocations that are not compound 5619 * pages. It does not check that the @order passed in matches that of 5620 * the allocation, so it is easy to leak memory. Freeing more memory 5621 * than was allocated will probably emit a warning. 5622 * 5623 * If the last reference to this page is speculative, it will be released 5624 * by put_page() which only frees the first page of a non-compound 5625 * allocation. To prevent the remaining pages from being leaked, we free 5626 * the subsequent pages here. If you want to use the page's reference 5627 * count to decide when to free the allocation, you should allocate a 5628 * compound page, and use put_page() instead of __free_pages(). 5629 * 5630 * Context: May be called in interrupt context or while holding a normal 5631 * spinlock, but not in NMI context or while holding a raw spinlock. 5632 */ 5633 void __free_pages(struct page *page, unsigned int order) 5634 { 5635 if (put_page_testzero(page)) 5636 free_the_page(page, order); 5637 else if (!PageHead(page)) 5638 while (order-- > 0) 5639 free_the_page(page + (1 << order), order); 5640 } 5641 EXPORT_SYMBOL(__free_pages); 5642 5643 void free_pages(unsigned long addr, unsigned int order) 5644 { 5645 if (addr != 0) { 5646 VM_BUG_ON(!virt_addr_valid((void *)addr)); 5647 __free_pages(virt_to_page((void *)addr), order); 5648 } 5649 } 5650 5651 EXPORT_SYMBOL(free_pages); 5652 5653 /* 5654 * Page Fragment: 5655 * An arbitrary-length arbitrary-offset area of memory which resides 5656 * within a 0 or higher order page. Multiple fragments within that page 5657 * are individually refcounted, in the page's reference counter. 5658 * 5659 * The page_frag functions below provide a simple allocation framework for 5660 * page fragments. This is used by the network stack and network device 5661 * drivers to provide a backing region of memory for use as either an 5662 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info. 5663 */ 5664 static struct page *__page_frag_cache_refill(struct page_frag_cache *nc, 5665 gfp_t gfp_mask) 5666 { 5667 struct page *page = NULL; 5668 gfp_t gfp = gfp_mask; 5669 5670 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE) 5671 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY | 5672 __GFP_NOMEMALLOC; 5673 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask, 5674 PAGE_FRAG_CACHE_MAX_ORDER); 5675 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE; 5676 #endif 5677 if (unlikely(!page)) 5678 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0); 5679 5680 nc->va = page ? page_address(page) : NULL; 5681 5682 return page; 5683 } 5684 5685 void __page_frag_cache_drain(struct page *page, unsigned int count) 5686 { 5687 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page); 5688 5689 if (page_ref_sub_and_test(page, count)) 5690 free_the_page(page, compound_order(page)); 5691 } 5692 EXPORT_SYMBOL(__page_frag_cache_drain); 5693 5694 void *page_frag_alloc_align(struct page_frag_cache *nc, 5695 unsigned int fragsz, gfp_t gfp_mask, 5696 unsigned int align_mask) 5697 { 5698 unsigned int size = PAGE_SIZE; 5699 struct page *page; 5700 int offset; 5701 5702 if (unlikely(!nc->va)) { 5703 refill: 5704 page = __page_frag_cache_refill(nc, gfp_mask); 5705 if (!page) 5706 return NULL; 5707 5708 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE) 5709 /* if size can vary use size else just use PAGE_SIZE */ 5710 size = nc->size; 5711 #endif 5712 /* Even if we own the page, we do not use atomic_set(). 5713 * This would break get_page_unless_zero() users. 5714 */ 5715 page_ref_add(page, PAGE_FRAG_CACHE_MAX_SIZE); 5716 5717 /* reset page count bias and offset to start of new frag */ 5718 nc->pfmemalloc = page_is_pfmemalloc(page); 5719 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1; 5720 nc->offset = size; 5721 } 5722 5723 offset = nc->offset - fragsz; 5724 if (unlikely(offset < 0)) { 5725 page = virt_to_page(nc->va); 5726 5727 if (!page_ref_sub_and_test(page, nc->pagecnt_bias)) 5728 goto refill; 5729 5730 if (unlikely(nc->pfmemalloc)) { 5731 free_the_page(page, compound_order(page)); 5732 goto refill; 5733 } 5734 5735 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE) 5736 /* if size can vary use size else just use PAGE_SIZE */ 5737 size = nc->size; 5738 #endif 5739 /* OK, page count is 0, we can safely set it */ 5740 set_page_count(page, PAGE_FRAG_CACHE_MAX_SIZE + 1); 5741 5742 /* reset page count bias and offset to start of new frag */ 5743 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1; 5744 offset = size - fragsz; 5745 if (unlikely(offset < 0)) { 5746 /* 5747 * The caller is trying to allocate a fragment 5748 * with fragsz > PAGE_SIZE but the cache isn't big 5749 * enough to satisfy the request, this may 5750 * happen in low memory conditions. 5751 * We don't release the cache page because 5752 * it could make memory pressure worse 5753 * so we simply return NULL here. 5754 */ 5755 return NULL; 5756 } 5757 } 5758 5759 nc->pagecnt_bias--; 5760 offset &= align_mask; 5761 nc->offset = offset; 5762 5763 return nc->va + offset; 5764 } 5765 EXPORT_SYMBOL(page_frag_alloc_align); 5766 5767 /* 5768 * Frees a page fragment allocated out of either a compound or order 0 page. 5769 */ 5770 void page_frag_free(void *addr) 5771 { 5772 struct page *page = virt_to_head_page(addr); 5773 5774 if (unlikely(put_page_testzero(page))) 5775 free_the_page(page, compound_order(page)); 5776 } 5777 EXPORT_SYMBOL(page_frag_free); 5778 5779 static void *make_alloc_exact(unsigned long addr, unsigned int order, 5780 size_t size) 5781 { 5782 if (addr) { 5783 unsigned long alloc_end = addr + (PAGE_SIZE << order); 5784 unsigned long used = addr + PAGE_ALIGN(size); 5785 5786 split_page(virt_to_page((void *)addr), order); 5787 while (used < alloc_end) { 5788 free_page(used); 5789 used += PAGE_SIZE; 5790 } 5791 } 5792 return (void *)addr; 5793 } 5794 5795 /** 5796 * alloc_pages_exact - allocate an exact number physically-contiguous pages. 5797 * @size: the number of bytes to allocate 5798 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP 5799 * 5800 * This function is similar to alloc_pages(), except that it allocates the 5801 * minimum number of pages to satisfy the request. alloc_pages() can only 5802 * allocate memory in power-of-two pages. 5803 * 5804 * This function is also limited by MAX_ORDER. 5805 * 5806 * Memory allocated by this function must be released by free_pages_exact(). 5807 * 5808 * Return: pointer to the allocated area or %NULL in case of error. 5809 */ 5810 void *alloc_pages_exact(size_t size, gfp_t gfp_mask) 5811 { 5812 unsigned int order = get_order(size); 5813 unsigned long addr; 5814 5815 if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM))) 5816 gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM); 5817 5818 addr = __get_free_pages(gfp_mask, order); 5819 return make_alloc_exact(addr, order, size); 5820 } 5821 EXPORT_SYMBOL(alloc_pages_exact); 5822 5823 /** 5824 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous 5825 * pages on a node. 5826 * @nid: the preferred node ID where memory should be allocated 5827 * @size: the number of bytes to allocate 5828 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP 5829 * 5830 * Like alloc_pages_exact(), but try to allocate on node nid first before falling 5831 * back. 5832 * 5833 * Return: pointer to the allocated area or %NULL in case of error. 5834 */ 5835 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask) 5836 { 5837 unsigned int order = get_order(size); 5838 struct page *p; 5839 5840 if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM))) 5841 gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM); 5842 5843 p = alloc_pages_node(nid, gfp_mask, order); 5844 if (!p) 5845 return NULL; 5846 return make_alloc_exact((unsigned long)page_address(p), order, size); 5847 } 5848 5849 /** 5850 * free_pages_exact - release memory allocated via alloc_pages_exact() 5851 * @virt: the value returned by alloc_pages_exact. 5852 * @size: size of allocation, same value as passed to alloc_pages_exact(). 5853 * 5854 * Release the memory allocated by a previous call to alloc_pages_exact. 5855 */ 5856 void free_pages_exact(void *virt, size_t size) 5857 { 5858 unsigned long addr = (unsigned long)virt; 5859 unsigned long end = addr + PAGE_ALIGN(size); 5860 5861 while (addr < end) { 5862 free_page(addr); 5863 addr += PAGE_SIZE; 5864 } 5865 } 5866 EXPORT_SYMBOL(free_pages_exact); 5867 5868 /** 5869 * nr_free_zone_pages - count number of pages beyond high watermark 5870 * @offset: The zone index of the highest zone 5871 * 5872 * nr_free_zone_pages() counts the number of pages which are beyond the 5873 * high watermark within all zones at or below a given zone index. For each 5874 * zone, the number of pages is calculated as: 5875 * 5876 * nr_free_zone_pages = managed_pages - high_pages 5877 * 5878 * Return: number of pages beyond high watermark. 5879 */ 5880 static unsigned long nr_free_zone_pages(int offset) 5881 { 5882 struct zoneref *z; 5883 struct zone *zone; 5884 5885 /* Just pick one node, since fallback list is circular */ 5886 unsigned long sum = 0; 5887 5888 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL); 5889 5890 for_each_zone_zonelist(zone, z, zonelist, offset) { 5891 unsigned long size = zone_managed_pages(zone); 5892 unsigned long high = high_wmark_pages(zone); 5893 if (size > high) 5894 sum += size - high; 5895 } 5896 5897 return sum; 5898 } 5899 5900 /** 5901 * nr_free_buffer_pages - count number of pages beyond high watermark 5902 * 5903 * nr_free_buffer_pages() counts the number of pages which are beyond the high 5904 * watermark within ZONE_DMA and ZONE_NORMAL. 5905 * 5906 * Return: number of pages beyond high watermark within ZONE_DMA and 5907 * ZONE_NORMAL. 5908 */ 5909 unsigned long nr_free_buffer_pages(void) 5910 { 5911 return nr_free_zone_pages(gfp_zone(GFP_USER)); 5912 } 5913 EXPORT_SYMBOL_GPL(nr_free_buffer_pages); 5914 5915 static inline void show_node(struct zone *zone) 5916 { 5917 if (IS_ENABLED(CONFIG_NUMA)) 5918 printk("Node %d ", zone_to_nid(zone)); 5919 } 5920 5921 long si_mem_available(void) 5922 { 5923 long available; 5924 unsigned long pagecache; 5925 unsigned long wmark_low = 0; 5926 unsigned long pages[NR_LRU_LISTS]; 5927 unsigned long reclaimable; 5928 struct zone *zone; 5929 int lru; 5930 5931 for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++) 5932 pages[lru] = global_node_page_state(NR_LRU_BASE + lru); 5933 5934 for_each_zone(zone) 5935 wmark_low += low_wmark_pages(zone); 5936 5937 /* 5938 * Estimate the amount of memory available for userspace allocations, 5939 * without causing swapping or OOM. 5940 */ 5941 available = global_zone_page_state(NR_FREE_PAGES) - totalreserve_pages; 5942 5943 /* 5944 * Not all the page cache can be freed, otherwise the system will 5945 * start swapping or thrashing. Assume at least half of the page 5946 * cache, or the low watermark worth of cache, needs to stay. 5947 */ 5948 pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE]; 5949 pagecache -= min(pagecache / 2, wmark_low); 5950 available += pagecache; 5951 5952 /* 5953 * Part of the reclaimable slab and other kernel memory consists of 5954 * items that are in use, and cannot be freed. Cap this estimate at the 5955 * low watermark. 5956 */ 5957 reclaimable = global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B) + 5958 global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE); 5959 available += reclaimable - min(reclaimable / 2, wmark_low); 5960 5961 if (available < 0) 5962 available = 0; 5963 return available; 5964 } 5965 EXPORT_SYMBOL_GPL(si_mem_available); 5966 5967 void si_meminfo(struct sysinfo *val) 5968 { 5969 val->totalram = totalram_pages(); 5970 val->sharedram = global_node_page_state(NR_SHMEM); 5971 val->freeram = global_zone_page_state(NR_FREE_PAGES); 5972 val->bufferram = nr_blockdev_pages(); 5973 val->totalhigh = totalhigh_pages(); 5974 val->freehigh = nr_free_highpages(); 5975 val->mem_unit = PAGE_SIZE; 5976 } 5977 5978 EXPORT_SYMBOL(si_meminfo); 5979 5980 #ifdef CONFIG_NUMA 5981 void si_meminfo_node(struct sysinfo *val, int nid) 5982 { 5983 int zone_type; /* needs to be signed */ 5984 unsigned long managed_pages = 0; 5985 unsigned long managed_highpages = 0; 5986 unsigned long free_highpages = 0; 5987 pg_data_t *pgdat = NODE_DATA(nid); 5988 5989 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) 5990 managed_pages += zone_managed_pages(&pgdat->node_zones[zone_type]); 5991 val->totalram = managed_pages; 5992 val->sharedram = node_page_state(pgdat, NR_SHMEM); 5993 val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES); 5994 #ifdef CONFIG_HIGHMEM 5995 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) { 5996 struct zone *zone = &pgdat->node_zones[zone_type]; 5997 5998 if (is_highmem(zone)) { 5999 managed_highpages += zone_managed_pages(zone); 6000 free_highpages += zone_page_state(zone, NR_FREE_PAGES); 6001 } 6002 } 6003 val->totalhigh = managed_highpages; 6004 val->freehigh = free_highpages; 6005 #else 6006 val->totalhigh = managed_highpages; 6007 val->freehigh = free_highpages; 6008 #endif 6009 val->mem_unit = PAGE_SIZE; 6010 } 6011 #endif 6012 6013 /* 6014 * Determine whether the node should be displayed or not, depending on whether 6015 * SHOW_MEM_FILTER_NODES was passed to show_free_areas(). 6016 */ 6017 static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask) 6018 { 6019 if (!(flags & SHOW_MEM_FILTER_NODES)) 6020 return false; 6021 6022 /* 6023 * no node mask - aka implicit memory numa policy. Do not bother with 6024 * the synchronization - read_mems_allowed_begin - because we do not 6025 * have to be precise here. 6026 */ 6027 if (!nodemask) 6028 nodemask = &cpuset_current_mems_allowed; 6029 6030 return !node_isset(nid, *nodemask); 6031 } 6032 6033 #define K(x) ((x) << (PAGE_SHIFT-10)) 6034 6035 static void show_migration_types(unsigned char type) 6036 { 6037 static const char types[MIGRATE_TYPES] = { 6038 [MIGRATE_UNMOVABLE] = 'U', 6039 [MIGRATE_MOVABLE] = 'M', 6040 [MIGRATE_RECLAIMABLE] = 'E', 6041 [MIGRATE_HIGHATOMIC] = 'H', 6042 #ifdef CONFIG_CMA 6043 [MIGRATE_CMA] = 'C', 6044 #endif 6045 #ifdef CONFIG_MEMORY_ISOLATION 6046 [MIGRATE_ISOLATE] = 'I', 6047 #endif 6048 }; 6049 char tmp[MIGRATE_TYPES + 1]; 6050 char *p = tmp; 6051 int i; 6052 6053 for (i = 0; i < MIGRATE_TYPES; i++) { 6054 if (type & (1 << i)) 6055 *p++ = types[i]; 6056 } 6057 6058 *p = '\0'; 6059 printk(KERN_CONT "(%s) ", tmp); 6060 } 6061 6062 static bool node_has_managed_zones(pg_data_t *pgdat, int max_zone_idx) 6063 { 6064 int zone_idx; 6065 for (zone_idx = 0; zone_idx <= max_zone_idx; zone_idx++) 6066 if (zone_managed_pages(pgdat->node_zones + zone_idx)) 6067 return true; 6068 return false; 6069 } 6070 6071 /* 6072 * Show free area list (used inside shift_scroll-lock stuff) 6073 * We also calculate the percentage fragmentation. We do this by counting the 6074 * memory on each free list with the exception of the first item on the list. 6075 * 6076 * Bits in @filter: 6077 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's 6078 * cpuset. 