xref: /linux/mm/page_alloc.c (revision ac6a0cf6716bb46813d0161024c66c2af66e53d1)
1 /*
2  *  linux/mm/page_alloc.c
3  *
4  *  Manages the free list, the system allocates free pages here.
5  *  Note that kmalloc() lives in slab.c
6  *
7  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
8  *  Swap reorganised 29.12.95, Stephen Tweedie
9  *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10  *  Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11  *  Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12  *  Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13  *  Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14  *          (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15  */
16 
17 #include <linux/stddef.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/compiler.h>
25 #include <linux/kernel.h>
26 #include <linux/kmemcheck.h>
27 #include <linux/module.h>
28 #include <linux/suspend.h>
29 #include <linux/pagevec.h>
30 #include <linux/blkdev.h>
31 #include <linux/slab.h>
32 #include <linux/oom.h>
33 #include <linux/notifier.h>
34 #include <linux/topology.h>
35 #include <linux/sysctl.h>
36 #include <linux/cpu.h>
37 #include <linux/cpuset.h>
38 #include <linux/memory_hotplug.h>
39 #include <linux/nodemask.h>
40 #include <linux/vmalloc.h>
41 #include <linux/mempolicy.h>
42 #include <linux/stop_machine.h>
43 #include <linux/sort.h>
44 #include <linux/pfn.h>
45 #include <linux/backing-dev.h>
46 #include <linux/fault-inject.h>
47 #include <linux/page-isolation.h>
48 #include <linux/page_cgroup.h>
49 #include <linux/debugobjects.h>
50 #include <linux/kmemleak.h>
51 
52 #include <asm/tlbflush.h>
53 #include <asm/div64.h>
54 #include "internal.h"
55 
56 /*
57  * Array of node states.
58  */
59 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
60 	[N_POSSIBLE] = NODE_MASK_ALL,
61 	[N_ONLINE] = { { [0] = 1UL } },
62 #ifndef CONFIG_NUMA
63 	[N_NORMAL_MEMORY] = { { [0] = 1UL } },
64 #ifdef CONFIG_HIGHMEM
65 	[N_HIGH_MEMORY] = { { [0] = 1UL } },
66 #endif
67 	[N_CPU] = { { [0] = 1UL } },
68 #endif	/* NUMA */
69 };
70 EXPORT_SYMBOL(node_states);
71 
72 unsigned long totalram_pages __read_mostly;
73 unsigned long totalreserve_pages __read_mostly;
74 unsigned long highest_memmap_pfn __read_mostly;
75 int percpu_pagelist_fraction;
76 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
77 
78 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
79 int pageblock_order __read_mostly;
80 #endif
81 
82 static void __free_pages_ok(struct page *page, unsigned int order);
83 
84 /*
85  * results with 256, 32 in the lowmem_reserve sysctl:
86  *	1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
87  *	1G machine -> (16M dma, 784M normal, 224M high)
88  *	NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
89  *	HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
90  *	HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
91  *
92  * TBD: should special case ZONE_DMA32 machines here - in those we normally
93  * don't need any ZONE_NORMAL reservation
94  */
95 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
96 #ifdef CONFIG_ZONE_DMA
97 	 256,
98 #endif
99 #ifdef CONFIG_ZONE_DMA32
100 	 256,
101 #endif
102 #ifdef CONFIG_HIGHMEM
103 	 32,
104 #endif
105 	 32,
106 };
107 
108 EXPORT_SYMBOL(totalram_pages);
109 
110 static char * const zone_names[MAX_NR_ZONES] = {
111 #ifdef CONFIG_ZONE_DMA
112 	 "DMA",
113 #endif
114 #ifdef CONFIG_ZONE_DMA32
115 	 "DMA32",
116 #endif
117 	 "Normal",
118 #ifdef CONFIG_HIGHMEM
119 	 "HighMem",
120 #endif
121 	 "Movable",
122 };
123 
124 int min_free_kbytes = 1024;
125 
126 unsigned long __meminitdata nr_kernel_pages;
127 unsigned long __meminitdata nr_all_pages;
128 static unsigned long __meminitdata dma_reserve;
129 
130 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
131   /*
132    * MAX_ACTIVE_REGIONS determines the maximum number of distinct
133    * ranges of memory (RAM) that may be registered with add_active_range().
134    * Ranges passed to add_active_range() will be merged if possible
135    * so the number of times add_active_range() can be called is
136    * related to the number of nodes and the number of holes
137    */
138   #ifdef CONFIG_MAX_ACTIVE_REGIONS
139     /* Allow an architecture to set MAX_ACTIVE_REGIONS to save memory */
140     #define MAX_ACTIVE_REGIONS CONFIG_MAX_ACTIVE_REGIONS
141   #else
142     #if MAX_NUMNODES >= 32
143       /* If there can be many nodes, allow up to 50 holes per node */
144       #define MAX_ACTIVE_REGIONS (MAX_NUMNODES*50)
145     #else
146       /* By default, allow up to 256 distinct regions */
147       #define MAX_ACTIVE_REGIONS 256
148     #endif
149   #endif
150 
151   static struct node_active_region __meminitdata early_node_map[MAX_ACTIVE_REGIONS];
152   static int __meminitdata nr_nodemap_entries;
153   static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
154   static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
155   static unsigned long __initdata required_kernelcore;
156   static unsigned long __initdata required_movablecore;
157   static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
158 
159   /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
160   int movable_zone;
161   EXPORT_SYMBOL(movable_zone);
162 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
163 
164 #if MAX_NUMNODES > 1
165 int nr_node_ids __read_mostly = MAX_NUMNODES;
166 int nr_online_nodes __read_mostly = 1;
167 EXPORT_SYMBOL(nr_node_ids);
168 EXPORT_SYMBOL(nr_online_nodes);
169 #endif
170 
171 int page_group_by_mobility_disabled __read_mostly;
172 
173 static void set_pageblock_migratetype(struct page *page, int migratetype)
174 {
175 
176 	if (unlikely(page_group_by_mobility_disabled))
177 		migratetype = MIGRATE_UNMOVABLE;
178 
179 	set_pageblock_flags_group(page, (unsigned long)migratetype,
180 					PB_migrate, PB_migrate_end);
181 }
182 
183 bool oom_killer_disabled __read_mostly;
184 
185 #ifdef CONFIG_DEBUG_VM
186 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
187 {
188 	int ret = 0;
189 	unsigned seq;
190 	unsigned long pfn = page_to_pfn(page);
191 
192 	do {
193 		seq = zone_span_seqbegin(zone);
194 		if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
195 			ret = 1;
196 		else if (pfn < zone->zone_start_pfn)
197 			ret = 1;
198 	} while (zone_span_seqretry(zone, seq));
199 
200 	return ret;
201 }
202 
203 static int page_is_consistent(struct zone *zone, struct page *page)
204 {
205 	if (!pfn_valid_within(page_to_pfn(page)))
206 		return 0;
207 	if (zone != page_zone(page))
208 		return 0;
209 
210 	return 1;
211 }
212 /*
213  * Temporary debugging check for pages not lying within a given zone.
214  */
215 static int bad_range(struct zone *zone, struct page *page)
216 {
217 	if (page_outside_zone_boundaries(zone, page))
218 		return 1;
219 	if (!page_is_consistent(zone, page))
220 		return 1;
221 
222 	return 0;
223 }
224 #else
225 static inline int bad_range(struct zone *zone, struct page *page)
226 {
227 	return 0;
228 }
229 #endif
230 
231 static void bad_page(struct page *page)
232 {
233 	static unsigned long resume;
234 	static unsigned long nr_shown;
235 	static unsigned long nr_unshown;
236 
237 	/*
238 	 * Allow a burst of 60 reports, then keep quiet for that minute;
239 	 * or allow a steady drip of one report per second.
240 	 */
241 	if (nr_shown == 60) {
242 		if (time_before(jiffies, resume)) {
243 			nr_unshown++;
244 			goto out;
245 		}
246 		if (nr_unshown) {
247 			printk(KERN_ALERT
248 			      "BUG: Bad page state: %lu messages suppressed\n",
249 				nr_unshown);
250 			nr_unshown = 0;
251 		}
252 		nr_shown = 0;
253 	}
254 	if (nr_shown++ == 0)
255 		resume = jiffies + 60 * HZ;
256 
257 	printk(KERN_ALERT "BUG: Bad page state in process %s  pfn:%05lx\n",
258 		current->comm, page_to_pfn(page));
259 	printk(KERN_ALERT
260 		"page:%p flags:%p count:%d mapcount:%d mapping:%p index:%lx\n",
261 		page, (void *)page->flags, page_count(page),
262 		page_mapcount(page), page->mapping, page->index);
263 
264 	dump_stack();
265 out:
266 	/* Leave bad fields for debug, except PageBuddy could make trouble */
267 	__ClearPageBuddy(page);
268 	add_taint(TAINT_BAD_PAGE);
269 }
270 
271 /*
272  * Higher-order pages are called "compound pages".  They are structured thusly:
273  *
274  * The first PAGE_SIZE page is called the "head page".
275  *
276  * The remaining PAGE_SIZE pages are called "tail pages".
277  *
278  * All pages have PG_compound set.  All pages have their ->private pointing at
279  * the head page (even the head page has this).
280  *
281  * The first tail page's ->lru.next holds the address of the compound page's
282  * put_page() function.  Its ->lru.prev holds the order of allocation.
283  * This usage means that zero-order pages may not be compound.
284  */
285 
286 static void free_compound_page(struct page *page)
287 {
288 	__free_pages_ok(page, compound_order(page));
289 }
290 
291 void prep_compound_page(struct page *page, unsigned long order)
292 {
293 	int i;
294 	int nr_pages = 1 << order;
295 
296 	set_compound_page_dtor(page, free_compound_page);
297 	set_compound_order(page, order);
298 	__SetPageHead(page);
299 	for (i = 1; i < nr_pages; i++) {
300 		struct page *p = page + i;
301 
302 		__SetPageTail(p);
303 		p->first_page = page;
304 	}
305 }
306 
307 static int destroy_compound_page(struct page *page, unsigned long order)
308 {
309 	int i;
310 	int nr_pages = 1 << order;
311 	int bad = 0;
312 
313 	if (unlikely(compound_order(page) != order) ||
314 	    unlikely(!PageHead(page))) {
315 		bad_page(page);
316 		bad++;
317 	}
318 
319 	__ClearPageHead(page);
320 
321 	for (i = 1; i < nr_pages; i++) {
322 		struct page *p = page + i;
323 
324 		if (unlikely(!PageTail(p) || (p->first_page != page))) {
325 			bad_page(page);
326 			bad++;
327 		}
328 		__ClearPageTail(p);
329 	}
330 
331 	return bad;
332 }
333 
334 static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
335 {
336 	int i;
337 
338 	/*
339 	 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
340 	 * and __GFP_HIGHMEM from hard or soft interrupt context.
341 	 */
342 	VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
343 	for (i = 0; i < (1 << order); i++)
344 		clear_highpage(page + i);
345 }
346 
347 static inline void set_page_order(struct page *page, int order)
348 {
349 	set_page_private(page, order);
350 	__SetPageBuddy(page);
351 }
352 
353 static inline void rmv_page_order(struct page *page)
354 {
355 	__ClearPageBuddy(page);
356 	set_page_private(page, 0);
357 }
358 
359 /*
360  * Locate the struct page for both the matching buddy in our
361  * pair (buddy1) and the combined O(n+1) page they form (page).
362  *
363  * 1) Any buddy B1 will have an order O twin B2 which satisfies
364  * the following equation:
365  *     B2 = B1 ^ (1 << O)
366  * For example, if the starting buddy (buddy2) is #8 its order
367  * 1 buddy is #10:
368  *     B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
369  *
370  * 2) Any buddy B will have an order O+1 parent P which
371  * satisfies the following equation:
372  *     P = B & ~(1 << O)
373  *
374  * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
375  */
376 static inline struct page *
377 __page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order)
378 {
379 	unsigned long buddy_idx = page_idx ^ (1 << order);
380 
381 	return page + (buddy_idx - page_idx);
382 }
383 
384 static inline unsigned long
385 __find_combined_index(unsigned long page_idx, unsigned int order)
386 {
387 	return (page_idx & ~(1 << order));
388 }
389 
390 /*
391  * This function checks whether a page is free && is the buddy
392  * we can do coalesce a page and its buddy if
393  * (a) the buddy is not in a hole &&
394  * (b) the buddy is in the buddy system &&
395  * (c) a page and its buddy have the same order &&
396  * (d) a page and its buddy are in the same zone.
397  *
398  * For recording whether a page is in the buddy system, we use PG_buddy.
399  * Setting, clearing, and testing PG_buddy is serialized by zone->lock.
400  *
401  * For recording page's order, we use page_private(page).
402  */
403 static inline int page_is_buddy(struct page *page, struct page *buddy,
404 								int order)
405 {
406 	if (!pfn_valid_within(page_to_pfn(buddy)))
407 		return 0;
408 
409 	if (page_zone_id(page) != page_zone_id(buddy))
410 		return 0;
411 
412 	if (PageBuddy(buddy) && page_order(buddy) == order) {
413 		VM_BUG_ON(page_count(buddy) != 0);
414 		return 1;
415 	}
416 	return 0;
417 }
418 
419 /*
420  * Freeing function for a buddy system allocator.
421  *
422  * The concept of a buddy system is to maintain direct-mapped table
423  * (containing bit values) for memory blocks of various "orders".
424  * The bottom level table contains the map for the smallest allocatable
425  * units of memory (here, pages), and each level above it describes
426  * pairs of units from the levels below, hence, "buddies".
427  * At a high level, all that happens here is marking the table entry
428  * at the bottom level available, and propagating the changes upward
429  * as necessary, plus some accounting needed to play nicely with other
430  * parts of the VM system.
431  * At each level, we keep a list of pages, which are heads of continuous
432  * free pages of length of (1 << order) and marked with PG_buddy. Page's
433  * order is recorded in page_private(page) field.
434  * So when we are allocating or freeing one, we can derive the state of the
435  * other.  That is, if we allocate a small block, and both were
436  * free, the remainder of the region must be split into blocks.
437  * If a block is freed, and its buddy is also free, then this
438  * triggers coalescing into a block of larger size.
439  *
440  * -- wli
441  */
442 
443 static inline void __free_one_page(struct page *page,
444 		struct zone *zone, unsigned int order,
445 		int migratetype)
446 {
447 	unsigned long page_idx;
448 
449 	if (unlikely(PageCompound(page)))
450 		if (unlikely(destroy_compound_page(page, order)))
451 			return;
452 
453 	VM_BUG_ON(migratetype == -1);
454 
455 	page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
456 
457 	VM_BUG_ON(page_idx & ((1 << order) - 1));
458 	VM_BUG_ON(bad_range(zone, page));
459 
460 	while (order < MAX_ORDER-1) {
461 		unsigned long combined_idx;
462 		struct page *buddy;
463 
464 		buddy = __page_find_buddy(page, page_idx, order);
465 		if (!page_is_buddy(page, buddy, order))
466 			break;
467 
468 		/* Our buddy is free, merge with it and move up one order. */
469 		list_del(&buddy->lru);
470 		zone->free_area[order].nr_free--;
471 		rmv_page_order(buddy);
472 		combined_idx = __find_combined_index(page_idx, order);
473 		page = page + (combined_idx - page_idx);
474 		page_idx = combined_idx;
475 		order++;
476 	}
477 	set_page_order(page, order);
478 	list_add(&page->lru,
479 		&zone->free_area[order].free_list[migratetype]);
480 	zone->free_area[order].nr_free++;
481 }
482 
483 #ifdef CONFIG_HAVE_MLOCKED_PAGE_BIT
484 /*
485  * free_page_mlock() -- clean up attempts to free and mlocked() page.
486  * Page should not be on lru, so no need to fix that up.
487  * free_pages_check() will verify...
488  */
489 static inline void free_page_mlock(struct page *page)
490 {
491 	__dec_zone_page_state(page, NR_MLOCK);
492 	__count_vm_event(UNEVICTABLE_MLOCKFREED);
493 }
494 #else
495 static void free_page_mlock(struct page *page) { }
496 #endif
497 
498 static inline int free_pages_check(struct page *page)
499 {
500 	if (unlikely(page_mapcount(page) |
501 		(page->mapping != NULL)  |
502 		(atomic_read(&page->_count) != 0) |
503 		(page->flags & PAGE_FLAGS_CHECK_AT_FREE))) {
504 		bad_page(page);
505 		return 1;
506 	}
507 	if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
508 		page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
509 	return 0;
510 }
511 
512 /*
513  * Frees a list of pages.
514  * Assumes all pages on list are in same zone, and of same order.
515  * count is the number of pages to free.
516  *
517  * If the zone was previously in an "all pages pinned" state then look to
518  * see if this freeing clears that state.
519  *
520  * And clear the zone's pages_scanned counter, to hold off the "all pages are
521  * pinned" detection logic.
522  */
523 static void free_pages_bulk(struct zone *zone, int count,
524 					struct list_head *list, int order)
525 {
526 	spin_lock(&zone->lock);
527 	zone_clear_flag(zone, ZONE_ALL_UNRECLAIMABLE);
528 	zone->pages_scanned = 0;
529 
530 	__mod_zone_page_state(zone, NR_FREE_PAGES, count << order);
531 	while (count--) {
532 		struct page *page;
533 
534 		VM_BUG_ON(list_empty(list));
535 		page = list_entry(list->prev, struct page, lru);
536 		/* have to delete it as __free_one_page list manipulates */
537 		list_del(&page->lru);
538 		__free_one_page(page, zone, order, page_private(page));
539 	}
540 	spin_unlock(&zone->lock);
541 }
542 
543 static void free_one_page(struct zone *zone, struct page *page, int order,
544 				int migratetype)
545 {
546 	spin_lock(&zone->lock);
547 	zone_clear_flag(zone, ZONE_ALL_UNRECLAIMABLE);
548 	zone->pages_scanned = 0;
549 
550 	__mod_zone_page_state(zone, NR_FREE_PAGES, 1 << order);
551 	__free_one_page(page, zone, order, migratetype);
552 	spin_unlock(&zone->lock);
553 }
554 
555 static void __free_pages_ok(struct page *page, unsigned int order)
556 {
557 	unsigned long flags;
558 	int i;
559 	int bad = 0;
560 	int wasMlocked = TestClearPageMlocked(page);
561 
562 	kmemcheck_free_shadow(page, order);
563 
564 	for (i = 0 ; i < (1 << order) ; ++i)
565 		bad += free_pages_check(page + i);
566 	if (bad)
567 		return;
568 
569 	if (!PageHighMem(page)) {
570 		debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order);
571 		debug_check_no_obj_freed(page_address(page),
572 					   PAGE_SIZE << order);
573 	}
574 	arch_free_page(page, order);
575 	kernel_map_pages(page, 1 << order, 0);
576 
577 	local_irq_save(flags);
578 	if (unlikely(wasMlocked))
579 		free_page_mlock(page);
580 	__count_vm_events(PGFREE, 1 << order);
581 	free_one_page(page_zone(page), page, order,
582 					get_pageblock_migratetype(page));
583 	local_irq_restore(flags);
584 }
585 
586 /*
587  * permit the bootmem allocator to evade page validation on high-order frees
588  */
589 void __meminit __free_pages_bootmem(struct page *page, unsigned int order)
590 {
591 	if (order == 0) {
592 		__ClearPageReserved(page);
593 		set_page_count(page, 0);
594 		set_page_refcounted(page);
595 		__free_page(page);
596 	} else {
597 		int loop;
598 
599 		prefetchw(page);
600 		for (loop = 0; loop < BITS_PER_LONG; loop++) {
601 			struct page *p = &page[loop];
602 
603 			if (loop + 1 < BITS_PER_LONG)
604 				prefetchw(p + 1);
605 			__ClearPageReserved(p);
606 			set_page_count(p, 0);
607 		}
608 
609 		set_page_refcounted(page);
610 		__free_pages(page, order);
611 	}
612 }
613 
614 
615 /*
616  * The order of subdivision here is critical for the IO subsystem.
617  * Please do not alter this order without good reasons and regression
618  * testing. Specifically, as large blocks of memory are subdivided,
619  * the order in which smaller blocks are delivered depends on the order
620  * they're subdivided in this function. This is the primary factor
621  * influencing the order in which pages are delivered to the IO
622  * subsystem according to empirical testing, and this is also justified
623  * by considering the behavior of a buddy system containing a single
624  * large block of memory acted on by a series of small allocations.
625  * This behavior is a critical factor in sglist merging's success.
626  *
627  * -- wli
628  */
629 static inline void expand(struct zone *zone, struct page *page,
630 	int low, int high, struct free_area *area,
631 	int migratetype)
632 {
633 	unsigned long size = 1 << high;
634 
635 	while (high > low) {
636 		area--;
637 		high--;
638 		size >>= 1;
639 		VM_BUG_ON(bad_range(zone, &page[size]));
640 		list_add(&page[size].lru, &area->free_list[migratetype]);
641 		area->nr_free++;
642 		set_page_order(&page[size], high);
643 	}
644 }
645 
646 /*
647  * This page is about to be returned from the page allocator
648  */
649 static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
650 {
651 	if (unlikely(page_mapcount(page) |
652 		(page->mapping != NULL)  |
653 		(atomic_read(&page->_count) != 0)  |
654 		(page->flags & PAGE_FLAGS_CHECK_AT_PREP))) {
655 		bad_page(page);
656 		return 1;
657 	}
658 
659 	set_page_private(page, 0);
660 	set_page_refcounted(page);
661 
662 	arch_alloc_page(page, order);
663 	kernel_map_pages(page, 1 << order, 1);
664 
665 	if (gfp_flags & __GFP_ZERO)
666 		prep_zero_page(page, order, gfp_flags);
667 
668 	if (order && (gfp_flags & __GFP_COMP))
669 		prep_compound_page(page, order);
670 
671 	return 0;
672 }
673 
674 /*
675  * Go through the free lists for the given migratetype and remove
676  * the smallest available page from the freelists
677  */
678 static inline
679 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
680 						int migratetype)
681 {
682 	unsigned int current_order;
683 	struct free_area * area;
684 	struct page *page;
685 
686 	/* Find a page of the appropriate size in the preferred list */
687 	for (current_order = order; current_order < MAX_ORDER; ++current_order) {
688 		area = &(zone->free_area[current_order]);
689 		if (list_empty(&area->free_list[migratetype]))
690 			continue;
691 
692 		page = list_entry(area->free_list[migratetype].next,
693 							struct page, lru);
694 		list_del(&page->lru);
695 		rmv_page_order(page);
696 		area->nr_free--;
697 		expand(zone, page, order, current_order, area, migratetype);
698 		return page;
699 	}
700 
701 	return NULL;
702 }
703 
704 
705 /*
706  * This array describes the order lists are fallen back to when
707  * the free lists for the desirable migrate type are depleted
708  */
709 static int fallbacks[MIGRATE_TYPES][MIGRATE_TYPES-1] = {
710 	[MIGRATE_UNMOVABLE]   = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE,   MIGRATE_RESERVE },
711 	[MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE,   MIGRATE_MOVABLE,   MIGRATE_RESERVE },
712 	[MIGRATE_MOVABLE]     = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
713 	[MIGRATE_RESERVE]     = { MIGRATE_RESERVE,     MIGRATE_RESERVE,   MIGRATE_RESERVE }, /* Never used */
714 };
715 
716 /*
717  * Move the free pages in a range to the free lists of the requested type.
