1 /* 2 * linux/mm/page_alloc.c 3 * 4 * Manages the free list, the system allocates free pages here. 5 * Note that kmalloc() lives in slab.c 6 * 7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 8 * Swap reorganised 29.12.95, Stephen Tweedie 9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999 10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999 11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999 12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000 13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002 14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton) 15 */ 16 17 #include <linux/stddef.h> 18 #include <linux/mm.h> 19 #include <linux/swap.h> 20 #include <linux/interrupt.h> 21 #include <linux/pagemap.h> 22 #include <linux/bootmem.h> 23 #include <linux/compiler.h> 24 #include <linux/kernel.h> 25 #include <linux/module.h> 26 #include <linux/suspend.h> 27 #include <linux/pagevec.h> 28 #include <linux/blkdev.h> 29 #include <linux/slab.h> 30 #include <linux/notifier.h> 31 #include <linux/topology.h> 32 #include <linux/sysctl.h> 33 #include <linux/cpu.h> 34 #include <linux/cpuset.h> 35 #include <linux/memory_hotplug.h> 36 #include <linux/nodemask.h> 37 #include <linux/vmalloc.h> 38 #include <linux/mempolicy.h> 39 #include <linux/stop_machine.h> 40 #include <linux/sort.h> 41 #include <linux/pfn.h> 42 #include <linux/backing-dev.h> 43 #include <linux/fault-inject.h> 44 45 #include <asm/tlbflush.h> 46 #include <asm/div64.h> 47 #include "internal.h" 48 49 /* 50 * MCD - HACK: Find somewhere to initialize this EARLY, or make this 51 * initializer cleaner 52 */ 53 nodemask_t node_online_map __read_mostly = { { [0] = 1UL } }; 54 EXPORT_SYMBOL(node_online_map); 55 nodemask_t node_possible_map __read_mostly = NODE_MASK_ALL; 56 EXPORT_SYMBOL(node_possible_map); 57 unsigned long totalram_pages __read_mostly; 58 unsigned long totalreserve_pages __read_mostly; 59 long nr_swap_pages; 60 int percpu_pagelist_fraction; 61 62 static void __free_pages_ok(struct page *page, unsigned int order); 63 64 /* 65 * results with 256, 32 in the lowmem_reserve sysctl: 66 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high) 67 * 1G machine -> (16M dma, 784M normal, 224M high) 68 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA 69 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL 70 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA 71 * 72 * TBD: should special case ZONE_DMA32 machines here - in those we normally 73 * don't need any ZONE_NORMAL reservation 74 */ 75 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = { 76 #ifdef CONFIG_ZONE_DMA 77 256, 78 #endif 79 #ifdef CONFIG_ZONE_DMA32 80 256, 81 #endif 82 #ifdef CONFIG_HIGHMEM 83 32 84 #endif 85 }; 86 87 EXPORT_SYMBOL(totalram_pages); 88 89 static char * const zone_names[MAX_NR_ZONES] = { 90 #ifdef CONFIG_ZONE_DMA 91 "DMA", 92 #endif 93 #ifdef CONFIG_ZONE_DMA32 94 "DMA32", 95 #endif 96 "Normal", 97 #ifdef CONFIG_HIGHMEM 98 "HighMem" 99 #endif 100 }; 101 102 int min_free_kbytes = 1024; 103 104 unsigned long __meminitdata nr_kernel_pages; 105 unsigned long __meminitdata nr_all_pages; 106 static unsigned long __initdata dma_reserve; 107 108 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP 109 /* 110 * MAX_ACTIVE_REGIONS determines the maxmimum number of distinct 111 * ranges of memory (RAM) that may be registered with add_active_range(). 112 * Ranges passed to add_active_range() will be merged if possible 113 * so the number of times add_active_range() can be called is 114 * related to the number of nodes and the number of holes 115 */ 116 #ifdef CONFIG_MAX_ACTIVE_REGIONS 117 /* Allow an architecture to set MAX_ACTIVE_REGIONS to save memory */ 118 #define MAX_ACTIVE_REGIONS CONFIG_MAX_ACTIVE_REGIONS 119 #else 120 #if MAX_NUMNODES >= 32 121 /* If there can be many nodes, allow up to 50 holes per node */ 122 #define MAX_ACTIVE_REGIONS (MAX_NUMNODES*50) 123 #else 124 /* By default, allow up to 256 distinct regions */ 125 #define MAX_ACTIVE_REGIONS 256 126 #endif 127 #endif 128 129 struct node_active_region __initdata early_node_map[MAX_ACTIVE_REGIONS]; 130 int __initdata nr_nodemap_entries; 131 unsigned long __initdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES]; 132 unsigned long __initdata arch_zone_highest_possible_pfn[MAX_NR_ZONES]; 133 #ifdef CONFIG_MEMORY_HOTPLUG_RESERVE 134 unsigned long __initdata node_boundary_start_pfn[MAX_NUMNODES]; 135 unsigned long __initdata node_boundary_end_pfn[MAX_NUMNODES]; 136 #endif /* CONFIG_MEMORY_HOTPLUG_RESERVE */ 137 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */ 138 139 #ifdef CONFIG_DEBUG_VM 140 static int page_outside_zone_boundaries(struct zone *zone, struct page *page) 141 { 142 int ret = 0; 143 unsigned seq; 144 unsigned long pfn = page_to_pfn(page); 145 146 do { 147 seq = zone_span_seqbegin(zone); 148 if (pfn >= zone->zone_start_pfn + zone->spanned_pages) 149 ret = 1; 150 else if (pfn < zone->zone_start_pfn) 151 ret = 1; 152 } while (zone_span_seqretry(zone, seq)); 153 154 return ret; 155 } 156 157 static int page_is_consistent(struct zone *zone, struct page *page) 158 { 159 #ifdef CONFIG_HOLES_IN_ZONE 160 if (!pfn_valid(page_to_pfn(page))) 161 return 0; 162 #endif 163 if (zone != page_zone(page)) 164 return 0; 165 166 return 1; 167 } 168 /* 169 * Temporary debugging check for pages not lying within a given zone. 170 */ 171 static int bad_range(struct zone *zone, struct page *page) 172 { 173 if (page_outside_zone_boundaries(zone, page)) 174 return 1; 175 if (!page_is_consistent(zone, page)) 176 return 1; 177 178 return 0; 179 } 180 #else 181 static inline int bad_range(struct zone *zone, struct page *page) 182 { 183 return 0; 184 } 185 #endif 186 187 static void bad_page(struct page *page) 188 { 189 printk(KERN_EMERG "Bad page state in process '%s'\n" 190 KERN_EMERG "page:%p flags:0x%0*lx mapping:%p mapcount:%d count:%d\n" 191 KERN_EMERG "Trying to fix it up, but a reboot is needed\n" 192 KERN_EMERG "Backtrace:\n", 193 current->comm, page, (int)(2*sizeof(unsigned long)), 194 (unsigned long)page->flags, page->mapping, 195 page_mapcount(page), page_count(page)); 196 dump_stack(); 197 page->flags &= ~(1 << PG_lru | 198 1 << PG_private | 199 1 << PG_locked | 200 1 << PG_active | 201 1 << PG_dirty | 202 1 << PG_reclaim | 203 1 << PG_slab | 204 1 << PG_swapcache | 205 1 << PG_writeback | 206 1 << PG_buddy ); 207 set_page_count(page, 0); 208 reset_page_mapcount(page); 209 page->mapping = NULL; 210 add_taint(TAINT_BAD_PAGE); 211 } 212 213 /* 214 * Higher-order pages are called "compound pages". They are structured thusly: 215 * 216 * The first PAGE_SIZE page is called the "head page". 217 * 218 * The remaining PAGE_SIZE pages are called "tail pages". 219 * 220 * All pages have PG_compound set. All pages have their ->private pointing at 221 * the head page (even the head page has this). 222 * 223 * The first tail page's ->lru.next holds the address of the compound page's 224 * put_page() function. Its ->lru.prev holds the order of allocation. 225 * This usage means that zero-order pages may not be compound. 226 */ 227 228 static void free_compound_page(struct page *page) 229 { 230 __free_pages_ok(page, (unsigned long)page[1].lru.prev); 231 } 232 233 static void prep_compound_page(struct page *page, unsigned long order) 234 { 235 int i; 236 int nr_pages = 1 << order; 237 238 set_compound_page_dtor(page, free_compound_page); 239 page[1].lru.prev = (void *)order; 240 for (i = 0; i < nr_pages; i++) { 241 struct page *p = page + i; 242 243 __SetPageCompound(p); 244 set_page_private(p, (unsigned long)page); 245 } 246 } 247 248 static void destroy_compound_page(struct page *page, unsigned long order) 249 { 250 int i; 251 int nr_pages = 1 << order; 252 253 if (unlikely((unsigned long)page[1].lru.prev != order)) 254 bad_page(page); 255 256 for (i = 0; i < nr_pages; i++) { 257 struct page *p = page + i; 258 259 if (unlikely(!PageCompound(p) | 260 (page_private(p) != (unsigned long)page))) 261 bad_page(page); 262 __ClearPageCompound(p); 263 } 264 } 265 266 static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags) 267 { 268 int i; 269 270 VM_BUG_ON((gfp_flags & (__GFP_WAIT | __GFP_HIGHMEM)) == __GFP_HIGHMEM); 271 /* 272 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO 273 * and __GFP_HIGHMEM from hard or soft interrupt context. 274 */ 275 VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt()); 276 for (i = 0; i < (1 << order); i++) 277 clear_highpage(page + i); 278 } 279 280 /* 281 * function for dealing with page's order in buddy system. 282 * zone->lock is already acquired when we use these. 283 * So, we don't need atomic page->flags operations here. 284 */ 285 static inline unsigned long page_order(struct page *page) 286 { 287 return page_private(page); 288 } 289 290 static inline void set_page_order(struct page *page, int order) 291 { 292 set_page_private(page, order); 293 __SetPageBuddy(page); 294 } 295 296 static inline void rmv_page_order(struct page *page) 297 { 298 __ClearPageBuddy(page); 299 set_page_private(page, 0); 300 } 301 302 /* 303 * Locate the struct page for both the matching buddy in our 304 * pair (buddy1) and the combined O(n+1) page they form (page). 305 * 306 * 1) Any buddy B1 will have an order O twin B2 which satisfies 307 * the following equation: 308 * B2 = B1 ^ (1 << O) 309 * For example, if the starting buddy (buddy2) is #8 its order 310 * 1 buddy is #10: 311 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10 312 * 313 * 2) Any buddy B will have an order O+1 parent P which 314 * satisfies the following equation: 315 * P = B & ~(1 << O) 316 * 317 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER 318 */ 319 static inline struct page * 320 __page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order) 321 { 322 unsigned long buddy_idx = page_idx ^ (1 << order); 323 324 return page + (buddy_idx - page_idx); 325 } 326 327 static inline unsigned long 328 __find_combined_index(unsigned long page_idx, unsigned int order) 329 { 330 return (page_idx & ~(1 << order)); 331 } 332 333 /* 334 * This function checks whether a page is free && is the buddy 335 * we can do coalesce a page and its buddy if 336 * (a) the buddy is not in a hole && 337 * (b) the buddy is in the buddy system && 338 * (c) a page and its buddy have the same order && 339 * (d) a page and its buddy are in the same zone. 340 * 341 * For recording whether a page is in the buddy system, we use PG_buddy. 342 * Setting, clearing, and testing PG_buddy is serialized by zone->lock. 343 * 344 * For recording page's order, we use page_private(page). 345 */ 346 static inline int page_is_buddy(struct page *page, struct page *buddy, 347 int order) 348 { 349 #ifdef CONFIG_HOLES_IN_ZONE 350 if (!pfn_valid(page_to_pfn(buddy))) 351 return 0; 352 #endif 353 354 if (page_zone_id(page) != page_zone_id(buddy)) 355 return 0; 356 357 if (PageBuddy(buddy) && page_order(buddy) == order) { 358 BUG_ON(page_count(buddy) != 0); 359 return 1; 360 } 361 return 0; 362 } 363 364 /* 365 * Freeing function for a buddy system allocator. 366 * 367 * The concept of a buddy system is to maintain direct-mapped table 368 * (containing bit values) for memory blocks of various "orders". 369 * The bottom level table contains the map for the smallest allocatable 370 * units of memory (here, pages), and each level above it describes 371 * pairs of units from the levels below, hence, "buddies". 372 * At a high level, all that happens here is marking the table entry 373 * at the bottom level available, and propagating the changes upward 374 * as necessary, plus some accounting needed to play nicely with other 375 * parts of the VM system. 376 * At each level, we keep a list of pages, which are heads of continuous 377 * free pages of length of (1 << order) and marked with PG_buddy. Page's 378 * order is recorded in page_private(page) field. 379 * So when we are allocating or freeing one, we can derive the state of the 380 * other. That is, if we allocate a small block, and both were 381 * free, the remainder of the region must be split into blocks. 