xref: /linux/mm/page_alloc.c (revision b0148a98ec5151fec82064d95f11eb9efbc628ea)
1 /*
2  *  linux/mm/page_alloc.c
3  *
4  *  Manages the free list, the system allocates free pages here.
5  *  Note that kmalloc() lives in slab.c
6  *
7  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
8  *  Swap reorganised 29.12.95, Stephen Tweedie
9  *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10  *  Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11  *  Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12  *  Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13  *  Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14  *          (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15  */
16 
17 #include <linux/stddef.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/bootmem.h>
23 #include <linux/compiler.h>
24 #include <linux/kernel.h>
25 #include <linux/module.h>
26 #include <linux/suspend.h>
27 #include <linux/pagevec.h>
28 #include <linux/blkdev.h>
29 #include <linux/slab.h>
30 #include <linux/notifier.h>
31 #include <linux/topology.h>
32 #include <linux/sysctl.h>
33 #include <linux/cpu.h>
34 #include <linux/cpuset.h>
35 #include <linux/memory_hotplug.h>
36 #include <linux/nodemask.h>
37 #include <linux/vmalloc.h>
38 #include <linux/mempolicy.h>
39 #include <linux/stop_machine.h>
40 #include <linux/sort.h>
41 #include <linux/pfn.h>
42 #include <linux/backing-dev.h>
43 #include <linux/fault-inject.h>
44 
45 #include <asm/tlbflush.h>
46 #include <asm/div64.h>
47 #include "internal.h"
48 
49 /*
50  * MCD - HACK: Find somewhere to initialize this EARLY, or make this
51  * initializer cleaner
52  */
53 nodemask_t node_online_map __read_mostly = { { [0] = 1UL } };
54 EXPORT_SYMBOL(node_online_map);
55 nodemask_t node_possible_map __read_mostly = NODE_MASK_ALL;
56 EXPORT_SYMBOL(node_possible_map);
57 unsigned long totalram_pages __read_mostly;
58 unsigned long totalreserve_pages __read_mostly;
59 long nr_swap_pages;
60 int percpu_pagelist_fraction;
61 
62 static void __free_pages_ok(struct page *page, unsigned int order);
63 
64 /*
65  * results with 256, 32 in the lowmem_reserve sysctl:
66  *	1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
67  *	1G machine -> (16M dma, 784M normal, 224M high)
68  *	NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
69  *	HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
70  *	HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
71  *
72  * TBD: should special case ZONE_DMA32 machines here - in those we normally
73  * don't need any ZONE_NORMAL reservation
74  */
75 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
76 	 256,
77 #ifdef CONFIG_ZONE_DMA32
78 	 256,
79 #endif
80 #ifdef CONFIG_HIGHMEM
81 	 32
82 #endif
83 };
84 
85 EXPORT_SYMBOL(totalram_pages);
86 
87 static char * const zone_names[MAX_NR_ZONES] = {
88 	 "DMA",
89 #ifdef CONFIG_ZONE_DMA32
90 	 "DMA32",
91 #endif
92 	 "Normal",
93 #ifdef CONFIG_HIGHMEM
94 	 "HighMem"
95 #endif
96 };
97 
98 int min_free_kbytes = 1024;
99 
100 unsigned long __meminitdata nr_kernel_pages;
101 unsigned long __meminitdata nr_all_pages;
102 static unsigned long __initdata dma_reserve;
103 
104 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
105   /*
106    * MAX_ACTIVE_REGIONS determines the maxmimum number of distinct
107    * ranges of memory (RAM) that may be registered with add_active_range().
108    * Ranges passed to add_active_range() will be merged if possible
109    * so the number of times add_active_range() can be called is
110    * related to the number of nodes and the number of holes
111    */
112   #ifdef CONFIG_MAX_ACTIVE_REGIONS
113     /* Allow an architecture to set MAX_ACTIVE_REGIONS to save memory */
114     #define MAX_ACTIVE_REGIONS CONFIG_MAX_ACTIVE_REGIONS
115   #else
116     #if MAX_NUMNODES >= 32
117       /* If there can be many nodes, allow up to 50 holes per node */
118       #define MAX_ACTIVE_REGIONS (MAX_NUMNODES*50)
119     #else
120       /* By default, allow up to 256 distinct regions */
121       #define MAX_ACTIVE_REGIONS 256
122     #endif
123   #endif
124 
125   struct node_active_region __initdata early_node_map[MAX_ACTIVE_REGIONS];
126   int __initdata nr_nodemap_entries;
127   unsigned long __initdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
128   unsigned long __initdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
129 #ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
130   unsigned long __initdata node_boundary_start_pfn[MAX_NUMNODES];
131   unsigned long __initdata node_boundary_end_pfn[MAX_NUMNODES];
132 #endif /* CONFIG_MEMORY_HOTPLUG_RESERVE */
133 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
134 
135 #ifdef CONFIG_DEBUG_VM
136 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
137 {
138 	int ret = 0;
139 	unsigned seq;
140 	unsigned long pfn = page_to_pfn(page);
141 
142 	do {
143 		seq = zone_span_seqbegin(zone);
144 		if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
145 			ret = 1;
146 		else if (pfn < zone->zone_start_pfn)
147 			ret = 1;
148 	} while (zone_span_seqretry(zone, seq));
149 
150 	return ret;
151 }
152 
153 static int page_is_consistent(struct zone *zone, struct page *page)
154 {
155 #ifdef CONFIG_HOLES_IN_ZONE
156 	if (!pfn_valid(page_to_pfn(page)))
157 		return 0;
158 #endif
159 	if (zone != page_zone(page))
160 		return 0;
161 
162 	return 1;
163 }
164 /*
165  * Temporary debugging check for pages not lying within a given zone.
166  */
167 static int bad_range(struct zone *zone, struct page *page)
168 {
169 	if (page_outside_zone_boundaries(zone, page))
170 		return 1;
171 	if (!page_is_consistent(zone, page))
172 		return 1;
173 
174 	return 0;
175 }
176 #else
177 static inline int bad_range(struct zone *zone, struct page *page)
178 {
179 	return 0;
180 }
181 #endif
182 
183 static void bad_page(struct page *page)
184 {
185 	printk(KERN_EMERG "Bad page state in process '%s'\n"
186 		KERN_EMERG "page:%p flags:0x%0*lx mapping:%p mapcount:%d count:%d\n"
187 		KERN_EMERG "Trying to fix it up, but a reboot is needed\n"
188 		KERN_EMERG "Backtrace:\n",
189 		current->comm, page, (int)(2*sizeof(unsigned long)),
190 		(unsigned long)page->flags, page->mapping,
191 		page_mapcount(page), page_count(page));
192 	dump_stack();
193 	page->flags &= ~(1 << PG_lru	|
194 			1 << PG_private |
195 			1 << PG_locked	|
196 			1 << PG_active	|
197 			1 << PG_dirty	|
198 			1 << PG_reclaim |
199 			1 << PG_slab    |
200 			1 << PG_swapcache |
201 			1 << PG_writeback |
202 			1 << PG_buddy );
203 	set_page_count(page, 0);
204 	reset_page_mapcount(page);
205 	page->mapping = NULL;
206 	add_taint(TAINT_BAD_PAGE);
207 }
208 
209 /*
210  * Higher-order pages are called "compound pages".  They are structured thusly:
211  *
212  * The first PAGE_SIZE page is called the "head page".
213  *
214  * The remaining PAGE_SIZE pages are called "tail pages".
215  *
216  * All pages have PG_compound set.  All pages have their ->private pointing at
217  * the head page (even the head page has this).
218  *
219  * The first tail page's ->lru.next holds the address of the compound page's
220  * put_page() function.  Its ->lru.prev holds the order of allocation.
221  * This usage means that zero-order pages may not be compound.
222  */
223 
224 static void free_compound_page(struct page *page)
225 {
226 	__free_pages_ok(page, (unsigned long)page[1].lru.prev);
227 }
228 
229 static void prep_compound_page(struct page *page, unsigned long order)
230 {
231 	int i;
232 	int nr_pages = 1 << order;
233 
234 	set_compound_page_dtor(page, free_compound_page);
235 	page[1].lru.prev = (void *)order;
236 	for (i = 0; i < nr_pages; i++) {
237 		struct page *p = page + i;
238 
239 		__SetPageCompound(p);
240 		set_page_private(p, (unsigned long)page);
241 	}
242 }
243 
244 static void destroy_compound_page(struct page *page, unsigned long order)
245 {
246 	int i;
247 	int nr_pages = 1 << order;
248 
249 	if (unlikely((unsigned long)page[1].lru.prev != order))
250 		bad_page(page);
251 
252 	for (i = 0; i < nr_pages; i++) {
253 		struct page *p = page + i;
254 
255 		if (unlikely(!PageCompound(p) |
256 				(page_private(p) != (unsigned long)page)))
257 			bad_page(page);
258 		__ClearPageCompound(p);
259 	}
260 }
261 
262 static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
263 {
264 	int i;
265 
266 	VM_BUG_ON((gfp_flags & (__GFP_WAIT | __GFP_HIGHMEM)) == __GFP_HIGHMEM);
267 	/*
268 	 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
269 	 * and __GFP_HIGHMEM from hard or soft interrupt context.
270 	 */
271 	VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
272 	for (i = 0; i < (1 << order); i++)
273 		clear_highpage(page + i);
274 }
275 
276 /*
277  * function for dealing with page's order in buddy system.
278  * zone->lock is already acquired when we use these.
279  * So, we don't need atomic page->flags operations here.
280  */
281 static inline unsigned long page_order(struct page *page)
282 {
283 	return page_private(page);
284 }
285 
286 static inline void set_page_order(struct page *page, int order)
287 {
288 	set_page_private(page, order);
289 	__SetPageBuddy(page);
290 }
291 
292 static inline void rmv_page_order(struct page *page)
293 {
294 	__ClearPageBuddy(page);
295 	set_page_private(page, 0);
296 }
297 
298 /*
299  * Locate the struct page for both the matching buddy in our
300  * pair (buddy1) and the combined O(n+1) page they form (page).
301  *
302  * 1) Any buddy B1 will have an order O twin B2 which satisfies
303  * the following equation:
304  *     B2 = B1 ^ (1 << O)
305  * For example, if the starting buddy (buddy2) is #8 its order
306  * 1 buddy is #10:
307  *     B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
308  *
309  * 2) Any buddy B will have an order O+1 parent P which
310  * satisfies the following equation:
311  *     P = B & ~(1 << O)
312  *
313  * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
314  */
315 static inline struct page *
316 __page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order)
317 {
318 	unsigned long buddy_idx = page_idx ^ (1 << order);
319 
320 	return page + (buddy_idx - page_idx);
321 }
322 
323 static inline unsigned long
324 __find_combined_index(unsigned long page_idx, unsigned int order)
325 {
326 	return (page_idx & ~(1 << order));
327 }
328 
329 /*
330  * This function checks whether a page is free && is the buddy
331  * we can do coalesce a page and its buddy if
332  * (a) the buddy is not in a hole &&
333  * (b) the buddy is in the buddy system &&
334  * (c) a page and its buddy have the same order &&
335  * (d) a page and its buddy are in the same zone.
336  *
337  * For recording whether a page is in the buddy system, we use PG_buddy.
338  * Setting, clearing, and testing PG_buddy is serialized by zone->lock.
339  *
340  * For recording page's order, we use page_private(page).
341  */
342 static inline int page_is_buddy(struct page *page, struct page *buddy,
343 								int order)
344 {
345 #ifdef CONFIG_HOLES_IN_ZONE
346 	if (!pfn_valid(page_to_pfn(buddy)))
347 		return 0;
348 #endif
349 
350 	if (page_zone_id(page) != page_zone_id(buddy))
351 		return 0;
352 
353 	if (PageBuddy(buddy) && page_order(buddy) == order) {
354 		BUG_ON(page_count(buddy) != 0);
355 		return 1;
356 	}
357 	return 0;
358 }
359 
360 /*
361  * Freeing function for a buddy system allocator.
362  *
363  * The concept of a buddy system is to maintain direct-mapped table
364  * (containing bit values) for memory blocks of various "orders".
365  * The bottom level table contains the map for the smallest allocatable
366  * units of memory (here, pages), and each level above it describes
367  * pairs of units from the levels below, hence, "buddies".
368  * At a high level, all that happens here is marking the table entry
369  * at the bottom level available, and propagating the changes upward
370  * as necessary, plus some accounting needed to play nicely with other
371  * parts of the VM system.
372  * At each level, we keep a list of pages, which are heads of continuous
373  * free pages of length of (1 << order) and marked with PG_buddy. Page's
374  * order is recorded in page_private(page) field.
375  * So when we are allocating or freeing one, we can derive the state of the
376  * other.  That is, if we allocate a small block, and both were
377  * free, the remainder of the region must be split into blocks.
378  * If a block is freed, and its buddy is also free, then this
379  * triggers coalescing into a block of larger size.
380  *
381  * -- wli
382  */
383 
384 static inline void __free_one_page(struct page *page,
385 		struct zone *zone, unsigned int order)
386 {
387 	unsigned long page_idx;
388 	int order_size = 1 << order;
389 
390 	if (unlikely(PageCompound(page)))
391 		destroy_compound_page(page, order);
392 
393 	page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
394 
395 	VM_BUG_ON(page_idx & (order_size - 1));
396 	VM_BUG_ON(bad_range(zone, page));
397 
398 	zone->free_pages += order_size;
399 	while (order < MAX_ORDER-1) {
400 		unsigned long combined_idx;
401 		struct free_area *area;
402 		struct page *buddy;
403 
404 		buddy = __page_find_buddy(page, page_idx, order);
405 		if (!page_is_buddy(page, buddy, order))
406 			break;		/* Move the buddy up one level. */
407 
408 		list_del(&buddy->lru);
409 		area = zone->free_area + order;
410 		area->nr_free--;
411 		rmv_page_order(buddy);
412 		combined_idx = __find_combined_index(page_idx, order);
413 		page = page + (combined_idx - page_idx);
414 		page_idx = combined_idx;
415 		order++;
416 	}
417 	set_page_order(page, order);
418 	list_add(&page->lru, &zone->free_area[order].free_list);
419 	zone->free_area[order].nr_free++;
420 }
421 
422 static inline int free_pages_check(struct page *page)
423 {
424 	if (unlikely(page_mapcount(page) |
425 		(page->mapping != NULL)  |
426 		(page_count(page) != 0)  |
427 		(page->flags & (
428 			1 << PG_lru	|
429 			1 << PG_private |
430 			1 << PG_locked	|
431 			1 << PG_active	|
432 			1 << PG_reclaim	|
433 			1 << PG_slab	|
434 			1 << PG_swapcache |
435 			1 << PG_writeback |
436 			1 << PG_reserved |
437 			1 << PG_buddy ))))
438 		bad_page(page);
439 	if (PageDirty(page))
440 		__ClearPageDirty(page);
441 	/*
442 	 * For now, we report if PG_reserved was found set, but do not
443 	 * clear it, and do not free the page.  But we shall soon need
444 	 * to do more, for when the ZERO_PAGE count wraps negative.
445 	 */
446 	return PageReserved(page);
447 }
448 
449 /*
450  * Frees a list of pages.
451  * Assumes all pages on list are in same zone, and of same order.
452  * count is the number of pages to free.
