xref: /linux/mm/page_alloc.c (revision abe11ddea1d759f9995a9a4636c28c9b40856ca8)
1 /*
2  *  linux/mm/page_alloc.c
3  *
4  *  Manages the free list, the system allocates free pages here.
5  *  Note that kmalloc() lives in slab.c
6  *
7  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
8  *  Swap reorganised 29.12.95, Stephen Tweedie
9  *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10  *  Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11  *  Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12  *  Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13  *  Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14  *          (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15  */
16 
17 #include <linux/stddef.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/memblock.h>
25 #include <linux/compiler.h>
26 #include <linux/kernel.h>
27 #include <linux/kmemcheck.h>
28 #include <linux/module.h>
29 #include <linux/suspend.h>
30 #include <linux/pagevec.h>
31 #include <linux/blkdev.h>
32 #include <linux/slab.h>
33 #include <linux/ratelimit.h>
34 #include <linux/oom.h>
35 #include <linux/notifier.h>
36 #include <linux/topology.h>
37 #include <linux/sysctl.h>
38 #include <linux/cpu.h>
39 #include <linux/cpuset.h>
40 #include <linux/memory_hotplug.h>
41 #include <linux/nodemask.h>
42 #include <linux/vmalloc.h>
43 #include <linux/vmstat.h>
44 #include <linux/mempolicy.h>
45 #include <linux/stop_machine.h>
46 #include <linux/sort.h>
47 #include <linux/pfn.h>
48 #include <linux/backing-dev.h>
49 #include <linux/fault-inject.h>
50 #include <linux/page-isolation.h>
51 #include <linux/page_cgroup.h>
52 #include <linux/debugobjects.h>
53 #include <linux/kmemleak.h>
54 #include <linux/compaction.h>
55 #include <trace/events/kmem.h>
56 #include <linux/ftrace_event.h>
57 #include <linux/memcontrol.h>
58 #include <linux/prefetch.h>
59 #include <linux/migrate.h>
60 #include <linux/page-debug-flags.h>
61 
62 #include <asm/tlbflush.h>
63 #include <asm/div64.h>
64 #include "internal.h"
65 
66 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
67 DEFINE_PER_CPU(int, numa_node);
68 EXPORT_PER_CPU_SYMBOL(numa_node);
69 #endif
70 
71 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
72 /*
73  * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
74  * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
75  * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
76  * defined in <linux/topology.h>.
77  */
78 DEFINE_PER_CPU(int, _numa_mem_);		/* Kernel "local memory" node */
79 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
80 #endif
81 
82 /*
83  * Array of node states.
84  */
85 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
86 	[N_POSSIBLE] = NODE_MASK_ALL,
87 	[N_ONLINE] = { { [0] = 1UL } },
88 #ifndef CONFIG_NUMA
89 	[N_NORMAL_MEMORY] = { { [0] = 1UL } },
90 #ifdef CONFIG_HIGHMEM
91 	[N_HIGH_MEMORY] = { { [0] = 1UL } },
92 #endif
93 #ifdef CONFIG_MOVABLE_NODE
94 	[N_MEMORY] = { { [0] = 1UL } },
95 #endif
96 	[N_CPU] = { { [0] = 1UL } },
97 #endif	/* NUMA */
98 };
99 EXPORT_SYMBOL(node_states);
100 
101 unsigned long totalram_pages __read_mostly;
102 unsigned long totalreserve_pages __read_mostly;
103 /*
104  * When calculating the number of globally allowed dirty pages, there
105  * is a certain number of per-zone reserves that should not be
106  * considered dirtyable memory.  This is the sum of those reserves
107  * over all existing zones that contribute dirtyable memory.
108  */
109 unsigned long dirty_balance_reserve __read_mostly;
110 
111 int percpu_pagelist_fraction;
112 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
113 
114 #ifdef CONFIG_PM_SLEEP
115 /*
116  * The following functions are used by the suspend/hibernate code to temporarily
117  * change gfp_allowed_mask in order to avoid using I/O during memory allocations
118  * while devices are suspended.  To avoid races with the suspend/hibernate code,
119  * they should always be called with pm_mutex held (gfp_allowed_mask also should
120  * only be modified with pm_mutex held, unless the suspend/hibernate code is
121  * guaranteed not to run in parallel with that modification).
122  */
123 
124 static gfp_t saved_gfp_mask;
125 
126 void pm_restore_gfp_mask(void)
127 {
128 	WARN_ON(!mutex_is_locked(&pm_mutex));
129 	if (saved_gfp_mask) {
130 		gfp_allowed_mask = saved_gfp_mask;
131 		saved_gfp_mask = 0;
132 	}
133 }
134 
135 void pm_restrict_gfp_mask(void)
136 {
137 	WARN_ON(!mutex_is_locked(&pm_mutex));
138 	WARN_ON(saved_gfp_mask);
139 	saved_gfp_mask = gfp_allowed_mask;
140 	gfp_allowed_mask &= ~GFP_IOFS;
141 }
142 
143 bool pm_suspended_storage(void)
144 {
145 	if ((gfp_allowed_mask & GFP_IOFS) == GFP_IOFS)
146 		return false;
147 	return true;
148 }
149 #endif /* CONFIG_PM_SLEEP */
150 
151 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
152 int pageblock_order __read_mostly;
153 #endif
154 
155 static void __free_pages_ok(struct page *page, unsigned int order);
156 
157 /*
158  * results with 256, 32 in the lowmem_reserve sysctl:
159  *	1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
160  *	1G machine -> (16M dma, 784M normal, 224M high)
161  *	NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
162  *	HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
163  *	HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
164  *
165  * TBD: should special case ZONE_DMA32 machines here - in those we normally
166  * don't need any ZONE_NORMAL reservation
167  */
168 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
169 #ifdef CONFIG_ZONE_DMA
170 	 256,
171 #endif
172 #ifdef CONFIG_ZONE_DMA32
173 	 256,
174 #endif
175 #ifdef CONFIG_HIGHMEM
176 	 32,
177 #endif
178 	 32,
179 };
180 
181 EXPORT_SYMBOL(totalram_pages);
182 
183 static char * const zone_names[MAX_NR_ZONES] = {
184 #ifdef CONFIG_ZONE_DMA
185 	 "DMA",
186 #endif
187 #ifdef CONFIG_ZONE_DMA32
188 	 "DMA32",
189 #endif
190 	 "Normal",
191 #ifdef CONFIG_HIGHMEM
192 	 "HighMem",
193 #endif
194 	 "Movable",
195 };
196 
197 int min_free_kbytes = 1024;
198 
199 static unsigned long __meminitdata nr_kernel_pages;
200 static unsigned long __meminitdata nr_all_pages;
201 static unsigned long __meminitdata dma_reserve;
202 
203 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
204 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
205 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
206 static unsigned long __initdata required_kernelcore;
207 static unsigned long __initdata required_movablecore;
208 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
209 
210 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
211 int movable_zone;
212 EXPORT_SYMBOL(movable_zone);
213 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
214 
215 #if MAX_NUMNODES > 1
216 int nr_node_ids __read_mostly = MAX_NUMNODES;
217 int nr_online_nodes __read_mostly = 1;
218 EXPORT_SYMBOL(nr_node_ids);
219 EXPORT_SYMBOL(nr_online_nodes);
220 #endif
221 
222 int page_group_by_mobility_disabled __read_mostly;
223 
224 void set_pageblock_migratetype(struct page *page, int migratetype)
225 {
226 
227 	if (unlikely(page_group_by_mobility_disabled))
228 		migratetype = MIGRATE_UNMOVABLE;
229 
230 	set_pageblock_flags_group(page, (unsigned long)migratetype,
231 					PB_migrate, PB_migrate_end);
232 }
233 
234 bool oom_killer_disabled __read_mostly;
235 
236 #ifdef CONFIG_DEBUG_VM
237 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
238 {
239 	int ret = 0;
240 	unsigned seq;
241 	unsigned long pfn = page_to_pfn(page);
242 
243 	do {
244 		seq = zone_span_seqbegin(zone);
245 		if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
246 			ret = 1;
247 		else if (pfn < zone->zone_start_pfn)
248 			ret = 1;
249 	} while (zone_span_seqretry(zone, seq));
250 
251 	return ret;
252 }
253 
254 static int page_is_consistent(struct zone *zone, struct page *page)
255 {
256 	if (!pfn_valid_within(page_to_pfn(page)))
257 		return 0;
258 	if (zone != page_zone(page))
259 		return 0;
260 
261 	return 1;
262 }
263 /*
264  * Temporary debugging check for pages not lying within a given zone.
265  */
266 static int bad_range(struct zone *zone, struct page *page)
267 {
268 	if (page_outside_zone_boundaries(zone, page))
269 		return 1;
270 	if (!page_is_consistent(zone, page))
271 		return 1;
272 
273 	return 0;
274 }
275 #else
276 static inline int bad_range(struct zone *zone, struct page *page)
277 {
278 	return 0;
279 }
280 #endif
281 
282 static void bad_page(struct page *page)
283 {
284 	static unsigned long resume;
285 	static unsigned long nr_shown;
286 	static unsigned long nr_unshown;
287 
288 	/* Don't complain about poisoned pages */
289 	if (PageHWPoison(page)) {
290 		reset_page_mapcount(page); /* remove PageBuddy */
291 		return;
292 	}
293 
294 	/*
295 	 * Allow a burst of 60 reports, then keep quiet for that minute;
296 	 * or allow a steady drip of one report per second.
297 	 */
298 	if (nr_shown == 60) {
299 		if (time_before(jiffies, resume)) {
300 			nr_unshown++;
301 			goto out;
302 		}
303 		if (nr_unshown) {
304 			printk(KERN_ALERT
305 			      "BUG: Bad page state: %lu messages suppressed\n",
306 				nr_unshown);
307 			nr_unshown = 0;
308 		}
309 		nr_shown = 0;
310 	}
311 	if (nr_shown++ == 0)
312 		resume = jiffies + 60 * HZ;
313 
314 	printk(KERN_ALERT "BUG: Bad page state in process %s  pfn:%05lx\n",
315 		current->comm, page_to_pfn(page));
316 	dump_page(page);
317 
318 	print_modules();
319 	dump_stack();
320 out:
321 	/* Leave bad fields for debug, except PageBuddy could make trouble */
322 	reset_page_mapcount(page); /* remove PageBuddy */
323 	add_taint(TAINT_BAD_PAGE);
324 }
325 
326 /*
327  * Higher-order pages are called "compound pages".  They are structured thusly:
328  *
329  * The first PAGE_SIZE page is called the "head page".
330  *
331  * The remaining PAGE_SIZE pages are called "tail pages".
332  *
333  * All pages have PG_compound set.  All tail pages have their ->first_page
334  * pointing at the head page.
335  *
336  * The first tail page's ->lru.next holds the address of the compound page's
337  * put_page() function.  Its ->lru.prev holds the order of allocation.
338  * This usage means that zero-order pages may not be compound.
339  */
340 
341 static void free_compound_page(struct page *page)
342 {
343 	__free_pages_ok(page, compound_order(page));
344 }
345 
346 void prep_compound_page(struct page *page, unsigned long order)
347 {
348 	int i;
349 	int nr_pages = 1 << order;
350 
351 	set_compound_page_dtor(page, free_compound_page);
352 	set_compound_order(page, order);
353 	__SetPageHead(page);
354 	for (i = 1; i < nr_pages; i++) {
355 		struct page *p = page + i;
356 		__SetPageTail(p);
357 		set_page_count(p, 0);
358 		p->first_page = page;
359 	}
360 }
361 
362 /* update __split_huge_page_refcount if you change this function */
363 static int destroy_compound_page(struct page *page, unsigned long order)
364 {
365 	int i;
366 	int nr_pages = 1 << order;
367 	int bad = 0;
368 
369 	if (unlikely(compound_order(page) != order)) {
370 		bad_page(page);
371 		bad++;
372 	}
373 
374 	__ClearPageHead(page);
375 
376 	for (i = 1; i < nr_pages; i++) {
377 		struct page *p = page + i;
378 
379 		if (unlikely(!PageTail(p) || (p->first_page != page))) {
380 			bad_page(page);
381 			bad++;
382 		}
383 		__ClearPageTail(p);
384 	}
385 
386 	return bad;
387 }
388 
389 static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
390 {
391 	int i;
392 
393 	/*
394 	 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
395 	 * and __GFP_HIGHMEM from hard or soft interrupt context.
396 	 */
397 	VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
398 	for (i = 0; i < (1 << order); i++)
399 		clear_highpage(page + i);
400 }
401 
402 #ifdef CONFIG_DEBUG_PAGEALLOC
403 unsigned int _debug_guardpage_minorder;
404 
405 static int __init debug_guardpage_minorder_setup(char *buf)
406 {
407 	unsigned long res;
408 
409 	if (kstrtoul(buf, 10, &res) < 0 ||  res > MAX_ORDER / 2) {
410 		printk(KERN_ERR "Bad debug_guardpage_minorder value\n");
411 		return 0;
412 	}
413 	_debug_guardpage_minorder = res;
414 	printk(KERN_INFO "Setting debug_guardpage_minorder to %lu\n", res);
415 	return 0;
416 }
417 __setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup);
418 
419 static inline void set_page_guard_flag(struct page *page)
420 {
421 	__set_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
422 }
423 
424 static inline void clear_page_guard_flag(struct page *page)
425 {
426 	__clear_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
427 }
428 #else
429 static inline void set_page_guard_flag(struct page *page) { }
430 static inline void clear_page_guard_flag(struct page *page) { }
431 #endif
432 
433 static inline void set_page_order(struct page *page, int order)
434 {
435 	set_page_private(page, order);
436 	__SetPageBuddy(page);
437 }
438 
439 static inline void rmv_page_order(struct page *page)
440 {
441 	__ClearPageBuddy(page);
442 	set_page_private(page, 0);
443 }
444 
445 /*
446  * Locate the struct page for both the matching buddy in our
447  * pair (buddy1) and the combined O(n+1) page they form (page).
448  *
449  * 1) Any buddy B1 will have an order O twin B2 which satisfies
450  * the following equation:
451  *     B2 = B1 ^ (1 << O)
452  * For example, if the starting buddy (buddy2) is #8 its order
453  * 1 buddy is #10:
454  *     B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
455  *
456  * 2) Any buddy B will have an order O+1 parent P which
457  * satisfies the following equation:
458  *     P = B & ~(1 << O)
459  *
460  * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
461  */
462 static inline unsigned long
463 __find_buddy_index(unsigned long page_idx, unsigned int order)
464 {
465 	return page_idx ^ (1 << order);
466 }
467 
468 /*
469  * This function checks whether a page is free && is the buddy
470  * we can do coalesce a page and its buddy if
471  * (a) the buddy is not in a hole &&
472  * (b) the buddy is in the buddy system &&
473  * (c) a page and its buddy have the same order &&
474  * (d) a page and its buddy are in the same zone.
475  *
476  * For recording whether a page is in the buddy system, we set ->_mapcount -2.
477  * Setting, clearing, and testing _mapcount -2 is serialized by zone->lock.
478  *
479  * For recording page's order, we use page_private(page).
480  */
481 static inline int page_is_buddy(struct page *page, struct page *buddy,
482 								int order)
483 {
484 	if (!pfn_valid_within(page_to_pfn(buddy)))
485 		return 0;
486 
487 	if (page_zone_id(page) != page_zone_id(buddy))
488 		return 0;
489 
490 	if (page_is_guard(buddy) && page_order(buddy) == order) {
491 		VM_BUG_ON(page_count(buddy) != 0);
492 		return 1;
493 	}
494 
495 	if (PageBuddy(buddy) && page_order(buddy) == order) {
496 		VM_BUG_ON(page_count(buddy) != 0);
497 		return 1;
498 	}
499 	return 0;
500 }
501 
502 /*
503  * Freeing function for a buddy system allocator.
504  *
505  * The concept of a buddy system is to maintain direct-mapped table
506  * (containing bit values) for memory blocks of various "orders".
507  * The bottom level table contains the map for the smallest allocatable
508  * units of memory (here, pages), and each level above it describes
509  * pairs of units from the levels below, hence, "buddies".
510  * At a high level, all that happens here is marking the table entry
511  * at the bottom level available, and propagating the changes upward
512  * as necessary, plus some accounting needed to play nicely with other
513  * parts of the VM system.
514  * At each level, we keep a list of pages, which are heads of continuous
515  * free pages of length of (1 << order) and marked with _mapcount -2. Page's
516  * order is recorded in page_private(page) field.
517  * So when we are allocating or freeing one, we can derive the state of the
518  * other.  That is, if we allocate a small block, and both were
519  * free, the remainder of the region must be split into blocks.
520  * If a block is freed, and its buddy is also free, then this
521  * triggers coalescing into a block of larger size.
522  *
523  * -- nyc
524  */
525 
526 static inline void __free_one_page(struct page *page,
527 		struct zone *zone, unsigned int order,
528 		int migratetype)
529 {
530 	unsigned long page_idx;
531 	unsigned long combined_idx;
532 	unsigned long uninitialized_var(buddy_idx);
533 	struct page *buddy;
534 
535 	if (unlikely(PageCompound(page)))
536 		if (unlikely(destroy_compound_page(page, order)))
537 			return;
538 
539 	VM_BUG_ON(migratetype == -1);
540 
541 	page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
542 
543 	VM_BUG_ON(page_idx & ((1 << order) - 1));
544 	VM_BUG_ON(bad_range(zone, page));
545 
546 	while (order < MAX_ORDER-1) {
547 		buddy_idx = __find_buddy_index(page_idx, order);
548 		buddy = page + (buddy_idx - page_idx);
549 		if (!page_is_buddy(page, buddy, order))
550 			break;
551 		/*
552 		 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
553 		 * merge with it and move up one order.
554 		 */
555 		if (page_is_guard(buddy)) {
556 			clear_page_guard_flag(buddy);
557 			set_page_private(page, 0);
558 			__mod_zone_freepage_state(zone, 1 << order,
559 						  migratetype);
560 		} else {
561 			list_del(&buddy->lru);
562 			zone->free_area[order].nr_free--;
563 			rmv_page_order(buddy);
564 		}
565 		combined_idx = buddy_idx & page_idx;
566 		page = page + (combined_idx - page_idx);
567 		page_idx = combined_idx;
568 		order++;
569 	}
570 	set_page_order(page, order);
571 
572 	/*
573 	 * If this is not the largest possible page, check if the buddy
574 	 * of the next-highest order is free. If it is, it's possible
575 	 * that pages are being freed that will coalesce soon. In case,
576 	 * that is happening, add the free page to the tail of the list
577 	 * so it's less likely to be used soon and more likely to be merged
578 	 * as a higher order page
579 	 */
580 	if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
581 		struct page *higher_page, *higher_buddy;
582 		combined_idx = buddy_idx & page_idx;
583 		higher_page = page + (combined_idx - page_idx);
584 		buddy_idx = __find_buddy_index(combined_idx, order + 1);
585 		higher_buddy = higher_page + (buddy_idx - combined_idx);
586 		if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
587 			list_add_tail(&page->lru,
588 				&zone->free_area[order].free_list[migratetype]);
589 			goto out;
590 		}
591 	}
592 
593 	list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
594 out:
595 	zone->free_area[order].nr_free++;
596 }
597 
598 static inline int free_pages_check(struct page *page)
599 {
600 	if (unlikely(page_mapcount(page) |
601 		(page->mapping != NULL)  |
602 		(atomic_read(&page->_count) != 0) |
603 		(page->flags & PAGE_FLAGS_CHECK_AT_FREE) |
604 		(mem_cgroup_bad_page_check(page)))) {
605 		bad_page(page);
606 		return 1;
607 	}
608 	reset_page_last_nid(page);
609 	if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
610 		page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
611 	return 0;
612 }
613 
614 /*
615  * Frees a number of pages from the PCP lists
616  * Assumes all pages on list are in same zone, and of same order.
617  * count is the number of pages to free.
618  *
619  * If the zone was previously in an "all pages pinned" state then look to
620  * see if this freeing clears that state.
621  *
622  * And clear the zone's pages_scanned counter, to hold off the "all pages are
623  * pinned" detection logic.
624  */
625 static void free_pcppages_bulk(struct zone *zone, int count,
626 					struct per_cpu_pages *pcp)
627 {
628 	int migratetype = 0;
629 	int batch_free = 0;
630 	int to_free = count;
631 
632 	spin_lock(&zone->lock);
633 	zone->all_unreclaimable = 0;
634 	zone->pages_scanned = 0;
635 
636 	while (to_free) {
637 		struct page *page;
638 		struct list_head *list;
639 
640 		/*
641 		 * Remove pages from lists in a round-robin fashion. A
642 		 * batch_free count is maintained that is incremented when an
643 		 * empty list is encountered.  This is so more pages are freed
644 		 * off fuller lists instead of spinning excessively around empty
645 		 * lists
646 		 */
647 		do {
648 			batch_free++;
649 			if (++migratetype == MIGRATE_PCPTYPES)
650 				migratetype = 0;
651 			list = &pcp->lists[migratetype];
652 		} while (list_empty(list));
653 
654 		/* This is the only non-empty list. Free them all. */
655 		if (batch_free == MIGRATE_PCPTYPES)
656 			batch_free = to_free;
657 
658 		do {
659 			int mt;	/* migratetype of the to-be-freed page */
660 
661 			page = list_entry(list->prev, struct page, lru);
662 			/* must delete as __free_one_page list manipulates */
663 			list_del(&page->lru);
664 			mt = get_freepage_migratetype(page);
665 			/* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */
666 			__free_one_page(page, zone, 0, mt);
667 			trace_mm_page_pcpu_drain(page, 0, mt);
668 			if (likely(get_pageblock_migratetype(page) != MIGRATE_ISOLATE)) {
669 				__mod_zone_page_state(zone, NR_FREE_PAGES, 1);
670 				if (is_migrate_cma(mt))
671 					__mod_zone_page_state(zone, NR_FREE_CMA_PAGES, 1);
672 			}
673 		} while (--to_free && --batch_free && !list_empty(list));
674 	}
675 	spin_unlock(&zone->lock);
676 }
677 
678 static void free_one_page(struct zone *zone, struct page *page, int order,
679 				int migratetype)
680 {
681 	spin_lock(&zone->lock);
682 	zone->all_unreclaimable = 0;
683 	zone->pages_scanned = 0;
684 
685 	__free_one_page(page, zone, order, migratetype);
686 	if (unlikely(migratetype != MIGRATE_ISOLATE))
687 		__mod_zone_freepage_state(zone, 1 << order, migratetype);
688 	spin_unlock(&zone->lock);
689 }
690 
691 static bool free_pages_prepare(struct page *page, unsigned int order)
692 {
693 	int i;
694 	int bad = 0;
695 
696 	trace_mm_page_free(page, order);
697 	kmemcheck_free_shadow(page, order);
698 
699 	if (PageAnon(page))
700 		page->mapping = NULL;
701 	for (i = 0; i < (1 << order); i++)
702 		bad += free_pages_check(page + i);
703 	if (bad)
704 		return false;
705 
706 	if (!PageHighMem(page)) {
707 		debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order);
708 		debug_check_no_obj_freed(page_address(page),
709 					   PAGE_SIZE << order);
710 	}
711 	arch_free_page(page, order);
712 	kernel_map_pages(page, 1 << order, 0);
713 
714 	return true;
715 }
716 
717 static void __free_pages_ok(struct page *page, unsigned int order)
718 {
719 	unsigned long flags;
720 	int migratetype;
721 
722 	if (!free_pages_prepare(page, order))
723 		return;
724 
725 	local_irq_save(flags);
726 	__count_vm_events(PGFREE, 1 << order);
727 	migratetype = get_pageblock_migratetype(page);
728 	set_freepage_migratetype(page, migratetype);
729 	free_one_page(page_zone(page), page, order, migratetype);
730 	local_irq_restore(flags);
731 }
732 
733 /*
734  * Read access to zone->managed_pages is safe because it's unsigned long,
735  * but we still need to serialize writers. Currently all callers of
736  * __free_pages_bootmem() except put_page_bootmem() should only be used
737  * at boot time. So for shorter boot time, we shift the burden to
738  * put_page_bootmem() to serialize writers.
739  */
740 void __meminit __free_pages_bootmem(struct page *page, unsigned int order)
741 {
742 	unsigned int nr_pages = 1 << order;
743 	unsigned int loop;
744 
745 	prefetchw(page);
746 	for (loop = 0; loop < nr_pages; loop++) {
747 		struct page *p = &page[loop];
748 
749 		if (loop + 1 < nr_pages)
750 			prefetchw(p + 1);
751 		__ClearPageReserved(p);
752 		set_page_count(p, 0);
753 	}
754 
755 	page_zone(page)->managed_pages += 1 << order;
756 	set_page_refcounted(page);
757 	__free_pages(page, order);
758 }
759 
760 #ifdef CONFIG_CMA
761 /* Free whole pageblock and set it's migration type to MIGRATE_CMA. */
762 void __init init_cma_reserved_pageblock(struct page *page)
763 {
764 	unsigned i = pageblock_nr_pages;
765 	struct page *p = page;
766 
767 	do {
768 		__ClearPageReserved(p);
769 		set_page_count(p, 0);
770 	} while (++p, --i);
771 
772 	set_page_refcounted(page);
773 	set_pageblock_migratetype(page, MIGRATE_CMA);
774 	__free_pages(page, pageblock_order);
775 	totalram_pages += pageblock_nr_pages;
776 }
777 #endif
778 
779 /*
780  * The order of subdivision here is critical for the IO subsystem.
781  * Please do not alter this order without good reasons and regression
782  * testing. Specifically, as large blocks of memory are subdivided,
783  * the order in which smaller blocks are delivered depends on the order
784  * they're subdivided in this function. This is the primary factor
785  * influencing the order in which pages are delivered to the IO
786  * subsystem according to empirical testing, and this is also justified
787  * by considering the behavior of a buddy system containing a single
788  * large block of memory acted on by a series of small allocations.
789  * This behavior is a critical factor in sglist merging's success.
790  *
791  * -- nyc
792  */
793 static inline void expand(struct zone *zone, struct page *page,
794 	int low, int high, struct free_area *area,
795 	int migratetype)
796 {
797 	unsigned long size = 1 << high;
798 
799 	while (high > low) {
800 		area--;
801 		high--;
802 		size >>= 1;
803 		VM_BUG_ON(bad_range(zone, &page[size]));
804 
805 #ifdef CONFIG_DEBUG_PAGEALLOC
806 		if (high < debug_guardpage_minorder()) {
807 			/*
808 			 * Mark as guard pages (or page), that will allow to
809 			 * merge back to allocator when buddy will be freed.