718  * Note that start_page and end_pages are not aligned on a pageblock
719  * boundary. If alignment is required, use move_freepages_block()
720  */
721 static int move_freepages(struct zone *zone,
722 			  struct page *start_page, struct page *end_page,
723 			  int migratetype)
724 {
725 	struct page *page;
726 	unsigned long order;
727 	int pages_moved = 0;
728 
729 #ifndef CONFIG_HOLES_IN_ZONE
730 	/*
731 	 * page_zone is not safe to call in this context when
732 	 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
733 	 * anyway as we check zone boundaries in move_freepages_block().
734 	 * Remove at a later date when no bug reports exist related to
735 	 * grouping pages by mobility
736 	 */
737 	BUG_ON(page_zone(start_page) != page_zone(end_page));
738 #endif
739 
740 	for (page = start_page; page <= end_page;) {
741 		/* Make sure we are not inadvertently changing nodes */
742 		VM_BUG_ON(page_to_nid(page) != zone_to_nid(zone));
743 
744 		if (!pfn_valid_within(page_to_pfn(page))) {
745 			page++;
746 			continue;
747 		}
748 
749 		if (!PageBuddy(page)) {
750 			page++;
751 			continue;
752 		}
753 
754 		order = page_order(page);
755 		list_del(&page->lru);
756 		list_add(&page->lru,
757 			&zone->free_area[order].free_list[migratetype]);
758 		page += 1 << order;
759 		pages_moved += 1 << order;
760 	}
761 
762 	return pages_moved;
763 }
764 
765 static int move_freepages_block(struct zone *zone, struct page *page,
766 				int migratetype)
767 {
768 	unsigned long start_pfn, end_pfn;
769 	struct page *start_page, *end_page;
770 
771 	start_pfn = page_to_pfn(page);
772 	start_pfn = start_pfn & ~(pageblock_nr_pages-1);
773 	start_page = pfn_to_page(start_pfn);
774 	end_page = start_page + pageblock_nr_pages - 1;
775 	end_pfn = start_pfn + pageblock_nr_pages - 1;
776 
777 	/* Do not cross zone boundaries */
778 	if (start_pfn < zone->zone_start_pfn)
779 		start_page = page;
780 	if (end_pfn >= zone->zone_start_pfn + zone->spanned_pages)
781 		return 0;
782 
783 	return move_freepages(zone, start_page, end_page, migratetype);
784 }
785 
786 /* Remove an element from the buddy allocator from the fallback list */
787 static inline struct page *
788 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype)
789 {
790 	struct free_area * area;
791 	int current_order;
792 	struct page *page;
793 	int migratetype, i;
794 
795 	/* Find the largest possible block of pages in the other list */
796 	for (current_order = MAX_ORDER-1; current_order >= order;
797 						--current_order) {
798 		for (i = 0; i < MIGRATE_TYPES - 1; i++) {
799 			migratetype = fallbacks[start_migratetype][i];
800 
801 			/* MIGRATE_RESERVE handled later if necessary */
802 			if (migratetype == MIGRATE_RESERVE)
803 				continue;
804 
805 			area = &(zone->free_area[current_order]);
806 			if (list_empty(&area->free_list[migratetype]))
807 				continue;
808 
809 			page = list_entry(area->free_list[migratetype].next,
810 					struct page, lru);
811 			area->nr_free--;
812 
813 			/*
814 			 * If breaking a large block of pages, move all free
815 			 * pages to the preferred allocation list. If falling
816 			 * back for a reclaimable kernel allocation, be more
817 			 * agressive about taking ownership of free pages
818 			 */
819 			if (unlikely(current_order >= (pageblock_order >> 1)) ||
820 					start_migratetype == MIGRATE_RECLAIMABLE) {
821 				unsigned long pages;
822 				pages = move_freepages_block(zone, page,
823 								start_migratetype);
824 
825 				/* Claim the whole block if over half of it is free */
826 				if (pages >= (1 << (pageblock_order-1)))
827 					set_pageblock_migratetype(page,
828 								start_migratetype);
829 
830 				migratetype = start_migratetype;
831 			}
832 
833 			/* Remove the page from the freelists */
834 			list_del(&page->lru);
835 			rmv_page_order(page);
836 
837 			if (current_order == pageblock_order)
838 				set_pageblock_migratetype(page,
839 							start_migratetype);
840 
841 			expand(zone, page, order, current_order, area, migratetype);
842 			return page;
843 		}
844 	}
845 
846 	return NULL;
847 }
848 
849 /*
850  * Do the hard work of removing an element from the buddy allocator.
851  * Call me with the zone->lock already held.
852  */
853 static struct page *__rmqueue(struct zone *zone, unsigned int order,
854 						int migratetype)
855 {
856 	struct page *page;
857 
858 retry_reserve:
859 	page = __rmqueue_smallest(zone, order, migratetype);
860 
861 	if (unlikely(!page) && migratetype != MIGRATE_RESERVE) {
862 		page = __rmqueue_fallback(zone, order, migratetype);
863 
864 		/*
865 		 * Use MIGRATE_RESERVE rather than fail an allocation. goto
866 		 * is used because __rmqueue_smallest is an inline function
867 		 * and we want just one call site
868 		 */
869 		if (!page) {
870 			migratetype = MIGRATE_RESERVE;
871 			goto retry_reserve;
872 		}
873 	}
874 
875 	return page;
876 }
877 
878 /*
879  * Obtain a specified number of elements from the buddy allocator, all under
880  * a single hold of the lock, for efficiency.  Add them to the supplied list.
881  * Returns the number of new pages which were placed at *list.
882  */
883 static int rmqueue_bulk(struct zone *zone, unsigned int order,
884 			unsigned long count, struct list_head *list,
885 			int migratetype, int cold)
886 {
887 	int i;
888 
889 	spin_lock(&zone->lock);
890 	for (i = 0; i < count; ++i) {
891 		struct page *page = __rmqueue(zone, order, migratetype);
892 		if (unlikely(page == NULL))
893 			break;
894 
895 		/*
896 		 * Split buddy pages returned by expand() are received here
897 		 * in physical page order. The page is added to the callers and
898 		 * list and the list head then moves forward. From the callers
899 		 * perspective, the linked list is ordered by page number in
900 		 * some conditions. This is useful for IO devices that can
901 		 * merge IO requests if the physical pages are ordered
902 		 * properly.
903 		 */
904 		if (likely(cold == 0))
905 			list_add(&page->lru, list);
906 		else
907 			list_add_tail(&page->lru, list);
908 		set_page_private(page, migratetype);
909 		list = &page->lru;
910 	}
911 	__mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
912 	spin_unlock(&zone->lock);
913 	return i;
914 }
915 
916 #ifdef CONFIG_NUMA
917 /*
918  * Called from the vmstat counter updater to drain pagesets of this
919  * currently executing processor on remote nodes after they have
920  * expired.
921  *
922  * Note that this function must be called with the thread pinned to
923  * a single processor.
924  */
925 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
926 {
927 	unsigned long flags;
928 	int to_drain;
929 
930 	local_irq_save(flags);
931 	if (pcp->count >= pcp->batch)
932 		to_drain = pcp->batch;
933 	else
934 		to_drain = pcp->count;
935 	free_pages_bulk(zone, to_drain, &pcp->list, 0);
936 	pcp->count -= to_drain;
937 	local_irq_restore(flags);
938 }
939 #endif
940 
941 /*
942  * Drain pages of the indicated processor.
943  *
944  * The processor must either be the current processor and the
945  * thread pinned to the current processor or a processor that
946  * is not online.
947  */
948 static void drain_pages(unsigned int cpu)
949 {
950 	unsigned long flags;
951 	struct zone *zone;
952 
953 	for_each_populated_zone(zone) {
954 		struct per_cpu_pageset *pset;
955 		struct per_cpu_pages *pcp;
956 
957 		pset = zone_pcp(zone, cpu);
958 
959 		pcp = &pset->pcp;
960 		local_irq_save(flags);
961 		free_pages_bulk(zone, pcp->count, &pcp->list, 0);
962 		pcp->count = 0;
963 		local_irq_restore(flags);
964 	}
965 }
966 
967 /*
968  * Spill all of this CPU's per-cpu pages back into the buddy allocator.
969  */
970 void drain_local_pages(void *arg)
971 {
972 	drain_pages(smp_processor_id());
973 }
974 
975 /*
976  * Spill all the per-cpu pages from all CPUs back into the buddy allocator
977  */
978 void drain_all_pages(void)
979 {
980 	on_each_cpu(drain_local_pages, NULL, 1);
981 }
982 
983 #ifdef CONFIG_HIBERNATION
984 
985 void mark_free_pages(struct zone *zone)
986 {
987 	unsigned long pfn, max_zone_pfn;
988 	unsigned long flags;
989 	int order, t;
990 	struct list_head *curr;
991 
992 	if (!zone->spanned_pages)
993 		return;
994 
995 	spin_lock_irqsave(&zone->lock, flags);
996 
997 	max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
998 	for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
999 		if (pfn_valid(pfn)) {
1000 			struct page *page = pfn_to_page(pfn);
1001 
1002 			if (!swsusp_page_is_forbidden(page))
1003 				swsusp_unset_page_free(page);
1004 		}
1005 
1006 	for_each_migratetype_order(order, t) {
1007 		list_for_each(curr, &zone->free_area[order].free_list[t]) {
1008 			unsigned long i;
1009 
1010 			pfn = page_to_pfn(list_entry(curr, struct page, lru));
1011 			for (i = 0; i < (1UL << order); i++)
1012 				swsusp_set_page_free(pfn_to_page(pfn + i));
1013 		}
1014 	}
1015 	spin_unlock_irqrestore(&zone->lock, flags);
1016 }
1017 #endif /* CONFIG_PM */
1018 
1019 /*
1020  * Free a 0-order page
1021  */
1022 static void free_hot_cold_page(struct page *page, int cold)
1023 {
1024 	struct zone *zone = page_zone(page);
1025 	struct per_cpu_pages *pcp;
1026 	unsigned long flags;
1027 	int wasMlocked = TestClearPageMlocked(page);
1028 
1029 	kmemcheck_free_shadow(page, 0);
1030 
1031 	if (PageAnon(page))
1032 		page->mapping = NULL;
1033 	if (free_pages_check(page))
1034 		return;
1035 
1036 	if (!PageHighMem(page)) {
1037 		debug_check_no_locks_freed(page_address(page), PAGE_SIZE);
1038 		debug_check_no_obj_freed(page_address(page), PAGE_SIZE);
1039 	}
1040 	arch_free_page(page, 0);
1041 	kernel_map_pages(page, 1, 0);
1042 
1043 	pcp = &zone_pcp(zone, get_cpu())->pcp;
1044 	set_page_private(page, get_pageblock_migratetype(page));
1045 	local_irq_save(flags);
1046 	if (unlikely(wasMlocked))
1047 		free_page_mlock(page);
1048 	__count_vm_event(PGFREE);
1049 
1050 	if (cold)
1051 		list_add_tail(&page->lru, &pcp->list);
1052 	else
1053 		list_add(&page->lru, &pcp->list);
1054 	pcp->count++;
1055 	if (pcp->count >= pcp->high) {
1056 		free_pages_bulk(zone, pcp->batch, &pcp->list, 0);
1057 		pcp->count -= pcp->batch;
1058 	}
1059 	local_irq_restore(flags);
1060 	put_cpu();
1061 }
1062 
1063 void free_hot_page(struct page *page)
1064 {
1065 	free_hot_cold_page(page, 0);
1066 }
1067 
1068 void free_cold_page(struct page *page)
1069 {
1070 	free_hot_cold_page(page, 1);
1071 }
1072 
1073 /*
1074  * split_page takes a non-compound higher-order page, and splits it into
1075  * n (1<<order) sub-pages: page[0..n]
1076  * Each sub-page must be freed individually.
1077  *
1078  * Note: this is probably too low level an operation for use in drivers.
1079  * Please consult with lkml before using this in your driver.
1080  */
1081 void split_page(struct page *page, unsigned int order)
1082 {
1083 	int i;
1084 
1085 	VM_BUG_ON(PageCompound(page));
1086 	VM_BUG_ON(!page_count(page));
1087 
1088 #ifdef CONFIG_KMEMCHECK
1089 	/*
1090 	 * Split shadow pages too, because free(page[0]) would
1091 	 * otherwise free the whole shadow.
1092 	 */
1093 	if (kmemcheck_page_is_tracked(page))
1094 		split_page(virt_to_page(page[0].shadow), order);
1095 #endif
1096 
1097 	for (i = 1; i < (1 << order); i++)
1098 		set_page_refcounted(page + i);
1099 }
1100 
1101 /*
1102  * Really, prep_compound_page() should be called from __rmqueue_bulk().  But
1103  * we cheat by calling it from here, in the order > 0 path.  Saves a branch
1104  * or two.
1105  */
1106 static inline
1107 struct page *buffered_rmqueue(struct zone *preferred_zone,
1108 			struct zone *zone, int order, gfp_t gfp_flags,
1109 			int migratetype)
1110 {
1111 	unsigned long flags;
1112 	struct page *page;
1113 	int cold = !!(gfp_flags & __GFP_COLD);
1114 	int cpu;
1115 
1116 again:
1117 	cpu  = get_cpu();
1118 	if (likely(order == 0)) {
1119 		struct per_cpu_pages *pcp;
1120 
1121 		pcp = &zone_pcp(zone, cpu)->pcp;
1122 		local_irq_save(flags);
1123 		if (!pcp->count) {
1124 			pcp->count = rmqueue_bulk(zone, 0,
1125 					pcp->batch, &pcp->list,
1126 					migratetype, cold);
1127 			if (unlikely(!pcp->count))
1128 				goto failed;
1129 		}
1130 
1131 		/* Find a page of the appropriate migrate type */
1132 		if (cold) {
1133 			list_for_each_entry_reverse(page, &pcp->list, lru)
1134 				if (page_private(page) == migratetype)
1135 					break;
1136 		} else {
1137 			list_for_each_entry(page, &pcp->list, lru)
1138 				if (page_private(page) == migratetype)
1139 					break;
1140 		}
1141 
1142 		/* Allocate more to the pcp list if necessary */
1143 		if (unlikely(&page->lru == &pcp->list)) {
1144 			pcp->count += rmqueue_bulk(zone, 0,
1145 					pcp->batch, &pcp->list,
1146 					migratetype, cold);
1147 			page = list_entry(pcp->list.next, struct page, lru);
1148 		}
1149 
1150 		list_del(&page->lru);
1151 		pcp->count--;
1152 	} else {
1153 		if (unlikely(gfp_flags & __GFP_NOFAIL)) {
1154 			/*
1155 			 * __GFP_NOFAIL is not to be used in new code.
1156 			 *
1157 			 * All __GFP_NOFAIL callers should be fixed so that they
1158 			 * properly detect and handle allocation failures.
1159 			 *
1160 			 * We most definitely don't want callers attempting to
1161 			 * allocate greater than order-1 page units with
1162 			 * __GFP_NOFAIL.
1163 			 */
1164 			WARN_ON_ONCE(order > 1);
1165 		}
1166 		spin_lock_irqsave(&zone->lock, flags);
1167 		page = __rmqueue(zone, order, migratetype);
1168 		__mod_zone_page_state(zone, NR_FREE_PAGES, -(1 << order));
1169 		spin_unlock(&zone->lock);
1170 		if (!page)
1171 			goto failed;
1172 	}
1173 
1174 	__count_zone_vm_events(PGALLOC, zone, 1 << order);
1175 	zone_statistics(preferred_zone, zone);
1176 	local_irq_restore(flags);
1177 	put_cpu();
1178 
1179 	VM_BUG_ON(bad_range(zone, page));
1180 	if (prep_new_page(page, order, gfp_flags))
1181 		goto again;
1182 	return page;
1183 
1184 failed:
1185 	local_irq_restore(flags);
1186 	put_cpu();
1187 	return NULL;
1188 }
1189 
1190 /* The ALLOC_WMARK bits are used as an index to zone->watermark */
1191 #define ALLOC_WMARK_MIN		WMARK_MIN
1192 #define ALLOC_WMARK_LOW		WMARK_LOW
1193 #define ALLOC_WMARK_HIGH	WMARK_HIGH
1194 #define ALLOC_NO_WATERMARKS	0x04 /* don't check watermarks at all */
1195 
1196 /* Mask to get the watermark bits */
1197 #define ALLOC_WMARK_MASK	(ALLOC_NO_WATERMARKS-1)
1198 
1199 #define ALLOC_HARDER		0x10 /* try to alloc harder */
1200 #define ALLOC_HIGH		0x20 /* __GFP_HIGH set */
1201 #define ALLOC_CPUSET		0x40 /* check for correct cpuset */
1202 
1203 #ifdef CONFIG_FAIL_PAGE_ALLOC
1204 
1205 static struct fail_page_alloc_attr {
1206 	struct fault_attr attr;
1207 
1208 	u32 ignore_gfp_highmem;
1209 	u32 ignore_gfp_wait;
1210 	u32 min_order;
1211 
1212 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1213 
1214 	struct dentry *ignore_gfp_highmem_file;
1215 	struct dentry *ignore_gfp_wait_file;
1216 	struct dentry *min_order_file;
1217 
1218 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1219 
1220 } fail_page_alloc = {
1221 	.attr = FAULT_ATTR_INITIALIZER,
1222 	.ignore_gfp_wait = 1,
1223 	.ignore_gfp_highmem = 1,
1224 	.min_order = 1,
1225 };
1226 
1227 static int __init setup_fail_page_alloc(char *str)
1228 {
1229 	return setup_fault_attr(&fail_page_alloc.attr, str);
1230 }
1231 __setup("fail_page_alloc=", setup_fail_page_alloc);
1232 
1233 static int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1234 {
1235 	if (order < fail_page_alloc.min_order)
1236 		return 0;
1237 	if (gfp_mask & __GFP_NOFAIL)
1238 		return 0;
1239 	if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
1240 		return 0;
1241 	if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
1242 		return 0;
1243 
1244 	return should_fail(&fail_page_alloc.attr, 1 << order);
1245 }
1246 
1247 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1248 
1249 static int __init fail_page_alloc_debugfs(void)
1250 {
1251 	mode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
1252 	struct dentry *dir;
1253 	int err;
1254 
1255 	err = init_fault_attr_dentries(&fail_page_alloc.attr,
1256 				       "fail_page_alloc");
1257 	if (err)
1258 		return err;
1259 	dir = fail_page_alloc.attr.dentries.dir;
1260 
1261 	fail_page_alloc.ignore_gfp_wait_file =
1262 		debugfs_create_bool("ignore-gfp-wait", mode, dir,
1263 				      &fail_page_alloc.ignore_gfp_wait);
1264 
1265 	fail_page_alloc.ignore_gfp_highmem_file =
1266 		debugfs_create_bool("ignore-gfp-highmem", mode, dir,
1267 				      &fail_page_alloc.ignore_gfp_highmem);
1268 	fail_page_alloc.min_order_file =
1269 		debugfs_create_u32("min-order", mode, dir,
1270 				   &fail_page_alloc.min_order);
1271 
1272 	if (!fail_page_alloc.ignore_gfp_wait_file ||
1273             !fail_page_alloc.ignore_gfp_highmem_file ||
1274             !fail_page_alloc.min_order_file) {
1275 		err = -ENOMEM;
1276 		debugfs_remove(fail_page_alloc.ignore_gfp_wait_file);
1277 		debugfs_remove(fail_page_alloc.ignore_gfp_highmem_file);
1278 		debugfs_remove(fail_page_alloc.min_order_file);
1279 		cleanup_fault_attr_dentries(&fail_page_alloc.attr);
1280 	}
1281 
1282 	return err;
1283 }
1284 
1285 late_initcall(fail_page_alloc_debugfs);
1286 
1287 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1288 
1289 #else /* CONFIG_FAIL_PAGE_ALLOC */
1290 
1291 static inline int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1292 {
1293 	return 0;
1294 }
1295 
1296 #endif /* CONFIG_FAIL_PAGE_ALLOC */
1297 
1298 /*
1299  * Return 1 if free pages are above 'mark'. This takes into account the order
1300  * of the allocation.
1301  */
1302 int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1303 		      int classzone_idx, int alloc_flags)
1304 {
1305 	/* free_pages my go negative - that's OK */
1306 	long min = mark;
1307 	long free_pages = zone_page_state(z, NR_FREE_PAGES) - (1 << order) + 1;
1308 	int o;
1309 
1310 	if (alloc_flags & ALLOC_HIGH)
1311 		min -= min / 2;
1312 	if (alloc_flags & ALLOC_HARDER)
1313 		min -= min / 4;
1314 
1315 	if (free_pages <= min + z->lowmem_reserve[classzone_idx])
1316 		return 0;
1317 	for (o = 0; o < order; o++) {
1318 		/* At the next order, this order's pages become unavailable */
1319 		free_pages -= z->free_area[o].nr_free << o;
1320 
1321 		/* Require fewer higher order pages to be free */
1322 		min >>= 1;
1323 
1324 		if (free_pages <= min)
1325 			return 0;
1326 	}
1327 	return 1;
1328 }
1329 
1330 #ifdef CONFIG_NUMA
1331 /*
1332  * zlc_setup - Setup for "zonelist cache".  Uses cached zone data to
1333  * skip over zones that are not allowed by the cpuset, or that have
1334  * been recently (in last second) found to be nearly full.  See further
1335  * comments in mmzone.h.  Reduces cache footprint of zonelist scans
1336  * that have to skip over a lot of full or unallowed zones.