453  *
454  * If the zone was previously in an "all pages pinned" state then look to
455  * see if this freeing clears that state.
456  *
457  * And clear the zone's pages_scanned counter, to hold off the "all pages are
458  * pinned" detection logic.
459  */
460 static void free_pages_bulk(struct zone *zone, int count,
461 					struct list_head *list, int order)
462 {
463 	spin_lock(&zone->lock);
464 	zone->all_unreclaimable = 0;
465 	zone->pages_scanned = 0;
466 	while (count--) {
467 		struct page *page;
468 
469 		VM_BUG_ON(list_empty(list));
470 		page = list_entry(list->prev, struct page, lru);
471 		/* have to delete it as __free_one_page list manipulates */
472 		list_del(&page->lru);
473 		__free_one_page(page, zone, order);
474 	}
475 	spin_unlock(&zone->lock);
476 }
477 
478 static void free_one_page(struct zone *zone, struct page *page, int order)
479 {
480 	spin_lock(&zone->lock);
481 	zone->all_unreclaimable = 0;
482 	zone->pages_scanned = 0;
483 	__free_one_page(page, zone, order);
484 	spin_unlock(&zone->lock);
485 }
486 
487 static void __free_pages_ok(struct page *page, unsigned int order)
488 {
489 	unsigned long flags;
490 	int i;
491 	int reserved = 0;
492 
493 	for (i = 0 ; i < (1 << order) ; ++i)
494 		reserved += free_pages_check(page + i);
495 	if (reserved)
496 		return;
497 
498 	if (!PageHighMem(page))
499 		debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order);
500 	arch_free_page(page, order);
501 	kernel_map_pages(page, 1 << order, 0);
502 
503 	local_irq_save(flags);
504 	__count_vm_events(PGFREE, 1 << order);
505 	free_one_page(page_zone(page), page, order);
506 	local_irq_restore(flags);
507 }
508 
509 /*
510  * permit the bootmem allocator to evade page validation on high-order frees
511  */
512 void fastcall __init __free_pages_bootmem(struct page *page, unsigned int order)
513 {
514 	if (order == 0) {
515 		__ClearPageReserved(page);
516 		set_page_count(page, 0);
517 		set_page_refcounted(page);
518 		__free_page(page);
519 	} else {
520 		int loop;
521 
522 		prefetchw(page);
523 		for (loop = 0; loop < BITS_PER_LONG; loop++) {
524 			struct page *p = &page[loop];
525 
526 			if (loop + 1 < BITS_PER_LONG)
527 				prefetchw(p + 1);
528 			__ClearPageReserved(p);
529 			set_page_count(p, 0);
530 		}
531 
532 		set_page_refcounted(page);
533 		__free_pages(page, order);
534 	}
535 }
536 
537 
538 /*
539  * The order of subdivision here is critical for the IO subsystem.
540  * Please do not alter this order without good reasons and regression
541  * testing. Specifically, as large blocks of memory are subdivided,
542  * the order in which smaller blocks are delivered depends on the order
543  * they're subdivided in this function. This is the primary factor
544  * influencing the order in which pages are delivered to the IO
545  * subsystem according to empirical testing, and this is also justified
546  * by considering the behavior of a buddy system containing a single
547  * large block of memory acted on by a series of small allocations.
548  * This behavior is a critical factor in sglist merging's success.
549  *
550  * -- wli
551  */
552 static inline void expand(struct zone *zone, struct page *page,
553  	int low, int high, struct free_area *area)
554 {
555 	unsigned long size = 1 << high;
556 
557 	while (high > low) {
558 		area--;
559 		high--;
560 		size >>= 1;
561 		VM_BUG_ON(bad_range(zone, &page[size]));
562 		list_add(&page[size].lru, &area->free_list);
563 		area->nr_free++;
564 		set_page_order(&page[size], high);
565 	}
566 }
567 
568 /*
569  * This page is about to be returned from the page allocator
570  */
571 static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
572 {
573 	if (unlikely(page_mapcount(page) |
574 		(page->mapping != NULL)  |
575 		(page_count(page) != 0)  |
576 		(page->flags & (
577 			1 << PG_lru	|
578 			1 << PG_private	|
579 			1 << PG_locked	|
580 			1 << PG_active	|
581 			1 << PG_dirty	|
582 			1 << PG_reclaim	|
583 			1 << PG_slab    |
584 			1 << PG_swapcache |
585 			1 << PG_writeback |
586 			1 << PG_reserved |
587 			1 << PG_buddy ))))
588 		bad_page(page);
589 
590 	/*
591 	 * For now, we report if PG_reserved was found set, but do not
592 	 * clear it, and do not allocate the page: as a safety net.
593 	 */
594 	if (PageReserved(page))
595 		return 1;
596 
597 	page->flags &= ~(1 << PG_uptodate | 1 << PG_error |
598 			1 << PG_referenced | 1 << PG_arch_1 |
599 			1 << PG_checked | 1 << PG_mappedtodisk);
600 	set_page_private(page, 0);
601 	set_page_refcounted(page);
602 
603 	arch_alloc_page(page, order);
604 	kernel_map_pages(page, 1 << order, 1);
605 
606 	if (gfp_flags & __GFP_ZERO)
607 		prep_zero_page(page, order, gfp_flags);
608 
609 	if (order && (gfp_flags & __GFP_COMP))
610 		prep_compound_page(page, order);
611 
612 	return 0;
613 }
614 
615 /*
616  * Do the hard work of removing an element from the buddy allocator.
617  * Call me with the zone->lock already held.
618  */
619 static struct page *__rmqueue(struct zone *zone, unsigned int order)
620 {
621 	struct free_area * area;
622 	unsigned int current_order;
623 	struct page *page;
624 
625 	for (current_order = order; current_order < MAX_ORDER; ++current_order) {
626 		area = zone->free_area + current_order;
627 		if (list_empty(&area->free_list))
628 			continue;
629 
630 		page = list_entry(area->free_list.next, struct page, lru);
631 		list_del(&page->lru);
632 		rmv_page_order(page);
633 		area->nr_free--;
634 		zone->free_pages -= 1UL << order;
635 		expand(zone, page, order, current_order, area);
636 		return page;
637 	}
638 
639 	return NULL;
640 }
641 
642 /*
643  * Obtain a specified number of elements from the buddy allocator, all under
644  * a single hold of the lock, for efficiency.  Add them to the supplied list.
645  * Returns the number of new pages which were placed at *list.
646  */
647 static int rmqueue_bulk(struct zone *zone, unsigned int order,
648 			unsigned long count, struct list_head *list)
649 {
650 	int i;
651 
652 	spin_lock(&zone->lock);
653 	for (i = 0; i < count; ++i) {
654 		struct page *page = __rmqueue(zone, order);
655 		if (unlikely(page == NULL))
656 			break;
657 		list_add_tail(&page->lru, list);
658 	}
659 	spin_unlock(&zone->lock);
660 	return i;
661 }
662 
663 #ifdef CONFIG_NUMA
664 /*
665  * Called from the slab reaper to drain pagesets on a particular node that
666  * belongs to the currently executing processor.
667  * Note that this function must be called with the thread pinned to
668  * a single processor.
669  */
670 void drain_node_pages(int nodeid)
671 {
672 	int i;
673 	enum zone_type z;
674 	unsigned long flags;
675 
676 	for (z = 0; z < MAX_NR_ZONES; z++) {
677 		struct zone *zone = NODE_DATA(nodeid)->node_zones + z;
678 		struct per_cpu_pageset *pset;
679 
680 		if (!populated_zone(zone))
681 			continue;
682 
683 		pset = zone_pcp(zone, smp_processor_id());
684 		for (i = 0; i < ARRAY_SIZE(pset->pcp); i++) {
685 			struct per_cpu_pages *pcp;
686 
687 			pcp = &pset->pcp[i];
688 			if (pcp->count) {
689 				int to_drain;
690 
691 				local_irq_save(flags);
692 				if (pcp->count >= pcp->batch)
693 					to_drain = pcp->batch;
694 				else
695 					to_drain = pcp->count;
696 				free_pages_bulk(zone, to_drain, &pcp->list, 0);
697 				pcp->count -= to_drain;
698 				local_irq_restore(flags);
699 			}
700 		}
701 	}
702 }
703 #endif
704 
705 static void __drain_pages(unsigned int cpu)
706 {
707 	unsigned long flags;
708 	struct zone *zone;
709 	int i;
710 
711 	for_each_zone(zone) {
712 		struct per_cpu_pageset *pset;
713 
714 		if (!populated_zone(zone))
715 			continue;
716 
717 		pset = zone_pcp(zone, cpu);
718 		for (i = 0; i < ARRAY_SIZE(pset->pcp); i++) {
719 			struct per_cpu_pages *pcp;
720 
721 			pcp = &pset->pcp[i];
722 			local_irq_save(flags);
723 			free_pages_bulk(zone, pcp->count, &pcp->list, 0);
724 			pcp->count = 0;
725 			local_irq_restore(flags);
726 		}
727 	}
728 }
729 
730 #ifdef CONFIG_PM
731 
732 void mark_free_pages(struct zone *zone)
733 {
734 	unsigned long pfn, max_zone_pfn;
735 	unsigned long flags;
736 	int order;
737 	struct list_head *curr;
738 
739 	if (!zone->spanned_pages)
740 		return;
741 
742 	spin_lock_irqsave(&zone->lock, flags);
743 
744 	max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
745 	for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
746 		if (pfn_valid(pfn)) {
747 			struct page *page = pfn_to_page(pfn);
748 
749 			if (!PageNosave(page))
750 				ClearPageNosaveFree(page);
751 		}
752 
753 	for (order = MAX_ORDER - 1; order >= 0; --order)
754 		list_for_each(curr, &zone->free_area[order].free_list) {
755 			unsigned long i;
756 
757 			pfn = page_to_pfn(list_entry(curr, struct page, lru));
758 			for (i = 0; i < (1UL << order); i++)
759 				SetPageNosaveFree(pfn_to_page(pfn + i));
760 		}
761 
762 	spin_unlock_irqrestore(&zone->lock, flags);
763 }
764 
765 /*
766  * Spill all of this CPU's per-cpu pages back into the buddy allocator.
767  */
768 void drain_local_pages(void)
769 {
770 	unsigned long flags;
771 
772 	local_irq_save(flags);
773 	__drain_pages(smp_processor_id());
774 	local_irq_restore(flags);
775 }
776 #endif /* CONFIG_PM */
777 
778 /*
779  * Free a 0-order page
780  */
781 static void fastcall free_hot_cold_page(struct page *page, int cold)
782 {
783 	struct zone *zone = page_zone(page);
784 	struct per_cpu_pages *pcp;
785 	unsigned long flags;
786 
787 	if (PageAnon(page))
788 		page->mapping = NULL;
789 	if (free_pages_check(page))
790 		return;
791 
792 	if (!PageHighMem(page))
793 		debug_check_no_locks_freed(page_address(page), PAGE_SIZE);
794 	arch_free_page(page, 0);
795 	kernel_map_pages(page, 1, 0);
796 
797 	pcp = &zone_pcp(zone, get_cpu())->pcp[cold];
798 	local_irq_save(flags);
799 	__count_vm_event(PGFREE);
800 	list_add(&page->lru, &pcp->list);
801 	pcp->count++;
802 	if (pcp->count >= pcp->high) {
803 		free_pages_bulk(zone, pcp->batch, &pcp->list, 0);
804 		pcp->count -= pcp->batch;
805 	}
806 	local_irq_restore(flags);
807 	put_cpu();
808 }
809 
810 void fastcall free_hot_page(struct page *page)
811 {
812 	free_hot_cold_page(page, 0);
813 }
814 
815 void fastcall free_cold_page(struct page *page)
816 {
817 	free_hot_cold_page(page, 1);
818 }
819 
820 /*
821  * split_page takes a non-compound higher-order page, and splits it into
822  * n (1<<order) sub-pages: page[0..n]
823  * Each sub-page must be freed individually.
824  *
825  * Note: this is probably too low level an operation for use in drivers.
826  * Please consult with lkml before using this in your driver.
827  */
828 void split_page(struct page *page, unsigned int order)
829 {
830 	int i;
831 
832 	VM_BUG_ON(PageCompound(page));
833 	VM_BUG_ON(!page_count(page));
834 	for (i = 1; i < (1 << order); i++)
835 		set_page_refcounted(page + i);
836 }
837 
838 /*
839  * Really, prep_compound_page() should be called from __rmqueue_bulk().  But
840  * we cheat by calling it from here, in the order > 0 path.  Saves a branch
841  * or two.
842  */
843 static struct page *buffered_rmqueue(struct zonelist *zonelist,
844 			struct zone *zone, int order, gfp_t gfp_flags)
845 {
846 	unsigned long flags;
847 	struct page *page;
848 	int cold = !!(gfp_flags & __GFP_COLD);
849 	int cpu;
850 
851 again:
852 	cpu  = get_cpu();
853 	if (likely(order == 0)) {
854 		struct per_cpu_pages *pcp;
855 
856 		pcp = &zone_pcp(zone, cpu)->pcp[cold];
857 		local_irq_save(flags);
858 		if (!pcp->count) {
859 			pcp->count = rmqueue_bulk(zone, 0,
860 						pcp->batch, &pcp->list);
861 			if (unlikely(!pcp->count))
862 				goto failed;
863 		}
864 		page = list_entry(pcp->list.next, struct page, lru);
865 		list_del(&page->lru);
866 		pcp->count--;
867 	} else {
868 		spin_lock_irqsave(&zone->lock, flags);
869 		page = __rmqueue(zone, order);
870 		spin_unlock(&zone->lock);
871 		if (!page)
872 			goto failed;
873 	}
874 
875 	__count_zone_vm_events(PGALLOC, zone, 1 << order);
876 	zone_statistics(zonelist, zone);
877 	local_irq_restore(flags);
878 	put_cpu();
879 
880 	VM_BUG_ON(bad_range(zone, page));
881 	if (prep_new_page(page, order, gfp_flags))
882 		goto again;
883 	return page;
884 
885 failed:
886 	local_irq_restore(flags);
887 	put_cpu();
888 	return NULL;
889 }
890 
891 #define ALLOC_NO_WATERMARKS	0x01 /* don't check watermarks at all */
892 #define ALLOC_WMARK_MIN		0x02 /* use pages_min watermark */
893 #define ALLOC_WMARK_LOW		0x04 /* use pages_low watermark */
894 #define ALLOC_WMARK_HIGH	0x08 /* use pages_high watermark */
895 #define ALLOC_HARDER		0x10 /* try to alloc harder */
896 #define ALLOC_HIGH		0x20 /* __GFP_HIGH set */
897 #define ALLOC_CPUSET		0x40 /* check for correct cpuset */
898 
899 #ifdef CONFIG_FAIL_PAGE_ALLOC
900 
901 static struct fail_page_alloc_attr {
902 	struct fault_attr attr;
903 
904 	u32 ignore_gfp_highmem;
905 	u32 ignore_gfp_wait;
906 
907 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
908 
909 	struct dentry *ignore_gfp_highmem_file;
910 	struct dentry *ignore_gfp_wait_file;
911 
912 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
913 
914 } fail_page_alloc = {
915 	.attr = FAULT_ATTR_INITIALIZER,
916 	.ignore_gfp_wait = 1,
917 	.ignore_gfp_highmem = 1,
918 };
919 
920 static int __init setup_fail_page_alloc(char *str)
921 {
922 	return setup_fault_attr(&fail_page_alloc.attr, str);
923 }
924 __setup("fail_page_alloc=", setup_fail_page_alloc);
925 
926 static int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
927 {
928 	if (gfp_mask & __GFP_NOFAIL)
929 		return 0;
930 	if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
931 		return 0;
932 	if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
933 		return 0;
934 
935 	return should_fail(&fail_page_alloc.attr, 1 << order);
936 }
937 
938 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
939 
940 static int __init fail_page_alloc_debugfs(void)
941 {
942 	mode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
943 	struct dentry *dir;
944 	int err;
945 
946 	err = init_fault_attr_dentries(&fail_page_alloc.attr,
947 				       "fail_page_alloc");
948 	if (err)
949 		return err;
950 	dir = fail_page_alloc.attr.dentries.dir;
951 
952 	fail_page_alloc.ignore_gfp_wait_file =
953 		debugfs_create_bool("ignore-gfp-wait", mode, dir,
954 				      &fail_page_alloc.ignore_gfp_wait);
955 
956 	fail_page_alloc.ignore_gfp_highmem_file =
957 		debugfs_create_bool("ignore-gfp-highmem", mode, dir,
958 				      &fail_page_alloc.ignore_gfp_highmem);
959 
960 	if (!fail_page_alloc.ignore_gfp_wait_file ||
961 			!fail_page_alloc.ignore_gfp_highmem_file) {
962 		err = -ENOMEM;
963 		debugfs_remove(fail_page_alloc.ignore_gfp_wait_file);
964 		debugfs_remove(fail_page_alloc.ignore_gfp_highmem_file);
965 		cleanup_fault_attr_dentries(&fail_page_alloc.attr);
966 	}
967 
968 	return err;
969 }
970 
971 late_initcall(fail_page_alloc_debugfs);
972 
973 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
974 
975 #else /* CONFIG_FAIL_PAGE_ALLOC */
976 
977 static inline int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
978 {
979 	return 0;
980 }
981 
982 #endif /* CONFIG_FAIL_PAGE_ALLOC */
983 
984 /*
985  * Return 1 if free pages are above 'mark'. This takes into account the order
986  * of the allocation.
