xref: /linux/mm/page_alloc.c (revision a7a0350583ba51d8cde6180bb51d704b89a3b29e)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/page_alloc.c
4  *
5  *  Manages the free list, the system allocates free pages here.
6  *  Note that kmalloc() lives in slab.c
7  *
8  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
9  *  Swap reorganised 29.12.95, Stephen Tweedie
10  *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
11  *  Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
12  *  Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
13  *  Zone balancing, Kanoj Sarcar, SGI, Jan 2000
14  *  Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
15  *          (lots of bits borrowed from Ingo Molnar & Andrew Morton)
16  */
17 
18 #include <linux/stddef.h>
19 #include <linux/mm.h>
20 #include <linux/highmem.h>
21 #include <linux/interrupt.h>
22 #include <linux/jiffies.h>
23 #include <linux/compiler.h>
24 #include <linux/kernel.h>
25 #include <linux/kasan.h>
26 #include <linux/kmsan.h>
27 #include <linux/module.h>
28 #include <linux/suspend.h>
29 #include <linux/ratelimit.h>
30 #include <linux/oom.h>
31 #include <linux/topology.h>
32 #include <linux/sysctl.h>
33 #include <linux/cpu.h>
34 #include <linux/cpuset.h>
35 #include <linux/memory_hotplug.h>
36 #include <linux/nodemask.h>
37 #include <linux/vmstat.h>
38 #include <linux/fault-inject.h>
39 #include <linux/compaction.h>
40 #include <trace/events/kmem.h>
41 #include <trace/events/oom.h>
42 #include <linux/prefetch.h>
43 #include <linux/mm_inline.h>
44 #include <linux/mmu_notifier.h>
45 #include <linux/migrate.h>
46 #include <linux/sched/mm.h>
47 #include <linux/page_owner.h>
48 #include <linux/page_table_check.h>
49 #include <linux/memcontrol.h>
50 #include <linux/ftrace.h>
51 #include <linux/lockdep.h>
52 #include <linux/psi.h>
53 #include <linux/khugepaged.h>
54 #include <linux/delayacct.h>
55 #include <linux/cacheinfo.h>
56 #include <asm/div64.h>
57 #include "internal.h"
58 #include "shuffle.h"
59 #include "page_reporting.h"
60 
61 /* Free Page Internal flags: for internal, non-pcp variants of free_pages(). */
62 typedef int __bitwise fpi_t;
63 
64 /* No special request */
65 #define FPI_NONE		((__force fpi_t)0)
66 
67 /*
68  * Skip free page reporting notification for the (possibly merged) page.
69  * This does not hinder free page reporting from grabbing the page,
70  * reporting it and marking it "reported" -  it only skips notifying
71  * the free page reporting infrastructure about a newly freed page. For
72  * example, used when temporarily pulling a page from a freelist and
73  * putting it back unmodified.
74  */
75 #define FPI_SKIP_REPORT_NOTIFY	((__force fpi_t)BIT(0))
76 
77 /*
78  * Place the (possibly merged) page to the tail of the freelist. Will ignore
79  * page shuffling (relevant code - e.g., memory onlining - is expected to
80  * shuffle the whole zone).
81  *
82  * Note: No code should rely on this flag for correctness - it's purely
83  *       to allow for optimizations when handing back either fresh pages
84  *       (memory onlining) or untouched pages (page isolation, free page
85  *       reporting).
86  */
87 #define FPI_TO_TAIL		((__force fpi_t)BIT(1))
88 
89 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
90 static DEFINE_MUTEX(pcp_batch_high_lock);
91 #define MIN_PERCPU_PAGELIST_HIGH_FRACTION (8)
92 
93 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT_RT)
94 /*
95  * On SMP, spin_trylock is sufficient protection.
96  * On PREEMPT_RT, spin_trylock is equivalent on both SMP and UP.
97  */
98 #define pcp_trylock_prepare(flags)	do { } while (0)
99 #define pcp_trylock_finish(flag)	do { } while (0)
100 #else
101 
102 /* UP spin_trylock always succeeds so disable IRQs to prevent re-entrancy. */
103 #define pcp_trylock_prepare(flags)	local_irq_save(flags)
104 #define pcp_trylock_finish(flags)	local_irq_restore(flags)
105 #endif
106 
107 /*
108  * Locking a pcp requires a PCP lookup followed by a spinlock. To avoid
109  * a migration causing the wrong PCP to be locked and remote memory being
110  * potentially allocated, pin the task to the CPU for the lookup+lock.
111  * preempt_disable is used on !RT because it is faster than migrate_disable.
112  * migrate_disable is used on RT because otherwise RT spinlock usage is
113  * interfered with and a high priority task cannot preempt the allocator.
114  */
115 #ifndef CONFIG_PREEMPT_RT
116 #define pcpu_task_pin()		preempt_disable()
117 #define pcpu_task_unpin()	preempt_enable()
118 #else
119 #define pcpu_task_pin()		migrate_disable()
120 #define pcpu_task_unpin()	migrate_enable()
121 #endif
122 
123 /*
124  * Generic helper to lookup and a per-cpu variable with an embedded spinlock.
125  * Return value should be used with equivalent unlock helper.
126  */
127 #define pcpu_spin_lock(type, member, ptr)				\
128 ({									\
129 	type *_ret;							\
130 	pcpu_task_pin();						\
131 	_ret = this_cpu_ptr(ptr);					\
132 	spin_lock(&_ret->member);					\
133 	_ret;								\
134 })
135 
136 #define pcpu_spin_trylock(type, member, ptr)				\
137 ({									\
138 	type *_ret;							\
139 	pcpu_task_pin();						\
140 	_ret = this_cpu_ptr(ptr);					\
141 	if (!spin_trylock(&_ret->member)) {				\
142 		pcpu_task_unpin();					\
143 		_ret = NULL;						\
144 	}								\
145 	_ret;								\
146 })
147 
148 #define pcpu_spin_unlock(member, ptr)					\
149 ({									\
150 	spin_unlock(&ptr->member);					\
151 	pcpu_task_unpin();						\
152 })
153 
154 /* struct per_cpu_pages specific helpers. */
155 #define pcp_spin_lock(ptr)						\
156 	pcpu_spin_lock(struct per_cpu_pages, lock, ptr)
157 
158 #define pcp_spin_trylock(ptr)						\
159 	pcpu_spin_trylock(struct per_cpu_pages, lock, ptr)
160 
161 #define pcp_spin_unlock(ptr)						\
162 	pcpu_spin_unlock(lock, ptr)
163 
164 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
165 DEFINE_PER_CPU(int, numa_node);
166 EXPORT_PER_CPU_SYMBOL(numa_node);
167 #endif
168 
169 DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key);
170 
171 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
172 /*
173  * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
174  * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
175  * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
176  * defined in <linux/topology.h>.
177  */
178 DEFINE_PER_CPU(int, _numa_mem_);		/* Kernel "local memory" node */
179 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
180 #endif
181 
182 static DEFINE_MUTEX(pcpu_drain_mutex);
183 
184 #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
185 volatile unsigned long latent_entropy __latent_entropy;
186 EXPORT_SYMBOL(latent_entropy);
187 #endif
188 
189 /*
190  * Array of node states.
191  */
192 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
193 	[N_POSSIBLE] = NODE_MASK_ALL,
194 	[N_ONLINE] = { { [0] = 1UL } },
195 #ifndef CONFIG_NUMA
196 	[N_NORMAL_MEMORY] = { { [0] = 1UL } },
197 #ifdef CONFIG_HIGHMEM
198 	[N_HIGH_MEMORY] = { { [0] = 1UL } },
199 #endif
200 	[N_MEMORY] = { { [0] = 1UL } },
201 	[N_CPU] = { { [0] = 1UL } },
202 #endif	/* NUMA */
203 };
204 EXPORT_SYMBOL(node_states);
205 
206 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
207 
208 /*
209  * A cached value of the page's pageblock's migratetype, used when the page is
210  * put on a pcplist. Used to avoid the pageblock migratetype lookup when
211  * freeing from pcplists in most cases, at the cost of possibly becoming stale.
212  * Also the migratetype set in the page does not necessarily match the pcplist
213  * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
214  * other index - this ensures that it will be put on the correct CMA freelist.
215  */
216 static inline int get_pcppage_migratetype(struct page *page)
217 {
218 	return page->index;
219 }
220 
221 static inline void set_pcppage_migratetype(struct page *page, int migratetype)
222 {
223 	page->index = migratetype;
224 }
225 
226 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
227 unsigned int pageblock_order __read_mostly;
228 #endif
229 
230 static void __free_pages_ok(struct page *page, unsigned int order,
231 			    fpi_t fpi_flags);
232 
233 /*
234  * results with 256, 32 in the lowmem_reserve sysctl:
235  *	1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
236  *	1G machine -> (16M dma, 784M normal, 224M high)
237  *	NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
238  *	HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
239  *	HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
240  *
241  * TBD: should special case ZONE_DMA32 machines here - in those we normally
242  * don't need any ZONE_NORMAL reservation
243  */
244 static int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = {
245 #ifdef CONFIG_ZONE_DMA
246 	[ZONE_DMA] = 256,
247 #endif
248 #ifdef CONFIG_ZONE_DMA32
249 	[ZONE_DMA32] = 256,
250 #endif
251 	[ZONE_NORMAL] = 32,
252 #ifdef CONFIG_HIGHMEM
253 	[ZONE_HIGHMEM] = 0,
254 #endif
255 	[ZONE_MOVABLE] = 0,
256 };
257 
258 char * const zone_names[MAX_NR_ZONES] = {
259 #ifdef CONFIG_ZONE_DMA
260 	 "DMA",
261 #endif
262 #ifdef CONFIG_ZONE_DMA32
263 	 "DMA32",
264 #endif
265 	 "Normal",
266 #ifdef CONFIG_HIGHMEM
267 	 "HighMem",
268 #endif
269 	 "Movable",
270 #ifdef CONFIG_ZONE_DEVICE
271 	 "Device",
272 #endif
273 };
274 
275 const char * const migratetype_names[MIGRATE_TYPES] = {
276 	"Unmovable",
277 	"Movable",
278 	"Reclaimable",
279 	"HighAtomic",
280 #ifdef CONFIG_CMA
281 	"CMA",
282 #endif
283 #ifdef CONFIG_MEMORY_ISOLATION
284 	"Isolate",
285 #endif
286 };
287 
288 int min_free_kbytes = 1024;
289 int user_min_free_kbytes = -1;
290 static int watermark_boost_factor __read_mostly = 15000;
291 static int watermark_scale_factor = 10;
292 
293 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
294 int movable_zone;
295 EXPORT_SYMBOL(movable_zone);
296 
297 #if MAX_NUMNODES > 1
298 unsigned int nr_node_ids __read_mostly = MAX_NUMNODES;
299 unsigned int nr_online_nodes __read_mostly = 1;
300 EXPORT_SYMBOL(nr_node_ids);
301 EXPORT_SYMBOL(nr_online_nodes);
302 #endif
303 
304 static bool page_contains_unaccepted(struct page *page, unsigned int order);
305 static void accept_page(struct page *page, unsigned int order);
306 static bool try_to_accept_memory(struct zone *zone, unsigned int order);
307 static inline bool has_unaccepted_memory(void);
308 static bool __free_unaccepted(struct page *page);
309 
310 int page_group_by_mobility_disabled __read_mostly;
311 
312 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
313 /*
314  * During boot we initialize deferred pages on-demand, as needed, but once
315  * page_alloc_init_late() has finished, the deferred pages are all initialized,
316  * and we can permanently disable that path.
317  */
318 DEFINE_STATIC_KEY_TRUE(deferred_pages);
319 
320 static inline bool deferred_pages_enabled(void)
321 {
322 	return static_branch_unlikely(&deferred_pages);
323 }
324 
325 /*
326  * deferred_grow_zone() is __init, but it is called from
327  * get_page_from_freelist() during early boot until deferred_pages permanently
328  * disables this call. This is why we have refdata wrapper to avoid warning,
329  * and to ensure that the function body gets unloaded.
330  */
331 static bool __ref
332 _deferred_grow_zone(struct zone *zone, unsigned int order)
333 {
334        return deferred_grow_zone(zone, order);
335 }
336 #else
337 static inline bool deferred_pages_enabled(void)
338 {
339 	return false;
340 }
341 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
342 
343 /* Return a pointer to the bitmap storing bits affecting a block of pages */
344 static inline unsigned long *get_pageblock_bitmap(const struct page *page,
345 							unsigned long pfn)
346 {
347 #ifdef CONFIG_SPARSEMEM
348 	return section_to_usemap(__pfn_to_section(pfn));
349 #else
350 	return page_zone(page)->pageblock_flags;
351 #endif /* CONFIG_SPARSEMEM */
352 }
353 
354 static inline int pfn_to_bitidx(const struct page *page, unsigned long pfn)
355 {
356 #ifdef CONFIG_SPARSEMEM
357 	pfn &= (PAGES_PER_SECTION-1);
358 #else
359 	pfn = pfn - pageblock_start_pfn(page_zone(page)->zone_start_pfn);
360 #endif /* CONFIG_SPARSEMEM */
361 	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
362 }
363 
364 /**
365  * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
366  * @page: The page within the block of interest
367  * @pfn: The target page frame number
368  * @mask: mask of bits that the caller is interested in
369  *
370  * Return: pageblock_bits flags
371  */
372 unsigned long get_pfnblock_flags_mask(const struct page *page,
373 					unsigned long pfn, unsigned long mask)
374 {
375 	unsigned long *bitmap;
376 	unsigned long bitidx, word_bitidx;
377 	unsigned long word;
378 
379 	bitmap = get_pageblock_bitmap(page, pfn);
380 	bitidx = pfn_to_bitidx(page, pfn);
381 	word_bitidx = bitidx / BITS_PER_LONG;
382 	bitidx &= (BITS_PER_LONG-1);
383 	/*
384 	 * This races, without locks, with set_pfnblock_flags_mask(). Ensure
385 	 * a consistent read of the memory array, so that results, even though
386 	 * racy, are not corrupted.
387 	 */
388 	word = READ_ONCE(bitmap[word_bitidx]);
389 	return (word >> bitidx) & mask;
390 }
391 
392 static __always_inline int get_pfnblock_migratetype(const struct page *page,
393 					unsigned long pfn)
394 {
395 	return get_pfnblock_flags_mask(page, pfn, MIGRATETYPE_MASK);
396 }
397 
398 /**
399  * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
400  * @page: The page within the block of interest
401  * @flags: The flags to set
402  * @pfn: The target page frame number
403  * @mask: mask of bits that the caller is interested in
404  */
405 void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
406 					unsigned long pfn,
407 					unsigned long mask)
408 {
409 	unsigned long *bitmap;
410 	unsigned long bitidx, word_bitidx;
411 	unsigned long word;
412 
413 	BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
414 	BUILD_BUG_ON(MIGRATE_TYPES > (1 << PB_migratetype_bits));
415 
416 	bitmap = get_pageblock_bitmap(page, pfn);
417 	bitidx = pfn_to_bitidx(page, pfn);
418 	word_bitidx = bitidx / BITS_PER_LONG;
419 	bitidx &= (BITS_PER_LONG-1);
420 
421 	VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
422 
423 	mask <<= bitidx;
424 	flags <<= bitidx;
425 
426 	word = READ_ONCE(bitmap[word_bitidx]);
427 	do {
428 	} while (!try_cmpxchg(&bitmap[word_bitidx], &word, (word & ~mask) | flags));
429 }
430 
431 void set_pageblock_migratetype(struct page *page, int migratetype)
432 {
433 	if (unlikely(page_group_by_mobility_disabled &&
434 		     migratetype < MIGRATE_PCPTYPES))
435 		migratetype = MIGRATE_UNMOVABLE;
436 
437 	set_pfnblock_flags_mask(page, (unsigned long)migratetype,
438 				page_to_pfn(page), MIGRATETYPE_MASK);
439 }
440 
441 #ifdef CONFIG_DEBUG_VM
442 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
443 {
444 	int ret;
445 	unsigned seq;
446 	unsigned long pfn = page_to_pfn(page);
447 	unsigned long sp, start_pfn;
448 
449 	do {
450 		seq = zone_span_seqbegin(zone);
451 		start_pfn = zone->zone_start_pfn;
452 		sp = zone->spanned_pages;
453 		ret = !zone_spans_pfn(zone, pfn);
454 	} while (zone_span_seqretry(zone, seq));
455 
456 	if (ret)
457 		pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
458 			pfn, zone_to_nid(zone), zone->name,
459 			start_pfn, start_pfn + sp);
460 
461 	return ret;
462 }
463 
464 /*
465  * Temporary debugging check for pages not lying within a given zone.
466  */
467 static int __maybe_unused bad_range(struct zone *zone, struct page *page)
468 {
469 	if (page_outside_zone_boundaries(zone, page))
470 		return 1;
471 	if (zone != page_zone(page))
472 		return 1;
473 
474 	return 0;
475 }
476 #else
477 static inline int __maybe_unused bad_range(struct zone *zone, struct page *page)
478 {
479 	return 0;
480 }
481 #endif
482 
483 static void bad_page(struct page *page, const char *reason)
484 {
485 	static unsigned long resume;
486 	static unsigned long nr_shown;
487 	static unsigned long nr_unshown;
488 
489 	/*
490 	 * Allow a burst of 60 reports, then keep quiet for that minute;
491 	 * or allow a steady drip of one report per second.
492 	 */
493 	if (nr_shown == 60) {
494 		if (time_before(jiffies, resume)) {
495 			nr_unshown++;
496 			goto out;
497 		}
498 		if (nr_unshown) {
499 			pr_alert(
500 			      "BUG: Bad page state: %lu messages suppressed\n",
501 				nr_unshown);
502 			nr_unshown = 0;
503 		}
504 		nr_shown = 0;
505 	}
506 	if (nr_shown++ == 0)
507 		resume = jiffies + 60 * HZ;
508 
509 	pr_alert("BUG: Bad page state in process %s  pfn:%05lx\n",
510 		current->comm, page_to_pfn(page));
511 	dump_page(page, reason);
512 
513 	print_modules();
514 	dump_stack();
515 out:
516 	/* Leave bad fields for debug, except PageBuddy could make trouble */
517 	page_mapcount_reset(page); /* remove PageBuddy */
518 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
519 }
520 
521 static inline unsigned int order_to_pindex(int migratetype, int order)
522 {
523 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
524 	if (order > PAGE_ALLOC_COSTLY_ORDER) {
525 		VM_BUG_ON(order != pageblock_order);
526 		return NR_LOWORDER_PCP_LISTS;
527 	}
528 #else
529 	VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER);
530 #endif
531 
532 	return (MIGRATE_PCPTYPES * order) + migratetype;
533 }
534 
535 static inline int pindex_to_order(unsigned int pindex)
536 {
537 	int order = pindex / MIGRATE_PCPTYPES;
538 
539 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
540 	if (pindex == NR_LOWORDER_PCP_LISTS)
541 		order = pageblock_order;
542 #else
543 	VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER);
544 #endif
545 
546 	return order;
547 }
548 
549 static inline bool pcp_allowed_order(unsigned int order)
550 {
551 	if (order <= PAGE_ALLOC_COSTLY_ORDER)
552 		return true;
553 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
554 	if (order == pageblock_order)
555 		return true;
556 #endif
557 	return false;
558 }
559 
560 static inline void free_the_page(struct page *page, unsigned int order)
561 {
562 	if (pcp_allowed_order(order))		/* Via pcp? */
563 		free_unref_page(page, order);
564 	else
565 		__free_pages_ok(page, order, FPI_NONE);
566 }
567 
568 /*
569  * Higher-order pages are called "compound pages".  They are structured thusly:
570  *
571  * The first PAGE_SIZE page is called the "head page" and have PG_head set.
572  *
573  * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
574  * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
575  *
576  * The first tail page's ->compound_order holds the order of allocation.
577  * This usage means that zero-order pages may not be compound.
578  */
579 
580 void prep_compound_page(struct page *page, unsigned int order)
581 {
582 	int i;
583 	int nr_pages = 1 << order;
584 
585 	__SetPageHead(page);
586 	for (i = 1; i < nr_pages; i++)
587 		prep_compound_tail(page, i);
588 
589 	prep_compound_head(page, order);
590 }
591 
592 void destroy_large_folio(struct folio *folio)
593 {
594 	if (folio_test_hugetlb(folio)) {
595 		free_huge_folio(folio);
596 		return;
597 	}
598 
599 	if (folio_test_large_rmappable(folio))
600 		folio_undo_large_rmappable(folio);
601 
602 	mem_cgroup_uncharge(folio);
603 	free_the_page(&folio->page, folio_order(folio));
604 }
605 
606 static inline void set_buddy_order(struct page *page, unsigned int order)
607 {
608 	set_page_private(page, order);
609 	__SetPageBuddy(page);
610 }
611 
612 #ifdef CONFIG_COMPACTION
613 static inline struct capture_control *task_capc(struct zone *zone)
614 {
615 	struct capture_control *capc = current->capture_control;
616 
617 	return unlikely(capc) &&
618 		!(current->flags & PF_KTHREAD) &&
619 		!capc->page &&
620 		capc->cc->zone == zone ? capc : NULL;
621 }
622 
623 static inline bool
624 compaction_capture(struct capture_control *capc, struct page *page,
625 		   int order, int migratetype)
626 {
627 	if (!capc || order != capc->cc->order)
628 		return false;
629 
630 	/* Do not accidentally pollute CMA or isolated regions*/
631 	if (is_migrate_cma(migratetype) ||
632 	    is_migrate_isolate(migratetype))
633 		return false;
634 
635 	/*
636 	 * Do not let lower order allocations pollute a movable pageblock.
637 	 * This might let an unmovable request use a reclaimable pageblock
638 	 * and vice-versa but no more than normal fallback logic which can
639 	 * have trouble finding a high-order free page.
640 	 */
641 	if (order < pageblock_order && migratetype == MIGRATE_MOVABLE)
642 		return false;
643 
644 	capc->page = page;
645 	return true;
646 }
647 
648 #else
649 static inline struct capture_control *task_capc(struct zone *zone)
650 {
651 	return NULL;
652 }
653 
654 static inline bool
655 compaction_capture(struct capture_control *capc, struct page *page,
656 		   int order, int migratetype)
657 {
658 	return false;
659 }
660 #endif /* CONFIG_COMPACTION */
661 
662 /* Used for pages not on another list */
663 static inline void add_to_free_list(struct page *page, struct zone *zone,
664 				    unsigned int order, int migratetype)
665 {
666 	struct free_area *area = &zone->free_area[order];
667 
668 	list_add(&page->buddy_list, &area->free_list[migratetype]);
669 	area->nr_free++;
670 }
671 
672 /* Used for pages not on another list */
673 static inline void add_to_free_list_tail(struct page *page, struct zone *zone,
674 					 unsigned int order, int migratetype)
675 {
676 	struct free_area *area = &zone->free_area[order];
677 
678 	list_add_tail(&page->buddy_list, &area->free_list[migratetype]);
679 	area->nr_free++;
680 }
681 
682 /*
683  * Used for pages which are on another list. Move the pages to the tail
684  * of the list - so the moved pages won't immediately be considered for
685  * allocation again (e.g., optimization for memory onlining).
686  */
687 static inline void move_to_free_list(struct page *page, struct zone *zone,
688 				     unsigned int order, int migratetype)
689 {
690 	struct free_area *area = &zone->free_area[order];
691 
692 	list_move_tail(&page->buddy_list, &area->free_list[migratetype]);
693 }
694 
695 static inline void del_page_from_free_list(struct page *page, struct zone *zone,
696 					   unsigned int order)
697 {
698 	/* clear reported state and update reported page count */
699 	if (page_reported(page))
700 		__ClearPageReported(page);
701 
702 	list_del(&page->buddy_list);
703 	__ClearPageBuddy(page);
704 	set_page_private(page, 0);
705 	zone->free_area[order].nr_free--;
706 }
707 
708 static inline struct page *get_page_from_free_area(struct free_area *area,
709 					    int migratetype)
710 {
711 	return list_first_entry_or_null(&area->free_list[migratetype],
712 					struct page, buddy_list);
713 }
714 
715 /*
716  * If this is not the largest possible page, check if the buddy
717  * of the next-highest order is free. If it is, it's possible
718  * that pages are being freed that will coalesce soon. In case,
719  * that is happening, add the free page to the tail of the list
720  * so it's less likely to be used soon and more likely to be merged
721  * as a higher order page
722  */
723 static inline bool
724 buddy_merge_likely(unsigned long pfn, unsigned long buddy_pfn,
725 		   struct page *page, unsigned int order)
726 {
727 	unsigned long higher_page_pfn;
728 	struct page *higher_page;
729 
730 	if (order >= MAX_ORDER - 1)
731 		return false;
732 
733 	higher_page_pfn = buddy_pfn & pfn;
734 	higher_page = page + (higher_page_pfn - pfn);
735 
736 	return find_buddy_page_pfn(higher_page, higher_page_pfn, order + 1,
737 			NULL) != NULL;
738 }
739 
740 /*
741  * Freeing function for a buddy system allocator.
742  *
743  * The concept of a buddy system is to maintain direct-mapped table
744  * (containing bit values) for memory blocks of various "orders".
745  * The bottom level table contains the map for the smallest allocatable
746  * units of memory (here, pages), and each level above it describes
747  * pairs of units from the levels below, hence, "buddies".
748  * At a high level, all that happens here is marking the table entry
749  * at the bottom level available, and propagating the changes upward
750  * as necessary, plus some accounting needed to play nicely with other
751  * parts of the VM system.
752  * At each level, we keep a list of pages, which are heads of continuous
753  * free pages of length of (1 << order) and marked with PageBuddy.
754  * Page's order is recorded in page_private(page) field.
755  * So when we are allocating or freeing one, we can derive the state of the
756  * other.  That is, if we allocate a small block, and both were
757  * free, the remainder of the region must be split into blocks.
758  * If a block is freed, and its buddy is also free, then this
759  * triggers coalescing into a block of larger size.
760  *
761  * -- nyc
762  */
763 
764 static inline void __free_one_page(struct page *page,
765 		unsigned long pfn,
766 		struct zone *zone, unsigned int order,
767 		int migratetype, fpi_t fpi_flags)
768 {
769 	struct capture_control *capc = task_capc(zone);
770 	unsigned long buddy_pfn = 0;
771 	unsigned long combined_pfn;
772 	struct page *buddy;
773 	bool to_tail;
774 
775 	VM_BUG_ON(!zone_is_initialized(zone));
776 	VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
777 
778 	VM_BUG_ON(migratetype == -1);
779 	if (likely(!is_migrate_isolate(migratetype)))
780 		__mod_zone_freepage_state(zone, 1 << order, migratetype);
781 
782 	VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
783 	VM_BUG_ON_PAGE(bad_range(zone, page), page);
784 
785 	while (order < MAX_ORDER) {
786 		if (compaction_capture(capc, page, order, migratetype)) {
787 			__mod_zone_freepage_state(zone, -(1 << order),
788 								migratetype);
789 			return;
790 		}
791 
792 		buddy = find_buddy_page_pfn(page, pfn, order, &buddy_pfn);
793 		if (!buddy)
794 			goto done_merging;
795 
796 		if (unlikely(order >= pageblock_order)) {
797 			/*
798 			 * We want to prevent merge between freepages on pageblock
799 			 * without fallbacks and normal pageblock. Without this,
800 			 * pageblock isolation could cause incorrect freepage or CMA
801 			 * accounting or HIGHATOMIC accounting.
802 			 */
803 			int buddy_mt = get_pfnblock_migratetype(buddy, buddy_pfn);
804 
805 			if (migratetype != buddy_mt
806 					&& (!migratetype_is_mergeable(migratetype) ||
807 						!migratetype_is_mergeable(buddy_mt)))
808 				goto done_merging;
809 		}
810 
811 		/*
812 		 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
813 		 * merge with it and move up one order.
814 		 */
815 		if (page_is_guard(buddy))
816 			clear_page_guard(zone, buddy, order, migratetype);
817 		else
818 			del_page_from_free_list(buddy, zone, order);
819 		combined_pfn = buddy_pfn & pfn;
820 		page = page + (combined_pfn - pfn);
821 		pfn = combined_pfn;
822 		order++;
823 	}
824 
825 done_merging:
826 	set_buddy_order(page, order);
827 
828 	if (fpi_flags & FPI_TO_TAIL)
829 		to_tail = true;
830 	else if (is_shuffle_order(order))
831 		to_tail = shuffle_pick_tail();
832 	else
833 		to_tail = buddy_merge_likely(pfn, buddy_pfn, page, order);
834 
835 	if (to_tail)
836 		add_to_free_list_tail(page, zone, order, migratetype);
837 	else
838 		add_to_free_list(page, zone, order, migratetype);
839 
840 	/* Notify page reporting subsystem of freed page */
841 	if (!(fpi_flags & FPI_SKIP_REPORT_NOTIFY))
842 		page_reporting_notify_free(order);
843 }
844 
845 /**
846  * split_free_page() -- split a free page at split_pfn_offset
847  * @free_page:		the original free page
848  * @order:		the order of the page
849  * @split_pfn_offset:	split offset within the page
850  *
851  * Return -ENOENT if the free page is changed, otherwise 0
852  *
853  * It is used when the free page crosses two pageblocks with different migratetypes
854  * at split_pfn_offset within the page. The split free page will be put into
855  * separate migratetype lists afterwards. Otherwise, the function achieves
856  * nothing.
857  */
858 int split_free_page(struct page *free_page,
859 			unsigned int order, unsigned long split_pfn_offset)
860 {
861 	struct zone *zone = page_zone(free_page);
862 	unsigned long free_page_pfn = page_to_pfn(free_page);
863 	unsigned long pfn;
864 	unsigned long flags;
865 	int free_page_order;
866 	int mt;
867 	int ret = 0;
868 
869 	if (split_pfn_offset == 0)
870 		return ret;
871 
872 	spin_lock_irqsave(&zone->lock, flags);
873 
874 	if (!PageBuddy(free_page) || buddy_order(free_page) != order) {
875 		ret = -ENOENT;
876 		goto out;
877 	}
878 
879 	mt = get_pfnblock_migratetype(free_page, free_page_pfn);
880 	if (likely(!is_migrate_isolate(mt)))
881 		__mod_zone_freepage_state(zone, -(1UL << order), mt);
882 
883 	del_page_from_free_list(free_page, zone, order);
884 	for (pfn = free_page_pfn;
885 	     pfn < free_page_pfn + (1UL << order);) {
886 		int mt = get_pfnblock_migratetype(pfn_to_page(pfn), pfn);
887 
888 		free_page_order = min_t(unsigned int,
889 					pfn ? __ffs(pfn) : order,
890 					__fls(split_pfn_offset));
891 		__free_one_page(pfn_to_page(pfn), pfn, zone, free_page_order,
892 				mt, FPI_NONE);
893 		pfn += 1UL << free_page_order;
894 		split_pfn_offset -= (1UL << free_page_order);
895 		/* we have done the first part, now switch to second part */
896 		if (split_pfn_offset == 0)
897 			split_pfn_offset = (1UL << order) - (pfn - free_page_pfn);
898 	}
899 out:
900 	spin_unlock_irqrestore(&zone->lock, flags);
901 	return ret;
902 }
903 /*
904  * A bad page could be due to a number of fields. Instead of multiple branches,
905  * try and check multiple fields with one check. The caller must do a detailed
906  * check if necessary.
