1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/mm/page_alloc.c 4 * 5 * Manages the free list, the system allocates free pages here. 6 * Note that kmalloc() lives in slab.c 7 * 8 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 9 * Swap reorganised 29.12.95, Stephen Tweedie 10 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999 11 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999 12 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999 13 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000 14 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002 15 * (lots of bits borrowed from Ingo Molnar & Andrew Morton) 16 */ 17 18 #include <linux/stddef.h> 19 #include <linux/mm.h> 20 #include <linux/highmem.h> 21 #include <linux/interrupt.h> 22 #include <linux/jiffies.h> 23 #include <linux/compiler.h> 24 #include <linux/kernel.h> 25 #include <linux/kasan.h> 26 #include <linux/kmsan.h> 27 #include <linux/module.h> 28 #include <linux/suspend.h> 29 #include <linux/ratelimit.h> 30 #include <linux/oom.h> 31 #include <linux/topology.h> 32 #include <linux/sysctl.h> 33 #include <linux/cpu.h> 34 #include <linux/cpuset.h> 35 #include <linux/memory_hotplug.h> 36 #include <linux/nodemask.h> 37 #include <linux/vmstat.h> 38 #include <linux/fault-inject.h> 39 #include <linux/compaction.h> 40 #include <trace/events/kmem.h> 41 #include <trace/events/oom.h> 42 #include <linux/prefetch.h> 43 #include <linux/mm_inline.h> 44 #include <linux/mmu_notifier.h> 45 #include <linux/migrate.h> 46 #include <linux/sched/mm.h> 47 #include <linux/page_owner.h> 48 #include <linux/page_table_check.h> 49 #include <linux/memcontrol.h> 50 #include <linux/ftrace.h> 51 #include <linux/lockdep.h> 52 #include <linux/psi.h> 53 #include <linux/khugepaged.h> 54 #include <linux/delayacct.h> 55 #include <linux/cacheinfo.h> 56 #include <asm/div64.h> 57 #include "internal.h" 58 #include "shuffle.h" 59 #include "page_reporting.h" 60 61 /* Free Page Internal flags: for internal, non-pcp variants of free_pages(). */ 62 typedef int __bitwise fpi_t; 63 64 /* No special request */ 65 #define FPI_NONE ((__force fpi_t)0) 66 67 /* 68 * Skip free page reporting notification for the (possibly merged) page. 69 * This does not hinder free page reporting from grabbing the page, 70 * reporting it and marking it "reported" - it only skips notifying 71 * the free page reporting infrastructure about a newly freed page. For 72 * example, used when temporarily pulling a page from a freelist and 73 * putting it back unmodified. 74 */ 75 #define FPI_SKIP_REPORT_NOTIFY ((__force fpi_t)BIT(0)) 76 77 /* 78 * Place the (possibly merged) page to the tail of the freelist. Will ignore 79 * page shuffling (relevant code - e.g., memory onlining - is expected to 80 * shuffle the whole zone). 81 * 82 * Note: No code should rely on this flag for correctness - it's purely 83 * to allow for optimizations when handing back either fresh pages 84 * (memory onlining) or untouched pages (page isolation, free page 85 * reporting). 86 */ 87 #define FPI_TO_TAIL ((__force fpi_t)BIT(1)) 88 89 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */ 90 static DEFINE_MUTEX(pcp_batch_high_lock); 91 #define MIN_PERCPU_PAGELIST_HIGH_FRACTION (8) 92 93 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT_RT) 94 /* 95 * On SMP, spin_trylock is sufficient protection. 96 * On PREEMPT_RT, spin_trylock is equivalent on both SMP and UP. 97 */ 98 #define pcp_trylock_prepare(flags) do { } while (0) 99 #define pcp_trylock_finish(flag) do { } while (0) 100 #else 101 102 /* UP spin_trylock always succeeds so disable IRQs to prevent re-entrancy. */ 103 #define pcp_trylock_prepare(flags) local_irq_save(flags) 104 #define pcp_trylock_finish(flags) local_irq_restore(flags) 105 #endif 106 107 /* 108 * Locking a pcp requires a PCP lookup followed by a spinlock. To avoid 109 * a migration causing the wrong PCP to be locked and remote memory being 110 * potentially allocated, pin the task to the CPU for the lookup+lock. 111 * preempt_disable is used on !RT because it is faster than migrate_disable. 112 * migrate_disable is used on RT because otherwise RT spinlock usage is 113 * interfered with and a high priority task cannot preempt the allocator. 114 */ 115 #ifndef CONFIG_PREEMPT_RT 116 #define pcpu_task_pin() preempt_disable() 117 #define pcpu_task_unpin() preempt_enable() 118 #else 119 #define pcpu_task_pin() migrate_disable() 120 #define pcpu_task_unpin() migrate_enable() 121 #endif 122 123 /* 124 * Generic helper to lookup and a per-cpu variable with an embedded spinlock. 125 * Return value should be used with equivalent unlock helper. 126 */ 127 #define pcpu_spin_lock(type, member, ptr) \ 128 ({ \ 129 type *_ret; \ 130 pcpu_task_pin(); \ 131 _ret = this_cpu_ptr(ptr); \ 132 spin_lock(&_ret->member); \ 133 _ret; \ 134 }) 135 136 #define pcpu_spin_trylock(type, member, ptr) \ 137 ({ \ 138 type *_ret; \ 139 pcpu_task_pin(); \ 140 _ret = this_cpu_ptr(ptr); \ 141 if (!spin_trylock(&_ret->member)) { \ 142 pcpu_task_unpin(); \ 143 _ret = NULL; \ 144 } \ 145 _ret; \ 146 }) 147 148 #define pcpu_spin_unlock(member, ptr) \ 149 ({ \ 150 spin_unlock(&ptr->member); \ 151 pcpu_task_unpin(); \ 152 }) 153 154 /* struct per_cpu_pages specific helpers. */ 155 #define pcp_spin_lock(ptr) \ 156 pcpu_spin_lock(struct per_cpu_pages, lock, ptr) 157 158 #define pcp_spin_trylock(ptr) \ 159 pcpu_spin_trylock(struct per_cpu_pages, lock, ptr) 160 161 #define pcp_spin_unlock(ptr) \ 162 pcpu_spin_unlock(lock, ptr) 163 164 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID 165 DEFINE_PER_CPU(int, numa_node); 166 EXPORT_PER_CPU_SYMBOL(numa_node); 167 #endif 168 169 DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key); 170 171 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 172 /* 173 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly. 174 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined. 175 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem() 176 * defined in <linux/topology.h>. 177 */ 178 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */ 179 EXPORT_PER_CPU_SYMBOL(_numa_mem_); 180 #endif 181 182 static DEFINE_MUTEX(pcpu_drain_mutex); 183 184 #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY 185 volatile unsigned long latent_entropy __latent_entropy; 186 EXPORT_SYMBOL(latent_entropy); 187 #endif 188 189 /* 190 * Array of node states. 191 */ 192 nodemask_t node_states[NR_NODE_STATES] __read_mostly = { 193 [N_POSSIBLE] = NODE_MASK_ALL, 194 [N_ONLINE] = { { [0] = 1UL } }, 195 #ifndef CONFIG_NUMA 196 [N_NORMAL_MEMORY] = { { [0] = 1UL } }, 197 #ifdef CONFIG_HIGHMEM 198 [N_HIGH_MEMORY] = { { [0] = 1UL } }, 199 #endif 200 [N_MEMORY] = { { [0] = 1UL } }, 201 [N_CPU] = { { [0] = 1UL } }, 202 #endif /* NUMA */ 203 }; 204 EXPORT_SYMBOL(node_states); 205 206 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK; 207 208 /* 209 * A cached value of the page's pageblock's migratetype, used when the page is 210 * put on a pcplist. Used to avoid the pageblock migratetype lookup when 211 * freeing from pcplists in most cases, at the cost of possibly becoming stale. 212 * Also the migratetype set in the page does not necessarily match the pcplist 213 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any 214 * other index - this ensures that it will be put on the correct CMA freelist. 215 */ 216 static inline int get_pcppage_migratetype(struct page *page) 217 { 218 return page->index; 219 } 220 221 static inline void set_pcppage_migratetype(struct page *page, int migratetype) 222 { 223 page->index = migratetype; 224 } 225 226 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE 227 unsigned int pageblock_order __read_mostly; 228 #endif 229 230 static void __free_pages_ok(struct page *page, unsigned int order, 231 fpi_t fpi_flags); 232 233 /* 234 * results with 256, 32 in the lowmem_reserve sysctl: 235 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high) 236 * 1G machine -> (16M dma, 784M normal, 224M high) 237 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA 238 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL 239 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA 240 * 241 * TBD: should special case ZONE_DMA32 machines here - in those we normally 242 * don't need any ZONE_NORMAL reservation 243 */ 244 static int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = { 245 #ifdef CONFIG_ZONE_DMA 246 [ZONE_DMA] = 256, 247 #endif 248 #ifdef CONFIG_ZONE_DMA32 249 [ZONE_DMA32] = 256, 250 #endif 251 [ZONE_NORMAL] = 32, 252 #ifdef CONFIG_HIGHMEM 253 [ZONE_HIGHMEM] = 0, 254 #endif 255 [ZONE_MOVABLE] = 0, 256 }; 257 258 char * const zone_names[MAX_NR_ZONES] = { 259 #ifdef CONFIG_ZONE_DMA 260 "DMA", 261 #endif 262 #ifdef CONFIG_ZONE_DMA32 263 "DMA32", 264 #endif 265 "Normal", 266 #ifdef CONFIG_HIGHMEM 267 "HighMem", 268 #endif 269 "Movable", 270 #ifdef CONFIG_ZONE_DEVICE 271 "Device", 272 #endif 273 }; 274 275 const char * const migratetype_names[MIGRATE_TYPES] = { 276 "Unmovable", 277 "Movable", 278 "Reclaimable", 279 "HighAtomic", 280 #ifdef CONFIG_CMA 281 "CMA", 282 #endif 283 #ifdef CONFIG_MEMORY_ISOLATION 284 "Isolate", 285 #endif 286 }; 287 288 int min_free_kbytes = 1024; 289 int user_min_free_kbytes = -1; 290 static int watermark_boost_factor __read_mostly = 15000; 291 static int watermark_scale_factor = 10; 292 293 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */ 294 int movable_zone; 295 EXPORT_SYMBOL(movable_zone); 296 297 #if MAX_NUMNODES > 1 298 unsigned int nr_node_ids __read_mostly = MAX_NUMNODES; 299 unsigned int nr_online_nodes __read_mostly = 1; 300 EXPORT_SYMBOL(nr_node_ids); 301 EXPORT_SYMBOL(nr_online_nodes); 302 #endif 303 304 static bool page_contains_unaccepted(struct page *page, unsigned int order); 305 static void accept_page(struct page *page, unsigned int order); 306 static bool try_to_accept_memory(struct zone *zone, unsigned int order); 307 static inline bool has_unaccepted_memory(void); 308 static bool __free_unaccepted(struct page *page); 309 310 int page_group_by_mobility_disabled __read_mostly; 311 312 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 313 /* 314 * During boot we initialize deferred pages on-demand, as needed, but once 315 * page_alloc_init_late() has finished, the deferred pages are all initialized, 316 * and we can permanently disable that path. 317 */ 318 DEFINE_STATIC_KEY_TRUE(deferred_pages); 319 320 static inline bool deferred_pages_enabled(void) 321 { 322 return static_branch_unlikely(&deferred_pages); 323 } 324 325 /* 326 * deferred_grow_zone() is __init, but it is called from 327 * get_page_from_freelist() during early boot until deferred_pages permanently 328 * disables this call. This is why we have refdata wrapper to avoid warning, 329 * and to ensure that the function body gets unloaded. 330 */ 331 static bool __ref 332 _deferred_grow_zone(struct zone *zone, unsigned int order) 333 { 334 return deferred_grow_zone(zone, order); 335 } 336 #else 337 static inline bool deferred_pages_enabled(void) 338 { 339 return false; 340 } 341 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */ 342 343 /* Return a pointer to the bitmap storing bits affecting a block of pages */ 344 static inline unsigned long *get_pageblock_bitmap(const struct page *page, 345 unsigned long pfn) 346 { 347 #ifdef CONFIG_SPARSEMEM 348 return section_to_usemap(__pfn_to_section(pfn)); 349 #else 350 return page_zone(page)->pageblock_flags; 351 #endif /* CONFIG_SPARSEMEM */ 352 } 353 354 static inline int pfn_to_bitidx(const struct page *page, unsigned long pfn) 355 { 356 #ifdef CONFIG_SPARSEMEM 357 pfn &= (PAGES_PER_SECTION-1); 358 #else 359 pfn = pfn - pageblock_start_pfn(page_zone(page)->zone_start_pfn); 360 #endif /* CONFIG_SPARSEMEM */ 361 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS; 362 } 363 364 /** 365 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages 366 * @page: The page within the block of interest 367 * @pfn: The target page frame number 368 * @mask: mask of bits that the caller is interested in 369 * 370 * Return: pageblock_bits flags 371 */ 372 unsigned long get_pfnblock_flags_mask(const struct page *page, 373 unsigned long pfn, unsigned long mask) 374 { 375 unsigned long *bitmap; 376 unsigned long bitidx, word_bitidx; 377 unsigned long word; 378 379 bitmap = get_pageblock_bitmap(page, pfn); 380 bitidx = pfn_to_bitidx(page, pfn); 381 word_bitidx = bitidx / BITS_PER_LONG; 382 bitidx &= (BITS_PER_LONG-1); 383 /* 384 * This races, without locks, with set_pfnblock_flags_mask(). Ensure 385 * a consistent read of the memory array, so that results, even though 386 * racy, are not corrupted. 387 */ 388 word = READ_ONCE(bitmap[word_bitidx]); 389 return (word >> bitidx) & mask; 390 } 391 392 static __always_inline int get_pfnblock_migratetype(const struct page *page, 393 unsigned long pfn) 394 { 395 return get_pfnblock_flags_mask(page, pfn, MIGRATETYPE_MASK); 396 } 397 398 /** 399 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages 400 * @page: The page within the block of interest 401 * @flags: The flags to set 402 * @pfn: The target page frame number 403 * @mask: mask of bits that the caller is interested in 404 */ 405 void set_pfnblock_flags_mask(struct page *page, unsigned long flags, 406 unsigned long pfn, 407 unsigned long mask) 408 { 409 unsigned long *bitmap; 410 unsigned long bitidx, word_bitidx; 411 unsigned long word; 412 413 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4); 414 BUILD_BUG_ON(MIGRATE_TYPES > (1 << PB_migratetype_bits)); 415 416 bitmap = get_pageblock_bitmap(page, pfn); 417 bitidx = pfn_to_bitidx(page, pfn); 418 word_bitidx = bitidx / BITS_PER_LONG; 419 bitidx &= (BITS_PER_LONG-1); 420 421 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page); 422 423 mask <<= bitidx; 424 flags <<= bitidx; 425 426 word = READ_ONCE(bitmap[word_bitidx]); 427 do { 428 } while (!try_cmpxchg(&bitmap[word_bitidx], &word, (word & ~mask) | flags)); 429 } 430 431 void set_pageblock_migratetype(struct page *page, int migratetype) 432 { 433 if (unlikely(page_group_by_mobility_disabled && 434 migratetype < MIGRATE_PCPTYPES)) 435 migratetype = MIGRATE_UNMOVABLE; 436 437 set_pfnblock_flags_mask(page, (unsigned long)migratetype, 438 page_to_pfn(page), MIGRATETYPE_MASK); 439 } 440 441 #ifdef CONFIG_DEBUG_VM 442 static int page_outside_zone_boundaries(struct zone *zone, struct page *page) 443 { 444 int ret; 445 unsigned seq; 446 unsigned long pfn = page_to_pfn(page); 447 unsigned long sp, start_pfn; 448 449 do { 450 seq = zone_span_seqbegin(zone); 451 start_pfn = zone->zone_start_pfn; 452 sp = zone->spanned_pages; 453 ret = !zone_spans_pfn(zone, pfn); 454 } while (zone_span_seqretry(zone, seq)); 455 456 if (ret) 457 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n", 458 pfn, zone_to_nid(zone), zone->name, 459 start_pfn, start_pfn + sp); 460 461 return ret; 462 } 463 464 /* 465 * Temporary debugging check for pages not lying within a given zone. 466 */ 467 static int __maybe_unused bad_range(struct zone *zone, struct page *page) 468 { 469 if (page_outside_zone_boundaries(zone, page)) 470 return 1; 471 if (zone != page_zone(page)) 472 return 1; 473 474 return 0; 475 } 476 #else 477 static inline int __maybe_unused bad_range(struct zone *zone, struct page *page) 478 { 479 return 0; 480 } 481 #endif 482 483 static void bad_page(struct page *page, const char *reason) 484 { 485 static unsigned long resume; 486 static unsigned long nr_shown; 487 static unsigned long nr_unshown; 488 489 /* 490 * Allow a burst of 60 reports, then keep quiet for that minute; 491 * or allow a steady drip of one report per second. 492 */ 493 if (nr_shown == 60) { 494 if (time_before(jiffies, resume)) { 495 nr_unshown++; 496 goto out; 497 } 498 if (nr_unshown) { 499 pr_alert( 500 "BUG: Bad page state: %lu messages suppressed\n", 501 nr_unshown); 502 nr_unshown = 0; 503 } 504 nr_shown = 0; 505 } 506 if (nr_shown++ == 0) 507 resume = jiffies + 60 * HZ; 508 509 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n", 510 current->comm, page_to_pfn(page)); 511 dump_page(page, reason); 512 513 print_modules(); 514 dump_stack(); 515 out: 516 /* Leave bad fields for debug, except PageBuddy could make trouble */ 517 page_mapcount_reset(page); /* remove PageBuddy */ 518 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 519 } 520 521 static inline unsigned int order_to_pindex(int migratetype, int order) 522 { 523 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 524 if (order > PAGE_ALLOC_COSTLY_ORDER) { 525 VM_BUG_ON(order != pageblock_order); 526 return NR_LOWORDER_PCP_LISTS; 527 } 528 #else 529 VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER); 530 #endif 531 532 return (MIGRATE_PCPTYPES * order) + migratetype; 533 } 534 535 static inline int pindex_to_order(unsigned int pindex) 536 { 537 int order = pindex / MIGRATE_PCPTYPES; 538 539 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 540 if (pindex == NR_LOWORDER_PCP_LISTS) 541 order = pageblock_order; 542 #else 543 VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER); 544 #endif 545 546 return order; 547 } 548 549 static inline bool pcp_allowed_order(unsigned int order) 550 { 551 if (order <= PAGE_ALLOC_COSTLY_ORDER) 552 return true; 553 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 554 if (order == pageblock_order) 555 return true; 556 #endif 557 return false; 558 } 559 560 static inline void free_the_page(struct page *page, unsigned int order) 561 { 562 if (pcp_allowed_order(order)) /* Via pcp? */ 563 free_unref_page(page, order); 564 else 565 __free_pages_ok(page, order, FPI_NONE); 566 } 567 568 /* 569 * Higher-order pages are called "compound pages". They are structured thusly: 570 * 571 * The first PAGE_SIZE page is called the "head page" and have PG_head set. 572 * 573 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded 574 * in bit 0 of page->compound_head. The rest of bits is pointer to head page. 575 * 576 * The first tail page's ->compound_order holds the order of allocation. 577 * This usage means that zero-order pages may not be compound. 578 */ 579 580 void prep_compound_page(struct page *page, unsigned int order) 581 { 582 int i; 583 int nr_pages = 1 << order; 584 585 __SetPageHead(page); 586 for (i = 1; i < nr_pages; i++) 587 prep_compound_tail(page, i); 588 589 prep_compound_head(page, order); 590 } 591 592 void destroy_large_folio(struct folio *folio) 593 { 594 if (folio_test_hugetlb(folio)) { 595 free_huge_folio(folio); 596 return; 597 } 598 599 if (folio_test_large_rmappable(folio)) 600 folio_undo_large_rmappable(folio); 601 602 mem_cgroup_uncharge(folio); 603 free_the_page(&folio->page, folio_order(folio)); 604 } 605 606 static inline void set_buddy_order(struct page *page, unsigned int order) 607 { 608 set_page_private(page, order); 609 __SetPageBuddy(page); 610 } 611 612 #ifdef CONFIG_COMPACTION 613 static inline struct capture_control *task_capc(struct zone *zone) 614 { 615 struct capture_control *capc = current->capture_control; 616 617 return unlikely(capc) && 618 !(current->flags & PF_KTHREAD) && 619 !capc->page && 620 capc->cc->zone == zone ? capc : NULL; 621 } 622 623 static inline bool 624 compaction_capture(struct capture_control *capc, struct page *page, 625 int order, int migratetype) 626 { 627 if (!capc || order != capc->cc->order) 628 return false; 629 630 /* Do not accidentally pollute CMA or isolated regions*/ 631 if (is_migrate_cma(migratetype) || 632 is_migrate_isolate(migratetype)) 633 return false; 634 635 /* 636 * Do not let lower order allocations pollute a movable pageblock. 637 * This might let an unmovable request use a reclaimable pageblock 638 * and vice-versa but no more than normal fallback logic which can 639 * have trouble finding a high-order free page. 640 */ 641 if (order < pageblock_order && migratetype == MIGRATE_MOVABLE) 642 return false; 643 644 capc->page = page; 645 return true; 646 } 647 648 #else 649 static inline struct capture_control *task_capc(struct zone *zone) 650 { 651 return NULL; 652 } 653 654 static inline bool 655 compaction_capture(struct capture_control *capc, struct page *page, 656 int order, int migratetype) 657 { 658 return false; 659 } 660 #endif /* CONFIG_COMPACTION */ 661 662 /* Used for pages not on another list */ 663 static inline void add_to_free_list(struct page *page, struct zone *zone, 664 unsigned int order, int migratetype) 665 { 666 struct free_area *area = &zone->free_area[order]; 667 668 list_add(&page->buddy_list, &area->free_list[migratetype]); 669 area->nr_free++; 670 } 671 672 /* Used for pages not on another list */ 673 static inline void add_to_free_list_tail(struct page *page, struct zone *zone, 674 unsigned int order, int migratetype) 675 { 676 struct free_area *area = &zone->free_area[order]; 677 678 list_add_tail(&page->buddy_list, &area->free_list[migratetype]); 679 area->nr_free++; 680 } 681 682 /* 683 * Used for pages which are on another list. Move the pages to the tail 684 * of the list - so the moved pages won't immediately be considered for 685 * allocation again (e.g., optimization for memory onlining). 686 */ 687 static inline void move_to_free_list(struct page *page, struct zone *zone, 688 unsigned int order, int migratetype) 689 { 690 struct free_area *area = &zone->free_area[order]; 691 692 list_move_tail(&page->buddy_list, &area->free_list[migratetype]); 693 } 694 695 static inline void del_page_from_free_list(struct page *page, struct zone *zone, 696 unsigned int order) 697 { 698 /* clear reported state and update reported page count */ 699 if (page_reported(page)) 700 __ClearPageReported(page); 701 702 list_del(&page->buddy_list); 703 __ClearPageBuddy(page); 704 set_page_private(page, 0); 705 zone->free_area[order].nr_free--; 706 } 707 708 static inline struct page *get_page_from_free_area(struct free_area *area, 709 int migratetype) 710 { 711 return list_first_entry_or_null(&area->free_list[migratetype], 712 struct page, buddy_list); 713 } 714 715 /* 716 * If this is not the largest possible page, check if the buddy 717 * of the next-highest order is free. If it is, it's possible 718 * that pages are being freed that will coalesce soon. In case, 719 * that is happening, add the free page to the tail of the list 720 * so it's less likely to be used soon and more likely to be merged 721 * as a higher order page 722 */ 723 static inline bool 724 buddy_merge_likely(unsigned long pfn, unsigned long buddy_pfn, 725 struct page *page, unsigned int order) 726 { 727 unsigned long higher_page_pfn; 728 struct page *higher_page; 729 730 if (order >= MAX_ORDER - 1) 731 return false; 732 733 higher_page_pfn = buddy_pfn & pfn; 734 higher_page = page + (higher_page_pfn - pfn); 735 736 return find_buddy_page_pfn(higher_page, higher_page_pfn, order + 1, 737 NULL) != NULL; 738 } 739 740 /* 741 * Freeing function for a buddy system allocator. 742 * 743 * The concept of a buddy system is to maintain direct-mapped table 744 * (containing bit values) for memory blocks of various "orders". 745 * The bottom level table contains the map for the smallest allocatable 746 * units of memory (here, pages), and each level above it describes 747 * pairs of units from the levels below, hence, "buddies". 748 * At a high level, all that happens here is marking the table entry 749 * at the bottom level available, and propagating the changes upward 750 * as necessary, plus some accounting needed to play nicely with other 751 * parts of the VM system. 752 * At each level, we keep a list of pages, which are heads of continuous 753 * free pages of length of (1 << order) and marked with PageBuddy. 754 * Page's order is recorded in page_private(page) field. 755 * So when we are allocating or freeing one, we can derive the state of the 756 * other. That is, if we allocate a small block, and both were 757 * free, the remainder of the region must be split into blocks. 758 * If a block is freed, and its buddy is also free, then this 759 * triggers coalescing into a block of larger size. 760 * 761 * -- nyc 762 */ 763 764 static inline void __free_one_page(struct page *page, 765 unsigned long pfn, 766 struct zone *zone, unsigned int order, 767 int migratetype, fpi_t fpi_flags) 768 { 769 struct capture_control *capc = task_capc(zone); 770 unsigned long buddy_pfn = 0; 771 unsigned long combined_pfn; 772 struct page *buddy; 773 bool to_tail; 774 775 VM_BUG_ON(!zone_is_initialized(zone)); 776 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page); 777 778 VM_BUG_ON(migratetype == -1); 779 if (likely(!is_migrate_isolate(migratetype))) 780 __mod_zone_freepage_state(zone, 1 << order, migratetype); 781 782 VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page); 783 VM_BUG_ON_PAGE(bad_range(zone, page), page); 784 785 while (order < MAX_ORDER) { 786 if (compaction_capture(capc, page, order, migratetype)) { 787 __mod_zone_freepage_state(zone, -(1 << order), 788 migratetype); 789 return; 790 } 791 792 buddy = find_buddy_page_pfn(page, pfn, order, &buddy_pfn); 793 if (!buddy) 794 goto done_merging; 795 796 if (unlikely(order >= pageblock_order)) { 797 /* 798 * We want to prevent merge between freepages on pageblock 799 * without fallbacks and normal pageblock. Without this, 800 * pageblock isolation could cause incorrect freepage or CMA 801 * accounting or HIGHATOMIC accounting. 802 */ 803 int buddy_mt = get_pfnblock_migratetype(buddy, buddy_pfn); 804 805 if (migratetype != buddy_mt 806 && (!migratetype_is_mergeable(migratetype) || 807 !migratetype_is_mergeable(buddy_mt))) 808 goto done_merging; 809 } 810 811 /* 812 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page, 813 * merge with it and move up one order. 814 */ 815 if (page_is_guard(buddy)) 816 clear_page_guard(zone, buddy, order, migratetype); 817 else 818 del_page_from_free_list(buddy, zone, order); 819 combined_pfn = buddy_pfn & pfn; 820 page = page + (combined_pfn - pfn); 821 pfn = combined_pfn; 822 order++; 823 } 824 825 done_merging: 826 set_buddy_order(page, order); 827 828 if (fpi_flags & FPI_TO_TAIL) 829 to_tail = true; 830 else if (is_shuffle_order(order)) 831 to_tail = shuffle_pick_tail(); 832 else 833 to_tail = buddy_merge_likely(pfn, buddy_pfn, page, order); 834 835 if (to_tail) 836 add_to_free_list_tail(page, zone, order, migratetype); 837 else 838 add_to_free_list(page, zone, order, migratetype); 839 840 /* Notify page reporting subsystem of freed page */ 841 if (!(fpi_flags & FPI_SKIP_REPORT_NOTIFY)) 842 page_reporting_notify_free(order); 843 } 844 845 /** 846 * split_free_page() -- split a free page at split_pfn_offset 847 * @free_page: the original free page 848 * @order: the order of the page 849 * @split_pfn_offset: split offset within the page 850 * 851 * Return -ENOENT if the free page is changed, otherwise 0 852 * 853 * It is used when the free page crosses two pageblocks with different migratetypes 854 * at split_pfn_offset within the page. The split free page will be put into 855 * separate migratetype lists afterwards. Otherwise, the function achieves 856 * nothing. 