1 /* 2 * linux/mm/page_alloc.c 3 * 4 * Manages the free list, the system allocates free pages here. 5 * Note that kmalloc() lives in slab.c 6 * 7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 8 * Swap reorganised 29.12.95, Stephen Tweedie 9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999 10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999 11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999 12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000 13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002 14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton) 15 */ 16 17 #include <linux/stddef.h> 18 #include <linux/mm.h> 19 #include <linux/swap.h> 20 #include <linux/interrupt.h> 21 #include <linux/pagemap.h> 22 #include <linux/jiffies.h> 23 #include <linux/bootmem.h> 24 #include <linux/memblock.h> 25 #include <linux/compiler.h> 26 #include <linux/kernel.h> 27 #include <linux/kmemcheck.h> 28 #include <linux/module.h> 29 #include <linux/suspend.h> 30 #include <linux/pagevec.h> 31 #include <linux/blkdev.h> 32 #include <linux/slab.h> 33 #include <linux/ratelimit.h> 34 #include <linux/oom.h> 35 #include <linux/notifier.h> 36 #include <linux/topology.h> 37 #include <linux/sysctl.h> 38 #include <linux/cpu.h> 39 #include <linux/cpuset.h> 40 #include <linux/memory_hotplug.h> 41 #include <linux/nodemask.h> 42 #include <linux/vmalloc.h> 43 #include <linux/vmstat.h> 44 #include <linux/mempolicy.h> 45 #include <linux/stop_machine.h> 46 #include <linux/sort.h> 47 #include <linux/pfn.h> 48 #include <linux/backing-dev.h> 49 #include <linux/fault-inject.h> 50 #include <linux/page-isolation.h> 51 #include <linux/page_cgroup.h> 52 #include <linux/debugobjects.h> 53 #include <linux/kmemleak.h> 54 #include <linux/compaction.h> 55 #include <trace/events/kmem.h> 56 #include <linux/ftrace_event.h> 57 #include <linux/memcontrol.h> 58 #include <linux/prefetch.h> 59 #include <linux/migrate.h> 60 #include <linux/page-debug-flags.h> 61 62 #include <asm/tlbflush.h> 63 #include <asm/div64.h> 64 #include "internal.h" 65 66 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID 67 DEFINE_PER_CPU(int, numa_node); 68 EXPORT_PER_CPU_SYMBOL(numa_node); 69 #endif 70 71 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 72 /* 73 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly. 74 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined. 75 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem() 76 * defined in <linux/topology.h>. 77 */ 78 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */ 79 EXPORT_PER_CPU_SYMBOL(_numa_mem_); 80 #endif 81 82 /* 83 * Array of node states. 84 */ 85 nodemask_t node_states[NR_NODE_STATES] __read_mostly = { 86 [N_POSSIBLE] = NODE_MASK_ALL, 87 [N_ONLINE] = { { [0] = 1UL } }, 88 #ifndef CONFIG_NUMA 89 [N_NORMAL_MEMORY] = { { [0] = 1UL } }, 90 #ifdef CONFIG_HIGHMEM 91 [N_HIGH_MEMORY] = { { [0] = 1UL } }, 92 #endif 93 #ifdef CONFIG_MOVABLE_NODE 94 [N_MEMORY] = { { [0] = 1UL } }, 95 #endif 96 [N_CPU] = { { [0] = 1UL } }, 97 #endif /* NUMA */ 98 }; 99 EXPORT_SYMBOL(node_states); 100 101 unsigned long totalram_pages __read_mostly; 102 unsigned long totalreserve_pages __read_mostly; 103 /* 104 * When calculating the number of globally allowed dirty pages, there 105 * is a certain number of per-zone reserves that should not be 106 * considered dirtyable memory. This is the sum of those reserves 107 * over all existing zones that contribute dirtyable memory. 108 */ 109 unsigned long dirty_balance_reserve __read_mostly; 110 111 int percpu_pagelist_fraction; 112 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK; 113 114 #ifdef CONFIG_PM_SLEEP 115 /* 116 * The following functions are used by the suspend/hibernate code to temporarily 117 * change gfp_allowed_mask in order to avoid using I/O during memory allocations 118 * while devices are suspended. To avoid races with the suspend/hibernate code, 119 * they should always be called with pm_mutex held (gfp_allowed_mask also should 120 * only be modified with pm_mutex held, unless the suspend/hibernate code is 121 * guaranteed not to run in parallel with that modification). 122 */ 123 124 static gfp_t saved_gfp_mask; 125 126 void pm_restore_gfp_mask(void) 127 { 128 WARN_ON(!mutex_is_locked(&pm_mutex)); 129 if (saved_gfp_mask) { 130 gfp_allowed_mask = saved_gfp_mask; 131 saved_gfp_mask = 0; 132 } 133 } 134 135 void pm_restrict_gfp_mask(void) 136 { 137 WARN_ON(!mutex_is_locked(&pm_mutex)); 138 WARN_ON(saved_gfp_mask); 139 saved_gfp_mask = gfp_allowed_mask; 140 gfp_allowed_mask &= ~GFP_IOFS; 141 } 142 143 bool pm_suspended_storage(void) 144 { 145 if ((gfp_allowed_mask & GFP_IOFS) == GFP_IOFS) 146 return false; 147 return true; 148 } 149 #endif /* CONFIG_PM_SLEEP */ 150 151 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE 152 int pageblock_order __read_mostly; 153 #endif 154 155 static void __free_pages_ok(struct page *page, unsigned int order); 156 157 /* 158 * results with 256, 32 in the lowmem_reserve sysctl: 159 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high) 160 * 1G machine -> (16M dma, 784M normal, 224M high) 161 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA 162 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL 163 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA 164 * 165 * TBD: should special case ZONE_DMA32 machines here - in those we normally 166 * don't need any ZONE_NORMAL reservation 167 */ 168 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = { 169 #ifdef CONFIG_ZONE_DMA 170 256, 171 #endif 172 #ifdef CONFIG_ZONE_DMA32 173 256, 174 #endif 175 #ifdef CONFIG_HIGHMEM 176 32, 177 #endif 178 32, 179 }; 180 181 EXPORT_SYMBOL(totalram_pages); 182 183 static char * const zone_names[MAX_NR_ZONES] = { 184 #ifdef CONFIG_ZONE_DMA 185 "DMA", 186 #endif 187 #ifdef CONFIG_ZONE_DMA32 188 "DMA32", 189 #endif 190 "Normal", 191 #ifdef CONFIG_HIGHMEM 192 "HighMem", 193 #endif 194 "Movable", 195 }; 196 197 int min_free_kbytes = 1024; 198 199 static unsigned long __meminitdata nr_kernel_pages; 200 static unsigned long __meminitdata nr_all_pages; 201 static unsigned long __meminitdata dma_reserve; 202 203 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 204 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES]; 205 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES]; 206 static unsigned long __initdata required_kernelcore; 207 static unsigned long __initdata required_movablecore; 208 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES]; 209 210 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */ 211 int movable_zone; 212 EXPORT_SYMBOL(movable_zone); 213 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 214 215 #if MAX_NUMNODES > 1 216 int nr_node_ids __read_mostly = MAX_NUMNODES; 217 int nr_online_nodes __read_mostly = 1; 218 EXPORT_SYMBOL(nr_node_ids); 219 EXPORT_SYMBOL(nr_online_nodes); 220 #endif 221 222 int page_group_by_mobility_disabled __read_mostly; 223 224 void set_pageblock_migratetype(struct page *page, int migratetype) 225 { 226 227 if (unlikely(page_group_by_mobility_disabled)) 228 migratetype = MIGRATE_UNMOVABLE; 229 230 set_pageblock_flags_group(page, (unsigned long)migratetype, 231 PB_migrate, PB_migrate_end); 232 } 233 234 bool oom_killer_disabled __read_mostly; 235 236 #ifdef CONFIG_DEBUG_VM 237 static int page_outside_zone_boundaries(struct zone *zone, struct page *page) 238 { 239 int ret = 0; 240 unsigned seq; 241 unsigned long pfn = page_to_pfn(page); 242 243 do { 244 seq = zone_span_seqbegin(zone); 245 if (pfn >= zone->zone_start_pfn + zone->spanned_pages) 246 ret = 1; 247 else if (pfn < zone->zone_start_pfn) 248 ret = 1; 249 } while (zone_span_seqretry(zone, seq)); 250 251 return ret; 252 } 253 254 static int page_is_consistent(struct zone *zone, struct page *page) 255 { 256 if (!pfn_valid_within(page_to_pfn(page))) 257 return 0; 258 if (zone != page_zone(page)) 259 return 0; 260 261 return 1; 262 } 263 /* 264 * Temporary debugging check for pages not lying within a given zone. 265 */ 266 static int bad_range(struct zone *zone, struct page *page) 267 { 268 if (page_outside_zone_boundaries(zone, page)) 269 return 1; 270 if (!page_is_consistent(zone, page)) 271 return 1; 272 273 return 0; 274 } 275 #else 276 static inline int bad_range(struct zone *zone, struct page *page) 277 { 278 return 0; 279 } 280 #endif 281 282 static void bad_page(struct page *page) 283 { 284 static unsigned long resume; 285 static unsigned long nr_shown; 286 static unsigned long nr_unshown; 287 288 /* Don't complain about poisoned pages */ 289 if (PageHWPoison(page)) { 290 reset_page_mapcount(page); /* remove PageBuddy */ 291 return; 292 } 293 294 /* 295 * Allow a burst of 60 reports, then keep quiet for that minute; 296 * or allow a steady drip of one report per second. 297 */ 298 if (nr_shown == 60) { 299 if (time_before(jiffies, resume)) { 300 nr_unshown++; 301 goto out; 302 } 303 if (nr_unshown) { 304 printk(KERN_ALERT 305 "BUG: Bad page state: %lu messages suppressed\n", 306 nr_unshown); 307 nr_unshown = 0; 308 } 309 nr_shown = 0; 310 } 311 if (nr_shown++ == 0) 312 resume = jiffies + 60 * HZ; 313 314 printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n", 315 current->comm, page_to_pfn(page)); 316 dump_page(page); 317 318 print_modules(); 319 dump_stack(); 320 out: 321 /* Leave bad fields for debug, except PageBuddy could make trouble */ 322 reset_page_mapcount(page); /* remove PageBuddy */ 323 add_taint(TAINT_BAD_PAGE); 324 } 325 326 /* 327 * Higher-order pages are called "compound pages". They are structured thusly: 328 * 329 * The first PAGE_SIZE page is called the "head page". 330 * 331 * The remaining PAGE_SIZE pages are called "tail pages". 332 * 333 * All pages have PG_compound set. All tail pages have their ->first_page 334 * pointing at the head page. 335 * 336 * The first tail page's ->lru.next holds the address of the compound page's 337 * put_page() function. Its ->lru.prev holds the order of allocation. 338 * This usage means that zero-order pages may not be compound. 339 */ 340 341 static void free_compound_page(struct page *page) 342 { 343 __free_pages_ok(page, compound_order(page)); 344 } 345 346 void prep_compound_page(struct page *page, unsigned long order) 347 { 348 int i; 349 int nr_pages = 1 << order; 350 351 set_compound_page_dtor(page, free_compound_page); 352 set_compound_order(page, order); 353 __SetPageHead(page); 354 for (i = 1; i < nr_pages; i++) { 355 struct page *p = page + i; 356 __SetPageTail(p); 357 set_page_count(p, 0); 358 p->first_page = page; 359 } 360 } 361 362 /* update __split_huge_page_refcount if you change this function */ 363 static int destroy_compound_page(struct page *page, unsigned long order) 364 { 365 int i; 366 int nr_pages = 1 << order; 367 int bad = 0; 368 369 if (unlikely(compound_order(page) != order)) { 370 bad_page(page); 371 bad++; 372 } 373 374 __ClearPageHead(page); 375 376 for (i = 1; i < nr_pages; i++) { 377 struct page *p = page + i; 378 379 if (unlikely(!PageTail(p) || (p->first_page != page))) { 380 bad_page(page); 381 bad++; 382 } 383 __ClearPageTail(p); 384 } 385 386 return bad; 387 } 388 389 static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags) 390 { 391 int i; 392 393 /* 394 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO 395 * and __GFP_HIGHMEM from hard or soft interrupt context. 396 */ 397 VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt()); 398 for (i = 0; i < (1 << order); i++) 399 clear_highpage(page + i); 400 } 401 402 #ifdef CONFIG_DEBUG_PAGEALLOC 403 unsigned int _debug_guardpage_minorder; 404 405 static int __init debug_guardpage_minorder_setup(char *buf) 406 { 407 unsigned long res; 408 409 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) { 410 printk(KERN_ERR "Bad debug_guardpage_minorder value\n"); 411 return 0; 412 } 413 _debug_guardpage_minorder = res; 414 printk(KERN_INFO "Setting debug_guardpage_minorder to %lu\n", res); 415 return 0; 416 } 417 __setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup); 418 419 static inline void set_page_guard_flag(struct page *page) 420 { 421 __set_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags); 422 } 423 424 static inline void clear_page_guard_flag(struct page *page) 425 { 426 __clear_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags); 427 } 428 #else 429 static inline void set_page_guard_flag(struct page *page) { } 430 static inline void clear_page_guard_flag(struct page *page) { } 431 #endif 432 433 static inline void set_page_order(struct page *page, int order) 434 { 435 set_page_private(page, order); 436 __SetPageBuddy(page); 437 } 438 439 static inline void rmv_page_order(struct page *page) 440 { 441 __ClearPageBuddy(page); 442 set_page_private(page, 0); 443 } 444 445 /* 446 * Locate the struct page for both the matching buddy in our 447 * pair (buddy1) and the combined O(n+1) page they form (page). 448 * 449 * 1) Any buddy B1 will have an order O twin B2 which satisfies 450 * the following equation: 451 * B2 = B1 ^ (1 << O) 452 * For example, if the starting buddy (buddy2) is #8 its order 453 * 1 buddy is #10: 454 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10 455 * 456 * 2) Any buddy B will have an order O+1 parent P which 457 * satisfies the following equation: 458 * P = B & ~(1 << O) 459 * 460 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER 461 */ 462 static inline unsigned long 463 __find_buddy_index(unsigned long page_idx, unsigned int order) 464 { 465 return page_idx ^ (1 << order); 466 } 467 468 /* 469 * This function checks whether a page is free && is the buddy 470 * we can do coalesce a page and its buddy if 471 * (a) the buddy is not in a hole && 472 * (b) the buddy is in the buddy system && 473 * (c) a page and its buddy have the same order && 474 * (d) a page and its buddy are in the same zone. 475 * 476 * For recording whether a page is in the buddy system, we set ->_mapcount -2. 477 * Setting, clearing, and testing _mapcount -2 is serialized by zone->lock. 478 * 479 * For recording page's order, we use page_private(page). 480 */ 481 static inline int page_is_buddy(struct page *page, struct page *buddy, 482 int order) 483 { 484 if (!pfn_valid_within(page_to_pfn(buddy))) 485 return 0; 486 487 if (page_zone_id(page) != page_zone_id(buddy)) 488 return 0; 489 490 if (page_is_guard(buddy) && page_order(buddy) == order) { 491 VM_BUG_ON(page_count(buddy) != 0); 492 return 1; 493 } 494 495 if (PageBuddy(buddy) && page_order(buddy) == order) { 496 VM_BUG_ON(page_count(buddy) != 0); 497 return 1; 498 } 499 return 0; 500 } 501 502 /* 503 * Freeing function for a buddy system allocator. 504 * 505 * The concept of a buddy system is to maintain direct-mapped table 506 * (containing bit values) for memory blocks of various "orders". 507 * The bottom level table contains the map for the smallest allocatable 508 * units of memory (here, pages), and each level above it describes 509 * pairs of units from the levels below, hence, "buddies". 510 * At a high level, all that happens here is marking the table entry 511 * at the bottom level available, and propagating the changes upward 512 * as necessary, plus some accounting needed to play nicely with other 513 * parts of the VM system. 514 * At each level, we keep a list of pages, which are heads of continuous 515 * free pages of length of (1 << order) and marked with _mapcount -2. Page's 516 * order is recorded in page_private(page) field. 517 * So when we are allocating or freeing one, we can derive the state of the 518 * other. That is, if we allocate a small block, and both were 519 * free, the remainder of the region must be split into blocks. 520 * If a block is freed, and its buddy is also free, then this 521 * triggers coalescing into a block of larger size. 522 * 523 * -- nyc 524 */ 525 526 static inline void __free_one_page(struct page *page, 527 struct zone *zone, unsigned int order, 528 int migratetype) 529 { 530 unsigned long page_idx; 531 unsigned long combined_idx; 532 unsigned long uninitialized_var(buddy_idx); 533 struct page *buddy; 534 535 if (unlikely(PageCompound(page))) 536 if (unlikely(destroy_compound_page(page, order))) 537 return; 538 539 VM_BUG_ON(migratetype == -1); 540 541 page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1); 542 543 VM_BUG_ON(page_idx & ((1 << order) - 1)); 544 VM_BUG_ON(bad_range(zone, page)); 545 546 while (order < MAX_ORDER-1) { 547 buddy_idx = __find_buddy_index(page_idx, order); 548 buddy = page + (buddy_idx - page_idx); 549 if (!page_is_buddy(page, buddy, order)) 550 break; 551 /* 552 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page, 553 * merge with it and move up one order. 554 */ 555 if (page_is_guard(buddy)) { 556 clear_page_guard_flag(buddy); 557 set_page_private(page, 0); 558 __mod_zone_freepage_state(zone, 1 << order, 559 migratetype); 560 } else { 561 list_del(&buddy->lru); 562 zone->free_area[order].nr_free--; 563 rmv_page_order(buddy); 564 } 565 combined_idx = buddy_idx & page_idx; 566 page = page + (combined_idx - page_idx); 567 page_idx = combined_idx; 568 order++; 569 } 570 set_page_order(page, order); 571 572 /* 573 * If this is not the largest possible page, check if the buddy 574 * of the next-highest order is free. If it is, it's possible 575 * that pages are being freed that will coalesce soon. In case, 576 * that is happening, add the free page to the tail of the list 577 * so it's less likely to be used soon and more likely to be merged 578 * as a higher order page 579 */ 580 if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) { 581 struct page *higher_page, *higher_buddy; 582 combined_idx = buddy_idx & page_idx; 583 higher_page = page + (combined_idx - page_idx); 584 buddy_idx = __find_buddy_index(combined_idx, order + 1); 585 higher_buddy = higher_page + (buddy_idx - combined_idx); 586 if (page_is_buddy(higher_page, higher_buddy, order + 1)) { 587 list_add_tail(&page->lru, 588 &zone->free_area[order].free_list[migratetype]); 589 goto out; 590 } 591 } 592 593 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]); 594 out: 595 zone->free_area[order].nr_free++; 596 } 597 598 static inline int free_pages_check(struct page *page) 599 { 600 if (unlikely(page_mapcount(page) | 601 (page->mapping != NULL) | 602 (atomic_read(&page->_count) != 0) | 603 (page->flags & PAGE_FLAGS_CHECK_AT_FREE) | 604 (mem_cgroup_bad_page_check(page)))) { 605 bad_page(page); 606 return 1; 607 } 608 reset_page_last_nid(page); 609 if (page->flags & PAGE_FLAGS_CHECK_AT_PREP) 610 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP; 611 return 0; 612 } 613 614 /* 615 * Frees a number of pages from the PCP lists 616 * Assumes all pages on list are in same zone, and of same order. 617 * count is the number of pages to free. 618 * 619 * If the zone was previously in an "all pages pinned" state then look to 620 * see if this freeing clears that state. 621 * 622 * And clear the zone's pages_scanned counter, to hold off the "all pages are 623 * pinned" detection logic. 624 */ 625 static void free_pcppages_bulk(struct zone *zone, int count, 626 struct per_cpu_pages *pcp) 627 { 628 int migratetype = 0; 629 int batch_free = 0; 630 int to_free = count; 631 632 spin_lock(&zone->lock); 633 zone->all_unreclaimable = 0; 634 zone->pages_scanned = 0; 635 636 while (to_free) { 637 struct page *page; 638 struct list_head *list; 639 640 /* 641 * Remove pages from lists in a round-robin fashion. A 642 * batch_free count is maintained that is incremented when an 643 * empty list is encountered. This is so more pages are freed 644 * off fuller lists instead of spinning excessively around empty 645 * lists 646 */ 647 do { 648 batch_free++; 649 if (++migratetype == MIGRATE_PCPTYPES) 650 migratetype = 0; 651 list = &pcp->lists[migratetype]; 652 } while (list_empty(list)); 653 654 /* This is the only non-empty list. Free them all. */ 655 if (batch_free == MIGRATE_PCPTYPES) 656 batch_free = to_free; 657 658 do { 659 int mt; /* migratetype of the to-be-freed page */ 660 661 page = list_entry(list->prev, struct page, lru); 662 /* must delete as __free_one_page list manipulates */ 663 list_del(&page->lru); 664 mt = get_freepage_migratetype(page); 665 /* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */ 666 __free_one_page(page, zone, 0, mt); 667 trace_mm_page_pcpu_drain(page, 0, mt); 668 if (likely(get_pageblock_migratetype(page) != MIGRATE_ISOLATE)) { 669 __mod_zone_page_state(zone, NR_FREE_PAGES, 1); 670 if (is_migrate_cma(mt)) 671 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES, 1); 672 } 673 } while (--to_free && --batch_free && !list_empty(list)); 674 } 675 spin_unlock(&zone->lock); 676 } 677 678 static void free_one_page(struct zone *zone, struct page *page, int order, 679 int migratetype) 680 { 681 spin_lock(&zone->lock); 682 zone->all_unreclaimable = 0; 683 zone->pages_scanned = 0; 684 685 __free_one_page(page, zone, order, migratetype); 686 if (unlikely(migratetype != MIGRATE_ISOLATE)) 687 __mod_zone_freepage_state(zone, 1 << order, migratetype); 688 spin_unlock(&zone->lock); 689 } 690 691 static bool free_pages_prepare(struct page *page, unsigned int order) 692 { 693 int i; 694 int bad = 0; 695 696 trace_mm_page_free(page, order); 697 kmemcheck_free_shadow(page, order); 698 699 if (PageAnon(page)) 700 page->mapping = NULL; 701 for (i = 0; i < (1 << order); i++) 702 bad += free_pages_check(page + i); 703 if (bad) 704 return false; 705 706 if (!PageHighMem(page)) { 707 debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order); 708 debug_check_no_obj_freed(page_address(page), 709 PAGE_SIZE << order); 710 } 711 arch_free_page(page, order); 712 kernel_map_pages(page, 1 << order, 0); 713 714 return true; 715 } 716 717 static void __free_pages_ok(struct page *page, unsigned int order) 718 { 719 unsigned long flags; 720 int migratetype; 721 722 if (!free_pages_prepare(page, order)) 723 return; 724 725 local_irq_save(flags); 726 __count_vm_events(PGFREE, 1 << order); 727 migratetype = get_pageblock_migratetype(page); 728 set_freepage_migratetype(page, migratetype); 729 free_one_page(page_zone(page), page, order, migratetype); 730 local_irq_restore(flags); 731 } 732 733 /* 734 * Read access to zone->managed_pages is safe because it's unsigned long, 735 * but we still need to serialize writers. Currently all callers of 736 * __free_pages_bootmem() except put_page_bootmem() should only be used 737 * at boot time. So for shorter boot time, we shift the burden to 738 * put_page_bootmem() to serialize writers. 739 */ 740 void __meminit __free_pages_bootmem(struct page *page, unsigned int order) 741 { 742 unsigned int nr_pages = 1 << order; 743 unsigned int loop; 744 745 prefetchw(page); 746 for (loop = 0; loop < nr_pages; loop++) { 747 struct page *p = &page[loop]; 748 749 if (loop + 1 < nr_pages) 750 prefetchw(p + 1); 751 __ClearPageReserved(p); 752 set_page_count(p, 0); 753 } 754 755 page_zone(page)->managed_pages += 1 << order; 756 set_page_refcounted(page); 757 __free_pages(page, order); 758 } 759 760 #ifdef CONFIG_CMA 761 /* Free whole pageblock and set it's migration type to MIGRATE_CMA. */ 762 void __init init_cma_reserved_pageblock(struct page *page) 763 { 764 unsigned i = pageblock_nr_pages; 765 struct page *p = page; 766 767 do { 768 __ClearPageReserved(p); 769 set_page_count(p, 0); 770 } while (++p, --i); 771 772 set_page_refcounted(page); 773 set_pageblock_migratetype(page, MIGRATE_CMA); 774 __free_pages(page, pageblock_order); 775 totalram_pages += pageblock_nr_pages; 776 } 777 #endif 778 779 /* 780 * The order of subdivision here is critical for the IO subsystem. 781 * Please do not alter this order without good reasons and regression 782 * testing. Specifically, as large blocks of memory are subdivided, 783 * the order in which smaller blocks are delivered depends on the order 784 * they're subdivided in this function. This is the primary factor 785 * influencing the order in which pages are delivered to the IO 786 * subsystem according to empirical testing, and this is also justified 787 * by considering the behavior of a buddy system containing a single 788 * large block of memory acted on by a series of small allocations. 