907  */
908 static inline bool page_expected_state(struct page *page,
909 					unsigned long check_flags)
910 {
911 	if (unlikely(atomic_read(&page->_mapcount) != -1))
912 		return false;
913 
914 	if (unlikely((unsigned long)page->mapping |
915 			page_ref_count(page) |
916 #ifdef CONFIG_MEMCG
917 			page->memcg_data |
918 #endif
919 			(page->flags & check_flags)))
920 		return false;
921 
922 	return true;
923 }
924 
925 static const char *page_bad_reason(struct page *page, unsigned long flags)
926 {
927 	const char *bad_reason = NULL;
928 
929 	if (unlikely(atomic_read(&page->_mapcount) != -1))
930 		bad_reason = "nonzero mapcount";
931 	if (unlikely(page->mapping != NULL))
932 		bad_reason = "non-NULL mapping";
933 	if (unlikely(page_ref_count(page) != 0))
934 		bad_reason = "nonzero _refcount";
935 	if (unlikely(page->flags & flags)) {
936 		if (flags == PAGE_FLAGS_CHECK_AT_PREP)
937 			bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag(s) set";
938 		else
939 			bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
940 	}
941 #ifdef CONFIG_MEMCG
942 	if (unlikely(page->memcg_data))
943 		bad_reason = "page still charged to cgroup";
944 #endif
945 	return bad_reason;
946 }
947 
948 static void free_page_is_bad_report(struct page *page)
949 {
950 	bad_page(page,
951 		 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_FREE));
952 }
953 
954 static inline bool free_page_is_bad(struct page *page)
955 {
956 	if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
957 		return false;
958 
959 	/* Something has gone sideways, find it */
960 	free_page_is_bad_report(page);
961 	return true;
962 }
963 
964 static inline bool is_check_pages_enabled(void)
965 {
966 	return static_branch_unlikely(&check_pages_enabled);
967 }
968 
969 static int free_tail_page_prepare(struct page *head_page, struct page *page)
970 {
971 	struct folio *folio = (struct folio *)head_page;
972 	int ret = 1;
973 
974 	/*
975 	 * We rely page->lru.next never has bit 0 set, unless the page
976 	 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
977 	 */
978 	BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
979 
980 	if (!is_check_pages_enabled()) {
981 		ret = 0;
982 		goto out;
983 	}
984 	switch (page - head_page) {
985 	case 1:
986 		/* the first tail page: these may be in place of ->mapping */
987 		if (unlikely(folio_entire_mapcount(folio))) {
988 			bad_page(page, "nonzero entire_mapcount");
989 			goto out;
990 		}
991 		if (unlikely(atomic_read(&folio->_nr_pages_mapped))) {
992 			bad_page(page, "nonzero nr_pages_mapped");
993 			goto out;
994 		}
995 		if (unlikely(atomic_read(&folio->_pincount))) {
996 			bad_page(page, "nonzero pincount");
997 			goto out;
998 		}
999 		break;
1000 	case 2:
1001 		/*
1002 		 * the second tail page: ->mapping is
1003 		 * deferred_list.next -- ignore value.
1004 		 */
1005 		break;
1006 	default:
1007 		if (page->mapping != TAIL_MAPPING) {
1008 			bad_page(page, "corrupted mapping in tail page");
1009 			goto out;
1010 		}
1011 		break;
1012 	}
1013 	if (unlikely(!PageTail(page))) {
1014 		bad_page(page, "PageTail not set");
1015 		goto out;
1016 	}
1017 	if (unlikely(compound_head(page) != head_page)) {
1018 		bad_page(page, "compound_head not consistent");
1019 		goto out;
1020 	}
1021 	ret = 0;
1022 out:
1023 	page->mapping = NULL;
1024 	clear_compound_head(page);
1025 	return ret;
1026 }
1027 
1028 /*
1029  * Skip KASAN memory poisoning when either:
1030  *
1031  * 1. For generic KASAN: deferred memory initialization has not yet completed.
1032  *    Tag-based KASAN modes skip pages freed via deferred memory initialization
1033  *    using page tags instead (see below).
1034  * 2. For tag-based KASAN modes: the page has a match-all KASAN tag, indicating
1035  *    that error detection is disabled for accesses via the page address.
1036  *
1037  * Pages will have match-all tags in the following circumstances:
1038  *
1039  * 1. Pages are being initialized for the first time, including during deferred
1040  *    memory init; see the call to page_kasan_tag_reset in __init_single_page.
1041  * 2. The allocation was not unpoisoned due to __GFP_SKIP_KASAN, with the
1042  *    exception of pages unpoisoned by kasan_unpoison_vmalloc.
1043  * 3. The allocation was excluded from being checked due to sampling,
1044  *    see the call to kasan_unpoison_pages.
1045  *
1046  * Poisoning pages during deferred memory init will greatly lengthen the
1047  * process and cause problem in large memory systems as the deferred pages
1048  * initialization is done with interrupt disabled.
1049  *
1050  * Assuming that there will be no reference to those newly initialized
1051  * pages before they are ever allocated, this should have no effect on
1052  * KASAN memory tracking as the poison will be properly inserted at page
1053  * allocation time. The only corner case is when pages are allocated by
1054  * on-demand allocation and then freed again before the deferred pages
1055  * initialization is done, but this is not likely to happen.
1056  */
1057 static inline bool should_skip_kasan_poison(struct page *page, fpi_t fpi_flags)
1058 {
1059 	if (IS_ENABLED(CONFIG_KASAN_GENERIC))
1060 		return deferred_pages_enabled();
1061 
1062 	return page_kasan_tag(page) == 0xff;
1063 }
1064 
1065 static void kernel_init_pages(struct page *page, int numpages)
1066 {
1067 	int i;
1068 
1069 	/* s390's use of memset() could override KASAN redzones. */
1070 	kasan_disable_current();
1071 	for (i = 0; i < numpages; i++)
1072 		clear_highpage_kasan_tagged(page + i);
1073 	kasan_enable_current();
1074 }
1075 
1076 static __always_inline bool free_pages_prepare(struct page *page,
1077 			unsigned int order, fpi_t fpi_flags)
1078 {
1079 	int bad = 0;
1080 	bool skip_kasan_poison = should_skip_kasan_poison(page, fpi_flags);
1081 	bool init = want_init_on_free();
1082 	bool compound = PageCompound(page);
1083 
1084 	VM_BUG_ON_PAGE(PageTail(page), page);
1085 
1086 	trace_mm_page_free(page, order);
1087 	kmsan_free_page(page, order);
1088 
1089 	if (memcg_kmem_online() && PageMemcgKmem(page))
1090 		__memcg_kmem_uncharge_page(page, order);
1091 
1092 	if (unlikely(PageHWPoison(page)) && !order) {
1093 		/* Do not let hwpoison pages hit pcplists/buddy */
1094 		reset_page_owner(page, order);
1095 		page_table_check_free(page, order);
1096 		return false;
1097 	}
1098 
1099 	VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
1100 
1101 	/*
1102 	 * Check tail pages before head page information is cleared to
1103 	 * avoid checking PageCompound for order-0 pages.
1104 	 */
1105 	if (unlikely(order)) {
1106 		int i;
1107 
1108 		if (compound)
1109 			page[1].flags &= ~PAGE_FLAGS_SECOND;
1110 		for (i = 1; i < (1 << order); i++) {
1111 			if (compound)
1112 				bad += free_tail_page_prepare(page, page + i);
1113 			if (is_check_pages_enabled()) {
1114 				if (free_page_is_bad(page + i)) {
1115 					bad++;
1116 					continue;
1117 				}
1118 			}
1119 			(page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1120 		}
1121 	}
1122 	if (PageMappingFlags(page))
1123 		page->mapping = NULL;
1124 	if (is_check_pages_enabled()) {
1125 		if (free_page_is_bad(page))
1126 			bad++;
1127 		if (bad)
1128 			return false;
1129 	}
1130 
1131 	page_cpupid_reset_last(page);
1132 	page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1133 	reset_page_owner(page, order);
1134 	page_table_check_free(page, order);
1135 
1136 	if (!PageHighMem(page)) {
1137 		debug_check_no_locks_freed(page_address(page),
1138 					   PAGE_SIZE << order);
1139 		debug_check_no_obj_freed(page_address(page),
1140 					   PAGE_SIZE << order);
1141 	}
1142 
1143 	kernel_poison_pages(page, 1 << order);
1144 
1145 	/*
1146 	 * As memory initialization might be integrated into KASAN,
1147 	 * KASAN poisoning and memory initialization code must be
1148 	 * kept together to avoid discrepancies in behavior.
1149 	 *
1150 	 * With hardware tag-based KASAN, memory tags must be set before the
1151 	 * page becomes unavailable via debug_pagealloc or arch_free_page.
1152 	 */
1153 	if (!skip_kasan_poison) {
1154 		kasan_poison_pages(page, order, init);
1155 
1156 		/* Memory is already initialized if KASAN did it internally. */
1157 		if (kasan_has_integrated_init())
1158 			init = false;
1159 	}
1160 	if (init)
1161 		kernel_init_pages(page, 1 << order);
1162 
1163 	/*
1164 	 * arch_free_page() can make the page's contents inaccessible.  s390
1165 	 * does this.  So nothing which can access the page's contents should
1166 	 * happen after this.
1167 	 */
1168 	arch_free_page(page, order);
1169 
1170 	debug_pagealloc_unmap_pages(page, 1 << order);
1171 
1172 	return true;
1173 }
1174 
1175 /*
1176  * Frees a number of pages from the PCP lists
1177  * Assumes all pages on list are in same zone.
1178  * count is the number of pages to free.
1179  */
1180 static void free_pcppages_bulk(struct zone *zone, int count,
1181 					struct per_cpu_pages *pcp,
1182 					int pindex)
1183 {
1184 	unsigned long flags;
1185 	unsigned int order;
1186 	bool isolated_pageblocks;
1187 	struct page *page;
1188 
1189 	/*
1190 	 * Ensure proper count is passed which otherwise would stuck in the
1191 	 * below while (list_empty(list)) loop.
1192 	 */
1193 	count = min(pcp->count, count);
1194 
1195 	/* Ensure requested pindex is drained first. */
1196 	pindex = pindex - 1;
1197 
1198 	spin_lock_irqsave(&zone->lock, flags);
1199 	isolated_pageblocks = has_isolate_pageblock(zone);
1200 
1201 	while (count > 0) {
1202 		struct list_head *list;
1203 		int nr_pages;
1204 
1205 		/* Remove pages from lists in a round-robin fashion. */
1206 		do {
1207 			if (++pindex > NR_PCP_LISTS - 1)
1208 				pindex = 0;
1209 			list = &pcp->lists[pindex];
1210 		} while (list_empty(list));
1211 
1212 		order = pindex_to_order(pindex);
1213 		nr_pages = 1 << order;
1214 		do {
1215 			int mt;
1216 
1217 			page = list_last_entry(list, struct page, pcp_list);
1218 			mt = get_pcppage_migratetype(page);
1219 
1220 			/* must delete to avoid corrupting pcp list */
1221 			list_del(&page->pcp_list);
1222 			count -= nr_pages;
1223 			pcp->count -= nr_pages;
1224 
1225 			/* MIGRATE_ISOLATE page should not go to pcplists */
1226 			VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1227 			/* Pageblock could have been isolated meanwhile */
1228 			if (unlikely(isolated_pageblocks))
1229 				mt = get_pageblock_migratetype(page);
1230 
1231 			__free_one_page(page, page_to_pfn(page), zone, order, mt, FPI_NONE);
1232 			trace_mm_page_pcpu_drain(page, order, mt);
1233 		} while (count > 0 && !list_empty(list));
1234 	}
1235 
1236 	spin_unlock_irqrestore(&zone->lock, flags);
1237 }
1238 
1239 static void free_one_page(struct zone *zone,
1240 				struct page *page, unsigned long pfn,
1241 				unsigned int order,
1242 				int migratetype, fpi_t fpi_flags)
1243 {
1244 	unsigned long flags;
1245 
1246 	spin_lock_irqsave(&zone->lock, flags);
1247 	if (unlikely(has_isolate_pageblock(zone) ||
1248 		is_migrate_isolate(migratetype))) {
1249 		migratetype = get_pfnblock_migratetype(page, pfn);
1250 	}
1251 	__free_one_page(page, pfn, zone, order, migratetype, fpi_flags);
1252 	spin_unlock_irqrestore(&zone->lock, flags);
1253 }
1254 
1255 static void __free_pages_ok(struct page *page, unsigned int order,
1256 			    fpi_t fpi_flags)
1257 {
1258 	unsigned long flags;
1259 	int migratetype;
1260 	unsigned long pfn = page_to_pfn(page);
1261 	struct zone *zone = page_zone(page);
1262 
1263 	if (!free_pages_prepare(page, order, fpi_flags))
1264 		return;
1265 
1266 	/*
1267 	 * Calling get_pfnblock_migratetype() without spin_lock_irqsave() here
1268 	 * is used to avoid calling get_pfnblock_migratetype() under the lock.
1269 	 * This will reduce the lock holding time.
1270 	 */
1271 	migratetype = get_pfnblock_migratetype(page, pfn);
1272 
1273 	spin_lock_irqsave(&zone->lock, flags);
1274 	if (unlikely(has_isolate_pageblock(zone) ||
1275 		is_migrate_isolate(migratetype))) {
1276 		migratetype = get_pfnblock_migratetype(page, pfn);
1277 	}
1278 	__free_one_page(page, pfn, zone, order, migratetype, fpi_flags);
1279 	spin_unlock_irqrestore(&zone->lock, flags);
1280 
1281 	__count_vm_events(PGFREE, 1 << order);
1282 }
1283 
1284 void __free_pages_core(struct page *page, unsigned int order)
1285 {
1286 	unsigned int nr_pages = 1 << order;
1287 	struct page *p = page;
1288 	unsigned int loop;
1289 
1290 	/*
1291 	 * When initializing the memmap, __init_single_page() sets the refcount
1292 	 * of all pages to 1 ("allocated"/"not free"). We have to set the
1293 	 * refcount of all involved pages to 0.
1294 	 */
1295 	prefetchw(p);
1296 	for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1297 		prefetchw(p + 1);
1298 		__ClearPageReserved(p);
1299 		set_page_count(p, 0);
1300 	}
1301 	__ClearPageReserved(p);
1302 	set_page_count(p, 0);
1303 
1304 	atomic_long_add(nr_pages, &page_zone(page)->managed_pages);
1305 
1306 	if (page_contains_unaccepted(page, order)) {
1307 		if (order == MAX_ORDER && __free_unaccepted(page))
1308 			return;
1309 
1310 		accept_page(page, order);
1311 	}
1312 
1313 	/*
1314 	 * Bypass PCP and place fresh pages right to the tail, primarily
1315 	 * relevant for memory onlining.
1316 	 */
1317 	__free_pages_ok(page, order, FPI_TO_TAIL);
1318 }
1319 
1320 /*
1321  * Check that the whole (or subset of) a pageblock given by the interval of
1322  * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1323  * with the migration of free compaction scanner.
1324  *
1325  * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1326  *
1327  * It's possible on some configurations to have a setup like node0 node1 node0
1328  * i.e. it's possible that all pages within a zones range of pages do not
1329  * belong to a single zone. We assume that a border between node0 and node1
1330  * can occur within a single pageblock, but not a node0 node1 node0
1331  * interleaving within a single pageblock. It is therefore sufficient to check
1332  * the first and last page of a pageblock and avoid checking each individual
1333  * page in a pageblock.
1334  *
1335  * Note: the function may return non-NULL struct page even for a page block
1336  * which contains a memory hole (i.e. there is no physical memory for a subset
1337  * of the pfn range). For example, if the pageblock order is MAX_ORDER, which
1338  * will fall into 2 sub-sections, and the end pfn of the pageblock may be hole
1339  * even though the start pfn is online and valid. This should be safe most of
1340  * the time because struct pages are still initialized via init_unavailable_range()
1341  * and pfn walkers shouldn't touch any physical memory range for which they do
1342  * not recognize any specific metadata in struct pages.
1343  */
1344 struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1345 				     unsigned long end_pfn, struct zone *zone)
1346 {
1347 	struct page *start_page;
1348 	struct page *end_page;
1349 
1350 	/* end_pfn is one past the range we are checking */
1351 	end_pfn--;
1352 
1353 	if (!pfn_valid(end_pfn))
1354 		return NULL;
1355 
1356 	start_page = pfn_to_online_page(start_pfn);
1357 	if (!start_page)
1358 		return NULL;
1359 
1360 	if (page_zone(start_page) != zone)
1361 		return NULL;
1362 
1363 	end_page = pfn_to_page(end_pfn);
1364 
1365 	/* This gives a shorter code than deriving page_zone(end_page) */
1366 	if (page_zone_id(start_page) != page_zone_id(end_page))
1367 		return NULL;
1368 
1369 	return start_page;
1370 }
1371 
1372 /*
1373  * The order of subdivision here is critical for the IO subsystem.
1374  * Please do not alter this order without good reasons and regression
1375  * testing. Specifically, as large blocks of memory are subdivided,
1376  * the order in which smaller blocks are delivered depends on the order
1377  * they're subdivided in this function. This is the primary factor
1378  * influencing the order in which pages are delivered to the IO
1379  * subsystem according to empirical testing, and this is also justified
1380  * by considering the behavior of a buddy system containing a single
1381  * large block of memory acted on by a series of small allocations.
1382  * This behavior is a critical factor in sglist merging's success.
1383  *
1384  * -- nyc
1385  */
1386 static inline void expand(struct zone *zone, struct page *page,
1387 	int low, int high, int migratetype)
1388 {
1389 	unsigned long size = 1 << high;
1390 
1391 	while (high > low) {
1392 		high--;
1393 		size >>= 1;
1394 		VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
1395 
1396 		/*
1397 		 * Mark as guard pages (or page), that will allow to
1398 		 * merge back to allocator when buddy will be freed.
1399 		 * Corresponding page table entries will not be touched,
1400 		 * pages will stay not present in virtual address space
1401 		 */
1402 		if (set_page_guard(zone, &page[size], high, migratetype))
1403 			continue;
1404 
1405 		add_to_free_list(&page[size], zone, high, migratetype);
1406 		set_buddy_order(&page[size], high);
1407 	}
1408 }
1409 
1410 static void check_new_page_bad(struct page *page)
1411 {
1412 	if (unlikely(page->flags & __PG_HWPOISON)) {
1413 		/* Don't complain about hwpoisoned pages */
1414 		page_mapcount_reset(page); /* remove PageBuddy */
1415 		return;
1416 	}
1417 
1418 	bad_page(page,
1419 		 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_PREP));
1420 }
1421 
1422 /*
1423  * This page is about to be returned from the page allocator
1424  */
1425 static int check_new_page(struct page *page)
1426 {
1427 	if (likely(page_expected_state(page,
1428 				PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
1429 		return 0;
1430 
1431 	check_new_page_bad(page);
1432 	return 1;
1433 }
1434 
1435 static inline bool check_new_pages(struct page *page, unsigned int order)
1436 {
1437 	if (is_check_pages_enabled()) {
1438 		for (int i = 0; i < (1 << order); i++) {
1439 			struct page *p = page + i;
1440 
1441 			if (check_new_page(p))
1442 				return true;
1443 		}
1444 	}
1445 
1446 	return false;
1447 }
1448 
1449 static inline bool should_skip_kasan_unpoison(gfp_t flags)
1450 {
1451 	/* Don't skip if a software KASAN mode is enabled. */
1452 	if (IS_ENABLED(CONFIG_KASAN_GENERIC) ||
1453 	    IS_ENABLED(CONFIG_KASAN_SW_TAGS))
1454 		return false;
1455 
1456 	/* Skip, if hardware tag-based KASAN is not enabled. */
1457 	if (!kasan_hw_tags_enabled())
1458 		return true;
1459 
1460 	/*
1461 	 * With hardware tag-based KASAN enabled, skip if this has been
1462 	 * requested via __GFP_SKIP_KASAN.
1463 	 */
1464 	return flags & __GFP_SKIP_KASAN;
1465 }
1466 
1467 static inline bool should_skip_init(gfp_t flags)
1468 {
1469 	/* Don't skip, if hardware tag-based KASAN is not enabled. */
1470 	if (!kasan_hw_tags_enabled())
1471 		return false;
1472 
1473 	/* For hardware tag-based KASAN, skip if requested. */
1474 	return (flags & __GFP_SKIP_ZERO);
1475 }
1476 
1477 inline void post_alloc_hook(struct page *page, unsigned int order,
1478 				gfp_t gfp_flags)
1479 {
1480 	bool init = !want_init_on_free() && want_init_on_alloc(gfp_flags) &&
1481 			!should_skip_init(gfp_flags);
1482 	bool zero_tags = init && (gfp_flags & __GFP_ZEROTAGS);
1483 	int i;
1484 
1485 	set_page_private(page, 0);
1486 	set_page_refcounted(page);
1487 
1488 	arch_alloc_page(page, order);
1489 	debug_pagealloc_map_pages(page, 1 << order);
1490 
1491 	/*
1492 	 * Page unpoisoning must happen before memory initialization.
1493 	 * Otherwise, the poison pattern will be overwritten for __GFP_ZERO
1494 	 * allocations and the page unpoisoning code will complain.
1495 	 */
1496 	kernel_unpoison_pages(page, 1 << order);
1497 
1498 	/*
1499 	 * As memory initialization might be integrated into KASAN,
1500 	 * KASAN unpoisoning and memory initializion code must be
1501 	 * kept together to avoid discrepancies in behavior.
1502 	 */
1503 
1504 	/*
1505 	 * If memory tags should be zeroed
1506 	 * (which happens only when memory should be initialized as well).
1507 	 */
1508 	if (zero_tags) {
1509 		/* Initialize both memory and memory tags. */
1510 		for (i = 0; i != 1 << order; ++i)
1511 			tag_clear_highpage(page + i);
1512 
1513 		/* Take note that memory was initialized by the loop above. */
1514 		init = false;
1515 	}
1516 	if (!should_skip_kasan_unpoison(gfp_flags) &&
1517 	    kasan_unpoison_pages(page, order, init)) {
1518 		/* Take note that memory was initialized by KASAN. */
1519 		if (kasan_has_integrated_init())
1520 			init = false;
1521 	} else {
1522 		/*
1523 		 * If memory tags have not been set by KASAN, reset the page
1524 		 * tags to ensure page_address() dereferencing does not fault.
1525 		 */
1526 		for (i = 0; i != 1 << order; ++i)
1527 			page_kasan_tag_reset(page + i);
1528 	}
1529 	/* If memory is still not initialized, initialize it now. */
1530 	if (init)
1531 		kernel_init_pages(page, 1 << order);
1532 
1533 	set_page_owner(page, order, gfp_flags);
1534 	page_table_check_alloc(page, order);
1535 }
1536 
1537 static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
1538 							unsigned int alloc_flags)
1539 {
1540 	post_alloc_hook(page, order, gfp_flags);
1541 
1542 	if (order && (gfp_flags & __GFP_COMP))
1543 		prep_compound_page(page, order);
1544 
1545 	/*
1546 	 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
1547 	 * allocate the page. The expectation is that the caller is taking
1548 	 * steps that will free more memory. The caller should avoid the page
1549 	 * being used for !PFMEMALLOC purposes.
1550 	 */
1551 	if (alloc_flags & ALLOC_NO_WATERMARKS)
1552 		set_page_pfmemalloc(page);
1553 	else
1554 		clear_page_pfmemalloc(page);
1555 }
1556 
1557 /*
1558  * Go through the free lists for the given migratetype and remove
1559  * the smallest available page from the freelists
1560  */
1561 static __always_inline
1562 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
1563 						int migratetype)
1564 {
1565 	unsigned int current_order;
1566 	struct free_area *area;
1567 	struct page *page;
1568 
1569 	/* Find a page of the appropriate size in the preferred list */
1570 	for (current_order = order; current_order <= MAX_ORDER; ++current_order) {
1571 		area = &(zone->free_area[current_order]);
1572 		page = get_page_from_free_area(area, migratetype);
1573 		if (!page)
1574 			continue;
1575 		del_page_from_free_list(page, zone, current_order);
1576 		expand(zone, page, order, current_order, migratetype);
1577 		set_pcppage_migratetype(page, migratetype);
1578 		trace_mm_page_alloc_zone_locked(page, order, migratetype,
1579 				pcp_allowed_order(order) &&
1580 				migratetype < MIGRATE_PCPTYPES);
1581 		return page;
1582 	}
1583 
1584 	return NULL;
1585 }
1586 
1587 
1588 /*
1589  * This array describes the order lists are fallen back to when
1590  * the free lists for the desirable migrate type are depleted
1591  *
1592  * The other migratetypes do not have fallbacks.
1593  */
1594 static int fallbacks[MIGRATE_TYPES][MIGRATE_PCPTYPES - 1] = {
1595 	[MIGRATE_UNMOVABLE]   = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE   },
1596 	[MIGRATE_MOVABLE]     = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE },
1597 	[MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE,   MIGRATE_MOVABLE   },
1598 };
1599 
1600 #ifdef CONFIG_CMA
1601 static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1602 					unsigned int order)
1603 {
1604 	return __rmqueue_smallest(zone, order, MIGRATE_CMA);
1605 }
1606 #else
1607 static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1608 					unsigned int order) { return NULL; }
1609 #endif
1610 
1611 /*
1612  * Move the free pages in a range to the freelist tail of the requested type.
1613  * Note that start_page and end_pages are not aligned on a pageblock
1614  * boundary. If alignment is required, use move_freepages_block()
1615  */
1616 static int move_freepages(struct zone *zone,
1617 			  unsigned long start_pfn, unsigned long end_pfn,
1618 			  int migratetype, int *num_movable)
1619 {
1620 	struct page *page;
1621 	unsigned long pfn;
1622 	unsigned int order;
1623 	int pages_moved = 0;
1624 
1625 	for (pfn = start_pfn; pfn <= end_pfn;) {
1626 		page = pfn_to_page(pfn);
1627 		if (!PageBuddy(page)) {
1628 			/*
1629 			 * We assume that pages that could be isolated for
1630 			 * migration are movable. But we don't actually try
1631 			 * isolating, as that would be expensive.
1632 			 */
1633 			if (num_movable &&
1634 					(PageLRU(page) || __PageMovable(page)))
1635 				(*num_movable)++;
1636 			pfn++;
1637 			continue;
1638 		}
1639 
1640 		/* Make sure we are not inadvertently changing nodes */
1641 		VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
1642 		VM_BUG_ON_PAGE(page_zone(page) != zone, page);
1643 
1644 		order = buddy_order(page);
1645 		move_to_free_list(page, zone, order, migratetype);
1646 		pfn += 1 << order;
1647 		pages_moved += 1 << order;
1648 	}
1649 
1650 	return pages_moved;
1651 }
1652 
1653 int move_freepages_block(struct zone *zone, struct page *page,
1654 				int migratetype, int *num_movable)
1655 {
1656 	unsigned long start_pfn, end_pfn, pfn;
1657 
1658 	if (num_movable)
1659 		*num_movable = 0;
1660 
1661 	pfn = page_to_pfn(page);
1662 	start_pfn = pageblock_start_pfn(pfn);
1663 	end_pfn = pageblock_end_pfn(pfn) - 1;
1664 
1665 	/* Do not cross zone boundaries */
1666 	if (!zone_spans_pfn(zone, start_pfn))
1667 		start_pfn = pfn;
1668 	if (!zone_spans_pfn(zone, end_pfn))
1669 		return 0;
1670 
1671 	return move_freepages(zone, start_pfn, end_pfn, migratetype,
1672 								num_movable);
1673 }
1674 
1675 static void change_pageblock_range(struct page *pageblock_page,
1676 					int start_order, int migratetype)
1677 {
1678 	int nr_pageblocks = 1 << (start_order - pageblock_order);
1679 
1680 	while (nr_pageblocks--) {
1681 		set_pageblock_migratetype(pageblock_page, migratetype);
1682 		pageblock_page += pageblock_nr_pages;
1683 	}
1684 }
1685 
1686 /*
1687  * When we are falling back to another migratetype during allocation, try to
1688  * steal extra free pages from the same pageblocks to satisfy further
1689  * allocations, instead of polluting multiple pageblocks.
1690  *
1691  * If we are stealing a relatively large buddy page, it is likely there will
1692  * be more free pages in the pageblock, so try to steal them all. For
1693  * reclaimable and unmovable allocations, we steal regardless of page size,
1694  * as fragmentation caused by those allocations polluting movable pageblocks
1695  * is worse than movable allocations stealing from unmovable and reclaimable
1696  * pageblocks.
1697  */
1698 static bool can_steal_fallback(unsigned int order, int start_mt)
1699 {
1700 	/*
1701 	 * Leaving this order check is intended, although there is
1702 	 * relaxed order check in next check. The reason is that
1703 	 * we can actually steal whole pageblock if this condition met,
1704 	 * but, below check doesn't guarantee it and that is just heuristic
1705 	 * so could be changed anytime.
1706 	 */
1707 	if (order >= pageblock_order)
1708 		return true;
1709 
1710 	if (order >= pageblock_order / 2 ||
1711 		start_mt == MIGRATE_RECLAIMABLE ||
1712 		start_mt == MIGRATE_UNMOVABLE ||
1713 		page_group_by_mobility_disabled)
1714 		return true;
1715 
1716 	return false;
1717 }
1718 
1719 static inline bool boost_watermark(struct zone *zone)
1720 {
1721 	unsigned long max_boost;
1722 
1723 	if (!watermark_boost_factor)
1724 		return false;
1725 	/*
1726 	 * Don't bother in zones that are unlikely to produce results.
1727 	 * On small machines, including kdump capture kernels running
1728 	 * in a small area, boosting the watermark can cause an out of
1729 	 * memory situation immediately.
1730 	 */
1731 	if ((pageblock_nr_pages * 4) > zone_managed_pages(zone))
1732 		return false;
1733 
1734 	max_boost = mult_frac(zone->_watermark[WMARK_HIGH],
1735 			watermark_boost_factor, 10000);
1736 
1737 	/*
1738 	 * high watermark may be uninitialised if fragmentation occurs
1739 	 * very early in boot so do not boost. We do not fall
1740 	 * through and boost by pageblock_nr_pages as failing
1741 	 * allocations that early means that reclaim is not going
1742 	 * to help and it may even be impossible to reclaim the
1743 	 * boosted watermark resulting in a hang.
1744 	 */
1745 	if (!max_boost)
1746 		return false;
1747 
1748 	max_boost = max(pageblock_nr_pages, max_boost);
1749 
1750 	zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages,
1751 		max_boost);
1752 
1753 	return true;
1754 }
1755 
1756 /*
1757  * This function implements actual steal behaviour. If order is large enough,
1758  * we can steal whole pageblock. If not, we first move freepages in this
1759  * pageblock to our migratetype and determine how many already-allocated pages
1760  * are there in the pageblock with a compatible migratetype. If at least half
1761  * of pages are free or compatible, we can change migratetype of the pageblock
1762  * itself, so pages freed in the future will be put on the correct free list.
1763  */
1764 static void steal_suitable_fallback(struct zone *zone, struct page *page,
1765 		unsigned int alloc_flags, int start_type, bool whole_block)
1766 {
1767 	unsigned int current_order = buddy_order(page);
1768 	int free_pages, movable_pages, alike_pages;
1769 	int old_block_type;
1770 
1771 	old_block_type = get_pageblock_migratetype(page);
1772 
1773 	/*
1774 	 * This can happen due to races and we want to prevent broken
1775 	 * highatomic accounting.
