xref: /linux/mm/page_alloc.c (revision b073d7f8aee4ebf05d10e3380df377b73120cf16)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/page_alloc.c
4  *
5  *  Manages the free list, the system allocates free pages here.
6  *  Note that kmalloc() lives in slab.c
7  *
8  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
9  *  Swap reorganised 29.12.95, Stephen Tweedie
10  *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
11  *  Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
12  *  Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
13  *  Zone balancing, Kanoj Sarcar, SGI, Jan 2000
14  *  Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
15  *          (lots of bits borrowed from Ingo Molnar & Andrew Morton)
16  */
17 
18 #include <linux/stddef.h>
19 #include <linux/mm.h>
20 #include <linux/highmem.h>
21 #include <linux/swap.h>
22 #include <linux/swapops.h>
23 #include <linux/interrupt.h>
24 #include <linux/pagemap.h>
25 #include <linux/jiffies.h>
26 #include <linux/memblock.h>
27 #include <linux/compiler.h>
28 #include <linux/kernel.h>
29 #include <linux/kasan.h>
30 #include <linux/kmsan.h>
31 #include <linux/module.h>
32 #include <linux/suspend.h>
33 #include <linux/pagevec.h>
34 #include <linux/blkdev.h>
35 #include <linux/slab.h>
36 #include <linux/ratelimit.h>
37 #include <linux/oom.h>
38 #include <linux/topology.h>
39 #include <linux/sysctl.h>
40 #include <linux/cpu.h>
41 #include <linux/cpuset.h>
42 #include <linux/memory_hotplug.h>
43 #include <linux/nodemask.h>
44 #include <linux/vmalloc.h>
45 #include <linux/vmstat.h>
46 #include <linux/mempolicy.h>
47 #include <linux/memremap.h>
48 #include <linux/stop_machine.h>
49 #include <linux/random.h>
50 #include <linux/sort.h>
51 #include <linux/pfn.h>
52 #include <linux/backing-dev.h>
53 #include <linux/fault-inject.h>
54 #include <linux/page-isolation.h>
55 #include <linux/debugobjects.h>
56 #include <linux/kmemleak.h>
57 #include <linux/compaction.h>
58 #include <trace/events/kmem.h>
59 #include <trace/events/oom.h>
60 #include <linux/prefetch.h>
61 #include <linux/mm_inline.h>
62 #include <linux/mmu_notifier.h>
63 #include <linux/migrate.h>
64 #include <linux/hugetlb.h>
65 #include <linux/sched/rt.h>
66 #include <linux/sched/mm.h>
67 #include <linux/page_owner.h>
68 #include <linux/page_table_check.h>
69 #include <linux/kthread.h>
70 #include <linux/memcontrol.h>
71 #include <linux/ftrace.h>
72 #include <linux/lockdep.h>
73 #include <linux/nmi.h>
74 #include <linux/psi.h>
75 #include <linux/padata.h>
76 #include <linux/khugepaged.h>
77 #include <linux/buffer_head.h>
78 #include <linux/delayacct.h>
79 #include <asm/sections.h>
80 #include <asm/tlbflush.h>
81 #include <asm/div64.h>
82 #include "internal.h"
83 #include "shuffle.h"
84 #include "page_reporting.h"
85 #include "swap.h"
86 
87 /* Free Page Internal flags: for internal, non-pcp variants of free_pages(). */
88 typedef int __bitwise fpi_t;
89 
90 /* No special request */
91 #define FPI_NONE		((__force fpi_t)0)
92 
93 /*
94  * Skip free page reporting notification for the (possibly merged) page.
95  * This does not hinder free page reporting from grabbing the page,
96  * reporting it and marking it "reported" -  it only skips notifying
97  * the free page reporting infrastructure about a newly freed page. For
98  * example, used when temporarily pulling a page from a freelist and
99  * putting it back unmodified.
100  */
101 #define FPI_SKIP_REPORT_NOTIFY	((__force fpi_t)BIT(0))
102 
103 /*
104  * Place the (possibly merged) page to the tail of the freelist. Will ignore
105  * page shuffling (relevant code - e.g., memory onlining - is expected to
106  * shuffle the whole zone).
107  *
108  * Note: No code should rely on this flag for correctness - it's purely
109  *       to allow for optimizations when handing back either fresh pages
110  *       (memory onlining) or untouched pages (page isolation, free page
111  *       reporting).
112  */
113 #define FPI_TO_TAIL		((__force fpi_t)BIT(1))
114 
115 /*
116  * Don't poison memory with KASAN (only for the tag-based modes).
117  * During boot, all non-reserved memblock memory is exposed to page_alloc.
118  * Poisoning all that memory lengthens boot time, especially on systems with
119  * large amount of RAM. This flag is used to skip that poisoning.
120  * This is only done for the tag-based KASAN modes, as those are able to
121  * detect memory corruptions with the memory tags assigned by default.
122  * All memory allocated normally after boot gets poisoned as usual.
123  */
124 #define FPI_SKIP_KASAN_POISON	((__force fpi_t)BIT(2))
125 
126 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
127 static DEFINE_MUTEX(pcp_batch_high_lock);
128 #define MIN_PERCPU_PAGELIST_HIGH_FRACTION (8)
129 
130 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT_RT)
131 /*
132  * On SMP, spin_trylock is sufficient protection.
133  * On PREEMPT_RT, spin_trylock is equivalent on both SMP and UP.
134  */
135 #define pcp_trylock_prepare(flags)	do { } while (0)
136 #define pcp_trylock_finish(flag)	do { } while (0)
137 #else
138 
139 /* UP spin_trylock always succeeds so disable IRQs to prevent re-entrancy. */
140 #define pcp_trylock_prepare(flags)	local_irq_save(flags)
141 #define pcp_trylock_finish(flags)	local_irq_restore(flags)
142 #endif
143 
144 /*
145  * Locking a pcp requires a PCP lookup followed by a spinlock. To avoid
146  * a migration causing the wrong PCP to be locked and remote memory being
147  * potentially allocated, pin the task to the CPU for the lookup+lock.
148  * preempt_disable is used on !RT because it is faster than migrate_disable.
149  * migrate_disable is used on RT because otherwise RT spinlock usage is
150  * interfered with and a high priority task cannot preempt the allocator.
151  */
152 #ifndef CONFIG_PREEMPT_RT
153 #define pcpu_task_pin()		preempt_disable()
154 #define pcpu_task_unpin()	preempt_enable()
155 #else
156 #define pcpu_task_pin()		migrate_disable()
157 #define pcpu_task_unpin()	migrate_enable()
158 #endif
159 
160 /*
161  * Generic helper to lookup and a per-cpu variable with an embedded spinlock.
162  * Return value should be used with equivalent unlock helper.
163  */
164 #define pcpu_spin_lock(type, member, ptr)				\
165 ({									\
166 	type *_ret;							\
167 	pcpu_task_pin();						\
168 	_ret = this_cpu_ptr(ptr);					\
169 	spin_lock(&_ret->member);					\
170 	_ret;								\
171 })
172 
173 #define pcpu_spin_lock_irqsave(type, member, ptr, flags)		\
174 ({									\
175 	type *_ret;							\
176 	pcpu_task_pin();						\
177 	_ret = this_cpu_ptr(ptr);					\
178 	spin_lock_irqsave(&_ret->member, flags);			\
179 	_ret;								\
180 })
181 
182 #define pcpu_spin_trylock_irqsave(type, member, ptr, flags)		\
183 ({									\
184 	type *_ret;							\
185 	pcpu_task_pin();						\
186 	_ret = this_cpu_ptr(ptr);					\
187 	if (!spin_trylock_irqsave(&_ret->member, flags)) {		\
188 		pcpu_task_unpin();					\
189 		_ret = NULL;						\
190 	}								\
191 	_ret;								\
192 })
193 
194 #define pcpu_spin_unlock(member, ptr)					\
195 ({									\
196 	spin_unlock(&ptr->member);					\
197 	pcpu_task_unpin();						\
198 })
199 
200 #define pcpu_spin_unlock_irqrestore(member, ptr, flags)			\
201 ({									\
202 	spin_unlock_irqrestore(&ptr->member, flags);			\
203 	pcpu_task_unpin();						\
204 })
205 
206 /* struct per_cpu_pages specific helpers. */
207 #define pcp_spin_lock(ptr)						\
208 	pcpu_spin_lock(struct per_cpu_pages, lock, ptr)
209 
210 #define pcp_spin_lock_irqsave(ptr, flags)				\
211 	pcpu_spin_lock_irqsave(struct per_cpu_pages, lock, ptr, flags)
212 
213 #define pcp_spin_trylock_irqsave(ptr, flags)				\
214 	pcpu_spin_trylock_irqsave(struct per_cpu_pages, lock, ptr, flags)
215 
216 #define pcp_spin_unlock(ptr)						\
217 	pcpu_spin_unlock(lock, ptr)
218 
219 #define pcp_spin_unlock_irqrestore(ptr, flags)				\
220 	pcpu_spin_unlock_irqrestore(lock, ptr, flags)
221 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
222 DEFINE_PER_CPU(int, numa_node);
223 EXPORT_PER_CPU_SYMBOL(numa_node);
224 #endif
225 
226 DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key);
227 
228 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
229 /*
230  * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
231  * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
232  * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
233  * defined in <linux/topology.h>.
234  */
235 DEFINE_PER_CPU(int, _numa_mem_);		/* Kernel "local memory" node */
236 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
237 #endif
238 
239 static DEFINE_MUTEX(pcpu_drain_mutex);
240 
241 #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
242 volatile unsigned long latent_entropy __latent_entropy;
243 EXPORT_SYMBOL(latent_entropy);
244 #endif
245 
246 /*
247  * Array of node states.
248  */
249 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
250 	[N_POSSIBLE] = NODE_MASK_ALL,
251 	[N_ONLINE] = { { [0] = 1UL } },
252 #ifndef CONFIG_NUMA
253 	[N_NORMAL_MEMORY] = { { [0] = 1UL } },
254 #ifdef CONFIG_HIGHMEM
255 	[N_HIGH_MEMORY] = { { [0] = 1UL } },
256 #endif
257 	[N_MEMORY] = { { [0] = 1UL } },
258 	[N_CPU] = { { [0] = 1UL } },
259 #endif	/* NUMA */
260 };
261 EXPORT_SYMBOL(node_states);
262 
263 atomic_long_t _totalram_pages __read_mostly;
264 EXPORT_SYMBOL(_totalram_pages);
265 unsigned long totalreserve_pages __read_mostly;
266 unsigned long totalcma_pages __read_mostly;
267 
268 int percpu_pagelist_high_fraction;
269 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
270 DEFINE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, init_on_alloc);
271 EXPORT_SYMBOL(init_on_alloc);
272 
273 DEFINE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_FREE_DEFAULT_ON, init_on_free);
274 EXPORT_SYMBOL(init_on_free);
275 
276 static bool _init_on_alloc_enabled_early __read_mostly
277 				= IS_ENABLED(CONFIG_INIT_ON_ALLOC_DEFAULT_ON);
278 static int __init early_init_on_alloc(char *buf)
279 {
280 
281 	return kstrtobool(buf, &_init_on_alloc_enabled_early);
282 }
283 early_param("init_on_alloc", early_init_on_alloc);
284 
285 static bool _init_on_free_enabled_early __read_mostly
286 				= IS_ENABLED(CONFIG_INIT_ON_FREE_DEFAULT_ON);
287 static int __init early_init_on_free(char *buf)
288 {
289 	return kstrtobool(buf, &_init_on_free_enabled_early);
290 }
291 early_param("init_on_free", early_init_on_free);
292 
293 /*
294  * A cached value of the page's pageblock's migratetype, used when the page is
295  * put on a pcplist. Used to avoid the pageblock migratetype lookup when
296  * freeing from pcplists in most cases, at the cost of possibly becoming stale.
297  * Also the migratetype set in the page does not necessarily match the pcplist
298  * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
299  * other index - this ensures that it will be put on the correct CMA freelist.
300  */
301 static inline int get_pcppage_migratetype(struct page *page)
302 {
303 	return page->index;
304 }
305 
306 static inline void set_pcppage_migratetype(struct page *page, int migratetype)
307 {
308 	page->index = migratetype;
309 }
310 
311 #ifdef CONFIG_PM_SLEEP
312 /*
313  * The following functions are used by the suspend/hibernate code to temporarily
314  * change gfp_allowed_mask in order to avoid using I/O during memory allocations
315  * while devices are suspended.  To avoid races with the suspend/hibernate code,
316  * they should always be called with system_transition_mutex held
317  * (gfp_allowed_mask also should only be modified with system_transition_mutex
318  * held, unless the suspend/hibernate code is guaranteed not to run in parallel
319  * with that modification).
320  */
321 
322 static gfp_t saved_gfp_mask;
323 
324 void pm_restore_gfp_mask(void)
325 {
326 	WARN_ON(!mutex_is_locked(&system_transition_mutex));
327 	if (saved_gfp_mask) {
328 		gfp_allowed_mask = saved_gfp_mask;
329 		saved_gfp_mask = 0;
330 	}
331 }
332 
333 void pm_restrict_gfp_mask(void)
334 {
335 	WARN_ON(!mutex_is_locked(&system_transition_mutex));
336 	WARN_ON(saved_gfp_mask);
337 	saved_gfp_mask = gfp_allowed_mask;
338 	gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
339 }
340 
341 bool pm_suspended_storage(void)
342 {
343 	if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
344 		return false;
345 	return true;
346 }
347 #endif /* CONFIG_PM_SLEEP */
348 
349 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
350 unsigned int pageblock_order __read_mostly;
351 #endif
352 
353 static void __free_pages_ok(struct page *page, unsigned int order,
354 			    fpi_t fpi_flags);
355 
356 /*
357  * results with 256, 32 in the lowmem_reserve sysctl:
358  *	1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
359  *	1G machine -> (16M dma, 784M normal, 224M high)
360  *	NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
361  *	HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
362  *	HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
363  *
364  * TBD: should special case ZONE_DMA32 machines here - in those we normally
365  * don't need any ZONE_NORMAL reservation
366  */
367 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = {
368 #ifdef CONFIG_ZONE_DMA
369 	[ZONE_DMA] = 256,
370 #endif
371 #ifdef CONFIG_ZONE_DMA32
372 	[ZONE_DMA32] = 256,
373 #endif
374 	[ZONE_NORMAL] = 32,
375 #ifdef CONFIG_HIGHMEM
376 	[ZONE_HIGHMEM] = 0,
377 #endif
378 	[ZONE_MOVABLE] = 0,
379 };
380 
381 static char * const zone_names[MAX_NR_ZONES] = {
382 #ifdef CONFIG_ZONE_DMA
383 	 "DMA",
384 #endif
385 #ifdef CONFIG_ZONE_DMA32
386 	 "DMA32",
387 #endif
388 	 "Normal",
389 #ifdef CONFIG_HIGHMEM
390 	 "HighMem",
391 #endif
392 	 "Movable",
393 #ifdef CONFIG_ZONE_DEVICE
394 	 "Device",
395 #endif
396 };
397 
398 const char * const migratetype_names[MIGRATE_TYPES] = {
399 	"Unmovable",
400 	"Movable",
401 	"Reclaimable",
402 	"HighAtomic",
403 #ifdef CONFIG_CMA
404 	"CMA",
405 #endif
406 #ifdef CONFIG_MEMORY_ISOLATION
407 	"Isolate",
408 #endif
409 };
410 
411 compound_page_dtor * const compound_page_dtors[NR_COMPOUND_DTORS] = {
412 	[NULL_COMPOUND_DTOR] = NULL,
413 	[COMPOUND_PAGE_DTOR] = free_compound_page,
414 #ifdef CONFIG_HUGETLB_PAGE
415 	[HUGETLB_PAGE_DTOR] = free_huge_page,
416 #endif
417 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
418 	[TRANSHUGE_PAGE_DTOR] = free_transhuge_page,
419 #endif
420 };
421 
422 int min_free_kbytes = 1024;
423 int user_min_free_kbytes = -1;
424 int watermark_boost_factor __read_mostly = 15000;
425 int watermark_scale_factor = 10;
426 
427 static unsigned long nr_kernel_pages __initdata;
428 static unsigned long nr_all_pages __initdata;
429 static unsigned long dma_reserve __initdata;
430 
431 static unsigned long arch_zone_lowest_possible_pfn[MAX_NR_ZONES] __initdata;
432 static unsigned long arch_zone_highest_possible_pfn[MAX_NR_ZONES] __initdata;
433 static unsigned long required_kernelcore __initdata;
434 static unsigned long required_kernelcore_percent __initdata;
435 static unsigned long required_movablecore __initdata;
436 static unsigned long required_movablecore_percent __initdata;
437 static unsigned long zone_movable_pfn[MAX_NUMNODES] __initdata;
438 bool mirrored_kernelcore __initdata_memblock;
439 
440 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
441 int movable_zone;
442 EXPORT_SYMBOL(movable_zone);
443 
444 #if MAX_NUMNODES > 1
445 unsigned int nr_node_ids __read_mostly = MAX_NUMNODES;
446 unsigned int nr_online_nodes __read_mostly = 1;
447 EXPORT_SYMBOL(nr_node_ids);
448 EXPORT_SYMBOL(nr_online_nodes);
449 #endif
450 
451 int page_group_by_mobility_disabled __read_mostly;
452 
453 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
454 /*
455  * During boot we initialize deferred pages on-demand, as needed, but once
456  * page_alloc_init_late() has finished, the deferred pages are all initialized,
457  * and we can permanently disable that path.
458  */
459 static DEFINE_STATIC_KEY_TRUE(deferred_pages);
460 
461 static inline bool deferred_pages_enabled(void)
462 {
463 	return static_branch_unlikely(&deferred_pages);
464 }
465 
466 /* Returns true if the struct page for the pfn is uninitialised */
467 static inline bool __meminit early_page_uninitialised(unsigned long pfn)
468 {
469 	int nid = early_pfn_to_nid(pfn);
470 
471 	if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
472 		return true;
473 
474 	return false;
475 }
476 
477 /*
478  * Returns true when the remaining initialisation should be deferred until
479  * later in the boot cycle when it can be parallelised.
480  */
481 static bool __meminit
482 defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
483 {
484 	static unsigned long prev_end_pfn, nr_initialised;
485 
486 	if (early_page_ext_enabled())
487 		return false;
488 	/*
489 	 * prev_end_pfn static that contains the end of previous zone
490 	 * No need to protect because called very early in boot before smp_init.
491 	 */
492 	if (prev_end_pfn != end_pfn) {
493 		prev_end_pfn = end_pfn;
494 		nr_initialised = 0;
495 	}
496 
497 	/* Always populate low zones for address-constrained allocations */
498 	if (end_pfn < pgdat_end_pfn(NODE_DATA(nid)))
499 		return false;
500 
501 	if (NODE_DATA(nid)->first_deferred_pfn != ULONG_MAX)
502 		return true;
503 	/*
504 	 * We start only with one section of pages, more pages are added as
505 	 * needed until the rest of deferred pages are initialized.
506 	 */
507 	nr_initialised++;
508 	if ((nr_initialised > PAGES_PER_SECTION) &&
509 	    (pfn & (PAGES_PER_SECTION - 1)) == 0) {
510 		NODE_DATA(nid)->first_deferred_pfn = pfn;
511 		return true;
512 	}
513 	return false;
514 }
515 #else
516 static inline bool deferred_pages_enabled(void)
517 {
518 	return false;
519 }
520 
521 static inline bool early_page_uninitialised(unsigned long pfn)
522 {
523 	return false;
524 }
525 
526 static inline bool defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
527 {
528 	return false;
529 }
530 #endif
531 
532 /* Return a pointer to the bitmap storing bits affecting a block of pages */
533 static inline unsigned long *get_pageblock_bitmap(const struct page *page,
534 							unsigned long pfn)
535 {
536 #ifdef CONFIG_SPARSEMEM
537 	return section_to_usemap(__pfn_to_section(pfn));
538 #else
539 	return page_zone(page)->pageblock_flags;
540 #endif /* CONFIG_SPARSEMEM */
541 }
542 
543 static inline int pfn_to_bitidx(const struct page *page, unsigned long pfn)
544 {
545 #ifdef CONFIG_SPARSEMEM
546 	pfn &= (PAGES_PER_SECTION-1);
547 #else
548 	pfn = pfn - pageblock_start_pfn(page_zone(page)->zone_start_pfn);
549 #endif /* CONFIG_SPARSEMEM */
550 	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
551 }
552 
553 static __always_inline
554 unsigned long __get_pfnblock_flags_mask(const struct page *page,
555 					unsigned long pfn,
556 					unsigned long mask)
557 {
558 	unsigned long *bitmap;
559 	unsigned long bitidx, word_bitidx;
560 	unsigned long word;
561 
562 	bitmap = get_pageblock_bitmap(page, pfn);
563 	bitidx = pfn_to_bitidx(page, pfn);
564 	word_bitidx = bitidx / BITS_PER_LONG;
565 	bitidx &= (BITS_PER_LONG-1);
566 	/*
567 	 * This races, without locks, with set_pfnblock_flags_mask(). Ensure
568 	 * a consistent read of the memory array, so that results, even though
569 	 * racy, are not corrupted.
570 	 */
571 	word = READ_ONCE(bitmap[word_bitidx]);
572 	return (word >> bitidx) & mask;
573 }
574 
575 /**
576  * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
577  * @page: The page within the block of interest
578  * @pfn: The target page frame number
579  * @mask: mask of bits that the caller is interested in
580  *
581  * Return: pageblock_bits flags
582  */
583 unsigned long get_pfnblock_flags_mask(const struct page *page,
584 					unsigned long pfn, unsigned long mask)
585 {
586 	return __get_pfnblock_flags_mask(page, pfn, mask);
587 }
588 
589 static __always_inline int get_pfnblock_migratetype(const struct page *page,
590 					unsigned long pfn)
591 {
592 	return __get_pfnblock_flags_mask(page, pfn, MIGRATETYPE_MASK);
593 }
594 
595 /**
596  * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
597  * @page: The page within the block of interest
598  * @flags: The flags to set
599  * @pfn: The target page frame number
600  * @mask: mask of bits that the caller is interested in
601  */
602 void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
603 					unsigned long pfn,
604 					unsigned long mask)
605 {
606 	unsigned long *bitmap;
607 	unsigned long bitidx, word_bitidx;
608 	unsigned long word;
609 
610 	BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
611 	BUILD_BUG_ON(MIGRATE_TYPES > (1 << PB_migratetype_bits));
612 
613 	bitmap = get_pageblock_bitmap(page, pfn);
614 	bitidx = pfn_to_bitidx(page, pfn);
615 	word_bitidx = bitidx / BITS_PER_LONG;
616 	bitidx &= (BITS_PER_LONG-1);
617 
618 	VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
619 
620 	mask <<= bitidx;
621 	flags <<= bitidx;
622 
623 	word = READ_ONCE(bitmap[word_bitidx]);
624 	do {
625 	} while (!try_cmpxchg(&bitmap[word_bitidx], &word, (word & ~mask) | flags));
626 }
627 
628 void set_pageblock_migratetype(struct page *page, int migratetype)
629 {
630 	if (unlikely(page_group_by_mobility_disabled &&
631 		     migratetype < MIGRATE_PCPTYPES))
632 		migratetype = MIGRATE_UNMOVABLE;
633 
634 	set_pfnblock_flags_mask(page, (unsigned long)migratetype,
635 				page_to_pfn(page), MIGRATETYPE_MASK);
636 }
637 
638 #ifdef CONFIG_DEBUG_VM
639 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
640 {
641 	int ret = 0;
642 	unsigned seq;
643 	unsigned long pfn = page_to_pfn(page);
644 	unsigned long sp, start_pfn;
645 
646 	do {
647 		seq = zone_span_seqbegin(zone);
648 		start_pfn = zone->zone_start_pfn;
649 		sp = zone->spanned_pages;
650 		if (!zone_spans_pfn(zone, pfn))
651 			ret = 1;
652 	} while (zone_span_seqretry(zone, seq));
653 
654 	if (ret)
655 		pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
656 			pfn, zone_to_nid(zone), zone->name,
657 			start_pfn, start_pfn + sp);
658 
659 	return ret;
660 }
661 
662 static int page_is_consistent(struct zone *zone, struct page *page)
663 {
664 	if (zone != page_zone(page))
665 		return 0;
666 
667 	return 1;
668 }
669 /*
670  * Temporary debugging check for pages not lying within a given zone.
671  */
672 static int __maybe_unused bad_range(struct zone *zone, struct page *page)
673 {
674 	if (page_outside_zone_boundaries(zone, page))
675 		return 1;
676 	if (!page_is_consistent(zone, page))
677 		return 1;
678 
679 	return 0;
680 }
681 #else
682 static inline int __maybe_unused bad_range(struct zone *zone, struct page *page)
683 {
684 	return 0;
685 }
686 #endif
687 
688 static void bad_page(struct page *page, const char *reason)
689 {
690 	static unsigned long resume;
691 	static unsigned long nr_shown;
692 	static unsigned long nr_unshown;
693 
694 	/*
695 	 * Allow a burst of 60 reports, then keep quiet for that minute;
696 	 * or allow a steady drip of one report per second.
697 	 */
698 	if (nr_shown == 60) {
699 		if (time_before(jiffies, resume)) {
700 			nr_unshown++;
701 			goto out;
702 		}
703 		if (nr_unshown) {
704 			pr_alert(
705 			      "BUG: Bad page state: %lu messages suppressed\n",
706 				nr_unshown);
707 			nr_unshown = 0;
708 		}
709 		nr_shown = 0;
710 	}
711 	if (nr_shown++ == 0)
712 		resume = jiffies + 60 * HZ;
713 
714 	pr_alert("BUG: Bad page state in process %s  pfn:%05lx\n",
715 		current->comm, page_to_pfn(page));
716 	dump_page(page, reason);
717 
718 	print_modules();
719 	dump_stack();
720 out:
721 	/* Leave bad fields for debug, except PageBuddy could make trouble */
722 	page_mapcount_reset(page); /* remove PageBuddy */
723 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
724 }
725 
726 static inline unsigned int order_to_pindex(int migratetype, int order)
727 {
728 	int base = order;
729 
730 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
731 	if (order > PAGE_ALLOC_COSTLY_ORDER) {
732 		VM_BUG_ON(order != pageblock_order);
733 		return NR_LOWORDER_PCP_LISTS;
734 	}
735 #else
736 	VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER);
737 #endif
738 
739 	return (MIGRATE_PCPTYPES * base) + migratetype;
740 }
741 
742 static inline int pindex_to_order(unsigned int pindex)
743 {
744 	int order = pindex / MIGRATE_PCPTYPES;
745 
746 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
747 	if (pindex == NR_LOWORDER_PCP_LISTS)
748 		order = pageblock_order;
749 #else
750 	VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER);
751 #endif
752 
753 	return order;
754 }
755 
756 static inline bool pcp_allowed_order(unsigned int order)
757 {
758 	if (order <= PAGE_ALLOC_COSTLY_ORDER)
759 		return true;
760 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
761 	if (order == pageblock_order)
762 		return true;
763 #endif
764 	return false;
765 }
766 
767 static inline void free_the_page(struct page *page, unsigned int order)
768 {
769 	if (pcp_allowed_order(order))		/* Via pcp? */
770 		free_unref_page(page, order);
771 	else
772 		__free_pages_ok(page, order, FPI_NONE);
773 }
774 
775 /*
776  * Higher-order pages are called "compound pages".  They are structured thusly:
777  *
778  * The first PAGE_SIZE page is called the "head page" and have PG_head set.
779  *
780  * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
781  * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
782  *
783  * The first tail page's ->compound_dtor holds the offset in array of compound
784  * page destructors. See compound_page_dtors.
785  *
786  * The first tail page's ->compound_order holds the order of allocation.
787  * This usage means that zero-order pages may not be compound.
788  */
789 
790 void free_compound_page(struct page *page)
791 {
792 	mem_cgroup_uncharge(page_folio(page));
793 	free_the_page(page, compound_order(page));
794 }
795 
796 static void prep_compound_head(struct page *page, unsigned int order)
797 {
798 	set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
799 	set_compound_order(page, order);
800 	atomic_set(compound_mapcount_ptr(page), -1);
801 	atomic_set(compound_pincount_ptr(page), 0);
802 }
803 
804 static void prep_compound_tail(struct page *head, int tail_idx)
805 {
806 	struct page *p = head + tail_idx;
807 
808 	p->mapping = TAIL_MAPPING;
809 	set_compound_head(p, head);
810 }
811 
812 void prep_compound_page(struct page *page, unsigned int order)
813 {
814 	int i;
815 	int nr_pages = 1 << order;
816 
817 	__SetPageHead(page);
818 	for (i = 1; i < nr_pages; i++)
819 		prep_compound_tail(page, i);
820 
821 	prep_compound_head(page, order);
822 }
823 
824 void destroy_large_folio(struct folio *folio)
825 {
826 	enum compound_dtor_id dtor = folio_page(folio, 1)->compound_dtor;
827 
828 	VM_BUG_ON_FOLIO(dtor >= NR_COMPOUND_DTORS, folio);
829 	compound_page_dtors[dtor](&folio->page);
830 }
831 
832 #ifdef CONFIG_DEBUG_PAGEALLOC
833 unsigned int _debug_guardpage_minorder;
834 
835 bool _debug_pagealloc_enabled_early __read_mostly
836 			= IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
837 EXPORT_SYMBOL(_debug_pagealloc_enabled_early);
838 DEFINE_STATIC_KEY_FALSE(_debug_pagealloc_enabled);
839 EXPORT_SYMBOL(_debug_pagealloc_enabled);
840 
841 DEFINE_STATIC_KEY_FALSE(_debug_guardpage_enabled);
842 
843 static int __init early_debug_pagealloc(char *buf)
844 {
845 	return kstrtobool(buf, &_debug_pagealloc_enabled_early);
846 }
847 early_param("debug_pagealloc", early_debug_pagealloc);
848 
849 static int __init debug_guardpage_minorder_setup(char *buf)
850 {
851 	unsigned long res;
852 
853 	if (kstrtoul(buf, 10, &res) < 0 ||  res > MAX_ORDER / 2) {
854 		pr_err("Bad debug_guardpage_minorder value\n");
855 		return 0;
856 	}
857 	_debug_guardpage_minorder = res;
858 	pr_info("Setting debug_guardpage_minorder to %lu\n", res);
859 	return 0;
860 }
861 early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup);
862 
863 static inline bool set_page_guard(struct zone *zone, struct page *page,
864 				unsigned int order, int migratetype)
865 {
866 	if (!debug_guardpage_enabled())
867 		return false;
868 
869 	if (order >= debug_guardpage_minorder())
870 		return false;
871 
872 	__SetPageGuard(page);
873 	INIT_LIST_HEAD(&page->buddy_list);
874 	set_page_private(page, order);
875 	/* Guard pages are not available for any usage */
876 	__mod_zone_freepage_state(zone, -(1 << order), migratetype);
877 
878 	return true;
879 }
880 
881 static inline void clear_page_guard(struct zone *zone, struct page *page,
882 				unsigned int order, int migratetype)
883 {
884 	if (!debug_guardpage_enabled())
885 		return;
886 
887 	__ClearPageGuard(page);
888 
889 	set_page_private(page, 0);
890 	if (!is_migrate_isolate(migratetype))
891 		__mod_zone_freepage_state(zone, (1 << order), migratetype);
892 }
893 #else
894 static inline bool set_page_guard(struct zone *zone, struct page *page,
895 			unsigned int order, int migratetype) { return false; }
896 static inline void clear_page_guard(struct zone *zone, struct page *page,
897 				unsigned int order, int migratetype) {}
898 #endif
899 
900 /*
901  * Enable static keys related to various memory debugging and hardening options.
902  * Some override others, and depend on early params that are evaluated in the
903  * order of appearance. So we need to first gather the full picture of what was
904  * enabled, and then make decisions.
905  */
906 void init_mem_debugging_and_hardening(void)
907 {
908 	bool page_poisoning_requested = false;
909 
910 #ifdef CONFIG_PAGE_POISONING
911 	/*
912 	 * Page poisoning is debug page alloc for some arches. If
913 	 * either of those options are enabled, enable poisoning.
914 	 */
915 	if (page_poisoning_enabled() ||
916 	     (!IS_ENABLED(CONFIG_ARCH_SUPPORTS_DEBUG_PAGEALLOC) &&
917 	      debug_pagealloc_enabled())) {
918 		static_branch_enable(&_page_poisoning_enabled);
919 		page_poisoning_requested = true;
920 	}
921 #endif
922 
923 	if ((_init_on_alloc_enabled_early || _init_on_free_enabled_early) &&
924 	    page_poisoning_requested) {
925 		pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, "
926 			"will take precedence over init_on_alloc and init_on_free\n");
927 		_init_on_alloc_enabled_early = false;
928 		_init_on_free_enabled_early = false;
929 	}
930 
931 	if (_init_on_alloc_enabled_early)
932 		static_branch_enable(&init_on_alloc);
933 	else
934 		static_branch_disable(&init_on_alloc);
935 
936 	if (_init_on_free_enabled_early)
937 		static_branch_enable(&init_on_free);
938 	else
939 		static_branch_disable(&init_on_free);
940 
941 #ifdef CONFIG_DEBUG_PAGEALLOC
942 	if (!debug_pagealloc_enabled())
943 		return;
944 
945 	static_branch_enable(&_debug_pagealloc_enabled);
946 
947 	if (!debug_guardpage_minorder())
948 		return;
949 
950 	static_branch_enable(&_debug_guardpage_enabled);
951 #endif
952 }
953 
954 static inline void set_buddy_order(struct page *page, unsigned int order)
955 {
956 	set_page_private(page, order);
957 	__SetPageBuddy(page);
958 }
959 
960 #ifdef CONFIG_COMPACTION
961 static inline struct capture_control *task_capc(struct zone *zone)
962 {
963 	struct capture_control *capc = current->capture_control;
964 
965 	return unlikely(capc) &&
966 		!(current->flags & PF_KTHREAD) &&
967 		!capc->page &&
968 		capc->cc->zone == zone ? capc : NULL;
969 }
970 
971 static inline bool
972 compaction_capture(struct capture_control *capc, struct page *page,
973 		   int order, int migratetype)
974 {
975 	if (!capc || order != capc->cc->order)
976 		return false;
977 
978 	/* Do not accidentally pollute CMA or isolated regions*/
979 	if (is_migrate_cma(migratetype) ||
980 	    is_migrate_isolate(migratetype))
981 		return false;
982 
983 	/*
984 	 * Do not let lower order allocations pollute a movable pageblock.
985 	 * This might let an unmovable request use a reclaimable pageblock
986 	 * and vice-versa but no more than normal fallback logic which can
987 	 * have trouble finding a high-order free page.
988 	 */
989 	if (order < pageblock_order && migratetype == MIGRATE_MOVABLE)
990 		return false;
991 
992 	capc->page = page;
993 	return true;
994 }
995 
996 #else
997 static inline struct capture_control *task_capc(struct zone *zone)
998 {
999 	return NULL;
1000 }
1001 
1002 static inline bool
1003 compaction_capture(struct capture_control *capc, struct page *page,
1004 		   int order, int migratetype)
1005 {
1006 	return false;
1007 }
1008 #endif /* CONFIG_COMPACTION */
1009 
1010 /* Used for pages not on another list */
1011 static inline void add_to_free_list(struct page *page, struct zone *zone,
1012 				    unsigned int order, int migratetype)
1013 {
1014 	struct free_area *area = &zone->free_area[order];
1015 
1016 	list_add(&page->buddy_list, &area->free_list[migratetype]);
1017 	area->nr_free++;
1018 }
1019 
1020 /* Used for pages not on another list */
1021 static inline void add_to_free_list_tail(struct page *page, struct zone *zone,
1022 					 unsigned int order, int migratetype)
1023 {
1024 	struct free_area *area = &zone->free_area[order];
1025 
1026 	list_add_tail(&page->buddy_list, &area->free_list[migratetype]);
1027 	area->nr_free++;
1028 }
1029 
1030 /*
1031  * Used for pages which are on another list. Move the pages to the tail
1032  * of the list - so the moved pages won't immediately be considered for
1033  * allocation again (e.g., optimization for memory onlining).
1034  */
1035 static inline void move_to_free_list(struct page *page, struct zone *zone,
1036 				     unsigned int order, int migratetype)
1037 {
1038 	struct free_area *area = &zone->free_area[order];
1039 
1040 	list_move_tail(&page->buddy_list, &area->free_list[migratetype]);
1041 }
1042 
1043 static inline void del_page_from_free_list(struct page *page, struct zone *zone,
1044 					   unsigned int order)
1045 {
1046 	/* clear reported state and update reported page count */
1047 	if (page_reported(page))
1048 		__ClearPageReported(page);
1049 
1050 	list_del(&page->buddy_list);
1051 	__ClearPageBuddy(page);
1052 	set_page_private(page, 0);
1053 	zone->free_area[order].nr_free--;
1054 }
1055 
1056 /*
1057  * If this is not the largest possible page, check if the buddy
1058  * of the next-highest order is free. If it is, it's possible
1059  * that pages are being freed that will coalesce soon. In case,
1060  * that is happening, add the free page to the tail of the list
1061  * so it's less likely to be used soon and more likely to be merged
1062  * as a higher order page
1063  */
1064 static inline bool
1065 buddy_merge_likely(unsigned long pfn, unsigned long buddy_pfn,
1066 		   struct page *page, unsigned int order)
1067 {
1068 	unsigned long higher_page_pfn;
1069 	struct page *higher_page;
1070 
1071 	if (order >= MAX_ORDER - 2)
1072 		return false;
1073 
1074 	higher_page_pfn = buddy_pfn & pfn;
1075 	higher_page = page + (higher_page_pfn - pfn);
1076 
1077 	return find_buddy_page_pfn(higher_page, higher_page_pfn, order + 1,
1078 			NULL) != NULL;
1079 }
1080 
1081 /*
1082  * Freeing function for a buddy system allocator.
1083  *
1084  * The concept of a buddy system is to maintain direct-mapped table
1085  * (containing bit values) for memory blocks of various "orders".
1086  * The bottom level table contains the map for the smallest allocatable
1087  * units of memory (here, pages), and each level above it describes
1088  * pairs of units from the levels below, hence, "buddies".
1089  * At a high level, all that happens here is marking the table entry
1090  * at the bottom level available, and propagating the changes upward
1091  * as necessary, plus some accounting needed to play nicely with other
1092  * parts of the VM system.
1093  * At each level, we keep a list of pages, which are heads of continuous
1094  * free pages of length of (1 << order) and marked with PageBuddy.
1095  * Page's order is recorded in page_private(page) field.
1096  * So when we are allocating or freeing one, we can derive the state of the
1097  * other.  That is, if we allocate a small block, and both were
1098  * free, the remainder of the region must be split into blocks.
1099  * If a block is freed, and its buddy is also free, then this
1100  * triggers coalescing into a block of larger size.
1101  *
1102  * -- nyc
1103  */
1104 
1105 static inline void __free_one_page(struct page *page,
1106 		unsigned long pfn,
1107 		struct zone *zone, unsigned int order,
1108 		int migratetype, fpi_t fpi_flags)
1109 {
1110 	struct capture_control *capc = task_capc(zone);
1111 	unsigned long buddy_pfn;
1112 	unsigned long combined_pfn;
1113 	struct page *buddy;
1114 	bool to_tail;
1115 
1116 	VM_BUG_ON(!zone_is_initialized(zone));
1117 	VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
1118 
1119 	VM_BUG_ON(migratetype == -1);
1120 	if (likely(!is_migrate_isolate(migratetype)))
1121 		__mod_zone_freepage_state(zone, 1 << order, migratetype);
1122 
1123 	VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
1124 	VM_BUG_ON_PAGE(bad_range(zone, page), page);
1125 
1126 	while (order < MAX_ORDER - 1) {
1127 		if (compaction_capture(capc, page, order, migratetype)) {
1128 			__mod_zone_freepage_state(zone, -(1 << order),
1129 								migratetype);
1130 			return;
1131 		}
1132 
1133 		buddy = find_buddy_page_pfn(page, pfn, order, &buddy_pfn);
1134 		if (!buddy)
1135 			goto done_merging;
1136 
1137 		if (unlikely(order >= pageblock_order)) {
1138 			/*
1139 			 * We want to prevent merge between freepages on pageblock
1140 			 * without fallbacks and normal pageblock. Without this,
1141 			 * pageblock isolation could cause incorrect freepage or CMA
1142 			 * accounting or HIGHATOMIC accounting.
1143 			 */
1144 			int buddy_mt = get_pageblock_migratetype(buddy);
1145 
1146 			if (migratetype != buddy_mt
1147 					&& (!migratetype_is_mergeable(migratetype) ||
1148 						!migratetype_is_mergeable(buddy_mt)))
1149 				goto done_merging;
1150 		}
1151 
1152 		/*
1153 		 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
1154 		 * merge with it and move up one order.
1155 		 */
1156 		if (page_is_guard(buddy))
1157 			clear_page_guard(zone, buddy, order, migratetype);
1158 		else
1159 			del_page_from_free_list(buddy, zone, order);
1160 		combined_pfn = buddy_pfn & pfn;
1161 		page = page + (combined_pfn - pfn);
1162 		pfn = combined_pfn;
1163 		order++;
1164 	}
1165 
1166 done_merging:
1167 	set_buddy_order(page, order);
1168 
1169 	if (fpi_flags & FPI_TO_TAIL)
1170 		to_tail = true;
1171 	else if (is_shuffle_order(order))
1172 		to_tail = shuffle_pick_tail();
1173 	else
1174 		to_tail = buddy_merge_likely(pfn, buddy_pfn, page, order);
1175 
1176 	if (to_tail)
1177 		add_to_free_list_tail(page, zone, order, migratetype);
1178 	else
1179 		add_to_free_list(page, zone, order, migratetype);
1180 
1181 	/* Notify page reporting subsystem of freed page */
1182 	if (!(fpi_flags & FPI_SKIP_REPORT_NOTIFY))
1183 		page_reporting_notify_free(order);
1184 }
1185 
1186 /**
1187  * split_free_page() -- split a free page at split_pfn_offset
1188  * @free_page:		the original free page
1189  * @order:		the order of the page
1190  * @split_pfn_offset:	split offset within the page
1191  *
1192  * Return -ENOENT if the free page is changed, otherwise 0
1193  *
1194  * It is used when the free page crosses two pageblocks with different migratetypes
1195  * at split_pfn_offset within the page. The split free page will be put into
1196  * separate migratetype lists afterwards. Otherwise, the function achieves
1197  * nothing.
1198  */
1199 int split_free_page(struct page *free_page,
1200 			unsigned int order, unsigned long split_pfn_offset)
1201 {
1202 	struct zone *zone = page_zone(free_page);
1203 	unsigned long free_page_pfn = page_to_pfn(free_page);
1204 	unsigned long pfn;
1205 	unsigned long flags;
1206 	int free_page_order;
1207 	int mt;
1208 	int ret = 0;
1209 
1210 	if (split_pfn_offset == 0)
1211 		return ret;
1212 
1213 	spin_lock_irqsave(&zone->lock, flags);
1214 
1215 	if (!PageBuddy(free_page) || buddy_order(free_page) != order) {
1216 		ret = -ENOENT;
1217 		goto out;
1218 	}
1219 
1220 	mt = get_pageblock_migratetype(free_page);
1221 	if (likely(!is_migrate_isolate(mt)))
1222 		__mod_zone_freepage_state(zone, -(1UL << order), mt);
1223 
1224 	del_page_from_free_list(free_page, zone, order);
1225 	for (pfn = free_page_pfn;
1226 	     pfn < free_page_pfn + (1UL << order);) {
1227 		int mt = get_pfnblock_migratetype(pfn_to_page(pfn), pfn);
1228 
1229 		free_page_order = min_t(unsigned int,
1230 					pfn ? __ffs(pfn) : order,
1231 					__fls(split_pfn_offset));
1232 		__free_one_page(pfn_to_page(pfn), pfn, zone, free_page_order,
1233 				mt, FPI_NONE);
1234 		pfn += 1UL << free_page_order;
1235 		split_pfn_offset -= (1UL << free_page_order);
1236 		/* we have done the first part, now switch to second part */
1237 		if (split_pfn_offset == 0)
1238 			split_pfn_offset = (1UL << order) - (pfn - free_page_pfn);
1239 	}
1240 out:
1241 	spin_unlock_irqrestore(&zone->lock, flags);
1242 	return ret;
1243 }
1244 /*
1245  * A bad page could be due to a number of fields. Instead of multiple branches,
1246  * try and check multiple fields with one check. The caller must do a detailed
1247  * check if necessary.