382 * If a block is freed, and its buddy is also free, then this 383 * triggers coalescing into a block of larger size. 384 * 385 * -- wli 386 */ 387 388 static inline void __free_one_page(struct page *page, 389 struct zone *zone, unsigned int order) 390 { 391 unsigned long page_idx; 392 int order_size = 1 << order; 393 394 if (unlikely(PageCompound(page))) 395 destroy_compound_page(page, order); 396 397 page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1); 398 399 VM_BUG_ON(page_idx & (order_size - 1)); 400 VM_BUG_ON(bad_range(zone, page)); 401 402 __mod_zone_page_state(zone, NR_FREE_PAGES, order_size); 403 while (order < MAX_ORDER-1) { 404 unsigned long combined_idx; 405 struct free_area *area; 406 struct page *buddy; 407 408 buddy = __page_find_buddy(page, page_idx, order); 409 if (!page_is_buddy(page, buddy, order)) 410 break; /* Move the buddy up one level. */ 411 412 list_del(&buddy->lru); 413 area = zone->free_area + order; 414 area->nr_free--; 415 rmv_page_order(buddy); 416 combined_idx = __find_combined_index(page_idx, order); 417 page = page + (combined_idx - page_idx); 418 page_idx = combined_idx; 419 order++; 420 } 421 set_page_order(page, order); 422 list_add(&page->lru, &zone->free_area[order].free_list); 423 zone->free_area[order].nr_free++; 424 } 425 426 static inline int free_pages_check(struct page *page) 427 { 428 if (unlikely(page_mapcount(page) | 429 (page->mapping != NULL) | 430 (page_count(page) != 0) | 431 (page->flags & ( 432 1 << PG_lru | 433 1 << PG_private | 434 1 << PG_locked | 435 1 << PG_active | 436 1 << PG_reclaim | 437 1 << PG_slab | 438 1 << PG_swapcache | 439 1 << PG_writeback | 440 1 << PG_reserved | 441 1 << PG_buddy )))) 442 bad_page(page); 443 if (PageDirty(page)) 444 __ClearPageDirty(page); 445 /* 446 * For now, we report if PG_reserved was found set, but do not 447 * clear it, and do not free the page. But we shall soon need 448 * to do more, for when the ZERO_PAGE count wraps negative. 449 */ 450 return PageReserved(page); 451 } 452 453 /* 454 * Frees a list of pages. 455 * Assumes all pages on list are in same zone, and of same order. 456 * count is the number of pages to free. 457 * 458 * If the zone was previously in an "all pages pinned" state then look to 459 * see if this freeing clears that state. 460 * 461 * And clear the zone's pages_scanned counter, to hold off the "all pages are 462 * pinned" detection logic. 463 */ 464 static void free_pages_bulk(struct zone *zone, int count, 465 struct list_head *list, int order) 466 { 467 spin_lock(&zone->lock); 468 zone->all_unreclaimable = 0; 469 zone->pages_scanned = 0; 470 while (count--) { 471 struct page *page; 472 473 VM_BUG_ON(list_empty(list)); 474 page = list_entry(list->prev, struct page, lru); 475 /* have to delete it as __free_one_page list manipulates */ 476 list_del(&page->lru); 477 __free_one_page(page, zone, order); 478 } 479 spin_unlock(&zone->lock); 480 } 481 482 static void free_one_page(struct zone *zone, struct page *page, int order) 483 { 484 spin_lock(&zone->lock); 485 zone->all_unreclaimable = 0; 486 zone->pages_scanned = 0; 487 __free_one_page(page, zone, order); 488 spin_unlock(&zone->lock); 489 } 490 491 static void __free_pages_ok(struct page *page, unsigned int order) 492 { 493 unsigned long flags; 494 int i; 495 int reserved = 0; 496 497 for (i = 0 ; i < (1 << order) ; ++i) 498 reserved += free_pages_check(page + i); 499 if (reserved) 500 return; 501 502 if (!PageHighMem(page)) 503 debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order); 504 arch_free_page(page, order); 505 kernel_map_pages(page, 1 << order, 0); 506 507 local_irq_save(flags); 508 __count_vm_events(PGFREE, 1 << order); 509 free_one_page(page_zone(page), page, order); 510 local_irq_restore(flags); 511 } 512 513 /* 514 * permit the bootmem allocator to evade page validation on high-order frees 515 */ 516 void fastcall __init __free_pages_bootmem(struct page *page, unsigned int order) 517 { 518 if (order == 0) { 519 __ClearPageReserved(page); 520 set_page_count(page, 0); 521 set_page_refcounted(page); 522 __free_page(page); 523 } else { 524 int loop; 525 526 prefetchw(page); 527 for (loop = 0; loop < BITS_PER_LONG; loop++) { 528 struct page *p = &page[loop]; 529 530 if (loop + 1 < BITS_PER_LONG) 531 prefetchw(p + 1); 532 __ClearPageReserved(p); 533 set_page_count(p, 0); 534 } 535 536 set_page_refcounted(page); 537 __free_pages(page, order); 538 } 539 } 540 541 542 /* 543 * The order of subdivision here is critical for the IO subsystem. 544 * Please do not alter this order without good reasons and regression 545 * testing. Specifically, as large blocks of memory are subdivided, 546 * the order in which smaller blocks are delivered depends on the order 547 * they're subdivided in this function. This is the primary factor 548 * influencing the order in which pages are delivered to the IO 549 * subsystem according to empirical testing, and this is also justified 550 * by considering the behavior of a buddy system containing a single 551 * large block of memory acted on by a series of small allocations. 552 * This behavior is a critical factor in sglist merging's success. 553 * 554 * -- wli 555 */ 556 static inline void expand(struct zone *zone, struct page *page, 557 int low, int high, struct free_area *area) 558 { 559 unsigned long size = 1 << high; 560 561 while (high > low) { 562 area--; 563 high--; 564 size >>= 1; 565 VM_BUG_ON(bad_range(zone, &page[size])); 566 list_add(&page[size].lru, &area->free_list); 567 area->nr_free++; 568 set_page_order(&page[size], high); 569 } 570 } 571 572 /* 573 * This page is about to be returned from the page allocator 574 */ 575 static int prep_new_page(struct page *page, int order, gfp_t gfp_flags) 576 { 577 if (unlikely(page_mapcount(page) | 578 (page->mapping != NULL) | 579 (page_count(page) != 0) | 580 (page->flags & ( 581 1 << PG_lru | 582 1 << PG_private | 583 1 << PG_locked | 584 1 << PG_active | 585 1 << PG_dirty | 586 1 << PG_reclaim | 587 1 << PG_slab | 588 1 << PG_swapcache | 589 1 << PG_writeback | 590 1 << PG_reserved | 591 1 << PG_buddy )))) 592 bad_page(page); 593 594 /* 595 * For now, we report if PG_reserved was found set, but do not 596 * clear it, and do not allocate the page: as a safety net. 597 */ 598 if (PageReserved(page)) 599 return 1; 600 601 page->flags &= ~(1 << PG_uptodate | 1 << PG_error | 602 1 << PG_referenced | 1 << PG_arch_1 | 603 1 << PG_owner_priv_1 | 1 << PG_mappedtodisk); 604 set_page_private(page, 0); 605 set_page_refcounted(page); 606 607 arch_alloc_page(page, order); 608 kernel_map_pages(page, 1 << order, 1); 609 610 if (gfp_flags & __GFP_ZERO) 611 prep_zero_page(page, order, gfp_flags); 612 613 if (order && (gfp_flags & __GFP_COMP)) 614 prep_compound_page(page, order); 615 616 return 0; 617 } 618 619 /* 620 * Do the hard work of removing an element from the buddy allocator. 621 * Call me with the zone->lock already held. 622 */ 623 static struct page *__rmqueue(struct zone *zone, unsigned int order) 624 { 625 struct free_area * area; 626 unsigned int current_order; 627 struct page *page; 628 629 for (current_order = order; current_order < MAX_ORDER; ++current_order) { 630 area = zone->free_area + current_order; 631 if (list_empty(&area->free_list)) 632 continue; 633 634 page = list_entry(area->free_list.next, struct page, lru); 635 list_del(&page->lru); 636 rmv_page_order(page); 637 area->nr_free--; 638 __mod_zone_page_state(zone, NR_FREE_PAGES, - (1UL << order)); 639 expand(zone, page, order, current_order, area); 640 return page; 641 } 642 643 return NULL; 644 } 645 646 /* 647 * Obtain a specified number of elements from the buddy allocator, all under 648 * a single hold of the lock, for efficiency. Add them to the supplied list. 649 * Returns the number of new pages which were placed at *list. 650 */ 651 static int rmqueue_bulk(struct zone *zone, unsigned int order, 652 unsigned long count, struct list_head *list) 653 { 654 int i; 655 656 spin_lock(&zone->lock); 657 for (i = 0; i < count; ++i) { 658 struct page *page = __rmqueue(zone, order); 659 if (unlikely(page == NULL)) 660 break; 661 list_add_tail(&page->lru, list); 662 } 663 spin_unlock(&zone->lock); 664 return i; 665 } 666 667 #if MAX_NUMNODES > 1 668 int nr_node_ids __read_mostly; 669 EXPORT_SYMBOL(nr_node_ids); 670 671 /* 672 * Figure out the number of possible node ids. 673 */ 674 static void __init setup_nr_node_ids(void) 675 { 676 unsigned int node; 677 unsigned int highest = 0; 678 679 for_each_node_mask(node, node_possible_map) 680 highest = node; 681 nr_node_ids = highest + 1; 682 } 683 #else 684 static void __init setup_nr_node_ids(void) {} 685 #endif 686 687 #ifdef CONFIG_NUMA 688 /* 689 * Called from the slab reaper to drain pagesets on a particular node that 690 * belongs to the currently executing processor. 691 * Note that this function must be called with the thread pinned to 692 * a single processor. 693 */ 694 void drain_node_pages(int nodeid) 695 { 696 int i; 697 enum zone_type z; 698 unsigned long flags; 699 700 for (z = 0; z < MAX_NR_ZONES; z++) { 701 struct zone *zone = NODE_DATA(nodeid)->node_zones + z; 702 struct per_cpu_pageset *pset; 703 704 if (!populated_zone(zone)) 705 continue; 706 707 pset = zone_pcp(zone, smp_processor_id()); 708 for (i = 0; i < ARRAY_SIZE(pset->pcp); i++) { 709 struct per_cpu_pages *pcp; 710 711 pcp = &pset->pcp[i]; 712 if (pcp->count) { 713 int to_drain; 714 715 local_irq_save(flags); 716 if (pcp->count >= pcp->batch) 717 to_drain = pcp->batch; 718 else 719 to_drain = pcp->count; 720 free_pages_bulk(zone, to_drain, &pcp->list, 0); 721 pcp->count -= to_drain; 722 local_irq_restore(flags); 723 } 724 } 725 } 726 } 727 #endif 728 729 static void __drain_pages(unsigned int cpu) 730 { 731 unsigned long flags; 732 struct zone *zone; 733 int i; 734 735 for_each_zone(zone) { 736 struct per_cpu_pageset *pset; 737 738 if (!populated_zone(zone)) 739 continue; 740 741 pset = zone_pcp(zone, cpu); 742 for (i = 0; i < ARRAY_SIZE(pset->pcp); i++) { 743 struct per_cpu_pages *pcp; 744 745 pcp = &pset->pcp[i]; 746 local_irq_save(flags); 747 free_pages_bulk(zone, pcp->count, &pcp->list, 0); 748 pcp->count = 0; 749 local_irq_restore(flags); 750 } 751 } 752 } 753 754 #ifdef CONFIG_PM 755 756 void mark_free_pages(struct zone *zone) 757 { 758 unsigned long pfn, max_zone_pfn; 759 unsigned long flags; 760 int order; 761 struct list_head *curr; 762 763 if (!zone->spanned_pages) 764 return; 765 766 spin_lock_irqsave(&zone->lock, flags); 767 768 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages; 769 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) 770 if (pfn_valid(pfn)) { 771 struct page *page = pfn_to_page(pfn); 772 773 if (!PageNosave(page)) 774 ClearPageNosaveFree(page); 775 } 776 777 for (order = MAX_ORDER - 1; order >= 0; --order) 778 list_for_each(curr, &zone->free_area[order].free_list) { 779 unsigned long i; 780 781 pfn = page_to_pfn(list_entry(curr, struct page, lru)); 782 for (i = 0; i < (1UL << order); i++) 783 SetPageNosaveFree(pfn_to_page(pfn + i)); 784 } 785 786 spin_unlock_irqrestore(&zone->lock, flags); 787 } 788 789 /* 790 * Spill all of this CPU's per-cpu pages back into the buddy allocator. 791 */ 792 void drain_local_pages(void) 793 { 794 unsigned long flags; 795 796 local_irq_save(flags); 797 __drain_pages(smp_processor_id()); 798 local_irq_restore(flags); 799 } 800 #endif /* CONFIG_PM */ 801 802 /* 803 * Free a 0-order page 804 */ 805 static void fastcall free_hot_cold_page(struct page *page, int cold) 806 { 807 struct zone *zone = page_zone(page); 808 struct per_cpu_pages *pcp; 809 unsigned long flags; 810 811 if (PageAnon(page)) 812 page->mapping = NULL; 813 if (free_pages_check(page)) 814 return; 815 816 if (!PageHighMem(page)) 817 debug_check_no_locks_freed(page_address(page), PAGE_SIZE); 818 arch_free_page(page, 0); 819 kernel_map_pages(page, 1, 0); 820 821 pcp = &zone_pcp(zone, get_cpu())->pcp[cold]; 822 local_irq_save(flags); 823 __count_vm_event(PGFREE); 824 list_add(&page->lru, &pcp->list); 825 pcp->count++; 826 if (pcp->count >= pcp->high) { 827 free_pages_bulk(zone, pcp->batch, &pcp->list, 0); 828 pcp->count -= pcp->batch; 829 } 830 local_irq_restore(flags); 831 put_cpu(); 832 } 833 834 void fastcall free_hot_page(struct page *page) 835 { 836 free_hot_cold_page(page, 0); 837 } 838 839 void fastcall free_cold_page(struct page *page) 840 { 841 free_hot_cold_page(page, 1); 842 } 843 844 /* 845 * split_page takes a non-compound higher-order page, and splits it into 846 * n (1<<order) sub-pages: page[0..n] 847 * Each sub-page must be freed individually. 848 * 849 * Note: this is probably too low level an operation for use in drivers. 850 * Please consult with lkml before using this in your driver. 851 */ 852 void split_page(struct page *page, unsigned int order) 853 { 854 int i; 855 856 VM_BUG_ON(PageCompound(page)); 857 VM_BUG_ON(!page_count(page)); 858 for (i = 1; i < (1 << order); i++) 859 set_page_refcounted(page + i); 860 } 861 862 /* 863 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But 864 * we cheat by calling it from here, in the order > 0 path. Saves a branch 865 * or two. 866 */ 867 static struct page *buffered_rmqueue(struct zonelist *zonelist, 868 struct zone *zone, int order, gfp_t gfp_flags) 869 { 870 unsigned long flags; 871 struct page *page; 872 int cold = !!