857 */ 858 int split_free_page(struct page *free_page, 859 unsigned int order, unsigned long split_pfn_offset) 860 { 861 struct zone *zone = page_zone(free_page); 862 unsigned long free_page_pfn = page_to_pfn(free_page); 863 unsigned long pfn; 864 unsigned long flags; 865 int free_page_order; 866 int mt; 867 int ret = 0; 868 869 if (split_pfn_offset == 0) 870 return ret; 871 872 spin_lock_irqsave(&zone->lock, flags); 873 874 if (!PageBuddy(free_page) || buddy_order(free_page) != order) { 875 ret = -ENOENT; 876 goto out; 877 } 878 879 mt = get_pfnblock_migratetype(free_page, free_page_pfn); 880 if (likely(!is_migrate_isolate(mt))) 881 __mod_zone_freepage_state(zone, -(1UL << order), mt); 882 883 del_page_from_free_list(free_page, zone, order); 884 for (pfn = free_page_pfn; 885 pfn < free_page_pfn + (1UL << order);) { 886 int mt = get_pfnblock_migratetype(pfn_to_page(pfn), pfn); 887 888 free_page_order = min_t(unsigned int, 889 pfn ? __ffs(pfn) : order, 890 __fls(split_pfn_offset)); 891 __free_one_page(pfn_to_page(pfn), pfn, zone, free_page_order, 892 mt, FPI_NONE); 893 pfn += 1UL << free_page_order; 894 split_pfn_offset -= (1UL << free_page_order); 895 /* we have done the first part, now switch to second part */ 896 if (split_pfn_offset == 0) 897 split_pfn_offset = (1UL << order) - (pfn - free_page_pfn); 898 } 899 out: 900 spin_unlock_irqrestore(&zone->lock, flags); 901 return ret; 902 } 903 /* 904 * A bad page could be due to a number of fields. Instead of multiple branches, 905 * try and check multiple fields with one check. The caller must do a detailed 906 * check if necessary. 907 */ 908 static inline bool page_expected_state(struct page *page, 909 unsigned long check_flags) 910 { 911 if (unlikely(atomic_read(&page->_mapcount) != -1)) 912 return false; 913 914 if (unlikely((unsigned long)page->mapping | 915 page_ref_count(page) | 916 #ifdef CONFIG_MEMCG 917 page->memcg_data | 918 #endif 919 (page->flags & check_flags))) 920 return false; 921 922 return true; 923 } 924 925 static const char *page_bad_reason(struct page *page, unsigned long flags) 926 { 927 const char *bad_reason = NULL; 928 929 if (unlikely(atomic_read(&page->_mapcount) != -1)) 930 bad_reason = "nonzero mapcount"; 931 if (unlikely(page->mapping != NULL)) 932 bad_reason = "non-NULL mapping"; 933 if (unlikely(page_ref_count(page) != 0)) 934 bad_reason = "nonzero _refcount"; 935 if (unlikely(page->flags & flags)) { 936 if (flags == PAGE_FLAGS_CHECK_AT_PREP) 937 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag(s) set"; 938 else 939 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set"; 940 } 941 #ifdef CONFIG_MEMCG 942 if (unlikely(page->memcg_data)) 943 bad_reason = "page still charged to cgroup"; 944 #endif 945 return bad_reason; 946 } 947 948 static void free_page_is_bad_report(struct page *page) 949 { 950 bad_page(page, 951 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_FREE)); 952 } 953 954 static inline bool free_page_is_bad(struct page *page) 955 { 956 if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE))) 957 return false; 958 959 /* Something has gone sideways, find it */ 960 free_page_is_bad_report(page); 961 return true; 962 } 963 964 static inline bool is_check_pages_enabled(void) 965 { 966 return static_branch_unlikely(&check_pages_enabled); 967 } 968 969 static int free_tail_page_prepare(struct page *head_page, struct page *page) 970 { 971 struct folio *folio = (struct folio *)head_page; 972 int ret = 1; 973 974 /* 975 * We rely page->lru.next never has bit 0 set, unless the page 976 * is PageTail(). Let's make sure that's true even for poisoned ->lru. 977 */ 978 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1); 979 980 if (!is_check_pages_enabled()) { 981 ret = 0; 982 goto out; 983 } 984 switch (page - head_page) { 985 case 1: 986 /* the first tail page: these may be in place of ->mapping */ 987 if (unlikely(folio_entire_mapcount(folio))) { 988 bad_page(page, "nonzero entire_mapcount"); 989 goto out; 990 } 991 if (unlikely(atomic_read(&folio->_nr_pages_mapped))) { 992 bad_page(page, "nonzero nr_pages_mapped"); 993 goto out; 994 } 995 if (unlikely(atomic_read(&folio->_pincount))) { 996 bad_page(page, "nonzero pincount"); 997 goto out; 998 } 999 break; 1000 case 2: 1001 /* 1002 * the second tail page: ->mapping is 1003 * deferred_list.next -- ignore value. 1004 */ 1005 break; 1006 default: 1007 if (page->mapping != TAIL_MAPPING) { 1008 bad_page(page, "corrupted mapping in tail page"); 1009 goto out; 1010 } 1011 break; 1012 } 1013 if (unlikely(!PageTail(page))) { 1014 bad_page(page, "PageTail not set"); 1015 goto out; 1016 } 1017 if (unlikely(compound_head(page) != head_page)) { 1018 bad_page(page, "compound_head not consistent"); 1019 goto out; 1020 } 1021 ret = 0; 1022 out: 1023 page->mapping = NULL; 1024 clear_compound_head(page); 1025 return ret; 1026 } 1027 1028 /* 1029 * Skip KASAN memory poisoning when either: 1030 * 1031 * 1. For generic KASAN: deferred memory initialization has not yet completed. 1032 * Tag-based KASAN modes skip pages freed via deferred memory initialization 1033 * using page tags instead (see below). 1034 * 2. For tag-based KASAN modes: the page has a match-all KASAN tag, indicating 1035 * that error detection is disabled for accesses via the page address. 1036 * 1037 * Pages will have match-all tags in the following circumstances: 1038 * 1039 * 1. Pages are being initialized for the first time, including during deferred 1040 * memory init; see the call to page_kasan_tag_reset in __init_single_page. 1041 * 2. The allocation was not unpoisoned due to __GFP_SKIP_KASAN, with the 1042 * exception of pages unpoisoned by kasan_unpoison_vmalloc. 1043 * 3. The allocation was excluded from being checked due to sampling, 1044 * see the call to kasan_unpoison_pages. 1045 * 1046 * Poisoning pages during deferred memory init will greatly lengthen the 1047 * process and cause problem in large memory systems as the deferred pages 1048 * initialization is done with interrupt disabled. 1049 * 1050 * Assuming that there will be no reference to those newly initialized 1051 * pages before they are ever allocated, this should have no effect on 1052 * KASAN memory tracking as the poison will be properly inserted at page 1053 * allocation time. The only corner case is when pages are allocated by 1054 * on-demand allocation and then freed again before the deferred pages 1055 * initialization is done, but this is not likely to happen. 1056 */ 1057 static inline bool should_skip_kasan_poison(struct page *page, fpi_t fpi_flags) 1058 { 1059 if (IS_ENABLED(CONFIG_KASAN_GENERIC)) 1060 return deferred_pages_enabled(); 1061 1062 return page_kasan_tag(page) == 0xff; 1063 } 1064 1065 static void kernel_init_pages(struct page *page, int numpages) 1066 { 1067 int i; 1068 1069 /* s390's use of memset() could override KASAN redzones. */ 1070 kasan_disable_current(); 1071 for (i = 0; i < numpages; i++) 1072 clear_highpage_kasan_tagged(page + i); 1073 kasan_enable_current(); 1074 } 1075 1076 static __always_inline bool free_pages_prepare(struct page *page, 1077 unsigned int order, fpi_t fpi_flags) 1078 { 1079 int bad = 0; 1080 bool skip_kasan_poison = should_skip_kasan_poison(page, fpi_flags); 1081 bool init = want_init_on_free(); 1082 bool compound = PageCompound(page); 1083 1084 VM_BUG_ON_PAGE(PageTail(page), page); 1085 1086 trace_mm_page_free(page, order); 1087 kmsan_free_page(page, order); 1088 1089 if (memcg_kmem_online() && PageMemcgKmem(page)) 1090 __memcg_kmem_uncharge_page(page, order); 1091 1092 if (unlikely(PageHWPoison(page)) && !order) { 1093 /* Do not let hwpoison pages hit pcplists/buddy */ 1094 reset_page_owner(page, order); 1095 page_table_check_free(page, order); 1096 return false; 1097 } 1098 1099 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page); 1100 1101 /* 1102 * Check tail pages before head page information is cleared to 1103 * avoid checking PageCompound for order-0 pages. 1104 */ 1105 if (unlikely(order)) { 1106 int i; 1107 1108 if (compound) 1109 page[1].flags &= ~PAGE_FLAGS_SECOND; 1110 for (i = 1; i < (1 << order); i++) { 1111 if (compound) 1112 bad += free_tail_page_prepare(page, page + i); 1113 if (is_check_pages_enabled()) { 1114 if (free_page_is_bad(page + i)) { 1115 bad++; 1116 continue; 1117 } 1118 } 1119 (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP; 1120 } 1121 } 1122 if (PageMappingFlags(page)) 1123 page->mapping = NULL; 1124 if (is_check_pages_enabled()) { 1125 if (free_page_is_bad(page)) 1126 bad++; 1127 if (bad) 1128 return false; 1129 } 1130 1131 page_cpupid_reset_last(page); 1132 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP; 1133 reset_page_owner(page, order); 1134 page_table_check_free(page, order); 1135 1136 if (!PageHighMem(page)) { 1137 debug_check_no_locks_freed(page_address(page), 1138 PAGE_SIZE << order); 1139 debug_check_no_obj_freed(page_address(page), 1140 PAGE_SIZE << order); 1141 } 1142 1143 kernel_poison_pages(page, 1 << order); 1144 1145 /* 1146 * As memory initialization might be integrated into KASAN, 1147 * KASAN poisoning and memory initialization code must be 1148 * kept together to avoid discrepancies in behavior. 1149 * 1150 * With hardware tag-based KASAN, memory tags must be set before the 1151 * page becomes unavailable via debug_pagealloc or arch_free_page. 1152 */ 1153 if (!skip_kasan_poison) { 1154 kasan_poison_pages(page, order, init); 1155 1156 /* Memory is already initialized if KASAN did it internally. */ 1157 if (kasan_has_integrated_init()) 1158 init = false; 1159 } 1160 if (init) 1161 kernel_init_pages(page, 1 << order); 1162 1163 /* 1164 * arch_free_page() can make the page's contents inaccessible. s390 1165 * does this. So nothing which can access the page's contents should 1166 * happen after this. 1167 */ 1168 arch_free_page(page, order); 1169 1170 debug_pagealloc_unmap_pages(page, 1 << order); 1171 1172 return true; 1173 } 1174 1175 /* 1176 * Frees a number of pages from the PCP lists 1177 * Assumes all pages on list are in same zone. 1178 * count is the number of pages to free. 1179 */ 1180 static void free_pcppages_bulk(struct zone *zone, int count, 1181 struct per_cpu_pages *pcp, 1182 int pindex) 1183 { 1184 unsigned long flags; 1185 unsigned int order; 1186 bool isolated_pageblocks; 1187 struct page *page; 1188 1189 /* 1190 * Ensure proper count is passed which otherwise would stuck in the 1191 * below while (list_empty(list)) loop. 1192 */ 1193 count = min(pcp->count, count); 1194 1195 /* Ensure requested pindex is drained first. */ 1196 pindex = pindex - 1; 1197 1198 spin_lock_irqsave(&zone->lock, flags); 1199 isolated_pageblocks = has_isolate_pageblock(zone); 1200 1201 while (count > 0) { 1202 struct list_head *list; 1203 int nr_pages; 1204 1205 /* Remove pages from lists in a round-robin fashion. */ 1206 do { 1207 if (++pindex > NR_PCP_LISTS - 1) 1208 pindex = 0; 1209 list = &pcp->lists[pindex]; 1210 } while (list_empty(list)); 1211 1212 order = pindex_to_order(pindex); 1213 nr_pages = 1 << order; 1214 do { 1215 int mt; 1216 1217 page = list_last_entry(list, struct page, pcp_list); 1218 mt = get_pcppage_migratetype(page); 1219 1220 /* must delete to avoid corrupting pcp list */ 1221 list_del(&page->pcp_list); 1222 count -= nr_pages; 1223 pcp->count -= nr_pages; 1224 1225 /* MIGRATE_ISOLATE page should not go to pcplists */ 1226 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page); 1227 /* Pageblock could have been isolated meanwhile */ 1228 if (unlikely(isolated_pageblocks)) 1229 mt = get_pageblock_migratetype(page); 1230 1231 __free_one_page(page, page_to_pfn(page), zone, order, mt, FPI_NONE); 1232 trace_mm_page_pcpu_drain(page, order, mt); 1233 } while (count > 0 && !list_empty(list)); 1234 } 1235 1236 spin_unlock_irqrestore(&zone->lock, flags); 1237 } 1238 1239 static void free_one_page(struct zone *zone, 1240 struct page *page, unsigned long pfn, 1241 unsigned int order, 1242 int migratetype, fpi_t fpi_flags) 1243 { 1244 unsigned long flags; 1245 1246 spin_lock_irqsave(&zone->lock, flags); 1247 if (unlikely(has_isolate_pageblock(zone) || 1248 is_migrate_isolate(migratetype))) { 1249 migratetype = get_pfnblock_migratetype(page, pfn); 1250 } 1251 __free_one_page(page, pfn, zone, order, migratetype, fpi_flags); 1252 spin_unlock_irqrestore(&zone->lock, flags); 1253 } 1254 1255 static void __free_pages_ok(struct page *page, unsigned int order, 1256 fpi_t fpi_flags) 1257 { 1258 unsigned long flags; 1259 int migratetype; 1260 unsigned long pfn = page_to_pfn(page); 1261 struct zone *zone = page_zone(page); 1262 1263 if (!free_pages_prepare(page, order, fpi_flags)) 1264 return; 1265 1266 /* 1267 * Calling get_pfnblock_migratetype() without spin_lock_irqsave() here 1268 * is used to avoid calling get_pfnblock_migratetype() under the lock. 1269 * This will reduce the lock holding time. 1270 */ 1271 migratetype = get_pfnblock_migratetype(page, pfn); 1272 1273 spin_lock_irqsave(&zone->lock, flags); 1274 if (unlikely(has_isolate_pageblock(zone) || 1275 is_migrate_isolate(migratetype))) { 1276 migratetype = get_pfnblock_migratetype(page, pfn); 1277 } 1278 __free_one_page(page, pfn, zone, order, migratetype, fpi_flags); 1279 spin_unlock_irqrestore(&zone->lock, flags); 1280 1281 __count_vm_events(PGFREE, 1 << order); 1282 } 1283 1284 void __free_pages_core(struct page *page, unsigned int order) 1285 { 1286 unsigned int nr_pages = 1 << order; 1287 struct page *p = page; 1288 unsigned int loop; 1289 1290 /* 1291 * When initializing the memmap, __init_single_page() sets the refcount 1292 * of all pages to 1 ("allocated"/"not free"). We have to set the 1293 * refcount of all involved pages to 0. 1294 */ 1295 prefetchw(p); 1296 for (loop = 0; loop < (nr_pages - 1); loop++, p++) { 1297 prefetchw(p + 1); 1298 __ClearPageReserved(p); 1299 set_page_count(p, 0); 1300 } 1301 __ClearPageReserved(p); 1302 set_page_count(p, 0); 1303 1304 atomic_long_add(nr_pages, &page_zone(page)->managed_pages); 1305 1306 if (page_contains_unaccepted(page, order)) { 1307 if (order == MAX_ORDER && __free_unaccepted(page)) 1308 return; 1309 1310 accept_page(page, order); 1311 } 1312 1313 /* 1314 * Bypass PCP and place fresh pages right to the tail, primarily 1315 * relevant for memory onlining. 1316 */ 1317 __free_pages_ok(page, order, FPI_TO_TAIL); 1318 } 1319 1320 /* 1321 * Check that the whole (or subset of) a pageblock given by the interval of 1322 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it 1323 * with the migration of free compaction scanner. 1324 * 1325 * Return struct page pointer of start_pfn, or NULL if checks were not passed. 1326 * 1327 * It's possible on some configurations to have a setup like node0 node1 node0 1328 * i.e. it's possible that all pages within a zones range of pages do not 1329 * belong to a single zone. We assume that a border between node0 and node1 1330 * can occur within a single pageblock, but not a node0 node1 node0 1331 * interleaving within a single pageblock. It is therefore sufficient to check 1332 * the first and last page of a pageblock and avoid checking each individual 1333 * page in a pageblock. 1334 * 1335 * Note: the function may return non-NULL struct page even for a page block 1336 * which contains a memory hole (i.e. there is no physical memory for a subset 1337 * of the pfn range). For example, if the pageblock order is MAX_ORDER, which 1338 * will fall into 2 sub-sections, and the end pfn of the pageblock may be hole 1339 * even though the start pfn is online and valid. This should be safe most of 1340 * the time because struct pages are still initialized via init_unavailable_range() 1341 * and pfn walkers shouldn't touch any physical memory range for which they do 1342 * not recognize any specific metadata in struct pages. 1343 */ 1344 struct page *__pageblock_pfn_to_page(unsigned long start_pfn, 1345 unsigned long end_pfn, struct zone *zone) 1346 { 1347 struct page *start_page; 1348 struct page *end_page; 1349 1350 /* end_pfn is one past the range we are checking */ 1351 end_pfn--; 1352 1353 if (!pfn_valid(end_pfn)) 1354 return NULL; 1355 1356 start_page = pfn_to_online_page(start_pfn); 1357 if (!start_page) 1358 return NULL; 1359 1360 if (page_zone(start_page) != zone) 1361 return NULL; 1362 1363 end_page = pfn_to_page(end_pfn); 1364 1365 /* This gives a shorter code than deriving page_zone(end_page) */ 1366 if (page_zone_id(start_page) != page_zone_id(end_page)) 1367 return NULL; 1368 1369 return start_page; 1370 } 1371 1372 /* 1373 * The order of subdivision here is critical for the IO subsystem. 1374 * Please do not alter this order without good reasons and regression 1375 * testing. Specifically, as large blocks of memory are subdivided, 1376 * the order in which smaller blocks are delivered depends on the order 1377 * they're subdivided in this function. This is the primary factor 1378 * influencing the order in which pages are delivered to the IO 1379 * subsystem according to empirical testing, and this is also justified 1380 * by considering the behavior of a buddy system containing a single 1381 * large block of memory acted on by a series of small allocations. 1382 * This behavior is a critical factor in sglist merging's success. 1383 * 1384 * -- nyc 1385 */ 1386 static inline void expand(struct zone *zone, struct page *page, 1387 int low, int high, int migratetype) 1388 { 1389 unsigned long size = 1 << high; 1390 1391 while (high > low) { 1392 high--; 1393 size >>= 1; 1394 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]); 1395 1396 /* 1397 * Mark as guard pages (or page), that will allow to 1398 * merge back to allocator when buddy will be freed. 1399 * Corresponding page table entries will not be touched, 1400 * pages will stay not present in virtual address space 1401 */ 1402 if (set_page_guard(zone, &page[size], high, migratetype)) 1403 continue; 1404 1405 add_to_free_list(&page[size], zone, high, migratetype); 1406 set_buddy_order(&page[size], high); 1407 } 1408 } 1409 1410 static void check_new_page_bad(struct page *page) 1411 { 1412 if (unlikely(page->flags & __PG_HWPOISON)) { 1413 /* Don't complain about hwpoisoned pages */ 1414 page_mapcount_reset(page); /* remove PageBuddy */ 1415 return; 1416 } 1417 1418 bad_page(page, 1419 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_PREP)); 1420 } 1421 1422 /* 1423 * This page is about to be returned from the page allocator 1424 */ 1425 static int check_new_page(struct page *page) 1426 { 1427 if (likely(page_expected_state(page, 1428 PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON))) 1429 return 0; 1430 1431 check_new_page_bad(page); 1432 return 1; 1433 } 1434 1435 static inline bool check_new_pages(struct page *page, unsigned int order) 1436 { 1437 if (is_check_pages_enabled()) { 1438 for (int i = 0; i < (1 << order); i++) { 1439 struct page *p = page + i; 1440 1441 if (check_new_page(p)) 1442 return true; 1443 } 1444 } 1445 1446 return false; 1447 } 1448 1449 static inline bool should_skip_kasan_unpoison(gfp_t flags) 1450 { 1451 /* Don't skip if a software KASAN mode is enabled. */ 1452 if (IS_ENABLED(CONFIG_KASAN_GENERIC) || 1453 IS_ENABLED(CONFIG_KASAN_SW_TAGS)) 1454 return false; 1455 1456 /* Skip, if hardware tag-based KASAN is not enabled. */ 1457 if (!kasan_hw_tags_enabled()) 1458 return true; 1459 1460 /* 1461 * With hardware tag-based KASAN enabled, skip if this has been 1462 * requested via __GFP_SKIP_KASAN. 1463 */ 1464 return flags & __GFP_SKIP_KASAN; 1465 } 1466 1467 static inline bool should_skip_init(gfp_t flags) 1468 { 1469 /* Don't skip, if hardware tag-based KASAN is not enabled. */ 1470 if (!kasan_hw_tags_enabled()) 1471 return false; 1472 1473 /* For hardware tag-based KASAN, skip if requested. */ 1474 return (flags & __GFP_SKIP_ZERO); 1475 } 1476 1477 inline void post_alloc_hook(struct page *page, unsigned int order, 1478 gfp_t gfp_flags) 1479 { 1480 bool init = !want_init_on_free() && want_init_on_alloc(gfp_flags) && 1481 !should_skip_init(gfp_flags); 1482 bool zero_tags = init && (gfp_flags & __GFP_ZEROTAGS); 1483 int i; 1484 1485 set_page_private(page, 0); 1486 set_page_refcounted(page); 1487 1488 arch_alloc_page(page, order); 1489 debug_pagealloc_map_pages(page, 1 << order); 1490 1491 /* 1492 * Page unpoisoning must happen before memory initialization. 1493 * Otherwise, the poison pattern will be overwritten for __GFP_ZERO 1494 * allocations and the page unpoisoning code will complain. 1495 */ 1496 kernel_unpoison_pages(page, 1 << order); 1497 1498 /* 1499 * As memory initialization might be integrated into KASAN, 1500 * KASAN unpoisoning and memory initializion code must be 1501 * kept together to avoid discrepancies in behavior. 1502 */ 1503 1504 /* 1505 * If memory tags should be zeroed 1506 * (which happens only when memory should be initialized as well). 1507 */ 1508 if (zero_tags) { 1509 /* Initialize both memory and memory tags. */ 1510 for (i = 0; i != 1 << order; ++i) 1511 tag_clear_highpage(page + i); 1512 1513 /* Take note that memory was initialized by the loop above. */ 1514 init = false; 1515 } 1516 if (!should_skip_kasan_unpoison(gfp_flags) && 1517 kasan_unpoison_pages(page, order, init)) { 1518 /* Take note that memory was initialized by KASAN. */ 1519 if (kasan_has_integrated_init()) 1520 init = false; 1521 } else { 1522 /* 1523 * If memory tags have not been set by KASAN, reset the page 1524 * tags to ensure page_address() dereferencing does not fault. 1525 */ 1526 for (i = 0; i != 1 << order; ++i) 1527 page_kasan_tag_reset(page + i); 1528 } 1529 /* If memory is still not initialized, initialize it now. */ 1530 if (init) 1531 kernel_init_pages(page, 1 << order); 1532 1533 set_page_owner(page, order, gfp_flags); 1534 page_table_check_alloc(page, order); 1535 } 1536 1537 static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags, 1538 unsigned int alloc_flags) 1539 { 1540 post_alloc_hook(page, order, gfp_flags); 1541 1542 if (order && (gfp_flags & __GFP_COMP)) 1543 prep_compound_page(page, order); 1544 1545 /* 1546 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to 1547 * allocate the page. The expectation is that the caller is taking 1548 * steps that will free more memory. The caller should avoid the page 1549 * being used for !PFMEMALLOC purposes. 1550 */ 1551 if (alloc_flags & ALLOC_NO_WATERMARKS) 1552 set_page_pfmemalloc(page); 1553 else 1554 clear_page_pfmemalloc(page); 1555 } 1556 1557 /* 1558 * Go through the free lists for the given migratetype and remove 1559 * the smallest available page from the freelists 1560 */ 1561 static __always_inline 1562 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order, 1563 int migratetype) 1564 { 1565 unsigned int current_order; 1566 struct free_area *area; 1567 struct page *page; 1568 1569 /* Find a page of the appropriate size in the preferred list */ 1570 for (current_order = order; current_order <= MAX_ORDER; ++current_order) { 1571 area = &(zone->free_area[current_order]); 1572 page = get_page_from_free_area(area, migratetype); 1573 if (!page) 1574 continue; 1575 del_page_from_free_list(page, zone, current_order); 1576 expand(zone, page, order, current_order, migratetype); 1577 set_pcppage_migratetype(page, migratetype); 1578 trace_mm_page_alloc_zone_locked(page, order, migratetype, 1579 pcp_allowed_order(order) && 1580 migratetype < MIGRATE_PCPTYPES); 1581 return page; 1582 } 1583 1584 return NULL; 1585 } 1586 1587 1588 /* 1589 * This array describes the order lists are fallen back to when 1590 * the free lists for the desirable migrate type are depleted 1591 * 1592 * The other migratetypes do not have fallbacks. 1593 */ 1594 static int fallbacks[MIGRATE_TYPES][MIGRATE_PCPTYPES - 1] = { 1595 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE }, 1596 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE }, 1597 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE }, 1598 }; 1599 1600 #ifdef CONFIG_CMA 1601 static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone, 1602 unsigned int order) 1603 { 1604 return __rmqueue_smallest(zone, order, MIGRATE_CMA); 1605 } 1606 #else 1607 static inline struct page *__rmqueue_cma_fallback(struct zone *zone, 1608 unsigned int order) { return NULL; } 1609 #endif 1610 1611 /* 1612 * Move the free pages in a range to the freelist tail of the requested type. 1613 * Note that start_page and end_pages are not aligned on a pageblock 1614 * boundary. If alignment is required, use move_freepages_block() 1615 */ 1616 static int move_freepages(struct zone *zone, 1617 unsigned long start_pfn, unsigned long end_pfn, 1618 int migratetype, int *num_movable) 1619 { 1620 struct page *page; 1621 unsigned long pfn; 1622 unsigned int order; 1623 int pages_moved = 0; 1624 1625 for (pfn = start_pfn; pfn <= end_pfn;) { 1626 page = pfn_to_page(pfn); 1627 if (!PageBuddy(page)) { 1628 /* 1629 * We assume that pages that could be isolated for 1630 * migration are movable. But we don't actually try 1631 * isolating, as that would be expensive. 1632 */ 1633 if (num_movable && 1634 (PageLRU(page) || __PageMovable(page))) 1635 (*num_movable)++; 1636 pfn++; 1637 continue; 1638 } 1639 1640 /* Make sure we are not inadvertently changing nodes */ 1641 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page); 1642 VM_BUG_ON_PAGE(page_zone(page) != zone, page); 1643 1644 order = buddy_order(page); 1645 move_to_free_list(page, zone, order, migratetype); 1646 pfn += 1 << order; 1647 pages_moved += 1 << order; 1648 } 1649 1650 return pages_moved; 1651 } 1652 1653 int move_freepages_block(struct zone *zone, struct page *page, 1654 int migratetype, int *num_movable) 1655 { 1656 unsigned long start_pfn, end_pfn, pfn; 1657 1658 if (num_movable) 1659 *num_movable = 0; 1660 1661 pfn = page_to_pfn(page); 1662 start_pfn = pageblock_start_pfn(pfn); 1663 end_pfn = pageblock_end_pfn(pfn) - 1; 1664 1665 /* Do not cross zone boundaries */ 1666 if (!zone_spans_pfn(zone, start_pfn)) 1667 start_pfn = pfn; 1668 if (!zone_spans_pfn(zone, end_pfn)) 1669 return 0; 1670 1671 return move_freepages(zone, start_pfn, end_pfn, migratetype, 1672 num_movable); 1673 } 1674 1675 static void change_pageblock_range(struct page *pageblock_page, 1676 int start_order, int migratetype) 1677 { 1678 int nr_pageblocks = 1 << (start_order - pageblock_order); 1679 1680 while (nr_pageblocks--) { 1681 set_pageblock_migratetype(pageblock_page, migratetype); 1682 pageblock_page += pageblock_nr_pages; 1683 } 1684 } 1685 1686 /* 1687 * When we are falling back to another migratetype during allocation, try to 1688 * steal extra free pages from the same pageblocks to satisfy further 1689 * allocations, instead of polluting multiple pageblocks. 1690 * 1691 * If we are stealing a relatively large buddy page, it is likely there will 1692 * be more free pages in the pageblock, so try to steal them all. For 1693 * reclaimable and unmovable allocations, we steal regardless of page size, 1694 * as fragmentation caused by those allocations polluting movable pageblocks 1695 * is worse than movable allocations stealing from unmovable and reclaimable 1696 * pageblocks. 1697 */ 1698 static bool can_steal_fallback(unsigned int order, int start_mt) 1699 { 1700 /* 1701 * Leaving this order check is intended, although there is 1702 * relaxed order check in next check. The reason is that 1703 * we can actually steal whole pageblock if this condition met, 1704 * but, below check doesn't guarantee it and that is just heuristic 1705 * so could be changed anytime. 