1248  */
1249 static inline bool page_expected_state(struct page *page,
1250 					unsigned long check_flags)
1251 {
1252 	if (unlikely(atomic_read(&page->_mapcount) != -1))
1253 		return false;
1254 
1255 	if (unlikely((unsigned long)page->mapping |
1256 			page_ref_count(page) |
1257 #ifdef CONFIG_MEMCG
1258 			page->memcg_data |
1259 #endif
1260 			(page->flags & check_flags)))
1261 		return false;
1262 
1263 	return true;
1264 }
1265 
1266 static const char *page_bad_reason(struct page *page, unsigned long flags)
1267 {
1268 	const char *bad_reason = NULL;
1269 
1270 	if (unlikely(atomic_read(&page->_mapcount) != -1))
1271 		bad_reason = "nonzero mapcount";
1272 	if (unlikely(page->mapping != NULL))
1273 		bad_reason = "non-NULL mapping";
1274 	if (unlikely(page_ref_count(page) != 0))
1275 		bad_reason = "nonzero _refcount";
1276 	if (unlikely(page->flags & flags)) {
1277 		if (flags == PAGE_FLAGS_CHECK_AT_PREP)
1278 			bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag(s) set";
1279 		else
1280 			bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
1281 	}
1282 #ifdef CONFIG_MEMCG
1283 	if (unlikely(page->memcg_data))
1284 		bad_reason = "page still charged to cgroup";
1285 #endif
1286 	return bad_reason;
1287 }
1288 
1289 static void free_page_is_bad_report(struct page *page)
1290 {
1291 	bad_page(page,
1292 		 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_FREE));
1293 }
1294 
1295 static inline bool free_page_is_bad(struct page *page)
1296 {
1297 	if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
1298 		return false;
1299 
1300 	/* Something has gone sideways, find it */
1301 	free_page_is_bad_report(page);
1302 	return true;
1303 }
1304 
1305 static int free_tail_pages_check(struct page *head_page, struct page *page)
1306 {
1307 	int ret = 1;
1308 
1309 	/*
1310 	 * We rely page->lru.next never has bit 0 set, unless the page
1311 	 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
1312 	 */
1313 	BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
1314 
1315 	if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
1316 		ret = 0;
1317 		goto out;
1318 	}
1319 	switch (page - head_page) {
1320 	case 1:
1321 		/* the first tail page: ->mapping may be compound_mapcount() */
1322 		if (unlikely(compound_mapcount(page))) {
1323 			bad_page(page, "nonzero compound_mapcount");
1324 			goto out;
1325 		}
1326 		break;
1327 	case 2:
1328 		/*
1329 		 * the second tail page: ->mapping is
1330 		 * deferred_list.next -- ignore value.
1331 		 */
1332 		break;
1333 	default:
1334 		if (page->mapping != TAIL_MAPPING) {
1335 			bad_page(page, "corrupted mapping in tail page");
1336 			goto out;
1337 		}
1338 		break;
1339 	}
1340 	if (unlikely(!PageTail(page))) {
1341 		bad_page(page, "PageTail not set");
1342 		goto out;
1343 	}
1344 	if (unlikely(compound_head(page) != head_page)) {
1345 		bad_page(page, "compound_head not consistent");
1346 		goto out;
1347 	}
1348 	ret = 0;
1349 out:
1350 	page->mapping = NULL;
1351 	clear_compound_head(page);
1352 	return ret;
1353 }
1354 
1355 /*
1356  * Skip KASAN memory poisoning when either:
1357  *
1358  * 1. Deferred memory initialization has not yet completed,
1359  *    see the explanation below.
1360  * 2. Skipping poisoning is requested via FPI_SKIP_KASAN_POISON,
1361  *    see the comment next to it.
1362  * 3. Skipping poisoning is requested via __GFP_SKIP_KASAN_POISON,
1363  *    see the comment next to it.
1364  *
1365  * Poisoning pages during deferred memory init will greatly lengthen the
1366  * process and cause problem in large memory systems as the deferred pages
1367  * initialization is done with interrupt disabled.
1368  *
1369  * Assuming that there will be no reference to those newly initialized
1370  * pages before they are ever allocated, this should have no effect on
1371  * KASAN memory tracking as the poison will be properly inserted at page
1372  * allocation time. The only corner case is when pages are allocated by
1373  * on-demand allocation and then freed again before the deferred pages
1374  * initialization is done, but this is not likely to happen.
1375  */
1376 static inline bool should_skip_kasan_poison(struct page *page, fpi_t fpi_flags)
1377 {
1378 	return deferred_pages_enabled() ||
1379 	       (!IS_ENABLED(CONFIG_KASAN_GENERIC) &&
1380 		(fpi_flags & FPI_SKIP_KASAN_POISON)) ||
1381 	       PageSkipKASanPoison(page);
1382 }
1383 
1384 static void kernel_init_pages(struct page *page, int numpages)
1385 {
1386 	int i;
1387 
1388 	/* s390's use of memset() could override KASAN redzones. */
1389 	kasan_disable_current();
1390 	for (i = 0; i < numpages; i++)
1391 		clear_highpage_kasan_tagged(page + i);
1392 	kasan_enable_current();
1393 }
1394 
1395 static __always_inline bool free_pages_prepare(struct page *page,
1396 			unsigned int order, bool check_free, fpi_t fpi_flags)
1397 {
1398 	int bad = 0;
1399 	bool init = want_init_on_free();
1400 
1401 	VM_BUG_ON_PAGE(PageTail(page), page);
1402 
1403 	trace_mm_page_free(page, order);
1404 	kmsan_free_page(page, order);
1405 
1406 	if (unlikely(PageHWPoison(page)) && !order) {
1407 		/*
1408 		 * Do not let hwpoison pages hit pcplists/buddy
1409 		 * Untie memcg state and reset page's owner
1410 		 */
1411 		if (memcg_kmem_enabled() && PageMemcgKmem(page))
1412 			__memcg_kmem_uncharge_page(page, order);
1413 		reset_page_owner(page, order);
1414 		page_table_check_free(page, order);
1415 		return false;
1416 	}
1417 
1418 	/*
1419 	 * Check tail pages before head page information is cleared to
1420 	 * avoid checking PageCompound for order-0 pages.
1421 	 */
1422 	if (unlikely(order)) {
1423 		bool compound = PageCompound(page);
1424 		int i;
1425 
1426 		VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
1427 
1428 		if (compound) {
1429 			ClearPageDoubleMap(page);
1430 			ClearPageHasHWPoisoned(page);
1431 		}
1432 		for (i = 1; i < (1 << order); i++) {
1433 			if (compound)
1434 				bad += free_tail_pages_check(page, page + i);
1435 			if (unlikely(free_page_is_bad(page + i))) {
1436 				bad++;
1437 				continue;
1438 			}
1439 			(page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1440 		}
1441 	}
1442 	if (PageMappingFlags(page))
1443 		page->mapping = NULL;
1444 	if (memcg_kmem_enabled() && PageMemcgKmem(page))
1445 		__memcg_kmem_uncharge_page(page, order);
1446 	if (check_free && free_page_is_bad(page))
1447 		bad++;
1448 	if (bad)
1449 		return false;
1450 
1451 	page_cpupid_reset_last(page);
1452 	page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1453 	reset_page_owner(page, order);
1454 	page_table_check_free(page, order);
1455 
1456 	if (!PageHighMem(page)) {
1457 		debug_check_no_locks_freed(page_address(page),
1458 					   PAGE_SIZE << order);
1459 		debug_check_no_obj_freed(page_address(page),
1460 					   PAGE_SIZE << order);
1461 	}
1462 
1463 	kernel_poison_pages(page, 1 << order);
1464 
1465 	/*
1466 	 * As memory initialization might be integrated into KASAN,
1467 	 * KASAN poisoning and memory initialization code must be
1468 	 * kept together to avoid discrepancies in behavior.
1469 	 *
1470 	 * With hardware tag-based KASAN, memory tags must be set before the
1471 	 * page becomes unavailable via debug_pagealloc or arch_free_page.
1472 	 */
1473 	if (!should_skip_kasan_poison(page, fpi_flags)) {
1474 		kasan_poison_pages(page, order, init);
1475 
1476 		/* Memory is already initialized if KASAN did it internally. */
1477 		if (kasan_has_integrated_init())
1478 			init = false;
1479 	}
1480 	if (init)
1481 		kernel_init_pages(page, 1 << order);
1482 
1483 	/*
1484 	 * arch_free_page() can make the page's contents inaccessible.  s390
1485 	 * does this.  So nothing which can access the page's contents should
1486 	 * happen after this.
1487 	 */
1488 	arch_free_page(page, order);
1489 
1490 	debug_pagealloc_unmap_pages(page, 1 << order);
1491 
1492 	return true;
1493 }
1494 
1495 #ifdef CONFIG_DEBUG_VM
1496 /*
1497  * With DEBUG_VM enabled, order-0 pages are checked immediately when being freed
1498  * to pcp lists. With debug_pagealloc also enabled, they are also rechecked when
1499  * moved from pcp lists to free lists.
1500  */
1501 static bool free_pcp_prepare(struct page *page, unsigned int order)
1502 {
1503 	return free_pages_prepare(page, order, true, FPI_NONE);
1504 }
1505 
1506 /* return true if this page has an inappropriate state */
1507 static bool bulkfree_pcp_prepare(struct page *page)
1508 {
1509 	if (debug_pagealloc_enabled_static())
1510 		return free_page_is_bad(page);
1511 	else
1512 		return false;
1513 }
1514 #else
1515 /*
1516  * With DEBUG_VM disabled, order-0 pages being freed are checked only when
1517  * moving from pcp lists to free list in order to reduce overhead. With
1518  * debug_pagealloc enabled, they are checked also immediately when being freed
1519  * to the pcp lists.
1520  */
1521 static bool free_pcp_prepare(struct page *page, unsigned int order)
1522 {
1523 	if (debug_pagealloc_enabled_static())
1524 		return free_pages_prepare(page, order, true, FPI_NONE);
1525 	else
1526 		return free_pages_prepare(page, order, false, FPI_NONE);
1527 }
1528 
1529 static bool bulkfree_pcp_prepare(struct page *page)
1530 {
1531 	return free_page_is_bad(page);
1532 }
1533 #endif /* CONFIG_DEBUG_VM */
1534 
1535 /*
1536  * Frees a number of pages from the PCP lists
1537  * Assumes all pages on list are in same zone.
1538  * count is the number of pages to free.
1539  */
1540 static void free_pcppages_bulk(struct zone *zone, int count,
1541 					struct per_cpu_pages *pcp,
1542 					int pindex)
1543 {
1544 	int min_pindex = 0;
1545 	int max_pindex = NR_PCP_LISTS - 1;
1546 	unsigned int order;
1547 	bool isolated_pageblocks;
1548 	struct page *page;
1549 
1550 	/*
1551 	 * Ensure proper count is passed which otherwise would stuck in the
1552 	 * below while (list_empty(list)) loop.
1553 	 */
1554 	count = min(pcp->count, count);
1555 
1556 	/* Ensure requested pindex is drained first. */
1557 	pindex = pindex - 1;
1558 
1559 	/* Caller must hold IRQ-safe pcp->lock so IRQs are disabled. */
1560 	spin_lock(&zone->lock);
1561 	isolated_pageblocks = has_isolate_pageblock(zone);
1562 
1563 	while (count > 0) {
1564 		struct list_head *list;
1565 		int nr_pages;
1566 
1567 		/* Remove pages from lists in a round-robin fashion. */
1568 		do {
1569 			if (++pindex > max_pindex)
1570 				pindex = min_pindex;
1571 			list = &pcp->lists[pindex];
1572 			if (!list_empty(list))
1573 				break;
1574 
1575 			if (pindex == max_pindex)
1576 				max_pindex--;
1577 			if (pindex == min_pindex)
1578 				min_pindex++;
1579 		} while (1);
1580 
1581 		order = pindex_to_order(pindex);
1582 		nr_pages = 1 << order;
1583 		BUILD_BUG_ON(MAX_ORDER >= (1<<NR_PCP_ORDER_WIDTH));
1584 		do {
1585 			int mt;
1586 
1587 			page = list_last_entry(list, struct page, pcp_list);
1588 			mt = get_pcppage_migratetype(page);
1589 
1590 			/* must delete to avoid corrupting pcp list */
1591 			list_del(&page->pcp_list);
1592 			count -= nr_pages;
1593 			pcp->count -= nr_pages;
1594 
1595 			if (bulkfree_pcp_prepare(page))
1596 				continue;
1597 
1598 			/* MIGRATE_ISOLATE page should not go to pcplists */
1599 			VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1600 			/* Pageblock could have been isolated meanwhile */
1601 			if (unlikely(isolated_pageblocks))
1602 				mt = get_pageblock_migratetype(page);
1603 
1604 			__free_one_page(page, page_to_pfn(page), zone, order, mt, FPI_NONE);
1605 			trace_mm_page_pcpu_drain(page, order, mt);
1606 		} while (count > 0 && !list_empty(list));
1607 	}
1608 
1609 	spin_unlock(&zone->lock);
1610 }
1611 
1612 static void free_one_page(struct zone *zone,
1613 				struct page *page, unsigned long pfn,
1614 				unsigned int order,
1615 				int migratetype, fpi_t fpi_flags)
1616 {
1617 	unsigned long flags;
1618 
1619 	spin_lock_irqsave(&zone->lock, flags);
1620 	if (unlikely(has_isolate_pageblock(zone) ||
1621 		is_migrate_isolate(migratetype))) {
1622 		migratetype = get_pfnblock_migratetype(page, pfn);
1623 	}
1624 	__free_one_page(page, pfn, zone, order, migratetype, fpi_flags);
1625 	spin_unlock_irqrestore(&zone->lock, flags);
1626 }
1627 
1628 static void __meminit __init_single_page(struct page *page, unsigned long pfn,
1629 				unsigned long zone, int nid)
1630 {
1631 	mm_zero_struct_page(page);
1632 	set_page_links(page, zone, nid, pfn);
1633 	init_page_count(page);
1634 	page_mapcount_reset(page);
1635 	page_cpupid_reset_last(page);
1636 	page_kasan_tag_reset(page);
1637 
1638 	INIT_LIST_HEAD(&page->lru);
1639 #ifdef WANT_PAGE_VIRTUAL
1640 	/* The shift won't overflow because ZONE_NORMAL is below 4G. */
1641 	if (!is_highmem_idx(zone))
1642 		set_page_address(page, __va(pfn << PAGE_SHIFT));
1643 #endif
1644 }
1645 
1646 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1647 static void __meminit init_reserved_page(unsigned long pfn)
1648 {
1649 	pg_data_t *pgdat;
1650 	int nid, zid;
1651 
1652 	if (!early_page_uninitialised(pfn))
1653 		return;
1654 
1655 	nid = early_pfn_to_nid(pfn);
1656 	pgdat = NODE_DATA(nid);
1657 
1658 	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1659 		struct zone *zone = &pgdat->node_zones[zid];
1660 
1661 		if (zone_spans_pfn(zone, pfn))
1662 			break;
1663 	}
1664 	__init_single_page(pfn_to_page(pfn), pfn, zid, nid);
1665 }
1666 #else
1667 static inline void init_reserved_page(unsigned long pfn)
1668 {
1669 }
1670 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1671 
1672 /*
1673  * Initialised pages do not have PageReserved set. This function is
1674  * called for each range allocated by the bootmem allocator and
1675  * marks the pages PageReserved. The remaining valid pages are later
1676  * sent to the buddy page allocator.
1677  */
1678 void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
1679 {
1680 	unsigned long start_pfn = PFN_DOWN(start);
1681 	unsigned long end_pfn = PFN_UP(end);
1682 
1683 	for (; start_pfn < end_pfn; start_pfn++) {
1684 		if (pfn_valid(start_pfn)) {
1685 			struct page *page = pfn_to_page(start_pfn);
1686 
1687 			init_reserved_page(start_pfn);
1688 
1689 			/* Avoid false-positive PageTail() */
1690 			INIT_LIST_HEAD(&page->lru);
1691 
1692 			/*
1693 			 * no need for atomic set_bit because the struct
1694 			 * page is not visible yet so nobody should
1695 			 * access it yet.
1696 			 */
1697 			__SetPageReserved(page);
1698 		}
1699 	}
1700 }
1701 
1702 static void __free_pages_ok(struct page *page, unsigned int order,
1703 			    fpi_t fpi_flags)
1704 {
1705 	unsigned long flags;
1706 	int migratetype;
1707 	unsigned long pfn = page_to_pfn(page);
1708 	struct zone *zone = page_zone(page);
1709 
1710 	if (!free_pages_prepare(page, order, true, fpi_flags))
1711 		return;
1712 
1713 	migratetype = get_pfnblock_migratetype(page, pfn);
1714 
1715 	spin_lock_irqsave(&zone->lock, flags);
1716 	if (unlikely(has_isolate_pageblock(zone) ||
1717 		is_migrate_isolate(migratetype))) {
1718 		migratetype = get_pfnblock_migratetype(page, pfn);
1719 	}
1720 	__free_one_page(page, pfn, zone, order, migratetype, fpi_flags);
1721 	spin_unlock_irqrestore(&zone->lock, flags);
1722 
1723 	__count_vm_events(PGFREE, 1 << order);
1724 }
1725 
1726 void __free_pages_core(struct page *page, unsigned int order)
1727 {
1728 	unsigned int nr_pages = 1 << order;
1729 	struct page *p = page;
1730 	unsigned int loop;
1731 
1732 	/*
1733 	 * When initializing the memmap, __init_single_page() sets the refcount
1734 	 * of all pages to 1 ("allocated"/"not free"). We have to set the
1735 	 * refcount of all involved pages to 0.
1736 	 */
1737 	prefetchw(p);
1738 	for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1739 		prefetchw(p + 1);
1740 		__ClearPageReserved(p);
1741 		set_page_count(p, 0);
1742 	}
1743 	__ClearPageReserved(p);
1744 	set_page_count(p, 0);
1745 
1746 	atomic_long_add(nr_pages, &page_zone(page)->managed_pages);
1747 
1748 	/*
1749 	 * Bypass PCP and place fresh pages right to the tail, primarily
1750 	 * relevant for memory onlining.
1751 	 */
1752 	__free_pages_ok(page, order, FPI_TO_TAIL | FPI_SKIP_KASAN_POISON);
1753 }
1754 
1755 #ifdef CONFIG_NUMA
1756 
1757 /*
1758  * During memory init memblocks map pfns to nids. The search is expensive and
1759  * this caches recent lookups. The implementation of __early_pfn_to_nid
1760  * treats start/end as pfns.
1761  */
1762 struct mminit_pfnnid_cache {
1763 	unsigned long last_start;
1764 	unsigned long last_end;
1765 	int last_nid;
1766 };
1767 
1768 static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
1769 
1770 /*
1771  * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
1772  */
1773 static int __meminit __early_pfn_to_nid(unsigned long pfn,
1774 					struct mminit_pfnnid_cache *state)
1775 {
1776 	unsigned long start_pfn, end_pfn;
1777 	int nid;
1778 
1779 	if (state->last_start <= pfn && pfn < state->last_end)
1780 		return state->last_nid;
1781 
1782 	nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
1783 	if (nid != NUMA_NO_NODE) {
1784 		state->last_start = start_pfn;
1785 		state->last_end = end_pfn;
1786 		state->last_nid = nid;
1787 	}
1788 
1789 	return nid;
1790 }
1791 
1792 int __meminit early_pfn_to_nid(unsigned long pfn)
1793 {
1794 	static DEFINE_SPINLOCK(early_pfn_lock);
1795 	int nid;
1796 
1797 	spin_lock(&early_pfn_lock);
1798 	nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
1799 	if (nid < 0)
1800 		nid = first_online_node;
1801 	spin_unlock(&early_pfn_lock);
1802 
1803 	return nid;
1804 }
1805 #endif /* CONFIG_NUMA */
1806 
1807 void __init memblock_free_pages(struct page *page, unsigned long pfn,
1808 							unsigned int order)
1809 {
1810 	if (early_page_uninitialised(pfn))
1811 		return;
1812 	__free_pages_core(page, order);
1813 }
1814 
1815 /*
1816  * Check that the whole (or subset of) a pageblock given by the interval of
1817  * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1818  * with the migration of free compaction scanner.
1819  *
1820  * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1821  *
1822  * It's possible on some configurations to have a setup like node0 node1 node0
1823  * i.e. it's possible that all pages within a zones range of pages do not
1824  * belong to a single zone. We assume that a border between node0 and node1
1825  * can occur within a single pageblock, but not a node0 node1 node0
1826  * interleaving within a single pageblock. It is therefore sufficient to check
1827  * the first and last page of a pageblock and avoid checking each individual
1828  * page in a pageblock.
1829  */
1830 struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1831 				     unsigned long end_pfn, struct zone *zone)
1832 {
1833 	struct page *start_page;
1834 	struct page *end_page;
1835 
1836 	/* end_pfn is one past the range we are checking */
1837 	end_pfn--;
1838 
1839 	if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
1840 		return NULL;
1841 
1842 	start_page = pfn_to_online_page(start_pfn);
1843 	if (!start_page)
1844 		return NULL;
1845 
1846 	if (page_zone(start_page) != zone)
1847 		return NULL;
1848 
1849 	end_page = pfn_to_page(end_pfn);
1850 
1851 	/* This gives a shorter code than deriving page_zone(end_page) */
1852 	if (page_zone_id(start_page) != page_zone_id(end_page))
1853 		return NULL;
1854 
1855 	return start_page;
1856 }
1857 
1858 void set_zone_contiguous(struct zone *zone)
1859 {
1860 	unsigned long block_start_pfn = zone->zone_start_pfn;
1861 	unsigned long block_end_pfn;
1862 
1863 	block_end_pfn = pageblock_end_pfn(block_start_pfn);
1864 	for (; block_start_pfn < zone_end_pfn(zone);
1865 			block_start_pfn = block_end_pfn,
1866 			 block_end_pfn += pageblock_nr_pages) {
1867 
1868 		block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
1869 
1870 		if (!__pageblock_pfn_to_page(block_start_pfn,
1871 					     block_end_pfn, zone))
1872 			return;
1873 		cond_resched();
1874 	}
1875 
1876 	/* We confirm that there is no hole */
1877 	zone->contiguous = true;
1878 }
1879 
1880 void clear_zone_contiguous(struct zone *zone)
1881 {
1882 	zone->contiguous = false;
1883 }
1884 
1885 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1886 static void __init deferred_free_range(unsigned long pfn,
1887 				       unsigned long nr_pages)
1888 {
1889 	struct page *page;
1890 	unsigned long i;
1891 
1892 	if (!nr_pages)
1893 		return;
1894 
1895 	page = pfn_to_page(pfn);
1896 
1897 	/* Free a large naturally-aligned chunk if possible */
1898 	if (nr_pages == pageblock_nr_pages && pageblock_aligned(pfn)) {
1899 		set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1900 		__free_pages_core(page, pageblock_order);
1901 		return;
1902 	}
1903 
1904 	for (i = 0; i < nr_pages; i++, page++, pfn++) {
1905 		if (pageblock_aligned(pfn))
1906 			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1907 		__free_pages_core(page, 0);
1908 	}
1909 }
1910 
1911 /* Completion tracking for deferred_init_memmap() threads */
1912 static atomic_t pgdat_init_n_undone __initdata;
1913 static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1914 
1915 static inline void __init pgdat_init_report_one_done(void)
1916 {
1917 	if (atomic_dec_and_test(&pgdat_init_n_undone))
1918 		complete(&pgdat_init_all_done_comp);
1919 }
1920 
1921 /*
1922  * Returns true if page needs to be initialized or freed to buddy allocator.
1923  *
1924  * First we check if pfn is valid on architectures where it is possible to have
1925  * holes within pageblock_nr_pages. On systems where it is not possible, this
1926  * function is optimized out.
1927  *
1928  * Then, we check if a current large page is valid by only checking the validity
1929  * of the head pfn.
1930  */
1931 static inline bool __init deferred_pfn_valid(unsigned long pfn)
1932 {
1933 	if (pageblock_aligned(pfn) && !pfn_valid(pfn))
1934 		return false;
1935 	return true;
1936 }
1937 
1938 /*
1939  * Free pages to buddy allocator. Try to free aligned pages in
1940  * pageblock_nr_pages sizes.
1941  */
1942 static void __init deferred_free_pages(unsigned long pfn,
1943 				       unsigned long end_pfn)
1944 {
1945 	unsigned long nr_free = 0;
1946 
1947 	for (; pfn < end_pfn; pfn++) {
1948 		if (!deferred_pfn_valid(pfn)) {
1949 			deferred_free_range(pfn - nr_free, nr_free);
1950 			nr_free = 0;
1951 		} else if (pageblock_aligned(pfn)) {
1952 			deferred_free_range(pfn - nr_free, nr_free);
1953 			nr_free = 1;
1954 		} else {
1955 			nr_free++;
1956 		}
1957 	}
1958 	/* Free the last block of pages to allocator */
1959 	deferred_free_range(pfn - nr_free, nr_free);
1960 }
1961 
1962 /*
1963  * Initialize struct pages.  We minimize pfn page lookups and scheduler checks
1964  * by performing it only once every pageblock_nr_pages.
1965  * Return number of pages initialized.
1966  */
1967 static unsigned long  __init deferred_init_pages(struct zone *zone,
1968 						 unsigned long pfn,
1969 						 unsigned long end_pfn)
1970 {
1971 	int nid = zone_to_nid(zone);
1972 	unsigned long nr_pages = 0;
1973 	int zid = zone_idx(zone);
1974 	struct page *page = NULL;
1975 
1976 	for (; pfn < end_pfn; pfn++) {
1977 		if (!deferred_pfn_valid(pfn)) {
1978 			page = NULL;
1979 			continue;
1980 		} else if (!page || pageblock_aligned(pfn)) {
1981 			page = pfn_to_page(pfn);
1982 		} else {
1983 			page++;
1984 		}
1985 		__init_single_page(page, pfn, zid, nid);
1986 		nr_pages++;
1987 	}
1988 	return (nr_pages);
1989 }
1990 
1991 /*
1992  * This function is meant to pre-load the iterator for the zone init.
1993  * Specifically it walks through the ranges until we are caught up to the
1994  * first_init_pfn value and exits there. If we never encounter the value we
1995  * return false indicating there are no valid ranges left.
1996  */
1997 static bool __init
1998 deferred_init_mem_pfn_range_in_zone(u64 *i, struct zone *zone,
1999 				    unsigned long *spfn, unsigned long *epfn,
2000 				    unsigned long first_init_pfn)
2001 {
2002 	u64 j;
2003 
2004 	/*
2005 	 * Start out by walking through the ranges in this zone that have
2006 	 * already been initialized. We don't need to do anything with them
2007 	 * so we just need to flush them out of the system.
2008 	 */
2009 	for_each_free_mem_pfn_range_in_zone(j, zone, spfn, epfn) {
2010 		if (*epfn <= first_init_pfn)
2011 			continue;
2012 		if (*spfn < first_init_pfn)
2013 			*spfn = first_init_pfn;
2014 		*i = j;
2015 		return true;
2016 	}
2017 
2018 	return false;
2019 }
2020 
2021 /*
2022  * Initialize and free pages. We do it in two loops: first we initialize
2023  * struct page, then free to buddy allocator, because while we are
2024  * freeing pages we can access pages that are ahead (computing buddy
2025  * page in __free_one_page()).
2026  *
2027  * In order to try and keep some memory in the cache we have the loop
2028  * broken along max page order boundaries. This way we will not cause
2029  * any issues with the buddy page computation.
2030  */
2031 static unsigned long __init
2032 deferred_init_maxorder(u64 *i, struct zone *zone, unsigned long *start_pfn,
2033 		       unsigned long *end_pfn)
2034 {
2035 	unsigned long mo_pfn = ALIGN(*start_pfn + 1, MAX_ORDER_NR_PAGES);
2036 	unsigned long spfn = *start_pfn, epfn = *end_pfn;
2037 	unsigned long nr_pages = 0;
2038 	u64 j = *i;
2039 
2040 	/* First we loop through and initialize the page values */
2041 	for_each_free_mem_pfn_range_in_zone_from(j, zone, start_pfn, end_pfn) {
2042 		unsigned long t;
2043 
2044 		if (mo_pfn <= *start_pfn)
2045 			break;
2046 
2047 		t = min(mo_pfn, *end_pfn);
2048 		nr_pages += deferred_init_pages(zone, *start_pfn, t);
2049 
2050 		if (mo_pfn < *end_pfn) {
2051 			*start_pfn = mo_pfn;
2052 			break;
2053 		}
2054 	}
2055 
2056 	/* Reset values and now loop through freeing pages as needed */
2057 	swap(j, *i);
2058 
2059 	for_each_free_mem_pfn_range_in_zone_from(j, zone, &spfn, &epfn) {
2060 		unsigned long t;
2061 
2062 		if (mo_pfn <= spfn)
2063 			break;
2064 
2065 		t = min(mo_pfn, epfn);
2066 		deferred_free_pages(spfn, t);
2067 
2068 		if (mo_pfn <= epfn)
2069 			break;
2070 	}
2071 
2072 	return nr_pages;
2073 }
2074 
2075 static void __init
2076 deferred_init_memmap_chunk(unsigned long start_pfn, unsigned long end_pfn,
2077 			   void *arg)
2078 {
2079 	unsigned long spfn, epfn;
2080 	struct zone *zone = arg;
2081 	u64 i;
2082 
2083 	deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, start_pfn);
2084 
2085 	/*
2086 	 * Initialize and free pages in MAX_ORDER sized increments so that we
2087 	 * can avoid introducing any issues with the buddy allocator.
2088 	 */
2089 	while (spfn < end_pfn) {
2090 		deferred_init_maxorder(&i, zone, &spfn, &epfn);
2091 		cond_resched();
2092 	}
2093 }
2094 
2095 /* An arch may override for more concurrency. */
2096 __weak int __init
2097 deferred_page_init_max_threads(const struct cpumask *node_cpumask)
2098 {
2099 	return 1;
2100 }
2101 
2102 /* Initialise remaining memory on a node */
2103 static int __init deferred_init_memmap(void *data)
2104 {
2105 	pg_data_t *pgdat = data;
2106 	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
2107 	unsigned long spfn = 0, epfn = 0;
2108 	unsigned long first_init_pfn, flags;
2109 	unsigned long start = jiffies;
2110 	struct zone *zone;
2111 	int zid, max_threads;
2112 	u64 i;
2113 
2114 	/* Bind memory initialisation thread to a local node if possible */
2115 	if (!cpumask_empty(cpumask))
2116 		set_cpus_allowed_ptr(current, cpumask);
2117 
2118 	pgdat_resize_lock(pgdat, &flags);
2119 	first_init_pfn = pgdat->first_deferred_pfn;
2120 	if (first_init_pfn == ULONG_MAX) {
2121 		pgdat_resize_unlock(pgdat, &flags);
2122 		pgdat_init_report_one_done();
2123 		return 0;
2124 	}
2125 
2126 	/* Sanity check boundaries */
2127 	BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
2128 	BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
2129 	pgdat->first_deferred_pfn = ULONG_MAX;
2130 
2131 	/*
2132 	 * Once we unlock here, the zone cannot be grown anymore, thus if an
2133 	 * interrupt thread must allocate this early in boot, zone must be
2134 	 * pre-grown prior to start of deferred page initialization.
2135 	 */
2136 	pgdat_resize_unlock(pgdat, &flags);
2137 
2138 	/* Only the highest zone is deferred so find it */
2139 	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
2140 		zone = pgdat->node_zones + zid;
2141 		if (first_init_pfn < zone_end_pfn(zone))
2142 			break;
2143 	}
2144 
2145 	/* If the zone is empty somebody else may have cleared out the zone */
2146 	if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
2147 						 first_init_pfn))
2148 		goto zone_empty;
2149 
2150 	max_threads = deferred_page_init_max_threads(cpumask);
2151 
2152 	while (spfn < epfn) {
2153 		unsigned long epfn_align = ALIGN(epfn, PAGES_PER_SECTION);
2154 		struct padata_mt_job job = {
2155 			.thread_fn   = deferred_init_memmap_chunk,
2156 			.fn_arg      = zone,
2157 			.start       = spfn,
2158 			.size        = epfn_align - spfn,
2159 			.align       = PAGES_PER_SECTION,
2160 			.min_chunk   = PAGES_PER_SECTION,
2161 			.max_threads = max_threads,
2162 		};
2163 
2164 		padata_do_multithreaded(&job);
2165 		deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
2166 						    epfn_align);
2167 	}
2168 zone_empty:
2169 	/* Sanity check that the next zone really is unpopulated */
2170 	WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
2171 
2172 	pr_info("node %d deferred pages initialised in %ums\n",
2173 		pgdat->node_id, jiffies_to_msecs(jiffies - start));
2174 
2175 	pgdat_init_report_one_done();
2176 	return 0;
2177 }
2178 
2179 /*
2180  * If this zone has deferred pages, try to grow it by initializing enough
2181  * deferred pages to satisfy the allocation specified by order, rounded up to
2182  * the nearest PAGES_PER_SECTION boundary.  So we're adding memory in increments
2183  * of SECTION_SIZE bytes by initializing struct pages in increments of
2184  * PAGES_PER_SECTION * sizeof(struct page) bytes.
2185  *
2186  * Return true when zone was grown, otherwise return false. We return true even
2187  * when we grow less than requested, to let the caller decide if there are
2188  * enough pages to satisfy the allocation.
2189  *
2190  * Note: We use noinline because this function is needed only during boot, and
2191  * it is called from a __ref function _deferred_grow_zone. This way we are
2192  * making sure that it is not inlined into permanent text section.
2193  */
2194 static noinline bool __init
2195 deferred_grow_zone(struct zone *zone, unsigned int order)
2196 {
2197 	unsigned long nr_pages_needed = ALIGN(1 << order, PAGES_PER_SECTION);
2198 	pg_data_t *pgdat = zone->zone_pgdat;
2199 	unsigned long first_deferred_pfn = pgdat->first_deferred_pfn;
2200 	unsigned long spfn, epfn, flags;
2201 	unsigned long nr_pages = 0;
2202 	u64 i;
2203 
2204 	/* Only the last zone may have deferred pages */
2205 	if (zone_end_pfn(zone) != pgdat_end_pfn(pgdat))
2206 		return false;
2207 
2208 	pgdat_resize_lock(pgdat, &flags);
2209 
2210 	/*
2211 	 * If someone grew this zone while we were waiting for spinlock, return
2212 	 * true, as there might be enough pages already.
2213 	 */
2214 	if (first_deferred_pfn != pgdat->first_deferred_pfn) {
2215 		pgdat_resize_unlock(pgdat, &flags);
2216 		return true;
2217 	}
2218 
2219 	/* If the zone is empty somebody else may have cleared out the zone */
2220 	if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
2221 						 first_deferred_pfn)) {
2222 		pgdat->first_deferred_pfn = ULONG_MAX;
2223 		pgdat_resize_unlock(pgdat, &flags);
2224 		/* Retry only once. */
2225 		return first_deferred_pfn != ULONG_MAX;
2226 	}
2227 
2228 	/*
2229 	 * Initialize and free pages in MAX_ORDER sized increments so
2230 	 * that we can avoid introducing any issues with the buddy
2231 	 * allocator.
2232 	 */
2233 	while (spfn < epfn) {
2234 		/* update our first deferred PFN for this section */
2235 		first_deferred_pfn = spfn;
2236 
2237 		nr_pages += deferred_init_maxorder(&i, zone, &spfn, &epfn);
2238 		touch_nmi_watchdog();
2239 
2240 		/* We should only stop along section boundaries */
2241 		if ((first_deferred_pfn ^ spfn) < PAGES_PER_SECTION)
2242 			continue;
2243 
2244 		/* If our quota has been met we can stop here */
2245 		if (nr_pages >= nr_pages_needed)
2246 			break;
2247 	}
2248 
2249 	pgdat->first_deferred_pfn = spfn;
2250 	pgdat_resize_unlock(pgdat, &flags);
2251 
2252 	return nr_pages > 0;
2253 }
2254 
2255 /*
2256  * deferred_grow_zone() is __init, but it is called from
2257  * get_page_from_freelist() during early boot until deferred_pages permanently
2258  * disables this call. This is why we have refdata wrapper to avoid warning,
2259  * and to ensure that the function body gets unloaded.
2260  */
2261 static bool __ref
2262 _deferred_grow_zone(struct zone *zone, unsigned int order)
2263 {
2264 	return deferred_grow_zone(zone, order);
2265 }
2266 
2267 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
2268 
2269 void __init page_alloc_init_late(void)
2270 {
2271 	struct zone *zone;
2272 	int nid;
2273 
2274 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
2275 
2276 	/* There will be num_node_state(N_MEMORY) threads */
2277 	atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
2278 	for_each_node_state(nid, N_MEMORY) {
2279 		kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
2280 	}
2281 
2282 	/* Block until all are initialised */
2283 	wait_for_completion(&pgdat_init_all_done_comp);
2284 
2285 	/*
2286 	 * We initialized the rest of the deferred pages.  Permanently disable
2287 	 * on-demand struct page initialization.
2288 	 */
2289 	static_branch_disable(&deferred_pages);
2290 
2291 	/* Reinit limits that are based on free pages after the kernel is up */
2292 	files_maxfiles_init();
2293 #endif
2294 
2295 	buffer_init();
2296 
2297 	/* Discard memblock private memory */
2298 	memblock_discard();
2299 
2300 	for_each_node_state(nid, N_MEMORY)
2301 		shuffle_free_memory(NODE_DATA(nid));
2302 
2303 	for_each_populated_zone(zone)
2304 		set_zone_contiguous(zone);
2305 }
2306 
2307 #ifdef CONFIG_CMA
2308 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */
2309 void __init init_cma_reserved_pageblock(struct page *page)
2310 {
2311 	unsigned i = pageblock_nr_pages;
2312 	struct page *p = page;
2313 
2314 	do {
2315 		__ClearPageReserved(p);
2316 		set_page_count(p, 0);
2317 	} while (++p, --i);
2318 
2319 	set_pageblock_migratetype(page, MIGRATE_CMA);
2320 	set_page_refcounted(page);
2321 	__free_pages(page, pageblock_order);
2322 
2323 	adjust_managed_page_count(page, pageblock_nr_pages);
2324 	page_zone(page)->cma_pages += pageblock_nr_pages;
2325 }
2326 #endif
2327 
2328 /*
2329  * The order of subdivision here is critical for the IO subsystem.
2330  * Please do not alter this order without good reasons and regression
2331  * testing. Specifically, as large blocks of memory are subdivided,
2332  * the order in which smaller blocks are delivered depends on the order
2333  * they're subdivided in this function. This is the primary factor
2334  * influencing the order in which pages are delivered to the IO
2335  * subsystem according to empirical testing, and this is also justified
2336  * by considering the behavior of a buddy system containing a single
2337  * large block of memory acted on by a series of small allocations.
2338  * This behavior is a critical factor in sglist merging's success.
2339  *
2340  * -- nyc
2341  */
2342 static inline void expand(struct zone *zone, struct page *page,
2343 	int low, int high, int migratetype)
2344 {
2345 	unsigned long size = 1 << high;
2346 
2347 	while (high > low) {
2348 		high--;
2349 		size >>= 1;
2350 		VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
2351 
2352 		/*
2353 		 * Mark as guard pages (or page), that will allow to
2354 		 * merge back to allocator when buddy will be freed.
2355 		 * Corresponding page table entries will not be touched,
2356 		 * pages will stay not present in virtual address space
2357 		 */
2358 		if (set_page_guard(zone, &page[size], high, migratetype))
2359 			continue;
2360 
2361 		add_to_free_list(&page[size], zone, high, migratetype);
2362 		set_buddy_order(&page[size], high);
2363 	}
2364 }
2365 
2366 static void check_new_page_bad(struct page *page)
2367 {
2368 	if (unlikely(page->flags & __PG_HWPOISON)) {
2369 		/* Don't complain about hwpoisoned pages */
2370 		page_mapcount_reset(page); /* remove PageBuddy */
2371 		return;
2372 	}
2373 
2374 	bad_page(page,
2375 		 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_PREP));
2376 }
2377 
2378 /*
2379  * This page is about to be returned from the page allocator
2380  */
2381 static inline int check_new_page(struct page *page)
2382 {
2383 	if (likely(page_expected_state(page,
2384 				PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
2385 		return 0;
2386 
2387 	check_new_page_bad(page);
2388 	return 1;
2389 }
2390 
2391 static bool check_new_pages(struct page *page, unsigned int order)
2392 {
2393 	int i;
2394 	for (i = 0; i < (1 << order); i++) {
2395 		struct page *p = page + i;
2396 
2397 		if (unlikely(check_new_page(p)))
2398 			return true;
2399 	}
2400 
2401 	return false;
2402 }
2403 
2404 #ifdef CONFIG_DEBUG_VM
2405 /*
2406  * With DEBUG_VM enabled, order-0 pages are checked for expected state when
2407  * being allocated from pcp lists. With debug_pagealloc also enabled, they are
2408  * also checked when pcp lists are refilled from the free lists.
2409  */
2410 static inline bool check_pcp_refill(struct page *page, unsigned int order)
2411 {
2412 	if (debug_pagealloc_enabled_static())
2413 		return check_new_pages(page, order);
2414 	else
2415 		return false;
2416 }
2417 
2418 static inline bool check_new_pcp(struct page *page, unsigned int order)
2419 {
2420 	return check_new_pages(page, order);
2421 }
2422 #else
2423 /*
2424  * With DEBUG_VM disabled, free order-0 pages are checked for expected state
2425  * when pcp lists are being refilled from the free lists. With debug_pagealloc
2426  * enabled, they are also checked when being allocated from the pcp lists.
2427  */
2428 static inline bool check_pcp_refill(struct page *page, unsigned int order)
2429 {
2430 	return check_new_pages(page, order);
2431 }
2432 static inline bool check_new_pcp(struct page *page, unsigned int order)
2433 {
2434 	if (debug_pagealloc_enabled_static())
2435 		return check_new_pages(page, order);
2436 	else
2437 		return false;
2438 }
2439 #endif /* CONFIG_DEBUG_VM */
2440 
2441 static inline bool should_skip_kasan_unpoison(gfp_t flags)
2442 {
2443 	/* Don't skip if a software KASAN mode is enabled. */
2444 	if (IS_ENABLED(CONFIG_KASAN_GENERIC) ||
2445 	    IS_ENABLED(CONFIG_KASAN_SW_TAGS))
2446 		return false;
2447 
2448 	/* Skip, if hardware tag-based KASAN is not enabled. */
2449 	if (!kasan_hw_tags_enabled())
2450 		return true;
2451 
2452 	/*
2453 	 * With hardware tag-based KASAN enabled, skip if this has been
2454 	 * requested via __GFP_SKIP_KASAN_UNPOISON.
2455 	 */
2456 	return flags & __GFP_SKIP_KASAN_UNPOISON;
2457 }
2458 
2459 static inline bool should_skip_init(gfp_t flags)
2460 {
2461 	/* Don't skip, if hardware tag-based KASAN is not enabled. */
2462 	if (!kasan_hw_tags_enabled())
2463 		return false;
2464 
2465 	/* For hardware tag-based KASAN, skip if requested. */
2466 	return (flags & __GFP_SKIP_ZERO);
2467 }
2468 
2469 inline void post_alloc_hook(struct page *page, unsigned int order,
2470 				gfp_t gfp_flags)
2471 {
2472 	bool init = !want_init_on_free() && want_init_on_alloc(gfp_flags) &&
2473 			!should_skip_init(gfp_flags);
2474 	bool init_tags = init && (gfp_flags & __GFP_ZEROTAGS);
2475 	int i;
2476 
2477 	set_page_private(page, 0);
2478 	set_page_refcounted(page);
2479 
2480 	arch_alloc_page(page, order);
2481 	debug_pagealloc_map_pages(page, 1 << order);
2482 
2483 	/*
2484 	 * Page unpoisoning must happen before memory initialization.
2485 	 * Otherwise, the poison pattern will be overwritten for __GFP_ZERO
2486 	 * allocations and the page unpoisoning code will complain.