810 			 * Corresponding page table entries will not be touched,
811 			 * pages will stay not present in virtual address space
812 			 */
813 			INIT_LIST_HEAD(&page[size].lru);
814 			set_page_guard_flag(&page[size]);
815 			set_page_private(&page[size], high);
816 			/* Guard pages are not available for any usage */
817 			__mod_zone_freepage_state(zone, -(1 << high),
818 						  migratetype);
819 			continue;
820 		}
821 #endif
822 		list_add(&page[size].lru, &area->free_list[migratetype]);
823 		area->nr_free++;
824 		set_page_order(&page[size], high);
825 	}
826 }
827 
828 /*
829  * This page is about to be returned from the page allocator
830  */
831 static inline int check_new_page(struct page *page)
832 {
833 	if (unlikely(page_mapcount(page) |
834 		(page->mapping != NULL)  |
835 		(atomic_read(&page->_count) != 0)  |
836 		(page->flags & PAGE_FLAGS_CHECK_AT_PREP) |
837 		(mem_cgroup_bad_page_check(page)))) {
838 		bad_page(page);
839 		return 1;
840 	}
841 	return 0;
842 }
843 
844 static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
845 {
846 	int i;
847 
848 	for (i = 0; i < (1 << order); i++) {
849 		struct page *p = page + i;
850 		if (unlikely(check_new_page(p)))
851 			return 1;
852 	}
853 
854 	set_page_private(page, 0);
855 	set_page_refcounted(page);
856 
857 	arch_alloc_page(page, order);
858 	kernel_map_pages(page, 1 << order, 1);
859 
860 	if (gfp_flags & __GFP_ZERO)
861 		prep_zero_page(page, order, gfp_flags);
862 
863 	if (order && (gfp_flags & __GFP_COMP))
864 		prep_compound_page(page, order);
865 
866 	return 0;
867 }
868 
869 /*
870  * Go through the free lists for the given migratetype and remove
871  * the smallest available page from the freelists
872  */
873 static inline
874 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
875 						int migratetype)
876 {
877 	unsigned int current_order;
878 	struct free_area * area;
879 	struct page *page;
880 
881 	/* Find a page of the appropriate size in the preferred list */
882 	for (current_order = order; current_order < MAX_ORDER; ++current_order) {
883 		area = &(zone->free_area[current_order]);
884 		if (list_empty(&area->free_list[migratetype]))
885 			continue;
886 
887 		page = list_entry(area->free_list[migratetype].next,
888 							struct page, lru);
889 		list_del(&page->lru);
890 		rmv_page_order(page);
891 		area->nr_free--;
892 		expand(zone, page, order, current_order, area, migratetype);
893 		return page;
894 	}
895 
896 	return NULL;
897 }
898 
899 
900 /*
901  * This array describes the order lists are fallen back to when
902  * the free lists for the desirable migrate type are depleted
903  */
904 static int fallbacks[MIGRATE_TYPES][4] = {
905 	[MIGRATE_UNMOVABLE]   = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE,     MIGRATE_RESERVE },
906 	[MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE,   MIGRATE_MOVABLE,     MIGRATE_RESERVE },
907 #ifdef CONFIG_CMA
908 	[MIGRATE_MOVABLE]     = { MIGRATE_CMA,         MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
909 	[MIGRATE_CMA]         = { MIGRATE_RESERVE }, /* Never used */
910 #else
911 	[MIGRATE_MOVABLE]     = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE,   MIGRATE_RESERVE },
912 #endif
913 	[MIGRATE_RESERVE]     = { MIGRATE_RESERVE }, /* Never used */
914 	[MIGRATE_ISOLATE]     = { MIGRATE_RESERVE }, /* Never used */
915 };
916 
917 /*
918  * Move the free pages in a range to the free lists of the requested type.
919  * Note that start_page and end_pages are not aligned on a pageblock
920  * boundary. If alignment is required, use move_freepages_block()
921  */
922 int move_freepages(struct zone *zone,
923 			  struct page *start_page, struct page *end_page,
924 			  int migratetype)
925 {
926 	struct page *page;
927 	unsigned long order;
928 	int pages_moved = 0;
929 
930 #ifndef CONFIG_HOLES_IN_ZONE
931 	/*
932 	 * page_zone is not safe to call in this context when
933 	 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
934 	 * anyway as we check zone boundaries in move_freepages_block().
935 	 * Remove at a later date when no bug reports exist related to
936 	 * grouping pages by mobility
937 	 */
938 	BUG_ON(page_zone(start_page) != page_zone(end_page));
939 #endif
940 
941 	for (page = start_page; page <= end_page;) {
942 		/* Make sure we are not inadvertently changing nodes */
943 		VM_BUG_ON(page_to_nid(page) != zone_to_nid(zone));
944 
945 		if (!pfn_valid_within(page_to_pfn(page))) {
946 			page++;
947 			continue;
948 		}
949 
950 		if (!PageBuddy(page)) {
951 			page++;
952 			continue;
953 		}
954 
955 		order = page_order(page);
956 		list_move(&page->lru,
957 			  &zone->free_area[order].free_list[migratetype]);
958 		set_freepage_migratetype(page, migratetype);
959 		page += 1 << order;
960 		pages_moved += 1 << order;
961 	}
962 
963 	return pages_moved;
964 }
965 
966 int move_freepages_block(struct zone *zone, struct page *page,
967 				int migratetype)
968 {
969 	unsigned long start_pfn, end_pfn;
970 	struct page *start_page, *end_page;
971 
972 	start_pfn = page_to_pfn(page);
973 	start_pfn = start_pfn & ~(pageblock_nr_pages-1);
974 	start_page = pfn_to_page(start_pfn);
975 	end_page = start_page + pageblock_nr_pages - 1;
976 	end_pfn = start_pfn + pageblock_nr_pages - 1;
977 
978 	/* Do not cross zone boundaries */
979 	if (start_pfn < zone->zone_start_pfn)
980 		start_page = page;
981 	if (end_pfn >= zone->zone_start_pfn + zone->spanned_pages)
982 		return 0;
983 
984 	return move_freepages(zone, start_page, end_page, migratetype);
985 }
986 
987 static void change_pageblock_range(struct page *pageblock_page,
988 					int start_order, int migratetype)
989 {
990 	int nr_pageblocks = 1 << (start_order - pageblock_order);
991 
992 	while (nr_pageblocks--) {
993 		set_pageblock_migratetype(pageblock_page, migratetype);
994 		pageblock_page += pageblock_nr_pages;
995 	}
996 }
997 
998 /* Remove an element from the buddy allocator from the fallback list */
999 static inline struct page *
1000 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype)
1001 {
1002 	struct free_area * area;
1003 	int current_order;
1004 	struct page *page;
1005 	int migratetype, i;
1006 
1007 	/* Find the largest possible block of pages in the other list */
1008 	for (current_order = MAX_ORDER-1; current_order >= order;
1009 						--current_order) {
1010 		for (i = 0;; i++) {
1011 			migratetype = fallbacks[start_migratetype][i];
1012 
1013 			/* MIGRATE_RESERVE handled later if necessary */
1014 			if (migratetype == MIGRATE_RESERVE)
1015 				break;
1016 
1017 			area = &(zone->free_area[current_order]);
1018 			if (list_empty(&area->free_list[migratetype]))
1019 				continue;
1020 
1021 			page = list_entry(area->free_list[migratetype].next,
1022 					struct page, lru);
1023 			area->nr_free--;
1024 
1025 			/*
1026 			 * If breaking a large block of pages, move all free
1027 			 * pages to the preferred allocation list. If falling
1028 			 * back for a reclaimable kernel allocation, be more
1029 			 * aggressive about taking ownership of free pages
1030 			 *
1031 			 * On the other hand, never change migration
1032 			 * type of MIGRATE_CMA pageblocks nor move CMA
1033 			 * pages on different free lists. We don't
1034 			 * want unmovable pages to be allocated from
1035 			 * MIGRATE_CMA areas.
1036 			 */
1037 			if (!is_migrate_cma(migratetype) &&
1038 			    (unlikely(current_order >= pageblock_order / 2) ||
1039 			     start_migratetype == MIGRATE_RECLAIMABLE ||
1040 			     page_group_by_mobility_disabled)) {
1041 				int pages;
1042 				pages = move_freepages_block(zone, page,
1043 								start_migratetype);
1044 
1045 				/* Claim the whole block if over half of it is free */
1046 				if (pages >= (1 << (pageblock_order-1)) ||
1047 						page_group_by_mobility_disabled)
1048 					set_pageblock_migratetype(page,
1049 								start_migratetype);
1050 
1051 				migratetype = start_migratetype;
1052 			}
1053 
1054 			/* Remove the page from the freelists */
1055 			list_del(&page->lru);
1056 			rmv_page_order(page);
1057 
1058 			/* Take ownership for orders >= pageblock_order */
1059 			if (current_order >= pageblock_order &&
1060 			    !is_migrate_cma(migratetype))
1061 				change_pageblock_range(page, current_order,
1062 							start_migratetype);
1063 
1064 			expand(zone, page, order, current_order, area,
1065 			       is_migrate_cma(migratetype)
1066 			     ? migratetype : start_migratetype);
1067 
1068 			trace_mm_page_alloc_extfrag(page, order, current_order,
1069 				start_migratetype, migratetype);
1070 
1071 			return page;
1072 		}
1073 	}
1074 
1075 	return NULL;
1076 }
1077 
1078 /*
1079  * Do the hard work of removing an element from the buddy allocator.
1080  * Call me with the zone->lock already held.
1081  */
1082 static struct page *__rmqueue(struct zone *zone, unsigned int order,
1083 						int migratetype)
1084 {
1085 	struct page *page;
1086 
1087 retry_reserve:
1088 	page = __rmqueue_smallest(zone, order, migratetype);
1089 
1090 	if (unlikely(!page) && migratetype != MIGRATE_RESERVE) {
1091 		page = __rmqueue_fallback(zone, order, migratetype);
1092 
1093 		/*
1094 		 * Use MIGRATE_RESERVE rather than fail an allocation. goto
1095 		 * is used because __rmqueue_smallest is an inline function
1096 		 * and we want just one call site
1097 		 */
1098 		if (!page) {
1099 			migratetype = MIGRATE_RESERVE;
1100 			goto retry_reserve;
1101 		}
1102 	}
1103 
1104 	trace_mm_page_alloc_zone_locked(page, order, migratetype);
1105 	return page;
1106 }
1107 
1108 /*
1109  * Obtain a specified number of elements from the buddy allocator, all under
1110  * a single hold of the lock, for efficiency.  Add them to the supplied list.
1111  * Returns the number of new pages which were placed at *list.
1112  */
1113 static int rmqueue_bulk(struct zone *zone, unsigned int order,
1114 			unsigned long count, struct list_head *list,
1115 			int migratetype, int cold)
1116 {
1117 	int mt = migratetype, i;
1118 
1119 	spin_lock(&zone->lock);
1120 	for (i = 0; i < count; ++i) {
1121 		struct page *page = __rmqueue(zone, order, migratetype);
1122 		if (unlikely(page == NULL))
1123 			break;
1124 
1125 		/*
1126 		 * Split buddy pages returned by expand() are received here
1127 		 * in physical page order. The page is added to the callers and
1128 		 * list and the list head then moves forward. From the callers
1129 		 * perspective, the linked list is ordered by page number in
1130 		 * some conditions. This is useful for IO devices that can
1131 		 * merge IO requests if the physical pages are ordered
1132 		 * properly.
1133 		 */
1134 		if (likely(cold == 0))
1135 			list_add(&page->lru, list);
1136 		else
1137 			list_add_tail(&page->lru, list);
1138 		if (IS_ENABLED(CONFIG_CMA)) {
1139 			mt = get_pageblock_migratetype(page);
1140 			if (!is_migrate_cma(mt) && mt != MIGRATE_ISOLATE)
1141 				mt = migratetype;
1142 		}
1143 		set_freepage_migratetype(page, mt);
1144 		list = &page->lru;
1145 		if (is_migrate_cma(mt))
1146 			__mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
1147 					      -(1 << order));
1148 	}
1149 	__mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
1150 	spin_unlock(&zone->lock);
1151 	return i;
1152 }
1153 
1154 #ifdef CONFIG_NUMA
1155 /*
1156  * Called from the vmstat counter updater to drain pagesets of this
1157  * currently executing processor on remote nodes after they have
1158  * expired.
1159  *
1160  * Note that this function must be called with the thread pinned to
1161  * a single processor.
1162  */
1163 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
1164 {
1165 	unsigned long flags;
1166 	int to_drain;
1167 
1168 	local_irq_save(flags);
1169 	if (pcp->count >= pcp->batch)
1170 		to_drain = pcp->batch;
1171 	else
1172 		to_drain = pcp->count;
1173 	if (to_drain > 0) {
1174 		free_pcppages_bulk(zone, to_drain, pcp);
1175 		pcp->count -= to_drain;
1176 	}
1177 	local_irq_restore(flags);
1178 }
1179 #endif
1180 
1181 /*
1182  * Drain pages of the indicated processor.
1183  *
1184  * The processor must either be the current processor and the
1185  * thread pinned to the current processor or a processor that
1186  * is not online.
1187  */
1188 static void drain_pages(unsigned int cpu)
1189 {
1190 	unsigned long flags;
1191 	struct zone *zone;
1192 
1193 	for_each_populated_zone(zone) {
1194 		struct per_cpu_pageset *pset;
1195 		struct per_cpu_pages *pcp;
1196 
1197 		local_irq_save(flags);
1198 		pset = per_cpu_ptr(zone->pageset, cpu);
1199 
1200 		pcp = &pset->pcp;
1201 		if (pcp->count) {
1202 			free_pcppages_bulk(zone, pcp->count, pcp);
1203 			pcp->count = 0;
1204 		}
1205 		local_irq_restore(flags);
1206 	}
1207 }
1208 
1209 /*
1210  * Spill all of this CPU's per-cpu pages back into the buddy allocator.
1211  */
1212 void drain_local_pages(void *arg)
1213 {
1214 	drain_pages(smp_processor_id());
1215 }
1216 
1217 /*
1218  * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
1219  *
1220  * Note that this code is protected against sending an IPI to an offline
1221  * CPU but does not guarantee sending an IPI to newly hotplugged CPUs:
1222  * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but
1223  * nothing keeps CPUs from showing up after we populated the cpumask and
1224  * before the call to on_each_cpu_mask().
1225  */
1226 void drain_all_pages(void)
1227 {
1228 	int cpu;
1229 	struct per_cpu_pageset *pcp;
1230 	struct zone *zone;
1231 
1232 	/*
1233 	 * Allocate in the BSS so we wont require allocation in
1234 	 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
1235 	 */
1236 	static cpumask_t cpus_with_pcps;
1237 
1238 	/*
1239 	 * We don't care about racing with CPU hotplug event
1240 	 * as offline notification will cause the notified
1241 	 * cpu to drain that CPU pcps and on_each_cpu_mask
1242 	 * disables preemption as part of its processing
1243 	 */
1244 	for_each_online_cpu(cpu) {
1245 		bool has_pcps = false;
1246 		for_each_populated_zone(zone) {
1247 			pcp = per_cpu_ptr(zone->pageset, cpu);
1248 			if (pcp->pcp.count) {
1249 				has_pcps = true;
1250 				break;
1251 			}
1252 		}
1253 		if (has_pcps)
1254 			cpumask_set_cpu(cpu, &cpus_with_pcps);
1255 		else
1256 			cpumask_clear_cpu(cpu, &cpus_with_pcps);
1257 	}
1258 	on_each_cpu_mask(&cpus_with_pcps, drain_local_pages, NULL, 1);
1259 }
1260 
1261 #ifdef CONFIG_HIBERNATION
1262 
1263 void mark_free_pages(struct zone *zone)
1264 {
1265 	unsigned long pfn, max_zone_pfn;
1266 	unsigned long flags;
1267 	int order, t;
1268 	struct list_head *curr;
1269 
1270 	if (!zone->spanned_pages)
1271 		return;
1272 
1273 	spin_lock_irqsave(&zone->lock, flags);
1274 
1275 	max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
1276 	for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1277 		if (pfn_valid(pfn)) {
1278 			struct page *page = pfn_to_page(pfn);
1279 
1280 			if (!swsusp_page_is_forbidden(page))
1281 				swsusp_unset_page_free(page);
1282 		}
1283 
1284 	for_each_migratetype_order(order, t) {
1285 		list_for_each(curr, &zone->free_area[order].free_list[t]) {
1286 			unsigned long i;
1287 
1288 			pfn = page_to_pfn(list_entry(curr, struct page, lru));
1289 			for (i = 0; i < (1UL << order); i++)
1290 				swsusp_set_page_free(pfn_to_page(pfn + i));
1291 		}
1292 	}
1293 	spin_unlock_irqrestore(&zone->lock, flags);
1294 }
1295 #endif /* CONFIG_PM */
1296 
1297 /*
1298  * Free a 0-order page
1299  * cold == 1 ? free a cold page : free a hot page
1300  */
1301 void free_hot_cold_page(struct page *page, int cold)
1302 {
1303 	struct zone *zone = page_zone(page);
1304 	struct per_cpu_pages *pcp;
1305 	unsigned long flags;
1306 	int migratetype;
1307 
1308 	if (!free_pages_prepare(page, 0))
1309 		return;
1310 
1311 	migratetype = get_pageblock_migratetype(page);
1312 	set_freepage_migratetype(page, migratetype);
1313 	local_irq_save(flags);
1314 	__count_vm_event(PGFREE);
1315 
1316 	/*
1317 	 * We only track unmovable, reclaimable and movable on pcp lists.
1318 	 * Free ISOLATE pages back to the allocator because they are being
1319 	 * offlined but treat RESERVE as movable pages so we can get those
1320 	 * areas back if necessary. Otherwise, we may have to free
1321 	 * excessively into the page allocator
1322 	 */
1323 	if (migratetype >= MIGRATE_PCPTYPES) {
1324 		if (unlikely(migratetype == MIGRATE_ISOLATE)) {
1325 			free_one_page(zone, page, 0, migratetype);
1326 			goto out;
1327 		}
1328 		migratetype = MIGRATE_MOVABLE;
1329 	}
1330 
1331 	pcp = &this_cpu_ptr(zone->pageset)->pcp;
1332 	if (cold)
1333 		list_add_tail(&page->lru, &pcp->lists[migratetype]);
1334 	else
1335 		list_add(&page->lru, &pcp->lists[migratetype]);
1336 	pcp->count++;
1337 	if (pcp->count >= pcp->high) {
1338 		free_pcppages_bulk(zone, pcp->batch, pcp);
1339 		pcp->count -= pcp->batch;
1340 	}
1341 
1342 out:
1343 	local_irq_restore(flags);
1344 }
1345 
1346 /*
1347  * Free a list of 0-order pages
1348  */
1349 void free_hot_cold_page_list(struct list_head *list, int cold)
1350 {
1351 	struct page *page, *next;
1352 
1353 	list_for_each_entry_safe(page, next, list, lru) {
1354 		trace_mm_page_free_batched(page, cold);
1355 		free_hot_cold_page(page, cold);
1356 	}
1357 }
1358 
1359 /*
1360  * split_page takes a non-compound higher-order page, and splits it into
1361  * n (1<<order) sub-pages: page[0..n]
1362  * Each sub-page must be freed individually.
1363  *
1364  * Note: this is probably too low level an operation for use in drivers.
1365  * Please consult with lkml before using this in your driver.
1366  */
1367 void split_page(struct page *page, unsigned int order)
1368 {
1369 	int i;
1370 
1371 	VM_BUG_ON(PageCompound(page));
1372 	VM_BUG_ON(!page_count(page));
1373 
1374 #ifdef CONFIG_KMEMCHECK
1375 	/*
1376 	 * Split shadow pages too, because free(page[0]) would
1377 	 * otherwise free the whole shadow.
1378 	 */
1379 	if (kmemcheck_page_is_tracked(page))
1380 		split_page(virt_to_page(page[0].shadow), order);
1381 #endif
1382 
1383 	for (i = 1; i < (1 << order); i++)
1384 		set_page_refcounted(page + i);
1385 }
1386 
1387 static int __isolate_free_page(struct page *page, unsigned int order)
1388 {
1389 	unsigned long watermark;
1390 	struct zone *zone;
1391 	int mt;
1392 
1393 	BUG_ON(!PageBuddy(page));
1394 
1395 	zone = page_zone(page);
1396 	mt = get_pageblock_migratetype(page);
1397 
1398 	if (mt != MIGRATE_ISOLATE) {
1399 		/* Obey watermarks as if the page was being allocated */
1400 		watermark = low_wmark_pages(zone) + (1 << order);
1401 		if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
1402 			return 0;
1403 
1404 		__mod_zone_freepage_state(zone, -(1UL << order), mt);
1405 	}
1406 
1407 	/* Remove page from free list */
1408 	list_del(&page->lru);
1409 	zone->free_area[order].nr_free--;
1410 	rmv_page_order(page);
1411 
1412 	/* Set the pageblock if the isolated page is at least a pageblock */
1413 	if (order >= pageblock_order - 1) {
1414 		struct page *endpage = page + (1 << order) - 1;
1415 		for (; page < endpage; page += pageblock_nr_pages) {
1416 			int mt = get_pageblock_migratetype(page);
1417 			if (mt != MIGRATE_ISOLATE && !is_migrate_cma(mt))
1418 				set_pageblock_migratetype(page,
1419 							  MIGRATE_MOVABLE);
1420 		}
1421 	}
1422 
1423 	return 1UL << order;
1424 }
1425 
1426 /*
1427  * Similar to split_page except the page is already free. As this is only
1428  * being used for migration, the migratetype of the block also changes.
1429  * As this is called with interrupts disabled, the caller is responsible
1430  * for calling arch_alloc_page() and kernel_map_page() after interrupts
1431  * are enabled.
1432  *
1433  * Note: this is probably too low level an operation for use in drivers.
1434  * Please consult with lkml before using this in your driver.
1435  */
1436 int split_free_page(struct page *page)
1437 {
1438 	unsigned int order;
1439 	int nr_pages;
1440 
1441 	order = page_order(page);
1442 
1443 	nr_pages = __isolate_free_page(page, order);
1444 	if (!nr_pages)
1445 		return 0;
1446 
1447 	/* Split into individual pages */
1448 	set_page_refcounted(page);
1449 	split_page(page, order);
1450 	return nr_pages;
1451 }
1452 
1453 /*
1454  * Really, prep_compound_page() should be called from __rmqueue_bulk().  But
1455  * we cheat by calling it from here, in the order > 0 path.  Saves a branch
1456  * or two.
1457  */
1458 static inline
1459 struct page *buffered_rmqueue(struct zone *preferred_zone,
1460 			struct zone *zone, int order, gfp_t gfp_flags,
1461 			int migratetype)
1462 {
1463 	unsigned long flags;
1464 	struct page *page;
1465 	int cold = !!(gfp_flags & __GFP_COLD);
1466 
1467 again:
1468 	if (likely(order == 0)) {
1469 		struct per_cpu_pages *pcp;
1470 		struct list_head *list;
1471 
1472 		local_irq_save(flags);
1473 		pcp = &this_cpu_ptr(zone->pageset)->pcp;
1474 		list = &pcp->lists[migratetype];
1475 		if (list_empty(list)) {
1476 			pcp->count += rmqueue_bulk(zone, 0,
1477 					pcp->batch, list,
1478 					migratetype, cold);
1479 			if (unlikely(list_empty(list)))
1480 				goto failed;
1481 		}
1482 
1483 		if (cold)
1484 			page = list_entry(list->prev, struct page, lru);
1485 		else
1486 			page = list_entry(list->next, struct page, lru);
1487 
1488 		list_del(&page->lru);
1489 		pcp->count--;
1490 	} else {
1491 		if (unlikely(gfp_flags & __GFP_NOFAIL)) {
1492 			/*
1493 			 * __GFP_NOFAIL is not to be used in new code.
1494 			 *
1495 			 * All __GFP_NOFAIL callers should be fixed so that they
1496 			 * properly detect and handle allocation failures.
1497 			 *
1498 			 * We most definitely don't want callers attempting to
1499 			 * allocate greater than order-1 page units with
1500 			 * __GFP_NOFAIL.
1501 			 */
1502 			WARN_ON_ONCE(order > 1);
1503 		}
1504 		spin_lock_irqsave(&zone->lock, flags);
1505 		page = __rmqueue(zone, order, migratetype);
1506 		spin_unlock(&zone->lock);
1507 		if (!page)
1508 			goto failed;
1509 		__mod_zone_freepage_state(zone, -(1 << order),
1510 					  get_pageblock_migratetype(page));
1511 	}
1512 
1513 	__count_zone_vm_events(PGALLOC, zone, 1 << order);
1514 	zone_statistics(preferred_zone, zone, gfp_flags);
1515 	local_irq_restore(flags);
1516 
1517 	VM_BUG_ON(bad_range(zone, page));
1518 	if (prep_new_page(page, order, gfp_flags))
1519 		goto again;
1520 	return page;
1521 
1522 failed:
1523 	local_irq_restore(flags);
1524 	return NULL;
1525 }
1526 
1527 #ifdef CONFIG_FAIL_PAGE_ALLOC
1528 
1529 static struct {
1530 	struct fault_attr attr;
1531 
1532 	u32 ignore_gfp_highmem;
1533 	u32 ignore_gfp_wait;
1534 	u32 min_order;
1535 } fail_page_alloc = {
1536 	.attr = FAULT_ATTR_INITIALIZER,
1537 	.ignore_gfp_wait = 1,
1538 	.ignore_gfp_highmem = 1,
1539 	.min_order = 1,
1540 };
1541 
1542 static int __init setup_fail_page_alloc(char *str)
1543 {
1544 	return setup_fault_attr(&fail_page_alloc.attr, str);
1545 }
1546 __setup("fail_page_alloc=", setup_fail_page_alloc);
1547 
1548 static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1549 {
1550 	if (order < fail_page_alloc.min_order)
1551 		return false;
1552 	if (gfp_mask & __GFP_NOFAIL)
1553 		return false;
1554 	if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
1555 		return false;
1556 	if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
1557 		return false;
1558 
1559 	return should_fail(&fail_page_alloc.attr, 1 << order);
1560 }
1561 
1562 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1563 
1564 static int __init fail_page_alloc_debugfs(void)
1565 {
1566 	umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
1567 	struct dentry *dir;
1568 
1569 	dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
1570 					&fail_page_alloc.attr);
1571 	if (IS_ERR(dir))
1572 		return PTR_ERR(dir);
1573 
1574 	if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
1575 				&fail_page_alloc.ignore_gfp_wait))
1576 		goto fail;
1577 	if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
1578 				&fail_page_alloc.ignore_gfp_highmem))
1579 		goto fail;
1580 	if (!debugfs_create_u32("min-order", mode, dir,
1581 				&fail_page_alloc.min_order))
1582 		goto fail;
1583 
1584 	return 0;
1585 fail:
1586 	debugfs_remove_recursive(dir);
1587 
1588 	return -ENOMEM;
1589 }
1590 
1591 late_initcall(fail_page_alloc_debugfs);
1592 
1593 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1594 
1595 #else /* CONFIG_FAIL_PAGE_ALLOC */
1596 
1597 static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1598 {
1599 	return false;
1600 }
1601 
1602 #endif /* CONFIG_FAIL_PAGE_ALLOC */
1603 
1604 /*
1605  * Return true if free pages are above 'mark'. This takes into account the order
1606  * of the allocation.