789 * This behavior is a critical factor in sglist merging's success. 790 * 791 * -- nyc 792 */ 793 static inline void expand(struct zone *zone, struct page *page, 794 int low, int high, struct free_area *area, 795 int migratetype) 796 { 797 unsigned long size = 1 << high; 798 799 while (high > low) { 800 area--; 801 high--; 802 size >>= 1; 803 VM_BUG_ON(bad_range(zone, &page[size])); 804 805 #ifdef CONFIG_DEBUG_PAGEALLOC 806 if (high < debug_guardpage_minorder()) { 807 /* 808 * Mark as guard pages (or page), that will allow to 809 * merge back to allocator when buddy will be freed. 810 * Corresponding page table entries will not be touched, 811 * pages will stay not present in virtual address space 812 */ 813 INIT_LIST_HEAD(&page[size].lru); 814 set_page_guard_flag(&page[size]); 815 set_page_private(&page[size], high); 816 /* Guard pages are not available for any usage */ 817 __mod_zone_freepage_state(zone, -(1 << high), 818 migratetype); 819 continue; 820 } 821 #endif 822 list_add(&page[size].lru, &area->free_list[migratetype]); 823 area->nr_free++; 824 set_page_order(&page[size], high); 825 } 826 } 827 828 /* 829 * This page is about to be returned from the page allocator 830 */ 831 static inline int check_new_page(struct page *page) 832 { 833 if (unlikely(page_mapcount(page) | 834 (page->mapping != NULL) | 835 (atomic_read(&page->_count) != 0) | 836 (page->flags & PAGE_FLAGS_CHECK_AT_PREP) | 837 (mem_cgroup_bad_page_check(page)))) { 838 bad_page(page); 839 return 1; 840 } 841 return 0; 842 } 843 844 static int prep_new_page(struct page *page, int order, gfp_t gfp_flags) 845 { 846 int i; 847 848 for (i = 0; i < (1 << order); i++) { 849 struct page *p = page + i; 850 if (unlikely(check_new_page(p))) 851 return 1; 852 } 853 854 set_page_private(page, 0); 855 set_page_refcounted(page); 856 857 arch_alloc_page(page, order); 858 kernel_map_pages(page, 1 << order, 1); 859 860 if (gfp_flags & __GFP_ZERO) 861 prep_zero_page(page, order, gfp_flags); 862 863 if (order && (gfp_flags & __GFP_COMP)) 864 prep_compound_page(page, order); 865 866 return 0; 867 } 868 869 /* 870 * Go through the free lists for the given migratetype and remove 871 * the smallest available page from the freelists 872 */ 873 static inline 874 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order, 875 int migratetype) 876 { 877 unsigned int current_order; 878 struct free_area * area; 879 struct page *page; 880 881 /* Find a page of the appropriate size in the preferred list */ 882 for (current_order = order; current_order < MAX_ORDER; ++current_order) { 883 area = &(zone->free_area[current_order]); 884 if (list_empty(&area->free_list[migratetype])) 885 continue; 886 887 page = list_entry(area->free_list[migratetype].next, 888 struct page, lru); 889 list_del(&page->lru); 890 rmv_page_order(page); 891 area->nr_free--; 892 expand(zone, page, order, current_order, area, migratetype); 893 return page; 894 } 895 896 return NULL; 897 } 898 899 900 /* 901 * This array describes the order lists are fallen back to when 902 * the free lists for the desirable migrate type are depleted 903 */ 904 static int fallbacks[MIGRATE_TYPES][4] = { 905 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE }, 906 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE }, 907 #ifdef CONFIG_CMA 908 [MIGRATE_MOVABLE] = { MIGRATE_CMA, MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE }, 909 [MIGRATE_CMA] = { MIGRATE_RESERVE }, /* Never used */ 910 #else 911 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE }, 912 #endif 913 [MIGRATE_RESERVE] = { MIGRATE_RESERVE }, /* Never used */ 914 [MIGRATE_ISOLATE] = { MIGRATE_RESERVE }, /* Never used */ 915 }; 916 917 /* 918 * Move the free pages in a range to the free lists of the requested type. 919 * Note that start_page and end_pages are not aligned on a pageblock 920 * boundary. If alignment is required, use move_freepages_block() 921 */ 922 int move_freepages(struct zone *zone, 923 struct page *start_page, struct page *end_page, 924 int migratetype) 925 { 926 struct page *page; 927 unsigned long order; 928 int pages_moved = 0; 929 930 #ifndef CONFIG_HOLES_IN_ZONE 931 /* 932 * page_zone is not safe to call in this context when 933 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant 934 * anyway as we check zone boundaries in move_freepages_block(). 935 * Remove at a later date when no bug reports exist related to 936 * grouping pages by mobility 937 */ 938 BUG_ON(page_zone(start_page) != page_zone(end_page)); 939 #endif 940 941 for (page = start_page; page <= end_page;) { 942 /* Make sure we are not inadvertently changing nodes */ 943 VM_BUG_ON(page_to_nid(page) != zone_to_nid(zone)); 944 945 if (!pfn_valid_within(page_to_pfn(page))) { 946 page++; 947 continue; 948 } 949 950 if (!PageBuddy(page)) { 951 page++; 952 continue; 953 } 954 955 order = page_order(page); 956 list_move(&page->lru, 957 &zone->free_area[order].free_list[migratetype]); 958 set_freepage_migratetype(page, migratetype); 959 page += 1 << order; 960 pages_moved += 1 << order; 961 } 962 963 return pages_moved; 964 } 965 966 int move_freepages_block(struct zone *zone, struct page *page, 967 int migratetype) 968 { 969 unsigned long start_pfn, end_pfn; 970 struct page *start_page, *end_page; 971 972 start_pfn = page_to_pfn(page); 973 start_pfn = start_pfn & ~(pageblock_nr_pages-1); 974 start_page = pfn_to_page(start_pfn); 975 end_page = start_page + pageblock_nr_pages - 1; 976 end_pfn = start_pfn + pageblock_nr_pages - 1; 977 978 /* Do not cross zone boundaries */ 979 if (start_pfn < zone->zone_start_pfn) 980 start_page = page; 981 if (end_pfn >= zone->zone_start_pfn + zone->spanned_pages) 982 return 0; 983 984 return move_freepages(zone, start_page, end_page, migratetype); 985 } 986 987 static void change_pageblock_range(struct page *pageblock_page, 988 int start_order, int migratetype) 989 { 990 int nr_pageblocks = 1 << (start_order - pageblock_order); 991 992 while (nr_pageblocks--) { 993 set_pageblock_migratetype(pageblock_page, migratetype); 994 pageblock_page += pageblock_nr_pages; 995 } 996 } 997 998 /* Remove an element from the buddy allocator from the fallback list */ 999 static inline struct page * 1000 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype) 1001 { 1002 struct free_area * area; 1003 int current_order; 1004 struct page *page; 1005 int migratetype, i; 1006 1007 /* Find the largest possible block of pages in the other list */ 1008 for (current_order = MAX_ORDER-1; current_order >= order; 1009 --current_order) { 1010 for (i = 0;; i++) { 1011 migratetype = fallbacks[start_migratetype][i]; 1012 1013 /* MIGRATE_RESERVE handled later if necessary */ 1014 if (migratetype == MIGRATE_RESERVE) 1015 break; 1016 1017 area = &(zone->free_area[current_order]); 1018 if (list_empty(&area->free_list[migratetype])) 1019 continue; 1020 1021 page = list_entry(area->free_list[migratetype].next, 1022 struct page, lru); 1023 area->nr_free--; 1024 1025 /* 1026 * If breaking a large block of pages, move all free 1027 * pages to the preferred allocation list. If falling 1028 * back for a reclaimable kernel allocation, be more 1029 * aggressive about taking ownership of free pages 1030 * 1031 * On the other hand, never change migration 1032 * type of MIGRATE_CMA pageblocks nor move CMA 1033 * pages on different free lists. We don't 1034 * want unmovable pages to be allocated from 1035 * MIGRATE_CMA areas. 1036 */ 1037 if (!is_migrate_cma(migratetype) && 1038 (unlikely(current_order >= pageblock_order / 2) || 1039 start_migratetype == MIGRATE_RECLAIMABLE || 1040 page_group_by_mobility_disabled)) { 1041 int pages; 1042 pages = move_freepages_block(zone, page, 1043 start_migratetype); 1044 1045 /* Claim the whole block if over half of it is free */ 1046 if (pages >= (1 << (pageblock_order-1)) || 1047 page_group_by_mobility_disabled) 1048 set_pageblock_migratetype(page, 1049 start_migratetype); 1050 1051 migratetype = start_migratetype; 1052 } 1053 1054 /* Remove the page from the freelists */ 1055 list_del(&page->lru); 1056 rmv_page_order(page); 1057 1058 /* Take ownership for orders >= pageblock_order */ 1059 if (current_order >= pageblock_order && 1060 !is_migrate_cma(migratetype)) 1061 change_pageblock_range(page, current_order, 1062 start_migratetype); 1063 1064 expand(zone, page, order, current_order, area, 1065 is_migrate_cma(migratetype) 1066 ? migratetype : start_migratetype); 1067 1068 trace_mm_page_alloc_extfrag(page, order, current_order, 1069 start_migratetype, migratetype); 1070 1071 return page; 1072 } 1073 } 1074 1075 return NULL; 1076 } 1077 1078 /* 1079 * Do the hard work of removing an element from the buddy allocator. 1080 * Call me with the zone->lock already held. 1081 */ 1082 static struct page *__rmqueue(struct zone *zone, unsigned int order, 1083 int migratetype) 1084 { 1085 struct page *page; 1086 1087 retry_reserve: 1088 page = __rmqueue_smallest(zone, order, migratetype); 1089 1090 if (unlikely(!page) && migratetype != MIGRATE_RESERVE) { 1091 page = __rmqueue_fallback(zone, order, migratetype); 1092 1093 /* 1094 * Use MIGRATE_RESERVE rather than fail an allocation. goto 1095 * is used because __rmqueue_smallest is an inline function 1096 * and we want just one call site 1097 */ 1098 if (!page) { 1099 migratetype = MIGRATE_RESERVE; 1100 goto retry_reserve; 1101 } 1102 } 1103 1104 trace_mm_page_alloc_zone_locked(page, order, migratetype); 1105 return page; 1106 } 1107 1108 /* 1109 * Obtain a specified number of elements from the buddy allocator, all under 1110 * a single hold of the lock, for efficiency. Add them to the supplied list. 1111 * Returns the number of new pages which were placed at *list. 1112 */ 1113 static int rmqueue_bulk(struct zone *zone, unsigned int order, 1114 unsigned long count, struct list_head *list, 1115 int migratetype, int cold) 1116 { 1117 int mt = migratetype, i; 1118 1119 spin_lock(&zone->lock); 1120 for (i = 0; i < count; ++i) { 1121 struct page *page = __rmqueue(zone, order, migratetype); 1122 if (unlikely(page == NULL)) 1123 break; 1124 1125 /* 1126 * Split buddy pages returned by expand() are received here 1127 * in physical page order. The page is added to the callers and 1128 * list and the list head then moves forward. From the callers 1129 * perspective, the linked list is ordered by page number in 1130 * some conditions. This is useful for IO devices that can 1131 * merge IO requests if the physical pages are ordered 1132 * properly. 1133 */ 1134 if (likely(cold == 0)) 1135 list_add(&page->lru, list); 1136 else 1137 list_add_tail(&page->lru, list); 1138 if (IS_ENABLED(CONFIG_CMA)) { 1139 mt = get_pageblock_migratetype(page); 1140 if (!is_migrate_cma(mt) && mt != MIGRATE_ISOLATE) 1141 mt = migratetype; 1142 } 1143 set_freepage_migratetype(page, mt); 1144 list = &page->lru; 1145 if (is_migrate_cma(mt)) 1146 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES, 1147 -(1 << order)); 1148 } 1149 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order)); 1150 spin_unlock(&zone->lock); 1151 return i; 1152 } 1153 1154 #ifdef CONFIG_NUMA 1155 /* 1156 * Called from the vmstat counter updater to drain pagesets of this 1157 * currently executing processor on remote nodes after they have 1158 * expired. 1159 * 1160 * Note that this function must be called with the thread pinned to 1161 * a single processor. 1162 */ 1163 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp) 1164 { 1165 unsigned long flags; 1166 int to_drain; 1167 1168 local_irq_save(flags); 1169 if (pcp->count >= pcp->batch) 1170 to_drain = pcp->batch; 1171 else 1172 to_drain = pcp->count; 1173 if (to_drain > 0) { 1174 free_pcppages_bulk(zone, to_drain, pcp); 1175 pcp->count -= to_drain; 1176 } 1177 local_irq_restore(flags); 1178 } 1179 #endif 1180 1181 /* 1182 * Drain pages of the indicated processor. 1183 * 1184 * The processor must either be the current processor and the 1185 * thread pinned to the current processor or a processor that 1186 * is not online. 1187 */ 1188 static void drain_pages(unsigned int cpu) 1189 { 1190 unsigned long flags; 1191 struct zone *zone; 1192 1193 for_each_populated_zone(zone) { 1194 struct per_cpu_pageset *pset; 1195 struct per_cpu_pages *pcp; 1196 1197 local_irq_save(flags); 1198 pset = per_cpu_ptr(zone->pageset, cpu); 1199 1200 pcp = &pset->pcp; 1201 if (pcp->count) { 1202 free_pcppages_bulk(zone, pcp->count, pcp); 1203 pcp->count = 0; 1204 } 1205 local_irq_restore(flags); 1206 } 1207 } 1208 1209 /* 1210 * Spill all of this CPU's per-cpu pages back into the buddy allocator. 1211 */ 1212 void drain_local_pages(void *arg) 1213 { 1214 drain_pages(smp_processor_id()); 1215 } 1216 1217 /* 1218 * Spill all the per-cpu pages from all CPUs back into the buddy allocator. 1219 * 1220 * Note that this code is protected against sending an IPI to an offline 1221 * CPU but does not guarantee sending an IPI to newly hotplugged CPUs: 1222 * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but 1223 * nothing keeps CPUs from showing up after we populated the cpumask and 1224 * before the call to on_each_cpu_mask(). 1225 */ 1226 void drain_all_pages(void) 1227 { 1228 int cpu; 1229 struct per_cpu_pageset *pcp; 1230 struct zone *zone; 1231 1232 /* 1233 * Allocate in the BSS so we wont require allocation in 1234 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y 1235 */ 1236 static cpumask_t cpus_with_pcps; 1237 1238 /* 1239 * We don't care about racing with CPU hotplug event 1240 * as offline notification will cause the notified 1241 * cpu to drain that CPU pcps and on_each_cpu_mask 1242 * disables preemption as part of its processing 1243 */ 1244 for_each_online_cpu(cpu) { 1245 bool has_pcps = false; 1246 for_each_populated_zone(zone) { 1247 pcp = per_cpu_ptr(zone->pageset, cpu); 1248 if (pcp->pcp.count) { 1249 has_pcps = true; 1250 break; 1251 } 1252 } 1253 if (has_pcps) 1254 cpumask_set_cpu(cpu, &cpus_with_pcps); 1255 else 1256 cpumask_clear_cpu(cpu, &cpus_with_pcps); 1257 } 1258 on_each_cpu_mask(&cpus_with_pcps, drain_local_pages, NULL, 1); 1259 } 1260 1261 #ifdef CONFIG_HIBERNATION 1262 1263 void mark_free_pages(struct zone *zone) 1264 { 1265 unsigned long pfn, max_zone_pfn; 1266 unsigned long flags; 1267 int order, t; 1268 struct list_head *curr; 1269 1270 if (!zone->spanned_pages) 1271 return; 1272 1273 spin_lock_irqsave(&zone->lock, flags); 1274 1275 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages; 1276 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) 1277 if (pfn_valid(pfn)) { 1278 struct page *page = pfn_to_page(pfn); 1279 1280 if (!swsusp_page_is_forbidden(page)) 1281 swsusp_unset_page_free(page); 1282 } 1283 1284 for_each_migratetype_order(order, t) { 1285 list_for_each(curr, &zone->free_area[order].free_list[t]) { 1286 unsigned long i; 1287 1288 pfn = page_to_pfn(list_entry(curr, struct page, lru)); 1289 for (i = 0; i < (1UL << order); i++) 1290 swsusp_set_page_free(pfn_to_page(pfn + i)); 1291 } 1292 } 1293 spin_unlock_irqrestore(&zone->lock, flags); 1294 } 1295 #endif /* CONFIG_PM */ 1296 1297 /* 1298 * Free a 0-order page 1299 * cold == 1 ? free a cold page : free a hot page 1300 */ 1301 void free_hot_cold_page(struct page *page, int cold) 1302 { 1303 struct zone *zone = page_zone(page); 1304 struct per_cpu_pages *pcp; 1305 unsigned long flags; 1306 int migratetype; 1307 1308 if (!free_pages_prepare(page, 0)) 1309 return; 1310 1311 migratetype = get_pageblock_migratetype(page); 1312 set_freepage_migratetype(page, migratetype); 1313 local_irq_save(flags); 1314 __count_vm_event(PGFREE); 1315 1316 /* 1317 * We only track unmovable, reclaimable and movable on pcp lists. 1318 * Free ISOLATE pages back to the allocator because they are being 1319 * offlined but treat RESERVE as movable pages so we can get those 1320 * areas back if necessary. Otherwise, we may have to free 1321 * excessively into the page allocator 1322 */ 1323 if (migratetype >= MIGRATE_PCPTYPES) { 1324 if (unlikely(migratetype == MIGRATE_ISOLATE)) { 1325 free_one_page(zone, page, 0, migratetype); 1326 goto out; 1327 } 1328 migratetype = MIGRATE_MOVABLE; 1329 } 1330 1331 pcp = &this_cpu_ptr(zone->pageset)->pcp; 1332 if (cold) 1333 list_add_tail(&page->lru, &pcp->lists[migratetype]); 1334 else 1335 list_add(&page->lru, &pcp->lists[migratetype]); 1336 pcp->count++; 1337 if (pcp->count >= pcp->high) { 1338 free_pcppages_bulk(zone, pcp->batch, pcp); 1339 pcp->count -= pcp->batch; 1340 } 1341 1342 out: 1343 local_irq_restore(flags); 1344 } 1345 1346 /* 1347 * Free a list of 0-order pages 1348 */ 1349 void free_hot_cold_page_list(struct list_head *list, int cold) 1350 { 1351 struct page *page, *next; 1352 1353 list_for_each_entry_safe(page, next, list, lru) { 1354 trace_mm_page_free_batched(page, cold); 1355 free_hot_cold_page(page, cold); 1356 } 1357 } 1358 1359 /* 1360 * split_page takes a non-compound higher-order page, and splits it into 1361 * n (1<<order) sub-pages: page[0..n] 1362 * Each sub-page must be freed individually. 1363 * 1364 * Note: this is probably too low level an operation for use in drivers. 1365 * Please consult with lkml before using this in your driver. 1366 */ 1367 void split_page(struct page *page, unsigned int order) 1368 { 1369 int i; 1370 1371 VM_BUG_ON(PageCompound(page)); 1372 VM_BUG_ON(!page_count(page)); 1373 1374 #ifdef CONFIG_KMEMCHECK 1375 /* 1376 * Split shadow pages too, because free(page[0]) would 1377 * otherwise free the whole shadow. 1378 */ 1379 if (kmemcheck_page_is_tracked(page)) 1380 split_page(virt_to_page(page[0].shadow), order); 1381 #endif 1382 1383 for (i = 1; i < (1 << order); i++) 1384 set_page_refcounted(page + i); 1385 } 1386 1387 static int __isolate_free_page(struct page *page, unsigned int order) 1388 { 1389 unsigned long watermark; 1390 struct zone *zone; 1391 int mt; 1392 1393 BUG_ON(!PageBuddy(page)); 1394 1395 zone = page_zone(page); 1396 mt = get_pageblock_migratetype(page); 1397 1398 if (mt != MIGRATE_ISOLATE) { 1399 /* Obey watermarks as if the page was being allocated */ 1400 watermark = low_wmark_pages(zone) + (1 << order); 1401 if (!zone_watermark_ok(zone, 0, watermark, 0, 0)) 1402 return 0; 1403 1404 __mod_zone_freepage_state(zone, -(1UL << order), mt); 1405 } 1406 1407 /* Remove page from free list */ 1408 list_del(&page->lru); 1409 zone->free_area[order].nr_free--; 1410 rmv_page_order(page); 1411 1412 /* Set the pageblock if the isolated page is at least a pageblock */ 1413 if (order >= pageblock_order - 1) { 1414 struct page *endpage = page + (1 << order) - 1; 1415 for (; page < endpage; page += pageblock_nr_pages) { 1416 int mt = get_pageblock_migratetype(page); 1417 if (mt != MIGRATE_ISOLATE && !is_migrate_cma(mt)) 1418 set_pageblock_migratetype(page, 1419 MIGRATE_MOVABLE); 1420 } 1421 } 1422 1423 return 1UL << order; 1424 } 1425 1426 /* 1427 * Similar to split_page except the page is already free. As this is only 1428 * being used for migration, the migratetype of the block also changes. 1429 * As this is called with interrupts disabled, the caller is responsible 1430 * for calling arch_alloc_page() and kernel_map_page() after interrupts 1431 * are enabled. 1432 * 1433 * Note: this is probably too low level an operation for use in drivers. 1434 * Please consult with lkml before using this in your driver. 1435 */ 1436 int split_free_page(struct page *page) 1437 { 1438 unsigned int order; 1439 int nr_pages; 1440 1441 order = page_order(page); 1442 1443 nr_pages = __isolate_free_page(page, order); 1444 if (!nr_pages) 1445 return 0; 1446 1447 /* Split into individual pages */ 1448 set_page_refcounted(page); 1449 split_page(page, order); 1450 return nr_pages; 1451 } 1452 1453 /* 1454 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But 1455 * we cheat by calling it from here, in the order > 0 path. Saves a branch 1456 * or two. 1457 */ 1458 static inline 1459 struct page *buffered_rmqueue(struct zone *preferred_zone, 1460 struct zone *zone, int order, gfp_t gfp_flags, 1461 int migratetype) 1462 { 1463 unsigned long flags; 1464 struct page *page; 1465 int cold = !!(gfp_flags & __GFP_COLD); 1466 1467 again: 1468 if (likely(order == 0)) { 1469 struct per_cpu_pages *pcp; 1470 struct list_head *list; 1471 1472 local_irq_save(flags); 1473 pcp = &this_cpu_ptr(zone->pageset)->pcp; 1474 list = &pcp->lists[migratetype]; 1475 if (list_empty(list)) { 1476 pcp->count += rmqueue_bulk(zone, 0, 1477 pcp->batch, list, 1478 migratetype, cold); 1479 if (unlikely(list_empty(list))) 1480 goto failed; 1481 } 1482 1483 if (cold) 1484 page = list_entry(list->prev, struct page, lru); 1485 else 1486 page = list_entry(list->next, struct page, lru); 1487 1488 list_del(&page->lru); 1489 pcp->count--; 1490 } else { 1491 if (unlikely(gfp_flags & __GFP_NOFAIL)) { 1492 /* 1493 * __GFP_NOFAIL is not to be used in new code. 1494 * 1495 * All __GFP_NOFAIL callers should be fixed so that they 1496 * properly detect and handle allocation failures. 1497 * 1498 * We most definitely don't want callers attempting to 1499 * allocate greater than order-1 page units with 1500 * __GFP_NOFAIL. 1501 */ 1502 WARN_ON_ONCE(order > 1); 1503 } 1504 spin_lock_irqsave(&zone->lock, flags); 1505 page = __rmqueue(zone, order, migratetype); 1506 spin_unlock(&zone->lock); 1507 if (!page) 1508 goto failed; 1509 __mod_zone_freepage_state(zone, -(1 << order), 1510 get_pageblock_migratetype(page)); 1511 } 1512 1513 __count_zone_vm_events(PGALLOC, zone, 1 << order); 1514 zone_statistics(preferred_zone, zone, gfp_flags); 1515 local_irq_restore(flags); 1516 1517 VM_BUG_ON(bad_range(zone, page)); 1518 if (prep_new_page(page, order, gfp_flags)) 1519 goto again; 1520 return page; 1521 1522 failed: 1523 local_irq_restore(flags); 1524 return NULL; 1525 } 1526 1527 #ifdef CONFIG_FAIL_PAGE_ALLOC 1528 1529 static struct { 1530 struct fault_attr attr; 1531 1532 u32 ignore_gfp_highmem; 1533 u32 ignore_gfp_wait; 1534 u32 min_order; 1535 } fail_page_alloc = { 1536 .attr = FAULT_ATTR_INITIALIZER, 1537 .ignore_gfp_wait = 1, 1538 .ignore_gfp_highmem = 1, 1539 .min_order = 1, 1540 }; 1541 1542 static int __init setup_fail_page_alloc(char *str) 1543 { 1544 return setup_fault_attr(&fail_page_alloc.attr, str); 1545 } 1546 __setup("fail_page_alloc=", setup_fail_page_alloc); 1547 1548 static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) 1549 { 1550 if (order < fail_page_alloc.min_order) 1551 return false; 1552 if (gfp_mask & __GFP_NOFAIL) 1553 return false; 1554 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM)) 1555 return false; 1556 if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT)) 1557 return false; 1558 1559 return should_fail(&fail_page_alloc.attr, 1 << order); 1560 } 1561 1562 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS 1563 1564 static int __init fail_page_alloc_debugfs(void) 1565 { 1566 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR; 1567 struct dentry *dir; 1568 1569 dir = fault_create_debugfs_attr("fail_page_alloc", NULL, 1570 &fail_page_alloc.attr); 1571 if (IS_ERR(dir)) 1572 return PTR_ERR(dir); 1573 1574 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir, 1575 &fail_page_alloc.ignore_gfp_wait)) 1576 goto fail; 1577 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir, 1578 &fail_page_alloc.ignore_gfp_highmem)) 1579 goto fail; 1580 if (!debugfs_create_u32("min-order", mode, dir, 1581 &fail_page_alloc.min_order)) 1582 goto fail; 1583 1584 return 0; 1585 fail: 1586 debugfs_remove_recursive(dir); 1587 1588 return -ENOMEM; 1589 } 1590 1591 late_initcall(fail_page_alloc_debugfs); 1592 1593 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */ 1594 1595 #else /* CONFIG_FAIL_PAGE_ALLOC */ 1596 1597 static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) 1598 { 1599 return false; 1600 } 1601 1602 #endif /* CONFIG_FAIL_PAGE_ALLOC */ 1603 1604 /* 1605 * Return true if free pages are above 'mark'. This takes into account the order 1606 * of the allocation. 