1 /* 2 * linux/mm/page_alloc.c 3 * 4 * Manages the free list, the system allocates free pages here. 5 * Note that kmalloc() lives in slab.c 6 * 7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 8 * Swap reorganised 29.12.95, Stephen Tweedie 9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999 10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999 11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999 12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000 13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002 14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton) 15 */ 16 17 #include <linux/stddef.h> 18 #include <linux/mm.h> 19 #include <linux/swap.h> 20 #include <linux/interrupt.h> 21 #include <linux/pagemap.h> 22 #include <linux/bootmem.h> 23 #include <linux/compiler.h> 24 #include <linux/kernel.h> 25 #include <linux/module.h> 26 #include <linux/suspend.h> 27 #include <linux/pagevec.h> 28 #include <linux/blkdev.h> 29 #include <linux/slab.h> 30 #include <linux/notifier.h> 31 #include <linux/topology.h> 32 #include <linux/sysctl.h> 33 #include <linux/cpu.h> 34 #include <linux/cpuset.h> 35 #include <linux/memory_hotplug.h> 36 #include <linux/nodemask.h> 37 #include <linux/vmalloc.h> 38 #include <linux/mempolicy.h> 39 #include <linux/stop_machine.h> 40 #include <linux/sort.h> 41 #include <linux/pfn.h> 42 #include <linux/backing-dev.h> 43 #include <linux/fault-inject.h> 44 45 #include <asm/tlbflush.h> 46 #include <asm/div64.h> 47 #include "internal.h" 48 49 /* 50 * MCD - HACK: Find somewhere to initialize this EARLY, or make this 51 * initializer cleaner 52 */ 53 nodemask_t node_online_map __read_mostly = { { [0] = 1UL } }; 54 EXPORT_SYMBOL(node_online_map); 55 nodemask_t node_possible_map __read_mostly = NODE_MASK_ALL; 56 EXPORT_SYMBOL(node_possible_map); 57 unsigned long totalram_pages __read_mostly; 58 unsigned long totalreserve_pages __read_mostly; 59 long nr_swap_pages; 60 int percpu_pagelist_fraction; 61 62 static void __free_pages_ok(struct page *page, unsigned int order); 63 64 /* 65 * results with 256, 32 in the lowmem_reserve sysctl: 66 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high) 67 * 1G machine -> (16M dma, 784M normal, 224M high) 68 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA 69 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL 70 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA 71 * 72 * TBD: should special case ZONE_DMA32 machines here - in those we normally 73 * don't need any ZONE_NORMAL reservation 74 */ 75 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = { 76 256, 77 #ifdef CONFIG_ZONE_DMA32 78 256, 79 #endif 80 #ifdef CONFIG_HIGHMEM 81 32 82 #endif 83 }; 84 85 EXPORT_SYMBOL(totalram_pages); 86 87 static char * const zone_names[MAX_NR_ZONES] = { 88 "DMA", 89 #ifdef CONFIG_ZONE_DMA32 90 "DMA32", 91 #endif 92 "Normal", 93 #ifdef CONFIG_HIGHMEM 94 "HighMem" 95 #endif 96 }; 97 98 int min_free_kbytes = 1024; 99 100 unsigned long __meminitdata nr_kernel_pages; 101 unsigned long __meminitdata nr_all_pages; 102 static unsigned long __initdata dma_reserve; 103 104 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP 105 /* 106 * MAX_ACTIVE_REGIONS determines the maxmimum number of distinct 107 * ranges of memory (RAM) that may be registered with add_active_range(). 108 * Ranges passed to add_active_range() will be merged if possible 109 * so the number of times add_active_range() can be called is 110 * related to the number of nodes and the number of holes 111 */ 112 #ifdef CONFIG_MAX_ACTIVE_REGIONS 113 /* Allow an architecture to set MAX_ACTIVE_REGIONS to save memory */ 114 #define MAX_ACTIVE_REGIONS CONFIG_MAX_ACTIVE_REGIONS 115 #else 116 #if MAX_NUMNODES >= 32 117 /* If there can be many nodes, allow up to 50 holes per node */ 118 #define MAX_ACTIVE_REGIONS (MAX_NUMNODES*50) 119 #else 120 /* By default, allow up to 256 distinct regions */ 121 #define MAX_ACTIVE_REGIONS 256 122 #endif 123 #endif 124 125 struct node_active_region __initdata early_node_map[MAX_ACTIVE_REGIONS]; 126 int __initdata nr_nodemap_entries; 127 unsigned long __initdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES]; 128 unsigned long __initdata arch_zone_highest_possible_pfn[MAX_NR_ZONES]; 129 #ifdef CONFIG_MEMORY_HOTPLUG_RESERVE 130 unsigned long __initdata node_boundary_start_pfn[MAX_NUMNODES]; 131 unsigned long __initdata node_boundary_end_pfn[MAX_NUMNODES]; 132 #endif /* CONFIG_MEMORY_HOTPLUG_RESERVE */ 133 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */ 134 135 #ifdef CONFIG_DEBUG_VM 136 static int page_outside_zone_boundaries(struct zone *zone, struct page *page) 137 { 138 int ret = 0; 139 unsigned seq; 140 unsigned long pfn = page_to_pfn(page); 141 142 do { 143 seq = zone_span_seqbegin(zone); 144 if (pfn >= zone->zone_start_pfn + zone->spanned_pages) 145 ret = 1; 146 else if (pfn < zone->zone_start_pfn) 147 ret = 1; 148 } while (zone_span_seqretry(zone, seq)); 149 150 return ret; 151 } 152 153 static int page_is_consistent(struct zone *zone, struct page *page) 154 { 155 #ifdef CONFIG_HOLES_IN_ZONE 156 if (!pfn_valid(page_to_pfn(page))) 157 return 0; 158 #endif 159 if (zone != page_zone(page)) 160 return 0; 161 162 return 1; 163 } 164 /* 165 * Temporary debugging check for pages not lying within a given zone. 166 */ 167 static int bad_range(struct zone *zone, struct page *page) 168 { 169 if (page_outside_zone_boundaries(zone, page)) 170 return 1; 171 if (!page_is_consistent(zone, page)) 172 return 1; 173 174 return 0; 175 } 176 #else 177 static inline int bad_range(struct zone *zone, struct page *page) 178 { 179 return 0; 180 } 181 #endif 182 183 static void bad_page(struct page *page) 184 { 185 printk(KERN_EMERG "Bad page state in process '%s'\n" 186 KERN_EMERG "page:%p flags:0x%0*lx mapping:%p mapcount:%d count:%d\n" 187 KERN_EMERG "Trying to fix it up, but a reboot is needed\n" 188 KERN_EMERG "Backtrace:\n", 189 current->comm, page, (int)(2*sizeof(unsigned long)), 190 (unsigned long)page->flags, page->mapping, 191 page_mapcount(page), page_count(page)); 192 dump_stack(); 193 page->flags &= ~(1 << PG_lru | 194 1 << PG_private | 195 1 << PG_locked | 196 1 << PG_active | 197 1 << PG_dirty | 198 1 << PG_reclaim | 199 1 << PG_slab | 200 1 << PG_swapcache | 201 1 << PG_writeback | 202 1 << PG_buddy ); 203 set_page_count(page, 0); 204 reset_page_mapcount(page); 205 page->mapping = NULL; 206 add_taint(TAINT_BAD_PAGE); 207 } 208 209 /* 210 * Higher-order pages are called "compound pages". They are structured thusly: 211 * 212 * The first PAGE_SIZE page is called the "head page". 213 * 214 * The remaining PAGE_SIZE pages are called "tail pages". 215 * 216 * All pages have PG_compound set. All pages have their ->private pointing at 217 * the head page (even the head page has this). 218 * 219 * The first tail page's ->lru.next holds the address of the compound page's 220 * put_page() function. Its ->lru.prev holds the order of allocation. 221 * This usage means that zero-order pages may not be compound. 222 */ 223 224 static void free_compound_page(struct page *page) 225 { 226 __free_pages_ok(page, (unsigned long)page[1].lru.prev); 227 } 228 229 static void prep_compound_page(struct page *page, unsigned long order) 230 { 231 int i; 232 int nr_pages = 1 << order; 233 234 set_compound_page_dtor(page, free_compound_page); 235 page[1].lru.prev = (void *)order; 236 for (i = 0; i < nr_pages; i++) { 237 struct page *p = page + i; 238 239 __SetPageCompound(p); 240 set_page_private(p, (unsigned long)page); 241 } 242 } 243 244 static void destroy_compound_page(struct page *page, unsigned long order) 245 { 246 int i; 247 int nr_pages = 1 << order; 248 249 if (unlikely((unsigned long)page[1].lru.prev != order)) 250 bad_page(page); 251 252 for (i = 0; i < nr_pages; i++) { 253 struct page *p = page + i; 254 255 if (unlikely(!PageCompound(p) | 256 (page_private(p) != (unsigned long)page))) 257 bad_page(page); 258 __ClearPageCompound(p); 259 } 260 } 261 262 static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags) 263 { 264 int i; 265 266 VM_BUG_ON((gfp_flags & (__GFP_WAIT | __GFP_HIGHMEM)) == __GFP_HIGHMEM); 267 /* 268 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO 269 * and __GFP_HIGHMEM from hard or soft interrupt context. 270 */ 271 VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt()); 272 for (i = 0; i < (1 << order); i++) 273 clear_highpage(page + i); 274 } 275 276 /* 277 * function for dealing with page's order in buddy system. 278 * zone->lock is already acquired when we use these. 279 * So, we don't need atomic page->flags operations here. 280 */ 281 static inline unsigned long page_order(struct page *page) 282 { 283 return page_private(page); 284 } 285 286 static inline void set_page_order(struct page *page, int order) 287 { 288 set_page_private(page, order); 289 __SetPageBuddy(page); 290 } 291 292 static inline void rmv_page_order(struct page *page) 293 { 294 __ClearPageBuddy(page); 295 set_page_private(page, 0); 296 } 297 298 /* 299 * Locate the struct page for both the matching buddy in our 300 * pair (buddy1) and the combined O(n+1) page they form (page). 301 * 302 * 1) Any buddy B1 will have an order O twin B2 which satisfies 303 * the following equation: 304 * B2 = B1 ^ (1 << O) 305 * For example, if the starting buddy (buddy2) is #8 its order 306 * 1 buddy is #10: 307 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10 308 * 309 * 2) Any buddy B will have an order O+1 parent P which 310 * satisfies the following equation: 311 * P = B & ~(1 << O) 312 * 313 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER 314 */ 315 static inline struct page * 316 __page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order) 317 { 318 unsigned long buddy_idx = page_idx ^ (1 << order); 319 320 return page + (buddy_idx - page_idx); 321 } 322 323 static inline unsigned long 324 __find_combined_index(unsigned long page_idx, unsigned int order) 325 { 326 return (page_idx & ~(1 << order)); 327 } 328 329 /* 330 * This function checks whether a page is free && is the buddy 331 * we can do coalesce a page and its buddy if 332 * (a) the buddy is not in a hole && 333 * (b) the buddy is in the buddy system && 334 * (c) a page and its buddy have the same order && 335 * (d) a page and its buddy are in the same zone. 336 * 337 * For recording whether a page is in the buddy system, we use PG_buddy. 338 * Setting, clearing, and testing PG_buddy is serialized by zone->lock. 339 * 340 * For recording page's order, we use page_private(page). 341 */ 342 static inline int page_is_buddy(struct page *page, struct page *buddy, 343 int order) 344 { 345 #ifdef CONFIG_HOLES_IN_ZONE 346 if (!pfn_valid(page_to_pfn(buddy))) 347 return 0; 348 #endif 349 350 if (page_zone_id(page) != page_zone_id(buddy)) 351 return 0; 352 353 if (PageBuddy(buddy) && page_order(buddy) == order) { 354 BUG_ON(page_count(buddy) != 0); 355 return 1; 356 } 357 return 0; 358 } 359 360 /* 361 * Freeing function for a buddy system allocator. 362 * 363 * The concept of a buddy system is to maintain direct-mapped table 364 * (containing bit values) for memory blocks of various "orders". 365 * The bottom level table contains the map for the smallest allocatable 366 * units of memory (here, pages), and each level above it describes 367 * pairs of units from the levels below, hence, "buddies". 368 * At a high level, all that happens here is marking the table entry 369 * at the bottom level available, and propagating the changes upward 370 * as necessary, plus some accounting needed to play nicely with other 371 * parts of the VM system. 372 * At each level, we keep a list of pages, which are heads of continuous 373 * free pages of length of (1 << order) and marked with PG_buddy. Page's 374 * order is recorded in page_private(page) field. 375 * So when we are allocating or freeing one, we can derive the state of the 376 * other. That is, if we allocate a small block, and both were 377 * free, the remainder of the region must be split into blocks. 378 * If a block is freed, and its buddy is also free, then this 379 * triggers coalescing into a block of larger size. 380 * 381 * -- wli 382 */ 383 384 static inline void __free_one_page(struct page *page, 385 struct zone *zone, unsigned int order) 386 { 387 unsigned long page_idx; 388 int order_size = 1 << order; 389 390 if (unlikely(PageCompound(page))) 391 destroy_compound_page(page, order); 392 393 page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1); 394 395 VM_BUG_ON(page_idx & (order_size - 1)); 396 VM_BUG_ON(bad_range(zone, page)); 397 398 zone->free_pages += order_size; 399 while (order < MAX_ORDER-1) { 400 unsigned long combined_idx; 401 struct free_area *area; 402 struct page *buddy; 403 404 buddy = __page_find_buddy(page, page_idx, order); 405 if (!page_is_buddy(page, buddy, order)) 406 break; /* Move the buddy up one level. */ 407 408 list_del(&buddy->lru); 409 area = zone->free_area + order; 410 area->nr_free--; 411 rmv_page_order(buddy); 412 combined_idx = __find_combined_index(page_idx, order); 413 page = page + (combined_idx - page_idx); 414 page_idx = combined_idx; 415 order++; 416 } 417 set_page_order(page, order); 418 list_add(&page->lru, &zone->free_area[order].free_list); 419 zone->free_area[order].nr_free++; 420 } 421 422 static inline int free_pages_check(struct page *page) 423 { 424 if (unlikely(page_mapcount(page) | 425 (page->mapping != NULL) | 426 (page_count(page) != 0) | 427 (page->flags & ( 428 1 << PG_lru | 429 1 << PG_private | 430 1 << PG_locked | 431 1 << PG_active | 432 1 << PG_reclaim | 433 1 << PG_slab | 434 1 << PG_swapcache | 435 1 << PG_writeback | 436 1 << PG_reserved | 437 1 << PG_buddy )))) 438 bad_page(page); 439 if (PageDirty(page)) 440 __ClearPageDirty(page); 441 /* 442 * For now, we report if PG_reserved was found set, but do not 443 * clear it, and do not free the page. But we shall soon need 444 * to do more, for when the ZERO_PAGE count wraps negative. 