1776 	 */
1777 	if (is_migrate_highatomic(old_block_type))
1778 		goto single_page;
1779 
1780 	/* Take ownership for orders >= pageblock_order */
1781 	if (current_order >= pageblock_order) {
1782 		change_pageblock_range(page, current_order, start_type);
1783 		goto single_page;
1784 	}
1785 
1786 	/*
1787 	 * Boost watermarks to increase reclaim pressure to reduce the
1788 	 * likelihood of future fallbacks. Wake kswapd now as the node
1789 	 * may be balanced overall and kswapd will not wake naturally.
1790 	 */
1791 	if (boost_watermark(zone) && (alloc_flags & ALLOC_KSWAPD))
1792 		set_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
1793 
1794 	/* We are not allowed to try stealing from the whole block */
1795 	if (!whole_block)
1796 		goto single_page;
1797 
1798 	free_pages = move_freepages_block(zone, page, start_type,
1799 						&movable_pages);
1800 	/* moving whole block can fail due to zone boundary conditions */
1801 	if (!free_pages)
1802 		goto single_page;
1803 
1804 	/*
1805 	 * Determine how many pages are compatible with our allocation.
1806 	 * For movable allocation, it's the number of movable pages which
1807 	 * we just obtained. For other types it's a bit more tricky.
1808 	 */
1809 	if (start_type == MIGRATE_MOVABLE) {
1810 		alike_pages = movable_pages;
1811 	} else {
1812 		/*
1813 		 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
1814 		 * to MOVABLE pageblock, consider all non-movable pages as
1815 		 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
1816 		 * vice versa, be conservative since we can't distinguish the
1817 		 * exact migratetype of non-movable pages.
1818 		 */
1819 		if (old_block_type == MIGRATE_MOVABLE)
1820 			alike_pages = pageblock_nr_pages
1821 						- (free_pages + movable_pages);
1822 		else
1823 			alike_pages = 0;
1824 	}
1825 	/*
1826 	 * If a sufficient number of pages in the block are either free or of
1827 	 * compatible migratability as our allocation, claim the whole block.
1828 	 */
1829 	if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
1830 			page_group_by_mobility_disabled)
1831 		set_pageblock_migratetype(page, start_type);
1832 
1833 	return;
1834 
1835 single_page:
1836 	move_to_free_list(page, zone, current_order, start_type);
1837 }
1838 
1839 /*
1840  * Check whether there is a suitable fallback freepage with requested order.
1841  * If only_stealable is true, this function returns fallback_mt only if
1842  * we can steal other freepages all together. This would help to reduce
1843  * fragmentation due to mixed migratetype pages in one pageblock.
1844  */
1845 int find_suitable_fallback(struct free_area *area, unsigned int order,
1846 			int migratetype, bool only_stealable, bool *can_steal)
1847 {
1848 	int i;
1849 	int fallback_mt;
1850 
1851 	if (area->nr_free == 0)
1852 		return -1;
1853 
1854 	*can_steal = false;
1855 	for (i = 0; i < MIGRATE_PCPTYPES - 1 ; i++) {
1856 		fallback_mt = fallbacks[migratetype][i];
1857 		if (free_area_empty(area, fallback_mt))
1858 			continue;
1859 
1860 		if (can_steal_fallback(order, migratetype))
1861 			*can_steal = true;
1862 
1863 		if (!only_stealable)
1864 			return fallback_mt;
1865 
1866 		if (*can_steal)
1867 			return fallback_mt;
1868 	}
1869 
1870 	return -1;
1871 }
1872 
1873 /*
1874  * Reserve a pageblock for exclusive use of high-order atomic allocations if
1875  * there are no empty page blocks that contain a page with a suitable order
1876  */
1877 static void reserve_highatomic_pageblock(struct page *page, struct zone *zone)
1878 {
1879 	int mt;
1880 	unsigned long max_managed, flags;
1881 
1882 	/*
1883 	 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
1884 	 * Check is race-prone but harmless.
1885 	 */
1886 	max_managed = (zone_managed_pages(zone) / 100) + pageblock_nr_pages;
1887 	if (zone->nr_reserved_highatomic >= max_managed)
1888 		return;
1889 
1890 	spin_lock_irqsave(&zone->lock, flags);
1891 
1892 	/* Recheck the nr_reserved_highatomic limit under the lock */
1893 	if (zone->nr_reserved_highatomic >= max_managed)
1894 		goto out_unlock;
1895 
1896 	/* Yoink! */
1897 	mt = get_pageblock_migratetype(page);
1898 	/* Only reserve normal pageblocks (i.e., they can merge with others) */
1899 	if (migratetype_is_mergeable(mt)) {
1900 		zone->nr_reserved_highatomic += pageblock_nr_pages;
1901 		set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
1902 		move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL);
1903 	}
1904 
1905 out_unlock:
1906 	spin_unlock_irqrestore(&zone->lock, flags);
1907 }
1908 
1909 /*
1910  * Used when an allocation is about to fail under memory pressure. This
1911  * potentially hurts the reliability of high-order allocations when under
1912  * intense memory pressure but failed atomic allocations should be easier
1913  * to recover from than an OOM.
1914  *
1915  * If @force is true, try to unreserve a pageblock even though highatomic
1916  * pageblock is exhausted.
1917  */
1918 static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
1919 						bool force)
1920 {
1921 	struct zonelist *zonelist = ac->zonelist;
1922 	unsigned long flags;
1923 	struct zoneref *z;
1924 	struct zone *zone;
1925 	struct page *page;
1926 	int order;
1927 	bool ret;
1928 
1929 	for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->highest_zoneidx,
1930 								ac->nodemask) {
1931 		/*
1932 		 * Preserve at least one pageblock unless memory pressure
1933 		 * is really high.
1934 		 */
1935 		if (!force && zone->nr_reserved_highatomic <=
1936 					pageblock_nr_pages)
1937 			continue;
1938 
1939 		spin_lock_irqsave(&zone->lock, flags);
1940 		for (order = 0; order <= MAX_ORDER; order++) {
1941 			struct free_area *area = &(zone->free_area[order]);
1942 
1943 			page = get_page_from_free_area(area, MIGRATE_HIGHATOMIC);
1944 			if (!page)
1945 				continue;
1946 
1947 			/*
1948 			 * In page freeing path, migratetype change is racy so
1949 			 * we can counter several free pages in a pageblock
1950 			 * in this loop although we changed the pageblock type
1951 			 * from highatomic to ac->migratetype. So we should
1952 			 * adjust the count once.
1953 			 */
1954 			if (is_migrate_highatomic_page(page)) {
1955 				/*
1956 				 * It should never happen but changes to
1957 				 * locking could inadvertently allow a per-cpu
1958 				 * drain to add pages to MIGRATE_HIGHATOMIC
1959 				 * while unreserving so be safe and watch for
1960 				 * underflows.
1961 				 */
1962 				zone->nr_reserved_highatomic -= min(
1963 						pageblock_nr_pages,
1964 						zone->nr_reserved_highatomic);
1965 			}
1966 
1967 			/*
1968 			 * Convert to ac->migratetype and avoid the normal
1969 			 * pageblock stealing heuristics. Minimally, the caller
1970 			 * is doing the work and needs the pages. More
1971 			 * importantly, if the block was always converted to
1972 			 * MIGRATE_UNMOVABLE or another type then the number
1973 			 * of pageblocks that cannot be completely freed
1974 			 * may increase.
1975 			 */
1976 			set_pageblock_migratetype(page, ac->migratetype);
1977 			ret = move_freepages_block(zone, page, ac->migratetype,
1978 									NULL);
1979 			if (ret) {
1980 				spin_unlock_irqrestore(&zone->lock, flags);
1981 				return ret;
1982 			}
1983 		}
1984 		spin_unlock_irqrestore(&zone->lock, flags);
1985 	}
1986 
1987 	return false;
1988 }
1989 
1990 /*
1991  * Try finding a free buddy page on the fallback list and put it on the free
1992  * list of requested migratetype, possibly along with other pages from the same
1993  * block, depending on fragmentation avoidance heuristics. Returns true if
1994  * fallback was found so that __rmqueue_smallest() can grab it.
1995  *
1996  * The use of signed ints for order and current_order is a deliberate
1997  * deviation from the rest of this file, to make the for loop
1998  * condition simpler.
1999  */
2000 static __always_inline bool
2001 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype,
2002 						unsigned int alloc_flags)
2003 {
2004 	struct free_area *area;
2005 	int current_order;
2006 	int min_order = order;
2007 	struct page *page;
2008 	int fallback_mt;
2009 	bool can_steal;
2010 
2011 	/*
2012 	 * Do not steal pages from freelists belonging to other pageblocks
2013 	 * i.e. orders < pageblock_order. If there are no local zones free,
2014 	 * the zonelists will be reiterated without ALLOC_NOFRAGMENT.
2015 	 */
2016 	if (order < pageblock_order && alloc_flags & ALLOC_NOFRAGMENT)
2017 		min_order = pageblock_order;
2018 
2019 	/*
2020 	 * Find the largest available free page in the other list. This roughly
2021 	 * approximates finding the pageblock with the most free pages, which
2022 	 * would be too costly to do exactly.
2023 	 */
2024 	for (current_order = MAX_ORDER; current_order >= min_order;
2025 				--current_order) {
2026 		area = &(zone->free_area[current_order]);
2027 		fallback_mt = find_suitable_fallback(area, current_order,
2028 				start_migratetype, false, &can_steal);
2029 		if (fallback_mt == -1)
2030 			continue;
2031 
2032 		/*
2033 		 * We cannot steal all free pages from the pageblock and the
2034 		 * requested migratetype is movable. In that case it's better to
2035 		 * steal and split the smallest available page instead of the
2036 		 * largest available page, because even if the next movable
2037 		 * allocation falls back into a different pageblock than this
2038 		 * one, it won't cause permanent fragmentation.
2039 		 */
2040 		if (!can_steal && start_migratetype == MIGRATE_MOVABLE
2041 					&& current_order > order)
2042 			goto find_smallest;
2043 
2044 		goto do_steal;
2045 	}
2046 
2047 	return false;
2048 
2049 find_smallest:
2050 	for (current_order = order; current_order <= MAX_ORDER;
2051 							current_order++) {
2052 		area = &(zone->free_area[current_order]);
2053 		fallback_mt = find_suitable_fallback(area, current_order,
2054 				start_migratetype, false, &can_steal);
2055 		if (fallback_mt != -1)
2056 			break;
2057 	}
2058 
2059 	/*
2060 	 * This should not happen - we already found a suitable fallback
2061 	 * when looking for the largest page.
2062 	 */
2063 	VM_BUG_ON(current_order > MAX_ORDER);
2064 
2065 do_steal:
2066 	page = get_page_from_free_area(area, fallback_mt);
2067 
2068 	steal_suitable_fallback(zone, page, alloc_flags, start_migratetype,
2069 								can_steal);
2070 
2071 	trace_mm_page_alloc_extfrag(page, order, current_order,
2072 		start_migratetype, fallback_mt);
2073 
2074 	return true;
2075 
2076 }
2077 
2078 /*
2079  * Do the hard work of removing an element from the buddy allocator.
2080  * Call me with the zone->lock already held.
2081  */
2082 static __always_inline struct page *
2083 __rmqueue(struct zone *zone, unsigned int order, int migratetype,
2084 						unsigned int alloc_flags)
2085 {
2086 	struct page *page;
2087 
2088 	if (IS_ENABLED(CONFIG_CMA)) {
2089 		/*
2090 		 * Balance movable allocations between regular and CMA areas by
2091 		 * allocating from CMA when over half of the zone's free memory
2092 		 * is in the CMA area.
2093 		 */
2094 		if (alloc_flags & ALLOC_CMA &&
2095 		    zone_page_state(zone, NR_FREE_CMA_PAGES) >
2096 		    zone_page_state(zone, NR_FREE_PAGES) / 2) {
2097 			page = __rmqueue_cma_fallback(zone, order);
2098 			if (page)
2099 				return page;
2100 		}
2101 	}
2102 retry:
2103 	page = __rmqueue_smallest(zone, order, migratetype);
2104 	if (unlikely(!page)) {
2105 		if (alloc_flags & ALLOC_CMA)
2106 			page = __rmqueue_cma_fallback(zone, order);
2107 
2108 		if (!page && __rmqueue_fallback(zone, order, migratetype,
2109 								alloc_flags))
2110 			goto retry;
2111 	}
2112 	return page;
2113 }
2114 
2115 /*
2116  * Obtain a specified number of elements from the buddy allocator, all under
2117  * a single hold of the lock, for efficiency.  Add them to the supplied list.
2118  * Returns the number of new pages which were placed at *list.
2119  */
2120 static int rmqueue_bulk(struct zone *zone, unsigned int order,
2121 			unsigned long count, struct list_head *list,
2122 			int migratetype, unsigned int alloc_flags)
2123 {
2124 	unsigned long flags;
2125 	int i;
2126 
2127 	spin_lock_irqsave(&zone->lock, flags);
2128 	for (i = 0; i < count; ++i) {
2129 		struct page *page = __rmqueue(zone, order, migratetype,
2130 								alloc_flags);
2131 		if (unlikely(page == NULL))
2132 			break;
2133 
2134 		/*
2135 		 * Split buddy pages returned by expand() are received here in
2136 		 * physical page order. The page is added to the tail of
2137 		 * caller's list. From the callers perspective, the linked list
2138 		 * is ordered by page number under some conditions. This is
2139 		 * useful for IO devices that can forward direction from the
2140 		 * head, thus also in the physical page order. This is useful
2141 		 * for IO devices that can merge IO requests if the physical
2142 		 * pages are ordered properly.
2143 		 */
2144 		list_add_tail(&page->pcp_list, list);
2145 		if (is_migrate_cma(get_pcppage_migratetype(page)))
2146 			__mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
2147 					      -(1 << order));
2148 	}
2149 
2150 	__mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
2151 	spin_unlock_irqrestore(&zone->lock, flags);
2152 
2153 	return i;
2154 }
2155 
2156 /*
2157  * Called from the vmstat counter updater to decay the PCP high.
2158  * Return whether there are addition works to do.
2159  */
2160 int decay_pcp_high(struct zone *zone, struct per_cpu_pages *pcp)
2161 {
2162 	int high_min, to_drain, batch;
2163 	int todo = 0;
2164 
2165 	high_min = READ_ONCE(pcp->high_min);
2166 	batch = READ_ONCE(pcp->batch);
2167 	/*
2168 	 * Decrease pcp->high periodically to try to free possible
2169 	 * idle PCP pages.  And, avoid to free too many pages to
2170 	 * control latency.  This caps pcp->high decrement too.
2171 	 */
2172 	if (pcp->high > high_min) {
2173 		pcp->high = max3(pcp->count - (batch << CONFIG_PCP_BATCH_SCALE_MAX),
2174 				 pcp->high - (pcp->high >> 3), high_min);
2175 		if (pcp->high > high_min)
2176 			todo++;
2177 	}
2178 
2179 	to_drain = pcp->count - pcp->high;
2180 	if (to_drain > 0) {
2181 		spin_lock(&pcp->lock);
2182 		free_pcppages_bulk(zone, to_drain, pcp, 0);
2183 		spin_unlock(&pcp->lock);
2184 		todo++;
2185 	}
2186 
2187 	return todo;
2188 }
2189 
2190 #ifdef CONFIG_NUMA
2191 /*
2192  * Called from the vmstat counter updater to drain pagesets of this
2193  * currently executing processor on remote nodes after they have
2194  * expired.
2195  */
2196 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
2197 {
2198 	int to_drain, batch;
2199 
2200 	batch = READ_ONCE(pcp->batch);
2201 	to_drain = min(pcp->count, batch);
2202 	if (to_drain > 0) {
2203 		spin_lock(&pcp->lock);
2204 		free_pcppages_bulk(zone, to_drain, pcp, 0);
2205 		spin_unlock(&pcp->lock);
2206 	}
2207 }
2208 #endif
2209 
2210 /*
2211  * Drain pcplists of the indicated processor and zone.
2212  */
2213 static void drain_pages_zone(unsigned int cpu, struct zone *zone)
2214 {
2215 	struct per_cpu_pages *pcp;
2216 
2217 	pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
2218 	if (pcp->count) {
2219 		spin_lock(&pcp->lock);
2220 		free_pcppages_bulk(zone, pcp->count, pcp, 0);
2221 		spin_unlock(&pcp->lock);
2222 	}
2223 }
2224 
2225 /*
2226  * Drain pcplists of all zones on the indicated processor.
2227  */
2228 static void drain_pages(unsigned int cpu)
2229 {
2230 	struct zone *zone;
2231 
2232 	for_each_populated_zone(zone) {
2233 		drain_pages_zone(cpu, zone);
2234 	}
2235 }
2236 
2237 /*
2238  * Spill all of this CPU's per-cpu pages back into the buddy allocator.
2239  */
2240 void drain_local_pages(struct zone *zone)
2241 {
2242 	int cpu = smp_processor_id();
2243 
2244 	if (zone)
2245 		drain_pages_zone(cpu, zone);
2246 	else
2247 		drain_pages(cpu);
2248 }
2249 
2250 /*
2251  * The implementation of drain_all_pages(), exposing an extra parameter to
2252  * drain on all cpus.
2253  *
2254  * drain_all_pages() is optimized to only execute on cpus where pcplists are
2255  * not empty. The check for non-emptiness can however race with a free to
2256  * pcplist that has not yet increased the pcp->count from 0 to 1. Callers
2257  * that need the guarantee that every CPU has drained can disable the
2258  * optimizing racy check.
2259  */
2260 static void __drain_all_pages(struct zone *zone, bool force_all_cpus)
2261 {
2262 	int cpu;
2263 
2264 	/*
2265 	 * Allocate in the BSS so we won't require allocation in
2266 	 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
2267 	 */
2268 	static cpumask_t cpus_with_pcps;
2269 
2270 	/*
2271 	 * Do not drain if one is already in progress unless it's specific to
2272 	 * a zone. Such callers are primarily CMA and memory hotplug and need
2273 	 * the drain to be complete when the call returns.
2274 	 */
2275 	if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
2276 		if (!zone)
2277 			return;
2278 		mutex_lock(&pcpu_drain_mutex);
2279 	}
2280 
2281 	/*
2282 	 * We don't care about racing with CPU hotplug event
2283 	 * as offline notification will cause the notified
2284 	 * cpu to drain that CPU pcps and on_each_cpu_mask
2285 	 * disables preemption as part of its processing
2286 	 */
2287 	for_each_online_cpu(cpu) {
2288 		struct per_cpu_pages *pcp;
2289 		struct zone *z;
2290 		bool has_pcps = false;
2291 
2292 		if (force_all_cpus) {
2293 			/*
2294 			 * The pcp.count check is racy, some callers need a
2295 			 * guarantee that no cpu is missed.
2296 			 */
2297 			has_pcps = true;
2298 		} else if (zone) {
2299 			pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
2300 			if (pcp->count)
2301 				has_pcps = true;
2302 		} else {
2303 			for_each_populated_zone(z) {
2304 				pcp = per_cpu_ptr(z->per_cpu_pageset, cpu);
2305 				if (pcp->count) {
2306 					has_pcps = true;
2307 					break;
2308 				}
2309 			}
2310 		}
2311 
2312 		if (has_pcps)
2313 			cpumask_set_cpu(cpu, &cpus_with_pcps);
2314 		else
2315 			cpumask_clear_cpu(cpu, &cpus_with_pcps);
2316 	}
2317 
2318 	for_each_cpu(cpu, &cpus_with_pcps) {
2319 		if (zone)
2320 			drain_pages_zone(cpu, zone);
2321 		else
2322 			drain_pages(cpu);
2323 	}
2324 
2325 	mutex_unlock(&pcpu_drain_mutex);
2326 }
2327 
2328 /*
2329  * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
2330  *
2331  * When zone parameter is non-NULL, spill just the single zone's pages.
2332  */
2333 void drain_all_pages(struct zone *zone)
2334 {
2335 	__drain_all_pages(zone, false);
2336 }
2337 
2338 static bool free_unref_page_prepare(struct page *page, unsigned long pfn,
2339 							unsigned int order)
2340 {
2341 	int migratetype;
2342 
2343 	if (!free_pages_prepare(page, order, FPI_NONE))
2344 		return false;
2345 
2346 	migratetype = get_pfnblock_migratetype(page, pfn);
2347 	set_pcppage_migratetype(page, migratetype);
2348 	return true;
2349 }
2350 
2351 static int nr_pcp_free(struct per_cpu_pages *pcp, int batch, int high, bool free_high)
2352 {
2353 	int min_nr_free, max_nr_free;
2354 
2355 	/* Free as much as possible if batch freeing high-order pages. */
2356 	if (unlikely(free_high))
2357 		return min(pcp->count, batch << CONFIG_PCP_BATCH_SCALE_MAX);
2358 
2359 	/* Check for PCP disabled or boot pageset */
2360 	if (unlikely(high < batch))
2361 		return 1;
2362 
2363 	/* Leave at least pcp->batch pages on the list */
2364 	min_nr_free = batch;
2365 	max_nr_free = high - batch;
2366 
2367 	/*
2368 	 * Increase the batch number to the number of the consecutive
2369 	 * freed pages to reduce zone lock contention.
2370 	 */
2371 	batch = clamp_t(int, pcp->free_count, min_nr_free, max_nr_free);
2372 
2373 	return batch;
2374 }
2375 
2376 static int nr_pcp_high(struct per_cpu_pages *pcp, struct zone *zone,
2377 		       int batch, bool free_high)
2378 {
2379 	int high, high_min, high_max;
2380 
2381 	high_min = READ_ONCE(pcp->high_min);
2382 	high_max = READ_ONCE(pcp->high_max);
2383 	high = pcp->high = clamp(pcp->high, high_min, high_max);
2384 
2385 	if (unlikely(!high))
2386 		return 0;
2387 
2388 	if (unlikely(free_high)) {
2389 		pcp->high = max(high - (batch << CONFIG_PCP_BATCH_SCALE_MAX),
2390 				high_min);
2391 		return 0;
2392 	}
2393 
2394 	/*
2395 	 * If reclaim is active, limit the number of pages that can be
2396 	 * stored on pcp lists
2397 	 */
2398 	if (test_bit(ZONE_RECLAIM_ACTIVE, &zone->flags)) {
2399 		int free_count = max_t(int, pcp->free_count, batch);
2400 
2401 		pcp->high = max(high - free_count, high_min);
2402 		return min(batch << 2, pcp->high);
2403 	}
2404 
2405 	if (high_min == high_max)
2406 		return high;
2407 
2408 	if (test_bit(ZONE_BELOW_HIGH, &zone->flags)) {
2409 		int free_count = max_t(int, pcp->free_count, batch);
2410 
2411 		pcp->high = max(high - free_count, high_min);
2412 		high = max(pcp->count, high_min);
2413 	} else if (pcp->count >= high) {
2414 		int need_high = pcp->free_count + batch;
2415 
2416 		/* pcp->high should be large enough to hold batch freed pages */
2417 		if (pcp->high < need_high)
2418 			pcp->high = clamp(need_high, high_min, high_max);
2419 	}
2420 
2421 	return high;
2422 }
2423 
2424 static void free_unref_page_commit(struct zone *zone, struct per_cpu_pages *pcp,
2425 				   struct page *page, int migratetype,
2426 				   unsigned int order)
2427 {
2428 	int high, batch;
2429 	int pindex;
2430 	bool free_high = false;
2431 
2432 	/*
2433 	 * On freeing, reduce the number of pages that are batch allocated.
2434 	 * See nr_pcp_alloc() where alloc_factor is increased for subsequent
2435 	 * allocations.
2436 	 */
2437 	pcp->alloc_factor >>= 1;
2438 	__count_vm_events(PGFREE, 1 << order);
2439 	pindex = order_to_pindex(migratetype, order);
2440 	list_add(&page->pcp_list, &pcp->lists[pindex]);
2441 	pcp->count += 1 << order;
2442 
2443 	batch = READ_ONCE(pcp->batch);
2444 	/*
2445 	 * As high-order pages other than THP's stored on PCP can contribute
2446 	 * to fragmentation, limit the number stored when PCP is heavily
2447 	 * freeing without allocation. The remainder after bulk freeing
2448 	 * stops will be drained from vmstat refresh context.
2449 	 */
2450 	if (order && order <= PAGE_ALLOC_COSTLY_ORDER) {
2451 		free_high = (pcp->free_count >= batch &&
2452 			     (pcp->flags & PCPF_PREV_FREE_HIGH_ORDER) &&
2453 			     (!(pcp->flags & PCPF_FREE_HIGH_BATCH) ||
2454 			      pcp->count >= READ_ONCE(batch)));
2455 		pcp->flags |= PCPF_PREV_FREE_HIGH_ORDER;
2456 	} else if (pcp->flags & PCPF_PREV_FREE_HIGH_ORDER) {
2457 		pcp->flags &= ~PCPF_PREV_FREE_HIGH_ORDER;
2458 	}
2459 	if (pcp->free_count < (batch << CONFIG_PCP_BATCH_SCALE_MAX))
2460 		pcp->free_count += (1 << order);
2461 	high = nr_pcp_high(pcp, zone, batch, free_high);
2462 	if (pcp->count >= high) {
2463 		free_pcppages_bulk(zone, nr_pcp_free(pcp, batch, high, free_high),
2464 				   pcp, pindex);
2465 		if (test_bit(ZONE_BELOW_HIGH, &zone->flags) &&
2466 		    zone_watermark_ok(zone, 0, high_wmark_pages(zone),
2467 				      ZONE_MOVABLE, 0))
2468 			clear_bit(ZONE_BELOW_HIGH, &zone->flags);
2469 	}
2470 }
2471 
2472 /*
2473  * Free a pcp page
2474  */
2475 void free_unref_page(struct page *page, unsigned int order)
2476 {
2477 	unsigned long __maybe_unused UP_flags;
2478 	struct per_cpu_pages *pcp;
2479 	struct zone *zone;
2480 	unsigned long pfn = page_to_pfn(page);
2481 	int migratetype, pcpmigratetype;
2482 
2483 	if (!free_unref_page_prepare(page, pfn, order))
2484 		return;
2485 
2486 	/*
2487 	 * We only track unmovable, reclaimable and movable on pcp lists.
2488 	 * Place ISOLATE pages on the isolated list because they are being
2489 	 * offlined but treat HIGHATOMIC and CMA as movable pages so we can
2490 	 * get those areas back if necessary. Otherwise, we may have to free
2491 	 * excessively into the page allocator
2492 	 */
2493 	migratetype = pcpmigratetype = get_pcppage_migratetype(page);
2494 	if (unlikely(migratetype >= MIGRATE_PCPTYPES)) {
2495 		if (unlikely(is_migrate_isolate(migratetype))) {
2496 			free_one_page(page_zone(page), page, pfn, order, migratetype, FPI_NONE);
2497 			return;
2498 		}
2499 		pcpmigratetype = MIGRATE_MOVABLE;
2500 	}
2501 
2502 	zone = page_zone(page);
2503 	pcp_trylock_prepare(UP_flags);
2504 	pcp = pcp_spin_trylock(zone->per_cpu_pageset);
2505 	if (pcp) {
2506 		free_unref_page_commit(zone, pcp, page, pcpmigratetype, order);
2507 		pcp_spin_unlock(pcp);
2508 	} else {
2509 		free_one_page(zone, page, pfn, order, migratetype, FPI_NONE);
2510 	}
2511 	pcp_trylock_finish(UP_flags);
2512 }
2513 
2514 /*
2515  * Free a list of 0-order pages
2516  */
2517 void free_unref_page_list(struct list_head *list)
2518 {
2519 	unsigned long __maybe_unused UP_flags;
2520 	struct page *page, *next;
2521 	struct per_cpu_pages *pcp = NULL;
2522 	struct zone *locked_zone = NULL;
2523 	int batch_count = 0;
2524 	int migratetype;
2525 
2526 	/* Prepare pages for freeing */
2527 	list_for_each_entry_safe(page, next, list, lru) {
2528 		unsigned long pfn = page_to_pfn(page);
2529 		if (!free_unref_page_prepare(page, pfn, 0)) {
2530 			list_del(&page->lru);
2531 			continue;
2532 		}
2533 
2534 		/*
2535 		 * Free isolated pages directly to the allocator, see
2536 		 * comment in free_unref_page.
2537 		 */
2538 		migratetype = get_pcppage_migratetype(page);
2539 		if (unlikely(is_migrate_isolate(migratetype))) {
2540 			list_del(&page->lru);
2541 			free_one_page(page_zone(page), page, pfn, 0, migratetype, FPI_NONE);
2542 			continue;
2543 		}
2544 	}
2545 
2546 	list_for_each_entry_safe(page, next, list, lru) {
2547 		struct zone *zone = page_zone(page);
2548 
2549 		list_del(&page->lru);
2550 		migratetype = get_pcppage_migratetype(page);
2551 
2552 		/*
2553 		 * Either different zone requiring a different pcp lock or
2554 		 * excessive lock hold times when freeing a large list of
2555 		 * pages.
2556 		 */
2557 		if (zone != locked_zone || batch_count == SWAP_CLUSTER_MAX) {
2558 			if (pcp) {
2559 				pcp_spin_unlock(pcp);
2560 				pcp_trylock_finish(UP_flags);
2561 			}
2562 
2563 			batch_count = 0;
2564 
2565 			/*
2566 			 * trylock is necessary as pages may be getting freed
2567 			 * from IRQ or SoftIRQ context after an IO completion.
2568 			 */
2569 			pcp_trylock_prepare(UP_flags);
2570 			pcp = pcp_spin_trylock(zone->per_cpu_pageset);
2571 			if (unlikely(!pcp)) {
2572 				pcp_trylock_finish(UP_flags);
2573 				free_one_page(zone, page, page_to_pfn(page),
2574 					      0, migratetype, FPI_NONE);
2575 				locked_zone = NULL;
2576 				continue;
2577 			}
2578 			locked_zone = zone;
2579 		}
2580 
2581 		/*
2582 		 * Non-isolated types over MIGRATE_PCPTYPES get added
2583 		 * to the MIGRATE_MOVABLE pcp list.
2584 		 */
2585 		if (unlikely(migratetype >= MIGRATE_PCPTYPES))
2586 			migratetype = MIGRATE_MOVABLE;
2587 
2588 		trace_mm_page_free_batched(page);
2589 		free_unref_page_commit(zone, pcp, page, migratetype, 0);
2590 		batch_count++;
2591 	}
2592 
2593 	if (pcp) {
2594 		pcp_spin_unlock(pcp);
2595 		pcp_trylock_finish(UP_flags);
2596 	}
2597 }
2598 
2599 /*
2600  * split_page takes a non-compound higher-order page, and splits it into
2601  * n (1<<order) sub-pages: page[0..n]
2602  * Each sub-page must be freed individually.
2603  *
2604  * Note: this is probably too low level an operation for use in drivers.
2605  * Please consult with lkml before using this in your driver.
2606  */
2607 void split_page(struct page *page, unsigned int order)
2608 {
2609 	int i;
2610 
2611 	VM_BUG_ON_PAGE(PageCompound(page), page);
2612 	VM_BUG_ON_PAGE(!page_count(page), page);
2613 
2614 	for (i = 1; i < (1 << order); i++)
2615 		set_page_refcounted(page + i);
2616 	split_page_owner(page, 1 << order);
2617 	split_page_memcg(page, 1 << order);
2618 }
2619 EXPORT_SYMBOL_GPL(split_page);
2620 
2621 int __isolate_free_page(struct page *page, unsigned int order)
2622 {
2623 	struct zone *zone = page_zone(page);
2624 	int mt = get_pageblock_migratetype(page);
2625 
2626 	if (!is_migrate_isolate(mt)) {
2627 		unsigned long watermark;
2628 		/*
2629 		 * Obey watermarks as if the page was being allocated. We can
2630 		 * emulate a high-order watermark check with a raised order-0
2631 		 * watermark, because we already know our high-order page
2632 		 * exists.