987  */
988 int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
989 		      int classzone_idx, int alloc_flags)
990 {
991 	/* free_pages my go negative - that's OK */
992 	long min = mark, free_pages = z->free_pages - (1 << order) + 1;
993 	int o;
994 
995 	if (alloc_flags & ALLOC_HIGH)
996 		min -= min / 2;
997 	if (alloc_flags & ALLOC_HARDER)
998 		min -= min / 4;
999 
1000 	if (free_pages <= min + z->lowmem_reserve[classzone_idx])
1001 		return 0;
1002 	for (o = 0; o < order; o++) {
1003 		/* At the next order, this order's pages become unavailable */
1004 		free_pages -= z->free_area[o].nr_free << o;
1005 
1006 		/* Require fewer higher order pages to be free */
1007 		min >>= 1;
1008 
1009 		if (free_pages <= min)
1010 			return 0;
1011 	}
1012 	return 1;
1013 }
1014 
1015 #ifdef CONFIG_NUMA
1016 /*
1017  * zlc_setup - Setup for "zonelist cache".  Uses cached zone data to
1018  * skip over zones that are not allowed by the cpuset, or that have
1019  * been recently (in last second) found to be nearly full.  See further
1020  * comments in mmzone.h.  Reduces cache footprint of zonelist scans
1021  * that have to skip over alot of full or unallowed zones.
1022  *
1023  * If the zonelist cache is present in the passed in zonelist, then
1024  * returns a pointer to the allowed node mask (either the current
1025  * tasks mems_allowed, or node_online_map.)
1026  *
1027  * If the zonelist cache is not available for this zonelist, does
1028  * nothing and returns NULL.
1029  *
1030  * If the fullzones BITMAP in the zonelist cache is stale (more than
1031  * a second since last zap'd) then we zap it out (clear its bits.)
1032  *
1033  * We hold off even calling zlc_setup, until after we've checked the
1034  * first zone in the zonelist, on the theory that most allocations will
1035  * be satisfied from that first zone, so best to examine that zone as
1036  * quickly as we can.
1037  */
1038 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1039 {
1040 	struct zonelist_cache *zlc;	/* cached zonelist speedup info */
1041 	nodemask_t *allowednodes;	/* zonelist_cache approximation */
1042 
1043 	zlc = zonelist->zlcache_ptr;
1044 	if (!zlc)
1045 		return NULL;
1046 
1047 	if (jiffies - zlc->last_full_zap > 1 * HZ) {
1048 		bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1049 		zlc->last_full_zap = jiffies;
1050 	}
1051 
1052 	allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1053 					&cpuset_current_mems_allowed :
1054 					&node_online_map;
1055 	return allowednodes;
1056 }
1057 
1058 /*
1059  * Given 'z' scanning a zonelist, run a couple of quick checks to see
1060  * if it is worth looking at further for free memory:
1061  *  1) Check that the zone isn't thought to be full (doesn't have its
1062  *     bit set in the zonelist_cache fullzones BITMAP).
1063  *  2) Check that the zones node (obtained from the zonelist_cache
1064  *     z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1065  * Return true (non-zero) if zone is worth looking at further, or
1066  * else return false (zero) if it is not.
1067  *
1068  * This check -ignores- the distinction between various watermarks,
1069  * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ...  If a zone is
1070  * found to be full for any variation of these watermarks, it will
1071  * be considered full for up to one second by all requests, unless
1072  * we are so low on memory on all allowed nodes that we are forced
1073  * into the second scan of the zonelist.
1074  *
1075  * In the second scan we ignore this zonelist cache and exactly
1076  * apply the watermarks to all zones, even it is slower to do so.
1077  * We are low on memory in the second scan, and should leave no stone
1078  * unturned looking for a free page.
1079  */
1080 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zone **z,
1081 						nodemask_t *allowednodes)
1082 {
1083 	struct zonelist_cache *zlc;	/* cached zonelist speedup info */
1084 	int i;				/* index of *z in zonelist zones */
1085 	int n;				/* node that zone *z is on */
1086 
1087 	zlc = zonelist->zlcache_ptr;
1088 	if (!zlc)
1089 		return 1;
1090 
1091 	i = z - zonelist->zones;
1092 	n = zlc->z_to_n[i];
1093 
1094 	/* This zone is worth trying if it is allowed but not full */
1095 	return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1096 }
1097 
1098 /*
1099  * Given 'z' scanning a zonelist, set the corresponding bit in
1100  * zlc->fullzones, so that subsequent attempts to allocate a page
1101  * from that zone don't waste time re-examining it.
1102  */
1103 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zone **z)
1104 {
1105 	struct zonelist_cache *zlc;	/* cached zonelist speedup info */
1106 	int i;				/* index of *z in zonelist zones */
1107 
1108 	zlc = zonelist->zlcache_ptr;
1109 	if (!zlc)
1110 		return;
1111 
1112 	i = z - zonelist->zones;
1113 
1114 	set_bit(i, zlc->fullzones);
1115 }
1116 
1117 #else	/* CONFIG_NUMA */
1118 
1119 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1120 {
1121 	return NULL;
1122 }
1123 
1124 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zone **z,
1125 				nodemask_t *allowednodes)
1126 {
1127 	return 1;
1128 }
1129 
1130 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zone **z)
1131 {
1132 }
1133 #endif	/* CONFIG_NUMA */
1134 
1135 /*
1136  * get_page_from_freelist goes through the zonelist trying to allocate
1137  * a page.
1138  */
1139 static struct page *
1140 get_page_from_freelist(gfp_t gfp_mask, unsigned int order,
1141 		struct zonelist *zonelist, int alloc_flags)
1142 {
1143 	struct zone **z;
1144 	struct page *page = NULL;
1145 	int classzone_idx = zone_idx(zonelist->zones[0]);
1146 	struct zone *zone;
1147 	nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
1148 	int zlc_active = 0;		/* set if using zonelist_cache */
1149 	int did_zlc_setup = 0;		/* just call zlc_setup() one time */
1150 
1151 zonelist_scan:
1152 	/*
1153 	 * Scan zonelist, looking for a zone with enough free.
1154 	 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1155 	 */
1156 	z = zonelist->zones;
1157 
1158 	do {
1159 		if (NUMA_BUILD && zlc_active &&
1160 			!zlc_zone_worth_trying(zonelist, z, allowednodes))
1161 				continue;
1162 		zone = *z;
1163 		if (unlikely(NUMA_BUILD && (gfp_mask & __GFP_THISNODE) &&
1164 			zone->zone_pgdat != zonelist->zones[0]->zone_pgdat))
1165 				break;
1166 		if ((alloc_flags & ALLOC_CPUSET) &&
1167 			!cpuset_zone_allowed_softwall(zone, gfp_mask))
1168 				goto try_next_zone;
1169 
1170 		if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
1171 			unsigned long mark;
1172 			if (alloc_flags & ALLOC_WMARK_MIN)
1173 				mark = zone->pages_min;
1174 			else if (alloc_flags & ALLOC_WMARK_LOW)
1175 				mark = zone->pages_low;
1176 			else
1177 				mark = zone->pages_high;
1178 			if (!zone_watermark_ok(zone, order, mark,
1179 				    classzone_idx, alloc_flags)) {
1180 				if (!zone_reclaim_mode ||
1181 				    !zone_reclaim(zone, gfp_mask, order))
1182 					goto this_zone_full;
1183 			}
1184 		}
1185 
1186 		page = buffered_rmqueue(zonelist, zone, order, gfp_mask);
1187 		if (page)
1188 			break;
1189 this_zone_full:
1190 		if (NUMA_BUILD)
1191 			zlc_mark_zone_full(zonelist, z);
1192 try_next_zone:
1193 		if (NUMA_BUILD && !did_zlc_setup) {
1194 			/* we do zlc_setup after the first zone is tried */
1195 			allowednodes = zlc_setup(zonelist, alloc_flags);
1196 			zlc_active = 1;
1197 			did_zlc_setup = 1;
1198 		}
1199 	} while (*(++z) != NULL);
1200 
1201 	if (unlikely(NUMA_BUILD && page == NULL && zlc_active)) {
1202 		/* Disable zlc cache for second zonelist scan */
1203 		zlc_active = 0;
1204 		goto zonelist_scan;
1205 	}
1206 	return page;
1207 }
1208 
1209 /*
1210  * This is the 'heart' of the zoned buddy allocator.
1211  */
1212 struct page * fastcall
1213 __alloc_pages(gfp_t gfp_mask, unsigned int order,
1214 		struct zonelist *zonelist)
1215 {
1216 	const gfp_t wait = gfp_mask & __GFP_WAIT;
1217 	struct zone **z;
1218 	struct page *page;
1219 	struct reclaim_state reclaim_state;
1220 	struct task_struct *p = current;
1221 	int do_retry;
1222 	int alloc_flags;
1223 	int did_some_progress;
1224 
1225 	might_sleep_if(wait);
1226 
1227 	if (should_fail_alloc_page(gfp_mask, order))
1228 		return NULL;
1229 
1230 restart:
1231 	z = zonelist->zones;  /* the list of zones suitable for gfp_mask */
1232 
1233 	if (unlikely(*z == NULL)) {
1234 		/* Should this ever happen?? */
1235 		return NULL;
1236 	}
1237 
1238 	page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, order,
1239 				zonelist, ALLOC_WMARK_LOW|ALLOC_CPUSET);
1240 	if (page)
1241 		goto got_pg;
1242 
1243 	/*
1244 	 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
1245 	 * __GFP_NOWARN set) should not cause reclaim since the subsystem
1246 	 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
1247 	 * using a larger set of nodes after it has established that the
1248 	 * allowed per node queues are empty and that nodes are
1249 	 * over allocated.
1250 	 */
1251 	if (NUMA_BUILD && (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
1252 		goto nopage;
1253 
1254 	for (z = zonelist->zones; *z; z++)
1255 		wakeup_kswapd(*z, order);
1256 
1257 	/*
1258 	 * OK, we're below the kswapd watermark and have kicked background
1259 	 * reclaim. Now things get more complex, so set up alloc_flags according
1260 	 * to how we want to proceed.
1261 	 *
1262 	 * The caller may dip into page reserves a bit more if the caller
1263 	 * cannot run direct reclaim, or if the caller has realtime scheduling
1264 	 * policy or is asking for __GFP_HIGH memory.  GFP_ATOMIC requests will
1265 	 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
1266 	 */
1267 	alloc_flags = ALLOC_WMARK_MIN;
1268 	if ((unlikely(rt_task(p)) && !in_interrupt()) || !wait)
1269 		alloc_flags |= ALLOC_HARDER;
1270 	if (gfp_mask & __GFP_HIGH)
1271 		alloc_flags |= ALLOC_HIGH;
1272 	if (wait)
1273 		alloc_flags |= ALLOC_CPUSET;
1274 
1275 	/*
1276 	 * Go through the zonelist again. Let __GFP_HIGH and allocations
1277 	 * coming from realtime tasks go deeper into reserves.
1278 	 *
1279 	 * This is the last chance, in general, before the goto nopage.
1280 	 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
1281 	 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1282 	 */
1283 	page = get_page_from_freelist(gfp_mask, order, zonelist, alloc_flags);
1284 	if (page)
1285 		goto got_pg;
1286 
1287 	/* This allocation should allow future memory freeing. */
1288 
1289 rebalance:
1290 	if (((p->flags & PF_MEMALLOC) || unlikely(test_thread_flag(TIF_MEMDIE)))
1291 			&& !in_interrupt()) {
1292 		if (!(gfp_mask & __GFP_NOMEMALLOC)) {
1293 nofail_alloc:
1294 			/* go through the zonelist yet again, ignoring mins */
1295 			page = get_page_from_freelist(gfp_mask, order,
1296 				zonelist, ALLOC_NO_WATERMARKS);
1297 			if (page)
1298 				goto got_pg;
1299 			if (gfp_mask & __GFP_NOFAIL) {
1300 				congestion_wait(WRITE, HZ/50);
1301 				goto nofail_alloc;
1302 			}
1303 		}
1304 		goto nopage;
1305 	}
1306 
1307 	/* Atomic allocations - we can't balance anything */
1308 	if (!wait)
1309 		goto nopage;
1310 
1311 	cond_resched();
1312 
1313 	/* We now go into synchronous reclaim */
1314 	cpuset_memory_pressure_bump();
1315 	p->flags |= PF_MEMALLOC;
1316 	reclaim_state.reclaimed_slab = 0;
1317 	p->reclaim_state = &reclaim_state;
1318 
1319 	did_some_progress = try_to_free_pages(zonelist->zones, gfp_mask);
1320 
1321 	p->reclaim_state = NULL;
1322 	p->flags &= ~PF_MEMALLOC;
1323 
1324 	cond_resched();
1325 
1326 	if (likely(did_some_progress)) {
1327 		page = get_page_from_freelist(gfp_mask, order,
1328 						zonelist, alloc_flags);
1329 		if (page)
1330 			goto got_pg;
1331 	} else if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
1332 		/*
1333 		 * Go through the zonelist yet one more time, keep
1334 		 * very high watermark here, this is only to catch
1335 		 * a parallel oom killing, we must fail if we're still
1336 		 * under heavy pressure.