(gfp_flags & __GFP_COLD); 873 int cpu; 874 875 again: 876 cpu = get_cpu(); 877 if (likely(order == 0)) { 878 struct per_cpu_pages *pcp; 879 880 pcp = &zone_pcp(zone, cpu)->pcp[cold]; 881 local_irq_save(flags); 882 if (!pcp->count) { 883 pcp->count = rmqueue_bulk(zone, 0, 884 pcp->batch, &pcp->list); 885 if (unlikely(!pcp->count)) 886 goto failed; 887 } 888 page = list_entry(pcp->list.next, struct page, lru); 889 list_del(&page->lru); 890 pcp->count--; 891 } else { 892 spin_lock_irqsave(&zone->lock, flags); 893 page = __rmqueue(zone, order); 894 spin_unlock(&zone->lock); 895 if (!page) 896 goto failed; 897 } 898 899 __count_zone_vm_events(PGALLOC, zone, 1 << order); 900 zone_statistics(zonelist, zone); 901 local_irq_restore(flags); 902 put_cpu(); 903 904 VM_BUG_ON(bad_range(zone, page)); 905 if (prep_new_page(page, order, gfp_flags)) 906 goto again; 907 return page; 908 909 failed: 910 local_irq_restore(flags); 911 put_cpu(); 912 return NULL; 913 } 914 915 #define ALLOC_NO_WATERMARKS 0x01 /* don't check watermarks at all */ 916 #define ALLOC_WMARK_MIN 0x02 /* use pages_min watermark */ 917 #define ALLOC_WMARK_LOW 0x04 /* use pages_low watermark */ 918 #define ALLOC_WMARK_HIGH 0x08 /* use pages_high watermark */ 919 #define ALLOC_HARDER 0x10 /* try to alloc harder */ 920 #define ALLOC_HIGH 0x20 /* __GFP_HIGH set */ 921 #define ALLOC_CPUSET 0x40 /* check for correct cpuset */ 922 923 #ifdef CONFIG_FAIL_PAGE_ALLOC 924 925 static struct fail_page_alloc_attr { 926 struct fault_attr attr; 927 928 u32 ignore_gfp_highmem; 929 u32 ignore_gfp_wait; 930 931 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS 932 933 struct dentry *ignore_gfp_highmem_file; 934 struct dentry *ignore_gfp_wait_file; 935 936 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */ 937 938 } fail_page_alloc = { 939 .attr = FAULT_ATTR_INITIALIZER, 940 .ignore_gfp_wait = 1, 941 .ignore_gfp_highmem = 1, 942 }; 943 944 static int __init setup_fail_page_alloc(char *str) 945 { 946 return setup_fault_attr(&fail_page_alloc.attr, str); 947 } 948 __setup("fail_page_alloc=", setup_fail_page_alloc); 949 950 static int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) 951 { 952 if (gfp_mask & __GFP_NOFAIL) 953 return 0; 954 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM)) 955 return 0; 956 if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT)) 957 return 0; 958 959 return should_fail(&fail_page_alloc.attr, 1 << order); 960 } 961 962 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS 963 964 static int __init fail_page_alloc_debugfs(void) 965 { 966 mode_t mode = S_IFREG | S_IRUSR | S_IWUSR; 967 struct dentry *dir; 968 int err; 969 970 err = init_fault_attr_dentries(&fail_page_alloc.attr, 971 "fail_page_alloc"); 972 if (err) 973 return err; 974 dir = fail_page_alloc.attr.dentries.dir; 975 976 fail_page_alloc.ignore_gfp_wait_file = 977 debugfs_create_bool("ignore-gfp-wait", mode, dir, 978 &fail_page_alloc.ignore_gfp_wait); 979 980 fail_page_alloc.ignore_gfp_highmem_file = 981 debugfs_create_bool("ignore-gfp-highmem", mode, dir, 982 &fail_page_alloc.ignore_gfp_highmem); 983 984 if (!fail_page_alloc.ignore_gfp_wait_file || 985 !fail_page_alloc.ignore_gfp_highmem_file) { 986 err = -ENOMEM; 987 debugfs_remove(fail_page_alloc.ignore_gfp_wait_file); 988 debugfs_remove(fail_page_alloc.ignore_gfp_highmem_file); 989 cleanup_fault_attr_dentries(&fail_page_alloc.attr); 990 } 991 992 return err; 993 } 994 995 late_initcall(fail_page_alloc_debugfs); 996 997 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */ 998 999 #else /* CONFIG_FAIL_PAGE_ALLOC */ 1000 1001 static inline int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) 1002 { 1003 return 0; 1004 } 1005 1006 #endif /* CONFIG_FAIL_PAGE_ALLOC */ 1007 1008 /* 1009 * Return 1 if free pages are above 'mark'. This takes into account the order 1010 * of the allocation. 1011 */ 1012 int zone_watermark_ok(struct zone *z, int order, unsigned long mark, 1013 int classzone_idx, int alloc_flags) 1014 { 1015 /* free_pages my go negative - that's OK */ 1016 long min = mark; 1017 long free_pages = zone_page_state(z, NR_FREE_PAGES) - (1 << order) + 1; 1018 int o; 1019 1020 if (alloc_flags & ALLOC_HIGH) 1021 min -= min / 2; 1022 if (alloc_flags & ALLOC_HARDER) 1023 min -= min / 4; 1024 1025 if (free_pages <= min + z->lowmem_reserve[classzone_idx]) 1026 return 0; 1027 for (o = 0; o < order; o++) { 1028 /* At the next order, this order's pages become unavailable */ 1029 free_pages -= z->free_area[o].nr_free << o; 1030 1031 /* Require fewer higher order pages to be free */ 1032 min >>= 1; 1033 1034 if (free_pages <= min) 1035 return 0; 1036 } 1037 return 1; 1038 } 1039 1040 #ifdef CONFIG_NUMA 1041 /* 1042 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to 1043 * skip over zones that are not allowed by the cpuset, or that have 1044 * been recently (in last second) found to be nearly full. See further 1045 * comments in mmzone.h. Reduces cache footprint of zonelist scans 1046 * that have to skip over alot of full or unallowed zones. 1047 * 1048 * If the zonelist cache is present in the passed in zonelist, then 1049 * returns a pointer to the allowed node mask (either the current 1050 * tasks mems_allowed, or node_online_map.) 1051 * 1052 * If the zonelist cache is not available for this zonelist, does 1053 * nothing and returns NULL. 1054 * 1055 * If the fullzones BITMAP in the zonelist cache is stale (more than 1056 * a second since last zap'd) then we zap it out (clear its bits.) 1057 * 1058 * We hold off even calling zlc_setup, until after we've checked the 1059 * first zone in the zonelist, on the theory that most allocations will 1060 * be satisfied from that first zone, so best to examine that zone as 1061 * quickly as we can. 1062 */ 1063 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags) 1064 { 1065 struct zonelist_cache *zlc; /* cached zonelist speedup info */ 1066 nodemask_t *allowednodes; /* zonelist_cache approximation */ 1067 1068 zlc = zonelist->zlcache_ptr; 1069 if (!zlc) 1070 return NULL; 1071 1072 if (jiffies - zlc->last_full_zap > 1 * HZ) { 1073 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST); 1074 zlc->last_full_zap = jiffies; 1075 } 1076 1077 allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ? 1078 &cpuset_current_mems_allowed : 1079 &node_online_map; 1080 return allowednodes; 1081 } 1082 1083 /* 1084 * Given 'z' scanning a zonelist, run a couple of quick checks to see 1085 * if it is worth looking at further for free memory: 1086 * 1) Check that the zone isn't thought to be full (doesn't have its 1087 * bit set in the zonelist_cache fullzones BITMAP). 1088 * 2) Check that the zones node (obtained from the zonelist_cache 1089 * z_to_n[] mapping) is allowed in the passed in allowednodes mask. 1090 * Return true (non-zero) if zone is worth looking at further, or 1091 * else return false (zero) if it is not. 1092 * 1093 * This check -ignores- the distinction between various watermarks, 1094 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is 1095 * found to be full for any variation of these watermarks, it will 1096 * be considered full for up to one second by all requests, unless 1097 * we are so low on memory on all allowed nodes that we are forced 1098 * into the second scan of the zonelist. 1099 * 1100 * In the second scan we ignore this zonelist cache and exactly 1101 * apply the watermarks to all zones, even it is slower to do so. 1102 * We are low on memory in the second scan, and should leave no stone 1103 * unturned looking for a free page. 1104 */ 1105 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zone **z, 1106 nodemask_t *allowednodes) 1107 { 1108 struct zonelist_cache *zlc; /* cached zonelist speedup info */ 1109 int i; /* index of *z in zonelist zones */ 1110 int n; /* node that zone *z is on */ 1111 1112 zlc = zonelist->zlcache_ptr; 1113 if (!zlc) 1114 return 1; 1115 1116 i = z - zonelist->zones; 1117 n = zlc->z_to_n[i]; 1118 1119 /* This zone is worth trying if it is allowed but not full */ 1120 return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones); 1121 } 1122 1123 /* 1124 * Given 'z' scanning a zonelist, set the corresponding bit in 1125 * zlc->fullzones, so that subsequent attempts to allocate a page 1126 * from that zone don't waste time re-examining it. 1127 */ 1128 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zone **z) 1129 { 1130 struct zonelist_cache *zlc; /* cached zonelist speedup info */ 1131 int i; /* index of *z in zonelist zones */ 1132 1133 zlc = zonelist->zlcache_ptr; 1134 if (!zlc) 1135 return; 1136 1137 i = z - zonelist->zones; 1138 1139 set_bit(i, zlc->fullzones); 1140 } 1141 1142 #else /* CONFIG_NUMA */ 1143 1144 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags) 1145 { 1146 return NULL; 1147 } 1148 1149 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zone **z, 1150 nodemask_t *allowednodes) 1151 { 1152 return 1; 1153 } 1154 1155 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zone **z) 1156 { 1157 } 1158 #endif /* CONFIG_NUMA */ 1159 1160 /* 1161 * get_page_from_freelist goes through the zonelist trying to allocate 1162 * a page. 1163 */ 1164 static struct page * 1165 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, 1166 struct zonelist *zonelist, int alloc_flags) 1167 { 1168 struct zone **z; 1169 struct page *page = NULL; 1170 int classzone_idx = zone_idx(zonelist->zones[0]); 1171 struct zone *zone; 1172 nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */ 1173 int zlc_active = 0; /* set if using zonelist_cache */ 1174 int did_zlc_setup = 0; /* just call zlc_setup() one time */ 1175 1176 zonelist_scan: 1177 /* 1178 * Scan zonelist, looking for a zone with enough free. 1179 * See also cpuset_zone_allowed() comment in kernel/cpuset.c. 1180 */ 1181 z = zonelist->zones; 1182 1183 do { 1184 if (NUMA_BUILD && zlc_active && 1185 !zlc_zone_worth_trying(zonelist, z, allowednodes)) 1186 continue; 1187 zone = *z; 1188 if (unlikely(NUMA_BUILD && (gfp_mask & __GFP_THISNODE) && 1189 zone->zone_pgdat != zonelist->zones[0]->zone_pgdat)) 1190 break; 1191 if ((alloc_flags & ALLOC_CPUSET) && 1192 !cpuset_zone_allowed_softwall(zone, gfp_mask)) 1193 goto try_next_zone; 1194 1195 if (!(alloc_flags & ALLOC_NO_WATERMARKS)) { 1196 unsigned long mark; 1197 if (alloc_flags & ALLOC_WMARK_MIN) 1198 mark = zone->pages_min; 1199 else if (alloc_flags & ALLOC_WMARK_LOW) 1200 mark = zone->pages_low; 1201 else 1202 mark = zone->pages_high; 1203 if (!zone_watermark_ok(zone, order, mark, 1204 classzone_idx, alloc_flags)) { 1205 if (!zone_reclaim_mode || 1206 !zone_reclaim(zone, gfp_mask, order)) 1207 goto this_zone_full; 1208 } 1209 } 1210 1211 page = buffered_rmqueue(zonelist, zone, order, gfp_mask); 1212 if (page) 1213 break; 1214 this_zone_full: 1215 if (NUMA_BUILD) 1216 zlc_mark_zone_full(zonelist, z); 1217 try_next_zone: 1218 if (NUMA_BUILD && !did_zlc_setup) { 1219 /* we do zlc_setup after the first zone is tried */ 1220 allowednodes = zlc_setup(zonelist, alloc_flags); 1221 zlc_active = 1; 1222 did_zlc_setup = 1; 1223 } 1224 } while (*(++z) != NULL); 1225 1226 if (unlikely(NUMA_BUILD && page == NULL && zlc_active)) { 1227 /* Disable zlc cache for second zonelist scan */ 1228 zlc_active = 0; 1229 goto zonelist_scan; 1230 } 1231 return page; 1232 } 1233 1234 /* 1235 * This is the 'heart' of the zoned buddy allocator. 1236 */ 1237 struct page * fastcall 1238 __alloc_pages(gfp_t gfp_mask, unsigned int order, 1239 struct zonelist *zonelist) 1240 { 1241 const gfp_t wait = gfp_mask & __GFP_WAIT; 1242 struct zone **z; 1243 struct page *page; 1244 struct reclaim_state reclaim_state; 1245 struct task_struct *p = current; 1246 int do_retry; 1247 int alloc_flags; 1248 int did_some_progress; 1249 1250 might_sleep_if(wait); 1251 1252 if (should_fail_alloc_page(gfp_mask, order)) 1253 return NULL; 1254 1255 restart: 1256 z = zonelist->zones; /* the list of zones suitable for gfp_mask */ 1257 1258 if (unlikely(*z == NULL)) { 1259 /* Should this ever happen?? */ 1260 return NULL; 1261 } 1262 1263 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, order, 1264 zonelist, ALLOC_WMARK_LOW|ALLOC_CPUSET); 1265 if (page) 1266 goto got_pg; 1267 1268 /* 1269 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and 1270 * __GFP_NOWARN set) should not cause reclaim since the subsystem 1271 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim 1272 * using a larger set of nodes after it has established that the 1273 * allowed per node queues are empty and that nodes are 1274 * over allocated. 1275 */ 1276 if (NUMA_BUILD && (gfp_mask & GFP_THISNODE) == GFP_THISNODE) 1277 goto nopage; 1278 1279 for (z = zonelist->zones; *z; z++) 1280 wakeup_kswapd(*z, order); 1281 1282 /* 1283 * OK, we're below the kswapd watermark and have kicked background 1284 * reclaim. Now things get more complex, so set up alloc_flags according 1285 * to how we want to proceed. 1286 * 1287 * The caller may dip into page reserves a bit more if the caller 1288 * cannot run direct reclaim, or if the caller has realtime scheduling 1289 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will 1290 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH). 1291 */ 1292 alloc_flags = ALLOC_WMARK_MIN; 1293 if ((unlikely(rt_task(p)) && !in_interrupt()) || !wait) 1294 alloc_flags |= ALLOC_HARDER; 1295 if (gfp_mask & __GFP_HIGH) 1296 alloc_flags |= ALLOC_HIGH; 1297 if (wait) 1298 alloc_flags |= ALLOC_CPUSET; 1299 1300 /* 1301 * Go through the zonelist again. Let __GFP_HIGH and allocations 1302 * coming from realtime tasks go deeper into reserves. 