1706 */ 1707 if (order >= pageblock_order) 1708 return true; 1709 1710 if (order >= pageblock_order / 2 || 1711 start_mt == MIGRATE_RECLAIMABLE || 1712 start_mt == MIGRATE_UNMOVABLE || 1713 page_group_by_mobility_disabled) 1714 return true; 1715 1716 return false; 1717 } 1718 1719 static inline bool boost_watermark(struct zone *zone) 1720 { 1721 unsigned long max_boost; 1722 1723 if (!watermark_boost_factor) 1724 return false; 1725 /* 1726 * Don't bother in zones that are unlikely to produce results. 1727 * On small machines, including kdump capture kernels running 1728 * in a small area, boosting the watermark can cause an out of 1729 * memory situation immediately. 1730 */ 1731 if ((pageblock_nr_pages * 4) > zone_managed_pages(zone)) 1732 return false; 1733 1734 max_boost = mult_frac(zone->_watermark[WMARK_HIGH], 1735 watermark_boost_factor, 10000); 1736 1737 /* 1738 * high watermark may be uninitialised if fragmentation occurs 1739 * very early in boot so do not boost. We do not fall 1740 * through and boost by pageblock_nr_pages as failing 1741 * allocations that early means that reclaim is not going 1742 * to help and it may even be impossible to reclaim the 1743 * boosted watermark resulting in a hang. 1744 */ 1745 if (!max_boost) 1746 return false; 1747 1748 max_boost = max(pageblock_nr_pages, max_boost); 1749 1750 zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages, 1751 max_boost); 1752 1753 return true; 1754 } 1755 1756 /* 1757 * This function implements actual steal behaviour. If order is large enough, 1758 * we can steal whole pageblock. If not, we first move freepages in this 1759 * pageblock to our migratetype and determine how many already-allocated pages 1760 * are there in the pageblock with a compatible migratetype. If at least half 1761 * of pages are free or compatible, we can change migratetype of the pageblock 1762 * itself, so pages freed in the future will be put on the correct free list. 1763 */ 1764 static void steal_suitable_fallback(struct zone *zone, struct page *page, 1765 unsigned int alloc_flags, int start_type, bool whole_block) 1766 { 1767 unsigned int current_order = buddy_order(page); 1768 int free_pages, movable_pages, alike_pages; 1769 int old_block_type; 1770 1771 old_block_type = get_pageblock_migratetype(page); 1772 1773 /* 1774 * This can happen due to races and we want to prevent broken 1775 * highatomic accounting. 1776 */ 1777 if (is_migrate_highatomic(old_block_type)) 1778 goto single_page; 1779 1780 /* Take ownership for orders >= pageblock_order */ 1781 if (current_order >= pageblock_order) { 1782 change_pageblock_range(page, current_order, start_type); 1783 goto single_page; 1784 } 1785 1786 /* 1787 * Boost watermarks to increase reclaim pressure to reduce the 1788 * likelihood of future fallbacks. Wake kswapd now as the node 1789 * may be balanced overall and kswapd will not wake naturally. 1790 */ 1791 if (boost_watermark(zone) && (alloc_flags & ALLOC_KSWAPD)) 1792 set_bit(ZONE_BOOSTED_WATERMARK, &zone->flags); 1793 1794 /* We are not allowed to try stealing from the whole block */ 1795 if (!whole_block) 1796 goto single_page; 1797 1798 free_pages = move_freepages_block(zone, page, start_type, 1799 &movable_pages); 1800 /* moving whole block can fail due to zone boundary conditions */ 1801 if (!free_pages) 1802 goto single_page; 1803 1804 /* 1805 * Determine how many pages are compatible with our allocation. 1806 * For movable allocation, it's the number of movable pages which 1807 * we just obtained. For other types it's a bit more tricky. 1808 */ 1809 if (start_type == MIGRATE_MOVABLE) { 1810 alike_pages = movable_pages; 1811 } else { 1812 /* 1813 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation 1814 * to MOVABLE pageblock, consider all non-movable pages as 1815 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or 1816 * vice versa, be conservative since we can't distinguish the 1817 * exact migratetype of non-movable pages. 1818 */ 1819 if (old_block_type == MIGRATE_MOVABLE) 1820 alike_pages = pageblock_nr_pages 1821 - (free_pages + movable_pages); 1822 else 1823 alike_pages = 0; 1824 } 1825 /* 1826 * If a sufficient number of pages in the block are either free or of 1827 * compatible migratability as our allocation, claim the whole block. 1828 */ 1829 if (free_pages + alike_pages >= (1 << (pageblock_order-1)) || 1830 page_group_by_mobility_disabled) 1831 set_pageblock_migratetype(page, start_type); 1832 1833 return; 1834 1835 single_page: 1836 move_to_free_list(page, zone, current_order, start_type); 1837 } 1838 1839 /* 1840 * Check whether there is a suitable fallback freepage with requested order. 1841 * If only_stealable is true, this function returns fallback_mt only if 1842 * we can steal other freepages all together. This would help to reduce 1843 * fragmentation due to mixed migratetype pages in one pageblock. 1844 */ 1845 int find_suitable_fallback(struct free_area *area, unsigned int order, 1846 int migratetype, bool only_stealable, bool *can_steal) 1847 { 1848 int i; 1849 int fallback_mt; 1850 1851 if (area->nr_free == 0) 1852 return -1; 1853 1854 *can_steal = false; 1855 for (i = 0; i < MIGRATE_PCPTYPES - 1 ; i++) { 1856 fallback_mt = fallbacks[migratetype][i]; 1857 if (free_area_empty(area, fallback_mt)) 1858 continue; 1859 1860 if (can_steal_fallback(order, migratetype)) 1861 *can_steal = true; 1862 1863 if (!only_stealable) 1864 return fallback_mt; 1865 1866 if (*can_steal) 1867 return fallback_mt; 1868 } 1869 1870 return -1; 1871 } 1872 1873 /* 1874 * Reserve a pageblock for exclusive use of high-order atomic allocations if 1875 * there are no empty page blocks that contain a page with a suitable order 1876 */ 1877 static void reserve_highatomic_pageblock(struct page *page, struct zone *zone) 1878 { 1879 int mt; 1880 unsigned long max_managed, flags; 1881 1882 /* 1883 * Limit the number reserved to 1 pageblock or roughly 1% of a zone. 1884 * Check is race-prone but harmless. 1885 */ 1886 max_managed = (zone_managed_pages(zone) / 100) + pageblock_nr_pages; 1887 if (zone->nr_reserved_highatomic >= max_managed) 1888 return; 1889 1890 spin_lock_irqsave(&zone->lock, flags); 1891 1892 /* Recheck the nr_reserved_highatomic limit under the lock */ 1893 if (zone->nr_reserved_highatomic >= max_managed) 1894 goto out_unlock; 1895 1896 /* Yoink! */ 1897 mt = get_pageblock_migratetype(page); 1898 /* Only reserve normal pageblocks (i.e., they can merge with others) */ 1899 if (migratetype_is_mergeable(mt)) { 1900 zone->nr_reserved_highatomic += pageblock_nr_pages; 1901 set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC); 1902 move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL); 1903 } 1904 1905 out_unlock: 1906 spin_unlock_irqrestore(&zone->lock, flags); 1907 } 1908 1909 /* 1910 * Used when an allocation is about to fail under memory pressure. This 1911 * potentially hurts the reliability of high-order allocations when under 1912 * intense memory pressure but failed atomic allocations should be easier 1913 * to recover from than an OOM. 1914 * 1915 * If @force is true, try to unreserve a pageblock even though highatomic 1916 * pageblock is exhausted. 1917 */ 1918 static bool unreserve_highatomic_pageblock(const struct alloc_context *ac, 1919 bool force) 1920 { 1921 struct zonelist *zonelist = ac->zonelist; 1922 unsigned long flags; 1923 struct zoneref *z; 1924 struct zone *zone; 1925 struct page *page; 1926 int order; 1927 bool ret; 1928 1929 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->highest_zoneidx, 1930 ac->nodemask) { 1931 /* 1932 * Preserve at least one pageblock unless memory pressure 1933 * is really high. 1934 */ 1935 if (!force && zone->nr_reserved_highatomic <= 1936 pageblock_nr_pages) 1937 continue; 1938 1939 spin_lock_irqsave(&zone->lock, flags); 1940 for (order = 0; order <= MAX_ORDER; order++) { 1941 struct free_area *area = &(zone->free_area[order]); 1942 1943 page = get_page_from_free_area(area, MIGRATE_HIGHATOMIC); 1944 if (!page) 1945 continue; 1946 1947 /* 1948 * In page freeing path, migratetype change is racy so 1949 * we can counter several free pages in a pageblock 1950 * in this loop although we changed the pageblock type 1951 * from highatomic to ac->migratetype. So we should 1952 * adjust the count once. 1953 */ 1954 if (is_migrate_highatomic_page(page)) { 1955 /* 1956 * It should never happen but changes to 1957 * locking could inadvertently allow a per-cpu 1958 * drain to add pages to MIGRATE_HIGHATOMIC 1959 * while unreserving so be safe and watch for 1960 * underflows. 1961 */ 1962 zone->nr_reserved_highatomic -= min( 1963 pageblock_nr_pages, 1964 zone->nr_reserved_highatomic); 1965 } 1966 1967 /* 1968 * Convert to ac->migratetype and avoid the normal 1969 * pageblock stealing heuristics. Minimally, the caller 1970 * is doing the work and needs the pages. More 1971 * importantly, if the block was always converted to 1972 * MIGRATE_UNMOVABLE or another type then the number 1973 * of pageblocks that cannot be completely freed 1974 * may increase. 1975 */ 1976 set_pageblock_migratetype(page, ac->migratetype); 1977 ret = move_freepages_block(zone, page, ac->migratetype, 1978 NULL); 1979 if (ret) { 1980 spin_unlock_irqrestore(&zone->lock, flags); 1981 return ret; 1982 } 1983 } 1984 spin_unlock_irqrestore(&zone->lock, flags); 1985 } 1986 1987 return false; 1988 } 1989 1990 /* 1991 * Try finding a free buddy page on the fallback list and put it on the free 1992 * list of requested migratetype, possibly along with other pages from the same 1993 * block, depending on fragmentation avoidance heuristics. Returns true if 1994 * fallback was found so that __rmqueue_smallest() can grab it. 1995 * 1996 * The use of signed ints for order and current_order is a deliberate 1997 * deviation from the rest of this file, to make the for loop 1998 * condition simpler. 1999 */ 2000 static __always_inline bool 2001 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype, 2002 unsigned int alloc_flags) 2003 { 2004 struct free_area *area; 2005 int current_order; 2006 int min_order = order; 2007 struct page *page; 2008 int fallback_mt; 2009 bool can_steal; 2010 2011 /* 2012 * Do not steal pages from freelists belonging to other pageblocks 2013 * i.e. orders < pageblock_order. If there are no local zones free, 2014 * the zonelists will be reiterated without ALLOC_NOFRAGMENT. 2015 */ 2016 if (order < pageblock_order && alloc_flags & ALLOC_NOFRAGMENT) 2017 min_order = pageblock_order; 2018 2019 /* 2020 * Find the largest available free page in the other list. This roughly 2021 * approximates finding the pageblock with the most free pages, which 2022 * would be too costly to do exactly. 2023 */ 2024 for (current_order = MAX_ORDER; current_order >= min_order; 2025 --current_order) { 2026 area = &(zone->free_area[current_order]); 2027 fallback_mt = find_suitable_fallback(area, current_order, 2028 start_migratetype, false, &can_steal); 2029 if (fallback_mt == -1) 2030 continue; 2031 2032 /* 2033 * We cannot steal all free pages from the pageblock and the 2034 * requested migratetype is movable. In that case it's better to 2035 * steal and split the smallest available page instead of the 2036 * largest available page, because even if the next movable 2037 * allocation falls back into a different pageblock than this 2038 * one, it won't cause permanent fragmentation. 2039 */ 2040 if (!can_steal && start_migratetype == MIGRATE_MOVABLE 2041 && current_order > order) 2042 goto find_smallest; 2043 2044 goto do_steal; 2045 } 2046 2047 return false; 2048 2049 find_smallest: 2050 for (current_order = order; current_order <= MAX_ORDER; 2051 current_order++) { 2052 area = &(zone->free_area[current_order]); 2053 fallback_mt = find_suitable_fallback(area, current_order, 2054 start_migratetype, false, &can_steal); 2055 if (fallback_mt != -1) 2056 break; 2057 } 2058 2059 /* 2060 * This should not happen - we already found a suitable fallback 2061 * when looking for the largest page. 2062 */ 2063 VM_BUG_ON(current_order > MAX_ORDER); 2064 2065 do_steal: 2066 page = get_page_from_free_area(area, fallback_mt); 2067 2068 steal_suitable_fallback(zone, page, alloc_flags, start_migratetype, 2069 can_steal); 2070 2071 trace_mm_page_alloc_extfrag(page, order, current_order, 2072 start_migratetype, fallback_mt); 2073 2074 return true; 2075 2076 } 2077 2078 /* 2079 * Do the hard work of removing an element from the buddy allocator. 2080 * Call me with the zone->lock already held. 2081 */ 2082 static __always_inline struct page * 2083 __rmqueue(struct zone *zone, unsigned int order, int migratetype, 2084 unsigned int alloc_flags) 2085 { 2086 struct page *page; 2087 2088 if (IS_ENABLED(CONFIG_CMA)) { 2089 /* 2090 * Balance movable allocations between regular and CMA areas by 2091 * allocating from CMA when over half of the zone's free memory 2092 * is in the CMA area. 2093 */ 2094 if (alloc_flags & ALLOC_CMA && 2095 zone_page_state(zone, NR_FREE_CMA_PAGES) > 2096 zone_page_state(zone, NR_FREE_PAGES) / 2) { 2097 page = __rmqueue_cma_fallback(zone, order); 2098 if (page) 2099 return page; 2100 } 2101 } 2102 retry: 2103 page = __rmqueue_smallest(zone, order, migratetype); 2104 if (unlikely(!page)) { 2105 if (alloc_flags & ALLOC_CMA) 2106 page = __rmqueue_cma_fallback(zone, order); 2107 2108 if (!page && __rmqueue_fallback(zone, order, migratetype, 2109 alloc_flags)) 2110 goto retry; 2111 } 2112 return page; 2113 } 2114 2115 /* 2116 * Obtain a specified number of elements from the buddy allocator, all under 2117 * a single hold of the lock, for efficiency. Add them to the supplied list. 2118 * Returns the number of new pages which were placed at *list. 2119 */ 2120 static int rmqueue_bulk(struct zone *zone, unsigned int order, 2121 unsigned long count, struct list_head *list, 2122 int migratetype, unsigned int alloc_flags) 2123 { 2124 unsigned long flags; 2125 int i; 2126 2127 spin_lock_irqsave(&zone->lock, flags); 2128 for (i = 0; i < count; ++i) { 2129 struct page *page = __rmqueue(zone, order, migratetype, 2130 alloc_flags); 2131 if (unlikely(page == NULL)) 2132 break; 2133 2134 /* 2135 * Split buddy pages returned by expand() are received here in 2136 * physical page order. The page is added to the tail of 2137 * caller's list. From the callers perspective, the linked list 2138 * is ordered by page number under some conditions. This is 2139 * useful for IO devices that can forward direction from the 2140 * head, thus also in the physical page order. This is useful 2141 * for IO devices that can merge IO requests if the physical 2142 * pages are ordered properly. 2143 */ 2144 list_add_tail(&page->pcp_list, list); 2145 if (is_migrate_cma(get_pcppage_migratetype(page))) 2146 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES, 2147 -(1 << order)); 2148 } 2149 2150 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order)); 2151 spin_unlock_irqrestore(&zone->lock, flags); 2152 2153 return i; 2154 } 2155 2156 /* 2157 * Called from the vmstat counter updater to decay the PCP high. 2158 * Return whether there are addition works to do. 2159 */ 2160 int decay_pcp_high(struct zone *zone, struct per_cpu_pages *pcp) 2161 { 2162 int high_min, to_drain, batch; 2163 int todo = 0; 2164 2165 high_min = READ_ONCE(pcp->high_min); 2166 batch = READ_ONCE(pcp->batch); 2167 /* 2168 * Decrease pcp->high periodically to try to free possible 2169 * idle PCP pages. And, avoid to free too many pages to 2170 * control latency. This caps pcp->high decrement too. 2171 */ 2172 if (pcp->high > high_min) { 2173 pcp->high = max3(pcp->count - (batch << CONFIG_PCP_BATCH_SCALE_MAX), 2174 pcp->high - (pcp->high >> 3), high_min); 2175 if (pcp->high > high_min) 2176 todo++; 2177 } 2178 2179 to_drain = pcp->count - pcp->high; 2180 if (to_drain > 0) { 2181 spin_lock(&pcp->lock); 2182 free_pcppages_bulk(zone, to_drain, pcp, 0); 2183 spin_unlock(&pcp->lock); 2184 todo++; 2185 } 2186 2187 return todo; 2188 } 2189 2190 #ifdef CONFIG_NUMA 2191 /* 2192 * Called from the vmstat counter updater to drain pagesets of this 2193 * currently executing processor on remote nodes after they have 2194 * expired. 2195 */ 2196 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp) 2197 { 2198 int to_drain, batch; 2199 2200 batch = READ_ONCE(pcp->batch); 2201 to_drain = min(pcp->count, batch); 2202 if (to_drain > 0) { 2203 spin_lock(&pcp->lock); 2204 free_pcppages_bulk(zone, to_drain, pcp, 0); 2205 spin_unlock(&pcp->lock); 2206 } 2207 } 2208 #endif 2209 2210 /* 2211 * Drain pcplists of the indicated processor and zone. 2212 */ 2213 static void drain_pages_zone(unsigned int cpu, struct zone *zone) 2214 { 2215 struct per_cpu_pages *pcp; 2216 2217 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu); 2218 if (pcp->count) { 2219 spin_lock(&pcp->lock); 2220 free_pcppages_bulk(zone, pcp->count, pcp, 0); 2221 spin_unlock(&pcp->lock); 2222 } 2223 } 2224 2225 /* 2226 * Drain pcplists of all zones on the indicated processor. 2227 */ 2228 static void drain_pages(unsigned int cpu) 2229 { 2230 struct zone *zone; 2231 2232 for_each_populated_zone(zone) { 2233 drain_pages_zone(cpu, zone); 2234 } 2235 } 2236 2237 /* 2238 * Spill all of this CPU's per-cpu pages back into the buddy allocator. 2239 */ 2240 void drain_local_pages(struct zone *zone) 2241 { 2242 int cpu = smp_processor_id(); 2243 2244 if (zone) 2245 drain_pages_zone(cpu, zone); 2246 else 2247 drain_pages(cpu); 2248 } 2249 2250 /* 2251 * The implementation of drain_all_pages(), exposing an extra parameter to 2252 * drain on all cpus. 2253 * 2254 * drain_all_pages() is optimized to only execute on cpus where pcplists are 2255 * not empty. The check for non-emptiness can however race with a free to 2256 * pcplist that has not yet increased the pcp->count from 0 to 1. Callers 2257 * that need the guarantee that every CPU has drained can disable the 2258 * optimizing racy check. 2259 */ 2260 static void __drain_all_pages(struct zone *zone, bool force_all_cpus) 2261 { 2262 int cpu; 2263 2264 /* 2265 * Allocate in the BSS so we won't require allocation in 2266 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y 2267 */ 2268 static cpumask_t cpus_with_pcps; 2269 2270 /* 2271 * Do not drain if one is already in progress unless it's specific to 2272 * a zone. Such callers are primarily CMA and memory hotplug and need 2273 * the drain to be complete when the call returns. 2274 */ 2275 if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) { 2276 if (!zone) 2277 return; 2278 mutex_lock(&pcpu_drain_mutex); 2279 } 2280 2281 /* 2282 * We don't care about racing with CPU hotplug event 2283 * as offline notification will cause the notified 2284 * cpu to drain that CPU pcps and on_each_cpu_mask 2285 * disables preemption as part of its processing 2286 */ 2287 for_each_online_cpu(cpu) { 2288 struct per_cpu_pages *pcp; 2289 struct zone *z; 2290 bool has_pcps = false; 2291 2292 if (force_all_cpus) { 2293 /* 2294 * The pcp.count check is racy, some callers need a 2295 * guarantee that no cpu is missed. 2296 */ 2297 has_pcps = true; 2298 } else if (zone) { 2299 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu); 2300 if (pcp->count) 2301 has_pcps = true; 2302 } else { 2303 for_each_populated_zone(z) { 2304 pcp = per_cpu_ptr(z->per_cpu_pageset, cpu); 2305 if (pcp->count) { 2306 has_pcps = true; 2307 break; 2308 } 2309 } 2310 } 2311 2312 if (has_pcps) 2313 cpumask_set_cpu(cpu, &cpus_with_pcps); 2314 else 2315 cpumask_clear_cpu(cpu, &cpus_with_pcps); 2316 } 2317 2318 for_each_cpu(cpu, &cpus_with_pcps) { 2319 if (zone) 2320 drain_pages_zone(cpu, zone); 2321 else 2322 drain_pages(cpu); 2323 } 2324 2325 mutex_unlock(&pcpu_drain_mutex); 2326 } 2327 2328 /* 2329 * Spill all the per-cpu pages from all CPUs back into the buddy allocator. 2330 * 2331 * When zone parameter is non-NULL, spill just the single zone's pages. 2332 */ 2333 void drain_all_pages(struct zone *zone) 2334 { 2335 __drain_all_pages(zone, false); 2336 } 2337 2338 static bool free_unref_page_prepare(struct page *page, unsigned long pfn, 2339 unsigned int order) 2340 { 2341 int migratetype; 2342 2343 if (!free_pages_prepare(page, order, FPI_NONE)) 2344 return false; 2345 2346 migratetype = get_pfnblock_migratetype(page, pfn); 2347 set_pcppage_migratetype(page, migratetype); 2348 return true; 2349 } 2350 2351 static int nr_pcp_free(struct per_cpu_pages *pcp, int batch, int high, bool free_high) 2352 { 2353 int min_nr_free, max_nr_free; 2354 2355 /* Free as much as possible if batch freeing high-order pages. */ 2356 if (unlikely(free_high)) 2357 return min(pcp->count, batch << CONFIG_PCP_BATCH_SCALE_MAX); 2358 2359 /* Check for PCP disabled or boot pageset */ 2360 if (unlikely(high < batch)) 2361 return 1; 2362 2363 /* Leave at least pcp->batch pages on the list */ 2364 min_nr_free = batch; 2365 max_nr_free = high - batch; 2366 2367 /* 2368 * Increase the batch number to the number of the consecutive 2369 * freed pages to reduce zone lock contention. 2370 */ 2371 batch = clamp_t(int, pcp->free_count, min_nr_free, max_nr_free); 2372 2373 return batch; 2374 } 2375 2376 static int nr_pcp_high(struct per_cpu_pages *pcp, struct zone *zone, 2377 int batch, bool free_high) 2378 { 2379 int high, high_min, high_max; 2380 2381 high_min = READ_ONCE(pcp->high_min); 2382 high_max = READ_ONCE(pcp->high_max); 2383 high = pcp->high = clamp(pcp->high, high_min, high_max); 2384 2385 if (unlikely(!high)) 2386 return 0; 2387 2388 if (unlikely(free_high)) { 2389 pcp->high = max(high - (batch << CONFIG_PCP_BATCH_SCALE_MAX), 2390 high_min); 2391 return 0; 2392 } 2393 2394 /* 2395 * If reclaim is active, limit the number of pages that can be 2396 * stored on pcp lists 2397 */ 2398 if (test_bit(ZONE_RECLAIM_ACTIVE, &zone->flags)) { 2399 int free_count = max_t(int, pcp->free_count, batch); 2400 2401 pcp->high = max(high - free_count, high_min); 2402 return min(batch << 2, pcp->high); 2403 } 2404 2405 if (high_min == high_max) 2406 return high; 2407 2408 if (test_bit(ZONE_BELOW_HIGH, &zone->flags)) { 2409 int free_count = max_t(int, pcp->free_count, batch); 2410 2411 pcp->high = max(high - free_count, high_min); 2412 high = max(pcp->count, high_min); 2413 } else if (pcp->count >= high) { 2414 int need_high = pcp->free_count + batch; 2415 2416 /* pcp->high should be large enough to hold batch freed pages */ 2417 if (pcp->high < need_high) 2418 pcp->high = clamp(need_high, high_min, high_max); 2419 } 2420 2421 return high; 2422 } 2423 2424 static void free_unref_page_commit(struct zone *zone, struct per_cpu_pages *pcp, 2425 struct page *page, int migratetype, 2426 unsigned int order) 2427 { 2428 int high, batch; 2429 int pindex; 2430 bool free_high = false; 2431 2432 /* 2433 * On freeing, reduce the number of pages that are batch allocated. 2434 * See nr_pcp_alloc() where alloc_factor is increased for subsequent 2435 * allocations. 2436 */ 2437 pcp->alloc_factor >>= 1; 2438 __count_vm_events(PGFREE, 1 << order); 2439 pindex = order_to_pindex(migratetype, order); 2440 list_add(&page->pcp_list, &pcp->lists[pindex]); 2441 pcp->count += 1 << order; 2442 2443 batch = READ_ONCE(pcp->batch); 2444 /* 2445 * As high-order pages other than THP's stored on PCP can contribute 2446 * to fragmentation, limit the number stored when PCP is heavily 2447 * freeing without allocation. The remainder after bulk freeing 2448 * stops will be drained from vmstat refresh context. 2449 */ 2450 if (order && order <= PAGE_ALLOC_COSTLY_ORDER) { 2451 free_high = (pcp->free_count >= batch && 2452 (pcp->flags & PCPF_PREV_FREE_HIGH_ORDER) && 2453 (!(pcp->flags & PCPF_FREE_HIGH_BATCH) || 2454 pcp->count >= READ_ONCE(batch))); 2455 pcp->flags |= PCPF_PREV_FREE_HIGH_ORDER; 2456 } else if (pcp->flags & PCPF_PREV_FREE_HIGH_ORDER) { 2457 pcp->flags &= ~PCPF_PREV_FREE_HIGH_ORDER; 2458 } 2459 if (pcp->free_count < (batch << CONFIG_PCP_BATCH_SCALE_MAX)) 2460 pcp->free_count += (1 << order); 2461 high = nr_pcp_high(pcp, zone, batch, free_high); 2462 if (pcp->count >= high) { 2463 free_pcppages_bulk(zone, nr_pcp_free(pcp, batch, high, free_high), 2464 pcp, pindex); 2465 if (test_bit(ZONE_BELOW_HIGH, &zone->flags) && 2466 zone_watermark_ok(zone, 0, high_wmark_pages(zone), 2467 ZONE_MOVABLE, 0)) 2468 clear_bit(ZONE_BELOW_HIGH, &zone->flags); 2469 } 2470 } 2471 2472 /* 2473 * Free a pcp page 2474 */ 2475 void free_unref_page(struct page *page, unsigned int order) 2476 { 2477 unsigned long __maybe_unused UP_flags; 2478 struct per_cpu_pages *pcp; 2479 struct zone *zone; 2480 unsigned long pfn = page_to_pfn(page); 2481 int migratetype, pcpmigratetype; 2482 2483 if (!free_unref_page_prepare(page, pfn, order)) 2484 return; 2485 2486 /* 2487 * We only track unmovable, reclaimable and movable on pcp lists. 2488 * Place ISOLATE pages on the isolated list because they are being 2489 * offlined but treat HIGHATOMIC and CMA as movable pages so we can 2490 * get those areas back if necessary. Otherwise, we may have to free 2491 * excessively into the page allocator 2492 */ 2493 migratetype = pcpmigratetype = get_pcppage_migratetype(page); 2494 if (unlikely(migratetype >= MIGRATE_PCPTYPES)) { 2495 if (unlikely(is_migrate_isolate(migratetype))) { 2496 free_one_page(page_zone(page), page, pfn, order, migratetype, FPI_NONE); 2497 return; 2498 } 2499 pcpmigratetype = MIGRATE_MOVABLE; 2500 } 2501 2502 zone = page_zone(page); 2503 pcp_trylock_prepare(UP_flags); 2504 pcp = pcp_spin_trylock(zone->per_cpu_pageset); 2505 if (pcp) { 2506 free_unref_page_commit(zone, pcp, page, pcpmigratetype, order); 2507 pcp_spin_unlock(pcp); 2508 } else { 2509 free_one_page(zone, page, pfn, order, migratetype, FPI_NONE); 2510 } 2511 pcp_trylock_finish(UP_flags); 2512 } 2513 2514 /* 2515 * Free a list of 0-order pages 2516 */ 2517 void free_unref_page_list(struct list_head *list) 2518 { 2519 unsigned long __maybe_unused UP_flags; 2520 struct page *page, *next; 2521 struct per_cpu_pages *pcp = NULL; 2522 struct zone *locked_zone = NULL; 2523 int batch_count = 0; 2524 int migratetype; 2525 2526 /* Prepare pages for freeing */ 2527 list_for_each_entry_safe(page, next, list, lru) { 2528 unsigned long pfn = page_to_pfn(page); 2529 if (!free_unref_page_prepare(page, pfn, 0)) { 2530 list_del(&page->lru); 2531 continue; 2532 } 2533 2534 /* 2535 * Free isolated pages directly to the allocator, see 2536 * comment in free_unref_page. 2537 */ 2538 migratetype = get_pcppage_migratetype(page); 2539 if (unlikely(is_migrate_isolate(migratetype))) { 2540 list_del(&page->lru); 2541 free_one_page(page_zone(page), page, pfn, 0, migratetype, FPI_NONE); 2542 continue; 2543 } 2544 } 2545 2546 list_for_each_entry_safe(page, next, list, lru) { 2547 struct zone *zone = page_zone(page); 2548 2549 list_del(&page->lru); 2550 migratetype = get_pcppage_migratetype(page); 2551 2552 /* 2553 * Either different zone requiring a different pcp lock or 2554 * excessive lock hold times when freeing a large list of 2555 * pages. 2556 */ 2557 if (zone != locked_zone || batch_count == SWAP_CLUSTER_MAX) { 2558 if (pcp) { 2559 pcp_spin_unlock(pcp); 2560 pcp_trylock_finish(UP_flags); 2561 } 2562 2563 batch_count = 0; 2564 2565 /* 2566 * trylock is necessary as pages may be getting freed 2567 * from IRQ or SoftIRQ context after an IO completion. 