445 */ 446 return PageReserved(page); 447 } 448 449 /* 450 * Frees a list of pages. 451 * Assumes all pages on list are in same zone, and of same order. 452 * count is the number of pages to free. 453 * 454 * If the zone was previously in an "all pages pinned" state then look to 455 * see if this freeing clears that state. 456 * 457 * And clear the zone's pages_scanned counter, to hold off the "all pages are 458 * pinned" detection logic. 459 */ 460 static void free_pages_bulk(struct zone *zone, int count, 461 struct list_head *list, int order) 462 { 463 spin_lock(&zone->lock); 464 zone->all_unreclaimable = 0; 465 zone->pages_scanned = 0; 466 while (count--) { 467 struct page *page; 468 469 VM_BUG_ON(list_empty(list)); 470 page = list_entry(list->prev, struct page, lru); 471 /* have to delete it as __free_one_page list manipulates */ 472 list_del(&page->lru); 473 __free_one_page(page, zone, order); 474 } 475 spin_unlock(&zone->lock); 476 } 477 478 static void free_one_page(struct zone *zone, struct page *page, int order) 479 { 480 spin_lock(&zone->lock); 481 zone->all_unreclaimable = 0; 482 zone->pages_scanned = 0; 483 __free_one_page(page, zone, order); 484 spin_unlock(&zone->lock); 485 } 486 487 static void __free_pages_ok(struct page *page, unsigned int order) 488 { 489 unsigned long flags; 490 int i; 491 int reserved = 0; 492 493 for (i = 0 ; i < (1 << order) ; ++i) 494 reserved += free_pages_check(page + i); 495 if (reserved) 496 return; 497 498 if (!PageHighMem(page)) 499 debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order); 500 arch_free_page(page, order); 501 kernel_map_pages(page, 1 << order, 0); 502 503 local_irq_save(flags); 504 __count_vm_events(PGFREE, 1 << order); 505 free_one_page(page_zone(page), page, order); 506 local_irq_restore(flags); 507 } 508 509 /* 510 * permit the bootmem allocator to evade page validation on high-order frees 511 */ 512 void fastcall __init __free_pages_bootmem(struct page *page, unsigned int order) 513 { 514 if (order == 0) { 515 __ClearPageReserved(page); 516 set_page_count(page, 0); 517 set_page_refcounted(page); 518 __free_page(page); 519 } else { 520 int loop; 521 522 prefetchw(page); 523 for (loop = 0; loop < BITS_PER_LONG; loop++) { 524 struct page *p = &page[loop]; 525 526 if (loop + 1 < BITS_PER_LONG) 527 prefetchw(p + 1); 528 __ClearPageReserved(p); 529 set_page_count(p, 0); 530 } 531 532 set_page_refcounted(page); 533 __free_pages(page, order); 534 } 535 } 536 537 538 /* 539 * The order of subdivision here is critical for the IO subsystem. 540 * Please do not alter this order without good reasons and regression 541 * testing. Specifically, as large blocks of memory are subdivided, 542 * the order in which smaller blocks are delivered depends on the order 543 * they're subdivided in this function. This is the primary factor 544 * influencing the order in which pages are delivered to the IO 545 * subsystem according to empirical testing, and this is also justified 546 * by considering the behavior of a buddy system containing a single 547 * large block of memory acted on by a series of small allocations. 548 * This behavior is a critical factor in sglist merging's success. 549 * 550 * -- wli 551 */ 552 static inline void expand(struct zone *zone, struct page *page, 553 int low, int high, struct free_area *area) 554 { 555 unsigned long size = 1 << high; 556 557 while (high > low) { 558 area--; 559 high--; 560 size >>= 1; 561 VM_BUG_ON(bad_range(zone, &page[size])); 562 list_add(&page[size].lru, &area->free_list); 563 area->nr_free++; 564 set_page_order(&page[size], high); 565 } 566 } 567 568 /* 569 * This page is about to be returned from the page allocator 570 */ 571 static int prep_new_page(struct page *page, int order, gfp_t gfp_flags) 572 { 573 if (unlikely(page_mapcount(page) | 574 (page->mapping != NULL) | 575 (page_count(page) != 0) | 576 (page->flags & ( 577 1 << PG_lru | 578 1 << PG_private | 579 1 << PG_locked | 580 1 << PG_active | 581 1 << PG_dirty | 582 1 << PG_reclaim | 583 1 << PG_slab | 584 1 << PG_swapcache | 585 1 << PG_writeback | 586 1 << PG_reserved | 587 1 << PG_buddy )))) 588 bad_page(page); 589 590 /* 591 * For now, we report if PG_reserved was found set, but do not 592 * clear it, and do not allocate the page: as a safety net. 593 */ 594 if (PageReserved(page)) 595 return 1; 596 597 page->flags &= ~(1 << PG_uptodate | 1 << PG_error | 598 1 << PG_referenced | 1 << PG_arch_1 | 599 1 << PG_checked | 1 << PG_mappedtodisk); 600 set_page_private(page, 0); 601 set_page_refcounted(page); 602 603 arch_alloc_page(page, order); 604 kernel_map_pages(page, 1 << order, 1); 605 606 if (gfp_flags & __GFP_ZERO) 607 prep_zero_page(page, order, gfp_flags); 608 609 if (order && (gfp_flags & __GFP_COMP)) 610 prep_compound_page(page, order); 611 612 return 0; 613 } 614 615 /* 616 * Do the hard work of removing an element from the buddy allocator. 617 * Call me with the zone->lock already held. 618 */ 619 static struct page *__rmqueue(struct zone *zone, unsigned int order) 620 { 621 struct free_area * area; 622 unsigned int current_order; 623 struct page *page; 624 625 for (current_order = order; current_order < MAX_ORDER; ++current_order) { 626 area = zone->free_area + current_order; 627 if (list_empty(&area->free_list)) 628 continue; 629 630 page = list_entry(area->free_list.next, struct page, lru); 631 list_del(&page->lru); 632 rmv_page_order(page); 633 area->nr_free--; 634 zone->free_pages -= 1UL << order; 635 expand(zone, page, order, current_order, area); 636 return page; 637 } 638 639 return NULL; 640 } 641 642 /* 643 * Obtain a specified number of elements from the buddy allocator, all under 644 * a single hold of the lock, for efficiency. Add them to the supplied list. 645 * Returns the number of new pages which were placed at *list. 646 */ 647 static int rmqueue_bulk(struct zone *zone, unsigned int order, 648 unsigned long count, struct list_head *list) 649 { 650 int i; 651 652 spin_lock(&zone->lock); 653 for (i = 0; i < count; ++i) { 654 struct page *page = __rmqueue(zone, order); 655 if (unlikely(page == NULL)) 656 break; 657 list_add_tail(&page->lru, list); 658 } 659 spin_unlock(&zone->lock); 660 return i; 661 } 662 663 #ifdef CONFIG_NUMA 664 /* 665 * Called from the slab reaper to drain pagesets on a particular node that 666 * belongs to the currently executing processor. 667 * Note that this function must be called with the thread pinned to 668 * a single processor. 669 */ 670 void drain_node_pages(int nodeid) 671 { 672 int i; 673 enum zone_type z; 674 unsigned long flags; 675 676 for (z = 0; z < MAX_NR_ZONES; z++) { 677 struct zone *zone = NODE_DATA(nodeid)->node_zones + z; 678 struct per_cpu_pageset *pset; 679 680 if (!populated_zone(zone)) 681 continue; 682 683 pset = zone_pcp(zone, smp_processor_id()); 684 for (i = 0; i < ARRAY_SIZE(pset->pcp); i++) { 685 struct per_cpu_pages *pcp; 686 687 pcp = &pset->pcp[i]; 688 if (pcp->count) { 689 int to_drain; 690 691 local_irq_save(flags); 692 if (pcp->count >= pcp->batch) 693 to_drain = pcp->batch; 694 else 695 to_drain = pcp->count; 696 free_pages_bulk(zone, to_drain, &pcp->list, 0); 697 pcp->count -= to_drain; 698 local_irq_restore(flags); 699 } 700 } 701 } 702 } 703 #endif 704 705 static void __drain_pages(unsigned int cpu) 706 { 707 unsigned long flags; 708 struct zone *zone; 709 int i; 710 711 for_each_zone(zone) { 712 struct per_cpu_pageset *pset; 713 714 if (!populated_zone(zone)) 715 continue; 716 717 pset = zone_pcp(zone, cpu); 718 for (i = 0; i < ARRAY_SIZE(pset->pcp); i++) { 719 struct per_cpu_pages *pcp; 720 721 pcp = &pset->pcp[i]; 722 local_irq_save(flags); 723 free_pages_bulk(zone, pcp->count, &pcp->list, 0); 724 pcp->count = 0; 725 local_irq_restore(flags); 726 } 727 } 728 } 729 730 #ifdef CONFIG_PM 731 732 void mark_free_pages(struct zone *zone) 733 { 734 unsigned long pfn, max_zone_pfn; 735 unsigned long flags; 736 int order; 737 struct list_head *curr; 738 739 if (!zone->spanned_pages) 740 return; 741 742 spin_lock_irqsave(&zone->lock, flags); 743 744 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages; 745 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) 746 if (pfn_valid(pfn)) { 747 struct page *page = pfn_to_page(pfn); 748 749 if (!PageNosave(page)) 750 ClearPageNosaveFree(page); 751 } 752 753 for (order = MAX_ORDER - 1; order >= 0; --order) 754 list_for_each(curr, &zone->free_area[order].free_list) { 755 unsigned long i; 756 757 pfn = page_to_pfn(list_entry(curr, struct page, lru)); 758 for (i = 0; i < (1UL << order); i++) 759 SetPageNosaveFree(pfn_to_page(pfn + i)); 760 } 761 762 spin_unlock_irqrestore(&zone->lock, flags); 763 } 764 765 /* 766 * Spill all of this CPU's per-cpu pages back into the buddy allocator. 767 */ 768 void drain_local_pages(void) 769 { 770 unsigned long flags; 771 772 local_irq_save(flags); 773 __drain_pages(smp_processor_id()); 774 local_irq_restore(flags); 775 } 776 #endif /* CONFIG_PM */ 777 778 /* 779 * Free a 0-order page 780 */ 781 static void fastcall free_hot_cold_page(struct page *page, int cold) 782 { 783 struct zone *zone = page_zone(page); 784 struct per_cpu_pages *pcp; 785 unsigned long flags; 786 787 if (PageAnon(page)) 788 page->mapping = NULL; 789 if (free_pages_check(page)) 790 return; 791 792 if (!PageHighMem(page)) 793 debug_check_no_locks_freed(page_address(page), PAGE_SIZE); 794 arch_free_page(page, 0); 795 kernel_map_pages(page, 1, 0); 796 797 pcp = &zone_pcp(zone, get_cpu())->pcp[cold]; 798 local_irq_save(flags); 799 __count_vm_event(PGFREE); 800 list_add(&page->lru, &pcp->list); 801 pcp->count++; 802 if (pcp->count >= pcp->high) { 803 free_pages_bulk(zone, pcp->batch, &pcp->list, 0); 804 pcp->count -= pcp->batch; 805 } 806 local_irq_restore(flags); 807 put_cpu(); 808 } 809 810 void fastcall free_hot_page(struct page *page) 811 { 812 free_hot_cold_page(page, 0); 813 } 814 815 void fastcall free_cold_page(struct page *page) 816 { 817 free_hot_cold_page(page, 1); 818 } 819 820 /* 821 * split_page takes a non-compound higher-order page, and splits it into 822 * n (1<<order) sub-pages: page[0..n] 823 * Each sub-page must be freed individually. 824 * 825 * Note: this is probably too low level an operation for use in drivers. 826 * Please consult with lkml before using this in your driver. 827 */ 828 void split_page(struct page *page, unsigned int order) 829 { 830 int i; 831 832 VM_BUG_ON(PageCompound(page)); 833 VM_BUG_ON(!page_count(page)); 834 for (i = 1; i < (1 << order); i++) 835 set_page_refcounted(page + i); 836 } 837 838 /* 839 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But 840 * we cheat by calling it from here, in the order > 0 path. Saves a branch 841 * or two. 842 */ 843 static struct page *buffered_rmqueue(struct zonelist *zonelist, 844 struct zone *zone, int order, gfp_t gfp_flags) 845 { 846 unsigned long flags; 847 struct page *page; 848 int cold = !!