2487 	 */
2488 	kernel_unpoison_pages(page, 1 << order);
2489 
2490 	/*
2491 	 * As memory initialization might be integrated into KASAN,
2492 	 * KASAN unpoisoning and memory initializion code must be
2493 	 * kept together to avoid discrepancies in behavior.
2494 	 */
2495 
2496 	/*
2497 	 * If memory tags should be zeroed (which happens only when memory
2498 	 * should be initialized as well).
2499 	 */
2500 	if (init_tags) {
2501 		/* Initialize both memory and tags. */
2502 		for (i = 0; i != 1 << order; ++i)
2503 			tag_clear_highpage(page + i);
2504 
2505 		/* Note that memory is already initialized by the loop above. */
2506 		init = false;
2507 	}
2508 	if (!should_skip_kasan_unpoison(gfp_flags)) {
2509 		/* Unpoison shadow memory or set memory tags. */
2510 		kasan_unpoison_pages(page, order, init);
2511 
2512 		/* Note that memory is already initialized by KASAN. */
2513 		if (kasan_has_integrated_init())
2514 			init = false;
2515 	} else {
2516 		/* Ensure page_address() dereferencing does not fault. */
2517 		for (i = 0; i != 1 << order; ++i)
2518 			page_kasan_tag_reset(page + i);
2519 	}
2520 	/* If memory is still not initialized, do it now. */
2521 	if (init)
2522 		kernel_init_pages(page, 1 << order);
2523 	/* Propagate __GFP_SKIP_KASAN_POISON to page flags. */
2524 	if (kasan_hw_tags_enabled() && (gfp_flags & __GFP_SKIP_KASAN_POISON))
2525 		SetPageSkipKASanPoison(page);
2526 
2527 	set_page_owner(page, order, gfp_flags);
2528 	page_table_check_alloc(page, order);
2529 }
2530 
2531 static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
2532 							unsigned int alloc_flags)
2533 {
2534 	post_alloc_hook(page, order, gfp_flags);
2535 
2536 	if (order && (gfp_flags & __GFP_COMP))
2537 		prep_compound_page(page, order);
2538 
2539 	/*
2540 	 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
2541 	 * allocate the page. The expectation is that the caller is taking
2542 	 * steps that will free more memory. The caller should avoid the page
2543 	 * being used for !PFMEMALLOC purposes.
2544 	 */
2545 	if (alloc_flags & ALLOC_NO_WATERMARKS)
2546 		set_page_pfmemalloc(page);
2547 	else
2548 		clear_page_pfmemalloc(page);
2549 }
2550 
2551 /*
2552  * Go through the free lists for the given migratetype and remove
2553  * the smallest available page from the freelists
2554  */
2555 static __always_inline
2556 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
2557 						int migratetype)
2558 {
2559 	unsigned int current_order;
2560 	struct free_area *area;
2561 	struct page *page;
2562 
2563 	/* Find a page of the appropriate size in the preferred list */
2564 	for (current_order = order; current_order < MAX_ORDER; ++current_order) {
2565 		area = &(zone->free_area[current_order]);
2566 		page = get_page_from_free_area(area, migratetype);
2567 		if (!page)
2568 			continue;
2569 		del_page_from_free_list(page, zone, current_order);
2570 		expand(zone, page, order, current_order, migratetype);
2571 		set_pcppage_migratetype(page, migratetype);
2572 		trace_mm_page_alloc_zone_locked(page, order, migratetype,
2573 				pcp_allowed_order(order) &&
2574 				migratetype < MIGRATE_PCPTYPES);
2575 		return page;
2576 	}
2577 
2578 	return NULL;
2579 }
2580 
2581 
2582 /*
2583  * This array describes the order lists are fallen back to when
2584  * the free lists for the desirable migrate type are depleted
2585  *
2586  * The other migratetypes do not have fallbacks.
2587  */
2588 static int fallbacks[MIGRATE_TYPES][3] = {
2589 	[MIGRATE_UNMOVABLE]   = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE,   MIGRATE_TYPES },
2590 	[MIGRATE_MOVABLE]     = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
2591 	[MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE,   MIGRATE_MOVABLE,   MIGRATE_TYPES },
2592 };
2593 
2594 #ifdef CONFIG_CMA
2595 static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone,
2596 					unsigned int order)
2597 {
2598 	return __rmqueue_smallest(zone, order, MIGRATE_CMA);
2599 }
2600 #else
2601 static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
2602 					unsigned int order) { return NULL; }
2603 #endif
2604 
2605 /*
2606  * Move the free pages in a range to the freelist tail of the requested type.
2607  * Note that start_page and end_pages are not aligned on a pageblock
2608  * boundary. If alignment is required, use move_freepages_block()
2609  */
2610 static int move_freepages(struct zone *zone,
2611 			  unsigned long start_pfn, unsigned long end_pfn,
2612 			  int migratetype, int *num_movable)
2613 {
2614 	struct page *page;
2615 	unsigned long pfn;
2616 	unsigned int order;
2617 	int pages_moved = 0;
2618 
2619 	for (pfn = start_pfn; pfn <= end_pfn;) {
2620 		page = pfn_to_page(pfn);
2621 		if (!PageBuddy(page)) {
2622 			/*
2623 			 * We assume that pages that could be isolated for
2624 			 * migration are movable. But we don't actually try
2625 			 * isolating, as that would be expensive.
2626 			 */
2627 			if (num_movable &&
2628 					(PageLRU(page) || __PageMovable(page)))
2629 				(*num_movable)++;
2630 			pfn++;
2631 			continue;
2632 		}
2633 
2634 		/* Make sure we are not inadvertently changing nodes */
2635 		VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
2636 		VM_BUG_ON_PAGE(page_zone(page) != zone, page);
2637 
2638 		order = buddy_order(page);
2639 		move_to_free_list(page, zone, order, migratetype);
2640 		pfn += 1 << order;
2641 		pages_moved += 1 << order;
2642 	}
2643 
2644 	return pages_moved;
2645 }
2646 
2647 int move_freepages_block(struct zone *zone, struct page *page,
2648 				int migratetype, int *num_movable)
2649 {
2650 	unsigned long start_pfn, end_pfn, pfn;
2651 
2652 	if (num_movable)
2653 		*num_movable = 0;
2654 
2655 	pfn = page_to_pfn(page);
2656 	start_pfn = pageblock_start_pfn(pfn);
2657 	end_pfn = pageblock_end_pfn(pfn) - 1;
2658 
2659 	/* Do not cross zone boundaries */
2660 	if (!zone_spans_pfn(zone, start_pfn))
2661 		start_pfn = pfn;
2662 	if (!zone_spans_pfn(zone, end_pfn))
2663 		return 0;
2664 
2665 	return move_freepages(zone, start_pfn, end_pfn, migratetype,
2666 								num_movable);
2667 }
2668 
2669 static void change_pageblock_range(struct page *pageblock_page,
2670 					int start_order, int migratetype)
2671 {
2672 	int nr_pageblocks = 1 << (start_order - pageblock_order);
2673 
2674 	while (nr_pageblocks--) {
2675 		set_pageblock_migratetype(pageblock_page, migratetype);
2676 		pageblock_page += pageblock_nr_pages;
2677 	}
2678 }
2679 
2680 /*
2681  * When we are falling back to another migratetype during allocation, try to
2682  * steal extra free pages from the same pageblocks to satisfy further
2683  * allocations, instead of polluting multiple pageblocks.
2684  *
2685  * If we are stealing a relatively large buddy page, it is likely there will
2686  * be more free pages in the pageblock, so try to steal them all. For
2687  * reclaimable and unmovable allocations, we steal regardless of page size,
2688  * as fragmentation caused by those allocations polluting movable pageblocks
2689  * is worse than movable allocations stealing from unmovable and reclaimable
2690  * pageblocks.
2691  */
2692 static bool can_steal_fallback(unsigned int order, int start_mt)
2693 {
2694 	/*
2695 	 * Leaving this order check is intended, although there is
2696 	 * relaxed order check in next check. The reason is that
2697 	 * we can actually steal whole pageblock if this condition met,
2698 	 * but, below check doesn't guarantee it and that is just heuristic
2699 	 * so could be changed anytime.
2700 	 */
2701 	if (order >= pageblock_order)
2702 		return true;
2703 
2704 	if (order >= pageblock_order / 2 ||
2705 		start_mt == MIGRATE_RECLAIMABLE ||
2706 		start_mt == MIGRATE_UNMOVABLE ||
2707 		page_group_by_mobility_disabled)
2708 		return true;
2709 
2710 	return false;
2711 }
2712 
2713 static inline bool boost_watermark(struct zone *zone)
2714 {
2715 	unsigned long max_boost;
2716 
2717 	if (!watermark_boost_factor)
2718 		return false;
2719 	/*
2720 	 * Don't bother in zones that are unlikely to produce results.
2721 	 * On small machines, including kdump capture kernels running
2722 	 * in a small area, boosting the watermark can cause an out of
2723 	 * memory situation immediately.
2724 	 */
2725 	if ((pageblock_nr_pages * 4) > zone_managed_pages(zone))
2726 		return false;
2727 
2728 	max_boost = mult_frac(zone->_watermark[WMARK_HIGH],
2729 			watermark_boost_factor, 10000);
2730 
2731 	/*
2732 	 * high watermark may be uninitialised if fragmentation occurs
2733 	 * very early in boot so do not boost. We do not fall
2734 	 * through and boost by pageblock_nr_pages as failing
2735 	 * allocations that early means that reclaim is not going
2736 	 * to help and it may even be impossible to reclaim the
2737 	 * boosted watermark resulting in a hang.
2738 	 */
2739 	if (!max_boost)
2740 		return false;
2741 
2742 	max_boost = max(pageblock_nr_pages, max_boost);
2743 
2744 	zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages,
2745 		max_boost);
2746 
2747 	return true;
2748 }
2749 
2750 /*
2751  * This function implements actual steal behaviour. If order is large enough,
2752  * we can steal whole pageblock. If not, we first move freepages in this
2753  * pageblock to our migratetype and determine how many already-allocated pages
2754  * are there in the pageblock with a compatible migratetype. If at least half
2755  * of pages are free or compatible, we can change migratetype of the pageblock
2756  * itself, so pages freed in the future will be put on the correct free list.
2757  */
2758 static void steal_suitable_fallback(struct zone *zone, struct page *page,
2759 		unsigned int alloc_flags, int start_type, bool whole_block)
2760 {
2761 	unsigned int current_order = buddy_order(page);
2762 	int free_pages, movable_pages, alike_pages;
2763 	int old_block_type;
2764 
2765 	old_block_type = get_pageblock_migratetype(page);
2766 
2767 	/*
2768 	 * This can happen due to races and we want to prevent broken
2769 	 * highatomic accounting.
2770 	 */
2771 	if (is_migrate_highatomic(old_block_type))
2772 		goto single_page;
2773 
2774 	/* Take ownership for orders >= pageblock_order */
2775 	if (current_order >= pageblock_order) {
2776 		change_pageblock_range(page, current_order, start_type);
2777 		goto single_page;
2778 	}
2779 
2780 	/*
2781 	 * Boost watermarks to increase reclaim pressure to reduce the
2782 	 * likelihood of future fallbacks. Wake kswapd now as the node
2783 	 * may be balanced overall and kswapd will not wake naturally.
2784 	 */
2785 	if (boost_watermark(zone) && (alloc_flags & ALLOC_KSWAPD))
2786 		set_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
2787 
2788 	/* We are not allowed to try stealing from the whole block */
2789 	if (!whole_block)
2790 		goto single_page;
2791 
2792 	free_pages = move_freepages_block(zone, page, start_type,
2793 						&movable_pages);
2794 	/*
2795 	 * Determine how many pages are compatible with our allocation.
2796 	 * For movable allocation, it's the number of movable pages which
2797 	 * we just obtained. For other types it's a bit more tricky.
2798 	 */
2799 	if (start_type == MIGRATE_MOVABLE) {
2800 		alike_pages = movable_pages;
2801 	} else {
2802 		/*
2803 		 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
2804 		 * to MOVABLE pageblock, consider all non-movable pages as
2805 		 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
2806 		 * vice versa, be conservative since we can't distinguish the
2807 		 * exact migratetype of non-movable pages.
2808 		 */
2809 		if (old_block_type == MIGRATE_MOVABLE)
2810 			alike_pages = pageblock_nr_pages
2811 						- (free_pages + movable_pages);
2812 		else
2813 			alike_pages = 0;
2814 	}
2815 
2816 	/* moving whole block can fail due to zone boundary conditions */
2817 	if (!free_pages)
2818 		goto single_page;
2819 
2820 	/*
2821 	 * If a sufficient number of pages in the block are either free or of
2822 	 * comparable migratability as our allocation, claim the whole block.
2823 	 */
2824 	if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
2825 			page_group_by_mobility_disabled)
2826 		set_pageblock_migratetype(page, start_type);
2827 
2828 	return;
2829 
2830 single_page:
2831 	move_to_free_list(page, zone, current_order, start_type);
2832 }
2833 
2834 /*
2835  * Check whether there is a suitable fallback freepage with requested order.
2836  * If only_stealable is true, this function returns fallback_mt only if
2837  * we can steal other freepages all together. This would help to reduce
2838  * fragmentation due to mixed migratetype pages in one pageblock.
2839  */
2840 int find_suitable_fallback(struct free_area *area, unsigned int order,
2841 			int migratetype, bool only_stealable, bool *can_steal)
2842 {
2843 	int i;
2844 	int fallback_mt;
2845 
2846 	if (area->nr_free == 0)
2847 		return -1;
2848 
2849 	*can_steal = false;
2850 	for (i = 0;; i++) {
2851 		fallback_mt = fallbacks[migratetype][i];
2852 		if (fallback_mt == MIGRATE_TYPES)
2853 			break;
2854 
2855 		if (free_area_empty(area, fallback_mt))
2856 			continue;
2857 
2858 		if (can_steal_fallback(order, migratetype))
2859 			*can_steal = true;
2860 
2861 		if (!only_stealable)
2862 			return fallback_mt;
2863 
2864 		if (*can_steal)
2865 			return fallback_mt;
2866 	}
2867 
2868 	return -1;
2869 }
2870 
2871 /*
2872  * Reserve a pageblock for exclusive use of high-order atomic allocations if
2873  * there are no empty page blocks that contain a page with a suitable order
2874  */
2875 static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
2876 				unsigned int alloc_order)
2877 {
2878 	int mt;
2879 	unsigned long max_managed, flags;
2880 
2881 	/*
2882 	 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
2883 	 * Check is race-prone but harmless.
2884 	 */
2885 	max_managed = (zone_managed_pages(zone) / 100) + pageblock_nr_pages;
2886 	if (zone->nr_reserved_highatomic >= max_managed)
2887 		return;
2888 
2889 	spin_lock_irqsave(&zone->lock, flags);
2890 
2891 	/* Recheck the nr_reserved_highatomic limit under the lock */
2892 	if (zone->nr_reserved_highatomic >= max_managed)
2893 		goto out_unlock;
2894 
2895 	/* Yoink! */
2896 	mt = get_pageblock_migratetype(page);
2897 	/* Only reserve normal pageblocks (i.e., they can merge with others) */
2898 	if (migratetype_is_mergeable(mt)) {
2899 		zone->nr_reserved_highatomic += pageblock_nr_pages;
2900 		set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
2901 		move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL);
2902 	}
2903 
2904 out_unlock:
2905 	spin_unlock_irqrestore(&zone->lock, flags);
2906 }
2907 
2908 /*
2909  * Used when an allocation is about to fail under memory pressure. This
2910  * potentially hurts the reliability of high-order allocations when under
2911  * intense memory pressure but failed atomic allocations should be easier
2912  * to recover from than an OOM.
2913  *
2914  * If @force is true, try to unreserve a pageblock even though highatomic
2915  * pageblock is exhausted.
2916  */
2917 static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
2918 						bool force)
2919 {
2920 	struct zonelist *zonelist = ac->zonelist;
2921 	unsigned long flags;
2922 	struct zoneref *z;
2923 	struct zone *zone;
2924 	struct page *page;
2925 	int order;
2926 	bool ret;
2927 
2928 	for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->highest_zoneidx,
2929 								ac->nodemask) {
2930 		/*
2931 		 * Preserve at least one pageblock unless memory pressure
2932 		 * is really high.
2933 		 */
2934 		if (!force && zone->nr_reserved_highatomic <=
2935 					pageblock_nr_pages)
2936 			continue;
2937 
2938 		spin_lock_irqsave(&zone->lock, flags);
2939 		for (order = 0; order < MAX_ORDER; order++) {
2940 			struct free_area *area = &(zone->free_area[order]);
2941 
2942 			page = get_page_from_free_area(area, MIGRATE_HIGHATOMIC);
2943 			if (!page)
2944 				continue;
2945 
2946 			/*
2947 			 * In page freeing path, migratetype change is racy so
2948 			 * we can counter several free pages in a pageblock
2949 			 * in this loop although we changed the pageblock type
2950 			 * from highatomic to ac->migratetype. So we should
2951 			 * adjust the count once.
2952 			 */
2953 			if (is_migrate_highatomic_page(page)) {
2954 				/*
2955 				 * It should never happen but changes to
2956 				 * locking could inadvertently allow a per-cpu
2957 				 * drain to add pages to MIGRATE_HIGHATOMIC
2958 				 * while unreserving so be safe and watch for
2959 				 * underflows.
2960 				 */
2961 				zone->nr_reserved_highatomic -= min(
2962 						pageblock_nr_pages,
2963 						zone->nr_reserved_highatomic);
2964 			}
2965 
2966 			/*
2967 			 * Convert to ac->migratetype and avoid the normal
2968 			 * pageblock stealing heuristics. Minimally, the caller
2969 			 * is doing the work and needs the pages. More
2970 			 * importantly, if the block was always converted to
2971 			 * MIGRATE_UNMOVABLE or another type then the number
2972 			 * of pageblocks that cannot be completely freed
2973 			 * may increase.
2974 			 */
2975 			set_pageblock_migratetype(page, ac->migratetype);
2976 			ret = move_freepages_block(zone, page, ac->migratetype,
2977 									NULL);
2978 			if (ret) {
2979 				spin_unlock_irqrestore(&zone->lock, flags);
2980 				return ret;
2981 			}
2982 		}
2983 		spin_unlock_irqrestore(&zone->lock, flags);
2984 	}
2985 
2986 	return false;
2987 }
2988 
2989 /*
2990  * Try finding a free buddy page on the fallback list and put it on the free
2991  * list of requested migratetype, possibly along with other pages from the same
2992  * block, depending on fragmentation avoidance heuristics. Returns true if
2993  * fallback was found so that __rmqueue_smallest() can grab it.
2994  *
2995  * The use of signed ints for order and current_order is a deliberate
2996  * deviation from the rest of this file, to make the for loop
2997  * condition simpler.
2998  */
2999 static __always_inline bool
3000 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype,
3001 						unsigned int alloc_flags)
3002 {
3003 	struct free_area *area;
3004 	int current_order;
3005 	int min_order = order;
3006 	struct page *page;
3007 	int fallback_mt;
3008 	bool can_steal;
3009 
3010 	/*
3011 	 * Do not steal pages from freelists belonging to other pageblocks
3012 	 * i.e. orders < pageblock_order. If there are no local zones free,
3013 	 * the zonelists will be reiterated without ALLOC_NOFRAGMENT.
3014 	 */
3015 	if (order < pageblock_order && alloc_flags & ALLOC_NOFRAGMENT)
3016 		min_order = pageblock_order;
3017 
3018 	/*
3019 	 * Find the largest available free page in the other list. This roughly
3020 	 * approximates finding the pageblock with the most free pages, which
3021 	 * would be too costly to do exactly.
3022 	 */
3023 	for (current_order = MAX_ORDER - 1; current_order >= min_order;
3024 				--current_order) {
3025 		area = &(zone->free_area[current_order]);
3026 		fallback_mt = find_suitable_fallback(area, current_order,
3027 				start_migratetype, false, &can_steal);
3028 		if (fallback_mt == -1)
3029 			continue;
3030 
3031 		/*
3032 		 * We cannot steal all free pages from the pageblock and the
3033 		 * requested migratetype is movable. In that case it's better to
3034 		 * steal and split the smallest available page instead of the
3035 		 * largest available page, because even if the next movable
3036 		 * allocation falls back into a different pageblock than this
3037 		 * one, it won't cause permanent fragmentation.
3038 		 */
3039 		if (!can_steal && start_migratetype == MIGRATE_MOVABLE
3040 					&& current_order > order)
3041 			goto find_smallest;
3042 
3043 		goto do_steal;
3044 	}
3045 
3046 	return false;
3047 
3048 find_smallest:
3049 	for (current_order = order; current_order < MAX_ORDER;
3050 							current_order++) {
3051 		area = &(zone->free_area[current_order]);
3052 		fallback_mt = find_suitable_fallback(area, current_order,
3053 				start_migratetype, false, &can_steal);
3054 		if (fallback_mt != -1)
3055 			break;
3056 	}
3057 
3058 	/*
3059 	 * This should not happen - we already found a suitable fallback
3060 	 * when looking for the largest page.
3061 	 */
3062 	VM_BUG_ON(current_order == MAX_ORDER);
3063 
3064 do_steal:
3065 	page = get_page_from_free_area(area, fallback_mt);
3066 
3067 	steal_suitable_fallback(zone, page, alloc_flags, start_migratetype,
3068 								can_steal);
3069 
3070 	trace_mm_page_alloc_extfrag(page, order, current_order,
3071 		start_migratetype, fallback_mt);
3072 
3073 	return true;
3074 
3075 }
3076 
3077 /*
3078  * Do the hard work of removing an element from the buddy allocator.
3079  * Call me with the zone->lock already held.
3080  */
3081 static __always_inline struct page *
3082 __rmqueue(struct zone *zone, unsigned int order, int migratetype,
3083 						unsigned int alloc_flags)
3084 {
3085 	struct page *page;
3086 
3087 	if (IS_ENABLED(CONFIG_CMA)) {
3088 		/*
3089 		 * Balance movable allocations between regular and CMA areas by
3090 		 * allocating from CMA when over half of the zone's free memory
3091 		 * is in the CMA area.
3092 		 */
3093 		if (alloc_flags & ALLOC_CMA &&
3094 		    zone_page_state(zone, NR_FREE_CMA_PAGES) >
3095 		    zone_page_state(zone, NR_FREE_PAGES) / 2) {
3096 			page = __rmqueue_cma_fallback(zone, order);
3097 			if (page)
3098 				return page;
3099 		}
3100 	}
3101 retry:
3102 	page = __rmqueue_smallest(zone, order, migratetype);
3103 	if (unlikely(!page)) {
3104 		if (alloc_flags & ALLOC_CMA)
3105 			page = __rmqueue_cma_fallback(zone, order);
3106 
3107 		if (!page && __rmqueue_fallback(zone, order, migratetype,
3108 								alloc_flags))
3109 			goto retry;
3110 	}
3111 	return page;
3112 }
3113 
3114 /*
3115  * Obtain a specified number of elements from the buddy allocator, all under
3116  * a single hold of the lock, for efficiency.  Add them to the supplied list.
3117  * Returns the number of new pages which were placed at *list.
3118  */
3119 static int rmqueue_bulk(struct zone *zone, unsigned int order,
3120 			unsigned long count, struct list_head *list,
3121 			int migratetype, unsigned int alloc_flags)
3122 {
3123 	int i, allocated = 0;
3124 
3125 	/* Caller must hold IRQ-safe pcp->lock so IRQs are disabled. */
3126 	spin_lock(&zone->lock);
3127 	for (i = 0; i < count; ++i) {
3128 		struct page *page = __rmqueue(zone, order, migratetype,
3129 								alloc_flags);
3130 		if (unlikely(page == NULL))
3131 			break;
3132 
3133 		if (unlikely(check_pcp_refill(page, order)))
3134 			continue;
3135 
3136 		/*
3137 		 * Split buddy pages returned by expand() are received here in
3138 		 * physical page order. The page is added to the tail of
3139 		 * caller's list. From the callers perspective, the linked list
3140 		 * is ordered by page number under some conditions. This is
3141 		 * useful for IO devices that can forward direction from the
3142 		 * head, thus also in the physical page order. This is useful
3143 		 * for IO devices that can merge IO requests if the physical
3144 		 * pages are ordered properly.
3145 		 */
3146 		list_add_tail(&page->pcp_list, list);
3147 		allocated++;
3148 		if (is_migrate_cma(get_pcppage_migratetype(page)))
3149 			__mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
3150 					      -(1 << order));
3151 	}
3152 
3153 	/*
3154 	 * i pages were removed from the buddy list even if some leak due
3155 	 * to check_pcp_refill failing so adjust NR_FREE_PAGES based
3156 	 * on i. Do not confuse with 'allocated' which is the number of
3157 	 * pages added to the pcp list.
3158 	 */
3159 	__mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
3160 	spin_unlock(&zone->lock);
3161 	return allocated;
3162 }
3163 
3164 #ifdef CONFIG_NUMA
3165 /*
3166  * Called from the vmstat counter updater to drain pagesets of this
3167  * currently executing processor on remote nodes after they have
3168  * expired.
3169  */
3170 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
3171 {
3172 	int to_drain, batch;
3173 
3174 	batch = READ_ONCE(pcp->batch);
3175 	to_drain = min(pcp->count, batch);
3176 	if (to_drain > 0) {
3177 		unsigned long flags;
3178 
3179 		/*
3180 		 * free_pcppages_bulk expects IRQs disabled for zone->lock
3181 		 * so even though pcp->lock is not intended to be IRQ-safe,
3182 		 * it's needed in this context.
3183 		 */
3184 		spin_lock_irqsave(&pcp->lock, flags);
3185 		free_pcppages_bulk(zone, to_drain, pcp, 0);
3186 		spin_unlock_irqrestore(&pcp->lock, flags);
3187 	}
3188 }
3189 #endif
3190 
3191 /*
3192  * Drain pcplists of the indicated processor and zone.
3193  */
3194 static void drain_pages_zone(unsigned int cpu, struct zone *zone)
3195 {
3196 	struct per_cpu_pages *pcp;
3197 
3198 	pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
3199 	if (pcp->count) {
3200 		unsigned long flags;
3201 
3202 		/* See drain_zone_pages on why this is disabling IRQs */
3203 		spin_lock_irqsave(&pcp->lock, flags);
3204 		free_pcppages_bulk(zone, pcp->count, pcp, 0);
3205 		spin_unlock_irqrestore(&pcp->lock, flags);
3206 	}
3207 }
3208 
3209 /*
3210  * Drain pcplists of all zones on the indicated processor.
3211  */
3212 static void drain_pages(unsigned int cpu)
3213 {
3214 	struct zone *zone;
3215 
3216 	for_each_populated_zone(zone) {
3217 		drain_pages_zone(cpu, zone);
3218 	}
3219 }
3220 
3221 /*
3222  * Spill all of this CPU's per-cpu pages back into the buddy allocator.
3223  */
3224 void drain_local_pages(struct zone *zone)
3225 {
3226 	int cpu = smp_processor_id();
3227 
3228 	if (zone)
3229 		drain_pages_zone(cpu, zone);
3230 	else
3231 		drain_pages(cpu);
3232 }
3233 
3234 /*
3235  * The implementation of drain_all_pages(), exposing an extra parameter to
3236  * drain on all cpus.
3237  *
3238  * drain_all_pages() is optimized to only execute on cpus where pcplists are
3239  * not empty. The check for non-emptiness can however race with a free to
3240  * pcplist that has not yet increased the pcp->count from 0 to 1. Callers
3241  * that need the guarantee that every CPU has drained can disable the
3242  * optimizing racy check.
3243  */
3244 static void __drain_all_pages(struct zone *zone, bool force_all_cpus)
3245 {
3246 	int cpu;
3247 
3248 	/*
3249 	 * Allocate in the BSS so we won't require allocation in
3250 	 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
3251 	 */
3252 	static cpumask_t cpus_with_pcps;
3253 
3254 	/*
3255 	 * Do not drain if one is already in progress unless it's specific to
3256 	 * a zone. Such callers are primarily CMA and memory hotplug and need
3257 	 * the drain to be complete when the call returns.
3258 	 */
3259 	if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
3260 		if (!zone)
3261 			return;
3262 		mutex_lock(&pcpu_drain_mutex);
3263 	}
3264 
3265 	/*
3266 	 * We don't care about racing with CPU hotplug event
3267 	 * as offline notification will cause the notified
3268 	 * cpu to drain that CPU pcps and on_each_cpu_mask
3269 	 * disables preemption as part of its processing
3270 	 */
3271 	for_each_online_cpu(cpu) {
3272 		struct per_cpu_pages *pcp;
3273 		struct zone *z;
3274 		bool has_pcps = false;
3275 
3276 		if (force_all_cpus) {
3277 			/*
3278 			 * The pcp.count check is racy, some callers need a
3279 			 * guarantee that no cpu is missed.
3280 			 */
3281 			has_pcps = true;
3282 		} else if (zone) {
3283 			pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
3284 			if (pcp->count)
3285 				has_pcps = true;
3286 		} else {
3287 			for_each_populated_zone(z) {
3288 				pcp = per_cpu_ptr(z->per_cpu_pageset, cpu);
3289 				if (pcp->count) {
3290 					has_pcps = true;
3291 					break;
3292 				}
3293 			}
3294 		}
3295 
3296 		if (has_pcps)
3297 			cpumask_set_cpu(cpu, &cpus_with_pcps);
3298 		else
3299 			cpumask_clear_cpu(cpu, &cpus_with_pcps);
3300 	}
3301 
3302 	for_each_cpu(cpu, &cpus_with_pcps) {
3303 		if (zone)
3304 			drain_pages_zone(cpu, zone);
3305 		else
3306 			drain_pages(cpu);
3307 	}
3308 
3309 	mutex_unlock(&pcpu_drain_mutex);
3310 }
3311 
3312 /*
3313  * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
3314  *
3315  * When zone parameter is non-NULL, spill just the single zone's pages.
3316  */
3317 void drain_all_pages(struct zone *zone)
3318 {
3319 	__drain_all_pages(zone, false);
3320 }
3321 
3322 #ifdef CONFIG_HIBERNATION
3323 
3324 /*
3325  * Touch the watchdog for every WD_PAGE_COUNT pages.
3326  */
3327 #define WD_PAGE_COUNT	(128*1024)
3328 
3329 void mark_free_pages(struct zone *zone)
3330 {
3331 	unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT;
3332 	unsigned long flags;
3333 	unsigned int order, t;
3334 	struct page *page;
3335 
3336 	if (zone_is_empty(zone))
3337 		return;
3338 
3339 	spin_lock_irqsave(&zone->lock, flags);
3340 
3341 	max_zone_pfn = zone_end_pfn(zone);
3342 	for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
3343 		if (pfn_valid(pfn)) {
3344 			page = pfn_to_page(pfn);
3345 
3346 			if (!--page_count) {
3347 				touch_nmi_watchdog();
3348 				page_count = WD_PAGE_COUNT;
3349 			}
3350 
3351 			if (page_zone(page) != zone)
3352 				continue;
3353 
3354 			if (!swsusp_page_is_forbidden(page))
3355 				swsusp_unset_page_free(page);
3356 		}
3357 
3358 	for_each_migratetype_order(order, t) {
3359 		list_for_each_entry(page,
3360 				&zone->free_area[order].free_list[t], buddy_list) {
3361 			unsigned long i;
3362 
3363 			pfn = page_to_pfn(page);
3364 			for (i = 0; i < (1UL << order); i++) {
3365 				if (!--page_count) {
3366 					touch_nmi_watchdog();
3367 					page_count = WD_PAGE_COUNT;
3368 				}
3369 				swsusp_set_page_free(pfn_to_page(pfn + i));
3370 			}
3371 		}
3372 	}
3373 	spin_unlock_irqrestore(&zone->lock, flags);
3374 }
3375 #endif /* CONFIG_PM */
3376 
3377 static bool free_unref_page_prepare(struct page *page, unsigned long pfn,
3378 							unsigned int order)
3379 {
3380 	int migratetype;
3381 
3382 	if (!free_pcp_prepare(page, order))
3383 		return false;
3384 
3385 	migratetype = get_pfnblock_migratetype(page, pfn);
3386 	set_pcppage_migratetype(page, migratetype);
3387 	return true;
3388 }
3389 
3390 static int nr_pcp_free(struct per_cpu_pages *pcp, int high, int batch,
3391 		       bool free_high)
3392 {
3393 	int min_nr_free, max_nr_free;
3394 
3395 	/* Free everything if batch freeing high-order pages. */
3396 	if (unlikely(free_high))
3397 		return pcp->count;
3398 
3399 	/* Check for PCP disabled or boot pageset */
3400 	if (unlikely(high < batch))
3401 		return 1;
3402 
3403 	/* Leave at least pcp->batch pages on the list */
3404 	min_nr_free = batch;
3405 	max_nr_free = high - batch;
3406 
3407 	/*
3408 	 * Double the number of pages freed each time there is subsequent
3409 	 * freeing of pages without any allocation.
3410 	 */
3411 	batch <<= pcp->free_factor;
3412 	if (batch < max_nr_free)
3413 		pcp->free_factor++;
3414 	batch = clamp(batch, min_nr_free, max_nr_free);
3415 
3416 	return batch;
3417 }
3418 
3419 static int nr_pcp_high(struct per_cpu_pages *pcp, struct zone *zone,
3420 		       bool free_high)
3421 {
3422 	int high = READ_ONCE(pcp->high);
3423 
3424 	if (unlikely(!high || free_high))
3425 		return 0;
3426 
3427 	if (!test_bit(ZONE_RECLAIM_ACTIVE, &zone->flags))
3428 		return high;
3429 
3430 	/*
3431 	 * If reclaim is active, limit the number of pages that can be
3432 	 * stored on pcp lists
3433 	 */
3434 	return min(READ_ONCE(pcp->batch) << 2, high);
3435 }
3436 
3437 static void free_unref_page_commit(struct zone *zone, struct per_cpu_pages *pcp,
3438 				   struct page *page, int migratetype,
3439 				   unsigned int order)
3440 {
3441 	int high;
3442 	int pindex;
3443 	bool free_high;
3444 
3445 	__count_vm_event(PGFREE);
3446 	pindex = order_to_pindex(migratetype, order);
3447 	list_add(&page->pcp_list, &pcp->lists[pindex]);
3448 	pcp->count += 1 << order;
3449 
3450 	/*
3451 	 * As high-order pages other than THP's stored on PCP can contribute
3452 	 * to fragmentation, limit the number stored when PCP is heavily
3453 	 * freeing without allocation. The remainder after bulk freeing
3454 	 * stops will be drained from vmstat refresh context.
3455 	 */
3456 	free_high = (pcp->free_factor && order && order <= PAGE_ALLOC_COSTLY_ORDER);
3457 
3458 	high = nr_pcp_high(pcp, zone, free_high);
3459 	if (pcp->count >= high) {
3460 		int batch = READ_ONCE(pcp->batch);
3461 
3462 		free_pcppages_bulk(zone, nr_pcp_free(pcp, high, batch, free_high), pcp, pindex);
3463 	}
3464 }
3465 
3466 /*
3467  * Free a pcp page
3468  */
3469 void free_unref_page(struct page *page, unsigned int order)
3470 {
3471 	unsigned long flags;
3472 	unsigned long __maybe_unused UP_flags;
3473 	struct per_cpu_pages *pcp;
3474 	struct zone *zone;
3475 	unsigned long pfn = page_to_pfn(page);
3476 	int migratetype;
3477 
3478 	if (!free_unref_page_prepare(page, pfn, order))
3479 		return;
3480 
3481 	/*
3482 	 * We only track unmovable, reclaimable and movable on pcp lists.
3483 	 * Place ISOLATE pages on the isolated list because they are being
3484 	 * offlined but treat HIGHATOMIC as movable pages so we can get those
3485 	 * areas back if necessary. Otherwise, we may have to free
3486 	 * excessively into the page allocator
3487 	 */
3488 	migratetype = get_pcppage_migratetype(page);
3489 	if (unlikely(migratetype >= MIGRATE_PCPTYPES)) {
3490 		if (unlikely(is_migrate_isolate(migratetype))) {
3491 			free_one_page(page_zone(page), page, pfn, order, migratetype, FPI_NONE);
3492 			return;
3493 		}
3494 		migratetype = MIGRATE_MOVABLE;
3495 	}
3496 
3497 	zone = page_zone(page);
3498 	pcp_trylock_prepare(UP_flags);
3499 	pcp = pcp_spin_trylock_irqsave(zone->per_cpu_pageset, flags);
3500 	if (pcp) {
3501 		free_unref_page_commit(zone, pcp, page, migratetype, order);
3502 		pcp_spin_unlock_irqrestore(pcp, flags);
3503 	} else {
3504 		free_one_page(zone, page, pfn, order, migratetype, FPI_NONE);
3505 	}
3506 	pcp_trylock_finish(UP_flags);
3507 }
3508 
3509 /*
3510  * Free a list of 0-order pages
3511  */
3512 void free_unref_page_list(struct list_head *list)
3513 {
3514 	struct page *page, *next;
3515 	struct per_cpu_pages *pcp = NULL;
3516 	struct zone *locked_zone = NULL;
3517 	unsigned long flags;
3518 	int batch_count = 0;
3519 	int migratetype;
3520 
3521 	/* Prepare pages for freeing */
3522 	list_for_each_entry_safe(page, next, list, lru) {
3523 		unsigned long pfn = page_to_pfn(page);
3524 		if (!free_unref_page_prepare(page, pfn, 0)) {
3525 			list_del(&page->lru);
3526 			continue;
3527 		}
3528 
3529 		/*
3530 		 * Free isolated pages directly to the allocator, see
3531 		 * comment in free_unref_page.
3532 		 */
3533 		migratetype = get_pcppage_migratetype(page);
3534 		if (unlikely(is_migrate_isolate(migratetype))) {
3535 			list_del(&page->lru);
3536 			free_one_page(page_zone(page), page, pfn, 0, migratetype, FPI_NONE);
3537 			continue;
3538 		}
3539 	}
3540 
3541 	list_for_each_entry_safe(page, next, list, lru) {
3542 		struct zone *zone = page_zone(page);
3543 
3544 		/* Different zone, different pcp lock. */
3545 		if (zone != locked_zone) {
3546 			if (pcp)
3547 				pcp_spin_unlock_irqrestore(pcp, flags);
3548 
3549 			locked_zone = zone;
3550 			pcp = pcp_spin_lock_irqsave(locked_zone->per_cpu_pageset, flags);
3551 		}
3552 
3553 		/*
3554 		 * Non-isolated types over MIGRATE_PCPTYPES get added
3555 		 * to the MIGRATE_MOVABLE pcp list.
3556 		 */
3557 		migratetype = get_pcppage_migratetype(page);
3558 		if (unlikely(migratetype >= MIGRATE_PCPTYPES))
3559 			migratetype = MIGRATE_MOVABLE;
3560 
3561 		trace_mm_page_free_batched(page);
3562 		free_unref_page_commit(zone, pcp, page, migratetype, 0);
3563 
3564 		/*
3565 		 * Guard against excessive IRQ disabled times when we get
3566 		 * a large list of pages to free.
3567 		 */
3568 		if (++batch_count == SWAP_CLUSTER_MAX) {
3569 			pcp_spin_unlock_irqrestore(pcp, flags);
3570 			batch_count = 0;
3571 			pcp = pcp_spin_lock_irqsave(locked_zone->per_cpu_pageset, flags);
3572 		}
3573 	}
3574 
3575 	if (pcp)
3576 		pcp_spin_unlock_irqrestore(pcp, flags);
3577 }
3578 
3579 /*
3580  * split_page takes a non-compound higher-order page, and splits it into
3581  * n (1<<order) sub-pages: page[0..n]
3582  * Each sub-page must be freed individually.
3583  *
3584  * Note: this is probably too low level an operation for use in drivers.
3585  * Please consult with lkml before using this in your driver.
3586  */
3587 void split_page(struct page *page, unsigned int order)
3588 {
3589 	int i;
3590 
3591 	VM_BUG_ON_PAGE(PageCompound(page), page);
3592 	VM_BUG_ON_PAGE(!page_count(page), page);
3593 
3594 	for (i = 1; i < (1 << order); i++)
3595 		set_page_refcounted(page + i);
3596 	split_page_owner(page, 1 << order);
3597 	split_page_memcg(page, 1 << order);
3598 }
3599 EXPORT_SYMBOL_GPL(split_page);
3600 
3601 int __isolate_free_page(struct page *page, unsigned int order)
3602 {
3603 	struct zone *zone = page_zone(page);
3604 	int mt = get_pageblock_migratetype(page);
3605 
3606 	if (!is_migrate_isolate(mt)) {
3607 		unsigned long watermark;
3608 		/*
3609 		 * Obey watermarks as if the page was being allocated. We can
3610 		 * emulate a high-order watermark check with a raised order-0
3611 		 * watermark, because we already know our high-order page
3612 		 * exists.
3613 		 */
3614 		watermark = zone->_watermark[WMARK_MIN] + (1UL << order);
3615 		if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
3616 			return 0;
3617 
3618 		__mod_zone_freepage_state(zone, -(1UL << order), mt);
3619 	}
3620 
3621 	del_page_from_free_list(page, zone, order);
3622 
3623 	/*
3624 	 * Set the pageblock if the isolated page is at least half of a
3625 	 * pageblock
3626 	 */
3627 	if (order >= pageblock_order - 1) {
3628 		struct page *endpage = page + (1 << order) - 1;
3629 		for (; page < endpage; page += pageblock_nr_pages) {
3630 			int mt = get_pageblock_migratetype(page);
3631 			/*
3632 			 * Only change normal pageblocks (i.e., they can merge
3633 			 * with others)
3634 			 */
3635 			if (migratetype_is_mergeable(mt))
3636 				set_pageblock_migratetype(page,
3637 							  MIGRATE_MOVABLE);
3638 		}
3639 	}
3640 
3641 	return 1UL << order;
3642 }
3643 
3644 /**
3645  * __putback_isolated_page - Return a now-isolated page back where we got it
3646  * @page: Page that was isolated
3647  * @order: Order of the isolated page
3648  * @mt: The page's pageblock's migratetype
3649  *
3650  * This function is meant to return a page pulled from the free lists via
3651  * __isolate_free_page back to the free lists they were pulled from.
3652  */
3653 void __putback_isolated_page(struct page *page, unsigned int order, int mt)
3654 {
3655 	struct zone *zone = page_zone(page);
3656 
3657 	/* zone lock should be held when this function is called */
3658 	lockdep_assert_held(&zone->lock);
3659 
3660 	/* Return isolated page to tail of freelist. */
3661 	__free_one_page(page, page_to_pfn(page), zone, order, mt,
3662 			FPI_SKIP_REPORT_NOTIFY | FPI_TO_TAIL);
3663 }
3664 
3665 /*
3666  * Update NUMA hit/miss statistics
3667  *
3668  * Must be called with interrupts disabled.
3669  */
3670 static inline void zone_statistics(struct zone *preferred_zone, struct zone *z,
3671 				   long nr_account)
3672 {
3673 #ifdef CONFIG_NUMA
3674 	enum numa_stat_item local_stat = NUMA_LOCAL;
3675 
3676 	/* skip numa counters update if numa stats is disabled */
3677 	if (!static_branch_likely(&vm_numa_stat_key))
3678 		return;
3679 
3680 	if (zone_to_nid(z) != numa_node_id())
3681 		local_stat = NUMA_OTHER;
3682 
3683 	if (zone_to_nid(z) == zone_to_nid(preferred_zone))
3684 		__count_numa_events(z, NUMA_HIT, nr_account);
3685 	else {
3686 		__count_numa_events(z, NUMA_MISS, nr_account);
3687 		__count_numa_events(preferred_zone, NUMA_FOREIGN, nr_account);
3688 	}
3689 	__count_numa_events(z, local_stat, nr_account);
3690 #endif
3691 }
3692 
3693 static __always_inline
3694 struct page *rmqueue_buddy(struct zone *preferred_zone, struct zone *zone,
3695 			   unsigned int order, unsigned int alloc_flags,
3696 			   int migratetype)
3697 {
3698 	struct page *page;
3699 	unsigned long flags;
3700 
3701 	do {
3702 		page = NULL;
3703 		spin_lock_irqsave(&zone->lock, flags);
3704 		/*
3705 		 * order-0 request can reach here when the pcplist is skipped
3706 		 * due to non-CMA allocation context. HIGHATOMIC area is
3707 		 * reserved for high-order atomic allocation, so order-0
3708 		 * request should skip it.