6079 */ 6080 void __show_free_areas(unsigned int filter, nodemask_t *nodemask, int max_zone_idx) 6081 { 6082 unsigned long free_pcp = 0; 6083 int cpu, nid; 6084 struct zone *zone; 6085 pg_data_t *pgdat; 6086 6087 for_each_populated_zone(zone) { 6088 if (zone_idx(zone) > max_zone_idx) 6089 continue; 6090 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask)) 6091 continue; 6092 6093 for_each_online_cpu(cpu) 6094 free_pcp += per_cpu_ptr(zone->per_cpu_pageset, cpu)->count; 6095 } 6096 6097 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n" 6098 " active_file:%lu inactive_file:%lu isolated_file:%lu\n" 6099 " unevictable:%lu dirty:%lu writeback:%lu\n" 6100 " slab_reclaimable:%lu slab_unreclaimable:%lu\n" 6101 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n" 6102 " kernel_misc_reclaimable:%lu\n" 6103 " free:%lu free_pcp:%lu free_cma:%lu\n", 6104 global_node_page_state(NR_ACTIVE_ANON), 6105 global_node_page_state(NR_INACTIVE_ANON), 6106 global_node_page_state(NR_ISOLATED_ANON), 6107 global_node_page_state(NR_ACTIVE_FILE), 6108 global_node_page_state(NR_INACTIVE_FILE), 6109 global_node_page_state(NR_ISOLATED_FILE), 6110 global_node_page_state(NR_UNEVICTABLE), 6111 global_node_page_state(NR_FILE_DIRTY), 6112 global_node_page_state(NR_WRITEBACK), 6113 global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B), 6114 global_node_page_state_pages(NR_SLAB_UNRECLAIMABLE_B), 6115 global_node_page_state(NR_FILE_MAPPED), 6116 global_node_page_state(NR_SHMEM), 6117 global_node_page_state(NR_PAGETABLE), 6118 global_zone_page_state(NR_BOUNCE), 6119 global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE), 6120 global_zone_page_state(NR_FREE_PAGES), 6121 free_pcp, 6122 global_zone_page_state(NR_FREE_CMA_PAGES)); 6123 6124 for_each_online_pgdat(pgdat) { 6125 if (show_mem_node_skip(filter, pgdat->node_id, nodemask)) 6126 continue; 6127 if (!node_has_managed_zones(pgdat, max_zone_idx)) 6128 continue; 6129 6130 printk("Node %d" 6131 " active_anon:%lukB" 6132 " inactive_anon:%lukB" 6133 " active_file:%lukB" 6134 " inactive_file:%lukB" 6135 " unevictable:%lukB" 6136 " isolated(anon):%lukB" 6137 " isolated(file):%lukB" 6138 " mapped:%lukB" 6139 " dirty:%lukB" 6140 " writeback:%lukB" 6141 " shmem:%lukB" 6142 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 6143 " shmem_thp: %lukB" 6144 " shmem_pmdmapped: %lukB" 6145 " anon_thp: %lukB" 6146 #endif 6147 " writeback_tmp:%lukB" 6148 " kernel_stack:%lukB" 6149 #ifdef CONFIG_SHADOW_CALL_STACK 6150 " shadow_call_stack:%lukB" 6151 #endif 6152 " pagetables:%lukB" 6153 " all_unreclaimable? %s" 6154 "\n", 6155 pgdat->node_id, 6156 K(node_page_state(pgdat, NR_ACTIVE_ANON)), 6157 K(node_page_state(pgdat, NR_INACTIVE_ANON)), 6158 K(node_page_state(pgdat, NR_ACTIVE_FILE)), 6159 K(node_page_state(pgdat, NR_INACTIVE_FILE)), 6160 K(node_page_state(pgdat, NR_UNEVICTABLE)), 6161 K(node_page_state(pgdat, NR_ISOLATED_ANON)), 6162 K(node_page_state(pgdat, NR_ISOLATED_FILE)), 6163 K(node_page_state(pgdat, NR_FILE_MAPPED)), 6164 K(node_page_state(pgdat, NR_FILE_DIRTY)), 6165 K(node_page_state(pgdat, NR_WRITEBACK)), 6166 K(node_page_state(pgdat, NR_SHMEM)), 6167 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 6168 K(node_page_state(pgdat, NR_SHMEM_THPS)), 6169 K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)), 6170 K(node_page_state(pgdat, NR_ANON_THPS)), 6171 #endif 6172 K(node_page_state(pgdat, NR_WRITEBACK_TEMP)), 6173 node_page_state(pgdat, NR_KERNEL_STACK_KB), 6174 #ifdef CONFIG_SHADOW_CALL_STACK 6175 node_page_state(pgdat, NR_KERNEL_SCS_KB), 6176 #endif 6177 K(node_page_state(pgdat, NR_PAGETABLE)), 6178 pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ? 6179 "yes" : "no"); 6180 } 6181 6182 for_each_populated_zone(zone) { 6183 int i; 6184 6185 if (zone_idx(zone) > max_zone_idx) 6186 continue; 6187 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask)) 6188 continue; 6189 6190 free_pcp = 0; 6191 for_each_online_cpu(cpu) 6192 free_pcp += per_cpu_ptr(zone->per_cpu_pageset, cpu)->count; 6193 6194 show_node(zone); 6195 printk(KERN_CONT 6196 "%s" 6197 " free:%lukB" 6198 " boost:%lukB" 6199 " min:%lukB" 6200 " low:%lukB" 6201 " high:%lukB" 6202 " reserved_highatomic:%luKB" 6203 " active_anon:%lukB" 6204 " inactive_anon:%lukB" 6205 " active_file:%lukB" 6206 " inactive_file:%lukB" 6207 " unevictable:%lukB" 6208 " writepending:%lukB" 6209 " present:%lukB" 6210 " managed:%lukB" 6211 " mlocked:%lukB" 6212 " bounce:%lukB" 6213 " free_pcp:%lukB" 6214 " local_pcp:%ukB" 6215 " free_cma:%lukB" 6216 "\n", 6217 zone->name, 6218 K(zone_page_state(zone, NR_FREE_PAGES)), 6219 K(zone->watermark_boost), 6220 K(min_wmark_pages(zone)), 6221 K(low_wmark_pages(zone)), 6222 K(high_wmark_pages(zone)), 6223 K(zone->nr_reserved_highatomic), 6224 K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)), 6225 K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)), 6226 K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)), 6227 K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)), 6228 K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)), 6229 K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)), 6230 K(zone->present_pages), 6231 K(zone_managed_pages(zone)), 6232 K(zone_page_state(zone, NR_MLOCK)), 6233 K(zone_page_state(zone, NR_BOUNCE)), 6234 K(free_pcp), 6235 K(this_cpu_read(zone->per_cpu_pageset->count)), 6236 K(zone_page_state(zone, NR_FREE_CMA_PAGES))); 6237 printk("lowmem_reserve[]:"); 6238 for (i = 0; i < MAX_NR_ZONES; i++) 6239 printk(KERN_CONT " %ld", zone->lowmem_reserve[i]); 6240 printk(KERN_CONT "\n"); 6241 } 6242 6243 for_each_populated_zone(zone) { 6244 unsigned int order; 6245 unsigned long nr[MAX_ORDER], flags, total = 0; 6246 unsigned char types[MAX_ORDER]; 6247 6248 if (zone_idx(zone) > max_zone_idx) 6249 continue; 6250 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask)) 6251 continue; 6252 show_node(zone); 6253 printk(KERN_CONT "%s: ", zone->name); 6254 6255 spin_lock_irqsave(&zone->lock, flags); 6256 for (order = 0; order < MAX_ORDER; order++) { 6257 struct free_area *area = &zone->free_area[order]; 6258 int type; 6259 6260 nr[order] = area->nr_free; 6261 total += nr[order] << order; 6262 6263 types[order] = 0; 6264 for (type = 0; type < MIGRATE_TYPES; type++) { 6265 if (!free_area_empty(area, type)) 6266 types[order] |= 1 << type; 6267 } 6268 } 6269 spin_unlock_irqrestore(&zone->lock, flags); 6270 for (order = 0; order < MAX_ORDER; order++) { 6271 printk(KERN_CONT "%lu*%lukB ", 6272 nr[order], K(1UL) << order); 6273 if (nr[order]) 6274 show_migration_types(types[order]); 6275 } 6276 printk(KERN_CONT "= %lukB\n", K(total)); 6277 } 6278 6279 for_each_online_node(nid) { 6280 if (show_mem_node_skip(filter, nid, nodemask)) 6281 continue; 6282 hugetlb_show_meminfo_node(nid); 6283 } 6284 6285 printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES)); 6286 6287 show_swap_cache_info(); 6288 } 6289 6290 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref) 6291 { 6292 zoneref->zone = zone; 6293 zoneref->zone_idx = zone_idx(zone); 6294 } 6295 6296 /* 6297 * Builds allocation fallback zone lists. 6298 * 6299 * Add all populated zones of a node to the zonelist. 6300 */ 6301 static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs) 6302 { 6303 struct zone *zone; 6304 enum zone_type zone_type = MAX_NR_ZONES; 6305 int nr_zones = 0; 6306 6307 do { 6308 zone_type--; 6309 zone = pgdat->node_zones + zone_type; 6310 if (populated_zone(zone)) { 6311 zoneref_set_zone(zone, &zonerefs[nr_zones++]); 6312 check_highest_zone(zone_type); 6313 } 6314 } while (zone_type); 6315 6316 return nr_zones; 6317 } 6318 6319 #ifdef CONFIG_NUMA 6320 6321 static int __parse_numa_zonelist_order(char *s) 6322 { 6323 /* 6324 * We used to support different zonelists modes but they turned 6325 * out to be just not useful. Let's keep the warning in place 6326 * if somebody still use the cmd line parameter so that we do 6327 * not fail it silently 6328 */ 6329 if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) { 6330 pr_warn("Ignoring unsupported numa_zonelist_order value: %s\n", s); 6331 return -EINVAL; 6332 } 6333 return 0; 6334 } 6335 6336 char numa_zonelist_order[] = "Node"; 6337 6338 /* 6339 * sysctl handler for numa_zonelist_order 6340 */ 6341 int numa_zonelist_order_handler(struct ctl_table *table, int write, 6342 void *buffer, size_t *length, loff_t *ppos) 6343 { 6344 if (write) 6345 return __parse_numa_zonelist_order(buffer); 6346 return proc_dostring(table, write, buffer, length, ppos); 6347 } 6348 6349 6350 static int node_load[MAX_NUMNODES]; 6351 6352 /** 6353 * find_next_best_node - find the next node that should appear in a given node's fallback list 6354 * @node: node whose fallback list we're appending 6355 * @used_node_mask: nodemask_t of already used nodes 6356 * 6357 * We use a number of factors to determine which is the next node that should 6358 * appear on a given node's fallback list. The node should not have appeared 6359 * already in @node's fallback list, and it should be the next closest node 6360 * according to the distance array (which contains arbitrary distance values 6361 * from each node to each node in the system), and should also prefer nodes 6362 * with no CPUs, since presumably they'll have very little allocation pressure 6363 * on them otherwise. 6364 * 6365 * Return: node id of the found node or %NUMA_NO_NODE if no node is found. 6366 */ 6367 int find_next_best_node(int node, nodemask_t *used_node_mask) 6368 { 6369 int n, val; 6370 int min_val = INT_MAX; 6371 int best_node = NUMA_NO_NODE; 6372 6373 /* Use the local node if we haven't already */ 6374 if (!node_isset(node, *used_node_mask)) { 6375 node_set(node, *used_node_mask); 6376 return node; 6377 } 6378 6379 for_each_node_state(n, N_MEMORY) { 6380 6381 /* Don't want a node to appear more than once */ 6382 if (node_isset(n, *used_node_mask)) 6383 continue; 6384 6385 /* Use the distance array to find the distance */ 6386 val = node_distance(node, n); 6387 6388 /* Penalize nodes under us ("prefer the next node") */ 6389 val += (n < node); 6390 6391 /* Give preference to headless and unused nodes */ 6392 if (!cpumask_empty(cpumask_of_node(n))) 6393 val += PENALTY_FOR_NODE_WITH_CPUS; 6394 6395 /* Slight preference for less loaded node */ 6396 val *= MAX_NUMNODES; 6397 val += node_load[n]; 6398 6399 if (val < min_val) { 6400 min_val = val; 6401 best_node = n; 6402 } 6403 } 6404 6405 if (best_node >= 0) 6406 node_set(best_node, *used_node_mask); 6407 6408 return best_node; 6409 } 6410 6411 6412 /* 6413 * Build zonelists ordered by node and zones within node. 6414 * This results in maximum locality--normal zone overflows into local 6415 * DMA zone, if any--but risks exhausting DMA zone. 6416 */ 6417 static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order, 6418 unsigned nr_nodes) 6419 { 6420 struct zoneref *zonerefs; 6421 int i; 6422 6423 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs; 6424 6425 for (i = 0; i < nr_nodes; i++) { 6426 int nr_zones; 6427 6428 pg_data_t *node = NODE_DATA(node_order[i]); 6429 6430 nr_zones = build_zonerefs_node(node, zonerefs); 6431 zonerefs += nr_zones; 6432 } 6433 zonerefs->zone = NULL; 6434 zonerefs->zone_idx = 0; 6435 } 6436 6437 /* 6438 * Build gfp_thisnode zonelists 6439 */ 6440 static void build_thisnode_zonelists(pg_data_t *pgdat) 6441 { 6442 struct zoneref *zonerefs; 6443 int nr_zones; 6444 6445 zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs; 6446 nr_zones = build_zonerefs_node(pgdat, zonerefs); 6447 zonerefs += nr_zones; 6448 zonerefs->zone = NULL; 6449 zonerefs->zone_idx = 0; 6450 } 6451 6452 /* 6453 * Build zonelists ordered by zone and nodes within zones. 6454 * This results in conserving DMA zone[s] until all Normal memory is 6455 * exhausted, but results in overflowing to remote node while memory 6456 * may still exist in local DMA zone. 6457 */ 6458 6459 static void build_zonelists(pg_data_t *pgdat) 6460 { 6461 static int node_order[MAX_NUMNODES]; 6462 int node, nr_nodes = 0; 6463 nodemask_t used_mask = NODE_MASK_NONE; 6464 int local_node, prev_node; 6465 6466 /* NUMA-aware ordering of nodes */ 6467 local_node = pgdat->node_id; 6468 prev_node = local_node; 6469 6470 memset(node_order, 0, sizeof(node_order)); 6471 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) { 6472 /* 6473 * We don't want to pressure a particular node. 6474 * So adding penalty to the first node in same 6475 * distance group to make it round-robin. 6476 */ 6477 if (node_distance(local_node, node) != 6478 node_distance(local_node, prev_node)) 6479 node_load[node] += 1; 6480 6481 node_order[nr_nodes++] = node; 6482 prev_node = node; 6483 } 6484 6485 build_zonelists_in_node_order(pgdat, node_order, nr_nodes); 6486 build_thisnode_zonelists(pgdat); 6487 pr_info("Fallback order for Node %d: ", local_node); 6488 for (node = 0; node < nr_nodes; node++) 6489 pr_cont("%d ", node_order[node]); 6490 pr_cont("\n"); 6491 } 6492 6493 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 6494 /* 6495 * Return node id of node used for "local" allocations. 6496 * I.e., first node id of first zone in arg node's generic zonelist. 6497 * Used for initializing percpu 'numa_mem', which is used primarily 6498 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist. 6499 */ 6500 int local_memory_node(int node) 6501 { 6502 struct zoneref *z; 6503 6504 z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL), 6505 gfp_zone(GFP_KERNEL), 6506 NULL); 6507 return zone_to_nid(z->zone); 6508 } 6509 #endif 6510 6511 static void setup_min_unmapped_ratio(void); 6512 static void setup_min_slab_ratio(void); 6513 #else /* CONFIG_NUMA */ 6514 6515 static void build_zonelists(pg_data_t *pgdat) 6516 { 6517 int node, local_node; 6518 struct zoneref *zonerefs; 6519 int nr_zones; 6520 6521 local_node = pgdat->node_id; 6522 6523 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs; 6524 nr_zones = build_zonerefs_node(pgdat, zonerefs); 6525 zonerefs += nr_zones; 6526 6527 /* 6528 * Now we build the zonelist so that it contains the zones 6529 * of all the other nodes. 6530 * We don't want to pressure a particular node, so when 6531 * building the zones for node N, we make sure that the 6532 * zones coming right after the local ones are those from 6533 * node N+1 (modulo N) 6534 */ 6535 for (node = local_node + 1; node < MAX_NUMNODES; node++) { 6536 if (!node_online(node)) 6537 continue; 6538 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs); 6539 zonerefs += nr_zones; 6540 } 6541 for (node = 0; node < local_node; node++) { 6542 if (!node_online(node)) 6543 continue; 6544 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs); 6545 zonerefs += nr_zones; 6546 } 6547 6548 zonerefs->zone = NULL; 6549 zonerefs->zone_idx = 0; 6550 } 6551 6552 #endif /* CONFIG_NUMA */ 6553 6554 /* 6555 * Boot pageset table. One per cpu which is going to be used for all 6556 * zones and all nodes. The parameters will be set in such a way 6557 * that an item put on a list will immediately be handed over to 6558 * the buddy list. This is safe since pageset manipulation is done 6559 * with interrupts disabled. 6560 * 6561 * The boot_pagesets must be kept even after bootup is complete for 6562 * unused processors and/or zones. They do play a role for bootstrapping 6563 * hotplugged processors. 6564 * 6565 * zoneinfo_show() and maybe other functions do 6566 * not check if the processor is online before following the pageset pointer. 6567 * Other parts of the kernel may not check if the zone is available. 6568 */ 6569 static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats); 6570 /* These effectively disable the pcplists in the boot pageset completely */ 6571 #define BOOT_PAGESET_HIGH 0 6572 #define BOOT_PAGESET_BATCH 1 6573 static DEFINE_PER_CPU(struct per_cpu_pages, boot_pageset); 6574 static DEFINE_PER_CPU(struct per_cpu_zonestat, boot_zonestats); 6575 DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats); 6576 6577 static void __build_all_zonelists(void *data) 6578 { 6579 int nid; 6580 int __maybe_unused cpu; 6581 pg_data_t *self = data; 6582 6583 write_seqlock(&zonelist_update_seq); 6584 6585 #ifdef CONFIG_NUMA 6586 memset(node_load, 0, sizeof(node_load)); 6587 #endif 6588 6589 /* 6590 * This node is hotadded and no memory is yet present. So just 6591 * building zonelists is fine - no need to touch other nodes. 6592 */ 6593 if (self && !node_online(self->node_id)) { 6594 build_zonelists(self); 6595 } else { 6596 /* 6597 * All possible nodes have pgdat preallocated 6598 * in free_area_init 6599 */ 6600 for_each_node(nid) { 6601 pg_data_t *pgdat = NODE_DATA(nid); 6602 6603 build_zonelists(pgdat); 6604 } 6605 6606 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 6607 /* 6608 * We now know the "local memory node" for each node-- 6609 * i.e., the node of the first zone in the generic zonelist. 6610 * Set up numa_mem percpu variable for on-line cpus. During 6611 * boot, only the boot cpu should be on-line; we'll init the 6612 * secondary cpus' numa_mem as they come on-line. During 6613 * node/memory hotplug, we'll fixup all on-line cpus. 6614 */ 6615 for_each_online_cpu(cpu) 6616 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu))); 6617 #endif 6618 } 6619 6620 write_sequnlock(&zonelist_update_seq); 6621 } 6622 6623 static noinline void __init 6624 build_all_zonelists_init(void) 6625 { 6626 int cpu; 6627 6628 __build_all_zonelists(NULL); 6629 6630 /* 6631 * Initialize the boot_pagesets that are going to be used 6632 * for bootstrapping processors. The real pagesets for 6633 * each zone will be allocated later when the per cpu 6634 * allocator is available. 