(gfp_flags & __GFP_COLD); 849 int cpu; 850 851 again: 852 cpu = get_cpu(); 853 if (likely(order == 0)) { 854 struct per_cpu_pages *pcp; 855 856 pcp = &zone_pcp(zone, cpu)->pcp[cold]; 857 local_irq_save(flags); 858 if (!pcp->count) { 859 pcp->count = rmqueue_bulk(zone, 0, 860 pcp->batch, &pcp->list); 861 if (unlikely(!pcp->count)) 862 goto failed; 863 } 864 page = list_entry(pcp->list.next, struct page, lru); 865 list_del(&page->lru); 866 pcp->count--; 867 } else { 868 spin_lock_irqsave(&zone->lock, flags); 869 page = __rmqueue(zone, order); 870 spin_unlock(&zone->lock); 871 if (!page) 872 goto failed; 873 } 874 875 __count_zone_vm_events(PGALLOC, zone, 1 << order); 876 zone_statistics(zonelist, zone); 877 local_irq_restore(flags); 878 put_cpu(); 879 880 VM_BUG_ON(bad_range(zone, page)); 881 if (prep_new_page(page, order, gfp_flags)) 882 goto again; 883 return page; 884 885 failed: 886 local_irq_restore(flags); 887 put_cpu(); 888 return NULL; 889 } 890 891 #define ALLOC_NO_WATERMARKS 0x01 /* don't check watermarks at all */ 892 #define ALLOC_WMARK_MIN 0x02 /* use pages_min watermark */ 893 #define ALLOC_WMARK_LOW 0x04 /* use pages_low watermark */ 894 #define ALLOC_WMARK_HIGH 0x08 /* use pages_high watermark */ 895 #define ALLOC_HARDER 0x10 /* try to alloc harder */ 896 #define ALLOC_HIGH 0x20 /* __GFP_HIGH set */ 897 #define ALLOC_CPUSET 0x40 /* check for correct cpuset */ 898 899 #ifdef CONFIG_FAIL_PAGE_ALLOC 900 901 static struct fail_page_alloc_attr { 902 struct fault_attr attr; 903 904 u32 ignore_gfp_highmem; 905 u32 ignore_gfp_wait; 906 907 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS 908 909 struct dentry *ignore_gfp_highmem_file; 910 struct dentry *ignore_gfp_wait_file; 911 912 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */ 913 914 } fail_page_alloc = { 915 .attr = FAULT_ATTR_INITIALIZER, 916 .ignore_gfp_wait = 1, 917 .ignore_gfp_highmem = 1, 918 }; 919 920 static int __init setup_fail_page_alloc(char *str) 921 { 922 return setup_fault_attr(&fail_page_alloc.attr, str); 923 } 924 __setup("fail_page_alloc=", setup_fail_page_alloc); 925 926 static int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) 927 { 928 if (gfp_mask & __GFP_NOFAIL) 929 return 0; 930 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM)) 931 return 0; 932 if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT)) 933 return 0; 934 935 return should_fail(&fail_page_alloc.attr, 1 << order); 936 } 937 938 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS 939 940 static int __init fail_page_alloc_debugfs(void) 941 { 942 mode_t mode = S_IFREG | S_IRUSR | S_IWUSR; 943 struct dentry *dir; 944 int err; 945 946 err = init_fault_attr_dentries(&fail_page_alloc.attr, 947 "fail_page_alloc"); 948 if (err) 949 return err; 950 dir = fail_page_alloc.attr.dentries.dir; 951 952 fail_page_alloc.ignore_gfp_wait_file = 953 debugfs_create_bool("ignore-gfp-wait", mode, dir, 954 &fail_page_alloc.ignore_gfp_wait); 955 956 fail_page_alloc.ignore_gfp_highmem_file = 957 debugfs_create_bool("ignore-gfp-highmem", mode, dir, 958 &fail_page_alloc.ignore_gfp_highmem); 959 960 if (!fail_page_alloc.ignore_gfp_wait_file || 961 !fail_page_alloc.ignore_gfp_highmem_file) { 962 err = -ENOMEM; 963 debugfs_remove(fail_page_alloc.ignore_gfp_wait_file); 964 debugfs_remove(fail_page_alloc.ignore_gfp_highmem_file); 965 cleanup_fault_attr_dentries(&fail_page_alloc.attr); 966 } 967 968 return err; 969 } 970 971 late_initcall(fail_page_alloc_debugfs); 972 973 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */ 974 975 #else /* CONFIG_FAIL_PAGE_ALLOC */ 976 977 static inline int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) 978 { 979 return 0; 980 } 981 982 #endif /* CONFIG_FAIL_PAGE_ALLOC */ 983 984 /* 985 * Return 1 if free pages are above 'mark'. This takes into account the order 986 * of the allocation. 987 */ 988 int zone_watermark_ok(struct zone *z, int order, unsigned long mark, 989 int classzone_idx, int alloc_flags) 990 { 991 /* free_pages my go negative - that's OK */ 992 long min = mark, free_pages = z->free_pages - (1 << order) + 1; 993 int o; 994 995 if (alloc_flags & ALLOC_HIGH) 996 min -= min / 2; 997 if (alloc_flags & ALLOC_HARDER) 998 min -= min / 4; 999 1000 if (free_pages <= min + z->lowmem_reserve[classzone_idx]) 1001 return 0; 1002 for (o = 0; o < order; o++) { 1003 /* At the next order, this order's pages become unavailable */ 1004 free_pages -= z->free_area[o].nr_free << o; 1005 1006 /* Require fewer higher order pages to be free */ 1007 min >>= 1; 1008 1009 if (free_pages <= min) 1010 return 0; 1011 } 1012 return 1; 1013 } 1014 1015 #ifdef CONFIG_NUMA 1016 /* 1017 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to 1018 * skip over zones that are not allowed by the cpuset, or that have 1019 * been recently (in last second) found to be nearly full. See further 1020 * comments in mmzone.h. Reduces cache footprint of zonelist scans 1021 * that have to skip over alot of full or unallowed zones. 1022 * 1023 * If the zonelist cache is present in the passed in zonelist, then 1024 * returns a pointer to the allowed node mask (either the current 1025 * tasks mems_allowed, or node_online_map.) 1026 * 1027 * If the zonelist cache is not available for this zonelist, does 1028 * nothing and returns NULL. 1029 * 1030 * If the fullzones BITMAP in the zonelist cache is stale (more than 1031 * a second since last zap'd) then we zap it out (clear its bits.) 1032 * 1033 * We hold off even calling zlc_setup, until after we've checked the 1034 * first zone in the zonelist, on the theory that most allocations will 1035 * be satisfied from that first zone, so best to examine that zone as 1036 * quickly as we can. 1037 */ 1038 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags) 1039 { 1040 struct zonelist_cache *zlc; /* cached zonelist speedup info */ 1041 nodemask_t *allowednodes; /* zonelist_cache approximation */ 1042 1043 zlc = zonelist->zlcache_ptr; 1044 if (!zlc) 1045 return NULL; 1046 1047 if (jiffies - zlc->last_full_zap > 1 * HZ) { 1048 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST); 1049 zlc->last_full_zap = jiffies; 1050 } 1051 1052 allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ? 1053 &cpuset_current_mems_allowed : 1054 &node_online_map; 1055 return allowednodes; 1056 } 1057 1058 /* 1059 * Given 'z' scanning a zonelist, run a couple of quick checks to see 1060 * if it is worth looking at further for free memory: 1061 * 1) Check that the zone isn't thought to be full (doesn't have its 1062 * bit set in the zonelist_cache fullzones BITMAP). 1063 * 2) Check that the zones node (obtained from the zonelist_cache 1064 * z_to_n[] mapping) is allowed in the passed in allowednodes mask. 1065 * Return true (non-zero) if zone is worth looking at further, or 1066 * else return false (zero) if it is not. 1067 * 1068 * This check -ignores- the distinction between various watermarks, 1069 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is 1070 * found to be full for any variation of these watermarks, it will 1071 * be considered full for up to one second by all requests, unless 1072 * we are so low on memory on all allowed nodes that we are forced 1073 * into the second scan of the zonelist. 1074 * 1075 * In the second scan we ignore this zonelist cache and exactly 1076 * apply the watermarks to all zones, even it is slower to do so. 1077 * We are low on memory in the second scan, and should leave no stone 1078 * unturned looking for a free page. 1079 */ 1080 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zone **z, 1081 nodemask_t *allowednodes) 1082 { 1083 struct zonelist_cache *zlc; /* cached zonelist speedup info */ 1084 int i; /* index of *z in zonelist zones */ 1085 int n; /* node that zone *z is on */ 1086 1087 zlc = zonelist->zlcache_ptr; 1088 if (!zlc) 1089 return 1; 1090 1091 i = z - zonelist->zones; 1092 n = zlc->z_to_n[i]; 1093 1094 /* This zone is worth trying if it is allowed but not full */ 1095 return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones); 1096 } 1097 1098 /* 1099 * Given 'z' scanning a zonelist, set the corresponding bit in 1100 * zlc->fullzones, so that subsequent attempts to allocate a page 1101 * from that zone don't waste time re-examining it. 1102 */ 1103 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zone **z) 1104 { 1105 struct zonelist_cache *zlc; /* cached zonelist speedup info */ 1106 int i; /* index of *z in zonelist zones */ 1107 1108 zlc = zonelist->zlcache_ptr; 1109 if (!zlc) 1110 return; 1111 1112 i = z - zonelist->zones; 1113 1114 set_bit(i, zlc->fullzones); 1115 } 1116 1117 #else /* CONFIG_NUMA */ 1118 1119 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags) 1120 { 1121 return NULL; 1122 } 1123 1124 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zone **z, 1125 nodemask_t *allowednodes) 1126 { 1127 return 1; 1128 } 1129 1130 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zone **z) 1131 { 1132 } 1133 #endif /* CONFIG_NUMA */ 1134 1135 /* 1136 * get_page_from_freelist goes through the zonelist trying to allocate 1137 * a page. 1138 */ 1139 static struct page * 1140 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, 1141 struct zonelist *zonelist, int alloc_flags) 1142 { 1143 struct zone **z; 1144 struct page *page = NULL; 1145 int classzone_idx = zone_idx(zonelist->zones[0]); 1146 struct zone *zone; 1147 nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */ 1148 int zlc_active = 0; /* set if using zonelist_cache */ 1149 int did_zlc_setup = 0; /* just call zlc_setup() one time */ 1150 1151 zonelist_scan: 1152 /* 1153 * Scan zonelist, looking for a zone with enough free. 1154 * See also cpuset_zone_allowed() comment in kernel/cpuset.c. 1155 */ 1156 z = zonelist->zones; 1157 1158 do { 1159 if (NUMA_BUILD && zlc_active && 1160 !zlc_zone_worth_trying(zonelist, z, allowednodes)) 1161 continue; 1162 zone = *z; 1163 if (unlikely(NUMA_BUILD && (gfp_mask & __GFP_THISNODE) && 1164 zone->zone_pgdat != zonelist->zones[0]->zone_pgdat)) 1165 break; 1166 if ((alloc_flags & ALLOC_CPUSET) && 1167 !cpuset_zone_allowed_softwall(zone, gfp_mask)) 1168 goto try_next_zone; 1169 1170 if (!(alloc_flags & ALLOC_NO_WATERMARKS)) { 1171 unsigned long mark; 1172 if (alloc_flags & ALLOC_WMARK_MIN) 1173 mark = zone->pages_min; 1174 else if (alloc_flags & ALLOC_WMARK_LOW) 1175 mark = zone->pages_low; 1176 else 1177 mark = zone->pages_high; 1178 if (!zone_watermark_ok(zone, order, mark, 1179 classzone_idx, alloc_flags)) { 1180 if (!zone_reclaim_mode || 1181 !zone_reclaim(zone, gfp_mask, order)) 1182 goto this_zone_full; 1183 } 1184 } 1185 1186 page = buffered_rmqueue(zonelist, zone, order, gfp_mask); 1187 if (page) 1188 break; 1189 this_zone_full: 1190 if (NUMA_BUILD) 1191 zlc_mark_zone_full(zonelist, z); 1192 try_next_zone: 1193 if (NUMA_BUILD && !did_zlc_setup) { 1194 /* we do zlc_setup after the first zone is tried */ 1195 allowednodes = zlc_setup(zonelist, alloc_flags); 1196 zlc_active = 1; 1197 did_zlc_setup = 1; 1198 } 1199 } while (*(++z) != NULL); 1200 1201 if (unlikely(NUMA_BUILD && page == NULL && zlc_active)) { 1202 /* Disable zlc cache for second zonelist scan */ 1203 zlc_active = 0; 1204 goto zonelist_scan; 1205 } 1206 return page; 1207 } 1208 1209 /* 1210 * This is the 'heart' of the zoned buddy allocator. 1211 */ 1212 struct page * fastcall 1213 __alloc_pages(gfp_t gfp_mask, unsigned int order, 1214 struct zonelist *zonelist) 1215 { 1216 const gfp_t wait = gfp_mask & __GFP_WAIT; 1217 struct zone **z; 1218 struct page *page; 1219 struct reclaim_state reclaim_state; 1220 struct task_struct *p = current; 1221 int do_retry; 1222 int alloc_flags; 1223 int did_some_progress; 1224 1225 might_sleep_if(wait); 1226 1227 if (should_fail_alloc_page(gfp_mask, order)) 1228 return NULL; 1229 1230 restart: 1231 z = zonelist->zones; /* the list of zones suitable for gfp_mask */ 1232 1233 if (unlikely(*z == NULL)) { 1234 /* Should this ever happen?? */ 1235 return NULL; 1236 } 1237 1238 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, order, 1239 zonelist, ALLOC_WMARK_LOW|ALLOC_CPUSET); 1240 if (page) 1241 goto got_pg; 1242 1243 /* 1244 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and 1245 * __GFP_NOWARN set) should not cause reclaim since the subsystem 1246 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim 1247 * using a larger set of nodes after it has established that the 1248 * allowed per node queues are empty and that nodes are 1249 * over allocated. 1250 */ 1251 if (NUMA_BUILD && (gfp_mask & GFP_THISNODE) == GFP_THISNODE) 1252 goto nopage; 1253 1254 for (z = zonelist->zones; *z; z++) 1255 wakeup_kswapd(*z, order); 1256 1257 /* 1258 * OK, we're below the kswapd watermark and have kicked background 1259 * reclaim. Now things get more complex, so set up alloc_flags according 1260 * to how we want to proceed. 1261 * 1262 * The caller may dip into page reserves a bit more if the caller 1263 * cannot run direct reclaim, or if the caller has realtime scheduling 1264 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will 1265 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH). 1266 */ 1267 alloc_flags = ALLOC_WMARK_MIN; 1268 if ((unlikely(rt_task(p)) && !in_interrupt()) || !wait) 1269 alloc_flags |= ALLOC_HARDER; 1270 if (gfp_mask & __GFP_HIGH) 1271 alloc_flags |= ALLOC_HIGH; 1272 if (wait) 1273 alloc_flags |= ALLOC_CPUSET; 1274 1275 /* 1276 * Go through the zonelist again. Let __GFP_HIGH and allocations 1277 * coming from realtime tasks go deeper into reserves. 1278 * 1279 * This is the last chance, in general, before the goto nopage. 1280 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc. 1281 * See also cpuset_zone_allowed() comment in kernel/cpuset.c. 1282 */ 1283 page = get_page_from_freelist(gfp_mask, order, zonelist, alloc_flags); 1284 if (page) 1285 goto got_pg; 1286 1287 /* This allocation should allow future memory freeing. */ 1288 1289 rebalance: 1290 if (((p->flags & PF_MEMALLOC) || unlikely(test_thread_flag(TIF_MEMDIE))) 1291 && !in_interrupt()) { 1292 if (!