1607 */ 1608 static bool __zone_watermark_ok(struct zone *z, int order, unsigned long mark, 1609 int classzone_idx, int alloc_flags, long free_pages) 1610 { 1611 /* free_pages my go negative - that's OK */ 1612 long min = mark; 1613 long lowmem_reserve = z->lowmem_reserve[classzone_idx]; 1614 int o; 1615 1616 free_pages -= (1 << order) - 1; 1617 if (alloc_flags & ALLOC_HIGH) 1618 min -= min / 2; 1619 if (alloc_flags & ALLOC_HARDER) 1620 min -= min / 4; 1621 #ifdef CONFIG_CMA 1622 /* If allocation can't use CMA areas don't use free CMA pages */ 1623 if (!(alloc_flags & ALLOC_CMA)) 1624 free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES); 1625 #endif 1626 if (free_pages <= min + lowmem_reserve) 1627 return false; 1628 for (o = 0; o < order; o++) { 1629 /* At the next order, this order's pages become unavailable */ 1630 free_pages -= z->free_area[o].nr_free << o; 1631 1632 /* Require fewer higher order pages to be free */ 1633 min >>= 1; 1634 1635 if (free_pages <= min) 1636 return false; 1637 } 1638 return true; 1639 } 1640 1641 bool zone_watermark_ok(struct zone *z, int order, unsigned long mark, 1642 int classzone_idx, int alloc_flags) 1643 { 1644 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags, 1645 zone_page_state(z, NR_FREE_PAGES)); 1646 } 1647 1648 bool zone_watermark_ok_safe(struct zone *z, int order, unsigned long mark, 1649 int classzone_idx, int alloc_flags) 1650 { 1651 long free_pages = zone_page_state(z, NR_FREE_PAGES); 1652 1653 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark) 1654 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES); 1655 1656 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags, 1657 free_pages); 1658 } 1659 1660 #ifdef CONFIG_NUMA 1661 /* 1662 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to 1663 * skip over zones that are not allowed by the cpuset, or that have 1664 * been recently (in last second) found to be nearly full. See further 1665 * comments in mmzone.h. Reduces cache footprint of zonelist scans 1666 * that have to skip over a lot of full or unallowed zones. 1667 * 1668 * If the zonelist cache is present in the passed in zonelist, then 1669 * returns a pointer to the allowed node mask (either the current 1670 * tasks mems_allowed, or node_states[N_MEMORY].) 1671 * 1672 * If the zonelist cache is not available for this zonelist, does 1673 * nothing and returns NULL. 1674 * 1675 * If the fullzones BITMAP in the zonelist cache is stale (more than 1676 * a second since last zap'd) then we zap it out (clear its bits.) 1677 * 1678 * We hold off even calling zlc_setup, until after we've checked the 1679 * first zone in the zonelist, on the theory that most allocations will 1680 * be satisfied from that first zone, so best to examine that zone as 1681 * quickly as we can. 1682 */ 1683 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags) 1684 { 1685 struct zonelist_cache *zlc; /* cached zonelist speedup info */ 1686 nodemask_t *allowednodes; /* zonelist_cache approximation */ 1687 1688 zlc = zonelist->zlcache_ptr; 1689 if (!zlc) 1690 return NULL; 1691 1692 if (time_after(jiffies, zlc->last_full_zap + HZ)) { 1693 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST); 1694 zlc->last_full_zap = jiffies; 1695 } 1696 1697 allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ? 1698 &cpuset_current_mems_allowed : 1699 &node_states[N_MEMORY]; 1700 return allowednodes; 1701 } 1702 1703 /* 1704 * Given 'z' scanning a zonelist, run a couple of quick checks to see 1705 * if it is worth looking at further for free memory: 1706 * 1) Check that the zone isn't thought to be full (doesn't have its 1707 * bit set in the zonelist_cache fullzones BITMAP). 1708 * 2) Check that the zones node (obtained from the zonelist_cache 1709 * z_to_n[] mapping) is allowed in the passed in allowednodes mask. 1710 * Return true (non-zero) if zone is worth looking at further, or 1711 * else return false (zero) if it is not. 1712 * 1713 * This check -ignores- the distinction between various watermarks, 1714 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is 1715 * found to be full for any variation of these watermarks, it will 1716 * be considered full for up to one second by all requests, unless 1717 * we are so low on memory on all allowed nodes that we are forced 1718 * into the second scan of the zonelist. 1719 * 1720 * In the second scan we ignore this zonelist cache and exactly 1721 * apply the watermarks to all zones, even it is slower to do so. 1722 * We are low on memory in the second scan, and should leave no stone 1723 * unturned looking for a free page. 1724 */ 1725 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z, 1726 nodemask_t *allowednodes) 1727 { 1728 struct zonelist_cache *zlc; /* cached zonelist speedup info */ 1729 int i; /* index of *z in zonelist zones */ 1730 int n; /* node that zone *z is on */ 1731 1732 zlc = zonelist->zlcache_ptr; 1733 if (!zlc) 1734 return 1; 1735 1736 i = z - zonelist->_zonerefs; 1737 n = zlc->z_to_n[i]; 1738 1739 /* This zone is worth trying if it is allowed but not full */ 1740 return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones); 1741 } 1742 1743 /* 1744 * Given 'z' scanning a zonelist, set the corresponding bit in 1745 * zlc->fullzones, so that subsequent attempts to allocate a page 1746 * from that zone don't waste time re-examining it. 1747 */ 1748 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z) 1749 { 1750 struct zonelist_cache *zlc; /* cached zonelist speedup info */ 1751 int i; /* index of *z in zonelist zones */ 1752 1753 zlc = zonelist->zlcache_ptr; 1754 if (!zlc) 1755 return; 1756 1757 i = z - zonelist->_zonerefs; 1758 1759 set_bit(i, zlc->fullzones); 1760 } 1761 1762 /* 1763 * clear all zones full, called after direct reclaim makes progress so that 1764 * a zone that was recently full is not skipped over for up to a second 1765 */ 1766 static void zlc_clear_zones_full(struct zonelist *zonelist) 1767 { 1768 struct zonelist_cache *zlc; /* cached zonelist speedup info */ 1769 1770 zlc = zonelist->zlcache_ptr; 1771 if (!zlc) 1772 return; 1773 1774 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST); 1775 } 1776 1777 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone) 1778 { 1779 return node_isset(local_zone->node, zone->zone_pgdat->reclaim_nodes); 1780 } 1781 1782 static void __paginginit init_zone_allows_reclaim(int nid) 1783 { 1784 int i; 1785 1786 for_each_online_node(i) 1787 if (node_distance(nid, i) <= RECLAIM_DISTANCE) 1788 node_set(i, NODE_DATA(nid)->reclaim_nodes); 1789 else 1790 zone_reclaim_mode = 1; 1791 } 1792 1793 #else /* CONFIG_NUMA */ 1794 1795 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags) 1796 { 1797 return NULL; 1798 } 1799 1800 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z, 1801 nodemask_t *allowednodes) 1802 { 1803 return 1; 1804 } 1805 1806 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z) 1807 { 1808 } 1809 1810 static void zlc_clear_zones_full(struct zonelist *zonelist) 1811 { 1812 } 1813 1814 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone) 1815 { 1816 return true; 1817 } 1818 1819 static inline void init_zone_allows_reclaim(int nid) 1820 { 1821 } 1822 #endif /* CONFIG_NUMA */ 1823 1824 /* 1825 * get_page_from_freelist goes through the zonelist trying to allocate 1826 * a page. 1827 */ 1828 static struct page * 1829 get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order, 1830 struct zonelist *zonelist, int high_zoneidx, int alloc_flags, 1831 struct zone *preferred_zone, int migratetype) 1832 { 1833 struct zoneref *z; 1834 struct page *page = NULL; 1835 int classzone_idx; 1836 struct zone *zone; 1837 nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */ 1838 int zlc_active = 0; /* set if using zonelist_cache */ 1839 int did_zlc_setup = 0; /* just call zlc_setup() one time */ 1840 1841 classzone_idx = zone_idx(preferred_zone); 1842 zonelist_scan: 1843 /* 1844 * Scan zonelist, looking for a zone with enough free. 1845 * See also cpuset_zone_allowed() comment in kernel/cpuset.c. 1846 */ 1847 for_each_zone_zonelist_nodemask(zone, z, zonelist, 1848 high_zoneidx, nodemask) { 1849 if (IS_ENABLED(CONFIG_NUMA) && zlc_active && 1850 !zlc_zone_worth_trying(zonelist, z, allowednodes)) 1851 continue; 1852 if ((alloc_flags & ALLOC_CPUSET) && 1853 !cpuset_zone_allowed_softwall(zone, gfp_mask)) 1854 continue; 1855 /* 1856 * When allocating a page cache page for writing, we 1857 * want to get it from a zone that is within its dirty 1858 * limit, such that no single zone holds more than its 1859 * proportional share of globally allowed dirty pages. 1860 * The dirty limits take into account the zone's 1861 * lowmem reserves and high watermark so that kswapd 1862 * should be able to balance it without having to 1863 * write pages from its LRU list. 1864 * 1865 * This may look like it could increase pressure on 1866 * lower zones by failing allocations in higher zones 1867 * before they are full. But the pages that do spill 1868 * over are limited as the lower zones are protected 1869 * by this very same mechanism. It should not become 1870 * a practical burden to them. 1871 * 1872 * XXX: For now, allow allocations to potentially 1873 * exceed the per-zone dirty limit in the slowpath 1874 * (ALLOC_WMARK_LOW unset) before going into reclaim, 1875 * which is important when on a NUMA setup the allowed 1876 * zones are together not big enough to reach the 1877 * global limit. The proper fix for these situations 1878 * will require awareness of zones in the 1879 * dirty-throttling and the flusher threads. 1880 */ 1881 if ((alloc_flags & ALLOC_WMARK_LOW) && 1882 (gfp_mask & __GFP_WRITE) && !zone_dirty_ok(zone)) 1883 goto this_zone_full; 1884 1885 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK); 1886 if (!(alloc_flags & ALLOC_NO_WATERMARKS)) { 1887 unsigned long mark; 1888 int ret; 1889 1890 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK]; 1891 if (zone_watermark_ok(zone, order, mark, 1892 classzone_idx, alloc_flags)) 1893 goto try_this_zone; 1894 1895 if (IS_ENABLED(CONFIG_NUMA) && 1896 !did_zlc_setup && nr_online_nodes > 1) { 1897 /* 1898 * we do zlc_setup if there are multiple nodes 1899 * and before considering the first zone allowed 1900 * by the cpuset. 1901 */ 1902 allowednodes = zlc_setup(zonelist, alloc_flags); 1903 zlc_active = 1; 1904 did_zlc_setup = 1; 1905 } 1906 1907 if (zone_reclaim_mode == 0 || 1908 !zone_allows_reclaim(preferred_zone, zone)) 1909 goto this_zone_full; 1910 1911 /* 1912 * As we may have just activated ZLC, check if the first 1913 * eligible zone has failed zone_reclaim recently. 1914 */ 1915 if (IS_ENABLED(CONFIG_NUMA) && zlc_active && 1916 !zlc_zone_worth_trying(zonelist, z, allowednodes)) 1917 continue; 1918 1919 ret = zone_reclaim(zone, gfp_mask, order); 1920 switch (ret) { 1921 case ZONE_RECLAIM_NOSCAN: 1922 /* did not scan */ 1923 continue; 1924 case ZONE_RECLAIM_FULL: 1925 /* scanned but unreclaimable */ 1926 continue; 1927 default: 1928 /* did we reclaim enough */ 1929 if (!zone_watermark_ok(zone, order, mark, 1930 classzone_idx, alloc_flags)) 1931 goto this_zone_full; 1932 } 1933 } 1934 1935 try_this_zone: 1936 page = buffered_rmqueue(preferred_zone, zone, order, 1937 gfp_mask, migratetype); 1938 if (page) 1939 break; 1940 this_zone_full: 1941 if (IS_ENABLED(CONFIG_NUMA)) 1942 zlc_mark_zone_full(zonelist, z); 1943 } 1944 1945 if (unlikely(IS_ENABLED(CONFIG_NUMA) && page == NULL && zlc_active)) { 1946 /* Disable zlc cache for second zonelist scan */ 1947 zlc_active = 0; 1948 goto zonelist_scan; 1949 } 1950 1951 if (page) 1952 /* 1953 * page->pfmemalloc is set when ALLOC_NO_WATERMARKS was 1954 * necessary to allocate the page. The expectation is 1955 * that the caller is taking steps that will free more 1956 * memory. The caller should avoid the page being used 1957 * for !PFMEMALLOC purposes. 1958 */ 1959 page->pfmemalloc = !!(alloc_flags & ALLOC_NO_WATERMARKS); 1960 1961 return page; 1962 } 1963 1964 /* 1965 * Large machines with many possible nodes should not always dump per-node 1966 * meminfo in irq context. 1967 */ 1968 static inline bool should_suppress_show_mem(void) 1969 { 1970 bool ret = false; 1971 1972 #if NODES_SHIFT > 8 1973 ret = in_interrupt(); 1974 #endif 1975 return ret; 1976 } 1977 1978 static DEFINE_RATELIMIT_STATE(nopage_rs, 1979 DEFAULT_RATELIMIT_INTERVAL, 1980 DEFAULT_RATELIMIT_BURST); 1981 1982 void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...) 1983 { 1984 unsigned int filter = SHOW_MEM_FILTER_NODES; 1985 1986 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) || 1987 debug_guardpage_minorder() > 0) 1988 return; 1989 1990 /* 1991 * This documents exceptions given to allocations in certain 1992 * contexts that are allowed to allocate outside current's set 1993 * of allowed nodes. 1994 */ 1995 if (!(gfp_mask & __GFP_NOMEMALLOC)) 1996 if (test_thread_flag(TIF_MEMDIE) || 1997 (current->flags & (PF_MEMALLOC | PF_EXITING))) 1998 filter &= ~SHOW_MEM_FILTER_NODES; 1999 if (in_interrupt() || !(gfp_mask & __GFP_WAIT)) 2000 filter &= ~SHOW_MEM_FILTER_NODES; 2001 2002 if (fmt) { 2003 struct va_format vaf; 2004 va_list args; 2005 2006 va_start(args, fmt); 2007 2008 vaf.fmt = fmt; 2009 vaf.va = &args; 2010 2011 pr_warn("%pV", &vaf); 2012 2013 va_end(args); 2014 } 2015 2016 pr_warn("%s: page allocation failure: order:%d, mode:0x%x\n", 2017 current->comm, order, gfp_mask); 2018 2019 dump_stack(); 2020 if (!should_suppress_show_mem()) 2021 show_mem(filter); 2022 } 2023 2024 static inline int 2025 should_alloc_retry(gfp_t gfp_mask, unsigned int order, 2026 unsigned long did_some_progress, 2027 unsigned long pages_reclaimed) 2028 { 2029 /* Do not loop if specifically requested */ 2030 if (gfp_mask & __GFP_NORETRY) 2031 return 0; 2032 2033 /* Always retry if specifically requested */ 2034 if (gfp_mask & __GFP_NOFAIL) 2035 return 1; 2036 2037 /* 2038 * Suspend converts GFP_KERNEL to __GFP_WAIT which can prevent reclaim 2039 * making forward progress without invoking OOM. Suspend also disables 2040 * storage devices so kswapd will not help. Bail if we are suspending. 2041 */ 2042 if (!did_some_progress && pm_suspended_storage()) 2043 return 0; 2044 2045 /* 2046 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER 2047 * means __GFP_NOFAIL, but that may not be true in other 2048 * implementations. 2049 */ 2050 if (order <= PAGE_ALLOC_COSTLY_ORDER) 2051 return 1; 2052 2053 /* 2054 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is 2055 * specified, then we retry until we no longer reclaim any pages 2056 * (above), or we've reclaimed an order of pages at least as 2057 * large as the allocation's order. In both cases, if the 2058 * allocation still fails, we stop retrying. 2059 */ 2060 if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order)) 2061 return 1; 2062 2063 return 0; 2064 } 2065 2066 static inline struct page * 2067 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order, 2068 struct zonelist *zonelist, enum zone_type high_zoneidx, 2069 nodemask_t *nodemask, struct zone *preferred_zone, 2070 int migratetype) 2071 { 2072 struct page *page; 2073 2074 /* Acquire the OOM killer lock for the zones in zonelist */ 2075 if (!try_set_zonelist_oom(zonelist, gfp_mask)) { 2076 schedule_timeout_uninterruptible(1); 2077 return NULL; 2078 } 2079 2080 /* 2081 * Go through the zonelist yet one more time, keep very high watermark 2082 * here, this is only to catch a parallel oom killing, we must fail if 2083 * we're still under heavy pressure. 2084 */ 2085 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, 2086 order, zonelist, high_zoneidx, 2087 ALLOC_WMARK_HIGH|ALLOC_CPUSET, 2088 preferred_zone, migratetype); 2089 if (page) 2090 goto out; 2091 2092 if (!(gfp_mask & __GFP_NOFAIL)) { 2093 /* The OOM killer will not help higher order allocs */ 2094 if (order > PAGE_ALLOC_COSTLY_ORDER) 2095 goto out; 2096 /* The OOM killer does not needlessly kill tasks for lowmem */ 2097 if (high_zoneidx < ZONE_NORMAL) 2098 goto out; 2099 /* 2100 * GFP_THISNODE contains __GFP_NORETRY and we never hit this. 2101 * Sanity check for bare calls of __GFP_THISNODE, not real OOM. 2102 * The caller should handle page allocation failure by itself if 2103 * it specifies __GFP_THISNODE. 2104 * Note: Hugepage uses it but will hit PAGE_ALLOC_COSTLY_ORDER. 2105 */ 2106 if (gfp_mask & __GFP_THISNODE) 2107 goto out; 2108 } 2109 /* Exhausted what can be done so it's blamo time */ 2110 out_of_memory(zonelist, gfp_mask, order, nodemask, false); 2111 2112 out: 2113 clear_zonelist_oom(zonelist, gfp_mask); 2114 return page; 2115 } 2116 2117 #ifdef CONFIG_COMPACTION 2118 /* Try memory compaction for high-order allocations before reclaim */ 2119 static struct page * 2120 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order, 2121 struct zonelist *zonelist, enum zone_type high_zoneidx, 2122 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone, 2123 int migratetype, bool sync_migration, 2124 bool *contended_compaction, bool *deferred_compaction, 2125 unsigned long *did_some_progress) 2126 { 2127 if (!order) 2128 return NULL; 2129 2130 if (compaction_deferred(preferred_zone, order)) { 2131 *deferred_compaction = true; 2132 return NULL; 2133 } 2134 2135 current->flags |= PF_MEMALLOC; 2136 *did_some_progress = try_to_compact_pages(zonelist, order, gfp_mask, 2137 nodemask, sync_migration, 2138 contended_compaction); 2139 current->flags &= ~PF_MEMALLOC; 2140 2141 if (*did_some_progress != COMPACT_SKIPPED) { 2142 struct page *page; 2143 2144 /* Page migration frees to the PCP lists but we want merging */ 2145 drain_pages(get_cpu()); 2146 put_cpu(); 2147 2148 page = get_page_from_freelist(gfp_mask, nodemask, 2149 order, zonelist, high_zoneidx, 2150 alloc_flags & ~ALLOC_NO_WATERMARKS, 2151 preferred_zone, migratetype); 2152 if (page) { 2153 preferred_zone->compact_blockskip_flush = false; 2154 preferred_zone->compact_considered = 0; 2155 preferred_zone->compact_defer_shift = 0; 2156 if (order >= preferred_zone->compact_order_failed) 2157 preferred_zone->compact_order_failed = order + 1; 2158 count_vm_event(COMPACTSUCCESS); 2159 return page; 2160 } 2161 2162 /* 2163 * It's bad if compaction run occurs and fails. 2164 * The most likely reason is that pages exist, 2165 * but not enough to satisfy watermarks. 2166 */ 2167 count_vm_event(COMPACTFAIL); 2168 2169 /* 2170 * As async compaction considers a subset of pageblocks, only 2171 * defer if the failure was a sync compaction failure. 2172 */ 2173 if (sync_migration) 2174 defer_compaction(preferred_zone, order); 2175 2176 cond_resched(); 2177 } 2178 2179 return NULL; 2180 } 2181 #else 2182 static inline struct page * 2183 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order, 2184 struct zonelist *zonelist, enum zone_type high_zoneidx, 2185 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone, 2186 int migratetype, bool sync_migration, 2187 bool *contended_compaction, bool *deferred_compaction, 2188 unsigned long *did_some_progress) 2189 { 2190 return NULL; 2191 } 2192 #endif /* CONFIG_COMPACTION */ 2193 2194 /* Perform direct synchronous page reclaim */ 2195 static int 2196 __perform_reclaim(gfp_t gfp_mask, unsigned int order, struct zonelist *zonelist, 2197 nodemask_t *nodemask) 2198 { 2199 struct reclaim_state reclaim_state; 2200 int progress; 2201 2202 cond_resched(); 2203 2204 /* We now go into synchronous reclaim */ 2205 cpuset_memory_pressure_bump(); 2206 current->flags |= PF_MEMALLOC; 2207 lockdep_set_current_reclaim_state(gfp_mask); 2208 reclaim_state.reclaimed_slab = 0; 2209 current->reclaim_state = &reclaim_state; 2210 2211 progress = try_to_free_pages(zonelist, order, gfp_mask, nodemask); 2212 2213 current->reclaim_state = NULL; 2214 lockdep_clear_current_reclaim_state(); 2215 current->flags &= ~PF_MEMALLOC; 2216 2217 cond_resched(); 2218 2219 return progress; 2220 } 2221 2222 /* The really slow allocator path where we enter direct reclaim */ 2223 static inline struct page * 2224 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order, 2225 struct zonelist *zonelist, enum zone_type high_zoneidx, 2226 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone, 2227 int migratetype, unsigned long *did_some_progress) 2228 { 2229 struct page *page = NULL; 2230 bool drained = false; 2231 2232 *did_some_progress = __perform_reclaim(gfp_mask, order, zonelist, 2233 nodemask); 2234 if (unlikely(!(*did_some_progress))) 2235 return NULL; 2236 2237 /* After successful reclaim, reconsider all zones for allocation */ 2238 if (IS_ENABLED(CONFIG_NUMA)) 2239 zlc_clear_zones_full(zonelist); 2240 2241 retry: 2242 page = get_page_from_freelist(gfp_mask, nodemask, order, 2243 zonelist, high_zoneidx, 2244 alloc_flags & ~ALLOC_NO_WATERMARKS, 2245 preferred_zone, migratetype); 2246 2247 /* 2248 * If an allocation failed after direct reclaim, it could be because 2249 * pages are pinned on the per-cpu lists. Drain them and try again 2250 */ 2251 if (!page && !drained) { 2252 drain_all_pages(); 2253 drained = true; 2254 goto retry; 2255 } 2256 2257 return page; 2258 } 2259 2260 /* 2261 * This is called in the allocator slow-path if the allocation request is of 2262 * sufficient urgency to ignore watermarks and take other desperate measures 2263 */ 2264 static inline struct page * 2265 __alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order, 2266 struct zonelist *zonelist, enum zone_type high_zoneidx, 2267 nodemask_t *nodemask, struct zone *preferred_zone, 2268 int migratetype) 2269 { 2270 struct page *page; 2271 2272 do { 2273 page = get_page_from_freelist(gfp_mask, nodemask, order, 2274 zonelist, high_zoneidx, ALLOC_NO_WATERMARKS, 2275 preferred_zone, migratetype); 2276 2277 if (!page && gfp_mask & __GFP_NOFAIL) 2278 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50); 2279 } while (!page && (gfp_mask & __GFP_NOFAIL)); 2280 2281 return page; 2282 } 2283 2284 static inline 2285 void wake_all_kswapd(unsigned int order, struct zonelist *zonelist, 2286 enum zone_type high_zoneidx, 2287 enum zone_type classzone_idx) 2288 { 2289 struct zoneref *z; 2290 struct zone *zone; 2291 2292 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) 2293 wakeup_kswapd(zone, order, classzone_idx); 2294 } 2295 2296 static inline int 2297 gfp_to_alloc_flags(gfp_t gfp_mask) 2298 { 2299 int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET; 2300 const gfp_t wait = gfp_mask & __GFP_WAIT; 2301 2302 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */ 2303 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH); 2304 2305 /* 2306 * The caller may dip into page reserves a bit more if the caller 2307 * cannot run direct reclaim, or if the caller has realtime scheduling 2308 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will 2309 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH). 2310 */ 2311 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH); 2312 2313 if (!wait) { 2314 /* 2315 * Not worth trying to allocate harder for 2316 * __GFP_NOMEMALLOC even if it can't schedule. 2317 */ 2318 if (!(gfp_mask & __GFP_NOMEMALLOC)) 2319 alloc_flags |= ALLOC_HARDER; 2320 /* 2321 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc. 2322 * See also cpuset_zone_allowed() comment in kernel/cpuset.c. 2323 */ 2324 alloc_flags &= ~ALLOC_CPUSET; 2325 } else if (unlikely(rt_task(current)) && !in_interrupt()) 2326 alloc_flags |= ALLOC_HARDER; 2327 2328 if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) { 2329 if (gfp_mask & __GFP_MEMALLOC) 2330 alloc_flags |= ALLOC_NO_WATERMARKS; 2331 else if (in_serving_softirq() && (current->flags & PF_MEMALLOC)) 2332 alloc_flags |= ALLOC_NO_WATERMARKS; 2333 else if (!in_interrupt() && 2334 ((current->flags & PF_MEMALLOC) || 2335 unlikely(test_thread_flag(TIF_MEMDIE)))) 2336 alloc_flags |= ALLOC_NO_WATERMARKS; 2337 } 2338 #ifdef CONFIG_CMA 2339 if (allocflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE) 2340 alloc_flags |= ALLOC_CMA; 2341 #endif 2342 return alloc_flags; 2343 } 2344 2345 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask) 2346 { 2347 return !!