2568 */ 2569 pcp_trylock_prepare(UP_flags); 2570 pcp = pcp_spin_trylock(zone->per_cpu_pageset); 2571 if (unlikely(!pcp)) { 2572 pcp_trylock_finish(UP_flags); 2573 free_one_page(zone, page, page_to_pfn(page), 2574 0, migratetype, FPI_NONE); 2575 locked_zone = NULL; 2576 continue; 2577 } 2578 locked_zone = zone; 2579 } 2580 2581 /* 2582 * Non-isolated types over MIGRATE_PCPTYPES get added 2583 * to the MIGRATE_MOVABLE pcp list. 2584 */ 2585 if (unlikely(migratetype >= MIGRATE_PCPTYPES)) 2586 migratetype = MIGRATE_MOVABLE; 2587 2588 trace_mm_page_free_batched(page); 2589 free_unref_page_commit(zone, pcp, page, migratetype, 0); 2590 batch_count++; 2591 } 2592 2593 if (pcp) { 2594 pcp_spin_unlock(pcp); 2595 pcp_trylock_finish(UP_flags); 2596 } 2597 } 2598 2599 /* 2600 * split_page takes a non-compound higher-order page, and splits it into 2601 * n (1<<order) sub-pages: page[0..n] 2602 * Each sub-page must be freed individually. 2603 * 2604 * Note: this is probably too low level an operation for use in drivers. 2605 * Please consult with lkml before using this in your driver. 2606 */ 2607 void split_page(struct page *page, unsigned int order) 2608 { 2609 int i; 2610 2611 VM_BUG_ON_PAGE(PageCompound(page), page); 2612 VM_BUG_ON_PAGE(!page_count(page), page); 2613 2614 for (i = 1; i < (1 << order); i++) 2615 set_page_refcounted(page + i); 2616 split_page_owner(page, 1 << order); 2617 split_page_memcg(page, 1 << order); 2618 } 2619 EXPORT_SYMBOL_GPL(split_page); 2620 2621 int __isolate_free_page(struct page *page, unsigned int order) 2622 { 2623 struct zone *zone = page_zone(page); 2624 int mt = get_pageblock_migratetype(page); 2625 2626 if (!is_migrate_isolate(mt)) { 2627 unsigned long watermark; 2628 /* 2629 * Obey watermarks as if the page was being allocated. We can 2630 * emulate a high-order watermark check with a raised order-0 2631 * watermark, because we already know our high-order page 2632 * exists. 2633 */ 2634 watermark = zone->_watermark[WMARK_MIN] + (1UL << order); 2635 if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA)) 2636 return 0; 2637 2638 __mod_zone_freepage_state(zone, -(1UL << order), mt); 2639 } 2640 2641 del_page_from_free_list(page, zone, order); 2642 2643 /* 2644 * Set the pageblock if the isolated page is at least half of a 2645 * pageblock 2646 */ 2647 if (order >= pageblock_order - 1) { 2648 struct page *endpage = page + (1 << order) - 1; 2649 for (; page < endpage; page += pageblock_nr_pages) { 2650 int mt = get_pageblock_migratetype(page); 2651 /* 2652 * Only change normal pageblocks (i.e., they can merge 2653 * with others) 2654 */ 2655 if (migratetype_is_mergeable(mt)) 2656 set_pageblock_migratetype(page, 2657 MIGRATE_MOVABLE); 2658 } 2659 } 2660 2661 return 1UL << order; 2662 } 2663 2664 /** 2665 * __putback_isolated_page - Return a now-isolated page back where we got it 2666 * @page: Page that was isolated 2667 * @order: Order of the isolated page 2668 * @mt: The page's pageblock's migratetype 2669 * 2670 * This function is meant to return a page pulled from the free lists via 2671 * __isolate_free_page back to the free lists they were pulled from. 2672 */ 2673 void __putback_isolated_page(struct page *page, unsigned int order, int mt) 2674 { 2675 struct zone *zone = page_zone(page); 2676 2677 /* zone lock should be held when this function is called */ 2678 lockdep_assert_held(&zone->lock); 2679 2680 /* Return isolated page to tail of freelist. */ 2681 __free_one_page(page, page_to_pfn(page), zone, order, mt, 2682 FPI_SKIP_REPORT_NOTIFY | FPI_TO_TAIL); 2683 } 2684 2685 /* 2686 * Update NUMA hit/miss statistics 2687 */ 2688 static inline void zone_statistics(struct zone *preferred_zone, struct zone *z, 2689 long nr_account) 2690 { 2691 #ifdef CONFIG_NUMA 2692 enum numa_stat_item local_stat = NUMA_LOCAL; 2693 2694 /* skip numa counters update if numa stats is disabled */ 2695 if (!static_branch_likely(&vm_numa_stat_key)) 2696 return; 2697 2698 if (zone_to_nid(z) != numa_node_id()) 2699 local_stat = NUMA_OTHER; 2700 2701 if (zone_to_nid(z) == zone_to_nid(preferred_zone)) 2702 __count_numa_events(z, NUMA_HIT, nr_account); 2703 else { 2704 __count_numa_events(z, NUMA_MISS, nr_account); 2705 __count_numa_events(preferred_zone, NUMA_FOREIGN, nr_account); 2706 } 2707 __count_numa_events(z, local_stat, nr_account); 2708 #endif 2709 } 2710 2711 static __always_inline 2712 struct page *rmqueue_buddy(struct zone *preferred_zone, struct zone *zone, 2713 unsigned int order, unsigned int alloc_flags, 2714 int migratetype) 2715 { 2716 struct page *page; 2717 unsigned long flags; 2718 2719 do { 2720 page = NULL; 2721 spin_lock_irqsave(&zone->lock, flags); 2722 if (alloc_flags & ALLOC_HIGHATOMIC) 2723 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC); 2724 if (!page) { 2725 page = __rmqueue(zone, order, migratetype, alloc_flags); 2726 2727 /* 2728 * If the allocation fails, allow OOM handling access 2729 * to HIGHATOMIC reserves as failing now is worse than 2730 * failing a high-order atomic allocation in the 2731 * future. 2732 */ 2733 if (!page && (alloc_flags & ALLOC_OOM)) 2734 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC); 2735 2736 if (!page) { 2737 spin_unlock_irqrestore(&zone->lock, flags); 2738 return NULL; 2739 } 2740 } 2741 __mod_zone_freepage_state(zone, -(1 << order), 2742 get_pcppage_migratetype(page)); 2743 spin_unlock_irqrestore(&zone->lock, flags); 2744 } while (check_new_pages(page, order)); 2745 2746 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order); 2747 zone_statistics(preferred_zone, zone, 1); 2748 2749 return page; 2750 } 2751 2752 static int nr_pcp_alloc(struct per_cpu_pages *pcp, struct zone *zone, int order) 2753 { 2754 int high, base_batch, batch, max_nr_alloc; 2755 int high_max, high_min; 2756 2757 base_batch = READ_ONCE(pcp->batch); 2758 high_min = READ_ONCE(pcp->high_min); 2759 high_max = READ_ONCE(pcp->high_max); 2760 high = pcp->high = clamp(pcp->high, high_min, high_max); 2761 2762 /* Check for PCP disabled or boot pageset */ 2763 if (unlikely(high < base_batch)) 2764 return 1; 2765 2766 if (order) 2767 batch = base_batch; 2768 else 2769 batch = (base_batch << pcp->alloc_factor); 2770 2771 /* 2772 * If we had larger pcp->high, we could avoid to allocate from 2773 * zone. 2774 */ 2775 if (high_min != high_max && !test_bit(ZONE_BELOW_HIGH, &zone->flags)) 2776 high = pcp->high = min(high + batch, high_max); 2777 2778 if (!order) { 2779 max_nr_alloc = max(high - pcp->count - base_batch, base_batch); 2780 /* 2781 * Double the number of pages allocated each time there is 2782 * subsequent allocation of order-0 pages without any freeing. 2783 */ 2784 if (batch <= max_nr_alloc && 2785 pcp->alloc_factor < CONFIG_PCP_BATCH_SCALE_MAX) 2786 pcp->alloc_factor++; 2787 batch = min(batch, max_nr_alloc); 2788 } 2789 2790 /* 2791 * Scale batch relative to order if batch implies free pages 2792 * can be stored on the PCP. Batch can be 1 for small zones or 2793 * for boot pagesets which should never store free pages as 2794 * the pages may belong to arbitrary zones. 2795 */ 2796 if (batch > 1) 2797 batch = max(batch >> order, 2); 2798 2799 return batch; 2800 } 2801 2802 /* Remove page from the per-cpu list, caller must protect the list */ 2803 static inline 2804 struct page *__rmqueue_pcplist(struct zone *zone, unsigned int order, 2805 int migratetype, 2806 unsigned int alloc_flags, 2807 struct per_cpu_pages *pcp, 2808 struct list_head *list) 2809 { 2810 struct page *page; 2811 2812 do { 2813 if (list_empty(list)) { 2814 int batch = nr_pcp_alloc(pcp, zone, order); 2815 int alloced; 2816 2817 alloced = rmqueue_bulk(zone, order, 2818 batch, list, 2819 migratetype, alloc_flags); 2820 2821 pcp->count += alloced << order; 2822 if (unlikely(list_empty(list))) 2823 return NULL; 2824 } 2825 2826 page = list_first_entry(list, struct page, pcp_list); 2827 list_del(&page->pcp_list); 2828 pcp->count -= 1 << order; 2829 } while (check_new_pages(page, order)); 2830 2831 return page; 2832 } 2833 2834 /* Lock and remove page from the per-cpu list */ 2835 static struct page *rmqueue_pcplist(struct zone *preferred_zone, 2836 struct zone *zone, unsigned int order, 2837 int migratetype, unsigned int alloc_flags) 2838 { 2839 struct per_cpu_pages *pcp; 2840 struct list_head *list; 2841 struct page *page; 2842 unsigned long __maybe_unused UP_flags; 2843 2844 /* spin_trylock may fail due to a parallel drain or IRQ reentrancy. */ 2845 pcp_trylock_prepare(UP_flags); 2846 pcp = pcp_spin_trylock(zone->per_cpu_pageset); 2847 if (!pcp) { 2848 pcp_trylock_finish(UP_flags); 2849 return NULL; 2850 } 2851 2852 /* 2853 * On allocation, reduce the number of pages that are batch freed. 2854 * See nr_pcp_free() where free_factor is increased for subsequent 2855 * frees. 2856 */ 2857 pcp->free_count >>= 1; 2858 list = &pcp->lists[order_to_pindex(migratetype, order)]; 2859 page = __rmqueue_pcplist(zone, order, migratetype, alloc_flags, pcp, list); 2860 pcp_spin_unlock(pcp); 2861 pcp_trylock_finish(UP_flags); 2862 if (page) { 2863 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order); 2864 zone_statistics(preferred_zone, zone, 1); 2865 } 2866 return page; 2867 } 2868 2869 /* 2870 * Allocate a page from the given zone. 2871 * Use pcplists for THP or "cheap" high-order allocations. 2872 */ 2873 2874 /* 2875 * Do not instrument rmqueue() with KMSAN. This function may call 2876 * __msan_poison_alloca() through a call to set_pfnblock_flags_mask(). 2877 * If __msan_poison_alloca() attempts to allocate pages for the stack depot, it 2878 * may call rmqueue() again, which will result in a deadlock. 2879 */ 2880 __no_sanitize_memory 2881 static inline 2882 struct page *rmqueue(struct zone *preferred_zone, 2883 struct zone *zone, unsigned int order, 2884 gfp_t gfp_flags, unsigned int alloc_flags, 2885 int migratetype) 2886 { 2887 struct page *page; 2888 2889 /* 2890 * We most definitely don't want callers attempting to 2891 * allocate greater than order-1 page units with __GFP_NOFAIL. 2892 */ 2893 WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1)); 2894 2895 if (likely(pcp_allowed_order(order))) { 2896 page = rmqueue_pcplist(preferred_zone, zone, order, 2897 migratetype, alloc_flags); 2898 if (likely(page)) 2899 goto out; 2900 } 2901 2902 page = rmqueue_buddy(preferred_zone, zone, order, alloc_flags, 2903 migratetype); 2904 2905 out: 2906 /* Separate test+clear to avoid unnecessary atomics */ 2907 if ((alloc_flags & ALLOC_KSWAPD) && 2908 unlikely(test_bit(ZONE_BOOSTED_WATERMARK, &zone->flags))) { 2909 clear_bit(ZONE_BOOSTED_WATERMARK, &zone->flags); 2910 wakeup_kswapd(zone, 0, 0, zone_idx(zone)); 2911 } 2912 2913 VM_BUG_ON_PAGE(page && bad_range(zone, page), page); 2914 return page; 2915 } 2916 2917 noinline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) 2918 { 2919 return __should_fail_alloc_page(gfp_mask, order); 2920 } 2921 ALLOW_ERROR_INJECTION(should_fail_alloc_page, TRUE); 2922 2923 static inline long __zone_watermark_unusable_free(struct zone *z, 2924 unsigned int order, unsigned int alloc_flags) 2925 { 2926 long unusable_free = (1 << order) - 1; 2927 2928 /* 2929 * If the caller does not have rights to reserves below the min 2930 * watermark then subtract the high-atomic reserves. This will 2931 * over-estimate the size of the atomic reserve but it avoids a search. 2932 */ 2933 if (likely(!(alloc_flags & ALLOC_RESERVES))) 2934 unusable_free += z->nr_reserved_highatomic; 2935 2936 #ifdef CONFIG_CMA 2937 /* If allocation can't use CMA areas don't use free CMA pages */ 2938 if (!(alloc_flags & ALLOC_CMA)) 2939 unusable_free += zone_page_state(z, NR_FREE_CMA_PAGES); 2940 #endif 2941 #ifdef CONFIG_UNACCEPTED_MEMORY 2942 unusable_free += zone_page_state(z, NR_UNACCEPTED); 2943 #endif 2944 2945 return unusable_free; 2946 } 2947 2948 /* 2949 * Return true if free base pages are above 'mark'. For high-order checks it 2950 * will return true of the order-0 watermark is reached and there is at least 2951 * one free page of a suitable size. Checking now avoids taking the zone lock 2952 * to check in the allocation paths if no pages are free. 2953 */ 2954 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark, 2955 int highest_zoneidx, unsigned int alloc_flags, 2956 long free_pages) 2957 { 2958 long min = mark; 2959 int o; 2960 2961 /* free_pages may go negative - that's OK */ 2962 free_pages -= __zone_watermark_unusable_free(z, order, alloc_flags); 2963 2964 if (unlikely(alloc_flags & ALLOC_RESERVES)) { 2965 /* 2966 * __GFP_HIGH allows access to 50% of the min reserve as well 2967 * as OOM. 2968 */ 2969 if (alloc_flags & ALLOC_MIN_RESERVE) { 2970 min -= min / 2; 2971 2972 /* 2973 * Non-blocking allocations (e.g. GFP_ATOMIC) can 2974 * access more reserves than just __GFP_HIGH. Other 2975 * non-blocking allocations requests such as GFP_NOWAIT 2976 * or (GFP_KERNEL & ~__GFP_DIRECT_RECLAIM) do not get 2977 * access to the min reserve. 2978 */ 2979 if (alloc_flags & ALLOC_NON_BLOCK) 2980 min -= min / 4; 2981 } 2982 2983 /* 2984 * OOM victims can try even harder than the normal reserve 2985 * users on the grounds that it's definitely going to be in 2986 * the exit path shortly and free memory. Any allocation it 2987 * makes during the free path will be small and short-lived. 2988 */ 2989 if (alloc_flags & ALLOC_OOM) 2990 min -= min / 2; 2991 } 2992 2993 /* 2994 * Check watermarks for an order-0 allocation request. If these 2995 * are not met, then a high-order request also cannot go ahead 2996 * even if a suitable page happened to be free. 2997 */ 2998 if (free_pages <= min + z->lowmem_reserve[highest_zoneidx]) 2999 return false; 3000 3001 /* If this is an order-0 request then the watermark is fine */ 3002 if (!order) 3003 return true; 3004 3005 /* For a high-order request, check at least one suitable page is free */ 3006 for (o = order; o <= MAX_ORDER; o++) { 3007 struct free_area *area = &z->free_area[o]; 3008 int mt; 3009 3010 if (!area->nr_free) 3011 continue; 3012 3013 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) { 3014 if (!free_area_empty(area, mt)) 3015 return true; 3016 } 3017 3018 #ifdef CONFIG_CMA 3019 if ((alloc_flags & ALLOC_CMA) && 3020 !free_area_empty(area, MIGRATE_CMA)) { 3021 return true; 3022 } 3023 #endif 3024 if ((alloc_flags & (ALLOC_HIGHATOMIC|ALLOC_OOM)) && 3025 !free_area_empty(area, MIGRATE_HIGHATOMIC)) { 3026 return true; 3027 } 3028 } 3029 return false; 3030 } 3031 3032 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark, 3033 int highest_zoneidx, unsigned int alloc_flags) 3034 { 3035 return __zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags, 3036 zone_page_state(z, NR_FREE_PAGES)); 3037 } 3038 3039 static inline bool zone_watermark_fast(struct zone *z, unsigned int order, 3040 unsigned long mark, int highest_zoneidx, 3041 unsigned int alloc_flags, gfp_t gfp_mask) 3042 { 3043 long free_pages; 3044 3045 free_pages = zone_page_state(z, NR_FREE_PAGES); 3046 3047 /* 3048 * Fast check for order-0 only. If this fails then the reserves 3049 * need to be calculated. 3050 */ 3051 if (!order) { 3052 long usable_free; 3053 long reserved; 3054 3055 usable_free = free_pages; 3056 reserved = __zone_watermark_unusable_free(z, 0, alloc_flags); 3057 3058 /* reserved may over estimate high-atomic reserves. */ 3059 usable_free -= min(usable_free, reserved); 3060 if (usable_free > mark + z->lowmem_reserve[highest_zoneidx]) 3061 return true; 3062 } 3063 3064 if (__zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags, 3065 free_pages)) 3066 return true; 3067 3068 /* 3069 * Ignore watermark boosting for __GFP_HIGH order-0 allocations 3070 * when checking the min watermark. The min watermark is the 3071 * point where boosting is ignored so that kswapd is woken up 3072 * when below the low watermark. 3073 */ 3074 if (unlikely(!order && (alloc_flags & ALLOC_MIN_RESERVE) && z->watermark_boost 3075 && ((alloc_flags & ALLOC_WMARK_MASK) == WMARK_MIN))) { 3076 mark = z->_watermark[WMARK_MIN]; 3077 return __zone_watermark_ok(z, order, mark, highest_zoneidx, 3078 alloc_flags, free_pages); 3079 } 3080 3081 return false; 3082 } 3083 3084 bool zone_watermark_ok_safe(struct zone *z, unsigned int order, 3085 unsigned long mark, int highest_zoneidx) 3086 { 3087 long free_pages = zone_page_state(z, NR_FREE_PAGES); 3088 3089 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark) 3090 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES); 3091 3092 return __zone_watermark_ok(z, order, mark, highest_zoneidx, 0, 3093 free_pages); 3094 } 3095 3096 #ifdef CONFIG_NUMA 3097 int __read_mostly node_reclaim_distance = RECLAIM_DISTANCE; 3098 3099 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone) 3100 { 3101 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <= 3102 node_reclaim_distance; 3103 } 3104 #else /* CONFIG_NUMA */ 3105 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone) 3106 { 3107 return true; 3108 } 3109 #endif /* CONFIG_NUMA */ 3110 3111 /* 3112 * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid 3113 * fragmentation is subtle. If the preferred zone was HIGHMEM then 3114 * premature use of a lower zone may cause lowmem pressure problems that 3115 * are worse than fragmentation. If the next zone is ZONE_DMA then it is 3116 * probably too small. It only makes sense to spread allocations to avoid 3117 * fragmentation between the Normal and DMA32 zones. 3118 */ 3119 static inline unsigned int 3120 alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask) 3121 { 3122 unsigned int alloc_flags; 3123 3124 /* 3125 * __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD 3126 * to save a branch. 3127 */ 3128 alloc_flags = (__force int) (gfp_mask & __GFP_KSWAPD_RECLAIM); 3129 3130 #ifdef CONFIG_ZONE_DMA32 3131 if (!zone) 3132 return alloc_flags; 3133 3134 if (zone_idx(zone) != ZONE_NORMAL) 3135 return alloc_flags; 3136 3137 /* 3138 * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and 3139 * the pointer is within zone->zone_pgdat->node_zones[]. Also assume 3140 * on UMA that if Normal is populated then so is DMA32. 3141 */ 3142 BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1); 3143 if (nr_online_nodes > 1 && !populated_zone(--zone)) 3144 return alloc_flags; 3145 3146 alloc_flags |= ALLOC_NOFRAGMENT; 3147 #endif /* CONFIG_ZONE_DMA32 */ 3148 return alloc_flags; 3149 } 3150 3151 /* Must be called after current_gfp_context() which can change gfp_mask */ 3152 static inline unsigned int gfp_to_alloc_flags_cma(gfp_t gfp_mask, 3153 unsigned int alloc_flags) 3154 { 3155 #ifdef CONFIG_CMA 3156 if (gfp_migratetype(gfp_mask) == MIGRATE_MOVABLE) 3157 alloc_flags |= ALLOC_CMA; 3158 #endif 3159 return alloc_flags; 3160 } 3161 3162 /* 3163 * get_page_from_freelist goes through the zonelist trying to allocate 3164 * a page. 3165 */ 3166 static struct page * 3167 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags, 3168 const struct alloc_context *ac) 3169 { 3170 struct zoneref *z; 3171 struct zone *zone; 3172 struct pglist_data *last_pgdat = NULL; 3173 bool last_pgdat_dirty_ok = false; 3174 bool no_fallback; 3175 3176 retry: 3177 /* 3178 * Scan zonelist, looking for a zone with enough free. 3179 * See also cpuset_node_allowed() comment in kernel/cgroup/cpuset.c. 3180 */ 3181 no_fallback = alloc_flags & ALLOC_NOFRAGMENT; 3182 z = ac->preferred_zoneref; 3183 for_next_zone_zonelist_nodemask(zone, z, ac->highest_zoneidx, 3184 ac->nodemask) { 3185 struct page *page; 3186 unsigned long mark; 3187 3188 if (cpusets_enabled() && 3189 (alloc_flags & ALLOC_CPUSET) && 3190 !__cpuset_zone_allowed(zone, gfp_mask)) 3191 continue; 3192 /* 3193 * When allocating a page cache page for writing, we 3194 * want to get it from a node that is within its dirty 3195 * limit, such that no single node holds more than its 3196 * proportional share of globally allowed dirty pages. 3197 * The dirty limits take into account the node's 3198 * lowmem reserves and high watermark so that kswapd 3199 * should be able to balance it without having to 3200 * write pages from its LRU list. 3201 * 3202 * XXX: For now, allow allocations to potentially 3203 * exceed the per-node dirty limit in the slowpath 3204 * (spread_dirty_pages unset) before going into reclaim, 3205 * which is important when on a NUMA setup the allowed 3206 * nodes are together not big enough to reach the 3207 * global limit. The proper fix for these situations 3208 * will require awareness of nodes in the 3209 * dirty-throttling and the flusher threads. 3210 */ 3211 if (ac->spread_dirty_pages) { 3212 if (last_pgdat != zone->zone_pgdat) { 3213 last_pgdat = zone->zone_pgdat; 3214 last_pgdat_dirty_ok = node_dirty_ok(zone->zone_pgdat); 3215 } 3216 3217 if (!last_pgdat_dirty_ok) 3218 continue; 3219 } 3220 3221 if (no_fallback && nr_online_nodes > 1 && 3222 zone != ac->preferred_zoneref->zone) { 3223 int local_nid; 3224 3225 /* 3226 * If moving to a remote node, retry but allow 3227 * fragmenting fallbacks. Locality is more important 3228 * than fragmentation avoidance. 3229 */ 3230 local_nid = zone_to_nid(ac->preferred_zoneref->zone); 3231 if (zone_to_nid(zone) != local_nid) { 3232 alloc_flags &= ~ALLOC_NOFRAGMENT; 3233 goto retry; 3234 } 3235 } 3236 3237 /* 3238 * Detect whether the number of free pages is below high 3239 * watermark. If so, we will decrease pcp->high and free 3240 * PCP pages in free path to reduce the possibility of 3241 * premature page reclaiming. Detection is done here to 3242 * avoid to do that in hotter free path. 3243 */ 3244 if (test_bit(ZONE_BELOW_HIGH, &zone->flags)) 3245 goto check_alloc_wmark; 3246 3247 mark = high_wmark_pages(zone); 3248 if (zone_watermark_fast(zone, order, mark, 3249 ac->highest_zoneidx, alloc_flags, 3250 gfp_mask)) 3251 goto try_this_zone; 3252 else 3253 set_bit(ZONE_BELOW_HIGH, &zone->flags); 3254 3255 check_alloc_wmark: 3256 mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK); 3257 if (!zone_watermark_fast(zone, order, mark, 3258 ac->highest_zoneidx, alloc_flags, 3259 gfp_mask)) { 3260 int ret; 3261 3262 if (has_unaccepted_memory()) { 3263 if (try_to_accept_memory(zone, order)) 3264 goto try_this_zone; 3265 } 3266 3267 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 3268 /* 3269 * Watermark failed for this zone, but see if we can 3270 * grow this zone if it contains deferred pages. 3271 */ 3272 if (deferred_pages_enabled()) { 3273 if (_deferred_grow_zone(zone, order)) 3274 goto try_this_zone; 3275 } 3276 #endif 3277 /* Checked here to keep the fast path fast */ 3278 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK); 3279 if (alloc_flags & ALLOC_NO_WATERMARKS) 3280 goto try_this_zone; 3281 3282 if (!node_reclaim_enabled() || 3283 !zone_allows_reclaim(ac->preferred_zoneref->zone, zone)) 3284 continue; 3285 3286 ret = node_reclaim(zone->zone_pgdat, gfp_mask, order); 3287 switch (ret) { 3288 case NODE_RECLAIM_NOSCAN: 3289 /* did not scan */ 3290 continue; 3291 case NODE_RECLAIM_FULL: 3292 /* scanned but unreclaimable */ 3293 continue; 3294 default: 3295 /* did we reclaim enough */ 3296 if (zone_watermark_ok(zone, order, mark, 3297 ac->highest_zoneidx, alloc_flags)) 3298 goto try_this_zone; 3299 3300 continue; 3301 } 3302 } 3303 3304 try_this_zone: 3305 page = rmqueue(ac->preferred_zoneref->zone, zone, order, 3306 gfp_mask, alloc_flags, ac->migratetype); 3307 if (page) { 3308 prep_new_page(page, order, gfp_mask, alloc_flags); 3309 3310 /* 3311 * If this is a high-order atomic allocation then check 3312 * if the pageblock should be reserved for the future 3313 */ 3314 if (unlikely(alloc_flags & ALLOC_HIGHATOMIC)) 3315 reserve_highatomic_pageblock(page, zone); 3316 3317 return page; 3318 } else { 3319 if (has_unaccepted_memory()) { 3320 if (try_to_accept_memory(zone, order)) 3321 goto try_this_zone; 3322 } 3323 3324 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 3325 /* Try again if zone has deferred pages */ 3326 if (deferred_pages_enabled()) { 3327 if (_deferred_grow_zone(zone, order)) 3328 goto try_this_zone; 3329 } 3330 #endif 3331 } 3332 } 3333 3334 /* 3335 * It's possible on a UMA machine to get through all zones that are 3336 * fragmented. If avoiding fragmentation, reset and try again. 3337 */ 3338 if (no_fallback) { 3339 alloc_flags &= ~ALLOC_NOFRAGMENT; 3340 goto retry; 3341 } 3342 3343 return NULL; 3344 } 3345 3346 static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask) 3347 { 3348 unsigned int filter = SHOW_MEM_FILTER_NODES; 3349 3350 /* 3351 * This documents exceptions given to allocations in certain 3352 * contexts that are allowed to allocate outside current's set 3353 * of allowed nodes. 3354 */ 3355 if (!(gfp_mask & __GFP_NOMEMALLOC)) 3356 if (tsk_is_oom_victim(current) || 3357 (current->flags & (PF_MEMALLOC | PF_EXITING))) 3358 filter &= ~SHOW_MEM_FILTER_NODES; 3359 if (!in_task() || !(gfp_mask & __GFP_DIRECT_RECLAIM)) 3360 filter &= ~SHOW_MEM_FILTER_NODES; 3361 3362 __show_mem(filter, nodemask, gfp_zone(gfp_mask)); 3363 } 3364 3365 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...) 3366 { 3367 struct va_format vaf; 3368 va_list args; 3369 static DEFINE_RATELIMIT_STATE(nopage_rs, 10*HZ, 1); 3370 3371 if ((gfp_mask & __GFP_NOWARN) || 3372 !__ratelimit(&nopage_rs) || 3373 ((gfp_mask & __GFP_DMA) && !has_managed_dma())) 3374 return; 3375 3376 va_start(args, fmt); 3377 vaf.fmt = fmt; 3378 vaf.va = &args; 3379 pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl", 3380 current->comm, &vaf, gfp_mask, &gfp_mask, 3381 nodemask_pr_args(nodemask)); 3382 va_end(args); 3383 3384 cpuset_print_current_mems_allowed(); 3385 pr_cont("\n"); 3386 dump_stack(); 3387 warn_alloc_show_mem(gfp_mask, nodemask); 3388 } 3389 3390 static inline struct page * 3391 __alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order, 3392 unsigned int alloc_flags, 3393 const struct alloc_context *ac) 3394 { 3395 struct page *page; 3396 3397 page = get_page_from_freelist(gfp_mask, order, 3398 alloc_flags|ALLOC_CPUSET, ac); 3399 /* 3400 * fallback to ignore cpuset restriction if our nodes 3401 * are depleted 3402 */ 3403 if (!page) 3404 page = get_page_from_freelist(gfp_mask, order, 3405 alloc_flags, ac); 3406 3407 return page; 3408 } 3409 3410 static inline struct page * 3411 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order, 3412 const struct alloc_context *ac, unsigned long *did_some_progress) 3413 { 3414 struct oom_control oc = { 3415 .zonelist = ac->zonelist, 3416 .nodemask = ac->nodemask, 3417 .memcg = NULL, 3418 .gfp_mask = gfp_mask, 3419 .order = order, 3420 }; 3421 struct page *page; 3422 3423 *did_some_progress = 0; 3424 3425 /* 3426 * Acquire the oom lock. If that fails, somebody else is 3427 * making progress for us. 3428 */ 3429 if (!mutex_trylock(&oom_lock)) { 3430 *did_some_progress = 1; 3431 schedule_timeout_uninterruptible(1); 3432 return NULL; 3433 } 3434 3435 /* 3436 * Go through the zonelist yet one more time, keep very high watermark 3437 * here, this is only to catch a parallel oom killing, we must fail if 3438 * we're still under heavy pressure. But make sure that this reclaim 3439 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY 3440 * allocation which will never fail due to oom_lock already held. 3441 */ 3442 page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) & 3443 ~__GFP_DIRECT_RECLAIM, order, 3444 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac); 3445 if (page) 3446 goto out; 3447 3448 /* Coredumps can quickly deplete all memory reserves */ 3449 if (current->flags & PF_DUMPCORE) 3450 goto out; 3451 /* The OOM killer will not help higher order allocs */ 3452 if (order > PAGE_ALLOC_COSTLY_ORDER) 3453 goto out; 3454 /* 3455 * We have already exhausted all our reclaim opportunities without any 3456 * success so it is time to admit defeat. We will skip the OOM killer 3457 * because it is very likely that the caller has a more reasonable 3458 * fallback than shooting a random task. 3459 * 3460 * The OOM killer may not free memory on a specific node. 3461 */ 3462 if (gfp_mask & (__GFP_RETRY_MAYFAIL | __GFP_THISNODE)) 3463 goto out; 3464 /* The OOM killer does not needlessly kill tasks for lowmem */ 3465 if (ac->highest_zoneidx < ZONE_NORMAL) 3466 goto out; 3467 if (pm_suspended_storage()) 3468 goto out; 3469 /* 3470 * XXX: GFP_NOFS allocations should rather fail than rely on 3471 * other request to make a forward progress. 