(gfp_mask & __GFP_NOMEMALLOC)) { 1293 nofail_alloc: 1294 /* go through the zonelist yet again, ignoring mins */ 1295 page = get_page_from_freelist(gfp_mask, order, 1296 zonelist, ALLOC_NO_WATERMARKS); 1297 if (page) 1298 goto got_pg; 1299 if (gfp_mask & __GFP_NOFAIL) { 1300 congestion_wait(WRITE, HZ/50); 1301 goto nofail_alloc; 1302 } 1303 } 1304 goto nopage; 1305 } 1306 1307 /* Atomic allocations - we can't balance anything */ 1308 if (!wait) 1309 goto nopage; 1310 1311 cond_resched(); 1312 1313 /* We now go into synchronous reclaim */ 1314 cpuset_memory_pressure_bump(); 1315 p->flags |= PF_MEMALLOC; 1316 reclaim_state.reclaimed_slab = 0; 1317 p->reclaim_state = &reclaim_state; 1318 1319 did_some_progress = try_to_free_pages(zonelist->zones, gfp_mask); 1320 1321 p->reclaim_state = NULL; 1322 p->flags &= ~PF_MEMALLOC; 1323 1324 cond_resched(); 1325 1326 if (likely(did_some_progress)) { 1327 page = get_page_from_freelist(gfp_mask, order, 1328 zonelist, alloc_flags); 1329 if (page) 1330 goto got_pg; 1331 } else if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) { 1332 /* 1333 * Go through the zonelist yet one more time, keep 1334 * very high watermark here, this is only to catch 1335 * a parallel oom killing, we must fail if we're still 1336 * under heavy pressure. 1337 */ 1338 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, order, 1339 zonelist, ALLOC_WMARK_HIGH|ALLOC_CPUSET); 1340 if (page) 1341 goto got_pg; 1342 1343 out_of_memory(zonelist, gfp_mask, order); 1344 goto restart; 1345 } 1346 1347 /* 1348 * Don't let big-order allocations loop unless the caller explicitly 1349 * requests that. Wait for some write requests to complete then retry. 1350 * 1351 * In this implementation, __GFP_REPEAT means __GFP_NOFAIL for order 1352 * <= 3, but that may not be true in other implementations. 1353 */ 1354 do_retry = 0; 1355 if (!(gfp_mask & __GFP_NORETRY)) { 1356 if ((order <= 3) || (gfp_mask & __GFP_REPEAT)) 1357 do_retry = 1; 1358 if (gfp_mask & __GFP_NOFAIL) 1359 do_retry = 1; 1360 } 1361 if (do_retry) { 1362 congestion_wait(WRITE, HZ/50); 1363 goto rebalance; 1364 } 1365 1366 nopage: 1367 if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) { 1368 printk(KERN_WARNING "%s: page allocation failure." 1369 " order:%d, mode:0x%x\n", 1370 p->comm, order, gfp_mask); 1371 dump_stack(); 1372 show_mem(); 1373 } 1374 got_pg: 1375 return page; 1376 } 1377 1378 EXPORT_SYMBOL(__alloc_pages); 1379 1380 /* 1381 * Common helper functions. 1382 */ 1383 fastcall unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order) 1384 { 1385 struct page * page; 1386 page = alloc_pages(gfp_mask, order); 1387 if (!page) 1388 return 0; 1389 return (unsigned long) page_address(page); 1390 } 1391 1392 EXPORT_SYMBOL(__get_free_pages); 1393 1394 fastcall unsigned long get_zeroed_page(gfp_t gfp_mask) 1395 { 1396 struct page * page; 1397 1398 /* 1399 * get_zeroed_page() returns a 32-bit address, which cannot represent 1400 * a highmem page 1401 */ 1402 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0); 1403 1404 page = alloc_pages(gfp_mask | __GFP_ZERO, 0); 1405 if (page) 1406 return (unsigned long) page_address(page); 1407 return 0; 1408 } 1409 1410 EXPORT_SYMBOL(get_zeroed_page); 1411 1412 void __pagevec_free(struct pagevec *pvec) 1413 { 1414 int i = pagevec_count(pvec); 1415 1416 while (--i >= 0) 1417 free_hot_cold_page(pvec->pages[i], pvec->cold); 1418 } 1419 1420 fastcall void __free_pages(struct page *page, unsigned int order) 1421 { 1422 if (put_page_testzero(page)) { 1423 if (order == 0) 1424 free_hot_page(page); 1425 else 1426 __free_pages_ok(page, order); 1427 } 1428 } 1429 1430 EXPORT_SYMBOL(__free_pages); 1431 1432 fastcall void free_pages(unsigned long addr, unsigned int order) 1433 { 1434 if (addr != 0) { 1435 VM_BUG_ON(!virt_addr_valid((void *)addr)); 1436 __free_pages(virt_to_page((void *)addr), order); 1437 } 1438 } 1439 1440 EXPORT_SYMBOL(free_pages); 1441 1442 /* 1443 * Total amount of free (allocatable) RAM: 1444 */ 1445 unsigned int nr_free_pages(void) 1446 { 1447 unsigned int sum = 0; 1448 struct zone *zone; 1449 1450 for_each_zone(zone) 1451 sum += zone->free_pages; 1452 1453 return sum; 1454 } 1455 1456 EXPORT_SYMBOL(nr_free_pages); 1457 1458 #ifdef CONFIG_NUMA 1459 unsigned int nr_free_pages_pgdat(pg_data_t *pgdat) 1460 { 1461 unsigned int sum = 0; 1462 enum zone_type i; 1463 1464 for (i = 0; i < MAX_NR_ZONES; i++) 1465 sum += pgdat->node_zones[i].free_pages; 1466 1467 return sum; 1468 } 1469 #endif 1470 1471 static unsigned int nr_free_zone_pages(int offset) 1472 { 1473 /* Just pick one node, since fallback list is circular */ 1474 pg_data_t *pgdat = NODE_DATA(numa_node_id()); 1475 unsigned int sum = 0; 1476 1477 struct zonelist *zonelist = pgdat->node_zonelists + offset; 1478 struct zone **zonep = zonelist->zones; 1479 struct zone *zone; 1480 1481 for (zone = *zonep++; zone; zone = *zonep++) { 1482 unsigned long size = zone->present_pages; 1483 unsigned long high = zone->pages_high; 1484 if (size > high) 1485 sum += size - high; 1486 } 1487 1488 return sum; 1489 } 1490 1491 /* 1492 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL 1493 */ 1494 unsigned int nr_free_buffer_pages(void) 1495 { 1496 return nr_free_zone_pages(gfp_zone(GFP_USER)); 1497 } 1498 1499 /* 1500 * Amount of free RAM allocatable within all zones 1501 */ 1502 unsigned int nr_free_pagecache_pages(void) 1503 { 1504 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER)); 1505 } 1506 1507 static inline void show_node(struct zone *zone) 1508 { 1509 if (NUMA_BUILD) 1510 printk("Node %d ", zone_to_nid(zone)); 1511 } 1512 1513 void si_meminfo(struct sysinfo *val) 1514 { 1515 val->totalram = totalram_pages; 1516 val->sharedram = 0; 1517 val->freeram = nr_free_pages(); 1518 val->bufferram = nr_blockdev_pages(); 1519 val->totalhigh = totalhigh_pages; 1520 val->freehigh = nr_free_highpages(); 1521 val->mem_unit = PAGE_SIZE; 1522 } 1523 1524 EXPORT_SYMBOL(si_meminfo); 1525 1526 #ifdef CONFIG_NUMA 1527 void si_meminfo_node(struct sysinfo *val, int nid) 1528 { 1529 pg_data_t *pgdat = NODE_DATA(nid); 1530 1531 val->totalram = pgdat->node_present_pages; 1532 val->freeram = nr_free_pages_pgdat(pgdat); 1533 #ifdef CONFIG_HIGHMEM 1534 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages; 1535 val->freehigh = pgdat->node_zones[ZONE_HIGHMEM].free_pages; 1536 #else 1537 val->totalhigh = 0; 1538 val->freehigh = 0; 1539 #endif 1540 val->mem_unit = PAGE_SIZE; 1541 } 1542 #endif 1543 1544 #define K(x) ((x) << (PAGE_SHIFT-10)) 1545 1546 /* 1547 * Show free area list (used inside shift_scroll-lock stuff) 1548 * We also calculate the percentage fragmentation. We do this by counting the 1549 * memory on each free list with the exception of the first item on the list. 1550 */ 1551 void show_free_areas(void) 1552 { 1553 int cpu; 1554 unsigned long active; 1555 unsigned long inactive; 1556 unsigned long free; 1557 struct zone *zone; 1558 1559 for_each_zone(zone) { 1560 if (!populated_zone(zone)) 1561 continue; 1562 1563 show_node(zone); 1564 printk("%s per-cpu:\n", zone->name); 1565 1566 for_each_online_cpu(cpu) { 1567 struct per_cpu_pageset *pageset; 1568 1569 pageset = zone_pcp(zone, cpu); 1570 1571 printk("CPU %4d: Hot: hi:%5d, btch:%4d usd:%4d " 1572 "Cold: hi:%5d, btch:%4d usd:%4d\n", 1573 cpu, pageset->pcp[0].high, 1574 pageset->pcp[0].batch, pageset->pcp[0].count, 1575 pageset->pcp[1].high, pageset->pcp[1].batch, 1576 pageset->pcp[1].count); 1577 } 1578 } 1579 1580 get_zone_counts(&active, &inactive, &free); 1581 1582 printk("Active:%lu inactive:%lu dirty:%lu writeback:%lu " 1583 "unstable:%lu free:%u slab:%lu mapped:%lu pagetables:%lu\n", 1584 active, 1585 inactive, 1586 global_page_state(NR_FILE_DIRTY), 1587 global_page_state(NR_WRITEBACK), 1588 global_page_state(NR_UNSTABLE_NFS), 1589 nr_free_pages(), 1590 global_page_state(NR_SLAB_RECLAIMABLE) + 1591 global_page_state(NR_SLAB_UNRECLAIMABLE), 1592 global_page_state(NR_FILE_MAPPED), 1593 global_page_state(NR_PAGETABLE)); 1594 1595 for_each_zone(zone) { 1596 int i; 1597 1598 if (!populated_zone(zone)) 1599 continue; 1600 1601 show_node(zone); 1602 printk("%s" 1603 " free:%lukB" 1604 " min:%lukB" 1605 " low:%lukB" 1606 " high:%lukB" 1607 " active:%lukB" 1608 " inactive:%lukB" 1609 " present:%lukB" 1610 " pages_scanned:%lu" 1611 " all_unreclaimable? %s" 1612 "\n", 1613 zone->name, 1614 K(zone->free_pages), 1615 K(zone->pages_min), 1616 K(zone->pages_low), 1617 K(zone->pages_high), 1618 K(zone->nr_active), 1619 K(zone->nr_inactive), 1620 K(zone->present_pages), 1621 zone->pages_scanned, 1622 (zone->all_unreclaimable ? "yes" : "no") 1623 ); 1624 printk("lowmem_reserve[]:"); 1625 for (i = 0; i < MAX_NR_ZONES; i++) 1626 printk(" %lu", zone->lowmem_reserve[i]); 1627 printk("\n"); 1628 } 1629 1630 for_each_zone(zone) { 1631 unsigned long nr[MAX_ORDER], flags, order, total = 0; 1632 1633 if (!populated_zone(zone)) 1634 continue; 1635 1636 show_node(zone); 1637 printk("%s: ", zone->name); 1638 1639 spin_lock_irqsave(&zone->lock, flags); 1640 for (order = 0; order < MAX_ORDER; order++) { 1641 nr[order] = zone->free_area[order].nr_free; 1642 total += nr[order] << order; 1643 } 1644 spin_unlock_irqrestore(&zone->lock, flags); 1645 for (order = 0; order < MAX_ORDER; order++) 1646 printk("%lu*%lukB ", nr[order], K(1UL) << order); 1647 printk("= %lukB\n", K(total)); 1648 } 1649 1650 show_swap_cache_info(); 1651 } 1652 1653 /* 1654 * Builds allocation fallback zone lists. 1655 * 1656 * Add all populated zones of a node to the zonelist. 1657 */ 1658 static int __meminit build_zonelists_node(pg_data_t *pgdat, 1659 struct zonelist *zonelist, int nr_zones, enum zone_type zone_type) 1660 { 1661 struct zone *zone; 1662 1663 BUG_ON(zone_type >= MAX_NR_ZONES); 1664 zone_type++; 1665 1666 do { 1667 zone_type--; 1668 zone = pgdat->node_zones + zone_type; 1669 if (populated_zone(zone)) { 1670 zonelist->zones[nr_zones++] = zone; 1671 check_highest_zone(zone_type); 1672 } 1673 1674 } while (zone_type); 1675 return nr_zones; 1676 } 1677 1678 #ifdef CONFIG_NUMA 1679 #define MAX_NODE_LOAD (num_online_nodes()) 1680 static int __meminitdata node_load[MAX_NUMNODES]; 1681 /** 1682 * find_next_best_node - find the next node that should appear in a given node's fallback list 1683 * @node: node whose fallback list we're appending 1684 * @used_node_mask: nodemask_t of already used nodes 1685 * 1686 * We use a number of factors to determine which is the next node that should 1687 * appear on a given node's fallback list. The node should not have appeared 1688 * already in @node's fallback list, and it should be the next closest node 1689 * according to the distance array (which contains arbitrary distance values 1690 * from each node to each node in the system), and should also prefer nodes 1691 * with no CPUs, since presumably they'll have very little allocation pressure 1692 * on them otherwise. 1693 * It returns -1 if no node is found. 1694 */ 1695 static int __meminit find_next_best_node(int node, nodemask_t *used_node_mask) 1696 { 1697 int n, val; 1698 int min_val = INT_MAX; 1699 int best_node = -1; 1700 1701 /* Use the local node if we haven't already */ 1702 if (!node_isset(node, *used_node_mask)) { 1703 node_set(node, *used_node_mask); 1704 return node; 1705 } 1706 1707 for_each_online_node(n) { 1708 cpumask_t tmp; 1709 1710 /* Don't want a node to appear more than once */ 1711 if (node_isset(n, *used_node_mask)) 1712 continue; 1713 1714 /* Use the distance array to find the distance */ 1715 val = node_distance(node, n); 1716 1717 /* Penalize nodes under us ("prefer the next node") */ 1718 val += (n < node); 1719 1720 /* Give preference to headless and unused nodes */ 1721 tmp = node_to_cpumask(n); 1722 if (!cpus_empty(tmp)) 1723 val += PENALTY_FOR_NODE_WITH_CPUS; 1724 1725 /* Slight preference for less loaded node */ 1726 val *= (MAX_NODE_LOAD*MAX_NUMNODES); 1727 val += node_load[n]; 1728 1729 if (val < min_val) { 1730 min_val = val; 1731 best_node = n; 1732 } 1733 } 1734 1735 if (best_node >= 0) 1736 node_set(best_node, *used_node_mask); 1737 1738 return best_node; 1739 } 1740 1741 static void __meminit build_zonelists(pg_data_t *pgdat) 1742 { 1743 int j, node, local_node; 1744 enum zone_type i; 1745 int prev_node, load; 1746 struct zonelist *zonelist; 1747 nodemask_t used_mask; 1748 1749 /* initialize zonelists */ 1750 for (i = 0; i < MAX_NR_ZONES; i++) { 1751 zonelist = pgdat->node_zonelists + i; 1752 zonelist->zones[0] = NULL; 1753 } 1754 1755 /* NUMA-aware ordering of nodes */ 1756 local_node = pgdat->node_id; 1757 load = num_online_nodes(); 1758 prev_node = local_node; 1759 nodes_clear(used_mask); 1760 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) { 1761 int distance = node_distance(local_node, node); 1762 1763 /* 1764 * If another node is sufficiently far away then it is better 1765 * to reclaim pages in a zone before going off node. 1766 */ 1767 if (distance > RECLAIM_DISTANCE) 1768 zone_reclaim_mode = 1; 1769 1770 /* 1771 * We don't want to pressure a particular node. 1772 * So adding penalty to the first node in same 1773 * distance group to make it round-robin. 