1337  *
1338  * If the zonelist cache is present in the passed in zonelist, then
1339  * returns a pointer to the allowed node mask (either the current
1340  * tasks mems_allowed, or node_states[N_HIGH_MEMORY].)
1341  *
1342  * If the zonelist cache is not available for this zonelist, does
1343  * nothing and returns NULL.
1344  *
1345  * If the fullzones BITMAP in the zonelist cache is stale (more than
1346  * a second since last zap'd) then we zap it out (clear its bits.)
1347  *
1348  * We hold off even calling zlc_setup, until after we've checked the
1349  * first zone in the zonelist, on the theory that most allocations will
1350  * be satisfied from that first zone, so best to examine that zone as
1351  * quickly as we can.
1352  */
1353 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1354 {
1355 	struct zonelist_cache *zlc;	/* cached zonelist speedup info */
1356 	nodemask_t *allowednodes;	/* zonelist_cache approximation */
1357 
1358 	zlc = zonelist->zlcache_ptr;
1359 	if (!zlc)
1360 		return NULL;
1361 
1362 	if (time_after(jiffies, zlc->last_full_zap + HZ)) {
1363 		bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1364 		zlc->last_full_zap = jiffies;
1365 	}
1366 
1367 	allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1368 					&cpuset_current_mems_allowed :
1369 					&node_states[N_HIGH_MEMORY];
1370 	return allowednodes;
1371 }
1372 
1373 /*
1374  * Given 'z' scanning a zonelist, run a couple of quick checks to see
1375  * if it is worth looking at further for free memory:
1376  *  1) Check that the zone isn't thought to be full (doesn't have its
1377  *     bit set in the zonelist_cache fullzones BITMAP).
1378  *  2) Check that the zones node (obtained from the zonelist_cache
1379  *     z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1380  * Return true (non-zero) if zone is worth looking at further, or
1381  * else return false (zero) if it is not.
1382  *
1383  * This check -ignores- the distinction between various watermarks,
1384  * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ...  If a zone is
1385  * found to be full for any variation of these watermarks, it will
1386  * be considered full for up to one second by all requests, unless
1387  * we are so low on memory on all allowed nodes that we are forced
1388  * into the second scan of the zonelist.
1389  *
1390  * In the second scan we ignore this zonelist cache and exactly
1391  * apply the watermarks to all zones, even it is slower to do so.
1392  * We are low on memory in the second scan, and should leave no stone
1393  * unturned looking for a free page.
1394  */
1395 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1396 						nodemask_t *allowednodes)
1397 {
1398 	struct zonelist_cache *zlc;	/* cached zonelist speedup info */
1399 	int i;				/* index of *z in zonelist zones */
1400 	int n;				/* node that zone *z is on */
1401 
1402 	zlc = zonelist->zlcache_ptr;
1403 	if (!zlc)
1404 		return 1;
1405 
1406 	i = z - zonelist->_zonerefs;
1407 	n = zlc->z_to_n[i];
1408 
1409 	/* This zone is worth trying if it is allowed but not full */
1410 	return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1411 }
1412 
1413 /*
1414  * Given 'z' scanning a zonelist, set the corresponding bit in
1415  * zlc->fullzones, so that subsequent attempts to allocate a page
1416  * from that zone don't waste time re-examining it.
1417  */
1418 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1419 {
1420 	struct zonelist_cache *zlc;	/* cached zonelist speedup info */
1421 	int i;				/* index of *z in zonelist zones */
1422 
1423 	zlc = zonelist->zlcache_ptr;
1424 	if (!zlc)
1425 		return;
1426 
1427 	i = z - zonelist->_zonerefs;
1428 
1429 	set_bit(i, zlc->fullzones);
1430 }
1431 
1432 #else	/* CONFIG_NUMA */
1433 
1434 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1435 {
1436 	return NULL;
1437 }
1438 
1439 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1440 				nodemask_t *allowednodes)
1441 {
1442 	return 1;
1443 }
1444 
1445 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1446 {
1447 }
1448 #endif	/* CONFIG_NUMA */
1449 
1450 /*
1451  * get_page_from_freelist goes through the zonelist trying to allocate
1452  * a page.
1453  */
1454 static struct page *
1455 get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order,
1456 		struct zonelist *zonelist, int high_zoneidx, int alloc_flags,
1457 		struct zone *preferred_zone, int migratetype)
1458 {
1459 	struct zoneref *z;
1460 	struct page *page = NULL;
1461 	int classzone_idx;
1462 	struct zone *zone;
1463 	nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
1464 	int zlc_active = 0;		/* set if using zonelist_cache */
1465 	int did_zlc_setup = 0;		/* just call zlc_setup() one time */
1466 
1467 	classzone_idx = zone_idx(preferred_zone);
1468 zonelist_scan:
1469 	/*
1470 	 * Scan zonelist, looking for a zone with enough free.
1471 	 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1472 	 */
1473 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
1474 						high_zoneidx, nodemask) {
1475 		if (NUMA_BUILD && zlc_active &&
1476 			!zlc_zone_worth_trying(zonelist, z, allowednodes))
1477 				continue;
1478 		if ((alloc_flags & ALLOC_CPUSET) &&
1479 			!cpuset_zone_allowed_softwall(zone, gfp_mask))
1480 				goto try_next_zone;
1481 
1482 		BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
1483 		if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
1484 			unsigned long mark;
1485 			int ret;
1486 
1487 			mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
1488 			if (zone_watermark_ok(zone, order, mark,
1489 				    classzone_idx, alloc_flags))
1490 				goto try_this_zone;
1491 
1492 			if (zone_reclaim_mode == 0)
1493 				goto this_zone_full;
1494 
1495 			ret = zone_reclaim(zone, gfp_mask, order);
1496 			switch (ret) {
1497 			case ZONE_RECLAIM_NOSCAN:
1498 				/* did not scan */
1499 				goto try_next_zone;
1500 			case ZONE_RECLAIM_FULL:
1501 				/* scanned but unreclaimable */
1502 				goto this_zone_full;
1503 			default:
1504 				/* did we reclaim enough */
1505 				if (!zone_watermark_ok(zone, order, mark,
1506 						classzone_idx, alloc_flags))
1507 					goto this_zone_full;
1508 			}
1509 		}
1510 
1511 try_this_zone:
1512 		page = buffered_rmqueue(preferred_zone, zone, order,
1513 						gfp_mask, migratetype);
1514 		if (page)
1515 			break;
1516 this_zone_full:
1517 		if (NUMA_BUILD)
1518 			zlc_mark_zone_full(zonelist, z);
1519 try_next_zone:
1520 		if (NUMA_BUILD && !did_zlc_setup && nr_online_nodes > 1) {
1521 			/*
1522 			 * we do zlc_setup after the first zone is tried but only
1523 			 * if there are multiple nodes make it worthwhile
1524 			 */
1525 			allowednodes = zlc_setup(zonelist, alloc_flags);
1526 			zlc_active = 1;
1527 			did_zlc_setup = 1;
1528 		}
1529 	}
1530 
1531 	if (unlikely(NUMA_BUILD && page == NULL && zlc_active)) {
1532 		/* Disable zlc cache for second zonelist scan */
1533 		zlc_active = 0;
1534 		goto zonelist_scan;
1535 	}
1536 	return page;
1537 }
1538 
1539 static inline int
1540 should_alloc_retry(gfp_t gfp_mask, unsigned int order,
1541 				unsigned long pages_reclaimed)
1542 {
1543 	/* Do not loop if specifically requested */
1544 	if (gfp_mask & __GFP_NORETRY)
1545 		return 0;
1546 
1547 	/*
1548 	 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
1549 	 * means __GFP_NOFAIL, but that may not be true in other
1550 	 * implementations.
1551 	 */
1552 	if (order <= PAGE_ALLOC_COSTLY_ORDER)
1553 		return 1;
1554 
1555 	/*
1556 	 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
1557 	 * specified, then we retry until we no longer reclaim any pages
1558 	 * (above), or we've reclaimed an order of pages at least as
1559 	 * large as the allocation's order. In both cases, if the
1560 	 * allocation still fails, we stop retrying.
1561 	 */
1562 	if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order))
1563 		return 1;
1564 
1565 	/*
1566 	 * Don't let big-order allocations loop unless the caller
1567 	 * explicitly requests that.
1568 	 */
1569 	if (gfp_mask & __GFP_NOFAIL)
1570 		return 1;
1571 
1572 	return 0;
1573 }
1574 
1575 static inline struct page *
1576 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
1577 	struct zonelist *zonelist, enum zone_type high_zoneidx,
1578 	nodemask_t *nodemask, struct zone *preferred_zone,
1579 	int migratetype)
1580 {
1581 	struct page *page;
1582 
1583 	/* Acquire the OOM killer lock for the zones in zonelist */
1584 	if (!try_set_zone_oom(zonelist, gfp_mask)) {
1585 		schedule_timeout_uninterruptible(1);
1586 		return NULL;
1587 	}
1588 
1589 	/*
1590 	 * Go through the zonelist yet one more time, keep very high watermark
1591 	 * here, this is only to catch a parallel oom killing, we must fail if
1592 	 * we're still under heavy pressure.
1593 	 */
1594 	page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask,
1595 		order, zonelist, high_zoneidx,
1596 		ALLOC_WMARK_HIGH|ALLOC_CPUSET,
1597 		preferred_zone, migratetype);
1598 	if (page)
1599 		goto out;
1600 
1601 	/* The OOM killer will not help higher order allocs */
1602 	if (order > PAGE_ALLOC_COSTLY_ORDER && !(gfp_mask & __GFP_NOFAIL))
1603 		goto out;
1604 
1605 	/* Exhausted what can be done so it's blamo time */
1606 	out_of_memory(zonelist, gfp_mask, order);
1607 
1608 out:
1609 	clear_zonelist_oom(zonelist, gfp_mask);
1610 	return page;
1611 }
1612 
1613 /* The really slow allocator path where we enter direct reclaim */
1614 static inline struct page *
1615 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
1616 	struct zonelist *zonelist, enum zone_type high_zoneidx,
1617 	nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
1618 	int migratetype, unsigned long *did_some_progress)
1619 {
1620 	struct page *page = NULL;
1621 	struct reclaim_state reclaim_state;
1622 	struct task_struct *p = current;
1623 
1624 	cond_resched();
1625 
1626 	/* We now go into synchronous reclaim */
1627 	cpuset_memory_pressure_bump();
1628 
1629 	/*
1630 	 * The task's cpuset might have expanded its set of allowable nodes
1631 	 */
1632 	p->flags |= PF_MEMALLOC;
1633 	lockdep_set_current_reclaim_state(gfp_mask);
1634 	reclaim_state.reclaimed_slab = 0;
1635 	p->reclaim_state = &reclaim_state;
1636 
1637 	*did_some_progress = try_to_free_pages(zonelist, order, gfp_mask, nodemask);
1638 
1639 	p->reclaim_state = NULL;
1640 	lockdep_clear_current_reclaim_state();
1641 	p->flags &= ~PF_MEMALLOC;
1642 
1643 	cond_resched();
1644 
1645 	if (order != 0)
1646 		drain_all_pages();
1647 
1648 	if (likely(*did_some_progress))
1649 		page = get_page_from_freelist(gfp_mask, nodemask, order,
1650 					zonelist, high_zoneidx,
1651 					alloc_flags, preferred_zone,
1652 					migratetype);
1653 	return page;
1654 }
1655 
1656 /*
1657  * This is called in the allocator slow-path if the allocation request is of
1658  * sufficient urgency to ignore watermarks and take other desperate measures
1659  */
1660 static inline struct page *
1661 __alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order,
1662 	struct zonelist *zonelist, enum zone_type high_zoneidx,
1663 	nodemask_t *nodemask, struct zone *preferred_zone,
1664 	int migratetype)
1665 {
1666 	struct page *page;
1667 
1668 	do {
1669 		page = get_page_from_freelist(gfp_mask, nodemask, order,
1670 			zonelist, high_zoneidx, ALLOC_NO_WATERMARKS,
1671 			preferred_zone, migratetype);
1672 
1673 		if (!page && gfp_mask & __GFP_NOFAIL)
1674 			congestion_wait(BLK_RW_ASYNC, HZ/50);
1675 	} while (!page && (gfp_mask & __GFP_NOFAIL));
1676 
1677 	return page;
1678 }
1679 
1680 static inline
1681 void wake_all_kswapd(unsigned int order, struct zonelist *zonelist,
1682 						enum zone_type high_zoneidx)
1683 {
1684 	struct zoneref *z;
1685 	struct zone *zone;
1686 
1687 	for_each_zone_zonelist(zone, z, zonelist, high_zoneidx)
1688 		wakeup_kswapd(zone, order);
1689 }
1690 
1691 static inline int
1692 gfp_to_alloc_flags(gfp_t gfp_mask)
1693 {
1694 	struct task_struct *p = current;
1695 	int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
1696 	const gfp_t wait = gfp_mask & __GFP_WAIT;
1697 
1698 	/* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
1699 	BUILD_BUG_ON(__GFP_HIGH != ALLOC_HIGH);
1700 
1701 	/*
1702 	 * The caller may dip into page reserves a bit more if the caller
1703 	 * cannot run direct reclaim, or if the caller has realtime scheduling
1704 	 * policy or is asking for __GFP_HIGH memory.  GFP_ATOMIC requests will
1705 	 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
1706 	 */
1707 	alloc_flags |= (gfp_mask & __GFP_HIGH);
1708 
1709 	if (!wait) {
1710 		alloc_flags |= ALLOC_HARDER;
1711 		/*
1712 		 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
1713 		 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1714 		 */
1715 		alloc_flags &= ~ALLOC_CPUSET;
1716 	} else if (unlikely(rt_task(p)))
1717 		alloc_flags |= ALLOC_HARDER;
1718 
1719 	if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
1720 		if (!in_interrupt() &&
1721 		    ((p->flags & PF_MEMALLOC) ||
1722 		     unlikely(test_thread_flag(TIF_MEMDIE))))
1723 			alloc_flags |= ALLOC_NO_WATERMARKS;
1724 	}
1725 
1726 	return alloc_flags;
1727 }
1728 
1729 static inline struct page *
1730 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
1731 	struct zonelist *zonelist, enum zone_type high_zoneidx,
1732 	nodemask_t *nodemask, struct zone *preferred_zone,
1733 	int migratetype)
1734 {
1735 	const gfp_t wait = gfp_mask & __GFP_WAIT;
1736 	struct page *page = NULL;
1737 	int alloc_flags;
1738 	unsigned long pages_reclaimed = 0;
1739 	unsigned long did_some_progress;
1740 	struct task_struct *p = current;
1741 
1742 	/*
1743 	 * In the slowpath, we sanity check order to avoid ever trying to
1744 	 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
1745 	 * be using allocators in order of preference for an area that is
1746 	 * too large.
1747 	 */
1748 	if (order >= MAX_ORDER) {
1749 		WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
1750 		return NULL;
1751 	}
1752 
1753 	/*
1754 	 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
1755 	 * __GFP_NOWARN set) should not cause reclaim since the subsystem
1756 	 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
1757 	 * using a larger set of nodes after it has established that the
1758 	 * allowed per node queues are empty and that nodes are
1759 	 * over allocated.
1760 	 */
1761 	if (NUMA_BUILD && (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
1762 		goto nopage;
1763 
1764 	wake_all_kswapd(order, zonelist, high_zoneidx);
1765 
1766 	/*
1767 	 * OK, we're below the kswapd watermark and have kicked background
1768 	 * reclaim. Now things get more complex, so set up alloc_flags according
1769 	 * to how we want to proceed.
1770 	 */
1771 	alloc_flags = gfp_to_alloc_flags(gfp_mask);
1772 
1773 restart:
1774 	/* This is the last chance, in general, before the goto nopage. */
1775 	page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist,
1776 			high_zoneidx, alloc_flags & ~ALLOC_NO_WATERMARKS,
1777 			preferred_zone, migratetype);
1778 	if (page)
1779 		goto got_pg;
1780 
1781 rebalance:
1782 	/* Allocate without watermarks if the context allows */
1783 	if (alloc_flags & ALLOC_NO_WATERMARKS) {
1784 		page = __alloc_pages_high_priority(gfp_mask, order,
1785 				zonelist, high_zoneidx, nodemask,
1786 				preferred_zone, migratetype);
1787 		if (page)
1788 			goto got_pg;
1789 	}
1790 
1791 	/* Atomic allocations - we can't balance anything */
1792 	if (!wait)
1793 		goto nopage;
1794 
1795 	/* Avoid recursion of direct reclaim */
1796 	if (p->flags & PF_MEMALLOC)
1797 		goto nopage;
1798 
1799 	/* Avoid allocations with no watermarks from looping endlessly */
1800 	if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
1801 		goto nopage;
1802 
1803 	/* Try direct reclaim and then allocating */
1804 	page = __alloc_pages_direct_reclaim(gfp_mask, order,
1805 					zonelist, high_zoneidx,
1806 					nodemask,
1807 					alloc_flags, preferred_zone,
1808 					migratetype, &did_some_progress);
1809 	if (page)
1810 		goto got_pg;
1811 
1812 	/*
1813 	 * If we failed to make any progress reclaiming, then we are
1814 	 * running out of options and have to consider going OOM
1815 	 */
1816 	if (!did_some_progress) {
1817 		if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
1818 			if (oom_killer_disabled)
1819 				goto nopage;
1820 			page = __alloc_pages_may_oom(gfp_mask, order,
1821 					zonelist, high_zoneidx,
1822 					nodemask, preferred_zone,
1823 					migratetype);
1824 			if (page)
1825 				goto got_pg;
1826 
1827 			/*
1828 			 * The OOM killer does not trigger for high-order
1829 			 * ~__GFP_NOFAIL allocations so if no progress is being
1830 			 * made, there are no other options and retrying is
1831 			 * unlikely to help.
1832 			 */
1833 			if (order > PAGE_ALLOC_COSTLY_ORDER &&
1834 						!(gfp_mask & __GFP_NOFAIL))
1835 				goto nopage;
1836 
1837 			goto restart;
1838 		}
1839 	}
1840 
1841 	/* Check if we should retry the allocation */
1842 	pages_reclaimed += did_some_progress;
1843 	if (should_alloc_retry(gfp_mask, order, pages_reclaimed)) {
1844 		/* Wait for some write requests to complete then retry */
1845 		congestion_wait(BLK_RW_ASYNC, HZ/50);
1846 		goto rebalance;
1847 	}
1848 
1849 nopage:
1850 	if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) {
1851 		printk(KERN_WARNING "%s: page allocation failure."
1852 			" order:%d, mode:0x%x\n",
1853 			p->comm, order, gfp_mask);
1854 		dump_stack();
1855 		show_mem();
1856 	}
1857 	return page;
1858 got_pg:
1859 	if (kmemcheck_enabled)
1860 		kmemcheck_pagealloc_alloc(page, order, gfp_mask);
1861 	return page;
1862 
1863 }
1864 
1865 /*
1866  * This is the 'heart' of the zoned buddy allocator.
1867  */
1868 struct page *
1869 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
1870 			struct zonelist *zonelist, nodemask_t *nodemask)
1871 {
1872 	enum zone_type high_zoneidx = gfp_zone(gfp_mask);
1873 	struct zone *preferred_zone;
1874 	struct page *page;
1875 	int migratetype = allocflags_to_migratetype(gfp_mask);
1876 
1877 	gfp_mask &= gfp_allowed_mask;
1878 
1879 	lockdep_trace_alloc(gfp_mask);
1880 
1881 	might_sleep_if(gfp_mask & __GFP_WAIT);
1882 
1883 	if (should_fail_alloc_page(gfp_mask, order))
1884 		return NULL;
1885 
1886 	/*
1887 	 * Check the zones suitable for the gfp_mask contain at least one
1888 	 * valid zone. It's possible to have an empty zonelist as a result
1889 	 * of GFP_THISNODE and a memoryless node
1890 	 */
1891 	if (unlikely(!zonelist->_zonerefs->zone))
1892 		return NULL;
1893 
1894 	/* The preferred zone is used for statistics later */
1895 	first_zones_zonelist(zonelist, high_zoneidx, nodemask, &preferred_zone);
1896 	if (!preferred_zone)
1897 		return NULL;
1898 
1899 	/* First allocation attempt */
1900 	page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order,
1901 			zonelist, high_zoneidx, ALLOC_WMARK_LOW|ALLOC_CPUSET,
1902 			preferred_zone, migratetype);
1903 	if (unlikely(!page))
1904 		page = __alloc_pages_slowpath(gfp_mask, order,
1905 				zonelist, high_zoneidx, nodemask,
1906 				preferred_zone, migratetype);
1907 
1908 	return page;
1909 }
1910 EXPORT_SYMBOL(__alloc_pages_nodemask);
1911 
1912 /*
1913  * Common helper functions.