3709 		 */
3710 		if (order > 0 && alloc_flags & ALLOC_HARDER)
3711 			page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
3712 		if (!page) {
3713 			page = __rmqueue(zone, order, migratetype, alloc_flags);
3714 			if (!page) {
3715 				spin_unlock_irqrestore(&zone->lock, flags);
3716 				return NULL;
3717 			}
3718 		}
3719 		__mod_zone_freepage_state(zone, -(1 << order),
3720 					  get_pcppage_migratetype(page));
3721 		spin_unlock_irqrestore(&zone->lock, flags);
3722 	} while (check_new_pages(page, order));
3723 
3724 	__count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
3725 	zone_statistics(preferred_zone, zone, 1);
3726 
3727 	return page;
3728 }
3729 
3730 /* Remove page from the per-cpu list, caller must protect the list */
3731 static inline
3732 struct page *__rmqueue_pcplist(struct zone *zone, unsigned int order,
3733 			int migratetype,
3734 			unsigned int alloc_flags,
3735 			struct per_cpu_pages *pcp,
3736 			struct list_head *list)
3737 {
3738 	struct page *page;
3739 
3740 	do {
3741 		if (list_empty(list)) {
3742 			int batch = READ_ONCE(pcp->batch);
3743 			int alloced;
3744 
3745 			/*
3746 			 * Scale batch relative to order if batch implies
3747 			 * free pages can be stored on the PCP. Batch can
3748 			 * be 1 for small zones or for boot pagesets which
3749 			 * should never store free pages as the pages may
3750 			 * belong to arbitrary zones.
3751 			 */
3752 			if (batch > 1)
3753 				batch = max(batch >> order, 2);
3754 			alloced = rmqueue_bulk(zone, order,
3755 					batch, list,
3756 					migratetype, alloc_flags);
3757 
3758 			pcp->count += alloced << order;
3759 			if (unlikely(list_empty(list)))
3760 				return NULL;
3761 		}
3762 
3763 		page = list_first_entry(list, struct page, pcp_list);
3764 		list_del(&page->pcp_list);
3765 		pcp->count -= 1 << order;
3766 	} while (check_new_pcp(page, order));
3767 
3768 	return page;
3769 }
3770 
3771 /* Lock and remove page from the per-cpu list */
3772 static struct page *rmqueue_pcplist(struct zone *preferred_zone,
3773 			struct zone *zone, unsigned int order,
3774 			int migratetype, unsigned int alloc_flags)
3775 {
3776 	struct per_cpu_pages *pcp;
3777 	struct list_head *list;
3778 	struct page *page;
3779 	unsigned long flags;
3780 	unsigned long __maybe_unused UP_flags;
3781 
3782 	/*
3783 	 * spin_trylock may fail due to a parallel drain. In the future, the
3784 	 * trylock will also protect against IRQ reentrancy.
3785 	 */
3786 	pcp_trylock_prepare(UP_flags);
3787 	pcp = pcp_spin_trylock_irqsave(zone->per_cpu_pageset, flags);
3788 	if (!pcp) {
3789 		pcp_trylock_finish(UP_flags);
3790 		return NULL;
3791 	}
3792 
3793 	/*
3794 	 * On allocation, reduce the number of pages that are batch freed.
3795 	 * See nr_pcp_free() where free_factor is increased for subsequent
3796 	 * frees.
3797 	 */
3798 	pcp->free_factor >>= 1;
3799 	list = &pcp->lists[order_to_pindex(migratetype, order)];
3800 	page = __rmqueue_pcplist(zone, order, migratetype, alloc_flags, pcp, list);
3801 	pcp_spin_unlock_irqrestore(pcp, flags);
3802 	pcp_trylock_finish(UP_flags);
3803 	if (page) {
3804 		__count_zid_vm_events(PGALLOC, page_zonenum(page), 1);
3805 		zone_statistics(preferred_zone, zone, 1);
3806 	}
3807 	return page;
3808 }
3809 
3810 /*
3811  * Allocate a page from the given zone. Use pcplists for order-0 allocations.
3812  */
3813 
3814 /*
3815  * Do not instrument rmqueue() with KMSAN. This function may call
3816  * __msan_poison_alloca() through a call to set_pfnblock_flags_mask().
3817  * If __msan_poison_alloca() attempts to allocate pages for the stack depot, it
3818  * may call rmqueue() again, which will result in a deadlock.
3819  */
3820 __no_sanitize_memory
3821 static inline
3822 struct page *rmqueue(struct zone *preferred_zone,
3823 			struct zone *zone, unsigned int order,
3824 			gfp_t gfp_flags, unsigned int alloc_flags,
3825 			int migratetype)
3826 {
3827 	struct page *page;
3828 
3829 	/*
3830 	 * We most definitely don't want callers attempting to
3831 	 * allocate greater than order-1 page units with __GFP_NOFAIL.
3832 	 */
3833 	WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
3834 
3835 	if (likely(pcp_allowed_order(order))) {
3836 		/*
3837 		 * MIGRATE_MOVABLE pcplist could have the pages on CMA area and
3838 		 * we need to skip it when CMA area isn't allowed.
3839 		 */
3840 		if (!IS_ENABLED(CONFIG_CMA) || alloc_flags & ALLOC_CMA ||
3841 				migratetype != MIGRATE_MOVABLE) {
3842 			page = rmqueue_pcplist(preferred_zone, zone, order,
3843 					migratetype, alloc_flags);
3844 			if (likely(page))
3845 				goto out;
3846 		}
3847 	}
3848 
3849 	page = rmqueue_buddy(preferred_zone, zone, order, alloc_flags,
3850 							migratetype);
3851 
3852 out:
3853 	/* Separate test+clear to avoid unnecessary atomics */
3854 	if (unlikely(test_bit(ZONE_BOOSTED_WATERMARK, &zone->flags))) {
3855 		clear_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
3856 		wakeup_kswapd(zone, 0, 0, zone_idx(zone));
3857 	}
3858 
3859 	VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
3860 	return page;
3861 }
3862 
3863 #ifdef CONFIG_FAIL_PAGE_ALLOC
3864 
3865 static struct {
3866 	struct fault_attr attr;
3867 
3868 	bool ignore_gfp_highmem;
3869 	bool ignore_gfp_reclaim;
3870 	u32 min_order;
3871 } fail_page_alloc = {
3872 	.attr = FAULT_ATTR_INITIALIZER,
3873 	.ignore_gfp_reclaim = true,
3874 	.ignore_gfp_highmem = true,
3875 	.min_order = 1,
3876 };
3877 
3878 static int __init setup_fail_page_alloc(char *str)
3879 {
3880 	return setup_fault_attr(&fail_page_alloc.attr, str);
3881 }
3882 __setup("fail_page_alloc=", setup_fail_page_alloc);
3883 
3884 static bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3885 {
3886 	if (order < fail_page_alloc.min_order)
3887 		return false;
3888 	if (gfp_mask & __GFP_NOFAIL)
3889 		return false;
3890 	if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
3891 		return false;
3892 	if (fail_page_alloc.ignore_gfp_reclaim &&
3893 			(gfp_mask & __GFP_DIRECT_RECLAIM))
3894 		return false;
3895 
3896 	if (gfp_mask & __GFP_NOWARN)
3897 		fail_page_alloc.attr.no_warn = true;
3898 
3899 	return should_fail(&fail_page_alloc.attr, 1 << order);
3900 }
3901 
3902 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
3903 
3904 static int __init fail_page_alloc_debugfs(void)
3905 {
3906 	umode_t mode = S_IFREG | 0600;
3907 	struct dentry *dir;
3908 
3909 	dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
3910 					&fail_page_alloc.attr);
3911 
3912 	debugfs_create_bool("ignore-gfp-wait", mode, dir,
3913 			    &fail_page_alloc.ignore_gfp_reclaim);
3914 	debugfs_create_bool("ignore-gfp-highmem", mode, dir,
3915 			    &fail_page_alloc.ignore_gfp_highmem);
3916 	debugfs_create_u32("min-order", mode, dir, &fail_page_alloc.min_order);
3917 
3918 	return 0;
3919 }
3920 
3921 late_initcall(fail_page_alloc_debugfs);
3922 
3923 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
3924 
3925 #else /* CONFIG_FAIL_PAGE_ALLOC */
3926 
3927 static inline bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3928 {
3929 	return false;
3930 }
3931 
3932 #endif /* CONFIG_FAIL_PAGE_ALLOC */
3933 
3934 noinline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3935 {
3936 	return __should_fail_alloc_page(gfp_mask, order);
3937 }
3938 ALLOW_ERROR_INJECTION(should_fail_alloc_page, TRUE);
3939 
3940 static inline long __zone_watermark_unusable_free(struct zone *z,
3941 				unsigned int order, unsigned int alloc_flags)
3942 {
3943 	const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
3944 	long unusable_free = (1 << order) - 1;
3945 
3946 	/*
3947 	 * If the caller does not have rights to ALLOC_HARDER then subtract
3948 	 * the high-atomic reserves. This will over-estimate the size of the
3949 	 * atomic reserve but it avoids a search.
3950 	 */
3951 	if (likely(!alloc_harder))
3952 		unusable_free += z->nr_reserved_highatomic;
3953 
3954 #ifdef CONFIG_CMA
3955 	/* If allocation can't use CMA areas don't use free CMA pages */
3956 	if (!(alloc_flags & ALLOC_CMA))
3957 		unusable_free += zone_page_state(z, NR_FREE_CMA_PAGES);
3958 #endif
3959 
3960 	return unusable_free;
3961 }
3962 
3963 /*
3964  * Return true if free base pages are above 'mark'. For high-order checks it
3965  * will return true of the order-0 watermark is reached and there is at least
3966  * one free page of a suitable size. Checking now avoids taking the zone lock
3967  * to check in the allocation paths if no pages are free.
3968  */
3969 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3970 			 int highest_zoneidx, unsigned int alloc_flags,
3971 			 long free_pages)
3972 {
3973 	long min = mark;
3974 	int o;
3975 	const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
3976 
3977 	/* free_pages may go negative - that's OK */
3978 	free_pages -= __zone_watermark_unusable_free(z, order, alloc_flags);
3979 
3980 	if (alloc_flags & ALLOC_HIGH)
3981 		min -= min / 2;
3982 
3983 	if (unlikely(alloc_harder)) {
3984 		/*
3985 		 * OOM victims can try even harder than normal ALLOC_HARDER
3986 		 * users on the grounds that it's definitely going to be in
3987 		 * the exit path shortly and free memory. Any allocation it
3988 		 * makes during the free path will be small and short-lived.
3989 		 */
3990 		if (alloc_flags & ALLOC_OOM)
3991 			min -= min / 2;
3992 		else
3993 			min -= min / 4;
3994 	}
3995 
3996 	/*
3997 	 * Check watermarks for an order-0 allocation request. If these
3998 	 * are not met, then a high-order request also cannot go ahead
3999 	 * even if a suitable page happened to be free.
4000 	 */
4001 	if (free_pages <= min + z->lowmem_reserve[highest_zoneidx])
4002 		return false;
4003 
4004 	/* If this is an order-0 request then the watermark is fine */
4005 	if (!order)
4006 		return true;
4007 
4008 	/* For a high-order request, check at least one suitable page is free */
4009 	for (o = order; o < MAX_ORDER; o++) {
4010 		struct free_area *area = &z->free_area[o];
4011 		int mt;
4012 
4013 		if (!area->nr_free)
4014 			continue;
4015 
4016 		for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
4017 			if (!free_area_empty(area, mt))
4018 				return true;
4019 		}
4020 
4021 #ifdef CONFIG_CMA
4022 		if ((alloc_flags & ALLOC_CMA) &&
4023 		    !free_area_empty(area, MIGRATE_CMA)) {
4024 			return true;
4025 		}
4026 #endif
4027 		if (alloc_harder && !free_area_empty(area, MIGRATE_HIGHATOMIC))
4028 			return true;
4029 	}
4030 	return false;
4031 }
4032 
4033 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
4034 		      int highest_zoneidx, unsigned int alloc_flags)
4035 {
4036 	return __zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
4037 					zone_page_state(z, NR_FREE_PAGES));
4038 }
4039 
4040 static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
4041 				unsigned long mark, int highest_zoneidx,
4042 				unsigned int alloc_flags, gfp_t gfp_mask)
4043 {
4044 	long free_pages;
4045 
4046 	free_pages = zone_page_state(z, NR_FREE_PAGES);
4047 
4048 	/*
4049 	 * Fast check for order-0 only. If this fails then the reserves
4050 	 * need to be calculated.
4051 	 */
4052 	if (!order) {
4053 		long usable_free;
4054 		long reserved;
4055 
4056 		usable_free = free_pages;
4057 		reserved = __zone_watermark_unusable_free(z, 0, alloc_flags);
4058 
4059 		/* reserved may over estimate high-atomic reserves. */
4060 		usable_free -= min(usable_free, reserved);
4061 		if (usable_free > mark + z->lowmem_reserve[highest_zoneidx])
4062 			return true;
4063 	}
4064 
4065 	if (__zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
4066 					free_pages))
4067 		return true;
4068 	/*
4069 	 * Ignore watermark boosting for GFP_ATOMIC order-0 allocations
4070 	 * when checking the min watermark. The min watermark is the
4071 	 * point where boosting is ignored so that kswapd is woken up
4072 	 * when below the low watermark.
4073 	 */
4074 	if (unlikely(!order && (gfp_mask & __GFP_ATOMIC) && z->watermark_boost
4075 		&& ((alloc_flags & ALLOC_WMARK_MASK) == WMARK_MIN))) {
4076 		mark = z->_watermark[WMARK_MIN];
4077 		return __zone_watermark_ok(z, order, mark, highest_zoneidx,
4078 					alloc_flags, free_pages);
4079 	}
4080 
4081 	return false;
4082 }
4083 
4084 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
4085 			unsigned long mark, int highest_zoneidx)
4086 {
4087 	long free_pages = zone_page_state(z, NR_FREE_PAGES);
4088 
4089 	if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
4090 		free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
4091 
4092 	return __zone_watermark_ok(z, order, mark, highest_zoneidx, 0,
4093 								free_pages);
4094 }
4095 
4096 #ifdef CONFIG_NUMA
4097 int __read_mostly node_reclaim_distance = RECLAIM_DISTANCE;
4098 
4099 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
4100 {
4101 	return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
4102 				node_reclaim_distance;
4103 }
4104 #else	/* CONFIG_NUMA */
4105 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
4106 {
4107 	return true;
4108 }
4109 #endif	/* CONFIG_NUMA */
4110 
4111 /*
4112  * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid
4113  * fragmentation is subtle. If the preferred zone was HIGHMEM then
4114  * premature use of a lower zone may cause lowmem pressure problems that
4115  * are worse than fragmentation. If the next zone is ZONE_DMA then it is
4116  * probably too small. It only makes sense to spread allocations to avoid
4117  * fragmentation between the Normal and DMA32 zones.
4118  */
4119 static inline unsigned int
4120 alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask)
4121 {
4122 	unsigned int alloc_flags;
4123 
4124 	/*
4125 	 * __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
4126 	 * to save a branch.
4127 	 */
4128 	alloc_flags = (__force int) (gfp_mask & __GFP_KSWAPD_RECLAIM);
4129 
4130 #ifdef CONFIG_ZONE_DMA32
4131 	if (!zone)
4132 		return alloc_flags;
4133 
4134 	if (zone_idx(zone) != ZONE_NORMAL)
4135 		return alloc_flags;
4136 
4137 	/*
4138 	 * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and
4139 	 * the pointer is within zone->zone_pgdat->node_zones[]. Also assume
4140 	 * on UMA that if Normal is populated then so is DMA32.
4141 	 */
4142 	BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1);
4143 	if (nr_online_nodes > 1 && !populated_zone(--zone))
4144 		return alloc_flags;
4145 
4146 	alloc_flags |= ALLOC_NOFRAGMENT;
4147 #endif /* CONFIG_ZONE_DMA32 */
4148 	return alloc_flags;
4149 }
4150 
4151 /* Must be called after current_gfp_context() which can change gfp_mask */
4152 static inline unsigned int gfp_to_alloc_flags_cma(gfp_t gfp_mask,
4153 						  unsigned int alloc_flags)
4154 {
4155 #ifdef CONFIG_CMA
4156 	if (gfp_migratetype(gfp_mask) == MIGRATE_MOVABLE)
4157 		alloc_flags |= ALLOC_CMA;
4158 #endif
4159 	return alloc_flags;
4160 }
4161 
4162 /*
4163  * get_page_from_freelist goes through the zonelist trying to allocate
4164  * a page.
4165  */
4166 static struct page *
4167 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
4168 						const struct alloc_context *ac)
4169 {
4170 	struct zoneref *z;
4171 	struct zone *zone;
4172 	struct pglist_data *last_pgdat = NULL;
4173 	bool last_pgdat_dirty_ok = false;
4174 	bool no_fallback;
4175 
4176 retry:
4177 	/*
4178 	 * Scan zonelist, looking for a zone with enough free.
4179 	 * See also __cpuset_node_allowed() comment in kernel/cgroup/cpuset.c.
4180 	 */
4181 	no_fallback = alloc_flags & ALLOC_NOFRAGMENT;
4182 	z = ac->preferred_zoneref;
4183 	for_next_zone_zonelist_nodemask(zone, z, ac->highest_zoneidx,
4184 					ac->nodemask) {
4185 		struct page *page;
4186 		unsigned long mark;
4187 
4188 		if (cpusets_enabled() &&
4189 			(alloc_flags & ALLOC_CPUSET) &&
4190 			!__cpuset_zone_allowed(zone, gfp_mask))
4191 				continue;
4192 		/*
4193 		 * When allocating a page cache page for writing, we
4194 		 * want to get it from a node that is within its dirty
4195 		 * limit, such that no single node holds more than its
4196 		 * proportional share of globally allowed dirty pages.
4197 		 * The dirty limits take into account the node's
4198 		 * lowmem reserves and high watermark so that kswapd
4199 		 * should be able to balance it without having to
4200 		 * write pages from its LRU list.
4201 		 *
4202 		 * XXX: For now, allow allocations to potentially
4203 		 * exceed the per-node dirty limit in the slowpath
4204 		 * (spread_dirty_pages unset) before going into reclaim,
4205 		 * which is important when on a NUMA setup the allowed
4206 		 * nodes are together not big enough to reach the
4207 		 * global limit.  The proper fix for these situations
4208 		 * will require awareness of nodes in the
4209 		 * dirty-throttling and the flusher threads.
4210 		 */
4211 		if (ac->spread_dirty_pages) {
4212 			if (last_pgdat != zone->zone_pgdat) {
4213 				last_pgdat = zone->zone_pgdat;
4214 				last_pgdat_dirty_ok = node_dirty_ok(zone->zone_pgdat);
4215 			}
4216 
4217 			if (!last_pgdat_dirty_ok)
4218 				continue;
4219 		}
4220 
4221 		if (no_fallback && nr_online_nodes > 1 &&
4222 		    zone != ac->preferred_zoneref->zone) {
4223 			int local_nid;
4224 
4225 			/*
4226 			 * If moving to a remote node, retry but allow
4227 			 * fragmenting fallbacks. Locality is more important
4228 			 * than fragmentation avoidance.
4229 			 */
4230 			local_nid = zone_to_nid(ac->preferred_zoneref->zone);
4231 			if (zone_to_nid(zone) != local_nid) {
4232 				alloc_flags &= ~ALLOC_NOFRAGMENT;
4233 				goto retry;
4234 			}
4235 		}
4236 
4237 		mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
4238 		if (!zone_watermark_fast(zone, order, mark,
4239 				       ac->highest_zoneidx, alloc_flags,
4240 				       gfp_mask)) {
4241 			int ret;
4242 
4243 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
4244 			/*
4245 			 * Watermark failed for this zone, but see if we can
4246 			 * grow this zone if it contains deferred pages.
4247 			 */
4248 			if (static_branch_unlikely(&deferred_pages)) {
4249 				if (_deferred_grow_zone(zone, order))
4250 					goto try_this_zone;
4251 			}
4252 #endif
4253 			/* Checked here to keep the fast path fast */
4254 			BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
4255 			if (alloc_flags & ALLOC_NO_WATERMARKS)
4256 				goto try_this_zone;
4257 
4258 			if (!node_reclaim_enabled() ||
4259 			    !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
4260 				continue;
4261 
4262 			ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
4263 			switch (ret) {
4264 			case NODE_RECLAIM_NOSCAN:
4265 				/* did not scan */
4266 				continue;
4267 			case NODE_RECLAIM_FULL:
4268 				/* scanned but unreclaimable */
4269 				continue;
4270 			default:
4271 				/* did we reclaim enough */
4272 				if (zone_watermark_ok(zone, order, mark,
4273 					ac->highest_zoneidx, alloc_flags))
4274 					goto try_this_zone;
4275 
4276 				continue;
4277 			}
4278 		}
4279 
4280 try_this_zone:
4281 		page = rmqueue(ac->preferred_zoneref->zone, zone, order,
4282 				gfp_mask, alloc_flags, ac->migratetype);
4283 		if (page) {
4284 			prep_new_page(page, order, gfp_mask, alloc_flags);
4285 
4286 			/*
4287 			 * If this is a high-order atomic allocation then check
4288 			 * if the pageblock should be reserved for the future
4289 			 */
4290 			if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
4291 				reserve_highatomic_pageblock(page, zone, order);
4292 
4293 			return page;
4294 		} else {
4295 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
4296 			/* Try again if zone has deferred pages */
4297 			if (static_branch_unlikely(&deferred_pages)) {
4298 				if (_deferred_grow_zone(zone, order))
4299 					goto try_this_zone;
4300 			}
4301 #endif
4302 		}
4303 	}
4304 
4305 	/*
4306 	 * It's possible on a UMA machine to get through all zones that are
4307 	 * fragmented. If avoiding fragmentation, reset and try again.
4308 	 */
4309 	if (no_fallback) {
4310 		alloc_flags &= ~ALLOC_NOFRAGMENT;
4311 		goto retry;
4312 	}
4313 
4314 	return NULL;
4315 }
4316 
4317 static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
4318 {
4319 	unsigned int filter = SHOW_MEM_FILTER_NODES;
4320 
4321 	/*
4322 	 * This documents exceptions given to allocations in certain
4323 	 * contexts that are allowed to allocate outside current's set
4324 	 * of allowed nodes.
4325 	 */
4326 	if (!(gfp_mask & __GFP_NOMEMALLOC))
4327 		if (tsk_is_oom_victim(current) ||
4328 		    (current->flags & (PF_MEMALLOC | PF_EXITING)))
4329 			filter &= ~SHOW_MEM_FILTER_NODES;
4330 	if (!in_task() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
4331 		filter &= ~SHOW_MEM_FILTER_NODES;
4332 
4333 	__show_mem(filter, nodemask, gfp_zone(gfp_mask));
4334 }
4335 
4336 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
4337 {
4338 	struct va_format vaf;
4339 	va_list args;
4340 	static DEFINE_RATELIMIT_STATE(nopage_rs, 10*HZ, 1);
4341 
4342 	if ((gfp_mask & __GFP_NOWARN) ||
4343 	     !__ratelimit(&nopage_rs) ||
4344 	     ((gfp_mask & __GFP_DMA) && !has_managed_dma()))
4345 		return;
4346 
4347 	va_start(args, fmt);
4348 	vaf.fmt = fmt;
4349 	vaf.va = &args;
4350 	pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl",
4351 			current->comm, &vaf, gfp_mask, &gfp_mask,
4352 			nodemask_pr_args(nodemask));
4353 	va_end(args);
4354 
4355 	cpuset_print_current_mems_allowed();
4356 	pr_cont("\n");
4357 	dump_stack();
4358 	warn_alloc_show_mem(gfp_mask, nodemask);
4359 }
4360 
4361 static inline struct page *
4362 __alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
4363 			      unsigned int alloc_flags,
4364 			      const struct alloc_context *ac)
4365 {
4366 	struct page *page;
4367 
4368 	page = get_page_from_freelist(gfp_mask, order,
4369 			alloc_flags|ALLOC_CPUSET, ac);
4370 	/*
4371 	 * fallback to ignore cpuset restriction if our nodes
4372 	 * are depleted
4373 	 */
4374 	if (!page)
4375 		page = get_page_from_freelist(gfp_mask, order,
4376 				alloc_flags, ac);
4377 
4378 	return page;
4379 }
4380 
4381 static inline struct page *
4382 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
4383 	const struct alloc_context *ac, unsigned long *did_some_progress)
4384 {
4385 	struct oom_control oc = {
4386 		.zonelist = ac->zonelist,
4387 		.nodemask = ac->nodemask,
4388 		.memcg = NULL,
4389 		.gfp_mask = gfp_mask,
4390 		.order = order,
4391 	};
4392 	struct page *page;
4393 
4394 	*did_some_progress = 0;
4395 
4396 	/*
4397 	 * Acquire the oom lock.  If that fails, somebody else is
4398 	 * making progress for us.
4399 	 */
4400 	if (!mutex_trylock(&oom_lock)) {
4401 		*did_some_progress = 1;
4402 		schedule_timeout_uninterruptible(1);
4403 		return NULL;
4404 	}
4405 
4406 	/*
4407 	 * Go through the zonelist yet one more time, keep very high watermark
4408 	 * here, this is only to catch a parallel oom killing, we must fail if
4409 	 * we're still under heavy pressure. But make sure that this reclaim
4410 	 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
4411 	 * allocation which will never fail due to oom_lock already held.
4412 	 */
4413 	page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) &
4414 				      ~__GFP_DIRECT_RECLAIM, order,
4415 				      ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
4416 	if (page)
4417 		goto out;
4418 
4419 	/* Coredumps can quickly deplete all memory reserves */
4420 	if (current->flags & PF_DUMPCORE)
4421 		goto out;
4422 	/* The OOM killer will not help higher order allocs */
4423 	if (order > PAGE_ALLOC_COSTLY_ORDER)
4424 		goto out;
4425 	/*
4426 	 * We have already exhausted all our reclaim opportunities without any
4427 	 * success so it is time to admit defeat. We will skip the OOM killer
4428 	 * because it is very likely that the caller has a more reasonable
4429 	 * fallback than shooting a random task.
4430 	 *
4431 	 * The OOM killer may not free memory on a specific node.
4432 	 */
4433 	if (gfp_mask & (__GFP_RETRY_MAYFAIL | __GFP_THISNODE))
4434 		goto out;
4435 	/* The OOM killer does not needlessly kill tasks for lowmem */
4436 	if (ac->highest_zoneidx < ZONE_NORMAL)
4437 		goto out;
4438 	if (pm_suspended_storage())
4439 		goto out;
4440 	/*
4441 	 * XXX: GFP_NOFS allocations should rather fail than rely on
4442 	 * other request to make a forward progress.
4443 	 * We are in an unfortunate situation where out_of_memory cannot
4444 	 * do much for this context but let's try it to at least get
4445 	 * access to memory reserved if the current task is killed (see
4446 	 * out_of_memory). Once filesystems are ready to handle allocation
4447 	 * failures more gracefully we should just bail out here.
4448 	 */
4449 
4450 	/* Exhausted what can be done so it's blame time */
4451 	if (out_of_memory(&oc) ||
4452 	    WARN_ON_ONCE_GFP(gfp_mask & __GFP_NOFAIL, gfp_mask)) {
4453 		*did_some_progress = 1;
4454 
4455 		/*
4456 		 * Help non-failing allocations by giving them access to memory
4457 		 * reserves
4458 		 */
4459 		if (gfp_mask & __GFP_NOFAIL)
4460 			page = __alloc_pages_cpuset_fallback(gfp_mask, order,
4461 					ALLOC_NO_WATERMARKS, ac);
4462 	}
4463 out:
4464 	mutex_unlock(&oom_lock);
4465 	return page;
4466 }
4467 
4468 /*
4469  * Maximum number of compaction retries with a progress before OOM
4470  * killer is consider as the only way to move forward.
4471  */
4472 #define MAX_COMPACT_RETRIES 16
4473 
4474 #ifdef CONFIG_COMPACTION
4475 /* Try memory compaction for high-order allocations before reclaim */
4476 static struct page *
4477 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
4478 		unsigned int alloc_flags, const struct alloc_context *ac,
4479 		enum compact_priority prio, enum compact_result *compact_result)
4480 {
4481 	struct page *page = NULL;
4482 	unsigned long pflags;
4483 	unsigned int noreclaim_flag;
4484 
4485 	if (!order)
4486 		return NULL;
4487 
4488 	psi_memstall_enter(&pflags);
4489 	delayacct_compact_start();
4490 	noreclaim_flag = memalloc_noreclaim_save();
4491 
4492 	*compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
4493 								prio, &page);
4494 
4495 	memalloc_noreclaim_restore(noreclaim_flag);
4496 	psi_memstall_leave(&pflags);
4497 	delayacct_compact_end();
4498 
4499 	if (*compact_result == COMPACT_SKIPPED)
4500 		return NULL;
4501 	/*
4502 	 * At least in one zone compaction wasn't deferred or skipped, so let's
4503 	 * count a compaction stall
4504 	 */
4505 	count_vm_event(COMPACTSTALL);
4506 
4507 	/* Prep a captured page if available */
4508 	if (page)
4509 		prep_new_page(page, order, gfp_mask, alloc_flags);
4510 
4511 	/* Try get a page from the freelist if available */
4512 	if (!page)
4513 		page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4514 
4515 	if (page) {
4516 		struct zone *zone = page_zone(page);
4517 
4518 		zone->compact_blockskip_flush = false;
4519 		compaction_defer_reset(zone, order, true);
4520 		count_vm_event(COMPACTSUCCESS);
4521 		return page;
4522 	}
4523 
4524 	/*
4525 	 * It's bad if compaction run occurs and fails. The most likely reason
4526 	 * is that pages exist, but not enough to satisfy watermarks.
4527 	 */
4528 	count_vm_event(COMPACTFAIL);
4529 
4530 	cond_resched();
4531 
4532 	return NULL;
4533 }
4534 
4535 static inline bool
4536 should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
4537 		     enum compact_result compact_result,
4538 		     enum compact_priority *compact_priority,
4539 		     int *compaction_retries)
4540 {
4541 	int max_retries = MAX_COMPACT_RETRIES;
4542 	int min_priority;
4543 	bool ret = false;
4544 	int retries = *compaction_retries;
4545 	enum compact_priority priority = *compact_priority;
4546 
4547 	if (!order)
4548 		return false;
4549 
4550 	if (fatal_signal_pending(current))
4551 		return false;
4552 
4553 	if (compaction_made_progress(compact_result))
4554 		(*compaction_retries)++;
4555 
4556 	/*
4557 	 * compaction considers all the zone as desperately out of memory
4558 	 * so it doesn't really make much sense to retry except when the
4559 	 * failure could be caused by insufficient priority
4560 	 */
4561 	if (compaction_failed(compact_result))
4562 		goto check_priority;
4563 
4564 	/*
4565 	 * compaction was skipped because there are not enough order-0 pages
4566 	 * to work with, so we retry only if it looks like reclaim can help.
4567 	 */
4568 	if (compaction_needs_reclaim(compact_result)) {
4569 		ret = compaction_zonelist_suitable(ac, order, alloc_flags);
4570 		goto out;
4571 	}
4572 
4573 	/*
4574 	 * make sure the compaction wasn't deferred or didn't bail out early
4575 	 * due to locks contention before we declare that we should give up.
4576 	 * But the next retry should use a higher priority if allowed, so
4577 	 * we don't just keep bailing out endlessly.
4578 	 */
4579 	if (compaction_withdrawn(compact_result)) {
4580 		goto check_priority;
4581 	}
4582 
4583 	/*
4584 	 * !costly requests are much more important than __GFP_RETRY_MAYFAIL
4585 	 * costly ones because they are de facto nofail and invoke OOM
4586 	 * killer to move on while costly can fail and users are ready
4587 	 * to cope with that. 1/4 retries is rather arbitrary but we
4588 	 * would need much more detailed feedback from compaction to
4589 	 * make a better decision.
4590 	 */
4591 	if (order > PAGE_ALLOC_COSTLY_ORDER)
4592 		max_retries /= 4;
4593 	if (*compaction_retries <= max_retries) {
4594 		ret = true;
4595 		goto out;
4596 	}
4597 
4598 	/*
4599 	 * Make sure there are attempts at the highest priority if we exhausted
4600 	 * all retries or failed at the lower priorities.
4601 	 */
4602 check_priority:
4603 	min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
4604 			MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
4605 
4606 	if (*compact_priority > min_priority) {
4607 		(*compact_priority)--;
4608 		*compaction_retries = 0;
4609 		ret = true;
4610 	}
4611 out:
4612 	trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
4613 	return ret;
4614 }
4615 #else
4616 static inline struct page *
4617 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
4618 		unsigned int alloc_flags, const struct alloc_context *ac,
4619 		enum compact_priority prio, enum compact_result *compact_result)
4620 {
4621 	*compact_result = COMPACT_SKIPPED;
4622 	return NULL;
4623 }
4624 
4625 static inline bool
4626 should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
4627 		     enum compact_result compact_result,
4628 		     enum compact_priority *compact_priority,
4629 		     int *compaction_retries)
4630 {
4631 	struct zone *zone;
4632 	struct zoneref *z;
4633 
4634 	if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
4635 		return false;
4636 
4637 	/*
4638 	 * There are setups with compaction disabled which would prefer to loop
4639 	 * inside the allocator rather than hit the oom killer prematurely.
4640 	 * Let's give them a good hope and keep retrying while the order-0
4641 	 * watermarks are OK.
4642 	 */
4643 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
4644 				ac->highest_zoneidx, ac->nodemask) {
4645 		if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
4646 					ac->highest_zoneidx, alloc_flags))
4647 			return true;
4648 	}
4649 	return false;
4650 }
4651 #endif /* CONFIG_COMPACTION */
4652 
4653 #ifdef CONFIG_LOCKDEP
4654 static struct lockdep_map __fs_reclaim_map =
4655 	STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map);
4656 
4657 static bool __need_reclaim(gfp_t gfp_mask)
4658 {
4659 	/* no reclaim without waiting on it */
4660 	if (!(gfp_mask & __GFP_DIRECT_RECLAIM))
4661 		return false;
4662 
4663 	/* this guy won't enter reclaim */
4664 	if (current->flags & PF_MEMALLOC)
4665 		return false;
4666 
4667 	if (gfp_mask & __GFP_NOLOCKDEP)
4668 		return false;
4669 
4670 	return true;
4671 }
4672 
4673 void __fs_reclaim_acquire(unsigned long ip)
4674 {
4675 	lock_acquire_exclusive(&__fs_reclaim_map, 0, 0, NULL, ip);
4676 }
4677 
4678 void __fs_reclaim_release(unsigned long ip)
4679 {
4680 	lock_release(&__fs_reclaim_map, ip);
4681 }
4682 
4683 void fs_reclaim_acquire(gfp_t gfp_mask)
4684 {
4685 	gfp_mask = current_gfp_context(gfp_mask);
4686 
4687 	if (__need_reclaim(gfp_mask)) {
4688 		if (gfp_mask & __GFP_FS)
4689 			__fs_reclaim_acquire(_RET_IP_);
4690 
4691 #ifdef CONFIG_MMU_NOTIFIER
4692 		lock_map_acquire(&__mmu_notifier_invalidate_range_start_map);
4693 		lock_map_release(&__mmu_notifier_invalidate_range_start_map);
4694 #endif
4695 
4696 	}
4697 }
4698 EXPORT_SYMBOL_GPL(fs_reclaim_acquire);
4699 
4700 void fs_reclaim_release(gfp_t gfp_mask)
4701 {
4702 	gfp_mask = current_gfp_context(gfp_mask);
4703 
4704 	if (__need_reclaim(gfp_mask)) {
4705 		if (gfp_mask & __GFP_FS)
4706 			__fs_reclaim_release(_RET_IP_);
4707 	}
4708 }
4709 EXPORT_SYMBOL_GPL(fs_reclaim_release);
4710 #endif
4711 
4712 /*
4713  * Zonelists may change due to hotplug during allocation. Detect when zonelists
4714  * have been rebuilt so allocation retries. Reader side does not lock and
4715  * retries the allocation if zonelist changes. Writer side is protected by the
4716  * embedded spin_lock.
4717  */
4718 static DEFINE_SEQLOCK(zonelist_update_seq);
4719 
4720 static unsigned int zonelist_iter_begin(void)
4721 {
4722 	if (IS_ENABLED(CONFIG_MEMORY_HOTREMOVE))
4723 		return read_seqbegin(&zonelist_update_seq);
4724 
4725 	return 0;
4726 }
4727 
4728 static unsigned int check_retry_zonelist(unsigned int seq)
4729 {
4730 	if (IS_ENABLED(CONFIG_MEMORY_HOTREMOVE))
4731 		return read_seqretry(&zonelist_update_seq, seq);
4732 
4733 	return seq;
4734 }
4735 
4736 /* Perform direct synchronous page reclaim */
4737 static unsigned long
4738 __perform_reclaim(gfp_t gfp_mask, unsigned int order,
4739 					const struct alloc_context *ac)
4740 {
4741 	unsigned int noreclaim_flag;
4742 	unsigned long progress;
4743 
4744 	cond_resched();
4745 
4746 	/* We now go into synchronous reclaim */
4747 	cpuset_memory_pressure_bump();
4748 	fs_reclaim_acquire(gfp_mask);
4749 	noreclaim_flag = memalloc_noreclaim_save();
4750 
4751 	progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
4752 								ac->nodemask);
4753 
4754 	memalloc_noreclaim_restore(noreclaim_flag);
4755 	fs_reclaim_release(gfp_mask);
4756 
4757 	cond_resched();
4758 
4759 	return progress;
4760 }
4761 
4762 /* The really slow allocator path where we enter direct reclaim */
4763 static inline struct page *
4764 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
4765 		unsigned int alloc_flags, const struct alloc_context *ac,
4766 		unsigned long *did_some_progress)
4767 {
4768 	struct page *page = NULL;
4769 	unsigned long pflags;
4770 	bool drained = false;
4771 
4772 	psi_memstall_enter(&pflags);
4773 	*did_some_progress = __perform_reclaim(gfp_mask, order, ac);
4774 	if (unlikely(!(*did_some_progress)))
4775 		goto out;
4776 
4777 retry:
4778 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4779 
4780 	/*
4781 	 * If an allocation failed after direct reclaim, it could be because
4782 	 * pages are pinned on the per-cpu lists or in high alloc reserves.
4783 	 * Shrink them and try again
4784 	 */
4785 	if (!page && !drained) {
4786 		unreserve_highatomic_pageblock(ac, false);
4787 		drain_all_pages(NULL);
4788 		drained = true;
4789 		goto retry;
4790 	}
4791 out:
4792 	psi_memstall_leave(&pflags);
4793 
4794 	return page;
4795 }
4796 
4797 static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask,
4798 			     const struct alloc_context *ac)
4799 {
4800 	struct zoneref *z;
4801 	struct zone *zone;
4802 	pg_data_t *last_pgdat = NULL;
4803 	enum zone_type highest_zoneidx = ac->highest_zoneidx;
4804 
4805 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, highest_zoneidx,
4806 					ac->nodemask) {
4807 		if (!managed_zone(zone))
4808 			continue;
4809 		if (last_pgdat != zone->zone_pgdat) {
4810 			wakeup_kswapd(zone, gfp_mask, order, highest_zoneidx);
4811 			last_pgdat = zone->zone_pgdat;
4812 		}
4813 	}
4814 }
4815 
4816 static inline unsigned int
4817 gfp_to_alloc_flags(gfp_t gfp_mask)
4818 {
4819 	unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
4820 
4821 	/*
4822 	 * __GFP_HIGH is assumed to be the same as ALLOC_HIGH
4823 	 * and __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
4824 	 * to save two branches.
4825 	 */
4826 	BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
4827 	BUILD_BUG_ON(__GFP_KSWAPD_RECLAIM != (__force gfp_t) ALLOC_KSWAPD);
4828 
4829 	/*
4830 	 * The caller may dip into page reserves a bit more if the caller
4831 	 * cannot run direct reclaim, or if the caller has realtime scheduling
4832 	 * policy or is asking for __GFP_HIGH memory.  GFP_ATOMIC requests will
4833 	 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
4834 	 */
4835 	alloc_flags |= (__force int)
4836 		(gfp_mask & (__GFP_HIGH | __GFP_KSWAPD_RECLAIM));
4837 
4838 	if (gfp_mask & __GFP_ATOMIC) {
4839 		/*
4840 		 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
4841 		 * if it can't schedule.
4842 		 */
4843 		if (!(gfp_mask & __GFP_NOMEMALLOC))
4844 			alloc_flags |= ALLOC_HARDER;
4845 		/*
4846 		 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
4847 		 * comment for __cpuset_node_allowed().
4848 		 */
4849 		alloc_flags &= ~ALLOC_CPUSET;
4850 	} else if (unlikely(rt_task(current)) && in_task())
4851 		alloc_flags |= ALLOC_HARDER;
4852 
4853 	alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, alloc_flags);
4854 
4855 	return alloc_flags;
4856 }
4857 
4858 static bool oom_reserves_allowed(struct task_struct *tsk)
4859 {
4860 	if (!tsk_is_oom_victim(tsk))
4861 		return false;
4862 
4863 	/*
4864 	 * !MMU doesn't have oom reaper so give access to memory reserves
4865 	 * only to the thread with TIF_MEMDIE set
4866 	 */
4867 	if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE))
4868 		return false;
4869 
4870 	return true;
4871 }
4872 
4873 /*
4874  * Distinguish requests which really need access to full memory
4875  * reserves from oom victims which can live with a portion of it
4876  */
4877 static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask)
4878 {
4879 	if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
4880 		return 0;
4881 	if (gfp_mask & __GFP_MEMALLOC)
4882 		return ALLOC_NO_WATERMARKS;
4883 	if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
4884 		return ALLOC_NO_WATERMARKS;
4885 	if (!in_interrupt()) {
4886 		if (current->flags & PF_MEMALLOC)
4887 			return ALLOC_NO_WATERMARKS;
4888 		else if (oom_reserves_allowed(current))
4889 			return ALLOC_OOM;
4890 	}
4891 
4892 	return 0;
4893 }
4894 
4895 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
4896 {
4897 	return !!__gfp_pfmemalloc_flags(gfp_mask);
4898 }
4899 
4900 /*
4901  * Checks whether it makes sense to retry the reclaim to make a forward progress
4902  * for the given allocation request.
4903  *
4904  * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
4905  * without success, or when we couldn't even meet the watermark if we
4906  * reclaimed all remaining pages on the LRU lists.
4907  *
4908  * Returns true if a retry is viable or false to enter the oom path.
4909  */
4910 static inline bool
4911 should_reclaim_retry(gfp_t gfp_mask, unsigned order,
4912 		     struct alloc_context *ac, int alloc_flags,
4913 		     bool did_some_progress, int *no_progress_loops)
4914 {
4915 	struct zone *zone;
4916 	struct zoneref *z;
4917 	bool ret = false;
4918 
4919 	/*
4920 	 * Costly allocations might have made a progress but this doesn't mean
4921 	 * their order will become available due to high fragmentation so
4922 	 * always increment the no progress counter for them
4923 	 */
4924 	if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
4925 		*no_progress_loops = 0;
4926 	else
4927 		(*no_progress_loops)++;
4928 
4929 	/*
4930 	 * Make sure we converge to OOM if we cannot make any progress
4931 	 * several times in the row.
4932 	 */
4933 	if (*no_progress_loops > MAX_RECLAIM_RETRIES) {
4934 		/* Before OOM, exhaust highatomic_reserve */
4935 		return unreserve_highatomic_pageblock(ac, true);
4936 	}
4937 
4938 	/*
4939 	 * Keep reclaiming pages while there is a chance this will lead
4940 	 * somewhere.  If none of the target zones can satisfy our allocation
4941 	 * request even if all reclaimable pages are considered then we are
4942 	 * screwed and have to go OOM.
4943 	 */
4944 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
4945 				ac->highest_zoneidx, ac->nodemask) {
4946 		unsigned long available;
4947 		unsigned long reclaimable;
4948 		unsigned long min_wmark = min_wmark_pages(zone);
4949 		bool wmark;
4950 
4951 		available = reclaimable = zone_reclaimable_pages(zone);
4952 		available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
4953 
4954 		/*
4955 		 * Would the allocation succeed if we reclaimed all
4956 		 * reclaimable pages?