1607  */
1608 static bool __zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1609 		      int classzone_idx, int alloc_flags, long free_pages)
1610 {
1611 	/* free_pages my go negative - that's OK */
1612 	long min = mark;
1613 	long lowmem_reserve = z->lowmem_reserve[classzone_idx];
1614 	int o;
1615 
1616 	free_pages -= (1 << order) - 1;
1617 	if (alloc_flags & ALLOC_HIGH)
1618 		min -= min / 2;
1619 	if (alloc_flags & ALLOC_HARDER)
1620 		min -= min / 4;
1621 #ifdef CONFIG_CMA
1622 	/* If allocation can't use CMA areas don't use free CMA pages */
1623 	if (!(alloc_flags & ALLOC_CMA))
1624 		free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES);
1625 #endif
1626 	if (free_pages <= min + lowmem_reserve)
1627 		return false;
1628 	for (o = 0; o < order; o++) {
1629 		/* At the next order, this order's pages become unavailable */
1630 		free_pages -= z->free_area[o].nr_free << o;
1631 
1632 		/* Require fewer higher order pages to be free */
1633 		min >>= 1;
1634 
1635 		if (free_pages <= min)
1636 			return false;
1637 	}
1638 	return true;
1639 }
1640 
1641 bool zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1642 		      int classzone_idx, int alloc_flags)
1643 {
1644 	return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1645 					zone_page_state(z, NR_FREE_PAGES));
1646 }
1647 
1648 bool zone_watermark_ok_safe(struct zone *z, int order, unsigned long mark,
1649 		      int classzone_idx, int alloc_flags)
1650 {
1651 	long free_pages = zone_page_state(z, NR_FREE_PAGES);
1652 
1653 	if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
1654 		free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
1655 
1656 	return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1657 								free_pages);
1658 }
1659 
1660 #ifdef CONFIG_NUMA
1661 /*
1662  * zlc_setup - Setup for "zonelist cache".  Uses cached zone data to
1663  * skip over zones that are not allowed by the cpuset, or that have
1664  * been recently (in last second) found to be nearly full.  See further
1665  * comments in mmzone.h.  Reduces cache footprint of zonelist scans
1666  * that have to skip over a lot of full or unallowed zones.
1667  *
1668  * If the zonelist cache is present in the passed in zonelist, then
1669  * returns a pointer to the allowed node mask (either the current
1670  * tasks mems_allowed, or node_states[N_MEMORY].)
1671  *
1672  * If the zonelist cache is not available for this zonelist, does
1673  * nothing and returns NULL.
1674  *
1675  * If the fullzones BITMAP in the zonelist cache is stale (more than
1676  * a second since last zap'd) then we zap it out (clear its bits.)
1677  *
1678  * We hold off even calling zlc_setup, until after we've checked the
1679  * first zone in the zonelist, on the theory that most allocations will
1680  * be satisfied from that first zone, so best to examine that zone as
1681  * quickly as we can.
1682  */
1683 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1684 {
1685 	struct zonelist_cache *zlc;	/* cached zonelist speedup info */
1686 	nodemask_t *allowednodes;	/* zonelist_cache approximation */
1687 
1688 	zlc = zonelist->zlcache_ptr;
1689 	if (!zlc)
1690 		return NULL;
1691 
1692 	if (time_after(jiffies, zlc->last_full_zap + HZ)) {
1693 		bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1694 		zlc->last_full_zap = jiffies;
1695 	}
1696 
1697 	allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1698 					&cpuset_current_mems_allowed :
1699 					&node_states[N_MEMORY];
1700 	return allowednodes;
1701 }
1702 
1703 /*
1704  * Given 'z' scanning a zonelist, run a couple of quick checks to see
1705  * if it is worth looking at further for free memory:
1706  *  1) Check that the zone isn't thought to be full (doesn't have its
1707  *     bit set in the zonelist_cache fullzones BITMAP).
1708  *  2) Check that the zones node (obtained from the zonelist_cache
1709  *     z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1710  * Return true (non-zero) if zone is worth looking at further, or
1711  * else return false (zero) if it is not.
1712  *
1713  * This check -ignores- the distinction between various watermarks,
1714  * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ...  If a zone is
1715  * found to be full for any variation of these watermarks, it will
1716  * be considered full for up to one second by all requests, unless
1717  * we are so low on memory on all allowed nodes that we are forced
1718  * into the second scan of the zonelist.
1719  *
1720  * In the second scan we ignore this zonelist cache and exactly
1721  * apply the watermarks to all zones, even it is slower to do so.
1722  * We are low on memory in the second scan, and should leave no stone
1723  * unturned looking for a free page.
1724  */
1725 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1726 						nodemask_t *allowednodes)
1727 {
1728 	struct zonelist_cache *zlc;	/* cached zonelist speedup info */
1729 	int i;				/* index of *z in zonelist zones */
1730 	int n;				/* node that zone *z is on */
1731 
1732 	zlc = zonelist->zlcache_ptr;
1733 	if (!zlc)
1734 		return 1;
1735 
1736 	i = z - zonelist->_zonerefs;
1737 	n = zlc->z_to_n[i];
1738 
1739 	/* This zone is worth trying if it is allowed but not full */
1740 	return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1741 }
1742 
1743 /*
1744  * Given 'z' scanning a zonelist, set the corresponding bit in
1745  * zlc->fullzones, so that subsequent attempts to allocate a page
1746  * from that zone don't waste time re-examining it.
1747  */
1748 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1749 {
1750 	struct zonelist_cache *zlc;	/* cached zonelist speedup info */
1751 	int i;				/* index of *z in zonelist zones */
1752 
1753 	zlc = zonelist->zlcache_ptr;
1754 	if (!zlc)
1755 		return;
1756 
1757 	i = z - zonelist->_zonerefs;
1758 
1759 	set_bit(i, zlc->fullzones);
1760 }
1761 
1762 /*
1763  * clear all zones full, called after direct reclaim makes progress so that
1764  * a zone that was recently full is not skipped over for up to a second
1765  */
1766 static void zlc_clear_zones_full(struct zonelist *zonelist)
1767 {
1768 	struct zonelist_cache *zlc;	/* cached zonelist speedup info */
1769 
1770 	zlc = zonelist->zlcache_ptr;
1771 	if (!zlc)
1772 		return;
1773 
1774 	bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1775 }
1776 
1777 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
1778 {
1779 	return node_isset(local_zone->node, zone->zone_pgdat->reclaim_nodes);
1780 }
1781 
1782 static void __paginginit init_zone_allows_reclaim(int nid)
1783 {
1784 	int i;
1785 
1786 	for_each_online_node(i)
1787 		if (node_distance(nid, i) <= RECLAIM_DISTANCE)
1788 			node_set(i, NODE_DATA(nid)->reclaim_nodes);
1789 		else
1790 			zone_reclaim_mode = 1;
1791 }
1792 
1793 #else	/* CONFIG_NUMA */
1794 
1795 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1796 {
1797 	return NULL;
1798 }
1799 
1800 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1801 				nodemask_t *allowednodes)
1802 {
1803 	return 1;
1804 }
1805 
1806 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1807 {
1808 }
1809 
1810 static void zlc_clear_zones_full(struct zonelist *zonelist)
1811 {
1812 }
1813 
1814 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
1815 {
1816 	return true;
1817 }
1818 
1819 static inline void init_zone_allows_reclaim(int nid)
1820 {
1821 }
1822 #endif	/* CONFIG_NUMA */
1823 
1824 /*
1825  * get_page_from_freelist goes through the zonelist trying to allocate
1826  * a page.
1827  */
1828 static struct page *
1829 get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order,
1830 		struct zonelist *zonelist, int high_zoneidx, int alloc_flags,
1831 		struct zone *preferred_zone, int migratetype)
1832 {
1833 	struct zoneref *z;
1834 	struct page *page = NULL;
1835 	int classzone_idx;
1836 	struct zone *zone;
1837 	nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
1838 	int zlc_active = 0;		/* set if using zonelist_cache */
1839 	int did_zlc_setup = 0;		/* just call zlc_setup() one time */
1840 
1841 	classzone_idx = zone_idx(preferred_zone);
1842 zonelist_scan:
1843 	/*
1844 	 * Scan zonelist, looking for a zone with enough free.
1845 	 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1846 	 */
1847 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
1848 						high_zoneidx, nodemask) {
1849 		if (IS_ENABLED(CONFIG_NUMA) && zlc_active &&
1850 			!zlc_zone_worth_trying(zonelist, z, allowednodes))
1851 				continue;
1852 		if ((alloc_flags & ALLOC_CPUSET) &&
1853 			!cpuset_zone_allowed_softwall(zone, gfp_mask))
1854 				continue;
1855 		/*
1856 		 * When allocating a page cache page for writing, we
1857 		 * want to get it from a zone that is within its dirty
1858 		 * limit, such that no single zone holds more than its
1859 		 * proportional share of globally allowed dirty pages.
1860 		 * The dirty limits take into account the zone's
1861 		 * lowmem reserves and high watermark so that kswapd
1862 		 * should be able to balance it without having to
1863 		 * write pages from its LRU list.
1864 		 *
1865 		 * This may look like it could increase pressure on
1866 		 * lower zones by failing allocations in higher zones
1867 		 * before they are full.  But the pages that do spill
1868 		 * over are limited as the lower zones are protected
1869 		 * by this very same mechanism.  It should not become
1870 		 * a practical burden to them.
1871 		 *
1872 		 * XXX: For now, allow allocations to potentially
1873 		 * exceed the per-zone dirty limit in the slowpath
1874 		 * (ALLOC_WMARK_LOW unset) before going into reclaim,
1875 		 * which is important when on a NUMA setup the allowed
1876 		 * zones are together not big enough to reach the
1877 		 * global limit.  The proper fix for these situations
1878 		 * will require awareness of zones in the
1879 		 * dirty-throttling and the flusher threads.
1880 		 */
1881 		if ((alloc_flags & ALLOC_WMARK_LOW) &&
1882 		    (gfp_mask & __GFP_WRITE) && !zone_dirty_ok(zone))
1883 			goto this_zone_full;
1884 
1885 		BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
1886 		if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
1887 			unsigned long mark;
1888 			int ret;
1889 
1890 			mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
1891 			if (zone_watermark_ok(zone, order, mark,
1892 				    classzone_idx, alloc_flags))
1893 				goto try_this_zone;
1894 
1895 			if (IS_ENABLED(CONFIG_NUMA) &&
1896 					!did_zlc_setup && nr_online_nodes > 1) {
1897 				/*
1898 				 * we do zlc_setup if there are multiple nodes
1899 				 * and before considering the first zone allowed
1900 				 * by the cpuset.
1901 				 */
1902 				allowednodes = zlc_setup(zonelist, alloc_flags);
1903 				zlc_active = 1;
1904 				did_zlc_setup = 1;
1905 			}
1906 
1907 			if (zone_reclaim_mode == 0 ||
1908 			    !zone_allows_reclaim(preferred_zone, zone))
1909 				goto this_zone_full;
1910 
1911 			/*
1912 			 * As we may have just activated ZLC, check if the first
1913 			 * eligible zone has failed zone_reclaim recently.
1914 			 */
1915 			if (IS_ENABLED(CONFIG_NUMA) && zlc_active &&
1916 				!zlc_zone_worth_trying(zonelist, z, allowednodes))
1917 				continue;
1918 
1919 			ret = zone_reclaim(zone, gfp_mask, order);
1920 			switch (ret) {
1921 			case ZONE_RECLAIM_NOSCAN:
1922 				/* did not scan */
1923 				continue;
1924 			case ZONE_RECLAIM_FULL:
1925 				/* scanned but unreclaimable */
1926 				continue;
1927 			default:
1928 				/* did we reclaim enough */
1929 				if (!zone_watermark_ok(zone, order, mark,
1930 						classzone_idx, alloc_flags))
1931 					goto this_zone_full;
1932 			}
1933 		}
1934 
1935 try_this_zone:
1936 		page = buffered_rmqueue(preferred_zone, zone, order,
1937 						gfp_mask, migratetype);
1938 		if (page)
1939 			break;
1940 this_zone_full:
1941 		if (IS_ENABLED(CONFIG_NUMA))
1942 			zlc_mark_zone_full(zonelist, z);
1943 	}
1944 
1945 	if (unlikely(IS_ENABLED(CONFIG_NUMA) && page == NULL && zlc_active)) {
1946 		/* Disable zlc cache for second zonelist scan */
1947 		zlc_active = 0;
1948 		goto zonelist_scan;
1949 	}
1950 
1951 	if (page)
1952 		/*
1953 		 * page->pfmemalloc is set when ALLOC_NO_WATERMARKS was
1954 		 * necessary to allocate the page. The expectation is
1955 		 * that the caller is taking steps that will free more
1956 		 * memory. The caller should avoid the page being used
1957 		 * for !PFMEMALLOC purposes.
1958 		 */
1959 		page->pfmemalloc = !!(alloc_flags & ALLOC_NO_WATERMARKS);
1960 
1961 	return page;
1962 }
1963 
1964 /*
1965  * Large machines with many possible nodes should not always dump per-node
1966  * meminfo in irq context.
1967  */
1968 static inline bool should_suppress_show_mem(void)
1969 {
1970 	bool ret = false;
1971 
1972 #if NODES_SHIFT > 8
1973 	ret = in_interrupt();
1974 #endif
1975 	return ret;
1976 }
1977 
1978 static DEFINE_RATELIMIT_STATE(nopage_rs,
1979 		DEFAULT_RATELIMIT_INTERVAL,
1980 		DEFAULT_RATELIMIT_BURST);
1981 
1982 void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...)
1983 {
1984 	unsigned int filter = SHOW_MEM_FILTER_NODES;
1985 
1986 	if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) ||
1987 	    debug_guardpage_minorder() > 0)
1988 		return;
1989 
1990 	/*
1991 	 * This documents exceptions given to allocations in certain
1992 	 * contexts that are allowed to allocate outside current's set
1993 	 * of allowed nodes.
1994 	 */
1995 	if (!(gfp_mask & __GFP_NOMEMALLOC))
1996 		if (test_thread_flag(TIF_MEMDIE) ||
1997 		    (current->flags & (PF_MEMALLOC | PF_EXITING)))
1998 			filter &= ~SHOW_MEM_FILTER_NODES;
1999 	if (in_interrupt() || !(gfp_mask & __GFP_WAIT))
2000 		filter &= ~SHOW_MEM_FILTER_NODES;
2001 
2002 	if (fmt) {
2003 		struct va_format vaf;
2004 		va_list args;
2005 
2006 		va_start(args, fmt);
2007 
2008 		vaf.fmt = fmt;
2009 		vaf.va = &args;
2010 
2011 		pr_warn("%pV", &vaf);
2012 
2013 		va_end(args);
2014 	}
2015 
2016 	pr_warn("%s: page allocation failure: order:%d, mode:0x%x\n",
2017 		current->comm, order, gfp_mask);
2018 
2019 	dump_stack();
2020 	if (!should_suppress_show_mem())
2021 		show_mem(filter);
2022 }
2023 
2024 static inline int
2025 should_alloc_retry(gfp_t gfp_mask, unsigned int order,
2026 				unsigned long did_some_progress,
2027 				unsigned long pages_reclaimed)
2028 {
2029 	/* Do not loop if specifically requested */
2030 	if (gfp_mask & __GFP_NORETRY)
2031 		return 0;
2032 
2033 	/* Always retry if specifically requested */
2034 	if (gfp_mask & __GFP_NOFAIL)
2035 		return 1;
2036 
2037 	/*
2038 	 * Suspend converts GFP_KERNEL to __GFP_WAIT which can prevent reclaim
2039 	 * making forward progress without invoking OOM. Suspend also disables
2040 	 * storage devices so kswapd will not help. Bail if we are suspending.
2041 	 */
2042 	if (!did_some_progress && pm_suspended_storage())
2043 		return 0;
2044 
2045 	/*
2046 	 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
2047 	 * means __GFP_NOFAIL, but that may not be true in other
2048 	 * implementations.
2049 	 */
2050 	if (order <= PAGE_ALLOC_COSTLY_ORDER)
2051 		return 1;
2052 
2053 	/*
2054 	 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
2055 	 * specified, then we retry until we no longer reclaim any pages
2056 	 * (above), or we've reclaimed an order of pages at least as
2057 	 * large as the allocation's order. In both cases, if the
2058 	 * allocation still fails, we stop retrying.
2059 	 */
2060 	if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order))
2061 		return 1;
2062 
2063 	return 0;
2064 }
2065 
2066 static inline struct page *
2067 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
2068 	struct zonelist *zonelist, enum zone_type high_zoneidx,
2069 	nodemask_t *nodemask, struct zone *preferred_zone,
2070 	int migratetype)
2071 {
2072 	struct page *page;
2073 
2074 	/* Acquire the OOM killer lock for the zones in zonelist */
2075 	if (!try_set_zonelist_oom(zonelist, gfp_mask)) {
2076 		schedule_timeout_uninterruptible(1);
2077 		return NULL;
2078 	}
2079 
2080 	/*
2081 	 * Go through the zonelist yet one more time, keep very high watermark
2082 	 * here, this is only to catch a parallel oom killing, we must fail if
2083 	 * we're still under heavy pressure.
2084 	 */
2085 	page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask,
2086 		order, zonelist, high_zoneidx,
2087 		ALLOC_WMARK_HIGH|ALLOC_CPUSET,
2088 		preferred_zone, migratetype);
2089 	if (page)
2090 		goto out;
2091 
2092 	if (!(gfp_mask & __GFP_NOFAIL)) {
2093 		/* The OOM killer will not help higher order allocs */
2094 		if (order > PAGE_ALLOC_COSTLY_ORDER)
2095 			goto out;
2096 		/* The OOM killer does not needlessly kill tasks for lowmem */
2097 		if (high_zoneidx < ZONE_NORMAL)
2098 			goto out;
2099 		/*
2100 		 * GFP_THISNODE contains __GFP_NORETRY and we never hit this.
2101 		 * Sanity check for bare calls of __GFP_THISNODE, not real OOM.
2102 		 * The caller should handle page allocation failure by itself if
2103 		 * it specifies __GFP_THISNODE.
2104 		 * Note: Hugepage uses it but will hit PAGE_ALLOC_COSTLY_ORDER.
2105 		 */
2106 		if (gfp_mask & __GFP_THISNODE)
2107 			goto out;
2108 	}
2109 	/* Exhausted what can be done so it's blamo time */
2110 	out_of_memory(zonelist, gfp_mask, order, nodemask, false);
2111 
2112 out:
2113 	clear_zonelist_oom(zonelist, gfp_mask);
2114 	return page;
2115 }
2116 
2117 #ifdef CONFIG_COMPACTION
2118 /* Try memory compaction for high-order allocations before reclaim */
2119 static struct page *
2120 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2121 	struct zonelist *zonelist, enum zone_type high_zoneidx,
2122 	nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
2123 	int migratetype, bool sync_migration,
2124 	bool *contended_compaction, bool *deferred_compaction,
2125 	unsigned long *did_some_progress)
2126 {
2127 	if (!order)
2128 		return NULL;
2129 
2130 	if (compaction_deferred(preferred_zone, order)) {
2131 		*deferred_compaction = true;
2132 		return NULL;
2133 	}
2134 
2135 	current->flags |= PF_MEMALLOC;
2136 	*did_some_progress = try_to_compact_pages(zonelist, order, gfp_mask,
2137 						nodemask, sync_migration,
2138 						contended_compaction);
2139 	current->flags &= ~PF_MEMALLOC;
2140 
2141 	if (*did_some_progress != COMPACT_SKIPPED) {
2142 		struct page *page;
2143 
2144 		/* Page migration frees to the PCP lists but we want merging */
2145 		drain_pages(get_cpu());
2146 		put_cpu();
2147 
2148 		page = get_page_from_freelist(gfp_mask, nodemask,
2149 				order, zonelist, high_zoneidx,
2150 				alloc_flags & ~ALLOC_NO_WATERMARKS,
2151 				preferred_zone, migratetype);
2152 		if (page) {
2153 			preferred_zone->compact_blockskip_flush = false;
2154 			preferred_zone->compact_considered = 0;
2155 			preferred_zone->compact_defer_shift = 0;
2156 			if (order >= preferred_zone->compact_order_failed)
2157 				preferred_zone->compact_order_failed = order + 1;
2158 			count_vm_event(COMPACTSUCCESS);
2159 			return page;
2160 		}
2161 
2162 		/*
2163 		 * It's bad if compaction run occurs and fails.
2164 		 * The most likely reason is that pages exist,
2165 		 * but not enough to satisfy watermarks.
2166 		 */
2167 		count_vm_event(COMPACTFAIL);
2168 
2169 		/*
2170 		 * As async compaction considers a subset of pageblocks, only
2171 		 * defer if the failure was a sync compaction failure.
2172 		 */
2173 		if (sync_migration)
2174 			defer_compaction(preferred_zone, order);
2175 
2176 		cond_resched();
2177 	}
2178 
2179 	return NULL;
2180 }
2181 #else
2182 static inline struct page *
2183 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2184 	struct zonelist *zonelist, enum zone_type high_zoneidx,
2185 	nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
2186 	int migratetype, bool sync_migration,
2187 	bool *contended_compaction, bool *deferred_compaction,
2188 	unsigned long *did_some_progress)
2189 {
2190 	return NULL;
2191 }
2192 #endif /* CONFIG_COMPACTION */
2193 
2194 /* Perform direct synchronous page reclaim */
2195 static int
2196 __perform_reclaim(gfp_t gfp_mask, unsigned int order, struct zonelist *zonelist,
2197 		  nodemask_t *nodemask)
2198 {
2199 	struct reclaim_state reclaim_state;
2200 	int progress;
2201 
2202 	cond_resched();
2203 
2204 	/* We now go into synchronous reclaim */
2205 	cpuset_memory_pressure_bump();
2206 	current->flags |= PF_MEMALLOC;
2207 	lockdep_set_current_reclaim_state(gfp_mask);
2208 	reclaim_state.reclaimed_slab = 0;
2209 	current->reclaim_state = &reclaim_state;
2210 
2211 	progress = try_to_free_pages(zonelist, order, gfp_mask, nodemask);
2212 
2213 	current->reclaim_state = NULL;
2214 	lockdep_clear_current_reclaim_state();
2215 	current->flags &= ~PF_MEMALLOC;
2216 
2217 	cond_resched();
2218 
2219 	return progress;
2220 }
2221 
2222 /* The really slow allocator path where we enter direct reclaim */
2223 static inline struct page *
2224 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
2225 	struct zonelist *zonelist, enum zone_type high_zoneidx,
2226 	nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
2227 	int migratetype, unsigned long *did_some_progress)
2228 {
2229 	struct page *page = NULL;
2230 	bool drained = false;
2231 
2232 	*did_some_progress = __perform_reclaim(gfp_mask, order, zonelist,
2233 					       nodemask);
2234 	if (unlikely(!(*did_some_progress)))
2235 		return NULL;
2236 
2237 	/* After successful reclaim, reconsider all zones for allocation */
2238 	if (IS_ENABLED(CONFIG_NUMA))
2239 		zlc_clear_zones_full(zonelist);
2240 
2241 retry:
2242 	page = get_page_from_freelist(gfp_mask, nodemask, order,
2243 					zonelist, high_zoneidx,
2244 					alloc_flags & ~ALLOC_NO_WATERMARKS,
2245 					preferred_zone, migratetype);
2246 
2247 	/*
2248 	 * If an allocation failed after direct reclaim, it could be because
2249 	 * pages are pinned on the per-cpu lists. Drain them and try again
2250 	 */
2251 	if (!page && !drained) {
2252 		drain_all_pages();
2253 		drained = true;
2254 		goto retry;
2255 	}
2256 
2257 	return page;
2258 }
2259 
2260 /*
2261  * This is called in the allocator slow-path if the allocation request is of
2262  * sufficient urgency to ignore watermarks and take other desperate measures
2263  */
2264 static inline struct page *
2265 __alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order,
2266 	struct zonelist *zonelist, enum zone_type high_zoneidx,
2267 	nodemask_t *nodemask, struct zone *preferred_zone,
2268 	int migratetype)
2269 {
2270 	struct page *page;
2271 
2272 	do {
2273 		page = get_page_from_freelist(gfp_mask, nodemask, order,
2274 			zonelist, high_zoneidx, ALLOC_NO_WATERMARKS,
2275 			preferred_zone, migratetype);
2276 
2277 		if (!page && gfp_mask & __GFP_NOFAIL)
2278 			wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
2279 	} while (!page && (gfp_mask & __GFP_NOFAIL));
2280 
2281 	return page;
2282 }
2283 
2284 static inline
2285 void wake_all_kswapd(unsigned int order, struct zonelist *zonelist,
2286 						enum zone_type high_zoneidx,
2287 						enum zone_type classzone_idx)
2288 {
2289 	struct zoneref *z;
2290 	struct zone *zone;
2291 
2292 	for_each_zone_zonelist(zone, z, zonelist, high_zoneidx)
2293 		wakeup_kswapd(zone, order, classzone_idx);
2294 }
2295 
2296 static inline int
2297 gfp_to_alloc_flags(gfp_t gfp_mask)
2298 {
2299 	int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
2300 	const gfp_t wait = gfp_mask & __GFP_WAIT;
2301 
2302 	/* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
2303 	BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
2304 
2305 	/*
2306 	 * The caller may dip into page reserves a bit more if the caller
2307 	 * cannot run direct reclaim, or if the caller has realtime scheduling
2308 	 * policy or is asking for __GFP_HIGH memory.  GFP_ATOMIC requests will
2309 	 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
2310 	 */
2311 	alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
2312 
2313 	if (!wait) {
2314 		/*
2315 		 * Not worth trying to allocate harder for
2316 		 * __GFP_NOMEMALLOC even if it can't schedule.
2317 		 */
2318 		if  (!(gfp_mask & __GFP_NOMEMALLOC))
2319 			alloc_flags |= ALLOC_HARDER;
2320 		/*
2321 		 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
2322 		 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
2323 		 */
2324 		alloc_flags &= ~ALLOC_CPUSET;
2325 	} else if (unlikely(rt_task(current)) && !in_interrupt())
2326 		alloc_flags |= ALLOC_HARDER;
2327 
2328 	if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
2329 		if (gfp_mask & __GFP_MEMALLOC)
2330 			alloc_flags |= ALLOC_NO_WATERMARKS;
2331 		else if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
2332 			alloc_flags |= ALLOC_NO_WATERMARKS;
2333 		else if (!in_interrupt() &&
2334 				((current->flags & PF_MEMALLOC) ||
2335 				 unlikely(test_thread_flag(TIF_MEMDIE))))
2336 			alloc_flags |= ALLOC_NO_WATERMARKS;
2337 	}
2338 #ifdef CONFIG_CMA
2339 	if (allocflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
2340 		alloc_flags |= ALLOC_CMA;
2341 #endif
2342 	return alloc_flags;
2343 }
2344 
2345 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
2346 {
2347 	return !!(gfp_to_alloc_flags(gfp_mask) & ALLOC_NO_WATERMARKS);
2348 }
2349 
2350 static inline struct page *
2351 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
2352 	struct zonelist *zonelist, enum zone_type high_zoneidx,
2353 	nodemask_t *nodemask, struct zone *preferred_zone,
2354 	int migratetype)
2355 {
2356 	const gfp_t wait = gfp_mask & __GFP_WAIT;
2357 	struct page *page = NULL;
2358 	int alloc_flags;
2359 	unsigned long pages_reclaimed = 0;
2360 	unsigned long did_some_progress;
2361 	bool sync_migration = false;
2362 	bool deferred_compaction = false;
2363 	bool contended_compaction = false;
2364 
2365 	/*
2366 	 * In the slowpath, we sanity check order to avoid ever trying to
2367 	 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
2368 	 * be using allocators in order of preference for an area that is
2369 	 * too large.
2370 	 */
2371 	if (order >= MAX_ORDER) {
2372 		WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
2373 		return NULL;
2374 	}
2375 
2376 	/*
2377 	 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
2378 	 * __GFP_NOWARN set) should not cause reclaim since the subsystem
2379 	 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
2380 	 * using a larger set of nodes after it has established that the
2381 	 * allowed per node queues are empty and that nodes are
2382 	 * over allocated.