2633 		 */
2634 		watermark = zone->_watermark[WMARK_MIN] + (1UL << order);
2635 		if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
2636 			return 0;
2637 
2638 		__mod_zone_freepage_state(zone, -(1UL << order), mt);
2639 	}
2640 
2641 	del_page_from_free_list(page, zone, order);
2642 
2643 	/*
2644 	 * Set the pageblock if the isolated page is at least half of a
2645 	 * pageblock
2646 	 */
2647 	if (order >= pageblock_order - 1) {
2648 		struct page *endpage = page + (1 << order) - 1;
2649 		for (; page < endpage; page += pageblock_nr_pages) {
2650 			int mt = get_pageblock_migratetype(page);
2651 			/*
2652 			 * Only change normal pageblocks (i.e., they can merge
2653 			 * with others)
2654 			 */
2655 			if (migratetype_is_mergeable(mt))
2656 				set_pageblock_migratetype(page,
2657 							  MIGRATE_MOVABLE);
2658 		}
2659 	}
2660 
2661 	return 1UL << order;
2662 }
2663 
2664 /**
2665  * __putback_isolated_page - Return a now-isolated page back where we got it
2666  * @page: Page that was isolated
2667  * @order: Order of the isolated page
2668  * @mt: The page's pageblock's migratetype
2669  *
2670  * This function is meant to return a page pulled from the free lists via
2671  * __isolate_free_page back to the free lists they were pulled from.
2672  */
2673 void __putback_isolated_page(struct page *page, unsigned int order, int mt)
2674 {
2675 	struct zone *zone = page_zone(page);
2676 
2677 	/* zone lock should be held when this function is called */
2678 	lockdep_assert_held(&zone->lock);
2679 
2680 	/* Return isolated page to tail of freelist. */
2681 	__free_one_page(page, page_to_pfn(page), zone, order, mt,
2682 			FPI_SKIP_REPORT_NOTIFY | FPI_TO_TAIL);
2683 }
2684 
2685 /*
2686  * Update NUMA hit/miss statistics
2687  */
2688 static inline void zone_statistics(struct zone *preferred_zone, struct zone *z,
2689 				   long nr_account)
2690 {
2691 #ifdef CONFIG_NUMA
2692 	enum numa_stat_item local_stat = NUMA_LOCAL;
2693 
2694 	/* skip numa counters update if numa stats is disabled */
2695 	if (!static_branch_likely(&vm_numa_stat_key))
2696 		return;
2697 
2698 	if (zone_to_nid(z) != numa_node_id())
2699 		local_stat = NUMA_OTHER;
2700 
2701 	if (zone_to_nid(z) == zone_to_nid(preferred_zone))
2702 		__count_numa_events(z, NUMA_HIT, nr_account);
2703 	else {
2704 		__count_numa_events(z, NUMA_MISS, nr_account);
2705 		__count_numa_events(preferred_zone, NUMA_FOREIGN, nr_account);
2706 	}
2707 	__count_numa_events(z, local_stat, nr_account);
2708 #endif
2709 }
2710 
2711 static __always_inline
2712 struct page *rmqueue_buddy(struct zone *preferred_zone, struct zone *zone,
2713 			   unsigned int order, unsigned int alloc_flags,
2714 			   int migratetype)
2715 {
2716 	struct page *page;
2717 	unsigned long flags;
2718 
2719 	do {
2720 		page = NULL;
2721 		spin_lock_irqsave(&zone->lock, flags);
2722 		if (alloc_flags & ALLOC_HIGHATOMIC)
2723 			page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
2724 		if (!page) {
2725 			page = __rmqueue(zone, order, migratetype, alloc_flags);
2726 
2727 			/*
2728 			 * If the allocation fails, allow OOM handling access
2729 			 * to HIGHATOMIC reserves as failing now is worse than
2730 			 * failing a high-order atomic allocation in the
2731 			 * future.
2732 			 */
2733 			if (!page && (alloc_flags & ALLOC_OOM))
2734 				page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
2735 
2736 			if (!page) {
2737 				spin_unlock_irqrestore(&zone->lock, flags);
2738 				return NULL;
2739 			}
2740 		}
2741 		__mod_zone_freepage_state(zone, -(1 << order),
2742 					  get_pcppage_migratetype(page));
2743 		spin_unlock_irqrestore(&zone->lock, flags);
2744 	} while (check_new_pages(page, order));
2745 
2746 	__count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
2747 	zone_statistics(preferred_zone, zone, 1);
2748 
2749 	return page;
2750 }
2751 
2752 static int nr_pcp_alloc(struct per_cpu_pages *pcp, struct zone *zone, int order)
2753 {
2754 	int high, base_batch, batch, max_nr_alloc;
2755 	int high_max, high_min;
2756 
2757 	base_batch = READ_ONCE(pcp->batch);
2758 	high_min = READ_ONCE(pcp->high_min);
2759 	high_max = READ_ONCE(pcp->high_max);
2760 	high = pcp->high = clamp(pcp->high, high_min, high_max);
2761 
2762 	/* Check for PCP disabled or boot pageset */
2763 	if (unlikely(high < base_batch))
2764 		return 1;
2765 
2766 	if (order)
2767 		batch = base_batch;
2768 	else
2769 		batch = (base_batch << pcp->alloc_factor);
2770 
2771 	/*
2772 	 * If we had larger pcp->high, we could avoid to allocate from
2773 	 * zone.
2774 	 */
2775 	if (high_min != high_max && !test_bit(ZONE_BELOW_HIGH, &zone->flags))
2776 		high = pcp->high = min(high + batch, high_max);
2777 
2778 	if (!order) {
2779 		max_nr_alloc = max(high - pcp->count - base_batch, base_batch);
2780 		/*
2781 		 * Double the number of pages allocated each time there is
2782 		 * subsequent allocation of order-0 pages without any freeing.
2783 		 */
2784 		if (batch <= max_nr_alloc &&
2785 		    pcp->alloc_factor < CONFIG_PCP_BATCH_SCALE_MAX)
2786 			pcp->alloc_factor++;
2787 		batch = min(batch, max_nr_alloc);
2788 	}
2789 
2790 	/*
2791 	 * Scale batch relative to order if batch implies free pages
2792 	 * can be stored on the PCP. Batch can be 1 for small zones or
2793 	 * for boot pagesets which should never store free pages as
2794 	 * the pages may belong to arbitrary zones.
2795 	 */
2796 	if (batch > 1)
2797 		batch = max(batch >> order, 2);
2798 
2799 	return batch;
2800 }
2801 
2802 /* Remove page from the per-cpu list, caller must protect the list */
2803 static inline
2804 struct page *__rmqueue_pcplist(struct zone *zone, unsigned int order,
2805 			int migratetype,
2806 			unsigned int alloc_flags,
2807 			struct per_cpu_pages *pcp,
2808 			struct list_head *list)
2809 {
2810 	struct page *page;
2811 
2812 	do {
2813 		if (list_empty(list)) {
2814 			int batch = nr_pcp_alloc(pcp, zone, order);
2815 			int alloced;
2816 
2817 			alloced = rmqueue_bulk(zone, order,
2818 					batch, list,
2819 					migratetype, alloc_flags);
2820 
2821 			pcp->count += alloced << order;
2822 			if (unlikely(list_empty(list)))
2823 				return NULL;
2824 		}
2825 
2826 		page = list_first_entry(list, struct page, pcp_list);
2827 		list_del(&page->pcp_list);
2828 		pcp->count -= 1 << order;
2829 	} while (check_new_pages(page, order));
2830 
2831 	return page;
2832 }
2833 
2834 /* Lock and remove page from the per-cpu list */
2835 static struct page *rmqueue_pcplist(struct zone *preferred_zone,
2836 			struct zone *zone, unsigned int order,
2837 			int migratetype, unsigned int alloc_flags)
2838 {
2839 	struct per_cpu_pages *pcp;
2840 	struct list_head *list;
2841 	struct page *page;
2842 	unsigned long __maybe_unused UP_flags;
2843 
2844 	/* spin_trylock may fail due to a parallel drain or IRQ reentrancy. */
2845 	pcp_trylock_prepare(UP_flags);
2846 	pcp = pcp_spin_trylock(zone->per_cpu_pageset);
2847 	if (!pcp) {
2848 		pcp_trylock_finish(UP_flags);
2849 		return NULL;
2850 	}
2851 
2852 	/*
2853 	 * On allocation, reduce the number of pages that are batch freed.
2854 	 * See nr_pcp_free() where free_factor is increased for subsequent
2855 	 * frees.
2856 	 */
2857 	pcp->free_count >>= 1;
2858 	list = &pcp->lists[order_to_pindex(migratetype, order)];
2859 	page = __rmqueue_pcplist(zone, order, migratetype, alloc_flags, pcp, list);
2860 	pcp_spin_unlock(pcp);
2861 	pcp_trylock_finish(UP_flags);
2862 	if (page) {
2863 		__count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
2864 		zone_statistics(preferred_zone, zone, 1);
2865 	}
2866 	return page;
2867 }
2868 
2869 /*
2870  * Allocate a page from the given zone.
2871  * Use pcplists for THP or "cheap" high-order allocations.
2872  */
2873 
2874 /*
2875  * Do not instrument rmqueue() with KMSAN. This function may call
2876  * __msan_poison_alloca() through a call to set_pfnblock_flags_mask().
2877  * If __msan_poison_alloca() attempts to allocate pages for the stack depot, it
2878  * may call rmqueue() again, which will result in a deadlock.
2879  */
2880 __no_sanitize_memory
2881 static inline
2882 struct page *rmqueue(struct zone *preferred_zone,
2883 			struct zone *zone, unsigned int order,
2884 			gfp_t gfp_flags, unsigned int alloc_flags,
2885 			int migratetype)
2886 {
2887 	struct page *page;
2888 
2889 	/*
2890 	 * We most definitely don't want callers attempting to
2891 	 * allocate greater than order-1 page units with __GFP_NOFAIL.
2892 	 */
2893 	WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
2894 
2895 	if (likely(pcp_allowed_order(order))) {
2896 		page = rmqueue_pcplist(preferred_zone, zone, order,
2897 				       migratetype, alloc_flags);
2898 		if (likely(page))
2899 			goto out;
2900 	}
2901 
2902 	page = rmqueue_buddy(preferred_zone, zone, order, alloc_flags,
2903 							migratetype);
2904 
2905 out:
2906 	/* Separate test+clear to avoid unnecessary atomics */
2907 	if ((alloc_flags & ALLOC_KSWAPD) &&
2908 	    unlikely(test_bit(ZONE_BOOSTED_WATERMARK, &zone->flags))) {
2909 		clear_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
2910 		wakeup_kswapd(zone, 0, 0, zone_idx(zone));
2911 	}
2912 
2913 	VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
2914 	return page;
2915 }
2916 
2917 noinline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
2918 {
2919 	return __should_fail_alloc_page(gfp_mask, order);
2920 }
2921 ALLOW_ERROR_INJECTION(should_fail_alloc_page, TRUE);
2922 
2923 static inline long __zone_watermark_unusable_free(struct zone *z,
2924 				unsigned int order, unsigned int alloc_flags)
2925 {
2926 	long unusable_free = (1 << order) - 1;
2927 
2928 	/*
2929 	 * If the caller does not have rights to reserves below the min
2930 	 * watermark then subtract the high-atomic reserves. This will
2931 	 * over-estimate the size of the atomic reserve but it avoids a search.
2932 	 */
2933 	if (likely(!(alloc_flags & ALLOC_RESERVES)))
2934 		unusable_free += z->nr_reserved_highatomic;
2935 
2936 #ifdef CONFIG_CMA
2937 	/* If allocation can't use CMA areas don't use free CMA pages */
2938 	if (!(alloc_flags & ALLOC_CMA))
2939 		unusable_free += zone_page_state(z, NR_FREE_CMA_PAGES);
2940 #endif
2941 #ifdef CONFIG_UNACCEPTED_MEMORY
2942 	unusable_free += zone_page_state(z, NR_UNACCEPTED);
2943 #endif
2944 
2945 	return unusable_free;
2946 }
2947 
2948 /*
2949  * Return true if free base pages are above 'mark'. For high-order checks it
2950  * will return true of the order-0 watermark is reached and there is at least
2951  * one free page of a suitable size. Checking now avoids taking the zone lock
2952  * to check in the allocation paths if no pages are free.
2953  */
2954 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
2955 			 int highest_zoneidx, unsigned int alloc_flags,
2956 			 long free_pages)
2957 {
2958 	long min = mark;
2959 	int o;
2960 
2961 	/* free_pages may go negative - that's OK */
2962 	free_pages -= __zone_watermark_unusable_free(z, order, alloc_flags);
2963 
2964 	if (unlikely(alloc_flags & ALLOC_RESERVES)) {
2965 		/*
2966 		 * __GFP_HIGH allows access to 50% of the min reserve as well
2967 		 * as OOM.
2968 		 */
2969 		if (alloc_flags & ALLOC_MIN_RESERVE) {
2970 			min -= min / 2;
2971 
2972 			/*
2973 			 * Non-blocking allocations (e.g. GFP_ATOMIC) can
2974 			 * access more reserves than just __GFP_HIGH. Other
2975 			 * non-blocking allocations requests such as GFP_NOWAIT
2976 			 * or (GFP_KERNEL & ~__GFP_DIRECT_RECLAIM) do not get
2977 			 * access to the min reserve.
2978 			 */
2979 			if (alloc_flags & ALLOC_NON_BLOCK)
2980 				min -= min / 4;
2981 		}
2982 
2983 		/*
2984 		 * OOM victims can try even harder than the normal reserve
2985 		 * users on the grounds that it's definitely going to be in
2986 		 * the exit path shortly and free memory. Any allocation it
2987 		 * makes during the free path will be small and short-lived.
2988 		 */
2989 		if (alloc_flags & ALLOC_OOM)
2990 			min -= min / 2;
2991 	}
2992 
2993 	/*
2994 	 * Check watermarks for an order-0 allocation request. If these
2995 	 * are not met, then a high-order request also cannot go ahead
2996 	 * even if a suitable page happened to be free.
2997 	 */
2998 	if (free_pages <= min + z->lowmem_reserve[highest_zoneidx])
2999 		return false;
3000 
3001 	/* If this is an order-0 request then the watermark is fine */
3002 	if (!order)
3003 		return true;
3004 
3005 	/* For a high-order request, check at least one suitable page is free */
3006 	for (o = order; o <= MAX_ORDER; o++) {
3007 		struct free_area *area = &z->free_area[o];
3008 		int mt;
3009 
3010 		if (!area->nr_free)
3011 			continue;
3012 
3013 		for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
3014 			if (!free_area_empty(area, mt))
3015 				return true;
3016 		}
3017 
3018 #ifdef CONFIG_CMA
3019 		if ((alloc_flags & ALLOC_CMA) &&
3020 		    !free_area_empty(area, MIGRATE_CMA)) {
3021 			return true;
3022 		}
3023 #endif
3024 		if ((alloc_flags & (ALLOC_HIGHATOMIC|ALLOC_OOM)) &&
3025 		    !free_area_empty(area, MIGRATE_HIGHATOMIC)) {
3026 			return true;
3027 		}
3028 	}
3029 	return false;
3030 }
3031 
3032 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3033 		      int highest_zoneidx, unsigned int alloc_flags)
3034 {
3035 	return __zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
3036 					zone_page_state(z, NR_FREE_PAGES));
3037 }
3038 
3039 static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
3040 				unsigned long mark, int highest_zoneidx,
3041 				unsigned int alloc_flags, gfp_t gfp_mask)
3042 {
3043 	long free_pages;
3044 
3045 	free_pages = zone_page_state(z, NR_FREE_PAGES);
3046 
3047 	/*
3048 	 * Fast check for order-0 only. If this fails then the reserves
3049 	 * need to be calculated.
3050 	 */
3051 	if (!order) {
3052 		long usable_free;
3053 		long reserved;
3054 
3055 		usable_free = free_pages;
3056 		reserved = __zone_watermark_unusable_free(z, 0, alloc_flags);
3057 
3058 		/* reserved may over estimate high-atomic reserves. */
3059 		usable_free -= min(usable_free, reserved);
3060 		if (usable_free > mark + z->lowmem_reserve[highest_zoneidx])
3061 			return true;
3062 	}
3063 
3064 	if (__zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
3065 					free_pages))
3066 		return true;
3067 
3068 	/*
3069 	 * Ignore watermark boosting for __GFP_HIGH order-0 allocations
3070 	 * when checking the min watermark. The min watermark is the
3071 	 * point where boosting is ignored so that kswapd is woken up
3072 	 * when below the low watermark.
3073 	 */
3074 	if (unlikely(!order && (alloc_flags & ALLOC_MIN_RESERVE) && z->watermark_boost
3075 		&& ((alloc_flags & ALLOC_WMARK_MASK) == WMARK_MIN))) {
3076 		mark = z->_watermark[WMARK_MIN];
3077 		return __zone_watermark_ok(z, order, mark, highest_zoneidx,
3078 					alloc_flags, free_pages);
3079 	}
3080 
3081 	return false;
3082 }
3083 
3084 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
3085 			unsigned long mark, int highest_zoneidx)
3086 {
3087 	long free_pages = zone_page_state(z, NR_FREE_PAGES);
3088 
3089 	if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
3090 		free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
3091 
3092 	return __zone_watermark_ok(z, order, mark, highest_zoneidx, 0,
3093 								free_pages);
3094 }
3095 
3096 #ifdef CONFIG_NUMA
3097 int __read_mostly node_reclaim_distance = RECLAIM_DISTANCE;
3098 
3099 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3100 {
3101 	return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
3102 				node_reclaim_distance;
3103 }
3104 #else	/* CONFIG_NUMA */
3105 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3106 {
3107 	return true;
3108 }
3109 #endif	/* CONFIG_NUMA */
3110 
3111 /*
3112  * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid
3113  * fragmentation is subtle. If the preferred zone was HIGHMEM then
3114  * premature use of a lower zone may cause lowmem pressure problems that
3115  * are worse than fragmentation. If the next zone is ZONE_DMA then it is
3116  * probably too small. It only makes sense to spread allocations to avoid
3117  * fragmentation between the Normal and DMA32 zones.
3118  */
3119 static inline unsigned int
3120 alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask)
3121 {
3122 	unsigned int alloc_flags;
3123 
3124 	/*
3125 	 * __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
3126 	 * to save a branch.
3127 	 */
3128 	alloc_flags = (__force int) (gfp_mask & __GFP_KSWAPD_RECLAIM);
3129 
3130 #ifdef CONFIG_ZONE_DMA32
3131 	if (!zone)
3132 		return alloc_flags;
3133 
3134 	if (zone_idx(zone) != ZONE_NORMAL)
3135 		return alloc_flags;
3136 
3137 	/*
3138 	 * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and
3139 	 * the pointer is within zone->zone_pgdat->node_zones[]. Also assume
3140 	 * on UMA that if Normal is populated then so is DMA32.
3141 	 */
3142 	BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1);
3143 	if (nr_online_nodes > 1 && !populated_zone(--zone))
3144 		return alloc_flags;
3145 
3146 	alloc_flags |= ALLOC_NOFRAGMENT;
3147 #endif /* CONFIG_ZONE_DMA32 */
3148 	return alloc_flags;
3149 }
3150 
3151 /* Must be called after current_gfp_context() which can change gfp_mask */
3152 static inline unsigned int gfp_to_alloc_flags_cma(gfp_t gfp_mask,
3153 						  unsigned int alloc_flags)
3154 {
3155 #ifdef CONFIG_CMA
3156 	if (gfp_migratetype(gfp_mask) == MIGRATE_MOVABLE)
3157 		alloc_flags |= ALLOC_CMA;
3158 #endif
3159 	return alloc_flags;
3160 }
3161 
3162 /*
3163  * get_page_from_freelist goes through the zonelist trying to allocate
3164  * a page.
3165  */
3166 static struct page *
3167 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
3168 						const struct alloc_context *ac)
3169 {
3170 	struct zoneref *z;
3171 	struct zone *zone;
3172 	struct pglist_data *last_pgdat = NULL;
3173 	bool last_pgdat_dirty_ok = false;
3174 	bool no_fallback;
3175 
3176 retry:
3177 	/*
3178 	 * Scan zonelist, looking for a zone with enough free.
3179 	 * See also cpuset_node_allowed() comment in kernel/cgroup/cpuset.c.
3180 	 */
3181 	no_fallback = alloc_flags & ALLOC_NOFRAGMENT;
3182 	z = ac->preferred_zoneref;
3183 	for_next_zone_zonelist_nodemask(zone, z, ac->highest_zoneidx,
3184 					ac->nodemask) {
3185 		struct page *page;
3186 		unsigned long mark;
3187 
3188 		if (cpusets_enabled() &&
3189 			(alloc_flags & ALLOC_CPUSET) &&
3190 			!__cpuset_zone_allowed(zone, gfp_mask))
3191 				continue;
3192 		/*
3193 		 * When allocating a page cache page for writing, we
3194 		 * want to get it from a node that is within its dirty
3195 		 * limit, such that no single node holds more than its
3196 		 * proportional share of globally allowed dirty pages.
3197 		 * The dirty limits take into account the node's
3198 		 * lowmem reserves and high watermark so that kswapd
3199 		 * should be able to balance it without having to
3200 		 * write pages from its LRU list.
3201 		 *
3202 		 * XXX: For now, allow allocations to potentially
3203 		 * exceed the per-node dirty limit in the slowpath
3204 		 * (spread_dirty_pages unset) before going into reclaim,
3205 		 * which is important when on a NUMA setup the allowed
3206 		 * nodes are together not big enough to reach the
3207 		 * global limit.  The proper fix for these situations
3208 		 * will require awareness of nodes in the
3209 		 * dirty-throttling and the flusher threads.
3210 		 */
3211 		if (ac->spread_dirty_pages) {
3212 			if (last_pgdat != zone->zone_pgdat) {
3213 				last_pgdat = zone->zone_pgdat;
3214 				last_pgdat_dirty_ok = node_dirty_ok(zone->zone_pgdat);
3215 			}
3216 
3217 			if (!last_pgdat_dirty_ok)
3218 				continue;
3219 		}
3220 
3221 		if (no_fallback && nr_online_nodes > 1 &&
3222 		    zone != ac->preferred_zoneref->zone) {
3223 			int local_nid;
3224 
3225 			/*
3226 			 * If moving to a remote node, retry but allow
3227 			 * fragmenting fallbacks. Locality is more important
3228 			 * than fragmentation avoidance.
3229 			 */
3230 			local_nid = zone_to_nid(ac->preferred_zoneref->zone);
3231 			if (zone_to_nid(zone) != local_nid) {
3232 				alloc_flags &= ~ALLOC_NOFRAGMENT;
3233 				goto retry;
3234 			}
3235 		}
3236 
3237 		/*
3238 		 * Detect whether the number of free pages is below high
3239 		 * watermark.  If so, we will decrease pcp->high and free
3240 		 * PCP pages in free path to reduce the possibility of
3241 		 * premature page reclaiming.  Detection is done here to
3242 		 * avoid to do that in hotter free path.
3243 		 */
3244 		if (test_bit(ZONE_BELOW_HIGH, &zone->flags))
3245 			goto check_alloc_wmark;
3246 
3247 		mark = high_wmark_pages(zone);
3248 		if (zone_watermark_fast(zone, order, mark,
3249 					ac->highest_zoneidx, alloc_flags,
3250 					gfp_mask))
3251 			goto try_this_zone;
3252 		else
3253 			set_bit(ZONE_BELOW_HIGH, &zone->flags);
3254 
3255 check_alloc_wmark:
3256 		mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
3257 		if (!zone_watermark_fast(zone, order, mark,
3258 				       ac->highest_zoneidx, alloc_flags,
3259 				       gfp_mask)) {
3260 			int ret;
3261 
3262 			if (has_unaccepted_memory()) {
3263 				if (try_to_accept_memory(zone, order))
3264 					goto try_this_zone;
3265 			}
3266 
3267 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3268 			/*
3269 			 * Watermark failed for this zone, but see if we can
3270 			 * grow this zone if it contains deferred pages.
3271 			 */
3272 			if (deferred_pages_enabled()) {
3273 				if (_deferred_grow_zone(zone, order))
3274 					goto try_this_zone;
3275 			}
3276 #endif
3277 			/* Checked here to keep the fast path fast */
3278 			BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
3279 			if (alloc_flags & ALLOC_NO_WATERMARKS)
3280 				goto try_this_zone;
3281 
3282 			if (!node_reclaim_enabled() ||
3283 			    !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
3284 				continue;
3285 
3286 			ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
3287 			switch (ret) {
3288 			case NODE_RECLAIM_NOSCAN:
3289 				/* did not scan */
3290 				continue;
3291 			case NODE_RECLAIM_FULL:
3292 				/* scanned but unreclaimable */
3293 				continue;
3294 			default:
3295 				/* did we reclaim enough */
3296 				if (zone_watermark_ok(zone, order, mark,
3297 					ac->highest_zoneidx, alloc_flags))
3298 					goto try_this_zone;
3299 
3300 				continue;
3301 			}
3302 		}
3303 
3304 try_this_zone:
3305 		page = rmqueue(ac->preferred_zoneref->zone, zone, order,
3306 				gfp_mask, alloc_flags, ac->migratetype);
3307 		if (page) {
3308 			prep_new_page(page, order, gfp_mask, alloc_flags);
3309 
3310 			/*
3311 			 * If this is a high-order atomic allocation then check
3312 			 * if the pageblock should be reserved for the future
3313 			 */
3314 			if (unlikely(alloc_flags & ALLOC_HIGHATOMIC))
3315 				reserve_highatomic_pageblock(page, zone);
3316 
3317 			return page;
3318 		} else {
3319 			if (has_unaccepted_memory()) {
3320 				if (try_to_accept_memory(zone, order))
3321 					goto try_this_zone;
3322 			}
3323 
3324 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3325 			/* Try again if zone has deferred pages */
3326 			if (deferred_pages_enabled()) {
3327 				if (_deferred_grow_zone(zone, order))
3328 					goto try_this_zone;
3329 			}
3330 #endif
3331 		}
3332 	}
3333 
3334 	/*
3335 	 * It's possible on a UMA machine to get through all zones that are
3336 	 * fragmented. If avoiding fragmentation, reset and try again.
3337 	 */
3338 	if (no_fallback) {
3339 		alloc_flags &= ~ALLOC_NOFRAGMENT;
3340 		goto retry;
3341 	}
3342 
3343 	return NULL;
3344 }
3345 
3346 static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
3347 {
3348 	unsigned int filter = SHOW_MEM_FILTER_NODES;
3349 
3350 	/*
3351 	 * This documents exceptions given to allocations in certain
3352 	 * contexts that are allowed to allocate outside current's set
3353 	 * of allowed nodes.
3354 	 */
3355 	if (!(gfp_mask & __GFP_NOMEMALLOC))
3356 		if (tsk_is_oom_victim(current) ||
3357 		    (current->flags & (PF_MEMALLOC | PF_EXITING)))
3358 			filter &= ~SHOW_MEM_FILTER_NODES;
3359 	if (!in_task() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
3360 		filter &= ~SHOW_MEM_FILTER_NODES;
3361 
3362 	__show_mem(filter, nodemask, gfp_zone(gfp_mask));
3363 }
3364 
3365 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
3366 {
3367 	struct va_format vaf;
3368 	va_list args;
3369 	static DEFINE_RATELIMIT_STATE(nopage_rs, 10*HZ, 1);
3370 
3371 	if ((gfp_mask & __GFP_NOWARN) ||
3372 	     !__ratelimit(&nopage_rs) ||
3373 	     ((gfp_mask & __GFP_DMA) && !has_managed_dma()))
3374 		return;
3375 
3376 	va_start(args, fmt);
3377 	vaf.fmt = fmt;
3378 	vaf.va = &args;
3379 	pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl",
3380 			current->comm, &vaf, gfp_mask, &gfp_mask,
3381 			nodemask_pr_args(nodemask));
3382 	va_end(args);
3383 
3384 	cpuset_print_current_mems_allowed();
3385 	pr_cont("\n");
3386 	dump_stack();
3387 	warn_alloc_show_mem(gfp_mask, nodemask);
3388 }
3389 
3390 static inline struct page *
3391 __alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
3392 			      unsigned int alloc_flags,
3393 			      const struct alloc_context *ac)
3394 {
3395 	struct page *page;
3396 
3397 	page = get_page_from_freelist(gfp_mask, order,
3398 			alloc_flags|ALLOC_CPUSET, ac);
3399 	/*
3400 	 * fallback to ignore cpuset restriction if our nodes
3401 	 * are depleted
3402 	 */
3403 	if (!page)
3404 		page = get_page_from_freelist(gfp_mask, order,
3405 				alloc_flags, ac);
3406 
3407 	return page;
3408 }
3409 
3410 static inline struct page *
3411 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
3412 	const struct alloc_context *ac, unsigned long *did_some_progress)
3413 {
3414 	struct oom_control oc = {
3415 		.zonelist = ac->zonelist,
3416 		.nodemask = ac->nodemask,
3417 		.memcg = NULL,
3418 		.gfp_mask = gfp_mask,
3419 		.order = order,
3420 	};
3421 	struct page *page;
3422 
3423 	*did_some_progress = 0;
3424 
3425 	/*
3426 	 * Acquire the oom lock.  If that fails, somebody else is
3427 	 * making progress for us.
3428 	 */
3429 	if (!mutex_trylock(&oom_lock)) {
3430 		*did_some_progress = 1;
3431 		schedule_timeout_uninterruptible(1);
3432 		return NULL;
3433 	}
3434 
3435 	/*
3436 	 * Go through the zonelist yet one more time, keep very high watermark
3437 	 * here, this is only to catch a parallel oom killing, we must fail if
3438 	 * we're still under heavy pressure. But make sure that this reclaim
3439 	 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
3440 	 * allocation which will never fail due to oom_lock already held.
3441 	 */
3442 	page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) &
3443 				      ~__GFP_DIRECT_RECLAIM, order,
3444 				      ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
3445 	if (page)
3446 		goto out;
3447 
3448 	/* Coredumps can quickly deplete all memory reserves */
3449 	if (current->flags & PF_DUMPCORE)
3450 		goto out;
3451 	/* The OOM killer will not help higher order allocs */
3452 	if (order > PAGE_ALLOC_COSTLY_ORDER)
3453 		goto out;
3454 	/*
3455 	 * We have already exhausted all our reclaim opportunities without any
3456 	 * success so it is time to admit defeat. We will skip the OOM killer
3457 	 * because it is very likely that the caller has a more reasonable
3458 	 * fallback than shooting a random task.
3459 	 *
3460 	 * The OOM killer may not free memory on a specific node.
3461 	 */
3462 	if (gfp_mask & (__GFP_RETRY_MAYFAIL | __GFP_THISNODE))
3463 		goto out;
3464 	/* The OOM killer does not needlessly kill tasks for lowmem */
3465 	if (ac->highest_zoneidx < ZONE_NORMAL)
3466 		goto out;
3467 	if (pm_suspended_storage())
3468 		goto out;
3469 	/*
3470 	 * XXX: GFP_NOFS allocations should rather fail than rely on
3471 	 * other request to make a forward progress.