3472 * We are in an unfortunate situation where out_of_memory cannot 3473 * do much for this context but let's try it to at least get 3474 * access to memory reserved if the current task is killed (see 3475 * out_of_memory). Once filesystems are ready to handle allocation 3476 * failures more gracefully we should just bail out here. 3477 */ 3478 3479 /* Exhausted what can be done so it's blame time */ 3480 if (out_of_memory(&oc) || 3481 WARN_ON_ONCE_GFP(gfp_mask & __GFP_NOFAIL, gfp_mask)) { 3482 *did_some_progress = 1; 3483 3484 /* 3485 * Help non-failing allocations by giving them access to memory 3486 * reserves 3487 */ 3488 if (gfp_mask & __GFP_NOFAIL) 3489 page = __alloc_pages_cpuset_fallback(gfp_mask, order, 3490 ALLOC_NO_WATERMARKS, ac); 3491 } 3492 out: 3493 mutex_unlock(&oom_lock); 3494 return page; 3495 } 3496 3497 /* 3498 * Maximum number of compaction retries with a progress before OOM 3499 * killer is consider as the only way to move forward. 3500 */ 3501 #define MAX_COMPACT_RETRIES 16 3502 3503 #ifdef CONFIG_COMPACTION 3504 /* Try memory compaction for high-order allocations before reclaim */ 3505 static struct page * 3506 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order, 3507 unsigned int alloc_flags, const struct alloc_context *ac, 3508 enum compact_priority prio, enum compact_result *compact_result) 3509 { 3510 struct page *page = NULL; 3511 unsigned long pflags; 3512 unsigned int noreclaim_flag; 3513 3514 if (!order) 3515 return NULL; 3516 3517 psi_memstall_enter(&pflags); 3518 delayacct_compact_start(); 3519 noreclaim_flag = memalloc_noreclaim_save(); 3520 3521 *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac, 3522 prio, &page); 3523 3524 memalloc_noreclaim_restore(noreclaim_flag); 3525 psi_memstall_leave(&pflags); 3526 delayacct_compact_end(); 3527 3528 if (*compact_result == COMPACT_SKIPPED) 3529 return NULL; 3530 /* 3531 * At least in one zone compaction wasn't deferred or skipped, so let's 3532 * count a compaction stall 3533 */ 3534 count_vm_event(COMPACTSTALL); 3535 3536 /* Prep a captured page if available */ 3537 if (page) 3538 prep_new_page(page, order, gfp_mask, alloc_flags); 3539 3540 /* Try get a page from the freelist if available */ 3541 if (!page) 3542 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 3543 3544 if (page) { 3545 struct zone *zone = page_zone(page); 3546 3547 zone->compact_blockskip_flush = false; 3548 compaction_defer_reset(zone, order, true); 3549 count_vm_event(COMPACTSUCCESS); 3550 return page; 3551 } 3552 3553 /* 3554 * It's bad if compaction run occurs and fails. The most likely reason 3555 * is that pages exist, but not enough to satisfy watermarks. 3556 */ 3557 count_vm_event(COMPACTFAIL); 3558 3559 cond_resched(); 3560 3561 return NULL; 3562 } 3563 3564 static inline bool 3565 should_compact_retry(struct alloc_context *ac, int order, int alloc_flags, 3566 enum compact_result compact_result, 3567 enum compact_priority *compact_priority, 3568 int *compaction_retries) 3569 { 3570 int max_retries = MAX_COMPACT_RETRIES; 3571 int min_priority; 3572 bool ret = false; 3573 int retries = *compaction_retries; 3574 enum compact_priority priority = *compact_priority; 3575 3576 if (!order) 3577 return false; 3578 3579 if (fatal_signal_pending(current)) 3580 return false; 3581 3582 /* 3583 * Compaction was skipped due to a lack of free order-0 3584 * migration targets. Continue if reclaim can help. 3585 */ 3586 if (compact_result == COMPACT_SKIPPED) { 3587 ret = compaction_zonelist_suitable(ac, order, alloc_flags); 3588 goto out; 3589 } 3590 3591 /* 3592 * Compaction managed to coalesce some page blocks, but the 3593 * allocation failed presumably due to a race. Retry some. 3594 */ 3595 if (compact_result == COMPACT_SUCCESS) { 3596 /* 3597 * !costly requests are much more important than 3598 * __GFP_RETRY_MAYFAIL costly ones because they are de 3599 * facto nofail and invoke OOM killer to move on while 3600 * costly can fail and users are ready to cope with 3601 * that. 1/4 retries is rather arbitrary but we would 3602 * need much more detailed feedback from compaction to 3603 * make a better decision. 3604 */ 3605 if (order > PAGE_ALLOC_COSTLY_ORDER) 3606 max_retries /= 4; 3607 3608 if (++(*compaction_retries) <= max_retries) { 3609 ret = true; 3610 goto out; 3611 } 3612 } 3613 3614 /* 3615 * Compaction failed. Retry with increasing priority. 3616 */ 3617 min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ? 3618 MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY; 3619 3620 if (*compact_priority > min_priority) { 3621 (*compact_priority)--; 3622 *compaction_retries = 0; 3623 ret = true; 3624 } 3625 out: 3626 trace_compact_retry(order, priority, compact_result, retries, max_retries, ret); 3627 return ret; 3628 } 3629 #else 3630 static inline struct page * 3631 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order, 3632 unsigned int alloc_flags, const struct alloc_context *ac, 3633 enum compact_priority prio, enum compact_result *compact_result) 3634 { 3635 *compact_result = COMPACT_SKIPPED; 3636 return NULL; 3637 } 3638 3639 static inline bool 3640 should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags, 3641 enum compact_result compact_result, 3642 enum compact_priority *compact_priority, 3643 int *compaction_retries) 3644 { 3645 struct zone *zone; 3646 struct zoneref *z; 3647 3648 if (!order || order > PAGE_ALLOC_COSTLY_ORDER) 3649 return false; 3650 3651 /* 3652 * There are setups with compaction disabled which would prefer to loop 3653 * inside the allocator rather than hit the oom killer prematurely. 3654 * Let's give them a good hope and keep retrying while the order-0 3655 * watermarks are OK. 3656 */ 3657 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, 3658 ac->highest_zoneidx, ac->nodemask) { 3659 if (zone_watermark_ok(zone, 0, min_wmark_pages(zone), 3660 ac->highest_zoneidx, alloc_flags)) 3661 return true; 3662 } 3663 return false; 3664 } 3665 #endif /* CONFIG_COMPACTION */ 3666 3667 #ifdef CONFIG_LOCKDEP 3668 static struct lockdep_map __fs_reclaim_map = 3669 STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map); 3670 3671 static bool __need_reclaim(gfp_t gfp_mask) 3672 { 3673 /* no reclaim without waiting on it */ 3674 if (!(gfp_mask & __GFP_DIRECT_RECLAIM)) 3675 return false; 3676 3677 /* this guy won't enter reclaim */ 3678 if (current->flags & PF_MEMALLOC) 3679 return false; 3680 3681 if (gfp_mask & __GFP_NOLOCKDEP) 3682 return false; 3683 3684 return true; 3685 } 3686 3687 void __fs_reclaim_acquire(unsigned long ip) 3688 { 3689 lock_acquire_exclusive(&__fs_reclaim_map, 0, 0, NULL, ip); 3690 } 3691 3692 void __fs_reclaim_release(unsigned long ip) 3693 { 3694 lock_release(&__fs_reclaim_map, ip); 3695 } 3696 3697 void fs_reclaim_acquire(gfp_t gfp_mask) 3698 { 3699 gfp_mask = current_gfp_context(gfp_mask); 3700 3701 if (__need_reclaim(gfp_mask)) { 3702 if (gfp_mask & __GFP_FS) 3703 __fs_reclaim_acquire(_RET_IP_); 3704 3705 #ifdef CONFIG_MMU_NOTIFIER 3706 lock_map_acquire(&__mmu_notifier_invalidate_range_start_map); 3707 lock_map_release(&__mmu_notifier_invalidate_range_start_map); 3708 #endif 3709 3710 } 3711 } 3712 EXPORT_SYMBOL_GPL(fs_reclaim_acquire); 3713 3714 void fs_reclaim_release(gfp_t gfp_mask) 3715 { 3716 gfp_mask = current_gfp_context(gfp_mask); 3717 3718 if (__need_reclaim(gfp_mask)) { 3719 if (gfp_mask & __GFP_FS) 3720 __fs_reclaim_release(_RET_IP_); 3721 } 3722 } 3723 EXPORT_SYMBOL_GPL(fs_reclaim_release); 3724 #endif 3725 3726 /* 3727 * Zonelists may change due to hotplug during allocation. Detect when zonelists 3728 * have been rebuilt so allocation retries. Reader side does not lock and 3729 * retries the allocation if zonelist changes. Writer side is protected by the 3730 * embedded spin_lock. 3731 */ 3732 static DEFINE_SEQLOCK(zonelist_update_seq); 3733 3734 static unsigned int zonelist_iter_begin(void) 3735 { 3736 if (IS_ENABLED(CONFIG_MEMORY_HOTREMOVE)) 3737 return read_seqbegin(&zonelist_update_seq); 3738 3739 return 0; 3740 } 3741 3742 static unsigned int check_retry_zonelist(unsigned int seq) 3743 { 3744 if (IS_ENABLED(CONFIG_MEMORY_HOTREMOVE)) 3745 return read_seqretry(&zonelist_update_seq, seq); 3746 3747 return seq; 3748 } 3749 3750 /* Perform direct synchronous page reclaim */ 3751 static unsigned long 3752 __perform_reclaim(gfp_t gfp_mask, unsigned int order, 3753 const struct alloc_context *ac) 3754 { 3755 unsigned int noreclaim_flag; 3756 unsigned long progress; 3757 3758 cond_resched(); 3759 3760 /* We now go into synchronous reclaim */ 3761 cpuset_memory_pressure_bump(); 3762 fs_reclaim_acquire(gfp_mask); 3763 noreclaim_flag = memalloc_noreclaim_save(); 3764 3765 progress = try_to_free_pages(ac->zonelist, order, gfp_mask, 3766 ac->nodemask); 3767 3768 memalloc_noreclaim_restore(noreclaim_flag); 3769 fs_reclaim_release(gfp_mask); 3770 3771 cond_resched(); 3772 3773 return progress; 3774 } 3775 3776 /* The really slow allocator path where we enter direct reclaim */ 3777 static inline struct page * 3778 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order, 3779 unsigned int alloc_flags, const struct alloc_context *ac, 3780 unsigned long *did_some_progress) 3781 { 3782 struct page *page = NULL; 3783 unsigned long pflags; 3784 bool drained = false; 3785 3786 psi_memstall_enter(&pflags); 3787 *did_some_progress = __perform_reclaim(gfp_mask, order, ac); 3788 if (unlikely(!(*did_some_progress))) 3789 goto out; 3790 3791 retry: 3792 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 3793 3794 /* 3795 * If an allocation failed after direct reclaim, it could be because 3796 * pages are pinned on the per-cpu lists or in high alloc reserves. 3797 * Shrink them and try again 3798 */ 3799 if (!page && !drained) { 3800 unreserve_highatomic_pageblock(ac, false); 3801 drain_all_pages(NULL); 3802 drained = true; 3803 goto retry; 3804 } 3805 out: 3806 psi_memstall_leave(&pflags); 3807 3808 return page; 3809 } 3810 3811 static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask, 3812 const struct alloc_context *ac) 3813 { 3814 struct zoneref *z; 3815 struct zone *zone; 3816 pg_data_t *last_pgdat = NULL; 3817 enum zone_type highest_zoneidx = ac->highest_zoneidx; 3818 3819 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, highest_zoneidx, 3820 ac->nodemask) { 3821 if (!managed_zone(zone)) 3822 continue; 3823 if (last_pgdat != zone->zone_pgdat) { 3824 wakeup_kswapd(zone, gfp_mask, order, highest_zoneidx); 3825 last_pgdat = zone->zone_pgdat; 3826 } 3827 } 3828 } 3829 3830 static inline unsigned int 3831 gfp_to_alloc_flags(gfp_t gfp_mask, unsigned int order) 3832 { 3833 unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET; 3834 3835 /* 3836 * __GFP_HIGH is assumed to be the same as ALLOC_MIN_RESERVE 3837 * and __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD 3838 * to save two branches. 3839 */ 3840 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_MIN_RESERVE); 3841 BUILD_BUG_ON(__GFP_KSWAPD_RECLAIM != (__force gfp_t) ALLOC_KSWAPD); 3842 3843 /* 3844 * The caller may dip into page reserves a bit more if the caller 3845 * cannot run direct reclaim, or if the caller has realtime scheduling 3846 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will 3847 * set both ALLOC_NON_BLOCK and ALLOC_MIN_RESERVE(__GFP_HIGH). 3848 */ 3849 alloc_flags |= (__force int) 3850 (gfp_mask & (__GFP_HIGH | __GFP_KSWAPD_RECLAIM)); 3851 3852 if (!(gfp_mask & __GFP_DIRECT_RECLAIM)) { 3853 /* 3854 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even 3855 * if it can't schedule. 3856 */ 3857 if (!(gfp_mask & __GFP_NOMEMALLOC)) { 3858 alloc_flags |= ALLOC_NON_BLOCK; 3859 3860 if (order > 0) 3861 alloc_flags |= ALLOC_HIGHATOMIC; 3862 } 3863 3864 /* 3865 * Ignore cpuset mems for non-blocking __GFP_HIGH (probably 3866 * GFP_ATOMIC) rather than fail, see the comment for 3867 * cpuset_node_allowed(). 3868 */ 3869 if (alloc_flags & ALLOC_MIN_RESERVE) 3870 alloc_flags &= ~ALLOC_CPUSET; 3871 } else if (unlikely(rt_task(current)) && in_task()) 3872 alloc_flags |= ALLOC_MIN_RESERVE; 3873 3874 alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, alloc_flags); 3875 3876 return alloc_flags; 3877 } 3878 3879 static bool oom_reserves_allowed(struct task_struct *tsk) 3880 { 3881 if (!tsk_is_oom_victim(tsk)) 3882 return false; 3883 3884 /* 3885 * !MMU doesn't have oom reaper so give access to memory reserves 3886 * only to the thread with TIF_MEMDIE set 3887 */ 3888 if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE)) 3889 return false; 3890 3891 return true; 3892 } 3893 3894 /* 3895 * Distinguish requests which really need access to full memory 3896 * reserves from oom victims which can live with a portion of it 3897 */ 3898 static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask) 3899 { 3900 if (unlikely(gfp_mask & __GFP_NOMEMALLOC)) 3901 return 0; 3902 if (gfp_mask & __GFP_MEMALLOC) 3903 return ALLOC_NO_WATERMARKS; 3904 if (in_serving_softirq() && (current->flags & PF_MEMALLOC)) 3905 return ALLOC_NO_WATERMARKS; 3906 if (!in_interrupt()) { 3907 if (current->flags & PF_MEMALLOC) 3908 return ALLOC_NO_WATERMARKS; 3909 else if (oom_reserves_allowed(current)) 3910 return ALLOC_OOM; 3911 } 3912 3913 return 0; 3914 } 3915 3916 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask) 3917 { 3918 return !!__gfp_pfmemalloc_flags(gfp_mask); 3919 } 3920 3921 /* 3922 * Checks whether it makes sense to retry the reclaim to make a forward progress 3923 * for the given allocation request. 3924 * 3925 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row 3926 * without success, or when we couldn't even meet the watermark if we 3927 * reclaimed all remaining pages on the LRU lists. 3928 * 3929 * Returns true if a retry is viable or false to enter the oom path. 3930 */ 3931 static inline bool 3932 should_reclaim_retry(gfp_t gfp_mask, unsigned order, 3933 struct alloc_context *ac, int alloc_flags, 3934 bool did_some_progress, int *no_progress_loops) 3935 { 3936 struct zone *zone; 3937 struct zoneref *z; 3938 bool ret = false; 3939 3940 /* 3941 * Costly allocations might have made a progress but this doesn't mean 3942 * their order will become available due to high fragmentation so 3943 * always increment the no progress counter for them 3944 */ 3945 if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER) 3946 *no_progress_loops = 0; 3947 else 3948 (*no_progress_loops)++; 3949 3950 /* 3951 * Make sure we converge to OOM if we cannot make any progress 3952 * several times in the row. 3953 */ 3954 if (*no_progress_loops > MAX_RECLAIM_RETRIES) { 3955 /* Before OOM, exhaust highatomic_reserve */ 3956 return unreserve_highatomic_pageblock(ac, true); 3957 } 3958 3959 /* 3960 * Keep reclaiming pages while there is a chance this will lead 3961 * somewhere. If none of the target zones can satisfy our allocation 3962 * request even if all reclaimable pages are considered then we are 3963 * screwed and have to go OOM. 3964 */ 3965 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, 3966 ac->highest_zoneidx, ac->nodemask) { 3967 unsigned long available; 3968 unsigned long reclaimable; 3969 unsigned long min_wmark = min_wmark_pages(zone); 3970 bool wmark; 3971 3972 available = reclaimable = zone_reclaimable_pages(zone); 3973 available += zone_page_state_snapshot(zone, NR_FREE_PAGES); 3974 3975 /* 3976 * Would the allocation succeed if we reclaimed all 3977 * reclaimable pages? 3978 */ 3979 wmark = __zone_watermark_ok(zone, order, min_wmark, 3980 ac->highest_zoneidx, alloc_flags, available); 3981 trace_reclaim_retry_zone(z, order, reclaimable, 3982 available, min_wmark, *no_progress_loops, wmark); 3983 if (wmark) { 3984 ret = true; 3985 break; 3986 } 3987 } 3988 3989 /* 3990 * Memory allocation/reclaim might be called from a WQ context and the 3991 * current implementation of the WQ concurrency control doesn't 3992 * recognize that a particular WQ is congested if the worker thread is 3993 * looping without ever sleeping. Therefore we have to do a short sleep 3994 * here rather than calling cond_resched(). 3995 */ 3996 if (current->flags & PF_WQ_WORKER) 3997 schedule_timeout_uninterruptible(1); 3998 else 3999 cond_resched(); 4000 return ret; 4001 } 4002 4003 static inline bool 4004 check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac) 4005 { 4006 /* 4007 * It's possible that cpuset's mems_allowed and the nodemask from 4008 * mempolicy don't intersect. This should be normally dealt with by 4009 * policy_nodemask(), but it's possible to race with cpuset update in 4010 * such a way the check therein was true, and then it became false 4011 * before we got our cpuset_mems_cookie here. 4012 * This assumes that for all allocations, ac->nodemask can come only 4013 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored 4014 * when it does not intersect with the cpuset restrictions) or the 4015 * caller can deal with a violated nodemask. 4016 */ 4017 if (cpusets_enabled() && ac->nodemask && 4018 !cpuset_nodemask_valid_mems_allowed(ac->nodemask)) { 4019 ac->nodemask = NULL; 4020 return true; 4021 } 4022 4023 /* 4024 * When updating a task's mems_allowed or mempolicy nodemask, it is 4025 * possible to race with parallel threads in such a way that our 4026 * allocation can fail while the mask is being updated. If we are about 4027 * to fail, check if the cpuset changed during allocation and if so, 4028 * retry. 4029 */ 4030 if (read_mems_allowed_retry(cpuset_mems_cookie)) 4031 return true; 4032 4033 return false; 4034 } 4035 4036 static inline struct page * 4037 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order, 4038 struct alloc_context *ac) 4039 { 4040 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM; 4041 const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER; 4042 struct page *page = NULL; 4043 unsigned int alloc_flags; 4044 unsigned long did_some_progress; 4045 enum compact_priority compact_priority; 4046 enum compact_result compact_result; 4047 int compaction_retries; 4048 int no_progress_loops; 4049 unsigned int cpuset_mems_cookie; 4050 unsigned int zonelist_iter_cookie; 4051 int reserve_flags; 4052 4053 restart: 4054 compaction_retries = 0; 4055 no_progress_loops = 0; 4056 compact_priority = DEF_COMPACT_PRIORITY; 4057 cpuset_mems_cookie = read_mems_allowed_begin(); 4058 zonelist_iter_cookie = zonelist_iter_begin(); 4059 4060 /* 4061 * The fast path uses conservative alloc_flags to succeed only until 4062 * kswapd needs to be woken up, and to avoid the cost of setting up 4063 * alloc_flags precisely. So we do that now. 4064 */ 4065 alloc_flags = gfp_to_alloc_flags(gfp_mask, order); 4066 4067 /* 4068 * We need to recalculate the starting point for the zonelist iterator 4069 * because we might have used different nodemask in the fast path, or 4070 * there was a cpuset modification and we are retrying - otherwise we 4071 * could end up iterating over non-eligible zones endlessly. 4072 */ 4073 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist, 4074 ac->highest_zoneidx, ac->nodemask); 4075 if (!ac->preferred_zoneref->zone) 4076 goto nopage; 4077 4078 /* 4079 * Check for insane configurations where the cpuset doesn't contain 4080 * any suitable zone to satisfy the request - e.g. non-movable 4081 * GFP_HIGHUSER allocations from MOVABLE nodes only. 4082 */ 4083 if (cpusets_insane_config() && (gfp_mask & __GFP_HARDWALL)) { 4084 struct zoneref *z = first_zones_zonelist(ac->zonelist, 4085 ac->highest_zoneidx, 4086 &cpuset_current_mems_allowed); 4087 if (!z->zone) 4088 goto nopage; 4089 } 4090 4091 if (alloc_flags & ALLOC_KSWAPD) 4092 wake_all_kswapds(order, gfp_mask, ac); 4093 4094 /* 4095 * The adjusted alloc_flags might result in immediate success, so try 4096 * that first 4097 */ 4098 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 4099 if (page) 4100 goto got_pg; 4101 4102 /* 4103 * For costly allocations, try direct compaction first, as it's likely 4104 * that we have enough base pages and don't need to reclaim. For non- 4105 * movable high-order allocations, do that as well, as compaction will 4106 * try prevent permanent fragmentation by migrating from blocks of the 4107 * same migratetype. 4108 * Don't try this for allocations that are allowed to ignore 4109 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen. 4110 */ 4111 if (can_direct_reclaim && 4112 (costly_order || 4113 (order > 0 && ac->migratetype != MIGRATE_MOVABLE)) 4114 && !gfp_pfmemalloc_allowed(gfp_mask)) { 4115 page = __alloc_pages_direct_compact(gfp_mask, order, 4116 alloc_flags, ac, 4117 INIT_COMPACT_PRIORITY, 4118 &compact_result); 4119 if (page) 4120 goto got_pg; 4121 4122 /* 4123 * Checks for costly allocations with __GFP_NORETRY, which 4124 * includes some THP page fault allocations 4125 */ 4126 if (costly_order && (gfp_mask & __GFP_NORETRY)) { 4127 /* 4128 * If allocating entire pageblock(s) and compaction 4129 * failed because all zones are below low watermarks 4130 * or is prohibited because it recently failed at this 4131 * order, fail immediately unless the allocator has 4132 * requested compaction and reclaim retry. 4133 * 4134 * Reclaim is 4135 * - potentially very expensive because zones are far 4136 * below their low watermarks or this is part of very 4137 * bursty high order allocations, 4138 * - not guaranteed to help because isolate_freepages() 4139 * may not iterate over freed pages as part of its 4140 * linear scan, and 4141 * - unlikely to make entire pageblocks free on its 4142 * own. 4143 */ 4144 if (compact_result == COMPACT_SKIPPED || 4145 compact_result == COMPACT_DEFERRED) 4146 goto nopage; 4147 4148 /* 4149 * Looks like reclaim/compaction is worth trying, but 4150 * sync compaction could be very expensive, so keep 4151 * using async compaction. 4152 */ 4153 compact_priority = INIT_COMPACT_PRIORITY; 4154 } 4155 } 4156 4157 retry: 4158 /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */ 4159 if (alloc_flags & ALLOC_KSWAPD) 4160 wake_all_kswapds(order, gfp_mask, ac); 4161 4162 reserve_flags = __gfp_pfmemalloc_flags(gfp_mask); 4163 if (reserve_flags) 4164 alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, reserve_flags) | 4165 (alloc_flags & ALLOC_KSWAPD); 4166 4167 /* 4168 * Reset the nodemask and zonelist iterators if memory policies can be 4169 * ignored. These allocations are high priority and system rather than 4170 * user oriented. 4171 */ 4172 if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) { 4173 ac->nodemask = NULL; 4174 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist, 4175 ac->highest_zoneidx, ac->nodemask); 4176 } 4177 4178 /* Attempt with potentially adjusted zonelist and alloc_flags */ 4179 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 4180 if (page) 4181 goto got_pg; 4182 4183 /* Caller is not willing to reclaim, we can't balance anything */ 4184 if (!can_direct_reclaim) 4185 goto nopage; 4186 4187 /* Avoid recursion of direct reclaim */ 4188 if (current->flags & PF_MEMALLOC) 4189 goto nopage; 4190 4191 /* Try direct reclaim and then allocating */ 4192 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac, 4193 &did_some_progress); 4194 if (page) 4195 goto got_pg; 4196 4197 /* Try direct compaction and then allocating */ 4198 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac, 4199 compact_priority, &compact_result); 4200 if (page) 4201 goto got_pg; 4202 4203 /* Do not loop if specifically requested */ 4204 if (gfp_mask & __GFP_NORETRY) 4205 goto nopage; 4206 4207 /* 4208 * Do not retry costly high order allocations unless they are 4209 * __GFP_RETRY_MAYFAIL 4210 */ 4211 if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL)) 4212 goto nopage; 4213 4214 if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags, 4215 did_some_progress > 0, &no_progress_loops)) 4216 goto retry; 4217 4218 /* 4219 * It doesn't make any sense to retry for the compaction if the order-0 4220 * reclaim is not able to make any progress because the current 4221 * implementation of the compaction depends on the sufficient amount 4222 * of free memory (see __compaction_suitable) 4223 */ 4224 if (did_some_progress > 0 && 4225 should_compact_retry(ac, order, alloc_flags, 4226 compact_result, &compact_priority, 4227 &compaction_retries)) 4228 goto retry; 4229 4230 4231 /* 4232 * Deal with possible cpuset update races or zonelist updates to avoid 4233 * a unnecessary OOM kill. 4234 */ 4235 if (check_retry_cpuset(cpuset_mems_cookie, ac) || 4236 check_retry_zonelist(zonelist_iter_cookie)) 4237 goto restart; 4238 4239 /* Reclaim has failed us, start killing things */ 4240 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress); 4241 if (page) 4242 goto got_pg; 4243 4244 /* Avoid allocations with no watermarks from looping endlessly */ 4245 if (tsk_is_oom_victim(current) && 4246 (alloc_flags & ALLOC_OOM || 4247 (gfp_mask & __GFP_NOMEMALLOC))) 4248 goto nopage; 4249 4250 /* Retry as long as the OOM killer is making progress */ 4251 if (did_some_progress) { 4252 no_progress_loops = 0; 4253 goto retry; 4254 } 4255 4256 nopage: 4257 /* 4258 * Deal with possible cpuset update races or zonelist updates to avoid 4259 * a unnecessary OOM kill. 4260 */ 4261 if (check_retry_cpuset(cpuset_mems_cookie, ac) || 4262 check_retry_zonelist(zonelist_iter_cookie)) 4263 goto restart; 4264 4265 /* 4266 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure 4267 * we always retry 4268 */ 4269 if (gfp_mask & __GFP_NOFAIL) { 4270 /* 4271 * All existing users of the __GFP_NOFAIL are blockable, so warn 4272 * of any new users that actually require GFP_NOWAIT 4273 */ 4274 if (WARN_ON_ONCE_GFP(!can_direct_reclaim, gfp_mask)) 4275 goto fail; 4276 4277 /* 4278 * PF_MEMALLOC request from this context is rather bizarre 4279 * because we cannot reclaim anything and only can loop waiting 4280 * for somebody to do a work for us 4281 */ 4282 WARN_ON_ONCE_GFP(current->flags & PF_MEMALLOC, gfp_mask); 4283 4284 /* 4285 * non failing costly orders are a hard requirement which we 4286 * are not prepared for much so let's warn about these users 4287 * so that we can identify them and convert them to something 4288 * else. 4289 */ 4290 WARN_ON_ONCE_GFP(costly_order, gfp_mask); 4291 4292 /* 4293 * Help non-failing allocations by giving some access to memory 4294 * reserves normally used for high priority non-blocking 4295 * allocations but do not use ALLOC_NO_WATERMARKS because this 4296 * could deplete whole memory reserves which would just make 4297 * the situation worse. 