(gfp_to_alloc_flags(gfp_mask) & ALLOC_NO_WATERMARKS); 2348 } 2349 2350 static inline struct page * 2351 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order, 2352 struct zonelist *zonelist, enum zone_type high_zoneidx, 2353 nodemask_t *nodemask, struct zone *preferred_zone, 2354 int migratetype) 2355 { 2356 const gfp_t wait = gfp_mask & __GFP_WAIT; 2357 struct page *page = NULL; 2358 int alloc_flags; 2359 unsigned long pages_reclaimed = 0; 2360 unsigned long did_some_progress; 2361 bool sync_migration = false; 2362 bool deferred_compaction = false; 2363 bool contended_compaction = false; 2364 2365 /* 2366 * In the slowpath, we sanity check order to avoid ever trying to 2367 * reclaim >= MAX_ORDER areas which will never succeed. Callers may 2368 * be using allocators in order of preference for an area that is 2369 * too large. 2370 */ 2371 if (order >= MAX_ORDER) { 2372 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN)); 2373 return NULL; 2374 } 2375 2376 /* 2377 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and 2378 * __GFP_NOWARN set) should not cause reclaim since the subsystem 2379 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim 2380 * using a larger set of nodes after it has established that the 2381 * allowed per node queues are empty and that nodes are 2382 * over allocated. 2383 */ 2384 if (IS_ENABLED(CONFIG_NUMA) && 2385 (gfp_mask & GFP_THISNODE) == GFP_THISNODE) 2386 goto nopage; 2387 2388 restart: 2389 if (!(gfp_mask & __GFP_NO_KSWAPD)) 2390 wake_all_kswapd(order, zonelist, high_zoneidx, 2391 zone_idx(preferred_zone)); 2392 2393 /* 2394 * OK, we're below the kswapd watermark and have kicked background 2395 * reclaim. Now things get more complex, so set up alloc_flags according 2396 * to how we want to proceed. 2397 */ 2398 alloc_flags = gfp_to_alloc_flags(gfp_mask); 2399 2400 /* 2401 * Find the true preferred zone if the allocation is unconstrained by 2402 * cpusets. 2403 */ 2404 if (!(alloc_flags & ALLOC_CPUSET) && !nodemask) 2405 first_zones_zonelist(zonelist, high_zoneidx, NULL, 2406 &preferred_zone); 2407 2408 rebalance: 2409 /* This is the last chance, in general, before the goto nopage. */ 2410 page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist, 2411 high_zoneidx, alloc_flags & ~ALLOC_NO_WATERMARKS, 2412 preferred_zone, migratetype); 2413 if (page) 2414 goto got_pg; 2415 2416 /* Allocate without watermarks if the context allows */ 2417 if (alloc_flags & ALLOC_NO_WATERMARKS) { 2418 /* 2419 * Ignore mempolicies if ALLOC_NO_WATERMARKS on the grounds 2420 * the allocation is high priority and these type of 2421 * allocations are system rather than user orientated 2422 */ 2423 zonelist = node_zonelist(numa_node_id(), gfp_mask); 2424 2425 page = __alloc_pages_high_priority(gfp_mask, order, 2426 zonelist, high_zoneidx, nodemask, 2427 preferred_zone, migratetype); 2428 if (page) { 2429 goto got_pg; 2430 } 2431 } 2432 2433 /* Atomic allocations - we can't balance anything */ 2434 if (!wait) 2435 goto nopage; 2436 2437 /* Avoid recursion of direct reclaim */ 2438 if (current->flags & PF_MEMALLOC) 2439 goto nopage; 2440 2441 /* Avoid allocations with no watermarks from looping endlessly */ 2442 if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL)) 2443 goto nopage; 2444 2445 /* 2446 * Try direct compaction. The first pass is asynchronous. Subsequent 2447 * attempts after direct reclaim are synchronous 2448 */ 2449 page = __alloc_pages_direct_compact(gfp_mask, order, 2450 zonelist, high_zoneidx, 2451 nodemask, 2452 alloc_flags, preferred_zone, 2453 migratetype, sync_migration, 2454 &contended_compaction, 2455 &deferred_compaction, 2456 &did_some_progress); 2457 if (page) 2458 goto got_pg; 2459 sync_migration = true; 2460 2461 /* 2462 * If compaction is deferred for high-order allocations, it is because 2463 * sync compaction recently failed. In this is the case and the caller 2464 * requested a movable allocation that does not heavily disrupt the 2465 * system then fail the allocation instead of entering direct reclaim. 2466 */ 2467 if ((deferred_compaction || contended_compaction) && 2468 (gfp_mask & __GFP_NO_KSWAPD)) 2469 goto nopage; 2470 2471 /* Try direct reclaim and then allocating */ 2472 page = __alloc_pages_direct_reclaim(gfp_mask, order, 2473 zonelist, high_zoneidx, 2474 nodemask, 2475 alloc_flags, preferred_zone, 2476 migratetype, &did_some_progress); 2477 if (page) 2478 goto got_pg; 2479 2480 /* 2481 * If we failed to make any progress reclaiming, then we are 2482 * running out of options and have to consider going OOM 2483 */ 2484 if (!did_some_progress) { 2485 if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) { 2486 if (oom_killer_disabled) 2487 goto nopage; 2488 /* Coredumps can quickly deplete all memory reserves */ 2489 if ((current->flags & PF_DUMPCORE) && 2490 !(gfp_mask & __GFP_NOFAIL)) 2491 goto nopage; 2492 page = __alloc_pages_may_oom(gfp_mask, order, 2493 zonelist, high_zoneidx, 2494 nodemask, preferred_zone, 2495 migratetype); 2496 if (page) 2497 goto got_pg; 2498 2499 if (!(gfp_mask & __GFP_NOFAIL)) { 2500 /* 2501 * The oom killer is not called for high-order 2502 * allocations that may fail, so if no progress 2503 * is being made, there are no other options and 2504 * retrying is unlikely to help. 2505 */ 2506 if (order > PAGE_ALLOC_COSTLY_ORDER) 2507 goto nopage; 2508 /* 2509 * The oom killer is not called for lowmem 2510 * allocations to prevent needlessly killing 2511 * innocent tasks. 2512 */ 2513 if (high_zoneidx < ZONE_NORMAL) 2514 goto nopage; 2515 } 2516 2517 goto restart; 2518 } 2519 } 2520 2521 /* Check if we should retry the allocation */ 2522 pages_reclaimed += did_some_progress; 2523 if (should_alloc_retry(gfp_mask, order, did_some_progress, 2524 pages_reclaimed)) { 2525 /* Wait for some write requests to complete then retry */ 2526 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50); 2527 goto rebalance; 2528 } else { 2529 /* 2530 * High-order allocations do not necessarily loop after 2531 * direct reclaim and reclaim/compaction depends on compaction 2532 * being called after reclaim so call directly if necessary 2533 */ 2534 page = __alloc_pages_direct_compact(gfp_mask, order, 2535 zonelist, high_zoneidx, 2536 nodemask, 2537 alloc_flags, preferred_zone, 2538 migratetype, sync_migration, 2539 &contended_compaction, 2540 &deferred_compaction, 2541 &did_some_progress); 2542 if (page) 2543 goto got_pg; 2544 } 2545 2546 nopage: 2547 warn_alloc_failed(gfp_mask, order, NULL); 2548 return page; 2549 got_pg: 2550 if (kmemcheck_enabled) 2551 kmemcheck_pagealloc_alloc(page, order, gfp_mask); 2552 2553 return page; 2554 } 2555 2556 /* 2557 * This is the 'heart' of the zoned buddy allocator. 2558 */ 2559 struct page * 2560 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order, 2561 struct zonelist *zonelist, nodemask_t *nodemask) 2562 { 2563 enum zone_type high_zoneidx = gfp_zone(gfp_mask); 2564 struct zone *preferred_zone; 2565 struct page *page = NULL; 2566 int migratetype = allocflags_to_migratetype(gfp_mask); 2567 unsigned int cpuset_mems_cookie; 2568 int alloc_flags = ALLOC_WMARK_LOW|ALLOC_CPUSET; 2569 struct mem_cgroup *memcg = NULL; 2570 2571 gfp_mask &= gfp_allowed_mask; 2572 2573 lockdep_trace_alloc(gfp_mask); 2574 2575 might_sleep_if(gfp_mask & __GFP_WAIT); 2576 2577 if (should_fail_alloc_page(gfp_mask, order)) 2578 return NULL; 2579 2580 /* 2581 * Check the zones suitable for the gfp_mask contain at least one 2582 * valid zone. It's possible to have an empty zonelist as a result 2583 * of GFP_THISNODE and a memoryless node 2584 */ 2585 if (unlikely(!zonelist->_zonerefs->zone)) 2586 return NULL; 2587 2588 /* 2589 * Will only have any effect when __GFP_KMEMCG is set. This is 2590 * verified in the (always inline) callee 2591 */ 2592 if (!memcg_kmem_newpage_charge(gfp_mask, &memcg, order)) 2593 return NULL; 2594 2595 retry_cpuset: 2596 cpuset_mems_cookie = get_mems_allowed(); 2597 2598 /* The preferred zone is used for statistics later */ 2599 first_zones_zonelist(zonelist, high_zoneidx, 2600 nodemask ? : &cpuset_current_mems_allowed, 2601 &preferred_zone); 2602 if (!preferred_zone) 2603 goto out; 2604 2605 #ifdef CONFIG_CMA 2606 if (allocflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE) 2607 alloc_flags |= ALLOC_CMA; 2608 #endif 2609 /* First allocation attempt */ 2610 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order, 2611 zonelist, high_zoneidx, alloc_flags, 2612 preferred_zone, migratetype); 2613 if (unlikely(!page)) 2614 page = __alloc_pages_slowpath(gfp_mask, order, 2615 zonelist, high_zoneidx, nodemask, 2616 preferred_zone, migratetype); 2617 2618 trace_mm_page_alloc(page, order, gfp_mask, migratetype); 2619 2620 out: 2621 /* 2622 * When updating a task's mems_allowed, it is possible to race with 2623 * parallel threads in such a way that an allocation can fail while 2624 * the mask is being updated. If a page allocation is about to fail, 2625 * check if the cpuset changed during allocation and if so, retry. 2626 */ 2627 if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page)) 2628 goto retry_cpuset; 2629 2630 memcg_kmem_commit_charge(page, memcg, order); 2631 2632 return page; 2633 } 2634 EXPORT_SYMBOL(__alloc_pages_nodemask); 2635 2636 /* 2637 * Common helper functions. 2638 */ 2639 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order) 2640 { 2641 struct page *page; 2642 2643 /* 2644 * __get_free_pages() returns a 32-bit address, which cannot represent 2645 * a highmem page 2646 */ 2647 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0); 2648 2649 page = alloc_pages(gfp_mask, order); 2650 if (!page) 2651 return 0; 2652 return (unsigned long) page_address(page); 2653 } 2654 EXPORT_SYMBOL(__get_free_pages); 2655 2656 unsigned long get_zeroed_page(gfp_t gfp_mask) 2657 { 2658 return __get_free_pages(gfp_mask | __GFP_ZERO, 0); 2659 } 2660 EXPORT_SYMBOL(get_zeroed_page); 2661 2662 void __free_pages(struct page *page, unsigned int order) 2663 { 2664 if (put_page_testzero(page)) { 2665 if (order == 0) 2666 free_hot_cold_page(page, 0); 2667 else 2668 __free_pages_ok(page, order); 2669 } 2670 } 2671 2672 EXPORT_SYMBOL(__free_pages); 2673 2674 void free_pages(unsigned long addr, unsigned int order) 2675 { 2676 if (addr != 0) { 2677 VM_BUG_ON(!virt_addr_valid((void *)addr)); 2678 __free_pages(virt_to_page((void *)addr), order); 2679 } 2680 } 2681 2682 EXPORT_SYMBOL(free_pages); 2683 2684 /* 2685 * __free_memcg_kmem_pages and free_memcg_kmem_pages will free 2686 * pages allocated with __GFP_KMEMCG. 2687 * 2688 * Those pages are accounted to a particular memcg, embedded in the 2689 * corresponding page_cgroup. To avoid adding a hit in the allocator to search 2690 * for that information only to find out that it is NULL for users who have no 2691 * interest in that whatsoever, we provide these functions. 2692 * 2693 * The caller knows better which flags it relies on. 2694 */ 2695 void __free_memcg_kmem_pages(struct page *page, unsigned int order) 2696 { 2697 memcg_kmem_uncharge_pages(page, order); 2698 __free_pages(page, order); 2699 } 2700 2701 void free_memcg_kmem_pages(unsigned long addr, unsigned int order) 2702 { 2703 if (addr != 0) { 2704 VM_BUG_ON(!virt_addr_valid((void *)addr)); 2705 __free_memcg_kmem_pages(virt_to_page((void *)addr), order); 2706 } 2707 } 2708 2709 static void *make_alloc_exact(unsigned long addr, unsigned order, size_t size) 2710 { 2711 if (addr) { 2712 unsigned long alloc_end = addr + (PAGE_SIZE << order); 2713 unsigned long used = addr + PAGE_ALIGN(size); 2714 2715 split_page(virt_to_page((void *)addr), order); 2716 while (used < alloc_end) { 2717 free_page(used); 2718 used += PAGE_SIZE; 2719 } 2720 } 2721 return (void *)addr; 2722 } 2723 2724 /** 2725 * alloc_pages_exact - allocate an exact number physically-contiguous pages. 2726 * @size: the number of bytes to allocate 2727 * @gfp_mask: GFP flags for the allocation 2728 * 2729 * This function is similar to alloc_pages(), except that it allocates the 2730 * minimum number of pages to satisfy the request. alloc_pages() can only 2731 * allocate memory in power-of-two pages. 2732 * 2733 * This function is also limited by MAX_ORDER. 2734 * 2735 * Memory allocated by this function must be released by free_pages_exact(). 2736 */ 2737 void *alloc_pages_exact(size_t size, gfp_t gfp_mask) 2738 { 2739 unsigned int order = get_order(size); 2740 unsigned long addr; 2741 2742 addr = __get_free_pages(gfp_mask, order); 2743 return make_alloc_exact(addr, order, size); 2744 } 2745 EXPORT_SYMBOL(alloc_pages_exact); 2746 2747 /** 2748 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous 2749 * pages on a node. 2750 * @nid: the preferred node ID where memory should be allocated 2751 * @size: the number of bytes to allocate 2752 * @gfp_mask: GFP flags for the allocation 2753 * 2754 * Like alloc_pages_exact(), but try to allocate on node nid first before falling 2755 * back. 2756 * Note this is not alloc_pages_exact_node() which allocates on a specific node, 2757 * but is not exact. 2758 */ 2759 void *alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask) 2760 { 2761 unsigned order = get_order(size); 2762 struct page *p = alloc_pages_node(nid, gfp_mask, order); 2763 if (!p) 2764 return NULL; 2765 return make_alloc_exact((unsigned long)page_address(p), order, size); 2766 } 2767 EXPORT_SYMBOL(alloc_pages_exact_nid); 2768 2769 /** 2770 * free_pages_exact - release memory allocated via alloc_pages_exact() 2771 * @virt: the value returned by alloc_pages_exact. 2772 * @size: size of allocation, same value as passed to alloc_pages_exact(). 2773 * 2774 * Release the memory allocated by a previous call to alloc_pages_exact. 2775 */ 2776 void free_pages_exact(void *virt, size_t size) 2777 { 2778 unsigned long addr = (unsigned long)virt; 2779 unsigned long end = addr + PAGE_ALIGN(size); 2780 2781 while (addr < end) { 2782 free_page(addr); 2783 addr += PAGE_SIZE; 2784 } 2785 } 2786 EXPORT_SYMBOL(free_pages_exact); 2787 2788 static unsigned int nr_free_zone_pages(int offset) 2789 { 2790 struct zoneref *z; 2791 struct zone *zone; 2792 2793 /* Just pick one node, since fallback list is circular */ 2794 unsigned int sum = 0; 2795 2796 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL); 2797 2798 for_each_zone_zonelist(zone, z, zonelist, offset) { 2799 unsigned long size = zone->present_pages; 2800 unsigned long high = high_wmark_pages(zone); 2801 if (size > high) 2802 sum += size - high; 2803 } 2804 2805 return sum; 2806 } 2807 2808 /* 2809 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL 2810 */ 2811 unsigned int nr_free_buffer_pages(void) 2812 { 2813 return nr_free_zone_pages(gfp_zone(GFP_USER)); 2814 } 2815 EXPORT_SYMBOL_GPL(nr_free_buffer_pages); 2816 2817 /* 2818 * Amount of free RAM allocatable within all zones 2819 */ 2820 unsigned int nr_free_pagecache_pages(void) 2821 { 2822 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE)); 2823 } 2824 2825 static inline void show_node(struct zone *zone) 2826 { 2827 if (IS_ENABLED(CONFIG_NUMA)) 2828 printk("Node %d ", zone_to_nid(zone)); 2829 } 2830 2831 void si_meminfo(struct sysinfo *val) 2832 { 2833 val->totalram = totalram_pages; 2834 val->sharedram = 0; 2835 val->freeram = global_page_state(NR_FREE_PAGES); 2836 val->bufferram = nr_blockdev_pages(); 2837 val->totalhigh = totalhigh_pages; 2838 val->freehigh = nr_free_highpages(); 2839 val->mem_unit = PAGE_SIZE; 2840 } 2841 2842 EXPORT_SYMBOL(si_meminfo); 2843 2844 #ifdef CONFIG_NUMA 2845 void si_meminfo_node(struct sysinfo *val, int nid) 2846 { 2847 pg_data_t *pgdat = NODE_DATA(nid); 2848 2849 val->totalram = pgdat->node_present_pages; 2850 val->freeram = node_page_state(nid, NR_FREE_PAGES); 2851 #ifdef CONFIG_HIGHMEM 2852 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages; 2853 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM], 2854 NR_FREE_PAGES); 2855 #else 2856 val->totalhigh = 0; 2857 val->freehigh = 0; 2858 #endif 2859 val->mem_unit = PAGE_SIZE; 2860 } 2861 #endif 2862 2863 /* 2864 * Determine whether the node should be displayed or not, depending on whether 2865 * SHOW_MEM_FILTER_NODES was passed to show_free_areas(). 2866 */ 2867 bool skip_free_areas_node(unsigned int flags, int nid) 2868 { 2869 bool ret = false; 2870 unsigned int cpuset_mems_cookie; 2871 2872 if (!(flags & SHOW_MEM_FILTER_NODES)) 2873 goto out; 2874 2875 do { 2876 cpuset_mems_cookie = get_mems_allowed(); 2877 ret = !node_isset(nid, cpuset_current_mems_allowed); 2878 } while (!put_mems_allowed(cpuset_mems_cookie)); 2879 out: 2880 return ret; 2881 } 2882 2883 #define K(x) ((x) << (PAGE_SHIFT-10)) 2884 2885 static void show_migration_types(unsigned char type) 2886 { 2887 static const char types[MIGRATE_TYPES] = { 2888 [MIGRATE_UNMOVABLE] = 'U', 2889 [MIGRATE_RECLAIMABLE] = 'E', 2890 [MIGRATE_MOVABLE] = 'M', 2891 [MIGRATE_RESERVE] = 'R', 2892 #ifdef CONFIG_CMA 2893 [MIGRATE_CMA] = 'C', 2894 #endif 2895 [MIGRATE_ISOLATE] = 'I', 2896 }; 2897 char tmp[MIGRATE_TYPES + 1]; 2898 char *p = tmp; 2899 int i; 2900 2901 for (i = 0; i < MIGRATE_TYPES; i++) { 2902 if (type & (1 << i)) 2903 *p++ = types[i]; 2904 } 2905 2906 *p = '\0'; 2907 printk("(%s) ", tmp); 2908 } 2909 2910 /* 2911 * Show free area list (used inside shift_scroll-lock stuff) 2912 * We also calculate the percentage fragmentation. We do this by counting the 2913 * memory on each free list with the exception of the first item on the list. 2914 * Suppresses nodes that are not allowed by current's cpuset if 2915 * SHOW_MEM_FILTER_NODES is passed. 2916 */ 2917 void show_free_areas(unsigned int filter) 2918 { 2919 int cpu; 2920 struct zone *zone; 2921 2922 for_each_populated_zone(zone) { 2923 if (skip_free_areas_node(filter, zone_to_nid(zone))) 2924 continue; 2925 show_node(zone); 2926 printk("%s per-cpu:\n", zone->name); 2927 2928 for_each_online_cpu(cpu) { 2929 struct per_cpu_pageset *pageset; 2930 2931 pageset = per_cpu_ptr(zone->pageset, cpu); 2932 2933 printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n", 2934 cpu, pageset->pcp.high, 2935 pageset->pcp.batch, pageset->pcp.count); 2936 } 2937 } 2938 2939 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n" 2940 " active_file:%lu inactive_file:%lu isolated_file:%lu\n" 2941 " unevictable:%lu" 2942 " dirty:%lu writeback:%lu unstable:%lu\n" 2943 " free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n" 2944 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n" 2945 " free_cma:%lu\n", 2946 global_page_state(NR_ACTIVE_ANON), 2947 global_page_state(NR_INACTIVE_ANON), 2948 global_page_state(NR_ISOLATED_ANON), 2949 global_page_state(NR_ACTIVE_FILE), 2950 global_page_state(NR_INACTIVE_FILE), 2951 global_page_state(NR_ISOLATED_FILE), 2952 global_page_state(NR_UNEVICTABLE), 2953 global_page_state(NR_FILE_DIRTY), 2954 global_page_state(NR_WRITEBACK), 2955 global_page_state(NR_UNSTABLE_NFS), 2956 global_page_state(NR_FREE_PAGES), 2957 global_page_state(NR_SLAB_RECLAIMABLE), 2958 global_page_state(NR_SLAB_UNRECLAIMABLE), 2959 global_page_state(NR_FILE_MAPPED), 2960 global_page_state(NR_SHMEM), 2961 global_page_state(NR_PAGETABLE), 2962 global_page_state(NR_BOUNCE), 2963 global_page_state(NR_FREE_CMA_PAGES)); 2964 2965 for_each_populated_zone(zone) { 2966 int i; 2967 2968 if (skip_free_areas_node(filter, zone_to_nid(zone))) 2969 continue; 2970 show_node(zone); 2971 printk("%s" 2972 " free:%lukB" 2973 " min:%lukB" 2974 " low:%lukB" 2975 " high:%lukB" 2976 " active_anon:%lukB" 2977 " inactive_anon:%lukB" 2978 " active_file:%lukB" 2979 " inactive_file:%lukB" 2980 " unevictable:%lukB" 2981 " isolated(anon):%lukB" 2982 " isolated(file):%lukB" 2983 " present:%lukB" 2984 " managed:%lukB" 2985 " mlocked:%lukB" 2986 " dirty:%lukB" 2987 " writeback:%lukB" 2988 " mapped:%lukB" 2989 " shmem:%lukB" 2990 " slab_reclaimable:%lukB" 2991 " slab_unreclaimable:%lukB" 2992 " kernel_stack:%lukB" 2993 " pagetables:%lukB" 2994 " unstable:%lukB" 2995 " bounce:%lukB" 2996 " free_cma:%lukB" 2997 " writeback_tmp:%lukB" 2998 " pages_scanned:%lu" 2999 " all_unreclaimable? %s" 3000 "\n", 3001 zone->name, 3002 K(zone_page_state(zone, NR_FREE_PAGES)), 3003 K(min_wmark_pages(zone)), 3004 K(low_wmark_pages(zone)), 3005 K(high_wmark_pages(zone)), 3006 K(zone_page_state(zone, NR_ACTIVE_ANON)), 3007 K(zone_page_state(zone, NR_INACTIVE_ANON)), 3008 K(zone_page_state(zone, NR_ACTIVE_FILE)), 3009 K(zone_page_state(zone, NR_INACTIVE_FILE)), 3010 K(zone_page_state(zone, NR_UNEVICTABLE)), 3011 K(zone_page_state(zone, NR_ISOLATED_ANON)), 3012 K(zone_page_state(zone, NR_ISOLATED_FILE)), 3013 K(zone->present_pages), 3014 K(zone->managed_pages), 3015 K(zone_page_state(zone, NR_MLOCK)), 3016 K(zone_page_state(zone, NR_FILE_DIRTY)), 3017 K(zone_page_state(zone, NR_WRITEBACK)), 3018 K(zone_page_state(zone, NR_FILE_MAPPED)), 3019 K(zone_page_state(zone, NR_SHMEM)), 3020 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)), 3021 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)), 3022 zone_page_state(zone, NR_KERNEL_STACK) * 3023 THREAD_SIZE / 1024, 3024 K(zone_page_state(zone, NR_PAGETABLE)), 3025 K(zone_page_state(zone, NR_UNSTABLE_NFS)), 3026 K(zone_page_state(zone, NR_BOUNCE)), 3027 K(zone_page_state(zone, NR_FREE_CMA_PAGES)), 3028 K(zone_page_state(zone, NR_WRITEBACK_TEMP)), 3029 zone->pages_scanned, 3030 (zone->all_unreclaimable ? "yes" : "no") 3031 ); 3032 printk("lowmem_reserve[]:"); 3033 for (i = 0; i < MAX_NR_ZONES; i++) 3034 printk(" %lu", zone->lowmem_reserve[i]); 3035 printk("\n"); 3036 } 3037 3038 for_each_populated_zone(zone) { 3039 unsigned long nr[MAX_ORDER], flags, order, total = 0; 3040 unsigned char types[MAX_ORDER]; 3041 3042 if (skip_free_areas_node(filter, zone_to_nid(zone))) 3043 continue; 3044 show_node(zone); 3045 printk("%s: ", zone->name); 3046 3047 spin_lock_irqsave(&zone->lock, flags); 3048 for (order = 0; order < MAX_ORDER; order++) { 3049 struct free_area *area = &zone->free_area[order]; 3050 int type; 3051 3052 nr[order] = area->nr_free; 3053 total += nr[order] << order; 3054 3055 types[order] = 0; 3056 for (type = 0; type < MIGRATE_TYPES; type++) { 3057 if (!list_empty(&area->free_list[type])) 3058 types[order] |= 1 << type; 3059 } 3060 } 3061 spin_unlock_irqrestore(&zone->lock, flags); 3062 for (order = 0; order < MAX_ORDER; order++) { 3063 printk("%lu*%lukB ", nr[order], K(1UL) << order); 3064 if (nr[order]) 3065 show_migration_types(types[order]); 3066 } 3067 printk("= %lukB\n", K(total)); 3068 } 3069 3070 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES)); 3071 3072 show_swap_cache_info(); 3073 } 3074 3075 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref) 3076 { 3077 zoneref->zone = zone; 3078 zoneref->zone_idx = zone_idx(zone); 3079 } 3080 3081 /* 3082 * Builds allocation fallback zone lists. 3083 * 3084 * Add all populated zones of a node to the zonelist. 3085 */ 3086 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist, 3087 int nr_zones, enum zone_type zone_type) 3088 { 3089 struct zone *zone; 3090 3091 BUG_ON(zone_type >= MAX_NR_ZONES); 3092 zone_type++; 3093 3094 do { 3095 zone_type--; 3096 zone = pgdat->node_zones + zone_type; 3097 if (populated_zone(zone)) { 3098 zoneref_set_zone(zone, 3099 &zonelist->_zonerefs[nr_zones++]); 3100 check_highest_zone(zone_type); 3101 } 3102 3103 } while (zone_type); 3104 return nr_zones; 3105 } 3106 3107 3108 /* 3109 * zonelist_order: 3110 * 0 = automatic detection of better ordering. 3111 * 1 = order by ([node] distance, -zonetype) 3112 * 2 = order by (-zonetype, [node] distance) 3113 * 3114 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create 3115 * the same zonelist. So only NUMA can configure this param. 3116 */ 3117 #define ZONELIST_ORDER_DEFAULT 0 3118 #define ZONELIST_ORDER_NODE 1 3119 #define ZONELIST_ORDER_ZONE 2 3120 3121 /* zonelist order in the kernel. 