1774 */ 1775 1776 if (distance != node_distance(local_node, prev_node)) 1777 node_load[node] += load; 1778 prev_node = node; 1779 load--; 1780 for (i = 0; i < MAX_NR_ZONES; i++) { 1781 zonelist = pgdat->node_zonelists + i; 1782 for (j = 0; zonelist->zones[j] != NULL; j++); 1783 1784 j = build_zonelists_node(NODE_DATA(node), zonelist, j, i); 1785 zonelist->zones[j] = NULL; 1786 } 1787 } 1788 } 1789 1790 /* Construct the zonelist performance cache - see further mmzone.h */ 1791 static void __meminit build_zonelist_cache(pg_data_t *pgdat) 1792 { 1793 int i; 1794 1795 for (i = 0; i < MAX_NR_ZONES; i++) { 1796 struct zonelist *zonelist; 1797 struct zonelist_cache *zlc; 1798 struct zone **z; 1799 1800 zonelist = pgdat->node_zonelists + i; 1801 zonelist->zlcache_ptr = zlc = &zonelist->zlcache; 1802 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST); 1803 for (z = zonelist->zones; *z; z++) 1804 zlc->z_to_n[z - zonelist->zones] = zone_to_nid(*z); 1805 } 1806 } 1807 1808 #else /* CONFIG_NUMA */ 1809 1810 static void __meminit build_zonelists(pg_data_t *pgdat) 1811 { 1812 int node, local_node; 1813 enum zone_type i,j; 1814 1815 local_node = pgdat->node_id; 1816 for (i = 0; i < MAX_NR_ZONES; i++) { 1817 struct zonelist *zonelist; 1818 1819 zonelist = pgdat->node_zonelists + i; 1820 1821 j = build_zonelists_node(pgdat, zonelist, 0, i); 1822 /* 1823 * Now we build the zonelist so that it contains the zones 1824 * of all the other nodes. 1825 * We don't want to pressure a particular node, so when 1826 * building the zones for node N, we make sure that the 1827 * zones coming right after the local ones are those from 1828 * node N+1 (modulo N) 1829 */ 1830 for (node = local_node + 1; node < MAX_NUMNODES; node++) { 1831 if (!node_online(node)) 1832 continue; 1833 j = build_zonelists_node(NODE_DATA(node), zonelist, j, i); 1834 } 1835 for (node = 0; node < local_node; node++) { 1836 if (!node_online(node)) 1837 continue; 1838 j = build_zonelists_node(NODE_DATA(node), zonelist, j, i); 1839 } 1840 1841 zonelist->zones[j] = NULL; 1842 } 1843 } 1844 1845 /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */ 1846 static void __meminit build_zonelist_cache(pg_data_t *pgdat) 1847 { 1848 int i; 1849 1850 for (i = 0; i < MAX_NR_ZONES; i++) 1851 pgdat->node_zonelists[i].zlcache_ptr = NULL; 1852 } 1853 1854 #endif /* CONFIG_NUMA */ 1855 1856 /* return values int ....just for stop_machine_run() */ 1857 static int __meminit __build_all_zonelists(void *dummy) 1858 { 1859 int nid; 1860 1861 for_each_online_node(nid) { 1862 build_zonelists(NODE_DATA(nid)); 1863 build_zonelist_cache(NODE_DATA(nid)); 1864 } 1865 return 0; 1866 } 1867 1868 void __meminit build_all_zonelists(void) 1869 { 1870 if (system_state == SYSTEM_BOOTING) { 1871 __build_all_zonelists(NULL); 1872 cpuset_init_current_mems_allowed(); 1873 } else { 1874 /* we have to stop all cpus to guaranntee there is no user 1875 of zonelist */ 1876 stop_machine_run(__build_all_zonelists, NULL, NR_CPUS); 1877 /* cpuset refresh routine should be here */ 1878 } 1879 vm_total_pages = nr_free_pagecache_pages(); 1880 printk("Built %i zonelists. Total pages: %ld\n", 1881 num_online_nodes(), vm_total_pages); 1882 } 1883 1884 /* 1885 * Helper functions to size the waitqueue hash table. 1886 * Essentially these want to choose hash table sizes sufficiently 1887 * large so that collisions trying to wait on pages are rare. 1888 * But in fact, the number of active page waitqueues on typical 1889 * systems is ridiculously low, less than 200. So this is even 1890 * conservative, even though it seems large. 1891 * 1892 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to 1893 * waitqueues, i.e. the size of the waitq table given the number of pages. 1894 */ 1895 #define PAGES_PER_WAITQUEUE 256 1896 1897 #ifndef CONFIG_MEMORY_HOTPLUG 1898 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages) 1899 { 1900 unsigned long size = 1; 1901 1902 pages /= PAGES_PER_WAITQUEUE; 1903 1904 while (size < pages) 1905 size <<= 1; 1906 1907 /* 1908 * Once we have dozens or even hundreds of threads sleeping 1909 * on IO we've got bigger problems than wait queue collision. 1910 * Limit the size of the wait table to a reasonable size. 1911 */ 1912 size = min(size, 4096UL); 1913 1914 return max(size, 4UL); 1915 } 1916 #else 1917 /* 1918 * A zone's size might be changed by hot-add, so it is not possible to determine 1919 * a suitable size for its wait_table. So we use the maximum size now. 1920 * 1921 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie: 1922 * 1923 * i386 (preemption config) : 4096 x 16 = 64Kbyte. 1924 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte. 1925 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte. 1926 * 1927 * The maximum entries are prepared when a zone's memory is (512K + 256) pages 1928 * or more by the traditional way. (See above). It equals: 1929 * 1930 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte. 1931 * ia64(16K page size) : = ( 8G + 4M)byte. 1932 * powerpc (64K page size) : = (32G +16M)byte. 1933 */ 1934 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages) 1935 { 1936 return 4096UL; 1937 } 1938 #endif 1939 1940 /* 1941 * This is an integer logarithm so that shifts can be used later 1942 * to extract the more random high bits from the multiplicative 1943 * hash function before the remainder is taken. 1944 */ 1945 static inline unsigned long wait_table_bits(unsigned long size) 1946 { 1947 return ffz(~size); 1948 } 1949 1950 #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1)) 1951 1952 /* 1953 * Initially all pages are reserved - free ones are freed 1954 * up by free_all_bootmem() once the early boot process is 1955 * done. Non-atomic initialization, single-pass. 1956 */ 1957 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone, 1958 unsigned long start_pfn, enum memmap_context context) 1959 { 1960 struct page *page; 1961 unsigned long end_pfn = start_pfn + size; 1962 unsigned long pfn; 1963 1964 for (pfn = start_pfn; pfn < end_pfn; pfn++) { 1965 /* 1966 * There can be holes in boot-time mem_map[]s 1967 * handed to this function. They do not 1968 * exist on hotplugged memory. 1969 */ 1970 if (context == MEMMAP_EARLY) { 1971 if (!early_pfn_valid(pfn)) 1972 continue; 1973 if (!early_pfn_in_nid(pfn, nid)) 1974 continue; 1975 } 1976 page = pfn_to_page(pfn); 1977 set_page_links(page, zone, nid, pfn); 1978 init_page_count(page); 1979 reset_page_mapcount(page); 1980 SetPageReserved(page); 1981 INIT_LIST_HEAD(&page->lru); 1982 #ifdef WANT_PAGE_VIRTUAL 1983 /* The shift won't overflow because ZONE_NORMAL is below 4G. */ 1984 if (!is_highmem_idx(zone)) 1985 set_page_address(page, __va(pfn << PAGE_SHIFT)); 1986 #endif 1987 } 1988 } 1989 1990 void zone_init_free_lists(struct pglist_data *pgdat, struct zone *zone, 1991 unsigned long size) 1992 { 1993 int order; 1994 for (order = 0; order < MAX_ORDER ; order++) { 1995 INIT_LIST_HEAD(&zone->free_area[order].free_list); 1996 zone->free_area[order].nr_free = 0; 1997 } 1998 } 1999 2000 #ifndef __HAVE_ARCH_MEMMAP_INIT 2001 #define memmap_init(size, nid, zone, start_pfn) \ 2002 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY) 2003 #endif 2004 2005 static int __cpuinit zone_batchsize(struct zone *zone) 2006 { 2007 int batch; 2008 2009 /* 2010 * The per-cpu-pages pools are set to around 1000th of the 2011 * size of the zone. But no more than 1/2 of a meg. 2012 * 2013 * OK, so we don't know how big the cache is. So guess. 2014 */ 2015 batch = zone->present_pages / 1024; 2016 if (batch * PAGE_SIZE > 512 * 1024) 2017 batch = (512 * 1024) / PAGE_SIZE; 2018 batch /= 4; /* We effectively *= 4 below */ 2019 if (batch < 1) 2020 batch = 1; 2021 2022 /* 2023 * Clamp the batch to a 2^n - 1 value. Having a power 2024 * of 2 value was found to be more likely to have 2025 * suboptimal cache aliasing properties in some cases. 2026 * 2027 * For example if 2 tasks are alternately allocating 2028 * batches of pages, one task can end up with a lot 2029 * of pages of one half of the possible page colors 2030 * and the other with pages of the other colors. 2031 */ 2032 batch = (1 << (fls(batch + batch/2)-1)) - 1; 2033 2034 return batch; 2035 } 2036 2037 inline void setup_pageset(struct per_cpu_pageset *p, unsigned long batch) 2038 { 2039 struct per_cpu_pages *pcp; 2040 2041 memset(p, 0, sizeof(*p)); 2042 2043 pcp = &p->pcp[0]; /* hot */ 2044 pcp->count = 0; 2045 pcp->high = 6 * batch; 2046 pcp->batch = max(1UL, 1 * batch); 2047 INIT_LIST_HEAD(&pcp->list); 2048 2049 pcp = &p->pcp[1]; /* cold*/ 2050 pcp->count = 0; 2051 pcp->high = 2 * batch; 2052 pcp->batch = max(1UL, batch/2); 2053 INIT_LIST_HEAD(&pcp->list); 2054 } 2055 2056 /* 2057 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist 2058 * to the value high for the pageset p. 2059 */ 2060 2061 static void setup_pagelist_highmark(struct per_cpu_pageset *p, 2062 unsigned long high) 2063 { 2064 struct per_cpu_pages *pcp; 2065 2066 pcp = &p->pcp[0]; /* hot list */ 2067 pcp->high = high; 2068 pcp->batch = max(1UL, high/4); 2069 if ((high/4) > (PAGE_SHIFT * 8)) 2070 pcp->batch = PAGE_SHIFT * 8; 2071 } 2072 2073 2074 #ifdef CONFIG_NUMA 2075 /* 2076 * Boot pageset table. One per cpu which is going to be used for all 2077 * zones and all nodes. The parameters will be set in such a way 2078 * that an item put on a list will immediately be handed over to 2079 * the buddy list. This is safe since pageset manipulation is done 2080 * with interrupts disabled. 2081 * 2082 * Some NUMA counter updates may also be caught by the boot pagesets. 2083 * 2084 * The boot_pagesets must be kept even after bootup is complete for 2085 * unused processors and/or zones. They do play a role for bootstrapping 2086 * hotplugged processors. 2087 * 2088 * zoneinfo_show() and maybe other functions do 2089 * not check if the processor is online before following the pageset pointer. 2090 * Other parts of the kernel may not check if the zone is available. 2091 */ 2092 static struct per_cpu_pageset boot_pageset[NR_CPUS]; 2093 2094 /* 2095 * Dynamically allocate memory for the 2096 * per cpu pageset array in struct zone. 2097 */ 2098 static int __cpuinit process_zones(int cpu) 2099 { 2100 struct zone *zone, *dzone; 2101 2102 for_each_zone(zone) { 2103 2104 if (!populated_zone(zone)) 2105 continue; 2106 2107 zone_pcp(zone, cpu) = kmalloc_node(sizeof(struct per_cpu_pageset), 2108 GFP_KERNEL, cpu_to_node(cpu)); 2109 if (!zone_pcp(zone, cpu)) 2110 goto bad; 2111 2112 setup_pageset(zone_pcp(zone, cpu), zone_batchsize(zone)); 2113 2114 if (percpu_pagelist_fraction) 2115 setup_pagelist_highmark(zone_pcp(zone, cpu), 2116 (zone->present_pages / percpu_pagelist_fraction)); 2117 } 2118 2119 return 0; 2120 bad: 2121 for_each_zone(dzone) { 2122 if (dzone == zone) 2123 break; 2124 kfree(zone_pcp(dzone, cpu)); 2125 zone_pcp(dzone, cpu) = NULL; 2126 } 2127 return -ENOMEM; 2128 } 2129 2130 static inline void free_zone_pagesets(int cpu) 2131 { 2132 struct zone *zone; 2133 2134 for_each_zone(zone) { 2135 struct per_cpu_pageset *pset = zone_pcp(zone, cpu); 2136 2137 /* Free per_cpu_pageset if it is slab allocated */ 2138 if (pset != &boot_pageset[cpu]) 2139 kfree(pset); 2140 zone_pcp(zone, cpu) = NULL; 2141 } 2142 } 2143 2144 static int __cpuinit pageset_cpuup_callback(struct notifier_block *nfb, 2145 unsigned long action, 2146 void *hcpu) 2147 { 2148 int cpu = (long)hcpu; 2149 int ret = NOTIFY_OK; 2150 2151 switch (action) { 2152 case CPU_UP_PREPARE: 2153 if (process_zones(cpu)) 2154 ret = NOTIFY_BAD; 2155 break; 2156 case CPU_UP_CANCELED: 2157 case CPU_DEAD: 2158 free_zone_pagesets(cpu); 2159 break; 2160 default: 2161 break; 2162 } 2163 return ret; 2164 } 2165 2166 static struct notifier_block __cpuinitdata pageset_notifier = 2167 { &pageset_cpuup_callback, NULL, 0 }; 2168 2169 void __init setup_per_cpu_pageset(void) 2170 { 2171 int err; 2172 2173 /* Initialize per_cpu_pageset for cpu 0. 2174 * A cpuup callback will do this for every cpu 2175 * as it comes online 2176 */ 2177 err = process_zones(smp_processor_id()); 2178 BUG_ON(err); 2179 register_cpu_notifier(&pageset_notifier); 2180 } 2181 2182 #endif 2183 2184 static __meminit 2185 int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages) 2186 { 2187 int i; 2188 struct pglist_data *pgdat = zone->zone_pgdat; 2189 size_t alloc_size; 2190 2191 /* 2192 * The per-page waitqueue mechanism uses hashed waitqueues 2193 * per zone. 2194 */ 2195 zone->wait_table_hash_nr_entries = 2196 wait_table_hash_nr_entries(zone_size_pages); 2197 zone->wait_table_bits = 2198 wait_table_bits(zone->wait_table_hash_nr_entries); 2199 alloc_size = zone->wait_table_hash_nr_entries 2200 * sizeof(wait_queue_head_t); 2201 2202 if (system_state == SYSTEM_BOOTING) { 2203 zone->wait_table = (wait_queue_head_t *) 2204 alloc_bootmem_node(pgdat, alloc_size); 2205 } else { 2206 /* 2207 * This case means that a zone whose size was 0 gets new memory 2208 * via memory hot-add. 2209 * But it may be the case that a new node was hot-added. In 2210 * this case vmalloc() will not be able to use this new node's 2211 * memory - this wait_table must be initialized to use this new 2212 * node itself as well. 2213 * To use this new node's memory, further consideration will be 2214 * necessary. 