6635 * 6636 * boot_pagesets are used also for bootstrapping offline 6637 * cpus if the system is already booted because the pagesets 6638 * are needed to initialize allocators on a specific cpu too. 6639 * F.e. the percpu allocator needs the page allocator which 6640 * needs the percpu allocator in order to allocate its pagesets 6641 * (a chicken-egg dilemma). 6642 */ 6643 for_each_possible_cpu(cpu) 6644 per_cpu_pages_init(&per_cpu(boot_pageset, cpu), &per_cpu(boot_zonestats, cpu)); 6645 6646 mminit_verify_zonelist(); 6647 cpuset_init_current_mems_allowed(); 6648 } 6649 6650 /* 6651 * unless system_state == SYSTEM_BOOTING. 6652 * 6653 * __ref due to call of __init annotated helper build_all_zonelists_init 6654 * [protected by SYSTEM_BOOTING]. 6655 */ 6656 void __ref build_all_zonelists(pg_data_t *pgdat) 6657 { 6658 unsigned long vm_total_pages; 6659 6660 if (system_state == SYSTEM_BOOTING) { 6661 build_all_zonelists_init(); 6662 } else { 6663 __build_all_zonelists(pgdat); 6664 /* cpuset refresh routine should be here */ 6665 } 6666 /* Get the number of free pages beyond high watermark in all zones. */ 6667 vm_total_pages = nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE)); 6668 /* 6669 * Disable grouping by mobility if the number of pages in the 6670 * system is too low to allow the mechanism to work. It would be 6671 * more accurate, but expensive to check per-zone. This check is 6672 * made on memory-hotadd so a system can start with mobility 6673 * disabled and enable it later 6674 */ 6675 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES)) 6676 page_group_by_mobility_disabled = 1; 6677 else 6678 page_group_by_mobility_disabled = 0; 6679 6680 pr_info("Built %u zonelists, mobility grouping %s. Total pages: %ld\n", 6681 nr_online_nodes, 6682 page_group_by_mobility_disabled ? "off" : "on", 6683 vm_total_pages); 6684 #ifdef CONFIG_NUMA 6685 pr_info("Policy zone: %s\n", zone_names[policy_zone]); 6686 #endif 6687 } 6688 6689 /* If zone is ZONE_MOVABLE but memory is mirrored, it is an overlapped init */ 6690 static bool __meminit 6691 overlap_memmap_init(unsigned long zone, unsigned long *pfn) 6692 { 6693 static struct memblock_region *r; 6694 6695 if (mirrored_kernelcore && zone == ZONE_MOVABLE) { 6696 if (!r || *pfn >= memblock_region_memory_end_pfn(r)) { 6697 for_each_mem_region(r) { 6698 if (*pfn < memblock_region_memory_end_pfn(r)) 6699 break; 6700 } 6701 } 6702 if (*pfn >= memblock_region_memory_base_pfn(r) && 6703 memblock_is_mirror(r)) { 6704 *pfn = memblock_region_memory_end_pfn(r); 6705 return true; 6706 } 6707 } 6708 return false; 6709 } 6710 6711 /* 6712 * Initially all pages are reserved - free ones are freed 6713 * up by memblock_free_all() once the early boot process is 6714 * done. Non-atomic initialization, single-pass. 6715 * 6716 * All aligned pageblocks are initialized to the specified migratetype 6717 * (usually MIGRATE_MOVABLE). Besides setting the migratetype, no related 6718 * zone stats (e.g., nr_isolate_pageblock) are touched. 6719 */ 6720 void __meminit memmap_init_range(unsigned long size, int nid, unsigned long zone, 6721 unsigned long start_pfn, unsigned long zone_end_pfn, 6722 enum meminit_context context, 6723 struct vmem_altmap *altmap, int migratetype) 6724 { 6725 unsigned long pfn, end_pfn = start_pfn + size; 6726 struct page *page; 6727 6728 if (highest_memmap_pfn < end_pfn - 1) 6729 highest_memmap_pfn = end_pfn - 1; 6730 6731 #ifdef CONFIG_ZONE_DEVICE 6732 /* 6733 * Honor reservation requested by the driver for this ZONE_DEVICE 6734 * memory. We limit the total number of pages to initialize to just 6735 * those that might contain the memory mapping. We will defer the 6736 * ZONE_DEVICE page initialization until after we have released 6737 * the hotplug lock. 6738 */ 6739 if (zone == ZONE_DEVICE) { 6740 if (!altmap) 6741 return; 6742 6743 if (start_pfn == altmap->base_pfn) 6744 start_pfn += altmap->reserve; 6745 end_pfn = altmap->base_pfn + vmem_altmap_offset(altmap); 6746 } 6747 #endif 6748 6749 for (pfn = start_pfn; pfn < end_pfn; ) { 6750 /* 6751 * There can be holes in boot-time mem_map[]s handed to this 6752 * function. They do not exist on hotplugged memory. 6753 */ 6754 if (context == MEMINIT_EARLY) { 6755 if (overlap_memmap_init(zone, &pfn)) 6756 continue; 6757 if (defer_init(nid, pfn, zone_end_pfn)) 6758 break; 6759 } 6760 6761 page = pfn_to_page(pfn); 6762 __init_single_page(page, pfn, zone, nid); 6763 if (context == MEMINIT_HOTPLUG) 6764 __SetPageReserved(page); 6765 6766 /* 6767 * Usually, we want to mark the pageblock MIGRATE_MOVABLE, 6768 * such that unmovable allocations won't be scattered all 6769 * over the place during system boot. 6770 */ 6771 if (pageblock_aligned(pfn)) { 6772 set_pageblock_migratetype(page, migratetype); 6773 cond_resched(); 6774 } 6775 pfn++; 6776 } 6777 } 6778 6779 #ifdef CONFIG_ZONE_DEVICE 6780 static void __ref __init_zone_device_page(struct page *page, unsigned long pfn, 6781 unsigned long zone_idx, int nid, 6782 struct dev_pagemap *pgmap) 6783 { 6784 6785 __init_single_page(page, pfn, zone_idx, nid); 6786 6787 /* 6788 * Mark page reserved as it will need to wait for onlining 6789 * phase for it to be fully associated with a zone. 6790 * 6791 * We can use the non-atomic __set_bit operation for setting 6792 * the flag as we are still initializing the pages. 6793 */ 6794 __SetPageReserved(page); 6795 6796 /* 6797 * ZONE_DEVICE pages union ->lru with a ->pgmap back pointer 6798 * and zone_device_data. It is a bug if a ZONE_DEVICE page is 6799 * ever freed or placed on a driver-private list. 6800 */ 6801 page->pgmap = pgmap; 6802 page->zone_device_data = NULL; 6803 6804 /* 6805 * Mark the block movable so that blocks are reserved for 6806 * movable at startup. This will force kernel allocations 6807 * to reserve their blocks rather than leaking throughout 6808 * the address space during boot when many long-lived 6809 * kernel allocations are made. 6810 * 6811 * Please note that MEMINIT_HOTPLUG path doesn't clear memmap 6812 * because this is done early in section_activate() 6813 */ 6814 if (pageblock_aligned(pfn)) { 6815 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 6816 cond_resched(); 6817 } 6818 } 6819 6820 /* 6821 * With compound page geometry and when struct pages are stored in ram most 6822 * tail pages are reused. Consequently, the amount of unique struct pages to 6823 * initialize is a lot smaller that the total amount of struct pages being 6824 * mapped. This is a paired / mild layering violation with explicit knowledge 6825 * of how the sparse_vmemmap internals handle compound pages in the lack 6826 * of an altmap. See vmemmap_populate_compound_pages(). 6827 */ 6828 static inline unsigned long compound_nr_pages(struct vmem_altmap *altmap, 6829 unsigned long nr_pages) 6830 { 6831 return is_power_of_2(sizeof(struct page)) && 6832 !altmap ? 2 * (PAGE_SIZE / sizeof(struct page)) : nr_pages; 6833 } 6834 6835 static void __ref memmap_init_compound(struct page *head, 6836 unsigned long head_pfn, 6837 unsigned long zone_idx, int nid, 6838 struct dev_pagemap *pgmap, 6839 unsigned long nr_pages) 6840 { 6841 unsigned long pfn, end_pfn = head_pfn + nr_pages; 6842 unsigned int order = pgmap->vmemmap_shift; 6843 6844 __SetPageHead(head); 6845 for (pfn = head_pfn + 1; pfn < end_pfn; pfn++) { 6846 struct page *page = pfn_to_page(pfn); 6847 6848 __init_zone_device_page(page, pfn, zone_idx, nid, pgmap); 6849 prep_compound_tail(head, pfn - head_pfn); 6850 set_page_count(page, 0); 6851 6852 /* 6853 * The first tail page stores compound_mapcount_ptr() and 6854 * compound_order() and the second tail page stores 6855 * compound_pincount_ptr(). Call prep_compound_head() after 6856 * the first and second tail pages have been initialized to 6857 * not have the data overwritten. 6858 */ 6859 if (pfn == head_pfn + 2) 6860 prep_compound_head(head, order); 6861 } 6862 } 6863 6864 void __ref memmap_init_zone_device(struct zone *zone, 6865 unsigned long start_pfn, 6866 unsigned long nr_pages, 6867 struct dev_pagemap *pgmap) 6868 { 6869 unsigned long pfn, end_pfn = start_pfn + nr_pages; 6870 struct pglist_data *pgdat = zone->zone_pgdat; 6871 struct vmem_altmap *altmap = pgmap_altmap(pgmap); 6872 unsigned int pfns_per_compound = pgmap_vmemmap_nr(pgmap); 6873 unsigned long zone_idx = zone_idx(zone); 6874 unsigned long start = jiffies; 6875 int nid = pgdat->node_id; 6876 6877 if (WARN_ON_ONCE(!pgmap || zone_idx(zone) != ZONE_DEVICE)) 6878 return; 6879 6880 /* 6881 * The call to memmap_init should have already taken care 6882 * of the pages reserved for the memmap, so we can just jump to 6883 * the end of that region and start processing the device pages. 6884 */ 6885 if (altmap) { 6886 start_pfn = altmap->base_pfn + vmem_altmap_offset(altmap); 6887 nr_pages = end_pfn - start_pfn; 6888 } 6889 6890 for (pfn = start_pfn; pfn < end_pfn; pfn += pfns_per_compound) { 6891 struct page *page = pfn_to_page(pfn); 6892 6893 __init_zone_device_page(page, pfn, zone_idx, nid, pgmap); 6894 6895 if (pfns_per_compound == 1) 6896 continue; 6897 6898 memmap_init_compound(page, pfn, zone_idx, nid, pgmap, 6899 compound_nr_pages(altmap, pfns_per_compound)); 6900 } 6901 6902 pr_info("%s initialised %lu pages in %ums\n", __func__, 6903 nr_pages, jiffies_to_msecs(jiffies - start)); 6904 } 6905 6906 #endif 6907 static void __meminit zone_init_free_lists(struct zone *zone) 6908 { 6909 unsigned int order, t; 6910 for_each_migratetype_order(order, t) { 6911 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]); 6912 zone->free_area[order].nr_free = 0; 6913 } 6914 } 6915 6916 /* 6917 * Only struct pages that correspond to ranges defined by memblock.memory 6918 * are zeroed and initialized by going through __init_single_page() during 6919 * memmap_init_zone_range(). 6920 * 6921 * But, there could be struct pages that correspond to holes in 6922 * memblock.memory. This can happen because of the following reasons: 6923 * - physical memory bank size is not necessarily the exact multiple of the 6924 * arbitrary section size 6925 * - early reserved memory may not be listed in memblock.memory 6926 * - memory layouts defined with memmap= kernel parameter may not align 6927 * nicely with memmap sections 6928 * 6929 * Explicitly initialize those struct pages so that: 6930 * - PG_Reserved is set 6931 * - zone and node links point to zone and node that span the page if the 6932 * hole is in the middle of a zone 6933 * - zone and node links point to adjacent zone/node if the hole falls on 6934 * the zone boundary; the pages in such holes will be prepended to the 6935 * zone/node above the hole except for the trailing pages in the last 6936 * section that will be appended to the zone/node below. 6937 */ 6938 static void __init init_unavailable_range(unsigned long spfn, 6939 unsigned long epfn, 6940 int zone, int node) 6941 { 6942 unsigned long pfn; 6943 u64 pgcnt = 0; 6944 6945 for (pfn = spfn; pfn < epfn; pfn++) { 6946 if (!pfn_valid(pageblock_start_pfn(pfn))) { 6947 pfn = pageblock_end_pfn(pfn) - 1; 6948 continue; 6949 } 6950 __init_single_page(pfn_to_page(pfn), pfn, zone, node); 6951 __SetPageReserved(pfn_to_page(pfn)); 6952 pgcnt++; 6953 } 6954 6955 if (pgcnt) 6956 pr_info("On node %d, zone %s: %lld pages in unavailable ranges", 6957 node, zone_names[zone], pgcnt); 6958 } 6959 6960 static void __init memmap_init_zone_range(struct zone *zone, 6961 unsigned long start_pfn, 6962 unsigned long end_pfn, 6963 unsigned long *hole_pfn) 6964 { 6965 unsigned long zone_start_pfn = zone->zone_start_pfn; 6966 unsigned long zone_end_pfn = zone_start_pfn + zone->spanned_pages; 6967 int nid = zone_to_nid(zone), zone_id = zone_idx(zone); 6968 6969 start_pfn = clamp(start_pfn, zone_start_pfn, zone_end_pfn); 6970 end_pfn = clamp(end_pfn, zone_start_pfn, zone_end_pfn); 6971 6972 if (start_pfn >= end_pfn) 6973 return; 6974 6975 memmap_init_range(end_pfn - start_pfn, nid, zone_id, start_pfn, 6976 zone_end_pfn, MEMINIT_EARLY, NULL, MIGRATE_MOVABLE); 6977 6978 if (*hole_pfn < start_pfn) 6979 init_unavailable_range(*hole_pfn, start_pfn, zone_id, nid); 6980 6981 *hole_pfn = end_pfn; 6982 } 6983 6984 static void __init memmap_init(void) 6985 { 6986 unsigned long start_pfn, end_pfn; 6987 unsigned long hole_pfn = 0; 6988 int i, j, zone_id = 0, nid; 6989 6990 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) { 6991 struct pglist_data *node = NODE_DATA(nid); 6992 6993 for (j = 0; j < MAX_NR_ZONES; j++) { 6994 struct zone *zone = node->node_zones + j; 6995 6996 if (!populated_zone(zone)) 6997 continue; 6998 6999 memmap_init_zone_range(zone, start_pfn, end_pfn, 7000 &hole_pfn); 7001 zone_id = j; 7002 } 7003 } 7004 7005 #ifdef CONFIG_SPARSEMEM 7006 /* 7007 * Initialize the memory map for hole in the range [memory_end, 7008 * section_end]. 7009 * Append the pages in this hole to the highest zone in the last 7010 * node. 7011 * The call to init_unavailable_range() is outside the ifdef to 7012 * silence the compiler warining about zone_id set but not used; 7013 * for FLATMEM it is a nop anyway 7014 */ 7015 end_pfn = round_up(end_pfn, PAGES_PER_SECTION); 7016 if (hole_pfn < end_pfn) 7017 #endif 7018 init_unavailable_range(hole_pfn, end_pfn, zone_id, nid); 7019 } 7020 7021 void __init *memmap_alloc(phys_addr_t size, phys_addr_t align, 7022 phys_addr_t min_addr, int nid, bool exact_nid) 7023 { 7024 void *ptr; 7025 7026 if (exact_nid) 7027 ptr = memblock_alloc_exact_nid_raw(size, align, min_addr, 7028 MEMBLOCK_ALLOC_ACCESSIBLE, 7029 nid); 7030 else 7031 ptr = memblock_alloc_try_nid_raw(size, align, min_addr, 7032 MEMBLOCK_ALLOC_ACCESSIBLE, 7033 nid); 7034 7035 if (ptr && size > 0) 7036 page_init_poison(ptr, size); 7037 7038 return ptr; 7039 } 7040 7041 static int zone_batchsize(struct zone *zone) 7042 { 7043 #ifdef CONFIG_MMU 7044 int batch; 7045 7046 /* 7047 * The number of pages to batch allocate is either ~0.1% 7048 * of the zone or 1MB, whichever is smaller. The batch 7049 * size is striking a balance between allocation latency 7050 * and zone lock contention. 7051 */ 7052 batch = min(zone_managed_pages(zone) >> 10, (1024 * 1024) / PAGE_SIZE); 7053 batch /= 4; /* We effectively *= 4 below */ 7054 if (batch < 1) 7055 batch = 1; 7056 7057 /* 7058 * Clamp the batch to a 2^n - 1 value. Having a power 7059 * of 2 value was found to be more likely to have 7060 * suboptimal cache aliasing properties in some cases. 7061 * 7062 * For example if 2 tasks are alternately allocating 7063 * batches of pages, one task can end up with a lot 7064 * of pages of one half of the possible page colors 7065 * and the other with pages of the other colors. 7066 */ 7067 batch = rounddown_pow_of_two(batch + batch/2) - 1; 7068 7069 return batch; 7070 7071 #else 7072 /* The deferral and batching of frees should be suppressed under NOMMU 7073 * conditions. 7074 * 7075 * The problem is that NOMMU needs to be able to allocate large chunks 7076 * of contiguous memory as there's no hardware page translation to 7077 * assemble apparent contiguous memory from discontiguous pages. 7078 * 7079 * Queueing large contiguous runs of pages for batching, however, 7080 * causes the pages to actually be freed in smaller chunks. As there 7081 * can be a significant delay between the individual batches being 7082 * recycled, this leads to the once large chunks of space being 7083 * fragmented and becoming unavailable for high-order allocations. 7084 */ 7085 return 0; 7086 #endif 7087 } 7088 7089 static int zone_highsize(struct zone *zone, int batch, int cpu_online) 7090 { 7091 #ifdef CONFIG_MMU 7092 int high; 7093 int nr_split_cpus; 7094 unsigned long total_pages; 7095 7096 if (!percpu_pagelist_high_fraction) { 7097 /* 7098 * By default, the high value of the pcp is based on the zone 7099 * low watermark so that if they are full then background 7100 * reclaim will not be started prematurely. 