1337 		 */
1338 		page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, order,
1339 				zonelist, ALLOC_WMARK_HIGH|ALLOC_CPUSET);
1340 		if (page)
1341 			goto got_pg;
1342 
1343 		out_of_memory(zonelist, gfp_mask, order);
1344 		goto restart;
1345 	}
1346 
1347 	/*
1348 	 * Don't let big-order allocations loop unless the caller explicitly
1349 	 * requests that.  Wait for some write requests to complete then retry.
1350 	 *
1351 	 * In this implementation, __GFP_REPEAT means __GFP_NOFAIL for order
1352 	 * <= 3, but that may not be true in other implementations.
1353 	 */
1354 	do_retry = 0;
1355 	if (!(gfp_mask & __GFP_NORETRY)) {
1356 		if ((order <= 3) || (gfp_mask & __GFP_REPEAT))
1357 			do_retry = 1;
1358 		if (gfp_mask & __GFP_NOFAIL)
1359 			do_retry = 1;
1360 	}
1361 	if (do_retry) {
1362 		congestion_wait(WRITE, HZ/50);
1363 		goto rebalance;
1364 	}
1365 
1366 nopage:
1367 	if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) {
1368 		printk(KERN_WARNING "%s: page allocation failure."
1369 			" order:%d, mode:0x%x\n",
1370 			p->comm, order, gfp_mask);
1371 		dump_stack();
1372 		show_mem();
1373 	}
1374 got_pg:
1375 	return page;
1376 }
1377 
1378 EXPORT_SYMBOL(__alloc_pages);
1379 
1380 /*
1381  * Common helper functions.
1382  */
1383 fastcall unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1384 {
1385 	struct page * page;
1386 	page = alloc_pages(gfp_mask, order);
1387 	if (!page)
1388 		return 0;
1389 	return (unsigned long) page_address(page);
1390 }
1391 
1392 EXPORT_SYMBOL(__get_free_pages);
1393 
1394 fastcall unsigned long get_zeroed_page(gfp_t gfp_mask)
1395 {
1396 	struct page * page;
1397 
1398 	/*
1399 	 * get_zeroed_page() returns a 32-bit address, which cannot represent
1400 	 * a highmem page
1401 	 */
1402 	VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
1403 
1404 	page = alloc_pages(gfp_mask | __GFP_ZERO, 0);
1405 	if (page)
1406 		return (unsigned long) page_address(page);
1407 	return 0;
1408 }
1409 
1410 EXPORT_SYMBOL(get_zeroed_page);
1411 
1412 void __pagevec_free(struct pagevec *pvec)
1413 {
1414 	int i = pagevec_count(pvec);
1415 
1416 	while (--i >= 0)
1417 		free_hot_cold_page(pvec->pages[i], pvec->cold);
1418 }
1419 
1420 fastcall void __free_pages(struct page *page, unsigned int order)
1421 {
1422 	if (put_page_testzero(page)) {
1423 		if (order == 0)
1424 			free_hot_page(page);
1425 		else
1426 			__free_pages_ok(page, order);
1427 	}
1428 }
1429 
1430 EXPORT_SYMBOL(__free_pages);
1431 
1432 fastcall void free_pages(unsigned long addr, unsigned int order)
1433 {
1434 	if (addr != 0) {
1435 		VM_BUG_ON(!virt_addr_valid((void *)addr));
1436 		__free_pages(virt_to_page((void *)addr), order);
1437 	}
1438 }
1439 
1440 EXPORT_SYMBOL(free_pages);
1441 
1442 /*
1443  * Total amount of free (allocatable) RAM:
1444  */
1445 unsigned int nr_free_pages(void)
1446 {
1447 	unsigned int sum = 0;
1448 	struct zone *zone;
1449 
1450 	for_each_zone(zone)
1451 		sum += zone->free_pages;
1452 
1453 	return sum;
1454 }
1455 
1456 EXPORT_SYMBOL(nr_free_pages);
1457 
1458 #ifdef CONFIG_NUMA
1459 unsigned int nr_free_pages_pgdat(pg_data_t *pgdat)
1460 {
1461 	unsigned int sum = 0;
1462 	enum zone_type i;
1463 
1464 	for (i = 0; i < MAX_NR_ZONES; i++)
1465 		sum += pgdat->node_zones[i].free_pages;
1466 
1467 	return sum;
1468 }
1469 #endif
1470 
1471 static unsigned int nr_free_zone_pages(int offset)
1472 {
1473 	/* Just pick one node, since fallback list is circular */
1474 	pg_data_t *pgdat = NODE_DATA(numa_node_id());
1475 	unsigned int sum = 0;
1476 
1477 	struct zonelist *zonelist = pgdat->node_zonelists + offset;
1478 	struct zone **zonep = zonelist->zones;
1479 	struct zone *zone;
1480 
1481 	for (zone = *zonep++; zone; zone = *zonep++) {
1482 		unsigned long size = zone->present_pages;
1483 		unsigned long high = zone->pages_high;
1484 		if (size > high)
1485 			sum += size - high;
1486 	}
1487 
1488 	return sum;
1489 }
1490 
1491 /*
1492  * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
1493  */
1494 unsigned int nr_free_buffer_pages(void)
1495 {
1496 	return nr_free_zone_pages(gfp_zone(GFP_USER));
1497 }
1498 
1499 /*
1500  * Amount of free RAM allocatable within all zones
1501  */
1502 unsigned int nr_free_pagecache_pages(void)
1503 {
1504 	return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER));
1505 }
1506 
1507 static inline void show_node(struct zone *zone)
1508 {
1509 	if (NUMA_BUILD)
1510 		printk("Node %d ", zone_to_nid(zone));
1511 }
1512 
1513 void si_meminfo(struct sysinfo *val)
1514 {
1515 	val->totalram = totalram_pages;
1516 	val->sharedram = 0;
1517 	val->freeram = nr_free_pages();
1518 	val->bufferram = nr_blockdev_pages();
1519 	val->totalhigh = totalhigh_pages;
1520 	val->freehigh = nr_free_highpages();
1521 	val->mem_unit = PAGE_SIZE;
1522 }
1523 
1524 EXPORT_SYMBOL(si_meminfo);
1525 
1526 #ifdef CONFIG_NUMA
1527 void si_meminfo_node(struct sysinfo *val, int nid)
1528 {
1529 	pg_data_t *pgdat = NODE_DATA(nid);
1530 
1531 	val->totalram = pgdat->node_present_pages;
1532 	val->freeram = nr_free_pages_pgdat(pgdat);
1533 #ifdef CONFIG_HIGHMEM
1534 	val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
1535 	val->freehigh = pgdat->node_zones[ZONE_HIGHMEM].free_pages;
1536 #else
1537 	val->totalhigh = 0;
1538 	val->freehigh = 0;
1539 #endif
1540 	val->mem_unit = PAGE_SIZE;
1541 }
1542 #endif
1543 
1544 #define K(x) ((x) << (PAGE_SHIFT-10))
1545 
1546 /*
1547  * Show free area list (used inside shift_scroll-lock stuff)
1548  * We also calculate the percentage fragmentation. We do this by counting the
1549  * memory on each free list with the exception of the first item on the list.
1550  */
1551 void show_free_areas(void)
1552 {
1553 	int cpu;
1554 	unsigned long active;
1555 	unsigned long inactive;
1556 	unsigned long free;
1557 	struct zone *zone;
1558 
1559 	for_each_zone(zone) {
1560 		if (!populated_zone(zone))
1561 			continue;
1562 
1563 		show_node(zone);
1564 		printk("%s per-cpu:\n", zone->name);
1565 
1566 		for_each_online_cpu(cpu) {
1567 			struct per_cpu_pageset *pageset;
1568 
1569 			pageset = zone_pcp(zone, cpu);
1570 
1571 			printk("CPU %4d: Hot: hi:%5d, btch:%4d usd:%4d   "
1572 			       "Cold: hi:%5d, btch:%4d usd:%4d\n",
1573 			       cpu, pageset->pcp[0].high,
1574 			       pageset->pcp[0].batch, pageset->pcp[0].count,
1575 			       pageset->pcp[1].high, pageset->pcp[1].batch,
1576 			       pageset->pcp[1].count);
1577 		}
1578 	}
1579 
1580 	get_zone_counts(&active, &inactive, &free);
1581 
1582 	printk("Active:%lu inactive:%lu dirty:%lu writeback:%lu "
1583 		"unstable:%lu free:%u slab:%lu mapped:%lu pagetables:%lu\n",
1584 		active,
1585 		inactive,
1586 		global_page_state(NR_FILE_DIRTY),
1587 		global_page_state(NR_WRITEBACK),
1588 		global_page_state(NR_UNSTABLE_NFS),
1589 		nr_free_pages(),
1590 		global_page_state(NR_SLAB_RECLAIMABLE) +
1591 			global_page_state(NR_SLAB_UNRECLAIMABLE),
1592 		global_page_state(NR_FILE_MAPPED),
1593 		global_page_state(NR_PAGETABLE));
1594 
1595 	for_each_zone(zone) {
1596 		int i;
1597 
1598 		if (!populated_zone(zone))
1599 			continue;
1600 
1601 		show_node(zone);
1602 		printk("%s"
1603 			" free:%lukB"
1604 			" min:%lukB"
1605 			" low:%lukB"
1606 			" high:%lukB"
1607 			" active:%lukB"
1608 			" inactive:%lukB"
1609 			" present:%lukB"
1610 			" pages_scanned:%lu"
1611 			" all_unreclaimable? %s"
1612 			"\n",
1613 			zone->name,
1614 			K(zone->free_pages),
1615 			K(zone->pages_min),
1616 			K(zone->pages_low),
1617 			K(zone->pages_high),
1618 			K(zone->nr_active),
1619 			K(zone->nr_inactive),
1620 			K(zone->present_pages),
1621 			zone->pages_scanned,
1622 			(zone->all_unreclaimable ? "yes" : "no")
1623 			);
1624 		printk("lowmem_reserve[]:");
1625 		for (i = 0; i < MAX_NR_ZONES; i++)
1626 			printk(" %lu", zone->lowmem_reserve[i]);
1627 		printk("\n");
1628 	}
1629 
1630 	for_each_zone(zone) {
1631  		unsigned long nr[MAX_ORDER], flags, order, total = 0;
1632 
1633 		if (!populated_zone(zone))
1634 			continue;
1635 
1636 		show_node(zone);
1637 		printk("%s: ", zone->name);
1638 
1639 		spin_lock_irqsave(&zone->lock, flags);
1640 		for (order = 0; order < MAX_ORDER; order++) {
1641 			nr[order] = zone->free_area[order].nr_free;
1642 			total += nr[order] << order;
1643 		}
1644 		spin_unlock_irqrestore(&zone->lock, flags);
1645 		for (order = 0; order < MAX_ORDER; order++)
1646 			printk("%lu*%lukB ", nr[order], K(1UL) << order);
1647 		printk("= %lukB\n", K(total));
1648 	}
1649 
1650 	show_swap_cache_info();
1651 }
1652 
1653 /*
1654  * Builds allocation fallback zone lists.
1655  *
1656  * Add all populated zones of a node to the zonelist.
1657  */
1658 static int __meminit build_zonelists_node(pg_data_t *pgdat,
1659 			struct zonelist *zonelist, int nr_zones, enum zone_type zone_type)
1660 {
1661 	struct zone *zone;
1662 
1663 	BUG_ON(zone_type >= MAX_NR_ZONES);
1664 	zone_type++;
1665 
1666 	do {
1667 		zone_type--;
1668 		zone = pgdat->node_zones + zone_type;
1669 		if (populated_zone(zone)) {
1670 			zonelist->zones[nr_zones++] = zone;
1671 			check_highest_zone(zone_type);
1672 		}
1673 
1674 	} while (zone_type);
1675 	return nr_zones;
1676 }
1677 
1678 #ifdef CONFIG_NUMA
1679 #define MAX_NODE_LOAD (num_online_nodes())
1680 static int __meminitdata node_load[MAX_NUMNODES];
1681 /**
1682  * find_next_best_node - find the next node that should appear in a given node's fallback list
1683  * @node: node whose fallback list we're appending
1684  * @used_node_mask: nodemask_t of already used nodes
1685  *
1686  * We use a number of factors to determine which is the next node that should
1687  * appear on a given node's fallback list.  The node should not have appeared
1688  * already in @node's fallback list, and it should be the next closest node
1689  * according to the distance array (which contains arbitrary distance values
1690  * from each node to each node in the system), and should also prefer nodes
1691  * with no CPUs, since presumably they'll have very little allocation pressure
1692  * on them otherwise.
1693  * It returns -1 if no node is found.
1694  */
1695 static int __meminit find_next_best_node(int node, nodemask_t *used_node_mask)
1696 {
1697 	int n, val;
1698 	int min_val = INT_MAX;
1699 	int best_node = -1;
1700 
1701 	/* Use the local node if we haven't already */
1702 	if (!node_isset(node, *used_node_mask)) {
1703 		node_set(node, *used_node_mask);
1704 		return node;
1705 	}
1706 
1707 	for_each_online_node(n) {
1708 		cpumask_t tmp;
1709 
1710 		/* Don't want a node to appear more than once */
1711 		if (node_isset(n, *used_node_mask))
1712 			continue;
1713 
1714 		/* Use the distance array to find the distance */
1715 		val = node_distance(node, n);
1716 
1717 		/* Penalize nodes under us ("prefer the next node") */
1718 		val += (n < node);
1719 
1720 		/* Give preference to headless and unused nodes */
1721 		tmp = node_to_cpumask(n);
1722 		if (!cpus_empty(tmp))
1723 			val += PENALTY_FOR_NODE_WITH_CPUS;
1724 
1725 		/* Slight preference for less loaded node */
1726 		val *= (MAX_NODE_LOAD*MAX_NUMNODES);
1727 		val += node_load[n];
1728 
1729 		if (val < min_val) {
1730 			min_val = val;
1731 			best_node = n;
1732 		}
1733 	}
1734 
1735 	if (best_node >= 0)
1736 		node_set(best_node, *used_node_mask);
1737 
1738 	return best_node;
1739 }
1740 
1741 static void __meminit build_zonelists(pg_data_t *pgdat)
1742 {
1743 	int j, node, local_node;
1744 	enum zone_type i;
1745 	int prev_node, load;
1746 	struct zonelist *zonelist;
1747 	nodemask_t used_mask;
1748 
1749 	/* initialize zonelists */
1750 	for (i = 0; i < MAX_NR_ZONES; i++) {
1751 		zonelist = pgdat->node_zonelists + i;
1752 		zonelist->zones[0] = NULL;
1753 	}
1754 
1755 	/* NUMA-aware ordering of nodes */
1756 	local_node = pgdat->node_id;
1757 	load = num_online_nodes();
1758 	prev_node = local_node;
1759 	nodes_clear(used_mask);
1760 	while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
1761 		int distance = node_distance(local_node, node);
1762 
1763 		/*
1764 		 * If another node is sufficiently far away then it is better
1765 		 * to reclaim pages in a zone before going off node.
1766 		 */
1767 		if (distance > RECLAIM_DISTANCE)
1768 			zone_reclaim_mode = 1;
1769 
1770 		/*
1771 		 * We don't want to pressure a particular node.