3122 * set_zonelist_order() will set this to NODE or ZONE. 3123 */ 3124 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT; 3125 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"}; 3126 3127 3128 #ifdef CONFIG_NUMA 3129 /* The value user specified ....changed by config */ 3130 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT; 3131 /* string for sysctl */ 3132 #define NUMA_ZONELIST_ORDER_LEN 16 3133 char numa_zonelist_order[16] = "default"; 3134 3135 /* 3136 * interface for configure zonelist ordering. 3137 * command line option "numa_zonelist_order" 3138 * = "[dD]efault - default, automatic configuration. 3139 * = "[nN]ode - order by node locality, then by zone within node 3140 * = "[zZ]one - order by zone, then by locality within zone 3141 */ 3142 3143 static int __parse_numa_zonelist_order(char *s) 3144 { 3145 if (*s == 'd' || *s == 'D') { 3146 user_zonelist_order = ZONELIST_ORDER_DEFAULT; 3147 } else if (*s == 'n' || *s == 'N') { 3148 user_zonelist_order = ZONELIST_ORDER_NODE; 3149 } else if (*s == 'z' || *s == 'Z') { 3150 user_zonelist_order = ZONELIST_ORDER_ZONE; 3151 } else { 3152 printk(KERN_WARNING 3153 "Ignoring invalid numa_zonelist_order value: " 3154 "%s\n", s); 3155 return -EINVAL; 3156 } 3157 return 0; 3158 } 3159 3160 static __init int setup_numa_zonelist_order(char *s) 3161 { 3162 int ret; 3163 3164 if (!s) 3165 return 0; 3166 3167 ret = __parse_numa_zonelist_order(s); 3168 if (ret == 0) 3169 strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN); 3170 3171 return ret; 3172 } 3173 early_param("numa_zonelist_order", setup_numa_zonelist_order); 3174 3175 /* 3176 * sysctl handler for numa_zonelist_order 3177 */ 3178 int numa_zonelist_order_handler(ctl_table *table, int write, 3179 void __user *buffer, size_t *length, 3180 loff_t *ppos) 3181 { 3182 char saved_string[NUMA_ZONELIST_ORDER_LEN]; 3183 int ret; 3184 static DEFINE_MUTEX(zl_order_mutex); 3185 3186 mutex_lock(&zl_order_mutex); 3187 if (write) 3188 strcpy(saved_string, (char*)table->data); 3189 ret = proc_dostring(table, write, buffer, length, ppos); 3190 if (ret) 3191 goto out; 3192 if (write) { 3193 int oldval = user_zonelist_order; 3194 if (__parse_numa_zonelist_order((char*)table->data)) { 3195 /* 3196 * bogus value. restore saved string 3197 */ 3198 strncpy((char*)table->data, saved_string, 3199 NUMA_ZONELIST_ORDER_LEN); 3200 user_zonelist_order = oldval; 3201 } else if (oldval != user_zonelist_order) { 3202 mutex_lock(&zonelists_mutex); 3203 build_all_zonelists(NULL, NULL); 3204 mutex_unlock(&zonelists_mutex); 3205 } 3206 } 3207 out: 3208 mutex_unlock(&zl_order_mutex); 3209 return ret; 3210 } 3211 3212 3213 #define MAX_NODE_LOAD (nr_online_nodes) 3214 static int node_load[MAX_NUMNODES]; 3215 3216 /** 3217 * find_next_best_node - find the next node that should appear in a given node's fallback list 3218 * @node: node whose fallback list we're appending 3219 * @used_node_mask: nodemask_t of already used nodes 3220 * 3221 * We use a number of factors to determine which is the next node that should 3222 * appear on a given node's fallback list. The node should not have appeared 3223 * already in @node's fallback list, and it should be the next closest node 3224 * according to the distance array (which contains arbitrary distance values 3225 * from each node to each node in the system), and should also prefer nodes 3226 * with no CPUs, since presumably they'll have very little allocation pressure 3227 * on them otherwise. 3228 * It returns -1 if no node is found. 3229 */ 3230 static int find_next_best_node(int node, nodemask_t *used_node_mask) 3231 { 3232 int n, val; 3233 int min_val = INT_MAX; 3234 int best_node = -1; 3235 const struct cpumask *tmp = cpumask_of_node(0); 3236 3237 /* Use the local node if we haven't already */ 3238 if (!node_isset(node, *used_node_mask)) { 3239 node_set(node, *used_node_mask); 3240 return node; 3241 } 3242 3243 for_each_node_state(n, N_MEMORY) { 3244 3245 /* Don't want a node to appear more than once */ 3246 if (node_isset(n, *used_node_mask)) 3247 continue; 3248 3249 /* Use the distance array to find the distance */ 3250 val = node_distance(node, n); 3251 3252 /* Penalize nodes under us ("prefer the next node") */ 3253 val += (n < node); 3254 3255 /* Give preference to headless and unused nodes */ 3256 tmp = cpumask_of_node(n); 3257 if (!cpumask_empty(tmp)) 3258 val += PENALTY_FOR_NODE_WITH_CPUS; 3259 3260 /* Slight preference for less loaded node */ 3261 val *= (MAX_NODE_LOAD*MAX_NUMNODES); 3262 val += node_load[n]; 3263 3264 if (val < min_val) { 3265 min_val = val; 3266 best_node = n; 3267 } 3268 } 3269 3270 if (best_node >= 0) 3271 node_set(best_node, *used_node_mask); 3272 3273 return best_node; 3274 } 3275 3276 3277 /* 3278 * Build zonelists ordered by node and zones within node. 3279 * This results in maximum locality--normal zone overflows into local 3280 * DMA zone, if any--but risks exhausting DMA zone. 3281 */ 3282 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node) 3283 { 3284 int j; 3285 struct zonelist *zonelist; 3286 3287 zonelist = &pgdat->node_zonelists[0]; 3288 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++) 3289 ; 3290 j = build_zonelists_node(NODE_DATA(node), zonelist, j, 3291 MAX_NR_ZONES - 1); 3292 zonelist->_zonerefs[j].zone = NULL; 3293 zonelist->_zonerefs[j].zone_idx = 0; 3294 } 3295 3296 /* 3297 * Build gfp_thisnode zonelists 3298 */ 3299 static void build_thisnode_zonelists(pg_data_t *pgdat) 3300 { 3301 int j; 3302 struct zonelist *zonelist; 3303 3304 zonelist = &pgdat->node_zonelists[1]; 3305 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1); 3306 zonelist->_zonerefs[j].zone = NULL; 3307 zonelist->_zonerefs[j].zone_idx = 0; 3308 } 3309 3310 /* 3311 * Build zonelists ordered by zone and nodes within zones. 3312 * This results in conserving DMA zone[s] until all Normal memory is 3313 * exhausted, but results in overflowing to remote node while memory 3314 * may still exist in local DMA zone. 3315 */ 3316 static int node_order[MAX_NUMNODES]; 3317 3318 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes) 3319 { 3320 int pos, j, node; 3321 int zone_type; /* needs to be signed */ 3322 struct zone *z; 3323 struct zonelist *zonelist; 3324 3325 zonelist = &pgdat->node_zonelists[0]; 3326 pos = 0; 3327 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) { 3328 for (j = 0; j < nr_nodes; j++) { 3329 node = node_order[j]; 3330 z = &NODE_DATA(node)->node_zones[zone_type]; 3331 if (populated_zone(z)) { 3332 zoneref_set_zone(z, 3333 &zonelist->_zonerefs[pos++]); 3334 check_highest_zone(zone_type); 3335 } 3336 } 3337 } 3338 zonelist->_zonerefs[pos].zone = NULL; 3339 zonelist->_zonerefs[pos].zone_idx = 0; 3340 } 3341 3342 static int default_zonelist_order(void) 3343 { 3344 int nid, zone_type; 3345 unsigned long low_kmem_size,total_size; 3346 struct zone *z; 3347 int average_size; 3348 /* 3349 * ZONE_DMA and ZONE_DMA32 can be very small area in the system. 3350 * If they are really small and used heavily, the system can fall 3351 * into OOM very easily. 3352 * This function detect ZONE_DMA/DMA32 size and configures zone order. 3353 */ 3354 /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */ 3355 low_kmem_size = 0; 3356 total_size = 0; 3357 for_each_online_node(nid) { 3358 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) { 3359 z = &NODE_DATA(nid)->node_zones[zone_type]; 3360 if (populated_zone(z)) { 3361 if (zone_type < ZONE_NORMAL) 3362 low_kmem_size += z->present_pages; 3363 total_size += z->present_pages; 3364 } else if (zone_type == ZONE_NORMAL) { 3365 /* 3366 * If any node has only lowmem, then node order 3367 * is preferred to allow kernel allocations 3368 * locally; otherwise, they can easily infringe 3369 * on other nodes when there is an abundance of 3370 * lowmem available to allocate from. 3371 */ 3372 return ZONELIST_ORDER_NODE; 3373 } 3374 } 3375 } 3376 if (!low_kmem_size || /* there are no DMA area. */ 3377 low_kmem_size > total_size/2) /* DMA/DMA32 is big. */ 3378 return ZONELIST_ORDER_NODE; 3379 /* 3380 * look into each node's config. 3381 * If there is a node whose DMA/DMA32 memory is very big area on 3382 * local memory, NODE_ORDER may be suitable. 3383 */ 3384 average_size = total_size / 3385 (nodes_weight(node_states[N_MEMORY]) + 1); 3386 for_each_online_node(nid) { 3387 low_kmem_size = 0; 3388 total_size = 0; 3389 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) { 3390 z = &NODE_DATA(nid)->node_zones[zone_type]; 3391 if (populated_zone(z)) { 3392 if (zone_type < ZONE_NORMAL) 3393 low_kmem_size += z->present_pages; 3394 total_size += z->present_pages; 3395 } 3396 } 3397 if (low_kmem_size && 3398 total_size > average_size && /* ignore small node */ 3399 low_kmem_size > total_size * 70/100) 3400 return ZONELIST_ORDER_NODE; 3401 } 3402 return ZONELIST_ORDER_ZONE; 3403 } 3404 3405 static void set_zonelist_order(void) 3406 { 3407 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT) 3408 current_zonelist_order = default_zonelist_order(); 3409 else 3410 current_zonelist_order = user_zonelist_order; 3411 } 3412 3413 static void build_zonelists(pg_data_t *pgdat) 3414 { 3415 int j, node, load; 3416 enum zone_type i; 3417 nodemask_t used_mask; 3418 int local_node, prev_node; 3419 struct zonelist *zonelist; 3420 int order = current_zonelist_order; 3421 3422 /* initialize zonelists */ 3423 for (i = 0; i < MAX_ZONELISTS; i++) { 3424 zonelist = pgdat->node_zonelists + i; 3425 zonelist->_zonerefs[0].zone = NULL; 3426 zonelist->_zonerefs[0].zone_idx = 0; 3427 } 3428 3429 /* NUMA-aware ordering of nodes */ 3430 local_node = pgdat->node_id; 3431 load = nr_online_nodes; 3432 prev_node = local_node; 3433 nodes_clear(used_mask); 3434 3435 memset(node_order, 0, sizeof(node_order)); 3436 j = 0; 3437 3438 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) { 3439 /* 3440 * We don't want to pressure a particular node. 3441 * So adding penalty to the first node in same 3442 * distance group to make it round-robin. 3443 */ 3444 if (node_distance(local_node, node) != 3445 node_distance(local_node, prev_node)) 3446 node_load[node] = load; 3447 3448 prev_node = node; 3449 load--; 3450 if (order == ZONELIST_ORDER_NODE) 3451 build_zonelists_in_node_order(pgdat, node); 3452 else 3453 node_order[j++] = node; /* remember order */ 3454 } 3455 3456 if (order == ZONELIST_ORDER_ZONE) { 3457 /* calculate node order -- i.e., DMA last! */ 3458 build_zonelists_in_zone_order(pgdat, j); 3459 } 3460 3461 build_thisnode_zonelists(pgdat); 3462 } 3463 3464 /* Construct the zonelist performance cache - see further mmzone.h */ 3465 static void build_zonelist_cache(pg_data_t *pgdat) 3466 { 3467 struct zonelist *zonelist; 3468 struct zonelist_cache *zlc; 3469 struct zoneref *z; 3470 3471 zonelist = &pgdat->node_zonelists[0]; 3472 zonelist->zlcache_ptr = zlc = &zonelist->zlcache; 3473 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST); 3474 for (z = zonelist->_zonerefs; z->zone; z++) 3475 zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z); 3476 } 3477 3478 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 3479 /* 3480 * Return node id of node used for "local" allocations. 3481 * I.e., first node id of first zone in arg node's generic zonelist. 3482 * Used for initializing percpu 'numa_mem', which is used primarily 3483 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist. 3484 */ 3485 int local_memory_node(int node) 3486 { 3487 struct zone *zone; 3488 3489 (void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL), 3490 gfp_zone(GFP_KERNEL), 3491 NULL, 3492 &zone); 3493 return zone->node; 3494 } 3495 #endif 3496 3497 #else /* CONFIG_NUMA */ 3498 3499 static void set_zonelist_order(void) 3500 { 3501 current_zonelist_order = ZONELIST_ORDER_ZONE; 3502 } 3503 3504 static void build_zonelists(pg_data_t *pgdat) 3505 { 3506 int node, local_node; 3507 enum zone_type j; 3508 struct zonelist *zonelist; 3509 3510 local_node = pgdat->node_id; 3511 3512 zonelist = &pgdat->node_zonelists[0]; 3513 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1); 3514 3515 /* 3516 * Now we build the zonelist so that it contains the zones 3517 * of all the other nodes. 3518 * We don't want to pressure a particular node, so when 3519 * building the zones for node N, we make sure that the 3520 * zones coming right after the local ones are those from 3521 * node N+1 (modulo N) 3522 */ 3523 for (node = local_node + 1; node < MAX_NUMNODES; node++) { 3524 if (!node_online(node)) 3525 continue; 3526 j = build_zonelists_node(NODE_DATA(node), zonelist, j, 3527 MAX_NR_ZONES - 1); 3528 } 3529 for (node = 0; node < local_node; node++) { 3530 if (!node_online(node)) 3531 continue; 3532 j = build_zonelists_node(NODE_DATA(node), zonelist, j, 3533 MAX_NR_ZONES - 1); 3534 } 3535 3536 zonelist->_zonerefs[j].zone = NULL; 3537 zonelist->_zonerefs[j].zone_idx = 0; 3538 } 3539 3540 /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */ 3541 static void build_zonelist_cache(pg_data_t *pgdat) 3542 { 3543 pgdat->node_zonelists[0].zlcache_ptr = NULL; 3544 } 3545 3546 #endif /* CONFIG_NUMA */ 3547 3548 /* 3549 * Boot pageset table. One per cpu which is going to be used for all 3550 * zones and all nodes. The parameters will be set in such a way 3551 * that an item put on a list will immediately be handed over to 3552 * the buddy list. This is safe since pageset manipulation is done 3553 * with interrupts disabled. 3554 * 3555 * The boot_pagesets must be kept even after bootup is complete for 3556 * unused processors and/or zones. They do play a role for bootstrapping 3557 * hotplugged processors. 3558 * 3559 * zoneinfo_show() and maybe other functions do 3560 * not check if the processor is online before following the pageset pointer. 3561 * Other parts of the kernel may not check if the zone is available. 3562 */ 3563 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch); 3564 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset); 3565 static void setup_zone_pageset(struct zone *zone); 3566 3567 /* 3568 * Global mutex to protect against size modification of zonelists 3569 * as well as to serialize pageset setup for the new populated zone. 3570 */ 3571 DEFINE_MUTEX(zonelists_mutex); 3572 3573 /* return values int ....just for stop_machine() */ 3574 static int __build_all_zonelists(void *data) 3575 { 3576 int nid; 3577 int cpu; 3578 pg_data_t *self = data; 3579 3580 #ifdef CONFIG_NUMA 3581 memset(node_load, 0, sizeof(node_load)); 3582 #endif 3583 3584 if (self && !node_online(self->node_id)) { 3585 build_zonelists(self); 3586 build_zonelist_cache(self); 3587 } 3588 3589 for_each_online_node(nid) { 3590 pg_data_t *pgdat = NODE_DATA(nid); 3591 3592 build_zonelists(pgdat); 3593 build_zonelist_cache(pgdat); 3594 } 3595 3596 /* 3597 * Initialize the boot_pagesets that are going to be used 3598 * for bootstrapping processors. The real pagesets for 3599 * each zone will be allocated later when the per cpu 3600 * allocator is available. 3601 * 3602 * boot_pagesets are used also for bootstrapping offline 3603 * cpus if the system is already booted because the pagesets 3604 * are needed to initialize allocators on a specific cpu too. 3605 * F.e. the percpu allocator needs the page allocator which 3606 * needs the percpu allocator in order to allocate its pagesets 3607 * (a chicken-egg dilemma). 3608 */ 3609 for_each_possible_cpu(cpu) { 3610 setup_pageset(&per_cpu(boot_pageset, cpu), 0); 3611 3612 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 3613 /* 3614 * We now know the "local memory node" for each node-- 3615 * i.e., the node of the first zone in the generic zonelist. 3616 * Set up numa_mem percpu variable for on-line cpus. During 3617 * boot, only the boot cpu should be on-line; we'll init the 3618 * secondary cpus' numa_mem as they come on-line. During 3619 * node/memory hotplug, we'll fixup all on-line cpus. 3620 */ 3621 if (cpu_online(cpu)) 3622 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu))); 3623 #endif 3624 } 3625 3626 return 0; 3627 } 3628 3629 /* 3630 * Called with zonelists_mutex held always 3631 * unless system_state == SYSTEM_BOOTING. 3632 */ 3633 void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone) 3634 { 3635 set_zonelist_order(); 3636 3637 if (system_state == SYSTEM_BOOTING) { 3638 __build_all_zonelists(NULL); 3639 mminit_verify_zonelist(); 3640 cpuset_init_current_mems_allowed(); 3641 } else { 3642 /* we have to stop all cpus to guarantee there is no user 3643 of zonelist */ 3644 #ifdef CONFIG_MEMORY_HOTPLUG 3645 if (zone) 3646 setup_zone_pageset(zone); 3647 #endif 3648 stop_machine(__build_all_zonelists, pgdat, NULL); 3649 /* cpuset refresh routine should be here */ 3650 } 3651 vm_total_pages = nr_free_pagecache_pages(); 3652 /* 3653 * Disable grouping by mobility if the number of pages in the 3654 * system is too low to allow the mechanism to work. It would be 3655 * more accurate, but expensive to check per-zone. This check is 3656 * made on memory-hotadd so a system can start with mobility 3657 * disabled and enable it later 3658 */ 3659 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES)) 3660 page_group_by_mobility_disabled = 1; 3661 else 3662 page_group_by_mobility_disabled = 0; 3663 3664 printk("Built %i zonelists in %s order, mobility grouping %s. " 3665 "Total pages: %ld\n", 3666 nr_online_nodes, 3667 zonelist_order_name[current_zonelist_order], 3668 page_group_by_mobility_disabled ? "off" : "on", 3669 vm_total_pages); 3670 #ifdef CONFIG_NUMA 3671 printk("Policy zone: %s\n", zone_names[policy_zone]); 3672 #endif 3673 } 3674 3675 /* 3676 * Helper functions to size the waitqueue hash table. 3677 * Essentially these want to choose hash table sizes sufficiently 3678 * large so that collisions trying to wait on pages are rare. 3679 * But in fact, the number of active page waitqueues on typical 3680 * systems is ridiculously low, less than 200. So this is even 3681 * conservative, even though it seems large. 3682 * 3683 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to 3684 * waitqueues, i.e. the size of the waitq table given the number of pages. 3685 */ 3686 #define PAGES_PER_WAITQUEUE 256 3687 3688 #ifndef CONFIG_MEMORY_HOTPLUG 3689 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages) 3690 { 3691 unsigned long size = 1; 3692 3693 pages /= PAGES_PER_WAITQUEUE; 3694 3695 while (size < pages) 3696 size <<= 1; 3697 3698 /* 3699 * Once we have dozens or even hundreds of threads sleeping 3700 * on IO we've got bigger problems than wait queue collision. 3701 * Limit the size of the wait table to a reasonable size. 3702 */ 3703 size = min(size, 4096UL); 3704 3705 return max(size, 4UL); 3706 } 3707 #else 3708 /* 3709 * A zone's size might be changed by hot-add, so it is not possible to determine 3710 * a suitable size for its wait_table. So we use the maximum size now. 3711 * 3712 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie: 3713 * 3714 * i386 (preemption config) : 4096 x 16 = 64Kbyte. 3715 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte. 3716 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte. 3717 * 3718 * The maximum entries are prepared when a zone's memory is (512K + 256) pages 3719 * or more by the traditional way. (See above). It equals: 3720 * 3721 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte. 3722 * ia64(16K page size) : = ( 8G + 4M)byte. 3723 * powerpc (64K page size) : = (32G +16M)byte. 3724 */ 3725 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages) 3726 { 3727 return 4096UL; 3728 } 3729 #endif 3730 3731 /* 3732 * This is an integer logarithm so that shifts can be used later 3733 * to extract the more random high bits from the multiplicative 3734 * hash function before the remainder is taken. 3735 */ 3736 static inline unsigned long wait_table_bits(unsigned long size) 3737 { 3738 return ffz(~size); 3739 } 3740 3741 #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1)) 3742 3743 /* 3744 * Check if a pageblock contains reserved pages 3745 */ 3746 static int pageblock_is_reserved(unsigned long start_pfn, unsigned long end_pfn) 3747 { 3748 unsigned long pfn; 3749 3750 for (pfn = start_pfn; pfn < end_pfn; pfn++) { 3751 if (!pfn_valid_within(pfn) || PageReserved(pfn_to_page(pfn))) 3752 return 1; 3753 } 3754 return 0; 3755 } 3756 3757 /* 3758 * Mark a number of pageblocks as MIGRATE_RESERVE. The number 3759 * of blocks reserved is based on min_wmark_pages(zone). The memory within 3760 * the reserve will tend to store contiguous free pages. Setting min_free_kbytes 3761 * higher will lead to a bigger reserve which will get freed as contiguous 3762 * blocks as reclaim kicks in 3763 */ 3764 static void setup_zone_migrate_reserve(struct zone *zone) 3765 { 3766 unsigned long start_pfn, pfn, end_pfn, block_end_pfn; 3767 struct page *page; 3768 unsigned long block_migratetype; 3769 int reserve; 3770 3771 /* 3772 * Get the start pfn, end pfn and the number of blocks to reserve 3773 * We have to be careful to be aligned to pageblock_nr_pages to 3774 * make sure that we always check pfn_valid for the first page in 3775 * the block. 3776 */ 3777 start_pfn = zone->zone_start_pfn; 3778 end_pfn = start_pfn + zone->spanned_pages; 3779 start_pfn = roundup(start_pfn, pageblock_nr_pages); 3780 reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >> 3781 pageblock_order; 3782 3783 /* 3784 * Reserve blocks are generally in place to help high-order atomic 3785 * allocations that are short-lived. A min_free_kbytes value that 3786 * would result in more than 2 reserve blocks for atomic allocations 3787 * is assumed to be in place to help anti-fragmentation for the 3788 * future allocation of hugepages at runtime. 3789 */ 3790 reserve = min(2, reserve); 3791 3792 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) { 3793 if (!pfn_valid(pfn)) 3794 continue; 3795 page = pfn_to_page(pfn); 3796 3797 /* Watch out for overlapping nodes */ 3798 if (page_to_nid(page) != zone_to_nid(zone)) 3799 continue; 3800 3801 block_migratetype = get_pageblock_migratetype(page); 3802 3803 /* Only test what is necessary when the reserves are not met */ 3804 if (reserve > 0) { 3805 /* 3806 * Blocks with reserved pages will never free, skip 3807 * them. 3808 */ 3809 block_end_pfn = min(pfn + pageblock_nr_pages, end_pfn); 3810 if (pageblock_is_reserved(pfn, block_end_pfn)) 3811 continue; 3812 3813 /* If this block is reserved, account for it */ 3814 if (block_migratetype == MIGRATE_RESERVE) { 3815 reserve--; 3816 continue; 3817 } 3818 3819 /* Suitable for reserving if this block is movable */ 3820 if (block_migratetype == MIGRATE_MOVABLE) { 3821 set_pageblock_migratetype(page, 3822 MIGRATE_RESERVE); 3823 move_freepages_block(zone, page, 3824 MIGRATE_RESERVE); 3825 reserve--; 3826 continue; 3827 } 3828 } 3829 3830 /* 3831 * If the reserve is met and this is a previous reserved block, 3832 * take it back 3833 */ 3834 if (block_migratetype == MIGRATE_RESERVE) { 3835 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 3836 move_freepages_block(zone, page, MIGRATE_MOVABLE); 3837 } 3838 } 3839 } 3840 3841 /* 3842 * Initially all pages are reserved - free ones are freed 3843 * up by free_all_bootmem() once the early boot process is 3844 * done. Non-atomic initialization, single-pass. 3845 */ 3846 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone, 3847 unsigned long start_pfn, enum memmap_context context) 3848 { 3849 struct page *page; 3850 unsigned long end_pfn = start_pfn + size; 3851 unsigned long pfn; 3852 struct zone *z; 3853 3854 if (highest_memmap_pfn < end_pfn - 1) 3855 highest_memmap_pfn = end_pfn - 1; 3856 3857 z = &NODE_DATA(nid)->node_zones[zone]; 3858 for (pfn = start_pfn; pfn < end_pfn; pfn++) { 3859 /* 3860 * There can be holes in boot-time mem_map[]s 3861 * handed to this function. They do not 3862 * exist on hotplugged memory. 