3472 	 * We are in an unfortunate situation where out_of_memory cannot
3473 	 * do much for this context but let's try it to at least get
3474 	 * access to memory reserved if the current task is killed (see
3475 	 * out_of_memory). Once filesystems are ready to handle allocation
3476 	 * failures more gracefully we should just bail out here.
3477 	 */
3478 
3479 	/* Exhausted what can be done so it's blame time */
3480 	if (out_of_memory(&oc) ||
3481 	    WARN_ON_ONCE_GFP(gfp_mask & __GFP_NOFAIL, gfp_mask)) {
3482 		*did_some_progress = 1;
3483 
3484 		/*
3485 		 * Help non-failing allocations by giving them access to memory
3486 		 * reserves
3487 		 */
3488 		if (gfp_mask & __GFP_NOFAIL)
3489 			page = __alloc_pages_cpuset_fallback(gfp_mask, order,
3490 					ALLOC_NO_WATERMARKS, ac);
3491 	}
3492 out:
3493 	mutex_unlock(&oom_lock);
3494 	return page;
3495 }
3496 
3497 /*
3498  * Maximum number of compaction retries with a progress before OOM
3499  * killer is consider as the only way to move forward.
3500  */
3501 #define MAX_COMPACT_RETRIES 16
3502 
3503 #ifdef CONFIG_COMPACTION
3504 /* Try memory compaction for high-order allocations before reclaim */
3505 static struct page *
3506 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3507 		unsigned int alloc_flags, const struct alloc_context *ac,
3508 		enum compact_priority prio, enum compact_result *compact_result)
3509 {
3510 	struct page *page = NULL;
3511 	unsigned long pflags;
3512 	unsigned int noreclaim_flag;
3513 
3514 	if (!order)
3515 		return NULL;
3516 
3517 	psi_memstall_enter(&pflags);
3518 	delayacct_compact_start();
3519 	noreclaim_flag = memalloc_noreclaim_save();
3520 
3521 	*compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
3522 								prio, &page);
3523 
3524 	memalloc_noreclaim_restore(noreclaim_flag);
3525 	psi_memstall_leave(&pflags);
3526 	delayacct_compact_end();
3527 
3528 	if (*compact_result == COMPACT_SKIPPED)
3529 		return NULL;
3530 	/*
3531 	 * At least in one zone compaction wasn't deferred or skipped, so let's
3532 	 * count a compaction stall
3533 	 */
3534 	count_vm_event(COMPACTSTALL);
3535 
3536 	/* Prep a captured page if available */
3537 	if (page)
3538 		prep_new_page(page, order, gfp_mask, alloc_flags);
3539 
3540 	/* Try get a page from the freelist if available */
3541 	if (!page)
3542 		page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3543 
3544 	if (page) {
3545 		struct zone *zone = page_zone(page);
3546 
3547 		zone->compact_blockskip_flush = false;
3548 		compaction_defer_reset(zone, order, true);
3549 		count_vm_event(COMPACTSUCCESS);
3550 		return page;
3551 	}
3552 
3553 	/*
3554 	 * It's bad if compaction run occurs and fails. The most likely reason
3555 	 * is that pages exist, but not enough to satisfy watermarks.
3556 	 */
3557 	count_vm_event(COMPACTFAIL);
3558 
3559 	cond_resched();
3560 
3561 	return NULL;
3562 }
3563 
3564 static inline bool
3565 should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
3566 		     enum compact_result compact_result,
3567 		     enum compact_priority *compact_priority,
3568 		     int *compaction_retries)
3569 {
3570 	int max_retries = MAX_COMPACT_RETRIES;
3571 	int min_priority;
3572 	bool ret = false;
3573 	int retries = *compaction_retries;
3574 	enum compact_priority priority = *compact_priority;
3575 
3576 	if (!order)
3577 		return false;
3578 
3579 	if (fatal_signal_pending(current))
3580 		return false;
3581 
3582 	/*
3583 	 * Compaction was skipped due to a lack of free order-0
3584 	 * migration targets. Continue if reclaim can help.
3585 	 */
3586 	if (compact_result == COMPACT_SKIPPED) {
3587 		ret = compaction_zonelist_suitable(ac, order, alloc_flags);
3588 		goto out;
3589 	}
3590 
3591 	/*
3592 	 * Compaction managed to coalesce some page blocks, but the
3593 	 * allocation failed presumably due to a race. Retry some.
3594 	 */
3595 	if (compact_result == COMPACT_SUCCESS) {
3596 		/*
3597 		 * !costly requests are much more important than
3598 		 * __GFP_RETRY_MAYFAIL costly ones because they are de
3599 		 * facto nofail and invoke OOM killer to move on while
3600 		 * costly can fail and users are ready to cope with
3601 		 * that. 1/4 retries is rather arbitrary but we would
3602 		 * need much more detailed feedback from compaction to
3603 		 * make a better decision.
3604 		 */
3605 		if (order > PAGE_ALLOC_COSTLY_ORDER)
3606 			max_retries /= 4;
3607 
3608 		if (++(*compaction_retries) <= max_retries) {
3609 			ret = true;
3610 			goto out;
3611 		}
3612 	}
3613 
3614 	/*
3615 	 * Compaction failed. Retry with increasing priority.
3616 	 */
3617 	min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
3618 			MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
3619 
3620 	if (*compact_priority > min_priority) {
3621 		(*compact_priority)--;
3622 		*compaction_retries = 0;
3623 		ret = true;
3624 	}
3625 out:
3626 	trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
3627 	return ret;
3628 }
3629 #else
3630 static inline struct page *
3631 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3632 		unsigned int alloc_flags, const struct alloc_context *ac,
3633 		enum compact_priority prio, enum compact_result *compact_result)
3634 {
3635 	*compact_result = COMPACT_SKIPPED;
3636 	return NULL;
3637 }
3638 
3639 static inline bool
3640 should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
3641 		     enum compact_result compact_result,
3642 		     enum compact_priority *compact_priority,
3643 		     int *compaction_retries)
3644 {
3645 	struct zone *zone;
3646 	struct zoneref *z;
3647 
3648 	if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
3649 		return false;
3650 
3651 	/*
3652 	 * There are setups with compaction disabled which would prefer to loop
3653 	 * inside the allocator rather than hit the oom killer prematurely.
3654 	 * Let's give them a good hope and keep retrying while the order-0
3655 	 * watermarks are OK.
3656 	 */
3657 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
3658 				ac->highest_zoneidx, ac->nodemask) {
3659 		if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
3660 					ac->highest_zoneidx, alloc_flags))
3661 			return true;
3662 	}
3663 	return false;
3664 }
3665 #endif /* CONFIG_COMPACTION */
3666 
3667 #ifdef CONFIG_LOCKDEP
3668 static struct lockdep_map __fs_reclaim_map =
3669 	STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map);
3670 
3671 static bool __need_reclaim(gfp_t gfp_mask)
3672 {
3673 	/* no reclaim without waiting on it */
3674 	if (!(gfp_mask & __GFP_DIRECT_RECLAIM))
3675 		return false;
3676 
3677 	/* this guy won't enter reclaim */
3678 	if (current->flags & PF_MEMALLOC)
3679 		return false;
3680 
3681 	if (gfp_mask & __GFP_NOLOCKDEP)
3682 		return false;
3683 
3684 	return true;
3685 }
3686 
3687 void __fs_reclaim_acquire(unsigned long ip)
3688 {
3689 	lock_acquire_exclusive(&__fs_reclaim_map, 0, 0, NULL, ip);
3690 }
3691 
3692 void __fs_reclaim_release(unsigned long ip)
3693 {
3694 	lock_release(&__fs_reclaim_map, ip);
3695 }
3696 
3697 void fs_reclaim_acquire(gfp_t gfp_mask)
3698 {
3699 	gfp_mask = current_gfp_context(gfp_mask);
3700 
3701 	if (__need_reclaim(gfp_mask)) {
3702 		if (gfp_mask & __GFP_FS)
3703 			__fs_reclaim_acquire(_RET_IP_);
3704 
3705 #ifdef CONFIG_MMU_NOTIFIER
3706 		lock_map_acquire(&__mmu_notifier_invalidate_range_start_map);
3707 		lock_map_release(&__mmu_notifier_invalidate_range_start_map);
3708 #endif
3709 
3710 	}
3711 }
3712 EXPORT_SYMBOL_GPL(fs_reclaim_acquire);
3713 
3714 void fs_reclaim_release(gfp_t gfp_mask)
3715 {
3716 	gfp_mask = current_gfp_context(gfp_mask);
3717 
3718 	if (__need_reclaim(gfp_mask)) {
3719 		if (gfp_mask & __GFP_FS)
3720 			__fs_reclaim_release(_RET_IP_);
3721 	}
3722 }
3723 EXPORT_SYMBOL_GPL(fs_reclaim_release);
3724 #endif
3725 
3726 /*
3727  * Zonelists may change due to hotplug during allocation. Detect when zonelists
3728  * have been rebuilt so allocation retries. Reader side does not lock and
3729  * retries the allocation if zonelist changes. Writer side is protected by the
3730  * embedded spin_lock.
3731  */
3732 static DEFINE_SEQLOCK(zonelist_update_seq);
3733 
3734 static unsigned int zonelist_iter_begin(void)
3735 {
3736 	if (IS_ENABLED(CONFIG_MEMORY_HOTREMOVE))
3737 		return read_seqbegin(&zonelist_update_seq);
3738 
3739 	return 0;
3740 }
3741 
3742 static unsigned int check_retry_zonelist(unsigned int seq)
3743 {
3744 	if (IS_ENABLED(CONFIG_MEMORY_HOTREMOVE))
3745 		return read_seqretry(&zonelist_update_seq, seq);
3746 
3747 	return seq;
3748 }
3749 
3750 /* Perform direct synchronous page reclaim */
3751 static unsigned long
3752 __perform_reclaim(gfp_t gfp_mask, unsigned int order,
3753 					const struct alloc_context *ac)
3754 {
3755 	unsigned int noreclaim_flag;
3756 	unsigned long progress;
3757 
3758 	cond_resched();
3759 
3760 	/* We now go into synchronous reclaim */
3761 	cpuset_memory_pressure_bump();
3762 	fs_reclaim_acquire(gfp_mask);
3763 	noreclaim_flag = memalloc_noreclaim_save();
3764 
3765 	progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
3766 								ac->nodemask);
3767 
3768 	memalloc_noreclaim_restore(noreclaim_flag);
3769 	fs_reclaim_release(gfp_mask);
3770 
3771 	cond_resched();
3772 
3773 	return progress;
3774 }
3775 
3776 /* The really slow allocator path where we enter direct reclaim */
3777 static inline struct page *
3778 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
3779 		unsigned int alloc_flags, const struct alloc_context *ac,
3780 		unsigned long *did_some_progress)
3781 {
3782 	struct page *page = NULL;
3783 	unsigned long pflags;
3784 	bool drained = false;
3785 
3786 	psi_memstall_enter(&pflags);
3787 	*did_some_progress = __perform_reclaim(gfp_mask, order, ac);
3788 	if (unlikely(!(*did_some_progress)))
3789 		goto out;
3790 
3791 retry:
3792 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3793 
3794 	/*
3795 	 * If an allocation failed after direct reclaim, it could be because
3796 	 * pages are pinned on the per-cpu lists or in high alloc reserves.
3797 	 * Shrink them and try again
3798 	 */
3799 	if (!page && !drained) {
3800 		unreserve_highatomic_pageblock(ac, false);
3801 		drain_all_pages(NULL);
3802 		drained = true;
3803 		goto retry;
3804 	}
3805 out:
3806 	psi_memstall_leave(&pflags);
3807 
3808 	return page;
3809 }
3810 
3811 static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask,
3812 			     const struct alloc_context *ac)
3813 {
3814 	struct zoneref *z;
3815 	struct zone *zone;
3816 	pg_data_t *last_pgdat = NULL;
3817 	enum zone_type highest_zoneidx = ac->highest_zoneidx;
3818 
3819 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, highest_zoneidx,
3820 					ac->nodemask) {
3821 		if (!managed_zone(zone))
3822 			continue;
3823 		if (last_pgdat != zone->zone_pgdat) {
3824 			wakeup_kswapd(zone, gfp_mask, order, highest_zoneidx);
3825 			last_pgdat = zone->zone_pgdat;
3826 		}
3827 	}
3828 }
3829 
3830 static inline unsigned int
3831 gfp_to_alloc_flags(gfp_t gfp_mask, unsigned int order)
3832 {
3833 	unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
3834 
3835 	/*
3836 	 * __GFP_HIGH is assumed to be the same as ALLOC_MIN_RESERVE
3837 	 * and __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
3838 	 * to save two branches.
3839 	 */
3840 	BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_MIN_RESERVE);
3841 	BUILD_BUG_ON(__GFP_KSWAPD_RECLAIM != (__force gfp_t) ALLOC_KSWAPD);
3842 
3843 	/*
3844 	 * The caller may dip into page reserves a bit more if the caller
3845 	 * cannot run direct reclaim, or if the caller has realtime scheduling
3846 	 * policy or is asking for __GFP_HIGH memory.  GFP_ATOMIC requests will
3847 	 * set both ALLOC_NON_BLOCK and ALLOC_MIN_RESERVE(__GFP_HIGH).
3848 	 */
3849 	alloc_flags |= (__force int)
3850 		(gfp_mask & (__GFP_HIGH | __GFP_KSWAPD_RECLAIM));
3851 
3852 	if (!(gfp_mask & __GFP_DIRECT_RECLAIM)) {
3853 		/*
3854 		 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
3855 		 * if it can't schedule.
3856 		 */
3857 		if (!(gfp_mask & __GFP_NOMEMALLOC)) {
3858 			alloc_flags |= ALLOC_NON_BLOCK;
3859 
3860 			if (order > 0)
3861 				alloc_flags |= ALLOC_HIGHATOMIC;
3862 		}
3863 
3864 		/*
3865 		 * Ignore cpuset mems for non-blocking __GFP_HIGH (probably
3866 		 * GFP_ATOMIC) rather than fail, see the comment for
3867 		 * cpuset_node_allowed().
3868 		 */
3869 		if (alloc_flags & ALLOC_MIN_RESERVE)
3870 			alloc_flags &= ~ALLOC_CPUSET;
3871 	} else if (unlikely(rt_task(current)) && in_task())
3872 		alloc_flags |= ALLOC_MIN_RESERVE;
3873 
3874 	alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, alloc_flags);
3875 
3876 	return alloc_flags;
3877 }
3878 
3879 static bool oom_reserves_allowed(struct task_struct *tsk)
3880 {
3881 	if (!tsk_is_oom_victim(tsk))
3882 		return false;
3883 
3884 	/*
3885 	 * !MMU doesn't have oom reaper so give access to memory reserves
3886 	 * only to the thread with TIF_MEMDIE set
3887 	 */
3888 	if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE))
3889 		return false;
3890 
3891 	return true;
3892 }
3893 
3894 /*
3895  * Distinguish requests which really need access to full memory
3896  * reserves from oom victims which can live with a portion of it
3897  */
3898 static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask)
3899 {
3900 	if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
3901 		return 0;
3902 	if (gfp_mask & __GFP_MEMALLOC)
3903 		return ALLOC_NO_WATERMARKS;
3904 	if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
3905 		return ALLOC_NO_WATERMARKS;
3906 	if (!in_interrupt()) {
3907 		if (current->flags & PF_MEMALLOC)
3908 			return ALLOC_NO_WATERMARKS;
3909 		else if (oom_reserves_allowed(current))
3910 			return ALLOC_OOM;
3911 	}
3912 
3913 	return 0;
3914 }
3915 
3916 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
3917 {
3918 	return !!__gfp_pfmemalloc_flags(gfp_mask);
3919 }
3920 
3921 /*
3922  * Checks whether it makes sense to retry the reclaim to make a forward progress
3923  * for the given allocation request.
3924  *
3925  * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
3926  * without success, or when we couldn't even meet the watermark if we
3927  * reclaimed all remaining pages on the LRU lists.
3928  *
3929  * Returns true if a retry is viable or false to enter the oom path.
3930  */
3931 static inline bool
3932 should_reclaim_retry(gfp_t gfp_mask, unsigned order,
3933 		     struct alloc_context *ac, int alloc_flags,
3934 		     bool did_some_progress, int *no_progress_loops)
3935 {
3936 	struct zone *zone;
3937 	struct zoneref *z;
3938 	bool ret = false;
3939 
3940 	/*
3941 	 * Costly allocations might have made a progress but this doesn't mean
3942 	 * their order will become available due to high fragmentation so
3943 	 * always increment the no progress counter for them
3944 	 */
3945 	if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
3946 		*no_progress_loops = 0;
3947 	else
3948 		(*no_progress_loops)++;
3949 
3950 	/*
3951 	 * Make sure we converge to OOM if we cannot make any progress
3952 	 * several times in the row.
3953 	 */
3954 	if (*no_progress_loops > MAX_RECLAIM_RETRIES) {
3955 		/* Before OOM, exhaust highatomic_reserve */
3956 		return unreserve_highatomic_pageblock(ac, true);
3957 	}
3958 
3959 	/*
3960 	 * Keep reclaiming pages while there is a chance this will lead
3961 	 * somewhere.  If none of the target zones can satisfy our allocation
3962 	 * request even if all reclaimable pages are considered then we are
3963 	 * screwed and have to go OOM.
3964 	 */
3965 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
3966 				ac->highest_zoneidx, ac->nodemask) {
3967 		unsigned long available;
3968 		unsigned long reclaimable;
3969 		unsigned long min_wmark = min_wmark_pages(zone);
3970 		bool wmark;
3971 
3972 		available = reclaimable = zone_reclaimable_pages(zone);
3973 		available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
3974 
3975 		/*
3976 		 * Would the allocation succeed if we reclaimed all
3977 		 * reclaimable pages?
3978 		 */
3979 		wmark = __zone_watermark_ok(zone, order, min_wmark,
3980 				ac->highest_zoneidx, alloc_flags, available);
3981 		trace_reclaim_retry_zone(z, order, reclaimable,
3982 				available, min_wmark, *no_progress_loops, wmark);
3983 		if (wmark) {
3984 			ret = true;
3985 			break;
3986 		}
3987 	}
3988 
3989 	/*
3990 	 * Memory allocation/reclaim might be called from a WQ context and the
3991 	 * current implementation of the WQ concurrency control doesn't
3992 	 * recognize that a particular WQ is congested if the worker thread is
3993 	 * looping without ever sleeping. Therefore we have to do a short sleep
3994 	 * here rather than calling cond_resched().
3995 	 */
3996 	if (current->flags & PF_WQ_WORKER)
3997 		schedule_timeout_uninterruptible(1);
3998 	else
3999 		cond_resched();
4000 	return ret;
4001 }
4002 
4003 static inline bool
4004 check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
4005 {
4006 	/*
4007 	 * It's possible that cpuset's mems_allowed and the nodemask from
4008 	 * mempolicy don't intersect. This should be normally dealt with by
4009 	 * policy_nodemask(), but it's possible to race with cpuset update in
4010 	 * such a way the check therein was true, and then it became false
4011 	 * before we got our cpuset_mems_cookie here.
4012 	 * This assumes that for all allocations, ac->nodemask can come only
4013 	 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
4014 	 * when it does not intersect with the cpuset restrictions) or the
4015 	 * caller can deal with a violated nodemask.
4016 	 */
4017 	if (cpusets_enabled() && ac->nodemask &&
4018 			!cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
4019 		ac->nodemask = NULL;
4020 		return true;
4021 	}
4022 
4023 	/*
4024 	 * When updating a task's mems_allowed or mempolicy nodemask, it is
4025 	 * possible to race with parallel threads in such a way that our
4026 	 * allocation can fail while the mask is being updated. If we are about
4027 	 * to fail, check if the cpuset changed during allocation and if so,
4028 	 * retry.
4029 	 */
4030 	if (read_mems_allowed_retry(cpuset_mems_cookie))
4031 		return true;
4032 
4033 	return false;
4034 }
4035 
4036 static inline struct page *
4037 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
4038 						struct alloc_context *ac)
4039 {
4040 	bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
4041 	const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
4042 	struct page *page = NULL;
4043 	unsigned int alloc_flags;
4044 	unsigned long did_some_progress;
4045 	enum compact_priority compact_priority;
4046 	enum compact_result compact_result;
4047 	int compaction_retries;
4048 	int no_progress_loops;
4049 	unsigned int cpuset_mems_cookie;
4050 	unsigned int zonelist_iter_cookie;
4051 	int reserve_flags;
4052 
4053 restart:
4054 	compaction_retries = 0;
4055 	no_progress_loops = 0;
4056 	compact_priority = DEF_COMPACT_PRIORITY;
4057 	cpuset_mems_cookie = read_mems_allowed_begin();
4058 	zonelist_iter_cookie = zonelist_iter_begin();
4059 
4060 	/*
4061 	 * The fast path uses conservative alloc_flags to succeed only until
4062 	 * kswapd needs to be woken up, and to avoid the cost of setting up
4063 	 * alloc_flags precisely. So we do that now.
4064 	 */
4065 	alloc_flags = gfp_to_alloc_flags(gfp_mask, order);
4066 
4067 	/*
4068 	 * We need to recalculate the starting point for the zonelist iterator
4069 	 * because we might have used different nodemask in the fast path, or
4070 	 * there was a cpuset modification and we are retrying - otherwise we
4071 	 * could end up iterating over non-eligible zones endlessly.
4072 	 */
4073 	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4074 					ac->highest_zoneidx, ac->nodemask);
4075 	if (!ac->preferred_zoneref->zone)
4076 		goto nopage;
4077 
4078 	/*
4079 	 * Check for insane configurations where the cpuset doesn't contain
4080 	 * any suitable zone to satisfy the request - e.g. non-movable
4081 	 * GFP_HIGHUSER allocations from MOVABLE nodes only.
4082 	 */
4083 	if (cpusets_insane_config() && (gfp_mask & __GFP_HARDWALL)) {
4084 		struct zoneref *z = first_zones_zonelist(ac->zonelist,
4085 					ac->highest_zoneidx,
4086 					&cpuset_current_mems_allowed);
4087 		if (!z->zone)
4088 			goto nopage;
4089 	}
4090 
4091 	if (alloc_flags & ALLOC_KSWAPD)
4092 		wake_all_kswapds(order, gfp_mask, ac);
4093 
4094 	/*
4095 	 * The adjusted alloc_flags might result in immediate success, so try
4096 	 * that first
4097 	 */
4098 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4099 	if (page)
4100 		goto got_pg;
4101 
4102 	/*
4103 	 * For costly allocations, try direct compaction first, as it's likely
4104 	 * that we have enough base pages and don't need to reclaim. For non-
4105 	 * movable high-order allocations, do that as well, as compaction will
4106 	 * try prevent permanent fragmentation by migrating from blocks of the
4107 	 * same migratetype.
4108 	 * Don't try this for allocations that are allowed to ignore
4109 	 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
4110 	 */
4111 	if (can_direct_reclaim &&
4112 			(costly_order ||
4113 			   (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
4114 			&& !gfp_pfmemalloc_allowed(gfp_mask)) {
4115 		page = __alloc_pages_direct_compact(gfp_mask, order,
4116 						alloc_flags, ac,
4117 						INIT_COMPACT_PRIORITY,
4118 						&compact_result);
4119 		if (page)
4120 			goto got_pg;
4121 
4122 		/*
4123 		 * Checks for costly allocations with __GFP_NORETRY, which
4124 		 * includes some THP page fault allocations
4125 		 */
4126 		if (costly_order && (gfp_mask & __GFP_NORETRY)) {
4127 			/*
4128 			 * If allocating entire pageblock(s) and compaction
4129 			 * failed because all zones are below low watermarks
4130 			 * or is prohibited because it recently failed at this
4131 			 * order, fail immediately unless the allocator has
4132 			 * requested compaction and reclaim retry.
4133 			 *
4134 			 * Reclaim is
4135 			 *  - potentially very expensive because zones are far
4136 			 *    below their low watermarks or this is part of very
4137 			 *    bursty high order allocations,
4138 			 *  - not guaranteed to help because isolate_freepages()
4139 			 *    may not iterate over freed pages as part of its
4140 			 *    linear scan, and
4141 			 *  - unlikely to make entire pageblocks free on its
4142 			 *    own.
4143 			 */
4144 			if (compact_result == COMPACT_SKIPPED ||
4145 			    compact_result == COMPACT_DEFERRED)
4146 				goto nopage;
4147 
4148 			/*
4149 			 * Looks like reclaim/compaction is worth trying, but
4150 			 * sync compaction could be very expensive, so keep
4151 			 * using async compaction.
4152 			 */
4153 			compact_priority = INIT_COMPACT_PRIORITY;
4154 		}
4155 	}
4156 
4157 retry:
4158 	/* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
4159 	if (alloc_flags & ALLOC_KSWAPD)
4160 		wake_all_kswapds(order, gfp_mask, ac);
4161 
4162 	reserve_flags = __gfp_pfmemalloc_flags(gfp_mask);
4163 	if (reserve_flags)
4164 		alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, reserve_flags) |
4165 					  (alloc_flags & ALLOC_KSWAPD);
4166 
4167 	/*
4168 	 * Reset the nodemask and zonelist iterators if memory policies can be
4169 	 * ignored. These allocations are high priority and system rather than
4170 	 * user oriented.
4171 	 */
4172 	if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) {
4173 		ac->nodemask = NULL;
4174 		ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4175 					ac->highest_zoneidx, ac->nodemask);
4176 	}
4177 
4178 	/* Attempt with potentially adjusted zonelist and alloc_flags */
4179 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4180 	if (page)
4181 		goto got_pg;
4182 
4183 	/* Caller is not willing to reclaim, we can't balance anything */
4184 	if (!can_direct_reclaim)
4185 		goto nopage;
4186 
4187 	/* Avoid recursion of direct reclaim */
4188 	if (current->flags & PF_MEMALLOC)
4189 		goto nopage;
4190 
4191 	/* Try direct reclaim and then allocating */
4192 	page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
4193 							&did_some_progress);
4194 	if (page)
4195 		goto got_pg;
4196 
4197 	/* Try direct compaction and then allocating */
4198 	page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
4199 					compact_priority, &compact_result);
4200 	if (page)
4201 		goto got_pg;
4202 
4203 	/* Do not loop if specifically requested */
4204 	if (gfp_mask & __GFP_NORETRY)
4205 		goto nopage;
4206 
4207 	/*
4208 	 * Do not retry costly high order allocations unless they are
4209 	 * __GFP_RETRY_MAYFAIL
4210 	 */
4211 	if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL))
4212 		goto nopage;
4213 
4214 	if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
4215 				 did_some_progress > 0, &no_progress_loops))
4216 		goto retry;
4217 
4218 	/*
4219 	 * It doesn't make any sense to retry for the compaction if the order-0
4220 	 * reclaim is not able to make any progress because the current
4221 	 * implementation of the compaction depends on the sufficient amount
4222 	 * of free memory (see __compaction_suitable)
4223 	 */
4224 	if (did_some_progress > 0 &&
4225 			should_compact_retry(ac, order, alloc_flags,
4226 				compact_result, &compact_priority,
4227 				&compaction_retries))
4228 		goto retry;
4229 
4230 
4231 	/*
4232 	 * Deal with possible cpuset update races or zonelist updates to avoid
4233 	 * a unnecessary OOM kill.
4234 	 */
4235 	if (check_retry_cpuset(cpuset_mems_cookie, ac) ||
4236 	    check_retry_zonelist(zonelist_iter_cookie))
4237 		goto restart;
4238 
4239 	/* Reclaim has failed us, start killing things */
4240 	page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
4241 	if (page)
4242 		goto got_pg;
4243 
4244 	/* Avoid allocations with no watermarks from looping endlessly */
4245 	if (tsk_is_oom_victim(current) &&
4246 	    (alloc_flags & ALLOC_OOM ||
4247 	     (gfp_mask & __GFP_NOMEMALLOC)))
4248 		goto nopage;
4249 
4250 	/* Retry as long as the OOM killer is making progress */
4251 	if (did_some_progress) {
4252 		no_progress_loops = 0;
4253 		goto retry;
4254 	}
4255 
4256 nopage:
4257 	/*
4258 	 * Deal with possible cpuset update races or zonelist updates to avoid
4259 	 * a unnecessary OOM kill.
4260 	 */
4261 	if (check_retry_cpuset(cpuset_mems_cookie, ac) ||
4262 	    check_retry_zonelist(zonelist_iter_cookie))
4263 		goto restart;
4264 
4265 	/*
4266 	 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
4267 	 * we always retry
4268 	 */
4269 	if (gfp_mask & __GFP_NOFAIL) {
4270 		/*
4271 		 * All existing users of the __GFP_NOFAIL are blockable, so warn
4272 		 * of any new users that actually require GFP_NOWAIT
4273 		 */
4274 		if (WARN_ON_ONCE_GFP(!can_direct_reclaim, gfp_mask))
4275 			goto fail;
4276 
4277 		/*
4278 		 * PF_MEMALLOC request from this context is rather bizarre
4279 		 * because we cannot reclaim anything and only can loop waiting
4280 		 * for somebody to do a work for us
4281 		 */
4282 		WARN_ON_ONCE_GFP(current->flags & PF_MEMALLOC, gfp_mask);
4283 
4284 		/*
4285 		 * non failing costly orders are a hard requirement which we
4286 		 * are not prepared for much so let's warn about these users
4287 		 * so that we can identify them and convert them to something
4288 		 * else.
4289 		 */
4290 		WARN_ON_ONCE_GFP(costly_order, gfp_mask);
4291 
4292 		/*
4293 		 * Help non-failing allocations by giving some access to memory
4294 		 * reserves normally used for high priority non-blocking
4295 		 * allocations but do not use ALLOC_NO_WATERMARKS because this
4296 		 * could deplete whole memory reserves which would just make
4297 		 * the situation worse.
4298 		 */
4299 		page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_MIN_RESERVE, ac);
4300 		if (page)
4301 			goto got_pg;
4302 
4303 		cond_resched();
4304 		goto retry;
4305 	}
4306 fail:
4307 	warn_alloc(gfp_mask, ac->nodemask,
4308 			"page allocation failure: order:%u", order);
4309 got_pg:
4310 	return page;
4311 }
4312 
4313 static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
4314 		int preferred_nid, nodemask_t *nodemask,
4315 		struct alloc_context *ac, gfp_t *alloc_gfp,
4316 		unsigned int *alloc_flags)
4317 {
4318 	ac->highest_zoneidx = gfp_zone(gfp_mask);
4319 	ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
4320 	ac->nodemask = nodemask;
4321 	ac->migratetype = gfp_migratetype(gfp_mask);
4322 
4323 	if (cpusets_enabled()) {
4324 		*alloc_gfp |= __GFP_HARDWALL;
4325 		/*
4326 		 * When we are in the interrupt context, it is irrelevant
4327 		 * to the current task context. It means that any node ok.
4328 		 */
4329 		if (in_task() && !ac->nodemask)
4330 			ac->nodemask = &cpuset_current_mems_allowed;
4331 		else
4332 			*alloc_flags |= ALLOC_CPUSET;
4333 	}
4334 
4335 	might_alloc(gfp_mask);
4336 
4337 	if (should_fail_alloc_page(gfp_mask, order))
4338 		return false;
4339 
4340 	*alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, *alloc_flags);
4341 
4342 	/* Dirty zone balancing only done in the fast path */
4343 	ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
4344 
4345 	/*
4346 	 * The preferred zone is used for statistics but crucially it is
4347 	 * also used as the starting point for the zonelist iterator. It
4348 	 * may get reset for allocations that ignore memory policies.