1772 		 * So adding penalty to the first node in same
1773 		 * distance group to make it round-robin.
1774 		 */
1775 
1776 		if (distance != node_distance(local_node, prev_node))
1777 			node_load[node] += load;
1778 		prev_node = node;
1779 		load--;
1780 		for (i = 0; i < MAX_NR_ZONES; i++) {
1781 			zonelist = pgdat->node_zonelists + i;
1782 			for (j = 0; zonelist->zones[j] != NULL; j++);
1783 
1784 	 		j = build_zonelists_node(NODE_DATA(node), zonelist, j, i);
1785 			zonelist->zones[j] = NULL;
1786 		}
1787 	}
1788 }
1789 
1790 /* Construct the zonelist performance cache - see further mmzone.h */
1791 static void __meminit build_zonelist_cache(pg_data_t *pgdat)
1792 {
1793 	int i;
1794 
1795 	for (i = 0; i < MAX_NR_ZONES; i++) {
1796 		struct zonelist *zonelist;
1797 		struct zonelist_cache *zlc;
1798 		struct zone **z;
1799 
1800 		zonelist = pgdat->node_zonelists + i;
1801 		zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
1802 		bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1803 		for (z = zonelist->zones; *z; z++)
1804 			zlc->z_to_n[z - zonelist->zones] = zone_to_nid(*z);
1805 	}
1806 }
1807 
1808 #else	/* CONFIG_NUMA */
1809 
1810 static void __meminit build_zonelists(pg_data_t *pgdat)
1811 {
1812 	int node, local_node;
1813 	enum zone_type i,j;
1814 
1815 	local_node = pgdat->node_id;
1816 	for (i = 0; i < MAX_NR_ZONES; i++) {
1817 		struct zonelist *zonelist;
1818 
1819 		zonelist = pgdat->node_zonelists + i;
1820 
1821  		j = build_zonelists_node(pgdat, zonelist, 0, i);
1822  		/*
1823  		 * Now we build the zonelist so that it contains the zones
1824  		 * of all the other nodes.
1825  		 * We don't want to pressure a particular node, so when
1826  		 * building the zones for node N, we make sure that the
1827  		 * zones coming right after the local ones are those from
1828  		 * node N+1 (modulo N)
1829  		 */
1830 		for (node = local_node + 1; node < MAX_NUMNODES; node++) {
1831 			if (!node_online(node))
1832 				continue;
1833 			j = build_zonelists_node(NODE_DATA(node), zonelist, j, i);
1834 		}
1835 		for (node = 0; node < local_node; node++) {
1836 			if (!node_online(node))
1837 				continue;
1838 			j = build_zonelists_node(NODE_DATA(node), zonelist, j, i);
1839 		}
1840 
1841 		zonelist->zones[j] = NULL;
1842 	}
1843 }
1844 
1845 /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
1846 static void __meminit build_zonelist_cache(pg_data_t *pgdat)
1847 {
1848 	int i;
1849 
1850 	for (i = 0; i < MAX_NR_ZONES; i++)
1851 		pgdat->node_zonelists[i].zlcache_ptr = NULL;
1852 }
1853 
1854 #endif	/* CONFIG_NUMA */
1855 
1856 /* return values int ....just for stop_machine_run() */
1857 static int __meminit __build_all_zonelists(void *dummy)
1858 {
1859 	int nid;
1860 
1861 	for_each_online_node(nid) {
1862 		build_zonelists(NODE_DATA(nid));
1863 		build_zonelist_cache(NODE_DATA(nid));
1864 	}
1865 	return 0;
1866 }
1867 
1868 void __meminit build_all_zonelists(void)
1869 {
1870 	if (system_state == SYSTEM_BOOTING) {
1871 		__build_all_zonelists(NULL);
1872 		cpuset_init_current_mems_allowed();
1873 	} else {
1874 		/* we have to stop all cpus to guaranntee there is no user
1875 		   of zonelist */
1876 		stop_machine_run(__build_all_zonelists, NULL, NR_CPUS);
1877 		/* cpuset refresh routine should be here */
1878 	}
1879 	vm_total_pages = nr_free_pagecache_pages();
1880 	printk("Built %i zonelists.  Total pages: %ld\n",
1881 			num_online_nodes(), vm_total_pages);
1882 }
1883 
1884 /*
1885  * Helper functions to size the waitqueue hash table.
1886  * Essentially these want to choose hash table sizes sufficiently
1887  * large so that collisions trying to wait on pages are rare.
1888  * But in fact, the number of active page waitqueues on typical
1889  * systems is ridiculously low, less than 200. So this is even
1890  * conservative, even though it seems large.
1891  *
1892  * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
1893  * waitqueues, i.e. the size of the waitq table given the number of pages.
1894  */
1895 #define PAGES_PER_WAITQUEUE	256
1896 
1897 #ifndef CONFIG_MEMORY_HOTPLUG
1898 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
1899 {
1900 	unsigned long size = 1;
1901 
1902 	pages /= PAGES_PER_WAITQUEUE;
1903 
1904 	while (size < pages)
1905 		size <<= 1;
1906 
1907 	/*
1908 	 * Once we have dozens or even hundreds of threads sleeping
1909 	 * on IO we've got bigger problems than wait queue collision.
1910 	 * Limit the size of the wait table to a reasonable size.
1911 	 */
1912 	size = min(size, 4096UL);
1913 
1914 	return max(size, 4UL);
1915 }
1916 #else
1917 /*
1918  * A zone's size might be changed by hot-add, so it is not possible to determine
1919  * a suitable size for its wait_table.  So we use the maximum size now.
1920  *
1921  * The max wait table size = 4096 x sizeof(wait_queue_head_t).   ie:
1922  *
1923  *    i386 (preemption config)    : 4096 x 16 = 64Kbyte.
1924  *    ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
1925  *    ia64, x86-64 (preemption)   : 4096 x 24 = 96Kbyte.
1926  *
1927  * The maximum entries are prepared when a zone's memory is (512K + 256) pages
1928  * or more by the traditional way. (See above).  It equals:
1929  *
1930  *    i386, x86-64, powerpc(4K page size) : =  ( 2G + 1M)byte.
1931  *    ia64(16K page size)                 : =  ( 8G + 4M)byte.
1932  *    powerpc (64K page size)             : =  (32G +16M)byte.
1933  */
1934 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
1935 {
1936 	return 4096UL;
1937 }
1938 #endif
1939 
1940 /*
1941  * This is an integer logarithm so that shifts can be used later
1942  * to extract the more random high bits from the multiplicative
1943  * hash function before the remainder is taken.
1944  */
1945 static inline unsigned long wait_table_bits(unsigned long size)
1946 {
1947 	return ffz(~size);
1948 }
1949 
1950 #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
1951 
1952 /*
1953  * Initially all pages are reserved - free ones are freed
1954  * up by free_all_bootmem() once the early boot process is
1955  * done. Non-atomic initialization, single-pass.
1956  */
1957 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
1958 		unsigned long start_pfn, enum memmap_context context)
1959 {
1960 	struct page *page;
1961 	unsigned long end_pfn = start_pfn + size;
1962 	unsigned long pfn;
1963 
1964 	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
1965 		/*
1966 		 * There can be holes in boot-time mem_map[]s
1967 		 * handed to this function.  They do not
1968 		 * exist on hotplugged memory.
1969 		 */
1970 		if (context == MEMMAP_EARLY) {
1971 			if (!early_pfn_valid(pfn))
1972 				continue;
1973 			if (!early_pfn_in_nid(pfn, nid))
1974 				continue;
1975 		}
1976 		page = pfn_to_page(pfn);
1977 		set_page_links(page, zone, nid, pfn);
1978 		init_page_count(page);
1979 		reset_page_mapcount(page);
1980 		SetPageReserved(page);
1981 		INIT_LIST_HEAD(&page->lru);
1982 #ifdef WANT_PAGE_VIRTUAL
1983 		/* The shift won't overflow because ZONE_NORMAL is below 4G. */
1984 		if (!is_highmem_idx(zone))
1985 			set_page_address(page, __va(pfn << PAGE_SHIFT));
1986 #endif
1987 	}
1988 }
1989 
1990 void zone_init_free_lists(struct pglist_data *pgdat, struct zone *zone,
1991 				unsigned long size)
1992 {
1993 	int order;
1994 	for (order = 0; order < MAX_ORDER ; order++) {
1995 		INIT_LIST_HEAD(&zone->free_area[order].free_list);
1996 		zone->free_area[order].nr_free = 0;
1997 	}
1998 }
1999 
2000 #ifndef __HAVE_ARCH_MEMMAP_INIT
2001 #define memmap_init(size, nid, zone, start_pfn) \
2002 	memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
2003 #endif
2004 
2005 static int __cpuinit zone_batchsize(struct zone *zone)
2006 {
2007 	int batch;
2008 
2009 	/*
2010 	 * The per-cpu-pages pools are set to around 1000th of the
2011 	 * size of the zone.  But no more than 1/2 of a meg.
2012 	 *
2013 	 * OK, so we don't know how big the cache is.  So guess.
2014 	 */
2015 	batch = zone->present_pages / 1024;
2016 	if (batch * PAGE_SIZE > 512 * 1024)
2017 		batch = (512 * 1024) / PAGE_SIZE;
2018 	batch /= 4;		/* We effectively *= 4 below */
2019 	if (batch < 1)
2020 		batch = 1;
2021 
2022 	/*
2023 	 * Clamp the batch to a 2^n - 1 value. Having a power
2024 	 * of 2 value was found to be more likely to have
2025 	 * suboptimal cache aliasing properties in some cases.
2026 	 *
2027 	 * For example if 2 tasks are alternately allocating
2028 	 * batches of pages, one task can end up with a lot
2029 	 * of pages of one half of the possible page colors
2030 	 * and the other with pages of the other colors.
2031 	 */
2032 	batch = (1 << (fls(batch + batch/2)-1)) - 1;
2033 
2034 	return batch;
2035 }
2036 
2037 inline void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
2038 {
2039 	struct per_cpu_pages *pcp;
2040 
2041 	memset(p, 0, sizeof(*p));
2042 
2043 	pcp = &p->pcp[0];		/* hot */
2044 	pcp->count = 0;
2045 	pcp->high = 6 * batch;
2046 	pcp->batch = max(1UL, 1 * batch);
2047 	INIT_LIST_HEAD(&pcp->list);
2048 
2049 	pcp = &p->pcp[1];		/* cold*/
2050 	pcp->count = 0;
2051 	pcp->high = 2 * batch;
2052 	pcp->batch = max(1UL, batch/2);
2053 	INIT_LIST_HEAD(&pcp->list);
2054 }
2055 
2056 /*
2057  * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
2058  * to the value high for the pageset p.
2059  */
2060 
2061 static void setup_pagelist_highmark(struct per_cpu_pageset *p,
2062 				unsigned long high)
2063 {
2064 	struct per_cpu_pages *pcp;
2065 
2066 	pcp = &p->pcp[0]; /* hot list */
2067 	pcp->high = high;
2068 	pcp->batch = max(1UL, high/4);
2069 	if ((high/4) > (PAGE_SHIFT * 8))
2070 		pcp->batch = PAGE_SHIFT * 8;
2071 }
2072 
2073 
2074 #ifdef CONFIG_NUMA
2075 /*
2076  * Boot pageset table. One per cpu which is going to be used for all
2077  * zones and all nodes. The parameters will be set in such a way
2078  * that an item put on a list will immediately be handed over to
2079  * the buddy list. This is safe since pageset manipulation is done
2080  * with interrupts disabled.
2081  *
2082  * Some NUMA counter updates may also be caught by the boot pagesets.
2083  *
2084  * The boot_pagesets must be kept even after bootup is complete for
2085  * unused processors and/or zones. They do play a role for bootstrapping
2086  * hotplugged processors.
2087  *
2088  * zoneinfo_show() and maybe other functions do
2089  * not check if the processor is online before following the pageset pointer.
2090  * Other parts of the kernel may not check if the zone is available.
2091  */
2092 static struct per_cpu_pageset boot_pageset[NR_CPUS];
2093 
2094 /*
2095  * Dynamically allocate memory for the
2096  * per cpu pageset array in struct zone.
2097  */
2098 static int __cpuinit process_zones(int cpu)
2099 {
2100 	struct zone *zone, *dzone;
2101 
2102 	for_each_zone(zone) {
2103 
2104 		if (!populated_zone(zone))
2105 			continue;
2106 
2107 		zone_pcp(zone, cpu) = kmalloc_node(sizeof(struct per_cpu_pageset),
2108 					 GFP_KERNEL, cpu_to_node(cpu));
2109 		if (!zone_pcp(zone, cpu))
2110 			goto bad;
2111 
2112 		setup_pageset(zone_pcp(zone, cpu), zone_batchsize(zone));
2113 
2114 		if (percpu_pagelist_fraction)
2115 			setup_pagelist_highmark(zone_pcp(zone, cpu),
2116 			 	(zone->present_pages / percpu_pagelist_fraction));
2117 	}
2118 
2119 	return 0;
2120 bad:
2121 	for_each_zone(dzone) {
2122 		if (dzone == zone)
2123 			break;
2124 		kfree(zone_pcp(dzone, cpu));
2125 		zone_pcp(dzone, cpu) = NULL;
2126 	}
2127 	return -ENOMEM;
2128 }
2129 
2130 static inline void free_zone_pagesets(int cpu)
2131 {
2132 	struct zone *zone;
2133 
2134 	for_each_zone(zone) {
2135 		struct per_cpu_pageset *pset = zone_pcp(zone, cpu);
2136 
2137 		/* Free per_cpu_pageset if it is slab allocated */
2138 		if (pset != &boot_pageset[cpu])
2139 			kfree(pset);
2140 		zone_pcp(zone, cpu) = NULL;
2141 	}
2142 }
2143 
2144 static int __cpuinit pageset_cpuup_callback(struct notifier_block *nfb,
2145 		unsigned long action,
2146 		void *hcpu)
2147 {
2148 	int cpu = (long)hcpu;
2149 	int ret = NOTIFY_OK;
2150 
2151 	switch (action) {
2152 	case CPU_UP_PREPARE:
2153 		if (process_zones(cpu))
2154 			ret = NOTIFY_BAD;
2155 		break;
2156 	case CPU_UP_CANCELED:
2157 	case CPU_DEAD:
2158 		free_zone_pagesets(cpu);
2159 		break;
2160 	default:
2161 		break;
2162 	}
2163 	return ret;
2164 }
2165 
2166 static struct notifier_block __cpuinitdata pageset_notifier =
2167 	{ &pageset_cpuup_callback, NULL, 0 };
2168 
2169 void __init setup_per_cpu_pageset(void)
2170 {
2171 	int err;
2172 
2173 	/* Initialize per_cpu_pageset for cpu 0.
2174 	 * A cpuup callback will do this for every cpu
2175 	 * as it comes online
2176 	 */
2177 	err = process_zones(smp_processor_id());
2178 	BUG_ON(err);
2179 	register_cpu_notifier(&pageset_notifier);
2180 }
2181 
2182 #endif
2183 
2184 static __meminit
2185 int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
2186 {
2187 	int i;
2188 	struct pglist_data *pgdat = zone->zone_pgdat;
2189 	size_t alloc_size;
2190 
2191 	/*
2192 	 * The per-page waitqueue mechanism uses hashed waitqueues
2193 	 * per zone.