2383 	 */
2384 	if (IS_ENABLED(CONFIG_NUMA) &&
2385 			(gfp_mask & GFP_THISNODE) == GFP_THISNODE)
2386 		goto nopage;
2387 
2388 restart:
2389 	if (!(gfp_mask & __GFP_NO_KSWAPD))
2390 		wake_all_kswapd(order, zonelist, high_zoneidx,
2391 						zone_idx(preferred_zone));
2392 
2393 	/*
2394 	 * OK, we're below the kswapd watermark and have kicked background
2395 	 * reclaim. Now things get more complex, so set up alloc_flags according
2396 	 * to how we want to proceed.
2397 	 */
2398 	alloc_flags = gfp_to_alloc_flags(gfp_mask);
2399 
2400 	/*
2401 	 * Find the true preferred zone if the allocation is unconstrained by
2402 	 * cpusets.
2403 	 */
2404 	if (!(alloc_flags & ALLOC_CPUSET) && !nodemask)
2405 		first_zones_zonelist(zonelist, high_zoneidx, NULL,
2406 					&preferred_zone);
2407 
2408 rebalance:
2409 	/* This is the last chance, in general, before the goto nopage. */
2410 	page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist,
2411 			high_zoneidx, alloc_flags & ~ALLOC_NO_WATERMARKS,
2412 			preferred_zone, migratetype);
2413 	if (page)
2414 		goto got_pg;
2415 
2416 	/* Allocate without watermarks if the context allows */
2417 	if (alloc_flags & ALLOC_NO_WATERMARKS) {
2418 		/*
2419 		 * Ignore mempolicies if ALLOC_NO_WATERMARKS on the grounds
2420 		 * the allocation is high priority and these type of
2421 		 * allocations are system rather than user orientated
2422 		 */
2423 		zonelist = node_zonelist(numa_node_id(), gfp_mask);
2424 
2425 		page = __alloc_pages_high_priority(gfp_mask, order,
2426 				zonelist, high_zoneidx, nodemask,
2427 				preferred_zone, migratetype);
2428 		if (page) {
2429 			goto got_pg;
2430 		}
2431 	}
2432 
2433 	/* Atomic allocations - we can't balance anything */
2434 	if (!wait)
2435 		goto nopage;
2436 
2437 	/* Avoid recursion of direct reclaim */
2438 	if (current->flags & PF_MEMALLOC)
2439 		goto nopage;
2440 
2441 	/* Avoid allocations with no watermarks from looping endlessly */
2442 	if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
2443 		goto nopage;
2444 
2445 	/*
2446 	 * Try direct compaction. The first pass is asynchronous. Subsequent
2447 	 * attempts after direct reclaim are synchronous
2448 	 */
2449 	page = __alloc_pages_direct_compact(gfp_mask, order,
2450 					zonelist, high_zoneidx,
2451 					nodemask,
2452 					alloc_flags, preferred_zone,
2453 					migratetype, sync_migration,
2454 					&contended_compaction,
2455 					&deferred_compaction,
2456 					&did_some_progress);
2457 	if (page)
2458 		goto got_pg;
2459 	sync_migration = true;
2460 
2461 	/*
2462 	 * If compaction is deferred for high-order allocations, it is because
2463 	 * sync compaction recently failed. In this is the case and the caller
2464 	 * requested a movable allocation that does not heavily disrupt the
2465 	 * system then fail the allocation instead of entering direct reclaim.
2466 	 */
2467 	if ((deferred_compaction || contended_compaction) &&
2468 						(gfp_mask & __GFP_NO_KSWAPD))
2469 		goto nopage;
2470 
2471 	/* Try direct reclaim and then allocating */
2472 	page = __alloc_pages_direct_reclaim(gfp_mask, order,
2473 					zonelist, high_zoneidx,
2474 					nodemask,
2475 					alloc_flags, preferred_zone,
2476 					migratetype, &did_some_progress);
2477 	if (page)
2478 		goto got_pg;
2479 
2480 	/*
2481 	 * If we failed to make any progress reclaiming, then we are
2482 	 * running out of options and have to consider going OOM
2483 	 */
2484 	if (!did_some_progress) {
2485 		if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
2486 			if (oom_killer_disabled)
2487 				goto nopage;
2488 			/* Coredumps can quickly deplete all memory reserves */
2489 			if ((current->flags & PF_DUMPCORE) &&
2490 			    !(gfp_mask & __GFP_NOFAIL))
2491 				goto nopage;
2492 			page = __alloc_pages_may_oom(gfp_mask, order,
2493 					zonelist, high_zoneidx,
2494 					nodemask, preferred_zone,
2495 					migratetype);
2496 			if (page)
2497 				goto got_pg;
2498 
2499 			if (!(gfp_mask & __GFP_NOFAIL)) {
2500 				/*
2501 				 * The oom killer is not called for high-order
2502 				 * allocations that may fail, so if no progress
2503 				 * is being made, there are no other options and
2504 				 * retrying is unlikely to help.
2505 				 */
2506 				if (order > PAGE_ALLOC_COSTLY_ORDER)
2507 					goto nopage;
2508 				/*
2509 				 * The oom killer is not called for lowmem
2510 				 * allocations to prevent needlessly killing
2511 				 * innocent tasks.
2512 				 */
2513 				if (high_zoneidx < ZONE_NORMAL)
2514 					goto nopage;
2515 			}
2516 
2517 			goto restart;
2518 		}
2519 	}
2520 
2521 	/* Check if we should retry the allocation */
2522 	pages_reclaimed += did_some_progress;
2523 	if (should_alloc_retry(gfp_mask, order, did_some_progress,
2524 						pages_reclaimed)) {
2525 		/* Wait for some write requests to complete then retry */
2526 		wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
2527 		goto rebalance;
2528 	} else {
2529 		/*
2530 		 * High-order allocations do not necessarily loop after
2531 		 * direct reclaim and reclaim/compaction depends on compaction
2532 		 * being called after reclaim so call directly if necessary
2533 		 */
2534 		page = __alloc_pages_direct_compact(gfp_mask, order,
2535 					zonelist, high_zoneidx,
2536 					nodemask,
2537 					alloc_flags, preferred_zone,
2538 					migratetype, sync_migration,
2539 					&contended_compaction,
2540 					&deferred_compaction,
2541 					&did_some_progress);
2542 		if (page)
2543 			goto got_pg;
2544 	}
2545 
2546 nopage:
2547 	warn_alloc_failed(gfp_mask, order, NULL);
2548 	return page;
2549 got_pg:
2550 	if (kmemcheck_enabled)
2551 		kmemcheck_pagealloc_alloc(page, order, gfp_mask);
2552 
2553 	return page;
2554 }
2555 
2556 /*
2557  * This is the 'heart' of the zoned buddy allocator.
2558  */
2559 struct page *
2560 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
2561 			struct zonelist *zonelist, nodemask_t *nodemask)
2562 {
2563 	enum zone_type high_zoneidx = gfp_zone(gfp_mask);
2564 	struct zone *preferred_zone;
2565 	struct page *page = NULL;
2566 	int migratetype = allocflags_to_migratetype(gfp_mask);
2567 	unsigned int cpuset_mems_cookie;
2568 	int alloc_flags = ALLOC_WMARK_LOW|ALLOC_CPUSET;
2569 	struct mem_cgroup *memcg = NULL;
2570 
2571 	gfp_mask &= gfp_allowed_mask;
2572 
2573 	lockdep_trace_alloc(gfp_mask);
2574 
2575 	might_sleep_if(gfp_mask & __GFP_WAIT);
2576 
2577 	if (should_fail_alloc_page(gfp_mask, order))
2578 		return NULL;
2579 
2580 	/*
2581 	 * Check the zones suitable for the gfp_mask contain at least one
2582 	 * valid zone. It's possible to have an empty zonelist as a result
2583 	 * of GFP_THISNODE and a memoryless node
2584 	 */
2585 	if (unlikely(!zonelist->_zonerefs->zone))
2586 		return NULL;
2587 
2588 	/*
2589 	 * Will only have any effect when __GFP_KMEMCG is set.  This is
2590 	 * verified in the (always inline) callee
2591 	 */
2592 	if (!memcg_kmem_newpage_charge(gfp_mask, &memcg, order))
2593 		return NULL;
2594 
2595 retry_cpuset:
2596 	cpuset_mems_cookie = get_mems_allowed();
2597 
2598 	/* The preferred zone is used for statistics later */
2599 	first_zones_zonelist(zonelist, high_zoneidx,
2600 				nodemask ? : &cpuset_current_mems_allowed,
2601 				&preferred_zone);
2602 	if (!preferred_zone)
2603 		goto out;
2604 
2605 #ifdef CONFIG_CMA
2606 	if (allocflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
2607 		alloc_flags |= ALLOC_CMA;
2608 #endif
2609 	/* First allocation attempt */
2610 	page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order,
2611 			zonelist, high_zoneidx, alloc_flags,
2612 			preferred_zone, migratetype);
2613 	if (unlikely(!page))
2614 		page = __alloc_pages_slowpath(gfp_mask, order,
2615 				zonelist, high_zoneidx, nodemask,
2616 				preferred_zone, migratetype);
2617 
2618 	trace_mm_page_alloc(page, order, gfp_mask, migratetype);
2619 
2620 out:
2621 	/*
2622 	 * When updating a task's mems_allowed, it is possible to race with
2623 	 * parallel threads in such a way that an allocation can fail while
2624 	 * the mask is being updated. If a page allocation is about to fail,
2625 	 * check if the cpuset changed during allocation and if so, retry.
2626 	 */
2627 	if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page))
2628 		goto retry_cpuset;
2629 
2630 	memcg_kmem_commit_charge(page, memcg, order);
2631 
2632 	return page;
2633 }
2634 EXPORT_SYMBOL(__alloc_pages_nodemask);
2635 
2636 /*
2637  * Common helper functions.
2638  */
2639 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
2640 {
2641 	struct page *page;
2642 
2643 	/*
2644 	 * __get_free_pages() returns a 32-bit address, which cannot represent
2645 	 * a highmem page
2646 	 */
2647 	VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
2648 
2649 	page = alloc_pages(gfp_mask, order);
2650 	if (!page)
2651 		return 0;
2652 	return (unsigned long) page_address(page);
2653 }
2654 EXPORT_SYMBOL(__get_free_pages);
2655 
2656 unsigned long get_zeroed_page(gfp_t gfp_mask)
2657 {
2658 	return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
2659 }
2660 EXPORT_SYMBOL(get_zeroed_page);
2661 
2662 void __free_pages(struct page *page, unsigned int order)
2663 {
2664 	if (put_page_testzero(page)) {
2665 		if (order == 0)
2666 			free_hot_cold_page(page, 0);
2667 		else
2668 			__free_pages_ok(page, order);
2669 	}
2670 }
2671 
2672 EXPORT_SYMBOL(__free_pages);
2673 
2674 void free_pages(unsigned long addr, unsigned int order)
2675 {
2676 	if (addr != 0) {
2677 		VM_BUG_ON(!virt_addr_valid((void *)addr));
2678 		__free_pages(virt_to_page((void *)addr), order);
2679 	}
2680 }
2681 
2682 EXPORT_SYMBOL(free_pages);
2683 
2684 /*
2685  * __free_memcg_kmem_pages and free_memcg_kmem_pages will free
2686  * pages allocated with __GFP_KMEMCG.
2687  *
2688  * Those pages are accounted to a particular memcg, embedded in the
2689  * corresponding page_cgroup. To avoid adding a hit in the allocator to search
2690  * for that information only to find out that it is NULL for users who have no
2691  * interest in that whatsoever, we provide these functions.
2692  *
2693  * The caller knows better which flags it relies on.
2694  */
2695 void __free_memcg_kmem_pages(struct page *page, unsigned int order)
2696 {
2697 	memcg_kmem_uncharge_pages(page, order);
2698 	__free_pages(page, order);
2699 }
2700 
2701 void free_memcg_kmem_pages(unsigned long addr, unsigned int order)
2702 {
2703 	if (addr != 0) {
2704 		VM_BUG_ON(!virt_addr_valid((void *)addr));
2705 		__free_memcg_kmem_pages(virt_to_page((void *)addr), order);
2706 	}
2707 }
2708 
2709 static void *make_alloc_exact(unsigned long addr, unsigned order, size_t size)
2710 {
2711 	if (addr) {
2712 		unsigned long alloc_end = addr + (PAGE_SIZE << order);
2713 		unsigned long used = addr + PAGE_ALIGN(size);
2714 
2715 		split_page(virt_to_page((void *)addr), order);
2716 		while (used < alloc_end) {
2717 			free_page(used);
2718 			used += PAGE_SIZE;
2719 		}
2720 	}
2721 	return (void *)addr;
2722 }
2723 
2724 /**
2725  * alloc_pages_exact - allocate an exact number physically-contiguous pages.
2726  * @size: the number of bytes to allocate
2727  * @gfp_mask: GFP flags for the allocation
2728  *
2729  * This function is similar to alloc_pages(), except that it allocates the
2730  * minimum number of pages to satisfy the request.  alloc_pages() can only
2731  * allocate memory in power-of-two pages.
2732  *
2733  * This function is also limited by MAX_ORDER.
2734  *
2735  * Memory allocated by this function must be released by free_pages_exact().
2736  */
2737 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
2738 {
2739 	unsigned int order = get_order(size);
2740 	unsigned long addr;
2741 
2742 	addr = __get_free_pages(gfp_mask, order);
2743 	return make_alloc_exact(addr, order, size);
2744 }
2745 EXPORT_SYMBOL(alloc_pages_exact);
2746 
2747 /**
2748  * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
2749  *			   pages on a node.
2750  * @nid: the preferred node ID where memory should be allocated
2751  * @size: the number of bytes to allocate
2752  * @gfp_mask: GFP flags for the allocation
2753  *
2754  * Like alloc_pages_exact(), but try to allocate on node nid first before falling
2755  * back.
2756  * Note this is not alloc_pages_exact_node() which allocates on a specific node,
2757  * but is not exact.
2758  */
2759 void *alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
2760 {
2761 	unsigned order = get_order(size);
2762 	struct page *p = alloc_pages_node(nid, gfp_mask, order);
2763 	if (!p)
2764 		return NULL;
2765 	return make_alloc_exact((unsigned long)page_address(p), order, size);
2766 }
2767 EXPORT_SYMBOL(alloc_pages_exact_nid);
2768 
2769 /**
2770  * free_pages_exact - release memory allocated via alloc_pages_exact()
2771  * @virt: the value returned by alloc_pages_exact.
2772  * @size: size of allocation, same value as passed to alloc_pages_exact().
2773  *
2774  * Release the memory allocated by a previous call to alloc_pages_exact.
2775  */
2776 void free_pages_exact(void *virt, size_t size)
2777 {
2778 	unsigned long addr = (unsigned long)virt;
2779 	unsigned long end = addr + PAGE_ALIGN(size);
2780 
2781 	while (addr < end) {
2782 		free_page(addr);
2783 		addr += PAGE_SIZE;
2784 	}
2785 }
2786 EXPORT_SYMBOL(free_pages_exact);
2787 
2788 static unsigned int nr_free_zone_pages(int offset)
2789 {
2790 	struct zoneref *z;
2791 	struct zone *zone;
2792 
2793 	/* Just pick one node, since fallback list is circular */
2794 	unsigned int sum = 0;
2795 
2796 	struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
2797 
2798 	for_each_zone_zonelist(zone, z, zonelist, offset) {
2799 		unsigned long size = zone->present_pages;
2800 		unsigned long high = high_wmark_pages(zone);
2801 		if (size > high)
2802 			sum += size - high;
2803 	}
2804 
2805 	return sum;
2806 }
2807 
2808 /*
2809  * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
2810  */
2811 unsigned int nr_free_buffer_pages(void)
2812 {
2813 	return nr_free_zone_pages(gfp_zone(GFP_USER));
2814 }
2815 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
2816 
2817 /*
2818  * Amount of free RAM allocatable within all zones
2819  */
2820 unsigned int nr_free_pagecache_pages(void)
2821 {
2822 	return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
2823 }
2824 
2825 static inline void show_node(struct zone *zone)
2826 {
2827 	if (IS_ENABLED(CONFIG_NUMA))
2828 		printk("Node %d ", zone_to_nid(zone));
2829 }
2830 
2831 void si_meminfo(struct sysinfo *val)
2832 {
2833 	val->totalram = totalram_pages;
2834 	val->sharedram = 0;
2835 	val->freeram = global_page_state(NR_FREE_PAGES);
2836 	val->bufferram = nr_blockdev_pages();
2837 	val->totalhigh = totalhigh_pages;
2838 	val->freehigh = nr_free_highpages();
2839 	val->mem_unit = PAGE_SIZE;
2840 }
2841 
2842 EXPORT_SYMBOL(si_meminfo);
2843 
2844 #ifdef CONFIG_NUMA
2845 void si_meminfo_node(struct sysinfo *val, int nid)
2846 {
2847 	pg_data_t *pgdat = NODE_DATA(nid);
2848 
2849 	val->totalram = pgdat->node_present_pages;
2850 	val->freeram = node_page_state(nid, NR_FREE_PAGES);
2851 #ifdef CONFIG_HIGHMEM
2852 	val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
2853 	val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
2854 			NR_FREE_PAGES);
2855 #else
2856 	val->totalhigh = 0;
2857 	val->freehigh = 0;
2858 #endif
2859 	val->mem_unit = PAGE_SIZE;
2860 }
2861 #endif
2862 
2863 /*
2864  * Determine whether the node should be displayed or not, depending on whether
2865  * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
2866  */
2867 bool skip_free_areas_node(unsigned int flags, int nid)
2868 {
2869 	bool ret = false;
2870 	unsigned int cpuset_mems_cookie;
2871 
2872 	if (!(flags & SHOW_MEM_FILTER_NODES))
2873 		goto out;
2874 
2875 	do {
2876 		cpuset_mems_cookie = get_mems_allowed();
2877 		ret = !node_isset(nid, cpuset_current_mems_allowed);
2878 	} while (!put_mems_allowed(cpuset_mems_cookie));
2879 out:
2880 	return ret;
2881 }
2882 
2883 #define K(x) ((x) << (PAGE_SHIFT-10))
2884 
2885 static void show_migration_types(unsigned char type)
2886 {
2887 	static const char types[MIGRATE_TYPES] = {
2888 		[MIGRATE_UNMOVABLE]	= 'U',
2889 		[MIGRATE_RECLAIMABLE]	= 'E',
2890 		[MIGRATE_MOVABLE]	= 'M',
2891 		[MIGRATE_RESERVE]	= 'R',
2892 #ifdef CONFIG_CMA
2893 		[MIGRATE_CMA]		= 'C',
2894 #endif
2895 		[MIGRATE_ISOLATE]	= 'I',
2896 	};
2897 	char tmp[MIGRATE_TYPES + 1];
2898 	char *p = tmp;
2899 	int i;
2900 
2901 	for (i = 0; i < MIGRATE_TYPES; i++) {
2902 		if (type & (1 << i))
2903 			*p++ = types[i];
2904 	}
2905 
2906 	*p = '\0';
2907 	printk("(%s) ", tmp);
2908 }
2909 
2910 /*
2911  * Show free area list (used inside shift_scroll-lock stuff)
2912  * We also calculate the percentage fragmentation. We do this by counting the
2913  * memory on each free list with the exception of the first item on the list.
2914  * Suppresses nodes that are not allowed by current's cpuset if
2915  * SHOW_MEM_FILTER_NODES is passed.
2916  */
2917 void show_free_areas(unsigned int filter)
2918 {
2919 	int cpu;
2920 	struct zone *zone;
2921 
2922 	for_each_populated_zone(zone) {
2923 		if (skip_free_areas_node(filter, zone_to_nid(zone)))
2924 			continue;
2925 		show_node(zone);
2926 		printk("%s per-cpu:\n", zone->name);
2927 
2928 		for_each_online_cpu(cpu) {
2929 			struct per_cpu_pageset *pageset;
2930 
2931 			pageset = per_cpu_ptr(zone->pageset, cpu);
2932 
2933 			printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
2934 			       cpu, pageset->pcp.high,
2935 			       pageset->pcp.batch, pageset->pcp.count);
2936 		}
2937 	}
2938 
2939 	printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
2940 		" active_file:%lu inactive_file:%lu isolated_file:%lu\n"
2941 		" unevictable:%lu"
2942 		" dirty:%lu writeback:%lu unstable:%lu\n"
2943 		" free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n"
2944 		" mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
2945 		" free_cma:%lu\n",
2946 		global_page_state(NR_ACTIVE_ANON),
2947 		global_page_state(NR_INACTIVE_ANON),
2948 		global_page_state(NR_ISOLATED_ANON),
2949 		global_page_state(NR_ACTIVE_FILE),
2950 		global_page_state(NR_INACTIVE_FILE),
2951 		global_page_state(NR_ISOLATED_FILE),
2952 		global_page_state(NR_UNEVICTABLE),
2953 		global_page_state(NR_FILE_DIRTY),
2954 		global_page_state(NR_WRITEBACK),
2955 		global_page_state(NR_UNSTABLE_NFS),
2956 		global_page_state(NR_FREE_PAGES),
2957 		global_page_state(NR_SLAB_RECLAIMABLE),
2958 		global_page_state(NR_SLAB_UNRECLAIMABLE),
2959 		global_page_state(NR_FILE_MAPPED),
2960 		global_page_state(NR_SHMEM),
2961 		global_page_state(NR_PAGETABLE),
2962 		global_page_state(NR_BOUNCE),
2963 		global_page_state(NR_FREE_CMA_PAGES));
2964 
2965 	for_each_populated_zone(zone) {
2966 		int i;
2967 
2968 		if (skip_free_areas_node(filter, zone_to_nid(zone)))
2969 			continue;
2970 		show_node(zone);
2971 		printk("%s"
2972 			" free:%lukB"
2973 			" min:%lukB"
2974 			" low:%lukB"
2975 			" high:%lukB"
2976 			" active_anon:%lukB"
2977 			" inactive_anon:%lukB"
2978 			" active_file:%lukB"
2979 			" inactive_file:%lukB"
2980 			" unevictable:%lukB"
2981 			" isolated(anon):%lukB"
2982 			" isolated(file):%lukB"
2983 			" present:%lukB"
2984 			" managed:%lukB"
2985 			" mlocked:%lukB"
2986 			" dirty:%lukB"
2987 			" writeback:%lukB"
2988 			" mapped:%lukB"
2989 			" shmem:%lukB"
2990 			" slab_reclaimable:%lukB"
2991 			" slab_unreclaimable:%lukB"
2992 			" kernel_stack:%lukB"
2993 			" pagetables:%lukB"
2994 			" unstable:%lukB"
2995 			" bounce:%lukB"
2996 			" free_cma:%lukB"
2997 			" writeback_tmp:%lukB"
2998 			" pages_scanned:%lu"
2999 			" all_unreclaimable? %s"
3000 			"\n",
3001 			zone->name,
3002 			K(zone_page_state(zone, NR_FREE_PAGES)),
3003 			K(min_wmark_pages(zone)),
3004 			K(low_wmark_pages(zone)),
3005 			K(high_wmark_pages(zone)),
3006 			K(zone_page_state(zone, NR_ACTIVE_ANON)),
3007 			K(zone_page_state(zone, NR_INACTIVE_ANON)),
3008 			K(zone_page_state(zone, NR_ACTIVE_FILE)),
3009 			K(zone_page_state(zone, NR_INACTIVE_FILE)),
3010 			K(zone_page_state(zone, NR_UNEVICTABLE)),
3011 			K(zone_page_state(zone, NR_ISOLATED_ANON)),
3012 			K(zone_page_state(zone, NR_ISOLATED_FILE)),
3013 			K(zone->present_pages),
3014 			K(zone->managed_pages),
3015 			K(zone_page_state(zone, NR_MLOCK)),
3016 			K(zone_page_state(zone, NR_FILE_DIRTY)),
3017 			K(zone_page_state(zone, NR_WRITEBACK)),
3018 			K(zone_page_state(zone, NR_FILE_MAPPED)),
3019 			K(zone_page_state(zone, NR_SHMEM)),
3020 			K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
3021 			K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
3022 			zone_page_state(zone, NR_KERNEL_STACK) *
3023 				THREAD_SIZE / 1024,
3024 			K(zone_page_state(zone, NR_PAGETABLE)),
3025 			K(zone_page_state(zone, NR_UNSTABLE_NFS)),
3026 			K(zone_page_state(zone, NR_BOUNCE)),
3027 			K(zone_page_state(zone, NR_FREE_CMA_PAGES)),
3028 			K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
3029 			zone->pages_scanned,
3030 			(zone->all_unreclaimable ? "yes" : "no")
3031 			);
3032 		printk("lowmem_reserve[]:");
3033 		for (i = 0; i < MAX_NR_ZONES; i++)
3034 			printk(" %lu", zone->lowmem_reserve[i]);
3035 		printk("\n");
3036 	}
3037 
3038 	for_each_populated_zone(zone) {
3039  		unsigned long nr[MAX_ORDER], flags, order, total = 0;
3040 		unsigned char types[MAX_ORDER];
3041 
3042 		if (skip_free_areas_node(filter, zone_to_nid(zone)))
3043 			continue;
3044 		show_node(zone);
3045 		printk("%s: ", zone->name);
3046 
3047 		spin_lock_irqsave(&zone->lock, flags);
3048 		for (order = 0; order < MAX_ORDER; order++) {
3049 			struct free_area *area = &zone->free_area[order];
3050 			int type;
3051 
3052 			nr[order] = area->nr_free;
3053 			total += nr[order] << order;
3054 
3055 			types[order] = 0;
3056 			for (type = 0; type < MIGRATE_TYPES; type++) {
3057 				if (!list_empty(&area->free_list[type]))
3058 					types[order] |= 1 << type;
3059 			}
3060 		}
3061 		spin_unlock_irqrestore(&zone->lock, flags);
3062 		for (order = 0; order < MAX_ORDER; order++) {
3063 			printk("%lu*%lukB ", nr[order], K(1UL) << order);
3064 			if (nr[order])
3065 				show_migration_types(types[order]);
3066 		}
3067 		printk("= %lukB\n", K(total));
3068 	}
3069 
3070 	printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
3071 
3072 	show_swap_cache_info();
3073 }
3074 
3075 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
3076 {
3077 	zoneref->zone = zone;
3078 	zoneref->zone_idx = zone_idx(zone);
3079 }
3080 
3081 /*
3082  * Builds allocation fallback zone lists.
3083  *
3084  * Add all populated zones of a node to the zonelist.
3085  */
3086 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
3087 				int nr_zones, enum zone_type zone_type)
3088 {
3089 	struct zone *zone;
3090 
3091 	BUG_ON(zone_type >= MAX_NR_ZONES);
3092 	zone_type++;
3093 
3094 	do {
3095 		zone_type--;
3096 		zone = pgdat->node_zones + zone_type;
3097 		if (populated_zone(zone)) {
3098 			zoneref_set_zone(zone,
3099 				&zonelist->_zonerefs[nr_zones++]);
3100 			check_highest_zone(zone_type);
3101 		}
3102 
3103 	} while (zone_type);
3104 	return nr_zones;
3105 }
3106 
3107 
3108 /*
3109  *  zonelist_order:
3110  *  0 = automatic detection of better ordering.
3111  *  1 = order by ([node] distance, -zonetype)
3112  *  2 = order by (-zonetype, [node] distance)
3113  *
3114  *  If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
3115  *  the same zonelist. So only NUMA can configure this param.
3116  */
3117 #define ZONELIST_ORDER_DEFAULT  0
3118 #define ZONELIST_ORDER_NODE     1
3119 #define ZONELIST_ORDER_ZONE     2
3120 
3121 /* zonelist order in the kernel.