4298 */ 4299 page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_MIN_RESERVE, ac); 4300 if (page) 4301 goto got_pg; 4302 4303 cond_resched(); 4304 goto retry; 4305 } 4306 fail: 4307 warn_alloc(gfp_mask, ac->nodemask, 4308 "page allocation failure: order:%u", order); 4309 got_pg: 4310 return page; 4311 } 4312 4313 static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order, 4314 int preferred_nid, nodemask_t *nodemask, 4315 struct alloc_context *ac, gfp_t *alloc_gfp, 4316 unsigned int *alloc_flags) 4317 { 4318 ac->highest_zoneidx = gfp_zone(gfp_mask); 4319 ac->zonelist = node_zonelist(preferred_nid, gfp_mask); 4320 ac->nodemask = nodemask; 4321 ac->migratetype = gfp_migratetype(gfp_mask); 4322 4323 if (cpusets_enabled()) { 4324 *alloc_gfp |= __GFP_HARDWALL; 4325 /* 4326 * When we are in the interrupt context, it is irrelevant 4327 * to the current task context. It means that any node ok. 4328 */ 4329 if (in_task() && !ac->nodemask) 4330 ac->nodemask = &cpuset_current_mems_allowed; 4331 else 4332 *alloc_flags |= ALLOC_CPUSET; 4333 } 4334 4335 might_alloc(gfp_mask); 4336 4337 if (should_fail_alloc_page(gfp_mask, order)) 4338 return false; 4339 4340 *alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, *alloc_flags); 4341 4342 /* Dirty zone balancing only done in the fast path */ 4343 ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE); 4344 4345 /* 4346 * The preferred zone is used for statistics but crucially it is 4347 * also used as the starting point for the zonelist iterator. It 4348 * may get reset for allocations that ignore memory policies. 4349 */ 4350 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist, 4351 ac->highest_zoneidx, ac->nodemask); 4352 4353 return true; 4354 } 4355 4356 /* 4357 * __alloc_pages_bulk - Allocate a number of order-0 pages to a list or array 4358 * @gfp: GFP flags for the allocation 4359 * @preferred_nid: The preferred NUMA node ID to allocate from 4360 * @nodemask: Set of nodes to allocate from, may be NULL 4361 * @nr_pages: The number of pages desired on the list or array 4362 * @page_list: Optional list to store the allocated pages 4363 * @page_array: Optional array to store the pages 4364 * 4365 * This is a batched version of the page allocator that attempts to 4366 * allocate nr_pages quickly. Pages are added to page_list if page_list 4367 * is not NULL, otherwise it is assumed that the page_array is valid. 4368 * 4369 * For lists, nr_pages is the number of pages that should be allocated. 4370 * 4371 * For arrays, only NULL elements are populated with pages and nr_pages 4372 * is the maximum number of pages that will be stored in the array. 4373 * 4374 * Returns the number of pages on the list or array. 4375 */ 4376 unsigned long __alloc_pages_bulk(gfp_t gfp, int preferred_nid, 4377 nodemask_t *nodemask, int nr_pages, 4378 struct list_head *page_list, 4379 struct page **page_array) 4380 { 4381 struct page *page; 4382 unsigned long __maybe_unused UP_flags; 4383 struct zone *zone; 4384 struct zoneref *z; 4385 struct per_cpu_pages *pcp; 4386 struct list_head *pcp_list; 4387 struct alloc_context ac; 4388 gfp_t alloc_gfp; 4389 unsigned int alloc_flags = ALLOC_WMARK_LOW; 4390 int nr_populated = 0, nr_account = 0; 4391 4392 /* 4393 * Skip populated array elements to determine if any pages need 4394 * to be allocated before disabling IRQs. 4395 */ 4396 while (page_array && nr_populated < nr_pages && page_array[nr_populated]) 4397 nr_populated++; 4398 4399 /* No pages requested? */ 4400 if (unlikely(nr_pages <= 0)) 4401 goto out; 4402 4403 /* Already populated array? */ 4404 if (unlikely(page_array && nr_pages - nr_populated == 0)) 4405 goto out; 4406 4407 /* Bulk allocator does not support memcg accounting. */ 4408 if (memcg_kmem_online() && (gfp & __GFP_ACCOUNT)) 4409 goto failed; 4410 4411 /* Use the single page allocator for one page. */ 4412 if (nr_pages - nr_populated == 1) 4413 goto failed; 4414 4415 #ifdef CONFIG_PAGE_OWNER 4416 /* 4417 * PAGE_OWNER may recurse into the allocator to allocate space to 4418 * save the stack with pagesets.lock held. Releasing/reacquiring 4419 * removes much of the performance benefit of bulk allocation so 4420 * force the caller to allocate one page at a time as it'll have 4421 * similar performance to added complexity to the bulk allocator. 4422 */ 4423 if (static_branch_unlikely(&page_owner_inited)) 4424 goto failed; 4425 #endif 4426 4427 /* May set ALLOC_NOFRAGMENT, fragmentation will return 1 page. */ 4428 gfp &= gfp_allowed_mask; 4429 alloc_gfp = gfp; 4430 if (!prepare_alloc_pages(gfp, 0, preferred_nid, nodemask, &ac, &alloc_gfp, &alloc_flags)) 4431 goto out; 4432 gfp = alloc_gfp; 4433 4434 /* Find an allowed local zone that meets the low watermark. */ 4435 for_each_zone_zonelist_nodemask(zone, z, ac.zonelist, ac.highest_zoneidx, ac.nodemask) { 4436 unsigned long mark; 4437 4438 if (cpusets_enabled() && (alloc_flags & ALLOC_CPUSET) && 4439 !__cpuset_zone_allowed(zone, gfp)) { 4440 continue; 4441 } 4442 4443 if (nr_online_nodes > 1 && zone != ac.preferred_zoneref->zone && 4444 zone_to_nid(zone) != zone_to_nid(ac.preferred_zoneref->zone)) { 4445 goto failed; 4446 } 4447 4448 mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK) + nr_pages; 4449 if (zone_watermark_fast(zone, 0, mark, 4450 zonelist_zone_idx(ac.preferred_zoneref), 4451 alloc_flags, gfp)) { 4452 break; 4453 } 4454 } 4455 4456 /* 4457 * If there are no allowed local zones that meets the watermarks then 4458 * try to allocate a single page and reclaim if necessary. 4459 */ 4460 if (unlikely(!zone)) 4461 goto failed; 4462 4463 /* spin_trylock may fail due to a parallel drain or IRQ reentrancy. */ 4464 pcp_trylock_prepare(UP_flags); 4465 pcp = pcp_spin_trylock(zone->per_cpu_pageset); 4466 if (!pcp) 4467 goto failed_irq; 4468 4469 /* Attempt the batch allocation */ 4470 pcp_list = &pcp->lists[order_to_pindex(ac.migratetype, 0)]; 4471 while (nr_populated < nr_pages) { 4472 4473 /* Skip existing pages */ 4474 if (page_array && page_array[nr_populated]) { 4475 nr_populated++; 4476 continue; 4477 } 4478 4479 page = __rmqueue_pcplist(zone, 0, ac.migratetype, alloc_flags, 4480 pcp, pcp_list); 4481 if (unlikely(!page)) { 4482 /* Try and allocate at least one page */ 4483 if (!nr_account) { 4484 pcp_spin_unlock(pcp); 4485 goto failed_irq; 4486 } 4487 break; 4488 } 4489 nr_account++; 4490 4491 prep_new_page(page, 0, gfp, 0); 4492 if (page_list) 4493 list_add(&page->lru, page_list); 4494 else 4495 page_array[nr_populated] = page; 4496 nr_populated++; 4497 } 4498 4499 pcp_spin_unlock(pcp); 4500 pcp_trylock_finish(UP_flags); 4501 4502 __count_zid_vm_events(PGALLOC, zone_idx(zone), nr_account); 4503 zone_statistics(ac.preferred_zoneref->zone, zone, nr_account); 4504 4505 out: 4506 return nr_populated; 4507 4508 failed_irq: 4509 pcp_trylock_finish(UP_flags); 4510 4511 failed: 4512 page = __alloc_pages(gfp, 0, preferred_nid, nodemask); 4513 if (page) { 4514 if (page_list) 4515 list_add(&page->lru, page_list); 4516 else 4517 page_array[nr_populated] = page; 4518 nr_populated++; 4519 } 4520 4521 goto out; 4522 } 4523 EXPORT_SYMBOL_GPL(__alloc_pages_bulk); 4524 4525 /* 4526 * This is the 'heart' of the zoned buddy allocator. 4527 */ 4528 struct page *__alloc_pages(gfp_t gfp, unsigned int order, int preferred_nid, 4529 nodemask_t *nodemask) 4530 { 4531 struct page *page; 4532 unsigned int alloc_flags = ALLOC_WMARK_LOW; 4533 gfp_t alloc_gfp; /* The gfp_t that was actually used for allocation */ 4534 struct alloc_context ac = { }; 4535 4536 /* 4537 * There are several places where we assume that the order value is sane 4538 * so bail out early if the request is out of bound. 4539 */ 4540 if (WARN_ON_ONCE_GFP(order > MAX_ORDER, gfp)) 4541 return NULL; 4542 4543 gfp &= gfp_allowed_mask; 4544 /* 4545 * Apply scoped allocation constraints. This is mainly about GFP_NOFS 4546 * resp. GFP_NOIO which has to be inherited for all allocation requests 4547 * from a particular context which has been marked by 4548 * memalloc_no{fs,io}_{save,restore}. And PF_MEMALLOC_PIN which ensures 4549 * movable zones are not used during allocation. 4550 */ 4551 gfp = current_gfp_context(gfp); 4552 alloc_gfp = gfp; 4553 if (!prepare_alloc_pages(gfp, order, preferred_nid, nodemask, &ac, 4554 &alloc_gfp, &alloc_flags)) 4555 return NULL; 4556 4557 /* 4558 * Forbid the first pass from falling back to types that fragment 4559 * memory until all local zones are considered. 4560 */ 4561 alloc_flags |= alloc_flags_nofragment(ac.preferred_zoneref->zone, gfp); 4562 4563 /* First allocation attempt */ 4564 page = get_page_from_freelist(alloc_gfp, order, alloc_flags, &ac); 4565 if (likely(page)) 4566 goto out; 4567 4568 alloc_gfp = gfp; 4569 ac.spread_dirty_pages = false; 4570 4571 /* 4572 * Restore the original nodemask if it was potentially replaced with 4573 * &cpuset_current_mems_allowed to optimize the fast-path attempt. 4574 */ 4575 ac.nodemask = nodemask; 4576 4577 page = __alloc_pages_slowpath(alloc_gfp, order, &ac); 4578 4579 out: 4580 if (memcg_kmem_online() && (gfp & __GFP_ACCOUNT) && page && 4581 unlikely(__memcg_kmem_charge_page(page, gfp, order) != 0)) { 4582 __free_pages(page, order); 4583 page = NULL; 4584 } 4585 4586 trace_mm_page_alloc(page, order, alloc_gfp, ac.migratetype); 4587 kmsan_alloc_page(page, order, alloc_gfp); 4588 4589 return page; 4590 } 4591 EXPORT_SYMBOL(__alloc_pages); 4592 4593 struct folio *__folio_alloc(gfp_t gfp, unsigned int order, int preferred_nid, 4594 nodemask_t *nodemask) 4595 { 4596 struct page *page = __alloc_pages(gfp | __GFP_COMP, order, 4597 preferred_nid, nodemask); 4598 return page_rmappable_folio(page); 4599 } 4600 EXPORT_SYMBOL(__folio_alloc); 4601 4602 /* 4603 * Common helper functions. Never use with __GFP_HIGHMEM because the returned 4604 * address cannot represent highmem pages. Use alloc_pages and then kmap if 4605 * you need to access high mem. 4606 */ 4607 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order) 4608 { 4609 struct page *page; 4610 4611 page = alloc_pages(gfp_mask & ~__GFP_HIGHMEM, order); 4612 if (!page) 4613 return 0; 4614 return (unsigned long) page_address(page); 4615 } 4616 EXPORT_SYMBOL(__get_free_pages); 4617 4618 unsigned long get_zeroed_page(gfp_t gfp_mask) 4619 { 4620 return __get_free_page(gfp_mask | __GFP_ZERO); 4621 } 4622 EXPORT_SYMBOL(get_zeroed_page); 4623 4624 /** 4625 * __free_pages - Free pages allocated with alloc_pages(). 4626 * @page: The page pointer returned from alloc_pages(). 4627 * @order: The order of the allocation. 4628 * 4629 * This function can free multi-page allocations that are not compound 4630 * pages. It does not check that the @order passed in matches that of 4631 * the allocation, so it is easy to leak memory. Freeing more memory 4632 * than was allocated will probably emit a warning. 4633 * 4634 * If the last reference to this page is speculative, it will be released 4635 * by put_page() which only frees the first page of a non-compound 4636 * allocation. To prevent the remaining pages from being leaked, we free 4637 * the subsequent pages here. If you want to use the page's reference 4638 * count to decide when to free the allocation, you should allocate a 4639 * compound page, and use put_page() instead of __free_pages(). 4640 * 4641 * Context: May be called in interrupt context or while holding a normal 4642 * spinlock, but not in NMI context or while holding a raw spinlock. 4643 */ 4644 void __free_pages(struct page *page, unsigned int order) 4645 { 4646 /* get PageHead before we drop reference */ 4647 int head = PageHead(page); 4648 4649 if (put_page_testzero(page)) 4650 free_the_page(page, order); 4651 else if (!head) 4652 while (order-- > 0) 4653 free_the_page(page + (1 << order), order); 4654 } 4655 EXPORT_SYMBOL(__free_pages); 4656 4657 void free_pages(unsigned long addr, unsigned int order) 4658 { 4659 if (addr != 0) { 4660 VM_BUG_ON(!virt_addr_valid((void *)addr)); 4661 __free_pages(virt_to_page((void *)addr), order); 4662 } 4663 } 4664 4665 EXPORT_SYMBOL(free_pages); 4666 4667 /* 4668 * Page Fragment: 4669 * An arbitrary-length arbitrary-offset area of memory which resides 4670 * within a 0 or higher order page. Multiple fragments within that page 4671 * are individually refcounted, in the page's reference counter. 4672 * 4673 * The page_frag functions below provide a simple allocation framework for 4674 * page fragments. This is used by the network stack and network device 4675 * drivers to provide a backing region of memory for use as either an 4676 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info. 4677 */ 4678 static struct page *__page_frag_cache_refill(struct page_frag_cache *nc, 4679 gfp_t gfp_mask) 4680 { 4681 struct page *page = NULL; 4682 gfp_t gfp = gfp_mask; 4683 4684 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE) 4685 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY | 4686 __GFP_NOMEMALLOC; 4687 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask, 4688 PAGE_FRAG_CACHE_MAX_ORDER); 4689 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE; 4690 #endif 4691 if (unlikely(!page)) 4692 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0); 4693 4694 nc->va = page ? page_address(page) : NULL; 4695 4696 return page; 4697 } 4698 4699 void __page_frag_cache_drain(struct page *page, unsigned int count) 4700 { 4701 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page); 4702 4703 if (page_ref_sub_and_test(page, count)) 4704 free_the_page(page, compound_order(page)); 4705 } 4706 EXPORT_SYMBOL(__page_frag_cache_drain); 4707 4708 void *page_frag_alloc_align(struct page_frag_cache *nc, 4709 unsigned int fragsz, gfp_t gfp_mask, 4710 unsigned int align_mask) 4711 { 4712 unsigned int size = PAGE_SIZE; 4713 struct page *page; 4714 int offset; 4715 4716 if (unlikely(!nc->va)) { 4717 refill: 4718 page = __page_frag_cache_refill(nc, gfp_mask); 4719 if (!page) 4720 return NULL; 4721 4722 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE) 4723 /* if size can vary use size else just use PAGE_SIZE */ 4724 size = nc->size; 4725 #endif 4726 /* Even if we own the page, we do not use atomic_set(). 4727 * This would break get_page_unless_zero() users. 4728 */ 4729 page_ref_add(page, PAGE_FRAG_CACHE_MAX_SIZE); 4730 4731 /* reset page count bias and offset to start of new frag */ 4732 nc->pfmemalloc = page_is_pfmemalloc(page); 4733 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1; 4734 nc->offset = size; 4735 } 4736 4737 offset = nc->offset - fragsz; 4738 if (unlikely(offset < 0)) { 4739 page = virt_to_page(nc->va); 4740 4741 if (!page_ref_sub_and_test(page, nc->pagecnt_bias)) 4742 goto refill; 4743 4744 if (unlikely(nc->pfmemalloc)) { 4745 free_the_page(page, compound_order(page)); 4746 goto refill; 4747 } 4748 4749 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE) 4750 /* if size can vary use size else just use PAGE_SIZE */ 4751 size = nc->size; 4752 #endif 4753 /* OK, page count is 0, we can safely set it */ 4754 set_page_count(page, PAGE_FRAG_CACHE_MAX_SIZE + 1); 4755 4756 /* reset page count bias and offset to start of new frag */ 4757 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1; 4758 offset = size - fragsz; 4759 if (unlikely(offset < 0)) { 4760 /* 4761 * The caller is trying to allocate a fragment 4762 * with fragsz > PAGE_SIZE but the cache isn't big 4763 * enough to satisfy the request, this may 4764 * happen in low memory conditions. 4765 * We don't release the cache page because 4766 * it could make memory pressure worse 4767 * so we simply return NULL here. 4768 */ 4769 return NULL; 4770 } 4771 } 4772 4773 nc->pagecnt_bias--; 4774 offset &= align_mask; 4775 nc->offset = offset; 4776 4777 return nc->va + offset; 4778 } 4779 EXPORT_SYMBOL(page_frag_alloc_align); 4780 4781 /* 4782 * Frees a page fragment allocated out of either a compound or order 0 page. 4783 */ 4784 void page_frag_free(void *addr) 4785 { 4786 struct page *page = virt_to_head_page(addr); 4787 4788 if (unlikely(put_page_testzero(page))) 4789 free_the_page(page, compound_order(page)); 4790 } 4791 EXPORT_SYMBOL(page_frag_free); 4792 4793 static void *make_alloc_exact(unsigned long addr, unsigned int order, 4794 size_t size) 4795 { 4796 if (addr) { 4797 unsigned long nr = DIV_ROUND_UP(size, PAGE_SIZE); 4798 struct page *page = virt_to_page((void *)addr); 4799 struct page *last = page + nr; 4800 4801 split_page_owner(page, 1 << order); 4802 split_page_memcg(page, 1 << order); 4803 while (page < --last) 4804 set_page_refcounted(last); 4805 4806 last = page + (1UL << order); 4807 for (page += nr; page < last; page++) 4808 __free_pages_ok(page, 0, FPI_TO_TAIL); 4809 } 4810 return (void *)addr; 4811 } 4812 4813 /** 4814 * alloc_pages_exact - allocate an exact number physically-contiguous pages. 4815 * @size: the number of bytes to allocate 4816 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP 4817 * 4818 * This function is similar to alloc_pages(), except that it allocates the 4819 * minimum number of pages to satisfy the request. alloc_pages() can only 4820 * allocate memory in power-of-two pages. 4821 * 4822 * This function is also limited by MAX_ORDER. 4823 * 4824 * Memory allocated by this function must be released by free_pages_exact(). 4825 * 4826 * Return: pointer to the allocated area or %NULL in case of error. 4827 */ 4828 void *alloc_pages_exact(size_t size, gfp_t gfp_mask) 4829 { 4830 unsigned int order = get_order(size); 4831 unsigned long addr; 4832 4833 if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM))) 4834 gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM); 4835 4836 addr = __get_free_pages(gfp_mask, order); 4837 return make_alloc_exact(addr, order, size); 4838 } 4839 EXPORT_SYMBOL(alloc_pages_exact); 4840 4841 /** 4842 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous 4843 * pages on a node. 4844 * @nid: the preferred node ID where memory should be allocated 4845 * @size: the number of bytes to allocate 4846 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP 4847 * 4848 * Like alloc_pages_exact(), but try to allocate on node nid first before falling 4849 * back. 4850 * 4851 * Return: pointer to the allocated area or %NULL in case of error. 4852 */ 4853 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask) 4854 { 4855 unsigned int order = get_order(size); 4856 struct page *p; 4857 4858 if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM))) 4859 gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM); 4860 4861 p = alloc_pages_node(nid, gfp_mask, order); 4862 if (!p) 4863 return NULL; 4864 return make_alloc_exact((unsigned long)page_address(p), order, size); 4865 } 4866 4867 /** 4868 * free_pages_exact - release memory allocated via alloc_pages_exact() 4869 * @virt: the value returned by alloc_pages_exact. 4870 * @size: size of allocation, same value as passed to alloc_pages_exact(). 4871 * 4872 * Release the memory allocated by a previous call to alloc_pages_exact. 4873 */ 4874 void free_pages_exact(void *virt, size_t size) 4875 { 4876 unsigned long addr = (unsigned long)virt; 4877 unsigned long end = addr + PAGE_ALIGN(size); 4878 4879 while (addr < end) { 4880 free_page(addr); 4881 addr += PAGE_SIZE; 4882 } 4883 } 4884 EXPORT_SYMBOL(free_pages_exact); 4885 4886 /** 4887 * nr_free_zone_pages - count number of pages beyond high watermark 4888 * @offset: The zone index of the highest zone 4889 * 4890 * nr_free_zone_pages() counts the number of pages which are beyond the 4891 * high watermark within all zones at or below a given zone index. For each 4892 * zone, the number of pages is calculated as: 4893 * 4894 * nr_free_zone_pages = managed_pages - high_pages 4895 * 4896 * Return: number of pages beyond high watermark. 4897 */ 4898 static unsigned long nr_free_zone_pages(int offset) 4899 { 4900 struct zoneref *z; 4901 struct zone *zone; 4902 4903 /* Just pick one node, since fallback list is circular */ 4904 unsigned long sum = 0; 4905 4906 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL); 4907 4908 for_each_zone_zonelist(zone, z, zonelist, offset) { 4909 unsigned long size = zone_managed_pages(zone); 4910 unsigned long high = high_wmark_pages(zone); 4911 if (size > high) 4912 sum += size - high; 4913 } 4914 4915 return sum; 4916 } 4917 4918 /** 4919 * nr_free_buffer_pages - count number of pages beyond high watermark 4920 * 4921 * nr_free_buffer_pages() counts the number of pages which are beyond the high 4922 * watermark within ZONE_DMA and ZONE_NORMAL. 4923 * 4924 * Return: number of pages beyond high watermark within ZONE_DMA and 4925 * ZONE_NORMAL. 4926 */ 4927 unsigned long nr_free_buffer_pages(void) 4928 { 4929 return nr_free_zone_pages(gfp_zone(GFP_USER)); 4930 } 4931 EXPORT_SYMBOL_GPL(nr_free_buffer_pages); 4932 4933 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref) 4934 { 4935 zoneref->zone = zone; 4936 zoneref->zone_idx = zone_idx(zone); 4937 } 4938 4939 /* 4940 * Builds allocation fallback zone lists. 4941 * 4942 * Add all populated zones of a node to the zonelist. 4943 */ 4944 static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs) 4945 { 4946 struct zone *zone; 4947 enum zone_type zone_type = MAX_NR_ZONES; 4948 int nr_zones = 0; 4949 4950 do { 4951 zone_type--; 4952 zone = pgdat->node_zones + zone_type; 4953 if (populated_zone(zone)) { 4954 zoneref_set_zone(zone, &zonerefs[nr_zones++]); 4955 check_highest_zone(zone_type); 4956 } 4957 } while (zone_type); 4958 4959 return nr_zones; 4960 } 4961 4962 #ifdef CONFIG_NUMA 4963 4964 static int __parse_numa_zonelist_order(char *s) 4965 { 4966 /* 4967 * We used to support different zonelists modes but they turned 4968 * out to be just not useful. Let's keep the warning in place 4969 * if somebody still use the cmd line parameter so that we do 4970 * not fail it silently 4971 */ 4972 if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) { 4973 pr_warn("Ignoring unsupported numa_zonelist_order value: %s\n", s); 4974 return -EINVAL; 4975 } 4976 return 0; 4977 } 4978 4979 static char numa_zonelist_order[] = "Node"; 4980 #define NUMA_ZONELIST_ORDER_LEN 16 4981 /* 4982 * sysctl handler for numa_zonelist_order 4983 */ 4984 static int numa_zonelist_order_handler(struct ctl_table *table, int write, 4985 void *buffer, size_t *length, loff_t *ppos) 4986 { 4987 if (write) 4988 return __parse_numa_zonelist_order(buffer); 4989 return proc_dostring(table, write, buffer, length, ppos); 4990 } 4991 4992 static int node_load[MAX_NUMNODES]; 4993 4994 /** 4995 * find_next_best_node - find the next node that should appear in a given node's fallback list 4996 * @node: node whose fallback list we're appending 4997 * @used_node_mask: nodemask_t of already used nodes 4998 * 4999 * We use a number of factors to determine which is the next node that should 5000 * appear on a given node's fallback list. The node should not have appeared 5001 * already in @node's fallback list, and it should be the next closest node 5002 * according to the distance array (which contains arbitrary distance values 5003 * from each node to each node in the system), and should also prefer nodes 5004 * with no CPUs, since presumably they'll have very little allocation pressure 5005 * on them otherwise. 5006 * 5007 * Return: node id of the found node or %NUMA_NO_NODE if no node is found. 5008 */ 5009 int find_next_best_node(int node, nodemask_t *used_node_mask) 5010 { 5011 int n, val; 5012 int min_val = INT_MAX; 5013 int best_node = NUMA_NO_NODE; 5014 5015 /* 5016 * Use the local node if we haven't already, but for memoryless local 5017 * node, we should skip it and fall back to other nodes. 5018 */ 5019 if (!node_isset(node, *used_node_mask) && node_state(node, N_MEMORY)) { 5020 node_set(node, *used_node_mask); 5021 return node; 5022 } 5023 5024 for_each_node_state(n, N_MEMORY) { 5025 5026 /* Don't want a node to appear more than once */ 5027 if (node_isset(n, *used_node_mask)) 5028 continue; 5029 5030 /* Use the distance array to find the distance */ 5031 val = node_distance(node, n); 5032 5033 /* Penalize nodes under us ("prefer the next node") */ 5034 val += (n < node); 5035 5036 /* Give preference to headless and unused nodes */ 5037 if (!cpumask_empty(cpumask_of_node(n))) 5038 val += PENALTY_FOR_NODE_WITH_CPUS; 5039 5040 /* Slight preference for less loaded node */ 5041 val *= MAX_NUMNODES; 5042 val += node_load[n]; 5043 5044 if (val < min_val) { 5045 min_val = val; 5046 best_node = n; 5047 } 5048 } 5049 5050 if (best_node >= 0) 5051 node_set(best_node, *used_node_mask); 5052 5053 return best_node; 5054 } 5055 5056 5057 /* 5058 * Build zonelists ordered by node and zones within node. 5059 * This results in maximum locality--normal zone overflows into local 5060 * DMA zone, if any--but risks exhausting DMA zone. 5061 */ 5062 static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order, 5063 unsigned nr_nodes) 5064 { 5065 struct zoneref *zonerefs; 5066 int i; 5067 5068 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs; 5069 5070 for (i = 0; i < nr_nodes; i++) { 5071 int nr_zones; 5072 5073 pg_data_t *node = NODE_DATA(node_order[i]); 5074 5075 nr_zones = build_zonerefs_node(node, zonerefs); 5076 zonerefs += nr_zones; 5077 } 5078 zonerefs->zone = NULL; 5079 zonerefs->zone_idx = 0; 5080 } 5081 5082 /* 5083 * Build gfp_thisnode zonelists 5084 */ 5085 static void build_thisnode_zonelists(pg_data_t *pgdat) 5086 { 5087 struct zoneref *zonerefs; 5088 int nr_zones; 5089 5090 zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs; 5091 nr_zones = build_zonerefs_node(pgdat, zonerefs); 5092 zonerefs += nr_zones; 5093 zonerefs->zone = NULL; 5094 zonerefs->zone_idx = 0; 5095 } 5096 5097 /* 5098 * Build zonelists ordered by zone and nodes within zones. 5099 * This results in conserving DMA zone[s] until all Normal memory is 5100 * exhausted, but results in overflowing to remote node while memory 5101 * may still exist in local DMA zone. 5102 */ 5103 5104 static void build_zonelists(pg_data_t *pgdat) 5105 { 5106 static int node_order[MAX_NUMNODES]; 5107 int node, nr_nodes = 0; 5108 nodemask_t used_mask = NODE_MASK_NONE; 5109 int local_node, prev_node; 5110 5111 /* NUMA-aware ordering of nodes */ 5112 local_node = pgdat->node_id; 5113 prev_node = local_node; 5114 5115 memset(node_order, 0, sizeof(node_order)); 5116 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) { 5117 /* 5118 * We don't want to pressure a particular node. 5119 * So adding penalty to the first node in same 5120 * distance group to make it round-robin. 5121 */ 5122 if (node_distance(local_node, node) != 5123 node_distance(local_node, prev_node)) 5124 node_load[node] += 1; 5125 5126 node_order[nr_nodes++] = node; 5127 prev_node = node; 5128 } 5129 5130 build_zonelists_in_node_order(pgdat, node_order, nr_nodes); 5131 build_thisnode_zonelists(pgdat); 5132 pr_info("Fallback order for Node %d: ", local_node); 5133 for (node = 0; node < nr_nodes; node++) 5134 pr_cont("%d ", node_order[node]); 5135 pr_cont("\n"); 5136 } 5137 5138 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 5139 /* 5140 * Return node id of node used for "local" allocations. 