1914  */
1915 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1916 {
1917 	struct page * page;
1918 	page = alloc_pages(gfp_mask, order);
1919 	if (!page)
1920 		return 0;
1921 	return (unsigned long) page_address(page);
1922 }
1923 
1924 EXPORT_SYMBOL(__get_free_pages);
1925 
1926 unsigned long get_zeroed_page(gfp_t gfp_mask)
1927 {
1928 	struct page * page;
1929 
1930 	/*
1931 	 * get_zeroed_page() returns a 32-bit address, which cannot represent
1932 	 * a highmem page
1933 	 */
1934 	VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
1935 
1936 	page = alloc_pages(gfp_mask | __GFP_ZERO, 0);
1937 	if (page)
1938 		return (unsigned long) page_address(page);
1939 	return 0;
1940 }
1941 
1942 EXPORT_SYMBOL(get_zeroed_page);
1943 
1944 void __pagevec_free(struct pagevec *pvec)
1945 {
1946 	int i = pagevec_count(pvec);
1947 
1948 	while (--i >= 0)
1949 		free_hot_cold_page(pvec->pages[i], pvec->cold);
1950 }
1951 
1952 void __free_pages(struct page *page, unsigned int order)
1953 {
1954 	if (put_page_testzero(page)) {
1955 		if (order == 0)
1956 			free_hot_page(page);
1957 		else
1958 			__free_pages_ok(page, order);
1959 	}
1960 }
1961 
1962 EXPORT_SYMBOL(__free_pages);
1963 
1964 void free_pages(unsigned long addr, unsigned int order)
1965 {
1966 	if (addr != 0) {
1967 		VM_BUG_ON(!virt_addr_valid((void *)addr));
1968 		__free_pages(virt_to_page((void *)addr), order);
1969 	}
1970 }
1971 
1972 EXPORT_SYMBOL(free_pages);
1973 
1974 /**
1975  * alloc_pages_exact - allocate an exact number physically-contiguous pages.
1976  * @size: the number of bytes to allocate
1977  * @gfp_mask: GFP flags for the allocation
1978  *
1979  * This function is similar to alloc_pages(), except that it allocates the
1980  * minimum number of pages to satisfy the request.  alloc_pages() can only
1981  * allocate memory in power-of-two pages.
1982  *
1983  * This function is also limited by MAX_ORDER.
1984  *
1985  * Memory allocated by this function must be released by free_pages_exact().
1986  */
1987 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
1988 {
1989 	unsigned int order = get_order(size);
1990 	unsigned long addr;
1991 
1992 	addr = __get_free_pages(gfp_mask, order);
1993 	if (addr) {
1994 		unsigned long alloc_end = addr + (PAGE_SIZE << order);
1995 		unsigned long used = addr + PAGE_ALIGN(size);
1996 
1997 		split_page(virt_to_page((void *)addr), order);
1998 		while (used < alloc_end) {
1999 			free_page(used);
2000 			used += PAGE_SIZE;
2001 		}
2002 	}
2003 
2004 	return (void *)addr;
2005 }
2006 EXPORT_SYMBOL(alloc_pages_exact);
2007 
2008 /**
2009  * free_pages_exact - release memory allocated via alloc_pages_exact()
2010  * @virt: the value returned by alloc_pages_exact.
2011  * @size: size of allocation, same value as passed to alloc_pages_exact().
2012  *
2013  * Release the memory allocated by a previous call to alloc_pages_exact.
2014  */
2015 void free_pages_exact(void *virt, size_t size)
2016 {
2017 	unsigned long addr = (unsigned long)virt;
2018 	unsigned long end = addr + PAGE_ALIGN(size);
2019 
2020 	while (addr < end) {
2021 		free_page(addr);
2022 		addr += PAGE_SIZE;
2023 	}
2024 }
2025 EXPORT_SYMBOL(free_pages_exact);
2026 
2027 static unsigned int nr_free_zone_pages(int offset)
2028 {
2029 	struct zoneref *z;
2030 	struct zone *zone;
2031 
2032 	/* Just pick one node, since fallback list is circular */
2033 	unsigned int sum = 0;
2034 
2035 	struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
2036 
2037 	for_each_zone_zonelist(zone, z, zonelist, offset) {
2038 		unsigned long size = zone->present_pages;
2039 		unsigned long high = high_wmark_pages(zone);
2040 		if (size > high)
2041 			sum += size - high;
2042 	}
2043 
2044 	return sum;
2045 }
2046 
2047 /*
2048  * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
2049  */
2050 unsigned int nr_free_buffer_pages(void)
2051 {
2052 	return nr_free_zone_pages(gfp_zone(GFP_USER));
2053 }
2054 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
2055 
2056 /*
2057  * Amount of free RAM allocatable within all zones
2058  */
2059 unsigned int nr_free_pagecache_pages(void)
2060 {
2061 	return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
2062 }
2063 
2064 static inline void show_node(struct zone *zone)
2065 {
2066 	if (NUMA_BUILD)
2067 		printk("Node %d ", zone_to_nid(zone));
2068 }
2069 
2070 void si_meminfo(struct sysinfo *val)
2071 {
2072 	val->totalram = totalram_pages;
2073 	val->sharedram = 0;
2074 	val->freeram = global_page_state(NR_FREE_PAGES);
2075 	val->bufferram = nr_blockdev_pages();
2076 	val->totalhigh = totalhigh_pages;
2077 	val->freehigh = nr_free_highpages();
2078 	val->mem_unit = PAGE_SIZE;
2079 }
2080 
2081 EXPORT_SYMBOL(si_meminfo);
2082 
2083 #ifdef CONFIG_NUMA
2084 void si_meminfo_node(struct sysinfo *val, int nid)
2085 {
2086 	pg_data_t *pgdat = NODE_DATA(nid);
2087 
2088 	val->totalram = pgdat->node_present_pages;
2089 	val->freeram = node_page_state(nid, NR_FREE_PAGES);
2090 #ifdef CONFIG_HIGHMEM
2091 	val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
2092 	val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
2093 			NR_FREE_PAGES);
2094 #else
2095 	val->totalhigh = 0;
2096 	val->freehigh = 0;
2097 #endif
2098 	val->mem_unit = PAGE_SIZE;
2099 }
2100 #endif
2101 
2102 #define K(x) ((x) << (PAGE_SHIFT-10))
2103 
2104 /*
2105  * Show free area list (used inside shift_scroll-lock stuff)
2106  * We also calculate the percentage fragmentation. We do this by counting the
2107  * memory on each free list with the exception of the first item on the list.
2108  */
2109 void show_free_areas(void)
2110 {
2111 	int cpu;
2112 	struct zone *zone;
2113 
2114 	for_each_populated_zone(zone) {
2115 		show_node(zone);
2116 		printk("%s per-cpu:\n", zone->name);
2117 
2118 		for_each_online_cpu(cpu) {
2119 			struct per_cpu_pageset *pageset;
2120 
2121 			pageset = zone_pcp(zone, cpu);
2122 
2123 			printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
2124 			       cpu, pageset->pcp.high,
2125 			       pageset->pcp.batch, pageset->pcp.count);
2126 		}
2127 	}
2128 
2129 	printk("Active_anon:%lu active_file:%lu inactive_anon:%lu\n"
2130 		" inactive_file:%lu"
2131 		" unevictable:%lu"
2132 		" dirty:%lu writeback:%lu unstable:%lu\n"
2133 		" free:%lu slab:%lu mapped:%lu pagetables:%lu bounce:%lu\n",
2134 		global_page_state(NR_ACTIVE_ANON),
2135 		global_page_state(NR_ACTIVE_FILE),
2136 		global_page_state(NR_INACTIVE_ANON),
2137 		global_page_state(NR_INACTIVE_FILE),
2138 		global_page_state(NR_UNEVICTABLE),
2139 		global_page_state(NR_FILE_DIRTY),
2140 		global_page_state(NR_WRITEBACK),
2141 		global_page_state(NR_UNSTABLE_NFS),
2142 		global_page_state(NR_FREE_PAGES),
2143 		global_page_state(NR_SLAB_RECLAIMABLE) +
2144 			global_page_state(NR_SLAB_UNRECLAIMABLE),
2145 		global_page_state(NR_FILE_MAPPED),
2146 		global_page_state(NR_PAGETABLE),
2147 		global_page_state(NR_BOUNCE));
2148 
2149 	for_each_populated_zone(zone) {
2150 		int i;
2151 
2152 		show_node(zone);
2153 		printk("%s"
2154 			" free:%lukB"
2155 			" min:%lukB"
2156 			" low:%lukB"
2157 			" high:%lukB"
2158 			" active_anon:%lukB"
2159 			" inactive_anon:%lukB"
2160 			" active_file:%lukB"
2161 			" inactive_file:%lukB"
2162 			" unevictable:%lukB"
2163 			" present:%lukB"
2164 			" pages_scanned:%lu"
2165 			" all_unreclaimable? %s"
2166 			"\n",
2167 			zone->name,
2168 			K(zone_page_state(zone, NR_FREE_PAGES)),
2169 			K(min_wmark_pages(zone)),
2170 			K(low_wmark_pages(zone)),
2171 			K(high_wmark_pages(zone)),
2172 			K(zone_page_state(zone, NR_ACTIVE_ANON)),
2173 			K(zone_page_state(zone, NR_INACTIVE_ANON)),
2174 			K(zone_page_state(zone, NR_ACTIVE_FILE)),
2175 			K(zone_page_state(zone, NR_INACTIVE_FILE)),
2176 			K(zone_page_state(zone, NR_UNEVICTABLE)),
2177 			K(zone->present_pages),
2178 			zone->pages_scanned,
2179 			(zone_is_all_unreclaimable(zone) ? "yes" : "no")
2180 			);
2181 		printk("lowmem_reserve[]:");
2182 		for (i = 0; i < MAX_NR_ZONES; i++)
2183 			printk(" %lu", zone->lowmem_reserve[i]);
2184 		printk("\n");
2185 	}
2186 
2187 	for_each_populated_zone(zone) {
2188  		unsigned long nr[MAX_ORDER], flags, order, total = 0;
2189 
2190 		show_node(zone);
2191 		printk("%s: ", zone->name);
2192 
2193 		spin_lock_irqsave(&zone->lock, flags);
2194 		for (order = 0; order < MAX_ORDER; order++) {
2195 			nr[order] = zone->free_area[order].nr_free;
2196 			total += nr[order] << order;
2197 		}
2198 		spin_unlock_irqrestore(&zone->lock, flags);
2199 		for (order = 0; order < MAX_ORDER; order++)
2200 			printk("%lu*%lukB ", nr[order], K(1UL) << order);
2201 		printk("= %lukB\n", K(total));
2202 	}
2203 
2204 	printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
2205 
2206 	show_swap_cache_info();
2207 }
2208 
2209 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
2210 {
2211 	zoneref->zone = zone;
2212 	zoneref->zone_idx = zone_idx(zone);
2213 }
2214 
2215 /*
2216  * Builds allocation fallback zone lists.
2217  *
2218  * Add all populated zones of a node to the zonelist.
2219  */
2220 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
2221 				int nr_zones, enum zone_type zone_type)
2222 {
2223 	struct zone *zone;
2224 
2225 	BUG_ON(zone_type >= MAX_NR_ZONES);
2226 	zone_type++;
2227 
2228 	do {
2229 		zone_type--;
2230 		zone = pgdat->node_zones + zone_type;
2231 		if (populated_zone(zone)) {
2232 			zoneref_set_zone(zone,
2233 				&zonelist->_zonerefs[nr_zones++]);
2234 			check_highest_zone(zone_type);
2235 		}
2236 
2237 	} while (zone_type);
2238 	return nr_zones;
2239 }
2240 
2241 
2242 /*
2243  *  zonelist_order:
2244  *  0 = automatic detection of better ordering.
2245  *  1 = order by ([node] distance, -zonetype)
2246  *  2 = order by (-zonetype, [node] distance)
2247  *
2248  *  If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
2249  *  the same zonelist. So only NUMA can configure this param.
2250  */
2251 #define ZONELIST_ORDER_DEFAULT  0
2252 #define ZONELIST_ORDER_NODE     1
2253 #define ZONELIST_ORDER_ZONE     2
2254 
2255 /* zonelist order in the kernel.
2256  * set_zonelist_order() will set this to NODE or ZONE.
2257  */
2258 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
2259 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
2260 
2261 
2262 #ifdef CONFIG_NUMA
2263 /* The value user specified ....changed by config */
2264 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
2265 /* string for sysctl */
2266 #define NUMA_ZONELIST_ORDER_LEN	16
2267 char numa_zonelist_order[16] = "default";
2268 
2269 /*
2270  * interface for configure zonelist ordering.
2271  * command line option "numa_zonelist_order"
2272  *	= "[dD]efault	- default, automatic configuration.
2273  *	= "[nN]ode 	- order by node locality, then by zone within node
2274  *	= "[zZ]one      - order by zone, then by locality within zone
2275  */
2276 
2277 static int __parse_numa_zonelist_order(char *s)
2278 {
2279 	if (*s == 'd' || *s == 'D') {
2280 		user_zonelist_order = ZONELIST_ORDER_DEFAULT;
2281 	} else if (*s == 'n' || *s == 'N') {
2282 		user_zonelist_order = ZONELIST_ORDER_NODE;
2283 	} else if (*s == 'z' || *s == 'Z') {
2284 		user_zonelist_order = ZONELIST_ORDER_ZONE;
2285 	} else {
2286 		printk(KERN_WARNING
2287 			"Ignoring invalid numa_zonelist_order value:  "
2288 			"%s\n", s);
2289 		return -EINVAL;
2290 	}
2291 	return 0;
2292 }
2293 
2294 static __init int setup_numa_zonelist_order(char *s)
2295 {
2296 	if (s)
2297 		return __parse_numa_zonelist_order(s);
2298 	return 0;
2299 }
2300 early_param("numa_zonelist_order", setup_numa_zonelist_order);
2301 
2302 /*
2303  * sysctl handler for numa_zonelist_order
2304  */
2305 int numa_zonelist_order_handler(ctl_table *table, int write,
2306 		struct file *file, void __user *buffer, size_t *length,
2307 		loff_t *ppos)
2308 {
2309 	char saved_string[NUMA_ZONELIST_ORDER_LEN];
2310 	int ret;
2311 
2312 	if (write)
2313 		strncpy(saved_string, (char*)table->data,
2314 			NUMA_ZONELIST_ORDER_LEN);
2315 	ret = proc_dostring(table, write, file, buffer, length, ppos);
2316 	if (ret)
2317 		return ret;
2318 	if (write) {
2319 		int oldval = user_zonelist_order;
2320 		if (__parse_numa_zonelist_order((char*)table->data)) {
2321 			/*
2322 			 * bogus value.  restore saved string
2323 			 */
2324 			strncpy((char*)table->data, saved_string,
2325 				NUMA_ZONELIST_ORDER_LEN);
2326 			user_zonelist_order = oldval;
2327 		} else if (oldval != user_zonelist_order)
2328 			build_all_zonelists();
2329 	}
2330 	return 0;
2331 }
2332 
2333 
2334 #define MAX_NODE_LOAD (nr_online_nodes)
2335 static int node_load[MAX_NUMNODES];
2336 
2337 /**
2338  * find_next_best_node - find the next node that should appear in a given node's fallback list
2339  * @node: node whose fallback list we're appending
2340  * @used_node_mask: nodemask_t of already used nodes
2341  *
2342  * We use a number of factors to determine which is the next node that should
2343  * appear on a given node's fallback list.  The node should not have appeared
2344  * already in @node's fallback list, and it should be the next closest node
2345  * according to the distance array (which contains arbitrary distance values
2346  * from each node to each node in the system), and should also prefer nodes
2347  * with no CPUs, since presumably they'll have very little allocation pressure
2348  * on them otherwise.
2349  * It returns -1 if no node is found.
2350  */
2351 static int find_next_best_node(int node, nodemask_t *used_node_mask)
2352 {
2353 	int n, val;
2354 	int min_val = INT_MAX;
2355 	int best_node = -1;
2356 	const struct cpumask *tmp = cpumask_of_node(0);
2357 
2358 	/* Use the local node if we haven't already */
2359 	if (!node_isset(node, *used_node_mask)) {
2360 		node_set(node, *used_node_mask);
2361 		return node;
2362 	}
2363 
2364 	for_each_node_state(n, N_HIGH_MEMORY) {
2365 
2366 		/* Don't want a node to appear more than once */
2367 		if (node_isset(n, *used_node_mask))
2368 			continue;
2369 
2370 		/* Use the distance array to find the distance */
2371 		val = node_distance(node, n);
2372 
2373 		/* Penalize nodes under us ("prefer the next node") */
2374 		val += (n < node);
2375 
2376 		/* Give preference to headless and unused nodes */
2377 		tmp = cpumask_of_node(n);
2378 		if (!cpumask_empty(tmp))
2379 			val += PENALTY_FOR_NODE_WITH_CPUS;
2380 
2381 		/* Slight preference for less loaded node */
2382 		val *= (MAX_NODE_LOAD*MAX_NUMNODES);
2383 		val += node_load[n];
2384 
2385 		if (val < min_val) {
2386 			min_val = val;
2387 			best_node = n;
2388 		}
2389 	}
2390 
2391 	if (best_node >= 0)
2392 		node_set(best_node, *used_node_mask);
2393 
2394 	return best_node;
2395 }
2396 
2397 
2398 /*
2399  * Build zonelists ordered by node and zones within node.
2400  * This results in maximum locality--normal zone overflows into local
2401  * DMA zone, if any--but risks exhausting DMA zone.
2402  */
2403 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
2404 {
2405 	int j;
2406 	struct zonelist *zonelist;
2407 
2408 	zonelist = &pgdat->node_zonelists[0];
2409 	for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
2410 		;
2411 	j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2412 							MAX_NR_ZONES - 1);
2413 	zonelist->_zonerefs[j].zone = NULL;
2414 	zonelist->_zonerefs[j].zone_idx = 0;
2415 }
2416 
2417 /*
2418  * Build gfp_thisnode zonelists
2419  */
2420 static void build_thisnode_zonelists(pg_data_t *pgdat)
2421 {
2422 	int j;
2423 	struct zonelist *zonelist;
2424 
2425 	zonelist = &pgdat->node_zonelists[1];
2426 	j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
2427 	zonelist->_zonerefs[j].zone = NULL;
2428 	zonelist->_zonerefs[j].zone_idx = 0;
2429 }
2430 
2431 /*
2432  * Build zonelists ordered by zone and nodes within zones.
2433  * This results in conserving DMA zone[s] until all Normal memory is
2434  * exhausted, but results in overflowing to remote node while memory
2435  * may still exist in local DMA zone.
2436  */
2437 static int node_order[MAX_NUMNODES];
2438 
2439 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
2440 {
2441 	int pos, j, node;
2442 	int zone_type;		/* needs to be signed */
2443 	struct zone *z;
2444 	struct zonelist *zonelist;
2445 
2446 	zonelist = &pgdat->node_zonelists[0];
2447 	pos = 0;
2448 	for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
2449 		for (j = 0; j < nr_nodes; j++) {
2450 			node = node_order[j];
2451 			z = &NODE_DATA(node)->node_zones[zone_type];
2452 			if (populated_zone(z)) {
2453 				zoneref_set_zone(z,
2454 					&zonelist->_zonerefs[pos++]);
2455 				check_highest_zone(zone_type);
2456 			}
2457 		}
2458 	}
2459 	zonelist->_zonerefs[pos].zone = NULL;
2460 	zonelist->_zonerefs[pos].zone_idx = 0;
2461 }
2462 
2463 static int default_zonelist_order(void)
2464 {
2465 	int nid, zone_type;
2466 	unsigned long low_kmem_size,total_size;
2467 	struct zone *z;
2468 	int average_size;
2469 	/*
2470          * ZONE_DMA and ZONE_DMA32 can be very small area in the sytem.
2471 	 * If they are really small and used heavily, the system can fall
2472 	 * into OOM very easily.
2473 	 * This function detect ZONE_DMA/DMA32 size and confgigures zone order.
2474 	 */
2475 	/* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
2476 	low_kmem_size = 0;
2477 	total_size = 0;
2478 	for_each_online_node(nid) {
2479 		for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
2480 			z = &NODE_DATA(nid)->node_zones[zone_type];
2481 			if (populated_zone(z)) {
2482 				if (zone_type < ZONE_NORMAL)
2483 					low_kmem_size += z->present_pages;
2484 				total_size += z->present_pages;
2485 			}
2486 		}
2487 	}
2488 	if (!low_kmem_size ||  /* there are no DMA area. */
2489 	    low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
2490 		return ZONELIST_ORDER_NODE;
2491 	/*
2492 	 * look into each node's config.
2493   	 * If there is a node whose DMA/DMA32 memory is very big area on
2494  	 * local memory, NODE_ORDER may be suitable.
2495          */
2496 	average_size = total_size /
2497 				(nodes_weight(node_states[N_HIGH_MEMORY]) + 1);
2498 	for_each_online_node(nid) {
2499 		low_kmem_size = 0;
2500 		total_size = 0;
2501 		for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
2502 			z = &NODE_DATA(nid)->node_zones[zone_type];
2503 			if (populated_zone(z)) {
2504 				if (zone_type < ZONE_NORMAL)
2505 					low_kmem_size += z->present_pages;
2506 				total_size += z->present_pages;
2507 			}
2508 		}
2509 		if (low_kmem_size &&
2510 		    total_size > average_size && /* ignore small node */
2511 		    low_kmem_size > total_size * 70/100)
2512 			return ZONELIST_ORDER_NODE;
2513 	}
2514 	return ZONELIST_ORDER_ZONE;
2515 }
2516 
2517 static void set_zonelist_order(void)
2518 {
2519 	if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
2520 		current_zonelist_order = default_zonelist_order();
2521 	else
2522 		current_zonelist_order = user_zonelist_order;
2523 }
2524 
2525 static void build_zonelists(pg_data_t *pgdat)
2526 {
2527 	int j, node, load;
2528 	enum zone_type i;
2529 	nodemask_t used_mask;
2530 	int local_node, prev_node;
2531 	struct zonelist *zonelist;
2532 	int order = current_zonelist_order;
2533 
2534 	/* initialize zonelists */
2535 	for (i = 0; i < MAX_ZONELISTS; i++) {
2536 		zonelist = pgdat->node_zonelists + i;
2537 		zonelist->_zonerefs[0].zone = NULL;
2538 		zonelist->_zonerefs[0].zone_idx = 0;
2539 	}
2540 
2541 	/* NUMA-aware ordering of nodes */
2542 	local_node = pgdat->node_id;
2543 	load = nr_online_nodes;
2544 	prev_node = local_node;
2545 	nodes_clear(used_mask);
2546 
2547 	memset(node_order, 0, sizeof(node_order));
2548 	j = 0;
2549 
2550 	while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
2551 		int distance = node_distance(local_node, node);
2552 
2553 		/*
2554 		 * If another node is sufficiently far away then it is better
2555 		 * to reclaim pages in a zone before going off node.