3122  * set_zonelist_order() will set this to NODE or ZONE.
3123  */
3124 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
3125 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
3126 
3127 
3128 #ifdef CONFIG_NUMA
3129 /* The value user specified ....changed by config */
3130 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
3131 /* string for sysctl */
3132 #define NUMA_ZONELIST_ORDER_LEN	16
3133 char numa_zonelist_order[16] = "default";
3134 
3135 /*
3136  * interface for configure zonelist ordering.
3137  * command line option "numa_zonelist_order"
3138  *	= "[dD]efault	- default, automatic configuration.
3139  *	= "[nN]ode 	- order by node locality, then by zone within node
3140  *	= "[zZ]one      - order by zone, then by locality within zone
3141  */
3142 
3143 static int __parse_numa_zonelist_order(char *s)
3144 {
3145 	if (*s == 'd' || *s == 'D') {
3146 		user_zonelist_order = ZONELIST_ORDER_DEFAULT;
3147 	} else if (*s == 'n' || *s == 'N') {
3148 		user_zonelist_order = ZONELIST_ORDER_NODE;
3149 	} else if (*s == 'z' || *s == 'Z') {
3150 		user_zonelist_order = ZONELIST_ORDER_ZONE;
3151 	} else {
3152 		printk(KERN_WARNING
3153 			"Ignoring invalid numa_zonelist_order value:  "
3154 			"%s\n", s);
3155 		return -EINVAL;
3156 	}
3157 	return 0;
3158 }
3159 
3160 static __init int setup_numa_zonelist_order(char *s)
3161 {
3162 	int ret;
3163 
3164 	if (!s)
3165 		return 0;
3166 
3167 	ret = __parse_numa_zonelist_order(s);
3168 	if (ret == 0)
3169 		strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
3170 
3171 	return ret;
3172 }
3173 early_param("numa_zonelist_order", setup_numa_zonelist_order);
3174 
3175 /*
3176  * sysctl handler for numa_zonelist_order
3177  */
3178 int numa_zonelist_order_handler(ctl_table *table, int write,
3179 		void __user *buffer, size_t *length,
3180 		loff_t *ppos)
3181 {
3182 	char saved_string[NUMA_ZONELIST_ORDER_LEN];
3183 	int ret;
3184 	static DEFINE_MUTEX(zl_order_mutex);
3185 
3186 	mutex_lock(&zl_order_mutex);
3187 	if (write)
3188 		strcpy(saved_string, (char*)table->data);
3189 	ret = proc_dostring(table, write, buffer, length, ppos);
3190 	if (ret)
3191 		goto out;
3192 	if (write) {
3193 		int oldval = user_zonelist_order;
3194 		if (__parse_numa_zonelist_order((char*)table->data)) {
3195 			/*
3196 			 * bogus value.  restore saved string
3197 			 */
3198 			strncpy((char*)table->data, saved_string,
3199 				NUMA_ZONELIST_ORDER_LEN);
3200 			user_zonelist_order = oldval;
3201 		} else if (oldval != user_zonelist_order) {
3202 			mutex_lock(&zonelists_mutex);
3203 			build_all_zonelists(NULL, NULL);
3204 			mutex_unlock(&zonelists_mutex);
3205 		}
3206 	}
3207 out:
3208 	mutex_unlock(&zl_order_mutex);
3209 	return ret;
3210 }
3211 
3212 
3213 #define MAX_NODE_LOAD (nr_online_nodes)
3214 static int node_load[MAX_NUMNODES];
3215 
3216 /**
3217  * find_next_best_node - find the next node that should appear in a given node's fallback list
3218  * @node: node whose fallback list we're appending
3219  * @used_node_mask: nodemask_t of already used nodes
3220  *
3221  * We use a number of factors to determine which is the next node that should
3222  * appear on a given node's fallback list.  The node should not have appeared
3223  * already in @node's fallback list, and it should be the next closest node
3224  * according to the distance array (which contains arbitrary distance values
3225  * from each node to each node in the system), and should also prefer nodes
3226  * with no CPUs, since presumably they'll have very little allocation pressure
3227  * on them otherwise.
3228  * It returns -1 if no node is found.
3229  */
3230 static int find_next_best_node(int node, nodemask_t *used_node_mask)
3231 {
3232 	int n, val;
3233 	int min_val = INT_MAX;
3234 	int best_node = -1;
3235 	const struct cpumask *tmp = cpumask_of_node(0);
3236 
3237 	/* Use the local node if we haven't already */
3238 	if (!node_isset(node, *used_node_mask)) {
3239 		node_set(node, *used_node_mask);
3240 		return node;
3241 	}
3242 
3243 	for_each_node_state(n, N_MEMORY) {
3244 
3245 		/* Don't want a node to appear more than once */
3246 		if (node_isset(n, *used_node_mask))
3247 			continue;
3248 
3249 		/* Use the distance array to find the distance */
3250 		val = node_distance(node, n);
3251 
3252 		/* Penalize nodes under us ("prefer the next node") */
3253 		val += (n < node);
3254 
3255 		/* Give preference to headless and unused nodes */
3256 		tmp = cpumask_of_node(n);
3257 		if (!cpumask_empty(tmp))
3258 			val += PENALTY_FOR_NODE_WITH_CPUS;
3259 
3260 		/* Slight preference for less loaded node */
3261 		val *= (MAX_NODE_LOAD*MAX_NUMNODES);
3262 		val += node_load[n];
3263 
3264 		if (val < min_val) {
3265 			min_val = val;
3266 			best_node = n;
3267 		}
3268 	}
3269 
3270 	if (best_node >= 0)
3271 		node_set(best_node, *used_node_mask);
3272 
3273 	return best_node;
3274 }
3275 
3276 
3277 /*
3278  * Build zonelists ordered by node and zones within node.
3279  * This results in maximum locality--normal zone overflows into local
3280  * DMA zone, if any--but risks exhausting DMA zone.
3281  */
3282 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
3283 {
3284 	int j;
3285 	struct zonelist *zonelist;
3286 
3287 	zonelist = &pgdat->node_zonelists[0];
3288 	for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
3289 		;
3290 	j = build_zonelists_node(NODE_DATA(node), zonelist, j,
3291 							MAX_NR_ZONES - 1);
3292 	zonelist->_zonerefs[j].zone = NULL;
3293 	zonelist->_zonerefs[j].zone_idx = 0;
3294 }
3295 
3296 /*
3297  * Build gfp_thisnode zonelists
3298  */
3299 static void build_thisnode_zonelists(pg_data_t *pgdat)
3300 {
3301 	int j;
3302 	struct zonelist *zonelist;
3303 
3304 	zonelist = &pgdat->node_zonelists[1];
3305 	j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
3306 	zonelist->_zonerefs[j].zone = NULL;
3307 	zonelist->_zonerefs[j].zone_idx = 0;
3308 }
3309 
3310 /*
3311  * Build zonelists ordered by zone and nodes within zones.
3312  * This results in conserving DMA zone[s] until all Normal memory is
3313  * exhausted, but results in overflowing to remote node while memory
3314  * may still exist in local DMA zone.
3315  */
3316 static int node_order[MAX_NUMNODES];
3317 
3318 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
3319 {
3320 	int pos, j, node;
3321 	int zone_type;		/* needs to be signed */
3322 	struct zone *z;
3323 	struct zonelist *zonelist;
3324 
3325 	zonelist = &pgdat->node_zonelists[0];
3326 	pos = 0;
3327 	for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
3328 		for (j = 0; j < nr_nodes; j++) {
3329 			node = node_order[j];
3330 			z = &NODE_DATA(node)->node_zones[zone_type];
3331 			if (populated_zone(z)) {
3332 				zoneref_set_zone(z,
3333 					&zonelist->_zonerefs[pos++]);
3334 				check_highest_zone(zone_type);
3335 			}
3336 		}
3337 	}
3338 	zonelist->_zonerefs[pos].zone = NULL;
3339 	zonelist->_zonerefs[pos].zone_idx = 0;
3340 }
3341 
3342 static int default_zonelist_order(void)
3343 {
3344 	int nid, zone_type;
3345 	unsigned long low_kmem_size,total_size;
3346 	struct zone *z;
3347 	int average_size;
3348 	/*
3349          * ZONE_DMA and ZONE_DMA32 can be very small area in the system.
3350 	 * If they are really small and used heavily, the system can fall
3351 	 * into OOM very easily.
3352 	 * This function detect ZONE_DMA/DMA32 size and configures zone order.
3353 	 */
3354 	/* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
3355 	low_kmem_size = 0;
3356 	total_size = 0;
3357 	for_each_online_node(nid) {
3358 		for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
3359 			z = &NODE_DATA(nid)->node_zones[zone_type];
3360 			if (populated_zone(z)) {
3361 				if (zone_type < ZONE_NORMAL)
3362 					low_kmem_size += z->present_pages;
3363 				total_size += z->present_pages;
3364 			} else if (zone_type == ZONE_NORMAL) {
3365 				/*
3366 				 * If any node has only lowmem, then node order
3367 				 * is preferred to allow kernel allocations
3368 				 * locally; otherwise, they can easily infringe
3369 				 * on other nodes when there is an abundance of
3370 				 * lowmem available to allocate from.
3371 				 */
3372 				return ZONELIST_ORDER_NODE;
3373 			}
3374 		}
3375 	}
3376 	if (!low_kmem_size ||  /* there are no DMA area. */
3377 	    low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
3378 		return ZONELIST_ORDER_NODE;
3379 	/*
3380 	 * look into each node's config.
3381   	 * If there is a node whose DMA/DMA32 memory is very big area on
3382  	 * local memory, NODE_ORDER may be suitable.
3383          */
3384 	average_size = total_size /
3385 				(nodes_weight(node_states[N_MEMORY]) + 1);
3386 	for_each_online_node(nid) {
3387 		low_kmem_size = 0;
3388 		total_size = 0;
3389 		for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
3390 			z = &NODE_DATA(nid)->node_zones[zone_type];
3391 			if (populated_zone(z)) {
3392 				if (zone_type < ZONE_NORMAL)
3393 					low_kmem_size += z->present_pages;
3394 				total_size += z->present_pages;
3395 			}
3396 		}
3397 		if (low_kmem_size &&
3398 		    total_size > average_size && /* ignore small node */
3399 		    low_kmem_size > total_size * 70/100)
3400 			return ZONELIST_ORDER_NODE;
3401 	}
3402 	return ZONELIST_ORDER_ZONE;
3403 }
3404 
3405 static void set_zonelist_order(void)
3406 {
3407 	if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
3408 		current_zonelist_order = default_zonelist_order();
3409 	else
3410 		current_zonelist_order = user_zonelist_order;
3411 }
3412 
3413 static void build_zonelists(pg_data_t *pgdat)
3414 {
3415 	int j, node, load;
3416 	enum zone_type i;
3417 	nodemask_t used_mask;
3418 	int local_node, prev_node;
3419 	struct zonelist *zonelist;
3420 	int order = current_zonelist_order;
3421 
3422 	/* initialize zonelists */
3423 	for (i = 0; i < MAX_ZONELISTS; i++) {
3424 		zonelist = pgdat->node_zonelists + i;
3425 		zonelist->_zonerefs[0].zone = NULL;
3426 		zonelist->_zonerefs[0].zone_idx = 0;
3427 	}
3428 
3429 	/* NUMA-aware ordering of nodes */
3430 	local_node = pgdat->node_id;
3431 	load = nr_online_nodes;
3432 	prev_node = local_node;
3433 	nodes_clear(used_mask);
3434 
3435 	memset(node_order, 0, sizeof(node_order));
3436 	j = 0;
3437 
3438 	while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
3439 		/*
3440 		 * We don't want to pressure a particular node.
3441 		 * So adding penalty to the first node in same
3442 		 * distance group to make it round-robin.
3443 		 */
3444 		if (node_distance(local_node, node) !=
3445 		    node_distance(local_node, prev_node))
3446 			node_load[node] = load;
3447 
3448 		prev_node = node;
3449 		load--;
3450 		if (order == ZONELIST_ORDER_NODE)
3451 			build_zonelists_in_node_order(pgdat, node);
3452 		else
3453 			node_order[j++] = node;	/* remember order */
3454 	}
3455 
3456 	if (order == ZONELIST_ORDER_ZONE) {
3457 		/* calculate node order -- i.e., DMA last! */
3458 		build_zonelists_in_zone_order(pgdat, j);
3459 	}
3460 
3461 	build_thisnode_zonelists(pgdat);
3462 }
3463 
3464 /* Construct the zonelist performance cache - see further mmzone.h */
3465 static void build_zonelist_cache(pg_data_t *pgdat)
3466 {
3467 	struct zonelist *zonelist;
3468 	struct zonelist_cache *zlc;
3469 	struct zoneref *z;
3470 
3471 	zonelist = &pgdat->node_zonelists[0];
3472 	zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
3473 	bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
3474 	for (z = zonelist->_zonerefs; z->zone; z++)
3475 		zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
3476 }
3477 
3478 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
3479 /*
3480  * Return node id of node used for "local" allocations.
3481  * I.e., first node id of first zone in arg node's generic zonelist.
3482  * Used for initializing percpu 'numa_mem', which is used primarily
3483  * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
3484  */
3485 int local_memory_node(int node)
3486 {
3487 	struct zone *zone;
3488 
3489 	(void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
3490 				   gfp_zone(GFP_KERNEL),
3491 				   NULL,
3492 				   &zone);
3493 	return zone->node;
3494 }
3495 #endif
3496 
3497 #else	/* CONFIG_NUMA */
3498 
3499 static void set_zonelist_order(void)
3500 {
3501 	current_zonelist_order = ZONELIST_ORDER_ZONE;
3502 }
3503 
3504 static void build_zonelists(pg_data_t *pgdat)
3505 {
3506 	int node, local_node;
3507 	enum zone_type j;
3508 	struct zonelist *zonelist;
3509 
3510 	local_node = pgdat->node_id;
3511 
3512 	zonelist = &pgdat->node_zonelists[0];
3513 	j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
3514 
3515 	/*
3516 	 * Now we build the zonelist so that it contains the zones
3517 	 * of all the other nodes.
3518 	 * We don't want to pressure a particular node, so when
3519 	 * building the zones for node N, we make sure that the
3520 	 * zones coming right after the local ones are those from
3521 	 * node N+1 (modulo N)
3522 	 */
3523 	for (node = local_node + 1; node < MAX_NUMNODES; node++) {
3524 		if (!node_online(node))
3525 			continue;
3526 		j = build_zonelists_node(NODE_DATA(node), zonelist, j,
3527 							MAX_NR_ZONES - 1);
3528 	}
3529 	for (node = 0; node < local_node; node++) {
3530 		if (!node_online(node))
3531 			continue;
3532 		j = build_zonelists_node(NODE_DATA(node), zonelist, j,
3533 							MAX_NR_ZONES - 1);
3534 	}
3535 
3536 	zonelist->_zonerefs[j].zone = NULL;
3537 	zonelist->_zonerefs[j].zone_idx = 0;
3538 }
3539 
3540 /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
3541 static void build_zonelist_cache(pg_data_t *pgdat)
3542 {
3543 	pgdat->node_zonelists[0].zlcache_ptr = NULL;
3544 }
3545 
3546 #endif	/* CONFIG_NUMA */
3547 
3548 /*
3549  * Boot pageset table. One per cpu which is going to be used for all
3550  * zones and all nodes. The parameters will be set in such a way
3551  * that an item put on a list will immediately be handed over to
3552  * the buddy list. This is safe since pageset manipulation is done
3553  * with interrupts disabled.
3554  *
3555  * The boot_pagesets must be kept even after bootup is complete for
3556  * unused processors and/or zones. They do play a role for bootstrapping
3557  * hotplugged processors.
3558  *
3559  * zoneinfo_show() and maybe other functions do
3560  * not check if the processor is online before following the pageset pointer.
3561  * Other parts of the kernel may not check if the zone is available.
3562  */
3563 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
3564 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
3565 static void setup_zone_pageset(struct zone *zone);
3566 
3567 /*
3568  * Global mutex to protect against size modification of zonelists
3569  * as well as to serialize pageset setup for the new populated zone.
3570  */
3571 DEFINE_MUTEX(zonelists_mutex);
3572 
3573 /* return values int ....just for stop_machine() */
3574 static int __build_all_zonelists(void *data)
3575 {
3576 	int nid;
3577 	int cpu;
3578 	pg_data_t *self = data;
3579 
3580 #ifdef CONFIG_NUMA
3581 	memset(node_load, 0, sizeof(node_load));
3582 #endif
3583 
3584 	if (self && !node_online(self->node_id)) {
3585 		build_zonelists(self);
3586 		build_zonelist_cache(self);
3587 	}
3588 
3589 	for_each_online_node(nid) {
3590 		pg_data_t *pgdat = NODE_DATA(nid);
3591 
3592 		build_zonelists(pgdat);
3593 		build_zonelist_cache(pgdat);
3594 	}
3595 
3596 	/*
3597 	 * Initialize the boot_pagesets that are going to be used
3598 	 * for bootstrapping processors. The real pagesets for
3599 	 * each zone will be allocated later when the per cpu
3600 	 * allocator is available.
3601 	 *
3602 	 * boot_pagesets are used also for bootstrapping offline
3603 	 * cpus if the system is already booted because the pagesets
3604 	 * are needed to initialize allocators on a specific cpu too.
3605 	 * F.e. the percpu allocator needs the page allocator which
3606 	 * needs the percpu allocator in order to allocate its pagesets
3607 	 * (a chicken-egg dilemma).
3608 	 */
3609 	for_each_possible_cpu(cpu) {
3610 		setup_pageset(&per_cpu(boot_pageset, cpu), 0);
3611 
3612 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
3613 		/*
3614 		 * We now know the "local memory node" for each node--
3615 		 * i.e., the node of the first zone in the generic zonelist.
3616 		 * Set up numa_mem percpu variable for on-line cpus.  During
3617 		 * boot, only the boot cpu should be on-line;  we'll init the
3618 		 * secondary cpus' numa_mem as they come on-line.  During
3619 		 * node/memory hotplug, we'll fixup all on-line cpus.
3620 		 */
3621 		if (cpu_online(cpu))
3622 			set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
3623 #endif
3624 	}
3625 
3626 	return 0;
3627 }
3628 
3629 /*
3630  * Called with zonelists_mutex held always
3631  * unless system_state == SYSTEM_BOOTING.
3632  */
3633 void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone)
3634 {
3635 	set_zonelist_order();
3636 
3637 	if (system_state == SYSTEM_BOOTING) {
3638 		__build_all_zonelists(NULL);
3639 		mminit_verify_zonelist();
3640 		cpuset_init_current_mems_allowed();
3641 	} else {
3642 		/* we have to stop all cpus to guarantee there is no user
3643 		   of zonelist */
3644 #ifdef CONFIG_MEMORY_HOTPLUG
3645 		if (zone)
3646 			setup_zone_pageset(zone);
3647 #endif
3648 		stop_machine(__build_all_zonelists, pgdat, NULL);
3649 		/* cpuset refresh routine should be here */
3650 	}
3651 	vm_total_pages = nr_free_pagecache_pages();
3652 	/*
3653 	 * Disable grouping by mobility if the number of pages in the
3654 	 * system is too low to allow the mechanism to work. It would be
3655 	 * more accurate, but expensive to check per-zone. This check is
3656 	 * made on memory-hotadd so a system can start with mobility
3657 	 * disabled and enable it later
3658 	 */
3659 	if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
3660 		page_group_by_mobility_disabled = 1;
3661 	else
3662 		page_group_by_mobility_disabled = 0;
3663 
3664 	printk("Built %i zonelists in %s order, mobility grouping %s.  "
3665 		"Total pages: %ld\n",
3666 			nr_online_nodes,
3667 			zonelist_order_name[current_zonelist_order],
3668 			page_group_by_mobility_disabled ? "off" : "on",
3669 			vm_total_pages);
3670 #ifdef CONFIG_NUMA
3671 	printk("Policy zone: %s\n", zone_names[policy_zone]);
3672 #endif
3673 }
3674 
3675 /*
3676  * Helper functions to size the waitqueue hash table.
3677  * Essentially these want to choose hash table sizes sufficiently
3678  * large so that collisions trying to wait on pages are rare.
3679  * But in fact, the number of active page waitqueues on typical
3680  * systems is ridiculously low, less than 200. So this is even
3681  * conservative, even though it seems large.
3682  *
3683  * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
3684  * waitqueues, i.e. the size of the waitq table given the number of pages.
3685  */
3686 #define PAGES_PER_WAITQUEUE	256
3687 
3688 #ifndef CONFIG_MEMORY_HOTPLUG
3689 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
3690 {
3691 	unsigned long size = 1;
3692 
3693 	pages /= PAGES_PER_WAITQUEUE;
3694 
3695 	while (size < pages)
3696 		size <<= 1;
3697 
3698 	/*
3699 	 * Once we have dozens or even hundreds of threads sleeping
3700 	 * on IO we've got bigger problems than wait queue collision.
3701 	 * Limit the size of the wait table to a reasonable size.
3702 	 */
3703 	size = min(size, 4096UL);
3704 
3705 	return max(size, 4UL);
3706 }
3707 #else
3708 /*
3709  * A zone's size might be changed by hot-add, so it is not possible to determine
3710  * a suitable size for its wait_table.  So we use the maximum size now.
3711  *
3712  * The max wait table size = 4096 x sizeof(wait_queue_head_t).   ie:
3713  *
3714  *    i386 (preemption config)    : 4096 x 16 = 64Kbyte.
3715  *    ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
3716  *    ia64, x86-64 (preemption)   : 4096 x 24 = 96Kbyte.
3717  *
3718  * The maximum entries are prepared when a zone's memory is (512K + 256) pages
3719  * or more by the traditional way. (See above).  It equals:
3720  *
3721  *    i386, x86-64, powerpc(4K page size) : =  ( 2G + 1M)byte.
3722  *    ia64(16K page size)                 : =  ( 8G + 4M)byte.
3723  *    powerpc (64K page size)             : =  (32G +16M)byte.
3724  */
3725 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
3726 {
3727 	return 4096UL;
3728 }
3729 #endif
3730 
3731 /*
3732  * This is an integer logarithm so that shifts can be used later
3733  * to extract the more random high bits from the multiplicative
3734  * hash function before the remainder is taken.
3735  */
3736 static inline unsigned long wait_table_bits(unsigned long size)
3737 {
3738 	return ffz(~size);
3739 }
3740 
3741 #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
3742 
3743 /*
3744  * Check if a pageblock contains reserved pages
3745  */
3746 static int pageblock_is_reserved(unsigned long start_pfn, unsigned long end_pfn)
3747 {
3748 	unsigned long pfn;
3749 
3750 	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
3751 		if (!pfn_valid_within(pfn) || PageReserved(pfn_to_page(pfn)))
3752 			return 1;
3753 	}
3754 	return 0;
3755 }
3756 
3757 /*
3758  * Mark a number of pageblocks as MIGRATE_RESERVE. The number
3759  * of blocks reserved is based on min_wmark_pages(zone). The memory within
3760  * the reserve will tend to store contiguous free pages. Setting min_free_kbytes
3761  * higher will lead to a bigger reserve which will get freed as contiguous
3762  * blocks as reclaim kicks in
3763  */
3764 static void setup_zone_migrate_reserve(struct zone *zone)
3765 {
3766 	unsigned long start_pfn, pfn, end_pfn, block_end_pfn;
3767 	struct page *page;
3768 	unsigned long block_migratetype;
3769 	int reserve;
3770 
3771 	/*
3772 	 * Get the start pfn, end pfn and the number of blocks to reserve
3773 	 * We have to be careful to be aligned to pageblock_nr_pages to
3774 	 * make sure that we always check pfn_valid for the first page in
3775 	 * the block.
3776 	 */
3777 	start_pfn = zone->zone_start_pfn;
3778 	end_pfn = start_pfn + zone->spanned_pages;
3779 	start_pfn = roundup(start_pfn, pageblock_nr_pages);
3780 	reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >>
3781 							pageblock_order;
3782 
3783 	/*
3784 	 * Reserve blocks are generally in place to help high-order atomic
3785 	 * allocations that are short-lived. A min_free_kbytes value that
3786 	 * would result in more than 2 reserve blocks for atomic allocations
3787 	 * is assumed to be in place to help anti-fragmentation for the
3788 	 * future allocation of hugepages at runtime.
3789 	 */
3790 	reserve = min(2, reserve);
3791 
3792 	for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
3793 		if (!pfn_valid(pfn))
3794 			continue;
3795 		page = pfn_to_page(pfn);
3796 
3797 		/* Watch out for overlapping nodes */
3798 		if (page_to_nid(page) != zone_to_nid(zone))
3799 			continue;
3800 
3801 		block_migratetype = get_pageblock_migratetype(page);
3802 
3803 		/* Only test what is necessary when the reserves are not met */
3804 		if (reserve > 0) {
3805 			/*
3806 			 * Blocks with reserved pages will never free, skip
3807 			 * them.
3808 			 */
3809 			block_end_pfn = min(pfn + pageblock_nr_pages, end_pfn);
3810 			if (pageblock_is_reserved(pfn, block_end_pfn))
3811 				continue;
3812 
3813 			/* If this block is reserved, account for it */
3814 			if (block_migratetype == MIGRATE_RESERVE) {
3815 				reserve--;
3816 				continue;
3817 			}
3818 
3819 			/* Suitable for reserving if this block is movable */
3820 			if (block_migratetype == MIGRATE_MOVABLE) {
3821 				set_pageblock_migratetype(page,
3822 							MIGRATE_RESERVE);
3823 				move_freepages_block(zone, page,
3824 							MIGRATE_RESERVE);
3825 				reserve--;
3826 				continue;
3827 			}
3828 		}
3829 
3830 		/*
3831 		 * If the reserve is met and this is a previous reserved block,
3832 		 * take it back
3833 		 */
3834 		if (block_migratetype == MIGRATE_RESERVE) {
3835 			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
3836 			move_freepages_block(zone, page, MIGRATE_MOVABLE);
3837 		}
3838 	}
3839 }
3840 
3841 /*
3842  * Initially all pages are reserved - free ones are freed
3843  * up by free_all_bootmem() once the early boot process is
3844  * done. Non-atomic initialization, single-pass.
3845  */
3846 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
3847 		unsigned long start_pfn, enum memmap_context context)
3848 {
3849 	struct page *page;
3850 	unsigned long end_pfn = start_pfn + size;
3851 	unsigned long pfn;
3852 	struct zone *z;
3853 
3854 	if (highest_memmap_pfn < end_pfn - 1)
3855 		highest_memmap_pfn = end_pfn - 1;
3856 
3857 	z = &NODE_DATA(nid)->node_zones[zone];
3858 	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
3859 		/*
3860 		 * There can be holes in boot-time mem_map[]s
3861 		 * handed to this function.  They do not
3862 		 * exist on hotplugged memory.