7101 */ 7102 total_pages = low_wmark_pages(zone); 7103 } else { 7104 /* 7105 * If percpu_pagelist_high_fraction is configured, the high 7106 * value is based on a fraction of the managed pages in the 7107 * zone. 7108 */ 7109 total_pages = zone_managed_pages(zone) / percpu_pagelist_high_fraction; 7110 } 7111 7112 /* 7113 * Split the high value across all online CPUs local to the zone. Note 7114 * that early in boot that CPUs may not be online yet and that during 7115 * CPU hotplug that the cpumask is not yet updated when a CPU is being 7116 * onlined. For memory nodes that have no CPUs, split pcp->high across 7117 * all online CPUs to mitigate the risk that reclaim is triggered 7118 * prematurely due to pages stored on pcp lists. 7119 */ 7120 nr_split_cpus = cpumask_weight(cpumask_of_node(zone_to_nid(zone))) + cpu_online; 7121 if (!nr_split_cpus) 7122 nr_split_cpus = num_online_cpus(); 7123 high = total_pages / nr_split_cpus; 7124 7125 /* 7126 * Ensure high is at least batch*4. The multiple is based on the 7127 * historical relationship between high and batch. 7128 */ 7129 high = max(high, batch << 2); 7130 7131 return high; 7132 #else 7133 return 0; 7134 #endif 7135 } 7136 7137 /* 7138 * pcp->high and pcp->batch values are related and generally batch is lower 7139 * than high. They are also related to pcp->count such that count is lower 7140 * than high, and as soon as it reaches high, the pcplist is flushed. 7141 * 7142 * However, guaranteeing these relations at all times would require e.g. write 7143 * barriers here but also careful usage of read barriers at the read side, and 7144 * thus be prone to error and bad for performance. Thus the update only prevents 7145 * store tearing. Any new users of pcp->batch and pcp->high should ensure they 7146 * can cope with those fields changing asynchronously, and fully trust only the 7147 * pcp->count field on the local CPU with interrupts disabled. 7148 * 7149 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function 7150 * outside of boot time (or some other assurance that no concurrent updaters 7151 * exist). 7152 */ 7153 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high, 7154 unsigned long batch) 7155 { 7156 WRITE_ONCE(pcp->batch, batch); 7157 WRITE_ONCE(pcp->high, high); 7158 } 7159 7160 static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats) 7161 { 7162 int pindex; 7163 7164 memset(pcp, 0, sizeof(*pcp)); 7165 memset(pzstats, 0, sizeof(*pzstats)); 7166 7167 spin_lock_init(&pcp->lock); 7168 for (pindex = 0; pindex < NR_PCP_LISTS; pindex++) 7169 INIT_LIST_HEAD(&pcp->lists[pindex]); 7170 7171 /* 7172 * Set batch and high values safe for a boot pageset. A true percpu 7173 * pageset's initialization will update them subsequently. Here we don't 7174 * need to be as careful as pageset_update() as nobody can access the 7175 * pageset yet. 7176 */ 7177 pcp->high = BOOT_PAGESET_HIGH; 7178 pcp->batch = BOOT_PAGESET_BATCH; 7179 pcp->free_factor = 0; 7180 } 7181 7182 static void __zone_set_pageset_high_and_batch(struct zone *zone, unsigned long high, 7183 unsigned long batch) 7184 { 7185 struct per_cpu_pages *pcp; 7186 int cpu; 7187 7188 for_each_possible_cpu(cpu) { 7189 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu); 7190 pageset_update(pcp, high, batch); 7191 } 7192 } 7193 7194 /* 7195 * Calculate and set new high and batch values for all per-cpu pagesets of a 7196 * zone based on the zone's size. 7197 */ 7198 static void zone_set_pageset_high_and_batch(struct zone *zone, int cpu_online) 7199 { 7200 int new_high, new_batch; 7201 7202 new_batch = max(1, zone_batchsize(zone)); 7203 new_high = zone_highsize(zone, new_batch, cpu_online); 7204 7205 if (zone->pageset_high == new_high && 7206 zone->pageset_batch == new_batch) 7207 return; 7208 7209 zone->pageset_high = new_high; 7210 zone->pageset_batch = new_batch; 7211 7212 __zone_set_pageset_high_and_batch(zone, new_high, new_batch); 7213 } 7214 7215 void __meminit setup_zone_pageset(struct zone *zone) 7216 { 7217 int cpu; 7218 7219 /* Size may be 0 on !SMP && !NUMA */ 7220 if (sizeof(struct per_cpu_zonestat) > 0) 7221 zone->per_cpu_zonestats = alloc_percpu(struct per_cpu_zonestat); 7222 7223 zone->per_cpu_pageset = alloc_percpu(struct per_cpu_pages); 7224 for_each_possible_cpu(cpu) { 7225 struct per_cpu_pages *pcp; 7226 struct per_cpu_zonestat *pzstats; 7227 7228 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu); 7229 pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu); 7230 per_cpu_pages_init(pcp, pzstats); 7231 } 7232 7233 zone_set_pageset_high_and_batch(zone, 0); 7234 } 7235 7236 /* 7237 * Allocate per cpu pagesets and initialize them. 7238 * Before this call only boot pagesets were available. 7239 */ 7240 void __init setup_per_cpu_pageset(void) 7241 { 7242 struct pglist_data *pgdat; 7243 struct zone *zone; 7244 int __maybe_unused cpu; 7245 7246 for_each_populated_zone(zone) 7247 setup_zone_pageset(zone); 7248 7249 #ifdef CONFIG_NUMA 7250 /* 7251 * Unpopulated zones continue using the boot pagesets. 7252 * The numa stats for these pagesets need to be reset. 7253 * Otherwise, they will end up skewing the stats of 7254 * the nodes these zones are associated with. 7255 */ 7256 for_each_possible_cpu(cpu) { 7257 struct per_cpu_zonestat *pzstats = &per_cpu(boot_zonestats, cpu); 7258 memset(pzstats->vm_numa_event, 0, 7259 sizeof(pzstats->vm_numa_event)); 7260 } 7261 #endif 7262 7263 for_each_online_pgdat(pgdat) 7264 pgdat->per_cpu_nodestats = 7265 alloc_percpu(struct per_cpu_nodestat); 7266 } 7267 7268 static __meminit void zone_pcp_init(struct zone *zone) 7269 { 7270 /* 7271 * per cpu subsystem is not up at this point. The following code 7272 * relies on the ability of the linker to provide the 7273 * offset of a (static) per cpu variable into the per cpu area. 7274 */ 7275 zone->per_cpu_pageset = &boot_pageset; 7276 zone->per_cpu_zonestats = &boot_zonestats; 7277 zone->pageset_high = BOOT_PAGESET_HIGH; 7278 zone->pageset_batch = BOOT_PAGESET_BATCH; 7279 7280 if (populated_zone(zone)) 7281 pr_debug(" %s zone: %lu pages, LIFO batch:%u\n", zone->name, 7282 zone->present_pages, zone_batchsize(zone)); 7283 } 7284 7285 void __meminit init_currently_empty_zone(struct zone *zone, 7286 unsigned long zone_start_pfn, 7287 unsigned long size) 7288 { 7289 struct pglist_data *pgdat = zone->zone_pgdat; 7290 int zone_idx = zone_idx(zone) + 1; 7291 7292 if (zone_idx > pgdat->nr_zones) 7293 pgdat->nr_zones = zone_idx; 7294 7295 zone->zone_start_pfn = zone_start_pfn; 7296 7297 mminit_dprintk(MMINIT_TRACE, "memmap_init", 7298 "Initialising map node %d zone %lu pfns %lu -> %lu\n", 7299 pgdat->node_id, 7300 (unsigned long)zone_idx(zone), 7301 zone_start_pfn, (zone_start_pfn + size)); 7302 7303 zone_init_free_lists(zone); 7304 zone->initialized = 1; 7305 } 7306 7307 /** 7308 * get_pfn_range_for_nid - Return the start and end page frames for a node 7309 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned. 7310 * @start_pfn: Passed by reference. On return, it will have the node start_pfn. 7311 * @end_pfn: Passed by reference. On return, it will have the node end_pfn. 7312 * 7313 * It returns the start and end page frame of a node based on information 7314 * provided by memblock_set_node(). If called for a node 7315 * with no available memory, a warning is printed and the start and end 7316 * PFNs will be 0. 7317 */ 7318 void __init get_pfn_range_for_nid(unsigned int nid, 7319 unsigned long *start_pfn, unsigned long *end_pfn) 7320 { 7321 unsigned long this_start_pfn, this_end_pfn; 7322 int i; 7323 7324 *start_pfn = -1UL; 7325 *end_pfn = 0; 7326 7327 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) { 7328 *start_pfn = min(*start_pfn, this_start_pfn); 7329 *end_pfn = max(*end_pfn, this_end_pfn); 7330 } 7331 7332 if (*start_pfn == -1UL) 7333 *start_pfn = 0; 7334 } 7335 7336 /* 7337 * This finds a zone that can be used for ZONE_MOVABLE pages. The 7338 * assumption is made that zones within a node are ordered in monotonic 7339 * increasing memory addresses so that the "highest" populated zone is used 7340 */ 7341 static void __init find_usable_zone_for_movable(void) 7342 { 7343 int zone_index; 7344 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) { 7345 if (zone_index == ZONE_MOVABLE) 7346 continue; 7347 7348 if (arch_zone_highest_possible_pfn[zone_index] > 7349 arch_zone_lowest_possible_pfn[zone_index]) 7350 break; 7351 } 7352 7353 VM_BUG_ON(zone_index == -1); 7354 movable_zone = zone_index; 7355 } 7356 7357 /* 7358 * The zone ranges provided by the architecture do not include ZONE_MOVABLE 7359 * because it is sized independent of architecture. Unlike the other zones, 7360 * the starting point for ZONE_MOVABLE is not fixed. It may be different 7361 * in each node depending on the size of each node and how evenly kernelcore 7362 * is distributed. This helper function adjusts the zone ranges 7363 * provided by the architecture for a given node by using the end of the 7364 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that 7365 * zones within a node are in order of monotonic increases memory addresses 7366 */ 7367 static void __init adjust_zone_range_for_zone_movable(int nid, 7368 unsigned long zone_type, 7369 unsigned long node_start_pfn, 7370 unsigned long node_end_pfn, 7371 unsigned long *zone_start_pfn, 7372 unsigned long *zone_end_pfn) 7373 { 7374 /* Only adjust if ZONE_MOVABLE is on this node */ 7375 if (zone_movable_pfn[nid]) { 7376 /* Size ZONE_MOVABLE */ 7377 if (zone_type == ZONE_MOVABLE) { 7378 *zone_start_pfn = zone_movable_pfn[nid]; 7379 *zone_end_pfn = min(node_end_pfn, 7380 arch_zone_highest_possible_pfn[movable_zone]); 7381 7382 /* Adjust for ZONE_MOVABLE starting within this range */ 7383 } else if (!mirrored_kernelcore && 7384 *zone_start_pfn < zone_movable_pfn[nid] && 7385 *zone_end_pfn > zone_movable_pfn[nid]) { 7386 *zone_end_pfn = zone_movable_pfn[nid]; 7387 7388 /* Check if this whole range is within ZONE_MOVABLE */ 7389 } else if (*zone_start_pfn >= zone_movable_pfn[nid]) 7390 *zone_start_pfn = *zone_end_pfn; 7391 } 7392 } 7393 7394 /* 7395 * Return the number of pages a zone spans in a node, including holes 7396 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node() 7397 */ 7398 static unsigned long __init zone_spanned_pages_in_node(int nid, 7399 unsigned long zone_type, 7400 unsigned long node_start_pfn, 7401 unsigned long node_end_pfn, 7402 unsigned long *zone_start_pfn, 7403 unsigned long *zone_end_pfn) 7404 { 7405 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type]; 7406 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type]; 7407 /* When hotadd a new node from cpu_up(), the node should be empty */ 7408 if (!node_start_pfn && !node_end_pfn) 7409 return 0; 7410 7411 /* Get the start and end of the zone */ 7412 *zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high); 7413 *zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high); 7414 adjust_zone_range_for_zone_movable(nid, zone_type, 7415 node_start_pfn, node_end_pfn, 7416 zone_start_pfn, zone_end_pfn); 7417 7418 /* Check that this node has pages within the zone's required range */ 7419 if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn) 7420 return 0; 7421 7422 /* Move the zone boundaries inside the node if necessary */ 7423 *zone_end_pfn = min(*zone_end_pfn, node_end_pfn); 7424 *zone_start_pfn = max(*zone_start_pfn, node_start_pfn); 7425 7426 /* Return the spanned pages */ 7427 return *zone_end_pfn - *zone_start_pfn; 7428 } 7429 7430 /* 7431 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES, 7432 * then all holes in the requested range will be accounted for. 7433 */ 7434 unsigned long __init __absent_pages_in_range(int nid, 7435 unsigned long range_start_pfn, 7436 unsigned long range_end_pfn) 7437 { 7438 unsigned long nr_absent = range_end_pfn - range_start_pfn; 7439 unsigned long start_pfn, end_pfn; 7440 int i; 7441 7442 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) { 7443 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn); 7444 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn); 7445 nr_absent -= end_pfn - start_pfn; 7446 } 7447 return nr_absent; 7448 } 7449 7450 /** 7451 * absent_pages_in_range - Return number of page frames in holes within a range 7452 * @start_pfn: The start PFN to start searching for holes 7453 * @end_pfn: The end PFN to stop searching for holes 7454 * 7455 * Return: the number of pages frames in memory holes within a range. 7456 */ 7457 unsigned long __init absent_pages_in_range(unsigned long start_pfn, 7458 unsigned long end_pfn) 7459 { 7460 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn); 7461 } 7462 7463 /* Return the number of page frames in holes in a zone on a node */ 7464 static unsigned long __init zone_absent_pages_in_node(int nid, 7465 unsigned long zone_type, 7466 unsigned long node_start_pfn, 7467 unsigned long node_end_pfn) 7468 { 7469 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type]; 7470 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type]; 7471 unsigned long zone_start_pfn, zone_end_pfn; 7472 unsigned long nr_absent; 7473 7474 /* When hotadd a new node from cpu_up(), the node should be empty */ 7475 if (!node_start_pfn && !node_end_pfn) 7476 return 0; 7477 7478 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high); 7479 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high); 7480 7481 adjust_zone_range_for_zone_movable(nid, zone_type, 7482 node_start_pfn, node_end_pfn, 7483 &zone_start_pfn, &zone_end_pfn); 7484 nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn); 7485 7486 /* 7487 * ZONE_MOVABLE handling. 7488 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages 7489 * and vice versa. 7490 */ 7491 if (mirrored_kernelcore && zone_movable_pfn[nid]) { 7492 unsigned long start_pfn, end_pfn; 7493 struct memblock_region *r; 7494 7495 for_each_mem_region(r) { 7496 start_pfn = clamp(memblock_region_memory_base_pfn(r), 7497 zone_start_pfn, zone_end_pfn); 7498 end_pfn = clamp(memblock_region_memory_end_pfn(r), 7499 zone_start_pfn, zone_end_pfn); 7500 7501 if (zone_type == ZONE_MOVABLE && 7502 memblock_is_mirror(r)) 7503 nr_absent += end_pfn - start_pfn; 7504 7505 if (zone_type == ZONE_NORMAL && 7506 !memblock_is_mirror(r)) 7507 nr_absent += end_pfn - start_pfn; 7508 } 7509 } 7510 7511 return nr_absent; 7512 } 7513 7514 static void __init calculate_node_totalpages(struct pglist_data *pgdat, 7515 unsigned long node_start_pfn, 7516 unsigned long node_end_pfn) 7517 { 7518 unsigned long realtotalpages = 0, totalpages = 0; 7519 enum zone_type i; 7520 7521 for (i = 0; i < MAX_NR_ZONES; i++) { 7522 struct zone *zone = pgdat->node_zones + i; 7523 unsigned long zone_start_pfn, zone_end_pfn; 7524 unsigned long spanned, absent; 7525 unsigned long size, real_size; 7526 7527 spanned = zone_spanned_pages_in_node(pgdat->node_id, i, 7528 node_start_pfn, 7529 node_end_pfn, 7530 &zone_start_pfn, 7531 &zone_end_pfn); 7532 absent = zone_absent_pages_in_node(pgdat->node_id, i, 7533 node_start_pfn, 7534 node_end_pfn); 7535 7536 size = spanned; 7537 real_size = size - absent; 7538 7539 if (size) 7540 zone->zone_start_pfn = zone_start_pfn; 7541 else 7542 zone->zone_start_pfn = 0; 7543 zone->spanned_pages = size; 7544 zone->present_pages = real_size; 7545 #if defined(CONFIG_MEMORY_HOTPLUG) 7546 zone->present_early_pages = real_size; 7547 #endif 7548 7549 totalpages += size; 7550 realtotalpages += real_size; 7551 } 7552 7553 pgdat->node_spanned_pages = totalpages; 7554 pgdat->node_present_pages = realtotalpages; 7555 pr_debug("On node %d totalpages: %lu\n", pgdat->node_id, realtotalpages); 7556 } 7557 7558 #ifndef CONFIG_SPARSEMEM 7559 /* 7560 * Calculate the size of the zone->blockflags rounded to an unsigned long 7561 * Start by making sure zonesize is a multiple of pageblock_order by rounding 7562 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally 7563 * round what is now in bits to nearest long in bits, then return it in 7564 * bytes. 