1303 * 1304 * This is the last chance, in general, before the goto nopage. 1305 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc. 1306 * See also cpuset_zone_allowed() comment in kernel/cpuset.c. 1307 */ 1308 page = get_page_from_freelist(gfp_mask, order, zonelist, alloc_flags); 1309 if (page) 1310 goto got_pg; 1311 1312 /* This allocation should allow future memory freeing. */ 1313 1314 rebalance: 1315 if (((p->flags & PF_MEMALLOC) || unlikely(test_thread_flag(TIF_MEMDIE))) 1316 && !in_interrupt()) { 1317 if (!(gfp_mask & __GFP_NOMEMALLOC)) { 1318 nofail_alloc: 1319 /* go through the zonelist yet again, ignoring mins */ 1320 page = get_page_from_freelist(gfp_mask, order, 1321 zonelist, ALLOC_NO_WATERMARKS); 1322 if (page) 1323 goto got_pg; 1324 if (gfp_mask & __GFP_NOFAIL) { 1325 congestion_wait(WRITE, HZ/50); 1326 goto nofail_alloc; 1327 } 1328 } 1329 goto nopage; 1330 } 1331 1332 /* Atomic allocations - we can't balance anything */ 1333 if (!wait) 1334 goto nopage; 1335 1336 cond_resched(); 1337 1338 /* We now go into synchronous reclaim */ 1339 cpuset_memory_pressure_bump(); 1340 p->flags |= PF_MEMALLOC; 1341 reclaim_state.reclaimed_slab = 0; 1342 p->reclaim_state = &reclaim_state; 1343 1344 did_some_progress = try_to_free_pages(zonelist->zones, gfp_mask); 1345 1346 p->reclaim_state = NULL; 1347 p->flags &= ~PF_MEMALLOC; 1348 1349 cond_resched(); 1350 1351 if (likely(did_some_progress)) { 1352 page = get_page_from_freelist(gfp_mask, order, 1353 zonelist, alloc_flags); 1354 if (page) 1355 goto got_pg; 1356 } else if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) { 1357 /* 1358 * Go through the zonelist yet one more time, keep 1359 * very high watermark here, this is only to catch 1360 * a parallel oom killing, we must fail if we're still 1361 * under heavy pressure. 1362 */ 1363 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, order, 1364 zonelist, ALLOC_WMARK_HIGH|ALLOC_CPUSET); 1365 if (page) 1366 goto got_pg; 1367 1368 out_of_memory(zonelist, gfp_mask, order); 1369 goto restart; 1370 } 1371 1372 /* 1373 * Don't let big-order allocations loop unless the caller explicitly 1374 * requests that. Wait for some write requests to complete then retry. 1375 * 1376 * In this implementation, __GFP_REPEAT means __GFP_NOFAIL for order 1377 * <= 3, but that may not be true in other implementations. 1378 */ 1379 do_retry = 0; 1380 if (!(gfp_mask & __GFP_NORETRY)) { 1381 if ((order <= 3) || (gfp_mask & __GFP_REPEAT)) 1382 do_retry = 1; 1383 if (gfp_mask & __GFP_NOFAIL) 1384 do_retry = 1; 1385 } 1386 if (do_retry) { 1387 congestion_wait(WRITE, HZ/50); 1388 goto rebalance; 1389 } 1390 1391 nopage: 1392 if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) { 1393 printk(KERN_WARNING "%s: page allocation failure." 1394 " order:%d, mode:0x%x\n", 1395 p->comm, order, gfp_mask); 1396 dump_stack(); 1397 show_mem(); 1398 } 1399 got_pg: 1400 return page; 1401 } 1402 1403 EXPORT_SYMBOL(__alloc_pages); 1404 1405 /* 1406 * Common helper functions. 1407 */ 1408 fastcall unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order) 1409 { 1410 struct page * page; 1411 page = alloc_pages(gfp_mask, order); 1412 if (!page) 1413 return 0; 1414 return (unsigned long) page_address(page); 1415 } 1416 1417 EXPORT_SYMBOL(__get_free_pages); 1418 1419 fastcall unsigned long get_zeroed_page(gfp_t gfp_mask) 1420 { 1421 struct page * page; 1422 1423 /* 1424 * get_zeroed_page() returns a 32-bit address, which cannot represent 1425 * a highmem page 1426 */ 1427 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0); 1428 1429 page = alloc_pages(gfp_mask | __GFP_ZERO, 0); 1430 if (page) 1431 return (unsigned long) page_address(page); 1432 return 0; 1433 } 1434 1435 EXPORT_SYMBOL(get_zeroed_page); 1436 1437 void __pagevec_free(struct pagevec *pvec) 1438 { 1439 int i = pagevec_count(pvec); 1440 1441 while (--i >= 0) 1442 free_hot_cold_page(pvec->pages[i], pvec->cold); 1443 } 1444 1445 fastcall void __free_pages(struct page *page, unsigned int order) 1446 { 1447 if (put_page_testzero(page)) { 1448 if (order == 0) 1449 free_hot_page(page); 1450 else 1451 __free_pages_ok(page, order); 1452 } 1453 } 1454 1455 EXPORT_SYMBOL(__free_pages); 1456 1457 fastcall void free_pages(unsigned long addr, unsigned int order) 1458 { 1459 if (addr != 0) { 1460 VM_BUG_ON(!virt_addr_valid((void *)addr)); 1461 __free_pages(virt_to_page((void *)addr), order); 1462 } 1463 } 1464 1465 EXPORT_SYMBOL(free_pages); 1466 1467 static unsigned int nr_free_zone_pages(int offset) 1468 { 1469 /* Just pick one node, since fallback list is circular */ 1470 pg_data_t *pgdat = NODE_DATA(numa_node_id()); 1471 unsigned int sum = 0; 1472 1473 struct zonelist *zonelist = pgdat->node_zonelists + offset; 1474 struct zone **zonep = zonelist->zones; 1475 struct zone *zone; 1476 1477 for (zone = *zonep++; zone; zone = *zonep++) { 1478 unsigned long size = zone->present_pages; 1479 unsigned long high = zone->pages_high; 1480 if (size > high) 1481 sum += size - high; 1482 } 1483 1484 return sum; 1485 } 1486 1487 /* 1488 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL 1489 */ 1490 unsigned int nr_free_buffer_pages(void) 1491 { 1492 return nr_free_zone_pages(gfp_zone(GFP_USER)); 1493 } 1494 1495 /* 1496 * Amount of free RAM allocatable within all zones 1497 */ 1498 unsigned int nr_free_pagecache_pages(void) 1499 { 1500 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER)); 1501 } 1502 1503 static inline void show_node(struct zone *zone) 1504 { 1505 if (NUMA_BUILD) 1506 printk("Node %d ", zone_to_nid(zone)); 1507 } 1508 1509 void si_meminfo(struct sysinfo *val) 1510 { 1511 val->totalram = totalram_pages; 1512 val->sharedram = 0; 1513 val->freeram = global_page_state(NR_FREE_PAGES); 1514 val->bufferram = nr_blockdev_pages(); 1515 val->totalhigh = totalhigh_pages; 1516 val->freehigh = nr_free_highpages(); 1517 val->mem_unit = PAGE_SIZE; 1518 } 1519 1520 EXPORT_SYMBOL(si_meminfo); 1521 1522 #ifdef CONFIG_NUMA 1523 void si_meminfo_node(struct sysinfo *val, int nid) 1524 { 1525 pg_data_t *pgdat = NODE_DATA(nid); 1526 1527 val->totalram = pgdat->node_present_pages; 1528 val->freeram = node_page_state(nid, NR_FREE_PAGES); 1529 #ifdef CONFIG_HIGHMEM 1530 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages; 1531 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM], 1532 NR_FREE_PAGES); 1533 #else 1534 val->totalhigh = 0; 1535 val->freehigh = 0; 1536 #endif 1537 val->mem_unit = PAGE_SIZE; 1538 } 1539 #endif 1540 1541 #define K(x) ((x) << (PAGE_SHIFT-10)) 1542 1543 /* 1544 * Show free area list (used inside shift_scroll-lock stuff) 1545 * We also calculate the percentage fragmentation. We do this by counting the 1546 * memory on each free list with the exception of the first item on the list. 1547 */ 1548 void show_free_areas(void) 1549 { 1550 int cpu; 1551 struct zone *zone; 1552 1553 for_each_zone(zone) { 1554 if (!populated_zone(zone)) 1555 continue; 1556 1557 show_node(zone); 1558 printk("%s per-cpu:\n", zone->name); 1559 1560 for_each_online_cpu(cpu) { 1561 struct per_cpu_pageset *pageset; 1562 1563 pageset = zone_pcp(zone, cpu); 1564 1565 printk("CPU %4d: Hot: hi:%5d, btch:%4d usd:%4d " 1566 "Cold: hi:%5d, btch:%4d usd:%4d\n", 1567 cpu, pageset->pcp[0].high, 1568 pageset->pcp[0].batch, pageset->pcp[0].count, 1569 pageset->pcp[1].high, pageset->pcp[1].batch, 1570 pageset->pcp[1].count); 1571 } 1572 } 1573 1574 printk("Active:%lu inactive:%lu dirty:%lu writeback:%lu unstable:%lu\n" 1575 " free:%lu slab:%lu mapped:%lu pagetables:%lu bounce:%lu\n", 1576 global_page_state(NR_ACTIVE), 1577 global_page_state(NR_INACTIVE), 1578 global_page_state(NR_FILE_DIRTY), 1579 global_page_state(NR_WRITEBACK), 1580 global_page_state(NR_UNSTABLE_NFS), 1581 global_page_state(NR_FREE_PAGES), 1582 global_page_state(NR_SLAB_RECLAIMABLE) + 1583 global_page_state(NR_SLAB_UNRECLAIMABLE), 1584 global_page_state(NR_FILE_MAPPED), 1585 global_page_state(NR_PAGETABLE), 1586 global_page_state(NR_BOUNCE)); 1587 1588 for_each_zone(zone) { 1589 int i; 1590 1591 if (!populated_zone(zone)) 1592 continue; 1593 1594 show_node(zone); 1595 printk("%s" 1596 " free:%lukB" 1597 " min:%lukB" 1598 " low:%lukB" 1599 " high:%lukB" 1600 " active:%lukB" 1601 " inactive:%lukB" 1602 " present:%lukB" 1603 " pages_scanned:%lu" 1604 " all_unreclaimable? %s" 1605 "\n", 1606 zone->name, 1607 K(zone_page_state(zone, NR_FREE_PAGES)), 1608 K(zone->pages_min), 1609 K(zone->pages_low), 1610 K(zone->pages_high), 1611 K(zone_page_state(zone, NR_ACTIVE)), 1612 K(zone_page_state(zone, NR_INACTIVE)), 1613 K(zone->present_pages), 1614 zone->pages_scanned, 1615 (zone->all_unreclaimable ? "yes" : "no") 1616 ); 1617 printk("lowmem_reserve[]:"); 1618 for (i = 0; i < MAX_NR_ZONES; i++) 1619 printk(" %lu", zone->lowmem_reserve[i]); 1620 printk("\n"); 1621 } 1622 1623 for_each_zone(zone) { 1624 unsigned long nr[MAX_ORDER], flags, order, total = 0; 1625 1626 if (!populated_zone(zone)) 1627 continue; 1628 1629 show_node(zone); 1630 printk("%s: ", zone->name); 1631 1632 spin_lock_irqsave(&zone->lock, flags); 1633 for (order = 0; order < MAX_ORDER; order++) { 1634 nr[order] = zone->free_area[order].nr_free; 1635 total += nr[order] << order; 1636 } 1637 spin_unlock_irqrestore(&zone->lock, flags); 1638 for (order = 0; order < MAX_ORDER; order++) 1639 printk("%lu*%lukB ", nr[order], K(1UL) << order); 1640 printk("= %lukB\n", K(total)); 1641 } 1642 1643 show_swap_cache_info(); 1644 } 1645 1646 /* 1647 * Builds allocation fallback zone lists. 1648 * 1649 * Add all populated zones of a node to the zonelist. 1650 */ 1651 static int __meminit build_zonelists_node(pg_data_t *pgdat, 1652 struct zonelist *zonelist, int nr_zones, enum zone_type zone_type) 1653 { 1654 struct zone *zone; 1655 1656 BUG_ON(zone_type >= MAX_NR_ZONES); 1657 zone_type++; 1658 1659 do { 1660 zone_type--; 1661 zone = pgdat->node_zones + zone_type; 1662 if (populated_zone(zone)) { 1663 zonelist->zones[nr_zones++] = zone; 1664 check_highest_zone(zone_type); 1665 } 1666 1667 } while (zone_type); 1668 return nr_zones; 1669 } 1670 1671 #ifdef CONFIG_NUMA 1672 #define MAX_NODE_LOAD (num_online_nodes()) 1673 static int __meminitdata node_load[MAX_NUMNODES]; 1674 /** 1675 * find_next_best_node - find the next node that should appear in a given node's fallback list 1676 * @node: node whose fallback list we're appending 1677 * @used_node_mask: nodemask_t of already used nodes 1678 * 1679 * We use a number of factors to determine which is the next node that should 1680 * appear on a given node's fallback list. The node should not have appeared 1681 * already in @node's fallback list, and it should be the next closest node 1682 * according to the distance array (which contains arbitrary distance values 1683 * from each node to each node in the system), and should also prefer nodes 1684 * with no CPUs, since presumably they'll have very little allocation pressure 1685 * on them otherwise. 1686 * It returns -1 if no node is found. 1687 */ 1688 static int __meminit find_next_best_node(int node, nodemask_t *used_node_mask) 1689 { 1690 int n, val; 1691 int min_val = INT_MAX; 1692 int best_node = -1; 1693 1694 /* Use the local node if we haven't already */ 1695 if (!node_isset(node, *used_node_mask)) { 1696 node_set(node, *used_node_mask); 1697 return node; 1698 } 1699 1700 for_each_online_node(n) { 1701 cpumask_t tmp; 1702 1703 /* Don't want a node to appear more than once */ 1704 if (node_isset(n, *used_node_mask)) 1705 continue; 1706 1707 /* Use the distance array to find the distance */ 1708 val = node_distance(node, n); 1709 1710 /* Penalize nodes under us ("prefer the next node") */ 1711 val += (n < node); 1712 1713 /* Give preference to headless and unused nodes */ 1714 tmp = node_to_cpumask(n); 1715 if (!cpus_empty(tmp)) 1716 val += PENALTY_FOR_NODE_WITH_CPUS; 1717 1718 /* Slight preference for less loaded node */ 1719 val *= (MAX_NODE_LOAD*MAX_NUMNODES); 1720 val += node_load[n]; 1721 1722 if (val < min_val) { 1723 min_val = val; 1724 best_node = n; 1725 } 1726 } 1727 1728 if (best_node >= 0) 1729 node_set(best_node, *used_node_mask); 1730 1731 return best_node; 1732 } 1733 1734 static void __meminit build_zonelists(pg_data_t *pgdat) 1735 { 1736 int j, node, local_node; 1737 enum zone_type i; 1738 int prev_node, load; 1739 struct zonelist *zonelist; 1740 nodemask_t used_mask; 1741 1742 /* initialize zonelists */ 1743 for (i = 0; i < MAX_NR_ZONES; i++) { 1744 zonelist = pgdat->node_zonelists + i; 1745 zonelist->zones[0] = NULL; 1746 } 1747 1748 /* NUMA-aware ordering of nodes */ 1749 local_node = pgdat->node_id; 1750 load = num_online_nodes(); 1751 prev_node = local_node; 1752 nodes_clear(used_mask); 1753 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) { 1754 int distance = node_distance(local_node, node); 1755 1756 /* 1757 * If another node is sufficiently far away then it is better 1758 * to reclaim pages in a zone before going off node. 1759 */ 1760 if (distance > RECLAIM_DISTANCE) 1761 zone_reclaim_mode = 1; 1762 1763 /* 1764 * We don't want to pressure a particular node. 1765 * So adding penalty to the first node in same 1766 * distance group to make it round-robin. 