3863 		 */
3864 		if (context == MEMMAP_EARLY) {
3865 			if (!early_pfn_valid(pfn))
3866 				continue;
3867 			if (!early_pfn_in_nid(pfn, nid))
3868 				continue;
3869 		}
3870 		page = pfn_to_page(pfn);
3871 		set_page_links(page, zone, nid, pfn);
3872 		mminit_verify_page_links(page, zone, nid, pfn);
3873 		init_page_count(page);
3874 		reset_page_mapcount(page);
3875 		reset_page_last_nid(page);
3876 		SetPageReserved(page);
3877 		/*
3878 		 * Mark the block movable so that blocks are reserved for
3879 		 * movable at startup. This will force kernel allocations
3880 		 * to reserve their blocks rather than leaking throughout
3881 		 * the address space during boot when many long-lived
3882 		 * kernel allocations are made. Later some blocks near
3883 		 * the start are marked MIGRATE_RESERVE by
3884 		 * setup_zone_migrate_reserve()
3885 		 *
3886 		 * bitmap is created for zone's valid pfn range. but memmap
3887 		 * can be created for invalid pages (for alignment)
3888 		 * check here not to call set_pageblock_migratetype() against
3889 		 * pfn out of zone.
3890 		 */
3891 		if ((z->zone_start_pfn <= pfn)
3892 		    && (pfn < z->zone_start_pfn + z->spanned_pages)
3893 		    && !(pfn & (pageblock_nr_pages - 1)))
3894 			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
3895 
3896 		INIT_LIST_HEAD(&page->lru);
3897 #ifdef WANT_PAGE_VIRTUAL
3898 		/* The shift won't overflow because ZONE_NORMAL is below 4G. */
3899 		if (!is_highmem_idx(zone))
3900 			set_page_address(page, __va(pfn << PAGE_SHIFT));
3901 #endif
3902 	}
3903 }
3904 
3905 static void __meminit zone_init_free_lists(struct zone *zone)
3906 {
3907 	int order, t;
3908 	for_each_migratetype_order(order, t) {
3909 		INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
3910 		zone->free_area[order].nr_free = 0;
3911 	}
3912 }
3913 
3914 #ifndef __HAVE_ARCH_MEMMAP_INIT
3915 #define memmap_init(size, nid, zone, start_pfn) \
3916 	memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
3917 #endif
3918 
3919 static int __meminit zone_batchsize(struct zone *zone)
3920 {
3921 #ifdef CONFIG_MMU
3922 	int batch;
3923 
3924 	/*
3925 	 * The per-cpu-pages pools are set to around 1000th of the
3926 	 * size of the zone.  But no more than 1/2 of a meg.
3927 	 *
3928 	 * OK, so we don't know how big the cache is.  So guess.
3929 	 */
3930 	batch = zone->present_pages / 1024;
3931 	if (batch * PAGE_SIZE > 512 * 1024)
3932 		batch = (512 * 1024) / PAGE_SIZE;
3933 	batch /= 4;		/* We effectively *= 4 below */
3934 	if (batch < 1)
3935 		batch = 1;
3936 
3937 	/*
3938 	 * Clamp the batch to a 2^n - 1 value. Having a power
3939 	 * of 2 value was found to be more likely to have
3940 	 * suboptimal cache aliasing properties in some cases.
3941 	 *
3942 	 * For example if 2 tasks are alternately allocating
3943 	 * batches of pages, one task can end up with a lot
3944 	 * of pages of one half of the possible page colors
3945 	 * and the other with pages of the other colors.
3946 	 */
3947 	batch = rounddown_pow_of_two(batch + batch/2) - 1;
3948 
3949 	return batch;
3950 
3951 #else
3952 	/* The deferral and batching of frees should be suppressed under NOMMU
3953 	 * conditions.
3954 	 *
3955 	 * The problem is that NOMMU needs to be able to allocate large chunks
3956 	 * of contiguous memory as there's no hardware page translation to
3957 	 * assemble apparent contiguous memory from discontiguous pages.
3958 	 *
3959 	 * Queueing large contiguous runs of pages for batching, however,
3960 	 * causes the pages to actually be freed in smaller chunks.  As there
3961 	 * can be a significant delay between the individual batches being
3962 	 * recycled, this leads to the once large chunks of space being
3963 	 * fragmented and becoming unavailable for high-order allocations.
3964 	 */
3965 	return 0;
3966 #endif
3967 }
3968 
3969 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
3970 {
3971 	struct per_cpu_pages *pcp;
3972 	int migratetype;
3973 
3974 	memset(p, 0, sizeof(*p));
3975 
3976 	pcp = &p->pcp;
3977 	pcp->count = 0;
3978 	pcp->high = 6 * batch;
3979 	pcp->batch = max(1UL, 1 * batch);
3980 	for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
3981 		INIT_LIST_HEAD(&pcp->lists[migratetype]);
3982 }
3983 
3984 /*
3985  * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
3986  * to the value high for the pageset p.
3987  */
3988 
3989 static void setup_pagelist_highmark(struct per_cpu_pageset *p,
3990 				unsigned long high)
3991 {
3992 	struct per_cpu_pages *pcp;
3993 
3994 	pcp = &p->pcp;
3995 	pcp->high = high;
3996 	pcp->batch = max(1UL, high/4);
3997 	if ((high/4) > (PAGE_SHIFT * 8))
3998 		pcp->batch = PAGE_SHIFT * 8;
3999 }
4000 
4001 static void __meminit setup_zone_pageset(struct zone *zone)
4002 {
4003 	int cpu;
4004 
4005 	zone->pageset = alloc_percpu(struct per_cpu_pageset);
4006 
4007 	for_each_possible_cpu(cpu) {
4008 		struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
4009 
4010 		setup_pageset(pcp, zone_batchsize(zone));
4011 
4012 		if (percpu_pagelist_fraction)
4013 			setup_pagelist_highmark(pcp,
4014 				(zone->present_pages /
4015 					percpu_pagelist_fraction));
4016 	}
4017 }
4018 
4019 /*
4020  * Allocate per cpu pagesets and initialize them.
4021  * Before this call only boot pagesets were available.
4022  */
4023 void __init setup_per_cpu_pageset(void)
4024 {
4025 	struct zone *zone;
4026 
4027 	for_each_populated_zone(zone)
4028 		setup_zone_pageset(zone);
4029 }
4030 
4031 static noinline __init_refok
4032 int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
4033 {
4034 	int i;
4035 	struct pglist_data *pgdat = zone->zone_pgdat;
4036 	size_t alloc_size;
4037 
4038 	/*
4039 	 * The per-page waitqueue mechanism uses hashed waitqueues
4040 	 * per zone.
4041 	 */
4042 	zone->wait_table_hash_nr_entries =
4043 		 wait_table_hash_nr_entries(zone_size_pages);
4044 	zone->wait_table_bits =
4045 		wait_table_bits(zone->wait_table_hash_nr_entries);
4046 	alloc_size = zone->wait_table_hash_nr_entries
4047 					* sizeof(wait_queue_head_t);
4048 
4049 	if (!slab_is_available()) {
4050 		zone->wait_table = (wait_queue_head_t *)
4051 			alloc_bootmem_node_nopanic(pgdat, alloc_size);
4052 	} else {
4053 		/*
4054 		 * This case means that a zone whose size was 0 gets new memory
4055 		 * via memory hot-add.
4056 		 * But it may be the case that a new node was hot-added.  In
4057 		 * this case vmalloc() will not be able to use this new node's
4058 		 * memory - this wait_table must be initialized to use this new
4059 		 * node itself as well.
4060 		 * To use this new node's memory, further consideration will be
4061 		 * necessary.
4062 		 */
4063 		zone->wait_table = vmalloc(alloc_size);
4064 	}
4065 	if (!zone->wait_table)
4066 		return -ENOMEM;
4067 
4068 	for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
4069 		init_waitqueue_head(zone->wait_table + i);
4070 
4071 	return 0;
4072 }
4073 
4074 static __meminit void zone_pcp_init(struct zone *zone)
4075 {
4076 	/*
4077 	 * per cpu subsystem is not up at this point. The following code
4078 	 * relies on the ability of the linker to provide the
4079 	 * offset of a (static) per cpu variable into the per cpu area.
4080 	 */
4081 	zone->pageset = &boot_pageset;
4082 
4083 	if (zone->present_pages)
4084 		printk(KERN_DEBUG "  %s zone: %lu pages, LIFO batch:%u\n",
4085 			zone->name, zone->present_pages,
4086 					 zone_batchsize(zone));
4087 }
4088 
4089 int __meminit init_currently_empty_zone(struct zone *zone,
4090 					unsigned long zone_start_pfn,
4091 					unsigned long size,
4092 					enum memmap_context context)
4093 {
4094 	struct pglist_data *pgdat = zone->zone_pgdat;
4095 	int ret;
4096 	ret = zone_wait_table_init(zone, size);
4097 	if (ret)
4098 		return ret;
4099 	pgdat->nr_zones = zone_idx(zone) + 1;
4100 
4101 	zone->zone_start_pfn = zone_start_pfn;
4102 
4103 	mminit_dprintk(MMINIT_TRACE, "memmap_init",
4104 			"Initialising map node %d zone %lu pfns %lu -> %lu\n",
4105 			pgdat->node_id,
4106 			(unsigned long)zone_idx(zone),
4107 			zone_start_pfn, (zone_start_pfn + size));
4108 
4109 	zone_init_free_lists(zone);
4110 
4111 	return 0;
4112 }
4113 
4114 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4115 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
4116 /*
4117  * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
4118  * Architectures may implement their own version but if add_active_range()
4119  * was used and there are no special requirements, this is a convenient
4120  * alternative
4121  */
4122 int __meminit __early_pfn_to_nid(unsigned long pfn)
4123 {
4124 	unsigned long start_pfn, end_pfn;
4125 	int i, nid;
4126 
4127 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
4128 		if (start_pfn <= pfn && pfn < end_pfn)
4129 			return nid;
4130 	/* This is a memory hole */
4131 	return -1;
4132 }
4133 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
4134 
4135 int __meminit early_pfn_to_nid(unsigned long pfn)
4136 {
4137 	int nid;
4138 
4139 	nid = __early_pfn_to_nid(pfn);
4140 	if (nid >= 0)
4141 		return nid;
4142 	/* just returns 0 */
4143 	return 0;
4144 }
4145 
4146 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
4147 bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
4148 {
4149 	int nid;
4150 
4151 	nid = __early_pfn_to_nid(pfn);
4152 	if (nid >= 0 && nid != node)
4153 		return false;
4154 	return true;
4155 }
4156 #endif
4157 
4158 /**
4159  * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
4160  * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
4161  * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
4162  *
4163  * If an architecture guarantees that all ranges registered with
4164  * add_active_ranges() contain no holes and may be freed, this
4165  * this function may be used instead of calling free_bootmem() manually.
4166  */
4167 void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
4168 {
4169 	unsigned long start_pfn, end_pfn;
4170 	int i, this_nid;
4171 
4172 	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
4173 		start_pfn = min(start_pfn, max_low_pfn);
4174 		end_pfn = min(end_pfn, max_low_pfn);
4175 
4176 		if (start_pfn < end_pfn)
4177 			free_bootmem_node(NODE_DATA(this_nid),
4178 					  PFN_PHYS(start_pfn),
4179 					  (end_pfn - start_pfn) << PAGE_SHIFT);
4180 	}
4181 }
4182 
4183 /**
4184  * sparse_memory_present_with_active_regions - Call memory_present for each active range
4185  * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
4186  *
4187  * If an architecture guarantees that all ranges registered with
4188  * add_active_ranges() contain no holes and may be freed, this
4189  * function may be used instead of calling memory_present() manually.
4190  */
4191 void __init sparse_memory_present_with_active_regions(int nid)
4192 {
4193 	unsigned long start_pfn, end_pfn;
4194 	int i, this_nid;
4195 
4196 	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
4197 		memory_present(this_nid, start_pfn, end_pfn);
4198 }
4199 
4200 /**
4201  * get_pfn_range_for_nid - Return the start and end page frames for a node
4202  * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
4203  * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
4204  * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
4205  *
4206  * It returns the start and end page frame of a node based on information
4207  * provided by an arch calling add_active_range(). If called for a node
4208  * with no available memory, a warning is printed and the start and end
4209  * PFNs will be 0.
4210  */
4211 void __meminit get_pfn_range_for_nid(unsigned int nid,
4212 			unsigned long *start_pfn, unsigned long *end_pfn)
4213 {
4214 	unsigned long this_start_pfn, this_end_pfn;
4215 	int i;
4216 
4217 	*start_pfn = -1UL;
4218 	*end_pfn = 0;
4219 
4220 	for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
4221 		*start_pfn = min(*start_pfn, this_start_pfn);
4222 		*end_pfn = max(*end_pfn, this_end_pfn);
4223 	}
4224 
4225 	if (*start_pfn == -1UL)
4226 		*start_pfn = 0;
4227 }
4228 
4229 /*
4230  * This finds a zone that can be used for ZONE_MOVABLE pages. The
4231  * assumption is made that zones within a node are ordered in monotonic
4232  * increasing memory addresses so that the "highest" populated zone is used
4233  */
4234 static void __init find_usable_zone_for_movable(void)
4235 {
4236 	int zone_index;
4237 	for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
4238 		if (zone_index == ZONE_MOVABLE)
4239 			continue;
4240 
4241 		if (arch_zone_highest_possible_pfn[zone_index] >
4242 				arch_zone_lowest_possible_pfn[zone_index])
4243 			break;
4244 	}
4245 
4246 	VM_BUG_ON(zone_index == -1);
4247 	movable_zone = zone_index;
4248 }
4249 
4250 /*
4251  * The zone ranges provided by the architecture do not include ZONE_MOVABLE
4252  * because it is sized independent of architecture. Unlike the other zones,
4253  * the starting point for ZONE_MOVABLE is not fixed. It may be different
4254  * in each node depending on the size of each node and how evenly kernelcore
4255  * is distributed. This helper function adjusts the zone ranges
4256  * provided by the architecture for a given node by using the end of the
4257  * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
4258  * zones within a node are in order of monotonic increases memory addresses
4259  */
4260 static void __meminit adjust_zone_range_for_zone_movable(int nid,
4261 					unsigned long zone_type,
4262 					unsigned long node_start_pfn,
4263 					unsigned long node_end_pfn,
4264 					unsigned long *zone_start_pfn,
4265 					unsigned long *zone_end_pfn)
4266 {
4267 	/* Only adjust if ZONE_MOVABLE is on this node */
4268 	if (zone_movable_pfn[nid]) {
4269 		/* Size ZONE_MOVABLE */
4270 		if (zone_type == ZONE_MOVABLE) {
4271 			*zone_start_pfn = zone_movable_pfn[nid];
4272 			*zone_end_pfn = min(node_end_pfn,
4273 				arch_zone_highest_possible_pfn[movable_zone]);
4274 
4275 		/* Adjust for ZONE_MOVABLE starting within this range */
4276 		} else if (*zone_start_pfn < zone_movable_pfn[nid] &&
4277 				*zone_end_pfn > zone_movable_pfn[nid]) {
4278 			*zone_end_pfn = zone_movable_pfn[nid];
4279 
4280 		/* Check if this whole range is within ZONE_MOVABLE */
4281 		} else if (*zone_start_pfn >= zone_movable_pfn[nid])
4282 			*zone_start_pfn = *zone_end_pfn;
4283 	}
4284 }
4285 
4286 /*
4287  * Return the number of pages a zone spans in a node, including holes
4288  * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
4289  */
4290 static unsigned long __meminit zone_spanned_pages_in_node(int nid,
4291 					unsigned long zone_type,
4292 					unsigned long *ignored)
4293 {
4294 	unsigned long node_start_pfn, node_end_pfn;
4295 	unsigned long zone_start_pfn, zone_end_pfn;
4296 
4297 	/* Get the start and end of the node and zone */
4298 	get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
4299 	zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
4300 	zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
4301 	adjust_zone_range_for_zone_movable(nid, zone_type,
4302 				node_start_pfn, node_end_pfn,
4303 				&zone_start_pfn, &zone_end_pfn);
4304 
4305 	/* Check that this node has pages within the zone's required range */
4306 	if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
4307 		return 0;
4308 
4309 	/* Move the zone boundaries inside the node if necessary */
4310 	zone_end_pfn = min(zone_end_pfn, node_end_pfn);
4311 	zone_start_pfn = max(zone_start_pfn, node_start_pfn);
4312 
4313 	/* Return the spanned pages */
4314 	return zone_end_pfn - zone_start_pfn;
4315 }
4316 
4317 /*
4318  * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
4319  * then all holes in the requested range will be accounted for.
4320  */
4321 unsigned long __meminit __absent_pages_in_range(int nid,
4322 				unsigned long range_start_pfn,
4323 				unsigned long range_end_pfn)
4324 {
4325 	unsigned long nr_absent = range_end_pfn - range_start_pfn;
4326 	unsigned long start_pfn, end_pfn;
4327 	int i;
4328 
4329 	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
4330 		start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
4331 		end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
4332 		nr_absent -= end_pfn - start_pfn;
4333 	}
4334 	return nr_absent;
4335 }
4336 
4337 /**
4338  * absent_pages_in_range - Return number of page frames in holes within a range
4339  * @start_pfn: The start PFN to start searching for holes
4340  * @end_pfn: The end PFN to stop searching for holes
4341  *
4342  * It returns the number of pages frames in memory holes within a range.
4343  */
4344 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
4345 							unsigned long end_pfn)
4346 {
4347 	return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
4348 }
4349 
4350 /* Return the number of page frames in holes in a zone on a node */
4351 static unsigned long __meminit zone_absent_pages_in_node(int nid,
4352 					unsigned long zone_type,
4353 					unsigned long *ignored)
4354 {
4355 	unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
4356 	unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
4357 	unsigned long node_start_pfn, node_end_pfn;
4358 	unsigned long zone_start_pfn, zone_end_pfn;
4359 
4360 	get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
4361 	zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
4362 	zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
4363 
4364 	adjust_zone_range_for_zone_movable(nid, zone_type,
4365 			node_start_pfn, node_end_pfn,
4366 			&zone_start_pfn, &zone_end_pfn);
4367 	return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
4368 }
4369 
4370 #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4371 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
4372 					unsigned long zone_type,
4373 					unsigned long *zones_size)
4374 {
4375 	return zones_size[zone_type];
4376 }
4377 
4378 static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
4379 						unsigned long zone_type,
4380 						unsigned long *zholes_size)
4381 {
4382 	if (!zholes_size)
4383 		return 0;
4384 
4385 	return zholes_size[zone_type];
4386 }
4387 
4388 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4389 
4390 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
4391 		unsigned long *zones_size, unsigned long *zholes_size)
4392 {
4393 	unsigned long realtotalpages, totalpages = 0;
4394 	enum zone_type i;
4395 
4396 	for (i = 0; i < MAX_NR_ZONES; i++)
4397 		totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
4398 								zones_size);
4399 	pgdat->node_spanned_pages = totalpages;
4400 
4401 	realtotalpages = totalpages;
4402 	for (i = 0; i < MAX_NR_ZONES; i++)
4403 		realtotalpages -=
4404 			zone_absent_pages_in_node(pgdat->node_id, i,
4405 								zholes_size);
4406 	pgdat->node_present_pages = realtotalpages;
4407 	printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
4408 							realtotalpages);
4409 }
4410 
4411 #ifndef CONFIG_SPARSEMEM
4412 /*
4413  * Calculate the size of the zone->blockflags rounded to an unsigned long
4414  * Start by making sure zonesize is a multiple of pageblock_order by rounding
4415  * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
4416  * round what is now in bits to nearest long in bits, then return it in
4417  * bytes.
4418  */
4419 static unsigned long __init usemap_size(unsigned long zonesize)
4420 {
4421 	unsigned long usemapsize;
4422 
4423 	usemapsize = roundup(zonesize, pageblock_nr_pages);
4424 	usemapsize = usemapsize >> pageblock_order;
4425 	usemapsize *= NR_PAGEBLOCK_BITS;
4426 	usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
4427 
4428 	return usemapsize / 8;
4429 }
4430 
4431 static void __init setup_usemap(struct pglist_data *pgdat,
4432 				struct zone *zone, unsigned long zonesize)
4433 {
4434 	unsigned long usemapsize = usemap_size(zonesize);
4435 	zone->pageblock_flags = NULL;
4436 	if (usemapsize)
4437 		zone->pageblock_flags = alloc_bootmem_node_nopanic(pgdat,
4438 								   usemapsize);
4439 }
4440 #else
4441 static inline void setup_usemap(struct pglist_data *pgdat,
4442 				struct zone *zone, unsigned long zonesize) {}
4443 #endif /* CONFIG_SPARSEMEM */
4444 
4445 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
4446 
4447 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
4448 void __init set_pageblock_order(void)
4449 {
4450 	unsigned int order;
4451 
4452 	/* Check that pageblock_nr_pages has not already been setup */
4453 	if (pageblock_order)
4454 		return;
4455 
4456 	if (HPAGE_SHIFT > PAGE_SHIFT)
4457 		order = HUGETLB_PAGE_ORDER;
4458 	else
4459 		order = MAX_ORDER - 1;
4460 
4461 	/*
4462 	 * Assume the largest contiguous order of interest is a huge page.
4463 	 * This value may be variable depending on boot parameters on IA64 and
4464 	 * powerpc.
4465 	 */
4466 	pageblock_order = order;
4467 }
4468 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4469 
4470 /*
4471  * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
4472  * is unused as pageblock_order is set at compile-time. See
4473  * include/linux/pageblock-flags.h for the values of pageblock_order based on
4474  * the kernel config
4475  */
4476 void __init set_pageblock_order(void)
4477 {
4478 }
4479 
4480 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4481 
4482 static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages,
4483 						   unsigned long present_pages)
4484 {
4485 	unsigned long pages = spanned_pages;
4486 
4487 	/*
4488 	 * Provide a more accurate estimation if there are holes within
4489 	 * the zone and SPARSEMEM is in use. If there are holes within the
4490 	 * zone, each populated memory region may cost us one or two extra
4491 	 * memmap pages due to alignment because memmap pages for each
4492 	 * populated regions may not naturally algined on page boundary.
4493 	 * So the (present_pages >> 4) heuristic is a tradeoff for that.
4494 	 */
4495 	if (spanned_pages > present_pages + (present_pages >> 4) &&
4496 	    IS_ENABLED(CONFIG_SPARSEMEM))
4497 		pages = present_pages;
4498 
4499 	return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
4500 }
4501 
4502 /*
4503  * Set up the zone data structures:
4504  *   - mark all pages reserved
4505  *   - mark all memory queues empty
4506  *   - clear the memory bitmaps
4507  *
4508  * NOTE: pgdat should get zeroed by caller.
4509  */
4510 static void __paginginit free_area_init_core(struct pglist_data *pgdat,
4511 		unsigned long *zones_size, unsigned long *zholes_size)
4512 {
4513 	enum zone_type j;
4514 	int nid = pgdat->node_id;
4515 	unsigned long zone_start_pfn = pgdat->node_start_pfn;
4516 	int ret;
4517 
4518 	pgdat_resize_init(pgdat);
4519 #ifdef CONFIG_NUMA_BALANCING
4520 	spin_lock_init(&pgdat->numabalancing_migrate_lock);
4521 	pgdat->numabalancing_migrate_nr_pages = 0;
4522 	pgdat->numabalancing_migrate_next_window = jiffies;
4523 #endif
4524 	init_waitqueue_head(&pgdat->kswapd_wait);
4525 	init_waitqueue_head(&pgdat->pfmemalloc_wait);
4526 	pgdat_page_cgroup_init(pgdat);
4527 
4528 	for (j = 0; j < MAX_NR_ZONES; j++) {
4529 		struct zone *zone = pgdat->node_zones + j;
4530 		unsigned long size, realsize, freesize, memmap_pages;
4531 
4532 		size = zone_spanned_pages_in_node(nid, j, zones_size);
4533 		realsize = freesize = size - zone_absent_pages_in_node(nid, j,
4534 								zholes_size);
4535 
4536 		/*
4537 		 * Adjust freesize so that it accounts for how much memory
4538 		 * is used by this zone for memmap. This affects the watermark
4539 		 * and per-cpu initialisations
4540 		 */
4541 		memmap_pages = calc_memmap_size(size, realsize);
4542 		if (freesize >= memmap_pages) {
4543 			freesize -= memmap_pages;
4544 			if (memmap_pages)
4545 				printk(KERN_DEBUG
4546 				       "  %s zone: %lu pages used for memmap\n",
4547 				       zone_names[j], memmap_pages);
4548 		} else
4549 			printk(KERN_WARNING
4550 				"  %s zone: %lu pages exceeds freesize %lu\n",
4551 				zone_names[j], memmap_pages, freesize);
4552 
4553 		/* Account for reserved pages */
4554 		if (j == 0 && freesize > dma_reserve) {
4555 			freesize -= dma_reserve;
4556 			printk(KERN_DEBUG "  %s zone: %lu pages reserved\n",
4557 					zone_names[0], dma_reserve);
4558 		}
4559 
4560 		if (!is_highmem_idx(j))
4561 			nr_kernel_pages += freesize;
4562 		/* Charge for highmem memmap if there are enough kernel pages */
4563 		else if (nr_kernel_pages > memmap_pages * 2)
4564 			nr_kernel_pages -= memmap_pages;
4565 		nr_all_pages += freesize;
4566 
4567 		zone->spanned_pages = size;
4568 		zone->present_pages = freesize;
4569 		/*
4570 		 * Set an approximate value for lowmem here, it will be adjusted
4571 		 * when the bootmem allocator frees pages into the buddy system.
4572 		 * And all highmem pages will be managed by the buddy system.
4573 		 */
4574 		zone->managed_pages = is_highmem_idx(j) ? realsize : freesize;
4575 #ifdef CONFIG_NUMA
4576 		zone->node = nid;
4577 		zone->min_unmapped_pages = (freesize*sysctl_min_unmapped_ratio)
4578 						/ 100;
4579 		zone->min_slab_pages = (freesize * sysctl_min_slab_ratio) / 100;
4580 #endif
4581 		zone->name = zone_names[j];
4582 		spin_lock_init(&zone->lock);
4583 		spin_lock_init(&zone->lru_lock);
4584 		zone_seqlock_init(zone);
4585 		zone->zone_pgdat = pgdat;
4586 
4587 		zone_pcp_init(zone);
4588 		lruvec_init(&zone->lruvec);
4589 		if (!size)
4590 			continue;
4591 
4592 		set_pageblock_order();
4593 		setup_usemap(pgdat, zone, size);
4594 		ret = init_currently_empty_zone(zone, zone_start_pfn,
4595 						size, MEMMAP_EARLY);
4596 		BUG_ON(ret);
4597 		memmap_init(size, nid, j, zone_start_pfn);
4598 		zone_start_pfn += size;
4599 	}
4600 }
4601 
4602 static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
4603 {
4604 	/* Skip empty nodes */
4605 	if (!pgdat->node_spanned_pages)
4606 		return;
4607 
4608 #ifdef CONFIG_FLAT_NODE_MEM_MAP
4609 	/* ia64 gets its own node_mem_map, before this, without bootmem */
4610 	if (!pgdat->node_mem_map) {
4611 		unsigned long size, start, end;
4612 		struct page *map;
4613 
4614 		/*
4615 		 * The zone's endpoints aren't required to be MAX_ORDER
4616 		 * aligned but the node_mem_map endpoints must be in order
4617 		 * for the buddy allocator to function correctly.