7565 */ 7566 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize) 7567 { 7568 unsigned long usemapsize; 7569 7570 zonesize += zone_start_pfn & (pageblock_nr_pages-1); 7571 usemapsize = roundup(zonesize, pageblock_nr_pages); 7572 usemapsize = usemapsize >> pageblock_order; 7573 usemapsize *= NR_PAGEBLOCK_BITS; 7574 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long)); 7575 7576 return usemapsize / 8; 7577 } 7578 7579 static void __ref setup_usemap(struct zone *zone) 7580 { 7581 unsigned long usemapsize = usemap_size(zone->zone_start_pfn, 7582 zone->spanned_pages); 7583 zone->pageblock_flags = NULL; 7584 if (usemapsize) { 7585 zone->pageblock_flags = 7586 memblock_alloc_node(usemapsize, SMP_CACHE_BYTES, 7587 zone_to_nid(zone)); 7588 if (!zone->pageblock_flags) 7589 panic("Failed to allocate %ld bytes for zone %s pageblock flags on node %d\n", 7590 usemapsize, zone->name, zone_to_nid(zone)); 7591 } 7592 } 7593 #else 7594 static inline void setup_usemap(struct zone *zone) {} 7595 #endif /* CONFIG_SPARSEMEM */ 7596 7597 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE 7598 7599 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */ 7600 void __init set_pageblock_order(void) 7601 { 7602 unsigned int order = MAX_ORDER - 1; 7603 7604 /* Check that pageblock_nr_pages has not already been setup */ 7605 if (pageblock_order) 7606 return; 7607 7608 /* Don't let pageblocks exceed the maximum allocation granularity. */ 7609 if (HPAGE_SHIFT > PAGE_SHIFT && HUGETLB_PAGE_ORDER < order) 7610 order = HUGETLB_PAGE_ORDER; 7611 7612 /* 7613 * Assume the largest contiguous order of interest is a huge page. 7614 * This value may be variable depending on boot parameters on IA64 and 7615 * powerpc. 7616 */ 7617 pageblock_order = order; 7618 } 7619 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */ 7620 7621 /* 7622 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order() 7623 * is unused as pageblock_order is set at compile-time. See 7624 * include/linux/pageblock-flags.h for the values of pageblock_order based on 7625 * the kernel config 7626 */ 7627 void __init set_pageblock_order(void) 7628 { 7629 } 7630 7631 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */ 7632 7633 static unsigned long __init calc_memmap_size(unsigned long spanned_pages, 7634 unsigned long present_pages) 7635 { 7636 unsigned long pages = spanned_pages; 7637 7638 /* 7639 * Provide a more accurate estimation if there are holes within 7640 * the zone and SPARSEMEM is in use. If there are holes within the 7641 * zone, each populated memory region may cost us one or two extra 7642 * memmap pages due to alignment because memmap pages for each 7643 * populated regions may not be naturally aligned on page boundary. 7644 * So the (present_pages >> 4) heuristic is a tradeoff for that. 7645 */ 7646 if (spanned_pages > present_pages + (present_pages >> 4) && 7647 IS_ENABLED(CONFIG_SPARSEMEM)) 7648 pages = present_pages; 7649 7650 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT; 7651 } 7652 7653 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 7654 static void pgdat_init_split_queue(struct pglist_data *pgdat) 7655 { 7656 struct deferred_split *ds_queue = &pgdat->deferred_split_queue; 7657 7658 spin_lock_init(&ds_queue->split_queue_lock); 7659 INIT_LIST_HEAD(&ds_queue->split_queue); 7660 ds_queue->split_queue_len = 0; 7661 } 7662 #else 7663 static void pgdat_init_split_queue(struct pglist_data *pgdat) {} 7664 #endif 7665 7666 #ifdef CONFIG_COMPACTION 7667 static void pgdat_init_kcompactd(struct pglist_data *pgdat) 7668 { 7669 init_waitqueue_head(&pgdat->kcompactd_wait); 7670 } 7671 #else 7672 static void pgdat_init_kcompactd(struct pglist_data *pgdat) {} 7673 #endif 7674 7675 static void __meminit pgdat_init_internals(struct pglist_data *pgdat) 7676 { 7677 int i; 7678 7679 pgdat_resize_init(pgdat); 7680 pgdat_kswapd_lock_init(pgdat); 7681 7682 pgdat_init_split_queue(pgdat); 7683 pgdat_init_kcompactd(pgdat); 7684 7685 init_waitqueue_head(&pgdat->kswapd_wait); 7686 init_waitqueue_head(&pgdat->pfmemalloc_wait); 7687 7688 for (i = 0; i < NR_VMSCAN_THROTTLE; i++) 7689 init_waitqueue_head(&pgdat->reclaim_wait[i]); 7690 7691 pgdat_page_ext_init(pgdat); 7692 lruvec_init(&pgdat->__lruvec); 7693 } 7694 7695 static void __meminit zone_init_internals(struct zone *zone, enum zone_type idx, int nid, 7696 unsigned long remaining_pages) 7697 { 7698 atomic_long_set(&zone->managed_pages, remaining_pages); 7699 zone_set_nid(zone, nid); 7700 zone->name = zone_names[idx]; 7701 zone->zone_pgdat = NODE_DATA(nid); 7702 spin_lock_init(&zone->lock); 7703 zone_seqlock_init(zone); 7704 zone_pcp_init(zone); 7705 } 7706 7707 /* 7708 * Set up the zone data structures 7709 * - init pgdat internals 7710 * - init all zones belonging to this node 7711 * 7712 * NOTE: this function is only called during memory hotplug 7713 */ 7714 #ifdef CONFIG_MEMORY_HOTPLUG 7715 void __ref free_area_init_core_hotplug(struct pglist_data *pgdat) 7716 { 7717 int nid = pgdat->node_id; 7718 enum zone_type z; 7719 int cpu; 7720 7721 pgdat_init_internals(pgdat); 7722 7723 if (pgdat->per_cpu_nodestats == &boot_nodestats) 7724 pgdat->per_cpu_nodestats = alloc_percpu(struct per_cpu_nodestat); 7725 7726 /* 7727 * Reset the nr_zones, order and highest_zoneidx before reuse. 7728 * Note that kswapd will init kswapd_highest_zoneidx properly 7729 * when it starts in the near future. 7730 */ 7731 pgdat->nr_zones = 0; 7732 pgdat->kswapd_order = 0; 7733 pgdat->kswapd_highest_zoneidx = 0; 7734 pgdat->node_start_pfn = 0; 7735 for_each_online_cpu(cpu) { 7736 struct per_cpu_nodestat *p; 7737 7738 p = per_cpu_ptr(pgdat->per_cpu_nodestats, cpu); 7739 memset(p, 0, sizeof(*p)); 7740 } 7741 7742 for (z = 0; z < MAX_NR_ZONES; z++) 7743 zone_init_internals(&pgdat->node_zones[z], z, nid, 0); 7744 } 7745 #endif 7746 7747 /* 7748 * Set up the zone data structures: 7749 * - mark all pages reserved 7750 * - mark all memory queues empty 7751 * - clear the memory bitmaps 7752 * 7753 * NOTE: pgdat should get zeroed by caller. 7754 * NOTE: this function is only called during early init. 7755 */ 7756 static void __init free_area_init_core(struct pglist_data *pgdat) 7757 { 7758 enum zone_type j; 7759 int nid = pgdat->node_id; 7760 7761 pgdat_init_internals(pgdat); 7762 pgdat->per_cpu_nodestats = &boot_nodestats; 7763 7764 for (j = 0; j < MAX_NR_ZONES; j++) { 7765 struct zone *zone = pgdat->node_zones + j; 7766 unsigned long size, freesize, memmap_pages; 7767 7768 size = zone->spanned_pages; 7769 freesize = zone->present_pages; 7770 7771 /* 7772 * Adjust freesize so that it accounts for how much memory 7773 * is used by this zone for memmap. This affects the watermark 7774 * and per-cpu initialisations 7775 */ 7776 memmap_pages = calc_memmap_size(size, freesize); 7777 if (!is_highmem_idx(j)) { 7778 if (freesize >= memmap_pages) { 7779 freesize -= memmap_pages; 7780 if (memmap_pages) 7781 pr_debug(" %s zone: %lu pages used for memmap\n", 7782 zone_names[j], memmap_pages); 7783 } else 7784 pr_warn(" %s zone: %lu memmap pages exceeds freesize %lu\n", 7785 zone_names[j], memmap_pages, freesize); 7786 } 7787 7788 /* Account for reserved pages */ 7789 if (j == 0 && freesize > dma_reserve) { 7790 freesize -= dma_reserve; 7791 pr_debug(" %s zone: %lu pages reserved\n", zone_names[0], dma_reserve); 7792 } 7793 7794 if (!is_highmem_idx(j)) 7795 nr_kernel_pages += freesize; 7796 /* Charge for highmem memmap if there are enough kernel pages */ 7797 else if (nr_kernel_pages > memmap_pages * 2) 7798 nr_kernel_pages -= memmap_pages; 7799 nr_all_pages += freesize; 7800 7801 /* 7802 * Set an approximate value for lowmem here, it will be adjusted 7803 * when the bootmem allocator frees pages into the buddy system. 7804 * And all highmem pages will be managed by the buddy system. 7805 */ 7806 zone_init_internals(zone, j, nid, freesize); 7807 7808 if (!size) 7809 continue; 7810 7811 set_pageblock_order(); 7812 setup_usemap(zone); 7813 init_currently_empty_zone(zone, zone->zone_start_pfn, size); 7814 } 7815 } 7816 7817 #ifdef CONFIG_FLATMEM 7818 static void __init alloc_node_mem_map(struct pglist_data *pgdat) 7819 { 7820 unsigned long __maybe_unused start = 0; 7821 unsigned long __maybe_unused offset = 0; 7822 7823 /* Skip empty nodes */ 7824 if (!pgdat->node_spanned_pages) 7825 return; 7826 7827 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1); 7828 offset = pgdat->node_start_pfn - start; 7829 /* ia64 gets its own node_mem_map, before this, without bootmem */ 7830 if (!pgdat->node_mem_map) { 7831 unsigned long size, end; 7832 struct page *map; 7833 7834 /* 7835 * The zone's endpoints aren't required to be MAX_ORDER 7836 * aligned but the node_mem_map endpoints must be in order 7837 * for the buddy allocator to function correctly. 7838 */ 7839 end = pgdat_end_pfn(pgdat); 7840 end = ALIGN(end, MAX_ORDER_NR_PAGES); 7841 size = (end - start) * sizeof(struct page); 7842 map = memmap_alloc(size, SMP_CACHE_BYTES, MEMBLOCK_LOW_LIMIT, 7843 pgdat->node_id, false); 7844 if (!map) 7845 panic("Failed to allocate %ld bytes for node %d memory map\n", 7846 size, pgdat->node_id); 7847 pgdat->node_mem_map = map + offset; 7848 } 7849 pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n", 7850 __func__, pgdat->node_id, (unsigned long)pgdat, 7851 (unsigned long)pgdat->node_mem_map); 7852 #ifndef CONFIG_NUMA 7853 /* 7854 * With no DISCONTIG, the global mem_map is just set as node 0's 7855 */ 7856 if (pgdat == NODE_DATA(0)) { 7857 mem_map = NODE_DATA(0)->node_mem_map; 7858 if (page_to_pfn(mem_map) != pgdat->node_start_pfn) 7859 mem_map -= offset; 7860 } 7861 #endif 7862 } 7863 #else 7864 static inline void alloc_node_mem_map(struct pglist_data *pgdat) { } 7865 #endif /* CONFIG_FLATMEM */ 7866 7867 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 7868 static inline void pgdat_set_deferred_range(pg_data_t *pgdat) 7869 { 7870 pgdat->first_deferred_pfn = ULONG_MAX; 7871 } 7872 #else 7873 static inline void pgdat_set_deferred_range(pg_data_t *pgdat) {} 7874 #endif 7875 7876 static void __init free_area_init_node(int nid) 7877 { 7878 pg_data_t *pgdat = NODE_DATA(nid); 7879 unsigned long start_pfn = 0; 7880 unsigned long end_pfn = 0; 7881 7882 /* pg_data_t should be reset to zero when it's allocated */ 7883 WARN_ON(pgdat->nr_zones || pgdat->kswapd_highest_zoneidx); 7884 7885 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn); 7886 7887 pgdat->node_id = nid; 7888 pgdat->node_start_pfn = start_pfn; 7889 pgdat->per_cpu_nodestats = NULL; 7890 7891 if (start_pfn != end_pfn) { 7892 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid, 7893 (u64)start_pfn << PAGE_SHIFT, 7894 end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0); 7895 } else { 7896 pr_info("Initmem setup node %d as memoryless\n", nid); 7897 } 7898 7899 calculate_node_totalpages(pgdat, start_pfn, end_pfn); 7900 7901 alloc_node_mem_map(pgdat); 7902 pgdat_set_deferred_range(pgdat); 7903 7904 free_area_init_core(pgdat); 7905 } 7906 7907 static void __init free_area_init_memoryless_node(int nid) 7908 { 7909 free_area_init_node(nid); 7910 } 7911 7912 #if MAX_NUMNODES > 1 7913 /* 7914 * Figure out the number of possible node ids. 7915 */ 7916 void __init setup_nr_node_ids(void) 7917 { 7918 unsigned int highest; 7919 7920 highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES); 7921 nr_node_ids = highest + 1; 7922 } 7923 #endif 7924 7925 /** 7926 * node_map_pfn_alignment - determine the maximum internode alignment 7927 * 7928 * This function should be called after node map is populated and sorted. 7929 * It calculates the maximum power of two alignment which can distinguish 7930 * all the nodes. 7931 * 7932 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value 7933 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the 7934 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is 7935 * shifted, 1GiB is enough and this function will indicate so. 7936 * 7937 * This is used to test whether pfn -> nid mapping of the chosen memory 7938 * model has fine enough granularity to avoid incorrect mapping for the 7939 * populated node map. 7940 * 7941 * Return: the determined alignment in pfn's. 0 if there is no alignment 7942 * requirement (single node). 7943 */ 7944 unsigned long __init node_map_pfn_alignment(void) 7945 { 7946 unsigned long accl_mask = 0, last_end = 0; 7947 unsigned long start, end, mask; 7948 int last_nid = NUMA_NO_NODE; 7949 int i, nid; 7950 7951 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) { 7952 if (!start || last_nid < 0 || last_nid == nid) { 7953 last_nid = nid; 7954 last_end = end; 7955 continue; 7956 } 7957 7958 /* 7959 * Start with a mask granular enough to pin-point to the 7960 * start pfn and tick off bits one-by-one until it becomes 7961 * too coarse to separate the current node from the last. 7962 */ 7963 mask = ~((1 << __ffs(start)) - 1); 7964 while (mask && last_end <= (start & (mask << 1))) 7965 mask <<= 1; 7966 7967 /* accumulate all internode masks */ 7968 accl_mask |= mask; 7969 } 7970 7971 /* convert mask to number of pages */ 7972 return ~accl_mask + 1; 7973 } 7974 7975 /* 7976 * early_calculate_totalpages() 7977 * Sum pages in active regions for movable zone. 7978 * Populate N_MEMORY for calculating usable_nodes. 7979 */ 7980 static unsigned long __init early_calculate_totalpages(void) 7981 { 7982 unsigned long totalpages = 0; 7983 unsigned long start_pfn, end_pfn; 7984 int i, nid; 7985 7986 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) { 7987 unsigned long pages = end_pfn - start_pfn; 7988 7989 totalpages += pages; 7990 if (pages) 7991 node_set_state(nid, N_MEMORY); 7992 } 7993 return totalpages; 7994 } 7995 7996 /* 7997 * Find the PFN the Movable zone begins in each node. Kernel memory 7998 * is spread evenly between nodes as long as the nodes have enough 7999 * memory. When they don't, some nodes will have more kernelcore than 8000 * others 8001 */ 8002 static void __init find_zone_movable_pfns_for_nodes(void) 8003 { 8004 int i, nid; 8005 unsigned long usable_startpfn; 8006 unsigned long kernelcore_node, kernelcore_remaining; 8007 /* save the state before borrow the nodemask */ 8008 nodemask_t saved_node_state = node_states[N_MEMORY]; 8009 unsigned long totalpages = early_calculate_totalpages(); 8010 int usable_nodes = nodes_weight(node_states[N_MEMORY]); 8011 struct memblock_region *r; 8012 8013 /* Need to find movable_zone earlier when movable_node is specified. */ 8014 find_usable_zone_for_movable(); 8015 8016 /* 8017 * If movable_node is specified, ignore kernelcore and movablecore 8018 * options. 8019 */ 8020 if (movable_node_is_enabled()) { 8021 for_each_mem_region(r) { 8022 if (!memblock_is_hotpluggable(r)) 8023 continue; 8024 8025 nid = memblock_get_region_node(r); 8026 8027 usable_startpfn = PFN_DOWN(r->base); 8028 zone_movable_pfn[nid] = zone_movable_pfn[nid] ? 8029 min(usable_startpfn, zone_movable_pfn[nid]) : 8030 usable_startpfn; 8031 } 8032 8033 goto out2; 8034 } 8035 8036 /* 8037 * If kernelcore=mirror is specified, ignore movablecore option 8038 */ 8039 if (mirrored_kernelcore) { 8040 bool mem_below_4gb_not_mirrored = false; 8041 8042 for_each_mem_region(r) { 8043 if (memblock_is_mirror(r)) 8044 continue; 8045 8046 nid = memblock_get_region_node(r); 8047 8048 usable_startpfn = memblock_region_memory_base_pfn(r); 8049 8050 if (usable_startpfn < PHYS_PFN(SZ_4G)) { 8051 mem_below_4gb_not_mirrored = true; 8052 continue; 8053 } 8054 8055 zone_movable_pfn[nid] = zone_movable_pfn[nid] ? 8056 min(usable_startpfn, zone_movable_pfn[nid]) : 8057 usable_startpfn; 8058 } 8059 8060 if (mem_below_4gb_not_mirrored) 8061 pr_warn("This configuration results in unmirrored kernel memory.\n"); 8062 8063 goto out2; 8064 } 8065 8066 /* 8067 * If kernelcore=nn% or movablecore=nn% was specified, calculate the 8068 * amount of necessary memory. 8069 */ 8070 if (required_kernelcore_percent) 8071 required_kernelcore = (totalpages * 100 * required_kernelcore_percent) / 8072 10000UL; 8073 if (required_movablecore_percent) 8074 required_movablecore = (totalpages * 100 * required_movablecore_percent) / 8075 10000UL; 8076 8077 /* 8078 * If movablecore= was specified, calculate what size of 8079 * kernelcore that corresponds so that memory usable for 8080 * any allocation type is evenly spread. If both kernelcore 8081 * and movablecore are specified, then the value of kernelcore 8082 * will be used for required_kernelcore if it's greater than 8083 * what movablecore would have allowed. 8084 */ 8085 if (required_movablecore) { 8086 unsigned long corepages; 8087 8088 /* 8089 * Round-up so that ZONE_MOVABLE is at least as large as what 8090 * was requested by the user 8091 */ 8092 required_movablecore = 8093 roundup(required_movablecore, MAX_ORDER_NR_PAGES); 8094 required_movablecore = min(totalpages, required_movablecore); 8095 corepages = totalpages - required_movablecore; 8096 8097 required_kernelcore = max(required_kernelcore, corepages); 8098 } 8099 8100 /* 8101 * If kernelcore was not specified or kernelcore size is larger 8102 * than totalpages, there is no ZONE_MOVABLE. 