1767 */ 1768 1769 if (distance != node_distance(local_node, prev_node)) 1770 node_load[node] += load; 1771 prev_node = node; 1772 load--; 1773 for (i = 0; i < MAX_NR_ZONES; i++) { 1774 zonelist = pgdat->node_zonelists + i; 1775 for (j = 0; zonelist->zones[j] != NULL; j++); 1776 1777 j = build_zonelists_node(NODE_DATA(node), zonelist, j, i); 1778 zonelist->zones[j] = NULL; 1779 } 1780 } 1781 } 1782 1783 /* Construct the zonelist performance cache - see further mmzone.h */ 1784 static void __meminit build_zonelist_cache(pg_data_t *pgdat) 1785 { 1786 int i; 1787 1788 for (i = 0; i < MAX_NR_ZONES; i++) { 1789 struct zonelist *zonelist; 1790 struct zonelist_cache *zlc; 1791 struct zone **z; 1792 1793 zonelist = pgdat->node_zonelists + i; 1794 zonelist->zlcache_ptr = zlc = &zonelist->zlcache; 1795 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST); 1796 for (z = zonelist->zones; *z; z++) 1797 zlc->z_to_n[z - zonelist->zones] = zone_to_nid(*z); 1798 } 1799 } 1800 1801 #else /* CONFIG_NUMA */ 1802 1803 static void __meminit build_zonelists(pg_data_t *pgdat) 1804 { 1805 int node, local_node; 1806 enum zone_type i,j; 1807 1808 local_node = pgdat->node_id; 1809 for (i = 0; i < MAX_NR_ZONES; i++) { 1810 struct zonelist *zonelist; 1811 1812 zonelist = pgdat->node_zonelists + i; 1813 1814 j = build_zonelists_node(pgdat, zonelist, 0, i); 1815 /* 1816 * Now we build the zonelist so that it contains the zones 1817 * of all the other nodes. 1818 * We don't want to pressure a particular node, so when 1819 * building the zones for node N, we make sure that the 1820 * zones coming right after the local ones are those from 1821 * node N+1 (modulo N) 1822 */ 1823 for (node = local_node + 1; node < MAX_NUMNODES; node++) { 1824 if (!node_online(node)) 1825 continue; 1826 j = build_zonelists_node(NODE_DATA(node), zonelist, j, i); 1827 } 1828 for (node = 0; node < local_node; node++) { 1829 if (!node_online(node)) 1830 continue; 1831 j = build_zonelists_node(NODE_DATA(node), zonelist, j, i); 1832 } 1833 1834 zonelist->zones[j] = NULL; 1835 } 1836 } 1837 1838 /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */ 1839 static void __meminit build_zonelist_cache(pg_data_t *pgdat) 1840 { 1841 int i; 1842 1843 for (i = 0; i < MAX_NR_ZONES; i++) 1844 pgdat->node_zonelists[i].zlcache_ptr = NULL; 1845 } 1846 1847 #endif /* CONFIG_NUMA */ 1848 1849 /* return values int ....just for stop_machine_run() */ 1850 static int __meminit __build_all_zonelists(void *dummy) 1851 { 1852 int nid; 1853 1854 for_each_online_node(nid) { 1855 build_zonelists(NODE_DATA(nid)); 1856 build_zonelist_cache(NODE_DATA(nid)); 1857 } 1858 return 0; 1859 } 1860 1861 void __meminit build_all_zonelists(void) 1862 { 1863 if (system_state == SYSTEM_BOOTING) { 1864 __build_all_zonelists(NULL); 1865 cpuset_init_current_mems_allowed(); 1866 } else { 1867 /* we have to stop all cpus to guaranntee there is no user 1868 of zonelist */ 1869 stop_machine_run(__build_all_zonelists, NULL, NR_CPUS); 1870 /* cpuset refresh routine should be here */ 1871 } 1872 vm_total_pages = nr_free_pagecache_pages(); 1873 printk("Built %i zonelists. Total pages: %ld\n", 1874 num_online_nodes(), vm_total_pages); 1875 } 1876 1877 /* 1878 * Helper functions to size the waitqueue hash table. 1879 * Essentially these want to choose hash table sizes sufficiently 1880 * large so that collisions trying to wait on pages are rare. 1881 * But in fact, the number of active page waitqueues on typical 1882 * systems is ridiculously low, less than 200. So this is even 1883 * conservative, even though it seems large. 1884 * 1885 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to 1886 * waitqueues, i.e. the size of the waitq table given the number of pages. 1887 */ 1888 #define PAGES_PER_WAITQUEUE 256 1889 1890 #ifndef CONFIG_MEMORY_HOTPLUG 1891 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages) 1892 { 1893 unsigned long size = 1; 1894 1895 pages /= PAGES_PER_WAITQUEUE; 1896 1897 while (size < pages) 1898 size <<= 1; 1899 1900 /* 1901 * Once we have dozens or even hundreds of threads sleeping 1902 * on IO we've got bigger problems than wait queue collision. 1903 * Limit the size of the wait table to a reasonable size. 1904 */ 1905 size = min(size, 4096UL); 1906 1907 return max(size, 4UL); 1908 } 1909 #else 1910 /* 1911 * A zone's size might be changed by hot-add, so it is not possible to determine 1912 * a suitable size for its wait_table. So we use the maximum size now. 1913 * 1914 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie: 1915 * 1916 * i386 (preemption config) : 4096 x 16 = 64Kbyte. 1917 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte. 1918 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte. 1919 * 1920 * The maximum entries are prepared when a zone's memory is (512K + 256) pages 1921 * or more by the traditional way. (See above). It equals: 1922 * 1923 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte. 1924 * ia64(16K page size) : = ( 8G + 4M)byte. 1925 * powerpc (64K page size) : = (32G +16M)byte. 1926 */ 1927 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages) 1928 { 1929 return 4096UL; 1930 } 1931 #endif 1932 1933 /* 1934 * This is an integer logarithm so that shifts can be used later 1935 * to extract the more random high bits from the multiplicative 1936 * hash function before the remainder is taken. 1937 */ 1938 static inline unsigned long wait_table_bits(unsigned long size) 1939 { 1940 return ffz(~size); 1941 } 1942 1943 #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1)) 1944 1945 /* 1946 * Initially all pages are reserved - free ones are freed 1947 * up by free_all_bootmem() once the early boot process is 1948 * done. Non-atomic initialization, single-pass. 1949 */ 1950 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone, 1951 unsigned long start_pfn, enum memmap_context context) 1952 { 1953 struct page *page; 1954 unsigned long end_pfn = start_pfn + size; 1955 unsigned long pfn; 1956 1957 for (pfn = start_pfn; pfn < end_pfn; pfn++) { 1958 /* 1959 * There can be holes in boot-time mem_map[]s 1960 * handed to this function. They do not 1961 * exist on hotplugged memory. 1962 */ 1963 if (context == MEMMAP_EARLY) { 1964 if (!early_pfn_valid(pfn)) 1965 continue; 1966 if (!early_pfn_in_nid(pfn, nid)) 1967 continue; 1968 } 1969 page = pfn_to_page(pfn); 1970 set_page_links(page, zone, nid, pfn); 1971 init_page_count(page); 1972 reset_page_mapcount(page); 1973 SetPageReserved(page); 1974 INIT_LIST_HEAD(&page->lru); 1975 #ifdef WANT_PAGE_VIRTUAL 1976 /* The shift won't overflow because ZONE_NORMAL is below 4G. */ 1977 if (!is_highmem_idx(zone)) 1978 set_page_address(page, __va(pfn << PAGE_SHIFT)); 1979 #endif 1980 } 1981 } 1982 1983 void zone_init_free_lists(struct pglist_data *pgdat, struct zone *zone, 1984 unsigned long size) 1985 { 1986 int order; 1987 for (order = 0; order < MAX_ORDER ; order++) { 1988 INIT_LIST_HEAD(&zone->free_area[order].free_list); 1989 zone->free_area[order].nr_free = 0; 1990 } 1991 } 1992 1993 #ifndef __HAVE_ARCH_MEMMAP_INIT 1994 #define memmap_init(size, nid, zone, start_pfn) \ 1995 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY) 1996 #endif 1997 1998 static int __cpuinit zone_batchsize(struct zone *zone) 1999 { 2000 int batch; 2001 2002 /* 2003 * The per-cpu-pages pools are set to around 1000th of the 2004 * size of the zone. But no more than 1/2 of a meg. 2005 * 2006 * OK, so we don't know how big the cache is. So guess. 2007 */ 2008 batch = zone->present_pages / 1024; 2009 if (batch * PAGE_SIZE > 512 * 1024) 2010 batch = (512 * 1024) / PAGE_SIZE; 2011 batch /= 4; /* We effectively *= 4 below */ 2012 if (batch < 1) 2013 batch = 1; 2014 2015 /* 2016 * Clamp the batch to a 2^n - 1 value. Having a power 2017 * of 2 value was found to be more likely to have 2018 * suboptimal cache aliasing properties in some cases. 2019 * 2020 * For example if 2 tasks are alternately allocating 2021 * batches of pages, one task can end up with a lot 2022 * of pages of one half of the possible page colors 2023 * and the other with pages of the other colors. 2024 */ 2025 batch = (1 << (fls(batch + batch/2)-1)) - 1; 2026 2027 return batch; 2028 } 2029 2030 inline void setup_pageset(struct per_cpu_pageset *p, unsigned long batch) 2031 { 2032 struct per_cpu_pages *pcp; 2033 2034 memset(p, 0, sizeof(*p)); 2035 2036 pcp = &p->pcp[0]; /* hot */ 2037 pcp->count = 0; 2038 pcp->high = 6 * batch; 2039 pcp->batch = max(1UL, 1 * batch); 2040 INIT_LIST_HEAD(&pcp->list); 2041 2042 pcp = &p->pcp[1]; /* cold*/ 2043 pcp->count = 0; 2044 pcp->high = 2 * batch; 2045 pcp->batch = max(1UL, batch/2); 2046 INIT_LIST_HEAD(&pcp->list); 2047 } 2048 2049 /* 2050 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist 2051 * to the value high for the pageset p. 2052 */ 2053 2054 static void setup_pagelist_highmark(struct per_cpu_pageset *p, 2055 unsigned long high) 2056 { 2057 struct per_cpu_pages *pcp; 2058 2059 pcp = &p->pcp[0]; /* hot list */ 2060 pcp->high = high; 2061 pcp->batch = max(1UL, high/4); 2062 if ((high/4) > (PAGE_SHIFT * 8)) 2063 pcp->batch = PAGE_SHIFT * 8; 2064 } 2065 2066 2067 #ifdef CONFIG_NUMA 2068 /* 2069 * Boot pageset table. One per cpu which is going to be used for all 2070 * zones and all nodes. The parameters will be set in such a way 2071 * that an item put on a list will immediately be handed over to 2072 * the buddy list. This is safe since pageset manipulation is done 2073 * with interrupts disabled. 2074 * 2075 * Some NUMA counter updates may also be caught by the boot pagesets. 2076 * 2077 * The boot_pagesets must be kept even after bootup is complete for 2078 * unused processors and/or zones. They do play a role for bootstrapping 2079 * hotplugged processors. 2080 * 2081 * zoneinfo_show() and maybe other functions do 2082 * not check if the processor is online before following the pageset pointer. 2083 * Other parts of the kernel may not check if the zone is available. 2084 */ 2085 static struct per_cpu_pageset boot_pageset[NR_CPUS]; 2086 2087 /* 2088 * Dynamically allocate memory for the 2089 * per cpu pageset array in struct zone. 2090 */ 2091 static int __cpuinit process_zones(int cpu) 2092 { 2093 struct zone *zone, *dzone; 2094 2095 for_each_zone(zone) { 2096 2097 if (!populated_zone(zone)) 2098 continue; 2099 2100 zone_pcp(zone, cpu) = kmalloc_node(sizeof(struct per_cpu_pageset), 2101 GFP_KERNEL, cpu_to_node(cpu)); 2102 if (!zone_pcp(zone, cpu)) 2103 goto bad; 2104 2105 setup_pageset(zone_pcp(zone, cpu), zone_batchsize(zone)); 2106 2107 if (percpu_pagelist_fraction) 2108 setup_pagelist_highmark(zone_pcp(zone, cpu), 2109 (zone->present_pages / percpu_pagelist_fraction)); 2110 } 2111 2112 return 0; 2113 bad: 2114 for_each_zone(dzone) { 2115 if (dzone == zone) 2116 break; 2117 kfree(zone_pcp(dzone, cpu)); 2118 zone_pcp(dzone, cpu) = NULL; 2119 } 2120 return -ENOMEM; 2121 } 2122 2123 static inline void free_zone_pagesets(int cpu) 2124 { 2125 struct zone *zone; 2126 2127 for_each_zone(zone) { 2128 struct per_cpu_pageset *pset = zone_pcp(zone, cpu); 2129 2130 /* Free per_cpu_pageset if it is slab allocated */ 2131 if (pset != &boot_pageset[cpu]) 2132 kfree(pset); 2133 zone_pcp(zone, cpu) = NULL; 2134 } 2135 } 2136 2137 static int __cpuinit pageset_cpuup_callback(struct notifier_block *nfb, 2138 unsigned long action, 2139 void *hcpu) 2140 { 2141 int cpu = (long)hcpu; 2142 int ret = NOTIFY_OK; 2143 2144 switch (action) { 2145 case CPU_UP_PREPARE: 2146 if (process_zones(cpu)) 2147 ret = NOTIFY_BAD; 2148 break; 2149 case CPU_UP_CANCELED: 2150 case CPU_DEAD: 2151 free_zone_pagesets(cpu); 2152 break; 2153 default: 2154 break; 2155 } 2156 return ret; 2157 } 2158 2159 static struct notifier_block __cpuinitdata pageset_notifier = 2160 { &pageset_cpuup_callback, NULL, 0 }; 2161 2162 void __init setup_per_cpu_pageset(void) 2163 { 2164 int err; 2165 2166 /* Initialize per_cpu_pageset for cpu 0. 2167 * A cpuup callback will do this for every cpu 2168 * as it comes online 2169 */ 2170 err = process_zones(smp_processor_id()); 2171 BUG_ON(err); 2172 register_cpu_notifier(&pageset_notifier); 2173 } 2174 2175 #endif 2176 2177 static __meminit 2178 int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages) 2179 { 2180 int i; 2181 struct pglist_data *pgdat = zone->zone_pgdat; 2182 size_t alloc_size; 2183 2184 /* 2185 * The per-page waitqueue mechanism uses hashed waitqueues 2186 * per zone. 2187 */ 2188 zone->wait_table_hash_nr_entries = 2189 wait_table_hash_nr_entries(zone_size_pages); 2190 zone->wait_table_bits = 2191 wait_table_bits(zone->wait_table_hash_nr_entries); 2192 alloc_size = zone->wait_table_hash_nr_entries 2193 * sizeof(wait_queue_head_t); 2194 2195 if (system_state == SYSTEM_BOOTING) { 2196 zone->wait_table = (wait_queue_head_t *) 2197 alloc_bootmem_node(pgdat, alloc_size); 2198 } else { 2199 /* 2200 * This case means that a zone whose size was 0 gets new memory 2201 * via memory hot-add. 2202 * But it may be the case that a new node was hot-added. In 2203 * this case vmalloc() will not be able to use this new node's 2204 * memory - this wait_table must be initialized to use this new 2205 * node itself as well. 2206 * To use this new node's memory, further consideration will be 2207 * necessary. 