3863 */ 3864 if (context == MEMMAP_EARLY) { 3865 if (!early_pfn_valid(pfn)) 3866 continue; 3867 if (!early_pfn_in_nid(pfn, nid)) 3868 continue; 3869 } 3870 page = pfn_to_page(pfn); 3871 set_page_links(page, zone, nid, pfn); 3872 mminit_verify_page_links(page, zone, nid, pfn); 3873 init_page_count(page); 3874 reset_page_mapcount(page); 3875 reset_page_last_nid(page); 3876 SetPageReserved(page); 3877 /* 3878 * Mark the block movable so that blocks are reserved for 3879 * movable at startup. This will force kernel allocations 3880 * to reserve their blocks rather than leaking throughout 3881 * the address space during boot when many long-lived 3882 * kernel allocations are made. Later some blocks near 3883 * the start are marked MIGRATE_RESERVE by 3884 * setup_zone_migrate_reserve() 3885 * 3886 * bitmap is created for zone's valid pfn range. but memmap 3887 * can be created for invalid pages (for alignment) 3888 * check here not to call set_pageblock_migratetype() against 3889 * pfn out of zone. 3890 */ 3891 if ((z->zone_start_pfn <= pfn) 3892 && (pfn < z->zone_start_pfn + z->spanned_pages) 3893 && !(pfn & (pageblock_nr_pages - 1))) 3894 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 3895 3896 INIT_LIST_HEAD(&page->lru); 3897 #ifdef WANT_PAGE_VIRTUAL 3898 /* The shift won't overflow because ZONE_NORMAL is below 4G. */ 3899 if (!is_highmem_idx(zone)) 3900 set_page_address(page, __va(pfn << PAGE_SHIFT)); 3901 #endif 3902 } 3903 } 3904 3905 static void __meminit zone_init_free_lists(struct zone *zone) 3906 { 3907 int order, t; 3908 for_each_migratetype_order(order, t) { 3909 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]); 3910 zone->free_area[order].nr_free = 0; 3911 } 3912 } 3913 3914 #ifndef __HAVE_ARCH_MEMMAP_INIT 3915 #define memmap_init(size, nid, zone, start_pfn) \ 3916 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY) 3917 #endif 3918 3919 static int __meminit zone_batchsize(struct zone *zone) 3920 { 3921 #ifdef CONFIG_MMU 3922 int batch; 3923 3924 /* 3925 * The per-cpu-pages pools are set to around 1000th of the 3926 * size of the zone. But no more than 1/2 of a meg. 3927 * 3928 * OK, so we don't know how big the cache is. So guess. 3929 */ 3930 batch = zone->present_pages / 1024; 3931 if (batch * PAGE_SIZE > 512 * 1024) 3932 batch = (512 * 1024) / PAGE_SIZE; 3933 batch /= 4; /* We effectively *= 4 below */ 3934 if (batch < 1) 3935 batch = 1; 3936 3937 /* 3938 * Clamp the batch to a 2^n - 1 value. Having a power 3939 * of 2 value was found to be more likely to have 3940 * suboptimal cache aliasing properties in some cases. 3941 * 3942 * For example if 2 tasks are alternately allocating 3943 * batches of pages, one task can end up with a lot 3944 * of pages of one half of the possible page colors 3945 * and the other with pages of the other colors. 3946 */ 3947 batch = rounddown_pow_of_two(batch + batch/2) - 1; 3948 3949 return batch; 3950 3951 #else 3952 /* The deferral and batching of frees should be suppressed under NOMMU 3953 * conditions. 3954 * 3955 * The problem is that NOMMU needs to be able to allocate large chunks 3956 * of contiguous memory as there's no hardware page translation to 3957 * assemble apparent contiguous memory from discontiguous pages. 3958 * 3959 * Queueing large contiguous runs of pages for batching, however, 3960 * causes the pages to actually be freed in smaller chunks. As there 3961 * can be a significant delay between the individual batches being 3962 * recycled, this leads to the once large chunks of space being 3963 * fragmented and becoming unavailable for high-order allocations. 3964 */ 3965 return 0; 3966 #endif 3967 } 3968 3969 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch) 3970 { 3971 struct per_cpu_pages *pcp; 3972 int migratetype; 3973 3974 memset(p, 0, sizeof(*p)); 3975 3976 pcp = &p->pcp; 3977 pcp->count = 0; 3978 pcp->high = 6 * batch; 3979 pcp->batch = max(1UL, 1 * batch); 3980 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++) 3981 INIT_LIST_HEAD(&pcp->lists[migratetype]); 3982 } 3983 3984 /* 3985 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist 3986 * to the value high for the pageset p. 3987 */ 3988 3989 static void setup_pagelist_highmark(struct per_cpu_pageset *p, 3990 unsigned long high) 3991 { 3992 struct per_cpu_pages *pcp; 3993 3994 pcp = &p->pcp; 3995 pcp->high = high; 3996 pcp->batch = max(1UL, high/4); 3997 if ((high/4) > (PAGE_SHIFT * 8)) 3998 pcp->batch = PAGE_SHIFT * 8; 3999 } 4000 4001 static void __meminit setup_zone_pageset(struct zone *zone) 4002 { 4003 int cpu; 4004 4005 zone->pageset = alloc_percpu(struct per_cpu_pageset); 4006 4007 for_each_possible_cpu(cpu) { 4008 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu); 4009 4010 setup_pageset(pcp, zone_batchsize(zone)); 4011 4012 if (percpu_pagelist_fraction) 4013 setup_pagelist_highmark(pcp, 4014 (zone->present_pages / 4015 percpu_pagelist_fraction)); 4016 } 4017 } 4018 4019 /* 4020 * Allocate per cpu pagesets and initialize them. 4021 * Before this call only boot pagesets were available. 4022 */ 4023 void __init setup_per_cpu_pageset(void) 4024 { 4025 struct zone *zone; 4026 4027 for_each_populated_zone(zone) 4028 setup_zone_pageset(zone); 4029 } 4030 4031 static noinline __init_refok 4032 int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages) 4033 { 4034 int i; 4035 struct pglist_data *pgdat = zone->zone_pgdat; 4036 size_t alloc_size; 4037 4038 /* 4039 * The per-page waitqueue mechanism uses hashed waitqueues 4040 * per zone. 4041 */ 4042 zone->wait_table_hash_nr_entries = 4043 wait_table_hash_nr_entries(zone_size_pages); 4044 zone->wait_table_bits = 4045 wait_table_bits(zone->wait_table_hash_nr_entries); 4046 alloc_size = zone->wait_table_hash_nr_entries 4047 * sizeof(wait_queue_head_t); 4048 4049 if (!slab_is_available()) { 4050 zone->wait_table = (wait_queue_head_t *) 4051 alloc_bootmem_node_nopanic(pgdat, alloc_size); 4052 } else { 4053 /* 4054 * This case means that a zone whose size was 0 gets new memory 4055 * via memory hot-add. 4056 * But it may be the case that a new node was hot-added. In 4057 * this case vmalloc() will not be able to use this new node's 4058 * memory - this wait_table must be initialized to use this new 4059 * node itself as well. 4060 * To use this new node's memory, further consideration will be 4061 * necessary. 4062 */ 4063 zone->wait_table = vmalloc(alloc_size); 4064 } 4065 if (!zone->wait_table) 4066 return -ENOMEM; 4067 4068 for(i = 0; i < zone->wait_table_hash_nr_entries; ++i) 4069 init_waitqueue_head(zone->wait_table + i); 4070 4071 return 0; 4072 } 4073 4074 static __meminit void zone_pcp_init(struct zone *zone) 4075 { 4076 /* 4077 * per cpu subsystem is not up at this point. The following code 4078 * relies on the ability of the linker to provide the 4079 * offset of a (static) per cpu variable into the per cpu area. 4080 */ 4081 zone->pageset = &boot_pageset; 4082 4083 if (zone->present_pages) 4084 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n", 4085 zone->name, zone->present_pages, 4086 zone_batchsize(zone)); 4087 } 4088 4089 int __meminit init_currently_empty_zone(struct zone *zone, 4090 unsigned long zone_start_pfn, 4091 unsigned long size, 4092 enum memmap_context context) 4093 { 4094 struct pglist_data *pgdat = zone->zone_pgdat; 4095 int ret; 4096 ret = zone_wait_table_init(zone, size); 4097 if (ret) 4098 return ret; 4099 pgdat->nr_zones = zone_idx(zone) + 1; 4100 4101 zone->zone_start_pfn = zone_start_pfn; 4102 4103 mminit_dprintk(MMINIT_TRACE, "memmap_init", 4104 "Initialising map node %d zone %lu pfns %lu -> %lu\n", 4105 pgdat->node_id, 4106 (unsigned long)zone_idx(zone), 4107 zone_start_pfn, (zone_start_pfn + size)); 4108 4109 zone_init_free_lists(zone); 4110 4111 return 0; 4112 } 4113 4114 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 4115 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID 4116 /* 4117 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on. 4118 * Architectures may implement their own version but if add_active_range() 4119 * was used and there are no special requirements, this is a convenient 4120 * alternative 4121 */ 4122 int __meminit __early_pfn_to_nid(unsigned long pfn) 4123 { 4124 unsigned long start_pfn, end_pfn; 4125 int i, nid; 4126 4127 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) 4128 if (start_pfn <= pfn && pfn < end_pfn) 4129 return nid; 4130 /* This is a memory hole */ 4131 return -1; 4132 } 4133 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */ 4134 4135 int __meminit early_pfn_to_nid(unsigned long pfn) 4136 { 4137 int nid; 4138 4139 nid = __early_pfn_to_nid(pfn); 4140 if (nid >= 0) 4141 return nid; 4142 /* just returns 0 */ 4143 return 0; 4144 } 4145 4146 #ifdef CONFIG_NODES_SPAN_OTHER_NODES 4147 bool __meminit early_pfn_in_nid(unsigned long pfn, int node) 4148 { 4149 int nid; 4150 4151 nid = __early_pfn_to_nid(pfn); 4152 if (nid >= 0 && nid != node) 4153 return false; 4154 return true; 4155 } 4156 #endif 4157 4158 /** 4159 * free_bootmem_with_active_regions - Call free_bootmem_node for each active range 4160 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed. 4161 * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node 4162 * 4163 * If an architecture guarantees that all ranges registered with 4164 * add_active_ranges() contain no holes and may be freed, this 4165 * this function may be used instead of calling free_bootmem() manually. 4166 */ 4167 void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn) 4168 { 4169 unsigned long start_pfn, end_pfn; 4170 int i, this_nid; 4171 4172 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) { 4173 start_pfn = min(start_pfn, max_low_pfn); 4174 end_pfn = min(end_pfn, max_low_pfn); 4175 4176 if (start_pfn < end_pfn) 4177 free_bootmem_node(NODE_DATA(this_nid), 4178 PFN_PHYS(start_pfn), 4179 (end_pfn - start_pfn) << PAGE_SHIFT); 4180 } 4181 } 4182 4183 /** 4184 * sparse_memory_present_with_active_regions - Call memory_present for each active range 4185 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used. 4186 * 4187 * If an architecture guarantees that all ranges registered with 4188 * add_active_ranges() contain no holes and may be freed, this 4189 * function may be used instead of calling memory_present() manually. 4190 */ 4191 void __init sparse_memory_present_with_active_regions(int nid) 4192 { 4193 unsigned long start_pfn, end_pfn; 4194 int i, this_nid; 4195 4196 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) 4197 memory_present(this_nid, start_pfn, end_pfn); 4198 } 4199 4200 /** 4201 * get_pfn_range_for_nid - Return the start and end page frames for a node 4202 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned. 4203 * @start_pfn: Passed by reference. On return, it will have the node start_pfn. 4204 * @end_pfn: Passed by reference. On return, it will have the node end_pfn. 4205 * 4206 * It returns the start and end page frame of a node based on information 4207 * provided by an arch calling add_active_range(). If called for a node 4208 * with no available memory, a warning is printed and the start and end 4209 * PFNs will be 0. 4210 */ 4211 void __meminit get_pfn_range_for_nid(unsigned int nid, 4212 unsigned long *start_pfn, unsigned long *end_pfn) 4213 { 4214 unsigned long this_start_pfn, this_end_pfn; 4215 int i; 4216 4217 *start_pfn = -1UL; 4218 *end_pfn = 0; 4219 4220 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) { 4221 *start_pfn = min(*start_pfn, this_start_pfn); 4222 *end_pfn = max(*end_pfn, this_end_pfn); 4223 } 4224 4225 if (*start_pfn == -1UL) 4226 *start_pfn = 0; 4227 } 4228 4229 /* 4230 * This finds a zone that can be used for ZONE_MOVABLE pages. The 4231 * assumption is made that zones within a node are ordered in monotonic 4232 * increasing memory addresses so that the "highest" populated zone is used 4233 */ 4234 static void __init find_usable_zone_for_movable(void) 4235 { 4236 int zone_index; 4237 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) { 4238 if (zone_index == ZONE_MOVABLE) 4239 continue; 4240 4241 if (arch_zone_highest_possible_pfn[zone_index] > 4242 arch_zone_lowest_possible_pfn[zone_index]) 4243 break; 4244 } 4245 4246 VM_BUG_ON(zone_index == -1); 4247 movable_zone = zone_index; 4248 } 4249 4250 /* 4251 * The zone ranges provided by the architecture do not include ZONE_MOVABLE 4252 * because it is sized independent of architecture. Unlike the other zones, 4253 * the starting point for ZONE_MOVABLE is not fixed. It may be different 4254 * in each node depending on the size of each node and how evenly kernelcore 4255 * is distributed. This helper function adjusts the zone ranges 4256 * provided by the architecture for a given node by using the end of the 4257 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that 4258 * zones within a node are in order of monotonic increases memory addresses 4259 */ 4260 static void __meminit adjust_zone_range_for_zone_movable(int nid, 4261 unsigned long zone_type, 4262 unsigned long node_start_pfn, 4263 unsigned long node_end_pfn, 4264 unsigned long *zone_start_pfn, 4265 unsigned long *zone_end_pfn) 4266 { 4267 /* Only adjust if ZONE_MOVABLE is on this node */ 4268 if (zone_movable_pfn[nid]) { 4269 /* Size ZONE_MOVABLE */ 4270 if (zone_type == ZONE_MOVABLE) { 4271 *zone_start_pfn = zone_movable_pfn[nid]; 4272 *zone_end_pfn = min(node_end_pfn, 4273 arch_zone_highest_possible_pfn[movable_zone]); 4274 4275 /* Adjust for ZONE_MOVABLE starting within this range */ 4276 } else if (*zone_start_pfn < zone_movable_pfn[nid] && 4277 *zone_end_pfn > zone_movable_pfn[nid]) { 4278 *zone_end_pfn = zone_movable_pfn[nid]; 4279 4280 /* Check if this whole range is within ZONE_MOVABLE */ 4281 } else if (*zone_start_pfn >= zone_movable_pfn[nid]) 4282 *zone_start_pfn = *zone_end_pfn; 4283 } 4284 } 4285 4286 /* 4287 * Return the number of pages a zone spans in a node, including holes 4288 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node() 4289 */ 4290 static unsigned long __meminit zone_spanned_pages_in_node(int nid, 4291 unsigned long zone_type, 4292 unsigned long *ignored) 4293 { 4294 unsigned long node_start_pfn, node_end_pfn; 4295 unsigned long zone_start_pfn, zone_end_pfn; 4296 4297 /* Get the start and end of the node and zone */ 4298 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn); 4299 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type]; 4300 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type]; 4301 adjust_zone_range_for_zone_movable(nid, zone_type, 4302 node_start_pfn, node_end_pfn, 4303 &zone_start_pfn, &zone_end_pfn); 4304 4305 /* Check that this node has pages within the zone's required range */ 4306 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn) 4307 return 0; 4308 4309 /* Move the zone boundaries inside the node if necessary */ 4310 zone_end_pfn = min(zone_end_pfn, node_end_pfn); 4311 zone_start_pfn = max(zone_start_pfn, node_start_pfn); 4312 4313 /* Return the spanned pages */ 4314 return zone_end_pfn - zone_start_pfn; 4315 } 4316 4317 /* 4318 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES, 4319 * then all holes in the requested range will be accounted for. 4320 */ 4321 unsigned long __meminit __absent_pages_in_range(int nid, 4322 unsigned long range_start_pfn, 4323 unsigned long range_end_pfn) 4324 { 4325 unsigned long nr_absent = range_end_pfn - range_start_pfn; 4326 unsigned long start_pfn, end_pfn; 4327 int i; 4328 4329 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) { 4330 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn); 4331 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn); 4332 nr_absent -= end_pfn - start_pfn; 4333 } 4334 return nr_absent; 4335 } 4336 4337 /** 4338 * absent_pages_in_range - Return number of page frames in holes within a range 4339 * @start_pfn: The start PFN to start searching for holes 4340 * @end_pfn: The end PFN to stop searching for holes 4341 * 4342 * It returns the number of pages frames in memory holes within a range. 4343 */ 4344 unsigned long __init absent_pages_in_range(unsigned long start_pfn, 4345 unsigned long end_pfn) 4346 { 4347 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn); 4348 } 4349 4350 /* Return the number of page frames in holes in a zone on a node */ 4351 static unsigned long __meminit zone_absent_pages_in_node(int nid, 4352 unsigned long zone_type, 4353 unsigned long *ignored) 4354 { 4355 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type]; 4356 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type]; 4357 unsigned long node_start_pfn, node_end_pfn; 4358 unsigned long zone_start_pfn, zone_end_pfn; 4359 4360 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn); 4361 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high); 4362 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high); 4363 4364 adjust_zone_range_for_zone_movable(nid, zone_type, 4365 node_start_pfn, node_end_pfn, 4366 &zone_start_pfn, &zone_end_pfn); 4367 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn); 4368 } 4369 4370 #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 4371 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid, 4372 unsigned long zone_type, 4373 unsigned long *zones_size) 4374 { 4375 return zones_size[zone_type]; 4376 } 4377 4378 static inline unsigned long __meminit zone_absent_pages_in_node(int nid, 4379 unsigned long zone_type, 4380 unsigned long *zholes_size) 4381 { 4382 if (!zholes_size) 4383 return 0; 4384 4385 return zholes_size[zone_type]; 4386 } 4387 4388 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 4389 4390 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat, 4391 unsigned long *zones_size, unsigned long *zholes_size) 4392 { 4393 unsigned long realtotalpages, totalpages = 0; 4394 enum zone_type i; 4395 4396 for (i = 0; i < MAX_NR_ZONES; i++) 4397 totalpages += zone_spanned_pages_in_node(pgdat->node_id, i, 4398 zones_size); 4399 pgdat->node_spanned_pages = totalpages; 4400 4401 realtotalpages = totalpages; 4402 for (i = 0; i < MAX_NR_ZONES; i++) 4403 realtotalpages -= 4404 zone_absent_pages_in_node(pgdat->node_id, i, 4405 zholes_size); 4406 pgdat->node_present_pages = realtotalpages; 4407 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id, 4408 realtotalpages); 4409 } 4410 4411 #ifndef CONFIG_SPARSEMEM 4412 /* 4413 * Calculate the size of the zone->blockflags rounded to an unsigned long 4414 * Start by making sure zonesize is a multiple of pageblock_order by rounding 4415 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally 4416 * round what is now in bits to nearest long in bits, then return it in 4417 * bytes. 4418 */ 4419 static unsigned long __init usemap_size(unsigned long zonesize) 4420 { 4421 unsigned long usemapsize; 4422 4423 usemapsize = roundup(zonesize, pageblock_nr_pages); 4424 usemapsize = usemapsize >> pageblock_order; 4425 usemapsize *= NR_PAGEBLOCK_BITS; 4426 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long)); 4427 4428 return usemapsize / 8; 4429 } 4430 4431 static void __init setup_usemap(struct pglist_data *pgdat, 4432 struct zone *zone, unsigned long zonesize) 4433 { 4434 unsigned long usemapsize = usemap_size(zonesize); 4435 zone->pageblock_flags = NULL; 4436 if (usemapsize) 4437 zone->pageblock_flags = alloc_bootmem_node_nopanic(pgdat, 4438 usemapsize); 4439 } 4440 #else 4441 static inline void setup_usemap(struct pglist_data *pgdat, 4442 struct zone *zone, unsigned long zonesize) {} 4443 #endif /* CONFIG_SPARSEMEM */ 4444 4445 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE 4446 4447 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */ 4448 void __init set_pageblock_order(void) 4449 { 4450 unsigned int order; 4451 4452 /* Check that pageblock_nr_pages has not already been setup */ 4453 if (pageblock_order) 4454 return; 4455 4456 if (HPAGE_SHIFT > PAGE_SHIFT) 4457 order = HUGETLB_PAGE_ORDER; 4458 else 4459 order = MAX_ORDER - 1; 4460 4461 /* 4462 * Assume the largest contiguous order of interest is a huge page. 4463 * This value may be variable depending on boot parameters on IA64 and 4464 * powerpc. 4465 */ 4466 pageblock_order = order; 4467 } 4468 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */ 4469 4470 /* 4471 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order() 4472 * is unused as pageblock_order is set at compile-time. See 4473 * include/linux/pageblock-flags.h for the values of pageblock_order based on 4474 * the kernel config 4475 */ 4476 void __init set_pageblock_order(void) 4477 { 4478 } 4479 4480 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */ 4481 4482 static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages, 4483 unsigned long present_pages) 4484 { 4485 unsigned long pages = spanned_pages; 4486 4487 /* 4488 * Provide a more accurate estimation if there are holes within 4489 * the zone and SPARSEMEM is in use. If there are holes within the 4490 * zone, each populated memory region may cost us one or two extra 4491 * memmap pages due to alignment because memmap pages for each 4492 * populated regions may not naturally algined on page boundary. 4493 * So the (present_pages >> 4) heuristic is a tradeoff for that. 4494 */ 4495 if (spanned_pages > present_pages + (present_pages >> 4) && 4496 IS_ENABLED(CONFIG_SPARSEMEM)) 4497 pages = present_pages; 4498 4499 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT; 4500 } 4501 4502 /* 4503 * Set up the zone data structures: 4504 * - mark all pages reserved 4505 * - mark all memory queues empty 4506 * - clear the memory bitmaps 4507 * 4508 * NOTE: pgdat should get zeroed by caller. 4509 */ 4510 static void __paginginit free_area_init_core(struct pglist_data *pgdat, 4511 unsigned long *zones_size, unsigned long *zholes_size) 4512 { 4513 enum zone_type j; 4514 int nid = pgdat->node_id; 4515 unsigned long zone_start_pfn = pgdat->node_start_pfn; 4516 int ret; 4517 4518 pgdat_resize_init(pgdat); 4519 #ifdef CONFIG_NUMA_BALANCING 4520 spin_lock_init(&pgdat->numabalancing_migrate_lock); 4521 pgdat->numabalancing_migrate_nr_pages = 0; 4522 pgdat->numabalancing_migrate_next_window = jiffies; 4523 #endif 4524 init_waitqueue_head(&pgdat->kswapd_wait); 4525 init_waitqueue_head(&pgdat->pfmemalloc_wait); 4526 pgdat_page_cgroup_init(pgdat); 4527 4528 for (j = 0; j < MAX_NR_ZONES; j++) { 4529 struct zone *zone = pgdat->node_zones + j; 4530 unsigned long size, realsize, freesize, memmap_pages; 4531 4532 size = zone_spanned_pages_in_node(nid, j, zones_size); 4533 realsize = freesize = size - zone_absent_pages_in_node(nid, j, 4534 zholes_size); 4535 4536 /* 4537 * Adjust freesize so that it accounts for how much memory 4538 * is used by this zone for memmap. This affects the watermark 4539 * and per-cpu initialisations 4540 */ 4541 memmap_pages = calc_memmap_size(size, realsize); 4542 if (freesize >= memmap_pages) { 4543 freesize -= memmap_pages; 4544 if (memmap_pages) 4545 printk(KERN_DEBUG 4546 " %s zone: %lu pages used for memmap\n", 4547 zone_names[j], memmap_pages); 4548 } else 4549 printk(KERN_WARNING 4550 " %s zone: %lu pages exceeds freesize %lu\n", 4551 zone_names[j], memmap_pages, freesize); 4552 4553 /* Account for reserved pages */ 4554 if (j == 0 && freesize > dma_reserve) { 4555 freesize -= dma_reserve; 4556 printk(KERN_DEBUG " %s zone: %lu pages reserved\n", 4557 zone_names[0], dma_reserve); 4558 } 4559 4560 if (!is_highmem_idx(j)) 4561 nr_kernel_pages += freesize; 4562 /* Charge for highmem memmap if there are enough kernel pages */ 4563 else if (nr_kernel_pages > memmap_pages * 2) 4564 nr_kernel_pages -= memmap_pages; 4565 nr_all_pages += freesize; 4566 4567 zone->spanned_pages = size; 4568 zone->present_pages = freesize; 4569 /* 4570 * Set an approximate value for lowmem here, it will be adjusted 4571 * when the bootmem allocator frees pages into the buddy system. 4572 * And all highmem pages will be managed by the buddy system. 