5141 * I.e., first node id of first zone in arg node's generic zonelist. 5142 * Used for initializing percpu 'numa_mem', which is used primarily 5143 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist. 5144 */ 5145 int local_memory_node(int node) 5146 { 5147 struct zoneref *z; 5148 5149 z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL), 5150 gfp_zone(GFP_KERNEL), 5151 NULL); 5152 return zone_to_nid(z->zone); 5153 } 5154 #endif 5155 5156 static void setup_min_unmapped_ratio(void); 5157 static void setup_min_slab_ratio(void); 5158 #else /* CONFIG_NUMA */ 5159 5160 static void build_zonelists(pg_data_t *pgdat) 5161 { 5162 int node, local_node; 5163 struct zoneref *zonerefs; 5164 int nr_zones; 5165 5166 local_node = pgdat->node_id; 5167 5168 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs; 5169 nr_zones = build_zonerefs_node(pgdat, zonerefs); 5170 zonerefs += nr_zones; 5171 5172 /* 5173 * Now we build the zonelist so that it contains the zones 5174 * of all the other nodes. 5175 * We don't want to pressure a particular node, so when 5176 * building the zones for node N, we make sure that the 5177 * zones coming right after the local ones are those from 5178 * node N+1 (modulo N) 5179 */ 5180 for (node = local_node + 1; node < MAX_NUMNODES; node++) { 5181 if (!node_online(node)) 5182 continue; 5183 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs); 5184 zonerefs += nr_zones; 5185 } 5186 for (node = 0; node < local_node; node++) { 5187 if (!node_online(node)) 5188 continue; 5189 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs); 5190 zonerefs += nr_zones; 5191 } 5192 5193 zonerefs->zone = NULL; 5194 zonerefs->zone_idx = 0; 5195 } 5196 5197 #endif /* CONFIG_NUMA */ 5198 5199 /* 5200 * Boot pageset table. One per cpu which is going to be used for all 5201 * zones and all nodes. The parameters will be set in such a way 5202 * that an item put on a list will immediately be handed over to 5203 * the buddy list. This is safe since pageset manipulation is done 5204 * with interrupts disabled. 5205 * 5206 * The boot_pagesets must be kept even after bootup is complete for 5207 * unused processors and/or zones. They do play a role for bootstrapping 5208 * hotplugged processors. 5209 * 5210 * zoneinfo_show() and maybe other functions do 5211 * not check if the processor is online before following the pageset pointer. 5212 * Other parts of the kernel may not check if the zone is available. 5213 */ 5214 static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats); 5215 /* These effectively disable the pcplists in the boot pageset completely */ 5216 #define BOOT_PAGESET_HIGH 0 5217 #define BOOT_PAGESET_BATCH 1 5218 static DEFINE_PER_CPU(struct per_cpu_pages, boot_pageset); 5219 static DEFINE_PER_CPU(struct per_cpu_zonestat, boot_zonestats); 5220 5221 static void __build_all_zonelists(void *data) 5222 { 5223 int nid; 5224 int __maybe_unused cpu; 5225 pg_data_t *self = data; 5226 unsigned long flags; 5227 5228 /* 5229 * The zonelist_update_seq must be acquired with irqsave because the 5230 * reader can be invoked from IRQ with GFP_ATOMIC. 5231 */ 5232 write_seqlock_irqsave(&zonelist_update_seq, flags); 5233 /* 5234 * Also disable synchronous printk() to prevent any printk() from 5235 * trying to hold port->lock, for 5236 * tty_insert_flip_string_and_push_buffer() on other CPU might be 5237 * calling kmalloc(GFP_ATOMIC | __GFP_NOWARN) with port->lock held. 5238 */ 5239 printk_deferred_enter(); 5240 5241 #ifdef CONFIG_NUMA 5242 memset(node_load, 0, sizeof(node_load)); 5243 #endif 5244 5245 /* 5246 * This node is hotadded and no memory is yet present. So just 5247 * building zonelists is fine - no need to touch other nodes. 5248 */ 5249 if (self && !node_online(self->node_id)) { 5250 build_zonelists(self); 5251 } else { 5252 /* 5253 * All possible nodes have pgdat preallocated 5254 * in free_area_init 5255 */ 5256 for_each_node(nid) { 5257 pg_data_t *pgdat = NODE_DATA(nid); 5258 5259 build_zonelists(pgdat); 5260 } 5261 5262 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 5263 /* 5264 * We now know the "local memory node" for each node-- 5265 * i.e., the node of the first zone in the generic zonelist. 5266 * Set up numa_mem percpu variable for on-line cpus. During 5267 * boot, only the boot cpu should be on-line; we'll init the 5268 * secondary cpus' numa_mem as they come on-line. During 5269 * node/memory hotplug, we'll fixup all on-line cpus. 5270 */ 5271 for_each_online_cpu(cpu) 5272 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu))); 5273 #endif 5274 } 5275 5276 printk_deferred_exit(); 5277 write_sequnlock_irqrestore(&zonelist_update_seq, flags); 5278 } 5279 5280 static noinline void __init 5281 build_all_zonelists_init(void) 5282 { 5283 int cpu; 5284 5285 __build_all_zonelists(NULL); 5286 5287 /* 5288 * Initialize the boot_pagesets that are going to be used 5289 * for bootstrapping processors. The real pagesets for 5290 * each zone will be allocated later when the per cpu 5291 * allocator is available. 5292 * 5293 * boot_pagesets are used also for bootstrapping offline 5294 * cpus if the system is already booted because the pagesets 5295 * are needed to initialize allocators on a specific cpu too. 5296 * F.e. the percpu allocator needs the page allocator which 5297 * needs the percpu allocator in order to allocate its pagesets 5298 * (a chicken-egg dilemma). 5299 */ 5300 for_each_possible_cpu(cpu) 5301 per_cpu_pages_init(&per_cpu(boot_pageset, cpu), &per_cpu(boot_zonestats, cpu)); 5302 5303 mminit_verify_zonelist(); 5304 cpuset_init_current_mems_allowed(); 5305 } 5306 5307 /* 5308 * unless system_state == SYSTEM_BOOTING. 5309 * 5310 * __ref due to call of __init annotated helper build_all_zonelists_init 5311 * [protected by SYSTEM_BOOTING]. 5312 */ 5313 void __ref build_all_zonelists(pg_data_t *pgdat) 5314 { 5315 unsigned long vm_total_pages; 5316 5317 if (system_state == SYSTEM_BOOTING) { 5318 build_all_zonelists_init(); 5319 } else { 5320 __build_all_zonelists(pgdat); 5321 /* cpuset refresh routine should be here */ 5322 } 5323 /* Get the number of free pages beyond high watermark in all zones. */ 5324 vm_total_pages = nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE)); 5325 /* 5326 * Disable grouping by mobility if the number of pages in the 5327 * system is too low to allow the mechanism to work. It would be 5328 * more accurate, but expensive to check per-zone. This check is 5329 * made on memory-hotadd so a system can start with mobility 5330 * disabled and enable it later 5331 */ 5332 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES)) 5333 page_group_by_mobility_disabled = 1; 5334 else 5335 page_group_by_mobility_disabled = 0; 5336 5337 pr_info("Built %u zonelists, mobility grouping %s. Total pages: %ld\n", 5338 nr_online_nodes, 5339 page_group_by_mobility_disabled ? "off" : "on", 5340 vm_total_pages); 5341 #ifdef CONFIG_NUMA 5342 pr_info("Policy zone: %s\n", zone_names[policy_zone]); 5343 #endif 5344 } 5345 5346 static int zone_batchsize(struct zone *zone) 5347 { 5348 #ifdef CONFIG_MMU 5349 int batch; 5350 5351 /* 5352 * The number of pages to batch allocate is either ~0.1% 5353 * of the zone or 1MB, whichever is smaller. The batch 5354 * size is striking a balance between allocation latency 5355 * and zone lock contention. 5356 */ 5357 batch = min(zone_managed_pages(zone) >> 10, SZ_1M / PAGE_SIZE); 5358 batch /= 4; /* We effectively *= 4 below */ 5359 if (batch < 1) 5360 batch = 1; 5361 5362 /* 5363 * Clamp the batch to a 2^n - 1 value. Having a power 5364 * of 2 value was found to be more likely to have 5365 * suboptimal cache aliasing properties in some cases. 5366 * 5367 * For example if 2 tasks are alternately allocating 5368 * batches of pages, one task can end up with a lot 5369 * of pages of one half of the possible page colors 5370 * and the other with pages of the other colors. 5371 */ 5372 batch = rounddown_pow_of_two(batch + batch/2) - 1; 5373 5374 return batch; 5375 5376 #else 5377 /* The deferral and batching of frees should be suppressed under NOMMU 5378 * conditions. 5379 * 5380 * The problem is that NOMMU needs to be able to allocate large chunks 5381 * of contiguous memory as there's no hardware page translation to 5382 * assemble apparent contiguous memory from discontiguous pages. 5383 * 5384 * Queueing large contiguous runs of pages for batching, however, 5385 * causes the pages to actually be freed in smaller chunks. As there 5386 * can be a significant delay between the individual batches being 5387 * recycled, this leads to the once large chunks of space being 5388 * fragmented and becoming unavailable for high-order allocations. 5389 */ 5390 return 0; 5391 #endif 5392 } 5393 5394 static int percpu_pagelist_high_fraction; 5395 static int zone_highsize(struct zone *zone, int batch, int cpu_online, 5396 int high_fraction) 5397 { 5398 #ifdef CONFIG_MMU 5399 int high; 5400 int nr_split_cpus; 5401 unsigned long total_pages; 5402 5403 if (!high_fraction) { 5404 /* 5405 * By default, the high value of the pcp is based on the zone 5406 * low watermark so that if they are full then background 5407 * reclaim will not be started prematurely. 5408 */ 5409 total_pages = low_wmark_pages(zone); 5410 } else { 5411 /* 5412 * If percpu_pagelist_high_fraction is configured, the high 5413 * value is based on a fraction of the managed pages in the 5414 * zone. 5415 */ 5416 total_pages = zone_managed_pages(zone) / high_fraction; 5417 } 5418 5419 /* 5420 * Split the high value across all online CPUs local to the zone. Note 5421 * that early in boot that CPUs may not be online yet and that during 5422 * CPU hotplug that the cpumask is not yet updated when a CPU is being 5423 * onlined. For memory nodes that have no CPUs, split the high value 5424 * across all online CPUs to mitigate the risk that reclaim is triggered 5425 * prematurely due to pages stored on pcp lists. 5426 */ 5427 nr_split_cpus = cpumask_weight(cpumask_of_node(zone_to_nid(zone))) + cpu_online; 5428 if (!nr_split_cpus) 5429 nr_split_cpus = num_online_cpus(); 5430 high = total_pages / nr_split_cpus; 5431 5432 /* 5433 * Ensure high is at least batch*4. The multiple is based on the 5434 * historical relationship between high and batch. 5435 */ 5436 high = max(high, batch << 2); 5437 5438 return high; 5439 #else 5440 return 0; 5441 #endif 5442 } 5443 5444 /* 5445 * pcp->high and pcp->batch values are related and generally batch is lower 5446 * than high. They are also related to pcp->count such that count is lower 5447 * than high, and as soon as it reaches high, the pcplist is flushed. 5448 * 5449 * However, guaranteeing these relations at all times would require e.g. write 5450 * barriers here but also careful usage of read barriers at the read side, and 5451 * thus be prone to error and bad for performance. Thus the update only prevents 5452 * store tearing. Any new users of pcp->batch, pcp->high_min and pcp->high_max 5453 * should ensure they can cope with those fields changing asynchronously, and 5454 * fully trust only the pcp->count field on the local CPU with interrupts 5455 * disabled. 5456 * 5457 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function 5458 * outside of boot time (or some other assurance that no concurrent updaters 5459 * exist). 5460 */ 5461 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high_min, 5462 unsigned long high_max, unsigned long batch) 5463 { 5464 WRITE_ONCE(pcp->batch, batch); 5465 WRITE_ONCE(pcp->high_min, high_min); 5466 WRITE_ONCE(pcp->high_max, high_max); 5467 } 5468 5469 static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats) 5470 { 5471 int pindex; 5472 5473 memset(pcp, 0, sizeof(*pcp)); 5474 memset(pzstats, 0, sizeof(*pzstats)); 5475 5476 spin_lock_init(&pcp->lock); 5477 for (pindex = 0; pindex < NR_PCP_LISTS; pindex++) 5478 INIT_LIST_HEAD(&pcp->lists[pindex]); 5479 5480 /* 5481 * Set batch and high values safe for a boot pageset. A true percpu 5482 * pageset's initialization will update them subsequently. Here we don't 5483 * need to be as careful as pageset_update() as nobody can access the 5484 * pageset yet. 5485 */ 5486 pcp->high_min = BOOT_PAGESET_HIGH; 5487 pcp->high_max = BOOT_PAGESET_HIGH; 5488 pcp->batch = BOOT_PAGESET_BATCH; 5489 pcp->free_count = 0; 5490 } 5491 5492 static void __zone_set_pageset_high_and_batch(struct zone *zone, unsigned long high_min, 5493 unsigned long high_max, unsigned long batch) 5494 { 5495 struct per_cpu_pages *pcp; 5496 int cpu; 5497 5498 for_each_possible_cpu(cpu) { 5499 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu); 5500 pageset_update(pcp, high_min, high_max, batch); 5501 } 5502 } 5503 5504 /* 5505 * Calculate and set new high and batch values for all per-cpu pagesets of a 5506 * zone based on the zone's size. 5507 */ 5508 static void zone_set_pageset_high_and_batch(struct zone *zone, int cpu_online) 5509 { 5510 int new_high_min, new_high_max, new_batch; 5511 5512 new_batch = max(1, zone_batchsize(zone)); 5513 if (percpu_pagelist_high_fraction) { 5514 new_high_min = zone_highsize(zone, new_batch, cpu_online, 5515 percpu_pagelist_high_fraction); 5516 /* 5517 * PCP high is tuned manually, disable auto-tuning via 5518 * setting high_min and high_max to the manual value. 5519 */ 5520 new_high_max = new_high_min; 5521 } else { 5522 new_high_min = zone_highsize(zone, new_batch, cpu_online, 0); 5523 new_high_max = zone_highsize(zone, new_batch, cpu_online, 5524 MIN_PERCPU_PAGELIST_HIGH_FRACTION); 5525 } 5526 5527 if (zone->pageset_high_min == new_high_min && 5528 zone->pageset_high_max == new_high_max && 5529 zone->pageset_batch == new_batch) 5530 return; 5531 5532 zone->pageset_high_min = new_high_min; 5533 zone->pageset_high_max = new_high_max; 5534 zone->pageset_batch = new_batch; 5535 5536 __zone_set_pageset_high_and_batch(zone, new_high_min, new_high_max, 5537 new_batch); 5538 } 5539 5540 void __meminit setup_zone_pageset(struct zone *zone) 5541 { 5542 int cpu; 5543 5544 /* Size may be 0 on !SMP && !NUMA */ 5545 if (sizeof(struct per_cpu_zonestat) > 0) 5546 zone->per_cpu_zonestats = alloc_percpu(struct per_cpu_zonestat); 5547 5548 zone->per_cpu_pageset = alloc_percpu(struct per_cpu_pages); 5549 for_each_possible_cpu(cpu) { 5550 struct per_cpu_pages *pcp; 5551 struct per_cpu_zonestat *pzstats; 5552 5553 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu); 5554 pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu); 5555 per_cpu_pages_init(pcp, pzstats); 5556 } 5557 5558 zone_set_pageset_high_and_batch(zone, 0); 5559 } 5560 5561 /* 5562 * The zone indicated has a new number of managed_pages; batch sizes and percpu 5563 * page high values need to be recalculated. 5564 */ 5565 static void zone_pcp_update(struct zone *zone, int cpu_online) 5566 { 5567 mutex_lock(&pcp_batch_high_lock); 5568 zone_set_pageset_high_and_batch(zone, cpu_online); 5569 mutex_unlock(&pcp_batch_high_lock); 5570 } 5571 5572 static void zone_pcp_update_cacheinfo(struct zone *zone) 5573 { 5574 int cpu; 5575 struct per_cpu_pages *pcp; 5576 struct cpu_cacheinfo *cci; 5577 5578 for_each_online_cpu(cpu) { 5579 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu); 5580 cci = get_cpu_cacheinfo(cpu); 5581 /* 5582 * If data cache slice of CPU is large enough, "pcp->batch" 5583 * pages can be preserved in PCP before draining PCP for 5584 * consecutive high-order pages freeing without allocation. 5585 * This can reduce zone lock contention without hurting 5586 * cache-hot pages sharing. 5587 */ 5588 spin_lock(&pcp->lock); 5589 if ((cci->per_cpu_data_slice_size >> PAGE_SHIFT) > 3 * pcp->batch) 5590 pcp->flags |= PCPF_FREE_HIGH_BATCH; 5591 else 5592 pcp->flags &= ~PCPF_FREE_HIGH_BATCH; 5593 spin_unlock(&pcp->lock); 5594 } 5595 } 5596 5597 void setup_pcp_cacheinfo(void) 5598 { 5599 struct zone *zone; 5600 5601 for_each_populated_zone(zone) 5602 zone_pcp_update_cacheinfo(zone); 5603 } 5604 5605 /* 5606 * Allocate per cpu pagesets and initialize them. 5607 * Before this call only boot pagesets were available. 5608 */ 5609 void __init setup_per_cpu_pageset(void) 5610 { 5611 struct pglist_data *pgdat; 5612 struct zone *zone; 5613 int __maybe_unused cpu; 5614 5615 for_each_populated_zone(zone) 5616 setup_zone_pageset(zone); 5617 5618 #ifdef CONFIG_NUMA 5619 /* 5620 * Unpopulated zones continue using the boot pagesets. 5621 * The numa stats for these pagesets need to be reset. 5622 * Otherwise, they will end up skewing the stats of 5623 * the nodes these zones are associated with. 5624 */ 5625 for_each_possible_cpu(cpu) { 5626 struct per_cpu_zonestat *pzstats = &per_cpu(boot_zonestats, cpu); 5627 memset(pzstats->vm_numa_event, 0, 5628 sizeof(pzstats->vm_numa_event)); 5629 } 5630 #endif 5631 5632 for_each_online_pgdat(pgdat) 5633 pgdat->per_cpu_nodestats = 5634 alloc_percpu(struct per_cpu_nodestat); 5635 } 5636 5637 __meminit void zone_pcp_init(struct zone *zone) 5638 { 5639 /* 5640 * per cpu subsystem is not up at this point. The following code 5641 * relies on the ability of the linker to provide the 5642 * offset of a (static) per cpu variable into the per cpu area. 5643 */ 5644 zone->per_cpu_pageset = &boot_pageset; 5645 zone->per_cpu_zonestats = &boot_zonestats; 5646 zone->pageset_high_min = BOOT_PAGESET_HIGH; 5647 zone->pageset_high_max = BOOT_PAGESET_HIGH; 5648 zone->pageset_batch = BOOT_PAGESET_BATCH; 5649 5650 if (populated_zone(zone)) 5651 pr_debug(" %s zone: %lu pages, LIFO batch:%u\n", zone->name, 5652 zone->present_pages, zone_batchsize(zone)); 5653 } 5654 5655 void adjust_managed_page_count(struct page *page, long count) 5656 { 5657 atomic_long_add(count, &page_zone(page)->managed_pages); 5658 totalram_pages_add(count); 5659 #ifdef CONFIG_HIGHMEM 5660 if (PageHighMem(page)) 5661 totalhigh_pages_add(count); 5662 #endif 5663 } 5664 EXPORT_SYMBOL(adjust_managed_page_count); 5665 5666 unsigned long free_reserved_area(void *start, void *end, int poison, const char *s) 5667 { 5668 void *pos; 5669 unsigned long pages = 0; 5670 5671 start = (void *)PAGE_ALIGN((unsigned long)start); 5672 end = (void *)((unsigned long)end & PAGE_MASK); 5673 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) { 5674 struct page *page = virt_to_page(pos); 5675 void *direct_map_addr; 5676 5677 /* 5678 * 'direct_map_addr' might be different from 'pos' 5679 * because some architectures' virt_to_page() 5680 * work with aliases. Getting the direct map 5681 * address ensures that we get a _writeable_ 5682 * alias for the memset(). 5683 */ 5684 direct_map_addr = page_address(page); 5685 /* 5686 * Perform a kasan-unchecked memset() since this memory 5687 * has not been initialized. 5688 */ 5689 direct_map_addr = kasan_reset_tag(direct_map_addr); 5690 if ((unsigned int)poison <= 0xFF) 5691 memset(direct_map_addr, poison, PAGE_SIZE); 5692 5693 free_reserved_page(page); 5694 } 5695 5696 if (pages && s) 5697 pr_info("Freeing %s memory: %ldK\n", s, K(pages)); 5698 5699 return pages; 5700 } 5701 5702 static int page_alloc_cpu_dead(unsigned int cpu) 5703 { 5704 struct zone *zone; 5705 5706 lru_add_drain_cpu(cpu); 5707 mlock_drain_remote(cpu); 5708 drain_pages(cpu); 5709 5710 /* 5711 * Spill the event counters of the dead processor 5712 * into the current processors event counters. 5713 * This artificially elevates the count of the current 5714 * processor. 5715 */ 5716 vm_events_fold_cpu(cpu); 5717 5718 /* 5719 * Zero the differential counters of the dead processor 5720 * so that the vm statistics are consistent. 5721 * 5722 * This is only okay since the processor is dead and cannot 5723 * race with what we are doing. 5724 */ 5725 cpu_vm_stats_fold(cpu); 5726 5727 for_each_populated_zone(zone) 5728 zone_pcp_update(zone, 0); 5729 5730 return 0; 5731 } 5732 5733 static int page_alloc_cpu_online(unsigned int cpu) 5734 { 5735 struct zone *zone; 5736 5737 for_each_populated_zone(zone) 5738 zone_pcp_update(zone, 1); 5739 return 0; 5740 } 5741 5742 void __init page_alloc_init_cpuhp(void) 5743 { 5744 int ret; 5745 5746 ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC, 5747 "mm/page_alloc:pcp", 5748 page_alloc_cpu_online, 5749 page_alloc_cpu_dead); 5750 WARN_ON(ret < 0); 5751 } 5752 5753 /* 5754 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio 5755 * or min_free_kbytes changes. 5756 */ 5757 static void calculate_totalreserve_pages(void) 5758 { 5759 struct pglist_data *pgdat; 5760 unsigned long reserve_pages = 0; 5761 enum zone_type i, j; 5762 5763 for_each_online_pgdat(pgdat) { 5764 5765 pgdat->totalreserve_pages = 0; 5766 5767 for (i = 0; i < MAX_NR_ZONES; i++) { 5768 struct zone *zone = pgdat->node_zones + i; 5769 long max = 0; 5770 unsigned long managed_pages = zone_managed_pages(zone); 5771 5772 /* Find valid and maximum lowmem_reserve in the zone */ 5773 for (j = i; j < MAX_NR_ZONES; j++) { 5774 if (zone->lowmem_reserve[j] > max) 5775 max = zone->lowmem_reserve[j]; 5776 } 5777 5778 /* we treat the high watermark as reserved pages. */ 5779 max += high_wmark_pages(zone); 5780 5781 if (max > managed_pages) 5782 max = managed_pages; 5783 5784 pgdat->totalreserve_pages += max; 5785 5786 reserve_pages += max; 5787 } 5788 } 5789 totalreserve_pages = reserve_pages; 5790 } 5791 5792 /* 5793 * setup_per_zone_lowmem_reserve - called whenever 5794 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone 5795 * has a correct pages reserved value, so an adequate number of 5796 * pages are left in the zone after a successful __alloc_pages(). 5797 */ 5798 static void setup_per_zone_lowmem_reserve(void) 5799 { 5800 struct pglist_data *pgdat; 5801 enum zone_type i, j; 5802 5803 for_each_online_pgdat(pgdat) { 5804 for (i = 0; i < MAX_NR_ZONES - 1; i++) { 5805 struct zone *zone = &pgdat->node_zones[i]; 5806 int ratio = sysctl_lowmem_reserve_ratio[i]; 5807 bool clear = !ratio || !zone_managed_pages(zone); 5808 unsigned long managed_pages = 0; 5809 5810 for (j = i + 1; j < MAX_NR_ZONES; j++) { 5811 struct zone *upper_zone = &pgdat->node_zones[j]; 5812 5813 managed_pages += zone_managed_pages(upper_zone); 5814 5815 if (clear) 5816 zone->lowmem_reserve[j] = 0; 5817 else 5818 zone->lowmem_reserve[j] = managed_pages / ratio; 5819 } 5820 } 5821 } 5822 5823 /* update totalreserve_pages */ 5824 calculate_totalreserve_pages(); 5825 } 5826 5827 static void __setup_per_zone_wmarks(void) 5828 { 5829 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10); 5830 unsigned long lowmem_pages = 0; 5831 struct zone *zone; 5832 unsigned long flags; 5833 5834 /* Calculate total number of !ZONE_HIGHMEM and !ZONE_MOVABLE pages */ 5835 for_each_zone(zone) { 5836 if (!is_highmem(zone) && zone_idx(zone) != ZONE_MOVABLE) 5837 lowmem_pages += zone_managed_pages(zone); 5838 } 5839 5840 for_each_zone(zone) { 5841 u64 tmp; 5842 5843 spin_lock_irqsave(&zone->lock, flags); 5844 tmp = (u64)pages_min * zone_managed_pages(zone); 5845 do_div(tmp, lowmem_pages); 5846 if (is_highmem(zone) || zone_idx(zone) == ZONE_MOVABLE) { 5847 /* 5848 * __GFP_HIGH and PF_MEMALLOC allocations usually don't 5849 * need highmem and movable zones pages, so cap pages_min 5850 * to a small value here. 5851 * 5852 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN) 5853 * deltas control async page reclaim, and so should 5854 * not be capped for highmem and movable zones. 5855 */ 5856 unsigned long min_pages; 5857 5858 min_pages = zone_managed_pages(zone) / 1024; 5859 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL); 5860 zone->_watermark[WMARK_MIN] = min_pages; 5861 } else { 5862 /* 5863 * If it's a lowmem zone, reserve a number of pages 5864 * proportionate to the zone's size. 5865 */ 5866 zone->_watermark[WMARK_MIN] = tmp; 5867 } 5868 5869 /* 5870 * Set the kswapd watermarks distance according to the 5871 * scale factor in proportion to available memory, but 5872 * ensure a minimum size on small systems. 5873 */ 5874 tmp = max_t(u64, tmp >> 2, 5875 mult_frac(zone_managed_pages(zone), 5876 watermark_scale_factor, 10000)); 5877 5878 zone->watermark_boost = 0; 5879 zone->_watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp; 5880 zone->_watermark[WMARK_HIGH] = low_wmark_pages(zone) + tmp; 5881 zone->_watermark[WMARK_PROMO] = high_wmark_pages(zone) + tmp; 5882 5883 spin_unlock_irqrestore(&zone->lock, flags); 5884 } 5885 5886 /* update totalreserve_pages */ 5887 calculate_totalreserve_pages(); 5888 } 5889 5890 /** 5891 * setup_per_zone_wmarks - called when min_free_kbytes changes 5892 * or when memory is hot-{added|removed} 5893 * 5894 * Ensures that the watermark[min,low,high] values for each zone are set 5895 * correctly with respect to min_free_kbytes. 5896 */ 5897 void setup_per_zone_wmarks(void) 5898 { 5899 struct zone *zone; 5900 static DEFINE_SPINLOCK(lock); 5901 5902 spin_lock(&lock); 5903 __setup_per_zone_wmarks(); 5904 spin_unlock(&lock); 5905 5906 /* 5907 * The watermark size have changed so update the pcpu batch 5908 * and high limits or the limits may be inappropriate. 5909 */ 5910 for_each_zone(zone) 5911 zone_pcp_update(zone, 0); 5912 } 5913 5914 /* 5915 * Initialise min_free_kbytes. 5916 * 5917 * For small machines we want it small (128k min). For large machines 5918 * we want it large (256MB max). But it is not linear, because network 5919 * bandwidth does not increase linearly with machine size. We use 5920 * 5921 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy: 5922 * min_free_kbytes = sqrt(lowmem_kbytes * 16) 5923 * 5924 * which yields 5925 * 5926 * 16MB: 512k 5927 * 32MB: 724k 5928 * 64MB: 1024k 5929 * 128MB: 1448k 5930 * 256MB: 2048k 5931 * 512MB: 2896k 5932 * 1024MB: 4096k 5933 * 2048MB: 5792k 5934 * 4096MB: 8192k 5935 * 8192MB: 11584k 5936 * 16384MB: 16384k 5937 */ 5938 void calculate_min_free_kbytes(void) 5939 { 5940 unsigned long lowmem_kbytes; 5941 int new_min_free_kbytes; 5942 5943 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10); 5944 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16); 5945 5946 if (new_min_free_kbytes > user_min_free_kbytes) 5947 min_free_kbytes = clamp(new_min_free_kbytes, 128, 262144); 5948 else 5949 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n", 5950 new_min_free_kbytes, user_min_free_kbytes); 5951 5952 } 5953 5954 int __meminit init_per_zone_wmark_min(void) 5955 { 5956 calculate_min_free_kbytes(); 5957 setup_per_zone_wmarks(); 5958 refresh_zone_stat_thresholds(); 5959 setup_per_zone_lowmem_reserve(); 5960 5961 #ifdef CONFIG_NUMA 5962 setup_min_unmapped_ratio(); 5963 setup_min_slab_ratio(); 5964 #endif 5965 5966 khugepaged_min_free_kbytes_update(); 5967 5968 return 0; 5969 } 5970 postcore_initcall(init_per_zone_wmark_min) 5971 5972 /* 5973 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so 5974 * that we can call two helper functions whenever min_free_kbytes 5975 * changes. 