2215 */ 2216 zone->wait_table = (wait_queue_head_t *)vmalloc(alloc_size); 2217 } 2218 if (!zone->wait_table) 2219 return -ENOMEM; 2220 2221 for(i = 0; i < zone->wait_table_hash_nr_entries; ++i) 2222 init_waitqueue_head(zone->wait_table + i); 2223 2224 return 0; 2225 } 2226 2227 static __meminit void zone_pcp_init(struct zone *zone) 2228 { 2229 int cpu; 2230 unsigned long batch = zone_batchsize(zone); 2231 2232 for (cpu = 0; cpu < NR_CPUS; cpu++) { 2233 #ifdef CONFIG_NUMA 2234 /* Early boot. Slab allocator not functional yet */ 2235 zone_pcp(zone, cpu) = &boot_pageset[cpu]; 2236 setup_pageset(&boot_pageset[cpu],0); 2237 #else 2238 setup_pageset(zone_pcp(zone,cpu), batch); 2239 #endif 2240 } 2241 if (zone->present_pages) 2242 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%lu\n", 2243 zone->name, zone->present_pages, batch); 2244 } 2245 2246 __meminit int init_currently_empty_zone(struct zone *zone, 2247 unsigned long zone_start_pfn, 2248 unsigned long size, 2249 enum memmap_context context) 2250 { 2251 struct pglist_data *pgdat = zone->zone_pgdat; 2252 int ret; 2253 ret = zone_wait_table_init(zone, size); 2254 if (ret) 2255 return ret; 2256 pgdat->nr_zones = zone_idx(zone) + 1; 2257 2258 zone->zone_start_pfn = zone_start_pfn; 2259 2260 memmap_init(size, pgdat->node_id, zone_idx(zone), zone_start_pfn); 2261 2262 zone_init_free_lists(pgdat, zone, zone->spanned_pages); 2263 2264 return 0; 2265 } 2266 2267 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP 2268 /* 2269 * Basic iterator support. Return the first range of PFNs for a node 2270 * Note: nid == MAX_NUMNODES returns first region regardless of node 2271 */ 2272 static int __init first_active_region_index_in_nid(int nid) 2273 { 2274 int i; 2275 2276 for (i = 0; i < nr_nodemap_entries; i++) 2277 if (nid == MAX_NUMNODES || early_node_map[i].nid == nid) 2278 return i; 2279 2280 return -1; 2281 } 2282 2283 /* 2284 * Basic iterator support. Return the next active range of PFNs for a node 2285 * Note: nid == MAX_NUMNODES returns next region regardles of node 2286 */ 2287 static int __init next_active_region_index_in_nid(int index, int nid) 2288 { 2289 for (index = index + 1; index < nr_nodemap_entries; index++) 2290 if (nid == MAX_NUMNODES || early_node_map[index].nid == nid) 2291 return index; 2292 2293 return -1; 2294 } 2295 2296 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID 2297 /* 2298 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on. 2299 * Architectures may implement their own version but if add_active_range() 2300 * was used and there are no special requirements, this is a convenient 2301 * alternative 2302 */ 2303 int __init early_pfn_to_nid(unsigned long pfn) 2304 { 2305 int i; 2306 2307 for (i = 0; i < nr_nodemap_entries; i++) { 2308 unsigned long start_pfn = early_node_map[i].start_pfn; 2309 unsigned long end_pfn = early_node_map[i].end_pfn; 2310 2311 if (start_pfn <= pfn && pfn < end_pfn) 2312 return early_node_map[i].nid; 2313 } 2314 2315 return 0; 2316 } 2317 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */ 2318 2319 /* Basic iterator support to walk early_node_map[] */ 2320 #define for_each_active_range_index_in_nid(i, nid) \ 2321 for (i = first_active_region_index_in_nid(nid); i != -1; \ 2322 i = next_active_region_index_in_nid(i, nid)) 2323 2324 /** 2325 * free_bootmem_with_active_regions - Call free_bootmem_node for each active range 2326 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed. 2327 * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node 2328 * 2329 * If an architecture guarantees that all ranges registered with 2330 * add_active_ranges() contain no holes and may be freed, this 2331 * this function may be used instead of calling free_bootmem() manually. 2332 */ 2333 void __init free_bootmem_with_active_regions(int nid, 2334 unsigned long max_low_pfn) 2335 { 2336 int i; 2337 2338 for_each_active_range_index_in_nid(i, nid) { 2339 unsigned long size_pages = 0; 2340 unsigned long end_pfn = early_node_map[i].end_pfn; 2341 2342 if (early_node_map[i].start_pfn >= max_low_pfn) 2343 continue; 2344 2345 if (end_pfn > max_low_pfn) 2346 end_pfn = max_low_pfn; 2347 2348 size_pages = end_pfn - early_node_map[i].start_pfn; 2349 free_bootmem_node(NODE_DATA(early_node_map[i].nid), 2350 PFN_PHYS(early_node_map[i].start_pfn), 2351 size_pages << PAGE_SHIFT); 2352 } 2353 } 2354 2355 /** 2356 * sparse_memory_present_with_active_regions - Call memory_present for each active range 2357 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used. 2358 * 2359 * If an architecture guarantees that all ranges registered with 2360 * add_active_ranges() contain no holes and may be freed, this 2361 * function may be used instead of calling memory_present() manually. 2362 */ 2363 void __init sparse_memory_present_with_active_regions(int nid) 2364 { 2365 int i; 2366 2367 for_each_active_range_index_in_nid(i, nid) 2368 memory_present(early_node_map[i].nid, 2369 early_node_map[i].start_pfn, 2370 early_node_map[i].end_pfn); 2371 } 2372 2373 /** 2374 * push_node_boundaries - Push node boundaries to at least the requested boundary 2375 * @nid: The nid of the node to push the boundary for 2376 * @start_pfn: The start pfn of the node 2377 * @end_pfn: The end pfn of the node 2378 * 2379 * In reserve-based hot-add, mem_map is allocated that is unused until hotadd 2380 * time. Specifically, on x86_64, SRAT will report ranges that can potentially 2381 * be hotplugged even though no physical memory exists. This function allows 2382 * an arch to push out the node boundaries so mem_map is allocated that can 2383 * be used later. 2384 */ 2385 #ifdef CONFIG_MEMORY_HOTPLUG_RESERVE 2386 void __init push_node_boundaries(unsigned int nid, 2387 unsigned long start_pfn, unsigned long end_pfn) 2388 { 2389 printk(KERN_DEBUG "Entering push_node_boundaries(%u, %lu, %lu)\n", 2390 nid, start_pfn, end_pfn); 2391 2392 /* Initialise the boundary for this node if necessary */ 2393 if (node_boundary_end_pfn[nid] == 0) 2394 node_boundary_start_pfn[nid] = -1UL; 2395 2396 /* Update the boundaries */ 2397 if (node_boundary_start_pfn[nid] > start_pfn) 2398 node_boundary_start_pfn[nid] = start_pfn; 2399 if (node_boundary_end_pfn[nid] < end_pfn) 2400 node_boundary_end_pfn[nid] = end_pfn; 2401 } 2402 2403 /* If necessary, push the node boundary out for reserve hotadd */ 2404 static void __init account_node_boundary(unsigned int nid, 2405 unsigned long *start_pfn, unsigned long *end_pfn) 2406 { 2407 printk(KERN_DEBUG "Entering account_node_boundary(%u, %lu, %lu)\n", 2408 nid, *start_pfn, *end_pfn); 2409 2410 /* Return if boundary information has not been provided */ 2411 if (node_boundary_end_pfn[nid] == 0) 2412 return; 2413 2414 /* Check the boundaries and update if necessary */ 2415 if (node_boundary_start_pfn[nid] < *start_pfn) 2416 *start_pfn = node_boundary_start_pfn[nid]; 2417 if (node_boundary_end_pfn[nid] > *end_pfn) 2418 *end_pfn = node_boundary_end_pfn[nid]; 2419 } 2420 #else 2421 void __init push_node_boundaries(unsigned int nid, 2422 unsigned long start_pfn, unsigned long end_pfn) {} 2423 2424 static void __init account_node_boundary(unsigned int nid, 2425 unsigned long *start_pfn, unsigned long *end_pfn) {} 2426 #endif 2427 2428 2429 /** 2430 * get_pfn_range_for_nid - Return the start and end page frames for a node 2431 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned. 2432 * @start_pfn: Passed by reference. On return, it will have the node start_pfn. 2433 * @end_pfn: Passed by reference. On return, it will have the node end_pfn. 2434 * 2435 * It returns the start and end page frame of a node based on information 2436 * provided by an arch calling add_active_range(). If called for a node 2437 * with no available memory, a warning is printed and the start and end 2438 * PFNs will be 0. 2439 */ 2440 void __init get_pfn_range_for_nid(unsigned int nid, 2441 unsigned long *start_pfn, unsigned long *end_pfn) 2442 { 2443 int i; 2444 *start_pfn = -1UL; 2445 *end_pfn = 0; 2446 2447 for_each_active_range_index_in_nid(i, nid) { 2448 *start_pfn = min(*start_pfn, early_node_map[i].start_pfn); 2449 *end_pfn = max(*end_pfn, early_node_map[i].end_pfn); 2450 } 2451 2452 if (*start_pfn == -1UL) { 2453 printk(KERN_WARNING "Node %u active with no memory\n", nid); 2454 *start_pfn = 0; 2455 } 2456 2457 /* Push the node boundaries out if requested */ 2458 account_node_boundary(nid, start_pfn, end_pfn); 2459 } 2460 2461 /* 2462 * Return the number of pages a zone spans in a node, including holes 2463 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node() 2464 */ 2465 unsigned long __init zone_spanned_pages_in_node(int nid, 2466 unsigned long zone_type, 2467 unsigned long *ignored) 2468 { 2469 unsigned long node_start_pfn, node_end_pfn; 2470 unsigned long zone_start_pfn, zone_end_pfn; 2471 2472 /* Get the start and end of the node and zone */ 2473 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn); 2474 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type]; 2475 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type]; 2476 2477 /* Check that this node has pages within the zone's required range */ 2478 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn) 2479 return 0; 2480 2481 /* Move the zone boundaries inside the node if necessary */ 2482 zone_end_pfn = min(zone_end_pfn, node_end_pfn); 2483 zone_start_pfn = max(zone_start_pfn, node_start_pfn); 2484 2485 /* Return the spanned pages */ 2486 return zone_end_pfn - zone_start_pfn; 2487 } 2488 2489 /* 2490 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES, 2491 * then all holes in the requested range will be accounted for. 2492 */ 2493 unsigned long __init __absent_pages_in_range(int nid, 2494 unsigned long range_start_pfn, 2495 unsigned long range_end_pfn) 2496 { 2497 int i = 0; 2498 unsigned long prev_end_pfn = 0, hole_pages = 0; 2499 unsigned long start_pfn; 2500 2501 /* Find the end_pfn of the first active range of pfns in the node */ 2502 i = first_active_region_index_in_nid(nid); 2503 if (i == -1) 2504 return 0; 2505 2506 /* Account for ranges before physical memory on this node */ 2507 if (early_node_map[i].start_pfn > range_start_pfn) 2508 hole_pages = early_node_map[i].start_pfn - range_start_pfn; 2509 2510 prev_end_pfn = early_node_map[i].start_pfn; 2511 2512 /* Find all holes for the zone within the node */ 2513 for (; i != -1; i = next_active_region_index_in_nid(i, nid)) { 2514 2515 /* No need to continue if prev_end_pfn is outside the zone */ 2516 if (prev_end_pfn >= range_end_pfn) 2517 break; 2518 2519 /* Make sure the end of the zone is not within the hole */ 2520 start_pfn = min(early_node_map[i].start_pfn, range_end_pfn); 2521 prev_end_pfn = max(prev_end_pfn, range_start_pfn); 2522 2523 /* Update the hole size cound and move on */ 2524 if (start_pfn > range_start_pfn) { 2525 BUG_ON(prev_end_pfn > start_pfn); 2526 hole_pages += start_pfn - prev_end_pfn; 2527 } 2528 prev_end_pfn = early_node_map[i].end_pfn; 2529 } 2530 2531 /* Account for ranges past physical memory on this node */ 2532 if (range_end_pfn > prev_end_pfn) 2533 hole_pages += range_end_pfn - 2534 max(range_start_pfn, prev_end_pfn); 2535 2536 return hole_pages; 2537 } 2538 2539 /** 2540 * absent_pages_in_range - Return number of page frames in holes within a range 2541 * @start_pfn: The start PFN to start searching for holes 2542 * @end_pfn: The end PFN to stop searching for holes 2543 * 2544 * It returns the number of pages frames in memory holes within a range. 