4957 		 */
4958 		wmark = __zone_watermark_ok(zone, order, min_wmark,
4959 				ac->highest_zoneidx, alloc_flags, available);
4960 		trace_reclaim_retry_zone(z, order, reclaimable,
4961 				available, min_wmark, *no_progress_loops, wmark);
4962 		if (wmark) {
4963 			ret = true;
4964 			break;
4965 		}
4966 	}
4967 
4968 	/*
4969 	 * Memory allocation/reclaim might be called from a WQ context and the
4970 	 * current implementation of the WQ concurrency control doesn't
4971 	 * recognize that a particular WQ is congested if the worker thread is
4972 	 * looping without ever sleeping. Therefore we have to do a short sleep
4973 	 * here rather than calling cond_resched().
4974 	 */
4975 	if (current->flags & PF_WQ_WORKER)
4976 		schedule_timeout_uninterruptible(1);
4977 	else
4978 		cond_resched();
4979 	return ret;
4980 }
4981 
4982 static inline bool
4983 check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
4984 {
4985 	/*
4986 	 * It's possible that cpuset's mems_allowed and the nodemask from
4987 	 * mempolicy don't intersect. This should be normally dealt with by
4988 	 * policy_nodemask(), but it's possible to race with cpuset update in
4989 	 * such a way the check therein was true, and then it became false
4990 	 * before we got our cpuset_mems_cookie here.
4991 	 * This assumes that for all allocations, ac->nodemask can come only
4992 	 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
4993 	 * when it does not intersect with the cpuset restrictions) or the
4994 	 * caller can deal with a violated nodemask.
4995 	 */
4996 	if (cpusets_enabled() && ac->nodemask &&
4997 			!cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
4998 		ac->nodemask = NULL;
4999 		return true;
5000 	}
5001 
5002 	/*
5003 	 * When updating a task's mems_allowed or mempolicy nodemask, it is
5004 	 * possible to race with parallel threads in such a way that our
5005 	 * allocation can fail while the mask is being updated. If we are about
5006 	 * to fail, check if the cpuset changed during allocation and if so,
5007 	 * retry.
5008 	 */
5009 	if (read_mems_allowed_retry(cpuset_mems_cookie))
5010 		return true;
5011 
5012 	return false;
5013 }
5014 
5015 static inline struct page *
5016 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
5017 						struct alloc_context *ac)
5018 {
5019 	bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
5020 	const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
5021 	struct page *page = NULL;
5022 	unsigned int alloc_flags;
5023 	unsigned long did_some_progress;
5024 	enum compact_priority compact_priority;
5025 	enum compact_result compact_result;
5026 	int compaction_retries;
5027 	int no_progress_loops;
5028 	unsigned int cpuset_mems_cookie;
5029 	unsigned int zonelist_iter_cookie;
5030 	int reserve_flags;
5031 
5032 	/*
5033 	 * We also sanity check to catch abuse of atomic reserves being used by
5034 	 * callers that are not in atomic context.
5035 	 */
5036 	if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
5037 				(__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
5038 		gfp_mask &= ~__GFP_ATOMIC;
5039 
5040 restart:
5041 	compaction_retries = 0;
5042 	no_progress_loops = 0;
5043 	compact_priority = DEF_COMPACT_PRIORITY;
5044 	cpuset_mems_cookie = read_mems_allowed_begin();
5045 	zonelist_iter_cookie = zonelist_iter_begin();
5046 
5047 	/*
5048 	 * The fast path uses conservative alloc_flags to succeed only until
5049 	 * kswapd needs to be woken up, and to avoid the cost of setting up
5050 	 * alloc_flags precisely. So we do that now.
5051 	 */
5052 	alloc_flags = gfp_to_alloc_flags(gfp_mask);
5053 
5054 	/*
5055 	 * We need to recalculate the starting point for the zonelist iterator
5056 	 * because we might have used different nodemask in the fast path, or
5057 	 * there was a cpuset modification and we are retrying - otherwise we
5058 	 * could end up iterating over non-eligible zones endlessly.
5059 	 */
5060 	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
5061 					ac->highest_zoneidx, ac->nodemask);
5062 	if (!ac->preferred_zoneref->zone)
5063 		goto nopage;
5064 
5065 	/*
5066 	 * Check for insane configurations where the cpuset doesn't contain
5067 	 * any suitable zone to satisfy the request - e.g. non-movable
5068 	 * GFP_HIGHUSER allocations from MOVABLE nodes only.
5069 	 */
5070 	if (cpusets_insane_config() && (gfp_mask & __GFP_HARDWALL)) {
5071 		struct zoneref *z = first_zones_zonelist(ac->zonelist,
5072 					ac->highest_zoneidx,
5073 					&cpuset_current_mems_allowed);
5074 		if (!z->zone)
5075 			goto nopage;
5076 	}
5077 
5078 	if (alloc_flags & ALLOC_KSWAPD)
5079 		wake_all_kswapds(order, gfp_mask, ac);
5080 
5081 	/*
5082 	 * The adjusted alloc_flags might result in immediate success, so try
5083 	 * that first
5084 	 */
5085 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
5086 	if (page)
5087 		goto got_pg;
5088 
5089 	/*
5090 	 * For costly allocations, try direct compaction first, as it's likely
5091 	 * that we have enough base pages and don't need to reclaim. For non-
5092 	 * movable high-order allocations, do that as well, as compaction will
5093 	 * try prevent permanent fragmentation by migrating from blocks of the
5094 	 * same migratetype.
5095 	 * Don't try this for allocations that are allowed to ignore
5096 	 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
5097 	 */
5098 	if (can_direct_reclaim &&
5099 			(costly_order ||
5100 			   (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
5101 			&& !gfp_pfmemalloc_allowed(gfp_mask)) {
5102 		page = __alloc_pages_direct_compact(gfp_mask, order,
5103 						alloc_flags, ac,
5104 						INIT_COMPACT_PRIORITY,
5105 						&compact_result);
5106 		if (page)
5107 			goto got_pg;
5108 
5109 		/*
5110 		 * Checks for costly allocations with __GFP_NORETRY, which
5111 		 * includes some THP page fault allocations
5112 		 */
5113 		if (costly_order && (gfp_mask & __GFP_NORETRY)) {
5114 			/*
5115 			 * If allocating entire pageblock(s) and compaction
5116 			 * failed because all zones are below low watermarks
5117 			 * or is prohibited because it recently failed at this
5118 			 * order, fail immediately unless the allocator has
5119 			 * requested compaction and reclaim retry.
5120 			 *
5121 			 * Reclaim is
5122 			 *  - potentially very expensive because zones are far
5123 			 *    below their low watermarks or this is part of very
5124 			 *    bursty high order allocations,
5125 			 *  - not guaranteed to help because isolate_freepages()
5126 			 *    may not iterate over freed pages as part of its
5127 			 *    linear scan, and
5128 			 *  - unlikely to make entire pageblocks free on its
5129 			 *    own.
5130 			 */
5131 			if (compact_result == COMPACT_SKIPPED ||
5132 			    compact_result == COMPACT_DEFERRED)
5133 				goto nopage;
5134 
5135 			/*
5136 			 * Looks like reclaim/compaction is worth trying, but
5137 			 * sync compaction could be very expensive, so keep
5138 			 * using async compaction.
5139 			 */
5140 			compact_priority = INIT_COMPACT_PRIORITY;
5141 		}
5142 	}
5143 
5144 retry:
5145 	/* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
5146 	if (alloc_flags & ALLOC_KSWAPD)
5147 		wake_all_kswapds(order, gfp_mask, ac);
5148 
5149 	reserve_flags = __gfp_pfmemalloc_flags(gfp_mask);
5150 	if (reserve_flags)
5151 		alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, reserve_flags);
5152 
5153 	/*
5154 	 * Reset the nodemask and zonelist iterators if memory policies can be
5155 	 * ignored. These allocations are high priority and system rather than
5156 	 * user oriented.
5157 	 */
5158 	if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) {
5159 		ac->nodemask = NULL;
5160 		ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
5161 					ac->highest_zoneidx, ac->nodemask);
5162 	}
5163 
5164 	/* Attempt with potentially adjusted zonelist and alloc_flags */
5165 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
5166 	if (page)
5167 		goto got_pg;
5168 
5169 	/* Caller is not willing to reclaim, we can't balance anything */
5170 	if (!can_direct_reclaim)
5171 		goto nopage;
5172 
5173 	/* Avoid recursion of direct reclaim */
5174 	if (current->flags & PF_MEMALLOC)
5175 		goto nopage;
5176 
5177 	/* Try direct reclaim and then allocating */
5178 	page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
5179 							&did_some_progress);
5180 	if (page)
5181 		goto got_pg;
5182 
5183 	/* Try direct compaction and then allocating */
5184 	page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
5185 					compact_priority, &compact_result);
5186 	if (page)
5187 		goto got_pg;
5188 
5189 	/* Do not loop if specifically requested */
5190 	if (gfp_mask & __GFP_NORETRY)
5191 		goto nopage;
5192 
5193 	/*
5194 	 * Do not retry costly high order allocations unless they are
5195 	 * __GFP_RETRY_MAYFAIL
5196 	 */
5197 	if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL))
5198 		goto nopage;
5199 
5200 	if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
5201 				 did_some_progress > 0, &no_progress_loops))
5202 		goto retry;
5203 
5204 	/*
5205 	 * It doesn't make any sense to retry for the compaction if the order-0
5206 	 * reclaim is not able to make any progress because the current
5207 	 * implementation of the compaction depends on the sufficient amount
5208 	 * of free memory (see __compaction_suitable)
5209 	 */
5210 	if (did_some_progress > 0 &&
5211 			should_compact_retry(ac, order, alloc_flags,
5212 				compact_result, &compact_priority,
5213 				&compaction_retries))
5214 		goto retry;
5215 
5216 
5217 	/*
5218 	 * Deal with possible cpuset update races or zonelist updates to avoid
5219 	 * a unnecessary OOM kill.
5220 	 */
5221 	if (check_retry_cpuset(cpuset_mems_cookie, ac) ||
5222 	    check_retry_zonelist(zonelist_iter_cookie))
5223 		goto restart;
5224 
5225 	/* Reclaim has failed us, start killing things */
5226 	page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
5227 	if (page)
5228 		goto got_pg;
5229 
5230 	/* Avoid allocations with no watermarks from looping endlessly */
5231 	if (tsk_is_oom_victim(current) &&
5232 	    (alloc_flags & ALLOC_OOM ||
5233 	     (gfp_mask & __GFP_NOMEMALLOC)))
5234 		goto nopage;
5235 
5236 	/* Retry as long as the OOM killer is making progress */
5237 	if (did_some_progress) {
5238 		no_progress_loops = 0;
5239 		goto retry;
5240 	}
5241 
5242 nopage:
5243 	/*
5244 	 * Deal with possible cpuset update races or zonelist updates to avoid
5245 	 * a unnecessary OOM kill.
5246 	 */
5247 	if (check_retry_cpuset(cpuset_mems_cookie, ac) ||
5248 	    check_retry_zonelist(zonelist_iter_cookie))
5249 		goto restart;
5250 
5251 	/*
5252 	 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
5253 	 * we always retry
5254 	 */
5255 	if (gfp_mask & __GFP_NOFAIL) {
5256 		/*
5257 		 * All existing users of the __GFP_NOFAIL are blockable, so warn
5258 		 * of any new users that actually require GFP_NOWAIT
5259 		 */
5260 		if (WARN_ON_ONCE_GFP(!can_direct_reclaim, gfp_mask))
5261 			goto fail;
5262 
5263 		/*
5264 		 * PF_MEMALLOC request from this context is rather bizarre
5265 		 * because we cannot reclaim anything and only can loop waiting
5266 		 * for somebody to do a work for us
5267 		 */
5268 		WARN_ON_ONCE_GFP(current->flags & PF_MEMALLOC, gfp_mask);
5269 
5270 		/*
5271 		 * non failing costly orders are a hard requirement which we
5272 		 * are not prepared for much so let's warn about these users
5273 		 * so that we can identify them and convert them to something
5274 		 * else.
5275 		 */
5276 		WARN_ON_ONCE_GFP(order > PAGE_ALLOC_COSTLY_ORDER, gfp_mask);
5277 
5278 		/*
5279 		 * Help non-failing allocations by giving them access to memory
5280 		 * reserves but do not use ALLOC_NO_WATERMARKS because this
5281 		 * could deplete whole memory reserves which would just make
5282 		 * the situation worse
5283 		 */
5284 		page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac);
5285 		if (page)
5286 			goto got_pg;
5287 
5288 		cond_resched();
5289 		goto retry;
5290 	}
5291 fail:
5292 	warn_alloc(gfp_mask, ac->nodemask,
5293 			"page allocation failure: order:%u", order);
5294 got_pg:
5295 	return page;
5296 }
5297 
5298 static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
5299 		int preferred_nid, nodemask_t *nodemask,
5300 		struct alloc_context *ac, gfp_t *alloc_gfp,
5301 		unsigned int *alloc_flags)
5302 {
5303 	ac->highest_zoneidx = gfp_zone(gfp_mask);
5304 	ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
5305 	ac->nodemask = nodemask;
5306 	ac->migratetype = gfp_migratetype(gfp_mask);
5307 
5308 	if (cpusets_enabled()) {
5309 		*alloc_gfp |= __GFP_HARDWALL;
5310 		/*
5311 		 * When we are in the interrupt context, it is irrelevant
5312 		 * to the current task context. It means that any node ok.
5313 		 */
5314 		if (in_task() && !ac->nodemask)
5315 			ac->nodemask = &cpuset_current_mems_allowed;
5316 		else
5317 			*alloc_flags |= ALLOC_CPUSET;
5318 	}
5319 
5320 	might_alloc(gfp_mask);
5321 
5322 	if (should_fail_alloc_page(gfp_mask, order))
5323 		return false;
5324 
5325 	*alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, *alloc_flags);
5326 
5327 	/* Dirty zone balancing only done in the fast path */
5328 	ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
5329 
5330 	/*
5331 	 * The preferred zone is used for statistics but crucially it is
5332 	 * also used as the starting point for the zonelist iterator. It
5333 	 * may get reset for allocations that ignore memory policies.
5334 	 */
5335 	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
5336 					ac->highest_zoneidx, ac->nodemask);
5337 
5338 	return true;
5339 }
5340 
5341 /*
5342  * __alloc_pages_bulk - Allocate a number of order-0 pages to a list or array
5343  * @gfp: GFP flags for the allocation
5344  * @preferred_nid: The preferred NUMA node ID to allocate from
5345  * @nodemask: Set of nodes to allocate from, may be NULL
5346  * @nr_pages: The number of pages desired on the list or array
5347  * @page_list: Optional list to store the allocated pages
5348  * @page_array: Optional array to store the pages
5349  *
5350  * This is a batched version of the page allocator that attempts to
5351  * allocate nr_pages quickly. Pages are added to page_list if page_list
5352  * is not NULL, otherwise it is assumed that the page_array is valid.
5353  *
5354  * For lists, nr_pages is the number of pages that should be allocated.
5355  *
5356  * For arrays, only NULL elements are populated with pages and nr_pages
5357  * is the maximum number of pages that will be stored in the array.
5358  *
5359  * Returns the number of pages on the list or array.
5360  */
5361 unsigned long __alloc_pages_bulk(gfp_t gfp, int preferred_nid,
5362 			nodemask_t *nodemask, int nr_pages,
5363 			struct list_head *page_list,
5364 			struct page **page_array)
5365 {
5366 	struct page *page;
5367 	unsigned long flags;
5368 	unsigned long __maybe_unused UP_flags;
5369 	struct zone *zone;
5370 	struct zoneref *z;
5371 	struct per_cpu_pages *pcp;
5372 	struct list_head *pcp_list;
5373 	struct alloc_context ac;
5374 	gfp_t alloc_gfp;
5375 	unsigned int alloc_flags = ALLOC_WMARK_LOW;
5376 	int nr_populated = 0, nr_account = 0;
5377 
5378 	/*
5379 	 * Skip populated array elements to determine if any pages need
5380 	 * to be allocated before disabling IRQs.
5381 	 */
5382 	while (page_array && nr_populated < nr_pages && page_array[nr_populated])
5383 		nr_populated++;
5384 
5385 	/* No pages requested? */
5386 	if (unlikely(nr_pages <= 0))
5387 		goto out;
5388 
5389 	/* Already populated array? */
5390 	if (unlikely(page_array && nr_pages - nr_populated == 0))
5391 		goto out;
5392 
5393 	/* Bulk allocator does not support memcg accounting. */
5394 	if (memcg_kmem_enabled() && (gfp & __GFP_ACCOUNT))
5395 		goto failed;
5396 
5397 	/* Use the single page allocator for one page. */
5398 	if (nr_pages - nr_populated == 1)
5399 		goto failed;
5400 
5401 #ifdef CONFIG_PAGE_OWNER
5402 	/*
5403 	 * PAGE_OWNER may recurse into the allocator to allocate space to
5404 	 * save the stack with pagesets.lock held. Releasing/reacquiring
5405 	 * removes much of the performance benefit of bulk allocation so
5406 	 * force the caller to allocate one page at a time as it'll have
5407 	 * similar performance to added complexity to the bulk allocator.
5408 	 */
5409 	if (static_branch_unlikely(&page_owner_inited))
5410 		goto failed;
5411 #endif
5412 
5413 	/* May set ALLOC_NOFRAGMENT, fragmentation will return 1 page. */
5414 	gfp &= gfp_allowed_mask;
5415 	alloc_gfp = gfp;
5416 	if (!prepare_alloc_pages(gfp, 0, preferred_nid, nodemask, &ac, &alloc_gfp, &alloc_flags))
5417 		goto out;
5418 	gfp = alloc_gfp;
5419 
5420 	/* Find an allowed local zone that meets the low watermark. */
5421 	for_each_zone_zonelist_nodemask(zone, z, ac.zonelist, ac.highest_zoneidx, ac.nodemask) {
5422 		unsigned long mark;
5423 
5424 		if (cpusets_enabled() && (alloc_flags & ALLOC_CPUSET) &&
5425 		    !__cpuset_zone_allowed(zone, gfp)) {
5426 			continue;
5427 		}
5428 
5429 		if (nr_online_nodes > 1 && zone != ac.preferred_zoneref->zone &&
5430 		    zone_to_nid(zone) != zone_to_nid(ac.preferred_zoneref->zone)) {
5431 			goto failed;
5432 		}
5433 
5434 		mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK) + nr_pages;
5435 		if (zone_watermark_fast(zone, 0,  mark,
5436 				zonelist_zone_idx(ac.preferred_zoneref),
5437 				alloc_flags, gfp)) {
5438 			break;
5439 		}
5440 	}
5441 
5442 	/*
5443 	 * If there are no allowed local zones that meets the watermarks then
5444 	 * try to allocate a single page and reclaim if necessary.
5445 	 */
5446 	if (unlikely(!zone))
5447 		goto failed;
5448 
5449 	/* Is a parallel drain in progress? */
5450 	pcp_trylock_prepare(UP_flags);
5451 	pcp = pcp_spin_trylock_irqsave(zone->per_cpu_pageset, flags);
5452 	if (!pcp)
5453 		goto failed_irq;
5454 
5455 	/* Attempt the batch allocation */
5456 	pcp_list = &pcp->lists[order_to_pindex(ac.migratetype, 0)];
5457 	while (nr_populated < nr_pages) {
5458 
5459 		/* Skip existing pages */
5460 		if (page_array && page_array[nr_populated]) {
5461 			nr_populated++;
5462 			continue;
5463 		}
5464 
5465 		page = __rmqueue_pcplist(zone, 0, ac.migratetype, alloc_flags,
5466 								pcp, pcp_list);
5467 		if (unlikely(!page)) {
5468 			/* Try and allocate at least one page */
5469 			if (!nr_account) {
5470 				pcp_spin_unlock_irqrestore(pcp, flags);
5471 				goto failed_irq;
5472 			}
5473 			break;
5474 		}
5475 		nr_account++;
5476 
5477 		prep_new_page(page, 0, gfp, 0);
5478 		if (page_list)
5479 			list_add(&page->lru, page_list);
5480 		else
5481 			page_array[nr_populated] = page;
5482 		nr_populated++;
5483 	}
5484 
5485 	pcp_spin_unlock_irqrestore(pcp, flags);
5486 	pcp_trylock_finish(UP_flags);
5487 
5488 	__count_zid_vm_events(PGALLOC, zone_idx(zone), nr_account);
5489 	zone_statistics(ac.preferred_zoneref->zone, zone, nr_account);
5490 
5491 out:
5492 	return nr_populated;
5493 
5494 failed_irq:
5495 	pcp_trylock_finish(UP_flags);
5496 
5497 failed:
5498 	page = __alloc_pages(gfp, 0, preferred_nid, nodemask);
5499 	if (page) {
5500 		if (page_list)
5501 			list_add(&page->lru, page_list);
5502 		else
5503 			page_array[nr_populated] = page;
5504 		nr_populated++;
5505 	}
5506 
5507 	goto out;
5508 }
5509 EXPORT_SYMBOL_GPL(__alloc_pages_bulk);
5510 
5511 /*
5512  * This is the 'heart' of the zoned buddy allocator.
5513  */
5514 struct page *__alloc_pages(gfp_t gfp, unsigned int order, int preferred_nid,
5515 							nodemask_t *nodemask)
5516 {
5517 	struct page *page;
5518 	unsigned int alloc_flags = ALLOC_WMARK_LOW;
5519 	gfp_t alloc_gfp; /* The gfp_t that was actually used for allocation */
5520 	struct alloc_context ac = { };
5521 
5522 	/*
5523 	 * There are several places where we assume that the order value is sane
5524 	 * so bail out early if the request is out of bound.
5525 	 */
5526 	if (WARN_ON_ONCE_GFP(order >= MAX_ORDER, gfp))
5527 		return NULL;
5528 
5529 	gfp &= gfp_allowed_mask;
5530 	/*
5531 	 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
5532 	 * resp. GFP_NOIO which has to be inherited for all allocation requests
5533 	 * from a particular context which has been marked by
5534 	 * memalloc_no{fs,io}_{save,restore}. And PF_MEMALLOC_PIN which ensures
5535 	 * movable zones are not used during allocation.
5536 	 */
5537 	gfp = current_gfp_context(gfp);
5538 	alloc_gfp = gfp;
5539 	if (!prepare_alloc_pages(gfp, order, preferred_nid, nodemask, &ac,
5540 			&alloc_gfp, &alloc_flags))
5541 		return NULL;
5542 
5543 	/*
5544 	 * Forbid the first pass from falling back to types that fragment
5545 	 * memory until all local zones are considered.
5546 	 */
5547 	alloc_flags |= alloc_flags_nofragment(ac.preferred_zoneref->zone, gfp);
5548 
5549 	/* First allocation attempt */
5550 	page = get_page_from_freelist(alloc_gfp, order, alloc_flags, &ac);
5551 	if (likely(page))
5552 		goto out;
5553 
5554 	alloc_gfp = gfp;
5555 	ac.spread_dirty_pages = false;
5556 
5557 	/*
5558 	 * Restore the original nodemask if it was potentially replaced with
5559 	 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
5560 	 */
5561 	ac.nodemask = nodemask;
5562 
5563 	page = __alloc_pages_slowpath(alloc_gfp, order, &ac);
5564 
5565 out:
5566 	if (memcg_kmem_enabled() && (gfp & __GFP_ACCOUNT) && page &&
5567 	    unlikely(__memcg_kmem_charge_page(page, gfp, order) != 0)) {
5568 		__free_pages(page, order);
5569 		page = NULL;
5570 	}
5571 
5572 	trace_mm_page_alloc(page, order, alloc_gfp, ac.migratetype);
5573 	kmsan_alloc_page(page, order, alloc_gfp);
5574 
5575 	return page;
5576 }
5577 EXPORT_SYMBOL(__alloc_pages);
5578 
5579 struct folio *__folio_alloc(gfp_t gfp, unsigned int order, int preferred_nid,
5580 		nodemask_t *nodemask)
5581 {
5582 	struct page *page = __alloc_pages(gfp | __GFP_COMP, order,
5583 			preferred_nid, nodemask);
5584 
5585 	if (page && order > 1)
5586 		prep_transhuge_page(page);
5587 	return (struct folio *)page;
5588 }
5589 EXPORT_SYMBOL(__folio_alloc);
5590 
5591 /*
5592  * Common helper functions. Never use with __GFP_HIGHMEM because the returned
5593  * address cannot represent highmem pages. Use alloc_pages and then kmap if
5594  * you need to access high mem.
5595  */
5596 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
5597 {
5598 	struct page *page;
5599 
5600 	page = alloc_pages(gfp_mask & ~__GFP_HIGHMEM, order);
5601 	if (!page)
5602 		return 0;
5603 	return (unsigned long) page_address(page);
5604 }
5605 EXPORT_SYMBOL(__get_free_pages);
5606 
5607 unsigned long get_zeroed_page(gfp_t gfp_mask)
5608 {
5609 	return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
5610 }
5611 EXPORT_SYMBOL(get_zeroed_page);
5612 
5613 /**
5614  * __free_pages - Free pages allocated with alloc_pages().
5615  * @page: The page pointer returned from alloc_pages().
5616  * @order: The order of the allocation.
5617  *
5618  * This function can free multi-page allocations that are not compound
5619  * pages.  It does not check that the @order passed in matches that of
5620  * the allocation, so it is easy to leak memory.  Freeing more memory
5621  * than was allocated will probably emit a warning.
5622  *
5623  * If the last reference to this page is speculative, it will be released
5624  * by put_page() which only frees the first page of a non-compound
5625  * allocation.  To prevent the remaining pages from being leaked, we free
5626  * the subsequent pages here.  If you want to use the page's reference
5627  * count to decide when to free the allocation, you should allocate a
5628  * compound page, and use put_page() instead of __free_pages().
5629  *
5630  * Context: May be called in interrupt context or while holding a normal
5631  * spinlock, but not in NMI context or while holding a raw spinlock.
5632  */
5633 void __free_pages(struct page *page, unsigned int order)
5634 {
5635 	if (put_page_testzero(page))
5636 		free_the_page(page, order);
5637 	else if (!PageHead(page))
5638 		while (order-- > 0)
5639 			free_the_page(page + (1 << order), order);
5640 }
5641 EXPORT_SYMBOL(__free_pages);
5642 
5643 void free_pages(unsigned long addr, unsigned int order)
5644 {
5645 	if (addr != 0) {
5646 		VM_BUG_ON(!virt_addr_valid((void *)addr));
5647 		__free_pages(virt_to_page((void *)addr), order);
5648 	}
5649 }
5650 
5651 EXPORT_SYMBOL(free_pages);
5652 
5653 /*
5654  * Page Fragment:
5655  *  An arbitrary-length arbitrary-offset area of memory which resides
5656  *  within a 0 or higher order page.  Multiple fragments within that page
5657  *  are individually refcounted, in the page's reference counter.
5658  *
5659  * The page_frag functions below provide a simple allocation framework for
5660  * page fragments.  This is used by the network stack and network device
5661  * drivers to provide a backing region of memory for use as either an
5662  * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
5663  */
5664 static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
5665 					     gfp_t gfp_mask)
5666 {
5667 	struct page *page = NULL;
5668 	gfp_t gfp = gfp_mask;
5669 
5670 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5671 	gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
5672 		    __GFP_NOMEMALLOC;
5673 	page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
5674 				PAGE_FRAG_CACHE_MAX_ORDER);
5675 	nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
5676 #endif
5677 	if (unlikely(!page))
5678 		page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
5679 
5680 	nc->va = page ? page_address(page) : NULL;
5681 
5682 	return page;
5683 }
5684 
5685 void __page_frag_cache_drain(struct page *page, unsigned int count)
5686 {
5687 	VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
5688 
5689 	if (page_ref_sub_and_test(page, count))
5690 		free_the_page(page, compound_order(page));
5691 }
5692 EXPORT_SYMBOL(__page_frag_cache_drain);
5693 
5694 void *page_frag_alloc_align(struct page_frag_cache *nc,
5695 		      unsigned int fragsz, gfp_t gfp_mask,
5696 		      unsigned int align_mask)
5697 {
5698 	unsigned int size = PAGE_SIZE;
5699 	struct page *page;
5700 	int offset;
5701 
5702 	if (unlikely(!nc->va)) {
5703 refill:
5704 		page = __page_frag_cache_refill(nc, gfp_mask);
5705 		if (!page)
5706 			return NULL;
5707 
5708 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5709 		/* if size can vary use size else just use PAGE_SIZE */
5710 		size = nc->size;
5711 #endif
5712 		/* Even if we own the page, we do not use atomic_set().
5713 		 * This would break get_page_unless_zero() users.
5714 		 */
5715 		page_ref_add(page, PAGE_FRAG_CACHE_MAX_SIZE);
5716 
5717 		/* reset page count bias and offset to start of new frag */
5718 		nc->pfmemalloc = page_is_pfmemalloc(page);
5719 		nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
5720 		nc->offset = size;
5721 	}
5722 
5723 	offset = nc->offset - fragsz;
5724 	if (unlikely(offset < 0)) {
5725 		page = virt_to_page(nc->va);
5726 
5727 		if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
5728 			goto refill;
5729 
5730 		if (unlikely(nc->pfmemalloc)) {
5731 			free_the_page(page, compound_order(page));
5732 			goto refill;
5733 		}
5734 
5735 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5736 		/* if size can vary use size else just use PAGE_SIZE */
5737 		size = nc->size;
5738 #endif
5739 		/* OK, page count is 0, we can safely set it */
5740 		set_page_count(page, PAGE_FRAG_CACHE_MAX_SIZE + 1);
5741 
5742 		/* reset page count bias and offset to start of new frag */
5743 		nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
5744 		offset = size - fragsz;
5745 		if (unlikely(offset < 0)) {
5746 			/*
5747 			 * The caller is trying to allocate a fragment
5748 			 * with fragsz > PAGE_SIZE but the cache isn't big
5749 			 * enough to satisfy the request, this may
5750 			 * happen in low memory conditions.
5751 			 * We don't release the cache page because
5752 			 * it could make memory pressure worse
5753 			 * so we simply return NULL here.
5754 			 */
5755 			return NULL;
5756 		}
5757 	}
5758 
5759 	nc->pagecnt_bias--;
5760 	offset &= align_mask;
5761 	nc->offset = offset;
5762 
5763 	return nc->va + offset;
5764 }
5765 EXPORT_SYMBOL(page_frag_alloc_align);
5766 
5767 /*
5768  * Frees a page fragment allocated out of either a compound or order 0 page.
5769  */
5770 void page_frag_free(void *addr)
5771 {
5772 	struct page *page = virt_to_head_page(addr);
5773 
5774 	if (unlikely(put_page_testzero(page)))
5775 		free_the_page(page, compound_order(page));
5776 }
5777 EXPORT_SYMBOL(page_frag_free);
5778 
5779 static void *make_alloc_exact(unsigned long addr, unsigned int order,
5780 		size_t size)
5781 {
5782 	if (addr) {
5783 		unsigned long alloc_end = addr + (PAGE_SIZE << order);
5784 		unsigned long used = addr + PAGE_ALIGN(size);
5785 
5786 		split_page(virt_to_page((void *)addr), order);
5787 		while (used < alloc_end) {
5788 			free_page(used);
5789 			used += PAGE_SIZE;
5790 		}
5791 	}
5792 	return (void *)addr;
5793 }
5794 
5795 /**
5796  * alloc_pages_exact - allocate an exact number physically-contiguous pages.
5797  * @size: the number of bytes to allocate
5798  * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
5799  *
5800  * This function is similar to alloc_pages(), except that it allocates the
5801  * minimum number of pages to satisfy the request.  alloc_pages() can only
5802  * allocate memory in power-of-two pages.
5803  *
5804  * This function is also limited by MAX_ORDER.
5805  *
5806  * Memory allocated by this function must be released by free_pages_exact().
5807  *
5808  * Return: pointer to the allocated area or %NULL in case of error.
5809  */
5810 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
5811 {
5812 	unsigned int order = get_order(size);
5813 	unsigned long addr;
5814 
5815 	if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM)))
5816 		gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM);
5817 
5818 	addr = __get_free_pages(gfp_mask, order);
5819 	return make_alloc_exact(addr, order, size);
5820 }
5821 EXPORT_SYMBOL(alloc_pages_exact);
5822 
5823 /**
5824  * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
5825  *			   pages on a node.
5826  * @nid: the preferred node ID where memory should be allocated
5827  * @size: the number of bytes to allocate
5828  * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
5829  *
5830  * Like alloc_pages_exact(), but try to allocate on node nid first before falling
5831  * back.
5832  *
5833  * Return: pointer to the allocated area or %NULL in case of error.
5834  */
5835 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
5836 {
5837 	unsigned int order = get_order(size);
5838 	struct page *p;
5839 
5840 	if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM)))
5841 		gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM);
5842 
5843 	p = alloc_pages_node(nid, gfp_mask, order);
5844 	if (!p)
5845 		return NULL;
5846 	return make_alloc_exact((unsigned long)page_address(p), order, size);
5847 }
5848 
5849 /**
5850  * free_pages_exact - release memory allocated via alloc_pages_exact()
5851  * @virt: the value returned by alloc_pages_exact.
5852  * @size: size of allocation, same value as passed to alloc_pages_exact().
5853  *
5854  * Release the memory allocated by a previous call to alloc_pages_exact.
5855  */
5856 void free_pages_exact(void *virt, size_t size)
5857 {
5858 	unsigned long addr = (unsigned long)virt;
5859 	unsigned long end = addr + PAGE_ALIGN(size);
5860 
5861 	while (addr < end) {
5862 		free_page(addr);
5863 		addr += PAGE_SIZE;
5864 	}
5865 }
5866 EXPORT_SYMBOL(free_pages_exact);
5867 
5868 /**
5869  * nr_free_zone_pages - count number of pages beyond high watermark
5870  * @offset: The zone index of the highest zone
5871  *
5872  * nr_free_zone_pages() counts the number of pages which are beyond the
5873  * high watermark within all zones at or below a given zone index.  For each
5874  * zone, the number of pages is calculated as:
5875  *
5876  *     nr_free_zone_pages = managed_pages - high_pages
5877  *
5878  * Return: number of pages beyond high watermark.
5879  */
5880 static unsigned long nr_free_zone_pages(int offset)
5881 {
5882 	struct zoneref *z;
5883 	struct zone *zone;
5884 
5885 	/* Just pick one node, since fallback list is circular */
5886 	unsigned long sum = 0;
5887 
5888 	struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
5889 
5890 	for_each_zone_zonelist(zone, z, zonelist, offset) {
5891 		unsigned long size = zone_managed_pages(zone);
5892 		unsigned long high = high_wmark_pages(zone);
5893 		if (size > high)
5894 			sum += size - high;
5895 	}
5896 
5897 	return sum;
5898 }
5899 
5900 /**
5901  * nr_free_buffer_pages - count number of pages beyond high watermark
5902  *
5903  * nr_free_buffer_pages() counts the number of pages which are beyond the high
5904  * watermark within ZONE_DMA and ZONE_NORMAL.
5905  *
5906  * Return: number of pages beyond high watermark within ZONE_DMA and
5907  * ZONE_NORMAL.
5908  */
5909 unsigned long nr_free_buffer_pages(void)
5910 {
5911 	return nr_free_zone_pages(gfp_zone(GFP_USER));
5912 }
5913 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
5914 
5915 static inline void show_node(struct zone *zone)
5916 {
5917 	if (IS_ENABLED(CONFIG_NUMA))
5918 		printk("Node %d ", zone_to_nid(zone));
5919 }
5920 
5921 long si_mem_available(void)
5922 {
5923 	long available;
5924 	unsigned long pagecache;
5925 	unsigned long wmark_low = 0;
5926 	unsigned long pages[NR_LRU_LISTS];
5927 	unsigned long reclaimable;
5928 	struct zone *zone;
5929 	int lru;
5930 
5931 	for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
5932 		pages[lru] = global_node_page_state(NR_LRU_BASE + lru);
5933 
5934 	for_each_zone(zone)
5935 		wmark_low += low_wmark_pages(zone);
5936 
5937 	/*
5938 	 * Estimate the amount of memory available for userspace allocations,
5939 	 * without causing swapping or OOM.
5940 	 */
5941 	available = global_zone_page_state(NR_FREE_PAGES) - totalreserve_pages;
5942 
5943 	/*
5944 	 * Not all the page cache can be freed, otherwise the system will
5945 	 * start swapping or thrashing. Assume at least half of the page
5946 	 * cache, or the low watermark worth of cache, needs to stay.
5947 	 */
5948 	pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
5949 	pagecache -= min(pagecache / 2, wmark_low);
5950 	available += pagecache;
5951 
5952 	/*
5953 	 * Part of the reclaimable slab and other kernel memory consists of
5954 	 * items that are in use, and cannot be freed. Cap this estimate at the
5955 	 * low watermark.
5956 	 */
5957 	reclaimable = global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B) +
5958 		global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE);
5959 	available += reclaimable - min(reclaimable / 2, wmark_low);
5960 
5961 	if (available < 0)
5962 		available = 0;
5963 	return available;
5964 }
5965 EXPORT_SYMBOL_GPL(si_mem_available);
5966 
5967 void si_meminfo(struct sysinfo *val)
5968 {
5969 	val->totalram = totalram_pages();
5970 	val->sharedram = global_node_page_state(NR_SHMEM);
5971 	val->freeram = global_zone_page_state(NR_FREE_PAGES);
5972 	val->bufferram = nr_blockdev_pages();
5973 	val->totalhigh = totalhigh_pages();
5974 	val->freehigh = nr_free_highpages();
5975 	val->mem_unit = PAGE_SIZE;
5976 }
5977 
5978 EXPORT_SYMBOL(si_meminfo);
5979 
5980 #ifdef CONFIG_NUMA
5981 void si_meminfo_node(struct sysinfo *val, int nid)
5982 {
5983 	int zone_type;		/* needs to be signed */
5984 	unsigned long managed_pages = 0;
5985 	unsigned long managed_highpages = 0;
5986 	unsigned long free_highpages = 0;
5987 	pg_data_t *pgdat = NODE_DATA(nid);
5988 
5989 	for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
5990 		managed_pages += zone_managed_pages(&pgdat->node_zones[zone_type]);
5991 	val->totalram = managed_pages;
5992 	val->sharedram = node_page_state(pgdat, NR_SHMEM);
5993 	val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES);
5994 #ifdef CONFIG_HIGHMEM
5995 	for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
5996 		struct zone *zone = &pgdat->node_zones[zone_type];
5997 
5998 		if (is_highmem(zone)) {
5999 			managed_highpages += zone_managed_pages(zone);
6000 			free_highpages += zone_page_state(zone, NR_FREE_PAGES);
6001 		}
6002 	}
6003 	val->totalhigh = managed_highpages;
6004 	val->freehigh = free_highpages;
6005 #else
6006 	val->totalhigh = managed_highpages;
6007 	val->freehigh = free_highpages;
6008 #endif
6009 	val->mem_unit = PAGE_SIZE;
6010 }
6011 #endif
6012 
6013 /*
6014  * Determine whether the node should be displayed or not, depending on whether
6015  * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
6016  */
6017 static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask)
6018 {
6019 	if (!(flags & SHOW_MEM_FILTER_NODES))
6020 		return false;
6021 
6022 	/*
6023 	 * no node mask - aka implicit memory numa policy. Do not bother with
6024 	 * the synchronization - read_mems_allowed_begin - because we do not
6025 	 * have to be precise here.
6026 	 */
6027 	if (!nodemask)
6028 		nodemask = &cpuset_current_mems_allowed;
6029 
6030 	return !node_isset(nid, *nodemask);
6031 }
6032 
6033 #define K(x) ((x) << (PAGE_SHIFT-10))
6034 
6035 static void show_migration_types(unsigned char type)
6036 {
6037 	static const char types[MIGRATE_TYPES] = {
6038 		[MIGRATE_UNMOVABLE]	= 'U',
6039 		[MIGRATE_MOVABLE]	= 'M',
6040 		[MIGRATE_RECLAIMABLE]	= 'E',
6041 		[MIGRATE_HIGHATOMIC]	= 'H',
6042 #ifdef CONFIG_CMA
6043 		[MIGRATE_CMA]		= 'C',
6044 #endif
6045 #ifdef CONFIG_MEMORY_ISOLATION
6046 		[MIGRATE_ISOLATE]	= 'I',
6047 #endif
6048 	};
6049 	char tmp[MIGRATE_TYPES + 1];
6050 	char *p = tmp;
6051 	int i;
6052 
6053 	for (i = 0; i < MIGRATE_TYPES; i++) {
6054 		if (type & (1 << i))
6055 			*p++ = types[i];
6056 	}
6057 
6058 	*p = '\0';
6059 	printk(KERN_CONT "(%s) ", tmp);
6060 }
6061 
6062 static bool node_has_managed_zones(pg_data_t *pgdat, int max_zone_idx)
6063 {
6064 	int zone_idx;
6065 	for (zone_idx = 0; zone_idx <= max_zone_idx; zone_idx++)
6066 		if (zone_managed_pages(pgdat->node_zones + zone_idx))
6067 			return true;
6068 	return false;
6069 }
6070 
6071 /*
6072  * Show free area list (used inside shift_scroll-lock stuff)
6073  * We also calculate the percentage fragmentation. We do this by counting the
6074  * memory on each free list with the exception of the first item on the list.
6075  *
6076  * Bits in @filter:
6077  * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
6078  *   cpuset.
6079  */
6080 void __show_free_areas(unsigned int filter, nodemask_t *nodemask, int max_zone_idx)
6081 {
6082 	unsigned long free_pcp = 0;
6083 	int cpu, nid;
6084 	struct zone *zone;
6085 	pg_data_t *pgdat;
6086 
6087 	for_each_populated_zone(zone) {
6088 		if (zone_idx(zone) > max_zone_idx)
6089 			continue;
6090 		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
6091 			continue;
6092 
6093 		for_each_online_cpu(cpu)
6094 			free_pcp += per_cpu_ptr(zone->per_cpu_pageset, cpu)->count;
6095 	}
6096 
6097 	printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
6098 		" active_file:%lu inactive_file:%lu isolated_file:%lu\n"
6099 		" unevictable:%lu dirty:%lu writeback:%lu\n"
6100 		" slab_reclaimable:%lu slab_unreclaimable:%lu\n"
6101 		" mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
6102 		" kernel_misc_reclaimable:%lu\n"
6103 		" free:%lu free_pcp:%lu free_cma:%lu\n",
6104 		global_node_page_state(NR_ACTIVE_ANON),
6105 		global_node_page_state(NR_INACTIVE_ANON),
6106 		global_node_page_state(NR_ISOLATED_ANON),
6107 		global_node_page_state(NR_ACTIVE_FILE),
6108 		global_node_page_state(NR_INACTIVE_FILE),
6109 		global_node_page_state(NR_ISOLATED_FILE),
6110 		global_node_page_state(NR_UNEVICTABLE),
6111 		global_node_page_state(NR_FILE_DIRTY),
6112 		global_node_page_state(NR_WRITEBACK),
6113 		global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B),
6114 		global_node_page_state_pages(NR_SLAB_UNRECLAIMABLE_B),
6115 		global_node_page_state(NR_FILE_MAPPED),
6116 		global_node_page_state(NR_SHMEM),
6117 		global_node_page_state(NR_PAGETABLE),
6118 		global_zone_page_state(NR_BOUNCE),
6119 		global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE),
6120 		global_zone_page_state(NR_FREE_PAGES),
6121 		free_pcp,
6122 		global_zone_page_state(NR_FREE_CMA_PAGES));
6123 
6124 	for_each_online_pgdat(pgdat) {
6125 		if (show_mem_node_skip(filter, pgdat->node_id, nodemask))
6126 			continue;
6127 		if (!node_has_managed_zones(pgdat, max_zone_idx))
6128 			continue;
6129 
6130 		printk("Node %d"
6131 			" active_anon:%lukB"
6132 			" inactive_anon:%lukB"
6133 			" active_file:%lukB"
6134 			" inactive_file:%lukB"
6135 			" unevictable:%lukB"
6136 			" isolated(anon):%lukB"
6137 			" isolated(file):%lukB"
6138 			" mapped:%lukB"
6139 			" dirty:%lukB"
6140 			" writeback:%lukB"
6141 			" shmem:%lukB"
6142 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
6143 			" shmem_thp: %lukB"
6144 			" shmem_pmdmapped: %lukB"
6145 			" anon_thp: %lukB"
6146 #endif
6147 			" writeback_tmp:%lukB"
6148 			" kernel_stack:%lukB"
6149 #ifdef CONFIG_SHADOW_CALL_STACK
6150 			" shadow_call_stack:%lukB"
6151 #endif
6152 			" pagetables:%lukB"
6153 			" all_unreclaimable? %s"
6154 			"\n",
6155 			pgdat->node_id,
6156 			K(node_page_state(pgdat, NR_ACTIVE_ANON)),
6157 			K(node_page_state(pgdat, NR_INACTIVE_ANON)),
6158 			K(node_page_state(pgdat, NR_ACTIVE_FILE)),
6159 			K(node_page_state(pgdat, NR_INACTIVE_FILE)),
6160 			K(node_page_state(pgdat, NR_UNEVICTABLE)),
6161 			K(node_page_state(pgdat, NR_ISOLATED_ANON)),
6162 			K(node_page_state(pgdat, NR_ISOLATED_FILE)),
6163 			K(node_page_state(pgdat, NR_FILE_MAPPED)),
6164 			K(node_page_state(pgdat, NR_FILE_DIRTY)),
6165 			K(node_page_state(pgdat, NR_WRITEBACK)),
6166 			K(node_page_state(pgdat, NR_SHMEM)),
6167 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
6168 			K(node_page_state(pgdat, NR_SHMEM_THPS)),
6169 			K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)),
6170 			K(node_page_state(pgdat, NR_ANON_THPS)),
6171 #endif
6172 			K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
6173 			node_page_state(pgdat, NR_KERNEL_STACK_KB),
6174 #ifdef CONFIG_SHADOW_CALL_STACK
6175 			node_page_state(pgdat, NR_KERNEL_SCS_KB),
6176 #endif
6177 			K(node_page_state(pgdat, NR_PAGETABLE)),
6178 			pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ?