4573 */ 4574 zone->managed_pages = is_highmem_idx(j) ? realsize : freesize; 4575 #ifdef CONFIG_NUMA 4576 zone->node = nid; 4577 zone->min_unmapped_pages = (freesize*sysctl_min_unmapped_ratio) 4578 / 100; 4579 zone->min_slab_pages = (freesize * sysctl_min_slab_ratio) / 100; 4580 #endif 4581 zone->name = zone_names[j]; 4582 spin_lock_init(&zone->lock); 4583 spin_lock_init(&zone->lru_lock); 4584 zone_seqlock_init(zone); 4585 zone->zone_pgdat = pgdat; 4586 4587 zone_pcp_init(zone); 4588 lruvec_init(&zone->lruvec); 4589 if (!size) 4590 continue; 4591 4592 set_pageblock_order(); 4593 setup_usemap(pgdat, zone, size); 4594 ret = init_currently_empty_zone(zone, zone_start_pfn, 4595 size, MEMMAP_EARLY); 4596 BUG_ON(ret); 4597 memmap_init(size, nid, j, zone_start_pfn); 4598 zone_start_pfn += size; 4599 } 4600 } 4601 4602 static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat) 4603 { 4604 /* Skip empty nodes */ 4605 if (!pgdat->node_spanned_pages) 4606 return; 4607 4608 #ifdef CONFIG_FLAT_NODE_MEM_MAP 4609 /* ia64 gets its own node_mem_map, before this, without bootmem */ 4610 if (!pgdat->node_mem_map) { 4611 unsigned long size, start, end; 4612 struct page *map; 4613 4614 /* 4615 * The zone's endpoints aren't required to be MAX_ORDER 4616 * aligned but the node_mem_map endpoints must be in order 4617 * for the buddy allocator to function correctly. 4618 */ 4619 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1); 4620 end = pgdat->node_start_pfn + pgdat->node_spanned_pages; 4621 end = ALIGN(end, MAX_ORDER_NR_PAGES); 4622 size = (end - start) * sizeof(struct page); 4623 map = alloc_remap(pgdat->node_id, size); 4624 if (!map) 4625 map = alloc_bootmem_node_nopanic(pgdat, size); 4626 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start); 4627 } 4628 #ifndef CONFIG_NEED_MULTIPLE_NODES 4629 /* 4630 * With no DISCONTIG, the global mem_map is just set as node 0's 4631 */ 4632 if (pgdat == NODE_DATA(0)) { 4633 mem_map = NODE_DATA(0)->node_mem_map; 4634 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 4635 if (page_to_pfn(mem_map) != pgdat->node_start_pfn) 4636 mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET); 4637 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 4638 } 4639 #endif 4640 #endif /* CONFIG_FLAT_NODE_MEM_MAP */ 4641 } 4642 4643 void __paginginit free_area_init_node(int nid, unsigned long *zones_size, 4644 unsigned long node_start_pfn, unsigned long *zholes_size) 4645 { 4646 pg_data_t *pgdat = NODE_DATA(nid); 4647 4648 /* pg_data_t should be reset to zero when it's allocated */ 4649 WARN_ON(pgdat->nr_zones || pgdat->classzone_idx); 4650 4651 pgdat->node_id = nid; 4652 pgdat->node_start_pfn = node_start_pfn; 4653 init_zone_allows_reclaim(nid); 4654 calculate_node_totalpages(pgdat, zones_size, zholes_size); 4655 4656 alloc_node_mem_map(pgdat); 4657 #ifdef CONFIG_FLAT_NODE_MEM_MAP 4658 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n", 4659 nid, (unsigned long)pgdat, 4660 (unsigned long)pgdat->node_mem_map); 4661 #endif 4662 4663 free_area_init_core(pgdat, zones_size, zholes_size); 4664 } 4665 4666 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 4667 4668 #if MAX_NUMNODES > 1 4669 /* 4670 * Figure out the number of possible node ids. 4671 */ 4672 static void __init setup_nr_node_ids(void) 4673 { 4674 unsigned int node; 4675 unsigned int highest = 0; 4676 4677 for_each_node_mask(node, node_possible_map) 4678 highest = node; 4679 nr_node_ids = highest + 1; 4680 } 4681 #else 4682 static inline void setup_nr_node_ids(void) 4683 { 4684 } 4685 #endif 4686 4687 /** 4688 * node_map_pfn_alignment - determine the maximum internode alignment 4689 * 4690 * This function should be called after node map is populated and sorted. 4691 * It calculates the maximum power of two alignment which can distinguish 4692 * all the nodes. 4693 * 4694 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value 4695 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the 4696 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is 4697 * shifted, 1GiB is enough and this function will indicate so. 4698 * 4699 * This is used to test whether pfn -> nid mapping of the chosen memory 4700 * model has fine enough granularity to avoid incorrect mapping for the 4701 * populated node map. 4702 * 4703 * Returns the determined alignment in pfn's. 0 if there is no alignment 4704 * requirement (single node). 4705 */ 4706 unsigned long __init node_map_pfn_alignment(void) 4707 { 4708 unsigned long accl_mask = 0, last_end = 0; 4709 unsigned long start, end, mask; 4710 int last_nid = -1; 4711 int i, nid; 4712 4713 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) { 4714 if (!start || last_nid < 0 || last_nid == nid) { 4715 last_nid = nid; 4716 last_end = end; 4717 continue; 4718 } 4719 4720 /* 4721 * Start with a mask granular enough to pin-point to the 4722 * start pfn and tick off bits one-by-one until it becomes 4723 * too coarse to separate the current node from the last. 4724 */ 4725 mask = ~((1 << __ffs(start)) - 1); 4726 while (mask && last_end <= (start & (mask << 1))) 4727 mask <<= 1; 4728 4729 /* accumulate all internode masks */ 4730 accl_mask |= mask; 4731 } 4732 4733 /* convert mask to number of pages */ 4734 return ~accl_mask + 1; 4735 } 4736 4737 /* Find the lowest pfn for a node */ 4738 static unsigned long __init find_min_pfn_for_node(int nid) 4739 { 4740 unsigned long min_pfn = ULONG_MAX; 4741 unsigned long start_pfn; 4742 int i; 4743 4744 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL) 4745 min_pfn = min(min_pfn, start_pfn); 4746 4747 if (min_pfn == ULONG_MAX) { 4748 printk(KERN_WARNING 4749 "Could not find start_pfn for node %d\n", nid); 4750 return 0; 4751 } 4752 4753 return min_pfn; 4754 } 4755 4756 /** 4757 * find_min_pfn_with_active_regions - Find the minimum PFN registered 4758 * 4759 * It returns the minimum PFN based on information provided via 4760 * add_active_range(). 4761 */ 4762 unsigned long __init find_min_pfn_with_active_regions(void) 4763 { 4764 return find_min_pfn_for_node(MAX_NUMNODES); 4765 } 4766 4767 /* 4768 * early_calculate_totalpages() 4769 * Sum pages in active regions for movable zone. 4770 * Populate N_MEMORY for calculating usable_nodes. 4771 */ 4772 static unsigned long __init early_calculate_totalpages(void) 4773 { 4774 unsigned long totalpages = 0; 4775 unsigned long start_pfn, end_pfn; 4776 int i, nid; 4777 4778 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) { 4779 unsigned long pages = end_pfn - start_pfn; 4780 4781 totalpages += pages; 4782 if (pages) 4783 node_set_state(nid, N_MEMORY); 4784 } 4785 return totalpages; 4786 } 4787 4788 /* 4789 * Find the PFN the Movable zone begins in each node. Kernel memory 4790 * is spread evenly between nodes as long as the nodes have enough 4791 * memory. When they don't, some nodes will have more kernelcore than 4792 * others 4793 */ 4794 static void __init find_zone_movable_pfns_for_nodes(void) 4795 { 4796 int i, nid; 4797 unsigned long usable_startpfn; 4798 unsigned long kernelcore_node, kernelcore_remaining; 4799 /* save the state before borrow the nodemask */ 4800 nodemask_t saved_node_state = node_states[N_MEMORY]; 4801 unsigned long totalpages = early_calculate_totalpages(); 4802 int usable_nodes = nodes_weight(node_states[N_MEMORY]); 4803 4804 /* 4805 * If movablecore was specified, calculate what size of 4806 * kernelcore that corresponds so that memory usable for 4807 * any allocation type is evenly spread. If both kernelcore 4808 * and movablecore are specified, then the value of kernelcore 4809 * will be used for required_kernelcore if it's greater than 4810 * what movablecore would have allowed. 4811 */ 4812 if (required_movablecore) { 4813 unsigned long corepages; 4814 4815 /* 4816 * Round-up so that ZONE_MOVABLE is at least as large as what 4817 * was requested by the user 4818 */ 4819 required_movablecore = 4820 roundup(required_movablecore, MAX_ORDER_NR_PAGES); 4821 corepages = totalpages - required_movablecore; 4822 4823 required_kernelcore = max(required_kernelcore, corepages); 4824 } 4825 4826 /* If kernelcore was not specified, there is no ZONE_MOVABLE */ 4827 if (!required_kernelcore) 4828 goto out; 4829 4830 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */ 4831 find_usable_zone_for_movable(); 4832 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone]; 4833 4834 restart: 4835 /* Spread kernelcore memory as evenly as possible throughout nodes */ 4836 kernelcore_node = required_kernelcore / usable_nodes; 4837 for_each_node_state(nid, N_MEMORY) { 4838 unsigned long start_pfn, end_pfn; 4839 4840 /* 4841 * Recalculate kernelcore_node if the division per node 4842 * now exceeds what is necessary to satisfy the requested 4843 * amount of memory for the kernel 4844 */ 4845 if (required_kernelcore < kernelcore_node) 4846 kernelcore_node = required_kernelcore / usable_nodes; 4847 4848 /* 4849 * As the map is walked, we track how much memory is usable 4850 * by the kernel using kernelcore_remaining. When it is 4851 * 0, the rest of the node is usable by ZONE_MOVABLE 4852 */ 4853 kernelcore_remaining = kernelcore_node; 4854 4855 /* Go through each range of PFNs within this node */ 4856 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) { 4857 unsigned long size_pages; 4858 4859 start_pfn = max(start_pfn, zone_movable_pfn[nid]); 4860 if (start_pfn >= end_pfn) 4861 continue; 4862 4863 /* Account for what is only usable for kernelcore */ 4864 if (start_pfn < usable_startpfn) { 4865 unsigned long kernel_pages; 4866 kernel_pages = min(end_pfn, usable_startpfn) 4867 - start_pfn; 4868 4869 kernelcore_remaining -= min(kernel_pages, 4870 kernelcore_remaining); 4871 required_kernelcore -= min(kernel_pages, 4872 required_kernelcore); 4873 4874 /* Continue if range is now fully accounted */ 4875 if (end_pfn <= usable_startpfn) { 4876 4877 /* 4878 * Push zone_movable_pfn to the end so 4879 * that if we have to rebalance 4880 * kernelcore across nodes, we will 4881 * not double account here 4882 */ 4883 zone_movable_pfn[nid] = end_pfn; 4884 continue; 4885 } 4886 start_pfn = usable_startpfn; 4887 } 4888 4889 /* 4890 * The usable PFN range for ZONE_MOVABLE is from 4891 * start_pfn->end_pfn. Calculate size_pages as the 4892 * number of pages used as kernelcore 4893 */ 4894 size_pages = end_pfn - start_pfn; 4895 if (size_pages > kernelcore_remaining) 4896 size_pages = kernelcore_remaining; 4897 zone_movable_pfn[nid] = start_pfn + size_pages; 4898 4899 /* 4900 * Some kernelcore has been met, update counts and 4901 * break if the kernelcore for this node has been 4902 * satisified 4903 */ 4904 required_kernelcore -= min(required_kernelcore, 4905 size_pages); 4906 kernelcore_remaining -= size_pages; 4907 if (!kernelcore_remaining) 4908 break; 4909 } 4910 } 4911 4912 /* 4913 * If there is still required_kernelcore, we do another pass with one 4914 * less node in the count. This will push zone_movable_pfn[nid] further 4915 * along on the nodes that still have memory until kernelcore is 4916 * satisified 4917 */ 4918 usable_nodes--; 4919 if (usable_nodes && required_kernelcore > usable_nodes) 4920 goto restart; 4921 4922 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */ 4923 for (nid = 0; nid < MAX_NUMNODES; nid++) 4924 zone_movable_pfn[nid] = 4925 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES); 4926 4927 out: 4928 /* restore the node_state */ 4929 node_states[N_MEMORY] = saved_node_state; 4930 } 4931 4932 /* Any regular or high memory on that node ? */ 4933 static void check_for_memory(pg_data_t *pgdat, int nid) 4934 { 4935 enum zone_type zone_type; 4936 4937 if (N_MEMORY == N_NORMAL_MEMORY) 4938 return; 4939 4940 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) { 4941 struct zone *zone = &pgdat->node_zones[zone_type]; 4942 if (zone->present_pages) { 4943 node_set_state(nid, N_HIGH_MEMORY); 4944 if (N_NORMAL_MEMORY != N_HIGH_MEMORY && 4945 zone_type <= ZONE_NORMAL) 4946 node_set_state(nid, N_NORMAL_MEMORY); 4947 break; 4948 } 4949 } 4950 } 4951 4952 /** 4953 * free_area_init_nodes - Initialise all pg_data_t and zone data 4954 * @max_zone_pfn: an array of max PFNs for each zone 4955 * 4956 * This will call free_area_init_node() for each active node in the system. 4957 * Using the page ranges provided by add_active_range(), the size of each 4958 * zone in each node and their holes is calculated. If the maximum PFN 4959 * between two adjacent zones match, it is assumed that the zone is empty. 4960 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed 4961 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone 4962 * starts where the previous one ended. For example, ZONE_DMA32 starts 4963 * at arch_max_dma_pfn. 4964 */ 4965 void __init free_area_init_nodes(unsigned long *max_zone_pfn) 4966 { 4967 unsigned long start_pfn, end_pfn; 4968 int i, nid; 4969 4970 /* Record where the zone boundaries are */ 4971 memset(arch_zone_lowest_possible_pfn, 0, 4972 sizeof(arch_zone_lowest_possible_pfn)); 4973 memset(arch_zone_highest_possible_pfn, 0, 4974 sizeof(arch_zone_highest_possible_pfn)); 4975 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions(); 4976 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0]; 4977 for (i = 1; i < MAX_NR_ZONES; i++) { 4978 if (i == ZONE_MOVABLE) 4979 continue; 4980 arch_zone_lowest_possible_pfn[i] = 4981 arch_zone_highest_possible_pfn[i-1]; 4982 arch_zone_highest_possible_pfn[i] = 4983 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]); 4984 } 4985 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0; 4986 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0; 4987 4988 /* Find the PFNs that ZONE_MOVABLE begins at in each node */ 4989 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn)); 4990 find_zone_movable_pfns_for_nodes(); 4991 4992 /* Print out the zone ranges */ 4993 printk("Zone ranges:\n"); 4994 for (i = 0; i < MAX_NR_ZONES; i++) { 4995 if (i == ZONE_MOVABLE) 4996 continue; 4997 printk(KERN_CONT " %-8s ", zone_names[i]); 4998 if (arch_zone_lowest_possible_pfn[i] == 4999 arch_zone_highest_possible_pfn[i]) 5000 printk(KERN_CONT "empty\n"); 5001 else 5002 printk(KERN_CONT "[mem %0#10lx-%0#10lx]\n", 5003 arch_zone_lowest_possible_pfn[i] << PAGE_SHIFT, 5004 (arch_zone_highest_possible_pfn[i] 5005 << PAGE_SHIFT) - 1); 5006 } 5007 5008 /* Print out the PFNs ZONE_MOVABLE begins at in each node */ 5009 printk("Movable zone start for each node\n"); 5010 for (i = 0; i < MAX_NUMNODES; i++) { 5011 if (zone_movable_pfn[i]) 5012 printk(" Node %d: %#010lx\n", i, 5013 zone_movable_pfn[i] << PAGE_SHIFT); 5014 } 5015 5016 /* Print out the early node map */ 5017 printk("Early memory node ranges\n"); 5018 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) 5019 printk(" node %3d: [mem %#010lx-%#010lx]\n", nid, 5020 start_pfn << PAGE_SHIFT, (end_pfn << PAGE_SHIFT) - 1); 5021 5022 /* Initialise every node */ 5023 mminit_verify_pageflags_layout(); 5024 setup_nr_node_ids(); 5025 for_each_online_node(nid) { 5026 pg_data_t *pgdat = NODE_DATA(nid); 5027 free_area_init_node(nid, NULL, 5028 find_min_pfn_for_node(nid), NULL); 5029 5030 /* Any memory on that node */ 5031 if (pgdat->node_present_pages) 5032 node_set_state(nid, N_MEMORY); 5033 check_for_memory(pgdat, nid); 5034 } 5035 } 5036 5037 static int __init cmdline_parse_core(char *p, unsigned long *core) 5038 { 5039 unsigned long long coremem; 5040 if (!p) 5041 return -EINVAL; 5042 5043 coremem = memparse(p, &p); 5044 *core = coremem >> PAGE_SHIFT; 5045 5046 /* Paranoid check that UL is enough for the coremem value */ 5047 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX); 5048 5049 return 0; 5050 } 5051 5052 /* 5053 * kernelcore=size sets the amount of memory for use for allocations that 5054 * cannot be reclaimed or migrated. 5055 */ 5056 static int __init cmdline_parse_kernelcore(char *p) 5057 { 5058 return cmdline_parse_core(p, &required_kernelcore); 5059 } 5060 5061 /* 5062 * movablecore=size sets the amount of memory for use for allocations that 5063 * can be reclaimed or migrated. 5064 */ 5065 static int __init cmdline_parse_movablecore(char *p) 5066 { 5067 return cmdline_parse_core(p, &required_movablecore); 5068 } 5069 5070 early_param("kernelcore", cmdline_parse_kernelcore); 5071 early_param("movablecore", cmdline_parse_movablecore); 5072 5073 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 5074 5075 /** 5076 * set_dma_reserve - set the specified number of pages reserved in the first zone 5077 * @new_dma_reserve: The number of pages to mark reserved 5078 * 5079 * The per-cpu batchsize and zone watermarks are determined by present_pages. 5080 * In the DMA zone, a significant percentage may be consumed by kernel image 5081 * and other unfreeable allocations which can skew the watermarks badly. This 5082 * function may optionally be used to account for unfreeable pages in the 5083 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and 5084 * smaller per-cpu batchsize. 5085 */ 5086 void __init set_dma_reserve(unsigned long new_dma_reserve) 5087 { 5088 dma_reserve = new_dma_reserve; 5089 } 5090 5091 void __init free_area_init(unsigned long *zones_size) 5092 { 5093 free_area_init_node(0, zones_size, 5094 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL); 5095 } 5096 5097 static int page_alloc_cpu_notify(struct notifier_block *self, 5098 unsigned long action, void *hcpu) 5099 { 5100 int cpu = (unsigned long)hcpu; 5101 5102 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) { 5103 lru_add_drain_cpu(cpu); 5104 drain_pages(cpu); 5105 5106 /* 5107 * Spill the event counters of the dead processor 5108 * into the current processors event counters. 5109 * This artificially elevates the count of the current 5110 * processor. 5111 */ 5112 vm_events_fold_cpu(cpu); 5113 5114 /* 5115 * Zero the differential counters of the dead processor 5116 * so that the vm statistics are consistent. 5117 * 5118 * This is only okay since the processor is dead and cannot 5119 * race with what we are doing. 5120 */ 5121 refresh_cpu_vm_stats(cpu); 5122 } 5123 return NOTIFY_OK; 5124 } 5125 5126 void __init page_alloc_init(void) 5127 { 5128 hotcpu_notifier(page_alloc_cpu_notify, 0); 5129 } 5130 5131 /* 5132 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio 5133 * or min_free_kbytes changes. 5134 */ 5135 static void calculate_totalreserve_pages(void) 5136 { 5137 struct pglist_data *pgdat; 5138 unsigned long reserve_pages = 0; 5139 enum zone_type i, j; 5140 5141 for_each_online_pgdat(pgdat) { 5142 for (i = 0; i < MAX_NR_ZONES; i++) { 5143 struct zone *zone = pgdat->node_zones + i; 5144 unsigned long max = 0; 5145 5146 /* Find valid and maximum lowmem_reserve in the zone */ 5147 for (j = i; j < MAX_NR_ZONES; j++) { 5148 if (zone->lowmem_reserve[j] > max) 5149 max = zone->lowmem_reserve[j]; 5150 } 5151 5152 /* we treat the high watermark as reserved pages. */ 5153 max += high_wmark_pages(zone); 5154 5155 if (max > zone->present_pages) 5156 max = zone->present_pages; 5157 reserve_pages += max; 5158 /* 5159 * Lowmem reserves are not available to 5160 * GFP_HIGHUSER page cache allocations and 5161 * kswapd tries to balance zones to their high 5162 * watermark. As a result, neither should be 5163 * regarded as dirtyable memory, to prevent a 5164 * situation where reclaim has to clean pages 5165 * in order to balance the zones. 5166 */ 5167 zone->dirty_balance_reserve = max; 5168 } 5169 } 5170 dirty_balance_reserve = reserve_pages; 5171 totalreserve_pages = reserve_pages; 5172 } 5173 5174 /* 5175 * setup_per_zone_lowmem_reserve - called whenever 5176 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone 5177 * has a correct pages reserved value, so an adequate number of 5178 * pages are left in the zone after a successful __alloc_pages(). 5179 */ 5180 static void setup_per_zone_lowmem_reserve(void) 5181 { 5182 struct pglist_data *pgdat; 5183 enum zone_type j, idx; 5184 5185 for_each_online_pgdat(pgdat) { 5186 for (j = 0; j < MAX_NR_ZONES; j++) { 5187 struct zone *zone = pgdat->node_zones + j; 5188 unsigned long present_pages = zone->present_pages; 5189 5190 zone->lowmem_reserve[j] = 0; 5191 5192 idx = j; 5193 while (idx) { 5194 struct zone *lower_zone; 5195 5196 idx--; 5197 5198 if (sysctl_lowmem_reserve_ratio[idx] < 1) 5199 sysctl_lowmem_reserve_ratio[idx] = 1; 5200 5201 lower_zone = pgdat->node_zones + idx; 5202 lower_zone->lowmem_reserve[j] = present_pages / 5203 sysctl_lowmem_reserve_ratio[idx]; 5204 present_pages += lower_zone->present_pages; 5205 } 5206 } 5207 } 5208 5209 /* update totalreserve_pages */ 5210 calculate_totalreserve_pages(); 5211 } 5212 5213 static void __setup_per_zone_wmarks(void) 5214 { 5215 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10); 5216 unsigned long lowmem_pages = 0; 5217 struct zone *zone; 5218 unsigned long flags; 5219 5220 /* Calculate total number of !ZONE_HIGHMEM pages */ 5221 for_each_zone(zone) { 5222 if (!is_highmem(zone)) 5223 lowmem_pages += zone->present_pages; 5224 } 5225 5226 for_each_zone(zone) { 5227 u64 tmp; 5228 5229 spin_lock_irqsave(&zone->lock, flags); 5230 tmp = (u64)pages_min * zone->present_pages; 5231 do_div(tmp, lowmem_pages); 5232 if (is_highmem(zone)) { 5233 /* 5234 * __GFP_HIGH and PF_MEMALLOC allocations usually don't 5235 * need highmem pages, so cap pages_min to a small 5236 * value here. 5237 * 5238 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN) 5239 * deltas controls asynch page reclaim, and so should 5240 * not be capped for highmem. 5241 */ 5242 int min_pages; 5243 5244 min_pages = zone->present_pages / 1024; 5245 if (min_pages < SWAP_CLUSTER_MAX) 5246 min_pages = SWAP_CLUSTER_MAX; 5247 if (min_pages > 128) 5248 min_pages = 128; 5249 zone->watermark[WMARK_MIN] = min_pages; 5250 } else { 5251 /* 5252 * If it's a lowmem zone, reserve a number of pages 5253 * proportionate to the zone's size. 5254 */ 5255 zone->watermark[WMARK_MIN] = tmp; 5256 } 5257 5258 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + (tmp >> 2); 5259 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1); 5260 5261 setup_zone_migrate_reserve(zone); 5262 spin_unlock_irqrestore(&zone->lock, flags); 5263 } 5264 5265 /* update totalreserve_pages */ 5266 calculate_totalreserve_pages(); 5267 } 5268 5269 /** 5270 * setup_per_zone_wmarks - called when min_free_kbytes changes 5271 * or when memory is hot-{added|removed} 5272 * 5273 * Ensures that the watermark[min,low,high] values for each zone are set 5274 * correctly with respect to min_free_kbytes. 5275 */ 5276 void setup_per_zone_wmarks(void) 5277 { 5278 mutex_lock(&zonelists_mutex); 5279 __setup_per_zone_wmarks(); 5280 mutex_unlock(&zonelists_mutex); 5281 } 5282 5283 /* 5284 * The inactive anon list should be small enough that the VM never has to 5285 * do too much work, but large enough that each inactive page has a chance 5286 * to be referenced again before it is swapped out. 5287 * 5288 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to 5289 * INACTIVE_ANON pages on this zone's LRU, maintained by the 5290 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of 5291 * the anonymous pages are kept on the inactive list. 5292 * 5293 * total target max 5294 * memory ratio inactive anon 5295 * ------------------------------------- 5296 * 10MB 1 5MB 5297 * 100MB 1 50MB 5298 * 1GB 3 250MB 5299 * 10GB 10 0.9GB 5300 * 100GB 31 3GB 5301 * 1TB 101 10GB 5302 * 10TB 320 32GB 5303 */ 5304 static void __meminit calculate_zone_inactive_ratio(struct zone *zone) 5305 { 5306 unsigned int gb, ratio; 5307 5308 /* Zone size in gigabytes */ 5309 gb = zone->present_pages >> (30 - PAGE_SHIFT); 5310 if (gb) 5311 ratio = int_sqrt(10 * gb); 5312 else 5313 ratio = 1; 5314 5315 zone->inactive_ratio = ratio; 5316 } 5317 5318 static void __meminit setup_per_zone_inactive_ratio(void) 5319 { 5320 struct zone *zone; 5321 5322 for_each_zone(zone) 5323 calculate_zone_inactive_ratio(zone); 5324 } 5325 5326 /* 5327 * Initialise min_free_kbytes. 5328 * 5329 * For small machines we want it small (128k min). For large machines 5330 * we want it large (64MB max). But it is not linear, because network 5331 * bandwidth does not increase linearly with machine size. We use 5332 * 5333 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy: 5334 * min_free_kbytes = sqrt(lowmem_kbytes * 16) 5335 * 5336 * which yields 5337 * 5338 * 16MB: 512k 5339 * 32MB: 724k 5340 * 64MB: 1024k 5341 * 128MB: 1448k 5342 * 256MB: 2048k 5343 * 512MB: 2896k 5344 * 1024MB: 4096k 5345 * 2048MB: 5792k 5346 * 4096MB: 8192k 5347 * 8192MB: 11584k 5348 * 16384MB: 16384k 5349 */ 5350 int __meminit init_per_zone_wmark_min(void) 5351 { 5352 unsigned long lowmem_kbytes; 5353 5354 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10); 5355 5356 min_free_kbytes = int_sqrt(lowmem_kbytes * 16); 5357 if (min_free_kbytes < 128) 5358 min_free_kbytes = 128; 5359 if (min_free_kbytes > 65536) 5360 min_free_kbytes = 65536; 5361 setup_per_zone_wmarks(); 5362 refresh_zone_stat_thresholds(); 5363 setup_per_zone_lowmem_reserve(); 5364 setup_per_zone_inactive_ratio(); 5365 return 0; 5366 } 5367 module_init(init_per_zone_wmark_min) 5368 5369 /* 5370 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so 5371 * that we can call two helper functions whenever min_free_kbytes 5372 * changes. 