4618 		 */
4619 		start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
4620 		end = pgdat->node_start_pfn + pgdat->node_spanned_pages;
4621 		end = ALIGN(end, MAX_ORDER_NR_PAGES);
4622 		size =  (end - start) * sizeof(struct page);
4623 		map = alloc_remap(pgdat->node_id, size);
4624 		if (!map)
4625 			map = alloc_bootmem_node_nopanic(pgdat, size);
4626 		pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
4627 	}
4628 #ifndef CONFIG_NEED_MULTIPLE_NODES
4629 	/*
4630 	 * With no DISCONTIG, the global mem_map is just set as node 0's
4631 	 */
4632 	if (pgdat == NODE_DATA(0)) {
4633 		mem_map = NODE_DATA(0)->node_mem_map;
4634 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4635 		if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
4636 			mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
4637 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4638 	}
4639 #endif
4640 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
4641 }
4642 
4643 void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
4644 		unsigned long node_start_pfn, unsigned long *zholes_size)
4645 {
4646 	pg_data_t *pgdat = NODE_DATA(nid);
4647 
4648 	/* pg_data_t should be reset to zero when it's allocated */
4649 	WARN_ON(pgdat->nr_zones || pgdat->classzone_idx);
4650 
4651 	pgdat->node_id = nid;
4652 	pgdat->node_start_pfn = node_start_pfn;
4653 	init_zone_allows_reclaim(nid);
4654 	calculate_node_totalpages(pgdat, zones_size, zholes_size);
4655 
4656 	alloc_node_mem_map(pgdat);
4657 #ifdef CONFIG_FLAT_NODE_MEM_MAP
4658 	printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
4659 		nid, (unsigned long)pgdat,
4660 		(unsigned long)pgdat->node_mem_map);
4661 #endif
4662 
4663 	free_area_init_core(pgdat, zones_size, zholes_size);
4664 }
4665 
4666 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4667 
4668 #if MAX_NUMNODES > 1
4669 /*
4670  * Figure out the number of possible node ids.
4671  */
4672 static void __init setup_nr_node_ids(void)
4673 {
4674 	unsigned int node;
4675 	unsigned int highest = 0;
4676 
4677 	for_each_node_mask(node, node_possible_map)
4678 		highest = node;
4679 	nr_node_ids = highest + 1;
4680 }
4681 #else
4682 static inline void setup_nr_node_ids(void)
4683 {
4684 }
4685 #endif
4686 
4687 /**
4688  * node_map_pfn_alignment - determine the maximum internode alignment
4689  *
4690  * This function should be called after node map is populated and sorted.
4691  * It calculates the maximum power of two alignment which can distinguish
4692  * all the nodes.
4693  *
4694  * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
4695  * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)).  If the
4696  * nodes are shifted by 256MiB, 256MiB.  Note that if only the last node is
4697  * shifted, 1GiB is enough and this function will indicate so.
4698  *
4699  * This is used to test whether pfn -> nid mapping of the chosen memory
4700  * model has fine enough granularity to avoid incorrect mapping for the
4701  * populated node map.
4702  *
4703  * Returns the determined alignment in pfn's.  0 if there is no alignment
4704  * requirement (single node).
4705  */
4706 unsigned long __init node_map_pfn_alignment(void)
4707 {
4708 	unsigned long accl_mask = 0, last_end = 0;
4709 	unsigned long start, end, mask;
4710 	int last_nid = -1;
4711 	int i, nid;
4712 
4713 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
4714 		if (!start || last_nid < 0 || last_nid == nid) {
4715 			last_nid = nid;
4716 			last_end = end;
4717 			continue;
4718 		}
4719 
4720 		/*
4721 		 * Start with a mask granular enough to pin-point to the
4722 		 * start pfn and tick off bits one-by-one until it becomes
4723 		 * too coarse to separate the current node from the last.
4724 		 */
4725 		mask = ~((1 << __ffs(start)) - 1);
4726 		while (mask && last_end <= (start & (mask << 1)))
4727 			mask <<= 1;
4728 
4729 		/* accumulate all internode masks */
4730 		accl_mask |= mask;
4731 	}
4732 
4733 	/* convert mask to number of pages */
4734 	return ~accl_mask + 1;
4735 }
4736 
4737 /* Find the lowest pfn for a node */
4738 static unsigned long __init find_min_pfn_for_node(int nid)
4739 {
4740 	unsigned long min_pfn = ULONG_MAX;
4741 	unsigned long start_pfn;
4742 	int i;
4743 
4744 	for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
4745 		min_pfn = min(min_pfn, start_pfn);
4746 
4747 	if (min_pfn == ULONG_MAX) {
4748 		printk(KERN_WARNING
4749 			"Could not find start_pfn for node %d\n", nid);
4750 		return 0;
4751 	}
4752 
4753 	return min_pfn;
4754 }
4755 
4756 /**
4757  * find_min_pfn_with_active_regions - Find the minimum PFN registered
4758  *
4759  * It returns the minimum PFN based on information provided via
4760  * add_active_range().
4761  */
4762 unsigned long __init find_min_pfn_with_active_regions(void)
4763 {
4764 	return find_min_pfn_for_node(MAX_NUMNODES);
4765 }
4766 
4767 /*
4768  * early_calculate_totalpages()
4769  * Sum pages in active regions for movable zone.
4770  * Populate N_MEMORY for calculating usable_nodes.
4771  */
4772 static unsigned long __init early_calculate_totalpages(void)
4773 {
4774 	unsigned long totalpages = 0;
4775 	unsigned long start_pfn, end_pfn;
4776 	int i, nid;
4777 
4778 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
4779 		unsigned long pages = end_pfn - start_pfn;
4780 
4781 		totalpages += pages;
4782 		if (pages)
4783 			node_set_state(nid, N_MEMORY);
4784 	}
4785   	return totalpages;
4786 }
4787 
4788 /*
4789  * Find the PFN the Movable zone begins in each node. Kernel memory
4790  * is spread evenly between nodes as long as the nodes have enough
4791  * memory. When they don't, some nodes will have more kernelcore than
4792  * others
4793  */
4794 static void __init find_zone_movable_pfns_for_nodes(void)
4795 {
4796 	int i, nid;
4797 	unsigned long usable_startpfn;
4798 	unsigned long kernelcore_node, kernelcore_remaining;
4799 	/* save the state before borrow the nodemask */
4800 	nodemask_t saved_node_state = node_states[N_MEMORY];
4801 	unsigned long totalpages = early_calculate_totalpages();
4802 	int usable_nodes = nodes_weight(node_states[N_MEMORY]);
4803 
4804 	/*
4805 	 * If movablecore was specified, calculate what size of
4806 	 * kernelcore that corresponds so that memory usable for
4807 	 * any allocation type is evenly spread. If both kernelcore
4808 	 * and movablecore are specified, then the value of kernelcore
4809 	 * will be used for required_kernelcore if it's greater than
4810 	 * what movablecore would have allowed.
4811 	 */
4812 	if (required_movablecore) {
4813 		unsigned long corepages;
4814 
4815 		/*
4816 		 * Round-up so that ZONE_MOVABLE is at least as large as what
4817 		 * was requested by the user
4818 		 */
4819 		required_movablecore =
4820 			roundup(required_movablecore, MAX_ORDER_NR_PAGES);
4821 		corepages = totalpages - required_movablecore;
4822 
4823 		required_kernelcore = max(required_kernelcore, corepages);
4824 	}
4825 
4826 	/* If kernelcore was not specified, there is no ZONE_MOVABLE */
4827 	if (!required_kernelcore)
4828 		goto out;
4829 
4830 	/* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
4831 	find_usable_zone_for_movable();
4832 	usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
4833 
4834 restart:
4835 	/* Spread kernelcore memory as evenly as possible throughout nodes */
4836 	kernelcore_node = required_kernelcore / usable_nodes;
4837 	for_each_node_state(nid, N_MEMORY) {
4838 		unsigned long start_pfn, end_pfn;
4839 
4840 		/*
4841 		 * Recalculate kernelcore_node if the division per node
4842 		 * now exceeds what is necessary to satisfy the requested
4843 		 * amount of memory for the kernel
4844 		 */
4845 		if (required_kernelcore < kernelcore_node)
4846 			kernelcore_node = required_kernelcore / usable_nodes;
4847 
4848 		/*
4849 		 * As the map is walked, we track how much memory is usable
4850 		 * by the kernel using kernelcore_remaining. When it is
4851 		 * 0, the rest of the node is usable by ZONE_MOVABLE
4852 		 */
4853 		kernelcore_remaining = kernelcore_node;
4854 
4855 		/* Go through each range of PFNs within this node */
4856 		for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
4857 			unsigned long size_pages;
4858 
4859 			start_pfn = max(start_pfn, zone_movable_pfn[nid]);
4860 			if (start_pfn >= end_pfn)
4861 				continue;
4862 
4863 			/* Account for what is only usable for kernelcore */
4864 			if (start_pfn < usable_startpfn) {
4865 				unsigned long kernel_pages;
4866 				kernel_pages = min(end_pfn, usable_startpfn)
4867 								- start_pfn;
4868 
4869 				kernelcore_remaining -= min(kernel_pages,
4870 							kernelcore_remaining);
4871 				required_kernelcore -= min(kernel_pages,
4872 							required_kernelcore);
4873 
4874 				/* Continue if range is now fully accounted */
4875 				if (end_pfn <= usable_startpfn) {
4876 
4877 					/*
4878 					 * Push zone_movable_pfn to the end so
4879 					 * that if we have to rebalance
4880 					 * kernelcore across nodes, we will
4881 					 * not double account here
4882 					 */
4883 					zone_movable_pfn[nid] = end_pfn;
4884 					continue;
4885 				}
4886 				start_pfn = usable_startpfn;
4887 			}
4888 
4889 			/*
4890 			 * The usable PFN range for ZONE_MOVABLE is from
4891 			 * start_pfn->end_pfn. Calculate size_pages as the
4892 			 * number of pages used as kernelcore
4893 			 */
4894 			size_pages = end_pfn - start_pfn;
4895 			if (size_pages > kernelcore_remaining)
4896 				size_pages = kernelcore_remaining;
4897 			zone_movable_pfn[nid] = start_pfn + size_pages;
4898 
4899 			/*
4900 			 * Some kernelcore has been met, update counts and
4901 			 * break if the kernelcore for this node has been
4902 			 * satisified
4903 			 */
4904 			required_kernelcore -= min(required_kernelcore,
4905 								size_pages);
4906 			kernelcore_remaining -= size_pages;
4907 			if (!kernelcore_remaining)
4908 				break;
4909 		}
4910 	}
4911 
4912 	/*
4913 	 * If there is still required_kernelcore, we do another pass with one
4914 	 * less node in the count. This will push zone_movable_pfn[nid] further
4915 	 * along on the nodes that still have memory until kernelcore is
4916 	 * satisified
4917 	 */
4918 	usable_nodes--;
4919 	if (usable_nodes && required_kernelcore > usable_nodes)
4920 		goto restart;
4921 
4922 	/* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
4923 	for (nid = 0; nid < MAX_NUMNODES; nid++)
4924 		zone_movable_pfn[nid] =
4925 			roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
4926 
4927 out:
4928 	/* restore the node_state */
4929 	node_states[N_MEMORY] = saved_node_state;
4930 }
4931 
4932 /* Any regular or high memory on that node ? */
4933 static void check_for_memory(pg_data_t *pgdat, int nid)
4934 {
4935 	enum zone_type zone_type;
4936 
4937 	if (N_MEMORY == N_NORMAL_MEMORY)
4938 		return;
4939 
4940 	for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
4941 		struct zone *zone = &pgdat->node_zones[zone_type];
4942 		if (zone->present_pages) {
4943 			node_set_state(nid, N_HIGH_MEMORY);
4944 			if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
4945 			    zone_type <= ZONE_NORMAL)
4946 				node_set_state(nid, N_NORMAL_MEMORY);
4947 			break;
4948 		}
4949 	}
4950 }
4951 
4952 /**
4953  * free_area_init_nodes - Initialise all pg_data_t and zone data
4954  * @max_zone_pfn: an array of max PFNs for each zone
4955  *
4956  * This will call free_area_init_node() for each active node in the system.
4957  * Using the page ranges provided by add_active_range(), the size of each
4958  * zone in each node and their holes is calculated. If the maximum PFN
4959  * between two adjacent zones match, it is assumed that the zone is empty.
4960  * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
4961  * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
4962  * starts where the previous one ended. For example, ZONE_DMA32 starts
4963  * at arch_max_dma_pfn.
4964  */
4965 void __init free_area_init_nodes(unsigned long *max_zone_pfn)
4966 {
4967 	unsigned long start_pfn, end_pfn;
4968 	int i, nid;
4969 
4970 	/* Record where the zone boundaries are */
4971 	memset(arch_zone_lowest_possible_pfn, 0,
4972 				sizeof(arch_zone_lowest_possible_pfn));
4973 	memset(arch_zone_highest_possible_pfn, 0,
4974 				sizeof(arch_zone_highest_possible_pfn));
4975 	arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
4976 	arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
4977 	for (i = 1; i < MAX_NR_ZONES; i++) {
4978 		if (i == ZONE_MOVABLE)
4979 			continue;
4980 		arch_zone_lowest_possible_pfn[i] =
4981 			arch_zone_highest_possible_pfn[i-1];
4982 		arch_zone_highest_possible_pfn[i] =
4983 			max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
4984 	}
4985 	arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
4986 	arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
4987 
4988 	/* Find the PFNs that ZONE_MOVABLE begins at in each node */
4989 	memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
4990 	find_zone_movable_pfns_for_nodes();
4991 
4992 	/* Print out the zone ranges */
4993 	printk("Zone ranges:\n");
4994 	for (i = 0; i < MAX_NR_ZONES; i++) {
4995 		if (i == ZONE_MOVABLE)
4996 			continue;
4997 		printk(KERN_CONT "  %-8s ", zone_names[i]);
4998 		if (arch_zone_lowest_possible_pfn[i] ==
4999 				arch_zone_highest_possible_pfn[i])
5000 			printk(KERN_CONT "empty\n");
5001 		else
5002 			printk(KERN_CONT "[mem %0#10lx-%0#10lx]\n",
5003 				arch_zone_lowest_possible_pfn[i] << PAGE_SHIFT,
5004 				(arch_zone_highest_possible_pfn[i]
5005 					<< PAGE_SHIFT) - 1);
5006 	}
5007 
5008 	/* Print out the PFNs ZONE_MOVABLE begins at in each node */
5009 	printk("Movable zone start for each node\n");
5010 	for (i = 0; i < MAX_NUMNODES; i++) {
5011 		if (zone_movable_pfn[i])
5012 			printk("  Node %d: %#010lx\n", i,
5013 			       zone_movable_pfn[i] << PAGE_SHIFT);
5014 	}
5015 
5016 	/* Print out the early node map */
5017 	printk("Early memory node ranges\n");
5018 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
5019 		printk("  node %3d: [mem %#010lx-%#010lx]\n", nid,
5020 		       start_pfn << PAGE_SHIFT, (end_pfn << PAGE_SHIFT) - 1);
5021 
5022 	/* Initialise every node */
5023 	mminit_verify_pageflags_layout();
5024 	setup_nr_node_ids();
5025 	for_each_online_node(nid) {
5026 		pg_data_t *pgdat = NODE_DATA(nid);
5027 		free_area_init_node(nid, NULL,
5028 				find_min_pfn_for_node(nid), NULL);
5029 
5030 		/* Any memory on that node */
5031 		if (pgdat->node_present_pages)
5032 			node_set_state(nid, N_MEMORY);
5033 		check_for_memory(pgdat, nid);
5034 	}
5035 }
5036 
5037 static int __init cmdline_parse_core(char *p, unsigned long *core)
5038 {
5039 	unsigned long long coremem;
5040 	if (!p)
5041 		return -EINVAL;
5042 
5043 	coremem = memparse(p, &p);
5044 	*core = coremem >> PAGE_SHIFT;
5045 
5046 	/* Paranoid check that UL is enough for the coremem value */
5047 	WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
5048 
5049 	return 0;
5050 }
5051 
5052 /*
5053  * kernelcore=size sets the amount of memory for use for allocations that
5054  * cannot be reclaimed or migrated.
5055  */
5056 static int __init cmdline_parse_kernelcore(char *p)
5057 {
5058 	return cmdline_parse_core(p, &required_kernelcore);
5059 }
5060 
5061 /*
5062  * movablecore=size sets the amount of memory for use for allocations that
5063  * can be reclaimed or migrated.
5064  */
5065 static int __init cmdline_parse_movablecore(char *p)
5066 {
5067 	return cmdline_parse_core(p, &required_movablecore);
5068 }
5069 
5070 early_param("kernelcore", cmdline_parse_kernelcore);
5071 early_param("movablecore", cmdline_parse_movablecore);
5072 
5073 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5074 
5075 /**
5076  * set_dma_reserve - set the specified number of pages reserved in the first zone
5077  * @new_dma_reserve: The number of pages to mark reserved
5078  *
5079  * The per-cpu batchsize and zone watermarks are determined by present_pages.
5080  * In the DMA zone, a significant percentage may be consumed by kernel image
5081  * and other unfreeable allocations which can skew the watermarks badly. This
5082  * function may optionally be used to account for unfreeable pages in the
5083  * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
5084  * smaller per-cpu batchsize.
5085  */
5086 void __init set_dma_reserve(unsigned long new_dma_reserve)
5087 {
5088 	dma_reserve = new_dma_reserve;
5089 }
5090 
5091 void __init free_area_init(unsigned long *zones_size)
5092 {
5093 	free_area_init_node(0, zones_size,
5094 			__pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
5095 }
5096 
5097 static int page_alloc_cpu_notify(struct notifier_block *self,
5098 				 unsigned long action, void *hcpu)
5099 {
5100 	int cpu = (unsigned long)hcpu;
5101 
5102 	if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
5103 		lru_add_drain_cpu(cpu);
5104 		drain_pages(cpu);
5105 
5106 		/*
5107 		 * Spill the event counters of the dead processor
5108 		 * into the current processors event counters.
5109 		 * This artificially elevates the count of the current
5110 		 * processor.
5111 		 */
5112 		vm_events_fold_cpu(cpu);
5113 
5114 		/*
5115 		 * Zero the differential counters of the dead processor
5116 		 * so that the vm statistics are consistent.
5117 		 *
5118 		 * This is only okay since the processor is dead and cannot
5119 		 * race with what we are doing.
5120 		 */
5121 		refresh_cpu_vm_stats(cpu);
5122 	}
5123 	return NOTIFY_OK;
5124 }
5125 
5126 void __init page_alloc_init(void)
5127 {
5128 	hotcpu_notifier(page_alloc_cpu_notify, 0);
5129 }
5130 
5131 /*
5132  * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
5133  *	or min_free_kbytes changes.
5134  */
5135 static void calculate_totalreserve_pages(void)
5136 {
5137 	struct pglist_data *pgdat;
5138 	unsigned long reserve_pages = 0;
5139 	enum zone_type i, j;
5140 
5141 	for_each_online_pgdat(pgdat) {
5142 		for (i = 0; i < MAX_NR_ZONES; i++) {
5143 			struct zone *zone = pgdat->node_zones + i;
5144 			unsigned long max = 0;
5145 
5146 			/* Find valid and maximum lowmem_reserve in the zone */
5147 			for (j = i; j < MAX_NR_ZONES; j++) {
5148 				if (zone->lowmem_reserve[j] > max)
5149 					max = zone->lowmem_reserve[j];
5150 			}
5151 
5152 			/* we treat the high watermark as reserved pages. */
5153 			max += high_wmark_pages(zone);
5154 
5155 			if (max > zone->present_pages)
5156 				max = zone->present_pages;
5157 			reserve_pages += max;
5158 			/*
5159 			 * Lowmem reserves are not available to
5160 			 * GFP_HIGHUSER page cache allocations and
5161 			 * kswapd tries to balance zones to their high
5162 			 * watermark.  As a result, neither should be
5163 			 * regarded as dirtyable memory, to prevent a
5164 			 * situation where reclaim has to clean pages
5165 			 * in order to balance the zones.
5166 			 */
5167 			zone->dirty_balance_reserve = max;
5168 		}
5169 	}
5170 	dirty_balance_reserve = reserve_pages;
5171 	totalreserve_pages = reserve_pages;
5172 }
5173 
5174 /*
5175  * setup_per_zone_lowmem_reserve - called whenever
5176  *	sysctl_lower_zone_reserve_ratio changes.  Ensures that each zone
5177  *	has a correct pages reserved value, so an adequate number of
5178  *	pages are left in the zone after a successful __alloc_pages().
5179  */
5180 static void setup_per_zone_lowmem_reserve(void)
5181 {
5182 	struct pglist_data *pgdat;
5183 	enum zone_type j, idx;
5184 
5185 	for_each_online_pgdat(pgdat) {
5186 		for (j = 0; j < MAX_NR_ZONES; j++) {
5187 			struct zone *zone = pgdat->node_zones + j;
5188 			unsigned long present_pages = zone->present_pages;
5189 
5190 			zone->lowmem_reserve[j] = 0;
5191 
5192 			idx = j;
5193 			while (idx) {
5194 				struct zone *lower_zone;
5195 
5196 				idx--;
5197 
5198 				if (sysctl_lowmem_reserve_ratio[idx] < 1)
5199 					sysctl_lowmem_reserve_ratio[idx] = 1;
5200 
5201 				lower_zone = pgdat->node_zones + idx;
5202 				lower_zone->lowmem_reserve[j] = present_pages /
5203 					sysctl_lowmem_reserve_ratio[idx];
5204 				present_pages += lower_zone->present_pages;
5205 			}
5206 		}
5207 	}
5208 
5209 	/* update totalreserve_pages */
5210 	calculate_totalreserve_pages();
5211 }
5212 
5213 static void __setup_per_zone_wmarks(void)
5214 {
5215 	unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
5216 	unsigned long lowmem_pages = 0;
5217 	struct zone *zone;
5218 	unsigned long flags;
5219 
5220 	/* Calculate total number of !ZONE_HIGHMEM pages */
5221 	for_each_zone(zone) {
5222 		if (!is_highmem(zone))
5223 			lowmem_pages += zone->present_pages;
5224 	}
5225 
5226 	for_each_zone(zone) {
5227 		u64 tmp;
5228 
5229 		spin_lock_irqsave(&zone->lock, flags);
5230 		tmp = (u64)pages_min * zone->present_pages;
5231 		do_div(tmp, lowmem_pages);
5232 		if (is_highmem(zone)) {
5233 			/*
5234 			 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
5235 			 * need highmem pages, so cap pages_min to a small
5236 			 * value here.
5237 			 *
5238 			 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
5239 			 * deltas controls asynch page reclaim, and so should
5240 			 * not be capped for highmem.
5241 			 */
5242 			int min_pages;
5243 
5244 			min_pages = zone->present_pages / 1024;
5245 			if (min_pages < SWAP_CLUSTER_MAX)
5246 				min_pages = SWAP_CLUSTER_MAX;
5247 			if (min_pages > 128)
5248 				min_pages = 128;
5249 			zone->watermark[WMARK_MIN] = min_pages;
5250 		} else {
5251 			/*
5252 			 * If it's a lowmem zone, reserve a number of pages
5253 			 * proportionate to the zone's size.
5254 			 */
5255 			zone->watermark[WMARK_MIN] = tmp;
5256 		}
5257 
5258 		zone->watermark[WMARK_LOW]  = min_wmark_pages(zone) + (tmp >> 2);
5259 		zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1);
5260 
5261 		setup_zone_migrate_reserve(zone);
5262 		spin_unlock_irqrestore(&zone->lock, flags);
5263 	}
5264 
5265 	/* update totalreserve_pages */
5266 	calculate_totalreserve_pages();
5267 }
5268 
5269 /**
5270  * setup_per_zone_wmarks - called when min_free_kbytes changes
5271  * or when memory is hot-{added|removed}
5272  *
5273  * Ensures that the watermark[min,low,high] values for each zone are set
5274  * correctly with respect to min_free_kbytes.
5275  */
5276 void setup_per_zone_wmarks(void)
5277 {
5278 	mutex_lock(&zonelists_mutex);
5279 	__setup_per_zone_wmarks();
5280 	mutex_unlock(&zonelists_mutex);
5281 }
5282 
5283 /*
5284  * The inactive anon list should be small enough that the VM never has to
5285  * do too much work, but large enough that each inactive page has a chance
5286  * to be referenced again before it is swapped out.
5287  *
5288  * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
5289  * INACTIVE_ANON pages on this zone's LRU, maintained by the
5290  * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
5291  * the anonymous pages are kept on the inactive list.
5292  *
5293  * total     target    max
5294  * memory    ratio     inactive anon
5295  * -------------------------------------
5296  *   10MB       1         5MB
5297  *  100MB       1        50MB
5298  *    1GB       3       250MB
5299  *   10GB      10       0.9GB
5300  *  100GB      31         3GB
5301  *    1TB     101        10GB
5302  *   10TB     320        32GB
5303  */
5304 static void __meminit calculate_zone_inactive_ratio(struct zone *zone)
5305 {
5306 	unsigned int gb, ratio;
5307 
5308 	/* Zone size in gigabytes */
5309 	gb = zone->present_pages >> (30 - PAGE_SHIFT);
5310 	if (gb)
5311 		ratio = int_sqrt(10 * gb);
5312 	else
5313 		ratio = 1;
5314 
5315 	zone->inactive_ratio = ratio;
5316 }
5317 
5318 static void __meminit setup_per_zone_inactive_ratio(void)
5319 {
5320 	struct zone *zone;
5321 
5322 	for_each_zone(zone)
5323 		calculate_zone_inactive_ratio(zone);
5324 }
5325 
5326 /*
5327  * Initialise min_free_kbytes.
5328  *
5329  * For small machines we want it small (128k min).  For large machines
5330  * we want it large (64MB max).  But it is not linear, because network
5331  * bandwidth does not increase linearly with machine size.  We use
5332  *
5333  * 	min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
5334  *	min_free_kbytes = sqrt(lowmem_kbytes * 16)
5335  *
5336  * which yields
5337  *
5338  * 16MB:	512k
5339  * 32MB:	724k
5340  * 64MB:	1024k
5341  * 128MB:	1448k
5342  * 256MB:	2048k
5343  * 512MB:	2896k
5344  * 1024MB:	4096k
5345  * 2048MB:	5792k
5346  * 4096MB:	8192k
5347  * 8192MB:	11584k
5348  * 16384MB:	16384k
5349  */
5350 int __meminit init_per_zone_wmark_min(void)
5351 {
5352 	unsigned long lowmem_kbytes;
5353 
5354 	lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5355 
5356 	min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
5357 	if (min_free_kbytes < 128)
5358 		min_free_kbytes = 128;
5359 	if (min_free_kbytes > 65536)
5360 		min_free_kbytes = 65536;
5361 	setup_per_zone_wmarks();
5362 	refresh_zone_stat_thresholds();
5363 	setup_per_zone_lowmem_reserve();
5364 	setup_per_zone_inactive_ratio();
5365 	return 0;
5366 }
5367 module_init(init_per_zone_wmark_min)
5368 
5369 /*
5370  * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
5371  *	that we can call two helper functions whenever min_free_kbytes
5372  *	changes.
5373  */
5374 int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
5375 	void __user *buffer, size_t *length, loff_t *ppos)
5376 {
5377 	proc_dointvec(table, write, buffer, length, ppos);
5378 	if (write)
5379 		setup_per_zone_wmarks();
5380 	return 0;
5381 }
5382 
5383 #ifdef CONFIG_NUMA
5384 int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
5385 	void __user *buffer, size_t *length, loff_t *ppos)
5386 {
5387 	struct zone *zone;
5388 	int rc;
5389 
5390 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5391 	if (rc)
5392 		return rc;
5393 
5394 	for_each_zone(zone)
5395 		zone->min_unmapped_pages = (zone->present_pages *
5396 				sysctl_min_unmapped_ratio) / 100;
5397 	return 0;
5398 }
5399 
5400 int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
5401 	void __user *buffer, size_t *length, loff_t *ppos)
5402 {
5403 	struct zone *zone;
5404 	int rc;
5405 
5406 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5407 	if (rc)
5408 		return rc;
5409 
5410 	for_each_zone(zone)
5411 		zone->min_slab_pages = (zone->present_pages *
5412 				sysctl_min_slab_ratio) / 100;
5413 	return 0;
5414 }
5415 #endif
5416 
5417 /*
5418  * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
5419  *	proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
5420  *	whenever sysctl_lowmem_reserve_ratio changes.