2556 		 */
2557 		if (distance > RECLAIM_DISTANCE)
2558 			zone_reclaim_mode = 1;
2559 
2560 		/*
2561 		 * We don't want to pressure a particular node.
2562 		 * So adding penalty to the first node in same
2563 		 * distance group to make it round-robin.
2564 		 */
2565 		if (distance != node_distance(local_node, prev_node))
2566 			node_load[node] = load;
2567 
2568 		prev_node = node;
2569 		load--;
2570 		if (order == ZONELIST_ORDER_NODE)
2571 			build_zonelists_in_node_order(pgdat, node);
2572 		else
2573 			node_order[j++] = node;	/* remember order */
2574 	}
2575 
2576 	if (order == ZONELIST_ORDER_ZONE) {
2577 		/* calculate node order -- i.e., DMA last! */
2578 		build_zonelists_in_zone_order(pgdat, j);
2579 	}
2580 
2581 	build_thisnode_zonelists(pgdat);
2582 }
2583 
2584 /* Construct the zonelist performance cache - see further mmzone.h */
2585 static void build_zonelist_cache(pg_data_t *pgdat)
2586 {
2587 	struct zonelist *zonelist;
2588 	struct zonelist_cache *zlc;
2589 	struct zoneref *z;
2590 
2591 	zonelist = &pgdat->node_zonelists[0];
2592 	zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
2593 	bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
2594 	for (z = zonelist->_zonerefs; z->zone; z++)
2595 		zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
2596 }
2597 
2598 
2599 #else	/* CONFIG_NUMA */
2600 
2601 static void set_zonelist_order(void)
2602 {
2603 	current_zonelist_order = ZONELIST_ORDER_ZONE;
2604 }
2605 
2606 static void build_zonelists(pg_data_t *pgdat)
2607 {
2608 	int node, local_node;
2609 	enum zone_type j;
2610 	struct zonelist *zonelist;
2611 
2612 	local_node = pgdat->node_id;
2613 
2614 	zonelist = &pgdat->node_zonelists[0];
2615 	j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
2616 
2617 	/*
2618 	 * Now we build the zonelist so that it contains the zones
2619 	 * of all the other nodes.
2620 	 * We don't want to pressure a particular node, so when
2621 	 * building the zones for node N, we make sure that the
2622 	 * zones coming right after the local ones are those from
2623 	 * node N+1 (modulo N)
2624 	 */
2625 	for (node = local_node + 1; node < MAX_NUMNODES; node++) {
2626 		if (!node_online(node))
2627 			continue;
2628 		j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2629 							MAX_NR_ZONES - 1);
2630 	}
2631 	for (node = 0; node < local_node; node++) {
2632 		if (!node_online(node))
2633 			continue;
2634 		j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2635 							MAX_NR_ZONES - 1);
2636 	}
2637 
2638 	zonelist->_zonerefs[j].zone = NULL;
2639 	zonelist->_zonerefs[j].zone_idx = 0;
2640 }
2641 
2642 /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
2643 static void build_zonelist_cache(pg_data_t *pgdat)
2644 {
2645 	pgdat->node_zonelists[0].zlcache_ptr = NULL;
2646 }
2647 
2648 #endif	/* CONFIG_NUMA */
2649 
2650 /* return values int ....just for stop_machine() */
2651 static int __build_all_zonelists(void *dummy)
2652 {
2653 	int nid;
2654 
2655 #ifdef CONFIG_NUMA
2656 	memset(node_load, 0, sizeof(node_load));
2657 #endif
2658 	for_each_online_node(nid) {
2659 		pg_data_t *pgdat = NODE_DATA(nid);
2660 
2661 		build_zonelists(pgdat);
2662 		build_zonelist_cache(pgdat);
2663 	}
2664 	return 0;
2665 }
2666 
2667 void build_all_zonelists(void)
2668 {
2669 	set_zonelist_order();
2670 
2671 	if (system_state == SYSTEM_BOOTING) {
2672 		__build_all_zonelists(NULL);
2673 		mminit_verify_zonelist();
2674 		cpuset_init_current_mems_allowed();
2675 	} else {
2676 		/* we have to stop all cpus to guarantee there is no user
2677 		   of zonelist */
2678 		stop_machine(__build_all_zonelists, NULL, NULL);
2679 		/* cpuset refresh routine should be here */
2680 	}
2681 	vm_total_pages = nr_free_pagecache_pages();
2682 	/*
2683 	 * Disable grouping by mobility if the number of pages in the
2684 	 * system is too low to allow the mechanism to work. It would be
2685 	 * more accurate, but expensive to check per-zone. This check is
2686 	 * made on memory-hotadd so a system can start with mobility
2687 	 * disabled and enable it later
2688 	 */
2689 	if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
2690 		page_group_by_mobility_disabled = 1;
2691 	else
2692 		page_group_by_mobility_disabled = 0;
2693 
2694 	printk("Built %i zonelists in %s order, mobility grouping %s.  "
2695 		"Total pages: %ld\n",
2696 			nr_online_nodes,
2697 			zonelist_order_name[current_zonelist_order],
2698 			page_group_by_mobility_disabled ? "off" : "on",
2699 			vm_total_pages);
2700 #ifdef CONFIG_NUMA
2701 	printk("Policy zone: %s\n", zone_names[policy_zone]);
2702 #endif
2703 }
2704 
2705 /*
2706  * Helper functions to size the waitqueue hash table.
2707  * Essentially these want to choose hash table sizes sufficiently
2708  * large so that collisions trying to wait on pages are rare.
2709  * But in fact, the number of active page waitqueues on typical
2710  * systems is ridiculously low, less than 200. So this is even
2711  * conservative, even though it seems large.
2712  *
2713  * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
2714  * waitqueues, i.e. the size of the waitq table given the number of pages.
2715  */
2716 #define PAGES_PER_WAITQUEUE	256
2717 
2718 #ifndef CONFIG_MEMORY_HOTPLUG
2719 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
2720 {
2721 	unsigned long size = 1;
2722 
2723 	pages /= PAGES_PER_WAITQUEUE;
2724 
2725 	while (size < pages)
2726 		size <<= 1;
2727 
2728 	/*
2729 	 * Once we have dozens or even hundreds of threads sleeping
2730 	 * on IO we've got bigger problems than wait queue collision.
2731 	 * Limit the size of the wait table to a reasonable size.
2732 	 */
2733 	size = min(size, 4096UL);
2734 
2735 	return max(size, 4UL);
2736 }
2737 #else
2738 /*
2739  * A zone's size might be changed by hot-add, so it is not possible to determine
2740  * a suitable size for its wait_table.  So we use the maximum size now.
2741  *
2742  * The max wait table size = 4096 x sizeof(wait_queue_head_t).   ie:
2743  *
2744  *    i386 (preemption config)    : 4096 x 16 = 64Kbyte.
2745  *    ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
2746  *    ia64, x86-64 (preemption)   : 4096 x 24 = 96Kbyte.
2747  *
2748  * The maximum entries are prepared when a zone's memory is (512K + 256) pages
2749  * or more by the traditional way. (See above).  It equals:
2750  *
2751  *    i386, x86-64, powerpc(4K page size) : =  ( 2G + 1M)byte.
2752  *    ia64(16K page size)                 : =  ( 8G + 4M)byte.
2753  *    powerpc (64K page size)             : =  (32G +16M)byte.
2754  */
2755 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
2756 {
2757 	return 4096UL;
2758 }
2759 #endif
2760 
2761 /*
2762  * This is an integer logarithm so that shifts can be used later
2763  * to extract the more random high bits from the multiplicative
2764  * hash function before the remainder is taken.
2765  */
2766 static inline unsigned long wait_table_bits(unsigned long size)
2767 {
2768 	return ffz(~size);
2769 }
2770 
2771 #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
2772 
2773 /*
2774  * Mark a number of pageblocks as MIGRATE_RESERVE. The number
2775  * of blocks reserved is based on min_wmark_pages(zone). The memory within
2776  * the reserve will tend to store contiguous free pages. Setting min_free_kbytes
2777  * higher will lead to a bigger reserve which will get freed as contiguous
2778  * blocks as reclaim kicks in
2779  */
2780 static void setup_zone_migrate_reserve(struct zone *zone)
2781 {
2782 	unsigned long start_pfn, pfn, end_pfn;
2783 	struct page *page;
2784 	unsigned long reserve, block_migratetype;
2785 
2786 	/* Get the start pfn, end pfn and the number of blocks to reserve */
2787 	start_pfn = zone->zone_start_pfn;
2788 	end_pfn = start_pfn + zone->spanned_pages;
2789 	reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >>
2790 							pageblock_order;
2791 
2792 	for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
2793 		if (!pfn_valid(pfn))
2794 			continue;
2795 		page = pfn_to_page(pfn);
2796 
2797 		/* Watch out for overlapping nodes */
2798 		if (page_to_nid(page) != zone_to_nid(zone))
2799 			continue;
2800 
2801 		/* Blocks with reserved pages will never free, skip them. */
2802 		if (PageReserved(page))
2803 			continue;
2804 
2805 		block_migratetype = get_pageblock_migratetype(page);
2806 
2807 		/* If this block is reserved, account for it */
2808 		if (reserve > 0 && block_migratetype == MIGRATE_RESERVE) {
2809 			reserve--;
2810 			continue;
2811 		}
2812 
2813 		/* Suitable for reserving if this block is movable */
2814 		if (reserve > 0 && block_migratetype == MIGRATE_MOVABLE) {
2815 			set_pageblock_migratetype(page, MIGRATE_RESERVE);
2816 			move_freepages_block(zone, page, MIGRATE_RESERVE);
2817 			reserve--;
2818 			continue;
2819 		}
2820 
2821 		/*
2822 		 * If the reserve is met and this is a previous reserved block,
2823 		 * take it back
2824 		 */
2825 		if (block_migratetype == MIGRATE_RESERVE) {
2826 			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
2827 			move_freepages_block(zone, page, MIGRATE_MOVABLE);
2828 		}
2829 	}
2830 }
2831 
2832 /*
2833  * Initially all pages are reserved - free ones are freed
2834  * up by free_all_bootmem() once the early boot process is
2835  * done. Non-atomic initialization, single-pass.
2836  */
2837 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
2838 		unsigned long start_pfn, enum memmap_context context)
2839 {
2840 	struct page *page;
2841 	unsigned long end_pfn = start_pfn + size;
2842 	unsigned long pfn;
2843 	struct zone *z;
2844 
2845 	if (highest_memmap_pfn < end_pfn - 1)
2846 		highest_memmap_pfn = end_pfn - 1;
2847 
2848 	z = &NODE_DATA(nid)->node_zones[zone];
2849 	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
2850 		/*
2851 		 * There can be holes in boot-time mem_map[]s
2852 		 * handed to this function.  They do not
2853 		 * exist on hotplugged memory.
2854 		 */
2855 		if (context == MEMMAP_EARLY) {
2856 			if (!early_pfn_valid(pfn))
2857 				continue;
2858 			if (!early_pfn_in_nid(pfn, nid))
2859 				continue;
2860 		}
2861 		page = pfn_to_page(pfn);
2862 		set_page_links(page, zone, nid, pfn);
2863 		mminit_verify_page_links(page, zone, nid, pfn);
2864 		init_page_count(page);
2865 		reset_page_mapcount(page);
2866 		SetPageReserved(page);
2867 		/*
2868 		 * Mark the block movable so that blocks are reserved for
2869 		 * movable at startup. This will force kernel allocations
2870 		 * to reserve their blocks rather than leaking throughout
2871 		 * the address space during boot when many long-lived
2872 		 * kernel allocations are made. Later some blocks near
2873 		 * the start are marked MIGRATE_RESERVE by
2874 		 * setup_zone_migrate_reserve()
2875 		 *
2876 		 * bitmap is created for zone's valid pfn range. but memmap
2877 		 * can be created for invalid pages (for alignment)
2878 		 * check here not to call set_pageblock_migratetype() against
2879 		 * pfn out of zone.
2880 		 */
2881 		if ((z->zone_start_pfn <= pfn)
2882 		    && (pfn < z->zone_start_pfn + z->spanned_pages)
2883 		    && !(pfn & (pageblock_nr_pages - 1)))
2884 			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
2885 
2886 		INIT_LIST_HEAD(&page->lru);
2887 #ifdef WANT_PAGE_VIRTUAL
2888 		/* The shift won't overflow because ZONE_NORMAL is below 4G. */
2889 		if (!is_highmem_idx(zone))
2890 			set_page_address(page, __va(pfn << PAGE_SHIFT));
2891 #endif
2892 	}
2893 }
2894 
2895 static void __meminit zone_init_free_lists(struct zone *zone)
2896 {
2897 	int order, t;
2898 	for_each_migratetype_order(order, t) {
2899 		INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
2900 		zone->free_area[order].nr_free = 0;
2901 	}
2902 }
2903 
2904 #ifndef __HAVE_ARCH_MEMMAP_INIT
2905 #define memmap_init(size, nid, zone, start_pfn) \
2906 	memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
2907 #endif
2908 
2909 static int zone_batchsize(struct zone *zone)
2910 {
2911 #ifdef CONFIG_MMU
2912 	int batch;
2913 
2914 	/*
2915 	 * The per-cpu-pages pools are set to around 1000th of the
2916 	 * size of the zone.  But no more than 1/2 of a meg.
2917 	 *
2918 	 * OK, so we don't know how big the cache is.  So guess.
2919 	 */
2920 	batch = zone->present_pages / 1024;
2921 	if (batch * PAGE_SIZE > 512 * 1024)
2922 		batch = (512 * 1024) / PAGE_SIZE;
2923 	batch /= 4;		/* We effectively *= 4 below */
2924 	if (batch < 1)
2925 		batch = 1;
2926 
2927 	/*
2928 	 * Clamp the batch to a 2^n - 1 value. Having a power
2929 	 * of 2 value was found to be more likely to have
2930 	 * suboptimal cache aliasing properties in some cases.
2931 	 *
2932 	 * For example if 2 tasks are alternately allocating
2933 	 * batches of pages, one task can end up with a lot
2934 	 * of pages of one half of the possible page colors
2935 	 * and the other with pages of the other colors.
2936 	 */
2937 	batch = rounddown_pow_of_two(batch + batch/2) - 1;
2938 
2939 	return batch;
2940 
2941 #else
2942 	/* The deferral and batching of frees should be suppressed under NOMMU
2943 	 * conditions.
2944 	 *
2945 	 * The problem is that NOMMU needs to be able to allocate large chunks
2946 	 * of contiguous memory as there's no hardware page translation to
2947 	 * assemble apparent contiguous memory from discontiguous pages.
2948 	 *
2949 	 * Queueing large contiguous runs of pages for batching, however,
2950 	 * causes the pages to actually be freed in smaller chunks.  As there
2951 	 * can be a significant delay between the individual batches being
2952 	 * recycled, this leads to the once large chunks of space being
2953 	 * fragmented and becoming unavailable for high-order allocations.
2954 	 */
2955 	return 0;
2956 #endif
2957 }
2958 
2959 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
2960 {
2961 	struct per_cpu_pages *pcp;
2962 
2963 	memset(p, 0, sizeof(*p));
2964 
2965 	pcp = &p->pcp;
2966 	pcp->count = 0;
2967 	pcp->high = 6 * batch;
2968 	pcp->batch = max(1UL, 1 * batch);
2969 	INIT_LIST_HEAD(&pcp->list);
2970 }
2971 
2972 /*
2973  * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
2974  * to the value high for the pageset p.
2975  */
2976 
2977 static void setup_pagelist_highmark(struct per_cpu_pageset *p,
2978 				unsigned long high)
2979 {
2980 	struct per_cpu_pages *pcp;
2981 
2982 	pcp = &p->pcp;
2983 	pcp->high = high;
2984 	pcp->batch = max(1UL, high/4);
2985 	if ((high/4) > (PAGE_SHIFT * 8))
2986 		pcp->batch = PAGE_SHIFT * 8;
2987 }
2988 
2989 
2990 #ifdef CONFIG_NUMA
2991 /*
2992  * Boot pageset table. One per cpu which is going to be used for all
2993  * zones and all nodes. The parameters will be set in such a way
2994  * that an item put on a list will immediately be handed over to
2995  * the buddy list. This is safe since pageset manipulation is done
2996  * with interrupts disabled.
2997  *
2998  * Some NUMA counter updates may also be caught by the boot pagesets.
2999  *
3000  * The boot_pagesets must be kept even after bootup is complete for
3001  * unused processors and/or zones. They do play a role for bootstrapping
3002  * hotplugged processors.
3003  *
3004  * zoneinfo_show() and maybe other functions do
3005  * not check if the processor is online before following the pageset pointer.
3006  * Other parts of the kernel may not check if the zone is available.
3007  */
3008 static struct per_cpu_pageset boot_pageset[NR_CPUS];
3009 
3010 /*
3011  * Dynamically allocate memory for the
3012  * per cpu pageset array in struct zone.
3013  */
3014 static int __cpuinit process_zones(int cpu)
3015 {
3016 	struct zone *zone, *dzone;
3017 	int node = cpu_to_node(cpu);
3018 
3019 	node_set_state(node, N_CPU);	/* this node has a cpu */
3020 
3021 	for_each_populated_zone(zone) {
3022 		zone_pcp(zone, cpu) = kmalloc_node(sizeof(struct per_cpu_pageset),
3023 					 GFP_KERNEL, node);
3024 		if (!zone_pcp(zone, cpu))
3025 			goto bad;
3026 
3027 		setup_pageset(zone_pcp(zone, cpu), zone_batchsize(zone));
3028 
3029 		if (percpu_pagelist_fraction)
3030 			setup_pagelist_highmark(zone_pcp(zone, cpu),
3031 			 	(zone->present_pages / percpu_pagelist_fraction));
3032 	}
3033 
3034 	return 0;
3035 bad:
3036 	for_each_zone(dzone) {
3037 		if (!populated_zone(dzone))
3038 			continue;
3039 		if (dzone == zone)
3040 			break;
3041 		kfree(zone_pcp(dzone, cpu));
3042 		zone_pcp(dzone, cpu) = &boot_pageset[cpu];
3043 	}
3044 	return -ENOMEM;
3045 }
3046 
3047 static inline void free_zone_pagesets(int cpu)
3048 {
3049 	struct zone *zone;
3050 
3051 	for_each_zone(zone) {
3052 		struct per_cpu_pageset *pset = zone_pcp(zone, cpu);
3053 
3054 		/* Free per_cpu_pageset if it is slab allocated */
3055 		if (pset != &boot_pageset[cpu])
3056 			kfree(pset);
3057 		zone_pcp(zone, cpu) = &boot_pageset[cpu];
3058 	}
3059 }
3060 
3061 static int __cpuinit pageset_cpuup_callback(struct notifier_block *nfb,
3062 		unsigned long action,
3063 		void *hcpu)
3064 {
3065 	int cpu = (long)hcpu;
3066 	int ret = NOTIFY_OK;
3067 
3068 	switch (action) {
3069 	case CPU_UP_PREPARE:
3070 	case CPU_UP_PREPARE_FROZEN:
3071 		if (process_zones(cpu))
3072 			ret = NOTIFY_BAD;
3073 		break;
3074 	case CPU_UP_CANCELED:
3075 	case CPU_UP_CANCELED_FROZEN:
3076 	case CPU_DEAD:
3077 	case CPU_DEAD_FROZEN:
3078 		free_zone_pagesets(cpu);
3079 		break;
3080 	default:
3081 		break;
3082 	}
3083 	return ret;
3084 }
3085 
3086 static struct notifier_block __cpuinitdata pageset_notifier =
3087 	{ &pageset_cpuup_callback, NULL, 0 };
3088 
3089 void __init setup_per_cpu_pageset(void)
3090 {
3091 	int err;
3092 
3093 	/* Initialize per_cpu_pageset for cpu 0.
3094 	 * A cpuup callback will do this for every cpu
3095 	 * as it comes online
3096 	 */
3097 	err = process_zones(smp_processor_id());
3098 	BUG_ON(err);
3099 	register_cpu_notifier(&pageset_notifier);
3100 }
3101 
3102 #endif
3103 
3104 static noinline __init_refok
3105 int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
3106 {
3107 	int i;
3108 	struct pglist_data *pgdat = zone->zone_pgdat;
3109 	size_t alloc_size;
3110 
3111 	/*
3112 	 * The per-page waitqueue mechanism uses hashed waitqueues
3113 	 * per zone.
3114 	 */
3115 	zone->wait_table_hash_nr_entries =
3116 		 wait_table_hash_nr_entries(zone_size_pages);
3117 	zone->wait_table_bits =
3118 		wait_table_bits(zone->wait_table_hash_nr_entries);
3119 	alloc_size = zone->wait_table_hash_nr_entries
3120 					* sizeof(wait_queue_head_t);
3121 
3122 	if (!slab_is_available()) {
3123 		zone->wait_table = (wait_queue_head_t *)
3124 			alloc_bootmem_node(pgdat, alloc_size);
3125 	} else {
3126 		/*
3127 		 * This case means that a zone whose size was 0 gets new memory
3128 		 * via memory hot-add.
3129 		 * But it may be the case that a new node was hot-added.  In
3130 		 * this case vmalloc() will not be able to use this new node's
3131 		 * memory - this wait_table must be initialized to use this new
3132 		 * node itself as well.
3133 		 * To use this new node's memory, further consideration will be
3134 		 * necessary.