4349 	 */
4350 	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4351 					ac->highest_zoneidx, ac->nodemask);
4352 
4353 	return true;
4354 }
4355 
4356 /*
4357  * __alloc_pages_bulk - Allocate a number of order-0 pages to a list or array
4358  * @gfp: GFP flags for the allocation
4359  * @preferred_nid: The preferred NUMA node ID to allocate from
4360  * @nodemask: Set of nodes to allocate from, may be NULL
4361  * @nr_pages: The number of pages desired on the list or array
4362  * @page_list: Optional list to store the allocated pages
4363  * @page_array: Optional array to store the pages
4364  *
4365  * This is a batched version of the page allocator that attempts to
4366  * allocate nr_pages quickly. Pages are added to page_list if page_list
4367  * is not NULL, otherwise it is assumed that the page_array is valid.
4368  *
4369  * For lists, nr_pages is the number of pages that should be allocated.
4370  *
4371  * For arrays, only NULL elements are populated with pages and nr_pages
4372  * is the maximum number of pages that will be stored in the array.
4373  *
4374  * Returns the number of pages on the list or array.
4375  */
4376 unsigned long __alloc_pages_bulk(gfp_t gfp, int preferred_nid,
4377 			nodemask_t *nodemask, int nr_pages,
4378 			struct list_head *page_list,
4379 			struct page **page_array)
4380 {
4381 	struct page *page;
4382 	unsigned long __maybe_unused UP_flags;
4383 	struct zone *zone;
4384 	struct zoneref *z;
4385 	struct per_cpu_pages *pcp;
4386 	struct list_head *pcp_list;
4387 	struct alloc_context ac;
4388 	gfp_t alloc_gfp;
4389 	unsigned int alloc_flags = ALLOC_WMARK_LOW;
4390 	int nr_populated = 0, nr_account = 0;
4391 
4392 	/*
4393 	 * Skip populated array elements to determine if any pages need
4394 	 * to be allocated before disabling IRQs.
4395 	 */
4396 	while (page_array && nr_populated < nr_pages && page_array[nr_populated])
4397 		nr_populated++;
4398 
4399 	/* No pages requested? */
4400 	if (unlikely(nr_pages <= 0))
4401 		goto out;
4402 
4403 	/* Already populated array? */
4404 	if (unlikely(page_array && nr_pages - nr_populated == 0))
4405 		goto out;
4406 
4407 	/* Bulk allocator does not support memcg accounting. */
4408 	if (memcg_kmem_online() && (gfp & __GFP_ACCOUNT))
4409 		goto failed;
4410 
4411 	/* Use the single page allocator for one page. */
4412 	if (nr_pages - nr_populated == 1)
4413 		goto failed;
4414 
4415 #ifdef CONFIG_PAGE_OWNER
4416 	/*
4417 	 * PAGE_OWNER may recurse into the allocator to allocate space to
4418 	 * save the stack with pagesets.lock held. Releasing/reacquiring
4419 	 * removes much of the performance benefit of bulk allocation so
4420 	 * force the caller to allocate one page at a time as it'll have
4421 	 * similar performance to added complexity to the bulk allocator.
4422 	 */
4423 	if (static_branch_unlikely(&page_owner_inited))
4424 		goto failed;
4425 #endif
4426 
4427 	/* May set ALLOC_NOFRAGMENT, fragmentation will return 1 page. */
4428 	gfp &= gfp_allowed_mask;
4429 	alloc_gfp = gfp;
4430 	if (!prepare_alloc_pages(gfp, 0, preferred_nid, nodemask, &ac, &alloc_gfp, &alloc_flags))
4431 		goto out;
4432 	gfp = alloc_gfp;
4433 
4434 	/* Find an allowed local zone that meets the low watermark. */
4435 	for_each_zone_zonelist_nodemask(zone, z, ac.zonelist, ac.highest_zoneidx, ac.nodemask) {
4436 		unsigned long mark;
4437 
4438 		if (cpusets_enabled() && (alloc_flags & ALLOC_CPUSET) &&
4439 		    !__cpuset_zone_allowed(zone, gfp)) {
4440 			continue;
4441 		}
4442 
4443 		if (nr_online_nodes > 1 && zone != ac.preferred_zoneref->zone &&
4444 		    zone_to_nid(zone) != zone_to_nid(ac.preferred_zoneref->zone)) {
4445 			goto failed;
4446 		}
4447 
4448 		mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK) + nr_pages;
4449 		if (zone_watermark_fast(zone, 0,  mark,
4450 				zonelist_zone_idx(ac.preferred_zoneref),
4451 				alloc_flags, gfp)) {
4452 			break;
4453 		}
4454 	}
4455 
4456 	/*
4457 	 * If there are no allowed local zones that meets the watermarks then
4458 	 * try to allocate a single page and reclaim if necessary.
4459 	 */
4460 	if (unlikely(!zone))
4461 		goto failed;
4462 
4463 	/* spin_trylock may fail due to a parallel drain or IRQ reentrancy. */
4464 	pcp_trylock_prepare(UP_flags);
4465 	pcp = pcp_spin_trylock(zone->per_cpu_pageset);
4466 	if (!pcp)
4467 		goto failed_irq;
4468 
4469 	/* Attempt the batch allocation */
4470 	pcp_list = &pcp->lists[order_to_pindex(ac.migratetype, 0)];
4471 	while (nr_populated < nr_pages) {
4472 
4473 		/* Skip existing pages */
4474 		if (page_array && page_array[nr_populated]) {
4475 			nr_populated++;
4476 			continue;
4477 		}
4478 
4479 		page = __rmqueue_pcplist(zone, 0, ac.migratetype, alloc_flags,
4480 								pcp, pcp_list);
4481 		if (unlikely(!page)) {
4482 			/* Try and allocate at least one page */
4483 			if (!nr_account) {
4484 				pcp_spin_unlock(pcp);
4485 				goto failed_irq;
4486 			}
4487 			break;
4488 		}
4489 		nr_account++;
4490 
4491 		prep_new_page(page, 0, gfp, 0);
4492 		if (page_list)
4493 			list_add(&page->lru, page_list);
4494 		else
4495 			page_array[nr_populated] = page;
4496 		nr_populated++;
4497 	}
4498 
4499 	pcp_spin_unlock(pcp);
4500 	pcp_trylock_finish(UP_flags);
4501 
4502 	__count_zid_vm_events(PGALLOC, zone_idx(zone), nr_account);
4503 	zone_statistics(ac.preferred_zoneref->zone, zone, nr_account);
4504 
4505 out:
4506 	return nr_populated;
4507 
4508 failed_irq:
4509 	pcp_trylock_finish(UP_flags);
4510 
4511 failed:
4512 	page = __alloc_pages(gfp, 0, preferred_nid, nodemask);
4513 	if (page) {
4514 		if (page_list)
4515 			list_add(&page->lru, page_list);
4516 		else
4517 			page_array[nr_populated] = page;
4518 		nr_populated++;
4519 	}
4520 
4521 	goto out;
4522 }
4523 EXPORT_SYMBOL_GPL(__alloc_pages_bulk);
4524 
4525 /*
4526  * This is the 'heart' of the zoned buddy allocator.
4527  */
4528 struct page *__alloc_pages(gfp_t gfp, unsigned int order, int preferred_nid,
4529 							nodemask_t *nodemask)
4530 {
4531 	struct page *page;
4532 	unsigned int alloc_flags = ALLOC_WMARK_LOW;
4533 	gfp_t alloc_gfp; /* The gfp_t that was actually used for allocation */
4534 	struct alloc_context ac = { };
4535 
4536 	/*
4537 	 * There are several places where we assume that the order value is sane
4538 	 * so bail out early if the request is out of bound.
4539 	 */
4540 	if (WARN_ON_ONCE_GFP(order > MAX_ORDER, gfp))
4541 		return NULL;
4542 
4543 	gfp &= gfp_allowed_mask;
4544 	/*
4545 	 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
4546 	 * resp. GFP_NOIO which has to be inherited for all allocation requests
4547 	 * from a particular context which has been marked by
4548 	 * memalloc_no{fs,io}_{save,restore}. And PF_MEMALLOC_PIN which ensures
4549 	 * movable zones are not used during allocation.
4550 	 */
4551 	gfp = current_gfp_context(gfp);
4552 	alloc_gfp = gfp;
4553 	if (!prepare_alloc_pages(gfp, order, preferred_nid, nodemask, &ac,
4554 			&alloc_gfp, &alloc_flags))
4555 		return NULL;
4556 
4557 	/*
4558 	 * Forbid the first pass from falling back to types that fragment
4559 	 * memory until all local zones are considered.
4560 	 */
4561 	alloc_flags |= alloc_flags_nofragment(ac.preferred_zoneref->zone, gfp);
4562 
4563 	/* First allocation attempt */
4564 	page = get_page_from_freelist(alloc_gfp, order, alloc_flags, &ac);
4565 	if (likely(page))
4566 		goto out;
4567 
4568 	alloc_gfp = gfp;
4569 	ac.spread_dirty_pages = false;
4570 
4571 	/*
4572 	 * Restore the original nodemask if it was potentially replaced with
4573 	 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
4574 	 */
4575 	ac.nodemask = nodemask;
4576 
4577 	page = __alloc_pages_slowpath(alloc_gfp, order, &ac);
4578 
4579 out:
4580 	if (memcg_kmem_online() && (gfp & __GFP_ACCOUNT) && page &&
4581 	    unlikely(__memcg_kmem_charge_page(page, gfp, order) != 0)) {
4582 		__free_pages(page, order);
4583 		page = NULL;
4584 	}
4585 
4586 	trace_mm_page_alloc(page, order, alloc_gfp, ac.migratetype);
4587 	kmsan_alloc_page(page, order, alloc_gfp);
4588 
4589 	return page;
4590 }
4591 EXPORT_SYMBOL(__alloc_pages);
4592 
4593 struct folio *__folio_alloc(gfp_t gfp, unsigned int order, int preferred_nid,
4594 		nodemask_t *nodemask)
4595 {
4596 	struct page *page = __alloc_pages(gfp | __GFP_COMP, order,
4597 					preferred_nid, nodemask);
4598 	return page_rmappable_folio(page);
4599 }
4600 EXPORT_SYMBOL(__folio_alloc);
4601 
4602 /*
4603  * Common helper functions. Never use with __GFP_HIGHMEM because the returned
4604  * address cannot represent highmem pages. Use alloc_pages and then kmap if
4605  * you need to access high mem.
4606  */
4607 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
4608 {
4609 	struct page *page;
4610 
4611 	page = alloc_pages(gfp_mask & ~__GFP_HIGHMEM, order);
4612 	if (!page)
4613 		return 0;
4614 	return (unsigned long) page_address(page);
4615 }
4616 EXPORT_SYMBOL(__get_free_pages);
4617 
4618 unsigned long get_zeroed_page(gfp_t gfp_mask)
4619 {
4620 	return __get_free_page(gfp_mask | __GFP_ZERO);
4621 }
4622 EXPORT_SYMBOL(get_zeroed_page);
4623 
4624 /**
4625  * __free_pages - Free pages allocated with alloc_pages().
4626  * @page: The page pointer returned from alloc_pages().
4627  * @order: The order of the allocation.
4628  *
4629  * This function can free multi-page allocations that are not compound
4630  * pages.  It does not check that the @order passed in matches that of
4631  * the allocation, so it is easy to leak memory.  Freeing more memory
4632  * than was allocated will probably emit a warning.
4633  *
4634  * If the last reference to this page is speculative, it will be released
4635  * by put_page() which only frees the first page of a non-compound
4636  * allocation.  To prevent the remaining pages from being leaked, we free
4637  * the subsequent pages here.  If you want to use the page's reference
4638  * count to decide when to free the allocation, you should allocate a
4639  * compound page, and use put_page() instead of __free_pages().
4640  *
4641  * Context: May be called in interrupt context or while holding a normal
4642  * spinlock, but not in NMI context or while holding a raw spinlock.
4643  */
4644 void __free_pages(struct page *page, unsigned int order)
4645 {
4646 	/* get PageHead before we drop reference */
4647 	int head = PageHead(page);
4648 
4649 	if (put_page_testzero(page))
4650 		free_the_page(page, order);
4651 	else if (!head)
4652 		while (order-- > 0)
4653 			free_the_page(page + (1 << order), order);
4654 }
4655 EXPORT_SYMBOL(__free_pages);
4656 
4657 void free_pages(unsigned long addr, unsigned int order)
4658 {
4659 	if (addr != 0) {
4660 		VM_BUG_ON(!virt_addr_valid((void *)addr));
4661 		__free_pages(virt_to_page((void *)addr), order);
4662 	}
4663 }
4664 
4665 EXPORT_SYMBOL(free_pages);
4666 
4667 /*
4668  * Page Fragment:
4669  *  An arbitrary-length arbitrary-offset area of memory which resides
4670  *  within a 0 or higher order page.  Multiple fragments within that page
4671  *  are individually refcounted, in the page's reference counter.
4672  *
4673  * The page_frag functions below provide a simple allocation framework for
4674  * page fragments.  This is used by the network stack and network device
4675  * drivers to provide a backing region of memory for use as either an
4676  * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
4677  */
4678 static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
4679 					     gfp_t gfp_mask)
4680 {
4681 	struct page *page = NULL;
4682 	gfp_t gfp = gfp_mask;
4683 
4684 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4685 	gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
4686 		    __GFP_NOMEMALLOC;
4687 	page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
4688 				PAGE_FRAG_CACHE_MAX_ORDER);
4689 	nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
4690 #endif
4691 	if (unlikely(!page))
4692 		page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
4693 
4694 	nc->va = page ? page_address(page) : NULL;
4695 
4696 	return page;
4697 }
4698 
4699 void __page_frag_cache_drain(struct page *page, unsigned int count)
4700 {
4701 	VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
4702 
4703 	if (page_ref_sub_and_test(page, count))
4704 		free_the_page(page, compound_order(page));
4705 }
4706 EXPORT_SYMBOL(__page_frag_cache_drain);
4707 
4708 void *page_frag_alloc_align(struct page_frag_cache *nc,
4709 		      unsigned int fragsz, gfp_t gfp_mask,
4710 		      unsigned int align_mask)
4711 {
4712 	unsigned int size = PAGE_SIZE;
4713 	struct page *page;
4714 	int offset;
4715 
4716 	if (unlikely(!nc->va)) {
4717 refill:
4718 		page = __page_frag_cache_refill(nc, gfp_mask);
4719 		if (!page)
4720 			return NULL;
4721 
4722 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4723 		/* if size can vary use size else just use PAGE_SIZE */
4724 		size = nc->size;
4725 #endif
4726 		/* Even if we own the page, we do not use atomic_set().
4727 		 * This would break get_page_unless_zero() users.
4728 		 */
4729 		page_ref_add(page, PAGE_FRAG_CACHE_MAX_SIZE);
4730 
4731 		/* reset page count bias and offset to start of new frag */
4732 		nc->pfmemalloc = page_is_pfmemalloc(page);
4733 		nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
4734 		nc->offset = size;
4735 	}
4736 
4737 	offset = nc->offset - fragsz;
4738 	if (unlikely(offset < 0)) {
4739 		page = virt_to_page(nc->va);
4740 
4741 		if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
4742 			goto refill;
4743 
4744 		if (unlikely(nc->pfmemalloc)) {
4745 			free_the_page(page, compound_order(page));
4746 			goto refill;
4747 		}
4748 
4749 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4750 		/* if size can vary use size else just use PAGE_SIZE */
4751 		size = nc->size;
4752 #endif
4753 		/* OK, page count is 0, we can safely set it */
4754 		set_page_count(page, PAGE_FRAG_CACHE_MAX_SIZE + 1);
4755 
4756 		/* reset page count bias and offset to start of new frag */
4757 		nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
4758 		offset = size - fragsz;
4759 		if (unlikely(offset < 0)) {
4760 			/*
4761 			 * The caller is trying to allocate a fragment
4762 			 * with fragsz > PAGE_SIZE but the cache isn't big
4763 			 * enough to satisfy the request, this may
4764 			 * happen in low memory conditions.
4765 			 * We don't release the cache page because
4766 			 * it could make memory pressure worse
4767 			 * so we simply return NULL here.
4768 			 */
4769 			return NULL;
4770 		}
4771 	}
4772 
4773 	nc->pagecnt_bias--;
4774 	offset &= align_mask;
4775 	nc->offset = offset;
4776 
4777 	return nc->va + offset;
4778 }
4779 EXPORT_SYMBOL(page_frag_alloc_align);
4780 
4781 /*
4782  * Frees a page fragment allocated out of either a compound or order 0 page.
4783  */
4784 void page_frag_free(void *addr)
4785 {
4786 	struct page *page = virt_to_head_page(addr);
4787 
4788 	if (unlikely(put_page_testzero(page)))
4789 		free_the_page(page, compound_order(page));
4790 }
4791 EXPORT_SYMBOL(page_frag_free);
4792 
4793 static void *make_alloc_exact(unsigned long addr, unsigned int order,
4794 		size_t size)
4795 {
4796 	if (addr) {
4797 		unsigned long nr = DIV_ROUND_UP(size, PAGE_SIZE);
4798 		struct page *page = virt_to_page((void *)addr);
4799 		struct page *last = page + nr;
4800 
4801 		split_page_owner(page, 1 << order);
4802 		split_page_memcg(page, 1 << order);
4803 		while (page < --last)
4804 			set_page_refcounted(last);
4805 
4806 		last = page + (1UL << order);
4807 		for (page += nr; page < last; page++)
4808 			__free_pages_ok(page, 0, FPI_TO_TAIL);
4809 	}
4810 	return (void *)addr;
4811 }
4812 
4813 /**
4814  * alloc_pages_exact - allocate an exact number physically-contiguous pages.
4815  * @size: the number of bytes to allocate
4816  * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
4817  *
4818  * This function is similar to alloc_pages(), except that it allocates the
4819  * minimum number of pages to satisfy the request.  alloc_pages() can only
4820  * allocate memory in power-of-two pages.
4821  *
4822  * This function is also limited by MAX_ORDER.
4823  *
4824  * Memory allocated by this function must be released by free_pages_exact().
4825  *
4826  * Return: pointer to the allocated area or %NULL in case of error.
4827  */
4828 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
4829 {
4830 	unsigned int order = get_order(size);
4831 	unsigned long addr;
4832 
4833 	if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM)))
4834 		gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM);
4835 
4836 	addr = __get_free_pages(gfp_mask, order);
4837 	return make_alloc_exact(addr, order, size);
4838 }
4839 EXPORT_SYMBOL(alloc_pages_exact);
4840 
4841 /**
4842  * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
4843  *			   pages on a node.
4844  * @nid: the preferred node ID where memory should be allocated
4845  * @size: the number of bytes to allocate
4846  * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
4847  *
4848  * Like alloc_pages_exact(), but try to allocate on node nid first before falling
4849  * back.
4850  *
4851  * Return: pointer to the allocated area or %NULL in case of error.
4852  */
4853 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
4854 {
4855 	unsigned int order = get_order(size);
4856 	struct page *p;
4857 
4858 	if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM)))
4859 		gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM);
4860 
4861 	p = alloc_pages_node(nid, gfp_mask, order);
4862 	if (!p)
4863 		return NULL;
4864 	return make_alloc_exact((unsigned long)page_address(p), order, size);
4865 }
4866 
4867 /**
4868  * free_pages_exact - release memory allocated via alloc_pages_exact()
4869  * @virt: the value returned by alloc_pages_exact.
4870  * @size: size of allocation, same value as passed to alloc_pages_exact().
4871  *
4872  * Release the memory allocated by a previous call to alloc_pages_exact.
4873  */
4874 void free_pages_exact(void *virt, size_t size)
4875 {
4876 	unsigned long addr = (unsigned long)virt;
4877 	unsigned long end = addr + PAGE_ALIGN(size);
4878 
4879 	while (addr < end) {
4880 		free_page(addr);
4881 		addr += PAGE_SIZE;
4882 	}
4883 }
4884 EXPORT_SYMBOL(free_pages_exact);
4885 
4886 /**
4887  * nr_free_zone_pages - count number of pages beyond high watermark
4888  * @offset: The zone index of the highest zone
4889  *
4890  * nr_free_zone_pages() counts the number of pages which are beyond the
4891  * high watermark within all zones at or below a given zone index.  For each
4892  * zone, the number of pages is calculated as:
4893  *
4894  *     nr_free_zone_pages = managed_pages - high_pages
4895  *
4896  * Return: number of pages beyond high watermark.
4897  */
4898 static unsigned long nr_free_zone_pages(int offset)
4899 {
4900 	struct zoneref *z;
4901 	struct zone *zone;
4902 
4903 	/* Just pick one node, since fallback list is circular */
4904 	unsigned long sum = 0;
4905 
4906 	struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
4907 
4908 	for_each_zone_zonelist(zone, z, zonelist, offset) {
4909 		unsigned long size = zone_managed_pages(zone);
4910 		unsigned long high = high_wmark_pages(zone);
4911 		if (size > high)
4912 			sum += size - high;
4913 	}
4914 
4915 	return sum;
4916 }
4917 
4918 /**
4919  * nr_free_buffer_pages - count number of pages beyond high watermark
4920  *
4921  * nr_free_buffer_pages() counts the number of pages which are beyond the high
4922  * watermark within ZONE_DMA and ZONE_NORMAL.
4923  *
4924  * Return: number of pages beyond high watermark within ZONE_DMA and
4925  * ZONE_NORMAL.
4926  */
4927 unsigned long nr_free_buffer_pages(void)
4928 {
4929 	return nr_free_zone_pages(gfp_zone(GFP_USER));
4930 }
4931 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
4932 
4933 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
4934 {
4935 	zoneref->zone = zone;
4936 	zoneref->zone_idx = zone_idx(zone);
4937 }
4938 
4939 /*
4940  * Builds allocation fallback zone lists.
4941  *
4942  * Add all populated zones of a node to the zonelist.
4943  */
4944 static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs)
4945 {
4946 	struct zone *zone;
4947 	enum zone_type zone_type = MAX_NR_ZONES;
4948 	int nr_zones = 0;
4949 
4950 	do {
4951 		zone_type--;
4952 		zone = pgdat->node_zones + zone_type;
4953 		if (populated_zone(zone)) {
4954 			zoneref_set_zone(zone, &zonerefs[nr_zones++]);
4955 			check_highest_zone(zone_type);
4956 		}
4957 	} while (zone_type);
4958 
4959 	return nr_zones;
4960 }
4961 
4962 #ifdef CONFIG_NUMA
4963 
4964 static int __parse_numa_zonelist_order(char *s)
4965 {
4966 	/*
4967 	 * We used to support different zonelists modes but they turned
4968 	 * out to be just not useful. Let's keep the warning in place
4969 	 * if somebody still use the cmd line parameter so that we do
4970 	 * not fail it silently
4971 	 */
4972 	if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) {
4973 		pr_warn("Ignoring unsupported numa_zonelist_order value:  %s\n", s);
4974 		return -EINVAL;
4975 	}
4976 	return 0;
4977 }
4978 
4979 static char numa_zonelist_order[] = "Node";
4980 #define NUMA_ZONELIST_ORDER_LEN	16
4981 /*
4982  * sysctl handler for numa_zonelist_order
4983  */
4984 static int numa_zonelist_order_handler(struct ctl_table *table, int write,
4985 		void *buffer, size_t *length, loff_t *ppos)
4986 {
4987 	if (write)
4988 		return __parse_numa_zonelist_order(buffer);
4989 	return proc_dostring(table, write, buffer, length, ppos);
4990 }
4991 
4992 static int node_load[MAX_NUMNODES];
4993 
4994 /**
4995  * find_next_best_node - find the next node that should appear in a given node's fallback list
4996  * @node: node whose fallback list we're appending
4997  * @used_node_mask: nodemask_t of already used nodes
4998  *
4999  * We use a number of factors to determine which is the next node that should
5000  * appear on a given node's fallback list.  The node should not have appeared
5001  * already in @node's fallback list, and it should be the next closest node
5002  * according to the distance array (which contains arbitrary distance values
5003  * from each node to each node in the system), and should also prefer nodes
5004  * with no CPUs, since presumably they'll have very little allocation pressure
5005  * on them otherwise.
5006  *
5007  * Return: node id of the found node or %NUMA_NO_NODE if no node is found.
5008  */
5009 int find_next_best_node(int node, nodemask_t *used_node_mask)
5010 {
5011 	int n, val;
5012 	int min_val = INT_MAX;
5013 	int best_node = NUMA_NO_NODE;
5014 
5015 	/*
5016 	 * Use the local node if we haven't already, but for memoryless local
5017 	 * node, we should skip it and fall back to other nodes.
5018 	 */
5019 	if (!node_isset(node, *used_node_mask) && node_state(node, N_MEMORY)) {
5020 		node_set(node, *used_node_mask);
5021 		return node;
5022 	}
5023 
5024 	for_each_node_state(n, N_MEMORY) {
5025 
5026 		/* Don't want a node to appear more than once */
5027 		if (node_isset(n, *used_node_mask))
5028 			continue;
5029 
5030 		/* Use the distance array to find the distance */
5031 		val = node_distance(node, n);
5032 
5033 		/* Penalize nodes under us ("prefer the next node") */
5034 		val += (n < node);
5035 
5036 		/* Give preference to headless and unused nodes */
5037 		if (!cpumask_empty(cpumask_of_node(n)))
5038 			val += PENALTY_FOR_NODE_WITH_CPUS;
5039 
5040 		/* Slight preference for less loaded node */
5041 		val *= MAX_NUMNODES;
5042 		val += node_load[n];
5043 
5044 		if (val < min_val) {
5045 			min_val = val;
5046 			best_node = n;
5047 		}
5048 	}
5049 
5050 	if (best_node >= 0)
5051 		node_set(best_node, *used_node_mask);
5052 
5053 	return best_node;
5054 }
5055 
5056 
5057 /*
5058  * Build zonelists ordered by node and zones within node.
5059  * This results in maximum locality--normal zone overflows into local
5060  * DMA zone, if any--but risks exhausting DMA zone.
5061  */
5062 static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order,
5063 		unsigned nr_nodes)
5064 {
5065 	struct zoneref *zonerefs;
5066 	int i;
5067 
5068 	zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5069 
5070 	for (i = 0; i < nr_nodes; i++) {
5071 		int nr_zones;
5072 
5073 		pg_data_t *node = NODE_DATA(node_order[i]);
5074 
5075 		nr_zones = build_zonerefs_node(node, zonerefs);
5076 		zonerefs += nr_zones;
5077 	}
5078 	zonerefs->zone = NULL;
5079 	zonerefs->zone_idx = 0;
5080 }
5081 
5082 /*
5083  * Build gfp_thisnode zonelists
5084  */
5085 static void build_thisnode_zonelists(pg_data_t *pgdat)
5086 {
5087 	struct zoneref *zonerefs;
5088 	int nr_zones;
5089 
5090 	zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs;
5091 	nr_zones = build_zonerefs_node(pgdat, zonerefs);
5092 	zonerefs += nr_zones;
5093 	zonerefs->zone = NULL;
5094 	zonerefs->zone_idx = 0;
5095 }
5096 
5097 /*
5098  * Build zonelists ordered by zone and nodes within zones.
5099  * This results in conserving DMA zone[s] until all Normal memory is
5100  * exhausted, but results in overflowing to remote node while memory
5101  * may still exist in local DMA zone.
5102  */
5103 
5104 static void build_zonelists(pg_data_t *pgdat)
5105 {
5106 	static int node_order[MAX_NUMNODES];
5107 	int node, nr_nodes = 0;
5108 	nodemask_t used_mask = NODE_MASK_NONE;
5109 	int local_node, prev_node;
5110 
5111 	/* NUMA-aware ordering of nodes */
5112 	local_node = pgdat->node_id;
5113 	prev_node = local_node;
5114 
5115 	memset(node_order, 0, sizeof(node_order));
5116 	while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
5117 		/*
5118 		 * We don't want to pressure a particular node.
5119 		 * So adding penalty to the first node in same
5120 		 * distance group to make it round-robin.
5121 		 */
5122 		if (node_distance(local_node, node) !=
5123 		    node_distance(local_node, prev_node))
5124 			node_load[node] += 1;
5125 
5126 		node_order[nr_nodes++] = node;
5127 		prev_node = node;
5128 	}
5129 
5130 	build_zonelists_in_node_order(pgdat, node_order, nr_nodes);
5131 	build_thisnode_zonelists(pgdat);
5132 	pr_info("Fallback order for Node %d: ", local_node);
5133 	for (node = 0; node < nr_nodes; node++)
5134 		pr_cont("%d ", node_order[node]);
5135 	pr_cont("\n");
5136 }
5137 
5138 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
5139 /*
5140  * Return node id of node used for "local" allocations.
5141  * I.e., first node id of first zone in arg node's generic zonelist.
5142  * Used for initializing percpu 'numa_mem', which is used primarily
5143  * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
5144  */
5145 int local_memory_node(int node)
5146 {
5147 	struct zoneref *z;
5148 
5149 	z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
5150 				   gfp_zone(GFP_KERNEL),
5151 				   NULL);
5152 	return zone_to_nid(z->zone);
5153 }
5154 #endif
5155 
5156 static void setup_min_unmapped_ratio(void);
5157 static void setup_min_slab_ratio(void);
5158 #else	/* CONFIG_NUMA */
5159 
5160 static void build_zonelists(pg_data_t *pgdat)
5161 {
5162 	int node, local_node;
5163 	struct zoneref *zonerefs;
5164 	int nr_zones;
5165 
5166 	local_node = pgdat->node_id;
5167 
5168 	zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5169 	nr_zones = build_zonerefs_node(pgdat, zonerefs);
5170 	zonerefs += nr_zones;
5171 
5172 	/*
5173 	 * Now we build the zonelist so that it contains the zones
5174 	 * of all the other nodes.
5175 	 * We don't want to pressure a particular node, so when
5176 	 * building the zones for node N, we make sure that the
5177 	 * zones coming right after the local ones are those from
5178 	 * node N+1 (modulo N)
5179 	 */
5180 	for (node = local_node + 1; node < MAX_NUMNODES; node++) {
5181 		if (!node_online(node))
5182 			continue;
5183 		nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5184 		zonerefs += nr_zones;
5185 	}
5186 	for (node = 0; node < local_node; node++) {
5187 		if (!node_online(node))
5188 			continue;
5189 		nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5190 		zonerefs += nr_zones;
5191 	}
5192 
5193 	zonerefs->zone = NULL;
5194 	zonerefs->zone_idx = 0;
5195 }
5196 
5197 #endif	/* CONFIG_NUMA */
5198 
5199 /*
5200  * Boot pageset table. One per cpu which is going to be used for all
5201  * zones and all nodes. The parameters will be set in such a way
5202  * that an item put on a list will immediately be handed over to
5203  * the buddy list. This is safe since pageset manipulation is done
5204  * with interrupts disabled.
5205  *
5206  * The boot_pagesets must be kept even after bootup is complete for
5207  * unused processors and/or zones. They do play a role for bootstrapping
5208  * hotplugged processors.
5209  *
5210  * zoneinfo_show() and maybe other functions do
5211  * not check if the processor is online before following the pageset pointer.
5212  * Other parts of the kernel may not check if the zone is available.