8103 */ 8104 if (!required_kernelcore || required_kernelcore >= totalpages) 8105 goto out; 8106 8107 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */ 8108 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone]; 8109 8110 restart: 8111 /* Spread kernelcore memory as evenly as possible throughout nodes */ 8112 kernelcore_node = required_kernelcore / usable_nodes; 8113 for_each_node_state(nid, N_MEMORY) { 8114 unsigned long start_pfn, end_pfn; 8115 8116 /* 8117 * Recalculate kernelcore_node if the division per node 8118 * now exceeds what is necessary to satisfy the requested 8119 * amount of memory for the kernel 8120 */ 8121 if (required_kernelcore < kernelcore_node) 8122 kernelcore_node = required_kernelcore / usable_nodes; 8123 8124 /* 8125 * As the map is walked, we track how much memory is usable 8126 * by the kernel using kernelcore_remaining. When it is 8127 * 0, the rest of the node is usable by ZONE_MOVABLE 8128 */ 8129 kernelcore_remaining = kernelcore_node; 8130 8131 /* Go through each range of PFNs within this node */ 8132 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) { 8133 unsigned long size_pages; 8134 8135 start_pfn = max(start_pfn, zone_movable_pfn[nid]); 8136 if (start_pfn >= end_pfn) 8137 continue; 8138 8139 /* Account for what is only usable for kernelcore */ 8140 if (start_pfn < usable_startpfn) { 8141 unsigned long kernel_pages; 8142 kernel_pages = min(end_pfn, usable_startpfn) 8143 - start_pfn; 8144 8145 kernelcore_remaining -= min(kernel_pages, 8146 kernelcore_remaining); 8147 required_kernelcore -= min(kernel_pages, 8148 required_kernelcore); 8149 8150 /* Continue if range is now fully accounted */ 8151 if (end_pfn <= usable_startpfn) { 8152 8153 /* 8154 * Push zone_movable_pfn to the end so 8155 * that if we have to rebalance 8156 * kernelcore across nodes, we will 8157 * not double account here 8158 */ 8159 zone_movable_pfn[nid] = end_pfn; 8160 continue; 8161 } 8162 start_pfn = usable_startpfn; 8163 } 8164 8165 /* 8166 * The usable PFN range for ZONE_MOVABLE is from 8167 * start_pfn->end_pfn. Calculate size_pages as the 8168 * number of pages used as kernelcore 8169 */ 8170 size_pages = end_pfn - start_pfn; 8171 if (size_pages > kernelcore_remaining) 8172 size_pages = kernelcore_remaining; 8173 zone_movable_pfn[nid] = start_pfn + size_pages; 8174 8175 /* 8176 * Some kernelcore has been met, update counts and 8177 * break if the kernelcore for this node has been 8178 * satisfied 8179 */ 8180 required_kernelcore -= min(required_kernelcore, 8181 size_pages); 8182 kernelcore_remaining -= size_pages; 8183 if (!kernelcore_remaining) 8184 break; 8185 } 8186 } 8187 8188 /* 8189 * If there is still required_kernelcore, we do another pass with one 8190 * less node in the count. This will push zone_movable_pfn[nid] further 8191 * along on the nodes that still have memory until kernelcore is 8192 * satisfied 8193 */ 8194 usable_nodes--; 8195 if (usable_nodes && required_kernelcore > usable_nodes) 8196 goto restart; 8197 8198 out2: 8199 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */ 8200 for (nid = 0; nid < MAX_NUMNODES; nid++) { 8201 unsigned long start_pfn, end_pfn; 8202 8203 zone_movable_pfn[nid] = 8204 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES); 8205 8206 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn); 8207 if (zone_movable_pfn[nid] >= end_pfn) 8208 zone_movable_pfn[nid] = 0; 8209 } 8210 8211 out: 8212 /* restore the node_state */ 8213 node_states[N_MEMORY] = saved_node_state; 8214 } 8215 8216 /* Any regular or high memory on that node ? */ 8217 static void check_for_memory(pg_data_t *pgdat, int nid) 8218 { 8219 enum zone_type zone_type; 8220 8221 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) { 8222 struct zone *zone = &pgdat->node_zones[zone_type]; 8223 if (populated_zone(zone)) { 8224 if (IS_ENABLED(CONFIG_HIGHMEM)) 8225 node_set_state(nid, N_HIGH_MEMORY); 8226 if (zone_type <= ZONE_NORMAL) 8227 node_set_state(nid, N_NORMAL_MEMORY); 8228 break; 8229 } 8230 } 8231 } 8232 8233 /* 8234 * Some architectures, e.g. ARC may have ZONE_HIGHMEM below ZONE_NORMAL. For 8235 * such cases we allow max_zone_pfn sorted in the descending order 8236 */ 8237 bool __weak arch_has_descending_max_zone_pfns(void) 8238 { 8239 return false; 8240 } 8241 8242 /** 8243 * free_area_init - Initialise all pg_data_t and zone data 8244 * @max_zone_pfn: an array of max PFNs for each zone 8245 * 8246 * This will call free_area_init_node() for each active node in the system. 8247 * Using the page ranges provided by memblock_set_node(), the size of each 8248 * zone in each node and their holes is calculated. If the maximum PFN 8249 * between two adjacent zones match, it is assumed that the zone is empty. 8250 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed 8251 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone 8252 * starts where the previous one ended. For example, ZONE_DMA32 starts 8253 * at arch_max_dma_pfn. 8254 */ 8255 void __init free_area_init(unsigned long *max_zone_pfn) 8256 { 8257 unsigned long start_pfn, end_pfn; 8258 int i, nid, zone; 8259 bool descending; 8260 8261 /* Record where the zone boundaries are */ 8262 memset(arch_zone_lowest_possible_pfn, 0, 8263 sizeof(arch_zone_lowest_possible_pfn)); 8264 memset(arch_zone_highest_possible_pfn, 0, 8265 sizeof(arch_zone_highest_possible_pfn)); 8266 8267 start_pfn = PHYS_PFN(memblock_start_of_DRAM()); 8268 descending = arch_has_descending_max_zone_pfns(); 8269 8270 for (i = 0; i < MAX_NR_ZONES; i++) { 8271 if (descending) 8272 zone = MAX_NR_ZONES - i - 1; 8273 else 8274 zone = i; 8275 8276 if (zone == ZONE_MOVABLE) 8277 continue; 8278 8279 end_pfn = max(max_zone_pfn[zone], start_pfn); 8280 arch_zone_lowest_possible_pfn[zone] = start_pfn; 8281 arch_zone_highest_possible_pfn[zone] = end_pfn; 8282 8283 start_pfn = end_pfn; 8284 } 8285 8286 /* Find the PFNs that ZONE_MOVABLE begins at in each node */ 8287 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn)); 8288 find_zone_movable_pfns_for_nodes(); 8289 8290 /* Print out the zone ranges */ 8291 pr_info("Zone ranges:\n"); 8292 for (i = 0; i < MAX_NR_ZONES; i++) { 8293 if (i == ZONE_MOVABLE) 8294 continue; 8295 pr_info(" %-8s ", zone_names[i]); 8296 if (arch_zone_lowest_possible_pfn[i] == 8297 arch_zone_highest_possible_pfn[i]) 8298 pr_cont("empty\n"); 8299 else 8300 pr_cont("[mem %#018Lx-%#018Lx]\n", 8301 (u64)arch_zone_lowest_possible_pfn[i] 8302 << PAGE_SHIFT, 8303 ((u64)arch_zone_highest_possible_pfn[i] 8304 << PAGE_SHIFT) - 1); 8305 } 8306 8307 /* Print out the PFNs ZONE_MOVABLE begins at in each node */ 8308 pr_info("Movable zone start for each node\n"); 8309 for (i = 0; i < MAX_NUMNODES; i++) { 8310 if (zone_movable_pfn[i]) 8311 pr_info(" Node %d: %#018Lx\n", i, 8312 (u64)zone_movable_pfn[i] << PAGE_SHIFT); 8313 } 8314 8315 /* 8316 * Print out the early node map, and initialize the 8317 * subsection-map relative to active online memory ranges to 8318 * enable future "sub-section" extensions of the memory map. 8319 */ 8320 pr_info("Early memory node ranges\n"); 8321 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) { 8322 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid, 8323 (u64)start_pfn << PAGE_SHIFT, 8324 ((u64)end_pfn << PAGE_SHIFT) - 1); 8325 subsection_map_init(start_pfn, end_pfn - start_pfn); 8326 } 8327 8328 /* Initialise every node */ 8329 mminit_verify_pageflags_layout(); 8330 setup_nr_node_ids(); 8331 for_each_node(nid) { 8332 pg_data_t *pgdat; 8333 8334 if (!node_online(nid)) { 8335 pr_info("Initializing node %d as memoryless\n", nid); 8336 8337 /* Allocator not initialized yet */ 8338 pgdat = arch_alloc_nodedata(nid); 8339 if (!pgdat) { 8340 pr_err("Cannot allocate %zuB for node %d.\n", 8341 sizeof(*pgdat), nid); 8342 continue; 8343 } 8344 arch_refresh_nodedata(nid, pgdat); 8345 free_area_init_memoryless_node(nid); 8346 8347 /* 8348 * We do not want to confuse userspace by sysfs 8349 * files/directories for node without any memory 8350 * attached to it, so this node is not marked as 8351 * N_MEMORY and not marked online so that no sysfs 8352 * hierarchy will be created via register_one_node for 8353 * it. The pgdat will get fully initialized by 8354 * hotadd_init_pgdat() when memory is hotplugged into 8355 * this node. 8356 */ 8357 continue; 8358 } 8359 8360 pgdat = NODE_DATA(nid); 8361 free_area_init_node(nid); 8362 8363 /* Any memory on that node */ 8364 if (pgdat->node_present_pages) 8365 node_set_state(nid, N_MEMORY); 8366 check_for_memory(pgdat, nid); 8367 } 8368 8369 memmap_init(); 8370 } 8371 8372 static int __init cmdline_parse_core(char *p, unsigned long *core, 8373 unsigned long *percent) 8374 { 8375 unsigned long long coremem; 8376 char *endptr; 8377 8378 if (!p) 8379 return -EINVAL; 8380 8381 /* Value may be a percentage of total memory, otherwise bytes */ 8382 coremem = simple_strtoull(p, &endptr, 0); 8383 if (*endptr == '%') { 8384 /* Paranoid check for percent values greater than 100 */ 8385 WARN_ON(coremem > 100); 8386 8387 *percent = coremem; 8388 } else { 8389 coremem = memparse(p, &p); 8390 /* Paranoid check that UL is enough for the coremem value */ 8391 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX); 8392 8393 *core = coremem >> PAGE_SHIFT; 8394 *percent = 0UL; 8395 } 8396 return 0; 8397 } 8398 8399 /* 8400 * kernelcore=size sets the amount of memory for use for allocations that 8401 * cannot be reclaimed or migrated. 8402 */ 8403 static int __init cmdline_parse_kernelcore(char *p) 8404 { 8405 /* parse kernelcore=mirror */ 8406 if (parse_option_str(p, "mirror")) { 8407 mirrored_kernelcore = true; 8408 return 0; 8409 } 8410 8411 return cmdline_parse_core(p, &required_kernelcore, 8412 &required_kernelcore_percent); 8413 } 8414 8415 /* 8416 * movablecore=size sets the amount of memory for use for allocations that 8417 * can be reclaimed or migrated. 8418 */ 8419 static int __init cmdline_parse_movablecore(char *p) 8420 { 8421 return cmdline_parse_core(p, &required_movablecore, 8422 &required_movablecore_percent); 8423 } 8424 8425 early_param("kernelcore", cmdline_parse_kernelcore); 8426 early_param("movablecore", cmdline_parse_movablecore); 8427 8428 void adjust_managed_page_count(struct page *page, long count) 8429 { 8430 atomic_long_add(count, &page_zone(page)->managed_pages); 8431 totalram_pages_add(count); 8432 #ifdef CONFIG_HIGHMEM 8433 if (PageHighMem(page)) 8434 totalhigh_pages_add(count); 8435 #endif 8436 } 8437 EXPORT_SYMBOL(adjust_managed_page_count); 8438 8439 unsigned long free_reserved_area(void *start, void *end, int poison, const char *s) 8440 { 8441 void *pos; 8442 unsigned long pages = 0; 8443 8444 start = (void *)PAGE_ALIGN((unsigned long)start); 8445 end = (void *)((unsigned long)end & PAGE_MASK); 8446 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) { 8447 struct page *page = virt_to_page(pos); 8448 void *direct_map_addr; 8449 8450 /* 8451 * 'direct_map_addr' might be different from 'pos' 8452 * because some architectures' virt_to_page() 8453 * work with aliases. Getting the direct map 8454 * address ensures that we get a _writeable_ 8455 * alias for the memset(). 8456 */ 8457 direct_map_addr = page_address(page); 8458 /* 8459 * Perform a kasan-unchecked memset() since this memory 8460 * has not been initialized. 8461 */ 8462 direct_map_addr = kasan_reset_tag(direct_map_addr); 8463 if ((unsigned int)poison <= 0xFF) 8464 memset(direct_map_addr, poison, PAGE_SIZE); 8465 8466 free_reserved_page(page); 8467 } 8468 8469 if (pages && s) 8470 pr_info("Freeing %s memory: %ldK\n", s, K(pages)); 8471 8472 return pages; 8473 } 8474 8475 void __init mem_init_print_info(void) 8476 { 8477 unsigned long physpages, codesize, datasize, rosize, bss_size; 8478 unsigned long init_code_size, init_data_size; 8479 8480 physpages = get_num_physpages(); 8481 codesize = _etext - _stext; 8482 datasize = _edata - _sdata; 8483 rosize = __end_rodata - __start_rodata; 8484 bss_size = __bss_stop - __bss_start; 8485 init_data_size = __init_end - __init_begin; 8486 init_code_size = _einittext - _sinittext; 8487 8488 /* 8489 * Detect special cases and adjust section sizes accordingly: 8490 * 1) .init.* may be embedded into .data sections 8491 * 2) .init.text.* may be out of [__init_begin, __init_end], 8492 * please refer to arch/tile/kernel/vmlinux.lds.S. 8493 * 3) .rodata.* may be embedded into .text or .data sections. 8494 */ 8495 #define adj_init_size(start, end, size, pos, adj) \ 8496 do { \ 8497 if (&start[0] <= &pos[0] && &pos[0] < &end[0] && size > adj) \ 8498 size -= adj; \ 8499 } while (0) 8500 8501 adj_init_size(__init_begin, __init_end, init_data_size, 8502 _sinittext, init_code_size); 8503 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size); 8504 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size); 8505 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize); 8506 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize); 8507 8508 #undef adj_init_size 8509 8510 pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved" 8511 #ifdef CONFIG_HIGHMEM 8512 ", %luK highmem" 8513 #endif 8514 ")\n", 8515 K(nr_free_pages()), K(physpages), 8516 codesize >> 10, datasize >> 10, rosize >> 10, 8517 (init_data_size + init_code_size) >> 10, bss_size >> 10, 8518 K(physpages - totalram_pages() - totalcma_pages), 8519 K(totalcma_pages) 8520 #ifdef CONFIG_HIGHMEM 8521 , K(totalhigh_pages()) 8522 #endif 8523 ); 8524 } 8525 8526 /** 8527 * set_dma_reserve - set the specified number of pages reserved in the first zone 8528 * @new_dma_reserve: The number of pages to mark reserved 8529 * 8530 * The per-cpu batchsize and zone watermarks are determined by managed_pages. 8531 * In the DMA zone, a significant percentage may be consumed by kernel image 8532 * and other unfreeable allocations which can skew the watermarks badly. This 8533 * function may optionally be used to account for unfreeable pages in the 8534 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and 8535 * smaller per-cpu batchsize. 8536 */ 8537 void __init set_dma_reserve(unsigned long new_dma_reserve) 8538 { 8539 dma_reserve = new_dma_reserve; 8540 } 8541 8542 static int page_alloc_cpu_dead(unsigned int cpu) 8543 { 8544 struct zone *zone; 8545 8546 lru_add_drain_cpu(cpu); 8547 mlock_page_drain_remote(cpu); 8548 drain_pages(cpu); 8549 8550 /* 8551 * Spill the event counters of the dead processor 8552 * into the current processors event counters. 8553 * This artificially elevates the count of the current 8554 * processor. 8555 */ 8556 vm_events_fold_cpu(cpu); 8557 8558 /* 8559 * Zero the differential counters of the dead processor 8560 * so that the vm statistics are consistent. 8561 * 8562 * This is only okay since the processor is dead and cannot 8563 * race with what we are doing. 8564 */ 8565 cpu_vm_stats_fold(cpu); 8566 8567 for_each_populated_zone(zone) 8568 zone_pcp_update(zone, 0); 8569 8570 return 0; 8571 } 8572 8573 static int page_alloc_cpu_online(unsigned int cpu) 8574 { 8575 struct zone *zone; 8576 8577 for_each_populated_zone(zone) 8578 zone_pcp_update(zone, 1); 8579 return 0; 8580 } 8581 8582 #ifdef CONFIG_NUMA 8583 int hashdist = HASHDIST_DEFAULT; 8584 8585 static int __init set_hashdist(char *str) 8586 { 8587 if (!str) 8588 return 0; 8589 hashdist = simple_strtoul(str, &str, 0); 8590 return 1; 8591 } 8592 __setup("hashdist=", set_hashdist); 8593 #endif 8594 8595 void __init page_alloc_init(void) 8596 { 8597 int ret; 8598 8599 #ifdef CONFIG_NUMA 8600 if (num_node_state(N_MEMORY) == 1) 8601 hashdist = 0; 8602 #endif 8603 8604 ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC, 8605 "mm/page_alloc:pcp", 8606 page_alloc_cpu_online, 8607 page_alloc_cpu_dead); 8608 WARN_ON(ret < 0); 8609 } 8610 8611 /* 8612 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio 8613 * or min_free_kbytes changes. 