6179 				"yes" : "no");
6180 	}
6181 
6182 	for_each_populated_zone(zone) {
6183 		int i;
6184 
6185 		if (zone_idx(zone) > max_zone_idx)
6186 			continue;
6187 		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
6188 			continue;
6189 
6190 		free_pcp = 0;
6191 		for_each_online_cpu(cpu)
6192 			free_pcp += per_cpu_ptr(zone->per_cpu_pageset, cpu)->count;
6193 
6194 		show_node(zone);
6195 		printk(KERN_CONT
6196 			"%s"
6197 			" free:%lukB"
6198 			" boost:%lukB"
6199 			" min:%lukB"
6200 			" low:%lukB"
6201 			" high:%lukB"
6202 			" reserved_highatomic:%luKB"
6203 			" active_anon:%lukB"
6204 			" inactive_anon:%lukB"
6205 			" active_file:%lukB"
6206 			" inactive_file:%lukB"
6207 			" unevictable:%lukB"
6208 			" writepending:%lukB"
6209 			" present:%lukB"
6210 			" managed:%lukB"
6211 			" mlocked:%lukB"
6212 			" bounce:%lukB"
6213 			" free_pcp:%lukB"
6214 			" local_pcp:%ukB"
6215 			" free_cma:%lukB"
6216 			"\n",
6217 			zone->name,
6218 			K(zone_page_state(zone, NR_FREE_PAGES)),
6219 			K(zone->watermark_boost),
6220 			K(min_wmark_pages(zone)),
6221 			K(low_wmark_pages(zone)),
6222 			K(high_wmark_pages(zone)),
6223 			K(zone->nr_reserved_highatomic),
6224 			K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)),
6225 			K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)),
6226 			K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)),
6227 			K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)),
6228 			K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)),
6229 			K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)),
6230 			K(zone->present_pages),
6231 			K(zone_managed_pages(zone)),
6232 			K(zone_page_state(zone, NR_MLOCK)),
6233 			K(zone_page_state(zone, NR_BOUNCE)),
6234 			K(free_pcp),
6235 			K(this_cpu_read(zone->per_cpu_pageset->count)),
6236 			K(zone_page_state(zone, NR_FREE_CMA_PAGES)));
6237 		printk("lowmem_reserve[]:");
6238 		for (i = 0; i < MAX_NR_ZONES; i++)
6239 			printk(KERN_CONT " %ld", zone->lowmem_reserve[i]);
6240 		printk(KERN_CONT "\n");
6241 	}
6242 
6243 	for_each_populated_zone(zone) {
6244 		unsigned int order;
6245 		unsigned long nr[MAX_ORDER], flags, total = 0;
6246 		unsigned char types[MAX_ORDER];
6247 
6248 		if (zone_idx(zone) > max_zone_idx)
6249 			continue;
6250 		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
6251 			continue;
6252 		show_node(zone);
6253 		printk(KERN_CONT "%s: ", zone->name);
6254 
6255 		spin_lock_irqsave(&zone->lock, flags);
6256 		for (order = 0; order < MAX_ORDER; order++) {
6257 			struct free_area *area = &zone->free_area[order];
6258 			int type;
6259 
6260 			nr[order] = area->nr_free;
6261 			total += nr[order] << order;
6262 
6263 			types[order] = 0;
6264 			for (type = 0; type < MIGRATE_TYPES; type++) {
6265 				if (!free_area_empty(area, type))
6266 					types[order] |= 1 << type;
6267 			}
6268 		}
6269 		spin_unlock_irqrestore(&zone->lock, flags);
6270 		for (order = 0; order < MAX_ORDER; order++) {
6271 			printk(KERN_CONT "%lu*%lukB ",
6272 			       nr[order], K(1UL) << order);
6273 			if (nr[order])
6274 				show_migration_types(types[order]);
6275 		}
6276 		printk(KERN_CONT "= %lukB\n", K(total));
6277 	}
6278 
6279 	for_each_online_node(nid) {
6280 		if (show_mem_node_skip(filter, nid, nodemask))
6281 			continue;
6282 		hugetlb_show_meminfo_node(nid);
6283 	}
6284 
6285 	printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES));
6286 
6287 	show_swap_cache_info();
6288 }
6289 
6290 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
6291 {
6292 	zoneref->zone = zone;
6293 	zoneref->zone_idx = zone_idx(zone);
6294 }
6295 
6296 /*
6297  * Builds allocation fallback zone lists.
6298  *
6299  * Add all populated zones of a node to the zonelist.
6300  */
6301 static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs)
6302 {
6303 	struct zone *zone;
6304 	enum zone_type zone_type = MAX_NR_ZONES;
6305 	int nr_zones = 0;
6306 
6307 	do {
6308 		zone_type--;
6309 		zone = pgdat->node_zones + zone_type;
6310 		if (populated_zone(zone)) {
6311 			zoneref_set_zone(zone, &zonerefs[nr_zones++]);
6312 			check_highest_zone(zone_type);
6313 		}
6314 	} while (zone_type);
6315 
6316 	return nr_zones;
6317 }
6318 
6319 #ifdef CONFIG_NUMA
6320 
6321 static int __parse_numa_zonelist_order(char *s)
6322 {
6323 	/*
6324 	 * We used to support different zonelists modes but they turned
6325 	 * out to be just not useful. Let's keep the warning in place
6326 	 * if somebody still use the cmd line parameter so that we do
6327 	 * not fail it silently
6328 	 */
6329 	if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) {
6330 		pr_warn("Ignoring unsupported numa_zonelist_order value:  %s\n", s);
6331 		return -EINVAL;
6332 	}
6333 	return 0;
6334 }
6335 
6336 char numa_zonelist_order[] = "Node";
6337 
6338 /*
6339  * sysctl handler for numa_zonelist_order
6340  */
6341 int numa_zonelist_order_handler(struct ctl_table *table, int write,
6342 		void *buffer, size_t *length, loff_t *ppos)
6343 {
6344 	if (write)
6345 		return __parse_numa_zonelist_order(buffer);
6346 	return proc_dostring(table, write, buffer, length, ppos);
6347 }
6348 
6349 
6350 static int node_load[MAX_NUMNODES];
6351 
6352 /**
6353  * find_next_best_node - find the next node that should appear in a given node's fallback list
6354  * @node: node whose fallback list we're appending
6355  * @used_node_mask: nodemask_t of already used nodes
6356  *
6357  * We use a number of factors to determine which is the next node that should
6358  * appear on a given node's fallback list.  The node should not have appeared
6359  * already in @node's fallback list, and it should be the next closest node
6360  * according to the distance array (which contains arbitrary distance values
6361  * from each node to each node in the system), and should also prefer nodes
6362  * with no CPUs, since presumably they'll have very little allocation pressure
6363  * on them otherwise.
6364  *
6365  * Return: node id of the found node or %NUMA_NO_NODE if no node is found.
6366  */
6367 int find_next_best_node(int node, nodemask_t *used_node_mask)
6368 {
6369 	int n, val;
6370 	int min_val = INT_MAX;
6371 	int best_node = NUMA_NO_NODE;
6372 
6373 	/* Use the local node if we haven't already */
6374 	if (!node_isset(node, *used_node_mask)) {
6375 		node_set(node, *used_node_mask);
6376 		return node;
6377 	}
6378 
6379 	for_each_node_state(n, N_MEMORY) {
6380 
6381 		/* Don't want a node to appear more than once */
6382 		if (node_isset(n, *used_node_mask))
6383 			continue;
6384 
6385 		/* Use the distance array to find the distance */
6386 		val = node_distance(node, n);
6387 
6388 		/* Penalize nodes under us ("prefer the next node") */
6389 		val += (n < node);
6390 
6391 		/* Give preference to headless and unused nodes */
6392 		if (!cpumask_empty(cpumask_of_node(n)))
6393 			val += PENALTY_FOR_NODE_WITH_CPUS;
6394 
6395 		/* Slight preference for less loaded node */
6396 		val *= MAX_NUMNODES;
6397 		val += node_load[n];
6398 
6399 		if (val < min_val) {
6400 			min_val = val;
6401 			best_node = n;
6402 		}
6403 	}
6404 
6405 	if (best_node >= 0)
6406 		node_set(best_node, *used_node_mask);
6407 
6408 	return best_node;
6409 }
6410 
6411 
6412 /*
6413  * Build zonelists ordered by node and zones within node.
6414  * This results in maximum locality--normal zone overflows into local
6415  * DMA zone, if any--but risks exhausting DMA zone.
6416  */
6417 static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order,
6418 		unsigned nr_nodes)
6419 {
6420 	struct zoneref *zonerefs;
6421 	int i;
6422 
6423 	zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
6424 
6425 	for (i = 0; i < nr_nodes; i++) {
6426 		int nr_zones;
6427 
6428 		pg_data_t *node = NODE_DATA(node_order[i]);
6429 
6430 		nr_zones = build_zonerefs_node(node, zonerefs);
6431 		zonerefs += nr_zones;
6432 	}
6433 	zonerefs->zone = NULL;
6434 	zonerefs->zone_idx = 0;
6435 }
6436 
6437 /*
6438  * Build gfp_thisnode zonelists
6439  */
6440 static void build_thisnode_zonelists(pg_data_t *pgdat)
6441 {
6442 	struct zoneref *zonerefs;
6443 	int nr_zones;
6444 
6445 	zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs;
6446 	nr_zones = build_zonerefs_node(pgdat, zonerefs);
6447 	zonerefs += nr_zones;
6448 	zonerefs->zone = NULL;
6449 	zonerefs->zone_idx = 0;
6450 }
6451 
6452 /*
6453  * Build zonelists ordered by zone and nodes within zones.
6454  * This results in conserving DMA zone[s] until all Normal memory is
6455  * exhausted, but results in overflowing to remote node while memory
6456  * may still exist in local DMA zone.
6457  */
6458 
6459 static void build_zonelists(pg_data_t *pgdat)
6460 {
6461 	static int node_order[MAX_NUMNODES];
6462 	int node, nr_nodes = 0;
6463 	nodemask_t used_mask = NODE_MASK_NONE;
6464 	int local_node, prev_node;
6465 
6466 	/* NUMA-aware ordering of nodes */
6467 	local_node = pgdat->node_id;
6468 	prev_node = local_node;
6469 
6470 	memset(node_order, 0, sizeof(node_order));
6471 	while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
6472 		/*
6473 		 * We don't want to pressure a particular node.
6474 		 * So adding penalty to the first node in same
6475 		 * distance group to make it round-robin.
6476 		 */
6477 		if (node_distance(local_node, node) !=
6478 		    node_distance(local_node, prev_node))
6479 			node_load[node] += 1;
6480 
6481 		node_order[nr_nodes++] = node;
6482 		prev_node = node;
6483 	}
6484 
6485 	build_zonelists_in_node_order(pgdat, node_order, nr_nodes);
6486 	build_thisnode_zonelists(pgdat);
6487 	pr_info("Fallback order for Node %d: ", local_node);
6488 	for (node = 0; node < nr_nodes; node++)
6489 		pr_cont("%d ", node_order[node]);
6490 	pr_cont("\n");
6491 }
6492 
6493 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
6494 /*
6495  * Return node id of node used for "local" allocations.
6496  * I.e., first node id of first zone in arg node's generic zonelist.
6497  * Used for initializing percpu 'numa_mem', which is used primarily
6498  * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
6499  */
6500 int local_memory_node(int node)
6501 {
6502 	struct zoneref *z;
6503 
6504 	z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
6505 				   gfp_zone(GFP_KERNEL),
6506 				   NULL);
6507 	return zone_to_nid(z->zone);
6508 }
6509 #endif
6510 
6511 static void setup_min_unmapped_ratio(void);
6512 static void setup_min_slab_ratio(void);
6513 #else	/* CONFIG_NUMA */
6514 
6515 static void build_zonelists(pg_data_t *pgdat)
6516 {
6517 	int node, local_node;
6518 	struct zoneref *zonerefs;
6519 	int nr_zones;
6520 
6521 	local_node = pgdat->node_id;
6522 
6523 	zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
6524 	nr_zones = build_zonerefs_node(pgdat, zonerefs);
6525 	zonerefs += nr_zones;
6526 
6527 	/*
6528 	 * Now we build the zonelist so that it contains the zones
6529 	 * of all the other nodes.
6530 	 * We don't want to pressure a particular node, so when
6531 	 * building the zones for node N, we make sure that the
6532 	 * zones coming right after the local ones are those from
6533 	 * node N+1 (modulo N)
6534 	 */
6535 	for (node = local_node + 1; node < MAX_NUMNODES; node++) {
6536 		if (!node_online(node))
6537 			continue;
6538 		nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
6539 		zonerefs += nr_zones;
6540 	}
6541 	for (node = 0; node < local_node; node++) {
6542 		if (!node_online(node))
6543 			continue;
6544 		nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
6545 		zonerefs += nr_zones;
6546 	}
6547 
6548 	zonerefs->zone = NULL;
6549 	zonerefs->zone_idx = 0;
6550 }
6551 
6552 #endif	/* CONFIG_NUMA */
6553 
6554 /*
6555  * Boot pageset table. One per cpu which is going to be used for all
6556  * zones and all nodes. The parameters will be set in such a way
6557  * that an item put on a list will immediately be handed over to
6558  * the buddy list. This is safe since pageset manipulation is done
6559  * with interrupts disabled.
6560  *
6561  * The boot_pagesets must be kept even after bootup is complete for
6562  * unused processors and/or zones. They do play a role for bootstrapping
6563  * hotplugged processors.
6564  *
6565  * zoneinfo_show() and maybe other functions do
6566  * not check if the processor is online before following the pageset pointer.
6567  * Other parts of the kernel may not check if the zone is available.
6568  */
6569 static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats);
6570 /* These effectively disable the pcplists in the boot pageset completely */
6571 #define BOOT_PAGESET_HIGH	0
6572 #define BOOT_PAGESET_BATCH	1
6573 static DEFINE_PER_CPU(struct per_cpu_pages, boot_pageset);
6574 static DEFINE_PER_CPU(struct per_cpu_zonestat, boot_zonestats);
6575 DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats);
6576 
6577 static void __build_all_zonelists(void *data)
6578 {
6579 	int nid;
6580 	int __maybe_unused cpu;
6581 	pg_data_t *self = data;
6582 
6583 	write_seqlock(&zonelist_update_seq);
6584 
6585 #ifdef CONFIG_NUMA
6586 	memset(node_load, 0, sizeof(node_load));
6587 #endif
6588 
6589 	/*
6590 	 * This node is hotadded and no memory is yet present.   So just
6591 	 * building zonelists is fine - no need to touch other nodes.
6592 	 */
6593 	if (self && !node_online(self->node_id)) {
6594 		build_zonelists(self);
6595 	} else {
6596 		/*
6597 		 * All possible nodes have pgdat preallocated
6598 		 * in free_area_init
6599 		 */
6600 		for_each_node(nid) {
6601 			pg_data_t *pgdat = NODE_DATA(nid);
6602 
6603 			build_zonelists(pgdat);
6604 		}
6605 
6606 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
6607 		/*
6608 		 * We now know the "local memory node" for each node--
6609 		 * i.e., the node of the first zone in the generic zonelist.
6610 		 * Set up numa_mem percpu variable for on-line cpus.  During
6611 		 * boot, only the boot cpu should be on-line;  we'll init the
6612 		 * secondary cpus' numa_mem as they come on-line.  During
6613 		 * node/memory hotplug, we'll fixup all on-line cpus.
6614 		 */
6615 		for_each_online_cpu(cpu)
6616 			set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
6617 #endif
6618 	}
6619 
6620 	write_sequnlock(&zonelist_update_seq);
6621 }
6622 
6623 static noinline void __init
6624 build_all_zonelists_init(void)
6625 {
6626 	int cpu;
6627 
6628 	__build_all_zonelists(NULL);
6629 
6630 	/*
6631 	 * Initialize the boot_pagesets that are going to be used
6632 	 * for bootstrapping processors. The real pagesets for
6633 	 * each zone will be allocated later when the per cpu
6634 	 * allocator is available.
6635 	 *
6636 	 * boot_pagesets are used also for bootstrapping offline
6637 	 * cpus if the system is already booted because the pagesets
6638 	 * are needed to initialize allocators on a specific cpu too.
6639 	 * F.e. the percpu allocator needs the page allocator which
6640 	 * needs the percpu allocator in order to allocate its pagesets
6641 	 * (a chicken-egg dilemma).
6642 	 */
6643 	for_each_possible_cpu(cpu)
6644 		per_cpu_pages_init(&per_cpu(boot_pageset, cpu), &per_cpu(boot_zonestats, cpu));
6645 
6646 	mminit_verify_zonelist();
6647 	cpuset_init_current_mems_allowed();
6648 }
6649 
6650 /*
6651  * unless system_state == SYSTEM_BOOTING.
6652  *
6653  * __ref due to call of __init annotated helper build_all_zonelists_init
6654  * [protected by SYSTEM_BOOTING].
6655  */
6656 void __ref build_all_zonelists(pg_data_t *pgdat)
6657 {
6658 	unsigned long vm_total_pages;
6659 
6660 	if (system_state == SYSTEM_BOOTING) {
6661 		build_all_zonelists_init();
6662 	} else {
6663 		__build_all_zonelists(pgdat);
6664 		/* cpuset refresh routine should be here */
6665 	}
6666 	/* Get the number of free pages beyond high watermark in all zones. */
6667 	vm_total_pages = nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
6668 	/*
6669 	 * Disable grouping by mobility if the number of pages in the
6670 	 * system is too low to allow the mechanism to work. It would be
6671 	 * more accurate, but expensive to check per-zone. This check is
6672 	 * made on memory-hotadd so a system can start with mobility
6673 	 * disabled and enable it later
6674 	 */
6675 	if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
6676 		page_group_by_mobility_disabled = 1;
6677 	else
6678 		page_group_by_mobility_disabled = 0;
6679 
6680 	pr_info("Built %u zonelists, mobility grouping %s.  Total pages: %ld\n",
6681 		nr_online_nodes,
6682 		page_group_by_mobility_disabled ? "off" : "on",
6683 		vm_total_pages);
6684 #ifdef CONFIG_NUMA
6685 	pr_info("Policy zone: %s\n", zone_names[policy_zone]);
6686 #endif
6687 }
6688 
6689 /* If zone is ZONE_MOVABLE but memory is mirrored, it is an overlapped init */
6690 static bool __meminit
6691 overlap_memmap_init(unsigned long zone, unsigned long *pfn)
6692 {
6693 	static struct memblock_region *r;
6694 
6695 	if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
6696 		if (!r || *pfn >= memblock_region_memory_end_pfn(r)) {
6697 			for_each_mem_region(r) {
6698 				if (*pfn < memblock_region_memory_end_pfn(r))
6699 					break;
6700 			}
6701 		}
6702 		if (*pfn >= memblock_region_memory_base_pfn(r) &&
6703 		    memblock_is_mirror(r)) {
6704 			*pfn = memblock_region_memory_end_pfn(r);
6705 			return true;
6706 		}
6707 	}
6708 	return false;
6709 }
6710 
6711 /*
6712  * Initially all pages are reserved - free ones are freed
6713  * up by memblock_free_all() once the early boot process is
6714  * done. Non-atomic initialization, single-pass.
6715  *
6716  * All aligned pageblocks are initialized to the specified migratetype
6717  * (usually MIGRATE_MOVABLE). Besides setting the migratetype, no related
6718  * zone stats (e.g., nr_isolate_pageblock) are touched.
6719  */
6720 void __meminit memmap_init_range(unsigned long size, int nid, unsigned long zone,
6721 		unsigned long start_pfn, unsigned long zone_end_pfn,
6722 		enum meminit_context context,
6723 		struct vmem_altmap *altmap, int migratetype)
6724 {
6725 	unsigned long pfn, end_pfn = start_pfn + size;
6726 	struct page *page;
6727 
6728 	if (highest_memmap_pfn < end_pfn - 1)
6729 		highest_memmap_pfn = end_pfn - 1;
6730 
6731 #ifdef CONFIG_ZONE_DEVICE
6732 	/*
6733 	 * Honor reservation requested by the driver for this ZONE_DEVICE
6734 	 * memory. We limit the total number of pages to initialize to just
6735 	 * those that might contain the memory mapping. We will defer the
6736 	 * ZONE_DEVICE page initialization until after we have released
6737 	 * the hotplug lock.
6738 	 */
6739 	if (zone == ZONE_DEVICE) {
6740 		if (!altmap)
6741 			return;
6742 
6743 		if (start_pfn == altmap->base_pfn)
6744 			start_pfn += altmap->reserve;
6745 		end_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
6746 	}
6747 #endif
6748 
6749 	for (pfn = start_pfn; pfn < end_pfn; ) {
6750 		/*
6751 		 * There can be holes in boot-time mem_map[]s handed to this
6752 		 * function.  They do not exist on hotplugged memory.
6753 		 */
6754 		if (context == MEMINIT_EARLY) {
6755 			if (overlap_memmap_init(zone, &pfn))
6756 				continue;
6757 			if (defer_init(nid, pfn, zone_end_pfn))
6758 				break;
6759 		}
6760 
6761 		page = pfn_to_page(pfn);
6762 		__init_single_page(page, pfn, zone, nid);
6763 		if (context == MEMINIT_HOTPLUG)
6764 			__SetPageReserved(page);
6765 
6766 		/*
6767 		 * Usually, we want to mark the pageblock MIGRATE_MOVABLE,
6768 		 * such that unmovable allocations won't be scattered all
6769 		 * over the place during system boot.
6770 		 */
6771 		if (pageblock_aligned(pfn)) {
6772 			set_pageblock_migratetype(page, migratetype);
6773 			cond_resched();
6774 		}
6775 		pfn++;
6776 	}
6777 }
6778 
6779 #ifdef CONFIG_ZONE_DEVICE
6780 static void __ref __init_zone_device_page(struct page *page, unsigned long pfn,
6781 					  unsigned long zone_idx, int nid,
6782 					  struct dev_pagemap *pgmap)
6783 {
6784 
6785 	__init_single_page(page, pfn, zone_idx, nid);
6786 
6787 	/*
6788 	 * Mark page reserved as it will need to wait for onlining
6789 	 * phase for it to be fully associated with a zone.
6790 	 *
6791 	 * We can use the non-atomic __set_bit operation for setting
6792 	 * the flag as we are still initializing the pages.
6793 	 */
6794 	__SetPageReserved(page);
6795 
6796 	/*
6797 	 * ZONE_DEVICE pages union ->lru with a ->pgmap back pointer
6798 	 * and zone_device_data.  It is a bug if a ZONE_DEVICE page is
6799 	 * ever freed or placed on a driver-private list.
6800 	 */
6801 	page->pgmap = pgmap;
6802 	page->zone_device_data = NULL;
6803 
6804 	/*
6805 	 * Mark the block movable so that blocks are reserved for
6806 	 * movable at startup. This will force kernel allocations
6807 	 * to reserve their blocks rather than leaking throughout
6808 	 * the address space during boot when many long-lived
6809 	 * kernel allocations are made.
6810 	 *
6811 	 * Please note that MEMINIT_HOTPLUG path doesn't clear memmap
6812 	 * because this is done early in section_activate()
6813 	 */
6814 	if (pageblock_aligned(pfn)) {
6815 		set_pageblock_migratetype(page, MIGRATE_MOVABLE);
6816 		cond_resched();
6817 	}
6818 }
6819 
6820 /*
6821  * With compound page geometry and when struct pages are stored in ram most
6822  * tail pages are reused. Consequently, the amount of unique struct pages to
6823  * initialize is a lot smaller that the total amount of struct pages being
6824  * mapped. This is a paired / mild layering violation with explicit knowledge
6825  * of how the sparse_vmemmap internals handle compound pages in the lack
6826  * of an altmap. See vmemmap_populate_compound_pages().
6827  */
6828 static inline unsigned long compound_nr_pages(struct vmem_altmap *altmap,
6829 					      unsigned long nr_pages)
6830 {
6831 	return is_power_of_2(sizeof(struct page)) &&
6832 		!altmap ? 2 * (PAGE_SIZE / sizeof(struct page)) : nr_pages;
6833 }
6834 
6835 static void __ref memmap_init_compound(struct page *head,
6836 				       unsigned long head_pfn,
6837 				       unsigned long zone_idx, int nid,
6838 				       struct dev_pagemap *pgmap,
6839 				       unsigned long nr_pages)
6840 {
6841 	unsigned long pfn, end_pfn = head_pfn + nr_pages;
6842 	unsigned int order = pgmap->vmemmap_shift;
6843 
6844 	__SetPageHead(head);
6845 	for (pfn = head_pfn + 1; pfn < end_pfn; pfn++) {
6846 		struct page *page = pfn_to_page(pfn);
6847 
6848 		__init_zone_device_page(page, pfn, zone_idx, nid, pgmap);
6849 		prep_compound_tail(head, pfn - head_pfn);
6850 		set_page_count(page, 0);
6851 
6852 		/*
6853 		 * The first tail page stores compound_mapcount_ptr() and
6854 		 * compound_order() and the second tail page stores
6855 		 * compound_pincount_ptr(). Call prep_compound_head() after
6856 		 * the first and second tail pages have been initialized to
6857 		 * not have the data overwritten.
6858 		 */
6859 		if (pfn == head_pfn + 2)
6860 			prep_compound_head(head, order);
6861 	}
6862 }
6863 
6864 void __ref memmap_init_zone_device(struct zone *zone,
6865 				   unsigned long start_pfn,
6866 				   unsigned long nr_pages,
6867 				   struct dev_pagemap *pgmap)
6868 {
6869 	unsigned long pfn, end_pfn = start_pfn + nr_pages;
6870 	struct pglist_data *pgdat = zone->zone_pgdat;
6871 	struct vmem_altmap *altmap = pgmap_altmap(pgmap);
6872 	unsigned int pfns_per_compound = pgmap_vmemmap_nr(pgmap);
6873 	unsigned long zone_idx = zone_idx(zone);
6874 	unsigned long start = jiffies;
6875 	int nid = pgdat->node_id;
6876 
6877 	if (WARN_ON_ONCE(!pgmap || zone_idx(zone) != ZONE_DEVICE))
6878 		return;
6879 
6880 	/*
6881 	 * The call to memmap_init should have already taken care
6882 	 * of the pages reserved for the memmap, so we can just jump to
6883 	 * the end of that region and start processing the device pages.
6884 	 */
6885 	if (altmap) {
6886 		start_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
6887 		nr_pages = end_pfn - start_pfn;
6888 	}
6889 
6890 	for (pfn = start_pfn; pfn < end_pfn; pfn += pfns_per_compound) {
6891 		struct page *page = pfn_to_page(pfn);
6892 
6893 		__init_zone_device_page(page, pfn, zone_idx, nid, pgmap);
6894 
6895 		if (pfns_per_compound == 1)
6896 			continue;
6897 
6898 		memmap_init_compound(page, pfn, zone_idx, nid, pgmap,
6899 				     compound_nr_pages(altmap, pfns_per_compound));
6900 	}
6901 
6902 	pr_info("%s initialised %lu pages in %ums\n", __func__,
6903 		nr_pages, jiffies_to_msecs(jiffies - start));
6904 }
6905 
6906 #endif
6907 static void __meminit zone_init_free_lists(struct zone *zone)
6908 {
6909 	unsigned int order, t;
6910 	for_each_migratetype_order(order, t) {
6911 		INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
6912 		zone->free_area[order].nr_free = 0;
6913 	}
6914 }
6915 
6916 /*
6917  * Only struct pages that correspond to ranges defined by memblock.memory
6918  * are zeroed and initialized by going through __init_single_page() during
6919  * memmap_init_zone_range().
6920  *
6921  * But, there could be struct pages that correspond to holes in
6922  * memblock.memory. This can happen because of the following reasons:
6923  * - physical memory bank size is not necessarily the exact multiple of the
6924  *   arbitrary section size
6925  * - early reserved memory may not be listed in memblock.memory
6926  * - memory layouts defined with memmap= kernel parameter may not align
6927  *   nicely with memmap sections
6928  *
6929  * Explicitly initialize those struct pages so that:
6930  * - PG_Reserved is set
6931  * - zone and node links point to zone and node that span the page if the
6932  *   hole is in the middle of a zone
6933  * - zone and node links point to adjacent zone/node if the hole falls on
6934  *   the zone boundary; the pages in such holes will be prepended to the
6935  *   zone/node above the hole except for the trailing pages in the last
6936  *   section that will be appended to the zone/node below.
6937  */
6938 static void __init init_unavailable_range(unsigned long spfn,
6939 					  unsigned long epfn,
6940 					  int zone, int node)
6941 {
6942 	unsigned long pfn;
6943 	u64 pgcnt = 0;
6944 
6945 	for (pfn = spfn; pfn < epfn; pfn++) {
6946 		if (!pfn_valid(pageblock_start_pfn(pfn))) {
6947 			pfn = pageblock_end_pfn(pfn) - 1;
6948 			continue;
6949 		}
6950 		__init_single_page(pfn_to_page(pfn), pfn, zone, node);
6951 		__SetPageReserved(pfn_to_page(pfn));
6952 		pgcnt++;
6953 	}
6954 
6955 	if (pgcnt)
6956 		pr_info("On node %d, zone %s: %lld pages in unavailable ranges",
6957 			node, zone_names[zone], pgcnt);
6958 }
6959 
6960 static void __init memmap_init_zone_range(struct zone *zone,
6961 					  unsigned long start_pfn,
6962 					  unsigned long end_pfn,
6963 					  unsigned long *hole_pfn)
6964 {
6965 	unsigned long zone_start_pfn = zone->zone_start_pfn;
6966 	unsigned long zone_end_pfn = zone_start_pfn + zone->spanned_pages;
6967 	int nid = zone_to_nid(zone), zone_id = zone_idx(zone);
6968 
6969 	start_pfn = clamp(start_pfn, zone_start_pfn, zone_end_pfn);
6970 	end_pfn = clamp(end_pfn, zone_start_pfn, zone_end_pfn);
6971 
6972 	if (start_pfn >= end_pfn)
6973 		return;
6974 
6975 	memmap_init_range(end_pfn - start_pfn, nid, zone_id, start_pfn,
6976 			  zone_end_pfn, MEMINIT_EARLY, NULL, MIGRATE_MOVABLE);
6977 
6978 	if (*hole_pfn < start_pfn)
6979 		init_unavailable_range(*hole_pfn, start_pfn, zone_id, nid);
6980 
6981 	*hole_pfn = end_pfn;
6982 }
6983 
6984 static void __init memmap_init(void)
6985 {
6986 	unsigned long start_pfn, end_pfn;
6987 	unsigned long hole_pfn = 0;
6988 	int i, j, zone_id = 0, nid;
6989 
6990 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
6991 		struct pglist_data *node = NODE_DATA(nid);
6992 
6993 		for (j = 0; j < MAX_NR_ZONES; j++) {
6994 			struct zone *zone = node->node_zones + j;
6995 
6996 			if (!populated_zone(zone))
6997 				continue;
6998 
6999 			memmap_init_zone_range(zone, start_pfn, end_pfn,
7000 					       &hole_pfn);
7001 			zone_id = j;
7002 		}
7003 	}
7004 
7005 #ifdef CONFIG_SPARSEMEM
7006 	/*
7007 	 * Initialize the memory map for hole in the range [memory_end,
7008 	 * section_end].
7009 	 * Append the pages in this hole to the highest zone in the last
7010 	 * node.
7011 	 * The call to init_unavailable_range() is outside the ifdef to
7012 	 * silence the compiler warining about zone_id set but not used;
7013 	 * for FLATMEM it is a nop anyway
7014 	 */
7015 	end_pfn = round_up(end_pfn, PAGES_PER_SECTION);
7016 	if (hole_pfn < end_pfn)
7017 #endif
7018 		init_unavailable_range(hole_pfn, end_pfn, zone_id, nid);
7019 }
7020 
7021 void __init *memmap_alloc(phys_addr_t size, phys_addr_t align,
7022 			  phys_addr_t min_addr, int nid, bool exact_nid)
7023 {
7024 	void *ptr;
7025 
7026 	if (exact_nid)
7027 		ptr = memblock_alloc_exact_nid_raw(size, align, min_addr,
7028 						   MEMBLOCK_ALLOC_ACCESSIBLE,
7029 						   nid);
7030 	else
7031 		ptr = memblock_alloc_try_nid_raw(size, align, min_addr,
7032 						 MEMBLOCK_ALLOC_ACCESSIBLE,
7033 						 nid);
7034 
7035 	if (ptr && size > 0)
7036 		page_init_poison(ptr, size);
7037 
7038 	return ptr;
7039 }
7040 
7041 static int zone_batchsize(struct zone *zone)
7042 {
7043 #ifdef CONFIG_MMU
7044 	int batch;
7045 
7046 	/*
7047 	 * The number of pages to batch allocate is either ~0.1%
7048 	 * of the zone or 1MB, whichever is smaller. The batch
7049 	 * size is striking a balance between allocation latency
7050 	 * and zone lock contention.
7051 	 */
7052 	batch = min(zone_managed_pages(zone) >> 10, (1024 * 1024) / PAGE_SIZE);
7053 	batch /= 4;		/* We effectively *= 4 below */
7054 	if (batch < 1)
7055 		batch = 1;
7056 
7057 	/*
7058 	 * Clamp the batch to a 2^n - 1 value. Having a power
7059 	 * of 2 value was found to be more likely to have
7060 	 * suboptimal cache aliasing properties in some cases.
7061 	 *
7062 	 * For example if 2 tasks are alternately allocating
7063 	 * batches of pages, one task can end up with a lot
7064 	 * of pages of one half of the possible page colors
7065 	 * and the other with pages of the other colors.
7066 	 */
7067 	batch = rounddown_pow_of_two(batch + batch/2) - 1;
7068 
7069 	return batch;
7070 
7071 #else
7072 	/* The deferral and batching of frees should be suppressed under NOMMU
7073 	 * conditions.
7074 	 *
7075 	 * The problem is that NOMMU needs to be able to allocate large chunks
7076 	 * of contiguous memory as there's no hardware page translation to
7077 	 * assemble apparent contiguous memory from discontiguous pages.
7078 	 *
7079 	 * Queueing large contiguous runs of pages for batching, however,
7080 	 * causes the pages to actually be freed in smaller chunks.  As there
7081 	 * can be a significant delay between the individual batches being
7082 	 * recycled, this leads to the once large chunks of space being
7083 	 * fragmented and becoming unavailable for high-order allocations.
7084 	 */
7085 	return 0;
7086 #endif
7087 }
7088 
7089 static int zone_highsize(struct zone *zone, int batch, int cpu_online)
7090 {
7091 #ifdef CONFIG_MMU
7092 	int high;
7093 	int nr_split_cpus;
7094 	unsigned long total_pages;
7095 
7096 	if (!percpu_pagelist_high_fraction) {
7097 		/*
7098 		 * By default, the high value of the pcp is based on the zone
7099 		 * low watermark so that if they are full then background
7100 		 * reclaim will not be started prematurely.
7101 		 */
7102 		total_pages = low_wmark_pages(zone);
7103 	} else {
7104 		/*
7105 		 * If percpu_pagelist_high_fraction is configured, the high
7106 		 * value is based on a fraction of the managed pages in the
7107 		 * zone.
7108 		 */
7109 		total_pages = zone_managed_pages(zone) / percpu_pagelist_high_fraction;
7110 	}
7111 
7112 	/*
7113 	 * Split the high value across all online CPUs local to the zone. Note
7114 	 * that early in boot that CPUs may not be online yet and that during
7115 	 * CPU hotplug that the cpumask is not yet updated when a CPU is being
7116 	 * onlined. For memory nodes that have no CPUs, split pcp->high across
7117 	 * all online CPUs to mitigate the risk that reclaim is triggered
7118 	 * prematurely due to pages stored on pcp lists.
7119 	 */
7120 	nr_split_cpus = cpumask_weight(cpumask_of_node(zone_to_nid(zone))) + cpu_online;
7121 	if (!nr_split_cpus)
7122 		nr_split_cpus = num_online_cpus();
7123 	high = total_pages / nr_split_cpus;
7124 
7125 	/*
7126 	 * Ensure high is at least batch*4. The multiple is based on the
7127 	 * historical relationship between high and batch.
7128 	 */
7129 	high = max(high, batch << 2);
7130 
7131 	return high;
7132 #else
7133 	return 0;
7134 #endif
7135 }
7136 
7137 /*
7138  * pcp->high and pcp->batch values are related and generally batch is lower
7139  * than high. They are also related to pcp->count such that count is lower
7140  * than high, and as soon as it reaches high, the pcplist is flushed.
7141  *
7142  * However, guaranteeing these relations at all times would require e.g. write
7143  * barriers here but also careful usage of read barriers at the read side, and
7144  * thus be prone to error and bad for performance. Thus the update only prevents
7145  * store tearing. Any new users of pcp->batch and pcp->high should ensure they
7146  * can cope with those fields changing asynchronously, and fully trust only the
7147  * pcp->count field on the local CPU with interrupts disabled.
7148  *
7149  * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
7150  * outside of boot time (or some other assurance that no concurrent updaters
7151  * exist).
7152  */
7153 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
7154 		unsigned long batch)
7155 {
7156 	WRITE_ONCE(pcp->batch, batch);
7157 	WRITE_ONCE(pcp->high, high);
7158 }
7159 
7160 static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats)
7161 {
7162 	int pindex;
7163 
7164 	memset(pcp, 0, sizeof(*pcp));
7165 	memset(pzstats, 0, sizeof(*pzstats));
7166 
7167 	spin_lock_init(&pcp->lock);
7168 	for (pindex = 0; pindex < NR_PCP_LISTS; pindex++)
7169 		INIT_LIST_HEAD(&pcp->lists[pindex]);
7170 
7171 	/*
7172 	 * Set batch and high values safe for a boot pageset. A true percpu
7173 	 * pageset's initialization will update them subsequently. Here we don't
7174 	 * need to be as careful as pageset_update() as nobody can access the
7175 	 * pageset yet.
7176 	 */
7177 	pcp->high = BOOT_PAGESET_HIGH;
7178 	pcp->batch = BOOT_PAGESET_BATCH;
7179 	pcp->free_factor = 0;
7180 }
7181 
7182 static void __zone_set_pageset_high_and_batch(struct zone *zone, unsigned long high,
7183 		unsigned long batch)
7184 {
7185 	struct per_cpu_pages *pcp;
7186 	int cpu;
7187 
7188 	for_each_possible_cpu(cpu) {
7189 		pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
7190 		pageset_update(pcp, high, batch);
7191 	}
7192 }
7193 
7194 /*
7195  * Calculate and set new high and batch values for all per-cpu pagesets of a
7196  * zone based on the zone's size.
7197  */
7198 static void zone_set_pageset_high_and_batch(struct zone *zone, int cpu_online)
7199 {
7200 	int new_high, new_batch;
7201 
7202 	new_batch = max(1, zone_batchsize(zone));
7203 	new_high = zone_highsize(zone, new_batch, cpu_online);
7204 
7205 	if (zone->pageset_high == new_high &&
7206 	    zone->pageset_batch == new_batch)
7207 		return;
7208 
7209 	zone->pageset_high = new_high;
7210 	zone->pageset_batch = new_batch;
7211 
7212 	__zone_set_pageset_high_and_batch(zone, new_high, new_batch);
7213 }
7214 
7215 void __meminit setup_zone_pageset(struct zone *zone)
7216 {
7217 	int cpu;
7218 
7219 	/* Size may be 0 on !SMP && !NUMA */
7220 	if (sizeof(struct per_cpu_zonestat) > 0)
7221 		zone->per_cpu_zonestats = alloc_percpu(struct per_cpu_zonestat);
7222 
7223 	zone->per_cpu_pageset = alloc_percpu(struct per_cpu_pages);
7224 	for_each_possible_cpu(cpu) {
7225 		struct per_cpu_pages *pcp;
7226 		struct per_cpu_zonestat *pzstats;
7227 
7228 		pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
7229 		pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
7230 		per_cpu_pages_init(pcp, pzstats);
7231 	}
7232 
7233 	zone_set_pageset_high_and_batch(zone, 0);
7234 }
7235 
7236 /*
7237  * Allocate per cpu pagesets and initialize them.
7238  * Before this call only boot pagesets were available.
7239  */
7240 void __init setup_per_cpu_pageset(void)
7241 {
7242 	struct pglist_data *pgdat;
7243 	struct zone *zone;
7244 	int __maybe_unused cpu;
7245 
7246 	for_each_populated_zone(zone)
7247 		setup_zone_pageset(zone);
7248 
7249 #ifdef CONFIG_NUMA
7250 	/*
7251 	 * Unpopulated zones continue using the boot pagesets.
7252 	 * The numa stats for these pagesets need to be reset.
7253 	 * Otherwise, they will end up skewing the stats of
7254 	 * the nodes these zones are associated with.
7255 	 */
7256 	for_each_possible_cpu(cpu) {
7257 		struct per_cpu_zonestat *pzstats = &per_cpu(boot_zonestats, cpu);
7258 		memset(pzstats->vm_numa_event, 0,
7259 		       sizeof(pzstats->vm_numa_event));
7260 	}
7261 #endif
7262 
7263 	for_each_online_pgdat(pgdat)
7264 		pgdat->per_cpu_nodestats =
7265 			alloc_percpu(struct per_cpu_nodestat);
7266 }
7267 
7268 static __meminit void zone_pcp_init(struct zone *zone)
7269 {
7270 	/*
7271 	 * per cpu subsystem is not up at this point. The following code
7272 	 * relies on the ability of the linker to provide the
7273 	 * offset of a (static) per cpu variable into the per cpu area.