2194 	 */
2195 	zone->wait_table_hash_nr_entries =
2196 		 wait_table_hash_nr_entries(zone_size_pages);
2197 	zone->wait_table_bits =
2198 		wait_table_bits(zone->wait_table_hash_nr_entries);
2199 	alloc_size = zone->wait_table_hash_nr_entries
2200 					* sizeof(wait_queue_head_t);
2201 
2202  	if (system_state == SYSTEM_BOOTING) {
2203 		zone->wait_table = (wait_queue_head_t *)
2204 			alloc_bootmem_node(pgdat, alloc_size);
2205 	} else {
2206 		/*
2207 		 * This case means that a zone whose size was 0 gets new memory
2208 		 * via memory hot-add.
2209 		 * But it may be the case that a new node was hot-added.  In
2210 		 * this case vmalloc() will not be able to use this new node's
2211 		 * memory - this wait_table must be initialized to use this new
2212 		 * node itself as well.
2213 		 * To use this new node's memory, further consideration will be
2214 		 * necessary.
2215 		 */
2216 		zone->wait_table = (wait_queue_head_t *)vmalloc(alloc_size);
2217 	}
2218 	if (!zone->wait_table)
2219 		return -ENOMEM;
2220 
2221 	for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
2222 		init_waitqueue_head(zone->wait_table + i);
2223 
2224 	return 0;
2225 }
2226 
2227 static __meminit void zone_pcp_init(struct zone *zone)
2228 {
2229 	int cpu;
2230 	unsigned long batch = zone_batchsize(zone);
2231 
2232 	for (cpu = 0; cpu < NR_CPUS; cpu++) {
2233 #ifdef CONFIG_NUMA
2234 		/* Early boot. Slab allocator not functional yet */
2235 		zone_pcp(zone, cpu) = &boot_pageset[cpu];
2236 		setup_pageset(&boot_pageset[cpu],0);
2237 #else
2238 		setup_pageset(zone_pcp(zone,cpu), batch);
2239 #endif
2240 	}
2241 	if (zone->present_pages)
2242 		printk(KERN_DEBUG "  %s zone: %lu pages, LIFO batch:%lu\n",
2243 			zone->name, zone->present_pages, batch);
2244 }
2245 
2246 __meminit int init_currently_empty_zone(struct zone *zone,
2247 					unsigned long zone_start_pfn,
2248 					unsigned long size,
2249 					enum memmap_context context)
2250 {
2251 	struct pglist_data *pgdat = zone->zone_pgdat;
2252 	int ret;
2253 	ret = zone_wait_table_init(zone, size);
2254 	if (ret)
2255 		return ret;
2256 	pgdat->nr_zones = zone_idx(zone) + 1;
2257 
2258 	zone->zone_start_pfn = zone_start_pfn;
2259 
2260 	memmap_init(size, pgdat->node_id, zone_idx(zone), zone_start_pfn);
2261 
2262 	zone_init_free_lists(pgdat, zone, zone->spanned_pages);
2263 
2264 	return 0;
2265 }
2266 
2267 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
2268 /*
2269  * Basic iterator support. Return the first range of PFNs for a node
2270  * Note: nid == MAX_NUMNODES returns first region regardless of node
2271  */
2272 static int __init first_active_region_index_in_nid(int nid)
2273 {
2274 	int i;
2275 
2276 	for (i = 0; i < nr_nodemap_entries; i++)
2277 		if (nid == MAX_NUMNODES || early_node_map[i].nid == nid)
2278 			return i;
2279 
2280 	return -1;
2281 }
2282 
2283 /*
2284  * Basic iterator support. Return the next active range of PFNs for a node
2285  * Note: nid == MAX_NUMNODES returns next region regardles of node
2286  */
2287 static int __init next_active_region_index_in_nid(int index, int nid)
2288 {
2289 	for (index = index + 1; index < nr_nodemap_entries; index++)
2290 		if (nid == MAX_NUMNODES || early_node_map[index].nid == nid)
2291 			return index;
2292 
2293 	return -1;
2294 }
2295 
2296 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
2297 /*
2298  * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
2299  * Architectures may implement their own version but if add_active_range()
2300  * was used and there are no special requirements, this is a convenient
2301  * alternative
2302  */
2303 int __init early_pfn_to_nid(unsigned long pfn)
2304 {
2305 	int i;
2306 
2307 	for (i = 0; i < nr_nodemap_entries; i++) {
2308 		unsigned long start_pfn = early_node_map[i].start_pfn;
2309 		unsigned long end_pfn = early_node_map[i].end_pfn;
2310 
2311 		if (start_pfn <= pfn && pfn < end_pfn)
2312 			return early_node_map[i].nid;
2313 	}
2314 
2315 	return 0;
2316 }
2317 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
2318 
2319 /* Basic iterator support to walk early_node_map[] */
2320 #define for_each_active_range_index_in_nid(i, nid) \
2321 	for (i = first_active_region_index_in_nid(nid); i != -1; \
2322 				i = next_active_region_index_in_nid(i, nid))
2323 
2324 /**
2325  * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
2326  * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
2327  * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
2328  *
2329  * If an architecture guarantees that all ranges registered with
2330  * add_active_ranges() contain no holes and may be freed, this
2331  * this function may be used instead of calling free_bootmem() manually.
2332  */
2333 void __init free_bootmem_with_active_regions(int nid,
2334 						unsigned long max_low_pfn)
2335 {
2336 	int i;
2337 
2338 	for_each_active_range_index_in_nid(i, nid) {
2339 		unsigned long size_pages = 0;
2340 		unsigned long end_pfn = early_node_map[i].end_pfn;
2341 
2342 		if (early_node_map[i].start_pfn >= max_low_pfn)
2343 			continue;
2344 
2345 		if (end_pfn > max_low_pfn)
2346 			end_pfn = max_low_pfn;
2347 
2348 		size_pages = end_pfn - early_node_map[i].start_pfn;
2349 		free_bootmem_node(NODE_DATA(early_node_map[i].nid),
2350 				PFN_PHYS(early_node_map[i].start_pfn),
2351 				size_pages << PAGE_SHIFT);
2352 	}
2353 }
2354 
2355 /**
2356  * sparse_memory_present_with_active_regions - Call memory_present for each active range
2357  * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
2358  *
2359  * If an architecture guarantees that all ranges registered with
2360  * add_active_ranges() contain no holes and may be freed, this
2361  * function may be used instead of calling memory_present() manually.
2362  */
2363 void __init sparse_memory_present_with_active_regions(int nid)
2364 {
2365 	int i;
2366 
2367 	for_each_active_range_index_in_nid(i, nid)
2368 		memory_present(early_node_map[i].nid,
2369 				early_node_map[i].start_pfn,
2370 				early_node_map[i].end_pfn);
2371 }
2372 
2373 /**
2374  * push_node_boundaries - Push node boundaries to at least the requested boundary
2375  * @nid: The nid of the node to push the boundary for
2376  * @start_pfn: The start pfn of the node
2377  * @end_pfn: The end pfn of the node
2378  *
2379  * In reserve-based hot-add, mem_map is allocated that is unused until hotadd
2380  * time. Specifically, on x86_64, SRAT will report ranges that can potentially
2381  * be hotplugged even though no physical memory exists. This function allows
2382  * an arch to push out the node boundaries so mem_map is allocated that can
2383  * be used later.
2384  */
2385 #ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
2386 void __init push_node_boundaries(unsigned int nid,
2387 		unsigned long start_pfn, unsigned long end_pfn)
2388 {
2389 	printk(KERN_DEBUG "Entering push_node_boundaries(%u, %lu, %lu)\n",
2390 			nid, start_pfn, end_pfn);
2391 
2392 	/* Initialise the boundary for this node if necessary */
2393 	if (node_boundary_end_pfn[nid] == 0)
2394 		node_boundary_start_pfn[nid] = -1UL;
2395 
2396 	/* Update the boundaries */
2397 	if (node_boundary_start_pfn[nid] > start_pfn)
2398 		node_boundary_start_pfn[nid] = start_pfn;
2399 	if (node_boundary_end_pfn[nid] < end_pfn)
2400 		node_boundary_end_pfn[nid] = end_pfn;
2401 }
2402 
2403 /* If necessary, push the node boundary out for reserve hotadd */
2404 static void __init account_node_boundary(unsigned int nid,
2405 		unsigned long *start_pfn, unsigned long *end_pfn)
2406 {
2407 	printk(KERN_DEBUG "Entering account_node_boundary(%u, %lu, %lu)\n",
2408 			nid, *start_pfn, *end_pfn);
2409 
2410 	/* Return if boundary information has not been provided */
2411 	if (node_boundary_end_pfn[nid] == 0)
2412 		return;
2413 
2414 	/* Check the boundaries and update if necessary */
2415 	if (node_boundary_start_pfn[nid] < *start_pfn)
2416 		*start_pfn = node_boundary_start_pfn[nid];
2417 	if (node_boundary_end_pfn[nid] > *end_pfn)
2418 		*end_pfn = node_boundary_end_pfn[nid];
2419 }
2420 #else
2421 void __init push_node_boundaries(unsigned int nid,
2422 		unsigned long start_pfn, unsigned long end_pfn) {}
2423 
2424 static void __init account_node_boundary(unsigned int nid,
2425 		unsigned long *start_pfn, unsigned long *end_pfn) {}
2426 #endif
2427 
2428 
2429 /**
2430  * get_pfn_range_for_nid - Return the start and end page frames for a node
2431  * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
2432  * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
2433  * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
2434  *
2435  * It returns the start and end page frame of a node based on information
2436  * provided by an arch calling add_active_range(). If called for a node
2437  * with no available memory, a warning is printed and the start and end
2438  * PFNs will be 0.
2439  */
2440 void __init get_pfn_range_for_nid(unsigned int nid,
2441 			unsigned long *start_pfn, unsigned long *end_pfn)
2442 {
2443 	int i;
2444 	*start_pfn = -1UL;
2445 	*end_pfn = 0;
2446 
2447 	for_each_active_range_index_in_nid(i, nid) {
2448 		*start_pfn = min(*start_pfn, early_node_map[i].start_pfn);
2449 		*end_pfn = max(*end_pfn, early_node_map[i].end_pfn);
2450 	}
2451 
2452 	if (*start_pfn == -1UL) {
2453 		printk(KERN_WARNING "Node %u active with no memory\n", nid);
2454 		*start_pfn = 0;
2455 	}
2456 
2457 	/* Push the node boundaries out if requested */
2458 	account_node_boundary(nid, start_pfn, end_pfn);
2459 }
2460 
2461 /*
2462  * Return the number of pages a zone spans in a node, including holes
2463  * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
2464  */
2465 unsigned long __init zone_spanned_pages_in_node(int nid,
2466 					unsigned long zone_type,
2467 					unsigned long *ignored)
2468 {
2469 	unsigned long node_start_pfn, node_end_pfn;
2470 	unsigned long zone_start_pfn, zone_end_pfn;
2471 
2472 	/* Get the start and end of the node and zone */
2473 	get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
2474 	zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
2475 	zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
2476 
2477 	/* Check that this node has pages within the zone's required range */
2478 	if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
2479 		return 0;
2480 
2481 	/* Move the zone boundaries inside the node if necessary */
2482 	zone_end_pfn = min(zone_end_pfn, node_end_pfn);
2483 	zone_start_pfn = max(zone_start_pfn, node_start_pfn);
2484 
2485 	/* Return the spanned pages */
2486 	return zone_end_pfn - zone_start_pfn;
2487 }
2488 
2489 /*
2490  * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
2491  * then all holes in the requested range will be accounted for.
2492  */
2493 unsigned long __init __absent_pages_in_range(int nid,
2494 				unsigned long range_start_pfn,
2495 				unsigned long range_end_pfn)
2496 {
2497 	int i = 0;
2498 	unsigned long prev_end_pfn = 0, hole_pages = 0;
2499 	unsigned long start_pfn;
2500 
2501 	/* Find the end_pfn of the first active range of pfns in the node */
2502 	i = first_active_region_index_in_nid(nid);
2503 	if (i == -1)
2504 		return 0;
2505 
2506 	/* Account for ranges before physical memory on this node */
2507 	if (early_node_map[i].start_pfn > range_start_pfn)
2508 		hole_pages = early_node_map[i].start_pfn - range_start_pfn;
2509 
2510 	prev_end_pfn = early_node_map[i].start_pfn;
2511 
2512 	/* Find all holes for the zone within the node */
2513 	for (; i != -1; i = next_active_region_index_in_nid(i, nid)) {
2514 
2515 		/* No need to continue if prev_end_pfn is outside the zone */
2516 		if (prev_end_pfn >= range_end_pfn)
2517 			break;
2518 
2519 		/* Make sure the end of the zone is not within the hole */
2520 		start_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
2521 		prev_end_pfn = max(prev_end_pfn, range_start_pfn);
2522 
2523 		/* Update the hole size cound and move on */
2524 		if (start_pfn > range_start_pfn) {
2525 			BUG_ON(prev_end_pfn > start_pfn);
2526 			hole_pages += start_pfn - prev_end_pfn;
2527 		}
2528 		prev_end_pfn = early_node_map[i].end_pfn;
2529 	}
2530 
2531 	/* Account for ranges past physical memory on this node */
2532 	if (range_end_pfn > prev_end_pfn)
2533 		hole_pages += range_end_pfn -
2534 				max(range_start_pfn, prev_end_pfn);
2535 
2536 	return hole_pages;
2537 }
2538 
2539 /**
2540  * absent_pages_in_range - Return number of page frames in holes within a range
2541  * @start_pfn: The start PFN to start searching for holes
2542  * @end_pfn: The end PFN to stop searching for holes
2543  *
2544  * It returns the number of pages frames in memory holes within a range.