3135 		 */
3136 		zone->wait_table = vmalloc(alloc_size);
3137 	}
3138 	if (!zone->wait_table)
3139 		return -ENOMEM;
3140 
3141 	for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
3142 		init_waitqueue_head(zone->wait_table + i);
3143 
3144 	return 0;
3145 }
3146 
3147 static __meminit void zone_pcp_init(struct zone *zone)
3148 {
3149 	int cpu;
3150 	unsigned long batch = zone_batchsize(zone);
3151 
3152 	for (cpu = 0; cpu < NR_CPUS; cpu++) {
3153 #ifdef CONFIG_NUMA
3154 		/* Early boot. Slab allocator not functional yet */
3155 		zone_pcp(zone, cpu) = &boot_pageset[cpu];
3156 		setup_pageset(&boot_pageset[cpu],0);
3157 #else
3158 		setup_pageset(zone_pcp(zone,cpu), batch);
3159 #endif
3160 	}
3161 	if (zone->present_pages)
3162 		printk(KERN_DEBUG "  %s zone: %lu pages, LIFO batch:%lu\n",
3163 			zone->name, zone->present_pages, batch);
3164 }
3165 
3166 __meminit int init_currently_empty_zone(struct zone *zone,
3167 					unsigned long zone_start_pfn,
3168 					unsigned long size,
3169 					enum memmap_context context)
3170 {
3171 	struct pglist_data *pgdat = zone->zone_pgdat;
3172 	int ret;
3173 	ret = zone_wait_table_init(zone, size);
3174 	if (ret)
3175 		return ret;
3176 	pgdat->nr_zones = zone_idx(zone) + 1;
3177 
3178 	zone->zone_start_pfn = zone_start_pfn;
3179 
3180 	mminit_dprintk(MMINIT_TRACE, "memmap_init",
3181 			"Initialising map node %d zone %lu pfns %lu -> %lu\n",
3182 			pgdat->node_id,
3183 			(unsigned long)zone_idx(zone),
3184 			zone_start_pfn, (zone_start_pfn + size));
3185 
3186 	zone_init_free_lists(zone);
3187 
3188 	return 0;
3189 }
3190 
3191 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3192 /*
3193  * Basic iterator support. Return the first range of PFNs for a node
3194  * Note: nid == MAX_NUMNODES returns first region regardless of node
3195  */
3196 static int __meminit first_active_region_index_in_nid(int nid)
3197 {
3198 	int i;
3199 
3200 	for (i = 0; i < nr_nodemap_entries; i++)
3201 		if (nid == MAX_NUMNODES || early_node_map[i].nid == nid)
3202 			return i;
3203 
3204 	return -1;
3205 }
3206 
3207 /*
3208  * Basic iterator support. Return the next active range of PFNs for a node
3209  * Note: nid == MAX_NUMNODES returns next region regardless of node
3210  */
3211 static int __meminit next_active_region_index_in_nid(int index, int nid)
3212 {
3213 	for (index = index + 1; index < nr_nodemap_entries; index++)
3214 		if (nid == MAX_NUMNODES || early_node_map[index].nid == nid)
3215 			return index;
3216 
3217 	return -1;
3218 }
3219 
3220 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
3221 /*
3222  * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
3223  * Architectures may implement their own version but if add_active_range()
3224  * was used and there are no special requirements, this is a convenient
3225  * alternative
3226  */
3227 int __meminit __early_pfn_to_nid(unsigned long pfn)
3228 {
3229 	int i;
3230 
3231 	for (i = 0; i < nr_nodemap_entries; i++) {
3232 		unsigned long start_pfn = early_node_map[i].start_pfn;
3233 		unsigned long end_pfn = early_node_map[i].end_pfn;
3234 
3235 		if (start_pfn <= pfn && pfn < end_pfn)
3236 			return early_node_map[i].nid;
3237 	}
3238 	/* This is a memory hole */
3239 	return -1;
3240 }
3241 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
3242 
3243 int __meminit early_pfn_to_nid(unsigned long pfn)
3244 {
3245 	int nid;
3246 
3247 	nid = __early_pfn_to_nid(pfn);
3248 	if (nid >= 0)
3249 		return nid;
3250 	/* just returns 0 */
3251 	return 0;
3252 }
3253 
3254 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
3255 bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
3256 {
3257 	int nid;
3258 
3259 	nid = __early_pfn_to_nid(pfn);
3260 	if (nid >= 0 && nid != node)
3261 		return false;
3262 	return true;
3263 }
3264 #endif
3265 
3266 /* Basic iterator support to walk early_node_map[] */
3267 #define for_each_active_range_index_in_nid(i, nid) \
3268 	for (i = first_active_region_index_in_nid(nid); i != -1; \
3269 				i = next_active_region_index_in_nid(i, nid))
3270 
3271 /**
3272  * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
3273  * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
3274  * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
3275  *
3276  * If an architecture guarantees that all ranges registered with
3277  * add_active_ranges() contain no holes and may be freed, this
3278  * this function may be used instead of calling free_bootmem() manually.
3279  */
3280 void __init free_bootmem_with_active_regions(int nid,
3281 						unsigned long max_low_pfn)
3282 {
3283 	int i;
3284 
3285 	for_each_active_range_index_in_nid(i, nid) {
3286 		unsigned long size_pages = 0;
3287 		unsigned long end_pfn = early_node_map[i].end_pfn;
3288 
3289 		if (early_node_map[i].start_pfn >= max_low_pfn)
3290 			continue;
3291 
3292 		if (end_pfn > max_low_pfn)
3293 			end_pfn = max_low_pfn;
3294 
3295 		size_pages = end_pfn - early_node_map[i].start_pfn;
3296 		free_bootmem_node(NODE_DATA(early_node_map[i].nid),
3297 				PFN_PHYS(early_node_map[i].start_pfn),
3298 				size_pages << PAGE_SHIFT);
3299 	}
3300 }
3301 
3302 void __init work_with_active_regions(int nid, work_fn_t work_fn, void *data)
3303 {
3304 	int i;
3305 	int ret;
3306 
3307 	for_each_active_range_index_in_nid(i, nid) {
3308 		ret = work_fn(early_node_map[i].start_pfn,
3309 			      early_node_map[i].end_pfn, data);
3310 		if (ret)
3311 			break;
3312 	}
3313 }
3314 /**
3315  * sparse_memory_present_with_active_regions - Call memory_present for each active range
3316  * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
3317  *
3318  * If an architecture guarantees that all ranges registered with
3319  * add_active_ranges() contain no holes and may be freed, this
3320  * function may be used instead of calling memory_present() manually.
3321  */
3322 void __init sparse_memory_present_with_active_regions(int nid)
3323 {
3324 	int i;
3325 
3326 	for_each_active_range_index_in_nid(i, nid)
3327 		memory_present(early_node_map[i].nid,
3328 				early_node_map[i].start_pfn,
3329 				early_node_map[i].end_pfn);
3330 }
3331 
3332 /**
3333  * get_pfn_range_for_nid - Return the start and end page frames for a node
3334  * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
3335  * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
3336  * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
3337  *
3338  * It returns the start and end page frame of a node based on information
3339  * provided by an arch calling add_active_range(). If called for a node
3340  * with no available memory, a warning is printed and the start and end
3341  * PFNs will be 0.
3342  */
3343 void __meminit get_pfn_range_for_nid(unsigned int nid,
3344 			unsigned long *start_pfn, unsigned long *end_pfn)
3345 {
3346 	int i;
3347 	*start_pfn = -1UL;
3348 	*end_pfn = 0;
3349 
3350 	for_each_active_range_index_in_nid(i, nid) {
3351 		*start_pfn = min(*start_pfn, early_node_map[i].start_pfn);
3352 		*end_pfn = max(*end_pfn, early_node_map[i].end_pfn);
3353 	}
3354 
3355 	if (*start_pfn == -1UL)
3356 		*start_pfn = 0;
3357 }
3358 
3359 /*
3360  * This finds a zone that can be used for ZONE_MOVABLE pages. The
3361  * assumption is made that zones within a node are ordered in monotonic
3362  * increasing memory addresses so that the "highest" populated zone is used
3363  */
3364 static void __init find_usable_zone_for_movable(void)
3365 {
3366 	int zone_index;
3367 	for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
3368 		if (zone_index == ZONE_MOVABLE)
3369 			continue;
3370 
3371 		if (arch_zone_highest_possible_pfn[zone_index] >
3372 				arch_zone_lowest_possible_pfn[zone_index])
3373 			break;
3374 	}
3375 
3376 	VM_BUG_ON(zone_index == -1);
3377 	movable_zone = zone_index;
3378 }
3379 
3380 /*
3381  * The zone ranges provided by the architecture do not include ZONE_MOVABLE
3382  * because it is sized independant of architecture. Unlike the other zones,
3383  * the starting point for ZONE_MOVABLE is not fixed. It may be different
3384  * in each node depending on the size of each node and how evenly kernelcore
3385  * is distributed. This helper function adjusts the zone ranges
3386  * provided by the architecture for a given node by using the end of the
3387  * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
3388  * zones within a node are in order of monotonic increases memory addresses
3389  */
3390 static void __meminit adjust_zone_range_for_zone_movable(int nid,
3391 					unsigned long zone_type,
3392 					unsigned long node_start_pfn,
3393 					unsigned long node_end_pfn,
3394 					unsigned long *zone_start_pfn,
3395 					unsigned long *zone_end_pfn)
3396 {
3397 	/* Only adjust if ZONE_MOVABLE is on this node */
3398 	if (zone_movable_pfn[nid]) {
3399 		/* Size ZONE_MOVABLE */
3400 		if (zone_type == ZONE_MOVABLE) {
3401 			*zone_start_pfn = zone_movable_pfn[nid];
3402 			*zone_end_pfn = min(node_end_pfn,
3403 				arch_zone_highest_possible_pfn[movable_zone]);
3404 
3405 		/* Adjust for ZONE_MOVABLE starting within this range */
3406 		} else if (*zone_start_pfn < zone_movable_pfn[nid] &&
3407 				*zone_end_pfn > zone_movable_pfn[nid]) {
3408 			*zone_end_pfn = zone_movable_pfn[nid];
3409 
3410 		/* Check if this whole range is within ZONE_MOVABLE */
3411 		} else if (*zone_start_pfn >= zone_movable_pfn[nid])
3412 			*zone_start_pfn = *zone_end_pfn;
3413 	}
3414 }
3415 
3416 /*
3417  * Return the number of pages a zone spans in a node, including holes
3418  * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
3419  */
3420 static unsigned long __meminit zone_spanned_pages_in_node(int nid,
3421 					unsigned long zone_type,
3422 					unsigned long *ignored)
3423 {
3424 	unsigned long node_start_pfn, node_end_pfn;
3425 	unsigned long zone_start_pfn, zone_end_pfn;
3426 
3427 	/* Get the start and end of the node and zone */
3428 	get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
3429 	zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
3430 	zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
3431 	adjust_zone_range_for_zone_movable(nid, zone_type,
3432 				node_start_pfn, node_end_pfn,
3433 				&zone_start_pfn, &zone_end_pfn);
3434 
3435 	/* Check that this node has pages within the zone's required range */
3436 	if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
3437 		return 0;
3438 
3439 	/* Move the zone boundaries inside the node if necessary */
3440 	zone_end_pfn = min(zone_end_pfn, node_end_pfn);
3441 	zone_start_pfn = max(zone_start_pfn, node_start_pfn);
3442 
3443 	/* Return the spanned pages */
3444 	return zone_end_pfn - zone_start_pfn;
3445 }
3446 
3447 /*
3448  * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
3449  * then all holes in the requested range will be accounted for.
3450  */
3451 static unsigned long __meminit __absent_pages_in_range(int nid,
3452 				unsigned long range_start_pfn,
3453 				unsigned long range_end_pfn)
3454 {
3455 	int i = 0;
3456 	unsigned long prev_end_pfn = 0, hole_pages = 0;
3457 	unsigned long start_pfn;
3458 
3459 	/* Find the end_pfn of the first active range of pfns in the node */
3460 	i = first_active_region_index_in_nid(nid);
3461 	if (i == -1)
3462 		return 0;
3463 
3464 	prev_end_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
3465 
3466 	/* Account for ranges before physical memory on this node */
3467 	if (early_node_map[i].start_pfn > range_start_pfn)
3468 		hole_pages = prev_end_pfn - range_start_pfn;
3469 
3470 	/* Find all holes for the zone within the node */
3471 	for (; i != -1; i = next_active_region_index_in_nid(i, nid)) {
3472 
3473 		/* No need to continue if prev_end_pfn is outside the zone */
3474 		if (prev_end_pfn >= range_end_pfn)
3475 			break;
3476 
3477 		/* Make sure the end of the zone is not within the hole */
3478 		start_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
3479 		prev_end_pfn = max(prev_end_pfn, range_start_pfn);
3480 
3481 		/* Update the hole size cound and move on */
3482 		if (start_pfn > range_start_pfn) {
3483 			BUG_ON(prev_end_pfn > start_pfn);
3484 			hole_pages += start_pfn - prev_end_pfn;
3485 		}
3486 		prev_end_pfn = early_node_map[i].end_pfn;
3487 	}
3488 
3489 	/* Account for ranges past physical memory on this node */
3490 	if (range_end_pfn > prev_end_pfn)
3491 		hole_pages += range_end_pfn -
3492 				max(range_start_pfn, prev_end_pfn);
3493 
3494 	return hole_pages;
3495 }
3496 
3497 /**
3498  * absent_pages_in_range - Return number of page frames in holes within a range
3499  * @start_pfn: The start PFN to start searching for holes
3500  * @end_pfn: The end PFN to stop searching for holes
3501  *
3502  * It returns the number of pages frames in memory holes within a range.
3503  */
3504 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
3505 							unsigned long end_pfn)
3506 {
3507 	return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
3508 }
3509 
3510 /* Return the number of page frames in holes in a zone on a node */
3511 static unsigned long __meminit zone_absent_pages_in_node(int nid,
3512 					unsigned long zone_type,
3513 					unsigned long *ignored)
3514 {
3515 	unsigned long node_start_pfn, node_end_pfn;
3516 	unsigned long zone_start_pfn, zone_end_pfn;
3517 
3518 	get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
3519 	zone_start_pfn = max(arch_zone_lowest_possible_pfn[zone_type],
3520 							node_start_pfn);
3521 	zone_end_pfn = min(arch_zone_highest_possible_pfn[zone_type],
3522 							node_end_pfn);
3523 
3524 	adjust_zone_range_for_zone_movable(nid, zone_type,
3525 			node_start_pfn, node_end_pfn,
3526 			&zone_start_pfn, &zone_end_pfn);
3527 	return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
3528 }
3529 
3530 #else
3531 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
3532 					unsigned long zone_type,
3533 					unsigned long *zones_size)
3534 {
3535 	return zones_size[zone_type];
3536 }
3537 
3538 static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
3539 						unsigned long zone_type,
3540 						unsigned long *zholes_size)
3541 {
3542 	if (!zholes_size)
3543 		return 0;
3544 
3545 	return zholes_size[zone_type];
3546 }
3547 
3548 #endif
3549 
3550 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
3551 		unsigned long *zones_size, unsigned long *zholes_size)
3552 {
3553 	unsigned long realtotalpages, totalpages = 0;
3554 	enum zone_type i;
3555 
3556 	for (i = 0; i < MAX_NR_ZONES; i++)
3557 		totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
3558 								zones_size);
3559 	pgdat->node_spanned_pages = totalpages;
3560 
3561 	realtotalpages = totalpages;
3562 	for (i = 0; i < MAX_NR_ZONES; i++)
3563 		realtotalpages -=
3564 			zone_absent_pages_in_node(pgdat->node_id, i,
3565 								zholes_size);
3566 	pgdat->node_present_pages = realtotalpages;
3567 	printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
3568 							realtotalpages);
3569 }
3570 
3571 #ifndef CONFIG_SPARSEMEM
3572 /*
3573  * Calculate the size of the zone->blockflags rounded to an unsigned long
3574  * Start by making sure zonesize is a multiple of pageblock_order by rounding
3575  * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
3576  * round what is now in bits to nearest long in bits, then return it in
3577  * bytes.
3578  */
3579 static unsigned long __init usemap_size(unsigned long zonesize)
3580 {
3581 	unsigned long usemapsize;
3582 
3583 	usemapsize = roundup(zonesize, pageblock_nr_pages);
3584 	usemapsize = usemapsize >> pageblock_order;
3585 	usemapsize *= NR_PAGEBLOCK_BITS;
3586 	usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
3587 
3588 	return usemapsize / 8;
3589 }
3590 
3591 static void __init setup_usemap(struct pglist_data *pgdat,
3592 				struct zone *zone, unsigned long zonesize)
3593 {
3594 	unsigned long usemapsize = usemap_size(zonesize);
3595 	zone->pageblock_flags = NULL;
3596 	if (usemapsize)
3597 		zone->pageblock_flags = alloc_bootmem_node(pgdat, usemapsize);
3598 }
3599 #else
3600 static void inline setup_usemap(struct pglist_data *pgdat,
3601 				struct zone *zone, unsigned long zonesize) {}
3602 #endif /* CONFIG_SPARSEMEM */
3603 
3604 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
3605 
3606 /* Return a sensible default order for the pageblock size. */
3607 static inline int pageblock_default_order(void)
3608 {
3609 	if (HPAGE_SHIFT > PAGE_SHIFT)
3610 		return HUGETLB_PAGE_ORDER;
3611 
3612 	return MAX_ORDER-1;
3613 }
3614 
3615 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
3616 static inline void __init set_pageblock_order(unsigned int order)
3617 {
3618 	/* Check that pageblock_nr_pages has not already been setup */
3619 	if (pageblock_order)
3620 		return;
3621 
3622 	/*
3623 	 * Assume the largest contiguous order of interest is a huge page.
3624 	 * This value may be variable depending on boot parameters on IA64
3625 	 */
3626 	pageblock_order = order;
3627 }
3628 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
3629 
3630 /*
3631  * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
3632  * and pageblock_default_order() are unused as pageblock_order is set
3633  * at compile-time. See include/linux/pageblock-flags.h for the values of
3634  * pageblock_order based on the kernel config
3635  */
3636 static inline int pageblock_default_order(unsigned int order)
3637 {
3638 	return MAX_ORDER-1;
3639 }
3640 #define set_pageblock_order(x)	do {} while (0)
3641 
3642 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
3643 
3644 /*
3645  * Set up the zone data structures:
3646  *   - mark all pages reserved
3647  *   - mark all memory queues empty
3648  *   - clear the memory bitmaps
3649  */
3650 static void __paginginit free_area_init_core(struct pglist_data *pgdat,
3651 		unsigned long *zones_size, unsigned long *zholes_size)
3652 {
3653 	enum zone_type j;
3654 	int nid = pgdat->node_id;
3655 	unsigned long zone_start_pfn = pgdat->node_start_pfn;
3656 	int ret;
3657 
3658 	pgdat_resize_init(pgdat);
3659 	pgdat->nr_zones = 0;
3660 	init_waitqueue_head(&pgdat->kswapd_wait);
3661 	pgdat->kswapd_max_order = 0;
3662 	pgdat_page_cgroup_init(pgdat);
3663 
3664 	for (j = 0; j < MAX_NR_ZONES; j++) {
3665 		struct zone *zone = pgdat->node_zones + j;
3666 		unsigned long size, realsize, memmap_pages;
3667 		enum lru_list l;
3668 
3669 		size = zone_spanned_pages_in_node(nid, j, zones_size);
3670 		realsize = size - zone_absent_pages_in_node(nid, j,
3671 								zholes_size);
3672 
3673 		/*
3674 		 * Adjust realsize so that it accounts for how much memory
3675 		 * is used by this zone for memmap. This affects the watermark
3676 		 * and per-cpu initialisations
3677 		 */
3678 		memmap_pages =
3679 			PAGE_ALIGN(size * sizeof(struct page)) >> PAGE_SHIFT;
3680 		if (realsize >= memmap_pages) {
3681 			realsize -= memmap_pages;
3682 			if (memmap_pages)
3683 				printk(KERN_DEBUG
3684 				       "  %s zone: %lu pages used for memmap\n",
3685 				       zone_names[j], memmap_pages);
3686 		} else
3687 			printk(KERN_WARNING
3688 				"  %s zone: %lu pages exceeds realsize %lu\n",
3689 				zone_names[j], memmap_pages, realsize);
3690 
3691 		/* Account for reserved pages */
3692 		if (j == 0 && realsize > dma_reserve) {
3693 			realsize -= dma_reserve;
3694 			printk(KERN_DEBUG "  %s zone: %lu pages reserved\n",
3695 					zone_names[0], dma_reserve);
3696 		}
3697 
3698 		if (!is_highmem_idx(j))
3699 			nr_kernel_pages += realsize;
3700 		nr_all_pages += realsize;
3701 
3702 		zone->spanned_pages = size;
3703 		zone->present_pages = realsize;
3704 #ifdef CONFIG_NUMA
3705 		zone->node = nid;
3706 		zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio)
3707 						/ 100;
3708 		zone->min_slab_pages = (realsize * sysctl_min_slab_ratio) / 100;
3709 #endif
3710 		zone->name = zone_names[j];
3711 		spin_lock_init(&zone->lock);
3712 		spin_lock_init(&zone->lru_lock);
3713 		zone_seqlock_init(zone);
3714 		zone->zone_pgdat = pgdat;
3715 
3716 		zone->prev_priority = DEF_PRIORITY;
3717 
3718 		zone_pcp_init(zone);
3719 		for_each_lru(l) {
3720 			INIT_LIST_HEAD(&zone->lru[l].list);
3721 			zone->lru[l].nr_saved_scan = 0;
3722 		}
3723 		zone->reclaim_stat.recent_rotated[0] = 0;
3724 		zone->reclaim_stat.recent_rotated[1] = 0;
3725 		zone->reclaim_stat.recent_scanned[0] = 0;
3726 		zone->reclaim_stat.recent_scanned[1] = 0;
3727 		zap_zone_vm_stats(zone);
3728 		zone->flags = 0;
3729 		if (!size)
3730 			continue;
3731 
3732 		set_pageblock_order(pageblock_default_order());
3733 		setup_usemap(pgdat, zone, size);
3734 		ret = init_currently_empty_zone(zone, zone_start_pfn,
3735 						size, MEMMAP_EARLY);
3736 		BUG_ON(ret);
3737 		memmap_init(size, nid, j, zone_start_pfn);
3738 		zone_start_pfn += size;
3739 	}
3740 }
3741 
3742 static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
3743 {
3744 	/* Skip empty nodes */
3745 	if (!pgdat->node_spanned_pages)
3746 		return;
3747 
3748 #ifdef CONFIG_FLAT_NODE_MEM_MAP
3749 	/* ia64 gets its own node_mem_map, before this, without bootmem */
3750 	if (!pgdat->node_mem_map) {
3751 		unsigned long size, start, end;
3752 		struct page *map;
3753 
3754 		/*
3755 		 * The zone's endpoints aren't required to be MAX_ORDER
3756 		 * aligned but the node_mem_map endpoints must be in order
3757 		 * for the buddy allocator to function correctly.