5213  */
5214 static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats);
5215 /* These effectively disable the pcplists in the boot pageset completely */
5216 #define BOOT_PAGESET_HIGH	0
5217 #define BOOT_PAGESET_BATCH	1
5218 static DEFINE_PER_CPU(struct per_cpu_pages, boot_pageset);
5219 static DEFINE_PER_CPU(struct per_cpu_zonestat, boot_zonestats);
5220 
5221 static void __build_all_zonelists(void *data)
5222 {
5223 	int nid;
5224 	int __maybe_unused cpu;
5225 	pg_data_t *self = data;
5226 	unsigned long flags;
5227 
5228 	/*
5229 	 * The zonelist_update_seq must be acquired with irqsave because the
5230 	 * reader can be invoked from IRQ with GFP_ATOMIC.
5231 	 */
5232 	write_seqlock_irqsave(&zonelist_update_seq, flags);
5233 	/*
5234 	 * Also disable synchronous printk() to prevent any printk() from
5235 	 * trying to hold port->lock, for
5236 	 * tty_insert_flip_string_and_push_buffer() on other CPU might be
5237 	 * calling kmalloc(GFP_ATOMIC | __GFP_NOWARN) with port->lock held.
5238 	 */
5239 	printk_deferred_enter();
5240 
5241 #ifdef CONFIG_NUMA
5242 	memset(node_load, 0, sizeof(node_load));
5243 #endif
5244 
5245 	/*
5246 	 * This node is hotadded and no memory is yet present.   So just
5247 	 * building zonelists is fine - no need to touch other nodes.
5248 	 */
5249 	if (self && !node_online(self->node_id)) {
5250 		build_zonelists(self);
5251 	} else {
5252 		/*
5253 		 * All possible nodes have pgdat preallocated
5254 		 * in free_area_init
5255 		 */
5256 		for_each_node(nid) {
5257 			pg_data_t *pgdat = NODE_DATA(nid);
5258 
5259 			build_zonelists(pgdat);
5260 		}
5261 
5262 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
5263 		/*
5264 		 * We now know the "local memory node" for each node--
5265 		 * i.e., the node of the first zone in the generic zonelist.
5266 		 * Set up numa_mem percpu variable for on-line cpus.  During
5267 		 * boot, only the boot cpu should be on-line;  we'll init the
5268 		 * secondary cpus' numa_mem as they come on-line.  During
5269 		 * node/memory hotplug, we'll fixup all on-line cpus.
5270 		 */
5271 		for_each_online_cpu(cpu)
5272 			set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
5273 #endif
5274 	}
5275 
5276 	printk_deferred_exit();
5277 	write_sequnlock_irqrestore(&zonelist_update_seq, flags);
5278 }
5279 
5280 static noinline void __init
5281 build_all_zonelists_init(void)
5282 {
5283 	int cpu;
5284 
5285 	__build_all_zonelists(NULL);
5286 
5287 	/*
5288 	 * Initialize the boot_pagesets that are going to be used
5289 	 * for bootstrapping processors. The real pagesets for
5290 	 * each zone will be allocated later when the per cpu
5291 	 * allocator is available.
5292 	 *
5293 	 * boot_pagesets are used also for bootstrapping offline
5294 	 * cpus if the system is already booted because the pagesets
5295 	 * are needed to initialize allocators on a specific cpu too.
5296 	 * F.e. the percpu allocator needs the page allocator which
5297 	 * needs the percpu allocator in order to allocate its pagesets
5298 	 * (a chicken-egg dilemma).
5299 	 */
5300 	for_each_possible_cpu(cpu)
5301 		per_cpu_pages_init(&per_cpu(boot_pageset, cpu), &per_cpu(boot_zonestats, cpu));
5302 
5303 	mminit_verify_zonelist();
5304 	cpuset_init_current_mems_allowed();
5305 }
5306 
5307 /*
5308  * unless system_state == SYSTEM_BOOTING.
5309  *
5310  * __ref due to call of __init annotated helper build_all_zonelists_init
5311  * [protected by SYSTEM_BOOTING].
5312  */
5313 void __ref build_all_zonelists(pg_data_t *pgdat)
5314 {
5315 	unsigned long vm_total_pages;
5316 
5317 	if (system_state == SYSTEM_BOOTING) {
5318 		build_all_zonelists_init();
5319 	} else {
5320 		__build_all_zonelists(pgdat);
5321 		/* cpuset refresh routine should be here */
5322 	}
5323 	/* Get the number of free pages beyond high watermark in all zones. */
5324 	vm_total_pages = nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
5325 	/*
5326 	 * Disable grouping by mobility if the number of pages in the
5327 	 * system is too low to allow the mechanism to work. It would be
5328 	 * more accurate, but expensive to check per-zone. This check is
5329 	 * made on memory-hotadd so a system can start with mobility
5330 	 * disabled and enable it later
5331 	 */
5332 	if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
5333 		page_group_by_mobility_disabled = 1;
5334 	else
5335 		page_group_by_mobility_disabled = 0;
5336 
5337 	pr_info("Built %u zonelists, mobility grouping %s.  Total pages: %ld\n",
5338 		nr_online_nodes,
5339 		page_group_by_mobility_disabled ? "off" : "on",
5340 		vm_total_pages);
5341 #ifdef CONFIG_NUMA
5342 	pr_info("Policy zone: %s\n", zone_names[policy_zone]);
5343 #endif
5344 }
5345 
5346 static int zone_batchsize(struct zone *zone)
5347 {
5348 #ifdef CONFIG_MMU
5349 	int batch;
5350 
5351 	/*
5352 	 * The number of pages to batch allocate is either ~0.1%
5353 	 * of the zone or 1MB, whichever is smaller. The batch
5354 	 * size is striking a balance between allocation latency
5355 	 * and zone lock contention.
5356 	 */
5357 	batch = min(zone_managed_pages(zone) >> 10, SZ_1M / PAGE_SIZE);
5358 	batch /= 4;		/* We effectively *= 4 below */
5359 	if (batch < 1)
5360 		batch = 1;
5361 
5362 	/*
5363 	 * Clamp the batch to a 2^n - 1 value. Having a power
5364 	 * of 2 value was found to be more likely to have
5365 	 * suboptimal cache aliasing properties in some cases.
5366 	 *
5367 	 * For example if 2 tasks are alternately allocating
5368 	 * batches of pages, one task can end up with a lot
5369 	 * of pages of one half of the possible page colors
5370 	 * and the other with pages of the other colors.
5371 	 */
5372 	batch = rounddown_pow_of_two(batch + batch/2) - 1;
5373 
5374 	return batch;
5375 
5376 #else
5377 	/* The deferral and batching of frees should be suppressed under NOMMU
5378 	 * conditions.
5379 	 *
5380 	 * The problem is that NOMMU needs to be able to allocate large chunks
5381 	 * of contiguous memory as there's no hardware page translation to
5382 	 * assemble apparent contiguous memory from discontiguous pages.
5383 	 *
5384 	 * Queueing large contiguous runs of pages for batching, however,
5385 	 * causes the pages to actually be freed in smaller chunks.  As there
5386 	 * can be a significant delay between the individual batches being
5387 	 * recycled, this leads to the once large chunks of space being
5388 	 * fragmented and becoming unavailable for high-order allocations.
5389 	 */
5390 	return 0;
5391 #endif
5392 }
5393 
5394 static int percpu_pagelist_high_fraction;
5395 static int zone_highsize(struct zone *zone, int batch, int cpu_online,
5396 			 int high_fraction)
5397 {
5398 #ifdef CONFIG_MMU
5399 	int high;
5400 	int nr_split_cpus;
5401 	unsigned long total_pages;
5402 
5403 	if (!high_fraction) {
5404 		/*
5405 		 * By default, the high value of the pcp is based on the zone
5406 		 * low watermark so that if they are full then background
5407 		 * reclaim will not be started prematurely.
5408 		 */
5409 		total_pages = low_wmark_pages(zone);
5410 	} else {
5411 		/*
5412 		 * If percpu_pagelist_high_fraction is configured, the high
5413 		 * value is based on a fraction of the managed pages in the
5414 		 * zone.
5415 		 */
5416 		total_pages = zone_managed_pages(zone) / high_fraction;
5417 	}
5418 
5419 	/*
5420 	 * Split the high value across all online CPUs local to the zone. Note
5421 	 * that early in boot that CPUs may not be online yet and that during
5422 	 * CPU hotplug that the cpumask is not yet updated when a CPU is being
5423 	 * onlined. For memory nodes that have no CPUs, split the high value
5424 	 * across all online CPUs to mitigate the risk that reclaim is triggered
5425 	 * prematurely due to pages stored on pcp lists.
5426 	 */
5427 	nr_split_cpus = cpumask_weight(cpumask_of_node(zone_to_nid(zone))) + cpu_online;
5428 	if (!nr_split_cpus)
5429 		nr_split_cpus = num_online_cpus();
5430 	high = total_pages / nr_split_cpus;
5431 
5432 	/*
5433 	 * Ensure high is at least batch*4. The multiple is based on the
5434 	 * historical relationship between high and batch.
5435 	 */
5436 	high = max(high, batch << 2);
5437 
5438 	return high;
5439 #else
5440 	return 0;
5441 #endif
5442 }
5443 
5444 /*
5445  * pcp->high and pcp->batch values are related and generally batch is lower
5446  * than high. They are also related to pcp->count such that count is lower
5447  * than high, and as soon as it reaches high, the pcplist is flushed.
5448  *
5449  * However, guaranteeing these relations at all times would require e.g. write
5450  * barriers here but also careful usage of read barriers at the read side, and
5451  * thus be prone to error and bad for performance. Thus the update only prevents
5452  * store tearing. Any new users of pcp->batch, pcp->high_min and pcp->high_max
5453  * should ensure they can cope with those fields changing asynchronously, and
5454  * fully trust only the pcp->count field on the local CPU with interrupts
5455  * disabled.
5456  *
5457  * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
5458  * outside of boot time (or some other assurance that no concurrent updaters
5459  * exist).
5460  */
5461 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high_min,
5462 			   unsigned long high_max, unsigned long batch)
5463 {
5464 	WRITE_ONCE(pcp->batch, batch);
5465 	WRITE_ONCE(pcp->high_min, high_min);
5466 	WRITE_ONCE(pcp->high_max, high_max);
5467 }
5468 
5469 static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats)
5470 {
5471 	int pindex;
5472 
5473 	memset(pcp, 0, sizeof(*pcp));
5474 	memset(pzstats, 0, sizeof(*pzstats));
5475 
5476 	spin_lock_init(&pcp->lock);
5477 	for (pindex = 0; pindex < NR_PCP_LISTS; pindex++)
5478 		INIT_LIST_HEAD(&pcp->lists[pindex]);
5479 
5480 	/*
5481 	 * Set batch and high values safe for a boot pageset. A true percpu
5482 	 * pageset's initialization will update them subsequently. Here we don't
5483 	 * need to be as careful as pageset_update() as nobody can access the
5484 	 * pageset yet.
5485 	 */
5486 	pcp->high_min = BOOT_PAGESET_HIGH;
5487 	pcp->high_max = BOOT_PAGESET_HIGH;
5488 	pcp->batch = BOOT_PAGESET_BATCH;
5489 	pcp->free_count = 0;
5490 }
5491 
5492 static void __zone_set_pageset_high_and_batch(struct zone *zone, unsigned long high_min,
5493 					      unsigned long high_max, unsigned long batch)
5494 {
5495 	struct per_cpu_pages *pcp;
5496 	int cpu;
5497 
5498 	for_each_possible_cpu(cpu) {
5499 		pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
5500 		pageset_update(pcp, high_min, high_max, batch);
5501 	}
5502 }
5503 
5504 /*
5505  * Calculate and set new high and batch values for all per-cpu pagesets of a
5506  * zone based on the zone's size.
5507  */
5508 static void zone_set_pageset_high_and_batch(struct zone *zone, int cpu_online)
5509 {
5510 	int new_high_min, new_high_max, new_batch;
5511 
5512 	new_batch = max(1, zone_batchsize(zone));
5513 	if (percpu_pagelist_high_fraction) {
5514 		new_high_min = zone_highsize(zone, new_batch, cpu_online,
5515 					     percpu_pagelist_high_fraction);
5516 		/*
5517 		 * PCP high is tuned manually, disable auto-tuning via
5518 		 * setting high_min and high_max to the manual value.
5519 		 */
5520 		new_high_max = new_high_min;
5521 	} else {
5522 		new_high_min = zone_highsize(zone, new_batch, cpu_online, 0);
5523 		new_high_max = zone_highsize(zone, new_batch, cpu_online,
5524 					     MIN_PERCPU_PAGELIST_HIGH_FRACTION);
5525 	}
5526 
5527 	if (zone->pageset_high_min == new_high_min &&
5528 	    zone->pageset_high_max == new_high_max &&
5529 	    zone->pageset_batch == new_batch)
5530 		return;
5531 
5532 	zone->pageset_high_min = new_high_min;
5533 	zone->pageset_high_max = new_high_max;
5534 	zone->pageset_batch = new_batch;
5535 
5536 	__zone_set_pageset_high_and_batch(zone, new_high_min, new_high_max,
5537 					  new_batch);
5538 }
5539 
5540 void __meminit setup_zone_pageset(struct zone *zone)
5541 {
5542 	int cpu;
5543 
5544 	/* Size may be 0 on !SMP && !NUMA */
5545 	if (sizeof(struct per_cpu_zonestat) > 0)
5546 		zone->per_cpu_zonestats = alloc_percpu(struct per_cpu_zonestat);
5547 
5548 	zone->per_cpu_pageset = alloc_percpu(struct per_cpu_pages);
5549 	for_each_possible_cpu(cpu) {
5550 		struct per_cpu_pages *pcp;
5551 		struct per_cpu_zonestat *pzstats;
5552 
5553 		pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
5554 		pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
5555 		per_cpu_pages_init(pcp, pzstats);
5556 	}
5557 
5558 	zone_set_pageset_high_and_batch(zone, 0);
5559 }
5560 
5561 /*
5562  * The zone indicated has a new number of managed_pages; batch sizes and percpu
5563  * page high values need to be recalculated.
5564  */
5565 static void zone_pcp_update(struct zone *zone, int cpu_online)
5566 {
5567 	mutex_lock(&pcp_batch_high_lock);
5568 	zone_set_pageset_high_and_batch(zone, cpu_online);
5569 	mutex_unlock(&pcp_batch_high_lock);
5570 }
5571 
5572 static void zone_pcp_update_cacheinfo(struct zone *zone)
5573 {
5574 	int cpu;
5575 	struct per_cpu_pages *pcp;
5576 	struct cpu_cacheinfo *cci;
5577 
5578 	for_each_online_cpu(cpu) {
5579 		pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
5580 		cci = get_cpu_cacheinfo(cpu);
5581 		/*
5582 		 * If data cache slice of CPU is large enough, "pcp->batch"
5583 		 * pages can be preserved in PCP before draining PCP for
5584 		 * consecutive high-order pages freeing without allocation.
5585 		 * This can reduce zone lock contention without hurting
5586 		 * cache-hot pages sharing.
5587 		 */
5588 		spin_lock(&pcp->lock);
5589 		if ((cci->per_cpu_data_slice_size >> PAGE_SHIFT) > 3 * pcp->batch)
5590 			pcp->flags |= PCPF_FREE_HIGH_BATCH;
5591 		else
5592 			pcp->flags &= ~PCPF_FREE_HIGH_BATCH;
5593 		spin_unlock(&pcp->lock);
5594 	}
5595 }
5596 
5597 void setup_pcp_cacheinfo(void)
5598 {
5599 	struct zone *zone;
5600 
5601 	for_each_populated_zone(zone)
5602 		zone_pcp_update_cacheinfo(zone);
5603 }
5604 
5605 /*
5606  * Allocate per cpu pagesets and initialize them.
5607  * Before this call only boot pagesets were available.
5608  */
5609 void __init setup_per_cpu_pageset(void)
5610 {
5611 	struct pglist_data *pgdat;
5612 	struct zone *zone;
5613 	int __maybe_unused cpu;
5614 
5615 	for_each_populated_zone(zone)
5616 		setup_zone_pageset(zone);
5617 
5618 #ifdef CONFIG_NUMA
5619 	/*
5620 	 * Unpopulated zones continue using the boot pagesets.
5621 	 * The numa stats for these pagesets need to be reset.
5622 	 * Otherwise, they will end up skewing the stats of
5623 	 * the nodes these zones are associated with.
5624 	 */
5625 	for_each_possible_cpu(cpu) {
5626 		struct per_cpu_zonestat *pzstats = &per_cpu(boot_zonestats, cpu);
5627 		memset(pzstats->vm_numa_event, 0,
5628 		       sizeof(pzstats->vm_numa_event));
5629 	}
5630 #endif
5631 
5632 	for_each_online_pgdat(pgdat)
5633 		pgdat->per_cpu_nodestats =
5634 			alloc_percpu(struct per_cpu_nodestat);
5635 }
5636 
5637 __meminit void zone_pcp_init(struct zone *zone)
5638 {
5639 	/*
5640 	 * per cpu subsystem is not up at this point. The following code
5641 	 * relies on the ability of the linker to provide the
5642 	 * offset of a (static) per cpu variable into the per cpu area.
5643 	 */
5644 	zone->per_cpu_pageset = &boot_pageset;
5645 	zone->per_cpu_zonestats = &boot_zonestats;
5646 	zone->pageset_high_min = BOOT_PAGESET_HIGH;
5647 	zone->pageset_high_max = BOOT_PAGESET_HIGH;
5648 	zone->pageset_batch = BOOT_PAGESET_BATCH;
5649 
5650 	if (populated_zone(zone))
5651 		pr_debug("  %s zone: %lu pages, LIFO batch:%u\n", zone->name,
5652 			 zone->present_pages, zone_batchsize(zone));
5653 }
5654 
5655 void adjust_managed_page_count(struct page *page, long count)
5656 {
5657 	atomic_long_add(count, &page_zone(page)->managed_pages);
5658 	totalram_pages_add(count);
5659 #ifdef CONFIG_HIGHMEM
5660 	if (PageHighMem(page))
5661 		totalhigh_pages_add(count);
5662 #endif
5663 }
5664 EXPORT_SYMBOL(adjust_managed_page_count);
5665 
5666 unsigned long free_reserved_area(void *start, void *end, int poison, const char *s)
5667 {
5668 	void *pos;
5669 	unsigned long pages = 0;
5670 
5671 	start = (void *)PAGE_ALIGN((unsigned long)start);
5672 	end = (void *)((unsigned long)end & PAGE_MASK);
5673 	for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
5674 		struct page *page = virt_to_page(pos);
5675 		void *direct_map_addr;
5676 
5677 		/*
5678 		 * 'direct_map_addr' might be different from 'pos'
5679 		 * because some architectures' virt_to_page()
5680 		 * work with aliases.  Getting the direct map
5681 		 * address ensures that we get a _writeable_
5682 		 * alias for the memset().
5683 		 */
5684 		direct_map_addr = page_address(page);
5685 		/*
5686 		 * Perform a kasan-unchecked memset() since this memory
5687 		 * has not been initialized.
5688 		 */
5689 		direct_map_addr = kasan_reset_tag(direct_map_addr);
5690 		if ((unsigned int)poison <= 0xFF)
5691 			memset(direct_map_addr, poison, PAGE_SIZE);
5692 
5693 		free_reserved_page(page);
5694 	}
5695 
5696 	if (pages && s)
5697 		pr_info("Freeing %s memory: %ldK\n", s, K(pages));
5698 
5699 	return pages;
5700 }
5701 
5702 static int page_alloc_cpu_dead(unsigned int cpu)
5703 {
5704 	struct zone *zone;
5705 
5706 	lru_add_drain_cpu(cpu);
5707 	mlock_drain_remote(cpu);
5708 	drain_pages(cpu);
5709 
5710 	/*
5711 	 * Spill the event counters of the dead processor
5712 	 * into the current processors event counters.
5713 	 * This artificially elevates the count of the current
5714 	 * processor.
5715 	 */
5716 	vm_events_fold_cpu(cpu);
5717 
5718 	/*
5719 	 * Zero the differential counters of the dead processor
5720 	 * so that the vm statistics are consistent.
5721 	 *
5722 	 * This is only okay since the processor is dead and cannot
5723 	 * race with what we are doing.
5724 	 */
5725 	cpu_vm_stats_fold(cpu);
5726 
5727 	for_each_populated_zone(zone)
5728 		zone_pcp_update(zone, 0);
5729 
5730 	return 0;
5731 }
5732 
5733 static int page_alloc_cpu_online(unsigned int cpu)
5734 {
5735 	struct zone *zone;
5736 
5737 	for_each_populated_zone(zone)
5738 		zone_pcp_update(zone, 1);
5739 	return 0;
5740 }
5741 
5742 void __init page_alloc_init_cpuhp(void)
5743 {
5744 	int ret;
5745 
5746 	ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC,
5747 					"mm/page_alloc:pcp",
5748 					page_alloc_cpu_online,
5749 					page_alloc_cpu_dead);
5750 	WARN_ON(ret < 0);
5751 }
5752 
5753 /*
5754  * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
5755  *	or min_free_kbytes changes.
5756  */
5757 static void calculate_totalreserve_pages(void)
5758 {
5759 	struct pglist_data *pgdat;
5760 	unsigned long reserve_pages = 0;
5761 	enum zone_type i, j;
5762 
5763 	for_each_online_pgdat(pgdat) {
5764 
5765 		pgdat->totalreserve_pages = 0;
5766 
5767 		for (i = 0; i < MAX_NR_ZONES; i++) {
5768 			struct zone *zone = pgdat->node_zones + i;
5769 			long max = 0;
5770 			unsigned long managed_pages = zone_managed_pages(zone);
5771 
5772 			/* Find valid and maximum lowmem_reserve in the zone */
5773 			for (j = i; j < MAX_NR_ZONES; j++) {
5774 				if (zone->lowmem_reserve[j] > max)
5775 					max = zone->lowmem_reserve[j];
5776 			}
5777 
5778 			/* we treat the high watermark as reserved pages. */
5779 			max += high_wmark_pages(zone);
5780 
5781 			if (max > managed_pages)
5782 				max = managed_pages;
5783 
5784 			pgdat->totalreserve_pages += max;
5785 
5786 			reserve_pages += max;
5787 		}
5788 	}
5789 	totalreserve_pages = reserve_pages;
5790 }
5791 
5792 /*
5793  * setup_per_zone_lowmem_reserve - called whenever
5794  *	sysctl_lowmem_reserve_ratio changes.  Ensures that each zone
5795  *	has a correct pages reserved value, so an adequate number of
5796  *	pages are left in the zone after a successful __alloc_pages().
5797  */
5798 static void setup_per_zone_lowmem_reserve(void)
5799 {
5800 	struct pglist_data *pgdat;
5801 	enum zone_type i, j;
5802 
5803 	for_each_online_pgdat(pgdat) {
5804 		for (i = 0; i < MAX_NR_ZONES - 1; i++) {
5805 			struct zone *zone = &pgdat->node_zones[i];
5806 			int ratio = sysctl_lowmem_reserve_ratio[i];
5807 			bool clear = !ratio || !zone_managed_pages(zone);
5808 			unsigned long managed_pages = 0;
5809 
5810 			for (j = i + 1; j < MAX_NR_ZONES; j++) {
5811 				struct zone *upper_zone = &pgdat->node_zones[j];
5812 
5813 				managed_pages += zone_managed_pages(upper_zone);
5814 
5815 				if (clear)
5816 					zone->lowmem_reserve[j] = 0;
5817 				else
5818 					zone->lowmem_reserve[j] = managed_pages / ratio;
5819 			}
5820 		}
5821 	}
5822 
5823 	/* update totalreserve_pages */
5824 	calculate_totalreserve_pages();
5825 }
5826 
5827 static void __setup_per_zone_wmarks(void)
5828 {
5829 	unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
5830 	unsigned long lowmem_pages = 0;
5831 	struct zone *zone;
5832 	unsigned long flags;
5833 
5834 	/* Calculate total number of !ZONE_HIGHMEM and !ZONE_MOVABLE pages */
5835 	for_each_zone(zone) {
5836 		if (!is_highmem(zone) && zone_idx(zone) != ZONE_MOVABLE)
5837 			lowmem_pages += zone_managed_pages(zone);
5838 	}
5839 
5840 	for_each_zone(zone) {
5841 		u64 tmp;
5842 
5843 		spin_lock_irqsave(&zone->lock, flags);
5844 		tmp = (u64)pages_min * zone_managed_pages(zone);
5845 		do_div(tmp, lowmem_pages);
5846 		if (is_highmem(zone) || zone_idx(zone) == ZONE_MOVABLE) {
5847 			/*
5848 			 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
5849 			 * need highmem and movable zones pages, so cap pages_min
5850 			 * to a small  value here.
5851 			 *
5852 			 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
5853 			 * deltas control async page reclaim, and so should
5854 			 * not be capped for highmem and movable zones.
5855 			 */
5856 			unsigned long min_pages;
5857 
5858 			min_pages = zone_managed_pages(zone) / 1024;
5859 			min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
5860 			zone->_watermark[WMARK_MIN] = min_pages;
5861 		} else {
5862 			/*
5863 			 * If it's a lowmem zone, reserve a number of pages
5864 			 * proportionate to the zone's size.
5865 			 */
5866 			zone->_watermark[WMARK_MIN] = tmp;
5867 		}
5868 
5869 		/*
5870 		 * Set the kswapd watermarks distance according to the
5871 		 * scale factor in proportion to available memory, but
5872 		 * ensure a minimum size on small systems.
5873 		 */
5874 		tmp = max_t(u64, tmp >> 2,
5875 			    mult_frac(zone_managed_pages(zone),
5876 				      watermark_scale_factor, 10000));
5877 
5878 		zone->watermark_boost = 0;
5879 		zone->_watermark[WMARK_LOW]  = min_wmark_pages(zone) + tmp;
5880 		zone->_watermark[WMARK_HIGH] = low_wmark_pages(zone) + tmp;
5881 		zone->_watermark[WMARK_PROMO] = high_wmark_pages(zone) + tmp;
5882 
5883 		spin_unlock_irqrestore(&zone->lock, flags);
5884 	}
5885 
5886 	/* update totalreserve_pages */
5887 	calculate_totalreserve_pages();
5888 }
5889 
5890 /**
5891  * setup_per_zone_wmarks - called when min_free_kbytes changes
5892  * or when memory is hot-{added|removed}
5893  *
5894  * Ensures that the watermark[min,low,high] values for each zone are set
5895  * correctly with respect to min_free_kbytes.
5896  */
5897 void setup_per_zone_wmarks(void)
5898 {
5899 	struct zone *zone;
5900 	static DEFINE_SPINLOCK(lock);
5901 
5902 	spin_lock(&lock);
5903 	__setup_per_zone_wmarks();
5904 	spin_unlock(&lock);
5905 
5906 	/*
5907 	 * The watermark size have changed so update the pcpu batch
5908 	 * and high limits or the limits may be inappropriate.
5909 	 */
5910 	for_each_zone(zone)
5911 		zone_pcp_update(zone, 0);
5912 }
5913 
5914 /*
5915  * Initialise min_free_kbytes.
5916  *
5917  * For small machines we want it small (128k min).  For large machines
5918  * we want it large (256MB max).  But it is not linear, because network
5919  * bandwidth does not increase linearly with machine size.  We use
5920  *
5921  *	min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
5922  *	min_free_kbytes = sqrt(lowmem_kbytes * 16)
5923  *
5924  * which yields
5925  *
5926  * 16MB:	512k
5927  * 32MB:	724k
5928  * 64MB:	1024k
5929  * 128MB:	1448k
5930  * 256MB:	2048k
5931  * 512MB:	2896k
5932  * 1024MB:	4096k
5933  * 2048MB:	5792k
5934  * 4096MB:	8192k
5935  * 8192MB:	11584k
5936  * 16384MB:	16384k
5937  */
5938 void calculate_min_free_kbytes(void)
5939 {
5940 	unsigned long lowmem_kbytes;
5941 	int new_min_free_kbytes;
5942 
5943 	lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5944 	new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
5945 
5946 	if (new_min_free_kbytes > user_min_free_kbytes)
5947 		min_free_kbytes = clamp(new_min_free_kbytes, 128, 262144);
5948 	else
5949 		pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
5950 				new_min_free_kbytes, user_min_free_kbytes);
5951 
5952 }
5953 
5954 int __meminit init_per_zone_wmark_min(void)
5955 {
5956 	calculate_min_free_kbytes();
5957 	setup_per_zone_wmarks();
5958 	refresh_zone_stat_thresholds();
5959 	setup_per_zone_lowmem_reserve();
5960 
5961 #ifdef CONFIG_NUMA
5962 	setup_min_unmapped_ratio();
5963 	setup_min_slab_ratio();
5964 #endif
5965 
5966 	khugepaged_min_free_kbytes_update();
5967 
5968 	return 0;
5969 }
5970 postcore_initcall(init_per_zone_wmark_min)
5971 
5972 /*
5973  * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
5974  *	that we can call two helper functions whenever min_free_kbytes
5975  *	changes.
5976  */
5977 static int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
5978 		void *buffer, size_t *length, loff_t *ppos)
5979 {
5980 	int rc;
5981 
5982 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5983 	if (rc)
5984 		return rc;
5985 
5986 	if (write) {
5987 		user_min_free_kbytes = min_free_kbytes;
5988 		setup_per_zone_wmarks();
5989 	}
5990 	return 0;
5991 }
5992 
5993 static int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
5994 		void *buffer, size_t *length, loff_t *ppos)
5995 {
5996 	int rc;
5997 
5998 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5999 	if (rc)
6000 		return rc;
6001 
6002 	if (write)
6003 		setup_per_zone_wmarks();
6004 
6005 	return 0;
6006 }
6007 
6008 #ifdef CONFIG_NUMA
6009 static void setup_min_unmapped_ratio(void)
6010 {
6011 	pg_data_t *pgdat;
6012 	struct zone *zone;
6013 
6014 	for_each_online_pgdat(pgdat)
6015 		pgdat->min_unmapped_pages = 0;
6016 
6017 	for_each_zone(zone)
6018 		zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) *
6019 						         sysctl_min_unmapped_ratio) / 100;
6020 }
6021 
6022 
6023 static int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
6024 		void *buffer, size_t *length, loff_t *ppos)
6025 {
6026 	int rc;
6027 
6028 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6029 	if (rc)
6030 		return rc;
6031 
6032 	setup_min_unmapped_ratio();
6033 
6034 	return 0;
6035 }
6036 
6037 static void setup_min_slab_ratio(void)
6038 {
6039 	pg_data_t *pgdat;
6040 	struct zone *zone;
6041 
6042 	for_each_online_pgdat(pgdat)
6043 		pgdat->min_slab_pages = 0;
6044 
6045 	for_each_zone(zone)
6046 		zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) *
6047 						     sysctl_min_slab_ratio) / 100;
6048 }
6049 
6050 static int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
6051 		void *buffer, size_t *length, loff_t *ppos)
6052 {
6053 	int rc;
6054 
6055 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6056 	if (rc)
6057 		return rc;
6058 
6059 	setup_min_slab_ratio();
6060 
6061 	return 0;
6062 }
6063 #endif
6064 
6065 /*
6066  * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
6067  *	proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
6068  *	whenever sysctl_lowmem_reserve_ratio changes.
6069  *
6070  * The reserve ratio obviously has absolutely no relation with the
6071  * minimum watermarks. The lowmem reserve ratio can only make sense
6072  * if in function of the boot time zone sizes.