2545  */
2546 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
2547 							unsigned long end_pfn)
2548 {
2549 	return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
2550 }
2551 
2552 /* Return the number of page frames in holes in a zone on a node */
2553 unsigned long __init zone_absent_pages_in_node(int nid,
2554 					unsigned long zone_type,
2555 					unsigned long *ignored)
2556 {
2557 	unsigned long node_start_pfn, node_end_pfn;
2558 	unsigned long zone_start_pfn, zone_end_pfn;
2559 
2560 	get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
2561 	zone_start_pfn = max(arch_zone_lowest_possible_pfn[zone_type],
2562 							node_start_pfn);
2563 	zone_end_pfn = min(arch_zone_highest_possible_pfn[zone_type],
2564 							node_end_pfn);
2565 
2566 	return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
2567 }
2568 
2569 #else
2570 static inline unsigned long zone_spanned_pages_in_node(int nid,
2571 					unsigned long zone_type,
2572 					unsigned long *zones_size)
2573 {
2574 	return zones_size[zone_type];
2575 }
2576 
2577 static inline unsigned long zone_absent_pages_in_node(int nid,
2578 						unsigned long zone_type,
2579 						unsigned long *zholes_size)
2580 {
2581 	if (!zholes_size)
2582 		return 0;
2583 
2584 	return zholes_size[zone_type];
2585 }
2586 
2587 #endif
2588 
2589 static void __init calculate_node_totalpages(struct pglist_data *pgdat,
2590 		unsigned long *zones_size, unsigned long *zholes_size)
2591 {
2592 	unsigned long realtotalpages, totalpages = 0;
2593 	enum zone_type i;
2594 
2595 	for (i = 0; i < MAX_NR_ZONES; i++)
2596 		totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
2597 								zones_size);
2598 	pgdat->node_spanned_pages = totalpages;
2599 
2600 	realtotalpages = totalpages;
2601 	for (i = 0; i < MAX_NR_ZONES; i++)
2602 		realtotalpages -=
2603 			zone_absent_pages_in_node(pgdat->node_id, i,
2604 								zholes_size);
2605 	pgdat->node_present_pages = realtotalpages;
2606 	printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
2607 							realtotalpages);
2608 }
2609 
2610 /*
2611  * Set up the zone data structures:
2612  *   - mark all pages reserved
2613  *   - mark all memory queues empty
2614  *   - clear the memory bitmaps
2615  */
2616 static void __meminit free_area_init_core(struct pglist_data *pgdat,
2617 		unsigned long *zones_size, unsigned long *zholes_size)
2618 {
2619 	enum zone_type j;
2620 	int nid = pgdat->node_id;
2621 	unsigned long zone_start_pfn = pgdat->node_start_pfn;
2622 	int ret;
2623 
2624 	pgdat_resize_init(pgdat);
2625 	pgdat->nr_zones = 0;
2626 	init_waitqueue_head(&pgdat->kswapd_wait);
2627 	pgdat->kswapd_max_order = 0;
2628 
2629 	for (j = 0; j < MAX_NR_ZONES; j++) {
2630 		struct zone *zone = pgdat->node_zones + j;
2631 		unsigned long size, realsize, memmap_pages;
2632 
2633 		size = zone_spanned_pages_in_node(nid, j, zones_size);
2634 		realsize = size - zone_absent_pages_in_node(nid, j,
2635 								zholes_size);
2636 
2637 		/*
2638 		 * Adjust realsize so that it accounts for how much memory
2639 		 * is used by this zone for memmap. This affects the watermark
2640 		 * and per-cpu initialisations
2641 		 */
2642 		memmap_pages = (size * sizeof(struct page)) >> PAGE_SHIFT;
2643 		if (realsize >= memmap_pages) {
2644 			realsize -= memmap_pages;
2645 			printk(KERN_DEBUG
2646 				"  %s zone: %lu pages used for memmap\n",
2647 				zone_names[j], memmap_pages);
2648 		} else
2649 			printk(KERN_WARNING
2650 				"  %s zone: %lu pages exceeds realsize %lu\n",
2651 				zone_names[j], memmap_pages, realsize);
2652 
2653 		/* Account for reserved DMA pages */
2654 		if (j == ZONE_DMA && realsize > dma_reserve) {
2655 			realsize -= dma_reserve;
2656 			printk(KERN_DEBUG "  DMA zone: %lu pages reserved\n",
2657 								dma_reserve);
2658 		}
2659 
2660 		if (!is_highmem_idx(j))
2661 			nr_kernel_pages += realsize;
2662 		nr_all_pages += realsize;
2663 
2664 		zone->spanned_pages = size;
2665 		zone->present_pages = realsize;
2666 #ifdef CONFIG_NUMA
2667 		zone->node = nid;
2668 		zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio)
2669 						/ 100;
2670 		zone->min_slab_pages = (realsize * sysctl_min_slab_ratio) / 100;
2671 #endif
2672 		zone->name = zone_names[j];
2673 		spin_lock_init(&zone->lock);
2674 		spin_lock_init(&zone->lru_lock);
2675 		zone_seqlock_init(zone);
2676 		zone->zone_pgdat = pgdat;
2677 		zone->free_pages = 0;
2678 
2679 		zone->prev_priority = DEF_PRIORITY;
2680 
2681 		zone_pcp_init(zone);
2682 		INIT_LIST_HEAD(&zone->active_list);
2683 		INIT_LIST_HEAD(&zone->inactive_list);
2684 		zone->nr_scan_active = 0;
2685 		zone->nr_scan_inactive = 0;
2686 		zone->nr_active = 0;
2687 		zone->nr_inactive = 0;
2688 		zap_zone_vm_stats(zone);
2689 		atomic_set(&zone->reclaim_in_progress, 0);
2690 		if (!size)
2691 			continue;
2692 
2693 		ret = init_currently_empty_zone(zone, zone_start_pfn,
2694 						size, MEMMAP_EARLY);
2695 		BUG_ON(ret);
2696 		zone_start_pfn += size;
2697 	}
2698 }
2699 
2700 static void __init alloc_node_mem_map(struct pglist_data *pgdat)
2701 {
2702 	/* Skip empty nodes */
2703 	if (!pgdat->node_spanned_pages)
2704 		return;
2705 
2706 #ifdef CONFIG_FLAT_NODE_MEM_MAP
2707 	/* ia64 gets its own node_mem_map, before this, without bootmem */
2708 	if (!pgdat->node_mem_map) {
2709 		unsigned long size, start, end;
2710 		struct page *map;
2711 
2712 		/*
2713 		 * The zone's endpoints aren't required to be MAX_ORDER
2714 		 * aligned but the node_mem_map endpoints must be in order
2715 		 * for the buddy allocator to function correctly.
2716 		 */
2717 		start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
2718 		end = pgdat->node_start_pfn + pgdat->node_spanned_pages;
2719 		end = ALIGN(end, MAX_ORDER_NR_PAGES);
2720 		size =  (end - start) * sizeof(struct page);
2721 		map = alloc_remap(pgdat->node_id, size);
2722 		if (!map)
2723 			map = alloc_bootmem_node(pgdat, size);
2724 		pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
2725 	}
2726 #ifdef CONFIG_FLATMEM
2727 	/*
2728 	 * With no DISCONTIG, the global mem_map is just set as node 0's
2729 	 */
2730 	if (pgdat == NODE_DATA(0)) {
2731 		mem_map = NODE_DATA(0)->node_mem_map;
2732 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
2733 		if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
2734 			mem_map -= pgdat->node_start_pfn;
2735 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
2736 	}
2737 #endif
2738 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
2739 }
2740 
2741 void __meminit free_area_init_node(int nid, struct pglist_data *pgdat,
2742 		unsigned long *zones_size, unsigned long node_start_pfn,
2743 		unsigned long *zholes_size)
2744 {
2745 	pgdat->node_id = nid;
2746 	pgdat->node_start_pfn = node_start_pfn;
2747 	calculate_node_totalpages(pgdat, zones_size, zholes_size);
2748 
2749 	alloc_node_mem_map(pgdat);
2750 
2751 	free_area_init_core(pgdat, zones_size, zholes_size);
2752 }
2753 
2754 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
2755 /**
2756  * add_active_range - Register a range of PFNs backed by physical memory
2757  * @nid: The node ID the range resides on
2758  * @start_pfn: The start PFN of the available physical memory
2759  * @end_pfn: The end PFN of the available physical memory
2760  *
2761  * These ranges are stored in an early_node_map[] and later used by
2762  * free_area_init_nodes() to calculate zone sizes and holes. If the
2763  * range spans a memory hole, it is up to the architecture to ensure
2764  * the memory is not freed by the bootmem allocator. If possible
2765  * the range being registered will be merged with existing ranges.
2766  */
2767 void __init add_active_range(unsigned int nid, unsigned long start_pfn,
2768 						unsigned long end_pfn)
2769 {
2770 	int i;
2771 
2772 	printk(KERN_DEBUG "Entering add_active_range(%d, %lu, %lu) "
2773 			  "%d entries of %d used\n",
2774 			  nid, start_pfn, end_pfn,
2775 			  nr_nodemap_entries, MAX_ACTIVE_REGIONS);
2776 
2777 	/* Merge with existing active regions if possible */
2778 	for (i = 0; i < nr_nodemap_entries; i++) {
2779 		if (early_node_map[i].nid != nid)
2780 			continue;
2781 
2782 		/* Skip if an existing region covers this new one */
2783 		if (start_pfn >= early_node_map[i].start_pfn &&
2784 				end_pfn <= early_node_map[i].end_pfn)
2785 			return;
2786 
2787 		/* Merge forward if suitable */
2788 		if (start_pfn <= early_node_map[i].end_pfn &&
2789 				end_pfn > early_node_map[i].end_pfn) {
2790 			early_node_map[i].end_pfn = end_pfn;
2791 			return;
2792 		}
2793 
2794 		/* Merge backward if suitable */
2795 		if (start_pfn < early_node_map[i].end_pfn &&
2796 				end_pfn >= early_node_map[i].start_pfn) {
2797 			early_node_map[i].start_pfn = start_pfn;
2798 			return;
2799 		}
2800 	}
2801 
2802 	/* Check that early_node_map is large enough */
2803 	if (i >= MAX_ACTIVE_REGIONS) {
2804 		printk(KERN_CRIT "More than %d memory regions, truncating\n",
2805 							MAX_ACTIVE_REGIONS);
2806 		return;
2807 	}
2808 
2809 	early_node_map[i].nid = nid;
2810 	early_node_map[i].start_pfn = start_pfn;
2811 	early_node_map[i].end_pfn = end_pfn;
2812 	nr_nodemap_entries = i + 1;
2813 }
2814 
2815 /**
2816  * shrink_active_range - Shrink an existing registered range of PFNs
2817  * @nid: The node id the range is on that should be shrunk
2818  * @old_end_pfn: The old end PFN of the range
2819  * @new_end_pfn: The new PFN of the range
2820  *
2821  * i386 with NUMA use alloc_remap() to store a node_mem_map on a local node.
2822  * The map is kept at the end physical page range that has already been
2823  * registered with add_active_range(). This function allows an arch to shrink
2824  * an existing registered range.
2825  */
2826 void __init shrink_active_range(unsigned int nid, unsigned long old_end_pfn,
2827 						unsigned long new_end_pfn)
2828 {
2829 	int i;
2830 
2831 	/* Find the old active region end and shrink */
2832 	for_each_active_range_index_in_nid(i, nid)
2833 		if (early_node_map[i].end_pfn == old_end_pfn) {
2834 			early_node_map[i].end_pfn = new_end_pfn;
2835 			break;
2836 		}
2837 }
2838 
2839 /**
2840  * remove_all_active_ranges - Remove all currently registered regions
2841  *
2842  * During discovery, it may be found that a table like SRAT is invalid
2843  * and an alternative discovery method must be used. This function removes
2844  * all currently registered regions.
2845  */
2846 void __init remove_all_active_ranges(void)
2847 {
2848 	memset(early_node_map, 0, sizeof(early_node_map));
2849 	nr_nodemap_entries = 0;
2850 #ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
2851 	memset(node_boundary_start_pfn, 0, sizeof(node_boundary_start_pfn));
2852 	memset(node_boundary_end_pfn, 0, sizeof(node_boundary_end_pfn));
2853 #endif /* CONFIG_MEMORY_HOTPLUG_RESERVE */
2854 }
2855 
2856 /* Compare two active node_active_regions */
2857 static int __init cmp_node_active_region(const void *a, const void *b)
2858 {
2859 	struct node_active_region *arange = (struct node_active_region *)a;
2860 	struct node_active_region *brange = (struct node_active_region *)b;
2861 
2862 	/* Done this way to avoid overflows */
2863 	if (arange->start_pfn > brange->start_pfn)
2864 		return 1;
2865 	if (arange->start_pfn < brange->start_pfn)
2866 		return -1;
2867 
2868 	return 0;
2869 }
2870 
2871 /* sort the node_map by start_pfn */
2872 static void __init sort_node_map(void)
2873 {
2874 	sort(early_node_map, (size_t)nr_nodemap_entries,
2875 			sizeof(struct node_active_region),
2876 			cmp_node_active_region, NULL);
2877 }
2878 
2879 /* Find the lowest pfn for a node. This depends on a sorted early_node_map */
2880 unsigned long __init find_min_pfn_for_node(unsigned long nid)
2881 {
2882 	int i;
2883 
2884 	/* Regions in the early_node_map can be in any order */
2885 	sort_node_map();
2886 
2887 	/* Assuming a sorted map, the first range found has the starting pfn */
2888 	for_each_active_range_index_in_nid(i, nid)
2889 		return early_node_map[i].start_pfn;
2890 
2891 	printk(KERN_WARNING "Could not find start_pfn for node %lu\n", nid);
2892 	return 0;
2893 }
2894 
2895 /**
2896  * find_min_pfn_with_active_regions - Find the minimum PFN registered
2897  *
2898  * It returns the minimum PFN based on information provided via
2899  * add_active_range().
2900  */
2901 unsigned long __init find_min_pfn_with_active_regions(void)
2902 {
2903 	return find_min_pfn_for_node(MAX_NUMNODES);
2904 }
2905 
2906 /**
2907  * find_max_pfn_with_active_regions - Find the maximum PFN registered
2908  *
2909  * It returns the maximum PFN based on information provided via
2910  * add_active_range().
2911  */
2912 unsigned long __init find_max_pfn_with_active_regions(void)
2913 {
2914 	int i;
2915 	unsigned long max_pfn = 0;
2916 
2917 	for (i = 0; i < nr_nodemap_entries; i++)
2918 		max_pfn = max(max_pfn, early_node_map[i].end_pfn);
2919 
2920 	return max_pfn;
2921 }
2922 
2923 /**
2924  * free_area_init_nodes - Initialise all pg_data_t and zone data
2925  * @max_zone_pfn: an array of max PFNs for each zone
2926  *
2927  * This will call free_area_init_node() for each active node in the system.
2928  * Using the page ranges provided by add_active_range(), the size of each
2929  * zone in each node and their holes is calculated. If the maximum PFN
2930  * between two adjacent zones match, it is assumed that the zone is empty.
2931  * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
2932  * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
2933  * starts where the previous one ended. For example, ZONE_DMA32 starts
2934  * at arch_max_dma_pfn.
2935  */
2936 void __init free_area_init_nodes(unsigned long *max_zone_pfn)
2937 {
2938 	unsigned long nid;
2939 	enum zone_type i;
2940 
2941 	/* Record where the zone boundaries are */
2942 	memset(arch_zone_lowest_possible_pfn, 0,
2943 				sizeof(arch_zone_lowest_possible_pfn));
2944 	memset(arch_zone_highest_possible_pfn, 0,
2945 				sizeof(arch_zone_highest_possible_pfn));
2946 	arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
2947 	arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
2948 	for (i = 1; i < MAX_NR_ZONES; i++) {
2949 		arch_zone_lowest_possible_pfn[i] =
2950 			arch_zone_highest_possible_pfn[i-1];
2951 		arch_zone_highest_possible_pfn[i] =
2952 			max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
2953 	}
2954 
2955 	/* Print out the zone ranges */
2956 	printk("Zone PFN ranges:\n");
2957 	for (i = 0; i < MAX_NR_ZONES; i++)
2958 		printk("  %-8s %8lu -> %8lu\n",
2959 				zone_names[i],
2960 				arch_zone_lowest_possible_pfn[i],
2961 				arch_zone_highest_possible_pfn[i]);
2962 
2963 	/* Print out the early_node_map[] */
2964 	printk("early_node_map[%d] active PFN ranges\n", nr_nodemap_entries);
2965 	for (i = 0; i < nr_nodemap_entries; i++)
2966 		printk("  %3d: %8lu -> %8lu\n", early_node_map[i].nid,
2967 						early_node_map[i].start_pfn,
2968 						early_node_map[i].end_pfn);
2969 
2970 	/* Initialise every node */
2971 	for_each_online_node(nid) {
2972 		pg_data_t *pgdat = NODE_DATA(nid);
2973 		free_area_init_node(nid, pgdat, NULL,
2974 				find_min_pfn_for_node(nid), NULL);
2975 	}
2976 }
2977 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
2978 
2979 /**
2980  * set_dma_reserve - set the specified number of pages reserved in the first zone
2981  * @new_dma_reserve: The number of pages to mark reserved
2982  *
2983  * The per-cpu batchsize and zone watermarks are determined by present_pages.