2545 */ 2546 unsigned long __init absent_pages_in_range(unsigned long start_pfn, 2547 unsigned long end_pfn) 2548 { 2549 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn); 2550 } 2551 2552 /* Return the number of page frames in holes in a zone on a node */ 2553 unsigned long __init zone_absent_pages_in_node(int nid, 2554 unsigned long zone_type, 2555 unsigned long *ignored) 2556 { 2557 unsigned long node_start_pfn, node_end_pfn; 2558 unsigned long zone_start_pfn, zone_end_pfn; 2559 2560 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn); 2561 zone_start_pfn = max(arch_zone_lowest_possible_pfn[zone_type], 2562 node_start_pfn); 2563 zone_end_pfn = min(arch_zone_highest_possible_pfn[zone_type], 2564 node_end_pfn); 2565 2566 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn); 2567 } 2568 2569 #else 2570 static inline unsigned long zone_spanned_pages_in_node(int nid, 2571 unsigned long zone_type, 2572 unsigned long *zones_size) 2573 { 2574 return zones_size[zone_type]; 2575 } 2576 2577 static inline unsigned long zone_absent_pages_in_node(int nid, 2578 unsigned long zone_type, 2579 unsigned long *zholes_size) 2580 { 2581 if (!zholes_size) 2582 return 0; 2583 2584 return zholes_size[zone_type]; 2585 } 2586 2587 #endif 2588 2589 static void __init calculate_node_totalpages(struct pglist_data *pgdat, 2590 unsigned long *zones_size, unsigned long *zholes_size) 2591 { 2592 unsigned long realtotalpages, totalpages = 0; 2593 enum zone_type i; 2594 2595 for (i = 0; i < MAX_NR_ZONES; i++) 2596 totalpages += zone_spanned_pages_in_node(pgdat->node_id, i, 2597 zones_size); 2598 pgdat->node_spanned_pages = totalpages; 2599 2600 realtotalpages = totalpages; 2601 for (i = 0; i < MAX_NR_ZONES; i++) 2602 realtotalpages -= 2603 zone_absent_pages_in_node(pgdat->node_id, i, 2604 zholes_size); 2605 pgdat->node_present_pages = realtotalpages; 2606 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id, 2607 realtotalpages); 2608 } 2609 2610 /* 2611 * Set up the zone data structures: 2612 * - mark all pages reserved 2613 * - mark all memory queues empty 2614 * - clear the memory bitmaps 2615 */ 2616 static void __meminit free_area_init_core(struct pglist_data *pgdat, 2617 unsigned long *zones_size, unsigned long *zholes_size) 2618 { 2619 enum zone_type j; 2620 int nid = pgdat->node_id; 2621 unsigned long zone_start_pfn = pgdat->node_start_pfn; 2622 int ret; 2623 2624 pgdat_resize_init(pgdat); 2625 pgdat->nr_zones = 0; 2626 init_waitqueue_head(&pgdat->kswapd_wait); 2627 pgdat->kswapd_max_order = 0; 2628 2629 for (j = 0; j < MAX_NR_ZONES; j++) { 2630 struct zone *zone = pgdat->node_zones + j; 2631 unsigned long size, realsize, memmap_pages; 2632 2633 size = zone_spanned_pages_in_node(nid, j, zones_size); 2634 realsize = size - zone_absent_pages_in_node(nid, j, 2635 zholes_size); 2636 2637 /* 2638 * Adjust realsize so that it accounts for how much memory 2639 * is used by this zone for memmap. This affects the watermark 2640 * and per-cpu initialisations 2641 */ 2642 memmap_pages = (size * sizeof(struct page)) >> PAGE_SHIFT; 2643 if (realsize >= memmap_pages) { 2644 realsize -= memmap_pages; 2645 printk(KERN_DEBUG 2646 " %s zone: %lu pages used for memmap\n", 2647 zone_names[j], memmap_pages); 2648 } else 2649 printk(KERN_WARNING 2650 " %s zone: %lu pages exceeds realsize %lu\n", 2651 zone_names[j], memmap_pages, realsize); 2652 2653 /* Account for reserved DMA pages */ 2654 if (j == ZONE_DMA && realsize > dma_reserve) { 2655 realsize -= dma_reserve; 2656 printk(KERN_DEBUG " DMA zone: %lu pages reserved\n", 2657 dma_reserve); 2658 } 2659 2660 if (!is_highmem_idx(j)) 2661 nr_kernel_pages += realsize; 2662 nr_all_pages += realsize; 2663 2664 zone->spanned_pages = size; 2665 zone->present_pages = realsize; 2666 #ifdef CONFIG_NUMA 2667 zone->node = nid; 2668 zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio) 2669 / 100; 2670 zone->min_slab_pages = (realsize * sysctl_min_slab_ratio) / 100; 2671 #endif 2672 zone->name = zone_names[j]; 2673 spin_lock_init(&zone->lock); 2674 spin_lock_init(&zone->lru_lock); 2675 zone_seqlock_init(zone); 2676 zone->zone_pgdat = pgdat; 2677 zone->free_pages = 0; 2678 2679 zone->prev_priority = DEF_PRIORITY; 2680 2681 zone_pcp_init(zone); 2682 INIT_LIST_HEAD(&zone->active_list); 2683 INIT_LIST_HEAD(&zone->inactive_list); 2684 zone->nr_scan_active = 0; 2685 zone->nr_scan_inactive = 0; 2686 zone->nr_active = 0; 2687 zone->nr_inactive = 0; 2688 zap_zone_vm_stats(zone); 2689 atomic_set(&zone->reclaim_in_progress, 0); 2690 if (!size) 2691 continue; 2692 2693 ret = init_currently_empty_zone(zone, zone_start_pfn, 2694 size, MEMMAP_EARLY); 2695 BUG_ON(ret); 2696 zone_start_pfn += size; 2697 } 2698 } 2699 2700 static void __init alloc_node_mem_map(struct pglist_data *pgdat) 2701 { 2702 /* Skip empty nodes */ 2703 if (!pgdat->node_spanned_pages) 2704 return; 2705 2706 #ifdef CONFIG_FLAT_NODE_MEM_MAP 2707 /* ia64 gets its own node_mem_map, before this, without bootmem */ 2708 if (!pgdat->node_mem_map) { 2709 unsigned long size, start, end; 2710 struct page *map; 2711 2712 /* 2713 * The zone's endpoints aren't required to be MAX_ORDER 2714 * aligned but the node_mem_map endpoints must be in order 2715 * for the buddy allocator to function correctly. 2716 */ 2717 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1); 2718 end = pgdat->node_start_pfn + pgdat->node_spanned_pages; 2719 end = ALIGN(end, MAX_ORDER_NR_PAGES); 2720 size = (end - start) * sizeof(struct page); 2721 map = alloc_remap(pgdat->node_id, size); 2722 if (!map) 2723 map = alloc_bootmem_node(pgdat, size); 2724 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start); 2725 } 2726 #ifdef CONFIG_FLATMEM 2727 /* 2728 * With no DISCONTIG, the global mem_map is just set as node 0's 2729 */ 2730 if (pgdat == NODE_DATA(0)) { 2731 mem_map = NODE_DATA(0)->node_mem_map; 2732 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP 2733 if (page_to_pfn(mem_map) != pgdat->node_start_pfn) 2734 mem_map -= pgdat->node_start_pfn; 2735 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */ 2736 } 2737 #endif 2738 #endif /* CONFIG_FLAT_NODE_MEM_MAP */ 2739 } 2740 2741 void __meminit free_area_init_node(int nid, struct pglist_data *pgdat, 2742 unsigned long *zones_size, unsigned long node_start_pfn, 2743 unsigned long *zholes_size) 2744 { 2745 pgdat->node_id = nid; 2746 pgdat->node_start_pfn = node_start_pfn; 2747 calculate_node_totalpages(pgdat, zones_size, zholes_size); 2748 2749 alloc_node_mem_map(pgdat); 2750 2751 free_area_init_core(pgdat, zones_size, zholes_size); 2752 } 2753 2754 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP 2755 /** 2756 * add_active_range - Register a range of PFNs backed by physical memory 2757 * @nid: The node ID the range resides on 2758 * @start_pfn: The start PFN of the available physical memory 2759 * @end_pfn: The end PFN of the available physical memory 2760 * 2761 * These ranges are stored in an early_node_map[] and later used by 2762 * free_area_init_nodes() to calculate zone sizes and holes. If the 2763 * range spans a memory hole, it is up to the architecture to ensure 2764 * the memory is not freed by the bootmem allocator. If possible 2765 * the range being registered will be merged with existing ranges. 2766 */ 2767 void __init add_active_range(unsigned int nid, unsigned long start_pfn, 2768 unsigned long end_pfn) 2769 { 2770 int i; 2771 2772 printk(KERN_DEBUG "Entering add_active_range(%d, %lu, %lu) " 2773 "%d entries of %d used\n", 2774 nid, start_pfn, end_pfn, 2775 nr_nodemap_entries, MAX_ACTIVE_REGIONS); 2776 2777 /* Merge with existing active regions if possible */ 2778 for (i = 0; i < nr_nodemap_entries; i++) { 2779 if (early_node_map[i].nid != nid) 2780 continue; 2781 2782 /* Skip if an existing region covers this new one */ 2783 if (start_pfn >= early_node_map[i].start_pfn && 2784 end_pfn <= early_node_map[i].end_pfn) 2785 return; 2786 2787 /* Merge forward if suitable */ 2788 if (start_pfn <= early_node_map[i].end_pfn && 2789 end_pfn > early_node_map[i].end_pfn) { 2790 early_node_map[i].end_pfn = end_pfn; 2791 return; 2792 } 2793 2794 /* Merge backward if suitable */ 2795 if (start_pfn < early_node_map[i].end_pfn && 2796 end_pfn >= early_node_map[i].start_pfn) { 2797 early_node_map[i].start_pfn = start_pfn; 2798 return; 2799 } 2800 } 2801 2802 /* Check that early_node_map is large enough */ 2803 if (i >= MAX_ACTIVE_REGIONS) { 2804 printk(KERN_CRIT "More than %d memory regions, truncating\n", 2805 MAX_ACTIVE_REGIONS); 2806 return; 2807 } 2808 2809 early_node_map[i].nid = nid; 2810 early_node_map[i].start_pfn = start_pfn; 2811 early_node_map[i].end_pfn = end_pfn; 2812 nr_nodemap_entries = i + 1; 2813 } 2814 2815 /** 2816 * shrink_active_range - Shrink an existing registered range of PFNs 2817 * @nid: The node id the range is on that should be shrunk 2818 * @old_end_pfn: The old end PFN of the range 2819 * @new_end_pfn: The new PFN of the range 2820 * 2821 * i386 with NUMA use alloc_remap() to store a node_mem_map on a local node. 2822 * The map is kept at the end physical page range that has already been 2823 * registered with add_active_range(). This function allows an arch to shrink 2824 * an existing registered range. 2825 */ 2826 void __init shrink_active_range(unsigned int nid, unsigned long old_end_pfn, 2827 unsigned long new_end_pfn) 2828 { 2829 int i; 2830 2831 /* Find the old active region end and shrink */ 2832 for_each_active_range_index_in_nid(i, nid) 2833 if (early_node_map[i].end_pfn == old_end_pfn) { 2834 early_node_map[i].end_pfn = new_end_pfn; 2835 break; 2836 } 2837 } 2838 2839 /** 2840 * remove_all_active_ranges - Remove all currently registered regions 2841 * 2842 * During discovery, it may be found that a table like SRAT is invalid 2843 * and an alternative discovery method must be used. This function removes 2844 * all currently registered regions. 2845 */ 2846 void __init remove_all_active_ranges(void) 2847 { 2848 memset(early_node_map, 0, sizeof(early_node_map)); 2849 nr_nodemap_entries = 0; 2850 #ifdef CONFIG_MEMORY_HOTPLUG_RESERVE 2851 memset(node_boundary_start_pfn, 0, sizeof(node_boundary_start_pfn)); 2852 memset(node_boundary_end_pfn, 0, sizeof(node_boundary_end_pfn)); 2853 #endif /* CONFIG_MEMORY_HOTPLUG_RESERVE */ 2854 } 2855 2856 /* Compare two active node_active_regions */ 2857 static int __init cmp_node_active_region(const void *a, const void *b) 2858 { 2859 struct node_active_region *arange = (struct node_active_region *)a; 2860 struct node_active_region *brange = (struct node_active_region *)b; 2861 2862 /* Done this way to avoid overflows */ 2863 if (arange->start_pfn > brange->start_pfn) 2864 return 1; 2865 if (arange->start_pfn < brange->start_pfn) 2866 return -1; 2867 2868 return 0; 2869 } 2870 2871 /* sort the node_map by start_pfn */ 2872 static void __init sort_node_map(void) 2873 { 2874 sort(early_node_map, (size_t)nr_nodemap_entries, 2875 sizeof(struct node_active_region), 2876 cmp_node_active_region, NULL); 2877 } 2878 2879 /* Find the lowest pfn for a node. This depends on a sorted early_node_map */ 2880 unsigned long __init find_min_pfn_for_node(unsigned long nid) 2881 { 2882 int i; 2883 2884 /* Regions in the early_node_map can be in any order */ 2885 sort_node_map(); 2886 2887 /* Assuming a sorted map, the first range found has the starting pfn */ 2888 for_each_active_range_index_in_nid(i, nid) 2889 return early_node_map[i].start_pfn; 2890 2891 printk(KERN_WARNING "Could not find start_pfn for node %lu\n", nid); 2892 return 0; 2893 } 2894 2895 /** 2896 * find_min_pfn_with_active_regions - Find the minimum PFN registered 2897 * 2898 * It returns the minimum PFN based on information provided via 2899 * add_active_range(). 2900 */ 2901 unsigned long __init find_min_pfn_with_active_regions(void) 2902 { 2903 return find_min_pfn_for_node(MAX_NUMNODES); 2904 } 2905 2906 /** 2907 * find_max_pfn_with_active_regions - Find the maximum PFN registered 2908 * 2909 * It returns the maximum PFN based on information provided via 2910 * add_active_range(). 2911 */ 2912 unsigned long __init find_max_pfn_with_active_regions(void) 2913 { 2914 int i; 2915 unsigned long max_pfn = 0; 2916 2917 for (i = 0; i < nr_nodemap_entries; i++) 2918 max_pfn = max(max_pfn, early_node_map[i].end_pfn); 2919 2920 return max_pfn; 2921 } 2922 2923 /** 2924 * free_area_init_nodes - Initialise all pg_data_t and zone data 2925 * @max_zone_pfn: an array of max PFNs for each zone 2926 * 2927 * This will call free_area_init_node() for each active node in the system. 2928 * Using the page ranges provided by add_active_range(), the size of each 2929 * zone in each node and their holes is calculated. If the maximum PFN 2930 * between two adjacent zones match, it is assumed that the zone is empty. 2931 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed 2932 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone 2933 * starts where the previous one ended. For example, ZONE_DMA32 starts 2934 * at arch_max_dma_pfn. 2935 */ 2936 void __init free_area_init_nodes(unsigned long *max_zone_pfn) 2937 { 2938 unsigned long nid; 2939 enum zone_type i; 2940 2941 /* Record where the zone boundaries are */ 2942 memset(arch_zone_lowest_possible_pfn, 0, 2943 sizeof(arch_zone_lowest_possible_pfn)); 2944 memset(arch_zone_highest_possible_pfn, 0, 2945 sizeof(arch_zone_highest_possible_pfn)); 2946 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions(); 2947 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0]; 2948 for (i = 1; i < MAX_NR_ZONES; i++) { 2949 arch_zone_lowest_possible_pfn[i] = 2950 arch_zone_highest_possible_pfn[i-1]; 2951 arch_zone_highest_possible_pfn[i] = 2952 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]); 2953 } 2954 2955 /* Print out the zone ranges */ 2956 printk("Zone PFN ranges:\n"); 2957 for (i = 0; i < MAX_NR_ZONES; i++) 2958 printk(" %-8s %8lu -> %8lu\n", 2959 zone_names[i], 2960 arch_zone_lowest_possible_pfn[i], 2961 arch_zone_highest_possible_pfn[i]); 2962 2963 /* Print out the early_node_map[] */ 2964 printk("early_node_map[%d] active PFN ranges\n", nr_nodemap_entries); 2965 for (i = 0; i < nr_nodemap_entries; i++) 2966 printk(" %3d: %8lu -> %8lu\n", early_node_map[i].nid, 2967 early_node_map[i].start_pfn, 2968 early_node_map[i].end_pfn); 2969 2970 /* Initialise every node */ 2971 for_each_online_node(nid) { 2972 pg_data_t *pgdat = NODE_DATA(nid); 2973 free_area_init_node(nid, pgdat, NULL, 2974 find_min_pfn_for_node(nid), NULL); 2975 } 2976 } 2977 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */ 2978 2979 /** 2980 * set_dma_reserve - set the specified number of pages reserved in the first zone 2981 * @new_dma_reserve: The number of pages to mark reserved 2982 * 2983 * The per-cpu batchsize and zone watermarks are determined by present_pages. 