6073  */
6074 static int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table,
6075 		int write, void *buffer, size_t *length, loff_t *ppos)
6076 {
6077 	int i;
6078 
6079 	proc_dointvec_minmax(table, write, buffer, length, ppos);
6080 
6081 	for (i = 0; i < MAX_NR_ZONES; i++) {
6082 		if (sysctl_lowmem_reserve_ratio[i] < 1)
6083 			sysctl_lowmem_reserve_ratio[i] = 0;
6084 	}
6085 
6086 	setup_per_zone_lowmem_reserve();
6087 	return 0;
6088 }
6089 
6090 /*
6091  * percpu_pagelist_high_fraction - changes the pcp->high for each zone on each
6092  * cpu. It is the fraction of total pages in each zone that a hot per cpu
6093  * pagelist can have before it gets flushed back to buddy allocator.
6094  */
6095 static int percpu_pagelist_high_fraction_sysctl_handler(struct ctl_table *table,
6096 		int write, void *buffer, size_t *length, loff_t *ppos)
6097 {
6098 	struct zone *zone;
6099 	int old_percpu_pagelist_high_fraction;
6100 	int ret;
6101 
6102 	mutex_lock(&pcp_batch_high_lock);
6103 	old_percpu_pagelist_high_fraction = percpu_pagelist_high_fraction;
6104 
6105 	ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
6106 	if (!write || ret < 0)
6107 		goto out;
6108 
6109 	/* Sanity checking to avoid pcp imbalance */
6110 	if (percpu_pagelist_high_fraction &&
6111 	    percpu_pagelist_high_fraction < MIN_PERCPU_PAGELIST_HIGH_FRACTION) {
6112 		percpu_pagelist_high_fraction = old_percpu_pagelist_high_fraction;
6113 		ret = -EINVAL;
6114 		goto out;
6115 	}
6116 
6117 	/* No change? */
6118 	if (percpu_pagelist_high_fraction == old_percpu_pagelist_high_fraction)
6119 		goto out;
6120 
6121 	for_each_populated_zone(zone)
6122 		zone_set_pageset_high_and_batch(zone, 0);
6123 out:
6124 	mutex_unlock(&pcp_batch_high_lock);
6125 	return ret;
6126 }
6127 
6128 static struct ctl_table page_alloc_sysctl_table[] = {
6129 	{
6130 		.procname	= "min_free_kbytes",
6131 		.data		= &min_free_kbytes,
6132 		.maxlen		= sizeof(min_free_kbytes),
6133 		.mode		= 0644,
6134 		.proc_handler	= min_free_kbytes_sysctl_handler,
6135 		.extra1		= SYSCTL_ZERO,
6136 	},
6137 	{
6138 		.procname	= "watermark_boost_factor",
6139 		.data		= &watermark_boost_factor,
6140 		.maxlen		= sizeof(watermark_boost_factor),
6141 		.mode		= 0644,
6142 		.proc_handler	= proc_dointvec_minmax,
6143 		.extra1		= SYSCTL_ZERO,
6144 	},
6145 	{
6146 		.procname	= "watermark_scale_factor",
6147 		.data		= &watermark_scale_factor,
6148 		.maxlen		= sizeof(watermark_scale_factor),
6149 		.mode		= 0644,
6150 		.proc_handler	= watermark_scale_factor_sysctl_handler,
6151 		.extra1		= SYSCTL_ONE,
6152 		.extra2		= SYSCTL_THREE_THOUSAND,
6153 	},
6154 	{
6155 		.procname	= "percpu_pagelist_high_fraction",
6156 		.data		= &percpu_pagelist_high_fraction,
6157 		.maxlen		= sizeof(percpu_pagelist_high_fraction),
6158 		.mode		= 0644,
6159 		.proc_handler	= percpu_pagelist_high_fraction_sysctl_handler,
6160 		.extra1		= SYSCTL_ZERO,
6161 	},
6162 	{
6163 		.procname	= "lowmem_reserve_ratio",
6164 		.data		= &sysctl_lowmem_reserve_ratio,
6165 		.maxlen		= sizeof(sysctl_lowmem_reserve_ratio),
6166 		.mode		= 0644,
6167 		.proc_handler	= lowmem_reserve_ratio_sysctl_handler,
6168 	},
6169 #ifdef CONFIG_NUMA
6170 	{
6171 		.procname	= "numa_zonelist_order",
6172 		.data		= &numa_zonelist_order,
6173 		.maxlen		= NUMA_ZONELIST_ORDER_LEN,
6174 		.mode		= 0644,
6175 		.proc_handler	= numa_zonelist_order_handler,
6176 	},
6177 	{
6178 		.procname	= "min_unmapped_ratio",
6179 		.data		= &sysctl_min_unmapped_ratio,
6180 		.maxlen		= sizeof(sysctl_min_unmapped_ratio),
6181 		.mode		= 0644,
6182 		.proc_handler	= sysctl_min_unmapped_ratio_sysctl_handler,
6183 		.extra1		= SYSCTL_ZERO,
6184 		.extra2		= SYSCTL_ONE_HUNDRED,
6185 	},
6186 	{
6187 		.procname	= "min_slab_ratio",
6188 		.data		= &sysctl_min_slab_ratio,
6189 		.maxlen		= sizeof(sysctl_min_slab_ratio),
6190 		.mode		= 0644,
6191 		.proc_handler	= sysctl_min_slab_ratio_sysctl_handler,
6192 		.extra1		= SYSCTL_ZERO,
6193 		.extra2		= SYSCTL_ONE_HUNDRED,
6194 	},
6195 #endif
6196 	{}
6197 };
6198 
6199 void __init page_alloc_sysctl_init(void)
6200 {
6201 	register_sysctl_init("vm", page_alloc_sysctl_table);
6202 }
6203 
6204 #ifdef CONFIG_CONTIG_ALLOC
6205 /* Usage: See admin-guide/dynamic-debug-howto.rst */
6206 static void alloc_contig_dump_pages(struct list_head *page_list)
6207 {
6208 	DEFINE_DYNAMIC_DEBUG_METADATA(descriptor, "migrate failure");
6209 
6210 	if (DYNAMIC_DEBUG_BRANCH(descriptor)) {
6211 		struct page *page;
6212 
6213 		dump_stack();
6214 		list_for_each_entry(page, page_list, lru)
6215 			dump_page(page, "migration failure");
6216 	}
6217 }
6218 
6219 /* [start, end) must belong to a single zone. */
6220 int __alloc_contig_migrate_range(struct compact_control *cc,
6221 					unsigned long start, unsigned long end)
6222 {
6223 	/* This function is based on compact_zone() from compaction.c. */
6224 	unsigned int nr_reclaimed;
6225 	unsigned long pfn = start;
6226 	unsigned int tries = 0;
6227 	int ret = 0;
6228 	struct migration_target_control mtc = {
6229 		.nid = zone_to_nid(cc->zone),
6230 		.gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL,
6231 	};
6232 
6233 	lru_cache_disable();
6234 
6235 	while (pfn < end || !list_empty(&cc->migratepages)) {
6236 		if (fatal_signal_pending(current)) {
6237 			ret = -EINTR;
6238 			break;
6239 		}
6240 
6241 		if (list_empty(&cc->migratepages)) {
6242 			cc->nr_migratepages = 0;
6243 			ret = isolate_migratepages_range(cc, pfn, end);
6244 			if (ret && ret != -EAGAIN)
6245 				break;
6246 			pfn = cc->migrate_pfn;
6247 			tries = 0;
6248 		} else if (++tries == 5) {
6249 			ret = -EBUSY;
6250 			break;
6251 		}
6252 
6253 		nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
6254 							&cc->migratepages);
6255 		cc->nr_migratepages -= nr_reclaimed;
6256 
6257 		ret = migrate_pages(&cc->migratepages, alloc_migration_target,
6258 			NULL, (unsigned long)&mtc, cc->mode, MR_CONTIG_RANGE, NULL);
6259 
6260 		/*
6261 		 * On -ENOMEM, migrate_pages() bails out right away. It is pointless
6262 		 * to retry again over this error, so do the same here.
6263 		 */
6264 		if (ret == -ENOMEM)
6265 			break;
6266 	}
6267 
6268 	lru_cache_enable();
6269 	if (ret < 0) {
6270 		if (!(cc->gfp_mask & __GFP_NOWARN) && ret == -EBUSY)
6271 			alloc_contig_dump_pages(&cc->migratepages);
6272 		putback_movable_pages(&cc->migratepages);
6273 		return ret;
6274 	}
6275 	return 0;
6276 }
6277 
6278 /**
6279  * alloc_contig_range() -- tries to allocate given range of pages
6280  * @start:	start PFN to allocate
6281  * @end:	one-past-the-last PFN to allocate
6282  * @migratetype:	migratetype of the underlying pageblocks (either
6283  *			#MIGRATE_MOVABLE or #MIGRATE_CMA).  All pageblocks
6284  *			in range must have the same migratetype and it must
6285  *			be either of the two.
6286  * @gfp_mask:	GFP mask to use during compaction
6287  *
6288  * The PFN range does not have to be pageblock aligned. The PFN range must
6289  * belong to a single zone.
6290  *
6291  * The first thing this routine does is attempt to MIGRATE_ISOLATE all
6292  * pageblocks in the range.  Once isolated, the pageblocks should not
6293  * be modified by others.
6294  *
6295  * Return: zero on success or negative error code.  On success all
6296  * pages which PFN is in [start, end) are allocated for the caller and
6297  * need to be freed with free_contig_range().
6298  */
6299 int alloc_contig_range(unsigned long start, unsigned long end,
6300 		       unsigned migratetype, gfp_t gfp_mask)
6301 {
6302 	unsigned long outer_start, outer_end;
6303 	int order;
6304 	int ret = 0;
6305 
6306 	struct compact_control cc = {
6307 		.nr_migratepages = 0,
6308 		.order = -1,
6309 		.zone = page_zone(pfn_to_page(start)),
6310 		.mode = MIGRATE_SYNC,
6311 		.ignore_skip_hint = true,
6312 		.no_set_skip_hint = true,
6313 		.gfp_mask = current_gfp_context(gfp_mask),
6314 		.alloc_contig = true,
6315 	};
6316 	INIT_LIST_HEAD(&cc.migratepages);
6317 
6318 	/*
6319 	 * What we do here is we mark all pageblocks in range as
6320 	 * MIGRATE_ISOLATE.  Because pageblock and max order pages may
6321 	 * have different sizes, and due to the way page allocator
6322 	 * work, start_isolate_page_range() has special handlings for this.
6323 	 *
6324 	 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
6325 	 * migrate the pages from an unaligned range (ie. pages that
6326 	 * we are interested in). This will put all the pages in
6327 	 * range back to page allocator as MIGRATE_ISOLATE.
6328 	 *
6329 	 * When this is done, we take the pages in range from page
6330 	 * allocator removing them from the buddy system.  This way
6331 	 * page allocator will never consider using them.
6332 	 *
6333 	 * This lets us mark the pageblocks back as
6334 	 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
6335 	 * aligned range but not in the unaligned, original range are
6336 	 * put back to page allocator so that buddy can use them.
6337 	 */
6338 
6339 	ret = start_isolate_page_range(start, end, migratetype, 0, gfp_mask);
6340 	if (ret)
6341 		goto done;
6342 
6343 	drain_all_pages(cc.zone);
6344 
6345 	/*
6346 	 * In case of -EBUSY, we'd like to know which page causes problem.
6347 	 * So, just fall through. test_pages_isolated() has a tracepoint
6348 	 * which will report the busy page.
6349 	 *
6350 	 * It is possible that busy pages could become available before
6351 	 * the call to test_pages_isolated, and the range will actually be
6352 	 * allocated.  So, if we fall through be sure to clear ret so that
6353 	 * -EBUSY is not accidentally used or returned to caller.
6354 	 */
6355 	ret = __alloc_contig_migrate_range(&cc, start, end);
6356 	if (ret && ret != -EBUSY)
6357 		goto done;
6358 	ret = 0;
6359 
6360 	/*
6361 	 * Pages from [start, end) are within a pageblock_nr_pages
6362 	 * aligned blocks that are marked as MIGRATE_ISOLATE.  What's
6363 	 * more, all pages in [start, end) are free in page allocator.
6364 	 * What we are going to do is to allocate all pages from
6365 	 * [start, end) (that is remove them from page allocator).
6366 	 *
6367 	 * The only problem is that pages at the beginning and at the
6368 	 * end of interesting range may be not aligned with pages that
6369 	 * page allocator holds, ie. they can be part of higher order
6370 	 * pages.  Because of this, we reserve the bigger range and
6371 	 * once this is done free the pages we are not interested in.
6372 	 *
6373 	 * We don't have to hold zone->lock here because the pages are
6374 	 * isolated thus they won't get removed from buddy.
6375 	 */
6376 
6377 	order = 0;
6378 	outer_start = start;
6379 	while (!PageBuddy(pfn_to_page(outer_start))) {
6380 		if (++order > MAX_ORDER) {
6381 			outer_start = start;
6382 			break;
6383 		}
6384 		outer_start &= ~0UL << order;
6385 	}
6386 
6387 	if (outer_start != start) {
6388 		order = buddy_order(pfn_to_page(outer_start));
6389 
6390 		/*
6391 		 * outer_start page could be small order buddy page and
6392 		 * it doesn't include start page. Adjust outer_start
6393 		 * in this case to report failed page properly
6394 		 * on tracepoint in test_pages_isolated()
6395 		 */
6396 		if (outer_start + (1UL << order) <= start)
6397 			outer_start = start;
6398 	}
6399 
6400 	/* Make sure the range is really isolated. */
6401 	if (test_pages_isolated(outer_start, end, 0)) {
6402 		ret = -EBUSY;
6403 		goto done;
6404 	}
6405 
6406 	/* Grab isolated pages from freelists. */
6407 	outer_end = isolate_freepages_range(&cc, outer_start, end);
6408 	if (!outer_end) {
6409 		ret = -EBUSY;
6410 		goto done;
6411 	}
6412 
6413 	/* Free head and tail (if any) */
6414 	if (start != outer_start)
6415 		free_contig_range(outer_start, start - outer_start);
6416 	if (end != outer_end)
6417 		free_contig_range(end, outer_end - end);
6418 
6419 done:
6420 	undo_isolate_page_range(start, end, migratetype);
6421 	return ret;
6422 }
6423 EXPORT_SYMBOL(alloc_contig_range);
6424 
6425 static int __alloc_contig_pages(unsigned long start_pfn,
6426 				unsigned long nr_pages, gfp_t gfp_mask)
6427 {
6428 	unsigned long end_pfn = start_pfn + nr_pages;
6429 
6430 	return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE,
6431 				  gfp_mask);
6432 }
6433 
6434 static bool pfn_range_valid_contig(struct zone *z, unsigned long start_pfn,
6435 				   unsigned long nr_pages)
6436 {
6437 	unsigned long i, end_pfn = start_pfn + nr_pages;
6438 	struct page *page;
6439 
6440 	for (i = start_pfn; i < end_pfn; i++) {
6441 		page = pfn_to_online_page(i);
6442 		if (!page)
6443 			return false;
6444 
6445 		if (page_zone(page) != z)
6446 			return false;
6447 
6448 		if (PageReserved(page))
6449 			return false;
6450 
6451 		if (PageHuge(page))
6452 			return false;
6453 	}
6454 	return true;
6455 }
6456 
6457 static bool zone_spans_last_pfn(const struct zone *zone,
6458 				unsigned long start_pfn, unsigned long nr_pages)
6459 {
6460 	unsigned long last_pfn = start_pfn + nr_pages - 1;
6461 
6462 	return zone_spans_pfn(zone, last_pfn);
6463 }
6464 
6465 /**
6466  * alloc_contig_pages() -- tries to find and allocate contiguous range of pages
6467  * @nr_pages:	Number of contiguous pages to allocate
6468  * @gfp_mask:	GFP mask to limit search and used during compaction
6469  * @nid:	Target node
6470  * @nodemask:	Mask for other possible nodes
6471  *
6472  * This routine is a wrapper around alloc_contig_range(). It scans over zones
6473  * on an applicable zonelist to find a contiguous pfn range which can then be
6474  * tried for allocation with alloc_contig_range(). This routine is intended
6475  * for allocation requests which can not be fulfilled with the buddy allocator.
6476  *
6477  * The allocated memory is always aligned to a page boundary. If nr_pages is a
6478  * power of two, then allocated range is also guaranteed to be aligned to same
6479  * nr_pages (e.g. 1GB request would be aligned to 1GB).
6480  *
6481  * Allocated pages can be freed with free_contig_range() or by manually calling
6482  * __free_page() on each allocated page.
6483  *
6484  * Return: pointer to contiguous pages on success, or NULL if not successful.
6485  */
6486 struct page *alloc_contig_pages(unsigned long nr_pages, gfp_t gfp_mask,
6487 				int nid, nodemask_t *nodemask)
6488 {
6489 	unsigned long ret, pfn, flags;
6490 	struct zonelist *zonelist;
6491 	struct zone *zone;
6492 	struct zoneref *z;
6493 
6494 	zonelist = node_zonelist(nid, gfp_mask);
6495 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
6496 					gfp_zone(gfp_mask), nodemask) {
6497 		spin_lock_irqsave(&zone->lock, flags);
6498 
6499 		pfn = ALIGN(zone->zone_start_pfn, nr_pages);
6500 		while (zone_spans_last_pfn(zone, pfn, nr_pages)) {
6501 			if (pfn_range_valid_contig(zone, pfn, nr_pages)) {
6502 				/*
6503 				 * We release the zone lock here because
6504 				 * alloc_contig_range() will also lock the zone
6505 				 * at some point. If there's an allocation
6506 				 * spinning on this lock, it may win the race
6507 				 * and cause alloc_contig_range() to fail...
6508 				 */
6509 				spin_unlock_irqrestore(&zone->lock, flags);
6510 				ret = __alloc_contig_pages(pfn, nr_pages,
6511 							gfp_mask);
6512 				if (!ret)
6513 					return pfn_to_page(pfn);
6514 				spin_lock_irqsave(&zone->lock, flags);
6515 			}
6516 			pfn += nr_pages;
6517 		}
6518 		spin_unlock_irqrestore(&zone->lock, flags);
6519 	}
6520 	return NULL;
6521 }
6522 #endif /* CONFIG_CONTIG_ALLOC */
6523 
6524 void free_contig_range(unsigned long pfn, unsigned long nr_pages)
6525 {
6526 	unsigned long count = 0;
6527 
6528 	for (; nr_pages--; pfn++) {
6529 		struct page *page = pfn_to_page(pfn);
6530 
6531 		count += page_count(page) != 1;
6532 		__free_page(page);
6533 	}
6534 	WARN(count != 0, "%lu pages are still in use!\n", count);
6535 }
6536 EXPORT_SYMBOL(free_contig_range);
6537 
6538 /*
6539  * Effectively disable pcplists for the zone by setting the high limit to 0
6540  * and draining all cpus. A concurrent page freeing on another CPU that's about
6541  * to put the page on pcplist will either finish before the drain and the page
6542  * will be drained, or observe the new high limit and skip the pcplist.
6543  *
6544  * Must be paired with a call to zone_pcp_enable().
6545  */
6546 void zone_pcp_disable(struct zone *zone)
6547 {
6548 	mutex_lock(&pcp_batch_high_lock);
6549 	__zone_set_pageset_high_and_batch(zone, 0, 0, 1);
6550 	__drain_all_pages(zone, true);
6551 }
6552 
6553 void zone_pcp_enable(struct zone *zone)
6554 {
6555 	__zone_set_pageset_high_and_batch(zone, zone->pageset_high_min,
6556 		zone->pageset_high_max, zone->pageset_batch);
6557 	mutex_unlock(&pcp_batch_high_lock);
6558 }
6559 
6560 void zone_pcp_reset(struct zone *zone)
6561 {
6562 	int cpu;
6563 	struct per_cpu_zonestat *pzstats;
6564 
6565 	if (zone->per_cpu_pageset != &boot_pageset) {
6566 		for_each_online_cpu(cpu) {
6567 			pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
6568 			drain_zonestat(zone, pzstats);
6569 		}
6570 		free_percpu(zone->per_cpu_pageset);
6571 		zone->per_cpu_pageset = &boot_pageset;
6572 		if (zone->per_cpu_zonestats != &boot_zonestats) {
6573 			free_percpu(zone->per_cpu_zonestats);
6574 			zone->per_cpu_zonestats = &boot_zonestats;
6575 		}
6576 	}
6577 }
6578 
6579 #ifdef CONFIG_MEMORY_HOTREMOVE
6580 /*
6581  * All pages in the range must be in a single zone, must not contain holes,
6582  * must span full sections, and must be isolated before calling this function.
6583  */
6584 void __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
6585 {
6586 	unsigned long pfn = start_pfn;
6587 	struct page *page;
6588 	struct zone *zone;
6589 	unsigned int order;
6590 	unsigned long flags;
6591 
6592 	offline_mem_sections(pfn, end_pfn);
6593 	zone = page_zone(pfn_to_page(pfn));
6594 	spin_lock_irqsave(&zone->lock, flags);
6595 	while (pfn < end_pfn) {
6596 		page = pfn_to_page(pfn);
6597 		/*
6598 		 * The HWPoisoned page may be not in buddy system, and
6599 		 * page_count() is not 0.
6600 		 */
6601 		if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
6602 			pfn++;
6603 			continue;
6604 		}
6605 		/*
6606 		 * At this point all remaining PageOffline() pages have a
6607 		 * reference count of 0 and can simply be skipped.
6608 		 */
6609 		if (PageOffline(page)) {
6610 			BUG_ON(page_count(page));
6611 			BUG_ON(PageBuddy(page));
6612 			pfn++;
6613 			continue;
6614 		}
6615 
6616 		BUG_ON(page_count(page));
6617 		BUG_ON(!PageBuddy(page));
6618 		order = buddy_order(page);
6619 		del_page_from_free_list(page, zone, order);
6620 		pfn += (1 << order);
6621 	}
6622 	spin_unlock_irqrestore(&zone->lock, flags);
6623 }
6624 #endif
6625 
6626 /*
6627  * This function returns a stable result only if called under zone lock.
6628  */
6629 bool is_free_buddy_page(struct page *page)
6630 {
6631 	unsigned long pfn = page_to_pfn(page);
6632 	unsigned int order;
6633 
6634 	for (order = 0; order <= MAX_ORDER; order++) {
6635 		struct page *page_head = page - (pfn & ((1 << order) - 1));
6636 
6637 		if (PageBuddy(page_head) &&
6638 		    buddy_order_unsafe(page_head) >= order)
6639 			break;
6640 	}
6641 
6642 	return order <= MAX_ORDER;
6643 }
6644 EXPORT_SYMBOL(is_free_buddy_page);
6645 
6646 #ifdef CONFIG_MEMORY_FAILURE
6647 /*
6648  * Break down a higher-order page in sub-pages, and keep our target out of
6649  * buddy allocator.
6650  */
6651 static void break_down_buddy_pages(struct zone *zone, struct page *page,
6652 				   struct page *target, int low, int high,
6653 				   int migratetype)
6654 {
6655 	unsigned long size = 1 << high;
6656 	struct page *current_buddy;
6657 
6658 	while (high > low) {
6659 		high--;
6660 		size >>= 1;
6661 
6662 		if (target >= &page[size]) {
6663 			current_buddy = page;
6664 			page = page + size;
6665 		} else {
6666 			current_buddy = page + size;
6667 		}
6668 
6669 		if (set_page_guard(zone, current_buddy, high, migratetype))
6670 			continue;
6671 
6672 		add_to_free_list(current_buddy, zone, high, migratetype);
6673 		set_buddy_order(current_buddy, high);
6674 	}
6675 }
6676 
6677 /*
6678  * Take a page that will be marked as poisoned off the buddy allocator.
6679  */
6680 bool take_page_off_buddy(struct page *page)
6681 {
6682 	struct zone *zone = page_zone(page);
6683 	unsigned long pfn = page_to_pfn(page);
6684 	unsigned long flags;
6685 	unsigned int order;
6686 	bool ret = false;
6687 
6688 	spin_lock_irqsave(&zone->lock, flags);
6689 	for (order = 0; order <= MAX_ORDER; order++) {
6690 		struct page *page_head = page - (pfn & ((1 << order) - 1));
6691 		int page_order = buddy_order(page_head);
6692 
6693 		if (PageBuddy(page_head) && page_order >= order) {
6694 			unsigned long pfn_head = page_to_pfn(page_head);
6695 			int migratetype = get_pfnblock_migratetype(page_head,
6696 								   pfn_head);
6697 
6698 			del_page_from_free_list(page_head, zone, page_order);
6699 			break_down_buddy_pages(zone, page_head, page, 0,
6700 						page_order, migratetype);
6701 			SetPageHWPoisonTakenOff(page);
6702 			if (!is_migrate_isolate(migratetype))
6703 				__mod_zone_freepage_state(zone, -1, migratetype);
6704 			ret = true;
6705 			break;
6706 		}
6707 		if (page_count(page_head) > 0)
6708 			break;
6709 	}
6710 	spin_unlock_irqrestore(&zone->lock, flags);
6711 	return ret;
6712 }
6713 
6714 /*
6715  * Cancel takeoff done by take_page_off_buddy().
6716  */
6717 bool put_page_back_buddy(struct page *page)
6718 {
6719 	struct zone *zone = page_zone(page);
6720 	unsigned long pfn = page_to_pfn(page);
6721 	unsigned long flags;
6722 	int migratetype = get_pfnblock_migratetype(page, pfn);
6723 	bool ret = false;
6724 
6725 	spin_lock_irqsave(&zone->lock, flags);
6726 	if (put_page_testzero(page)) {
6727 		ClearPageHWPoisonTakenOff(page);
6728 		__free_one_page(page, pfn, zone, 0, migratetype, FPI_NONE);
6729 		if (TestClearPageHWPoison(page)) {
6730 			ret = true;
6731 		}
6732 	}
6733 	spin_unlock_irqrestore(&zone->lock, flags);
6734 
6735 	return ret;
6736 }
6737 #endif
6738 
6739 #ifdef CONFIG_ZONE_DMA
6740 bool has_managed_dma(void)
6741 {
6742 	struct pglist_data *pgdat;
6743 
6744 	for_each_online_pgdat(pgdat) {
6745 		struct zone *zone = &pgdat->node_zones[ZONE_DMA];
6746 
6747 		if (managed_zone(zone))
6748 			return true;
6749 	}
6750 	return false;
6751 }
6752 #endif /* CONFIG_ZONE_DMA */
6753 
6754 #ifdef CONFIG_UNACCEPTED_MEMORY
6755 
6756 /* Counts number of zones with unaccepted pages. */
6757 static DEFINE_STATIC_KEY_FALSE(zones_with_unaccepted_pages);
6758 
6759 static bool lazy_accept = true;
6760 
6761 static int __init accept_memory_parse(char *p)
6762 {
6763 	if (!strcmp(p, "lazy")) {
6764 		lazy_accept = true;
6765 		return 0;
6766 	} else if (!strcmp(p, "eager")) {
6767 		lazy_accept = false;
6768 		return 0;
6769 	} else {
6770 		return -EINVAL;
6771 	}
6772 }
6773 early_param("accept_memory", accept_memory_parse);
6774 
6775 static bool page_contains_unaccepted(struct page *page, unsigned int order)
6776 {
6777 	phys_addr_t start = page_to_phys(page);
6778 	phys_addr_t end = start + (PAGE_SIZE << order);
6779 
6780 	return range_contains_unaccepted_memory(start, end);
6781 }
6782 
6783 static void accept_page(struct page *page, unsigned int order)
6784 {
6785 	phys_addr_t start = page_to_phys(page);
6786 
6787 	accept_memory(start, start + (PAGE_SIZE << order));
6788 }
6789 
6790 static bool try_to_accept_memory_one(struct zone *zone)
6791 {
6792 	unsigned long flags;
6793 	struct page *page;
6794 	bool last;
6795 
6796 	if (list_empty(&zone->unaccepted_pages))
6797 		return false;
6798 
6799 	spin_lock_irqsave(&zone->lock, flags);
6800 	page = list_first_entry_or_null(&zone->unaccepted_pages,
6801 					struct page, lru);
6802 	if (!page) {
6803 		spin_unlock_irqrestore(&zone->lock, flags);
6804 		return false;
6805 	}
6806 
6807 	list_del(&page->lru);
6808 	last = list_empty(&zone->unaccepted_pages);
6809 
6810 	__mod_zone_freepage_state(zone, -MAX_ORDER_NR_PAGES, MIGRATE_MOVABLE);
6811 	__mod_zone_page_state(zone, NR_UNACCEPTED, -MAX_ORDER_NR_PAGES);
6812 	spin_unlock_irqrestore(&zone->lock, flags);
6813 
6814 	accept_page(page, MAX_ORDER);
6815 
6816 	__free_pages_ok(page, MAX_ORDER, FPI_TO_TAIL);
6817 
6818 	if (last)
6819 		static_branch_dec(&zones_with_unaccepted_pages);
6820 
6821 	return true;
6822 }
6823 
6824 static bool try_to_accept_memory(struct zone *zone, unsigned int order)
6825 {
6826 	long to_accept;
6827 	int ret = false;
6828 
6829 	/* How much to accept to get to high watermark? */
6830 	to_accept = high_wmark_pages(zone) -
6831 		    (zone_page_state(zone, NR_FREE_PAGES) -
6832 		    __zone_watermark_unusable_free(zone, order, 0));
6833 
6834 	/* Accept at least one page */
6835 	do {
6836 		if (!try_to_accept_memory_one(zone))
6837 			break;
6838 		ret = true;
6839 		to_accept -= MAX_ORDER_NR_PAGES;
6840 	} while (to_accept > 0);
6841 
6842 	return ret;
6843 }
6844 
6845 static inline bool has_unaccepted_memory(void)
6846 {
6847 	return static_branch_unlikely(&zones_with_unaccepted_pages);
6848 }
6849 
6850 static bool __free_unaccepted(struct page *page)
6851 {
6852 	struct zone *zone = page_zone(page);
6853 	unsigned long flags;
6854 	bool first = false;
6855 
6856 	if (!lazy_accept)
6857 		return false;
6858 
6859 	spin_lock_irqsave(&zone->lock, flags);
6860 	first = list_empty(&zone->unaccepted_pages);
6861 	list_add_tail(&page->lru, &zone->unaccepted_pages);
6862 	__mod_zone_freepage_state(zone, MAX_ORDER_NR_PAGES, MIGRATE_MOVABLE);
6863 	__mod_zone_page_state(zone, NR_UNACCEPTED, MAX_ORDER_NR_PAGES);
6864 	spin_unlock_irqrestore(&zone->lock, flags);
6865 
6866 	if (first)
6867 		static_branch_inc(&zones_with_unaccepted_pages);
6868 
6869 	return true;
6870 }
6871 
6872 #else
6873 
6874 static bool page_contains_unaccepted(struct page *page, unsigned int order)
6875 {
6876 	return false;
6877 }
6878 
6879 static void accept_page(struct page *page, unsigned int order)
6880 {
6881 }
6882 
6883 static bool try_to_accept_memory(struct zone *zone, unsigned int order)
6884 {
6885 	return false;
6886 }
6887 
6888 static inline bool has_unaccepted_memory(void)
6889 {
6890 	return false;
6891 }
6892 
6893 static bool __free_unaccepted(struct page *page)
6894 {
6895 	BUILD_BUG();
6896 	return false;
6897 }
6898 
6899 #endif /* CONFIG_UNACCEPTED_MEMORY */
6900