3758 		 */
3759 		start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
3760 		end = pgdat->node_start_pfn + pgdat->node_spanned_pages;
3761 		end = ALIGN(end, MAX_ORDER_NR_PAGES);
3762 		size =  (end - start) * sizeof(struct page);
3763 		map = alloc_remap(pgdat->node_id, size);
3764 		if (!map)
3765 			map = alloc_bootmem_node(pgdat, size);
3766 		pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
3767 	}
3768 #ifndef CONFIG_NEED_MULTIPLE_NODES
3769 	/*
3770 	 * With no DISCONTIG, the global mem_map is just set as node 0's
3771 	 */
3772 	if (pgdat == NODE_DATA(0)) {
3773 		mem_map = NODE_DATA(0)->node_mem_map;
3774 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3775 		if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
3776 			mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
3777 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
3778 	}
3779 #endif
3780 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
3781 }
3782 
3783 void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
3784 		unsigned long node_start_pfn, unsigned long *zholes_size)
3785 {
3786 	pg_data_t *pgdat = NODE_DATA(nid);
3787 
3788 	pgdat->node_id = nid;
3789 	pgdat->node_start_pfn = node_start_pfn;
3790 	calculate_node_totalpages(pgdat, zones_size, zholes_size);
3791 
3792 	alloc_node_mem_map(pgdat);
3793 #ifdef CONFIG_FLAT_NODE_MEM_MAP
3794 	printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
3795 		nid, (unsigned long)pgdat,
3796 		(unsigned long)pgdat->node_mem_map);
3797 #endif
3798 
3799 	free_area_init_core(pgdat, zones_size, zholes_size);
3800 }
3801 
3802 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3803 
3804 #if MAX_NUMNODES > 1
3805 /*
3806  * Figure out the number of possible node ids.
3807  */
3808 static void __init setup_nr_node_ids(void)
3809 {
3810 	unsigned int node;
3811 	unsigned int highest = 0;
3812 
3813 	for_each_node_mask(node, node_possible_map)
3814 		highest = node;
3815 	nr_node_ids = highest + 1;
3816 }
3817 #else
3818 static inline void setup_nr_node_ids(void)
3819 {
3820 }
3821 #endif
3822 
3823 /**
3824  * add_active_range - Register a range of PFNs backed by physical memory
3825  * @nid: The node ID the range resides on
3826  * @start_pfn: The start PFN of the available physical memory
3827  * @end_pfn: The end PFN of the available physical memory
3828  *
3829  * These ranges are stored in an early_node_map[] and later used by
3830  * free_area_init_nodes() to calculate zone sizes and holes. If the
3831  * range spans a memory hole, it is up to the architecture to ensure
3832  * the memory is not freed by the bootmem allocator. If possible
3833  * the range being registered will be merged with existing ranges.
3834  */
3835 void __init add_active_range(unsigned int nid, unsigned long start_pfn,
3836 						unsigned long end_pfn)
3837 {
3838 	int i;
3839 
3840 	mminit_dprintk(MMINIT_TRACE, "memory_register",
3841 			"Entering add_active_range(%d, %#lx, %#lx) "
3842 			"%d entries of %d used\n",
3843 			nid, start_pfn, end_pfn,
3844 			nr_nodemap_entries, MAX_ACTIVE_REGIONS);
3845 
3846 	mminit_validate_memmodel_limits(&start_pfn, &end_pfn);
3847 
3848 	/* Merge with existing active regions if possible */
3849 	for (i = 0; i < nr_nodemap_entries; i++) {
3850 		if (early_node_map[i].nid != nid)
3851 			continue;
3852 
3853 		/* Skip if an existing region covers this new one */
3854 		if (start_pfn >= early_node_map[i].start_pfn &&
3855 				end_pfn <= early_node_map[i].end_pfn)
3856 			return;
3857 
3858 		/* Merge forward if suitable */
3859 		if (start_pfn <= early_node_map[i].end_pfn &&
3860 				end_pfn > early_node_map[i].end_pfn) {
3861 			early_node_map[i].end_pfn = end_pfn;
3862 			return;
3863 		}
3864 
3865 		/* Merge backward if suitable */
3866 		if (start_pfn < early_node_map[i].end_pfn &&
3867 				end_pfn >= early_node_map[i].start_pfn) {
3868 			early_node_map[i].start_pfn = start_pfn;
3869 			return;
3870 		}
3871 	}
3872 
3873 	/* Check that early_node_map is large enough */
3874 	if (i >= MAX_ACTIVE_REGIONS) {
3875 		printk(KERN_CRIT "More than %d memory regions, truncating\n",
3876 							MAX_ACTIVE_REGIONS);
3877 		return;
3878 	}
3879 
3880 	early_node_map[i].nid = nid;
3881 	early_node_map[i].start_pfn = start_pfn;
3882 	early_node_map[i].end_pfn = end_pfn;
3883 	nr_nodemap_entries = i + 1;
3884 }
3885 
3886 /**
3887  * remove_active_range - Shrink an existing registered range of PFNs
3888  * @nid: The node id the range is on that should be shrunk
3889  * @start_pfn: The new PFN of the range
3890  * @end_pfn: The new PFN of the range
3891  *
3892  * i386 with NUMA use alloc_remap() to store a node_mem_map on a local node.
3893  * The map is kept near the end physical page range that has already been
3894  * registered. This function allows an arch to shrink an existing registered
3895  * range.
3896  */
3897 void __init remove_active_range(unsigned int nid, unsigned long start_pfn,
3898 				unsigned long end_pfn)
3899 {
3900 	int i, j;
3901 	int removed = 0;
3902 
3903 	printk(KERN_DEBUG "remove_active_range (%d, %lu, %lu)\n",
3904 			  nid, start_pfn, end_pfn);
3905 
3906 	/* Find the old active region end and shrink */
3907 	for_each_active_range_index_in_nid(i, nid) {
3908 		if (early_node_map[i].start_pfn >= start_pfn &&
3909 		    early_node_map[i].end_pfn <= end_pfn) {
3910 			/* clear it */
3911 			early_node_map[i].start_pfn = 0;
3912 			early_node_map[i].end_pfn = 0;
3913 			removed = 1;
3914 			continue;
3915 		}
3916 		if (early_node_map[i].start_pfn < start_pfn &&
3917 		    early_node_map[i].end_pfn > start_pfn) {
3918 			unsigned long temp_end_pfn = early_node_map[i].end_pfn;
3919 			early_node_map[i].end_pfn = start_pfn;
3920 			if (temp_end_pfn > end_pfn)
3921 				add_active_range(nid, end_pfn, temp_end_pfn);
3922 			continue;
3923 		}
3924 		if (early_node_map[i].start_pfn >= start_pfn &&
3925 		    early_node_map[i].end_pfn > end_pfn &&
3926 		    early_node_map[i].start_pfn < end_pfn) {
3927 			early_node_map[i].start_pfn = end_pfn;
3928 			continue;
3929 		}
3930 	}
3931 
3932 	if (!removed)
3933 		return;
3934 
3935 	/* remove the blank ones */
3936 	for (i = nr_nodemap_entries - 1; i > 0; i--) {
3937 		if (early_node_map[i].nid != nid)
3938 			continue;
3939 		if (early_node_map[i].end_pfn)
3940 			continue;
3941 		/* we found it, get rid of it */
3942 		for (j = i; j < nr_nodemap_entries - 1; j++)
3943 			memcpy(&early_node_map[j], &early_node_map[j+1],
3944 				sizeof(early_node_map[j]));
3945 		j = nr_nodemap_entries - 1;
3946 		memset(&early_node_map[j], 0, sizeof(early_node_map[j]));
3947 		nr_nodemap_entries--;
3948 	}
3949 }
3950 
3951 /**
3952  * remove_all_active_ranges - Remove all currently registered regions
3953  *
3954  * During discovery, it may be found that a table like SRAT is invalid
3955  * and an alternative discovery method must be used. This function removes
3956  * all currently registered regions.
3957  */
3958 void __init remove_all_active_ranges(void)
3959 {
3960 	memset(early_node_map, 0, sizeof(early_node_map));
3961 	nr_nodemap_entries = 0;
3962 }
3963 
3964 /* Compare two active node_active_regions */
3965 static int __init cmp_node_active_region(const void *a, const void *b)
3966 {
3967 	struct node_active_region *arange = (struct node_active_region *)a;
3968 	struct node_active_region *brange = (struct node_active_region *)b;
3969 
3970 	/* Done this way to avoid overflows */
3971 	if (arange->start_pfn > brange->start_pfn)
3972 		return 1;
3973 	if (arange->start_pfn < brange->start_pfn)
3974 		return -1;
3975 
3976 	return 0;
3977 }
3978 
3979 /* sort the node_map by start_pfn */
3980 static void __init sort_node_map(void)
3981 {
3982 	sort(early_node_map, (size_t)nr_nodemap_entries,
3983 			sizeof(struct node_active_region),
3984 			cmp_node_active_region, NULL);
3985 }
3986 
3987 /* Find the lowest pfn for a node */
3988 static unsigned long __init find_min_pfn_for_node(int nid)
3989 {
3990 	int i;
3991 	unsigned long min_pfn = ULONG_MAX;
3992 
3993 	/* Assuming a sorted map, the first range found has the starting pfn */
3994 	for_each_active_range_index_in_nid(i, nid)
3995 		min_pfn = min(min_pfn, early_node_map[i].start_pfn);
3996 
3997 	if (min_pfn == ULONG_MAX) {
3998 		printk(KERN_WARNING
3999 			"Could not find start_pfn for node %d\n", nid);
4000 		return 0;
4001 	}
4002 
4003 	return min_pfn;
4004 }
4005 
4006 /**
4007  * find_min_pfn_with_active_regions - Find the minimum PFN registered
4008  *
4009  * It returns the minimum PFN based on information provided via
4010  * add_active_range().
4011  */
4012 unsigned long __init find_min_pfn_with_active_regions(void)
4013 {
4014 	return find_min_pfn_for_node(MAX_NUMNODES);
4015 }
4016 
4017 /*
4018  * early_calculate_totalpages()
4019  * Sum pages in active regions for movable zone.
4020  * Populate N_HIGH_MEMORY for calculating usable_nodes.
4021  */
4022 static unsigned long __init early_calculate_totalpages(void)
4023 {
4024 	int i;
4025 	unsigned long totalpages = 0;
4026 
4027 	for (i = 0; i < nr_nodemap_entries; i++) {
4028 		unsigned long pages = early_node_map[i].end_pfn -
4029 						early_node_map[i].start_pfn;
4030 		totalpages += pages;
4031 		if (pages)
4032 			node_set_state(early_node_map[i].nid, N_HIGH_MEMORY);
4033 	}
4034   	return totalpages;
4035 }
4036 
4037 /*
4038  * Find the PFN the Movable zone begins in each node. Kernel memory
4039  * is spread evenly between nodes as long as the nodes have enough
4040  * memory. When they don't, some nodes will have more kernelcore than
4041  * others
4042  */
4043 static void __init find_zone_movable_pfns_for_nodes(unsigned long *movable_pfn)
4044 {
4045 	int i, nid;
4046 	unsigned long usable_startpfn;
4047 	unsigned long kernelcore_node, kernelcore_remaining;
4048 	/* save the state before borrow the nodemask */
4049 	nodemask_t saved_node_state = node_states[N_HIGH_MEMORY];
4050 	unsigned long totalpages = early_calculate_totalpages();
4051 	int usable_nodes = nodes_weight(node_states[N_HIGH_MEMORY]);
4052 
4053 	/*
4054 	 * If movablecore was specified, calculate what size of
4055 	 * kernelcore that corresponds so that memory usable for
4056 	 * any allocation type is evenly spread. If both kernelcore
4057 	 * and movablecore are specified, then the value of kernelcore
4058 	 * will be used for required_kernelcore if it's greater than
4059 	 * what movablecore would have allowed.
4060 	 */
4061 	if (required_movablecore) {
4062 		unsigned long corepages;
4063 
4064 		/*
4065 		 * Round-up so that ZONE_MOVABLE is at least as large as what
4066 		 * was requested by the user
4067 		 */
4068 		required_movablecore =
4069 			roundup(required_movablecore, MAX_ORDER_NR_PAGES);
4070 		corepages = totalpages - required_movablecore;
4071 
4072 		required_kernelcore = max(required_kernelcore, corepages);
4073 	}
4074 
4075 	/* If kernelcore was not specified, there is no ZONE_MOVABLE */
4076 	if (!required_kernelcore)
4077 		goto out;
4078 
4079 	/* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
4080 	find_usable_zone_for_movable();
4081 	usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
4082 
4083 restart:
4084 	/* Spread kernelcore memory as evenly as possible throughout nodes */
4085 	kernelcore_node = required_kernelcore / usable_nodes;
4086 	for_each_node_state(nid, N_HIGH_MEMORY) {
4087 		/*
4088 		 * Recalculate kernelcore_node if the division per node
4089 		 * now exceeds what is necessary to satisfy the requested
4090 		 * amount of memory for the kernel
4091 		 */
4092 		if (required_kernelcore < kernelcore_node)
4093 			kernelcore_node = required_kernelcore / usable_nodes;
4094 
4095 		/*
4096 		 * As the map is walked, we track how much memory is usable
4097 		 * by the kernel using kernelcore_remaining. When it is
4098 		 * 0, the rest of the node is usable by ZONE_MOVABLE
4099 		 */
4100 		kernelcore_remaining = kernelcore_node;
4101 
4102 		/* Go through each range of PFNs within this node */
4103 		for_each_active_range_index_in_nid(i, nid) {
4104 			unsigned long start_pfn, end_pfn;
4105 			unsigned long size_pages;
4106 
4107 			start_pfn = max(early_node_map[i].start_pfn,
4108 						zone_movable_pfn[nid]);
4109 			end_pfn = early_node_map[i].end_pfn;
4110 			if (start_pfn >= end_pfn)
4111 				continue;
4112 
4113 			/* Account for what is only usable for kernelcore */
4114 			if (start_pfn < usable_startpfn) {
4115 				unsigned long kernel_pages;
4116 				kernel_pages = min(end_pfn, usable_startpfn)
4117 								- start_pfn;
4118 
4119 				kernelcore_remaining -= min(kernel_pages,
4120 							kernelcore_remaining);
4121 				required_kernelcore -= min(kernel_pages,
4122 							required_kernelcore);
4123 
4124 				/* Continue if range is now fully accounted */
4125 				if (end_pfn <= usable_startpfn) {
4126 
4127 					/*
4128 					 * Push zone_movable_pfn to the end so
4129 					 * that if we have to rebalance
4130 					 * kernelcore across nodes, we will
4131 					 * not double account here
4132 					 */
4133 					zone_movable_pfn[nid] = end_pfn;
4134 					continue;
4135 				}
4136 				start_pfn = usable_startpfn;
4137 			}
4138 
4139 			/*
4140 			 * The usable PFN range for ZONE_MOVABLE is from
4141 			 * start_pfn->end_pfn. Calculate size_pages as the
4142 			 * number of pages used as kernelcore
4143 			 */
4144 			size_pages = end_pfn - start_pfn;
4145 			if (size_pages > kernelcore_remaining)
4146 				size_pages = kernelcore_remaining;
4147 			zone_movable_pfn[nid] = start_pfn + size_pages;
4148 
4149 			/*
4150 			 * Some kernelcore has been met, update counts and
4151 			 * break if the kernelcore for this node has been
4152 			 * satisified
4153 			 */
4154 			required_kernelcore -= min(required_kernelcore,
4155 								size_pages);
4156 			kernelcore_remaining -= size_pages;
4157 			if (!kernelcore_remaining)
4158 				break;
4159 		}
4160 	}
4161 
4162 	/*
4163 	 * If there is still required_kernelcore, we do another pass with one
4164 	 * less node in the count. This will push zone_movable_pfn[nid] further
4165 	 * along on the nodes that still have memory until kernelcore is
4166 	 * satisified
4167 	 */
4168 	usable_nodes--;
4169 	if (usable_nodes && required_kernelcore > usable_nodes)
4170 		goto restart;
4171 
4172 	/* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
4173 	for (nid = 0; nid < MAX_NUMNODES; nid++)
4174 		zone_movable_pfn[nid] =
4175 			roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
4176 
4177 out:
4178 	/* restore the node_state */
4179 	node_states[N_HIGH_MEMORY] = saved_node_state;
4180 }
4181 
4182 /* Any regular memory on that node ? */
4183 static void check_for_regular_memory(pg_data_t *pgdat)
4184 {
4185 #ifdef CONFIG_HIGHMEM
4186 	enum zone_type zone_type;
4187 
4188 	for (zone_type = 0; zone_type <= ZONE_NORMAL; zone_type++) {
4189 		struct zone *zone = &pgdat->node_zones[zone_type];
4190 		if (zone->present_pages)
4191 			node_set_state(zone_to_nid(zone), N_NORMAL_MEMORY);
4192 	}
4193 #endif
4194 }
4195 
4196 /**
4197  * free_area_init_nodes - Initialise all pg_data_t and zone data
4198  * @max_zone_pfn: an array of max PFNs for each zone
4199  *
4200  * This will call free_area_init_node() for each active node in the system.
4201  * Using the page ranges provided by add_active_range(), the size of each
4202  * zone in each node and their holes is calculated. If the maximum PFN
4203  * between two adjacent zones match, it is assumed that the zone is empty.
4204  * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
4205  * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
4206  * starts where the previous one ended. For example, ZONE_DMA32 starts
4207  * at arch_max_dma_pfn.
4208  */
4209 void __init free_area_init_nodes(unsigned long *max_zone_pfn)
4210 {
4211 	unsigned long nid;
4212 	int i;
4213 
4214 	/* Sort early_node_map as initialisation assumes it is sorted */
4215 	sort_node_map();
4216 
4217 	/* Record where the zone boundaries are */
4218 	memset(arch_zone_lowest_possible_pfn, 0,
4219 				sizeof(arch_zone_lowest_possible_pfn));
4220 	memset(arch_zone_highest_possible_pfn, 0,
4221 				sizeof(arch_zone_highest_possible_pfn));
4222 	arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
4223 	arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
4224 	for (i = 1; i < MAX_NR_ZONES; i++) {
4225 		if (i == ZONE_MOVABLE)
4226 			continue;
4227 		arch_zone_lowest_possible_pfn[i] =
4228 			arch_zone_highest_possible_pfn[i-1];
4229 		arch_zone_highest_possible_pfn[i] =
4230 			max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
4231 	}
4232 	arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
4233 	arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
4234 
4235 	/* Find the PFNs that ZONE_MOVABLE begins at in each node */
4236 	memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
4237 	find_zone_movable_pfns_for_nodes(zone_movable_pfn);
4238 
4239 	/* Print out the zone ranges */
4240 	printk("Zone PFN ranges:\n");
4241 	for (i = 0; i < MAX_NR_ZONES; i++) {
4242 		if (i == ZONE_MOVABLE)
4243 			continue;
4244 		printk("  %-8s %0#10lx -> %0#10lx\n",
4245 				zone_names[i],
4246 				arch_zone_lowest_possible_pfn[i],
4247 				arch_zone_highest_possible_pfn[i]);
4248 	}
4249 
4250 	/* Print out the PFNs ZONE_MOVABLE begins at in each node */
4251 	printk("Movable zone start PFN for each node\n");
4252 	for (i = 0; i < MAX_NUMNODES; i++) {
4253 		if (zone_movable_pfn[i])
4254 			printk("  Node %d: %lu\n", i, zone_movable_pfn[i]);
4255 	}
4256 
4257 	/* Print out the early_node_map[] */
4258 	printk("early_node_map[%d] active PFN ranges\n", nr_nodemap_entries);
4259 	for (i = 0; i < nr_nodemap_entries; i++)
4260 		printk("  %3d: %0#10lx -> %0#10lx\n", early_node_map[i].nid,
4261 						early_node_map[i].start_pfn,
4262 						early_node_map[i].end_pfn);
4263 
4264 	/* Initialise every node */
4265 	mminit_verify_pageflags_layout();
4266 	setup_nr_node_ids();
4267 	for_each_online_node(nid) {
4268 		pg_data_t *pgdat = NODE_DATA(nid);
4269 		free_area_init_node(nid, NULL,
4270 				find_min_pfn_for_node(nid), NULL);
4271 
4272 		/* Any memory on that node */
4273 		if (pgdat->node_present_pages)
4274 			node_set_state(nid, N_HIGH_MEMORY);
4275 		check_for_regular_memory(pgdat);
4276 	}
4277 }
4278 
4279 static int __init cmdline_parse_core(char *p, unsigned long *core)
4280 {
4281 	unsigned long long coremem;
4282 	if (!p)
4283 		return -EINVAL;
4284 
4285 	coremem = memparse(p, &p);
4286 	*core = coremem >> PAGE_SHIFT;
4287 
4288 	/* Paranoid check that UL is enough for the coremem value */
4289 	WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
4290 
4291 	return 0;
4292 }
4293 
4294 /*
4295  * kernelcore=size sets the amount of memory for use for allocations that
4296  * cannot be reclaimed or migrated.
4297  */
4298 static int __init cmdline_parse_kernelcore(char *p)
4299 {
4300 	return cmdline_parse_core(p, &required_kernelcore);
4301 }
4302 
4303 /*
4304  * movablecore=size sets the amount of memory for use for allocations that
4305  * can be reclaimed or migrated.
4306  */
4307 static int __init cmdline_parse_movablecore(char *p)
4308 {
4309 	return cmdline_parse_core(p, &required_movablecore);
4310 }
4311 
4312 early_param("kernelcore", cmdline_parse_kernelcore);
4313 early_param("movablecore", cmdline_parse_movablecore);
4314 
4315 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
4316 
4317 /**
4318  * set_dma_reserve - set the specified number of pages reserved in the first zone
4319  * @new_dma_reserve: The number of pages to mark reserved
4320  *
4321  * The per-cpu batchsize and zone watermarks are determined by present_pages.