2984 * In the DMA zone, a significant percentage may be consumed by kernel image 2985 * and other unfreeable allocations which can skew the watermarks badly. This 2986 * function may optionally be used to account for unfreeable pages in the 2987 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and 2988 * smaller per-cpu batchsize. 2989 */ 2990 void __init set_dma_reserve(unsigned long new_dma_reserve) 2991 { 2992 dma_reserve = new_dma_reserve; 2993 } 2994 2995 #ifndef CONFIG_NEED_MULTIPLE_NODES 2996 static bootmem_data_t contig_bootmem_data; 2997 struct pglist_data contig_page_data = { .bdata = &contig_bootmem_data }; 2998 2999 EXPORT_SYMBOL(contig_page_data); 3000 #endif 3001 3002 void __init free_area_init(unsigned long *zones_size) 3003 { 3004 free_area_init_node(0, NODE_DATA(0), zones_size, 3005 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL); 3006 } 3007 3008 static int page_alloc_cpu_notify(struct notifier_block *self, 3009 unsigned long action, void *hcpu) 3010 { 3011 int cpu = (unsigned long)hcpu; 3012 3013 if (action == CPU_DEAD) { 3014 local_irq_disable(); 3015 __drain_pages(cpu); 3016 vm_events_fold_cpu(cpu); 3017 local_irq_enable(); 3018 refresh_cpu_vm_stats(cpu); 3019 } 3020 return NOTIFY_OK; 3021 } 3022 3023 void __init page_alloc_init(void) 3024 { 3025 hotcpu_notifier(page_alloc_cpu_notify, 0); 3026 } 3027 3028 /* 3029 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio 3030 * or min_free_kbytes changes. 3031 */ 3032 static void calculate_totalreserve_pages(void) 3033 { 3034 struct pglist_data *pgdat; 3035 unsigned long reserve_pages = 0; 3036 enum zone_type i, j; 3037 3038 for_each_online_pgdat(pgdat) { 3039 for (i = 0; i < MAX_NR_ZONES; i++) { 3040 struct zone *zone = pgdat->node_zones + i; 3041 unsigned long max = 0; 3042 3043 /* Find valid and maximum lowmem_reserve in the zone */ 3044 for (j = i; j < MAX_NR_ZONES; j++) { 3045 if (zone->lowmem_reserve[j] > max) 3046 max = zone->lowmem_reserve[j]; 3047 } 3048 3049 /* we treat pages_high as reserved pages. */ 3050 max += zone->pages_high; 3051 3052 if (max > zone->present_pages) 3053 max = zone->present_pages; 3054 reserve_pages += max; 3055 } 3056 } 3057 totalreserve_pages = reserve_pages; 3058 } 3059 3060 /* 3061 * setup_per_zone_lowmem_reserve - called whenever 3062 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone 3063 * has a correct pages reserved value, so an adequate number of 3064 * pages are left in the zone after a successful __alloc_pages(). 3065 */ 3066 static void setup_per_zone_lowmem_reserve(void) 3067 { 3068 struct pglist_data *pgdat; 3069 enum zone_type j, idx; 3070 3071 for_each_online_pgdat(pgdat) { 3072 for (j = 0; j < MAX_NR_ZONES; j++) { 3073 struct zone *zone = pgdat->node_zones + j; 3074 unsigned long present_pages = zone->present_pages; 3075 3076 zone->lowmem_reserve[j] = 0; 3077 3078 idx = j; 3079 while (idx) { 3080 struct zone *lower_zone; 3081 3082 idx--; 3083 3084 if (sysctl_lowmem_reserve_ratio[idx] < 1) 3085 sysctl_lowmem_reserve_ratio[idx] = 1; 3086 3087 lower_zone = pgdat->node_zones + idx; 3088 lower_zone->lowmem_reserve[j] = present_pages / 3089 sysctl_lowmem_reserve_ratio[idx]; 3090 present_pages += lower_zone->present_pages; 3091 } 3092 } 3093 } 3094 3095 /* update totalreserve_pages */ 3096 calculate_totalreserve_pages(); 3097 } 3098 3099 /** 3100 * setup_per_zone_pages_min - called when min_free_kbytes changes. 3101 * 3102 * Ensures that the pages_{min,low,high} values for each zone are set correctly 3103 * with respect to min_free_kbytes. 3104 */ 3105 void setup_per_zone_pages_min(void) 3106 { 3107 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10); 3108 unsigned long lowmem_pages = 0; 3109 struct zone *zone; 3110 unsigned long flags; 3111 3112 /* Calculate total number of !ZONE_HIGHMEM pages */ 3113 for_each_zone(zone) { 3114 if (!is_highmem(zone)) 3115 lowmem_pages += zone->present_pages; 3116 } 3117 3118 for_each_zone(zone) { 3119 u64 tmp; 3120 3121 spin_lock_irqsave(&zone->lru_lock, flags); 3122 tmp = (u64)pages_min * zone->present_pages; 3123 do_div(tmp, lowmem_pages); 3124 if (is_highmem(zone)) { 3125 /* 3126 * __GFP_HIGH and PF_MEMALLOC allocations usually don't 3127 * need highmem pages, so cap pages_min to a small 3128 * value here. 3129 * 3130 * The (pages_high-pages_low) and (pages_low-pages_min) 3131 * deltas controls asynch page reclaim, and so should 3132 * not be capped for highmem. 3133 */ 3134 int min_pages; 3135 3136 min_pages = zone->present_pages / 1024; 3137 if (min_pages < SWAP_CLUSTER_MAX) 3138 min_pages = SWAP_CLUSTER_MAX; 3139 if (min_pages > 128) 3140 min_pages = 128; 3141 zone->pages_min = min_pages; 3142 } else { 3143 /* 3144 * If it's a lowmem zone, reserve a number of pages 3145 * proportionate to the zone's size. 3146 */ 3147 zone->pages_min = tmp; 3148 } 3149 3150 zone->pages_low = zone->pages_min + (tmp >> 2); 3151 zone->pages_high = zone->pages_min + (tmp >> 1); 3152 spin_unlock_irqrestore(&zone->lru_lock, flags); 3153 } 3154 3155 /* update totalreserve_pages */ 3156 calculate_totalreserve_pages(); 3157 } 3158 3159 /* 3160 * Initialise min_free_kbytes. 3161 * 3162 * For small machines we want it small (128k min). For large machines 3163 * we want it large (64MB max). But it is not linear, because network 3164 * bandwidth does not increase linearly with machine size. We use 3165 * 3166 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy: 3167 * min_free_kbytes = sqrt(lowmem_kbytes * 16) 3168 * 3169 * which yields 3170 * 3171 * 16MB: 512k 3172 * 32MB: 724k 3173 * 64MB: 1024k 3174 * 128MB: 1448k 3175 * 256MB: 2048k 3176 * 512MB: 2896k 3177 * 1024MB: 4096k 3178 * 2048MB: 5792k 3179 * 4096MB: 8192k 3180 * 8192MB: 11584k 3181 * 16384MB: 16384k 3182 */ 3183 static int __init init_per_zone_pages_min(void) 3184 { 3185 unsigned long lowmem_kbytes; 3186 3187 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10); 3188 3189 min_free_kbytes = int_sqrt(lowmem_kbytes * 16); 3190 if (min_free_kbytes < 128) 3191 min_free_kbytes = 128; 3192 if (min_free_kbytes > 65536) 3193 min_free_kbytes = 65536; 3194 setup_per_zone_pages_min(); 3195 setup_per_zone_lowmem_reserve(); 3196 return 0; 3197 } 3198 module_init(init_per_zone_pages_min) 3199 3200 /* 3201 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so 3202 * that we can call two helper functions whenever min_free_kbytes 3203 * changes. 3204 */ 3205 int min_free_kbytes_sysctl_handler(ctl_table *table, int write, 3206 struct file *file, void __user *buffer, size_t *length, loff_t *ppos) 3207 { 3208 proc_dointvec(table, write, file, buffer, length, ppos); 3209 setup_per_zone_pages_min(); 3210 return 0; 3211 } 3212 3213 #ifdef CONFIG_NUMA 3214 int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write, 3215 struct file *file, void __user *buffer, size_t *length, loff_t *ppos) 3216 { 3217 struct zone *zone; 3218 int rc; 3219 3220 rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos); 3221 if (rc) 3222 return rc; 3223 3224 for_each_zone(zone) 3225 zone->min_unmapped_pages = (zone->present_pages * 3226 sysctl_min_unmapped_ratio) / 100; 3227 return 0; 3228 } 3229 3230 int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write, 3231 struct file *file, void __user *buffer, size_t *length, loff_t *ppos) 3232 { 3233 struct zone *zone; 3234 int rc; 3235 3236 rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos); 3237 if (rc) 3238 return rc; 3239 3240 for_each_zone(zone) 3241 zone->min_slab_pages = (zone->present_pages * 3242 sysctl_min_slab_ratio) / 100; 3243 return 0; 3244 } 3245 #endif 3246 3247 /* 3248 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around 3249 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve() 3250 * whenever sysctl_lowmem_reserve_ratio changes. 3251 * 3252 * The reserve ratio obviously has absolutely no relation with the 3253 * pages_min watermarks. The lowmem reserve ratio can only make sense 3254 * if in function of the boot time zone sizes. 3255 */ 3256 int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write, 3257 struct file *file, void __user *buffer, size_t *length, loff_t *ppos) 3258 { 3259 proc_dointvec_minmax(table, write, file, buffer, length, ppos); 3260 setup_per_zone_lowmem_reserve(); 3261 return 0; 3262 } 3263 3264 /* 3265 * percpu_pagelist_fraction - changes the pcp->high for each zone on each 3266 * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist 3267 * can have before it gets flushed back to buddy allocator. 3268 */ 3269 3270 int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write, 3271 struct file *file, void __user *buffer, size_t *length, loff_t *ppos) 3272 { 3273 struct zone *zone; 3274 unsigned int cpu; 3275 int ret; 3276 3277 ret = proc_dointvec_minmax(table, write, file, buffer, length, ppos); 3278 if (!write || (ret == -EINVAL)) 3279 return ret; 3280 for_each_zone(zone) { 3281 for_each_online_cpu(cpu) { 3282 unsigned long high; 3283 high = zone->present_pages / percpu_pagelist_fraction; 3284 setup_pagelist_highmark(zone_pcp(zone, cpu), high); 3285 } 3286 } 3287 return 0; 3288 } 3289 3290 int hashdist = HASHDIST_DEFAULT; 3291 3292 #ifdef CONFIG_NUMA 3293 static int __init set_hashdist(char *str) 3294 { 3295 if (!str) 3296 return 0; 3297 hashdist = simple_strtoul(str, &str, 0); 3298 return 1; 3299 } 3300 __setup("hashdist=", set_hashdist); 3301 #endif 3302 3303 /* 3304 * allocate a large system hash table from bootmem 3305 * - it is assumed that the hash table must contain an exact power-of-2 3306 * quantity of entries 3307 * - limit is the number of hash buckets, not the total allocation size 3308 */ 3309 void *__init alloc_large_system_hash(const char *tablename, 3310 unsigned long bucketsize, 3311 unsigned long numentries, 3312 int scale, 3313 int flags, 3314 unsigned int *_hash_shift, 3315 unsigned int *_hash_mask, 3316 unsigned long limit) 3317 { 3318 unsigned long long max = limit; 3319 unsigned long log2qty, size; 3320 void *table = NULL; 3321 3322 /* allow the kernel cmdline to have a say */ 3323 if (!numentries) { 3324 /* round applicable memory size up to nearest megabyte */ 3325 numentries = nr_kernel_pages; 3326 numentries += (1UL << (20 - PAGE_SHIFT)) - 1; 3327 numentries >>= 20 - PAGE_SHIFT; 3328 numentries <<= 20 - PAGE_SHIFT; 3329 3330 /* limit to 1 bucket per 2^scale bytes of low memory */ 3331 if (scale > PAGE_SHIFT) 3332 numentries >>= (scale - PAGE_SHIFT); 3333 else 3334 numentries <<= (PAGE_SHIFT - scale); 3335 3336 /* Make sure we've got at least a 0-order allocation.. */ 3337 if (unlikely((numentries * bucketsize) < PAGE_SIZE)) 3338 numentries = PAGE_SIZE / bucketsize; 3339 } 3340 numentries = roundup_pow_of_two(numentries); 3341 3342 /* limit allocation size to 1/16 total memory by default */ 3343 if (max == 0) { 3344 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4; 3345 do_div(max, bucketsize); 3346 } 3347 3348 if (numentries > max) 3349 numentries = max; 3350 3351 log2qty = ilog2(numentries); 3352 3353 do { 3354 size = bucketsize << log2qty; 3355 if (flags & HASH_EARLY) 3356 table = alloc_bootmem(size); 3357 else if (hashdist) 3358 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL); 3359 else { 3360 unsigned long order; 3361 for (order = 0; ((1UL << order) << PAGE_SHIFT) < size; order++) 3362 ; 3363 table = (void*) __get_free_pages(GFP_ATOMIC, order); 3364 } 3365 } while (!table && size > PAGE_SIZE && --log2qty); 3366 3367 if (!table) 3368 panic("Failed to allocate %s hash table\n", tablename); 3369 3370 printk("%s hash table entries: %d (order: %d, %lu bytes)\n", 3371 tablename, 3372 (1U << log2qty), 3373 ilog2(size) - PAGE_SHIFT, 3374 size); 3375 3376 if (_hash_shift) 3377 *_hash_shift = log2qty; 3378 if (_hash_mask) 3379 *_hash_mask = (1 << log2qty) - 1; 3380 3381 return table; 3382 } 3383 3384 #ifdef CONFIG_OUT_OF_LINE_PFN_TO_PAGE 3385 struct page *pfn_to_page(unsigned long pfn) 3386 { 3387 return __pfn_to_page(pfn); 3388 } 3389 unsigned long page_to_pfn(struct page *page) 3390 { 3391 return __page_to_pfn(page); 3392 } 3393 EXPORT_SYMBOL(pfn_to_page); 3394 EXPORT_SYMBOL(page_to_pfn); 3395 #endif /* CONFIG_OUT_OF_LINE_PFN_TO_PAGE */ 3396 3397 #if MAX_NUMNODES > 1 3398 /* 3399 * Find the highest possible node id. 3400 */ 3401 int highest_possible_node_id(void) 3402 { 3403 unsigned int node; 3404 unsigned int highest = 0; 3405 3406 for_each_node_mask(node, node_possible_map) 3407 highest = node; 3408 return highest; 3409 } 3410 EXPORT_SYMBOL(highest_possible_node_id); 3411 #endif 3412