2984  * In the DMA zone, a significant percentage may be consumed by kernel image
2985  * and other unfreeable allocations which can skew the watermarks badly. This
2986  * function may optionally be used to account for unfreeable pages in the
2987  * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
2988  * smaller per-cpu batchsize.
2989  */
2990 void __init set_dma_reserve(unsigned long new_dma_reserve)
2991 {
2992 	dma_reserve = new_dma_reserve;
2993 }
2994 
2995 #ifndef CONFIG_NEED_MULTIPLE_NODES
2996 static bootmem_data_t contig_bootmem_data;
2997 struct pglist_data contig_page_data = { .bdata = &contig_bootmem_data };
2998 
2999 EXPORT_SYMBOL(contig_page_data);
3000 #endif
3001 
3002 void __init free_area_init(unsigned long *zones_size)
3003 {
3004 	free_area_init_node(0, NODE_DATA(0), zones_size,
3005 			__pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
3006 }
3007 
3008 static int page_alloc_cpu_notify(struct notifier_block *self,
3009 				 unsigned long action, void *hcpu)
3010 {
3011 	int cpu = (unsigned long)hcpu;
3012 
3013 	if (action == CPU_DEAD) {
3014 		local_irq_disable();
3015 		__drain_pages(cpu);
3016 		vm_events_fold_cpu(cpu);
3017 		local_irq_enable();
3018 		refresh_cpu_vm_stats(cpu);
3019 	}
3020 	return NOTIFY_OK;
3021 }
3022 
3023 void __init page_alloc_init(void)
3024 {
3025 	hotcpu_notifier(page_alloc_cpu_notify, 0);
3026 }
3027 
3028 /*
3029  * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
3030  *	or min_free_kbytes changes.
3031  */
3032 static void calculate_totalreserve_pages(void)
3033 {
3034 	struct pglist_data *pgdat;
3035 	unsigned long reserve_pages = 0;
3036 	enum zone_type i, j;
3037 
3038 	for_each_online_pgdat(pgdat) {
3039 		for (i = 0; i < MAX_NR_ZONES; i++) {
3040 			struct zone *zone = pgdat->node_zones + i;
3041 			unsigned long max = 0;
3042 
3043 			/* Find valid and maximum lowmem_reserve in the zone */
3044 			for (j = i; j < MAX_NR_ZONES; j++) {
3045 				if (zone->lowmem_reserve[j] > max)
3046 					max = zone->lowmem_reserve[j];
3047 			}
3048 
3049 			/* we treat pages_high as reserved pages. */
3050 			max += zone->pages_high;
3051 
3052 			if (max > zone->present_pages)
3053 				max = zone->present_pages;
3054 			reserve_pages += max;
3055 		}
3056 	}
3057 	totalreserve_pages = reserve_pages;
3058 }
3059 
3060 /*
3061  * setup_per_zone_lowmem_reserve - called whenever
3062  *	sysctl_lower_zone_reserve_ratio changes.  Ensures that each zone
3063  *	has a correct pages reserved value, so an adequate number of
3064  *	pages are left in the zone after a successful __alloc_pages().
3065  */
3066 static void setup_per_zone_lowmem_reserve(void)
3067 {
3068 	struct pglist_data *pgdat;
3069 	enum zone_type j, idx;
3070 
3071 	for_each_online_pgdat(pgdat) {
3072 		for (j = 0; j < MAX_NR_ZONES; j++) {
3073 			struct zone *zone = pgdat->node_zones + j;
3074 			unsigned long present_pages = zone->present_pages;
3075 
3076 			zone->lowmem_reserve[j] = 0;
3077 
3078 			idx = j;
3079 			while (idx) {
3080 				struct zone *lower_zone;
3081 
3082 				idx--;
3083 
3084 				if (sysctl_lowmem_reserve_ratio[idx] < 1)
3085 					sysctl_lowmem_reserve_ratio[idx] = 1;
3086 
3087 				lower_zone = pgdat->node_zones + idx;
3088 				lower_zone->lowmem_reserve[j] = present_pages /
3089 					sysctl_lowmem_reserve_ratio[idx];
3090 				present_pages += lower_zone->present_pages;
3091 			}
3092 		}
3093 	}
3094 
3095 	/* update totalreserve_pages */
3096 	calculate_totalreserve_pages();
3097 }
3098 
3099 /**
3100  * setup_per_zone_pages_min - called when min_free_kbytes changes.
3101  *
3102  * Ensures that the pages_{min,low,high} values for each zone are set correctly
3103  * with respect to min_free_kbytes.
3104  */
3105 void setup_per_zone_pages_min(void)
3106 {
3107 	unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
3108 	unsigned long lowmem_pages = 0;
3109 	struct zone *zone;
3110 	unsigned long flags;
3111 
3112 	/* Calculate total number of !ZONE_HIGHMEM pages */
3113 	for_each_zone(zone) {
3114 		if (!is_highmem(zone))
3115 			lowmem_pages += zone->present_pages;
3116 	}
3117 
3118 	for_each_zone(zone) {
3119 		u64 tmp;
3120 
3121 		spin_lock_irqsave(&zone->lru_lock, flags);
3122 		tmp = (u64)pages_min * zone->present_pages;
3123 		do_div(tmp, lowmem_pages);
3124 		if (is_highmem(zone)) {
3125 			/*
3126 			 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
3127 			 * need highmem pages, so cap pages_min to a small
3128 			 * value here.
3129 			 *
3130 			 * The (pages_high-pages_low) and (pages_low-pages_min)
3131 			 * deltas controls asynch page reclaim, and so should
3132 			 * not be capped for highmem.
3133 			 */
3134 			int min_pages;
3135 
3136 			min_pages = zone->present_pages / 1024;
3137 			if (min_pages < SWAP_CLUSTER_MAX)
3138 				min_pages = SWAP_CLUSTER_MAX;
3139 			if (min_pages > 128)
3140 				min_pages = 128;
3141 			zone->pages_min = min_pages;
3142 		} else {
3143 			/*
3144 			 * If it's a lowmem zone, reserve a number of pages
3145 			 * proportionate to the zone's size.
3146 			 */
3147 			zone->pages_min = tmp;
3148 		}
3149 
3150 		zone->pages_low   = zone->pages_min + (tmp >> 2);
3151 		zone->pages_high  = zone->pages_min + (tmp >> 1);
3152 		spin_unlock_irqrestore(&zone->lru_lock, flags);
3153 	}
3154 
3155 	/* update totalreserve_pages */
3156 	calculate_totalreserve_pages();
3157 }
3158 
3159 /*
3160  * Initialise min_free_kbytes.
3161  *
3162  * For small machines we want it small (128k min).  For large machines
3163  * we want it large (64MB max).  But it is not linear, because network
3164  * bandwidth does not increase linearly with machine size.  We use
3165  *
3166  * 	min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
3167  *	min_free_kbytes = sqrt(lowmem_kbytes * 16)
3168  *
3169  * which yields
3170  *
3171  * 16MB:	512k
3172  * 32MB:	724k
3173  * 64MB:	1024k
3174  * 128MB:	1448k
3175  * 256MB:	2048k
3176  * 512MB:	2896k
3177  * 1024MB:	4096k
3178  * 2048MB:	5792k
3179  * 4096MB:	8192k
3180  * 8192MB:	11584k
3181  * 16384MB:	16384k
3182  */
3183 static int __init init_per_zone_pages_min(void)
3184 {
3185 	unsigned long lowmem_kbytes;
3186 
3187 	lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
3188 
3189 	min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
3190 	if (min_free_kbytes < 128)
3191 		min_free_kbytes = 128;
3192 	if (min_free_kbytes > 65536)
3193 		min_free_kbytes = 65536;
3194 	setup_per_zone_pages_min();
3195 	setup_per_zone_lowmem_reserve();
3196 	return 0;
3197 }
3198 module_init(init_per_zone_pages_min)
3199 
3200 /*
3201  * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
3202  *	that we can call two helper functions whenever min_free_kbytes
3203  *	changes.
3204  */
3205 int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
3206 	struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
3207 {
3208 	proc_dointvec(table, write, file, buffer, length, ppos);
3209 	setup_per_zone_pages_min();
3210 	return 0;
3211 }
3212 
3213 #ifdef CONFIG_NUMA
3214 int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
3215 	struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
3216 {
3217 	struct zone *zone;
3218 	int rc;
3219 
3220 	rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
3221 	if (rc)
3222 		return rc;
3223 
3224 	for_each_zone(zone)
3225 		zone->min_unmapped_pages = (zone->present_pages *
3226 				sysctl_min_unmapped_ratio) / 100;
3227 	return 0;
3228 }
3229 
3230 int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
3231 	struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
3232 {
3233 	struct zone *zone;
3234 	int rc;
3235 
3236 	rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
3237 	if (rc)
3238 		return rc;
3239 
3240 	for_each_zone(zone)
3241 		zone->min_slab_pages = (zone->present_pages *
3242 				sysctl_min_slab_ratio) / 100;
3243 	return 0;
3244 }
3245 #endif
3246 
3247 /*
3248  * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
3249  *	proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
3250  *	whenever sysctl_lowmem_reserve_ratio changes.
3251  *
3252  * The reserve ratio obviously has absolutely no relation with the
3253  * pages_min watermarks. The lowmem reserve ratio can only make sense
3254  * if in function of the boot time zone sizes.
3255  */
3256 int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
3257 	struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
3258 {
3259 	proc_dointvec_minmax(table, write, file, buffer, length, ppos);
3260 	setup_per_zone_lowmem_reserve();
3261 	return 0;
3262 }
3263 
3264 /*
3265  * percpu_pagelist_fraction - changes the pcp->high for each zone on each
3266  * cpu.  It is the fraction of total pages in each zone that a hot per cpu pagelist
3267  * can have before it gets flushed back to buddy allocator.
3268  */
3269 
3270 int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
3271 	struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
3272 {
3273 	struct zone *zone;
3274 	unsigned int cpu;
3275 	int ret;
3276 
3277 	ret = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
3278 	if (!write || (ret == -EINVAL))
3279 		return ret;
3280 	for_each_zone(zone) {
3281 		for_each_online_cpu(cpu) {
3282 			unsigned long  high;
3283 			high = zone->present_pages / percpu_pagelist_fraction;
3284 			setup_pagelist_highmark(zone_pcp(zone, cpu), high);
3285 		}
3286 	}
3287 	return 0;
3288 }
3289 
3290 int hashdist = HASHDIST_DEFAULT;
3291 
3292 #ifdef CONFIG_NUMA
3293 static int __init set_hashdist(char *str)
3294 {
3295 	if (!str)
3296 		return 0;
3297 	hashdist = simple_strtoul(str, &str, 0);
3298 	return 1;
3299 }
3300 __setup("hashdist=", set_hashdist);
3301 #endif
3302 
3303 /*
3304  * allocate a large system hash table from bootmem
3305  * - it is assumed that the hash table must contain an exact power-of-2
3306  *   quantity of entries
3307  * - limit is the number of hash buckets, not the total allocation size
3308  */
3309 void *__init alloc_large_system_hash(const char *tablename,
3310 				     unsigned long bucketsize,
3311 				     unsigned long numentries,
3312 				     int scale,
3313 				     int flags,
3314 				     unsigned int *_hash_shift,
3315 				     unsigned int *_hash_mask,
3316 				     unsigned long limit)
3317 {
3318 	unsigned long long max = limit;
3319 	unsigned long log2qty, size;
3320 	void *table = NULL;
3321 
3322 	/* allow the kernel cmdline to have a say */
3323 	if (!numentries) {
3324 		/* round applicable memory size up to nearest megabyte */
3325 		numentries = nr_kernel_pages;
3326 		numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
3327 		numentries >>= 20 - PAGE_SHIFT;
3328 		numentries <<= 20 - PAGE_SHIFT;
3329 
3330 		/* limit to 1 bucket per 2^scale bytes of low memory */
3331 		if (scale > PAGE_SHIFT)
3332 			numentries >>= (scale - PAGE_SHIFT);
3333 		else
3334 			numentries <<= (PAGE_SHIFT - scale);
3335 
3336 		/* Make sure we've got at least a 0-order allocation.. */
3337 		if (unlikely((numentries * bucketsize) < PAGE_SIZE))
3338 			numentries = PAGE_SIZE / bucketsize;
3339 	}
3340 	numentries = roundup_pow_of_two(numentries);
3341 
3342 	/* limit allocation size to 1/16 total memory by default */
3343 	if (max == 0) {
3344 		max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
3345 		do_div(max, bucketsize);
3346 	}
3347 
3348 	if (numentries > max)
3349 		numentries = max;
3350 
3351 	log2qty = ilog2(numentries);
3352 
3353 	do {
3354 		size = bucketsize << log2qty;
3355 		if (flags & HASH_EARLY)
3356 			table = alloc_bootmem(size);
3357 		else if (hashdist)
3358 			table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
3359 		else {
3360 			unsigned long order;
3361 			for (order = 0; ((1UL << order) << PAGE_SHIFT) < size; order++)
3362 				;
3363 			table = (void*) __get_free_pages(GFP_ATOMIC, order);
3364 		}
3365 	} while (!table && size > PAGE_SIZE && --log2qty);
3366 
3367 	if (!table)
3368 		panic("Failed to allocate %s hash table\n", tablename);
3369 
3370 	printk("%s hash table entries: %d (order: %d, %lu bytes)\n",
3371 	       tablename,
3372 	       (1U << log2qty),
3373 	       ilog2(size) - PAGE_SHIFT,
3374 	       size);
3375 
3376 	if (_hash_shift)
3377 		*_hash_shift = log2qty;
3378 	if (_hash_mask)
3379 		*_hash_mask = (1 << log2qty) - 1;
3380 
3381 	return table;
3382 }
3383 
3384 #ifdef CONFIG_OUT_OF_LINE_PFN_TO_PAGE
3385 struct page *pfn_to_page(unsigned long pfn)
3386 {
3387 	return __pfn_to_page(pfn);
3388 }
3389 unsigned long page_to_pfn(struct page *page)
3390 {
3391 	return __page_to_pfn(page);
3392 }
3393 EXPORT_SYMBOL(pfn_to_page);
3394 EXPORT_SYMBOL(page_to_pfn);
3395 #endif /* CONFIG_OUT_OF_LINE_PFN_TO_PAGE */
3396 
3397 #if MAX_NUMNODES > 1
3398 /*
3399  * Find the highest possible node id.
3400  */
3401 int highest_possible_node_id(void)
3402 {
3403 	unsigned int node;
3404 	unsigned int highest = 0;
3405 
3406 	for_each_node_mask(node, node_possible_map)
3407 		highest = node;
3408 	return highest;
3409 }
3410 EXPORT_SYMBOL(highest_possible_node_id);
3411 #endif
3412