4322  * In the DMA zone, a significant percentage may be consumed by kernel image
4323  * and other unfreeable allocations which can skew the watermarks badly. This
4324  * function may optionally be used to account for unfreeable pages in the
4325  * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
4326  * smaller per-cpu batchsize.
4327  */
4328 void __init set_dma_reserve(unsigned long new_dma_reserve)
4329 {
4330 	dma_reserve = new_dma_reserve;
4331 }
4332 
4333 #ifndef CONFIG_NEED_MULTIPLE_NODES
4334 struct pglist_data __refdata contig_page_data = { .bdata = &bootmem_node_data[0] };
4335 EXPORT_SYMBOL(contig_page_data);
4336 #endif
4337 
4338 void __init free_area_init(unsigned long *zones_size)
4339 {
4340 	free_area_init_node(0, zones_size,
4341 			__pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
4342 }
4343 
4344 static int page_alloc_cpu_notify(struct notifier_block *self,
4345 				 unsigned long action, void *hcpu)
4346 {
4347 	int cpu = (unsigned long)hcpu;
4348 
4349 	if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
4350 		drain_pages(cpu);
4351 
4352 		/*
4353 		 * Spill the event counters of the dead processor
4354 		 * into the current processors event counters.
4355 		 * This artificially elevates the count of the current
4356 		 * processor.
4357 		 */
4358 		vm_events_fold_cpu(cpu);
4359 
4360 		/*
4361 		 * Zero the differential counters of the dead processor
4362 		 * so that the vm statistics are consistent.
4363 		 *
4364 		 * This is only okay since the processor is dead and cannot
4365 		 * race with what we are doing.
4366 		 */
4367 		refresh_cpu_vm_stats(cpu);
4368 	}
4369 	return NOTIFY_OK;
4370 }
4371 
4372 void __init page_alloc_init(void)
4373 {
4374 	hotcpu_notifier(page_alloc_cpu_notify, 0);
4375 }
4376 
4377 /*
4378  * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
4379  *	or min_free_kbytes changes.
4380  */
4381 static void calculate_totalreserve_pages(void)
4382 {
4383 	struct pglist_data *pgdat;
4384 	unsigned long reserve_pages = 0;
4385 	enum zone_type i, j;
4386 
4387 	for_each_online_pgdat(pgdat) {
4388 		for (i = 0; i < MAX_NR_ZONES; i++) {
4389 			struct zone *zone = pgdat->node_zones + i;
4390 			unsigned long max = 0;
4391 
4392 			/* Find valid and maximum lowmem_reserve in the zone */
4393 			for (j = i; j < MAX_NR_ZONES; j++) {
4394 				if (zone->lowmem_reserve[j] > max)
4395 					max = zone->lowmem_reserve[j];
4396 			}
4397 
4398 			/* we treat the high watermark as reserved pages. */
4399 			max += high_wmark_pages(zone);
4400 
4401 			if (max > zone->present_pages)
4402 				max = zone->present_pages;
4403 			reserve_pages += max;
4404 		}
4405 	}
4406 	totalreserve_pages = reserve_pages;
4407 }
4408 
4409 /*
4410  * setup_per_zone_lowmem_reserve - called whenever
4411  *	sysctl_lower_zone_reserve_ratio changes.  Ensures that each zone
4412  *	has a correct pages reserved value, so an adequate number of
4413  *	pages are left in the zone after a successful __alloc_pages().
4414  */
4415 static void setup_per_zone_lowmem_reserve(void)
4416 {
4417 	struct pglist_data *pgdat;
4418 	enum zone_type j, idx;
4419 
4420 	for_each_online_pgdat(pgdat) {
4421 		for (j = 0; j < MAX_NR_ZONES; j++) {
4422 			struct zone *zone = pgdat->node_zones + j;
4423 			unsigned long present_pages = zone->present_pages;
4424 
4425 			zone->lowmem_reserve[j] = 0;
4426 
4427 			idx = j;
4428 			while (idx) {
4429 				struct zone *lower_zone;
4430 
4431 				idx--;
4432 
4433 				if (sysctl_lowmem_reserve_ratio[idx] < 1)
4434 					sysctl_lowmem_reserve_ratio[idx] = 1;
4435 
4436 				lower_zone = pgdat->node_zones + idx;
4437 				lower_zone->lowmem_reserve[j] = present_pages /
4438 					sysctl_lowmem_reserve_ratio[idx];
4439 				present_pages += lower_zone->present_pages;
4440 			}
4441 		}
4442 	}
4443 
4444 	/* update totalreserve_pages */
4445 	calculate_totalreserve_pages();
4446 }
4447 
4448 /**
4449  * setup_per_zone_wmarks - called when min_free_kbytes changes
4450  * or when memory is hot-{added|removed}
4451  *
4452  * Ensures that the watermark[min,low,high] values for each zone are set
4453  * correctly with respect to min_free_kbytes.
4454  */
4455 void setup_per_zone_wmarks(void)
4456 {
4457 	unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
4458 	unsigned long lowmem_pages = 0;
4459 	struct zone *zone;
4460 	unsigned long flags;
4461 
4462 	/* Calculate total number of !ZONE_HIGHMEM pages */
4463 	for_each_zone(zone) {
4464 		if (!is_highmem(zone))
4465 			lowmem_pages += zone->present_pages;
4466 	}
4467 
4468 	for_each_zone(zone) {
4469 		u64 tmp;
4470 
4471 		spin_lock_irqsave(&zone->lock, flags);
4472 		tmp = (u64)pages_min * zone->present_pages;
4473 		do_div(tmp, lowmem_pages);
4474 		if (is_highmem(zone)) {
4475 			/*
4476 			 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
4477 			 * need highmem pages, so cap pages_min to a small
4478 			 * value here.
4479 			 *
4480 			 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
4481 			 * deltas controls asynch page reclaim, and so should
4482 			 * not be capped for highmem.
4483 			 */
4484 			int min_pages;
4485 
4486 			min_pages = zone->present_pages / 1024;
4487 			if (min_pages < SWAP_CLUSTER_MAX)
4488 				min_pages = SWAP_CLUSTER_MAX;
4489 			if (min_pages > 128)
4490 				min_pages = 128;
4491 			zone->watermark[WMARK_MIN] = min_pages;
4492 		} else {
4493 			/*
4494 			 * If it's a lowmem zone, reserve a number of pages
4495 			 * proportionate to the zone's size.
4496 			 */
4497 			zone->watermark[WMARK_MIN] = tmp;
4498 		}
4499 
4500 		zone->watermark[WMARK_LOW]  = min_wmark_pages(zone) + (tmp >> 2);
4501 		zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1);
4502 		setup_zone_migrate_reserve(zone);
4503 		spin_unlock_irqrestore(&zone->lock, flags);
4504 	}
4505 
4506 	/* update totalreserve_pages */
4507 	calculate_totalreserve_pages();
4508 }
4509 
4510 /**
4511  * The inactive anon list should be small enough that the VM never has to
4512  * do too much work, but large enough that each inactive page has a chance
4513  * to be referenced again before it is swapped out.
4514  *
4515  * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
4516  * INACTIVE_ANON pages on this zone's LRU, maintained by the
4517  * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
4518  * the anonymous pages are kept on the inactive list.
4519  *
4520  * total     target    max
4521  * memory    ratio     inactive anon
4522  * -------------------------------------
4523  *   10MB       1         5MB
4524  *  100MB       1        50MB
4525  *    1GB       3       250MB
4526  *   10GB      10       0.9GB
4527  *  100GB      31         3GB
4528  *    1TB     101        10GB
4529  *   10TB     320        32GB
4530  */
4531 void calculate_zone_inactive_ratio(struct zone *zone)
4532 {
4533 	unsigned int gb, ratio;
4534 
4535 	/* Zone size in gigabytes */
4536 	gb = zone->present_pages >> (30 - PAGE_SHIFT);
4537 	if (gb)
4538 		ratio = int_sqrt(10 * gb);
4539 	else
4540 		ratio = 1;
4541 
4542 	zone->inactive_ratio = ratio;
4543 }
4544 
4545 static void __init setup_per_zone_inactive_ratio(void)
4546 {
4547 	struct zone *zone;
4548 
4549 	for_each_zone(zone)
4550 		calculate_zone_inactive_ratio(zone);
4551 }
4552 
4553 /*
4554  * Initialise min_free_kbytes.
4555  *
4556  * For small machines we want it small (128k min).  For large machines
4557  * we want it large (64MB max).  But it is not linear, because network
4558  * bandwidth does not increase linearly with machine size.  We use
4559  *
4560  * 	min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
4561  *	min_free_kbytes = sqrt(lowmem_kbytes * 16)
4562  *
4563  * which yields
4564  *
4565  * 16MB:	512k
4566  * 32MB:	724k
4567  * 64MB:	1024k
4568  * 128MB:	1448k
4569  * 256MB:	2048k
4570  * 512MB:	2896k
4571  * 1024MB:	4096k
4572  * 2048MB:	5792k
4573  * 4096MB:	8192k
4574  * 8192MB:	11584k
4575  * 16384MB:	16384k
4576  */
4577 static int __init init_per_zone_wmark_min(void)
4578 {
4579 	unsigned long lowmem_kbytes;
4580 
4581 	lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
4582 
4583 	min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
4584 	if (min_free_kbytes < 128)
4585 		min_free_kbytes = 128;
4586 	if (min_free_kbytes > 65536)
4587 		min_free_kbytes = 65536;
4588 	setup_per_zone_wmarks();
4589 	setup_per_zone_lowmem_reserve();
4590 	setup_per_zone_inactive_ratio();
4591 	return 0;
4592 }
4593 module_init(init_per_zone_wmark_min)
4594 
4595 /*
4596  * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
4597  *	that we can call two helper functions whenever min_free_kbytes
4598  *	changes.
4599  */
4600 int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
4601 	struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4602 {
4603 	proc_dointvec(table, write, file, buffer, length, ppos);
4604 	if (write)
4605 		setup_per_zone_wmarks();
4606 	return 0;
4607 }
4608 
4609 #ifdef CONFIG_NUMA
4610 int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
4611 	struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4612 {
4613 	struct zone *zone;
4614 	int rc;
4615 
4616 	rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4617 	if (rc)
4618 		return rc;
4619 
4620 	for_each_zone(zone)
4621 		zone->min_unmapped_pages = (zone->present_pages *
4622 				sysctl_min_unmapped_ratio) / 100;
4623 	return 0;
4624 }
4625 
4626 int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
4627 	struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4628 {
4629 	struct zone *zone;
4630 	int rc;
4631 
4632 	rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4633 	if (rc)
4634 		return rc;
4635 
4636 	for_each_zone(zone)
4637 		zone->min_slab_pages = (zone->present_pages *
4638 				sysctl_min_slab_ratio) / 100;
4639 	return 0;
4640 }
4641 #endif
4642 
4643 /*
4644  * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
4645  *	proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
4646  *	whenever sysctl_lowmem_reserve_ratio changes.
4647  *
4648  * The reserve ratio obviously has absolutely no relation with the
4649  * minimum watermarks. The lowmem reserve ratio can only make sense
4650  * if in function of the boot time zone sizes.
4651  */
4652 int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
4653 	struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4654 {
4655 	proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4656 	setup_per_zone_lowmem_reserve();
4657 	return 0;
4658 }
4659 
4660 /*
4661  * percpu_pagelist_fraction - changes the pcp->high for each zone on each
4662  * cpu.  It is the fraction of total pages in each zone that a hot per cpu pagelist
4663  * can have before it gets flushed back to buddy allocator.
4664  */
4665 
4666 int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
4667 	struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4668 {
4669 	struct zone *zone;
4670 	unsigned int cpu;
4671 	int ret;
4672 
4673 	ret = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4674 	if (!write || (ret == -EINVAL))
4675 		return ret;
4676 	for_each_populated_zone(zone) {
4677 		for_each_online_cpu(cpu) {
4678 			unsigned long  high;
4679 			high = zone->present_pages / percpu_pagelist_fraction;
4680 			setup_pagelist_highmark(zone_pcp(zone, cpu), high);
4681 		}
4682 	}
4683 	return 0;
4684 }
4685 
4686 int hashdist = HASHDIST_DEFAULT;
4687 
4688 #ifdef CONFIG_NUMA
4689 static int __init set_hashdist(char *str)
4690 {
4691 	if (!str)
4692 		return 0;
4693 	hashdist = simple_strtoul(str, &str, 0);
4694 	return 1;
4695 }
4696 __setup("hashdist=", set_hashdist);
4697 #endif
4698 
4699 /*
4700  * allocate a large system hash table from bootmem
4701  * - it is assumed that the hash table must contain an exact power-of-2
4702  *   quantity of entries
4703  * - limit is the number of hash buckets, not the total allocation size
4704  */
4705 void *__init alloc_large_system_hash(const char *tablename,
4706 				     unsigned long bucketsize,
4707 				     unsigned long numentries,
4708 				     int scale,
4709 				     int flags,
4710 				     unsigned int *_hash_shift,
4711 				     unsigned int *_hash_mask,
4712 				     unsigned long limit)
4713 {
4714 	unsigned long long max = limit;
4715 	unsigned long log2qty, size;
4716 	void *table = NULL;
4717 
4718 	/* allow the kernel cmdline to have a say */
4719 	if (!numentries) {
4720 		/* round applicable memory size up to nearest megabyte */
4721 		numentries = nr_kernel_pages;
4722 		numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
4723 		numentries >>= 20 - PAGE_SHIFT;
4724 		numentries <<= 20 - PAGE_SHIFT;
4725 
4726 		/* limit to 1 bucket per 2^scale bytes of low memory */
4727 		if (scale > PAGE_SHIFT)
4728 			numentries >>= (scale - PAGE_SHIFT);
4729 		else
4730 			numentries <<= (PAGE_SHIFT - scale);
4731 
4732 		/* Make sure we've got at least a 0-order allocation.. */
4733 		if (unlikely((numentries * bucketsize) < PAGE_SIZE))
4734 			numentries = PAGE_SIZE / bucketsize;
4735 	}
4736 	numentries = roundup_pow_of_two(numentries);
4737 
4738 	/* limit allocation size to 1/16 total memory by default */
4739 	if (max == 0) {
4740 		max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
4741 		do_div(max, bucketsize);
4742 	}
4743 
4744 	if (numentries > max)
4745 		numentries = max;
4746 
4747 	log2qty = ilog2(numentries);
4748 
4749 	do {
4750 		size = bucketsize << log2qty;
4751 		if (flags & HASH_EARLY)
4752 			table = alloc_bootmem_nopanic(size);
4753 		else if (hashdist)
4754 			table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
4755 		else {
4756 			/*
4757 			 * If bucketsize is not a power-of-two, we may free
4758 			 * some pages at the end of hash table which
4759 			 * alloc_pages_exact() automatically does
4760 			 */
4761 			if (get_order(size) < MAX_ORDER) {
4762 				table = alloc_pages_exact(size, GFP_ATOMIC);
4763 				kmemleak_alloc(table, size, 1, GFP_ATOMIC);
4764 			}
4765 		}
4766 	} while (!table && size > PAGE_SIZE && --log2qty);
4767 
4768 	if (!table)
4769 		panic("Failed to allocate %s hash table\n", tablename);
4770 
4771 	printk(KERN_INFO "%s hash table entries: %d (order: %d, %lu bytes)\n",
4772 	       tablename,
4773 	       (1U << log2qty),
4774 	       ilog2(size) - PAGE_SHIFT,
4775 	       size);
4776 
4777 	if (_hash_shift)
4778 		*_hash_shift = log2qty;
4779 	if (_hash_mask)
4780 		*_hash_mask = (1 << log2qty) - 1;
4781 
4782 	return table;
4783 }
4784 
4785 /* Return a pointer to the bitmap storing bits affecting a block of pages */
4786 static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
4787 							unsigned long pfn)
4788 {
4789 #ifdef CONFIG_SPARSEMEM
4790 	return __pfn_to_section(pfn)->pageblock_flags;
4791 #else
4792 	return zone->pageblock_flags;
4793 #endif /* CONFIG_SPARSEMEM */
4794 }
4795 
4796 static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
4797 {
4798 #ifdef CONFIG_SPARSEMEM
4799 	pfn &= (PAGES_PER_SECTION-1);
4800 	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
4801 #else
4802 	pfn = pfn - zone->zone_start_pfn;
4803 	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
4804 #endif /* CONFIG_SPARSEMEM */
4805 }
4806 
4807 /**
4808  * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
4809  * @page: The page within the block of interest
4810  * @start_bitidx: The first bit of interest to retrieve
4811  * @end_bitidx: The last bit of interest
4812  * returns pageblock_bits flags
4813  */
4814 unsigned long get_pageblock_flags_group(struct page *page,
4815 					int start_bitidx, int end_bitidx)
4816 {
4817 	struct zone *zone;
4818 	unsigned long *bitmap;
4819 	unsigned long pfn, bitidx;
4820 	unsigned long flags = 0;
4821 	unsigned long value = 1;
4822 
4823 	zone = page_zone(page);
4824 	pfn = page_to_pfn(page);
4825 	bitmap = get_pageblock_bitmap(zone, pfn);
4826 	bitidx = pfn_to_bitidx(zone, pfn);
4827 
4828 	for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
4829 		if (test_bit(bitidx + start_bitidx, bitmap))
4830 			flags |= value;
4831 
4832 	return flags;
4833 }
4834 
4835 /**
4836  * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
4837  * @page: The page within the block of interest
4838  * @start_bitidx: The first bit of interest
4839  * @end_bitidx: The last bit of interest
4840  * @flags: The flags to set
4841  */
4842 void set_pageblock_flags_group(struct page *page, unsigned long flags,
4843 					int start_bitidx, int end_bitidx)
4844 {
4845 	struct zone *zone;
4846 	unsigned long *bitmap;
4847 	unsigned long pfn, bitidx;
4848 	unsigned long value = 1;
4849 
4850 	zone = page_zone(page);
4851 	pfn = page_to_pfn(page);
4852 	bitmap = get_pageblock_bitmap(zone, pfn);
4853 	bitidx = pfn_to_bitidx(zone, pfn);
4854 	VM_BUG_ON(pfn < zone->zone_start_pfn);
4855 	VM_BUG_ON(pfn >= zone->zone_start_pfn + zone->spanned_pages);
4856 
4857 	for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
4858 		if (flags & value)
4859 			__set_bit(bitidx + start_bitidx, bitmap);
4860 		else
4861 			__clear_bit(bitidx + start_bitidx, bitmap);
4862 }
4863 
4864 /*
4865  * This is designed as sub function...plz see page_isolation.c also.
4866  * set/clear page block's type to be ISOLATE.
4867  * page allocater never alloc memory from ISOLATE block.
4868  */
4869 
4870 int set_migratetype_isolate(struct page *page)
4871 {
4872 	struct zone *zone;
4873 	unsigned long flags;
4874 	int ret = -EBUSY;
4875 
4876 	zone = page_zone(page);
4877 	spin_lock_irqsave(&zone->lock, flags);
4878 	/*
4879 	 * In future, more migrate types will be able to be isolation target.
4880 	 */
4881 	if (get_pageblock_migratetype(page) != MIGRATE_MOVABLE)
4882 		goto out;
4883 	set_pageblock_migratetype(page, MIGRATE_ISOLATE);
4884 	move_freepages_block(zone, page, MIGRATE_ISOLATE);
4885 	ret = 0;
4886 out:
4887 	spin_unlock_irqrestore(&zone->lock, flags);
4888 	if (!ret)
4889 		drain_all_pages();
4890 	return ret;
4891 }
4892 
4893 void unset_migratetype_isolate(struct page *page)
4894 {
4895 	struct zone *zone;
4896 	unsigned long flags;
4897 	zone = page_zone(page);
4898 	spin_lock_irqsave(&zone->lock, flags);
4899 	if (get_pageblock_migratetype(page) != MIGRATE_ISOLATE)
4900 		goto out;
4901 	set_pageblock_migratetype(page, MIGRATE_MOVABLE);
4902 	move_freepages_block(zone, page, MIGRATE_MOVABLE);
4903 out:
4904 	spin_unlock_irqrestore(&zone->lock, flags);
4905 }
4906 
4907 #ifdef CONFIG_MEMORY_HOTREMOVE
4908 /*
4909  * All pages in the range must be isolated before calling this.
4910  */
4911 void
4912 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
4913 {
4914 	struct page *page;
4915 	struct zone *zone;
4916 	int order, i;
4917 	unsigned long pfn;
4918 	unsigned long flags;
4919 	/* find the first valid pfn */
4920 	for (pfn = start_pfn; pfn < end_pfn; pfn++)
4921 		if (pfn_valid(pfn))
4922 			break;
4923 	if (pfn == end_pfn)
4924 		return;
4925 	zone = page_zone(pfn_to_page(pfn));
4926 	spin_lock_irqsave(&zone->lock, flags);
4927 	pfn = start_pfn;
4928 	while (pfn < end_pfn) {
4929 		if (!pfn_valid(pfn)) {
4930 			pfn++;
4931 			continue;
4932 		}
4933 		page = pfn_to_page(pfn);
4934 		BUG_ON(page_count(page));
4935 		BUG_ON(!PageBuddy(page));
4936 		order = page_order(page);
4937 #ifdef CONFIG_DEBUG_VM
4938 		printk(KERN_INFO "remove from free list %lx %d %lx\n",
4939 		       pfn, 1 << order, end_pfn);
4940 #endif
4941 		list_del(&page->lru);
4942 		rmv_page_order(page);
4943 		zone->free_area[order].nr_free--;
4944 		__mod_zone_page_state(zone, NR_FREE_PAGES,
4945 				      - (1UL << order));
4946 		for (i = 0; i < (1 << order); i++)
4947 			SetPageReserved((page+i));
4948 		pfn += (1 << order);
4949 	}
4950 	spin_unlock_irqrestore(&zone->lock, flags);
4951 }
4952 #endif
4953