8614 */ 8615 static void calculate_totalreserve_pages(void) 8616 { 8617 struct pglist_data *pgdat; 8618 unsigned long reserve_pages = 0; 8619 enum zone_type i, j; 8620 8621 for_each_online_pgdat(pgdat) { 8622 8623 pgdat->totalreserve_pages = 0; 8624 8625 for (i = 0; i < MAX_NR_ZONES; i++) { 8626 struct zone *zone = pgdat->node_zones + i; 8627 long max = 0; 8628 unsigned long managed_pages = zone_managed_pages(zone); 8629 8630 /* Find valid and maximum lowmem_reserve in the zone */ 8631 for (j = i; j < MAX_NR_ZONES; j++) { 8632 if (zone->lowmem_reserve[j] > max) 8633 max = zone->lowmem_reserve[j]; 8634 } 8635 8636 /* we treat the high watermark as reserved pages. */ 8637 max += high_wmark_pages(zone); 8638 8639 if (max > managed_pages) 8640 max = managed_pages; 8641 8642 pgdat->totalreserve_pages += max; 8643 8644 reserve_pages += max; 8645 } 8646 } 8647 totalreserve_pages = reserve_pages; 8648 } 8649 8650 /* 8651 * setup_per_zone_lowmem_reserve - called whenever 8652 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone 8653 * has a correct pages reserved value, so an adequate number of 8654 * pages are left in the zone after a successful __alloc_pages(). 8655 */ 8656 static void setup_per_zone_lowmem_reserve(void) 8657 { 8658 struct pglist_data *pgdat; 8659 enum zone_type i, j; 8660 8661 for_each_online_pgdat(pgdat) { 8662 for (i = 0; i < MAX_NR_ZONES - 1; i++) { 8663 struct zone *zone = &pgdat->node_zones[i]; 8664 int ratio = sysctl_lowmem_reserve_ratio[i]; 8665 bool clear = !ratio || !zone_managed_pages(zone); 8666 unsigned long managed_pages = 0; 8667 8668 for (j = i + 1; j < MAX_NR_ZONES; j++) { 8669 struct zone *upper_zone = &pgdat->node_zones[j]; 8670 8671 managed_pages += zone_managed_pages(upper_zone); 8672 8673 if (clear) 8674 zone->lowmem_reserve[j] = 0; 8675 else 8676 zone->lowmem_reserve[j] = managed_pages / ratio; 8677 } 8678 } 8679 } 8680 8681 /* update totalreserve_pages */ 8682 calculate_totalreserve_pages(); 8683 } 8684 8685 static void __setup_per_zone_wmarks(void) 8686 { 8687 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10); 8688 unsigned long lowmem_pages = 0; 8689 struct zone *zone; 8690 unsigned long flags; 8691 8692 /* Calculate total number of !ZONE_HIGHMEM pages */ 8693 for_each_zone(zone) { 8694 if (!is_highmem(zone)) 8695 lowmem_pages += zone_managed_pages(zone); 8696 } 8697 8698 for_each_zone(zone) { 8699 u64 tmp; 8700 8701 spin_lock_irqsave(&zone->lock, flags); 8702 tmp = (u64)pages_min * zone_managed_pages(zone); 8703 do_div(tmp, lowmem_pages); 8704 if (is_highmem(zone)) { 8705 /* 8706 * __GFP_HIGH and PF_MEMALLOC allocations usually don't 8707 * need highmem pages, so cap pages_min to a small 8708 * value here. 8709 * 8710 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN) 8711 * deltas control async page reclaim, and so should 8712 * not be capped for highmem. 8713 */ 8714 unsigned long min_pages; 8715 8716 min_pages = zone_managed_pages(zone) / 1024; 8717 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL); 8718 zone->_watermark[WMARK_MIN] = min_pages; 8719 } else { 8720 /* 8721 * If it's a lowmem zone, reserve a number of pages 8722 * proportionate to the zone's size. 8723 */ 8724 zone->_watermark[WMARK_MIN] = tmp; 8725 } 8726 8727 /* 8728 * Set the kswapd watermarks distance according to the 8729 * scale factor in proportion to available memory, but 8730 * ensure a minimum size on small systems. 8731 */ 8732 tmp = max_t(u64, tmp >> 2, 8733 mult_frac(zone_managed_pages(zone), 8734 watermark_scale_factor, 10000)); 8735 8736 zone->watermark_boost = 0; 8737 zone->_watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp; 8738 zone->_watermark[WMARK_HIGH] = low_wmark_pages(zone) + tmp; 8739 zone->_watermark[WMARK_PROMO] = high_wmark_pages(zone) + tmp; 8740 8741 spin_unlock_irqrestore(&zone->lock, flags); 8742 } 8743 8744 /* update totalreserve_pages */ 8745 calculate_totalreserve_pages(); 8746 } 8747 8748 /** 8749 * setup_per_zone_wmarks - called when min_free_kbytes changes 8750 * or when memory is hot-{added|removed} 8751 * 8752 * Ensures that the watermark[min,low,high] values for each zone are set 8753 * correctly with respect to min_free_kbytes. 8754 */ 8755 void setup_per_zone_wmarks(void) 8756 { 8757 struct zone *zone; 8758 static DEFINE_SPINLOCK(lock); 8759 8760 spin_lock(&lock); 8761 __setup_per_zone_wmarks(); 8762 spin_unlock(&lock); 8763 8764 /* 8765 * The watermark size have changed so update the pcpu batch 8766 * and high limits or the limits may be inappropriate. 8767 */ 8768 for_each_zone(zone) 8769 zone_pcp_update(zone, 0); 8770 } 8771 8772 /* 8773 * Initialise min_free_kbytes. 8774 * 8775 * For small machines we want it small (128k min). For large machines 8776 * we want it large (256MB max). But it is not linear, because network 8777 * bandwidth does not increase linearly with machine size. We use 8778 * 8779 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy: 8780 * min_free_kbytes = sqrt(lowmem_kbytes * 16) 8781 * 8782 * which yields 8783 * 8784 * 16MB: 512k 8785 * 32MB: 724k 8786 * 64MB: 1024k 8787 * 128MB: 1448k 8788 * 256MB: 2048k 8789 * 512MB: 2896k 8790 * 1024MB: 4096k 8791 * 2048MB: 5792k 8792 * 4096MB: 8192k 8793 * 8192MB: 11584k 8794 * 16384MB: 16384k 8795 */ 8796 void calculate_min_free_kbytes(void) 8797 { 8798 unsigned long lowmem_kbytes; 8799 int new_min_free_kbytes; 8800 8801 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10); 8802 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16); 8803 8804 if (new_min_free_kbytes > user_min_free_kbytes) 8805 min_free_kbytes = clamp(new_min_free_kbytes, 128, 262144); 8806 else 8807 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n", 8808 new_min_free_kbytes, user_min_free_kbytes); 8809 8810 } 8811 8812 int __meminit init_per_zone_wmark_min(void) 8813 { 8814 calculate_min_free_kbytes(); 8815 setup_per_zone_wmarks(); 8816 refresh_zone_stat_thresholds(); 8817 setup_per_zone_lowmem_reserve(); 8818 8819 #ifdef CONFIG_NUMA 8820 setup_min_unmapped_ratio(); 8821 setup_min_slab_ratio(); 8822 #endif 8823 8824 khugepaged_min_free_kbytes_update(); 8825 8826 return 0; 8827 } 8828 postcore_initcall(init_per_zone_wmark_min) 8829 8830 /* 8831 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so 8832 * that we can call two helper functions whenever min_free_kbytes 8833 * changes. 8834 */ 8835 int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write, 8836 void *buffer, size_t *length, loff_t *ppos) 8837 { 8838 int rc; 8839 8840 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 8841 if (rc) 8842 return rc; 8843 8844 if (write) { 8845 user_min_free_kbytes = min_free_kbytes; 8846 setup_per_zone_wmarks(); 8847 } 8848 return 0; 8849 } 8850 8851 int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write, 8852 void *buffer, size_t *length, loff_t *ppos) 8853 { 8854 int rc; 8855 8856 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 8857 if (rc) 8858 return rc; 8859 8860 if (write) 8861 setup_per_zone_wmarks(); 8862 8863 return 0; 8864 } 8865 8866 #ifdef CONFIG_NUMA 8867 static void setup_min_unmapped_ratio(void) 8868 { 8869 pg_data_t *pgdat; 8870 struct zone *zone; 8871 8872 for_each_online_pgdat(pgdat) 8873 pgdat->min_unmapped_pages = 0; 8874 8875 for_each_zone(zone) 8876 zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) * 8877 sysctl_min_unmapped_ratio) / 100; 8878 } 8879 8880 8881 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write, 8882 void *buffer, size_t *length, loff_t *ppos) 8883 { 8884 int rc; 8885 8886 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 8887 if (rc) 8888 return rc; 8889 8890 setup_min_unmapped_ratio(); 8891 8892 return 0; 8893 } 8894 8895 static void setup_min_slab_ratio(void) 8896 { 8897 pg_data_t *pgdat; 8898 struct zone *zone; 8899 8900 for_each_online_pgdat(pgdat) 8901 pgdat->min_slab_pages = 0; 8902 8903 for_each_zone(zone) 8904 zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) * 8905 sysctl_min_slab_ratio) / 100; 8906 } 8907 8908 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write, 8909 void *buffer, size_t *length, loff_t *ppos) 8910 { 8911 int rc; 8912 8913 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 8914 if (rc) 8915 return rc; 8916 8917 setup_min_slab_ratio(); 8918 8919 return 0; 8920 } 8921 #endif 8922 8923 /* 8924 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around 8925 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve() 8926 * whenever sysctl_lowmem_reserve_ratio changes. 8927 * 8928 * The reserve ratio obviously has absolutely no relation with the 8929 * minimum watermarks. The lowmem reserve ratio can only make sense 8930 * if in function of the boot time zone sizes. 8931 */ 8932 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write, 8933 void *buffer, size_t *length, loff_t *ppos) 8934 { 8935 int i; 8936 8937 proc_dointvec_minmax(table, write, buffer, length, ppos); 8938 8939 for (i = 0; i < MAX_NR_ZONES; i++) { 8940 if (sysctl_lowmem_reserve_ratio[i] < 1) 8941 sysctl_lowmem_reserve_ratio[i] = 0; 8942 } 8943 8944 setup_per_zone_lowmem_reserve(); 8945 return 0; 8946 } 8947 8948 /* 8949 * percpu_pagelist_high_fraction - changes the pcp->high for each zone on each 8950 * cpu. It is the fraction of total pages in each zone that a hot per cpu 8951 * pagelist can have before it gets flushed back to buddy allocator. 8952 */ 8953 int percpu_pagelist_high_fraction_sysctl_handler(struct ctl_table *table, 8954 int write, void *buffer, size_t *length, loff_t *ppos) 8955 { 8956 struct zone *zone; 8957 int old_percpu_pagelist_high_fraction; 8958 int ret; 8959 8960 mutex_lock(&pcp_batch_high_lock); 8961 old_percpu_pagelist_high_fraction = percpu_pagelist_high_fraction; 8962 8963 ret = proc_dointvec_minmax(table, write, buffer, length, ppos); 8964 if (!write || ret < 0) 8965 goto out; 8966 8967 /* Sanity checking to avoid pcp imbalance */ 8968 if (percpu_pagelist_high_fraction && 8969 percpu_pagelist_high_fraction < MIN_PERCPU_PAGELIST_HIGH_FRACTION) { 8970 percpu_pagelist_high_fraction = old_percpu_pagelist_high_fraction; 8971 ret = -EINVAL; 8972 goto out; 8973 } 8974 8975 /* No change? */ 8976 if (percpu_pagelist_high_fraction == old_percpu_pagelist_high_fraction) 8977 goto out; 8978 8979 for_each_populated_zone(zone) 8980 zone_set_pageset_high_and_batch(zone, 0); 8981 out: 8982 mutex_unlock(&pcp_batch_high_lock); 8983 return ret; 8984 } 8985 8986 #ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES 8987 /* 8988 * Returns the number of pages that arch has reserved but 8989 * is not known to alloc_large_system_hash(). 8990 */ 8991 static unsigned long __init arch_reserved_kernel_pages(void) 8992 { 8993 return 0; 8994 } 8995 #endif 8996 8997 /* 8998 * Adaptive scale is meant to reduce sizes of hash tables on large memory 8999 * machines. As memory size is increased the scale is also increased but at 9000 * slower pace. Starting from ADAPT_SCALE_BASE (64G), every time memory 9001 * quadruples the scale is increased by one, which means the size of hash table 9002 * only doubles, instead of quadrupling as well. 9003 * Because 32-bit systems cannot have large physical memory, where this scaling 9004 * makes sense, it is disabled on such platforms. 9005 */ 9006 #if __BITS_PER_LONG > 32 9007 #define ADAPT_SCALE_BASE (64ul << 30) 9008 #define ADAPT_SCALE_SHIFT 2 9009 #define ADAPT_SCALE_NPAGES (ADAPT_SCALE_BASE >> PAGE_SHIFT) 9010 #endif 9011 9012 /* 9013 * allocate a large system hash table from bootmem 9014 * - it is assumed that the hash table must contain an exact power-of-2 9015 * quantity of entries 9016 * - limit is the number of hash buckets, not the total allocation size 9017 */ 9018 void *__init alloc_large_system_hash(const char *tablename, 9019 unsigned long bucketsize, 9020 unsigned long numentries, 9021 int scale, 9022 int flags, 9023 unsigned int *_hash_shift, 9024 unsigned int *_hash_mask, 9025 unsigned long low_limit, 9026 unsigned long high_limit) 9027 { 9028 unsigned long long max = high_limit; 9029 unsigned long log2qty, size; 9030 void *table; 9031 gfp_t gfp_flags; 9032 bool virt; 9033 bool huge; 9034 9035 /* allow the kernel cmdline to have a say */ 9036 if (!numentries) { 9037 /* round applicable memory size up to nearest megabyte */ 9038 numentries = nr_kernel_pages; 9039 numentries -= arch_reserved_kernel_pages(); 9040 9041 /* It isn't necessary when PAGE_SIZE >= 1MB */ 9042 if (PAGE_SHIFT < 20) 9043 numentries = round_up(numentries, (1<<20)/PAGE_SIZE); 9044 9045 #if __BITS_PER_LONG > 32 9046 if (!high_limit) { 9047 unsigned long adapt; 9048 9049 for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries; 9050 adapt <<= ADAPT_SCALE_SHIFT) 9051 scale++; 9052 } 9053 #endif 9054 9055 /* limit to 1 bucket per 2^scale bytes of low memory */ 9056 if (scale > PAGE_SHIFT) 9057 numentries >>= (scale - PAGE_SHIFT); 9058 else 9059 numentries <<= (PAGE_SHIFT - scale); 9060 9061 /* Make sure we've got at least a 0-order allocation.. */ 9062 if (unlikely(flags & HASH_SMALL)) { 9063 /* Makes no sense without HASH_EARLY */ 9064 WARN_ON(!(flags & HASH_EARLY)); 9065 if (!(numentries >> *_hash_shift)) { 9066 numentries = 1UL << *_hash_shift; 9067 BUG_ON(!numentries); 9068 } 9069 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE)) 9070 numentries = PAGE_SIZE / bucketsize; 9071 } 9072 numentries = roundup_pow_of_two(numentries); 9073 9074 /* limit allocation size to 1/16 total memory by default */ 9075 if (max == 0) { 9076 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4; 9077 do_div(max, bucketsize); 9078 } 9079 max = min(max, 0x80000000ULL); 9080 9081 if (numentries < low_limit) 9082 numentries = low_limit; 9083 if (numentries > max) 9084 numentries = max; 9085 9086 log2qty = ilog2(numentries); 9087 9088 gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC; 9089 do { 9090 virt = false; 9091 size = bucketsize << log2qty; 9092 if (flags & HASH_EARLY) { 9093 if (flags & HASH_ZERO) 9094 table = memblock_alloc(size, SMP_CACHE_BYTES); 9095 else 9096 table = memblock_alloc_raw(size, 9097 SMP_CACHE_BYTES); 9098 } else if (get_order(size) >= MAX_ORDER || hashdist) { 9099 table = vmalloc_huge(size, gfp_flags); 9100 virt = true; 9101 if (table) 9102 huge = is_vm_area_hugepages(table); 9103 } else { 9104 /* 9105 * If bucketsize is not a power-of-two, we may free 9106 * some pages at the end of hash table which 9107 * alloc_pages_exact() automatically does 9108 */ 9109 table = alloc_pages_exact(size, gfp_flags); 9110 kmemleak_alloc(table, size, 1, gfp_flags); 9111 } 9112 } while (!table && size > PAGE_SIZE && --log2qty); 9113 9114 if (!table) 9115 panic("Failed to allocate %s hash table\n", tablename); 9116 9117 pr_info("%s hash table entries: %ld (order: %d, %lu bytes, %s)\n", 9118 tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size, 9119 virt ? (huge ? "vmalloc hugepage" : "vmalloc") : "linear"); 9120 9121 if (_hash_shift) 9122 *_hash_shift = log2qty; 9123 if (_hash_mask) 9124 *_hash_mask = (1 << log2qty) - 1; 9125 9126 return table; 9127 } 9128 9129 #ifdef CONFIG_CONTIG_ALLOC 9130 #if defined(CONFIG_DYNAMIC_DEBUG) || \ 9131 (defined(CONFIG_DYNAMIC_DEBUG_CORE) && defined(DYNAMIC_DEBUG_MODULE)) 9132 /* Usage: See admin-guide/dynamic-debug-howto.rst */ 9133 static void alloc_contig_dump_pages(struct list_head *page_list) 9134 { 9135 DEFINE_DYNAMIC_DEBUG_METADATA(descriptor, "migrate failure"); 9136 9137 if (DYNAMIC_DEBUG_BRANCH(descriptor)) { 9138 struct page *page; 9139 9140 dump_stack(); 9141 list_for_each_entry(page, page_list, lru) 9142 dump_page(page, "migration failure"); 9143 } 9144 } 9145 #else 9146 static inline void alloc_contig_dump_pages(struct list_head *page_list) 9147 { 9148 } 9149 #endif 9150 9151 /* [start, end) must belong to a single zone. */ 9152 int __alloc_contig_migrate_range(struct compact_control *cc, 9153 unsigned long start, unsigned long end) 9154 { 9155 /* This function is based on compact_zone() from compaction.c. */ 9156 unsigned int nr_reclaimed; 9157 unsigned long pfn = start; 9158 unsigned int tries = 0; 9159 int ret = 0; 9160 struct migration_target_control mtc = { 9161 .nid = zone_to_nid(cc->zone), 9162 .gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL, 9163 }; 9164 9165 lru_cache_disable(); 9166 9167 while (pfn < end || !list_empty(&cc->migratepages)) { 9168 if (fatal_signal_pending(current)) { 9169 ret = -EINTR; 9170 break; 9171 } 9172 9173 if (list_empty(&cc->migratepages)) { 9174 cc->nr_migratepages = 0; 9175 ret = isolate_migratepages_range(cc, pfn, end); 9176 if (ret && ret != -EAGAIN) 9177 break; 9178 pfn = cc->migrate_pfn; 9179 tries = 0; 9180 } else if (++tries == 5) { 9181 ret = -EBUSY; 9182 break; 9183 } 9184 9185 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone, 9186 &cc->migratepages); 9187 cc->nr_migratepages -= nr_reclaimed; 9188 9189 ret = migrate_pages(&cc->migratepages, alloc_migration_target, 9190 NULL, (unsigned long)&mtc, cc->mode, MR_CONTIG_RANGE, NULL); 9191 9192 /* 9193 * On -ENOMEM, migrate_pages() bails out right away. It is pointless 9194 * to retry again over this error, so do the same here. 9195 */ 9196 if (ret == -ENOMEM) 9197 break; 9198 } 9199 9200 lru_cache_enable(); 9201 if (ret < 0) { 9202 if (!