5373 */ 5374 int min_free_kbytes_sysctl_handler(ctl_table *table, int write, 5375 void __user *buffer, size_t *length, loff_t *ppos) 5376 { 5377 proc_dointvec(table, write, buffer, length, ppos); 5378 if (write) 5379 setup_per_zone_wmarks(); 5380 return 0; 5381 } 5382 5383 #ifdef CONFIG_NUMA 5384 int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write, 5385 void __user *buffer, size_t *length, loff_t *ppos) 5386 { 5387 struct zone *zone; 5388 int rc; 5389 5390 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 5391 if (rc) 5392 return rc; 5393 5394 for_each_zone(zone) 5395 zone->min_unmapped_pages = (zone->present_pages * 5396 sysctl_min_unmapped_ratio) / 100; 5397 return 0; 5398 } 5399 5400 int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write, 5401 void __user *buffer, size_t *length, loff_t *ppos) 5402 { 5403 struct zone *zone; 5404 int rc; 5405 5406 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 5407 if (rc) 5408 return rc; 5409 5410 for_each_zone(zone) 5411 zone->min_slab_pages = (zone->present_pages * 5412 sysctl_min_slab_ratio) / 100; 5413 return 0; 5414 } 5415 #endif 5416 5417 /* 5418 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around 5419 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve() 5420 * whenever sysctl_lowmem_reserve_ratio changes. 5421 * 5422 * The reserve ratio obviously has absolutely no relation with the 5423 * minimum watermarks. The lowmem reserve ratio can only make sense 5424 * if in function of the boot time zone sizes. 5425 */ 5426 int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write, 5427 void __user *buffer, size_t *length, loff_t *ppos) 5428 { 5429 proc_dointvec_minmax(table, write, buffer, length, ppos); 5430 setup_per_zone_lowmem_reserve(); 5431 return 0; 5432 } 5433 5434 /* 5435 * percpu_pagelist_fraction - changes the pcp->high for each zone on each 5436 * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist 5437 * can have before it gets flushed back to buddy allocator. 5438 */ 5439 5440 int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write, 5441 void __user *buffer, size_t *length, loff_t *ppos) 5442 { 5443 struct zone *zone; 5444 unsigned int cpu; 5445 int ret; 5446 5447 ret = proc_dointvec_minmax(table, write, buffer, length, ppos); 5448 if (!write || (ret < 0)) 5449 return ret; 5450 for_each_populated_zone(zone) { 5451 for_each_possible_cpu(cpu) { 5452 unsigned long high; 5453 high = zone->present_pages / percpu_pagelist_fraction; 5454 setup_pagelist_highmark( 5455 per_cpu_ptr(zone->pageset, cpu), high); 5456 } 5457 } 5458 return 0; 5459 } 5460 5461 int hashdist = HASHDIST_DEFAULT; 5462 5463 #ifdef CONFIG_NUMA 5464 static int __init set_hashdist(char *str) 5465 { 5466 if (!str) 5467 return 0; 5468 hashdist = simple_strtoul(str, &str, 0); 5469 return 1; 5470 } 5471 __setup("hashdist=", set_hashdist); 5472 #endif 5473 5474 /* 5475 * allocate a large system hash table from bootmem 5476 * - it is assumed that the hash table must contain an exact power-of-2 5477 * quantity of entries 5478 * - limit is the number of hash buckets, not the total allocation size 5479 */ 5480 void *__init alloc_large_system_hash(const char *tablename, 5481 unsigned long bucketsize, 5482 unsigned long numentries, 5483 int scale, 5484 int flags, 5485 unsigned int *_hash_shift, 5486 unsigned int *_hash_mask, 5487 unsigned long low_limit, 5488 unsigned long high_limit) 5489 { 5490 unsigned long long max = high_limit; 5491 unsigned long log2qty, size; 5492 void *table = NULL; 5493 5494 /* allow the kernel cmdline to have a say */ 5495 if (!numentries) { 5496 /* round applicable memory size up to nearest megabyte */ 5497 numentries = nr_kernel_pages; 5498 numentries += (1UL << (20 - PAGE_SHIFT)) - 1; 5499 numentries >>= 20 - PAGE_SHIFT; 5500 numentries <<= 20 - PAGE_SHIFT; 5501 5502 /* limit to 1 bucket per 2^scale bytes of low memory */ 5503 if (scale > PAGE_SHIFT) 5504 numentries >>= (scale - PAGE_SHIFT); 5505 else 5506 numentries <<= (PAGE_SHIFT - scale); 5507 5508 /* Make sure we've got at least a 0-order allocation.. */ 5509 if (unlikely(flags & HASH_SMALL)) { 5510 /* Makes no sense without HASH_EARLY */ 5511 WARN_ON(!(flags & HASH_EARLY)); 5512 if (!(numentries >> *_hash_shift)) { 5513 numentries = 1UL << *_hash_shift; 5514 BUG_ON(!numentries); 5515 } 5516 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE)) 5517 numentries = PAGE_SIZE / bucketsize; 5518 } 5519 numentries = roundup_pow_of_two(numentries); 5520 5521 /* limit allocation size to 1/16 total memory by default */ 5522 if (max == 0) { 5523 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4; 5524 do_div(max, bucketsize); 5525 } 5526 max = min(max, 0x80000000ULL); 5527 5528 if (numentries < low_limit) 5529 numentries = low_limit; 5530 if (numentries > max) 5531 numentries = max; 5532 5533 log2qty = ilog2(numentries); 5534 5535 do { 5536 size = bucketsize << log2qty; 5537 if (flags & HASH_EARLY) 5538 table = alloc_bootmem_nopanic(size); 5539 else if (hashdist) 5540 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL); 5541 else { 5542 /* 5543 * If bucketsize is not a power-of-two, we may free 5544 * some pages at the end of hash table which 5545 * alloc_pages_exact() automatically does 5546 */ 5547 if (get_order(size) < MAX_ORDER) { 5548 table = alloc_pages_exact(size, GFP_ATOMIC); 5549 kmemleak_alloc(table, size, 1, GFP_ATOMIC); 5550 } 5551 } 5552 } while (!table && size > PAGE_SIZE && --log2qty); 5553 5554 if (!table) 5555 panic("Failed to allocate %s hash table\n", tablename); 5556 5557 printk(KERN_INFO "%s hash table entries: %ld (order: %d, %lu bytes)\n", 5558 tablename, 5559 (1UL << log2qty), 5560 ilog2(size) - PAGE_SHIFT, 5561 size); 5562 5563 if (_hash_shift) 5564 *_hash_shift = log2qty; 5565 if (_hash_mask) 5566 *_hash_mask = (1 << log2qty) - 1; 5567 5568 return table; 5569 } 5570 5571 /* Return a pointer to the bitmap storing bits affecting a block of pages */ 5572 static inline unsigned long *get_pageblock_bitmap(struct zone *zone, 5573 unsigned long pfn) 5574 { 5575 #ifdef CONFIG_SPARSEMEM 5576 return __pfn_to_section(pfn)->pageblock_flags; 5577 #else 5578 return zone->pageblock_flags; 5579 #endif /* CONFIG_SPARSEMEM */ 5580 } 5581 5582 static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn) 5583 { 5584 #ifdef CONFIG_SPARSEMEM 5585 pfn &= (PAGES_PER_SECTION-1); 5586 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS; 5587 #else 5588 pfn = pfn - round_down(zone->zone_start_pfn, pageblock_nr_pages); 5589 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS; 5590 #endif /* CONFIG_SPARSEMEM */ 5591 } 5592 5593 /** 5594 * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages 5595 * @page: The page within the block of interest 5596 * @start_bitidx: The first bit of interest to retrieve 5597 * @end_bitidx: The last bit of interest 5598 * returns pageblock_bits flags 5599 */ 5600 unsigned long get_pageblock_flags_group(struct page *page, 5601 int start_bitidx, int end_bitidx) 5602 { 5603 struct zone *zone; 5604 unsigned long *bitmap; 5605 unsigned long pfn, bitidx; 5606 unsigned long flags = 0; 5607 unsigned long value = 1; 5608 5609 zone = page_zone(page); 5610 pfn = page_to_pfn(page); 5611 bitmap = get_pageblock_bitmap(zone, pfn); 5612 bitidx = pfn_to_bitidx(zone, pfn); 5613 5614 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1) 5615 if (test_bit(bitidx + start_bitidx, bitmap)) 5616 flags |= value; 5617 5618 return flags; 5619 } 5620 5621 /** 5622 * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages 5623 * @page: The page within the block of interest 5624 * @start_bitidx: The first bit of interest 5625 * @end_bitidx: The last bit of interest 5626 * @flags: The flags to set 5627 */ 5628 void set_pageblock_flags_group(struct page *page, unsigned long flags, 5629 int start_bitidx, int end_bitidx) 5630 { 5631 struct zone *zone; 5632 unsigned long *bitmap; 5633 unsigned long pfn, bitidx; 5634 unsigned long value = 1; 5635 5636 zone = page_zone(page); 5637 pfn = page_to_pfn(page); 5638 bitmap = get_pageblock_bitmap(zone, pfn); 5639 bitidx = pfn_to_bitidx(zone, pfn); 5640 VM_BUG_ON(pfn < zone->zone_start_pfn); 5641 VM_BUG_ON(pfn >= zone->zone_start_pfn + zone->spanned_pages); 5642 5643 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1) 5644 if (flags & value) 5645 __set_bit(bitidx + start_bitidx, bitmap); 5646 else 5647 __clear_bit(bitidx + start_bitidx, bitmap); 5648 } 5649 5650 /* 5651 * This function checks whether pageblock includes unmovable pages or not. 5652 * If @count is not zero, it is okay to include less @count unmovable pages 5653 * 5654 * PageLRU check wihtout isolation or lru_lock could race so that 5655 * MIGRATE_MOVABLE block might include unmovable pages. It means you can't 5656 * expect this function should be exact. 5657 */ 5658 bool has_unmovable_pages(struct zone *zone, struct page *page, int count, 5659 bool skip_hwpoisoned_pages) 5660 { 5661 unsigned long pfn, iter, found; 5662 int mt; 5663 5664 /* 5665 * For avoiding noise data, lru_add_drain_all() should be called 5666 * If ZONE_MOVABLE, the zone never contains unmovable pages 5667 */ 5668 if (zone_idx(zone) == ZONE_MOVABLE) 5669 return false; 5670 mt = get_pageblock_migratetype(page); 5671 if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt)) 5672 return false; 5673 5674 pfn = page_to_pfn(page); 5675 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) { 5676 unsigned long check = pfn + iter; 5677 5678 if (!pfn_valid_within(check)) 5679 continue; 5680 5681 page = pfn_to_page(check); 5682 /* 5683 * We can't use page_count without pin a page 5684 * because another CPU can free compound page. 5685 * This check already skips compound tails of THP 5686 * because their page->_count is zero at all time. 5687 */ 5688 if (!atomic_read(&page->_count)) { 5689 if (PageBuddy(page)) 5690 iter += (1 << page_order(page)) - 1; 5691 continue; 5692 } 5693 5694 /* 5695 * The HWPoisoned page may be not in buddy system, and 5696 * page_count() is not 0. 5697 */ 5698 if (skip_hwpoisoned_pages && PageHWPoison(page)) 5699 continue; 5700 5701 if (!PageLRU(page)) 5702 found++; 5703 /* 5704 * If there are RECLAIMABLE pages, we need to check it. 5705 * But now, memory offline itself doesn't call shrink_slab() 5706 * and it still to be fixed. 5707 */ 5708 /* 5709 * If the page is not RAM, page_count()should be 0. 5710 * we don't need more check. This is an _used_ not-movable page. 5711 * 5712 * The problematic thing here is PG_reserved pages. PG_reserved 5713 * is set to both of a memory hole page and a _used_ kernel 5714 * page at boot. 5715 */ 5716 if (found > count) 5717 return true; 5718 } 5719 return false; 5720 } 5721 5722 bool is_pageblock_removable_nolock(struct page *page) 5723 { 5724 struct zone *zone; 5725 unsigned long pfn; 5726 5727 /* 5728 * We have to be careful here because we are iterating over memory 5729 * sections which are not zone aware so we might end up outside of 5730 * the zone but still within the section. 5731 * We have to take care about the node as well. If the node is offline 5732 * its NODE_DATA will be NULL - see page_zone. 5733 */ 5734 if (!node_online(page_to_nid(page))) 5735 return false; 5736 5737 zone = page_zone(page); 5738 pfn = page_to_pfn(page); 5739 if (zone->zone_start_pfn > pfn || 5740 zone->zone_start_pfn + zone->spanned_pages <= pfn) 5741 return false; 5742 5743 return !has_unmovable_pages(zone, page, 0, true); 5744 } 5745 5746 #ifdef CONFIG_CMA 5747 5748 static unsigned long pfn_max_align_down(unsigned long pfn) 5749 { 5750 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES, 5751 pageblock_nr_pages) - 1); 5752 } 5753 5754 static unsigned long pfn_max_align_up(unsigned long pfn) 5755 { 5756 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES, 5757 pageblock_nr_pages)); 5758 } 5759 5760 /* [start, end) must belong to a single zone. */ 5761 static int __alloc_contig_migrate_range(struct compact_control *cc, 5762 unsigned long start, unsigned long end) 5763 { 5764 /* This function is based on compact_zone() from compaction.c. */ 5765 unsigned long nr_reclaimed; 5766 unsigned long pfn = start; 5767 unsigned int tries = 0; 5768 int ret = 0; 5769 5770 migrate_prep(); 5771 5772 while (pfn < end || !list_empty(&cc->migratepages)) { 5773 if (fatal_signal_pending(current)) { 5774 ret = -EINTR; 5775 break; 5776 } 5777 5778 if (list_empty(&cc->migratepages)) { 5779 cc->nr_migratepages = 0; 5780 pfn = isolate_migratepages_range(cc->zone, cc, 5781 pfn, end, true); 5782 if (!pfn) { 5783 ret = -EINTR; 5784 break; 5785 } 5786 tries = 0; 5787 } else if (++tries == 5) { 5788 ret = ret < 0 ? ret : -EBUSY; 5789 break; 5790 } 5791 5792 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone, 5793 &cc->migratepages); 5794 cc->nr_migratepages -= nr_reclaimed; 5795 5796 ret = migrate_pages(&cc->migratepages, 5797 alloc_migrate_target, 5798 0, false, MIGRATE_SYNC, 5799 MR_CMA); 5800 } 5801 5802 putback_movable_pages(&cc->migratepages); 5803 return ret > 0 ? 0 : ret; 5804 } 5805 5806 /** 5807 * alloc_contig_range() -- tries to allocate given range of pages 5808 * @start: start PFN to allocate 5809 * @end: one-past-the-last PFN to allocate 5810 * @migratetype: migratetype of the underlaying pageblocks (either 5811 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks 5812 * in range must have the same migratetype and it must 5813 * be either of the two. 5814 * 5815 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES 5816 * aligned, however it's the caller's responsibility to guarantee that 5817 * we are the only thread that changes migrate type of pageblocks the 5818 * pages fall in. 5819 * 5820 * The PFN range must belong to a single zone. 5821 * 5822 * Returns zero on success or negative error code. On success all 5823 * pages which PFN is in [start, end) are allocated for the caller and 5824 * need to be freed with free_contig_range(). 5825 */ 5826 int alloc_contig_range(unsigned long start, unsigned long end, 5827 unsigned migratetype) 5828 { 5829 unsigned long outer_start, outer_end; 5830 int ret = 0, order; 5831 5832 struct compact_control cc = { 5833 .nr_migratepages = 0, 5834 .order = -1, 5835 .zone = page_zone(pfn_to_page(start)), 5836 .sync = true, 5837 .ignore_skip_hint = true, 5838 }; 5839 INIT_LIST_HEAD(&cc.migratepages); 5840 5841 /* 5842 * What we do here is we mark all pageblocks in range as 5843 * MIGRATE_ISOLATE. Because pageblock and max order pages may 5844 * have different sizes, and due to the way page allocator 5845 * work, we align the range to biggest of the two pages so 5846 * that page allocator won't try to merge buddies from 5847 * different pageblocks and change MIGRATE_ISOLATE to some 5848 * other migration type. 5849 * 5850 * Once the pageblocks are marked as MIGRATE_ISOLATE, we 5851 * migrate the pages from an unaligned range (ie. pages that 5852 * we are interested in). This will put all the pages in 5853 * range back to page allocator as MIGRATE_ISOLATE. 5854 * 5855 * When this is done, we take the pages in range from page 5856 * allocator removing them from the buddy system. This way 5857 * page allocator will never consider using them. 5858 * 5859 * This lets us mark the pageblocks back as 5860 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the 5861 * aligned range but not in the unaligned, original range are 5862 * put back to page allocator so that buddy can use them. 5863 */ 5864 5865 ret = start_isolate_page_range(pfn_max_align_down(start), 5866 pfn_max_align_up(end), migratetype, 5867 false); 5868 if (ret) 5869 return ret; 5870 5871 ret = __alloc_contig_migrate_range(&cc, start, end); 5872 if (ret) 5873 goto done; 5874 5875 /* 5876 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES 5877 * aligned blocks that are marked as MIGRATE_ISOLATE. What's 5878 * more, all pages in [start, end) are free in page allocator. 5879 * What we are going to do is to allocate all pages from 5880 * [start, end) (that is remove them from page allocator). 5881 * 5882 * The only problem is that pages at the beginning and at the 5883 * end of interesting range may be not aligned with pages that 5884 * page allocator holds, ie. they can be part of higher order 5885 * pages. Because of this, we reserve the bigger range and 5886 * once this is done free the pages we are not interested in. 5887 * 5888 * We don't have to hold zone->lock here because the pages are 5889 * isolated thus they won't get removed from buddy. 5890 */ 5891 5892 lru_add_drain_all(); 5893 drain_all_pages(); 5894 5895 order = 0; 5896 outer_start = start; 5897 while (!PageBuddy(pfn_to_page(outer_start))) { 5898 if (++order >= MAX_ORDER) { 5899 ret = -EBUSY; 5900 goto done; 5901 } 5902 outer_start &= ~0UL << order; 5903 } 5904 5905 /* Make sure the range is really isolated. */ 5906 if (test_pages_isolated(outer_start, end, false)) { 5907 pr_warn("alloc_contig_range test_pages_isolated(%lx, %lx) failed\n", 5908 outer_start, end); 5909 ret = -EBUSY; 5910 goto done; 5911 } 5912 5913 5914 /* Grab isolated pages from freelists. */ 5915 outer_end = isolate_freepages_range(&cc, outer_start, end); 5916 if (!outer_end) { 5917 ret = -EBUSY; 5918 goto done; 5919 } 5920 5921 /* Free head and tail (if any) */ 5922 if (start != outer_start) 5923 free_contig_range(outer_start, start - outer_start); 5924 if (end != outer_end) 5925 free_contig_range(end, outer_end - end); 5926 5927 done: 5928 undo_isolate_page_range(pfn_max_align_down(start), 5929 pfn_max_align_up(end), migratetype); 5930 return ret; 5931 } 5932 5933 void free_contig_range(unsigned long pfn, unsigned nr_pages) 5934 { 5935 unsigned int count = 0; 5936 5937 for (; nr_pages--; pfn++) { 5938 struct page *page = pfn_to_page(pfn); 5939 5940 count += page_count(page) != 1; 5941 __free_page(page); 5942 } 5943 WARN(count != 0, "%d pages are still in use!\n", count); 5944 } 5945 #endif 5946 5947 #ifdef CONFIG_MEMORY_HOTPLUG 5948 static int __meminit __zone_pcp_update(void *data) 5949 { 5950 struct zone *zone = data; 5951 int cpu; 5952 unsigned long batch = zone_batchsize(zone), flags; 5953 5954 for_each_possible_cpu(cpu) { 5955 struct per_cpu_pageset *pset; 5956 struct per_cpu_pages *pcp; 5957 5958 pset = per_cpu_ptr(zone->pageset, cpu); 5959 pcp = &pset->pcp; 5960 5961 local_irq_save(flags); 5962 if (pcp->count > 0) 5963 free_pcppages_bulk(zone, pcp->count, pcp); 5964 drain_zonestat(zone, pset); 5965 setup_pageset(pset, batch); 5966 local_irq_restore(flags); 5967 } 5968 return 0; 5969 } 5970 5971 void __meminit zone_pcp_update(struct zone *zone) 5972 { 5973 stop_machine(__zone_pcp_update, zone, NULL); 5974 } 5975 #endif 5976 5977 void zone_pcp_reset(struct zone *zone) 5978 { 5979 unsigned long flags; 5980 int cpu; 5981 struct per_cpu_pageset *pset; 5982 5983 /* avoid races with drain_pages() */ 5984 local_irq_save(flags); 5985 if (zone->pageset != &boot_pageset) { 5986 for_each_online_cpu(cpu) { 5987 pset = per_cpu_ptr(zone->pageset, cpu); 5988 drain_zonestat(zone, pset); 5989 } 5990 free_percpu(zone->pageset); 5991 zone->pageset = &boot_pageset; 5992 } 5993 local_irq_restore(flags); 5994 } 5995 5996 #ifdef CONFIG_MEMORY_HOTREMOVE 5997 /* 5998 * All pages in the range must be isolated before calling this. 5999 */ 6000 void 6001 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn) 6002 { 6003 struct page *page; 6004 struct zone *zone; 6005 int order, i; 6006 unsigned long pfn; 6007 unsigned long flags; 6008 /* find the first valid pfn */ 6009 for (pfn = start_pfn; pfn < end_pfn; pfn++) 6010 if (pfn_valid(pfn)) 6011 break; 6012 if (pfn == end_pfn) 6013 return; 6014 zone = page_zone(pfn_to_page(pfn)); 6015 spin_lock_irqsave(&zone->lock, flags); 6016 pfn = start_pfn; 6017 while (pfn < end_pfn) { 6018 if (!pfn_valid(pfn)) { 6019 pfn++; 6020 continue; 6021 } 6022 page = pfn_to_page(pfn); 6023 /* 6024 * The HWPoisoned page may be not in buddy system, and 6025 * page_count() is not 0. 6026 */ 6027 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) { 6028 pfn++; 6029 SetPageReserved(page); 6030 continue; 6031 } 6032 6033 BUG_ON(page_count(page)); 6034 BUG_ON(!PageBuddy(page)); 6035 order = page_order(page); 6036 #ifdef CONFIG_DEBUG_VM 6037 printk(KERN_INFO "remove from free list %lx %d %lx\n", 6038 pfn, 1 << order, end_pfn); 6039 #endif 6040 list_del(&page->lru); 6041 rmv_page_order(page); 6042 zone->free_area[order].nr_free--; 6043 for (i = 0; i < (1 << order); i++) 6044 SetPageReserved((page+i)); 6045 pfn += (1 << order); 6046 } 6047 spin_unlock_irqrestore(&zone->lock, flags); 6048 } 6049 #endif 6050 6051 #ifdef CONFIG_MEMORY_FAILURE 6052 bool is_free_buddy_page(struct page *page) 6053 { 6054 struct zone *zone = page_zone(page); 6055 unsigned long pfn = page_to_pfn(page); 6056 unsigned long flags; 6057 int order; 6058 6059 spin_lock_irqsave(&zone->lock, flags); 6060 for (order = 0; order < MAX_ORDER; order++) { 6061 struct page *page_head = page - (pfn & ((1 << order) - 1)); 6062 6063 if (PageBuddy(page_head) && page_order(page_head) >= order) 6064 break; 6065 } 6066 spin_unlock_irqrestore(&zone->lock, flags); 6067 6068 return order < MAX_ORDER; 6069 } 6070 #endif 6071 6072 static const struct trace_print_flags pageflag_names[] = { 6073 {1UL << PG_locked, "locked" }, 6074 {1UL << PG_error, "error" }, 6075 {1UL << PG_referenced, "referenced" }, 6076 {1UL << PG_uptodate, "uptodate" }, 6077 {1UL << PG_dirty, "dirty" }, 6078 {1UL << PG_lru, "lru" }, 6079 {1UL << PG_active, "active" }, 6080 {1UL << PG_slab, "slab" }, 6081 {1UL << PG_owner_priv_1, "owner_priv_1" }, 6082 {1UL << PG_arch_1, "arch_1" }, 6083 {1UL << PG_reserved, "reserved" }, 6084 {1UL << PG_private, "private" }, 6085 {1UL << PG_private_2, "private_2" }, 6086 {1UL << PG_writeback, "writeback" }, 6087 #ifdef CONFIG_PAGEFLAGS_EXTENDED 6088 {1UL << PG_head, "head" }, 6089 {1UL << PG_tail, "tail" }, 6090 #else 6091 {1UL << PG_compound, "compound" }, 6092 #endif 6093 {1UL << PG_swapcache, "swapcache" }, 6094 {1UL << PG_mappedtodisk, "mappedtodisk" }, 6095 {1UL << PG_reclaim, "reclaim" }, 6096 {1UL << PG_swapbacked, "swapbacked" }, 6097 {1UL << PG_unevictable, "unevictable" }, 6098 #ifdef CONFIG_MMU 6099 {1UL << PG_mlocked, "mlocked" }, 6100 #endif 6101 #ifdef CONFIG_ARCH_USES_PG_UNCACHED 6102 {1UL << PG_uncached, "uncached" }, 6103 #endif 6104 #ifdef CONFIG_MEMORY_FAILURE 6105 {1UL << PG_hwpoison, "hwpoison" }, 6106 #endif 6107 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 6108 {1UL << PG_compound_lock, "compound_lock" }, 6109 #endif 6110 }; 6111 6112 static void dump_page_flags(unsigned long flags) 6113 { 6114 const char *delim = ""; 6115 unsigned long mask; 6116 int i; 6117 6118 BUILD_BUG_ON(ARRAY_SIZE(pageflag_names) != __NR_PAGEFLAGS); 6119 6120 printk(KERN_ALERT "page flags: %#lx(", flags); 6121 6122 /* remove zone id */ 6123 flags &= (1UL << NR_PAGEFLAGS) - 1; 6124 6125 for (i = 0; i < ARRAY_SIZE(pageflag_names) && flags; i++) { 6126 6127 mask = pageflag_names[i].mask; 6128 if ((flags & mask) != mask) 6129 continue; 6130 6131 flags &= ~mask; 6132 printk("%s%s", delim, pageflag_names[i].name); 6133 delim = "|"; 6134 } 6135 6136 /* check for left over flags */ 6137 if (flags) 6138 printk("%s%#lx", delim, flags); 6139 6140 printk(")\n"); 6141 } 6142 6143 void dump_page(struct page *page) 6144 { 6145 printk(KERN_ALERT 6146 "page:%p count:%d mapcount:%d mapping:%p index:%#lx\n", 6147 page, atomic_read(&page->_count), page_mapcount(page), 6148 page->mapping, page->index); 6149 dump_page_flags(page->flags); 6150 mem_cgroup_print_bad_page(page); 6151 } 6152