5421  *
5422  * The reserve ratio obviously has absolutely no relation with the
5423  * minimum watermarks. The lowmem reserve ratio can only make sense
5424  * if in function of the boot time zone sizes.
5425  */
5426 int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
5427 	void __user *buffer, size_t *length, loff_t *ppos)
5428 {
5429 	proc_dointvec_minmax(table, write, buffer, length, ppos);
5430 	setup_per_zone_lowmem_reserve();
5431 	return 0;
5432 }
5433 
5434 /*
5435  * percpu_pagelist_fraction - changes the pcp->high for each zone on each
5436  * cpu.  It is the fraction of total pages in each zone that a hot per cpu pagelist
5437  * can have before it gets flushed back to buddy allocator.
5438  */
5439 
5440 int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
5441 	void __user *buffer, size_t *length, loff_t *ppos)
5442 {
5443 	struct zone *zone;
5444 	unsigned int cpu;
5445 	int ret;
5446 
5447 	ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
5448 	if (!write || (ret < 0))
5449 		return ret;
5450 	for_each_populated_zone(zone) {
5451 		for_each_possible_cpu(cpu) {
5452 			unsigned long  high;
5453 			high = zone->present_pages / percpu_pagelist_fraction;
5454 			setup_pagelist_highmark(
5455 				per_cpu_ptr(zone->pageset, cpu), high);
5456 		}
5457 	}
5458 	return 0;
5459 }
5460 
5461 int hashdist = HASHDIST_DEFAULT;
5462 
5463 #ifdef CONFIG_NUMA
5464 static int __init set_hashdist(char *str)
5465 {
5466 	if (!str)
5467 		return 0;
5468 	hashdist = simple_strtoul(str, &str, 0);
5469 	return 1;
5470 }
5471 __setup("hashdist=", set_hashdist);
5472 #endif
5473 
5474 /*
5475  * allocate a large system hash table from bootmem
5476  * - it is assumed that the hash table must contain an exact power-of-2
5477  *   quantity of entries
5478  * - limit is the number of hash buckets, not the total allocation size
5479  */
5480 void *__init alloc_large_system_hash(const char *tablename,
5481 				     unsigned long bucketsize,
5482 				     unsigned long numentries,
5483 				     int scale,
5484 				     int flags,
5485 				     unsigned int *_hash_shift,
5486 				     unsigned int *_hash_mask,
5487 				     unsigned long low_limit,
5488 				     unsigned long high_limit)
5489 {
5490 	unsigned long long max = high_limit;
5491 	unsigned long log2qty, size;
5492 	void *table = NULL;
5493 
5494 	/* allow the kernel cmdline to have a say */
5495 	if (!numentries) {
5496 		/* round applicable memory size up to nearest megabyte */
5497 		numentries = nr_kernel_pages;
5498 		numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
5499 		numentries >>= 20 - PAGE_SHIFT;
5500 		numentries <<= 20 - PAGE_SHIFT;
5501 
5502 		/* limit to 1 bucket per 2^scale bytes of low memory */
5503 		if (scale > PAGE_SHIFT)
5504 			numentries >>= (scale - PAGE_SHIFT);
5505 		else
5506 			numentries <<= (PAGE_SHIFT - scale);
5507 
5508 		/* Make sure we've got at least a 0-order allocation.. */
5509 		if (unlikely(flags & HASH_SMALL)) {
5510 			/* Makes no sense without HASH_EARLY */
5511 			WARN_ON(!(flags & HASH_EARLY));
5512 			if (!(numentries >> *_hash_shift)) {
5513 				numentries = 1UL << *_hash_shift;
5514 				BUG_ON(!numentries);
5515 			}
5516 		} else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
5517 			numentries = PAGE_SIZE / bucketsize;
5518 	}
5519 	numentries = roundup_pow_of_two(numentries);
5520 
5521 	/* limit allocation size to 1/16 total memory by default */
5522 	if (max == 0) {
5523 		max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
5524 		do_div(max, bucketsize);
5525 	}
5526 	max = min(max, 0x80000000ULL);
5527 
5528 	if (numentries < low_limit)
5529 		numentries = low_limit;
5530 	if (numentries > max)
5531 		numentries = max;
5532 
5533 	log2qty = ilog2(numentries);
5534 
5535 	do {
5536 		size = bucketsize << log2qty;
5537 		if (flags & HASH_EARLY)
5538 			table = alloc_bootmem_nopanic(size);
5539 		else if (hashdist)
5540 			table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
5541 		else {
5542 			/*
5543 			 * If bucketsize is not a power-of-two, we may free
5544 			 * some pages at the end of hash table which
5545 			 * alloc_pages_exact() automatically does
5546 			 */
5547 			if (get_order(size) < MAX_ORDER) {
5548 				table = alloc_pages_exact(size, GFP_ATOMIC);
5549 				kmemleak_alloc(table, size, 1, GFP_ATOMIC);
5550 			}
5551 		}
5552 	} while (!table && size > PAGE_SIZE && --log2qty);
5553 
5554 	if (!table)
5555 		panic("Failed to allocate %s hash table\n", tablename);
5556 
5557 	printk(KERN_INFO "%s hash table entries: %ld (order: %d, %lu bytes)\n",
5558 	       tablename,
5559 	       (1UL << log2qty),
5560 	       ilog2(size) - PAGE_SHIFT,
5561 	       size);
5562 
5563 	if (_hash_shift)
5564 		*_hash_shift = log2qty;
5565 	if (_hash_mask)
5566 		*_hash_mask = (1 << log2qty) - 1;
5567 
5568 	return table;
5569 }
5570 
5571 /* Return a pointer to the bitmap storing bits affecting a block of pages */
5572 static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
5573 							unsigned long pfn)
5574 {
5575 #ifdef CONFIG_SPARSEMEM
5576 	return __pfn_to_section(pfn)->pageblock_flags;
5577 #else
5578 	return zone->pageblock_flags;
5579 #endif /* CONFIG_SPARSEMEM */
5580 }
5581 
5582 static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
5583 {
5584 #ifdef CONFIG_SPARSEMEM
5585 	pfn &= (PAGES_PER_SECTION-1);
5586 	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
5587 #else
5588 	pfn = pfn - round_down(zone->zone_start_pfn, pageblock_nr_pages);
5589 	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
5590 #endif /* CONFIG_SPARSEMEM */
5591 }
5592 
5593 /**
5594  * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
5595  * @page: The page within the block of interest
5596  * @start_bitidx: The first bit of interest to retrieve
5597  * @end_bitidx: The last bit of interest
5598  * returns pageblock_bits flags
5599  */
5600 unsigned long get_pageblock_flags_group(struct page *page,
5601 					int start_bitidx, int end_bitidx)
5602 {
5603 	struct zone *zone;
5604 	unsigned long *bitmap;
5605 	unsigned long pfn, bitidx;
5606 	unsigned long flags = 0;
5607 	unsigned long value = 1;
5608 
5609 	zone = page_zone(page);
5610 	pfn = page_to_pfn(page);
5611 	bitmap = get_pageblock_bitmap(zone, pfn);
5612 	bitidx = pfn_to_bitidx(zone, pfn);
5613 
5614 	for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
5615 		if (test_bit(bitidx + start_bitidx, bitmap))
5616 			flags |= value;
5617 
5618 	return flags;
5619 }
5620 
5621 /**
5622  * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
5623  * @page: The page within the block of interest
5624  * @start_bitidx: The first bit of interest
5625  * @end_bitidx: The last bit of interest
5626  * @flags: The flags to set
5627  */
5628 void set_pageblock_flags_group(struct page *page, unsigned long flags,
5629 					int start_bitidx, int end_bitidx)
5630 {
5631 	struct zone *zone;
5632 	unsigned long *bitmap;
5633 	unsigned long pfn, bitidx;
5634 	unsigned long value = 1;
5635 
5636 	zone = page_zone(page);
5637 	pfn = page_to_pfn(page);
5638 	bitmap = get_pageblock_bitmap(zone, pfn);
5639 	bitidx = pfn_to_bitidx(zone, pfn);
5640 	VM_BUG_ON(pfn < zone->zone_start_pfn);
5641 	VM_BUG_ON(pfn >= zone->zone_start_pfn + zone->spanned_pages);
5642 
5643 	for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
5644 		if (flags & value)
5645 			__set_bit(bitidx + start_bitidx, bitmap);
5646 		else
5647 			__clear_bit(bitidx + start_bitidx, bitmap);
5648 }
5649 
5650 /*
5651  * This function checks whether pageblock includes unmovable pages or not.
5652  * If @count is not zero, it is okay to include less @count unmovable pages
5653  *
5654  * PageLRU check wihtout isolation or lru_lock could race so that
5655  * MIGRATE_MOVABLE block might include unmovable pages. It means you can't
5656  * expect this function should be exact.
5657  */
5658 bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
5659 			 bool skip_hwpoisoned_pages)
5660 {
5661 	unsigned long pfn, iter, found;
5662 	int mt;
5663 
5664 	/*
5665 	 * For avoiding noise data, lru_add_drain_all() should be called
5666 	 * If ZONE_MOVABLE, the zone never contains unmovable pages
5667 	 */
5668 	if (zone_idx(zone) == ZONE_MOVABLE)
5669 		return false;
5670 	mt = get_pageblock_migratetype(page);
5671 	if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt))
5672 		return false;
5673 
5674 	pfn = page_to_pfn(page);
5675 	for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
5676 		unsigned long check = pfn + iter;
5677 
5678 		if (!pfn_valid_within(check))
5679 			continue;
5680 
5681 		page = pfn_to_page(check);
5682 		/*
5683 		 * We can't use page_count without pin a page
5684 		 * because another CPU can free compound page.
5685 		 * This check already skips compound tails of THP
5686 		 * because their page->_count is zero at all time.
5687 		 */
5688 		if (!atomic_read(&page->_count)) {
5689 			if (PageBuddy(page))
5690 				iter += (1 << page_order(page)) - 1;
5691 			continue;
5692 		}
5693 
5694 		/*
5695 		 * The HWPoisoned page may be not in buddy system, and
5696 		 * page_count() is not 0.
5697 		 */
5698 		if (skip_hwpoisoned_pages && PageHWPoison(page))
5699 			continue;
5700 
5701 		if (!PageLRU(page))
5702 			found++;
5703 		/*
5704 		 * If there are RECLAIMABLE pages, we need to check it.
5705 		 * But now, memory offline itself doesn't call shrink_slab()
5706 		 * and it still to be fixed.
5707 		 */
5708 		/*
5709 		 * If the page is not RAM, page_count()should be 0.
5710 		 * we don't need more check. This is an _used_ not-movable page.
5711 		 *
5712 		 * The problematic thing here is PG_reserved pages. PG_reserved
5713 		 * is set to both of a memory hole page and a _used_ kernel
5714 		 * page at boot.
5715 		 */
5716 		if (found > count)
5717 			return true;
5718 	}
5719 	return false;
5720 }
5721 
5722 bool is_pageblock_removable_nolock(struct page *page)
5723 {
5724 	struct zone *zone;
5725 	unsigned long pfn;
5726 
5727 	/*
5728 	 * We have to be careful here because we are iterating over memory
5729 	 * sections which are not zone aware so we might end up outside of
5730 	 * the zone but still within the section.
5731 	 * We have to take care about the node as well. If the node is offline
5732 	 * its NODE_DATA will be NULL - see page_zone.
5733 	 */
5734 	if (!node_online(page_to_nid(page)))
5735 		return false;
5736 
5737 	zone = page_zone(page);
5738 	pfn = page_to_pfn(page);
5739 	if (zone->zone_start_pfn > pfn ||
5740 			zone->zone_start_pfn + zone->spanned_pages <= pfn)
5741 		return false;
5742 
5743 	return !has_unmovable_pages(zone, page, 0, true);
5744 }
5745 
5746 #ifdef CONFIG_CMA
5747 
5748 static unsigned long pfn_max_align_down(unsigned long pfn)
5749 {
5750 	return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
5751 			     pageblock_nr_pages) - 1);
5752 }
5753 
5754 static unsigned long pfn_max_align_up(unsigned long pfn)
5755 {
5756 	return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
5757 				pageblock_nr_pages));
5758 }
5759 
5760 /* [start, end) must belong to a single zone. */
5761 static int __alloc_contig_migrate_range(struct compact_control *cc,
5762 					unsigned long start, unsigned long end)
5763 {
5764 	/* This function is based on compact_zone() from compaction.c. */
5765 	unsigned long nr_reclaimed;
5766 	unsigned long pfn = start;
5767 	unsigned int tries = 0;
5768 	int ret = 0;
5769 
5770 	migrate_prep();
5771 
5772 	while (pfn < end || !list_empty(&cc->migratepages)) {
5773 		if (fatal_signal_pending(current)) {
5774 			ret = -EINTR;
5775 			break;
5776 		}
5777 
5778 		if (list_empty(&cc->migratepages)) {
5779 			cc->nr_migratepages = 0;
5780 			pfn = isolate_migratepages_range(cc->zone, cc,
5781 							 pfn, end, true);
5782 			if (!pfn) {
5783 				ret = -EINTR;
5784 				break;
5785 			}
5786 			tries = 0;
5787 		} else if (++tries == 5) {
5788 			ret = ret < 0 ? ret : -EBUSY;
5789 			break;
5790 		}
5791 
5792 		nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
5793 							&cc->migratepages);
5794 		cc->nr_migratepages -= nr_reclaimed;
5795 
5796 		ret = migrate_pages(&cc->migratepages,
5797 				    alloc_migrate_target,
5798 				    0, false, MIGRATE_SYNC,
5799 				    MR_CMA);
5800 	}
5801 
5802 	putback_movable_pages(&cc->migratepages);
5803 	return ret > 0 ? 0 : ret;
5804 }
5805 
5806 /**
5807  * alloc_contig_range() -- tries to allocate given range of pages
5808  * @start:	start PFN to allocate
5809  * @end:	one-past-the-last PFN to allocate
5810  * @migratetype:	migratetype of the underlaying pageblocks (either
5811  *			#MIGRATE_MOVABLE or #MIGRATE_CMA).  All pageblocks
5812  *			in range must have the same migratetype and it must
5813  *			be either of the two.
5814  *
5815  * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
5816  * aligned, however it's the caller's responsibility to guarantee that
5817  * we are the only thread that changes migrate type of pageblocks the
5818  * pages fall in.
5819  *
5820  * The PFN range must belong to a single zone.
5821  *
5822  * Returns zero on success or negative error code.  On success all
5823  * pages which PFN is in [start, end) are allocated for the caller and
5824  * need to be freed with free_contig_range().
5825  */
5826 int alloc_contig_range(unsigned long start, unsigned long end,
5827 		       unsigned migratetype)
5828 {
5829 	unsigned long outer_start, outer_end;
5830 	int ret = 0, order;
5831 
5832 	struct compact_control cc = {
5833 		.nr_migratepages = 0,
5834 		.order = -1,
5835 		.zone = page_zone(pfn_to_page(start)),
5836 		.sync = true,
5837 		.ignore_skip_hint = true,
5838 	};
5839 	INIT_LIST_HEAD(&cc.migratepages);
5840 
5841 	/*
5842 	 * What we do here is we mark all pageblocks in range as
5843 	 * MIGRATE_ISOLATE.  Because pageblock and max order pages may
5844 	 * have different sizes, and due to the way page allocator
5845 	 * work, we align the range to biggest of the two pages so
5846 	 * that page allocator won't try to merge buddies from
5847 	 * different pageblocks and change MIGRATE_ISOLATE to some
5848 	 * other migration type.
5849 	 *
5850 	 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
5851 	 * migrate the pages from an unaligned range (ie. pages that
5852 	 * we are interested in).  This will put all the pages in
5853 	 * range back to page allocator as MIGRATE_ISOLATE.
5854 	 *
5855 	 * When this is done, we take the pages in range from page
5856 	 * allocator removing them from the buddy system.  This way
5857 	 * page allocator will never consider using them.
5858 	 *
5859 	 * This lets us mark the pageblocks back as
5860 	 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
5861 	 * aligned range but not in the unaligned, original range are
5862 	 * put back to page allocator so that buddy can use them.
5863 	 */
5864 
5865 	ret = start_isolate_page_range(pfn_max_align_down(start),
5866 				       pfn_max_align_up(end), migratetype,
5867 				       false);
5868 	if (ret)
5869 		return ret;
5870 
5871 	ret = __alloc_contig_migrate_range(&cc, start, end);
5872 	if (ret)
5873 		goto done;
5874 
5875 	/*
5876 	 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
5877 	 * aligned blocks that are marked as MIGRATE_ISOLATE.  What's
5878 	 * more, all pages in [start, end) are free in page allocator.
5879 	 * What we are going to do is to allocate all pages from
5880 	 * [start, end) (that is remove them from page allocator).
5881 	 *
5882 	 * The only problem is that pages at the beginning and at the
5883 	 * end of interesting range may be not aligned with pages that
5884 	 * page allocator holds, ie. they can be part of higher order
5885 	 * pages.  Because of this, we reserve the bigger range and
5886 	 * once this is done free the pages we are not interested in.
5887 	 *
5888 	 * We don't have to hold zone->lock here because the pages are
5889 	 * isolated thus they won't get removed from buddy.
5890 	 */
5891 
5892 	lru_add_drain_all();
5893 	drain_all_pages();
5894 
5895 	order = 0;
5896 	outer_start = start;
5897 	while (!PageBuddy(pfn_to_page(outer_start))) {
5898 		if (++order >= MAX_ORDER) {
5899 			ret = -EBUSY;
5900 			goto done;
5901 		}
5902 		outer_start &= ~0UL << order;
5903 	}
5904 
5905 	/* Make sure the range is really isolated. */
5906 	if (test_pages_isolated(outer_start, end, false)) {
5907 		pr_warn("alloc_contig_range test_pages_isolated(%lx, %lx) failed\n",
5908 		       outer_start, end);
5909 		ret = -EBUSY;
5910 		goto done;
5911 	}
5912 
5913 
5914 	/* Grab isolated pages from freelists. */
5915 	outer_end = isolate_freepages_range(&cc, outer_start, end);
5916 	if (!outer_end) {
5917 		ret = -EBUSY;
5918 		goto done;
5919 	}
5920 
5921 	/* Free head and tail (if any) */
5922 	if (start != outer_start)
5923 		free_contig_range(outer_start, start - outer_start);
5924 	if (end != outer_end)
5925 		free_contig_range(end, outer_end - end);
5926 
5927 done:
5928 	undo_isolate_page_range(pfn_max_align_down(start),
5929 				pfn_max_align_up(end), migratetype);
5930 	return ret;
5931 }
5932 
5933 void free_contig_range(unsigned long pfn, unsigned nr_pages)
5934 {
5935 	unsigned int count = 0;
5936 
5937 	for (; nr_pages--; pfn++) {
5938 		struct page *page = pfn_to_page(pfn);
5939 
5940 		count += page_count(page) != 1;
5941 		__free_page(page);
5942 	}
5943 	WARN(count != 0, "%d pages are still in use!\n", count);
5944 }
5945 #endif
5946 
5947 #ifdef CONFIG_MEMORY_HOTPLUG
5948 static int __meminit __zone_pcp_update(void *data)
5949 {
5950 	struct zone *zone = data;
5951 	int cpu;
5952 	unsigned long batch = zone_batchsize(zone), flags;
5953 
5954 	for_each_possible_cpu(cpu) {
5955 		struct per_cpu_pageset *pset;
5956 		struct per_cpu_pages *pcp;
5957 
5958 		pset = per_cpu_ptr(zone->pageset, cpu);
5959 		pcp = &pset->pcp;
5960 
5961 		local_irq_save(flags);
5962 		if (pcp->count > 0)
5963 			free_pcppages_bulk(zone, pcp->count, pcp);
5964 		drain_zonestat(zone, pset);
5965 		setup_pageset(pset, batch);
5966 		local_irq_restore(flags);
5967 	}
5968 	return 0;
5969 }
5970 
5971 void __meminit zone_pcp_update(struct zone *zone)
5972 {
5973 	stop_machine(__zone_pcp_update, zone, NULL);
5974 }
5975 #endif
5976 
5977 void zone_pcp_reset(struct zone *zone)
5978 {
5979 	unsigned long flags;
5980 	int cpu;
5981 	struct per_cpu_pageset *pset;
5982 
5983 	/* avoid races with drain_pages()  */
5984 	local_irq_save(flags);
5985 	if (zone->pageset != &boot_pageset) {
5986 		for_each_online_cpu(cpu) {
5987 			pset = per_cpu_ptr(zone->pageset, cpu);
5988 			drain_zonestat(zone, pset);
5989 		}
5990 		free_percpu(zone->pageset);
5991 		zone->pageset = &boot_pageset;
5992 	}
5993 	local_irq_restore(flags);
5994 }
5995 
5996 #ifdef CONFIG_MEMORY_HOTREMOVE
5997 /*
5998  * All pages in the range must be isolated before calling this.
5999  */
6000 void
6001 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
6002 {
6003 	struct page *page;
6004 	struct zone *zone;
6005 	int order, i;
6006 	unsigned long pfn;
6007 	unsigned long flags;
6008 	/* find the first valid pfn */
6009 	for (pfn = start_pfn; pfn < end_pfn; pfn++)
6010 		if (pfn_valid(pfn))
6011 			break;
6012 	if (pfn == end_pfn)
6013 		return;
6014 	zone = page_zone(pfn_to_page(pfn));
6015 	spin_lock_irqsave(&zone->lock, flags);
6016 	pfn = start_pfn;
6017 	while (pfn < end_pfn) {
6018 		if (!pfn_valid(pfn)) {
6019 			pfn++;
6020 			continue;
6021 		}
6022 		page = pfn_to_page(pfn);
6023 		/*
6024 		 * The HWPoisoned page may be not in buddy system, and
6025 		 * page_count() is not 0.
6026 		 */
6027 		if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
6028 			pfn++;
6029 			SetPageReserved(page);
6030 			continue;
6031 		}
6032 
6033 		BUG_ON(page_count(page));
6034 		BUG_ON(!PageBuddy(page));
6035 		order = page_order(page);
6036 #ifdef CONFIG_DEBUG_VM
6037 		printk(KERN_INFO "remove from free list %lx %d %lx\n",
6038 		       pfn, 1 << order, end_pfn);
6039 #endif
6040 		list_del(&page->lru);
6041 		rmv_page_order(page);
6042 		zone->free_area[order].nr_free--;
6043 		for (i = 0; i < (1 << order); i++)
6044 			SetPageReserved((page+i));
6045 		pfn += (1 << order);
6046 	}
6047 	spin_unlock_irqrestore(&zone->lock, flags);
6048 }
6049 #endif
6050 
6051 #ifdef CONFIG_MEMORY_FAILURE
6052 bool is_free_buddy_page(struct page *page)
6053 {
6054 	struct zone *zone = page_zone(page);
6055 	unsigned long pfn = page_to_pfn(page);
6056 	unsigned long flags;
6057 	int order;
6058 
6059 	spin_lock_irqsave(&zone->lock, flags);
6060 	for (order = 0; order < MAX_ORDER; order++) {
6061 		struct page *page_head = page - (pfn & ((1 << order) - 1));
6062 
6063 		if (PageBuddy(page_head) && page_order(page_head) >= order)
6064 			break;
6065 	}
6066 	spin_unlock_irqrestore(&zone->lock, flags);
6067 
6068 	return order < MAX_ORDER;
6069 }
6070 #endif
6071 
6072 static const struct trace_print_flags pageflag_names[] = {
6073 	{1UL << PG_locked,		"locked"	},
6074 	{1UL << PG_error,		"error"		},
6075 	{1UL << PG_referenced,		"referenced"	},
6076 	{1UL << PG_uptodate,		"uptodate"	},
6077 	{1UL << PG_dirty,		"dirty"		},
6078 	{1UL << PG_lru,			"lru"		},
6079 	{1UL << PG_active,		"active"	},
6080 	{1UL << PG_slab,		"slab"		},
6081 	{1UL << PG_owner_priv_1,	"owner_priv_1"	},
6082 	{1UL << PG_arch_1,		"arch_1"	},
6083 	{1UL << PG_reserved,		"reserved"	},
6084 	{1UL << PG_private,		"private"	},
6085 	{1UL << PG_private_2,		"private_2"	},
6086 	{1UL << PG_writeback,		"writeback"	},
6087 #ifdef CONFIG_PAGEFLAGS_EXTENDED
6088 	{1UL << PG_head,		"head"		},
6089 	{1UL << PG_tail,		"tail"		},
6090 #else
6091 	{1UL << PG_compound,		"compound"	},
6092 #endif
6093 	{1UL << PG_swapcache,		"swapcache"	},
6094 	{1UL << PG_mappedtodisk,	"mappedtodisk"	},
6095 	{1UL << PG_reclaim,		"reclaim"	},
6096 	{1UL << PG_swapbacked,		"swapbacked"	},
6097 	{1UL << PG_unevictable,		"unevictable"	},
6098 #ifdef CONFIG_MMU
6099 	{1UL << PG_mlocked,		"mlocked"	},
6100 #endif
6101 #ifdef CONFIG_ARCH_USES_PG_UNCACHED
6102 	{1UL << PG_uncached,		"uncached"	},
6103 #endif
6104 #ifdef CONFIG_MEMORY_FAILURE
6105 	{1UL << PG_hwpoison,		"hwpoison"	},
6106 #endif
6107 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
6108 	{1UL << PG_compound_lock,	"compound_lock"	},
6109 #endif
6110 };
6111 
6112 static void dump_page_flags(unsigned long flags)
6113 {
6114 	const char *delim = "";
6115 	unsigned long mask;
6116 	int i;
6117 
6118 	BUILD_BUG_ON(ARRAY_SIZE(pageflag_names) != __NR_PAGEFLAGS);
6119 
6120 	printk(KERN_ALERT "page flags: %#lx(", flags);
6121 
6122 	/* remove zone id */
6123 	flags &= (1UL << NR_PAGEFLAGS) - 1;
6124 
6125 	for (i = 0; i < ARRAY_SIZE(pageflag_names) && flags; i++) {
6126 
6127 		mask = pageflag_names[i].mask;
6128 		if ((flags & mask) != mask)
6129 			continue;
6130 
6131 		flags &= ~mask;
6132 		printk("%s%s", delim, pageflag_names[i].name);
6133 		delim = "|";
6134 	}
6135 
6136 	/* check for left over flags */
6137 	if (flags)
6138 		printk("%s%#lx", delim, flags);
6139 
6140 	printk(")\n");
6141 }
6142 
6143 void dump_page(struct page *page)
6144 {
6145 	printk(KERN_ALERT
6146 	       "page:%p count:%d mapcount:%d mapping:%p index:%#lx\n",
6147 		page, atomic_read(&page->_count), page_mapcount(page),
6148 		page->mapping, page->index);
6149 	dump_page_flags(page->flags);
6150 	mem_cgroup_print_bad_page(page);
6151 }
6152