2208 */ 2209 zone->wait_table = (wait_queue_head_t *)vmalloc(alloc_size); 2210 } 2211 if (!zone->wait_table) 2212 return -ENOMEM; 2213 2214 for(i = 0; i < zone->wait_table_hash_nr_entries; ++i) 2215 init_waitqueue_head(zone->wait_table + i); 2216 2217 return 0; 2218 } 2219 2220 static __meminit void zone_pcp_init(struct zone *zone) 2221 { 2222 int cpu; 2223 unsigned long batch = zone_batchsize(zone); 2224 2225 for (cpu = 0; cpu < NR_CPUS; cpu++) { 2226 #ifdef CONFIG_NUMA 2227 /* Early boot. Slab allocator not functional yet */ 2228 zone_pcp(zone, cpu) = &boot_pageset[cpu]; 2229 setup_pageset(&boot_pageset[cpu],0); 2230 #else 2231 setup_pageset(zone_pcp(zone,cpu), batch); 2232 #endif 2233 } 2234 if (zone->present_pages) 2235 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%lu\n", 2236 zone->name, zone->present_pages, batch); 2237 } 2238 2239 __meminit int init_currently_empty_zone(struct zone *zone, 2240 unsigned long zone_start_pfn, 2241 unsigned long size, 2242 enum memmap_context context) 2243 { 2244 struct pglist_data *pgdat = zone->zone_pgdat; 2245 int ret; 2246 ret = zone_wait_table_init(zone, size); 2247 if (ret) 2248 return ret; 2249 pgdat->nr_zones = zone_idx(zone) + 1; 2250 2251 zone->zone_start_pfn = zone_start_pfn; 2252 2253 memmap_init(size, pgdat->node_id, zone_idx(zone), zone_start_pfn); 2254 2255 zone_init_free_lists(pgdat, zone, zone->spanned_pages); 2256 2257 return 0; 2258 } 2259 2260 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP 2261 /* 2262 * Basic iterator support. Return the first range of PFNs for a node 2263 * Note: nid == MAX_NUMNODES returns first region regardless of node 2264 */ 2265 static int __init first_active_region_index_in_nid(int nid) 2266 { 2267 int i; 2268 2269 for (i = 0; i < nr_nodemap_entries; i++) 2270 if (nid == MAX_NUMNODES || early_node_map[i].nid == nid) 2271 return i; 2272 2273 return -1; 2274 } 2275 2276 /* 2277 * Basic iterator support. Return the next active range of PFNs for a node 2278 * Note: nid == MAX_NUMNODES returns next region regardles of node 2279 */ 2280 static int __init next_active_region_index_in_nid(int index, int nid) 2281 { 2282 for (index = index + 1; index < nr_nodemap_entries; index++) 2283 if (nid == MAX_NUMNODES || early_node_map[index].nid == nid) 2284 return index; 2285 2286 return -1; 2287 } 2288 2289 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID 2290 /* 2291 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on. 2292 * Architectures may implement their own version but if add_active_range() 2293 * was used and there are no special requirements, this is a convenient 2294 * alternative 2295 */ 2296 int __init early_pfn_to_nid(unsigned long pfn) 2297 { 2298 int i; 2299 2300 for (i = 0; i < nr_nodemap_entries; i++) { 2301 unsigned long start_pfn = early_node_map[i].start_pfn; 2302 unsigned long end_pfn = early_node_map[i].end_pfn; 2303 2304 if (start_pfn <= pfn && pfn < end_pfn) 2305 return early_node_map[i].nid; 2306 } 2307 2308 return 0; 2309 } 2310 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */ 2311 2312 /* Basic iterator support to walk early_node_map[] */ 2313 #define for_each_active_range_index_in_nid(i, nid) \ 2314 for (i = first_active_region_index_in_nid(nid); i != -1; \ 2315 i = next_active_region_index_in_nid(i, nid)) 2316 2317 /** 2318 * free_bootmem_with_active_regions - Call free_bootmem_node for each active range 2319 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed. 2320 * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node 2321 * 2322 * If an architecture guarantees that all ranges registered with 2323 * add_active_ranges() contain no holes and may be freed, this 2324 * this function may be used instead of calling free_bootmem() manually. 2325 */ 2326 void __init free_bootmem_with_active_regions(int nid, 2327 unsigned long max_low_pfn) 2328 { 2329 int i; 2330 2331 for_each_active_range_index_in_nid(i, nid) { 2332 unsigned long size_pages = 0; 2333 unsigned long end_pfn = early_node_map[i].end_pfn; 2334 2335 if (early_node_map[i].start_pfn >= max_low_pfn) 2336 continue; 2337 2338 if (end_pfn > max_low_pfn) 2339 end_pfn = max_low_pfn; 2340 2341 size_pages = end_pfn - early_node_map[i].start_pfn; 2342 free_bootmem_node(NODE_DATA(early_node_map[i].nid), 2343 PFN_PHYS(early_node_map[i].start_pfn), 2344 size_pages << PAGE_SHIFT); 2345 } 2346 } 2347 2348 /** 2349 * sparse_memory_present_with_active_regions - Call memory_present for each active range 2350 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used. 2351 * 2352 * If an architecture guarantees that all ranges registered with 2353 * add_active_ranges() contain no holes and may be freed, this 2354 * function may be used instead of calling memory_present() manually. 2355 */ 2356 void __init sparse_memory_present_with_active_regions(int nid) 2357 { 2358 int i; 2359 2360 for_each_active_range_index_in_nid(i, nid) 2361 memory_present(early_node_map[i].nid, 2362 early_node_map[i].start_pfn, 2363 early_node_map[i].end_pfn); 2364 } 2365 2366 /** 2367 * push_node_boundaries - Push node boundaries to at least the requested boundary 2368 * @nid: The nid of the node to push the boundary for 2369 * @start_pfn: The start pfn of the node 2370 * @end_pfn: The end pfn of the node 2371 * 2372 * In reserve-based hot-add, mem_map is allocated that is unused until hotadd 2373 * time. Specifically, on x86_64, SRAT will report ranges that can potentially 2374 * be hotplugged even though no physical memory exists. This function allows 2375 * an arch to push out the node boundaries so mem_map is allocated that can 2376 * be used later. 2377 */ 2378 #ifdef CONFIG_MEMORY_HOTPLUG_RESERVE 2379 void __init push_node_boundaries(unsigned int nid, 2380 unsigned long start_pfn, unsigned long end_pfn) 2381 { 2382 printk(KERN_DEBUG "Entering push_node_boundaries(%u, %lu, %lu)\n", 2383 nid, start_pfn, end_pfn); 2384 2385 /* Initialise the boundary for this node if necessary */ 2386 if (node_boundary_end_pfn[nid] == 0) 2387 node_boundary_start_pfn[nid] = -1UL; 2388 2389 /* Update the boundaries */ 2390 if (node_boundary_start_pfn[nid] > start_pfn) 2391 node_boundary_start_pfn[nid] = start_pfn; 2392 if (node_boundary_end_pfn[nid] < end_pfn) 2393 node_boundary_end_pfn[nid] = end_pfn; 2394 } 2395 2396 /* If necessary, push the node boundary out for reserve hotadd */ 2397 static void __init account_node_boundary(unsigned int nid, 2398 unsigned long *start_pfn, unsigned long *end_pfn) 2399 { 2400 printk(KERN_DEBUG "Entering account_node_boundary(%u, %lu, %lu)\n", 2401 nid, *start_pfn, *end_pfn); 2402 2403 /* Return if boundary information has not been provided */ 2404 if (node_boundary_end_pfn[nid] == 0) 2405 return; 2406 2407 /* Check the boundaries and update if necessary */ 2408 if (node_boundary_start_pfn[nid] < *start_pfn) 2409 *start_pfn = node_boundary_start_pfn[nid]; 2410 if (node_boundary_end_pfn[nid] > *end_pfn) 2411 *end_pfn = node_boundary_end_pfn[nid]; 2412 } 2413 #else 2414 void __init push_node_boundaries(unsigned int nid, 2415 unsigned long start_pfn, unsigned long end_pfn) {} 2416 2417 static void __init account_node_boundary(unsigned int nid, 2418 unsigned long *start_pfn, unsigned long *end_pfn) {} 2419 #endif 2420 2421 2422 /** 2423 * get_pfn_range_for_nid - Return the start and end page frames for a node 2424 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned. 2425 * @start_pfn: Passed by reference. On return, it will have the node start_pfn. 2426 * @end_pfn: Passed by reference. On return, it will have the node end_pfn. 2427 * 2428 * It returns the start and end page frame of a node based on information 2429 * provided by an arch calling add_active_range(). If called for a node 2430 * with no available memory, a warning is printed and the start and end 2431 * PFNs will be 0. 2432 */ 2433 void __init get_pfn_range_for_nid(unsigned int nid, 2434 unsigned long *start_pfn, unsigned long *end_pfn) 2435 { 2436 int i; 2437 *start_pfn = -1UL; 2438 *end_pfn = 0; 2439 2440 for_each_active_range_index_in_nid(i, nid) { 2441 *start_pfn = min(*start_pfn, early_node_map[i].start_pfn); 2442 *end_pfn = max(*end_pfn, early_node_map[i].end_pfn); 2443 } 2444 2445 if (*start_pfn == -1UL) { 2446 printk(KERN_WARNING "Node %u active with no memory\n", nid); 2447 *start_pfn = 0; 2448 } 2449 2450 /* Push the node boundaries out if requested */ 2451 account_node_boundary(nid, start_pfn, end_pfn); 2452 } 2453 2454 /* 2455 * Return the number of pages a zone spans in a node, including holes 2456 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node() 2457 */ 2458 unsigned long __init zone_spanned_pages_in_node(int nid, 2459 unsigned long zone_type, 2460 unsigned long *ignored) 2461 { 2462 unsigned long node_start_pfn, node_end_pfn; 2463 unsigned long zone_start_pfn, zone_end_pfn; 2464 2465 /* Get the start and end of the node and zone */ 2466 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn); 2467 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type]; 2468 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type]; 2469 2470 /* Check that this node has pages within the zone's required range */ 2471 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn) 2472 return 0; 2473 2474 /* Move the zone boundaries inside the node if necessary */ 2475 zone_end_pfn = min(zone_end_pfn, node_end_pfn); 2476 zone_start_pfn = max(zone_start_pfn, node_start_pfn); 2477 2478 /* Return the spanned pages */ 2479 return zone_end_pfn - zone_start_pfn; 2480 } 2481 2482 /* 2483 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES, 2484 * then all holes in the requested range will be accounted for. 2485 */ 2486 unsigned long __init __absent_pages_in_range(int nid, 2487 unsigned long range_start_pfn, 2488 unsigned long range_end_pfn) 2489 { 2490 int i = 0; 2491 unsigned long prev_end_pfn = 0, hole_pages = 0; 2492 unsigned long start_pfn; 2493 2494 /* Find the end_pfn of the first active range of pfns in the node */ 2495 i = first_active_region_index_in_nid(nid); 2496 if (i == -1) 2497 return 0; 2498 2499 /* Account for ranges before physical memory on this node */ 2500 if (early_node_map[i].start_pfn > range_start_pfn) 2501 hole_pages = early_node_map[i].start_pfn - range_start_pfn; 2502 2503 prev_end_pfn = early_node_map[i].start_pfn; 2504 2505 /* Find all holes for the zone within the node */ 2506 for (; i != -1; i = next_active_region_index_in_nid(i, nid)) { 2507 2508 /* No need to continue if prev_end_pfn is outside the zone */ 2509 if (prev_end_pfn >= range_end_pfn) 2510 break; 2511 2512 /* Make sure the end of the zone is not within the hole */ 2513 start_pfn = min(early_node_map[i].start_pfn, range_end_pfn); 2514 prev_end_pfn = max(prev_end_pfn, range_start_pfn); 2515 2516 /* Update the hole size cound and move on */ 2517 if (start_pfn > range_start_pfn) { 2518 BUG_ON(prev_end_pfn > start_pfn); 2519 hole_pages += start_pfn - prev_end_pfn; 2520 } 2521 prev_end_pfn = early_node_map[i].end_pfn; 2522 } 2523 2524 /* Account for ranges past physical memory on this node */ 2525 if (range_end_pfn > prev_end_pfn) 2526 hole_pages += range_end_pfn - 2527 max(range_start_pfn, prev_end_pfn); 2528 2529 return hole_pages; 2530 } 2531 2532 /** 2533 * absent_pages_in_range - Return number of page frames in holes within a range 2534 * @start_pfn: The start PFN to start searching for holes 2535 * @end_pfn: The end PFN to stop searching for holes 2536 * 2537 * It returns the number of pages frames in memory holes within a range. 