7274 	 */
7275 	zone->per_cpu_pageset = &boot_pageset;
7276 	zone->per_cpu_zonestats = &boot_zonestats;
7277 	zone->pageset_high = BOOT_PAGESET_HIGH;
7278 	zone->pageset_batch = BOOT_PAGESET_BATCH;
7279 
7280 	if (populated_zone(zone))
7281 		pr_debug("  %s zone: %lu pages, LIFO batch:%u\n", zone->name,
7282 			 zone->present_pages, zone_batchsize(zone));
7283 }
7284 
7285 void __meminit init_currently_empty_zone(struct zone *zone,
7286 					unsigned long zone_start_pfn,
7287 					unsigned long size)
7288 {
7289 	struct pglist_data *pgdat = zone->zone_pgdat;
7290 	int zone_idx = zone_idx(zone) + 1;
7291 
7292 	if (zone_idx > pgdat->nr_zones)
7293 		pgdat->nr_zones = zone_idx;
7294 
7295 	zone->zone_start_pfn = zone_start_pfn;
7296 
7297 	mminit_dprintk(MMINIT_TRACE, "memmap_init",
7298 			"Initialising map node %d zone %lu pfns %lu -> %lu\n",
7299 			pgdat->node_id,
7300 			(unsigned long)zone_idx(zone),
7301 			zone_start_pfn, (zone_start_pfn + size));
7302 
7303 	zone_init_free_lists(zone);
7304 	zone->initialized = 1;
7305 }
7306 
7307 /**
7308  * get_pfn_range_for_nid - Return the start and end page frames for a node
7309  * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
7310  * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
7311  * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
7312  *
7313  * It returns the start and end page frame of a node based on information
7314  * provided by memblock_set_node(). If called for a node
7315  * with no available memory, a warning is printed and the start and end
7316  * PFNs will be 0.
7317  */
7318 void __init get_pfn_range_for_nid(unsigned int nid,
7319 			unsigned long *start_pfn, unsigned long *end_pfn)
7320 {
7321 	unsigned long this_start_pfn, this_end_pfn;
7322 	int i;
7323 
7324 	*start_pfn = -1UL;
7325 	*end_pfn = 0;
7326 
7327 	for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
7328 		*start_pfn = min(*start_pfn, this_start_pfn);
7329 		*end_pfn = max(*end_pfn, this_end_pfn);
7330 	}
7331 
7332 	if (*start_pfn == -1UL)
7333 		*start_pfn = 0;
7334 }
7335 
7336 /*
7337  * This finds a zone that can be used for ZONE_MOVABLE pages. The
7338  * assumption is made that zones within a node are ordered in monotonic
7339  * increasing memory addresses so that the "highest" populated zone is used
7340  */
7341 static void __init find_usable_zone_for_movable(void)
7342 {
7343 	int zone_index;
7344 	for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
7345 		if (zone_index == ZONE_MOVABLE)
7346 			continue;
7347 
7348 		if (arch_zone_highest_possible_pfn[zone_index] >
7349 				arch_zone_lowest_possible_pfn[zone_index])
7350 			break;
7351 	}
7352 
7353 	VM_BUG_ON(zone_index == -1);
7354 	movable_zone = zone_index;
7355 }
7356 
7357 /*
7358  * The zone ranges provided by the architecture do not include ZONE_MOVABLE
7359  * because it is sized independent of architecture. Unlike the other zones,
7360  * the starting point for ZONE_MOVABLE is not fixed. It may be different
7361  * in each node depending on the size of each node and how evenly kernelcore
7362  * is distributed. This helper function adjusts the zone ranges
7363  * provided by the architecture for a given node by using the end of the
7364  * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
7365  * zones within a node are in order of monotonic increases memory addresses
7366  */
7367 static void __init adjust_zone_range_for_zone_movable(int nid,
7368 					unsigned long zone_type,
7369 					unsigned long node_start_pfn,
7370 					unsigned long node_end_pfn,
7371 					unsigned long *zone_start_pfn,
7372 					unsigned long *zone_end_pfn)
7373 {
7374 	/* Only adjust if ZONE_MOVABLE is on this node */
7375 	if (zone_movable_pfn[nid]) {
7376 		/* Size ZONE_MOVABLE */
7377 		if (zone_type == ZONE_MOVABLE) {
7378 			*zone_start_pfn = zone_movable_pfn[nid];
7379 			*zone_end_pfn = min(node_end_pfn,
7380 				arch_zone_highest_possible_pfn[movable_zone]);
7381 
7382 		/* Adjust for ZONE_MOVABLE starting within this range */
7383 		} else if (!mirrored_kernelcore &&
7384 			*zone_start_pfn < zone_movable_pfn[nid] &&
7385 			*zone_end_pfn > zone_movable_pfn[nid]) {
7386 			*zone_end_pfn = zone_movable_pfn[nid];
7387 
7388 		/* Check if this whole range is within ZONE_MOVABLE */
7389 		} else if (*zone_start_pfn >= zone_movable_pfn[nid])
7390 			*zone_start_pfn = *zone_end_pfn;
7391 	}
7392 }
7393 
7394 /*
7395  * Return the number of pages a zone spans in a node, including holes
7396  * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
7397  */
7398 static unsigned long __init zone_spanned_pages_in_node(int nid,
7399 					unsigned long zone_type,
7400 					unsigned long node_start_pfn,
7401 					unsigned long node_end_pfn,
7402 					unsigned long *zone_start_pfn,
7403 					unsigned long *zone_end_pfn)
7404 {
7405 	unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
7406 	unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
7407 	/* When hotadd a new node from cpu_up(), the node should be empty */
7408 	if (!node_start_pfn && !node_end_pfn)
7409 		return 0;
7410 
7411 	/* Get the start and end of the zone */
7412 	*zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
7413 	*zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
7414 	adjust_zone_range_for_zone_movable(nid, zone_type,
7415 				node_start_pfn, node_end_pfn,
7416 				zone_start_pfn, zone_end_pfn);
7417 
7418 	/* Check that this node has pages within the zone's required range */
7419 	if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
7420 		return 0;
7421 
7422 	/* Move the zone boundaries inside the node if necessary */
7423 	*zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
7424 	*zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
7425 
7426 	/* Return the spanned pages */
7427 	return *zone_end_pfn - *zone_start_pfn;
7428 }
7429 
7430 /*
7431  * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
7432  * then all holes in the requested range will be accounted for.
7433  */
7434 unsigned long __init __absent_pages_in_range(int nid,
7435 				unsigned long range_start_pfn,
7436 				unsigned long range_end_pfn)
7437 {
7438 	unsigned long nr_absent = range_end_pfn - range_start_pfn;
7439 	unsigned long start_pfn, end_pfn;
7440 	int i;
7441 
7442 	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
7443 		start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
7444 		end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
7445 		nr_absent -= end_pfn - start_pfn;
7446 	}
7447 	return nr_absent;
7448 }
7449 
7450 /**
7451  * absent_pages_in_range - Return number of page frames in holes within a range
7452  * @start_pfn: The start PFN to start searching for holes
7453  * @end_pfn: The end PFN to stop searching for holes
7454  *
7455  * Return: the number of pages frames in memory holes within a range.
7456  */
7457 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
7458 							unsigned long end_pfn)
7459 {
7460 	return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
7461 }
7462 
7463 /* Return the number of page frames in holes in a zone on a node */
7464 static unsigned long __init zone_absent_pages_in_node(int nid,
7465 					unsigned long zone_type,
7466 					unsigned long node_start_pfn,
7467 					unsigned long node_end_pfn)
7468 {
7469 	unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
7470 	unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
7471 	unsigned long zone_start_pfn, zone_end_pfn;
7472 	unsigned long nr_absent;
7473 
7474 	/* When hotadd a new node from cpu_up(), the node should be empty */
7475 	if (!node_start_pfn && !node_end_pfn)
7476 		return 0;
7477 
7478 	zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
7479 	zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
7480 
7481 	adjust_zone_range_for_zone_movable(nid, zone_type,
7482 			node_start_pfn, node_end_pfn,
7483 			&zone_start_pfn, &zone_end_pfn);
7484 	nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
7485 
7486 	/*
7487 	 * ZONE_MOVABLE handling.
7488 	 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
7489 	 * and vice versa.
7490 	 */
7491 	if (mirrored_kernelcore && zone_movable_pfn[nid]) {
7492 		unsigned long start_pfn, end_pfn;
7493 		struct memblock_region *r;
7494 
7495 		for_each_mem_region(r) {
7496 			start_pfn = clamp(memblock_region_memory_base_pfn(r),
7497 					  zone_start_pfn, zone_end_pfn);
7498 			end_pfn = clamp(memblock_region_memory_end_pfn(r),
7499 					zone_start_pfn, zone_end_pfn);
7500 
7501 			if (zone_type == ZONE_MOVABLE &&
7502 			    memblock_is_mirror(r))
7503 				nr_absent += end_pfn - start_pfn;
7504 
7505 			if (zone_type == ZONE_NORMAL &&
7506 			    !memblock_is_mirror(r))
7507 				nr_absent += end_pfn - start_pfn;
7508 		}
7509 	}
7510 
7511 	return nr_absent;
7512 }
7513 
7514 static void __init calculate_node_totalpages(struct pglist_data *pgdat,
7515 						unsigned long node_start_pfn,
7516 						unsigned long node_end_pfn)
7517 {
7518 	unsigned long realtotalpages = 0, totalpages = 0;
7519 	enum zone_type i;
7520 
7521 	for (i = 0; i < MAX_NR_ZONES; i++) {
7522 		struct zone *zone = pgdat->node_zones + i;
7523 		unsigned long zone_start_pfn, zone_end_pfn;
7524 		unsigned long spanned, absent;
7525 		unsigned long size, real_size;
7526 
7527 		spanned = zone_spanned_pages_in_node(pgdat->node_id, i,
7528 						     node_start_pfn,
7529 						     node_end_pfn,
7530 						     &zone_start_pfn,
7531 						     &zone_end_pfn);
7532 		absent = zone_absent_pages_in_node(pgdat->node_id, i,
7533 						   node_start_pfn,
7534 						   node_end_pfn);
7535 
7536 		size = spanned;
7537 		real_size = size - absent;
7538 
7539 		if (size)
7540 			zone->zone_start_pfn = zone_start_pfn;
7541 		else
7542 			zone->zone_start_pfn = 0;
7543 		zone->spanned_pages = size;
7544 		zone->present_pages = real_size;
7545 #if defined(CONFIG_MEMORY_HOTPLUG)
7546 		zone->present_early_pages = real_size;
7547 #endif
7548 
7549 		totalpages += size;
7550 		realtotalpages += real_size;
7551 	}
7552 
7553 	pgdat->node_spanned_pages = totalpages;
7554 	pgdat->node_present_pages = realtotalpages;
7555 	pr_debug("On node %d totalpages: %lu\n", pgdat->node_id, realtotalpages);
7556 }
7557 
7558 #ifndef CONFIG_SPARSEMEM
7559 /*
7560  * Calculate the size of the zone->blockflags rounded to an unsigned long
7561  * Start by making sure zonesize is a multiple of pageblock_order by rounding
7562  * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
7563  * round what is now in bits to nearest long in bits, then return it in
7564  * bytes.
7565  */
7566 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
7567 {
7568 	unsigned long usemapsize;
7569 
7570 	zonesize += zone_start_pfn & (pageblock_nr_pages-1);
7571 	usemapsize = roundup(zonesize, pageblock_nr_pages);
7572 	usemapsize = usemapsize >> pageblock_order;
7573 	usemapsize *= NR_PAGEBLOCK_BITS;
7574 	usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
7575 
7576 	return usemapsize / 8;
7577 }
7578 
7579 static void __ref setup_usemap(struct zone *zone)
7580 {
7581 	unsigned long usemapsize = usemap_size(zone->zone_start_pfn,
7582 					       zone->spanned_pages);
7583 	zone->pageblock_flags = NULL;
7584 	if (usemapsize) {
7585 		zone->pageblock_flags =
7586 			memblock_alloc_node(usemapsize, SMP_CACHE_BYTES,
7587 					    zone_to_nid(zone));
7588 		if (!zone->pageblock_flags)
7589 			panic("Failed to allocate %ld bytes for zone %s pageblock flags on node %d\n",
7590 			      usemapsize, zone->name, zone_to_nid(zone));
7591 	}
7592 }
7593 #else
7594 static inline void setup_usemap(struct zone *zone) {}
7595 #endif /* CONFIG_SPARSEMEM */
7596 
7597 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
7598 
7599 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
7600 void __init set_pageblock_order(void)
7601 {
7602 	unsigned int order = MAX_ORDER - 1;
7603 
7604 	/* Check that pageblock_nr_pages has not already been setup */
7605 	if (pageblock_order)
7606 		return;
7607 
7608 	/* Don't let pageblocks exceed the maximum allocation granularity. */
7609 	if (HPAGE_SHIFT > PAGE_SHIFT && HUGETLB_PAGE_ORDER < order)
7610 		order = HUGETLB_PAGE_ORDER;
7611 
7612 	/*
7613 	 * Assume the largest contiguous order of interest is a huge page.
7614 	 * This value may be variable depending on boot parameters on IA64 and
7615 	 * powerpc.
7616 	 */
7617 	pageblock_order = order;
7618 }
7619 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
7620 
7621 /*
7622  * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
7623  * is unused as pageblock_order is set at compile-time. See
7624  * include/linux/pageblock-flags.h for the values of pageblock_order based on
7625  * the kernel config
7626  */
7627 void __init set_pageblock_order(void)
7628 {
7629 }
7630 
7631 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
7632 
7633 static unsigned long __init calc_memmap_size(unsigned long spanned_pages,
7634 						unsigned long present_pages)
7635 {
7636 	unsigned long pages = spanned_pages;
7637 
7638 	/*
7639 	 * Provide a more accurate estimation if there are holes within
7640 	 * the zone and SPARSEMEM is in use. If there are holes within the
7641 	 * zone, each populated memory region may cost us one or two extra
7642 	 * memmap pages due to alignment because memmap pages for each
7643 	 * populated regions may not be naturally aligned on page boundary.
7644 	 * So the (present_pages >> 4) heuristic is a tradeoff for that.
7645 	 */
7646 	if (spanned_pages > present_pages + (present_pages >> 4) &&
7647 	    IS_ENABLED(CONFIG_SPARSEMEM))
7648 		pages = present_pages;
7649 
7650 	return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
7651 }
7652 
7653 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
7654 static void pgdat_init_split_queue(struct pglist_data *pgdat)
7655 {
7656 	struct deferred_split *ds_queue = &pgdat->deferred_split_queue;
7657 
7658 	spin_lock_init(&ds_queue->split_queue_lock);
7659 	INIT_LIST_HEAD(&ds_queue->split_queue);
7660 	ds_queue->split_queue_len = 0;
7661 }
7662 #else
7663 static void pgdat_init_split_queue(struct pglist_data *pgdat) {}
7664 #endif
7665 
7666 #ifdef CONFIG_COMPACTION
7667 static void pgdat_init_kcompactd(struct pglist_data *pgdat)
7668 {
7669 	init_waitqueue_head(&pgdat->kcompactd_wait);
7670 }
7671 #else
7672 static void pgdat_init_kcompactd(struct pglist_data *pgdat) {}
7673 #endif
7674 
7675 static void __meminit pgdat_init_internals(struct pglist_data *pgdat)
7676 {
7677 	int i;
7678 
7679 	pgdat_resize_init(pgdat);
7680 	pgdat_kswapd_lock_init(pgdat);
7681 
7682 	pgdat_init_split_queue(pgdat);
7683 	pgdat_init_kcompactd(pgdat);
7684 
7685 	init_waitqueue_head(&pgdat->kswapd_wait);
7686 	init_waitqueue_head(&pgdat->pfmemalloc_wait);
7687 
7688 	for (i = 0; i < NR_VMSCAN_THROTTLE; i++)
7689 		init_waitqueue_head(&pgdat->reclaim_wait[i]);
7690 
7691 	pgdat_page_ext_init(pgdat);
7692 	lruvec_init(&pgdat->__lruvec);
7693 }
7694 
7695 static void __meminit zone_init_internals(struct zone *zone, enum zone_type idx, int nid,
7696 							unsigned long remaining_pages)
7697 {
7698 	atomic_long_set(&zone->managed_pages, remaining_pages);
7699 	zone_set_nid(zone, nid);
7700 	zone->name = zone_names[idx];
7701 	zone->zone_pgdat = NODE_DATA(nid);
7702 	spin_lock_init(&zone->lock);
7703 	zone_seqlock_init(zone);
7704 	zone_pcp_init(zone);
7705 }
7706 
7707 /*
7708  * Set up the zone data structures
7709  * - init pgdat internals
7710  * - init all zones belonging to this node
7711  *
7712  * NOTE: this function is only called during memory hotplug
7713  */
7714 #ifdef CONFIG_MEMORY_HOTPLUG
7715 void __ref free_area_init_core_hotplug(struct pglist_data *pgdat)
7716 {
7717 	int nid = pgdat->node_id;
7718 	enum zone_type z;
7719 	int cpu;
7720 
7721 	pgdat_init_internals(pgdat);
7722 
7723 	if (pgdat->per_cpu_nodestats == &boot_nodestats)
7724 		pgdat->per_cpu_nodestats = alloc_percpu(struct per_cpu_nodestat);
7725 
7726 	/*
7727 	 * Reset the nr_zones, order and highest_zoneidx before reuse.
7728 	 * Note that kswapd will init kswapd_highest_zoneidx properly
7729 	 * when it starts in the near future.
7730 	 */
7731 	pgdat->nr_zones = 0;
7732 	pgdat->kswapd_order = 0;
7733 	pgdat->kswapd_highest_zoneidx = 0;
7734 	pgdat->node_start_pfn = 0;
7735 	for_each_online_cpu(cpu) {
7736 		struct per_cpu_nodestat *p;
7737 
7738 		p = per_cpu_ptr(pgdat->per_cpu_nodestats, cpu);
7739 		memset(p, 0, sizeof(*p));
7740 	}
7741 
7742 	for (z = 0; z < MAX_NR_ZONES; z++)
7743 		zone_init_internals(&pgdat->node_zones[z], z, nid, 0);
7744 }
7745 #endif
7746 
7747 /*
7748  * Set up the zone data structures:
7749  *   - mark all pages reserved
7750  *   - mark all memory queues empty
7751  *   - clear the memory bitmaps
7752  *
7753  * NOTE: pgdat should get zeroed by caller.
7754  * NOTE: this function is only called during early init.
7755  */
7756 static void __init free_area_init_core(struct pglist_data *pgdat)
7757 {
7758 	enum zone_type j;
7759 	int nid = pgdat->node_id;
7760 
7761 	pgdat_init_internals(pgdat);
7762 	pgdat->per_cpu_nodestats = &boot_nodestats;
7763 
7764 	for (j = 0; j < MAX_NR_ZONES; j++) {
7765 		struct zone *zone = pgdat->node_zones + j;
7766 		unsigned long size, freesize, memmap_pages;
7767 
7768 		size = zone->spanned_pages;
7769 		freesize = zone->present_pages;
7770 
7771 		/*
7772 		 * Adjust freesize so that it accounts for how much memory
7773 		 * is used by this zone for memmap. This affects the watermark
7774 		 * and per-cpu initialisations
7775 		 */
7776 		memmap_pages = calc_memmap_size(size, freesize);
7777 		if (!is_highmem_idx(j)) {
7778 			if (freesize >= memmap_pages) {
7779 				freesize -= memmap_pages;
7780 				if (memmap_pages)
7781 					pr_debug("  %s zone: %lu pages used for memmap\n",
7782 						 zone_names[j], memmap_pages);
7783 			} else
7784 				pr_warn("  %s zone: %lu memmap pages exceeds freesize %lu\n",
7785 					zone_names[j], memmap_pages, freesize);
7786 		}
7787 
7788 		/* Account for reserved pages */
7789 		if (j == 0 && freesize > dma_reserve) {
7790 			freesize -= dma_reserve;
7791 			pr_debug("  %s zone: %lu pages reserved\n", zone_names[0], dma_reserve);
7792 		}
7793 
7794 		if (!is_highmem_idx(j))
7795 			nr_kernel_pages += freesize;
7796 		/* Charge for highmem memmap if there are enough kernel pages */
7797 		else if (nr_kernel_pages > memmap_pages * 2)
7798 			nr_kernel_pages -= memmap_pages;
7799 		nr_all_pages += freesize;
7800 
7801 		/*
7802 		 * Set an approximate value for lowmem here, it will be adjusted
7803 		 * when the bootmem allocator frees pages into the buddy system.
7804 		 * And all highmem pages will be managed by the buddy system.
7805 		 */
7806 		zone_init_internals(zone, j, nid, freesize);
7807 
7808 		if (!size)
7809 			continue;
7810 
7811 		set_pageblock_order();
7812 		setup_usemap(zone);
7813 		init_currently_empty_zone(zone, zone->zone_start_pfn, size);
7814 	}
7815 }
7816 
7817 #ifdef CONFIG_FLATMEM
7818 static void __init alloc_node_mem_map(struct pglist_data *pgdat)
7819 {
7820 	unsigned long __maybe_unused start = 0;
7821 	unsigned long __maybe_unused offset = 0;
7822 
7823 	/* Skip empty nodes */
7824 	if (!pgdat->node_spanned_pages)
7825 		return;
7826 
7827 	start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
7828 	offset = pgdat->node_start_pfn - start;
7829 	/* ia64 gets its own node_mem_map, before this, without bootmem */
7830 	if (!pgdat->node_mem_map) {
7831 		unsigned long size, end;
7832 		struct page *map;
7833 
7834 		/*
7835 		 * The zone's endpoints aren't required to be MAX_ORDER
7836 		 * aligned but the node_mem_map endpoints must be in order
7837 		 * for the buddy allocator to function correctly.
7838 		 */
7839 		end = pgdat_end_pfn(pgdat);
7840 		end = ALIGN(end, MAX_ORDER_NR_PAGES);
7841 		size =  (end - start) * sizeof(struct page);
7842 		map = memmap_alloc(size, SMP_CACHE_BYTES, MEMBLOCK_LOW_LIMIT,
7843 				   pgdat->node_id, false);
7844 		if (!map)
7845 			panic("Failed to allocate %ld bytes for node %d memory map\n",
7846 			      size, pgdat->node_id);
7847 		pgdat->node_mem_map = map + offset;
7848 	}
7849 	pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n",
7850 				__func__, pgdat->node_id, (unsigned long)pgdat,
7851 				(unsigned long)pgdat->node_mem_map);
7852 #ifndef CONFIG_NUMA
7853 	/*
7854 	 * With no DISCONTIG, the global mem_map is just set as node 0's
7855 	 */
7856 	if (pgdat == NODE_DATA(0)) {
7857 		mem_map = NODE_DATA(0)->node_mem_map;
7858 		if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
7859 			mem_map -= offset;
7860 	}
7861 #endif
7862 }
7863 #else
7864 static inline void alloc_node_mem_map(struct pglist_data *pgdat) { }
7865 #endif /* CONFIG_FLATMEM */
7866 
7867 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
7868 static inline void pgdat_set_deferred_range(pg_data_t *pgdat)
7869 {
7870 	pgdat->first_deferred_pfn = ULONG_MAX;
7871 }
7872 #else
7873 static inline void pgdat_set_deferred_range(pg_data_t *pgdat) {}
7874 #endif
7875 
7876 static void __init free_area_init_node(int nid)
7877 {
7878 	pg_data_t *pgdat = NODE_DATA(nid);
7879 	unsigned long start_pfn = 0;
7880 	unsigned long end_pfn = 0;
7881 
7882 	/* pg_data_t should be reset to zero when it's allocated */
7883 	WARN_ON(pgdat->nr_zones || pgdat->kswapd_highest_zoneidx);
7884 
7885 	get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
7886 
7887 	pgdat->node_id = nid;
7888 	pgdat->node_start_pfn = start_pfn;
7889 	pgdat->per_cpu_nodestats = NULL;
7890 
7891 	if (start_pfn != end_pfn) {
7892 		pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
7893 			(u64)start_pfn << PAGE_SHIFT,
7894 			end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
7895 	} else {
7896 		pr_info("Initmem setup node %d as memoryless\n", nid);
7897 	}
7898 
7899 	calculate_node_totalpages(pgdat, start_pfn, end_pfn);
7900 
7901 	alloc_node_mem_map(pgdat);
7902 	pgdat_set_deferred_range(pgdat);
7903 
7904 	free_area_init_core(pgdat);
7905 }
7906 
7907 static void __init free_area_init_memoryless_node(int nid)
7908 {
7909 	free_area_init_node(nid);
7910 }
7911 
7912 #if MAX_NUMNODES > 1
7913 /*
7914  * Figure out the number of possible node ids.
7915  */
7916 void __init setup_nr_node_ids(void)
7917 {
7918 	unsigned int highest;
7919 
7920 	highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
7921 	nr_node_ids = highest + 1;
7922 }
7923 #endif
7924 
7925 /**
7926  * node_map_pfn_alignment - determine the maximum internode alignment
7927  *
7928  * This function should be called after node map is populated and sorted.
7929  * It calculates the maximum power of two alignment which can distinguish
7930  * all the nodes.
7931  *
7932  * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
7933  * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)).  If the
7934  * nodes are shifted by 256MiB, 256MiB.  Note that if only the last node is
7935  * shifted, 1GiB is enough and this function will indicate so.
7936  *
7937  * This is used to test whether pfn -> nid mapping of the chosen memory
7938  * model has fine enough granularity to avoid incorrect mapping for the
7939  * populated node map.
7940  *
7941  * Return: the determined alignment in pfn's.  0 if there is no alignment
7942  * requirement (single node).
7943  */
7944 unsigned long __init node_map_pfn_alignment(void)
7945 {
7946 	unsigned long accl_mask = 0, last_end = 0;
7947 	unsigned long start, end, mask;
7948 	int last_nid = NUMA_NO_NODE;
7949 	int i, nid;
7950 
7951 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
7952 		if (!start || last_nid < 0 || last_nid == nid) {
7953 			last_nid = nid;
7954 			last_end = end;
7955 			continue;
7956 		}
7957 
7958 		/*
7959 		 * Start with a mask granular enough to pin-point to the
7960 		 * start pfn and tick off bits one-by-one until it becomes
7961 		 * too coarse to separate the current node from the last.
7962 		 */
7963 		mask = ~((1 << __ffs(start)) - 1);
7964 		while (mask && last_end <= (start & (mask << 1)))
7965 			mask <<= 1;
7966 
7967 		/* accumulate all internode masks */
7968 		accl_mask |= mask;
7969 	}
7970 
7971 	/* convert mask to number of pages */
7972 	return ~accl_mask + 1;
7973 }
7974 
7975 /*
7976  * early_calculate_totalpages()
7977  * Sum pages in active regions for movable zone.
7978  * Populate N_MEMORY for calculating usable_nodes.
7979  */
7980 static unsigned long __init early_calculate_totalpages(void)
7981 {
7982 	unsigned long totalpages = 0;
7983 	unsigned long start_pfn, end_pfn;
7984 	int i, nid;
7985 
7986 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
7987 		unsigned long pages = end_pfn - start_pfn;
7988 
7989 		totalpages += pages;
7990 		if (pages)
7991 			node_set_state(nid, N_MEMORY);
7992 	}
7993 	return totalpages;
7994 }
7995 
7996 /*
7997  * Find the PFN the Movable zone begins in each node. Kernel memory
7998  * is spread evenly between nodes as long as the nodes have enough
7999  * memory. When they don't, some nodes will have more kernelcore than
8000  * others
8001  */
8002 static void __init find_zone_movable_pfns_for_nodes(void)
8003 {
8004 	int i, nid;
8005 	unsigned long usable_startpfn;
8006 	unsigned long kernelcore_node, kernelcore_remaining;
8007 	/* save the state before borrow the nodemask */
8008 	nodemask_t saved_node_state = node_states[N_MEMORY];
8009 	unsigned long totalpages = early_calculate_totalpages();
8010 	int usable_nodes = nodes_weight(node_states[N_MEMORY]);
8011 	struct memblock_region *r;
8012 
8013 	/* Need to find movable_zone earlier when movable_node is specified. */
8014 	find_usable_zone_for_movable();
8015 
8016 	/*
8017 	 * If movable_node is specified, ignore kernelcore and movablecore
8018 	 * options.
8019 	 */
8020 	if (movable_node_is_enabled()) {
8021 		for_each_mem_region(r) {
8022 			if (!memblock_is_hotpluggable(r))
8023 				continue;
8024 
8025 			nid = memblock_get_region_node(r);
8026 
8027 			usable_startpfn = PFN_DOWN(r->base);
8028 			zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
8029 				min(usable_startpfn, zone_movable_pfn[nid]) :
8030 				usable_startpfn;
8031 		}
8032 
8033 		goto out2;
8034 	}
8035 
8036 	/*
8037 	 * If kernelcore=mirror is specified, ignore movablecore option
8038 	 */
8039 	if (mirrored_kernelcore) {
8040 		bool mem_below_4gb_not_mirrored = false;
8041 
8042 		for_each_mem_region(r) {
8043 			if (memblock_is_mirror(r))
8044 				continue;
8045 
8046 			nid = memblock_get_region_node(r);
8047 
8048 			usable_startpfn = memblock_region_memory_base_pfn(r);
8049 
8050 			if (usable_startpfn < PHYS_PFN(SZ_4G)) {
8051 				mem_below_4gb_not_mirrored = true;
8052 				continue;
8053 			}
8054 
8055 			zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
8056 				min(usable_startpfn, zone_movable_pfn[nid]) :
8057 				usable_startpfn;
8058 		}
8059 
8060 		if (mem_below_4gb_not_mirrored)
8061 			pr_warn("This configuration results in unmirrored kernel memory.\n");
8062 
8063 		goto out2;
8064 	}
8065 
8066 	/*
8067 	 * If kernelcore=nn% or movablecore=nn% was specified, calculate the
8068 	 * amount of necessary memory.
8069 	 */
8070 	if (required_kernelcore_percent)
8071 		required_kernelcore = (totalpages * 100 * required_kernelcore_percent) /
8072 				       10000UL;
8073 	if (required_movablecore_percent)
8074 		required_movablecore = (totalpages * 100 * required_movablecore_percent) /
8075 					10000UL;
8076 
8077 	/*
8078 	 * If movablecore= was specified, calculate what size of
8079 	 * kernelcore that corresponds so that memory usable for
8080 	 * any allocation type is evenly spread. If both kernelcore
8081 	 * and movablecore are specified, then the value of kernelcore
8082 	 * will be used for required_kernelcore if it's greater than
8083 	 * what movablecore would have allowed.
8084 	 */
8085 	if (required_movablecore) {
8086 		unsigned long corepages;
8087 
8088 		/*
8089 		 * Round-up so that ZONE_MOVABLE is at least as large as what
8090 		 * was requested by the user
8091 		 */
8092 		required_movablecore =
8093 			roundup(required_movablecore, MAX_ORDER_NR_PAGES);
8094 		required_movablecore = min(totalpages, required_movablecore);
8095 		corepages = totalpages - required_movablecore;
8096 
8097 		required_kernelcore = max(required_kernelcore, corepages);
8098 	}
8099 
8100 	/*
8101 	 * If kernelcore was not specified or kernelcore size is larger
8102 	 * than totalpages, there is no ZONE_MOVABLE.
8103 	 */
8104 	if (!required_kernelcore || required_kernelcore >= totalpages)
8105 		goto out;
8106 
8107 	/* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
8108 	usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
8109 
8110 restart:
8111 	/* Spread kernelcore memory as evenly as possible throughout nodes */
8112 	kernelcore_node = required_kernelcore / usable_nodes;
8113 	for_each_node_state(nid, N_MEMORY) {
8114 		unsigned long start_pfn, end_pfn;
8115 
8116 		/*
8117 		 * Recalculate kernelcore_node if the division per node
8118 		 * now exceeds what is necessary to satisfy the requested
8119 		 * amount of memory for the kernel
8120 		 */
8121 		if (required_kernelcore < kernelcore_node)
8122 			kernelcore_node = required_kernelcore / usable_nodes;
8123 
8124 		/*
8125 		 * As the map is walked, we track how much memory is usable
8126 		 * by the kernel using kernelcore_remaining. When it is
8127 		 * 0, the rest of the node is usable by ZONE_MOVABLE
8128 		 */
8129 		kernelcore_remaining = kernelcore_node;
8130 
8131 		/* Go through each range of PFNs within this node */
8132 		for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
8133 			unsigned long size_pages;
8134 
8135 			start_pfn = max(start_pfn, zone_movable_pfn[nid]);
8136 			if (start_pfn >= end_pfn)
8137 				continue;
8138 
8139 			/* Account for what is only usable for kernelcore */
8140 			if (start_pfn < usable_startpfn) {
8141 				unsigned long kernel_pages;
8142 				kernel_pages = min(end_pfn, usable_startpfn)
8143 								- start_pfn;
8144 
8145 				kernelcore_remaining -= min(kernel_pages,
8146 							kernelcore_remaining);
8147 				required_kernelcore -= min(kernel_pages,
8148 							required_kernelcore);
8149 
8150 				/* Continue if range is now fully accounted */
8151 				if (end_pfn <= usable_startpfn) {
8152 
8153 					/*
8154 					 * Push zone_movable_pfn to the end so
8155 					 * that if we have to rebalance
8156 					 * kernelcore across nodes, we will
8157 					 * not double account here
8158 					 */
8159 					zone_movable_pfn[nid] = end_pfn;
8160 					continue;
8161 				}
8162 				start_pfn = usable_startpfn;
8163 			}
8164 
8165 			/*
8166 			 * The usable PFN range for ZONE_MOVABLE is from
8167 			 * start_pfn->end_pfn. Calculate size_pages as the
8168 			 * number of pages used as kernelcore
8169 			 */
8170 			size_pages = end_pfn - start_pfn;
8171 			if (size_pages > kernelcore_remaining)
8172 				size_pages = kernelcore_remaining;
8173 			zone_movable_pfn[nid] = start_pfn + size_pages;
8174 
8175 			/*
8176 			 * Some kernelcore has been met, update counts and
8177 			 * break if the kernelcore for this node has been
8178 			 * satisfied
8179 			 */
8180 			required_kernelcore -= min(required_kernelcore,
8181 								size_pages);
8182 			kernelcore_remaining -= size_pages;
8183 			if (!kernelcore_remaining)
8184 				break;
8185 		}
8186 	}
8187 
8188 	/*
8189 	 * If there is still required_kernelcore, we do another pass with one
8190 	 * less node in the count. This will push zone_movable_pfn[nid] further
8191 	 * along on the nodes that still have memory until kernelcore is
8192 	 * satisfied
8193 	 */
8194 	usable_nodes--;
8195 	if (usable_nodes && required_kernelcore > usable_nodes)
8196 		goto restart;
8197 
8198 out2:
8199 	/* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
8200 	for (nid = 0; nid < MAX_NUMNODES; nid++) {
8201 		unsigned long start_pfn, end_pfn;
8202 
8203 		zone_movable_pfn[nid] =
8204 			roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
8205 
8206 		get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
8207 		if (zone_movable_pfn[nid] >= end_pfn)
8208 			zone_movable_pfn[nid] = 0;
8209 	}
8210 
8211 out:
8212 	/* restore the node_state */
8213 	node_states[N_MEMORY] = saved_node_state;
8214 }
8215 
8216 /* Any regular or high memory on that node ? */
8217 static void check_for_memory(pg_data_t *pgdat, int nid)
8218 {
8219 	enum zone_type zone_type;
8220 
8221 	for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
8222 		struct zone *zone = &pgdat->node_zones[zone_type];
8223 		if (populated_zone(zone)) {
8224 			if (IS_ENABLED(CONFIG_HIGHMEM))
8225 				node_set_state(nid, N_HIGH_MEMORY);
8226 			if (zone_type <= ZONE_NORMAL)
8227 				node_set_state(nid, N_NORMAL_MEMORY);
8228 			break;
8229 		}
8230 	}
8231 }
8232 
8233 /*
8234  * Some architectures, e.g. ARC may have ZONE_HIGHMEM below ZONE_NORMAL. For
8235  * such cases we allow max_zone_pfn sorted in the descending order
8236  */
8237 bool __weak arch_has_descending_max_zone_pfns(void)
8238 {
8239 	return false;
8240 }
8241 
8242 /**
8243  * free_area_init - Initialise all pg_data_t and zone data
8244  * @max_zone_pfn: an array of max PFNs for each zone
8245  *
8246  * This will call free_area_init_node() for each active node in the system.
8247  * Using the page ranges provided by memblock_set_node(), the size of each
8248  * zone in each node and their holes is calculated. If the maximum PFN
8249  * between two adjacent zones match, it is assumed that the zone is empty.
8250  * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
8251  * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
8252  * starts where the previous one ended. For example, ZONE_DMA32 starts
8253  * at arch_max_dma_pfn.
8254  */
8255 void __init free_area_init(unsigned long *max_zone_pfn)
8256 {
8257 	unsigned long start_pfn, end_pfn;
8258 	int i, nid, zone;
8259 	bool descending;
8260 
8261 	/* Record where the zone boundaries are */
8262 	memset(arch_zone_lowest_possible_pfn, 0,
8263 				sizeof(arch_zone_lowest_possible_pfn));
8264 	memset(arch_zone_highest_possible_pfn, 0,
8265 				sizeof(arch_zone_highest_possible_pfn));
8266 
8267 	start_pfn = PHYS_PFN(memblock_start_of_DRAM());
8268 	descending = arch_has_descending_max_zone_pfns();
8269 
8270 	for (i = 0; i < MAX_NR_ZONES; i++) {
8271 		if (descending)
8272 			zone = MAX_NR_ZONES - i - 1;
8273 		else
8274 			zone = i;
8275 
8276 		if (zone == ZONE_MOVABLE)
8277 			continue;
8278 
8279 		end_pfn = max(max_zone_pfn[zone], start_pfn);
8280 		arch_zone_lowest_possible_pfn[zone] = start_pfn;
8281 		arch_zone_highest_possible_pfn[zone] = end_pfn;
8282 
8283 		start_pfn = end_pfn;
8284 	}
8285 
8286 	/* Find the PFNs that ZONE_MOVABLE begins at in each node */
8287 	memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
8288 	find_zone_movable_pfns_for_nodes();
8289 
8290 	/* Print out the zone ranges */
8291 	pr_info("Zone ranges:\n");
8292 	for (i = 0; i < MAX_NR_ZONES; i++) {
8293 		if (i == ZONE_MOVABLE)
8294 			continue;
8295 		pr_info("  %-8s ", zone_names[i]);
8296 		if (arch_zone_lowest_possible_pfn[i] ==
8297 				arch_zone_highest_possible_pfn[i])
8298 			pr_cont("empty\n");
8299 		else
8300 			pr_cont("[mem %#018Lx-%#018Lx]\n",
8301 				(u64)arch_zone_lowest_possible_pfn[i]
8302 					<< PAGE_SHIFT,
8303 				((u64)arch_zone_highest_possible_pfn[i]
8304 					<< PAGE_SHIFT) - 1);
8305 	}
8306 
8307 	/* Print out the PFNs ZONE_MOVABLE begins at in each node */
8308 	pr_info("Movable zone start for each node\n");
8309 	for (i = 0; i < MAX_NUMNODES; i++) {
8310 		if (zone_movable_pfn[i])
8311 			pr_info("  Node %d: %#018Lx\n", i,
8312 			       (u64)zone_movable_pfn[i] << PAGE_SHIFT);
8313 	}
8314 
8315 	/*
8316 	 * Print out the early node map, and initialize the
8317 	 * subsection-map relative to active online memory ranges to
8318 	 * enable future "sub-section" extensions of the memory map.
8319 	 */
8320 	pr_info("Early memory node ranges\n");
8321 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
8322 		pr_info("  node %3d: [mem %#018Lx-%#018Lx]\n", nid,
8323 			(u64)start_pfn << PAGE_SHIFT,
8324 			((u64)end_pfn << PAGE_SHIFT) - 1);
8325 		subsection_map_init(start_pfn, end_pfn - start_pfn);
8326 	}
8327 
8328 	/* Initialise every node */
8329 	mminit_verify_pageflags_layout();
8330 	setup_nr_node_ids();
8331 	for_each_node(nid) {
8332 		pg_data_t *pgdat;
8333 
8334 		if (!node_online(nid)) {
8335 			pr_info("Initializing node %d as memoryless\n", nid);
8336 
8337 			/* Allocator not initialized yet */
8338 			pgdat = arch_alloc_nodedata(nid);
8339 			if (!pgdat) {
8340 				pr_err("Cannot allocate %zuB for node %d.\n",
8341 						sizeof(*pgdat), nid);
8342 				continue;
8343 			}
8344 			arch_refresh_nodedata(nid, pgdat);
8345 			free_area_init_memoryless_node(nid);
8346 
8347 			/*
8348 			 * We do not want to confuse userspace by sysfs
8349 			 * files/directories for node without any memory
8350 			 * attached to it, so this node is not marked as
8351 			 * N_MEMORY and not marked online so that no sysfs
8352 			 * hierarchy will be created via register_one_node for
8353 			 * it. The pgdat will get fully initialized by
8354 			 * hotadd_init_pgdat() when memory is hotplugged into
8355 			 * this node.
8356 			 */
8357 			continue;
8358 		}
8359 
8360 		pgdat = NODE_DATA(nid);
8361 		free_area_init_node(nid);
8362 
8363 		/* Any memory on that node */
8364 		if (pgdat->node_present_pages)
8365 			node_set_state(nid, N_MEMORY);
8366 		check_for_memory(pgdat, nid);
8367 	}
8368 
8369 	memmap_init();
8370 }
8371 
8372 static int __init cmdline_parse_core(char *p, unsigned long *core,
8373 				     unsigned long *percent)
8374 {
8375 	unsigned long long coremem;
8376 	char *endptr;
8377 
8378 	if (!p)
8379 		return -EINVAL;
8380 
8381 	/* Value may be a percentage of total memory, otherwise bytes */
8382 	coremem = simple_strtoull(p, &endptr, 0);
8383 	if (*endptr == '%') {
8384 		/* Paranoid check for percent values greater than 100 */
8385 		WARN_ON(coremem > 100);
8386 
8387 		*percent = coremem;
8388 	} else {
8389 		coremem = memparse(p, &p);
8390 		/* Paranoid check that UL is enough for the coremem value */
8391 		WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
8392 
8393 		*core = coremem >> PAGE_SHIFT;
8394 		*percent = 0UL;
8395 	}
8396 	return 0;
8397 }
8398 
8399 /*
8400  * kernelcore=size sets the amount of memory for use for allocations that
8401  * cannot be reclaimed or migrated.
8402  */
8403 static int __init cmdline_parse_kernelcore(char *p)
8404 {
8405 	/* parse kernelcore=mirror */
8406 	if (parse_option_str(p, "mirror")) {
8407 		mirrored_kernelcore = true;
8408 		return 0;
8409 	}
8410 
8411 	return cmdline_parse_core(p, &required_kernelcore,
8412 				  &required_kernelcore_percent);
8413 }
8414 
8415 /*
8416  * movablecore=size sets the amount of memory for use for allocations that
8417  * can be reclaimed or migrated.
8418  */
8419 static int __init cmdline_parse_movablecore(char *p)
8420 {
8421 	return cmdline_parse_core(p, &required_movablecore,
8422 				  &required_movablecore_percent);
8423 }
8424 
8425 early_param("kernelcore", cmdline_parse_kernelcore);
8426 early_param("movablecore", cmdline_parse_movablecore);
8427 
8428 void adjust_managed_page_count(struct page *page, long count)
8429 {
8430 	atomic_long_add(count, &page_zone(page)->managed_pages);
8431 	totalram_pages_add(count);
8432 #ifdef CONFIG_HIGHMEM
8433 	if (PageHighMem(page))
8434 		totalhigh_pages_add(count);
8435 #endif
8436 }
8437 EXPORT_SYMBOL(adjust_managed_page_count);
8438 
8439 unsigned long free_reserved_area(void *start, void *end, int poison, const char *s)
8440 {
8441 	void *pos;
8442 	unsigned long pages = 0;
8443 
8444 	start = (void *)PAGE_ALIGN((unsigned long)start);
8445 	end = (void *)((unsigned long)end & PAGE_MASK);
8446 	for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
8447 		struct page *page = virt_to_page(pos);
8448 		void *direct_map_addr;
8449 
8450 		/*
8451 		 * 'direct_map_addr' might be different from 'pos'
8452 		 * because some architectures' virt_to_page()
8453 		 * work with aliases.  Getting the direct map
8454 		 * address ensures that we get a _writeable_
8455 		 * alias for the memset().
8456 		 */
8457 		direct_map_addr = page_address(page);
8458 		/*
8459 		 * Perform a kasan-unchecked memset() since this memory
8460 		 * has not been initialized.