5976 */ 5977 static int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write, 5978 void *buffer, size_t *length, loff_t *ppos) 5979 { 5980 int rc; 5981 5982 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 5983 if (rc) 5984 return rc; 5985 5986 if (write) { 5987 user_min_free_kbytes = min_free_kbytes; 5988 setup_per_zone_wmarks(); 5989 } 5990 return 0; 5991 } 5992 5993 static int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write, 5994 void *buffer, size_t *length, loff_t *ppos) 5995 { 5996 int rc; 5997 5998 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 5999 if (rc) 6000 return rc; 6001 6002 if (write) 6003 setup_per_zone_wmarks(); 6004 6005 return 0; 6006 } 6007 6008 #ifdef CONFIG_NUMA 6009 static void setup_min_unmapped_ratio(void) 6010 { 6011 pg_data_t *pgdat; 6012 struct zone *zone; 6013 6014 for_each_online_pgdat(pgdat) 6015 pgdat->min_unmapped_pages = 0; 6016 6017 for_each_zone(zone) 6018 zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) * 6019 sysctl_min_unmapped_ratio) / 100; 6020 } 6021 6022 6023 static int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write, 6024 void *buffer, size_t *length, loff_t *ppos) 6025 { 6026 int rc; 6027 6028 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 6029 if (rc) 6030 return rc; 6031 6032 setup_min_unmapped_ratio(); 6033 6034 return 0; 6035 } 6036 6037 static void setup_min_slab_ratio(void) 6038 { 6039 pg_data_t *pgdat; 6040 struct zone *zone; 6041 6042 for_each_online_pgdat(pgdat) 6043 pgdat->min_slab_pages = 0; 6044 6045 for_each_zone(zone) 6046 zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) * 6047 sysctl_min_slab_ratio) / 100; 6048 } 6049 6050 static int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write, 6051 void *buffer, size_t *length, loff_t *ppos) 6052 { 6053 int rc; 6054 6055 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 6056 if (rc) 6057 return rc; 6058 6059 setup_min_slab_ratio(); 6060 6061 return 0; 6062 } 6063 #endif 6064 6065 /* 6066 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around 6067 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve() 6068 * whenever sysctl_lowmem_reserve_ratio changes. 6069 * 6070 * The reserve ratio obviously has absolutely no relation with the 6071 * minimum watermarks. The lowmem reserve ratio can only make sense 6072 * if in function of the boot time zone sizes. 6073 */ 6074 static int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, 6075 int write, void *buffer, size_t *length, loff_t *ppos) 6076 { 6077 int i; 6078 6079 proc_dointvec_minmax(table, write, buffer, length, ppos); 6080 6081 for (i = 0; i < MAX_NR_ZONES; i++) { 6082 if (sysctl_lowmem_reserve_ratio[i] < 1) 6083 sysctl_lowmem_reserve_ratio[i] = 0; 6084 } 6085 6086 setup_per_zone_lowmem_reserve(); 6087 return 0; 6088 } 6089 6090 /* 6091 * percpu_pagelist_high_fraction - changes the pcp->high for each zone on each 6092 * cpu. It is the fraction of total pages in each zone that a hot per cpu 6093 * pagelist can have before it gets flushed back to buddy allocator. 6094 */ 6095 static int percpu_pagelist_high_fraction_sysctl_handler(struct ctl_table *table, 6096 int write, void *buffer, size_t *length, loff_t *ppos) 6097 { 6098 struct zone *zone; 6099 int old_percpu_pagelist_high_fraction; 6100 int ret; 6101 6102 mutex_lock(&pcp_batch_high_lock); 6103 old_percpu_pagelist_high_fraction = percpu_pagelist_high_fraction; 6104 6105 ret = proc_dointvec_minmax(table, write, buffer, length, ppos); 6106 if (!write || ret < 0) 6107 goto out; 6108 6109 /* Sanity checking to avoid pcp imbalance */ 6110 if (percpu_pagelist_high_fraction && 6111 percpu_pagelist_high_fraction < MIN_PERCPU_PAGELIST_HIGH_FRACTION) { 6112 percpu_pagelist_high_fraction = old_percpu_pagelist_high_fraction; 6113 ret = -EINVAL; 6114 goto out; 6115 } 6116 6117 /* No change? */ 6118 if (percpu_pagelist_high_fraction == old_percpu_pagelist_high_fraction) 6119 goto out; 6120 6121 for_each_populated_zone(zone) 6122 zone_set_pageset_high_and_batch(zone, 0); 6123 out: 6124 mutex_unlock(&pcp_batch_high_lock); 6125 return ret; 6126 } 6127 6128 static struct ctl_table page_alloc_sysctl_table[] = { 6129 { 6130 .procname = "min_free_kbytes", 6131 .data = &min_free_kbytes, 6132 .maxlen = sizeof(min_free_kbytes), 6133 .mode = 0644, 6134 .proc_handler = min_free_kbytes_sysctl_handler, 6135 .extra1 = SYSCTL_ZERO, 6136 }, 6137 { 6138 .procname = "watermark_boost_factor", 6139 .data = &watermark_boost_factor, 6140 .maxlen = sizeof(watermark_boost_factor), 6141 .mode = 0644, 6142 .proc_handler = proc_dointvec_minmax, 6143 .extra1 = SYSCTL_ZERO, 6144 }, 6145 { 6146 .procname = "watermark_scale_factor", 6147 .data = &watermark_scale_factor, 6148 .maxlen = sizeof(watermark_scale_factor), 6149 .mode = 0644, 6150 .proc_handler = watermark_scale_factor_sysctl_handler, 6151 .extra1 = SYSCTL_ONE, 6152 .extra2 = SYSCTL_THREE_THOUSAND, 6153 }, 6154 { 6155 .procname = "percpu_pagelist_high_fraction", 6156 .data = &percpu_pagelist_high_fraction, 6157 .maxlen = sizeof(percpu_pagelist_high_fraction), 6158 .mode = 0644, 6159 .proc_handler = percpu_pagelist_high_fraction_sysctl_handler, 6160 .extra1 = SYSCTL_ZERO, 6161 }, 6162 { 6163 .procname = "lowmem_reserve_ratio", 6164 .data = &sysctl_lowmem_reserve_ratio, 6165 .maxlen = sizeof(sysctl_lowmem_reserve_ratio), 6166 .mode = 0644, 6167 .proc_handler = lowmem_reserve_ratio_sysctl_handler, 6168 }, 6169 #ifdef CONFIG_NUMA 6170 { 6171 .procname = "numa_zonelist_order", 6172 .data = &numa_zonelist_order, 6173 .maxlen = NUMA_ZONELIST_ORDER_LEN, 6174 .mode = 0644, 6175 .proc_handler = numa_zonelist_order_handler, 6176 }, 6177 { 6178 .procname = "min_unmapped_ratio", 6179 .data = &sysctl_min_unmapped_ratio, 6180 .maxlen = sizeof(sysctl_min_unmapped_ratio), 6181 .mode = 0644, 6182 .proc_handler = sysctl_min_unmapped_ratio_sysctl_handler, 6183 .extra1 = SYSCTL_ZERO, 6184 .extra2 = SYSCTL_ONE_HUNDRED, 6185 }, 6186 { 6187 .procname = "min_slab_ratio", 6188 .data = &sysctl_min_slab_ratio, 6189 .maxlen = sizeof(sysctl_min_slab_ratio), 6190 .mode = 0644, 6191 .proc_handler = sysctl_min_slab_ratio_sysctl_handler, 6192 .extra1 = SYSCTL_ZERO, 6193 .extra2 = SYSCTL_ONE_HUNDRED, 6194 }, 6195 #endif 6196 {} 6197 }; 6198 6199 void __init page_alloc_sysctl_init(void) 6200 { 6201 register_sysctl_init("vm", page_alloc_sysctl_table); 6202 } 6203 6204 #ifdef CONFIG_CONTIG_ALLOC 6205 /* Usage: See admin-guide/dynamic-debug-howto.rst */ 6206 static void alloc_contig_dump_pages(struct list_head *page_list) 6207 { 6208 DEFINE_DYNAMIC_DEBUG_METADATA(descriptor, "migrate failure"); 6209 6210 if (DYNAMIC_DEBUG_BRANCH(descriptor)) { 6211 struct page *page; 6212 6213 dump_stack(); 6214 list_for_each_entry(page, page_list, lru) 6215 dump_page(page, "migration failure"); 6216 } 6217 } 6218 6219 /* [start, end) must belong to a single zone. */ 6220 int __alloc_contig_migrate_range(struct compact_control *cc, 6221 unsigned long start, unsigned long end) 6222 { 6223 /* This function is based on compact_zone() from compaction.c. */ 6224 unsigned int nr_reclaimed; 6225 unsigned long pfn = start; 6226 unsigned int tries = 0; 6227 int ret = 0; 6228 struct migration_target_control mtc = { 6229 .nid = zone_to_nid(cc->zone), 6230 .gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL, 6231 }; 6232 6233 lru_cache_disable(); 6234 6235 while (pfn < end || !list_empty(&cc->migratepages)) { 6236 if (fatal_signal_pending(current)) { 6237 ret = -EINTR; 6238 break; 6239 } 6240 6241 if (list_empty(&cc->migratepages)) { 6242 cc->nr_migratepages = 0; 6243 ret = isolate_migratepages_range(cc, pfn, end); 6244 if (ret && ret != -EAGAIN) 6245 break; 6246 pfn = cc->migrate_pfn; 6247 tries = 0; 6248 } else if (++tries == 5) { 6249 ret = -EBUSY; 6250 break; 6251 } 6252 6253 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone, 6254 &cc->migratepages); 6255 cc->nr_migratepages -= nr_reclaimed; 6256 6257 ret = migrate_pages(&cc->migratepages, alloc_migration_target, 6258 NULL, (unsigned long)&mtc, cc->mode, MR_CONTIG_RANGE, NULL); 6259 6260 /* 6261 * On -ENOMEM, migrate_pages() bails out right away. It is pointless 6262 * to retry again over this error, so do the same here. 6263 */ 6264 if (ret == -ENOMEM) 6265 break; 6266 } 6267 6268 lru_cache_enable(); 6269 if (ret < 0) { 6270 if (!(cc->gfp_mask & __GFP_NOWARN) && ret == -EBUSY) 6271 alloc_contig_dump_pages(&cc->migratepages); 6272 putback_movable_pages(&cc->migratepages); 6273 return ret; 6274 } 6275 return 0; 6276 } 6277 6278 /** 6279 * alloc_contig_range() -- tries to allocate given range of pages 6280 * @start: start PFN to allocate 6281 * @end: one-past-the-last PFN to allocate 6282 * @migratetype: migratetype of the underlying pageblocks (either 6283 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks 6284 * in range must have the same migratetype and it must 6285 * be either of the two. 6286 * @gfp_mask: GFP mask to use during compaction 6287 * 6288 * The PFN range does not have to be pageblock aligned. The PFN range must 6289 * belong to a single zone. 6290 * 6291 * The first thing this routine does is attempt to MIGRATE_ISOLATE all 6292 * pageblocks in the range. Once isolated, the pageblocks should not 6293 * be modified by others. 6294 * 6295 * Return: zero on success or negative error code. On success all 6296 * pages which PFN is in [start, end) are allocated for the caller and 6297 * need to be freed with free_contig_range(). 6298 */ 6299 int alloc_contig_range(unsigned long start, unsigned long end, 6300 unsigned migratetype, gfp_t gfp_mask) 6301 { 6302 unsigned long outer_start, outer_end; 6303 int order; 6304 int ret = 0; 6305 6306 struct compact_control cc = { 6307 .nr_migratepages = 0, 6308 .order = -1, 6309 .zone = page_zone(pfn_to_page(start)), 6310 .mode = MIGRATE_SYNC, 6311 .ignore_skip_hint = true, 6312 .no_set_skip_hint = true, 6313 .gfp_mask = current_gfp_context(gfp_mask), 6314 .alloc_contig = true, 6315 }; 6316 INIT_LIST_HEAD(&cc.migratepages); 6317 6318 /* 6319 * What we do here is we mark all pageblocks in range as 6320 * MIGRATE_ISOLATE. Because pageblock and max order pages may 6321 * have different sizes, and due to the way page allocator 6322 * work, start_isolate_page_range() has special handlings for this. 6323 * 6324 * Once the pageblocks are marked as MIGRATE_ISOLATE, we 6325 * migrate the pages from an unaligned range (ie. pages that 6326 * we are interested in). This will put all the pages in 6327 * range back to page allocator as MIGRATE_ISOLATE. 6328 * 6329 * When this is done, we take the pages in range from page 6330 * allocator removing them from the buddy system. This way 6331 * page allocator will never consider using them. 6332 * 6333 * This lets us mark the pageblocks back as 6334 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the 6335 * aligned range but not in the unaligned, original range are 6336 * put back to page allocator so that buddy can use them. 6337 */ 6338 6339 ret = start_isolate_page_range(start, end, migratetype, 0, gfp_mask); 6340 if (ret) 6341 goto done; 6342 6343 drain_all_pages(cc.zone); 6344 6345 /* 6346 * In case of -EBUSY, we'd like to know which page causes problem. 6347 * So, just fall through. test_pages_isolated() has a tracepoint 6348 * which will report the busy page. 6349 * 6350 * It is possible that busy pages could become available before 6351 * the call to test_pages_isolated, and the range will actually be 6352 * allocated. So, if we fall through be sure to clear ret so that 6353 * -EBUSY is not accidentally used or returned to caller. 6354 */ 6355 ret = __alloc_contig_migrate_range(&cc, start, end); 6356 if (ret && ret != -EBUSY) 6357 goto done; 6358 ret = 0; 6359 6360 /* 6361 * Pages from [start, end) are within a pageblock_nr_pages 6362 * aligned blocks that are marked as MIGRATE_ISOLATE. What's 6363 * more, all pages in [start, end) are free in page allocator. 6364 * What we are going to do is to allocate all pages from 6365 * [start, end) (that is remove them from page allocator). 6366 * 6367 * The only problem is that pages at the beginning and at the 6368 * end of interesting range may be not aligned with pages that 6369 * page allocator holds, ie. they can be part of higher order 6370 * pages. Because of this, we reserve the bigger range and 6371 * once this is done free the pages we are not interested in. 6372 * 6373 * We don't have to hold zone->lock here because the pages are 6374 * isolated thus they won't get removed from buddy. 6375 */ 6376 6377 order = 0; 6378 outer_start = start; 6379 while (!PageBuddy(pfn_to_page(outer_start))) { 6380 if (++order > MAX_ORDER) { 6381 outer_start = start; 6382 break; 6383 } 6384 outer_start &= ~0UL << order; 6385 } 6386 6387 if (outer_start != start) { 6388 order = buddy_order(pfn_to_page(outer_start)); 6389 6390 /* 6391 * outer_start page could be small order buddy page and 6392 * it doesn't include start page. Adjust outer_start 6393 * in this case to report failed page properly 6394 * on tracepoint in test_pages_isolated() 6395 */ 6396 if (outer_start + (1UL << order) <= start) 6397 outer_start = start; 6398 } 6399 6400 /* Make sure the range is really isolated. */ 6401 if (test_pages_isolated(outer_start, end, 0)) { 6402 ret = -EBUSY; 6403 goto done; 6404 } 6405 6406 /* Grab isolated pages from freelists. */ 6407 outer_end = isolate_freepages_range(&cc, outer_start, end); 6408 if (!outer_end) { 6409 ret = -EBUSY; 6410 goto done; 6411 } 6412 6413 /* Free head and tail (if any) */ 6414 if (start != outer_start) 6415 free_contig_range(outer_start, start - outer_start); 6416 if (end != outer_end) 6417 free_contig_range(end, outer_end - end); 6418 6419 done: 6420 undo_isolate_page_range(start, end, migratetype); 6421 return ret; 6422 } 6423 EXPORT_SYMBOL(alloc_contig_range); 6424 6425 static int __alloc_contig_pages(unsigned long start_pfn, 6426 unsigned long nr_pages, gfp_t gfp_mask) 6427 { 6428 unsigned long end_pfn = start_pfn + nr_pages; 6429 6430 return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE, 6431 gfp_mask); 6432 } 6433 6434 static bool pfn_range_valid_contig(struct zone *z, unsigned long start_pfn, 6435 unsigned long nr_pages) 6436 { 6437 unsigned long i, end_pfn = start_pfn + nr_pages; 6438 struct page *page; 6439 6440 for (i = start_pfn; i < end_pfn; i++) { 6441 page = pfn_to_online_page(i); 6442 if (!page) 6443 return false; 6444 6445 if (page_zone(page) != z) 6446 return false; 6447 6448 if (PageReserved(page)) 6449 return false; 6450 6451 if (PageHuge(page)) 6452 return false; 6453 } 6454 return true; 6455 } 6456 6457 static bool zone_spans_last_pfn(const struct zone *zone, 6458 unsigned long start_pfn, unsigned long nr_pages) 6459 { 6460 unsigned long last_pfn = start_pfn + nr_pages - 1; 6461 6462 return zone_spans_pfn(zone, last_pfn); 6463 } 6464 6465 /** 6466 * alloc_contig_pages() -- tries to find and allocate contiguous range of pages 6467 * @nr_pages: Number of contiguous pages to allocate 6468 * @gfp_mask: GFP mask to limit search and used during compaction 6469 * @nid: Target node 6470 * @nodemask: Mask for other possible nodes 6471 * 6472 * This routine is a wrapper around alloc_contig_range(). It scans over zones 6473 * on an applicable zonelist to find a contiguous pfn range which can then be 6474 * tried for allocation with alloc_contig_range(). This routine is intended 6475 * for allocation requests which can not be fulfilled with the buddy allocator. 6476 * 6477 * The allocated memory is always aligned to a page boundary. If nr_pages is a 6478 * power of two, then allocated range is also guaranteed to be aligned to same 6479 * nr_pages (e.g. 1GB request would be aligned to 1GB). 6480 * 6481 * Allocated pages can be freed with free_contig_range() or by manually calling 6482 * __free_page() on each allocated page. 6483 * 6484 * Return: pointer to contiguous pages on success, or NULL if not successful. 6485 */ 6486 struct page *alloc_contig_pages(unsigned long nr_pages, gfp_t gfp_mask, 6487 int nid, nodemask_t *nodemask) 6488 { 6489 unsigned long ret, pfn, flags; 6490 struct zonelist *zonelist; 6491 struct zone *zone; 6492 struct zoneref *z; 6493 6494 zonelist = node_zonelist(nid, gfp_mask); 6495 for_each_zone_zonelist_nodemask(zone, z, zonelist, 6496 gfp_zone(gfp_mask), nodemask) { 6497 spin_lock_irqsave(&zone->lock, flags); 6498 6499 pfn = ALIGN(zone->zone_start_pfn, nr_pages); 6500 while (zone_spans_last_pfn(zone, pfn, nr_pages)) { 6501 if (pfn_range_valid_contig(zone, pfn, nr_pages)) { 6502 /* 6503 * We release the zone lock here because 6504 * alloc_contig_range() will also lock the zone 6505 * at some point. If there's an allocation 6506 * spinning on this lock, it may win the race 6507 * and cause alloc_contig_range() to fail... 6508 */ 6509 spin_unlock_irqrestore(&zone->lock, flags); 6510 ret = __alloc_contig_pages(pfn, nr_pages, 6511 gfp_mask); 6512 if (!ret) 6513 return pfn_to_page(pfn); 6514 spin_lock_irqsave(&zone->lock, flags); 6515 } 6516 pfn += nr_pages; 6517 } 6518 spin_unlock_irqrestore(&zone->lock, flags); 6519 } 6520 return NULL; 6521 } 6522 #endif /* CONFIG_CONTIG_ALLOC */ 6523 6524 void free_contig_range(unsigned long pfn, unsigned long nr_pages) 6525 { 6526 unsigned long count = 0; 6527 6528 for (; nr_pages--; pfn++) { 6529 struct page *page = pfn_to_page(pfn); 6530 6531 count += page_count(page) != 1; 6532 __free_page(page); 6533 } 6534 WARN(count != 0, "%lu pages are still in use!\n", count); 6535 } 6536 EXPORT_SYMBOL(free_contig_range); 6537 6538 /* 6539 * Effectively disable pcplists for the zone by setting the high limit to 0 6540 * and draining all cpus. A concurrent page freeing on another CPU that's about 6541 * to put the page on pcplist will either finish before the drain and the page 6542 * will be drained, or observe the new high limit and skip the pcplist. 6543 * 6544 * Must be paired with a call to zone_pcp_enable(). 6545 */ 6546 void zone_pcp_disable(struct zone *zone) 6547 { 6548 mutex_lock(&pcp_batch_high_lock); 6549 __zone_set_pageset_high_and_batch(zone, 0, 0, 1); 6550 __drain_all_pages(zone, true); 6551 } 6552 6553 void zone_pcp_enable(struct zone *zone) 6554 { 6555 __zone_set_pageset_high_and_batch(zone, zone->pageset_high_min, 6556 zone->pageset_high_max, zone->pageset_batch); 6557 mutex_unlock(&pcp_batch_high_lock); 6558 } 6559 6560 void zone_pcp_reset(struct zone *zone) 6561 { 6562 int cpu; 6563 struct per_cpu_zonestat *pzstats; 6564 6565 if (zone->per_cpu_pageset != &boot_pageset) { 6566 for_each_online_cpu(cpu) { 6567 pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu); 6568 drain_zonestat(zone, pzstats); 6569 } 6570 free_percpu(zone->per_cpu_pageset); 6571 zone->per_cpu_pageset = &boot_pageset; 6572 if (zone->per_cpu_zonestats != &boot_zonestats) { 6573 free_percpu(zone->per_cpu_zonestats); 6574 zone->per_cpu_zonestats = &boot_zonestats; 6575 } 6576 } 6577 } 6578 6579 #ifdef CONFIG_MEMORY_HOTREMOVE 6580 /* 6581 * All pages in the range must be in a single zone, must not contain holes, 6582 * must span full sections, and must be isolated before calling this function. 6583 */ 6584 void __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn) 6585 { 6586 unsigned long pfn = start_pfn; 6587 struct page *page; 6588 struct zone *zone; 6589 unsigned int order; 6590 unsigned long flags; 6591 6592 offline_mem_sections(pfn, end_pfn); 6593 zone = page_zone(pfn_to_page(pfn)); 6594 spin_lock_irqsave(&zone->lock, flags); 6595 while (pfn < end_pfn) { 6596 page = pfn_to_page(pfn); 6597 /* 6598 * The HWPoisoned page may be not in buddy system, and 6599 * page_count() is not 0. 6600 */ 6601 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) { 6602 pfn++; 6603 continue; 6604 } 6605 /* 6606 * At this point all remaining PageOffline() pages have a 6607 * reference count of 0 and can simply be skipped. 6608 */ 6609 if (PageOffline(page)) { 6610 BUG_ON(page_count(page)); 6611 BUG_ON(PageBuddy(page)); 6612 pfn++; 6613 continue; 6614 } 6615 6616 BUG_ON(page_count(page)); 6617 BUG_ON(!PageBuddy(page)); 6618 order = buddy_order(page); 6619 del_page_from_free_list(page, zone, order); 6620 pfn += (1 << order); 6621 } 6622 spin_unlock_irqrestore(&zone->lock, flags); 6623 } 6624 #endif 6625 6626 /* 6627 * This function returns a stable result only if called under zone lock. 6628 */ 6629 bool is_free_buddy_page(struct page *page) 6630 { 6631 unsigned long pfn = page_to_pfn(page); 6632 unsigned int order; 6633 6634 for (order = 0; order <= MAX_ORDER; order++) { 6635 struct page *page_head = page - (pfn & ((1 << order) - 1)); 6636 6637 if (PageBuddy(page_head) && 6638 buddy_order_unsafe(page_head) >= order) 6639 break; 6640 } 6641 6642 return order <= MAX_ORDER; 6643 } 6644 EXPORT_SYMBOL(is_free_buddy_page); 6645 6646 #ifdef CONFIG_MEMORY_FAILURE 6647 /* 6648 * Break down a higher-order page in sub-pages, and keep our target out of 6649 * buddy allocator. 6650 */ 6651 static void break_down_buddy_pages(struct zone *zone, struct page *page, 6652 struct page *target, int low, int high, 6653 int migratetype) 6654 { 6655 unsigned long size = 1 << high; 6656 struct page *current_buddy; 6657 6658 while (high > low) { 6659 high--; 6660 size >>= 1; 6661 6662 if (target >= &page[size]) { 6663 current_buddy = page; 6664 page = page + size; 6665 } else { 6666 current_buddy = page + size; 6667 } 6668 6669 if (set_page_guard(zone, current_buddy, high, migratetype)) 6670 continue; 6671 6672 add_to_free_list(current_buddy, zone, high, migratetype); 6673 set_buddy_order(current_buddy, high); 6674 } 6675 } 6676 6677 /* 6678 * Take a page that will be marked as poisoned off the buddy allocator. 6679 */ 6680 bool take_page_off_buddy(struct page *page) 6681 { 6682 struct zone *zone = page_zone(page); 6683 unsigned long pfn = page_to_pfn(page); 6684 unsigned long flags; 6685 unsigned int order; 6686 bool ret = false; 6687 6688 spin_lock_irqsave(&zone->lock, flags); 6689 for (order = 0; order <= MAX_ORDER; order++) { 6690 struct page *page_head = page - (pfn & ((1 << order) - 1)); 6691 int page_order = buddy_order(page_head); 6692 6693 if (PageBuddy(page_head) && page_order >= order) { 6694 unsigned long pfn_head = page_to_pfn(page_head); 6695 int migratetype = get_pfnblock_migratetype(page_head, 6696 pfn_head); 6697 6698 del_page_from_free_list(page_head, zone, page_order); 6699 break_down_buddy_pages(zone, page_head, page, 0, 6700 page_order, migratetype); 6701 SetPageHWPoisonTakenOff(page); 6702 if (!is_migrate_isolate(migratetype)) 6703 __mod_zone_freepage_state(zone, -1, migratetype); 6704 ret = true; 6705 break; 6706 } 6707 if (page_count(page_head) > 0) 6708 break; 6709 } 6710 spin_unlock_irqrestore(&zone->lock, flags); 6711 return ret; 6712 } 6713 6714 /* 6715 * Cancel takeoff done by take_page_off_buddy(). 6716 */ 6717 bool put_page_back_buddy(struct page *page) 6718 { 6719 struct zone *zone = page_zone(page); 6720 unsigned long pfn = page_to_pfn(page); 6721 unsigned long flags; 6722 int migratetype = get_pfnblock_migratetype(page, pfn); 6723 bool ret = false; 6724 6725 spin_lock_irqsave(&zone->lock, flags); 6726 if (put_page_testzero(page)) { 6727 ClearPageHWPoisonTakenOff(page); 6728 __free_one_page(page, pfn, zone, 0, migratetype, FPI_NONE); 6729 if (TestClearPageHWPoison(page)) { 6730 ret = true; 6731 } 6732 } 6733 spin_unlock_irqrestore(&zone->lock, flags); 6734 6735 return ret; 6736 } 6737 #endif 6738 6739 #ifdef CONFIG_ZONE_DMA 6740 bool has_managed_dma(void) 6741 { 6742 struct pglist_data *pgdat; 6743 6744 for_each_online_pgdat(pgdat) { 6745 struct zone *zone = &pgdat->node_zones[ZONE_DMA]; 6746 6747 if (managed_zone(zone)) 6748 return true; 6749 } 6750 return false; 6751 } 6752 #endif /* CONFIG_ZONE_DMA */ 6753 6754 #ifdef CONFIG_UNACCEPTED_MEMORY 6755 6756 /* Counts number of zones with unaccepted pages. */ 6757 static DEFINE_STATIC_KEY_FALSE(zones_with_unaccepted_pages); 6758 6759 static bool lazy_accept = true; 6760 6761 static int __init accept_memory_parse(char *p) 6762 { 6763 if (!strcmp(p, "lazy")) { 6764 lazy_accept = true; 6765 return 0; 6766 } else if (!strcmp(p, "eager")) { 6767 lazy_accept = false; 6768 return 0; 6769 } else { 6770 return -EINVAL; 6771 } 6772 } 6773 early_param("accept_memory", accept_memory_parse); 6774 6775 static bool page_contains_unaccepted(struct page *page, unsigned int order) 6776 { 6777 phys_addr_t start = page_to_phys(page); 6778 phys_addr_t end = start + (PAGE_SIZE << order); 6779 6780 return range_contains_unaccepted_memory(start, end); 6781 } 6782 6783 static void accept_page(struct page *page, unsigned int order) 6784 { 6785 phys_addr_t start = page_to_phys(page); 6786 6787 accept_memory(start, start + (PAGE_SIZE << order)); 6788 } 6789 6790 static bool try_to_accept_memory_one(struct zone *zone) 6791 { 6792 unsigned long flags; 6793 struct page *page; 6794 bool last; 6795 6796 if (list_empty(&zone->unaccepted_pages)) 6797 return false; 6798 6799 spin_lock_irqsave(&zone->lock, flags); 6800 page = list_first_entry_or_null(&zone->unaccepted_pages, 6801 struct page, lru); 6802 if (!page) { 6803 spin_unlock_irqrestore(&zone->lock, flags); 6804 return false; 6805 } 6806 6807 list_del(&page->lru); 6808 last = list_empty(&zone->unaccepted_pages); 6809 6810 __mod_zone_freepage_state(zone, -MAX_ORDER_NR_PAGES, MIGRATE_MOVABLE); 6811 __mod_zone_page_state(zone, NR_UNACCEPTED, -MAX_ORDER_NR_PAGES); 6812 spin_unlock_irqrestore(&zone->lock, flags); 6813 6814 accept_page(page, MAX_ORDER); 6815 6816 __free_pages_ok(page, MAX_ORDER, FPI_TO_TAIL); 6817 6818 if (last) 6819 static_branch_dec(&zones_with_unaccepted_pages); 6820 6821 return true; 6822 } 6823 6824 static bool try_to_accept_memory(struct zone *zone, unsigned int order) 6825 { 6826 long to_accept; 6827 int ret = false; 6828 6829 /* How much to accept to get to high watermark? */ 6830 to_accept = high_wmark_pages(zone) - 6831 (zone_page_state(zone, NR_FREE_PAGES) - 6832 __zone_watermark_unusable_free(zone, order, 0)); 6833 6834 /* Accept at least one page */ 6835 do { 6836 if (!try_to_accept_memory_one(zone)) 6837 break; 6838 ret = true; 6839 to_accept -= MAX_ORDER_NR_PAGES; 6840 } while (to_accept > 0); 6841 6842 return ret; 6843 } 6844 6845 static inline bool has_unaccepted_memory(void) 6846 { 6847 return static_branch_unlikely(&zones_with_unaccepted_pages); 6848 } 6849 6850 static bool __free_unaccepted(struct page *page) 6851 { 6852 struct zone *zone = page_zone(page); 6853 unsigned long flags; 6854 bool first = false; 6855 6856 if (!lazy_accept) 6857 return false; 6858 6859 spin_lock_irqsave(&zone->lock, flags); 6860 first = list_empty(&zone->unaccepted_pages); 6861 list_add_tail(&page->lru, &zone->unaccepted_pages); 6862 __mod_zone_freepage_state(zone, MAX_ORDER_NR_PAGES, MIGRATE_MOVABLE); 6863 __mod_zone_page_state(zone, NR_UNACCEPTED, MAX_ORDER_NR_PAGES); 6864 spin_unlock_irqrestore(&zone->lock, flags); 6865 6866 if (first) 6867 static_branch_inc(&zones_with_unaccepted_pages); 6868 6869 return true; 6870 } 6871 6872 #else 6873 6874 static bool page_contains_unaccepted(struct page *page, unsigned int order) 6875 { 6876 return false; 6877 } 6878 6879 static void accept_page(struct page *page, unsigned int order) 6880 { 6881 } 6882 6883 static bool try_to_accept_memory(struct zone *zone, unsigned int order) 6884 { 6885 return false; 6886 } 6887 6888 static inline bool has_unaccepted_memory(void) 6889 { 6890 return false; 6891 } 6892 6893 static bool __free_unaccepted(struct page *page) 6894 { 6895 BUILD_BUG(); 6896 return false; 6897 } 6898 6899 #endif /* CONFIG_UNACCEPTED_MEMORY */ 6900