2538 */ 2539 unsigned long __init absent_pages_in_range(unsigned long start_pfn, 2540 unsigned long end_pfn) 2541 { 2542 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn); 2543 } 2544 2545 /* Return the number of page frames in holes in a zone on a node */ 2546 unsigned long __init zone_absent_pages_in_node(int nid, 2547 unsigned long zone_type, 2548 unsigned long *ignored) 2549 { 2550 unsigned long node_start_pfn, node_end_pfn; 2551 unsigned long zone_start_pfn, zone_end_pfn; 2552 2553 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn); 2554 zone_start_pfn = max(arch_zone_lowest_possible_pfn[zone_type], 2555 node_start_pfn); 2556 zone_end_pfn = min(arch_zone_highest_possible_pfn[zone_type], 2557 node_end_pfn); 2558 2559 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn); 2560 } 2561 2562 #else 2563 static inline unsigned long zone_spanned_pages_in_node(int nid, 2564 unsigned long zone_type, 2565 unsigned long *zones_size) 2566 { 2567 return zones_size[zone_type]; 2568 } 2569 2570 static inline unsigned long zone_absent_pages_in_node(int nid, 2571 unsigned long zone_type, 2572 unsigned long *zholes_size) 2573 { 2574 if (!zholes_size) 2575 return 0; 2576 2577 return zholes_size[zone_type]; 2578 } 2579 2580 #endif 2581 2582 static void __init calculate_node_totalpages(struct pglist_data *pgdat, 2583 unsigned long *zones_size, unsigned long *zholes_size) 2584 { 2585 unsigned long realtotalpages, totalpages = 0; 2586 enum zone_type i; 2587 2588 for (i = 0; i < MAX_NR_ZONES; i++) 2589 totalpages += zone_spanned_pages_in_node(pgdat->node_id, i, 2590 zones_size); 2591 pgdat->node_spanned_pages = totalpages; 2592 2593 realtotalpages = totalpages; 2594 for (i = 0; i < MAX_NR_ZONES; i++) 2595 realtotalpages -= 2596 zone_absent_pages_in_node(pgdat->node_id, i, 2597 zholes_size); 2598 pgdat->node_present_pages = realtotalpages; 2599 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id, 2600 realtotalpages); 2601 } 2602 2603 /* 2604 * Set up the zone data structures: 2605 * - mark all pages reserved 2606 * - mark all memory queues empty 2607 * - clear the memory bitmaps 2608 */ 2609 static void __meminit free_area_init_core(struct pglist_data *pgdat, 2610 unsigned long *zones_size, unsigned long *zholes_size) 2611 { 2612 enum zone_type j; 2613 int nid = pgdat->node_id; 2614 unsigned long zone_start_pfn = pgdat->node_start_pfn; 2615 int ret; 2616 2617 pgdat_resize_init(pgdat); 2618 pgdat->nr_zones = 0; 2619 init_waitqueue_head(&pgdat->kswapd_wait); 2620 pgdat->kswapd_max_order = 0; 2621 2622 for (j = 0; j < MAX_NR_ZONES; j++) { 2623 struct zone *zone = pgdat->node_zones + j; 2624 unsigned long size, realsize, memmap_pages; 2625 2626 size = zone_spanned_pages_in_node(nid, j, zones_size); 2627 realsize = size - zone_absent_pages_in_node(nid, j, 2628 zholes_size); 2629 2630 /* 2631 * Adjust realsize so that it accounts for how much memory 2632 * is used by this zone for memmap. This affects the watermark 2633 * and per-cpu initialisations 2634 */ 2635 memmap_pages = (size * sizeof(struct page)) >> PAGE_SHIFT; 2636 if (realsize >= memmap_pages) { 2637 realsize -= memmap_pages; 2638 printk(KERN_DEBUG 2639 " %s zone: %lu pages used for memmap\n", 2640 zone_names[j], memmap_pages); 2641 } else 2642 printk(KERN_WARNING 2643 " %s zone: %lu pages exceeds realsize %lu\n", 2644 zone_names[j], memmap_pages, realsize); 2645 2646 /* Account for reserved pages */ 2647 if (j == 0 && realsize > dma_reserve) { 2648 realsize -= dma_reserve; 2649 printk(KERN_DEBUG " %s zone: %lu pages reserved\n", 2650 zone_names[0], dma_reserve); 2651 } 2652 2653 if (!is_highmem_idx(j)) 2654 nr_kernel_pages += realsize; 2655 nr_all_pages += realsize; 2656 2657 zone->spanned_pages = size; 2658 zone->present_pages = realsize; 2659 #ifdef CONFIG_NUMA 2660 zone->node = nid; 2661 zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio) 2662 / 100; 2663 zone->min_slab_pages = (realsize * sysctl_min_slab_ratio) / 100; 2664 #endif 2665 zone->name = zone_names[j]; 2666 spin_lock_init(&zone->lock); 2667 spin_lock_init(&zone->lru_lock); 2668 zone_seqlock_init(zone); 2669 zone->zone_pgdat = pgdat; 2670 2671 zone->prev_priority = DEF_PRIORITY; 2672 2673 zone_pcp_init(zone); 2674 INIT_LIST_HEAD(&zone->active_list); 2675 INIT_LIST_HEAD(&zone->inactive_list); 2676 zone->nr_scan_active = 0; 2677 zone->nr_scan_inactive = 0; 2678 zap_zone_vm_stats(zone); 2679 atomic_set(&zone->reclaim_in_progress, 0); 2680 if (!size) 2681 continue; 2682 2683 ret = init_currently_empty_zone(zone, zone_start_pfn, 2684 size, MEMMAP_EARLY); 2685 BUG_ON(ret); 2686 zone_start_pfn += size; 2687 } 2688 } 2689 2690 static void __init alloc_node_mem_map(struct pglist_data *pgdat) 2691 { 2692 /* Skip empty nodes */ 2693 if (!pgdat->node_spanned_pages) 2694 return; 2695 2696 #ifdef CONFIG_FLAT_NODE_MEM_MAP 2697 /* ia64 gets its own node_mem_map, before this, without bootmem */ 2698 if (!pgdat->node_mem_map) { 2699 unsigned long size, start, end; 2700 struct page *map; 2701 2702 /* 2703 * The zone's endpoints aren't required to be MAX_ORDER 2704 * aligned but the node_mem_map endpoints must be in order 2705 * for the buddy allocator to function correctly. 2706 */ 2707 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1); 2708 end = pgdat->node_start_pfn + pgdat->node_spanned_pages; 2709 end = ALIGN(end, MAX_ORDER_NR_PAGES); 2710 size = (end - start) * sizeof(struct page); 2711 map = alloc_remap(pgdat->node_id, size); 2712 if (!map) 2713 map = alloc_bootmem_node(pgdat, size); 2714 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start); 2715 } 2716 #ifdef CONFIG_FLATMEM 2717 /* 2718 * With no DISCONTIG, the global mem_map is just set as node 0's 2719 */ 2720 if (pgdat == NODE_DATA(0)) { 2721 mem_map = NODE_DATA(0)->node_mem_map; 2722 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP 2723 if (page_to_pfn(mem_map) != pgdat->node_start_pfn) 2724 mem_map -= pgdat->node_start_pfn; 2725 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */ 2726 } 2727 #endif 2728 #endif /* CONFIG_FLAT_NODE_MEM_MAP */ 2729 } 2730 2731 void __meminit free_area_init_node(int nid, struct pglist_data *pgdat, 2732 unsigned long *zones_size, unsigned long node_start_pfn, 2733 unsigned long *zholes_size) 2734 { 2735 pgdat->node_id = nid; 2736 pgdat->node_start_pfn = node_start_pfn; 2737 calculate_node_totalpages(pgdat, zones_size, zholes_size); 2738 2739 alloc_node_mem_map(pgdat); 2740 2741 free_area_init_core(pgdat, zones_size, zholes_size); 2742 } 2743 2744 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP 2745 /** 2746 * add_active_range - Register a range of PFNs backed by physical memory 2747 * @nid: The node ID the range resides on 2748 * @start_pfn: The start PFN of the available physical memory 2749 * @end_pfn: The end PFN of the available physical memory 2750 * 2751 * These ranges are stored in an early_node_map[] and later used by 2752 * free_area_init_nodes() to calculate zone sizes and holes. If the 2753 * range spans a memory hole, it is up to the architecture to ensure 2754 * the memory is not freed by the bootmem allocator. If possible 2755 * the range being registered will be merged with existing ranges. 2756 */ 2757 void __init add_active_range(unsigned int nid, unsigned long start_pfn, 2758 unsigned long end_pfn) 2759 { 2760 int i; 2761 2762 printk(KERN_DEBUG "Entering add_active_range(%d, %lu, %lu) " 2763 "%d entries of %d used\n", 2764 nid, start_pfn, end_pfn, 2765 nr_nodemap_entries, MAX_ACTIVE_REGIONS); 2766 2767 /* Merge with existing active regions if possible */ 2768 for (i = 0; i < nr_nodemap_entries; i++) { 2769 if (early_node_map[i].nid != nid) 2770 continue; 2771 2772 /* Skip if an existing region covers this new one */ 2773 if (start_pfn >= early_node_map[i].start_pfn && 2774 end_pfn <= early_node_map[i].end_pfn) 2775 return; 2776 2777 /* Merge forward if suitable */ 2778 if (start_pfn <= early_node_map[i].end_pfn && 2779 end_pfn > early_node_map[i].end_pfn) { 2780 early_node_map[i].end_pfn = end_pfn; 2781 return; 2782 } 2783 2784 /* Merge backward if suitable */ 2785 if (start_pfn < early_node_map[i].end_pfn && 2786 end_pfn >= early_node_map[i].start_pfn) { 2787 early_node_map[i].start_pfn = start_pfn; 2788 return; 2789 } 2790 } 2791 2792 /* Check that early_node_map is large enough */ 2793 if (i >= MAX_ACTIVE_REGIONS) { 2794 printk(KERN_CRIT "More than %d memory regions, truncating\n", 2795 MAX_ACTIVE_REGIONS); 2796 return; 2797 } 2798 2799 early_node_map[i].nid = nid; 2800 early_node_map[i].start_pfn = start_pfn; 2801 early_node_map[i].end_pfn = end_pfn; 2802 nr_nodemap_entries = i + 1; 2803 } 2804 2805 /** 2806 * shrink_active_range - Shrink an existing registered range of PFNs 2807 * @nid: The node id the range is on that should be shrunk 2808 * @old_end_pfn: The old end PFN of the range 2809 * @new_end_pfn: The new PFN of the range 2810 * 2811 * i386 with NUMA use alloc_remap() to store a node_mem_map on a local node. 2812 * The map is kept at the end physical page range that has already been 2813 * registered with add_active_range(). This function allows an arch to shrink 2814 * an existing registered range. 2815 */ 2816 void __init shrink_active_range(unsigned int nid, unsigned long old_end_pfn, 2817 unsigned long new_end_pfn) 2818 { 2819 int i; 2820 2821 /* Find the old active region end and shrink */ 2822 for_each_active_range_index_in_nid(i, nid) 2823 if (early_node_map[i].end_pfn == old_end_pfn) { 2824 early_node_map[i].end_pfn = new_end_pfn; 2825 break; 2826 } 2827 } 2828 2829 /** 2830 * remove_all_active_ranges - Remove all currently registered regions 2831 * 2832 * During discovery, it may be found that a table like SRAT is invalid 2833 * and an alternative discovery method must be used. This function removes 2834 * all currently registered regions. 2835 */ 2836 void __init remove_all_active_ranges(void) 2837 { 2838 memset(early_node_map, 0, sizeof(early_node_map)); 2839 nr_nodemap_entries = 0; 2840 #ifdef CONFIG_MEMORY_HOTPLUG_RESERVE 2841 memset(node_boundary_start_pfn, 0, sizeof(node_boundary_start_pfn)); 2842 memset(node_boundary_end_pfn, 0, sizeof(node_boundary_end_pfn)); 2843 #endif /* CONFIG_MEMORY_HOTPLUG_RESERVE */ 2844 } 2845 2846 /* Compare two active node_active_regions */ 2847 static int __init cmp_node_active_region(const void *a, const void *b) 2848 { 2849 struct node_active_region *arange = (struct node_active_region *)a; 2850 struct node_active_region *brange = (struct node_active_region *)b; 2851 2852 /* Done this way to avoid overflows */ 2853 if (arange->start_pfn > brange->start_pfn) 2854 return 1; 2855 if (arange->start_pfn < brange->start_pfn) 2856 return -1; 2857 2858 return 0; 2859 } 2860 2861 /* sort the node_map by start_pfn */ 2862 static void __init sort_node_map(void) 2863 { 2864 sort(early_node_map, (size_t)nr_nodemap_entries, 2865 sizeof(struct node_active_region), 2866 cmp_node_active_region, NULL); 2867 } 2868 2869 /* Find the lowest pfn for a node */ 2870 unsigned long __init find_min_pfn_for_node(unsigned long nid) 2871 { 2872 int i; 2873 unsigned long min_pfn = ULONG_MAX; 2874 2875 /* Assuming a sorted map, the first range found has the starting pfn */ 2876 for_each_active_range_index_in_nid(i, nid) 2877 min_pfn = min(min_pfn, early_node_map[i].start_pfn); 2878 2879 if (min_pfn == ULONG_MAX) { 2880 printk(KERN_WARNING 2881 "Could not find start_pfn for node %lu\n", nid); 2882 return 0; 2883 } 2884 2885 return min_pfn; 2886 } 2887 2888 /** 2889 * find_min_pfn_with_active_regions - Find the minimum PFN registered 2890 * 2891 * It returns the minimum PFN based on information provided via 2892 * add_active_range(). 2893 */ 2894 unsigned long __init find_min_pfn_with_active_regions(void) 2895 { 2896 return find_min_pfn_for_node(MAX_NUMNODES); 2897 } 2898 2899 /** 2900 * find_max_pfn_with_active_regions - Find the maximum PFN registered 2901 * 2902 * It returns the maximum PFN based on information provided via 2903 * add_active_range(). 2904 */ 2905 unsigned long __init find_max_pfn_with_active_regions(void) 2906 { 2907 int i; 2908 unsigned long max_pfn = 0; 2909 2910 for (i = 0; i < nr_nodemap_entries; i++) 2911 max_pfn = max(max_pfn, early_node_map[i].end_pfn); 2912 2913 return max_pfn; 2914 } 2915 2916 /** 2917 * free_area_init_nodes - Initialise all pg_data_t and zone data 2918 * @max_zone_pfn: an array of max PFNs for each zone 2919 * 2920 * This will call free_area_init_node() for each active node in the system. 2921 * Using the page ranges provided by add_active_range(), the size of each 2922 * zone in each node and their holes is calculated. If the maximum PFN 2923 * between two adjacent zones match, it is assumed that the zone is empty. 2924 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed 2925 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone 2926 * starts where the previous one ended. For example, ZONE_DMA32 starts 2927 * at arch_max_dma_pfn. 2928 */ 2929 void __init free_area_init_nodes(unsigned long *max_zone_pfn) 2930 { 2931 unsigned long nid; 2932 enum zone_type i; 2933 2934 /* Sort early_node_map as initialisation assumes it is sorted */ 2935 sort_node_map(); 2936 2937 /* Record where the zone boundaries are */ 2938 memset(arch_zone_lowest_possible_pfn, 0, 2939 sizeof(arch_zone_lowest_possible_pfn)); 2940 memset(arch_zone_highest_possible_pfn, 0, 2941 sizeof(arch_zone_highest_possible_pfn)); 2942 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions(); 2943 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0]; 2944 for (i = 1; i < MAX_NR_ZONES; i++) { 2945 arch_zone_lowest_possible_pfn[i] = 2946 arch_zone_highest_possible_pfn[i-1]; 2947 arch_zone_highest_possible_pfn[i] = 2948 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]); 2949 } 2950 2951 /* Print out the zone ranges */ 2952 printk("Zone PFN ranges:\n"); 2953 for (i = 0; i < MAX_NR_ZONES; i++) 2954 printk(" %-8s %8lu -> %8lu\n", 2955 zone_names[i], 2956 arch_zone_lowest_possible_pfn[i], 2957 arch_zone_highest_possible_pfn[i]); 2958 2959 /* Print out the early_node_map[] */ 2960 printk("early_node_map[%d] active PFN ranges\n", nr_nodemap_entries); 2961 for (i = 0; i < nr_nodemap_entries; i++) 2962 printk(" %3d: %8lu -> %8lu\n", early_node_map[i].nid, 2963 early_node_map[i].start_pfn, 2964 early_node_map[i].end_pfn); 2965 2966 /* Initialise every node */ 2967 setup_nr_node_ids(); 2968 for_each_online_node(nid) { 2969 pg_data_t *pgdat = NODE_DATA(nid); 2970 free_area_init_node(nid, pgdat, NULL, 2971 find_min_pfn_for_node(nid), NULL); 2972 } 2973 } 2974 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */ 2975 2976 /** 2977 * set_dma_reserve - set the specified number of pages reserved in the first zone 2978 * @new_dma_reserve: The number of pages to mark reserved 2979 * 2980 * The per-cpu batchsize and zone watermarks are determined by present_pages. 