(cc->gfp_mask & __GFP_NOWARN) && ret == -EBUSY) 9203 alloc_contig_dump_pages(&cc->migratepages); 9204 putback_movable_pages(&cc->migratepages); 9205 return ret; 9206 } 9207 return 0; 9208 } 9209 9210 /** 9211 * alloc_contig_range() -- tries to allocate given range of pages 9212 * @start: start PFN to allocate 9213 * @end: one-past-the-last PFN to allocate 9214 * @migratetype: migratetype of the underlying pageblocks (either 9215 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks 9216 * in range must have the same migratetype and it must 9217 * be either of the two. 9218 * @gfp_mask: GFP mask to use during compaction 9219 * 9220 * The PFN range does not have to be pageblock aligned. The PFN range must 9221 * belong to a single zone. 9222 * 9223 * The first thing this routine does is attempt to MIGRATE_ISOLATE all 9224 * pageblocks in the range. Once isolated, the pageblocks should not 9225 * be modified by others. 9226 * 9227 * Return: zero on success or negative error code. On success all 9228 * pages which PFN is in [start, end) are allocated for the caller and 9229 * need to be freed with free_contig_range(). 9230 */ 9231 int alloc_contig_range(unsigned long start, unsigned long end, 9232 unsigned migratetype, gfp_t gfp_mask) 9233 { 9234 unsigned long outer_start, outer_end; 9235 int order; 9236 int ret = 0; 9237 9238 struct compact_control cc = { 9239 .nr_migratepages = 0, 9240 .order = -1, 9241 .zone = page_zone(pfn_to_page(start)), 9242 .mode = MIGRATE_SYNC, 9243 .ignore_skip_hint = true, 9244 .no_set_skip_hint = true, 9245 .gfp_mask = current_gfp_context(gfp_mask), 9246 .alloc_contig = true, 9247 }; 9248 INIT_LIST_HEAD(&cc.migratepages); 9249 9250 /* 9251 * What we do here is we mark all pageblocks in range as 9252 * MIGRATE_ISOLATE. Because pageblock and max order pages may 9253 * have different sizes, and due to the way page allocator 9254 * work, start_isolate_page_range() has special handlings for this. 9255 * 9256 * Once the pageblocks are marked as MIGRATE_ISOLATE, we 9257 * migrate the pages from an unaligned range (ie. pages that 9258 * we are interested in). This will put all the pages in 9259 * range back to page allocator as MIGRATE_ISOLATE. 9260 * 9261 * When this is done, we take the pages in range from page 9262 * allocator removing them from the buddy system. This way 9263 * page allocator will never consider using them. 9264 * 9265 * This lets us mark the pageblocks back as 9266 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the 9267 * aligned range but not in the unaligned, original range are 9268 * put back to page allocator so that buddy can use them. 9269 */ 9270 9271 ret = start_isolate_page_range(start, end, migratetype, 0, gfp_mask); 9272 if (ret) 9273 goto done; 9274 9275 drain_all_pages(cc.zone); 9276 9277 /* 9278 * In case of -EBUSY, we'd like to know which page causes problem. 9279 * So, just fall through. test_pages_isolated() has a tracepoint 9280 * which will report the busy page. 9281 * 9282 * It is possible that busy pages could become available before 9283 * the call to test_pages_isolated, and the range will actually be 9284 * allocated. So, if we fall through be sure to clear ret so that 9285 * -EBUSY is not accidentally used or returned to caller. 9286 */ 9287 ret = __alloc_contig_migrate_range(&cc, start, end); 9288 if (ret && ret != -EBUSY) 9289 goto done; 9290 ret = 0; 9291 9292 /* 9293 * Pages from [start, end) are within a pageblock_nr_pages 9294 * aligned blocks that are marked as MIGRATE_ISOLATE. What's 9295 * more, all pages in [start, end) are free in page allocator. 9296 * What we are going to do is to allocate all pages from 9297 * [start, end) (that is remove them from page allocator). 9298 * 9299 * The only problem is that pages at the beginning and at the 9300 * end of interesting range may be not aligned with pages that 9301 * page allocator holds, ie. they can be part of higher order 9302 * pages. Because of this, we reserve the bigger range and 9303 * once this is done free the pages we are not interested in. 9304 * 9305 * We don't have to hold zone->lock here because the pages are 9306 * isolated thus they won't get removed from buddy. 9307 */ 9308 9309 order = 0; 9310 outer_start = start; 9311 while (!PageBuddy(pfn_to_page(outer_start))) { 9312 if (++order >= MAX_ORDER) { 9313 outer_start = start; 9314 break; 9315 } 9316 outer_start &= ~0UL << order; 9317 } 9318 9319 if (outer_start != start) { 9320 order = buddy_order(pfn_to_page(outer_start)); 9321 9322 /* 9323 * outer_start page could be small order buddy page and 9324 * it doesn't include start page. Adjust outer_start 9325 * in this case to report failed page properly 9326 * on tracepoint in test_pages_isolated() 9327 */ 9328 if (outer_start + (1UL << order) <= start) 9329 outer_start = start; 9330 } 9331 9332 /* Make sure the range is really isolated. */ 9333 if (test_pages_isolated(outer_start, end, 0)) { 9334 ret = -EBUSY; 9335 goto done; 9336 } 9337 9338 /* Grab isolated pages from freelists. */ 9339 outer_end = isolate_freepages_range(&cc, outer_start, end); 9340 if (!outer_end) { 9341 ret = -EBUSY; 9342 goto done; 9343 } 9344 9345 /* Free head and tail (if any) */ 9346 if (start != outer_start) 9347 free_contig_range(outer_start, start - outer_start); 9348 if (end != outer_end) 9349 free_contig_range(end, outer_end - end); 9350 9351 done: 9352 undo_isolate_page_range(start, end, migratetype); 9353 return ret; 9354 } 9355 EXPORT_SYMBOL(alloc_contig_range); 9356 9357 static int __alloc_contig_pages(unsigned long start_pfn, 9358 unsigned long nr_pages, gfp_t gfp_mask) 9359 { 9360 unsigned long end_pfn = start_pfn + nr_pages; 9361 9362 return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE, 9363 gfp_mask); 9364 } 9365 9366 static bool pfn_range_valid_contig(struct zone *z, unsigned long start_pfn, 9367 unsigned long nr_pages) 9368 { 9369 unsigned long i, end_pfn = start_pfn + nr_pages; 9370 struct page *page; 9371 9372 for (i = start_pfn; i < end_pfn; i++) { 9373 page = pfn_to_online_page(i); 9374 if (!page) 9375 return false; 9376 9377 if (page_zone(page) != z) 9378 return false; 9379 9380 if (PageReserved(page)) 9381 return false; 9382 } 9383 return true; 9384 } 9385 9386 static bool zone_spans_last_pfn(const struct zone *zone, 9387 unsigned long start_pfn, unsigned long nr_pages) 9388 { 9389 unsigned long last_pfn = start_pfn + nr_pages - 1; 9390 9391 return zone_spans_pfn(zone, last_pfn); 9392 } 9393 9394 /** 9395 * alloc_contig_pages() -- tries to find and allocate contiguous range of pages 9396 * @nr_pages: Number of contiguous pages to allocate 9397 * @gfp_mask: GFP mask to limit search and used during compaction 9398 * @nid: Target node 9399 * @nodemask: Mask for other possible nodes 9400 * 9401 * This routine is a wrapper around alloc_contig_range(). It scans over zones 9402 * on an applicable zonelist to find a contiguous pfn range which can then be 9403 * tried for allocation with alloc_contig_range(). This routine is intended 9404 * for allocation requests which can not be fulfilled with the buddy allocator. 9405 * 9406 * The allocated memory is always aligned to a page boundary. If nr_pages is a 9407 * power of two, then allocated range is also guaranteed to be aligned to same 9408 * nr_pages (e.g. 1GB request would be aligned to 1GB). 9409 * 9410 * Allocated pages can be freed with free_contig_range() or by manually calling 9411 * __free_page() on each allocated page. 9412 * 9413 * Return: pointer to contiguous pages on success, or NULL if not successful. 9414 */ 9415 struct page *alloc_contig_pages(unsigned long nr_pages, gfp_t gfp_mask, 9416 int nid, nodemask_t *nodemask) 9417 { 9418 unsigned long ret, pfn, flags; 9419 struct zonelist *zonelist; 9420 struct zone *zone; 9421 struct zoneref *z; 9422 9423 zonelist = node_zonelist(nid, gfp_mask); 9424 for_each_zone_zonelist_nodemask(zone, z, zonelist, 9425 gfp_zone(gfp_mask), nodemask) { 9426 spin_lock_irqsave(&zone->lock, flags); 9427 9428 pfn = ALIGN(zone->zone_start_pfn, nr_pages); 9429 while (zone_spans_last_pfn(zone, pfn, nr_pages)) { 9430 if (pfn_range_valid_contig(zone, pfn, nr_pages)) { 9431 /* 9432 * We release the zone lock here because 9433 * alloc_contig_range() will also lock the zone 9434 * at some point. If there's an allocation 9435 * spinning on this lock, it may win the race 9436 * and cause alloc_contig_range() to fail... 9437 */ 9438 spin_unlock_irqrestore(&zone->lock, flags); 9439 ret = __alloc_contig_pages(pfn, nr_pages, 9440 gfp_mask); 9441 if (!ret) 9442 return pfn_to_page(pfn); 9443 spin_lock_irqsave(&zone->lock, flags); 9444 } 9445 pfn += nr_pages; 9446 } 9447 spin_unlock_irqrestore(&zone->lock, flags); 9448 } 9449 return NULL; 9450 } 9451 #endif /* CONFIG_CONTIG_ALLOC */ 9452 9453 void free_contig_range(unsigned long pfn, unsigned long nr_pages) 9454 { 9455 unsigned long count = 0; 9456 9457 for (; nr_pages--; pfn++) { 9458 struct page *page = pfn_to_page(pfn); 9459 9460 count += page_count(page) != 1; 9461 __free_page(page); 9462 } 9463 WARN(count != 0, "%lu pages are still in use!\n", count); 9464 } 9465 EXPORT_SYMBOL(free_contig_range); 9466 9467 /* 9468 * The zone indicated has a new number of managed_pages; batch sizes and percpu 9469 * page high values need to be recalculated. 9470 */ 9471 void zone_pcp_update(struct zone *zone, int cpu_online) 9472 { 9473 mutex_lock(&pcp_batch_high_lock); 9474 zone_set_pageset_high_and_batch(zone, cpu_online); 9475 mutex_unlock(&pcp_batch_high_lock); 9476 } 9477 9478 /* 9479 * Effectively disable pcplists for the zone by setting the high limit to 0 9480 * and draining all cpus. A concurrent page freeing on another CPU that's about 9481 * to put the page on pcplist will either finish before the drain and the page 9482 * will be drained, or observe the new high limit and skip the pcplist. 9483 * 9484 * Must be paired with a call to zone_pcp_enable(). 9485 */ 9486 void zone_pcp_disable(struct zone *zone) 9487 { 9488 mutex_lock(&pcp_batch_high_lock); 9489 __zone_set_pageset_high_and_batch(zone, 0, 1); 9490 __drain_all_pages(zone, true); 9491 } 9492 9493 void zone_pcp_enable(struct zone *zone) 9494 { 9495 __zone_set_pageset_high_and_batch(zone, zone->pageset_high, zone->pageset_batch); 9496 mutex_unlock(&pcp_batch_high_lock); 9497 } 9498 9499 void zone_pcp_reset(struct zone *zone) 9500 { 9501 int cpu; 9502 struct per_cpu_zonestat *pzstats; 9503 9504 if (zone->per_cpu_pageset != &boot_pageset) { 9505 for_each_online_cpu(cpu) { 9506 pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu); 9507 drain_zonestat(zone, pzstats); 9508 } 9509 free_percpu(zone->per_cpu_pageset); 9510 free_percpu(zone->per_cpu_zonestats); 9511 zone->per_cpu_pageset = &boot_pageset; 9512 zone->per_cpu_zonestats = &boot_zonestats; 9513 } 9514 } 9515 9516 #ifdef CONFIG_MEMORY_HOTREMOVE 9517 /* 9518 * All pages in the range must be in a single zone, must not contain holes, 9519 * must span full sections, and must be isolated before calling this function. 9520 */ 9521 void __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn) 9522 { 9523 unsigned long pfn = start_pfn; 9524 struct page *page; 9525 struct zone *zone; 9526 unsigned int order; 9527 unsigned long flags; 9528 9529 offline_mem_sections(pfn, end_pfn); 9530 zone = page_zone(pfn_to_page(pfn)); 9531 spin_lock_irqsave(&zone->lock, flags); 9532 while (pfn < end_pfn) { 9533 page = pfn_to_page(pfn); 9534 /* 9535 * The HWPoisoned page may be not in buddy system, and 9536 * page_count() is not 0. 9537 */ 9538 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) { 9539 pfn++; 9540 continue; 9541 } 9542 /* 9543 * At this point all remaining PageOffline() pages have a 9544 * reference count of 0 and can simply be skipped. 9545 */ 9546 if (PageOffline(page)) { 9547 BUG_ON(page_count(page)); 9548 BUG_ON(PageBuddy(page)); 9549 pfn++; 9550 continue; 9551 } 9552 9553 BUG_ON(page_count(page)); 9554 BUG_ON(!PageBuddy(page)); 9555 order = buddy_order(page); 9556 del_page_from_free_list(page, zone, order); 9557 pfn += (1 << order); 9558 } 9559 spin_unlock_irqrestore(&zone->lock, flags); 9560 } 9561 #endif 9562 9563 /* 9564 * This function returns a stable result only if called under zone lock. 9565 */ 9566 bool is_free_buddy_page(struct page *page) 9567 { 9568 unsigned long pfn = page_to_pfn(page); 9569 unsigned int order; 9570 9571 for (order = 0; order < MAX_ORDER; order++) { 9572 struct page *page_head = page - (pfn & ((1 << order) - 1)); 9573 9574 if (PageBuddy(page_head) && 9575 buddy_order_unsafe(page_head) >= order) 9576 break; 9577 } 9578 9579 return order < MAX_ORDER; 9580 } 9581 EXPORT_SYMBOL(is_free_buddy_page); 9582 9583 #ifdef CONFIG_MEMORY_FAILURE 9584 /* 9585 * Break down a higher-order page in sub-pages, and keep our target out of 9586 * buddy allocator. 9587 */ 9588 static void break_down_buddy_pages(struct zone *zone, struct page *page, 9589 struct page *target, int low, int high, 9590 int migratetype) 9591 { 9592 unsigned long size = 1 << high; 9593 struct page *current_buddy, *next_page; 9594 9595 while (high > low) { 9596 high--; 9597 size >>= 1; 9598 9599 if (target >= &page[size]) { 9600 next_page = page + size; 9601 current_buddy = page; 9602 } else { 9603 next_page = page; 9604 current_buddy = page + size; 9605 } 9606 9607 if (set_page_guard(zone, current_buddy, high, migratetype)) 9608 continue; 9609 9610 if (current_buddy != target) { 9611 add_to_free_list(current_buddy, zone, high, migratetype); 9612 set_buddy_order(current_buddy, high); 9613 page = next_page; 9614 } 9615 } 9616 } 9617 9618 /* 9619 * Take a page that will be marked as poisoned off the buddy allocator. 9620 */ 9621 bool take_page_off_buddy(struct page *page) 9622 { 9623 struct zone *zone = page_zone(page); 9624 unsigned long pfn = page_to_pfn(page); 9625 unsigned long flags; 9626 unsigned int order; 9627 bool ret = false; 9628 9629 spin_lock_irqsave(&zone->lock, flags); 9630 for (order = 0; order < MAX_ORDER; order++) { 9631 struct page *page_head = page - (pfn & ((1 << order) - 1)); 9632 int page_order = buddy_order(page_head); 9633 9634 if (PageBuddy(page_head) && page_order >= order) { 9635 unsigned long pfn_head = page_to_pfn(page_head); 9636 int migratetype = get_pfnblock_migratetype(page_head, 9637 pfn_head); 9638 9639 del_page_from_free_list(page_head, zone, page_order); 9640 break_down_buddy_pages(zone, page_head, page, 0, 9641 page_order, migratetype); 9642 SetPageHWPoisonTakenOff(page); 9643 if (!is_migrate_isolate(migratetype)) 9644 __mod_zone_freepage_state(zone, -1, migratetype); 9645 ret = true; 9646 break; 9647 } 9648 if (page_count(page_head) > 0) 9649 break; 9650 } 9651 spin_unlock_irqrestore(&zone->lock, flags); 9652 return ret; 9653 } 9654 9655 /* 9656 * Cancel takeoff done by take_page_off_buddy(). 9657 */ 9658 bool put_page_back_buddy(struct page *page) 9659 { 9660 struct zone *zone = page_zone(page); 9661 unsigned long pfn = page_to_pfn(page); 9662 unsigned long flags; 9663 int migratetype = get_pfnblock_migratetype(page, pfn); 9664 bool ret = false; 9665 9666 spin_lock_irqsave(&zone->lock, flags); 9667 if (put_page_testzero(page)) { 9668 ClearPageHWPoisonTakenOff(page); 9669 __free_one_page(page, pfn, zone, 0, migratetype, FPI_NONE); 9670 if (TestClearPageHWPoison(page)) { 9671 ret = true; 9672 } 9673 } 9674 spin_unlock_irqrestore(&zone->lock, flags); 9675 9676 return ret; 9677 } 9678 #endif 9679 9680 #ifdef CONFIG_ZONE_DMA 9681 bool has_managed_dma(void) 9682 { 9683 struct pglist_data *pgdat; 9684 9685 for_each_online_pgdat(pgdat) { 9686 struct zone *zone = &pgdat->node_zones[ZONE_DMA]; 9687 9688 if (managed_zone(zone)) 9689 return true; 9690 } 9691 return false; 9692 } 9693 #endif /* CONFIG_ZONE_DMA */ 9694