8461 		 */
8462 		direct_map_addr = kasan_reset_tag(direct_map_addr);
8463 		if ((unsigned int)poison <= 0xFF)
8464 			memset(direct_map_addr, poison, PAGE_SIZE);
8465 
8466 		free_reserved_page(page);
8467 	}
8468 
8469 	if (pages && s)
8470 		pr_info("Freeing %s memory: %ldK\n", s, K(pages));
8471 
8472 	return pages;
8473 }
8474 
8475 void __init mem_init_print_info(void)
8476 {
8477 	unsigned long physpages, codesize, datasize, rosize, bss_size;
8478 	unsigned long init_code_size, init_data_size;
8479 
8480 	physpages = get_num_physpages();
8481 	codesize = _etext - _stext;
8482 	datasize = _edata - _sdata;
8483 	rosize = __end_rodata - __start_rodata;
8484 	bss_size = __bss_stop - __bss_start;
8485 	init_data_size = __init_end - __init_begin;
8486 	init_code_size = _einittext - _sinittext;
8487 
8488 	/*
8489 	 * Detect special cases and adjust section sizes accordingly:
8490 	 * 1) .init.* may be embedded into .data sections
8491 	 * 2) .init.text.* may be out of [__init_begin, __init_end],
8492 	 *    please refer to arch/tile/kernel/vmlinux.lds.S.
8493 	 * 3) .rodata.* may be embedded into .text or .data sections.
8494 	 */
8495 #define adj_init_size(start, end, size, pos, adj) \
8496 	do { \
8497 		if (&start[0] <= &pos[0] && &pos[0] < &end[0] && size > adj) \
8498 			size -= adj; \
8499 	} while (0)
8500 
8501 	adj_init_size(__init_begin, __init_end, init_data_size,
8502 		     _sinittext, init_code_size);
8503 	adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
8504 	adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
8505 	adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
8506 	adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
8507 
8508 #undef	adj_init_size
8509 
8510 	pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
8511 #ifdef	CONFIG_HIGHMEM
8512 		", %luK highmem"
8513 #endif
8514 		")\n",
8515 		K(nr_free_pages()), K(physpages),
8516 		codesize >> 10, datasize >> 10, rosize >> 10,
8517 		(init_data_size + init_code_size) >> 10, bss_size >> 10,
8518 		K(physpages - totalram_pages() - totalcma_pages),
8519 		K(totalcma_pages)
8520 #ifdef	CONFIG_HIGHMEM
8521 		, K(totalhigh_pages())
8522 #endif
8523 		);
8524 }
8525 
8526 /**
8527  * set_dma_reserve - set the specified number of pages reserved in the first zone
8528  * @new_dma_reserve: The number of pages to mark reserved
8529  *
8530  * The per-cpu batchsize and zone watermarks are determined by managed_pages.
8531  * In the DMA zone, a significant percentage may be consumed by kernel image
8532  * and other unfreeable allocations which can skew the watermarks badly. This
8533  * function may optionally be used to account for unfreeable pages in the
8534  * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
8535  * smaller per-cpu batchsize.
8536  */
8537 void __init set_dma_reserve(unsigned long new_dma_reserve)
8538 {
8539 	dma_reserve = new_dma_reserve;
8540 }
8541 
8542 static int page_alloc_cpu_dead(unsigned int cpu)
8543 {
8544 	struct zone *zone;
8545 
8546 	lru_add_drain_cpu(cpu);
8547 	mlock_page_drain_remote(cpu);
8548 	drain_pages(cpu);
8549 
8550 	/*
8551 	 * Spill the event counters of the dead processor
8552 	 * into the current processors event counters.
8553 	 * This artificially elevates the count of the current
8554 	 * processor.
8555 	 */
8556 	vm_events_fold_cpu(cpu);
8557 
8558 	/*
8559 	 * Zero the differential counters of the dead processor
8560 	 * so that the vm statistics are consistent.
8561 	 *
8562 	 * This is only okay since the processor is dead and cannot
8563 	 * race with what we are doing.
8564 	 */
8565 	cpu_vm_stats_fold(cpu);
8566 
8567 	for_each_populated_zone(zone)
8568 		zone_pcp_update(zone, 0);
8569 
8570 	return 0;
8571 }
8572 
8573 static int page_alloc_cpu_online(unsigned int cpu)
8574 {
8575 	struct zone *zone;
8576 
8577 	for_each_populated_zone(zone)
8578 		zone_pcp_update(zone, 1);
8579 	return 0;
8580 }
8581 
8582 #ifdef CONFIG_NUMA
8583 int hashdist = HASHDIST_DEFAULT;
8584 
8585 static int __init set_hashdist(char *str)
8586 {
8587 	if (!str)
8588 		return 0;
8589 	hashdist = simple_strtoul(str, &str, 0);
8590 	return 1;
8591 }
8592 __setup("hashdist=", set_hashdist);
8593 #endif
8594 
8595 void __init page_alloc_init(void)
8596 {
8597 	int ret;
8598 
8599 #ifdef CONFIG_NUMA
8600 	if (num_node_state(N_MEMORY) == 1)
8601 		hashdist = 0;
8602 #endif
8603 
8604 	ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC,
8605 					"mm/page_alloc:pcp",
8606 					page_alloc_cpu_online,
8607 					page_alloc_cpu_dead);
8608 	WARN_ON(ret < 0);
8609 }
8610 
8611 /*
8612  * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
8613  *	or min_free_kbytes changes.
8614  */
8615 static void calculate_totalreserve_pages(void)
8616 {
8617 	struct pglist_data *pgdat;
8618 	unsigned long reserve_pages = 0;
8619 	enum zone_type i, j;
8620 
8621 	for_each_online_pgdat(pgdat) {
8622 
8623 		pgdat->totalreserve_pages = 0;
8624 
8625 		for (i = 0; i < MAX_NR_ZONES; i++) {
8626 			struct zone *zone = pgdat->node_zones + i;
8627 			long max = 0;
8628 			unsigned long managed_pages = zone_managed_pages(zone);
8629 
8630 			/* Find valid and maximum lowmem_reserve in the zone */
8631 			for (j = i; j < MAX_NR_ZONES; j++) {
8632 				if (zone->lowmem_reserve[j] > max)
8633 					max = zone->lowmem_reserve[j];
8634 			}
8635 
8636 			/* we treat the high watermark as reserved pages. */
8637 			max += high_wmark_pages(zone);
8638 
8639 			if (max > managed_pages)
8640 				max = managed_pages;
8641 
8642 			pgdat->totalreserve_pages += max;
8643 
8644 			reserve_pages += max;
8645 		}
8646 	}
8647 	totalreserve_pages = reserve_pages;
8648 }
8649 
8650 /*
8651  * setup_per_zone_lowmem_reserve - called whenever
8652  *	sysctl_lowmem_reserve_ratio changes.  Ensures that each zone
8653  *	has a correct pages reserved value, so an adequate number of
8654  *	pages are left in the zone after a successful __alloc_pages().
8655  */
8656 static void setup_per_zone_lowmem_reserve(void)
8657 {
8658 	struct pglist_data *pgdat;
8659 	enum zone_type i, j;
8660 
8661 	for_each_online_pgdat(pgdat) {
8662 		for (i = 0; i < MAX_NR_ZONES - 1; i++) {
8663 			struct zone *zone = &pgdat->node_zones[i];
8664 			int ratio = sysctl_lowmem_reserve_ratio[i];
8665 			bool clear = !ratio || !zone_managed_pages(zone);
8666 			unsigned long managed_pages = 0;
8667 
8668 			for (j = i + 1; j < MAX_NR_ZONES; j++) {
8669 				struct zone *upper_zone = &pgdat->node_zones[j];
8670 
8671 				managed_pages += zone_managed_pages(upper_zone);
8672 
8673 				if (clear)
8674 					zone->lowmem_reserve[j] = 0;
8675 				else
8676 					zone->lowmem_reserve[j] = managed_pages / ratio;
8677 			}
8678 		}
8679 	}
8680 
8681 	/* update totalreserve_pages */
8682 	calculate_totalreserve_pages();
8683 }
8684 
8685 static void __setup_per_zone_wmarks(void)
8686 {
8687 	unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
8688 	unsigned long lowmem_pages = 0;
8689 	struct zone *zone;
8690 	unsigned long flags;
8691 
8692 	/* Calculate total number of !ZONE_HIGHMEM pages */
8693 	for_each_zone(zone) {
8694 		if (!is_highmem(zone))
8695 			lowmem_pages += zone_managed_pages(zone);
8696 	}
8697 
8698 	for_each_zone(zone) {
8699 		u64 tmp;
8700 
8701 		spin_lock_irqsave(&zone->lock, flags);
8702 		tmp = (u64)pages_min * zone_managed_pages(zone);
8703 		do_div(tmp, lowmem_pages);
8704 		if (is_highmem(zone)) {
8705 			/*
8706 			 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
8707 			 * need highmem pages, so cap pages_min to a small
8708 			 * value here.
8709 			 *
8710 			 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
8711 			 * deltas control async page reclaim, and so should
8712 			 * not be capped for highmem.
8713 			 */
8714 			unsigned long min_pages;
8715 
8716 			min_pages = zone_managed_pages(zone) / 1024;
8717 			min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
8718 			zone->_watermark[WMARK_MIN] = min_pages;
8719 		} else {
8720 			/*
8721 			 * If it's a lowmem zone, reserve a number of pages
8722 			 * proportionate to the zone's size.
8723 			 */
8724 			zone->_watermark[WMARK_MIN] = tmp;
8725 		}
8726 
8727 		/*
8728 		 * Set the kswapd watermarks distance according to the
8729 		 * scale factor in proportion to available memory, but
8730 		 * ensure a minimum size on small systems.
8731 		 */
8732 		tmp = max_t(u64, tmp >> 2,
8733 			    mult_frac(zone_managed_pages(zone),
8734 				      watermark_scale_factor, 10000));
8735 
8736 		zone->watermark_boost = 0;
8737 		zone->_watermark[WMARK_LOW]  = min_wmark_pages(zone) + tmp;
8738 		zone->_watermark[WMARK_HIGH] = low_wmark_pages(zone) + tmp;
8739 		zone->_watermark[WMARK_PROMO] = high_wmark_pages(zone) + tmp;
8740 
8741 		spin_unlock_irqrestore(&zone->lock, flags);
8742 	}
8743 
8744 	/* update totalreserve_pages */
8745 	calculate_totalreserve_pages();
8746 }
8747 
8748 /**
8749  * setup_per_zone_wmarks - called when min_free_kbytes changes
8750  * or when memory is hot-{added|removed}
8751  *
8752  * Ensures that the watermark[min,low,high] values for each zone are set
8753  * correctly with respect to min_free_kbytes.
8754  */
8755 void setup_per_zone_wmarks(void)
8756 {
8757 	struct zone *zone;
8758 	static DEFINE_SPINLOCK(lock);
8759 
8760 	spin_lock(&lock);
8761 	__setup_per_zone_wmarks();
8762 	spin_unlock(&lock);
8763 
8764 	/*
8765 	 * The watermark size have changed so update the pcpu batch
8766 	 * and high limits or the limits may be inappropriate.
8767 	 */
8768 	for_each_zone(zone)
8769 		zone_pcp_update(zone, 0);
8770 }
8771 
8772 /*
8773  * Initialise min_free_kbytes.
8774  *
8775  * For small machines we want it small (128k min).  For large machines
8776  * we want it large (256MB max).  But it is not linear, because network
8777  * bandwidth does not increase linearly with machine size.  We use
8778  *
8779  *	min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
8780  *	min_free_kbytes = sqrt(lowmem_kbytes * 16)
8781  *
8782  * which yields
8783  *
8784  * 16MB:	512k
8785  * 32MB:	724k
8786  * 64MB:	1024k
8787  * 128MB:	1448k
8788  * 256MB:	2048k
8789  * 512MB:	2896k
8790  * 1024MB:	4096k
8791  * 2048MB:	5792k
8792  * 4096MB:	8192k
8793  * 8192MB:	11584k
8794  * 16384MB:	16384k
8795  */
8796 void calculate_min_free_kbytes(void)
8797 {
8798 	unsigned long lowmem_kbytes;
8799 	int new_min_free_kbytes;
8800 
8801 	lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
8802 	new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
8803 
8804 	if (new_min_free_kbytes > user_min_free_kbytes)
8805 		min_free_kbytes = clamp(new_min_free_kbytes, 128, 262144);
8806 	else
8807 		pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
8808 				new_min_free_kbytes, user_min_free_kbytes);
8809 
8810 }
8811 
8812 int __meminit init_per_zone_wmark_min(void)
8813 {
8814 	calculate_min_free_kbytes();
8815 	setup_per_zone_wmarks();
8816 	refresh_zone_stat_thresholds();
8817 	setup_per_zone_lowmem_reserve();
8818 
8819 #ifdef CONFIG_NUMA
8820 	setup_min_unmapped_ratio();
8821 	setup_min_slab_ratio();
8822 #endif
8823 
8824 	khugepaged_min_free_kbytes_update();
8825 
8826 	return 0;
8827 }
8828 postcore_initcall(init_per_zone_wmark_min)
8829 
8830 /*
8831  * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
8832  *	that we can call two helper functions whenever min_free_kbytes
8833  *	changes.
8834  */
8835 int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
8836 		void *buffer, size_t *length, loff_t *ppos)
8837 {
8838 	int rc;
8839 
8840 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8841 	if (rc)
8842 		return rc;
8843 
8844 	if (write) {
8845 		user_min_free_kbytes = min_free_kbytes;
8846 		setup_per_zone_wmarks();
8847 	}
8848 	return 0;
8849 }
8850 
8851 int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
8852 		void *buffer, size_t *length, loff_t *ppos)
8853 {
8854 	int rc;
8855 
8856 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8857 	if (rc)
8858 		return rc;
8859 
8860 	if (write)
8861 		setup_per_zone_wmarks();
8862 
8863 	return 0;
8864 }
8865 
8866 #ifdef CONFIG_NUMA
8867 static void setup_min_unmapped_ratio(void)
8868 {
8869 	pg_data_t *pgdat;
8870 	struct zone *zone;
8871 
8872 	for_each_online_pgdat(pgdat)
8873 		pgdat->min_unmapped_pages = 0;
8874 
8875 	for_each_zone(zone)
8876 		zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) *
8877 						         sysctl_min_unmapped_ratio) / 100;
8878 }
8879 
8880 
8881 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
8882 		void *buffer, size_t *length, loff_t *ppos)
8883 {
8884 	int rc;
8885 
8886 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8887 	if (rc)
8888 		return rc;
8889 
8890 	setup_min_unmapped_ratio();
8891 
8892 	return 0;
8893 }
8894 
8895 static void setup_min_slab_ratio(void)
8896 {
8897 	pg_data_t *pgdat;
8898 	struct zone *zone;
8899 
8900 	for_each_online_pgdat(pgdat)
8901 		pgdat->min_slab_pages = 0;
8902 
8903 	for_each_zone(zone)
8904 		zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) *
8905 						     sysctl_min_slab_ratio) / 100;
8906 }
8907 
8908 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
8909 		void *buffer, size_t *length, loff_t *ppos)
8910 {
8911 	int rc;
8912 
8913 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8914 	if (rc)
8915 		return rc;
8916 
8917 	setup_min_slab_ratio();
8918 
8919 	return 0;
8920 }
8921 #endif
8922 
8923 /*
8924  * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
8925  *	proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
8926  *	whenever sysctl_lowmem_reserve_ratio changes.
8927  *
8928  * The reserve ratio obviously has absolutely no relation with the
8929  * minimum watermarks. The lowmem reserve ratio can only make sense
8930  * if in function of the boot time zone sizes.
8931  */
8932 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
8933 		void *buffer, size_t *length, loff_t *ppos)
8934 {
8935 	int i;
8936 
8937 	proc_dointvec_minmax(table, write, buffer, length, ppos);
8938 
8939 	for (i = 0; i < MAX_NR_ZONES; i++) {
8940 		if (sysctl_lowmem_reserve_ratio[i] < 1)
8941 			sysctl_lowmem_reserve_ratio[i] = 0;
8942 	}
8943 
8944 	setup_per_zone_lowmem_reserve();
8945 	return 0;
8946 }
8947 
8948 /*
8949  * percpu_pagelist_high_fraction - changes the pcp->high for each zone on each
8950  * cpu. It is the fraction of total pages in each zone that a hot per cpu
8951  * pagelist can have before it gets flushed back to buddy allocator.
8952  */
8953 int percpu_pagelist_high_fraction_sysctl_handler(struct ctl_table *table,
8954 		int write, void *buffer, size_t *length, loff_t *ppos)
8955 {
8956 	struct zone *zone;
8957 	int old_percpu_pagelist_high_fraction;
8958 	int ret;
8959 
8960 	mutex_lock(&pcp_batch_high_lock);
8961 	old_percpu_pagelist_high_fraction = percpu_pagelist_high_fraction;
8962 
8963 	ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
8964 	if (!write || ret < 0)
8965 		goto out;
8966 
8967 	/* Sanity checking to avoid pcp imbalance */
8968 	if (percpu_pagelist_high_fraction &&
8969 	    percpu_pagelist_high_fraction < MIN_PERCPU_PAGELIST_HIGH_FRACTION) {
8970 		percpu_pagelist_high_fraction = old_percpu_pagelist_high_fraction;
8971 		ret = -EINVAL;
8972 		goto out;
8973 	}
8974 
8975 	/* No change? */
8976 	if (percpu_pagelist_high_fraction == old_percpu_pagelist_high_fraction)
8977 		goto out;
8978 
8979 	for_each_populated_zone(zone)
8980 		zone_set_pageset_high_and_batch(zone, 0);
8981 out:
8982 	mutex_unlock(&pcp_batch_high_lock);
8983 	return ret;
8984 }
8985 
8986 #ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
8987 /*
8988  * Returns the number of pages that arch has reserved but
8989  * is not known to alloc_large_system_hash().
8990  */
8991 static unsigned long __init arch_reserved_kernel_pages(void)
8992 {
8993 	return 0;
8994 }
8995 #endif
8996 
8997 /*
8998  * Adaptive scale is meant to reduce sizes of hash tables on large memory
8999  * machines. As memory size is increased the scale is also increased but at
9000  * slower pace.  Starting from ADAPT_SCALE_BASE (64G), every time memory
9001  * quadruples the scale is increased by one, which means the size of hash table
9002  * only doubles, instead of quadrupling as well.
9003  * Because 32-bit systems cannot have large physical memory, where this scaling
9004  * makes sense, it is disabled on such platforms.
9005  */
9006 #if __BITS_PER_LONG > 32
9007 #define ADAPT_SCALE_BASE	(64ul << 30)
9008 #define ADAPT_SCALE_SHIFT	2
9009 #define ADAPT_SCALE_NPAGES	(ADAPT_SCALE_BASE >> PAGE_SHIFT)
9010 #endif
9011 
9012 /*
9013  * allocate a large system hash table from bootmem
9014  * - it is assumed that the hash table must contain an exact power-of-2
9015  *   quantity of entries
9016  * - limit is the number of hash buckets, not the total allocation size
9017  */
9018 void *__init alloc_large_system_hash(const char *tablename,
9019 				     unsigned long bucketsize,
9020 				     unsigned long numentries,
9021 				     int scale,
9022 				     int flags,
9023 				     unsigned int *_hash_shift,
9024 				     unsigned int *_hash_mask,
9025 				     unsigned long low_limit,
9026 				     unsigned long high_limit)
9027 {
9028 	unsigned long long max = high_limit;
9029 	unsigned long log2qty, size;
9030 	void *table;
9031 	gfp_t gfp_flags;
9032 	bool virt;
9033 	bool huge;
9034 
9035 	/* allow the kernel cmdline to have a say */
9036 	if (!numentries) {
9037 		/* round applicable memory size up to nearest megabyte */
9038 		numentries = nr_kernel_pages;
9039 		numentries -= arch_reserved_kernel_pages();
9040 
9041 		/* It isn't necessary when PAGE_SIZE >= 1MB */
9042 		if (PAGE_SHIFT < 20)
9043 			numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
9044 
9045 #if __BITS_PER_LONG > 32
9046 		if (!high_limit) {
9047 			unsigned long adapt;
9048 
9049 			for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries;
9050 			     adapt <<= ADAPT_SCALE_SHIFT)
9051 				scale++;
9052 		}
9053 #endif
9054 
9055 		/* limit to 1 bucket per 2^scale bytes of low memory */
9056 		if (scale > PAGE_SHIFT)
9057 			numentries >>= (scale - PAGE_SHIFT);
9058 		else
9059 			numentries <<= (PAGE_SHIFT - scale);
9060 
9061 		/* Make sure we've got at least a 0-order allocation.. */
9062 		if (unlikely(flags & HASH_SMALL)) {
9063 			/* Makes no sense without HASH_EARLY */
9064 			WARN_ON(!(flags & HASH_EARLY));
9065 			if (!(numentries >> *_hash_shift)) {
9066 				numentries = 1UL << *_hash_shift;
9067 				BUG_ON(!numentries);
9068 			}
9069 		} else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
9070 			numentries = PAGE_SIZE / bucketsize;
9071 	}
9072 	numentries = roundup_pow_of_two(numentries);
9073 
9074 	/* limit allocation size to 1/16 total memory by default */
9075 	if (max == 0) {
9076 		max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
9077 		do_div(max, bucketsize);
9078 	}
9079 	max = min(max, 0x80000000ULL);
9080 
9081 	if (numentries < low_limit)
9082 		numentries = low_limit;
9083 	if (numentries > max)
9084 		numentries = max;
9085 
9086 	log2qty = ilog2(numentries);
9087 
9088 	gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC;
9089 	do {
9090 		virt = false;
9091 		size = bucketsize << log2qty;
9092 		if (flags & HASH_EARLY) {
9093 			if (flags & HASH_ZERO)
9094 				table = memblock_alloc(size, SMP_CACHE_BYTES);
9095 			else
9096 				table = memblock_alloc_raw(size,
9097 							   SMP_CACHE_BYTES);
9098 		} else if (get_order(size) >= MAX_ORDER || hashdist) {
9099 			table = vmalloc_huge(size, gfp_flags);
9100 			virt = true;
9101 			if (table)
9102 				huge = is_vm_area_hugepages(table);
9103 		} else {
9104 			/*
9105 			 * If bucketsize is not a power-of-two, we may free
9106 			 * some pages at the end of hash table which
9107 			 * alloc_pages_exact() automatically does
9108 			 */
9109 			table = alloc_pages_exact(size, gfp_flags);
9110 			kmemleak_alloc(table, size, 1, gfp_flags);
9111 		}
9112 	} while (!table && size > PAGE_SIZE && --log2qty);
9113 
9114 	if (!table)
9115 		panic("Failed to allocate %s hash table\n", tablename);
9116 
9117 	pr_info("%s hash table entries: %ld (order: %d, %lu bytes, %s)\n",
9118 		tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size,
9119 		virt ? (huge ? "vmalloc hugepage" : "vmalloc") : "linear");
9120 
9121 	if (_hash_shift)
9122 		*_hash_shift = log2qty;
9123 	if (_hash_mask)
9124 		*_hash_mask = (1 << log2qty) - 1;
9125 
9126 	return table;
9127 }
9128 
9129 #ifdef CONFIG_CONTIG_ALLOC
9130 #if defined(CONFIG_DYNAMIC_DEBUG) || \
9131 	(defined(CONFIG_DYNAMIC_DEBUG_CORE) && defined(DYNAMIC_DEBUG_MODULE))
9132 /* Usage: See admin-guide/dynamic-debug-howto.rst */
9133 static void alloc_contig_dump_pages(struct list_head *page_list)
9134 {
9135 	DEFINE_DYNAMIC_DEBUG_METADATA(descriptor, "migrate failure");
9136 
9137 	if (DYNAMIC_DEBUG_BRANCH(descriptor)) {
9138 		struct page *page;
9139 
9140 		dump_stack();
9141 		list_for_each_entry(page, page_list, lru)
9142 			dump_page(page, "migration failure");
9143 	}
9144 }
9145 #else
9146 static inline void alloc_contig_dump_pages(struct list_head *page_list)
9147 {
9148 }
9149 #endif
9150 
9151 /* [start, end) must belong to a single zone. */
9152 int __alloc_contig_migrate_range(struct compact_control *cc,
9153 					unsigned long start, unsigned long end)
9154 {
9155 	/* This function is based on compact_zone() from compaction.c. */
9156 	unsigned int nr_reclaimed;
9157 	unsigned long pfn = start;
9158 	unsigned int tries = 0;
9159 	int ret = 0;
9160 	struct migration_target_control mtc = {
9161 		.nid = zone_to_nid(cc->zone),
9162 		.gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL,
9163 	};
9164 
9165 	lru_cache_disable();
9166 
9167 	while (pfn < end || !list_empty(&cc->migratepages)) {
9168 		if (fatal_signal_pending(current)) {
9169 			ret = -EINTR;
9170 			break;
9171 		}
9172 
9173 		if (list_empty(&cc->migratepages)) {
9174 			cc->nr_migratepages = 0;
9175 			ret = isolate_migratepages_range(cc, pfn, end);
9176 			if (ret && ret != -EAGAIN)
9177 				break;
9178 			pfn = cc->migrate_pfn;
9179 			tries = 0;
9180 		} else if (++tries == 5) {
9181 			ret = -EBUSY;
9182 			break;
9183 		}
9184 
9185 		nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
9186 							&cc->migratepages);
9187 		cc->nr_migratepages -= nr_reclaimed;
9188 
9189 		ret = migrate_pages(&cc->migratepages, alloc_migration_target,
9190 			NULL, (unsigned long)&mtc, cc->mode, MR_CONTIG_RANGE, NULL);
9191 
9192 		/*
9193 		 * On -ENOMEM, migrate_pages() bails out right away. It is pointless
9194 		 * to retry again over this error, so do the same here.
9195 		 */
9196 		if (ret == -ENOMEM)
9197 			break;
9198 	}
9199 
9200 	lru_cache_enable();
9201 	if (ret < 0) {
9202 		if (!(cc->gfp_mask & __GFP_NOWARN) && ret == -EBUSY)
9203 			alloc_contig_dump_pages(&cc->migratepages);
9204 		putback_movable_pages(&cc->migratepages);
9205 		return ret;
9206 	}
9207 	return 0;
9208 }
9209 
9210 /**
9211  * alloc_contig_range() -- tries to allocate given range of pages
9212  * @start:	start PFN to allocate
9213  * @end:	one-past-the-last PFN to allocate
9214  * @migratetype:	migratetype of the underlying pageblocks (either
9215  *			#MIGRATE_MOVABLE or #MIGRATE_CMA).  All pageblocks
9216  *			in range must have the same migratetype and it must
9217  *			be either of the two.
9218  * @gfp_mask:	GFP mask to use during compaction
9219  *
9220  * The PFN range does not have to be pageblock aligned. The PFN range must
9221  * belong to a single zone.
9222  *
9223  * The first thing this routine does is attempt to MIGRATE_ISOLATE all
9224  * pageblocks in the range.  Once isolated, the pageblocks should not
9225  * be modified by others.
9226  *
9227  * Return: zero on success or negative error code.  On success all
9228  * pages which PFN is in [start, end) are allocated for the caller and
9229  * need to be freed with free_contig_range().
9230  */
9231 int alloc_contig_range(unsigned long start, unsigned long end,
9232 		       unsigned migratetype, gfp_t gfp_mask)
9233 {
9234 	unsigned long outer_start, outer_end;
9235 	int order;
9236 	int ret = 0;
9237 
9238 	struct compact_control cc = {
9239 		.nr_migratepages = 0,
9240 		.order = -1,
9241 		.zone = page_zone(pfn_to_page(start)),
9242 		.mode = MIGRATE_SYNC,
9243 		.ignore_skip_hint = true,
9244 		.no_set_skip_hint = true,
9245 		.gfp_mask = current_gfp_context(gfp_mask),
9246 		.alloc_contig = true,
9247 	};
9248 	INIT_LIST_HEAD(&cc.migratepages);
9249 
9250 	/*
9251 	 * What we do here is we mark all pageblocks in range as
9252 	 * MIGRATE_ISOLATE.  Because pageblock and max order pages may
9253 	 * have different sizes, and due to the way page allocator
9254 	 * work, start_isolate_page_range() has special handlings for this.
9255 	 *
9256 	 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
9257 	 * migrate the pages from an unaligned range (ie. pages that
9258 	 * we are interested in). This will put all the pages in
9259 	 * range back to page allocator as MIGRATE_ISOLATE.
9260 	 *
9261 	 * When this is done, we take the pages in range from page
9262 	 * allocator removing them from the buddy system.  This way
9263 	 * page allocator will never consider using them.
9264 	 *
9265 	 * This lets us mark the pageblocks back as
9266 	 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
9267 	 * aligned range but not in the unaligned, original range are
9268 	 * put back to page allocator so that buddy can use them.
9269 	 */
9270 
9271 	ret = start_isolate_page_range(start, end, migratetype, 0, gfp_mask);
9272 	if (ret)
9273 		goto done;
9274 
9275 	drain_all_pages(cc.zone);
9276 
9277 	/*
9278 	 * In case of -EBUSY, we'd like to know which page causes problem.
9279 	 * So, just fall through. test_pages_isolated() has a tracepoint
9280 	 * which will report the busy page.
9281 	 *
9282 	 * It is possible that busy pages could become available before
9283 	 * the call to test_pages_isolated, and the range will actually be
9284 	 * allocated.  So, if we fall through be sure to clear ret so that
9285 	 * -EBUSY is not accidentally used or returned to caller.
9286 	 */
9287 	ret = __alloc_contig_migrate_range(&cc, start, end);
9288 	if (ret && ret != -EBUSY)
9289 		goto done;
9290 	ret = 0;
9291 
9292 	/*
9293 	 * Pages from [start, end) are within a pageblock_nr_pages
9294 	 * aligned blocks that are marked as MIGRATE_ISOLATE.  What's
9295 	 * more, all pages in [start, end) are free in page allocator.
9296 	 * What we are going to do is to allocate all pages from
9297 	 * [start, end) (that is remove them from page allocator).
9298 	 *
9299 	 * The only problem is that pages at the beginning and at the
9300 	 * end of interesting range may be not aligned with pages that
9301 	 * page allocator holds, ie. they can be part of higher order
9302 	 * pages.  Because of this, we reserve the bigger range and
9303 	 * once this is done free the pages we are not interested in.
9304 	 *
9305 	 * We don't have to hold zone->lock here because the pages are
9306 	 * isolated thus they won't get removed from buddy.
9307 	 */
9308 
9309 	order = 0;
9310 	outer_start = start;
9311 	while (!PageBuddy(pfn_to_page(outer_start))) {
9312 		if (++order >= MAX_ORDER) {
9313 			outer_start = start;
9314 			break;
9315 		}
9316 		outer_start &= ~0UL << order;
9317 	}
9318 
9319 	if (outer_start != start) {
9320 		order = buddy_order(pfn_to_page(outer_start));
9321 
9322 		/*
9323 		 * outer_start page could be small order buddy page and
9324 		 * it doesn't include start page. Adjust outer_start
9325 		 * in this case to report failed page properly
9326 		 * on tracepoint in test_pages_isolated()
9327 		 */
9328 		if (outer_start + (1UL << order) <= start)
9329 			outer_start = start;
9330 	}
9331 
9332 	/* Make sure the range is really isolated. */
9333 	if (test_pages_isolated(outer_start, end, 0)) {
9334 		ret = -EBUSY;
9335 		goto done;
9336 	}
9337 
9338 	/* Grab isolated pages from freelists. */
9339 	outer_end = isolate_freepages_range(&cc, outer_start, end);
9340 	if (!outer_end) {
9341 		ret = -EBUSY;
9342 		goto done;
9343 	}
9344 
9345 	/* Free head and tail (if any) */
9346 	if (start != outer_start)
9347 		free_contig_range(outer_start, start - outer_start);
9348 	if (end != outer_end)
9349 		free_contig_range(end, outer_end - end);
9350 
9351 done:
9352 	undo_isolate_page_range(start, end, migratetype);
9353 	return ret;
9354 }
9355 EXPORT_SYMBOL(alloc_contig_range);
9356 
9357 static int __alloc_contig_pages(unsigned long start_pfn,
9358 				unsigned long nr_pages, gfp_t gfp_mask)
9359 {
9360 	unsigned long end_pfn = start_pfn + nr_pages;
9361 
9362 	return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE,
9363 				  gfp_mask);
9364 }
9365 
9366 static bool pfn_range_valid_contig(struct zone *z, unsigned long start_pfn,
9367 				   unsigned long nr_pages)
9368 {
9369 	unsigned long i, end_pfn = start_pfn + nr_pages;
9370 	struct page *page;
9371 
9372 	for (i = start_pfn; i < end_pfn; i++) {
9373 		page = pfn_to_online_page(i);
9374 		if (!page)
9375 			return false;
9376 
9377 		if (page_zone(page) != z)
9378 			return false;
9379 
9380 		if (PageReserved(page))
9381 			return false;
9382 	}
9383 	return true;
9384 }
9385 
9386 static bool zone_spans_last_pfn(const struct zone *zone,
9387 				unsigned long start_pfn, unsigned long nr_pages)
9388 {
9389 	unsigned long last_pfn = start_pfn + nr_pages - 1;
9390 
9391 	return zone_spans_pfn(zone, last_pfn);
9392 }
9393 
9394 /**
9395  * alloc_contig_pages() -- tries to find and allocate contiguous range of pages
9396  * @nr_pages:	Number of contiguous pages to allocate
9397  * @gfp_mask:	GFP mask to limit search and used during compaction
9398  * @nid:	Target node
9399  * @nodemask:	Mask for other possible nodes
9400  *
9401  * This routine is a wrapper around alloc_contig_range(). It scans over zones
9402  * on an applicable zonelist to find a contiguous pfn range which can then be
9403  * tried for allocation with alloc_contig_range(). This routine is intended
9404  * for allocation requests which can not be fulfilled with the buddy allocator.
9405  *
9406  * The allocated memory is always aligned to a page boundary. If nr_pages is a
9407  * power of two, then allocated range is also guaranteed to be aligned to same
9408  * nr_pages (e.g. 1GB request would be aligned to 1GB).
9409  *
9410  * Allocated pages can be freed with free_contig_range() or by manually calling
9411  * __free_page() on each allocated page.
9412  *
9413  * Return: pointer to contiguous pages on success, or NULL if not successful.
9414  */
9415 struct page *alloc_contig_pages(unsigned long nr_pages, gfp_t gfp_mask,
9416 				int nid, nodemask_t *nodemask)
9417 {
9418 	unsigned long ret, pfn, flags;
9419 	struct zonelist *zonelist;
9420 	struct zone *zone;
9421 	struct zoneref *z;
9422 
9423 	zonelist = node_zonelist(nid, gfp_mask);
9424 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
9425 					gfp_zone(gfp_mask), nodemask) {
9426 		spin_lock_irqsave(&zone->lock, flags);
9427 
9428 		pfn = ALIGN(zone->zone_start_pfn, nr_pages);
9429 		while (zone_spans_last_pfn(zone, pfn, nr_pages)) {
9430 			if (pfn_range_valid_contig(zone, pfn, nr_pages)) {
9431 				/*
9432 				 * We release the zone lock here because
9433 				 * alloc_contig_range() will also lock the zone
9434 				 * at some point. If there's an allocation
9435 				 * spinning on this lock, it may win the race
9436 				 * and cause alloc_contig_range() to fail...
9437 				 */
9438 				spin_unlock_irqrestore(&zone->lock, flags);
9439 				ret = __alloc_contig_pages(pfn, nr_pages,
9440 							gfp_mask);
9441 				if (!ret)
9442 					return pfn_to_page(pfn);
9443 				spin_lock_irqsave(&zone->lock, flags);
9444 			}
9445 			pfn += nr_pages;
9446 		}
9447 		spin_unlock_irqrestore(&zone->lock, flags);
9448 	}
9449 	return NULL;
9450 }
9451 #endif /* CONFIG_CONTIG_ALLOC */
9452 
9453 void free_contig_range(unsigned long pfn, unsigned long nr_pages)
9454 {
9455 	unsigned long count = 0;
9456 
9457 	for (; nr_pages--; pfn++) {
9458 		struct page *page = pfn_to_page(pfn);
9459 
9460 		count += page_count(page) != 1;
9461 		__free_page(page);
9462 	}
9463 	WARN(count != 0, "%lu pages are still in use!\n", count);
9464 }
9465 EXPORT_SYMBOL(free_contig_range);
9466 
9467 /*
9468  * The zone indicated has a new number of managed_pages; batch sizes and percpu
9469  * page high values need to be recalculated.
9470  */
9471 void zone_pcp_update(struct zone *zone, int cpu_online)
9472 {
9473 	mutex_lock(&pcp_batch_high_lock);
9474 	zone_set_pageset_high_and_batch(zone, cpu_online);
9475 	mutex_unlock(&pcp_batch_high_lock);
9476 }
9477 
9478 /*
9479  * Effectively disable pcplists for the zone by setting the high limit to 0
9480  * and draining all cpus. A concurrent page freeing on another CPU that's about
9481  * to put the page on pcplist will either finish before the drain and the page
9482  * will be drained, or observe the new high limit and skip the pcplist.
9483  *
9484  * Must be paired with a call to zone_pcp_enable().
9485  */
9486 void zone_pcp_disable(struct zone *zone)
9487 {
9488 	mutex_lock(&pcp_batch_high_lock);
9489 	__zone_set_pageset_high_and_batch(zone, 0, 1);
9490 	__drain_all_pages(zone, true);
9491 }
9492 
9493 void zone_pcp_enable(struct zone *zone)
9494 {
9495 	__zone_set_pageset_high_and_batch(zone, zone->pageset_high, zone->pageset_batch);
9496 	mutex_unlock(&pcp_batch_high_lock);
9497 }
9498 
9499 void zone_pcp_reset(struct zone *zone)
9500 {
9501 	int cpu;
9502 	struct per_cpu_zonestat *pzstats;
9503 
9504 	if (zone->per_cpu_pageset != &boot_pageset) {
9505 		for_each_online_cpu(cpu) {
9506 			pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
9507 			drain_zonestat(zone, pzstats);
9508 		}
9509 		free_percpu(zone->per_cpu_pageset);
9510 		free_percpu(zone->per_cpu_zonestats);
9511 		zone->per_cpu_pageset = &boot_pageset;
9512 		zone->per_cpu_zonestats = &boot_zonestats;
9513 	}
9514 }
9515 
9516 #ifdef CONFIG_MEMORY_HOTREMOVE
9517 /*
9518  * All pages in the range must be in a single zone, must not contain holes,
9519  * must span full sections, and must be isolated before calling this function.
9520  */
9521 void __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
9522 {
9523 	unsigned long pfn = start_pfn;
9524 	struct page *page;
9525 	struct zone *zone;
9526 	unsigned int order;
9527 	unsigned long flags;
9528 
9529 	offline_mem_sections(pfn, end_pfn);
9530 	zone = page_zone(pfn_to_page(pfn));
9531 	spin_lock_irqsave(&zone->lock, flags);
9532 	while (pfn < end_pfn) {
9533 		page = pfn_to_page(pfn);
9534 		/*
9535 		 * The HWPoisoned page may be not in buddy system, and
9536 		 * page_count() is not 0.
9537 		 */
9538 		if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
9539 			pfn++;
9540 			continue;
9541 		}
9542 		/*
9543 		 * At this point all remaining PageOffline() pages have a
9544 		 * reference count of 0 and can simply be skipped.
9545 		 */
9546 		if (PageOffline(page)) {
9547 			BUG_ON(page_count(page));
9548 			BUG_ON(PageBuddy(page));
9549 			pfn++;
9550 			continue;
9551 		}
9552 
9553 		BUG_ON(page_count(page));
9554 		BUG_ON(!PageBuddy(page));
9555 		order = buddy_order(page);
9556 		del_page_from_free_list(page, zone, order);
9557 		pfn += (1 << order);
9558 	}
9559 	spin_unlock_irqrestore(&zone->lock, flags);
9560 }
9561 #endif
9562 
9563 /*
9564  * This function returns a stable result only if called under zone lock.
9565  */
9566 bool is_free_buddy_page(struct page *page)
9567 {
9568 	unsigned long pfn = page_to_pfn(page);
9569 	unsigned int order;
9570 
9571 	for (order = 0; order < MAX_ORDER; order++) {
9572 		struct page *page_head = page - (pfn & ((1 << order) - 1));
9573 
9574 		if (PageBuddy(page_head) &&
9575 		    buddy_order_unsafe(page_head) >= order)
9576 			break;
9577 	}
9578 
9579 	return order < MAX_ORDER;
9580 }
9581 EXPORT_SYMBOL(is_free_buddy_page);
9582 
9583 #ifdef CONFIG_MEMORY_FAILURE
9584 /*
9585  * Break down a higher-order page in sub-pages, and keep our target out of
9586  * buddy allocator.
9587  */
9588 static void break_down_buddy_pages(struct zone *zone, struct page *page,
9589 				   struct page *target, int low, int high,
9590 				   int migratetype)
9591 {
9592 	unsigned long size = 1 << high;
9593 	struct page *current_buddy, *next_page;
9594 
9595 	while (high > low) {
9596 		high--;
9597 		size >>= 1;
9598 
9599 		if (target >= &page[size]) {
9600 			next_page = page + size;
9601 			current_buddy = page;
9602 		} else {
9603 			next_page = page;
9604 			current_buddy = page + size;
9605 		}
9606 
9607 		if (set_page_guard(zone, current_buddy, high, migratetype))
9608 			continue;
9609 
9610 		if (current_buddy != target) {
9611 			add_to_free_list(current_buddy, zone, high, migratetype);
9612 			set_buddy_order(current_buddy, high);
9613 			page = next_page;
9614 		}
9615 	}
9616 }
9617 
9618 /*
9619  * Take a page that will be marked as poisoned off the buddy allocator.
9620  */
9621 bool take_page_off_buddy(struct page *page)
9622 {
9623 	struct zone *zone = page_zone(page);
9624 	unsigned long pfn = page_to_pfn(page);
9625 	unsigned long flags;
9626 	unsigned int order;
9627 	bool ret = false;
9628 
9629 	spin_lock_irqsave(&zone->lock, flags);
9630 	for (order = 0; order < MAX_ORDER; order++) {
9631 		struct page *page_head = page - (pfn & ((1 << order) - 1));
9632 		int page_order = buddy_order(page_head);
9633 
9634 		if (PageBuddy(page_head) && page_order >= order) {
9635 			unsigned long pfn_head = page_to_pfn(page_head);
9636 			int migratetype = get_pfnblock_migratetype(page_head,
9637 								   pfn_head);
9638 
9639 			del_page_from_free_list(page_head, zone, page_order);
9640 			break_down_buddy_pages(zone, page_head, page, 0,
9641 						page_order, migratetype);
9642 			SetPageHWPoisonTakenOff(page);
9643 			if (!is_migrate_isolate(migratetype))
9644 				__mod_zone_freepage_state(zone, -1, migratetype);
9645 			ret = true;
9646 			break;
9647 		}
9648 		if (page_count(page_head) > 0)
9649 			break;
9650 	}
9651 	spin_unlock_irqrestore(&zone->lock, flags);
9652 	return ret;
9653 }
9654 
9655 /*
9656  * Cancel takeoff done by take_page_off_buddy().
9657  */
9658 bool put_page_back_buddy(struct page *page)
9659 {
9660 	struct zone *zone = page_zone(page);
9661 	unsigned long pfn = page_to_pfn(page);
9662 	unsigned long flags;
9663 	int migratetype = get_pfnblock_migratetype(page, pfn);
9664 	bool ret = false;
9665 
9666 	spin_lock_irqsave(&zone->lock, flags);
9667 	if (put_page_testzero(page)) {
9668 		ClearPageHWPoisonTakenOff(page);
9669 		__free_one_page(page, pfn, zone, 0, migratetype, FPI_NONE);
9670 		if (TestClearPageHWPoison(page)) {
9671 			ret = true;
9672 		}
9673 	}
9674 	spin_unlock_irqrestore(&zone->lock, flags);
9675 
9676 	return ret;
9677 }
9678 #endif
9679 
9680 #ifdef CONFIG_ZONE_DMA
9681 bool has_managed_dma(void)
9682 {
9683 	struct pglist_data *pgdat;
9684 
9685 	for_each_online_pgdat(pgdat) {
9686 		struct zone *zone = &pgdat->node_zones[ZONE_DMA];
9687 
9688 		if (managed_zone(zone))
9689 			return true;
9690 	}
9691 	return false;
9692 }
9693 #endif /* CONFIG_ZONE_DMA */
9694