2981 * In the DMA zone, a significant percentage may be consumed by kernel image 2982 * and other unfreeable allocations which can skew the watermarks badly. This 2983 * function may optionally be used to account for unfreeable pages in the 2984 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and 2985 * smaller per-cpu batchsize. 2986 */ 2987 void __init set_dma_reserve(unsigned long new_dma_reserve) 2988 { 2989 dma_reserve = new_dma_reserve; 2990 } 2991 2992 #ifndef CONFIG_NEED_MULTIPLE_NODES 2993 static bootmem_data_t contig_bootmem_data; 2994 struct pglist_data contig_page_data = { .bdata = &contig_bootmem_data }; 2995 2996 EXPORT_SYMBOL(contig_page_data); 2997 #endif 2998 2999 void __init free_area_init(unsigned long *zones_size) 3000 { 3001 free_area_init_node(0, NODE_DATA(0), zones_size, 3002 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL); 3003 } 3004 3005 static int page_alloc_cpu_notify(struct notifier_block *self, 3006 unsigned long action, void *hcpu) 3007 { 3008 int cpu = (unsigned long)hcpu; 3009 3010 if (action == CPU_DEAD) { 3011 local_irq_disable(); 3012 __drain_pages(cpu); 3013 vm_events_fold_cpu(cpu); 3014 local_irq_enable(); 3015 refresh_cpu_vm_stats(cpu); 3016 } 3017 return NOTIFY_OK; 3018 } 3019 3020 void __init page_alloc_init(void) 3021 { 3022 hotcpu_notifier(page_alloc_cpu_notify, 0); 3023 } 3024 3025 /* 3026 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio 3027 * or min_free_kbytes changes. 3028 */ 3029 static void calculate_totalreserve_pages(void) 3030 { 3031 struct pglist_data *pgdat; 3032 unsigned long reserve_pages = 0; 3033 enum zone_type i, j; 3034 3035 for_each_online_pgdat(pgdat) { 3036 for (i = 0; i < MAX_NR_ZONES; i++) { 3037 struct zone *zone = pgdat->node_zones + i; 3038 unsigned long max = 0; 3039 3040 /* Find valid and maximum lowmem_reserve in the zone */ 3041 for (j = i; j < MAX_NR_ZONES; j++) { 3042 if (zone->lowmem_reserve[j] > max) 3043 max = zone->lowmem_reserve[j]; 3044 } 3045 3046 /* we treat pages_high as reserved pages. */ 3047 max += zone->pages_high; 3048 3049 if (max > zone->present_pages) 3050 max = zone->present_pages; 3051 reserve_pages += max; 3052 } 3053 } 3054 totalreserve_pages = reserve_pages; 3055 } 3056 3057 /* 3058 * setup_per_zone_lowmem_reserve - called whenever 3059 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone 3060 * has a correct pages reserved value, so an adequate number of 3061 * pages are left in the zone after a successful __alloc_pages(). 3062 */ 3063 static void setup_per_zone_lowmem_reserve(void) 3064 { 3065 struct pglist_data *pgdat; 3066 enum zone_type j, idx; 3067 3068 for_each_online_pgdat(pgdat) { 3069 for (j = 0; j < MAX_NR_ZONES; j++) { 3070 struct zone *zone = pgdat->node_zones + j; 3071 unsigned long present_pages = zone->present_pages; 3072 3073 zone->lowmem_reserve[j] = 0; 3074 3075 idx = j; 3076 while (idx) { 3077 struct zone *lower_zone; 3078 3079 idx--; 3080 3081 if (sysctl_lowmem_reserve_ratio[idx] < 1) 3082 sysctl_lowmem_reserve_ratio[idx] = 1; 3083 3084 lower_zone = pgdat->node_zones + idx; 3085 lower_zone->lowmem_reserve[j] = present_pages / 3086 sysctl_lowmem_reserve_ratio[idx]; 3087 present_pages += lower_zone->present_pages; 3088 } 3089 } 3090 } 3091 3092 /* update totalreserve_pages */ 3093 calculate_totalreserve_pages(); 3094 } 3095 3096 /** 3097 * setup_per_zone_pages_min - called when min_free_kbytes changes. 3098 * 3099 * Ensures that the pages_{min,low,high} values for each zone are set correctly 3100 * with respect to min_free_kbytes. 3101 */ 3102 void setup_per_zone_pages_min(void) 3103 { 3104 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10); 3105 unsigned long lowmem_pages = 0; 3106 struct zone *zone; 3107 unsigned long flags; 3108 3109 /* Calculate total number of !ZONE_HIGHMEM pages */ 3110 for_each_zone(zone) { 3111 if (!is_highmem(zone)) 3112 lowmem_pages += zone->present_pages; 3113 } 3114 3115 for_each_zone(zone) { 3116 u64 tmp; 3117 3118 spin_lock_irqsave(&zone->lru_lock, flags); 3119 tmp = (u64)pages_min * zone->present_pages; 3120 do_div(tmp, lowmem_pages); 3121 if (is_highmem(zone)) { 3122 /* 3123 * __GFP_HIGH and PF_MEMALLOC allocations usually don't 3124 * need highmem pages, so cap pages_min to a small 3125 * value here. 3126 * 3127 * The (pages_high-pages_low) and (pages_low-pages_min) 3128 * deltas controls asynch page reclaim, and so should 3129 * not be capped for highmem. 3130 */ 3131 int min_pages; 3132 3133 min_pages = zone->present_pages / 1024; 3134 if (min_pages < SWAP_CLUSTER_MAX) 3135 min_pages = SWAP_CLUSTER_MAX; 3136 if (min_pages > 128) 3137 min_pages = 128; 3138 zone->pages_min = min_pages; 3139 } else { 3140 /* 3141 * If it's a lowmem zone, reserve a number of pages 3142 * proportionate to the zone's size. 3143 */ 3144 zone->pages_min = tmp; 3145 } 3146 3147 zone->pages_low = zone->pages_min + (tmp >> 2); 3148 zone->pages_high = zone->pages_min + (tmp >> 1); 3149 spin_unlock_irqrestore(&zone->lru_lock, flags); 3150 } 3151 3152 /* update totalreserve_pages */ 3153 calculate_totalreserve_pages(); 3154 } 3155 3156 /* 3157 * Initialise min_free_kbytes. 3158 * 3159 * For small machines we want it small (128k min). For large machines 3160 * we want it large (64MB max). But it is not linear, because network 3161 * bandwidth does not increase linearly with machine size. We use 3162 * 3163 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy: 3164 * min_free_kbytes = sqrt(lowmem_kbytes * 16) 3165 * 3166 * which yields 3167 * 3168 * 16MB: 512k 3169 * 32MB: 724k 3170 * 64MB: 1024k 3171 * 128MB: 1448k 3172 * 256MB: 2048k 3173 * 512MB: 2896k 3174 * 1024MB: 4096k 3175 * 2048MB: 5792k 3176 * 4096MB: 8192k 3177 * 8192MB: 11584k 3178 * 16384MB: 16384k 3179 */ 3180 static int __init init_per_zone_pages_min(void) 3181 { 3182 unsigned long lowmem_kbytes; 3183 3184 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10); 3185 3186 min_free_kbytes = int_sqrt(lowmem_kbytes * 16); 3187 if (min_free_kbytes < 128) 3188 min_free_kbytes = 128; 3189 if (min_free_kbytes > 65536) 3190 min_free_kbytes = 65536; 3191 setup_per_zone_pages_min(); 3192 setup_per_zone_lowmem_reserve(); 3193 return 0; 3194 } 3195 module_init(init_per_zone_pages_min) 3196 3197 /* 3198 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so 3199 * that we can call two helper functions whenever min_free_kbytes 3200 * changes. 3201 */ 3202 int min_free_kbytes_sysctl_handler(ctl_table *table, int write, 3203 struct file *file, void __user *buffer, size_t *length, loff_t *ppos) 3204 { 3205 proc_dointvec(table, write, file, buffer, length, ppos); 3206 setup_per_zone_pages_min(); 3207 return 0; 3208 } 3209 3210 #ifdef CONFIG_NUMA 3211 int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write, 3212 struct file *file, void __user *buffer, size_t *length, loff_t *ppos) 3213 { 3214 struct zone *zone; 3215 int rc; 3216 3217 rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos); 3218 if (rc) 3219 return rc; 3220 3221 for_each_zone(zone) 3222 zone->min_unmapped_pages = (zone->present_pages * 3223 sysctl_min_unmapped_ratio) / 100; 3224 return 0; 3225 } 3226 3227 int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write, 3228 struct file *file, void __user *buffer, size_t *length, loff_t *ppos) 3229 { 3230 struct zone *zone; 3231 int rc; 3232 3233 rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos); 3234 if (rc) 3235 return rc; 3236 3237 for_each_zone(zone) 3238 zone->min_slab_pages = (zone->present_pages * 3239 sysctl_min_slab_ratio) / 100; 3240 return 0; 3241 } 3242 #endif 3243 3244 /* 3245 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around 3246 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve() 3247 * whenever sysctl_lowmem_reserve_ratio changes. 3248 * 3249 * The reserve ratio obviously has absolutely no relation with the 3250 * pages_min watermarks. The lowmem reserve ratio can only make sense 3251 * if in function of the boot time zone sizes. 3252 */ 3253 int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write, 3254 struct file *file, void __user *buffer, size_t *length, loff_t *ppos) 3255 { 3256 proc_dointvec_minmax(table, write, file, buffer, length, ppos); 3257 setup_per_zone_lowmem_reserve(); 3258 return 0; 3259 } 3260 3261 /* 3262 * percpu_pagelist_fraction - changes the pcp->high for each zone on each 3263 * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist 3264 * can have before it gets flushed back to buddy allocator. 3265 */ 3266 3267 int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write, 3268 struct file *file, void __user *buffer, size_t *length, loff_t *ppos) 3269 { 3270 struct zone *zone; 3271 unsigned int cpu; 3272 int ret; 3273 3274 ret = proc_dointvec_minmax(table, write, file, buffer, length, ppos); 3275 if (!write || (ret == -EINVAL)) 3276 return ret; 3277 for_each_zone(zone) { 3278 for_each_online_cpu(cpu) { 3279 unsigned long high; 3280 high = zone->present_pages / percpu_pagelist_fraction; 3281 setup_pagelist_highmark(zone_pcp(zone, cpu), high); 3282 } 3283 } 3284 return 0; 3285 } 3286 3287 int hashdist = HASHDIST_DEFAULT; 3288 3289 #ifdef CONFIG_NUMA 3290 static int __init set_hashdist(char *str) 3291 { 3292 if (!str) 3293 return 0; 3294 hashdist = simple_strtoul(str, &str, 0); 3295 return 1; 3296 } 3297 __setup("hashdist=", set_hashdist); 3298 #endif 3299 3300 /* 3301 * allocate a large system hash table from bootmem 3302 * - it is assumed that the hash table must contain an exact power-of-2 3303 * quantity of entries 3304 * - limit is the number of hash buckets, not the total allocation size 3305 */ 3306 void *__init alloc_large_system_hash(const char *tablename, 3307 unsigned long bucketsize, 3308 unsigned long numentries, 3309 int scale, 3310 int flags, 3311 unsigned int *_hash_shift, 3312 unsigned int *_hash_mask, 3313 unsigned long limit) 3314 { 3315 unsigned long long max = limit; 3316 unsigned long log2qty, size; 3317 void *table = NULL; 3318 3319 /* allow the kernel cmdline to have a say */ 3320 if (!numentries) { 3321 /* round applicable memory size up to nearest megabyte */ 3322 numentries = nr_kernel_pages; 3323 numentries += (1UL << (20 - PAGE_SHIFT)) - 1; 3324 numentries >>= 20 - PAGE_SHIFT; 3325 numentries <<= 20 - PAGE_SHIFT; 3326 3327 /* limit to 1 bucket per 2^scale bytes of low memory */ 3328 if (scale > PAGE_SHIFT) 3329 numentries >>= (scale - PAGE_SHIFT); 3330 else 3331 numentries <<= (PAGE_SHIFT - scale); 3332 3333 /* Make sure we've got at least a 0-order allocation.. */ 3334 if (unlikely((numentries * bucketsize) < PAGE_SIZE)) 3335 numentries = PAGE_SIZE / bucketsize; 3336 } 3337 numentries = roundup_pow_of_two(numentries); 3338 3339 /* limit allocation size to 1/16 total memory by default */ 3340 if (max == 0) { 3341 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4; 3342 do_div(max, bucketsize); 3343 } 3344 3345 if (numentries > max) 3346 numentries = max; 3347 3348 log2qty = ilog2(numentries); 3349 3350 do { 3351 size = bucketsize << log2qty; 3352 if (flags & HASH_EARLY) 3353 table = alloc_bootmem(size); 3354 else if (hashdist) 3355 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL); 3356 else { 3357 unsigned long order; 3358 for (order = 0; ((1UL << order) << PAGE_SHIFT) < size; order++) 3359 ; 3360 table = (void*) __get_free_pages(GFP_ATOMIC, order); 3361 } 3362 } while (!table && size > PAGE_SIZE && --log2qty); 3363 3364 if (!table) 3365 panic("Failed to allocate %s hash table\n", tablename); 3366 3367 printk("%s hash table entries: %d (order: %d, %lu bytes)\n", 3368 tablename, 3369 (1U << log2qty), 3370 ilog2(size) - PAGE_SHIFT, 3371 size); 3372 3373 if (_hash_shift) 3374 *_hash_shift = log2qty; 3375 if (_hash_mask) 3376 *_hash_mask = (1 << log2qty) - 1; 3377 3378 return table; 3379 } 3380 3381 #ifdef CONFIG_OUT_OF_LINE_PFN_TO_PAGE 3382 struct page *pfn_to_page(unsigned long pfn) 3383 { 3384 return __pfn_to_page(pfn); 3385 } 3386 unsigned long page_to_pfn(struct page *page) 3387 { 3388 return __page_to_pfn(page); 3389 } 3390 EXPORT_SYMBOL(pfn_to_page); 3391 EXPORT_SYMBOL(page_to_pfn); 3392 #endif /* CONFIG_OUT_OF_LINE_PFN_TO_PAGE */ 3393 3394 3395